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Résumé
En 2000, les structures à hautes résolutions des deux sous-unités ribosomiques ont 

finalement été mises à la disposition du public. L'année suivante, la structure aux rayons X de

l'ensemble du ribosome bactérien a été publiée. Ces grandes réalisations ont ouvert une nouvelle 

ère dans l'étude des mécanismes de la synthèse des protéines. Dès lors, il est devenu possible de 

relier différents aspects de la fonction du ribosome à des éléments particuliers de sa structure 

tertiaire. L'établissement de la relation structure-fonction peut toutefois être problématique en 

raison de l'immense complexité de la structure du ribosome. En d'autres termes, pour que les 

données cristallographiques sur la structure tertiaire du ribosome soient vraiment utiles à la 

compréhension du fonctionnement du ribosome, ces données devraient elles-mêmes faire l'objet 

d'une analyse approfondie. Le travail, présenté ici, peut être vu comme une tentative de ce genre.

En appliquant l’analyse systématique des structure cristallographiques du ribosome disponibles,

nous avons essayé de résoudre deux problèmes fondamentaux de la biologie ribosomale

concernant (1) la nature des réarrangements du ribosome qui ont lieu à différentes étapes de son

cycle de fonctionnement et (2) la possibilité de reconstitution de l'évolution du ribosome du

monde-à-ARN jusqu’à nos jours.

Dans le premier projet, nous avons systématiquement comparé les structures du ribosome

disponibles et de sa sous-unité afin d'identifier les domaines rigides, qui ont toujours la même

conformation, et les régions flexibles dont la conformation peut varier d'une structure de 

ribosome à une autre. Il y a deux types de réarrangements structuraux connus dont nous voulions 

comprendre les mécanismes: le « ratchet-like movement » et la «fermeture de domaines ». Le

premier a lieu au cours de la translocation du ribosome et est plus ou moins perçu comme une 

rotation d'une sous-unité par rapport à l'autre. Le deuxième se produit dans la petite sous-unité et 

est associé à la reconnaissance codon-anticodon au site A.

La comparaison des conformations ribosomales disponibles a révélé les mécanismes 

spécifiques des deux réarrangements. Bien que la sélection de l'aminoacyl-ARNt appropriée au

site A et la translocation du ribosome n'ont jamais été considérés comme ayant quelque chose en 

commun, nous démontrons ici que les réarrangements de la structure des ribosomes associés au 

premier processus répète les réarrangements associés au deuxième mais dans l’ordre inverse. En 

d'autres termes, pendant le cycle d'élongation, la fermeture de domaine et le « ratchet » peuvent 
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être considérés comme un mouvement de va-et-vient, qui renvoie finalement le ribosome à sa

conformation initiale.

Dans le second projet, nous avons fait une tentative de reconstitution de l'évolution de 

l'ARNr 23S, du monde-à-ARN jusqu`à nos jours. Ici nous nous sommes basés sur la supposition

que l'évolution de cette molécule a procédé par des insertions aléatoires des régions relativement

courtes dans différentes parties de la chaîne poly-nucléotidique. Pour cela, nous avons élaboré 

des critères de l'intégrité de la structure ribosomale et présumé que lors de l'évolution, la 

structure du ribosome s’est toujours adaptée à ces standards. Nous avons examiné l'interaction de 

type A-mineur, un arrangement fréquent dans la structure de l’ARN ribosomique, constitué d'un 

empilement d’adénosines non-appariées, attachées à une double hélice. Nous avons supposé que

dans toutes les interactions A-mineurs existantes dans le ribosome, la double hélice est apparue

avant ou au moins simultanément avec la pile d’adénosines correspondantes. L'application 

systématique de ce principe à la structure tertiaire de l’ARN 23S a permis d'élucider de manière

progressive l'ordre dans lequel les parties différentes de l’ARN 23S ont rejoint la structure.

Pris ensemble, les deux projets démontrent l'efficacité de l'analyse systématique in-silico

de la structure tertiaire du ribosome et ouvrent la voie à de futures découvertes.

Mots clés: évolution, la structure du ribosome tertiaire, l'ARN ribosomal, le mouvement de 

cliquet, la fermeture de la petite sous-unité
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SUMMARY
In the year 2000, the first high-resolution structures of the individual ribosomal subunits 

became available to the public. The following year, the X-ray structure of the complete bacterial 

ribosome was published. These major achievements opened a new era in studying the 

mechanisms of protein synthesis. From then on, it became possible to attribute different aspects 

of the ribosome function to particular elements of its tertiary structure. However, establishing the 

structure-function relationships is problematic due to the immense complexity of the ribosome 

structure. In other words, in order to make the crystallographic data on the ribosome tertiary 

structure really useful for understanding of how the ribosome functions, it must be thoroughly

analyzed.  Here, based on systematic analysis of the available X-ray conformations of the 

ribosome we have tried to resolve two fundamental problems of the ribosome biology:

concerning (1) the nature of rearrangements in the ribosome that take place at different steps of 

its functional cycle, and (2) the reconstruction of the ribosome evolution from the RNA world to 

present time.

In the first project, we systematically compared the available structures of the ribosome 

and its subunits to identify rigid domains, which always have the same conformation, and 

flexible regions, where the conformation can vary from one ribosome structure to another. There 

were two known types of structural rearrangements whose mechanisms we wanted to 

understand: the ratchet-like motion and the so-called domain closure. The ratchet-like motion

takes place during the ribosomal translocation and is roughly seen as a rotation of one subunit 

with respect to the other. The domain closure occurs in the small subunit and is associated with 

the cognate codon-anticodon recognition in the A-site.

Comparison of the available ribosome conformations revealed the detailed mechanisms 

of both rearrangements. Although the selection of the cognate amino-acyl-tRNA in the A-site 

and of the ribosomal translocation have never been thought to have anything in common, we 

demonstrate that the rearrangements in the ribosome structure associated with the first process 

repeat in reverse order the rearrangements associated with the second process. In other words, 

during the ribosome elongation cycle, the domain closure and the ratchet-like motion can be seen 

as a back-and-forth movement, which eventually returns the ribosome to the initial conformation.
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In the second project, we attempted to reconstruct the evolution of the 23S rRNA from 

the RNA world to present time based on the presumption that the evolutionary expansion of this 

molecule proceeded though random insertions of relatively short regions into different regions of 

the polynucleotide chain. We developed criteria for integrity of the ribosome structure and 

presumed that during the evolutionary expansion, the ribosome structure always matched to 

these standards. For this, we specifically considered the A-minor interaction, a frequent 

arrangement in the rRNA structure consisting of a stack of unpaired adenosines tightly attached 

to a double helix. We presumed that in all A-minor interactions present in the ribosome, the 

double helix emerged before or at least simultaneously with the corresponding adenosine stack. 

The systematic application of this principle to the known tertiary structure of the 23S rRNA 

allowed us to elucidate in a step-vise manner the order in which different part of the modern 23S 

rRNA joined the structure. 

Taken together, the two projects demonstrate the effectiveness of the systematic in-silico

analysis of the ribosome tertiary structure and pave the way for future discoveries.  

Key words: evolution, ribosome tertiary structure, ribosomal RNA, ratchet-like motion, small 

subunit domain closure
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The life on Earth is based on the protein synthesis. Proteins catalyze practically all 

chemical reactions in the cell. They play key roles in cellular metabolism and perform numerous

structural and regulatory functions. Proteins are ubiquitous: a human cell can contain up to 

10,000 different types of proteins, some of which are present in billions of copies (Yonath-2010). 

To fulfill the cellular need for proteins, they must be continuously synthesized by the ribosome, a

universal cellular machine existing in all organisms (Spirin-1999) (Figure 1). It is due to the 

ribosome that life on Earth in its present form has become possible.

In mid-50s, when the studies of the mechanisms of protein synthesis began, the ribosome

was nothing more than a “spot on the gel”. Our understanding of what the ribosome looks like 

and how it functions was accumulating rather slowly. The breakthrough in the study of the 

ribosome structure and function was made due to the progress in the ribosome crystallisation, 

which eventually resulted in the atomic level of elucidation of the ribosome tertiary structure.

The available crystallographic data opened a new era in the analysis of the mechanism of protein 

synthesis and in the understanding of the nature of life on our planet.

Below, we describe how the concept of the ribosome as the universal factory of proteins 

gradually evolved up to present days. We will see how the scientific achievements in this area

lead to the research presented in this thesis.

Microsomes, RNA and the cell activity in protein synthesis

Since late 1930-s, a number of studies demonstrated that protein synthesis is somehow 

linked to the nucleic acid content of the cell (Caspersson-1939, Brachet-1941, Jeener-1941, 

Jeener-1942, Chantrenne-1943). In 1944, McCartney and colleagues showed that DNA was the 

substance of inheritance (Avery-1944) and Beadle published his “one gene – one enzyme” 

hypothesis (Beadle-1945). The increased content of cytoplasmic RNA in rapidly growing cells 

pointed to a link between synthesis of cellular RNA and protein synthesis (Brachet-1947,

Caspersson-1947, Ehrich-1949).

At the same time, Albert Claude observed small ribonucleic particles (Claude-1941), which he 

named “microsomes” (Claude-1943). These particles, which are now known as ribosomes, were 

originally found in tissues with high enzymatic activity (for review, see Crick-1958, Zamecnik-
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Figure 1.

The tertiary structure of modern bacterial ribosome (ribbon representation of a crystal structure by J.H.Cate (see 

Zhang-2009)

The ribosomal subunits: SSU - on the left (shown in blue), LSU - on the right. The rRNA of SSU is colored light-

blue; that of LSU is yellow. The r-proteins of SSU are dark-blue and those of LSU are red. The pdb access codes for 

the two subunits are: 3i1S (SSU) and 3i1T (LSU))
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1969). Numerous experiments consisting in injection of radioactively-labeled amino acids into

such tissues demonstrated a very high rate of amino acids incorporation into new proteins in the 

presence of microsomes (Borsook-1950, Hultin-1950, Siekevitz-1952, Allfrey-1953). These

results established a strong link between microsomes and protein synthesis. However, it 

remained unclear whether the microsomes performed all steps of protein synthesis, or they were 

involved only in some intermediate steps of the process (see for example Alfrey-1953). In 1951, 

Philip Siekevitz noticed that the incorporation of amino acids occurred in the presence of ATP

(Siekevitz-1951, Siekevitz-1952). He correlated the ATP consumption with peptide-bond

formation.

In 1954, Keller, Zamecnick and Loftfield demonstrated that incorporation of amino acids 

into proteins occurred almost entirely in microsomes (Keller-1954, Littlefield-1955). The

following year, George Palade published photographs of the microsome made with use of 

electron microscopy. In these photographs, the microsome consisted of two asymmetric 

components of about 200 Å in diameter (Palade-1955).

DNA, RNA template, transfer RNA and the adaptor hypothesis

The elucidation of the special role of microsomes coincided with the discovery of the 

double helical conformation of DNA by Watson and Crick. In 1953, these researchers published 

a model of the double-helical structure of DNA (Watson-1953a) and a model of its replication

(Watson-1953b). This discovery elucidated the mechanism for the storage and copying of genetic 

information. 

Shortly after these two publications, Watson and Rich suggested that DNA is involved in 

regulation of protein synthesis through formation of RNA intermediates (Rich-1954). Later, this 

hypothesis was presented in a form of The Central Dogma of Molecular Biology (Crick-1958,

Crick-1970) and was further developed by Lockingen and De Busk (Lockingen-1955). 

According to the latter researchers, the “template RNA” was synthetized as a complement to one 

of the two strands of the DNA double helix and was later used as a template for the synthesis of 

the corresponding protein.

Strictly speaking, the idea that RNA could function as the template in protein synthesis 

had been suggested a few years earlier (Caldwell-1950, Dounce-1952). In these early works, the 

formation of the polypeptide chain was proposed to take place directly on the template RNA. 
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Furthermore, Dounce believed (Dounce-1952) that the selection of a particular amino acid 

depended on three adjacent nucleotides of the template, which inferred the existence of the triplet 

genetic code (Gamow-1954).

By the second half of 1950s, it had still been unclear which cellular RNAs function as 

genetic templates and how exactly the genetic information is encoded. It had also been unclear 

how the amino acids are delivered to the site of protein synthesis and which type of energy 

propels this process. 

Between 1956 and 1958, a series of brilliant discoveries was made by the group of Paul 

Zamechnik. The researchers identified a class of enzymes catalyzing the formation of the 

aminoacyl-adenylate in animal cells (Hoagland-1955, Hoagland-1956). These enzymes,

presently known as aminoacyl-tRNA synthetases (aaRS), were also found in yeast (Berg-1956), 

in bacteria (De Moss-1956, Nismann-1957) and in plants (Webster-1957). Each amino acid 

appeared to have its own synthetase (Beljanski-1958, Lipmann-1958, Hoagland-1958b).

In 1957, Zamechnik and colleagues discovered a special class of so-called soluble RNA

that in the presence of GTP transferred amino-acids to the microsome (Hoagland-1957). Two 

years later, the soluble RNAs were given a more appropriate name, the “transfer RNAs” (Smith-

1959) or tRNAs.

In 1958, Zamechnik and co-workers found that each amino acid was carried by a

particular tRNA (Hoagland-1958). Zamechnik believed that tRNAs could also participate in the 

incorporation of the cognate amino acids into the synthesized polypeptide (Hoagland-1958).  

In 1958, at the XII Symposia of the Society for Experimental Biology in London, Crick 

presented the so-called “adapter hypothesis” (Crick-1958). He suggested that the synthesis of a 

peptide was mediated by a special RNA-adaptor. Crick’s adaptor was a three-nucleotide 

molecule with the nucleotide sequence corresponding to a particular amino acid (Crick-1958). 

Such a molecule, with the attached amino acid, interacted with the complementary three-

nucleotide segment in the template, thus positioning the amino acid at the synthesized protein 

sequence (Crick-1957, Crick-1958). The proposed three-base-pair interaction between the 

template and the adaptor referred to the model suggested by George Gamow in 1954 (Gamow-

1954), in which each triplet of the template coded for a particular amino acid. 

The adaptor hypothesis was a very important step in understanding of the mechanism of 

protein synthesis. On the other hand, it was later found to be not absolutely correct. Crick 
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thought that the adaptor was formed through splitting of the corresponding tRNA (Crick-1958,

Hoagland-1959). In other words, according to the Crick’s hypothesis, the role of tRNA was 

reduced to serving as the precursor for the real adaptor (Crick-1958, Hoagland-1959).

The discovery of the messenger-RNA and the recognition of the adaptor role of tRNA 

In the 1950s, the role of the template in the protein synthesis was thought to be played by 

the microsomal RNA (Brachet-1955, Loftfield-1957). Correspondingly, a given microsome in 

the cell was responsible for the synthesis of a particular protein (Brachet-1955, Loftfield-1957, 

Crick-1958, Hoagland-1959). The chemical stability of the microsomal RNA was believed to 

guarantee the synthesis of the protein whenever it was required for the cell.

However, this hypothesis appeared to be wrong. All microsomal RNAs in a given cell

were alike, which was contradiction to the known diversity of the genetic pool (Belozersky-

1958). The latter fact was inconsistent with the proposed role of the microsomal RNA as a 

genetic template. Besides, the microsomes isolated from different tissues had almost the same 

size (Hall -1959). It was also demonstrated that some damages in DNA affected the synthesis of

proteins without affecting the microsomal RNAs. Such a situation would have been impossible if 

microsomal RNAs represented real templates (Pardee-1958, Riley-1960). 

In 1958, Arthur Pardee (Pardee-1958) questioned the role of the stable microsomal RNA as a

protein template. According to Pardee, one template coded for only one copy of the protein 

(Pardee-1954, Pardee-1958). Therefore, the observed stability of the microsomal RNA was not 

an advantage for its potential role as a template. Instead, the real template had a short lifespan 

(Pardee-1958). A similar idea was suggested by François Jacob and Jacques Monod (Jacob-

1961), who believed that the real role of the ribosomal RNA* was structural, while the genetic 

information was supplied by a special “messenger” RNA (mRNA) of a different type. The article 

of Jacob and Monod was still in press, when two groups of researchers reported the experimental 

evidence of such a messenger (Brenner-1961, Gros-1961). 

At about the same time, the adaptor hypothesis of Crick was proven. However, the adaptor 

function was shown to belong to the whole intact tRNA, which was thus recognized as the true

adaptor. First, it was demonstrated that the tRNA was never split in smaller pieces. Then, it was

shown that after the amino acid incorporation, tRNAs quits the ribosome unaffected (Hoagland-
-------------------------------------------------------------------------------------------------------------------
[*The term ribosome was proposed by Richard B Roberts and replaced the term microsome (Roberts-1958, p.viii)]
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1960, Zamecnik-1960).

Later, the adaptor hypothesis got a direct confirmation. A cysteine residue attached to its 

cognate tRNA was converted to alanine and then successfully incorporated into the peptide chain

in response to the poly-UG messenger (Chapeville-1962).

Genetic code, wobble hypothesis and cloverleaf

The concept of messenger RNA led to a series of experiments with homo-polynucleotides 

and more complex synthetic mRNAs (Littauer-1957) that were used for studying the specificity 

of different genetic triplets. In the proposed in vitro experiments, the ribosome was mixed with a 

particular polynucleotide followed by determination of the amino acid sequence of the 

synthesized peptide (Lamborg-1960).

The first successful experiment was made by Nirenberg and Matthey (Nirenberg-1961). 

In this case, the mRNA represented a poly-uridine chain (poly-U) and promoted synthesis of

poly-phenylalanine. A similar experiment with the poly-A mRNA provided poly-lysine 

(Lengyel-1961). In 1963, important progress was achieved in deciphering the genetic code 

(Ochoa-1963, Nirenberg-1963). However, the real breakthrough happened when Khorana and 

colleagues found a way to synthesize a messenger RNA having a given nucleotide sequence 

(Falaschi-1963, Nishimura-1964). By the mid-60s, the whole table of the genetic code had been 

decrypted (Nirenberg-1965, Khorana-1966). As expected (Gamow-1954, Crick-1957), the 

genetic code was highly redundant. 

In 1966, Francis Crick published the so-called wobble hypothesis (Crick-1966) in an 

attempt to rationalize the redundancy of the genetic code. According to Crick, in the first two 

positions of the triplet, only the standard Watson-Crick base pairs can be formed, while for the 

third base pair some wobble in base pairing is allowed (Crick-1966). At about the same time, the 

complete nucleotide sequence of the tRNAAla was determined (Holley-1965). The authors 

suggested the secondary structure of the tRNA molecule, the famous “cloverleaf”, and located

the position of the codon in the tRNA structure.

Studies of ribosome morphology in 1960s

From the early 1960s, the ribosome had become an object of extensive analysis

(Tissieres-1960). Previously, it had been demonstrated that the bacterial and eukaryotic 
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ribosomes, although being of different sizes, have a lot of similarities (Tissieres-1958). In 

particular, each of the two types of ribosomes was composed of two asymmetric components 

characterized by the sedimentation constants 50S and 30S in bacteria, and 60S and 40S in 

eukaryotes; RNA occupied two thirds of the ribosome volume and the rest was taken up by

proteins; both the activity and the structure of the ribosome were strongly dependent on the 

presence of magnesium. 

In 1960, Huxley and Zubay published electron microscopy images of the asymmetric 

components of the ribosome (Huxley-1960) naming them the large and small subunits (LSU and 

SSU, respectively). Each subunit was shown to contain one monolithic RNA of a high molecular 

weight: in the bacterial ribosome, the SSU contained 16S rRNA, while the LSU contained 23S 

RNA (Littauer-1959, Littauer-1961, Spirin-1961), the eukaryotic analogs of these RNA chains 

were 18S and 28S RNA, respectively (Hall-1959, Littauer-1961, Maeda-1961). Soon after, it 

became clear that LSU contained more than one RNA molecule: a small 5S RNA was found in 

both prokaryotes (Rosset-1963) and eukaryotes (Marcot-Queiroz-1965, Comb-1965, Galibert-

1965). In contrast, the number of the detected ribosomal proteins in the two subunits exceeded 

30 (Spitnik-Elson-1963, Spitnik-Elson-1964).

Ribosome function

The activity of the ribosome in protein synthesis was also extensively analyzed. In 1962, 

Warner, Rich and Hall published the electron-microscope image in which several ribosomes 

were attached to the same mRNA (Warner-1962). Such a cluster of ribosomes was named the

“polysome”. This study explained the mechanism of simultaneous production of several copies 

of the same protein (Warner-1962, Wettstein-1963). 

In 1963, Okamoto and Takanami showed that the mRNA binding site was localized on

the SSU (Okamoto-1963, Takanami-1963). Conversely, the binding site of the nascent peptide 

was localized on LSU (Takanami-1962, Gilbert-1963). The nascent peptide was covalently 

linked to the tRNA that delivered the latest amino acid (Nathans-1961, Takanami-1962, Gilbert-

1963). It was also shown that a molecule of puromycin (Yarmolinsky-1959), when added to the 

ribosome, was able to accept the polypeptide chain from the peptidyl tRNA (Allen-1962). It 

became clear that during protein synthesis, the ribosome can simultaneously contain two tRNAs. 

Following this study, Gilbert and colleagues postulated (Cannon-1963) the existence of a “center 
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of peptide bond formation” in the LSU. The hypothetical center contained two sites for tRNA 

binding. The two sites were later denoted as: the “P-site” for the peptidyl-tRNA (henceforth, p-

tRNA) and the “A-site” for the aminoacyl-tRNA (henceforth, aa-tRNA) (Watson-1964). It was 

suggested the growing peptide was transferred from the p-tRNA to the aa-tRNA. The transfer 

was accompanied by the addition of the new amino acid to the C-terminus of the nascent protein

(Cannon-1963).

The hypothesis of Gilbert suggested that after the peptide transfer, the p-tRNA moves 

from the A- to P-site, thus emptying the A-site for the next aa-tRNA. This led Watson to propose 

the idea of the mRNA translocation after each peptide transfer, making the next codon ready for 

decoding (Watson-1963) (Figure 2). The p-tRNA was supposed to move together with the 

mRNA (Watson-1964).

The concept of two binding sites obtained wide experimental support (Arlinghaus-1964, 

Traut-1964, Warner-1964, Wettstein-1965, Suzuka-1965, Bretscher-1966). The suggested center 

of the peptide bond formation (peptidyl-transfer center, or PTC) was localized on the 50S 

subunit (Monro-1967b, Pestka-1967).

Initiation, elongation, and termination in protein synthesis

In 1967, Ghosh and Khorana first described the initiation of protein synthesis in bacteria 

(Ghosh-1967). According to their data, a special initiator formyl-methionyl tRNA (tRNAfMet)

(Marcker-1964, Adams-1966, Clark-1966, Webster-1966) together with mRNA and the SSU

formed the initiation complex (Nomura-1967a). Then, the complex joined the LSU (Nomura-

1967b), providing the active 70S ribosome ready to accept the first aa-tRNA (Hawtrey-1964).

Initiation in eukaryotes was found to follow the same general path (Bishop-1966, Brown-

1970), although the role of tRNAfMet was not confirmed (Caskey-1967, Wilson-1970, Heywood-

1970). Instead, the non-formylated tRNAMet was suggested as the initiator tRNA (Housman-

1970, Jackson-1970, Wigle-1970).

At the same time, the tRNAfMet appeared to be the universal initiator tRNA in 

mitochondria and in chloroplasts (Smith-1968, Burkard-1969), which is logical given that these 

organelles are evolutionary descendants of bacteria (Cohen-1970).   

The elongation of the peptide chain was expected to proceed until a signal in the mRNA 

for the protein completion is reached. This signal would induce the release of the nascent peptide 
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Figure 2. Models of the ribosome translocation

(Upper row) Model of Gilbert-Watson: (A) the aa-tRNA in the A-site, the p-tRNA in the P-site; (B) 

transpeptidation: the p-tRNA in the A-site, the deacylated tRNA in the P-site; (C) translocation: the deacylated 

tRNA quits the ribosome while the p-tRNA (together with mRNA) shifts to the P-site, thus liberating the A-site for 

the next aa-tRNA.

(Middle row) Model of Bretscher: (D) the aa-tRNA is in the A/A (LSU/SSU) position, the p-tRNA is in the P/P 

position; (E) transpeptidation: the p-tRNA is in the A/A position, the deacylated tRNA is in the P/P position; (F) the 

1st step of the translocation: the deacylated tRNA quits the ribosome, while SSU with the attached p-tRNA moves 

relative to LSU resulting in the P/A position for the p-tRNA; (G) the 2nd step of translocation: LSU with the attached 

p-tRNA (together with mRNA) moves relative to LSU, resulting in the P/P position of the p-tRNA and the empty A-

site.

(Lower row) Model of Nierhaus-Noller: (H) the aa-tRNA recognition: the aa-tRNA (attached to the EF-Tu) is in 

the A/T position, the p-tRNA is in the P/P position, the deacylated tRNA is in the E/E position; (I) the aa-tRNA is in 

the A/A position, the p-tRNA is in the P/P position, the deacylated tRNA quits the ribosome; (J) transpeptidation 

and spontaneous translocation in LSU: the p-tRNA is in the P/A position, the deacylated tRNA is in the E/P 

position; (K) translocation in SSU: the p-tRNA is in the P/P position, the deacylated tRNA is in the E/E position, the 

A-site is empty.
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to the cytosol (Ganoza-1966, Tissieres-1960). In the mid-1960s, three stop codons were 

identified: UAG (Sarabhai-1964, Stretton-1965), UAA (Brenner-1965) and UGA (Brenner-

1967). 

Because the initiation of a new round of translation requires that the ribosomal subunits 

be isolated, it was deduced that the translational termination is followed by the dissociation of 

the ribosomal subunits (Kaempfer-1968, Colombo-1968, Subramanian-1968, Kaempfer-1969).

At the same time, evidence suggested that each step of protein synthesis is assisted by a 

particular protein factor (Lucas-Lenard-1971). 

Translation factors 

Elongation factors 

Already in 1958 it was initially observed that the transfer of amino acid to the ribosome 

was accompanied by the GTP consumption (Hoagland-1958c). The subsequent experiments on 

eukaryotic cells showed that this GTP consumption was linked to the enzymes involved in the 

elongation (Grossi-1959, Zamecnik-1960, Bishop-1961, Fessenden-1961, Hardesty-1963). The 

two identified enzymes were called “transfer factors” TF-1 and TF-2 (Arlinghaus-1963,

Arlinghaus-1964). Their prokaryotic analogs were extensively studied in the mid-60s 

(Nakamoto-1963, Allende-1964, Conway-1964, Nishizuka-1966A). The bacterial analog of TF-1

was named T, thus underlining its role in the transfer of tRNA; the analog of TF-2 was named G 

to underline its GTPase activity (Nishizuka-1966B). The T-factor was then separated into two 

fractions: Tu (thermally unstable) and Ts (thermally stable) (Lucas-Lenard-1966). The factors 

demonstrated high affinity for each other (Miller-1969, Miller-1970). The Tu-factor formed a 

ternary complex with GTP and aa-tRNA (Gordon-1967, Ravel-1967, Gordon-1968, Cooper-

1969). This complex was found to mediate the aa-tRNA association with the ribosome (Ravel-

1968, Ravel 1968b, Gordon-1969, Ravel-1969, Lucas-Lenard-1969). The ternary complex was 

never formed with the initiator tRNAfMet (Ono-1968).

The G-factor was found to promote the translocation of the p-tRNA (Nishizuka-1966a,

Tanaka-1968). However, the role of the G-factor was erroneously linked to the formation of the 

peptide bond (Haenni-1968). 

Bacterial and eukaryotic elongation factors showed notable similarity. Like in 

prokaryotes, the eukaryotic aa-tRNA reached the ribosome within the ternary complex (Ibuki-
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1966, Rao-1967, Jerez-1969). Besides, the tertiary complex in which the eukaryotic factor TF-

1was replaced by its bacterial analog was able to bring the aa-tRNA to the ribosome (Krisko-

1969).

Peptidyl-transferase

For many years, the peptide bond formation was attributed to the activity of an enzyme

(Nakamoto-1963, Nishizuka-1966b), presumably to the G-factor (Haenni-1968). However, in 

mid-1960s it was shown that the reaction of transpeptidation could be catalyzed by the LSU 

alone. It did not require elongation factors, the SSU or mRNA (Zamir-1966, Gottesman-1967,

Monro-1967, Monro-1967b, Monro-1968). Many researchers suggested that the peptidyl-

transferase activity was an intrinsic property of the LSU (Skogerson-1968, Maden-1968, Haenni-

1968, Staehelin-1969).

Initiation factors 

In the second half of 1960s, the initiation of translation was also found to be factor-

dependent (Revel-1966, Stanley-1966, Miller-1968). In bacteria, three initiation factors, IF1, IF2 

and IF3, were identified (Revel-1968, Wahba-1969). It was proposed that IF2 stimulated the 

association of mRNA to SSU (Revel-1968) and, together with IF1, mediated the attachment of 

tRNAfMet to complex SSU-mRNA (Salas-1967, Hershey-1969). Factor IF3 was suggested to 

stimulate the formation of the initiation complex (Wahba-1969, Berisd-1971). The initiation was

accompanied by GTP hydrolysis (Leder-1967, Ohta-1967, Allende-1967): the IF2 was a GTPase 

(Kolakofsky-1968, Chae-1969, Lelong-1970).

Translation termination factors

Until the mid-1960s, the mechanism of termination of translation remained unclear

(Takanami-1965, Ganoza-1966, Lengyel-1966, Fox-1968, Bretscher-1968b). Some researchers 

suggested the existence of a special tRNA that recognized the stop-codon and released the 

nascent peptide from the p-tRNA (Brenner-1965). On the other hand, the termination could be 

also mediated by an enzyme (Tissieres-1960).

In 1967, Mario Capecchi isolated a two-component fraction that was able to recognize

the stop codons (Capecchi-1967). The R1-component had affinity to codons UAA and UAG, 
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while the R2-component recognized codons UAA and UGA (Scolnick-1968). Both factors had a

common binding site on the ribosome (Scolnick-1969) and their activity required the presence of 

both ribosomal subunits (Weisblum-1968). The activity consisted in the transfer of the nascent 

peptide from the p-tRNA to a water molecule (Tompkins-1970). In addition to R1 and R2, a

GTP-dependent factor S was found (Milman-1969, Goldstein-1970b), which was suggested to 

stimulate the activity of the R-factors (Milman-1969).

At the end of 1960s, a termination factor was also discovered in eukaryotes (Goldstein-

1970). This factor demonstrated an enzymatic activity similar to that of the prokaryotic R-

factors. At the same time, it was a GTPase, like the S-factor.

Ribosome Recycling Factor

It was already known that the initiation of protein synthesis requires the existence of the 

free ribosomal subunits. Correspondingly, the forced dissociation of the ribosome to the isolated 

subunits at the end of protein synthesis was originally attributed to one of the initiation factors

(Subramanian-1968, Miall-1970, Subramanian-1970).

In early 1970s, two laboratories independently discovered an enzyme that was suggested 

to liberate the ribosome from mRNA (Hirashima-1972, Subramanian-1973). The new factor was 

named the ribosome release factor (RRF). The following separation of the subunits was 

presumably accomplished by IF3 (Hirashima-1973). 

The RRF was found to act together with EF-G and GTP (Hirashima-1973, Ogawa-1975).

Later, Ehrenberg and colleagues demonstrated that RRF, together with EF-G and GTP, was

responsible for the subunit dissociation, while IF3 stimulated the removal of the deacylated 

tRNA from the ribosome (Karimi-1999).

In 1994, RRF was renamed to the ribosomal recycling factor (Janosi-1994), to 

distinguish it from the known release factors that liberate the nascent peptide.

 

Peptidyl-tRNA hydrolase

Once in a while it happens that the p-tRNA quits the ribosome because of a premature 

abortion of translation. In the late 1960s, several laboratories independently discovered a rescue 

enzyme, which released such a p-tRNA to the cytosol (Cuzin-1967, Kössel-1968, Menninger-

1976). The enzyme hydrolyses the bond between the p-tRNA and the nascent polypeptide chain 
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and is thus named the hydrolase (Kössel-1969). Contrary to the release factors (Capecchi-1967),

the hydrolase did not affect the p-tRNA bound to the ribosome (De Groot -1968, De Groot -

1969, Menninger-1970) and was inert to the initiator tRNAfMet (Kössel-1968, Schulman-1975).

The hydrolase activity was found to prevent contamination of the cytosol by the potentially 

abandoned p-tRNAs (Menninger-1978, Atherly-1978), whose accumulation is lethal to the cell 

(Menninger-1979).

“Non-enzymatic” translation 

In the late-1960s, it was demonstrated that translation can proceed in the absence of the 

elongation factors (Kuriki-1967, Pestka-1969, Gavrilova-1971). An aa-tRNA can bind to the

ribosomal A-site without assistance of the EF-Tu (Kuriki-1967, Sokolff-1972, Glukhova-1975).

The translocation, in turn, can occur without the EF-G (Gavrilova-1971b). Although the factor-

free translation was less efficient than in the presence of the elongation factors (Pestka-1969, 

Zamir-1971, Spirin-1973, Glukhova-1975), it demonstrated the central role of the ribosome in 

protein synthesis.

Also, in the early 1970-s, Spirin and co-workers found that the ribosomal protein S12

plays a role of an inhibitor of factor-free translocation (Gavrilova-1972, Gavrilova-1974,

Gavrilova-1974b, Glukhova-1975, Gavrilova-1976). Many years later, Rachel Green and co-

workers showed that S12 acts in collaboration with S11 and S13 (Southworth-2002, Cukras-

2003).

In the 1970s, “non-enzymatic” protein synthesis was extensively studied in different

laboratories (Pestka-1974, Cabañas-1980, Kemkhadze-1981, Bergemann-1983). Among other 

findings, it was shown that translocation can proceed even in the absence of mRNA (Belitsina-

1981, Belitsina-1982), being dependent exclusively on the ribosome and the tRNAs.

Early models of functional ribosome

At the end of the1960s, the mechanism of protein synthesis on the ribosome remained 

unclear. A few models of the functioning ribosome were suggested at that time (Bretscher-1968,

Spirin-1969, Hill-1969, Skoultchi-1969, Woese-1970). In the models proposed by Bretscher and 

Spirin, the translating ribosome constantly fluctuated between two conformational states 

(Bretscher-1968, Spirin-1969).
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Bretcher postulated that a reciprocal motion of the ribosomal subunits permitted the 

translocation of the p-tRNA (with mRNA). According to Bretcher, each subunit has its own A-

and P-sites (Figure 2). During the translocation, the tRNA moves from the A/A position (A site 

on both subunits) to the P/P position through a transient P/A position (Figure 2). In some sense,

Bretcher predicted that the tRNA translocation proceeds through formation of hybrid states,

although on the detailed level, the predicted states were different from those known nowadays

(see below).

In the Spirin’s model, the ribosome oscillated between the so-called “locked” and 

“unlocked” states (Spirin-1969). The unlocked state enables the aa-tRNA to enter the ribosomal 

A-site and to form the codon-anticodon interactions. It also allows the p-tRNA to be translocated

from the A- to P-site and the deacylated tRNA to quit the ribosome from the P-site. The locked 

state, on the other hand, guarantees that both the aa- and p-tRNAs are properly fixed in the A-

and P-sites, respectively, which would allow the reaction of transpeptidation.

In the 1970s, the ribosome motion between two conformational states was confirmed in 

several laboratories (Schreier-1971, Chuang-1971, Tritton-1978). In 2000, Frank and Agrawal

visualized the ribosome rearrangement by cryo-EM methods (Frank-2000).

Ribosomal morphology studies in 1970s

During the 1970s, important progress was achieved in the definition of the ribosomal

protein and RNA contents. The technology of isolation of individual proteins from the bacterial 

ribosome (hence, r-proteins) had already been developed in the previous decade (Nomura-1965,

Lerman-1966, Traut-1966, Gavrilova-1966). It allowed systematic analysis of the known 

ribosomal proteins (Traut-1969, Stöffler-1971, Kaltschmidt-1970a) and identification of new 

ones both in the prokaryotic (Kaltschmidt-1970b, Dzionara-1970) and eukaryotic (Collatz-1977,

Tsurugi-1978) ribosomes. The primary sequences of all known r-proteins were determined in the

E.coli ribosome (Brimacombe-1978). Several laboratories published the assembly maps of the 

bacterial ribosome (Kurland-1969, Nomura-1969, Mizushima-1970, Schaup-1970, Held-1974).

The rRNA was also extensively analyzed. By 1970, it had become evident that the 5S 

rRNA exists in all organisms (Attardi-1970) and its complete sequence was determined 

(Brownlee-1967, Forget-1967, Williamson-1969). Another small rRNA with sedimentation 
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coefficient 5.8S was also discovered in the LSU of eukaryotes (Pene-1968, Sy-1970, Udem-

1971, Payne-1971, Woledge -1974, Nazar-1975, Nazar-1975b, Nazar-1976).

By the end of 1970s, comparative analysis of rRNA primary sequences from different 

organisms (Brosius-1978, Carbon-1979, Brosius-1980, Schwarz-1980, Eperon-1980, Rubtsov-

1980) allowed modelling of the secondary structures of the rRNAs from bacteria (Woese-1980,

Noller-1981, Stiegler-1981), eukaryotes (Veldman-1981, Man'kin-1981, Michot-1982, Olsen-

1983, Hadjiolov-1984, Chan-1984), organelles (Branlant-1981, Köchel-1982) and the newly 

discovered archaea (Gupta-1983). The results showed a strong evolutionary conservation of

the rRNA secondary structure through all evolutionary domains (Zwieb-1981, Glotz-1981,

Cammarano-1982, Gutell-1985) (Figure 3).

Shine-Dalgarno and Kozak sequences

Prior to the mid-1970s, the mechanism for initial positioning of the initiator tRNA and 

the mRNA at the decoding region of SSU remained unclear (Thach-1966). In 1975, John Shine 

and Lynn Dalgarno found that each bacterial mRNA had a short purine segment located, on

average, 3-5 nucleotides upstream of the start codon (Shine-1974, Shine-1975). The matching 

pyrimidine sequence was found at the 3’-end of 16S rRNA (Shine-1974, Shine-1975). The 

interaction between the 3’-terminal sequence of 16S rRNA and the determined sequence in 

mRNA guaranteed the proper positioning of the tRNAfMet and mRNA before the beginning of 

the elongation of translation. The interacting regions in mRNA and in 16S tRNA were named

Shine-Dalgarno and “anti-Shine-Dalgarno” regions, respectively.

In eukaryotes, however, the mRNAs had no common segment close to the 5’-terminus 

(Firtel-1979, Montgomery -1980, Chin-1981, McKeown-1981). Nevertheless, in 1981, Marilyn 

Kozak found a particular nucleotide sequence pattern around the initiation codon (Kozak-1981,

Kozak-1981b). She found that the third nucleotide upstream of the initiator codon AUG was 

usually A, while the base following the AUG sequence in most cases was G. 

New Elongation Factor: EF- P

Another translational factor, EF-P, was discovered in the mid-1970s (Glick-1975, Glick-

1976). The EF-P was suggested to mediate the formation of the very first peptide bond (Glick-

1979, An-1980, Aoki-1991, Aoki-1997, Ganoza-2000). For a long time, it was believed that at the 
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Figure 3.

The secondary structures of 16S-type rRNAs from various species (red lines show common structural core)

(a) E. coli; (b) Halobacterium volcanii; (c) yeast, cytoplasmic ribosomes; and (d) mitochondria of plants (maize). 

(from Gutell -1985)
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beginning of translation, factor EF-P occupies the A-site of the LSU thus driving the initiator 

tRNA to the P-site (Aoki-2008). This opinion was based on the similarity between the shapes of 

the EF-P and tRNA (Hanawa-Suetsugu-2004). However, the recent crystallographic studies

made in the laboratory of T. Steitz showed that EF-P is positioned between the P- and E-sites

(Blaha-2009). Hence, the role of EF-P is suggested to stabilize the position of the initiator tRNA 

in the P-site before the formation of the first peptide bond (Blaha-2009).

Translational fidelity

In the early 1980s, the level of misincorporation of amino acids during translation was 

estimated as 5x10-4 (Thompson-1982b). The major causes of mistakes were related to the tRNA 

aminoacylation and the selection of the cognate aa-tRNA at the ribosomal A-site (Zaher-2009).

The misacylation of the tRNA was linked to the way of how the aaRS recognizes the cognate

tRNA. The mechanism of this recognition was first studied in the 1960s (Berg-1961, Kiselev-

1964, Jacobson-1964, Yarus-1967).  Originally, it was thought that aaRS discriminate the tRNA 

by the anticodon (Hayashi-1966). However, the following experiments showed that this is not 

always true (Schimmel-1979, Normanly-1986, Schimmel-1987, McClain-1988). 

In the late 1980s, the recognition elements were found in different parts of the tRNA 

molecule (De Duve-1988, Hou-1988, Moras-1993, Becker-1996). The recognition elements that 

unambiguously determines the identity of a particular tRNA was named the “second genetic 

code” (De Duve-1988). In general, the level of errors in translation associated with mis-

aminoacylation was shown not to exceed 10-4 (Loftfield-1972). 

The selection of the cognate aa-tRNAs at the A-site is related to the formation of the 

cognate codon-anticodon double helix (Lucas-Lenard-1971). For the cognate and near-cognate 

tRNAs, the energies of the codon-anticodon association must be different. This difference should 

provide the required level of accuracy in the admission of a new amino acid into the growing 

protein. However, kinetic studies made in the mid-1970s showed that the difference in the 

stability of the cognate and near-cognate codon-anticodon double helices was insufficient to

discriminate the cognate tRNA with the known level of fidelity (Ninio-1974, Ninio-1975,

Hopfield-1974). The two researches independently proposed the existence of an additional 

“proofreading” step during the aa-tRNA identification.

The proofreading step must be separated from the initial recognition of the aa-tRNA by 
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an irreversible step associated with GTP hydrolysis and departure of the Tu-factor from the 

ribosome (Thompson-1977, Thompson-1982). During the proofreading step, most non-cognate

aa-tRNAs that successfully pass the initial recognition step should be expelled from the ribosome

(Thompson-1981, Kurland-1984). In the first half of the 1980s, mutagenesis experiments 

demonstrated that a higher ribosome accuracy during the tRNA selection led to a lower rate of

protein synthesis (Thompson-1982b, Bohman-1984, Ruusala-1984). It was suggested that the 

cell, in principle, is able to maintain the balance between the speed and accuracy of translation

(Thompson-1986).

The “three binding sites” model

Before the 1980s, it was thought that the ribosome had only two tRNA binding sites, A 

and P (Watson-1963, Watson-1964). In such a “two-site” model, the deacylated tRNA was 

ejected to the cytosol directly from the P-site. In 1981, Knud Nierhaus suggested the existence of 

the third “exit” site (E-site), which could harbor the deacylated tRNA until the next elongation 

cycle (Rheinberger-1981). The “three-site model” was initially criticized (Schmitt-1982), but 

soon received experimental support from several laboratories (Grajevskaja-1982, Kirillov-1983,

Lill-1984, Parfenov-1985, Rodnina-1988). Since then, Nierhaus has actively promoted the three-

site model in a number of papers (Rheinberger-1983, Rheinberger-1986, Hausner-1988, Remme-

1989, Geigenmüller-1990) and the three tRNA-sites were visualized by both cryo-EM data 

(Agrawal-1996) and by X-ray crystallography (Yusupov 2001).

In an attempt to further develop the “three-site model” Nierhaus proposed the “three-site

allosteric hypothesis” (Rheinberger-1983, Rheinberger-1986b, Gnirke-1989,  Nierhaus-1990).

He suggested that the presence of the deacylated tRNA in the E-site reduces the affinity of the A-

site to the aa-tRNAs. On the other hand, the presence of the tRNA in the A-site pushes the

deacylated tRNA to the cytosol. Therefore, only two tRNAs were allowed to be associated with 

the ribosome at any moment. However, experiments in other laboratories did not confirm the 

exclusion principle of Nierhaus (Lill-1984, Rodnina-1988, Semenkov-1996 , Petropoulos-2012). 

In fact, the third, “exit” site for the deacylated tRNA was first hypothesised in 1965 by Wettstein 

and Noll (Wettstein-1965). However, the idea was not accepted by the scientific community: the 

presence of a deacylated tRNA on the ribosome was considered redundant (Cannon-1967).
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The hybrid states of tRNA on the ribosome

In 1989, Moazed and Noller suggested that the translocation of tRNAs in the ribosome 

proceeds in two steps (Moazed-1989) (Figure 2.). After the transpeptidation, the acceptor 

terminus of the p-tRNA spontaneously moves in the LSU from the A to P-site, while in the SSU, 

its anticodon arm remains attached to the A-site. Such movement results in formation of a hybrid 

A/P state for the p-tRNA. Simultaneously, the deacylated tRNA moves to the P/E hybrid state. 

Then the EF-G factor promotes the shift of both anticodons on the SSU, providing for the P/P 

and E/E tRNA states, respectively. Another hybrid state was described for the aa-tRNA when it 

is still attached to the Tu-factor (Moazed-1989b). This hybrid state was denoted as A/T, because

the anticodon half of such aa-tRNA occupies the A-site of the SSU, while its acceptor stem is

bound to the Tu-factor (Figure 2).

The ribozymes and the concept of RNA world

In the early 1980s, Cech and colleagues found that the pre-ribosomal intron of 

Tetrahymena was able to perform a series of self-splicing reactions (Kruger-1982). Soon after 

this, experiments in the Altman laboratory showed that the catalytic activity of the nucleoprotein 

RNase P was based on its RNA part rather than on the protein part (Guerrier-Takada-1983).

In 1984, Noller and co-workers found that the ribosomal RNA of the prokaryotic LSU 

was directly involved in the peptide bond formation (Barta-1984). The r-proteins, on the 

contrary, were unable to perform this catalytic reaction in the absence of rRNA (Nierhaus-1973,

Sonenberg-1973, Howard-1974, Ballestd-1974, Nierhaus-1974, Moore-1975, Barta-1984). It is 

also important that the peptide bond formation did not require an energy source (Pestka-1969) in 

addition to the energy provided by the aa-tRNA (Krayevsky-1975). These results suggested that

the ribosome is also an RNA-based enzyme (Moore-1988).

The existence of RNA enzymes or “ribozymes” led to the hypothesis of the so-called 

“RNA-world” (Gilbert-1986). According to this hypothesis, early life on Earth was exclusively 

RNA-based, while proteins appeared at later stages of evolution (Gilbert-1986, Ganem-1987, 

Moore-1988, Joyce-1989, Benner-1991, Moore-1993).

Thus, the ribosome could be a relic of the RNA world (Moore-1988).
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The tertiary structures of ribosomal components

By mid-1980s, the shape of the ribosomal subunits and their location in the ribosome had 

been roughly determined (Wittmann-1983). In the following decade crystallographic studies 

provided high-resolution structures of several r-proteins (Leijonmarck-1980, Wilson-1986,

Ramakrishnan-1992) and as well as of some translational factors, including the EF-Tu 

(Berchtold-1993, Nissen-1995) and EF-G (AEvarsson-1994, Czworkowski-1994). Some rRNA 

fragments were determined by the nuclear-magnetic resonance spectroscopy (White-1992, 

Szewczak-1993, Wimberly-1993). However, a structure of the whole ribosomal particle at atomic 

level resolution remained unresolved due to their enormous size and difficulties in obtaining 

crystals of a sufficient quality (Yonath-1987).

In the 1990s, the only available method for visualization of complete ribosomal complex

was by cryo-EM reconstruction, which provided a structure at approximately 25Å resolution

(Frank-1991, Frank-1995, Stark-1995). Nevertheless, this method allowed Frank and colleagues

to obtain images of the ribosome complexed with three tRNAs (Agrawal-1996) and the ribosome 

complexed with EF-G (Agrawal-1998).

In 2000, the cryo-EM data allowed Frank and Agrawal to demonstrate that a

rearrangement of the ribosome structure occurred during translocation (Frank-2000). The 

phenomenon was described as the reciprocal “ratchet-like motion” (RLM) between the two 

subunits (Frank-2000), or, simply, “ratcheting” (Figure 4 a, b).

During the past decade, cryo-EM techniques have rapidly progressed. The cryo-EM 

reconstruction of the eukaryotic ribosomes at 5.5Å resolution has become possible (Armache-

2010).  In spite of limitations of the method (Frank-2009), cryo-EM remains a powerful tool for 

structural studies. Sometimes, it is the only source of structural information. For example, the 

structures of the ribosomes from mitochondria (Maslov-2006, Sharma-2009) and chloroplasts 

(Sharma-2007) currently exist only in the form of three-dimensional reconstructions from cryo-

EM density maps.

The ribosome crystallographic studies 

A breakthrough in the ribosome crystallography occurred at the end of 1990s. In 2000, T. 

Steitz and co-workers published the crystal structure of the 50S subunit at the 2.4Å resolution 

(Ban-2000). This structure showed that the PTC does not contain proteins  (Nissen-2000), thus
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Figure 4

Global structural rearrangements on the ribosome 

(a, b) reciprocal ratchet-like motion of the ribosomal subunits (ratcheting) (from Zhang-2009)

(a) View of the bacterial 70S ribosome, composed of the SSU (blue) and the LSU (grey). In the SSU, the three 

domains - Head, Body and Platform - are indicated.  

The SSU rotates from a non-ratcheted conformation (black outline) to a ratcheted conformation (red outline) relative 

to the LSU. Letters indicate the positions of the aminoacyl (A), peptidyl (P), and exit (E) tRNA binding sites. 

(b) Schematic of tRNA binding states on the ribosome. (The view of the ribosome is rotated 90° (face-down) from 

that in (a)). In the transition of the ribosome to the ratcheted state, tRNAs shift from binding in the A/A and P/P sites 

(SSU/LSU, respectively) to occupy hybrid binding sites (A/P and P/E sites). 

(c) The SSU closure (modified from Ogle-2002)

Movements of 16S RNA backbone phosphorus atoms (T. thermophilus numbering) after superposition of the SSU 

complexed with a cognate ASL (Ogle-2002) on the apo structure (Wimberly-2000).

Regions moving by more than the estimated standard deviation of the individual atoms are highlighted in pink, and 

arrows are added to indicate general directions of movement.
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confirming that the ribosome is a ribozyme (Cech-2000, Steitz-2003). This structure also 

provided important details about the peptide exit tunnel (Nakatogawa-2002, Berisio-2003). At 

about the same time, the group of Ramakrishnan published the structure of the 30S subunit

(Wimberly-2000). The crystal structure of the SSU provided a detailed view of the subunit 

interface helix h44 and the decoding region at the top of this helix. The following year, Yusupov 

and colleagues published the structure of the entire 70S ribosome (Yusupov-2001) (Figure 4). In 

spite of a somewhat lower resolution (5.5Å), this structure provided a detailed picture of the 

subunit interaction (Figure 5). In this structure, the ribosome was simultaneously complexed with 

a mRNA and three tRNAs in the A, P and E sites, providing an additional argument against the 

exclusion principle of Nierhaus (Rheinberger-1983).

The newly obtained crystallographic data provided extensive information on the structure 

of ribosomal RNA (Klein-2004) and its interaction with r-proteins (Klein-2004b). Systematic 

examination of the rRNA tertiary structure allowed for identification of new structural motifs 

(Klein-2001, Nissen-2001, Gagnon-2002, Szép-2003, Steinberg-2007a, Steinberg-2007b,

Boutorine-2012).

The progress in the ribosome crystallography and biochemistry allowed realization of 

more complex tasks. The high resolution structures of the complete bacterial ribosome in the 

apo-form (Schuwirth-2005, Selmer-2006) and complexed with different translational factors 

(Pai-2008, Gao-2009, Schmeing-2009, Blaha-2009, Jin-2010, Korostelev-2010, Jin-2011, Zhou-

2012) were published in the last decade. 

Two findings were essential for the research presented in this thesis. In 2002, V. 

Ramakrishnan observed that the SSU can undergo a specific rearrangement in the small subunit 

that he described as a domain closure (henceforth, SSC) (Ogle-2002). The SSC can take place

when the new aa-tRNA forms the cognate codon-anticodon complex the in A-site (Ogle-2003)

(Figure 4c). The other finding was made in the group of J. Cate, who published in 2009 the 

structure of the ribosome in the ratcheted state (Zhang-2009). In the presented thesis, these data 

were used for understanding the principles of the ribosome dynamics.

Today at least 7 different laboratories perform crystallographic studies on the ribosome

(of Stetz, Ramakrishnan, Yonat, Yusupov, Cate, Noller and Ban). Their data are extremely 

important for understanding the mechanistic details of protein synthesis. Based on their data,  
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Figure 5.

Interactions between the ribosomal subunits and the position of the three tRNAs on the ribosome

(a, b) Interaction between the subunits (a, b) (from Duncle-2011): on both subunits corresponding intersubunit 

bridges have the same numbering and colored in red and yellow. On the SSU, the head domain is marked H. On the 

LSU, the central protuberance, the L1 stock and the L11 stock are marked CP, L1 and L11 correspondingly.

(a) The SSU, as it is seen from the LSU; the rRNA is colored in light blue, the r-proteins are in dark blue

(b) the SSU, as it is seen from the LSU; the rRNA is colored in grey, the r-proteins are in magenta

(c) The binding sites of the three tRNAs (c) Letters indicate the positions of the aminoacyl (A), peptidyl (P), and 

exit (E) tRNA binding sites. (from Demeshkina-2012)
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hundreds of researchers in the world bring the missing elements into the huge puzzle of the 

protein synthesis process.

We hope that the results presented in this thesis will be also helpful for filling a few 

empty spots in this puzzle. 

Problems addressed in the thesis

Evolutionary model for 23S rRNA

So far, it is unknown how protein life emerged on our planet. On the other hand, the 

modern process of protein synthesis in the cell is centered in the ribosome, which is the universal 

machinery of protein synthesis in all organisms (Spirin-1999). Thus, it has been suggested that 

the emergence of this machinery preceded the emergence of proteins. 

However, the modern ribosome is a complex of RNA and proteins. Before proteins, how 

could such ribosomes work? This question was answered with the discovery, that the ribosome is 

a ribozyme (see earlier in the text). The early ribosome could be an RNA only complex.

The rRNA of modern bacterial ribosome consists of about five thousand nucleotides (the 

eukaryotic rRNA is even bigger). Spontaneous reshuffling of this huge chain in a right fold, 

providing the complex ribosome functionality seemed improbable due to the enormous time 

required for finding that unique fold. An extraterrestrial emergence of the rRNA (in the context 

of the Panspermia Hypothesis (see for example Bada-2001, Belbruno-2012)) seems to be a much 

better explanation.

Simultaneously, there was a simple idea of gradual evolution of the ribosome. Originally, 

it might emerge as a small RNA-molecule (Woese-2001) that was able to link two amino acids 

through the peptide bond (Noller-2004). The oligo-peptides with random amino acid sequences 

interacted with RNA molecules, increasing the variability of the early RNA-based life 

(Szathmáry-1997, Noller-2004). This process continued until the ribosome became efficient 

enough to perform the template-dependent synthesis of proteins. Then, the first r-proteins 

appeared in the ribosome structure (Polacek-2005). 

Hence, the LSU with peptidyl-transfer center (PTC) was suggested to emerge before the 

SSU (Schimmel-1998). Correspondingly, the PTC is believed to be the most ancient element of 

the ribosome (Polacek-2005, Hury-2006).
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However, the way how the tertiary structure of rRNA evolved remained unknown due to 

the absence of adequate research methods. The structural core of rRNA is extremely conserved 

in all living organisms (Gutel-1994, Olsen-1997, Wuyts-2001) proving that the rRNA in this

conformation existed before the splitting of Tree of Life into branches (Doolittle-1994, Woese-

1998, Joyce-2002). As such, the comparison of nucleotide sequences of existing rRNA (Cavalli-

Sforza-1967) appears useless for the studying of early ribosome evolution.

In the absence of ready-to use methods, we invented our own approach. The approach is 

based on the assumption that the ribosome evolved in a stepwise manner. Originally, the proto-

ribosome could appear as a small RNA molecule that was able to perform a certain function 

related to the modern ribosome. The following development of this RNA proceeded through 

emergence of new elements above the existing structure. Each element emerged randomly but 

only those that could be adapted to the existing ribosome structure had a chance to propagate in

evolution.

If the emergence and adaptation of new elements happened in a similar way, the traces of 

such an evolutionary pathway might exist in the structure of contemporary rRNA. Thus, 

systematic analysis of the ribosome crystal structure could help to decipher the evolution of the 

ribosome. 

This approach led us to an evolutionary model, which explains how the proto-ribosome 

could emerge to the contemporary 23S rRNA. The description of the model formed the basis of

the second and third chapters of this thesis.

Studies of the ribosome dynamic

At different steps of its functional cycle, the ribosome undergoes global structural 

rearrangements, such as the RLM (Frank-2000) and the SSC (Ogle-2002). 

The RLM was originally observed by cryo-EM methods and described as a reciprocal 

rotation between two ribosomal subunits (Frank-2000). The RLM was suggested to promote 

translocation (Horan-2007). When the ribosome acquired the “ratcheted” (rotated)

conformation, the p-tRNA and deacylated tRNA move to the hybrid A/P and P/E states (Julián-

2008).

The SSC was originally related to the selection of new aa-tRNA (Ogle-2002). The 

closure of the SSU takes place when the codon-anticodon interaction is cognate (Ogle-2003). It 
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should also be mentioned that the SSC was discovered when a high-resolution structure of the 

entire ribosome did not exist. Correspondingly it was not known whether the domain closure of 

the SSU can affect the LSU. The possibility of a relation between the SSC and RLM has never 

been discussed.

In 2009, Cate and co-workers determined the structures of the E.coli ribosome in

intermediate states of ratcheting (Zhang-2009). Each crystal contained two co-crystallized 

ribosomes rotated at about 6° relatively to each other. In spite of the rotation, the central bridges 

at the subunit interface remained intact. It could be due to the proximity of the bridges to the 

center of subunit rotation. On the other hand, it would be possible if part of the SSU containing 

these bridges remained immobile relatively the LSU in ratcheting. The second scenario did not 

seem improbable because of the existence of domain closure that implied the mobility of the 

SSU structure.

Based on these data, we developed a strategy for systematically comparing the ratcheted 

and non-ratcheted ribosome conformations. This strategy allowed us to elucidate the pattern of 

ribosome rearrangement during the RLM and to understand how these rearrangements can be

regulated. The mechanism of regulation of RLM was found to use the same elements of the SSU 

structure that had already been known to regulate SSC. Further analysis showed the virtual 

identity of the rearrangements that take place during RLM and SSC. This analysis is presented in 

the fourth chapter of this thesis.
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ABSTRACT

The emergence of the ribosome constituted a pivotal step in the evolution of life. This event 

happened nearly four billion years ago, and any traces of early stages of ribosome evolution are 

generally thought to have completely eroded away. Surprisingly, a detailed analysis of the 

structure of the modern ribosome reveals a concerted and modular scheme of its early evolution.

INTRODUCTION

The ribosome is an RNA–protein complex performing protein synthesis in all living cells

(Stillman-2001). It is generally accepted that the ribosome originated from the so-called ‘RNA 

world’ when proteins did not exist and the primordial chemical reactions of life were catalysed 

by RNA (Crick-1968, Gilbert-1986). Although the contemporary ribosome contains several 

dozen proteins (Yusupov-2001, Ban-2000, Harms-2001, Selmer-2006, Schuwirth-2005), the two 

major functions of the ribosome—the selection of the proper amino acid and the 

transpeptidation—are performed by RNA (Ogle-2001, Noller-1992, Nissen-2000), whereas 

proteins have only an auxiliary role. Structurally, RNA forms the core of the ribosome, whereas 

proteins are mostly located at the periphery. Hence, the problem of the origin of the ribosome 

concerns the origin of ribosomal RNA. Because in all living organisms the core of the ribosome 

has a very similar structure, it must have formed before the split of the tree of life into three 

phylogenetic domains (Gutell-1994, Doudna-2002). Consequently, the comparison of the 

available nucleotide sequences of rRNA is not sufficient for the deduction of how the ribosome 

emerged.

However, the ribosome tertiary structure could provide key clues about the details of this 

process. 

Our initial observation was that, compared to other domains of the 23S rRNA secondary 

structure, A-minor interactions in domain V (Cannone-2002) follow a very specific pattern. A-

minor is a frequently found RNA arrangement consisting of a stack of unpaired nucleotides, 

predominantly adenosines, that pack with a double helix (Nissen-2001, Doherty-2001). In the A-

minor interactions that domain V forms with other parts of 23S rRNA, the double helix almost 

exclusively belongs to domain V, whereas the adenosine stack usually belongs to the rest of the 

molecule (Fig. 1). This characteristic distinguishes domain V from other domains of 23S rRNA, 
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in which the proportion of the adenosine stacks and the double helical regions that form A-minor 

interactions is reversed.

To explain this abnormality of domain V, we suggest that it reflects the order in which 

different parts were added to 23SrRNA as it evolved. In the A-minor motif, the conformational 

integrity of the adenosine stack depends on the presence of the double helix, whereas the helix 

can maintain a stable conformation without interaction with its counterpart. Presuming that the 

integrity of the ribosome structure has been maintained throughout its entire evolution, adenosine 

stacks should not have appeared in rRNA before the corresponding double helices. Because 

domain V contains the peptidyl-transferase centre (PTC) (Polacek-2005), which performs the 

central function of the ribosome, we expect it to be among the most ancient elements of the 

ribosome structure. Thus, the abnormality of domain V can be explained by the formation of the

A-minor interactions between double helices of a more ancient domain V and the adenosine 

stacks of more recently acquired parts of 23S rRNA.

THE MODEL

The ability of the A-minor motif to serve as an indicator of the relative age of its moieties 

can be used to determine the order in which different elements were added to the ribosome 

structure during its evolution. To demonstrate such ordered assembly, we developed a strategy of 

systematically dismantling the ribosome structure through elimination of those elements that 

could be considered as most recent acquisitions. As an element, we considered an individual 

double helix or a domain of stacked nucleotides that on addition to the ribosome structure would 

form a stable compact arrangement. We suggested a general principle that an element could not 

be a recent addition if its removal compromised the integrity of the remaining parts of the 

ribosome. The 5’ and 3’ ends of a removed element must be structurally close enough to each 

other to be considered a local insertion. This would guarantee that, after the fragment is removed, 

the remaining RNA chain maintains its structural integrity. Also, because the integrity of each 

strand of a double helix depends on the presence of the other strand, a removed element must 

contain both strands of the same helix. Finally, if a removed element forms the A-minor motif 

with the remaining ribosome, it must contain the stack of unpaired nucleotides that form this 

interaction, and not the double helix. Because our analysis was focused on A-minor interactions, 

the exact location of the boundaries between different elements was not essential, as long as all 
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adenosine stacks and all corresponding double helical regions remained intact. Additional 

requirements imposed on elements are discussed in Supplementary Data 1.

Analysis of the tertiary structure of the Escherichia coli 23S rRNA (Schuwirth-2005)

revealed 19 elements for which elimination does not compromise the integrity of the remaining 

part of the structure. These elements form level 1 in Fig. 2b; their location in the 23S rRNA 

secondary structure is shown in Fig. 2a and their complete description is given in Supplementary 

Data 1. The identified elements form a total of 13 A-minor interactions with regions located in 

the remaining part of the molecule (see Supplementary Data 2 and Supplementary Notes 1). In 

all of these interactions, the adenosine stacks belong to the identified elements, whereas the 

double helices are located in the remaining part of 23S rRNA. Thus, the elements of layer 1 

could be considered the final generation of acquired elements. We then identified an additional

11 elements, the presence of which is essential for the integrity of only the elements of level 1. 

Accordingly, we describe these elements as constituting the penultimate generation of added 

elements (elements of level 2 in Fig. 2b). We repeated the same procedure ten more times and 

identified a total of 59 elements.

The position and the conformation of each identified element depend on the presence of only 

the elements of the preceding generations. In Fig. 2b, each dependency of element P on the 

presence of element Q is shown as arrow Q P. There are two types of dependencies, D1 and

D2. A D1 dependency indicates that the removal of Q before P would split the whole molecule 

into two separate parts. A D2 dependency indicates that the removal of Q before P would 

compromise the conformation of P. In total, we identified 59 D1 dependencies and 56 D2 

dependencies. Out of all D2 dependencies, 54 were based on the formation of A-minor

interactions. The remaining 2 D2 dependencies corresponded to two non-local pseudoknots 

(discussed later).

The removal of the 12 generations of acquired elements eliminated 93% of the original 23S 

rRNA. The remaining part, located in domain V, is shown in Fig. 2a by the blue and red lines; its 

central loop forms the PTC. Recently, it was observed that this region consists of two

consecutive parts having practically identical secondary and tertiary structures (Nissen-2000,

Agmon-2005) (blue and red parts in Fig. 2a; see also Supplementary Figs 1 and 2). The blue and 

red parts are arranged symmetrically to each other and form binding sites for the CCA-3’-termini 

of transfer RNA molecules in the P- and A-sites, respectively. Moreover, there is a very close 
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correspondence between the positions of the nucleotides of both parts involved in the fixation of 

the equivalent elements of both tRNAs (Nissen-2000, Agmon-2005, Samaha-1995, Kim-1999,

Hansen-2002).

The similarity between both parts is so high that it is logical to suggest that they originated 

by a duplication of the same RNA fragment. From this point of view, the evolution of 23S rRNA 

started with an initial fragment of about 110 nucleotides, which, probably, was able to bind the 

CCA-3’-terminus of what would later be tRNA. The duplication of this fragment allowed the 

resulting molecule to bind simultaneously two CCA-3’-termini. Within this arrangement, the two 

CCA-3’-termini associated with both parts are juxtaposed in space to allow for the 

transpeptidation reaction. Most probably, this dimer was already able to synthesize oligopeptides 

with random amino acid sequences, which would allow us to call it proto-ribosome. This view is 

supported by the fact that in-vitro-selected small RNA molecules resembling the PTC are able to 

perform transpeptidation (Zhang-1997), thus demonstrating that this reaction does not require 

any other elements of the ribosome structure. All other elements of 23S rRNA were gradually 

added to the structure, one element at a time, in essentially the same way. Each element could 

appear only when all elements that were required for its proper positioning had already been 

placed. New elements were added as insertions containing all necessary details to dock with the 

surface of the evolving ribosome without disturbing already existing parts. The most common 

way for a new element to be fixed on the ribosome surface would be through the formation of an 

A-minor interaction with an already existing double helix.

JUSTIFICATION OF THE MODEL

For justification of the suggested evolutionary model, we analysed those features of the 23S 

rRNA tertiary structure for which the 59 elements could be consecutively removed without 

damaging the integrity of the remaining part. Our analysis shows that removal of these elements 

is possible if and only if the arrows representing D1 and D2 dependencies do not form cyclic 

structures—that is, cases where a chain of several consecutive arrows arranged head-to-tail starts 

and finishes at the same element. A mathematically rigorous proof of this statement and the 

explanation of why the absence of cycles of dependence is essential for dismantling the 23S 

rRNA structure are given in Supplementary Notes 2.
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The absence of cycles built of D1 dependencies reflects the hierarchical topology of the 

secondary structure of 23S rRNA in which the removal of remote elements of each domain 

would not compromise the integrity of the remaining RNA chain. Such topology could be 

disrupted by pseudoknots, several of which exist in 23S rRNA (Gutell-1994). However, most 

pseudoknots are arranged in the same region of the secondary structure and can be removed as a 

single element. Only two pseudoknots between the loops of elements 27–39 and 33–40 are not 

local (Fig. 2a). However, in both cases it was possible to split the two strands of the inter-loop 

double helix on the grounds that the conformational integrity of only one of the two loops 

requires the presence of the other loop (Fig. 2b and Supplementary Notes 1).

For the given 23S rRNA secondary structure, the absence of cycles involving D2 

dependencies is a consequence of the particular orientation of many A-minor interactions. For 

example, dependency 41 6 (Fig. 2b) stands for the A-minor interaction between the double 

helix of element 41 and the adenosine stack of element 6. In the opposite situation, if the double 

helix occurred in element 6, while the adenosine stack was provided by element 41, four 

elements would have formed cycle 41 33 23 6 41. Similar cycles would have occurred in 

many other parts of 23S rRNA if the orientations of A-minor interactions were different. The 

existence of any such cycle would have arrested the procedure of dismantling the 23S rRNA 

structure before it reached PTC.

To demonstrate how unlikely the absence of cycles really is, we calculated the probability 

for the 23S rRNA structure to be cycle-free if the orientations of all A-minor interactions were 

chosen randomly. Our analysis presented in Supplementary Notes 2 shows that the total 

probability of a cycle-free arrangement in this case would be P < 10-9. Such low probability 

excludes the possibility that the absence of cycles of dependence in 23S rRNA has occurred by 

chance. Instead, it strongly supports a hierarchical scenario for its evolution, according to which 

the integrity of each element of 23S rRNA depends only on the presence of more ancient 

elements of its structure. The absence of cycles in the 23S rRNA tertiary structure does not 

depend on the way we defined individual elements, but instead represents a fundamental 

property of this molecule.
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MAJOR PERIODS IN THE 23S RRNA EVOLUTION

The scheme of dependencies presented in Fig. 2b can help us to elucidate some details of the 

evolution of the large ribosomal subunit after the emergence of the proto-ribosome. Our analysis 

shows that stabilization of the proto-ribosome tertiary structure was a major aspect of the 23S 

rRNA evolution in the post-proto-ribosome era. In Fig. 3 the structure of the proto-ribosome is 

shown without other parts of 23S rRNA (Fig. 3a) and with the gradually increasing number

of added elements (Fig. 3b–e). The elements forming each structure are shown in Supplementary 

Fig. 3. The first 8 elements added to the proto-ribosome form a foundation that closely interacts 

with the bottom part of the proto-ribosome and effectively supports its conformation (Fig. 3b). 

Further addition of 12 elements makes this foundation wider and more massive (Fig. 3c). Finally, 

after the addition of a total of 50 elements, the proto-ribosome became surrounded by added 

elements on all sides except the side from which PTC must be reached by tRNAs (Fig. 3d). The 

added elements were arranged so they did not interfere with the release of the nascent peptide, 

leading to the formation of the exit channel (4 in Fig. 3f).

The emergence of the foundation provided new functional opportunities. In particular, it 

allowed the formation of the area of contact with the small ribosomal subunit (Fig. 3e), which 

was essential for the integration of this subunit into the ribosome. Another consequence of the 

lateral expansion of the proto-ribosome foundation was that it allowed the formation of the three 

protuberances (yellow in Fig. 3e–g). In Fig. 2b, the elements forming these protuberances are 

positioned at the upper levels (see Supplementary Fig. 3f). Correspondingly, the particular 

functions associated with the protuberances—namely, the assistance in the selection of the 

proper aminoacyl-tRNA and the GTPase reaction (Savelsberg-2000, Kavran-2007) (the L7/L12 

protuberance) as well as in the release of the deacylated tRNA from the E-site (Nikulin-2003)

(the L1 protuberance)—should be relatively late acquisitions of the ribosome. 

Our results also demonstrate that, despite its visible complexity, the structure of 23S rRNA 

follows a rather simple principle and could have evolved in a relatively short time on the 

evolutionary scale. Each new insertion emerged randomly and was accommodated only if it 

made the ribosome more stable and effective as a transpeptidase. At early stages of evolution, the 

ribosome existed exclusively as an RNA body. Later, when the ribosome functioning became 

sufficiently effective to produce proteins, the latter started playing an important part in the 

ribosome structure. We can argue that, among all structures shown in Fig. 3, the structure in Fig. 
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3b corresponds most closely to the moment when the RNA world changed for the protein-based 

world. This conclusion is based on the fact that although ribosomal proteins interact with the 

structure in Fig. 3b only marginally, they form extensive contacts with later structures (not 

shown). Whether indeed the structure in Fig. 3b corresponds to the end of the RNA world and 

thus represents the most effective all-RNA ribosome, however, requires further experimental 

analysis.
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FIGURES

Figure 1

Location of inter-domain A-minor interactions in the secondary structure of the E. coli 23S 

rRNA.

The secondary-structure domains are marked by roman numerals. Each A-minor interaction is shown 

by a cyan line connecting the double helix (red circle) and the corresponding adenosine stack (yellow 

circle). Unlike other domains, domain V almost exclusively forms these interactions using double 

helices and not adenosine stacks.
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Figure 2  

The location of the identified elements in the E. coli 23S rRNA secondary structure (a) and the 

network of D1 and D2 dependencies between them (b).

(the legend is provided on the next page)
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Legend of Figure 2 (see previous page)

Each element has the same colour in (a) and (b). The roman numerals indicate secondary-structure 

domains. PTC stands for the symmetrical arrangement in domain V containing the peptidyl-

transferase centre (the proto-ribosome).  

(a), The two halves of the proto-ribosome are blue and red. Red asterisks indicate the four elements 

that form two non-local pseudoknots 27–39 and 33–40. 

(b), An arrow connecting two elements Q P indicates that the position of P depends on the presence 

of Q. Black and coloured arrows represent D1 and D2 dependencies, respectively. Red arrows Q P

represent A-minor interactions formed by a double helix of element Q and a nucleotide stack of 

element P. Two violet arrows originate from the dissection of two non-local pseudoknots (see 

Supplementary Notes 1). The numbers of levels are shown on the left. The detailed description of all 

elements and of all D2 dependencies is given in Supplementary Data 1 and 2.
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Figure 3  The aggrandizement of the 23S rRNA structure during its evolution.

a–e, the proto-ribosome with 0 (a), 8 (b), 20 (c), 50 (d) and all 59 (e) elements added. The proto-

ribosome is red, elements forming the protoribosome foundation are blue, the protuberances are 

yellow, and 16S rRNA is purple. The complete list of the elements forming structures a–e is given in 

Supplementary Fig. 3. f, The top view of the 23S rRNA structure shown in e. g, The positions of the 

parts of 23S rRNA shown in a–e in the context of the whole ribosome. The structures of the 50S and 

30S subunits are contoured by the blue and red line, respectively. 1–3 are the L7/L12, central and L1 

protuberances, respectively; 4 is the exit channel; 5–9 are the structures shown in a–e, respectively; 10 

is the part of 50S subunit that does not include 23S rRNA. This part is formed by ribosomal proteins 

and 5S rRNA.
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SUPPLEMENTARY INFORMATION

1. Supplementary Data 1: The complete description of all elements identified in E.coli 23S 

rRNA 

The structure analyzed

For the analysis, we took the structure of the E.coli ribosome (pdb identifies 2AW4, see 

Ogle-2001).

What is element?

As an element, we considered an individual double helix or an arrangement of stacked 

nucleotides, which upon addition to the ribosome structure would form a stable compact 

arrangement. The position of each element in the 23S rRNA is shown in Fig 2a of the main text.

The boundaries between elements

The boundaries between all elements were arranged to make each element a putative 

- -termini close to each other. 

For A-minor interactions, the double helix and the adenosine stack belonged to two 

different elements. Also, the boundaries between elements were arranged to split neither 

adenosine stack, nor the corresponding part of the double helix. As a result, each moiety of an A-

minor motif kept its integrity. These rules were not applicable to those A-minor interactions in 

which the adenosine stack and the double helix were not separated by at least one base pair (see 

Supplementary Data 2). The latter A-minor interactions were out of scope of this research.

In most cases, the boundary between two elements coincided with the boundary between 

two domains of stacked nucleotides. In some cases, more than one helix was included in the 

element. Such cases mostly pertained to local pseudoknots. For these pseudoknots, both double 

helices forming the pseudoknot were included in the element (see the main text). Also, if a new 

element was unable to form a stable contact with the ribosome surface, it could be extended to 

the degree that such contact became possible.  

We should note, however, that because our analysis was focused on A-minor interactions, 

the exact location of the boundaries between different elements was not essential, as long as 

all adenosine stacks and all corresponding double helical regions remained intact. 
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The description of each element in the following list

The number of each motif corresponding to that in Fig 2 of the main text is red.

Each element is composed of one or several fragments of the 23S rRNA polynucleotide 

chain. Each fragment is enclosed in brackets. For each fragment, the identity and the number of 

the first and the last nucleotides is provided.

Each element as a result of a local insertion

In each element, the first nucleotide of the first fragment and the last nucleotide of the 

last fragment are positioned close to each other in the tertiary structure. This closeness was 

required to qualify the element as a putative insertion. If the element consists of more than one 

fragment, the last nucleotide of each fragment and the first nucleotide of the following fragment 

are also positioned close to each other in the tertiary structure. This closeness reflects the fact 

that the piece of 23S rRNA enclosed between the two nucleotides has also been qualified as a 

putative insertion.
1 = (A2850 U2866)

2 = ((G1 C8) + (G2895 U2904)) 

Comment: In our analysis, we treated 23S rRNA as a circular molecule, which allowed us 

- -terminal parts of the molecule as an 

individual element (element 2) and to remove it at a due moment.  

3 = (G1906 G1929)

4 = (U1855 G1888)

5 = (A1802 U1818)

6 = (G1482 C1507)

7 = (U702 C732)

8 = (A1048 A1111)

9 = (G1198 G1247)

10 = (U846 G930) 

11 = (A627 U653)

12 = (U2297 U2320)

13 = (A2198 C2226)

14 = (G121 U148)

15 = (G295 C343)

16 = (A222 G232)

17 = (U448 A472)

18 = (C475 C509)
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19 = (A532 G561)

20 = ((U2832 U2849) + (G2867 A2883))

21 = (G1707 G1756)

22 = ((G1835 C1854) + (A1889 C1905) + (G1930 A1970))

23 = ((U1467 U1481) + (A1508 G1546))

24 = ((G1026 G1047) + (G1112 A1134))

25 = ((G822 A845) + (U931 A945)

26 = ((U588 A626) + (A654 A670))

27 = (A2392 C2424)

28 = (C2347 G2382)

29 = ((A119 U120) + (A149 G177))

30 = ((G271 A294) + (A344 G367))

31 = ((G2791 G2831) + (U2884 G2892))

32 = ((G1681 C1706) + (A1757 G1763))

33 = ((G1429 U1466) + (C1547 G1568))

34 = ((C991 G1025) + (C1135 G1185))

35 = (G2464 G2488)

36 = ((C2283 U2296) + (U2321 A2346) + (G2383 G2389))

37 = (G2093 U2197)

38 = (G51 A118)

39 = (A371 A423)

40 = (U2690 G2719)

41 = ((G1416 C1428) + (A1569 C1582))

42 = ((G974 A990) + G1186)

43 = ((U2259 G2282) + (U2390 G2391) + A2425)

44 = ((A216 A221) + (A233 A270) + (A368 G370) + (G424 C433)

45 = ((C2646 U2689) + (U2720 G2732))

46 = (C1350 G1381)

47 = ((C812 A821) + (C946 A973) + (G1187 C1197) + (A1248 G1250))

48 = ((C2629 G2645) + (A2733 U2790) + (A2893 U2894))

49 = ((G1341 C1349) + (G1382 U1415) + (A1583 U1602))

50 = ((G46 U50) + (G178 G215))

51 = ((G1271 U1340) + (A1603 U1647))

52 = ((G35 G45) + (U434 C445))

53 = ((U686 G701) + (G733 U773))

54 = ((G9 U34) + (G446 A447) + (G473 G474) + (C510 A526))

55 = ((C1764 A1801) + (U1819 U1834) + (U1971 C1990))
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56 = ((C671 A685) + (G774 U811))

57 = ((G579 C587) + (C1251 C1270) + (U1648 U1680) + (U1991 U2017))

58 = ((C527 C531) + (U562 G578) + (G2018 A2042))

59 = ((C2043 G2057) + (C2611 G2628))

PTC = ((A2058 U2092) + (A2227 C2258) + (A2426 C2463) + (U2489 2610)

Comment: PTC stands for the symmetrical structure in Domain V that contains the 

peptidyl-transferase centre. This structure is seen in Fig 2a of the main text (blue and red 

parts) and in Supplementary Figs 1, 2. We argue that this structure represents the proto-

ribosome

2. Supplementary Data 2: the complete list of the A-minor motifs that are used for 

determination of D2 dependences 

For determination of D2 dependences, we used only those A-minor interactions that fitted 

to the following criteria:

Single-nucleotide A-minor interactions were not considered

1. The stack of unpaired nucleotides contained two or more nucleotides. There are two 

reasons to ignore those A-minor interactions that were formed by individual non-stacked 

nucleotides. First, the concept of integrity of the adenosine stack is not applicable to a single 

nucleotide. Second, there is a reasonably high probability that an individual non-stacked 

adenosine emerged after the emergence of the element that contains it. In this case, it would be 

deceiving to use the orientation of such A-minor-interaction for determination of the relative age 

of the two elements between which it is formed. 

The two moieties of the A-minor motif must be separated

2. We also required that the adenosine stack and the corresponding double helical region 

be separated in the 23S rRNA secondary structure by at least one base pair. This requirement 

helped us to avoid situations when the double helix and the adenosine stack are so close to each 

other that most probably, emerged simultaneously. 

Not only adenosines are allowed

3. The identities of the unpaired nucleotides that interact with the double helix do not 

need to be restricted to adenosines. Other nucleotide identities are also permitted, as long as all 

other aspects of A-minor interactions are preserved. 
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Adenosines can interact not only with the minor groove

4. Although it is generally believed that in A-minor motifs, the adenosine stack interacts 

exclusively with the minor groove of a double helix, in reality, it can also interact with 

backbones (ref. 19 in the main text). We do not limit our consideration to a particular type of 

contact between the unpaired nucleotides and the double helix, as long as this contact is essential 

for the integrity of the stack of unpaired nucleotides.  
1 21

                                       A2860 (C1708=G1750)

                                       G2859 (U1709=A1749)

                                      C2858 (G1710=C1748)

3 22

                                       A1927 (C1837=G1903)

                                       A1928 (C1836=G1904) 

5 46

                                       A1809 (C1363=G1368)

                                     A1810 (G1362=C1369)  

5 55

                                       A1802 (U1798=A1821)

                                       A1803 (G1797=C1822)

6 41

                                      A1494 (C1577=G1421)

                                       A1495 (C1577=G1421)

                                       A1496 (C1577=G1421) 

                                       A1496 (U1576=G1422) 

9 47

                                       U1224 (G1193=C814)

                                       G1225 (A1194=U813)

                                       A1226 (G1195=C812)

9 54

                                       A1213

                                       A1214 (G30=C510)

10 43

                                       A910 (C2264=G2276)

                                       A911 (C2263=G2277)

11 28

                                       A644 (C2368=G2349)
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                                       U646

11 27

                                       A631 (U2401=G2415)

                                       A632 (C2403=G2414)

14 38

                                       A126 (G54=C116)

                                       A127 (G55=C115)

16 39

                                       A226 (G409=C418)

                                       A227 (G410=C417)

17 56

                                     G465 (U683=A794)

                                       A466 (G682=C795)

21 40

                                       A1754 (G2693=C2716) 

                                      A1755 (G2694=C2715)

22 55

                                       A1900 (C1793=G1826)

                                       A1900 (A1794=U1825)

                                       A1970 (G1792=U1827)

22 PTC

                                       A1952 (U2548=A2560)

                                      A1953 (G2549=C2559)

22 PTC

                                       C1965 

                                       A1966 (G2592=C2601)

22 PTC

                                       A1853 (U2086*U2233)

                                       A1853 (G2087=C2232)

                                       A1854 (G2087=C2232)

                                       A1889 (U2086*U2233) 

                                       A1890 (U2085=G2234)

23 33

                                     A1477 (G1435=C1557)

                                       A1515 (G1436=C1556)

23 33

                                       A1528
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                                       A1544 (C1447=G1464)

                                       A1545 (C1446=G1465)

23 49

                                       A1469 (C1386=G1401)

                                       A1470 (A1385=U1402)

24 35

                                       A1028 (G2464=C2486)

                                       A1029 (C2465=G2485)

24 58

                                       U1132

                                       A1133 (C2025=G2038) 

                                       A1133 (U2026=A2037)

24 PTC

                                       G1128 (A2516=U2568)

                                       A1129 (C2515=G2569)

26 44

                                       A608 (C237=G260)

                                       A608 (C238=G259)

                                       A609 (C237=G260)

                                       A621 (C238=G259)

29 37

                                       A160 (C2208=G2216)

                                       A161 (C2207=G2217)

30 38

                                    A294 (G80=C106)

                                       A345

                                       A346 (C79=G107)

                                       A347 

31 48

                                       A2809 (G2630=C2788)

                                       A2810 (G2631=C2787)

31 59

                                       A2823 (C2047=G2621)

                                       C2824                                                    

32 55

                                       A1690

                                      A1700 (G1766=C1986)
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32 51

                                       A1759 (U1629=A1637) 

                                      C1760 (A1630=U1636)

34 42

                                       A1000 (G976=C987)

                                       A1001 (G977=C986)

                                       A1001 (G978=C985)

                                       A1155 (G976=C987)

36 43

                                       A2327 (C2261=G2279)

                                       A2388 (C2260=G2280)              

55 PTC

                                       A1785 (G2588=C2606)

                                       A1785 (A2589=U2605)

                                       A1787

41 46

                                       A1569 (C1351=G1380)

                                       A1570 (C1351=G1380)

                                       A1571 (C1351=G1380)

                                       A1572 (C1350=G1381)

42 47

                                       A983 (C946=G971)

                                       A984 (A947=U970)

42 58

                                       A980 (U2026=A2037)

                                       A981 (G2027=C2036)

43 47

                                       A2273 (G953=C964) 

                                       A2274 (G954=C963) 

44 50

                                       G250 (G194=C201)

                                       A251 (G194=C201)

46 50

                                       A1365 (G187=C209) 

                                      A1365 (G188=C208)

                                       A1366 (G186=C210)
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46 53

                                       A1353 (A693=U769)

                                       A1354 (C692=G770)

                                     A1378 (U694=G768)

47 PTC

                                       A959 (U2457=G2484)

                                       A960 (C2456=G2495)

48 PTC

                                       A2740 (G2523=C2540)

                                       A2741 (G2524=C2539)

                                       A2764 (G2523=C2540) 

49 51

                                       A1392 (C1315=G1337)

                                       A1393 (C1314=G1338) 

50 56

                                       A190 (C679=G798) 

                                       A191 (C678=G799) 

                                      A207 (C680=G797)  

51 53

                                       A1272 (A743=U754)

                                      A1618 (A743=U754)

51 53

                                       G1300

                                       A1634 (C698=G763) 

53 55

                                       A764 (U1775=A1789)

                                       A781 (G1776=C1788) 

Comment: this case is special. It is discussed in Supplementary Notes l 

54 57

                                      A514 (C581=G1259)

                                       A515 (U580=A1260)      

54 59

                                       A14 (C2044=G2624)

                                       A14 (C2045=G2623)

                                       A526 (C2043=G2625)            

56 PTC

                                       A675 (G2067=C2443)
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                                       A676 (G2069=C2442)

56 PTC

                                   A793 (C2073=G2436)

                                      G784 (C2072=G2437)

                                      A792 (C2072=G2437)

57 59

                                      A1654 (G2048=C2620)

                                      A1655 (G2049=C2619)

57 58

                                      G1252 (A563*G578)

                                      A1253 (C564=G577)

3. Supplementary Notes 1: Special cases in determination of D2 dependencies

1. Contact 53, 56 55

In 23S rRNA, three elements 53, 54 and 56 form the following contact:
53, 56 55

                                 53: A764 (U1775=A1789)

                                 56: A781 (G1776=C1788)

An unusual feature of this contact is that here, the two adenines are distant from each 

other in the 23S rRNA secondary structure. This aspect did not allow us to keep both adenosines 

within the same element. As a result, the two adenosines belong to two different elements, 53 

and 56. We think that the integrity of element 56 does not depend on the presence of element 55. 

Indeed, A781 in element 56 is involved in loop 780-GAAA-783, which would form a stable 

tetraloop arrangement if the contact with element 55 did not exist. Only in the presence of 

element 55 and after the emergence of element 53, A781 can break from the tetraloop 

arrangement 780-GAAA-783 and can form a stack with A764 of element 53, which, in turn, 

would form the A-minor interaction with element 55. 

Such a scenario of the formation of this A-minor interaction would make the integrity of 

only element 53 and not of 56 dependent on the presence of element 55

2. Contact PTC 56

There is a rather weak contact between PTC and element 56, which consists of a 

hydrogen bond between the amino group of A2060 (PTC) and the O2’ group of the unpaired 

nucleotide U807 (element 56):
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PTC 56

                                       A2060 (C673 - U807)

                                       G2502

Although this contact can be qualified as a variant of A-minor interaction, we do not 

think that the integrity of PTC depends on it: in addition to the interaction with element 56, 

A2060 forms van der Waals contacts with the backbone of nucleotides G2444 and G2445 within 

PTC. The latter contacts would stabilize the position of A2060 even in the absence of element 

56. Based on these considerations, we did not consider contact A2060 (C673 - U807) as a D2

dependency.

3. Non-local pseudoknots

23S rRNA contains two non-local pseudoknots between elements 33-40 and 27-39,

which in Fig 2a of the main text are shown by red asterisks. In both cases, one element (elements 

33 and 27, Fig 2b of the main text) can be removed separately from the other one (elements 40 

and 39) on the ground that such removal would not compromise the integrity of the latter 

element. 

In the 33-40 case, region 2702-2704 of element 40 forms a double helix with region 

1455-1457 of element 33. In element 40, this region is a part of a tetraloop, which would have a 

quasi-stable structure even without the interaction with element 33. This aspect allows the 

dissection of the pseudoknot and the removal element 33 separately from element 40. 

A similar situation occurs in the 27-39 case. Here, region 413-416 of element 39 forms a 

double helix with region 2407-2410 or element 27. Element 39, due to the formation of base pair 

C385-G411, also represents a local pseudoknot. The presence of this base pair makes the 

conformation of loop 411-416 stable even without interaction with element 27. This aspect 

allows the dissection of the pseudoknot and the removal of element 27 separately from element 

39.

4. Supplementary Notes 2: Quantitative validation of the proposed model of the 23S rRNA 

evolution

A. Why the absence of cycles of dependence is essential?

The possibility to remove 59 elements without affecting the integrity of the remaining 

part of 23S rRNA is manifested by the fact that in Fig 2b of the main text all D1 and D2 
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dependencies are oriented from a lower to higher level. A theorem can be proven that the 

orientation of all dependences from a lower to higher level is possible if and only if D1 and D2 

dependencies do not form cycles. 

Below we provide the proof of this theorem formulated in terms of the graph theory. All 

undefined terms can be found in: J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, GTM 

244, 2008. ISBN: 978-1-84628-969-9.

Let D=(V,A) be a finite digraph with the vertex set V and the arc set A. We define a sequence of 

digraphs D_i=(V_i,A_i), i=0,1,... so that D_0=D and V_{i+1}=V_i-S_i, A_{i+1}=A_i-A'_i for 

all i = 0,1,... where S_i is the set of sinks of D_i and A'_i is the set of all arcs of D_i that are 

incident to sinks. Clearly, |V_{i+1}| is less or equal than |V_i| for all i>0. So, there exists a 

positive integer m such that |V_m|=|V_{m+1}|=....

Take the minimal m with this property and set D^*=D_m.

Claim.The digraph D^* is empty (i.e. contains no vertices) if and only if the digraph D is 

acyclic.

Proof. Let C_i be the set of vertices of a directed cycle of the digraph D_i for some i. Then 

obviously the intersection of C_i and S_i is empty. This implies that any directed cycle of D is 

also a directed cycle of D^*. Thus the necessity follows. Conversely, let the digraph D be 

acyclic. Suppose that the digraph D^*=D_m is not empty. Since D_m=D_{m+1}, we conclude 

that set S_m is empty. Then given a vertex v of D_m there exists a vertex u such that (v,u) is the 

arc of D_m. It follows that D_m has a directed cycle. However this cycle is obviously the cycle 

of D. So D is not acyclic. Contradiction.

Corollary: the probability that all D1 and D2 dependencies can be arranged from a lower to 

higher level is equal to the probability that these dependencies do not form cycles.

B. Calculation of the probability P that D1 and D2 dependencies do not form cycles if the 

orientations of all D2 dependencies are chosen randomly 
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The calculation of probability P was based on the analysis of the scheme of D1 and D2 

dependencies shown above. This scheme is equivalent to that given in Fig 2b of the main text, 

except that here, all D2 dependencies are divided in four classes based on their ability to form 

cycles. Each class is shown by its own colour. Red, green and blue dependencies correspond to 

A-minor interactions. Violet dependencies correspond to non-local pseudoknots.

rRNA secondary 

structure on the way between PTC and element P. For each dependency of this group, the 

inversion of the orientation will provide a cycle. The probability that none of these dependencies 

creates a cycle is thus P1 = 2-28.

Then, 13 green inter-branch dependencies can form additional cycles containing two or 

more such dependencies. For example, a simultaneous inversion of two green dependencies 

dependencies form a cycle is ¼, and, correspondingly, the probability that they do not form a 

cycle is ¾. The total probability P2 that all green dependences do not form cycles was 

determined through consideration of all possible combinations of orientations of the green

dependences. This analysis provides P2 = 207 × 2-10.

Finally, 13 blue as well as 2 violet dependencies do not provide additional opportunities 

for cycling compared to the red and green dependencies. 

The total probability of the absence of cycles is thus P = P1 × P2 = 207 × 2-38 -10.
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5. Supplementary Figure 1: The nucleotide sequence and the secondary structure of the symmetrical region 

in Domain V containing PTC

                            

The blue and red parts of the symmetrical region in Domain V correspond to the blue and red parts in Fig 2a of the 

main text). The boxed nucleotides are involved in the coordination of tRNA nucleotides C74 (magenta), C75 

(yellow) and A76 (cyan) in the P- (blue part) and A-sites (red part) (reviewed in Norbert Polacek and Alexander S. 

Mankin Critical Reviews in Biochemistry and Molecular Biology, 40:285–311, 2005). Nucleotides A2450 and 

C2501 are involved in base triple C2063-A2450-C2501 (not shown). The positions of removed elements 13, 35, 37 

and 43 are indicated. There is a strong symmetry between the two parts of the structure shown in this figure on the 

levels of secondary structure and function. However, on the level of tertiary structure, this symmetry does not 

include the peripheral helices [2077-2088; 2231-2243] and [2520-2545], which have different orientations. This 

difference is indicated by the inclination of helix [2520-2545] from the vertical orientation. Most probably, the 

difference in the orientation of the two helices has originated from the fact that the two helices are attached to the 

central part of the structure through flexible connections 2075-2076-2244 and 2518-2519-2546. Correspondingly, 

their orientations in the tertiary structure are dependent on their interactions with other parts of 23S rRNA.



55 
 

6. Supplementary Figure 2: The tertiary structure of the symmetrical region in Domain V containing PTC

 

 

                                  

The stereo-view of the superposition of the symmetrical region with its own image rotated for 180º. The red and 

blue parts correspond to those in the secondary structure (see Fig 2a of the main text and Supplementary Figure 1). 

In the rotated image, the brown and green parts are the same as red and blue, respectively. In general, the whole 

structure is reasonable, well superposable with its own image. The only parts of the structure that cannot be 

superposed are the peripheral helices [2077-2088; 2231-2243] and [2520-2545] (shown by arrows). We suggest that 

the whole symmetrical region emerged due to the duplication of a 110 nucleotide fragment. However, due to the fact 

that the peripheral helices [2077-2088; 2231-2243] and [2520-2545] were attached to the central part of this 

structure through flexible connections 2075-2076-2244 and 2518-2519-2546 (see Supplementary Figure 1), the 

particular orientation of the two helices became dependant on the interaction with other parts of 23S rRNA. 
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7. Supplementary Figure 3: The elements composing all structures shown in Fig. 3 of the main text A, B , C, D 

and E

A

 

B
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C

 
D

 
E
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F

 

ABCDE:

A, B, C, D, and E correspond to the equivalent images in Fig 3 of the main text. Red: the proto-ribosome; cyan: the 

foundation for the proto-ribosome; magenta: the three protuberances.

F:

All added elements shown in the format of Fig. 2b of the main text. Blue, green and brown are those elements that 

make structures B, C, and D, respectively. The elements forming protuberances are red. Although the expansion of 

the 23S rRNA structure does not go strictly level-by-level, each new element appears only when all elements that 

are required for its proper positioning have already been placed.
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1. INTRODUCTION

The ribosome is a large RNA-protein complex that performs the synthesis of proteins in 

all living organisms. The emergence of the ribosome has been a pivotal step in the evolution of 

life on earth. It is generally accepted that the ribosome emerged almost four billion years ago 

from the RNA world, in which the primordial chemical reactions of life were catalyzed by RNA 

(Crick-1968, Gilbert-1986). Correspondingly, the ancient ribosome represented an RNA body, 

while proteins were added to its structure later, when the ribosome became effective enough to 

synthesize them. The original ribosomal RNA (rRNA) is believed to have been a rather small 

molecule, which gradually expanded to the modern size through addition of new elements 

(Noller-2004, Hury-2006, Smith-2008). In order to understand details of this evolutionary 

process, one cannot use the standard approach of aligning available nucleotide sequences of 

ribosomal RNA and constructing phylogenetic trees. Due to the nature of that approach, its 

ability to elucidate evolutionary events in the past is limited by the moment when all branches of 

the phylogenetic tree come together, which corresponds to the so-called Last Universal Common 

Ancestor (LUCA). On the other hand, because in all presently living organisms the ribosome 

core has essentially the same structure (Gutell-1994, Doudna-2002), it should have formed 

before the split of the tree of life in three major domains, i. e. before LUCA. This discrepancy 

makes the standard approach inapplicable to the problem of early ribosome evolution and 

necessitates the development of alternative approaches.

The determination of the tertiary structure of the two ribosomal subunits (Ban-2000,

Wimberly-2000) and of the whole ribosome (Schuwirth-2005, Selmer-2006) opened new 

possibilities for understanding how the ribosome emerged in evolution. Several attempts have 

been made to approach the problem using the available structural and biochemical data (Hury-

2006, Smith-2008, Wuyts-2001). In particular, based on the fact that the peptidyl transferase 

center, which is the active site of the ribosome, is positioned in the middle of the tertiary 

structure of the 23S rRNA (Nissen-2000, Polacek-2005), it was considered as the most ancient 

part of the ribosome (Hury-2006). Correspondingly, domain V of 23S rRNA, which contains the 

peptidyl transferase center and forms contacts with most of the other domains, was also 

suggested to be the most ancient domain of the molecule. Other parts of the 23S rRNA appeared 

later and thus were positioned farther from the center and closer to the surface of the modern 

ribosome. A more detailed description of the evolution of 23S rRNA was hardly possible without 
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taking into consideration the real conformation of the ribosomal RNA, although how exactly the 

knowledge of the conformation could be used was not at all clear.

In this situation, we suggested that if indeed different parts of the ribosome structure 

emerged at different moments, it could be possible to distinguish between more recent and more 

ancient elements based on the way they interact with each other. More recent elements emerged 

after more ancient elements and are thus expected to structurally adapt for the proper interaction 

with the latter. Correspondingly, if we were able to detect signs of such adaptation, it would help 

us to determine the relative age of different elements and thus to figure out the order in which 

different elements joined the ribosome structure as it evolved. The idea that the evolution of 

rRNA could be followed not only based on the proximity of different elements to the peptidyl-

transferase center, i. e. based on the global position of elements in the whole ribosome structure, 

but also locally, based on the interaction between neighboring elements, was eventually 

developed into a new approach that we call here molecular palaeontology. We tested this 

approach on 23S rRNA from Escherichia coli and surprisingly found that the tertiary structure of 

this molecule contains a lot of information on the early evolution of the ribosome, which has 

been practically undisturbed for four billion years. The analysis of this information has allowed 

us to develop a concerted, modular scheme of the evolution of 23S rRNA which is described in 

the present article.

2. RESTRAINED EVOLUTION OF THE RIBOSOME STRUCTURE

We start the description of our approach by making some general suggestions concerning 

the situation in which the primordial ribosome was evolving. We divide the whole process of the 

ribosome evolution in two major periods, before and after the emergence of the first RNA 

molecule able to perform a ribosome-related function. Henceforth, we will call that RNA 

molecule the proto-ribosome. We may not know what the exact function of the proto-ribosome 

was, but this function should have been essential for the organism in which it appeared. We think 

that the proto-ribosome was relatively small, which allowed it to emerge as the result of a single 

mutagenic act. Prior to the appearance of the proto-ribosome, ribosome evolution could be

described as random reshuffling of RNA chains that was limited only by the capacity of the 

RNA-synthesizing machinery of the organism. However, when the proto-ribosome emerged and 
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spread in the population, the maintenance of the level of ribosome function achieved so far 

became an essential aspect for the competitiveness and survival of organisms.

The further expansion of the size of the ribosome is expected to have proceeded through 

a series of insertions in different regions of the polynucleotide chain. Although the location and 

the nucleotide sequence of each insertion presumably were completely random, only those 

insertions that made the ribosome more effective would have had a chance to spread in the

population and to be passed down to the following generations. This aspect allows us to 

formulate general constraints that an insertion should comply with to be propagated in evolution. 

These constraints pertain to the location of the insertion in the tertiary structure of the ribosome, 

to the conformation of the inserted fragment, and to the way it interacts with the existing parts of 

the ribosome that emerged previously.

First, the necessity to preserve the level of the ribosome function that was already 

achieved can be formulated on the structural level as a requirement that the insertion must not 

disturb the positions of nucleotides that were already present in the ribosome. This can only be 

possible if in the tertiary structure the 5’ and 3’ termini of the inserted fragment are positioned 

close to each other. Also, the inserted fragment should not interfere with the existing parts of the 

tertiary structure. These constraints would disfavour insertions in crowded areas (Figure 1A) and 

would favour those insertions that occur at the outskirts of the existing structure (Figures 1B and 

C). The inserted fragment is also expected to be fixed on the surface of the growing ribosome 

structure (Figure 1C), because only then the addition of the new structural element would not 

compromise the stability of the whole ribosome.

The final set of constraints imposes limits on the types of interactions that the newly 

emerged fragment can form with the already existing parts of the ribosome. In the tertiary 

structure of the rRNA, one can find many cases when one region of the polynucleotide chain can 

acquire a particular conformation only in the presence of another region. The most typical cases 

of this kind represent Watson-Crick double helices and A-minor motifs. In a double helix, the 

conformation of each of the two strands is fixed through base pairing with the opposite strand. In 

the A-minor motifs, which consist of a stack of unpaired nucleotides, predominantly adenosines, 

that pack with a double helix (Nissen-2001, Doherty-2001), the adenosine stack acquires a 

particular conformation only upon the interaction, with the double helix. For all such cases, we

suggest a general principle according to which structural integrity of more ancient elements 
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cannot be dependent on the presence of more recently acquired elements. For double helical 

regions, the application of this principle means that both strands of a helix should emerge 

simultaneously as parts of the same fragment. For A-minor motifs, it means that the adenosine 

stack cannot be a more ancient acquisition of the ribosome than the corresponding double helix. 

The latter constraint represents a type of adaption of a newly emerged element to the existing 

structural context and provides the asymmetry between more ancient and more recent elements 

of the ribosome structure.

3. DISMANTLING THE RIBOSOME STRUCTURE

Based on the constraints described above, we developed a procedure of systematic 

dismantling the structure of rRNA through elimination of those elements that are qualified as 

latest acquisitions of the ribosome. As an element, we considered an individual double helix or a 

domain of stacked nucleotides that would form a stable compact arrangement upon addition to 

the ribosome structure. The 5’ and 3’ termini of an element qualified as a latest acquisition must 

be structurally close to each other. A qualified element must contain both strands of the same 

double helix. Finally, if a qualified element forms an A-minor motif with the remaining 

ribosome, it must contain the stack of unpaired nucleotides that form this interaction, and not the 

double helix. All elements qualified as latest acquisitions of the ribosome thus constitute the last 

generation of acquired elements. Their removal would allow the identification of the second-last 

generation of acquired elements. The iterative procedure would be repeated until it reaches the 

proto-ribosome or until no more elements could be removed. Because this approach studies the 

process of development of a molecule of life through analysis of more and more ancient fossils 

of this molecule, it shares some features with palaeontology. Therefore, we name this approach 

molecular palaeontology.

The application of the described dismantling algorithm to the tertiary structure of 23S 

rRNA from E. coli (Schuwirth-2005) identified 59 elements which are distributed over 12 

generations (Bokov and Steinberg-2009). In Figure 2, these elements are depicted as numbered 

circles, and their positions in the 23S rRNA secondary structure are shown in Figure 3A. In 

Figure 2, the circles are connected by arrows, all of which go from a lower to a higher level. 

Each arrow A 

ribosome than A and that the emergence of B was dependent on the presence of A. Most arrows 
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are either black or red. Black arrows indicate that elements A and B are covalently connected in 

the way that the appearance of B before A would have compromised the integrity of the 

polynucleotide chain of 23S rRNA. Red arrows stand for the A-minor interactions between the 

double helix of element A and the nucleotide stack of element B. The appearance of B before A 

thus would have compromised the conformational integrity of element B.

two arrows correspond to the so-called non-local pseudoknots and indicate a special type of 

dependency that we faced in our analysis. By definition, pseudoknots constitute secondary 

structure arrangements in which the loop of a stem-loop structure forms a double helix with a 

region outside this stem-loop. The requirement that in each helix both strands should be part of 

the same element may create problems if in one of the two helices constituting a pseudoknot the 

strands belong to regions distant from each other in the secondary structure. 23S rRNA from E. 

coli contains eight pseudoknots, six of which are local in the sense that both helices constituting 

the pseudoknot are proximal to each other in the secondary structure of 23S rRNA and can thus 

belong to the same element. Only two pseudoknots are not local, those in which a double helix is 

formed between elements 40 and 33 and between elements 39 and 27 (Figure 2). A careful 

analysis of the latter two pseudoknots showed that in both of them one strand of the double helix 

is able to keep its structural integrity without forming base pairs with the opposite strand. For 

example, element 40 consists of a stem capped by a tetraloop, and it is the nucleotides of this 

tetra-loop that form the pseudoknot double helix with element 33 (Figure 4). Given that 

tetraloops represent compact stable arrangements, the integrity of element 40 does not need the 

presence of element 33. This aspect has allowed us to eliminate element 33 without jeopardising 

the integrity of element 40, even though the two elements form together a double helix. A similar 

situation pertains to elements 39 and 27, which together also form a double helix. Here, like in 

the previous case, the integrity of element 39 was judged not to be dependent on the presence of 

element 27. These two examples show that, on rare occasions, the requirement that two strands 

of the same helix should have emerged simultaneously can be violated. This can happen, 

however, only if, due to particular circumstances, the integrity of one of the two strands can be 

maintained without the presence of the opposite strand.
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4. THE ORIGIN OF 23S RRNA

The removal of the 59 elements identified by the analysis described above eliminated 

93% of the original 23S rRNA. The remaining part, which consists of 220 nucleotides, is located 

in domain V (Figure 3). The central region of this 220-nucleotide fragment forms the peptidyl-

transferase center. Recently, it was observed that this fragment has a symmetric structure 

(Agmon-2005). The symmetry is clearly seen on the levels of both secondary and tertiary 

structure (blue and red regions, Figure 3B). One half of this symmetric structure corresponds to 

the P site (blue), the other half to the A site (red). Moreover, there is a close correspondence 

between the positions of the nucleotides of the two halves that are involved in the fixation of the 

equivalent elements of the tRNAs in A and P sites (Samaha-1995, Nissen-2000, Kim-1999, 

Hansen-2002). In the polynucleotide chain of the remaining part, the P-site half precedes the A-

site half. The similarity between the two halves is so high that it is logical to suggest that they 

originated by a duplication of the same RNA fragment (Agmon-2005). From this point of view, 

the evolution of 23S rRNA started with an initial fragment of about 110 nucleotides, which 

presumably was able to bind the CCA terminus of what would later become tRNA. The 

duplication of this fragment allowed the resulting molecule to bind two CCA termini 

simultaneously. Within this arrangement, the two CCA termini associated with the two halves 

are juxtaposed in space to allow for the transpeptidation reaction. Most probably, this dimer was 

already able to synthesize oligopeptides with random amino acid sequences, hence the 

designation proto-ribosome. This view is supported by the fact that in-vitro-selected small RNA 

molecules resembling the peptidyl-transferase center were able to perform transpeptidation 

(Zhang-1997, Zhang-1998), thus demonstrating that this reaction does not require any other 

element of the ribosome structure.

All other elements of 23S rRNA were gradually added to the proto-ribosome, one 

element at a time, in essentially the same way. Each element could appear only when all 

elements that were required for its proper positioning had already been placed, as defined in 

Figure 2. New elements were added as insertions containing all necessary details to dock with 

the surface of the evolving ribosome without disturbing already existing parts. The most 

common way for a new element to be fixed on the ribosome surface would be through the 

formation of an A-minor interaction with an already existing double helix. As the number of 

added elements grew, the proto-ribosome became larger (Bokov and Steinberg-2009). As a 
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result, in the structure of the modern 23S rRNA, the age of different elements would generally 

correlate with their distance from the peptidyl transferase center (Figure 5). Even though this 

result may be considered as expected, the fact that it was not assumed at the outset of our 

analysis and has been obtained based solely on the consideration of local interactions between 

closely packed elements adds to the validity of the whole approach.

5. PROBABILISTIC QUANTIFICATION OF THE MODEL

In this section we provide a quantitative evaluation of the proposed model of 23S rRNA 

evolution. The question to address is whether the dismantling algorithm applied to an RNA 

molecule of a size of the 23S rRNA will always be able to eliminate practically the whole 

polynucleotide chain or, alternatively, for some structures it can be arrested before it reaches the 

end of the molecule. The question is equivalent to whether it is always possible to arrange all 

elements of an arbitrary RNA structure in the way shown in Figure 2, i.e. with all dependencies 

going from a lower to a higher level.

According to our analysis, the dismantling algorithm will always be able to reach the end 

of the molecule, as long as the dependencies between different elements existing in this molecule 

do not form cycles. For a given secondary structure, the presence or absence of such cycles 

would depend on the particular scheme of A-minor interactions. We can analyze, for example, 

(Figure 2) had the opposite direction. This would

mean that contrary to what happens in real 23S rRNA, the adenosine stack of this A-minor 

interaction now belongs to element 59, while the double helix is located in element 54. After 

such reorientation of dependence 54, 57 and 

The existence of this cycle will make each of the 

three elements 54, 57 and 59 dependent on the presence of the other two. Due to such inter-

dependence, the dismantling procedure will be automatically arrested when it reaches any 

element of this cycle. We thus can conclude that the elimination of all 59 elements of 23S rRNA 

has been possible due to the fact that the tertiary structure of the molecule does not contain 

cycles of dependency.

Interestingly, the reorientation of an A-minor interaction does not always lead to the 

formation of a cycle. For example, the reorientation of A-minor interaction

create a cycle and can be accommodated to the pattern of Figure 2 through the displacement
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of several elements: elements 1, 20 and 31 should move down one layer, while element 21 

should move up one layer. After these accommodations, all dependencies will again be oriented 

from a lower to a higher level.

If the evolution of 23S rRNA proceeded according to the scenario proposed here, i.e. 

through consecutive incorporation of local insertions and formation of A-minor motifs between 

adenosine stacks of more recently emerged elements and double helices of more ancient 

elements, the automatic outcome will be that the tertiary structure of 23S rRNA is free of cycles 

of dependency. An alternative explanation would be that such cycles are absent by chance, while 

the directions of the A-minor interactions did not play any specific role in the evolution of 23S 

rRNA. To discriminate between the two hypotheses, we analyzed the scheme presented in Figure 

2 and showed that, if the orientations of all A-minor motifs in 23S rRNA were not essential for

evolution and were chosen randomly, the probability that such structure did not contain cycles of 

dependency would have been P < 10 –9. Such a low probability allows us to conclude that the 

absence of cycles is a fundamental property of 23S rRNA that is directly related to the particular 

trajectory of its emergence.

6. THE SIMPLICITY OF THE RIBOSOME STRUCTURE

23S rRNA is a large molecule with a rather complex tertiary structure. However, the 

analysis we have performed indicates that a molecule of the size of 23S rRNA could have a 

much more complex tertiary structure. The strict constraints under which 23S rRNA has been 

evolving, namely the requirement for systematic incremental increase of ribosome efficiency, do 

not provide too much freedom for the appearance of exceedingly complex structures. In the 

following, the indicators of the relative simplicity of the tertiary structure of 23S rRNA are 

summarized:

(A.) The molecule is built based on the same simple concept applied to the structure over 

and over again. As a result, the tertiary structure of the whole molecule is characterized by global 

order, as illustrated by the common orientation of all A-minor motifs (Figure 2).

(B.) The requirement for the ribosome to have a stable structure after the addition of 

each new element limits the size of elements to be added. Indeed, for a large element that 

emerged spontaneously, the probability that it properly adapted to a rather heterogenic surface of 

the existing ribosome and became stably integrated would have been rather low. As a result, the
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average length of inserted elements was only 45 nucleotides and the length exceeded a hundred 

nucleotides only for two elements.

(C.) The structure of 23S rRNA is packed with A-minor interactions. The universal 

presence of the A-minor motif in the molecule can be explained by the relatively small size of 

newly emerged elements and the necessity to fix their positions on the surface of the ribosome. 

The fixation of an element with the help of an A-minor interaction does not require any special 

arrangement in more ancient elements except for the existence of a short double helical region. 

Given that double helices are common elements of RNA structure, such regions will always have 

been present in the vicinity of a new insertion. Also, a stack of unpaired adenosines can be 

arranged in almost any place of a newly emerged element, regardless of its structure. The A-

minor motif thus seems to be the easiest way for the integration of a new element into the 

existing ribosome structure.

(D.) The necessity for the ribosome to maintain the stability of its structure after addition 

of each new element precludes the existence of long unpaired regions. This aspect explains the 

high percentage of nucleotides of 23S rRNA that are involved in double helices.

(E.) The prohibition of long unpaired regions eliminates the possibility for the 

emergence of non-local pseudoknots in which fragments belonging to distant parts of the 

secondary structure form a long double helix. In the two non-local pseudoknots present in the 

23S rRNA, this helix contains only three or four base pairs. Moreover, in both pseudoknots the 

conformation of one strand of this helix can be stabilized by the particular structural context. The 

presence of such context seems to be essential for the ability of this strand to emerge before the 

appearance of the opposite strand.

7. THE DETERIORATING EVOLUTION OF MITOCHONDRIAL RIBOSOMES

The suggested model of the evolution of 23S rRNA is mainly based on the assumption of 

a systematic incremental increase of ribosome efficiency, which does not allow mutations 

rendering the ribosome less effective to propagate in evolution. This principle prohibits the 

emergence of elements whose structural integrity would require the emergence of additional 

elements in the future. It also prohibits deletions, thus providing for the incremental growth of

the size of the ribosomal RNA. However, if at some moment the priorities changed and the 

incremental increase of the ribosome efficiency became no longer essential for the
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competitiveness of the organism, the evolutionary path could have taken a dramatic turn. A case 

of this type seems to have happened with mitochondrial ribosomes from protozoa, which, 

compared to bacterial ribosomes, have lost essential parts of their rRNA (O’ Brien-2002, Mears-

2002). We associate this phenomenon with the fact that the function of mitochondrial ribosomes 

in these organisms has become limited to the synthesis of only a dozen mitochondrial membrane 

proteins encoded in the mitochondrial genome. Given that membrane proteins have a 

substantially longer lifespan than most soluble proteins and thus are not needed to be renewed 

every few hours, the requirements for the efficiency of the mitochondrial ribosomes are less 

stringent. As a result, the length of the RNA of these ribosomes can be reduced, and still the 

organism will remain perfectly functional.

One may suggest that the deterioration of the rRNA in these mitochondria repeats in the 

reverse order the same steps that took place during the primary emergence of the ribosome. We 

do not support this suggestion and think that the two processes have very little, if anything, to do 

with one another. They have also taken place in essentially different conditions: the deleted parts 

of RNA in mitochondrial ribosomes are usually replaced by proteins. This replacement would 

compensate, at least partly, for the loss of the RNA part, which results in a twice as high protein 

content in mitochondrial ribosomes compared to cytosolic ribosomes (O’ Brien-2002).

8. TERTIARY STRUCTURE VERSUS NUCLEOTIDE SEQUENCE

The results of our analysis strongly suggest that most elements of the modern 23S rRNA 

have practically the same tertiary structure as they had at the moment of their emergence. This 

suggestion correlates with the directionality of the A-minor interaction in the modern ribosome 

and with the fact that the ribosome core is conserved among all organisms. However, the 

conservation of the secondary and tertiary structure of rRNA still allowed some drift of the 

nucleotide sequence which is responsible for the existing variety of nucleotide sequences of 

rRNA. Interestingly, the analysis of rRNA sequences showed that the most variable parts 

correspond to double-helical regions, while unpaired regions exhibit much stronger conservation 

(Smit-2007). This aspect further supports the idea that the preservation of tertiary arrangements, 

which are mostly modulated by unpaired regions, was more important for ribosome assembly 

and function than particular nucleotide sequences of double-helical regions.
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Interestingly, while most sequence modifications of rRNA can be considered to result 

from neutral drift, some changes seem to have been essential. Thus, when the original 

duplication of the 110-nucleotide fragment created the proto-ribosome, the coexistence of two 

identical fragments in the same molecule should have created a problem for proper folding. In 

particular, those parts of the polynucleotide chain that in the original 110-nucleotide fragment 

formed double helices now got a possibility to form helices both within each half and between 

the two halves. To avoid such folding problems, there should have been a strong evolutionary 

pressure to make the nucleotide sequences of both halves of this structure as different as 

possible. The modification of the nucleotide sequences of the two halves of the proto-ribosome 

presumably has tuned the structure of the peptidyl transferase center toward higher efficiency of 

the transpeptidation reaction. As a result, in the modern ribosome, a similarity between the 

nucleotide sequences of the two halves of the symmetric structure in domain V is not detectable,

despite the fact that the symmetry is clearly seen in both secondary and tertiary structure.

To conclude, we can say that the secondary and tertiary structure of ribosomal RNA has 

been substantially more conserved than the nucleotide sequence, which makes the molecular 

palaeontology approach described here a valuable tool for analysis of the early ribosome 

evolution.
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FIGURES

Figure 1  

Different types of accommodation of a newly emerged insertion to an existing proto-ribosome.

(A) If the new insertion (red) occurred in a crowded area of the existing molecule (black), it could result in the 

breakage of the whole tertiary structure. 

(B, C) If the insertion occurred at the outskirts of the ribosome structure, it would not disturb the tertiary structure. 

(B) If the insertion has a loose conformation, it would create problems for folding and integrity of the ribosome 

structure. 

(C) If the insertion has a compact structure and can be fixed on the surface of the ribosome, it would stabilize the 

whole structure and will have a chance to propagate in evolution.
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Figure 2

Dismantling the tertiary structure of 23S rRNA. 

Removed elements are shown by numbered circles. The position of each element in the 23S rRNA secondary

structure is shown in Figure 3A. Elements belonging to the same generation of acquired elements are shown with the 

same color. Generations are numbered from 1 to 12. Roman numerals indicate secondary structure domains. PTC 

stands for the symmetric structure in domain V containing the peptidyl-transferase center (the proto-ribosome, see 

also Figure 3B the removal of A before B would 

compromise the integrity of the remaining ribosome. Black arrows denote covalent connections between the 

respective elements, red arrows A-minor interactions; violet arrows denote a double helix which would correspond 

to a non-local pseudoknot (Modified from Bokov and Steinberg, Nature 457: 977–980, 2009)
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Figure 3 

(A) Positions of stepwise removed elements in the secondary structure of 23S rRNA.

Numbers and colors of the elements correspond to those shown in Figure 2. The blue and red structure in domain V 

(PTC) stands for the proto-ribosome. The red and blue parts of the proto-ribosome correspond to the A and P sites, 

respectively. 

(B) Symmetry in the proto-ribosome.

The three numbered circles stand for the elements of domain V immediately attached to the proto-ribosome. Colored 

circles show the positions of the nucleotides in the two parts of the proto-ribosome that coordinate nucleotides A76

(blue), C75 (yellow) and C74 (magenta) of tRNAs. The inclination of the lower double helix of the A-site part of the 

proto-ribosome indicates that in the ribosome structure its position is not completely symmetrical to the 

corresponding double helix in the P-site part (Modified from Bokov and Steinberg, Nature 457: 977–980, 2009)
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Figure 4 

The formation of the non-

The blue area depicts the presumed structure of 23S rRNA just before the emergence of element 33. Element 40 (red 

+ yellow) represents a stem capped by a tetraloop. (A) The integrity of element 40 does not require the presence of 

element 33. (B) The position of the newly emerged element 33 (black + magenta) can be stabilized by the formation 

of a double helix with element 40, which constitutes the pseudoknot.
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Figure 5 

The expansion of the 23S rRNA structure as it evolved. 

1: the proto-ribosome, 2 – 5: the size of the 23S rRNA after 8 (2), 20 (3), 50 (4) and all 59 (5) elements have been 

added to the proto-ribosome. 6: the area of the 50S subunit that does not include rRNA. Green: 30S subunit 

(Modified from Bokov and Steinberg, Nature 457: 977–980, 2009)
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ONE SENTENCE SUMMARY

We elucidated the common mechanism of ratchet-like motion and domain closure in the 

ribosome structure and the way these rearrangements are regulated.

ABSTRACT

Comparison of the ribosome crystal structures in non-ratcheted and ratcheted conformations 

has revealed the nature of rearrangements that take place in the ribosome during the ratchet-like

motion. Unexpectedly, the rearrangements occur within the small subunit and not between the 

subunits. Each tertiary domain of 16S rRNA moves along its own trajectory, the scale and direction 

of which is limited by flexible inter-domain linkers. The rearrangements observed during ribosome 

ratcheting recapitulate in reverse order those that lead to small subunit domain closure. They can be 

blocked by the A-minor interaction between adenosines 1492 and 1493 of 16S rRNA and the A-site 

codon-anticodon double helix, suggesting that these adenosines play the role of the universal switch 

between the two ribosomal conformations.

INTRODUCTION

The ribosome is a large RNA-protein complex that performs protein synthesis in all living

organisms (Rodnina-2011, Spirin-2009). It consists of two subunits, small and large, named SSU

and LSU respectively. At certain steps of its functional cycle, the ribosome undergoes specific 

rearrangements known as the ratchet-like motion (Frank-2000, Frank-2007, Spahn-2004, Julián -

2008, Horan-2007) (RLM). In particular, RLM takes place during the translocation, when the 

peptidyl- and deacylated tRNAs are displaced from the A- and P- to the P- and E-sites, respectively, 

while the associated mRNA moves three nucleotides in the 5’-direction (Rodnina-2011).

Originally, RLM was described as a -counter-clockwise rotation between SSU and LSU (Frank-

2000). Additional studies suggested that the rearrangement is more complex, as different domains 

within SSU can also move with respect to each other (Ogle-2002, Ogle-2003, Ratje-2010, 

Agirrezabala-2012). The co-existence of different types of movements between the two subunits 

and within SSU raises a number of questions, including how can these movements cooperate with 

each other in providing for a particular function without jeopardizing the integrity of the ribosome 

structure, and how can they be regulated. Important information to address these questions can be 

obtained through comparison of the available ratcheted and non-ratcheted ribosome structures.
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Here we present results from a systematic comparison of partly ratcheted and non-ratcheted 

ribosome conformations primarily derived from analysis of three crystal forms of the E. coli

ribosome in which a 3 -to- -ratcheted ribosome (termed ‘R’ here) is co-crystallized with a non-

ratcheted ribosome (termed ‘N’ here) (Zhang-2009). The crystal forms (henceforth, named crystals) 

differed by the number of anticodon stem-loops (ASL) associated with each ribosome, i.e. zero, one 

or two, (termed ‘0’, ‘1’ and ‘2’, respectively). These crystal structures were selected for analysis 

specifically because of the presence of a varying number of ASLs, which proved to be an essential 

element of the results. 

The analysis was performed through a series of superpositions of different ratcheted and 

non-ratcheted ribosome conformations. Each superposition was obtained as the best overlap for a

given part of ribosomal RNA, henceforth called the “nucleus”. Then, each nucleotide of the 

ribosome was examined to determine whether it co-superposed with the nucleus. All superpositions

were made in parallel within all three pairs of co-crystallized ribosomes: N0-R0, N1-R1 and N2-

R2. The results presented here are mainly derived from superpositions in the N2-R2 pair. For the

N0-R0 and N1-R1 pairs, the results are discussed only when they were found to deviate 

significantly from those observed for the N2-R2 pair.

MOBILE DOMAINS IN THE RIBOSOME STRUCTURE 

For the first superposition, the entire 23S rRNA was used as the nucleus, which gave a root 

mean square deviation (RMSD) of 1.5 Å. However, we noted that the average deviation of 1.5 Å

was exceeded for 13% of nucleotides, almost all of which were located on the ribosome surface and

represented local disturbances (non-colored regions in Fig. 1A, the complete list is provided in 

Supplemental materials). The RMSD for only these regions was 3.7 Å. We term these flexible

regions on the ribosome surface “curls”. Since the structural perturbations found in the curls 

seemed to be unrelated to the displacement between the two subunits, we ignored these regions in 

subsequent analysis. When the curls were excluded, the RMSD for this superposition dropped more 

than twofold to 0.69 Å. This allowed us to conclude that the core of 23S rRNA in both R2 and N2 

structures has practically the same conformation and thus represents a rigid tertiary domain. 

In the same superposition, the RMSD of 16S rRNA was above 7 Å. This result was 

expected, given that ratcheted (R2) and non-ratcheted (N2) structures of SSU relative to LSU were 

being superposed. At the same time, the central part of helix 44 (h44) enclosed between base pairs 
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1415-1485 and 1430-1470 (Fig. 1B), which forms most of inter-subunit bridges (Yusupov-2001,

Gao-2003), superposed substantially better, with RMSD=1.3 Å (henceforth, we name this region 

h44c, c=center). The close superposition of the h44c region suggests two possible mechanisms of 

RLM. In the first mechanism, which is currently generally accepted (Frank-2000, Dunkle-2011),

the rearrangements leading to RLM take place at the interface between the ribosomal subunits. The 

good superposition of h44c would thus reflect the proximity of this part of 16S rRNA to the center 

of rotation. Thus, for a given angle of ratcheting, the absolute displacement of nucleotides of region 

h44c would be relatively small. In the alternative mechanism, h44c remains immobile with respect 

to LSU, while the rearrangements leading to subunit rotation occur mostly or exclusively elsewhere 

in SSU. Such a mechanism would require the existence of flexibility in the 16S rRNA structure

outside of h44c that would allow the external parts of SSU to be displaced with respect to the 

immobile central part.

To distinguish between these two alternative mechanisms, we superposed the 16S rRNA 

structure in three different ways, using as nuclei, each of the three secondary structure domains D1, 

D2 and D3 (Wimberly-2000). In each superposition, we then determined those areas of the 16S 

rRNA structure in which the RMSD of each nucleotide in the two superposed structures did not 

exceed 1.2 Å. This threshold value was chosen empirically, as it resulted in the optimal resolution 

of mobile and immobile elements. The results of these superpositions are presented in Fig. 1B.

They show that the core of each secondary structure domain in the ratcheted ribosome is well 

superposed with the equivalent region in the non-ratcheted ribosome. None of the three domains 

co-superposes with the large subunit or with h44c. Thus, we conclude that the cores of all three 

secondary structure domains represent solid entities that are mobile with respect to each other, to 

h44c and to the large subunit. 

Within 16S rRNA, we found regions that belong to one secondary structure domain yet co-

superpose and form a tight tertiary arrangement with another. In particular, a large area at the center 

of the 16S rRNA secondary structure co-superposes and is tightly attached to D2 (Fig. 1). Also, 

four local elements, which we call “linkers” (elements L1-L4 in Fig. 1B), co-superpose and form 

tight interactions with domains that are distant from them in the secondary structure. A similar

element was found in LSU (linker L5 in Fig. 1A). Although this element is located in helix 69 of 

23S rRNA (H69), it is tightly attached to and moves in unison with domain D2 of 16S rRNA (Ali-

2006). Based on these findings, we define tertiary domains T1, T2 and T3 as those consisting of the 
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self-superposable parts of the secondary structure domains D1, D2 and D3 together with the linkers

that are tightly bound to each of them (Fig. 1B). The RMSD values calculated for the three tertiary 

domains were 0.71 Å, 0.65 Å and 0.67 Å, respectively. This indicates that each domain represents a

solid entity that moves along its own trajectory. The same was also true for h44c, whose RMSD 

value was determined as 0.62 Å. Other parts of the secondary structure domains, which were not 

included in any tertiary domain, were labeled as curls and excluded from further analysis (non-

colored regions in Fig. 1B and Supplemental material).

TRAJECTORIES OF THE MOBILE DOMAINS

The fact that the three tertiary domains of 16S rRNA and region h44c move as solid bodies 

allows us to determine their trajectories with respect to 23S rRNA when the ribosome undergoes 

transition from the non-ratcheted to ratcheted conformation. Each trajectory can be represented as a 

rotation around and a shift along an axis. For each domain, we determined the position and 

orientation of the axis, the scale of the rotation and the shift (Supplemental material). Although 

such representation is not ideal, as the orientation of an axis can depend on the amplitude of the 

rotation, it provides valuable qualitative information about the character of the domain movements.

As shown in Fig. 2 and in (Supplemental material), the T1, T2 and T3 tertiary domains 

rotate, respectively, roughly in the same direction consistent with RLM. For 

the three domains, the axes of rotation are different and are notably inclined towards the lower part 

of the ribosome. The strongest inclination is observed for the axis of the T1 rotation, which deviates 

from the perpend As a consequence of the inclination of the 

T1 axis, this domain effectively moves towards the large subunit, thus narrowing the inter-subunit 

gap. While each of the two domains T1 and T2 moves practically along the same trajectory in all 

three crystals, the trajectory of T3 in crystals N1-R1 and N2-R2 is different from that in R0-N0.

The difference originates from the presence of the P-site ASL in crystals N1-R1 and N2-R2, where 

this ASL interacts with T3, thus affecting its mobility (Zhang-2009).

For the h44c region, the parameters of rotation are found to be notably different from those 

for the T1, T2 and T3 domains. Although in all three of the crystals analyzed, h44c was also found 

to rotate with respect to 23S rRNA, the angle of rotation was always under 3 and 2-4 times smaller 

than for any of the three tertiary domains (Supplemental material). We thus conclude that the h44c

region does not move together with the other domains and, compared to them, remains almost 
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immobile with respect to the LSU. Therefore, most of the rearrangements in the ribosome structure

occur within the SSU outside the h44c region and they are not the result of a rotation between the 

two subunits, as previously thought. This conclusion is consistent with previous observations that in 

the ratcheted ribosome conformation, all inter-subunit bridges in the h44 region preserve their 

integrity (Zhang-2009, Ben-Shem-2010, Jin-2011).

CONFORMATIONAL CYCLES IN 16S RRNA

Given that the tertiary domains move as solid entities, the conformational rearrangements in 

16S rRNA that provide for RLM should occur in the flexible inter-domain regions. Within the 16S 

rRNA secondary structure, T2 is directly connected to T1 and to h44c (Fig. 1B). Also, linkers L1 

and L2 connect T2 to T1 and T2 to h44c, respectively, while linker L4 connects h44c to T1.

Through these five connections, the three rigid entities T1, T2 and h44c form the conformational 

cycle T1-T2-h44c-T1. Within this cycle, the movements of the three domains are limited and

mutually dependent. In particular, in the three crystals analyzed, the amplitudes of T1 and T2 

rotation are always proportional to each other (Supplemental material), which is consistent with 

previous studies (Agirrezabala-2011).

Out of the five connector regions, four demonstrate only minor changes: in each case,

neighboring nucleotides are only slightly displaced with respect to each other without breaking 

interactions that they form. However, in the fifth connection between h44c and T2 (Fig. 1B), the 

rearrangement is more notable. While h44c remains practically immobile, the upper part of h44

together with the whole T2 domain bends in the direction of the E-site by 6.1 -8.4 .

The displacement of the T3 domain with respect to T2 is due to conformational 

rearrangements in two regions. The first region consists of four consecutive WC base pairs formed 

by nucleotides 929-932 and 1385-1388 (between T2 and T3, Fig. 1B). Previous studies have shown

that this region undergoes structural deformations during D3 swivelling (Schuwirth-2005). The 

second region consists of the four WC base pairs formed by nucleotides 1070-1073 and 1102-1105. 

The conformational flexibility in this region allows the L3 linker to be firmly attached to domain 

T2 while domain T3 is moving (Fig. 1B). As in the previous cases, all rearrangements in both 

regions represent only minor changes in positions of individual nucleotides without breaking base 

pairs. The existence of two covalent links between the T2 and T3 domains creates another 

conformational cycle T2-T3-T2 in 16S rRNA, which would limit both the direction and the scale of 
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the T3 movement with respect to T2. However, given that the two flexible regions are located in 

close proximity in the tertiary structure, the ability of this conformational cycle to restrict the T3 

movement would be limited. This explains the relatively high amplitude of the T3 movement 

compared to the other tertiary domains (Frank-2007, Ratje-2010, Schuwirth-2005).

Each of the two conformational cycles identified in 16S rRNA is responsible for a particular 

type of rearrangement in the SSU: the movement within cycle T1-T2-h44c-T1 provides for RLM, 

while the movement within cycle T2-T3-T2 results in the head swivel. The fact that in the ribosome 

structures analyzed each of the two movements occurs regardless of the other confirms earlier

observations of their independence from each other (Ratje-2010, Zhang-2009, Guo-2012).

ADENOSINE 1492 AND 1493-MEDIATED BLOCKAGE OF RLM

Further analysis unexpectedly showed that in the different crystals, the location of the hinge 

between h44c and T2 is different and depends on the presence of an ASL in the A-site. In crystals 

N0-R0 and N1-R1, where the A-site is empty, the hinge occurs in the internal loop containing 

adenosines 1492 and 1493 (A1492/3). In both crystals, this loop displays substantial conformational 

flexibility (Fig. 3A). However, in crystal N2-R2, where an ASL occupies the A-site, the whole

upper part of h44, including A1492/3 and the flanking double helical regions, becomes part of T2.

The hinge between h44c and T2 is now located between base pairs 1414-1486 and 1415-1485 (Fig. 

3B), where h44 bends towards the minor groove by 3.3 . The difference in the position of the hinge 

is due to the A-minor interaction formed in the N2-R2 crystal between A1492/3 and the A-site 

codon-anticodon double helix (Ogle-2002). In the absence of this interaction, the A1492/3 internal 

loop does not have a distinct conformation and easily adapts to the displacement of domain T2 with 

respect to h44c. However, the formation of this interaction in crystal N2-R2 organizes the structure

of the entire region surrounding A1492/3 and monolithically attaches it to T2.

To validate the biological relevance of the bending observed in crystal N2-R2, we looked 

for the reasons of its localization between base pairs 1414-1486 and 1415-1485. We found that due 

to the distinct position of the two base pairs, bending between them in the direction of the minor 

groove would move the upper part of h44 along the subunit interface without interfering with other 

parts of the ribosome. This aspect makes the junction between base pairs 1414-1486 and 1415-1485 

a potential site for bending. Also, in the tertiary structure of the SSU we found two additional 

elements which would work to minimize the amplitude of bending between these base pairs. First, 
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in most bacteria, base pairs 1414-1486 and 1415-1485 are U-G and G-U, respectively. As explained 

in (Supplemental material), two consecutive base pairs U-G and G-U create a serious obstacle for 

bending of the double helix towards the minor groove. Second, in the tertiary structure of 16S 

rRNA, the minor groove of h44 between base pairs 1410-1490 and 1415-1985 tightly interacts with 

linker L2 (helix 27), which solidifies the conformation of h44 (Supplemental material). We thus 

strongly suggest that the bending of h44 as observed in ribosome R2 is not physiologically relevant 

and has only been possible because the angle of the ratcheting is relatively small. We therefore

expect that in a normally functioning ribosome, the formation of the interaction between A1492/3 

and the minor groove of the A-site codon-anticodon double helix will effectively block the 

ratcheting.

RATCHET-LIKE MOTION AND DOMAIN CLOSURE

The existence of the conformational cycles limits the direction and the amplitude of the 

movement of the domains, so that they can displace only along the particular trajectories. It is 

known, however, that during the selection of aminoacyl-tRNA, the SSU undergoes another type of 

rearrangement, the domain closure, which is accompanied by the formation of interaction between 

G530 and A1492/3 of 16S rRNA with the A-site codon-anticodon double helix (Ogle-2002, Ogle-

2003). In view of the restrictions imposed by the conformational cycles on the flexibility of the 

SSU, it seems probable that RLM and domain closure represent related rearrangements. To 

determine whether or not the domain closure has any relation to RLM, we analyzed several X-ray 

conformations of the SSU that had been previously qualified as open or closed (see Figure 4

legend). Comparison of these conformations revealed the same rigid domain movement as observed 

for RLM (Supplemental material). In other words, the transition between open and closed SSU

conformations involves the same rigid tertiary domains and the same flexible regions as during 

RLM.

We then superposed the available open and closed conformations of 16S rRNA as well as 

the conformations of 16S rRNA in the ratcheted and non-ratcheted ribosomes, by using h44c as the 

nucleus, and determined the angle of rotation of T2 with respect to h44c. Using h44c as the nucleus 

allowed us to focus on rearrangements within the SSU, filtering them from possible minor 

displacements of h44c with respect to the LSU. Figure 4 demonstrates that closed conformations of 

the SSU correspond to the non-ratcheted ribosome, while more open SSU conformations
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correspond to a more ratcheted ribosome. These results lead us to the general conclusion that RLM

and the domain closure represent equivalent rearrangements in the SSU going in opposite 

directions. The two types of rearrangements thus constitute the mirror images of each other. The 

structural symmetry of the domain closure and the RLM is echoed by functional symmetry: while 

the domain closure is known to be accompanied by the formation of the interaction between 

A1492/3 and the A-site codon-anticodon double helix (Ogle-2002, Ogle-2003), RLM requires that

this interaction be broken.

The mechanism of symmetrical structural rearrangements during domain closure and RLM 

explains the origin of the open form of the SSU prior to the next elongation cycle. According to the 

position of the open form in Figure 4, it corresponds to about 60% of the full ratchet.  We thus 

suggest that the open form of the SSU appears at an advanced phase of the translocation as a pause 

in the transition from the ratcheted to non-ratcheted SSU conformation. Because the open form is 

known to allow the initial codon-anticodon recognition, by the time the SSU assumes this form the 

translocation of both mRNA and the anticodon loops should have already finished. At the same 

time, the open form should be sufficiently distant from the non-ratcheted conformation to disallow 

the interaction of A1492/3 with the A-site codon-anticodon double helix. Thus, the primary 

selection of a new aminoacyl-tRNA takes place before the reverse ratcheting is complete, while the 

completeness is achieved during the subsequent closure of the domains.

CONCLUDING REMARKS 

The results of the analysis presented here clearly demonstrate the existence of several levels 

of restrictions limiting conformational flexibility of the ribosome structure during RLM. First,

practically all rearrangements in the ribosome structure associated with RLM take place within the 

SSU and not between the subunits, as was previously thought. While h44c is tightly attached to the 

LSU, the rest of the SSU moves with respect to h44c. Even though some minor movements of h44c 

with respect to the LSU have been detected, they do not change the system of inter-subunit 

contacts. The tight attachment of h44c to the LSU guarantees the integrity of the subunit association

throughout the whole elongation of translation. Although each tertiary domain of SSU can move

along a trajectory that is different from those of the other domains, the existence of the two 

conformational cycles sharply restricts the domains` mobility. Within cycle T1-T2-h44c-T1, the 

displacement of domains T1 and T2 is virtually reduced to one-dimensional back-and-forth 
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movement. The residual flexibility existing in the upper part of h44c can be diminished through the 

choice of base pairs 1414-1486 and 1415-1485 and with help of linker L2. On the one hand, such

restrictions on domain movement would guarantee the integrity of the SSU tertiary structure. On 

the other hand, only when the mobility of the tertiary domains is already substantially reduced, the 

particular interaction of A1492/3 with the A-site codon-anticodon double helix is able to effectively 

control RLM. The formation of the latter interaction is linked to domain closure and is important 

for the identification of the cognate aminoacyl-tRNA; its breakage unleashes RLM and leads to 

translocation. 
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FIGURES

Figure 1

Rigid tertiary domains in 23S (A) and 16S (B) rRNA

Each domain is shown by its own background color: 23S rRNA + h44c (yellow), T1 (green), T2 (magenta) and T3 

(blue). Regions outside the colored areas are curls. Within each domain, small circles indicate curls composed of 

individual nucleotides. The five linkers L1-L5 are contoured by a red line. The complete description of all regions is 

provided in (13).
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Figure 2

Displacement of tertiary domains T1, T2 and T3 during the ratchet and the swivel

The small subunit is seen from the subunit interface (A) and from the A-site (B). All domains are colored as in Figure 

1. The axes of the T1, T2 and T3 rotation with respect to 23S rRNA are shown for crystal N2-R2. The color of each 

axis corresponds to the color of the domain. Linkers L1-L4 are shown in CPK representation. The parameters of all 

movements are provided in Supplemental material).
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Figure 3

The division of h44 between domains T1 (green), T2 (magenta) and h44c (yellow) in crystals N1-R1 (A) and N2-

R2 (B)

The colored lines show the discrepancies in the position of the given nucleotide in the non-ratcheted and ratcheted 

conformations of 16S rRNA, when the corresponding domains are superposed. The scale in angstroms is shown at the 

top. The grey vertical lines correspond to the threshold discrepancy of 1.2 Å. Thick curves indicate that the given 

region is a part of the corresponding tertiary domain. Adenosines 1492-1493 are shown by big letters. The border 

between T2 and h44c is marked by red arrows.
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Figure 4

The angle of rotation of domain T2 with respect to h44c in different open and closed conformations of the SSU 

(above the axis) and in different ratcheted and non-ratcheted ribosome conformations (below the axis)

The position of domain T2 in ribosome N1 is taken as the reference point. The open and closed conformations of the 

SSU: E (Wimberly-2000) (open) pdb 1j5e; A (Ogle-2002) (partly closed) pdb 1n32; N (Schmeing-2009) pdb 2wrn, Q

(Schmeing-2009) pdb 2wrq, G (Jenner-2010) pdb 3i8g; H (Jenner-2010) –pdb 3i8h (all closed). Non-ratcheted N0, N1, 

N2 and partly ratcheted R0, R1, R2 ribosomes are those analyzed throughout the text (Zhang-2009). N3, R3 – non-

ratcheted and fully ratcheted ribosomes (Dunkle-2011) (pdb 4gd2 and 4gd1, respectively).   
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SUPPLEMENTARY DATA 1: Identification of tertiary domains

The rigid tertiary domains were identified through systematic comparison of the ribosome 

structures within pairs N0-R0, N1-R1 and N2-R2. Although in the three cases, the exact locations 

of the tertiary domains are a little different, in most cases, the differences are not essential. The only 

essential difference takes place in the upper part of helix h44 (see Fig 3 of the main text) 

1.1 The analyzed structures

Supplementary Table 1. The pdb--codes of the analyzed structures

Crystal N0-R0 N1-R1 N2-R2 
Non-ratcheted ribosomes (SSU/LSU) 3i1o / 3i1p 3i1s / 3i1t 3i21 / 3i22 
Ratcheted ribosomes (SSU/LSU) 3i1m / 3i1n 3i1q / 3i1r 3i1z / 3i20 

1.2 Parts of the ribosomal RNA taken for analysis 

Analysis of 23S rRNA was performed based on position of nucleotides 1-878, 898-2110, 

2179-2903, which were present in all six analyzed ribosome structures N0, N1, N2, R0, R1, R2). 

The same for 16S rRNA: 6-1534

1.3 Tertiary domains in 23S rRNA and in 16S rRNA 

23S rRNA: 

The whole length of 23S rRNA, 

Excluding the above-mentioned regions that do not exist in all analyzed ribosome structures 

Excluding linker L5 (nucleotides 1906-1924); 

Excluding curls (the list of the nucleotides involved in curls is provided in Supplemental data 5) 

16S rRNA: 

Domain T1 includes: 

Secondary structure domain D1 (nucleotides 27-556); 

Including linker S1 (nucleotides 606-634); 

Including linker S4 (nucleotides 1431-1469) 

Excluding curls (the list of the nucleotides involved in the curls is provided in Supplemental data 5) 
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Domain T2 includes: 

Secondary structure domain D2 (nucleotides 567-912); 

Excluding linker S1 (nucleotides 606-634) – goes to domain T1 

Excluding linker S2 (nucleotides 888-896) – goes to h44c 

Including linker S3 (nucleotides 1074-1083); 

Including the upper part of h44 and entire h45 (nucleotides 1397-1408, 1494-1534);

Including the central part of 16S (nucleotides 5-26, 913-930, 1387-1396) 

Including linker S5 from 23S rRNA (nucleotides 1906-1924); 

Excluding curls (the list of the nucleotides involved in the curls is provided in Supplemental data 5) 

Domain T3 includes: 

Secondary structure domain D3 (nucleotides 935-1380) 

Excluding linker S3 (nucleotides 1074-1083) – goes to domain T2 

Excluding curls (the list of the nucleotides involved in the curls is provided in Supplemental data 5) 

Element h44c includes: 

Nucleotides 1415-1430, 1470-1485 of helix h44 

Including linker S2 (nucleotides 888-896 of helix h27)

1.4 Superposition of domains and elimination of curls 

1.4.1 Entire 23S rRNA 

Supplementary Table 2. 23S rRNA, Superposition by all atoms of phosphorus

Crystal RMSD 
N0-R0 1.21 Å 
N1-R1 1.11 Å 
N2-R2 1.22 Å 

Supplementary Table 3. 23S rRNA, The % of atoms of phosphorus exceeded (curls) and fitted in 

(parts of the rigid domain) the threshold of 1.2 Å (D = deviation)

Crystal % of D>1.2 Å (curls) % of D<1.2 Å 
R0-N0 12.68%; RMSD = 3.07 Å 87.32%; RMSD = 0.55 Å 
R1-N1 11.54%; RMSD = 2.91 Å 88.46%; RMSD = 0.55 Å 
R2-N2 15.77%; RMSD = 2.7 Å 84.23%; RMSD = 0.64 Å 
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1.4.2 16S rRNA: Domain D1 
Supplementary Table 4. Domain D1, Superposition by all atoms of phosphorus

Crystal RMSD 
N0-R0 1.31 Å 
N1-R1 1.21 Å 
N2-R2 1.28 Å 

Supplementary Table 5. Domain D1, The % of atoms of phosphorus exceeded and fitted in the           
threshold of 1.2 Å

Crystal % of D>1.2 Å (curls) % of D< 1.2 Å 
N0-R0 21.0%; RMSD = 2.55 Å 79.0%; RMSD = 0.65 Å 
N1-R1 18.2%; RMSD = 2.44 Å 81.8%; RMSD = 0.68 Å 
N2-R2 23.0%; RMSD = 2.33 Å 77.0%; RMSD = 0.71 Å 

1.4.3 16S rRNA: Domain D2 
Supplementary Table 6. Domain D2, Superposition by all atoms of phosphorus

Crystal RMSD 
N0-R0 0.77 Å 
N1-R1 0.82 Å 
N2-R2 0.82 Å 

Supplementary Table 7. Domain D2, The % of atoms of phosphorus exceeded and fitted in the     
threshold of 1.2 Å

Crystal % of D>1.2 Å (curls) % of D<1.2 Å 
N0-R0 9%; RMSD = 1.81 Å 91%; RMSD = 0.57 Å 
N1-R1 10%; RMSD = 1.88 Å 90%; RMSD = 0.6 Å 
N2-R2 8.3%; RMSD = 2.05 Å 91.7%; RMSD = 0.59 Å 

1.4.4 16S rRNA: Domain D3 

Supplementary Table 8. Domain D3, Superposition by all atoms of phosphorus

Crystal RMSD 
N0-R0 1.15 Å 
N1-R1 0.93 Å 
N2-R2 1.03 Å 

Supplementary Table 9. Domain D3, The % of atoms of phosphorus exceeded and fitted in the 

threshold of 1.2 Å

Crystal % of D>1.2 Å (curls) % of D <1.2 Å 
N0-R0 25.2%; RMSD = 1.95 Å 74.8%; RMSD = 0.7 Å 
N1-R1 13.1%; RMSD = 2.06 Å 86.9%; RMSD = 0.6 Å 
N2-R2 17%; RMSD = 2.01 Å 83%; RMSD = 0.68 Å 
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1.4.5 16S rRNA: Element h44c 
Supplementary Table 10. Element h44c, Superposition by all atoms of phosphorus

Crystal RMSD 
N0--R0 0.56 Å 
N1--R1 0.64 Å 
N2--R2 0.71 Å 

Supplementary Table 11. Element h44c, The % of atoms of phosphorus exceeded and fitted in the 

threshold of 1.2 Å

Crystal % of D>1.2 Å (curls) % of D <1.2 Å 
N0-R0 2.4%; RMSD = 1.41 Å 97.6%; RMSD = 0.52 Å 
N1-R1 2.4%; RMSD = 1.39 Å 97.6%; RMSD = 0.61 Å 
N2-R2 5%; RMSD = 1.55 Å 95%; RMSD = 0.64 Å 

1.5 Curls 

The list of nucleotides presented below was obtained as follows: 

The two ribosomes N2 and R2 we superposed using as the nucleus: 

a - the whole 23S rRNA 

b, c, d - each of the secondary structure domain D1, D2 or D3 of 16S rRNA. 

Then, in each superposition, all nucleotides for which the discrepancy in the position of the 

equivalent P atom was 1.2 Å or higher and which were not parts of linkers were considered as curls 

and were added to the list. 

For crystals N0-R0 and N1-R1 curls were identified in the same way. Although in the three crystals 

the curls are not completely identical, the difference is not essential. For this reason, only the curls 

identified in crystal N2-R2 are shown. 

Curls consisting of several consecutive nucleotides are colored. For each nucleotide involved in a 

curl, the identity and the discrepancy in the position of the P-atom, when the corresponding domain 

was superposed, are provided. 

List of curls :

Curls in LSU

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
1-G  3.08  5-A  2.45  42-A  1.32  63-A  1.36  102-U  1.79  
2-G  2.65  6-A  1.76  50-U  1.53  72-U  1.27  134-G  1.21  
3-U  2.20  7-G  1.67  51-G  1.27  87-U  1.53  136-G  2.65  
4-U  2.07  38-A  1.65  60-G  1.43  101-A  5.98  137-U  3.49  
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Curls in LSU (suit)

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
138-U  4.91  344-A  1.34  846-U  1.90  1076-C  3.20  1345-C  1.90  
139-U  5.63  345-A  2.08  847-U  1.90  1077-A  2.91  1366-A  1.22  
140-C  2.59  351-C  1.93  854-C  1.48  1078-U  4.68  1379-U  1.31  
142-A  3.34  352-A  1.61  855-G  1.36  1080-A  2.79  1382-G  1.39  
143-C  3.45  353-C  1.62  875-G  1.30  1081-U  2.78  1411-U  1.50  
144-A  2.79  354-A  1.92  877-A  2.44  1082-U  3.12  1414-C  1.28  
150-U  1.35  355-U  3.22  878-A  5.30  1083-U  2.21  1419-A  1.61  
152-A  1.20  356-G  1.72  898-C  1.34  1084-A  2.64  1458-U  1.57  
156-A  1.63  357-C  1.31  900-A  1.29  1085-A  1.56  1459-G  1.23  
171-U  1.76  359-G  3.58  902-C  1.72  1086-A  2.00  1460-U  4.86  
173-A  1.27  360-U  2.59  928-A  1.84  1087-G  2.01  1487-U  1.25  
180-G  1.33  361-G  1.85  929-U  1.49  1088-A  1.90  1490-A  2.24  
222-A  1.52  362-A  1.89  930-G  1.51  1089-A  1.26  1491-G  2.46  
231-A  1.32  373-U  1.32  931-U  1.53  1090-A  1.22  1492-G  1.44  
234-U  1.35  416-U  1.21  932-U  2.51  1091-G  3.04  1493-C  1.41  
264-C  2.14  423-A  1.74  1022-G  1.28  1092-C  2.72  1494-A  1.95  
265-A  1.25  425-G  1.71  1033-U  1.38  1094-U  2.40  1495-A  1.47  
266-G  3.29  426-C  1.63  1042-G  1.49  1095-A  4.53  1496-A  1.63  
267-C  1.46  427-U  1.65  1043-C  1.39  1096-A  5.13  1497-U  1.57  
269-C  1.47  428-A  1.35  1044-C  1.36  1097-U  3.85  1502-A  2.01  
270-A  1.23  484-C  1.65  1045-C  1.42  1098-A  2.92  1503-A  1.34  
272-A  1.26  485-C  1.41  1046-A  2.28  1099-G  1.34  1504-A  1.66  
275-C  1.28  490-C  1.34  1047-G  2.63  1100-C  3.03  1505-A  1.29  
276-U  2.46  500-G  1.24  1048-A  2.19  1101-U  4.04  1506-U  1.26  
277-G  1.77  501-A  1.36  1049-C  1.76  1102-C  2.28  1507-C  1.86  
278-A  2.28  507-A  1.37  1050-A  2.08  1103-A  2.02  1508-A  1.22  
279-A  2.47  529-A  2.01  1053-C  1.27  1104-C  2.65  1509-A  3.67  
280-U  2.67  544-C  1.52  1054-A  1.46  1106-G  2.02  1510-G  1.28  
281-C  2.38  545-U  2.81  1055-G  1.33  1108-U  1.35  1520-U  1.63  
282-A  2.73  546-U  2.74  1056-G  1.93  1109-C  1.75  1523-U  2.00  
283-G  2.84  547-A  2.41  1058-U  1.81  1110-G  1.31  1524-G  1.21  
284-U  1.42  548-G  1.91  1059-G  2.55  1112-G  1.76  1525-A  1.54  
285-G  1.69  549-G  1.29  1060-U  2.52  1120-G  1.23  1527-G  1.44  
286-U  1.94  550-C  1.32  1061-U  3.05  1158-C  1.22  1531-C  1.32  
287-G  1.30  647-G  1.94  1062-G  2.23  1168-G  1.64  1533-C  2.92  
288-U  1.48  654-A  1.38  1063-G  5.40  1170-C  1.54  1534-U  3.43  
289-G  1.52  655-A  1.35  1064-C  5.13  1171-G  1.75  1535-A  2.89  
290-U  1.59  709-U  1.65  1065-U  4.80  1172-C  1.76  1536-C  3.58  
291-G  2.11  710-U  1.52  1066-U  5.82  1174-U  2.53  1537-G  5.22  
295-G  1.54  711-G  2.00  1067-A  3.35  1175-A  2.00  1538-G  3.35  
304-U  1.35  712-G  3.21  1068-G  2.76  1176-U  1.29  1544-A  1.24  
305-C  1.37  713-G  3.59  1069-A  6.03  1179-G  2.92  1577-C  1.37  
311-A  1.48  714-U  3.66  1070-A  3.45  1180-U  2.46  1581-G  1.71  
313-G  1.42  715-A  3.50  1071-G  1.50  1181-U  3.09  1582-C  1.53  
314-C  1.20  716-A  4.00  1072-C  3.50  1182-G  1.64  1584-U  1.90  
315-G  1.47  717-C  3.86  1073-A  2.57  1206-G  1.24  1585-C  1.96  
326-G  1.38  843-G  1.24  1074-G  3.74  1236-G  1.34  1588-G  1.38  
334-C  1.35  845-A  1.35  1075-C  4.58  1307-A  1.29  1594-U  1.22  
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Curls in LSU (suit)

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
1630-A  1.45  1920-C  1.97  2183-A  8.39  2314-A  3.53  2793-C  5.53  
1702-G  1.40  1921-G  2.04  2184-A  5.53  2315-G  2.66  2794-C  3.79  
1722-A  1.52  1922-G  2.30  2185-U  4.95  2316-G  1.84  2795-C  3.74  
1724-G  1.96  1923-U  2.26  2186-G  3.33  2317-A  1.62  2796-U  3.99  
1728-C  1.86  1924-C  1.78  2187-U  4.30  2318-G  1.55  2797-U  4.48  
1730-C  1.27  1925-C  1.87  2188-U  4.56  2319-G  1.46  2798-U  4.89  
1732-C  2.00  1926-U  1.96  2189-U  4.84  2323-G  1.53  2799-A  3.86  
1734-G  1.26  1927-A  1.26  2190-G  5.34  2327-A  3.09  2800-A  1.81  
1839-G  1.24  1931-U  1.33  2191-A  2.68  2335-A  1.26  2801-G  2.23  
1847-A  2.19  2033-A  1.40  2192-U  1.59  2338-C  1.52  2802-G  2.63  
1848-A  1.25  2056-G  1.63  2193-G  1.84  2371-G  1.27  2803-G  2.99  
1849-G  1.55  1931-U  1.33  2194-U  1.20  2402-U  3.07  2804-U  3.88  
1850-G  1.68  2033-A  1.40  2205-A  1.22  2406-A  1.35  2805-C  3.78  
1856-U  1.44  2056-G  1.63  2217-G  1.33  2407-A  1.22  2806-C  3.53  
1867-G  1.26  2085-U  1.55  2227-A  1.47  2409-G  1.42  2807-U  3.79  
1869-G  2.24  2086-U  1.28  2230-G  1.30  2410-G  1.31  2808-G  2.74  
1870-C  2.19  2089-C  1.24  2240-U  1.23  2475-C  1.32  2809-A  1.40  
1871-A  2.34  2091-C  1.26  2268-A  1.34  2494-G  1.27  2811-G  1.34  
1872-A  1.73  2096-C  1.31  2286-G  1.35  2502-G  1.24  2833-U  1.31  
1873-G  1.58  2097-A  1.57  2288-A  1.98  2506-U  1.21  2837-A  1.48  
1875-G  1.42  2098-U  2.01  2294-G  1.22  2525-G  1.33  2877-G  1.44  
1876-A  1.96  2099-U  1.59  2297-A  1.86  2602-A  2.77  2885-G  1.22  
1884-G  1.78  2100-G  2.57  2299-U  1.43  2632-A  2.05  2886-A  1.35  
1890-A  1.40  2101-A  3.69  2300-C  2.69  2663-G  1.54  2887-A  2.20  
1907-G  1.58  2102-G  5.34  2301-C  3.15  2667-C  1.71  2888-C  2.34  
1908-C  1.99  2103-C  7.71  2302-U  1.80  2668-G  1.30  2889-C  2.14  
1909-C  1.43  2104-C  10.2  2303-G  1.45  2696-U  1.32  2890-G  1.79  
1910-G  1.41  2105-U  9.36  2304-G  2.48  2746-U  1.79  2891-U  1.80  
1911-U  2.49  2106-U  8.84  2305-U  3.35  2749-A  1.33  2892-G  1.53  
1912-A  2.49  2107-G  11.1  2306-C  2.55  2750-A  1.21  2893-A  1.64  
1913-A  3.38  2108-A  7.65  2307-G  3.12  2753-A  1.39  2899-A  1.30  
1914-C  3.28  2109-U  5.84  2308-G  3.46  2759-G  1.27  2900-A  2.56  
1915-U  3.03  2110-G  4.80  2309-A  2.52  2760-C  1.35  2901-C  3.26  
1916-A  3.05  2179-C  3.50  2310-C  2.96  2762-C  1.26  2902-C  3.41  
1917-U  2.99  2180-U  4.16  2311-A  5.35  2765-A  1.35  2903-U  5.04  
1918-A  2.10  2181-U  5.55  2312-U  2.05  2791-G  4.04       
1919-A  1.98  2182-U  5.92  2313-C  3.62  2792-A  3.65        

Curls in D1

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
54-C  1.28  79-G  6.70  86-G  3.35  93-U  1.70  157-U  1.87  
71-A  2.26  80-A  5.64  87-C  4.29  95-C  1.34  158-G  2.43  
74-A  1.37  81-A  5.94  88-U  3.98  96-U  2.03  159-G  2.48  
75-G  2.42  82-G  3.27  89-U  2.25  121-U  1.39  160-A  1.71  
76-G  2.02  83-C  3.76  90-C  3.89  143-A  1.38  161-A  2.11  
77-A  1.51  84-U  2.17  91-U  4.29  155-A  1.57  162-A  1.62  
78-A  5.21  85-U  3.12  92-U  2.10  156-C  1.58  163-C  1.69  
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Curls in D1 (suit)

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
164-G  1.79  213-G  1.78  341-C  1.84  446-G  1.24  478-A  1.71  
165-G  1.54  214-C  1.94  342-C  1.88  457-G  3.02  479-U  1.28  
166-U  1.91  215-C  2.82  343-U  2.05  458-U  1.57  486-U  1.51  
167-A  1.89  216-U  2.43  344-A  2.28  459-A  1.31  489-C  1.20  
169-C  1.74  217-C  2.45  345-C  3.25  460-A  1.79  491-G  1.29  
188-C  1.54  218-U  1.75  346-G  2.80  461-A  1.53  492-C  1.46  
189-A  1.31  239-U  1.71  347-G  2.68  462-G  1.45  493-A  1.58  
198-G  1.25  242-G  1.45  348-G  1.70  463-U  2.03  494-G  1.43  
202-G  1.92  244-U  1.22  349-A  1.37  467-U  1.71  497-G  1.23  
203-G  3.36  248-C  1.77  373-A  1.50  468-A  1.97  515-G  1.32  
204-G  3.53  249-U  1.41  405-U  1.23  469-C  2.21  518-C  1.49  
205-A  2.92  250-A  1.31  417-G  1.37  470-C  2.36  519-C  1.23  
206-C  4.85  271-C  1.29  424-G  1.37  471-U  1.50  530-G  1.59  
207-C  3.63  273-U  1.38  432-A  1.33  472-U  2.52  531-U  1.26  
208-U  3.55  330-C  1.50  436-C  1.28  473-U  2.25  532-A  1.39  
209-U  2.03  337-G  1.59  437-U  1.34  474-G  3.14  533-A  1.48  
210-C  1.43  338-A  2.03  438-U  1.55  475-C  1.93  538-G  1.22  
211-G  1.20  339-C  2.36  440-C  1.52  476-U  2.30    
212-G  4.77  340-U  1.83  445-G  1.33  477-C  2.07    

Curls in D2
nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 

597-G  1.28  618-C  2.09  630-A  1.47  748-G  1.42  846-G  1.57  
602-A  1.37  619-U  2.43  632-U  1.33  774-G  1.73  847-G  2.58  
603-U  1.47  620-C  2.12  636-U  1.54  814-A  1.22  889-A  1.80  
604-G  1.32  621-A  1.58  683-G  1.29  833-G  1.27  892-A  1.25  
605-U  1.54  622-A  1.27  684-U  1.65  840-C  1.30  893-C  1.89  
606-G  1.22  623-C  1.22  709-U  1.30  841-C  3.26  894-G  1.82  
613-C  1.55  626-G  1.54  710-G  1.44  842-U  3.91  895-G  1.25  
615-G  1.56  627-G  1.45  723-U  1.30  843-U  3.23  896-C  1.34  
616-G  1.85  628-G  1.60  724-G  1.44  844-G  4.31  912-C  1.20  
617-G  1.49  629-A  1.78  734-G  1.54  845-A  2.07  

Curls in D3

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
989-U  1.61  1007-U  2.03  1021-A  1.80  1034-G  2.64  1136-C  2.07  
991-U  1.46  1008-U  2.95  1022-A  2.53  1035-A  1.91  1137-C  2.99  
994-A  1.55  1009-U  1.70  1024-G  2.22  1037-C  2.09  1138-G  4.37  
998-C  1.46  1011-C  1.75  1025-U  2.51  1038-C  1.27  1141-C  3.09  
1001-C  2.02  1012-A  1.29  1027-C  3.10  1042-A  1.37  1142-G  1.78  
1002-G  1.33  1013-G  1.78  1029-U  2.43  1074-G  1.24  1143-G  2.54  
1003-G  1.35  1015-G  1.62  1030-U  2.54  1100-C  1.38  1166-G  1.34  
1004-A  1.32  1016-A  2.02  1031-C  4.00  1104-G  1.23  1167-A  2.39  
1005-A  1.47  1019-A  1.38  1032-G  3.25  1131-G  1.82  1168-U  2.79  
1006-G  2.54  1020-G  1.56  1033-G  3.62  1132-C  1.98  1169-A  1.59  
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Curls in D3 (suit)

nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD nucleotide RMSD 
1211-U  1.93  1220-G  1.57  1242-G  1.46  1274-A  1.37  1310-G  1.74  
1213-A  1.40  1221-G  1.40  1258-G  1.51  1286-U 1.43  1312-G  1.26  
1217-C  1.29  1225-A  1.47  1263-C  1.41  1297-G  1.79  1322-C  1.73  
1218-C  1.26  1228-C  1.59  1266-G  1.29  1302-C  1.66  1323-G  1.64  
1219-A  1.47  1241-G  1.36  1267-C  1.24  1304-G  1.53  1334-G  1.39  

SUPPLEMENTARY DATA 2: Parameters of movement for d1, d2, d3  h44c 

Supplementary Table 12. Inclination of the axes of rotation of tertiary domains T1, T2 and T3 with 

respect to 23S rRNA to the perpendicular to the subunit interface

Crystal T1 T2 T3 
N0-R0 49° 37.5° 47.5° 
N1-R1 46° 32.5° 13.5° 
N2-R2 48.5° 34 ° 19° 

Supplementary Figure 1.

Positions of the axes of rotation for different domains of the 30S subunit in crystals N0-R0 (left), N1-R1 (center) 

and N2-R2 (right).

The small subunit is oriented as in Fig 2b of the main text (i.e. the large subunit is located on the right from the small 

one. Domains T1, T2 and T3 are green, brown and blue, respectively. The colors of the axes correspond to those of the 

domains. The axes of the T1 and T2 rotations have about the same position in all three crystals. The axis of the T3 

rotation has a higher inclination in crystal N0-R0 than in the other two crystals.
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Supplementary Table 13. The angle of rotation and the shift of the tertiary domains with respect to 

the LSU (when the LSU is superposed)

Crystal T1 T2 T3 h44c 
R0-N0 Rotates: 8.09 ° 

Shifts: 0.79 Å 
Rotates: 5.12 ° 
Shifts: 0.64 Å 

Rotates: 9 ° 
Shifts: 0.34 Å 

Rotates: 2.09 ° 
Shifts: 0.42 Å 

R1-N1 Rotates: 9.47 ° 
Shifts: 0.99 Å 

Rotates: 6.67 ° 
Shifts: 0.51 Å 

Rotates: 6.07 ° 
Shifts: 0.35 Å 

Rotates: 2.47 °
Shifts: 0.46 Å 

R2-N2 Rotates: 8.41 ° 
Shifts: 1.06 Å 

Rotates: 6.1 ° 
Shifts: 0.51 Å 

Rotates: 6.1 ° 
Shifts: 0.46 Å 

Rotates: 2.86 ° 
Shifts: 0.54 Å 

In all cases, the domain in the ratcheted ribosome is shifted with respect to its position in the 

non-ratcheted ribosome along the axis of rotation described in Supplemental table 12. The whole 

domain rotates around this axis by the angle seen in Supplemental table 13. In all cases, the 

direction of the shift is such that it displaces the corresponding domain farther from the large 

subunit.

SUPPLEMENTARY DATA 3: The bending of helix h44 between base pairs 1414-1486 and 

1415-1485

Here we explain why the bend in helix h44 of ribosome R2 occurs between base pairs 1414-

1486 and 1415-1485. We also describe the aspects of the 16S rRNA structure that resist bending of 

h44 at this very place by an angle larger than that observed in riboso

attributed to helix h44 (base pairs U1414-G1486 and G1415-U1485) and to helix h27 (linker L2, 

which interacts with h44). 

3.1. Theoretical introduction into the bendability of double helices 

Our analysis of the bendability of h44 (to our best knowledge, term ‘bendability’ as the 

ability of a double helix to bend at particular places in a particular direction was coined by Edward 

N Trifonov) is mainly based on the pioneering works that described the mechanism of local 

perturbations in the B-DNA WC double helices (Zhurkin VB, Lysov YP, Ivanov VI: Anisotropic 

flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 6, 1081-96 (1979), Calladine 

CR: Mechanics of sequence-dependent stacking of bases in B-DNA. J Mol Biol. 161, 343-352, 

(1982)). The major results of these papers were that WC double helices bend towards the grooves 

and not towards the backbones and also that pyrimidine-purine steps favor bending towards the 
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major groove and disfavor bending toward the minor groove, while purine-pyrimidine steps behave 

in the exact opposite way. 

For the A-RNA, such a theory does not yet exist. However, given that helix h44, like B-

DNA, is a right-handed double helix in which neighboring base pairs stack on each other, some 

aspects of this theory are applicable to h44 as well. One aspect that distinguishes RNA from DNA 

is that RNA predominantly exists in the A-form, in which the major groove is buried inside while 

the minor groove is exposed to the surface. Due to this feature, the bending of RNA in the direction 

of the major groove would face immediate steric problems, while bending towards the minor 

groove does not face such problems and therefore, can be achieved much easier. Of course, the 

latter is only true if there are no additional aspects that can interfere with such bending. 

3.2. The bend in helix h44 in the context of the whole ribosome 

Analysis of the part of helix h44 enclosed between base pairs 1410-1490 and 1420-1480 

shows that in most places of this region, bending of h44 in the direction of the minor groove is 

impossible due to interference with either the large or small subunit. The only place in the whole 

region where bending of h44 does not lead to an immediate steric clash with one of the two 

subunits is between base pairs 1414-1486 and 1415-1485. At this place, the bended part of h44 will 

be displaced in the inter-subunit space parallel to the subunit interface without collision with any 

ribosome subunit. We thus can conclude that, due to the particular position of h44 at the interface 

between the two subunits, the junction between base pairs 1414-1486 and 1415-1485 of h44 

constitutes the only bendable section in the whole above-mentioned region of h44. This explains 

the fact that in ribosome R2, the bend towards the minor groove occurs exactly at this location.

3.3. In the structure of 16S rRNA, there are two aspects that are able to minimize the scale of 

the bending in helix h44 between base pairs 1414-1486 and 1415-1485 towards the minor 

groove. 

3.3.1. The first aspect consists in the particular choice of the nucleotides composing these 

two base pairs. In the overwhelming majority of available nucleotide sequences of 16S rRNA, base 

pairs 1414-1486 and 1415-1485 are, respectively, pyrimidine-purine and purine-pyrimidine, and in 

most prokaryotes, they are, respectively, U-G and G-U (see the statistics below). The contact 

between these base pairs thus represents a pyrimidine-purine step, which causes the two purines to 
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interfere with each other in the minor groove. This interference strongly disfavors bending of the 

double helix in the direction of the minor groove. Due to the presence of non-Watson-Crick base 

pairs U-G and G-U, the two purines become additionally displaced towards the minor groove, 

which only aggravates the interference between them if the helix bends in this direction (see 

Supplementary Figure 2).

                   
Supplementary Figure 2. The fragment of helix h44 encompassing base pairs U1414-G1486 and G1415-U1485 

(left).

Due to the particular geometry of the GU base pairs, guanosines G1486 and G1415 are notably displaced towards the 

minor groove (right). Due to their interference with each other, the two guanosines prevent bending of the double helix 

towards the minor groove. The interference is maximal when both base pairs are GU. A replacement of one of the two 

GU base pairs by a Watson-Crick purine-pyrimidine base pair will make the interference a little less effective. If one of 

the two GU base pair is replaced by a pyrimidine-purine base pair, the interference between the two base pairs will no 

longer exist.

Comment: Statistics on the identity of base pairs 1414-1486 and 1415-1485 in 16s rRNA of 

bacterial ribosomes 

The data on identity of base pairs 1414-1486 and 1415-1485 in 16S rRNA were taken from 

the database of Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, 

Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR. 2002. The comparative 

RNA web (CRW) site: an online database of comparative sequence and structure information for 

ribosomal, intron, and other RNAs. BMC bioinformatics 3:2. 

Total number of sequences of 16S rRNA that have been analyzed: 8386 100% 

Of these sequences, 1414-1486=UG and 1415-1485=GU 5339 63.7% 

1414-1486=(CG or UA) and 1415-1485=GU 2632 31.4% 
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Therefore, 16S rRNA sequences in which 1415-1485 is GU, AU or GC while 1414-1486 is UG, 

CG or UA constitute together >95% of all 16S rRNA sequences. This result clearly demonstrates 

that the nucleotide identities of the two base pairs 1415-1485 and 1414-1486 have been naturally 

selected in a way to prevent bending between them towards the minor groove. 

3.3.2 The second aspect, that makes helix h44 more resistant to the bending between base pairs 

1414-1486 and 1415-1485 towards the minor groove, is the tight interaction of this region of h44 

with linker L2 (helix h27). More specifically, eight nucleotides of h27 (nucleotides 887-888, 892-

893 and 909-912) pack tightly with the minor groove of h44, forming contacts with six nucleotides 

of h44 on both sides of the bending (nucleotides 1413, 1415-1416 and 1488-1490) (see 

Supplementary Figure 3). Together, the particular choice of the nucleotide identities of base pairs 

1414-1486 and 1415-1485 and the tight interaction of the minor groove of h44 with linker L2 (h27) 

will minimize the ability of h44 to bend towards the minor groove.

Supplementary Figure 3. The tight interaction between the upper part of helix h44 and linker L2.

Nucleotides forming base pairs 1414-1486 and 1415-1485 are indicated and are marked in colors as in Figure 1. h27 

tightly interacts with h44 both above and below the bending between base pairs 1414-1486 and 1415-1485. Also, 

nucleotide G1415 directly interacts with helix h27.
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SUPPLEMENTARY DATA 4 : THE RIGID TERTIARY DOMAINS AND FLEXIBLE 

CONNECTOR REGIONS IN 16S RRNA (IN RATCHETING AND DOMAIN CLOSURE)

Supplementary Figure 4. The rigid tertiary domains and flexible connector regions in 16S rRNA observed 

during ratcheting (left) and domain closure (right)

The rigid tertiary domains in 16S rRNA identified through comparison of: 

Left: the E.coli ribosome structures N2 (non-ratcheted) and R2 (partly ratcheted). In the main text, the same figure is 

shown as Figure 1b.   Right: the T. thermophilus SSU structures E (open conformation, the apo-subunit, pdb 1j5e, 

Wimberly B.T. et al. Nature 407, 327-339 (2000).) and A (closed conformation associated with mRNA and ASL 

soaked into the crystal in the presence of paromomycin, pdb 1n32, Ogle J.M. et al. Cell 111, 721–732, (2002)). 

While ribosome structures N2 and R2 are notably different from each other (angle of the T2 

structures E and A is substantially less

structures E and A, the identification of rigid tertiary domains in structures E and A became a more 

delicate procedure compared to that used for analysis of structures N2 and R2. As mentioned in the 

main text, the threshold value used for the N2-R2 analysis was 1.2 Å. For the E-A analysis, the 

corresponding value was chosen to be only 0.45 Å. A threshold value larger than that would have 

made the identified domains substantially overlapped with each other. Even with the chosen 

threshold value of 0.45 Å, some minor overlaps are still present. In spite of some minor differences, 

the tertiary domains that were rigid during the ratcheting and those that were rigid during the 

domain closure are practically identical. This aspect has allowed us to state that two phenomena of 

the ribosome ratcheting and domain closure are closely related to each other.
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                      Chapter 5. Discussion  
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The results presented in this thesis were obtained based on systematic in-silico analysis of 

the available ribosome conformations.

Such analysis has become possible due to the substantial progress in crystallography of 

the ribosome that happened in the first decade of this century. The high resolution 

crystallographic data provided the details of the ribosome structure that would have been 

impossible to obtain based on the cryo-electron microscopy data, due to the substantially lower

resolution of the latter. The detailed analysis of the ribosome structure has led us to a new level 

of understanding of how this RNA-protein complex functions. In particular, systematic 

comparison of the known ribosome conformations existing in the form of PDB files has allowed 

us to reveal the principal characteristics of ribosomal dynamic.

The ratchet-like motion (RLM) was originally described as a reciprocal rotation of the 

two subunits (Frank-2000). However, as described below, certain mobility was also found within 

the SSU (Ogle-2002, Ogle-2003). We also found that during the ratcheting, the central bridges of 

the subunit interface remain intact despite the 9° amplitude of the RLM (Dunkle-2011). Thus, the

concept of ratcheting as a simple intersubunit rotation required reconsideration. This is of special

importance, because ratcheting is linked to translocation (Horan-2007). Therefore, without 

understanding the mechanisms of ribosomal dynamic, it seems impossible to understand the 

mechanism of translocation.

We started the analysis of RLM soon after the publication of the first crystal structures of

the ribosome in the ratcheted state (Zhang-2009). Systematic comparison of these structures

allowed us to elucidate the pattern of internal mobility in the ribosome. Contrary to the LSU, 

whose structure is almost monolithic, the SSU was shown to be composed of several rigid 

tertiary domains, each moving along its own unique trajectory. This finding is supported by other 

studies, which suggested that different domains within the SSU can move with respect to each 

other (Agirrezabala-2012).

We discovered that during the ratcheting, one of the SSU domains is tightly attached to 

the LSU and remains immobile relative to the latter. This immobile domain forms the central 

inter-subunit bridges, which explains their integrity during the ratcheting. At the same time, this 

finding suggests a new concept of RLM as a movement within the SSU and not between the 

subunits.
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We determined the borders between tertiary domains and the trajectories of the rigid 

domains in the SSU. We also determined how the domain motions in RLM can be regulated. An 

essential role in this regulation is played by the linkers. We described linkers as elements with 

dual nature. A linker remains covalently attached to one domain and, at the same time, forms a

tight association with another domain. This covalent attachment works as a hinge between two 

connected domains. Together, the linkers guarantee the integrity of the SSU in RLM.

We found that RLM may be blocked in the presence of the A-site tRNA. This

understanding allowed us to relate the RLM and the SSU domain closure (=SSC). Comparison of 

the SSU in the open and closed conformations revealed a pattern of domain reorganization that

we previously observed in RLM. 

We concluded that RLM and SSC represent equivalent rearrangements going in opposite 

directions. The interactions formed as a result of SSC must be broken in order to allow RLM.

Further analysis is required to link these rearrangements to particular functional events during 

codon-anticodon recognition and ribosomal translocation.

The RLM project was part of my work in the laboratory of Dr. Steinberg. Another project 

pertained to systematic analysis of the ribosome structure in order to model early ribosome 

evolution. This research constitutes the other part of my thesis.

At the beginning of the project, we were not the only research group using

crystallographic data for evolutionary studies. There was an attempt to link the evolutionary 

conservation of a given rRNA component (loop, double-helix, etc.) with its distance from the 

PTC (Smit-2007). According to other data, the PTC represents a single self-folding RNA 

segment and thus its emergence did not require any prerequisites. On the contrary, the decoding 

region of the SSU is formed by several such segments. Therefore, the LSU was suggested to be 

more ancient than the SSU (Smith-2008). In another model, two LSU conformations from

different prokaryotic species were superposed and the 23S rRNA was enclosed in a set of nested 

spheres centered at the PTC. Each layer corresponded to the space limited by two neighboring

spheres. The structure of each such layer was analyzed to evaluate how similar it is in both rRNA 

structures. The highest similarity was observed at the PTC and gradually decreased when the 

layers approached the ribosome surface. The authors considered this observation as confirmation 

that the PTC is the most ancient part of the LSU (Hsiao-2009).
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The approach that we proposed was purely structural in nature. It was based on the

presumption that the early ribosome evolution proceeded through a stepwise expansion of the 

rRNA. We tried to remodel these steps in reverse order. For that, we identified an rRNA element 

that was the most recent acquisition for a given moment of the rRNA evolution. Deletion of this 

element provided access to preceding evolutionary acquisitions, etc.

We suggested a set of rules to find the recent evolutionary acquisitions of rRNA. One of 

the rules concerned the participation of recently acquired element in the A-minor interaction also 

known as the A-minor motif. The motif is formed by two components. One of the components, 

the stack of unpaired adenosines, forms tight interaction to the regular double helix with WC 

base pairing, the other component of A-minor. The A-minor allows for the formation of a stable 

structure from two interacting elements, one of which is structurally flexible. With a stack of 

adenosines, such flexible elements can be attached to a double-helix that is structurally self-

sufficient. In evolution, the A-minor interaction would be an easy way to accommodate newly 

emerged elements of the rRNA.

We worked out an algorithm for elimination of rRNA elements without jeopardizing the 

structural integrity of the remaining part. The deletion procedure was systematically applied to 

the tertiary structure of the 23S rRNA. It led to the particular region of the 23S that is known to 

play a critical functional role. We named this region the “proto-ribosome”. The order of deletions 

allowed us to build the evolutionary model for the 23S rRNA starting from the proto-ribosome.

After the publication of our model, we raised the question concerning the evolutionary 

pathway for the 16S rRNA. According to our unpublished results, the 16S rRNA appeared to 

follow the same evolutionary principles as the 23S rRNA.

One may ask, whether there are structural motifs, different from A-minor, that can serve 

as evolutionary markers. Our preliminary results suggest that such a role can be attributed to the 

Along-Groove packing Motif (=AGPM) (Gagnon-2002). This motif consists of two double-

helices tightly packed by their minor grooves. One of the two helices has regular WC base-

pairing. The other one has a GU base-pair located at the point of interaction of the helices. This

GU-pair can be considered as a structural adaptor of the evolutionary more recent helix with GU-

pair to the more ancient helix with WC base-pairs. In 23S rRNA, the AGPM as evolutionary 

markers are in agreement with A-minors.
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We can deduce a general rule concerning the relative age of two interacting structural 

elements, one of which is the WC double-helix. The rule is based on the fact that the WC double-

helix is a self-sufficient entity whose formation does not require any other prerequisites. Thus, 

when any element specifically interacts with a double-helix, this interaction is a result of 

adaptation of a more recent element to a more ancient double-helix.

We expect that the arguments presented above would be helpful for understanding of the 

rationale that is behind our concept of the ribosome evolution.

The major result of the work presented in this thesis consists in finding answers to two 

fundamental problems of ribosome biology. The first problem pertains to the mechanism of 

rearrangements in the ribosome structure that take place during the elongation cycle of 

translation, while the second problem concerns the mechanism of evolution of the ribosome from 

the RNA world. As one can see below, the solutions for both problems were found solely 

through thorough analysis of the ribosome tertiary structure. The latter aspect makes this

research in some sense, unique in the field. 

Although the current thesis includes only three papers, the lab of Dr. Steinberg continues 

studies on different aspects related to the ribosome structure and the mechanisms of protein 

synthesis. Among the aspects closely related to this thesis are the evolution of the small 

ribosomal subunit and the co-evolution of 23S and 16S rRNA, as well as the evolution of 

ribosomal proteins and the role played by these proteins in the assembly of the ribosome tertiary 

structure. Solving these problems will make a major impact on our knowledge of how the 

ribosome has emerged, how it assembles and how it functions.
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CONCLUSION
1. The initial element of the 23S rRNA, the proto-ribosome, emerged as a result of 

duplication of a 110-nucleotide RNA fragment, providing for the symmetrically arranged 

peptidyl transferase center. Further evolution of the 23S rRNA proceeded through 

insertion of relatively short fragments of RNA at different parts of the polynucleotide 

chain. If a newly emerged fragment forms an A-minor interaction with more ancient 

elements of the ribosome, it must donate to this interaction the adenosine stack, and not 

the double helix. These simple suggestions have been very powerful for understanding 

the details of the ancient evolution of the ribosome. It also shows that systematic in-silico 

analysis of the ribosome tertiary structure is a promising method for studying ribosome 

evolution and function.

2. The RLM, originally described as a motion between subunits, occurs mainly within the 

SSU. Contrary to the LSU, whose structure is almost monolithic, the SSU is composed of 

several rigid domains.  During RLM, each rigid domain moves along its own trajectory. 

The central element of the SSU remains immobile relatively the LSU, which explains the 

integrity of the inter-subunit bridges existing between this element and the LSU. 

3. The existence of the linkers restricts and co-ordinates the movements of the rigid 

domains. The linkers arrange the rigid domains of the SSU in two conformational cycles. 

Within one of the two conformational cycles, which includes Domains I and II of the 

secondary structure of 16S rRNA, the movement of the domains in one direction 

corresponds to the transition from a non-ratcheted to a ratcheted state, while the opposite 

movement constitutes SSC. 

4. The RLM can be blocked by the A-minor interaction of adenosines A1492 and A1493 of 

16S rRNA with the cognate codon-anticodon double helix in the A-site.
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