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Résumé 

 

La détérioration de la barrière hémato rétinienne et l'œdème maculaire consécutif est 

une manifestation cardinale de la rétinopathie diabétique (RD) et la caractéristique 

clinique la plus étroitement associée à la perte de la vue. Alors que l'œdème maculaire 

affecte plus de 25% des patients souffrant de diabète, les modalités de traitement 

actuellement disponibles tels que les corticostéroïdes administrés localement et les 

thérapies anti-VEGF récemment approuvés présentent plusieurs inconvénients. Bien que 

le lien entre une rupture de l’unité neuro-vasculaire et la pathogénèse de la RD ait 

récemment été établi, l’influence de la signalisation neuro-vasculaire sur la 

vasculopathie oculaire diabetique a jusqu’à présent reçu peu d’attention. Ici, à l’aide 

d’ètudes humaines et animales, nous fournissons la première preuve du rôle essentiel de 

la molécule de guidage neuronale classique Sémaphorine 3A dans l’instigation de la 

perméabilité vasculaire maculaire pathologique dans le diabète de type 1. L’étude de la 

dynamique d’expression de Sémaphorine 3A révèle que cette dernière est induite dans 

les phases précoces hyperglycèmiques du diabète dans la rétine neuronale et participe à 

la rupture initiale de la fonction de barrière endothéliale. En utilisant le modèle de souris 

streptozotocine pour simuler la rétinopathie diabétique humaine, nous avons démontré 

par une série d’approches analogue que la neutralisation de Sémaphorine 3A empêche 

de façon efficace une fuite vasculaire rétinienne. Nos résultats identifient une nouvelle 

cible thérapeutique pour l’œdème maculaire diabétique en plus de fournir d’autres 

preuves de communication neuro-vasculaire dans la pathogènese de la RD. 
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Abstract  

The deterioration of the blood retinal barrier and consequent macular edema is a 

cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely 

associated with loss of sight. While macular edema affects over 25% of patients 

suffering from diabetes, currently available treatment modalities such as locally 

administered corticosteroids and recently approved anti-VEGF therapies, present several 

drawbacks. Although recent insight on the pathogenesis of DR points to a breakdown in 

the neurovascular unit, neurovascular cross-talk and its influence on diabetic ocular 

vasculopathy has thus far received limited attention. Here we provide the first evidence 

from both human and animal studies for the critical role of the classical neuronal 

guidance cue Semaphorin3A in instigating pathological macular vascular permeability 

in type I diabetes. Investigation of the dynamics of expression reveal that 

Semaphorin3A is induced in the early hyperglycemic phases of diabetes within the 

neuronal retina and precipitates initial breakdown of endothelial barrier function. Using 

the streptozotocin mouse model as a proxy for human diabetic retinopathy, we 

demonstrate by a series of orthogonal approaches (gene silencing or treatment with 

soluble Neuropilin-1 employed as a Semaphorin3A trap), that neutralization of 

Semaphorin3A efficiently prevents retinal vascular leakage. Our findings identify a new 

therapeutic target for DME and provide further evidence for neurovascular cross-talk in 

pathogenesis of DR. 
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1.1 Diabetes 

1.1.1 A major public health issue 

Diabetes encompasses a group of diseases characterized by hyperglycemia and 

glucose intolerance as a result of insulin deficiency and/or impaired sensitivity to insulin. 

This condition is classified into two groups: Type 1 diabetes mellitus (T1DM), which is 

characterized by an autoimmune destruction of pancreatic beta cells, and Type 2 diabetes 

mellitus (T2DM), which occurs in 90% of cases, has a more diverse etiology and manifests 

itself later in life (1).  

Diabetes worldwide has reached epidemic proportions, affecting both developed 

and developing countries. Globally, the prevalence of diabetes in the age group from of 20 

to 79—number of diabetics over total population—was estimated at 6.4% in 2010 (285 

million adults) and is expected to reach 7.7% by 2030 (439 million adults) (2). Specifically 

in North America, the prevalence of diabetes was reported to be 10.2% in 2010 and 

represented the highest in the world. 

As of 2009 there were approximately 2.4 million Canadians (6.8%) living with 

diabetes. The Public Health Agency of Canada (PHA) has estimated that for the 11-year 

period between 1998/99 to 2008/09 the age-standardize prevalence rate of diabetes 

increased by 70% (3). Additionally, assuming incidence rates continue to rise in the 

context of the 2008/09 mortality rates, the PHA projects that by 2018/19 there will be 3.7 

million Canadians with diabetes. It is therefore clear that diabetes represents a major public 

health issue that will continue to significantly burden healthcare systems given the annual 

per capita health care cost for diabetics is approximately four times that of non-diabetics.  



3 
 

It is therefore crucial to gain further pathophysiological insight to this condition and 

consequently develop more cost-effective and efficient treatments for this condition (3-5).       

In terms of the impact of diabetes on mortality rates, Vital Statistics data in Canada 

underestimate the association between diabetes and mortality because diabetes is rarely 

recorded as cause of death on death certificates (3, 6). For instance, in 2007 3.1% of all 

deaths were attributed to diabetes as a primary cause, although 29.9% of the total diseased 

had been diagnosed with diabetes (6). In addition, in 2008/09, Canadians aged 20 to 39 and 

40 to 74 years showed all-cause mortality rates of 4.2 to 5.8 and 3.6 to 2 times higher, 

respectively, in diabetics versus non-diabetics (Figure 1a).  It is therefore clear that people 

affected by diabetes are more likely to die prematurely in every age group, and that it is a 

life-threatening disease. 

1.1.2 Complications Related to Diabetes  

The underestimated relation between diabetes and death comes from the fact that 

numerous diabetes- related deaths are reported to arise from the complications associated 

with diabetes and not from the disease itself (Figure 1b). Diabetes-related comorbidities 

also contribute significantly to the total burden of the disease on the healthcare system 

since the medical- and mortality-associated costs of diabetes increase by 3.6 fold (1.024 to 

3.701 billion US dollars) when the cost of complications are included (5). Therefore, it is 

necessary to further understand the genesis of diabetes-related comorbidities in order to 

prolong the life expectancy of patients suffering from this condition.   
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Figure  1. Diabetes: mortality and complications. (a) All-cause mortality rates and rate 

ratios among individuals aged 20 years and older, by diabetes status, Canada, 2008/09  (b) 

Prevalence rate ratios, standardized to 1991 population, of complications among 

hospitalized individuals aged 20 years and older, Canada, 2008/09. Source: Public Health 

Agency of Canada (August 2011); using 2008/09 data from the Canadian Chronic Disease 

Surveillance System (Public Health Agency of Canada). Modified from (3). 
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Complications secondary to diabetes can be divided in short- and long-term. Short-

term complications are associated with: 1) poor glycemic control and hyperglycemia that 

can lead to infection/slow wound healing, as well as diabetic ketoacidosis (DKA) and 

hyperglycemic hyperosmolar nonketotic syndrome (HHNS); and 2) inadequate utilization 

of glycemic control treatments, e.g. insulin, which can trigger hypoglycemic episodes. 

Nevertheless, the most health-threatening complications that have a more direct impact on 

quality of life and life-expectancy are those that arise due to long-term exposure to 

hyperglycemia. These include, but are not limited to cardiovascular, ophthalmic (e.g. 

retinopathy, glaucoma, cataracts) and renal disease (nephropathy), as well as nerve damage 

(central and peripheral neuropathy), lower extremity lesions (peripheral vascular 

pathology, which can lead to amputation), gingivitis/periodontis and depression (3, 7-11).  

Interestingly, however, the effects of hyperglycemia on the vasculature are the 

main source of morbidity and mortality in Type 1 and 2 diabetes (12). At the 

macrovascular level, complications arise in the form of coronary artery disease, peripheral 

arterial disease and stroke, whereas microvascular complications originate mainly in the 

retina, brain and kidneys (see Discussion for more information on diabetic microvascular 

pathology on brain and kidney). 

1.1.3 Diabetic microvascular pathology in the retina  

Diabetic retinopathy (DR) is the most common complication associated with 

diabetes (12). DR also represents the leading cause of blindness in working age adults, 

affecting approximately 50 % of diabetics (13). This form of microvascular diabetic 

pathology is characterized by a decrease in the barrier function of the endothelium that 

leads to increased extravasation of plasma components into the underlying interstitium and 
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tissue. In the retina, as well as in other tissues, diabetes-linked vascular deterioration of the 

retinal capillaries and endothelial barrier breakdown— blood- retinal barrier (BRB) in this 

case—have been associated with an overall state of hypoxia, which represents the first 

stage of diabetic retinopathy. DR generally manifests itself through an initial 

microvascular degeneration that can induce a destructive and excessive vascularization, 

during its proliferative stage (Proliferative DR, PDR), in an attempt to reinstate metabolic 

equilibrium in the hypoxic retina. This shortage in oxygen is believed to be triggered by 

hemoglobin glycation (i.e. non-enzyme mediated glycosylation), which increases the 

pigment’s oxygen affinity thus hindering efficient delivery of O2 (14). Hypoxia is further 

enhanced in the diabetic retina as a result of increased resistance to blood flow that reduces 

capillary circulation to the already stressed neural retina due to: a thickening of the 

basement membrane (BM; thicker BM reduces the rate O2 diffusion into the irrigated tissue 

and decreases capillary elasticity); and an abnormally high blood viscosity, which is most 

salient in diabetics with retinopathy (15).   

In addition, PDR is characterized by two prominent pathological features: 1) a 

decrease in the barrier function of retinal vessels that leads to a detrimental increase in 

vascular permeability, which leads to vasogenic oedema, retinal thickening and a 

subsequent loss of central vision; 2) an abnormal and misdirected growth of these leaky 

vessels towards the vitreous, which can ultimately cause retinal detachment. 

However, increased retinal vascular permeability is not only seen during the 

proliferative stage of DR, which is the most common cause of vision loss in Type 1 

diabetics. Vascular leakage can also arise independently, leading to diabetic macular 

edema (DME), which represents the main cause of loss of visual acuity in Type 2 diabetics 

(16). In DME, the retina secretes vascular endothelial growth factor (VEGF) as a result of 
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hypoxic conditions, which decreases inter endothelial cells (EC) adherens junction 

interactions, increases endothelial fenestrations, thus promoting vascular permeability, 

which leads to retinal thickening and visual complications. As a result, there is a new 

approach in the treatment of DME that involves the use of anti-VEGF agents that appear to 

be more efficient and less invasive in mitigating vascular leakage, and therefore edema, 

than previous treatments such as corticosteroids and photocoagulation (16).  

Notably, the effects of hyperglycemia on the macro- and microvasculature are the 

main source of illness and death in diabetes (12). As the term indicates, diabetic 

microvascular pathology involves the microvessels of the organism, which include the 

arterioles, metarterioles, capillaries and venules. Unlike the macrovessels, e.g. arteries, that 

are composed of endothelium, internal elastic lamina, basement membrane, external elastic 

lamina and adventitia, the microscopic vessels of the vasculature are structurally 

characterized by a much simpler tissue make up. As such, capillaries are primarily 

composed of endothelium, basement membrane and pericytes. However, the capillary 

endothelium exhibits a high degree of structural variation depending of the nature and 

requirements of the tissue it irrigates.     

 

1.2 The vasculature 

 1.2.1 The endothelium 

In vertebrates, blood circulates in a closed system from the heart to every tissue in 

the organism through the arteries, arterioles, capillary beds. Once the tissue is perfused, 

venules and veins return the blood to the heart, thus completing the circuit. The collective 

of these structures form the circulatory system, which is in charge of delivering oxygen 
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and nutrients to the various tissues, and collecting wastes and carbon dioxide from them 

for their disposal. The common denominator to the different components of the vasculature 

is the endothelium, formed by a layer of cells (endothelial cells) that lines the lumen 

through which the blood circulates.   

The endothelium exhibits a wealth of phenotypes as determined by the relative 

expression of numerous junctional and adherence proteins, specialized structures for 

transport (e.g. channels, transporters, etc.), as well as the coverage of the basement 

membrane. Different combinations of these components allow the endothelium to adapt to 

the numerous physiological requirements imposed by the several tissues that the 

vasculature irrigates.  Such heterogeneity of the endothelium can be already observed in 

hagfish, whose ancestor is the last common ancestor of all modern vertebrates, thus 

suggesting that heterogeneity evolve as an early and necessary characteristic of ECs (17).       

During development, ECs arise from mesoderm through the differentiation of 

hemangioblast/angioblast, yet other cell lineages, such as adipose and neural stem cells,  

have the ability to transdifferentiate into ECs as well (18-20). In addition, ECs have in 

common very few specific protein or mRNA markers, of which the most uniformly 

expressed, though not unique to them, are vascular endothelial cadherin (VE-cadherin), 

platelet/endothelial cell adhesion molecule 1 (PECAM-1) and thrombomodulin (20). The 

varied ontogenical origins of ECs and the difficulty to find characteristic molecular 

markers reflect, once again, the phenotypic variability that characterizes the endothelium.   

From a functional perspective, the endothelium serves several roles including the 

regulation of vasomotor tone, angiogenesis, innate and acquired immunity, leukocyte 

trafficking and hemostasis (20). Throughout the range of different physiological functions 
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that the endothelium must perform, it is key that vascular integrity is not compromised for 

prolonged periods of time. Controlled vascular permeability is crucial for proper transport 

and delivery of water and solutes between the blood and the underlying interstitium. 

Conversely, breakdown of vascular barrier function is the hallmark of several pathologies. 

1.2.2 Across the endothelium: paracellular and transcellular routes 

The molecular exchange across the vasculature occurs mostly at the level of 

capillaries either via the paracellular route, i.e. in between ECs, or via the transcellular 

route, through the cell. The former is determined and regulated by two major types of 

intercellular junctions: a) tight junctions (TJ) composed of occludins and claudins; and b) 

adherens junctions (AJ) formed by cadherins. Both TJs and AJs not only connect ECs and 

limit the movement of macromolecules across the endothelium while allowing smaller 

solutes and water to diffuse, but also contribute to setting up their polarity by establishing 

the border between luminal and abluminal sides. Some examples of EC-specific junctional 

proteins include VE-cadherin and claudin-5 (21, 22) (Figure 2). 

 

Figure 2.  Examples of tight and adherens junctions found in the endothelium. 

The movement of blood components via the paracellular route is determined and regulated 

by two major types of intercellular junctions:  tight junctions composed of occludins and 
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claudins; and adherens junctions formed by cadherins. Both TJs and AJs determine the 

border between luminal and abluminal aspects, thus helping establish proper endothelial 

cell polarity. Some examples of EC-specific junctional proteins are VE-cadherin and 

claudin-5. Modified from (23).   

In addition to the paracellular transport that occurs through the intercellular cleft, 

molecules can permeate the endothelium directly through ECs via the transcellular route 

following three different paths. First, transmembrane transporters differentially positioned 

and distributed along the opposite ends of the ECs, carry water and small molecules 

vectorially. Second, macromolecules move across the epithelium in membrane-bound 

carriers in a process denominated transcytosis. This system operates through several 

components: 1) caveolae (or plasmalemmal vesicles) are plasma membrane spherical 

invaginations of regular size (70 nm) that occur individually or in grape-like clusters on the 

luminal and abluminal aspects of ECs (24, 25), and whose openings or stomata can contain 

selectively permeable stomatal diaphragms (SDs) (26); 2) vesiculo-vacuolar organelles 

(VVOs) are conglomerates of interconnected vesicles that span from luminal to abluminal 

ends across the cytoplasm of ECs and are separated by SDs (27). Even though,  caveolae 

and VVOs share a high morphological resemblance, EM data from caveolin 1-knockout 

mice lacking caveolae (but still containing VVO-like organelles) suggest that they are 

functionally distinct structures (28).  

Third, molecules can also diffuse transcellularly through pores or channels that 

may be selective or not. Examples of such structures include: 1) fenestrae (Latin for 

“window”), which are regular circular openings that cover the entire length of the EC and 

run individually or in groups to form a “sieve plate”. Most fenestrae carry fenestral 

diaphragms (FDs) on the luminal side and, unlike SDs, contain protein tufts that limit their 

permeability; 2) transendothelial channels (TEC) are pores that span across ECs, arise from 



11 
 

the interconnection of two to four luminal and abluminal caveolae and contain two SDs on 

each aspect of the EC (29). The relative abundance and localization of transporters, 

caveolae, VVOs, fenestrae, TECs and their related structures determine the phenotypic 

and, thus, functional heterogeneity of the endothelium (Figure 3).  

Another important structure associated with the endothelium is the basement 

membrane (BM), which is a layer on which the EC monolayer lies. It is made of secreted 

extracellular proteins that include elastin, collagen IV, enactin/nidogen, heparan sulfate 

proteoglycans and laminin (30). Based on the degree of coverage (i.e. 

continuous/discontinuous) and organization of the BM, as well as by the presence or 

absence of fenestrae, the endothelium can be classified into three types: continuous 

fenestrated, continuous non-fenestrated, and discontinuous/sinusoidal (Figure 3). 

Continuous non-fenestrated endothelium is found in the capillaries of the brain, retina, 

lung and skin, as well as in veins and arteries and is characterized by low and highly 

selective permeability (20). In turn, fenestrated continuous is present in tissues where 

transendothelial transport and filtration are crucial, such as endocrine glands, choroid 

capillaries, glomeruli and gastric and enteric mucosae. Finally, discontinuous or sinusoidal 

epithelium is highly permeable and is characteristic of liver vascular beds. Fenestrations in 

the liver are larger (100-200 vs. 70 nm in diameter), contain gaps within individual cells 

and lack diaphragms when compared to continuous fenestrated tissue. The different BM 

arrangements and degrees of fenestrations allow the endothelium to regulate its 

permeability accordingly and, thus, adapt to the numerous and specific physiological 

requirements of the various tissues that are irrigated the given vasculature. 
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Figure 3. Types of endothelia and their associated components. Continuous non-

fenestrated endothelium is found in the capillaries of the brain, retina, lung and skin, as 

well as in veins and arteries and is characterized by a low and highly selective 

permeability. Fenestrated continuous endothelium can be encountered in tissues where 

transendothelial transport and filtration are crucial, such as endocrine glands, choroid 

capillaries, glomeruli and gastric and enteric mucosa. Discontinuous or sinusoidal 

endothelium is highly permeable and is characteristic of liver vascular beds. Modified from 

(20) .  

1.2.3 The Pericytes 

Embedded in the BM, resides another important component of the vasculature: the 

pericytes (PC). These cells play a unique role as evidenced in their association with the 

BM and special contacts shared with the ECs (31). PCs are found in precapillary arterioles, 

capillary beds, postcapillary venules and collecting venules (32), and have been shown to 

develop from various embryonic tissues including trunk vessels in the axial and the lateral 

plate mesenchyme (33), neural crest cells in the brain (34) and epicardial cells in the 

splanchnic mesoderm (35). 

In most vascular beds, pericytes are found embedded in the BM, which separates 

them from the ECs, and contribute to vascular structure. PCs thus interact with ECs 

indirectly via fibronectin-rich adhesion plaques (36). However, in areas of the endothelium 
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where the BM is not present or is very thin, pericytes interconnect with ECs through 

membrane invaginations called peg-socket contacts that possess an array of junctional 

complexes that include tight-, gap- and adherens junctions, such as N-cadherin (Figure 4) 

(31, 37). Interestingly, one pericyte is usually associated with several ECs, thus, suggesting 

a role in the coordination and integration of cellular communication among neighboring 

ECs.         

PCs provide a plethora of physiological functions. Pericytes show the highest rate 

of microvascular coverage within the central nervous system (CNS) where they actively 

partake in the formation of the blood-brain barrier (BBB) during embryogenesis and 

provide neuroprotection (38, 39). During this process, increased pericyte coverage 

strengthens barrier function and decreases vascular permeability of the developing brain 

vasculature  by: inducing tight junction formation, hindering EC expression of molecules 

that enhance transcytosis such as Plvap, and limiting immune cell infiltration (38).   

  Similarly, in the retina, pericytes interact with the underlying continuous non-

fenestrated endothelium and regulate regional blood flow by contraction through the action 

of contractile proteins such as actin, myosin and tropomyosin (37, 40). They contract in 

hyperoxic conditions (41), as well as in the presence of ATP, and relax when exposed to 

nitric oxide and CO2 (42, 43). Pericytes have also been involved in the control of capillary 

structure, inhibition of endothelial cell proliferation and angiogenesis (14). Moreover, PCs 

play an important role in maintaining the integrity of the internal blood-retinal barrier 

(iBRB), thus controlling the vascular barrier function of the retinal capillaries. This is 

achieved through EC-pericyte-induced of the tight junctional proteins occludin and zona 

occludens 1 (ZO-1) during normoxia (44).  
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The maintenance of blood-barriers, BBB and BRB, in the CNS is crucial for the 

proper functioning of the brain and retina, respectively, and their breakdown is associated 

with the etiology of several pathologies, including diabetic neuropathy and retinopathy, 

amyotrophic lateral sclerosis and stroke (14, 45-47).  

 

 

Figure 4. Endothelial-pericyte interaction in the microvasculature. The 

pericytes are found embedded in the BM in most vascular beds. This layout  separates the 

PC from the ECs .PCs interact with ECs indirectly via fibronectin-containing adhesion 

plaques. However, in those areas where the BM is not present, pericytes contact ECs 

through membrane invaginations called peg-socket contacts that posses an array of 

junctional complexes that include tight-, gap- and adherens junctions such as N-cadherin. 

One pericyte is typically associated with several ECs, suggesting a role in the coordination 

and integration of cellular communication among neighboring ECs. Modified from (31).  

 

1.3 Nerves and vessels 

1.3.1 Common guidance 

Since the appearance of metazoans, there has been evolutionary pressure to develop 

sensory and motor capabilities to allow a more efficient interaction between the organism 

and its environment. The advent of nervous tissue and subsequent development of a central 
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nervous system allowed for such a sensory-motor processing. As organisms became larger 

with more complex body plans, they required a more elaborate nutrient and oxygen 

delivery system. This was achieved with the development of a convection system such as 

the circulatory system.  

In order for the nervous and circulatory systems to innervate and irrigate a given 

tissue, vessels and the axons of neurons have to successfully extend and navigate through 

the developing organism. Interestingly, vessels and nerves follow a common stereotyped 

path through the body, even though macroscopically they seem to develop distinctly (48). 

Microscopically, nerves and vessels share an analogous structure at their growing fronts: 

the growth cone of the neuron’s axon and the tip cell of the developing/branching 

endothelium (Figure 5). These specialized structures are highly chemosensitive, malleable 

and dynamic, constantly projecting and retracting filopodia as a result of attractive and 

repulsive cues found in the surrounding interstitium. These cues help nerves and vessels 

find their targets and are determined by the relative concentration of guidance molecules 

present in their microenvironment, as well as by the differential expression and distribution 

of the corresponding receptors for these guidance cues.  

Beyond anatomical similarities, the molecules and receptors involved in nerve 

pathfinding have also been found to guide vessels. Examples include netrins and their 

Unc5 and DCC receptor families (49-58); slits and their robo receptors (59-66); ephrins 

and their eph receptors (67-73); and semaphorins and their neuropilin and plexin receptors 

(49-51, 74-79). 
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Figure 5. Nerves and vessels follow stereotyped trajectories and share similar cellular 

structural features. (a) Nerves and vessels follow the same path; murine skin sensory 

nerves assist in proper arteriogenesis (80). (b) Axon and growth cone containing several 

filipodia (scanning electron image). (c)  Proliferating vascular network, showing a growing 

front containing tip cells that project several filipodia (white arrowheads). (d) Schematic of 

extending stalk cell attached to the leading filipodia-rich tip cell. Figured modified from 

(48, 80). 

 

Interestingly, however, semaphorins serve other roles beyond axon and vessel 

guidance. They are expressed in endocrine, gastrointestinal, hepatic, immune, 

musculoskeletal, renal, reproductive and respiratory systems, where they serve distinct 

functions (79, 81-94). The numerous biological functions of semaphorins arise from their 

shared ability to affect cytoskeleton dynamics. By altering actin filaments and the 

microtubule network, semaphorins are able to influence cellular morphology, attachment, 

migration, polarization and growth; this is a characteristic that makes them an attractive 

target for study (92).  
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1.3.2 The Semaphorins 

 While the biological functions of semaphorins have been studied for the past 20 

years, novel physiological roles continue to emerge (74). There are eight main classes of 

semaphorins: class 1 and 2 are found in invertebrates, 3 to 7 are found in vertebrates, in 

addition to the V class that is only found in viruses (95). Semaphorins can be secreted, 

diffusible and act long-distance, or be membrane-bound and act short-distance , but all of 

them have in common a 500 amino acid sequence, the semaphorin domain (49-51, 74, 92, 

96). This is the most highly conserved domain across all the classes and is responsible for 

mediating their effects (97-99). Semaphorins are ubiquitously expressed in the organism, 

but they were originally characterized as axonal guidance molecules in the development of 

nervous system (100).   

The first dicovered semaphorin of the secreted family was Semaphorin3A 

(Sema3A), which was initially discovered to promote axonal collapse (74). Sema3A 

signals to target cells through a direct interaction with neuropilin 1 (Nrp-1) receptor, which 

is also a co-receptor for vascular endothelial growth factor (VEGF) (101, 102). Sema3A 

also acts indirectly via the coreceptor plexinD1 (92). In the nervous system, Sema3A 

generally affects  growth cone morphology by destabilizing the peripheral cytoskeleton; it 

promotes the depolymerization and hinders the repolymerization of F-actin, also trumping 

microtubule dynamics, thus promoting partial or total cellular structural collapse (51). 

Moreover, Sema3A can induce apoptosis as evidenced: in vitro, by exposing primary 

neurons to this protein; and in vivo by the protective effect of its neutralization on retinal 

ganglion cells (RGCs) following optic nerve axotomy, which is a phenomenon known to 

lead to RGCs apoptosis (85, 103-105).   
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More recently, Sema3A and its receptors were found to be involved in 

cardiovascular development (106). Endothelial cells not only express Nrp1 and plexinD1, 

but in the presence of Sema3A, EC proliferation is impaired thus hindering vessel 

branching (78, 101). Interestingly, one study found Sema3A to affect mature vessels by 

destabilizing inter endothelial cell junctions and thereby promoting increased vascular 

permeability, in addition to inhibiting VEGF-induced proliferation (93). 

 From a pathological point of view, Sema3A has been found to participate in 

nervous system pathologies, such as schizophrenia and Alzheimer’s disease (107, 108). In 

addition, Sema3A has been shown to block tumor growth and normalize tumor 

vasculature, as well as blocking and misdirecting physiological revascularization in a 

model of retinopathy of prematurity (86, 89). 

It is not surprising that Sema3A serves an important role during development, 

homeostasis and even pathology, considering its effects on cell survival, proliferation and 

cytoskeletal dynamics. Even though Sema3A has been mostly characterized in the nervous 

and circulatory systems, the evidence indicating its involvement in other tissues continues 

grow.  

 

1.4 The retina  

The retina contains the photosensitive tissue of the eye. It is part of the central nervous 

system (CNS) and is highly organized in three layers of neurally derived cells (the neural 

retina) that are closely associated with the retinal vasculature (vascular retina), which feeds 

this highly metabolic tissue.  The neural retina, from the outside to the inside of the eye, is 

composed of: the retinal pigmented epithelium (RPE), the photoreceptor layer (rods and 
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cones), the outer nuclear layer (ONL, cell bodies of rods and cones), the outer plexiform 

layer (synapses between photoreceptors and bipolar cells), the inner nuclear layer (INL, 

nuclei and cell bodies of the bipolar cells), inner plexiform layer (synapses between bipolar 

cells), the ganglion cell layer (ganglion neuron bodies and nuclei) and the nerve fiber layer 

(axons from the ganglion neurons) (Figure 6). When light enters the eye, it stimulates the 

photoreceptors resulting in a chemoelectrical impulse that travels via the afore-mentioned 

cellular path. From the ganglion neurons’ nerve fibers the transduction signal is relayed to 

the primary visual cortex where it is further processed to produce the phenomenon of 

vision. Because of the high energy demand required for phototransduction and its related 

metabolic pathways, the retina consumes oxygen at a higher rate than in any other tissue 

(14, 109). The highest oxidative enzymatic activity of the retina has been localized to the 

RPE and inner segment of photoreceptors, where there is a constant, arduous synthesis and 

daily replacement, respectively, of phototransduction-specific cell components (i.e. 

pigments) (14, 110-112). High metabolic activity in these tissues can also be evidenced by 

the large density of mitochondria present in them, which indicates a strong reliance on 

aerobic metabolism (14, 113-115).       
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Figure 6. The neural and vascular retina: cross-section. (a) Schematic of the retina and 

(b) immunofluorescent staining of a retina cryosection dyed for nuclei (blue, DAPI) and 

retinal vessels (red, Lectin) illustrate the close association between the neural and vascular 

retinae. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; 

OPL, outer plexiform layer; ONL, outer nuclear layer; RPE, retinal pigmented epithelium. 

(a) Figure modified from (14). 

 

In order to maintain a high supply of oxygen, the adult mammalian retina is fed by 

two vascular systems: 1) the choroidal vessels that lie outside the retina, are highly 

fenestrated and, thus, permeable and provide support to the RPE and photoreceptors; 2) the 

retinal vessels irrigate the remaining neural components of the retina via an outer plexus 

that lies between the INL and outer plexiform layer, and a second plexus located in the 

proximity of the GCL and nerve fibers (116). The retinal vasculature posses a similar 

barrier to that found in the rest of the CNS vasculature termed blood-retina barrier, which 

makes the retinal endothelium very selectively permeable.  In some clinical conditions 

such as central retinal vein occlusion, retinopathy of prematurity and  diabetic retinopathy, 

the resulting hypoxia that affects the retina leads to a degradations of the BRB, yielding 

increased and pathological vascular permeability (14). 

1.5 Hypothesis and Objectives 

The pathological barrier-breakdown observed in DR has received considerably less 

attention than the pathological pre-retinal vascularisation (i.e. neovascularization) that is 

characteristic of the advanced stages of DR (117-119). As a result, the current standards of 

care present side-effects that cannot be ignored. These include increased cataract formation 

and a detrimental rise in intraocular pressure with intravitreal use of corticosteroid (117). 

Comparably, anti-VEGF therapies, which are generally effective, may be associated with 
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increased thromboembolic events, possible neuronal toxicity and geographic atrophy when 

used frequently as long term regimens (120-122). In addition, even though panretinal 

photocoagulation and grid/focal laser are the most widely used forms of treatment for PDR 

and DME, respectively, they destroy hypoxic retinal tissue, which inadvertently leads to 

reduced visual field and promotes secretion of pro-angiogenic factors. As a result, these 

therapeutic limitations emphasize the need for novel pharmacological approaches. 

  In addition, from a physiological perspective, the presence of VEGF in the diabetic 

retina does not explain other prominent pathological features of DR, such as the initial 

vascular decay or the misdirected nature of the pathological neovascularization observed in 

PDR. While several other factors such as hyperglycemia and oxidative stress have been 

linked to vascular decay in DR, the mechanisms that precipitate vessel breakdown remain 

largely ill-defined. 

Here we focused on the neurovascular guidance cue semaphorin 3A (Sema3A) and 

its potential role in mediating barrier function compromise in diabetic retinopathy. Our lab 

has previously shown that Sema3A participates in vascular degeneration and later blocks 

physiological vascularization in a different model of proliferative retinopathy that shares 

common features with PDR and is used to study retinal pathology in the premature 

newborn retina (86). At the same time, Sema3A has been shown to be a strong inducer of 

vascular permeability (93). In this context, we hypothesize that Semaphorin 3A provokes 

vascular permeability in Diabetic Retinopathy. Thus, we set out:  

1) To elucidate the dynamics of semaphorin 3A induction in diabetic retinopathy  

2) To evaluate the role of semaphorin 3A in the barrier function of the retinal vasculature  

3) To elucidate the mechanism through which semaphorin 3A acts on barrier function 
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Neuronal-Derived Semaphorin 3A is an Early Inducer of 

Vascular Permeability in Diabetic Retinopathy 
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Contributions by Figure:  

Candidate’s name: Agustin Cerani (AC) 

1. Figure 1: Sema3A is elevated in the vitreous of human diabetic patients suffering from 

diabetic retinopathy and in retinal neurons in the early phases of STZ-induced 

diabetes. 

Preparation and set up of the entire Figure 1 was performed by AC. 

 A-D: OCT and 3D retinal map data were obtained from Dr. Rezende 

(ophthalmologist). Images were selected by AC. 

 E: Human vitreous samples were obtained and provided by Dr. Rezende; western 

blot was perfomed by Catherine Menard (CM); picture was prepared by AC. 

 F: Patient data was organized by AC 

 G: drawing modified by AC from Wei Li’s design. 

 H-J: STZ diabetes induction protocol was carried out by AC. Tissue extraction 

and preparation was performed by AC. Data analysis, statistics and graph 

preparation were performed by AC. 

  K-N: Retinas were extracted and prepared by AC (except for some stainings and 

imaging). 

 O: Retinas were extracted and prepared by AC; laser capture microscopy (i.e. 

collection of micro-cuts) was perfomed by AC.  

 

2. Figure 2: Retinal barrier function is compromised by Sema3A. 

 A: microsurgery/intravitreal injections and Evans Blue Permeation assay 

(technique adapted and optimized by AC) were carried out by AC. Data analysis, 

statistics and graph preparation done by AC. 

 B: microsurgery/intravitreal injections of Evans Blue performed by AC. 

Extractions of eyes and sample preparation done by AC. 

 C: Part of cell culture of HUVECs, part of statistics and graph preparation by AC. 

ECIS performed by Chintan Patel. 

 D: Drawing by Dr. Sapieha. 

 E: Drawing done by AC. 

 F-H: Part of HRMEC culture and cell treatment by AC. Blots and quantification 

by CM. Picture and graph preparation for figure by AC.  

 I: HRMEC culture by AC. The rest performed by Dr. Nicolas Tetreault (NT). 

 J: HRMEC culture and plan by AC. Treatment and Blot by Dr. Agnieszka Dejda 

(AD). Preparation for figure by AC. 
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3. Figure 3: Targeted silencing of neuron-derived Sema3A or intravitreal neutralization 

of Sema3A efficiently reduces diabetes-induced retinal vascular permeability. 

 A: STZ diabetes induction protocol was carried out by AC. Tissue extraction and 

preparation was performed by AC. Immunofluorescence, imaging and panel 

preparation by NT. 

 B, E, G: microsurgery/intravitreal injections and Evans Blue Permeation assay 

(technique adapted and optimized by AC) were carried out by AC. Data analysis, 

statistics and graph preparation done by AC. 

 C: Perfomed by Nicholas Sitaras (NS). 

 D: Microsurgery/intravitreal injections of Lv.shGFP and Lv.shSema3A by AC; 

STZ diabetes induction protocol was carried out by AC. Tissue extraction and 

preparation was performed by AC. RT-qPCR by NT. Data analysis, statistics and 

graph by AC. 

 F: Drawing by Wei Li 

 

4. Figure 4: Conditional knockout of Nrp-1 prevents Sema3A-induced retinal barrier 

function breakdown. 

 A: Drawing by Ac. 

 B-D: Planning, Tamoxifen protocol adaptation and optimization by AC. Samples 

were extracted and prepared by AC; blot and RT-qPCR by CM. Data analysis, 

statistics and panel preparation for figure by AC. Immunofluorescence by AD. 

 E-F: Planning, Tamoxifen protocol adaptation and optimization by AC. 

microsurgery/intravitreal injections and Evans Blue Permeation assay (technique 

adapted and optimized by AC) were carried out by AC. Data analysis, statistics 

and graph preparation done by AC. 

 G-I: Part of HRMEC culture of AC. Blot, quantification and statistics by CM. 

Panel preparation by CM and AC. 

 J: Drawing by Dr. Sapieha. 

Note: For Evans Blue (EB) Permeation, Dominique Leboeuf assisted with intravenous injections 

of EB. 
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SUMMARY: 

 

The deterioration of the inner blood retinal barrier and consequent macular edema 

is a cardinal manifestation of diabetic retinopathy and the clinical feature most 

closely associated with loss of sight. Currently available treatments such as locally 

administered corticosteroids and anti-VEGF therapies, present several drawbacks. 

Here we provide the first evidence from both human and animal studies for the 

critical role of the classical neuronal guidance cue, Semaphorin3A, in instigating 

pathological vascular permeability in diabetes. We reveal that Semaphorin3A is 

induced in the early hyperglycemic phases of diabetes within the neuronal retina 

and precipitates initial breakdown of endothelial barrier function. We demonstrate 

by a series of orthogonal approaches that neutralization of Semaphorin3A or 

conditional knockout of its receptor Neuropilin-1 in Tam
Cre-Esr1

/Nrp1
flox/flox

 mice 

efficiently prevents diabetes-induced retinal vascular leakage. Our findings identify 

a new therapeutic target for macular edema and provide further evidence for 

neurovascular cross-talk in the pathogenesis of DR. 

 

 

HIGHLIGHTS 

 

-The classical neuronal guidance cue Semaphorin3A is induced in the early 

hyperglycemic phases of diabetes within the neuronal retina. 

 

- Semaphorin3A instigates pathological retinal vascular permeability in type I diabetes. 

 

- Neutralization of Semaphorin3A or its receptor Neuropilin-1 efficiently prevents retinal 

vascular leakage secondary to diabetes. 
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INTRODUCTION 

Diabetic retinopathy (DR) is the most prominent complication of diabetes and the leading 

cause of blindness in working age individuals (Kempen et al., 2004). It is characterized 

by an initial microvascular degeneration followed by a compensatory but pathological 

hyper-vascularization mounted by the hypoxic retina in an attempt to reinstate metabolic 

equilibrium (Cheung, 2008; Sapieha, 2012). Although often initially asymptomatic, loss 

of sight is provoked primarily by diabetic macular edema (DME), vitreous hemorrhages 

and in advanced cases, pre-retinal neovascularization and tractional retinal detachment 

(Antonetti et al., 2012; Wang et al., 2012). Of these, DME is the most common cause of 

central vision loss in diabetics affecting over 25% of patients suffering from diabetes 

(Moss et al., 1998). It is triggered secondary to the deterioration of the blood-retinal 

barrier (BRB) and the consequent increase in extravasation of fluids and plasma 

components into the vitreous cavity. Ultimately, the decrease in retinal vascular barrier 

function leads to vasogenic edema and pathological retinal thickening. 

Although significant effort has been invested in elucidating the mechanisms that govern 

destructive pre-retinal neovascularization in DR (Silva et al., 2010; Stahl et al., 2010; 

Wang et al., 2012), considerably less is known about the cellular processes that lead to 

increased retinal vascular permeability. Consequently, the current standards of care 

present non-negligible side-effects. These include increased cataract formation and a 

harmful rise in intraocular pressure with intravitreal use of corticosteroid (Silva et al., 

2010). Similarly, anti-VEGF therapies, which in general exhibit respectable safety 

profiles, may be associated with increased thromboembolic events (Stewart, 2012), 

possible neuronal toxicity (Robinson et al., 2001) and geographic atrophy (Comparison 

of Age-related Macular Degeneration Treatments Trials Research et al., 2012; Group et 

al., 2011) when used as frequent long term regiments. Moreover, the first and most 

widely used form of treatment is panretinal photocoagulation, either for proliferative 

diabetic retinopathy PDR or grid/focal laser for DME. Laser-based photocoagulation 

approaches destroy hypoxic retinal tissue secreting pro-angiogenic factors and 

inadvertently lead to reduced visual field or central or paracentral scotomas. These 

therapeutic limitations highlight the need for novel pharmacological interventions. 
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Current investigations into the molecular mechanisms that cause DME have largely 

focused on VEGF. This may in part be attributed to the fact that the prominent clinical 

features of DR have led to the general inference that it is entirely of a microvascular 

nature. Yet evidence points to early changes in the neural retina (Kern and Engerman, 

1996) (Barber et al., 2005; Barber et al., 1998; Gastinger et al., 2008). While there is 

irrefutable evidence for a neurovascular link in the progression of DR (Antonetti et al., 

2012), neurovascular cross-talk has received limited attention in the context of DR 

pathogenesis. Consistent with a breakdown in neurovascular cross-talk in ischemic 

retinopathies, we have recently shown that Semaphorin 3A (Sema3A), a classic neuronal 

guidance cue that also affects endothelial cell behaviour is produced by stressed retinal 

ganglion neurons (RGCs) and partakes in deviating neo-vessels towards physiologically 

avascular regions of the eye (Joyal et al., 2011). 

In neurons, binding of Sema3A to its cognate receptor Neuropilin-1 (Nrp-1) provokes 

cytoskeletal collapse (Takahashi et al., 1999); the transduction mechanism in endothelial 

cells remains ill-defined (Gelfand et al., 2009). Neuropilin-1 has the particular ability to 

bind two structurally dissimilar ligands via distinct sites on its extracellular domain 

(Gluzman-Poltorak et al., 2001; Lee et al., 2002; Mamluk et al., 2002). It binds Sema3A 

(Klagsbrun and Eichmann, 2005; Miao et al., 1999) provoking cytoskeletal collapse and 

VEGF165 (Gluzman-Poltorak et al., 2001; Klagsbrun and Eichmann, 2005; Klagsbrun et 

al., 2002; Mamluk et al., 2002) enhancing binding to VEGFR2 and thus increasing its 

angiogenic potential (Soker et al., 2002). Crystallographic evidence revealed that 

VEGF165 and Sema3A do not directly compete for Nrp-1 but rather can simultaneously 

bind to Nrp-1 at distinct, non-overlapping sites (Appleton et al., 2007). Moreover, genetic 

studies show that Nrp-1 distinctly regulates the effects of VEGF and Sema3A on 

neuronal and vascular development (Vieira et al., 2007). Of note, it was proposed that 

similar to VEGF, Sema3A may itself promote vascular permeability (Acevedo et al., 

2008); a counter-intuitive observation given the divergent biological roles of VEGF and 

Sema3A. However, the role of Sema3A in mediating the breakdown of barrier function 

such as that observed in diabetic retinopathy had to date not been explored. 

Here we provide the first evidence for the role of Sema3A in disrupting retinal barrier 

function in diabetic retinopathy. We demonstrate in both human patients and animal 
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models that ocular Sema3A is robustly induced in the early stages of diabetes and 

mediates via Nrp-1, the breakdown of the inner blood retinal barrier. Neutralizing 

Sema3A may represent an attractive alternative therapeutic strategy to counter pathologic 

vascular permeability in DR. 

 

RESULTS 

Sema3A is elevated in the vitreous of human patients suffering from diabetic 

retinopathy. 

In order to evaluate the potential role of Sema3A in mediating the edematous phenotype 

observed in DR, we first sought to determine the presence of this guidance cue in the 

vitreous of patients suffering from DME. Vitreous was recovered during standard 

vitroretinal surgery from 7 patients. Four samples were obtained from patients suffering 

from DME and 3 from control patients (non-vascular pathology) undergoing surgery for 

macular hole (MH) or epiretinal membrane (ERM). Spectral-domain optical coherence 

tomography (SD-OCT) was performed and 3D retinal maps were generated to evaluate 

the extent of retinal damage and edema. In contrast to controls, sampled DME patients 

showed significant retinal swelling, specifically in the macular and peri-macular zones 

(Fig 1a-d).  

Consistent with a prospective role in DME, Western blot analysis of patient vitreous 

revealed that Sema3A (125kDa) was robustly induced in most patients affected by DME 

(Fig 1e). In addition, a second heavier Sema3A band (>200 kDa) was detected in DME 

patients and corresponds to a reported functional Sema3A dimmer (Koppel and Raper, 

1998). Detailed patient characteristics are presented in Figure 1f. These data on human 

subjects provide the rational to explore the role of Sema3A in the context of diabetes-

induced retinal vasculopathy. 

 

Neuronal Sema3A is upregulated in the early phases of streptozotocin-induced 

diabetes. 

Given the elevated levels of Sema3A in the vitreous of DME and PDR patients, we 

sought to elucidate the dynamics and pattern of Sema3A expression in a mouse model of 

T1DM. Streptozotocin (STZ) was administered to ~6 week-old C57BL/6J mice and 
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glycemia monitored according to the scheme depicted in Figure 1g. Mice were 

considered diabetic if their non-fasted glycemia was higher than 17 mM (300 mg/dL). 

As early as 4 weeks after induction of diabetes, retinal levels of Sema3A where over 2-

fold higher in STZ treated mice when compared to vehicle injected controls (P=0.0045, 

n=5) (Fig. 1h). Significantly higher retinal levels of Sema3A persisted at 8 weeks 

(P=0.0011, n=8). Importantly, throughout these early time points of diabetes, VEGF 

levels in STZ-treated mice remained at similar levels to that observed in vehicle treated 

congener mice as has been previously described (Mima et al., 2012). As expected, at all 

analyzed time-points, STZ-treated mice showed pathologically elevated blood glucose 

levels of ~30mM (p<0.0001 for both 4 and 8 weeks of diabetes) (Fig 1i). 

Importantly, the rise in Sema3A expression was an early event in pathogenesis as it 

preceded pericyte loss as both STZ and vehicle-treated mice showed no significant 

difference in transcript levels for pericyte markers platelet derived growth factor-

receptor PDGFR- (P=0.219, n , NG2 proteoglycan (NG2) (P=0.316, n=4), and 

smooth muscle actin (SMA) (P=0.494, n=4) (Fig 1j). Similarly, immunohistochemistry 

on retinal flatmounts from control and STZ animals confirmed similar vascular coverage 

by NG2 and SMA-expressing pericytes (Fig 1k). 

 
We next investigated the cellular source of Sema3A in the diabetic retina. 

Immunohistochemistry on retinal cryosections revealed that Sema3A was strongly 

expressed by retinal neurons of the ganglion cell layer (GCL) (Fig 1l&m). Co-

localization with the RGC marker III-tubulin confirmed that retinal ganglion cells 

(RGCs) were an important source of Sema3A within the diabetic retina (Fig 1m; inset). 

Consistent with this retinal immuno-localization, laser-capture micro-dissection of the 

retinal ganglion cell layer from normal and diabetic mice followed by quantitative RT-

PCR revealed a 5-fold increase of Sema3A transcript in RGCs from STZ retinas 

(P=0.014, n=3) (Fig 1n&o). These data provide evidence for the local production of 

Sema3A by diabetic neurons in close proximity to the retinal vascular plexus and agree 

with a role for Sema3A in mediating the vascular phenotype associated with DME and 

PDR. 
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Retinal barrier function is compromised by Sema3A  

Given the increase in retinal Sema3A levels observed in the vitreous samples of 

patients with DME and mouse retinas in the early stages of diabetes (Fig 1), we 

proceeded to investigate the propensity of Sema3A to disrupt vascular barrier function. A 

single intravitreal injection of Sema3A (100 g/ml) into adult mouse retinas resulted in a 

significant ~2-fold increase (Fig 2a; P<0.01, n=3 distinct experiments with a total of 9 

mice) in retinal vascular permeability as determined by Evans Blue (EB) permeation. 

This increase was similar to that observed with intravtireal administration of VEGF 

(50 g/ml) (Fig 2a; P<0.05, n=3 distinct experiments with a total of 9 mice) or a 

combination of both Sema3A and VEGF (Fig 2a; P<0.001, n=3 distinct experiments with 

a total of 9 mice). The propensity of Sema3A to induce vascular leakage was 

corroborated by confocal imaging of retinal sagittal sections where increased EB 

permeation throughout the retina (red) signifies elevated plasma albumin extravasation 

and translates into increased retinal edema (Fig 2b).  

 

Further evidence for the ability of Sema3A to compromise endothelial barrier function, 

was obtained from real-time analysis of trans-endothelial electric resistance (Fig 2d). 

Treatment of an intact monolayer of endothelial cells with Sema3A reduced endothelial 

monolayer impedance (interval from 3.26h to 6h = 0.048>P>0.009; n=3) and hence a 

drop in barrier function in the first 6 hours by a magnitude similar to, yet lower than 

VEGF (interval from 1.12h to 6h = 0.045>P>0.001; n=4)(Fig 2c). 

 

We next proceeded to determine if Sema3A activated classical signaling pathways that 

have reported roles in promoting vascular permeability. In this respect we investigated, 

by Western blot analysis, the activation profiles of Src and focal adhesion kinase (FAK) 

that are known to transduce extracellular signals that provoke the loosening of endothelial 

cell tight junctions(Acevedo et al., 2008; Eliceiri et al., 1999; Scheppke et al., 2008) (Fig 

2e). Stimulation of Human Retinal Microvascular Endothelial Cells (HRMECs) by either 

Sema3A (100ng/ml) or VEGF (50ng/ml) lead to robust phosphorylation of Src at Tyr416 

in the activation loop of the kinase domain which is reported to enhance enzyme activity 

(Hunter, 1987) (Fig 2f). In turn, FAK was phosphorylated on Tyr576 and 577 (sites for 
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Src-kinases) (Fig 2g). Ultimately, the tight junction protein VE-cadherin became 

phosphorylated on tyrosine-731, which is a posttranslational modification associated with 

increased vascular permeability (Potter et al., 2005; Schlaepfer et al., 1994) (Fig 2h). 

Consistent with the above data on retinal permeability (Fig 2a,b), we did not observe an 

additive or synergistic effect when simulation of HRMECs was performed with a 

combination of Sema3A and VEGF suggesting a potential eventual convergence of 

signaling pathways for both factors. 

The ability of an endothelial cell to maintain intact intra-cellular junctions dictates the 

quality of barrier function. Consistent with a role in inducing vascular permeability, 

confocal microscopy of Sema3A-treated HRMECs revealed pronounced formation of 

vascular retraction fibers as determined by VE-cadherin and phalloidin staining (white 

arrows; Fig 2i). The retraction was similar to that observed with VEGF alone or with a 

combination of VEGF and Sema3A. Importantly, at the doses employed in our study 

(100-200ng/ml), Sema3A did not induce cell death or apoptosis as determined by 

assessment of activation (cleavage) of caspase-3 (Fig 2j). These data support role of 

Sema3A in mediating the breakdown of endothelial cell barrier function and further 

substantiate the involvement of Sema3A in diabetes-induced retinal vascular 

permeability. 

Inhibition of neuron-derived Sema3A efficiently reduces pathological vascular 

permeability in T1DM. 

To investigate the therapeutic potential of blocking Sema3A in diabetic 

retinopathy, we proceeded to inhibit Sema3A using 2 distinct approaches, namely virally 

delivered interference RNA or a Sema3A trap. The magnitude of retinal vascular leakage 

was assessed 8 weeks after administration of STZ in adult mice. At this time-point, flat-

mount retinas from STZ mice show elevated expression of phosphorylated VE-cadherin 

in lectin-stained retinal endothelial cells (Fig 3a) and animals have a significant ~57% 

increase in retinal vascular leakage (Fig 3b) (P=0.027; n=4 distinct experiments with a 

total of 12 mice).  

Recent evidence suggests that retinal neurons exert an important influence on the blood 

vessels that perfuse them (Antonetti et al., 2012; Binet et al., 2013; Fukushima et al., 
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2011; Joyal et al., 2011; Kim et al., 2011; Sapieha et al., 2008). In light of the robust 

expression of Sema3A in diabetic RGCs (Fig 1), we sought to inhibit production of this 

guidance cue directly in RGCs using a lentiviral (Lv) vector carrying small hairpin RNAs 

(shRNAs) against Sema3A (Joyal et al., 2011). We generated Lv vectors with a VSVG 

capsid which exhibits high tropism for RGCs when delivered intravitreally (Binet et al., 

2013; Joyal et al., 2011; Sapieha et al., 2008) (Fig 3c). Efficiency of this approach was 

confirmed as a single intravitreal injection of Lv.shSema3A at 5 weeks of life, (1 week 

prior to STZ administration) lead to a significant ~63% reduction in retinal Sema3A 

expression at the 8 week time point after STZ administration when all analysis was 

carried out (P=0.0014, n=3 distinct experiments with a total of 9 mice) (Fig 3d). 

Lv.shSema3A-mediated reduction in retinal Sema3A expression provoked a ~50% 

decrease in vascular leakage when compared to control Lv.shGFP (P=0.022, n=3 distinct 

experiments with a total of 9 mice) (Fig 3e) thus validating the strategy of targeting 

Sema3A in neurons of the GCL to counter pathological vascular leakage in diabetes. 

In order to therapeutically neutralize vitreal Sema3A, we employed recombinant 

mouse(rm) soluble Nrp-1 as a bivalent trap for both Sema3A and VEGF. Neuropilin-1 is 

a single-pass receptor with its extracellular domain subdivided into distinct sub-domains 

of which a1a2 bind Sema3A and b1b2 bind VEGF (Geretti et al., 2008) (Fig 3f). 

Intravitreal injections of rmNrp-1 at 6 and 7 weeks after STZ administration lead to a 

~50% reduction in retinal permeability when compared to vehicle injected controls, as 

measured at 8 weeks post STZ (P=0.012, n=6 distinct experiments with a total of 18 

mice) (Fig 3g). This reduction was of similar magnitude to that observed with gene 

silencing of Sema3A (Fig 3e). Given that VEGF is not increased in diabetic retinas at this 

early time point while Sema3A is robustly induced (Fig 1), the observed reduction of 

Evans Blue permeation in rmNrp-1 injected retinas is likely attributed to neutralization of 

Sema3A. Together, these data suggest that neutralization of Sema3A in the diabetic retina 

is an effective strategy to reduce vasogenic edema. 

 

Conditional knockout of Nrp-1, prevents Sema3A-induced retinal barrier function 

breakdown  
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In light of Nrp-1 being the cognate receptor for Sema3A, we sought to determine whether 

deletion of Nrp-1 protects against Sema3A-induced vascular permeability. Because 

systemic germline deletion of Nrp-1 is embryonic lethal (Jones et al., 2008; Kawasaki et 

al., 1999; Kitsukawa et al., 1997), we generated a whole-animal tamoxifen-inducible 

(Tam-inducible) Cre mouse (Tam
Cre-Esr1

) to induce the conditional deletion of exon 2 of 

Nrp-1 (Fig 4a). To validate Cre recombination at the Nrp-1 locus and confirm disruption 

of Nrp-1 in vivo, Tam
Cre-Esr1

 mice were crossed with Nrp1
fl/fl

 mice. Progeny were 

systemically administered tamoxifen (400 g/mouse) or vehicle over a period of 5 

consecutive days at 6-9 weeks of age. This dosing regimen lead to an efficient knockout 

of Nrp-1 in the vascular system as determined by Western blot (Fig 4b) and qPCR 

(P=0.0012) (Fig 4c) and resulted in an near complete absence of Nrp-1 in retinal vessels 

(Fig 4d). Tam-treated Tam
Cre-Esr1

/Nrp1
fl/fl

 mice did not show any difference in body 

weight, size or open-field activity when compared with littermates from 4 through 20 

weeks of age (data not shown). Importantly, Tam-treated Tam
Cre-Esr1

/Nrp1
fl/fl

 mice with 

disrupted retinal vascular Nrp-1 were protected against Sema3A-induced retinal vascular 

permeability  (P=0.36; n=7 distinct experiments with 21 mice) (Fig 4e; while control 

Tam
Cre-ESR1

/Nrp1
+/+

 controls showed 3-fold higher vascular leakage in response to 

Sema3A (P=0.00065; n=3 distinct experiments with a total of 9 mice). Conversely, 

disruption of Nrp-1 did not influence VEGF-induced vascular retinal permeability 

(Tam
Cre-Esr1

/Nrp1
fl/fl

 - Vehicle vs VEGF: Ttest P=0.0024, n=3; Tam
Cre-Esr1

/Nrp1
+/+

 - 

Vehicle vs VEGF: Ttest P=0.032, n=3) (Fig 4f) suggesting that VEGF-induced retinal 

vascular permeability is independent of Nrp-1 as previously suggested (Pan et al., 2007). 

In line with a role for Nrp-1 in mediating Sema3A-induced vascular permeability, 

knockdown of Nrp-1 in HRMECs by Lv.shNrp1 prevents phosphorylation of Src, FAK 

and VE-Cadherin (Fig 4 g-i). Collectively, these data confirm that Sema3A-mediated 

inner-blood retinal barrier function breakdown is Nrp-1 dependent. 

 
DISCUSSION 

 

Therapeutic strategies to treat complications associated with diabetic retinopathy until 

recently consisted predominantly in controlling systemic metabolic deregulation (Silva et 

al., 2010). While laser photocoagulation and targeted treatments such as locally 
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administered corticosteroids and recently approved anti-VEGF therapies are currently 

available, their off-target effects underscore the need to explore novel therapeutic 

avenues. In the present study, we provide the first evidence that Sema3A provokes 

vascular barrier breakdown in the early phases of diabetic retinopathy and ultimately 

precipitates DME when vascular pericyte coverage is still unperturbed. While the 

biological functions of semaphorins have been studied for the past 20 years (Luo et al., 

1993), novel physiological roles continue to emerge (Acevedo et al., 2008; Bernard et al., 

2012; Bouvree et al., 2012; Fukushima et al., 2011; Gu et al., 2002; Gu et al., 2003; 

Guttmann-Raviv et al., 2007; Joyal et al., 2011; Kim et al., 2011; Le Guelte et al., 2012; 

Maione et al., 2009; Matsuoka et al., 2011; Serini et al., 2003; Suto et al., 2007). We 

demonstrate that in a healthy mature retina, Sema3A is modestly expressed, whereas in 

diabetes, retinal ganglion neurons which are in intimate proximity of retinal vessels 

(Sapieha, 2012) significantly increase production of this classic guidance cue. Through 

its cognate receptor Nrp-1, Sema3A provokes loosening of endothelial cell junctions and 

leads to vasogenic edema (Fig 4j). 

Sema3A presents itself as an attractive candidate for therapeutic neutralization in adult 

ocular vasculopathies given that its physiological roles are largely limited to 

embryogenesis. In addition, further properties that make Sema3A a noteworthy drug 

target are its ability to induce apoptosis and promote cytoskeleton remodeling 

(Guttmann-Raviv et al., 2007; Klagsbrun and Eichmann, 2005; Miao et al., 1999; 

Neufeld et al., 2012), which are both salient features of ischemic and proliferative 

retinopathies such as that of diabetes (Duh, 2011; Sapieha et al., 2010; Wang et al., 

2012). Importantly, at the early time points in disease where levels of Sema3A are 

elevated, VEGF levels remain low and relatively unchanged compared to non-diabetic 

controls. Given these expression kinetics, inhibition of Sema3A may be warranted in the 

early phases of disease when low VEGF levels are not yet reflective of level of 

pathological vascular permeability. 

While the introduction of anti-VEGF therapy to attenuate neovascular age-related 

macular degeneration (AMD) and more recently DME has resulted in a profound change 

in clinical treatment paradigms, inhibition of a molecule that plays key roles in vascular 

homeostasis warrants contemplation in a condition such as diabetes where vascular 
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stability is already compromised. Hence neutralizing Sema3A instead of currently 

targeted factors such vaso-protective and neuroprotective VEGF and placental growth 

factor (PlGF) may provide a valid therapeutic alternative for diabetic retinopathy. 

Exclusive neutralization of Sema3A in the early phase of diabetes would thus permit the 

baseline levels of VEGF present to play out their protective ocular and systemic roles 

(Robinson et al., 2001; Stewart, 2012). Alternatively, in later phases of disease, 

neutralization of Sema3A may also be sought as an adjunct to currently employed anti-

VEGF therapies such as bevacizumab (Avastin), ranibizumab (Lucentis) or aflibercept 

(Eylea) given that both proteins seem to have disparate expression kinetic during disease 

progression yet have similar effects on retinal vascular barrier function. In this regard 

soluble Nrp-1 could be employed as a bivalent Semaphorin3A and VEGF trap, due to its 

intrinsic ability to bind both molecules (20-25). 

Using Tam
Cre-Esr1

/Nrp1
fl/fl

  to conditionally delete Nrp-1 in mature animals, we provide in 

vivo evidence for the role of this receptor in mediating the effects of Sema3A on vascular 

barrier function breakdown. Nrp-1 also acts as a co-receptor for VEGF165 increasing its 

affinity towards VEGF Receptor-2 (VEGFR-2) thus enhancing VEGFR-2 mediated 

chemotaxis, growth of endothelial cells and angiogenesis (Miao et al., 2000; Soker et al., 

2002; Soker et al., 1998). However, the effects of VEGF on vascular permeability do not 

seem to require Nrp-1 since Tam
Cre-Esr1

/Nrp1
fl/fl

 mice showed an identical magnitude of 

retinal edema as control Tam
Cre-Esr1

/Nrp1
+/+ 

mice secondary to elevated VEGF 

administration. This is consistent with previous studies demonstrating that blocking NRP-

1 with distinct monoclonal antibodies had no effect on VEGF-induced vascular 

permeability(Pan et al., 2007). It is likely that the point of signaling convergence lies 

downstream of Nrp-1 given that co-stimulation of ECs with both VEGF and Sema3A 

does not enhance permeability beyond levels noted when each is applied independently,  

Because there is a certain mechanistic overlap in the etiologies of several ocular 

vasculopathies such as neovascular AMD, diabetic retinopathy, retinal vein occlusions 

and retinopathy of prematurity, treatment paradigms such as anti-VEGFs are being used 

or explored for more than one ocular vasculopathy. Similarly, Sema3A neutralization 

may be useful for treating vessel leakage and edema associated with neovascular 

AMD(Yancopoulos, 2010). Moreover, we have previously demonstrated in a model of 
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oxygen induced retinopathy(Smith et al., 1994) that in late stages of pathological retinal 

neovascularization, neuronal-derived Sema3A forms a repulsive barrier that hinders 

normal revascularization by misdirecting vessels away from the ischemic retina(Joyal et 

al., 2011). Hence inhibition of Sema3A could potentially simultaneously benefit the two 

main pathognomonic features of DR, i.e. barrier function deterioration and pathological 

pre-retinal neovascularization which separately can lead to loss of vision in diabetes. 

By studying neurovascular interplay in diabetes, we obtained insight into a novel 

fundamental neuro-vascular mechanism that mediates pathological barrier function 

breakdown in diabetic retinopathy. In doing so, we identify a potential novel therapeutic 

target, Sema3A, that may be involved beyond DME in diseases where elevated vascular 

permeability is a contributing factor such as neovascular AMD, retinopathy of 

prematurity, cancer and stroke. 

 

 

Materials and Methods: 

Human samples 

Approval of human clinical protocol and informed consent form by Maisonneuve-

Rosemont Hospital (HMR) ethics committee (Ref. CER: 10059) and rectuitment of 

patients for local core vitreal biopsy sampling from patients afflicted with T1DM or 

T2DM. The entire procedure was performed as an outpatient procedure in the minor 

procedure room within the ambulatory clinic from the Department of Ophthalmology at 

Maisonneuve-Rosemont Hospital. All instruments were opened and handled in a sterile 

manner. The study conforms to the tenets of the declaration Helsinki and was approved 

by the Institutional Review Board of the Maisonneuve-Rosemont Hospital affiliated with 

the University of Montreal. 

 

Vitrectomy  

All patients previously diagnosed with DME or PDR were followed and operated by a 

single vitreoretinal surgeon (FAR). Control patients were undergoing surgical treatment 

for non-vascular pathology (ERM or MH) by the same surgeon. A 5% povidone-iodine 

solution was used to clean the periocular skin and topical instillation into the eye and 
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within the cul-de-sac was left in place for 5 minutes. For sampling of DME vitreous, 

patients were then draped in a standard sterile manner with placement of a lid speculum. 

A 27-ga self-retaining line (Insight Instruments, Stuart, FL) for balanced salt solution 

(BSS) infusion was first placed, followed by a 29-ga chandelier placement connected to a 

mercury vapor light source (Synergetics, O’Fallon, Mo). The surgical view during the 

procedure was provided through a surgical operative microscope and a Volk contact lens 

(Volk direct image 1.5x magnifying disposable vitrectomy lens, OH, USA). The 

vitrectomy was performed using a 25-ga sutureless Retrector® system (Insight 

Instruments, Stuart, FL) in all patients. The model used in the study is a portable, battery-

powered system with a maximum cut rate of 600 cpm and features a single-use 

retractable sheathed guillotine cutter (25-ga) with an in-built needle (23-ga). The needle 

was introduced bevel down through displaced conjunctiva in an oblique one-plane tunnel 

into the vitreous cavity 3-4mm from the limbus. With the exception of the portable 

vitrector motor handpiece, which was placed within a sterile plastic cover when in use, all 

other instruments used were sterile and disposable. For PDR and control patients a 

standard 25-gauge 3-port pars plana vitrectomy was performed in the operating room. 

 

Animals 

All studies were performed according to the Association for Research in Vision and 

Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision 

Research and were approved by the Animal Care Committee of the University of 

Montreal in agreement with the guidelines established by the Canadian Council on 

Animal Care. C57Bl/6 wild-type were purchased from The Jackson Laboratory. 

Tamoxifen-inducible (Tam-inducible) Cre mice (Tg
Cre-Esr1

; no. 004682) and Neuropilin 1 

floxed mice (Nrp1
tm2Ddg

/J; no. 005247) were purchased from The Jackson Laboratory.  

 

Streptozotocin (STZ) mouse model 

C57BL/6J mice of 6- to 7-week were weighted and their baseline glycemia was measured 

(Accu-Chek, Roche). Mice were injected intraperitoneally with streptozotocin (Sigma-

Alderich, St. Lois, MO) for 5 consecutive days at 55 mg/Kg. Age-matched controls were 

injected with buffer only. Glycemia was measured again a week after the last STZ 
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injection and mice were considered diabetic if their non-fasted glycemia was higher than 

17 mM (300 mg/dL).     

 

Real-time PCR analysis  

RNA was isolated using the GenElute
™

 Mammalian Total RNA Miniprep Kit (Sigma) 

and digested with DNase I to prevent amplification of genomic DNA. Reversed 

transcription was performed using M-MLV reverse transcriptase and gene expression 

analyzed using SybrGreen in an ABI Biosystems Real-Time PCR machine. β-actin was 

used as a reference gene.  

 

Laser-capture microdissection 

Eyes were enucleated from 14-week old adult C57BL/6J that had been diabetic for 8 

weeks and flash-frozen in OCT. We then cut 12µm sections using a Leica cryostat at -

20˚C and air-dried for 10min. We dissected retinal layers using a Zeiss Observer 

microscope equipped with a Palm MicroBeam device for laser-capture microdissection. 

We isolated mRNA from these sections and performed qPCRs as described above. 

 

Western-blotting 

Equal volumes of vitreous fluid from PDR and controls (20uL), DME and controls 

(40uL) or lysates (30ug of protein as determined by BCA assay, Sigma) from HRMECs 

cultured in endothelial growth media 2 for microvascular cells (EGM-2 MV, Lonza) 

treated after 2-hours of starvation in endothelial basal media (EBM-2, Lonza) with 50 

ng/mL VEGF165, 100 ng/mL Sema3A or vehicle (EBM-2).  For assessment of retinal 

protein levels, we enucleated eyes at varying time points and rapidly dissected and 

homogenized retinas. Protein concentrations were assessed by BCA assay (Sigma), and 

then 30ug of protein analyzed for each condition by standard SDS-PAGE technique.  

Antibodies used for Western-blotting are: Nrp-1 (R&D Systems, #AF566), pVE-

Cadherin (Invitrogen, #441145G), Src (Cell Signaling, #2108), pSRC (Cell Signaling, 

#2101), FAK (Cell Signaling, #3285), pFAK (Cell Signaling, #3281), b-Actin (Sigma, 

#A2228), Sema3A (Santa Cruz, #sc-1148 OR ABCAM #ab23393). 
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Immunohistochemistry 

To localize protein expression, eyes were enucleated from mice and fixed in 4% 

paraformaldehyde for 4h at RT and incubated in 30% sucrose overnight and then frozen 

in OCT compound. We then embedded the whole eye in optimal cutting temperature 

compound at -20˚C and performed 12um serial sections. We carried out 

immunohistochemistry experiments and visualized the sections with an epifluorescent 

microscope (Zeiss AxioImager) or or confocal microscope (Olympus confocal FV1000). 

Antibodies used for immunohistochemistry are: Sema3A (ABCAM #ab23393), Smooth 

Muscle Actin (SMA) (ABMCA, #ab7817), NG2 proteoglycan (ABCAM #ab50009) and 

III Tubulin (ECM). Secondary antibodies are Alexa 594 (Invitrogen, #A11005) and 

Alexa 488 (Invitrogen, #A11008). 

 

For visualization of pan-retinal vasculature, flat-mounted retinas were stained with 

stained with fluoresceinated Isolectin B4 (Alexa Fluor 594 – I21413, Molecular Probes) 

in 1 mM CaCl2 in PBS for retinal vasculature. For assessment of vascular permeability 

(see Evans Blue -EB- permeation), we injected mice in the vitreous chamber with 

vehicle, Sema3A and VEGF. EB was injected intravenously and 2 hours later, eyes were 

harvested and retinas were dissected for flatmount or  prepared for cryosections and  

visualization under a confocal microscope (Olympus confocal FV1000). 

 

Evans Blue Permeation Assay 

 

Retinal EB permeation was performed with modifications as described in (Xu et al., 

2001). EB was injected at 45 mg/kg intravenously and it was allowed to circulate for 2 

hours prior to retinal extraction. Evans Blue permeation was expressed relative to 

controls. 

 

Electric Cell-substrate Impedance Sensing (ECIS) Assay 

Real-time analysis of trans-endothelial electric resistance was performed by plating 

human umbilical vein endothelial cells (HUVECs) onto 8W10E+ standard 8-well arrays 

(Applied BioPhysics, NY) at a density of 10
5
 cells per well. Cells were allowed to grow 
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to establish a monolayer leading to a capacitance of less than 10nF. Once confluent, they 

were starved for 8 hours with endothelial basal media (EBM-2, Lonza) and treated with 

50 ng/mL VEGF165, 200 ng/mL Sema3A or vehicle (EBM-2) and impedance was 

measured using a ECIS Zθ impedance instrument (Applied BioPhysics, NY). 

Measurements were taken for 6 hours post treatment. 

Preparation of lentivirus  

We produced infectious lentiviral vectors by transfecting lentivector and packaging 

vectors into HEK293T cells (Invitrogen) as previously described(Dull et al., 1998). Viral 

supernatants were concentrated by ultra-centrifugation (>500-fold) as previously 

described by us (Binet et al., 2013; Joyal et al., 2011). 

 

Soluble Recombinant Nrp-1  

STZ treated diabetic C57BL/6J mice were intravitreally injected with rmNrp-1 from 

plasmid(Mamluk et al., 2002) or R&D Systems at 6 and 7 weeks after STZ 

administration. Retinal Evans blue permeation assay was performed at 8 weeks after STZ 

treatment as described above.   

Statistical analyses  

Data are presented as mean ± s.e.m. We used Student’s T-test and ANOVA, where 

appropriate, to compare the different groups; a P < 0.05 was considered statistically 

different. 
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Figure Legends 

Figure 1. Sema3A is elevated in the vitreous of human diabetic patients suffering 

from diabetic retinopathy and in retinal neurons in the early phases of STZ-induced 

diabetes. (A) Spectral-domain optical coherence tomography (SD-OCT) and (B) 3D 

retinal maps from healthy eyes. (C-D) In patients suffering from DME, significant retinal 

swelling mostly in the macular and peri-macular zones was noted. (E) Western blot 

analysis of equal volumes of vitreous humor revealed a pronounced induction of Sema3A 

(~125 kDa), including the presence of a heavy weight isoform (>200k Da).  (F) Detailed 

patient characteristics. (G) Streptozotocin (STZ) was administered to ~6 week-old 

C57BL/6J mice and glycemia monitored according to scheme; a mouse with non-fasted 

glycemia higher than 17 mM (300 mg/dL) was considered diabetic. (H) 4 weeks after 
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induction of diabetes, retinal Sema3A mRNA levels rose more than 2-fold higher in STZ 

treated mice when compared to vehicle-injected controls (P=0.0045, n=5); elevated 

levels of Sema3A persisted at 8 weeks (P=0.0011, n=8). At both time points, VEGF 

levels remained unchanged. (I) At both 4 and 8 weeks of diabetes, STZ-treated mice 

showed pathologically elevated blood glucose ~30mM (P<0.0001, for both time points). 

The rise in Sema3A expression preceded pericyte loss as evidenced by (J) similar levels 

of transcripts for pericyte-related markers platelet derived growth factor-

receptor PDGFR- , neuron-glial antigen 2 (NG2) proteoglycan, and smooth muscle 

actin (SMA) in STZ- and vehicle-treated mice. (K) Equivalent pericyte vascular coverage 

as depicted by pericyte-specific dyes for NG2 and SMA (representative of at least three 

separate experiments). Scale bar: 100um (L, M) Immunohistochemistry on retinal 

cryosections revealed that Sema3A protein was robustly expressed by retinal ganglion 

cells (RGCs) in the ganglion cell layer (GCL), as confirmed by co-localization with the 

RGC marker III-tubulin. Representative images of three independent experiments. Scale 

bar: 20um, inset: 10um (N, O) Laser-capture micro-dissection of the GCL from normal 

or diabetic mice followed by quantitative RT-PCR confirmed a ~5-fold induction of 

Sema3A in neurons in close proximity to the inner retinal vascular bed (P=0.014, n=3). 

Scale bar: 20um. 

 

Figure 2. Retinal barrier function is compromised by Sema3A. (A) Intravitreal 

injection of Sema3A resulted in a ~2-fold increase (P<0.01, n=3 (9 animals)) in retinal 

vascular permeability (VP) as determined by Evans Blue (EB) permeation; a similar 

increase was observed with intravitreal administration of VEGF (P<0.05, n=3 (9 



48 
 

animals)) and with a combination of both Sema3A and VEGF (P<0.001, n=3 (9 

animals)). Values expressed relative to vehicle injected retinas  s.e.m.  (B) Confocal 

images of retinal sections injected with vehicle, VEGF orSema3A; red signal depicts 

leakage of Evans Blue/Albumin into the vitreous/retina. Representative images of three 

independent experiments. Scale bar: 30um. (C) Trans-endothelial resistance measured in 

real time by ECIS demonstrates that Sema3A effectively reduces endothelial barrier 

function (3.26h to 6h; 0.048>P>0.009; n=3) to a similar level as that observed with 

VEGF (1.12h to 6h; 0.045>P>0.001; n=4). (D) ECIS measures true barrier function by 

assessing the resistance of the paracellular pathway between the cells. (E) Working 

hypothesis for Sema3A mediated vascular permeability. Treatment of HRMECs with 

either Sema3A or VEGF leads to robust phosphorylation of (F) Src at Tyr416; (G) FAK 

on Tyr576 and 577 and (H) the adherence junction protein VE-cadherin on tyrosine-731. 

An additive or enhanced effect was not observed when simulation was performed with a 

combination of Sema3A and VEGF. *P<0,05, **P<0,01,***P<0,001 relative to  vehicle 

 s.e.m. (I) Confocal microscopy of Sema3A-treated HRMECs revealed formation of 

vascular retraction fibers as determined by VE-cadherin and phalloidin staining (white 

arrows); retraction was similar to that seen with VEGF alone or with a combination of 

VEGF and Sema3A. Scale bar: 20um. (J) Sema3A doses employed in our study, (100-

200 ng/ml), did not induce cell death or apoptosis as determined by assessment of 

activation of caspase-3. Representative of three independent experiments. 

 

Figure 3. Targeted silencing of neuron-derived Sema3A or intravitreal 

neutralization of Sema3A efficiently reduces diabetes-induced retinal vascular 
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permeability. (A) Retinal flatmounts 8 weeks following STZ-injection show elevated 

VE-cadherin phosphorylation (linked to higher permeability) on lectin-positive retinal 

vessels. Representative images of three independent experiments. Scale bar: 20 m (B) 

STZ-treated mice show a 56.8% increase in permeability (P= 0.027; n=4 (12 mice)). (C) 

Lentiviral vectors with a VSVG capsid exhibit high tropism for RGCs when delivered 

intravitreally, as depicted by a reporter Lv vector carrying GFP. Scale bar: 20 m. (D) A 

single intravitreal injection of Lv.shSema3A at 5 weeks of diabetes lead to a significant 

62.3% reduction in retinal Sema3A expression (P=0.0014, n=3) and (E) provoked a 

proportional 49.5% decrease in vascular leakage (P=0.022, n=3 (9 mice)). (F) Vitreal 

Sema3A was neutralized with a recombinant mouse (rm) soluble Nrp-1 protein employed 

as a bivalent trap for both Sema3A and VEGF. (G) Intravitreal injection of rmNrp-1 in 

STZ mice at weeks 6 and 7 after induction of diabetes lead to a 48.1% reduction in retinal 

permeability at week 8 of diabetes (P=0.012, n=6 (18 mice)). Values expressed relative 

to vehicle injected retinas  s.e.m. 

 

Figure 4. Conditional knockout of Nrp-1 prevents Sema3A-induced retinal barrier 

function breakdown. Tamoxifen (Tam) was administered systemically during a 5 day 

period to tamoxifen-inducible Nrp-1 floxed B6 mice (Tam
Cre-Esr1

/Nrp1
fl/fl

). (A) Inducible 

Cre-loxP system: estrogen receptor 1 (Esr1) forms a complex with Cre recombinase; 

Tam, when available, binds the Cre-Esr1 complex, allowing its nuclear translocation and 

the subsequent recombination/excision of the floxed target gene Nrp-1. Efficiency of Nrp-

1 deletion by CRE-Esr1 recombinase is evidenced by decreased (B) protein and (C) 

mRNA transcript in vascular tissue (P=0.0012; n=2). (D) Immunohistochemistry in 
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retinal cryosections reveals the efficiency of tamoxifen-induced knockdown of Nrp-1 in 

lectin-stained retinal vessels. (E) In absence of Nrp-1, intravitreally administered 

Sema3A did not increase vascular leakage (P=0.36; n=7 (21 mice)), while Tam
Cre-

ESR1
/Nrp1

+/+
 controls show 3-fold higher vascular leakage (P=0.00065; n=3 (9 mice)). (F) 

Conversely, disruption of Nrp-1 did not influence VEGF-induced vascular retinal 

permeability (p=0.0024; n=3 (9 mice)), suggesting that VEGF-induced retinal vascular 

leakage is independent of Nrp-1 as previously reported. (G) In vitro knockdown of Nrp-1 

in HRMECs by Lv.shNrp1 prevents phosphorylation of Src (P= 0.004; n=3), (H) FAK 

(P= 0.0002; n=3) and (I) VE-Cadherin (P=0.0081; n=3). (J) Graphic depiction of the 

main findings of the study. In a healthy mature retina, levels of Sema3A are low whereas 

in diabetes, retinal ganglion neurons in intimate proximity of retinal vessels significantly 

increase their production. Through Nrp-1, Sema3A provokes loosening of endothelial cell 

junctions and leads to vasogenic edema. 

 

 



Sample Age Type Db Duration 
(years) Retinopathy

C1 63 n.a. n.a. MH
C2 71 n.a. n.a. ERM
C3 62 n.a. n.a. ERM

DME1 70 2 10 DME
DME2 61 2 25 DME
DME3 75 2 10 DME
DME4 74 2 15 DME

Table 1: Patient Information

Notes: C Control (Non-vascular Pathology); Db Diabetes; 
DME Diabetic Macular Edema; ERM Epiretinal Membrane; 
MH Macular Hole
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Figure 4 - Part 2
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Chapter 3: Discussion 
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Discussion 

In the present study, we demonstrate that neuronally derived semaphorin 3A 

induces vascular permeability in diabetic retinopathy. We initially found a significant 

increase of Sema3A protein in the vitreous of diabetic DME patients with advanced 

macular (central retina) oedema, which is a clinical manifestation associated with increased 

vascular leakage (Figure 1A-E) (12). In order to further investigate the dynamics of 

Sema3A induction and to study its potential involvement in the pathogenesis of DR, we 

used a “physiological” model of T1DM, where hyperglycemia is induced in mice by 

injecting STZ, a compound that induces the deterioration of the insulin-producing β-islets 

of the pancreas (123, 124). By using this model we saw that Sema3A is induced early on in 

the diabetic murine retina, i.e. 4 weeks after induction of hyperglycemia, and its expression 

remains elevated at 8 weeks of diabetes (Figure 1H). Interestingly, the principal site of 

expression of Sema3A was located to the RGC layer of neurons that lies adjacent to the 

inner retinal vascular plexuses (Figure 1L-O). Even though the link between 

hyperglycemia and Sema3A induction remains to be elucidated, Sema3A expression could 

have an inflammatory origin. Hyperglycemia is pro-inflammatory and is counteracted by 

the anti-inflammatory properties of insulin, which is secreted in response to increased 

glycemia (125, 126). When the hyperglycemia/insulin secretion feedback loop is 

interrupted as a result of decreased insulin availability (insulitis) or decreased insulin 

sensitivity, increased inflammation can occur in the retina.  This in turn contributes to the 

pathogenesis of DR (127-129). Specifically, the pro-inflammatory factor IL-1β was 

recently reported to be induced in retinal vessels in a rodent model of STZ-induced 

diabetes (130). In line, our lab has previously reported that Sema3A is induced via IL-1β in 

the retina in the context of a hypoxia-induced inflammatory state (86). Therefore, Sema3A 
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in the diabetic retina could potentially be induced via pro-inflammatory cues such as IL-

1β, yet this remains to be studied. 

    Given the pronounced upregulation of Sema3A in the diabetic retina and its 

proximity to retinal vessels, we next studied the effect of Sema3A on the retinal 

vasculature. First, intravitreal injections of rSema3A in non-diabetic mice yielded an 

increased retinal vascular leakage (Figure 2A-B). Similarly, STZ-injected mice showed 

increased VP as previously reported (Figure 3B) (131-133). With the purpose of 

investigating the potential involvement of Sema3A in barrier function deterioration of the 

retinal vessels in the diabetic eye, we sought to decrease levels of Sema3A  in the retina by 

implementing two different approaches: first, we targeted RGCs via a Lentivirus (Lv) 

carrying a shSema3A that successfully infects these cells and silences Sema3A expression 

(Figure 3C-D)(86); separately, we injected intravitreally a recombinant and soluble form of 

Sema3A’s cognate receptor Neuropilin-1 (Nrp-1) as a “trap” method (Figure 3F). By 

silencing RGC-specific Sema3A expression or “trapping” and thus decreasing its 

availability in the retina, we saw a similar significant decrease in retinal vascular 

permeability (Figure 3E-G) thereby illustrating that Sema3A triggers vascular leakage in 

DR.  Based on the ability of soluble Nrp-1 to reduce abnormal VP in vivo, soluble Nrp-1 

could represent a potential new therapeutic approach for the treatment of diabetic macular 

edema. 

After observing that Sema3A induces vascular permeability in DR, we next 

assessed if the vascular effects that are mediated by Sema3A in the retina are directed and 

transduced by Sema3A binding to its only cognate receptor Nrp-1. For this end, we 

investigated if conditional knockdown of Nrp-1 protects against Sema3A-induced vascular 

permeability. We used Nrp-1 floxed (Nrp-1
fl/fl

) whole-animal tamoxifen-induced (Tam
Cre-
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Esr1
) conditional knockout mice because systemic germline deletion of Nrp-1 is embryonic 

lethal (134-136) (Figure 4A). As observed in Figure 4B-D, tamoxifen administration 

provided an efficient knockout of Nrp-1 in the retinal vasculature of Tam
Cre-Esr1

/Nrp1
fl/fl

, 

yet Nrp-1 expression was not affected in Tam
Cre-Esr1

/Nrp1
+/+

. Notably, mouse retinas were 

protected against Sema3A-induced vascular permeability, while Tam
Cre-Esr1

/Nrp1
+/+ 

displayed a 3-fold increase in VP under the same conditions (Figure 4E). In addition, we 

observed that Nrp1 deletion did not affect VEGF-induced permeability since intravitreally 

injected VEGF led to similar increases in retinal vascular permeation in Tam
Cre-Esr1

/Nrp1
fl/fl

 

and Tam
Cre-Esr1

/Nrp1
+/+

 mice (Figure 4F).  

From a mechanistic perspective, via Nrp-1 activation, Sema3A triggered signaling 

pathways involved in vascular permeability (Figure 2E).  Western blot analysis of retinal 

endothelial cell lysates showed activation profiles of Src and focal adhesion kinase (FAK) 

that transduce extracellular signals, provoking the loosening of endothelial cell tight 

junction (Figure 3F-H) (137-139).  The in vitro stimulation of HRMECs by either Sema3A 

or VEGF led to robust phosphorylation of Src at Tyr416 in the activation loop of the 

kinase domain, which is reported to enhance enzyme activity (140).  In turn, FAK was 

phosphorylated on Tyr576 and 577, sites know to be phosphorylated by Src and required 

for upregulation of FAK activity (141, 142). Ultimately, the tight junction protein VE-

cadherin, involved in calcium-dependent homophilic binding between endothelial cells , 

became phosphorylated on tyrosine-731, which is a posttranslational modification that has 

been shown to be sufficient to promote detachment of VE-cadherin adherens junctions, 

allowing higher paracellular diffusion and, thus, increased VP (Figure 3A,E) (143, 144).  

Consistent with the non-additive effect of combined VEGF and Sema3A observed on 

retinal permeability (Figure 3A), an additive or enhanced effect was not observed when 
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stimulation  in vitro was performed with a combination of Sema3A and VEGF suggesting 

that both factors signal via redundant pathways. Importantly, infection of HRMECs with 

lentivirus (Lv) carrying a shNrp-1 (Lv.shGFP used as control) that successfully infects 

these cells and silences Nrp-1 expression, significantly decreased phosphorylation of Src, 

FAK and VE-cadherin, thus further demonstrating that Sema3A-induced endothelial 

barrier breakdown is triggered via Nrp-1 activation (Figure 4G-I).   

In addition, we observed that in diabetic mouse eyes where we had observed 

Sema3A-induced VP (Figure 3B, D, G), retinal vessels displayed VE-cadherin 

phosphorylation at tyrosine-731 (Figure 3A). Notably, when VE-cadherin is 

phosphorylated, its intracellular domain dissociates from the complex formed by the 

armadillo family of proteins β-catenin and p-120, which connects VE-cadherin with the 

actin cytoskeleton and is crucial for stable inter-EC binding (144-146). At the same time, 

p120 hinders the endocytosis of VE-cadherins, a process that leads to the intracellular 

degradation of this junctional protein (147-149). Sema3A-induced phosphorylation of VE-

cadherin at tyrosin-731, especially in the context of normal VEGF levels (Figure 1B), 

could in part explain the degradation of VE-cadherin previously reported early in diabetes, 

further contributing to BRB breakdown in DR (143).  

 Another important junctional protein involved in barrier function stabilization that 

is also affected during diabetes is occludin (150-152). Interestingly, phosphorylation of 

occludin at serine-490 is a posttranslational modification that has recently been linked to 

VEFG-induced vascular permeability (153). As a result, we are currently investigating if 

Sema3A could induce phosphorylation [S-490] of occludin (thanks to Dr. Antonetti’s 

generous donation of phoshoserine-490 antibody). 
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Thus far, we observed that Sema3A is induced early on in the diabetic retina and is 

responsible for a decrease in retinal barrier function (BRB breakdown) and a subsequent 

increased VP. Most interestingly, the main source of Sema3A mRNA and protein 

expression was localized to the neuronal retina, specifically to the retinal ganglion neurons 

(Figure 1L-O). This suggests a novel direct neuronal role in the etiology of DR and 

highlights the importance of neurovascular interplay in the pathogenesis of DR (12). In 

addition, we obtained insight on a prospective therapeutic target, i.e. Sema3A, which could 

address simultaneously the two main pathological features of DR, i.e. vascular decay and 

barrier function deterioration, which separately through pathological neovascularization 

and edema, respectively, can lead to loss of vision in diabetic patients. 

During the onset of DR, however, blood-retinal barrier breakdown is not only 

associated to VP-inducing posttranslational modifications and decreased expression of 

adherens junctional proteins like VE-cadherin, but also to an initial degradation and 

subsequent loss of the endothelium-regulating mural cells known as pericytes (12, 154). As 

a result, we assessed pericyte physiology and coverage in the diabetic retina. Notably, we 

observed that the rise in Sema3A expression was an early event in pathogenesis since it 

preceded pericyte loss as both STZ and vehicle-treated mice did not show a significant 

difference in transcript levels for pericyte markers platelet derived growth factor receptor 

(PDGFRb), NG2 proteoglycan (NG2) and smooth muscle actin (SMA) (Figure 1K). 

Moreover, NG2 and SMA immunofluorescence confirmed similar pericyte coverage of the 

retinal endothelium in control and STZ-treated mice. Thus, these data suggest that 

Sema3A-induced VP predates pericyte dropout in DR (155, 156).   

The two main pathological features of DR, namely the abnormal and misdirected 

growth of leaky vessels towards the vitreous and the decline of endothelial barrier function 
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of these vessels that leads to abnormal leakage and edema, have been linked to a loss of 

pericytes.  Endothelium-specific knockout of platelet-derived growth factor β (PDGFβ) 

that trumps PDGFβ/PDGFRb signaling required for PC survival yields a variable degree of 

retinal pericyte loss with DR-like lesions located in the areas of greatest loss (155, 157, 

158). It has therefore been suggested that pericyte dropout in the retina due to 

hyperglycemia-induced apoptosis is a sufficient cause for capillary occlusion, regression 

and, ultimately, retinal ischemia which leads to the onset of PDR complications (45, 159). 

The decreased microvascular barrier function that is observed in the diabetic retina 

can also be found in other parts of the nervous system and represents an important 

pathological feature of diabetic neuropathy (DN) (160). This condition can affect the 

central and peripheral nervous system (PNS) and involves BBB and blood-nerve barrier 

(BNB) deregulation, respectively. Notably, as seen in DR, there is evidence of pericyte 

involvement in the onset of DN.  In the brain, BBB breakdown and the associated increase 

in vascular permeability has been linked to a decrease in the pericyte population (38, 161). 

Pericyte involvement has also been suggested in the development of peripheral 

neuropathy, since these cells contribute to the strengthening of the BNB through the 

secretion of growth factors such as basic fibroblast growth factor (bFGF), which up-

regulate tight junction claudin-5 expression in peripheral nerve microvascular ECs (162). 

Overall, there is a common role played by pericytes in the development of diabetic 

microvascular pathology in the nervous system that involves, as seen in the retina, brain 

(CNS) and PNS, a deregulation of endothelial barrier function and endothelial 

permeability. Even though the effects of Sema3A on the retinal vasculature are based on a 

direct effect on microvascular endothelial cells (Figure 2C-H), Sema3A could parallely be 

impacting pericyte regulation of the endothelium’s homeostasis, such as junctional and 
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adherent complex expression, especially since pericytes express Nrp-1, yet this remains to 

be studied (163).  

Microvascular complications secondary to diabetes, such as those observed in the 

brain and retina, are also found to affect the glomeruli in the kidney. Diabetic nephropathy 

(DNeph), which affects 30 % of diabetics (164), is initially characterized by 

microalbuminuria—increased albumin levels in the urine due to decreased barrier function 

of the glomeruli, i.e. glomerular filtration barrier, GFB—, often derives in nephrotic-range 

proteinuria, and represents the main cause of end-stage renal disease (ESRD) (165). From 

a hemodynamic perspective, hyperperfusion and hyperfiltration are also early features of 

this disease, which arise from deregulated afferent arteriole tone and are associated with 

high intraglomerular pressure (166). Such an increase in pressure has been associated with 

excessive production of mesangial cell matrix, podocyte injury and thickening of the 

glomerular basement membrane (167). Most interestingly, podocytes and mesangial cells 

are pericyte-like cells and play an important role in the etiology and progression of DNeph, 

both in terms of glomerular atrophy and permeability.  As a result of hyperglycemia, 

mesangial cells produce high levels of bioactive transforming growth factor β (TGFβ) after 

a short period of self-regulated proliferation (168). Activation of TGFβ pathway plays an 

important role in mesangial cell hypertrophy and extracellular matrix overproduction, but it 

has no impact on the glomerular barrier function and the associated microalbuminuria as 

evidenced in db/db leptin receptor knockout mice—model of Type 2 diabetes—where 

treatment with neutralizing anti-TGFβ antibody yields decreased mesangial hypertrophy, 

but no significant effect on albumin permeability (169-171). This observation suggests the 

involvement of other cues, histological and biochemical, in the genesis of glomerular 

barrier decay in diabetes.    
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In the kidney, based on histology, decreased podocyte coverage and number in 

glomeruli demonstrates a close correlation to the level of GFB decay and proteinuria, 

similar to how decreased pericyte coverage of the retinal vasculature is associated with  

BRB breakdown and edema (172). Steffes et al., while studying Type 1 diabetics, found a 

decrease in podocyte number per glomerulus for all ages, even in diabetes with short 

duration. Similarly, renal biopsies from Type 2 diabetics showed broaden podocyte foot 

processes and a reduction in number of these cells per glomerulus (173). Notably, a 

subsequent study of the same population showed that, among different glomerular 

morphological markers, number of podocytes per glomerulus represented the strongest 

predictor of diabetic renal disease progression, with lower cell count indicating faster 

progression (174). Furthermore, a study of Type 2 European diabetics found a significant 

reduction in podocyte density per glomerulus in patients with normal urine albumin levels, 

with a stronger decrease in proteinuric patients (175). In addition, Nakamura et al. found 

podocytes in the urine of 53 % of microalbuminuric Type 2 diabetic patients and in 80 % 

macroalbuminuric patients (176). These studies show that during diabetes, either Type 1 or 

2, there is a loss of the pericyte-like podocyte cells in the glomeruli of the kidney 

analogous to that seen in the diabetic retina with similar endothelium-compromising 

results. Podocyte loss in diabetics leads to diabetic nephropathy, continues during its 

progression and causes the disruption of the glomerular filtration barrier, thus increasing 

glomerular vascular permeability and protein content in urine.  

Moreover, from a biochemical perspective, in the adult mouse kidney, Sema3A is 

endogenously expressed in collecting tubules and podocytes, and controls the GFB, a 

structure analogous to the BRB (177, 178). Sema3A is also involved and required in 

normal nephron development (177) (179). Interestingly and in analogy to our reported 
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results, exogenous administration of Sema3A induced acute nephrotic range proteinuria, 

i.e. increased leakage of the glomerular vessels, via podocyte foot process effacement from 

the endothelium (“pericyte detachment”) and concomitant EC damage (180). Similarly, 

Sema3A mRNA and protein were induced in a murine model of diabetic glomerular 

disease triggering increased proteinuria, as well as other pathognomonic aspects of diabetic 

nephropathy (164, 181). As a result, the effects of Sema3A upregulation on the 

microvascular endothelium could represent a common feature of diabetic microvascular 

pathology and not an isolated retina-specific mechanism. However, some aspects such as 

the Sema3A effect on retinal pericytes or targeted silencing of Sema3A in the diabetic 

glomerulus—since Sema3A-induced proteinuria is only correlational at this point—remain 

to be elucidated in order to understand more clearly the involvement of this guidance cue 

in diabetes vasculopathy.     

 

 

Figure 7. Retinal Semaphorin 3C expression decreases early on in STZ-

induced diabetes. Total retinal Sema3C mRNA expression levels decline significantly 

(p=0.015, n=3) in the early stages of streptozotocin (STZ)-induced diabetes concurrently 

with a robust increase in Sema3A (p<0.01, n=5) and normal levels of VEGF. 
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Another interesting semaphorin that is less characterized with respect to vascular 

physiology is Sema3C. This axonal guidance cue has been described to promote 

glomerular endothelial cell survival, proliferation, migration, in vitro EC-tube formation 

and VEGF120 secretion, opposite effects from those seen triggered by Sema3A (92, 182). 

Such observation prompted us to assess Sema3C’s mRNA expression in the diabetic retina, 

by utilizing the same diabetic model from this study, at the same time points where 

Sema3A was increased. Notably, preliminary results show that retinal Sema3C was 

significantly decreased by 56.4% in STZ-injected mice relative to vehicle-injected mice 

(Figure 7; p=0.015, n=3). Hence, if Sema3C acts in the retina as an EC-protective 

compound, a decline in its expression in the context of a vascular pathology such as DR 

makes Sema3C an interesting target of study. Moreover, because Sema3C signals through 

an Nrp-1/Nrp-2 heterodimer and Sema3A, via Nrp-1, these two molecules may compete 

for receptor binding. Moreover, given that these two semaphorins have been described to 

have generally opposite effects on endothelial cell proliferation, migration, survival and 

adhesion, it would be interesting to further characterize the relative abundance and kinetics 

of expression of these cues in the normal and diabetic retinas, as well as their joint impact 

on vascular permeability and barrier function (182, 183).  

 

While newer targeted treatments such as locally administered corticosteroids and 

recently approved anti-VEGF therapies for complications associated with diabetic 

retinopathy are currently available, their off-target effects highlight the need for novel 

therapeutic approaches. In the present study we disclose the previously undescribed role of 
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Sema3A as a potent mediator of vascular permeability in diabetic retinopathy. Using a 

combination of investigative approaches in both human diabetic patients and animal 

models, we demonstrate that Sema3A is induced in the early stages of DR and precipitates 

the breakdown of the retinal barrier function. In addition, using a series of orthogonal 

approaches, including Sema3A gene silencing and a Sema3A trap, we provide evidence 

that neutralization of Sema3A reduces pathological vascular permeability associated with 

the early pathogenesis of DR. 

 Although recent insight on the etiology of DR points to a breakdown in the 

neurovascular unit, neurovascular cross-talk and its influence on diabetic ocular 

vasculopathy has thus far received limited attention. Here we provide the first evidence 

from both human and animal studies for the critical role of the classical neuronal guidance 

cue Semaphorin3A in instigating pathological macular vascular permeability in type I 

diabetes. 

Interestingly, however, as evidenced in models of diabetic retinopathy and 

nephropathy, Sema3A induction in diabetes and its related effect on vascular barrier 

function—via pericyte-like cells and/or directly on ECs—could represent a common 

etiologic mechanism for diabetic microvascular pathology throughout the body and not an 

isolated tissue-specific phenomenon. Together, our findings provide insight that may lead 

to the development of therapeutics that could have applications beyond DR to diseases 

where VP is a contributing factor such as retinopathy of prematurity, age-related macular 

degeneration, cancer and stroke. 
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