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RÉSUMÉ

Les deux premiers articles élaborent des procédures de simulation du vecteur d’état et

d’estimation des paramètres dans des modèles espace-états non linéaires et non-Gaussiens.

Nous proposons des spécifications des modèles espace-états qui offrent plus de flexibilité

dans la modélisation des relations dynamiques avec variables latentes. Les procédures

d’estimation des paramètres dans ces modèles sont une extension de la méthode HES-

SIAN de McCausland[2012]. Ainsi, elles utilisent une approximation de la densité à

posteriori du vecteur d’état qui permet de : simuler directement de la loi à posteriori

du vecteur d’état, de simuler en seul bloc le vecteur d’état et de le simuler conjointe-

ment avec le vecteur de paramètres, et de ne pas admettre l’introduction d’inconnues

additionnelles. Ces propriétés permettent d’obtenir des simulateurs à posteriori avec une

efficacité numérique relative très élevée. Les procédures d’estimation élaborées sont gé-

nériques. Elles ouvrent ainsi une voie pour une analyse des modèles espace-états non

linéaires et non-Gaussiens sans une grande contribution du modélisateur.

Le troisième article est une contribution dans l’analyse des marchés agricoles. Les

firmes privées coexistent avec les coopératives de fermiers dans les marchés agricoles en

Afrique subsaharienne. Les firmes privées accaparent les plus grandes parts de marché,

alors que certains modèles théoriques prédisent leur disparition une fois confrontées aux

coopératives agricoles. Par ailleurs, certaines observations et études empiriques lient la

forte incidence d’une coopérative dans une région à la confiance interpersonnelle entre

les personnes de cette région, et par conséquent la confiance de ces personnes envers

les coopératives existantes. Nous proposons un modèle théorique qui cadre mieux avec

ces observations empiriques. Un modèle où la réputation de la coopérative est un facteur

déterminant de l’équilibre de marché dans la compétition sur le prix à la livraison entre

celle-ci et une firme privée.

Mots clés : Espace-État, Non-linéaire, non-Gaussien, MCMC, Efficacité numérique,

Volatilité stochastique, Durée stochastique, Coopérative, Réputation.

JEL Classification : C11, C15, C58, C63, Q13.



ABSTRACT

The first two articles build procedures to simulate vector of univariate states and es-

timate parameters in nonlinear and non Gaussian state space models. We propose state

space specifications that offer more flexibility in modeling dynamic relationship with

latent variables. Our procedures are extension of the HESSIAN method of McCaus-

land[2012]. Thus, they use approximation of the posterior density of the vector of states

that allow to : simulate directly from the state vector posterior distribution, to simulate

the states vector in one bloc and jointly with the vector of parameters, and to not al-

low data augmentation. These properties allow to build posterior simulators with very

high relative numerical efficiency. Generic, they open a new path in nonlinear and non

Gaussian state space analysis with limited contribution of the modeler.

The third article is an essay in commodity market analysis. Private firms coexist

with farmers’ cooperatives in commodity markets in subsaharan african countries. The

private firms have the biggest market share while some theoretical models predict they

disappearance once confronted to farmers cooperatives. Elsewhere, some empirical stu-

dies and observations link cooperative incidence in a region with interpersonal trust, and

thus to farmers trust toward cooperatives. We propose a model that sustain these empi-

rical facts. A model where the cooperative reputation is a leading factor determining the

market equilibrium of a price competition between a cooperative and a private firm.

Keywords : State-space, Nonlinear, Non-Gaussian, MCMC, Numerical Efficiency,

Stochastic Volatility, Stochastic Duration, Cooperatives, Reputation.

JEL Classification : C1, C15, C58, C63, Q13



TABLE DES MATIÈRES

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE DES MATIÈRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LISTE DES TABLEAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LISTE DES FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LISTE DES ANNEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

DÉDICACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

REMERCIEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

INTRODUCTION GÉNÉRALE . . . . . . . . . . . . . . . . . . . . . . . . xiv

CHAPITRE 1 : THE HESSIAN METHOD FOR MODELS WITH LEVERAGE-

LIKE EFFECTS . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 An approximation of the target density . . . . . . . . . . . . . . . . . . 8

1.2.1 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 A Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 A Backward Pass . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Getting it right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.2 MCMC and IS methods for posterior simulation . . . . . . . . 17

1.4.3 Marginal likelihood approximation . . . . . . . . . . . . . . . 19

1.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



vi

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPITRE 2 : GENERALIZED HESSIAN FOR NON-LINEAR AND NON-

GAUSSIAN STATE SPACE MODELS . . . . . . . . . . . 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 An approximation of the target density . . . . . . . . . . . . . . . . . . 31

2.2.1 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 A Forward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 A Backward Pass . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Empirical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.2 MCMC and IS methods for posterior simulation . . . . . . . . 38

2.3.3 On the correctness of posterior simulators . . . . . . . . . . . . 39

2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

CHAPITRE 3 : COOPERATIVES’ REPUTATION AND ENDOGENOUS

MEMBERSHIP IN A MIXED DUOPSONY . . . . . . . 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Characterization of the equilibrium . . . . . . . . . . . . . . . . . . . . 58

3.3.1 The farmer’s production and patronizing decision . . . . . . . . 59

3.3.2 The cooperative pricing decision . . . . . . . . . . . . . . . . . 60

3.3.3 Investor owned firm pricing behavior . . . . . . . . . . . . . . 64

3.3.4 The equilibrium spot price, effort and market shares . . . . . . 66

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

I.1 Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

I.2 Polynomial approximations of at|t+1 and st|t+1 . . . . . . . . . . . . . . xx

I.2.1 General Formula . . . . . . . . . . . . . . . . . . . . . . . . . xxi



vii

I.2.2 Explicit Formula for R = 5 . . . . . . . . . . . . . . . . . . . xxiv

I.3 Polynomial approximations of b(r)
t and µ(r)

t . . . . . . . . . . . . . . . xxvii

I.3.1 First derivative of log f(αt|αt+1, y) . . . . . . . . . . . . . . . xxvii

I.3.2 Approximation of h(1)
t (αt;αt+1) . . . . . . . . . . . . . . . . . xxix

I.3.3 Approximation of the conditional mode bt|t+1(αt+1) . . . . . . xxx

I.3.4 Coefficients of the polynomial approximation of µt|t+1(αt+1) . . xxxii

I.4 Model derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

I.4.1 ASV-Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiv

I.4.2 ASV-Student . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxv

I.5 Rules for derivatives of compound functions . . . . . . . . . . . . . . . xxxvii

I.5.1 Univariate functions . . . . . . . . . . . . . . . . . . . . . . . xxxviii

I.5.2 Multivariate functions . . . . . . . . . . . . . . . . . . . . . . xl

II.1 Mode of the target density . . . . . . . . . . . . . . . . . . . . . . . . xlii

II.2 Polynomial approximations of at|t+1 and st|t+1 . . . . . . . . . . . . . . xliii

II.3 Conditional mode and mean. . . . . . . . . . . . . . . . . . . . . . . . xlviii

II.3.1 Gradient of the log conditional density . . . . . . . . . . . . . . xlviii

II.3.2 Approximation of the conditional derivatives . . . . . . . . . . xlix

II.3.3 Coefficients of the polynomial approximation of the conditional

mode bt|t+1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . l

II.4 ASCD models derivatives . . . . . . . . . . . . . . . . . . . . . . . . . li

III.1 Reputation Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . liv

BIBLIOGRAPHIE FOR CHAPITRE 1 . . . . . . . . . . . . . . . . . . . . lvi

BIBLIOGRAPHIE FOR CHAPITRE 2 . . . . . . . . . . . . . . . . . . . . lix

BIBLIOGRAPHIE FOR CHAPITRE 3 . . . . . . . . . . . . . . . . . . . . lxii



LISTE DES TABLEAUX

1.I Main notation used in the paper . . . . . . . . . . . . . . . . . . . . . . 23

1.II Computational time in seconds by dataset and estimation procedure for

the ASV-Gaussian model. For all procedures, we draw a chain of size

12800. The S&P500 dataset is of size 2022 and the Topix dataset is of

size 1232. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.III ASV-Gaussian parameter estimation using the HESSIAN method and

the OCSN procedure on S&P500 and TOPIX data. . . . . . . . . . . . 24

1.IV ASV-Student parameter estimation using the HESSIAN method, Inde-

pendence Metropolis-Hastings and Importance Sampling, on S&P500

and TOPIX data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.I Main notation used in the paper . . . . . . . . . . . . . . . . . . . . . . 46

2.II ASCD model estimation results for artificial data using independence

Metropolis-Hastings and importance sampling . . . . . . . . . . . . . . 47

2.III ASCD model estimation results for artificial data using independence

Metropolis-Hastings and importance sampling . . . . . . . . . . . . . . 48

2.IV ASCD model estimation results for IBM duration data using indepen-

dence Metropolis-Hastings and importance sampling . . . . . . . . . . 49

2.V ASCD model estimation results for IBM data using independence Metropolis-

Hastings and importance sampling . . . . . . . . . . . . . . . . . . . . 50



LISTE DES FIGURES

2.1 Histograms of simulated duration data and observed duration data. . . . 43

3.1 Cooperatives’ membership rate and social homogeneity by produc-

tion area, Ivory Coast, 2002 . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Players’ best responses and corresponding equilibria given reputa-

tion index,θ, and financial market tightness index, aτ . . . . . . . . . 67

3.3 Market share threshold with respect to reputation index, θ, and fi-

nancial market tightness index aτ . . . . . . . . . . . . . . . . . . . 69



LISTE DES ANNEXES

Annexe I : Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . xix

Annexe II : Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . xlii

Annexe III : Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . liv



MÈRE ! J’AI FINI, PRESQUE ...

À l’école primaire, la communauté villageoise organisait chaque fin d’année une

cérémonie de collation des grades.

Au menu principal, la redoutable cérémonie d’appel des élèves par ordre de mérite

devant l’assemblée.

Les parents couvraient alors de cadeaux leur progéniture selon leur rang.

À chacune de mes classes, j’étais souvent parmi les premiers appelés, pour ne pas

dire le premier.

À la cérémonie de la quatrième année, sentant probablement qu’à ce rythme je

finirai par la ruiner financièrement, ma mère me fit cette promesse :

Fils, ton véritable cadeau, tu l’auras lorsque tu auras fini d’apprendre.

La quête de ce cadeau m’a transporté des plages ensoleillées de mon village natal,

à l’adorable hiver québécois.

Si j’ai bonne mémoire, c’était un jeudi, juste deux mois après mon arrivée à Mont-

réal.

J’étais sur le pas de ma porte, allant à la cérémonie de remise officielle de la Bourse

de la Banque Laurentienne qui m’avait permis d’initier ce volet-ci de cette quête.

Le téléphone sonna. Au bout du fil, l’ainé de ma famille :

’Bonjour petit frère. Ton cadeau, tu ne l’auras plus !’

Mais au fait, ce cadeau je l’ai reçu dès l’instant où ma mère fit cette promesse.

Elle sema en moi cette quête inlassable de la connaissance, une quête presque

infinie !

Merci Neah Ephrasie Antoinette Blah.
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INTRODUCTION GÉNÉRALE

Ma thèse est composée de trois articles. Les deux premiers articles proposent des pro-

cédures de simulation du vecteur d’état et d’estimation des paramètres dans les modèles

espace-états nonlinéaires et non-Gaussiens. Ces modèles sont utiles pour représenter les

interactions dynamiques avec variables latentes. Ils permettent notamment l’analyse de

la volatilité des prix des actifs financiers ou l’analyse de la structure à terme des prix de

commodité. Le troisième article propose un modèle théorique sur le rôle de la réputation

d’une coopérative de fermiers dans l’issue de la compétition entre celle-ci et une firme

privée dans un marché agricole. Cette structure de ma thèse est le reflet d’une ambition

première formulée dans mon projet de candidature à l’admission au doctorat. Cette am-

bition consistait d’une part à analyser la dynamique des actifs financiers et les stratégies

de gestion de risque associées, et d’autre part à déterminer un mode d’agrégation op-

timale des petits fermiers leur permettant l’usage des instruments financiers pour gérer

leur exposition au risque.

Le premier article propose une procédure de simulation du vecteur d’état et d’esti-

mation des paramètres dans un modèle espace-état avec effet de type levier. Dans ces

modèles, le vecteur d’état est Gaussien et les vecteurs d’observation sont non linéaires

dans les variables d’état avec des distributions non Gaussiennes. Autre caractéristique

importante, sachant l’état courant, le vecteur d’observation courant et l’innovation cou-

rante de l’état sont dépendants. Le modèle de volatilité stochastique avec effet levier

de Harvey et Shephard [1996] est le plus connu ayant de telles caractériques, d’où la

dénomination.

Élaborer des procédures d’estimation des paramètres dans cette classe de modèle est

très difficile. Le calcul de la vraisemblance exige une intégration du vecteur d’état sur

un espace de très grande dimension. Un calcul analytique de la vraisemblance est donc

impossible. La simulation du vecteur d’état s’avère alors nécessaire pour approximer les

valeurs de la vraisemblance ou faire de l’estimation Bayésienne à posteriori.

Pour la classe de modèle considérée, il est impossible de simuler le vecteur d’état di-

rectement à partir de sa densité conditionnelle sachant les observations et les paramètres.
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Nous appellerons cette densité, la densité cible. Pour palier cela, il faut utiliser une den-

sité auxiliaire qui servira de densité proposée dans une méthode Markov chain Monte

Carlo, ou de densité préférentielle dans un échantillonnage préférentiel. Nous construi-

sons dans cet article une telle densité auxiliaire comme approximation de la densité cible.

La méthode utilisée pour construire la densité auxiliaire est similaire à la méthode

HESSIAN de McCausland[2012], élaborée pour des modèles sans effet de type levier.

McCausland[2012] utilise les dérivées, par rapport aux variables d’états, de la log densité

conditionnelle de l’observation courante sachant l’état courant pour construire l’approxi-

mation de la densité cible. Nous utilisons les dérivées partielles, par rapport aux variables

d’état, de la log densité conditionnelle de l’observation courante sachant l’état courant

et l’innovation courante de l’état pour construire l’approximation de la densité cible.

Notre méthode hérite de la méthode HESSIAN, certaines propriétés qui la démarquent

des autres propositions existantes dans la littérature pour estimer les paramètres dans les

modèles espace-état avec effet de type levier. Elle simule le vecteur d’état directement

de la loi de la densité cible. Nous ne rendons pas le modèle linéaire en vue de simuler

d’une distribution approximative, et pondérer l’échantillon par la suite pour obtenir des

estimateurs de la loi cible. Le vecteur d’état est simulé en un seul bloc dans les méthodes

MCMC. De plus, le vecteur d’état et le vecteur des paramètres sont simulés conjointe-

ment en un seul bloc. Ces premières propriétés permettent d’élaborer une procédure de

simulation à posteriori du vecteur d’état et des paramètres avec une efficacité numérique

relative très élevée.

Dernière propriété, et pas la moindre, la procédure pour construire la densité auxi-

liaire est générique. Sa mise en œuvre pour un modèle particulier, nécessite simple-

ment de calculer les dérivées partielles de la log densité conditionnelle de l’observation

courante sachant l’état courant et l’innovation courante de l’état. Nous obtenons les va-

leurs exactes des dérivées partielles sans nécessairement calculer leurs expressions ana-

lytiques. Nous pouvons calculer les dérivées partielles pour des fonctions élémentaires et

par la suite les combiner avec des routines appliquant la formule de Faa-Di-Bruno pour

le calcul des dérivées partielles de fonctions composées. Même si nous n’utilisons pas

des dérivées numériques, il est possible d’y avoir recours. Les dérivées numériques dimi-
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nuent la qualité de l’approximation sans compromettre la convergence des simulations à

posteriori.

Nous illustrons notre méthode avec le modèle de volatilité stochastique avec effet

de levier. Nous permettons aux innovations de l’observation d’être Gaussienne ou t de

Student. Avec l’échantillonnage préférentiel,notre procédure atteint une efficacité numé-

rique relative de presque 100% pour tous les paramètres. Ce qui est très élevé pour une

méthode générique comparée aux méthodes modèles spécifiques de Omori et al[2007]

et Omori et Nakajima[2009].

Le second article propose une méthode de simulation de l’état et d’estimation des

paramètres dans un modèle espace-état nonlinéaire et non-Gaussien. À la différence du

premier article, la transition entre états peut se faire de façon nonlinéaire et l’innova-

tion de l’état peut être non Gaussienne. La variable d’observation conserve sa flexibilité

antérieure dans sa liaison avec l’état et dans sa distribution. Nous maintenons toujours

l’hypothèse de la dépendance conditionnelle entre l’observation courante et l’innovation

courante de l’état. Cette formulation est beaucoup plus flexible que la plupart des spécifi-

cations existantes d’un modèle espace-état. Elle incorpore ainsi les modèles espace-états

avec effet de type levier.

Nous généralisons la méthode HESSIAN décrite dans le premier article pour simu-

ler l’état latent et estimer les paramètres du modèle. L’approximation de la densité cible

est construite à partir des dérivées partielles, par rapport aux variables d’état, de la log

densité jointe de l’observation courante et de l’innovation courante, sachant l’état cou-

rant. Il n’est pas requis de factoriser cette densité jointe comme le produit de la densité

de l’innovation courante de l’état sachant l’état courant et de la densité de l’observation

sachant l’état courant et l’innovation courante de l’état.

La procédure pour construire l’approximation de la densité cible est une fois de plus

générique. Les propriétés de la méthode HESSIAN de base sont préservées de sorte que

nous élaborons des simulateurs à posteriori avec une efficacité numérique relative très

élevée.

Nous illustrons la méthode HESSIAN Généralisée avec le modèle de durée condi-

tionnelle stochastique introduit par Feng et al [2004]. Nous atteignons dans la simulation
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des paramètres de ce modèle des efficacités numériques autour de 100%, alors que la mé-

thode décrite dans Strickland et al.[2006], pour des modèles similaires, a une efficacité

numérique qui n’excède pas 5%. Pour ce modèle, nous proposons aussi une méthode de

traitement des transactions simultanées qui permet une meilleure approximation de la

densité prédictive générée par les paramètres estimés pour les faibles valeurs de durée.

Notre troisième article s’intéresse à l’organisation des marchés agricoles. Tel qu’indi-

qué plus haut, l’intérêt porté à ces marchés a découlé d’un projet de transfert de connais-

sances auprès des petits fermiers pour l’usage des instruments financiers pour gérer leur

exposition au risque. La libéralisation des marchés agricoles en Afrique subsaharienne

a généré d’une part l’introduction des firmes privées sur le marché de la collecte lo-

cale avec situation d’oligopsone, et d’autre part un transfert de la volatilité des prix

internationaux aux petits fermiers. Juguler ces deux effets néfastes de la libéralisation

impliquait une organisation des fermiers en des coopératives agricoles viables. Mais,

après plus d’une décennie de promotion, les coopératives agricoles ont réalisé peu de

progrès. Pourtant, le modèle théorique de Albeak et Schultz(1998) et dans une certaine

mesure Sexton(1990) prédisent la disparition d’une firme privée compétissant avec une

coopérative de fermiers dans un marché agricole.

L’observation du comportement des animateurs des coopératives locales a suggéré

que la confiance suscitée par les coopératives, autrement dit leur reputation pourrait

expliquer leurs difficultés de croissance. Par ailleurs, nous pouvons récenser dans la

littérature des contributions empiriques ou théoriques liant densité de coopératives et

confiance. Ainsi, James et Sykuta [2004], sur la base d’une enquête auprès des produc-

teurs de maïs et soja du Missouri, relèvent que la confiance et la perception de l’honnê-

teté sont les principaux facteurs expliquant la décision d’un fermier d’appartenir à une

coopérative que de vendre sa production à une firme privée. Miguel, Gertler, et Levine

[2005] utilisent la densité des coopératives dans une région comme proxy de la confiance

régnant dans cette région.

Nous proposons un modèle théorique où la réputation d’une coopérative est un fac-

teur déterminant de l’équilibre d’une compétition prix entre celle-ci et une firme privée

dans un marché agricole. Nous empruntons à Sexton[1990] la structure économique du
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modèle. Nous y remplaçons la dimension spatiale par une dimension de confiance entre

les fermiers et la coopérative. L’échéancier de paiement proposé par la coopérative au

fermier fait de la confiance envers la coopérative un élément important de sa décision

de la patronner. En effet, le paiement de la production du fermier par la coopérative se

fait au moins en deux étapes. Un prix à la livraison lorsque la coopérative prend posses-

sion de la matière première. Un prix résiduel, ou dividende, versé en fin d’exercice. Si

le prix à la livraison est certain, le ’dividende’ l’est moins. Ce dernier peut être détourné

ou l’incompétence de la coopérative peut ne pas générer de ’dividende’. La relation de

confiance entre le producteur et la coopérative, ou la réputation de cette dernière, joue

alors un rôle prépondérant dans la décision du producteur d’appartenir à la coopérative.

Toutes choses égales par ailleurs, une bonne réputation de la coopération accroit la part

de marché de celle-ci tout en contraignant la firme privée à pratiquer un prix à la livrai-

son plus élevé. Une telle prédiction cadre mieux avec l’observation empirique que celles

des modèles de Sexton [1990], Albaek et Schultz[1998] et Karantininis et Zago[2001]

sur le même sujet.



CHAPITRE 1

THE HESSIAN METHOD FOR MODELS WITH LEVERAGE-LIKE EFFECTS

Abstract

We propose a new method for simulation smoothing in state space models with univariate

states and leverage-like effects. Given a vector θ of parameters, the state sequence α =

(α1, . . . , αn)> is Gaussian and the sequence y = (y>1 , . . . , y
>
n )> of observed vectors may

be conditionally non-Gaussian. By leverage-like effect, we mean conditional dependence

between the observation yt and the contemporaneous innovation of the state equation,

not just the contemporaneous state αt. We use this term since stochastic volatility models

with the leverage effect are a leading example.

Our method is an extension of the HESSIAN method described in McCausland [16],

which only works for models without leverage-like effects, models in which the density

f(yt|θ, α) depends only on θ and αt. Like that method, ours is based on a close approxi-

mation g(α|θ, y) of the conditional density f(α|θ, y). One can use g(α|θ, y) for impor-

tance sampling or Markov chain Monte Carlo (MCMC). With a suitable approximation

g(θ|y) of f(θ|y), we can use g(θ, α|y) = g(θ|y)g(α|θ, y) as an importance or proposal

density for the joint posterior distribution of parameters and states. Applications include

the approximation of likelihood function values and the marginal likelihood, and Baye-

sian posterior simulation. We construct the approximation g(α|θ, y) for Gaussian and

Student’s t stochastic volatility models with leverage. For both models, we make a joint

proposal of the state and parameter vectors. Unlike Omori et al. [20] and Nakajima and

Omori [18], we do not augment the data by adding mixture indicators or heavy tail sca-

ling factors. For the numerical estimation of posterior means of parameters, our generic

procedure is more numerically efficient than the model specific procedures of those pa-

pers — using randomised pseudo-Monte Carlo importance sampling, we obtain relative

numerical efficiencies close to 100% for all parameters and both Gaussian and Student’s

t stochastic volatility models. For many parameters, this is considerably higher than the

numerical efficiency of the method of Omori et al. [20], for a model with Gaussian in-
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novations, and the method of Nakajima and Omori [18], for a model with Student’s t

innovations.

Keywords : State space models, Nonlinear, Non-Gaussian, MCMC, Numerical Ef-

ficiency, Stochastic Volatility

JEL Classification : C11, C15, C58, C63.
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1.1 Introduction

State space models govern the interaction of observable data y = (y>1 , . . . , y
>
t , . . . , y

>
n )>

and latent states α = (α1, . . . , αt, . . . , αn)>, given a vector θ of parameters. They are

very useful in capturing dynamic relationships, especially where there are changing, but

latent, economic conditions : the states may be unobserved state variables in macroeco-

nomic models, log volatility in asset markets or time varying model parameters.

Simulation smoothing methods have proven useful for approximating likelihood func-

tion values and Bayesian posterior simulation. They involve simulating the conditional

distribution of states given data and parameters. We will call this distribution the target

distribution. Simulation typically entails importance sampling or Markov chain Monte

Carlo (MCMC). We show examples of both in Section 1.4.

State space models with conditional dependence between the observed value yt and

the contemporaneous innovation of the state equation, not just the contemporaneous

state αt, are of particular interest. The best known examples are stochastic volatility

models with an asymmetric volatility effect known as the leverage effect. In the model

introduced by Harvey and Shephard [12], the latent states αt are log volatilities, given

by

α1 = ᾱ +
σ√

1− φ2
u0, αt+1 = (1− φ)ᾱ + φαt + σut, (1.1)

and observed returns yt are given by

yt = exp(αt/2)vt, (1.2)

where the (ut, vt) are serially independent with

u0 ∼ N(0, 1),

ut
vt

 ∼ i.i.d. N

0,

1 ρ

ρ 1

 , (1.3)

and (σ, φ, ρ, ᾱ) is a vector of parameters. If ρ = 0, yt and the contemporaneous inno-

vation σut are conditionally independent given αt. When ρ 6= 0, they are conditionally
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dependent and we call this conditional independence a leverage effect.

Others have extended this model. Jacquier et al. [13] and Omori et al. [20] consi-

der inference in stochastic volatility models with leverage and heavy-tailed conditional

return distributions. This and other empirical work has shown convincingly that stochas-

tic volatility models with leverage are more realistic descriptions of stock returns than

models without.

Leverage-like effects may be useful in other models as well. There is little reason

beyond computational convenience to rule them out. Feng et al. [6] show that conditional

dependence is more realistic in stochastic conditional duration models.

Designing inferential methods for such models has proven difficult, however, and

methods with high numerical efficiency have been model specific. Nine years passed

between Kim et al. [15], introducing the auxiliary mixture model approach for stochastic

volatility models without leverage, and Omori et al. [20], extending it to models with

leverage.

We extend the HESSIAN method of McCausland [16], which does simulation smoo-

thing for models without leverage-like effects. That method used multiple derivatives of

log f(yt|θ, αt) with respect to αt to construct a close approximation to the target dis-

tribution. In models with leverage-like effects, the conditional distribution of yt given

α depends not only on αt but also αt+1. To obtain a similar standard of approximation

that McCausland [16] does, we need multiple partial derivatives of log f(yt|θ, αt, αt+1)

with respect to αt and αt+1. Using these derivatives to construct an approximation of the

target density requires more effort, largely because when there are leverage-like effects,

all non-zero elements of the Hessian of the log target density depend on α, not just the

diagonal elements.

Our method inherits the following features of the original method :

1. It involves direct simulation of states from their posterior distribution using a pro-

posal or importance distribution approximating the target distribution. This is un-

like auxiliary mixture model approaches, in which a model is first transformed

into a linear model, and then any non-Gaussian distributions in the transformed

model are approximated by finite Gaussian mixtures. Kim et al. [15], Chib et al.
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[3], Omori et al. [20] use this auxiliary mixture model approach for stochastic

volatility models ; Stroud et al. [26], Frühwirth-Schnatter and Wagner [8] and

Frühwirth-Schnatter et al. [9] use it for other non-linear non-Gaussian state space

models. Using the direct approach, we avoid model-specific transformations, data

augmentation, and the need to weight or apply additional accept-reject steps to

correct for approximation error.

2. It involves drawing the entire state sequence as a single MCMC block. This leads

to efficiency improvements when there is posterior serial dependence. While dra-

wing the entire state sequence using a multivariate Gaussian proposal distribution

is impractical, we make it possible by constructing a much closer approximation

of the target distribution. Many articles have used multivariate Gaussian proposal

distributions to update the state vector, but usually only for about 10–50 obser-

vations at a time, not the entire sample. These include Shephard and Pitt [24],

Watanabe and Omori [27], Strickland et al. [25], Jungbacker and Koopman [14]

and Omori and Watanabe [19]. The Efficient Importance Sampling (EIS) method

of Richard and Zhang [21] features draws of the entire state sequence as a block,

but since their approximate target distribution is constructed using the random

numbers used to draw from it, EIS estimators of likelihood function values do not

have the simulation consistency or lack of simulation bias that true importance

sampling estimators do. See the discussion in McCausland [16] for more details.

3. Since the approximation is so close, we can draw parameters and states together

as a single block. We do this using a joint proposal distribution combining our

approximation of the conditional posterior distribution of states given parameters

with an approximation of the marginal posterior distribution of parameters. Dra-

wing states and parameters in a single block leads to further efficiency improve-

ments because of posterior dependence between states and parameters. In this way,

we achieve numerical efficiencies comparable to model-specific auxiliary mixture

model approaches, which also often feature joint draws of parameter and states.

The examples of Section 1.4 suggest that our method is even more efficient than

these approaches, partly because we avoid data augmentation and the need to cor-
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rect for approximation error. Being able to draw all parameters and states jointly

in an untransformed model also opens up new opportunities — it allows for im-

portance sampling, variance reduction using randomised pseudo Monte Carlo, and

very efficient approximations of the marginal likelihood, as we see in Section 1.4.

4. We construct our approximation of the target distribution in a generic way. The

only model-specific computation is the evaluation of derivatives of the log mea-

surement density. Existing, well tested, and publicly available generic code uses

the routines for computing model-specific derivatives in order to do simulation

smoothing for that model. Exact evaluation of derivatives does not require finding

analytic expressions — we can use generic routines to combine derivative values

according to Leibniz’ rule for multiple derivatives of products and Faà di Bru-

no’s rule for multiple derivatives of composite functions. Although we do not do

so here, we could also resort to numerical derivatives — there would a cost in

numerical efficiency, but simulation consistency would not be compromised. The

Student’s t distribution and other scale mixtures of normals are often used in sto-

chastic volatility models, partly because they work well in auxiliary mixture model

approaches using data augmentation for the mixing random variables. A generic

approach allows for other, possibly skewed, measurement distributions.

5. It is based on operations using the sparse Hessian matrix of the log target den-

sity, rather than on the Kalman filter. Articles using the former approach include

Rue [22], for linear Gaussian Markov random fields, Chan and Jeliazkov [2] and

McCausland et al. [17], for linear Gaussian state space models, and Rue et al.

[23] for non-linear non-Gaussian Markov random fields. The Integrated Nested

Laplace Approximation (INLA) method described in the last article has spawned

a large applied literature. Articles using the Kalman filter include Carter and Kohn

[1], Frühwirth-Schnatter [7], de Jong and Shephard [4] and Durbin and Koopman

[5] for linear Gaussian state space models. Auxiliary mixture model methods for

non-linear or non-Gaussian models tend to use the Kalman filter, but this is not an

essential feature of auxiliary mixture model methods.
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We will now be more precise about the class of state space models we consider. The

state and measurement equations are

α1 = d0 + u0, αt+1 = dt + φtαt + ω
−1/2
t ut,

f(y|α) =

[
n−1∏
t=1

f(yt|αt, αt+1)

]
f(yn|αn),

(1.4)

where α = (α1, . . . , αn) is a vector of univariate latent states αt, the ut are independent

Gaussian random variables with mean 0 and unit variance, the yt are observable random

vectors, and the f(yt|αt, αt+1) are measurement density or mass functions. We do not

require them to be Gaussian, linear or univariate. We say that models of this form exhibit

a leverage-like effect whenever f(yt|αt, αt+1) depends on αt+1. This will be the case

when the observable vector yt and the contemporaneous state innovation ut = αt+1 −
dt − φtαt are conditionally dependent given the contemporaneous state αt.

Throughout most of the paper, we condition on dt, φt, ωt and any other parameters on

which the f(yt|αt, αt+1) might depend, and suppress notation for this conditioning. In

Section 1.4, where we consider joint inference for parameters and states, we are explicit

about this conditioning.

It is easy to see that the model in equations (1.1), (1.2) and (1.3) is of the form given

by (1.4). We use (1.1) to write

ut = [αt+1 − (1− φ)ᾱ− φαt]/σ,

then use the standard formula for conditional Gaussian distributions to obtain

yt|α ∼ N
(
(ρ/σ) exp(αt/2)(αt+1 − (1− φ)ᾱ− φαt), (1− ρ2) exp(αt)

)
. (1.5)

In Section 1.2 we describe our approximation g(α|y) of the target density f(α|y).

We show how to evaluate it and how to draw from the distribution with density g(α|y).

In Section 1.3 we apply tests of program correctness to the code we use to compute

g(α|y) and draw from the approximate distribution. These tests are similar to those des-
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cribed in Geweke [11]. Section 1.4 illustrates our methods using stochastic volatility

models with leverage, with Gaussian and Student’s t measurement innovations. Section

1.5 concludes.

1.2 An approximation of the target density

In this section we define our approximation g(α|y) of the target density f(α|y). We

do not provide a closed form expression for g(α|y), but instead show how to evaluate

and sample from g(α|y) using O(n) operations. The density g(α|y) is proper and fully

normalized.

Our approximation is not model specific. We construct g(α|y) for a particular state

space model using a suitable description of the model, consisting of the following quan-

tities and computational routines.

We specify the state dynamics by providing Ω̄ and c̄, the precision and covector of

the marginal distribution of α, the state sequence. This gives the distribution of α as

α ∼ N(Ω̄−1c̄, Ω̄−1). The precision, unlike the variance, is a tri-diagonal matrix, with

O(n) elements. Appendix I.1 describes how to compute Ω̄ and c̄ in terms of the dt, φt

and ωt.

We specify the measurement distributions by supplying routines to compute, for t =

1, . . . , n− 1, the functions

ψt(αt, αt+1)
.
= log f(yt|αt, αt+1), ψn(αn) = log f(yn|αn), (1.6)

and the partial derivatives

ψ
(p,q)
t (αt, αt+1)

.
=
∂p+qψt(αt, αt+1)

∂αpt∂α
q
t+1

, ψ(p)
n (αn) =

∂pψ(αn)

∂αpn
, (1.7)

for orders p and q up to certain values P and Q. For convenience, Table 1.I summarizes

this and other important notation.

The routines to compute the ψt(αt, αt+1) and ψn(αn) must give exact results, as they

are used to evaluate f(α|y) up to a normalization factor. The partial derivatives, however,
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may be numerical derivatives or other approximations. Approximation error may make

g(α|y) a cruder approximation of f(α|y) and thus diminish the numerical precision of

IS or MCMC. But we will still be able to evaluate and simulate g(α|y) without error, and

so it does not compromise simulation consistency.

Like the target density, the approximation g(α|y) has the Markov property, allowing

us to decompose it as

g(α|y) = g(αn|y)
1∏

t=n−1

g(αt|αt+1, y). (1.8)

Each factor is a proper fully normalized density function closely approximating the cor-

responding factor of f(α|y). Whether we need to evaluate g(α|y), simulate it or both,

the decomposition allows us to do so sequentially, for t descending from n to 1.

Approximations rely on Taylor series expansions, some exact and some approximate,

of various functions, including bt|t+1(αt+1) and µt|t+1(αt+1), the mode and mean of the

conditional distribution of αt given αt+1 and y. Some expansions are computed during

a forward pass, around the mode (a1, . . . , an) of the target distribution, a static point of

expansion. So for example, we compute Bt|t+1(αt+1) and Mt|t+1(αt+1) as approximate

Taylor series expansions of bt|t+1(αt+1) and µt|t+1(αt+1) around at+1.

During the backward pass, we compute approximate Taylor series expansions of

hn(αn)
.
= log f(αn|y) and ht(αt;αt+1)

.
= log f(αt|αt+1, y), t = n− 1, . . . , 1, which we

will treat as univariate functions of αt with parameter αt+1. Here, the point of expansion

is a moving target, depending on αt+1. The expansion is fifth order, allowing a much

better than Gaussian (second order) approximation.

The densities g(αt|αt+1, y) are members of the class of perturbed Gaussian dis-

tributions described in Appendix G of McCausland [16]. Parameters of the perturbed

Gaussian distribution give a mode of the distribution and the second through fifth deri-

vatives of log g(αt|αt+1, y) at that mode. Choosing parameters amounts to approxima-

ting bt|t+1(αt+1), the mode of f(αt|αt+1, y), and the second through fifth derivatives of

log f(αt|αt+1, y) there.
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In Appendix I.3.1, we derive this exact result for the first derivative of ht :

h
(1)
t (αt;αt+1) = c̄t − Ω̄t−1,tµt−1|t(αt)− Ω̄t,tαt − Ω̄t,t+1αt+1

+ xt−1|t(αt) + ψ
(1,0)
t (αt, αt+1), t = 2, . . . , n− 1,

(1.9)

where µt−1|t(αt)
.
= E[αt−1|αt, y] and xt−1|t(αt)

.
= E[ψ

(0,1)
t−1 (αt−1, αt)|αt, y]. We also

give analogous results for the cases t = 1 and t = n.

We cannot evaluate µt−1|t(αt), xt−1|t(αt) or their derivatives exactly. Nor can we

evaluate the mode bt|t+1(αt+1) exactly. Instead, we provide polynomial approximations

Mt−1|t(αt), Bt|t+1(αt+1) and Xt−1|t(αt) of µt−1|t(αt), bt|t+1(αt+1) and xt−1|t(αt). We

use these to approximate the value bt|t+1(αt+1) and the derivatives h(r)
t (αt;αt+1), r =

1, . . . , 5. Mt−1|t(αt) and Xt−1|t(αt) are approximate Taylor expansions of µt−1|t(αt) and

xt−1|t(αt) around at. Bt|t+1(αt+1) is an approximate Taylor expansion of bt|t+1(αt+1)

around at+1.

We draw α, evaluate g(α|y), or both using the following steps. We first compute the

mode a = (a1, . . . , an) of the target distribution using the method described in Appendix

B of McCausland [16]. In a forward pass we compute the coefficients of the polynomials

Bt|t+1(αt+1), Mt−1|t(αt), and Xt−1|t(αt), for t = 1, . . . , n − 1. Finally, we compute,

for t = n, . . . , 1, Bt|t+1(αt+1) and H(r)
t (Bt|t+1(αt+1);αt+1), using these values as the

parameters of the perturbed Gaussian distribution. With these values sets, we can draw

αt, evaluate g(αt|αt+1, y) or both. In the rest of this section, we describe these steps in

more detail. Full detail is left to various appendices.

1.2.1 Precomputation

We first compute the precision Ω̄ and covector c̄ of the Gaussian prior distribution

of states as a function of dt, φt and ωt in (1.4). We then compute the mode a of the

target distribution. This gives, as bi-products, several quantities used later. This includes

the precision ¯̄Ω and covector ¯̄c of a Gaussian approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target

density. It also gives the conditional variances Σt
.
= Var[αt|αt+1], t = 1, . . . , n− 1, and

Σn
.
= Var[αn] implied by this Gaussian approximation.
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This precomputation is similar to that described in Appendix B of McCausland [16].

Little modification is required, and we give details in Appendix I.1.

1.2.2 A Forward Pass

In order to describe the forward pass, it will be helpful to introduce a sequence

of multivariate Gaussian conditional distributions. We define, for t = 1, . . . , n − 1,

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) as the conditional mode of (α1, . . . , αt) given αt+1 and

y, and ¯̄Ω1:t|t+1 as the negative Hessian matrix of log f(α1, . . . , αt|αt+1, y) with res-

pect to (α1, . . . , αt), evaluated at (a1|t+1, . . . , at|t+1). Thus we can view the distribu-

tion N((a1|t+1, . . . , at|t+1), ¯̄Ω−1
1:t|t+1) as an approximation of the conditional distribution

of (α1, . . . , αt) given αt+1 and y. Result 2.1 of McCausland et al. [17] implies that if

α̃ ∼ N((a1|t+1, . . . , at|t+1), ¯̄Ω−1
1:t|t+1), then α̃t|α̃t+1 ∼ N(at|t+1,Σt|t+1), where Σt|t+1 is

the final value in the following forward recursion :

Σ1|t+1
.
= ¯̄Ω−1

11 , Στ |t+1
.
= (¯̄Ωττ − ¯̄Ω2

τ,τ−1Στ−1|t+1)−1, τ = 2, . . . , t. (1.10)

We also define, for t = 1, . . . , n− 1, st|t+1(αt+1)
.
= log Σt|t+1(αt+1).

The forward pass consists of performing the following steps, for t = 1, . . . , n− 1 :

1. Compute

a
(r)
t

.
=
∂rat|t+1(αt+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R,

s
(r)
t

.
=
∂rst|t+1(αt+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R− 1.

(1.11)

The choice ofR determines how closely we can approximate the functions at|t+1(αt+1)

and st|t+1(αt+1) using Taylor expansions. For our empirical illustration, we use

R = 5.

Appendix I.2 gives details. Equation (I.8) gives a(r)
1 and for t > 1, (I.18) gives a(r)

t

as a function of a(i)
t−1, i = 1, . . . , r, and a(i)

t , i = 1, . . . , r − 1. Equations (I.15),

(I.20), (I.23), (I.26) and (I.28) give simplified expressions for r = 1, . . . , 5 and
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t > 1.

Equation (I.10) gives s(r)
1 and equations (I.18) and (I.19) give s

(r)
t . Equations

(I.22), (I.25), (I.27) and (I.29) give simplified expressions for s(r)
t , r = 1, . . . , 4

and t = 2, . . . , n− 1.

Appendix I.2 includes a proof that these computations are exact. The proof uses a

first order necessary condition for (a1|t+1, . . . , at|t+1) to maximize f(α1, . . . , αt|αt+1, y),

the identity at−1|t+1(αt+1) = at−1|t(αt+1(αt+1)) and the difference equation (1.10)

defining Σt|t+1(αt+1).

2. Compute approximations Bt, B
(1)
t , B(2)

t , B(3)
t and B(4)

t of the value and first four

derivatives of bt|t+1(αt+1) at at+1. Recall that bt|t+1(αt+1) is the conditional mode

of αt given αt+1 and y. For t = n, we only compute an approximation Bn of

the value bn, the conditional mode of αn given y. Appendix I.3.3 defines these

approximations and shows how to compute them. Specifically, equation (I.42) de-

fines B(r)
t as a function of the a(i)

t and s(i)
t . The approximations are based on an

approximation of bt|t+1(αt+1)−at|t+1(αt+1) using a first order necessary condition

for bt|t+1(αt+1) to maximize f(αt|αt+1, y).

3. Compute approximations Mt, M
(1)
t , M (2)

t , M (3)
t and M (4)

t of the value and first

four derivatives of µt|t+1(αt+1) at at+1. Recall that µt|t+1(αt+1) is the conditional

mean of αt given αt+1 and y. Appendix (I.3.4) defines these approximations. We

compute M (r)
t , from equation (I.50), as a function of the B(i)

t , a(i)
t and s(i)

t .

1.2.3 A Backward Pass

We use the backward pass to draw a random variate α∗ from the distribution with

density g(α|y) and evaluate g(α∗|y). One can also evaluate g(α|y) at an arbitrary value

α∗ without drawing.

To implement the backward pass, we use the following approximation of the deriva-

tive of log f(αt|αt+1, y), based on (1.9) and the approximationsMt−1|t(αt) of µt−1|t(αt),
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Xt−1|t(αt) of xt−1|t(αt) and Ψ
(1,0)
t (αt, αt+1) of ψ(1,0)

t (αt, αt+1).

H
(1)
t (αt;αt+1)

.
= c̄t − Ω̄t−1,tMt−1|t(αt)− Ω̄t,tαt − Ω̄t,t+1αt+1

+Xt−1|t(αt) + Ψ
(1,0)
t (αt, αt+1).

(1.12)

We define the approximation Xt−1|t(αt) and show how to compute it in Appendix

I.5. Mt−1|t(αt) is the polynomial

Mt−1|t(αt) =
4∑
r=0

M
(r)
t−1

r!
(αt − at)r, (1.13)

We require routines to evaluate ψ(p,q)
t (αt, αt+1) for several orders p, q, so in principle

it is not necessary to approximate ψ(p,q)
t (αt, αt+1). However, we find the computational

costs high relative to the benefits. We already have ψ(p,q)
t = ψ

(p,q)
t (at, at+1) from the

forward pass, and we choose to approximate ψ(p,q)
t (αt, αt+1) by

Ψ
(p,q)
t (αt, αt+1)

.
=

P−p∑
r=0

Q−q∑
s=0

ψ
(p+r,q+s)
t

(αt − at)r

r!

(αt+1 − at+1)s

s!
. (1.14)

The backward pass consists of performing the following steps, for t = n, . . . , 1.

1. Evaluate Bt|t+1(α∗t+1), where Bt|t+1(αt+1) is the polynomial given by

Bt|t+1(αt+1) =
5∑
r=0

B
(r)
t

r!
(αt+1 − at+1)r (1.15)

2. Compute H(r)
t (Bt|t+1(α∗t+1);α∗t+1), r = 2, . . . , 5, using (1.12).

3. Draw α∗t and evaluate g(αt|αt+1, y) at α∗t and α∗t+1. The density g(αt|αt+1, y) is

a member of the five-parameter perturbed Gaussian distribution described in Ap-

pendix G of McCausland [16]. The mode parameter is given by b = Bt|t+1(α∗t+1),

and the derivative parameters are given by hr = H
(r)
t (Bt|t+1(α∗t+1);α∗t+1), r =

2, . . . , 5. These give the desired mode Bt|t+1(α∗t+1) and desired derivatives of

log g(αt|αt+1, y) at this mode.
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1.3 Getting it right

In posterior simulation, analytical or coding errors can lead to reasonable but inac-

curate results. Geweke [11] develops tests for the correctness of posterior simulations,

based on two different methods for simulating the joint distribution of a model’s ob-

servable and unobservable variables. Correctness tests take the form of tests of the hy-

pothesis that the two samples come from the same distribution. Since the two methods

have little in common, the tests have power against a wide array of conceptual and co-

ding errors. We apply these ideas to build tests for the correctness of the independence

Metropolis-Hastings update of the target distribution using the HESSIAN approximation

g(α|y, θ) as a proposal distribution.

We do this for the the asymmetric stochastic volatility model where the observation

innovation is Student t (ASV-Student) described in the next section. We choose a fixed

value of θ of the parameter vector. Then we generate a large sample from the conditional

distribution of α and y given θ. We initialize with a draw α(0) from the conditional

distribution of α given θ, then draw {α(m), y(m)}Mm=1 as follows. For m = 1, . . . ,M ,

1. Draw y(m) from the conditional distribution of y given θ and α, with α set to

α(m−1).

2. Update from α(m−1) to α(m) using an independence Metropolis-Hastings step, with

g(α|y, θ) as a proposal distribution and y = y(m).

This is a Gibbs sampler for the conditional distribution of α and y given θ. The initial

and stationary distributions of this chain are both equal to this distribution. By induction,

so are the distributions of all the (α(m), y(m)). In particular, α(m) ∼ N(ᾱı, Ω̄−1) for

all m, where ı is the n-vector with all elements equal to one. This implies that for all

m = 1, . . . ,M and q ∈ (0, 1), the following indicators are Bernoulli with probability

parameter q :

I
(m)
t,q

.
= 1

(
α

(m)
t − ᾱ

σ/
√

1− φ2
≤ Φ−1(q)

)
, t = 1, . . . , n, (1.16)

I
(m)
t|t−1,q

.
= 1

(
α

(m)
t − (1− φ)ᾱ− φα(m)

t−1

σ
≤ Φ−1(q)

)
, t = 1, . . . , n, (1.17)
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where Φ(x) is the cumulative distribution function of the univariate standard Gaussian

distribution.

We use sample means of the I(m)
t,q and I(m)

t|t−1,q to test the hypotheses that the corres-

ponding population means are equal to q. We report results for the ASV-Student model.

The parameter values are fixed to ᾱ = −9.0, φ = 0.97, σ = 0.15, ρ = −0.3 and

ν = 10.0. We use a vector of length n = 20 and a sample size of M = 107. We use

the R package coda to compute time series numerical standard errors and use Gaussian

asymptotic approximations to construct symmetric 95% and 99% intervals. The 95%

confidence interval does not include q in 7 cases out of 360 (1.94%). The 99% confi-

dence interval does not include q in a single case (0.28%). The sample mean always lies

well within the interval [q − 0.001, q + 0.001]. These results fail to cast doubt on the

correctness of the implementation.

1.4 Empirical example

1.4.1 Models

We consider two different stochastic volatility models with asymmetric volatility.

The first model, which we will call ASV-Gaussian, is the basic asymmetric volatility

model given in equations (1.1), (1.2) and (1.3).

The second model, which we will call ASV-Student, replaces the observation equa-

tion in (1.2) with

yt = exp(αt/2)
vt√
λt/ν

, (1.18)

where λt ∼ χ2(ν) and the λt and (ut, vt) are mutually independent.

In order to allow us to draw parameters and states together in a single block, we will

now integrate out λt to obtain the conditional distribution of yt given αt and αt+1. This

distribution is a scaled non-central Student’s t. To see this, write yt = exp(αt/2)
√

1− ρ2X ,

where

X
.
=
ut/
√

1− ρ2√
λt/ν

.

Now condition on αt and αt+1. The numerator and denominator are independent ; the
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numerator is Gaussian with mean

µ
.
= ρ

√
ω

1− ρ2
[αt+1 − dt − φtαt]

and unit variance ; and λt is chi-squared with ν degrees of freedom. Therefore X is

non-central Student’s t with non-centrality parameter µ and ν degrees of freedom. The

density of X is given by

fX(x; ν, µ) =
νν/2

2ν
Γ(ν + 1)

Γ(ν/2)
exp(−µ2/2)(ν + x2)−ν/2

×

√2µx

ν + x2

M
(
ν
2

+ 1; 3
2
; µ2x2

2(ν+x2)

)
Γ(ν+1

2
)

+
1√

ν + x2

M
(
ν+1

2
; 1

2
; µ2x2

2(ν+x2)

)
Γ(ν/2 + 1)

 ,
(1.19)

where Γ(ν) is the gamma function and M(a; b; z) is Kummer’s function of the first kind,

a confluent hypergeometric function given by

M(a; b; z) =
+∞∑
k=0

(a)k
(b)k

zk

k!
, (1.20)

where (a)k = a(a + 1) . . . (a + k − 1). See Scharf (1991). We obtain the conditional

density f(yt|αt, αt+1) using the change of variables yt = exp(αt/2)
√

1− ρ2X . The

log conditional density ψt(αt, αt+1) ≡ log f(yt|αt, αt+1) and its derivatives are given in

Appendix I.4.

For both models, the state equation parameters are ωt = σ−2, φt = φ and dt =

(1 − φ)ᾱ for all t > 1. The marginal distribution of the initial state α1 is the stationary

distribution, so that ω0 = (1− φ2)ω and d0 = ᾱ.

We express our prior uncertainty about the parameters in terms of a multivariate

Gaussian distribution over the transformed parameter vector

θ = (log σ, tanh−1 φ, ᾱ, tanh−1 ρ, log ν).
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The marginal distribution of (log σ, tanh−1 φ, ᾱ, log ν) is the same as the prior in Mc-

Causland [16] for a Student’s t stochastic volatility model without leverage, and is based

on a prior predictive analysis. The parameter tanh−1 ρ is Gaussian and a priori inde-

pendent, with mean -0.4 and standard deviation 0.5. This implies prior quantiles 0.1, 0.5

and 0.9 for ρ approximately equal to -0.78, -0.38 and 0.23. The result is the following

prior :

θ ∼ N





−1.8

2.1

−11.0

−0.4

2.5


,



0.125 −0.05 0 0 0

−0.05 0.1 0 0 0

0 0 4 0 0

0 0 0 0.25 0

0 0 0 0 0.25




.

1.4.2 MCMC and IS methods for posterior simulation

To illustrate the performance of the HESSIAN approximation, we use Markov chain

Monte Carlo (MCMC) and importance sampling posterior simulations and compare with

Omori et al. [20]. For both posterior simulations, we draw jointly θ and α. We use

as proposal density (resp. importance density) g(α, θ|y) = g(α|θ, y)g(θ|y), based on

an approximation g(θ|y) of f(θ|y), described below, and the HESSIAN approximation

g(α|θ, y) of f(α|θ, y).

We construct g(θ|y) as follows. Just as g(α|θ, y) is a close approximation of f(α|θ, y),

g̃(θ|y)
.
= f(α, θ, y)/g(α|θ, y) is a good unnormalised approximation of f(θ|y). Let θ◦

be the maximiser of g̃(θ|y) and Σ◦ be the inverse of the negative Hessian of log g̃(θ|y)

at θ◦. Also let nθ be the dimension of θ, equal to 4 for the Gaussian model and 5 for the

Student’s t model.

We choose g(θ|y) to be a nθ-variate Student’s t density with location parameter θ◦,

scale matrix Σ◦, and degrees of freedom equal to 30.

In the MCMC posterior simulation, we use an independence Metropolis-Hastings

chain. The joint proposal (α?, θ?) from density g(θ|y)g(α|θ, y) is accepted with proba-
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bility

π(θ?, α?, θ, α) = min

[
1,
f(θ?)f(α?|θ?)f(y|θ?, α?)
f(θ)f(α|θ)f(y|θ, α)

g(θ|y)g(α|θ, y)

g(θ?|y)g(α?|θ?, y)

]
.

The fact that we can approximate the entire posterior distribution opens up the pos-

sibility of doing importance sampling. Unlike proposals in MCMC, importance draws

do not need to be independent and this presents opportunities for variance reduction.

We exploit this fact to do importance sampling using a combination of quasi-random

and pseudo-random sequences for draws of θ. We construct M blocks of length S each,

for a total of MS draws. S should be a power of two, which is convenient for Sobol

quasi-random sequences.

We draw U (m), m = 1, . . . ,M , independently from the uniform distribution on the

hypercube (0, 1)nθ . For s = 1, . . . , S, V (s) is the s′th element of the nθ-dimensional

Sobol sequence. For m = 1, . . . ,M and s = 1, . . . , S, we compute U (m,s), defined as

the modulo 1 sum of U (m) and V (s). Thus U (m,s) is uniformly distributed on (0, 1)nθ and

theM blocks of length S are independent. We use U (m,s) to draw θ(m,s) from g(θ|y) : use

U (m,s) to construct a 6-vector of independent standard Gaussian variates using the inverse

cdf method then construct θ(m,s) by pre-multiplying by the Cholesky decomposition of

the scale matrix times
√
ν/ω2, where ω2 ∼ χ2(ν).

Let h(θ, α) be any function of interest. The importance sampling estimator forE[h(θ, α)|y]

is N/D, where

N
.
=

M∑
m=1

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), D
.
=

M∑
m=1

S∑
s=1

w(m,s),

and

w(m,s) =
f(θ(m,s), α(m,s), y)

g(θ(m,s), α(m,s)|y)
.

If the posterior mean of h(θ, α) exists, then the ratioR = N/D is a simulation convergent

estimator of E[h(θ, α)|y].
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Following Geweke [10], we approximate the posterior variance of h(θ, α) by

σ̂2
h
.
=

∑M
m=1

∑S
s=1[w(m,s)(h(θ(m,s), α(m,s))−R)]2

D2
.

We compute a numerical standard error for R using the delta method. This gives the

following approximation of the numerical variance of the ratio R :

σ̂2
R
.
= (σ̂2

N − 2Rσ̂ND +R2σ̂2
D)(MS/D)2,

where σ̂2
N and σ̂2

D are estimates of the variances ofN andD and σ̂ND is an estimate of the

covariance. Specifically, σ̂2
N is (1/M) times the sample variance of the M independent

terms

Nm =
1

S

S∑
s=1

w(m,s)h(θ(m,s), α(m,s)), m = 1, . . . ,M,

and analogously for σ̂2
D and σ̂ND. Then σ̂2

h/MSσ̂2
R is an estimate of the relative numeri-

cal efficiency.

1.4.3 Marginal likelihood approximation

Efficient posterior simulation of parameters and states using a single block enables us

to compute extremely precise approximations of the marginal likelihood. Using the pro-

posal distribution as an importance distribution for the posterior distribution, the mean of

the importance weights is a simulation consistent and simulation unbiased estimator of

the marginal likelihood. Our close approximation makes the variation in weights extre-

mely small, which leads to high numerical efficiency for marginal likelihood estimation.

1.4.4 Results

For the ASV-Gaussian model, we report results of the HESSIAN independence Metropolis-

Hastings and importance sampling posterior simulations. We implement the procedure

of Omori et al. [20], denoted OCSN, and compare results. We apply the three me-

thods to two real data sets. The first consists of daily returns of the S&P 500 index
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from January 1980 to December 1987, for a total of 2022 observations. This matches a

sample used by Yu [28]. The second data set consists of 1232 daily returns of the TO-

PIX index. This data set, used by Omori et al. [20], is available at Nakajima’s website

http ://sites.google.com/site/jnakajimaweb/sv.

In the MCMC posterior simulation, the initial 10 draws are discarded and the inde-

pendence Metropolis-Hastings chain is of length 12,800. We choose this chain size to

match the total draws of the importance sampling chain where we use M = 100 and

S = 128. In our replication of the OCSN chain, the initial 500 values are discarded and

we retain the 12,800 subsequent values. Table 1.II gives the computational time by data-

set and estimation procedure. For all three methods, the code is written in C++. We used

a Windows PC with an Intel Core i5 2.90GHz processor.

Table 1.III summarizes estimation results of the ASV-Gaussian model. The labels

HIS, HIM and OCSN indicate the HESSIAN importance sample, the HESSIAN inde-

pendence Metropolis-Hastings chain, and the chain obtained using the Omori et al. [20]

procedure. The first two columns show numerical estimates of the posterior mean and

standard deviation, for the various parameters.

The third and fourth columns give the numerical standard error (NSE) and the relative

numerical efficiency (RNE) of the numerical approximations of the posterior mean. The

RNE measures numerical efficiency relative to that of the mean of a random sample

from the posterior. We use the results of Section 1.4.2 to compute the NSE and RNE

of the importance sampling chain and the OCSN chain. We use the contributed coda

library of the R software to compute those of the HESSIAN independence Metropolis-

Hastings method. This uses a time series method based on the estimated spectral density

at frequency zero.

The HIS and HIM methods produce numerical estimates of the same posterior mean.

We implement the procedure of Omori et al. [20] using the prior described in their ar-

ticle, which is different from our own. As a result, reported values are different not only

because of numerical sample variance but also because the posterior mean is slightly

different.

The HESSIAN importance sampler outperforms the OCSN method in all cases. Its
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numerical efficiency is higher compared to OCSN, and apart from the unconditional

mean ᾱ of log volatility, at least four times higher. The efficiency of the importance

sample means are sometimes greater than 1. This is possible because of the variance

reduction achieved by using quasi-random numbers. In addition, the HIS procedure has

a lower execution time and thus higher numerical precision per unit time, measured by

(1/(Time× NSE2)). Except for the unconditional mean of the log volatility, the HES-

SIAN independence Metropolis Hastings methods outperforms the OCSN procedure,

with regard to the relative numerical efficiency and precision per unit time.

The reported posterior means of the parameters φ, σ and ρ are similar to the values

reported by Omori et al. [20] for the TOPIX index. The difference in the posterior means

ᾱ is due to the fact that these authors measure daily returns in percentages. The same is

true for Yu [28] in the case of the S&P500.

For the ASV-Student model, we only report results for the HESSIAN procedures.

Table 1.IV summarizes the results of both datasets. The estimates of the parameters ᾱ,

φ, σ and ρ, for the real data, are close to those obtained with the ASV-Gaussian. The

numerical efficiency is also substantially higher.

Nakajima and Omori [18] proposed an extension of the procedure in Omori et al. [20]

for ASV-Student and other models. They illustrate the procedure using S&P500 (nomi-

nally January 1, 1970 to December 31, 2003) and Topix (Janury 6, 1992 to December 30,

2004) data. Table 4 and Table 5 in Nakajima and Omori [18] report results for S&P500

and Topix data, respectively. Numerical efficiency for the ASV-Student model (SVLt

in their paper) ranges from 0.006 (ν) to 0.291 (µ) for the S&P500 dataset. For the To-

pix data, the highest value of efficiency reported is 0.0893. To compare efficiency, we

measured the numerical efficiency of the HESSIAN method, with randomised pseudo-

Monte Carlo importance sampling, on S&P500 data from January 1, 1970 to December

31, 2003. Our sample size is 8586, rather than 8869 reported in Nakajima and Omori

[18]. We obtain numerical efficiency ranging from 0.91 (φ) to 1.01 (µ).

We use the Metropolis-Hastings output to approximate marginal likelihoods. For

ASV-Gaussian, we obtain a log marginal likelihood of 6595.91, with a numerical stan-

dard error of 0.043 ; for ASV-Student, 6609.67, with a numerical standard error of 0.055.
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The Bayes factor of exp(13.76) decisively favours the ASV-Student model.

1.5 Conclusion

We have derived an approximation g(α|θ, y) of the target density f(α|θ, y) that can

be used as a proposal density for MCMC or as an importance density for importance

sampling. We have tested the correctness of the HESSIAN posterior simulators.

Simulations on artificial and real data suggest that the HESSIAN method, which

is not model specific, is more numerically efficient than the model specific method of

Omori et al. [20], which is in turn more efficient than the methods of Jacquier et al. [13]

and Omori and Watanabe [19]. The high numerical efficiency relies on g(α|θ, y) being

extremely close to the target density f(α|θ, y). Constructing a joint proposal of θ and α

not only solves the problem of numerical inefficiencies due to posterior autocorrelation

of α but also those due to posterior dependence between θ and α.

The scope of applications goes beyond the ASV-Gaussian and ASV-Student models.

Application to a new model of the form (1.4) only requires routines to compute partial

derivatives of the log conditional densities log f(yt|αt, αt+1) with respect to αt and αt+1.

This requirement is not as demanding as it might first appear, for two reasons. First, we

can use numerical derivatives or other approximations. Second, we do not require ana-

lytic expressions of these derivatives. If log f(yt|αt, αt+1) is a composition of primitive

functions, we can combine evaluations of the derivatives of the primitive functions using

routines applying Fàa Di Bruno’s rule for multiple derivatives of compound functions.

We have already coded these routines, which do not depend on the particular functions

involved.

We now require the state vector, α, to be Gaussian. We are currently trying to extend

the HESSIAN method to models where the state vector is Markov, but not necessary

Gaussian. We are also working on approximations to filtering densities, useful for se-

quential learning.
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Notation Description
ψt(αt, αt+1) log f(yt|αt, αt+1)
ψp,qt (αt, αt+1) derivative of ψp,qt (αt, αt+1) with respect to αt and αt+1 of

orders p and q.
ψn(αn) log f(yn|αn)
ψpn(αn) p’th derivative of ψn(αn) with respect to αn

a = (a1, . . . , an) mode of log f(α|y)
Σt Var(αt|αt+1, y) for the 1st reference distribution

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) mode of the conditional density f(α1, . . . , αt|αt+1, y)
Σt|t+1(αt+1) Var(αt|αt+1, y) for the 2nd reference distribution
At|t+1(αt+1) polynomial approximation of at|t+1(αt+1)
st|t+1(αt+1) log Σt|t+1(αt+1)

a
(r)
t , r = 1, . . . , R r’th derivative of at|t+1(αt+1) at αt+1 = at+1

s
(r)
t , r = 1, . . . , R− 1 r’th derivatives of st|t+1(αt+1) at αt+1 = at+1.

bt|t+1(αt+1) mode of the conditional density f(αt|αt+1, y)

bt, b
(r)
t , r = 1, . . . , R value and derivatives of bt|t+1(αt+1) at αt+1 = at+1

bn mode of the conditional density f(αn|y)
Bt|t+1(αt+1) polynomial approximation of bt|t+1(αt+1)

Bt, B
(r)
t , r = 1, . . . , R value and derivatives of Bt|t+1(αt+1) at αt+1 = at+1

µt|t+1(αt+1) E[αt|αt+1, y]

µt, µ
(r)
t , r = 1, 2 value and two derivatives of µt|t+1(αt+1) at αt+1 = at+1

Mt|t+1(αt+1) polynomial approximation of µt|t+1(αt+1)

Mt,M
(r)
t , r = 1, 2 value and two derivatives Mt|t+1(αt+1) at αt+1 = at+1

ht(αt;αt+1) first derivative of log f(αt|αt+1, y) with respect to αt
H

(p)
t (αt;αt+1), p ≥ 1 approximation of h

(p)
t (αt;αt+1), p’th derivatives of

ht(αt;αt+1) with respect to αt
ht(αn) first derivative of log f(αn|y) with respect to αn

H
(p)
n (αn), p ≥ 1 approximation of the p’th derivatives of ht(αn) with respect

to αn

TABLE 1.I – Main notation used in the paper

SP500 TOPIX
HIS 70 43
HIM 85 45
OCSN 108 67

TABLE 1.II – Computational time in seconds by dataset and estimation procedure for the
ASV-Gaussian model. For all procedures, we draw a chain of size 12800. The S&P500
dataset is of size 2022 and the Topix dataset is of size 1232.
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Parameters Mean Std NSE RNE
S& P500

ᾱ :HIS -9.5167 0.1573 2.0113e-3 0.9082
ᾱ :HIM -9.5181 0.1583 3.1266e-3 0.2002
ᾱ :OCSN -9.5029 0.3378 3.4767e-3 0.7428
φ :HIS 0.9751 0.0080 8.9356e-5 0.9000
φ :HIM 0.9752 0.0081 1.3592e-4 0.2765
φ :OCSN 0.9776 0.0083 1.8947e-4 0.1506
σ :HIS 0.1524 0.0200 1.9681e-4 0.9871
σ :HIM 0.1521 0.0201 3.2814e-4 0.2919
σ :OCSN 0.1394 0.0203 5.8443e-4 0.0945
ρ :HIS -0.2032 0.0957 9.2493e-4 1.0647
ρ :HIM -0.2044 0.0950 1.3265e-3 0.4005
ρ :OCSN -0.2007 0.1005 1.8453e-3 0.2374

TOPIX
ᾱ :HIS -8.8545 0.1080 1.1533e-3 1.2014
ᾱ :HIM -8.8545 0.1083 1.5951e-3 0.4609
ᾱ :OCSN -8.8426 0.2172 2.0867e-3 0.8574
φ :HIS 0.9574 0.0156 1.5893e-4 0.9537
φ :HIM 0.9576 0.0160 2.0428e-4 0.4769
φ :OCSN 0.9520 0.0185 3.9992e-4 0.1664
σ :HIS 0.1408 0.0254 2.5871e-4 0.8657
σ :HIM 0.1414 0.0258 2.8818e-4 0.6277
σ :OCSN 0.1387 0.0266 5.9850e-4 0.1556
ρ :HIS -0.3833 0.1188 1.2561e-3 0.8503
ρ :HIM -0.3833 0.1195 1.7136e-3 0.3801
ρ :OCSN -0.3715 0.1231 2.6536e-3 0.1792

TABLE 1.III – ASV-Gaussian parameter estimation using the HESSIAN method and the
OCSN procedure on S&P500 and TOPIX data.
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Parameters Mean Std NSE RNE
S& P 500

ᾱ :HIS -9.7230 0.1865 2.8719e-3 1.0496
ᾱ :HIM -9.7224 0.1806 3.1769e-3 0.2525
φ :HIS 0.9851 0.0054 6.8752e-5 0.9663
φ :HIM 0.9850 0.0053 7.9290e-5 0.3513
σ :HIS 0.1061 0.0164 1.7719e-4 1.1002
σ :HIM 0.1065 0.0164 3.0925e-4 0.2204
ρ :HIS -0.2440 0.1224 1.6006e-4 0.8261
ρ :HIM -0.2493 0.1222 2.2437e-3 0.2318
ν :HIS 9.8647 2.1622 2.4734e-2 0.9722
ν :HIM 9.9128 2.1828 3.6789e-2 0.2750

TOPIX
ᾱ :HIS -8.9488 0.1156 1.5983e-3 0.9672
ᾱ :HIM -8.9506 0.1115 1.9474e-3 0.2560
φ :HIS 0.9624 0.0142 1.7252e-4 0.8727
φ :HIM 0.9621 0.0144 2.2029e-4 0.3336
σ :HIS 0.1261 0.0242 2.6775e-4 0.9570
σ :HIM 0.1266 0.0240 3.7636e-4 0.3188
ρ :HIS -0.4194 0.1285 1.3790e-4 1.1266
ρ :HIM -0.4191 0.1236 2.2023e-3 0.2461
ν :HIS 20.6041 7.6904 8.6997e-2 0.9573
ν :HIM 20.4777 7.7394 1.4048e-1 0.2371

TABLE 1.IV – ASV-Student parameter estimation using the HESSIAN method, Inde-
pendence Metropolis-Hastings and Importance Sampling, on S&P500 and TOPIX data.



CHAPITRE 2

GENERALIZED HESSIAN FOR NON-LINEAR AND NON-GAUSSIAN STATE

SPACE MODELS

Abstract

We develop a method for simulation smoothing and parameter estimation in non-

linear state space models where not only observations, but also states, may be non-

Gaussian. Given the current state, the current observation vector and the contempora-

neous state innovation need not be independent. States are univariate, but observations

may be multivariate.

Our method is an extension of the HESSIAN method described in Djegnene and Mc-

Causland [4], for models where states are linear and Gaussian and where the conditional

density of the current state innovation and observation, given the current state value, de-

composes analytically into a marginal density for the state innovation and a conditional

density for the observation given the state innovation. Like that method, ours is based

on a close approximation of the conditional density of all states given all observations

and parameters. We can use this approximation to construct a joint proposal density of

states and parameters, for MCMC posterior simulation, or a joint importance density

of states and parameters for importance sampling. Applications include the approxima-

tion of likelihood function values and the marginal likelihood, and Bayesian posterior

simulation.

The procedure used to construct the approximation of the conditional density of the

state vector given the observed vector and parameters is not model specific. For a given

state space model, we only require routines to compute partial derivatives of the log

conditional density of states, with respect to states.

We illustrate using the stochastic conditional duration model with ‘leverage effect’

described in Feng et al. [6]. For the numerical approximation of posterior means of pa-

rameters, our generic procedure is more numerically efficient than other posterior simu-

lation methods for similar models. Using randomized pseudo Monte Carlo importance
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sampling, we obtain relative numerical efficiencies close to 100% for all parameters

while numerical efficiencies of the posterior simulator described in Strickland et al. [18]

do not exceed 5%.

Keywords : State space models, Nonlinear, Non-Gaussian, MCMC, Numerical Ef-

ficiency, Stochastic Volatility

JEL Classification : C11, C15, C58, C63
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2.1 Introduction

We design inferential methods for state space models where not only observations,

but also states can be non-linear and non-Gaussian. These models are described by the

joint density function

f(α, y|θ) = f(α1|θ)

[
n−1∏
t=1

f(αt+1, yt|αt, θ)

]
f(yn|αn, θ). (2.1)

In formulation (2.1), α = (α1, . . . , αn)> is a vector of latent univariate states, y =

(y>1 , . . . , y
>
n )> is a vector of observations, and θ is a vector of parameters.

The densities f(αt+1, yt|αt, θ) are quite flexible. The state αt+1 and observation yt

may be conditionally dependent given αt, and neither needs to be conditionally Gaus-

sian. This allows models such as stochastic volatility models with leverage and asym-

metric stochastic conditional duration (ASCD) models. Unlike many formulations of

state space models, we do not require an analytic decomposition f(αt+1, yt|αt, θ) =

f(αt+1|αt, θ)f(yt|αt, αt+1, θ).

Simulation smoothing methods have proven useful for approximating likelihood func-

tion values and Bayesian posterior simulation. They involve simulating the conditional

distribution of states given data and parameters. We will call this distribution the tar-

get distribution and f(α|y, θ), the target density. Simulation typically entails importance

sampling (IS) or Markov chain Monte Carlo (MCMC). We show examples of both in

Section 2.3.

Designing inferential methods for nonlinear and non-Gaussian state space models

has proven difficult. Existing methods are generally model specific. They are often desi-

gned for linear and Gaussian states or use linear transformations.

We extend the HESSIAN method in Djegnene and McCausland [4] which does simu-

lation smoothing for models with leverage-like effects. This method uses multiple partial

derivatives of log f(yt|θ, αt, αt+1) with respect to αt and αt+1 to construct a close ap-

proximation of the target density. Here, we construct the approximation of the target den-

sity using multiple partial derivatives of log f(αt+1, yt|αt, θ) with respect to αt and αt+1.
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In contrast to Djegnene and McCausland [4], we do not need the density f(αt+1|αt, θ)
to be available in closed form, or to be Gaussian.

The HESSIAN method originates from McCausland [10], who constructs a close

approximation of the target density for models with conditionally independent states

and observations, and Gaussian states. Our method inherits the following features of the

original method :

1. It involves direct simulation of states from their posterior distribution using a pro-

posal or importance distribution approximating the target distribution. This is un-

like auxiliary mixture model approaches, in which a model is first linearized, and

then any non-Gaussian distributions in the transformed model are approximated

by finite Gaussian mixtures. Xu et al. [21] use this auxiliary mixture model ap-

proach for stochastic conditional duration (SCD) models. Omori et al. [13] use it

for estimating asymmetric stochastic volatility models based on the well establi-

shed method of Kim et al. [9]. Using the direct approach, we avoid model-specific

transformations, data augmentation, and the need to re-weight or apply additional

accept-reject steps to correct for approximation error. See Djegnene and McCaus-

land [4] for additional discussion.

2. It involves drawing the entire state sequence as a single MCMC block. This leads

to efficiency improvements when there is posterior serial dependence. The entire

state sequence is drawn with a proposal or importance sampling density that is not

necessary Gaussian. Many articles have used multivariate Gaussian proposal dis-

tributions to update the state vector, but usually only for about 10–50 observations

at a time, not the entire sample. These include Shephard and Pitt [17], Watanabe

and Omori [20], Strickland et al. [18], Jungbacker and Koopman [8] and Omori

and Watanabe [12]. The Efficient Importance Sampling (EIS) method of Richard

and Zhang [14] features draws of the entire state sequence as a block, but since

their approximate target distribution is constructed using the random numbers used

to draw variates from it, EIS estimators of likelihood function values do not have

the simulation consistency or lack of simulation bias that true importance sampling

estimators do. See the discussion in McCausland [10] for more details.
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3. Since the approximation is so close, we can draw parameters and states together

as a single block. We do this using a joint proposal distribution combining our

approximation of the conditional posterior distribution of states given parameters

with an approximation of the marginal posterior distribution of parameters. Dra-

wing states and parameters in a single block leads to further efficiency improve-

ments because of posterior dependence between states and parameters. In this way,

we achieve numerical efficiencies comparable to model-specific auxiliary mixture

model approaches, which also often feature joint draws of parameter and states.

The examples of Section 2.3 suggest that our method is even more efficient than

these approaches, partly because we avoid data augmentation and the need to cor-

rect for approximation error. Being able to draw all parameters and states jointly

in an untransformed model also opens up new opportunities — it allows for im-

portance sampling, variance reduction using randomised pseudo Monte Carlo, and

very efficient approximations of the marginal likelihood, as we see in Section 2.3.

4. We construct our approximation of the target distribution in a generic way. The

only model-specific computation is the evaluation of partial derivatives of the log

joint density of states and observations. We can easily compute analytic expres-

sions for the derivatives of the log density of state and observations for the ASCD-

models used for illustration. However, exact evaluation of derivatives does not

require finding analytic expressions. Although we do not do it here, we can use

generic routines to combine derivative values according to Leibniz’ rule for mul-

tiple derivatives of products and Faà di Bruno rule for derivatives of composite

functions. See Djegnene and McCausland [4] and particularly Appendix F of that

article. Also, we could also resort to numerical derivatives — there would a cost

in numerical efficiency, but simulation consistency would not be compromised. A

generic approach allows for a wide scope of application of the Generalized HES-

SIAN method introduced here.

5. It is based on operations using the sparse Hessian matrix of the log target den-

sity, rather than on the Kalman filter. Articles using the former approach include

Rue [15], for linear Gaussian Markov random fields, Chan and Jeliazkov [2] and
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McCausland et al. [11], for linear Gaussian state space models, and Rue et al.

[16] for non-linear non-Gaussian Markov random fields. The Integrated Nested

Laplace Approximation (INLA) method described in the last article has spaw-

ned a large applied literature. Articles using the Kalman filter include Feng et al.

[6], Strickland et al. [18], for SCD-models, and Carter and Kohn [1], Frühwirth-

Schnatter [7], de Jong and Shephard [3] and Durbin and Koopman [5] for linear

Gaussian state space models. Auxiliary mixture model methods for non-linear or

non-Gaussian models tend to use the Kalman filter, but this is not an essential

feature of auxiliary mixture model methods.

We use the stochastic conditional duration model with the leverage effect (ASCD)

introduced by Feng et al. [6] to illustrate the Generalized HESSIAN method. Like them,

we consider ASCD models with Exponential, Weibull and Gamma innovations for the

observation variable. Unlike them, we do not transform the model into a linear state

space model.

Following common practice, Feng et al. [6] fit ASCD models for non-zero durations

only. They used the fitted parameters to simulate a large sample of durations. Comparison

of model-simulated and observed durations show that model-simulated durations do not

capture well the left tail of observed durations. We will see in Section 2.3.4 that including

data for durations of zero lead to a better fit for the left tail of the observed durations.

The rest of the article is organized as follow. In Section 2.2 we describe our approxi-

mation g(α|y, θ) of the target density f(α|y, θ). We show how to evaluate it and how

to draw from the distribution with density g(α|y, θ). Section 2.3 describes the asymme-

tric stochastic conditional duration model. It also demonstrates the correctness of the

posterior simulators and discusses the empirical results. Section 2.4 concludes.

2.2 An approximation of the target density

We define here our approximation g(α|y, θ) of the target density f(α|y, θ). The ap-

proximation is a proper and fully normalized density. We do not provide a closed form

expression of this approximation, but instead show how to sample from and evaluate it
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in O(n) operations.

We will now condition on the vector of parameters, θ, and suppress it from the no-

tation in this section and related appendices. Later in the empirical illustration, Section

2.3, we will be explicit again about this conditioning.

The procedure used to construct the approximation g(α|y) is not model specific.

For a particular state space model, we construct the approximation g(α|y) by supplying

routines to compute the value of log f(α|y), up to normalization factor, and various

partial derivatives with respect to elements of α. Using Equation (2.1), this amounts to

computing, for t = 1, . . . , n− 1, the functions

ψ0(α1)
.
= log f(α1), ψt(αt, αt+1)

.
= log f(yt, αt+1|αt), ψn(αn)

.
= log f(yn|αn),

(2.2)

and the partial derivatives

ψ
(q)
0 (α1) =

∂qψ0(α1)

∂αq1
, ψ

(p,q)
t (αt, αt+1)

.
=
∂p+qψt(αt, αt+1)

∂αpt∂α
q
t+1

, ψ(p)
n (αn)

.
=
∂pψ(αn)

∂αpn
,

(2.3)

for orders p and q up to certain values P and Q. For convenience, Table 2.I summarizes

this and other important notation.

The routines to compute ψ0(α1), the ψt(αt, αt+1) and ψn(αn) must give exact re-

sults, as they are used to evaluate the target density f(α|y) up to a normalization factor.

The partial derivatives, however, may be numerical derivatives or other approximations.

The approximation errors may make g(α|y) a cruder approximation of f(α|y) and thus

diminish the numerical precision of IS or MCMC. But we will still be able to evaluate

g(α|y) and sample from it without error, and so it does not compromise the simulation

consistency of IS or MCMC.

Like the target density, the approximation g(α|y) has the Markov property that allows

to decompose it as

g(α|y) = g(an|y)
1∏

t=n−1

g(αt|αt+1, y), (2.4)

where each factor is a proper and fully normalized density function closely approxima-
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ting the corresponding factor of f(α|y). Whether we need to evaluate g(α|y), simulate it

or both, the decomposition allows us to do so sequentially, for t descending from n to 1.

The densities g(αt|αt+1, y) are members of the five-parameter perturbed Gaussian

distribution described in Appendix G of McCausland [10]. The parameters give a mode

of the distribution and the second through fifth derivatives of log g(αt|αt+1, y) at that

mode. Choosing parameters amounts to approximating bt|t+1(αt+1), defined as the mode

of f(αt|αt+1, y), and the second through fifth derivatives of log f(αt|αt+1, y) at that

approximate mode.

Approximations rely on Taylor series expansions, some exact and some approximate,

of various functions, including bt|t+1(αt+1) and the conditional mean of ψt(αt, αt+1)

given αt+1 and y, denoted xt|t+1(αt+1). Some expansions are computed during a forward

pass, around the mode (a1, . . . , an) of the target distribution, a static point of expansion.

So for example, we compute Bt|t+1(αt+1) and Xt|t+1(αt+1) as approximate Taylor series

expansions of bt|t+1(αt+1) and xt|t+1(αt+1) around at+1.

During the backward pass, we compute approximate Taylor series expansions of

hn(αn)
.
= log f(αn|y) and ht(αt;αt+1)

.
= log f(αt|αt+1, y), t = n − 1, . . . , 1, which

we will treat as univariate functions of αt with parameter αt+1. Here, the point of ex-

pansion is a moving target, depending on αt+1. The expansion is fifth order, allowing

a much better than Gaussian (second order) approximation. This expansion is based on

the following exact result for the first derivative of ht(αt;αt+1) :

h
(1)
t (αt;αt+1) = xt−1|t(αt) + ψ

(1,0)
t (αt, αt+1), t = 2, . . . , n− 1, (2.5)

where xt−1|t(αt)
.
= E[ψ

(0,1)
t−1 (αt−1, αt)|αt, y]. Equation (2.5), and analogous results for

the cases t = 1 and t = n, are derived in Appendix II.3.1.

We cannot evaluate the xt−1|t(αt) and their derivatives exactly. Nor can we eva-

luate the mode bt|t+1(αt+1) exactly. Instead, we provide polynomial approximations

Xt−1|t(αt) of xt−1|t(αt) and Bt|t+1(αt+1) of bt|t+1(αt+1). We use these to approximate

the value bt|t+1(αt+1) and the derivatives h(r)
t (αt;αt+1), r = 1, . . . , 5.

The polynomial Xt−1|t(αt) approximates the Taylor expansion xt−1|t(αt) around at.
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Similarly, the polynomial Bt|t+1(αt+1) is an approximation of a Taylor expansion of

bt|t+1(αt+1) around at+1.

We draw α, evaluate g(α|y), or both using the following steps. We first compute the

mode a = (a1, . . . , an) of the target distribution using the method described in Appendix

B of McCausland [10]. In a forward pass we compute the coefficients of the polynomials

Bt|t+1(αt+1), and Xt|t+1(αt+1), for t = 1, . . . , n − 1. Finally, we compute, for t =

n, . . . , 1,Bt|t+1(αt+1) andH(r)
t (Bt|t+1(αt+1);αt+1), using these values as the parameters

of the perturbed Gaussian distribution. With these values set, we can draw αt, evaluate

g(αt|αt+1, y) or both. In the rest of this section, we describe these steps in more detail.

Full detail is left to various appendices.

2.2.1 Precomputation

We compute the mode a of the target distribution. This gives, as bi-products, several

quantities used later. This includes the precision ¯̄Ω and covector ¯̄c of a Gaussian ap-

proximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target density. It also gives the conditional variances

Σt
.
= Var[αt|αt+1], t = 1, . . . , n − 1, and Σn

.
= Var[αn] implied by this Gaussian

approximation.

This precomputation is similar to that described in Appendix B of McCausland [10].

Little modification is required, and we give details in Appendix II.1.

2.2.2 A Forward Pass

In order to describe the forward pass, it will be helpful to introduce a sequence

of multivariate Gaussian conditional distributions. We define, for t = 1, . . . , n − 1,

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) as the conditional mode of (α1, . . . , αt) given αt+1 and

y, and ¯̄Ω1:t|t+1 as the negative Hessian matrix of log f(α1, . . . , αt|αt+1, y) with res-

pect to (α1, . . . , αt), evaluated at (a1|t+1, . . . , at|t+1). Thus we can view the distribu-

tion N((a1|t+1, . . . , at|t+1), ¯̄Ω−1
1:t|t+1) as an approximation of the conditional distribution

of (α1, . . . , αt) given αt+1 and y. Result 2.1 of McCausland et al. [11] implies that if

x ∼ N((a1|t+1, . . . , at|t+1), ¯̄Ω−1
1:t|t+1), then xt|xt+1 ∼ N(at|t+1,Σt|t+1), where Σt|t+1 is
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the final value in the following forward recursion :

Σ1|t+1
.
= ¯̄Ω−1

11 , Στ |t+1
.
= (¯̄Ωττ − ¯̄Ω2

τ,τ−1Στ−1|t+1)−1, τ = 2, . . . , t. (2.6)

We also define, for t = 1, . . . , n− 1, st|t+1(αt+1)
.
= log Σt|t+1(αt+1).

Coefficients of the polynomial approximations Bt|t+1(αt+1) and Xt|t+1(αt+1) rely

on those of at|t+1(αt+1) and Σt|t+1(αt+1) as demonstrated in Appendix II.3. Thus, the

forward pass consists of performing the following steps, for t = 1, . . . , n− 1 :

1. Compute

a
(r)
t

.
=
∂rat|t+1(αt+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R,

s
(r)
t

.
=
∂rst|t+1(at+1)

∂αrt+1

∣∣∣∣
αt+1=at+1

, r = 1, . . . , R− 1.

(2.7)

The choice ofR determines how closely we can approximate the functions at|t+1(αt+1)

and st|t+1(αt+1) using Taylor expansions. For our empirical illustration, we use

R = 5.

Appendix II.2 gives details and prove that these computations are exact. Equation

(II.16) gives explicit simplified expressions for a(r)
t and s(r)

t , for r ≤ 5.

2. Compute approximations Bt, B
(1)
t , B(2)

t and B(3)
t of the value and first three deri-

vatives of the conditional mode bt|t+1(αt+1) at at+1. For the special case t = n, we

only compute an approximation Bn of the value bn. Appendix II.3.3 defines these

approximations and shows how to compute them. Specifically, Equation (II.23)

defines B(r)
t as a function of the a(i)

t and s(i)
t . These computations are based on

an approximation of the difference bt|t+1(αt+1) − at|t+1(αt+1) using a first order

necessary condition for bt|t+1(αt+1) to maximize f(αt|αt+1, y).

3. Compute approximations X(r)
t , r = 0, . . . , 4, of the value and first four deriva-

tives of the conditional mean xt|t+1(αt+1) at at+1. Appendices (C.2) to (C.4) of

Djegnene and McCausland [4] give details of these computations.
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2.2.3 A Backward Pass

We use the backward pass to draw a random variate α∗ from the distribution with

density g(α|y) and evaluate g(α∗|y). One can also evaluate g(α|y) at an arbitrary value

α∗ without drawing.

To implement the backward pass, we use the following approximation of the deriva-

tive of log f(αt|αt+1, y), based on (2.5),

H
(1)
t (αt;αt+1)

.
= ψ

(1,0)
t (αt, αt+1) +Xt−1|t(αt), r = 2, . . . , 5, (2.8)

where X is the approximate Taylor series expansion of x constructed using the coeffi-

cients computed in step (3) of the forward pass.

For some models, there may be computational costs to evaluate ψ(p,q)
t (αt, αt+1) di-

rectly. In this case, we use an approximation Ψ
(p,q)
t (αt, αt+1) of ψ(p,q)

t (αt, αt+1). We al-

ready have ψ(p,q)
t = ψ

(p,q)
t (at, at+1) from the forward pass, and based on a multivariate

Taylor expansion, we choose to approximate ψ(p,q)
t (αt, αt+1) by

Ψ
(p,q)
t (αt, αt+1)

.
=

P−p∑
r=0

Q−q∑
s=0

ψ
(p+r,q+s)
t

(αt − at)r

r!

(αt+1 − at+1)s

s!
. (2.9)

The backward pass consists of performing the following steps, for t = n, . . . , 1.

1. Evaluate Bt|t+1(α∗t+1), where Bt|t+1(αt+1) is the polynomial given by 1

Bt|t+1(αt+1) =
R∑
r=0

B
(r)
t

r!
(αt+1 − at+1)r (2.10)

2. Evaluate the first through fourth derivatives of H(1)
t (αt;α

∗
t+1) with respect to αt at

Bt|t+1(α∗t+1) using (2.8).

3. The density g(αt|αt+1, y) is a member of the five-parameter perturbed Gaussian

distribution described in Appendix F of McCausland [10]. The parameters are gi-

ven by z̄ = Bt|t+1(α∗t+1), and hr = H
(r)
t (Bt|t+1(α∗t+1);α∗t+1), r = 2, . . . , 5. These

1. For r ≥ 4, we set B(r)
t = a

(r)
t .
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give the desired mode Bt|t+1(α∗t+1) and desired derivatives of log g(αt|αt+1, y) at

this mode.

4. Draw α∗t from this distribution and evaluate g(αt|αt+1, y) at α∗t and α∗t+1.

2.3 Empirical example

2.3.1 Models

We consider the asymmetric stochastic conditional duration (ASCD) model introdu-

ced by Feng et al. [6], described by equation (2.11). In contrast to these authors, we do

not linearize the model.

yt = exp(αt)εt, t = 1, . . . , n

αt+1 =(1− φ)ᾱ + φαt + ρ log(εt) + ηt, t = 1, . . . , n− 1.
(2.11)

The innovation vectors (εt, ηt) are independent and identically distributed. Also, εt and

ηt are independent. The state innovation ηt is Gaussian with mean zero and variance

σ2. The observation innovation εt is scale-normalized and is either Weibull, Gamma

or Exponential. The Weibull and Gamma distributions have a shape parameter ν. We

assume stationarity of the state, so that α1 ∼ N (ᾱ, σ2/(1− φ2)). We will call the three

models ASCD-Exponential, ASCD-Weibull and ASCD-Gamma.

The latent process α represents expected duration while y is actually the observed

duration. Trade durations may have local asymmetric changes. In period of high trade

intensity, trade durations are lower than in period of low trade intensity. This is equivalent

to a positive correlation between expected duration and observed duration. The ASCD

model described in (2.11) is intended to capture this stylized facts. The introduction of

the observation innovation in the state equation clearly introduce a correlation between

the contemporous state innovation and the contemporous observation.

Section 1.2 of Feng et al. [6] describes the statistical properties of the ASCD models.

As noted by these authors, the presence of the leverage term, γ, inflates the variance and

fourth moment of the duration. The skewness and kurtosis vary in terms of both the sign
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and magnitude of γ, which offer more flexibility to model the dynamic of the duration.

We compute the log conditional density ψt(αt, αt+1) = log f(αt+1, yt|αt) in Appen-

dix II.4, and provide partial derivatives of ψt(αt, αt+1) with respect to αt and αt+1.

We express our prior uncertainty about the parameters in terms of a multivariate

Gaussian distribution over the transformed parameter vector θ = (ᾱ, tanh−1 φ, log σ, tanh−1 ρ, log ν).

We choose as prior distribution

θ ∼ N





0.0

1.5

−1.5

0.1

−0.1


,



25 0 0 0 0

0 0.625 −0.5 0 0

0 −0.5 0.5 0 0

0 0 0 10 0

0 0 0 0 4




.

The marginal distribution of (ᾱ, tanh−1 φ, log σ) is from McCausland [10].

2.3.2 MCMC and IS methods for posterior simulation

To illustrate the performance of the Generalized HESSIAN method, we run Markov

chain Monte Carlo (MCMC) and importance sampling posterior simulations. For both

posterior simulations, we jointly draw θ and α. We use as proposal density (resp. im-

portance density) g(α, θ|y) = g(α|θ, y)g(θ|y), based on the approximation g(α|θ, y) of

f(α|θ, y) described in the previous section and on an approximation g(θ|y) of f(θ|y)

described below.

Our approximation g(θ|y) is an nθ-variate Student’s t density with location parameter

θ◦, scale matrix Σ◦, and degrees of freedom parameter equal to 30. We use two different

methods to compute the location parameter and scale matrix. The first method involves

computing these parameters by optimization. Just as g(α|θ, y) is a close approximation

of f(α|θ, y), g̃(θ|y)
.
= f(α, θ, y)/g(α|θ, y) is a close approximation of f(θ|y). We thus

take θ◦ as the maximizer of g̃(θ|y) and Σ◦ as the inverse of the negative Hessian of

log g̃(θ|y) at θ◦. The second method involves generating a sample from f(θ|y) using a

Random-Walk Metropolis posterior simulation. Then we take θ◦ as the sample mean and



39

Σ◦ as the sample variance.

We use the second method when the optimization method fails to work. The choice of

method is model dependent. For some models, the optimization method works properly

(See Djegnene and McCausland [4]), and for other it does not. In the case of ASCD-

Models, we use the Random-Walk Metropolis posterior simulation to compute θ◦ and

Σ◦.

For the MCMC posterior simulation, we use an independence Metropolis-Hastings

chain. The joint proposal (α?, θ?) is accepted with probability

π(θ?, α?, θ, α) = min

[
1,
f(θ?)f(α?|θ?)f(y|θ?, α?)
f(θ)f(α|θ)f(y|θ, α)

g(θ)g(α|θ)
g(θ?)g(α?|θ?)

]
,

where (θ, α) is the current state and (θ?, α?) is the proposal.

In the importance sampling posterior simulation, we reduce variance using a combi-

nation of quasi-random and pseudo random numbers. We construct M blocks of length

S each, for a total of MS draws. S should be a power of two, which is convenient for

Sobol quasi-random sequences. See Djegnene and McCausland [4] for details on how to

draw θ.

2.3.3 On the correctness of posterior simulators

Our posterior simulators consist of core generic routines and model specific rou-

tines. The core routines compute coefficients of the polynomial approximations in the

forward pass, and evaluate polynomials and draw and evaluate α from the approximate

distribution in the backward pass. The model specific routines compute the log-densities

ψt(αt, αt+1) and their derivatives ψ(p,q)
t (αt, αt+1) for orders p and q up to certain values

P and Q. Both have been extensively tested. The core routines have been jointly tested

with model-specific code for the asymmetric volatility model with Student’s t innova-

tions, described in Djegnene and McCausland [4]. The model specific routines described

in the present paper have been tested using built-in functions of the Gnu Scientific Li-

braries (GSL) for C and C++, comparing analytical and numerical derivatives.

In addition, we use artificial data simulations, as is common practice. For a fixed
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parameter θ◦, we generate a vector y◦ of artificial observations using (2.1). We then use

this artificial data to estimate θ. Section 2.3.4 gives estimation results for different true

parameter values.

None of these stringent exercises raise doubts about the correctness of the posterior

simulators.

2.3.4 Results

We use artificial and real data to illustrate the Generalized HESSIAN procedure for

the ASCD models. Artificial data are generated according to equation (2.11), for given

values of the parameter vector. Real data are IBM transaction data.

We simulate artificial data from the ASCD-Exponential model for two values of

the parameter vector, θ◦1 = (0.87, 0.96, 0.13,−0.01) and θ◦2 = (0.50, 0.91, 0.11, 0.01). 2

We generate artificial data from the ASCD-Gamma model, with parameter value θ◦3 =

(0.87, 0.96, 0.13, 0.01, 0.90), and from the ASCD-Weibull model, with parameter value

θ◦4 = (0.50, 0.91, 0.13, 0.02, 0.95). These choices are based on empirical results reported

in Feng et al. [6] and McCausland [10]. For each vector θ◦i , i = 1, . . . , 4, we generate a

vector y◦i of 30000 observations using Equation (2.11). We then report posterior means

of the parameters using the two posterior simulators described in Section 2.3.2.

Table 2.II and Table 2.III report estimation results for artificial data. The labels

HIS and HIM indicate the importance sampling and independence Metropolis-Hastings

chains, respectively. In both tables, the first column gives the posterior sample mean for

the two chains. The second column is the posterior sample standard deviation and the

third, the numerical standard error (NSE), a measure of the simulation precision of the

posterior mean. The last column gives the relative numerical efficiency (RNE). The RNE

is a variance ratio that tells how numerically precise the posterior mean estimate is re-

lative to an estimate obtained from a hypothetical i.i.d chain. We compute the NSE and

RNE of the importance sampling chain using results in Section 4.2 of Djegnene and Mc-

Causland [4]. We use the contributed coda library of the R software to compute those of

2. θ◦i = (ᾱ, φ, σ, ρ) for the ASCD-Exponential model and θ◦i = (ᾱ, φ, σ, ρ, ν) for the ASCD-Gamma
and the ASCD-Weibull models.



41

the independence Metropolis-Hastings method. This software computes the NSE using

a time series method based on the estimated spectral density at frequency zero.

The posterior means are close to the true parameter values. For all elements of the

θ◦i , i = 1, . . . , 4, the true values fall between the posterior quantiles 2.5% and 97.5%. As

outlined in Section 2.3.3, these results do not raise doubts about the correctness of the

posterior simulators.

The RNEs reported in Table 2.II and Table 2.III are much higher than those of other

posterior simulation methods for similar models and numbers of observations. Strickland

et al. [18], who describe Bayesian simulation methods for SCD models, report RNE va-

lues ranging from 0.0046 to 0.0400 for the parameters their models have in common with

ours. 3 The authors claim that this much lower relative efficiency is due to the complexity

introduced by the Weibull and Gamma innovations. Using the same duration innovation

distributions, we achieve RNE vales greater than one.

IBM data cover the period from November 1, 1990 to December 21, 1990, mat-

ching the period used in Feng et al. [6]. IBM data are available at Ruey Tsay’s teaching

resource webpage at http ://faculty.chicagobooth.edu/ruey.tsay/teaching/fts3/. The data

records have fields for trading time and adjusted durations. The adjusted durations are

computed as the difference between two consecutive trading times, then adjusted for

diurnal patterns as described in Section 5.5 of Tsay [19].

The adjusted durations contain a lot of zeros, which raises some modeling issues.

First, the density at zero for the Gamma and Weibull innovations (except for the Ex-

ponential special case) is equal to zero or infinity, depending on the shape parameter.

Second, zero durations cannot be used to construct observations in a log-linear transfor-

mation of the original model. A common solution is to apply duration models conditional

on strictly positive durations. 4 We too use the positive adjusted durations from the IBM

data. We will call this the positive duration series.

Feng et al. [6] use fitted parameters to simulate a large sample of artificial durations.

3. See Table 3 of Strickland et al. [18]. The RNE is the inverse of the inefficiency factor reported in
this table.

4. See Example 5.4 in Tsay [19] and Xu et al. [21]. Feng et al. [6] used log durations as the observed
variable and we infer that they estimated their duration model conditional on positive durations.
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Comparison of simulated and observed durations show that the former do not match

well the left tail of the observed durations. In addition to estimating ASCD models for

positive durations, we propose an alternative data treatment to address mis-fitting near

zero. We construct a transformed duration series as follows. We take the maximum of

one (second) and the difference between consecutive trading times and then adjust the

resulting series for diurnal patterns as described in Section 5.5 of Tsay [19].

Table 2.IV summarizes the results for the ASCD models and the positive duration

series. The labels HIS and HIM and the table columns have the same meaning as before,

and the NSE and RNE values are computed in the same way.

We use the IBM data set to best compare our results with those of previous studies,

such as that of Feng et al. [6]. This article used a linear transformation of the ASCD

model given by Equation 2.11. Thus, we cannot directly compare values of the long-run

mean. As for the other parameters, we can observe close similarities between values of

the persistence parameters, state innovation standard deviations and shape parameters of

the ASCD models with those reported in Table 4 of Feng et al. [6]. 5 The leverage effect

parameter is also similar for the ASCD Exponential and ASCD Weibull models. We do

not delete observations before the nominal opening of the market at 9 :50 am or after the

nominal closing at 4 :00pm. This may explain the higher posterior standard deviation of

the state innovation we report compared with Feng et al. [6].

Table 2.V summarizes the results of the ASCD models fitted with the transformed

durations. We observe two main changes in the results reported. Values of the shape pa-

rameter in the ASCD-Gamma and ASCD-Weibull models are lower than those reported

for the positive durations, see Table 2.IV. However, values of the standard deviation of

the state innovation are greater. The low values of the shape parameter, along with a

higher posterior standard deviation of the state innovation, imply a higher probability of

durations near zero. The other parameters seem robust to the treatment of zero durations.

As Feng et al. [6], we focus on the ASCD-Weibull model to analyze the effect of this

data treatment. Using the posterior means of parameters estimated using the transformed

durations, we draw a sample from the marginal distribution of durations using Equation

5. Our parameter φ is equivalent to β in Feng et al. [6]
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(2.11) with Weibull innovations. We do the same for the positive duration sample. Fi-

gure 2.1 shows histograms of model-simulated and observed durations. The distribution

generated with the transformed durations fit better the left tail of the observed distribu-

tion than the one obtained with the positive durations. The support of the distribution

has been truncated at ten to better visualize the histograms.

FIGURE 2.1 – Histograms of simulated duration data and observed duration data.

The exponential innovation does not have the freedom of shape of the Gamma and

Weibull distribution. The small values introduced in the left tail of the observed data

results in a much higher state innovation standard deviation and a lower long-run mean.

Durations are also less persistent.

We focus on the relative numerical efficiency of the proposed simulators. The five

main characteristics of the HESSIAN method described in Section 2.1 should produce

efficient posterior simulators. The higher the RNE, the better. The independence Metropolis-

Hastings chain of the ASCD-Exponential exhibits the lowest RNE, 12.68%. The inde-

pendence Metropolis-Hastings chains of the ASCD-Gamma and ASCD-Weibull have

greater RNEs than those of ASCD-Exponential. The lowest RNE for these two models

is 24.48%, at least two times the one of ASCD-Exponential model. We compare with
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Strickland et al. [18] as with the artificial data. Once again, this comparison outlined that

the obtained RNEs are much higher than those produced by the posterior simulators des-

cribed in this paper. Also, the importance chains allow a RNE greater than one. This is

possible due to the variance reduction obtained by using randomized quasi-Monte Carlo.

Using g(|y)g(α|θ, y) as an importance density, the mean of the (independent) impor-

tance weights is a simulation consistent and -unbiased estimator of the marginal likeli-

hood. Our close approximation makes the variation in weights extremely small, which

implies highly numerically efficient marginal likelihood estimation. For the positive du-

rations, the log marginal likelihoods are -55351.1 for ASCD-Weibull and -55395.9 for

ASCD-Gamma, with numerical standard errors of 0.0099 and 0.0089. The Bayes fac-

tor of exp(44.8) decisively favor the ASC-Weibull model. Similarly, for transformed

durations, the marginal likelihoods are -54199.6 for ASCD-Weibull and -54386 for

ASCD-Gamma, with numerical standard error of 0.0251 and 0.0150. The Bayes factor of

exp(186.4) favor the ASCD-Weibull model. These results are consistent with Feng et al.

[6]that found that the ASCD-Weibull is better in term of marginal densities comparison

and in-sample forecast performance.

2.4 Conclusion

We have provided new methods for state smoothing and parameter estimation for

non-linear and non-Gaussian state space models. Posterior simulations for real and arti-

ficial data show that this procedure is highly numerical efficient. We achieve this nume-

rical efficiency by providing a very close approximation g(α|y, θ) of the target density

f(α|y, θ). The approximate density can be used as an importance density for importance

sampling or a proposal density for Markov chain Monte Carlo posterior simulations.

The scope of application goes far beyond the ASCD-Exponential model used for

illustration. We require the target density to have a unique mode and be log-differentiable,

which still leaves a rich class of applicable non-linear and non-Gaussian state space mo-

dels. Application to a new model only requires routines to compute partial derivatives

of the log conditional densities log f(yt, αt+1|αt), with respect to αt and αt+1. We do
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not require analytic expressions for these derivatives. We may used numerical deriva-

tives or use Faa-Di-Bruno’s rule for combining multiple derivatives of simple functions

to compute multiple derivatives of compound functions.

We now require αt to be univariate. We are now considering state smoothing and

parameter estimation for the case of multivariate αt. Also, we are working on approxi-

mations of filtering densities, useful for sequential learning.
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Notation Description
ψt(αt, αt+1) log f(αt+1, yt|αt)
ψp,qt (αt, αt+1) derivatives of ψt(αt, αt+1) with respect to αt and αt+1 at

orders p and q.
ψn(αn) log f(yn|αn)
ψpn(αn) p’th derivative of ψn(αn) with respect to αn

a = (a1, . . . , an) mode of log f(α|y)
Σt Var(αt|αt+1, y) for the 1st reference distribution

(a1|t+1(αt+1), . . . , at|t+1(αt+1)) mode of the conditional density f(α1, . . . , αt|αt+1, y)

a
(r)
t , r = 1, . . . , R r’th derivative of at|t+1(αt+1) at αt+1 = at+1

Σt|t+1(αt+1) Var(αt|αt+1, y) for the 2nd reference distribution
st|t+1(αt+1) log Σt|t+1

s
(r)
t , r = 1, . . . , R− 1 r’th derivatives of st|t+1(αt+1) at αt+1 = at+1.

bt|t+1(αt+1) mode of the conditional density f(αt|αt+1, y)

bt, b
(1)
t , b

(2)
t , b

(3)
t value and first three derivatives of bt|t+1(αt+1) at αt+1 =

at+1

bn mode of the conditional density f(αn|y)

Bt, B
(1)
t , B

(2)
t , B

(3)
t , Bn approximations of bt, b

(1)
t , b

(2)
t , b

(3)
t and bn

µt|t+1(αt+1) E[αt|αt+1, y]

µt, µ
(1)
t , µ

(2)
t value and first two derivatives of µt|t+1(αt+1) at αt+1 = at+1

Mt,M
(1)
t ,M

(2)
t approximations of µt, µ

(1)
t and µ(2)

t

Ht(αt;αt+1), approximation of the derivative of log f(αt|αt+1, y) with
respect to αt

Hn(αn), approximation of the derivative of log f(αn|y) with respect
to αn

TABLE 2.I – Main notation used in the paper
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Parameters Mean Std NSE RNE
ASCD-Exponential

θ◦1 = (0.87, 0.96, 0.13,−0.01)
ᾱ :HIS 0.7867 0.0601 6.3373e-4 0.9320
ᾱ :HIM 0.7868 0.0602 8.7035e-4 0.3740
φ :HIS 0.9605 0.0028 3.1442e-5 0.8614
φ :HIM 0.9605 0.0029 4.5081e-5 0.3185
σ :HIS 0.1325 0.0049 5.49326e-5 0.8574
σ :HIM 0.1325 0.0049 6.6018e-5 0.4221
ρ :HIS -0.01250 0.0036 3.6266e-5 1.0471
ρ :HIM -0.01250 0.0036 5.2040e-5 0.3732

θ◦2 = (0.50, 0.91, 0.11, 0.01)
ᾱ :HIS 0.4742 0.0259 2.6803e-4 0.9089
ᾱ :HIM 0.4734 0.0262 3.9116e-4 0.3509
φ :HIS 0.9086 0.0096 1.0067e-4 0.9365
φ :HIM 0.9085 0.0096 1.2617e-4 0.4485
σ :HIS 0.1119 0.0080 8.5432e-5 0.8719
σ :HIM 0.1119 0.0079 1.0021e-4 0.4884
ρ :HIS 0.0088 0.0035 3.5589e-5 0.9614
ρ :HIM 0.0087 0.0036 5.9577e-5 0.2820

TABLE 2.II – ASCD model estimation results for artificial data using independence
Metropolis-Hastings and importance sampling
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Parameters Mean Std NSE RNE
θ◦3 = (0.87, 0.96, 0.13, 0.01, 0.90)

ASCD-Gamma
ᾱ :HIS 0.8997 0.0894 1.1122e-3 0.9128
ᾱ :HIM 0.8978 0.0894 1.2638e-3 0.3906
φ :HIS 0.9663 0.0026 3.0271e-5 1.1299
φ :HIM 0.9662 0.0026 4.3124e-5 0.2781
σ :HIS 0.1239 0.0049 6.1714e-5 0.9653
σ :HIM 0.1241 0.0049 7.1299e-5 0.3687
ρ :HIS 0.0112 0.0035 4.2910e-5 0.9927
ρ :HIM 0.0112 0.0035 5.4795e-5 0.3199
ν :HIS 0.9047 0.0073 8.8113e-5 0.9509
ν :HIM 0.9049 0.0073 9.7956e-5 0.4340

ASCD-Weibull
ᾱ :HIS 0.8921 0.0653 7.8648e-4 0.7929
ᾱ :HIM 0.8917 0.0653 1.1185e-03 0.2662
φ :HIS 0.9596 0.0030 3.3324e-5 0.9946
φ :HIM 0.9596 0.0031 4.2381e-5 0.4181
σ :HIS 0.1332 0.0057 6.3643e-5 0.9063
σ :HIM 0.1332 0.0056 8.2801e-5 0.3580
ρ :HIS 0.0096 0.0038 4.2521e-5 0.87884
ρ :HIM 0.0096 0.0037 6.1353e-5 0.2889
ν :HIS 0.9000 0.0048 5.0637e-5 0.9263
ν :HIM 0.9000 0.0048 7.3856e-5 0.3362

θ◦4 = (0.50, 0.91, 0.13, 0.02, 0.95)
ASCD-Gamma

ᾱ :HIS 0.5128 0.0406 6.0296e-4 0.9649
ᾱ :HIM 0.5124 0.0402 9.7184e-4 0.1334
φ :HIS 0.9155 0.0070 9.4880e-5 0.9513
φ :HIM 0.9156 0.0069 1.4224e-4 0.1863
σ :HIS 0.1276 0.0075 9.9498e-5 1.0589
σ :HIM 0.1275 0.0076 1.7078e-4 0.1547
ρ :HIS 0.0210 0.0038 4.7404e-5 0.9182
ρ :HIM 0.0209 0.0037 6.6079e-5 0.2511
ν :HIS 0.9443 0.0079 9.0268e-5 1.2268
ν :HIM 0.9443 0.0078 1.7315e-4 0.1605

ASCD-Weibull
ᾱ :HIS 0.4513 0.0335 3.6064e-4 0.9558
ᾱ :HIM 0.4518 0.0334 4.2367e-4 0.4870
φ :HIS 0.9191 0.0070 7.0012e-5 1.1029
φ :HIM 0.9191 0.0069 1.1159e-4 0.2960
σ :HIS 0.1262 0.0079 7.6962e-5 1.1515
σ :HIM 0.1262 0.0078 1.2169e-4 0.3213
ρ :HIS 0.0124 0.0039 4.0723e-5 0.9606
ρ :HIM 0.0125 0.0039 5.1425e-5 0.4551
ν :HIS 0.9546 0.0053 5.0605e-5 1.1667
ν :HIM 0.9546 0.0053 7.4828e-5 0.3968

TABLE 2.III – ASCD model estimation results for artificial data using independence
Metropolis-Hastings and importance sampling
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Mean Std NSE RNE
ASCD-Exponential Model

ᾱ :HIS 0.8056 0.0666 5.6186e-4 1.3579
ᾱ :HIM 0.8050 0.0669 1.1091e-3 0.2845
φ :HIS 0.9556 0.0040 3.5977e-5 1.1703
φ :HIM 0.9556 0.0040 6.0845e-5 0.3400
σ :HIS 0.1581 0.0079 6.6559e-5 1.3535
σ :HIM 0.1580 0.0078 1.1723e-4 0.3497
ρ :HIS -0.0105 0.0046 3.8138e-5 1.4589
ρ :HIM -0.0106 0.0047 7.9730e-5 0.2698

ASCD-Gamma
ᾱ :HIS 1.0008 0.0961 1.3425e-3 0.7502
ᾱ :HIM 1.0001 0.0964 1.8034e-3 0.2230
φ :HIS 0.9636 0.0038 4.5527e-5 1.08517
φ :HIM 0.9636 0.0038 7.9354e-5 0.1802
σ :HIS 0.1384 0.0082 9.4210e-5 1.1154
σ :HIM 0.1383 0.0081 1.5171e-4 0.2229
ρ :HIS -0.0000 0.0048 7.0586e-5 0.7436
ρ :HIM -0.0001 0.0048 8.0025e-5 0.2757
ν :HIS 0.9600 0.0092 1.3037e-4 0.7673
ν :HIM 0.9601 0.0092 2.3659e-4 0.1187

ASCD-Weibull
ᾱ :HIS 1.2160 0.1117 2.8008e-3 0.9445
ᾱ :HIM 1.2104 0.1044 1.4656e-3 0.3961
φ :HIS 0.9729 0.0030 6.3976e-5 0.911438
φ :HIM 0.9727 0.0028 4.9166e-5 0.2563
σ :HIS 0.1126 0.0067 1.2770e-4 0.9277
σ :HIM 0.1129 0.0065 9.9064e-5 0.3354
ρ :HIS 0.0123 0.0044 6.8877e-5 0.9585
ρ :HIM 0.0122 0.0043 5.4893e-5 0.4825
ν :HIS 0.9396 0.0054 7.5690e-5 1.0168
ν :HIM 0.9397 0.0053 8.0868e-5 0.3371

TABLE 2.IV – ASCD model estimation results for IBM duration data using indepen-
dence Metropolis-Hastings and importance sampling
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Parameters Mean Std NSE RNE
ASCD-Exponential

ᾱ :HIS 0.2107 0.0365 5.3651e-4 1.1790
ᾱ :HIM 0.2121 0.0371 9.2005e-4 0.1268
φ :HIS 0.8492 0.0092 1.5727e-4 0.9202
φ :HIM 0.8492 0.0091 1.9864e-4 0.1643
σ :HIS 0.4030 0.0153 2.5235e-4 1.0157
σ :HIM 0.4032 0.0152 3.5252e-4 0.1455
ρ :HIS -0.0986 0.0070 1.0864e-4 1.0344
ρ :HIM -0.0984 0.0071 1.9061e-4 0.1070

ASCD-Gamma
ᾱ :HIS 1.0431 0.1323 1.8397e-3 0.8255
ᾱ :HIM 1.0468 0.1305 2.1590e-3 0.2852
φ :HIS 0.9663 0.0034 4.5226e-5 0.8606
φ :HIM 0.9662 0.0033 5.8228e-5 0.2565
σ :HIS 0.1546 0.0083 1.1053e-4 0.8406
σ :HIM 0.1547 0.0082 1.3653e-4 0.2833
ρ :HIS 0.0026 0.0041 5.4987e-5 0.8785
ρ :HIM 0.0027 0.0041 6.7975e-5 0.2791
ν :HIS 0.8009 0.0070 9.0401e-5 0.8404
ν :HIM 0.8009 0.0069 1.2165e-4 0.2536

ASCD-Weibull
ᾱ :HIS 1.0964 0.1391 1.4642e-3 1.1589
ᾱ :HIM 1.0958 0.1398 2.4383e-3 0.2568
φ :HIS 0.9782 0.0023 2.5198e-5 1.0146
φ :HIM 0.9782 0.0023 3.6880e-5 0.3044
σ :HIS 0.1155 0.0063 6.7147e-5 1.0026
σ :HIM 0.1155 0.0062 1.1144e-4 0.2448
ρ :HIS 0.0139 0.0039 3.9974e-5 1.1953
ρ :HIM 0.0139 0.0038 6.0898e-5 0.3114
ν :HIS 0.8348 0.0044 4.3241e-5 1.1054
ν :HIM 0.8348 0.0044 6.9128e-5 0.3118

TABLE 2.V – ASCD model estimation results for IBM data using independence
Metropolis-Hastings and importance sampling



CHAPITRE 3

COOPERATIVES’ REPUTATION AND ENDOGENOUS MEMBERSHIP IN A

MIXED DUOPSONY

Abstract

This article studies competition on the price paid to farmers between a farmer-owned

cooperative (FOC) and an investor-owned firm (IOF). Using Hotelling’s spatial model, it

is shown that a cooperative’s reputation, managers’ incompetency and financial market

tightness, are key factors explaining the difficult growth of cooperatives. Cooperatives

play an active role in raising financial resources in order to pay at least the delivery price

at storage. After storage, there is uncertainty concerning the farmer’s residual claim,

which may be diverted. The trust relationship between the farmer and the cooperative,

or the cooperative’s reputation, then becomes a key factor in explaining the farmer’s

decision to patronize the cooperative. The delivery price, which also influences the far-

mer’s decision, depends on how easy it is for the cooperative to raise financial resources.

Financial market tightness and cooperative incompetency play an important role at this

level. It is shown that a good reputation and more competent managers raise the coope-

ratives’ market share and force the investor-owned firm to increase the price it pays to

the farmers. Those conclusions fit the empirical observations better than the models of

Sexton [11], Albæk and Schultz [1] and Karantininis and Zago [9] on the same subject.

Keywords : Cooperatives, Duopsony, Endogenous Membership, Reputation.

JEL Classification : Q13.
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3.1 Introduction

The liberalization of agricultural markets in the 1990s in most sub-Saharan coun-

tries, especially in Côte d’Ivoire, introduced investor-owned firms (IOFs) in the local

cocoa and coffee markets. Within a few years, these developed into oligopsonistic struc-

tures. This outcome contrasts with the expected result of market deregulation - enhanced

poor rural farmer revenue. Given this market failure, farmer-owned cooperatives (FOCs)

were regarded as an alternative way for small farmers to improve their welfare. However,

since the liberalization and promotion of collective marketing, no noteworthy progress

has been made by cooperatives either in farm gate and export market share or in manu-

facturing. In 2007, the cooperative market share at farm gate was less than 7.57%.

These national figures hide some disparities at the regional level. Figure 3.1 high-

lights the cooperative membership rate distribution and the social homogeneity distribu-

tion according to production areas. 1 The social homogeneity index is computed as the

ratio of the natives to the total population living in the region expressed as a percentage.

At first what stands out is the deep contrast between the East and the Southwest co-

operative membership rate. While most of the East’s producers are cooperative members,

less than a quarter of the Southwest’s producers belong to cooperatives. We have inter-

mediate situations in the Midwest and West regions. The second significant fact which

emerges is the positive correlation between membership rate and social homogeneity.

These observations challenge us on how social environment affects the development of

cooperative membership.

Repeated interaction between the members of a small homogenous society where

individual behavior can be perfectly recorded may sustain trust and reputation as noted

by Berg et al. [4]. Therefore, we choose to analyze the relationship between social en-

vironment and cooperative membership rates through these two intermediary variables :

reputation and trust.

James and Sykuta [7], based on a survey of Missouri corn and soybean farmers, argue

that trust, perception of honesty, and competence are key factors explaining the choice

1. Data source : "Production et offre du cacao et du café en Côte d’Ivoire", International Institute of
Agriculture, 2002.
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FIGURE 3.1 – Cooperatives’ membership rate and social homogeneity by produc-
tion area, Ivory Coast, 2002

of farmers to market through cooperatives rather than IOFs. James and Sykuta [8] try to

find evidence on how trust emerges in agricultural cooperatives by linking the level of

perceived trust in an agricultural cooperative with its organizational characteristic. They

worry that there is not a well-developed theory laying out precisely how and why trust

in cooperatives emerges along with the why and wherefore of its maintenance.

Trust is still an object of debate and can be conceptualized in different ways Har-

din [6]. We shall consider here the approach of Gambetta [5] who defines trust as "Ěa

particular level of the subjective probability with which an agent assesses that another

agent or group of agents will perform a particular action, both before he can monitor

such action and in a context in which it affects his own action". Hence as emphasized by

Hardin [6], trust is a three component relationship : A trust B to do X. So, farmers trust
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FOCs to do X, where X may be, among others, not diverting the residual claimant or be

competent to recover the full output price.

Using a price-competition model with incomplete information between an IOF and

a FOC, we show that reputation, competence, and financial conditions can be an impe-

diment to cooperative growth. In our model, trust and reputation distributions are pri-

mitives that help explain cooperative membership rate distribution. While building on

the economic structure of Sexton’s model Sexton [11], we replace the spatial dimension

with trust. Furthermore, our model differs from those of Sexton [11], Albæk and Schultz

[1], Karantininis and Zago [9], among others, by the fact that the cooperative is a non-

neutral intermediary. The cooperative proposes a schedule of payments that includes two

parts : a delivery price and a dividend paid after the raw product is processed and sold.

With incomplete information on the cooperative type, this dividend becomes risky and

the cooperative’s reputation is now a key factor in the farmer’s decision. We show that

good reputation not only forces the IOF to price high, but it also reduces its market share.

Conversely, tight financial conditions push down the IOF spot price and raise the FOCs’

market share.

To some extent, our results generalize those of Sexton [11], Albæk and Schultz [1]

and Karantininis and Zago [9]. Assuming perfect information and a trustworthy coope-

rative that transfers the total net output price to farmers, these authors claim the absolute

advantage of FOCs over IOFs. According to them, price competition between a FOC

and an IOF will end up with the FOC being the sole buyer in the market. This result is a

special case of ours.

Trust and reputation, like any economic asset, need some initial stock and a constant

flow of investment, barring which they crumble and bring down the group effort. Thus, in

a region where these values are not commonly shared and invested in, making a coopera-

tive work seems to be at best difficult. Arrow [2] was aptly inspired when concluding an

essay on gifts and exchanges with the following contention : "It can plausibly be argued

that much of the economic backwardness in the world can be explained by the lack of

mutual confidence."

This article is organized as follows : in Section 2, we introduce the model ; Sec-



55

tion 3 describes the equilibrium and makes some comparative static analysis ; Section 4

concludes with some final remarks.

3.2 The model

We consider an agricultural commodity market in which IOFs and FOCs purchase

a raw commodity from a large number of small farmers. The processed product is sold

on a competitive market. A cooperative schedule of payment generally involves two

components : the first component is a delivery price to stock the physical product and

the second component is a dividend paid after the processed product is sold. We can

reasonably argue that the delivery price is secure while the dividend is at risk. The latter

may be diverted, a behavior deeply grounded in developing countries. Banerjee et al. [3]

describes how wealthy members of sugar cooperatives in Maharashtra (India) siphon off

the cooperatives’ retained earnings. Moreover, the FOC’s incompetency may not allow

it to recover the full output price of the processed product and thus it cannot pay the full

dividend. Consequently, we assume that there are two types of cooperatives : trustworthy

cooperatives that always pay back the dividend and untrustworthy cooperatives that may

not pay back the dividend. 2

The behavior of untrustworthy cooperatives may be shaped by the social environment

in which they operate. We consider that each farmer’s valuation of the residual claimant

risk can be decomposed into two parts : the first is the risk involving the cooperative type

and the second is the risk of the untrustworthy cooperative not paying back the dividend.

The first component of the risk is common to all farmers and represents prior beliefs

about the cooperative’s type. The second component is idiosyncratic and can be used to

assess the perception of property-rights security in the social environment.

To analyze the outcome of price competition between IOF and FOC in such context,

we consider a game that borrows its economic structure from Sexton [11], with the ex-

ception that the spatial dimension is replaced by the distribution of farmers according

to their trust in the property-rights security. We consider a two-stage game that involves

2. Farmers’ trust is based on either honesty or competency.
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two processors, an IOF and a FOC, and a continuum of farmers of mass unity.

In the first stage, the FOC and the IOF compete in price. They simultaneously make

price proposals to farmers for delivery of the primary commodity. The commodity is

processed and sold in a competitive market. We assume a constant unit processing cost

and normalize the net output price to one. There is imperfect information on the FOC :

it may be trustworthy (t) or untrustworthy (u). A FOC of type τ ∈ {t, u} commits to a

certain level of effort, eτ ∈ [0, 1], in order to raise the financial resources necessary to

pay the delivery price. We assume that this level of effort represents the delivery price

offered by the cooperative. For a given delivery price, eτ , the difference 1−eτ represents

the implied dividend. The IOF’s contract consists of a delivery price ω ∈ [0, 1].

At the second stage, the farmers make their decisions as to how much to supply

to each of the processors. These farmers are distributed according to the cumulative

F (α), α ∈ [0, 1] where an α−type farmer assigns a probability α on the event that

the untrustworthy cooperative will not pay back the dividend. For tractability, we as-

sume for the rest of the article that this distribution is an uniform distribution on the

interval [0, 1]. Farmers cannot distinguish between the two types of FOC. They ob-

serve only the delivery price, e, of the FOC and the delivery price of the IOF, ω. So,

given the processors’ proposal (e, ω), an α−type farmer chooses a production plan

qα = (qiof (e, ω;α), qfoc(e, ω;α)), where the components are respectively delivery to

the IOF and delivery to the FOC.

Farmers’ payoffs are computed using their posterior beliefs on the cooperative’s type.

The cooperative’s reputation is farmers’ posterior beliefs distribution. Let β be the pos-

terior beliefs of an α−type farmer that the FOC is of type t, for the proposed level of

effort e. 3 Assuming that an α−type farmer is risk-neutral, he evaluates his payoff using

the expected price from the cooperative. So, his expected profit is given by

Π(e, ω,qα;α, β) = [β + (1− β)(e+ α(1− e))] qfoc + ωqiof − c(qfoc + qiof ) (3.1)

3. In fact a farmer’s posterior beliefs should depend on his type and on the cooperative’s proposal.
Farmers’ share the same information set, so we can drop the dependence on the farmer’s type. In the
equilibrium considered later, this belief is a discrete-valued function, assumed constant in a neighborhood
of the equilibrium proposal. So, for ease of notation, we drop the dependance on e and then view β as the
anticipated equilibrium beliefs.
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The compensation of the cooperative board for the efforts made to manage the co-

operative and to raise the necessary financial resources may be of either a monetary or a

non-monetary form. For simplicity we will assume that it takes the form a non-monetary

satisfaction from helping farmers obtain a credible alternative to the IOF. Furthermore,

we assume that this non-monetary compensation amounts to the farmers’ cumulative

profit. The effort is costly and the two types of cooperatives evaluate it differently. For

the same level of effort, the resulting cost for the untrustworthy type is higher for than

the trustworthy type. In addition, it is more painful for the untrustworthy type to increase

marginally its level of effort :

c(e, u) ≥ c(e, t),
∂c(e, u)

∂e
≥ ∂c(e, t)

∂e
≥ 0. (3.2)

Hence the payoff of a cooperative of type τ is equal to the expected difference between

its compensation and the cost of the effort :

Πτ (eτ , ω; β) =

∫
∆τ

[Π(eτ , ω,qα;α)− c(eτ , τ)] dF (α), (3.3)

with τ ∈ {t, u} and where ∆τ ⊆ [0, 1] is the set of farmers who deliver to the coopera-

tive. 4

Using the normal representation of the Bayesian game described at the first stage, the

IOF’s payoff depends on the action profile (et, eu, ω). Let γ be the IOF’s posterior belief

that the cooperative is of the trustworthy type. Then its payoff is equal to its expected

profit :

Πiof (et, eu, ω; γ) = (1− ω)

∫ 1

0

[
γqiof (et, ω;α) + (1− γ)qiof (eu, ω;α)

]
dF (α). (3.4)

We search for an equilibrium in pure strategies and borrow from the sequential equi-

librium concept to characterize the rational and beliefs consistent outcome of the game.

Hence, an assessment (γ, β, et, eu, ω, (qα)α∈[0,1]) is a pure strategy sequential equili-

4. The cooperative’s payoff depends conditionally on the anticipated posterior beliefs through farmers’
response functions.
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brium if :

1. Given the farmers’ strategies qα for each α−type, given the IOF contract ω, pro-

posing eτ maximizes the payoff of the cooperative of type τ , τ ∈ {t, u} ;

2. The IOF posterior beliefs satisfy Baye’s rule :γ = θ ;

3. Given the farmers’ production plans qα for each α−type, given the cooperative’s

contract {et, eu}, the IOF contract ω maximizes its payoff, given its beliefs γ ;

4. Farmers’ posterior beliefs satisfy Baye’s rule :

(a) β ∈ [0, 1] for all e ∈ [0, 1].

(b) If et 6= eu, then β = 1 if eτ = et, and β = 0 if eτ = eu.

(c) If et = eu, then β = θ ;

5. For every couple of contracts (e, ω), the α−type farmer production plan qα maxi-

mizes its payoff, given its beliefs β.

If the two types of cooperatives propose different levels of effort at equilibrium, then

observing the trustworthy (resp. untrustworthy) proposal, each farmer will infer that he

faces the trustworthy (untrustworthy) cooperative. Such an equilibrium is termed a se-

parating equilibrium. If the two types of cooperatives make the same proposal at equili-

brium, then by observing this proposal, farmers cannot distinguish between them. Their

beliefs remain unchanged and equal to their prior belief. Such an equilibrium is termed

a pooling equilibrium. In solving this game we emphasize the pooling equilibrium.

3.3 Characterization of the equilibrium

The game is solved backwards. Therefore we consider first the farmers’ problem and

then the processors’ programs.
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3.3.1 The farmer’s production and patronizing decision

An α−type farmer chooses the production plan (qiof , qfoc) that maximizes his ex-

pected payoff, given by (3.1). Thus his program can be written :

max
qiof ,qfoc,q

{
(1− (1− e)(1− β)(1− α))qfoc + ωqiof − b

2
q2

}
s.t qfoc, qiof , q ≥ 0, qfoc + qiof = q.

Let eα = 1− (1− e)(1− β)(1−α). The quantity eα is still the price expected by an

α−type farmer from the cooperative, but expressed here as the difference between the net

output price and the expected loss from the untrustworthy cooperative. The production

plan of an α−type farmer is driven by the relative position of eα and ω. Thus, we have

qfoc =
eα
b

and qiof = 0 if eα > ω,

qfoc ∈ [0,
ω

b
] and qiof =

ω

b
− qfoc if eα = ω,

qfoc = 0 and qiof =
ω

b
if eα < ω.

(3.5)

An α−type farmer compares the expected price from the cooperative with the spot

price of the IOF. If the cooperative’s expected price is strictly higher than that of the IOF,

the farmer delivers his entire production to the cooperative. Conversely, if the IOF deli-

very price is strictly higher than that of the cooperative, the entire production goes to the

IOF. If both contracts are equivalent, the farmer shares indifferently his production bet-

ween the two processors. This decision rule determines, for every pair of contracts, the

set of farmers patronizing the cooperative. An α−type farmer patronizes the cooperative

if and only if α >= α?(e, ω) with :

α?(e, ω) = 0 if β = 1 or e = 1

α?(e, ω) =
ω − e
1− e

if β = 0 and e < 1

α?(e, ω) = 1− 1− ω
(1− β)(1− e)

if β ∈ (0, 1) and e < 1

(3.6)
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If farmers believe that the chosen cooperative is of the trustworthy type or if the co-

operative is able to raise sufficient resources to offer a delivery price equal to the local

net price, e = 1, then it will get the entire market. When the farmers believe that the

chosen cooperative is of the untrustworthy type, only those with a high level of trust

in the property-rights security deliver to the cooperative. The latter are always part of

the farmers who deliver to the cooperative when we cannot distinguish between the two

types.

The threshold α?(e, ω) can be viewed as the ratio of the opportunity cost of patro-

nizing the cooperative under the hypothesis that it is trustworthy versus the hypothesis

that it is untrustworthy. In order to have a mixed duopsony, the cooperative has to play

a “pacemaker role”LeVay [10] for the IOF. From equation (3.6), third line, a necessary

condition for α?(e, ω) to be nonnegative is that the price of the IOF cannot be less than

the price of the cooperative under the pessimistic hypothesis that the untrustworthy co-

operative will never pay back the dividend : ω ≥ e+ β(1− e).

3.3.2 The cooperative pricing decision

Cooperatives are distinguished by their cost function, which is an increasing convex

function of effort. Let us assume the following functional form c(e, τ) = aτe
2. Given

the farmers’ production plans, (qα)α∈[0,1], and the IOF delivery price, ω, a FOC chooses

a level of effort that maximizes its payoff. When it anticipates that it will be treated as

trustworthy (β = 1), its payoff function is equal to :

Πτ (e, ω; 1) =
1

2b
− aτe2

This payoff is a decreasing function of e and its maximum is attained for eτ (ω; 1) = 0.

When the FOC anticipates that it will be treated as not trustworthy (β < 1), its payoff
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function becomes :

Πτ (e, ω; β) =
1

2b

∫ 1

α?
(1− (1− e)(1− β)(1− α))2 dα− aτe2(1− α?)

=
1− ω

6b(1− β)

[
(1 + ω + ω2)− (6atb)e

2

1− e

]
.

Assuming an interior solution, the level of effort that maximizes this payoff is the solu-

tion of the following first-order condition :

e?(2− e?) =
1 + ω + ω2

6baτ
. (3.7)

Assuming aτb ≥ 1
2
, the polynomial (3.7) has two real roots, given by : 5

e?1 = 1 +

√
1− 1 + ω + ω2

6baτ
e?2 = 1−

√
1− 1 + ω + ω2

6baτ
,

In order to satisfy the constraint e ∈ [0, 1], the only admissible candidate is e?(ω) = e?2.

The second derivative with respect to e of the cooperative’s payoff, evaluated at e?(ω)

is :
∂2Πt(e, ω)

∂e2

∣∣∣∣
e=e?

=
1− ω

6b(1− β)

2(6baτ )(e
? − 1)(1− e?)

(1− e?)3
< 0.

The candidate e? is therefore a maximum and the optimal proposal of the cooperative of

type τ , for a given delivery price ω of the investor owned firm, can be written :

e?τ (ω; β) = e? = 1−

√
1− 1 + ω + ω2

6baτ
. (3.8)

The FOC’s best response function (3.8) is a decreasing function of aτ . Hence, since

au > at, for the same anticipated equilibrium the untrustworthy FOC makes less effort

than the trustworthy FOC. We can interpret aτ as an index of the tightness of the financial

market. Hence an increase in aτ reflects a tightening of the financial market, making

it more difficult to raise the resources necessary to fund the purchase of the primary

5. Note that since au > at, atb ≥ 1
2 implies aub ≥ 1

2 and so it is sufficient to assume atb ≥ 1
2 .
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commodity at delivery.

Let πτ = 1− e?τ denote the net price of the processed product to the cooperative of

type-τ . Then the optimal profit of the the cooperative of type-τ is :

Πτ (ω; β) =
1− ω

(1− β)
2aτ (1− πτ ). (3.9)

As aforementioned, we consider only the pooling equilibrium. To characterize this

equilibrium it is useful to consider the FOC’s optimal behavior in a perfect informa-

tion world, that is a world where the farmers know for sure whether they are facing a

trustworthy or an untrustworthy cooperative, and to specify the participation constraints

in an imperfect information world, where the farmers are uncertain as to the type of

cooperative they are dealing with.

Let êt(ω; 1) and êu(ω; 0) denote respectively the optimal delivery price of the trust-

worthy FOC and of the untrustworthy FOC in perfect information. In such a world of

perfect information, the farmer knows with certainty whether he is facing a trustworthy

or an untrustworthy FOC. If the farmer believes he is facing a trustworthy cooperative

he is assured of receiving the full dividend at the end. We then have :

êt(ω; 1) = 0 êu(ω; 0) = 1−

√
1− 1 + ω + ω2

6bau
.

The payoff function Πt(e, ω; β = 1) of the trustworthy FOC is decreasing in e, so its

maximum is attained in e = 0. This means that in a trustworthy environment, the finan-

cial tightness index at does not matter. The cooperative can choose to propose a zero

delivery price and get the entire market, since the farmers trust that they will receive the

full dividend once the processed product is sold. In an untrustworthy environment, the

cooperative needs to do more to prove its goodwill, and then the financial tightness index

matters.

Consider now the imperfect information world and let et(ω; β) and eu(ω; β) denote

the trustworthy FOC and untrustworthy FOC proposals in such a world. The worst sce-

nario for both types of FOC, and especially for the trustworthy FOC, is that farmers
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believe that they are untrustworthy (β = 0). In an imperfect information equilibrium,

they will want to secure at least the optimal payoffs for this case in order to participate.

This yields the following participation constraints for respectively the trustworthy and

the untrustworthy FOC :

(a) Πt(et, ω; β) ≥ Π̃t = max
e

Πt(e, ω; 0)

(b) Πu(eu, ω; β) ≥ Π̂u =Πu(êu, ω; 0)
(3.10)

We turn now to the characterization of FOC’s optimal behavior in a pooling equili-

brium. Such an equilibrium does not always exist and we need some restrictions on the

set of parameters to guarantee existence.

Proposition 1 Let ∆(ω; θ, au, at, b) = 2θπt(1− πu)− (πt − πu)2 and

Λ =

{
(au, at, b) ∈ R+3 : bat ≥

1

2
,max

ω
∆(ω; 1, au, at, b) > 0

}
.

Then, for all (au, at, b) ∈ Λ, there exists θ ∈ (0, 1) such that for all θ ≥ θ, for all

ω ∈ [0, 1], there exists proposal e?t(ω; θ) representing FOCs’ best response in a pooling

equilibrium, with

e?t(ω; θ) = 1−

√
1− 1 + ω + ω2

6bat
(3.11)

The proof of this proposition is given in the Appendix.

In a pooling equilibrium, the untrustworthy FOC mimics the trustworthy FOC. This

results in the untrustworthy FOC making an extra effort, e?t > e?u, since its separating

equilibrium delivery price is simply its optimal delivery price in imperfect information,

e?u = êu. We can consider such behavior as an investment in reputation. The FOC’s

best response function is increasing in ω. When the IOF increases its proposal, the FOC

responds by making a greater effort.
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3.3.3 Investor owned firm pricing behavior

The pricing behavior of the investor owned firm is analyzed in the framework of a

pooling equilibrium on the part of the FOC. Farmers who deliver to the IOF produce

the same optimal quantity qiof = ω
b
. Thus, the total purchase of the IOF is simply this

quantity times the mass of farmers contracting with it. We have :

Siof (ω; e) =

∫ α?

0

ω

b
dα =

ω

b

(
1− 1− ω

(1− θ)(1− e)

)
. (3.12)

The price elasticity of the IOF’s demand curve is :

εS,ω =

(
1 +

ω

ω − (1− (1− θ)(1− e))

)
. (3.13)

Given that cooperatives are pooling, the IOF’s payoff is :

Πiof (e, ω) = (1− ω)Siof (e, ω)

=
((1− θ)(1− e)− 1)ω − ((1− θ)(1− e)− 2)ω2 − ω3

b(1− θ)(1− e)
.

(3.14)

As derived from (3.6), a mixed market requires 1 − (1 − θ)(1 − e) ≤ ω. So, the IOF

maximizes its payoff, given by (3.14), with respect to ω and subject to the constraints

1− (1− θ)(1− e) ≤ ω ≤ 1.

Assume an interior solution. The optimality condition can then be expressed as :

1− ω
ω

=
1

εS,ω
=

(
1 +

ω

ω − (1− (1− θ)(1− e))

)−1

. (3.15)

In other words, the price spread equals the inverse of the price elasticity of the demand

curve. The cooperative plays a pro-competitive role if it induces the IOF to set a lower

price spread, ((1 − ω)/ω), which is equivalent to having a higher price for the primary

commodity. We can now derive the following comparative static statements from the

first-order condition given by equation (3.15).

First, the IOF price spread decreases with the cooperative’s reputation. A quick proof
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of this assertion is the following : if θ increases, the right-hand side (RHS) of equation

(3.15) decreases. Thus, in order to maintain equality, the left-hand side (LHS) must also

decrease. Using the same argument, we deduce that if the level of effort increases, the

IOF price spread decreases.

This and the sensitivity analysis on the other parameters can be formally derived by

the use of implicit derivation. Let

K(ω, e, θ) = 3ω2 − 2(2− (1− θ)(1− e)))ω + (1− (1− θ)(1− e)).

Then the first-order condition in (3.15) can alternatively be expressed as

K(ω, e, θ) = 0. (3.16)

Using implicit differentiation, the derivative of the IOF’s price with respect to any para-

meter x is equal to
∂ω

∂x
= −∂K/∂x

∂K/∂ω
. (3.17)

Then, if ω > 1
2
, we have :

∂K

∂ω
=2(ω − (1− (1− θ)(1− e)) + 2(2ω − 1) > 0

∂K

∂θ
=(1− e)(1− 2ω) < 0

∂K

∂e
=(1− θ)(1− 2ω) < 0.

(3.18)

The condition is not restrictive, since in a mixed market the IOF cannot set a price in-

ferior to its monopsony price, ω = 1
2
. It follows that the IOF’s price is an increasing

function of the cooperative spot price, e, as well as of the reputation index θ.

Consider now the expression for the IOF’s best response function. Given that 1 −
(1− θ)(1− e) + (1− θ)2(1− e)2 ≥ 0, the two stationary points obtained from solving
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There are two solutions to (3.16), namely :

ω?1 =
(2− A)−

√
1− A+ A2

3
ω?2 =

(2− A) +
√

1− A+ A2

3
,

where A = (1− θ)(1− e). Those two roots are real, since A < 1. The second derivative

of Πiof (e, ω) with respect to ω is

∂2Πf (e, ω)

∂ω2
= −2

(A− 2) + 3ω

bA
.

It is positive when evaluated at ω?1 , making ω?1 a local minimum, and negative when

evaluated at ω?2 , making ω?2 a local maximum. Hence the IOF’s best response function

is :

ω?(e; θ) =
(2− (1− θ)(1− e)) +

√
1− (1− θ)(1− e) + (1− θ)2(1− e)2

3
. (3.19)

Having derived the response functions of the different players, we can now characterize

the equilibrium of the game.

3.3.4 The equilibrium spot price, effort and market shares

Equations (3.5), (3.8) and (3.19) define the equilibrium of the game,
(
e?, ω?, (qα(e?, ω?)α∈[0,1])

)
with the resulting equilibrium threshold α?(e?, ω?). Although the model seems simple,

a closed-form analytical characterization of the equilibrium is not possible, so we make

use of a numerical resolution.

As previously demonstrated, the best response functions of the two processors are

upward sloping, so their delivery prices are strategic complements. Figure 3.2 illustrates

the players’ responses and the corresponding equilibria for given levels of the coopera-

tive’s reputation index, θ, and the financial tightness index, at.

We highlight four possible equilibria, each of them corresponding to a couple (θ, at) ∈
{0.1, 0.7} × {0.52, 1.0} for the parameters. 6 For each equilibrium the “pace-maker

6. We set b = 1 in each case. If we consider the couple of parameters (at, au) = (0.52, 0.55), we have
θ = 0.0405. For the couple (au, at) = (1, 1.5) we have θ = 0.0858.
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FIGURE 3.2 – Players’ best responses and corresponding equilibria given reputation
index,θ, and financial market tightness index, aτ

condition” e?+θ(1−e?) < ω? is met, in order to have a mixed duopsony. The cooperati-

ve’s level of effort, which is also its delivery price, is always inferior to the delivery price

of the IOF. The equilibrium labeled A is obtained for a couple (θ, at) = (0.1, 0.52). If,

from this position, we increase the reputation index to 0.7, the new equilibrium moves to

B where the prices of both processors are strictly higher. Players move simultaneously,

so we cannot perform a rigorous dynamic analysis, although we may suggest the follo-
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wing adjustment process. All other things equal, an improvement in the reputation index

raises the expected secured price of the cooperative and the IOF responds with a higher

price ; this in turn induces the cooperative to make more effort as a response to the move

of the IOF.

If the financial tightness index is increased, we move from A to C, and both proces-

sors price strictly lower. With a tighter financial market, the cooperative’s effort is not

appropriately rewarded, so it chooses to make less effort. Hence, the IOF finds it possible

to increase its profits by pricing lower.

The impact of the reputation and financial tightness can be better appreciated if we

take into account the other component of the equilibrium : the market share threshold,

or the level of trust α? that splits farmers in two sets, those dealing with the IOF and

those participating in the cooperative. Figure 3.3 illustrates the evolution of the market-

share threshold with respect to the reputation index and for different levels of financial

tighteness index. The four equilibria highlighted in figure (3.3) are the same as those

of figure 3.2. A good reputation compels the IOF not only to price higher, but also to

content itself with a lower market share, as illustrated by equilibria (A,B) and (C,D).

Conversely, tighter financial conditions are an impediment for cooperative growth. It

compels the IOF not only to price lower, but to have a higher market share, as illustrated

by equilibria (A,C) and (B,D).

To summarize, good reputation and good financial conditons foster the cooperative’s

pro-competitive role in a mixed duopsony. In a perfect market, both processors would

price at the net output price and make no profit. Hence, farmers would get the maximal

price possible. These results seem to be at the basis of the purpose of agricultural market

liberalization. The fact is that decision makers do not take into account certain rigidities

rooted in developing countries, such as those of reputation and financial conditions.

It is interesting to look at the behavior of overall production. Without perfect re-

putation and with financial tightness, the total output generated by the two proces-

sors as intermediaries is less than the optimal output which equals 1
b
. To see this, let

S(θ, at) = Siof (θ, at) + Sfoc(θ, at) denote the overall production, where Siof (θ, at) is

the IOF’s purchase and Sfoc(θ, at) is the cooperative’s purchase. From the market-share
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threshold, we have ω = 1− (1− θ)(1− e)(1−α?) and then, the IOF purchase becomes

Siof (θ, at) =
α?

b
− (1− θ)(1− e)

b
α?(1− α?).

If we integrate over the production of the farmers participating in the cooperatives, we

have

Sfoc =

∫ 1

α?

[1− (1− θ)(1− e)(1− α)]

b
dα

=
1− α?

b
− (1− θ)(1− e)

2b
(1− α?)2

Summing up Siof (θ, at) and Sfoc(θ, at) and a little algebra yields

S(θ, at) =
1

b
− (1− θ)(1− e?)(1− α?)1 + α?

2b

=
1

b
− (1− ω)

1 + α?

2b

(3.20)

The overall production will be less than the vertically-integrated production 1
b

unless one

of the following conditions is fulfilled :

- e = 1, that is, no financial constraint prevents the cooperative from paying as

delivery price the net output price ;

- θ = 1, we are in a social environment with perfect reputation ;

- ω = 1, the delivery price paid by the IOF equals the full output price.

3.4 Conclusion

In competition with an IOF, a FOC has not an absolute advantage as pointed out

by Sexton [11] and Albæk and Schultz [1]. The result of this competition depends on

the cooperative’s reputation, based on its moral and technical skills, and a perfect finan-

cial market. The difficulties of growth of agricultural cooperatives in most sub-Saharan

countries, after market liberalization, can be explained in good part by the lack of invest-

ment in reputation and an imperfect financial market. It would be useful to carry out an

investigative survey similar to that of James and Sykuta [7] to test the predictions of this

model.
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The ethnic mix resulting from migration towards economic development areas im-

plies that we can no longer count on social homogeneity to foster trust and reputation

in those areas. Policymakers then need to establish an environment that secures property

rights in order to sustain the growth of FOCs. Some suggestions can be made towards

this. First of all, it is necessary to reinforce the legal framework that governs the creation

of agricultural cooperatives and to harden the penal sanctions for anyone who diverts

small farmers savings. In addition, one could create a fund to compensate farmers whose

dividends would be diverted. An expected result is to reduce opportunistic behavior, in-

crease the security of property rights, foster trust and increase the cooperatives’ member-

ship rates. A regulatory agency that frequently audits farmers’ and cooperatives’ books

and management could also be helpful.

The local financial market is not only an impediment to the growth of the agricultural

sector, but to the growth of the whole economy. Policymakers should take vigourous

actions to make the financing of economic activities more easily available. The training

of farmers in modern management skills is an additional factor that could help sustain

cooperative growth.

Agricultural market liberalization has shown its limits. Policymakers need to be more

imaginative in developing policies that support this liberalization, taking account the

local realities.



CONCLUSION

Les modèles espaces états sont utiles pour représenter les relations dynamiques avec

variables latentes. L’analyse des modèles espaces-états non linéaires et non Gaussiens se

fait généralement sous l’hypothèse de l’indépendance conditionnelle entre observation

courante et innovation courante de la variable d’état. Cette hypothèse d’indépendance

conditionnelle apparaît beaucoup plus comme un artifice de calcul qu’une représenta-

tion de la réalité des liens entre variables latentes et variables observées. Les travaux de

Jacquier et al[2004], Omori et al[2007] pour le modèle de volatilité stochastique, et ceux

de Feng et al[2004] pour le modèle de durée conditionnelle stochastique, ont montré que

la dépendance conditionnelle est plus réaliste pour modéliser les relations dynamiques

avec variables latentes.

Les modèles espace-états avec dépendance conditionnelle sont peu utilisés à cause

de la difficulté à trouver une procédure générique d’estimation des paramètres. Les pro-

positions à date dans la littérature sont spécifiques aux modèles de volatilité stochastique

et au modèle de durée conditionnelle stochastique.

Les deux premiers articles de ma thèse ont proposé des procédures génériques pour

analyser les modèles espace-états non linéaires et non Gaussiens avec variable d’état

univariée. Ces procédures sont basées sur des simulations du vecteur d’état et du vecteur

de paramètres de leur distribution à posteriori. Les simulateurs élaborés sont numéri-

quement efficaces en ce sens qu’ils permettent de construire des chaînes de Markov

du vecteur d’état et du vecteur de paramètres avec une très faible dépendance linéaire.

L’utilisation par un tiers modélisateur, de ces procédures, ne requière que le calcul des

dérivées partielles de la densité conditionnelle du vecteur d’observation ou de la densité

jointe des vecteurs d’état et d’observation décrivant le modèle espace état. Il existe des

routines de calcul amplement testées qui rendent le calcul analytique de ces dérivées

partielles non nécessaire.

Nos travaux ouvrent ainsi de nouvelles perspectives pour l’analyse des modèles

espaces états non linéaires et non Gaussiens. Les procédures d’estimation proposées

concernent les modèles espaces-états avec variable d’état unidimensionnelle. Ces tra-
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vaux peuvent être étendus pour proposer des estimateurs numériquement efficaces pour

les modèles espaces états avec une variable d’état multidimensionnelle. La simulation

des vecteurs d’état et de paramètre se fait avec réalisation fixée du vecteur d’observa-

tion. Étendre ces travaux à l’apprentissage séquentiel peut aussi être envisagé.

Notre troisième article fut un essai dans le domaine de l’analyse des marchés de

commodité. Essayant de comprendre les difficultés de croissance des coopératives agri-

coles dans les pays d’Afrique subsaharienne, après la libéralisation des filières agricoles,

nous avons fait le constat que la confiance et la réputation jouaient un rôle important.

Ce constat n’est pas spécifique aux pays africains. James et Sykuta [2004] arrivent à une

conclusion similaire après une enquête auprès des fermiers de mais et soja dans le Mis-

souri, aux États Unis. Pourtant, les modèles théoriques n’incluent pas de façon spécifique

la confiance et la réputation comme facteur déterminant de l’équilibre entre une coopé-

rative de fermiers et une firme privée en compétition dans un marché agricole. Nous

avons proposé un modèle théorique qui fait de la confiance et de la réputation un facteur

déterminant de l’issue de la compétition prix entre une firme privée et une coopérative

agricole. La réputation accroît l’incidence positive de la coopérative. Une coopérative

avec une très bonne réputation oblige la firme privée à pratiquer un prix à la livraison

plus élevée tout en réduisant ses parts de marché.



Annexe I

Appendix to Chapter 1

I.1 Precomputation

Here we compute the precision Ω̄ and covector c̄ of the marginal distribution of α,

and the mode a = (a1, . . . , an) of the target distribution. Bi-products of the computation

of a include several quantities used elsewhere, including ¯̄Ω and ¯̄c, the precision and

covector of a Gaussian approximation N(¯̄Ω−1¯̄c, ¯̄Ω−1) of the target distribution, and the

conditional variances Σ1, . . . ,Σt, . . . ,Σn.

As the state dynamics are no different, we compute Ω̄ and c̄ exactly as in McCausland

(2010) :

Ω̄t,t = ωt−1 + ωtφ
2
t , Ω̄t,t+1 = −ωtφt, t = 1, . . . , n− 1,

Ω̄n,n = ωn−1,

c̄t =

ωt−1dt−1 − ωtφtdt t = 1, . . . , n− 1,

ωn−1dn−1 t = n.
(I.1)

As in McCausland (2010), we use a Newton-Raphson method to find the mode of the

target distribution. At each iteration, we compute a precision ¯̄Ω(α) and covector ¯̄c(α) of

a Gaussian approximation to the target distribution based on a second order Taylor series

expansion of the log target density around the current value of α. Specifically, ¯̄Ω(α) is

the negative Hessian matrix of log f(α|y) with respect to α at the current value of α. It

is a symmetric tri-diagonal matrix, with non-zero upper triangular elements given by

¯̄Ωt,t(α) = Ω̄t,t −
(
ψ

(2,0)
t (αt, αt+1) + ψ

(0,2)
t−1 (αt−1, αt)

)
, t = 2, . . . , n− 1,

¯̄Ω1,1(α) = Ω̄1,1 − ψ(2,0)
t (αt, αt+1), ¯̄Ωnn(α) = Ω̄n,n −

(
ψ(2)
n (αn) + ψ

(0,2)
n−1 (αn−1, αn)

)
,

¯̄Ωt,t+1(α) = Ω̄t,t+1 − ψ(1,1)
t (αt, αt+1), t = 1, . . . , n− 1.
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The covector ¯̄c(α) is

¯̄c(α)
.
= ¯̄Ω(α)α +

∂ log f(y|α)

∂α>
,

and its elements are

¯̄ct(α) =


c̄t + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ

(1,0)
t (αt, αt+1) t = 1

c̄t + ¯̄Ωt,t−1αt−1 + ¯̄Ωt,tαt + ¯̄Ωt,t+1αt+1 + ψ
(1,0)
t (αt, αt+1) + ψ

(0,1)
t−1 (αt−1, αt) t = 2, . . . , n− 1

c̄n + ¯̄Ωn,n−1αn−1 + ¯̄Ωnnαn + ψ
(1)
n (αn) + ψ

(0,1)
n−1 (αn−1, αn)(αn−1, αn) t = n.

(I.2)

Let ¯̄Ω
.
= ¯̄Ω(a) and ¯̄c

.
= ¯̄c(a). Then the mean (and mode) of the Gaussian approxima-

tion N(¯̄Ω−1¯̄c, ¯̄Ω−1) is a, the mode of the target distribution, and its log density has the

same Hessian matrix as the log target density at a.

While these expressions for ¯̄Ω and ¯̄c are more complicated than those in McCausland

(2010), once we have them, we compute the mode a in the same way. Roughly spea-

king, we iterate the computation α′ = ¯̄Ω(α)−1¯̄c(α) until numerical convergence. We use

two modifications to this procedure, one to accelerate convergence using higher order

derivatives and the other to resort to line searches in the rare cases of non-convergence.

I.2 Polynomial approximations of at|t+1 and st|t+1

Here we compute coefficients of polynomial approximations of at|t+1(αt+1) and

st|t+1(αt+1). Recall that these are the conditional mean and log variance of αt given

αt+1 according to a Gaussian approximation of the conditional distribution of α1, . . . , αt

given αt+1 and y. The approximations are exact Taylor series expansions around at+1

and so the coefficients are based on the derivatives of these functions at at+1.

We derive recursive expressions for these derivatives that are correct for any order

r. In practice, the computational cost rises quickly and the benefits diminish quickly

in r. We provide simplified expressions for a(r)
t

.
= a

(r)
t|t+1(at+1) up to order r = 5 and

s
(r)
t

.
= s

(r)
t|t+1(at+1) up to order r = 4.

The basic strategy involves taking derivatives of two identities. The first is a first or-

der necessary condition on at−1|t+1(αt+1) and at|t+1(αt+1) for (a1|t+1(αt+1), . . . , at|t+1(αt+1))
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to be the conditional mode of (α1, . . . , αt) given αt+1 and y. The second is the identity

at−1|t+1(αt+1) = at−1|t(at|t+1(αt+1)).

I.2.1 General Formula

We begin with the case t = 1. Since f(α1|α2, y) ∝ f(α1, α2)f(y1|α1, α2), we can

write

log f(α1|α2, y) = −1

2
Ω̄1,1α

2
1 − Ω̄1,2α1α2 + c̄1α1 + log f(y1|α1, α2) + k. (I.3)

where k does not depend on α1. The conditional mode a1|2(α2) maximizes log f(α1|α2, y)

and must therefore satisfy

− Ω̄1,1a1|2(α2)− Ω̄1,1α2 + c̄1 + ψ
(1,0)
1 (a1|2(α2), α2) = 0. (I.4)

Taking the derivative of (I.4) with respect to α2, and using the definitions ¯̄Ω1,1|2(α2) =

(Ω̄1,1 − ψ(2,0)
1 (a1|2(α2), α2)) and ¯̄Ω1,2|2(α2) = Ω̄1,2 − ψ(1,1)

1 (a1|2(α2), α2) gives

¯̄Ω1,1|2(α2)a
(1)
1|2(α2) = − ¯̄Ω1,2|2(α2). (I.5)

Solving for a(1)
1|2(α2), we obtain

a
(1)
1|2(α2) = −Σ1|2(α2) ¯̄Ω1,2|2(α2), (I.6)

where Σ1|2(α2) = ¯̄Ω−1
1,1|2(α2) from equation (1.10). Setting α2 = a2 gives a(1)

1 =

−Σ1
¯̄Ω1,2.

We now derive an expression allowing us to compute a(r)
1 in terms of a(i)

1 , i < r.

First, differentiate (I.5) (r− 1) times with respect to α2. Using Leibniz’s rule, we obtain

r−1∑
i=0

(
r − 1

i

)
¯̄Ω

(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) = − ¯̄Ω

(r−1)
1,2|2 (α2).
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Then solving for a(r)
1|2(α2) gives

a
(r)
1|2(α2) = −Σ1|2(α2)

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω

(r−1−i)
1,1|2 (α2)a

(i+1)
1|2 (α2) + ¯̄Ω

(r−1)
1,2|2 (α2)

]
. (I.7)

Finally, we evaluate (I.7) at α2 = a2 to obtain

a
(r)
1 = −Σ1

[
r−2∑
i=0

(
r − 1

i

)
¯̄Ω

(r−1−i)
1,1 a

(i+1)
1 + ¯̄Ω

(r−1)
1,2

]
. (I.8)

We now derive an expression relating the a(r)
1 and the s(r)

1 , which we will use to obtain

the latter from the former. First recall the definition Σ1|2(α2) = exp(s1|2(α2)). Using Faà

Di Bruno’s formula for derivatives of compound functions, we obtain, for i ≥ 1,

Σ
(i)
1|2(α2) =

i∑
j=1

exp(s1|2(α2))Bi,j(s
(1)
1|2(α2), . . . , s

(i−j+1)
1|2 (α2))

= Σ1|2(α2)Bi(s
(1)
1|2(α2), . . . , s

(i)
1|2(α2)), (I.9)

where the Bi,j are Bell polynomials and Bi is the i’th complete Bell polynomial. Ap-

pendix I.5 shows how to compute these polynomials. We now differentiate (I.6) (r − 1)

times with respect to α2, to obtain

a
(r)
1|2(α2) =−

r−1∑
i=0

(
r − 1

i

)
Σ

(i)
1|2(α2) ¯̄Ω

(r−1−i)
1,2|2 (α2)

=− Σ1|2(α2)
r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1|2(α2), . . . , s

(i)
1|2(α2)) ¯̄Ω

(r−1−i)
1,2|2 (α2).

Evaluating at α2 = a2 gives us the desired expression :

a
(r)
1 = −Σ1

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
1 , . . . , s

(i)
1 ) ¯̄Ω

(r−1−i)
1,2 . (I.10)

We now move on to the case 1 < t < n. The conditional mode a1:t|t+1(αt+1) =
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(a1|t+1(αt+1), . . . , at|t+1(αt+1)) must satisfy the first order necessary condition

0 =c̄t − Ω̄t−1,tat−1|t+1(αt+1)− Ω̄t,tat|t+1(αt+1)− Ω̄t,t+1αt+1

+ ψ
(0,1)
t−1 (at−1|t(at|t+1), at|t+1) + ψ

(1,0)
t (at|t+1, αt+1).

(I.11)

Taking the derivative of (I.11) with respect to αt+1 gives

¯̄Ωt,t−1(αt+1)a
(1)
t−1|t+1(αt+1) + ¯̄Ωt,t(αt+1)a

(1)
t|t+1(αt+1) + ¯̄Ωt,t+1(αt+1) = 0. (I.12)

Using the identity at−1|t+1(αt+1) = at−1|t
(
at|t+1(αt+1)

)
and the chain rule gives

a
(1)
t−1|t+1(αt+1) = a

(1)
t−1|t(at|t+1(αt+1))a

(1)
t|t+1(αt+1). (I.13)

Substituting (I.13) in (I.12), we obtain

(
¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1)

)
a

(1)
t|t+1(αt+1) = − ¯̄Ωt,t+1(αt+1).

Then, following an analogous development in ? ], we can show by induction that

a
(1)
t|t+1(αt+1) = −Σt|t+1(αt+1) ¯̄Ωt,t+1(αt+1), t = 2, . . . , n− 1, (I.14)

where
[
Σt|t+1(αt+1)

]−1
= ¯̄Ωt,t−1(αt+1)a

(1)
t−1|t(at|t+1(αt+1)) + ¯̄Ωt,t(αt+1). Taking αt+1 =

at+1 in (I.14) gives

a
(1)
t = −Σt

¯̄Ωt,t+1. (I.15)

For r ≥ 2, we use Leibniz’s rule to differentiate (I.12) (r − 1) times with respect to

αt+1 and obtain

r−1∑
i=0

(
r − 1

i

)(
¯̄Ω

(i)
t,t−1(αt+1)a

(r−i)
t−1|t+1(αt+1) + ¯̄Ω

(i)
t,t (αt+1)a

(r−i)
t|t+1(αt+1)

)
= − ¯̄Ω

(r−1)
t,t+1 (αt+1).

(I.16)

Using Faà di Bruno’s formula for arbitrary order derivatives of compound functions, we



xxiv

compute the i’th derivative of at−1|t+1(αt+1) with respect to αt+1 as

a
(i)
t−1|t+1(αt+1) =

i∑
j=1

a
(j)
t−1|t(at|t+1)Bi,j(a

(1)
t|t+1(αt+1), . . . , a

(i−j+1)
t|t+1 (αt+1)). (I.17)

If we substitute a(i)
t−1|t+1(αt+1) of (I.17) in (I.16) and set αt+1 = at+1, we obtain

r−1∑
i=0

(
r − 1

i

){
¯̄Ω

(i)
t,t−1

[
r−i∑
j=1

a
(j)
t−1Br−i,j(a

(1)
t , . . . , a

(r−i−j+1)
t )

]
+ ¯̄Ω

(i)
t,ta

(r−i)
t

}
= − ¯̄Ω

(r−1)
t,t+1 .

(I.18)

This gives an expression for a(r)
t in terms of a(i)

t , i = 0, . . . , r − 1 ; a(i)
t−1, i = 0, . . . , r ;

¯̄Ω
(i)
t,t−1 and ¯̄Ω

(i)
t,t , i = 1, . . . , r − 1 ; and ¯̄Ω

(r−1)
t,t+1 .

We now derive a result that will give us s(r)
t in terms of a(i)

t and s(i)
t , i = 1, . . . , r− 1

and a(i)
t−1, i = 1, . . . , r + 1. Analogously with equation (I.9), we have

Σ
(r)
t|t+1(αt+1) = Σt|t+1(αt+1)Br(s

(1)
t|t+1(αt+1), . . . , s

(r)
t|t+1(αt+1)).

Using Leibniz’s rule to take derivatives of (I.14) with respect to αt+1, and evaluating at

αt+1 = at+1, we obtain

a
(r)
t =

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
t , . . . , s

(i)
t )Σt

¯̄Ω
(r−1−i)
t,t+1 . (I.19)

The quantities ¯̄Ω
(r)
t,s involved in the computation of a(r)

t and s(r)
t are functions of deri-

vatives of ψ(p,q)
t (at|t+1, αt+1) with respect to αt+1, evaluated at at+1. Equations (I.63) and

(I.64) of Appendix I.5 show how to compute these derivatives as functions of derivatives

of ψ(p,q)
t (αt, αt+1), supplied as part of the model specification.

I.2.2 Explicit Formula for R = 5

We now derive simplified expressions for a(r)
t , r = 1, . . . , 5 and s(r)

t , r = 1, . . . , 4,

for t = 1, . . . , n − 1. We give details of the computation for t = 2, . . . , n − 1. For the

special case t = 1, we can obtain analogous results simply by setting any terms with a
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time index of zero to zero.

We have already have an expression for a(1)
t , t = 1, . . . , n−1, in (I.15). Taking r = 2

in (I.18) gives

¯̄Ωt,t−1

(
a

(1)
t−1a

(2)
t + a

(2)
t−1

(
a

(1)
t

)2
)

+ ¯̄Ωt,ta
(2)
t + ¯̄Ω

(1)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(1)
t,t a

(1)
t = ¯̄Ω

(1)
t,t+1,

which simplifies to

a
(2)
t =

(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a

(1)
t − Σt

¯̄Ω
(1)
t,t+1, (I.20)

where γt = −Σt
¯̄Ωt,t−1 and ¯̄Ω

(i)

t = ¯̄Ω
(i)
t,t−1a

(1)
t + ¯̄Ω

(i)
t,t . Setting r = 2 in (I.19) gives

a
(2)
t = s

(1)
t a

(1)
t − Σt

¯̄Ω
(1)
t,t+1. (I.21)

Equating the right hand sides of (I.20) and (I.21) and solving for s(1)
t gives

s
(1)
t = γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t . (I.22)

Setting r = 3 in (I.18) gives

− ¯̄Ω
(2)
t,t+1 =¯̄Ωt,t−1

(
a

(1)
t−1a

(3)
t + 3a

(2)
t−1a

(1)
t a

(2)
t + a

(3)
t−1

(
a

(1)
t

)3
)

+ ¯̄Ωt,ta
(3)
t

+ 2

(
¯̄Ω

(1)
t,t−1

(
a

(1)
t−1a

(2)
t + a

(2)
t−1

(
a

(1)
t

)2
)

+ ¯̄Ω
(1)
t,t a

(1)
t

)
+ ¯̄Ω

(2)
t,t−1a

(1)
t−1a

(1)
t + ¯̄Ω

(2)
t,t a

(1)
t .

Solving for a(3)
t , we obtain

a
(3)
t =γt

(
3a

(1)
t a

(2)
t a

(2)
t−1 +

(
a

(1)
t

)3

a
(3)
t−1

)
− 2Σt

(
¯̄Ω

(1)
t,t−1

(
a

(1)
t

)2

a
(2)
t−1 + ¯̄Ω

(1)

t a
(2)
t

)
− Σt

¯̄Ω
(2)

t a
(1)
t − Σt

¯̄Ω
(2)
t,t+1

=2
(
γta

(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t

)
a

(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a

(1)
t

)2

+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a

(1)
t − Σt

¯̄Ω
(2)
t,t+1.
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We use (I.22) to simplify this to

a
(3)
t =2s

(1)
t a

(2)
t +

(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)(
a

(1)
t

)2

+
(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
a

(1)
t − Σt

¯̄Ω
(2)
t,t+1.

(I.23)

Setting r = 3 in (I.19) gives an alternative expression for a(3)
t :

a
(3)
t =

(
s

(2)
t +

(
s

(1)
t

)2
)
a

(1)
t − Σt

¯̄Ω
(2)
t,t+1 − 2s

(1)
t Σt

¯̄Ω
(1)
t,t+1

=

(
s

(2)
t +

(
s

(1)
t

)2
)
a

(1)
t − Σt

¯̄Ω
(2)
t,t+1 + 2s

(1)
t

(
a

(2)
t − s

(1)
t a

(1)
t

)
=

(
s

(2)
t −

(
s

(1)
t

)2
)
a

(1)
t + 2s

(1)
t a

(2)
t − Σt

¯̄Ω
(2)
t,t+1.

(I.24)

Equating the right hand sides of (I.23) and (I.24) and solving for s(2)
t gives

s
(2)
t =

(
s

(1)
t

)2

+
(
γta

(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

)
a

(1)
t +

(
γta

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t

)
. (I.25)

We follow a similar procedure to compute the following formulas for a(4)
t , s

(3)
t , and

a
(5)
t , s

(4)
t :

a
(4)
t =

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a

(1)
t

)3

+ 3
(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)(
a

(1)
t

)2

+
(
γta

(3)
t a

(2)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(3)

t

)
a

(1)
t − Σt

¯̄Ω
(3)
t,t+1

+ 3

(
s

(2)
t −

(
s

(1)
t

)2
)
a

(2)
t + 3s

(1)
t a

(3)
t ,

(I.26)

s
(3)
t =−

(
s

(1)
t

)3

+ 3s
(1)
t s

(2)
t +

(
γta

(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

)(
a

(1)
t

)2

+ 3
(
γta

(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1

)
a

(1)
t +

(
γta

(3)
t − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t

)
a

(2)
t−1 − Σt

¯̄Ω
(3)

t

(I.27)
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a
(5)
t =− Σt

¯̄Ω
(4)
t,t+1 +

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a

(1)
t

)4

+ 6
(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a

(1)
t

)3

+ 4
(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)(
a

(1)
t

)2

+

(
γt

(
a

(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a

(2)
t

)2
)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω

(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
a

(1)
t

+ 4s
(1)
t a

(4)
t + 6

(
s

(2)
t −

(
s

(1)
t

)2
)
a

(3)
t + 4

(
s

(3)
t +

(
s

(1)
t

)3

− 3s
(1)
t s

(2)
t

)
a

(2)
t ,

(I.28)

s
(4)
t =

(
γta

(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1

)(
a

(1)
t

)3

+ 6
(
γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

)(
a

(1)
t

)2

+ 4
(
γta

(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1a

(2)
t

)
a

(1)
t

+

(
γt

(
a

(2)
t−1a

(4)
t + 3a

(3)
t−1

(
a

(2)
t

)2
)
− Σt

¯̄Ω
(4)

t − 6Σt
¯̄Ω

(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t

)
+
(
s

(1)
t

)4

+ 4s
(1)
t s

(3)
t + 3

(
s

(2)
t − 2

(
s

(1)
t

)2
)
s

(2)
t .

(I.29)

I.3 Polynomial approximations of b(r)
t and µ(r)

t

I.3.1 First derivative of log f(αt|αt+1, y)

In this subsection, we derive an exact expression for h(1)
t (αt;αt+1), the first derivative

of log f(αt|αt+1, y) with respect to αt.

The case t = 1 is straightforward using Bayes’ rule. We have

∂ log f(α1|α2, y)

∂α1

=
∂ log f(y1|α1, α2)

∂α1

+
∂ log f(α2, α1)

∂α1

Recalling the definition of ψ(p,q)
t (αt, αt+1) in (1.7), the first derivative of h1(α1;α2) =
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log f(y1|α1, α2) is written

h
(1)
1 (α1;α2) = ψ

(1,0)
1 (α1, α2) + c̄1 − Ω̄1,2α2 − Ω̄1,1α1. (I.30)

For t = 2, . . . , n−1, we compute f(αt|αt+1, y) as a marginal density of f(α1:t|αt+1, y).

Thus, we have

f(αt|αt+1, y) =

∫
f(α1:t−1, αt|αt+1, y) dα1:t−1

∝ f(αt+1|αt)f(yt|αt, αt+1)c(αt),

(I.31)

where

c(αt) =

∫
f(αt|αt−1)f(yt−1|αt−1, αt)f(y1:t−2, α1:t−1) dα1:t−1.

Taking the logarithm of (I.31) and differentiating with respect to αt gives

h
(1)
t (αt;αt+1) =

∂ log c(αt)

∂αt
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt
. (I.32)

We use a development similar to Appendix C of ? ] to show that

∂ log c(αt)

∂αt
= E

[
∂ log f(αt|αt−1)

∂αt
+
∂ log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, y] .
The first derivatives ht(αt;αt+1) then becomes

h
(1)
t (αt;αt+1) =E

[
log f(αt|αt−1)

∂αt
+

log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(αt+1|αt)

∂αt
+
∂ log f(yt|αt, αt+1)

∂αt

=E

[
log f(αt|αt−1)

∂αt
+

log f(αt+1|αt)
∂αt

∣∣∣∣αt, αt+1, y

]
+ E

[
log f(yt−1|αt−1, αt)

∂αt

∣∣∣∣αt, αt+1, y

]
+
∂ log f(yt|αt, αt+1)

∂αt
.

The first term above simplifies as in Appendix C of McCausland (2010). We use (1.7) to
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finally derive

h
(1)
t (αt;αt+1) =c̄t − Ω̄t,tαt − Ω̄t,t+1αt+1 + ψ

(1,0)
t (αt, αt+1)

− Ω̄t−1,tµt−1|t(αt) + xt−1|t(αt),
(I.33)

where µt−1|t(αt) = E[αt−1|αt, y] and xt−1(αt) = E
[
ψ

(0,1)
t−1 (αt−1, αt) |αt, y

]
. The case

t = n is similar, and we obtain

h(1)
n (αn) = c̄n − Ω̄n,nαn + ψ(1)

n (αn)− Ω̄n−1,nµn−1|n(αn) + xn−1|n(αn). (I.34)

I.3.2 Approximation of h(1)
t (αt;αt+1)

Since we do not know the conditional expectations µt−1|t(αt) and xt−1|t(αt), we

cannot compute ht(αt;αt+1) exactly. We propose an approximation H
(1)
t (αt;αt+1) of

h
(1)
t (αt;αt+1). For t = 2, . . . , n− 1, we have

H
(1)
t (αt;αt+1)

.
= c̄t−Ω̄t,tαt−Ω̄t,t+1αt+1+Ψ

(1,0)
t (αt, αt+1)−Ω̄t−1,tMt−1|t(αt)+Xt−1|t(αt)

(I.35)

where Mt−1|t(αt) is an approximation of µt−1|t(αt), Xt−1|t(αt) is an approximation of

xt−1|t(αt) and Ψ
(1,0)
t (αt, αt+1) is an approximation of ψ(1,0)

t (αt, αt+1). 1 The polynomials

Mt−1|t(αt) and Ψ
(p,q)
t (αt, αt+1) are defined in (1.13) and (1.14).

We construct Xt−1|t(αt) in two steps. First, we approximate ψ(0,1)
t−1 (αt−1, αt), as a

function of αt−1, by its second order Taylor series expansion around at−1|t(αt) :

ψ
(0,1)
t−1 (αt−1, αt) ≈ ψ

(0,1)
t−1 (at−1|t(αt), αt) + ψ

(1,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))

+ 1
2
ψ

(2,1)
t−1 (at−1|t(αt), αt)(αt−1 − at−1|t(αt))

2.

(I.36)

Taking the conditional expectation of both sides of (I.36), given αt and y, and using

Σt−1|t(αt) as an approximation of E
[
(αt−1 − at−1|t(αt))

2|αt, y
]

gives the approxima-

1. For t = n, we need just to replace Ψ
(1,0)
t (αt, αt+1) by Ψ

(1)
n (αn) in (I.35) to obtain H(1)

n (αn), the
approximation of h(1)n (αn).
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tion

xt−1|t(αt) ≈ψ(0,1)
t−1 (at−1|t(αt), αt) + ψ

(1,1)
t−1 (at−1|t(αt), αt)(µt−1|t(αt)− at−1|t(αt))

+
1

2
ψ

(2,1)
t−1 (at−1|t(αt), αt)Σt−1|t(αt).

(I.37)

Now we define the polynomial Xt−1|t(αt) as the R’th order Taylor series expansion of

the right hand side of (I.37) :

Xt−1|t(αt)
.
=

R∑
r=0

X
(r)
t−1

r!
(αt − at)r, (I.38)

where X(r)
t−1 is the r’th derivative of the RHS of (I.37) with respect to αt, evaluated at at.

We evaluate these derivatives bottom up using Faà Di Bruno’s formula, equations (I.61)

and (I.62), and Leibniz’s rule, equation (I.57).

I.3.3 Approximation of the conditional mode bt|t+1(αt+1)

Recall that bt|t+1(αt+1) is the conditional mode of αt given αt+1 and y. We provide an

approximation Bt|t+1(αt+1) of the Taylor expansion of bt|t+1(αt+1) around αt+1 = at+1.

We show in this subsection how to compute the coefficients of the resulting polynomial.

The degree of this polynomial is R− 1 = 4.

By definition, bt|t+1(αt+1) is the root of h(1)
t (αt;αt+1) = 0. We can approximate this

root, as a function of αt+1, using one iteration of the Newton-Raphson algorithm for root

finding, from the starting point at|t+1(αt+1) :

bt|t+1(αt+1) ≈ at|t+1(αt+1)−
h

(1)
t (at|t+1(αt+1);αt+1)

h
(2)
t (at|t+1(αt+1);αt+1)

. (I.39)

We want to approximate the function bt|t+1(αt+1), not just perform the Newton-Raphson

step for a particular value of at|t+1. Our strategy will be to find an approximate Taylor

expansion of the second term of the right hand side around αt+1 = at+1.

Our approximations of numerator and denominator are, using (I.35) and its deriva-
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tive, both evaluated at αt = at|t+1(αt+1), are

H
(1)
t (at|t+1;αt+1) = c̄t − Ω̄t,tat|t+1 − Ω̄t,t+1αt+1 + Ψ

(1,0)
t (at|t+1, αt+1)

− Ω̄t−1,tMt−1|t(at|t+1) +Xt−1|t(at|t+1) (I.40)

H
(2)
t (at|t+1;αt+1) = −Ω̄t,t + Ψ

(2,0)
t (at|t+1, αt+1)

− Ω̄t−1,tM
(1)
t−1|t(at|t+1) +X

(1)
t−1|t(at|t+1), (I.41)

where we suppress the argument of at|t+1(αt+1) to write at|t+1.

We compute total derivatives ofH(1)
t (at|t+1(αt+1);αt+1) andH(2)

t (at|t+1(αt+1);αt+1)

at αt+1 = at+1 using Faà di Bruno’s formula to compute the derivatives ofMt−1|t(at|t+1(αt+1)),

at−1|t(at|t+1(αt+1)) and Xt−1|t(at|t+1(αt+1)) with respect to αt+1, at αt+1 = at+1.

Based on equation (I.39), we define the following approximations B(r)
t of b(r)

t , r =

0, 1, 2, 3 :

B
(r)
t

.
= a

(r)
t −

∂r

∂αrt+1

(
H

(1)
t (at|t+1(αt+1);αt+1)

H
(2)
t (at|t+1(αt+1);αt+1)

)∣∣∣∣∣
αt+1=at+1

. (I.42)

The second term on the right hand side of (I.42) is the r’th order derivative of a quotient,

which we compute using the quotient rule for derivatives, equation (I.58) in Appendix

I.5.

In practice, we find that going beyond a third order approximation of bt|t+1(αt+1)−
at|t+1(αt+1) does not justify the computational cost and so we set B(4)

t = a
(4)
t .

For t = n, we approximate a value bn, not a function. We define, analogously, the

following approximation of bn :

Bn
.
= an −

H
(1)
n (an)

H
(2)
n (an)

. (I.43)
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I.3.4 Coefficients of the polynomial approximation of µt|t+1(αt+1)

Recall that µt|t+1(αt+1) = E[αt|αt+1, y]. We provide an approximation Mt|t+1(αt+1)

of a Taylor expansion of µt|t+1(αt+1) around αt+1 = at+1. We show in this subsection

how to compute the coefficients of the resulting fourth order polynomial.

McCausland(2011) suggests the following approximation for µt|t+1 − bt|t+1 :

µt|t+1 − bt|t+1 ≈
1

2
h

(3)
t (bt|t+1;αt+1)

[
h

(2)
t (bt|t+1;αt+1)

]−2

(I.44)

As the mode bt|t+1 is the root of h(1)
t (αt;αt+1), we have

h
(1)
t (bt|t+1;αt+1) = 0 (I.45)

Taking the derivative of (I.45) two times with respect to αt+1 gives

h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1 = Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1) (I.46)

and

h
(3)
t (bt|t+1;αt+1)

(
b

(1)
t|t+1

)2

+ h
(2)
t (bt|t+1;αt+1)b

(2)
t|t+1 =− 2

dψ
(1,1)
t (bt|t+1, αt+1)

dαt+1

+ ψ
(1,1)
t (bt|t+1, αt+1)

(I.47)

Solve for h(3)
t (bt|t+1;αt+1) in equation (I.47) and divide by the square of h(2)

t (bt|t+1;αt+1)

to obtain

h
(3)
t (bt|t+1;αt+1)(

h
(2)
t (bt|t+1;αt+1)

)2 =−
b

(2)
t|t+1/b

(1)
t|t+1

h
(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

−
2dψ

(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
h

(2)
t (bt|t+1;αt+1)b

(1)
t|t+1

)2

(I.48)
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Substitute the right hand side of equation (I.46) in (I.48) to obtain

µt|t+1 − bt|t+1 ≈−
1

2

b
(2)
t|t+1/b

(1)
t|t+1

Ω̄t,t+1 − ψ(1,1)
t (bt|t+1, αt+1)

− 1

2

2dψ
(1,1)
t (bt|t+1, αt+1)/dαt+1 − ψ(1,1)

t (bt|t+1, αt+1)(
Ω̄t,t+1 − ψ(1,1)

t (bt|t+1, αt+1)
)2

(I.49)

Based on equation (I.49), we define our approximation Mt|t+1 of µt|t+1 as the Taylor

series expansion of :

−1

2

B
(2)
t|t+1/B

(1)
t|t+1

Ω̄t,t+1 −Ψ
(1,1)
t (Bt|t+1, αt+1)

− 1

2

2dΨ
(1,1)
t (Bt|t+1, αt+1)/dαt+1 −Ψ

(1,1)
t (Bt|t+1, αt+1)(

Ω̄t,t+1 −Ψ
(1,1)
t (Bt|t+1, αt+1)

)2

(I.50)

The derivatives ofB(2)
t|t+1/B

(1)
t|t+1 with respect to αt+1 are computed using the quotient

rule for derivatives, equation (I.58). Those of Ψ
(1,1)
t (Bt|t+1, αt+1) and dΨ

(1,1)
t (Bt|t+1, αt+1)/dαt+1

are computed using the Faà-Di-Bruno formula, equations (I.61) and (I.62). Derivatives

of the two main ratios in (I.50) are computed using the quotient rule in equation (I.58).

We compute M (r)
t = M

(r)
t|t+1(at+1), r = 0, 1, 2 using (I.50).

In practice, we find that going beyond a second order approximation of µt|t+1(αt+1)−
bt|t+1(αt+1) does not justify the computational cost and so we set M (3)

t = B
(3)
t and

M
(4)
t = a

(4)
t .

I.4 Model derivatives

Here we show how to compute partial derivatives of ψt(αt, αt+1) and derivatives

ψn(αn), for the ASV-Gaussian and ASV-Student models. In our empirical applications,

we compute ψ(p,q)
t (αt, αt+1) up to orders P = 7 and Q = 7 and ψ(p)

n (αn) up to order

P = 7.
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I.4.1 ASV-Gaussian

Using (1.5), we can write

ψt(αt, αt+1) = −1

2

[
log(2π/β) + αt + β(ϕt − θut)2

]
, t = 1, . . . , n− 1, (I.51)

ψn(αn) = −1

2

[
log(2π) + αn + ϕ2

n

]
, (I.52)

where β .
= (1− ρ2)−1, θ .

= ρ/σ, ut
.
= αt+1 − dt − φαt and ϕt

.
= yt exp(−αt/2).

For t = 1, . . . , n− 1 and (p, q) 6= (0, 0) we have

ψ
(p,q)
t (αt, αt+1) =



−1
2
− β

2
(ϕ̃t,p − 2θ2φut) q = 0, p = 1

−β
2

(ϕ̃t,p + 2θ2φ2) q = 0, p = 2

−β
2
ϕ̃t,p q = 0, p ≥ 3

βθ (ϕt − θut) q = 1, p = 0

βθ
(
−1

2
ϕt + θφ

)
q = 1, p = 1

βθ
(
−1

2

)p
ϕt q = 1, p ≥ 2

−βθ2 q = 2, p = 0

0 otherwise,

(I.53)

where

ϕ̃t,p
.
= (−1)pϕ2

t −
(
−1

2

)p−2

θϕt

(
pφ+

1

2
ut

)
, t = 1, . . . , n− 1. (I.54)

For t = n,

ψ(p)
n (αn)(αn) =

−
1
2
− 1

2
ϕ̃n,p p = 1

−1
2
ϕ̃n,p p ≥ 2,

(I.55)

where

ϕ̃n,p = (−1)pϕ2
n.
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I.4.2 ASV-Student

We use the definitions of β, θ, ut and ϕt from I.4.1. Using (1.19) we can write

ψt(αt, αt+1), for t = 1, . . . , n− 1, as

ψt(αt, αt+1) = k + ψ1,t(αt, αt+1) + ψ2,t(αt) + ψ3,t(αt, αt+1), (I.56)

where k does not depend on αt and αt+1,

ψ1,t(αt, αt+1)
.
= −1

2
(θ2βu2

t + αt), ψ2,t(αt)
.
= −(ν + 1) log d(αt),

ψ3,t(αt, αt+1)
.
= logm(z(αt, αt+1)), m(z) = 2

Γ
(
ν
2

+ 1
)

Γ
(
ν+1

2

) zm1(z) +m2(z),

m1(z) = M

(
ν

2
+ 1;

3

2
; z2

)
, m2(z) = M

(
ν + 1

2
;
1

2
; z2

)
,

z(αt, αt+1) =
n(αt, αt+1)

d(αt)
, n(αt, αt+1) =

θβ√
2ν
utϕt, d(αt) =

√
1 +

β

ν
ϕ2
t .

Computing analytical expressions for high order partial derivatives of ψt(αt, αt+1) is

daunting, but fortunately we can avoid it. All we need to do is evaluate the derivatives

at a given point (αt, αt+1), and for this, we can use general purpose routines to combine

derivatives of products, quotients and composite functions.

We first compute the derivatives of the third component ψ3,t(αt, αt+1) of the log-

density of the ASV-Student model. We do it bottom up using the following steps :

1. Evaluate n(αt, αt+1) and its derivatives with respect to αt and αt+1 up to orders P

and Q :

n(p,q)(αt, αt+1) =


βθ√
2ν

(
−1

2

)p
(2pφ+ ut)ϕt p ≥ 0, q = 0

βθ√
2ν

(
−1

2

)p
ϕt p ≥ 0, q = 1

0 p ≥ 0, q ≥ 2.
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2. Evaluate derivatives of (1 + β/νϕ2
t (αt)) with respect to αt up to order P :

dp

dαt

(
1 +

β

ν
ϕ2
t (αt)

)
= (−1)p

β

ν
ϕ2
t (αt), p = 0, . . . , P.

3. Evaluate d(αt) and its derivatives with respect to αt, up to order P . Use derivatives

of the square root function, evaluated at (1 + β/νϕ2
t (αt)) and the derivatives eva-

luated in step 2, combining them using Faà Di Bruno’s formula, equations (I.61)

and (I.62).

4. Evaluate z = n/d and partial derivatives z(p,q)(αt, αt+1) up to order P and Q. Use

the value n and partial derivatives n(p,q)(αt, αt+1) computed at step (1), as well as

the value d and derivatives d(p)(αt) computed at step (3). For each p = 1, . . . , P ,

compute z(p,q)(αt, αt+1) using the quotient rule, equation (I.58).

5. Evaluate M(ν/2 + 1, 3/2, x) and partial derivatives M (0,0,p)(ν/2, 3/2, x) up to

order P . We use the property M (0,0,p)(a, b, x) = (a)k/(b)kM(a + k, b + k, x)

and compute values of M(a, b, x) using the routine gsl_sf_hyperg_1F1 in

the GNU scientific library. Similarly, compute M((ν + 1)/2, 1/2, x) and partial

derivatives M (0,0,p)((ν + 1)/2; 1/2;x) up to order P .

6. Setm1(z) = M(ν/2+1, 3/2, z2) and compute P derivatives ofm1(z) with respect

to z. Use P derivatives of M(ν/2 + 1, 3/2, x) with respect to x, computed in step

5 and P derivatives (only 2 are non-zero) of x = z2 with respect to z, evaluated

at z, combining them using the Faà Di Bruno’s rule, equations (I.61) and (I.62).

Similarly, set m2(z) = M((ν+1)/2, 1/2, z2) and evaluate P derivatives of m2(z)

with respect to z.

7. Evaluate P derivatives of m(z) with respect to z using the derivatives evaluated at

step 6, combining them according to

m(p)(z) = 2
Γ
(
ν
2

+ 1
)

Γ
(
ν+1

2

) (zm(p)
1 (z) + rm

(p−1)
1 (z)

)
+m

(p)
2 (z), p = 1, . . . , P.

8. Evaluate P derivatives of logm(z) with respect to z using the derivatives evaluated

at step 7, and the logarithm rule, equations (I.59) and (I.60).
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9. Evaluate partial derivatives of ψ3,t(αt, αt+1) up to orders P and Q. Use deriva-

tives of logm(z) with respect to z computed in step 8 and partial derivatives of

z(αt, αt+1) computed in step 4, combining them according to the multivariate Faa-

Di-Bruno rule defined in equations (I.65) and (I.66).

The first component, ψ1,t(αt, αt+1), is a quadratic function of αt and αt+1. Its deri-

vatives, for (p, q) 6= (0, 0) are

ψ
(p,q)
1,t (αt, αt+1) =



−1
2
θ2βut p = 0, q = 1,

−1
2
θ2β p = 0, q = 2,

−1
2
(−φθ2βut + 1) p = 1, q = 0,

1
2
φθ2β p = 1, q = 1,

−1
2
φ2θ2β p = 2, q = 1,

0 otherwise.

Recall that ψ2,t(αt) = −(ν+1) log d(αt). We compute derivatives of log d(αt) using

the log rule in equations (I.59) and (I.60). Derivatives of ψ2,t(αt) are simply −(ν + 1)

times the derivatives of log d(αt).

The special case of t = n is easily handled. We have

ψn(αn) = log
Γ
(
ν+1

2

)
Γ(ν

2
)
√
νπ
− 1

2

[
αn + (ν + 1) log

(
1 +

ϕ2
n

ν

)]
,

whose derivatives are the same as those of ψ2,t except for β replaced by 1.

I.5 Rules for derivatives of compound functions

In this paper, we make extensive use of automatic rules for evaluating multiple de-

rivatives of compound functions at a point. These rules combine multiple derivatives of

component functions, also evaluated at points. This Appendix gathers these rules in one

place.

For univariate functions f and g, we give well known rules for multiple derivatives of



xxxviii

the product fg, the quotient f/g, and the composition f ◦ g. We give a rule for multiple

derivatives of log g, a special case where we exploit the properties of the logarithmic

function to simplify computations. We also give derivatives of f ◦ g for f : R → R and

g : R2 → R and partial derivatives of f ◦ g for f : R2 → R and g : R→ R2.

We have coded all of these rules as computer routines. Values passed to these routines

are vectors (or matrices) giving multiple derivatives (or partial derivatives) of f and g,

evaluated at particular points. The routines return a vector (or a matrix) giving multiple

derivatives (or partial derivatives) of a compound function, evaluated at a point. For

example, the routine computing P derivatives of the product function fg at a point x

takes as input the integer P , a P -vector with the first P derivatives of f at x and a

P -vector with the first P derivatives of g at x. It returns a P -vector with the first P

derivatives of fg at x.

I.5.1 Univariate functions

For the first three rules, let x be a point in R and let f and g be two univariate

functions, continuously differentiable at x up to order P .

Leibniz rule for products

The product fg is differentiable up to order P at x and

(fg)(p)(x) =

p∑
r=0

(
p

r

)
f (r)(x)g(p−r)(x), p = 1, . . . , P. (I.57)

We have a routine taking the first P derivatives of f at x and the first P derivatives of g

at x and returning the first P derivatives of fg at x.
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Quotient rule

Applying Leibniz’ rule to the product of f/g and g gives the recursive rule

(f/g)(p)(x) =
1

g(x)

[
f (p)(x)−

p−1∑
r=0

(
p

r

)
(f/g)(r)(x)g(p−r)(x)

]
, p = 1, . . . , P.

(I.58)

We have a routine taking the first P derivatives of f at x and the first P derivatives of g

at x and returning the first P derivatives of f/g at x.

Log rule

We consider the compound function h = log f and suppose that f(x) > 0. Then the

function h is differentiable up to order P . Applying the quotient rule to

h(1)(x) =
f (1)(x)

f(x)
(I.59)

gives

h(p)(x) =
1

f(x)

[
f (p)(x)−

p−1∑
r=1

(
p− 1

r − 1

)
h(p)(x)f (p−r)(x)

]
, p = 2, . . . , P. (I.60)

Together, equations (I.59) and (I.60) give the first P derivatives of log(f(x)). We have

a routine taking the first P derivatives of f at x and returning the first P derivatives of

log f at x.

Faà di Bruno’s rule for composite functions

Now suppose that x is a point in R, g is a univariate function, P times differentiable

at x, and f is a univariate function, P times differentiable at g(x). Faà di Bruno’s rule

gives the p’th derivative of f ◦ g at x as

(f ◦ g)(p)(x) =

p∑
r=1

f (r)(g(x))Bp,r(g
(1)(x), . . . , g(p−r+1)(x)), (I.61)
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where theBp,r(z1, . . . , zp−r+1) are Bell polynomials. The Bell polynomials are a triangu-

lar array of polynomials that can be computed using the boundary conditions B0,0(z1) =

1 and Bp,0(z1, . . . , zp+1) = 0, p > 0, and the recursion

Bp,r(z1, . . . , zp−r+1) =

p−1∑
i=r−1

(
p− 1

i

)
zp−iBi,r−1(z1, . . . , zi−r), r = 1, . . . , p. (I.62)

For example, we haveB1,1(z1) = z1B0,0(z1) = z1, which gives (f◦g)(1)(x) = f (1)(g(x))g(1)(x),

the chain rule. For the second derivative, we compute B2,1(z1, z2) = z2B0,0(z1) +

z1B1,0(z1, z2) = z2 and B2,2(z1) = z1B1,1(z1) = z2
1 , which gives

(f ◦ g)(2)(x) = f (1)(g(x))g(2)(x) + f (2)(g(x))
(
g(1)(x)

)2
.

We have a routine taking the first P derivatives of g at x and the first P derivatives of f

at g(x), returning the first P derivatives of f ◦ g at x.

I.5.2 Multivariate functions

? ] generalizes Faà di Bruno’s rule to multivariate functions. Equations (3.1) and

(3.5) in that paper give multiple partial derivatives of f ◦ g, where f : Rm → R and

g : Rd → Rm. We are only concerned with two special cases here, and we describe

below how to compute partial derivatives for these cases.

Case d = 1 and m = 2

Here (f ◦ g)(x) = f(g1(x), g2(x)), where f is a scalar valued function with conti-

nuous partial derivatives up to orders P and P , and g1 and g2 are scalar-valued functions,

continuously differentiable up to order P . The value of the p’th derivative of f ◦ g at is

(f ◦ g)(p)(x) =

p∑
r=0

p−r∑
s=max{0,1−r}

f (r,s)(g1(x), g2(x))vp,(r,s), (I.63)
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where the values vp,(r,s) are defined by the boundary conditions v0,(0,0) = 1 and vp,(0,0) =

0 for p > 0, and the recursion

vp,(r,s) =

p−1∑
i=r+s−1

(
p− 1

i

)[
g

(p−i)
1 (x)vi,(r−1,s) + g

(p−i)
2 (x)vi,(r,s−1)

]
. (I.64)

We have a routine taking as input the first P derivatives of g1 at x, the first P deriva-

tives of g2 at x, and the partial derivatives f (p,q) at (g1(x), g2(x)) up to orders P and P ,

returning the first P derivatives of f(g1(x), g2(x)) at x.

Case d = 2, m = 1

Here (f ◦ g)(x) = f(g(x1, x2)), where x1 and x2 are scalars, f is continuously

differentiable up to order P + Q, and g is a scalar-valued function with continuous

partial derivatives up to orders P and Q. The values of the derivatives of f ◦ g at (x1, x2)

are computed using

(f ◦ g)(p,q)(x1, x2) =

p+q∑
r=1

f (r)(g(x1, x2))v(p,q),r, (I.65)

where the values v(p,q),r are defined by the conditions v(0,0),0 = 1 and v(p,q),0(x1, x2) = 0

for (p, q) 6= (0, 0), v(p,q),r = 0 for r < 0 or p+ q < r and the recursion

v(p,q),r =


∑p−1

i=r−1

(
p−1
i

)
g(p−i,0)(x1, x2)v(i,0),r−1 q = 0, p ≥ 1∑p

i=0

∑q−1
j=0

(
p
i

)(
q−1
j

)
g(p−i,q−j)(x1, x2)v(i,j),r−1 q ≥ 1, p ≥ 0.

(I.66)

We have a routine taking as input the partial derivatives g(p,q) at (x1, x2), up to orders P

and Q and the first P + Q derivatives of f at g(x1, x2), returning the partial derivatives

(f ◦ g)(p,q) at (x1, x2), up to orders P and Q.



Annexe II

Appendix to Chapter 2

II.1 Mode of the target density

We describe in this section the computation of the unique mode a = (a1, . . . , an) of

the target density. The second order Taylor expansion of log f(α|y) around this unique

mode, a, can be expressed as :

log f(α|y) ≈ −1

2

[
α> ¯̄Ωα− 2¯̄c>α

]
, (II.1)

where ¯̄Ω is the negative Hessian matrix of log f(α|y) at a and ¯̄c equals

¯̄c = ¯̄Ωa+
∂ log f(α|y)

∂α

∣∣∣∣
α=a

. (II.2)

Let ψ(p,q)
t , t = 1, . . . , n − 1, denote the partial derivative of ψt(αt, αt+1) with respect

to αt and αt+1, at orders p and q, respectively. Similarly, we define ψ(q)
0 (α1) as the q’th

derivative of ψ0(α1) with respect to α1 and ψ(p)
n (αn) as the p’th derivative of ψn(αn) with

respect to αn. The Hessian matrix is a symmetric tri-diagonal matrix. Its upper triangular

elements are given by :

¯̄Ωt,t+1 =− ψ(1,1)
t (at, at+1), t = 1, . . . , n− 1,

¯̄Ω1,1 =− ψ(2)
0 (a1)− ψ(2,0)

1 (a1, a2), ¯̄Ωnn = −ψ(0,2)
n−1 (an−1, an)− ψ(2)

n (an),

¯̄Ωt,t =− ψ(0,2)
t−1 (at−1, at)− ψ(2,0)

t (at, at+1), t = 2, . . . , n− 1.

(II.3)
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The covector is given by

¯̄ct =


¯̄Ωt,tat + ¯̄Ωt,t+1at+1 + ψ

(1)
0 (a1) + ψ

(1,0)
1 (a1, a2) t = 1

¯̄Ωt,t−1at−1 + ¯̄Ωt,tat + ¯̄Ωt,t+1at+1 + ψ
(0,1)
t−1 (at−1, at) + ψ

(1,0)
t (at, at+1) t = 2, . . . , n− 1

¯̄Ωn,n−1an−1 + ¯̄Ωnnan + ψ
(0,1)
n−1 (an−1, an) + ψ(1)

n (an) t = n

(II.4)

The mean (and mode) of the Gaussian approximation N(¯̄Ω−1c, ¯̄Ω−1) is the mode of

the target distribution and its log density has the same Hessian matrix as the log target

density at this mode.

While the expressions for ¯̄Ω and ¯̄c are more complicated than those in McCausland

(2010), once we have them, we compute the mode a in the same way. Roughly spea-

king, we iterate the computation α′ = ¯̄Ω(α)−1¯̄c(α) until numerical convergence. We use

two modifications to this procedure, one to accelerate convergence using higher order

derivatives and the other to resort to one-at-a-time updates of the αt in the rare cases of

non-convergence.

II.2 Polynomial approximations of at|t+1 and st|t+1

Here we compute the coefficients of the Taylor series expansions of at|t+1(αt+1) and

st|t+1(αt+1). These are the conditional mean and log variance of αt given αt+1 accor-

ding to a Gaussian approximation of the distribution of (α1, . . . , αt) given αt+1 and y.

The point of expansion is at+1 and so we compute the derivatives of at|t+1(αt+1) and

st|t+1(αt+1) there.

We derive recursive expressions for these derivatives that are correct for any order

r. In practice, the computational cost rises quickly and the benefits diminish quickly

with r. We provide simplified expressions for a(r)
t

.
= a

(r)
t|t+1(at+1) up to order r = 5 and

s
(r)
t

.
= s

(r)
t|t+1(at+1) up to order r = 4.

We develop recursive expressions for the derivatives a(r)
t and s(r)

t for t = 2, . . . , n−1.

For the special case of t = 1, we just need to replace ψ(0,1)
t−1 (at−1|t+1, at|t+1) by ψ(1)

0 (α1)

in the expressions below.
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The conditional mode (a1|t+1, . . . , at|t+1) is solution of the problem

(a1|t+1, . . . , at|t+1) = arg max
(α1,...,αt)

log f(α1, . . . , αt|αt+1, . . . , αn, y). (II.5)

By the conditional probability rule, we have log f(α1, . . . , αt|αt+1, . . . , αn, y) = log f(α|y)−
log f(αt+1, . . . , αn|y). Using (2.3), the mode (a1|t+1, . . . , at|t+1) must solve

ψ
(0,1)
t−1 (at−1|t+1, at|t+1) + ψ

(1,0)
t (at|t+1, αt+1) = 0. (II.6)

Taking the derivatives of (II.6) with respect to αt+1 gives

0 =
[
ψ

(0,2)
t−1 (at−1|t+1, at|t+1) + ψ

(2,0)
t (at|t+1, αt+1)

]
a

(1)
t|t+1

+ ψ
(1,1)
t−1 (at−1|t+1, at|t+1)a

(1)
t−1|t+1 + ψ

(1,1)
t (at|t+1, αt+1).

(II.7)

Using the expression for the Hessian matrix in (II.3), we rewrite (II.7) as

¯̄Ωt,t−1|t+1a
(1)
t−1|t(at|t+1) + ¯̄Ωt,t|t+1a

(1)
t|t+1 = − ¯̄Ωt,t+1|t+1. (II.8)

? ] establishes the identity at−1|t+1 = at−1|t(at|t+1). Using the chain rule, the deriva-

tive of at−1|t+1 with respect to αt+1 is

a
(1)
t−1|t+1 = a

(1)
t−1|t(at|t+1)a

(1)
t|t+1. (II.9)

Substituting the right hand side (RHS) of (II.9) in (II.8), we obtain

(
¯̄Ωt,t−1|t+1a

(1)
t−1|t(at|t+1) + ¯̄Ωt,t|t+1

)
a

(1)
t|t+1 = − ¯̄Ωt,t+1|t+1.

Using similar arguments in McCausland(2010), we show by induction that for all t =

1, . . . , n− 1,

a
(1)
t|t+1 = −Σt|t+1

¯̄Ωt,t+1|t+1, (II.10)

where Σ−1
t|t+1 = ¯̄Ωt,t−1|t+1a

(1)
t−1|t(at|t+1) + ¯̄Ωt,t|t+1. Taking αt+1 = at+1 in (II.10) gives us



xlv

value of the coefficient of the monomial of degree one in the polynomial approximation

of at|t+1 at at+1 :

a
(1)
t = −Σt

¯̄Ωt,t+1. (II.11)

For r ≥ 2, we use Leibniz’s rule to compute (r− 1) derivatives of (II.8) with respect

to αt+1 and obtain

r−1∑
i=0

(
r − 1

i

)(
¯̄Ω

(i)
t,t−1|t+1a

(r−i)
t−1|t(at|t+1) + ¯̄Ω

(i)
t,t|t+1a

(r−i)
t|t+1

)
= − ¯̄Ω

(r−1)
t,t+1|t+1. (II.12)

Using Faà di Bruno’s formula (see Appendix E of Djegnene and McCausland[2011]) for

higher derivatives of a compound function, the i’th derivative of at|t+1 with respect to

αt+1 is

a
(i)
t−1|t+1 =

i∑
j=1

a
(j)
t−1|t(at|t+1)Bi,j

(
a

(1)
t|t+1, . . . , a

(i−j+1)
t|t+1

)
, (II.13)

where the Bi,j are Bell polynomials. If we replace a(i)
t−1|t+1 by the RHS of (II.13) in

(II.12) and set αt+1 = at+1, we obtain

r−1∑
i=0

(
r − 1

i

){
¯̄Ω

(i)
t,t−1

[
r−i∑
j=1

a
(j)
t−1Br−i,j

(
a

(1)
t , . . . , a

(r−i−j+1)
t

)]
+ ¯̄Ω

(i)
t,ta

(r−i)
t

}
= − ¯̄Ω

(r−1)
t,t+1 .

(II.14)

This gives an expression for a(r)
t in terms of a(i)

t , i = 0, . . . , r−1, and a(i)
t−1, i = 0, . . . , r,

as well as ¯̄Ω
(i)
t,t−1, ¯̄Ω

(i)
t,t , i = 1, . . . , r − 1, and ¯̄Ω

(r−1)
t,t+1 .

We now derive a result that will give us s(r)
t in terms of a(i)

t up to order i = r+ 1 and

s
(i)
t up to order i = r−1. Using Σt|t+1 = exp(st|t+1) and applying Faà di Bruno formula

gives

Σ
(r)
t|t+1 =

r∑
i=1

Σt|t+1Br,i(s
(1)
t|t+1, . . . , s

(r−i+1)
t|t+1 )

=Σt|t+1

r∑
i=1

Br,i(s
(1)
t|t+1, . . . , s

(r−i+1)
t|t+1 )

=Σt|t+1Br(s
(1)
t|t+1, . . . , s

(r)
t|t+1),

whereBr, known as the r’th order complete Bell polynomial, is defined asBr ≡
∑r

i=1 Br,i.
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Using Leibniz’s rule to compute (r − 1) derivatives of (II.10) with respect to αt+1 at

αt+1 = at+1, we obtain

a
(r)
t = −

r−1∑
i=0

(
r − 1

i

)
Bi(s

(1)
t , . . . , s

(i)
t )Σt

¯̄Ω
(r−1−i)
t,t+1 . (II.15)

This gives us value of s(r−1)
t in term of s(i)

t , i = 0, . . . , r − 2 and a(i)
t , i = 0, . . . , r.

The equations in (II.16) give expressions for a(r)
t , r = 1, . . . , 5 and s(r)

t , r = 1, . . . , 4.

The development to obtain these explicit expressions is similar to appendix A.2 of Dje-

gnene and McCausland(2011).
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Let γt = −Σt
¯̄Ωt,t−1, ¯̄Ω

(i)

t = ¯̄Ω
(i)
t,t−1a

(1)
t + ¯̄Ω

(i)
t,t and,

Z21 =γta
(1)
t a

(2)
t−1 − Σt

¯̄Ω
(1)

t Z32 =γta
(1)
t a

(3)
t−1 − 2Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1

Z31 =γta
(2)
t a

(2)
t−1 − Σt

¯̄Ω
(2)

t Z43 =γta
(1)
t a

(4)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(3)
t−1

Z42 =γta
(2)
t a

(3)
t−1 − Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1 Z41 =γta

(3)
t a

(2)
t−1 − 3Σt

¯̄Ω
(1)
t,t−1a

(2)
t a

(2)
t−1 − Σt

¯̄Ω
(3)

t

Z54 =γta
(5)
t−1a

(1)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(4)
t−1 Z53 =γta

(4)
t−1a

(2)
t − Σt

¯̄Ω
(2)
t,t−1a

(3)
t−1

Z52 =γta
(3)
t−1a

(3)
t − Σt

¯̄Ω
(3)
t,t−1a

(2)
t−1 . . . Z51 =γta

(2)
t−1a

(4)
t + 3γta

(3)
t−1

(
a

(2)
t

)2

− Σt
¯̄Ω

(4)

t . . .

− 2Σt
¯̄Ω

(1)
t,t−1a

(3)
t−1a

(2)
t − 6Σt

¯̄Ω
(2)
t,t−1a

(2)
t−1a

(2)
t − 4Σt

¯̄Ω
(1)
t,t−1a

(2)
t−1a

(3)
t .

Then, we have

a
(2)
t =Z21a

(1)
t − Σt

¯̄Ω
(1)
t,t+1

s
(1)
t =Z21

a
(3)
t =Z32

(
a

(1)
t

)2

+ Z31a
(1)
t − Σt

¯̄Ω
(2)
t,t+1 + 2s

(1)
t a

(2)
t

s
(2)
t =Z32a

(1)
t + Z31 +

(
s

(1)
t

)2

a
(4)
t =Z43

(
a

(1)
t

)3

+ 3Z42

(
a

(1)
t

)2

+ Z41a
(1)
t − Σt

¯̄Ω
(3)
t,t+1

+ 3

(
s

(2)
t −

(
s

(1)
t

)2
)
a

(2)
t + 3s

(1)
t a

(3)
t

s
(3)
t =Z43

(
a

(1)
t

)2

+ 3Z42a
(1)
t + Z41 −

(
s

(1)
t

)3

+ 3s
(1)
t s

(2)
t

a
(5)
t =Z54

(
a

(1)
t

)4

+ 6Z53

(
a

(1)
t

)3

+ 4Z52

(
a

(1)
t

)2

+ Z51a
(1)
t − Σt

¯̄Ω
(4)
t,t+1

+ 6s
(1)
t a

(4)
t + 6

(
s

(2)
t −

(
s

(1)
t

)2
)
a

(3)
t + 5

(
s

(3)
t +

(
s

(1)
t

)3

− 3s
(1)
t s

(2)
t

)
a

(2)
t

s
(4)
t =Z54

(
a

(1)
t

)3

+ Z53

(
a

(1)
t

)2

+ Z52a
(1)
t + Z51 − Σt

¯̄Ω
(4)
t,t+1

+
(
s

(1)
t

)4

+ 4s
(1)
t s

(3)
t + 3

(
s

(2)
t − 2

(
s

(1)
t

)2
)
s

(2)
t .

(II.16)
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II.3 Conditional mode and mean.

II.3.1 Gradient of the log conditional density

In this subsection, we derive an exact expression of the gradient of the log conditional

density log f(αt|αt+1, y). For t = 1, Bayes’ rule gives

∂ log f(α1|α2, y)

∂α1

=
∂ log f(α2, y1|α1)

∂α1

+
∂ log f(α1)

∂α1

= ψ
(1,0)
1 (α1, α2) + ψ

(1)
0 (α1).

For t = 2, . . . , n− 1, we first write

f(αt|αt+1, y) = f(yt+1:n|αt+1)f(αt+1, yt|αt)f(αt|y1:t−1)f(y1:t−1).

Taking the logarithm of f(αt|αt+1, y) and then its derivative with respect to αt gives

∂ log f(αt|αt+1, y)

∂αt
=
∂ log f(αt+1, yt|αt)

∂αt
+
∂ log f(αt|y1:t−1)

∂αt
. (II.17)

Now consider the derivative of log f(αt|y1:t−1) with respect to αt. We have

f(αt|y1:t−1) =

∫
f(αt, αt−1|y1:t−1)dαt−1

=

∫
f(αt, yt−1|αt−1)

f(αt−1, y1:t−2)

f(y1:t−1)
dαt.

Then, taking the derivative of f(αt|y1:t−1) with respect to αt gives

∂f(αt|y1:t−1)

∂αt
=

∫
∂f(αt, yt−1|at−1)

∂αt

f(αt−1, y1:t−2)

f(y1:t−1)
dαt−1

=

∫
∂ log f(αt, yt−1|αt−1)

∂αt

f(αt, αt−1, y1:t−1)

f(y1:t−1)
dαt−1

=

∫
∂ log f(αt, yt−1|αt−1)

∂αt
f(αt−1|αt, y1:t−1)f(αt|y1:t−1)dαt−1.
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Dividing both sides by f(αt|y1:t−1) leads to

1

f(αt|y1:t−1)

∂f(αt|y1:t−1)

∂αt
=

∫
∂f(αt, yt−1|αt−1)

∂αt
f(αt−1|αt, y1:t−1)dαt−1,

or

∂ log f(αt|y1:t−1)

∂αt
=

∫
∂ log f(αt, yt−1|at−1)

∂αt
f(αt−1|αt, y1:t−1)dαt−1

= E

[
∂ log f(αt, yt−1|at−1)

∂αt
|αt, y1:t−1

]
= E

[
ψ0,1
t−1(αt−1, αt)|αt, y1:t−1

]
(II.18)

Using (II.18) in (II.17), we obtain finally

h
(1)
t (αt;αt+1) =

∂ log f(αt|αt+1, y)

∂αt
= ψ

(1,0)
t (αt, αt+1) + xt−1|t(αt), (II.19)

where xt−1|t(αt) = E
[
ψ

(0,1)
t−1 (αt−1, αt)|αt, y1:t−1

]
.

For the case t = n, we have f(αn|y) ∝ f(yn|αn)f(αn|y1:n−1), so that

∂ log f(αn|y)

∂αn
= ψ1

n(αn) + xn−1|n(αn) (II.20)

II.3.2 Approximation of the conditional derivatives

We cannot easily compute the derivative h(1)
t (αt;αt+1) due to the conditional expec-

tation xt−1|t(αt). Thus, we propose an approximation H(1)
t (αt;αt+1), with

H
(1)
t (αt;αt+1) = Ψ

(1,0)
t (αt, αt+1) +Xt−1|t(αt), (II.21)

where Xt−1|t(αt) is an approximation of xt−1|t(αt) and Ψ
(p,q)
t (αt, αt+1) is an approxima-

tion of ψ(p,q)
t (αt, αt+1).

Equation (2.9) constructs Ψ
(p,q)
t (αt, αt+1) as a multivariate Taylor expansion ofψ(p,q)

t (αt, αt+1)

around at and at+1. Appendix C.2 in Djegnene and McCausland[2011] gives details on

the construction of the approximation Xt−1|t(αt). A minor adjustment is required to
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compute the values M (j)
t−1, j = 0, . . . , r included in the coefficients X(r)

t−1, r = 0, . . . , 4

of the polynomial approximation Xt−1|t(αt). We just need to replace equation (67)

in Appendix C.4 of Djegnene and McCausland (2011), with h(1)
t (bt|t+1;αt+1)b

(1)
t|t+1 =

− ¯̄Ωt,t+1(bt|t+1, αt+1), and define D1(αt+1)
.
= ¯̄Ωt,t+1(bt|t+1, αt+1).

II.3.3 Coefficients of the polynomial approximation of the conditional mode bt|t+1

The mode bt|t+1 of log f(αt|αt+1, yt) is the root of ht(αt;αt+1). This root is well

approximated using one iteration of the Newton-Raphson algorithm for root finding,

starting at at|t+1. Thus, we have

bt|t+1 ≈ at|t+1 −
h

(1)
t (at|t+1;αt+1)

h
(2)
t (at|t+1;αt+1)

, (II.22)

where h(1)
t (αt;αt+1) is the first order derivative of ht(αt;αt+1) with respect to αt.

Using equation (II.22), we define the approximation B(r)
t of b(r)

t , r = 0, . . . , R − 1,

as

B
(r)
t

.
= a

(r)
t −

∂r

∂αrt+1

(
H

(1)
t (at|t+1(αt+1);αt+1)

H
(2)
t (at|t+1(αt+1);αt+1)

)∣∣∣∣∣
αt+1=at+1

. (II.23)

The second term on the RHS of (II.23) is the r’th order derivative of a quotient, which

we compute using the quotient rule for derivatives, equation (81) in Appendix E. of

Djegnene and McCausland[2011].

Subtracting the first order condition (II.6) for (a1|t+1, . . . , at|t+1) to be the conditional

mode of f(α1, . . . , αt|αt+1, y) from equation (II.21), evaluated at at|t+1, gives

H
(1)
t (at|t+1;αt+1) =− ψ(0,1)

t−1 (at−1|t(at|t+1), at|t+1) +Xt−1|t(at|t+1)

+
(

Ψ
(1,0)
t (at|t+1, αt+1)− ψ(1,0)

t (at|t+1, αt+1)
)
.

It is easy to show that

∂(r)Ψ
(1,0)
t (at|t+1, αt+1)

∂αrt+1

∣∣∣∣∣
αt+1=at+1

=
∂(r)ψ

(1,0)
t (at|t+1, αt+1)

∂αrt+1

∣∣∣∣∣
αt+1=at+1

.
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Consequently,

∂(r)H
(1)
t (at|t+1;αt+1)

∂αrt+1

∣∣∣∣∣
αt+1=at+1

=
∂(r)

[
−ψ(0,1)

t−1 (at−1|t(at|t+1), at|t+1) +Xt−1|t(at|t+1)
]

∂αrt+1

∣∣∣∣∣∣
αt+1=at+1

.

In the case of t = n, we have a value bn and not a function to approximate. Using a

development analogous to the case t = 2, . . . , n − 1, we define the following approxi-

mation of bn :

Bn
.
= an −

Hn(an)

H
(1)
n (an)

. (II.24)

II.4 ASCD models derivatives

In this section we provide analytic expression of ψt(αt, αt+1), the log conditional

density of (αt+1, yt) given αt, along with its partial derivatives with respect to αt and

αt+1. We compute log f(yt|αt) and log f(αt+1|yt, αt) and then combine these two den-

sities to obtain ψt(αt, αt+1).

We described in Section 2.3.1 the asymmetric stochastic conditional duration models

(ASCD) used as empirical illustrations. The observation innovation, εt, is either Expo-

nential, Gamma or Weibull. The three distributions are scale-normalized. The Gamma

and Weibull distributions have shape parameter ν. The density function of each of these

distributions can be written as the generic function

f(εt;λ, ν, δ) = λεν−1
t exp(−εδt ),

where the choice of the parameters λ, ν and δ determines the distribution. For the Ex-

ponential distribution, we have (λ, ν, δ)=(1,1,1). For Gamma and Weibull distribution, λ

and δ is function of ν, which is the only free parameter. We have (λ, δ) = (ν, ν) for the

Weibull distribution and (λ, δ) = (Γ(ν)−1, 1) for the Gamma distribution.

Recall from Equation (2.11), the observation equation yt = exp(αt)εt. Using a
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change of measure, the log conditional density of the observation variable is

f(yt|αt) = λyν−1
t exp(−ναt) exp

(
−yδt exp(−δαt)

)
.

The log density equals :

log f(yt|αt) = log λ+ (ν − 1) log yt − ναt − ϕt(αt), (II.25)

with ϕt(αt) = yδt exp(−δαt).

The state equation in (2.11) implies that the conditional distribution of αt+1, given

αt and yt, is Gaussian with mean (1−φ)ᾱ+(φ−ρ)αt+ρ log(yt) and variance σ2. Thus,

the log conditional density of αt+1 equals

log f(αt+1|yt, αt) = −0.5 log(2πσ2)− 0.5σ−2u2
t (αt, αt+1), (II.26)

with ut(αt, αt+1) = αt+1 − (1− φ)ᾱ− (φ− ρ)αt − ρ log(yt).

To compute ψt(αt, αt+1), the log conditional density of (αt+1, yt) given αt, we use

the probability decomposition rule, f(αt+1, yt|αt) = f(yt|αt)f(αt+1|yt, αt), apply the

logarithm to each side of this decomposition, and then add the RHS of (II.25) and (II.26).

We obtain

ψt(αt, αt+1) = log(λ)+(ν−1) log(yt)−ναt−ϕt(αt)−0.5 log(2πσ2)−0.5σ−2u2
t (αt, αt+1).

The log-density ψt(αt, αt+1) is the sum of an exponential function and a quadratic

function. Its derivatives with respect to αt and αt+1 at order respectively p and q are
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easily computed and are given by :

ψp,qt (αt, αt+1) =



− 1

σ2
ut p = 0, q = 1,

− 1

σ2
p = 0, q = 2,

− ν + δϕt(αt) +
φ− ρ
σ2

ut(αt, αt+1) p = 1, q = 0,

φ− ρ
σ2

p = 1, q = 1,

− (−δ)pϕt(αt)−
(φ− ρ)2

σ2
1{p=2} p ≥ 2, q = 0,

0 otherwise.

(II.27)

For t = 1, we have

ψ0(α1) = −0.5 log

(
2π

σ2

1− φ2

)
− 0.5

1− φ2

σ2
(α1 − ᾱ)2,

ψ1
0(α1) = −1− φ2

σ2
(α1 − ᾱ), ψ2

0(α1) = −1− φ2

σ2
, ψp0(α1) = 0, p ≥ 3.

For t = n, we have

ψn(αn) = log(λ) + (ν − 1) log(yn)− ναn − ϕn(αn),

and

ψ1
n(αn) = −ν + δϕn(αn), ψpn(αn) = −(−δ)pϕn(αn), p ≥ 2.



Annexe III

Appendix to Chapter 3

III.1 Reputation Appendix

The FOCs’ proposal et supports a pooling equilibrium if

(1) Πt(et, ω; θ) ≥ Π̃t = max
e

Πt(e, ω; β = 0)

(2) Πu(et, ω; θ) ≥ Π̂u =Πu(êu, ω; β = 0)

Let et = e?t = arg maxe Πt(e, ω; θ). Given that Πt(e, ω; θ) ≥ Πt(e, ω; 0) for all

e ∈ [0, 1], then e?t satisfies the first constraint. For the second constraint, we have :

Πu(e?t, ω; θ) =
1− ω

6b(1− θ)

[
(1 + ω + ω2)− 6bau(1− πt)2

πt

]
.

Using the fact that :

(πu)2 = 1− 1 + ω + ω2

6bau

we have :

Πu(e?t, ω; θ) =
(1− ω)au

(1− θ)

[
1− (πu)2 − (1− πt)2

πt

]
=

(1− ω)au
(1− θ)

[
1− (πu)2 − (1− πt)2

πt

]
.

(III.1)

Recall that from (3.9) :

Π̂u = Π(êu, ω; β = 0) = 2(1− ω)au(1− πu).

So, we have :

Πu(e?t, ω; θ)− Π̂u =
(1− ω)au
(1− θ)πt

[
1− (πu)2 − (1− πt)2 − 2(1− θ)πt(1− πu)

]
=

(1− ω)au
(1− θ)πt

[
2θπt(1− πu)− (πu − πt)2

]
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Let ∆(ω; θ, au, at, b) = 2θπt(1− πu)− (πu − πt)2. We have

Πu(e?t, ω; θ)− Π̂u ≥ 0⇔ ∆(ω; θ, au, at, b) ≥ 0

As a function of ω, ∆(ω; θ, au, at, b) is continuous on [0, 1]. So it has a minimal value on

[0, 1]. The function ∆(ω; θ, au, at, b) is also differentiable on (0, 1). Let us assume that

the minimum, ω?(θ, au, at, b) ∈ (0, 1) and let ∆?(θ, au, at, b) denote the minimal value

∆?(θ, au, at, b) = ∆(ω?(θ, au, at, b); θ, au, at, b).

Then, by the envelope theorem, we have :

∂∆?(θ, au, at, b)

∂θ
= 2π?t(1− π?u) ≥ 0

The minimal value is increasing in θ. If the minimum value is attained on the bounda-

ries, {0, 1}, ∆?(θ, au, at, b) is still an increasing function of θ. However, we have for

(au, at, b) ∈ Λ, ∆?(1, au, at, b) > 0 and ∆?(0, au, at, b) < 0. So, there exists θ ∈ (0, 1)

such that ∆?(θ, au, at, b) = 0 and for all θ ≥ θ we have :

∆(θ, au, at, b) ≥ ∆?(θ, au, at, b) ≥ ∆?(θ, au, at, b) = 0.
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