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RÉSUMÉ

La programmation linéaire en nombres entiers est une approche robuste qui permet de

résoudre rapidement de grandes instances de problèmes d’optimisation discrète. Toute-

fois, les problèmes gagnent constamment en complexité et imposent parfois de fortes

limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes

spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des

bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues.

Nous proposons d’explorer une approche de reformulation en nombres entiers guidée

par la relaxation lagrangienne. Après l’identification d’une forte relaxation lagrangienne,

un processus systématique permet d’obtenir une seconde formulation en nombres en-

tiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exac-

tement les mêmes solutions entières que la formulation initiale, mais en améliore la

borne linéaire : elle devient égale à la borne lagrangienne.

L’approche de reformulation permet d’unifier et de généraliser des formulations et

des méthodes de borne connues. De plus, elle offre une manière simple d’obtenir des

reformulations de moins grandes tailles en contrepartie de bornes plus faibles.

Ces reformulations demeurent de grandes tailles. C’est pourquoi nous décrivons

aussi des méthodes spécialisées pour en résoudre les relaxations linéaires.

Finalement, nous appliquons l’approche de reformulation à deux problèmes de lo-

calisation. Cela nous mène à de nouvelles formulations pour ces problèmes ; certaines

sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent

pratiques.

Mots clés : recherche opérationnelle, optimisation discrète, relaxation lagran-
gienne, programmation en nombres entiers, problèmes de localisation.



ABSTRACT

Integer linear programming is a robust and efficient approach to solve large-scale

instances of combinatorial problems. However, problems constantly gain in complexity

and sometimes impose strong constraints on computation times. We must then develop

specialised methods to compute heuristic primal solutions to the problem and derive

lower bounds on the optimal value, and thus prove the quality of our primal solutions.

We propose to guide a reformulation approach for mixed integer programs with La-

grangian relaxations. After the identification of a strong relaxation, a mechanical process

leads to a second integer formulation. This reformulation is equivalent to the initial one,

but its linear relaxation is equivalent to the strong Lagrangian dual.

We will show that the reformulation approach unifies and generalises prior formula-

tions and lower bounding approaches, and that it exposes a simple mechanism to reduce

the size of reformulations in return for weaker bounds.

Nevertheless, our reformulations are large. We address this issue by solving their

linear relaxations with specialised methods.

Finally, we apply the reformulation approach to two location problems. This yields

novel formulations for both problems; some are very large but, thanks to the aforemen-

tioned specialised methods, still practical.

Keywords: operations research, discrete optimisation, Lagrangian relaxation,
mixed integer programming, location problems.
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“I am proposing [shadow prices], a new form of indirect indicator for

labour value which would allow us to calculate, easily and straightforwardly,

plans that are optimal all around.

Is this heresy?

Leonid V. Kantorovich in Red Plenty, by Francis Spufford”
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INTRODUCTION

Lagrangian relaxation is a general approach to derive lower bounds for constrained

optimisation problems; this thesis is concerned with its application to mixed integer

linear programs. This approach is particularly attractive because it translates practical

insights on the problem at hand – e.g., which constraints are less likely to be violated

– into strong and theoretically sound lower bounding methods. However, it is diffi-

cult to materialise that strength in practice: the Lagrangian dual is an implicitly defined

piecewise-linear function, and nondifferentiable optimisation is difficult in general. For

example, Chapter 5 applies Lagrangian decomposition to an industrial location prob-

lem, and both a subgradient algorithm and a bundle algorithm make little progress after

hundreds of iterations. Lagrangian relaxation is most attractive for large problems, but

large-scale Lagrangian dual problems are difficult for general nondifferentiable optimi-

sation methods.

This difficulty is partly caused by the fact that nondifferentiable convex optimisation

methods imposes few assumptions on the objective functions: classical approaches to

solve Lagrangian master problems are equally applicable to linear, mixed integer, or

non-linear relaxed subproblems.

We propose to exploit the structure of mixed integer programs with Lagrangian-

informed reformulation, a compact alternative to Dantzig-Wolfe reformulation. Specifi-

cally, we assume the existence of a Lagrangian relaxation scheme for the program, and

that the Lagrangian subproblem may be described with an explicit mixed integer pro-

gram. The resulting mixed integer reformulations are equivalent to the initial integer

programs, but their linear relaxations are stronger: they are equivalent to the Lagrangian

duals that gave rise to the reformulations.

We also describe methods to solve these linear relaxations (equivalently, Lagrangian

duals) by leveraging scalable linear optimisation methods. Through case studies mo-

tivated by an industrial application, we will show that two classical nondifferentiable

optimisation methods fail to scale to large instances of location problems, while our

specialised methods are competitive with a state-of-the-art branch-and-cut algorithm.



Chapter 1 introduces Lagrangian-informed reformulation and shows how it unifies

and generalises prior lower bounding approaches. The reformulation relies on the fact

that an explicit mixed integer program describes the relaxed subproblem; once the dis-

crete variables are fixed to feasible values, the restricted subproblem is a linear program.

At a high level, we propose to enumerate all feasible assignments for the set of discrete

variables and optimise over multiple choice formulation for the union of all restricted

(linear) subproblems. When every variable is discrete, restricted subproblems are triv-

ial, and the reformulation is equivalent to Dantzig-Wolfe reformulation. However, when

some variables are continuous, our reformulation is more compact: each restricted sub-

problem captures several feasible solutions. We thus expose an additional dimension to

balance bound strength and computational efficiency. All Lagrangian relaxation methods

offer the possibility to relax more constraints and simplify the Lagrangian subproblem, at

the expense of a weaker lower bound. Our reformulation method also exploits the pres-

ence of continuous variables in the subproblem; we can thus simplify the Lagrangian

master problem (and the subproblems) by letting more decision variables take fractional

values.

Despite their relative compactness, Lagrangian-informed reformulations may be too

large to solve directly, as explicit linear programs. Chapter 2 describes two specialised

methods to solve these linear relaxations. The first exploits the relationship between

linear dual multipliers and Lagrange multipliers to warm start the solution of a large

linear relaxation. The second applies Structured Dantzig-Wolfe decomposition [31] to

reformulations that are too large for explicit formulations. We thus show how to solve

any Lagrangian relaxation for a mixed integer program with this extension of bundle

methods.

Chapters 3 to 5 apply the reformulation approach to derive novel formulations for

two location problems. Chapters 3 and 4 are concerned with a variant of the Two-level

Uncapacitated Facility Location Problem. Chapter 3 improves prior formulations with

a Lagrangian-informed reformulation that we solve as an explicit mixed integer pro-

gram. Chapter 4 instead applies the Structured Dantzig-Wolfe method from Chapter

2 to quickly compute lower bounds for a larger and stronger reformulation; the result

2



is a Lagrangian heuristic method that is well suited to our practical instances. Finally,

Chapter 5 builds on Chapter 3 to obtain a strong formulation for an industrial location

problem. We tighten that formulation further by guiding our reformulation process with

a Lagrangian decomposition scheme. The result is a large mixed integer program that

we can nevertheless formulate explicitly; we approximately solves its linear relaxation

with a specialised method that reaches stronger lower bounds than classical methods for

an equivalent Lagrangian master problem, given the same time limit.

We hope that our work will improve the practical applicability of Lagrangian relax-

ation methods for mixed integer programs. The reformulation approach itself already

offers an additional parameter to trade theoretical lower bound strength for runtime ef-

ficiency. We also describe methods that exploit high-performance linear optimisation

software to optimise the large linear relaxations of our reformulations. In our experi-

ments, these methods proved more efficient than generic nondifferentiable methods for

equivalent Lagrangian dual functions. Thus, in addition to unifying prior linear formula-

tions and relating them to intuitive Lagrangian relaxation schemes, we extend the design

space of Lagrangian relaxation methods. In theory, the extension offers little advantage

over prior results. In practice, it opens a new range of engineering trade-offs: it is usually

preferable to reliably solve a weaker relaxation than to stall or cycle on a stronger one.
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CHAPTER 1

LAGRANGIAN-INFORMED REFORMULATIONS

We propose to compute lower bounds for mixed integer programs with Lagrangian-

informed reformulation, an approach based on the multiple choice model for the union

of polytopes [4, 50, 67]. We define the reformulation on mixed integer programs of the

form

(P) min
x2Rn,y

cx+ f y

subject to

Ax+By  d, (1.1)

Ex+Fy  g, (1.2)

x � 0, (1.3)

y 2 Y, Y = {y 2 Zm | 0  y  u}, (1.4)

where c, f , d, g and u are rational vectors of sizes m, m, p, q, respectively, and A, B, E,

F are rational matrices of sizes p⇥n, p⇥m, q⇥n, q⇥m, respectively.

The reformulation approach only requires that Y be a finite set. We only assume that

it is a bounded set of non-negative integers to simplify our analysis. We further assume

that

T = {(x,y) 2 Rn ⇥Y | Ex+Fy  g, x � 0}

is non-empty and bounded.

The result of the Lagrangian-informed reformulation is a second mixed integer pro-

gram with a stronger linear relaxation than (P), one equivalent to the Lagrangian dual

with respect only to constraint (1.1).



Relaxing this constraint yields the Lagrangian subproblem

(S
l

)


min
x,y

(lA+ c)x+(lB+ f )y
�
�ld,

subject to constraints (1.2), (1.3) and (1.4), where l � 0 is the vector of Lagrange multi-

pliers associated with constraint (1.1). We compute the Lagrangian bound by maximis-

ing the Lagrangian dual

max
l�0

v(S
l

),

where v(S
l

) is the value of the Lagrangian subproblem for a given vector l . Computing

that bound is equivalent to solving

min
x,y

cx+ f y

over the intersection of

H = Conv({(x,y) 2 Rn ⇥Y | Ex+Fy  g, x � 0}) = Conv(T ),

the convex hull of the feasible set in the Lagrangian subproblem, and of

{(x,y) 2 Rn ⇥Rm | Ax+By  d},

the subspace of Rn ⇥Rm that satisfies constraint (1.1) [37]. Unless the formulation for

(S
l

) possesses the integrality property, H is a strict subset of

{(x,y) 2 Rn ⇥Rm | Ex+Fy  g, x � 0, 0  y  u}

and the Lagrangian bound dominates the linear relaxation bound.

Our reformulation obtains a compact formulation for (S
l

) by enumerating every

y 2 Y . After fixing y to s 2 Y (in a fashion similar to Benders decomposition [10]),

5



constraints

Ex  g�Fs,

x � 0

define the feasible set of the restricted Lagrangian subproblem. Each restricted sub-

problem captures a subspace of the feasible set that comprises multiple extreme points.

Joined together, these subspaces span the feasible set of the Lagrangian subproblem.

We duplicate variables x in order to obtain one restricted subproblem for each s 2 Y .

We highlight the association between copies and subproblems by indexing the former as

xs: the exponent denotes the restricted subproblem to which each copy corresponds.

The multiple choice model [4, 50, 67] shows how to represent the union of restricted

subspaces as a set of mixed integer linear constraints:

Exs  q

s(g�Fs), 8s 2 Y,

Â
s2Y

q

s = 1,

xs � 0, 8s 2 Y.

x = Â
s2Y

xs,

y = Â
s2Y

sq

s,

q

s 2 {0,1}, 8s 2 Y,

where s 2 Y also serve as indices for the binary variables q

s:

q

s =

8
><

>:

1 if y = s

0 otherwise
8s 2 Y.

This set has the same integer solutions as the feasible set in the Lagrangian subprob-

lem; adding constraint (1.1) to it yields (P+), the Lagrangian-informed reformulation of

(P). We wish to solve the linear relaxation of (P+) because of its strength: we prove in

6



Section 1.2 that it is equivalent to the Lagrangian dual of (P) with respect to (1.1).

(P+) min
x,y

cx+ f y

subject to

Ax+By  d, (1.5)

Exs  q

s(g�Fs), 8s 2 Y, (1.6)

Â
s2Y

q

s = 1, (1.7)

xs � 0, 8s 2 Y, (1.8)

x = Â
s2Y

xs, (1.9)

y = Â
s2Y

sq

s, (1.10)

q

s 2 {0,1}, 8s 2 Y. (1.11)

At first sight, the construction appears purely theoretical: Y can be large. Chapter

2 describes specialised methods to solve the linear relaxation of Lagrangian-informed

reformulations. In Chapters 4 and 5, we apply these methods to novel reformulations

and compare them with classical algorithms; the methods also yield primal information

(e.g., fractional solutions) that we exploit in heuristic algorithms.

The remainder of this chapter explores the theory of Lagrangian-informed reformu-

lation. Section 1.1 gives a step-by-step example of the approach. Section 1.2 proves that

the linear relaxation of every Lagrangian-informed reformulation is equivalent to the

Lagrangian dual with respect to constraint (1.1). Section 1.3 shows how to obtain more

compact reformulations at the expense of bound strength. Section 1.4 compares and

relates the Lagrangian-informed reformulation approach to prior work. Section 1.5 of-

fers hints to guide the implementation of Lagrangian-informed reformulations. Finally,

7



Section 1.6 summarises this chapter.

1.1 Example of Lagrangian-informed reformulation

The multicommodity capacitated network design problem (MCND) is a classic ex-

ample to illustrate Lagrangian relaxation (our presentation follows [31]). In this section,

we apply Lagrangian-informed reformulation to a well known relaxation scheme for this

problem.

We define the MCND on a directed graph G = (V,A), where V is the set of vertices

in the graph and A is the set of arcs between these vertices. We must allocate enough

capacity for all origin–destination pairs: for each commodity h 2 H, dh units of flow

depart from the origin vertex sh and must arrive in the destination vertex th. Constants

bh
i represent this deficit or surplus:

bh
i =

8
>>>><

>>>>:

�1, if i = sh,

1, if i = th,

0, otherwise,

8i 2V,8h 2 H.

Commodities also affect the cost of transitting through each arc (i, j) 2 A: routing one

unit of commodity h 2 H through arc (i, j) costs ch
i j.

The other constraint is that there must be enough capacity on each arc. We can install

an arbitrary number of facilities on each arc (i, j) to satisfy this constraint: each facility

increases the capacity of the arc by ui j, at cost fi j.

The problem consists of determining the volume of each commodity to send through

each arc and the number of facilities to install on each arc in order to satisfy all demand

and capacity constraints at minimum cost. For example, the optimal integer solution to

the instance in Fig. 1.1 installs two facilities on B!C.

Some versions of the MCND add the constraint that there must be exactly one path

for each origin–destination pair, i.e., that the flow for each commodity must not be split

between multiple paths. We are currently interested in the version without this constraint,

8



S₀

B

1

S₁
2

T₀

T₁

C

1
u = 2

2

1

2

One unit of flow must travel from S0 to T0, and two from S1 to T1; each facility installed
on arc B!C increases its capacity by two.

Figure 1.1: A toy instance of the MCND.

the MCND with splittable flows; we will consider the MCND with unsplittable flows in

Section 1.3.

We define (MC), a formulation for the MCND with splittable flows that comprises

two classes of decision variables: flow variables wh
i j determine the volume of commodity

h (as a fraction of dh) passing through each arc (i, j), and design variables yi j represent

the number of facilities installed on each arc.

9



(MC) min
w,y Â

h2H
Â

(i, j)2A
dhch

i jw
h
i j + Â

(i, j)2A
fi jyi j

subject to

Â
( j,i)2A

wh
ji � Â

(i, j)2A
wh

i j = bh
i , 8i 2V,8h 2 H, (1.12)

Â
h2H

dhwh
i j  ui jyi j, 8(i, j) 2 A, (1.13)

0  wh
i j  1, 8(i, j) 2 A,8h 2 H, (1.14)

0  yi j  Ti j and integer, 8(i, j) 2 A,

where

Ti j =

&

Â
h2H

dh

ui j

'

is an upper bound on the number of facilities installed on arc (i, j).

We can adapt (MC) to the MCND with unsplittable flows by replacing constraints

(1.14) with

wh
i j 2 {0,1}, 8(i, j) 2 A,8h 2 H.

Regardless of splittability, the linear relaxation of formulation (MC) (i.e., relaxing

the integrality constraint on y) is weak: it linearises the cost of capacity to fi j/ui j per

unit of flow. On the example in Fig. 1.1, that relaxation would install yBC = 3/2 facilities

to handle 3 units of flow.

We compute a stronger bound for the splittable case with the Lagrangian relaxation

of flow conservation constraints (1.12): the Lagrangian subproblem decomposes into a

set of independent integer programs (one per (i, j) 2 A) with one constraint (1.13) and

10



one integer variable (yi j). For each arc (i, j), the set mixed integer constraints

Â
h2H

dhwh
i j  ui jyi j,

0  wh
i j  1, 8h 2 H,

0  yi j  Ti j and integer

defines the feasible set of the decomposed Lagrangian subproblem.

Lagrangian-informed reformulation enumerates all Ti j + 1 values for yi j to find an

equivalent, larger, mixed integer program. Fixing yi j = s leaves a linear knapsack set:

Â
h2H

dhwh
i j  ui js,

0  wh
i j  1, 8h 2 H.

Let Yi j be {0,1, . . .Ti j}, the domain of yi j. Assembling the Ti j +1 restricted subprob-

lems for (i, j) 2 A yields

Â
h2H

dhwhs
i j  ui jsq

s
i j, 8s 2 Yi j

0  whs
i j  q

s
i j, 8h 2 H,8s 2 Yi j, (1.15)

Â
s2Yi j

q

s
i j = 1,

wh
i j = Â

s2Yi j

whs
i j , 8h 2 H,

yi j = Â
s2Yi j

sq

s
i j,

q

s
i j 2 {0,1}, 8s 2 Yi j.

This mixed integer set possesses the integrality property, and Figure 1.2 shows its

effect on the linear relaxation for arc B!C: it introduces copies of flow variables wh
BC

for each value yBC could take. This, combined with constraints (1.15), is what improves

11
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1
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B (y = 0)
 Θ⁰ = 0

B (y = 1)
 Θ¹ = 0

B (y = 2)
 Θ² = 1

C

1

2

C (y = 0)
 Θ⁰ = 0

0
0

C (y = 1)
 Θ¹ = 0

0
0

C (y = 2)
 Θ² = 1

1

2

Figure 1.2: Effect of the reformulation on a single arc of the toy MCND instance.

the linear relaxation. The reformulation generalises the strong forcing constraints

wh
i j  yi j, 8(i, j) 2 A,8h 2 H,

constraints that are most effective when yi j  1. The forcing constraints in the reformu-

lation extend to the case where yi j is a general integer variable by mapping each possible

value for yi j to a dedicated binary decision variable.
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We obtain the Lagrangian-informed reformulation by substituting this alternative

mixed integer programming formulation for each subproblem—instead of constraints

(1.13)—in (MC):

(MC+) min
w,y,q Â

h2H
Â

(i, j)2A
dhch

i jw
h
i j + Â

(i, j)2A
fi jyi j

subject to

Â
( j,i)2A

wh
ji � Â

(i, j)2A
wh

i j = bh
i , 8i 2V,8h 2 H,

Â
h2H

dhwhs
i j  ui jsq

s
i j, 8(i, j) 2 A,8s 2 Yi j, (1.16)

0  whs
i j  q

s
i j, 8h 2 H,8(i, j) 2 A,8s 2 Yi j,

Â
s2Yi j

q

s
i j = 1, 8(i, j) 2 A,

wh
i j = Â

s2Yi j

whs
i j , 8h 2 H,8(i, j) 2 A,

yi j = Â
s2Yi j

sq

s
i j, 8(i, j) 2 A,

q

s
i j 2 {0,1}, 8(i, j) 2 A,8s 2 Yi j.

The mixed integer formulation for each Lagrangian subproblem is nearly identical to

the multiple choice formulation for piecewise linear cost functions [4, 18, 19, 50], and

formulation (MC+) to B̃+ of [30, 31]. We replaced constraints

ui j(s�1)q s
i j  Â

h2H
dhwhs

i j  ui jsq

s
i j, 8(i, j) 2 A,8s 2 Yi j

with constraints (1.16), but the left-hand side is irrelevant when capacity modules incur

a positive cost. This means we re-derived formulations that are known for their strong

linear relaxations. For example, the linear relaxation of B̃+ (and of (MC+)) yields the

same bound as the Lagrangian dual of (MC) with respect to constraint (1.12) [31].

13



The value of Lagrangian-informed reformulation is that we only had to devise a

Lagrangian relaxation scheme for (MC) in order to obtain (MC+). The next section

characterises the strength of our reformulation: the linear relaxation of a Lagrangian-

informed reformulation is always equivalent to the Lagrangian dual for the relaxation

that lead to it.

1.2 Why Lagrangian-informed reformulation works

The linear relaxation of a Lagrangian-informed reformulation enumerates subspaces

of the convex hull of the subproblem that relaxes constraint (1.1) (i.e., Ax+By  d).

The resulting lower bound is thus always equal to maximising the Lagrangian dual with

respect to constraint (1.1), which dominates the linear relaxation of (P). We now prove

this equality.

Let (P) be the linear relaxation of (P)

(P) min
x,y

cx+ f y

subject to

Ax+By  d,

Ex+Fy  g,

x � 0,

0  y  u,

and (S̄
l

) the linear relaxation of (S
l

)

14



(S̄
l

) v(S
l

) =


min
x,y

(lA+ c)x+(lB+ f )y
�
�ld,

subject to

Ex+Fy  g,

x � 0,

0  y  u.

Proposition 1. The Lagrangian dual of (P) with respect to constraint (1.1) (i.e., with

(S̄
l

) as the Lagrangian subproblem) is equivalent to the linear programming dual of

(P). [37]

Proof. The Lagrangian dual of (P) with respect to constraint (1.1) is

max
l�0

v(S̄
l

).

The linear programming dual of (S̄
l

) is

(DS
l

)


max
a,b

�ag�bu
�
�ld

subject to

�aE  c+lA,

�aF �b  f +lB,

a � 0,

b � 0.
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Substituting this into the Lagrangian dual yields

max
l ,a,b

�ld �ag�bu

subject to

�lA�aE  c,

�lB�aF �b  f ,

l � 0,

a � 0,

b � 0.

The linear programming dual of (P) is

(D) max
l ,a,b

�ld �ag�bu

subject to

�lA�aE  c,

�lB�aF �b  f ,

l � 0,

a � 0,

b � 0.

and the Lagrangian dual of (P) with respect to (1.1) is also the linear programming dual

of (P).

Corollary 2. The Lagrangian dual of (P) with respect to (1.1) is maximised by letting l

be equal to its optimal value in (D), i.e., to optimal multipliers for constraint (1.1).
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Lemma 3. The Lagrangian subproblem (S
l

) can be solved with the linear program [37]

(S0
l

) v(S0
l

) =


min
x,y

(lA+ c)x+(lB+ f )y
�
�ld,

subject to

(x,y) 2 H = Conv({(x,y) 2 Rn ⇥Y | Ex+Fy  g, x � 0}) = Conv(T ). (1.17)

Proof. Since

T = {(x,y) 2 Rn ⇥Y | Ex+Fy  g, x � 0}

is non-empty and bounded, we can express constraint (1.17) as the linear program

(x,y) = Â
t2T

tq t , (1.18)

Â
t2T

q

t = 1, (1.19)

q

t � 0, 8t 2 T. (1.20)

Thus, H is a polytope. Since the objective function of (S0
l

) is linear, there is an

optimal solution to (S0
l

) that is an extreme point of H. Because every extreme point of

H satisfies (x,y) 2 T , an optimal solution to (S0
l

) is feasible for (S
l

), which implies that

v(S0
l

) � v(S
l

). Furthermore, H ◆ T , and we also have that v(S0
l

)  v(S
l

).

Proposition 4. Maximising the Lagrangian dual

max
l�0

v(S
l

)

is equivalent to minimising this relaxation of (P): [37]

(P⇤) min
x,y

cx+ f y
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subject to

Ax+By  d,

(x,y) 2 H. (1.21)

Proof. Proposition 1 states that the Lagrangian dual of a linear program (P) is equivalent

to the linear dual of (P). We apply this result to the linear program (S0
l

), which is

equivalent to (S
l

) by Lemma 3, to prove the proposition.

Moreover, Lemma 3 shows how to solve (P⇤) with a linear program: it suffices to

replace constraint (1.21) with constraints (1.18)-(1.20). Alternatively, since H is a poly-

tope, every point (x,y) 2 H can be expressed as a convex combination of the extreme

points of H. Thus, if we denote by R the set of extreme points of H, we can solve

(P⇤) with the following linear program, which is known as the classical Dantzig-Wolfe

reformulation [21, 22].

(DW) min
x,y

cx+ f y

subject to

Ax+By  d,

(x,y) = Â
r2R

rq

r,

Â
r2R

q

r = 1,

q

r � 0, 8r 2 R.

Proposition 5. The linear relaxation of (P+), the Lagrangian-informed reformulation

of (P), dominates the linear relaxation of (P): it is equivalent to (P⇤) and thus to the

Lagrangian dual of (P) with respect to constraint (1.1).
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Proof. Our reformulation exploits the fact that x is continuous to re-express

T = {(x,y) 2 Rn ⇥Y | Ex+Fy  g, x � 0}

as the union of simpler polytopes, one for each s 2 Y :

T =
[

s2Y
T (s),

where

T (s) = {(x,y) 2 Rn ⇥{s} | Ex  g�Fs, x � 0}.

The multiple choice model [4, 50, 67] for this union of polytopes is

Exs  q

s(g�Fs), 8s 2 Y, (1.22)

Â
s2Y

q

s = 1, (1.23)

xs � 0, 8s 2 Y, (1.24)

x = Â
s2Y

xs, (1.25)

y = Â
s2Y

sq

s, (1.26)

q

s 2 {0,1}, 8s 2 Y. (1.27)

Relaxing (1.27) into q

s 2 [0,1] yields a linear system that is equal to H, the convex

hull of T [67]. Constraint (1.23) ensures that variables q

s define weights for a convex

combination of points in T (s). The right-hand sides of constraints (1.22) are scaled by

q

s, so each xs is a point in T (s) scaled by q

s; summing the scaled points in (1.25) yields

a convex combination of points in T (s). The same weights combine s 2 Y in constraint

(1.26), so (x,y) 2 H.

We obtain (P+), the full Lagrangian-informed reformulation, by adding the relaxed

constraint (1.1) to the multiple choice formulation for T . The linear relaxation of (P+)

relaxes the integrality constraints (1.11) into q

s 2 [0,1]. As shown above, constraints
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(1.6) to (1.11) then ensure that (x,y) 2 H. Thus it is equivalent to (P⇤) and, therefore, it

dominates the linear relaxation of (P).

1.3 Trading bound strength for smaller formulations

Lagrangian-informed reformulations are more compact than Dantzig-Wolfe refor-

mulations because we break the black box model: we equip the master problem with an

explicit linear formulation for restricted subproblems. This allows us to adjust the size

and strength of reformulations by relaxing more or fewer integrality constraints.

The previous section formalised the strength of Lagrangian bounds. Relaxing fewer

constraints improves the lower bound, at the expense of a more complex subproblem. If

we preserve every constraint, the relaxation is trivially equivalent to the original problem.

If we instead relax all constraints, the Lagrangian bound is equal to the linear relaxation

bound. Yet, this extreme choice fails to guarantee a subexponential sized Dantzig-Wolfe

reformulation: the master problem always enumerates extreme points, even when we

can describe its feasible set compactly.

In Lagrangian-informed reformulation, we assume that a linear formulation is avail-

able for restricted subproblems. That is why our reformulations shrink when more vari-

ables are continuous.

Letting a subset of integer variables y take fractional values always yields a valid

lower bound. Once we have decided which constraints to relax, we can define in-

termediate reformulations by relaxing integrality for key variables. The linear relax-

ations of these intermediate reformulations are weaker than the initial Lagrangian relax-

ation, but stronger than the linear programming relaxation; more compact than the initial

Lagrangian-informed relaxation, but larger than the original mixed integer formulation.

We will give one example of this trade-off by relaxing the unsplittable arc flow prob-

lem (UAFP) [3] into the splittable arc flow problem (SAFP) [3].

The UAFP appears in multicommodity capacitated network design problems when

each commodity must follow a single path. We solve such MCND with unsplittable

flows by restricting formulation (MC), presented in Section 1.1, with the constraint that
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variables wh
i j are binary. Relaxing flow conservation constraints (1.12) in this pure inte-

ger formulation leaves independent subproblems (for each arc) of the form

(UAFP) min
x,y Â

h2H
chxh + f y

subject to

Â
h2H

dhxh  uy,

xh 2 {0,1}, 8h 2 H,

y � 0 and integer,

where ch  0, f � 0, u > 0, and H is a finite set of commodities.

There are no continuous variables, so both Lagrangian-informed reformulation and

Dantzig-Wolfe decomposition represent the feasible set for UAFP as

(x,y) = Â
r2R

rq

r,

Â
r2R

q

r = 1,

q

r � 0, 8r 2 R,

where R is the set of extreme points of

Conv({(x,y) 2 BH ⇥N | Â
h2H

dhxh  uy}).

Note that R grows exponentially with |H|.
The splittable arc flow problem (SAFP) [3] is a relaxation of the UAFP that dom-

inates its linear relaxation and appears in the splittable MCND of Section 1.1: only y

remains integer. We showed in Sections 1.1 and 1.2 that the Lagrangian-informed refor-
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mulation and the multiple choice model [4, 50, 67] express the SAFP as

(SAFP) min
x,y Â

h2H
chxh + f y

subject to

Â
h2H

dhxhs  usq

s, 8s 2 Y

0  xhs  q

s, 8h 2 H,8s 2 Y,

Â
s2Y

q

s = 1,

xh = Â
s2Y

xhs, 8h 2 H,

y = Â
s2Y

sq

s,

0  q

s  1, 8s 2 Y,

where

Y = 0,1, . . . ,

&

Â
h2H

dh

u

'

is the finite domain of y.

This reformulation includes one linear subproblem for each value in Y . However,

Y is a smaller set than R in general (pseudopolynomial instead of exponential) and the

reformulation is smaller than the one for UAFP. Solving the SAFP reformulation to

optimality may yield stronger bounds more quickly than approximately maximising the

Lagrangian dual for UAFP subproblems.

1.4 Relation to prior research

Lagrangian-informed reformulation builds on three areas: the multiple choice model

for the union of polytopes [4, 50], non-differentiable optimisation methods for Lagran-

gian duals, and cross decomposition for mixed integer programming [49, 66].

Sections 1.1 and 1.2 explain how Lagrangian-informed reformulation decomposes
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the feasible set of the Lagrangian subproblem as the union of polytopes described by

explicit linear constraints. It is then straightforward to represent this union with the

multiple choice model.

This model brings us close to cutting-plane methods, one of the two general ap-

proaches for maximising Lagrangian duals. The other, subgradient methods [5, 9, 62,

64], shines when Lagrangian subproblems are simple. Solving subgradient master prob-

lems (i.e., determining the next vector of Lagrange multipliers) is quick (e.g., linear time)

and sophisticated variants guarantee optimal convergence rates [40, 70]. However, the

practical performance of these methods tends to be disappointing when instances grow

larger and subproblems become more complex.

The family of cutting plane methods, including Dantzig-Wolfe decomposition [15,

21, 22, 54], decrease the number of subproblem evaluations by solving more demanding

master problems, compared with subgradient methods. Later algorithms [13, 28, 41, 42,

48, 59, 68] focus on stabilising the master problem to obtain optimal convergence rates.

Lagrangian-informed reformulation continues a research line that aims to further

reduce the number of subproblem evaluations (in practice if not in theory) by solving

richer, more complex, master problems. Rich master problems violate the standard black

box model of non-differentiable optimisation: additional information about the structure

of the Lagrangian subproblem helps refine the master problem. Our reformulation also

works in a translucent box model: we require access to linear programming formulations

for restricted Lagrangian subproblems.

Previous work on rich Lagrangian master problems described schemes that disag-

gregate master problems when the subproblem separates into independent convex hulls

[29, 52], tighten master problems with valid inequalities [33, 44, 65], or formulate parts

of the convex hull explicitly [32]. These schemes are pragmatic when the master prob-

lem is a linear program: high-performance solvers optimise such problems quickly and

reliably. We leverage these solvers with our own linear programs (e.g., (P+) and (MC+)).

Our reformulation method is closer to the spirit of cross decomposition [49, 66] for

mixed integer programs. Cross decomposition relies on the existence of both Benders

[10] and Dantzig-Wolfe decompositions for the programs: an initial heuristic phase de-
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termines Lagrange multipliers by solving one Benders subproblem per iteration. The

hope is that the Benders subproblem is a better model of the Lagrangian dual than early

incarnations of the Dantzig-Wolfe master problem, and vice versa for the Lagrangian

subproblem and the Benders master.

Lagrangian-informed reformulation as well exploits the quality of Benders subprob-

lems as local approximations of the Lagrangian dual: reformulations consider all Ben-

ders subproblems simultaneously. The Benders subproblem in cross decomposition is

a heuristic, but Lagrangian-informed reformulation is an exact method to maximise La-

grangian bounds and compute fractional solutions.

Structured Dantzig-Wolfe decomposition [31] is even more similar. It allies column

generation with row generation to generalise Dantzig-Wolfe decomposition: each itera-

tion adds a subspace of the feasible set to the master problem. We do the same in static,

fully enumerated reformulations.

The correctness conditions for structured Dantzig-Wolfe decompositions are estab-

lished based on “the apparently unrelated definition of a multiple choice binary formu-

lation for the [MCND]” [31]. This contrasts with Lagrangian-informed reformulations:

creativity is only necessary when choosing which constraints to relax and which to pre-

serve in the Lagrangian subproblem. Afterwards, the reformulation is automatic, and

Section 2.3 will show how to solve any Lagrangian-informed reformulation as a struc-

tured Dantzig-Wolfe decomposition.

Thanks to Lagrangian-informed reformulation, every Lagrangian relaxation with

a mixed integer subproblem gives rise to a structured Dantzig-Wolfe decomposition.

The reformulation also bridges between cross decomposition methods and structured

Dantzig-Wolfe decomposition: the heuristic phase of the former solves a memoryless

simplification of the latter’s master problem.

1.5 Practical considerations

Lagrangian-informed reformulation is an approach to compute Lagrangian bounds,

and the resulting lower bound is contingent on the same desiderata as Lagrangian re-
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laxation. The parallel even extends to the size of the reformulation, which reflects the

complexity of the underlying Lagrangian subproblem. Sadly, designing a Lagrangian

relaxation that balances bound strength and subproblem complexity remains more of a

craft than a science. There are however a few rules of thumb to direct our efforts.

Lagrangian relaxations in which the subproblem is so simple that we can solve it as

a linear program are pointless: the Lagrangian bound is equal to the linear programming

bound, and the only hope is to maximise the Lagrangian dual faster than simplex or

interior point algorithms can solve the linear relaxation. That is an unlikely proposition,

especially given that we optimise the dual with a linear master problem.

Experience shows that pure 0/1 problems are well suited to Lagrangian relaxation.

A reasonable explanation is that the Lagrangian dual is more easily maximised when

we relax constraints that are never strongly violated in the subproblem. For example,

Lagrangian decomposition relaxes constraints of the form

x = y.

When x and y are binary, each of these constraints is violated at most by ±1, and we ex-

pect decomposition to perform well. This agrees with Lagrangian decomposition folk-

lore, which also favours duplicating binary variables over general integer ones.

Our reformulations are fully formulated linear programs, and linear programming

solvers rarely suffer from numerical issues. However, reformulations still benefit from

relaxing constraints that only involve binary variables. Lagrangian-informed reformu-

lation enumerates all assignments for the set of discrete variables in the program and

eliminate choices that are already infeasible in the relaxed subproblem. This pruning

disregards relaxed constraints, and we can keep Y to a manageable size by preserving

constraints that involve variables with wide domains.

Another way to reduce the size of reformulations is to identify when y = 0 forces

x = 0, e.g., when the discrete choices determine capacities. We can then eliminate all

variables and constraints associated with y = 0: we replace Y with Y 0 = Y \ {0}, and
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constraint (1.7) with

Â
s2Y 0

q

s  1.

For example, we can perform this substitution on the SAFP components of (MC+).

This is a special case of the general observation that fixing y = s exposes opportuni-

ties for simplification in constraint (1.6). We may fix some of xs at precomputed values,

and simplify or eliminate rows in (1.6). Automatic presolving will identify many of these

cases, but may be disabled when re-optimising; we should explicitly specialise (1.6) to

y = s when possible.

Finally, one rare reliable fact about Lagrangian relaxations is that master problems

require fewer subproblem evaluations when they are disaggregated [29, 52]. Disag-

gregation factorises H, the convex hull of the subproblem, into the cartesian prod-

uct H1 ⇥H2 ⇥ . . .⇥Hm, where each Hi is the convex hull for a subproblem involving

fewer variables, and thus fewer extreme points. The same factorisation is useful for

Lagrangian-informed reformulations as well: factorising

(Y,Rn) = (Y1,X1)⇥ (Y2,X2)⇥ . . .⇥ (Ym,Xm)

yields a more compact reformulation. We give one example in Chapter 3, where the

disaggregated reformulation contracts a formulation while improving its bound.

These rules of thumb are only that, folklore extracted from hard-earned experience.

Lagrangian-informed reformulation does not offer more solid footing to devise relax-

ation schemes. However, the tools we describe in this dissertation make it more likely

that we will achieve in practice the theoretical strength of Lagrangian relaxations.

1.6 Summary

We introduced Lagrangian-informed reformulation, a method to strengthen the lin-

ear relaxation of mixed integer programs. Prior work describes special cases of the

method, e.g., formulations for non-convex cost functions [18, 19, 67], cross decompo-

sition heuristics for mixed integer programs [49, 66], or row and column generation for
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multicommodity capacitated network design [30, 31]. We unify and generalise this work

to expose a range of intermediate relaxations and solution methods.

Our reformulation is a straightforward application of the multiple choice model

[4, 50, 67] to reformulate the Dantzig-Wolfe master problem [21, 22] compactly. Both

components were introduced decades ago, and it is surprising that the general reformu-

lation was not described earlier.

Perhaps the reason is that our reformulated programs only became tractable recently.

The next chapter describes methods that rely on the power of contemporary computers,

coupled with efficient linear optimisation algorithms, to solve the linear relaxations of

large Lagrangian-informed reformulations. Chapters 4 and 5 will show that it is now

practical to optimise linear programs involving millions of variables and constraints,

when the alternative is to solve (less) large integer programs.
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CHAPTER 2

SOLVING LAGRANGIAN-INFORMED REFORMULATIONS

Computing solutions or bounds for Lagrangian-informed reformulations poses prac-

tical challenges: improvements in bound strength are usually accompanied by increases

in formulation size.

Rarely, reformulations comprise fewer variables and constraints than the original

mixed integer program. The reformulation in Chapter 3 is one specimen. Despite its

small size, the integer reformulated program (i.e., with weight variables q 2 B|Y |) is dif-

ficult to solve to optimality: Lagrangian-informed reformulation strengthens the linear

relaxation by discarding the logical structure encoded in discrete decision variables. Re-

sults in Chapter 3 show that we should re-introduce decision variables eliminated during

reformulation: the final mixed integer program is larger but exposes better branching

choices during branch-and-bound. Similar observations are frequent for branch-and-

price methods [6, 23, 61], and the conclusion is not surprising.

This chapter describes methods for the common case: Lagrangian-informed refor-

mulations with linear relaxations that, although smaller than equivalent Dantzig-Wolfe

reformulations, are too large for standard linear programming solvers.

Section 2.1 quickly recalls the classical trick of initialising optimisation methods for

the Lagrangian dual with an optimal solution to a simpler linear relaxation. We then

extend this initialisation approach to Lagrangian decompositions.

Section 2.2 introduces a novel method to warm-start the dual simplex [16, 20, 60]

algorithm by solving a smaller linear program. The method suits Lagrangian-informed

reformulations when Y scales pseudopolynomially with the instance size. The linear

relaxations of such reformulations may reach the edge of tractability: it can be prac-

tical to formulate the relaxations with off-the-shelf solvers, but not to solve them. A

warm start quickly improves the initial approximate solution and enables the solution of

larger relaxations. When we represent Lagrangian-informed reformulations explicitly,

this method eliminates an important advantage of classical Lagrangian master problems:



the dual simplex algorithm now benefits from the same warm starts, and (in practice)

will solve Lagrangian-informed reformulations faster than non-differentiable optimisa-

tion methods can maximise Lagrangian dual functions.

Chapter 5 applies this warm-starting method to a location problem with modular

costs. Experiments on large-scale instances show that a warm-started dual simplex al-

gorithm improves the same dual solutions more quickly than the bundle and volume

algorithms. Chapter 5 also combines the warm start with a primal heuristic to reduce the

optimality gap more quickly than a parallel branch-and-cut solver.

Section 2.3 points out the relationship between our Lagrangian-informed reformula-

tion and structured (stabilised) Dantzig-Wolfe decomposition [31]: every reformulation

satisfies the conditions for structured Dantzig-Wolfe decomposition. We conclude that,

if the subproblem for a Lagrangian relaxation is a mixed integer program, we can solve

that relaxation with structured Dantzig-Wolfe decomposition.

Converting a Lagrangian-informed reformulation to a structured Dantzig-Wolfe de-

composition is useful when Y grows quickly, e.g., exponentially in the instance size.

Such reformulations are so large that it is impractical to even represent them explicitly.

We propose to solve large reformulations through dynamic row and column genera-

tion, i.e., a form of structured (stabilised) Dantzig-Wolfe decomposition [31]. We also

describe three linear stabilisation terms for our restricted master problems. Results in

Chapter 4 confirm that structured decomposition offers better performance than the bun-

dle and volume algorithms. In fact, incorporating a primal heuristic yields a Lagrangian

heuristic that is competitive with a branch-and-cut solver.

2.1 Linear warm start for Lagrangian relaxations

The equivalence between linear relaxations and Lagrangian duals for linear program-

ming subproblems is a classical result of Lagrangian duality [36, 37].

Corollary 2 (Section 1.2) tells us that optimal dual multipliers for constraint (1.1) in

the linear relaxation of (P) are optimal Lagrange multipliers for the linear relaxation of

(S
l

). These multipliers are also valid—but not necessarily optimal—for the initial mixed
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integer Lagrangian subproblem (S
l

). (S
l

) optimises over a smaller feasible space than

(S̄
l

), and we obtain a Lagrangian bound that dominates the linear programming bound.

The practical consequence is that we can solve a linear program to extract dual mul-

tipliers and initialise a Lagrangian master problem with these heuristic multipliers. Even

if we then maximise the Lagrangian dual approximately, our heuristic Lagrangian bound

dominates the linear programming bound.

We extend this trick to compute initial multipliers for Lagrangian decompositions

[45], i.e., Lagrangian relaxations of artificial linking constraints, from solutions to the

original problems without linking constraints.

Lagrangian decomposition is a special case of Lagrangian relaxation: the idea is to

link components in the original formulation explicitly through artificial constraints, and

then relax these linking constraints to decompose the formulation into independent La-

grangian subproblems. We just explained how to compute initial Lagrange multipliers

for arbitrary relaxed constraints, but that solution is ill adapted to Lagrangian decom-

position: the intermediate formulation with artificial linking constraints is larger than

the initial one. We propose to derive the same multipliers from the latter more compact

formulation.

Lagrangian decomposition for linear programs takes a problem of the form

(E) min
x

cx+ f Dx

subject to

Ax  b, (2.1)

CDx  e, (2.2)

transforms it into the equivalent

(E0) min
x,y

cx+ f y
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subject to

Ax  b, (2.3)

Cy  e (2.4)

Dx� y = 0, (2.5)

and then relaxes constraint (2.5). Matrix D is often the identity, but becomes useful when

aggregating variables with linking constraints of the form

Â
i2I( j)

xi = y j.

We wish to turn a dual solution to (E) into dual multipliers for constraint (2.5) in (E0).

The key is to compute reduced costs.

Let l and µ be, respectively, optimal dual multipliers for constraints (2.1) and (2.2).

The optimal multipliers for linking constraint (2.5) are then

n = µC� f

while those for (2.3) and (2.4) remain, respectively, l and µ .

This solution is in the dual domain of (E0): l and µ are nonnegative (they are feasible

multipliers for inequality constraints in (E)), and multipliers for equality constraints can

take arbitrary values. Moreover, because l and µ are feasible dual multipliers for (E),

lA+µCD = c+ f D,

and we conclude that the dual constraints for x and y in (E0) are satisfied:

lA+nD = lA+µCD� f D = c,

and

µC�nI = f .
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This dual solution is also optimal for (E0) iff the initial one is optimal for (E): both

their objective values are lb+µe (the right-hand side of constraint (2.5) is 0).

Intuitively, the effect of constraint (2.2) on the reduced costs of x instead appears via

constraint (2.5) in (E0): the multipliers for (2.5) are exactly the portion of the reduced

costs of x (in (E)) attributable to (2.2) at optimum.

This equivalence holds for linear programs but not for more complex formulations

in which x and y are discrete. Nevertheless, optimal multipliers for linear relaxations are

useful initialisers for tighter relaxations.

2.2 Warm start for large reformulations

This section describes a novel method to solve large linear programs by first com-

puting dual multipliers for a more tractable approximation. It is a clumsy workaround

for the difficulty of warm-starting interior point methods, but Chapter 5 demonstrates its

efficacy when combined with the heuristic of Section 2.1.

The simplex algorithm benefits naturally from advance bases. However, it is not

obvious how to generate a basis from a dual solution to an unrelated linear program. The

primal simplex algorithm re-optimises efficiently when the program gains variables and

the dual simplex performs excellently after the addition of constraints, but neither is well

suited to arbitrary modifications.

Contrary to simplex algorithms, interior point methods [69] work directly in terms

of primal and dual solutions. However, warm-starting these methods is still an area of

active research [25, 43, 51].

We propose to compute an advance simplex basis from a suboptimal dual solution.

Dual multipliers help define a relaxation of the large initial linear program; we solve that

relaxed subproblem to find an advance basis and we re-add the relaxed constraints to the

subproblem; this final program is equivalent to the initial one and we re-optimise it with

the dual simplex algorithm.

Formally, we wish to obtain an advance basis for linear programs of the form (B)

starting from l , a vector of potentially suboptimal multipliers for constraint (2.6).
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(B) min
x

cx

subject to

Ax = b, (2.6)

Dx � e.

Relaxing constraint (2.6) leaves a linear Lagrangian subproblem that we solve once,

with multipliers l :

(B0) �lb+min
x

(lA+ c)x

subject to

Dx � e.

We need an optimal basis for this subproblem, and (B0) is smaller than (B); we propose

to solve (B0) with the simplex algorithm.

We then re-insert constraint (2.6) in (B0) to obtain (B00). This last formulation is

equivalent to (B): the only difference lies in the objective function, and constraint (2.6)

forces the Lagrangian term l (Ax�b) to zero.

(B00) �lb+min
x

(lA+ c)x

subject to

Ax = b,

Dx � e.
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Formulation (B00) adds constraints to (B0); the dual simplex algorithm is well suited

to re-optimisation after such modifications. Better, each iteration of the dual simplex

algorithm will increase the lower bound: we can stop solving (B00) at any time and find

a lower bound that dominates that of (B0).

This is particularly interesting when l is almost optimal: the lower bound computed

with (B0) is then close to the optimal value for (B), and (B00) quickly reaches optimality.

We apply this warm start to Lagrangian-informed reformulations that are too large

for off-the-shelf solvers, but small enough to be represented explicitly. We obtain dual

multipliers for constraints (1.9) and (1.10) by considering (P+) as a reformulation of

(P0), a version of (P) with explicit linking constraints (2.8) and (2.9).

(P0) min
x,y,x0,y0

cx+ f y

subject to

Ax+By  d,

Ex0+Fy0  g, (2.7)

x = x0, (2.8)

y = y0, (2.9)

x0 � 0, (2.10)

y0 2 Y. (2.11)

Reformulation (P+) replaces constraints (2.8) and (2.9) with (1.9) and (1.10), and

optimal multipliers for the former pair of constraints (in the linear relaxation of (P0)) are

valid for the latter. They may however be suboptimal, as (P+) replaces constraints (2.7),

(2.10) and (2.11) with the tighter (1.6), (1.7), (1.8) and (1.11).

This section showed how to compute dual multipliers for artificial constraints (2.8)

and (2.9) (and thus for (1.9) and (1.10)) from optimal dual multipliers for constraint

(1.2). We exploit this in Algorithm 1 to warm-start the optimisation of (P+). The first
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step only computes dual values for the initial (integrated) linear formulation (P); when it

is large, we use an interior point method and disable crossover [12].

Algorithm 1 Warm-starting algorithm for Lagrangian-informed reformulations
Solve the linear relaxation of (P); let p be optimal multipliers for constraint (1.2).
Derive Lagrange multipliers l for constraints (1.9) and (1.10) from p .
Relax (P+) by dualising (some of) constraints (1.9) and (1.10) with multipliers l .
Solve the linear relaxation of this Lagrangian subproblem; let b be the optimal basis.
Add constraints (1.9) and (1.10) to the formulation; the result is equivalent to (P+).
Solve this new linear program with the dual simplex algorithm, starting from b.

2.3 Structured Dantzig-Wolfe decomposition

Structured (stabilised) Dantzig-Wolfe decomposition (S(2)DW) [31] is an algorith-

mic scheme for solving specially structured large-scale linear programs that relies on

three general assumptions, which we recall in Section 2.3.1. In this section, we show that

all Lagrangian-informed reformulations possess the appropriate structure for S(2)DW

and describe our implementation of Lagrangian-informed structured Dantzig-Wolfe de-

composition.

2.3.1 Dynamic generation of variables and constraints

The size blowup for (P+) with respect to (P), the initial formulation, parallels the

cardinality of Y : Lagrangian-informed reformulation introduces constraints over fresh

variables for each s 2 Y . However, row and column generation lore tells us that the

majority of these variables and constraints are irrelevant at optimum; it is natural to

solve a restriction of (P+) and only enumerate Y on demand. We propose to implement

an S(2)DW and choose which s 2Y to enumerate by solving the Lagrangian subproblem

(S
l

). First, we show that this satisfies the assumptions for applying S(2)DW [31].

If we disregard constraint (1.5) (i.e., only consider the reformulation for H, the con-

vex hull of (S
l

)), reformulation (P+) satisfies

Assumption 1 For a finite vector of variables q and matrices C, G and g of

appropriate dimension, Conv(X) = {x =Cq | Gq  g}.
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Variables q

s and xs in (P+) correspond to q in this assumption, constraints (1.9) and

(1.10) to matrix C, and constraints (1.6), (1.7) and (1.8) to (G,g).
The two remaining assumptions in are more technical and leak implementation de-

tails of bundle methods. Let (P+) be the linear relaxation of a partially enumerated

version of (P+): rather than enumerating variables and constraints for all s 2 Y , (P+) is

restricted to s 2 B ⇢ Y .

Assumption 2 GBq̄B  gB and q =
⇥
q̄B,0

⇤
) Gq  g .

Assumption 3 Let x̄ be a point such that x̄ 2 Conv(X)\XB; then, it must be

easy to update B and the associated GB, gB and CB to a set B0 ) B (which

satisfies Assumption 2) such that there exists B00 ◆ B0 with x̄ 2 XB00 .

The second assumption means that (P+) must be a restriction of (P+); it must always

be possible to “pad” a partial solution with zeros to obtain a feasible solution in the com-

plete formulation. (P+) satisfies this assumption: it is equivalent to adding constraints

q

s = 0, 8s 2 Y \B

to the full formulation (P+).

The third assumption is that, given (x̄, ȳ) 2 H, it is easy to extend (P+) to (eventu-

ally) include (x̄, ȳ). Lagrangian-informed reformulations satisfy a weaker form of this

assumption: in practice, it suffices to be able to extend when (x̄, ȳ) is an extreme point of

H. We achieve that by adjoining ȳ to B.

The relationship between (P+) and standard bundle master problems that enumerate

extreme points of H is discussed in Frangioni and Gendron [31]. We only note that dual

multipliers for constraints (1.5) serve as tentative Lagrange multipliers and that solving

(S
l

) for these multipliers both computes a lower bound and separates an extreme point

of H. If the Lagrangian bound is lower than the objective value of (P+) with s restricted

to B ⇢ Y , the value of y in optimal solutions of the subproblem must not be in B; we

adjoin one such value to B and expand (P+). Otherwise, any optimal solution of (P+) is

also optimal for (P+).
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2.3.2 Lagrangian-informed S(2)DW

We have shown that any Lagrangian-informed reformulation can be cast in the frame-

work of structured (stabilised) Dantzig-Wolfe decomposition (S(2)DW). We now show

how to use such a decomposition to solve instances of Lagrangian-informed reformula-

tion.

Algorithm 2 provides an outline of the structured Dantzig-Wolfe algorithm [31]. We

must determine how to initialise the bundle B and how to update the restricted master

problem (P+); we will also replace the termination condition.

Algorithm 2 The structured Dantzig-Wolfe algorithmic skeleton
Initialise the bundle B.
repeat

Solve the linear program (P+) for (x̃, ỹ);
let p̃ be optimal dual multipliers of Ax+By  d.

Solve (S
l

), with l = p̃ , for (x̄, ȳ).
Update B as in Assumption 3.

until cx̃+ f ỹ  cx̄+ f ȳ+ p̃(d �Ax̄�Bȳ)

We already defined the restricted master (P+) as the linear relaxation of (P+) with

variables q

s and xs and constraints (1.22) and (1.24) only enumerated for s 2 B ⇢ Y . In

our implementation of structured Dantzig-Wolfe decomposition, the bundle B is a set

of assignments s 2Y for y. It consists of partial solutions to the Lagrangian subproblem,

not complete ones (i.e., extreme points): solving (P+) determines the value of xs.

We propose to initialise B by solving the linear relaxation of the initial formulation

(P). The dual multipliers for constraint (1.1) at optimum define a Lagrangian subproblem

(S
l

) that we solve as a mixed integer program. Let ȳ be the value of y in an optimal

solution to that subproblem; we initialise B to the singleton {ȳ}.

We adjoin ȳ to B by adding xȳ and q

ȳ to the restricted master and constraining

them with new instances of (1.22) and (1.24). Convexity constraint (1.7) and linking

constraints (1.25) and (1.26) are then altered to include xȳ and q

ȳ in their sums.

We propose to re-optimise the dual of (P+) with the dual simplex algorithm. This

may be surprising, as neither the primal nor the dual simplex algorithms are well suited

37



to re-optimisation after general updates. Our expansion of the restricted master problem

is a special case: the update is equivalent to relaxing the implicit constraint

q

ȳ = 0

into

0  q

ȳ  1,

and the previous basis is primal feasible for the expanded problem. The primal simplex

algorithm thus benefits from a directly usable advance basis. However, the dual simplex

algorithm offers superior numerical efficiency and we prefer to work with the dual of the

restricted master problem.

The termination condition

cx̃+ f ỹ  cx̄+ f ȳ+ p̃(d �Ax̄�Bȳ)

is always correct, but overly general for our uses. We instead stop when ȳ, the value of

y in an optimal solution of (S
l

), is already in the bundle B. This alternative criterion

is simple, avoids numerical issues of scale between the constraints and the objective

function, and trivially guarantees finite convergence (Y is a finite set and B grows after

each iteration).

These three changes yield Algorithm 3. The only remaining decisions are in the

definition of the Lagrangian relaxation that guides the reformulation: which constraints

to relax (are in (1.1)) and which discrete variables, if any, to turn into continuous ones

(become part of x).

Chapter 4 will show that this unstabilised variant of Dantzig-Wolfe decomposition

is practical only when the linear relaxation of (P) is a close approximation of (P+). We

now describe a linear stabilisation scheme that improves the empiric iteration and time

complexity of the method.

Numerical results [31] show that the number of iterations is most reduced by a

quadratic stabilisation term. However, the runtime performance of quadratic program-
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Algorithm 3 Lagrangian-informed structured Dantzig-Wolfe algorithm
Solve the linear relaxation of (P);

let p̃ be optimal dual multipliers for constraint (1.1).
Solve mixed integer program (S

l

), with l = p̃ , for (x̄, ȳ).
Let B = {ȳ}, and formulate (P+) with the single block s = ȳ.
loop

Solve (the dual of) (P+) for (x̃, ỹ);
let p̃ be optimal dual multipliers for constraint (1.1).

Solve (S
l

), with l = p̃ , for (x̄, ȳ).
if ȳ 2 B then

return (x̃, ỹ), an optimal solution of (P+).
end if
Update B to B[{ȳ}.
Extend the restricted master problem (P+) with a new block for s = ȳ.

end loop

ming solvers lags behind that of linear programming solvers, and an `• constraint on

dual multipliers delivered the best reduction in total runtime. That is why we only con-

sider three linear trust region terms: a variant of the `• constraint, an `1 constraint, and

the intersection of both.

Regardless of the stabilisation term, structured stabilised Dantzig-Wolfe decomposi-

tion algorithms are implementations of the trust region framework [17] for non-smooth

optimisation (that leverage especially talkative oracles which produce more than indi-

vidual subgradients). Algorithm 4 shows our specialisation of the basic trust region

algorithm [17] for Lagrangian-informed structured Dantzig-Wolfe decomposition.

The first iterations are identical to that of the unstabilised decomposition (Algo-

rithm 3): we leave the trust radius D at • until two consecutive unstabilised iterations

fail to improve the lower bound. Our aim is for easy instances to reach optimality before

stalling and thus not suffer from any stabilisation overhead.

Once unstabilised structured Dantzig-Wolfe decomposition has failed to improve the

best lower bound twice in a row, we insert the trust region term. We initialise the ra-

dius D to 10�3, and the multipliers associated with the best bound to date become the

stabilisation center l .

These parameters are only updated when the stabilisation constraint is active and
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Algorithm 4 Lagrangian-informed structured stabilised Dantzig-Wolfe algorithm
Solve the linear relaxation of (P); let p̃ be optimal dual multipliers for (1.1).
Solve mixed integer program (S

l

), with l = p̃ , for (x̄, ȳ).
Let z̄�1 = (p̃A+ c)x̄+(p̃B+ f )ȳ� p̃d.
Set k = 0, the stabilisation center l0 = p̃ and the stabilisation radius Dk = •.
Let B = {ȳ}, and formulate the stabilised master (P+) with one block, s = ȳ.
for k = 0,1,2, . . . do

Solve (P+) for (x̃, ỹ); let p̃ be optimal multipliers for (1.1) and z̃ = cx̃+ f ỹ.
Solve (S

l

), with l = p̃ , for (x̄, ȳ); let z̄k = (p̃A+ c)x̄+(p̃B+ f )ȳ� p̃d.
if the stabilisation contraint is inactive and ȳ 2 B then

return (x̃, ỹ), an optimal solution of (P+).
else if Dk = • then

if z̄k > z̄k�1 then
Set z⇤ = z̄k. {New best multipliers}
Dk+1 = •, lk+1 = p̃ .

else
lk+1 = lk.
if lk�1 = lk then

Dk+1 = 10�3. {Stalled twice in a row ) unsuccessful iteration}
else

Dk+1 = •.
end if

end if
else if kz̄k�z̃k

max(kz̄kk,kz̃k) < 10�3 and the stabilisation constraint is active then
lk+1 = p̃ .
if the previous iteration was unsuccessful then

Dk+1 = Dk. {Successful iteration}
else

Dk+1 = (2+8I[ȳ 2 B])Dk. {Very successful iteration}
end if

else
lk+1 = lk, Dk+1 = Dk. {Unsuccessful iteration}

end if
Update B to B[{ȳ}.
Extend the restricted stabilised master problem (P+) with the new block

for s = ȳ, stabilisation center lk+1 and radius Dk+1.
end for
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z̃, the value estimate in the restricted master problem, and z̄, the Lagrangian bound for

the current multipliers, are almost identical. We leave the stabilisation parameters un-

changed when the stabilisation constraint is inactive at optimum because any modifi-

cation would likely have no effect but to hinder re-optimisation. Otherwise, the model

of the Lagrangian dual defined by the bundle B is locally accurate and we update the

stabilisation center to p̃ , the current candidate for optimal Lagrange multipliers. The

stabilisation radius D only grows when we update the stabilisation center two iterations

in a row; we then multiply D by 10 if ȳ, (part of) the solution to the current Lagrangian

subproblem, is already in the bundle B, and by 2 otherwise.

The update strategy for the stabilisation radius differs from the one proposed by Conn

et al [17]. Algorithm 4 modifies the radius more rarely, and never shrinks it. We made

this choice because the master problem is large, and changes to the stabilisation term

slow re-optimisation down. In our situation, we prefer to modify the stabilisation radius

rarely; when we do increase it, we do so aggressively. We also exploit the high quality of

our model. The restricted master problem eventually becomes locally exact; the bundle

then fails to grow, and this triggers a greater increase of the radius.

2.3.3 Linear stabilisation terms in S2DW

The one remaining detail is the stabilisation term. We add these terms to keep the

dual multipliers for constraint (1.5) in the vicinity of the stabilisation center, an accept-

able solution whose neighbourhood is well approximated by the master problem.

A simple limit on the `• distance from the stabilisation center yields interesting re-

sults in Frangioni and Gendron [31]. The term constrains the dual of the master problem

with

kp �lk•  D

,l �D1  p  l +D1,

where l is the stabilisation center, D the stabilisation radius, and p the dual multipliers

for constraint (1.5).
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The effect of this term on the primal problem is to relax constraint (1.5) with slack

variables that are then penalised: the Fenchel dual of an `• constraint is an `1 penalty

[48]. Formulation (P+) becomes

(P̃+) min
x,y,z

cx+ f y�l z+Dkzk1

subject to

Ax+By� z  d, (2.12)

Exs  q

s(g�Fs), 8s 2 Y,

Â
s2Y

q

s = 1,

xs � 0, 8s 2 Y,

x = Â
s2Y

xs,

y = Â
s2Y

sq

s,

0  q

s  1, 8s 2 Y,

z � 0.

There are two additions to the objective function: �l z, which favours dual solutions

in which the multipliers for constraint (2.12) are parallel to the stabilisation center l ,

and Dkzk1, which brings slack variables z close to 0 as D grows. We compute the `1

norm as the sum of the non-negative elements of z,

Â
i2I

zi,

where I is a set of indices for the rows of (1.5).

Frangioni and Gendron [31] chose the stabilisation radius for the `• constraint by

hand for each instance, after preliminary experiments. In Algorithm 4, we rely on a sim-
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ple dynamic adjustment strategy that benefits from less fickle stabilisation constraints.

Instead of a direct constraint on the `• distance, we consider a relative distance. Relative

norms seem better suited to linear master problems: basic dual multipliers take arbitrar-

ily large values while nonbasic multipliers equal zero. The constraint on dual variables

p becomes

l �Dmax(1, |l |) p  l +Dmax(1, |l |),

where max(1, |l |) is computed element by element. The effect on the primal master

problem is that constraint (2.12) becomes

Ax+By�min(1, |l |�1)z  d,

where min(1, |l |�1) is also computed element-wise.

We also experimented with a relative `1 constraint on dual multipliers. In that sta-

bilisation scheme, dual variables p are constrained with k p

max(1,|l |)k1  D, where the

division and max are element-wise, i.e.,

Â
i2I

pi

max(1, |li|)
 D.

The effect on (P̃+) is that the objective function becomes

min
x,y,z

cx+ f y�l z+Dkzk•,

(the Fenchel dual of the `1 constraint is an `• penalty) and that, as for the `• constraint,

(2.12) becomes

Ax+By�min(1, |l |�1)z  d.

We express the `• penalty in this linear minimisation program by replacing Dkzk• in the

objective function with Dd and adding constraints

zi  d, 8i 2 I.
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The last stabilisation term we considered is the intersection of both the `• and the `1

(relative) constraints on dual variables p , with the same stabilisation center and radius.

The effect of that term on the primal is to add two sets of non-negative slack variables

and to penalise each set separately, one with an `1 penalty and the other with an `•

penalty.

This concludes the complete description of our structured stabilised Dantzig-Wolfe

decomposition for Lagrangian-informed reformulations. It is almost simplistic, com-

pared with state-of-the-art bundle methods [28, 48, 59]. However, there are strong paral-

lels between the latter methods and structured stabilised Dantzig-Wolfe decomposition

[31]; we simply have yet to exploit them. Implementing replacement and aggregation

strategies for the bundle should prove fruitful: the master problem grows quickly and

smaller bundles make iterations quicker. These strategies will also expose a range of

methods between cross decomposition [49, 66] (i.e., bundles of size one) and struc-

tured Dantzig-Wolfe decompositions with unlimited memory. Aggressive aggregation

schemes are particularly attractive: some guarantee convergence for bundles as small as

two elements [55].

2.4 Summary

This chapter exploits basic duality results to develop a novel warm start method for

Lagrangian-informed reformulations and other large linear programs. When solving an

implicitly defined Lagrangian dual, multipliers from a related linear program can serve

as initial stabilisation centers. We show how to obtain an advance simplex basis from

such dual multipliers; this allows us to solve barely tractable linear reformulations that

are equivalent to strong Lagrangian dual functions.

We also showed how every Lagrangian-informed reformulation can be solved with

structured Dantzig-Wolfe decomposition [31]. The process is completely mechanical

and only depends on the identification of relaxed constraints. Every Lagrangian relax-

ation with a mixed integer subproblem yields a structured Dantzig-Wolfe decomposition.

This result contrasts with the assumptions for structured Dantzig-Wolfe decompo-
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sition given in Frangioni and Gendron [31]. Our reformulations automatically define a

master problem and a bundle extension method that satisfy these assumptions.

The two methods let us solve the linear relaxations of large Lagrangian-informed re-

formulations. Without them, the reformulations would be impractical or trivially equiv-

alent to Dantzig-Wolfe decomposition. Chapters 4 and 5 will demonstrate that, thanks

to these methods, we maximise Lagrangian duals more efficiently than some classical

non-differentiable optimisation methods.
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CHAPTER 3

A SIMPLE LAGRANGIAN-INFORMED REFORMULATION FOR TUFLP-S

This chapter describes a novel Lagrangian-informed reformulation for the Two-level

Uncapacitated Facility Location Problem with Single Sourcing (TUFLP-S), a variant of

the classical Two-level Uncapacitated Facility Location Problem (TUFLP). The TUFLP

consists of determining how to connect a set of customer locations to depot nodes via

satellite (transshipment) nodes, while minimising the total of the transportation costs to

every customer and of the fixed costs for satellite and depot nodes [1]. The TUFLP-S

adds the constraint that each open satellite must be linked to exactly one depot.

We chose the TUFLP-S for three reasons: it forms the basis of the industrial loca-

tion problem tackled in Chapter 5; we can compare our formulations with prior work

thanks to TUFLP instances that we can also solve as TUFLP-S; and last but crucial, a

straightforward mixed integer formulation for the TUFLP-S is amenable to Lagrangian-

informed reformulation.

There are three sections to this chapter. Section 3.1 provides further details on the

TUFLP and introduces (PCpath) and (PGpath), mixed integer programming formulations

for, respectively, the TUFLP and a generalisation of the TUFLP. Section 3.2 adapts

(PGpath) into (PSweak), our initial mixed integer formulation for TUFLP-S, and improves

(PSweak) with a Lagrangian-informed reformulation; the result is formulation (PSpath).

Finally, Section 3.3 compares (PSpath) and close variants, (PS0
path) and (PS0

path), with each

other, with (PCpath), and with a more recent mixed integer formulation for the TUFLP.

3.1 Two-level uncapacitated facility location problems

The TUFLP extends the single-level Uncapacitated Facility Location Problem [57]

(UFLP)—between depots and customers—by replacing the set of depot locations with

two sets: one of depots and another of intermediate satellite nodes. The task is to de-

cide which depots and satellites to open and which depot–satellite pair to assign to each



customer, in order to satisfy customer demands at minimum cost [1] 1.

A general two-level uncapacitated facility location problem, TUFLP-G, is introduced

in Barros and Labbé [8]. In addition to transportation costs for each path from a depot to

a satellite to a customer and fixed costs on the use of depots and satellites, the problem

includes fixed costs for arcs from depots to satellites. Figure 3.1 outlines a solution to

an instance of the TUFLP-G: the solution incurs fixed costs for the use of i1, i2, j2, and

j3, and for the arcs i1 ! j2, i2 ! j2 and i2 ! j3. Barros and Labbé [8] propose to solve

this problem with mixed integer formulation (PGpath).

Let I be the set of potential depot locations, J the set of potential satellite locations,

and K the set of customer locations, and let

yi =

8
><

>:

1, if depot i is open,

0, otherwise,
8i 2 I,

z j =

8
><

>:

1, if satellite j is open,

0, otherwise,
8 j 2 J,

ti j =

8
><

>:

1, if depot i and satellite j are operating together,

0, otherwise,
8(i, j) 2 I ⇥ J,

xi jk =

8
><

>:

1, if customer k is served through pair (i, j),

0, otherwise,
8(i, j,k) 2 I ⇥ J⇥K.

In addition, let fi, g j and hi j be the fixed costs for, respectively, each depot i 2 I,

each satellite j 2 J and each pair of depot–satellite (i, j) 2 I ⇥ J, and let ci jk be the total

transportation cost of each path from a depot i to a satellite j to a customer k. Formulation

(PGpath) [8] is

1. This section is heavily inspired by a prior collaboration with Bernard Gendron and Frédéric Semet
[35] submitted to Transportation Science.
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k₁ k₂ k₃

Figure 3.1: Solution to a TUFLP-G that violates single sourcing

(PGpath) min
y,z,t,x Â

i2I
fiyi + Â

j2J
g jz j + Â

(i, j)2I⇥J
hi jti j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K, (3.1)

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K, (3.2)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K, (3.3)

Â
i2I

xi jk  z j, 8( j,k) 2 J⇥K, (3.4)

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

z j 2 {0,1}, 8 j 2 J,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

Constraints (3.1) guarantee that the demand for each customer is satisfied exactly,

and constraints (3.2) to (3.4) ensure that fixed costs are incurred for the use of depots,

satellites and depot–satellite pairs. Variables xi jk are continuous: there are no capacity
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limit so (PGpath) will never split the flow for a single customer across multiple paths.

Work on two-level uncapacitated facility location problems mostly studies a simplifi-

cation of the general model: there are no fixed cost on links between depots and satellites

(hi j = 0). Two seminal papers [53, 63] marked early research on this classical TUFLP

(TUFLP-C); they introduced formulations and specialised lower bounding methods, and

exploited them in branch-and-bound algorithms. More recent approaches [1, 7, 58] are

based on the mixed integer formulation that eliminates variables ti j and constraints (3.2)

from (PGpath). This does not affect linear programming bounds: forcing every ti j = 1

costs nothing. The resulting formulation is (PCpath):

(PCpath) min
y,z,t,x Â

i2I
fiyi + Â

j2J
g jz j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

Â
i2I

xi jk  z j, 8( j,k) 2 J⇥K,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

z j 2 {0,1}, 8 j 2 J.

(PCpath) is simple, but inherits the strength of (PGpath). In particular, constraints

(3.3) and (3.4) define facets of the feasible polytope for (PCpath) [7]. The next section

shows how a Lagrangian relaxation leads to a reformulation for TUFLP-S that dominates

(PCpath) when both are applicable.
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Figure 3.2: A TUFLP-S solution.

3.2 MIP formulations for the TUFLP-S

We wish to solve a variant of the TUFLP-G that forces each satellite to be linked

with at most one depot; Fig. 3.2 shows a solution that satisfies this constraint. For some

instances, solutions to (PGpath) will naturally satisfy single sourcing. In Chardaire, Lut-

ton, and Sutter [14], this lead to a trivial reduction to TUFLP. We instead exploit the

single sourcing constraint to derive a novel formulation for TUFLP-S.

Formulation (PGpath) includes variables ti j to determine whether each arc from depot

i 2 I to satellite j 2 J is open. We force each satellite to take at most one arc with

Â
i2I

ti j  1, 8 j 2 J,

and obtain formulation (PSweak).
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(PSweak) min
y,z,t,x Â

i2I
fiyi + Â

j2J
g jz j + Â

(i, j)2I⇥J
hi jti j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J, (3.5)

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K, (3.6)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

Â
i2I

xi jk  z j, 8( j,k) 2 J⇥K, (3.7)

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

z j 2 {0,1}, 8 j 2 J,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

We improve (PSweak) with the reformulation guided by relaxing all but the domain

constraints and constraints (3.5), (3.6), and (3.7). The subproblem for that relaxation
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decomposes into one subproblem for each satellite j 2 J:

Â
i2I

ti j  1,

xi jk  ti j, 8(i,k) 2 I ⇥K,

Â
i2I

xi jk  z j, 8k 2 K,

0  xi jk  1, 8(i,k) 2 I ⇥K,

z j 2 {0,1},

ti j 2 {0,1}, 8i 2 I.

There are few feasible assignments for ti j: at most one can be equal to 1. Moreover,

given nonnegative fixed costs, z j is positive iff some ti j is. Either every variable is fixed

to 0, or z j and exactly one ti j are fixed to 1, and the remaining variables to 0.

Once we fix that assignment, the restricted (decomposed) subproblem is a trivial

linear program. When all binary variables are 0, so are path variables xi jk. Otherwise,

let i⇤ 2 I be the depot such that ti⇤ j = 1; after simplification, the restricted subproblem is

0  xi⇤
i⇤ jk  1, 8k 2 K,

xi⇤
i jk = 0, 8(i,k) 2 I ⇥K, i 6= i⇤.

Lagrangian-informed reformulation combines these restricted subproblems into

q

0 +Â
i2I

q

i = 1, (3.8)

0  xi jk  q

i, 8(i,k) 2 I ⇥K,

z j = Â
i2I

q

i, (3.9)

ti j = q

i, 8i 2 I, (3.10)

q

i 2 {0,1}, 8i 2 I [{0}.

This reformulation does not duplicate continuous decision variables: each path vari-
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able xi jk appears in exactly one restricted subproblem.

We simplify the reformulated subproblems further. Weight variable q

0 serves no

purpose except to allow not to choose any other q

i; we express that possibility by con-

verting constraint (3.8) into an inequality. Constraints (3.10) now show that the remain-

ing weight variables q

i correspond directly to ti j. We insert the simplified reformulation

in (PSweak) to obtain

(PS0
path) min

y,z,t,x Â
i2I

fiyi + Â
j2J

g jz j + Â
(i, j)2I⇥J

hi jti j + Â
(i, j,k)2I⇥J⇥K

ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

z j = Â
i2I

ti j, 8 j 2 J, (3.11)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

z j 2 {0,1}, 8 j 2 J,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

We can eliminate variables z j: constraints (3.11) mean that we can attribute the fixed

costs g j for variables z j to every weight variable q

i, or, equivalently, to every link vari-

able ti j. This yields the even simpler formulation (PSpath).
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(PSpath) min
y,t,x Â

i2I
fiyi + Â

(i, j)2I⇥J
(g j +hi j)ti j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

The linear relaxation of (PSpath) approximates the feasible set more tightly than that

of (PSweak), while comprising fewer constraints and variables. Intuitively, the effect of

the reformulation is to attribute the fixed cost of each satellite j 2 J to every link to that

satellite; single sourcing guarantees that at most one link will be open, and nonnegative

fixed costs mean that we only open a satellite if we also open a link to that satellite.

In other words, we can obtain (PSpath) from (PSweak) by adding the valid constraints

z j = Â
i2I

ti j, 8 j 2 J,

and substituting z away. As shown in Fig. 3.3, optimal solutions to the linear relaxation

of (PSweak) may be such that

z j � Â
i2I

ti j
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We have origin–destination pairs i1 ! k1 and i2 ! k2. Let all fixed and transportation
costs be 0, except for the use of satellites j1 and j2, with a fixed cost of 1.
One solution is to let a flow of 1

2 pass through each possible path. In formulation
(PSweak), only half the fixed cost for j1 and j2 will be incurred, for a total lower bound
of 1. Formulation (PSpath) instead assigns half the fixed cost of satellite j1 on arc i1 ! j1
and half on i2 ! j1, and similarly for satellite j2 and arcs i1 ! j2 and i2 ! j2; the bound
is then 2. Optimal integer solutions are also optimal in the linear relaxation.

Figure 3.3: A TUFLP-S instance for which (PSpath) rules out a fractional solution.

for some j 2 J, and this simple modification strengthens the linear relaxations.

The Lagrangian-informed reformulation is less intuitive, but helps characterise the

improvement to the linear relaxation: it stems from the exact description of the convex

hulls for its integer Lagrangian subproblems.

When solving formulation (PSpath) to optimality, constraints

ti j  yi, 8(i, j) 2 I ⇥ J

may be useful. They do not affect the linear relaxation bound but let us relax the inte-

grality constraint on variables yi. Adding these constraints yields (PS0
path), a formulation

with more constraints but fewer binary variables than (PSpath).
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(PS0
path) min

y,t,x Â
i2I

fiyi + Â
(i, j)2I⇥J

(g j +hi j)ti j + Â
(i, j,k)2I⇥J⇥K

ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J, (3.12)

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K, (3.13)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

ti j  yi, 8(i, j) 2 I ⇥ J,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

0  yi  1, 8i 2 I,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

These three formulations ((PS0
path), (PSpath), (PS0

path)) are all equivalent when relaxed

into linear programs. They differ in the binary variables that remain: (PS0
path) preserves

all the decision variables in (PSweak), (PSpath) eliminates variables z j, and (PS0
path) further

relaxes the integrality of variables yi.

Their performance when solved as mixed integer programs may thus vary: is it better

to mimic the initial formulation closely (i.e., (PS0
path)), to minimise the number of binary

variables (i.e., (PS0
path)), or to strike a compromise between these two extremes and only

eliminate variables that appear solely in subproblems (i.e., (PSpath))?
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3.3 Numerical results

This chapter describes two mixed integer formulations for TUFLP-C ((PGpath) and

(PCpath)) and four novel ones for TUFLP-S ((PSweak) (PSpath), (PS0
path) and (PS0

path)).

We compare all six formulations thanks to standard TUFLP-C instances that we can also

solve as TUFLP-S.

First, we streamline the comparison. (PCpath) dominates both (PGpath) and (PSweak)

on instances that we can solve as both TUFLP-S and TUFLP-C: their linear relaxations

are equivalent, but (PCpath) comprises fewer constraints and variables.

In the general case, we can only solve TUFLP-S with formulations (PSweak), (PSpath),

(PS0
path) or (PS0

path). On these instances, (PS0
path) dominates (PSweak): the linear relax-

ation of the former is provably stronger and they have the same integer variables.

We will thus only compare four formulations: (PCpath), (PSpath), (PS0
path) and (PS0

path).

We mentioned another formulation: Landete and Marı́n [58] adds facet-defining inequal-

ities to (PCpath) to obtain (PChole). This last formulation provides another comparison

basis for instances that we solve as both TUFLP-C and TUFLP-S. However, the con-

straints are complicated, and, rather than re-implementing the constraint generator, we

solved the same instances as in Landete and Marı́n [58] and report integrality gaps at the

root, exactly as they appear in Tables 1 to 3 in Landete and Marı́n [58].

Section 3.3.1 studies the performance of all five formulations on small artificial in-

stances of the TUFLP-C that we also solve as TUFLP-S. Formulations (PSpath), (PS0
path)

and (PS0
path) will yield tighter lower bounds at the root than (PCpath); it is interesting to

compare the improvement in lower bound with that achieved by (PChole).

Numerical experiments also help evaluate the reformulations as integer programs.

Comparing formulations (PS0
path), (PSpath), and (PS0

path) is especially useful: they all

share equivalent linear relaxations, but (PS0
path) preserves all binary variables in the ini-

tial formulation (PSweak), (PSpath) eliminates variables that appear only in the relaxed

subproblem, and (PS0
path) reduces binary variables to a bare minimum.

Section 3.3.2 compares (PS0
path), (PSpath), and (PS0

path), the three novel formulations,

when solving industrial instances of the TUFLP-S. These instances appeared as subprob-
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lems when solving Lagrangian decomposition for the more complex industrial problem

of Chapter 5. Their integrality gap at the root is small, but the instances are larger than

the ones in Section 3.3.1, and solving them is challenging.

All the tables report computations performed on a 2.9 GHz E5-4617 with 128 GB

of DDR3-1600 RAM and with CPLEX 12.5 2 in single-threaded mode, but otherwise

default settings. The only exceptions are the results for (PChole): we copied them from

Landete and Marı́n [58], and the results correspond to a less powerful computer and an

older version of CPLEX. We only report linear relaxation bounds at the root for this

formulation.

When solving integer programs, we provided as initial upper bounds the optimal val-

ues in order to control the influence of primal heuristics. We also exploited the similarity

between (PS0
path) and (PCpath) by giving branching priority to variables yi and z j. For

TUFLP-C instances, (PS0
path) is a variant of (PCpath) with improved lower bounds.

We only present synthetic results and relegate complete tables of results to Appen-

dices I to V.

3.3.1 Two-level Gap instances

In addition to characterising new facets of the (PCpath) polytope, Landete and Marı́n

[58] describes a procedure to convert a set of classical UFLP instances, Gap [56], into

TUFLP-C instances with transportation costs that are decomposable by arc. This results

in two-level Gap instances that comprise 50 depot locations, 50 satellite locations and 50

customers. Fixed costs for depots and satellites are constant (3000), and only paths and

transportation costs vary (between 0 and 8). The cost of each path i jk is the sum of the

costs for the arcs from depot i to satellite j and from j to customer k; this cost structure

guarantees that at least one optimal solution to (PCpath) satisfies single sourcing.

There are minor (apparently unintended) interactions between the conversion proce-

2. IBM CPLEX (http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/) is currently available under a free academic license through the IBM Academic
Initiative (http://www-03.ibm.com/ibm/university/academic/pub/page/ban_
ilog_programming).
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dure and asymmetry in the Gap instances 3, but only one issue seems important. Gap

instances are sparse and assign artificial “big-M” costs to inexistant arcs. However, the

conversion procedure disregards that sparsity and the artificial costs are low enough that

some optimal TUFLP solutions use forbidden arcs. This affects 26 of the 90 instances,

and we eliminated them from consideration. We solved the rest on sparse graphs with

(PCpath), (PS0
path), (PSpath) and (PS0

path).

There are three sets of Gap instances for the UFLP (A, B and C), each generated ran-

domly with different constraints on the distribution of degrees for depots and customers.

In general, Gap B instances seem easier (the integrality gap is lower at the root), and

Gap C instances more difficult (the gap is higher at the root) [56]. These sets give rise to

three sets of TUFLP instances (A, B and C) that exhibit the same difficulty pattern.

Table 3.I summarises the strength and efficiency of formulations (PCpath), (PS0
path),

(PSpath), (PS0
path) and (PChole). At the root, (PS0

path), (PSpath) and (PS0
path) are completely

equivalent; we only report a single gap value.

For all formulations, root computation times are negligible (on the order of a tenth of

a second or less), and we report none. In contrast, when solved as integer programs, only

runtimes matter (every method solves all instances to optimality), and we report runtimes

to optimality for all mixed integer formulations, except for (PChole): Landete and Marı́n

[58] report disappointing runtimes. We believe the reason is that they represent every

503 path in the formulation, regardless of forbidden arcs; executing an earlier version of

CPLEX on older hardware only worsens matters.

We computed integrality gaps as the difference between the lower bound bound and

the optimal (up to a relative error of 10�4) integer value, divided by the latter. Branch-

and-bound times correspond to the default branch-and-cut search of CPLEX 12.5 with

the default stopping criterion: the solution must be optimal up to a relative error of 10�4

or less.

These figures are coarse, but telling: formulations of the (PSpath) family results in

more accurate lower bounds than (PCpath), particularly on more difficult instances (Gap

3. The algorithm in Kochetov and Ivanenko [56] generates specific sparsity patterns without guaran-
teeing that their distribution is independent of the index of depots and customers. An odd/even partition
(instead of high/low) would likely better preserve the characteristics of Gap instances.
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Root integrality gap (average %)
Instance set n (PCpath) (PSpath) (PChole)
Gap A 26 11.39 10.85 10.55
Gap B 13 7.63 7.45 7.36
Gap C 25 13.20 12.59 12.28

Branch-and-bound time (average sec)
Instance set n (PCpath) (PSpath) (PS0

path) (PS0
path)

Gap A 26 1.27 5.35 3.98 2.19
Gap B 13 0.86 3.13 2.15 1.37
Gap C 25 2.43 28.42 11.01 4.60

Table 3.I: Summary of formulation performances for Gap A, B, and C TUFLP-C in-
stances

A and C), and (PChole) does even better. The performance profiles [24] in Fig. 3.4 con-

firm this impression. In practice, formulation (PSpath) is reliably stronger than (PCpath)

and seems competitive with (PChole), especially for Gap B instances. Overall, (PSpath)

and related formulations strike a practical balance between the size and complexity of

the formulations and the strength of their linear relaxation bound.

Our new formulations fail to improve runtimes for branch-and-bound searches: Gap

instances for the TUFLP are small, and the integrality gap at the root is wide, at least 5%

to 10%. In such circumstances, the best strategy will be to branch rapidly and explore

the search tree as quickly as possible. That is exactly what solving (PCpath) achieves.

In the same vein, runtimes for (PSpath) and (PS0
path) show that reducing the number

of binary variables helps improve runtimes in such situations. However, formulation

(PS0
path) performs even better by instead preserving all discrete decision variables in the

initial formulation: its runtimes are much closer to those of (PCpath).

Again, the performance profiles in Fig. 3.5 confirm these impressions: (PCpath) al-

ways leads to the quickest branch-and-bound times, solving (PS0
path) take about half as

much time as (PSpath), and (PS0
path) comes even closer to formulation (PCpath).

The results on Gap instances show that (PS0
path) improves the linear relaxation bound

compared to (PCpath) (which is equivalent to the base formulation (PGpath)) in practice.

However, the reformulation is larger, and the trade-off is unproductive when solving

small artificial instances. Larger practical instances will be more affected by the lower
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Figure 3.4: Performance profiles for integrality gaps at the root of TUFLP-S instances
Gap A, B, and C (blue circles: (PChole); green triangles: (PSpath); red squares: (PCpath)).
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Figure 3.5: Performance profiles for runtimes to solve TUFLP-S instances Gap A, B, and
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path);

green triangles: (PSpath)).



Name n # depots # satellites # depot–satellite arcs # customers # paths
1
4 100 23 80 175 134 3366
1
2 100 47 160 351 592 28496
3
4 100 70 240 526 1236 92554
Full 100 93 320 701 2250 222308

Table 3.II: Characteristics of the four industrial TUFLP-S instance sets

bound than by the size of the reformulation and should favour (PS0
path): branch-and-

bound for that reformulation is only twice as slow as for (PCpath) on small artificial

instances.

3.3.2 Industrial TUFLP-S instances

We designed formulations (PS0
path), (PSpath) and (PS0

path) to solve instances of the

TUFLP-S, and this subsection reports their performance on four sets of 100 instances

derived from the industrial problem of Chapter 5.

The instances appeared as subproblems during preliminary development of a La-

grangian decomposition. Each set corresponds to an industrial instance from which 100

TUFLP-S instances inherit their network structure. We list their characteristics in Ta-

ble 3.II; instances in set 1
4 are roughly one fourth the size of instances in set Full, those

in 1
2 half the size, and those in 3

4 three quarters. These TUFLP-S are defined on more real-

istic graphs than Gap instances, but present a cost structure that makes them particularly

difficult: depots all incur the same large fixed cost, while satellites and depot–satellite

arcs incur none. Moreover, transportation costs vary greatly depending on the locations

on the path, and the single sourcing constraints are not redundant.

All three formulations are equivalent when solved as linear programs; we only report

integrality gaps at the root for (PSpath) in Table 3.III. However, their runtimes may differ,

particularly in branch-and-bound, and we report all runtimes for root relaxations and

branch-and-bound.

The linear relaxation bounds at the root are overall close to the optimal integer values;

Fig. 3.6 shows that integrality gaps at the root are always lower than 1%.

The linear relaxations of (PS0
path) and (PS0

path) are solved slightly more quickly than
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Figure 3.6: Distribution of integrality gaps at the root for industrial TUFLP-S instances
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Root LP time (average sec) Root gap
Set n (PSpath) (PS0

path) (PS0
path) (average %)

1
4 100 0.03 0.03 0.03 0.01
1
2 100 0.53 0.54 0.47 0.43
3
4 100 3.71 3.50 2.88 0.15
Full 100 23.00 20.22 21.61 0.22

Total MIP time (average sec)
Set n (PSpath) (PS0

path) (PS0
path)

1
4 100 0.06 0.06 0.06
1
2 100 3.66 4.44 2.96
3
4 100 16.83 17.63 15.25
Full 100 178.32 234.65 139.49

Table 3.III: Summary of formulations performance for industrial TUFLP-S instances

that of (PSpath), despite the additional constraints (Fig. 3.7).

The advantage of formulation (PS0
path), which preserves all the binary decision vari-

ables from the natural formulation (PSweak), grows wider when solved to optimality

(Fig. 3.8). For industrial TUFLP-S instances as well, it is preferable to preserve redun-

dant binary decision variables.

3.4 Summary

Our experiments on hard artificial instances and on more approachable practical ones

lead to two results:

1. Lagrangian-informed reformulation can improve linear relaxations in practice with

a small increase in size.

2. It is preferable to preserve all integer decision variables in the initial formulation.

The second conclusion is common knowledge for branch-and-price methods [6, 23,

61]. We only confirm that it is still true for Lagrangian-informed reformulations.

The experiments also reveal a first novel formulation: (PS0
path). (PS0

path) improves the

linear bound of the classical (PCpath) and preserves its decision variables. It is already

comparable to (PCpath) on small artificial instances, and we hope that it will be useful

for larger but less difficult instances.
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Figure 3.7: Performance profiles of root relaxation solving times for industrial TUFLP-S
instances (yellow crosses: (PS0

path); purple stars: (PS0
path); green triangles: (PSpath)).
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Figure 3.8: Performance profiles for runtimes to solve industrial TUFLP-S instances to
optimality (yellow crosses: (PS0

path); green triangles: (PSpath); purple stars: (PS0
path)).
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CHAPTER 4

A SECOND LAGRANGIAN-INFORMED REFORMULATION FOR TUFLP-S

This chapter presents a second novel formulation for the TUFLP-S. The formula-

tion is a Lagrangian-informed reformulation that is well adapted to our larger industrial

instances. We use the Lagrangian relaxation proposed in Gendron et al [35], which du-

alises the constraints that link depot–satellite arcs and customers. This preserves the core

of our industrial instances: they only impose fixed costs on the use of depots. Section 4.2

shows that the reformulation leaves no integrality gap on these industrial instances.

The next section describes the reformulation in details and Section 4.2 summarises

its performance. For industrial TUFLP-S instances, our novel reformulation leads to a

Lagrangian heuristic that is comparable to branch-and-cut on (PS0
path).

4.1 A Lagrangian relaxation for TUFLP-S

Let l be the Lagrange multipliers associated with constraints (3.13). Relaxing the

latter constraints mechanically in formulation (PS0
path) yields the following subproblem.



i₁

j₁ j₂

i₂

j₃

k₁ k₂k₃

Figure 4.1: Solution to a TUFLP-S instance without constraints (3.13)

min
y,t,x Â

i2I
fiyi + Â

(i, j)2I⇥J

 
g j +hi j � Â

k2K
li jk

!
ti j + Â

(i, j,k)2I⇥J⇥K
(ci jk +li jk)xi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

ti j  yi, 8(i, j) 2 I ⇥ J,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

0  yi  1, 8i 2 I,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

This Lagrangian subproblem is a variation of the classical UFLP: the subproblem in-

cludes satellites whose demands may be satisfied partially. Figure 4.1 sketches a solution

to one such subproblem.

We can simplify the previous formulation: for any pair of depot i 2 I and customer
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i₁

j₁ j₂

i₂

k₁ k₂ k₃

j₃

Figure 4.2: Solution to a simplified TUFLP-S instance without constraints (3.13)

k 2 K, all paths in {(i, j,k) | j 2 J} are equivalent, except for their cost. We exploit

this by only considering a single least-cost representative for each of these sets. This

simplification yields formulation (SUBP). Figure 4.2 outlines the simplified solution of

Fig. 4.1.

(SUBP) min
y,t,x̃ Â

i2I
fiyi + Â

(i, j)2I⇥J

 
g j +hi j � Â

k2K
li jk

!
ti j + Â

(i,k)2I⇥K

✓
min
j2J

ci jk +li jk

◆
x̃ik

subject to

Â
i2I

x̃ik = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

x̃ik  yi, 8(i,k) 2 I ⇥K,

ti j  yi, 8(i, j) 2 I ⇥ J,

0  x̃ik  1, 8(i,k) 2 I ⇥K,

yi 2 {0,1}, 8i 2 I,

0  ti j  1, 8(i, j) 2 I ⇥ J,

where l are the Lagrange multipliers for constraints (3.13), and each x̃ik is a representa-

tive for path variables {xi jk | j 2 J}.
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This second formulation for the Lagrangian subproblem is strictly equivalent to the

previous one: if x̃i⇤k⇤ = 1 in the compact formulation, we set xi⇤ j⇤k⇤ to 1 in the original

formulation, with

j⇤ = arg min
j2J

ci⇤ jk⇤ +li⇤ jk⇤

and arbitrary tiebreaking. The only difference is that (SUBP) is more compact: the

number of variables is quadratic, rather than cubic, in the number of locations.

Even after simplification, the Lagrangian subproblem is NP-hard; the reductions to

and from the NP-hard UFLP [57] are trivial 1. However, branch-and-bound trees are

usually small for path-based formulations like (SUBP) [57].

The relaxation is also well suited to Lagrangian-informed reformulation: once we

restrict the Lagrangian subproblem to y = s, it becomes

Â
i2I

xi jk = 1, 8( j,k) 2 J⇥K,

Â
i2I

ti j  1, 8 j 2 J,

0  xi jk  si, 8(i, j,k) 2 I ⇥ J⇥K,

0  ti j  si, 8(i, j) 2 I ⇥ J.

This Lagrangian relaxation defines formulation (PShull).

1. We associate satellites to an artificial depot at no cost instead of leaving them unconnected.
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(PShull) min
y,t,x Â

i2I
fiyi + Â

(i, j)2I⇥J
(g j +hi j)ti j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

yi = Â
s2Y

siq
s, 8i 2 I,

ti j = Â
s2Y

ts
i j 8(i, j) 2 I ⇥ J,

xi jk = Â
s2Y

xs
i jk 8(i, j,k) 2 I ⇥ J⇥K,

Â
i2I

xs
i jk = q

s 8( j,k) 2 J⇥K, 8s 2 Y,

Â
i2I

ts
i j  q

s 8 j 2 J, 8s 2 Y,

0  xs
i jk  siq

s 8(i, j,k) 2 I ⇥ J⇥K, 8s 2 Y,

0  ts
i j  siq

s 8(i, j) 2 I ⇥ J, 8s 2 Y,

yi 2 {0,1}, 8i 2 I,

0  ti j  1, 8(i, j) 2 I ⇥ J,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

q

s 2 {0,1}, 8s 2 Y,

where Y = B|I|, the set of potential value assignments for y.

(PShull) is large, and we propose to optimise only its linear relaxation with Algo-

rithms 3 and 4 (Section 2.3) and to solve each Lagrangian subproblem with (SUBP).

We can also turn the TUFLP-S into a single-level facility location problem by deter-

mining which depots are closed and open ahead of time: restricting y = s leaves a loca-

tion problem that we solve directly with the default branch-and-cut solver of CPLEX.

Each iteration of our structured Dantzig-Wolfe decomposition (Algorithms 3 and 4)
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generate such an assignment; we implement a Lagrangian heuristic by solving a re-

stricted TUFLP-S subproblem (with y = ȳ) whenever the bundle B grows.

4.2 Numerical results

This section reports numerical results for structured (stabilised) Dantzig-Wolfe de-

composition (S(2)DW) of our novel formulation for the TUFLP-S. We compare them

with bundle and volume algorithms on the Lagrangian dual defined by (SUBP); we also

compare the S(2)DW Lagrangian heuristic with a branch-and-cut solver for (PS0
path).

The first subsection describes the performance of the Lagrangian heuristics and of

their components on the Gap instances described in Section 3.3.1, small and difficult

artificial TUFLP-C instances. We dedicate the second subsection to the larger and more

realistic TUFLP-S instances introduced in Section 3.3.2.

4.2.1 Two-level Gap instances

There are two interesting questions when attempting to understand the lower bound-

ing algorithms described in this chapter: how strong the resulting bounds are in practice,

and how much computational effort is necessary to reach these bounds.

Table 4.I reports average integrality gaps for instance sets Gap A, B and C for six

bounding methods.

(PChole) corresponds to the linear relaxation of the strengthened formulation in Lan-

dete and Marı́n [58], (PS0
path) to the linear relaxation of (PS0

path) and (SUBP) to solving

the Lagrangian subproblem once, with multipliers from (PS0
path).

The next three columns report gaps for the quadratically stabilised bundle method

[48] (BTT 2.12 2 [28] by Antonio Frangioni), for the volume algorithm [5] (version

1.4 of the COIN-OR implementation 3), and for our unstabilised structured Dantzig-

Wolfe decomposition (Algorithm 3). All three methods maximised the same Lagrangian

2. An older version is available at http://sorsa.unica.it/it/software.php; we ob-
tained BTT 2.12 by personal email.

3. The project homepage at https://projects.coin-or.org/Vol trails development; we
checked out version 1.4 from the repository (svn co https://projects.coin-or.org/svn/

Vol/stable/1.4 coin-Vol).
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Average relative gap with optimum (%)
Set n (PChole) (PS0

path) (SUBP) Bundle Volume (PShull) Primal
Gap A 26 10.55 10.85 10.84 6.25 6.40 6.25 0.01
Gap B 13 7.36 7.45 7.44 3.52 3.63 3.51 0.01
Gap C 25 12.28 12.59 12.59 7.51 7.60 7.45 0.01

Table 4.I: Average integrality gaps for formulations (PChole), (PS0
path), the warm-started

Lagrangian solution (SUBP), the Lagrangian dual solved with the bundle and volume
algorithms, (PShull) solved as a structured decomposition, and the primal Lagrangian
heuristic (Primal) on Gap A, B and C instances.

duals for up to two hours, after a warm start with multipliers from (PS0
path). In theory,

they compute the same bound, but only the structured Dantzig-Wolfe decomposition of

(PShull) always reaches optimal solutions within two hours.

The last column reports the average relative optimality gap for our primal Lagrangian

heuristic guided by the unstabilised structured Dantzig-Wolfe decomposition (the choice

of stabilisation term does not affect the heuristic).

The linear relaxation of (PShull) is stronger than that of (PChole) and (PS0
path) (Chapter

3), and the Lagrangian heuristic always computes nearly optimal solutions: the worst

difference from optimum is 0.09%.

Disappointingly, detailed results in Appendices II to V show that the warm-started

Lagrangian lower bound is always equal to the linear relaxation bound of (PS0
path). Nev-

ertheless, these multipliers are useful initialisers.

The performance profiles in Fig. 4.3 confirm the general impressions above: the

linear relaxation of (PShull) dominates those of (PS0
path) (as predicted by theory) and

(PChole), some bundle and volume bounds are suboptimal after two hours, and the vol-

ume algorithm computes particularly weak bounds because it stops too early.

If we only consider lower bounds, this second Lagrangian-informed reformulation

is a resounding success on Gap instances. However, the runtimes in Table 4.II are

prohibitive: CPLEX 12.5 solved each of these instances in seconds with formulation

(PCpath), as reported in Section 3.3.1.

Table 4.III reports runtimes for (stabilised) Dantzig-Wolfe structured decomposition

and for the bundle and volume algorithms. Structured Dantzig-Wolfe decomposition
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Figure 4.3: Performance profiles for the gap between lower bounds and the optimum
value for TUFLP-C instances Gap A, B, and C (orange diamonds: (PShull); brown
crosses: bundle; red crosses: volume; purple stars: blue circles: (PChole); purple stars:
(PS0

path)).



Average amount of time spent in each phase (sec)
Set n (PS0

path) (SUBP) (PShull) Primal
Gap A 26 0.10 0.08 1348.85 2.15
Gap B 13 0.09 0.08 871.48 1.70
Gap C 25 0.13 0.12 1529.54 2.22

Table 4.II: Average amount of computation time expended on the linear relaxation of
(PS0

path), the initial Lagrangian subproblem ((SUBP)), the iterative algorithm for (PShull),
and on the primal heuristic, for Gap A, B and C instances.

Average amount of time to optimality (sec)
Stabilisation term

Set n Bundle Volume /0 `1 `• `1 + `•
Gap A 26 6208.22 1078.97 1349.03 262.75 2585.13 396.12
Gap B 13 5562.59 781.59 871.65 246.69 1904.13 353.48
Gap C 25 6868.59 1903.46 1529.79 500.76 3883.15 753.73

Table 4.III: Average amount of computation time to optimality (up to 2 hours) for the
bundle and volume master problems and for the structured Dantzig-Wolfe decomposition
with and without stabilisation, on Gap A, B and C instances.

with an `1 constraint reached optimal solutions more quickly than all other methods, but

was still hundreds of times slower than solving (PCpath) to optimality.

Results for the bundle and volume algorithms show another issue with generic meth-

ods for nondifferentiable optimisation: numerical convergence to nearly optimal solu-

tions is not only slow, but also difficult to detect. Runtimes for the bundle algorithm

are inflated by iterations that only serve to prove it has maximised the Lagrangian dual.

The volume algorithm instead stops when too many iterations fail to improve the lower

bound; this improves runtimes, but results in suboptimal bounds. In contrast, structured

Dantzig-Wolfe decomposition implements a simple and practical criterion that reliably

stops with optimal solutions.

4.2.2 Industrial TUFLP-S instances

Again, we present the results in two phases: first lower and upper bounds, then

computational requirements.

Table 4.IV summarises the integrality gap for formulation (PS0
path), for the initial
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Average relative gap with optimum (%)
Set n (PS0

path) (SUBP) (PShull) Primal
1
4 100 0.01 0.01 0.01 0.01
1
2 100 0.43 0.36 0.01 0.01
3
4 100 0.15 0.08 0.01 0.01
Full 100 0.22 0.11 0.01 0.01

Table 4.IV: Average integrality gaps for formulation (PS0
path), the warm-start Lagrangian

solution ((SUBP)), (PShull), and the primal Lagrangian heuristic (Primal) on industrial
TUFLP-S instances.

(warm-started) Lagrangian subproblem, and for formulation (PShull) solved with Algo-

rithm 3, along with the optimality gap for the primal Lagrangian heuristic. Most bounds

are close to the optimum. We only computed optimal values up to a relative error of

10�4, so we processed gaps as though they always were at least 10�4 (i.e., 0.01%).

On these instances, the primal heuristic always converges within 0.01% of optimum,

and the linear relaxation of (PShull) exceeds that limit for two instances (with gaps of

0.02%). Together, these two methods virtually form an exact method for our industrial

instances. We achieved comparable lower and upper bounds with stabilised Dantzig-

Wolfe decomposition (Algorithm 4) and bundle or volume algorithms.

Section 3.3.2 showed that the linear relaxation of (PS0
path) is strong on industrial

instances; the performance profiles in Fig. 4.4 show that the linear relaxation of (PShull)

is even tighter, especially on large instances.

We already noted that the Lagrangian heuristic is virtually exact on industrial in-

stances. Table 4.V further shows that, in terms of runtime, the Lagrangian heuristic is

comparable to solving (PS0
path) with CPLEX, the best formulation for industrial instances

(Section 3.3.2).

The performance profiles in Fig. 4.5 confirm this conclusion. The unstabilised La-

grangian heuristic is competitive with a state-of-the-art branch-and-cut algorithm on all

but the smallest instances. Moreover, as Table 4.VI shows, Algorithms 3 and 4 compute

their strong bounds more quickly than bundle and volume algorithms for an equivalent

Lagrangian dual.

77



71 2 3 4 5 6

100

0

10

20

30

40

50

60

70

80

90

Ratio with least integrality gap (1/4 instances)

#
 in

st
an

ce
s

851 10 20 30 40 50 60 70 80

100

0

10

20

30

40

50

60

70

80

90

Ratio with least integrality gap (1/2 instances)

#
 in

st
an

ce
s

401 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

100

0

10

20

30

40

50

60

70

80

90

Ratio with least integrality gap (3/4 instances)

#
 in

st
an

ce
s

451 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

100

0

10

20

30

40

50

60

70

80

90

Ratio with least integrality gap (Full instances)

#
 in

st
an

ce
s

Figure 4.4: Performance profiles for the gap between lower bounds and the optimum
value for industrial TUFLP-S instances (purple stars: (PS0

path); brown crosses: initial
Lagrangian subproblem; orange diamonds: (PShull)).

MIP time (sec) for Average amount of time spent in each phase (sec)
Set (PS0

path) (PS0
path) (SUBP) (PShull) Primal

1
4 0.06 0.02 0.01 0.13 0.02
1
2 2.96 0.44 0.20 2.57 0.29
3
4 15.25 3.20 0.92 13.61 0.91
Full 139.49 23.15 9.23 108.78 2.58

Table 4.V: Average amount of time to solve formulation (PSpath) to optimality, and
for each step of the Lagrangian heuristic— the linear relaxation of (PS0

path), the ini-
tial Lagrangian subproblem (SUBP), the iterative algorithm for (PShull), and the primal
heuristic—on industrial TUFLP-S instances.
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Figure 4.5: Performance profiles for runtimes to solve industrial TUFLP-S instances
to optimality (yellow crosses: (PS0

path); orange diamonds: non-stabilised structured
Dantzig-Wolfe decomposition for (PShull)).

Average amount of time to optimality (sec)
Stabilisation term

Set n Bundle Volume /0 `1 `• `1 + `•
1
4 100 0.11 0.59 0.18 0.19 0.21 0.21
1
2 100 47.52 154.50 3.49 3.57 3.72 3.58
3
4 100 67.64 318.62 18.64 53.07 31.48 52.07
Full 100 1713.64 3737.23 143.73 233.17 180.12 232.70

Table 4.VI: Average amount of computation time to optimality (up to 2 hours) for the
bundle and volume master problems and the structured Dantzig-Wolfe decomposition
with and without stabilisation, for industrial TUFLP-S instances.
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4.3 Summary

We exploited the cost structure of our industrial TUFLP-S instances with a La-

grangian relaxation that lead to a new Lagrangian-informed reformulation.

The reformulation eliminates the integrality gap for industrial instances and, com-

pared to prior formulations, reduces it for small artificial instances. We solved the linear

relaxation of the reformulation with Algorithms 3 and 4 and combined these structured

Dantzig-Wolfe decomposition algorithms with a mathematical heuristic; the result is a

Lagrangian heuristic that solves our industrial instances exactly.

This chapter confirmed that linear stabilisation, particularly the `1 ball, is useful for

Lagrangian-informed structured Dantzig-Wolfe decomposition.

More importantly, we described a Lagangian heuristic that is competitive with a

state-of-the-art branch-and-cut method on large practical instances of the TUFLP-S: the

heuristic is exact on these instances and solves large ones as quickly as branch-and-

cut. We believe that the heuristic will outperform branch-and-cut on larger practical

instances. The same Lagrangian-informed structured decomposition will also be better

suited to re-optimisation than branch-and-cut: we can reuse the restricted master prob-

lem.
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CHAPTER 5

A LAGRANGIAN-INFORMED REFORMULATION FOR A MODULAR
LOCATION PROBLEM

This chapter presents novel formulations for an industrial location problem with

modular capacity constraints [34]. We first introduce a stronger mixed integer program-

ming formulation for the problem than the one proposed in Gendron and Semet [34].

We then describe a Lagrangian decomposition scheme for the formulation, and derive a

novel reformulation from that decomposition. The reformulation is large and we solve

its linear relaxation with the warm-starting technique (Algorithm 1) of Section 2.2.

The reformulation yields lower bounds that are competitive with those computed by

a parallel branch-and-cut algorithm after four hours. We also combine the reformulation

with a mathematical heuristic to tighten the integrality gap more quickly than parallel

branch-and-cut.

Section 5.1 describes the industrial problem and an initial mixed integer formulation

for the model; the formulation builds on (PSpath) (introduced in Chapter 2) to closely

approximate the uncapacitated location aspect of the problem in its linear programming

relaxation. Section 5.2 introduces a Lagrangian decomposition for that mixed integer

formulation and guides a reformulation with that decomposition. Section 5.3 shows

how we exploit fractional solutions in a primal heuristic. Finally, Section 5.4 compares

the lower and upper bounding algorithms with the parallel branch-and-cut method of

CPLEX 12.5.

5.1 An industrial facility location problem and its MIP formulation

The case study for this final application of Lagrangian-informed reformulation comes

from the operations of a European company that manages a dedicated delivery network.

The distribution network is arranged in three tiers: large vehicles from hubs to de-

pots, medium ones from depots to satellites, and final delivery vehicles from satellites to



delivery routes. This structure exposes opportunities for economies of scale at the top of

the network (between hubs, depots, and satellites), but also scales down to local demand

levels (between satellites and delivery routes).

The company owns and operates its top-tier hubs, but opens all other locations tem-

porarily in order to maximise flexibility: it rents depots for short periods, and parcels are

transferred from transport vehicles to delivery vehicles in ad hoc satellite locations that

do not incur any direct cost. In order to exploit this flexibility and respond to changes

in demand, we must solve two-level location-distribution problems (we disregard hubs

because we can always link depots to the closest hub).

Gendron and Semet [34] proposes a model that captures the location aspect of the

problem precisely: decision variables determine which locations to open and how to

connect hubs to preassigned delivery routes.

Most research on two-level location-distribution problems instead focus on routing

decisions [27] and consider the problem as a variant of the vehicle routing problem: they

assume that most, if not all, location decisions are made ahead of time.

The latter choice seems correct in classical settings: opening or closing depots and

satellites are usually strategic decisions made over long planning horizons. However,

the specific problem encountered by our industrial partner does not correspond to these

assumptions: hubs are already in operation, and the partner makes all other decisions,

including location decisions, on a short term basis (over a single planning period in our

model). At country scale, location and sorting costs can drastically outweigh the cost of

the final delivery routes. Short planning horizons also mean that we must find solutions

quickly.

The problem is best seen as a two-level uncapacitated facility location problem with

modular capacities for depots, for arcs between depots and satellites and for satellites.

We must add the constraint that flows are unsplittable and that each satellite be linked

to at most one depot: parcels are sorted into routes at satellites and it is impractical to

coordinate departures from multiple depots so that they arrive at an intermediate satellite

location simultaneously. The result is a TUFLP-S with a more complicated cost function.

Modular capacities (in terms of total parcel volume) for depots correspond to large
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Figure 5.1: A solution for a toy instance of the modular location problem

distribution vehicles from the nearest hub to each depot and those for depot–satellite

arcs to medium-size distribution vehicles from depots to satellites. Capacity modules

for satellites instead reflect the cost of sorting each batch of parcels into delivery routes;

they are in terms of the number of parcels.

Figure 5.1 schematises a solution for a trivial instance of our problem. One large

vehicle links depot i2 to its closest hub. Two medium-size vehicles then leave i2 for

satellites j1 and j2. Parcels are sorted in j1 and j2, and delivery vehicles depart from the

satellites to execute routes k1, k2 and k3.

We build on our work on the TUFLP-S to define a stronger MIP formulation than the

one proposed in Gendron and Semet [34].

The formulation depends on the following data:

– I, the set of potential depot locations;

– J, the set of potential satellite locations;

– K, the set of routes;

– vk, the total volume of all parcels delivered along route k 2 K;

– nk, the number of parcels delivered along route k 2 K;

– R, the volumetric capacity of each large vehicle;
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– r, the volumetric capacity of each medium vehicle;

– Q, the number of parcels in each sorting batch;

– fi, the fixed cost of each depot i 2 I;

– Fi, the cost of operating one large vehicle to depot i 2 I;

– Hi j, the cost of operating one medium-sized vehicle from depot i to satellite j;

– G j, the cost of sorting one batch of parcels at satellite j 2 J;

– ci jk, the total cost of delivery route k when transiting through depot i and departing

from satellite j.

Given these parameters, we define formulation (Mweak) on decision variables

yi =

8
><

>:

1, if depot i is open,

0, otherwise,
8i 2 I,

z j =

8
><

>:

1, if satellite j is open,

0, otherwise,
8 j 2 J,

ti j =

8
><

>:

1, if depot i and satellite j are operating together,

0, otherwise,
8(i, j) 2 I ⇥ J,

xi jk =

8
><

>:

1, if route k is served through pair (i, j),

0, otherwise,
8(i, j,k) 2 I ⇥ J⇥K,

Ui = the number of large vehicles to i (departing from the nearest hub) 8i 2 I,

Vi j = the number of medium vehicles from i to j, 8(i, j) 2 I ⇥ J,

Nj = the number of batches of parcels sorted at j, 8 j 2 J.
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(Mweak) min
y,t,U,N,V,x Â

i2I
( fiyi +FiUi)+ Â

j2J
G jNj + Â

(i, j)2I⇥J
Hi jVi j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K, (5.1)

Â
i2I

ti j  1, 8 j 2 J, (5.2)

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K, (5.3)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K, (5.4)

Â
( j,k)2J⇥K

vkxi jk  RUi, 8I 2 I, (5.5)

Â
k2K

vkxi jk  rVi j, 8(i, j) 2 I ⇥ J, (5.6)

Â
(i,k)2I⇥K

nkxi jk  QNj, 8 j 2 J, (5.7)

xi jk 2 {0,1}, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J,

Ui 2 N, 8i 2 I,

Vi j 2 N, 8(i, j) 2 I ⇥ J,

Nj 2 N, 8 j 2 J.

The objective function is the sum of fixed costs for depots, of module costs for ca-

pacity at depots, at satellites, and from depots to satellites, and of transportation costs

for delivery routes.

Constraints (5.1), (5.2), (5.3), and (5.4) are directly copied from (PSpath) and improve
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the linear relaxation bound compared with the formulation proposed in Gendron and

Semet [34]: the latter replaces (5.4) with the weaker

ti j  yi, 8(i, j) 2 I ⇥ J.

Variables xi jk are forced to take binary values because there may be a cost to flowing

more commodities through a location or arc, and thus an incentive to split flows.

Constraints (5.5) and (5.6) force the allocation of enough capacity from hubs to de-

pots and from depots to satellites; integrality ensures this happens in discrete increments.

Constraints (5.7) do the same for the batches of parcels sorted at each satellite.

Formulation (Mweak) comprises hundreds of thousands of variables and constraints

when applied to country-size instances, but contemporary linear programming solvers

solve its linear relaxation in seconds or minutes. However, it is mediocre: the (PSpath)

component is strong, but constraints (5.5) to (5.7) amount to linearising transportation

and sorting costs. For example, the cost of flowing an additional unit of volume through

depot i is always Fi/R.

We improve the linear programming bound with a simple observation: if flow passes

though a depot, a satellite, or a depot–satellite link, its capacity must be strictly positive.

This leads to three sets of valid inequalities:

Ui � yi, 8i 2 I, (5.8)

Vi j � ti j, 8(i, j) 2 I ⇥ J, (5.9)

Nj � Â
i2I

ti j, 8 j 2 J, (5.10)

where constraints (5.10) exploit the equations

z j = Â
i2I

ti j, 8 j 2 J

of Section 3.2.

We add this trio of constraints to (Mweak) to define formulation (Mstrong).
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(Mstrong) min
y,t,U,N,V,x Â

i2I
( fiyi +FiUi)+ Â

j2J
G jNj + Â

(i, j)2I⇥J
Hi jVi j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

Â
(i,k)2I⇥K

nkxi jk  QNj, 8 j 2 J,

Â
k2K

vkxi jk  rVi j, 8(i, j) 2 I ⇥ J,

Â
( j,k)2J⇥K

vkxi jk  RUi, 8I 2 I,

Ui � yi, 8i 2 I,

Vi j � ti j, 8(i, j) 2 I ⇥ J,

Nj � Â
i2I

ti j, 8 j 2 J,

xi jk 2 {0,1}, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J,

Ui 2 N, 8i 2 I,

Vi j 2 N, 8(i, j) 2 I ⇥ J,

Nj 2 N, 8 j 2 J.
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The next section strengthens (Mstrong) and shows how to solve the linear relaxation

of its tighter reformulation efficiently.

5.2 A Lagrangian-informed reformulation for (Mstrong)

Work on a Lagrangian decomposition [45] for formulation (Mstrong) revealed that we

can improve lower bounds by separating the TUFLP-S and all modular capacity (the

unsplittable arc flow problem [3] covered in Section 1.3) components.

We first derive (M0
strong), a decomposable formulation with explicit linking con-

straints, by duplicating path variables xi jk that appear in UAFP (unsplittable arc flow

problem) components.

Constraints (5.18) are equivalent to constraints (5.6), given constraints (5.19).

The only complication is that, thanks to constraints (5.1), some path variables are

equivalent with respect to constraints (5.5) and (5.7). In constraints (5.15) and (5.21),

we aggregate classes of equivalent path variables in a single representative clone, via

artificial constraints (5.16) and (5.22).



(M0
strong) min

y,t,U,N,V,x Â
i2I

( fiyi +FiUi)+ Â
j2J

G jNj + Â
(i, j)2I⇥J

Hi jVi j + Â
(i, j,k)2I⇥J⇥K

ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K, (5.11)

Â
i2I

ti j  1, 8 j 2 J, (5.12)

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K, (5.13)

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K, (5.14)

Â
k2K

nkx j
k  QNj, 8 j 2 J, (5.15)

Â
i2I

xi jk = x j
k, 8( j,k) 2 J⇥K, (5.16)

Nj � Â
i2I

ti j, 8 j 2 J, (5.17)

Â
k2K

vkxi j
k  rVi j, 8(i, j) 2 I ⇥ J, (5.18)

xi jk = xi j
k , 8(i, j,k) 2 I ⇥ J⇥K, (5.19)

Vi j � ti j, 8(i, j) 2 I ⇥ J, (5.20)

Â
k2K

vkxi
k  RUi, 8I 2 I, (5.21)

Â
j2J

xi jk = xi
k, 8(i,k) 2 I ⇥K, (5.22)

Ui � yi, 8i 2 I, (5.23)

xi jk,xi
k,x

j
k,x

i j
k 2 {0,1}, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I,

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J,

Ui 2 N, 8i 2 I,

Vi j 2 N, 8(i, j) 2 I ⇥ J,

Nj 2 N, 8 j 2 J.89



We define a first Lagrangian decomposition by relaxing linking constraints (5.16),

(5.19), and (5.22), as well as valid inequalities (5.17), (5.20) and (5.23). Doing so relaxes

the problem into independent subproblems, and we exploit that with a disaggregated (one

convex hull per subproblem) reformulation.

Let l jk be the Lagrange multipliers for constraints (5.16), µi jk those for (5.19) and

nik those for (5.22), and let x j be the Lagrange multipliers for constraints (5.17), oi j for

(5.20) and pi for (5.23).

The largest subproblem is a TUFLP-S component over variables xi jk, ti j and yi,

solved with formulation (PSpath) of Chapter 3 (relaxing the integrality of xi jk does not

affect the optimal value):

min
y,t,x Â

i2I
(pi + fi)yi + Â

(i, j)2I⇥J
(x j +oi j)ti j + Â

(i, j,k)2I⇥J⇥K
(ci jk +l jk +µi jk +nik)xi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

0  xi jk  1, 8(i, j,k) 2 I ⇥ J⇥K,

yi 2 {0,1}, 8i 2 I

ti j 2 {0,1}, 8(i, j) 2 I ⇥ J.

The remaining components are one UAFP for each potential location. For each depot

i 2 I, we have

min
xi,Ui

(Fi �pi)Ui � Â
k2K

nikxi
k
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subject to

Â
k2K

vkxi
k  RUi, 8I 2 I,

Ui 2 N,

xi
k 2 {0,1}, 8k 2 K.

Similarly, the subproblem corresponding to each satellite j 2 J is

min
x j,Nj

(G j �x j)Nj � Â
k2K

l jkx j
k

subject to

Â
k2K

nkx j
k  QNj, 8 j 2 J,

Nj 2 N,

x j
k 2 {0,1}, 8k 2 K,

and the one for each link (i, j) 2 I ⇥ J is

min
xi j,Vi j

(Hi j �oi j)Vi j � Â
k2K

µi jkxi j
k

subject to

Â
k2K

vkxi j
k  rVi j, 8(i, j) 2 I ⇥ J,

Vi j 2 N,

xi
k 2 {0,1}, 8k 2 K.

Despite disaggregation, this reformulation is ineffective: there are many UAFP com-

ponents, and their reformulation is exactly the (disaggregated) Dantzig-Wolfe master

problem. However, preliminary experiments showed that we can simplify the problem
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with little negative effect on the bound: we relax all UAFP components into splittable

arc flow problems (SAFP) [3], and solve the (PSpath) component as a linear program.

We showed in Section 1.3 that the SAFP is a valid relaxation of the UAFP (we re-

lax integrality for all but one variable) and derived reformulation (SAFP) for this class

of subproblems. We further reduce the reformulation with a simplification from Sec-

tion 1.5: if we allocate no capacity, nothing can transit through that location or arc, and

we eliminate the s = 0 block.

We already showed in Section 3.3.2 that the integrality gap for (PSpath) is low for

industrial instances; it makes sense to only solve the linear relaxation of (PSpath).

This second Lagrangian decomposition comprises a component that is the linear re-

laxation of (PSpath). We could equivalently completely relax all constraints that appear

in that component (constraints (5.11) to (5.14)). However, the Lagrangian dual prob-

lem for the latter relaxation will likely be difficult to maximise: the relaxed constraints

may be violated by a wide margin. Moreover, we will show how to compute initial

Lagrange multipliers efficiently by preserving this linear programming component and

only relaxing artificial linking constraints introduced by the decomposition. In the end,

the choice between relaxing the TUFLP-S component and separating it from the SAFP

components does not affect the complete Lagrangian-informed reformulation: we rep-

resent the convex hull of a linear programming component with the original formulation

for that component. The only difference is that the Lagrangian master problem is better

behaved for the decomposition (i.e., separating components by relaxing artificial linking

constraints) than for the relaxation.

(SAFP) depends on additional parameters: Mi is the set of potential values of Ui,

Mi =

(
1,2, . . . ,

&

Â
k2K

vk/R

')
8i 2 I;

similarly, for each depot–satellite link

Mi j =

(
1,2, . . . ,

&

Â
k2K

vk/r

')
8(i, j) 2 I ⇥ J;
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and for each satellite

Mj =

(
1,2, . . . ,

&

Â
k2K

nk/Q

')
8 j 2 J.

We can now replace (5.15), (5.18) and (5.21) in (Mstrong) with (SAFP) and obtain (Mhull).
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(Mhull) min
y,t,U,N,V,x,q Â

i2I
( fiyi +FiUi)+Â

j2J
G jNj + Â

(i, j)2I⇥J
Hi jVi j + Â

(i, j,k)2I⇥J⇥K
ci jkxi jk

subject to

Â
(i, j)2I⇥J

xi jk = 1, 8k 2 K,

Â
i2I

ti j  1, 8 j 2 J,

xi jk  ti j, 8(i, j,k) 2 I ⇥ J⇥K,

Â
j2J

xi jk  yi, 8(i,k) 2 I ⇥K,

Â
k2K

nkx js
k  Qsq

js, 8 j 2 J,8s 2 Mj, (5.24)

Â
s2MJ

q

js = Â
i2I

ti j, 8 j 2 J, (5.25)

0  x js
k  q

js, 8( j,k) 2 J⇥K,8s 2 Mj, (5.26)

Â
i2I

xi jk = Â
s2Mj

x js
k , 8( j,k) 2 J⇥K, (5.27)

Nj = Â
s2MJ

sq

js, 8 j 2 J, (5.28)

Â
k2K

vkxi js
k  rsq

i js, 8(i, j) 2 I ⇥ J,8s 2 Mi j, (5.29)

Â
s2Mi j

q

i js = ti j, 8(i, j) 2 I ⇥ J, (5.30)

0  xi js
k  q

i js, 8(i, j,k) 2 I ⇥ J⇥K,8s 2 Mi j, (5.31)

xi jk = Â
s2Mi j

xi js
k , 8(i, j,k) 2 I ⇥ J⇥K, (5.32)

Vi j = Â
s2Mi j

sq

i js, 8(i, j) 2 I ⇥ J, (5.33)

Â
k2K

vkxis
k  Rsq

is, 8i 2 I,8s 2 Mi, (5.34)

Â
s2Mi

q

is = yi, 8i 2 I, (5.35)

0  xis
k  q

is, 8(i,k) 2 I ⇥K,8s 2 Mi, (5.36)

Â
j2J

xi jk = Â
s2Mi

xis
k , 8(i,k) 2 I ⇥K, (5.37)

Ui = Â
s2Mi

sq

is, 8i 2 I, (5.38)94



with variables xi jk, y, t and q binary, and xs
i jk, U , V and N in R.

Constraints (5.15) become constraints (5.24), (5.25) and (5.26); (5.18) become (5.29),

(5.30) and (5.31); finally (5.21) become (5.34), (5.35) and (5.36).

There is one nontrivial change: valid inequalities (5.17), (5.20), and (5.23) combine

with the choice constraints (Âs2Y q

s  1) to yield constraints (5.25), (5.30), and (5.35).

Logically, the inequalities mean that if a location variable is 1, at least one full module

of capacity must be installed at that location, and none otherwise. The reformulation

represents integer variables as sets of binary variables, and we have tighter constraints

for the same conditions.

This final reformulation is reasonably larger than (Mstrong): the increase is polyno-

mial in the input values, pseudopolynomial in initial formulation size.

Despite its benign growth in size, the reformulation is only barely tractable for full-

scale industrial instances: even with the parallel barrier implementation in CPLEX 12.5,

solving its linear relaxation requires more than one hour on a 24-core 2.9 GHz machine.

The positive result is that the integrality gap is low.

That is why we developed Algorithm 1: we propose to solve these large linear pro-

grams approximately, but more quickly. We obtain initial dual multipliers by solving

(Mstrong) (i.e., (B)) with a parallel barrier algorithm: interior point methods scale well to

large programs like (Mstrong), there is no parallel simplex algorithm, and we do not need

a simplex basis. We then relax only constraints (5.27), (5.32) and (5.37) in (Mhull) to

define (B0): this does not fully separate the problem, but suffices to make (B0) tractable.

Finally, we solve (B0) with the dual simplex algorithm and use the advance basis to

warm-start the dual simplex algorithm on (Mhull) (i.e., (B00)).

5.3 A MIP-based heuristic for (Mstrong)

Formulation (Mstrong) is strong: its linear programming lower bound is close to the

optimal integer value. The problem is that it is large and solving its linear relaxation is

slow.

We obtain a simple heuristic by eliminating decision variables based on information
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from (Mhull); we do not solve (Mhull) exactly, but hope that approximate solutions to this

tight reformulation will be informative.

We restrict (Mstrong) by only allowing each ti j to be used if some flow passes through

it in our fractional solution.

Let x⇤i jk be the values for path variables xi jk in the approximate solution for the linear

relaxation of (Mhull), and let

L = {(i, j) 2 I ⇥ J | 9k 2 K, x⇤i jk > e},

with e = 10�4. We restrict (Mstrong) by fixing

ti j = 0 8(i, j) 62 L.

In other words, if no path passes (even partially) through that depot–satellite link in the

best fractional solution available, we deem the link uninteresting and let the heuristic

disregard it.

We solve the restricted mixed integer program with the branch-and-cut of CPLEX,

with an emphasis on primal feasibility, and solution polishing triggered when the time

limit is nearly reached. A more sophisticated approach like Kernel search [2] could lead

to better primal solutions. However, this simple heuristic already finds solutions that are

within 2 to 4 percent of optimum on practical instances.

5.4 Numerical results

We presented three novel mixed integer programming formulations: (Mweak), its

stronger variant (Mstrong) and the Lagrangian-informed reformulation (Mhull).

This section first compares their linear relaxations with one another and with the

lower bound computed by the parallel branch-and-cut of CPLEX after four hours of

wallclock time.

We computed these results on the same unloaded 24-core machine, with four 2.9

GHz Xeon E5-4617 and 128 GB of DDR3-1600 RAM. Even four hours (i.e., almost
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four CPU days) of parallel branch-and-cut do not suffice to close these instances, and

the gaps for the three formulations are thus computed with respect to the inexact branch-

and-cut lower bound.

Section 5.4.1 shows that the linear programming relaxation of (Mhull) almost elimi-

nates the integrality gap on larger instances, but that, even with a parallel barrier (there

is no effective parallel simplex algorithm) algorithm, it is impractical.

Section 5.4.2 compares parallel branch-and-cut with the lower and upper bounds

computed with Algorithm 1 and the MIP-based heuristic of Section 5.3, under time

limits.

It also compares the warm-started dual simplex with solving the Lagrangian de-

composition that lead to the reformulation. We optimised the Lagrangian dual with

the quadratically stabilised bundle method [48] (BTT 2.12 1 [28]), and with the volume

algorithm [5] (version 1.4 of the COIN implementation 2). We initialised these methods

as well with dual multipliers computed from a solution to (Mstrong).

In both subsections, the results come from four sets of eight instances each.

We derived Full instances from industrial data for the network over a complete coun-

try, while Large ones keep three quarters of the nodes and arcs, Medium ones half and

Small ones one quarter. These networks correspond to the Full, 3
4 , 1

2 and 1
4 industrial

instances of Chapters 3 and 4, and Table 3.II summarises their characteristics.

For each of these networks, we generated eight instances by either doubling the fixed

cost of depots or leaving it as is, doubling the volumetric capacity of large vehicles

(without changing their cost) or not, and halving the capacity of medium vehicles or not.

We report the multipliers, in order, in the name of each instance; e.g., F(1,2,.5) refers to

the Full instance with doubled large vehicle capacity and halved small vehicle capacity.

Unless noted otherwise, we solved linear programs and mixed integer programs with

the dual simplex and branch-and-cut solvers of CPLEX 12.5 3 with default parameters

1. An older version is available at http://sorsa.unica.it/it/software.php; we ob-
tained BTT 2.12 by personal email.

2. The project homepage at https://projects.coin-or.org/Vol trails development; we
checked out version 1.4 from the repository (svn co https://projects.coin-or.org/svn/

Vol/stable/1.4 coin-Vol).
3. IBM CPLEX (http://www-01.ibm.com/software/commerce/optimization/
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(Mstrong) Lagrangian subproblem (Mhull)
Instance # var. # rows # nonzeros # var. # rows # nonzeros # var. # rows # nonzeros
S(1,1,1) 3932 4718 25765 4176 4962 15801 18029 24449 83590
M(1,1,1) 30782 34808 209846 32243 36269 127759 196881 242686 877567
L(1,1,1) 98959 108596 681247 101908 111545 407403 811162 945114 3535831
F(1,1,1) 233918 250820 1614470 239066 255942 956405 2286559 2583731 9834020

Table 5.I: Presolved formulation sizes for four industrial instances.

and in single-threaded mode.

5.4.1 Formulation strengths

Formulation (Mhull) is large. Even with 24 ⇥ 2.9 GHz cores, the parallel barrier

algorithm (including crossover [12]) took at least 80 minutes to solve each full instance.

That is not surprising considering the number of variables, constraints and nonzeros

reported in Table 5.I. Thus, although we solved other formulations with the default (se-

rial) dual simplex algorithm of CPLEX, runtimes for (Mhull) are wallclock times for the

parallel barrier algorithm on 24 cores.

Solving (Mstrong) as an integer program is difficult as well. We computed baseline

bounds by executing the parallel branch-and-cut of CPLEX on that strong formulation

for up to four hours on 24 cores. We chose this formulation because its linear relaxation

is stronger than that of (Mweak) but is still solved rapidly (in minutes). Yet, we could

only close the smallest instances and two medium ones within four hours.

Table 5.II reports average lower and upper bounds, gaps and runtimes for the mixed

integer solver and the linear relaxations of the three formulations; complete results are

in Appendix VI.

Most of the mixed integer programming bounds are suboptimal, so we present both

upper and lower bounds, and average their differences under “MIP Gap.” The remaining

three columns (“Weak”, “Strong” and “Hull”) report the average gap between the MIP

lower bound and those computed with the linear relaxations of (Mweak), (Mstrong) and

cplex-optimizer/) is currently available under a free academic license through the IBM Academic
Initiative (http://www-03.ibm.com/ibm/university/academic/pub/page/ban_
ilog_programming).
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Instances MIP Upper MIP Lower MIP Gap Weak Strong Hull
S(-,-,-) Bound 5.306 ·107 5.305 ·107 0.01% 20.40% 1.66% 0.72%

Time (s) 115.50 115.50 0.02 0.06 1.22
M(-,-,-) Bound 8.422 ·107 8.411 ·107 0.12% 16.44% 1.18% 0.72%

Time (s) 13109.36 13109.36 0.21 9.32 118.76
L(-,-,-) Bound 1.062 ·108 1.050 ·108 1.12% 13.35% 1.12% 0.38%

Time (s) 14400.45 14400.45 1.40 132.18 1187.38
F(-,-,-) Bound 1.254 ·108 1.233 ·108 1.73% 14.47% 0.49% 0.05%

Time (s) 14401.78 14401.78 9.97 599.99 8747.62

Table 5.II: Average bounds and runtimes under lenient computation limits

(Mhull). For three F instances, formulation (Mhull) computes stronger lower bounds than

branch-and-cut; we treated these negative gaps as zeros.

We need heuristics to solve the industrial problem approximately and much more

quickly: four hours is too long for short-term decisions. Moreover, we preassign deliv-

ery routes, and solving the problem faster will allow us to experiment with more route

assignments.

5.4.2 Bound values under time limits

In this section, we compare two methods to compute feasible solutions and lower

bounds under time limits. The first method is to solve (Mstrong) as a mixed integer pro-

gram with the branch-and-cut of CPLEX at default settings, but in opportunistic parallel

mode and on 24 cores. The second combines the heuristic of Section 5.3 with warm-

starting (Algorithm 1) the dual simplex algorithm on (Mhull) (Section 5.2).

Table 5.I shows the size of the Lagrangian subproblem in Algorithm 1 (i.e., formula-

tion (B0)): the intermediate linear program is comparable in size to (Mstrong) and solved

even more quickly.

We dedicate half the wallclock time budget to the lower bounding algorithm of Sec-

tion 5.2. This method also yields an approximate solution that we pass to the primal

heuristic (Section 5.3). That heuristic receives the other half of the time limit.

Table 5.III breaks down lower bounding times. Column “Strong” reports the average

time to solve (Mstrong) with the parallel barrier algorithm; “Lagrangian” the average time
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Lower bound times (10 min) (15 min)
Instances Strong Lagrangian Hull Hull
S(-,-,-) 0.39 0.05 1.12 1.11
M(-,-,-) 3.80 1.12 225.44 300.38
L(-,-,-) 23.41 11.08 263.37 413.71
F(-,-,-) 137.59 81.46 62.14 215.69

Table 5.III: Average division of real time usage (sec) within the warm-starting heuristic

Lower bound gaps (10 min) Upper bound gaps (10 min)
Instances Strong Hull Bundle Volume MIP Heuristic MIP
S(-,-,-) 1.66% 0.72% 0.76% 0.76% 0.00% 0.19% 0.00%
M(-,-,-) 1.18% 0.73% 0.93% 0.82% 0.28% 0.00% 0.03%
L(-,-,-) 1.12% 0.59% 0.94% 0.96% 0.15% 0.05% 0.74%
F(-,-,-) 0.49% 0.47% 0.48% 0.48% 0.20% 0.18% 2.87%

Lower bound gaps (15 min) Upper bound gaps (15 min)
Instances Strong Hull Bundle Volume MIP Heuristic MIP
S(-,-,-) 1.66% 0.72% 0.75% 0.76% 0.00% 0.19% 0.00%
M(-,-,-) 1.18% 0.72% 0.91% 0.82% 0.25% 0.01% 0.02%
L(-,-,-) 1.12% 0.52% 0.92% 0.94% 0.15% 0.05% 1.00%
F(-,-,-) 0.49% 0.38% 0.48% 0.41% 0.12% 0.01% 2.62%

Table 5.IV: Average bound gaps under aggressive real time limits

to solve (B0) (i.e., the linear Lagrangian subproblem of (Mhull)); finally, “Hull” reports

the average time left to improve the dual feasible basis for the linear relaxation of (Mhull)

(formulation (B00)). When we allow more time, only the final step is affected, and we

only report runtimes for “Hull.” Some time is also necessary to modify formulation (B0)

into (B00) (i.e., (Mhull)) and is not attributed to any of the three steps; that is why the

averages consistently sum to less than half the total time limit. Simply solving (Mstrong)

already comes close to the time limits; the warm-started dual simplex algorithm must

improve the lower bound with what little computation time remains.

We explored other methods to solve the linear relaxation of (Mhull) as a Lagrangian

decomposition, with (PS0
path) solved as a linear program and each SAFP subproblem

with a O(n logn)-time routine. We warm-started all methods with the same multipliers

obtained by solving (Mstrong) and imposed the same time limits. Structured Dantzig-

Wolfe decomposition (Section 2.3) was a failure: its restricted master problem becomes

impractically large after one iteration. The quadratically-stabilised bundle [28] and the
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volume [5] algorithms fared better, and we will report results for both these methods.

Table 5.IV summarises the quality of the bounds computed within wallclock time

limits of 10 and 15 minutes. Again, we do not have exact values and report lower

bound gaps with respect to the lower bound obtained with the parallel branch-and-cut

(on (Mstrong)) after four hours.

Columns “Strong” and “Hull” correspond to the linear relaxation of (Mstrong) and to

the warm-started linear relaxation of (Mhull). Columns “Bundle” and “Volume” report

the quality of the bounds computed by the bundle and volume algorithms, for a La-

grangian dual equivalent to the linear relaxation of (Mhull); columns “MIP” correspond

to solving (Mstrong) as an integer program.

The results support our intuition that it is preferable to solve barely tractable linear

programs with linear programming solvers: neither nondifferentiable optimisation algo-

rithm is competitive with the warm-started dual simplex algorithm. In particular, the

bundle algorithm scarcely achieves any improvement on the initial (Mstrong) bound for

Full instances.

We also report upper bound gaps relative to the upper bound computed by branch-

and-cut after four hours. The Heuristic of Section 5.3 quickly computes better feasible

solutions than branch-and-cut on (Mstrong) under time limit; in fact, they are nearly iden-

tical to the ones the latter finds after four hours.

Overall, our warm start (Section 5.2 and Algorithm 1) is able to improve the initial

dual multipliers, and seems more efficient that nondifferentiable optimisation methods.

However, the branch-and-cut of CPLEX is slightly more efficient at converting com-

putation time into bound improvements. On the other hand, our primal heuristic (Sec-

tion 5.3) computes better primal solutions than the branch-and-cut under the same time

limit. Combining the warm start with the primal heuristic yields a method that computes

better integer solutions with tighter gaps than parallel branch-and-cut.
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5.5 Summary

We described three novel formulations for the modular location problem introduced

in Gendron and Semet [34]. The first, (Mweak), improves an older formulation by sub-

stituting in (PSpath), our formulation for the TUFLP-S. The second, (Mstrong), adds three

sets of valid inequalities; this improves the linear relaxation but already makes it dif-

ficult to solve. The third, (Mhull), is even larger; we obtained that reformulation after

identifying a strong Lagrangian decomposition.

Formulation (Mhull) almost closes the integrality gap, but we are unable to solve its

linear relaxation in reasonable time, even with a parallel interior point algorithm. In-

stead, we implemented Algorithm 1 to warm start the dual simplex algorithm. This

quickly produces bounds that, although suboptimal, are higher than the linear program-

ming bound of (Mstrong).

We also described a primal heuristic (Section 5.3). Given short time limits, this

heuristic computes better feasible solutions than the parallel branch-and-cut method of

CPLEX for (Mstrong). Combining this heuristic with the warm start for (Mhull) yields a

method that, under the same total time limit (10 and 15 minutes), computes better primal

solutions and proves tighter gaps than parallel branch-and-cut on (Mstrong).

Overall, these results show that it is practical and useful to solve the linear relaxation

of a large Lagrangian-informed reformulation approximately, by warm-starting the dual

simplex algorithm.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation explored an approach to reformulate mixed integer programs. The

reformulations are guided by Lagrangian relaxations: once we identify a relaxation

scheme, we construct a stronger mixed integer Lagrangian-informed reformulation me-

chanically. This second program captures the same integer feasible set as the original

formulation, and its linear relaxation is equivalent to the guiding Lagrangian dual. We

can always reach formulations through different paths; the particularity of our approach

is that insights into the problem directly lead to a tighter linear relaxation. Chapter 2

describes methods to solve the linear relaxation of large reformulations; Chapters 3 to

5 show that the reformulation improves lower bounds in practice and incurs reasonable

computational overhead.

Chapter 3 shows that this improvement sometimes comes with a reduction in formu-

lation size; we even solve the reformulation as a mixed integer program. Unfortunately,

off-the-shelf branch-and-cut programs are badly adapted to Lagrangian-informed refor-

mulations. It is best to preserve all initial integer variables even if they are redundant in

the reformulation, and to only branch on variables that are present in the original formu-

lation. The result is to exploit the reformulation to strengthen the linear programming

relaxation without otherwise affecting branching.

Despite this mismatch, Lagrangian-informed reformulations improve the practicality

of enhancing branch-and-bound with strong Lagrangian bounds. Guiding a branch-and-

bound solver with a Lagrangian relaxation is the source of myriad practical challenges.

Obtaining an optimal (or nearly enough) bound can require many iterations. When

we impose a hard limit on the number of Lagrangian subproblem evaluations, search

nodes may end up with a weaker bound value than their parent.

The need for primal fractional solutions only worsens the situation. Few approaches

for maximising Lagrangian duals compute a feasible solution that corresponds to the

lower bound. Those that do [5, 21, 22, 48, 59] take cleverly weighted convex combi-



nations of optimal (extreme) solutions for the Lagrangian subproblem; fine tuning the

weights and generating extreme solutions requires many subproblem evaluations.

Warm-starting the master problem helps, but, with or without warm-starting, it takes

many iterations to reach accurate solutions. If only a lower bound is necessary, medium

or low accuracy solutions may suffice; however, state-of-the-art branching techniques

require nearly feasible primal solutions that are close to the lower bounds, which, in

turn, calls for multiple subproblem solutions in a close neighbourhood of the optimum.

The only advantage of Lagrangian-based branch-and-bound is that its lower bounds

are closer to the optimal integer value than linear relaxation bounds. Particularly elegant

relaxations may also enable more computationally efficient bounding, but such cases are

rare and often only outstrip the dual simplex at the root node, when no warm start is

possible.

The reformulation technique presented in this dissertation is a starting point for other,

hopefully more practical, ways to compute Lagrangian bounds and embed them into

branch-and-bound methods. The Lagrangian-informed reformulation of Chapter 3 is

simply solved as a linear program. Section 2.1 describes a heuristic for larger reformu-

lations: solve a Lagrangian subproblem once, with multipliers set to dual values for a

related but simpler linear program. Chapter 4 shows the overhead is negligible.

Some reformulations strengthen the linear relaxation enough to make branching

pointless. That is the case of the reformulations in Chapters 4 and 5: they nearly elimi-

nate the integrality gap on practical instances. However, the reformulations are so large

that solving their linear relaxations to (near) optimality poses practical challenges. Chap-

ter 4 explores one potential solution: extending a restricted master problem iteratively,

as a structured Dantzig-Wolfe decomposition. Chapter 5 instead warm-starts a generic

linear programming solver on a large reformulation by first solving a smaller linear re-

laxation. In both chapters, the procedures are augmented with simple mathematical

heuristics. When computational resources are limited, the combinations are competitive

with branch-and-cut with respect to lower bounds on practical instances and regularly

generate higher quality, if not optimal, primal solutions.

We also maximised the Lagrangian duals underlying Chapters 4 and 5 with classi-
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cal non-differentiable optimisation solvers. Numerical results show that their runtime

performance is modest and that they only achieve middling bounds. This seems typical

of Lagrangian relaxation in practice: only a few particularly well designed specialised

programs [5, 26, 38, 39, 46, 47] are competitive with state-of-the-art generic solvers. In

some ways, this situation evokes the state of cutting-plane methods in the 1980’s and

early 1990’s [11]: the theory is well understood, some specialised solvers apply the

technique to good ends, but no robust generic algorithm exists.

We hope that Lagrangian-informed reformulations will improve this situation: our

approach shifts the computational burden towards robust linear programming solvers.

Our hope is strengthened by the fact that, for the foreseeable future, serial computing

power will stagnate. Contemporary branch-and-cut solvers dedicate enormous efforts

to improving mixed integer formulations through sequential constraint generation. The

reformulation approach presented in this dissertation instead mechanically improves for-

mulations with a one-time expansion; we can then solve the resulting massive relaxations

with parallel linear optimisation routines.
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[1] K. Aardal, M. Labbé, J. Leung, and M. Queyranne. On the two-level uncapacitated

facility location problem. INFORMS Journal on Computing, 8(3):289, 1996.

[2] E. Angelelli, R. Mansini, and M. Grazia Speranza. Kernel search: A general heuris-

tic for the multi-dimensional knapsack problem. Computers and Operations Re-

search, 37(11):2017–2026, 2010.

[3] A. Atamtürk and D. Rajan. On splittable and unsplittable flow capacitated network

design arc–set polyhedra. Mathematical Programming, 92(2):315–333, 2002.

[4] A. Balakrishnan and S. C. Graves. A composite algorithm for a concave-cost net-

work flow problem. Networks, 19(2):175–202, 1989.

[5] F. Barahona. The volume algorithm: producing primal solutions with a subgradient

method. Mathematical Programming, 87(3):385–399, 2000.

[6] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.

Vance. Branch-and-Price: Column Generation for Solving Huge Integer Programs.

Operations Research, 46(3):316–329, May 1998.

[7] A. I. Barros. Discrete and Fractional Programming Techniques for Location Mod-

els. PhD thesis, Erasmus University, Rotterdam, 1995.
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Appendix I

Bound strengths (gap %) and computation times (s) for Gap TUFLP-C instances

In the first three tables, runtimes for the linear relaxation of (PShull) are reported for

the structured Dantzig-Wolfe decomposition stabilised with an `1 term. Runtimes and

lower bounds for all the methods to solve the linear relaxation (PShull) or the equivalent

Lagrangian dual follow.



LP relaxations Reformulation Primal MIP times

Instance Exact Landete (PCpath) (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PCpath) (PSpath) (PS0path) (PS0

path)

432GapA 45137 7.27% 7.77% 7.42% 7.42% 7.42% 7.42% 5.56% 0.00%

0.04 0.12 0.13 0.05 0.13 188.50 1.70 0.75 2.45 2.08 1.34

532GapA 45152 13.57% 14.45% 13.66% 13.66% 13.66% 13.66% 8.40% 0.00%

0.05 0.09 0.12 0.03 0.12 319.64 1.19 1.82 10.19 6.91 4.16

632GapA 48155 5.06% 7.87% 6.84% 6.84% 6.84% 6.84% 3.10% 0.00%

0.02 0.06 0.06 0.08 0.06 80.79 0.85 0.39 1.07 0.88 0.66

732GapA 42124 16.01% 16.46% 16.03% 16.03% 16.03% 16.03% 10.46% 0.00%

0.04 0.10 0.10 0.04 0.09 590.12 1.68 1.70 11.77 9.28 2.77

832GapA 48134 14.08% 14.50% 14.04% 14.04% 14.04% 14.04% 10.85% 0.00%

0.03 0.09 0.08 0.01 0.10 125.74 1.24 2.25 7.40 6.71 3.40

932GapA 45148 12.25% 13.05% 12.63% 12.63% 12.63% 12.63% 7.86% 0.00%

0.03 0.09 0.11 0.13 0.11 347.16 1.47 2.16 9.37 4.47 2.77

1032GapA 42161 6.14% 5.46% 5.05% 5.05% 5.05% 5.05% 0.92% 0.02%

0.04 0.09 0.10 0.06 0.09 119.55 0.97 0.34 0.86 0.78 0.59

1132GapA 45177 7.40% 10.88% 10.04% 10.04% 10.04% 10.04% 5.97% 0.00%

0.05 0.08 0.10 0.01 0.11 167.20 1.37 1.18 4.03 2.76 1.76

1232GapA 45140 10.17% 11.10% 10.48% 10.48% 10.48% 10.48% 5.68% 0.01%

0.04 0.08 0.09 0.02 0.06 346.93 1.54 1.09 3.17 2.72 1.57

1332GapA 42105 12.07% 14.44% 13.23% 13.23% 13.23% 13.23% 10.04% 0.00%

0.04 0.11 0.12 0.04 0.13 209.56 1.38 1.50 7.72 6.10 3.00

1432GapA 42166 10.45% 10.56% 10.44% 10.44% 10.44% 10.43% 6.22% 0.00%

0.03 0.08 0.09 0.06 0.12 71.11 0.75 1.07 3.68 3.50 1.97

1532GapA 42203 11.69% 11.88% 11.64% 11.64% 11.64% 11.63% 5.56% 0.00%

0.05 0.11 0.11 0.15 0.11 277.26 1.21 1.52 3.33 2.78 2.36

1632GapA 42175 11.72% 12.43% 11.75% 11.75% 11.75% 11.75% 6.17% 0.01%

0.06 0.14 0.12 0.02 0.12 289.19 1.48 1.81 6.70 3.41 3.20

1832GapA 48142 13.09% 13.20% 13.12% 13.12% 13.12% 13.12% 8.40% 0.00%

0.04 0.07 0.09 0.08 0.07 268.42 1.46 1.62 7.07 4.26 2.72

1932GapA 42165 8.32% 8.25% 8.23% 8.23% 8.23% 8.22% 3.48% 0.00%

0.03 0.11 0.09 0.07 0.09 237.99 1.13 0.64 1.92 1.69 0.98

2032GapA 42178 9.45% 9.64% 9.23% 9.23% 9.23% 9.23% 3.82% 0.00%

0.05 0.12 0.15 0.04 0.13 195.13 1.22 0.98 2.96 2.50 1.68

2132GapA 42149 12.21% 12.70% 12.30% 12.30% 12.30% 12.30% 5.21% 0.09%

0.06 0.13 0.12 0.34 0.12 618.65 2.42 1.82 10.10 6.63 3.19

2232GapA 45174 11.83% 12.77% 11.94% 11.94% 11.94% 11.94% 7.67% 0.00%

0.04 0.10 0.11 0.06 0.10 236.49 1.74 1.36 5.56 5.25 2.17

2432GapA 42137 11.98% 13.98% 12.98% 12.98% 12.98% 12.98% 7.40% 0.00%

0.04 0.10 0.12 0.04 0.12 518.62 1.90 2.08 8.45 6.22 3.17

2532GapA 42133 9.24% 9.76% 9.20% 9.20% 9.20% 9.20% 5.52% 0.00%

0.04 0.08 0.08 0.06 0.10 135.48 1.28 0.78 2.96 2.34 1.89

2632GapA 42168 11.14% 12.05% 11.29% 11.29% 11.29% 11.29% 6.44% 0.00%

0.06 0.13 0.14 0.04 0.16 233.06 1.27 1.21 5.05 3.56 2.55

2732GapA 42180 10.13% 10.58% 10.20% 10.20% 10.20% 10.20% 5.99% 0.00%

0.05 0.11 0.12 0.06 0.12 235.20 1.91 0.88 3.94 2.61 1.87

2832GapA 42169 7.45% 8.58% 7.63% 7.63% 7.63% 7.63% 3.91% 0.00%

0.04 0.10 0.11 0.08 0.13 384.67 1.78 0.66 2.03 1.31 1.25

2932GapA 45170 8.87% 10.68% 10.43% 10.43% 10.43% 10.43% 5.18% 0.00%

0.03 0.10 0.10 0.04 0.10 364.56 1.72 0.64 2.68 2.43 1.08

3032GapA 42146 9.61% 8.81% 8.37% 8.37% 8.37% 8.37% 3.85% 0.00%

0.04 0.12 0.11 0.04 0.12 153.45 1.30 0.76 1.89 2.75 1.33

3232GapA 45133 13.21% 14.28% 13.79% 13.79% 13.79% 13.79% 8.71% 0.01%

0.04 0.09 0.10 0.04 0.10 153.59 0.73 1.99 12.87 9.45 3.54

xv



LP relaxations Reformulation Primal MIP times

Instance Exact Landete (PCpath) (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PCpath) (PSpath) (PS0path) (PS0

path)

431GapB 51150 8.50% 8.32% 8.31% 8.31% 8.31% 8.31% 5.49% 0.02%

0.03 0.08 0.09 0.09 0.00 136.21 1.31 0.90 3.12 3.11 1.37

531GapB 54167 9.41% 9.88% 9.83% 9.83% 9.83% 9.83% 4.62% 0.03%

0.03 0.06 0.07 0.09 0.07 221.30 1.06 1.48 4.72 3.06 2.34

931GapB 52139 4.14% 1.84% 1.84% 1.84% 1.84% 1.84% 0.02% 0.00%

0.04 0.06 0.06 0.06 0.04 312.90 1.27 0.14 0.34 0.29 0.15

1031GapB 51157 9.58% 9.85% 9.56% 9.56% 9.56% 9.56% 6.34% 0.00%

0.04 0.10 0.10 0.11 0.02 347.23 1.90 1.69 11.26 5.32 2.38

1231GapB 45139 4.55% 6.62% 5.95% 5.95% 5.95% 5.95% 2.10% 0.00%

0.04 0.11 0.11 0.13 0.01 131.04 1.11 0.43 1.05 1.54 0.83

1731GapB 51147 9.39% 9.50% 9.33% 9.33% 9.33% 9.33% 4.72% 0.01%

0.03 0.11 0.09 0.10 0.02 236.88 1.30 1.85 5.52 3.64 1.50

2331GapB 48156 5.79% 5.90% 5.89% 5.89% 5.89% 5.89% 1.70% 0.00%

0.04 0.08 0.10 0.08 0.08 65.95 0.55 0.30 0.99 0.80 0.78

2431GapB 48162 11.20% 12.38% 11.96% 11.96% 11.96% 11.96% 6.91% 0.00%

0.04 0.09 0.09 0.09 0.04 143.67 0.94 1.16 5.59 3.46 2.23

2731GapB 45119 7.69% 8.17% 7.75% 7.75% 7.75% 7.73% 4.18% 0.01%

0.04 0.11 0.09 0.10 0.22 161.69 1.04 0.74 1.79 2.18 1.28

2831GapB 54136 6.87% 7.13% 7.05% 7.05% 7.05% 7.04% 2.73% 0.00%

0.05 0.07 0.07 0.09 0.10 76.85 0.66 0.71 2.33 1.27 1.56

2931GapB 48174 6.04% 6.71% 6.53% 6.53% 6.53% 6.53% 2.12% 0.00%

0.03 0.09 0.12 0.13 0.05 719.03 2.48 0.45 1.24 0.87 0.81

3131GapB 48196 9.96% 10.01% 9.90% 9.90% 9.90% 9.90% 3.58% 0.00%

0.05 0.09 0.10 0.10 0.06 634.42 1.80 1.14 2.30 1.93 1.99

3231GapB 51165 2.55% 2.93% 2.92% 2.92% 2.92% 2.92% 1.14% 0.00%

0.04 0.06 0.05 0.06 0.02 35.94 0.68 0.21 0.47 0.48 0.57

xvi



LP relaxations Reformulation Primal MIP times

Instance Exact Landete (PCpath) (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PCpath) (PSpath) (PS0path) (PS0

path)

333GapC 42231 8.58% 8.97% 8.67% 8.67% 8.67% 8.67% 2.51% 0.00%

0.05 0.10 0.10 0.10 0.20 310.01 1.06 0.80 2.32 1.72 1.48

433GapC 42186 16.26% 17.23% 16.32% 16.32% 16.32% 16.32% 10.56% 0.04%

0.07 0.19 0.20 0.20 0.26 1528.86 2.87 5.40 36.51 21.76 9.20

533GapC 45129 13.74% 16.05% 14.34% 14.34% 14.34% 14.34% 10.96% 0.00%

0.04 0.13 0.16 0.17 0.05 619.30 2.00 3.55 96.44 17.28 6.46

633GapC 45162 11.67% 12.07% 11.92% 11.92% 11.92% 11.92% 6.61% 0.00%

0.04 0.08 0.08 0.09 0.05 171.72 0.92 1.26 4.88 4.18 2.01

733GapC 48105 14.91% 15.73% 15.60% 15.60% 15.60% 15.60% 10.80% 0.05%

0.05 0.10 0.13 0.13 0.22 248.24 1.15 5.29 106.32 27.51 10.30

833GapC 45154 10.68% 9.75% 9.38% 9.38% 9.38% 9.38% 5.06% 0.02%

0.06 0.11 0.12 0.15 0.04 350.58 1.65 1.41 7.61 5.94 2.00

933GapC 45103 12.66% 12.50% 12.01% 12.01% 12.01% 12.01% 9.87% 0.00%

0.04 0.07 0.08 0.09 0.01 50.84 0.68 1.02 5.44 2.97 1.73

1033GapC 48126 12.81% 12.50% 12.30% 12.30% 12.30% 12.30% 6.35% 0.02%

0.04 0.08 0.08 0.08 0.12 526.39 1.81 1.32 7.24 8.93 1.80

1133GapC 48106 11.98% 13.37% 12.59% 12.59% 12.59% 12.59% 7.83% 0.05%

0.06 0.12 0.14 0.14 0.12 352.26 1.36 4.84 30.05 19.75 7.64

1233GapC 42183 10.15% 11.11% 10.23% 10.23% 10.22% 10.23% 3.98% 0.00%

0.06 0.12 0.12 0.12 0.06 758.39 2.26 0.90 4.94 2.98 1.62

1433GapC 45124 15.11% 18.41% 17.38% 17.38% 17.38% 17.38% 11.52% 0.02%

0.08 0.16 0.14 0.16 0.16 1089.67 2.46 5.19 120.46 31.88 11.27

1533GapC 45134 13.18% 14.05% 13.79% 13.79% 13.79% 13.79% 8.90% 0.01%

0.04 0.09 0.12 0.12 0.02 527.52 1.72 2.06 18.02 11.30 4.05

1633GapC 42137 16.39% 18.00% 16.47% 16.47% 16.47% 16.47% 11.27% 0.00%

0.07 0.13 0.13 0.16 0.07 347.13 1.59 3.23 32.26 15.19 5.72

1733GapC 42129 17.19% 18.21% 17.61% 17.61% 17.60% 17.61% 11.63% 0.01%

0.09 0.16 0.16 0.18 0.16 1080.96 2.76 5.03 104.53 25.64 8.87

1833GapC 45143 12.89% 13.40% 13.07% 13.07% 13.07% 13.07% 7.14% 0.00%

0.04 0.12 0.12 0.12 0.06 328.89 1.61 1.25 10.97 6.18 2.47

1933GapC 51166 6.27% 8.48% 8.47% 8.47% 8.48% 8.47% 5.59% 0.00%

0.03 0.07 0.08 0.08 0.01 78.28 0.85 0.79 3.04 2.70 1.55

2133GapC 45154 10.67% 12.34% 11.11% 11.11% 11.11% 11.11% 5.88% 0.01%

0.04 0.08 0.09 0.11 0.10 165.59 1.01 1.31 6.13 5.30 2.42

2333GapC 42143 11.57% 12.41% 11.61% 11.61% 11.61% 11.61% 7.38% 0.00%

0.07 0.18 0.16 0.18 0.04 705.72 2.32 2.47 19.07 13.53 6.56

2433GapC 45151 13.79% 14.73% 14.16% 14.16% 14.16% 14.16% 7.50% 0.02%

0.06 0.12 0.14 0.14 0.32 641.63 1.76 2.27 13.61 8.61 5.03

2533GapC 42169 9.02% 9.26% 9.08% 9.08% 9.07% 9.08% 3.45% 0.00%

0.06 0.11 0.13 0.11 0.06 390.80 1.28 0.78 2.66 1.89 1.23

2733GapC 45144 15.26% 15.90% 15.45% 15.45% 15.45% 15.45% 9.44% 0.00%

0.06 0.11 0.14 0.19 0.06 557.84 1.43 3.96 35.79 16.03 7.96

2833GapC 45164 13.13% 14.12% 13.41% 13.41% 13.40% 13.41% 7.71% 0.00%

0.05 0.12 0.12 0.14 0.03 383.43 1.58 2.55 9.41 9.50 3.62

2933GapC 42162 5.38% 5.68% 5.50% 5.50% 5.50% 5.50% 1.18% 0.00%

0.04 0.12 0.10 0.11 0.08 215.47 1.15 0.54 0.90 1.08 0.97

3133GapC 42128 15.19% 16.22% 15.49% 15.49% 15.49% 15.49% 9.85% 0.00%

0.08 0.18 0.19 0.19 0.10 807.96 2.12 4.04 28.38 15.03 7.46

3233GapC 39177 8.60% 9.43% 8.71% 8.71% 8.71% 8.70% 3.26% 0.00%

0.06 0.15 0.15 0.14 0.28 322.17 1.31 0.98 3.14 2.56 1.59

xvii



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

432GapA 45237 5.77% 6.31% 5.77% 5.77% 5.77% 5.77%

7200.89 321.62 1292.02 188.50 3659.66 293.91

532GapA 45252 8.65% 8.73% 8.60% 8.60% 8.60% 8.60%

7200.45 1855.23 662.53 319.64 1498.77 442.18

632GapA 48255 3.30% 3.55% 3.30% 3.30% 3.30% 3.30%

4468.34 313.58 659.36 80.79 493.41 137.43

732GapA 42224 10.80% 10.90% 10.67% 10.67% 10.83% 10.67%

7201.58 1654.94 1520.47 590.12 7214.94 1042.66

832GapA 48234 11.04% 11.27% 11.03% 11.03% 11.03% 11.03%

7200.44 697.17 606.29 125.74 1786.30 178.24

932GapA 45248 8.10% 8.20% 8.07% 8.07% 8.07% 8.07%

7200.37 1747.03 1032.83 347.16 3640.59 545.76

1032GapA 42261 1.15% 1.25% 1.15% 1.15% 1.15% 1.15%

2060.59 507.42 517.58 119.55 995.61 158.14

1132GapA 45277 6.18% 6.34% 6.18% 6.18% 6.18% 6.18%

7200.54 1016.70 1000.62 167.20 1017.91 301.79

1232GapA 45240 5.91% 6.06% 5.89% 5.89% 5.89% 5.89%

7201.24 1066.63 2161.65 346.93 3551.88 468.18

1332GapA 42205 10.26% 10.47% 10.26% 10.26% 10.26% 10.26%

7200.18 1618.63 5963.93 209.56 1713.18 325.20

1432GapA 42266 6.45% 6.50% 6.44% 6.44% 6.44% 6.44%

1357.71 321.54 310.13 71.11 449.98 96.53

1532GapA 42303 5.80% 5.90% 5.79% 5.79% 5.79% 5.79%

7200.63 1495.27 376.08 277.26 2326.23 345.46

1632GapA 42275 6.41% 6.56% 6.39% 6.39% 6.39% 6.39%

7200.51 1349.50 1578.42 289.19 1385.75 455.50

1832GapA 48242 8.60% 8.77% 8.59% 8.59% 8.59% 8.59%

7200.39 1045.91 1483.44 268.42 1363.32 302.62

1932GapA 42265 3.71% 3.87% 3.70% 3.70% 3.70% 3.70%

4815.95 646.28 3769.65 237.99 1064.47 364.08

2032GapA 42278 4.06% 4.20% 4.05% 4.05% 4.05% 4.05%

7200.33 941.21 393.66 195.13 1191.94 229.81

2132GapA 42249 5.52% 5.61% 5.44% 5.44% 5.44% 5.44%

7200.31 1624.28 1800.72 618.65 3747.96 928.95

2232GapA 45274 7.88% 7.97% 7.87% 7.87% 7.87% 7.87%

6980.84 730.68 266.97 236.49 1127.14 217.25

2432GapA 42237 7.71% 7.87% 7.62% 7.62% 7.62% 7.62%

7200.71 1685.08 1361.96 518.62 4604.04 748.76

2532GapA 42233 5.77% 5.90% 5.74% 5.74% 5.74% 5.74%

3815.22 655.77 1102.61 135.48 1910.85 292.55

2632GapA 42268 6.67% 6.79% 6.66% 6.66% 6.66% 6.66%

7200.66 1467.42 779.14 233.06 2384.10 604.41

2732GapA 42280 6.22% 6.38% 6.21% 6.21% 6.21% 6.21%

7200.13 1073.57 986.38 235.20 1790.47 471.11

2832GapA 42269 4.16% 4.29% 4.14% 4.14% 4.45% 4.14%

7200.87 1869.90 665.27 384.67 7216.00 610.06

2932GapA 45270 5.42% 5.53% 5.39% 5.39% 5.72% 5.39%

7200.51 929.91 1732.25 364.56 7205.10 356.28

3032GapA 42246 4.09% 4.15% 4.08% 4.08% 4.08% 4.08%

3903.21 650.33 852.98 153.45 1121.80 195.62

3232GapA 45233 8.92% 8.97% 8.92% 8.92% 8.92% 8.92%

4401.13 767.74 2253.85 153.59 2834.47 232.80
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

431GapB 51250 5.68% 5.83% 5.67% 5.67% 5.67% 5.67%

7200.11 656.91 158.08 136.21 1421.67 203.59

531GapB 54267 4.80% 4.90% 4.80% 4.80% 4.80% 4.80%

6936.65 682.97 998.39 221.30 1998.19 291.07

931GapB 54246 0.20% 0.45% 0.20% 0.20% 0.20% 0.20%

7200.41 683.85 788.09 312.90 666.56 376.75

1031GapB 51257 6.53% 6.67% 6.52% 6.52% 6.52% 6.52%

7200.19 1177.24 754.79 347.23 3107.73 677.29

1231GapB 45239 2.32% 2.48% 2.32% 2.32% 2.32% 2.32%

6165.59 588.86 261.99 131.04 1850.20 253.06

1731GapB 51247 4.91% 5.01% 4.90% 4.90% 4.90% 4.90%

7200.52 1020.27 1102.73 236.88 907.40 318.20

2331GapB 48256 1.90% 1.93% 1.90% 1.90% 1.90% 1.90%

625.55 459.66 238.25 65.95 119.75 102.68

2431GapB 48262 7.11% 7.23% 7.10% 7.10% 7.10% 7.10%

7200.63 690.07 111.77 143.67 1691.93 288.59

2731GapB 45219 4.39% 4.53% 4.39% 4.39% 4.39% 4.39%

7200.40 521.74 213.60 161.69 1073.82 161.80

2831GapB 54236 2.91% 2.92% 2.91% 2.91% 2.91% 2.91%

554.62 427.26 1947.76 76.85 2509.20 94.97

2931GapB 48274 2.39% 2.54% 2.32% 2.32% 2.43% 2.32%

7200.90 1868.29 4091.02 719.03 7223.32 1020.17

3131GapB 48296 3.90% 4.01% 3.78% 3.78% 3.78% 3.78%

7200.99 1136.34 466.13 634.42 2084.33 784.45

3231GapB 51265 1.33% 1.35% 1.33% 1.33% 1.33% 1.33%

427.08 247.18 220.97 35.94 135.02 43.53
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

333GapC 42331 2.80% 2.88% 2.74% 2.74% 2.74% 2.74%

7200.67 2909.93 726.88 310.01 3808.36 411.82

433GapC 42286 11.14% 10.90% 10.78% 10.78% 11.12% 10.78%

7201.11 4469.02 3229.31 1528.86 7273.97 1475.78

533GapC 45229 11.18% 11.27% 11.16% 11.16% 11.16% 11.16%

7201.11 2392.45 4326.55 619.30 3561.74 1580.21

633GapC 45262 6.85% 6.97% 6.81% 6.81% 6.81% 6.81%

7200.19 734.00 534.14 171.72 987.71 245.99

733GapC 48205 11.01% 11.08% 10.99% 10.99% 10.99% 10.99%

7200.64 1060.83 447.82 248.24 985.70 479.26

833GapC 45254 5.30% 5.45% 5.27% 5.26% 5.26% 5.26%

7200.26 1919.73 559.62 350.58 1712.09 499.95

933GapC 45203 10.07% 10.33% 10.07% 10.07% 10.07% 10.07%

3327.71 270.19 265.74 50.84 699.85 338.58

1033GapC 48226 6.59% 6.71% 6.54% 6.54% 6.54% 6.54%

7200.34 1030.38 1045.81 526.39 2640.41 725.70

1133GapC 48206 8.04% 8.14% 8.02% 8.02% 8.43% 8.02%

7201.16 1778.74 989.70 352.26 7234.17 471.33

1233GapC 42283 4.34% 4.40% 4.21% 4.21% 4.21% 4.21%

7201.53 2098.28 932.56 758.39 2959.64 1067.35

1433GapC 45224 11.88% 11.85% 11.71% 11.71% 11.71% 11.71%

7201.19 2551.60 730.42 1089.67 5018.08 1468.61

1533GapC 45234 9.15% 9.28% 9.10% 9.10% 9.10% 9.10%

7200.72 1782.67 1068.32 527.52 5102.60 768.66

1633GapC 42237 11.55% 11.66% 11.48% 11.48% 11.48% 11.48%

7200.31 1577.32 604.02 347.13 2830.89 470.76

1733GapC 42229 11.99% 11.99% 11.83% 11.83% 12.07% 11.83%

7200.48 3433.57 2565.76 1080.96 7319.31 1863.86

1833GapC 45243 7.37% 7.53% 7.35% 7.35% 7.35% 7.35%

7200.29 1189.12 865.07 328.89 3337.70 446.04

1933GapC 51266 5.78% 5.93% 5.78% 5.78% 5.78% 5.78%

2769.28 388.00 1280.80 78.28 1612.07 136.82

2133GapC 45254 6.12% 6.37% 6.09% 6.09% 6.09% 6.09%

7200.45 519.89 1652.01 165.59 3199.28 242.40

2333GapC 42243 7.70% 7.76% 7.98% 7.60% 7.67% 7.60%

7201.51 3219.42 7248.83 705.72 7217.35 1491.82

2433GapC 45251 7.88% 7.88% 7.71% 7.71% 7.71% 7.71%

7200.83 2334.89 771.90 641.63 3960.16 960.83

2533GapC 42269 3.74% 3.87% 3.68% 3.68% 3.84% 3.68%

7200.91 1396.43 648.31 390.80 7258.82 621.66

2733GapC 45244 9.71% 9.73% 9.64% 9.64% 9.64% 9.64%

7201.69 3162.75 4118.37 557.84 2584.17 705.31

2833GapC 45264 7.97% 8.09% 7.92% 7.92% 7.92% 7.92%

7200.39 1515.70 1014.08 383.43 4495.23 637.73

2933GapC 42262 1.42% 1.57% 1.41% 1.41% 1.41% 1.41%

7200.60 1195.44 592.13 215.47 2149.64 441.86

3133GapC 42228 10.25% 10.26% 10.06% 10.06% 10.09% 10.06%

7200.51 3101.87 1359.83 807.96 7222.93 967.32

3233GapC 39277 3.52% 3.64% 3.51% 3.51% 3.51% 3.51%

7200.89 1554.32 722.07 322.17 2000.83 376.62
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Appendix II

Bound strengths (gap %) and computation times (s) for 1
4 TUFLP-S instances

Results for (PShull) correspond to the non-stabilised structured Dantzig-Wolfe de-

composition in the first four tables. Full results for (PShull) follow.



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
4 -0 37702672 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.02 0.03 0.01 0.11 0.01 0.03 0.03 0.03
1
4 -1 37703185 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.01 0.08 0.01 0.03 0.04 0.04
1
4 -2 37706200 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.00 0.11 0.01 0.03 0.03 0.04
1
4 -3 37731199 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.10 0.01 0.04 0.04 0.03
1
4 -4 37940175 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.00 0.10 0.01 0.04 0.04 0.03
1
4 -5 38627442 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.10 0.01 0.04 0.03 0.04
1
4 -6 39432961 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.01 0.15 0.03 0.04 0.04 0.03
1
4 -7 40013957 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.02 0.03 0.00 0.08 0.00 0.03 0.04 0.04
1
4 -8 40385357 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.10 0.00 0.04 0.04 0.04
1
4 -9 40823665 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.02 0.03 0.01 0.17 0.03 0.04 0.03 0.04
1
4 -10 41100067 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.00 0.10 0.01 0.04 0.04 0.04
1
4 -11 41127212 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.10 0.02 0.04 0.04 0.04
1
4 -12 41598942 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.01 0.10 0.01 0.03 0.04 0.04
1
4 -13 41842769 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.01 0.12 0.01 0.04 0.05 0.04
1
4 -14 41814212 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.00 0.07 0.01 0.04 0.04 0.04
1
4 -15 42201492 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.01 0.17 0.04 0.04 0.04 0.03
1
4 -16 42262066 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.00 0.12 0.01 0.04 0.04 0.04
1
4 -17 42540582 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.02 0.03 0.00 0.10 0.01 0.04 0.04 0.03
1
4 -18 42577767 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.04 0.01 0.17 0.02 0.04 0.04 0.04
1
4 -19 42830481 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.01 0.10 0.00 0.04 0.04 0.04
1
4 -20 42874155 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.15 0.03 0.04 0.04 0.04
1
4 -21 43196227 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.02 0.03 0.01 0.16 0.02 0.03 0.03 0.04
1
4 -22 43207567 0.02% 0.02% 0.02% 0.01% 0.00% 0.00%

0.04 0.02 0.04 0.01 0.13 0.01 0.11 0.11 0.10
1
4 -23 43356354 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.17 0.01 0.04 0.04 0.03
1
4 -24 43465444 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.04 0.00 0.13 0.01 0.04 0.04 0.04
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LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
4 -25 43414860 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.02 0.03 0.01 0.10 0.00 0.04 0.04 0.04
1
4 -26 43430155 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.04 0.04 0.00 0.16 0.01 0.04 0.04 0.04
1
4 -27 43640192 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.04 0.00 0.15 0.01 0.04 0.04 0.04
1
4 -28 43687976 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.04 0.01 0.09 0.01 0.04 0.04 0.04
1
4 -29 43880477 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%

0.04 0.03 0.03 0.01 0.26 0.02 0.12 0.14 0.06
1
4 -30 44004531 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.03 0.00 0.16 0.02 0.03 0.04 0.04
1
4 -31 43974501 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.00 0.09 0.01 0.04 0.04 0.04
1
4 -32 44058492 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

0.03 0.04 0.03 0.01 0.24 0.02 0.05 0.07 0.05
1
4 -33 44477513 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.01 0.13 0.01 0.04 0.04 0.04
1
4 -34 44539826 0.02% 0.02% 0.02% 0.01% 0.00% 0.00%

0.04 0.04 0.03 0.01 0.24 0.01 0.13 0.12 0.14
1
4 -35 44917006 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.05 0.04 0.04 0.01 0.22 0.02 0.04 0.04 0.04
1
4 -36 44850479 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.22 0.00 0.03 0.04 0.04
1
4 -37 45008608 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.03 0.01 0.17 0.01 0.04 0.06 0.04
1
4 -38 45002122 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.15 0.01 0.04 0.04 0.03
1
4 -39 45482319 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.04 0.04 0.00 0.25 0.00 0.06 0.13 0.10
1
4 -40 45426565 0.04% 0.04% 0.04% 0.02% 0.00% 0.00%

0.02 0.03 0.03 0.00 0.29 0.04 0.13 0.12 0.11
1
4 -41 45663313 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.04 0.03 0.01 0.14 0.01 0.14 0.06 0.06
1
4 -42 45730363 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%

0.04 0.03 0.03 0.00 0.23 0.01 0.05 0.15 0.05
1
4 -43 45872928 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.16 0.01 0.04 0.04 0.04
1
4 -44 45789434 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.03 0.00 0.11 0.00 0.04 0.04 0.03
1
4 -45 46011542 0.04% 0.04% 0.04% 0.04% 0.00% 0.00%

0.02 0.03 0.03 0.01 1.41 0.08 0.14 0.12 0.13
1
4 -46 46000483 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.24 0.03 0.02 0.04 0.04
1
4 -47 46080513 0.02% 0.02% 0.02% 0.02% 0.02% 0.00%

0.03 0.03 0.04 0.01 0.16 0.02 0.08 0.11 0.14
1
4 -48 46176847 0.03% 0.03% 0.03% 0.03% 0.01% 0.00%

0.04 0.04 0.03 0.01 0.22 0.03 0.13 0.13 0.13
1
4 -49 46333968 0.03% 0.03% 0.03% 0.03% 0.00% 0.00%

0.04 0.04 0.02 0.01 0.28 0.04 0.10 0.09 0.10
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LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
4 -50 46434919 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.26 0.02 0.10 0.10 0.12
1
4 -51 46420582 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.04 0.03 0.01 0.16 0.01 0.04 0.03 0.04
1
4 -52 46591657 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.04 0.01 0.15 0.01 0.04 0.04 0.03
1
4 -53 46515284 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.02 0.03 0.01 0.14 0.02 0.02 0.03 0.03
1
4 -54 46498260 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.12 0.01 0.04 0.04 0.03
1
4 -55 46400001 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.04 0.00 0.11 0.01 0.02 0.03 0.04
1
4 -56 46500403 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.22 0.00 0.04 0.04 0.04
1
4 -57 46558247 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.04 0.01 0.16 0.02 0.04 0.04 0.04
1
4 -58 46470512 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.02 0.04 0.00 0.14 0.01 0.03 0.03 0.03
1
4 -59 46580267 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.02 0.01 0.12 0.01 0.04 0.04 0.03
1
4 -60 46561835 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%

0.04 0.03 0.04 0.01 0.16 0.00 0.09 0.11 0.14
1
4 -61 46816829 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.02 0.02 0.00 0.16 0.01 0.04 0.04 0.04
1
4 -62 46883539 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.10 0.01 0.02 0.04 0.03
1
4 -63 46999121 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.04 0.00 0.15 0.01 0.04 0.04 0.04
1
4 -64 46889139 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.01 0.12 0.01 0.04 0.04 0.04
1
4 -65 46841965 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.17 0.02 0.05 0.04 0.04
1
4 -66 46902461 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.32 0.04 0.07 0.06 0.14
1
4 -67 47070665 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.03 0.00 0.27 0.04 0.04 0.04 0.04
1
4 -68 47021412 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.14 0.02 0.03 0.04 0.04
1
4 -69 47158705 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

0.03 0.04 0.04 0.01 0.15 0.01 0.09 0.14 0.09
1
4 -70 47197245 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

0.03 0.04 0.03 0.01 0.19 0.01 0.05 0.05 0.05
1
4 -71 47159434 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

0.04 0.04 0.03 0.01 0.32 0.04 0.03 0.10 0.04
1
4 -72 47205192 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.03 0.04 0.00 0.09 0.01 0.04 0.04 0.04
1
4 -73 47269714 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

0.04 0.04 0.02 0.01 0.18 0.02 0.09 0.05 0.05
1
4 -74 47187123 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.02 0.02 0.01 0.16 0.02 0.04 0.04 0.04
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LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
4 -75 47281403 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.04 0.03 0.00 0.09 0.01 0.04 0.04 0.04
1
4 -76 47378808 0.01% 0.01% 0.01% 0.00% 0.00% 0.01%

0.04 0.04 0.04 0.01 0.24 0.02 0.06 0.05 0.05
1
4 -77 47369887 0.03% 0.03% 0.03% 0.02% 0.01% 0.00%

0.03 0.03 0.04 0.00 0.25 0.04 0.14 0.15 0.12
1
4 -78 47377163 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

0.03 0.04 0.02 0.01 0.16 0.01 0.04 0.05 0.12
1
4 -79 47514847 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

0.02 0.03 0.03 0.01 0.18 0.01 0.05 0.11 0.04
1
4 -80 47463123 0.04% 0.04% 0.04% 0.04% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.24 0.04 0.05 0.10 0.11
1
4 -81 47476491 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.25 0.02 0.06 0.06 0.04
1
4 -82 47587761 0.07% 0.07% 0.07% 0.05% 0.00% 0.00%

0.02 0.03 0.03 0.01 0.16 0.02 0.08 0.10 0.10
1
4 -83 47662881 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.04 0.03 0.01 0.28 0.02 0.05 0.05 0.04
1
4 -84 47664295 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.26 0.03 0.05 0.05 0.04
1
4 -85 47677928 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%

0.04 0.03 0.04 0.01 0.11 0.00 0.06 0.10 0.11
1
4 -86 47781796 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.02 0.01 0.11 0.01 0.04 0.04 0.04
1
4 -87 47804756 0.02% 0.02% 0.02% 0.02% 0.00% 0.00%

0.04 0.03 0.03 0.01 0.28 0.04 0.12 0.13 0.11
1
4 -88 47868075 0.02% 0.02% 0.02% 0.01% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.25 0.04 0.11 0.13 0.12
1
4 -89 47957918 0.03% 0.03% 0.03% 0.01% 0.00% 0.00%

0.04 0.04 0.03 0.01 0.20 0.01 0.11 0.13 0.11
1
4 -90 47942470 0.05% 0.05% 0.05% 0.02% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.18 0.02 0.11 0.14 0.12
1
4 -91 48075076 0.05% 0.05% 0.05% 0.05% 0.00% 0.00%

0.03 0.04 0.04 0.01 0.25 0.03 0.12 0.13 0.12
1
4 -92 47902648 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.02 0.03 0.01 0.10 0.01 0.03 0.04 0.03
1
4 -93 47922814 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.03 0.02 0.01 0.09 0.01 0.04 0.04 0.04
1
4 -94 47862006 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.02 0.01 0.11 0.01 0.03 0.04 0.04
1
4 -95 47980570 0.05% 0.05% 0.05% 0.02% 0.00% 0.00%

0.03 0.03 0.03 0.00 0.14 0.01 0.10 0.05 0.06
1
4 -96 48017505 0.06% 0.06% 0.06% 0.02% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.26 0.03 0.12 0.16 0.10
1
4 -97 47955122 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.03 0.03 0.03 0.01 0.38 0.04 0.04 0.05 0.05
1
4 -98 48005699 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.04 0.04 0.02 0.01 0.24 0.01 0.03 0.04 0.04
1
4 -99 48092815 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.02 0.03 0.02 0.01 0.16 0.02 0.04 0.03 0.03
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
4 -0 37702672 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.10 0.09 0.10 0.10
1
4 -1 37703185 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.10 0.08 0.10 0.10
1
4 -2 37706200 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.06 0.09 0.10 0.10 0.09
1
4 -3 37731199 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.07 0.09 0.10 0.08 0.10
1
4 -4 37940175 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.10 0.09 0.09 0.10
1
4 -5 38627442 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.09 0.10 0.09 0.08 0.09
1
4 -6 39432961 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.06 0.17 0.16 0.19 0.18
1
4 -7 40013957 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.06 0.09 0.07 0.10 0.09
1
4 -8 40385357 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.08 0.10 0.10 0.09
1
4 -9 40823665 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.08 0.18 0.19 0.19 0.19
1
4 -10 41100067 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.10 0.09 0.09 0.10
1
4 -11 41127212 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.11 0.10 0.12 0.12
1
4 -12 41598942 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.12 0.11 0.08 0.12 0.11
1
4 -13 41842769 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.07 0.11 0.10 0.12 0.12
1
4 -14 41814212 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.07 0.08 0.06 0.09 0.08
1
4 -15 42201492 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.12 0.19 0.19 0.18 0.18
1
4 -16 42262066 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.12 0.10 0.12 0.11 0.12
1
4 -17 42540582 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.06 0.09 0.08 0.10 0.09
1
4 -18 42577767 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.06 0.16 0.16 0.17 0.17
1
4 -19 42830481 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.10 0.08 0.09 0.10
1
4 -20 42874155 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.11 0.18 0.17 0.19 0.17
1
4 -21 43196227 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.08 0.16 0.16 0.15 0.16
1
4 -22 43207567 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.10 0.09 0.15 0.13 0.14 0.15
1
4 -23 43356354 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.07 0.15 0.18 0.16 0.18
1
4 -24 43465444 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.13 0.13 0.14 0.14
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
4 -25 43414860 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.09 0.09 0.07 0.10 0.09
1
4 -26 43430155 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.10 0.16 0.17 0.16 0.17
1
4 -27 43640192 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.11 0.17 0.16 0.17 0.18
1
4 -28 43687976 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.09 0.08 0.10 0.10
1
4 -29 43880477 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

0.26 0.35 0.29 0.30 0.30 0.29
1
4 -30 44004531 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.07 0.17 0.16 0.16 0.17
1
4 -31 43974501 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.10 0.10 0.10 0.09
1
4 -32 44058492 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.16 0.38 0.26 0.26 0.25 0.27
1
4 -33 44477513 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.11 0.11 0.11 0.11
1
4 -34 44539826 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.31 3.55 0.28 0.28 0.29 0.30
1
4 -35 44917006 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.23 0.21 0.23 0.26
1
4 -36 44850479 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.11 0.23 0.23 0.24 0.26
1
4 -37 45008608 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.07 0.16 0.18 0.18 0.19
1
4 -38 45002122 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.08 0.15 0.16 0.18 0.17
1
4 -39 45482319 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.06 0.29 0.26 0.42 0.74
1
4 -40 45426565 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.66 8.34 0.36 0.34 0.39 0.38
1
4 -41 45663313 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.11 0.12 0.12 0.15 0.15
1
4 -42 45730363 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

0.08 0.31 0.40 0.25 0.34 0.46
1
4 -43 45872928 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.09 0.17 0.17 0.18 0.18
1
4 -44 45789434 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.07 0.09 0.08 0.11 0.10
1
4 -45 46011542 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

0.50 4.34 0.52 1.53 1.17 1.24
1
4 -46 46000483 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.08 0.34 0.28 0.37 0.30
1
4 -47 46080513 0.02% 0.02% 0.02% 0.02% 0.02% 0.02%

0.12 2.75 0.16 0.15 0.16 0.16
1
4 -48 46176847 0.01% 0.02% 0.01% 0.01% 0.01% 0.01%

0.26 4.62 0.23 0.24 0.25 0.25
1
4 -49 46333968 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.33 3.09 0.33 0.31 0.35 0.36
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
4 -50 46434919 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.18 0.27 0.28 0.37 0.38
1
4 -51 46420582 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.11 0.17 0.17 0.18 0.17
1
4 -52 46591657 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.08 0.17 0.16 0.19 0.18
1
4 -53 46515284 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.06 0.14 0.15 0.15 0.16
1
4 -54 46498260 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.08 0.13 0.09 0.12 0.13
1
4 -55 46400001 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.06 0.10 0.09 0.09 0.09
1
4 -56 46500403 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.20 0.25 0.26 0.26
1
4 -57 46558247 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.16 0.16 0.16 0.16 0.16
1
4 -58 46470512 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.15 0.15 0.16 0.15
1
4 -59 46580267 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.12 0.11 0.12 0.12
1
4 -60 46561835 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

0.08 0.06 0.14 0.15 0.14 0.14
1
4 -61 46816829 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.08 0.16 0.17 0.18 0.17
1
4 -62 46883539 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.09 0.09 0.07 0.10 0.09
1
4 -63 46999121 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.12 0.16 0.16 0.17 0.19
1
4 -64 46889139 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.10 0.11 0.10 0.11
1
4 -65 46841965 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.15 0.19 0.19 0.20 0.19
1
4 -66 46902461 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.10 0.39 0.36 0.77 0.71
1
4 -67 47070665 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.08 0.26 0.28 0.29 0.31
1
4 -68 47021412 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.10 0.14 0.15 0.17 0.17
1
4 -69 47158705 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.13 0.16 0.14 0.13 0.15 0.15
1
4 -70 47197245 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

0.15 0.26 0.22 0.21 0.24 0.20
1
4 -71 47159434 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.12 0.09 0.25 0.35 0.52 0.52
1
4 -72 47205192 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.07 0.10 0.09 0.10 0.09
1
4 -73 47269714 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

0.11 0.35 0.19 0.17 0.20 0.20
1
4 -74 47187123 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.12 0.16 0.16 0.17 0.17
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
4 -75 47281403 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.11 0.10 0.09 0.09 0.10
1
4 -76 47378808 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.08 0.30 0.29 0.31 0.29
1
4 -77 47369887 0.03% 0.02% 0.01% 0.01% 0.01% 0.01%

0.12 3.72 0.26 0.27 0.32 0.27
1
4 -78 47377163 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.10 0.10 0.19 0.18 0.22 0.23
1
4 -79 47514847 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.13 0.19 0.18 0.20 0.19
1
4 -80 47463123 0.04% 0.01% 0.00% 0.00% 0.00% 0.00%

0.08 6.10 0.25 0.26 0.28 0.25
1
4 -81 47476491 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.15 0.12 0.25 0.27 0.40 0.38
1
4 -82 47587761 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.36 0.33 0.17 0.17 0.19 0.18
1
4 -83 47662881 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.10 0.26 0.29 0.33 0.32
1
4 -84 47664295 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.08 0.17 0.27 0.29 0.30 0.31
1
4 -85 47677928 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.08 0.29 0.12 0.13 0.13 0.12
1
4 -86 47781796 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.11 0.19 0.09 0.10 0.10 0.10
1
4 -87 47804756 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.11 0.28 0.29 0.32 0.31 0.29
1
4 -88 47868075 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.08 3.16 0.28 0.28 0.33 0.28
1
4 -89 47957918 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

0.20 0.65 0.23 0.20 0.25 0.22
1
4 -90 47942470 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.54 4.29 0.21 0.20 0.21 0.20
1
4 -91 48075076 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

0.19 4.04 0.33 0.28 0.31 0.28
1
4 -92 47902648 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.09 0.09 0.09 0.10 0.10 0.10
1
4 -93 47922814 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.07 0.10 0.10 0.08 0.12 0.10
1
4 -94 47862006 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.08 0.10 0.12 0.11 0.10
1
4 -95 47980570 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.11 0.28 0.13 0.13 0.14 0.13
1
4 -96 48017505 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%

0.12 0.40 0.27 0.29 0.34 0.29
1
4 -97 47955122 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.08 0.32 0.43 0.43 0.48
1
4 -98 48005699 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.10 0.11 0.25 0.25 0.29 0.25
1
4 -99 48092815 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.06 0.06 0.17 0.14 0.17 0.15
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Appendix III

Bound strengths (gap %) and computation times (s) for 1
2 TUFLP-S instances

Results for (PShull) correspond to the non-stabilised structured Dantzig-Wolfe de-

composition in the first four tables. Full results for (PShull) follow.



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
2 -0 65144759 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.30 0.27 0.28 0.03 0.75 0.06 0.35 0.39 0.38
1
2 -1 65145763 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.32 0.30 0.28 0.02 0.83 0.06 0.33 0.46 0.38
1
2 -2 65145137 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.31 0.36 0.26 0.03 0.83 0.05 0.40 0.40 0.40
1
2 -3 65145026 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.34 0.30 0.25 0.03 0.86 0.06 0.45 0.38 0.35
1
2 -4 65147513 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.30 0.35 0.28 0.02 0.80 0.06 0.36 0.42 0.39
1
2 -5 65172370 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.34 0.34 0.26 0.03 0.80 0.05 0.44 0.43 0.34
1
2 -6 65406245 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.29 0.49 0.32 0.03 0.90 0.05 0.51 0.59 0.43
1
2 -7 66948834 0.08% 0.08% 0.08% 0.06% 0.00% 0.00%

0.43 0.38 0.31 0.05 1.70 0.24 1.20 1.79 1.82
1
2 -8 67820933 0.09% 0.09% 0.09% 0.08% 0.00% 0.00%

0.38 0.30 0.33 0.04 1.30 0.13 1.88 1.30 1.50
1
2 -9 68120430 0.29% 0.29% 0.29% 0.22% 0.00% 0.00%

0.50 0.50 0.34 0.06 1.60 0.14 2.18 1.68 1.92
1
2 -10 67994192 0.24% 0.24% 0.25% 0.16% 0.00% 0.00%

0.36 0.32 0.30 0.05 1.28 0.13 1.84 1.44 1.62
1
2 -11 67975228 0.06% 0.06% 0.06% 0.05% 0.00% 0.00%

0.36 0.32 0.32 0.05 1.68 0.22 1.69 1.36 1.86
1
2 -12 68846428 0.27% 0.27% 0.27% 0.24% 0.00% 0.00%

0.41 0.36 0.33 0.09 1.82 0.20 2.05 1.36 2.03
1
2 -13 68757575 0.18% 0.18% 0.18% 0.03% 0.00% 0.00%

0.36 0.32 0.31 0.04 1.31 0.14 1.71 1.31 1.84
1
2 -14 69155968 0.05% 0.05% 0.05% 0.05% 0.00% 0.00%

0.44 0.37 0.40 0.04 1.37 0.15 1.73 2.10 1.74
1
2 -15 69333921 0.03% 0.03% 0.03% 0.01% 0.00% 0.00%

0.41 0.38 0.42 0.12 1.88 0.14 1.68 1.48 1.75
1
2 -16 69568996 0.37% 0.37% 0.37% 0.29% 0.00% 0.00%

0.53 0.41 0.42 0.09 2.41 0.31 3.40 1.98 2.71
1
2 -17 69687018 0.22% 0.22% 0.22% 0.16% 0.00% 0.00%

0.48 0.47 0.41 0.12 2.16 0.20 2.54 2.02 2.07
1
2 -18 69994151 0.34% 0.34% 0.34% 0.21% 0.00% 0.00%

0.50 0.43 0.42 0.11 1.63 0.15 2.47 2.00 2.48
1
2 -19 70384403 0.08% 0.08% 0.08% 0.08% 0.00% 0.00%

0.52 0.37 0.44 0.04 1.98 0.24 2.07 0.67 1.88
1
2 -20 70450169 0.28% 0.28% 0.28% 0.20% 0.00% 0.00%

0.48 0.39 0.37 0.07 1.58 0.14 2.40 1.71 2.14
1
2 -21 70356065 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.40 0.50 0.41 0.05 1.62 0.08 0.47 0.56 0.47
1
2 -22 70331207 0.19% 0.19% 0.19% 0.12% 0.00% 0.00%

0.38 0.37 0.34 0.05 1.86 0.13 2.02 1.52 2.06
1
2 -23 71146525 0.38% 0.38% 0.38% 0.34% 0.00% 0.00%

0.38 0.37 0.43 0.11 2.63 0.19 2.34 1.96 2.39
1
2 -24 71218806 0.39% 0.39% 0.39% 0.33% 0.00% 0.00%

0.58 0.47 0.57 0.12 1.71 0.17 3.03 3.45 2.42

xxxi



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
2 -25 71254809 0.26% 0.26% 0.26% 0.21% 0.00% 0.00%

0.53 0.46 0.54 0.08 2.68 0.38 2.84 2.99 2.38
1
2 -26 71240359 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

0.39 0.56 0.38 0.06 1.20 0.06 2.18 1.03 1.64
1
2 -27 71598985 0.24% 0.24% 0.24% 0.16% 0.00% 0.00%

0.50 0.60 0.44 0.05 6.02 0.35 3.00 1.57 1.88
1
2 -28 71896041 0.25% 0.25% 0.25% 0.20% 0.00% 0.00%

0.62 0.47 0.47 0.06 2.25 0.22 2.61 1.92 2.20
1
2 -29 71968215 0.24% 0.24% 0.24% 0.18% 0.00% 0.00%

0.50 0.78 0.42 0.12 2.13 0.27 3.20 3.46 2.54
1
2 -30 71795909 0.25% 0.25% 0.25% 0.23% 0.00% 0.00%

0.49 0.54 0.39 0.12 2.56 0.28 2.82 2.08 2.55
1
2 -31 72036365 0.30% 0.30% 0.30% 0.26% 0.00% 0.00%

0.52 0.49 0.40 0.15 2.23 0.24 2.92 3.02 2.69
1
2 -32 72097464 0.35% 0.35% 0.35% 0.28% 0.00% 0.00%

0.47 0.44 0.45 0.14 2.56 0.30 2.99 3.10 2.78
1
2 -33 72132498 0.38% 0.38% 0.38% 0.26% 0.00% 0.00%

0.55 0.59 0.50 0.16 2.91 0.37 3.06 3.21 2.44
1
2 -34 72161229 0.29% 0.29% 0.29% 0.28% 0.00% 0.00%

0.43 0.47 0.36 0.05 1.80 0.22 2.43 1.61 2.18
1
2 -35 72461817 0.39% 0.39% 0.39% 0.38% 0.00% 0.00%

0.64 0.50 0.53 0.09 4.43 0.55 3.25 2.85 2.44
1
2 -36 72505749 0.16% 0.16% 0.16% 0.09% 0.00% 0.00%

0.49 0.61 0.44 0.10 2.01 0.18 3.02 2.15 2.22
1
2 -37 72559408 0.17% 0.17% 0.17% 0.11% 0.00% 0.00%

0.48 0.53 0.46 0.04 2.10 0.26 1.96 1.77 1.99
1
2 -38 72774159 0.21% 0.21% 0.21% 0.16% 0.00% 0.00%

0.45 0.49 0.42 0.14 3.01 0.35 2.82 2.15 2.61
1
2 -39 73017224 0.44% 0.44% 0.44% 0.37% 0.01% 0.01%

0.54 0.51 0.47 0.14 3.26 0.33 3.13 3.28 2.52
1
2 -40 72981934 0.48% 0.48% 0.49% 0.41% 0.00% 0.00%

0.51 0.58 0.48 0.13 2.25 0.21 3.03 3.38 2.60
1
2 -41 73124728 0.54% 0.54% 0.54% 0.37% 0.00% 0.00%

0.60 0.49 0.60 0.16 2.41 0.22 3.89 3.28 3.98
1
2 -42 73005050 0.52% 0.52% 0.52% 0.44% 0.00% 0.00%

0.42 0.38 0.45 0.18 2.29 0.20 2.81 2.48 2.71
1
2 -43 73184610 0.49% 0.49% 0.49% 0.43% 0.00% 0.00%

0.66 0.61 0.63 0.17 3.27 0.34 4.03 3.59 3.09
1
2 -44 73290266 0.57% 0.57% 0.57% 0.55% 0.00% 0.00%

0.56 0.53 0.62 0.08 3.76 0.37 3.70 4.93 2.94
1
2 -45 73416844 0.46% 0.46% 0.46% 0.42% 0.00% 0.00%

0.44 0.44 0.51 0.12 2.20 0.22 2.11 2.86 2.20
1
2 -46 73539630 0.55% 0.55% 0.55% 0.46% 0.00% 0.00%

0.62 0.50 0.54 0.16 4.02 0.42 4.53 4.99 3.14
1
2 -47 73590399 0.56% 0.56% 0.56% 0.50% 0.00% 0.00%

0.60 0.51 0.53 0.15 3.74 0.48 5.61 5.62 3.04
1
2 -48 73592122 0.53% 0.53% 0.53% 0.43% 0.00% 0.00%

0.53 0.47 0.51 0.18 2.73 0.27 2.91 2.41 2.61
1
2 -49 73883808 0.40% 0.40% 0.40% 0.34% 0.00% 0.00%

0.64 0.60 0.56 0.16 2.50 0.22 4.11 3.80 3.94

xxxii



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
2 -50 73973073 0.53% 0.53% 0.53% 0.45% 0.00% 0.00%

0.58 0.70 0.57 0.23 3.10 0.20 3.59 4.26 3.62
1
2 -51 73982838 0.59% 0.59% 0.59% 0.48% 0.00% 0.00%

0.63 0.53 0.54 0.17 2.40 0.19 3.22 4.70 3.36
1
2 -52 73946741 0.57% 0.57% 0.58% 0.40% 0.00% 0.00%

0.63 0.70 0.56 0.21 1.91 0.13 3.41 5.38 4.00
1
2 -53 73876522 0.59% 0.59% 0.59% 0.51% 0.00% 0.00%

0.47 0.44 0.48 0.06 3.47 0.39 5.24 3.58 2.88
1
2 -54 74095422 0.67% 0.67% 0.67% 0.61% 0.00% 0.00%

0.54 0.61 0.54 0.26 4.14 0.37 4.93 11.37 3.70
1
2 -55 74119744 0.72% 0.72% 0.72% 0.63% 0.00% 0.00%

0.50 0.82 0.47 0.22 5.36 0.58 4.47 6.85 3.17
1
2 -56 74266880 0.37% 0.37% 0.37% 0.32% 0.00% 0.00%

0.58 0.51 0.52 0.13 2.77 0.35 5.20 4.02 3.54
1
2 -57 74247682 0.40% 0.40% 0.40% 0.28% 0.00% 0.00%

0.66 0.52 0.57 0.22 3.70 0.24 4.04 6.22 3.94
1
2 -58 74333478 0.58% 0.58% 0.58% 0.50% 0.00% 0.00%

0.68 0.96 0.55 0.17 5.95 0.53 4.38 7.57 3.31
1
2 -59 74290126 0.67% 0.67% 0.67% 0.49% 0.01% 0.00%

0.48 0.53 0.46 0.14 10.61 0.87 3.96 6.42 4.18
1
2 -60 74514411 0.62% 0.62% 0.62% 0.45% 0.00% 0.00%

0.50 0.51 0.53 0.14 4.03 0.49 3.70 5.62 2.56
1
2 -61 74561984 0.63% 0.63% 0.63% 0.54% 0.00% 0.00%

0.62 0.55 0.63 0.10 1.86 0.16 4.11 7.10 3.38
1
2 -62 74539329 0.54% 0.54% 0.54% 0.47% 0.00% 0.00%

0.53 0.61 0.48 0.09 2.60 0.24 5.70 10.61 4.01
1
2 -63 74841349 0.57% 0.57% 0.57% 0.47% 0.00% 0.00%

0.56 0.46 0.63 0.10 3.08 0.30 5.43 4.46 3.66
1
2 -64 74796372 0.48% 0.48% 0.48% 0.43% 0.00% 0.00%

0.57 0.55 0.55 0.14 4.38 0.34 4.50 5.52 4.03
1
2 -65 75029390 0.52% 0.52% 0.52% 0.45% 0.00% 0.00%

0.69 0.76 0.58 0.12 2.69 0.24 5.94 5.62 3.79
1
2 -66 75056224 0.62% 0.62% 0.62% 0.57% 0.00% 0.00%

0.84 0.82 0.57 0.13 3.90 0.41 4.86 6.83 3.59
1
2 -67 75078289 0.62% 0.62% 0.62% 0.47% 0.00% 0.00%

0.67 0.53 0.60 0.13 2.63 0.23 4.62 9.52 4.04
1
2 -68 75090225 0.63% 0.63% 0.63% 0.56% 0.00% 0.00%

0.69 0.72 0.54 0.09 3.40 0.33 4.94 5.78 4.84
1
2 -69 75041538 0.60% 0.60% 0.60% 0.57% 0.00% 0.00%

0.68 0.86 0.55 0.08 2.88 0.35 4.75 4.16 2.90
1
2 -70 75141753 0.57% 0.57% 0.57% 0.50% 0.00% 0.00%

0.48 0.54 0.45 0.22 3.17 0.30 4.19 5.06 4.05
1
2 -71 75222131 0.65% 0.65% 0.65% 0.59% 0.00% 0.00%

0.55 0.74 0.57 0.14 4.33 0.38 7.28 6.39 4.47
1
2 -72 75187115 0.56% 0.56% 0.56% 0.45% 0.00% 0.00%

0.60 0.74 0.49 0.33 4.00 0.38 5.58 5.12 4.11
1
2 -73 75240905 0.63% 0.63% 0.63% 0.51% 0.00% 0.00%

0.64 0.70 0.58 0.13 3.26 0.28 5.65 13.37 5.04
1
2 -74 75303717 0.63% 0.63% 0.63% 0.51% 0.00% 0.00%

0.56 0.55 0.48 0.20 3.32 0.30 5.19 8.58 4.74

xxxiii



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
1
2 -75 75192972 0.57% 0.57% 0.57% 0.52% 0.00% 0.00%

0.63 0.52 0.50 0.16 3.14 0.27 4.70 5.76 3.38
1
2 -76 75427333 0.59% 0.59% 0.59% 0.54% 0.00% 0.00%

0.52 0.48 0.52 0.10 3.07 0.30 4.47 4.86 4.54
1
2 -77 75485131 0.68% 0.68% 0.68% 0.65% 0.00% 0.00%

0.62 0.75 0.42 0.14 5.02 0.54 6.11 4.98 5.92
1
2 -78 75508478 0.73% 0.73% 0.73% 0.64% 0.00% 0.00%

0.62 0.62 0.56 0.15 8.28 0.57 8.45 16.00 3.61
1
2 -79 75613523 0.83% 0.83% 0.84% 0.71% 0.00% 0.00%

0.51 0.58 0.49 0.10 5.54 0.48 7.76 8.24 6.80
1
2 -80 75681223 0.75% 0.75% 0.75% 0.69% 0.00% 0.00%

0.68 0.53 0.58 0.12 5.93 0.59 7.81 8.16 4.05
1
2 -81 75701267 0.77% 0.77% 0.77% 0.68% 0.00% 0.00%

0.72 0.52 0.65 0.09 7.12 0.56 8.94 17.52 5.42
1
2 -82 75515872 0.66% 0.66% 0.66% 0.63% 0.00% 0.00%

0.55 0.60 0.46 0.09 3.72 0.43 3.92 10.13 3.23
1
2 -83 75550592 0.69% 0.69% 0.69% 0.64% 0.00% 0.00%

0.58 0.61 0.48 0.09 4.41 0.48 5.25 4.02 3.65
1
2 -84 75525669 0.46% 0.46% 0.46% 0.37% 0.00% 0.00%

0.65 0.54 0.60 0.20 3.40 0.32 3.90 4.29 3.30
1
2 -85 75707486 0.60% 0.60% 0.60% 0.55% 0.00% 0.00%

0.84 0.69 0.69 0.13 3.54 0.32 5.74 9.71 3.52
1
2 -86 75622388 0.61% 0.61% 0.61% 0.44% 0.00% 0.00%

0.60 0.56 0.51 0.12 3.20 0.31 3.18 5.44 3.44
1
2 -87 75678850 0.62% 0.62% 0.62% 0.45% 0.00% 0.00%

0.62 0.65 0.54 0.11 3.50 0.28 5.68 7.05 4.32
1
2 -88 75783345 0.54% 0.54% 0.54% 0.26% 0.00% 0.00%

0.74 0.76 0.60 0.16 5.58 0.18 4.46 5.80 3.45
1
2 -89 75877234 0.70% 0.70% 0.70% 0.60% 0.00% 0.00%

0.50 0.54 0.43 0.14 6.82 0.28 3.89 5.96 3.47
1
2 -90 75816488 0.54% 0.54% 0.54% 0.43% 0.01% 0.00%

0.58 0.55 0.53 0.14 2.43 0.23 4.39 5.80 3.63
1
2 -91 75823903 0.58% 0.58% 0.58% 0.51% 0.00% 0.00%

0.71 0.50 0.64 0.18 2.63 0.22 3.98 4.11 3.84
1
2 -92 75985392 0.59% 0.59% 0.59% 0.52% 0.00% 0.00%

0.62 0.56 0.53 0.12 3.20 0.22 4.16 4.97 3.56
1
2 -93 75968366 0.53% 0.53% 0.53% 0.48% 0.00% 0.00%

0.68 0.62 0.68 0.10 3.31 0.30 5.04 5.82 4.27
1
2 -94 76028460 0.66% 0.66% 0.66% 0.55% 0.00% 0.00%

0.64 0.66 0.53 0.16 3.56 0.31 4.84 7.33 4.56
1
2 -95 75903771 0.57% 0.57% 0.57% 0.46% 0.00% 0.00%

0.47 0.46 0.52 0.23 3.03 0.28 3.94 3.75 3.57
1
2 -96 75988719 0.66% 0.66% 0.66% 0.42% 0.00% 0.00%

0.53 1.11 0.51 0.18 4.08 0.39 4.66 8.34 3.76
1
2 -97 75984046 0.63% 0.63% 0.63% 0.57% 0.00% 0.00%

0.53 0.61 0.47 0.17 2.92 0.27 4.56 4.76 4.02
1
2 -98 76025585 0.67% 0.67% 0.67% 0.61% 0.00% 0.00%

0.51 0.56 0.46 0.14 3.32 0.31 4.06 5.64 3.44
1
2 -99 75986166 0.58% 0.58% 0.58% 0.52% 0.00% 0.00%

0.56 0.56 0.50 0.10 3.86 0.37 4.57 5.17 2.84

xxxiv



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
2 -0 65144759 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.55 0.49 0.71 0.65 1.09 0.84
1
2 -1 65145763 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.51 0.48 0.73 0.69 0.79 0.76
1
2 -2 65145137 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.51 0.51 0.86 0.76 0.84 0.81
1
2 -3 65145026 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.65 0.58 0.75 0.77 0.83 0.74
1
2 -4 65147513 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.55 0.55 0.72 0.72 0.77 0.72
1
2 -5 65172370 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.57 0.59 0.73 0.71 0.78 0.76
1
2 -6 65406245 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.58 0.60 0.74 0.85 0.92 0.75
1
2 -7 66948834 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%

1.00 22.73 2.10 1.89 2.25 2.07
1
2 -8 67820933 0.05% 0.03% 0.00% 0.00% 0.00% 0.00%

1.98 42.91 1.38 1.38 1.54 1.40
1
2 -9 68120430 0.10% 0.01% 0.00% 0.00% 0.00% 0.00%

11.71 50.56 1.46 1.70 1.64 1.59
1
2 -10 67994192 0.22% 0.06% 0.00% 0.00% 0.00% 0.00%

0.70 79.04 1.42 1.35 1.58 1.48
1
2 -11 67975228 0.05% 0.03% 0.00% 0.00% 0.00% 0.00%

0.88 38.79 2.07 1.91 2.12 2.26
1
2 -12 68846428 0.17% 0.02% 0.00% 0.00% 0.00% 0.00%

2.10 81.18 2.10 2.04 2.20 2.31
1
2 -13 68757575 0.08% 0.03% 0.00% 0.00% 0.00% 0.00%

1.66 58.15 1.37 1.38 1.66 1.63
1
2 -14 69155968 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.85 0.73 1.60 1.50 1.69 1.66
1
2 -15 69333921 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

2.00 6.41 1.89 2.43 2.12 1.92
1
2 -16 69568996 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

44.70 59.83 3.17 2.79 3.11 3.03
1
2 -17 69687018 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

13.40 25.43 2.51 2.60 2.59 2.93
1
2 -18 69994151 0.13% 0.03% 0.00% 0.00% 0.00% 0.00%

6.90 98.34 1.92 1.91 2.18 2.65
1
2 -19 70384403 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

4.03 36.37 2.17 2.29 2.55 2.36
1
2 -20 70450169 0.19% 0.03% 0.00% 0.00% 0.00% 0.00%

3.76 96.01 1.88 1.82 1.87 2.52
1
2 -21 70356065 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.03 1.08 2.05 2.02 1.99 2.09
1
2 -22 70331207 0.19% 0.01% 0.00% 0.00% 0.00% 0.00%

0.87 33.33 1.92 2.07 2.06 2.59
1
2 -23 71146525 0.26% 0.01% 0.00% 0.00% 0.00% 0.00%

10.08 127.53 3.07 3.06 3.05 3.17
1
2 -24 71218806 0.27% 0.01% 0.00% 0.00% 0.00% 0.00%

12.53 86.52 2.14 2.06 1.98 2.24

xxxv



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
2 -25 71254809 0.14% 0.01% 0.00% 0.00% 0.00% 0.00%

5.53 66.35 3.20 3.20 3.28 3.33
1
2 -26 71240359 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

0.90 3.56 1.14 1.49 1.20 1.29
1
2 -27 71598985 0.15% 0.03% 0.00% 0.00% 0.00% 0.00%

1.49 75.66 3.30 6.53 5.15 6.40
1
2 -28 71896041 0.03% 0.02% 0.00% 0.00% 0.00% 0.00%

31.78 51.34 2.42 2.65 2.45 2.44
1
2 -29 71968215 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

8.02 68.94 2.70 2.58 2.93 3.08
1
2 -30 71795909 0.21% 0.02% 0.00% 0.00% 0.00% 0.00%

1.67 79.47 3.08 3.05 3.13 3.30
1
2 -31 72036365 0.04% 0.03% 0.00% 0.00% 0.00% 0.00%

41.42 151.14 2.86 2.68 2.84 3.00
1
2 -32 72097464 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

51.52 197.55 3.05 3.03 3.28 3.14
1
2 -33 72132498 0.09% 0.02% 0.00% 0.00% 0.00% 0.00%

48.18 146.34 3.65 3.62 3.75 3.81
1
2 -34 72161229 0.14% 0.02% 0.00% 0.00% 0.00% 0.00%

8.67 63.08 2.11 2.07 2.16 2.15
1
2 -35 72461817 0.17% 0.04% 0.00% 0.00% 0.00% 0.00%

23.30 222.92 4.93 5.05 5.08 5.47
1
2 -36 72505749 0.11% 0.01% 0.00% 0.00% 0.00% 0.00%

0.91 32.87 2.34 2.34 2.50 2.55
1
2 -37 72559408 0.16% 0.02% 0.00% 0.00% 0.00% 0.00%

1.20 61.82 2.65 2.56 2.79 2.74
1
2 -38 72774159 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

14.69 55.70 4.01 3.61 3.71 3.70
1
2 -39 73017224 0.26% 0.04% 0.01% 0.01% 0.01% 0.01%

14.47 152.71 3.86 3.87 3.96 4.20
1
2 -40 72981934 0.23% 0.04% 0.00% 0.00% 0.00% 0.00%

18.54 218.31 3.12 2.79 2.79 2.82
1
2 -41 73124728 0.10% 0.02% 0.00% 0.00% 0.00% 0.00%

126.23 235.18 2.97 2.98 3.23 3.28
1
2 -42 73005050 0.22% 0.02% 0.00% 0.00% 0.00% 0.00%

39.59 94.31 2.58 2.75 2.84 2.78
1
2 -43 73184610 0.09% 0.01% 0.00% 0.00% 0.00% 0.00%

97.01 285.81 4.44 3.95 4.18 4.24
1
2 -44 73290266 0.23% 0.03% 0.00% 0.00% 0.00% 0.00%

87.60 204.24 4.24 4.33 4.93 5.03
1
2 -45 73416844 0.21% 0.03% 0.00% 0.00% 0.00% 0.00%

24.22 157.34 2.63 2.59 2.84 2.95
1
2 -46 73539630 0.09% 0.04% 0.00% 0.00% 0.00% 0.00%

77.23 221.20 5.12 4.64 5.05 5.02
1
2 -47 73590399 0.19% 0.01% 0.00% 0.00% 0.00% 0.00%

39.73 231.61 4.91 4.45 5.46 4.83
1
2 -48 73592122 0.39% 0.01% 0.00% 0.00% 0.00% 0.00%

3.39 92.86 3.29 3.25 3.81 4.16
1
2 -49 73883808 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

151.37 112.30 3.03 3.05 3.34 3.33

xxxvi



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
2 -50 73973073 0.20% 0.00% 0.00% 0.00% 0.00% 0.00%

31.28 299.60 3.50 3.93 4.32 3.54
1
2 -51 73982838 0.23% 0.03% 0.00% 0.00% 0.00% 0.00%

51.31 310.54 2.86 2.84 2.89 3.01
1
2 -52 73946741 0.25% 0.01% 0.00% 0.00% 0.00% 0.00%

34.61 171.68 2.43 2.38 2.88 2.64
1
2 -53 73876522 0.34% 0.02% 0.00% 0.00% 0.00% 0.00%

31.54 180.91 4.08 4.07 4.16 4.21
1
2 -54 74095422 0.32% 0.02% 0.00% 0.00% 0.00% 0.00%

47.12 274.62 4.94 4.99 5.26 5.16
1
2 -55 74119744 0.40% 0.02% 0.00% 0.00% 0.00% 0.00%

44.93 328.02 6.38 6.30 6.68 6.46
1
2 -56 74266880 0.17% 0.03% 0.00% 0.00% 0.00% 0.00%

20.27 178.42 3.26 3.22 3.48 3.40
1
2 -57 74247682 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

155.30 304.14 4.32 4.66 4.48 4.16
1
2 -58 74333478 0.07% 0.01% 0.00% 0.00% 0.00% 0.00%

162.75 276.44 6.82 6.82 7.16 7.22
1
2 -59 74290126 0.28% 0.03% 0.01% 0.01% 0.01% 0.01%

22.17 270.86 8.89 11.71 9.73 10.02
1
2 -60 74514411 0.12% 0.04% 0.00% 0.00% 0.00% 0.00%

35.57 191.26 4.86 4.78 5.33 4.92
1
2 -61 74561984 0.22% 0.03% 0.00% 0.00% 0.00% 0.00%

21.67 231.93 2.06 2.22 2.25 2.29
1
2 -62 74539329 0.10% 0.01% 0.00% 0.00% 0.00% 0.00%

159.47 251.78 3.49 3.14 3.44 3.26
1
2 -63 74841349 0.16% 0.01% 0.00% 0.00% 0.00% 0.00%

64.74 101.07 3.70 3.73 3.93 3.50
1
2 -64 74796372 0.15% 0.04% 0.00% 0.00% 0.00% 0.00%

27.43 195.71 5.15 5.16 5.18 5.24
1
2 -65 75029390 0.20% 0.00% 0.00% 0.00% 0.00% 0.00%

60.98 104.17 3.62 3.32 3.40 3.75
1
2 -66 75056224 0.38% 0.01% 0.00% 0.00% 0.00% 0.00%

21.64 193.85 4.67 4.64 4.88 4.77
1
2 -67 75078289 0.24% 0.01% 0.00% 0.00% 0.00% 0.00%

30.85 105.49 3.55 3.18 3.32 3.51
1
2 -68 75090225 0.47% 0.01% 0.00% 0.00% 0.00% 0.00%

4.52 94.23 4.03 4.06 3.98 4.11
1
2 -69 75041538 0.15% 0.03% 0.00% 0.00% 0.00% 0.00%

77.73 183.91 3.43 3.34 3.89 3.63
1
2 -70 75141753 0.24% 0.05% 0.00% 0.00% 0.00% 0.00%

28.59 224.75 3.98 3.70 4.03 3.74
1
2 -71 75222131 0.21% 0.02% 0.00% 0.00% 0.00% 0.00%

70.89 315.70 4.82 4.99 4.79 4.58
1
2 -72 75187115 0.22% 0.02% 0.00% 0.00% 0.00% 0.00%

98.87 275.83 4.80 4.71 6.37 5.14
1
2 -73 75240905 0.23% 0.03% 0.00% 0.00% 0.00% 0.00%

89.18 285.51 4.19 4.04 4.09 3.96
1
2 -74 75303717 0.12% 0.01% 0.00% 0.00% 0.00% 0.00%

124.48 211.01 4.30 4.02 4.48 4.21
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
1
2 -75 75192972 0.42% 0.03% 0.00% 0.00% 0.00% 0.00%

4.49 213.51 3.80 3.69 3.85 3.70
1
2 -76 75427333 0.39% 0.03% 0.00% 0.00% 0.00% 0.00%

6.33 282.63 4.00 3.53 3.66 3.78
1
2 -77 75485131 0.39% 0.01% 0.00% 0.00% 0.00% 0.00%

21.01 177.46 5.03 5.81 5.15 5.39
1
2 -78 75508478 0.37% 0.05% 0.00% 0.00% 0.00% 0.00%

73.46 263.81 9.37 9.34 10.25 9.50
1
2 -79 75613523 0.53% 0.02% 0.00% 0.00% 0.00% 0.00%

11.59 225.13 6.21 6.32 6.20 6.34
1
2 -80 75681223 0.31% 0.03% 0.00% 0.00% 0.00% 0.00%

50.45 165.31 7.51 6.78 7.96 6.76
1
2 -81 75701267 0.37% 0.04% 0.00% 0.00% 0.00% 0.00%

41.26 417.51 7.63 8.11 7.89 7.69
1
2 -82 75515872 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

193.88 159.29 4.33 4.28 4.37 4.35
1
2 -83 75550592 0.02% 0.03% 0.00% 0.00% 0.00% 0.00%

180.40 163.45 5.14 5.06 5.62 4.92
1
2 -84 75525669 0.01% 0.04% 0.00% 0.00% 0.00% 0.00%

130.79 218.78 3.76 4.07 4.36 3.96
1
2 -85 75707486 0.02% 0.03% 0.00% 0.00% 0.00% 0.00%

144.44 137.88 4.28 4.37 4.28 4.41
1
2 -86 75622388 0.24% 0.04% 0.00% 0.00% 0.00% 0.00%

64.22 226.82 3.89 3.82 3.74 3.78
1
2 -87 75678850 0.04% 0.04% 0.00% 0.00% 0.00% 0.00%

147.86 223.31 4.68 4.15 4.12 4.39
1
2 -88 75783345 0.17% 0.02% 0.00% 0.00% 0.00% 0.00%

80.65 185.32 4.58 6.53 8.20 7.66
1
2 -89 75877234 0.20% 0.02% 0.00% 0.00% 0.00% 0.00%

79.19 224.57 6.32 7.56 9.06 8.04
1
2 -90 75816488 0.01% 0.04% 0.01% 0.01% 0.01% 0.01%

107.25 268.16 2.64 2.98 3.01 3.01
1
2 -91 75823903 0.21% 0.01% 0.00% 0.00% 0.00% 0.00%

50.62 244.54 3.23 3.13 3.32 3.15
1
2 -92 75985392 0.32% 0.01% 0.00% 0.00% 0.00% 0.00%

36.85 280.74 3.62 3.73 4.08 3.90
1
2 -93 75968366 0.03% 0.04% 0.00% 0.00% 0.00% 0.00%

154.75 237.51 3.51 4.06 4.11 4.32
1
2 -94 76028460 0.08% 0.03% 0.00% 0.00% 0.00% 0.00%

161.83 259.50 4.01 4.35 4.58 4.36
1
2 -95 75903771 0.08% 0.03% 0.00% 0.00% 0.00% 0.00%

110.73 235.09 3.51 3.61 3.58 3.69
1
2 -96 75988719 0.37% 0.01% 0.00% 0.00% 0.00% 0.00%

65.16 235.67 5.26 4.98 4.94 4.79
1
2 -97 75984046 0.07% 0.01% 0.00% 0.00% 0.00% 0.00%

91.83 77.85 3.40 3.45 3.36 3.46
1
2 -98 76025585 0.22% 0.01% 0.00% 0.00% 0.00% 0.00%

83.15 301.07 3.57 3.99 3.75 3.64
1
2 -99 75986166 0.12% 0.02% 0.00% 0.00% 0.00% 0.00%

99.13 231.99 4.55 4.39 4.00 4.01
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Appendix IV

Bound strengths (gap %) and computation times (s) for 3
4 TUFLP-S instances

Results for (PShull) correspond to the non-stabilised structured Dantzig-Wolfe de-

composition in the first four tables. Full results for (PShull) follow.



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
3
4 -0 85603163 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

1.34 1.40 1.32 0.18 3.45 0.17 7.33 7.02 6.88
3
4 -1 85604667 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

1.80 1.15 1.46 0.15 3.23 0.18 6.84 5.14 2.87
3
4 -2 85603518 0.03% 0.03% 0.03% 0.01% 0.00% 0.00%

1.21 1.29 1.40 0.24 3.68 0.15 6.63 5.37 7.03
3
4 -3 85603388 0.03% 0.03% 0.03% 0.01% 0.00% 0.00%

1.24 1.16 1.12 0.30 3.50 0.14 9.96 4.05 6.76
3
4 -4 85603358 0.03% 0.03% 0.03% 0.01% 0.00% 0.00%

1.57 1.32 1.32 0.30 3.34 0.15 7.79 6.79 7.16
3
4 -5 85605570 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

1.56 1.10 1.24 0.13 7.60 0.39 7.17 6.38 7.03
3
4 -6 85628527 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

1.74 1.29 1.14 0.12 6.56 0.38 7.90 7.59 6.60
3
4 -7 85851985 0.09% 0.09% 0.09% 0.03% 0.00% 0.00%

1.33 1.17 1.14 0.16 3.50 0.16 6.92 6.76 8.29
3
4 -8 87033703 0.07% 0.07% 0.07% 0.01% 0.00% 0.00%

1.71 1.52 1.43 0.35 5.20 0.40 7.21 7.75 8.13
3
4 -9 87479687 0.06% 0.06% 0.06% 0.03% 0.00% 0.00%

1.76 1.33 1.25 0.21 3.95 0.15 7.32 6.65 9.04
3
4 -10 87879203 0.11% 0.11% 0.11% 0.01% 0.00% 0.00%

2.46 1.96 1.96 0.40 5.57 0.39 10.90 8.54 10.41
3
4 -11 87710171 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.91 1.36 1.61 0.09 2.75 0.16 1.90 1.70 1.52
3
4 -12 88038766 0.17% 0.17% 0.17% 0.07% 0.00% 0.00%

2.13 1.85 1.72 0.30 26.88 0.97 8.94 7.35 8.33
3
4 -13 88460145 0.04% 0.04% 0.04% 0.00% 0.00% 0.00%

2.34 2.45 2.29 0.34 5.04 0.11 10.60 8.57 9.76
3
4 -14 88275858 0.07% 0.07% 0.07% 0.01% 0.00% 0.00%

2.21 1.53 1.92 0.22 3.90 0.16 7.41 7.94 7.20
3
4 -15 88789018 0.17% 0.17% 0.17% 0.06% 0.00% 0.00%

2.34 2.39 2.18 0.35 8.34 0.45 8.57 7.03 8.49
3
4 -16 88375534 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.63 1.60 1.44 0.11 3.43 0.20 1.82 1.55 1.66
3
4 -17 89021721 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

2.75 2.52 2.52 0.38 4.89 0.15 10.33 8.84 10.45
3
4 -18 89266492 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

2.71 2.27 2.28 0.42 4.56 0.13 11.03 11.35 11.38
3
4 -19 89515379 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

2.58 1.97 2.45 0.25 8.56 0.53 10.21 7.63 10.26
3
4 -20 89597792 0.07% 0.07% 0.07% 0.02% 0.00% 0.00%

2.08 1.66 1.78 0.24 4.37 0.16 6.57 7.48 8.35
3
4 -21 89826449 0.16% 0.16% 0.16% 0.07% 0.00% 0.00%

2.62 2.09 2.26 0.47 7.82 0.64 11.68 11.40 10.27
3
4 -22 89764952 0.04% 0.04% 0.04% 0.00% 0.00% 0.00%

1.82 2.35 1.77 0.26 5.05 0.16 8.11 6.22 7.64
3
4 -23 90180424 0.15% 0.15% 0.15% 0.03% 0.00% 0.00%

2.47 2.16 2.76 0.56 9.45 0.41 11.45 9.70 11.97
3
4 -24 90403561 0.09% 0.09% 0.09% 0.04% 0.00% 0.00%

2.59 2.19 2.66 0.73 12.72 0.76 11.32 10.33 11.74
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LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
3
4 -25 90532364 0.09% 0.09% 0.09% 0.04% 0.00% 0.00%

4.67 3.76 4.09 1.02 12.63 0.90 20.82 16.56 13.34
3
4 -26 90375563 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%

2.86 2.92 2.31 0.46 7.66 0.16 6.92 7.44 9.81
3
4 -27 90637373 0.08% 0.08% 0.08% 0.02% 0.00% 0.00%

6.08 3.42 3.78 0.99 11.01 0.74 18.19 13.75 12.51
3
4 -28 91013405 0.05% 0.05% 0.05% 0.01% 0.00% 0.00%

2.71 2.75 2.37 0.31 5.84 0.33 12.04 9.79 9.26
3
4 -29 91136339 0.15% 0.15% 0.15% 0.08% 0.00% 0.00%

2.81 2.40 2.68 0.80 14.31 1.18 18.52 18.00 15.00
3
4 -30 91017870 0.07% 0.07% 0.07% 0.03% 0.00% 0.00%

3.54 4.87 2.34 0.48 10.04 0.64 14.80 14.13 12.34
3
4 -31 91032203 0.03% 0.03% 0.03% 0.00% 0.00% 0.00%

2.04 2.33 1.80 0.54 5.07 0.18 13.98 10.45 9.50
3
4 -32 91211223 0.09% 0.09% 0.10% 0.03% 0.00% 0.00%

4.51 3.33 2.82 0.89 19.04 0.90 18.36 16.55 15.57
3
4 -33 91108897 0.07% 0.07% 0.07% 0.05% 0.00% 0.00%

3.46 8.17 2.58 0.58 11.88 0.54 14.41 9.69 11.57
3
4 -34 91177033 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

6.36 4.24 3.18 0.85 7.42 0.16 10.24 9.51 10.13
3
4 -35 91553211 0.08% 0.08% 0.08% 0.00% 0.00% 0.01%

3.72 4.48 3.50 0.84 10.64 0.35 19.23 18.15 15.48
3
4 -36 91300669 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.45 2.14 1.92 0.12 4.24 0.16 2.10 4.14 2.36
3
4 -37 91571240 0.12% 0.12% 0.12% 0.04% 0.00% 0.00%

5.19 3.20 3.78 0.84 27.79 0.75 18.58 14.93 16.86
3
4 -38 91605661 0.10% 0.10% 0.10% 0.01% 0.00% 0.00%

3.82 3.67 3.54 0.75 15.02 0.18 13.36 11.40 14.31
3
4 -39 91633421 0.13% 0.13% 0.13% 0.03% 0.00% 0.00%

3.09 4.08 2.62 1.09 11.13 0.61 15.25 13.73 15.03
3
4 -40 90602972 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.74 1.46 1.44 0.08 2.76 0.16 1.66 1.86 1.74
3
4 -41 91756196 0.14% 0.14% 0.14% 0.06% 0.00% 0.00%

3.45 3.24 3.00 0.74 9.50 0.68 15.52 16.02 14.16
3
4 -42 91811361 0.12% 0.12% 0.12% 0.09% 0.00% 0.00%

3.06 3.01 1.90 0.38 31.64 1.26 11.94 13.08 10.48
3
4 -43 91894879 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.24 2.05 1.65 0.12 5.75 0.11 2.80 2.27 2.24
3
4 -44 92411537 0.06% 0.06% 0.06% 0.01% 0.00% 0.00%

4.02 4.21 3.07 0.69 15.52 0.68 14.49 9.57 11.14
3
4 -45 92366919 0.14% 0.14% 0.14% 0.12% 0.00% 0.00%

2.65 2.75 1.95 0.20 13.26 0.89 7.86 7.89 6.60
3
4 -46 92585190 0.03% 0.03% 0.03% 0.02% 0.00% 0.00%

3.56 3.68 2.77 0.37 9.00 0.37 11.57 10.60 10.57
3
4 -47 92841543 0.13% 0.13% 0.13% 0.04% 0.00% 0.00%

4.04 3.54 2.90 0.84 40.50 1.43 12.27 13.66 10.88
3
4 -48 93094878 0.25% 0.25% 0.25% 0.11% 0.00% 0.00%

3.28 2.66 2.62 0.70 69.02 1.78 20.68 17.36 18.24
3
4 -49 93080488 0.27% 0.27% 0.27% 0.16% 0.00% 0.00%

4.95 5.20 3.23 1.40 36.77 1.48 17.52 16.59 15.39

xli



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
3
4 -50 93222453 0.32% 0.32% 0.32% 0.25% 0.00% 0.00%

3.50 3.51 2.38 0.65 27.17 1.83 16.82 21.00 17.38
3
4 -51 93242553 0.06% 0.06% 0.06% 0.02% 0.00% 0.00%

5.24 4.84 3.42 0.82 30.97 1.39 17.96 16.67 19.02
3
4 -52 92969190 0.04% 0.04% 0.04% 0.04% 0.00% 0.00%

3.61 3.98 2.48 0.42 8.57 0.37 13.19 9.27 12.57
3
4 -53 93117276 0.15% 0.15% 0.15% 0.03% 0.00% 0.00%

3.96 2.80 2.90 0.59 21.25 1.06 12.72 10.43 11.49
3
4 -54 93381476 0.19% 0.19% 0.19% 0.15% 0.00% 0.00%

5.20 7.50 3.68 0.78 13.75 0.85 18.90 14.30 15.94
3
4 -55 93397731 0.34% 0.34% 0.34% 0.23% 0.01% 0.01%

3.77 4.85 2.66 1.51 27.88 1.75 19.75 30.23 20.50
3
4 -56 93126498 0.10% 0.10% 0.10% 0.05% 0.00% 0.00%

2.30 3.67 2.42 0.51 16.21 0.86 11.82 9.09 11.69
3
4 -57 93358394 0.15% 0.15% 0.15% 0.12% 0.00% 0.00%

3.21 3.58 2.36 0.56 11.93 0.61 14.81 14.61 10.52
3
4 -58 93448411 0.14% 0.14% 0.14% 0.09% 0.00% 0.00%

10.59 4.40 5.18 1.10 34.68 1.71 22.09 23.71 23.56
3
4 -59 93552042 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

5.39 4.42 4.80 0.65 7.86 0.15 14.32 13.25 16.91
3
4 -60 93802040 0.30% 0.30% 0.30% 0.23% 0.00% 0.00%

3.82 3.85 3.87 0.55 154.60 1.17 18.07 17.61 20.77
3
4 -61 93652804 0.28% 0.28% 0.28% 0.22% 0.00% 0.00%

3.64 2.57 2.56 0.55 137.89 2.13 18.93 18.17 14.32
3
4 -62 93209783 0.23% 0.23% 0.23% 0.16% 0.00% 0.00%

2.98 2.74 2.39 0.54 43.96 0.82 13.96 11.96 12.05
3
4 -63 93350899 0.08% 0.08% 0.08% 0.04% 0.00% 0.00%

3.34 3.83 2.74 0.55 11.54 0.95 14.19 13.39 11.86
3
4 -64 93822033 0.18% 0.18% 0.18% 0.17% 0.00% 0.00%

3.02 3.22 2.98 0.43 33.19 2.05 17.01 12.56 11.59
3
4 -65 93824675 0.33% 0.33% 0.33% 0.21% 0.00% 0.00%

4.44 4.10 3.06 0.50 106.40 1.47 20.02 28.25 17.12
3
4 -66 94119719 0.21% 0.21% 0.21% 0.16% 0.00% 0.00%

3.96 3.67 3.06 0.95 31.59 1.56 18.39 28.30 19.37
3
4 -67 93990418 0.31% 0.31% 0.31% 0.23% 0.00% 0.00%

3.95 4.02 3.06 0.67 230.49 1.60 34.45 41.33 31.53
3
4 -68 93996826 0.23% 0.23% 0.23% 0.13% 0.00% 0.00%

4.22 4.70 3.82 0.84 19.65 0.99 16.79 18.91 15.35
3
4 -69 94168667 0.21% 0.21% 0.21% 0.10% 0.00% 0.00%

4.00 2.85 2.88 1.01 180.29 1.93 23.74 43.34 24.09
3
4 -70 94275201 0.20% 0.20% 0.20% 0.06% 0.00% 0.00%

3.64 3.62 2.74 1.09 50.18 0.86 20.16 12.55 16.98
3
4 -71 94294624 0.13% 0.13% 0.13% 0.09% 0.00% 0.00%

4.32 5.35 4.44 0.65 36.09 0.88 19.87 18.78 27.63
3
4 -72 94518242 0.18% 0.18% 0.18% 0.12% 0.00% 0.00%

5.95 5.10 4.69 2.39 65.04 0.98 32.25 28.92 44.76
3
4 -73 94455182 0.25% 0.25% 0.25% 0.06% 0.00% 0.00%

4.36 4.82 3.91 1.40 137.19 0.86 24.29 28.59 41.75
3
4 -74 94499399 0.16% 0.16% 0.16% 0.08% 0.00% 0.00%

7.38 4.68 4.59 1.27 151.33 1.51 23.62 21.88 20.08

xlii



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)
3
4 -75 94380310 0.16% 0.16% 0.16% 0.04% 0.00% 0.00%

4.80 5.71 4.50 1.90 24.41 0.74 29.76 45.29 38.48
3
4 -76 94557454 0.33% 0.33% 0.33% 0.18% 0.00% 0.00%

3.46 6.03 3.31 1.51 43.34 0.83 31.03 30.57 35.35
3
4 -77 94443801 0.15% 0.15% 0.15% 0.06% 0.00% 0.00%

4.15 4.91 3.01 1.30 10.28 0.48 16.75 19.45 15.09
3
4 -78 94553612 0.31% 0.31% 0.31% 0.13% 0.00% 0.00%

5.30 5.63 4.70 2.37 50.84 2.04 37.85 26.72 34.93
3
4 -79 94310061 0.28% 0.28% 0.28% 0.11% 0.00% 0.00%

3.28 3.19 2.72 1.72 17.12 1.12 16.58 21.07 15.69
3
4 -80 94495817 0.23% 0.23% 0.23% 0.18% 0.00% 0.00%

5.26 4.10 5.77 1.18 135.81 1.42 20.18 17.03 17.63
3
4 -81 94393094 0.29% 0.29% 0.30% 0.17% 0.00% 0.00%

5.86 4.26 5.02 1.41 48.01 1.76 26.86 41.03 28.41
3
4 -82 94468418 0.18% 0.18% 0.18% 0.13% 0.00% 0.00%

4.93 3.35 4.20 0.84 89.10 1.20 18.58 19.60 19.74
3
4 -83 94733235 0.24% 0.24% 0.24% 0.21% 0.00% 0.00%

5.52 4.53 3.71 0.70 113.71 1.78 20.14 25.77 22.07
3
4 -84 95190701 0.35% 0.35% 0.35% 0.16% 0.00% 0.00%

5.32 5.87 4.29 2.41 418.57 2.28 39.65 105.25 32.32
3
4 -85 94820933 0.22% 0.22% 0.22% 0.20% 0.00% 0.00%

5.35 4.84 5.09 0.48 11.13 0.62 30.89 14.66 19.13
3
4 -86 94905457 0.24% 0.24% 0.24% 0.16% 0.00% 0.00%

4.16 5.09 3.77 1.29 15.72 0.70 26.35 25.75 23.81
3
4 -87 94977880 0.35% 0.35% 0.35% 0.17% 0.00% 0.00%

3.51 3.38 2.44 1.21 12.05 0.48 25.11 24.65 22.36
3
4 -88 94630460 0.18% 0.18% 0.18% 0.15% 0.00% 0.00%

4.22 2.12 2.72 0.29 77.32 1.86 9.99 8.95 11.96
3
4 -89 94797993 0.09% 0.09% 0.09% 0.07% 0.00% 0.00%

5.56 3.57 3.45 1.64 21.17 1.48 18.82 23.17 20.40
3
4 -90 95153081 0.39% 0.39% 0.40% 0.26% 0.00% 0.00%

2.70 3.50 2.32 1.61 516.00 2.26 47.41 60.34 28.27
3
4 -91 94723310 0.26% 0.26% 0.27% 0.08% 0.00% 0.00%

4.28 9.03 3.24 1.17 211.81 1.12 20.03 16.32 16.26
3
4 -92 95144033 0.25% 0.25% 0.25% 0.13% 0.00% 0.00%

4.48 6.50 3.22 1.14 98.84 1.06 23.17 25.19 20.21
3
4 -93 95213966 0.31% 0.31% 0.31% 0.18% 0.00% 0.00%

11.96 4.05 4.14 1.35 465.45 1.64 28.93 40.96 25.83
3
4 -94 94971542 0.15% 0.15% 0.15% 0.07% 0.00% 0.00%

3.26 3.73 3.36 1.04 12.71 0.87 13.37 13.64 13.39
3
4 -95 95374759 0.39% 0.39% 0.39% 0.18% 0.00% 0.00%

4.12 3.86 3.88 2.95 20.33 0.96 39.97 42.35 51.96
3
4 -96 95423167 0.27% 0.27% 0.27% 0.12% 0.00% 0.00%

3.54 3.40 3.88 1.60 79.22 1.35 29.55 45.92 31.67
3
4 -97 95256555 0.23% 0.23% 0.23% 0.12% 0.00% 0.00%

3.88 3.80 5.35 0.81 46.88 1.11 23.96 22.15 24.71
3
4 -98 95352920 0.17% 0.17% 0.17% 0.09% 0.00% 0.00%

4.21 3.96 4.70 1.22 50.24 2.02 24.06 25.63 19.16
3
4 -99 95535145 0.23% 0.23% 0.23% 0.16% 0.00% 0.00%

7.60 7.82 6.18 1.87 138.89 1.92 46.44 38.49 39.19
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
3
4 -0 85603163 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

2.85 87.13 4.08 3.83 4.55 4.72
3
4 -1 85604667 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

2.38 3.21 3.46 3.41 4.71 4.04
3
4 -2 85603518 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.13 3.99 3.69 4.07 3.69 4.09
3
4 -3 85603388 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.67 4.61 3.78 3.40 3.68 3.72
3
4 -4 85603358 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.72 3.49 3.36 3.57 4.52 3.55
3
4 -5 85605570 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.20 7.46 6.84 8.37 11.61 13.83
3
4 -6 85628527 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.58 3.22 6.29 7.10 7.85 7.89
3
4 -7 85851985 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

3.32 112.62 3.47 3.59 3.97 3.64
3
4 -8 87033703 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.25 7.01 5.18 6.09 6.35 6.97
3
4 -9 87479687 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

3.69 90.86 3.85 4.21 4.10 4.75
3
4 -10 87879203 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

8.03 4.35 7.06 6.87 7.39 7.34
3
4 -11 87710171 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.14 2.37 2.61 2.64 3.36 2.80
3
4 -12 88038766 0.03% 0.03% 0.00% 0.00% 0.00% 0.00%

3.29 103.75 8.41 29.06 18.13 21.09
3
4 -13 88460145 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.19 4.15 6.83 6.89 7.18 7.44
3
4 -14 88275858 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.59 8.21 4.37 4.04 4.02 5.42
3
4 -15 88789018 0.06% 0.02% 0.00% 0.00% 0.00% 0.00%

4.04 199.37 12.20 10.64 11.08 10.00
3
4 -16 88375534 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.24 2.05 3.95 3.38 3.67 3.50
3
4 -17 89021721 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

3.46 10.61 7.11 6.35 6.72 6.13
3
4 -18 89266492 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.30 4.25 5.50 5.84 6.49 6.00
3
4 -19 89515379 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

5.16 8.26 7.66 9.62 10.34 10.64
3
4 -20 89597792 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

6.12 5.79 4.63 4.97 4.93 5.07
3
4 -21 89826449 0.05% 0.01% 0.00% 0.00% 0.00% 0.00%

4.13 190.51 8.62 9.65 10.91 10.27
3
4 -22 89764952 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

2.88 173.65 5.18 5.68 5.67 5.94
3
4 -23 90180424 0.08% 0.01% 0.00% 0.00% 0.00% 0.00%

6.41 218.39 10.62 11.80 12.44 11.88
3
4 -24 90403561 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

5.30 329.54 14.85 15.47 14.75 14.78

xliv



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
3
4 -25 90532364 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

14.15 179.84 15.68 16.31 16.00 16.47
3
4 -26 90375563 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

7.47 6.80 10.19 10.50 9.35 9.78
3
4 -27 90637373 0.05% 0.03% 0.00% 0.00% 0.00% 0.00%

6.99 98.35 11.79 15.09 13.83 12.37
3
4 -28 91013405 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

6.28 242.54 7.15 7.48 8.40 7.85
3
4 -29 91136339 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

43.46 190.54 16.72 18.15 18.17 18.39
3
4 -30 91017870 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

6.24 125.16 13.54 13.42 14.29 13.80
3
4 -31 91032203 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

4.10 15.54 5.66 6.63 6.77 6.66
3
4 -32 91211223 0.03% 0.03% 0.00% 0.00% 0.00% 0.00%

6.16 157.23 15.19 23.66 33.47 22.50
3
4 -33 91108897 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.94 6.41 13.74 17.49 16.12 16.65
3
4 -34 91177033 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

6.06 18.54 9.87 11.06 10.45 11.00
3
4 -35 91553211 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

6.22 22.39 15.19 14.56 14.63 15.67
3
4 -36 91300669 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.57 4.58 4.68 5.35 9.42 5.11
3
4 -37 91571240 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

32.47 248.59 16.41 31.73 24.86 76.66
3
4 -38 91605661 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

24.89 455.48 15.24 18.89 27.16 29.27
3
4 -39 91633421 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%

7.88 232.55 18.44 14.46 17.58 16.76
3
4 -40 90602972 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.21 2.25 2.98 2.61 3.30 3.29
3
4 -41 91756196 0.04% 0.04% 0.00% 0.00% 0.00% 0.00%

7.39 164.29 12.52 12.75 14.02 14.70
3
4 -42 91811361 0.09% 0.01% 0.00% 0.00% 0.00% 0.00%

4.92 251.68 17.96 35.22 22.85 47.19
3
4 -43 91894879 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.41 4.30 5.03 7.22 6.50 7.28
3
4 -44 92411537 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

6.69 28.07 20.70 20.37 25.71 21.37
3
4 -45 92366919 0.14% 0.01% 0.00% 0.00% 0.00% 0.00%

4.46 143.34 11.50 19.12 14.22 15.37
3
4 -46 92585190 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

7.68 129.38 13.78 12.44 14.79 14.00
3
4 -47 92841543 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

14.72 486.47 21.73 45.94 43.22 70.06
3
4 -48 93094878 0.13% 0.01% 0.00% 0.00% 0.00% 0.00%

41.73 546.57 22.96 74.61 78.78 77.33
3
4 -49 93080488 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

105.54 279.02 24.05 42.65 42.36 46.63
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
3
4 -50 93222453 0.07% 0.04% 0.00% 0.00% 0.00% 0.00%

207.81 552.61 31.66 31.30 33.15 32.83
3
4 -51 93242553 0.03% 0.02% 0.00% 0.00% 0.00% 0.00%

7.66 203.99 26.29 37.18 74.84 89.73
3
4 -52 92969190 0.04% 0.02% 0.00% 0.00% 0.00% 0.00%

7.14 125.92 12.52 11.82 12.74 12.17
3
4 -53 93117276 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

40.16 286.41 14.02 25.12 21.98 28.54
3
4 -54 93381476 0.14% 0.06% 0.00% 0.00% 0.00% 0.00%

9.62 497.30 19.37 18.59 28.42 25.76
3
4 -55 93397731 0.17% 0.03% 0.01% 0.01% 0.01% 0.01%

62.91 625.46 31.14 33.92 36.80 37.53
3
4 -56 93126498 0.03% 0.02% 0.00% 0.00% 0.00% 0.00%

7.03 386.47 12.44 19.23 33.86 42.37
3
4 -57 93358394 0.11% 0.01% 0.00% 0.00% 0.00% 0.00%

6.85 209.37 14.61 17.36 17.22 15.93
3
4 -58 93448411 0.05% 0.02% 0.00% 0.00% 0.00% 0.00%

49.22 457.12 41.76 39.70 39.06 42.17
3
4 -59 93552042 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

6.30 7.30 12.56 11.89 13.77 13.20
3
4 -60 93802040 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

416.64 638.13 32.81 161.48 88.81 145.22
3
4 -61 93652804 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

57.44 285.14 30.26 144.56 53.31 172.42
3
4 -62 93209783 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

98.92 460.05 13.46 47.33 47.96 84.89
3
4 -63 93350899 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

31.15 169.60 12.80 15.37 14.87 17.04
3
4 -64 93822033 0.07% 0.01% 0.00% 0.00% 0.00% 0.00%

32.31 314.68 21.33 37.33 33.52 36.61
3
4 -65 93824675 0.08% 0.01% 0.00% 0.00% 0.00% 0.00%

101.57 301.43 22.62 112.75 64.27 207.86
3
4 -66 94119719 0.06% 0.02% 0.00% 0.00% 0.00% 0.00%

88.14 420.12 38.27 36.99 42.96 43.87
3
4 -67 93990418 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

320.99 968.80 39.11 239.17 62.25 118.02
3
4 -68 93996826 0.00% 0.04% 0.00% 0.00% 0.00% 0.00%

57.03 468.71 19.02 24.78 22.32 23.10
3
4 -69 94168667 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

261.87 410.45 38.18 188.08 58.25 143.75
3
4 -70 94275201 0.01% 0.04% 0.00% 0.00% 0.00% 0.00%

47.84 222.97 22.07 55.60 46.03 43.82
3
4 -71 94294624 0.11% 0.01% 0.00% 0.00% 0.00% 0.00%

6.84 295.39 19.96 41.39 29.60 66.36
3
4 -72 94518242 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

223.79 631.98 36.14 73.01 72.59 93.00
3
4 -73 94455182 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

86.15 647.88 24.07 147.04 43.80 68.85
3
4 -74 94499399 0.09% 0.02% 0.00% 0.00% 0.00% 0.00%

15.77 433.54 58.71 159.63 89.30 193.76
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NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•
3
4 -75 94380310 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

133.34 756.59 37.46 30.58 29.75 33.20
3
4 -76 94557454 0.13% 0.01% 0.00% 0.00% 0.00% 0.00%

46.03 463.49 26.22 50.67 45.53 65.25
3
4 -77 94443801 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

87.73 426.94 12.79 15.16 14.21 14.89
3
4 -78 94553612 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

314.04 1787.23 50.37 58.99 109.44 137.41
3
4 -79 94310061 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

202.65 675.12 21.24 21.10 21.68 25.59
3
4 -80 94495817 0.07% 0.02% 0.00% 0.00% 0.00% 0.00%

43.54 386.21 19.93 142.98 56.85 189.17
3
4 -81 94393094 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

378.83 684.45 31.42 53.73 59.92 63.70
3
4 -82 94468418 0.04% 0.02% 0.00% 0.00% 0.00% 0.00%

102.98 420.65 24.89 95.65 31.79 88.05
3
4 -83 94733235 0.10% 0.01% 0.00% 0.00% 0.00% 0.00%

60.47 668.61 28.80 119.90 61.91 187.97
3
4 -84 95190701 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

417.88 990.87 48.71 431.74 71.07 226.30
3
4 -85 94820933 0.00% 0.04% 0.00% 0.00% 0.00% 0.00%

50.98 275.19 14.70 15.22 17.17 18.97
3
4 -86 94905457 0.13% 0.01% 0.00% 0.00% 0.00% 0.00%

31.17 964.41 19.29 21.59 21.93 27.18
3
4 -87 94977880 0.04% 0.01% 0.00% 0.00% 0.00% 0.00%

177.06 269.08 16.74 15.72 16.81 19.28
3
4 -88 94630460 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

23.30 149.96 21.36 82.04 41.15 57.95
3
4 -89 94797993 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

123.83 624.86 27.11 26.61 28.81 31.51
3
4 -90 95153081 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

518.31 1049.09 46.91 525.78 154.60 509.08
3
4 -91 94723310 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

121.93 441.98 35.34 220.99 49.36 64.17
3
4 -92 95144033 0.14% 0.01% 0.00% 0.00% 0.00% 0.00%

17.32 821.29 30.84 107.18 67.54 109.49
3
4 -93 95213966 0.03% 0.03% 0.00% 0.00% 0.00% 0.00%

231.79 558.67 36.33 476.72 102.71 248.85
3
4 -94 94971542 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

64.14 279.70 20.42 16.62 18.27 21.37
3
4 -95 95374759 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

446.10 591.00 24.33 25.81 25.79 30.97
3
4 -96 95423167 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

114.91 379.33 28.55 85.62 76.04 126.97
3
4 -97 95256555 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

101.09 393.26 24.40 52.26 55.20 84.43
3
4 -98 95352920 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

120.79 733.28 30.11 55.40 55.27 114.56
3
4 -99 95535145 0.03% 0.02% 0.00% 0.00% 0.00% 0.00%

107.23 1421.29 44.66 149.91 144.66 130.26
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Appendix V

Bound strengths (gap %) and computation times (s) for Full TUFLP-S instances

Results for (PShull) correspond to the non-stabilised structured Dantzig-Wolfe de-

composition in the first four tables. Full results for (PShull) follow.



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)

Full-0 99950119 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

14.53 9.95 12.66 0.68 18.23 0.54 26.81 27.98 20.65

Full-1 99952100 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

14.70 11.02 13.85 0.60 18.69 0.42 19.93 20.23 27.03

Full-2 99950464 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

21.79 9.81 12.76 0.88 15.85 0.42 24.35 21.46 20.97

Full-3 99950324 0.05% 0.05% 0.05% 0.03% 0.00% 0.00%

8.81 9.54 8.28 0.99 23.80 1.15 20.56 19.17 20.98

Full-4 99950319 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

15.02 9.11 23.45 1.38 29.87 0.48 21.69 26.79 35.92

Full-5 99950320 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

7.39 13.81 9.45 1.57 20.21 0.40 22.20 20.39 26.68

Full-6 99952791 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

14.75 13.45 13.88 0.97 19.86 0.55 25.70 21.12 28.76

Full-7 99978511 0.05% 0.05% 0.05% 0.00% 0.00% 0.00%

12.16 7.82 9.62 0.91 15.67 0.51 24.81 26.13 23.55

Full-8 100210784 0.12% 0.12% 0.12% 0.03% 0.00% 0.00%

16.24 15.22 13.06 1.49 32.47 1.79 38.94 59.78 46.36

Full-9 100948603 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

22.27 16.15 15.49 1.71 24.23 0.43 34.11 45.82 37.50

Full-10 101230435 0.23% 0.23% 0.23% 0.15% 0.00% 0.00%

12.67 9.03 14.80 1.47 25.56 2.45 43.22 57.37 45.72

Full-11 101382113 0.30% 0.30% 0.30% 0.11% 0.00% 0.00%

18.06 11.26 15.71 3.61 43.19 3.11 53.41 80.13 87.99

Full-12 102105878 0.20% 0.20% 0.20% 0.08% 0.00% 0.00%

10.49 6.42 9.02 2.72 20.01 1.17 36.06 31.03 33.65

Full-13 101635061 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

10.81 7.21 13.30 0.72 12.89 0.48 22.67 26.50 11.10

Full-14 102874117 0.25% 0.25% 0.25% 0.10% 0.00% 0.00%

22.61 16.95 24.01 3.54 38.88 1.06 77.15 85.82 81.83

Full-15 102626556 0.22% 0.22% 0.22% 0.11% 0.00% 0.00%

12.91 8.03 12.33 2.79 24.24 1.08 34.90 41.40 33.28

Full-16 102658223 0.13% 0.13% 0.13% 0.05% 0.00% 0.00%

15.57 16.73 19.49 1.85 44.98 1.78 41.66 32.74 53.41

Full-17 103588498 0.28% 0.28% 0.28% 0.16% 0.00% 0.00%

16.70 17.40 14.57 4.00 47.34 1.86 78.29 92.50 81.53

Full-18 103107136 0.11% 0.11% 0.11% 0.07% 0.00% 0.00%

23.05 9.42 20.99 1.03 29.68 1.94 31.77 31.54 54.36

Full-19 103615765 0.08% 0.08% 0.08% 0.04% 0.00% 0.00%

12.33 10.33 9.65 1.02 25.41 1.43 41.87 35.67 37.95

Full-20 103382324 0.15% 0.15% 0.15% 0.07% 0.00% 0.00%

10.74 10.52 11.62 1.68 26.18 2.01 34.56 31.04 34.56

Full-21 103531568 0.04% 0.04% 0.04% 0.03% 0.00% 0.00%

9.21 8.70 12.57 1.73 26.85 1.95 25.63 27.39 28.06

Full-22 103989391 0.24% 0.24% 0.24% 0.15% 0.00% 0.00%

17.61 13.15 18.91 3.43 37.07 1.87 52.01 72.16 53.22

Full-23 103842546 0.07% 0.07% 0.07% 0.02% 0.00% 0.00%

17.26 11.06 14.83 1.83 23.55 0.91 33.36 42.78 40.99

Full-24 104727560 0.18% 0.18% 0.18% 0.08% 0.00% 0.00%

16.06 18.31 15.53 3.86 33.91 1.17 80.04 51.22 53.28

xlix



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)

Full-25 104419774 0.21% 0.21% 0.21% 0.07% 0.00% 0.00%

12.29 9.85 13.23 4.62 24.95 0.93 67.93 43.82 53.62

Full-26 104695072 0.28% 0.28% 0.28% 0.15% 0.00% 0.00%

11.99 11.98 9.66 2.50 44.00 2.01 105.03 157.97 56.64

Full-27 104571556 0.07% 0.07% 0.07% 0.00% 0.00% 0.00%

15.26 19.10 15.47 1.67 29.04 1.27 33.62 34.53 29.43

Full-28 104832909 0.27% 0.27% 0.27% 0.18% 0.00% 0.00%

32.02 13.72 20.50 4.48 35.64 0.97 138.57 74.69 57.37

Full-29 104733344 0.07% 0.07% 0.07% 0.03% 0.00% 0.00%

18.00 16.46 13.57 2.26 33.56 1.97 45.55 34.03 39.86

Full-30 105063205 0.20% 0.20% 0.20% 0.10% 0.00% 0.00%

13.76 14.77 11.82 3.94 46.07 1.45 86.33 85.25 61.30

Full-31 105108478 0.08% 0.08% 0.08% 0.02% 0.00% 0.00%

23.17 14.45 17.31 2.30 55.00 1.78 52.56 44.03 49.75

Full-32 105425737 0.23% 0.23% 0.23% 0.17% 0.00% 0.00%

27.73 18.41 17.41 3.30 80.43 2.29 101.74 102.75 109.27

Full-33 105298999 0.23% 0.23% 0.23% 0.13% 0.00% 0.00%

24.33 10.08 20.42 3.22 72.93 3.88 76.12 100.21 79.63

Full-34 105177415 0.18% 0.18% 0.18% 0.06% 0.00% 0.00%

24.47 13.97 17.85 2.32 34.14 1.37 57.34 64.56 54.62

Full-35 105399665 0.15% 0.15% 0.15% 0.08% 0.00% 0.00%

12.83 15.31 14.91 2.74 41.20 2.26 51.98 38.43 58.39

Full-36 105636810 0.26% 0.26% 0.26% 0.14% 0.00% 0.00%

13.54 11.90 12.36 4.59 52.44 2.67 84.43 107.71 77.21

Full-37 105879289 0.28% 0.28% 0.28% 0.13% 0.00% 0.00%

20.77 18.05 18.29 3.96 83.25 3.06 150.68 170.90 129.62

Full-38 105779654 0.13% 0.13% 0.13% 0.11% 0.00% 0.00%

17.30 18.65 16.44 0.74 34.51 1.16 60.52 58.60 67.94

Full-39 105971166 0.13% 0.13% 0.13% 0.03% 0.00% 0.00%

13.68 19.66 12.44 5.08 109.91 2.45 67.71 64.60 72.00

Full-40 106222815 0.32% 0.32% 0.32% 0.09% 0.00% 0.00%

22.39 16.97 13.05 7.32 50.41 2.37 100.46 162.83 87.53

Full-41 106561264 0.25% 0.25% 0.25% 0.11% 0.00% 0.00%

21.43 19.26 19.01 4.02 63.89 2.20 161.45 114.84 101.50

Full-42 106746217 0.36% 0.36% 0.37% 0.17% 0.00% 0.00%

18.48 15.29 17.28 6.56 97.83 3.27 104.75 181.96 138.49

Full-43 106512301 0.17% 0.17% 0.17% 0.08% 0.00% 0.00%

26.19 23.38 20.89 5.48 52.89 1.58 109.96 104.86 91.88

Full-44 106408488 0.28% 0.28% 0.28% 0.11% 0.00% 0.00%

22.25 20.19 13.39 7.68 70.98 1.86 259.04 112.42 82.65

Full-45 106668481 0.31% 0.31% 0.31% 0.18% 0.00% 0.00%

19.97 17.54 16.91 4.87 87.81 3.30 96.10 124.07 87.41

Full-46 106899314 0.26% 0.26% 0.26% 0.12% 0.00% 0.00%

16.64 20.02 24.65 8.92 44.23 1.01 90.75 123.98 66.86

Full-47 106945452 0.26% 0.26% 0.26% 0.11% 0.00% 0.00%

19.04 15.99 21.29 4.41 65.76 2.99 138.61 136.74 73.53

Full-48 107319900 0.11% 0.11% 0.11% 0.03% 0.00% 0.00%

22.55 28.71 22.07 5.38 46.09 0.98 70.32 75.73 66.47

Full-49 107499600 0.22% 0.22% 0.23% 0.14% 0.00% 0.00%

29.36 28.63 28.61 11.14 178.78 4.12 152.75 187.06 110.91

Full-50 107599670 0.32% 0.32% 0.32% 0.20% 0.00% 0.00%

21.31 15.98 17.75 5.15 207.35 3.14 286.86 219.75 136.46

l



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)

Full-51 107654237 0.41% 0.41% 0.41% 0.28% 0.00% 0.00%

20.11 16.85 18.61 8.75 135.74 3.43 364.47 848.16 177.37

Full-52 107347315 0.15% 0.15% 0.15% 0.04% 0.00% 0.00%

27.61 15.95 24.44 7.44 57.51 1.30 92.27 89.31 81.34

Full-53 107629820 0.37% 0.37% 0.37% 0.19% 0.00% 0.00%

15.93 23.52 16.20 5.69 110.37 3.90 182.35 238.78 135.18

Full-54 107709781 0.31% 0.31% 0.31% 0.18% 0.00% 0.00%

15.98 21.27 13.49 6.56 128.94 2.58 294.03 214.38 158.05

Full-55 107603587 0.18% 0.18% 0.18% 0.06% 0.00% 0.00%

28.34 20.97 24.15 5.10 45.53 1.08 127.97 70.81 125.35

Full-56 107835481 0.23% 0.23% 0.23% 0.12% 0.00% 0.00%

24.98 20.16 22.95 8.46 92.31 2.55 170.13 150.26 125.50

Full-57 108204009 0.10% 0.10% 0.10% 0.04% 0.00% 0.00%

22.33 29.05 25.76 2.96 48.08 1.01 88.15 100.57 103.69

Full-58 108260976 0.22% 0.22% 0.22% 0.08% 0.00% 0.00%

15.11 36.18 14.98 12.09 143.50 3.32 147.45 176.82 225.19

Full-59 108344093 0.26% 0.26% 0.26% 0.22% 0.00% 0.00%

35.89 19.53 31.37 3.98 133.47 2.34 188.15 195.27 153.12

Full-60 108359891 0.24% 0.24% 0.24% 0.13% 0.00% 0.00%

21.39 18.67 19.66 7.48 86.34 2.44 202.00 176.64 190.04

Full-61 108470640 0.24% 0.24% 0.24% 0.10% 0.00% 0.00%

31.03 20.97 18.71 10.00 67.30 1.06 187.59 191.13 159.22

Full-62 108091600 0.20% 0.20% 0.20% 0.13% 0.00% 0.00%

23.57 19.13 18.70 1.95 38.36 0.96 110.48 127.15 101.16

Full-63 107854681 0.02% 0.02% 0.02% 0.00% 0.00% 0.00%

35.00 18.30 35.44 3.57 30.61 0.41 34.88 47.25 38.29

Full-64 108355427 0.36% 0.36% 0.36% 0.24% 0.00% 0.01%

18.11 18.73 23.95 4.18 282.09 4.54 312.12 389.79 404.38

Full-65 108301483 0.31% 0.31% 0.31% 0.11% 0.00% 0.00%

19.05 20.12 16.89 10.72 72.95 1.96 206.06 276.88 119.87

Full-66 108562860 0.34% 0.34% 0.34% 0.16% 0.00% 0.00%

20.35 23.88 29.16 14.23 3731.53 3.76 347.33 758.50 259.85

Full-67 109027223 0.29% 0.29% 0.29% 0.12% 0.00% 0.00%

18.58 21.91 19.61 11.98 252.41 2.51 487.78 442.68 254.07

Full-68 109071187 0.38% 0.38% 0.38% 0.21% 0.00% 0.00%

33.72 20.73 28.88 9.91 473.03 5.34 614.66 593.91 291.12

Full-69 108966429 0.39% 0.39% 0.39% 0.23% 0.00% 0.00%

20.25 20.26 24.82 12.28 304.54 4.45 316.37 816.52 263.09

Full-70 108739438 0.16% 0.16% 0.16% 0.07% 0.00% 0.00%

26.09 22.93 17.13 7.15 49.94 1.03 150.52 158.58 116.37

Full-71 109017680 0.34% 0.34% 0.34% 0.17% 0.00% 0.00%

27.25 20.32 19.18 9.16 256.12 4.49 351.77 624.90 212.68

Full-72 108811565 0.22% 0.22% 0.22% 0.09% 0.00% 0.00%

18.50 28.57 21.20 7.77 90.43 2.03 193.18 231.04 270.32

Full-73 109039618 0.27% 0.27% 0.27% 0.16% 0.00% 0.00%

21.11 21.21 37.86 6.24 290.76 3.90 291.24 283.17 198.10

Full-74 109482028 0.35% 0.35% 0.35% 0.17% 0.00% 0.00%

21.26 32.47 21.07 18.51 2127.40 5.69 566.12 857.78 298.23

li



LP Relaxations Reformulation Primal MIP times

Instance Exact (PSpath) (PS0path) (PS0
path) SUBP (PShull) Heuristic (PSpath) (PS0path) (PS0

path)

Full-75 109394833 0.34% 0.34% 0.34% 0.21% 0.01% 0.00%

27.18 29.19 23.13 14.54 3105.10 4.65 379.52 526.28 292.15

Full-76 109481987 0.35% 0.35% 0.35% 0.21% 0.00% 0.00%

19.89 24.77 20.55 11.46 270.43 4.93 405.20 815.75 470.84

Full-77 109349348 0.31% 0.31% 0.31% 0.16% 0.00% 0.00%

24.88 31.48 24.77 15.32 246.06 4.89 342.79 246.16 201.51

Full-78 109242830 0.20% 0.20% 0.20% 0.08% 0.00% 0.00%

29.00 22.89 27.01 4.57 140.34 4.02 105.50 160.89 117.84

Full-79 109292026 0.29% 0.29% 0.29% 0.17% 0.00% 0.00%

31.77 27.28 29.68 11.95 418.03 4.74 280.39 434.40 290.95

Full-80 109418679 0.27% 0.27% 0.27% 0.10% 0.00% 0.00%

37.69 19.72 39.96 13.03 223.92 4.48 299.36 322.55 230.31

Full-81 109418342 0.37% 0.37% 0.37% 0.16% 0.00% 0.00%

33.40 18.55 38.76 9.93 133.38 2.71 513.41 797.99 450.52

Full-82 109596968 0.24% 0.24% 0.24% 0.17% 0.00% 0.00%

24.40 40.94 37.53 9.54 194.70 3.22 452.82 267.30 205.22

Full-83 109572186 0.29% 0.29% 0.29% 0.13% 0.00% 0.00%

41.54 25.86 41.47 11.87 174.66 2.52 314.49 202.34 311.38

Full-84 109948400 0.36% 0.36% 0.36% 0.17% 0.00% 0.00%

35.30 39.78 30.85 27.68 383.13 4.12 340.40 518.10 309.58

Full-85 109898382 0.31% 0.31% 0.31% 0.13% 0.00% 0.00%

35.33 25.64 40.99 15.73 254.18 3.22 307.52 269.08 316.34

Full-86 109789890 0.26% 0.26% 0.26% 0.17% 0.00% 0.00%

25.92 37.27 35.07 9.47 140.57 3.32 286.93 261.31 212.46

Full-87 109734474 0.25% 0.25% 0.25% 0.07% 0.00% 0.00%

54.54 31.56 26.48 16.23 122.86 3.32 215.23 270.19 151.11

Full-88 109862389 0.27% 0.27% 0.27% 0.12% 0.00% 0.00%

34.28 21.03 27.91 23.20 208.85 2.53 179.54 247.42 210.51

Full-89 109738695 0.22% 0.22% 0.22% 0.07% 0.00% 0.00%

28.45 35.70 26.11 8.98 87.78 1.90 301.96 213.51 166.99

Full-90 109715464 0.12% 0.12% 0.12% 0.02% 0.00% 0.00%

42.89 29.64 39.00 10.10 51.19 0.41 177.39 92.67 112.82

Full-91 110010434 0.34% 0.34% 0.34% 0.12% 0.01% 0.00%

27.39 22.82 22.69 23.19 491.25 4.63 300.46 1300.56 437.20

Full-92 109950201 0.23% 0.23% 0.23% 0.07% 0.00% 0.00%

65.44 27.34 28.78 19.47 72.47 1.09 199.71 252.84 125.55

Full-93 110133703 0.43% 0.43% 0.43% 0.26% 0.00% 0.00%

25.51 39.53 15.37 17.00 365.04 4.10 567.82 1558.91 427.12

Full-94 110201145 0.27% 0.27% 0.27% 0.20% 0.00% 0.00%

35.97 43.58 36.79 8.19 295.27 3.35 443.57 341.93 258.93

Full-95 110312649 0.33% 0.33% 0.33% 0.21% 0.00% 0.00%

44.33 33.50 41.33 12.77 487.20 3.25 442.68 1053.44 294.32

Full-96 110287755 0.31% 0.31% 0.31% 0.16% 0.00% 0.00%

29.86 24.61 24.42 10.20 434.69 3.92 276.49 531.46 251.87

Full-97 110306919 0.26% 0.26% 0.27% 0.19% 0.00% 0.00%

26.45 29.61 25.37 11.92 127.74 2.72 402.09 233.20 176.43

Full-98 110303293 0.26% 0.26% 0.26% 0.11% 0.00% 0.00%

32.33 42.89 31.62 25.88 165.83 2.16 233.62 401.99 191.50

Full-99 110370538 0.32% 0.32% 0.32% 0.13% 0.00% 0.00%

30.26 27.25 29.00 13.92 198.68 2.02 338.91 330.48 305.54

lii



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

Full-0 99950119 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

12.79 13.46 19.38 26.20 26.72 30.85

Full-1 99952100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

11.57 11.66 21.00 28.70 29.19 27.81

Full-2 99950464 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

23.73 17.87 25.27 22.96 23.09 22.66

Full-3 99950324 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

11.95 14.77 26.53 34.88 32.62 27.34

Full-4 99950319 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

18.47 14.64 28.33 50.61 33.64 24.74

Full-5 99950320 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

16.23 13.90 32.34 32.00 35.30 39.82

Full-6 99952791 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

14.90 17.48 31.46 30.32 26.44 35.69

Full-7 99978511 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

12.63 11.75 38.16 22.38 26.45 26.68

Full-8 100210784 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

17.98 16.86 63.67 47.55 52.31 46.53

Full-9 100948603 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

15.40 16.21 55.36 37.64 50.92 33.78

Full-10 101230435 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

38.39 544.92 33.85 34.22 44.61 45.68

Full-11 101382113 0.13% 0.02% 0.00% 0.00% 0.00% 0.00%

65.72 2087.14 52.37 58.57 67.21 80.05

Full-12 102105878 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

120.96 1774.08 30.39 27.85 30.87 45.38

Full-13 101635061 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

14.78 11.95 16.67 17.99 16.74 23.98

Full-14 102874117 0.04% 0.01% 0.00% 0.00% 0.00% 0.00%

254.95 1027.00 50.64 61.38 82.95 65.69

Full-15 102626556 0.07% 0.03% 0.00% 0.00% 0.00% 0.00%

26.06 1446.98 30.67 35.34 36.66 34.85

Full-16 102658223 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

44.38 66.01 52.78 73.50 57.24 53.22

Full-17 103588498 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

586.30 2264.28 79.12 68.18 61.04 64.09

Full-18 103107136 0.04% 0.01% 0.00% 0.00% 0.00% 0.00%

42.60 717.67 38.83 41.84 42.52 44.75

Full-19 103615765 0.03% 0.01% 0.00% 0.00% 0.00% 0.00%

18.07 1788.92 53.55 36.89 41.24 38.81

Full-20 103382324 0.08% 0.02% 0.00% 0.00% 0.00% 0.00%

24.36 729.66 43.71 36.64 41.91 67.58

Full-21 103531568 0.03% 0.03% 0.00% 0.00% 0.00% 0.00%

13.67 300.00 41.33 38.46 38.92 41.36

Full-22 103989391 0.22% 0.01% 0.00% 0.00% 0.00% 0.00%

29.75 1742.55 54.44 52.27 51.87 56.22

Full-23 103842546 0.04% 0.03% 0.00% 0.00% 0.00% 0.00%

17.17 572.28 32.97 34.32 31.26 35.22

Full-24 104727560 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

122.45 1127.84 46.75 52.36 60.74 49.27

liii



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

Full-25 104419774 0.09% 0.03% 0.00% 0.00% 0.00% 0.00%

41.98 1645.45 39.41 37.67 44.30 46.19

Full-26 104695072 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

542.49 1712.39 64.45 63.55 62.02 54.79

Full-27 104571556 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

39.56 25.13 55.70 45.21 55.81 44.68

Full-28 104832909 0.18% 0.01% 0.00% 0.00% 0.00% 0.00%

26.03 1789.38 58.89 53.46 56.80 54.92

Full-29 104733344 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

26.90 509.12 76.42 51.36 59.03 58.43

Full-30 105063205 0.01% 0.05% 0.00% 0.00% 0.00% 0.00%

115.09 1078.33 80.92 68.10 67.48 65.95

Full-31 105108478 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

21.94 396.33 51.55 80.43 105.21 82.76

Full-32 105425737 0.07% 0.01% 0.00% 0.00% 0.00% 0.00%

215.03 2875.04 90.49 102.37 79.97 91.77

Full-33 105298999 0.13% 0.02% 0.00% 0.00% 0.00% 0.00%

27.23 3213.59 81.93 88.73 85.43 89.49

Full-34 105177415 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

95.94 706.19 48.65 51.89 53.37 57.05

Full-35 105399665 0.11% 0.03% 0.00% 0.00% 0.00% 0.00%

35.20 2119.91 58.01 60.66 58.55 61.49

Full-36 105636810 0.06% 0.01% 0.00% 0.00% 0.00% 0.00%

301.36 4587.69 65.98 71.17 70.32 63.58

Full-37 105879289 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

804.58 3208.55 104.39 108.28 115.77 113.89

Full-38 105779654 0.09% 0.01% 0.00% 0.00% 0.00% 0.00%

36.70 1267.60 71.08 53.33 65.19 59.12

Full-39 105971166 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

247.63 819.93 93.60 150.25 132.10 126.43

Full-40 106222815 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

414.72 4483.03 81.36 73.07 82.67 73.70

Full-41 106561264 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

412.67 4886.97 86.27 90.31 95.74 85.76

Full-42 106746217 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

3447.71 7247.01 146.03 123.25 129.94 127.06

Full-43 106512301 0.07% 0.03% 0.00% 0.00% 0.00% 0.00%

27.92 1249.11 76.41 78.90 113.04 80.31

Full-44 106408488 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

687.46 3452.16 106.00 108.12 87.84 95.67

Full-45 106668481 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

1496.07 3580.22 106.38 116.97 99.97 116.64

Full-46 106899314 0.05% 0.01% 0.00% 0.00% 0.00% 0.00%

193.64 4971.98 71.72 68.04 84.02 85.31

Full-47 106945452 0.05% 0.01% 0.00% 0.00% 0.00% 0.00%

691.75 4797.06 96.36 92.07 93.96 99.68

Full-48 107319900 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

47.71 586.24 72.63 76.17 83.94 83.48

Full-49 107499600 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

483.52 4061.86 263.68 232.19 236.13 225.81

liv



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

Full-50 107599670 0.06% 0.05% 0.00% 0.00% 0.00% 0.00%

3215.40 7206.65 291.44 243.89 371.49 268.01

Full-51 107654237 0.07% 0.04% 0.00% 0.00% 0.00% 0.00%

2985.16 7200.59 158.63 174.93 162.16 180.13

Full-52 107347315 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

106.08 1659.50 87.49 89.91 116.80 82.55

Full-53 107629820 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

2979.72 7254.48 148.82 136.31 173.78 151.74

Full-54 107709781 0.04% 0.02% 0.00% 0.00% 0.00% 0.00%

1929.38 7244.02 159.98 161.71 141.87 164.23

Full-55 107603587 0.04% 0.03% 0.00% 0.00% 0.00% 0.00%

223.57 2287.77 81.90 71.38 98.11 80.14

Full-56 107835481 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

2427.45 4714.15 130.91 127.43 134.57 119.77

Full-57 108204009 0.04% 0.02% 0.00% 0.00% 0.00% 0.00%

39.05 1723.92 61.58 77.32 77.65 79.70

Full-58 108260976 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

520.70 4044.33 215.01 185.51 186.31 216.30

Full-59 108344093 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

3408.55 7211.28 128.24 171.61 167.43 144.61

Full-60 108359891 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

919.51 4532.35 114.05 109.99 110.62 125.45

Full-61 108470640 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

882.54 3383.40 103.34 101.91 110.21 125.08

Full-62 108091600 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

282.37 4580.11 65.86 57.77 58.62 62.41

Full-63 107854681 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

23.86 27.94 50.15 47.58 55.17 47.70

Full-64 108355427 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

5558.77 7272.35 310.23 311.62 344.46 342.85

Full-65 108301483 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

302.10 4383.85 111.68 103.35 114.80 101.18

Full-66 108562860 0.02% 0.04% 0.00% 0.00% 0.00% 0.00%

7206.39 7228.66 303.57 3784.73 439.34 1122.10

Full-67 109027223 0.01% 0.08% 0.00% 0.00% 0.00% 0.00%

4152.86 7230.01 222.42 295.29 319.19 265.82

Full-68 109071187 0.01% 0.06% 0.00% 0.00% 0.00% 0.00%

7270.69 7277.82 324.19 507.28 628.58 506.00

Full-69 108966429 0.01% 0.08% 0.00% 0.00% 0.00% 0.00%

2450.80 7252.83 322.06 359.92 470.47 406.88

Full-70 108739438 0.02% 0.02% 0.00% 0.00% 0.00% 0.00%

52.77 2295.97 113.74 76.05 70.32 70.94

Full-71 109017680 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%

7221.35 5640.09 247.33 290.73 447.50 385.16

Full-72 108811565 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

1069.37 7253.35 127.16 122.72 173.70 139.00

Full-73 109039618 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

2726.24 7279.50 175.68 320.34 388.82 313.90

Full-74 109482028 0.02% 0.09% 0.00% 0.00% 0.00% 0.00%

7206.59 7270.35 727.72 2183.64 1455.99 3246.13

lv



NDO master (PShull)

Instance Exact Bundle Volume /0 `1 `• `1 + `•

Full-75 109394833 0.02% 0.06% 0.01% 0.01% 0.01% 0.01%

5794.65 7254.26 322.45 3166.46 673.15 4502.90

Full-76 109481987 0.02% 0.11% 0.00% 0.00% 0.00% 0.00%

7161.66 7273.16 311.91 314.32 315.19 363.39

Full-77 109349348 0.01% 0.04% 0.00% 0.00% 0.00% 0.00%

5819.68 7236.55 340.47 299.72 316.75 302.88

Full-78 109242830 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

231.11 3401.80 151.89 167.21 186.00 139.84

Full-79 109292026 0.01% 0.08% 0.00% 0.00% 0.00% 0.00%

7223.10 7229.98 314.15 470.42 742.49 588.76

Full-80 109418679 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

3240.60 7240.92 218.27 257.24 217.41 239.79

Full-81 109418342 0.05% 0.05% 0.00% 0.00% 0.00% 0.00%

1774.88 7239.52 179.95 174.21 148.29 182.19

Full-82 109596968 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

3707.80 7186.73 236.10 248.59 223.39 235.51

Full-83 109572186 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

1762.61 4908.27 189.62 231.54 204.21 187.87

Full-84 109948400 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

7223.71 6276.61 469.33 471.93 472.19 487.73

Full-85 109898382 0.01% 0.09% 0.00% 0.00% 0.00% 0.00%

7291.31 7213.35 271.89 304.75 289.23 281.20

Full-86 109789890 0.01% 0.04% 0.00% 0.00% 0.00% 0.00%

5072.46 7217.27 180.53 181.57 191.14 173.04

Full-87 109734474 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

659.91 5753.04 184.08 163.81 186.18 177.35

Full-88 109862389 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

449.76 6181.58 217.36 241.82 235.24 198.58

Full-89 109738695 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

516.71 5004.32 157.49 133.81 169.94 138.34

Full-90 109715464 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

145.02 1007.22 82.47 88.62 100.64 119.43

Full-91 110010434 0.03% 0.12% 0.01% 0.01% 0.01% 0.01%

7270.26 7214.58 397.32 548.29 649.41 550.48

Full-92 109950201 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

851.99 5096.60 112.06 110.51 116.57 101.81

Full-93 110133703 0.13% 0.03% 0.00% 0.00% 0.00% 0.00%

1629.07 7287.18 348.38 420.14 379.42 337.47

Full-94 110201145 0.00% 0.03% 0.00% 0.00% 0.00% 0.00%

3775.72 7249.07 277.64 338.46 539.20 393.42

Full-95 110312649 0.04% 0.04% 0.00% 0.00% 0.00% 0.00%

7288.89 7255.17 391.13 551.73 523.54 509.22

Full-96 110287755 0.01% 0.04% 0.00% 0.00% 0.00% 0.00%

7203.71 7286.30 382.43 474.71 406.77 477.71

Full-97 110306919 0.01% 0.01% 0.00% 0.00% 0.00% 0.00%

2309.40 5100.76 209.47 166.75 168.75 155.91

Full-98 110303293 0.01% 0.03% 0.00% 0.00% 0.00% 0.00%

2142.36 7300.24 234.50 236.77 222.91 202.21

Full-99 110370538 0.01% 0.02% 0.00% 0.00% 0.00% 0.00%

3600.26 7232.89 261.29 292.36 255.41 269.53
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Appendix VI

Bound strengths (gap %) and computation times (s) for industrial instances

Negative gaps indicate improvement on the lower or upper bound computed by the

parallel branch-and-cut of CPLEX after 4 hours. Times are wallclock (real) times with

24 cores available. Results for (Mhull) correspond to the warm-started simplex. Tables

of results for the two Lagrangian decomposition duals follow.

MIP (4h) Lower bounds (M) Lagrangian heuristic (10 min) MIP (10 min) Lagrangian heuristic (15 min) MIP (15 min)

Instances Lower Upper weak strong hull Subproblem Warm start Primal Lower Upper Subproblem Warm start Primal Lower Upper

S(1,1, 1
2 ) 48644591 48649454 16.26% 2.34% 1.08% 2.34% 1.08% 0.77% -0.00% 0.00% 2.34% 1.08% 0.77% 0.03% 0.00%

0.02 0.06 2.33 0.06 2.23 300.02 31.75 31.75 0.06 2.23 450.01 900.02 900.02

S(1,1,1) 48389175 48394013 22.08% 2.36% 1.14% 2.36% 1.14% 0.62% 0.03% 0.00% 2.36% 1.14% 0.62% 0.00% 0.00%

0.02 0.06 1.18 0.04 1.44 300.01 600.01 600.01 0.05 1.45 450.01 623.07 623.07

S(1,2, 1
2 ) 47803225 47807847 21.72% 1.37% 0.51% 1.37% 0.51% 0.00% 0.00% 0.00% 1.37% 0.51% 0.00% -0.00% 0.00%

0.02 0.05 0.98 0.05 0.86 0.17 0.92 0.92 0.05 0.85 2.01 0.92 0.92

S(1,2,1) 47378693 47382376 27.39% 1.21% 0.42% 1.21% 0.42% 0.00% 0.00% 0.00% 1.21% 0.42% 0.00% 0.00% 0.00%

0.02 0.04 0.38 0.05 0.39 0.11 0.79 0.79 0.05 0.37 0.16 0.85 0.85

S(2,1, 1
2 ) 58643592 58649454 13.99% 1.94% 0.89% 1.94% 0.89% 0.15% -0.00% 0.00% 1.94% 0.89% 0.15% 0.00% 0.00%

0.01 0.06 2.40 0.05 1.91 300.01 29.36 29.36 0.05 1.89 450.02 59.57 59.57

S(2,1,1) 58388177 58394013 19.26% 1.96% 0.94% 1.96% 0.94% 0.00% 0.00% 0.00% 1.96% 0.94% 0.00% 0.00% 0.00%

0.02 0.06 1.15 0.05 1.13 0.40 89.44 89.44 0.05 1.10 0.69 183.91 183.91

S(2,2, 1
2 ) 57804594 57807847 18.66% 1.14% 0.43% 1.14% 0.43% 0.00% -0.00% 0.00% 1.14% 0.43% 0.00% 0.00% 0.00%

0.02 0.06 0.89 0.05 0.55 0.18 1.08 1.08 0.05 0.53 0.16 0.96 0.96

S(2,2,1) 57377611 57382376 23.81% 1.00% 0.34% 1.00% 0.34% 0.00% -0.01% 0.00% 1.00% 0.34% 0.00% -0.01% 0.00%

0.01 0.04 0.43 0.05 0.48 0.10 1.01 1.01 0.05 0.48 0.09 2.25 2.25

MIP (4h) Lower bounds (M) Lagrangian heuristic (10 min) MIP (10 min) Lagrangian heuristic (15 min) MIP (15 min)

Instances Lower Upper weak strong hull Subproblem Warm start Primal Lower Upper Subproblem Warm start Primal Lower Upper

M(1,1, 1
2 ) 81612004 81874987 12.85% 1.28% 0.74% 1.28% 0.76% 0.00% 0.44% 0.08% 1.28% 0.75% 0.01% 0.40% 0.02%

0.22 20.06 144.80 0.93 295.09 300.06 600.07 600.07 0.93 445.26 450.05 900.06 900.06

M(1,1,1) 79917612 79969202 18.49% 1.08% 0.65% 1.08% 0.65% 0.00% 0.16% 0.00% 1.08% 0.65% 0.00% 0.17% 0.02%

0.19 6.50 93.55 0.84 48.55 300.04 600.06 600.06 0.84 48.60 450.04 900.05 900.05

M(1,2, 1
2 ) 77286934 77416633 16.59% 1.14% 0.70% 1.14% 0.70% 0.00% 0.39% 0.08% 1.14% 0.70% 0.03% 0.26% 0.04%

0.23 13.61 116.50 1.24 294.15 300.05 600.04 600.04 1.25 386.08 450.04 900.06 900.06

M(1,2,1) 75977348 75984944 22.27% 1.04% 0.61% 1.04% 0.61% 0.00% 0.07% 0.00% 1.04% 0.61% 0.00% 0.09% 0.00%

0.19 3.04 100.05 1.04 142.36 300.20 600.06 600.06 1.04 197.94 450.04 900.08 900.08

M(2,1, 1
2 ) 92595876 92874987 11.29% 1.11% 0.62% 1.11% 0.64% 0.00% 0.26% 0.03% 1.11% 0.63% 0.01% 0.12% 0.00%

0.21 12.36 160.00 1.36 294.96 300.07 600.08 600.08 1.37 445.16 450.06 900.07 900.07

M(2,1,1) 90960107 90969202 16.29% 0.99% 0.57% 0.99% 0.57% 0.00% 0.13% 0.00% 0.99% 0.57% 0.00% 0.19% 0.01%

0.20 5.16 116.58 1.11 137.77 300.05 600.07 600.07 1.12 140.56 450.04 900.08 900.08

M(2,2, 1
2 ) 87990196 88064952 14.24% 1.43% 0.96% 1.43% 0.99% 0.02% 0.60% 0.03% 1.43% 0.97% 0.00% 0.51% 0.03%

0.24 11.65 128.96 1.33 295.20 300.10 600.06 600.06 1.34 444.75 450.05 900.05 900.05

M(2,2,1) 86560526 86573008 19.47% 1.34% 0.90% 1.34% 0.90% 0.00% 0.19% 0.05% 1.34% 0.90% 0.00% 0.22% 0.01%

0.20 2.20 89.62 1.14 295.47 300.04 600.05 600.05 1.13 294.64 450.04 900.06 900.06



MIP (4h) Lower bounds (M) Lagrangian heuristic (10 min) MIP (10 min) Lagrangian heuristic (15 min) MIP (15 min)

Instances Lower Upper weak strong hull Subproblem Warm start Primal Lower Upper Subproblem Warm start Primal Lower Upper

L(1,1, 1
2 ) 104294318 106288388 10.39% 1.21% 0.39% 1.21% 0.62% 0.00% 0.07% 1.70% 1.21% 0.54% 0.00% 0.11% 2.14%

0.79 173.68 1596.76 8.63 266.36 300.16 600.60 600.60 8.58 415.86 450.18 900.19 900.19

L(1,1,1) 102083120 102740054 16.17% 1.35% 0.46% 1.35% 0.75% 0.25% 0.41% 0.67% 1.35% 0.57% 0.45% 0.26% 0.63%

0.99 115.26 998.33 4.77 276.43 300.13 600.23 600.23 4.70 424.93 450.13 900.23 900.23

L(1,2, 1
2 ) 95960111 97148978 11.99% 1.11% 0.51% 1.11% 0.64% 0.07% 0.08% 0.54% 1.11% 0.63% 0.05% 0.08% 0.55%

0.88 128.00 1363.33 6.18 264.20 300.21 600.35 600.35 9.93 411.85 450.14 900.23 900.23

L(1,2,1) 94218226 94912559 18.54% 1.29% 0.56% 1.29% 0.73% 0.00% 0.15% 0.30% 1.29% 0.73% 0.00% 0.13% 0.20%

1.56 125.73 877.76 9.34 264.15 300.16 600.31 600.31 8.64 416.81 450.13 900.13 900.13

L(2,1, 1
2 ) 116154927 117959416 9.02% 0.97% 0.21% 0.97% 0.39% 0.01% 0.05% 0.22% 0.97% 0.33% 0.00% -0.00% 0.27%

0.93 194.35 1411.73 6.55 266.99 300.18 602.37 602.37 6.65 416.23 450.18 901.84 901.84

L(2,1,1) 114146561 114740054 14.49% 1.26% 0.50% 1.26% 0.65% 0.10% 0.35% 1.12% 1.26% 0.60% 0.00% 0.34% 0.64%

1.04 49.91 1109.20 8.75 268.72 300.15 600.12 600.12 8.58 417.78 450.14 900.23 900.23

L(2,2, 1
2 ) 107586189 109218948 10.19% 0.80% 0.16% 0.80% 0.46% 0.25% -0.02% 0.74% 0.80% 0.41% 0.08% 0.08% 2.18%

1.77 195.08 1223.82 12.57 257.90 300.16 600.91 600.91 26.21 394.08 450.16 900.31 900.31

L(2,2,1) 105459522 106440038 16.04% 0.97% 0.24% 0.97% 0.46% 0.12% 0.11% 0.67% 0.97% 0.38% 0.08% 0.20% 1.38%

3.26 75.42 918.10 31.84 242.23 300.12 600.30 600.30 11.17 412.18 450.15 900.14 900.14

MIP (4h) Lower bounds (M) Lagrangian heuristic (10 min) MIP (10 min) Lagrangian heuristic (15 min) MIP (15 min)

Instances Lower Upper weak strong hull Subproblem Warm start Primal Lower Upper Subproblem Warm start Primal Lower Upper

F(1,1, 1
2 ) 124630445 127415589 11.48% 0.53% 0.04% 0.53% 0.50% 0.00% 0.12% 3.72% 0.53% 0.39% 0.10% 0.10% 2.52%

6.81 771.48 12875.34 57.96 102.94 300.26 601.57 601.57 70.90 255.21 450.55 900.35 900.35

F(1,1,1) 121237220 123044513 17.60% 0.49% 0.08% 0.49% 0.40% 0.37% 0.16% 1.66% 0.49% 0.35% 0.00% 0.09% 1.40%

11.37 461.46 5777.52 53.56 94.50 300.29 600.53 600.53 53.29 249.79 450.37 900.36 900.36

F(1,2, 1
2 ) 112693766 114986432 13.51% 0.50% 0.02% 0.50% 0.49% 0.84% 0.23% 4.95% 0.50% 0.45% 0.15% 0.23% 4.68%

5.68 766.29 9763.50 47.48 84.82 300.34 601.09 601.09 47.00 237.54 450.30 902.40 902.40

F(1,2,1) 110448574 112450491 20.21% 0.45% -0.07% 0.45% 0.43% 0.00% 0.17% 2.33% 0.45% 0.39% 0.00% 0.02% 2.63%

10.58 503.51 5513.47 71.40 75.97 300.25 600.30 600.30 71.80 231.19 450.34 900.47 900.47

F(2,1, 1
2 ) 137192665 140015862 9.73% 0.44% 0.04% 0.49% 0.49% 0.47% 0.29% 4.84% 0.44% 0.34% 0.27% 0.07% 4.12%

11.01 650.43 14418.69 133.86 0.00 300.28 601.07 601.07 140.43 153.25 450.31 900.49 900.49

F(2,1,1) 133113038 134475487 15.07% 0.63% 0.21% 0.63% 0.57% 0.00% 0.22% 1.12% 0.63% 0.46% 0.00% 0.16% 1.87%

6.81 290.15 5585.90 89.12 74.80 300.33 601.33 601.33 89.16 227.51 450.39 900.40 900.40

F(2,2, 1
2 ) 124970860 127606690 10.99% 0.39% -0.10% 0.39% 0.39% 0.10% 0.16% 2.52% 0.39% 0.34% 0.00% 0.08% 2.72%

8.69 901.65 11254.22 107.89 20.15 300.21 600.54 600.54 110.19 172.64 450.35 900.61 900.61

F(2,2,1) 121957537 123546643 17.15% 0.48% -0.06% 0.48% 0.46% 0.00% 0.22% 1.81% 0.48% 0.36% 0.00% 0.23% 1.01%

18.81 454.92 4792.30 90.42 43.91 300.31 600.47 600.47 90.80 198.35 450.71 900.55 900.55
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Instance MIP (4h) Lower bounds (300 sec) Lower bounds (450 sec)

(Lower bound) Bundle Volume Warm start Bundle Volume Warm start

S(1,1, 1
2 ) 48644591 1.12% 1.14% 1.08% 1.11% 1.14% 1.08%

300.00 5.06 2.79 450.00 5.10 2.60

S(1,1,1) 48389175 1.17% 1.21% 1.14% 1.16% 1.21% 1.14%

300.01 5.63 1.82 450.01 5.58 1.85

S(1,2, 1
2 ) 47803226 0.55% 0.52% 0.51% 0.55% 0.52% 0.51%

66.37 4.94 1.24 67.08 4.91 1.44

S(1,2,1) 47378694 0.50% 0.46% 0.42% 0.50% 0.46% 0.42%

11.48 3.99 0.83 11.41 3.97 0.82

S(2,1, 1
2 ) 58643592 0.92% 0.94% 0.89% 0.91% 0.94% 0.89%

300.01 5.55 2.35 450.00 5.65 2.27

S(2,1,1) 58388178 0.96% 1.00% 0.94% 0.95% 1.00% 0.94%

300.01 4.60 1.51 344.18 4.58 1.58

S(2,2, 1
2 ) 57804595 0.45% 0.45% 0.43% 0.45% 0.45% 0.43%

71.91 4.54 0.98 71.66 4.56 1.02

S(2,2,1) 57377611 0.41% 0.37% 0.34% 0.41% 0.37% 0.34%

12.16 3.99 1.01 12.35 3.88 1.01

Instance MIP (4h) Lower bounds (300 sec) Lower bounds (450 sec)

(Lower bound) Bundle Volume Warm start Bundle Volume Warm start

M(1,1, 1
2 ) 81612005 0.93% 0.86% 0.76% 0.92% 0.86% 0.75%

300.08 277.89 300.07 450.04 293.48 449.97

M(1,1,1) 79917613 0.78% 0.68% 0.65% 0.76% 0.68% 0.65%

300.03 224.38 52.76 450.02 212.67 52.69

M(1,2, 1
2 ) 77286935 1.12% 0.88% 0.70% 1.11% 0.85% 0.70%

300.02 301.77 299.95 450.06 450.16 391.84

M(1,2,1) 75977349 0.73% 0.71% 0.61% 0.72% 0.71% 0.61%

300.03 205.47 147.33 450.03 199.81 202.96

M(2,1, 1
2 ) 92595877 0.76% 0.72% 0.64% 0.76% 0.72% 0.63%

300.07 212.06 300.04 450.06 205.43 450.25

M(2,1,1) 90960108 0.63% 0.61% 0.57% 0.62% 0.61% 0.57%

300.05 270.56 142.22 450.01 268.74 145.09

M(2,2, 1
2 ) 87990196 1.42% 1.11% 0.99% 1.42% 1.11% 0.97%

300.04 297.01 300.41 450.05 288.45 450.01

M(2,2,1) 86560526 1.04% 1.01% 0.90% 1.02% 1.01% 0.90%

300.03 243.61 300.14 450.03 255.51 299.30

Instance MIP (4h) Lower bounds (300 sec) Lower bounds (450 sec)

(Lower bound) Bundle Volume Warm start Bundle Volume Warm start

L(1,1, 1
2 ) 104294319 1.21% 1.08% 0.62% 1.21% 1.00% 0.54%

300.18 305.47 297.04 450.16 464.60 446.93

L(1,1,1) 102083121 0.78% 1.19% 0.75% 0.73% 1.19% 0.57%

300.20 320.30 299.45 450.14 455.70 447.97

L(1,2, 1
2 ) 95960112 1.11% 0.99% 0.64% 1.11% 0.98% 0.63%

300.18 300.46 297.24 450.19 459.64 448.28

L(1,2,1) 94218226 0.88% 1.09% 0.73% 0.83% 1.10% 0.73%

300.18 305.92 297.98 450.12 450.71 450.26

L(2,1, 1
2 ) 116154928 0.97% 0.80% 0.39% 0.97% 0.76% 0.33%

300.21 301.09 296.72 450.15 451.19 446.53

L(2,1,1) 114146562 0.77% 1.00% 0.65% 0.73% 1.00% 0.60%

300.04 309.83 298.28 450.16 458.75 447.17

L(2,2, 1
2 ) 107586189 0.80% 0.67% 0.46% 0.80% 0.66% 0.41%

300.06 301.04 296.56 450.06 455.34 446.50

L(2,2,1) 105459523 0.97% 0.90% 0.46% 0.96% 0.81% 0.38%

300.23 300.67 299.65 450.16 459.81 448.43

lix



Instance MIP (4h) Lower bounds (300 sec) Lower bounds (450 sec)

(Lower bound) Bundle Volume Warm start Bundle Volume Warm start

F(1,1, 1
2 ) 124630446 0.53% 0.52% 0.50% 0.52% 0.46% 0.39%

300.32 300.54 298.66 450.32 450.10 464.29

F(1,1,1) 121237220 0.49% 0.48% 0.40% 0.49% 0.41% 0.35%

300.16 301.02 299.50 450.24 462.84 455.21

F(1,2, 1
2 ) 112693767 0.50% 0.50% 0.49% 0.50% 0.47% 0.45%

300.25 300.36 297.93 450.46 451.96 450.71

F(1,2,1) 110448575 0.45% 0.45% 0.43% 0.45% 0.43% 0.39%

300.35 301.17 296.20 450.49 450.37 452.73

F(2,1, 1
2 ) 137192665 0.44% 0.43% 0.49% 0.44% 0.32% 0.34%

300.09 300.18 286.74 450.15 452.52 447.16

F(2,1,1) 133113039 0.58% 0.56% 0.57% 0.55% 0.53% 0.46%

300.14 300.70 299.43 450.23 450.40 453.66

F(2,2, 1
2 ) 124970861 0.39% 0.39% 0.39% 0.39% 0.30% 0.34%

300.78 300.37 295.26 450.27 452.41 449.97

F(2,2,1) 121957538 0.48% 0.47% 0.46% 0.48% 0.32% 0.36%

300.36 300.11 295.80 450.14 452.50 450.58

lx


