A representation of risk measures

Massimiliano Amarante

Université de Montréal et CIREQ

ABSTRACT. We provide a representation theorem for risk measures satisfying (i) monotonicity; (ii) positive homogeneity; and (iii) translation invariance. As a simple corollary to our theorem, we obtain the usual representation of coherent risk measures (i.e., risk measures that are, in addition, sub-additive; see Artzner et al. [2]).

1. Introduction

Let (Ω, Σ) be a measurable space and let $B(\Sigma)$ denote the Banach space of bounded, Σ -measurable functions on Ω equipped with the sup-norm. Ω is the set of states of nature and $B(\Sigma)$ is the set of all (measurable) risks (see Artzner et al. [2]). A measure of risk is a mapping $\rho: B(\Sigma) \longrightarrow \mathbb{R}$. Coherent risk measures were introduced in [5] (under the name of "upper expectations") and further studied in [2]. These are risk measures that satisfy the following four properties:

(1) Translation invariance: for all $f \in B(\Sigma)$ and for all $\alpha \in \mathbb{R}$,

$$\rho(f + \alpha \mathbf{1}) = \rho(f) - \alpha$$

(2) Positive homogeneity: for all $f \in B(\Sigma)$ and for all $\lambda \geq 0$

$$\rho(\lambda f) = \lambda \rho(f)$$

(3) Monotonicity:

$$f, g \in B(\Sigma)$$
 and $f \leq g \implies \rho(g) \leq \rho(f)$

2000 Mathematics Subject Classification. 91B30

JEL classification: G11, C65.

Key words and phrases. risk measures, capacity, Choquet integral I am grateful to Mario Ghossoub for comments and suggestions.

(4) Sub-additivity: For all $f, g \in B(\Sigma)$

$$\rho(f+g) \le \rho(f) + \rho(g)$$

Our formulation of property (1) differs slightly from the one in [2]. We use the normalization $\rho(\mathbf{1}) = -1$, where $\mathbf{1}$ is the function identically equal to 1 on Ω . Artzner et al. [2] use the normalization $\rho(\mathbf{r}) = -1$, where \mathbf{r} is the function identically equal to r on Ω , r > 0 (see [2], p. 208). Clearly, in view of property (2), this is inconsequential.

A representation theorem for coherent risk measures was proved in [2]. This was extended in [6], who requires sub-additivity for comonotonic risks only. Here, we are concerned with risk measures satisfying the first three properties only.

Recall that the norm dual of $B(\Sigma)$ is (isometrically isomorphic to) $ba(\Sigma)$, the space of bounded charges on Σ equipped with the variation norm. For \mathcal{C} a convex, weak*-compact set of probability charges in $ba(\Sigma)$, we denote by $A(\mathcal{C})$ the space of all weak*-continuous affine mappings $\mathcal{C} \longrightarrow \mathbb{R}$. The canonical mapping $\kappa: B(\Sigma) \longrightarrow A(\mathcal{C})$ is the mapping $\kappa: f \longmapsto \psi_f$, where $\psi_f: \mathcal{C} \longrightarrow \mathbb{R}$ is given by $\psi_f(P) = \int_{\Omega} f dP$, $P \in \mathcal{C}$.

THEOREM 1. A risk measure $\rho: B(\Sigma) \longrightarrow \mathbb{R}$ satisfies properties (1), (2) and (3) if and only if for all $f \in B(\Sigma)$

$$\rho(f) = \int_{\mathcal{C}} -\kappa(f)d\nu$$

where C is a convex, weak*-compact set of probability charges in $ba(\Sigma)$, ν is a capacity on the Borel field on C generated by the weak*-topology, and the integral is taken in the sense of Choquet.

Thus, the theorem says that every risk measure satisfying (1), (2) and (3) corresponds to an integration over a set measures, but integration is in the sense of Choquet. Clearly, in the special case where ν is a measure, integration is Lebesgue integration and one obtains risk measures that are linear, i.e. $\rho(f+g) = \rho(f) + \rho(g)$, for all $f, g \in B(\Sigma)$. The proof of the theorem is based on the following two results. The first was proved in [1, Theorem 2 and Corollary 1]. The second was essentially proved in [4]. We include its proof here for completeness.

THEOREM 2 (Amarante [1]). Let C be a convex, weak*-compact set of probability charges in $ba(\Sigma)$. A functional $V: A(C) \longrightarrow \mathbb{R}$ is isotonically

additive and satisfies $V(\psi) \geq V(\varphi)$ whenever $\psi \geq \varphi$ if and only if there is a capacity ν on the Borel field on \mathcal{C} such that for all $\psi \in A(\mathcal{C})$

$$V(\psi) = \int_{\mathcal{C}} \psi d\nu$$

LEMMA 1. Let $\tau: B(\Sigma) \longrightarrow \mathbb{R}$ satisfy the following two properties:

(1')
$$\tau(\lambda f + \alpha \mathbf{1}) = \lambda \tau(f) + \alpha$$
; $\lambda \geq 0$ and $\alpha \in \mathbb{R}$

$$(2') \ f \le g \quad \Longrightarrow \quad \tau(f) \le \tau(g).$$

Then, there exists a weak*-compact, convex set C of probability charges on Σ and a mapping $a: B(\Sigma) \longrightarrow [0,1]$ such that τ admits the representation

(1.1)
$$\tau(f) = a(f) \min_{P \in \mathcal{C}} \int_{\Omega} f dp + (1 - (a(f)) \max_{P \in \mathcal{C}} \int_{\Omega} f dp$$

PROOF. First, notice that τ is sup-norm continuous: From

$$f = g + f - g \le g + ||f - g||$$

 $g = f + g - f \le f + ||f - g||$

by using (2') and (1'), we get

$$|\tau(f) - \tau(g)| \le ||f - g|| \tau(\mathbf{1}) = ||f - g||$$

which is the sup-norm continuity of τ . Next, define a binary relation \gtrsim on $B(\Sigma)$ by

$$f \gtrsim g$$
 if $f = \tau(\lambda f + h) \ge \tau(\lambda f + h)$

for all $\lambda \geq 0$ and for all $h \in B(\Sigma)$. By construction, this binary relation is conic (i.e. $f \gtrsim g \Longrightarrow \lambda f + h \gtrsim \lambda f + h$ for all $\lambda \geq 0$ and for all $h \in B(\Sigma)$), and it is easy to see that it is reflexive and transitive. Moreover, property (2') of τ implies that \gtrsim is non-trivial (i.e., there exist $f, g \in B(\Sigma)$ such that $f \gtrsim g$ but not $g \gtrsim f$) and has the property $f \geq g \Longrightarrow f \gtrsim g$. Finally, property (2') and the sup-norm continuity of τ easily imply that \gtrsim is continuous in the sense that $f_i \to f$, $g_i \to g$ and $f_i \gtrsim g_i$ imply $f \gtrsim g$. As it is well-known (see [4, Proposition 22]), given a binary relation \gtrsim with these properties, there exists a (unique) weak*-compact, convex set $\mathcal C$ of probability charges on Σ such that

$$(1.2) f \gtrsim g iff \int f dP \ge \int g dP for all \ P \in \mathcal{C}$$

Now, let $f \in B(\Sigma)$ and let \mathcal{C} be the set determined by \gtrsim . Let

$$\bar{x} = \min_{P \in \mathcal{C}} \int f dP$$

(\bar{x} exists because the mapping $P \longmapsto \int f dP$ is weak*-continuous and \mathcal{C} is weak*-compact). Then, by (1.2), $f \gtrsim \bar{x}\mathbf{1}$. By definition of \gtrsim , this implies that

$$\tau(\lambda f + h) \ge \tau(\lambda \bar{x} \mathbf{1} + h)$$

for all $\lambda > 0$ and for all $h \in B(\Sigma)$. In turn, by property (1') of τ , this implies

$$\bar{x} = \min_{P \in \mathcal{C}} \int f dP \le \inf_{\lambda > 0; h \in B(\Sigma)} \tau(f + \frac{1}{\lambda}h) - \tau(\frac{1}{\lambda}h)$$

Hence,

$$\bar{x} = \min_{P \in \mathcal{C}} \int f dP \le \tau(f)$$

Similarly, one shows the inequality

$$\max_{P \in \mathcal{C}} \int f dP \ge \tau(f)$$

and the statement in the lemma follows at once from these two inequalities.

PROOF OF THEOREM 1. Given a risk measure ρ , define $\tilde{\rho}: B(\Sigma) \longrightarrow \mathbb{R}$ by $\tilde{\rho}(f) = \rho(-f)$. Then, $\tilde{\rho}$ has the properties (1') and (2') in Lemma 1. Hence,

(1.3)
$$\tilde{\rho}(f) = a(f) \min_{P \in \mathcal{C}} \kappa(f)(P) + (1 - (a(f)) \max_{P \in \mathcal{C}} \kappa(f)(P)$$

where κ canonical linear mapping $\kappa: B(\Sigma) \longrightarrow A(\mathcal{C})$. If $f, g \in B(\Sigma)$ are such that $\kappa(f) = \kappa(g)$, then by (1.2) in the proof of Lemma 1 we have that $f \gtrsim g$ and $g \gtrsim f$, which imply $\tilde{\rho}(f) = \tilde{\rho}(g)$. We conclude that if $f, g \in B(\Sigma)$ are such that $\kappa(f) = \kappa(g)$, then a(f) = a(g). It follows that the mapping $\tilde{a}: A(\mathcal{C}) \longrightarrow [0,1]$ defined by $\tilde{a}(\kappa(f)) = a(f)$ is well-defined, and that the functional $\tilde{\rho}$ factors as $\tilde{\rho} = V \circ \kappa$

$$\tilde{\rho}(f) = V \circ \kappa(f) = \tilde{a}(\kappa(f)) \min_{P \in \mathcal{C}} \kappa(f)(P) + (1 - (\tilde{a}(\kappa(f))) \max_{P \in \mathcal{C}} \kappa(f)(P)$$

Hence, from the linearity of κ and property (1') of $\tilde{\rho}$, it follows that

$$V(a\psi + b\mathbf{1}) = aV(\psi) + b$$

for all $a \geq 0$, $b \in \mathbb{R}$ and for all $\psi \in A(\mathcal{C})$. In particular, if $\psi, \varphi \in A(\mathcal{C})$ are isotonic (i.e., $\psi(P) \geq \psi(P') \iff \varphi(P) \geq \varphi(P')$), then there exist $a \geq 0$ and

 $b \in \mathbb{R}$ such that $\psi = a\varphi + b$ and

$$V(\psi + \varphi) = V(\psi) + V(\varphi)$$

that is, V is additive on isotonic functions.

Let $\psi, \varphi \in A(\mathcal{C})$ be such that $\psi \geq \varphi$. Since the canonical mapping is onto, there exist $f, g \in B(\Sigma)$ such that $\psi = \kappa(f)$ and $\varphi = \kappa(g)$. By(1.2) in the proof of Lemma 1, $\psi \geq \varphi$ is equivalent to $f \gtrsim g$. In turn, this implies $\tilde{\rho}(f) \geq \tilde{\rho}(g)$ and, by the factorization above, $V \circ \kappa(f) \geq V \circ \kappa(f)$. That is,

$$\psi \ge \varphi \Longrightarrow V(\psi) \ge V(\varphi)$$

By Theorem 2, V admits a representation as a Choquet integral. We then conclude that

$$\rho(f) = \tilde{\rho}(-f) = \int_{C} -\kappa(f)d\nu$$

where ν is a capacity on the Borel field on \mathcal{C} generated by the weak*-topology, and the integral is a Choquet.

Conversely, it follows immediately from the properties of the Choquet integral that any functional $\rho: B(\Sigma) \longrightarrow \mathbb{R}$ defined by $\rho(f) = \int_{\mathcal{C}} -\kappa(f)d\nu - \mathcal{C}$ convex and weak*-compact, ν a capacity on the Borel field on \mathcal{C} – satisfies properties (1), (2) and (3) above.

2. Examples

It is clear that the risk measures characterized in the theorem are not necessarily coherent: coherence obtains if and only if the capacity is submodular (i.e., for all A and B in the Borel field on C, $\nu(A \cup B) + \nu(A \cap B) \le \nu(A) + \nu(B)$; see below). Below, we give a few examples of risk measures that can be defined starting from Theorem 1. For C a convex, weak*-compact set of probability charges in $ba(\Sigma)$, let B denote the Borel field on C generated by the weak*-topology.

EXAMPLE 1. Let α be a number in [0,1]. Define a capacity $\nu : \mathcal{B} \longrightarrow [0,1]$ by $\nu(A) = \alpha$ for all $A \in \mathcal{B} \setminus \{\emptyset, \mathcal{C}\}$, $\nu(\emptyset) = 0$ and $\nu(\mathcal{C}) = 1$. If α is neither 0 nor 1, and if \mathcal{C} contains more than two elements, this capacity gives rise to a risk measure that is neither sub-additive nor super-additive.

EXAMPLE 2 (Distortion of a probability measure). Let μ be a probability measure on \mathcal{B} . Let $\varphi : [0,1] \longrightarrow [0,1]$ be an increasing function with the property that $\varphi(0) = 0$ and $\varphi(1) = 1$. Define a capacity ν on \mathcal{B} by $\nu = \varphi \circ \mu$.

If φ is neither concave nor convex, ν gives rise to a risk measure that is neither sub-additive nor super-additive.

Example 3 (Quantile functions). Let (T, Θ) be a measurable space, and let $B(\Theta)$ denote the Banach space (sup-norm) of bounded, Θ -measurable real-valued functions on T. Let p be a probability measure on Θ . A functional $F: B(\Theta) \longrightarrow \mathbb{R}$ is a lower quantile with respect to p if there exists $\alpha \in [0, 1)$ such that

$$F(f) = \inf\{x \mid p(\{t : f(t) \ge \alpha\}) \le \alpha\}$$

F is an upper quantile if there exists $\alpha \in (0,1]$ such that

$$F(f) = \sup\{x \mid p(\{t : f(t) \ge \alpha\}) \ge \alpha\}$$

F is a quantile function if it is either a lower quantile or an upper quantile. Quantile functions can be represented by means of Choquet integrals (see [3]). Thus, it follows from Theorem 1 that every quantile function $F: A(\mathcal{C}) \longrightarrow \mathbb{R}$ defines a risk measure satisfying (1), (2) and (3) by means of $\rho(f) = F(-\kappa(f))$, for all $f \in B(\Sigma)$.

As a corollary to Theorem 1, we obtain the representation of coherent risk measures given by Artzner et al. [2]. To this end, we recall that given a compact, convex subset \mathcal{C} of a locally convex space E and a probability measure μ on \mathcal{C} , a barycenter of μ is a point $P \in \mathcal{C}$ such that $\psi(P) = \int \psi d\mu$ for every continuous linear functional ψ on E.

COROLLARY 1. A risk measure $\rho: B(\Sigma) \longrightarrow \mathbb{R}$ is coherent if and only if there exists a unique convex, weak*-compact set $\mathcal{B} \subset ba(\Sigma)$ such that

$$\rho(f) = \max_{P \in \mathcal{B}} \int_{\Omega} -f dp$$

PROOF. Let ρ be a risk measure satisfying (1), (2) and (3), and let $\tilde{\rho}$ and V be the functionals defined in the proof of Theorem 1. It is easy to see that ρ is subadditive iff $\tilde{\rho}$ is subadditive iff V is subadditive. Thus, let V be subadditive. By a theorem of Schmeidler [9, Proposition 3], there exists a unique weak*-compact, convex set Γ of charges on the Borel field of \mathcal{C} such that for all $\psi_f \in A(\mathcal{C})$

$$(2.1) V(\psi_f) = \int_{\mathcal{C}} \psi_f d\nu = \max_{\mu \in \Gamma} \int_{\mathcal{C}} \psi_f d\mu$$

We can assume that each μ is a regular Borel measure on \mathcal{C} . In fact, for each μ , $\int_{\mathcal{C}} \cdot d\mu$ is a continuous linear functional on $A(\mathcal{C})$. By Hahn-Banach, this can be extended to a continuous linear functional on $C(\mathcal{C})$, the Banach space of all continuous functions on \mathcal{C} equipped with sup-norm, and (via the Riesz theorem) there exists a unique regular Borel measure representing it. It follows from [8, Proposition 1.1] that each $\mu \in \Gamma$ has a unique barycenter $P_{\mu} \in \mathcal{C}$, and that the mapping $\mu \longmapsto P_{\mu}$ is weak*-continuous. Let us denote by $\mathcal{B} \subset \mathcal{C}$ the image of Γ under such a mapping. Then, we can rewrite (2.1) as

$$V(\psi_f) = \max_{\mu \in \Gamma} \int_{\mathcal{C}} \psi_f d\mu = \max_{\mu \in \Gamma} \psi_f(P_\mu) = \max_{P \in \mathcal{B}} \psi_f(P) = \max_{P \in \mathcal{B}} \int f dP$$

Thus,

$$\rho(f) = \max_{P \in \mathcal{B}} \int_{\Omega} -f dp$$

We conclude by observing the well-known fact (see [7, Theorem 35]) that a Choquet integral is subadditive if and only if the capacity that defines it is submodular.

References

- [1] Amarante M. (2009), Foundations of Neo-Bayesian Statistics, *Journal of Economic Theory* **144**, 2146-73.
- [2] Artzner P., F. Delbaen, J-M Eber and D. Heath (1999), Coherent measures of risk, Mathematical Finance 9, 203-28.
- [3] Chambers C. (2007), Ordinal aggregation and quantiles, *Journal of Economic Theory* 137, 416-31.
- [4] Ghirardato P., F. Maccheroni and M. Marinacci (2004), Differentiating ambiguity and ambiguity attitude, *Journal of Economic Theory* 118, 133-173.
- [5] Huber P.J. (1981), Robust Statistics, Wiley.
- [6] Laeven R.J.A. (2005), Essays on Risk Measures and Stochastic Dependence with Applications to Insurance and Finance, Ph.D. Thesis, Tinbergen Institute Research Series 360.
- [7] Marinacci M., L. Montrucchio (2004), Introduction to the Mathematics of Ambiguity, in *Uncertainty in economic theory*, (I. Gilboa, ed.), Routledge, London.
- [8] Phelps R. R. (1966), Lectures on Choquet theorem, van Nostrand.
- [9] Schmeidler D. (1986), Integral Representation without Additivity, Proceedings of the AMS 97, 255-61.

Université de Montréal et CIREQ

 $E ext{-}mail\ address: massimiliano.amarante@umontreal.ca}$

Récents cahiers de recherche du CIREQ Recent Working Papers of CIREQ

Si vous désirez obtenir des exemplaires des cahiers, vous pouvez les télécharger à partir de notre site Web http://www.cireqmontreal.com/cahiers-de-recherche

If you wish to obtain copies of the working papers, you can download them directly from our website, http://www.cireqmontreal.com/cahiers-de-recherche

- 13-2012 Poschke, W., "Who Becomes an Entrepreneur? Labor Market Prospects and Occupational Choice", septembre 2012, 49 pages
- 14-2012 Benchekroun, H., G. Gaudet, H. Lohoues, "Some Effects of Asymmetries in a Common Pool Natural Resource Oligopoly", août 2012, 24 pages
- 15-2012 Ehlers, L., B. Klaus, "Strategy-Proofness Makes the Difference: Deferred-Acceptance with Responsive Priorities", septembre 2012, 32 pages
- 16-2012 Bossert, W., C.X. Qi, J.A. Weymark, "An Axiomatic Characterization of the MVSHN Group Fitness Ordering", septembre 2012, 20 pages
- 17-2012 Ruge-Murcia, F., "Skewness Risk and Bond Prices", mai 2012, 41 pages
- 18-2012 Amarante, M., M. Ghossoub, E. Phelps, "Contracting for Innovation under Knightian Uncertainty", septembre 2012, 37 pages
- 19-2012 Bossert, W., C. D'Ambrosio, "Proximity-Sensitive Individual Deprivation Measures", décembre 2012, 15 pages
- 01-2013 Bossert, W., Y. Sprumont, "Every Choice Function is Backwards-Induction Rationalizable", janvier 2013, 15 pages
- 02-2013 Amarante, M., "Conditional Expected Utility", février 2013, 19 pages
- 03-2013 Benchekroun, H., F. Taherkhani, "Adaptation and the Allocation of Pollution Reduction Costs", mai 2013, 33 pages
- 04-2013 Bossert, W., H. Peters, "Single-Basined Choice", juin 2013, 15 pages
- O5-2013 Okasha, S., J.A. Weymark, W. Bossert, "Inclusive Fitness Maximization : An Axiomatic Approach", mai 2013, 17 pages
- 06-2013 Ehlers, L., B. Klaus, "House Allocation via Deferred-Acceptance", juillet 2013, 13 pages
- 07-2013 McCausland, W.J., A.A.J. Marley, "Bayesian Inference and Model Comparison for Random Choice Structures", juillet 2013, 26 pages
- 08-2013 Cardia, E., P. Gomme, "The Household Revolution : Childcare, Housework, and Female Labor Force Participation", juillet 2013, 44 pages
- 09-2013 Dutta, R., S. Horan, "Inferring Rationales from Choice : Identification for Rational Shortlist Methods", mars 2013, 51 pages
- 10-2013 Dutta, R., R. Ishii, "Coordinating by Not Committing : Efficiency as the Unique Outcome", août 2013, 38 pages