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Abstract

We consider envy-free (and budget-balanced) rules that are least manipulable with
respect to agents counting or with respect to utility gains. Recently it has been
shown that for any profile of quasi-linear preferences, the outcome of any such least
manipulable envy-free rule can be obtained via agent-k-linked allocations. This note
provides an algorithm for identifying agent-k-linked allocations.
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1 Introduction

Policy makers often adopt social choice rules and matching mechanisms that are vulnera-
ble to manipulation by strategic misrepresentation (e.g., voting rules, school choice mech-
anisms, and auction procedures). This has motivated researchers to identify rules and
mechanisms that are “least manipulable” according to some predetermined measure. Two
prominent measures are (i) counting the number of profiles at which a rule is manipu-
lable (Maus et al., 2007a,b) and (ii) comparing via set inclusion the preference domains
where different rules are manipulable (Pathak and Sönmez, 2013). Even those measures
are natural, Andersson et al. (2010) demonstrated that in the context of assigning indivis-
ible objects with monetary compensations among a set of agents, they do not distinguish
envy-free and budget-balanced rules, and a “finer” measure is needed to identify “least
manipulable” rules among envy-free and budget-balanced rules.
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In Andersson et al. (2010), rule ϕ is judged to be more manipulable with respect
to agents counting than rule ψ if, for each preference profile, the number of agents that
can manipulate ϕ is larger than or equal to the number of agents that can manipulable ψ.
Andersson et al. (2012) and Fujinaka and Wakayama (2012) considered a different approach
and calculated the maximal amount by which an agent can gain from manipulating a given
rule. In this case, rule ϕ is defined to be more manipulable with respect to utility gains
than rule ψ if, for each preference profile, the maximal gain that any agent can obtain
by manipulating ϕ is weakly larger than the maximal gain that any agent can obtain by
manipulating ψ. Even though these two “finer” measures appear to be quite different,
they share one important feature. Namely, for any given preference profile, the outcome
of least manipulable envy-free rules can be identified via agent-k-linked allocations. Here,
an allocation is agent-k-linked if for each agent i, there is a sequence of agents from i to
k such that any agent in the sequence is indifferent between his consumption bundle and
the consumption bundle of the next agent in the sequence. These allocations are not only
important when identifying least manipulable rules, they have also played an important role
in other contexts (see, e.g., Alkan et al., 1991; Velez, 2011; Fujinaka and Wakayama, 2012).
This note provides an algorithm for finding envy-free and budget-balanced agent-k-linked
allocations under quasi-linear preferences.

2 The Model and Basic Definitions

Let N = {1, . . . , n} and M = {1, . . . ,m} denote the sets of agents and objects, respectively,
with |N | = |M |. Each agent i ∈ N consumes one bundle (j, xj) ∈ M × R containing one
object j ∈ M and some amount of money xj ∈ R. For each i ∈ N , i’s preferences over
bundles (j, xj) are represented by a quasi-linear utility function ui:

ui(j, xj) = vij + xj for some vij ∈ R.

A list of utility functions u = (u1, . . . , un) is a (preference) profile. Let U denote the set of
profiles.

An allocation (a, x) is a list of |N | bundles where a : N →M assigns object ai to i ∈ N
and x : M → R assigns monetary compensation xj to j ∈M . An allocation (a, x) is feasible
if ai 6= aj whenever i 6= j for i, j ∈ N , and

∑
j∈M xj ≤ α for some α ∈ R+. If

∑
j∈M xj = α,

allocation (a, x) is budget-balanced. Let A denote the set of feasible and budget-balanced
allocations. For convenience, we write “allocation” instead of “feasible allocation satisfying
budget-balance”. At profile u ∈ U , allocation (a, x) is envy-free if ui(ai, xai) ≥ ui(aj, xaj)
for all i, j ∈ N . Let F(u) denote the set of envy-free allocations at profile u ∈ U .

A rule is a non-empty correspondence ϕ choosing for each u ∈ U a non-empty set of
allocations ϕ(u) such that ui(ai, xai) = ui(bi, ybi) for all i ∈ N and all (a, x), (b, y) ∈ ϕ(u).
A rule ϕ is envy-free if ϕ(u) ⊆ F(u) for each u ∈ U . Given u ∈ U , a rule ϕ is manipulable
at u by agent i ∈ N if there exists (ûi, u−i) ∈ U and two allocations (a, x) ∈ ϕ(u) and
(b, y) ∈ ϕ(ûi, u−i) such that ui(bi, ybi) > ui(ai, xai). If rule ϕ is not manipulable by any
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agent at u, then ϕ is non-manipulable at u.
We use the following concepts for describing indifference relations at any allocation

(Andersson et al., 2010).

Definition 1. Let (a, x) ∈ A and u ∈ U .

(i) For any i, j ∈ N , we write i→(a,x) j if ui(ai, xai) = ui(aj, xaj),

(ii) An indifference chain at (a, x) consists of a tuple of distinct agents g = (i0, . . . , ik)
such that i0 →(a,x) · · · →(a,x) ik,

(iii) Agent i ∈ N is linked to agent k ∈ N at (a, x) if there exists an indifference chain
(i0, . . . , it) at (a, x) with i = i0 and it = k,

(iv) Allocation (a, x) is agent-k-linked if each agent i ∈ N is linked to agent k ∈ N .

Definition 2. Let (a, x) ∈ A. An indifference component at (a, x) is a non-empty set
G ⊆ N such that for all i, k ∈ G there exists an indifference chain at (a, x) in G, say
g = (i0, ..., ik) with {i0, . . . , ik} ⊆ G, such that i = i0 and ik = k, and there exists no
G′ ) G satisfying the previous property at (a, x).

Lemma 1 (Svensson, 2009). Let u ∈ U . If (a, x), (b, y) ∈ F(u), then (a, y), (b, x) ∈ F(u).

3 Least Manipulable Envy-Free Rules

Note the following two facts for any k ∈ N and any u ∈ U ,

(1) there exist allocations in F(u) maximizing k’s utility in F(u) (and such allocations
will be called agent-k-preferred) (Alkan et al., 1991); and (a∗, x∗) ∈ F(u) is agent-
k-linked if and only if (a∗, x∗) maximizes k’s utility in F(u) (Andersson et al., 2010,
Theorem 6);

(2) for any envy-free rule ϕ, there exists (ûi, u−i) ∈ U such that some (a∗, x∗) ∈ ϕ(ûi, u−i)
is agent-k-linked (under u) (Andersson et al., 2010).

Given a rule ϕ and u ∈ U , let Pϕ(u) denote the set of agents who can manipulate ϕ at u.
Rule ϕ is non-manipulable at u if

|Pϕ(u)| = 0. (1)

Because (1) is never satisfied for all profiles by envy-free (and budget-balanced) rules (Green
and Laffont, 1979), one approach is to search for rules where |Pϕ(u)| is minimized for each
profile u.

Definition 3. Envy-free rule ϕ is least manipulable with respect to agents counting if for
any envy-free rule ψ, we have |Pϕ(u)| ≤ |Pψ(u)| for all u ∈ U .
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Andersson et al. (2010) show the following: first, by their Lemma 2, the set of indifference
components is invariant for any two envy-free allocations; and second, agent k cannot
manipulate an envy-free rule iff all allocations chosen by the rule are agent-k-linked (or
equivalently, agent-k-preferred). An immediate consequence is now Andersson et al. (2010,
Theorem 3) which states that the least manipulable envy-free rules with respect to agents
counting are exactly “maximally preferred” envy-free rules: for each profile u we choose
some agent k belonging to an indifference component with maximal cardinality and then
a non-empty subset of agent-k-linked allocations. Note that such allocations are agent-i-
linked for any agent i belonging to the same indifference component as agent k. Hence, to
identify the outcome of a least manipulable envy-free rule with respect to agents counting,
envy-free agent-k-linked allocations must be identified (and then indifference components
with maximal cardinality may be found). Here it suffices to identify one agent-k-linked
allocation for each k ∈ N .

Andersson et al. (2012) and Fujinaka and Wakayama (2012) determine the maximal
utility gain which each agent can obtain by manipulating an envy-free rule. For any u ∈ U
and any (a, x) ∈ ϕ(u), let

fk(ϕ, u) = sup
(ûk,u−k)∈U

max
(b,y)∈ϕ(ûk,u−k)

uk(bk, ybk)− uk(ak, xak)

denote agent k’s maximal gain from manipulating ϕ at u.
Let ϕ be an envy-free rule, u ∈ U and (a, x) ∈ ϕ(u). Let k ∈ N . By Fact (1) there

exist agent-k-linked (a∗, x∗) ∈ F(u). By Lemma 1, now (a, x∗) ∈ F(u) and (by envy-
freeness) uk(ak, x

∗
ak

) = uk(a
∗
k, x

∗
a∗k

) implying that (a, x∗) is agent-k-linked. Observing Fact

(2), Andersson et al. (2012, Theorem 2) under quasi-linearity implies

fk(ϕ, u) = vkak + x∗ak − (vkak + xak) = x∗ak − xak . (2)

Hence, fk(ϕ, u) represents the maximal amount of money that agent k can obtain by
manipulating ϕ at u.

Definition 4. Envy-free rule ϕ is least manipulable with respect to utility gains if for any
envy-free rule ψ, we have maxi∈N fi(ϕ, u) ≤ maxi∈N fi(ψ, u) for all u ∈ U .

Andersson et al. (2012) show that (a) there exist least manipulable envy-free rules ϕ with
respect to utility gains, (b) any such ϕ satisfies fi(ϕ, u) = fj(ϕ, u) for all i, j ∈ N and
all u ∈ U , and (c) the allocations chosen by any such ϕ can be identified via agent-k-
linked allocations for any profile u. More explicitly, given u ∈ U start by identifying one
agent-k-linked allocation in F(u), say (ak, xk), for any k ∈ N . Using Lemma 1 and the
above argument, we may suppose that a1 = · · · = an ≡ a (and (a, xk) ∈ F(u) is agent-
k-linked). By (2), for all k ∈ N , xkak ≥ xak (where (a, x) ∈ F(u)), and

∑
k∈N x

k
ak
≥ α.

Thus, the compensations (x1a1 , . . . , x
n
an) need to be reduced by β ≥ 0 in order to satisfy

budget-balance, i.e. we choose β ≥ 0 such that
∑

k∈N(xkak−β) = α. Andersson et al. (2012,
Theorem 5) show that the allocation (a, (xkak−β)k∈N) is envy-free. Now obviously, for profile
u, any envy-free rule ϕ choosing (a, (xkak − β)k∈N) satisfies by (2), fi(ϕ, u) = β = fj(ϕ, u)
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for all i, j ∈ N . Hence, the outcome of a least manipulable rule with respect to utility gains
may be found via identifying envy-free agent-k-linked allocations (and again it suffices to
identify one agent-k-linked allocation for each k ∈ N).

4 Identification of Agent-k-linked Allocations

Fix u ∈ U and k ∈ N . Similarly to Aragones (1995), our algorithm starts with an arbitrary
envy-free allocation, say (a, x) ∈ F(u). This assumption is not restrictive since such
allocations can be easily found in polynomial time (Klijn, 2000; Haake et al., 2003). In
every step of the algorithm we keep the object assignment a fixed.

Definition 5. A group of agents C ( N is isolated at (a, x) if i 6→(a,x) j for all i ∈ N \ C
and all j ∈ C.

An allocation cannot be agent-k-linked if agent k belongs to an isolated group C ( N
because then at least one agent is not linked to agent k. The termination criterion for our
algorithm will be the non-existence of an isolated group containing agent k.

Algorithm 1. Let (a, x) ∈ F(u) and set K0 = {k}. For each iteration t = 1, . . . :

Step t. Define Kt ≡ Kt−1 ∪ {i ∈ N \Kt−1 | i →(a,x) j for some j ∈ Kt−1}. If Kt = Kt−1,
then stop. Otherwise, continue with Step t+ 1.

Lemma 2. Algorithm 1 identifies an isolated group containing agent k in at most |N |
iterations.

Proof. Let Algorithm 1 terminate at Step T . If KT 6= N , then i 6→(a,x) j for all i ∈ N \KT

and all j ∈ KT by construction. Thus, KT is isolated and k ∈ KT since {k} = K0 ⊆ KT .
Furthermore, note that |Kt| − |Kt−1| ≥ 1 for all t ∈ {1, . . . , T − 1}, and Algorithm 1

terminates in at most |N | iterations.

Algorithm 2. Let (a, x) ∈ F(u) and set K0 = {k} and x0 = x. Let xt denote the
compensations determined in iteration t. For each iteration t = 1, . . . :

Step t. Run Algorithm 1 for (a, xt−1) and let N t denote the output of Algorithm 1. If
N \N t = ∅, then stop (with output (a, xt−1)). Otherwise, let λtij ≡ ui(ai, x

t−1
ai

)−ui(aj, xt−1aj
)

for each i ∈ N \N t and each j ∈ N t. Define λt ≡ mini∈N\Nt,j∈Nt λtij. Define xt by

xtai ≡ xt−1ai
− |N

t|
|N |
· λt for each i ∈ N \N t,

xtaj ≡ xt−1aj
+
|N \N t|
|N |

· λt for each j ∈ N t,

and continue with Step t+ 1.
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Theorem 1. Algorithm 2 identifies an agent-k-linked envy-free allocation in at most |N |
iterations.

Proof. Note that the adjustment of compensations in Step t from xt−1 to xt respects
budget-balance because (a, x0) is budget-balanced, and by induction, if (a, xt−1) is budget-
balanced, then∑

i∈N

xtai =
∑
i∈N

xt−1ai
− |N

t|
|N |
· λt · |N \N t|+ |N \N

t|
|N |

· λt · |N t| =
∑
i∈N

xt−1ai
= α.

Note that (a, x0) ∈ F(u). By induction, we show that if (a, xt−1) ∈ F(u), then (a, xt) ∈
F(u). Equivalently, we show for all i, j ∈ N ,

if ui(ai, x
t−1
ai

) ≥ ui(aj, x
t−1
aj

), then ui(ai, x
t
ai

) ≥ ui(aj, x
t
aj

). (3)

If i, j ∈ N t or i, j ∈ N \N t, then (3) is true because (a, xt−1) ∈ F(u) and the adjustments
of xt−1ai

and xt−1aj
are identical. If i ∈ N t and j ∈ N \N t, then (3) is true because (a, xt−1) ∈

F(u) and xt−1ai
is increased and xt−1aj

is decreased. If i ∈ N \N t and j ∈ N t, then (3) is true

because (a, xt−1) ∈ F(u) and by definition of λt, λt ≤ λtij = ui(ai, x
t−1
ai

)− ui(aj, xt−1aj
), i.e.,

ui(ai, x
t
ai

) = viai + xtai = viai + xt−1ai
− |N

t|
|N |
· λt ≥ viai + xt−1ai

− |N
t|

|N |
· λtij =

= ui(ai, (x
t−1
ai

)− λtij +
|N \N t|
|N |

· λtij = ui(aj, x
t−1
aj

) +
|N \N t|
|N |

· λtij

≥ viaj + xt−1aj
+
|N \N t|
|N |

· λt = viaj + xtaj = ui(aj, x
t
aj

).

Because (a, x0) = (a, x) ∈ F(u), now (3) yields (a, xt) ∈ F(u).
Finally, we show that Algorithm 2 terminates in at most |N | iterations. By construction

of N t, each agent i ∈ N t must belong to an indifference chain g = (i, . . . , k) at (a, xt−1).
Note that at Step t, for i ∈ N \N t and j ∈ N t such that λtij = λt, all the above inequalities
become equalities and we obtain ui(ai, x

t
ai

) = ui(aj, x
t
aj

), i →(a,xt) j and i ∈ N t+1. Note

that N t ⊆ N t+1 because for any i, j ∈ N t such that i →(a,xt−1) j, the adjustments of xt−1ai

and xt−1aj
are identical and we also have i →(a,xt) j. Thus, |N t+1| − |N t| ≥ 1 as long as

N \N t 6= ∅. Hence, Algorithm 2 terminates in at most |N | iterations.
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