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Résumé 

Des études animales ont montré que l’exposition du fœtus à l’adversité affecte le 

développement cérébral et la régulation d’émotions plus tard. Cette régulation serait reliée aux 

changements structurels cérébraux, particulièrement au circuit fronto-limbique. Cependant, ces 

résultats n’ont pas été entièrement répliqués chez l’humain. Le but de cette étude était de tester 

si l'adversité précoce conduit à des altérations structurelles des régions (orbitofrontal, 

préfrontal, cingulaire) fronto-limbiques, identifiées comme régions-clés dans la (de)régulation 

d’émotions. Les mesures principales de l’adversité étaient un poids léger à la naissance et 

l’hostilité maternelle puisqu’ils étaient parmi les plus prédictifs des résultats 

développementaux et comportementaux chez l’humain. Les mesures secondaires, incluant le 

tempérament difficile d’enfant et l’impulsivité en adolescence, étaient utilisées du à leur lien 

avec le développement cérébral et émotionnel. Les participants étaient des jumeaux identiques, 

membres de l’Étude des Jumeaux Nouveau-nés du Québec (ÉJNQ, N = 650 paires) suivis 

depuis 5 mois à 15 ans, leur âge actuel. Ceci a permis de mieux contrôler le facteur génétique 

et ainsi mieux isoler les effets d’environnement. Trente-sept paires ont été recrutées. La 

structure cérébrale de chacun, obtenue avec l’imagerie par résonance magnétique, a été 

analysée avec la régression linéaire. Le poids à la naissance n’a eu aucun effet. L’hostilité 

maternelle a prédit une réduction de l’aire du gyrus cingulaire postérieur.  Tempérament 

difficile a prédit une réduction de l’aire du cortex orbitofrontal. L’impulsivité était associée 

avec l’aire et volume du cortex préfrontal réduits. Ces résultats soulignent l’importance des 

interventions précoces afin d’empêcher des altérations menant à la psychopathologie. 

Mots-clés : adversité, cerveau, structure, développement 

 

 

 

 

 



 

 

iv

 

Abstract 

Animal studies have shown that fetal exposure to adversity affects brain development 

and emotion regulation later on. Emotion regulation would be related to a structural change in 

the brain, particularly the fronto-limbic circuitry. However, results have not been entirely 

confirmed in humans. The purpose of the present study was to test whether early adversity 

leads to structural changes in the fronto-limbic (prefrontal, orbitofrontal and cingulate) 

regions, previously identified as key areas in emotion (dys)regulation. Main measures of 

adversity were low birth weight and maternal hostility because these were among the best 

predictors of developmental and behavioral outcomes in humans. Secondary measures, 

including difficult child temperament and adolescent impulsivity, were used because of their 

link with brain and emotion development. Participants were identical twins part of Quebec 

Study of Newborn Twins (QSNT, N = 650 pairs), followed from 5 months to 15 years, their 

current age. Using identical twins allowed to better control the genetic factors and, thus, to 

better isolate the specific effects of early environment. Thirty-seven pairs have been recruited. 

Each twin’s brain structure was assessed with magnetic resonance imaging and analyzed using 

linear regression. Birth weight showed no effect on brain structure. Maternal hostility 

predicted a reduction in cortical area of posterior cingulate gyrus. Difficult child temperament 

predicted a reduction in cortical area of orbitofrontal cortex. Impulsivity was associated with 

smaller cortical area and volume in prefrontal cortex. These results highlight the importance of 

the early interventions in order to prevent the alterations leading to development of 

psychopathology. 

Keywords: adversity, brain, structure, development 

 

 

This thesis has been supported by Canadian Institutes of Health Research Master’s Award 

 

 

 

 



 

 

v

 

Table des matières 

 

IDENTIFICATION DU JURY……………………………………………………………….ii 

RÉSUMÉ EN FRANÇAIS…………………………………………………………………...iii 

ABSTRACT…………………………………………………………………………………...iv

TABLE DES MATIÈRES…………………………………………………………………….v 

LISTE DES TABLEAUX……………………………………………………………………vii 

LISTE DES FIGURES……………………………………………………………………...viii 

LISTE DES SIGLES................................................................................................................ix 

DÉDICACE................................................................................................................................x

REMERCIEMENTS…………………………………………………………………………xi

CHAPTER 1: LITERATURE REVIEW…………………………………………………….1

 1.1 Introduction…………………...…………………………………………………...1

 1.2 Role of early environment in brain development ……………………………….2

 1.3 Serotonin and brain development………………………………………...............2

 1.4 Neural basis of emotion regulation……………………………………………….3

 1.5 Serotonin and neural basis of emotion regulation................................................5

 1.6 Animal and human models………………………………………………………..6

 1.7 Effects of environmental adversity on brain…………………………………….8

  1.7.1 Brain function……………………………………………………………..8

  1.7.2 Brain structure……………………………………………………….........9

  1.7.3 Brain chemistry………………………………………………………….10

 1.8 Epigenetics……………………………………………………………………......11

  1.8.1 Genome versus epigenome………………………………………………11

  1.8.2 Histone acetylation....................................................................................12

  1.8.3 DNA methylation…………………………………………………..........12

 1.9 Epigenetics and mental health…………………………………………………..14

 1.10 Overall aim and rationale of the study………………………………………...16

 1.11 Primary aim and hypothesis…………………………………………………...19

 1.12 Secondary aim and hypothesis…………………………………………………19 



 

 

vi

 

CHAPTER 2: METHODS…………………………………………………………………..21

 2.1 Participants.………………………..………………….…………………………21

  2.1.1 QSNT cohort………………………………………………………….....21

 2.2 Current sample…………………………………………………………………..22

  2.2.1 Inclusion criteria…………………………………………………………22

  2.2.2 Exclusion criteria…………………………………………………….......23

 2.3 Procedure…………………………………………………………………………23

  2.3.1 Phone pre-screening……………………………………………………..23

  2.3.2  Screening……………………………………………………………......23

  2.3.3 Questionnaires...........................................................................................24

  2.3.4 Computerized task……………………………………………………...24

  2.3.5 Brain imaging……………………………………………………………25

  2.3.6 Statistics………………………………………………………………….25 

   2.3.6.1 Cortical measures……………………………………………...25 

   2.3.6.2 Adversity measures……………………………………………26 

   2.3.6.3 Within-pair analysis…………………………………………...28 

CHAPTER 3: RESULTS……………………………………………………………...…… 29 

 3.1 Characteristics of the sample……………………………………………………29

 3.2 Primary hypothesis………………………………………………………………31

  3.2.1 Birth weight……………………………………………………………...31

  3.2.2 Maternal hostility………………………………………………………..31 

 3.3 Secondary hypothesis…………………………………………………………….32

  3.3.1 Difficult child temperament……………………………………………..32

  3.3.2 Aggression and hyperactivity……………………………………………33

  3.3.3 Impulsivity……………………………………………………………….33 

CHAPTER 4: DISCUSSION………………………………………………………………. 36

 4.1 Limitations and Forces…………………………………………………...……...39

  4.1.1 Limitations………………...……………………………………………..39

  4.1.2 Forces……………………………………………………………………40

 4.2 Implications and future directions……………………………………………...41 

BIBLIOGRAPHIE….………………………………………………………………………..42 



 

 

vii

 

 

Liste des tableaux 

 

3.I Adversity characteristics table……………………………………………………………..29 

3.II Behavior characteristics table…………………………………………………………….29 

3.III Results of whole-brain level analysis……………………………………………………30 

3.IV Results of frontal-level analysis…………………………………………………………30



 

 

viii

 

Liste des figures 

 

3.1 Cortical surface area related to maternal hostility………………………………………...32 

3.2 Cortical surface area related to difficult child temperament………………………………33 

3.3 Cortical surface area related to impulsivity……………………………………………….34 

3.4 Cortical volume related to impulsivity……………………………………………………35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ix

 

Liste des sigles 

 

5-HT     Serotonin 

5-HTT   Serotonin transporter 

ACC   Anterior Cingulate Cortex 

ADHD   Attention Deficit Hyperactivity Disorder 

ATD   Acute Tryptophan Depletion 

CpG     Cytosine-phosphate-Guanine 

dlPFC   dorsolateral Prefrontal Cortex 

fMRI   functional Magnetic Resonance Imaging 

Kiddie-SADS   Kiddie Schedule for Affective Disorders and Schizophrenia 

LG     Licking and Grooming 

MRI     Magnetic Resonance Imaging 

OFC     Orbitofrontal Cortex 

PET     Positron Emission Tomography 

PCC     Posterior Cingulate Cortex 

PFC     Prefrontal Cortex 

PTSD     Post-Traumatic Stress Disorder 

ROI     Region Of Interest 

SST     Stop Signal Task 

VLBW    Very Low Birth Weight 

vlPFC    ventrolateral Prefrontal Cortex 

vmPFC    ventromedial Prefrontal Cortex 

VPT     Very Pre-Term 

 

 

 



 

 

x

 

 

À ma merveilleuse mère qui m’a élevée avec 

l’amour et le soutien inconditionnel. 



 

 

xi

 

 Remerciements 

Cette année a été haute en défis et en accomplissements. En rétrospective, il m’est 

évident qu’elle est le fruit de belles collaborations. Je vous remercie tous d’avoir été présents, 

d’avoir cru en ce projet et en mes capacités.  

Je remercie, d’abord et surtout, ma directrice de recherche, Linda Booij, qui m’a accompagnée 

et orientée tout au long de ce projet. 

Je remercie Kevin F. Casey pour toute l’énergie et la patience dont il a fait preuve en m’aidant 

avec l’analyse des données d’imagerie cérébrale.  

Je remercie également Melissa Lévesque pour son soutien et ses conseils tout au long de ma 

maîtrise.  

Je remercie aussi Bruce Pike et son équipe de l’Institut Neurologique de Montréal, car sans 

leur aide ce projet n’aurait pas été réalisable.  

Je remercie sincèrement les trente-sept familles de jumeaux qui ont accepté de participer à 

cette recherche, ainsi que Marie-Pier, Michèle-Andrée, Floor et Miriam qui ont contribué au 

bon fonctionnement du projet.  

Enfin, je remercie toute ma famille. Je remercie particulièrement mes parents de leurs 

encouragements, de leur support et de leur amour inconditionnel.  



1 

 

 

Chapter 1  

Literature Review 

1.1 Introduction 

A great philosopher, Jean-Paul Sartre, once said that psychology can be entirely 

explained with two simple words: “childhood decides” [1]. However, there is now more and 

more evidence that behavioral and emotional development has already some roots in gestation 

and/or in the first few weeks following birth, as a consequence of brain development 

happening in utero and soon after birth. The question that immediately comes to mind is by 

what means do the in utero and early postnatal experiences shape brain development? This is 

where the notion of plasticity intervenes. Simply put, the developmental plasticity is an 

organism’s ability to adapt to the environment during early life and to implement long-lasting 

changes in the physiology [2, 3]. Thanks to this plasticity, environmental signals interact with 

the genetic blueprint to create developmental trajectories in the central nervous system, which 

in turn regulates the perception and consequent responses to the environment [4]. Even though 

organisms can adapt to the surrounding environment across the lifespan, the in utero and early 

postnatal phases are critical stages during which the environment calibrates the neural circuitry 

through various mechanisms [5]. 

 

The aim of the present thesis is to study the impact of the in utero and early postnatal 

environment on the brain circuitry in adolescence. In order to grasp how the early environment 

shapes the brain, I will first describe the role of early environment on brain development and 

potential underlying factors such the functioning of the serotonin (5-HT) system. Next, I will 

discuss the neural basis of the emotion and link it with the 5-HT system. Also, I will go over 

the existing evidence of the effects of environmental adversity on brain function, structure and 

chemistry as well as the underlying epigenetic mechanisms. After this introduction chapter, I 

will present the empirical study I conducted as part of my thesis.  

. 
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1.2 Role of early environmental factors on brain development, and potential underlying 

neurochemical factors 

The in utero and early postnatal periods are crucial for shaping the brain circuitry 

because that is when the brain is highly developing. Although the brain continues to develop 

in childhood and adolescence [6, 7], adversity occurring during the vulnerable in utero and 

early postnatal periods can alter the developmental process of the brain, including regions of 

the fronto-limbic system such as the hippocampus, amygdala and prefrontal cortex (PFC) [8, 

9]. Taking into account that the development rate varies across these brain regions, it could be 

expected that an adverse events will have the most significant impact on the region currently 

undergoing its major development [6].    
Although many neurotransmitters play a role in brain development [9], one of the most 

important organism’s neurotransmitters of the brain development process is 5-HT, which is 

known to modulate several psychological and physiological processes, such as mood, sleep 

and appetite [10]. Even though 5-HT-sensitive neurons are scattered throughout the entire 

brain, the majority is located in the raphe neurons, the afferent projections of which lead to the 

cerebellum, limbic system and the basal ganglia [11]. It is in those raphe neurons that the brain 

5-HT synthesis takes place and those serotonergic neurons are one of the earliest to emerge in 

the developing living organism. 

 

A more detailed developmental trajectory of 5-HT system in a living organism will be 

described in the following paragraph. 

 

1.3 Serotonin and brain development 

In fact, in rats, first 5-HT innervated raphe neurons are generated at only 12 days of 

gestation and the mature patterns, in terms of density and innervation of 5-HT fibers, are 

already reached at the end of the third postnatal week [11]. A similar pattern can be observed 

in the human brain, where the first 5-HT neurons become evident by five weeks of gestation 

[12]. The 5-HT levels continue to increase throughout the first two to five years of life and, 

then, gradually decrease until adult levels around the age of 14 years [13]. Since 5-HT 
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regulates the brain maturation, its amount growing into a key brain area becomes crucial for 

further development. Indeed, once 5-HT terminals have arrived into a target area, the effects 

of 5-HT on local developmental processes, including neurogenesis, neuronal removal, 

neuronal differentiation, axon myelination, as well as synaptic remodeling and maintenance, 

become apparent [14-19]. For instance, removal of 5-HT during very early fetal development 

has been shown to cause a long-lasting reduction in the number of neurons in adult rat brain, 

specifically in hippocampus and frontal cortex [17]. It becomes clear that 5-HT is not just a 

mere neurotransmitter, but that it is also decisive for the brain development [20-22]. 

Furthermore, 5-HT has been shown to be involved in individual’s self-control and emotional 

regulation [23]. Moreover, altered 5-HT neurotransmission has been shown to be involved in 

many psychiatric disorders [24]. In other words, alterations in 5-HT levels might result in 

individual’s faulty emotion regulation.  

 

1.4 Neural basis of emotion regulation 

Emotion regulation is generally defined by various processes by which we modify the 

experience and expression of our emotions in response to environmental cues [25]. This ability 

is imperative to sustain mental health, and impairments in emotion regulation are observed in 

a range of psychopathologies [26-30]. Various studies have examined the functional integrity 

of neural circuitry supporting abnormal emotion processing, which is a key feature of various 

mental illnesses. The most common procedures to examine the underlying neural mechanisms 

of emotion regulation in humans would consist of administering an emotion-processing task 

with stimuli of emotional content to subjects with (a vulnerability to) a disorder characterized 

by emotion dysregulation as well as to healthy controls during a magnetic resonance imaging 

(MRI) session and, then, comparing the neural responses to these stimuli in both groups. The 

general resulting patterns indicate altered activity in the frontal cortex and amygdala in 

response to emerging fearful, sad and angry stimuli (e.g. facial expressions) [31, 32] and, 

interestingly, an altered connectivity between the amygdala and PFC in the subjects with 

(vulnerability to) emotion dysregulation [27, 31, 33-36]. These region-specific activities are 

indicative of the fronto-limbic regulatory role in emotion processing. Besides, the anatomical 

data in monkeys has supported the notion that PFC activity modulates the amygdala, by 
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showing direct connections between the amygdala and PFC regions [37, 38]. In humans, PFC 

regions have also been linked to the down-regulation of amygdala activity [39, 40]. Additional 

human studies have found inverse correlations between activity in the amygdala and 

ventromedial prefrontal cortex (vmPFC) during emotion regulation and have demonstrated 

that the vmPFC serves as a mediator between dorsolateral PFC and the amygdala [41, 42]. 

Moreover, compared to healthy controls, subjects with disorders had significantly decreased 

volume of parahippocampal gyrus and orbitofrontal cortical (OFC) regions [43]. All these data 

suggest that the functional and structural alterations in the fronto-limbic circuitry leads to an 

altered emotion perception and further processing, thus increasing individual’s vulnerability to 

various psychopathologies [44].  

 

The processes underlying emotion perception were found to be dependent upon the 

functioning of i) the ventral system, including amygdala, insula, ventral regions of anterior 

cingulate cortex (ACC) [45] and PFC, which is mostly involved in identification of the 

emotion significance of a stimulus, production of an affective state in response to that stimulus 

and autonomic regulation of emotion responses and of ii) the dorsal system, including 

hippocampus, as well as dorsal regions of PFC and ACC, which is mainly involved in the 

regulation of the affective state and subsequent behavior of the individual [46]. Studies that 

took a closer look at all those interacting areas found that, in fact, amygdala is part of an 

extended neural network. More precisely, it has rich connections with vmPFC [38, 47, 48] and 

hippocampus [49, 50]. The vmPFC modulates the activity of the amygdala through the 

descending projections, via afferents leading to the amygdala cells that inhibit its own activity. 

Moreover, the amygdala and hippocampus co-modulate each other such that the amygdala 

influences hippocampally-mediated memory formation, while the hippocampus influences 

amygdala responses when emotional stimuli are encountered [51]. Specifically, in new 

environmental contexts, the hippocampus inhibits the vmPFC, which releases the amygdala 

from vmPFC inhibition [52]. Those three structures seem to coordinate together during 

learning and regulation of emotion and might be, thus, vulnerable altogether when responding 

emotionally to the stress-induced changes in the organism.  
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Considering the abundant presence of 5-HT receptors and innervations in amygdala [11], OFC 

and ACC [53],  these brain regions might be very sensitive to 5-HT alterations [54-74]. In the 

following paragraphs, the impact of 5-HT alteration, specifically 5-HT synthesis and 

transportation, on brain function and structure will be discussed. 

 

1.5 Serotonin and the neural basis of emotion regulation  

A lot of scientific evidence of the role of 5-HT in emotion processing comes from 

acute tryptophan depletion (ATD) studies (a method to study experimentally the effects of low 

5-HT on brain and behavior [24, 75] , that have been shown to modulate the connectivity 

between the amygdala and two prefrontal regions, namely ventral ACC and ventrolateral 

prefrontal cortex (vlPFC), when processing emotional faces on the screen [76]. In other words, 

5-HT depletion significantly affected the functioning of the cortico-limbic circuitry by 

reducing the emotion processing of emotional faces within PFC-amygdala pathways. 

 

Other evidence for the role of 5-HT in the neural regulation of emotions comes from genetic 

knockout studies in animals and from molecular imaging studies in humans. Most of these 

studies focused on the 5-HT transporter (5-HTT). The 5-HTT can be found in the median and 

dorsal raphe nuclei, cerebral cortex, as well as certain hippocampal areas [77]. The major role 

of 5-HTT consists in the reuptake of 5-HT from the extracellular space, necessary for 

modulation of the strength, duration and subsequent 5-HT neurotransmitter release [78]. For 

instance, the 5-HTT knockout mice have been found to have functional deficits in the 

somatosensory cortex [79-81]. Another genetic knockout study found a significant reduction 

in cortical thickness in 5-HTT knockout mice, compared with controls [82]. 

 

The findings of multiple molecular imaging studies, on the other hand, have indicated 

amygdala hyper-reactivity [54-64, 71, 72, 83] upon exposure to emotional stimuli, as well as a 

reduced functional connectivity between the amygdala and the perigenual cingulate cortex in 

adults with 5-HTT gene polymorphism [54]. Moreover, a decreased grey matter volume in 

fronto-limbic structures, including ACC, amygdala, hippocampus and the cingulate cortex, has 

also been observed [54, 84, 85]. These results suggest that alterations in 5-HT system may 
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alter the brain structure and function of the fronto-limbic network, in turn representing a 

vulnerability factor for affective disorders. 

 

Hence, the latter studies support the role of 5-HT genes in brain development, as well as 

emotion regulation. But what about the impact of the early environment on neural regulation 

of emotions and 5-HT function? Before going into that, it is essential to understand that 

manipulating environments experimentally is very challenging when one deals with humans. 

 

1.6 Animal and human models of studying the impact of the environment on brain and 

behavior 

Indeed, even the most accurately designed experiments involving humans are very 

rarely able to control all aspects of physical and social environment, despite the careful 

assignment of specific subjects to specific experimental conditions. Ultimately, the differences 

between subjects become clouded, and sometimes entirely masked, by interfering experiences 

that differ among subjects both within and between treatment groups [86].  

 

Research with animals, on the other hand, has allowed the experimenters to systematically 

manipulate the environment and subsequent experiences would be rigorously controlled 

throughout the entire period of investigation [86]. That is why for decades, researchers have 

employed animal models to explore the behavioral and physiological effects of early life 

adversity. 

 

Among the most frequently used early-life stress animal models, particularly in rodents, are 

interventions in mother-pup interaction time periods [87]. For instance, the central 

characteristic of the early handling paradigm [88] is a daily physical manipulation of the litter, 

where the pups are separated from the mother for a short period of time, i.e. maximum of 15 

minutes. It has been shown that this procedure, which is carried out during the first three 

weeks of life, stimulates maternal care behavior towards the offspring [89] and elicits acute 

neuroendocrine responses from the pups [90]. While the early handling stimulates maternal 

care, repeated maternal separations of the dam from the litter are meant to reduce the amount 
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of maternal care for the pups, thereby promoting emotional and physical neglect [91]. Another 

well-known early life stress measure consists in an impoverishment of the postnatal 

environment [92-95]. In this model, the mothers are provided with reduced bedding material 

from the first two postnatal weeks of their litter. This manipulation results in an inconsistent 

maternal care, in turn leading to a higher stress exposure during the first year of the offspring’s 

life.  

 

Another laboratory paradigm that comes most closely to human work involves separation 

paradigms applied in monkeys. This has involved separating infants from their mothers at 

birth, hand-rearing them in a nursery for the first month, and then rearing them with same age 

peers until 6 months of age, after which they would be moved into larger groups that also 

contain mother-reared same age mates and sometimes older adults [96]. Both peer-reared and 

mother-reared youngsters would, then, continue to live in these mixed social groups at least 

until puberty. While 6-months old youngsters would be scattered in the cage, their behaviour 

and other relevant outcome measures would be monitored for four consecutive weeks [97]. 

 

Obviously such studies are more difficult to do in humans. Most the studies in humans that 

looked at the impact of in utero or early postnatal experiences are cross-sectional and 

retrospective. In a longitudinal study design, prospective measures are prevailing over the 

retrospective measures because the former looks for forward for the outcome and relates this 

to earlier adverse or protection factors whereas the latter looks backwards by examining the 

exposure to various factors in relation to an outcome established in the beginning of the study 

and this is bound to have confounding factors. Hence, when studying the impact of adversity, 

prospective studies could shed more light on cause and effect. Furthermore, since the brain, 

behavioral and emotional development is partly under the influence of genetic factors, it is 

ideal to be able to control for genetic factors when studying the specific impact of the 

environment. Only a longitudinal monozygotic twin design following individuals as early as 

possible (e.g. since birth, or ideally since time of gestation) enables the researchers to 

distinguish environmental from confounding genetic effects since, unlike singletons, 

monozygotic twins are assumed to share one hundred percent of their genetic background  
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[98], rendering the entire design ideal for the investigation of the impact of early adverse 

environment on subsequent brain and behavioral alterations.  

 

Now comes the time to disentangle the impact of the early environment on different neuronal 

levels, including brain function, structure and chemistry, by applying some of the research 

paradigms described above. The literature reviewed further below depicts the impact on each 

of these components in animals and in humans. 

 

1.7 Effects of environmental adversity on the brain  

1.7.1 Brain function 

In male rat pups, maternal separation during neonatal period has been associated with 

various functional differences, most notably the atypical decrease of the activity of the 

hippocampus functioning [89] and a greater amygdala response to stress, even once the 

rodents have reached the adulthood [99]. Obviously, such controlled experiments are 

impossible to do so in humans. However, a design that comes somewhat close to such 

maternal separation paradigms are studies conducted in orphans. Indeed, studying the 

emotional development of children who had been institutionalized during infancy and, then, 

subsequently removed from this environment allows us to ask questions regarding the long-

term correlates of early adversity in a human sample. For instance, in a functional magnetic 

resonance imaging (fMRI) study, 10 years-old children, who have been in an orphanage care 

in their childhood, exhibited a heightened activity of the amygdala in response to impulsivity 

task, comparatively to children who have never been institutionalized [100, 101]. In another 

fMRI study, children aged from 8 to 18 years, with a history of emotional neglect and lack of 

maternal care, showed significantly greater amygdala activity in response to emotion-

processing task [102]. It becomes clear that lack of a stable caregiver is a stressor for the 

animal and human infants. Taken together, these findings suggest that early adverse caregiving 

is followed by differences in brain activity, particularly in limbic regions, that can persist into 

childhood.  

 

1.7.2 Brain structure  
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Rats, which were repeatedly separated from their mothers early in life, exhibited 

growth of basolateral amygdala dendrites, as well as shrinkage of the PFC and of the 

hippocampus in CA3 and dentate gyrus [103]. Moreover, the rodents reared under those high-

stress conditions have been found to have fewer number of cells that differentiated into 

neurons in dentate gyrus of the hippocampus [104]. Analogously, in macaques reared solely 

by peers, this early stress has been shown to affect brain development, including the reduction 

of hippocampal volume and of the corpus callosum area [105].  

 

Those results are in line with the results of structural MRI studies conducted in humans. 

Indeed, early child abuse and maltreatment have been associated with smaller hippocampus 

[106-110], smaller orbitofrontal [103] and a smaller corpus callosum volumes [108]. 

Furthermore, children with history of in utero exposure to various neurotoxins, such as 

methamphetamines or alcohol, exhibited smaller hippocampus and putamen volumes [111], as 

well as reductions in corpus callosum and overall brain volume [112-117]. Therefore, an 

association was revealed between perinatal adversity and brain morphology. Other structural 

MRI studies have found a significantly reduced callosal area in very preterm infants (VPT) 

born in less than 30 weeks of pregnancy [118]. Additionally, the volume of tracts deriving 

from the corpus callosum in VPT infants was reduced [119]. This decline in interhemispheric 

fiber tracts passing through the corpus callosum might be the sign of altered interhemispheric 

communication. Indeed, the disruption of corpus callosum’s development might have 

implications for its associated brain structures such as the fornix, septum, cingulate cortex and 

the hippocampus [120].  

 

The alterations of the brain structure have been found not only on the volume level but also on 

the level of cortical thickness. Cortical thickness has been typically defined as the shortest line 

from the cortical surface to the grey and white matter boundary [121]. The average thickness 

of the cerebral cortex is between 2 and 5 mm [122-124]. Slight variations of the cortical 

mantle were shown to be dependent of the brain region [125] and age [124]. Moreover, 

cortical morphology has been known to vary in affective disorders characterized by emotion 

dysregulation, including schizophrenia [123] and anxiety disorders [126, 127], as well as in 
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healthy individuals with impulsive personality trait [128]. Information on thickness variation 

can, thus, be of interest for the understanding of clinical and healthy behaviors.  

 

A number of studies have shown that cortical thickness was found to be significantly impacted 

by in utero and early postnatal environmental factors. For instance, orbitofrontal, middle 

frontal and parahippocampal cortices were found to be thinner in adolescents having been 

exposed to maternal smoking in utero, as compared with non-exposed individuals [129]. Also, 

individuals born with a very low birth weight exhibited cortical thinning in parahippocampal 

and temporal medial gyri [130, 131]. Cortical thickness as well as smoking behaviors are 

however also partly under genetic control [132, 133], and thus the unique contribution of 

environmental factors cannot be determined in these studies.  

 

1.7.3 Brain chemistry  

Although the early environment could affect many neurotransmitters, and all of whom 

interact, given the role of 5-HT in emotion regulation and brain development (see above) the 

impact of the in utero and early postnatal environment on 5-HT are of particular interest. For 

instance, animal research has shown that early maternal separation in monkeys and rodents 

alters 5-HT neurotransmission in the frontal cortex [134, 135]. Moreover, it has been shown 

that 5-HT levels in a developing animal can be altered by viral infections [136], malnutrition 

[86, 137], social enrichment or isolation [138, 139], hypoxia [69], in utero exposure to 

neurotoxins [140] and maternal consumption of drugs such as cocaine [141, 142], nicotine 

[143] and alcohol [70, 144].  

 

One human study tested whether perinatal adversity factors had a long-term impact on brain 5-

HT neurotransmission in adulthood [145]. Basically, twenty-six 27-year old males underwent 

a positron emission tomography (PET) scan with the tracer alpha-[¹¹C] methyl-L-tryptophan, 

as an index of 5-HT synthesis capacity. Measures of in utero and early postnatal adversity 

were derived from the medical records. The results indicated that lower birth weight, maternal 

smoking during pregnancy and physical distress at birth, predicted lower brain 5-HT synthesis 

in adulthood in the medial OFC and hippocampus, whereas the childhood and later life 



11 

 

 

adversity did not affect brain 5-HT synthesis. These findings suggest that fronto-limbic 5-HT 

pathways are vulnerable to environmental challenges during the period when they undergo the 

most crucial neurodevelopmental changes [145].  

 

Given the impact of early environmental factors on brain 5-HT, the following question arises: 

how do those early environmental stressors instigate changes in the brain 5-HT system? The 

answer to this question can take various forms. Indeed, there are numerous ways to alter 5-HT 

function in the brain, including direct lesions [146] or via changes in intracellular [147] or 

transcriptional factors [148]. Nonetheless, one of the underlying mechanisms by which the 5-

HT alterations occur is via environmentally-induced stable changes in genetic expression 

[149], that are most probably caused by epigenetic mechanisms. 

 

1.8 Epigenetics 

1.8.1 Genome versus epigenome  

Simply put, the genomic sequence, also called DNA sequence, is identical throughout 

the body and lifespan [150]. Epigenomes, on the other hand, are tissue-specific and drive 

distinct genome expression programs [151]. In other words, genome defines organism’s 

genetic information, whereas the epigenome determines for those genes “to be or not to be” 

expressed. Apart from controlling the gene expression, epigenetic mechanisms are useful for 

fine-tuning the gene expression repertoire in response to environmental cues, therefore adding 

plasticity to the hard-coded genome [150]. In other words “genetics proposes and epigenetic 

disposes” [152]. Genome cannot possibly operate independently of its environmental context 

[153]. That is why the development should be viewed as an active process of adaptation 

occurring as a function of the continuous dialog between the genome and its environment 

[153]. Here is where the integration of epigenetics occurs in order to examine those genome-

environment interactive processes. Two well-known epigenetic mechanisms, histone 

acetylation and DNA methylation, will be described below. 

 

1.8.2 Histone acetylation 
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Before getting into explanation of this epigenetic mechanism, it is essential to grasp the 

general structure of the DNA sequence. DNA is organized into units referred as nucleosomes, 

each of which contains about 150 base pairs which are wrapped around the core region of 

histone proteins [154]. Those histones and DNA put together are referred to as chromatin. The 

positively-charged histones and the negatively-charged DNA are tightly bound to each other, 

resulting in a closed chromatin configuration [154]. This restrictive configuration blocks the 

transcription factor binding and is, thus, associated with a limited gene expression. Histone 

modification is required to unblock the access for the transcription factor binding to DNA 

regulatory sites and, therefore, to activate the gene expression. Basically, series of enzymes 

bind to the histone tails, which are chains of amino acids extending outside the nucleosome, 

and modify the local chemical properties of specific amino acids along the histone tails [155-

157]. For instance, the enzyme called histone acetyltransferase transfers an acetyl group 

(COCH3+) onto specific sites of histone tails. The addition of the acetyl group reduces the 

positive charge of the histones and, hence, loosens up the histone-DNA configuration. This, in 

turn, opens the chromatin and facilitates the access of transcription factor binding to DNA 

sites, activating the gene expression. However, among the modifications of histone, the DNA 

methylation has been the most studied with regard to understanding early life experiences and 

their underlying neurobiological aspects [150]. 

 

1.8.3 DNA methylation 

DNA methylation is a covalent modification of the DNA molecule itself by enzymatic 

addition of a methyl group (CH3+) onto the cytosine ring residing in a CpG (cytosine-

phosphate-guanine) dinucleotide [136]. In the beginning, an enzyme called cytosine-5-DNA-

methyltansferase recognizes the appropriate regulatory site of the genome. Then, the ferment 

covalently binds with the genome at the regulatory site, literally twists the cytosine out of the 

genome sequence and adds the methyl group onto the cytosine. Afterwards, the enzyme pulls 

out, while the methylated cytosine is going back to its initial place. This CpG methylation is 

closely associated with suppression of transcription and long-term gene silencing, since it 

inhibits the DNA transcription factors binding to their recognition elements in the gene [154].  
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Moreover, DNA methylation pattern is shaped and fashioned during the perinatal period, when 

it is highly vulnerable to environmental exposures. Indeed, early restriction of certain dietary 

components, such as folic acid and vitamin B12 during gestation, has been shown to affect the 

DNA methylation patterns in sheep [158]. Moreover, individuals exposed to famine in the 

perinatal period had exhibited the altered DNA methylation patterns compared to their siblings 

six decades later [159]. This advances the possibility that DNA methylation plasticity might 

play a role in the programming of the genome regarding its adaptive responses to changing 

environment early in life and perhaps throughout life [160]. 

 

Following the idea that DNA methylation and chromatin state are in a dynamic equilibrium 

even in adult neurons, it should be possible to revert the epigenetic programming in the other 

direction toward increased methylation, leading to a reversal of the maternal genetic 

programming that is being passed onto the offspring. In two distinct studies [161, 162], adult 

rats, with high maternal Licking Grooming (LG) or low maternal LG rearing history, were 

infused with methionine, a donor of the methyl group in the organism. The animals were 

assessed in an unfamiliar open-field arena, and the gene expression of each animal was 

evaluated. The results showed that methionine treatment reversed behavioural response to 

stress, as well as the epigenetic programming of the hippocampus promoter. Simply put, 

normally, offspring of low LG mothers expressed lower levels of hippocampus promoter gene 

expression and spent less time exploring the unfamiliar inner field than did offspring of high 

LG mothers [163]. This reduced gene expression and an anxious behavior imply that 

hippocampal gene expression may play a role in the development of anxiety-mediated 

behavior. However, the methionine-treated offspring of low LG displayed behavior similar to 

that of offspring of high LG. Conversely, methionine-treated offspring of high LG mothers 

exhibited the anxious behavior of low LG mother’s offspring. These results suggest that 

although early-life experience has a stable effect on the hippocampal gene expression, the 

latter is still potentially reversible later on life. 
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Indeed, in rodents, it is possible to reset gene expression programs, carved early in life, by 

maternal care styles [164] and by exposure to pharmacological agents known to affect the 

DNA methylation machinery, such as methionine [160]. DNA methylation is, thus, a partly 

reversible biological signal, suggesting that a hard-coded genome is not the final answer to our 

question. The complex nature of DNA methylation renders it an ideal template for establishing 

sustaining gene effects controlling brain function and behavior from early development to 

adulthood [150]. 

 

A cross-fostering study is a good concept to show it [165]. Basically, rat pups are cross-

fostered within six hours of birth to mothers of the same phenotype (pups from high or low 

LG mothers to other high or low LG mothers, respectively) or alternative maternal phenotype 

(pups from high or low LG mothers to low or high LG mothers, respectively) and then, tested 

in the pacing chamber with a focus on the sexual behavior rating. The analysis revealed that 

biological low LG-reared offspring fostered onto low LG mothers exhibited a higher sexual 

receptivity rating than did animals in any other group, whereas the low LG-reared offspring 

fostered onto high LG mothers showed a significant decrease in sexual receptivity. These data 

indicate that early inborn experience is not definitive and that it can be changed or reversed 

with certain subsequent environmental exposures, such as modification in maternal rearing 

style. 

 

Moreover, when it comes to epigenetics, counting how many times a day you hug your child 

acquires a special meaning. Recent data suggests that early adverse psychosocial exposures, 

such as poor maternal care, impact the epigenome, resulting in differences in epigenetic 

program and, consequently, in mental and behavioral developmental differences later on 

[166]. Thus, certain behavioral and mental pathologies might be a consequence of early life 

exposures that alter epigenetic programming [167].  

 

1.9 Epigenetics and mental health 

Indeed, an argument supporting epigenetic application in psychiatric research is its 

involvement in development of diseases. Various studies have indicated a genetic influence in 



15 

 

 

all psychiatric diseases, with heritability sometimes reaching 80% [168]. However, in spite of 

more than two decades of genetic psychiatric research and a clear refinement of molecular 

techniques, no gene has consistently been identified with any psychiatric disorder. This is 

where the term “missing heritability” comes in play. It refers to the discrepancy between high 

epidemiological heritability estimates and the proportion of phenotypic variation actually 

explained by DNA sequence differences [169]. One of the multiple theories explaining this 

discrepancy implies that the heritability estimates might be inflated by epigenetic 

modifications [170]. 

 

Indeed, recent studies provided more evidence that differences in vulnerability to various 

mental disorders might be associated with individual variation in DNA methylation. For 

instance, a distinct study provides an example where the polymorphism in hippocampus 

promoter gene, linked to the reduced gene expression [171], has been associated with the 

early-onset schizophrenia [172, 173]. Simply put, in normal brain, hippocampus promoter 

regions are unmethylated, allowing active gene expression. However, in schizophrenia, brain 

over-expression of DNA methyltransferase increases gene promoter methylation, leading to a 

reduction in gene expression. This lack in expression of genes, playing a key role in inhibitory 

neurotransmission, might contribute to the breakdown of the normal synchronized activity of 

brain circuitry, in particular fronto-limbic network, which is thought to be part of the disorder 

process [174].  

 

Similarly, the role of epigenetics has been illustrated in depression and anxiety disorders. For 

instance, adult rats born to low LG mothers displayed increased anxiety and a reduced gene 

expression of the hippocampus promoter region [175]. In humans, the exposure to maternal 

depressive symptoms during pregnancy was associated with reduced 5-HTT gene expression 

in infants [176, 177].   

 

Analogously to the case of depression, methylation of the 5-HTT gene has been shown to play 

an important role in risk for Post-Traumatic Stress Disorder (PTSD). To be more precise, the 

effect of cumulative traumatic burden on risk for PTSD was shown to be modified by 
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methylation levels at the 5-HTT locus [178]. In other words, individuals exposed to a greater 

number of traumatic events were at higher risk of PTSD, but only at lower 5-HTT methylation 

levels. However, at higher methylation levels, these same individuals are protected against this 

disorder. Considering that exposure to potential traumatic events varies with different 

environmental factors, such as living in inner city or in suburbs [179], these PTSD-related 

epigenetic differences provide further evidence for the role of epigenetic processes as 

mediators of environmental context on mental health. 

 

The entire data reveals that in addition to DNA sequence, epigenetic modifications of DNA 

contribute to complex phenotypes, resulting sometimes in mental disorders  

 

Therefore, defining the genes as some static hard drive, on which individual’s information gets 

stored, is not quite correct. It becomes clear that genes, as complex polymorphic molecular 

nanomachines, are sensitive to any changes in the individual’s environment and lifestyle. 

Therefore, we should not only talk about the hard-coded bits of information stored on the 

DNA, but rather about the dynamic components of our body that can be altered under certain 

circumstances. Specifically, genetic polymorphisms, as well as environmental factors such as 

malnutrition, infections, drugs of abuse, chemical exposures and psychosocial factors can all 

alter epigenetic marks resulting in inherited developmental diseases [136, 180].  

 

In a nutshell, current literature studying gene x environment interaction in relation to mental 

health highlights the importance of the interaction of genes and early environment, as their 

interplay seems to alter brain circuitry, in turn leading to affective and behavioral disorders. 

 

1.10 Overall study rationale and aim 

In order to elucidate the impact of the early environment on brain development and the 

role of 5-HT system in this process, our laboratory is carrying out a longitudinal five-year-

long project investigating the impact of perinatal adversity on the adolescent brain, in 

particular the brain regions known to be affected by 5-HT system alterations such as prefrontal 
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and cingulate cortices, and the underlying epigenetic mechanisms, in particular DNA 

methylation.  

 

This study is being conducted in a longitudinal cohort of monozygotic twins followed since 

birth, allowing a control for genetic factor as these twins are assumed to share 100% of their 

genetic pool. Aside the fact that monozygotic twins share the same genes, they grow up 

sharing several factors in their in utero and postnatal environment, such as in utero exposure to 

maternal smoking and maternal depression. Yet, it does not mean that they share all possible 

environmental experiences: some experiences are unique to each twin (i.e., non-shared), 

reflected in e.g. birth weight discordance. Focusing on the within-pair difference of non-

shared environmental stress factors offers a unique tool to better isolate each twin’s adverse 

experiences and psychobehavioral development. 

 

For the purpose of the present thesis, I will focus on the impact of non-shared early 

environment on brain structure. Given the extensive evidence of fronto-limbic circuitry being 

affected by the shared early environment and the involvement of fronto-limbic regions in the 

emotion and behavior regulation, I will specifically focus on the cortical structure, namely 

cortical area, volume and thickness, in the following regions of interest (ROI): PFC, anterior 

cingulate (ACC) and posterior cingulate cortex (PCC) as well as amygdala. 

 

The majority of previous imaging studies are cross-sectional and few studies are done in the 

cohort samples. My study, on the other hand, will apply imaging method in a longitudinal 

birth cohort. My study will generate knowledge in humans on the consequences of early 

adversity-induced changes on brain structure as a marker for psychopathology arising later in 

life. Moreover, I am working with monozygotic twin population with a particular focus on the 

non-shared early environment. This is possibly one of the most powerful ways available to 

examine the specific role of early adverse influences on brain development and behavior. The 

results may contribute to a better understanding of early environmental targets to foster brain 

development, allowing the identification of people at risk and, thereby, guiding future designs 

of interventions. 
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 In terms of non-shared early environment, I will focus on the following factors: birth weight 

and maternal hostile behaviors at the age of 5 months. The choice of these variables is based 

on literature showing a putative link with brain development. Specifically, numerous studies 

have demonstrated that low birth weight, defined by a birth weight less than 2.5 kg, is 

associated with various disorders characterized by emotion dysregulation, such as attention 

deficit hyperactivity disorder (ADHD) [181], aggression, and hyperactivity-impulsivity [182] 

in childhood and adolescence. Furthermore, the low birth weight has been associated with 

brain structure alterations, namely the reductions in the cortical area of corpus callosum [183]. 

By looking at within-pair differences in twins, one can better isolate the effect of each early 

adverse factor on the individual brain and behavior.  

 

With regard to parenting style, hostile-reactive parenting [184] has been shown to be 

negatively associated with emotional and brain development. For instance, hostile parental 

discipline in the first year following birth has been shown to predict reactive aggression in 

childhood [185]. Furthermore, compared to high maternal aggressiveness, low maternal 

aggressiveness has been shown to be a protective factor as it predicted larger bilateral 

hippocampal volumes in adolescence [186]. 

 

The association between early adverse factors and various problematic behaviors, arising in 

childhood and in adolescence, becomes evident. Therefore, I will also examine the impact of 

difficult temperament at the age of 18 months, aggression and hyperactivity between 6 and 10 

years of age as well impulsivity at 15 years of age because those behaviors have often been 

found to emerge as the consequence of the early environment.   

 

Indeed, prenatal exposure to increased maternal body mass index and maternal stress has been 

found to predict difficult child temperament during the first years of life [187, 188]. Moreover, 

scientific evidence has revealed that lower cortical thickness in the left OFC in adolescents has 

been associated with difficult temperament during the first year following birth [189], 

indicating that early temperament has great implications in the long-term architecture of the 

cerebral cortex.  
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Physical aggression from first to sixth grade has been linked to higher maternal harshness and 

to lower level of maternal sensitivity earlier in life [190]. Certain forms of aggressive behavior 

at 8 years of age, namely oppositional defiant and conduct disorders, were associated with the 

cortical thinning of prefrontal, cingulate and insular cortices, indicating that aggression during 

childhood years might lead to alteration in brain structure [191]. 

On the other hand, childhood hyperactive behavior has been linked to the tobacco smoke 

exposure before birth [192]. Furthermore, hyperactivity at the age of 10 years was associated 

with cortical thinning in the medial and dorsolareal prefrontal cortex (dlPFC) [193].  

Similarly, prenatal exposure to tobacco as well as lower quality of early child care has been 

shown to predict the risk for developing impulsivity in adolescence [194, 195]. Furthermore, 

impulsive behavior at 13 to 15 years of age has been linked to cortical thinning of right dlPFC 

[195]. 

 

1.11 Primary aim and hypothesis 

My primary aim is to examine the impact of non-shared early life adversity, namely 

birth weight, maternal hostility at the age of 5 months, on the brain structure in the adolescent 

twins. My hypothesis is that within a twin pair, higher levels of early life adversity, in other 

words lower birth weight and more experiences of maternal hostility, will be correlated with 

the lower cortical area, volume and thickness of fronto-limbic circuitry (PFC, ACC, PCC, 

amygdala).  

 

1.12 Secondary aim and hypothesis 

My secondary aim is to examine the impact of problematic behaviors, namely difficult 

child temperament at the age of 18 months, average aggression and hyperactivity from 6 to 10 

years of age, and impulsivity at the age of 15 years, on brain structure. My hypothesis is that 

within a twin pair, higher levels of temperament difficulty as well as higher levels of 

aggression, hyperactivity and impulsivity, will be correlated with lower cortical area, volume 

and thickness of fronto-limbic circuitry (PFC, ACC, PCC, amygdala). 
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In the following chapter, I will go over the methods in more details, covering the cohort of 

participants, the brain imaging and the analyses used for my study. Then, I will present my 

results and end with a discussion. 
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Chapter 2 

Methods 

 

2.1 Participants  

Participants were drawn from the Quebec Study of Newborn Twins (QSNT), a 

representative sample of 650 twin pairs born in province of Quebec between April 1st 1995 

and December 31st 1998. 

2.1.1 QSNT cohort 

The main objective of QSNT was to document individual differences in the cognitive, 

behavioral and social-emotional aspects of developmental health across childhood, their early 

bio-social determinants, as well as their putative role in later social-emotional adjustment, 

academic and health outcomes. Almost 600 families of twins (359 dizygotic, 238 monozygotic 

twin pairs) were initially assessed when the twins were 5 months of age. These twins and their 

family were then followed regularly. In other words, QSNT is an ongoing prospective 

longitudinal cohort, therefore composed of multiple follow-up studies each focusing on 

various measures. One of the measures taken in this cohort was cortisol in order to estimate 

the genetic and environmental contributions to daytime cortisol secretion in infant twins and to 

investigate whether these contributions were a function of familial adversity. Results revealed 

that genetic factors might shape cortisol activity and lead to stress-related pathologies only in 

twins with high levels of early familial adversity, characterized by maternal smoking during 

pregnancy during pregnancy, low birth weight, maternal hostile-reactive behaviour, low 

family income and low maternal education [196]. These twins and their families were then 

followed regularly. Indeed, at the age of 1.5 years, the gene-environment interplay was further 

explored and the results indicated that in conditions of high familial adversity, both shared and 

unique environment factors, but not genetic factors, accounted for the cortisol variance in 

twins [197]. Furthermore, a broad range of physiological, cognitive, behavioral and health 

phenotypes were documented longitudinally through multi-informant and multi-method 

measurements. For instance, twins’ peer difficulties were assessed in kindergarten through 
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multiple informants, including teachers and parents, in order to examine genetic and 

environmental contributions to peer difficulties during early school years. Findings revealed 

that genetic factors accounted for a strong part of both early and stable peer difficulties, 

indicating the need to intervene early and to target peer context to prevent those arising 

difficulties [198]. Moreover, functional neuroimaging performed in a subsample of the cohort 

at age of 8 years in order to measure the neural regulation of sadness showed no genetic 

effects for any brain area, while environmental factors entirely accounted for individual 

variation in brain activation related to sadness [199]. Results of another study demonstrated 

that genetic and environmental influences each appear to be crucial to adolescent sleep 

problems [200]. Many other measures and analyses have been conducted in this cohort.  Given 

the detailed longitudinal assessments in the twins since early on, this makes this cohort 

uniquely-suited for the study of the role of the early years and gene-environment interaction in 

development.  

 

2.2 Current Sample 

As of today, the assessment of the (now) 15-year-old twins is currently ongoing.  

Almost yearly home interviews have been conducted. The monozygotic twins were subdivided 

in three waves according to the year of birth: first wave consisted of those born in 1995-1996 

period, second wave was composed of those born in 1996-1997 period and the twins born in 

1997-1998 period were assigned to the third wave. Out of three waves, two have completed 

the data collection at age of 15 and turned 16. These twins are the ones included in this study.  

Based on the following inclusion and exclusion criteria, we recruited 37 twin pairs from the 

QSNT cohort. 

 

2.2.1 Inclusion criteria  

To be eligible for the participation in the actual study, fist of all, the participant had to 

be a member of the QSNT cohort. Finally, the participant and his primary caregiver had to be 

willing to sign the corresponding consent forms.  
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2.2.2 Exclusion criteria  

Any participant who was diagnosed with a mood disorder or substance abuse disorder 

during the clinical interview, described in details later on, was excluded, as these disorders 

were likely to confound fMRI results. For the same reasons, any participant having reported 

any medical or neurological illness, including congenital abnormalities, seizures, heart disease 

and cancer, during the phone pre-screening, described in details further below, was also 

excluded. Moreover, use of medication likely to affect brain function was also an exclusion 

criterion. Finally, general MRI-exclusion criteria included claustrophobia, presence of braces 

(which could distort the actual image) and metals in the body that are not MRI compatible, 

such as cardiac pacemaker, foreign metallic objects. Answers on the MRI questionnaire given 

by the participant during the phone pre-screening were verified by the parents and checked by 

the MRI technician. 

 

2.3 Procedure  

 2.3.1 Phone pre-screening 

The screening occurred in two stages. First, parents and the twins were called to 

introduce them to the study. When they indicated that they would be interested to participate, a 

second call was made during which participants were screened for the exclusion criteria, 

including use of medication, presence of metal in the body and history of major physical and 

psychological issues. In addition, participants were screened for the presence of depression 

and use of recreational drugs. For the former, each participant was asked if he ever felt sad or 

down, as well as the frequency, the duration and the persistence of those sad feelings. For the 

latter, each participant was asked if he has ever tried recreational drugs, drunken alcohol or 

smoked cigarettes, as well as frequency, amount and type of drugs that have been taken. 

 

 2.3.2 Screening 

Following the telephone pre-screening interview, potential eligible individuals were 

invited to Montreal Neurological Institute for a session. There, all participants and their 
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parents were asked to sign an informed consent form, a brief interview was done to screen 

participants for current behavioral problems, involving the interactive program Dominic 

Adolescent and the clinical interview Kiddie-SADS (Schedule for Affective Disorders and 

Schizophrenia). The former is a 15-minute long program designed to screen a broad spectrum 

of behavioral disorders in children and adolescents [201]. Moreover, Dominic pinpointed the 

potential problematic areas, such as signs of abuse disorder or depressive symptoms, thereby 

preceding a more detailed and specific examination of the diagnosis criteria using the clinical 

interview Kiddie-SADS. Both these instruments permitted to screen in great detail for the 

exclusion criteria, namely mood disorders and substance abuse, which could have a 

pronounced effect on fMRI data. 

 

2.3.3 Questionnaires  

Furthermore, pubertal status was assessed by asking the participants to fill out the 

Pubertal Development scale [202] . This scale consisted of five items, namely body hair, voice 

change, skin change, growth spurt and facial hair, on a four-point scale (no development, 

development barely begin, development definitely underway or development already 

complete). Then, participants were asked to fill out the self-report questionnaires, such as the 

(iv) assessment of personality (Eysenck Junior Personality Questionnaire [203]). It consisted 

of 97 items rated on a four-point scale and involved various personality dimensions, including 

harm avoidance, novelty-seeking and reward dependence. The personality questionnaire was 

intended to rule out the confound factors such as anxiety- and impulsivity-related 

temperaments. Next, (v) participants were asked to fill out the Perceived Stress Scale. This last 

self-report questionnaire of the study was administered in order to measure how unpredictable 

and overloaded individuals appraise their life stress [204].  

 

2.3.4 Computerized task 

Upon the completion of the questionnaires, a computerized Stop Signal task (SST) 

[205] was administered to the twins outside the scanner to measure current impulsivity. It 

lasted roughly 15 minutes and it was used to assess subtle distinctions in impulse regulation 
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across individuals. During this task, participants viewed an arrow in the centre of the screen 

pointing to the left or to the right and they were asked to indicate its orientation as quickly as 

possible. Each trial began with a 500 ms-long fixation cross, followed by a 2000 ms-long 

arrow. For 25% of trials, participants were asked to inhibit their response when the arrow was 

preceded by a “beep” sound.  If the participant made an error by pressing the arrow despite the 

preceding “beep” sound, it would count as a failure to inhibit the unwanted gesture and would, 

thereby, represent the impulsivity. This computerized task was administered in order to assess 

impulsivity and possibly link this data to neural responses to emotional stimuli [206, 207]. 

  

2.3.5 Brain imaging  

Finally, all participants were scanned in a 3 Tesla Siemens TIM Trio scanner. For 

fMRI, 36 functional whole-brain images (multi-slice gradient echo EPI with 4 mm isotropic 

resolution and TR/TE = 3s/30 ms) were be acquired using a 32 channel head coil. The subjects 

underwent an anatomical scan (8 minutes), Diffusion Tensor Imaging (6 minutes) and two 

functional scans. The first scan was a resting state scan (6 minutes) with no task presentation 

to assess the brain’s resting state neural network; while the second functional scan (8 minutes) 

consisted of an emotional face processing task. Overall, the fMRI session was approximately 

40 minutes long. My thesis focused on the anatomical scan. 

 

2.3.6 Statistics 

2.3.6.1 Cortical measures 

Cortical surface area reflects the width of cellular columns, while cortical thickness is 

related to the density of cells in a column [208]. Even though cortical volume is the product of 

cortical surface area and thickness, it is by no means certain that an alteration of one 

component of cortical morphology entails an alteration in all others. Dissociations between 

morphometric cortical properties, such as reduced cortical surface area but intact cortical 

thickness, have been reported in the few studies of neuropsychiatric disorders that took in 

account all the composite dimensions of the cortex [209, 210]. A distinct in vivo neuroimaging 
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study of healthy young adults revealed that while cortical volume, thickness, surface area are 

organized as networks, these networks have quite distinct organizational properties [211]. 

 

The anatomical scan was used for volumetric brain morphometry, in which it assesses the 

contrast density of grey matter in the brain and extraction of cortical thickness, volume, and 

area, allowing cortical morphometry to be explored while taking the convoluted nature of the 

cortical surface into account. Volumetric brain morphometry and analysis of cortical 

thickness, volume, and area was accomplished using the SurfStat toolbox for Matlab. Simply 

put, in case of volumetric brain morphometry, the anatomical data is segmented into grey 

matter, white matter and cerebrospinal fluid components. After smoothing these segmented 

grey matter images, the signal represents the contrast weight in each voxel, which is thought to 

be related to the function of those regions of the brain, and which can be regressed against 

main variables of interest representing early adversity, namely birth weight, maternal hostility 

and child temperament, as well as secondary behavioural variables of interest, including 

aggression and hyperactivity during childhood as well as impulsivity score during Stop Signal 

Task. The analysis of cortical morphometry works by defining a triangular mesh on the white-

grey border determined during the previous segmenting step, and expanding that mesh 

outwards until the grey-cerebrospinal fluid border is encountered. Thus, every point on the 

mesh has value that represents the thickness of the cortex at this point. Since this mesh has a 

fixed number of intersection points in every brain, each point has a fixed amount of the brain’s 

surface area attributable to it (relative to a standard model), and by convoluting the thickness 

measure and the area measure, a volume measure can also be attributed to each point on the 

cortical surface. 

 

2.3.6.1 Adversity and behavioral measures 

Birth weight was derived from medical records. When the twins were 5 months old, 

their mothers were asked to complete a questionnaire on maternal parenting behaviors. The 

hostile maternal parenting symbolized a tendency to respond in a negative and restrictive 

manner to the child with a 7-item scale: (1) I have been angry with my infant when he was 
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particularly fussy; (2) I have raised my voice or shouted at my infant when he was particularly 

fussy; (3) when my infant cries, he gets on my nerves; (4) I have spanked my infant when he 

was particularly fussy; (5) I have lost my temper when my infant was particularly fussy; (6) I 

have left my infant alone in his bedroom when he was particularly fussy; and (7) I have 

shaken my infant when he was particularly fussy. The answers ranged from (0) not at all what 

I did or think to (10) exactly what I did or think. The hostile parenting scale had a good 

internal reliability above the 0.70 level [212]. 

 

When the twins were 18 months old, mothers were asked to fill out a 7-item difficult 

temperament scale of the Infants Characteristics Questionnaire, ranging from (1) easy 

temperament to (7) very difficult temperament. The internal consistency was acceptable (α = 

0.84) [212]. 

 

Between the ages 6 and 10, mothers were asked to rate twins’ aggressive behaviors using 7-

item questionnaire from the Social Behavior Questionnaire. The list of seven items included 

“Fights with other children”, “Hits, kicks, bites others”, “Fights back when provoked by 

another child” and “Says mean things behind someone’s back”. Answers ranged from (0) do 

not apply, to (1) apply sometimes and (2) apply often. Internal consistency was acceptable (α 

= 0.87) [212]. 

 
Also between the ages 6 and 10, mothers were asked to rate twin’s hyperactive–impulsive 

behaviors, using a 5-item computerized questionnaire on the twin’s typical behavior, derived 

from the Social Behavior Questionnaire. Specifically, the mother indicated to what extent the 

child “is restless or hyperactive”, “fidgets constantly”, “acts before thinking”, “has difficulty 

awaiting turn in games”, and “has difficulty staying calm to do things”. All items were 

assessed on a 3-point Likert-type scale ranging from (0) never, to (1) sometimes and (2) often. 

This instrument has been shown to possess good criterion validity and high inter-rater and test-

retest reliabilities in both normal and clinical samples. Furthermore, the scale yielded good 

internal consistency (α=0.90) [213].  
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At 15 years of age, the commission error percent obtained during the performance during the 

Stop Signal Task represented impulsivity scores on a scale of 100%. In other words, the more 

twins would press the arrow when they were not supposed to, the higher the commission error 

percent would get and the higher the impulsivity score would be. 

 

2.3.6.3 Within-pair analysis 

To perform the within-pair analyses, first each twin was classified as high or low on 

adversity measures (difficult child temperament at 18 months of age, maternal hostility at 5 

months of age, impulsivity at 15 years of age, birth weight as well as aggression and 

hyperactivity average from 6 to 10 years of age). Then, all the adversity values of the twin 

classified as “high” were subtracted from corresponding values of the twin classified as “low”, 

and the differences calculated in this way gave the within-pair differences. The within-pair 

differences in structural measures (cortical area, volume and thickness) were obtained in the 

same way. In order to examine the within-pair association between adversity and cortical 

structure, within-pair differences in each adversity measure were regressed against within-pair 

differences in each cortical structure. This linear regression was applied until all possible 

configurations of within-pair differences (e.g., birth weight x cortical area, birth weight x 

cortical volume, birth weight x cortical thickness, maternal hostility x cortical area, maternal 

hostility x cortical volume, maternal hostility x cortical thickness etc.) were reached for each 

adversity measure. The analyses was conducted at two scales 1) at all vertices over the cortical 

mantle (whole-brain level analysis), 2) and within an a priori selected region of interest 

comprising the frontal and limbic lobes (frontal-level analysis). By using difference scores 

within MZ twin pairs, the impact of specific environmental factors can be investigated [98].  
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Chapter 3 

Results 

  

3.1 Characteristics of the sample  

The descriptive statistics, namely adversity and behavior characteristics, were based on 37 

monozygotic twin pairs (respectively, Table 3.I and Table 3.II). Approximately half of the 

investigated sample was female (20 F for female twin pairs versus 17 M for male twin pairs). 

The characteristics of the sample (mean, standard deviation, minimum and maximum values) 

are representative of twins, as the birth weight and gestational age range corresponds to the 

one of a healthy twin population [214, 215]. However, maternal hostility is quite high 

compared to that of a typical twin population (mean = 0.06) [212], whereas average aggression 

and hyperactivity are lower than in a typical healthy twin population (respectively, mean = 

0.11 [212], and mean = 0.66 [213]). 

Table 3.I Adversity characteristics 

Characteristics of the investigated sample 

Characteristics N Mean Std. Deviation Minimum Maximum 

Gender 74 34 M/ 40 F - - - 

Gestational age (weeks) 70 36.6 1.8 33 40 

Birth weight (kg)  74 2.5 0.6 1 3.7 

Maternal hostility (5 months) 61 1.5 1.4 0 4.8 

Table 3.II Behavior characteristics 

Characteristics of the investigated sample 

Characteristics N Mean Std. Deviation Minimum Maximum

Difficult child temperament (18 months) 70 2.8 1.4 1 7 

Average aggression (6-10 years) 70 0.7 0.5 0 42 

Average hyperactivity (6-10 years) 66 0.3 0.4 0 1.7 

Impulsivity (error % in Stop Signal Task) 74 6.3 4.7 0 26.3 

The results of whole-brain level and frontal-level analyses are presented respectively in Table 

3.III and Table 3.IV, with the help of the t-value, k-value, representing number of significant 

adjacent vertices in the brain, and the p-value after adjustment for multiple comparisons. The 
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upper row represents the components of the cortical structure (cortical area, volume and 

thickness), whereas the left column represents all the variables of interest, primary (birth 

weight and maternal hostility) and secondary (difficult child temperament, average aggression 

and hyperactivity, impulsivity). The intersection of each row and column provides the data for 

each configuration mentioned earlier (e.g., birth weight x cortical structure, birth weight x 

cortical volume etc.). The threshold of significance is p = 0.05. The results of both types of 

analyses are highly correlated since the values of t, p and k of each variable of interest remain 

almost the same across the analyses types, thus highlighting the validity of the findings. 

Table 3.III Results of whole-brain level analysis 

   Whole-brain level          

  Cortical Area Cortical Volume Cortical Thickness 

Difficult child 

temperament t = 4.979, k = 12624, p = 0.029 k = 0, p = 0.305 k = 0, p = 0.901 

Maternal hostility t = 6.699, k = 355, p = 0.002 k = 0, p = 0.461 k = 0, p = 0.356 

Impulsivity (error % in 

Stop Signal Task) t = 7.070, k = 582, p < 0.001  t = 5.322, k = 111, p = 0.006 k = 0, p = 0.993 

Average aggression k = 0, p = 0.123 k = 0, p = 0.632 k = 0, p = 0.879 

Average hyperactivity k = 0, p = 0.997 k = 0, p = 0.958 k = 0, p = 0.627 

Birth weight k = 0, p = 0.375 k = 0, p = 0.505 k = 0, p = 0.528 

Table 3.IV Results of frontal-level analysis 

 

   Frontal-level   

 Cortical Area Cortical Volume Cortical Thickness 

Difficult child 

temperament t = 4.064, k = 1305, p = 0.049 k = 0, p = 0.235 k = 0, p = 0.864 

Maternal hostility t = 5.30, k = 341, p = 0.005 k = 0, p = 0.461 k = 0, p = 0.356 

Impulsivity (error % in 

Stop Signal Task) t = 7.070, k = 524, p < 0.001 t = 5.322, k = 213, p = 0.002 k = 0, p = 0.979 

Average aggression k = 0, p = 0.062 k = 0, p = 0.740 k = 0, p = 0.886 

Average hyperactivity k = 0, p = 0.521 k = 0, p = 0.796 k = 0, p = 0.900 

Birth weight k = 0, p = 0.413 k = 0, p = 0.672 k = 0,  p = 0.765 
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3.2 Primary hypothesis  

3.2.1 Birth weight 

There was no significant association found between birth weight and cortical area, 

volume or thickness at either whole brain or the frontal ROI scales of analysis with this 

measure (p > 0.05). 

 

3.2.2 Maternal hostility 

The association between maternal hostility and brain structure is shown in Figure 3.1. 

Maternal hostility at the age of 5 months correlated with smaller cortical area in posterior-

cingulate gyrus on a whole-brain level (t = 6.70; k = 355; p = .002) and on a frontal-brain level 

(t = 5.3; k = 341; p = .005). There was no significant association found between maternal 

hostility and cortical volume and thickness on any level of analysis.  
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Figure 3.1 illustrates the region of posterior-cingulate gyrus cortical surface area, represented 
by the bright blue-red spot, which was smaller in the 15-year-olds who had experienced a 
more hostile maternal parenting at the age of 5 months. The multiple black spots are the 
consequence of the frontal-level analysis, consisting of “cutting off” all the regions that are not 
fronto-limbic. 

 

3.3 Secondary hypothesis 

 3.3.1 Difficult child temperament 

The association between difficult child temperament and brain structure is shown in 

Figure 3.2. An association was found between difficult child temperament and smaller 

cortical area in the right lateral OFC on a whole-brain level (t = 4.98; k = 12624; p = .03) and 

on a frontal-brain level (t = 4.064; k = 1305; p = .05), but none with cortical volume nor 

cortical thickness.  
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Figure 3.2 illustrates a reduction in right lateral orbitofrontal cortical surface area, represented 
by the dark blue spot, in 15-year-olds who had more difficult early temperament at the age of 
18 months. The bright blue-red spots, representing the point of highest statistical significance 
after adjustment for multiple comparisons, lie in the left angular gyrus.  

 

3.3.2 Aggression and hyperactivity 

Aggression and hyperactivity had no effects on cortical area, volume or thickness at 

either the whole brain or frontal ROI scales of analysis with these measures.  

 

 3.3.3 Impulsivity  

Impulsivity (as assessed by the SST) correlated with smaller cortical area and smaller 

cortical volume in dorsolateral PFC, on a whole-brain level (respectively, t = 7.07; k = 582; p 

= .0001 and t = 5.32; k = 111; p = .006) and similarly on a frontal-brain level (respectively, t = 
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7.07; k = 524; p = .00006 and t = 5.32; k = 213; p = .002) (Figure 3.3 and Figure 3.4). 

Impulsivity did not predict cortical thickness.   

Figure 3.3 illustrates the aspect of left dorsolateral prefrontal cortex where surface area was 
reduced, represented by bright yellow-red-blue spots, in 15-year-olds with higher impulsivity 
scores, compared with those who got a lower impulsivity score in the Stop Signal Task. The 
black spots are the result of the frontal-level analysis, consisting of “cutting off” all the regions 
that are not fronto-limbic. 
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Figure 3.4 illustrates the aspect of dorsolateral prefrontal cortex where cortical volume, 
represented by the bright yellow-red-blue spots, was smaller in the 15-year-olds with higher 
impulsivity score, compared with those who got a lower impulsivity score in the Stop Signal 
Task.  
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Chapter 4 

Discussion 

 

The objective of the present study was to assess the impact of early environment and 

behavior on brain structure, namely cortical volume, area and thickness, in adolescence, using 

a monozygotic twin design. Precisely, we expected that presence of any of the following 

adverse experience, lower birth weight, more experiences of maternal hostility at the age of 5 

months, more difficult temperament at 18 months of age and with higher overall aggression 

and hyperactivity scores in childhood would predict a reduction in fronto-limbic structures at 

15 years of age. The same structural alterations were expected in adolescent twins exhibiting 

higher impulsivity scores at age of 15 years. 

 

Using data from a prospective longitudinal cohort of adolescent twins followed since birth 

who underwent neuroimaging, we found that early experiences of maternal hostility at the age 

of 5 months correlated with a reduction in posterior cingulate cortical surface area in 

adolescence. This result is in accordance with our hypothesis. No previous studies have 

investigated the link between hostile maternal behaviors and the offspring’s brain structure, 

however, it is of interest that these results are in line with a distinct fMRI study in 1997, 

reporting PCC activity increases in response to hostile threat-related words [216]. 

Furthermore, 5-HT reduction in PCC region was shown to affect social-emotional behaviors 

[217]. Reduced posterior cingulate cortical structure might lead to the altered 5-HT 

functioning, in turn leading to hostile behaviors of the mothers towards their infants. The 

impact of early-life hostile parenting on the brain becomes clearer when one considers that at 

birth the lower portion of the nervous system, namely brainstem, is fully developed whereas 

the higher regions, including the limbic system and the cerebral cortex, are still undergoing 

important changes [218]. Posterior cingulate cortex, being the upper part of the limbic system, 

might thus be very susceptible to the experiences in the perinatal period. Indeed, there is 

extensive evidence that parental hostility, particularly shaking a baby, can damage the infant 

by destroying brain tissue and blood vessels on the short-term and lead to cognitive and 
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behavioral disabilities on the long-term [219]. Infants’ brains develop as they interact with the 

environment and learn how to function with it. When the baby’s cry brings comfort, it 

strengthens the neuronal network that helps the newborn learn to get its emotional needs met 

[220]. However, those whose cries are met with hostility receive a different signal. The 

neuronal pathways that are developed under those negative conditions might alter child’s brain 

structure and impair child’s ability to respond appropriately to situations later on in life [221]. 

Those subsequent brain alterations become even more crucial when one considers that PCC 

has dense structural connections with brain regions involved in emotion and behavioral 

regulation, such as OFC and dlPFC [222]. Due to these projections, maternal hostility might 

alter the structure of various parts of the frontal cortex, leading to various socio-emotional and 

behavioral disorders.  

 

In fact, as initially hypothesized, our results demonstrated that difficult child temperament at 

18 months of age is associated with a reduction of the right lateral orbitofrontal cortical 

surface area in adolescence. Similar structural reductions have been reported in a study by 

Meda et al. (2012), in which patients diagnosed with Williams Syndrome characterized by an 

increased anxiety level underwent MRI scans, that found negative correlations between OFC 

cortical surface area and anxiety scores [223]. Both results indicate that structural alterations 

in OFC lead the emotional impairment. On the other hand, our findings are in discordance 

with a prospective longitudinal study by Schwartz et al. (2010), reporting greater left OFC 

thickness in adolescents who had difficult temperament at the age of 4 months [189]. The 

main reason for this discordance lies, most probably, in the definition of “difficult 

temperament”. In our study, the temperament data was represented by mother’s rating of the 

overall difficulty that her 5-months-old baby presents on the continuous scale of ascending 

difficulty of temperament from 1 to 7, where “1” symbolized a very easy temperament, “4” 

symbolized a normal temperament with a few problems whereas “7” symbolized a very 

difficult temperament to deal with. In contrast, Schwartz et al. (2010) [189] categorized 

subjects onto two temperamental groups, namely high-reactive and low-reactive, by the 

laboratory observation of the 4-months-old infant’s reaction to external stimuli such as mobile 

colorful toys, loud sounds and female voices. The categorization was based on the motor 
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responses and crying of the infant during the lab session. These two different representations 

of difficult temperament in early childhood might explain the differences in structural findings 

in both studies. Moreover, unlike the Schwartz et al. (2010) [189] study that focused on 

singletons, our sample consisted of monozygotic twins, sharing 100% of their genes, thus 

allowing us to control for genetic factors and better isolate the effect of the environment on the 

brain. Despite those differences in methodology, both our findings and those of Schwartz et 

al., (2010) [189] highlight that difficult temperament early in life has long-lasting effects on 

the brain structure. In fact, growing evidence indicates that the lateral OFC participates in the 

executive control of behavioral expression by inhibiting the neural activity associated with 

irrelevant and unwanted sensations and actions [224]. It is, therefore, suggested that the 

alterations in this brain region might lead to lesser control of unwanted behavior and thus 

more difficult temperament overall. Moreover, the lateral OFC, extending to the dlPFC, 

facilitates goal-oriented behavior by inhibiting the impact of emotional information in emotion 

regulation, judgment, decision-making and actions [225]. Furthermore, a distinct study using 

selective regional 5-HT reduction method demonstrated the critical role of the OFC in the 

expression of conditioned behavior and overall regulation of the emotional response. The 

altered orbitofrontal cortical structure might lead to a 5-HT reduction within that region, in 

turn leading to emotion and behavioral dysregulation [226]. 

 

Speaking of behavioral dysregulation, our study showed that that impulsivity scores (assessed 

by the cognitive SST task) correlated with a reduction in dlPFC area and volume. The dlPFC 

is known to have strong connections to both the limbic system and higher prefrontal areas, and 

it has repeatedly been found to be involved in the regulation of emotions [227, 228]. These 

trends of negative associations between impulsive behavior and dlPFC area and volume 

further support the crucial importance of this region in the regulation of impulses in youth. 

Indeed, dlPFC has been involved in planning and motor responses to emotional stimuli [229, 

230]. In light of these findings, the structural alterations in this region, such reductions in 

cortical area or volume, might impair one’s ability to inhibit the undesired gestures and lead to 

more impulsive behaviour. Furthermore, 5-HT depletion from the PFC was shown to impair 

performance on various computerized tasks [231, 232], indicative of deficient inhibitory 
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control. Reduced prefrontal cortical morphology might possibly lead to alteration in 5-HT 

system in that area, thereby explaining the failure of to inhibit unnecessary responses and end 

up exhibiting higher impulsivity rates. 

 

In discordance with our hypothesis, birth weight did not have any effect on brain structure, 

most probably due to the fact that our subjects’ birth weights were lower than average but 

within the normal range. Several studies with designs similar to ours reported smaller cortical 

surface areas and volumes, mostly located in parietal and temporal lobes [131, 233] in 

adolescents born with very low birth weight (VLBW), as opposed to control group. It is 

important to note that the VLBW was defined by a weight below 1500g, whereas the controls 

had an average of 3700g. In contrast, subjects in our study had an average birth weight of 

2500g, thus reducing significantly the dramatic variation in birth weight and decreasing 

chances of any significant association between birth weight and brain alterations.  

 

Similarly, in discordance with our hypothesis, overall aggression and hyperactivity scores 

from 6 to 10 years of age showed no association with adolescent brain structure, most 

probably due to the small sample size. Indeed, a study reporting structural alterations in the 

brains of healthy children with aggressiveness trait, namely a correlation between aggression 

scores and ACC thickness [234], had a sample size at least twice as big, thus increasing the 

chance of getting more significant association between behavioural scores and structural 

alterations in the brain. Similarly, a study reporting structural changes in hyperactive 

adolescents, namely a reduction in right prefrontal cortical area, [235], had a sample size 6 

times bigger than ours. Speaking of factors that bias results, it is important to mention that 

impulsivity was assessed using a computer task at age 15, while aggression and hyperactivity 

were assessed using self-report measures between 6 and 10 years of age. Hence, age as well as 

task sensitivity might confound with the interpretation of these data. 

 

4.1 Limitations and Strengths 

 4.1.1 Limitations 
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Although statistically significant, the associations were of small magnitude, most 

probably due to the small sample size. Indeed, studies reporting more significant associations 

generally used bigger sample sizes [131, 233-235]. Although the threshold used to identify 

trends in the regions of interest (ROI) (p = 0.05) was not the most stringent, it probably 

yielded valid findings given the strength of the a priori hypothesis and the small variation in 

the measured phenomena. In addition, it is important to point out that regions of associations 

were found primarily in the a priori defined ROI, increasing the confidence in the validity of 

the findings. Furthermore, the characteristics of the current sample corresponded to those of a 

community sample. In other words, many variables, such as birth weight and aggression, were 

in the normal range. Hence, the clinical relevance of those results is unknown and should be 

tested in future studies. Nevertheless, the fact that we found such results in a community 

sample, carefully screened for mental disorders, are of particular interest as they suggest that 

even subtle variations could affect brain structure. 

 

4.1.2 Strengths 

That being said, major strengths of this investigation include the fact that our data was 

selected from a carefully documented longitudinal sample followed since birth, therefore 

covering a large developmental period and avoiding any potential retrospective bias. 

Moreover, our sample consisted of monozygotic twins, assuming sharing 100% of their genes, 

thus allowing us to control for genetic factors and better isolate the effect of the environment 

on the brain. Also, it is important to note that the sample was composed of healthy subjects, as 

verified during the clinical interview, thus allowing the results to be generalized to other 

healthy human beings. In addition, the adolescent population was crucial to test because 

adolescence is known for the occurrence of important developmental changes and the onset of 

mental health disorders [236-238].  Furthermore, a high-resolution technique, namely a voxel-

based measurement of cortical features, helped us to detect subtle within-pair differences in 

brain morphometry. Our findings were located in biologically plausible brain regions and 

mapped a fronto-limbic network of structures (PFC, OFC, ACC etc.) that has been repeatedly 

associated with emotion regulation in neuroimaging studies [53, 230].  
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4.2 Implications and future directions 

In summary, several cortical neuroanatomical correlates of early life stressors were 

identified in healthy adolescents. These findings have significant clinical implications, as they 

bring insight into early adversity effects on brain, in turn spotting isolating several structural 

brain alterations as biomarkers that could be used to identify adolescents susceptible to 

develop mental disorders later in life and build prevention programs to avoid the development 

of subsequent psychopathology. Future interesting research projects could include a clinical 

and neuroimaging follow-up in this twin cohort in order to confirm whether the brain 

alterations found in our study persist in adulthood and whether adolescents at risk end up 

developing a psychopathology later in life. Furthermore, combining different imaging 

techniques and the interpretation of the different analyses (e.g., cortical thickness, assessing 

connectivity between frontal and cortical structures) would help to further understand specific 

mechanisms. Following the idea of psychopathology, it would be of great interest to replicate 

current results in more severely impaired samples (e.g., twins with very low birth weight and 

very high levels of maternal hostility) and in patient samples (e.g., patients with high levels of 

aggression or impulsivity). Moreover, future research should expand the sample size and 

examine the data of functional neuroimaging in twins, currently being analyzed in our 

laboratory, to better grasp the impact of early life adversity on the human brain while 

controlling for genetic factors. Finally, growing evidence indicates that early environment 

affects brain structure and function through epigenetic mechanisms, such as DNA methylation 

[239]. In fact, our own laboratory uses the QSNT twin cohort in order to assess DNA 

methylation as underlying epigenetic mechanism mediating the effects of early environment 

on brain function and structure. Therefore, a crucial next step in this type of investigation 

would be to determine the epigenetic contributions to the environmental impact on brain 

function and structure, especially with regard to 5-HT genes, crucial in brain development. 

Using a highly multidisciplinary approach, namely combining psychology, brain imaging and 

epigenetics, is crucial for future research projects in the search of developmental mechanisms 

and early markers of vulnerability to psychopathology in order to prevent those from 

appearing. 
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