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Résumé 

La transglutaminase microbienne (Microbial transglutaminase : MTG) est fortement 

exploitée dans l’industrie textile et alimentaire afin de modifier l’apparence et la texture de 

divers produits. Elle catalyse la formation de liaisons iso-peptidiques entre des protéines par 

l’entremise d’une réaction de transfert d’acyle entre le groupement γ-carboxamide d’une 

glutamine provenant d’un substrat donneur d’acyle, et le groupement ε-amino d’une lysine 

provenant d’un substrat accepteur d’acyle. La MTG est tolérante à un large éventail de 

conditions réactionnelles, ce qui rend propice le développement de cette enzyme en tant que 

biocatalyseur. Ayant pour but le développement de la MTG en tant qu’alternative plus 

soutenable à la synthèse d’amides, nous avons étudié la réactivité d’une gamme de substrats 

donneurs et accepteurs non-naturels. 

Des composés chimiquement diversifiés, de faible masse moléculaire, ont été testés en 

tant que substrats accepteurs alternatifs. Il fut démontré que la MTG accepte une large gamme de 

composés à cet effet. Nous avons démontré, pour la première fois, que des acides aminés non-

ramifiés et courts, tels la glycine, peuvent servir de substrat accepteur. Les α-acides aminés 

estérifiés Thr, Ser, Cys et Trp, mais pas Ile, sont également réactifs. En étendant la recherche à 

des composés non-naturels, il fut observé qu’un cycle aromatique est bénéfique pour la 

réactivité, bien que les substituants réduisent l’activité. Fait notable, des amines de faible masse 

moléculaire, portant les groupements de forte densité électronique azidure ou alcyne, sont très 

réactives. La MTG catalyse donc efficacement la modification de peptides qui pourront ensuite 

être modifiés ou marqués par la chimie ‘click’. Ainsi, la MTG accepte une variété de substrats 

accepteurs naturels et non-naturels, élargissant la portée de modification des peptides contenant 

la glutamine.  
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Afin de sonder le potentiel biocatalytique de la MTG par rapport aux substrats donneurs, 

des analogues plus petits du peptide modèle Z-Gln-Gly furent testés; aucun n’a réagi. Nous 

avons toutefois démontré, pour la première fois, la faible réactivité d’esters en tant que substrats 

donneurs de la MTG. L’éventuelle amélioration de cette réactivité permettrait de faire de la 

MTG un biocatalyseur plus général pour la synthèse d’amides. 

 

 

Mots clés: 

Lien amide, biocatalyse, biotransformation, transglutaminase, arrimage moléculaire, criblage 

de substrats, ingénierie de substrats. 
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Abstract:  

Microbial transglutaminase (MTG) is used extensively in the food and textile industry to alter the 

appearance and texture of products. MTG catalyses the formation of isopeptide linkages between 

proteins by an acyl transfer reaction between the γ-carboxamide group of a glutamine ‘acyl-

donor’ substrate, and the ε-amino group of a lysine ‘acyl-acceptor’ substrate. MTG is tolerant to 

a broad range of reaction conditions and is therefore suitable for further development as a 

biocatalyst. Toward developing MTG as a “green” alternative for amide synthesis, we have 

investigated a range of non-native donor and acceptor substrates to probe the scope of MTG 

reactivity. 

Small, chemically varied compounds were tested as alternative acyl-acceptor substrates. We 

observed a broad acceptor specificity. We show, for the first time, that very short-chain alkyl-

based amino acids such as glycine can serve as acceptor substrates. The esterified α-amino acids 

Thr, Ser, Cys and Trp – but not Ile – also show reactivity. Extending the search to non-natural 

compounds, an aromatic ring was observed to be beneficial for reactivity, although ring 

substituents reduced reactivity. Overall, bonding of the amine to a less hindered carbon increases 

reactivity. Importantly, very small amines carrying either the electron-rich azide or the alkyne 

groups required for click chemistry were highly reactive as acceptor substrates, providing a ready 

route to minimally modified, ‘clickable’ peptides. These results demonstrate that MTG is tolerant 

to a variety of chemically varied natural and non-natural acceptor substrates, which broadens the 

scope for modification of glutamine-containing peptides. 

To further probe the biocatalytic potential of MTG in terms of the donor substrate, smaller 

analogues of the model substrate Z-Gln-Gly were tested. We did not find product formation with 

substrates smaller than the model substrate. We observed, for the first time, trace esterase 
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activity with MTG. Future improvement of this activity would render MTG a more attractive, 

general biocatalyst for amide bond formation. 

 

 

Key words: 

Amide bond, biocatalysis, biotransformations, microbial transglutaminase, docking, substrate 

screening, substrate engineering.  
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                              Chapter 1

Introduction 
 

 

In this thesis I will explore the reactivity of the enzyme microbial transglutaminase. We do this 

in order to probe if this enzyme can serve as a more general catalyst for the synthesis of non-

natural amide bonds. The ultimate goal of this work is to aid in developing a new biocatalyst 

and, as such, a tool for greener chemistry in a variety of applications.  

1.1 Green Chemistry 

 

“Sustainable Development: the ability to make development sustainable to 

ensure that it meets the needs of the present without compromising the ability of 

future generations to meet their own needs.”  
1
 

 

Over the last decades, it has become evident that human activity is significantly altering the 

climate of the planet, which in turn may have detrimental effects on life on earth 
2
. The term 

‘planetary boundaries’ has been defined as the safe operating space for humanity, where nine 

boundaries have been identified, including global warming, chemical pollution and global fresh 

water use. It follows that transgression of any of these boundaries may be catastrophic, and 

humanity as a whole may jeopardize its very own existence 
2
. Maintaining a safe operating level 

by remaining within these boundaries is therefore essential. The chemical industry directly 

impacts upon several of these boundaries; thus the transition towards chemical sustainability may 

be vital for preventing detrimental effects on life. Over 80,000 chemicals are currently on the 
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global market; however, the toxicity of the majority of those chemicals has not been assessed, 

and even less is known about their interaction with each other and the environment 
2
. As such, it 

is evident that the synthesis of safer chemicals and a broader knowledge of their impact is 

paramount for green chemistry. 

Green chemistry has grown, over the last 20 years, to become an integral part of 

chemistry and the chemical industry. It is defined as “the design of chemical products and 

processes that reduce or eliminate the use and generation of hazardous substances” 
3
. Green 

chemistry is a philosophy which guides decision makers from all areas of chemistry to make 

sustainable choices, in aspects ranging from chemical design to waste disposal. Green chemistry 

should therefore not be seen as a quest for one single optimum method, but rather as a process 

towards a more sustainable industry. Decision makers can obtain guidance from the twelve 

principles of green chemistry (Table 1.1) 
3,4

. Two key points of green chemistry are the design of 

safe chemicals and non-hazardous syntheses of those chemicals.  

In the context of this thesis, the focus lies on safe chemical synthesis. Many methods are 

available for assessing material efficiency of a chemical process, including calculation of the E-

factor (product mass/sum of the mass of reactants and auxiliaries), reaction mass efficiency 

(product mass/reactant mass), and atom economy (product molar mass/reactant molar mass). The 

variety of methods illustrates the complexity of defining how green a method is.  These simple 

methods of assessing and comparing various methods provide initial estimations, but in order to 

gain the understanding needed for design of truly benign new chemicals and chemical processes, 

a more holistic view of the 12 principles of green chemistry may be required 
4
. Here we will 

investigate one option towards the greener synthesis of chemicals, biocatalysis, in accordance 

with our initial goal of developing MTG as a green alternative to amide synthesis  
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Table 1.1: The 12 principles of green chemistry 
3
 

 

 

 

1.2 Biocatalysis 

 

Although in its broadest sense, one could define biocatalysis as pertaining to all reactions 

which occur in nature, here we define biocatalysis as a reaction proceeding with the aid of a 

biocatalyst, whether in its pure isolated form, or as whole cell catalyst, which is applied by 

human intervention to obtain a specific desired product. Biocatalysis is an emerging field within 

green chemistry, where a biocatalyst - typically an enzyme - is used to alter or create new 

molecules. It encompasses many of the 12 principles of green chemistry by its very nature, by 

such qualities as requiring mild reaction conditions, using biodegradable and non-toxic catalysts 

and producing fewer side reactions.  

  According to our definition, biocatalysis dates back to prehistoric times, starting with the 

early fermentation of alcoholic beverages around 7000 BC in China 
5
. Thus, it dates back further 

than the discipline of chemistry itself, which is estimated to have appeared around 2000 years 

ago. But, as chemistry developed over the past two millenia, industrial biocatalysis lagged 

behind. The complexity related to the application of labile biomolecules and the poor 

Principle 
1. Prevention 
2. Atom economy 
3. Less hazardous chemical syntheses 
3. Designing safer chemicals 
4. Safer solvents and auxiliaries 
5. Design for energy efficiency 
6. Use of renewable feedstocks 
7. Reduce derivatives 
8. Catalysis 
9. Design for degradation 
10. Real-time analysis for pollution prevention 
12. Inherently safer chemistry for accident prevention 
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understanding of how cells function chemically have hindered its development. Indeed, this is 

demonstrated through brewing, where methods have remained almost unchanged over the 

millennia. For example, the yeast species used for fermentation, Saccharomyces cerevisiae, has 

been found across all continents. This indicates that this species has traditionally been used 

uniformly for brewing 
6
. From these early beginnings of biocatalysis, it would take 9000 years 

before Rosenthaler used a biocatalyst for the synthesis of the R stereoisomer of mandelonitrile 

from a plant extract 
7,8

, marking the transition into the era of modern biocatalysis in 1908. 

Below, the main approaches to improving biocatalysis are presented: condition screening 

(including substrate screening), the directed evolution of enzymes, computational approaches 

and synthetic biology. 

 

1.2.1 Condition screening 

A natural starting point for novel biocatalytic processes is substrate screening, where non-

natural starting materials are tested, often in combination with non-native reaction conditions. 

Numerous methods for substrate screening can be found in the literature. Examples include 

expansion of the substrate scope of monooxygenases to evaluate the biocatalytic potential of the 

enzyme 
9
. When the number of substrates tested becomes too great, high-throughput screening is 

applied. This technique is widely applied in the pharmaceutical industry in search of novel 

inhibitors, where time reduction and cost per sample is crucid to success. These methods are 

easily transferred to substrate screening, as illustrated by the screening for new substrates of 

hydrolases by Bornscheuer and colleagues 
10

. The co-product of the reaction was coupled with a 

second reaction, producing a readily-detectable fluorescent substrate 
10

. Other novel strategies 

for high-throughput screening include techniques such as automation and small/nano scale 
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experiments 
11

. In this thesis, we performed substrate screening (Chapters 2 and 3), albeit not at a 

high-throughput level. 

1.2.2 Directed evolution of enzymes 

 Another area of biocatalysis which is highly dependent on screening methods is directed 

evolution. The genetic revolution of the past decades has enabled scientists to unravel the 

complexity of the cellular machinery. From these findings, our understanding of the structure 

and function of enzymes has rapidly expanded. The pioneering work of Pim Stemmer and 

Frances Arnold (Caltech) in molecular biology has enabled biocatalysis to take the role it has 

today, where enzymes are broadly applied in novel areas  
8,12

. Their work opened up a new area 

of molecular biology, namely ‘directed evolution’, where enzymes are rapidly ‘evolved’ towards 

novel traits, or optimized for a particular reaction or reaction conditions (Figure 1.1). Novel traits 

include altered or optimized substrate specificity, increased stability under new reaction 

conditions such as elevated temperatures or tolerance towards organic solvents 
8,12

. This is done 

through introducing changes in the DNA sequence, which then leads to variations in the amino 

acid sequence of proteins and as such may change the properties of the final protein product. In 

this thesis we have not explored this option, but it remains an important aspect of the future 

development of the enzyme as a general amide catalyst, especially to alter the substrate 

specificity of the enzyme.  
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Figure 1.1: Overview of directed evolution 
13

 

 

1.2.3. Computational approaches  

An emerging area that is currently changing the field of biocatalysis pertains to in silico methods, 

which serve as a support to directed evolution.  These computational tools combine knowledge 

of enzyme structure and function with chemical and physical knowledge to predict, through 

extensive calculations, the behavior and interactions of proteins. Computational algorithms exist 

to predict the outcome of mutations, by replacing one amino acid residue for another, and 

predicting the outcome 
14

. In silico methods offer potential broad scope, as billions of mutants (in 

fact, astronomical numbers) are rapidly be screened at a low cost 
15

. Due to the limitations in 

computing power, modern in silico methods turn to classical physics (rather than quantum) to 

predict how an enzyme will change as a result of mutations. However, we are currently seeing 
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the rise of the next generation of computational methods, which applies quantum mechanics to 

active-site residues 
16

. This may yield the precision needed for more accurate simulations. 

In this body of work we apply an in silico method, where we use molecular docking to 

explore new substrates (Chapter 4).  Molecular docking calculates the binding energies between 

a ligand and a target protein 
17

. We docked small molecules as potential substrates on our target 

enzyme surface, to investigate binding, where the target remains static and the ligand is flexible. 

Through molecular docking one may rapidly identify new substrates for enzymes at low cost, to 

broaden the biocatalytic potential of an enzyme without altering the enzyme itself. Nonetheless, 

docking algorithms provide only approximations, as important effects such as solvation are not 

explicitly considered.  

A more computationally-intensive application of computer-aided methods is de novo 

design of biocatalysts, where residues are built into and around a designed active site to change 

substrate specificity or even give rise to new reactivity. This method predicts the physical and 

chemical space needed to fit a particular substrate and then calculates which changes in an 

enzyme would facilitate such an environment 
14

. A recent example of de novo design from David 

Baker and colleagues (U. Washington) is the engineering of a Diels-Alderase, a novel enzymatic 

reaction 
18

. To date, the resulting new enzymes offer very low reactivity, comparable only to 

poor chemical catalysts. Nonetheless, increasing computational power will contribute to the 

rapid expansion of these highly promising tools 
18

. With such tools at hand, we could experience 

the next great advances in the field of biocatalysis 
14,15

. Thus, advancements could be made both 

on expanding the range of substrates and the stability of enzymes.  

 While biocatalysis has grown in academia with increasing knowledge and new tools, 

important advances have also been made in biocatalytic process chemistry, in particular in areas 
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such as enzyme immobilization on solid surfaces, and co-factor regeneration 
19

. Some large scale 

biocatalytic operations outside of the pharmaceutical industry include the synthesis of aspartame 

19–21
  and nicotinamide 

20,22
. Without the successful implementation of industrial strategies for 

enzymes, the development of application-based science is in vain. Nonetheless, more 

development of innovative techniques is required to fully exploit the potential of biocatalysis 
23

 

and to effectively transfer biocatalysis from academia to industrial applications 
8
.   

1.2.4 Synthetic biology 

 Synthetic biology is a field that successfully combines the depth of biochemical 

knowledge with the application-directed orientation of engineering, and is likely to become an 

integral part of the future of biocatalysis. In synthetic biology, cells are seen as programmable 

units that can be engineered to produce complex molecules by altering cellular pathways 
24,25

. 

Examples include the synthesis of complex biofuels (biodiesel), through highly engineered E. 

coli cells 
26

. Because synthetic biology depends on highly complex intracellular mechanisms and 

signaling pathways, scientists have only recently obtained enough biochemical knowledge to 

begin to explore the full potential of this field. Synthetic biology will expand significantly in the 

coming years, as a result of its recently demonstrated utility in biocatalytic applications such as 

synthesis of active pharmaceutical ingredients. Complex synthesis routes using whole cells are 

expected to greatly reduce costs and increase the green potential of the chemical industry 
24,25

. 

 To apply our enzyme in a synthetic biology synthesis route remains distant, as its cellular 

over expression would likely lead to undesired protein-protein cross linking. Significant enzyme 

engineering would be required to prevent it from reacting with cellular components, and it has 

not been a focus of this thesis to further enable the enzyme for synthetic biology.   
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1.3 Amide bond formation 

A suitable target for biocatalysis is the synthesis of amide bonds. Amides are widespread 

in nature and are vital to maintaining life, as they are found in the peptide backbone of proteins 

27
. The success of amides in nature can be attributed to their inherent stability, which also makes 

them an attractive functional group in all areas of synthetic chemistry. It is, in fact, the most 

abundant functional group in the pharmaceutical industry 
27,28

. An example of an amide-bearing 

pharmaceutical compound is Atorvastatin (commercialized as Lipitor), a cholesterol-lowering 

drug that was the leading blockbuster drug from 2003 to the expiry of its patent in 2011 
29

. 

Although amide bonds are extensively used in organic synthesis, many challenges remain in 

making these bonds. Amides are most often synthesized through the condensation of an amine 

with a carboxylic acid. This reaction does not proceed readily, and therefore depends on 

activation of the carboxylic acid to render it more susceptible to nucleophilic attack by the 

amine. These methods naturally depend on stoichiometric quantities of activating (or coupling) 

reagents. Therefore, this reaction suffers from poor atom efficiency and is often costly, but it 

nonetheless remains the most common synthetic reaction in the pharmaceutical industry 
27–29

. In 

2007 ‘Amide formation avoiding poor atom economy reagents’ was voted the top challenge of 

organic chemistry by the ACS Green Chemistry Institute. Still, the call for catalytic methods for 

amide synthesis remains an important challenge 
28

.  

Protein biosynthesis involves formation of the peptide backbone by linking the α-amino 

group of one amino acid to the activated α-carboxylate of another; activation occurs by 

esterifying the carboxylate to a tRNA. Although this method is elegant and highly functional, it 

is a complex, highly specialized system that does not transfer well outside the environment of a 

cell. A biocatalytic alternative to the formation of amide bonds is proposed here. There are 

several examples in nature of enzymes that catalyze amide bond formation, such as nitrile 
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hydrolases
22

, peptidases, proteases
30

 and transglutaminases 
19–21,31

. In this thesis we focus on 

microbial transglutaminase for the formation of amide bonds.  

 

1.4 Transglutaminases 

 

Transglutaminases (TGase) (EC 2.3.2.13) are enzymes that catalyze the formation of 

amide bonds through iso-peptide linkages between proteins in nature, thus crosslinking proteins 

to form insoluble aggregates. Best known is perhaps the human factor XIII, which coagulates 

blood through the crosslinking of fibrin. The transglutaminase reaction relies on an acyl transfer 

reaction between an acyl-donor substrate, the γ-carboxyamide group of glutamine, and an acyl-

acceptor substrate, the ε-amino group of lysine, yielding an isopeptide bond (Figure 1.2) that is 

highly resistant towards enzymatic proteolysis and mechanical stress 
32

.  

 

 

Figure 1.2: Transglutaminase reaction 

 

 

 Eukaryotic transglutaminases are calcium-dependent enzymes, requiring calcium 

concentrations above physiological conditions to be activated. Thus, their activation occurs only 

under conditions disrupting cellular homeostasis, such as skin regeneration during wound 

healing, and blood clotting. They are also involved in a number of human diseases, including 

neurodegeneration, and neoplastic, autoimmune and skin diseases. These enzymes are therefore 

important therapeutic targets. Eight mammalian transglutaminases have been identified, and six 
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of them thoroughly characterized. They show high structural homology, where all consist of four 

domains: a β-sandwich, the core domain with the active site and regulatory sites, and two C-

terminal β-barrels, with a total mass ranging from 77 kDa to 90 kDa. The active site is also 

conserved, with a cysteine-based catalytic triad consisting of cysteine, histidine, and aspartic acid 

or aspargine. Moreover, the enzyme belongs to the papain-like superfamily 
32,33

.   

1.5 Microbial transglutaminase 

 

 This thesis will examine the microbial transglutaminase (MTG) from Streptomyces 

mobaraensis, which structurally bears little resemblance to the mammalian variants and is likely 

a product of convergent evolution. This is made evident by the size of MTG, which is 38 kDa, or 

about half the size of its mammalian homologue 
32,34,35

. Its crystal structure 
36

 reveals that it is a 

monomeric, single-domain enzyme, having no homology with any of the 4 domains found in the 

mammalian TGase 
33

. Both the mammalian and the microbial enzymes must be activated post-

translationally. This is an important feature because undesired protein crosslinking activity may 

be detrimental to the cell; indeed, transglutaminase activity is known to be involved in 

mammalian apoptosis mechanisms 
35,37,38

. MTG is a calcium-independent enzyme, which 

contains an N-terminal pro-sequence that folds over the active site and renders the pro-enzyme 

inactive. It is cleaved off by a protease to activate the enzyme.  

 MTG has a compact globular structure composed of 11 α-helices and 8 β-strands, with 

the active site located in a central cleft (Figure 1.3). The surface of the enzyme is mostly covered 

with positively-charged residues, except the active site cleft which contains five acidic residues: 

Asp3, Asp4, Glu249, Asp255, and Glu300, illustrated in red in Figure 1.4. Furthermore, we find 

a number of aromatic residues in the active cleft: Trp59, Tyr62, Trp69, Tyr75, Tyr278, Tyr291, 
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and Tyr302, illustrated in green in Figure 1.4 
36

. Several of these residues have been found to be 

important in substrate binding, particularly larger protein substrates 
39

. This knowledge guided 

many of the experiments in the following chapters (Chapters 2-5).   

 

 

Figure 1.3: Tertiary structure of MTG 
36

, Coordinates from PDB 1IU4 

 

 

Figure 1.4: Active site of MTG. The reactive cysteine is shown in yellow, acidic residues in red, and aromatics 

in green. The structure is  illustrated using Pymol with the coordinates from PDB 1IU4 
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The reaction mechanism is cysteine-based, where Cys64 attacks the amide carbonyl of 

the acyl-donor substrate, forming a tetrahedral enzyme-substrate intermediate. A more complete 

reaction mechanism involving an inverted catalytic triad has been proposed (Figure 1.5). 

Following formation of the tetrahedral intermediate, Asp255 donates a proton to the oxyanion 

hole, and allows for a collapse of the tetrahedral intermediate to form the enzyme-bound 

thioamide, releasing the starting amide nitrogen in the form of ammonia. An amine acyl-acceptor 

substrate – habitually a protein-bound lysine – aided by deprotonation by Asp255, then attacks 

the thioamide carbonyl. The crosslinked product is released and the free enzyme is regenerated  

35,36
.  
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Figure 1.5: Reaction mechanism of MTG 
36

 

 

 

MTG has been in commercial use since the late 1980’s in the textile and food industry. 

The crosslinking of beef myosin, casein, and crude actomyosin whey-, soy- and wheat-proteins 

results in a texturization of the product. This property is in turn used alter the texture and 

appearance of products 
40

. For example, MTG is used in the seafood industry, where the texture 

of products may impede handling and further usage in processed foods. Because of its 

widespread applicability, it is currently produced industrially on a large scale by companies such 
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as Ajinomoto (Tokyo, Japan) and Zhejiang Yiwan Biolabs (Zhejiang, China). The success of 

MTG in the food and textile industry can be attributed to its inherent stability, as illustrated by a 

number of favorable properties, described below.  It remains active over long periods of time: we 

observed up to 60% of activity remaining after 3 days of incubation at 37 °C (Chapter 2). In 

comparison, its mammalian homologue loses all activity within a few hours under similar 

conditions (R. A. Chica, J. W. Keillor, and J. N. Pelletier, unpublished). MTG is also active 

under broad pH and temperature ranges, between pH 4 to 10, and 10 °C to 70 °C, where the pH 

optimum was found to be between pH 6-7. Further, the highest activity was identified at 55 °C, 

but the incubation of MTG at temperatures over 40 °C for 10 minutes resulted in a decreased 

activity 
41,42

. Finally MTG is stable and active under high concentrations of certain organic 

solvents, such as DMSO and ethanol, which enables MTG to be used with non-polar substrates, 

thereby greatly increasing its biocatalytic scope 
43

. 

 MTG has garnered interest over the last decade for its application to novel, non-native 

processes, perhaps because of the many favorable properties mentioned above, and due to the 

stability of the isopeptide bond formed, both in vivo and under harsh conditions. Those 

applications often rely on crosslinking of compounds other than two native proteins. It is known 

that MTG is promiscuous towards its acyl-acceptor substrate 
32,35,44

, but less so towards its acyl-

donor substrate 
32,45,46

. To date, the acyl-acceptor and acyl-donor substrate-binding sites are not 

known, other than the fact that they must be proximal to the long cleft at the bottom of which the 

reactive cysteine is found. Several research groups have investigated peptidic substrates, 

searching for specific, high-affinity sequences to serve as a labeling tag. Grafting such a peptide 

to a target protein would enable MTG-catalyzed, site-specific protein labeling, for in situ 

labeling of proteins at this specific sequence. Three attempts to identify a specific acyl-donor 
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sequence are discussed here. Ohtsuka and colleagues conducted a systematic study using 

synthetic acyl-donor (Gln-containing) peptides to test reactivity of MTG as well as 

transglutaminases from guinea pig liver and from the fish, red sea bream (Pagrus major) 
46

. The 

heptamer peptide library GXXQXXG (X=G, A, S, L, V, F, Y, R, N, E, L) was tested with all 

three TGases. The results indicate that MTG is sensitive to the types of residues which precede 

the glutamine. The authors further found that MTG did not react with glutamine analogues if the 

side-chain length was reduced or increased 
46

. Further, two studies using phage display 

investigated acyl-donor substrate specificity. Neither identified a clear pattern in the residues 

surrounding the Gln in the donor sequence and as such giving rise to a specific acyl-donor 

identity. Finally, Lee and colleagues recently reported two pentapeptides, RLQQP and RTQPA, 

toward which MTG exhibits a high reactivity, with 93% and 53% conversion of 1 mM equimolar 

donor and acceptor after 40 min at 37 °C 
47

. The KM of the model substrate Z-Gln-Gly for MTG 

was found to be 27 mM 
48

; the high reactivity of the two pentapeptides at 1 mM suggests that the 

binding of these peptides is stronger than with Z-Gln-Gly  
45,47

.   

 In quest of novel applications of MTG, a number of new areas have been explored, some 

of which are listed here. These include site-specific PEGylation of proteins, where a terminally 

aminated polyethylene glycol (PEG) was conjugated at a single acyl-donor site on a target 

protein. This was done by engineering the target protein to contain only one glutamine suitable 

for recognition by MTG 
43

. Two studies involved the modification of antibodies through labeling 

either a protein-bound glutamine or lysine on the antibody with either a fluorescent label, a metal 

chelator or radionuclides 
49,50

. Similar experiments involved making DNA-protein conjugates, 

where DNA linked to the donor compound Z-Gln-Gly was reacted with a lysine on the protein 

substrate alkaline phosphatase. The enzyme remained active through the linkage 
51

.  MTG has 
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also been used for formation of hydrogels for tissue engineering and drug delivery. In those 

reactions, peptides 2 to 11 amino acids long were linked together by reaction of an internal 

glutamine with the N-teminus of another molecule of the same peptide, resulting in a 

polymerization reaction  
40,52

. Finally MTG has been used in areas which fall closer to the typical 

green chemistry category, through applications such as polymer synthesis in degradable 

bioplastics. Bioplastics incorporate the cross-linking capabilities of MTG together with 

degradable biomass, to make an environmentally benign product 
53

.   

 In this thesis, the substrate specificity of MTG was explored in greater depth, by means 

of substrate screening and molecular docking, in order to expand its synthetic utility for the 

formation of amide bonds between diverse compounds. Specifically, Chapter 2 describes 

acceptor substrate screening of small non-natural amines. In Chapter 3, we further discuss the 

impact of the results from Chapter 2 in the context of biocatalysis and green chemistry, and 

compare these trends with molecular docking results to predict the reactivity of novel amine 

substrates. In Chapter 4 we briefly discuss the significance of screening the donor substrate 

specificity, and present some preliminary data indicating trends found in small amide donor 

substrates. Finally Chapter 5 wraps-up the thesis by concluding on major findings in the previous 

chapters and highlights directions for future work.  
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 :                                Chapter 2

Microbial transglutaminase displays 

broad acyl-acceptor substrate 

specificity 
 

 

 

This chapter presents the first extensive study of amine acceptor substrates of MTG with 

varied functional groups. We performed these experiments to aid in defining the substrate scope 

both with respect to natural substrates such as amino acids, and with respect to non-natural 

substrates. Therefore this chapter supports our goal of probing the potential of MTG as a broader 

biocatalyst for the formation of amide bonds.  

Author contributions are: Joelle N. Pelletier supplied financial and intellectual support, 

and contributed to writing the manuscript. Jeffrey W. Keillor assisted in the initial development 

of the project and writing the manuscript. All other contributions are mentioned in the 

acknowledgments. The majority of the work both in terms of experimental data collection, 

analysis and interpretation of data and writing of the manuscript was done by myself.  

A revised version of the manuscript has been submitted to Applied Microbiology and 

Biotechnology. 
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2.1 Abstract 

The great importance of amide bonds in industrial synthesis has encouraged the search for 

efficient catalysts of amide bond formation. Microbial transglutaminase (MTG) is heavily 

utilized in crosslinking proteins in the food and textile industries, where the side-chain of a 

glutamine reacts with the side-chain of a lysine, forming a secondary amide bond. Long 

alkylamines carrying diverse chemical entities can substitute for lysine as acyl-acceptor 

substrates, to link molecules of interest onto peptides or proteins. Here, we explore short and 

chemically varied acyl-acceptor substrates, to better understand the nature of non-natural 

substrates that are tolerated by MTG, with the aim of diversifying biocatalytic applications of 

MTG. We show, for the first time, that very short-chain alkyl-based amino acids such as glycine 

can serve as acceptor substrates. The esterified α-amino acids Thr, Ser, Cys and Trp – but not Ile 

– also showed reactivity. Extending the search to non-natural compounds, a ring near the amine 

group – particularly if aromatic – was beneficial for reactivity, although ring substituents reduced 

reactivity. Overall, amines attached to a less hindered carbon increased reactivity. Importantly, 

very small amines carrying either the electron-rich azide or the alkyne groups required for click 

chemistry were highly reactive as acyl-acceptor substrates, providing a robust route to minimally 

modified, ‘clickable’ peptides. These results demonstrate that MTG is tolerant to a variety of 

chemically varied natural and non-natural acyl-acceptor substrates, which broadens the scope for 

modification of Gln-containing peptides and proteins. 

Keywords: Amide bond formation, microbial transformations, biocatalysis, peptide 

modification 
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2.2 Introduction 

Transglutaminases (EC 2.3.2.13) catalyze the formation of peptide linkages by promoting an 

acyl transfer reaction between an acyl-donor substrate, the γ-carboxyamide group of glutamine, 

and an acyl-acceptor substrate, the ε-amino group of lysine, thus forming a new amide bond. In 

nature, these enzymes crosslink proteins to form insoluble protein aggregates 
54

. Microbial 

transglutaminase (MTG) from Streptomyces mobaraensis is a calcium independent enzyme that 

has been used commercially since the late 1980’s in the textile and the food industries, to alter 

the texture and appearance of products via protein crosslinking 
40

. More recently, MTG has been 

utilized in novel non-native processes such as site-specific protein PEGylation 
43

, antibody 

modification 
49,50

, formation of DNA-protein conjugates 
51

, and the formation of hydrogels for 

tissue engineering and drug delivery 
40,52

. It is also applied to ‘green’ applications, such as the 

biocatalytic synthesis of degradable bioplastics 
53

.  

Biocatalysis is increasingly applied in areas spanning the preparation of bulk chemicals to 

high-value synthesis of chiral active pharmaceutical ingredients (APIs) 
19,21

. Amide bonds are 

highly represented in APIs, as well as in bulk polymers and commodity chemicals. Nonetheless, 

current methods of amide synthesis are generally characterized by high waste and cost, 

highlighting the importance of making their synthesis more sustainable. Indeed, ‘amide 

formation avoiding poor atom economy reagents’ was voted the top challenge of organic 

chemistry in 2007 by the ACS Green Chemistry Institute 
28

. To this effect, new catalytic methods 

for amide synthesis are called for 
28,29

.  

 A number of enzymes catalyze amide bond formation from different starting materials. Well 

known examples include proteases, peptidases, transglutaminases, nitrile hydrolases and lipoic 

acid ligases. Competing hydrolysis reactions frequently impede the efficiency of enzymatic 
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amide bond formation. Transglutaminases, which natively catalyze the formation of amide bonds 

rather than their hydrolysis (as is the case for proteases and peptidases), offer an intrinsic 

advantage in this respect. The mature form of MTG is produced with high quality on a large 

scale, and its industrial success can be attributed to its ease of handling and stability over a broad 

range of pH and temperature 
41,42

. Furthermore, it is active in the presence of organic co-solvents 

43
, thus allowing the use of poorly water-soluble compounds. Its stability and ease of application 

enable the use of high substrate concentrations and catalyst recycling, both important 

considerations in the context of biocatalyzed conversions.  

In spite of the extensive industrial use of MTG, little is known about its ability to use small, 

non-proteogenic molecules as substrates. Ohtsuka and colleagues investigated a restricted range 

of small, non-proteogenic acyl-acceptor substrates, confirming that MTG can react with a 

number of primary amines, mainly natural compounds or their analogues 
44

. Here, we investigate 

the breadth of acyl-acceptor substrate specificity of MTG in order to expand its scope and utility 

as a green biocatalyst for amide synthesis, by broadening the classes of compounds investigated. 

In particular, we revisited alkyl-based amino acids to uncover new reactivity, expanded the range 

of known reactive α-amino acids and identified synthetically attractive amine substrates of non-

biological origin. Our results increase the understanding of the specific characteristics of non-

proteogenic acceptor substrates, and broaden the scope of MTG as a ‘green’ catalyst for amide 

synthesis.  
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2.3 Materials and methods 

 

2.3.1 Materials 

The plasmid pDJ1-3 was kindly provided by Professor M. Pietzsch (Martin-Luther-Universität, 

Halle-Wittenberg, Germany). pDJ1-3 encodes the pro-enzyme of MTG from Streptomyces 

mobaraensis inserted between the NdeI and XhoI restriction sites of the vector pET20b 
55

. 

Deionized water (18 Ω) was used for all experiments. HPLC solvents were of analytical grade, 

and products used for the expression and purification of MTG were of biological grade. Azides 

were synthesized in the laboratory of J.W.K., according to known literature procedures for the 

preparation of ethylamine azide 
56

 and propylamine azide 
57

. Other chemicals used were 

purchased from the suppliers listed below. 4-Methoxybenzamide (97% purity) and glycine ethyl 

ester hydrochloride were purchased from Acros Organics (Waltham, USA). Benzylamine, m-

anisidine, N
α
-acetyl-L- -alanine, 6-aminocaproic acid, 5-

aminovaleric acid, aniline, O-benzylhydroxylamine hydrochloride, L-threonine methyl ester 

hydrochloride, L-tryptophan methyl ester hydrochloride, sarcosine, ammonium carbamate, N-

ethylmethylamine, cyclohexane methylamine, cyclohexylamine, glycine hydrochloride, D-serine 

methyl ester hydrochloride, L-serine methyl ester hydrochloride, trypsin from bovine pancreas 

(10,000 BAEE U/mg), cadaverine, γ-aminobutyric acid, hydroxylamine and p-xylenediamine 

were purchased from Sigma-Aldrich (St Louis, USA). Aminoacetonitrile was purchased from 

Bachem (Bubendorf, Switzerland). Carboxybenzyl-glutaminyl-glycine (Z-Gln-Gly) and 

benzylazide were from Alfa Aesar (Ward Hill, USA). Glutathione (reduced) and thiamine were 

from Bioshop (Burlington, Canada). L-Cysteine ethyl ester hydrochloride and L-isoleucine 

methyl ester hydrochloride were purchased from Chem-Impex (Wood Dale, USA). 
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Propargylamine was purchased from Fisher (Waltham, USA). Formic acid (98% purity) was 

from Fluka Analytical (St Louis, USA). 3-Chloro-4-fluorobenzylamine was purchased from 

Lancaster (Ward Hill, USA).  

2.3.2 Expression and purification of MTG 

 The plasmid pDJ1-3 encodes MTG with its N-terminal pro-sequence and a C-terminal 

hexa-histidine tag. It was transformed into E. coli BL21(DE3), using standard procedures 
58

 and 

maintained with 100 μg/mL ampicillin. MTG was expressed in autoinducing medium as follows: 

a5-mL culture was propagated overnight at 37°C with agitation at 240 RPM in ZYP-0.8G 

medium 
59

, and used to inoculate 500 mL of ZYP-505 medium 
59

. The culture was incubated at 

240 RPM, first at 37°C for 2h, then overnight at 22°C. The culture was centrifuged at 5,000 

RPM (Sorvall centrifuge RC 5C Plus, SLA-3000 rotor) at 4°C for 15 min, and the cells 

resuspended in 40 mL of 0.2M Tris-HCl pH 6.0. The cells were disrupted by sonication over ice 

(three cycles of 30s pulse at 20% intensity / 1 min pause) using a Branson sonicator and further 

by one pass through a Constant Systems cell disruptor set at 27 kPSI and cooled to 4°C. MTG 

was then activated by cleavage of the pro-enzyme leader sequence through incubation in a 1:9 

ratio (v/v) of trypsin (1mg/mL) to unpurified MTG for 45 min, at 30°C. The activated MTG was 

purified using a 5 mL His-trap Ni-NTA column (GE Healthcare) equilibrated in 50 mM 

phosphate buffer pH 8.0, with 300 mM NaCl, and eluted with an imidazole gradient (0-140 

mM), on an Åkta FPLC (GE Healthcare). The purified, activated MTG was dialyzed against 0.2 

M Tris-HCl buffer, pH 6.0. The average yield was 90 mg of activated MTG per liter of culture, 

with > 85% purity as estimated by resolution on 10% SDS-PAGE followed by staining with 

Coomassie blue. Aliquots were snap-frozen and stored at -80°C in 15% glycerol. 
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2.3.3 Determination of MTG activity  

 The activity of the purified, activated MTG was quantified using the hydroxamate assay, 

as previously described 
60

. Briefly, MTG was incubated with 30 mM Z-Gln-Gly and 100 mM 

hydroxamate at 37°C for 10 min. The reaction was quenched with a solution containing 2.0 M 

FeCl3•6 H2O, 0.3 M trichloroacetic acid and 0.8 M HCl. The resulting iron complex was detected 

by its absorbance at 525 nm. One unit (U) of MTG produces 1 µmol of L-glutamic acid γ-

monohydroxamate per min at 37°C. 

2.3.4 Reaction of MTG with various acceptor substrates 

 Amide acyl-donor substrate Z-Gln-Gly (40 mM), amine acyl-acceptor substrate (100mM) 

and 10 mM glutathione were combined in 0.2 M Tris-HCl buffer in a final volume of 350 μL. 

The pH of each reaction was adjusted to the pKa of the tested acceptor substrate amine, if within 

the range of pH 6-9. Otherwise, pH 6 or pH 9 were used, as most closely matched to the amine 

pKa. For this purpose, the pKa values were calculated online through the SPARC calculator 
61

. 

The pH values of the reaction mixtures are indicated in Table A1.1, Annex 1. MTG (2 U/mL 

final concentration) was added to the substrate mixture, and the reaction was incubated in closed 

1.5-mL Eppendorf tubes at 37°C for up to 72h. A control reaction without MTG was run for each 

acyl-acceptor substrate. All experiments were performed in triplicate using MTG isolated from 

three independent MTG purifications (nine times total). 
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2.3.5 Product detection  

 Donor substrate consumption was monitored by HPLC-MS. Formic acid was added to an 

equal volume (0.1 mL) of reaction mixture and allowed to stand at room temperature for 5 min to 

quench the reaction. The volume of the quenched sample was adjusted up to 1 mL with H2O; 

0.15 mL of this solution was then combined with 0.15 mL internal standard solution (1 g/L 4-

methoxybenzamide in neat DMSO), and the volume was adjusted up to 1.5 mL with H2O. Each 

sample was run over a hand-packed Ni-NTA column (0.5 mL bed volume) to remove MTG, and 

then filtered through a 0.2-µm PTFE filter to remove any particles. Samples (10 μL) were 

injected on a Synergi 4-μm polar-RP 80 Å, 50 × 2.00 mm LC column (Phenomenex), using a 

Waters 2545 HPLC apparatus, and eluted with a 5-70% MeOH/H2O gradient. Masses were 

detected under positive ionization with a Waters 3100 single quadrupole mass detector. The 

consumption of donor substrate was determined by standardization with the 4-

methoxybenzamide internal standard, relative to the concentration of the donor substrate in the 

control reaction (no MTG) for the same acceptor. The mass corresponding to the expected 

product was also detected. NMR analysis of the product was performed to confirm identity of the 

expected product for the following acceptor substrates: 5-aminovaleric acid, propargylamine and 

6-aminocaproic acid. For that purpose, the MTG-catalyzed reactions were run on a larger scale 

(1.4 mL). Preparative HPLC was performed with a Synergy polar-RP 80 Å, 100 × 21.20 mm 

AXIA packed column (Phenomenex) on a Waters 1525 HPLC with elution using a 5-90% 

MeOH/H2O gradient containing 0.1% formic acid. The product was detected with a Waters 2487 

dual absorbance detector. Fractions were further analyzed with direct injection mass 

spectrometry with a Waters 3100 single quadrupole mass detector, and those containing the mass 

corresponding to the expected products where pooled. Methanol was evaporated then the 
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samples were lyophilized to yield the isolated product in a powder form. 
1
H- and 

13
C-NMR 

spectra of the products were acquired on a Bruker Avance II 700 MHz spectrometer. 

2.3.6 Click chemistry 

 The purified Z-γ-propargyl-Gln-Gly product served as the alkyne substrate for the azide-

alkyne copper-catalyzed Huisgen cycloaddition. The reaction was performed using benzyl azide, 

according to the general procedure described by Himo and colleagues 
62

. Briefly, a 0.25 M 

solution of the starting materials was made in 1 mL (1:1) H2O/t-butanol containing 25 mM 

sodium ascorbate and 2.5 mM copper(II) sulfate pentahydrate 
62

. The reaction was monitored by 

LC-MS over 24 h as described above. 

 

2.4 Results  

2.4.1 Establishment of the reaction conditions  

To gain greater insight into the reactivity of MTG with non-native acyl-acceptor 

substrates, screening was performed by reacting the protected dipeptide acyl-donor substrate Z-

Gln-Gly with a variety of amines as acyl-acceptor substrates. Reaction pH was adjusted in the 

range of pH 6-9 to aid compound dissolution while maintaining nucleophilicity of the reactive 

amine; MTG has been reported to exhibit > 80% activity following a 10-min incubation between 

pH 5 and 10 
41

. MTG has been reported to be optimally active at 70°C, but it loses activity over 

10 min incubation at that temperature 
41

, so reactions were run at 37°C, since MTG has been 

reported to maintain full activity upon 10 min incubation at 40°C 
41

. Product formation was 

reported as consumption of Z-Gln-Gly donor substrate, as it could be monitored irrespective of 

the acceptor substrate tested.  
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We verified MTG activity using the standard assay with hydroxylamine (1) (Table 2.1) as 

the acceptor substrate 
60

, for up to 72 h, as representing a maximal acceptable time frame for 

most biocatalytic processes. After 72 h of incubation at pH 6 and 37°C, 60% of MTG activity 

remained, confirming its stability. Hydroxylamine (1) is chemically and sterically distinct from 

the native peptide- or protein-bound lysine substrates of MTG. Using hydroxylamine as a 

reference for small molecule acceptor substrate specificity, the donor substrate was consumed to 

> 99% after 24 h. Lysine, the native acceptor residue of MTG, was tested under the form of di-

protected N
α
-acetyl-L-lysine-methyl ester (2), to verify reaction of the ε-amine: it reacted to > 

98% after 24 h. Cadaverine (3) is an analogue of lysine, as it mimics the butylamine side-chain. 

Substituted cadaverines have long been used as substrates of MTG 
32,45,46,49,50,54,63–65

. Its 

reactivity under the conditions used herein was as high as that of lysine and hydroxylamine (> 

99% after 24 h). Cadaverine (3) is a symmetric diamine and therefore has twice the amine 

concentration of simple amines. This may favor product formation by increasing the initial 

concentration of reactive amine. In addition, mono-acylated amine may serve as a substrate for a 

second acylation event. The formation of the diamide product was qualitatively investigated, 

where the donor concentration was increased to 60 mM and the acceptor concentration reduced 

to 30 mM. Mass spectrometry confirmed formation of the disubstituted product along with 

monosubstituted product (data not shown). 

 The low rate of MTG-mediated hydrolysis relative to mammalian transglutaminases 
41

 is 

one of its advantageous properties. Formation of the hydrolysis product Z-Glu-Gly was 

monitored during all reactions; little or no hydrolysis was observed, even after 72 h (Supporting 

Information, Table A1.1). Hydrolysis occurred almost exclusively under conditions of low 

acceptor substrate reactivity, particularly at pHs between 6 and 8 where MTG shows maximal 
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activity 
41

. Under those conditions, the donor substrate concentration remained high, increasing 

its susceptibility to hydrolysis.  

 

Table 2.1: Reactivity of reference acyl-acceptor compounds 

Acceptor compound Structure 
Donor consumed in 72 h 

(%) 

1 
 

> 99 
a 

2 

 

> 99 
a 

3 
 

> 99 
a 

a 
> 98% reacted in 24 h 

2.4.2 Amino acids with varying intervening chain length 

 We verified the reactivity of acceptor substrates with various substituents in close 

proximity to the reactive amine. We first determined the minimal distance allowed between the 

reactive amine and a negatively charged substituent. Because of the presence of negatively-

charged amino acids in the vicinity of the reactive cysteine of MTG (Figure 2.1), a negative 

charge such as a carboxylate may be detrimental to reactivity. Ohtsuka and colleagues previously 

screened amino acids with alkyl chains of one to seven carbons separating the amino group from 

the carboxylic acid 
44

. We partly confirmed their observations, testing alkyl spacers between zero 

and five carbons in length (Table 2.2). As previously noted 
44

, 6-aminocaproic acid (4) was the 

acceptor with the highest reactivity in that series (71% donor consumption after 72 h). Reactivity 

decreased with decreasing acyl-chain length (Table 2.2; Figure 2.2). 5-Aminovaleric acid (5), γ-

aminobutyric acid (6), β-alanine (7) and glycine (8) yielded donor consumptions of 39%, 12%, 

4.8% and 8.4%, respectively; this is the first report of reactivity with the short-chain amino acids 
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(6-8). The higher reactivity of glycine (8) relative to β-alanine (7) may be due to reacting glycine 

at pH 7.7 and β-alanine at pH 9; under the latter conditions enzyme activity is reduced by 50% 
41

. 

Carbamic acid (9) yielded no detectable product or donor consumption. 

  
Table 2.2: Reactivity of amino acids with varying chain length as acyl-acceptor substrates 

Acceptor compound Structure 
Donor consumed in 72 h 

(%) 

4 
 

70.6 ± 6.4 

5 
 

38.5 ± 3.2 

6 
 

11.8 ± 6.7 

7 
 

4.8 ± 1.3 

8 
 

8.4 ± 2.4 

9 
 

nd
 a 

a 
nd: not detected (< 2% product) 
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Figure 2.1: The active site of MTG (1IU4) (Kashiwagi et al., 2002) in gray surface rendering, with the reactive 

cysteine indicated in yellow with a black asterisk, and aromatic and acidic residues surrounding the active 

site indicated in green and red, respectively. 

 

 

 
Figure 2.2: Reactivity of alkyl-based amino acids as acyl-acceptor substrates over 72 h.  Reactivity for amino 

acids having the structure H2N-(CH2)n-CO2H with varying spacer length n = 0 to 5. Error bars indicate 

standard deviation from the mean from three experiments. 
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2.4.3 α-Amino acid acceptors 

 We probed the reactivity of MTG toward chemically diverse α-amino acids (Table 2.3). 

Because a negatively charged carboxylate near the reactive amine was unfavorable for reactivity 

(Table 2.2), esterified amino acids were tested, as previously demonstrated 
44

. Esterification 

effectively increased reactivity, as shown by the faster reaction of glycine ethyl ester (10) (Table 

2.3: > 99 % in 4 h) relative to its parent glycine (8) (Table 2.2: 8.4% in 72 h). The beneficial 

effect of esterification is also evident on comparison of unreactive L-threonine (11) with L-

threonine ethyl ester (12), which yielded 4.1% product in 72 h. The lower reactivity of L-

threonine ethyl ester (12) relative to glycine ethyl ester (10) suggests that the steric hindrance 

due to β-branching is incompatible with high reactivity, as observed with the unreactive valine 

ethyl ester 
44

. 

 The reactivity of the unhindered L-serine methyl ester (13), D-serine methyl ester (14) 

and L-cysteine ethyl ester (15) over 72 h was 5.8%, 3.0% and 2.7%, respectively. These similar 

values are much lower than the > 99% in 4 h observed for glycine ethyl ester. The bulky 

tryptophan methyl ester (16) also yielded a reactivity of 4.5% over 72 h, similar to the 

unhindered, polar amino acids. However, the non-polar, β-branched L-isoleucine methyl ester 

(17) did not form any detectable product. This result indicates that the bulky bicyclic indole, 

three carbons away from the reactive amine, is less detrimental to acceptor reactivity than is β-

branching, two carbons away from the amine.  
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Table 2.3: Reactivity of α-amino acids as acyl-acceptor substrates. 

Acceptor compounds Structure 
Donor consumed in 72 h  

(%) 

10 

 

> 99 
a 

11 

 

nd
 b 

12 

 

4.1 ± 9.5 

13 

 

5.8 ± 1.4 

14 

 

3.0 ± 1.9 

15 

 

2.7 ± 1.7 

16 

 

4.5 ± 1.1 

17 

 

nd
 b 

a 
> 99% reacted in 4 h  

b 
nd: not detected (< 2% product)  
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2.4.4 Aromatic acceptors 

 In addition to negatively charged residues, the active site of MTG also contains a number 

of nearby aromatic residues (Figure 2.1) 
36

. Hypothesizing that they may contribute to substrate 

binding, we tested simple aromatic amines. Benzylamine (18) and aniline (19) showed reactivity 

of 94% and 19% respective substrate consumption over 72 h (Table 2.4). In contrast, the non-

aromatic cyclohexylmethylamine (20) and cyclohexylamine (21) were approximately 50% as 

reactive as their respective aromatic analogues, and were of reactivity comparable to other 

compounds containing an amino group attached to a secondary carbon (Tables 2.2 and 2.4).  

 Conjugated substituents on the aromatic ring yielded a reduction in reactivity. m-

Anisidine (22) reacted slowly, with 11% conversion, a reduction of approximately 40% relative 

to its unsubstituted analogue aniline. Similarly, the dihalogenated 3-chloro-4-fluorobenzylamine 

(23) showed 23% reactivity, a 75% reduction relative to its unsubstituted benzylamine analogue. 

Despite having a doubled amine concentration like cadaverine (3) (Table 2.1), the diamine p-

xylenediamine (24) yielded a reactivity of 63%, which is a 30% reduction compared to the 

monosubstituted benzylamine (18). As for the reaction of cadaverine, both amines of p-

xylenediamine (24) were reactive, yielding both mono and diamide products (data not shown).  

 We attempted to combine the beneficial effect of the benzyl ring with that of the highly 

reactive hydroxylamine (1) by testing the reactivity of O-benzylhydroxylamine (25). The longer 

linker between the benzene and the amine combined with the reactivity of the hydroxylamine 

were expected to increase the reactivity of MTG relative to benzylamine (18) and aniline (19). 

Surprisingly, O-benzylhydroxylamine (25) yielded only 2.6% conversion. This may be due to the 

reduced polarity of the hydroxylamine group in O-benzylhydroxylamine, though it appears more 
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likely that the bulk of O-benzylhydroxylamine relative to hydroxylamine (1) – the smallest 

compound tested  –  may be the cause of reduced reactivity.  

Finally, to explore the extent to which aromaticity compensates for steric hindrance, we 

tested the reactivity of thiamine (26), also known as vitamin B1. Its primary amine belongs to an 

aminopyrimidine ring, which is further attached to a thiazole ring. Thiamine was unreactive; its 

greater bulk or higher polarity than benzylamine (18) may hinder binding to the active site.   

 

Table 2.4: Reactivity of aromatic amino acids as acyl-acceptor substrates. 

Acceptor compound Structure Donor consumed in 72 h (%) 

18 
 

93.6 ± 1.3 

19 

 

18.9 ± 4.4 

20 
 

46.3 ± 1.6 

21 

 

3.1 ± 1.6 

22 

 

11.3 ± 1.4 

23 

 

23.1 ± 5.7 

24 
 

62.7 ± 2.4 

25 

 

2.6 ± 5.6 

26 

 

nd 
a 

a 
nd: not detected (< 2% product)  
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2.4.5 Electron-rich amines 

 Halogenated moieties provide a starting point for synthetic modification. Furthermore, 

halogens are increasingly found in pharmaceutical compounds to increase lipophilicity and thus 

improve drug uptake 
66

. Above, we showed that 3-chloro-4-fluorobenzylamine (23) was reactive 

as an acyl-acceptor substrate (Table 2.4), illustrating the utility of MTG for installing modifiable 

moieties on the donor peptide. The smaller 2-bromoethylamine (27) did not yield detectable 

product (Table 2.5), potentially due to the electron density of bromine, or its bulk, near the 

amine. While Ohtsuka and colleagues 
44

 previously reported the MTG-catalyzed addition of 

pentylamine or hexylamine-linked sugar moieties to proteins, glucosamine (28) did not yield any 

product. This may result from the amine being adjacent to a secondary carbon and/or to the 

hydrophilicity in the immediate vicinity of the amine. Nitriles are a further functional group of 

high value in synthesis of APIs, as their high permeability and bioavailability, combined with 

low metabolite rates in the cell, makes them a favorable substituent 
67,68

. In light of the above 

results, we reasoned that its lack of bulky substituents or negative charge should make 

aminoacetonitrile (29) compatible with reactivity. Indeed, it reacted to completion within 24 h 

(Table 2.5), which makes it one of the most reactive compounds identified, as previously 

reported for tissue transglutaminase 
69

. Having demonstrated the reactivity of MTG toward 

aminoacetonitrile, we probed its reactivity toward the similarly small, π electron-rich 

propargylamine (30), which yielded 90% reaction after 72 h (Table 2.5). This is consistent with 

the high reactivity observed for propargylamine with tissue transglutaminase 
70

. The resulting 

reaction product, Z-N -propargyl-Gln-Gly, can subsequently serve as the alkyne in a click 

reaction with a suitable azido-substituted compound 
70

. To increase the flexibility imparted by 

MTG in preparing modified peptides for click reactions, we tested its reactivity toward two 

simple amino-azides: propylamine azide (31) and ethylamine azide (32), which reacted to an 
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extent of 99% and 98%, respectively, over 72 h. These results demonstrate that MTG tolerates 

the presence of both alkynes and azides in close proximity to the reactive amine of the acceptor 

substrate.  

Table 2.5: Reactivity of halogenated amines and labeling agents as acyl-acceptor substrates. 

Acceptor compound Structure Donor consumed in 72 h (%) 

27  nd
a 

28 

 

nd
a 

29 
 

> 99 
b 

30 
 

90.1 ± 0.9 

31  98.5 ± 0.5 

32 
 

97.7 ± 0.5 

a
 nd: not detected (< 2% product) 

 

b 
> 99% reacted in 24 h 

 

2.4.6 Acceptors other than primary amines 

 We investigated limits of MTG’s acyl-acceptor substrate specificity by testing 

compounds other than primary amines as potential acyl-acceptor substrates (Annex 1, Table 

A1.2). Neither of the secondary amines N-ethylmethylamine (33) or sarcosine (34) yielded 

product. Non-primary amines are poorer nucleophiles than primary amines; their increased steric 

hindrance and the carboxylate of sarcosine (34) may be a further deterrent to reactivity. We also 

probed the reactivity of an unhindered alcohol and a thiol as alternative nucleophiles: neither 

butanol (35) nor butanethiol (36) yielded product. These results indicate that weaker 
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nucleophiles than amines cannot serve as acceptor substrates for MTG and that an unhindered 

primary amine is required as the reactive species. 

 

2.5 Discussion 

The reaction conditions investigated indicate that MTG is a good biocatalyst candidate 

for running lengthy reactions (72 h). To gain insight into the tolerance of MTG to chemically and 

sterically varied acceptor substrates, we tested its reactivity using acceptor substrates with 

substituents proximal to the reactive amine, using the donor substrate Z-Gln-Gly. Donor 

substrate binding is the first event in this ordered reaction, and the bound donor substrate is 

therefore an integral part of the active site with respect to acceptor binding.  

2.5.1 Very short chain amino acids can serve as acceptor substrates 

In investigating the minimal distance allowed between the reactive amine and a 

negatively charged substituent (compounds 4-9), we detected conversion not only for the long 

chain amino acids 4 and 5 but, contrary to the report of Ohtsuka 
44

, also for the amino acids 6-8 

having only one to three intervening carbons. This may be due to the higher enzyme 

concentrations and increased reaction time used here. Thus, even a single intervening carbon 

between the carboxylate and amino groups is sufficient to allow some reactivity with MTG as an 

acceptor substrate. While the reactivity with amino acids 4-8 was modest, its optimization would 

be great utility for general synthetic biocatalytic applications. 

Decreasing reactivity with decreasing spacer length (Figure 2.2) is consistent with the 

reactivity of MTG with other negatively-charged acceptor substrates such as amino alkyl 

sulfonates and phosphates 
44,71,72

, and likely results from electrostatic repulsion with negatively 

charged residues in the active site (Figure 2.1) 
36

. Repulsion may be augmented by the bound 



56 

 

 

donor substrate Z-Gln-Gly, which harbours a negatively-charged carboxylate. However, in the 

absence of structural confirmation of the mode of substrate binding to MTG, this remains 

speculative. 

2.5.2 Side-chain volume reduces reactivity of α-amino acid acceptor 

substrates 

α-Amino acids and their derivatives are heavily used in the synthesis of high value APIs 

because they provide a readily accessible pool of chemically varied chiral starting materials. The 

comparison of glycine and L-threonine with their respective esters illustrates that esterification 

effectively increased reactivity, confirming previous observations 
44

. The reaction rate with 

glycine ethyl ester (10) (Table 2.3: > 99% in 4 h) even surpassed that of N
α
-acetyl-L-lysine 

methyl ester (2) (Table 2.1: 80% in 4 h), which served as a mimic of the natural, protein-bound 

lysine substrate, consistent with previous reports 
44

. This observation is consistent with use of an 

N-terminal Gly or a poly-Gly tag as an acceptor substrate in protein-protein conjugations 
71

, and 

raises the question as to whether N-terminal Gly may also be a native acceptor substrate of MTG. 

While MTG natively catalyses protein side-chain cross-linking, a potential, high-value 

application is the biocatalysis of peptide bonds between the α-amino and α-carboxyl groups of 

natural or non-natural amino acids, as we have demonstrated using mutants of tissue 

transglutaminase 
73

. Despite esterification, the reactivity of the α-amino group of a set of 

chemically diverse α-amino acids was at least 18-fold lower than that of glycine ethyl ester. 

Thus, amines linked to a primary carbon are more reactive than amines linked to secondary 

carbons. Considering that alanine ethyl ester showed only a 3-fold decrease in reactivity 
44

, this 

illustrates the negative impact of increasing side-chain volume. Nonetheless, the reactivity of the 

bulky tryptophan methyl ester (16) was comparable to that of the serine (13, 14) and cysteine 

(15) ethyl esters. Indeed, a bulky substituent farther removed from the reactive amine was better 



57 

 

 

tolerated than β-branching two carbons away from the amine, as illustrated by the unreactive L-

isoleucine methyl ester (17). Nonetheless, the reactivity of the β-branched L-threonine ethyl ester 

(12) (4.1% in 72 h) indicates that β-branching can be tolerated to some extent. Overall, its 

robustness and reactivity toward a number of amino acids make MTG a good candidate for 

further development as a peptide bond catalyst, although the stringent acyl-donor substrate 

specificity of MTG currently precludes reaction ofan amino acid α-carboxyl group. We note that 

no significant stereoselectivity was observed upon reaction of the L or D isomers of serine ethyl 

ester (13 and 14); MTG may require more voluminous substituents for stereoselectivity to be 

observed. 

 

2.5.3 Unsubstituted aromatic amines are more reactive acyl-acceptor 

substrates 

In addition to a number of negatively charged residues in and around the active site, the 

MTG active site also holds a number of aromatic residues, several of which have been shown to 

be important for donor substrate binding (Figure 2.1)(Tagami et al., 2009; 
36

. We hypothesized 

that they may also aid binding of acceptor substrates, via hydrophobic interactions and/or π-

stacking. The higher reactivity of benzylamine (18) than aniline (19) (Table 2.4) is in agreement 

with the trends we observed above, where an amino group attached to a primary carbon yielded 

higher reactivity than an amino group attached to a more highly substituted carbon – a secondary 

carbon in the case of the α-amino acids investigated, and an aromatic ring carbon in the case of 

aniline (19). It is also consistent with the higher nucleophilicity of benzylamine (18) relative to 

aniline (19). The higher reactivity of aniline relative to α-amino acids, and of benzylamine and 

aniline relative to their non-aromatic analogues cyclohexylmethylamine (20) and 

cyclohexylamine (21), appears to be related to aromaticity rather than to the cyclic structure. 
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Increased reactivity may thus result from the formation of favorable π-π interactions between the 

acceptor substrate and MTG and/or the carboxybenzyl group of the MTG-bound donor substrate, 

from the planar geometry of the benzyl ring, as opposed to the puckered cyclohexane ring, or to 

a combination of those two factors. Ring substituents on substrates 22 to 24 reduced reactivity, 

again indicating the detrimental effect of increased steric bulk. Despite reduced reactivity of p-

xylenediamine (24) relative to benzylamine (18), we demonstrated the feasibility of using MTG 

for homodisubstitution of the acyl-acceptor substrates p-xylenediamine (24) and cadaverine (3), 

where the resulting diamine has either a rigid (24) or a flexible (3) linker.  

2.5.4 MTG is reactive toward small, π electron-rich amines 

 We have observed reactivity with acyl-acceptor compounds that provide avenues for 

further synthesis. High reactivity was confirmed for the small, unbranched, π electron-rich 

amines aminoacetonitrile (29), propargylamine (30) as well as for propylamine azide (31) and 

ethylamine azide (32) (Table 2.5), opening the door to click chemistry. The Cu(I)-catalyzed 

azide/alkyne [3+2]-cycloaddition reactions are established techniques for specific labeling of 

proteins in vivo. These selective reactions rapidly proceed with high accuracy under mild 

conditions 
74

 and have been applied to specific labeling of proteins with fluorescent labels and 

sugars, as we demonstrated with tissue transglutaminase 
70

. Performing click chemistry with 

proteins generally requires non-canonical amino acids containing either an azido or alkyne 

moiety 
75

, making the method costly and poorly accessible. The specific addition of the azido or 

alkyne moiety to the target protein with a transglutaminase can constitute a significant advantage 

70
. 

The reactivity of MTG with small amino-azides is of particular interest because many 

commercially-available labels are alkyne-substituted. We note that, following 4 h incubation of 
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MTG with 0.1 M of either azide (31) or (32), no further conversion was observed (data not 

shown), suggesting rapid initial reaction followed by inactivation of the enzyme. Indeed, azides 

can serve as inhibitors of cysteine proteases (Le et al., 2006). To demonstrate the utility of an 

MTG-mediated alkyne-modified peptide in a copper catalyzed cycloaddition reaction, we reacted 

the purified Z-N -propargyl-Gln-Gly with benzylazide under previously reported conditions 
62

. 

Product formation was confirmed by MS; no degradation of the starting materials was observed. 

MTG thus demonstrates flexibility towards substitution of peptides for further modification by 

click chemistry. Furthermore, we demonstrate that MTG tolerates the π electron density of the 

nitrile, alkyne and azido groups in proximity to the reactive amine. 

In conclusion, this work significantly increases our knowledge of the acyl-acceptor 

specificity of MTG. Our results expand the range of acyl-acceptor substrates known to be 

accepted – or not accepted – by MTG, for formation of a secondary amide bond with a peptide-

bound glutamine. We have shown, for the first time, that even very short-chain alkyl-based 

amino acids such as glycine can serve as acceptor substrates, with reactivity increasing with the 

chain length separating the amine and the carboxyl groups. We observed reactivity with the α-

amino group of chemically diverse α-amino acids. Additional steric hindrance in the immediate 

vicinity of the amine was detrimental to reactivity. Nonetheless, the bulky, aromatic Trp – but 

not Ile – showed reactivity; this suggests that steric bulk farther removed from the reactive amine 

is better tolerated. Extending the search to non-natural compounds, an aromatic ring was 

beneficial for reactivity of the acceptor substrate. Ring substitution reduced reactivity, apparently 

as a result of steric hindrance. Finally, only primary amines were reactive, and bonding of the 

amine to a less hindered carbon increased reactivity. 
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While specific molecules were shown to be reactive, they likely indicate a trend where 

other, similar compounds will exhibit comparable reactivity. Importantly, very small amines 

carrying either the electron-rich nitrile, azide or the alkyne groups required for click chemistry 

were highly reactive as acceptor substrates, facilitating the synthesis of minimally modified, 

‘clickable’ peptides. These results demonstrate that MTG is tolerant to a variety of chemically 

varied natural and non-natural acceptor substrates. We expect that the reactivity of the acyl-

acceptor substrates observed here with the Z-Gln-Gly dipeptide as the acyl-donor substrate is 

predictive of their relative reactivity toward reactive, protein-bound glutamines, as previously 

demonstrated with mammalian transglutaminase 
70

 and MTG (Lee et al., 2013). These results 

broaden the scope for modification of Gln-containing peptides and the use of MTG as a 

biocatalyst. 
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                            Chapter 3

Predictability of novel acceptor 

substrate reactivity 
 

 

3.1. Introduction 

This chapter presents a more detailed analysis of certain points presented in Chapter 2, and 

puts them in perspective with the overall goal of this thesis: using MTG as a general amide bond 

catalyst for the advancement of green chemistry. The exploration of substrate specificity is 

important because it provides an insight into the applications where the enzyme may be used, on 

novel acceptor substrates. Only one paper has been previously published on the acceptor 

substrate specificity of MTG. Because that work was of a narrower scope, the present work may 

therefore aid in steering the future applications of the enzyme.  

 

3.2. Discussion 

 Chapter 2 had two main focuses: investigating both the reactivity of MTG toward 

application-driven chemicals and the use of a variety of functional groups to understand the 

chemical nature of MTG’s acceptor specificity. To put this work into perspective and highlight 

the importance of these findings as well as the available literature, we have outlined four rules 

that govern acceptor substrate reactivity (Table 3.1). Only one other study
44

 has previously 

investigated small non-natural amines similar to our study, although a number of articles have 

been published using larger substrates.  
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Throughout Chapter 2 we saw that unhindered primary amines have the highest reactivity as 

acceptor substrates for MTG. In literature, lysine has been proposed to be the natural substrate of 

the enzyme. Where the side-chain amine is reacted, this is an amine bound to a long unhindered 

alkyl chain. We also observed high reactivity with long, unhindered alkyl amines such as 

cadaverine and α-amino-protected lysine (Table 2.1), or the small unhindered substrate 

hydroxylamine (Table 2.1). In a synthetic context, this observation has led to the frequent use of 

the pentylamine cadaverine as a linker to provide a free unhindered amine of high reactivity that 

can be bound to a larger group for use as a tag
32,45,46,49,50,54,63–65

. In our study we also observed 

that additional bulk reduced reactivity. Examples of this are found in Table 2.3 where a lower 

reactivity is observed with β-branched amino acids compared to linear side-chains. The same 

trend is found when the bulk is further from the amine, for example with the aromatic 

compounds in Table 2.4, where any substitution on the aryl ring leads to a reduced reactivity. We 

therefore have strong evidence confirming that unhindered primary amines are a requirement for 

the enzyme in order to yield high reactivity.  

Our study continued by investigating the chemical nature of the active site. We found that the 

active site contained both several negatively charged and aromatic residues (Figure 3.1). We 

began by investigating the impact of the negatively charged residues by reacting acceptor 

substrates containing a negative charge in close proximity to the amine (Table 2.2). This had 

previously been studied by Ohtsuka and colleagues
44

 which found, as we did, that a negative 

charge close to the amine was detrimental for reactivity. Further, both Ohtsuka and we found that 

decreasing the spacer length between the amine and the charge reduced reactivity significantly 

(Table 2.2). We believe this originates from electrostatic repulsion between the charged residues 

in the active site and/or the donor compound, with the charged residue on the acceptor 
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compound. Because the donor compound used in both studies is the negatively charged 

compound Z-Gln-Gly, we cannot isolate this effect to the enzyme itself. As such, this rule of 

reactivity may be highly dependent on the donor substrate used.  

Aromatic residues are also dominant in the active site, as seen in Figure 3.1. In Chapter 2 we 

investigated the reactivity of aromatic aryl amines, and compared their reactivity to similar 

saturated cyclohexylamines (Table 2.4). We found the aromatic acceptor compounds to have the 

highest reactivity of the two. We speculate that this may be due to a favourable aromatic π-π 

stacking, between the acceptor and the active site and/or the aromatic group on the donor 

substrate. This trend therefore, like the previous trend, may be dependent on the nature of the 

donor substrate. We also note that the planar structure of the aryl ring, compared to the puckered 

nature of the cyclohexanes may also relieve some steric strain, in accordance with rule 1, and 

thus also influence the elevated reactivity.  

Finally an aspect that was only briefly aluded to in Chapter 2 is our fastest reacting substrate, 

glycine ethyl ester, which also provided the highest reaction yield in the Othsuka study
44

. This is 

a particularly interesting substrate, because it gives us an insight into the preferred chemical 

nature of the acceptor substrate for this enzyme. From previous work on transglutaminases, we 

know that the long aliphatic side chain of lysine is a suitable substrate for the enzyme. However 

the high reactivity of glycine ethyl ester provides an insight that reactivity may increase with 

substrates that allow for hydrogen bonding. The use of a N-terminal polyglycine as an acceptor 

substrate has previously been reported. Tanaka and colleagues reacted 1-, 3- and 5-glycine N-

terminal tag on a green fluorescent protein with another protein donor substrate
71

. They found 

that a 3- or 5-polyglycine tag was more reactive than a single glycine tag
71

. This shows that 

aliphatic unhindered amines with the possibility of hydrogen bonding may serve as good 
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acceptor substrates for MTG. Ohtsuka’s and our study indicate that the hydrogen bonding may 

indeed be increasing reactivity. This could either be due to an increased interaction with the 

active site or a better solubility in the reaction media.  

This may indicate that the natural acceptor target for MTG may be N-terminal polyglycine, 

rather than lysine. It is not known what the role of MTG is in the cell. If MTG should have a 

more specialized role in the cell, it would depend on a specific recognition pattern. Because 

MTG has been found to be more promiscuous towards acceptor substrates
76

 it is has often been 

speculated that any specificity may come from the donor peptide
39,45,47

. However the result above 

may indicate that the specificity may in part also originate from the acceptor substrate.  

 

Table 3.1: Trends in reactivity of acceptor substrates. 

 Trends for increased reactivity 

1 Unhindered amine 

2 
No negative charge in close 

proximity 

3 Presence of aromatic group 

4 Hydrogen bonding 
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Figure 3.1: The active site of MTG (1IU4) (Kashiwagi et al., 2002) in gray surface rendering, with the reactive 

cysteine indicated in yellow with a black asterisk, and aromatic and acidic residues surrounding the active 

site indicated in green and red, respectively. The active site cleft is indicated by the arrow. 

 

In this thesis our aim was to use MTG as a more general amide bond catalyst, therefore the 

results from Chapter 2 take on their full significance when they can be used in a predictive 

manner. The rules of reactivity in Table 3.1 give a good indication of the predicted reactivity of 

novel acceptor substrates. In order to evaluate the value of these rules we attempted to verify 

them with another common method for determining substrate binding: molecular docking. It 

must be noted that the methods are not directly comparable as our rules define reactivity, and the 

docking study defines binding.  

Molecular docking has been used to dock the donor substrate Z-Gln-Gly was done with the 

software Molecular Operating Environment (MOE)
39

. This study showed that the donor substrate 

is held in place by a numer of aromatic and hydrophobic inteeraction in addition to hydrogen 

bonds. To the best of our knowledge, no docking study of MTG with acceptor substrates has 

been published. We therefore undertook a molecular docking study of acceptor substrates to 

further build on our experimental dataset. While the reaction mechanism requires that the acyl-
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donor substrate (which includes a Gln) binds to the active site before the acyl-acceptor substrate, 

we verified whether the apoenzyme could still serve for identifying acceptor substrates. 

Currently no crystal structure of the enzyme with a donor substrate bound exists, therfore the 

apoenzyme remains the only available template with which to conduct docking. We compared 

the reactivity after 72h of 12 randomly chosen acceptors from Chapter 2, with the calculated 

scores from Molegro Virtual Docker (MolDock Score) in  Table 3.2. The MolDock score does 

not have a physical significance, and as such only represents an arbitrary range where a lower 

score indicates a more favorable binding. Figure 3.2 illustrates the correlation between the 

docking scores and the reactivity; values are taken from Table 3.2. The data does not indicate 

any correlation between the docking scores and the experimental reactivity, under the conditions 

used here. We thus conclude that docking onto the apoenzyme with the parameters used here is 

not useful to predict the reactivity of potential acceptor substrates.  

  

Table 3.2: Molegro Virtual Docker scores and reactivity of selected acceptor compounds. 

Compound reactivity (% after 

72 h) 

MolDock 

Score 

Cadaverine 100 -57 

Glucosamine 0 -51 

Sarcosine 0 -45 

L-Threonine 0 -53 

Aminoacetonitrile 100 -34 

γ-Aminobutyric acid 8.4 -38 

6-Aminocaproic acid 71 -66 

Benzylamine 94 -54 

m-Anisidine 11 -57 

Propargylamine 90 -36 

γ-Aminobutyric acid 12 -55 

N
α
-Acyl-L-lysine-

methylester 

100 -81 
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Figure 3.2: Correlation of Molegro Virtual Docker  scores vs. reactivity of acceptors, as reported in Table 3.2. 

 

 

3.4. Conclusion 

To use MTG as an amide bond catalyst for synthetic substrates, we must understand its 

substrate specificity, and more importantly differenciate a reactive substrate from a non-reactive 

substrate. Here a number of beneficial properties are listed in Table 3.1 above. They may serve 

as a guide for future experiments with the native MTG, when it comes to choosing a good 

acceptor substrate. We compared selected experimental results from Chapter 2 with the 

molecular docking of the software Molegro Virtual Docker. We did not find a correlation 

between the experimental reactivity and the docking scores, and as such our general rules 

derived from experimental observations to guide reactivity maybe be more appropriate.  
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                                  Chapter 4

Reactivity of small acyl-donor 

substrates 
 

4.1 Introduction 

In this body of work we aim to investigate the potential of MTG as a broader amide catalyst 

for non-natural substrates. To fully explore this, it is essential to explore both partners of the 

reaction, the acceptor and the donor. We have previously (Chapters 2 and 3) studied acceptor 

substrate specificity; here we begin to explore the donor substrate reactivity.  

We wish to probe MTG’s reactivity beyond glutamine-containing peptides or proteins, 

towards a more general amide-containing compound or even a compound where the electrophilic 

amide is replaced with an alternative electrophile. Several groups have investigated peptide-

based substrates larger than Z-Gln-Gly. In addition to using MTG to label or modify glutamine-

containing proteins, discussed in Chapter 1, the donor substrate has been explored in terms of 

longer peptides 
45–47

. Several groups have also used functionalized Z-Gln-Gly analogues, such as 

ZQG linked with DNA 
51,65

 or biotinylated ZQG 
64

. To the best of our knowledge, no donor 

substrate smaller than Z-Gln-Gly has been reported. Here we react smaller donor substrates to 

broaden the potential of MTG as a biocatalyst.  
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4.2 Materials and methods 

4.2.1 Materials 

 

MTG was prepared as described in Chapter 2. N-Z-L-Glu-(γ-p-nitrophenyl ester)-Gly was kindly 

synthesized in the laboratory of Jeffrey W. Keillor (University of Ottawa, Ottawa, Canada). 

Other chemicals used were purchased from the suppliers listed below.  4-Methoxybenzamide 

(97%) and glycine ethyl ester hydrochloride were purchased from Acros Organics (Waltham, 

USA). Glutamine, Z-glutamine, N
α
-acetyl-L-lysine methyl ester  hydrochloride, trypsin from 

bovine pancreas (10,000 BAEE U/mg) and hydroxylamine were purchased from Sigma-Aldrich 

(St Louis, USA). Carboxybenzyl-glutaminyl-glycine (Z-Gln-Gly) was from Alfa Aesar (Ward 

Hill, USA). Glutathione (reduced) was from Bioshop (Burlington, Canada). Formic acid 98% 

purity was from Fluka Analytical (St Louis, USA).  

 

Synthesis of most of the donor compounds was necessary as they were not commercially 

available; synthetic methods and results are described in appendix 3. 

 

4.2.2 Reaction conditions 

 

All enzyme assays were as described in Chapter 2, with the exception of acceptor concentrations. 

Briefly, 72 mM N
α
-acetyl-L-lysine-methyl ester or 94 mM glycine ethyl ester was reacted with 

40 mM donor substrate in a 350 µL Eppendorf tube with 2 U/mL MTG, at 37 °C for 72 h. The 

reaction was monitored with HPLC-MS with the addition of an internal MS standard after the 

reaction was terminated.  
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4.3 Results & discussion  

4.3.1 Reducing the size of Z-Gln-Gly 

In accordance with experiments in previous chapters, the use of smaller donor substrates 

would broaden the potential applications of MTG as a biocatalyst. We began this work by 

expanding on previous findings from Chapter 2, where we observed that the presence of a 

negative charge was detrimental for reactivity of acceptors, and further that reactivity was 

recovered when the charge was neutralized by esterification. Therefore, we used free acids and 

esterified donor substrates in the following experiments. Six smaller donor substrates (Figure 

4.1) were tested with two acceptor substrates N
α
-acetyl-L-lysine-methyl ester and glycine ethyl 

ester. These two acceptor substrates were chosen because of their high reactivity, determined in 

Chapter 2. No product formation corresponding to the amide serving as the acyl donor was 

observed with any of the new donors: Gln (1), Gln(OMe) (2), Gln(OEt) (3), Z-Gln (4), Z-

Gln(OMe) (5) or Z-Gln(OEt) (6).  We conclude that under our conditions, the varied, smaller 

peptidic substrate analogues of Z-Gln-Gly did not provide detectable reactivity with the γ-

carboxamide of the glutamine.  

To verify if esterification was beneficial for donor reactivity, we methylated the original 

donor substrate Z-Gln-Gly used in previous chapters. Although the esterification was 

incomplete, we nonetheless reacted the mixed substrate Z-Gln-Gly and Z-Gln-Gly(OMe). The 

data (annex 3) suggest that reactivity is not significantly improved by esterification.  
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(1) (2) (3) 

   
(4) (5) (6) 

Figure 4.1: Structures of smaller Z-Gln-Gly analogue substrates. 

 

4.3.2 Ester reactivity 

To better explore the catalytic potential of MTG as an amide catalyst, it is clear that the enzyme 

must not only be reactive towards a broad substrate range, but it must be able to catalyze the 

bond formation from low cost, readily available functional groups. Esters serve as suitable 

substrates because, among other possibilities, this could facilitate the development of MTG as a 

peptide catalyst, and may prove advantageous relative to current atom-inefficient peptide 

synthesis methods.  Specifically, the C-terminus of esterified amino acids would serve as acyl-

donor substrates for reaction with the N-terminus of free amino acids (amines), resulting in the 

selective synthesis of peptides. A proposed method for MTG catalyzed peptide synthesis is 

outlined in Chapter 5.  

 During the reaction mentioned above, where we use donor substrates which contain both 

amide and ester functional groups, we observed on several occasions a small peak in the MS 

spectra which corresponds to the ester serving as the reactive acyl-donor substrate instead of the 

amide. Specifically this was observed with the compounds Z-Gln(OMe) (5) and Z-Gln-
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Gly(OMe).  No such peaks were found in the blank samples without the enzyme present. This 

has previously been observed with a mammalian transglutaminase
77

. This is interesting because 

as mentioned above, esters could serve as readily available, low cost substrates. To further 

explore this path we reacted MTG with the colometric activated ester substrate N-Z-L-Glu(γ-p-

nitrophenylester)Gly (data shown in appendix 4). We observed that this compound functions as a 

donor substrate for MTG, albeit a poor one, and the competing hydrolysis reaction is prominent. 

Nonetheless, these observations indicate that MTG may be suitable as an amide bond catalyst 

using an ester donor substrate, although further development is required.  

4.4 Conclusion 

We explored smaller analogues of the donor substrate, but did not find any of them to be 

reactive under our conditions. Several observations were made which indicate that MTG may use 

an ester instead of an amide as an acyl-donor substrate, which opens a possibility that MTG 

might be used in peptide synthesis. We conclude that MTG has potential as a biocatalyst for 

specific applications, but much work remains before we fully understand the interaction between 

MTG and acyl-donor substrates.  
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                               Chapter 5

Conclusions & Future Work   
 

 

5.1 Conclusions 

The objective of this thesis has been to investigate the potential of using MTG as an amide 

bond catalyst. This is an area of organic chemistry where there is room for novel benign 

methods. To meet our goal we tested the reactivity of small acyl-acceptor and acyl-donor 

compounds. Over the last decade MTG has been used for many new applications (Chapter 1) 

therefore understanding the reactivity scope of the enzyme thus does not only enable the enzyme 

for amide catalysis for non-natural substrates, as is our objective, but furthermore may permit the 

use of MTG for other novel applications. Our work demonstrated for example that compounds 

suitable for protein labeling with click chemistry were highly reactive as acceptor substrates. 

Although these results are important for application driven use of MTG, this section will 

summarizing general trends of acceptor substrate reactivity, in accordance with our objective, 

defined above. 

We began by exploring  acyl-acceptor reactivity by testing compounds carrying a range of 

substituents in close proximity to the reactive amine, as MTG was known to be promiscuous 

towards acyl-acceptor substrates
34

. This is the first extensive study of this kind; only one other 

study
44

 has been carried out on acceptor specificity. Our study supports the results found in 

literature and adds on to the knowledge of MTG by defining general trends that may be used to 

predict the reactivity of novel acceptor substrates (Chapters 2 and 3). We have defined 4 rules 

(Table 3.1, Chapter 3) that guide reactivity briefly described below. Firstly we observed that an 
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unhindered primary amine is required for reactivity, therefore amines adjacent to primary 

carbons were found to have the highest reactivity. Further we found a negative charge to be 

detrimental to acyl-acceptor reactivity, when less than two carbons separated the negatively 

charged functional group (carboxylic acid), and the reacting amine. Reactivity was also reduced 

with decreasing spacer length between the amine and acid, found both in  our study (Chapter 2) 

and literature
44

. Furthermore we recognized that reactivity increased with the presence of an 

aromatic group compared to similar non-aromatic acceptors. We compared reactivity between 

benzyl rings and cyclohexanes; the former was consistently found to be more reactive (Table 2.4, 

Chapter 2). Finally a comparison of our results with previous literature
44,71

 has led to the 

conclusion that sterically unhindered aliphatic compounds capable of hydrogen bonding have a 

higher reactivity. This is demonstrated by the high reactivity of glycine ethyl ester
44

 and protein 

bound polyglycine
71

 substrates. This may originate from the cellular peptidic target substrates of 

MTG.  

Although these results give an insight into the reactivity of MTG they cannot be taken as 

definite rules of reactivity. The first event of the acyl transfer reaction is the binding of the donor 

substrate; the latter is therefore bound in the active site when the acceptor binds, and is strongly 

influencing the active site. Therefore a study with other donor substrates comparing acceptor 

reactivity must be carried out to define the general rules of MTG’s reactivity. 

Chapter 4 explores briefly donor substrate reactivity towards smaller donor substrates, with 

our objective of defining substrate specificity in mind. We did not find smaller donor substrates 

than Z-Gln-Gly to be reactive under our conditions, confirming that MTG is less promiscuous 

towards the donor substrate than towards the acceptor substrate. However we observed 

preliminary results towards an ester serving as the acyl donor in place of the amide. This is an 
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important finding because it enables the use of a more readily available substrate as a starting 

material, and therefore increases the potential use of MTG as an amide catalyst. More 

experimental work is required to confirm this observation.  

The body of this work has probed the use of MTG as an amide bond catalyst, using non-

natural substrates. We have defined a broad range of substrates that may be used as acyl acceptor 

substrates, and defined a set of rules which predicts the reactivity of novel acceptor substrates. 

Requirements for donor substrate reactivity remain stringent, and enzyme engineering may be 

required to enable broader substrate specificity. In conclusion our results support the hypothesis 

that MTG may be a good candidate for a more general non-natural amide bond catalyst, however 

much work remains both in terms of enzyme engineering, and defining the donor substrate 

reactivity.  

5.2 Future work 

Throughout the course of this work, many additional ideas have been developed to 

address remaining challenges in understanding the biocatalytic potential of microbial 

transglutaminase (MTG). Below, some promising ideas are presented, which may enable a 

greater comprehension of the reactivity of MTG toward small-molecule substrates.  

 

5.2.1 Determination of the general structural attributes of acyl-donor 

substrates 

It has been of interest for some time to identify a highly specific, efficient acyl-donor 

substrate for MTG, for use in selective labeling of proteins. If MTG were to serve as an agent to 

label specific proteins with small compounds, we should be able to add to the target protein 

highly reactive Gln-containing peptide that would serve as the acyl-donor, to which an amine-
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containing compound could be attached. Currently, the environment of a Gln allowing efficient 

reactivity with MTG remains enigmatic, as previously discussed (Chapters 1 and 4). In contrast 

with mammalian tissue transglutaminases, where Gln-containing peptides that react with high 

selectivity have been identified 
45–47

.  No highly reactive acyl-donor substrate of MTG has been 

identified, despite several investigations using synthetic peptides and phage display 
45,46

. With 

the exception  of a more reactive donor sequence determined by Lee and colleagues
47

, yet in all 

these studies there is no consistent pattern for the amino acids surrounding the Gln, and the 

reactivity of the peptides was not fully characterized. As a result, the prediction of highly 

reactive acyl-donor peptide sequences for MTG is currently not possible.   

Because there is no pattern that emerges from the numerous peptide sequences identified 

as MTG substrates, we suggest that MTG does not recognize a primary structure as a preferred 

substrate, but rather a 3-dimensional structure, which depends on the secondary or tertiary 

structure of the Gln-containing target protein. We propose a method to investigate this, where 

cell lysates are reacted with an acyl-acceptor substrate containing a selective tag. For example, 

biotinylated cadaverine could help with the identification of donor substrates in a pull-down 

assay. The reacted proteins would be extracted from the lysate, and identified by MS-MS to 

allow identification of the reactive glutamine. Alternatively the method could be used to identify 

acceptor compounds by protein bound lysine or the N-terminal of the protein, by using Z-Gln-

Gly-Gly-Biotin in place of the biotinylated cadaverine. This would be repeated several times to 

narrow the search to those proteins that are repeatedly identified. The sequences identified would 

be cross-referenced with crystal structures available in the Protein Data Bank. Finally, specific 

patterns will be searched in the proteins, both in terms of the structural elements in the area of 

the reactive Gln, and in terms of the chemical properties of neighboring amino acids. A 
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recognition software such as VASCo (freely available from the University of Graz) could be 

used.  

5.2.2 Ester-based acyl-donor substrates 

In Chapter 4, section 4.3, we observed trace activity of MTG toward acyl-donor 

substrates where an ester group replaced the amide. Specifically, traces of a product 

corresponding to the ester serving as a substrate were detected by HPLC-MS with the two 

substrates Z-Gln-Gly(OMe)  and Z-Gln(OMe) Reactivity of the substrate and Z-L-Glu(γ-p-

nitrophenylester)Gly was monitored by spectrophotometry, and our results indicate that the 

activated ester functions as a donor substrate for MTG. These observations are of particular 

interest because esters are more readily available substrates than amides. Among other 

possibilities, this could facilitate the development of MTG as a peptide catalyst, and may prove 

to be more robust than current, atom-inefficient peptide synthesis methods (Chapter 1). Briefly, 

we can envision a method where: 

1. An amino acid is immobilized on a resin via its N-terminus.  

2. The amino acid is carboxy-methylated by conventional methods, to render it reactive as an 

acyl-donor substrate of MTG.  

3. Immobilized MTG (for example on magnetic beads, previously demonstrated with MTG 

78
) is added along with an un-protected amino acid; its free amine will serve as an acyl-acceptor 

substrate of MTG, while the free carboxylate remains unreacted. 

4. The esterified C-terminus of the immobilized amino acid and the N-terminus of the free 

amino acid form an amide bond, catalyzed by MTG.  

5. Any unreacted amino acid is removed by washing and MTG is separated from the resin-

bound nascent peptide in the reaction vessel. Steps 2-5 are repeated to form an elongated peptide. 
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This method is attractive, as MTG is economical and has a high stability, which would render it 

active for a number of reactions.  

In order to investigate the feasibility of this method, it is necessary to clearly establish the 

reactivity of esters as acyl-donor substrates with MTG.  If ester activity is confirmed, this would 

serve as a starting point to engineer MTG for higher ester reactivity and/or broader substrate 

specificity towards ester-based acyl-donor substrates. It will also be necessary to engineer 

broader tolerance of MTG for accepting free amino acids as acyl-acceptor substrates, as Chapter 

2 and previous reports
44,46

 demonstrated that not all amino acids are recognized as acyl-acceptors 

by native MTG. This could be done by a broad screening guided by the survival assay outlined in 

the next section. 

5.2.3 Selection assay for MTG activity based on cell survival  

Finally, a method for a selection assay for MTG activity based on cell survival is 

proposed. The development of a selection assay would ease MTG engineering, by enabling 

screening of millions of MTG variants, rather than a few hundred through individual screening. 

We propose the MTG-catalyzed modification of an antibiotic. The antibiotic would be 

chemically modified with a primary amine linker in a functionally non-essential part, to serve as 

an acyl-acceptor substrate for MTG (Figure 5.1); this linker should not prevent its action as an 

antibiotic. Mutants of MTG would be added, along with a bulky acyl-donor substrate (Figure 

5.1). If the acyl-donor substrate is successfully linked to the acyl-acceptor antibiotic, the 

antibiotic will be inactivated, by hindering the access of the antibiotic to the antibiotic target, 

(Figure 5.2), which would further lead to cell survival. One concern which should be taken in to 

consideration, is the slow reaction rate of MTG. The target should thus be a ‘slow’ target such as 

antibiotic chemotherapy targets aimed at cell replication. Furthermore for the blocker to function, 
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the binding site of the antibiotic on the target should be sterically hindered, such as a deep 

binding pocket. Finally MTG must be expressed in its mature, active form, as has been 

demonstrated previously 
79,80

. Through modification, this assay could also be applied to other 

cross-linking enzymes and thus serve as a general assay. 

 

Figure 5.1: Concept of the MTG survival assay. The antibiotic is modified with a primary amine linker to 

serve as an acyl-acceptor substrate; the blocker is a peptide-based, Gln-containing acyl-donor substrate. 

Reaction between the antibiotic and the blocker by an active MTG renders the antibiotic non-functional and 

the cell survives.   

 

 

 

Figure 5.2: Antibiotic interactions with target. A) Un-modified antibiotic binds to target which leads to cell 

death. B) Modified antibiotic cannot bind to target, cells survive. 
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Table A1.1: Reaction pH and formation of the hydrolysis product Z-Glu-Gly. 

Acyl-acceptor substrate Donor consumed 

in 72 h (%) 

Reaction pH 

(calculated pKa)
 a
 

Hydrolysis 

product (%) 

1 Hydroxylamine > 99
 

6 (5.97) 0 

2 N
α
-acyl-l-lysine-methyl ester > 99 9 (10.05) 0 

3 Cadaverine > 99 9 (10.36) 0 

4 6-Aminocaproic acid 70.6 ± 6.4 9 (10.31) 0 

5 5-Aminovaleric acid 38.5 ± 3.2 9 (10.15) 0 

6 γ-Aminobutyric acid 11.8 ± 6.7 9 (10.43) 0 

7 β-Alanine 4.8 ± 1.3 9 (9.34) 0 

8 Glycine 8.4 ± 2.4 7.7 (7.7) 4.6 ± 0.8 

9 Carbamic acid nd 
b
 6 (nc) 

c
 − 

d
 

10 Glycine ethyl ester > 99
 

7.7 (7.71) 0 

11 L-Threonine nd 7 (7.06) − 

12 L-Threonine ethyl ester 4.1 ± 9.5 7 (6.9) 24.6 ± 4.2 

13 L-Serine methyl ester 5.8 ± 1.4 7 (6.9) 20.3 ± 3.1 

14 D-Serine methyl ester 3.0 ± 1.9 7 (6.9) 24 ± 1.7 

15 L-Cysteine ethyl ester 2.7 ± 1.7 6.5 (6.71) 19.6 ± 1.2 

16 L-Tryptophan methyl ester 4.5 ± 1.1 8 (8) 41.3 ± 2.1 

17 L-Isoleucine methyl ester nd 7.5 (7.7) − 

18 Benzylamine 93.6 ± 1.3 9 (9.34) 0 

19 Aniline 18.9 ± 4.4 6 (4.67) 17.2 ± 0.8 

20 Cyclohexylmethylamine 46.3 ± 1.6 9 (10.41) 0 

21 Cyclohexylamine 3.1 ± 1.6 9 (10.39) 0 

22 m-Anisidine 11.3 ± 1.4 6 (4.35) 9.9 ± 1.4 

23 
3-Chloro-4-

fluorobenzylamine 
23.1 ± 5.7 

9 (8.79) 0 

24 p-Xylenediamine 62.7 ± 2.4 9 (9.75) 0 

25 O-Benzylhydroxylamine 2.6 ± 5.6 6 (4.25) 0 

26 Thiamine nd 7 (nc) − 

27 2-Bromoethylamine nd 8.5 (8.5) − 

28 Glucosamine nd 9 (12.27) − 

29 Aminoacetonitrile > 99
 

6 (4.59) 0 

30 Propargylamine 90.1 ± 0.9 9 (9.47) 0 

31 Propylamine azide 98.5 ± 0.5 9 (nc) 0 

32 Ethylamine azide 97.7 ± 0.5 9 (nc) 0 

33 N-Ethylmethylamine nd 9 (10.85) − 

34 Sarcosine nd 8 (8.06) − 

35 Butanol nd 7 (nc) − 

36 Butanethiol nd 7 (nc) − 
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a
 pKa values were calculated online at: http://archemcalc.com/sparc/   (Hilal, Said, S. W. 

Karickhoff and L. A. Carreira (1995) Quant. Struc. Act. Rel., 14, 348). 

b
 nd: not detected. 

c
 nc: not calculated. 

d
  − : not measured.  

 

 

 

Table A1.2: Reactivity of acyl-acceptors other than primary amines. 

Acceptor compound Structure 
Donor consumed in 

72h (%) 

33 
 

nd
 a
 

34 
 

nd 

35  nd 

36  nd 

a
 nd: not detected (< 2 % product)  

  

http://archemcalc.com/sparc/
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Annex 2:  Supporting information Chapter 3  

 

A.2 Docking 

All docking experiments were done with the trial version of MolDock (Aarhus, Denmark),  

The crystal structure of MTG (PDB file 1UI4) was used for all docking simulations. The ligand 

3D structures were drawn using ChemDraw 3D Pro 8.0. Docking simulations were run on a HP 

ProBook 4515s, running Molegro Virtual Docker 4.0.031,the Moldock Score [Grid] scoring 

function was used. Grid resolution was 0.30 Å with a radius of 30 around the active site of MTG. 

The search algorithm used was Moldock Optimizer, with default settings. With 10 runs and 100 

iterations, where the top 10 poses for the donor docking was manually inspected.  
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Annex 3: Supporting information Chapter 4  

A3.1 Materials and Methods 

A3.1.1 Materials 

 

The enzyme was prepared as described in Chapter 2. N-Z-L-Glu(γ-p-nitrophenylester)Gly 

was kindly synthesized in the laboratory of Jeffrey W. Keillor (University of Ottawa, Ottawa, 

Canada)
69

. Other chemicals used were purchased from the suppliers listed below, and were not 

modified unless specifically noted.  4-Methoxybenzamide (97%), glycine ethyl ester•HCl and 

triisopropylsilane were purchased from Acros Organics (Waltham, USA). Ethyl iodide, 

Glutamine, Methyl iodide, N,N-Dimethylformamide, piperidine, Z-Glutamine, N
α
-acetyl-L-

lysine methyl ester•HCl, trypsin from bovine pancreas (10,000 BAEE U/mg) and hydroxylamine 

were purchased from Sigma-Aldrich (St Louis, USA). Carboxybenzyl-glutaminyl-glycine (Z-

Gln-Gly) was from Alfa Aesar (Ward Hill, USA). Glutathione (reduced) was from Bioshop 

(Burlington, Canada). Sodium bicarbonate was purchased from Fisher (Waltham, USA). Formic 

acid 98% purity was from Fluka Analytical (St Louis, USA).  

 

Synthesis of most of the donor compounds was necessary as they were not commercially 

available; synthetic methods are described below. 

 

A3.1.2 Synthetic method: Esterification 

A3.1.2.1 General synthesis conditions 

The method was adapted from US patent 2008/0253997, section 0068 
81

. 1 eq substrate (1), 

was dissolved in dimethylformamide with NaHCO3 5.8 eq, and stirred at room temperature for 
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30 min. Methyl/Ethyl iodide 1.86 eq was added, followed by continuous stirring overnight. The 

reaction mixture was diluted to 10 mL with water and stirred for 40 min. The solid was collected 

by filtration over a Buchner funnel with filter paper, washed well with cold water and extracted 

with ethyl acetate:water (80 mL : 30 mL). The aqueous phase was extracted with 25 mL ethyl 

acetate. The combined organic extracts were washed with 10 mL water, dried over sodium 

sulfate, evaporated and dried at room temperature under vacuum for 72h, to yield the esterified 

product.  

A3.1.2.2 Product detection 

 

For all products synthesized, masses were detected under positive ionization of direct 

injection with a Waters 3100 single quadrupole mass detector. The mass corresponding to the 

expected product was detected and monitored in correspondence with starting material 

consumption.  

 

A3.2 Results 

 

Table A3.1: Rate of product formation with N-Z-L-Glu(γ-p-nitrophenylester)Gly substrate. 

D

onor 

M

TG 

Acce

ptor 

Rate of product 

formation 

(µM/min) 

   0.66 

   1.06 

   0.22 

   0.82 

 


