Université de Montréal

Problèmes de comportement à long terme chez les patients pédiatriques atteints de leucémie lymphoblastique aiguë

Par
Sophie Marcoux Département de sciences biomédicales, Faculté de médecine

Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l'obtention du grade de Philosophiae Doctor (PhD) en sciences biomédicales, option sciences psychiatriques

22 Décembre 2010

Université de Montréal Faculté des études supérieures et postdoctorales

Cette thèse intitulée :

Problèmes de comportement à long terme chez les patients pédiatriques atteints de leucémie lymphoblastique aiguë

Présentée par:
Sophie Marcoux

A été évaluée par un jury composé des personnes suivantes:

Dr Michel Duval
Dr Philippe Robaey
Dre Maja Krajinovic
Dr Yvan Samson
Dre Elizabeth Maunsell
Dr Claude Perreault

Président-rapporteur
Directeur de recherche
Co-directrice de recherche
Membre du jury
Examinateur externe
Représentant du doyen

SOMMAIRE

Les améliorations dansles protocoles detraitement pourlamajorité des cancers pédiatriques ont augmenté de façon marquée les taux de survie. Cependant, des risques élevés de multiples problèmes de santé ch ez les su rvivants sont bien documentés. En ce qui concerne spécifiquement les problèmes neuropsychologiques, les principaux facteurs de risque individuels connus à ce jour (l'âge au diagnostic, le genre du pat ient, I 'exposition aux r adiations) dem eurent i nsuffisants pour ci bler efficacement et prévenir les séquelles à long terme.

Les objectifs généraux de cette t hèse ét aient:1) I a ca ractérisation des trajectoires individuelles de problèmes de co mportement chez une popul ation de patients pédiatriques atteints de leucémie lymphoblastique aiguë; 2) l'identification des principaux dét erminants génétiques, médicaux et psy chosociaux associés aux problèmes de comportements.

Les hypothèses étaient:1) II ex iste une ass ociation ent reles trajectoires individuelles de problèmes de comportement et a - des facteurs psychosociaux liés au fonctionnement familial, b-des polymorphismes dans les gènes modérateurs des effets thérapeutiques du méthotrexate et des glucocorticoïdes, c - des variables liées aux t raitements oncologiques. 2) L' utilisation de m odèles statistiques multi-niveaux peut permettre d'effectuer ce tte caractérisation des trajectoires individuelles et l'identification des facteurs de risque associés.

138 pat ients pédiatriques (0-18 an s) ayant reçu un di agnostic de leucémie lymphoblastique ai guë entre 1993 et 1999 au CHU Ste-Justine on t participé à un e étude I ongitudinale d' une dur ée de 4 ans. Uninstrument validé et standardisés, Ie Child B ehavior C hecklist, a ét é u tilisé pour obt enir un indice de p roblèmes de comportement, tel que rapporté par la mère, au moment du diagnostic, puis 1, 2, 3 et 4 ans post-diagnostic. Des données génétiques, psychosociales et médicales ont aussi été collectées au cours de cette même étude longitudinale, puis ont été exploitées dans les modélisations statistiques effectuées.

Les résultats obtenus suggèrent que les problèmes de comportement de type internalisés et externalisés possèdent des trajectoires et des facteurs de risque distincts. Les problèmes internalisés sont des manifestations de troubles affectifs chez le patient, tels que des symptômes dépressifs ou anxieux, par exemple. Ceux-ci sont très prévalents tôt après le diagnostic et se normalisent par la suite, indiquant des difficultés significatives, mais temporaires. Des facteurs médicaux exacerbant l'expérience de stress, soit le risque de rechute associé au diagnostic et les complications médicales affectant I a du rée de I 'hospitalisation, r alentissent ce tte normalisation. Les problèmes externalisés se manifestent dans le contact avec autrui; des démonstrations d'agression ou de violence font partie des symptômes. Les problèmes externalisés sont plus stables dans le temps relativement aux problèmes internalisés. Des variables pharmacologiques et g énétiques contribuent aux différences individuelles : l'administration d'un glucocorticoïde plus puissant du point de vue des effets pharmacologiques et toxicologiques, ai nsique l'homozygotie pour l'haplotype -786C844T dug ène N OS3 sontliés à la modulation des scores de problèmes externalisés au fil du temps. Finalement, le niveau de stress familial perçu au diagnostic est positivement corrélé avec le niveau initial de problèmes externalisés chez le patient, tandis que peu après la fin de la période d'induction, le niveau de stress familial est en lien avec le niveau initial de problèmes internalisés.

Ces résultats supportent l'idée qu'une approche holistique est essentielle pour espérer mettre en place des interventions préventives efficaces dans cette population. À I ong terme, ce s connaissances pourraient co ntribuer si gnificativement à l'amélioration de la qualité de vie des patients.

Ces travaux enrichissent es connaissances act uelles en soulignant les bénéfices des suivis longitudinaux et multidisciplinaires pour comprendre la dynamique de ch angement opér ant ch ez les patients. Le décloisonnement des savoirs semble devenir incontournable pour aspirer dépasser le cadre descriptif et atteindre un certain niveau de compréhension de s phénomènes observés. Malgré des défis méthodologiques et logistiques évidents, cetyped 'approche est non se ulement souhaitable pour étudier des processus dynamiques, mais les travaux présentés dans cette thèse indiquent que cela est possible avec les moyens analytiques actuels.

Mots-clés: Oncologie pédi atrique, I eucémiel ymphoblastique ai guë, facteurs psychosociaux, pharmacogénétique, glucocorticoïdes, NOS3, analyses statistiques multi-niveaux.

Abstract

Recent i mprovements in pedi atric cancers treatment have led tom arked increases in patient survival rate. However, it has been well documented that pediatric cancer survivors are at elevated risk for various other health problems. With respect specifically t o neuropsychological si de effects, kn own pr edictors (mainly: ag eat diagnosis, patient gender, exposure to radiation therapy) remain insufficient so far to target, and prevent efficiently, long term sequelae in this population.

General objectives related to this thesis were: 1) characterization of individual trajectories of behavioral problems in pediatric patients with acute lymphoblastic leukemia; 2) the identification of genetic, medical and psychosocial determinants of behavioral problems in this population.

This research program was based on the following hypotheses: 1) there is an association between the trajectories of individual behavioral problems and a - familial well-being-related psychosocial factors, b - gene polymorphisms involved in the therapeutic responses to methotrexate and glucocorticoids, c - anti-cancer treatmentsrelated variables. 2) Multilevel statistical modeling can be used to characterize patient groups according to their individual behavioral problem trajectories, a nd can al so identify predictive factors.

138 pediatric patients (0-18 years old) who received an acute lymphoblastic leukemia diagnosis between 1993 and 1999 at CHU Ste-Justine participated in this 4 years-long I ongitudinal study. A s tandardized and validatedinstrument, the Child Behavior C hecklist, w as used to measure be havior pr oblems, as reported by t he mother, at di agnosis, and then 1, 2, 3 and 4 y ears post-diagnosis. G enetic, psychosocial and medical data were also collected during this longitudinal study; these data were exploited in the context of the statistical modeling performed.

Results obtained suggest that internalized and externalized behavioral problems have distinct trajectories and have different predictive factors. Internalized problems are affective issues presented by the patient, such as depressive or anxious
symptoms. They are highly prevalent post-diagnosis and normalize over the following years, suggestive of temporary yet significant problems. Stress-enhancing medical variables such as a higher relapse risk at diagnosis and medical complications requiring a I onger hosp italization slow do wn the nor malization pr ocess. Externalized problems needi nterpersonal co ntact t oo ccur; v iolence or agg ressiveness manifestations are so me examples. Compared to internalized problems, externalized problems are much more stable across time. However, pharmacological and g enetic variables do contribute to individual differences in trajectories. In particular, administration of a more potent glucocorticoid (from pharmacological and toxicological perspectives) and being homozygous for NOS3 gene -786C844T haplotype are linked to modulation of externalized problems in time. Finally, the level of perceived family stress at time of diagnosis is positively correlated with initial externalized problems, while shortly after the induction period, the level of familial stress is linked with the initial internalized problems.

Together, these results support the idea that a holistic care strategy is essential to develop efficient, preventive interventions in this population, due to the multifactorial nature of these behavioral problems. The knowledge generated in the present studies could contribute to better quality of life for these patients.

This thesis also brings a more holistic contribution to our current knowledge of behavioral problems in t his population, by h ighlighting the need for individual, multidisciplinary follow-ups, with particular emphasis on repeated measurements and appropriate statistical anal yses. More than ev er, k nowledge de -compartmentalization appears essential in reaching a certain comprehension level of observed phenomena, rather t han adhering to descr iptive se ttings. I ti ndicates that, des pite obv ious methodological and I ogistic challenges, this type of research is not only desirable in studying dynamic processes, but is certainly achievable with current analytical tools.

Key words : pediatric oncology, acute lymphoblastic leukemia, psychosocial factors, pharmacogenetics, glucocorticoids, NOS3, multilevel statistical modeling.

TABLE DES MATIĖRES

SOMMAIRE iii
ABSTRACT vi
LISTE DES TABLEAUX xii
LISTE DES FIGURES xiii
LISTE DES DOCUMENTS SPÉCIAUX xiv
SIGLES ET ABRÉVIATIONS xv
DÉDICACE xviii
REMERCIEMENTS xix
CHAPITRE 1 : INTRODUCTION 1
CHAPITRE 2 : RECENSION DE LA LITTÉRATURE 3
2.1 Cancers pédiatriques 4
2.1.1 Introduction historique 4
2.1.2 Prévalence 5
2.1.3 Causes 8
2.1.4 Taux de guérison 9
2.1.5 Leucémie lymphoblastique aiguë 10
2.2 Prise en charge thérapeutique 14
2.2.1 Chimiothérapie 14
2.2.1.1 Mécanisme d'action général de la chimiothérapie 14
2.2.1.3 Phases de traitement de la LLA pédiatrique 17
2.2.1.4 Protocoles de Boston 19
2.2.1.5 Méthotrexate 24
2.2.1.6 Corticothérapie 26
2.2.2 Radiothérapie 32
2.2.2.1 Mécanisme d'action général de la radiothérapie 32
2.2.2.2 Types de radiothérapie 32
2.2.2.3 Effets secondaires de la radiothérapie 34
2.2.2.4 Radiothérapie dans les protocoles de Boston 34
2.2.2.5 Utilisation actuelle de la radiothérapie en oncologie pédiatrique 36
2.2.3 Rechute et greffe 36
2.2.4 Pharmacogénétique 37
2.2.4.1 Concept et définitions 38
2.2.4.2 Utilisations actuelles 39
2.2.4.3 Polymorphismes d'intérêt 40
2.3 Prise en charge psychosociale 46
2.3.1 Définition du concept d'adaptation 46
2.3.2 Problèmes d'adaptation chez le patient 47
2.3.3 Problèmes d'adaptation chez les membres de la famille 48
2.3.3.1 Parents 48
2.3.3.2 Fratrie 49
2.4 Problèmes de santé chez les survivants 50
2.4.1 Grandes études de cohortes 50
2.4.2 Séquelles moléculaires et cellulaires 51
2.4.3 Séquelles physiques 52
2.4.4 Séquelles psychologiques 54
2.4.5 Séquelles sociales 55
2.4.6 Facteurs de risque 56
2.4.7 Phénomène de chemobrain 58
CHAPITRE 3 : OBJECTIFS 59
3.1 Objectif général et hypothèse générale de l'étude 59
3.2 Objectifs spécifiques de la thèse 60
CHAPITRE 4 : MÉTHODOLOGIE 62
4.1 Child Behavior Checklist (CBCL) 65
4.2 Family Well-Being Assessment (FWA) 70
4.3 Polymorphismes (Pandora) 71
4.4 Modélisation multi-niveaux 72
CHAPITRE 5 : RÉSULTATS 74
5.1 Article 1 - Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy 75
5.1.1 Avant-propos 75
5.1.2 Abstract 75
5.1.3 Introduction 76
5.1.4 Methotrexate 77
5.1.5 Glucocorticoids 86
5.1.6 Conclusions 90
5.1.7 Figure 92
5.2 Article 2 - Predictive factors of internalized and externalized behavioral problems in children treated for acute lymphoblastic leukemia. 93
5.2.1 Avant-propos 93
5.2.2 Abstract 93
5.2.3 Introduction 94
5.2.4 Methods 95
5.2.5 Results 98
5.2.6 Discussion 101
5.2.7 Acknowledgements 104
5.2.8 Tables and figures 105
5.3 Article 3 - Role of NOS3 DNA variants in externalized behavioral problems in childhood leukemia survivors. 116
5.3.1 Avant-propos 116
5.3.2 Abstract 116
5.3.3 Introduction 117
5.3.4 Methods 119
5.3.5 Results 120
5.2.6 Discussion 122
5.3.7 Acknowledgements 125
5.3.8 Tables and figures 126
CHAPITRE 6 : DISCUSSION 131
6.1 Mise en contexte des résultats. 131
6.1.1 Prévalence des problèmes de comportement 131
6.1.2 Polymorphismes en tant que facteurs de risque 134
6.1.3 Choix du GC à préconiser. 136
6.1.4 Spécificités de la neurotoxicité 138
6.2 Implications sur la pratique clinique 140
6.3 Limites méthodologiques 141
6.4 Retour sur la sélection des modèles multi-niveaux 142
6.5 Perspectives 143
6.5.1 Court terme 143
6.5.1.1 Interactions entre polymorphismes et doses de médicaments 143
6.5.1.2 Approfondissement de l'hypothèse de la dichotomie 144
6.5.1.3 Autres polymorphismes candidats 145
6.5.2 Moyen terme 146
6.5.2.1 Génotypage à l'échelle génomique 146
6.5.2.2 Facteurs nutritionnels en tant que modérateurs 147
6.5.2.3 Analyses épigénétiques 147
6.5.2.4 Méta-analyses 148
6.5.2.5 Études d'intervention 149
6.5.2.6 Poursuite du suivi longitudinal 150
6.5.3 Long terme 150
6.5.3.1 Approfondissement de la compréhension des mécanismes de neurotoxicité 150
6.5.3.2 Amélioration de la connaissance des facteurs de risque pour le suivi à long-terme des survivants 151
CHAPITRE 7 : CONCLUSION 154
7.1 Conclusions spécifiques 154
7.2 Conclusions générales 154
RÉFÉRENCES 188

LISTE DES TABLEAUX

TABLEAU 1. Incidence des cancers (0-14 ans), Canada, 2000-2004 7
TABLEAU 2. Facteurs pronostiques pour la LLA 13
TABLEAU 3. Catégories d'agents de chimiothérapie 16
TABLEAU 4. Chimiothérapie : effets secondaires spécifiques 17
TABLEAU 5. Résumé des protocoles de Boston pour le traitement de la LLA 20
TABLEAU 6. Classification des groupes pronostiques - Protocoles de Boston 25
TABLEAU 7. Effets physiologiques principaux des GC 29
TABLEAU 8. Effets pharmacologiques principaux des GC 30
TABLEAU 9. Principaux effets secondaires à long terme de la radiothérapie 35
TABLEAU 10. Distinction entre polymorphismes et mutations 39
TABLEAU 11. Polymorphismes d'intérêt dans la LLA pédiatrique 42
TABLEAU 12. Aperçu des problèmes de santé physique chez les survivants 53
TABLEAU 13. 8 syndromes évalués par le CBCL 66
TABLEAU 14. CBCL disponibles pour chacun des patients de la cohorte 69
TABLEAU 15. Descriptive statistics 105
TABLEAU 16. Selected multilevel model with internalized problems (A) and externalized (B) CBCL score as dependent variable. 108
TABLEAU 17. Basal linear regression models necessary to test FWAT2 as a mediator of internalized problems evolution from diagnosis to 1 year post-diagnosis 109
TABLEAU 18. Revue de littérature - Problèmes de comportement chez les patients pédiatriques atteints de cancer 112
TABLEAU 19. Patients demographic and NOS3 polymorphisms-related descriptive statistics. 126
TABLEAU 20. Multilevel modeling of the impact of *2*2 homozygosity on externalized problems, from diagnosis to four years post-diagnosis. 127
TABLEAU 21. Comparaison des atteintes neuropsychologiques. 138

LISTE DES FIGURES

FIGURE 1. Mortalités par type de cancer pédiatrique - États-Unis 8
FIGURE 2. Évolution des probabilités de survie sans événement pour la LLA pédiatrique 10
FIGURE 3. Hématopoïèse humaine 11
FIGURE 4. Phases typiques de traitement de la LLA pédiatrique 18
FIGURE 5. Voies moléculaires de signalisation des glucocorticoïdes 27
FIGURE 6. L'axe hypothalamo-hypophyso-surrénalien 28
FIGURE 7. Modèle transactionnel dynamique proposé pour expliquer l'origine des trajectoires individuelles de problèmes de comportement chez des patients pédiatriques atteints de cancer 61
FIGURE 8. Illustration du devis expérimental 63
FIGURE 9. MTX-mediated homocysteine toxicity 92
FIGURE 10. CBCL scores, by diagnostic categories 106
FIGURE 11. Average CBCL scores over time. 107
FIGURE 12. Prototype plots for internalized (A, B) and externalized (C) behavioral problems 110
FIGURE 13. Average externalized problem CBCL scores according to patients' NOS3 genotypes 128FIGURE 14. Prototype plot illustrating the change in rate of externalized problemsduring the study period in individuals with and without *2*2 haplotype.130

LISTE DES DOCUMENTS SPÉCIAUX

ANNEXE I. Child Behavior Checklist, 2-3 ans 155
ANNEXE II. Child Behavior Checklist, 4-17 ans 158
ANNEXE III. Familial Well-Being Assessment 160
ANNEXE IV. Documents liés à l'éthique 166
ANNEXE V. Articles complémentaires 171
ANNEXE VI. Preuves de parution/soumission des articles 172
ANNEXE VII. Curriculum vitae abrégé 174
ANNEXE VIII. Déclaration des coauteurs et droits d'auteurs 177

SIGLES ET ABRÉVIATIONS

(Les termes anglophones sont en italique)

Ψ	Psychologie, psychologique
5-HTT	Transporteur de la sérotonine
6-MP	Mercaptopurine
ABC	ATP-binding cassette
ACTH	Adrenocorticotropic hormone

AHHS Axe hypothalamo-hypophyso-surrénalien
Ara-C Cytarabine
Asp Asparaginase
Bax Bcl-2 associated x protein
Bim Bcl-2 interacting protein
CBCL Child Behavior Checklist
CBS Cystathionine beta-synthase
CCND1 Cyclin D1
CCR5 Chemokine receptor 5
CRH Corticotropin releasing hormone
CS Corticostéroïdes
CYP Cytochromes P450
Dexa Dexaméthasone
DHFR Dihydrofolate reductase
Dox Doxorubicine
dUMP Deoxyuridylate

Dx Diagnostic
EFS Survie sans événement
FWA Family Well-Being Assessment
GC Glucocorticoïdes
GI Gastro-intestinal
GMO Greffe de moelle osseuse
GR Récepteur de glucocorticoïde
GRE Site de liaison pour les récepteurs de glucocorticoïdes

GRIA1	Glutamate AMPA receptor subunit 1
GST	Glutathione-S-transférase
GU	Génito-urinaire
HC	Hydrocortisone
Hcy	Homocystéine
HD	Maladie de Hodgkin
HFE	Hereditary hemochromatosis
HR	LLA à risque élevé de rechute
IM	Intramusculaire
IRF4	Interferon regulatory factor 4
IT	Intrathécal
IU	Unité internationale
IV	Intraveineux
j.	jour(s)
LIGIV	DNA ligase IV
LLA	Leucémie lymphoblastique aiguë
LMA	Leucémie myéloïde aiguë
LMC	Leucémie myéloïde chronique
MRD	Maladie résiduelle minimale (Minimal residual disease)
MRP4	Multidrug resistance-associated protein 4
MTHFD1	Methylenetetrahydrofolate reductase dehydrogenase
MTHFR	Methylene tetrahydrofolate reductase
MTR	Methionine synthase
MTRR	Methionine synthase reductase
MTX	Méthotrexate
NF-kB	Nuclear factor kappa B
NNMT IVS	Nicotinamide N-methyltransferase
NOS3	Nitric oxide synthase 3
NQO1	$N A D(P) H$ dehydrogenase quinone 1
Pred	Prednisone
Q	Quotient intellectuel
RC	Radiothérapie crânienne (prophylaxie méningée)
RFC	Reduced folate carrier
s.	semaine(s)

SNA	Système nerveux autonome
SNC	Système nerveux central
SNP	Single nucleotide polymorphism
SR	LLA à risque standard de rechute
TS	Thymidylate synthase
VCR	Vincristine
VD	Variable dépendante
VHR	LLA à risque très élevé de rechute
VI	Variable indépendante
XRCC1	X-ray repair cross-complementing group 1
XRT	Radiothérapie

DÉDICACE

À Jayden, Maélie et David.

REMERCIEMENTS

Au moment d'écrire ce slignes, presque jour pour jour, trois ans viennent de s'écouler depuis le début officiel de mon doctorat. Je peine à le réaliser. L'adage dit que l'on perd le fil du temps lorsque l'on s'occupe à quelque chose qui nous passionne. J'ose le croire. J'ai eu le privilège de vivre cette expérience entourée de gens exceptionnels, sur lesquels je souhaiterais braquer l'éclairage pendant quelques pages.

Je commencerai par remercier Dr Philippe Robaey et Dre Maja K rajinovic, mon directeur et ma co-directrice de thèse. Merci pour tout le temps que vous m'avez consacré, pour tous les efforts que vous avez investis dans ma formation, pour avoir partagé avec moi vos connaissances, vos expériences et vos intérêts respectifs. Merci de m'avoir donné envie de continuer, de m'avoir toujours incitée à me dépasser. Merci de m'avoir guidée à travers les nombreux défis qui jalonnent le quotidien d'un apprentichercheur.

Merci à Dre C aroline Lav erdière, q ui a ét é une marraine de doct orat exceptionnelle. Merci d'avoir toujours trouvé du temps pour moi et pour nos tonnes (!) de pr ojets. M erci aussi pour I a bi enveillance et su rtout, de m 'avoir offert autant d'opportunités. Pour tout cela, je vous suis reconnaissante.

J'en profite pour a dresser des remerciements à toute l'équipe du GRIP. Un merci particulier à Mélissa Lévesque, une collègue que j'apprécie beaucoup, et aussi à Dr Jean Séguin, pour tous les conseils, les encouragements et les opportunités de réseautage.

Merci aussi à Dr Michel Duval et Dr Yvan Samson, qui ont accepté que je les accompagne pour des stages en milieu clinique pendant mes études. Cela m'a permis de mieux comprendre ce à travers quoi les patients et leurs familles doivent passer, et a donné un angle supplémentaire à tout ce que j'étais en train d'apprendre.

Ces remerciements se raient incomplets sans un grand merci à tous les gens qui font du CHU Ste-Justine un lieu de formation exceptionnel. Merci en particulier à Sandy Lalonde et Dominika Kozubska, qui rendent la vie tellement plus facile et agréable aux étudiants et étudiantes, ainsi qu'à Dr Alain Moreau, pour les appuis et les conseils.

J'aimerais profiter de cette occasion pour souligner l'implication des organismes ayant contribué financièrement à ma formation, et leur exprimer toute ma gratitude : la Fondation des étoiles/Fondation du C HU S te-Justine, I es Instituts de recherche en santé du C anada (IRSC), Ie Groupe de recherche sur l'inadaptation psy chosociale chezles enfants (GRIP), la Faculté des études supérieures et post-doctorales de l'Université de Montréal, et le département de sciences biomédicales de l'Université de Montréal.

Je tiens à remercier du fond du cœur tous ceux et celles qui ont participé aux différents projets de recherche dans lesquels j'ai été impliquée. J'ai, au cours des trois dernières années, eu le privilège de rencontrer et d'échanger avec plusieurs patients, anciens patients, ainsi qu'avec des membres de leurs familles. Il m'est difficile de trouverles mots justes pourleur ex primer toute ma gratitude devant aut ant de générosité. J'ajouterai simplement que ce s contacts ont ét é pour moi autant de sources de motivation et de persévérance.

Je voudrais profiter de cette opportunité pour remercier mes amies, qui me sont très, très précieuses : Mariannick Paris, Ariane Lessard, Sophie Ikherbane, Linda Peltier et Nancy Presse. Je regrette de ne pas être toujours aussi disponible que je ne le voudrais, et je pense que nous nous voyons certainement trop peu so uvent. Quelle i ronique ex périence, donc, de vous remercier pr écisément dans l'objet
représentant la principale raison de mes éloignements!... Heureusement pour la personne choyée que je suis, vous comprenez et êtes néanmoins toujours aussi présentes pour me soutenir et m'encourager. Pour cela, merci à chacune de vous.

Merci à mes parents, Hélène et Michel. Je souhaite seulement que vous êtes heureux de constater aujourd'hui que je mets en œuvre ce que vous vous évertuez à me répéter depuis que je suis haute comme trois pommes, c'est-à-dire que de faire de ma vie quelque chose qui me passionne!

Merci à Marie et Mo, pour les encouragements et le support. Pour me faire bénéficier de votre façon unique de voir le bon côté des choses et d'être toujours là pour moi, dans les bons comme dans les mauvais moments, je vous dis sincèrement merci. Vous faites partie de ma famille, bien sû r , mais vous êtes aussi des amis incroyablement précieux.

J'ai gardé mes remerciements les plus significatifs pour la fin: les mercis les plus importants, je les dois sans l'ombre d'un doute à mon amoureux. David, tu as toujours été là: pour célébrer avec moi dans les moments d'accomplissement, mais aussi pour m'épauler dans les moments de doute, deremise en question et de découragement. Les mots me manquent pourt'exprimer àq uel pointjemesa is chanceuse de cheminer à tes côtés. Ce que je peux te dire, c'est que je ne serais pas la personne que je suis devenue si tu n'avais pas été là. Merci.

Sophie

CHAPITRE 1 : INTRODUCTION

Il y a une cinquantaine d'années, la vaste majorité des cas de cancers pédiatriques se co ncluait par Ie décè s prématuré des patients. À ce moment, les recherches psychosociales ayant pour sujets cette population s'intéressaient surtout à la thématique du deuil.

Depuis les années 70, des études r andomisées successives ont p ermis d'accroitre de manière significative les taux de survie. Ces améliorations ont résulté principalement de I 'introduction de l apr ophylaxiem éningée so us forme de radiothérapie c rânienne (RC), de I 'optimisation des doses de ch imiothérapie, et du recours simultané à plusieurs médicaments.

Aujourd'hui, les taux de survie (i.e. 5 ans post-traitements) sont encourageants pour la majorité des cas de cancers pédiatriques. Cependant, ces progrès vont de pair avec de nombreux ef fets secondaires chez les survivants, à co urt, moyen et long terme. De plus, un diagnostic de cancer pédiatrique demeure une période de stress majeur et durable à venir pour le patient, mais aussi pour les membres de la famille. Bref, malgré les avancées notables, les difficultés médicales et psychosociales liées au traitement du ca ncer pé diatrique, m ais aussi au su ivi post-traitements, sont toujours nombreuses.

Lar echerche surle devenir de ce s patients est co mplexe: pop ulation relativementrestreinte, rareté des études longitudinales, variabilité liée àl 'âge, au sexe, à des facteurs génétiques, aux différences de traitement, de diagnostics, de suivi post-traitement, au défi de l'intégration de la recherche biomédicale et psychosociale, etc. Malgré ces défis méthodologiques et les précautions quant àl'interprétation des résultats qui s'imposent en co nséquence, les données probantes surla sa nté des guéris sont relativement nombreuses. P rises en un t out, le co nstat est qu'une proportion significative des survivants éprouve plus de problèmes de santé physique et mentale que la population générale.

Le défi de distinguer les patients les plus à risque de développer des problèmes de santé subsiste, l'objectif ultime étant d'assurer une prévention ciblée et des soins
efficaces pour tous. Pour y arriver, il faudra : 1) améliorer les traitements oncologiques en maximisant le ratio efficacité/toxicité; 2) trouver des marqueurs permettant le dépistage précoce des sujets à risque élevé de développer des effets secondaires; 3) mettre au poi nt des stratégies de soins individualisées optimisant les traitements, et diminuant la su rvenue de problèmes de santé secondaires pendant la pér iode posttraitements. Un suivi serré et efficace, restreint aux patients qu'il serait convenu de décrire comme étant «à risque», est tributaire d'une compréhension fine du processus menant à l'apparition des problèmes en question. Ces objectifs globaux sont cruciaux pour viser la meilleure qualité de vie post-traitements possible aux patients demeurant à risque de développer des séquelles, tout en permettant à la majorité des patients de tourner la page une fois la guérison enfin déclarée.

CHAPITRE 2 : RECENSION DE LA LITTÉRATURE

Ce ch apitre aborde la I ittérature co uvrant les quatre volets pertinents à cette thèse : les cancers pédiatriques, leur prise en charge thérapeutique, leur prise en charge psy chosociale chez le patient et sa famille et, finalement, les problèmes de santé chezles guéris. La première section s' intéresse aux ca ncers pédiatriques les plus communs, survole les causes possibles, résume les chiffres récents sur les taux de guérison et comporte une se ction complète sur la leucémie lymphoblastique aiguë (LLA). La se ction suivante porte sur la prise en charge thérapeutique: les principes généraux d'action de la chimiothérapie, de la radiothérapie et de la greffe y sont revus. De façon plus précise, les traitements liés au traitement de la LLA y sont présentés. Finalement, une sous-section complète sur la pharmacogénétique est incluse. La prise en ch arge psy chosociale est Ie su jet de I a troisième se ction. La I ittérature act uelle portant su rl 'adaptation des patients souffrant ou ay ant so uffert d' un ca ncer pédiatrique, ainsi que de celle des membres dela famille proche y est regroupée. Finalement, la quatrième et dernière section s'intéresse aux problèmes de santé à long terme. Une revue de littérature intégrée y a été privilégiée : les séquelles physiques, psychologiques et sociales y sont ainsi abordées.

Il importe par ailleurs de so uligner que les appellations guéris et survivants seront utilisées dans la présente thèse comme substituts interchangeables à patient ayant so uffert d'un cancer pédiatrique, en dépit de la controverse actuelle de l'utilisation du mot guérison en ce quiles concerne [1]. De même et sauf indication contraire, les termes population pédiatrique réfèrent au groupe de 0-18 ans.

Une approche multidisciplinaire comporte des avantages certains, qui seront par ailleurs discutés en détail. Elle multiplie néanmoins de façon importante les sujets à co uvrir dans le cadre t héorique. En dépi t des apparences, ilimporte ai nsi de mentionner qu'un effort particulier de concision a été fait, notamment par la synthèse des informations à l'intérieur de tableaux résumés, plutôt que sous forme de texte, chaque fois que possible.

2.1 Cancers pédiatriques

2.1.1 Introduction historique

Les premiers essais cliniques de traitements oncologiques pour les populations pédiatriques ont débuté dans les années 1950-1960, aux États-Unis [2, 3]. À cette époque, une minorité des patients survit plus de 5 ans post-diagnostic. Ce faisant, la recherche psychosociale s'intéresse surtout au vécu des endeuillés [4]. En 1962, une équipe a méricaine menée par Ie Dr Donald Pinkel met au point la total therapy, qui consiste à i nclure des séances de radiothérapie (XRT) prophylactique du sy stème nerveux central (SNC). Cette prophylaxie méningée contribue à améliorer de façon dramatique les taux de survie des patients atteints d'une leucémie aigüe [2]. Cette époque concorde avec l'augmentation de la durée des traitements, ainsi qu'au début des études sur les facteurs pronostiques [3].

Dans les années 1970-1980, I es premières co hortes de su rvivants sont étudiées. Le co nstat qu'une p roportioni mportante des patients développe ultérieurement de nombreuses séquelles physiques et psy chologiques remet en question leur réelle guérison (cure) [2]. Ces observations suscitent notamment l'intérêt de Jan van Eys, qui s'intéressera aux impacts psychosociaux chez les patients [2, 4]. Les études sur la détresse psychologique des patients au moment des procédures médicales, sur l'impact de l'agressivité des traitements de prophylaxie méningée, ainsi que sur les effets chez la famille d'un enfant atteint de cancer se multiplient [4]. Médecins et ch ercheurs cherchent par allèlement à mieux di stinguer I es strates de risques liées à un même diagnostic, dans le but de diminuer l'intensité des traitements chez les patients dits 'à risque moindre' ou à risque 'standard' [3].

Au co urs des années 1976-1981, I es Américains Gerald K oocher et John O'Malley étudient de façon exhaustive la santé physique et mentale de survivants plus âgés ayant souffert d'un cancer pédiatrique. Ils utilisent al ors le terme Syndrome de Damoclès pour décrire l'état des guéris [2]. Leurs travaux, et ceux d'autres chercheurs, encouragent l'idée que des interventions et des soins psychologiques préventifs et spécifiques devraient être prodigués aux patients ainsi qu'à leur famille proche [2, 5-9].

Dans les années 1990 et 2000, les connaissances en biologie moléculaire et en génétique, l'accès à des supports informatiques de pl us en pl us pui ssants, à des modèles mathématiques plus complexes, ainsi qu'à des organisations internationales de recherche permettent de mettre en lumière le rôle de l'hétérogénéité des cancers pour expliquer les différences dans le taux de succès des traitements. Des études de cohorte d' envergure confirment que les guéris ont effectivement des risques plus élevés de souffrir de problèmes de santé que leurs pairs et ce, autant dans les sphères physiologiques que psychologiques et sociales [9-11]. Finalement, Ia fin des années 2000 coïncide avec le 50^{e} anniversaire convenu de l'oncologie pédiatrique en tant que champ di stinct de recherche. Il s' agit d' une occ asion de réflexion surles leçons du passé [3, 4], mais surtout d' une oppor tunité de st atuer surles défis à venir et les façons de les relever [12-14].

2.1.2 Prévalence

Le cancer pédiatrique demeure heureusement une m aladie relativement rare; néanmoins, environ 1276 nouveaux cas sont diagnostiqués et 208 enfants/adolescents en meurent ch aque année au Canada, selon les plus récentes données disponibles (2000-2004) ${ }^{1}$. Le cancer constitue la seconde cause de mortalité en importance dans ces groupes d'âge (la première étant les accidents) ${ }^{2}$. Les données américaines suggèrent que la prévalence des cancers pédiatriques serait à la hausse, de façon toutefois modeste [15]. La pl us récente estimation est de 165.9 cas par million de patients ($0-19 \mathrm{ans}$), ba sée surles données de 2001 à 2003 [16]. Les données canadiennes suggèrent plutôt une stabilité du taux de cancer chez les 0-14 ans depuis 1985 [17], ainsi qu'une légère augmentation de l'incidence chez les 15-29 ans entre 1996 et 2005 [18].

À elles seules, les tumeurs du système nerveux et les leucémies comptent pour environ la moitié des cas (TABLEAU 1 [17] - catégorie d' appartenance de I a LLA encadrée en rouge) et des causes de mortalité liées au cancer (FIGURE 1). De tous les types de cancers, la LLA possède l'incidence la plus élevée chez les enfants de 0 à

[^0]14 ans 3. La LLA est aussi le type de ca ncer le plus prévalent dans les populations pédiatriques en g énéral (0-18 ans); il i mporte toutefois de préciser qu'll e xiste des distinctions notables entre les types de cancers les plus prévalents chez les enfants (014 ans) [17] et chez les adolescents/jeunes adultes (AJA - 15 à 29 ans) [18]. Des distinctions existent aussi en ce qui a trait aux besoins médicaux et psychosociaux spécifiques de ces deux groupes. II en va de même quant aux taux de guérison, qui tendent généralement à être plus défavorables pour un même diagnostic chez les AJA comparativement aux enfants. Ces différences seraient ex pliquées par une participation m oindre a ux pr otocoles expérimentaux, un dél ai pl us grand en tre l'apparition des symptômes et la consultation m édicale, un su ivi m édical m oins multidisciplinaire et finalement, des biologies tumorales distinctes chezles A JA comparativement aux enfants [5, 19-23].

[^1]TABLEAU 1. Incidence des cancers (0-14 ans), Canada, 2000-2004 ${ }^{4}$

Groupes de diagnostics et Sous-groupe	Nouveaux cas			Décès		
	Absolus	Relatifs	$\begin{gathered} \text { TINA } \\ \text { (pour } \\ 1000000 \text {) } \\ \text { par an } \end{gathered}$	Absolus	Relatifs	TINA (pour 1000 000) par an
I. Leucémie	1380	32,5	49,3	184	27,2	6,4
a. Lvmphoide	1091	25,7	39,0	71	10,5	2,4
b. Aiguë myéloïde	176	4,1	6,3	51	7,5	1,8
III. Système nerveux central	828	19,5	28,9	201	29,7	6,9
a. Épendymome	88	2,1	3,2	19	2,8	0,7
b. Astrocytome	365	8,6	12,5	41	6,1	1,4
c. Embryonnaire intracrânien et intramédullaire	207	4,9	7,3	57	8,4	2,0
II. Lymphome	506	11,9	16,9	32	4,7	1,1
a. Maladie de Hodgkin	172	4,1	5,5	4	0,6	0,1
b. Lymphomes non hodgkiniens	155	3,7	5,2	10	1,5	0,3
c. Lymphome de Burkitt	93	2,2	3,1	8	1,2	0,3
IV. Neuroblastomes et autres tumeurs du SNP	295	7,0	11,4	82	12,1	2,9
a. Neuroblastome	292	6,9	11,3	82	12,1	2,9
IX. Tissus mous	262	6,2	9,0	45	6,7	1,5
a. Rhabdomyosarcome	135	3,2	4,7	28	4,1	1,0
VI. Tumeurs rénales	230	5,4	8,5	34	5,0	1,2
a. Néphroblastome	214	5,0	7,9	27	4,0	0,9
XI. Autres tumeurs épithéliales malignes	184	4,3	6,1	9	1,3	0,3
b. Thyroïde	63	1,5	2,0	0	0,0	0,0
d. Mélanome malin	45	1,1	1,5	1	0,1	0,0
VIII. Tumeurs osseuses malignes	183	4,3	6,0	47	7,0	1,5
a. Ostéosarcome	88	2,1	2,8	16	2,4	0,5
c. Sarcome d'Ewing	79	1,9	2,6	28	4,1	0,9
X. Tumeurs germinales et autres tumeurs						
Gonadiques	137	3,2	4,7	10	1,5	0,3
c. Tumeurs germinales gonadiques malignes	53	1,2	1,8	2	0,3	0,1
V. Rétinoblastome	100	2,4	3,9	2	0,3	0,1
VII. Tumeurs hépatiques	68	1,6	2,6	12	1,8	0,4
XII. Autres cancers et cancers non précisés	57	1,3	2,1	9	1,3	0,3
Total (5 ans)	4242	--	149,8	676	---	23,3
Moyenne par année	848			135		

[^2]FIGURE 1. Mortalités par type de cancer pédiatrique - États-Unis ${ }^{5}$

2.1.3 Causes

L'exposition à des agents infectieux ou à des différences de stimulation du système i mmunitaire [24-26], les habitudes parentales telles quela consommation d'alcool [27-29] et le tabagisme [28], les antécédents familiaux en terme de cancer [30], l'a llaitement [31], l'exposition à des produits chimiques tels que des solvants organiques [32] et des pesticides [32, 33], ainsi que des variables socioéconomiques [34-36] comptent p armi la pléthore de ca uses qui on té té investiguées pour tenter d'expliquer l'incidence des cancers pédi atriques. Des incidences plus élevées de cancer chez les membres de la fratrie, comparativement à la population générale, ont été r apportées, su ggérant I 'existence de sy ndromes familiaux pr édisposant à ces maladies [37]. Il n' existe pas de consensus quant àl 'existence de tels facteurs exogènes courants causatifs de tumeurs chezles $0-18$ ans [24]; des nuances s'imposant toutefois. Des associations validées et consensuelles ont effectivement été

[^3]trouvées, mais pour des diagnostics comorbides ou des facteurs très précis, plutôt rares, et des types de cancers tout aussi spécifiques.

Des associations ont ai nsi ét é validées entre des comorbidités relativement rares (syndrome d e Down, sy ndrome de Li -Fraumeni, anémie de Fanconi, neurofibromatose, etc.) et les risques de cancer pédiatrique (p. 11 [38]). En ce qui concerneles facteurs, il se rait co nvenu de les qualifier d' exogènes (médicaments, agents toxiques, exposition aux radiations ionisantes, médicaments anti-cancer, etc. p. 11 [38]) ou d'endogènes (génétiques). L'association entre des mutations familiales ou idiopathiques du gène Rb et l'incidence du rétinoblastome est probablement l'exemple classique pour illustrerle rôle des facteurs endogènes génétiques (p. 60 [38]). Des v ariantes génétiques pr ésentes en pr oportions inhabituelles chezles patients atteints de cancer pédiatrique, comparativement aux ratios attendus dans la population générale, suscitent aussi beaucoup d'intérêt [33, 39-48]. L'étude des effets d'interaction ent re les f acteurs endogènes et exogènes constituent une v oie prometteuse pour mieux expliquer l'incidence des cancers pédiatriques [29, 33, 46].

2.1.4 Taux de guérison

Au Canada, environ 82\% des 0-14 ans [17] et 85% des 15-29 ans [18] seront toujours en vie 5 ans post-diagnostic, tous diagnostics confondus. Selon la même définition, les estimations américaines varient entre 56 et 75%, pour les 0-19 ans [49]. Une illustration de I'évolution des taux de g uérison de la LLA pédi atrique au fildu temps est disponible à la FIGURE 2 [50].

D'importantes di fférences surgissent en anal ysantles taux st ratifiés par diagnostic: Ia différence entre le taux de su rvie pour la LLA (81\%, [49]) et un aut re type de leucémie, la leucémie myéloïde aiguë (LMA) (43\%, [49]) chez les moins de 15 ans est substantielle, par exemple. Malgré ce type de disparités, globalement, les taux de guérison augmentent avec l'ère de traitement, dév oilant le spectre d'un nouveau problème de santé publique : la prise en charge à long terme des guéris, étant donné les problèmes de santé décuplés chez cette population [13, 14, 17, 18, 51-53].

FIGURE 2. Évolution des probabilités de survie sans événement pour la LLA pédiatrique

2.1.5 Leucémie lymphoblastique aiguë

L'activité hém atopoiétique nor male se rt à maintenir un ni veau adé quat de cellules sanguines. La majorité de ces cellules sont aussi des composantes essentielles du système immunitaire (FIGURE 3).

La LLA est I er ésultat d' anomalies génétiques causantla pr olifération anarchique de précurseurs de la lignée lymphocytaire (FIGURE 3, encadré). Ces cellules malignes s'appellent blastes (ou lymphoblastes); elles ne parviennent pas à la maturation nor male at tendue, à l af in del aquelle elles devraient devenir des lymphocytes différenciés. Il existe 4 grandes familles de lymphoblastes leucémiques donnant lieu à autant de catégories diagnostiques : 1) LLA de lignée B ($2-3 \%$ des cas); 2) LLA de lignée pré-B (80% des cas); 3) LLA de lignée T (15% des cas); 4) LLA avec infidélité de I ignée (rare) ([54] p. 1003-1005). Cette prolifération anarchique se fait au détriment de la production hématopoïétique normale. Il s'ensuit donc des symptômes liés à des déf icits des ce llules des autres lignées (anémie, thrombocytopénie et neutropénie, responsables d'infections, de pâleur, de saignements, de fatigue, de
douleurs osseuses, etc.), causés par l'envahissement de la moelle osseuse par les blastes. Cet envahissement peut aussi être extramédullaire, ca usant d'autres signes typiques (lymphadénopathie, hépatomégalie, splénomégalie, etc.) ([54] p. 1020; [38] p. 558).

FIGURE 3. Hématopoièse humaine ${ }^{6}$

LÉGENDE: Cellules progénitrices et cellules différenciées de l'hématopoïèse humaine. LT-HSC = long-term repopulating hematopoietic stem cells (HSC); ST-HSC = short-term repopulating HSC; MPP = multipotent progenitor; CMP = common myeloid progenitor; CL P = common lymphoid progenitor; M EP = megakaryocyte/erythroid progenitor; GMP = granulocyte-macrophage progenitor, NK = natural killer.

[^4]Le diagnostic de LLA se fait généralement suite à une série d'examens comprenant une hi stoire m édicale dét aillée, $u n$ ex amen ph ysique, des analyses sanguines, et un pr élèvement de m oelle oss euse. D ans les cas c onfirmés de leucémies, une ponct ion I ombaire se ra e ffectuée pour vérifier I 'envahissement du système ner veux ce ntral (SNC) par I es cellules tumorales. D es analyses immunophénotypiques sont nécessaires pour déterminer la lignée cellulaire impliquée et le stade de différentiation. Finalement, des analyses cytogénétiques sont conduites pour déce lerla pr ésence de r éarrangements ch romosomiques dans les cellules malignes. Tous ces examens sont requis pour préciser le sous-type de LLA, puisque cela dicte le type de protocole de traitement subséquent, et informe sur les probabilités de guérison. ([54] p. 1020). Les facteurs pronostiques les plus communs sont décrits dans le TABLEAU 2. Ils peuvent toutefois différer selon les protocoles de traitement et excluent les nombreux facteurs cytogénétiques (réarrangements chromosomiques) et pharmacogénétiques. II importe aussi de préciser que ces facteurs pronostiques ont un poids relatif différent les uns des autres, le compte leucocytaire au diagnostic, l'âge au diagnostic, le genre, la ploïdie et le sous-type immunologique étant généralement reconnu comme étant les plus prédictifs.

Puisque les cancers pédiatriques sont relativement rares et que l'homogénéité du diagnostic peut avoir des avantages importants d'un point de vue analytique, la LLA est devenue un paradigme de recherche. Il existe plusieurs consortiums internationaux dontla mission estl'amélioration des taux de guérisonetla di minution des effets secondaires à long-terme chez les patients pédiatriques atteints de ce type de cancer. Les organisations EORTC (European O rganization for R esearch and Treatment of Cancer, d ont fait par tie I e Children's Leukemia G roup) et B MF (Berlin-FrankfutMunster) $[56$, 57] sont parmi les plus importants en Europe. En Amérique du N ord, le Children's Oncology Group - COG [58,59] (anciennement le Children's Cancer Group - CCG [60]) e st né en 2000 de Ia fusion du Children's Cancer G roup - CCG, du Pediatric Oncology Group - POG, du National Wilm's Tumour Study Group - NWTS et de l'Intergroup Rhabdomyosarcoma Group - IRSG [61]. Avec le COG, les équipes chapeautées par le Dana-Farber Cancer Institute [62, 63], ainsi que celles associées au St. Jude Children's Research Hospital [64] sont les trois groupes principaux.

TABLEAU 2. Facteurs pronostiques pour la LLA ${ }^{7}$

Facteur	Pronostic positif	Pronostic négatif
Compte leucocytaire au diagnostic	$<50000 / \mathrm{uL}$	$>50000 / \mathrm{uL}$
Âge au diagnostic	Filles	$\geq 10.00 \mathrm{ans}$, $<1.00 \mathrm{ans}$
Genre	Caucasienne	Afro-américains, hispaniques
Ethnie ${ }^{8}$	+ de 45 chromosomes	45 chromosomes ou moins
Sous-type immunologique	B	T1
Morphologie selon la classification FAB	Absente	Présente
Masse médiastinale	Absents	Présents
Organomégalie, lymphadénopathie	Normales	Basses
Immunoglobulines sériques	Rapide	Tardive
Réponse au traitement d'induction	Adéquat	Inadéquat
Statut nutritionnel		

LÉGENDE: FAB = Fr anco-Américano-Britannique; $\mathrm{L} 1=\mathrm{P}$ etits lymphoblastes avec quantité de cytoplasme am oindrie et noy au effacé; $L 2=$ Ly mphoblastes de t ailles variées, g énéralement plus larges, av ec grande quantité de cytoplasme et noy au proéminent; L3 = Ly mphoblastes del arget aille, pr ésentant de s vacuoles cytoplasmiques.

[^5]
2.2 Prise en charge thérapeutique

2.2.1 Chimiothérapie

La ch imiothérapie optimale élimine les cellules tumorales, tout en p réservant les tissus sains exposés auxt raitements. Le s composantes d'unt raitement de chimiothérapie sont principalement fonction du diagnostic.

2.2.1.1 Mécanisme d'action général de la chimiothérapie

Le m écanisme général d'action de la ch imiothérapie est l'induction de la cytotoxicité dans les cellules tumorales: l'arrêt du cycle cellulaire est provoqué, suivi d'une auto-destruction, habituellement par voie apoptotique ou nécrotique.

Une liste des agents chimio-thérapeutiques les plus courants, regroupés en 6 grandes catégories, est disponible au TABLEAU 3. Les agents alkylants fonctionnent principalement en aj outant un gr oupement al kyl sur l es nucl éotides, em pêchant la duplication des brins d'ADN préalable à la division cellulaire. Les anti-métabolites sont des molécules apparentées à des métabolites cellulaires qui bloquent des activités enzymatiques nécessaires au cycle cellulaire. Plusieurs antibiotiques ont une structure leur permettant de s' intercaler dans l'ADN, freinant sa duplication et sa transcription. Les agents hormonaux ont des propriétés physico-chimiques leur permettant d'accéder au noy au ce llulaire, où i ls peuvent se I ier à des récepteurs et moduler l'activité transcriptionnelle cellulaire. Ils peuvent aussi altérer la sécrétion hormonale. Les alcaloïdes préviennentl 'assemblage adé quat des structures mitotiques, r endant impossible le partage des chromosomes dupliqués entre les cellules filles et de ce fait, la complétion ultérieure de la division cellulaire. L'asparaginase (Asp) est une enzyme catalysant l'hydrolyse de l'asparagine, un acide aminé nécessaire pour la croissance cellulaire. L' hydroxyurée i nhibe I ar ibonucléotider éductase, néce ssaire pour I a synthèse d’ADN. ([65] pp. 601-609; [66] pp. 693-706). En plus de leurs mécanismes d'action respectifs, plusieurs de ces agents anti-cancer partagent aussi la capacité de causer de s dommages i rréversibles aux ce llules tumorales vial ap roduction de radicaux libres (Zuanel Diaz \& Wilson Miller, Principles of Free Radical Biomedicine, Chapitre 46, sous presse). Ces dommages peuvent aussi affecter les cellules saines :
des marqueurs anormalement élevés de stress oxydatif chez les patients recevant de la ch imiothérapie ont notamment été r apportés dans différents tissus [67-71]. Ce manque de spécificité envers les cellules néoplasiques et le recours à plusieurs agents anti-cancer àl a fois sont à la so urce des effets secondaires indésirables chezles patients.

Au moins deux approches ont le potentiel d'améliorer le ratio efficacité antitumorale/toxicité se condaire. La pr emière est le dév eloppement de thérapies ciblées (targeted therapies), visant des composantes moléculaires présentes ou anormalement abondantes uniquement dans les cellules tumorales. La seconde est la pharmacogénétique; c ette s tratégie est décr ite pl us en dét ails à la section 2. 2.4.

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Agents alkylants | Anti-métabolites | Antibiotiques | Agents
 hormonaux | Alcaloïdes |

Les agents de chimiothérapie marqués ($\boldsymbol{\Delta}$) font partie intégrante d'un ou plusieurs protocoles du Dana-Farber Cancer Institute (DFCI) pour le traitement de la LLA pédiatrique.
${ }^{9}$ Librement adapté de 65. Brody, S.L., J.M. Larner, and K.P. Minneman, Human pharmacology - Molecular to clinical - 3th edition, Mosby Elsevier Science, Toronto, 1001 pages. 1998. (p. 602) et 66. Rang, H.P., et al., Pharmacology - 5th Edition. Churchill Livingstone. Toronto, 797 pages. 2003. (pp. 693-706)

TABLEAU 4. Chimiothérapie : effets secondaires spécifiques ${ }^{10}$

Agent de chimiothérapie	Principaux effets secondaires spécifiques associés
Anthracyclines	Cardiotoxicité aiguë et chronique, arythmies cardiaques, défaillance du myocarde
Asparaginase	Réactions allergiques, anaphylaxie, hépatite, pancréatite, thrombose veineuse, coagulopathies
Cytarabine	Conjonctivites, ataxie cérébelleuse
Méthotrexate	Hépatite, mucosite sévère, crises avec convulsions (surtout lors d'administration IT)
Stéroïdes	Modifications de l'humeur (courant), psychose (rare), hyperphagie, gain pondéral, diabètes mellitus, nécrose avasculaire (ostéonécrose), ostéoporose, sensibilité accrue aux fractures, troubles de sommeil
Vincristine	Neurotoxicité périphérique : constipation, douleurs à la mâchoire, douleurs neuropathiques

2.2.1.3 Phases de traitement de la LLA pédiatrique ${ }^{11}$

Les phases habituelles de traitement de la LLA pédiatrique sont illustrées à la FIGURE 4. Les phases présentées et leur durée associée seraient typiques d'un patient ne co nnaissant pas de rechute, ni d' infection ou de co mplication médicale suffisamment sévère pour nécessiter une suspension temporaire des traitements. En plus des médicaments administrés, les patients doivent su bir, de façon répétée et surtout en début de traitement, des analyses sanguines, des biopsies et ponctions de moelle osseuse, ainsi que des ponctions lombaires, afin de vérifier l'évolution du nombre de cellules leucémiques dans ces sites. Ces procédures peuv ent êt re douloureuses et devenir anxiogènes pourles patients; il importe donc de trouver et

[^6]d'appliquerles meilleurs moyens pour r endre ce s examens le pl us confortable possible, et diminuer les risques de traumatisme [73, 74] ([75] pp. 61-83).

FIGURE 4. Phases typiques de traitement de la LLA pédiatrique ${ }^{12}$

La phase d'induction de rémission vise l'éradication de la majorité des cellules malignes. Pourles diagnostics standards, I a vincristine (VCR), un glucocorticoïde (GC), I a doxorubicine (Dox) et de I'Asp sont les agents de ch imiothérapie de base . D'autres agents peuvent être ajoutés, pour les patients à risque él evé de rechute et selon Ie pr otocole pr édéfini. La rémission est at teinte pour 95% des patients en 4 semaines. La phase de prophylaxie méningée est concomitante à l'induction. II s'agit de traitements ciblés vers les cellules tumorales présentes dans le SNC, qui so nt protégées de la chimiothérapie administrée oralement et par voie veineuse. Tous les patients reçoivent à cet effet de la chimiothérapie intrathécale (IT), habituellement du MTX, mais avec des variantes selon les protocoles. Typiquement, Ies injections IT contiendront du MTX, de la cytarabine (Ara-C) et de l'hydrocortisone (HC). Les patients à haut risque de rechute peuvent en plus recevoir de la radiothérapie crânienne (RC).

La pér iode de consolidation, ou d'intensification, se rt à dét ruire t outes les cellules tumorales résiduelles dormantes. Cette phase est néce ssaire pour di minuer

[^7]les risques der éactivation de ce llules leucémiques restantes, ph énomène q ui résulterait en une rechute. Son intensité en termes de doses varie selon le groupe de risque de rechute du patient. De façon générale, les médicaments y sont administrés par cycles hebdomadaires et non plus quotidiennement.

Finalement, la période de maintien (aussi appelée entretien, continuation) a le même but que la période précédente, en recourant toutefois à un arsenal d'agents de chimiothérapie un peu moins imposant. La majorité des protocoles incluent la prise quotidienne de mercaptopurine (6-MP) et hebdomadaire de MTX; I'ajout de VCR et de GC est une variante commune. La période de maintien se termine habituellement entre 2 à 3 ans après l'obtention de la rémission.

2.2.1.4 Protocoles de Boston

Le consortium du Dana-Farber Cancer Institute (DFCI) pour le traitement de la LLA est basé à I 'Université H avard. Des hôpitauxam éricains et ca nadiens y participent, dont deux centres hospitaliers universitaires québécois (le CHU Ste-Justine et le Centre hospitalier de I'Université Laval). Les premiers essais cliniques locaux au DFCI datent des années 1970; en 1981, le consortium a officiellement vu le jour [63]. À ce jour, 6 protocoles, communément appelés Protocoles de Boston, ont été développés et testés : 81-01, 85-01, 87-01, 91-01, 95-01 et 2000-01 (TABLEAU 5). Plus de 2151 patients ont été soignés selon l'un de ces protocoles ($81-01: n=202$; 85-01 : $\mathrm{n}=220$; 87-01 : $\mathrm{n}=369$; 91-01; $\mathrm{n}=377$; 95-01 $: \mathrm{n}=491$ [63, 76] 2000-01 : $\mathrm{n}=$ 492 (Caroline Laverdière, communication personnelle)).

TABLEAU 5. Résumé des protocoles de Boston pour le traitement de la LLA ${ }^{13}$

FENÊTRE D'INVESTIGATION

MTX: (81-01)
Asp: (85-01, 87-01)
GC : (91-01, 2005-01)

INDUCTION

VCR : $1.5 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{s} . \mathrm{x} 4 \mathrm{~s}$. (maximum 2 mg) (j. $0,7,14,21$)
Pred: $40 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 28 \mathrm{j}$.
Dox: $40 \mathrm{mg} / \mathrm{m}^{2} /$ dose $\times 2$ doses (j. 0 et 1). Exceptions/détails :
($81-01$) $45 \mathrm{mg} / \mathrm{m}^{2} /$ dose $\times 1$ dose
(95-01, HR) Allocation aléatoire +/- dexrazoxane $300 \mathrm{mg} / \mathrm{m}^{2}$ (2000-01 et 2005-01, HR) + dexrazoxane $300 \mathrm{mg} / \mathrm{m}^{2}$

MTX : 1 dose (j. 2). Exceptions/détails :
(81-01) Aucun
(85-01) $40 \mathrm{mg} / \mathrm{m}^{2}$
(87-01) Allocation aléatoire $40 \mathrm{mg} / \mathrm{m}^{2}$ ou $4 \mathrm{~g} / \mathrm{m}^{2}$ avec leucovorin
(91-01, 95-01) $4 \mathrm{~g} / \mathrm{m}^{2}$ avec leucovorin
(2000-01) $4 \mathrm{~g} / \mathrm{m}^{2}$ avec leucovorin
(2005-01) $40 \mathrm{mg} / \mathrm{m}^{2}$ (j. 6)
Asp: (81-01) Aucune
(85-01) E. Coli, 1 dose
(87-01) Allocation aléatoire E. Coli ou Erwinia ou PEG, 1 dose
(91-01) Aucune
(95-01) Allocation aléatoire E. Coli ou Erwinia, 1 dose
(2000-01) E. Coli, 1 dose
(2005-01) Allocation aléatoire PEG IV ou E. Coli IM
Ara-C 1 dose/j. IT, selon l'âge (j. 0, 14)

[^8]
PROPHYLAXIE MÉNINGÉE

VCR: $2.0 \mathrm{mg} / \mathrm{m}^{2} \mathrm{IV}$ (maximum 2 mg) (j. 1)
6-MP: $50 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 15 \mathrm{j} .(\mathrm{j} .1-15)$. Exceptions/détails : (tous les protocoles, HR) Dox $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 1 \mathrm{j} .(\mathrm{j} .1)$ (95-01) Allocation aléatoire Dox +/- dexrazoxane $300 \mathrm{mg} / \mathrm{m}^{2}$

IT : (87-01, 91-01) MTX + Ara-C, chaque 18 s. pendant 2 ans
(95-01) MTX + Ara-C +hydrocortisone, chaque 9 s. pendant 1 an, puis chaque 18 s.
(2000-01, 2005-01) MTX + Ara-C +hydrocortisone, chaque 9 s. x 6 doses, puis chaque 18 s .

RC: (81-01) SR = 18 Gy; HR = 28 Gy
(85-01) SR = $18 \mathrm{~Gy} ; \mathrm{HR}=24 \mathrm{Gr}$
(87-01) SR = aucune; HR = 18 Gy
(91-01) SR filles = aucune; SR garçons + HR = 18 Gy
(95-01) $\mathrm{SR}=$ allocation aléatoire à 18 Gy ou aucune; HR = 18 Gy
(2001-01) SR = aucune; HR, SNC - = $12 \mathrm{~Gy} ; \mathrm{HR}, \mathrm{SNC}+=18 \mathrm{~Gy}$.
(2005-01) SR = aucune; HR, SNC - = aucune; HR, SNC + = 12-18 Gy

CONSOLIDATION

(si non spécifié, doses et jours décrits par cycle de 3 semaines), 20-30 semaines
VCR : $2.0 \mathrm{mg} / \mathrm{m}^{2} \mathrm{IV}$ (maximum 2 mg) (j. 1)
Pred: $40 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 5 \mathrm{j} .(\mathrm{j} .1-5)$. Exceptions/détails :
(tous les protocoles HR, sauf 91-01, HR) $120 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 5 \mathrm{j} .(\mathrm{j} .1-5)$
(91-01, SR et 2005-01, SR) Pred remplacée par Dexa $6 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 5 \mathrm{j}$. (j. 1-5)
(91-01, HR et 2005-01, HR) Pred remplacée par Dexa $18 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \mathrm{x} 5 \mathrm{j} .(\mathrm{j} .1-5)$ (2001-01) Allocation aléatoire à Dexa ou Pred, dose ajustée selon SR ou HR

MTX: (tous les protocoles, SR) $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 3 \mathrm{j}$. IV ou IM (j. 1, 8, 15)
(tous les protocoles, HR) pas de MTX
(2005-01 - Consolidation I) 5 grammes $/ \mathrm{m}^{2} \times 1$ dose en 24 heures
(2005-01 - Consolidation II) $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{s}$., par cycle de 3 semaines.
6-MP : $50 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j}$. x 15 jours. Exceptions/détails :
(91-01) Allocation aléatoire oral ou IV (j. 1 et 8 de chaque cycle $\times 12$ mois)
Asp : (81-01, 85-01, 87-01) E. Coli $25000 \mathrm{IU} / \mathrm{m}^{2} / \mathrm{s} . \times 3 \mathrm{~s} .(30 \mathrm{~s}$. au total) (91-01) Allocation aléatoire E. Coli $25000 \mathrm{IU} / \mathrm{m}^{2} / \mathrm{s}$. $\times 3 \mathrm{~s}$. ou PEG $2500 \mathrm{IU} / \mathrm{m}^{2} / \mathrm{s}$. x $2 \mathrm{~s} .(20 \mathrm{~s}$. au total)
(95-01) Allocation aléatoire (E. Coli ou Erwinia) $25000 \mathrm{IU} / \mathrm{m}^{2} / \mathrm{s}$. x 3 s. (30 s . au total)
(2000-01) E.Coli, allocation aléatoire ($25000 \mathrm{IU} / \mathrm{m}^{2} / \mathrm{s} . \times 3 \mathrm{~s}$. ou dose personnalisée)
(2005-01) Allocation aléatoire PEG IV ou E. Coli IM (30 s. au total)

Dox: (tous les protocoles, HR) $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 1$ j. (j. 1; maximum de $300-360 \mathrm{mg} / \mathrm{m}^{2}$) (81-01, HR) maximum $345 \mathrm{mg} / \mathrm{m}^{2}$
(91-01, HR) maximum $360 \mathrm{mg} / \mathrm{m}^{2}$
(95-01, 2000-01, 2005-01, HR) maximum $300 \mathrm{mg} / \mathrm{m}^{2}$ + allocation aléatoire +/dexrazoxane $300 \mathrm{mg} / \mathrm{m}^{2}$

MAINTIEN

(si non spécifié, doses et jours décrits par cycle de 3 semaines), pour un total de 104 semaines post-rémission)

Identique aux protocoles de consolidation, avec les exceptions suivantes :
Asp: (tous les protocoles) : Aucune
Dox: (tous les protocoles) : Aucune
GC : (2000-01, 2005-01) : SR et HR reçoivent la même dose (Dexa $6 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{j} . \times 5 \mathrm{j}$. (j. 1-5)).

MTX : (2005-01) : $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{s}$., chaque semaine

Les facteurs pronostiques employés dans les protocoles de Boston (TABLEAU 6) sont compris dans l'ensemble de ceux généralement reconnus dans la communauté médicale ([38] pp. 563-566). Ils sont toutefois définis de façon plus stricte, étant donné qu'ils sont aussi la base de classification des patients pour l'allocation aux protocoles dits «risque standard de rechute» (SR), «risque élevé de rechute» (HR) et «risque très élevé de rechute» (VHR). Le critère d'invasion du SNC est aussi plus spécifique à ce consortium : suite à un ex amen duliquide cé phalo-rachidien, il se ra co nclu que l'invasion du S NC e st «SNC-1» si aucu n I ymphoblaste n' est retrouvé, «SNC-2» si moins de 5 leukocytes par uL incluant des lymphoblastes sont retrouvés, ou «SNC-3» si 5 ou plus de 5 leukocytes par uL incluant des lymphoblastes sont retrouvés ([38] p. 561). Pour les protocoles de Boston 85-01, 87-01 et 91-01, seul le stade SNC-3 était considéré co mme un critère der isque él evé, t andis que pourles protocoles subséquents, les stades SNC-2 et SNC-3 étaient tout deux associés à un risque élevé [76]. Pour appartenir au groupe RS, les patients doivent répondre à tous les critères correspondants; présenter un se ul des facteurs pronostic des catégories HR et VHR est suffisant pour être catégorisé comme tel.

En r étrospective, I es découvertes principales découlant des études des protocoles de B oston sont pr obablement: 1) en t ermes de survie sans événement (EFS) et de su rvie g lobale (OS), I es protocoles 91-01 et su bséquents sont pl us efficaces que les protocoles 81-01, 85-01 et 87-01; 2) I'ajout de dexrazoxane po ur prévenir la cardiotoxicité causée par les anthracyclines est utile sans compromettre l'EFS et l'OS; 3) chez les patients SR, Ia RC peut être substituée par des cycles de chimiothérapie IT, sans diminution significative de l'EFS et de l'OS [76]. Concernant les séquelles cognitives, les travaux menés par Deborah Waber et collègues supportent globalement une diminution des effets secondaires indésirables avec le raffinement des critères définissantles groupes derisques et les changements de protocoles associés. L'équipe a r apporté une sensibilité ex acerbée à la neur otoxicité ch ez les filles et chez les patients ayant reçu de I a RC [77], Ie rôle p robable d' une synergie entre I a R C et les traitements de ch imiothérapie pour ex pliquerl es déficits neuropsychologiques [78], des séquelles neurocognitives possiblement accr ue ch ez les patients ayantreçu de la dexaméthasone plutôt que de la prednisone [79], et finalement, des séquelles neurocognitives de plus en plus atténuées avec la diminution
des doses de RC dans les protocoles plus récents de traitement de la LLA pédiatrique [80-82].

2.2.1.5 Méthotrexate

À l'instar des GC et de l'irradiation crânienne, le M TX est aussi un a gent de traitement anti-cancer inclus dans les protocoles de Boston soupçonné de causer des effets secondaires néfastes au ni veau neur ologique [83, 84] et neu ropsychologique chez les patients pédiatriques atteints de cancer [8, 67, 68, 77, 85-91]. Des études chez les animaux corroborent ces évidences [92].

Le MTX inhibe l'enzyme dihydrofolate réductase (DHFR), diminuant la quantité de folate disponible. Le folate est une coenzyme de la thymidilate synthase (TS), dont le rôle est essentiel pour la synthèse des pyrimidines. La pénétration du MTX dans les cellules tumorales entraîne leur dest ruction par l'inhibition del a sy nthèse d' ADN, l'accumulation cytotoxique de deoxyuridylate (dUMP), ainsi que par la dérégulation des activités cellulaires impliquant de la méthylation ([93] pp. 91-124). La FIGURE 9 illustre les principales voies d'action du MTX. Ces changements d'activités induiraient aussi une augmentation des niveaux d'homocystéine (Hcy), mécanisme qui pourrait être à l'origine des manifestations de neurotoxicité observées chez des patients pédiatriques soignés pour LLA [91].

À co urt terme, les principaux ef fets secondaires du MTX en adm inistration systémique so nt I a m yélosuppression et des mucosites affectantles or ganes du système digestif. Le MTX peut aussi être administré par voie IT dans le ca dre des traitements de prophylaxie méningée. Il y a alors risque d'inflammation de l'arachnoïde à court terme, se manifestant sous la forme de maux de tête, de rigidité nucale, de vomissements et de fièvre. À plus long terme, soit des mois, voire des années postadministration, des encéphalopathies démyélinisantes peuvent survenir. Dans tous les cas, l'étiologie de la neurotoxicité induite par le MTX n'est pas encore complètement élucidée ([93] pp. 91-124).

Facteur	Risque standard	Risque élevé	Risque très élevé
Compte leucocytaire au diagnostic	$\begin{gathered} (81-01,85-01,87-01,91-01)< \\ 20000 / \mathrm{uL} \\ (95-01,2000-01)<50000 / \mathrm{uL} \end{gathered}$	(85-01, 87-01) 20000 à < 100 000/uL $(91-01) \geq 20000 / \mathrm{LL}$ $(95-01,2000-01) \geq 50000 / \mathrm{uL}$	$(85-01,87-01) \geq 100$ 000/uL
Âge au diagnostic	$\begin{gathered} (81-01,85-01,87-01,91-01) 2 \text { à } \\ <9 \text { ans } \\ (95-01,2000-01) 1 \text { à }<10 \text { ans } \end{gathered}$	(85-01, 87-01, 91-01) ≥ 9 ans (95-01, 2000-01) ≥ 10 ans	(tous protocoles, sauf 81-01) < 12 mois
Chromosome de Philadelphie ($\mathrm{t}(\mathrm{9}, 22$))	Absent	Présent	
Sous-type immunologique	B	T	
Invasion du SNC	Absente	- (81-01) SNC-2 ou SNC-3 Présente- (85-01, 87-01) SNC-3$-(91-01,95-01,2000-01)$ SNC-2 ou SNC-3	
Masse médiastinale	Absente	Présente	

[^9]
2.2.1.6 Corticothérapie

Les glucocorticoïdes (GC) ont un statut d' agent anti-cancer particulier, car ils sont aussi produits de façon end ogène, e tils peuvent êt re ad ministrés so us de nombreuses déclinaisons pharmacologiques. Les deux principaux GC exogènes utilisés dans les protocoles de traitement standards pour le traitement de la LLA pédiatrique, i ncluantl es protocoles de B oston, so ntl a prednisone etla dexaméthasone. Le ch oix écl airé d' un se uldeces agents comme GC dans les différentes phases de traitement demeure un sujet co ntroversé. Brièvement, la complexité des effets des GC sur les divers systèmes physiologiques, sur les voies moléculaires de signalisation, ainsi que le recours à différents GC dans le cadre de traitements oncologiques complexifie l'étude de ce sujet. Le type et les doses de GC administrés peuvent avoir un i mpact non seulement sur l'EFS et l'OS [76, 95], mais aussi su rla nat ure et la pr évalence de no mbreuses toxicités, do nt des effets secondaires notables au ni veau del a sa nté mentale [96] et des performances neuropsychologiques [79, 97].

Les mécanismes physiologiques régulantleur production endo gène nor male chez l'humain sont relativement bien définis. Ce n'est toutefois pas le cas des voies de signalisation moléculaires impliquantles GC exogènes, q ui ne so nt p as totalement élucidées. Les GC, endogènes ou exogènes, pourraient influencer l'expression de 20% du génome humain (FIGURE 5 [98]), chiffrant la vaste étendue de leur action.

FIGURE 5. Voies moléculaires de signalisation des glucocorticoïdes

LÉGENDE : AP-1 = activating protein-1; CBP = CREB-binding protein; COUP-TFII = Chicken ovalbumin upstream promoter-transcription factor II; HNF4 = hepatocyte nuclear f actor 4 ; CRE B = CRE-binding protein; DRIP/TRAP $=$ vitamin D receptorinteracting p rotein/thyroid hor mone receptor-associated protein; GR = glucocorticoid receptor; HMG = High mobility group; NF-kB = nuclear factor kappa-B; RNPII = RNA polymerase II; SWI/SNF = Switch/Sucrose non fermentable.

Les GC endogènes sont des hormones synthétisées par les glandes surrénales en réaction à une augmentation des niveaux d'ACTH (adrenocorticotropic hormone) dans le sang. Le cortisol est le principal GC endogène. La régulation des bouffées d'ACTH é mises par I 'hypophyse so nt quant à elle modulées parla sé crétion hypothalamique de C RH (corticotropin releasing hor mone), elles-mêmes so us l'influence intégrée de signaux en pr ovenance de I 'hippocampe et de I a boucle de rétroaction né gative i mpliquant I a di minution de I a pr oduction de C RH ca usée par
l'afflux de G C dans le ce rveau. Les composantes de ce sy stème constituent I'axe hypothalamo-hypophyso-surrénalien (AHHS) (FIGURE 6). Le stress produit aussi ses effets à travers ce système, en pl us des variations cycliques journalières concordant avec le rythme ci rcadien. L' hypothalamus est impliqué dan s la régulation du S NA (système ner veux autonome), tandis que l'hippocampe est surtout reconnu pour son rôle dans la mémoire et l'apprentissage. Cette structure cérébrale est aussi un constituant du sy stème I imbique, i mpliqué dans les processus émotionnels et d'apprentissage. [65, 99]

FIGURE 6. L'axe hypothalamo-hypophyso-surrénalien ${ }^{15}$

Un seul gène de récepteur de GC (GR) a été identifié jusqu'à présent. Différents épissages de ce gène donnent naissance à des variantes séquentielles et fonctionnelles; au moins 16 i soformes ont été décrits. Les GC secrétés traversent la membrane ce llulaire et se lient aux GR présents dans le cytoplasme. Ce co mplexe GC/GR est ensuite transporté dans le noyau cellulaire, où: 1) des complexes GC/GR peuvent dimériser, puis se lier aux éléments de réponse au GC (GRE) disponibles pour jouer un rôle de facteur de transcription; 2) un complexe GC/GR peut s'associer

[^10]avec d'autres régulateurs ou facteurs de transcription, tel que NF-kB, et en moduler l'activité. [98]

Les effets physiologiques (TABLEAU 7) diffèrent substantiellement des effets pharmacologiques (TABLEAU 8) des GC.

TABLEAU 7. Effets physiologiques principaux des GC ${ }^{16}$

Effets métaboliques

Glucides

Augmentation de la glycémie
Augmentation de la glycogénolyse et de la néoglucogenèse hépatiques
Diminution de l a co nsommation pér iphérique de g lucose par I es tissus adipeux, lymphoïdes et conjonctifs

Protéines

Augmentation de I a dé gradation p rotéique e t diminution de l a sy nthèse protéique dans le muscle et les tissus adipeux, lymphoïde et conjonctif : disponibilité accrue d'acides aminés pour la synthèse protéique hépatique et la néoglucogenèse

Lipides

Augmentation de la mobilisation des acides gras libres à partir des triglycérides

Effets circulatoires

Augmentation du débit cardiaque
Augmentation de la sensibilité aux effets vasopresseurs des catécholamines
Rétention sodique par les reins
Effets immunitaires
Anti-inflammatoires
Immunosuppresseurs

Effets musculo-squelettiques

Augmentation de la capacité de travail

[^11]TABLEAU 8. Effets pharmacologiques principaux des GC ${ }^{17}$

Effets anti-inflammatoires et immunosuppresseurs

Diminution de la perméabilité vasculaire
Diminution de la diapédèse, de la chimiotaxie et de la phagocytose des leucocytes polymorphonucléaires
Diminution de la ré-accumulation et de la libération d'histamine par les mastocytes Diminution de la formation d'anticorps
Diminution del a masse det hymocytes et delymphocytes et al tération de l'hypersensibilité retardée
Diminution de la résistance aux infections
Diminution de la concentration des récepteurs Fc
Diminution de la réponse aux cellules T mitogènes
Diminution de la synthèse de lymphokines

Effets sur les tissus conjonctifs

Diminution de la formation de collagène
Diminution de la formation de mucopolysaccharides
Altération de la formation de tissu de granulation et de la guérison des plaies
Ostéoporose

Effets musculo-squelettiques

Faiblesse musculaire proximale (myopathie stéroïdienne)

Effets sur le système nerveux central

Euphorie, instabilité de l'humeur, psychose
Insomnie

Effets oculaires

Cataractes sous-capsulaires postérieures

Effets développementaux

Induction de surfactant, de myéline, de protéines rétiniennes, de protéines pancréatiques et mammaires
Inhibition de la croissance squelettique

Effets divers

Diminution de l'absorption intestinale de calcium

[^12]En onco logie pédi atrique, I es GC ex ogènes sont ut ilisés pour I eurs effets cytotoxiques sur les cellules du système immunitaire. Ils sont aussi utilisés de façon moins formelle pour leurs propriétés antiémétiques. ([100] pp. 85-92)

En ce qui a trait aux effets secondaires connus des GC sur le système nerveux, leur caractérisation demeure sommaire. Les manifestations les plus communes sont :

- euphorie, instabilité émotionnelle, psychose, insomnie [100]
- dépression, anxiété, idéations suicidaires, comportements compulsifs, delirium, changements d'humeur, changements de l'affect [96]
- altération de l'humeur, troubles du sommeil, dépression, manie, psychose, état affectif trouble [101]
- changements de personnalité, instabilité émotionnelle, humeur instable, changements comportementaux, anxiété, dépression [102]

Les signes, observations anecdotiques, symptômes, syndromes et maladies se côtoient souvent sans distinction dans les études citées. Des évidences supportent des liens entre la modulation (pharmacologique ou induite par stress) des niveaux de GC et des atteintes structurelles [103] ou fonctionnelles [104] de I'AHHS. S 'il est donc généralement ad mis que I'administration de G C peut av oir des répercussions au niveau psychologique et psychiatrique, une évaluation critique des évidences s'avère ardue en raison de la diversité des problèmes utilisés comme critère. Des exceptions se profilent toutefois pour la dépression et la réponse physiologique au stress (hyperou hyposensibilité de l'AHHS).

L'environnement peut affecter le développement des enfants et leur réactivité au stress [105]. Le stress peut avoir des effets positifs ou délétères sur l'homéostasie, dépendamment de so n intensité et de sa durée [106]. Ces évidences sont d'intérêt particulier dans le milieu de l'oncologie pédiatrique, étant donné les doses importantes de GC que reçoivent les patients, et en raison du stress accompagnant le diagnostic reçu. Les quantités exprimées et les isoformes de récepteurs pour les GC peuvent varier d' un individu à l 'autre [107, 108] et ces spécificités ont par ailleurs été liés à différentes issues dans le traitement del a LLA [109]. En so mme, le st ress perçu, l'altération de la réponse de stress due à la prise de GC et la capacité naturelle à
répondre aux GC en fonction de spécificités génétiques, ainsi que les doses et formes de G C adm inistrés constituent autant de facteurs distincts pouvant moduler les réactions physiologiques et biochimiques précurseurs d'effets secondaires.

2.2.2 Radiothérapie

L'infiltration de ce llules malignes dans le SNC est fréquente dans les cas de leucémies pédiatriques; toutefois, la majorité des médicaments anti-cancer administrés per os et par IV ne par viennent pas à pénétrer la ba rrière hém ato-encéphalique. Le recours à l'irradiation du SNC, puis aux injections IT de chimiothérapie, est central à l'augmentation marquée des taux de survie dans cette population. Ces deux modes de prophylaxie méningée sont toujours d'utilisation courante. Toutefois, la XRT tend à être réservée uniquement aux cas les plus à risque de rechute étant donné le haut risque de neurotoxicité associé.

2.2.2.1 Mécanisme d'action général de la radiothérapie

Des rayons, habituellement X ou gamma, causent l'ionisation des atomes des cellules atteintes. L'ionisation génère ensuite des cassures doubles dans les brins d'ADN, et entraîne une pr oduction m assive de r adicaux l ibres. Le résultat final recherché es tlamodification dél étère de pr atiquement toutes les composantes cellulaires (ADN, A RN, protéines, membranes, et c.) pour ent raîner une cy totoxicité fatale dans les cellules tumorales. ([110] pp. 37-61)

2.2.2.2 Types de radiothérapie

La XRT peut être administrée de façon interne ou externe. Respectivement, cela implique une source radioactive placée à l'intérieur du co rps près de la tumeur à éliminer, ou un faisceau de rayons positionné à l'extérieur du corps du patient et ciblant les cellules malignes. D ans let raitement de I a LLA pédi atrique, I a prophylaxie méningée sous forme de XRT se fait uniquement par administration externe ${ }^{18}$.

[^13]Le traitement de XRT varie principalement se lon la quantité de rayonnement administrée, et l'horaire des sessions de traitement. L'unité internationale de mesure couramment utilisée est le Gray (Gy), qui donne une m esure de l'ampleur de la dose de radiation absorbée; 1 Gy équivaut à un joule/kg ([110] p. 37). Les dommages aux cellules tumorales, e tdonc l'efficacité t hérapeutique de ce tte méthode, so nt positivement co rrélés avec les doses administrées. Le m ême pr incipe s' applique toutefois pourl es cellules saines qui se trouvent dans les zones irradiées. En oncologie pédiatrique, les doses totales varient d'un type de tumeur à un autre : elles peuvent dépasserl es 50 G y dans des cas der habdomyosarcomes ou de médulloblastomes. Encomparaison, les doses usuelles totales pourla prophylaxie méningée dans les cas de LLA sont d'environ 12 à 18 Gy pour les protocoles actuels ([38] p. 425).

En raison de la fenêtre thérapeutique étroite de la XRT, des protocoles d'administration ont été développés dès les années 1920 en Fr ance, suite au constat que des séances moins intensives, mais répétées, d'exposition pouvaient mener à une cytotoxicité considérable des cellules malignes, tout en diminuant de façon notable les dommages aux tissus sains. Cette méthode se nomme XRT fractionnée ([110] p. 37). Elle se décline en quatre types généraux d'horaire ([38] p. 424) :

- XRT avec fractions conventionnelles. 1 fraction par jour, 5 jours par semaine, 1,5-2,0 Gy/fraction.
- XRT hyperfractionnée. 2 fractions par jour. La dose cumulative est augmentée, et la dose/fraction diminuée.
- XRT accélérée. La d ose/fraction es tinchangée, m ais les jours «de repos» so nt éliminés.
- XRT accélérée et hyperfractionnée.

Il n' existe toujours pas de m éthode permettant une at teinte exclusive des cellules tumorales. Des avancées informatiques et technologiques récentes permettent toutefois une i rradiation de pl us en pl us ciblée des tumeurs solides de forme irrégulière, au pr ofit de la conservation des tissus sains avoisinants. Cette façon de réduire la toxicité et les effets secondaires demeure inutile pour les cas de prophylaxie
méningée, les cellules leucémiques pouvant se loger dans tous les endroits du SNC où circule le liquide céphalo-rachidien.

2.2.2.3 Effets secondaires de la radiothérapie

À court et moyen terme un des principaux effets secondaires de la XRT est un «syndrome de somnolence», caractérisé par une fatigue exacerbée et des signes de détérioration neur ologique [111]. Parmiles autres effets, il faut noter l'alopécie, des mucosites, des nausées, des vomissements, de la diarrhée et des douleurs abdominales. D es effets liées à une augm entation dela pr ession i ntracrânienne peuvent aussi survenir [112]. II importe toutefois de préciser que les effets secondaires ressentis par le pat ient dépendent du si te i rradié; à t itre d' exemple, des douleurs abdominales et des diarrhées ne so nt pas attendues chez un patient pour quila radiothérapie ciblerait uniquement l'encéphale.

Les effets typiques à long terme sont résumés dans le TABLEAU 9. En ce qui a trait spécifiquement au traitement des cancers pédiatriques, les évidences supportant la XRT comme facteur de risque significatif associé à divers problèmes de santé [11, 88, 112-115], en par ticulier dans l'apparition de pr oblèmes neurologiques et/ou neuropsychologiques [8, 82, 88, 90, 111, 116-124], sont nombreuses. La neurotoxicité associée à l'exposition aux radiations serait néanmoins limitée dans les protocoles plus récents utilisant des doses moindres ($\leq 18 \mathrm{~Gy}$) [80].

2.2.2.4 Radiothérapie dans les protocoles de Boston

L'assignation à recevoir de la prophylaxie méningée sous forme de XRT dans les protocoles de Boston est réservée aux patients les plus à risque de rechute depuis le protocole 87-01 [80] (consulter le TABLEAU 6). Les doses cumulatives de radiation ont été diminuées considérablement au fil des différents protocoles, passant d'un maximum possible de 28 Gy pour les patients HR dans le protocole 81-01, à 12 Gy pour les patients HR SNC - dans le protocole 2001-01 (consulter le TABLEAU 5). Les risques et bénéfices liés à l'administration de XRT hyperfractionnée à ceux de la XRT par fractions conventionnelles ont aussi ét é co mparés; les résultats n'ont pas été
concluants et ont mené à l a recommandation de ne pas utiliser I'hyperfractionnation dans les protocoles subséquents [81].

TABLEAU 9. Principaux effets secondaires à long terme de la radiothérapie ${ }^{19}$

SNC Léthargie, dé ficits cognitifs, dé mence, co nvulsions fatales, dy sfonction de I a g lande pi tuitaire, at teinte de I a m oelle épi nière et d es nerfs périphériques pouvant respectivement causer des myélopathies et des neuropathies.

Yeux Cataractes, rétinopathies, sécheresse oculaire.
GI Sténoses, obst ructions, pe rforations, sa ignements, di arrhées, malabsorption.

Foie Maladies véno-occlusives, hépatite, ascites, insuffisance hépatique.
GU Cystite hém orragique, uropathie obst ructive, $s p$ asmes de lavessie, diminution des capacités delavessie. C hez les patients de genre féminin: ménopause p rématurée, infertilité, sténose et sécheresse vaginale, fistules, I ymphoedème, télangiectasies, sa ignements. C hez les patients de genre masculin: infertilité, impuissance, diminution du volume éjaculatoire, télangiectasies, saignements.

Reins Hypertension, insuffisance et dysfonction rénales.
Cœur Péricardite, cardiomyopathies, pr oblèmes impliquantl es valves cardiaques, arythmies, maladies coronariennes, infarctus du myocarde.

Tête/cou Xérostomie, nécrose du larynx, hypothyroïdisme, ostéoradionécrose.
Autres Alopécie (temporaire et/ou permanente), fibrose, problèmes de motilité, contractures, problèmes de croissance, ostéoporose, télangiectasies, lymphoedème, dysmorphies.

[^14]
2.2.2.5 Utilisation actuelle de la radiothérapie en oncologie pédiatrique

Si la XRT fait toujours partie de l'arsenal de traitement pour plusieurs types de cancers pédiatriques, le recours à la RC spécifiquement comme agent de prophylaxie méningée dans le traitement de la LLA est fortement débattu. Des évidences récentes suggèrent que I'administration de ch imiothérapie I T pour rait remplacer de façon efficace la RC, tous facteurs pronostiques confondus [125, 126]. Cette idée avait déjà été pr oposée au début des années 1990 [127]. Ces co nclusions sont toutefois questionnées [126]. Des études prospectives seront nécessaires pour obtenir des évidences sans équivoque, not amment en regard del a co mparaison des risques d'effets à long-terme au niveau neuropsychologique [82, 90], la chimiothérapie IT ayant elle aussi été associée à des risques de neurotoxicité.

2.2.3 Rechute et greffe

Devant l'impossibilité d'induire une première rémission (2-3\% des cas), en face d'une rechute pendant les phases de consolidation/maintien (5% des cas), ou posttraitements (15% des cas) une stratégie co urante es t de recourir à une greffe (communication personnelle de Caroline Laverdière). Les traitements supplémentaires nécessités par une rechute s'avèrent un défi additionnel au niveau psycho-social chez les patients [128-131], m ais aussi chezles membres deleur famille [132, 133]. II importe par ai lleurs de so uligner qu'une r echute co nstitue un facteur de risque additionnel pour la survenue d'atteintes neurologiques chez les patients pédiatriques atteints de LLA [134].

La non-réponse t hérapeutique, ou résistance auxtraitements, demeure la principale ca use de déc ès chez les patients at teints de LLA [135]. Des spécificités génétiques modulant les effets phar macologiques et toxicologiques des agents anticancer ut ilisés constitueraient un i mportant facteur explicatif [40, 136, 137]. Des différences dans l'observance des traitements [23], mais aussi dans les pathologies (traitées selon des protocoles indistincts, àla lumière des connaissances actuelles) [138, 139], constituent d'autres causes potentielles. Des différences dans les protocoles de traitement (médicaments, dose s, dé finitions, se uils) u tilisés par l es consortiums de recherche clinique pourraient aussi expliquer des divergences
observées dans les taux de r echute [140, 141]. Nonobstant leur cause, les rechutes peuvent être lourdes de conséquences en terme de toxicité, puisqu'elles commandent des doses additionnelles de chimiothérapie pour induire à nou veau une rémission. En cas de greffe, le patient doit de plus recevoir de la chimiothérapie additionnelle et/ou des doses de XRT pa ncorporelle, dans le ca dre du co nditionnement pré-greffe. II existe par ai lleurs des études supportant une neur otoxicité exacerbée parles traitements de co nditionnement as sociés à u ne gr effe [142]. Il se rait i mprudent d'attribuerlap résence de sé quelles àl a neur otoxicité ca usée par une por tion spécifique des traitements anti-cancer chez les patients avec complications. Les effets toxiques àl ong terme d'une greffe chez des patients pédiatriques atteints d'une maladie autre que le cancer sont toutefois bien documentés et supposent effectivement des risques additionnels [143].

La greffe de cellules souches hématopoïétiques est la plus courante dans cette population; les greffes allogéniques (apparentées ou non) sont les plus fréquentes, les greffes autologues n'étant plus pratiquées dans les cas de LLA pédiatrique. Pour les enfants de petite taille, le recours à une greffe de cellules souches de sang de cordon (GSC) est une aut re possibilité. Le type de g reffe pou rrait av oir un i mpact surles difficultés psychosociales subséquentes. Des é tudes ont no tamment rapporté une tendance su pportant des différences dans les scores de qualité de vie post-greffe selon la provenance (apparentée ou non) du greffon reçu [131, 132]. À l'inverse, l'environnement familial ne j ouerait pas de rôle significatif sur les chances de survie post-greffe de moelle osseuse [144].

2.2.4 Pharmacogénétique

Actuellement, I es doses de médicaments anti-cancer so nt ad ministrées principalement en fonction du poids et/ou de la surface corporelle du patient. Les effets thérapeutiques et les toxicités observés varient de façon significative, notamment en raison de spécificités individuelles génétiques. La pharmacogénétique est la discipline qui é tudie l'administration de m édicaments en fonction de variantes génétiques identifiées chez un patient, dans le but d'optimiser le ratio effets thérapeutiques/toxicité associé.

2.2.4.1 Concept et définitions

D'un individu à l'autre, I a sé quence de nucl éotides définissant un g ène (les régions codantes) et ses régions régulatrices sont très similaires, mais peuvent diverger légèrement en des positions précises (loci): ces séquences sont dites polymorphiques et chaque possibilité correspond à un allèle. L'allèle le plus fréquent dans une population estl'allèle majeur (parfois appelé sauvage ou commun), et les autres sont les allèles mineurs. Chaque individu possède deux copies de chaque gène, incluant les loci polymorphiques. Pour un variant génétique donné, il est donc possible de trouver deux co pies d' un mêe al lèle (homozygotie) ou de s allèles différents (hétérozygotie). Un pol ymorphisme peut pr endre I af orme d' une i nsertion, d' une délétion, d^{\prime} une dupl ication ou de multiples copies répétées de nuc léotides. Un nucléotide peut aussi en remplacer un autre - il s'agit alors d'un polymorphisme à un nucléotide (SNP). Certains allèles de polymorphismes distincts, situés dans la même région ch romosomique, peuvent se retrouver pl us fréquemment ch ezles mêmes individus que nel el aisserait su pposer une allocation au hasa rd: il y a a lors déséquilibre de liaison. Un haplotype est une combinaison spécifique d'allèles donnés, aussi dans la même région chromosomique. [145]

L'ADN co ntient le co de g énétique qui est transcrit en ARN, puis traduit en protéines. Ces dernières assurent le maintien et la régulation de l'activité cellulaire. Étant donné I a nat ure redondante des codons d' ADN, des variantes dan s l'ADN n'entraînement pas des modifications inexorables au niveau des protéines produites. Un pol ymorphisme dans un g ène donné se ra habi tuellement d' intérêt s'il ca use un changement dans la suite d'acides aminés composant la protéine associée (un polymorphisme non-synonyme), e t qu'il altèrela régulation del 'expression oula fonction du gène en question. II importe aussi de préciser que les polymorphismes sont distincts des mutations (consulter TABLEAU 10). [145]

TABLEAU 10. Distinction entre polymorphismes et mutations ${ }^{20}$

Caractéristique	Polymorphismes	Mutations
Effet fonctionnel	Pas nécessairement	Habituellement
Associé à une pathologie ou une dysfonction	Pas nécessairement	Habituellement
Sauf exceptions, présence dans toutes les cellules du corps	Oui; les variants sont transmis de façon héréditaire	Non; peuvent être seulement dans les cellules tumorales, et d'origine spontanée
Fréquence populationnelle	$>1 \%$	Rare; habituellement < 1\% de la population

2.2.4.2 Utilisations actuelles

Les premières expériences de pha rmacogénétique r emontent aux années 1950; I es évidences disponibles à ce moment faisaient ét at de I 'apparition d' effets secondaires marqués, à très co urt terme, uniquement chez des sous-groupes de patients ([146] p. 67). De façon plus contemporaine, même si la réduction de la toxicité demeure un en jeu m ajeur, I 'identification des pat ients qui v ont r épondre à une médication donnée es t dev enue un enj eu principal. Des estimations récentes suggèrent que des effets thérapeutiques seraient notés chez seulement 60% des patients ([146] p. 1). Cela ét ant, et en co nsidérant que tous ceux quir reçoiventle médicament sont t héoriquement à r isque de d évelopper des effets secondaires, la nécessité de mieux cibler les patients s'impose.

[^15]L'utilisation des données génétiques à titre d' éléments décisionnels déterminants pour l'administration ou non d'un médicament demeure anecdotique pour le moment [147]. La mise en place de stratégies préventives basées sur les évidences que ce rtains polymorphismes constituent un facteur der isque pour l'apparition ou l'évolution d'une maladie donnée est d'usage plus courant [148].

2.2.4.3 Polymorphismes d'intérêt

La LLA pédi atrique es t un par adigme de r echerche en phar macogénétique [149]. La plupart des études sont le résultat d'approches par gènes candidats et s'intéressent principalement aux indicateurs associés à la survie (survie, EFS, risque de rechute, etc.), ainsi qu'aux effets pharmacologiques et toxicologiques à co urt et moyen t ermes. Plus rarement, I es études s'intéressant aux polymorphismes sont utilisées pour tenter d'identifier des sous-groupes à risque de développer des maladies ou déficits à long-terme, tel que l'obésité [150], ou les insuffisances cardiaques [151].

Quelques études de dépistage génomique ont été conduites; elles ont permis d'identifier des polymorphismes associés à la sensibilité de médicaments anti-cancer spécifiques, tel que l'Asp [152]. Une large quantité de SNP investigués (292 200 tagSNPs - [153]) n'est toutefois pas toujours garant de la découverte de nouvelles cibles.

Les cibles potentielles pour induire la cytotoxicité dans les cellules malignes sont multiples: les gènes impliqués dans la biodisponibilité, l'accès intracellulaire, l'activation et le métabolisme des médicaments, la rétention intracellulaire, l'interaction avec les cibles cellulaires, le signal et le seuil d'activation de l'apoptose ou la nécrose, constituent autant de candidats pour la recherche de cibles polymorphiques [135]. Par ricochet, ces polymorphismes influençant les effets pharmacologiques peuvent aussi être impliqués dans la variabilité des effets toxicologiques observés, par les mêmes mécanismes, mais en affectant les cellules saines plutôt que les cellules malignes. Les principaux polymorphismes étudiés en lien avec la LLA pédiatrique, avec un intérêt particulier pour ceux pouvant affecter le métabolisme des agents neurotoxiques (i.e. MTX et GC), sont présentés au TABLEAU 11. Il est à noter que dans ce tableau, l'indication «polymorphisme fonctionnel» ne réfère pas à un changement de nucléotide se traduisant par un changement d'acide aminé lors de la transcription tel que décrit
précédemment, mais plutôt au fait qu'une différence quantifiée a été observée pour le polymorphisme en question, le plus souvent une altération de l'expression du gène in vitro.

Étant donné leur implication dans la régulation des niveaux d'Hcy, les variants de g ènes régulantle métabolisme du folate sont d'intérêt pour é tudierles effets secondaires neurotoxiques chez les patients recevant du M TX. Les polymorphismes des gènes cystathionine bet a-synthase (CBS), dihydrofolate r eductase (DHFR), methylenetetrahydrofolate reductase dehydrogenase 1 (MTHFD1), methylenetetrahydrofolate r eductase (MTHFR), methionine syn thase (MTR), methionine syn thase r eductase (MTRR), nitric oxi de syn thase 3 (NOS3), reduced folate carrier (RFC) et thymidylate synthase (TS) sont de ce nombre. Les GC sont quant à eux nécessaires pour I 'élimination d es cellules malignes dans la LLA pédiatrique, mais leurs effets sur la santé mentale sont aussi reconnus. Les gènes Bcl 2 associated X protein (Bax), Bcl-2 interacting protein (Bim), récepteur de glucocorticoïdes (GR) et nuclear factor kappa B (NF-kB) étant directement impliqués dans la cascade de signalisation induite par les GC, les polymorphismes y étant associés sont doubl ement per tinents pourl'étude des effets secondaires dans la population d' intérêt, en par ticulier les séquelles affectant la sa nté m entale. Les membres de la famille des GST et des CYP sont des candidats intéressants à ce titre, puisqu'ils régularisent le métabolisme des GC. Contrôlant l'entrée de plusieurs agents de ch imiothérapie dans leS NC, I es polymorphismes des gènes $A B C$ so nt aussi d'intérêt. Plusieurs autres polymorphismes ont été identifiés comme modulateurs des effets thérapeutiques et/ou toxiques des traitements de la LLA pédiatrique autres que le MTXoul es GC; ces polymorphismes constituent ung roupe de candidats supplémentaires à co nsidérer dans les études sur les séquelles à long-terme, puisqu'ils pourraient aussi possiblement réguler les effets des traitements sur les tissus sains.

TABLEAU 11. Polymorphismes d'intérêt dans la LLA pédiatrique

Gène	Principale raison thérapeutique d'intérêt	Polymorphisme	Association avec l'allèle mineur - Effets principaux seulement	
			Chez patients pédiatriques avec LLA	Chez autres patients
Bax	GC	T-1962G	Pas d'association avec \uparrow ou \downarrow EFS [154] \downarrow Risque d'obésité [154]	---
		A-1836T	Pas d'association avec \uparrow ou \downarrow EFS [154]	
		A1076G	Pas d'association avec \uparrow ou \downarrow EFS [154]	
Bim	GC	T-1928G	Pas d'association avec \uparrow ou \downarrow EFS [154]	---
		T-1894C	Pas d'association avec \uparrow ou \downarrow EFS [154]	
		C298T	Pas d'association avec \uparrow ou \downarrow EFS [154] \uparrow Risque de décès [154]	
		A2251T	Pas d'association avec \uparrow ou \downarrow EFS [154]	
		G2252T	Pas d'association avec \uparrow ou \downarrow EFS [154]	
CBS	MTX	844 Ins 68	----	Polymorphisme fonctionnel [155] Sous-représenté chez les enfants ayant un Ql élevé [156]
CCND1	MTX	A870G	$\begin{aligned} & \text { } \uparrow \text { Toxicité hématologique [157] } \\ & \uparrow \text { Toxicité hépatique [157] } \\ & \uparrow \text { EFS [158] } \end{aligned}$	---
CCR5	---	A246G	\downarrow Risque de MRD défavorable [159]	---
DHFR	MTX	G308A	\downarrow EFS (surtout :effet haplotypique) [160]	---
GRIA1	Asp	$(\mathrm{G} \rightarrow \mathrm{A}$)	\uparrow Risque d'hypersensibilité à l'Asp [152]	---

43

GR	GC	A-627G	\uparrow EFS [161] \uparrow Diabète cortico-induit [162] \uparrow Mucites [162]	---
		G200A (R23K)	-	\downarrow Cortisol post-test de stress psychosocial [163] \uparrow Cortisol post-test de suppression à la dexa [164] Polymorphisme fonctionnel [165] \uparrow Expression de l'isoforme GR-A, moins sensible aux GC [165] \uparrow Risque de dépression [166] \downarrow Risque de démence et de lésions à la matière cérébrale blanche [167]
		$\begin{aligned} & \text { A1220G } \\ & \text { (N363S) } \end{aligned}$	---	\uparrow Sensibilité aux GC [168] \uparrow Cortisol post-test de stress psychosocial [104]
		$\begin{gathered} \text { C646G (Bcl-I } \\ R F L P) \end{gathered}$	$\begin{aligned} & \downarrow \text { EFS [161] } \\ & \uparrow \text { Risque de décès [109] } \end{aligned}$	\downarrow ou \uparrow Sensibilité aux GC, selon les tissus [169, 170] \uparrow Sensibilité aux GC [171] \uparrow Risque de dépression [166] \uparrow ACTH post-test de suppression à la dexa/CRH [172] \downarrow Cortisol post-test de stress psychosocial [104] \uparrow Risque de faible réponse à un traitement antidépressif [172] \uparrow ACTH et cortisol post-test de stress psychosocial chez les femmes et le contraire chez les hommes [173]
		A3669G (9ß)	\downarrow EFS [161]	\downarrow Risque de souffrir de bipolarité [174] \uparrow ACTH et cortisol post-test de stress psychosocial chez les hommes [173]

GST-M1	MTX	+/null	\downarrow Hépatotoxicité [175] \downarrow Risque de rechute [176]	\uparrow Risque de $2^{\text {e }}$ cancer chez les survivants de HD pédiatrique ${ }^{21}$ [177]
GST-P1	MTX	Val105	\downarrow Risque de rechute [176]	
GST-T1	MTX	+/null	\uparrow Réponse thérapeutique à la prednisone [178] \downarrow Risque de rechute [178] [176]	Poly ---
MRP4	MTX, 6-MP	T-1393C	\uparrow EFS [136] \downarrow Niveau de MTX plasmatique [136]	Polymorphisme fonctionnel [136] \downarrow EFS LLA adulte [179]
		A934C	\downarrow EFS [136] \uparrow Risque de thrombocytopénie [136]	\uparrow EFS LLA adulte [179]
MTHFD1	MTX	G1958A	\downarrow EFS [180]	---
MTHFR	MTX	C677T	\uparrow Risque de rechute [181, 182] \uparrow Risque de décès [183] \uparrow Toxicité associée au MTX [181, 184186] Pas de différence trouvée par rapport à la toxicité associée au MTX [83] \uparrow Toxicité associée au 6-MP [184] \downarrow Toxicité hématologique [157] \downarrow Toxicité hépatique [157] \downarrow Taux de MTHFR sérique [187] \uparrow Niveau de MTX sérique $[175,188]$ \uparrow Risque de symptômes d'inattention associés au TDAH [189] Neurotoxicité (étude de cas) [190, 191] Pas de différence trouvée par rapport aux niveaux d'Hcy [83]	Polymorphisme fonctionnel [192] \downarrow Activité enzymatique [192] \uparrow Hcy plasmatique [192]
		A1298C	\uparrow Niveau de MTX sérique [188] \uparrow Toxicité associée au MTX [188] \uparrow Risque de symptômes d'inattention associés au TDAH [189]	Polymorphisme fonctionnel [193] \downarrow Activité enzymatique [193]

[^16]| MTRR | MTX | A66G | --- | Polymorphisme fonctionnel [194]
 \uparrow Risque de défaut du tube neural [194]
 \downarrow Hcy plasmatique [195] |
| :---: | :---: | :---: | :---: | :---: |
| NOS3 | MTX | T-786C | \downarrow Risque de problèmes externalisés (Marcoux et al, soumis) | Polymorphisme fonctionnel [196, 197]
 \downarrow Expression d'ARNm NOS3 [197]
 \downarrow Risque de suicide [198] |
| NOS3 | MTX | G894T | Risque de déficit neurocognitif (QI) [91] | Polymorphisme fonctionnel [199, 200] \downarrow Production de NO [199, 201] \downarrow Risque de suicide [198] \uparrow Hcy plasmatique [202] |
| NQO1 | --- | C609T | $\begin{aligned} & \downarrow \text { EFS [203] } \\ & \downarrow \text { Réponse à la thérapie d'induction } \\ & \text { [203] } \end{aligned}$ | --- |
| RFC | MTX | G80A | \uparrow EFS [204]
 \uparrow Toxicité associée au 6-MP [184]
 Pas de différence trouvée par rapport à la toxicité associée au MTX [83, 205] Pas de différence trouvée par rapport aux niveaux de MTX [205]
 \uparrow Hépatotoxicité [175]
 \downarrow Hépatotoxicité [206]
 \uparrow Toxicité hématologique [206]
 \downarrow Vomissements post-MTX [207]
 \downarrow Risque de rechute [206]
 Pas de différence trouvée par rapport au risque de rechute [205]
 Pas de différence trouvée par rapport aux niveaux d'Hcy [83] | --- |
| TS | MTX | 2R3R | \downarrow EFS [203] | --- |

La pathologie à l'origine de l'administration des GC et ses effets sur le patient ne so nt peut -être pas suffisamment pr is en co mpte dans leur rôle de médiateur potentiel de l'association observée entre les médicaments et l'apparition de troubles de l'humeur et du comportement [96]. Là encore, il apparaît nécessaire de considérer le patient de façon hol istique, pour op timiser la r éelle co mpréhension dupr ocessus observé en un moment précis.

2.3 Prise en charge psychosociale

2.3.1 Définition du concept d'adaptation

L'adaptation es t «l 'aptitude d ' un i ndividu à m odifier sa s tructure ou so n comportement pour répondre harmonieusement à des situations nouvelles» ([208] p. 28). Malgré l'augmentation marquée des taux de survie, les cancers pédiatriques demeurent une m aladie mortelle dans une proportion significative des cas. Le diagnostic, ainsi que la pér iode d'hospitalisation et les traitements qui suivent, sont éprouvants. Cette expérience constitue une période de stress intense et durable pour le patient, mais aussi pour les membres de sa famille. Le stress est à la fois un état mental par rapport à une perception, réelle ou non, de menace, ainsi que la réaction physiologique subséquente à cette perception. Ses effets peuvent se répercuter sur le comportement et la cognition; ils sont modulés par des éléments environnementaux, mais aussi par des d éterminants génétiques [209]. Un diagnostic de leucémie pédiatrique et l'expérience de stress qui l'accompagne constituent donc, pour le patient et so n ent ourage, un c adre co ntraignant, b rutal et inattendu au quel I es individus réussiront bien ou moins bien à s'adapter, selon de multiples facteurs.

Les travaux de Thomas M. Achenbach ont permis d'identifier de façon empirique l es principaux signes émotionnels et co mportementaux asso ciés à des problèmes de comportement dans les populations pédiatrique [210]. Cette approche se distingue de ce lle de la noso logie du D SM IV pr incipalement par ler efus de dichotomiser de façon nette les patients selon qu'ils présentent ou ne présentent pas des problèmes de comportement, ou des symptômes supposant des problèmes de comportement. La littérature surles problèmes d'adaptation, chez les patients et les
membres de leur famille, en oncologie pédiatrique ne repose pas uniquement sur cette méthode d'évaluation, bien qu'elle ait été abondamment utilisée.

Le reste del a présente se ction s'intéresse donc globalement à cequ'il conviendrait d' appeler des indices cliniques de problèmes d'adaptation dans la population ciblée, tels que les problèmes comportementaux, mais aussi la dépression, la réponse au stress, l'anxiété, etc., ainsi qu'aux déterminants individuels associés. Ces indices cliniques chez la famille proche du patient sont aussi revus, car les membres de I 'unité f amiliale s' influenceraient de part et d' autre dans leurs comportements et leurs expériences en situation de stress [211].

2.3.2 Problèmes d'adaptation chez le patient

Des variations individuelles dust ress perçu chezles patients pédiatriques atteints de cancer on tét é dém ontrées en regard de di fférents actes médicaux spécifiques à ce type de m aladie [212], de l'altération de l'image co rporelle [213], et aussi des stratégies d'adaptation [214]. Le sens de l'humour des patients a aussi été proposé comme étant positivement corrélé avec la capacité d'adaptation [215]. Les études qualitatives disponibles indiquent généralement que, se lon les perceptions maternelles, les difficultés d'adaptation seraient courantes chez les patients [216], et augmenteraient avec l'âge au diagnostic [217].

Utilisant les symptômes de dépr ession comme indice de pr oblèmes d'adaptation, certains auteurs concluent à l'absence de différences significatives avec les normes disponibles [218,219], et même parfois à une prévalence moindre chez les patients [220]. En ce qui concerne les données sur les facteurs de risque, les patients dont la mère souffrirait de psychopathologie seraient plus à risque de souffrir de troubles internalisés, en par ticulier de sy mptômes dépressifs [221]. L'étude des problèmes de comportement est une autre façon d'évaluer les problèmes d'adaptation; de façon générale, la prévalence des problèmes internalisés est anormalement élevée dans la période post-diagnostic, mais se normalise par la suite ${ }^{22}$.

[^17]
2.3.3 Problèmes d'adaptation chez les membres de la famille

La période entourant le diagnostic et le début des traitements est bouleversante et prenante sur plusieurs plans. Sans compter le stress perçu, il s'ensuit généralement une réorganisation forcée du quotidien, une perte de «normalité» [222] qui, bien que temporaire, peut affecter tous les membres de la cellule familiale.

Les études surl'adaptation dans ces conditions se font so it à travers les perceptions d'un groupe dissocié (les patients, oul es mères, oul es pères, oul es membres de la fratrie), soit en essayant de mesurer l'impact sur la famille en tant que système so cial. Des évidences suggèrent que l'adaptation, un an ou plus après le diagnostic, serait satisfaisante pour la majorité des familles [223] [224]. La dynamique familiale [225], notamment des difficultés chez les frères/sœurs du patient [223], mais aussi un statut socioéconomique faible [226], peu de support [226], et des antécédents de problèmes psy chologiques [226], auraient une influence importante sur le ni veau global d' adaptation familiale. Pour pl usieurs, cette épr euve so lidifierait les liens préexistants [227,228] et l'adaptation des membres de la famille en tant que groupe serait satisfaisante à long terme dans la majorité des cas [225, 229-232].

2.3.3.1 Parents

Les parents de l'enfant affecté doivent affronter plusieurs sources de stress dès le di agnostic. Selon For inder [133], ce tte sé rie de so urces de st ress peut êt re considérée comme étant une série de tâches adaptatives. L'annonce du diagnostic, les décisions concernant les traitements, les problèmes financiers, les effets secondaires des traitements, les besoins psychosociaux de l'enfant malade ainsi que ceux de la fratrie, la dépendance envers l'équipe soignante, et la quantité d'information nouvelle à gérer constitueraient les principales tâches adaptatives. Leur gestion serait influencée par des facteurs «internes» (exemple:Ietempérament des parents), des facteurs «externes» (exemple: différences dans les traitements fournis àl'enfant malade) et serait susceptible d'avoir un impact sur la dynamique familiale. À l'instar de la littérature sur l'adaptation chez les patients, il n'existe pas encore de modèle consensuel [233-235] et des différences dans les stratégies d'adaptation ont aussi été
proposées pour expliquer les variations interindividuelles [233, 234, 236, 237] chez les parents.

Les indices de problèmes d'adaptation à co urt et moyent erme (i.e. principalement pendant la période de traitement) les mieux documentés sont la dépression [218, 234, 237, 238], la qualité de vie [228], des mesures de stress [234, $235,239,240]$, d'anxiété [237, 238, 241-243] et de détresse psychologique [232, 234, 244, 245]. Ne pas partager la même langue que l'équipe soignante [246], de même que recevoir de l'information insuffisante en regard des aspects psychosociaux de la maladie de I eur en fant [247] seraient des facteurs additionnels d'anxiété ch ezles parents. À pl us long terme, une pr oportions ignificative de par ents souffrirait de symptômes et/ou de syndrome de stress post-traumatique [248], et d'autres difficultés d'ordre psychiatrique [221]. Certains auteurs suggèrent une apparition rapide de ce type de problèmes suivant le diagnostic [242, 249-251]. D'importance, des facteurs médicaux (risque de rechute associé au diagnostic initial, nécessité de séances de radiothérapie, etc.) seraient associés à un risque plus élevé de problèmes d'adaptation chez les parents [250]. Des études soutiennent toutefois que les problèmes d'adaptation ch ez ces derniers seraient transitoires et quel eur pr évalence se rait comparable à celle trouvée chez des parents d'enfants bien-portants [252].

2.3.3.2 Fratrie

Un des principaux problèmes concernant les membres de la fratrie proviendrait d'une diminution marquée de l'attention reçue pendant la période de traitements ([75] p. 122-142, [253]). La plupart des parents en sont conscients, bien que possiblement dépourvus des ressources poury pal lier [227]. La dét ection des problèmes d'adaptation chez les frères et sœurs serait plus sensible à des indicateurs sociaux et de changements dans les performances académiques, plutôt qu'à des indicateurs de problèmes comportementaux [254]. D es évidences suggèrent que ce s problèmes seraient transitoires chezl af ratrie [255, 256], I es niveaux de pr oblèmes de comportement révélant notamment des niveaux comparables aux normes deux ans post-diagnostic [224]. Des interventions distinctes chez la fratrie seraient probablement nécessaires, les interventions efficaces chez les patients pédiatriques ne semblant pas mener à des améliorations chez les frères et soeurs [257]. Ensemble, ces données
suggèrent des manifestations et des pr ocessus d'adaptation di fférents chezles patients etleur fratrie. Ilimporte de co nsidérerla possi bilité quela nature des sentiments éprouvés par les frères et sœurs dans une situation où un proche lutte pour savie pour rait réprimer I eur ex pression [258], rendant les mesures de pr oblèmes d'adaptation invalides à l'aide des outils psychométriques usuels.

2.4 Problèmes de santé chez les survivants

2.4.1 Grandes études de cohortes

Des études avaient déjà fourni des indices probants que des problèmes de santé chronique affligeaient la grande majorité (75\%) des survivants [259]. Au tournant des années 2000, de grandes études de cohorte interrogeant l'état de santé global de milliers de pat ients qui ontrenforcéles conclusions préliminaires. C es études, américaines [9, 10] et néerlandaise [11], ont co nfirmé que les guéris ont, une fois adultes, de 2,5 à 3,3 fois plus de risque de souffrir de p roblèmes de santé que leur fratrie [9, 10], et que près de 75% d'entre eux doivent composer avec au moins un problème de santé résiduel [10, 11]. Cette situation prévaut chez les survivants à un cancer pédiatrique en général, mais aussi de façon spécifique chez les guéris de LLA pédiatrique [260].

Les données tirées de l'étude am éricaine Childhood C ancer S urvivor Study (CCSS), ci tées précédemment en [9], ont non seulement se rvi à dr esser un por trait global de la situation, mais ont aussi contribué à documenter de façon approfondie la nature des problèmes de santé chez les survivants. Les résultats de cette étude s'appuient sur un q uestionnaire de santé exhaustif aut o-administré, auquel ont répondu plus de 14000 patients ayant reçu un diagnostic entre 1970 et 1986; l'ampleur du nom bre de répondants est suffisante pour obtenir le pouv oir statistique nécessaire pour détecter des séquelles plus rares et pour contrôler I'influence de variables confondantes [261]. Des variables indépendantes pour ces patients, telles que mesurées ou est imées par des professionnels de la sa nté (par ex emple: les doses de radiation reçues par des organes spécifiques [262]), sont aussi disponibles et contribuent à élucider le rôle des facteurs de risques investigués. Une initiative canadienne, la Late Effects Study of the Canadian Childhood Cancer Surveillance and

Control Program sera quant à elle valide pour tirer des conclusions qui seront résultantes du contexte canadien par rapport à des issues similaires sur la survie à long-terme.

2.4.2 Séquelles moléculaires et cellulaires

Les études d'associations entre des traitements anti-cancer chez les patients pédiatriques et des séquelles physiques subséquentes sont nombreuses. Les mécanismes cellulaires et moléculaires à l'origine de ces observations demeurent toutefois obscurs. Un parallèle entre les effets du vieillissement et les traitements de chimiothérapie et de radiothérapie sur la condition cellulaire est à propos. Des données probantes su ggèrent que les dommages à l'ADN so nt des marqueurs valides du vieillissement nor mal, dans les cellules différenciées [263-265] comme dans les cellules souches [266, 267]. Les traitements de chimiothérapie et de XRT génèrent le même type de dommages dans des modèles murins [268, 269]. Une augm entation marquée des dommages à l'ADN des cellules saines chez les patients, récapitulant les observations chez les modèles murins, pourrait ainsi constituer un médiateur entre les traitements et les maladies précoces chez les survivants. Nonobstant la so urce des lésions à l'ADN (i.e. vieillissement, traitements anti-cancer, etc.), quatre issues guettent les cellules affectées :

- l'instabilité génomique et l'augmentation des risques d'apparition de mutations oncogéniques [270]
- la mise en marche de la machinerie cellulaire de réparation des dommages à I'ADN [271]
- l'induction de la mort cellulaire (apoptose) [272]
- l'enclenchement d'un état de sénescence cellulaire [273]

À l'exception des mécanismes de réparation, les autres possibilités pourraient être les médiateurs des dysfonctions tissulaires àl 'origine de maladies, si les dommages surviennent def açon massive. L'exploration dur ôler éel dece s mécanismes dans la survenue de problèmes de santé à long-terme chez les guéris est pour le moment restreinte au stade des hypothèses ([38] p. 1490-1514).

2.4.3 Séquelles physiques

La panoplie de problèmes «physiques» ou «physiologiques» documentée chez les survivants est vaste: des ouvrages entiers y sont co nsacrés et des al gorithmes d'effets à long-terme en fonction du di agnostic initial, et donc des traitements reçus, sont maintenant disponibles pour guider les cliniciens assurant le suivi post-traitements ([274] pp. 5-16). Le TABLEAU 12 donne un br ef aperçu des principaux problèmes en question. Les guéris doivent de plus composer avec un risque accru de développer un second cancer [10, 112, 275-277].

TABLEAU 12. Aperçu des problèmes de santé physique chez les survivants ${ }^{23}$

Systèmes	Problèmes
Auditif	Perte d'audition [10, 278]
Cardiovasculaire	Insuffisance cardiaque [10] Maladies coronariennes [10] Capacité à l'effort réduite [279] Risques accrus d'ACV [10] Cardiotoxicités diverses [275-277]
Endocrinien	Développement pubertaire altéré [131, 143, 276] Croissance altérée [114, 131, 143, 277] Surpoids/obésité [276, 277, 279, 280] Problèmes thyrödiens [276, 277] Fertilité diminuée, infertilité [10, 113, 275, 277]
Nerveux	Volume cérébral altéré [86] Volume de la tête altéré [118] Altérations morphologiques cérébrales [278, 281] Niveau de fatigue accru [282]
Osseux	Anormalités du métabolisme osseux [283] Altération de la densité osseuse [114] Ostéoporose [131] Ostéonécrose [276] Problèmes articulaires [10]
Respiratoire	Toxicité pulmonaire [143]
Rénal	Insuffisance rénale [10]
Cataractes [143]	
Perte de la vision [10]	
Problèmes visuo-moteurs [87, 284]	

[^18]
2.4.4 Séquelles psychologiques

Les études portant surles problèmes psychologiques chezles survivants comprennent des évidences sur des altérations des performances neuropsychologiques, et sur l'incidence de maladies et de troubles précis.

Les tests neuropsychologiques sont utiles pour détecter des retards ou des troubles dans les manifestations des fonctions cérébrales. Le langage, la mémoire, l'impulsivité, l'agressivité, l'attention et la dex térité manuelle sont des exemples des comportements pouvant être analysés [285]. Les scores obtenus au test de q uotient intellectuel global (QI) sont une mesure opérationnalisée du fonctionnement intellectuel global, fréquemment u tilisée dans cette popul ation, pour obt enir un indice dela sévérité des dommages causés par les traitements. Les études sur le sujet sont nombreuses et variées en termes de critères d'inclusion. Certaines études ne rapportent pas de différences avec des groupes contrôles ou les normes établies [80, 97, 286]; il est néanmoins admis que des sous-populations sont à risque de subir une diminution significative du Q I [75, 116, 278, 287]. Plus spécifiquement, les habiletés arithmétiques/mathématiques/spatiales [287, 288], m otrices/visuo-motrices [87, 284, 287, 288], d' attention/concentration [288], de m émorisation [287, 289] et la vitesse procédurale [288] semblent êtreles plus affectées. Des déficits dans les habiletés langagières [80, 288], et des performances scolaires moindres que la moyenne [290] ont aussi été rapportés. Les guéris souffriraient finalement aussi d'une plus grande incidence de troubles de l'humeur et/ou de comportement [8, 116, 224, 255, 290-292], au sens populaire du terme, bien que d'autres études rejettent ces conclusions [289, 293].

En ce qui concerne la prévalence de m aladies et troubles affectant la sa nté mentale, il y a urait augmentation des risques de dépr ession, ou dum oins de symptômes dépressifs, chez les survivants [291]; toutefois, ces résultats sont mis en doute par d'autres études [293-295]. Une controverse similaire existe concernant les risques de souffrir du syndrome ou de symptômes de stress post-traumatique (SSPT), des chercheurs ayant conclus à des risques de SSPT plus élevés [287, 293], alors que d'autres n'ont pas observé de di fférences en comparaison avec la nor me ou des groupes contrôles [294]. Lav alidité et I a pertinence d' utiliserles critères de
correspondance au SSPT pour ces patients et leur famille est par ailleurs questionnée [249, 293], pui sque pour le SSPT et la dépr ession, ce rtains des symptômes posttraitements communs (e.g. : la fatigue) se retrouvent aussi dans les listes de critères utilisés dans les questionnaires génériques de détection de maladies psychologiques/psychiatriques. C ela gonflerait artificiellementles scores chezles survivants, contribuant à une estimation erronée de la prévalence de ces maladies dans cette population. Les tendances/idéations suicidaires ont aussi été évaluées chez les guéris : les auteurs ont conclu à une hausse significative du risque [287, 293, 296]. Finalement, l'incidence accrue de stress/anxiété chronique, ou d'autres formes de détresse émotionnelle [118], a aussi été l'objet d'études, surtout dans un contexte de caractérisation des modérateurs du phénomène d'adaptation chez ces patients [287]. Sans surprise, d'autres études ne corroborent pas la présence de difficultés émotionnelles particulières chez ces patients [117].

2.4.5 Séquelles sociales

Les réseaux sociaux des guéris seraient en général moins étendus que ceux de la moyenne [297, 298], conclusions allant de pair avec des études supportant des habiletés sociales déficientes chez bon nom bre de survivants [224, 290]. Les critères définissant le statut socio-économique ont aussi servi à docu menter les conditions de vie globales à long terme: les survivants auraient généralement des revenus [299], une scolarité [118, 255, 297, 300, 301] et un ni veau d'employabilité [299, 300] moindres quel a nor me, ou quel es membres deleurfratrie. Fi nalement, de s évidences supportent une tendance à av oir moins de su ccès dans leurs relations amoureuses (mesuré par le mariage dans les études anglo-saxones) [298-300], ainsi qu'à avoir moins d'enfants [300] en m oyenne ch ezles survivants comparativement à l eurs compatriotes. La prudence s'impose quant à l'interprétation brute des chiffres sur les séquelles «sociales», une association entreles difficultés sociales et les séquelles psychologiques et physiques étant probable. Par exemple, l'infertilité, dont souffrent de nombreux survivants, pourrait ê tre un des médiateurs des indices concernant les relations amoureuses. Un raisonnement similaire pourrait aussi s'appliquer pour toutes les problématiques sociales énumérées en lien avec la fatigue ch ronique, une autre séquelle fréquemment rapportée chez les guéris.

2.4.6 Facteurs de risque

Dans la perspective d'un dépistage efficace, l'identification des facteurs de risque asso ciés à une i ncidence plus importante des problèmes de santé co nstatés chez plusieurs survivants est essentielle. Pour la majorité des séquelles étudiées, les résultats mêmes dela prévalence portent toujours à di scussion : il n'est donc pas surprenant que peu de facteurs de risques associés soient admis de façon consensuelle. Le jeune âge au diagnostic, le fait d'être une fille et l'exposition à la XRT sont les facteurs de risque les plus reconnus pourleur asso ciation avec un risque accru de sé quelles neuropsychologiques. La fenêtre d'étude temporelle est aussi un déterminant i mportant, mais peut di fficilement êt re co nsidéré co mme un facteur de risque.

Âge au diagnostic [75, 80, 88, 111, 286, 302, 303]. Les changements survenant dans la physiologie neuronale au cours de l'enfance sont nombreux, rapides et ont des répercussions sur l’organisation cérébrale adulte. Il a ét é est imé que I a densité neuronale «adul te» est at teinte vers 6 ans [285]. Les deuxt ypes de ca ncers pédiatriques les plus fréquents (i.e. leucémies et tumeurs cérébrales) ont en commun de nécessiter des traitements ciblant directement le SNC. Pour les tumeurs cérébrales, la néce ssité de t raiter le S NC est évi dente. En ce q ui co ncerne les leucémies, la nécessité de la prophylaxie méningée résulte de l'infiltration fréquente des cellules leucémiques au-delà de la barrière hémato-encéphalique, lieu physiologique peu pénétré par les traitements administrés en circulation systémique. En supposant que les neurones encore a u st ade dév eloppemental so ient pl us sensibles que de s neurones matures, des traitements anti-cancer reçus pendant une pé riode cr itique pourrait expliquer le jeune âge au diagnostic comme facteur de risque. Par ailleurs, il s'agit d' un facteur de risque non se ulement po ur les séquelles affectant le sy stème nerveux, m ais aussi p our des séquelles touchant d' autres systèmes et or ganes, comme l'obésité [280], par exemple. Au moins une méta-analyse met en doute le rôle réel de ce facteur de risque [301].

Genre [75, 77, 84, 88, 111, 276, 286]. À traitements équivalents, les garçons semblent souffrir de séquelles moins sévères que les filles. Les évidences à cet effet sont nombreuses au su jet des effets neuropsychologiques à long terme. Tout comme
pour l'âge au di agnostic, il existe plus d'hypothèses que de réponses pour expliquer cette différence. Armstrong et collaborateurs ont fait une revue de la littérature sur ce sujet et proposent l'hypothèse d'un dimorphisme sexuel au niveau du dé veloppement cérébral pour expliquer les disparités observées [276]. Ainsi, le cerveau des garçons se développerait différemment de celui des filles, rendant ces dernières plus sensibles à la neurotoxicité des traitements anti-cancer. L'explication pourrait tenir de spécificités hormonales; toutefois, les différences de sensibilité aux traitements en regard des effets àlong terme se retrouvent aussi chezles patients pédiatriques pré-pubères, chez qui le métabolisme endocrinien est relativement similaire nonobstant le genre. II importe cependant de rappelerlerôle joué parles hormones sexuelles dans le développement du cerveau, et ce, bien avant avant la puberté. Les gonades féminines ne produisent pas d'œstradiol au cours des premiers stades développementaux et, ironiquement, c' estl apr oduction pr écoce de t estostérone, t ransformée subséquemment en oes tradiol qui est responsable de la masculinisation du ce rveau humain ch ezles garçons [99]. Des évidences suggèrent un rôle p rotecteur des hormones stéroïdiennes sexuelles «féminines» dans des expériences de neurotoxicité induite [304, 305], ar gument favorisant e ffectivement ler ôle des changements hormonaux, mais pas de la façon attendue. En somme, les filles sont en général plus à risque que les garçons pour la majorité des effets à long terme, que ces séquelles affectent système nerveux ou non [276, 280].

Facteurs de risque associés aux modalités de traitement. L' exposition aux radiations complète le trio des facteurs de risque généralement reconnus [75, 77, 116, 118, 275, 303, 306]. La dose t otale de radiation r eçue par les patients seraitle modérateur de cette asso ciation, les doses utilisées dans les protocoles récents menant à des effets secondaires d'intensité co mparable aux traitements de prophylaxie méningée par chimiothérapie IT [82]. Malgré la robustesse apparente des évidences, certains auteurs continuent de mettre en dout e so n rôle réel dans l'apparition des problèmes à long terme [301]. Comme pour le genre du patient, la XRT serait un facteur de r isque associé à u ne pr évalence accr uede déficits neuropsychologiques, mais aussi à des problèmes de santé touchant d'autres organes et systèmes, tel que l'obésité [280], par exemple.

Autres facteurs de risque. Le moment de mesure (temps post-traitement) serait un «facteur de risque» considérable dans l'apparition des séquelles chezl es survivants. Bien que disputé par certains [301], il existe de fortes évidences soutenant que la sé vérité des séquelles tend à augmenter avec le temps [75, 111], pour des raisons encore méconnues.

2.4.7 Phénomène de chemobrain

Le co ncept de chemobrain est récent; il réfère aux ef fets délétères dela chimiothérapie systémique entraînant ch ezles pat ients des altérations dans les fonctions cognitives via la neurotoxicité [67, 307]. Ce phénomène a su rtout fait l'objet d'études chez des femmes traitées pour un cancer du se in [308], et dem eure peu exploré dans les populations pédiatriques ([309] p. 98). Plus précisément, ce rtains médicaments anti-cancers, not amment le MTX, sont effectivement reconnus comme étant neurotoxiques [67], ainsi que pour les effets qu'ils entraînent surles fonctions neuropsychologiques [85, 88]. Ces résultats ont été corroborés par des études chez des rongeurs [92].

CHAPITRE 3 : OBJECTIFS

3.1 Objectif général et hypothèse générale de l'étude

Il est de pl us en plus reconnu dans la communauté médicale que la qualité globale des soins aux patients, et ultimement leur résultat final, est sous influence multifactorielle. Le déc loisonnement néce ssaire à la concrétisation de ce tte théorie demeure cependant rarement traduit concrètement dansles études médicales, et encore moins dans les modèles de soin et d'intervention, au détriment des patients.

L'hypothèse générale de cette étude était inspirée du modèle transactionnel dynamique, sensible au facteur temps, de Dickens et Flynn [310]. Une illustration du modèle transposé à l'hypothèse d'intérêt est disponible à la FIGURE 7. Dans ce modèle, les contributions de différents facteurs (i.e. Ies variables indépendantes (VI) dans le modèle st atistique) n'ayant a pr iori pas de co ntribution su bstantielle surla variable dépendante (VD) finale peuvent, a post eriori, expliquer une proportion importante de I a v ariance obse rvée de ce tte V D finale. Bien que la vé rification du modèle entier demeure hypothétique, des connaissances acquises sur des fragments du modèle peuvent être instructives. Dans le cadre spécifique des soins apportés à des patients pédiatriques atteints de cancer, l'hypothèse générale était que des facteurs psychosociaux, génétiques et reliés aux modalités de traitements médicaux pourraient ensemble contribuer à expliquer les variations des problèmes d'adaptation à travers le temps.

L'objectif général de la thèse était de démontrer qu'une telle approche multidisciplinaire est non seulement possible, mais qu'elle permet une compréhension approfondie de la dynamique sous-jacente aux variations observées dans le temps de la V D d'intérêt, et entre les individus. Une t elle co mpréhension est néc essaire pour aspirer à développer à des stratégies d'intervention ciblées et efficaces.

3.2 Objectifs spécifiques de la thèse

Spécifiquement, l es travaux présentés visaient à v érifier si un tel m odèle intégratif permettrait de générer des connaissances utiles pour développer des stratégies d'intervention personnalisées chez des patients pédiatriques atteints de LLA. Les analyses effectuées ont été fonction des hypothèses de départ énoncées dans le plan d'études doctorales de la candidate, à savoir :

1) II existe une association entre des facteurs de risque psychosociaux en lien avec le fonctionnement familial et l'apparition de problèmes de comportement chez les patients pédiatriques ayant survécu à une LLA. (Article 2)
2) Il existe une association entre les polymorphismes de gènes impliqués dans les effets thérapeutiques du MTXetdes GC, et l'apparition de problèmes de comportement dans cette même population (Article 3).
3) II ex iste une asso ciation ent re I es modalités de traitement (type/quantité de médicaments administrés, exposition à la RC, etc.) et l'apparition de problèmes de comportement dans cette même population (Article 2).
4) Les facteurs psychosociaux, génétiques et médicaux (i.e. différences dans les modalités de t raitement) forment une t rame intégrative et t ransactionnelle, influencée par le temps, qui pour rait per mettre d'expliquer les fluctuations de problèmes de comportement dans cette population.

CHAPITRE 4 : MÉTHODOLOGIE

Dans ce chapitre, les devis expérimentaux, les instruments et protocoles, ainsi que la principale stratégie de modélisation statistique ayant été utilisés dans la réalisation des travaux de cette thèse sont revus. Un schéma illustrant le devis de recherche est disponible à la FIGURE 8.

Pour les questions de recherche s'intéressant au neur odéveloppement, et à tout phéno mène soupçonné de v arier dans le temps, les av antages d'analyser les participants à plusieurs reprises pendant une période donnée so nt reconnus, m ais rarement mis en œuvre dans la m éthodologie. D ans les études surles patients pédiatriques atteints d'une maladie, l'utilisation d'un temps unique de mesure ne tient pas compte de serformances du su jet av ant l'événement ch arnière. L'utilisation de deux temps de mesure (pre- et post-maladie ou traitement) est meilleure; cependant, des erreurs de mesure inhérentes àl'instrument peuvent être confondues avec des variations individuelles, menant à des associations fortuites. L'utilisation de m esures répétées, co mme dans le cas des études longitudinales, per met de su rmonter ces limites.

Une étude longitudinale a été conduite entre 1993 et 2003 au Centre hospitalier universitaire Ste-Justine. Le but de ce projet de recherche multidisciplinaire é tait de suivre, sur une période de 4 ans à partir du diagnostic, des patients atteints de LLA, afin de caractériser leur devenir sous plusieurs angles. Ce projet a été approuvé par le comité d'éthique du C HU Ste-Justine (consulter ANNEXE IV) et tous les participants ont donné leur accord en signant un formulaire de consentement éclairé.

138 patients, ayant reçu un diagnostic de LLA entre 1993 et 1999, ainsi que les membres de leur famille ont accepté de participer à l'étude. Les patients devaient être âgée entre 0 et 18 ans au moment du diagnostic, ne pas avoir souffert d'un autre cancer auparavant, et avoir une vision et une ouïe normales, ou corrigées. Les patients en rechute ont été exclus de l'étude à partir du moment de l'événement. 51 patients (37%) on t ét é so ignés se lon le protocole de B oston 91 -01 et 87 (63%) se lon Ie protocole de Boston 95-01.

Les résultats des questionnaires servant à mesurer les problèmes de comportement chez Ies patient (Child B ehavior C hecklist - CBCL) etle b ien-être familial chez les parents (Familial Well-Being Assessment) ont été analysés dans le cadre dela présente thèse. Il en est de même pour les données de génotypage. Finalement, une sous-section est consacrée à la stratégie de modélisation statistique utilisée.

FIGURE 8. Illustration du devis expérimental

LÉGENDE : CBCL = Child Behavior Checklist; Dx = Moment du diagnostic initial; FWA = Familial Well-Being Assessment

L'étude longitudinale a été financée par les organismes suivants :

1993-1995 "Effets psycho-sociaux, cognitifs et neurobiologiques des thérapies anti-cancéreuses dans le traitement des cancers chez les enfants".
\$152,968/2 ans
Fonds de Recherche en Santé du Québec - Conseil Québecois de la Recherche Sociale

1993-1995

1995-1997: \quad "Déficit à court et à long terme de l'attention chez les enfants traités pour leucémie lymphoblastique aiguë".
Robaey P, et collaborateurs.
Fonds de la recherche en santé du Québec $(\$ 107,826)$.

1995-1997: \quad Modélisation cl inique et ex périmentale de I a neur otoxicité des traitements antileucémiques chez l'enfant".
Robaey P, Kenigsberg RL, Lassonde M, Leclerc JM, Stauder JEA, Théorêt Y.
Cancer Research Society, Inc. $(\$ 90,000)$.

1997-1999: "ERP probes of short-term brain functional toxicity after cranial radiation therapy in childhood leukemia" Robaey P, Décarie J-C, Moghrabi A, Mulhern R, Théorêt Y. Fonds de la recherche en santé du Québec ($\$ 107,914$).

1997-1999: \quad Clinical and experimental modelization of neurotoxicity of ALL treatment in children"

Robaey P, Moghrabi A, Mulhern R, Théorêt Y.
Cancer Research Society, Inc. $(\$ 90,000)$.

1999-2000
"Effets de la thérapie antileucémique sur le système nerveux central: une approche intégrée".

Société de Recherche sur le Cancer, Inc., \$70,000.
P Robaey, RL Kenigsberg, JM Leclerc, JEA Stauder, M Lassonde, Y Théorêt.
"Sondes ERP de la toxicité fonctionnelle cérébrale à court terme après irradiation crânienne chez les enfants leucémiques".

Robaey P.
LEUCAN $(\$ 12,500)$.

1999-2001 "Sondes ERP de la toxicité fonctionnelle cérébrale à court terme après irradiation crânienne chez les enfants leucémiques".
Robaey P, Décarie JC, Moghrabi A, Mulhern R, Théorêt Y. Fonds de la recherche en santé du Québec (\$119,904).

2000-2001
"Predicting mental health outcomes in pediatric leukemia patients: a 4-year longitudinal study".
Robaey P, Fortier I, Moghrabi A
Leukemia Research Fund of Canada $(\$ 22,479)$

2000-2003
"Functional, anatomical and neuropsychological brain toxicity after cranial radiation therapy in childhood leukemia"

Robaey P, Décarie JC, Moghrabi A, Théorêt Y, Mulhern R, Reddick WE Institut National du Cancer du Canada $(\$ 225,401)$.

4.1 Child Behavior Checklist (CBCL)

Le Child Behavior Checklist (CBCL) est un des outils d'une batterie développée sous la di rection de Thom as M . Achenbach. Lorsqu'utilisés ensemble, ces tests permettent une évaluation multiaxiale de l'enfant. L'évaluation complète prévoit des questionnaires pour les parents (Axe I), les professeurs (Axe II) et le patient lui-même (Axe V), en plus d'évaluations cognitives (Axe III) et physiques (Axe IV). Les résultats peuvent ensuite être analysés en complémentarité. Le CBCL est le principal instrument del'axel;ilper met d' obtenir un i ndice global de problèmes de comportement en fonction des informations fournies par le par ent répondant. Il per met a ussi d' obtenir des scores bruts et standardisés pour l'âge et le genre du patient pour des indices de problèmes internalisés et externalisés. ([311] pp. 429-466) Les problèmes internalisés sont les manifestations de problèmes affectifs personnels qui ont uni mpact surle sujet. C elai nclut no tamment des sy mptômes d'anxiété et de dép ression. Le s problèmes externalisés regroupent les problèmes qui sont directement observables et affectent aut rui. D es manifestations d' agression ou de violence ent rent dans cette catégorie. La liste des syndromes pouvant être détectés chez les patients à l'aide de cet outil est décrite au (TABLEAU 13).

TABLEAU 13. 8 syndromes évalués par le CBCL ${ }^{24}$

INTERNALISÉS	NI INTERNALISÉS, NI EXTERNALISÉS	EXTERNALISÉS
Retrait (Withdrawn)	Problèmes sociaux (Social problems)	Comportements délinquants (Delinquent behavior) Comportements agressifs Somatisation (Somatic complaints)
Anxiété/dépression (Anxious/depressed)	Problèmes de pensées (Thought problems)	Troubles de l'attention (Attention problems)

La liste initiale des manifestations de problèmes de co mportement a d'abord été él aborée à pa rtir d 'uner evue ex haustive de lalittérature, de s travaux et de l'expérience des chercheurs de l'équipe d'Achenbach, des suggestions faites par les experts en santé mentale pédiatrique consultés et par des groupes de répondantscibles. La validation d'un premier instrument créé à partir de ces sources d'information a ét éf aite ch ez des éch antillons de pat ients référés pour une consultation professionnelle en raison de problèmes comportementaux et /ou émotionnels. La dérivation des syndromes regroupant des items précis dans les questionnaires de la batterie est le résultat d'analyses des composantes principales, qui ont ét é utilisées pour identifier les problèmes tendant à être présents de façon simultanée chez les patients en consultation. Les regroupements de syndromes sous les indices de problèmes internalisés et externalisés ont été opérationnalisés dans la version 1991 du test CBCL. ([311] pp. 429-466)

Après la vérification que les questionnaires développés arrivaient effectivement à sé parer les patients pédiatriques consultant pour des problèmes émotionnels et/ou comportementaux des patients bien-portants, des normes nationales ont été établies en sondant des groupes de mineurs représentatifs de la population générale. Le s sujets ayant reçu des soins relatifs à des problèmes de santé mentale dans les 12

[^19]mois précédents l'étude étaient exclus. ([311] pp. 429-466) Les résultats standardisés d'un patient donné sont donc comparés à ceux de normes pour laquelle la moyenne est de 50 et l'écart-type est de 10. Il existe deux versions du questionnaire CBCL : un pour les enfants de 2-3 ans [313] (voir ANNEXE I), et un autre pour les 4-18 ans [312] (voir ANNEXE II). Les items évalués dans les questionnaires sont fonction de l'âge et du genre du patient. II existe des différences dans les questions posées au répondant entre la version pour les 2-3 ans et celle pour les 4-18 ans, mais il existe aussi des différences selon l'âge du pat ient à l'intérieur de la version 4-18 ans. Des questions spécifiques au genre du patient évalué sont aussi posées.

Plusieurs raisons ont justifié l'utilisation du CBCL comme indice de mesure de problèmes de comportement dans ce devis expérimental :

1) Les propriétés psychométriques de ce quest ionnaire so nt sa tisfaisantes. (Corrélation test-retest (1 se maine d' intervalle): 0.85 (pour le CBCL/2-3) et 0.89 (pour le CBCL/4-18)), et sa validation transculturelle (convergence des construits mesurés et prévalence) a été vérifiée à plusieurs reprises, dans différentes populations [314-316].
2) Les normes des questionnaires CBCL ont ét é bât ies à par tir d' échantillons de sujets pédiatriques bien-portants, et non pas de sujets référés en clinique pour des raisons psychiatriques. Comme la maladie affecte au hasard les enfants, on peut considérer que les patients pédiatriques recevant un diagnostic de LLA sont a priori un échantillon non biaisé de la population générale.
3) Le devis longitudinal nécessitait un questionnaire conservant une validité adéquate au fil de temps (validité test-retest), ce qui est le cas.
4) La grande v ariabilité de I 'âge des participants ($0-18 \mathrm{ans}$) et les difficultés de recrutement dans la po pulation ci ble néce ssitaient un i nstrument pouv ant fournir des résultats standardisés, et donc comparables, nonobstant l'âge au diagnostic ou le genre des patients.
5) L'utilisation co urante de cetinstrument de mesure dans des études ayant pour sujets des patients pédiatriques atteints de cancer permettait de comparer les résultats obtenus avec la littérature existante (consulter le TABLEAU 18).

Le questionnaire CBCL a été complété par les mères au diagnostic ($D x$), puis 1 an, 2 ans, 3 ans et 4 ans post-Dx (FIGURE 8). Le questionnaire n'était pas administré post-induction (temps 2 de mesure du devis longitudinal, correspondant à la semaine 11), des intervalles de moins de 6 mois entre 2 complétions du test n'étant pas recommandés. Le détail des temps de mesure pour lesquels le CBCL a été complété pour chacun des patients est disponible au TABLEAU 14.

TABLEAU 14. CBCL disponibles pour chacun des patients de la cohorte

$P t$	1	3	4	5	6
1					
2					
3			$@$		
4					
5					
6					
7					
8					
9					
10			$@$		
11					
12					
13					
14		$\&$			
15					
16					
17		$@$			
18					
19					
20			$\#$		
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					

$P t$	1	3	4	5	6
41					
42					
43					
44					
45					@
46					
47					
48					
49				$\#$	
50					
51					
52					
53					
54					
55					
56					
57					
58					
59					
60					
61					
62					$\#$
63					
64					$\#$
65					
66					
67					
68					
69					
70					
71					
72					
73					
74		$@$			
75					
76					
77					
78		$\&$			
79					
80					

$P t$	1	3	4	5	6
81					
82					
83					
84					
85					
86					
87					
88					
89					
90					
91				$\&$	
92					
93				$@$	
94					
95					
96					
97					
98					
99					
100					
101					
102					
103					
104					
105					
106					
107					
108					
109					
110			$\#$		
111					
112				$@$	
113					
114					
115					
116					
117					
118					
119					
120					

Pt	1	3	4	5	6
121					
122					
123					
124		$@$			
125					
126					
127					
128					
129					
130					
131					
132		$\&$			
133					
134					
135					
136				$@$	
137					
138					

LÉGENDE : \# = Rechute; \& = D écès; @ = Rechute et décè s; T = années postdiagnostic ($0,1,2,3,4$); $\mathrm{Pt}=$ code attribué au patient dans la cohorte. Les cases en gris indiquent les temps de mesure où le CBCL a été complété par la mère.

4.2 Family Well-Being Assessment (FWA)

Le questionnaire Family Well-Being A ssessment (FWA - voir ANNEXE III) a été co nçu pour ob tenir une m esure du st ress per çu en lien av ec l'environnement familial. C ontrairement au C BCL, dans lequel un pat ient pourra se trouver dans la catégorie «normale», «limite», ou «cl inique» en fonction de se s scores au différents indices, I e sco re F WA ne ca tégorise parles participants, mais les si tue surun continuum allant du bien-être au stress élevé.

Cet instrument de mesure, développé par Shirley Metz Caldwell, a initialement été i nspiré du m odèle théorique de R.C. Thomas selon lequel le n iveau de st ress familial se rait fonction det rois composantes:1)। a st ructure familiale, 2) I es interrelations au niveau des fonctions et des rôles joués par chaque membre dela famille, 3) la vulnérabilité. Selon Caldwell, il est inapproprié d'étudier le stress familial uniquement dans une per spective dy adique : I a f amille se rait pl utôt un ense mble dynamique dans lequel les interactions entre deux membres se répercutent aussi sur les interactions entre tous les autres membres de la famille. Dans le cas du stress, cela implique que le stress vécu par un des membres de la famille se répercutera sur tous les autres. Toujours selon Caldwell, il était aussi impératif de développer un instrument qui pourrait être administré à tous les membres de la famille, la plupart des outils étant alors validés exclusivement pour les parents. [211]

La liste d'items composant les versions pour adultes et pour enfants du FWA a été dév eloppée surla base des facteurs décrits dans lalittérature comme ét ant déterminants du bien-être familial. Des modifications des items ont été apportées suite à des études de validation et des analyses de fidélité dans des populations distinctes de familles avec ou sans enfant m alade. D ans les études impliquant des familles d'enfant malade, les patients étaient surtout atteints de diabète ou de cancer. [211]

Les raisons qui ont justifié I 'utilisation du F WA pour ob tenir une mesure de stress familial dans l'étude longitudinale sont :

1) Les propriétés psychométriques de cet instrument sont acceptables.
2) Toujours dans la perspective d'un devis longitudinal, un questionnaire conservant une validité adéquate au fil de temps était aussi nécessaire.
3) Le questionnaire a été bâti pour être administré non pas uniquement aux parents, mais à tous les membres de la famille, per mettant ainsil'évaluation du bien-être familial tel que perçu par les membres de la fratrie du patient.
4) Des normes existent pour les membres de familles dans lesquelles aucun enfant n'est atteint de maladie chronique, mais aussi pour les membres de familles dont au moins un des enfants est atteint d'une maladie chronique (eg.: asthme, diabète). D ans le cas du ca ncer pédi atrique, I es séquelles chez une proportion significative des survivants font en sorte que les patients, même une fois la période de rémission complétée, so nt de plus en plus considérés comme des «malades chroniques». La disponibilité des deux normes est intéressante puisqu'elle permet de co mparer les résultats obtenus avec ceux de per sonnes appartenant à des milieux familiaux différents spécifiquement pour le facteur «maladie».

Le questionnaire FWA a été complété par les mères, les pères et des membres de la fratrie au Dx , 11 semaines post-diagnostic, puis 1 an, 2 ans, 3 ans et 4 ans postDx (FIGURE 8).

4.3 Polymorphismes (Pandora)

La recherche sur le devenir des patients pédiatriques atteints de LLA est le sujet d'intérêt d' une vaste équipe multidisciplinaire au CHU S te-Justine. Des études psychosociales, neur opsychologiques, m ais aussi g énétiques et phar macologiques, impliquant les patients de la cohorte décrite précédemment ont eu/ont toujours cours. Ce faisant, pl usieurs des informations médicales (e.g. : di agnostic initial, dét ails de bilans sanguins, etc.), ayant un lien avec les traitements (e.g. doses de médicaments administrés, changements métaboliques, etc.), et des données de génotypage pour des polymorphismes d'intérêt sont regroupés dans une base de donnée informatique d'accès strictement local. Cette base de données s'appelle Pandora.

En ce qui concerne spécifiquement les données de génotypage analysées dans le cadre de cette thèse, les polymorphismes ont été choisi soit sur la base de la littérature (i.e. déjà connus pour être des polymorphismes fonctionnels), soit à partir de
la base de données surles SNP du National Centerfor B iotechnology Information (NCBI) et en raison de leur localisation dans des gènes ciblés pour leur rôle dans les effets des médicaments anti-cancer d'usage courant dans la LLA pédiatrique.

4.4 Modélisation multi-niveaux

Les analyses multi-niveaux sont d'usage courant en sociologie et en économie, mais plus rarement dans le domaine médical [317]. En ce qui concerne l'oncologie pédiatrique, leur utilisation est anecdotique [318]. Lorsque la VD d'intérêt est continue, deuxtypes d'analyses st atistiques sont cl assiquement u tilisés: I es modèles de régression multiple et les analyses de variances pour mesures répétées. Dans le cas des régressions multiples, les postulats d'indépendance ne sont pas respectés et peuvent mener à trouver des associations fortuites si les résultats obtenus à différents temps de mesure chez une même personne sont utilisés à la fois comme VI et VD. Pour les analyses de variance pour mesures répétées, l'inclusion exclusive des patients pour lesquels des résultats sont disponibles pour tous les temps de mesure diminue substantiellement la taille de l'échantillon disponible lorsque les taux d'attrition sont élevés, ou que le nombre de mesures est important. La modélisation multiniveaux n'a pas ces deux contraintes.

Dans un modèle multi-niveaux, il y a aut ant de ni veaux qu'il y a de so urces distinctes de variabilité, autant pour les études transversales que longitudinales. Dans le cas devis longitudinaux, la première source de variabilité (niveau 1) est la variation delaVDdans letemps pour un même individu: ils' agit dela variabilité in traindividuelle. La se conde so urce de v ariabilité (niveau 2) est asso ciée à des facteurs propres aux individus : il s'agit de la variabilité inter-individuelle. Les principales forces des analyses multi-niveaux résident dans les possibilités qu'elles offrent de départager les sources de variance et d'identifier l'impact des interactions entre les différents niveaux sur la VD étudiée ([319], p.12).

Les analyses sur les variables de niveau 1 (i.e. la VD avec mesures répétées chez un même individu au fil du temps dans le cas d'une étude longitudinale) servent à décrire I af orme que prend avariation individuelle dans letemps. Les analyses
subséquentes incluant les variables de niveau 2 servent ensuite à identifier les sources d'hétérogénéité entre les individus, ai nsi qu'à déterminer leur influence sur la forme des trajectoires individuelles. ([320] p. 8)

Les éléments suivants devraient être pris en compte dans la sé lection d' un modèle final à par tir d' une pré-sélection de m odèles intermédiaires (i.e. incluant une seule variable de niveau 2 à la fois). Les variables retenues seront celles qui, dans un modèle intermédiaire :

1. Atteindront un se uil pr é-déterminé de si gnification st atistique (exemple: $\mathrm{p}<$ 0.05).
2. Contribueront à expliquer une partie de la variance observée.
3. Feront en so rte qu'un ou des critère(s) d'ajustement (déviance, A IC, B IC) auront un score plus près de zéro comparativement au score obtenu avec le modèle de base. Les règles d'interprétation de la di minution du B IC, se lon Raftery [321], pourront aussi être utilisées pour avoir une idée de l'importance de l'ajout de la variable pour l'explication de la variance observée.

> BIC $0-2=$ faible évidence
> BIC $2-6=$ évidence positive
> BIC $6-10=$ forte évidence
> BIC $>10=$ très forte évidence
4. Feront en so rte quel es variations dans les est imations des par amètres stochastiques vont varier selon une direction logique (en comparaison avec les estimations obtenues pour le modèle de base).

CHAPITRE 5 : RÉSULTATS

Les principaux résultats de ce projet d'études doctorales sont rapportés sous forme d'articles scientifiques. Les articles inclus sont :

Article 1

Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy, Robaey P, Krajinovic M, Marcoux S, Moghrabi A. Cet article de revue est paru dans la revue Developmental Disabilities Research Reviews (2008, 14, 211220). Ce journal scientifique est doté d'un comité de lecture.

Article 2

Predictive \boldsymbol{f} actors of internalized and ext ernalized behavioral problems in children t reated f or acut e lymphoblastic I eukemia, M arcoux S, R obaey P, Krajinovic M, Moghrabi A, Laverdière C. Cet a rticle de contribution o riginale a é té soumis à la revue Pediatric Blood \& Cancer. Au moment du dépôt final de la thèse, cet article était attente d'une réponse finale de l'éditeur, après que l'équipe (Marcoux et al.) ait répondu aux questions et commentaires du comité de lecture. Pediatric Blood \& Cancer est doté d'un comité de lecture.

Article 3

Role of NOS3 variants in externalized behavioral problems in childhood leukemia survivors, Marcoux S , R obaey P, G ahier A, Labuda M , R ousseau J, S innett D, Moghrabi A, Laverdière C, Krajinovic M. Au moment du dépô t final de la thèse, ce t article de contribution original était soumis à la revue Journal of Pediatrics. Ce journal scientifique est doté d'un comité de lecture.

Les preuves de parution/soumission sont disponibles dans la section des documents spéciaux.

5.1 A rticle 1 - Pharmacogenetics o f the neur odevelopmental i mpact of anticancer chemotherapy

Philippe Robaey ${ }^{1,2}$, M.D., Ph.D., Maja Krajinovic ${ }^{1}$, M.D., Ph.D., S ophie Marcoux ${ }^{1}$, M. Sc., and Albert Moghrabi ${ }^{3}$, M.D.

Authors' affiliations:
${ }^{1}$ Centre de R echerche de I'Hôpital Sainte-Justine, Université de M ontréal, M ontréal, Québec
${ }^{2}$ Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario
${ }^{3}$ Service d' Hématologie-Oncologie, H ôpital d e V erdun, U niversité de M ontréal, Montréal, Québec

5.1.1 Avant-propos

La candidate fût un des auteurs principaux pour cet article de revue. Elle a participé à la recension de la littérature, à l'élaboration des hypothèses proposées, ainsi qu'aux révisions de l'article.

5.1.2 Abstract

Pharmacogenetics hold the promise of minimizing adverse neurodevelopmental outcomes of ca ncer pat ients by i dentifying pa tients at risk, enabl ing t he individualization of treatment and the planning of close follow-up and early remediation. This review f ocuses first on m ethotrexate, ad rug often implicated in neurotoxicity especially when used in combination with brain irradiation. The second focus is on glucocorticoids that have been found to be linked to adverse developmental effects in relation w ith t he psy chosocial envi ronment. F or bot hex amples, wer eview ho w polymorphisms of genes encoding enzymes involved in specific mechanisms of action could moderate adverse neurodevelopmental consequences, eventually through common final pathways such as oxidative stress. We discuss a multiple hit model and possible strategies required to rise to the challenge of this integrative research.

Key words: methotrexate, glucocorticoids, polymorphisms, outcome, irradiation

5.1.3 Introduction

Neurotoxic complications of cancer chemotherapy are common. Chemotherapy may cause both per ipheral neur otoxicity, consisting mainly of per ipheral neur opathy, and ce ntral neur otoxicity, r anging from ence phalopathy t o neur odevelopmental cognitive de ficits. Chemotherapy-induced deficits may occur long after treatment and profoundly affect quality of life. Neurodevelopmental effects of cancer treatment have long been recognized inch ildren ([75] pp. 99-122), but they ar e al so increasingly recognized in adults who describe their state as "chemobrain" or "chemofog" [322]. In adults as in children, larger effects are seen for executive functions and verbal memory [323]. Neuropsychological sequelae of cancer therapy are quite variable ([75] pp. 99122). In many cases, this variability can be explained by differences in treatment (e.g., type o f ch emotherapy), di fferences in asse ssment p rocedures (e.g., di fferent or incomplete t est da ta, questionable r eliability or validity of so me instruments) an d subject variations (e.g., differences in diagnosis, in the duration of the follow-up or in the time elapsed between treatment and ev aluation, failure to control for age, gender, demographic and ot her co nfounding variables such as school at tendance). R ecent research has shown that genetic differences are likely to contribute to this variability as well.

Some examples of the contribution of genetic variation to neurotoxicity can be found for acute adverse effects on the brain. Adenosine triphosphate-binding cassette $(A B C) t$ ransporters prevent t he br ain ent ry of toxic compounds under phy siological conditions but complicate phar macotherapies i n ca ncer [324]. E ncephalopathy episodes were more frequent among children with acute lymphoblastic leukemia with the ABCB1 3435TT genotype than the 3435C C/CT group [325], c reating a basi s for altering therapy based ong enotype. Followingt his approach forlong term neurodevelopmental toxicity, a phar macogenetic model co uld lead toa m ore personalized treatment through identification of significant genes, integration of multiple genes into a genetic profile, and use of the profile to improve outcome in practice. Presently, the field is nascent as there is only one publication that shows increased susceptibility for adv erse neur odevelopmental out come following treatment of acu te
lymphoblastic leukemia of children with specific gene variants [91]. We will thus focus on methotrexate, the drug most often implicated in neurotoxicity, which is a mainstay in the t reatment of ca ncer and esp ecially in t he t reatment of acu te lymphoblastic leukemia. We will then focus on glucocorticoids, another common cancer treatment (and primarily leukemia) in children with more specific adverse developmental effects. For both examples, we will review how polymorphisms in genes encoding enzymes involved in their mechanisms of action could moderate their adverse neurodevelopmental consequences. On this basis, we will discuss the challenges and the possible strategies to understand the pharmacogenetic of neurodevelopmental impact of chemotherapy.

5.1.4 Methotrexate

5.1.4.1 Metabolism of folate, methionine and transulfuration pathway

Methylation is a key biochemical process involved in the regulation of gene expression, pr otein function and R NA m etabolism. T he major don or for most methyltransferase reactions is S-adenosylmethionine (SAM), which is synthesized by the methionine adenosyltransferase from methionine and ATP. Dietary supply of methionine does not provide enough methyl groups for the metabolism, and methionine has to be recycled. Thep roduct of t he de methylation of S AM is Sadenosylhomocysteine (SAH) that is subsequently hydrolyzed by the SAH hydrolase in adenosine and homocysteine (Hcy). Hcy is remethylated in the liver by the methionine synthetase (MTR), which acco unts for about half of the ho mocysteine remethylation capacity [326]. MTR catalyses the transfer of a methyl group from 5methyltetrahydrofolate (5-methyl THF) to Hcy to produce methionine and THF. This reaction requires cob(I)alamin as cofactor. Over time, the cob(I)alamin cofactor of methionine sy nthase b ecomes oxidized t oco b (II)alamin, r endering t he enz yme inactive. Regeneration of functional enzyme necessitates reductive methylation using SAM as a methyl donor, which is supported in hum ans by the methionine synthase reductase (MTRR) in presence of N ADPH as electron donor [327]. A lernatively, the betaine-homocysteine methyltransferase (BHMT) ca talyzes the transfer of a m ethyl group from betaine to homocysteine, resulting in the formation of dimethylglycine and methionine.

The THF p roduced by t he M TR, is reloaded with a ca rbon t o form $5,10-$ methylene-THF by the serine hydroxymethyltransferase (SHMT) that catalyses the conversion of serine to glycine. The methylene tetrahydrofolate reductase (MTHFR) catalyzes the conversion of the 5,10 methylene THF to 5-methyl THF, which re-enters the cycle of remethylation of Hcy by the MTR. The production of 5-methyl THF by the MTHFR is non reversible under physiological conditions, and all the dietary folates of the one-carbon pool [328] can end up as 5,10-methylene-THF. Alternatively, the 5,10 methylene THF is used by the thymidylate synthase to catalyze the reductive methylation of deoxyuridylate (dUMP) to produce thymidylate (dTMP) and dihydrofolate (DHF). Using NADPH, the dihydrofolate reductase (DHFR) reduces DHF to THF that can be co nverted back to 5,10-methylene-THF by the SHMT. Thymidylate, the other product o ft hymidylate sy nthase, i s subsequently phosp horylated t ot hymidine triphosphate for use in DNA synthesis and repair. MTHFR is thus pivotal, balancing the homeostasis between DNA methylation and synthesis.

About half of the Hcy formed is conserved by remethylation to methionine in the methionine cycle. The other half is irreversibly converted by cystathionine betasynthase (CBS). C ystathionine-beta-synthetase (CBS) is a lyase that catalyzes the condensation of serine with Hcy, generating cystathionine in a rate-limiting reaction of the transulfuration pathway. Then, the hydrolysis of cystathionine yields α-ketobutyrate and cysteine, a precursor of glutathione. Thus, CBS is directly involved in the removal of Hcy from the cycle and in the biosynthesis of cysteine, a precursor of glutathione, the major m etabolite regulating the redox status of the cell. In vitro studies have indicated t hat S AM f unctions as a sw itch bet ween t he m ethionine cy cle and t he transsulfuration pathway [326]. At high concentration, SAM activates CBS while limiting Hcy remethylation by inhibiting MTHFR and inactivating BHMT. At low concentration, the Hcy remethylation is unimpaired.

5.1.4.2 Methotrexate: mechanisms of therapeutic actions and adverse effects

MTX inhibits dihydrofolate reductase (DHFR). The affinity of MTX for DHFR is about one thousand-fold that of the normal substrate DHF for DHFR. Moreover, MTX is metabolized in target cells into M TX pol yglutamates (MTX-[Glu]n) that inhibits some
enzymes involved in de novo purine and pyrimidine synthesis, especially thymidylate synthase. As THF can no longer be regenerated, 5,10 methylene THF, 5-methyl THF, methionine and S AM are depleted. As a consequence, thymidylate synthesis and the methylation of cytosine in DNA decreases, which in turn enhances gene transcription, DNA st rand br eakage and impairs DNA repair, resulting ing enetic mutations and apoptosis. SAM also provides methyl group in the methylation of proteins, neurotransmitters and phosp holipids, which extends the effects of folate de ficiency beyond DNA alone. These mechanisms account for the therapeutic effects of MTX [329].

Folate de ficiency al so produces accumulation of H cy, the pr oduct of the demethylation of methionine that can no longer be remethylated. When Hcy accumulates, it has different adv erse effects on the br ain pr ocesses. A cute and subacute toxic neurological effects have been observed after intrathecal or parenteral, low or high doses of MTX [330-334]. Because of the reversibility of the action of SAH hydrolase, increased level of Hcy leads to accumulation of SAH, the precursor of Hcy. SAH has much greater af finity for methyltransferases than SAM and is therefore a potent inhibitor of nearly all methyltransferases [335]. Methyltransferases are crucial for brain functions (e.g., catechol-O-methyltransferase (COMT) catabolizes catecholamine neurotransmitters, phenylethanolamine-N-methyltransferase (PNT) synthesizes epinephrine, et c.). E levated S AHinA lzheimer br ain A nhibited di fferent methyltransferases and was related to markers of disease progression [336]. Similarly, reduced availability of methionine as a methyl donor affects, among other processes, neurotransmitter formation. In addition, Hcy and its metabolic product (excitatory amino acids, such as homocysteic acid and cysteine sulfinic acid) can be especially toxic to neurons as they stimulate NMDA receptors directly or indirectly via an effect on $\mathrm{Na}^{+} / \mathrm{K}^{+}$pumps, I eading to m assive increases in ca Icium influx, which e ventually I eads to oxidative damage and cell death.

However, the main toxic effect of Hcy accumulation is cerebrovascular ischemia through oxidative stress [337, 338]. As free amino acid, Hcy exists in either a reduced (a thiol R SH) or ox idized (a di sulfide R SSR) form. In heal thy i ndividuals, the free reduced form is about 2% of total plasma Hcy, while the mixed disulfide forms (Hcy-SS-cysteine, and H cy-SS-gluthathione mixed di sulfide, R-SS-R') acco unts for a bout
30% and the protein cross-linked form (Hcy-SS-protein) for about 70\%. The concentration of free H cy increases as the pl asmatotal H cy r ises [339]. In the presence of oxygen and metal ions, Hcy can auto-oxidize, generating disulfide forms and hi ghly r eactive ox ygen sp ecies (ROS) [340, 341]. R OS generated dur ing autoxidation of H cy i nitiate I ipid per oxidation at t he endo thelial cell surface. T he endothelium pl ays a d ynamic role in co unteracting the adv erse effect of H cy by secreting ni tric oxide (NO), a r eaction ca talyzed byt he endot helial ni tric oxide synthetase (eNOS) that converts L-arginine and O_{2} to L -citrulline and NO . NO is an important regulator of vascular tone. Once produced by the normal endothelial cell, it diffuses to the smooth-muscle cells where it induces relaxation [342]. NO confers an important antithrombotic property on the endothelial surface by inhibiting the adhesion, activation, and agg regation of platelets [343, 344]. It al so limits the proliferation of smooth-muscle cells, but stimulates the migration and proliferation of endothelial cells, facilitating a remodeling of the vasculature after an injury [345].

NO reacts readily with H cy and forms S-nitroso-homocysteine. S -nitrosohomocysteine is one of the S-nitrosothiols that serve as a pool of molecules active for vasodilatation and platelet inhibition. However, the counter regulatory mechanisms are eventually overcome by chronic exposure of the endothelial cell to high level of Hcy. As the pr oduction of NO is increasingly co mpromised, ROS produced by the autooxidation of H cy i ncrease t he ox idative i njury of the endothelium, which further decreases the production of endothelial NO [337]. The relation between total Hcy level and vascular disease has been de monstrated in Caucasian population through longterm pr ospective st udies [346-350] and m eta-analysis [348], as well as in A sian population [351].

Adverse ef fects may accu mulate ov ert ime. A ni ncreased pl asma H cy concentration was related to worse cognitive performance over a 6-year period in the normal a ging popul ation [352] and w as a st rong, i ndependent r isk factor for t he development of dementia and Alzheimer's disease [353]. During the course of cancer treatment, high-dose MTX transiently increased Hcy concentration in the plasma [83], as well as excitatory amino acid derived from Hcy in the cerebrospinal fluid [354, 355]. Hcy whole-body accumulation also increased over the courses (3 to 4 days every two weeks) of systemic high-dose MTX and this increase was immediately reversed by
administration of folinic acid. Plasma folate concentration at the start of each cycle (originating from the folinic acid rescue administered during previous therapeutic cycles) was the principal determinant of the extent of whole-body Hcy accumulation in response to MTX administration [356]. Hcy accumulation has been associated in some case studies with severe neurotoxic effects [83, 357, 358].

5.1.4.3 Functional polymorphisms and cognition

All enzymes involved in Hcy metabolism are essential for maintaining adequate intracellular folate pools and ensuring that Hcy concentrations do not reach toxic levels. Homozygous mutations in genes encoding nonfunctional forms of these enzymes are well k nown and lead to se vere i nborn er rors of m etabolism ch aracterized by hyperhomocystinemia and hom ocystinuria [359]. H owever, v ariations i n en zyme activity e xist in heal thy population. T hese inter-individual variations are due t ot he existence of common functional polymorphisms in genes encoding these enzymes. We will focus more specifically on the polymorphisms of the enzymes that directly control the pa thways utilizing Hcy (MTR and M TRR for H cy methylation and C BS for the transulfuration pathway) and its 'buffering' (eNOS). Given the importance of the balance bet ween D NA m ethylation and sy nthesis, M THFR variants have al so been considered. Such polymorphisms are more plausible candidate for moderating MTX long term neurotoxicity if they also constitute a risk for brain dysfunctions or diseases independently of ex posure to m ethotrexate. The g ene pol ymorphism would al so be more plausible as accounting for long term neurological adverse effects if the genetic variant had been showed responsible for modifying the risk for acute brain side effects of MTX. We will thus review the polymorphisms associated with brain adverse effects.

Methylene terahydrofolate reductase (MTHFR). Two common polymorphisms have been i dentified in m ethylene tetrahydrofolate reductase (MTHFR) gene, C677T [360] and A 1298C [193, 361] base ch anges, l eading to am ino-acid substitutions at codons 222 (Ala-to-Val) and 429 (Glu-to-Ala), respectively. Both variants result in reduced enzyme activity. A ccordingly, in homozygotes for the C677T mutation, Hcy level si gnificantly increased when olate status w as low, and r eached intermediate values in het erozygotes [362, 363]. A sequence homology with DHFR suggests that the region in MTHFR that contains the Ala residue is involved in folate stabilization of

MTHFR [364, 365]. Due to its pivotal role in DNA methylation and synthesis, and the role of methylation changes in carcinogenesis [366], the hypothesis that polymorphic variation of MTHFR influences the risk of primary tumors, especially in the brain, has been t ested. I ncreased r isk for meningioma a nd g lioma has been found for bot h MTHFR variants [367].

It has also been suspected that polymorphisms in genes resulting in a deficit of DNA methylation could alter the meiotic recombination and segregation, particularly of chromosome 21 . H owever, t he asso ciation bet ween t he sa me pol ymorphisms and Down's syndrome (DS) could also exist through an effect on fetal survival up to birth [368]. The allele C of MTHFR A 1298C polymorphism was associated with increased risk of having an offspring with DS, especially for mothers above 34 years of age at the time of conception [369], although MTHFR C677 T allele alone was not associated with the risk of DS [370]. In humans, hydrolyzed folates are absorbed in the proximal small intestine by sp ecialized ca rriers (reduced folate ca rrier, RFC1). A co mmon polymorphism at position 80 in exon 2 of RFC-1 changes a guanine (G) to an adenine (A). Double homozygous subjects for MHTFR 677TT and RFC-1 80GG had the highest level of Hcy [371]. The same gene-gene interaction between the MTHFR C677TT and RCF-1 80GG was also suspected in young Italian women to increase the risk of having a ch ild with DS [372]. In ch ildren with DS, IQ correlated with Hcy level, especially in carriers of MTHFR C677 T allele [373], but no association was found between MTHFR variants and idiopathic mental retardation [367].

In Turkish patients, an association was found between migraine and the MTHFR 677TT genotype [374]. This association appeared specific to migraine with aura in Caucasian [375-377] and Japanese populations [378]. Migraine sufferers are at increased r isk of vascular br ain lesions and the MTHFR C 677T pol ymorphism has been asso ciated with the occu rrence of ischemic stroke [379] However, the relation between the C677T mutation and ca rdiovascular disease remains controversial [371, 380, 381].

Cystationine bet a-synthase (CBS). Several pol ymorphisms have been described for the CBS gene [155]. An insertion of 68 bpin exon 8 (844ins68) was shown occu rinabout 5% of C aucasian al leles, but w as not ass ociated w ith
hyperhomocysteinemia [382, 383]. H owever, the pr esence of the 68 bp i nsertion abolished the high plasma Hcy level observed in homozygotes for the MTHFR C677T [384]. I n heal thy m iddle-age m en, M THFR C 677T and t he M TR A 2756G al leles increased in an additive manner the Hcy plasma level. On the contrary, carrying a CBS 844ins68 al lele I owered H cy level. This lowering effect w as seen m ost st rongly in homozygotes for the MTHFR and MTR variants [385]. The ca rriers of the 844ins68 allele seem to have a higher CBS activity, and a better control of the balance between the m ethionine cycle and the transulfuration pathway. In ag reement with this view is the finding that the CBS 844ins68 may be a protective factor against vascular thromboembolic disease in the Chinese population [386]. The fact that the CBS 844ins68 allele could play a r ole in co gnitive de velopment was suggested by the fact that this allele was significantly underrepresented in children with very high IQ (above percentile 99) as compared to normal IQ (percentile 58) [156].

Methionine synthase (MTR). The A 2756G po lymorphism in t he M TR g ene results in substitution of aspartic acid by glycine at codon 919. It has been suggested that the glycine residue, a s trong hel ix br eaker co mpared to asp artatic aci d, co uld affect the functional structure of the protein [387, 388]. After adjustment for age, Hcy level and t he presence of the MTR A2756G allele were significant risks for having a child with DS, especially if the mother was also carrying a M TRR 66G allele [389]. Combined alleles also constitute a significant risk for high plasma Hcy level [390, 391]. Finally, the observation of an acute MTX-induced encephalopathy in a patient homozygous for t he v ariant M TR A 2756G g ives some su pport to t his variant as influencing long term adverse neurological effects [392].

Methionine synthase reductase (MTRR). Replacement of the lle by Met at position 22 of MTRR caused by an A66G substitution in the MTRR gene was associated with increased r isk of neur al tube defects when cobalamin level is low or when an M THFR 677 T al lele is present [194, 393]. A meta-analysis confirmed that mothers with the MTRR 66G G genotype were $55 \% \mathrm{~m}$ ore at r isk of ha ving a ch ild affected by sp ina bi fida. The r isk increased in pr esence oft he M THFR 67 7TT genotype, and w hen the vitamin B 12 status was low [394]. A significant asso ciation between risk of meningioma and homozygosity for MTRR 66G was also reported [395].

Endothelial nitric oxide synthetase (eNOS).Nitric oxide is synthesized by the nitric oxide synthase family of oxidoreductases. To date, three isoforms of nitric oxide synthase have been cloned and ch aracterized: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). A variant of eNOS has been identified in exon 7 of the gene (G to T substitution at nucleotide position 894) resulting in a G lu to Asp change at codon 298 [396]. The eNOS G894T polymorphism was found to be associated w ith asy mptomatic white m atter I esions in pat ient with esse ntial hypertension, but not w ith i schemic stroke [397]. E stradiol si gnificantly increased platelet aggregation in individuals homozygous for the eNOS G894T variant [398]. The eNOS 894 TT genotype interacted with low serum folate to increase the risk for elevated Hcy levels [399]. In turn, high Hcy level interacted with the same genotype to lead to an increased risk of recurrent thrombotic events [400] and of coronary artery disease [401]. Compromised buffering of homocysteinemia by decreased production of NO and decr eased formation of S-nitroso-homocysteine might lead to more se vere homocysteine-mediated oxidative injury of en dothelium in i ndividuals ca rrying t he eNOS gene variant. Another T-786C mutation resulted in a si gnificant reduction in eNOS gene promoter activity and was associated with coronary spasms [196] and with severe coronary disease, adding its own contribution of other common risk factors for coronary disease, such as overweight, low LDL cholesterol, smoking [402].

Testing the effects on polymorphisms of genes controlling Hcy levels on IQ. In children t reated for acu tel ymphoblastic leukemia, t hee ffects of di fferent polymorphisms (MTHR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G, NOS3 G894T, NOS T-786C and CBS 844ins68) were tested on changes in IQ scores over a period of four y ears post-diagnosis [91]. Two variants, t he C BS 844i ns68 and t he homozygotes NOS3 G894T were associated with changes in IQ scores two years after diagnosis. Consistent with the suggestion that carriers of the 844ins68 allele have a higher CBS act ivity, IQ sco re was slightly increased in carriers of this variant, which could reflect some practice effects and the overall health improvement over time. Carriers of two NOS3 894T alleles showed a loss in IQ scores at the end of the first year post-diagnosis that did not recovered three or four years after the diagnosis. When both variants and clinical variables (gender, age, total number of hospitalization days, t reatment pr otocol and use of cr anial r adiation therapy) w ere e ntered in a multivariate model, only the effect of the NOS3 894TT genotype remained significant,
in addition to age at diagnosis and cranial radiation therapy. The IQ decrease was significant only in the carriers of the NOS3 894TT who also received cranial radiation therapy. It is thus possible that the same gene variant would be implicated at the crossing of di fferent b rain t oxicity pat hways, w hich would enhance t heir co mbined harmful effects. This interaction was already demonstrated in girls treated for acute lymphoblastic leukemia, as high-dose MTX followed by 18 Gy cranial radiation therapy was associated with IQ decline [78]. Children treated with intrathecal MTX and 18 G y CRT w ere al so f ound t o ex hibit m ore behav ioral r igidity and $s l$ ower, less fluent processing 6 years post-diagnosis in later cohorts [82]. In order to explore this issue, we will briefly review the brain radiation-induced toxicity.

5.1.4.4 Radiation effects

In presence of O_{2}, ionizing radiations form free radicals that include hydroxyl radicals $\left(\mathrm{OH}^{-}\right)$, superoxide $\left(\mathrm{O}_{2}^{-}\right)$and organic radicals $\left(\mathrm{R}^{-}\right)$. Immediately upon formation, these free radicals give rise to other reactive oxygen species (ROS) including hydrogen peroxide ($\mathrm{H}_{2} \mathrm{O}_{2}$) and or ganic hydroperoxides (ROOH). In pr esence of r edox act ive metal ions (such as Fe or Cu), these ROS produce more of them, through Fenton type reaction and contribute to oxidative damage within a few milliseconds after irradiation. In r esponse t oi rradiation, ce lls and t issues increase t he ex pression of ce llular antioxidant defenses [403, 404], mitigating the radiation-induced damages. Radiationinduced pr ocesses i nclude r edox se nsitive si gnaling pat hways, t ranscription factor activation, g ene expression, and m etabolic activities that g overn t he ce llular redox state. They may remain perturbed for minutes, hours or days [405].

The main t arget of ox idative dam age is the cerebral vascular endot helium. Disruption of the blood-brain barrier has long been recognized as the primary adverse effects of CNS ir radiation [406]. Irradiation selectively impairs the NO pathway as a consequence of oxidative stress [407]. The deficit in eNOS activity contributes to impair the endo thelium-dependent relaxation of the irradiated vessels and to increase their thrombotic property [408, 409], which can be r eversed by af ree radical sca venger [410]. The endo thelial N O sy nthesis could thus be impaired by irradiation and more easily overcome by the subsequent oxidative stress associated with Hcy autoxidation during MTX treatment. Moreover, other chemotherapeutic agents have the potential to
generate ROS. Doxorubicin is a quinone-containing anthracycline promoting oxidative stress in the brain [411] that could be prevented by g-glutamyl cysteine ethyl ester [412]. S ome combinations of ch emotherapeutic ag ents could thus interact in a non additive m anner to co ntribute to br ain ox idative st ress. S imilarly, i ndividuals with multiple r isk al leles would be m ore su sceptible to radiation effects than those w ith fewer r isk al leles [413] and t he al lelic architecture may under lie i nter-individual differences in radiosensitivity [414].

As the addi tional r eduction o f C NS r elapses provided b yi rradiation as compared to long-term intrathecal ch emotherapy is inexistent or sm all (about 3\% absolute bene fit), i rradiation co uld be r eplaced w ithout det riment on event-free or overall survival [127]. With 18 Gy of cranial irradiation, a large scale study estimated the Full scale IQ loss to 0,25 standard deviation per year over a period of 6 years postdiagnosis, w hile without cr anial i rradiation, t he decr ease w as insignificant [415] Replacing cr anial radiation therapy by high-dose or very high-dose intravenous MTX was found to be asso ciated with a f avorable long-term neurodevelopmental outcome [416]. However, given the lack of definitive proof of efficacy and its toxicity, it has been suggested that high-dose intravenous MTX should not be considered the "standard of care" for children with acute lymphoblastic leukemia [417].

5.1.5 Glucocorticoids

Glucocorticoids (GCs) are used for a prolonged period of time and at relatively high doses in the treatment of ALL in or der to reduce cell proliferation, promote cell cycle arrest, and induce cell death by apoptosis.

The theoretical possibility that GC leukemia therapy could also contribute to adverse neur odevelopmental out comes was first raised in 1995 [78] and was later confirmed, especially when using dexamethasone [79]. High dose of GC impaired the capacity of neur ons to su rvive various neurological i nsults, but e xclusively or predominantly in the hippocampus [103]. Evidence from a primate model indicated that high-dose GC enhance d the behav ioral toxicity of M TX and i rradiation [418]. Other drugs commonly use d in ca ncer ch emotherapy have al so been sh owed tot rigger neurotoxicity. The 5 -fluorouracil reduced BDNF and D CX Ievels in the hippocampus,
indicating al terations in neurotrophin I evels and neur ogenesis [419], an d co uld al so potentially interact with GCs.

The hippocampus plays a supportive role in associating complex multimodal information (especially associating external cues with an internal representation of context) and I aying do wn ne w memoryt races [420]. A m eta-analysis of st udies investigating the effects of acute GC administration showed that memory performance was impaired when GCs were administered before retrieval, but not when they were administered before learning [421], providing partial support for the model suggesting that cortisol enhances memory consolidation of the current event and its context whilst compromising its retrieval in memory [422].

GCs exert their action by binding to the GC receptor, which then acts as a transcriptional regulator of responsive genes. GC receptors are widely expressed in glial cells and neurons in limbic-cortical brain structures, especially in the hippocampus which play a crucial role in controlling the hypothalamo-pituitary-adrenocortical (HPA) axis responsiveness [423]. There is considerable variation among patients with regard to sensitivity to GC treatment and at relapse, a loss of sensitivity to GC is common [424]. GC receptors si gnaling ca $n v$ ary at se veral levels. Fi rst, the corticosteroidbinding globulin in blood regulates the availability of cortisol. Second, the multidrug resistance (MDR) P glycoprotein regulates the GC penetration through the blood-brain barrier. Third, the bi nding of GC tot he m ultimeric GC receptor-protein co mplex changes its conformation in an active form after dissociation from heat shock proteins. Fourth, st eroids can be i nactivated or regenerate in an act ive form. Fifth, the G C receptor is transferred into the nucleus and can interact with transcription factors. Sixth, the r ecruitment of co -repressors and co -activators induces the repression and transactivation of gene expression, respectively [425].

At the level of the GC receptor-protein, several germ line polymorphisms have been descr ibed int he GCr eceptor g ene (NR3C1). O ne of t hem, t he B cll R FLP polymorphism, corresponds to a C \rightarrow G substitution in intr on 2 and i s located 646 bp from the ex on/intron boundar y (NR3C1 IVS2+646C/G) [426]. A reduction in survival probability in children with ALL was associated with being homozygous for the G allele of the NR3C1 Bcll RFLP polymorphism, particularly in certain patients classified at high
risk based on co mmon clinical criteria or for a certain type of the treatment protocol [109]. However, in another study, no asso ciation was found between in vitro and/or in vivo resistance to prednisone and the presence of the Bcll polymorphism [427].

To su mmarize, am ongt hevarious sources ofch angein nGC action, polymorphisms of the gene encoding the GC receptor may account for differences in treatment responses. On the other hand, al though itis not cl ear how this intronic polymorphism would af fect the function (in v itro da ta a re not av ailable), it was associated with HPA reactivity and m ental health outcomes. Homozygous carriers of the Bcll polymorphism had an 30\% increased risk of developing a m ajor depressive episode [166]. Beyond the increased risk for depression, Bcll was associated with a form of depr ession m ore resistant to t reatment. P atients with a di agnosis of major depressive di sorder [428] and t reated w ith a sp ecific serotonin r euptake i nhibitor showed a t rend t owards lower decr ease in depression r atings [429] and lower response rates if they carried the Bcll polymorphism [172]. Treatment response rates were esp ecially lower in a su bgroup of B cll carriers with high co rticotrophin (ACTH) response t o a ch allenge using co rticotrophin r eleasing hor mone (CRH) j ust a fter suppression by dexamethasone [430]. In this study, ACTH levels in response to CRH challenge were higher in Bcll carriers, and even more so in homozygous patients than in het erozygous patients [172]. The B cll carriers with a cl inical depression were thus characterized by a hy perresponsive H PA ax is. M oreover, t he B cll has also been associated with a specific metabolic profile characterized by an increased response to the ACTH- and cortisol-suppressive effects of low-dose dexamethasone, and a body composition with increased abdominal fat suggestive of GC receptor hypersensitivity, but only early in life [431]. In line with the risk for depression, the Bcll polymorphism is associated with ch anges in the H PA response to a so cial st ressor. C ompared with subjects carrying t wo w ild-type al leles, the mean salivary co rtisol response to a standardized psy chosocial stress (The 'Trier Social Stress Test', or TSST) [432] was attenuated in Bcll G homozygotes. When the responses were averaged across three successive stress exposures, no significant elevation of cortisol levels was detectable in B cll G hom ozygotes [104]. In a follow-up st udy, male B cll G G ca rriers showed relatively di minished ACTH, se rum and s alivary cortisol levels. However, women (all using et hinyl-estradiol co ntaining or al co ntraceptives) sh owed hi ghest serum cortisol levels in response tothe T SST, which points towards sex by genotype interaction
[173]. The cortisol response could thus vary with the Bcll polymorphisms in depressed and in non depressed individuals, and am ong non depressed individuals with gender, or with the nature of the stressor.

Children treated for acute lymphoblastic leukemia with chemotherapy received higher rating by t heir parent on hy peractivity/inattention, em otional la bility, sl eep disturbances, listlessness and difficulty in peer relationship during the week when they received GC as compared to the week they did not receive GC [433, 434]. One can hypothesize that children treated with GC have different response according to GC receptor gene variants, but also that these effects can vary according to the child and the family mechanisms of coping with the stress of the disease and of its treatment. The same genetic variant of the GC receptor gene could thus enhance or decrease the HPA responses and he nce t he behav ioral/ a ffective problems as a function of t he psychosocial en vironment, w ith pot entially ad verse I ong term neur obehavioral and psychosocial consequences.

In addition to the Bcll RFLP polymorphism, other germ line polymorphisms may moderate t he risk of developing I ate neur odevelopmental ef fects following G C treatment. For example, different single nucleotide polymorphisms (SNPs) changed in vitro the transactivational ca pacity (ER22/23EK (allele f requency: 3\%), N363S (4\%), A3669G (15\%)) or the stability of the mRNA of the GC receptors (GR exon 9β A3669G). These GC receptor SNPs (ER22/23EK, N363S, 9β A3669G) can change the dexamethasone induced neg ative feedback on the HPA ax is and se veral of t hese variants have been found asso ciated with depression [435]. F urthermore, a common SNP (rs10482605 TC) is located in the promoter region reduced transcriptional activity and was in high linkage disequilibrium with the 9β A3669G SNP, creating an haplotype that co uld increase the risk for st ress-related di sorders [170]. The sa me is true for some m ineralocorticoid r eceptor v ariants that ar e found $i n l i m b i c ~ n e u r o n s ~$ (hippocampus, amygdale, septum) and show a high affinity for cortisol in these regions. Both mineralocorticoid and GC receptors operate in balance and genetic variants may explain i ndividual di fferences in toxic effects of t reatment as w ell a s in st ressresponsiveness. T hese pot ential ef fects may also vary with ot her genet ic effects unrelated to GC receptors. For example, cytosolic glutathione S-transferases (GST) play an important role in the protection against products of oxidative stress. They have
been suggested to play a role in steroid metabolism/resistance. The GSTT1 deletion polymorphism w as associated w ith i nitial response to GCs in ch ildhood acu te lymphoblastic leukemia [436] and mayt hus also contribute to ad verse effects. Cytochrome P450 family of enzymes represent can also account for inter-individual difference in response to various drugs. C YP3A4 is highly inducible by G Cs and, besides its role in the metabolism of a variety of drugs and carcinogens, it catalyzes the 6- β-hydroxylation of steroids [109]. Interindividual variability in CYP3A4 activity can partly be e xplained by a -290A/G pol ymorphism in the C YP3A4 promoter, al tering RNA and protein expression [437].

5.1.6 Conclusions

Demonstrating a relationship between a pol ymorphism at a single locus and a global neurodevelopmental outcome for a treatment that includes multiple drugs exerting cytotoxicity through a number of different pathways may appear as an insurmountable challenge. The fact that over the last 25 years, only two examples of pharmacogenetic approaches have gone from identification of gene variants to acceptance in practice (TPMT for 6-MP and UGT1 for irinotecan) in the prediction of acute sy stemic toxicity is by itself a measure oft his challenge [147, 437]. Pharmacogenetic studies will also have to report data from studies performed as long as a decade previously, as clinical endpoints such as IQ loss must be reached before the effect of a genotype can be tested. In addition, many factors can influence global neurodevelopmental outcome. Alternatively, surrogate endpoints of outcome obtained by brain imaging or brain event-related potential could be used as long as they provide earlier and reliable markers of the pathological process that lead to long term negative neurodevelopmental effects. More specific and supposedly se nsitive en dpoints (e.g., short-term memory m easure) co uld be use d, at t he co st oflimiting t heir cl inical significance in dai ly life. H owever, whichever t he endpoi nts selected t o m easure neurodevelopmental outcome are, they should always be seen as complex developmental traits. In order to explain the inter-individual differences for such complex traits, most likely there will be a substantial number of genes generating small or very sm all neur odevelopment adv erse effects (much sm allert han ag eor socioeconomic status for example), and few (if any) with moderate or large effects, at least dur ing no rmal dev elopment. A dopting a genome-wide approach rather than a
candidate gene approach could allow identification of previously unknown genes, but at the cost of larger sample size and of a significant risk of false positives that will have to be further tested using 'candidate gene' strategies. Difficulties also include applicability limited to specific treatment protocols and the challenge of unraveling complex genegene or gene-environment interactions.

A pr omising app roach to t his daunting task could be t o build m odels t hat integrate different fields of knowledge, such as neurodevelopmental physiology, biochemistry, phar macology, et c. [438], and s earch for I arge effects. I nor derto accountfor the outcome of a development that has become atypical since the diagnosis, the best model could be a multiple hit model. In a multiple hit model, genetic influences and ear ly life ev ents determine vulnerable phenot ypes that precede the diagnosis of cancer. This review suggests that the same type of pathological mechanisms co uld be at pl ay in det ermining the pre-cancer vulnerability and t he adverse effects of cancer treatment, despite the very specific and unusual nat ure of cancer treatment. Fo r example, oxidative stress affecting the ce rebral endothelium, neurons and glial cells appears as a major mechanism shared by agents as different as MTX and i rradiation. Oxidative stress is also a major mechanism implicated in the developmental consequences of anoxia/ischemia after a premature birth for example. Free radicals play a central role in the relationship between ischemia/reperfusion and oligodendroglial cell death [439, 440]. HPA axis, especially some of its key factors as the GC receptors, maternal care may program epigenetically the expression of the GC receptor gene. Epigenetic differences could have the same consequences as genetic polymorphisms and be influenced by polymorphisms [441]. Small effects influenced by the sa me gene v ariants and i nvolving t he sa me or i ntricate pa thways could t hus accumulate ov ertime before and dur ing treatment, and ul timately a ccount for a detectable effect. Gene-gene interactions and gene-environment interactions could be more easily modeled and t ested in such a multiple hit model, as they could al so be recurrent. A longitudinal approach that allows analyzing changes over time in the same children is also mandated by a multiple hit model. Now that progresses have been made in decr easing the ce ntral neu rotoxicity of ca ncer treatment (although m uch remains to be done), innovative strategies could allow us to r ise to the challenge of addressing the more specific needs of the children who carry a greater genetic risk for adverse neurodevelopmental outcome.

5.1.7 Figure

FIGURE 9. MTX-mediated homocysteine toxicity.
Simplified schema depicting the main steps involved in homocysteine toxicity following MTX t reatment. S AM functions as a sw itch bet ween t he m ethionine cy cle and t he transsulfuration pathway. MTHFR is balancing the homeostasis between methylation and DNA synthesis and repair while eNOS activity is buffering the endothelial HCy toxicity.

5.2 Article 2 - Predictive factors of internalized and externalized behavioral problems in children treated for acute lymphoblastic leukemia.

Sophie Marcoux ${ }^{1}$, M. Sc, Philippe Robaey ${ }^{1}$, M.D., Ph.D., Maja Krajinovic ${ }^{1}$, M.D., Ph.D., Albert Moghrabi ${ }^{2}$, M.D, and Caroline Laverdière ${ }^{1}$, M.D.

Authors' affiliations:
${ }^{1}$ Centre de R echerche de l'Hôpital S ainte-Justine, Université de M ontréal, M ontréal, Québec
${ }^{2}$ Service d' Hématologie-Oncologie, H ôpital deV erdun, U niversité de M ontréal, Montréal, Québec

5.2.1 Avant-propos

Il s' agit d' un article scientifique de co ntribution originale. Les données étaient collectées dans le cadre d'une étude longitudinale multidisciplinaire. La candidate a constitué et validé la base de données à anal yser après une revue extensive de la littérature, qui l'a conduite à formuler ses propres questions de recherche. Guidée par la rétroaction immédiate de son directeur de recherche, elle a suivi plusieurs formations avancées en statistiques, puis a effectué se ule toutes les analyses et la rédaction de I 'article. Cet ar ticle a ét é év alué par un co mité de pai rs de I a revue Pediatric Blood and Cancer. Il apparaît dans la version finale de la thèse tel qu'il a été resoumis àlar evue, après corrections, à u ne se ule exception près: le tableau résumant la littérature sur les problèmes de comportement dans la population d'intérêt (TABLEAU 18), est présenté ici, mais a dû être retiré de l'article, le nombre de tableaux inclus dans un article publié étant limité.

5.2.2 Abstract

Background. Pediatric cancer su rvivors are at i ncreased r isk ofvarious neurological and psychological problems. The prevalence of behavioral problems was assessed in a longitudinal study in pediatric patients with an acute lymphoblastic leukemia (ALL). Multilevel modeling was used to identify associated predictive factors.

Procedure. ALL patients and their parents $(\mathrm{n}=138)$ took part to this study. Patients were treated under the D ana-Farber C ancer I nstitute (DFCI) co nsortium protocols 91-01 or 95-01. M others filled out quest ionnaires providing a measure of behavioral problems for their child (at diagnosis and during the subsequent 4 years), and of their perceived familial stress (at diagnosis and post-induction).

Results. Prevalence o fi nternalized behavi oral pr oblems at di agnosis w as increased (42\% above 1 st andard deviation (s.d.); p < 0.001), but it no rmalized over time. Internalized problems resolved more slowly in the presence of medical variables associated with increased stress related to the disease (hospitalization duration, p < 0.001; relapse risk at diagnosis, $\mathrm{p}<0.001$). Externalized behavioral problems were within the expected normal range, but more sustained over time with the 95-01 than with the 91-01 treatment protocols ($\mathrm{p}<0.05$), likely due t o the type of corticosteroid (CS) used (dexamethasone versus prednisone).

Conclusions. Assessment of di stinct internalized and ex ternalized pr oblems assessment is required in this population. The impact of pharmacological variables on externalized behavioral problems is likely related to CS use.

5.2.3 Introduction

Long-term survivors of pediatric cancer are at increased risk for lower g lobal intellectual quotient (IQ) and specific neurocognitive deficits [116, 287] (e.g. problems in spatial, arithmetic and visuo-motor capacities, attention, memory, and processing speed [87, 284, 287-289]). Female gender [88, 111, 276], young age at diagnosis [88, 111], cranial radiotherapy (CRT) exposure [82, 118, 275, 306], and longer time elapsed post-diagnosis [111] are confirmed risk factors.

In pedi atric cancer st udies, neur opsychological out comes have been m ostly assessed by using one [69, 116-118, 122, 289, 291, 442, 443] or two time-points [123]. Their conclusions are however weakened by variability in pre-morbid status, limited sample size, and measurement errors leading to spurious findings. Because individual trajectories may be very different, repeated longitudinal measurements are preferred to assess individual changes and associated predictive factors [320], especially in chronic
conditions [444], like pediatric cancers. Drawbacks include larger attrition rate, longer duration and higher measurements costs, adding to the limited sample size for relatively rare pediatric cancer and lack of a m easurement instrument with acceptable validity over a wide age range [311].

Some longitudinal pediatric oncology studies have investigated long-term global IQ [124, 445] and specific neurocognitive decline [318]. Fewer studies have assessed behavioral out comes and av ailable findings appear co nflicting at first sight [69, 116118, 122, 130, 252, 255, 289, 291, 442, 443]. Some studies reported that group averages of patients' behavioral scores did not differ from norms [69, 116, 117, 130], nor from heal thy co ntrols [289, 443]. H owever, ot her r eports found increased behavioral problems in survivors [252, 255, 291, 442]. High (compared to standard) relapse risk (HR vs. SR) treatment doses [255] and use of CRT [291] were identified in some s tudies as risk factors for behav ioral out comes. Importantly, S awyer and coworkers reported that y oung patients (age 2-5) ex perienced m ainly i nternalized behavioral problems immediately after diagnosis. However, their ratings decreased to levels similar to those of a community control sample two and four years later [252, 446].

Based on t he pr evious findings, t his prospective I ongitudinal st udy ai med at assessing whether 1) i nternalized but not externalized pr oblems were transiently elevated post-diagnosis and whether 2) time-related factors (e.g. initial risk prognosis) accounted for this transient increase.

5.2.4 Methods

Study Population. Patients diagnosed with ALL and their families ($\mathrm{n}=138$) were recruited between 1993 and 1999 at the Ste-Justine Hospital. Inclusion criteria were: being ≤ 18 years old at the diagnosis, ALL being the first cancer occurrence, and having normal or corrected to normal hearing and vision. Sociodemographic, treatment, diagnosis and psychosocial descriptive statistics are presented in TABLEAU 15. Medical-related information was gathered from chart reviews. Informed consent was obtained from parents after approval by the Institutional Review Ethic Board.

DFCI Treatment Protocols. Patients were either treated on DFCI ALL Protocols 91-01 or 95-01 [82, 447]. Main protocol differences included the CS type administered (dexamethasone in 91-01 - SR: ($5 \mathrm{mg} / \mathrm{m}^{2} /$ day x 5 days/3 weeks cycle) and HR: (18 $\mathrm{mg} / \mathrm{m}^{2} /$ day $\times 5$ days $/ 3$ weeks cycle); prednisone in 95-01-(40 $\mathrm{mg} / \mathrm{m}^{2} /$ day $\times 5$ days $/ 3$ weeks cycle) and H R: $120 \mathrm{mg} / \mathrm{m}^{2} /$ day $\times 5$ day $\mathrm{s} / 3$ weeks cycle)), thetype of asparaginase used (E. Coli, PEG or Erwinia), doxorubicin (maximum dose: $360 \mathrm{mg} / \mathrm{m}^{2}$ in 91-01, and $300 \mathrm{mg} / \mathrm{m}^{2}$ in 95-01) and 6-mercaptopurine administration (per os or intravenous in 91-01).

Psychosocial t esting. Patient behav ioral pr oblems and m others' per ceived familial st ress were m easured at se veral t ime points. The C hild B ehavior C hecklist (CBCL) [311] provides global, i nternalized a nd ex ternalized beha vioral pr oblems scores. Distinct versions of the CBCL, one for children aged 2-3 years [313], and one for 4-18 years [312] were use d. B oth versions provide a g lobal beha vioral problems score, as well as internalized and ex ternalized problems scores. They bot h asse ss anxious/depressed, withdrawn, somatic problems and aggressive behavior syndroms. In addi tion, the version for the 2-3 y ears old pat ients includes sleep pr oblems and destructive behavior syndroms, while the version for the 4-18 years old includes social problems, thoughts problems, attention problems and delinquent behavior syndroms. A French-translated and validated version of the CBCL was used; translation was done by Fr ancine Lussi er, ne uropsychologist, C HU S te-Justine. It was completed by the mother at diagnosis (T1), week 52 (T3), week 104 (T4), week 156 (T5), and week 208 (T6). Baseline assessment (T1) was completed on average 17.7 days after the diagnosis announcement (s.d. = 17.5 days). Patients were between 2 and 18 years old at al I asse ssments, with few ex ceptions: 5 pat ients were >18 y ears old w hen their mother completed their last CBCLs. At the other end of the age range, 5 patients were <2 years old (3 were 23 moths old, 1 was 22 months and 1 was 20 months) at their first CBCL. As these few patients were close enough in age to the first and the last reference age groups of the 2-3 and 4-18 versions of the CBCL, only these two versions were used and the same corresponding age norms were applied for the whole sample. Available norms provide age and g ender-standardized T scores (mean = 50; S.D. $=10$). Test-retest correlations (1 week interval) are ex cellent: 0.85 (CBCL/2-3) and 0.89 (CBCL/4-18). Elevated scores are associated with more behavioral problems. A French version [144] of the Familial Well-Being Assessment (FWA [211]), a self-
reported questionnaire measuring perceived familial stress in parents of an ill child, was completed twice by mothers: at diagnosis (T1) and at week 11 (T2). This second time point corresponds to the post-CRT period, for patients assigned to experimental arms prescribing such treatment. CBCL was not administered at T2. This instrument uses a 6 -points Li kert scale; hi gher sco res indicate el evated st ress. The test-retest correlation (3 weeks interval) is 0.88 and the Cronbach- α value is 0.90 . CBCL and FWA average scores are presented in TABLEAU 15.

There was thus a total of five CBCL assessment time points, and 60.1% of the mothers completed at least the se cond to last and/or last asse ssments (T5 and T6). Families for which T5 and/or T6 measurements were not fulfilled didn ot di ffer (p > 0.05) from those who reached this completion criterion with regard to relapse risk at diagnosis (HR vs. SR), age at diagnosis, exposure to CRT and treatment protocol (9101 versus 95-01). Expectedly, there was a difference between the two groups with respect to relapse and death during the study period. Overall survival was not different according to the treatment protocol (91-01: 90.2\%; 95-01: 90.8\%; p value $X^{2}(n=138)$ $=0.91$).

Statistical anal yses. Multilevel st atistical modeling acco unts for two types of variables: level 1 and level 2. The level 1 variable is always related to change in time: each patient has his own 'trajectory' taking into account all the measurement times of the dependent variable. Assuming a linear equation fit and omitting random effects' terms, each participant's 'trajectory' has its own $y=m$ (time) $+b$ equation, where y is
 sample including n participants, there are thus n different values of m and b. Level 2 variables characterize the effects of inter-individual differences, e.g. gender or age, and can explain, partly or totally, m and b variance. The composite equation resulting from the multilevel model reflects the expression of inter-individual di fferences influencing the final outcome of interest, while taking into account intra-individual contributions to the change process.

Advantages of multilevel parametric modeling over traditional analyses include ability to model individual changes despite missing time points, non-violation of the assumption of independence for repeated measures (required for multiple regression),
and decr eased risk of co nfounding actual individual change with i nstrument measurement errors [318]. The ability to include in the modeling patients with missing time points is a major advantage, as missing measurement times are always present in longitudinal st udies and families having co mpleted all time points might constitute a biased sample. Final models were selected using SAS MIXED procedure. The level 1 (intra-individual) variable was time (TIME). Level 2 (inter-individual) predictive factors considered were: age at diagnosis (AGE), gender (GENDER), brain irradiation or not (CRT), relapse or not during study (RELAPSE), mother's score at diagnosis (FWAT1) and 3 months post-diagnosis (FWAT2), SR or HR diagnosis (RISK), number of days of hospitalization during induction (HOSPIT) and protocol 91-01 or 95-01 (PROTOCOL). The maximum likelihood est imation m ethod w as used t o est imate the par ameters. Criteria used for final model construction were: 1) the statistical significance of level 2 variable ($p<0.05$); 2) the percentage of variance explained; 3) the deviance, AIC and BIC adjustment criteria. The number of patients for which $0,1,2,3,4$ or 5 CBCL score time points were available were, 20, 20, 10, 18, 28 and 42, respectively. No case for which at least one CBCL time point was available was excluded from the analyses.

Normal di stribution of continuous data w as assessed using s kewness and kurtosis scores. H OSPIT had a non -normal di stribution and was log-transformed to achieve normality, allowing parametric testing. X^{2} tests and t-tests were respectively used to verify dichotomous and continuous data in bivariate preliminary analyses. Unless otherwise specified, p values ≤ 0.05 were considered statistically signific ant. All statistical tests were carried out using SPSS version 16.0, except for multilevel models (SAS 9.2) and prototype plots (Excel 2003).

5.2.5 Results

Prevalence of internalized and ext ernalized behavioral problems at diagnosis and 4 years later. While 42% of patients had internalized problems scores 60 at diagnosis, this proportion had decreased to only $20 \% 4$ years later. These proportions were r espectively 20% and 17% for ex ternalized pr oblems, cl ose to ex pected proportion in a normal distribution (16\%) (FIGURE 10). Average scores decreased with time for internalized problems (paired t test, comparing T1 and T6, $n=59 ; p<0.001$), but not externalized problems. However, they all remained below 60 at all the time
points (FIGURE 11). Among the patients with scores ≥ 60 at diagnosis, about a quarter still had score ≥ 60 at the end of study ($\mathrm{n}=11$ or 26.8% for internalized problems; $\mathrm{n}=5$ or 26.3% for externalized problems).

Linear multilevel modeling of internalized behavioral problems. Models including time, while excluding any level 2 v ariable, are referred to as base models. Base model for internalized problems is presented in TABLEAU 16 A. P arameters estimates suggest an initial CBCL score of 57.42 and a subsequent decreasing rate of -1.73 points per year post-diagnosis: CBCL (internalized) ${ }_{\mathrm{ij}}=57.42-\left(1.73\right.$ TIME $_{\mathrm{j}}$).

Effects of each I evel 2 v ariable on adj ustment cr iteria and on par ameters estimates were tested one by one, and t he variable was not considered further if its introduction into the base model: 1) did decrease adjustment criteria values, 2) did not show a st atistically significant parameter estimate, or 3) did not contribute to explain more than 1% of the variance. This was the case for relapse occurrence and treatment protocol. Contrary to our predictions, age at diagnosis, gender, and CRT were also rejected from the model. However, mother's FWA sco re at T1 and T 2, initial risk of relapse (SR or HR) and duration of hospitalization were retained in the model.

Combinations of retained level 2 variables were tested as potential final models, using the same selection criterion. In order to avoid correlations between independent variables, FWAT1 or FWAT2, but never both at the same time, were included in combinations tested. The selected final model equation is detailed in TABLEAU 16 A . Risk factors for internalized problems at diagnosis included: 1) having a mother with a high perception of stress related to familial environment three months post-diagnosis (FWAT2; p < 0.001), and 2) being assigned to HR group (RISK; p < 0.01). These 2 factors explained 25.4% of the observed variance related to initial status. Also, a longer hospitalization st ay (HOSPIT; p < 0.001) predicted a sl ower nor malization. The final model's parameters estimates indicated that for the average patient (i.e. a patient with a m other with a verage FWAT2, av erage H OSPIT, and S R di agnosis), the ex pected initial sco re was 54.31, with af ollowing decr ease of 0.71 poi nts/year. H aving a stressed mother (FWAT2) and H R RISK were associated with 4.76 and 6.40 points increase in initial status, respectively. RISK and HOSPIT impacted on rate of change (both: $\mathrm{p}<0.001$). Longer HOSPIT and SR versus HR were both associated with slower
normalization. Adjusting for HOSPIT, the decrease rate is -0.71 points/year for SR, and - 2.69 (= -0.71 - 1.98) for HR, which m ay appear co unter-intuitive. H owever, t his difference may ar ise from initial sco res for SR patients already being cl oser tot he normalized av erage, an dt hus leading to a flatter rate of ch ange, as illustrated in prototype plots (FIGURE 12 A, B). To summarize, patients with high FWAT2, Ionger HOSPIT and HR RISK had the highest internalized CBCL scores. A causal relationship between mothers' stress and patients' internalized problems was explored following Baron's analytic approach [448] (TABLEAU 17), and tested formally using Sobel's test (http://people.ku.edu/~preacher/sobel/sobel.htm). Sobel's test statistical significance was $p=0.05$. H owever, the sm all ch anges in explained v ariance a nd t he sm all decrease in the direct effect of the initial CBCL level (TABLEAU 17) suggest that the mediation effect of the mother's stress, although just reaching the statistical significance level, is only partial and very small.

Linear multilevel modeling of externalized behavioral problems. Variables likely associated with a hi gher risk of ex ternalized problems were al so identified using a linear model and a si milar se lection process. The equation for the bas emodel was CBCL $(\text { externalized })_{i j}=51.71-\left(0.45\right.$ TIME $\left._{\mathrm{j}}\right)($ TABLEAU 16, B $)$. The rate par ameter estimate was not statistically different from zero ($p>0.05$), in accordance with the trend observed for actual scores (FIGURE 11), suggesting stability over time when excluding level 2 variables.

The final selected model's equation is presented in TABLEAU 16, B. A higher CBCL score at initial assessment was associated with having a mother highly stressed at di agnosis (FWAT1) ($\mathrm{p}<0.001$), and to a lesser extent ($\mathrm{p}=0.057$) with treatment protocol (91-01 versus 95-01; PROTOCOL); PROTOCOL however, impacted on rate of ch ange ($p<0.05$). Patients treated on p rotocol 91-01, assu ming equal sco res for FWAT1, lost on average 1.43 points per year post-diagnosis, for a total of 5.7 points over the study period. For those on protocol 95-01, the increase was estimated at 0.03 points $(=-1.43+1.46)$ per y ear post-diagnosis. Although statistically significant, the clinical significance of a 0.12 increase over 4 years is negligible, and actually pointed to a lack of decrease over time. FIGURE 12 C illustrates prototype curves. Comparison with FIGURE 12 A, B underscores the relative stability in time, despite FWAT1 effects on initial status, the decrease over time being specific to protocol 91-01. Again, none of
the v ariables initially hypothesized t o be associated w ith i ncreased behav ioral problems (age at diagnosis, gender and CRT) was retained in the final model.

5.2.6 Discussion

At di agnosis, t he p roportion of pa tients with a hi gh I evel of i nternalized behavioral problems was twice higher than expected from norms (36% vs $16 \%, X^{2}, p<$ 0.001). Higher initial levels of internalized problems in the child were associated with an HR diagnosis and with higher mother's stress level after the induction treatment. These problems were transient and settled over the four years after diagnosis. However, Ionger than average hospitalizations during induction resulted in unabating levels of internalized problems, most evident in SR patients. By contrast, externalized problems were normative throughout the four-year study period. The mother's stress level at diagnosis was associated with the child's initial level of externalized problems. In addition, the 95-01 (versus 91-01) treatment protocol was associated with a m ore sustained level of externalized problems over the study period.

Overall, t hese r esults support ou r hy pothesis that behav ioral pr oblems are transient and return to normative levels when assessed 4 y ears post-diagnosis, in agreement with previous findings [69, 116, 117, 252, 289, 443, 446]. Importantly, our findings also poi nt out roles for specific factors leading to diverging individual trajectories.

Highers tress levelint he mother threem onths post-diagnosis, I onger hospitalization during induction and a HR diagnosis predicted overall higher levels of internalized problems. While FWAT2 is not related meaningful mediator for the child's level of internalized problems at T1, it is a marker of mother vulnerability to the stress of the initial steps of the disease and treatment. These three predictors share a se nse of heightened stress experience, esp ecially in the initial phase of the treatment. The subsequent decrease in the internalized problems scores (TABLEAU 16 A, model A) supports this interpretation of an i nitial st ressor. As longer hosp italization dur ation is due to more medical complications, it is expected that the patients going through more complications during the induction phase experienced higher levels of internalized problems. Moreover, several illness- and treatment-related symptoms such as fatigue
or anhedonia could have been perceived by the mother as internalized problems, such as depressed mood.

Treatment sp ecificities (i.e. pr otocol $91-01$ or $95-01$) m odulate t he r ate of change of ex ternalized problems. O ur model supports that the t rajectories for externalized problems remained more even with the 95-01 protocol than with the 91-01 protocol. CS differences (dexamethasone in 91-01; prednisone in 95-01) are plausible candidates to account for sustained level of externalized problems given their wellknown effects on behavior [96, 101, 102]. Evidences indicate that dexamethasone, as compared to prednisone, has superior cerebrospinal fluid penetrance ability, potency, toxicity, withdrawal syndrome-inducing capacity and side-effects [79, 95, 96, 447, 449452]. Indeed, in a large clinical trial (CCG-1922), children r andomized to dexamethasone ($6 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{day}$) had a lower central nervous system relapse rate and a superior si x-year ev ent-free su rvival t han ch ildren t reated on pr ednisone (40 $\mathrm{mg} / \mathrm{m}^{2} /$ day, over 28 days, with a 7 - to 10 -days taper) [452]. This advantage on ev entfree survival rate was not found in another large clinical trial (TCCSG-L95-14) in which similar dose of dexamethasone, but higher dose of prednisone $\left(60 \mathrm{mg} / \mathrm{m}^{2} /\right.$ day, over 31 days, with a 7-days taper) were used. The incidence of severe acute toxicity, including neuropsychiatric adverse effects, was however higher in the dexamethasone arm, but these di fferences were not st atistically si gnificant [453]. H owever, 10 y ears after randomization, no di fference in neurocognitive problems following dexamethasone or prednisone was reported in ALL survivors [454]. Of note, behavioral assessments were not included and may be more sensitive, especially in the short-term.

Maternal r eports of hi ghinternalized pr oblems scores at diagnosis were associated w ith hi gh level of m aternal st ress after induction. A s mother's stress management di fficulties m ay i nfluence he r ch ild's internalized pr oblems' per ception [130, 234, 236], we tested whether mother's stress post-induction was a mediator of patient's CBCL between the diagnosis and 1 year later [448]. This post-hoc hypothesis was not su pported. M other's stress post-induction sh ould t hus be regarded as a distinct, while correlated, phenomenon. Targeted intervention strategies should thus be developed not onl y for the m other, but al so for t he ch ildren t hemselves. Lev el of externalized problems at diagnosis was also associated with maternal stress level, but
at di agnosis. Mother's stress in this case was likely related to the pre-morbid status, but not to disease- and treatment-related experiences.

A transient increase in behavioral problems seems to occur at two years postdiagnosis (FIGURE 11). Typically, this time period corresponds to the end of the chemotherapy m aintenance cy cles. At this time, t he w eekly appoi ntments with t he treating oncologist are then replaced by monthly follow-ups. Fears of relapse are common at this point, especially for mothers, and as such, emotional strain associated to this transition period might account for this observation.

Being a girl, younger age at diagnosis and having received CRT did not predict behavioral problems. This lack of effect of CRT [116, 117, 442], gender [69] and age at diagnosis [69, 442] on behav ioral pr oblems have been pr eviously r eported. O nly Schultz and colleagues found an association between CRT [291] and more behavioral problems. H owever, di fferences in time el apsed post -diagnosis, t ypes of ca ncers included and assessment tools limit comparisons.

This study has limitations. The relatively small sample size and the low rate of behavioral problems limit the ability to identify long-term predictive factors. Single information so urce is another I imitation. It would hav e been i nteresting to asse ss associations between fathers-perceived familial stress and CBCL in children, and to contrast them with those obtained when using the mother-reported familial stress level. Also, we did not use self-reported questionnaires in children. As ALL affect predominantly y oung c hildren, se lf-assessment co uld onl y be done in as mall subsample and not longitudinally. Moreover, as internalized behavioral problems might be under reported by pa rents using CBCL [455], our findings may be all the more reliable.

Beyond t he nor malization ov er t ime, our results showed t hat the ca uses of behavioral pr oblems also di ffer acc ording t ot heir t ype (internalized versus externalized). Parent- and patient-oriented interventions during treatment should target and assess each type of behavior separately. Furthermore, the effects of CS should be carefully controlled, especially with regard to externalized problems. This matters given that a r ecent r andomized st udy su pports increased ev ent-free su rvival r ates with
dexamethasone over prednisone [452], and that following treatment protocols will likely be modified accordingly.

5.2.7 Acknowledgements

Conflict of I nterest: N one t o di sclose. We thank M élissa Lé vesque, w ho carefully reviewed this manuscript. Financial support: Fondation des Étoile/Fondation CHU Ste-Justine (SM) and CIHR (SM). Institut National du Cancer du Canada, Fonds de la Recherche en Santé du Québec, Leukemia Research Fund of Canada.

5.2.8 Tables and figures

TABLEAU 15. Descriptive statistics

Variable	n	X or \%	s.d.	range
Days of hospitalization	138	31	12	20-125
Patient gender	138	Boys: 57.2 \% Girls: 42.8 \%	---	---
Initial ALL risk of relapse at diagnosis	138	Standard: 44.9 \% Elevated: 55.1 \%	---	---
Age at diagnosis	138	6.0	4.3	0-17
Cranial radiation therapy exposure	138	$\begin{aligned} & \text { No: } 26.1 \text { \% } \\ & \text { Yes: } 73.9 \text { \% } \end{aligned}$	---	---
Relapse (during study period)	138	No: 89.1 \% Yes: 10.9 \%	---	---
Treatment protocol	138	$\begin{aligned} & 91-01: 37.0 \% \\ & 95-01: 63.0 \% \end{aligned}$	---	---
Survival (during study period)	138	$\begin{aligned} & \text { No: } 9.4 \text { \% } \\ & \text { Yes: } 90.6 \text { \% } \end{aligned}$	---	---
Mothers FWA scores at T1	116	2.39	0.62	1.32-4.11
Mothers FWA scores at T2	95	2.55	0.76	$1.20-4.61$
Patients total CBCL scores at T1	96	55.5	10.2	26-73
Patients total CBCL scores at T3	93	51.4	10.3	24-76
Patients total CBCL scores at T4	85	52.4	11.2	29-90
Patients total CBCL scores at T5	70	49.0	11.0	26-76
Patients total CBCL scores at T6	72	48.9	11.6	26-74

FIGURE 10. CBCL scores, by diagnostic categories.

Internalized behavioral problem scores at diagnosis $(\mathrm{n}=96)(\mathrm{A})$ and 4 years later ($\mathrm{n}=$ 72) (B). I dem, for externalized behavioral problems (C, D). White represents scores lower than 60; grey represents 60 -63 s cores (inclusively); bl ack represents scores higher than 63, with related patients percentages indicated.

FIGURE 11. Average CBCL scores over time.

Internalized versus externalized problem scores. ${ }^{* * *} \mathrm{p}<0.001$; paired t -test be tween T1 and T6 ($\mathrm{n}=59$ pairs). Respective number of patients available at $0,1,2,3$ and 4 years post-diagnosis: 96, 93, 85, 70, 72.

TABLEAU 16. Selected multilevel model with internalized problems (A) and externalized (B) CBCL score as dependent variable.

A

Fixed Effects	Parameters	Models		
		Base	Final	
Model for $\beta_{0 j}$	Intercept	γ_{00}	$57.42^{* * *}$	$54.31^{* * *}$
	FWAT2	γ_{01}	---	$4.76^{* * *}$
	RISK	γ_{02}	---	$6.40^{* *}$
Model for $\beta_{1 j}$	Slope	γ_{10}	$-1.73^{* * *}$	-0.71
	HOSPIT	γ_{11}	---	$7.46^{* * *}$
	RISK	γ_{12}	---	$-1.98^{* * *}$

Mathematical equation: $C B C L$ (internalized) $)_{i j}=Y_{00}+Y_{01}$ FWAT2 + γ_{02} RISK $+\left(\gamma_{10}\right.$ TIME $\left._{j}\right)+\left(\gamma_{11}\right.$ HOSPIT* * IME $\left._{j}\right)+\left(\gamma_{12}\right.$ DIAG*TIME $\left._{j}\right)$

B

Fixed Effects		Parameters	Models	
			Final	
Model for $\beta_{0 j}$	Intercept	γ_{00}	$51.71^{* * *}$	$54.05^{* * *}$
	FWAT1	γ_{01}	---	$4.28^{* *}$
	PROTOCOL	γ_{02}	---	$-3.84^{\&}$
Model for $\beta_{1 j}$	Slope	γ_{10}	-0.45	$-1.43^{* *}$
	PROTOCOL	γ_{11}	---	1.46^{*}

Mathematical equation: $C B C L(\text { externalized })_{i \mathrm{i}}=Y_{00}+Y_{01}$ FWAT1 + Y_{02} PROTOCOL $+\left(\mathrm{Y}_{10}\right.$ TIME $\left._{\mathrm{j}}\right)+\left(\mathrm{Y}_{11}\right.$ PROTOCOL*TIME $\left._{\mathrm{j}}\right)$
\& $: p=0.057 ;{ }^{*}: p<0.05 ;{ }^{* *}: p<0.01 ;{ }^{* * *}: p<0.001$
TABLEAU 17. Basal linear regression models necessary to test FWAT2 as a mediator of internalized problems evolution from

		Dependent variable									
		FWAT2 Model A $(\mathrm{n}=79)$		CBCL internalized problems score 1 year postdiagnosis							
		Model B$(\mathrm{n}=78)$	Model C(n = 79)		Model D$(\mathrm{n}=70)$						
		β^{25}	p	β	p	β	p	β	p		
Independent variables	Constant			1.44	<0.001	19.59	< 0.001	38.05	< 0.001	13.98	0.017
	CBCL internalized problems score at diagnosis	0.02	0.003	0.58	< 0.001	---	---	0.49	<0.001		
	FWAT2	---	---	---	---	5.70	0.001	4.16	0.015		
		$\mathrm{R}^{2}=0.11$		$\mathrm{R}^{2}=0.36$		$\mathrm{R}^{2}=0.14$		$\mathrm{R}^{2}=0.41$			

[^20]FIGURE 12. Prototype plots for internalized (A, B) and externalized (C) behavioral problems.

Internalized problems are presented in the context of a longer (38 days) (A) or shorter hospitalization (24 da ys) (B). A verage hosp italization was 31 da ys. P atients' characteristics used for internalized problems schematics: high / low FWAT2 = FWAT2 centered, pl us or minus 1 s . d.; I ong / sh ort hospitalization dur ation $=1 \mathrm{og}$ (days) centered, plus or minus 1 s.d.; diagnosis $=0(\mathrm{SR}) / 1(\mathrm{HR})$. For externalized problems schematics (C): hi gh / I ow F WAT1 = F WAT1 ce ntered, pl us or m inus 1 s. d.; PROTOCOL $=0(91-01) / 1$ (95-01).

A

In the context of a LONG hospitalization

B

In the context of aSHORT hospitalization

C

Article	n patients / n comparison, disease	Timeline	Assessment	Comparison with	Scores	Predictors
$\begin{aligned} & \text { Mulhern, } \\ & 1989 \text { [442] } \end{aligned}$	183 / n.a., various cancers	≥ 2 y posttreatment (appr. $\geq 4 y$ postdiagnosis) ${ }^{26}$	CBCL, crosssectional	Norms	$\begin{gathered} \text { Patients with } \\ \text { score }>1.5 \\ S D^{27}: \\ \text { Int. }=20 \% \\ \text { Ext. }=17 \% \\ \hline \end{gathered}$	No association found between CRT or age at diagnosis and CBCL score (Int. or Ext.). Gender not tested.
Anderson, 1994 [116]	100 (ALL only; CRT + chemo) / 50 (various cancers; chemo only)	≥ 2 y posttreatment (appr. $\geq 4 y$ post-diagnosis)	CBCL, crosssectional	n.a.	Scores (global, Int., Ext.) for both groups are within average limits.	No association found between CRT and CBCL score (Int. or Ext.). Gender and age at diagnosis not tested.
Noll, 1997 [117]	126 / n.a., ALL	4 y postdiagnosis	CBCL, crosssectional	Norms	Patients with score > 1 SD: Global $=18.3$ \%	No association found between CRT and CBCL score (Global, Int. or Ext.). Gender and age at diagnosis not tested.

${ }^{28}$ Self-report version of Achenbach's Child Behavior Checklist tests, intended for ages 11-18.

$\begin{gathered} \text { Hill, } 1998 \\ {[118]} \end{gathered}$	110 / n.a., ALL	$\geq 1 \mathrm{y}$ after receiving ‘cured’ status (Average of 14.7 years post-protocol treatment start) (appr. $\geq 8 y$ post-diagnosis)	Youth SelfReport (YSR) ${ }^{28}$, crosssectional	n.a.	n.a.	Greater psychological distress in patients with CRT (2400 Gy).
Noll, 1999 [443]	76 / 76, various cancers	During treatments (appr. < 2 y post-diagnosis)	CBCL, crosssectional	Classroom peers (race, age and gendermatched)	Scores in normal range	n.a.
$\begin{gathered} \text { Sawyer, } \\ 2000 \text { [252] } \end{gathered}$	39 / 49, various cancers	From diagnosis to 4 years later	CBCL, longitudinal	Community children (age and gendermatched)	More elevated global and Int. scores at diagnosis only	n.a.
$\begin{aligned} & \text { Recklitis, } \\ & 2003 \text { [122] } \end{aligned}$	101 / n.a., various cancers	≥ 2 y posttreatment (appr. $\geq 4 y$ post-diagnosis)	Symptom Checklist 90 Revised (SCL-90), crosssectional	Norms	31.7% of subjects with psychological distress	Association found between CRT and elevated psychological distress. Idem for younger age at diagnosis, for ALL patients ($n=28$). No such association found for gender, for ALL patients ($\mathrm{n}=28$).

114

$\begin{aligned} & \text { Buizer, } \\ & \text { 2006, [255] } \end{aligned}$	64 / 37 (siblings) and 98 (schoolmates), ALL and Wilms tumor	≥ 1 y posttreatment (appr. ≥ 3 y post-diagnosis)	CBCL, crosssectional	Siblings and age-matched schoolmates.	ALL patients with score > 1 SD: Global $=25$ \% $\text { Int. = } 39 \%$ $\text { Ext. }=21 \text { \% }$	Excess of internalized problem behaviors found in ALL high-dose group compared to low-dose MTX group. Gender and age at diagnosis not tested.
$\begin{aligned} & \text { Schultz, } \\ & 2007 \text { [291] } \end{aligned}$	2979 / 649, various cancers	Average of 11.5 years post-diagnosis	Behavior problem index (BPI) ${ }^{29}$, crosssectional	Siblings	Leukemia patients more at risk of suffering from all behavioral issues assessed	CRT found to be associated with more behavioral problems. (Model adjusted for age and gender).
$\begin{gathered} \text { Barrera, } \\ 2009 \text { [130] } \end{gathered}$	99 / n.a., various leukemias including stem cell transplant treatment	Pre-graft, 1 and 2 years post-graft	CBCL, longitudinal	n.a.	$\begin{gathered} \text { Patients with } \\ \text { score > } 1 \text { SD } \\ \text { pre-graft: } \\ \text { Global = } 26 \\ \% \\ \text { Int. = } 33 \% \\ \text { Ext. = } 19 \% \\ \text { Patients with } \\ \text { score > } 1 \text { SD } \\ \text { post-graft: } \\ \text { Global = } 13 \\ \% \\ \text { Int. = } 13 \% \\ \text { Ext. }=13 \% \\ \hline \end{gathered}$	Positive association found between high maternal distress and patient's internalized problems. Positive association found between CRT and externalized problems. Gender and age at diagnosis not tested.

[^21]115

Campbell, 2009 [289]	$30 / 30$, ALL	Average of 6.1 years posttreatment (appr. ≥ 8 y post-diagnosis)	CBCL and Adult Behavior Checklist (ABCL), crosssectional	Healthy peers, age and gendermatched	No difference (global) when comparing to control group.	Having received CRT was an exclusion criteria. Gender and age at diagnosis not tested.
$\begin{gathered} \text { Stenzel, } \\ 2010 \text { [69] } \end{gathered}$	87 / n.a., ALL	Postconsolidation and end of treatments (average of 67.5 and 126.6 weeks postdiagnosis, respectively) (appr. $\geq 2 y$ post-diagnosis)	Behavior Assessment System for Children (BASC), two time points	n.a.	All average scores in normal range	Having received CRT was an exclusion criterion. No association found between age at diagnosis or gender and any of the behavioral scales, with the exception of younger age at diagnosis, associated with more aggression problems.

5.3 Article 3 - Role of NOS3 DNA variants in externalized behavioral problems in childhood leukemia survivors.

Sophie Marcoux ${ }^{1}$, M.Sc.; Philippe Robaey ${ }^{1}$, M.D. Ph.D., Annabel Gahier ${ }^{1}$, M.Sc. M.D., Malgorzata Labuda ${ }^{1}$, Ph.D., Ju lie R ousseau ${ }^{1}$, M.Sc., Daniel S innett ${ }^{1}$, Ph.D., Albert Moghrabi ${ }^{1}$, M.D.; Caroline Laverdière ${ }^{1}$, M.D.; Maja Krajinovic ${ }^{1}$, M.D. Ph.D.

Authors' affiliations:
${ }^{1}$ Centre de R echerche de I'Hôpital S ainte-Justine, Université de M ontréal, M ontréal, Québec

5.3.1 Avant-propos

Il s'agit ici aussi d'un article scientifique de contribution originale. Les données étaient collectées dans le cadre d'une étude longitudinale multidisciplinaire. La candidate a constitué et validé la base de donn ées à analyser ap rès une revue de la littérature et un approfondissement majeur de ses connaissances en génétique, qui l'ont conduite à formuler ses propres questions de recherche. Le travail de validation a été ex tensif, et a no tamment co mpris une co llecte de données dans les dossiers cliniques. Sous la su pervision de so n directeur et de sa co-directrice, la candidate a appris les techniques d'analyses spécifiques et ef fectué se ule toutes les analyses. L'article apparaît ici dans la forme intégrale qu'il avait lors de sa soumission à la revue Journal of Pediatrics.

5.3.2 Abstract

Objective. Neuropsychological pr oblems occurrence varies among childhood cancer survivors, and associated risk factors have not been fully deciphered. We wanted to study the role of genetic variants in behavioral problems in this population.

Study design. Behavioral problems in pediatric acute lymphoblastic leukemia (ALL) pa tients ($\mathrm{n}=138$) were investigated Iongitudinally, usi ng the Child B ehavior

Checklist (CBCL) q uestionnaire and m ultilevel st atistical modeling. 34 ca ndidate polymorphisms, related to anti-cancer drug effects, were investigated.

Results. NOS3 gene functional polymorphisms showed significant association: patients homozygous for t he m inor allele at investigated I oci sh owed decr eased externalized behavioral problems scores over time (t-tests: $\underline{T-786 C} n=69, p=0.003$; G894T $n=71, p=0.065)$. The effect was even more pronounced for individuals that are hom ozygous for the -786C844T haplotype (t-test, $\mathrm{n}=69, \mathrm{p}<0.001$) and r esults were supported by multilevel modeling analyses ($p<0.001$). No such association was observed for internalized behavioral problems.

Conclusion. NOS3v ariants modulate ex ternalized pr oblems individual trajectories, likely in relationship with glucocorticoids (GC) exposure.

5.3.3 Introduction

Behavioral problems may be increased in a si gnificant but transient manner in childhood cancer patients [252, 446]. We reported that behavioral problems are best predicted by t ime-circumscribed f actors in A LL su rvivors, su ch as disease-related variables, and treatment-related pharmacological variables (Marcoux et al. under review). S tudies also su pport ar ole for sp ecific chemotherapeutic agents in t he manifestation o f behav ioral pr oblems in pedi atric cancer su rvivors, most no tably methotrexate (MTX) [8, 68, 85] and G C [96]. T hrough folate depletion, MTX administration can lead to increased homocysteine (Hcy) levels, which is associated with neur otoxicity [354]. Exogenous GCs disrupt the hypothalamic-pituitary-adrenal axis response, which can lead to increased risk of mental health-related problems [96].

Despite t he use of s tandardized dr ugs and d osing, treatment-related si deeffects affect patients differently. Genetic components, particularly polymorphisms associated with drug effects are likely involved. Given the MTX- and GC side-effects
profile on the nervous system, related genes variants could account for inter-individual differences in behav ioral pr oblems obse rvedi nch ildhood A LL pat ients. Methylenetetrahydrofolate r eductase (MTHFR), methionine r eductase (MTR), methionine synthase reductase (MTRR), endothelial nitric oxide synthase (NOS3) and cystathionine β-synthase (CBS) gene polymorphisms have been found to be associated with variations in homocysteine levels [456]. The GC receptor (NR3C1) is a key dow nstream G C effector; N R3C1 v ariants have been sh own toi nfluence exogenous GC therapeutics and si de-effects [457]. Transcriptional act ivity resulting from NR3C1-GC coupling and binding to glucocorticoid receptor elements (GRE) is highly regulated [458]. Several additional factors may thus modulate downstream GCrelated effects, including nuclear factor kappa-B (NF-kB) 1 and 2, and NF-kB inhibitor (NF-kB I) A [459]. GC-mediated apoptosis of ALL cells is regulated by several components of the apoptotic machinery, of which Bcl-2 interacting protein Bim and Bcl2 associated X protein Bax seem to be important contributors [460, 461].

Childhood ALL is one of the first cancers for which extensive pharmacogenetic studies have been done. S everal pol ymorphisms influencing su sceptibility to A LL, survival r ates, r elapse r isk, and t reatment-related t oxicity ha ve been i dentified by several g roups including our s, as reviewed in [137, 149]. D espite the considerable potential implications of such studies, there have been few phar macogenetic studies linking neu ropsychological out comes following an ti-cancer d rugs administration. Exceptions are intelligence quotient (IQ) decr ease [91] and attention di sorders [189] investigations. Of not e, medical treatments, su ch as exposure to r adiation therapy, appeared to interact with the genetic effects [91].

Because of their ability to induce neur otoxicity, we post ulated that ov er time, variants of genes responsible for the effects of the anti-cancer drugs MTX and G C's effects could affect the prevalence of behavioral problems in patients. This study aims at testing the role of candidate polymorphisms in a longitudinal follow-up study design on behavioral problems in childhood ALL patients, using a well-validated questionnaire.

5.3.4 Methods

Patient popul ation is composed of 138 patients diagnosed with ALL bet ween 1993 and 1999 (age range, 0-18 y ears old) at CHU S te-Justine, M ontréal, Québec, Canada. All patients were treated according to the Dana-Farber Cancer Institute ALL protocol 91-001 or 95-001 [82, 447]. Prior cancer treatment was an exclusion criterion. The majority of patients were of European descents (89.1\%). The outcome of interest, patients' behav ioral p roblems, was evaluated at diagnosis, and 1, 2, 3 and 4 years post-diagnosis. At each time point and for a maximum of 5 repeats, mothers completed the CBCL, a frequently use d and w ell validated instrument to investigate behavioral problems in this population [311]. $0,1,2,3,4$ and 5 m easurements for the sa me patient were available respectively for 20, 20, 10, 18, 28 and 42 participants. Age- and gender standardized (mean: 50, s.d.: 10) T scores were used for assessment of problem pr evalence and st atistical models. Research pr otocols were reviewed and approved by the CHU Ste-Justine's Research Ethic Board. Parents' informed consent was obtained from all participating families.

Genotyping and pol ymorphisms. Candidate pol ymorphisms were MTHFR (C677T, A1298C), MTR (A2756G), MTRR (A66G), NOS3 (T-786C, G894T), CBS (844 Ins 68), Bax (T-1962G, A-1836T, A-1076G), Bim (T-1928G, T-1894C, C298T, A2251T, G2252T), NR3C1 (G-3807A, A-627G, G200A, A1220G, C646G, T1511C), NF-kB 1 (T1796C, -397 Del CAAT, A 5 Int 1 G, A 6 Int 1 G, C 8 Int 23 T), NF-kB 2 (-1867 Ins G, C-118T, A-140G, G-26T), NF-kB IA (C-1433T, C-326T, A174G, C1050T). Genotyping details of MTX effects-related polymorphisms have been publ ished previously by our group [91]. The same a pplies for NR3C1 polymorphisms G-3807A, A-627G, T1511C and C646G [161]; G200A and A1220G [109]. All NF-kB 1, 2, IA polymorphisms, as well as Bim and B axg ene v ariations were se lected from t he N ational C enter for Biotechnology I nformation (NCBI) dat abase. The f requency of m inor allele was not sufficiently high for 7 selected polymorphisms (CBS 844I ns68; B ax A-1836T; NR3C1 A-627G/G200A/A1220G/T1511C; NF-kB 1 T-1796C) to carry on preliminary analyses; these polymorphisms were not further considered. Two polymorphisms (Bax A-1076G; NF-kB IA A 174G) w ere not in H ardy-Weinberg e quilibrium ($p<0.05$), and w ere excluded from the analyses, leaving a total of 25 candidate polymorphisms.

Statistical anal yses. Longitudinal da ta w ere anal yzed t hrough multilevel modeling, in which a level 1 variable modeled time as a dependent variable, and level 2 v ariables m odeled t he impact of inter-individual specificities on variation intime (initial st atus and r ate of ch ange) as dependent v ariables. I nter-individual (level 2) variables were t he po lymorphisms identified as potential g enetic pr edictors of behavioral problems changes. The major advantage of this statistical method is that it takes into account patients with incomplete set of measurement results in regression parameters estimations, in addition to those of patients with full measurement sets. All, $5,4,3,2,1$ and 0 time points were available respectively for $30.4 \%, 20.3 \%, 13.0 \%$, $7.2 \%, 14.5 \%$ and 14.5% of patients.

Skewness and kurtosis scores were verified to ascertain normal distribution of continuous variables. These scores ca Iculations and ot her cl assical anal yses (descriptive statistics, t tests) were performed using SPSS (version 16.0). Multilevel parametric analyses were conducted using SAS MIXED procedure (SAS version 9.2). Linkage di sequilibrium (LD) bet ween N OS3 gene variants T-786C and G 894T was calculated using Haploview (version 3.32). Validation and p value for LD were obtained by EH (http://linkage.rockefeller.edu/ott/eh.htm) and PHASE (version 2.1) was used to infer NOS3 hapl otypes [462, 463]. Office (version 2003) was used for prototype pl ot production. Given m ultiple t esting, $p v$ alue w as set at 0.002 usi $n g B$ onferroni's correction (0.05 / 25 ca ndidate polymorphisms). This p value was used in multilevel final model selection; for preliminary analyses and unless otherwise specified, $p<0.01$ was considered significant.

5.3.5 Results

Prevalence of behavioral problems. Based on the reference norms, 16\% of the children were expected to have CBCL scores above 60. The proportion of patients in this sample scoring ≥ 60 for global behavioral problems index were 36% and 21%, at diagnosis and 4 y ears I ater, respectively. For internalized pr oblems, p roportions of patients above normal score range were 42% (p 0.001) and 20% (n.s.) respectively. Regarding externalized problems at these two time points, 20% and 17% of patients were above 60 (both n.s.) respectively. These findings imply stability of externalized problems levels despite the significant life changes accompanying the initial treatment
period, but sh owed at ransient increased prevalence of internalized problems during the same period (Marcoux et al., under review).

Influence of NOS3 variants on externalized problems. As preliminary analyses, global CBCL scores were compared for individuals that are homozygous or carriers of minor allele (both heterozygotes and homozygote) for 6 MTX and 19 GC drug effectrelated pol ymorphisms. A nalyses were done using the I atest t ime p oint av ailable between 3 and 4 years post-diagnosis (data not shown). The only significant difference (using $\mathrm{p}<0.05$) found was when patients were analyzed using NOS3 T-786C polymorphism, more specifically for CC individuals compared to remaining genotypes (t test; $\mathrm{n}=80 ; \mathrm{p}=0.012$).

Both internalized and ext ernalized problems contribute to the global behavioral problem score. As genetic variants may impact on each type of behavioral problems, they were further considered se parately. No difference was found at a ny time point between NOS3 T-786CC and remaining genotypes for internalized problems ($p>0.05$, data not shown). However, with regard to externalized problems, CC patients showed significantly lower CBCL scores 4 years later compared to other patients (t test; $\mathrm{n}=69$; $p=0.003$; FIGURE 13 A). We previously reported that TT carriers for NOS3 G894T polymorphism were more likely to suffer from long-term IQ deficits [91]. However, with regard to externalized problems, the difference between homozygous TT individuals and patients with other genotypes for this second NOS3 polymorphism was only found to be onl y marginally significant at 4 y ears post-diagnosis (t test; $\mathrm{n}=71 ; \mathrm{p}=0.065$) (FIGURE 13 B).

LD was previously reported bet ween these si ngle nucl eotide pol ymorphisms (SNPs) [464]. Our analysis confirmed LD and showed that four inferred haplotypes had frequencies compatible with su ch anso ciation (TABLEAU 19; p <0.001). A difference for externalized problem scores between homozygotes for the -786C894T haplotype (arbitrarily named haplotype 2, TABLEAU 19) and patients with other haplotypes was statistically si gnificant (t test; $\mathrm{n}=69$; $\mathrm{p}<0.001$) at 4 years postdiagnosis (FIGURE 13 C). The av erage difference was more than 10 C BCL points, which is clinically meaningful.

Multilevel m odel of NOS3 va riants as predictors of i ndividual externalized problems trajectory. To investigate the pot ential role of hom ozygosity for NOS3 * 2 haplotype on individual trajectories of externalized problems, multilevel modeling was used. Average variation in time of externalized problems scores was first modeled, excluding any inter-individual differences (Base model - TABLEAU 20). P arameter estimates indicate that on average, the initial score at diagnosis was 51.71, and that scores decreased of 0.45 points/year post-diagnosis. In other words, the best fitted base model taking into account all patients' scores (i) at all time points available (j) is CBCL score ${ }_{\mathrm{ij}}=51.71-\left(0.45^{*}\right.$ (years post-diagnosis) ${ }_{\mathrm{j}}$). After four years postdiagnosis, the av erage total decrease was 1.8 points, which bears no clinical significance.

The relationship between the homozygosity for *2 haplotype and individual trajectories was investigated next (*2*2 vs. others individuals model - TABLEAU 20). The presence of *2*2 had a hi ghly significant impact on the rate of change in CBCL scores. U sings tringent B onferroni's corrected $p v$ alue of 0 . 002.I ndividuals homozygous for *2 hapl otype showed an av erage de crease in externalized problem scores of 3.5 points/year post-diagnosis ($p<0.001$), for a total decrease of 14 points after 4 y ears. Meanwhile, ot her patients' sco res remained remarkably st able, with a total decrease of only 1.32 points over the same 4 year period ($(-3.50+3.17) /$ year * 4 years). Prototype plot for the two patients groups is shown at FIGURE 14. Since 15 patients were not Caucasians, we performed a nalyses limited to Caucasian pat ients only and si milar results were obt ained (impact of *2*2: $p=0.003$). The presence of *2*2, however, did not have any effect on the CBCL initial scores. For individuals with and without *2*2 haplotype, the initial average scores were 53.81 and 51.69, respectively.

5.2.6 Discussion

Gene variants involved in ant i-cancer dr ug effects were investigated for their role in beha vioral problems in childhood ALL patients over a 4 y ear period following diagnosis. D espite the st ability ine xternalized pr oblem sco res for the majority of patients, a subset of them carrying two minor alleles for two NOS3 polymorphisms
showed significant decreases in scores over time, as compared to carriers of any other alleles combinations. No such association was found between the investigated polymorphisms and differences in individual trajectories for internalized problems.

Nitric oxide (NO) act s as a m olecular se cond m essenger and i s a pot ent vasodilator. N O pr oduction inthe ner vous system depends on N OS1, but al so on NOS3, which i s expressed in hi ppocampal pyr amidal ce lls. ([465] p. 76) . A ltered activity has been reported for N OS3 T-786C [196, 197] and G 894T m inor variants [200], resulting in decr eased N OS3 g ene promoter ac tivity [196] and d ecreased N O production [200], r espectively. Evidence is suggestive of an asso ciation bet ween decreased NOS3 activity and abnormally low levels of agg ression and i mpulsivity, in humans [198] and animals [466]. $\mathrm{NOS3}^{-1-}$ mice also show lower levels of a ggression [466] compared t o w ild-type ani mals. I na ddition, $\mathrm{N} \mathrm{OS3} 3^{-1-}$ micet reated w ith dexamethasone did not sh ow the increase in N OS act ivity and sh owed no N Omediated v ascular pr otection [467]. In r ats, Gulati and co workers found t hat N O mimetics have a pr otective i nfluence ag ainst the neur obehavioral al terations and accompanying oxidative injury m arkers following ex posure to em otional st ress using the restraint stress paradigm [468]. In a s tudy involving 167 su icide at tempters, 92 suicide completers and 312 control participants, Rujescu and co-workers found an association bet ween N OS3 minor alleles and a protective phenot ype against suicide [198]. Together, these findings argue in favor of a contribution of NOS3 minor alleles to decreased externalized problems.

Consequently, patients with minor alleles for NOS3 polymorphisms would have been ex pected to hav e lower I evels of ex ternalized pr oblems scores, co mpared to others. This was indeed the case, with externalized problems decreasing with time to lower levels in individuals homozygous for -786C. We already demonstrated (Marcoux et al., under review) that externalized problems tend to decrease more steeply over the four y ears of follow-up in A LL pat ients whor eceived a m ore pot ent GC treatment (dexamethasone compared to prednisone) in the first two years of treatment, wh ich demonstrates the effects of G C ex posure on externalized pr oblems in this cohort. Accordingly, it is expected that following exposure to intensive GC regimen during the treatments, the minor allele NOS3 carriers showed a m ore steeply descending slope,
as compared to major NOS3 allele homozygotes, as this subset of patients returned to the low levels of externalized behaviors problems that existed prior to the disease.

We also found NOS3 T-786C and G894T SNPs to be in LD. This has also been reported in a German study [464], while inconclusive in Ja panese popul ations [469, 470]. The decrease in CBCL score was more pronounced when classifying patients by haplotype, rather than by si ngle S NPs, su ggesting co mplementary effects of minor alleles. The same haplotype, with a supplementary NOS3 SNP, also has been associated with a protective phenotype against suicide completion [198].

We have previously identified that homozygous individuals for the minor T allele of G894T polymorphism were at higher risk for long-term IQ decline in this population [91]. Moreover, impact differences of G894T variants on IQ decline were exacerbated when adj usting for whether br ain i rradiation was included as part of the treatment. However, the impact of this variant was only marginal with respect to behavioral problems, and its interaction effect with brain irradiation was not significant (data not shown). Finally, haplotype *4 (-786T 894T), rather than haplotype *2, was associated with neur ocognitive de cline (Krajinovic, unpubl ished dat a). G enetic lia bilities to cognitive and behavioral problems thus appear distinct even when analyzed within the same gene. Globally, MTX-related Hcy level modulation was suspected to be the main neurotoxicity factor when investigating neur ocognitive out comes [91], while G C a re more likely to have an effect on behavior.

The I imited sa mple si ze is a I imitation to this study. S ome ot her of the 25 investigated polymorphisms associations may have been left undetected given lack of statistical power. These findings should be r eplicated as sampling effects might al so account for random association.

To our knowledge, this is the first study to report that NOS3 genetic specificities might impact on behav ior in a ped iatric population, a finding reported so far in adult patients only [198, 471, 472]. Evidence from this study and others [91, 473] support an important role for NO in normal and abnormal development of CNS, and provide additional cues in understanding chemotherapy-induced neurotoxicity, and in designing future intervention strategies for the management of externalized problems in pediatric oncology patients.

5.3.7 Acknowledgements

We w ould I ike t ot hank M élissa Lé vesque, w ho ca refully r eviewed t his manuscript.

5.3.8 Tables and figures

TABLEAU 19. Patients demographic and NOS3 polymorphisms-related descriptive statistics.

Variable	n	X or \% (n)	s.d.	range
Gender	138	Boys: 57.2 \% Girls: 42.8 \%	---	---
Age at diagnosis	138	6.0	4.3	0-17
Genotype frequency, NOS3 T-786C	130	TT: 32.3 \% (42) TC: 55.4 \% (72) CC: 12.3 \% (16)	---	---
Allelic frequency, NOS3 T-786C		$\begin{aligned} & \text { T: } 60.0 \% \\ & \text { C: } 40.0 \% \end{aligned}$	---	---
Genotype frequency, NOS3 G894T	134	GG: 41.8 \% (56) GT: 47.0 \% (63) TT: 11.2 \% (15)	---	---
Allelic frequency, NOS3 G894T		$\begin{aligned} & \text { G: } 65.3 \% \\ & \text { T: } 34.7 \% \end{aligned}$		
Haplotype frequency	130	$\begin{aligned} & 1 \text { - CG: } 14.2 \%(37) \\ & 2 \text { - CT: } 26.5 \%(69) \\ & 3 \text { - TG: } 51.2 \%(133) \\ & 4 \text { - TT: } 8.1 \%(21) \end{aligned}$	---	---

TABLEAU 20. Multilevel modeling of the impact of *2*2 homozygosity on externalized problems, from diagnosis to four years post-diagnosis.

Fixed Effects		Parameters	Models		
		Base	*2*2 carriers vs		
Model for β_{0}	Intercept		γ_{00}	$51.71^{* * *}$	$53.81{ }^{* * *}$
	Haplotype *2*2	$\gamma 01$	---	-2.12	
Model for $\beta_{1 j}$	Slope	γ_{10}	-0.45***	-3.50 ***	
	Haplotype *2*2	γ_{11}	---	$3.17{ }^{* * *}$	

*** $: p<0.001$. Patients were coded «0» if *2*2, «1» otherwise.

FIGURE 13. Average externalized problem CBCL scores according to patients' NOS3 genotypes.

Genotypes at C-786T (A) and G894T (B) loci, and to *2 haplotype homozygosity (C). ** $: p=0.003 ;{ }^{* * *}: p<0.001$. (A, B) Patient numbers at $0,1,2,3$ and 4 years postdiagnosis were, respectively, $80,77,70,58$ and 59 for TT/TC, and $13,13,11,8,10$ for CC genotype of T-786C; 86, 82, 72, 62, 61 for GG/GT, and 10, 11, 11, 7, 10 for TT genotype of G894T polymorphism. (C) P atient numbers for each subgroup, at each time measurement, are indicated in respective columns.
A.

B.

C.

FIGURE 14. Prototype plot illustrating the change in rate of externalized problems during the study period in individuals with and without *2*2 haplotype.

CHAPITRE 6 : DISCUSSION

Cet av ant-dernier chapitre utilise les principaux résultats exposés dans cette thèse pour aborder sous différents angles de nouvelles questions de recherche. Une première section revoit les évidences présentées en regard du savoir actuel : comment ces connaissances acquises s'inscrivent-elles par r apport aux connaissances actuelles? D ans un deu xième temps, I es implications potentielles et co ncrètes des résultats obtenus sur la pratique clinique sont discutées. Dans la troisième section, les limites méthodologiques so nt décr ites. Fi nalement, Ia quatrième et de rnière se ction s'ouvre surles perspectives à co urt, moyen et long-terme : de nouveaux projets de recherche en lien avec ce projet d'études doctorales y sont proposés.

6.1 Mise en contexte des résultats

Les évidences présentées (Article 2 , A rticle 3) apportent des éléments nouveaux pour approfondir la discussion sur la prévalence réelle des problèmes de comportement dans cette population, l'utilisation des connaissances génétiques pour identifier les facteurs de risque, Ie ch oix du type de G C principal à ut iliser dans les traitements de la LLA pédiatrique, et les spécificités apparentes de la neurotoxicité subséquente auxtraitements. Globalement, les connaissances acquises incitent à reconsidérer les inconvénients associés aux études uni-disciplinaires qu'il conviendrait d'appeler «en silo», en r egard des avantages et dé fis qui accompagnent une perspective multidisciplinaire.

6.1.1 Prévalence des problèmes de comportement

Des variations substantielles existent dans la description des problèmes de comportement des patients pédiatriques atteints de cancer (consulter Erreur ! Source du renvoi introuvable.) : les études supportent des prévalences d'indices cliniques de problèmes de comportement soit plus élevées, soit similaires, soit plus faibles chez ces patients comparativement à des groupes contrôles [474]. Aumoins 4 possibilités doivent être considérées pour expliquer ces conclusions a priori irréconciliables:

1) Il est possi ble que certains styles de co mportements des patients pé diatriques atteints de cancer diffèrent de ce ux des enfants bien portants, qui ne se raient pas bien r eprésentés dansl es échantillons normatifs desi nstruments ut ilisés, influençant leurs scores sur des mesures de problèmes de comportement [220, 475].
2) Des différences notables dans le soutien multidisciplinaire accordé aux patients et à leur famille pourraient moduler significativement le processus d'adaptation et, en conséquence, l'ajustement final.
3) La question de l'hétérogénéité est particulièrement problématique dans ce domaine.
a. Hétérogénéité méthodologique. À l'exception du CBCL pour les problèmes comportementaux, la majorité des méthodes utilisées pour obtenir un indice de problèmes de comportement sont d'usage peu répandu, quand ils ne sont pas carrément des «outils-maison» pour lesquels des études de validation et des tests de fidélité n ' ont pas été faits. Utiliser des questionnaires avec différents répondants (le patient, le père, la mère, le clinicien) joue aussi un rôle dans la variabilité des évidences rapportées.
b. Hétérogénéité des pathologies. La rareté des cancers pédiatriques encourage l'agrégation de patients ayant reçu des diagnostics, et conséquemment des traitements, différents. Cela peut influencer les résultats aux indices de problèmes de co mportement, puisque certainstraitements peuvent causer des effets se condaires pouvant êt re confondus avec les symptômes de problèmes de comportement. Des variabilités dans la douleur ressentie ou dans la prévalence d'incapacités post-traitement, par exemple, peuvent aussi avoir un effet similaire lorsque des mesures de qualité de vie sont utilisées.
4) Les problèmes de co mportement s'inscrivent dans un processus dynamique au cours du temps, à l 'évolution par fois complexe: les conclusions tirées d'études transversales doivent être interprétées avec prudence, puisque qu'elles ne peuvent être extrapolées à d'autres moments que celui inclus dans le devis expérimental.

La plausibilité d'un modèle ou d'une théorie se renforce av ec l'accumulation d'évidences. L es données présentées dans cette thèse ontles avantages de (1) provenir d'une étude impliquant un groupe de patients relativement homogène, et (2) d'avoir utilisé un instrument validé permettant des comparaisons avec des études
similaires. Finalement, le devis longitudinal a permis de constater la nature dynamique du pr ocessus d' adaptation à t ravers let emps. L'ensemble de ce s caractéristiques permet d'apporter une contribution significative à l'état des connaissances, sans pour autant prétendre clore définitivement aucune controverse.

En général, Ia prévalence des problèmes de comportement diminue au fil du temps, de façon pl us marquée pour l es problèmes internalisés. La pr incipale hypothèse pour expliquer cette diminution est le «retour à la normalité» pour le patient et saf amille, une fois les traitements complétés. U ne aut re hy pothèse se rait une différence dans le système de r éférence parental : une augmentation des problèmes secondaires de santé physique chez les survivants pourrait ainsi prendre le dessus sur les problèmes de co mportement no tés parles parents (Dr K evin K rull, St. Ju de Children's Research Hospital, communication personnelle). Des études portant précisément surl'apparition des premiers symptômes de pr oblèmes de santé posttraitement chez les patients seraient requises pour vérifier cette hypothèse. II est aussi possible que cela so it effectivementle cas, mais de façon plus prononcée pourles types de cancer dont les séquelles surviennent immédiatement après les traitements, les cas d'amputations suite à un ostéosarcome, par exemple. Dans le cas de la LLA, toutefois, I e par adigme act uel su pporte e ffectivement I 'augmentation g raduelle des problèmes de santé secondaires au traitement en fonction du temps, mais dans une fenêtre post-traitement plus tardive que les 4 ans post-diagnostic de la présente étude, ce qui rend cette seconde hypothèse moins probable.

Finalement, des symptômes liés à la maladie et au début des traitements, s'estompant au fil du temps, constituent une troisième hypothèse pour expliquer cette diminution des problèmes internalisés. A insi, des symptômes tels quel a per te d'appétit, la fatigue, l'anhédonie, ou encore l'anergie causés par la maladie ou son traitement pourraient 1) être co nfondus par la m ère av ec des symptômes de problèmes internalisés, 2) réellement en traîner des symptômes de pr oblèmes internalisés chez le patient,

6.1.2 Polymorphismes en tant que facteurs de risque

La majorité des études sur les polymorphismes en onco logie pédiatrique ont surtout po rté sur des VD catégorielles bien dé finies (survie, EFS, rechute), et/ou à court terme (principalement : mesures de métabolites, mesures de toxicités diverses) (consulter TABLEAU 11). Ces études ont permis de constater l'importance qui doit être accordée aux effets de l'épidémiologie génétique dans l'interprétation des résultats, qui pourraient probablement expliquer des conclusions a priori contradictoires. Elles ont aussi servi à confirmer que la taille d'effet principal, même en considérant uniquement comme VI les variants d'un se ul polymorphisme, peut être su ffisamment importante pour expliquer une pr oportion significative de la variabilité obse rvée dans la réponse thérapeutique et les toxicités associées.

Les résultats exposés dans cette thèse abondent dans ce sens (Article 3). De façon plus novatrice, ils supportent aussi les idées suivantes:

1) Les effets principaux de ce rtains polymorphismes sont suffisamment importants pour moduler de façon perceptible des VD non-catégorielles (e.g. de variable catégorielle nettement définie : survie à 5 ans post-diagnostic) ou plus délicatement quantifiables (eg. de variables continues nettement définies: taux de métabolites, décompte leucocytaire), comme le sont les résultats à des tests psychométriques. Des études récentes surla dépression et l'adversité montrent ainsi le rôle de la génétique dans la survenue de maladies et/ou l'expression de traits complexes, pour l esquelles la co nsidération de phé notypes intermédiaires s'impose. Les répercussions de polymorphismes du récepteur de sé rotonine (5-HTT) dans la réponse au st ress et la dépression constituent à cet effet un pa radigme notoire et stimulant [476]. Il a ainsi été observé que, dans un groupe d'individus ayant souffert de maltraitance parentale, les risques de souffrir de dépression et de commettre un suicide ét aient pl us importants chez les porteurs de une ou deux co pies dela version 's' du polymorphisme, soit l'allèle associé à une di minution de l'expression du gène 5-HTT [477].
2) Nonobstantle point précédent, les connaissances acquises parla stratégie de gènes candidats sont probablement minimes par rapport à celles qui pourraient être générées si la considération des effets génétiques dans le cadre d'interactions
devenait plutôt la norme. Ces interactions peuvent être de type gène x gène, ou gène x environnement. Les études à gr ande éch elle (de type Genome-Wide Analyses - GWA) per mettent d' identifier de s combinaisons de pol ymorphismes susceptibles d'être impliqués dans la pathologie, en comparant par exemple les profils génétiques de patients atteints d'une maladie donnée à ce ux de patients appariés bien-portants. Des processus candidats peuvent alors être découverts, tels des altérations affectant plusieurs éléments d'une même voie métabolique, par exemple. Dans le cas des interactions gène x environnement, l'environnement peut prendre laf orme def acteurs différents:m étaboliques, nutrionnels, pharmacologiques, toxicologiques, psy chologiques, et c. La m ême logique s'applique ici pour supposer que la compréhension des processus expliquant la variabilité observée pourrait être atteinte plus rapidement, puisque la découverte de l'effet d'interaction fournit des indices sur le processus probablement impliqué.
3) Finalement, l'effet d'un pol ymorphisme sur une VD peut ch anger dans un ca dre temporel donné. Il est possible que ce changement soit tributaire d'un phénomène d'interaction, soit par le changement d'expression d'un g ène (dans le cas d'une interaction gène x gène), soit par le changement dans un facteur environnemental (dans le cas d'une interaction gène x environnement) dans le temps. Les résultats obtenus peuvent par exemple supposer qu'il y aurait une interaction gène (NOS3) x médicament (GC), ch angeante dans le temps se lon les ni veaux de GC. Des spécificités épigénétiques, elles aussi fluctuant dans le temps, pourraient agir à titre de médiateurs des interactions, ajoutant un niveau de complexité dans l'équation.

Ces conclusions sont réductionnistes pour tout trait ou maladie polygénique; l'identification de pol ymorphismes expliquant u ne par tie dela variabilité dem eure néanmoins un pas dans l'élucidation des mécanismes impliqués.

En ce qui concerne spécifiquement les deux polymorphismes NOS3 (Article 3), la littérature chez les humains converge vers un rôle essentiel de ce gène dans les fonctions cérébrales. II ne peut toutefois être exclu que ce s SNP so ient en réalité simplement des polymorphismes en déséquilibre deliaison avec un ou des autre(s), c'est-à-dire qu'un ou des autre(s) polymorphisme(s) ségrégant de pair avec les SNP d'intérêt de NOS3 soientle s réels responsables des variations phénotypiques
observées. Les expériences de knock-out chez les rongeurs ne supportent toutefois pas cette hypothèse [466].

6.1.3 Choix du GC à préconiser

Les GC sont essentiels dans le traitement de la LLA pédiatrique, en raison de leur action cytotoxique sur les lymphocytes malins ([100] pp. 85-92). Cette cytotoxicité est dépendante de la liaison des GC aux GR [478], et tous les types de GC n'ont pas la même affinité de liaison aux $G R^{30}$. En conséquence, le type de GC utilisé et la dose ont une influence l'éradication des cellules malignes [479].

Les doses administrées dans les protocoles detraitement de I a LLA so nt supérieures aux niveaux physiologiques, causant des effets secondaires. Comme pour la cy totoxicité, Ie type de GC administré pourrait mener, pour les mêmes raisons de différences d'affinité et de pénétrance cellulaire, à des toxicités d'intensités différentes.

Toujours dans le but d'atteindre le ratio béné fices/toxicités optimal, différents protocoles ont ét é ut ilisés pour dét erminer s' il est pr éférable d e préconiser l'administration de dexaméthasone ou de prednisone chez les patients pédiatriques atteints de LLA ${ }^{31}$ [76, 95]. Lorsque prises dans leur ensemble, les évidences obtenues sont équivoques et continuent d'alimenter un débat de longue date.

Les résultats rapportés dans cette thèse supportent une toxicité accrue de la dexaméthasone comparativementà a prednisone en regard des problèmes de comportement (Article 2). Toutefois, ces évidences sont indirectes, puisque c'est le protocole de Boston (91-01/dexaméthasone comme GC principal, ou 95-01/prednisone comme GC principal) qui a ét é ut ilisé co mme V Idans les analyses, et non de s variables uniquement liées au type ou à la dose cumulative de GC par patient.

[^22]Au moins deux solutions peuvent être envisagées pour répondre de façon éclairée au choix de GC à préconiser :

1) Une méta-analyse pourrait faire la lumière sur la supériorité d'un GC, en regard de l'EFS, mais aussi en regard d'indices de toxicité. Au moins une méta-analyse a été faite, mais elle interrogeait l'ajout de GC, soit la dexaméthasone, soit la prednisone, aux doses de vincristine, co mparativement à la vincristine se ule sur l'EFS [480]. Les doses et agents principaux autres que les GC étant significativement différents entre I es protocoles, cette m éta-analyse ne p ermet pas de répondre à cette question. Une méta-analyse, de type «revue de la collaboration Cochrane», est prévue par le Childhood Cancer Group ${ }^{32}$. Les résultats de cette étude porteront sur la suppression de l'AHHS post-administration de GC : les connaissances acquises ne per mettront pas la co mparaison directe en regard del'EFS et des toxicités associées, mais fourniront des évidences supplémentaires dans la comparaison des GC.
2) Advenant une m éta-analyse co ncluante surl'usage del a dexaméthasone par rapport à la prednisone, encore faudrait-il tenir compte du fait que ce sont deux médicaments différents qui sont comparés. Le principal type de G C administré dépend du pr otocole se lon lequel le patient est soigné. La do se adm inistrée est quant à el le fonction de données anthropométriques et de standards établis en fonction du r isque de rechute ét ablilors du diagnostic i nitial. En génér al, la dexaméthasone étant plus puissante à dose s comparées quela prednisone, les doses de dexaméthasone par surface ou poids corporels sont moindres que pour la prednisone. Est-il possible que l'efficacité thérapeutique et les toxicités associées soient fonction non pas seulement des propriétés physico-chimiques de la dexaméthasone ou de la prednisone, comme cela est en ce moment supposé, mais aussi de différences dans les doses totales reçues en termes de cortisoléquivalents? D eux app roches complémentaires pourraient êt re ut ilisées pour répondre à ce tte question : I'utilisation de I a do se totale réelle reçue par ch aque patient en co rtisol-équivalent, et des mesures quotidiennes de co rtisol sa livaire et/ou sanguin pendant les traitements à titre de VI. La collecte de données pour les

[^23]doses totales de GC reçues par patient en GC-équivalents à titre de VI est un projet complété pour la cohorte de l'étude longitudinale présentée dans cette thèse, et les analyses sont en cours - cette hypothèse pourra donc être vérifiée.

6.1.4 Spécificités de la neurotoxicité

Un dénom inateur co mmun aux ar ticles de contribution or iginale pr ésentés (Article 2, Article 3) est l'idée d'une dichotomie dans les effets neurotoxiques observés. Les éléments de comparaison en question sont résumés dans le TABLEAU 21.

TABLEAU 21. Comparaison des atteintes neuropsychologiques

Élément de comparaison	Problèmes neurocognitifs	Problèmes de comportement
Variation générale dans le temps	Augmentent	Augmentent, puis diminuent
Facteurs de risque non associés aux traitements	Genre, âge au diagnostic	Stress perçu
Facteurs de risque associés aux traitements	MTX, XRT	GC
Polymorphisme de NOS3 jouant un rôle principal (interaction réelle/probable)	G894T (XRT)	T-786C (GC)
Régions cérébrales généralement associées	Lobes temporaux, pariétaux, occipitaux	Lobes frontaux, système
limbique.		

Des raisons temporelles et des spécificités cellulaires pourraient a gir co mme modérateurs pour expliquer cette apparente dichotomie.

1) Même e n assu mant que toutes I es cellules du $S N C$ peuv ent êt re é galement affectées par la neurotoxicité XRT- et chimio-induite, il faut tenir compte du fait que le st ade neur odéveloppemental au quel se trouve lepat ient au m oment de s traitements pourrait influencer la survenue et les types d'effets secondaires. L'arborisation des dendrites et le modelage sy naptique sont des processus majoritairement circonscrits tôt dans l'enfance (avant 7 ans pour la pl upart de s différents sites cérébraux), t andis quel epr ocessus de mélination est un processus continu, set erminant beaucoup plus tard ([274] p. 36)[481]. Le développement des différents lobes cérébraux ne se fait pas à la même vitesse, ni selon les mêmes trajectoires [482]; les lobes temporaux, par iétaux, occ ipitaux et certaines parties des lobes frontaux suivent une trajectoire cubique, alors que les lobes frontaux, excluant les aires frontales latérales, suivent une trajectoire linéaire. En co mbinant ces informations, I'hypothèse d' une période critique dans la pet ite enfance pour les dommages aux lobes impliqués principalement dans les fonctions neurocognitives peut être posé e. C ela ex pliquerait pour quoilej eune âge au diagnostic est unfacteur derisque déterminant dans la survenue de s équelles neurocognitives, alors que cela ne semble pas être le cas pour les problèmes de comportement.
2) Ensuite, les cellules du SNC ont leurs spécificités moléculaires et cellulaires, sans compter les différences histologiques entre les diverses aires cérébrales [483]. Des différences dans l'influx/efflux des agents de chimiothérapie, ou dans letaux d'occupation des récepteurs (récepteurs exprimés à différentes importances selon les aires corticales, par exemple), pourraient ainsi se traduire par une modulation des sensibilités sous les mêmes traitements, en fonction des aires cérébrales étudiées.

II serait toutefois réductionniste de considérer les cognitions et les comportements de façon dissociée, le paradigme actuel en psy chiatrie supposant que les comportements sont notamment influencés par les cognitions, mais aussi par les émotions et les affects. Les résultats obtenus ne vont pas àl'encontre de ce cadre théorique, et ce cadre n'exclut pas la dichotomie proposée. Ainsi, les problèmes de comportement internalisés (des comportements mesurés) pourraient, entre autres, être influencés temporairement par le sentiment de stress perçu en raison des complications médicales (les cognitions associées à la compréhension de la gravité de
la si tuation m édicale). En ut ilisant le même raisonnement, la nat ure des nouvelles cognitions découlant de ce tte si tuation ci rconscrite dans le temps n'entraînerait, à l'opposé, pas de changements significatifs dans les comportements externalisés. Admettre I erôlejoué directement par des gènes oudes médicaments surles comportements externalisés, comme cela a été observé, signifie aussi admettre que les comportements ne sont pas sous l'influence unique des cognitions, des émotions et des affects. En d'autres mots, dans la population d'intérêt et selon le type de comportements mesuré, les facteurs déterminants seraient un amalgame de cognitions, d'émotions, d'affects, mais aussi d'influences biologiques, par des facteurs endogènes et exogènes, de l'activité du SNC. Ces influences biologiques endogènes et ex ogènes pourraient êt re sp écifiques à (1) certaines régions du cerveau (e.g. : sensibilité di fférente à une médicament), et (2) dans le temps: temporaires (e.g. : causées par les GC ou le niveau de NO), ou causées par des dommages permanents (e.g. : des altérations anatomiques causées par les traitements anti-cancer).

6.2 Implications sur la pratique clinique

Ces résultats ont deux pr incipales implications immédiates sur ap ratique clinique. P remièrement, ils soulignent I 'importance de di stinguer I es problèmes internalisés et externalisés, pour l'évaluation autant que pour les stratégies de soins. Pour le patient présentant des symptômes importants de problèmes internalisés, un soutien psychologique pr ofessionnel serait de mise. P uisque les symptômes dela mère et de l'enfant ont tendance à être corrélés en début de traitement, de tels symptômes chez le patient dev raient aussi inciter à po rter une a ttention accrue à la détresse émotionnelle de la mère, puis à fournir des services professionnels lorsque requis, et vice versa. Une attention particulière devrait de plus être portée aux familles dont l'enfant est plus à risque ou so uffre de complications médicales. Concernant les problèmes externalisés, il im porterait der assurerles parents observant des comportements inhabituels ou exacerbés sur leur nature temporaire probable.

Ensuite, les résultats présentés questionnent les avantages et inconvénients des types de GC utilisés dans le traitement de la LLA pédiatrique. Le clinicien doit à tout le moins s'attendre à un risque plus élevé de composer avec des problèmes de
comportement externalisés plus prononcés si le principal GC dut raitement est de Ia dexaméthasone, plutôt de la prednisone.

6.3 Limites méthodologiques

Les résultats de cette étude longitudinale ne permettent pas d'extrapoler sur le devenir des patients une fois la période des 4 ans post-diagnostic passée. L’hypothèse dela si militude ent rela prévalence de s problèmes de co mportement dans cette population ce lle de nor mes populationnelles plus de 4 ans après le diagnostic est plausible, mais elle ne peut être vérifiée.

La VD d'intérêt, une mesure répétée des problèmes de comportement, a ét é obtenue à partir d'un questionnaire CBCL complété par la mère. Il est possible de penser que les résultats obtenus pourraient être différents selon le répondant, le père ou un membre de l'équipe soignante, par exemple, ou encore, selon l'état mental du répondant. En ce qui concerne le biais possible de l'état mental de la mère, dans une étude australienne, des chercheurs ont noté une asso ciation entre l'état dépressif et anxieux des mères, puis la tendance à l'obtention de scores plus élevés de problèmes de comportementinternalisés, m ais aussi externalisés, se lonle CBCL, chezleur enfant [484]. De leur côté, Bingham et collègues ont montré que la corrélation des réponses maternelles et pat ernelles au C BCL est g énéralement faible, soulignant l'importance d'obtenir une mesure des problèmes de comportement de l'enfant selon les deux par ents. Ils ont t outefois noté que m algré ce tte faible corrélation, I es syndromes problématiques chez les enfants, tel que mesurés dans le CBCL, étaient retrouvés de façon satisfaisante chez les pères et les mères [485]. Dans les deux cas, les données disponibles ne per mettent pas d' évaluer ces effets dans la co horte à l'étude et constituent une limitation. Finalement, les normes disponibles pour le CBCL sont américaines et il ne peut donc pas être assumé que l'interprétation des résultats selon ces normes prend en co mpte les spécificités de la population ca nadienne qui pourraient i nfluencer I es résultats. Toutefois, il f aut no ter que pl usieurs ét udes ont conclu à la robustesse de la validité transculturelle des construits mesurés (i.e. les
manifestations caractérisant les syndromes), mais aussi des seuils normatifs [314316].

La taille de l'échantillon est limitée. Cela diminue le nombre de facteurs pouvant être pris en compte dans la modélisation statistique. Ce pouvoir statistique restreint est à la source d'associations qui sont possiblement demeurées non-détectées. Le cancer pédiatrique demeure toutefois une maladie rare : dans ce contexte et en tenant compte des défis propres à un devis longitudinal causés par l'attrition, I a taille de la co horte étudiée est satisfaisante.

Finalement, I 'homogénéité de I a co horte est à I a fois une limitation et u n avantage. Les patients avaient tous reçu le même diagnostic et ont été soignés selon l'un de deux protocoles standardisés. La vaste majorité des patients étaient de descendance européenne. Cette ho mogénéité est une limitation car elle restreint la portée de l'interprétation. II serait t endancieux d'extrapoler les conclusions de ce tte thèse aux patients atteints d'autres types de ca ncer pédi atriques, parex emple. En contrepartie, la variabilité dans cette appar ente homogénéité dem eure importante, et I'utilisation de cr itères d'inclusion et d' exclusion per met de di minuer I e nom bre de contrôler pour l e no mbre de facteurs à co nsidérer. Cette ho mogénéité es t aussi nécessaire pour les analyses génétiques, pour des raisons épidémiologiques, puisque d'importantes différences génétiques ancestrales peuvent mener à des associations fortuites.

6.4 Retour sur la sélection des modèles multi-niveaux

Une première sélection de modèles intermédiaires a été faite selon les critères présentés à la section 4.4. La variable temps était entrée sous forme d'années postdiagnostic ($0,1,2,3,4$). Les variables retenues ont ensuite été considérées pour la sélection du modèle final. Les variables répondant fortement à ces critères ont ensuite été testées par combinaisons, de façon sy stématique. Les mêmes critères étaient utilisés pour a rriver au modèle final qui, en co mparaison av ec le modèle de base, devait expliquer le plus de variance observée et avoir les critères d'ajustement les plus près de zéro. Puisque les variables de niveau 2 peuvent influencer le score initial et le taux de changement de façon indépendante, l'influence d'une variable de niveau 2
exclusivement sur le score initial ou sur le taux de ch angement peut être testé, et les résultats sont aussi évalués en fonction des critères énoncés précédemment. Si ces critères sont mieux remplis en ne prenant en compte que l'influence d'une variable de niveau 2 sur le score initial ou sur le taux de ch angement, plutôt qu'en choisissant de garder dans le modèle une i nfluence peu si gnificative selon ces mêmes critères, un modèle parcimonieux peut être préféré.

Dans le cas des variables FWAT1 et FWAT2, corrélées entre elles, il n'était pas possible, a fin d' éviter des problèmes statistiques de co linéarité, d ele s inclure simultanément dans un même modèle. Entre FWAT1 et FWAT2, pour la sélection du modèle des problèmes internalisés indépendamment de la sélection du modèle pour les problèmes externalisés, I e ch oix delavariable à i nclure dépendai t donc uniquement de la réponse aux critères énoncés précédemment.

Un rôle possible pour les facteurs de risque rapportés pour leur association aux déficits neurocognitifs (âge au diagnostic, le genre et exposition à la radiothérapie) ont été testés selon ce tte procédure, m ais n'ont pas été r etenus. La r aison del eur élimination n'était donc aucunement conceptuelle, mais purement mathématique.

6.5 Perspectives

Les résultats d'un projet de recherche fournissent des indices de réponses par rapport à des questions antérieures, mais sont aussi l'occasion d'élaborer de nouvelles hypothèses. La su ite logique des résultats présentés est ici abordée sous forme de projets potentiels, à court, moyen et long terme.

6.5.1 Court terme

6.5.1.1 Interactions entre polymorphismes et doses de médicaments

L'importance de s'intéresser aux effets principaux de variables d'intérêt, mais aussi aux effets d'interaction a été soulignée précédemment. Les variations de doses dans l'administration de médicaments (GC, MTX) et de traitements (XRT) ont un
impact sur leurs effets t hérapeutiques et toxiques. Il en est de même pour les polymorphismes modulant les effets biologiques subséquents à ces traitements. II importe aussi de prendre en co mpte l'interaction entre ces deux facteurs distincts sur les issues d'intérêt. Ces connaissances additionnelles sont des éléments décisionnels élémentaires dans la perspective de l'optimisation des traitements individualisés. Ultimement, il pour rait ê tre dé terminé que les patients porteurs de l'allèle X pour le polymorphisme Y su bissent de I a neur otoxicité, mais seulement à partir d' une dose cumulative du médicament Z pl us élevé que W, fournissant les balises nécessaires à de meilleures ordonnances médicales.

6.5.1.2 Approfondissement de l'hypothèse de la dichotomie

L'hypothèse de sp écificité des atteintes neuropsychologiques dans la population d'intérêt a été présentée précédemment. Au moins deux avenues concrètes peuvent être envisagées à court terme la vérifier.

Tout d'abord, en pl us des résultats de problèmes de comportement, la passation de tests de Ql a aussi été faite au $D x, 1,2,3$, et 4 ans post-Dx pour la même cohorte de patients décrite dans la pr ésente étude. Ces données pourraient ê tre exploitées pour répondre à trois questions :

1) En utilisant la méthode des analyses multiniveaux, une diminution du Ql au fil du temps est-elle observée pour une proportion significative des patients, tel que cela est généralement conclu dans la littérature?
2) Selon les même prémisses, le jeune âge au diagnostic, le fait d'être une fille et l'exposition à l ar adiothérapie so nt-ils effectivement des facteurs de risques associés à une baisse de QI?
3) Y a-t-il une corrélation entre les scores de Ql et de CBCL aux différents temps de mesure?

Ensuite, toujours pour cette cohorte, des mesures cérébrales fonctionnelles et anatomiques, r espectivement par él ectroencéphalogrammes (EEG)/ pot entiels évoqués (ERP) et par imagerie de résonance magnétique (MRI), sont aussi disponible pour pl usieurs temps de m esure post-Dx. É tant donné les hypothèses soulevées
précédemment, il serait pertinent de vérifier s'il existe des différences anatomiques et fonctionnelles spécifiques à des lobes cérébraux en particulier, en fonction du temps.

6.5.1.3 Autres polymorphismes candidats

D'autres polymorphismes candidats seraient intéressants à étudier en lien avec l'apparition de pr oblèmes neuropsychologiques chezles survivants. Les variabilités génétiques susceptibles d'avoir un impact sur les comportements et l'humeur suite à l'administration de GC sont du nom bre, de même queles variants de gènes déjà connus pour m oduler l'efficacité t hérapeutique des traitements. Des suggestions, formant une liste évidemment non exhaustive, sont présentées ici:

1) Les GCr égulent I 'expression dug ène transporteur de I a sé rotonine (Human serotonin transporter - $5-\mathrm{HTT}$), dont l'expression serait liée à la modulation, dans un contexte d'interaction de type gène (5-HTT) x environnement (stress/adversité), de I a su sceptibilité la dépression et /ou aux tendances suicidaires. P uisqu'une région pol ymorphique a ét é déco uverte pour ce g ène et se mble asso ciée à la modulation de la transcription de $5-\mathrm{HTT}$, l'hypothèse que les effets secondaires liés à l'humeur et au comportement risquent de varier en fonction des différents allèles exprimés chez les patients recevant des GC gagnerait à êt re vérifiée [477, 486]. Des expériences faites ch ezles primates confirment d'ailleurs l'impact des fluctuations des GC sur la régulation des niveaux de 5 -HTT, tout en insistant sur le rôle concomitant de l'adversité en bas âge dans ce pr ocessus [487]. Ces informations rendentles expériences proposées d'autant pl us à pr opos, pour autant que ce qui se passe chez les primates récapitule les mécanismes biologiques humains.
2) Parce que pa rtie i ntégrante del a phy siologie del aréponse aus tress, I es polymorphismes du gène CRH sont susceptibles d'influencer la survenue de problèmes de co mportement et d' humeur. Des ex périences chez des primates suggèrent que le polymorphisme $-248 \mathrm{C} \rightarrow \mathrm{T}$ s'exprime sous la forme d'une réponse altérée au stress. Les a nimaux porteurs de l'allèle mineur ayant été exposés en jeune â ge à une si tuation d' adversité seraient aussi pl us portés à adopter de s comportements dits «àr isque»ch ezl 'humain, tel q u'une pl us grande consommation d'alcool que chez les animaux porteurs de l'allèle majeur [488, 489].
3) Des polymorphismes pour lesquels les évidences d'un impact sur le comportement et l'humeur n' ont pas été démontrées peuvent aussi co nstituer des ca ndidats valables, notamment en raison de leur implication dans le m étabolisme et I a pharmacocinétique des GC. Cette situation s'applique aux gènes de la famille des glutathione-S-transférases (GST), dont un polymorphisme du gène GSTT1 jouerait un rôle dans la variabilité de l'efficacité thérapeutique des GC dans le traitement de la LLA pédiatrique [436].
4) Étant donné leur rôle dans le métabolisme de plusieurs médicaments (dont le GC synthétique dexaméthasone) et le fait que les GC régularisent leur transcription, les gènes de la famille des cytochromes P 450 devraient aussi être considérés dans la recherche de polymorphismes susceptibles d'influencer les effets secondaires des GC [437].
5) Finalement, les gènes des ATP-binding cassettes (ABC) constituent aussi des candidats d'intérêt, pui squ'ils sonti mpliqués dans lar ésistance à plusieurs médicaments, que des gènes de cette famille sont régulés par les GC, et que les protéines associées régularisent l'accès de certains médicaments au S NC en raison de leur localisation dans la barrière hémato-encéphalique [490]. Par exemple, des polymorphismes dans les gènes $A B C$ se répercutant en transcription altérée post-admission de GC pourraient se traduire par des variations dans l'efflux d'autres médicaments neurotoxiques. Dans le cas des LLA pédiatriques, l'apparition d 'une neurotoxicité développementale so us forme de p roblèmes comportementaux causés par le MTX pourrait ainsi être modérée par l'interaction entre la dose de GC administrée et des polymorphismes dans les gènes $A B C$.

6.5.2 Moyen terme

6.5.2.1 Génotypage à l'échelle génomique

Vérifier le rôle d'autres polymorphismes candidats est une avenue, mais le faire à grande échelle est une seconde possibilité qui aurait comme avantage de maximiser la v itesse d' identification des voies cellulaires impliquées dans l'apparition et I a modulation des effets secondaires chez les survivants.

6.5.2.2 Facteurs nutritionnels en tant que modérateurs

Au moins deux facteurs courants peuvent êt re asso ciés à une d iminution significative des apports nutritionnels par voie orale chez les patients, pédiatriques ou adultes, a tteints de ca ncer:I a ca chexie et I es mucosites. La cachexie est un symptôme paranéoplasique courant et secondaire à une per te importante de l'appétit; une dénut rition i mportante y est habi tuellement asso ciée. Les mucosites sont des inflammations des muqueuses. Chez les cancéreux, les mucosites du système digestif, en particulier celles affectant la bouche, peuvent être suffisamment douloureuses pour affecter les apports nutritifs par voie or ale. Dans les deux ca s , à m oins que des substituts vitaminiques ne soient administrés et/ou qu'une nutrition parentérale ne soit utilisée, des carences vitaminiques doivent être soupçonnées chez les patients.

L'exemple de l'administration de MTX chez les patients pédiatriques atteints de LLA sur le neurodéveloppement et du statut vitaminique comme modérateur possible dans cette équation est évocateur.

Les folates sont des co-enzymes essentielles dans la sy nthèse des nucléotides; de plus, elles jouent un rôle important dans le métabolisme de l'Hcy. Une carence en folates est associée à une élévation des taux d'Hcy, et indirectement à des effets neurotoxiques [491]. Les folates sont aussi nécessaires pour la division cellulaire. Chez les patients pédiatriques atteints de LLA, dont le système nerveux est en développement, deux causes pourraient mener à des carences significatives en folates : l'administration de MTX et une dénutrition, causée par une cachexie et/ou des mucosites. L'hypothèse d' une asso ciation ent re lag ravité de I a ca rence en folates pendant les traitements et les séquelles neuropsychologiques ultérieures mérite d'être posée. Il s'agit d'un exemple inspiré de modèles mettant en lumière le rôle possible de la nutrition sur la santé mentale chez les enfants bien-portants [492].

6.5.2.3 Analyses épigénétiques

L'épigénome inclut la chromatine et toutes les modifications de celle-ci, a insi que I es modifications (méthylation/déméthylation) faites sur des séquences CG de l'ADN [493]. Les modifications épigénétiques modulent l'expression des gènes: elles
dictent I a possi bilité ou l'impossibilité de I a machinerie moléculaire detraduire des gènes en protéines. Si ces faits sont bien décrits depuis plusieurs années, les données probantes récentes soulignent une spécificité jusqu'ici insoupçonnée. Ainsi, il existerait une sp écificité dans les patrons (patterns) de m éthylation [494], se lon ler ythme circadien [495], selon le moment de vie [496], selon le genre [497], selon des périodes de sensibilité [498], selon les disponibilités métaboliques [499] ou environnementales [500]. Tout comme les polymorphismes fonctionnels, les variations individuelles dans l'épigénome peuv ent donc influencer l'expression des gènes et, en conséquence, expliquer I a v ariabilité i nter-sujet observée au n iveau de la se nsibilité aux effets thérapeutiques et toxicologiques des médicaments anti-cancer.

La m odulation des réserves (pools) de m étabolites pourrait entraîner des variations épigénétiques [501]; cela a no tamment é té déc rit dan s des études s'intéressant aux réserves de métabolites du folate [502]. Les symptômes de cachexie et l'administration de MTX ont probablement des répercussions substantielles sur les réserves de m étabolites du folate, pou rdes r aisons évoquées précédemment (consulter se ction 6.4.2.2). Il est don c possible que la modulation des niveaux individuels de folate so it asso ciée à des altérations épigénétiques d'intérêt pour Ia compréhension de la variabilité de l'efficacité des traitements ainsi que des toxicités associées chez les patients pédiatriques atteints de LLA.

6.5.2.4 Méta-analyses

Devant I 'accumulation d'évidences conflictuelles, I a méta-analyse e st une avenue relativement obj ective pour t enter d 'obtenir de tirer des conclusions éclairantes. Ce type d' étude serait d' intérêt pour au m oins deux questions dans le domaine du traitement de la LLA pédiatrique. Premièrement, en comparant les effets thérapeutiques et toxicologiques de la dexaméthasone et de la prednisone, quel est le meilleur GC à administrer aux patients? Ensuite, comme cela a été mentionné précédemment (consulter la section 2.2.2.5), le recours à la radiothérapie est de plus en plus débattue, même pour les patients à risque élevé de rechute. Une méta-analyse pourrait peut-être là aussi fournir des évidences utiles pour améliorer judicieusement les prochains protocoles de traitement.

6.5.2.5 Études d'intervention

Jusqu'à pr ésent, l es études s'intéressant au dev enir des guéris ont ét é majoritairement descriptives. II importe de poursuivre l'amélioration des protocoles de traitement pour minimiser l'apparition de séquelles neuropsychologiques à long-terme. Parmi les possibilités d'études d'intervention, il faudrait considérer :

1) Des études sur l'efficacité des interventions psychologiques à faciliter l'adaptation des patients et de leur famille. Il serait intéressant de connaître à quel point ce type d'intervention peut modifier les trajectoires de problèmes de comportement chez les patients et les membres de la famille proche pendant la période de traitements, et si cela a une i nfluence surles indices de problèmes de comportement à très long-terme.
2) Des interventions nutritionnelles dans le but deprévenir l a neur otoxicité. Une première proposition d'intervention, visant à éviter les carences en folates, a déjà été présentée (consulter 6.4.2.2). De telles études d'intervention devraient toutefois être précédées d'études descriptives caractérisantles niveaux métaboliques de folates en I ien avec les indicateurs de guérison; I e M TX ét ant ant agoniste aux folates, i I faudrait v eiller à ce quele MTX co nserve d'abord une act ion thérapeutique su ffisante. D'autres types d'intervention pourraient reposer sur la modulation de labal ance de st ress oxydatif chez les patients en co urs de traitement. Les évidences mettant en lumière une association entre la sévérité des marqueurs de st ress oxydatif dans le sy stème ner veux et I 'importance des problèmes neuropsychologiques commencent à s'accumuler [68] ([309] pp. 8396). Si cette association s'avérait effectivement résulter d'une relation de causalité, il pourrait être intéressant de vérifier les effets d'une diète stricte et spécialement enrichie en antioxydants pendant les périodes de maintenance et de consolidation sur laprévalence des séquelles à long-terme ch ezles survivants. Une ét ude optionnelle, sous forme d'analyse de journaux alimentaires, est en cours et vise les participants qui se ront soignés selon I e pr otocole de B oston 2005-01 (Caroline Laverdière, communication personnelle). Cette étude devrait permettre de répondre à pl usieurs questions au su jet de I 'impact potentiel des variations nutritionnelles sur l'efficacité thérapeutique et les toxicités associées.
3) Des interventions pharmacologiques visant à pallierle s déficits neuropsychologiques. Quelques études pour v érifier I 'intérêt d' administrer du méthylphenidate (Ritalin)ch ez les survivants souffrant de déf icits neuropsychologiques ont déj à é té co mplétées et ont fourni des conclusions encourageantes [503]. D'autres études du m ême type devront toutefois être complétées avant de tirer des conclusions définitives.

6.5.2.6 Poursuite du suivi longitudinal

Parmil es limites inhérentes au pr ojet d' étude I ongitudinale, I 'impossibilité d'extrapoler la prévalence des problèmes d'adaptation au-delà de la période de 4 an s post-Dx a été rappelée. La prévalence de plusieurs problèmes de santé mentale serait plus élevée à très long-terme chez les survivants (e.g. : dép ression, anxiété, etc.). À cet effet, il serait instructif d'entreprendre un suivi longitudinal des patients au-delà de la période de 4 ans post-Dx, notamment afin de vérifier si ceux qui développent des problèmes à très long-terme sont les mêmes qui en avaient développé tôt après le Dx.

6.5.3 Long terme

6.5.3.1 Approfondissement de la co mpréhension des mécanismes de neurotoxicité

Prises dans leur ense mble, les évidences présentées soulignent la nécessité de m ieux co mprendre les mécanismes neurotoxiques àl 'origine de sproblèmes affectant di vers aspects de I a sa nté mentale à long terme chez les survivants. Une meilleure compréhension pourrait permettre des interventions préventives mieux ciblées et plus efficaces. Cela pourrait prendre la forme d'une formulation personnalisée des traitements en fonction de la balance sensibilité pharmacologique des cellules malignes / sensibilité toxicologique des cellules saines du patient. Cette compréhension pour rait servir à di minuer co nsidérablement la proportion de pat ients souffrant d' effets secondaires directementl iés àl a neur otoxicité (e.g.: d éficits cognitifs), m ais peut-être aussi à di minuer d es problèmes de santé n'étant e n apparence pas directement causés par le système nerveux. Plusieurs glandes dans le cerveau sont responsables du métabolisme d'organes externes au SNC. S'il s'avérait
que les traitements anti-cancer dirigés vers le SNC affectent suffisamment ces glandes pour en al térerla fonction, diminuer la neur otoxicité pour rait peut-être contribuer à l'élimination d'une panoplie d'effets secondaires, tels les syndromes métaboliques ou les problèmes d'infertilité, par exemple.

Les études avec les rongeurs pourraient être mises à profit pour améliorer les connaissances sur la façon dont les traitements de chimiothérapie et de XRT peuvent affecter différemment la morphologie, l'histologie et les fonctions cérébrales. Les effets à court et long-terme des traitements sur les cellules du SNC pourraient être mieux caractérisés aux niveaux moléculaire et cellulaire, pavant la voie à une compréhension des mécanismes impliqués. Cela pour rait mener à de nouv elles stratégies d'intervention pharmacologiques; les bénéfices d'administrer de façon co ncomitante les traitements anti-cancer et des agents neuroprotecteurs pourrait être investigués plus rapidement et à grande éch elle. La recherche de bi omarqueurs indiquant la mesure des dommages au SNC en temps réel serait une autre stratégie; ultimement, l'ajustement des doses de chimiothérapie ne se ferait plus uniquement en fonction des critères diagnostic initiaux et des données anthropomorphiques, mais aussi en tenant compte del a tolérance des tissus àlat oxicité entemps réel tout aulong des traitements.

6.5.3.2 Amélioration de la connai ssance des f acteurs de r isque pour le suivi à long-terme des survivants

Il importe de souligner que les effets secondaires n'affectent qu'une fraction des survivants; l'idée qu'il faut dédier beaucoup d'efforts à cibler plus efficacement ces patients prend en ce moment de l'ampleur dans la littérature [504]. Cet objectif est dicté par au moins deux arguments :

1) L'augmentation marquée des taux de survie suite à un cancer pédiatrique est annoncé co mme étant le prochain p roblème i mportant de sa nté publ ique. D es chiffres américains récents estiment qu'un jeune adulte sur 450 est un survivant [14]. Les études sur les difficultés à surmonter pour assurer un suivi adéquat aux guéris se multiplient [51-53, 260, 505]. Le suivi à long terme est de plus compliqué par des spécificités régionales (e.g. aux É tats-Unis: difficulté à obt enir une
assurance médicale). Des études similaires en contexte ca nadien n' existent pas encore, mais il peut être supposé que des pénuries, tel que la difficulté à être suivi par un omnipraticien au Québec, génèrent leur lot de défis. Ce faisant, il importe de concentrer efficacement toutes les ressources disponibles vers le sous-groupe de patients nécessitant le suivi le plus rigoureux.
2) La réhabilitation du co ncept de guérison pourles patients à risque moindre de développer des effets secondaires. Ce second point ne semble pas encore discuté dans la littérature médicale. II semble exister un effet de «grappes» (clustering) dans les séquelles : ceux qui souffrent de problèmes de santé post-traitement sont aussi plus à risque d'être affligés de symptômes de détresse psychologique [506, 507]. Des articles récents de K rull et collègues confirment cette co rrélation [508, 509], soulevant des questions supplémentaires de causalité auxquelles il faudra tôt ou tard répondre: les difficultés psychologiques ont-elles des répercussions néfastes surles habitudes de vie, ent raînant des prévalences plus élevées de maladies chroniques, ou bien la prévalence de maladies chroniques est-elle plus élevée à cause des traitements anti-cancer antérieurs, générant ainsi des difficultés psychologiques? Évidemment, les réponses seront probablement plus nuancées que la dichotomie de la question ne le laisse supposer. II est néanmoins important d'explorer ce s hypothèses, I es deux possi bilités commandant des stratégies d'intervention différentes. Il serait aussi important de comprendre à quel point le fait de se savoir «à risque» de dév elopper des problèmes de santé affecte la sa nté psychologique des guéris par ailleurs bien-portants, et si ce la a une influence significative sur leurs habitudes de vie.

La vigilance devra par ailleurs être de mise dans les études à venir sur ce sujet en raison des biais probables chez les répondants. Des études chez les survivants indiquent qu'une proportion significative peine à r apporter correctement le diagnostic de cancer reçu antérieurement et les principaux traitements reçus [510], et qu'il existe plusieurs déterminants de s visites médicales der outine, notammentle nom bre d'années post-diagnostic [511, 512] et l'ethnicité [513]. Ces biais potentiels et l'impossibilité de se fier uniquement aux patients en tant que répondants pour dresser leur hi stoire médicale ant érieure pour raient mener à des conclusions pouvant difficilement être extrapolées à l'ensemble des survivants. Plusieurs équipes travaillent
déjà à identifier les caractéristiques des patients associées à des chances de suivi moindres pour pallier ce problème [514-516].

CHAPITRE 7 : CONCLUSION

7.1 Conclusions spécifiques

Les conclusions spécifiques sont: 1) les problèmes de comportement devraient être évalués en dissociant les problèmes internalisés et externalisés, leurs trajectoires et leurs f acteurs der isque étant différents; 2)I es problèmes de comportement internalisés augmentent significativement, mais temporairement, chez une fraction des patients; 3) les facteurs médicaux, psy chosociaux et g énétiques doivent êt re considérés dans leur ensemble pour comprendre les changements observés dans les problèmes de co mportement; 4)I a modélisation multi-niveaux est instructive pour caractériser les changements individuels dans cette population; 5) les problèmes de comportement etl es pr oblèmes neurocognitifs résultent p robablement de neurotoxicités distinctes.

7.2 Conclusions générales

En dressant un portrait g lobal du pat ient (incluant des données médicales, psychosociales et génétiques, ainsi qu'une mesure individuelle de changement), il est possible de dépasser le cadre descriptif usuel et d'amorcer une compréhension du processus dynamique sous-jacent. Cela est possible dans un contexte aussi complexe que ce lui du cancer p édiatrique, où doi vent être pr is en co mpteles traitements multimodaux, la multiplicité des facteurs influençant le processus d'adaptation, le rôle des variables génétiques, etc. Dégager des tendances quant aux trajectoires individuelles et identifier les facteurs de risque y étant associés peuvent générer des connaissances pouvant être exploitées pour soigner de façon optimale les patients, dans la mesure où des stratégies de soins personnalisés plutôt que globales peuvent être i mplantées en fonction de I 'appartenance d' un individu à une nsemble de caractéristiques. Les études de pharmacogénétique ont remis en cause le paradigme de la «posologie unique pour tous» ${ }^{33}$. Pour établir un parallèle, la contribution de cette thèse est peut-être de mettre en lumière les bénéfices potentiels pour les patients que pourrait revêtir le développement de modèles de soins personnalisés.

[^24]
ANNEXE I. Child Behavior Checklist, 2-3 ans

INVENTAIRE DU COMPORTEMENT DE L'ENFANT DE 2-3 ANS

Voici une liste d'énoncés qui décrivent les jeunes enfants. Pour chaque énoncé qui correspond à l'enfant actuellement ou au cours des 2 derniers mois, entourez le 2 si c'est tout à fait vrai ou le plus souvent vrai, le 1 si c'est quelque peu ou quelquefois vrai et le 0 si ce n'est pas vrai. Veuillez répondre à toutes les questions le mieux possible même si certaines ne semblent pas s'appliquer à l'enfant.
$0=$ Ce n'est pas vrai (à votre connaissance) $\quad 1=$ Quelque peu ou quelquefois vrai 2 = Tout à fait ou le plus souvent vrai

VEUILLEZ VOUS ASSURER QUE VOUS aVEZ RÉpondu À toutes les questions.
SOULIGNEZ TOUT ENONCE QUI VOUS PRÉOCCUPE.

ANNEXE II. Child Behavior Checklist, 4-17 ans

ANNEXE III. Familial Well-Being Assessment

Temps de mesure: \qquad
Code du sujet: \qquad
\# de dossier : \qquad
Répondant (père ou mère) : \qquad
Date d'aujourd'hui : \qquad

Évaluation du bien-être familial Version parents

La façon dont les membres d'une famille travaillent ensemble et s'appuient mutuellement comprend plusieurs éléments qui ne sont pas tous bien compris par les chercheurs. Les questions suivantes portent sur ce que c'est d'être un membre de votre famille. Lorsque vous remplissez ce questionnaire, soyez le plus fianc possible, mais ne vous attardez pas trop sur chaque question. Les questions portent sur votre rôle en tant que parent. Toutes vos réponses sont confidentielles.

Ce questionnaire consiste en deux sections. Les catégories de réponses different quelque peu d'une section à l'autre. Avant de commencer une section, veuillez lire attentivement les catégories de réponses de la section et indiquer votre réponse en encerclant la réponse qui correspond le mieux à ce que vous ressentez depuis les 12 demiers mois.

Remarque : Le masculin est utilisé ici comme générique pour désigner à la fois les hommes et les femmes.

Les choix suivants s'appliquent à toutes les questions de la première section. Veuillez encercler la réponse qui décrit le mieux dans quelle mesure vous êtes d'accord ou en désaccord avec chaque énoncé.

OUI $=$ FORTEMENT d'accord
Oui $=$ Moyennement d'accord
oui $=$ quelque peu d'accord
non $=$ quelque peu en désaccord
Non $=$ Moyennement en désaccord
NON $=$ FORTEMENT en désaccord

1. Je ne peux parfois accomplir mon travail sans faire OUI Oui oui non Non NON des choses avec lesquelles mon conjoint serait en désaccord
2. D'un jour à l'autre, je sais ce que ma famille attend

OUI Oui oui non Non NON de moi en tant que parent
3. La plupart du temps, les autres membres de la famille s'attendent à ce que je sois un meilleur parent
4. Ma famille prend régulièrement le temps de discuter de sujets qui touchent la famille
5. Les membres de notre famille sont sous beaucoup de tension
6. En général, ma famille est le genre auquel je veux appartenir
7. Présentement, ma vie m'apporte beaucoup de

OUI Oui oui non Non NON satisfaction
8. J'ai de la difficulté à satisfaire aux demandes discordantes des membres de ma famille
9. Je sais exactement ce que ma famille attend de moi

OUI Oui oui non Non NON
10. Si mon conjoint est malade ou absent, ma famille a

OUI Oui oui non Non NON de la difficulté à s'y adapter et à pourvoir aux besoins de ma famille
11. Ma famille s'attend à ce que je fasse plus de choses

OUI Oui oui non Non NON à la maison que ce dont j 'en suis capable
12. J'exerce une influence sur ce qui se passe au sein de ma famille
13. Je prends la plupart des décisions touchant la famille sans consulter mon conjoint
14. Mon conjoint comprend que j'ai besoin de passer du temps seul avec mes amis

OUI Oui oui non Non NON OUI Oui oui non Non NON

OUI Oui oui non Non NON
15. Je trouve que ma vie est pleine d'espoir présentement
16. Je dirais sans hésitation que ma famille vit dans un climat stressant à la maison
17. Je suis extrêmement satisfait de mon rôle en tant que parent
18. Je trouve que je vis une vie très solitaire en ce moment
19. Mon conjoint et moi ne nous entendons pas sur la façon dont on devrait faire les choses
20. Faute d'argent et de temps, je ne peux faire plusieurs choses pour ma famille, bien que je le voudrais
21. On me donne assez d'information pour bien accomplir mes tâches en tant que parent
22. Même lorsque nous ne sommes pas ensemble, je sens que j'ai l'appui des membres de ma famille
26. Ma vie est plutôt vide présentement
27. Ëtre parent me donne un sentiment de satisfaction profonde comparativement aux autres choses qui m'intéressent
30. Les autres membres de ma famille me trouvent compétent en tant que parent
31. Je pose des questions aux autres membres de ma famille et je fais souvent ce qu'ils suggèrent
32. Je ne sais pas exactement ce que ma famille pense de moi
33. Je dirais que chez nous il y a un climat de tension explosive

OUI Oui oui non Non NON

OUI Oui oui non Non NON OUI Oui oui non Non NON OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON OUI Oui oui non Non NON
36. Ma famille fait rarement des choses ensemble pour s'amuser
37. Il m'est possible de paraitre détenu et de ne pas montrer aux membres de ma famille que je me sens nerveux
38. J'écoute attentivement les autres membres de ma famille pour qu'ils sachent que je les écoute
39. J'ai trop de responsabilités à la maison
40. Je n'ai pas été adéquatement préparé à assumer les tâches quotidiennes qu'un parent a à accomplir
41. Ma vie est présentement très agréable
42. Je trouve que ça ne vaut pas la peine pour moi de faire des suggestions concernant des sujets qui touchent la famille, parce qu'on prend des décisions sans tenir compte de mon opinion
43. Si un(e) de mes bons(bonnes) amis(ies) m'annonçait qu'il(elle) est intéressé(e) à commencer sa propre famille, je serais porté, à cause de mon expérience personnelle, à lui exprimer des réserves sérieuses à ce sujet
44. Je m'adapte rapidement aux changements qui surviennent dans ma famille
45. Je trouve qu'être parent empiète sur les autres rôles que j'ai à assumer dans la vie
46. Dans ma famille, la discipline des enfants est prise en charge par un seul parent/adulte
47. Je trouve que j'ai du travail supplémentaire à la maison, au-delà de ce qui est raisonnable de s'attendre de moi
48. Mon conjoint et moi, nous nous sentons rarement frustrés dans notre rôle en tant que parents

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON
OUI Oui oui non Non NON

OUI Oui oui non Non NON
OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON
49. Je suis prêt à faire face à toute situation qui pourrait survenir au sein de ma famille
50. Les différents membres de ma famille me demandent des choses incompatibles
52. Si on me le demandait, je pourrais définir exactement ce en quoi consiste mon rôle en tant que parent

OUI Oui oui non Non NON OUI Oui oui non Non NON OUI Oui oui non Non NON

Dans la section qui suit, vous trouverez des questions sur vos réactions, ainsi que celles des autres membres de votre famille, face à des situations familiales. Pour chaque question, veuillez encercler la réponse qui décrit le mieux ce qui se passe dans votre famille.

$$
\begin{array}{lll}
\text { OUI } & = & \text { Presque touiours } \\
\text { Oui } & = & \text { Trés souvent } \\
\text { oui } & = & \text { Souvent } \\
\text { non } & = & \text { A l'occasion } \\
\text { Non } & =\text { Pas très souvent } \\
\text { NON } & =\text { Presque jamais }
\end{array}
$$

54. J'ai des troubles d'estomac
55. Mon conjoint m 'appuie et se prononce en ma faveur de mes décisions devant les autres membres de la famille et nos amis
56. J'ai de la difficulté à m'endormir ou à rester endormi
57. Ma famille porte attention à ce que je dis
58. Je suis troublé par des maux de tête
59. Je me fais beaucoup de souci pour ma famille
60. Les membres de ma famille se défendent mutuellement face aux personnes qui ne sont pas de la famille

OUI Oui oui non Non NON
OUI Oui oui non Non NON

OUI Oui oui non Non NON

OUI Oui oui non Non NON
OUI Oui oui non Non NON
OUI Oui oui non Non NON
OUI Oui oui non Non NON
63. Je suis troublée par des sentiments de nervosité ou de tension
65. Dernièrement, j'ai pris ou perdu du poids
66. Quand je ressens vraiment le besoin de parler à quelqu'un, les enfants de ma famille sont prêts à m'écouter
67. Mon conjoint fait attention à ce que je dis
68. Quand j'ai besoin de parler à mon conjoint, il est prêt à m'écouter
69. Si je décidais de faire les choses contrairement à la coutume de ma famille, cela créerait beaucoup de tension au sein de la famille
70. Le partage des responsabilités domestiques est une source de conflit pour mon conjoint et moi
71. Ma famille me demande mon avis sur des sujets importants
72. Je ne me sens pas prêt à assumer les tâches d'un parent
73. On m'informe des choses importantes qui touchent ma famille
74. Je ne sais pas exactement quelles sont toutes les responsabilités que j'ai à assumer en tant que parent

OUI Oui oui non Non NON

OUI Oui oui non Non NON
OUI Oui oui non Non NON

OUI Oui oui non Non NON
OUI Oui oui non Non NON

OUI Oui oui non Non NON
\qquad OUI Oui oui non Non NON

OUI Oui oui non Non NON OUI Oui oui non Non NON

ANNEXE IV. Documents liés à l'éthique

1- Lettre d'approbation du projet de thèse par la direction des affaires médicales et universitaires - 2010.

2- Idem-2011

3- Lettre d'approbation du projet d'étude longitudinale par le Comité d'éthique du CHU Ste-Justine

4- Formulaire de consentement approuvé par Ie Comité d' éthique du CHU SteJustine, pour l'étude pilote Impact à long terme des traitements de la leucémie lymphoblastique aiguë chez une population pédiatrique : projet pilote sur les effets secondaires au ni veau neur opsychologique et ce llulaire ch ez des patients ayant reçu des traitements au CHU Ste-Justine.

Le 2 mars 2010

Madame Sophie Marcoux
Unité modulaire (GRIP) Étage A, local 1560
CHU Sainte-Justine

CHU Sainte-Justine Le centre hospitalier universitaire mère-enfant

Pour l'amour des enfants

Université $\because \nmid$ de Montréal

Objet : Acceptation de votre projet de recherche

Madame,
C'est avec plaisir que nous acceptons votre demande de révision de dossiers médicaux dans le cadre de votre projet de recherche concernant des patients soignés au CHU Sainte-Justine pour une leucémie lymphoblastique aiguë diagnostic entre 1993 et 1999.

Si vous deviez adresser votre projet au comité d'éthique à la recherche, nous vous recommandons d'y joindre cette lettre.

Par ailleurs, nous transmettons une copie de cette acceptation à la coordonnatrice des archives médicales, qui vous aidera dans votre démarche. Si plusieurs dossiers sont archivés à l'extérieur, elle vous en communiquera les frais.

Nous vous prions d'agréer, Madame, l'expression de nos sentiments les meilleurs.

La Directrice des affaires médicales et universitaires,

Isabelle Amyot, M.D., F.R.C.P. (C)
IA/md
c. c. Coordonnatrice des archives médicales M. Jean-Marie Therrien, président au comité d'éthique à la recherche

Monsieur Philippe Robeay

Direction de la recherche
CHU Sainte-Justine

Objet : Acceptation de votre projet de recherche

Monsieur,

CHU Sainte-Justine Le centre hospitalier universitaire mère-enfant

Pour l'amour des enfants

Université th de Montréal

C'est avec plaisir que nous acceptons votre demande de révision de dossiers médicaux dans le cadre de votre projet de recherche intitulé "Patients soignés au CHU SainteJustine pour une leucémie lymphoblastique aiguè.». Cette étude se fera pour les dossiers ouverts entre le $1^{\text {er }}$ janvier 1993 et le 31 décembre 1999. Cette recherche se fera en collaboration avec Mme Sophie Marcoux, Dr Maja Krajinovic et Dr Caroline Laverdière.

Par la présente, je vous autorise à prendre connaissance des dossiers à des fins d'étude ou d'enseignement, sans le consentement du titulaire de l'autorité parentale du patient concerné, en vertu de l'article 19.2 de la Loi dans la mesure où les conditions suivantes sont respectées.

Je comprends que votre projet respecte les normes d'éthique ou d'intégrité scientifique généralement reconnues en matière d'étude ou d'enseignement et que vous respecterez le caractère confidentiel des renseignements que vous obtiendrez. De plus, nous vous demandons de prendre les moyens requis pour qu'aucun renseignement permettant d'identifier le patient ne soit utilisé ou communiqué lors de cette recherche.

Cette autorisation est valable jusqu'au 16 mars 2012 et ne vaut que pour les fins qui y sont enoncees.

Parallèlement, si vous deviez adresser votre projet au comité d'éthique à la recherche, nous vous recommandons d'y joindre cette lettre.

Par ailleurs, nous transmettons une copie de cette acceptation à la coordonnatrice des archives médicales, qui vous aidera dans votre démarche. Si plusieurs dossiers sont archivés à l'extérieur, elle vous en communiquera les frais.

Nous vous prions d'agréer, Monsieur, l'expression de nos sentiments les meilleurs.
Le Directeur des affaires médicales et universitaires,

Marc Girard, M.D.
MG/md
c. c. Coordonnatrice des archives médicales M. Jean-Marie Therrien, président au comité d'éthique à la recherche
p.s. Veuillez vous présenter aux archives médicales avec cette lettre.

Le 29 novembre 2007
Dr Philippe Robaey
Psychophysiologie
Étage A Bloc 8

OBJET: Titre du projet: Functional, anatomical and neuropsychological brain toxicity after

Pour l'amour des enfants
CHU Sainte-Justine
Le centre hospitalier universitaire mère-enfant

cranial radiation therapy in childhood leukemia.

Recrutement terminé. (Rapport annuel du 29 novembre 2007)
 R- -

No. de dossier: 1295
Responsables du projet: Philippe Robaey M.D., Jean-Claude Décarie, M.D., Albert Moghrabi, M.D., Yves Théorêt, Ph.D., Véronique Bohbot, Ph.D.

Monsieur,

Votre projet cité en rubrique a été réapprouvé par le Comité d'éthique de la recherche en date d'aujourd'hui. Vous trouverez ci-joint la lettre de réapprobation du Comité. Étant donné qu'il était indiqué dans votre rapport annuel que le recrutement des participants était terminé, les membres du Comité n'ont pas réexaminé votre formulaire d'information et de consentement.

Tous les projets de recherche impliquant des sujets humains doivent être réexaminés annuellement et la durée de l'approbation de votre projet sera effective jusqu'au 29 novembre 2008. Notez qu'il est de votre responsabilité de soumettre une demande au Comité pour le renouvellement de votre projet avant la date d'expiration mentionnée. Il est également de votre responsabilité d'aviser le Comité de toute modification à votre projet ainsi que de tout effet secondaire survenu dans le cadre de la présente étude.

Nous vous souhaitons bonne chance dans la réalisation de votre projet et vous prions de recevoir nos meilleures salutations.

3175, Côte-Sainte-Catherine Montréal (Québec) H3T 1C5 www.chu-sainte-justine.org

Docteure Caroline Laverdière

Hémato/onco
Étage 2 Bloc 6

CHU Sainte-Justine
Le centre hospitalier universitaire mère-enfant
Pour l'amour des enfants

OBJET : Titre du projet: Impact à long terme des traitements de la leucémie lymphoblastique aiguëe chez une population pédiatrique: proposition de projet pilote pour tester les effets secondaires au niveau neurocognitif et cellulaire chez des patients ayant reçu des traitements au CHU Sainte-Justine No de dossier : 3027
Responsable du projet : Caroline Laverdière M.D., chercheur responsible au CHU Sainte-Justine. Chercheur

Chère Docteure,
Votre projet cité en rubrique a été approuvé en partie. Notre approbation vaut pour les sections impliquant seulement le recrutement de patients vivants et leur fratrie. L'usage de tissus cutanés et cérébaux de patients décédés n'est pas approuvé en raison des enjeux éthiques, légaux et le fait que les chercheurs évaluent présentement une alternative pour ces tissus.

Notez également que le projet peut débuter mais qu'aucun transfert de données et de fonds ne doit être effectué avant que l'entente de collaboration ne soit finalisée avec l'UQAM.

Vous trouverez ci-joint la liste des documents approuvés ainsi que votre formulaire d'information et de consentement estampillé dont nous vous prions de vous servir d'une copie pour distribution.

Tous les projets de recherche impliquant des sujets humains doivent être réexaminés annuellement et la durée de l'approbation de votre projet sera effective jusqu'au 29 juin 2011. Notez qu'il est de votre responsabilité de soumettre une demande au comité pour que votre projet soit renouvelé avant la date d'expiration mentionnée. Il est également de votre responsabilité d'aviser le comité dans les plus brefs délais de toute modification au projet ainsi que de tout effet secondaire survenu dans le cadre de la présente étude.

Nous vous souhaitons bonne chance dans la réalisation de votre projet et vous prions de recevoir nos meilleurs salutations.

Jean-Marie Therrien, Ph.D., éthicien
Président du Comité d'éthique de la recherche JMT/nd
$C C$: Bureau des ententes de recherche

ANNEXE V. Articles complémentaires

Ces articles, en lien avec les études doctorales de la candidate, sont parus ou étaient en préparation au moment du dépôt de la thèse.

1- (Article de vulgarisation scientifique, paru) Marcoux S, Un cordon d'espoir. 2008, Dire, 17(4), 6-10

2- (Article de vulgarisation scientifique, paru) Marcoux S, Quand je serai grand, je serai... guéri? Survol des problèmes de santé actuels chez les patients ayant reçu des traitements anti-cancer en bas âge. 2009, Dire, 18(3), 32-36

3- (Article de revue, sur invitation, soumis). Marcoux S, Langlois-Pelletier C, Robaey P, Laverdière C. Leucémie I ymphoblastique ai guë pédi atrique et sé quelles neuropsychologiques: Un aperçu des connaissances actuelles. Médecine Sciences Amérique

4- (Article scientifique de co ntribution o riginale, en pr éparation) Marcoux S , Chapdelaine A, Robaey P, Laverdière C, Comparaison des doses théoriques et effectives de glucocorticoïdes administrés dans le cadre du traitement de la leucémie lymphoblastique aiguë et toxicités associées.

5- (Article scientifique de contribution originale, en préparation) Marcoux S, Oahn Le, Beauséjour C, Nancy Cloutier, Robaey P, Laverdière C, Hatami A, Impact à long terme des traitements de la leucémie lymphoblastique aiguë chez une population pédiatrique : étude des effets secondaires neuropsychologiques et cellulaires.

ANNEXE VI．Preuves de parution／soumission des articles

Article 1 （Article paru）

DEVELOPMENTAL DISABILITIES
RESEARCH REVIEWS 14：211－220（2008）

Pharmacogenetics of the Neurodevelopmental Impact of Anticancer Chemotherapy

Philippe Robaey，${ }^{1,2 *}$ Maja Krajinovic，${ }^{1}$ Sophie Marcoux，${ }^{1}$ and Albert Moghrabi ${ }^{3}$
${ }^{1}$ Centre de Recherche de l＇Hôpital Sainte－Justine，Université de Montréal，Montréal，Québec
${ }^{2}$ Children＇s Hospital of Eastern Ontario，University of Ottawa，Ottawa，Ontario
${ }^{3}$ Service d＇Hématologie－Oncologie，Hôpital de Verdun，Université de Montréal，Montréal，Québec

Article 2 （Preuve－révision soumise）

PBC－11－0344．R1 for Pediatric Blood \＆Cancer $\square^{1 \times}$	困鿬园
Boite de réception｜ X	

09－Aug－2011
PBC－11－0344．R1－Predictive factors of internalized and externalized behavioral problems in children treated for acute lymphoblastic leukemia
Dear Mrs．Marcoux：
The joumal＇s Editor in Chief Dr．Robert Arceci asked me to let you know that he is going to ask the original reviewer who requested changes to also review the revision．We will be back in touch after that review is returned．

Martha Merrell

Pediatric Blood \＆Cancer
h Répondre ${ }^{\text {4 }}$ Répondre à tous \Rightarrow Transférer

Article 3 (Preuve - article soumis)

```
From: "Journal Office" <journal.pediatrics@cchmc.org>
Date: 17 août 2011 12:26:44 HAE
To:
Subject: Submission Confirmation for Role of NOS3 DNA variants in externalized behavioral
problems observed in childhood leukemia survivors
```

Dear Dr Robaey,

Your submission entitled "Role of NOS3 DNA variants in externalized behavioral problems observed in childhood leukemia survivors" has been received by The Journal of Pediatrics. If you did not include a list of 5-7 possible reviewers in your Letter of Submission, please reply to this e-mail with a list of 5-7 appropriate reviewers for your submission (not needed for Letters to the Editor, Insights, or Editorials submissions); be sure to provide contact information-the e-mail address, at minimum-of the suggested reviewers. Not providing 5-7 potential reviewers may result in delays in the processing of your paper.

(...)

Your manuscript will be given a reference number once an Editor has been assigned. Please refer to this number in all correspondence.

Thank you for submitting your work to The Journal of Pediatrics.

Sincerely,

The Journal of Pediatrics
Editorial Staff
journal.pediatrics@cchmc.org
http://ees.elsevier.com/jpeds/

ANNEXE VII. Curriculum vitae abrégé

Publications, présentations et communications

Articles scientifiques publiés

Robaey P ., K rajinovic M., Marcoux S., M oghrabi, A . P harmacogenetic of neurodevelopmental i mpact o fan ticancer chemotherapy. 2008, Developmental Disabilities Research Reviews, 14, 211-220

Diaz Z*, Mann KK*, Marcoux S*, Kourelis M, Colombo M, Komarnitsky PB, Miller WH Jr. A nov el ar senical has anti-tumor act ivity t oward A s2O3-resistant a nd MRP1/ABCC1-overexpressing cell I ines. 2008, Leukemia, 22(10), 18 53-1863 (* contribution égale)

Abrégés de communication publiés

Marcoux S, Robaey P, Krajinovic M, Laverdière C, Moghrabi A. Role of psychosocial, g enetic and reatment m odalities variables in adapt ation pr oblems following cancer: results from a pediatric experience. 2010, Psycho-Oncology, 19(Suppl. 2), 184

Autres publications

Marcoux S, Projet « Prévention de I a nég ligence parentale» dans HochelagaMaisonneuve, Montréal. 2010, Coup d'œil sur la recherche et l'évaluation - Ministère de la santé et des services sociaux du Québec, 78, 1-2

Marcoux S, Quand je serai grand, je serai... guéri? Survol des problèmes de santé act uels chezles patients ayant reçu des traitements anti-cancer en bas âge. 2009, Dire, 18(3), 32-36

Marcoux S, Un cordon d'espoir. 2008, Dire, 17(4), 6-10

Rapports de recherche et d'évaluation

Marcoux S, P rojet «P révention de I a nég ligence par entale» dans le quar tier montréalais Hochelaga : rapport de recherche exploratoire, 2010, rapport préparé pour le Ministère de la santé et des services sociaux du Québec, Montréal, 48 pages.

Marcoux S, Bilan 1999-2008 - Le réseau de pé diatrie sociale montréalais : un réseau qui grandit en santé! 2008, rapport de recherche et d'évaluation préparé pour la Fondation pour la promotion de la pédiatrie sociale, Montréal, 79 pages.

Lizotte-Masson MH, Marcoux S, Projet 'Parcs et ruelles animés' - Rapport d'évaluation et de r ecommandations. 2008, rapport d' évaluation pr éparé pour I a Fondation pour la promotion de la pédiatrie sociale. Réseau de formation en pédiatrie sociale, Montréal, 39 pages.

Présentations orales

Marcoux S, P roblèmes d'adaptation ch ezl es survivants d'un c ancer pédiatrique: Étude des trajectoires individuelles et facteurs de risques psychosociaux, médicaux et génétiques associés. $79{ }^{\text {e }}$ Congrès annuel del 'ACFAS (Association francophone pour le savoir). Sherbrooke, Québec. 9-13 mai 2011

Marcoux S, Robaey P, Krajinovic M, Laverdière C, Moghrabi A, Role of psychosocial, g enetic and t reatment m odalities variables in adapt ation pr oblems following cancer: Results from a pedi atric experience. 12e Congrès International en oncologie psychosociale. Québec, Québec. 25-29 mai 2010

Marcoux S, The β-globin nucl ear comportment in development and erythroid differenciation - Review and critique of a paper published in Nature Genetics. Cours BIM6020 - Hémato-oncologie moléculaire (cours ouvert au publ ic et aux chercheurs de l'Université de Montréal). Montréal, Québec. 14 novembre 2005

Marcoux S, P aquette Y, Tessier J, P etrucci M , Carmona E, B onnardeaux A, Étude de l'incidence de néphropathies héréditaires en relation avec des mutations de la protéine de Tamm-Horsfall. 1 ère Journée des stagiaires de recherche du Centre de recherche G uy-Bernier/Hôpital M aisonneuve-Rosemont. M ontréal, Q uébec. 12 septembre 2003

Communications affichées choisies

Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C. $8^{\text {th }}$ American Psychosocial Oncology Society Annual Conference. Anaheim, Californie, USA. 17-19 février 2011

Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C. Journée annuelle de la recherche du Département de Psychiatrie de l'Université de Montréal. Montréal, Québec. 29 octobre 2010

Marcoux S , Krajinovic M , Moghrabi A, Laverdière C , Robaey P. $11^{\text {th }}$ International C onference on Long -Term C omplications of Treatment of Children and Adolescents for Cancer. Williamsburg, Virginia, USA. 11-12 juin 2010

Marcoux S, Robaey P, Krajinovic M, Moghrabi A. Quebec Child Mental Health Research Day - Montreal Children's Hospital. Montréal, Québec. 14 mai 2010

Marcoux S, Robaey P, Krajinovic M, Laverdière C, Moghrabi A. 26^{e} Congrès de la Société Française de psycho-oncologie. Montpellier, France. 4-6 novembre 2009

Marcoux S, Robaey P, Krajinovic M, Moghrabi A. Congrès annuel des étudiants gradués du CHU Ste-Justine. Montréal, Québec. 2 juin 2009

Marcoux S, Robaey P, Krajinovic M, Moghrabi A. 77^{e} Congrès annuel de l'Association francophone pour le savoir (ACFAS). Ottawa, Ontario. 11-15 mai 2009

Prix, Bourses et Mentions spéciales

$\underline{2010}$

- Récipiendaire; al location de v oyage du G roupe de recherche sur l'inadaptation psychosociale chez l'enfant, Université de Montréal (500\$)
- Récipiendaire; allocation de voyage du Centre de recherche du CHU Ste-Justine (1 200\$)
- Récipiendaire; concours de bourses de voyage de l'Institut du ca ncer des IRSC (1 000\$)
- Récipiendaire; bourse doctorale Banting-Best IRSC (35000\$ / an, pour 3 ans)
- Récipiendaire; bour se d' excellence du C entre de r echerche CHU S te-Justine (3 000\$)
- Récipiendaire; bourse d'excellence de la Faculté des études supérieures de l'Université de Montréal/Groupe financier Banque TD (5000\$)
- Récipiendaire; allocation de voyage du Centre de recherche du CHU SteJustine (1 200\$)
- Récipiendaire; bour se d octorale FR SQ - Fonds de recherche e nsa nté du Québec (20 000\$ / an, pour 3 ans) $)^{34}$
$\underline{2008}$
- Récipiendaire; bourse doctorale d'excellence de la Fondation de l'Hôpital SteJustine et de la Fondation des Étoiles (17 500\$)
- Récipiendaire; allocation de voyage du Groupe de recherche sur l'inadaptation psychosociale chez l'enfant, Université de Montréal (400\$)
- Récipiendaire; bourse d'excellence au doct orat du Département des sciences biomédicales de la Faculté de médecine de l'Université de Montréal (3000\$)

$\underline{2006}$

- Récipiendaire; bourse du MCETC ('Montreal Centre for Experimental Therapeutics in Cancer') et CIHR/FRSQ Strategic Training, Graduate Student Award (17 500\$)
- Récipiendaire; bourse du MCETC ('Montreal Centre for Experimental Therapeutics in C ancer') e t CIHR/FRSQ S trategic Training, Summer Undergraduate Student Research Award (3000\$)
$\underline{2005}$
- Récipiendaire; bourse du MCETC ('Montreal Centre for Experimental Therapeutics in C ancer') et C IHR/FRSQ Strategic Training, Summer Undergraduate Student Research Award (3000\$)
$\underline{2003}$
- $3^{\text {ième }}$ place; concours de présentations orales de la Journée des stagiaires du Centre de Recherche Guy-Bernier (Hôpital Maisonneuve-Rosemont)
$\underline{2002}$
- Récipiendaire; $1^{\text {er }}$ prix d'excellence dans la catégorie Sciences de la santé au Gala Méritas du Cégep de Victoriaville (400\$)
- Récipiendaire; Bourse Gaston Miron pour l'excellence du français écrit (400\$)
- Récipiendaire; bour se d'excellence del a Fond ation des Caisses populaires Desjardins (1000\$)
- Récipiendaire; bour se d'excellence de I a C ompagnie de I a B aie d' Hudson (1 000\$)

[^25]
ANNEXE VIII. Déclaration des coauteurs et droits d'auteurs

Présentés dans cet ordre, suivant la présente page :

Déclarations des coauteurs
1- Philippe Robaey
2- Maja Krajinovic
3- Caroline Laverdière
4- Albert Moghrabi
5- Annabel Gahier, Malgorzata Labuda, Julie Rousseau
6- Aurélie Chapdelaine

Permissions de reproduction

1- FIGURE 1
2- FIGURE 2
3- FIGURE 3
4- FIGURE 5
5- FIGURE 6
6- TABLEAU 1
7- ARTICLE 1

Licence non exclusive des thèses - Bibliothèque et Archives Canada

DÉCLARATION DE COAUTEUR - Dr PHILIPPE ROBAEY

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description des articles

Article 1 de la thèse de la candidate.
Auteurs : \quad Robaey P, Krajinovic M, Marcoux S, Moghrabi A.
Titre: Pharmacogenetics of t he neur odevelopmental i mpact of an ticancer chemotherapy
Revue: \quad Cet article est paru dans la revue Developmental Disabilities Research Reviews (2008, 14, 211-220).
Une preuve de parution est disponible dans les annexes de la thèse.
Article 2 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C.
Titre : \quad Predictive factors of internalized and ex ternalized adaptation problems in children treated for acute lymphoblastic leukemia.
Revue: \quad Cet article est en préparation pour une soumission à la revue Cancer.
Article 3 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Gahier A, Labuda M, Rousseau J, Sinnett D, Moghrabi A, Laverdière C, Krajinovic M.
Titre : \quad NOS3 v ariants and pedi atric cancer pat ients' ex ternalized adapt ation problems
Revue: Cet article est en préparation pour une soumission à la revue Molecular Psychiatry.

Déclaration de coauteur

À titre de coauteur des articles identifiés ci-dessus, je suis d'accord pour que Sophie Marcoux inclue les articles identifiés ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des sé quelles à long terme ch ez les patients pédiatriques atteints de leucémie lymphoblastique aiguë.

Dr Philippe Robaey, 14 décembre 2010

DÉCLARATION DE COAUTEUR - Dre MAJA KRAJINOVIC

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description des articles

Article 1 de la thèse de la candidate.
Auteurs: Robaey P, Krajinovic M, Marcoux S, Moghrabi A.
Titre: Pharmacogenetics of t he neur odevelopmental i mpact of an ticancer chemotherapy
Revue: \quad Cet article est paru dans la revue Developmental Disabilities Research Reviews (2008, 14, 211-220).
Une preuve de parution est disponible dans les annexes de la thèse.
Article 2 de la thèse de la candidate.
Auteurs : Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C.
Titre : \quad Predictive factors of internalized and ex ternalized adaptation problems in children treated for acute lymphoblastic leukemia.
Revue: \quad Cet article est en préparation pour une soumission à la revue Cancer.
Article 3 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Gahier A, Labuda M, Rousseau J, Sinnett D, Moghrabi A, Laverdière C, Krajinovic M.
Titre : \quad NOS3 v ariants and pedi atric cancer pat ients' ex ternalized adapt ation problems
Revue: Cet article est en préparation pour une soumission à la revue Molecular Psychiatry.

Déclaration de coauteur

À titre de coauteur des articles identifiés ci-dessus, je suis d'accord pour que Sophie Marcoux inclue les articles identifiés ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des sé quelles à long terme ch ez les patients pédiatriques atteints de leucémie lymphoblastique aiguë.

Dre Maja Krajinovic, 14 décembre 2010

DÉCLARATION DE COAUTEUR - Dre CAROLINE LAVERDIÈRE

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description des articles

Article 2 de la thèse de la candidate.
Auteurs : Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C.
Titre: Predictive factors of internalized and ex ternalized adaptation problems in children treated for acute lymphoblastic leukemia.
Revue: Cet article est en préparation pour une soumission à la revue Cancer.

Article 3 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Gahier A, Labuda M, Rousseau J, Sinnett D, Moghrabi A, Laverdière C, Krajinovic M.
Titre : \quad NOS3 v ariants and pedi atric cancer pat ients' ex ternalized adapt ation problems
Revue: Cet article est en préparation pour une soumission à la revue Molecular Psychiatry.

Déclaration de coauteur

À titre de coauteur des articles identifiés ci-dessus, je suis d'accord pour que Sophie Marcoux inclue les articles identifiés ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des séquelles à long terme chez les patients pédiatriques atteints de leucémie lymphoblastique aiguë.

Dre Caroline Laverdière, 14 décembre 2010

DÉCLARATION DE COAUTEUR - Dr ALBERT MOGHRABI

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description des articles

Article 1 de la thèse de la candidate.
Auteurs: Robaey P, Krajinovic M, Marcoux S, Moghrabi A.
Titre: Pharmacogenetics of t he neur odevelopmental i mpact of an ticancer chemotherapy
Revue: \quad Cet article est paru dans la revue Developmental Disabilities Research Reviews (2008, 14, 211-220).
Une preuve de parution est disponible dans les annexes de la thèse.
Article 2 de la thèse de la candidate.
Auteurs : Marcoux S, Robaey P, Krajinovic M, Moghrabi A, Laverdière C.
Titre: Predictive factors of internalized and ex ternalized adaptation problems in children treated for acute lymphoblastic leukemia.
Revue: \quad Cet article est en préparation pour une soumission à la revue Cancer.
Article 3 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Gahier A, Labuda M, Rousseau J, Sinnett D, Moghrabi A, Laverdière C, Krajinovic M.
Titre : \quad NOS3 variants and pedi atric cancer pat ients' ex ternalized adapt ation problems
Revue: Cet article est en préparation pour une soumission à la revue Molecular Psychiatry.

Déclaration de coauteur

À titre de coauteur des articles identifiés ci-dessus, je suis d'accord pour que Sophie Marcoux inclue les articles identifiés ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des sé quelles à long terme ch ez les patients pédiatriques atteints de leucémie lymphoblastique aiguë.

Dr Albert Moghrabi, 14 décembre 2010

DÉCLARATION DE COAUTEURS: ANNABEL GAHIER
 MALGORZATA LABUDA
 JULIE ROUSSEAU

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description de l'article

Article 3 de la thèse de la candidate.
Auteurs: Marcoux S, Robaey P, Gahier A, Labuda M, Rousseau J, Sinnett D, Moghrabi A, Laverdière C, Krajinovic M.
Titre : \quad NOS3 v ariants and pedi atric cancer pat ients' ex ternalized adapt ation problems
Revue: Cet article est en préparation pour une soumission à la revue Molecular Psychiatry.

Déclaration des coauteurs

À titre de coauteurs de l'article identifié ci-dessus, nous sommes d'accord pour que Sophie Marcoux inclue l'article identifié ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des sé quelles à long terme ch ez les patients pédiatriques atteints de leucémie lymphoblastique aiguë.

DÉCLARATION DE COAUTEUR - AURÉLIE CHAPDELAINE

Identification de l'étudiant et du programme

MARCOUX, Sophie
Ph.D. en sciences biomédicales, option sciences psychiatriques
Université de Montréal

Description du matériel concerné

1) TABLEAU 7. Effets physiologiques principaux des GC.
2) TABLEAU 8. Effets pharmacologiques principaux des GC.

J'ai e ffectué la t raduction de ce s tableaux à par tir de E LLIS M, S WAIN S M 2001. Steroid hormone therapies for cancer. Dans CHABNER BA, LONGO DL (ed.). Cancer Chemotherapy and B iotherapy: P rinciples and P ractice, $3 e$ édi tion. Wilkinson \& Wilkins, Philadelphie, 90-91. Cette traduction a initialement été effectuée dans le cadre d'un rapport de st age d'été intitulé Traitement de la leucémie lymphoblastique aiguë pédiatrique: résultats préliminaires d'une étude sur les doses de glucocorticoïdes administrées et les toxicités associées, rédigé pour le Comité d'organisation du programme des stages d'été (COPSÉ, Faculté de médecine, Université de Montréal) en octobre 2010. Les tableaux correspondent respectivement aux tableaux 2 et 3 de mon rapport de stage.

Déclaration de coauteur

Par la présente, je confirme que je suis d'accord pour que Sophie Marcoux inclue le matériel identifié ci-dessus dans sa thèse de doctorat, qui a pour titre Analyse des séquelles àl ong termech ez les patients pédiatriques atteints del eucémie lymphoblastique aiguë.

Aurélie Chapdelaine, 4 décembre 2010

ACCORD DE REPRODUCTION -

FIGURE 1:

```
MMWR Permission to Print/Use Information:
All material in the MMWR Series is in the public domain and may be
used and reprinted without permission; citation as to source, however,
is appreciated.
Use of trade names and commercial sources is for identification only
and does not imply endorsement by the U.S. Department of Health and
Human Services.
```


ACCORD DE REPRODUCTION - FIGURE 2 :

Licensed Content

The New England Journal of Medicine Article Title:	Treatment of Acute Lymphoblastic Leukemia
The New England Journal of Medicine Authors:	Pui, Evans
Year of Publication:	2006
Article DOI:	$10.1056 /$ NEJMra052603

ACCORD DE REPRODUCTION - FIGURE 3 :

This is a License Agreement between Sophie Marcoux ("You") and Nature Publishing Group ("Nature Publishing Group") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by Nature Publishing Group, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number	2558300071514
License date	Nov 29, 2010
Licensed content publisher	Nature Publishing Group
Licensed content publication	Oncogene
Licensed content title	The role of Smad signaling in hematopoiesis
Licensed content author	Jonas Larsson and Stefan Karlsson
Volume number	24
Issue number	37
Pages	
Year of publication	2005

ACCORD DE REPRODUCTION - FIGURE 5:

Permission is valid for use of the following AAAS material only:
Fig 3 from Chrousos and Kino. Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Sci. STKE 2005, pe48 (2005)
In the following work only:
ANALYSE DES SÉQUELLES À LONG TERME CHEZ LES PATIENTS PÉDIATRIQUES ATTEINTS DE LEUCÉMIE LYMPHOBLASTIQUE AIGUË published by in Dec 2010
FEE: Permission fees are waived in this instance. AAAS reserves the right to charge for reproduction of AAAS controlled material in the future.

ACCORD DE REPRODUCTION - FIGURE 6:

> Le contenu du site Le Cerveau à tous les Niveaux ! est sous copyleft permettent donc de reproduire ce site en tout ou en partie pour en faire bénéficier le plus grand nombre.

ACCORD DE REPRODUCTION - TABLEAU 1:

Comment accéder au contenu de la présente publication

Des copies électroniques de la publication, en français et en anglais, et certaines autres données statistiques ne figurant pas dans le rapport peuvent être obtenues en format PDF sur le site Web de la Société canadienne du cancer à www.cancer.ca/statistiques. Les versions sur PowerPoint des figures tirées de la publication en 2008 sont également disponibles à la même adresse (www.cancer.ca/statistiques). Le contenu de la présente publication peut être utilisé sans permission. Les renseignements exacts concernant la source à indiquer dans ce cas figurent au début du document.

ACCORD DE REPRODUCTION - Article 1 :

This is a License Agreement between Sophie Marcoux ("You") and John Wiley and Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by John Wiley and Sons, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

License Number	2558971346767
License date	Nov 30,2010
Licensed content publisher	John Wiley and Sons
Licensed content publication	Developmental Disabilities Research Reviews
Licensed content title	Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy

THESES NON-EXCLUSIVE LICENSE
LICENCE NON EXCLUSIVE DES THÈSES

Surname / Nom de famille MARCOUX	Given Names/Prénoms SOPHIE
Full Name of University/Nom complet de l'université	
UNIVERSITE DE MONTREAA	

Degree for which thesis was presented/Grade pour lequel cette	Date Degree Awarded/Date d'obtention du grade

thèse a été présentée

DOCTORAT (Ph.D.)
Date of Birth. In many cases it is essential to include information about year of birth in bibliographic records to distinguish between authors bearing the same or similar names. It is optional to supply your date of birth. If you choose to do so please note that the information will be included in the bibliographic record for your thesis.

2011
Date de naissance. Dans bien des cas, il est essentiel de connaître l'année de naissance des auteurs afin de pouvoir faire la distinction entre des personnes qui ont le même nom ou des noms semblables. Vous avez le choix de fournir votre date de naissance. Si vous choisissez de la fournir veuillez noter que l'information sera incluse dans la notice bibliographique de votre thèse.

Thesis Title / Titre de la thèse
analyse des séqueues à long terme chez les patients pédiatriques atteints de levcémie lymphoblastique aiguë.

In consideration of Library and Archives Canada making my thesis available to interested persons, I,
hereby grant a non-exclusive, for the full term of copyright protection, royalty free license to Library and Archives Canada: (a) to reproduce, publish, archive, preserve, conserve,
communicate to the public by telecommunication or on the Internet, loan, distribute and sell my thesis (the title of which is set forth above) worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats;
(b) to authorize, sub-license, sub-contract or procure any of the acts mentioned in paragraph (a).

I undertake to submit my thesis, through my university, to Library and Archives Canada. Any abstract submitted with the thesis will be considered to form part of the thesis.

I represent and promise that my thesis is my original work, does not infringe any rights of others, and that I have the right to make the grant conferred by this non-exclusive license. If thirdparty copyrighted material was included in my thesis, I have obtained written copyright permission from the copyright owners to do the acts mentioned in paragraph (a) above for the full term of copyright protection.

I retain copyright ownership and moral rights in my thesis, and may deal with the copyright in my thesis, in any way consistent with rights granted by me to Library and Archives Canada in this non-exclusive license.

I further promise to inform any person to whom I may hereafter assign or license my copyright in my thesis of the rights granted by me to Library and Archives Canada in this non-exclusive license.

Considérant le fait que Bibliothèque et Archives Canada désire mettre ma thèse à la disposition des personnes intéressées, je,

SOPMIE MARCONX

accorde par la présente à Bibliothèque et Archives Canada, une licence non exclusive et libre de redevance, et ce, pour toute la période protégée par mon droit d'auteur afin de :
(a) reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre ma thèse (dont le titre est indiqué ci-dessus) partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats;
(b) autoriser, accorder une sous-licence ou une sous-traitance, ou engager toute mesure mentionnée à l'alinéa (a).

Je m'engage à ce que ma thèse soit remise à Bibliothèque et Archives Canada par mon université. Tout résumé analytique soumis avec la thèse sera considéré comme faisant partie de celle-ci.

Je déclare sur mon honneur que ma thèse est mon ceuvre originale, qu'elle n'empiète pas sur les droits de quiconque et que j 'agis de plein droit en accordant cefte licence non exclusive. Si le document d'une tierce personne étant protégé par un droit d'auteur est inclus dans ma thèse, j'aurai préalablement obtenu une permission écrite des détenteurs du droit d'auteur pour faire les actes mentionnés dans le paragraphe (a) ci-dessus, et ce, pour toute la période protégée par le droit d'auteur.

Je conserve la propriété du droit d'auteur et des droits moraux qui protègent ma thèse, et je peux disposer du droit d'auteur de toute manière compatible avec les droits accordés à Bibliothèque et Archives Canada par les présentes.

Je promets également d'informer toute personne à qui je pourrais ultérieurement céder mon droit d'auteur sur ma thèse ou à qui je pourrais accorder une licence, des droits non exclusifs accordés à Bibliothèque et Archives Canada par les présentes.

RÉFÉRENCES

1. Marcoux, S., Quand je serai grand, je serai... guéri? - Survol des problèmes de santé actuels chez les patients ayant reçu des traitements anti-cancer en bas âge. Dire 2009. 18(3): p. 32-36.
2. Barnes, E., Caring and curing: Pediatric cancer services since 1960. European Journal of Cancer Care (English Language Edition), 2005. 14: p. 373-380.
3. O'Leary, M., et al., Progress in childhood cancer: 50 years of research collaboration, a report from the Children's Oncology Group. Seminars in Oncology 2008. 35(5): p. 484-493.
4. Askins, M.A. and B.D. Moore, Psychosocial support of the pediatric cancer patient: lessons learned over the past 50 years. Current Oncology Reports, 2008. 10: p. 469-476.
5. Desandes, E., Survival from adolescent cancer. Cancer Treatment Reviews, 2007. 33: p. 609-615.
6. Speechley, K.N., et al., Health-related quality of life among child and adolescent survivors of childhood cancer. Journal of Clinical Oncology, 2006. 24(16): p. 2536-2543.
7. Eshelman, D., et al., Facilitating care for childhood cancer survivors : integrating children's oncology group long-term follow-up guidelines and health links in clinical practice. Journal of Pediatric Oncology Nursing, 2004. 21: p. 271-280.
8. Glover, D.A., et al., Impact of CNS treatment on mood in adult survivors of childhood leukemia : a report from the children's cancer group. Journal of Clinical Oncology, 2003. 21: p. 4395-4401.
9. Hudson, M.M., et al., Health status of adult long-term survivors of childhood cancer - A report from the childhood cancer survivor study. JAMA, 2003. 290(12): p. 1583-1592.
10. Oeffinger, K.C., et al., Chronic health conditions in adult survivors of childhood cancer. New England Journal of Medicine, 2006. 355(15): p. 1572-1582.
11. Geenen, M.M., et al., Medical assessment of adverse health outcomes in longterm survivors of childhood cancer. Journal of the American Medical Association, 2007. 297(24): p. 2705-2715.
12. McGregor, L.M., et al., Pediatric cancers in the new millenium: dramatic progress, new challenges. Oncology 2007. 21(7): p. 1-20.
13. Arceci, R.J., Curing pediatric cancers: A success story reconsidered. Oncology 2007. 21(7): p. 1-6.
14. Meadows, A.T., Pediatric cancer survivorship: research and clincal care. Journal of Clinical Oncology, 2006. 24(32): p. 5160-5165.
15. Linabery, A.M. and J.A. Ross, Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer 2008. 112: p. 416-432.
16. Li, J., et al., Cancer incidence among children and adolescents in the United States, 2001-2003. Pediatrics 2008. 121: p. e1470-e1477.
17. Société canadienne du cancer et Institut national du cancer du Canada: Statistiques canadiennes sur le cancer 2008 - Sujet particulier: cancer chez les enfants Société canadienne du cancer, Toronto, Canada. 115 p., 2008.
18. Comité directeur de la Société canadienne du cancer: Statistiques canadiennes sur le cancer, 2009 - Sujet particulier: Le cancer chez les adolescents et les jeunes adultes. Société canadienne du cancer, Toronto, Canada. 135 p., 2009.
19. Couzin, J., In their prime and dying of cancer. Science 2007. 317: p. 11601162.
20. Bleyer, A., Adolescent and young adult (AYA) oncology: The first A. Pediatric Hematology and Oncology, 2007. 24: p. 325-336.
21. Penson, R.T., et al., Between parent and child : negotiating cancer treatment in adolescents. The Oncologist, 2002. 7: p. 154-162.
22. Barr, R.D., Common cancers in adolescents. Cancer Treatment Reviews, 2007. 33: p. 597-602.
23. DeAngelo, D.J., The treatment of adolescents and young adults with acute lymphoblastic leukemia. American Society of Hematology, 2005: p. 123-130.
24. Greaves, M., Infection, immune responses and the aetiology of childhood leukaemia. Nature Reviews Cancer, 2006. 6: p. 193-203.
25. Li, C.K., et al., Impact of SARS on development of childhood acute lymphoblastic leukemia. Leukemia 2007. 21: p. 1353-1356.
26. Garssen, B., Psychological factors and cancer development: evidence after 30 years of research. Clinical Psychology Review, 2004. 24: p. 315-338.
27. Infante-Rivard, C. and M. El-Zein, Parental alcohol consumption and childhood cancers : a review. Journal of Toxicology and Environmental Health, 2007. 10(101-129).
28. Chen, Z., et al., Risk of childhood germ cell tumors in association with parental smoking and drinking. Cancer 2005. 103: p. 1064-1071.
29. Infante-Rivard, C., et al., Childhood acute lymphoblastic leukemia associated with parental alcohol consumption and polymorphisms of carcinogenmetabolizing genes. Epidemiology 2002. 13: p. 277-281.
30. Couto, E., B. Chen, and K. Hemminki, Association of childhood acute lymphoblastic leukaemia with cancers in family members. British Journal of Cancer, 2005. 93: p. 1307-1309.
31. Ip, S., et al., Breastfeeding and maternal and infant health outcomes in developed countries. Evidence Report/Technology Assessment - Agency for Healthcare Research and Quality, 2007. 153: p. 1-183.
32. Abadi-Korek, I., et al., Parental occupational exposure and the risk of acute lymphoblastic leukemia in offspring in Israel. Journal of Occupational and Environnemental Medicine, 2006. 48(2): p. 165-174.
33. Infante-Rivard, C., et al., Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology 1999. 10(5): p. 481487.
34. Adelman, A.S., et al., Residential mobility and risk of childhood acute lymphoblastic leukaemia: An ecological study. British Journal of Cancer, 2007. 97: p. 140-144.
35. Alston, R.D., et al., Cancer incidence patterns by region and socioeconomic deprivation in teenagers and young adults in England. British Journal of Cancer, 2007. 96: p. 1760-1766.
36. Smith, A., et al., Childhood leukaemia and socioeconomic status : fact or artefact? A report from the United Kingdom childhood cancer study (UKCCS). International Journal of Epidemiology, 2006. 35: p. 1504-1513.
37. Friedman, D.L., et al., Increased risk of cancer among siblings of long-term childhood cancer survivors: A report from the childhood cancer survivor study. Cancer Epidemiology, Biomarkers and Prevention, 2005. 14(8): p. 1922-1927.
38. Pizzo, P.A. and D.G. Poplack, Principles and Practice of Pediatric Oncology 5th Edition. Lippincott Williams \& Wilkins, New York, 1780 pages. 2006.
39. Gast, A., et al., Folate metabolic gene polymorphisms and childhood acute lymphoblastic leukemia: a case-control study. Leukemia 2007. 21: p. 320-325.
40. Krajinovic, M., MTHFD1 gene : role in disease susceptibility and pharmacogenetics. Pharmacogenomics, 2008. 9(7): p. 829-832.
41. Klotz, J., et al., Population-based retrieval of newborn dried blood spots for researching paediatric cancer susceptibility genes. Paediatric and Perinatal Epidemiology, 2006. 20: p. 449-452.
42. Krajinovic, M., et al., Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 1999. 93(5): p. 1496-1501.
43. Krajinovic, M., et al., Role of NQO1, MPO and CYP2E1 genetic polymorphism in the susceptibility to childhood acute lymphoblastic leukemia. International Journal of Cancer, 2002. 97: p. 230-236.
44. Sherborne, A.L., et al., Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nature Genetics, 2010. 42(6): p. 494-494.
45. Mathonnet, G., et al., Role of DNA mismatch repair genetic polymorphisms in the risk of childhood acute lymphoblastic leukaemia. British Journal of Haematology, 2003. 123(1): p. 45-48.
46. Krajinovic, M., et al., Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004. 103: p. 252-257.
47. Krajinovic, M., D. Labuda, and D. Sinnett, Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2002. 12: p. 655-658.
48. Krajinovic, M., et al., Genetic polymorphisms of N-acetyltransferase 1 and 2 and gene-gene interaction in the susceptibility to childhood acute lymphoblastic leukemia. Cancer Epidemiology, Biomarkers and Prevention, 2000. 9: p. 557562.
49. Greenlee, R.T., et al., Cancer statistics, 2000. CA: A Cancer Journal for Clinicians, 2000. 50: p. 7-33.
50. Pui, C.-H. and W.E. Evans, Treatment of acute lymphoblastic leukemia. New England Journal of Medicine, 2006. 354: p. 166-178.
51. Henderson, T.O., D.L. Friedman, and A.T. Meadow, Childhood cancer survivors: transition to adult-focused risk-based care. Pediatrics 2010. 126(1): p. 129-136.
52. Henderson, T.O., et al., Physician preferences and knowledge gaps regarding the care of childhood cancer survivors: a mailed survey of pediatric oncologists. Journal of Clinical Oncology, 2010. 28(5): p. 878-883.
53. Bober, S.L., et al., Caring for cancer survivors - A survey of primary care physicians. Cancer 2009. 115(18 Suppl.): p. 4409-4418.
54. Hoffman, R., et al., Hematology - Basic principles and practice - 5th Edition. Churchill Livingstone Elsevier, Philadelphia, 2523 pages. 2009.
55. Larsson, J. and S. Karlsson, The role of Smad signaling in hematopoiesis. Oncogene 2005. 24: p. 5676-5692.
56. Otten, J., et al., The Children Leukemia Group: 30 years of research and achievements. European Journal of Cancer 2002. 38: p. S44-S49.
57. Schrappe, M., et al., Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Leukemia 2000. 14: p. 2205-2222.
58. Tubergen, D.G., et al., Improved outcome with delayed intensification for children with acute lymphoblastic leukemia and intermediate presenting
features: a Childrens Cancer Group phase III trial. Journal of Clinical Oncology, 1993. 11(3): p. 527-537.
59. Gaynon, P.S., et al., Improved therapy for children with acute lymphoblastic leukemia and unfavorable presenting features: a follow-up report of the Childrens Cancer Group Study CCG-106. Journal of Clinical Oncology, 1993. 11(11): p. 2234-2242.
60. Kaleita, T.A., Central nervous system-directed therapy in the treatment of childhood acute lymphoblastic leukemia and studies of neurobehavioral outcome: children's cancer group trials. Current Oncology Reports, 2002. 4(2): p. 131-141.
61. Armstrong, D.F. and G.H. Reaman, Psychological research in childhood cancer: The Children's Oncology Group Perspective. Journal of Pediatric Psychology, 2005. 30(1): p. 89-97.
62. Dalle, J.-H., et al., Second induction in pediatric patients with recurrent acute lymphoid leukemia using DCFI-ALL protocols. Journal of Pediatric Hematology/Oncology, 2005. 27: p. 73-79.
63. Silverman, L.B., et al., Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981-1995). Leukemia 2000. 14: p. 2247-2256.
64. Pui, C.H., et al., Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010. 24: p. 371-382.
65. Brody, S.L., J.M. Larner, and K.P. Minneman, Human pharmacology Molecular to clinical - 3th edition, Mosby Elsevier Science, Toronto, 1001 pages. 1998.
66. Rang, H.P., et al., Pharmacology - 5th Edition. Churchill Livingstone. Toronto, 797 pages. 2003.
67. Miketova, P., et al., Oxidative changes in cerebral spinal fluid phosphatidylcholine during treatment for acute lymphoblastic leukemia. Biological Research for Nursing, 2005. 6(3): p. 187-195.
68. Caron, J.E., et al., Oxidative stress and executive function in children receiving chemotherapy for acute lymphoblastic leukemia. Pediatric Blood Cancer, 2009. 53(4): p. 551-556.
69. Stenzel, S.L., et al., Oxidative stress and neurobehavioral problems in pediatric acute lymphoblastic leukemia patients undergoing chemotherapy. Journal of Pediatric Hematology/Oncology, 2010. 32: p. 113-118.
70. Erhola, M., et al., Effects of anthracyclin-based chemotherapy on total plasma antioxidant capacity in small cell lung cancer patients. Free Radical Biology and Medicine, 1996. 21(3): p. 383-390.
71. Faure, H., et al., 5-hydroxymethyluracil excretion, plasma TBARS and plasma antioxidant vitamins in adriamycin-treated patients. Free Radical Biology and Medicine, 1996. 20(7): p. 979-983.
72. Bomken, S.N. and J.H. Vormoor, Childhood leukemia. Paediatrics and Child Health, 2009. 19(8): p. 345-350.
73. Barbi, E., et al., Attitudes of children with leukemia toward repeated deep sedations with propofol. Journal of Pediatric Hematology/Oncology, 2005. 27: p. 639-643.
74. Jay, S., et al., A comparative study of cognitive behavior therapy versus general anesthesia for painful medical procedures in children. Pain 1995. 62: p. 3-9.
75. Bearison, D.J. and R.K. Mulhern, Pediatric psychooncology - Psychological perspectives on children with cancer, Oxford University Press, New York, 247 pages. 1994.
76. Silverman, L.B., et al., Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia 2010. 24: p. 320-334.
77. Waber, D.P., et al., The relationship of sex and treatment modality to neuropsychologic outcome in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 1992. 10(5): p. 810-817.
78. Waber, D.P., et al., Cognitive sequelae of treatment in childhood acute lymphoblastic leukemia: cranial radiation requires an accomplice. Journal of Clinical Oncology, 1995. 13(10): p. 2490-2496.
79. Waber, D.P., et al., Cognitive sequelae in children treated for acute lymphoblastic leukemia with dexamethasone or prednisone. Journal of Pediatric Hematology/Oncology, 2000. 22(3): p. 206-213.
80. Waber, D.P., et al., Excellent therapeutic efficacy and minimal Late neurotoxicity in children treated with 18 grays of cranial radiation therapy for high-risk acute lymphoblastic leukemia - A 7 year follow-up study of the DanaFarber Cancer Institute consortium protocol 87-01. Cancer 2001. 92(1): p. 1522.
81. Waber, D.P., et al., Outcomes of a randomized trial of hyperfractionated cranial radiation therapy for treatment of high-risk acute lymphoblastic leukemia : therapeutic efficacy and neurotoxicity. Journal of Clinical Oncology, 2004. 22(13): p. 2701-2707.
82. Waber, D.P., et al., Neuropsychological outcomes from a randomized trial of triple intrathecal chemotherapy compared with 18 Gy cranial radiation as CNS treatment in acute lymphoblastic leukemia : findings from Dana-Farber Cancer Institute ALL Consortium Protocol 95-01. Journal of Clinical Oncology, 2007. 25(31): p. 4914-4921.
83. Kishi, S., et al., Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. Journal of Clinical Oncology, 2003. 21(16): p. 3084-3091.
84. Luvone, L., et al., Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer 2002. 95(12): p. 2562-2570.
85. Carey, M.E., et al., Brief report: Effect of intravenous methotrexate dose and infusion rate on neuropsychological function one year after diagnosis of acute lymphoblastic leukemia. Journal of Pediatric Psychology, 2007. 32(2): p. 189193.
86. Carey, M.E., et al., Reduced frontal white matter volume in long-term childhood leukemia survivor: A Voxel-based morphometry study. American Journal of Neuroradiology, 2008.
87. Buizer, A.I., et al., Visuomotor control in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. Journal of the International Neuropsychological Society, 2005. 11: p. 554-565.
88. Duffner, P.K., Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. The Neurologist, 2004. 10: p. 293-310.
89. Antunes, N.L., et al., Methotrexate leukoencephalopathy presenting as KlüverBucy syndrome and uncinate seizures. Pediatric Neurology, 2002. 26(4): p. 305-308.
90. Langer, T., et al., CNS late-effects after ALL therapy in childhood. Part III : Neuropsychological performance in long-term survivors of childhood ALL : Impairments of concentration, attention and memory. Medical Pediatric Oncology, 2002. 38: p. 320-328.
91. Krajinovic, M., et al., Polymorphisms of genes controlling homocysteine levels and IQ scores following the treatment for childhood ALL. Pharmacogenomics 2005. 6(3): p. 293-302.
92. Madhyastha, S., et al., Hippocampal brain amines in methotrexate-induced learning and memory deficit. Canadian Journal of Physiology and Pharmacology, 2002. 80: p. 1076-1084.
93. Chabner, B.A. and D.L. Longo, Cancer chemotherapy \& biotherapy - Principles and practice - 4th edition, Lippincott Williams \& Wilkins, New York, 879 pages. 2006.
94. Clavell, L.A., et al., Four agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. New England Journal of Medicine, 1986. 315(11): p. 657-663.
95. Mitchell, C.D., et al., Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukemia : results of the UK Medical Research Council ALL97 randomized trial. British Journal of Haematology, 2005. 129: p. 734-745.
96. Stuart, F.A., T.Y. Segal, and S. Keady, Adverse psychological effects of corticosteroids in children and adolescents. Archives of Disease in Childhood, 2005. 90: p. 500-506.
97. Kingma, A., et al., No major cognitive impairment in young children with acute lymphoblastic leukemia using chemotherapy only: A prospective longitudinal study. Journal of Pediatric Hematology/Oncology, 2002. 24(2): p. 106-113.
98. Chrousos, G.P. and T. Kino, Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Science STKE, 2005. 48.
99. Bear, M.F., B.W. Connors, and M.A. Paradiso, Neuroscience: Exploring the brain, third Edition. Lippincott Williams \& Wilkins, USA, 881 pages 2007.
100. Chabner, B.A. and D.L. Longo, Cancer chemotherapy \& biotherapy - Principles and practice - 3th edition, Lippincott Williams \& Wilkins, New York, 1140 pages. 2001.
101. Mitchell, A. and V. O'Keane, Glucocorticoid steroids affect behaviour and mood. British Medical Journal 1998. 316: p. 244-245.
102. Hochhauser, C.J., et al., Steroid-induced alterations of mood and behavior in children during treatment for acute lymphoblastic leukemia. Supportive Care in Cancer, 2005. 13: p. 967-974.
103. Packan, D.R. and R.M. Sapolsky, Glucocorticoid endangerment of the hippocampus: tissue, steroid and receptor specificity. Neuroendocrinology, 1990. 51(6): p. 613-618.
104. Wüst, S., et al., Common polymorphisms in the glucocorticoid receptor gene are associated with adrenocortical responses to psychosocial stress. Journal of Clinical Endocrinology and Metabolism, 2004. 89(2): p. 565-573.
105. Ouellet-Morin, I., et al., Variations in heritability of cortisol reactivity to stress as a function of early familial adversity among 19-month-old twins. Archives of General Psychiatry, 2008. 65(2): p. 211-218.
106. McEwen, B.S., Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 2008. 583: p. 174-185.
107. De Lange, P., et al., Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptormediated effects in transfected cells. Cancer Research, 2001. 61: p. 39373941.
108. Longui, C.A., et al., Low glucocorticoid receptor α / β ratio in T-cell lymphoblastic leukemia. Hormone and Metabolic Research, 2000. 32: p. 401-406.
109. Fleury, I., et al., Polymorphisms in genes involved in the corticosteroid response and the outcome of childhood acute lymphoblastic leukemia. American Journal of Pharmacogenomics, 2004. 4(5): p. 331-341.
110. Peedell, C., Concise Clinical Oncology. Elsevier Butterworth Heinemann, Toronto, 476 pages. 2005.
111. Moore, B.D., Neurocognitive outcomes in survivors of childhood cancer. Pediatric Psychology, 2005. 30(1): p. 51-63.
112. Lévy-Piedbois, C. and J.L. Habrand, Radiothérapie des hémopathies malignes de l'enfant. Cancer/Radiothérapie, 1999. 3(181-186).
113. Byrne, J., et al., Fertility in women treated with cranial radiotherapy for childhood acute lymphoblastic leukemia. Pediatric Blood Cancer, 2004. 42: p. 589-597.
114. Van Beek, R.D., et al., No difference between prednisolone and dexamethasone treatment in bone mineral density and growth in long term survivors of childhood acute lymphoblastic leukemia. Pediatric Blood Cancer, 2006. 46(88-93).
115. Neglia, J.P., et al., New primary neoplasms of the central nervous system in survivors of childhood cancer: A report from the childhood cancer survivor study. Journal of the National Cancer Institute, 2006. 98(21): p. 1528-1537.
116. Anderson, V., et al., Intellectual, educational, and behavioural sequelae after cranial irradiation and chemotherapy. Archives of Disease in Childhood, 1994. 70: p. 476-483.
117. Noll, R.B., et al., Behavioral adjustment and social functionning of long-term survivors of childhood leukemia : parents and teacher reports. Journal of Pediatric Psychology, 1997. 22(6): p. 827-841.
118. Hill, J.M., et al., A comparative study of the long term psychosocial functioning of childhood acute lymphoblastic leukemia survivors treated by intrathecal methotrexate with or without cranial irradiation. Cancer 1998. 82: p. 208-218.
119. Zou, P., et al., BOLD responses to visual stimulation in survivors of childhood cancer. Neuroimage, 2005. 24: p. 61-69.
120. Appleton, R.E., et al., Decline in head growth and cognitive impairment in survivors of acute lymphoblastic leukaemia. Archives of Disease in Childhood, 1990. 65: p. 530-534.
121. Nathan, P.C., et al., Very high-dose methotrexate $(33,6 \mathrm{~g} / \mathrm{m} 2)$ as central nervous system preventive therapy for childhood acute lymphoblastic leukemia: results of National Cancer Institute/Children's Cancer Group trials CCG-191P, CCG-134P and CCG-144P. Leukemia and Lymphoma, 2006. 47(12): p. 24882504.
122. Recklitis, C.J., T. O'Leary, and L.R. Diller, Utility of routine psychological screening in the childhood cancer survivor clinic. Journal of Clinical Oncology, 2003. 21: p. 787-792.
123. Anderson, V.A., et al., Cognitive and academic outcome following cranial irradiation and chemotherapy in children: A longitudinal study. British Journal of Cancer, 2000. 82(2): p. 255-262.
124. Palmer, S.L., et al., Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. Journal of Clinical Oncology, 2001. 19: p. 2302-2308.
125. Pui, C.-H., et al., Treating childhood acute lymphoblastic leukemia without cranial irradiation. New England Journal of Medicine, 2009. 360: p. 2730-2741.
126. Sallan, S.E., M. Schrappe, and L.B. Silverman, Correspondance - Treating childhood leukemia without cranial irradiation. New England Journal of Medicine, 2009. 361(13): p. 1310-1312.
127. Clarke, M., et al., CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. Journal of Clinical Oncology, 2003. 21(9): p. 1798-1809.
128. Forinder, U., C.M. Löf, and J. Winiarski, Quality of life and health in children following allogeneic SCT. Bone Marrow Transplantation, 2005. 36: p. 171-176.
129. Barrera, M., et al., Health-related quality of life of children and adolescents prior to hematopoietic progenitor cell transplantation: Diagnosis and age effects. Pediatric Blood Cancer, 2006. 47: p. 320-326.
130. Barrera, M., E. Atenafu, and J. Pinto, Behavioral, social, and educational outcomes after pediatric stem cell transplantation and related factors. Cancer 2009. 9: p. 880-889.
131. Matthes-Martin, S., et al., Organ toxicity and quality of life after allogeneic bone marrow transplantation in pediatric patients : a single centre retrospective analysis. Bone Marrow Transplantation, 1999. 23: p. 1049-1053.
132. Löf, C.M., U. Forinder, and J. Winiarski, Risks factors for lower health-related QoL after allogenic stem cell transplantation in children. Pediatric Transplantation, 2007. 11: p. 145-151.
133. Forinder, U., Bone marrow transplantation from a parental perspective. Journal of Child Health Care, 2004. 8(2): p. 134-148.
134. Goldsby, R.E., et al., Late-occurring neurologic sequelae in adult survivors of childhood acute lymphoblastic Leukemia: A report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2010. 28(2): p. 324-331.
135. Gaynon, P.S., Childhood acute lymphoblastic leukaemia and relapse. British Journal of Haematology, 2005. 131: p. 579-587.
136. Ansari, M., et al., Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood 2009. 114: p. 1383-1386.
137. Ansari, M. and M. Krajinovic, Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Current Opinion in Pediatrics, 2007. 19: p. 15-22.
138. Armstrong, S.A. and T.A. Look, Molecular genetics of acute lymphoblastic leukemia. Journal of Clinical Oncology, 2005. 23(26).
139. Mandrell, B.M., The genetic profile and monitoring of acute lymphoblastic leukemia in children and adolescents. Journal of Pediatric Nursing, 2009. 24(3): p. 173-178.
140. Gadner, H., et al., The eighth international childhood acute lymphoblastic leukemia workshop ('Ponte di Legno meeting') report: Vienna, Austria, April 2728. Leukemia 2006. 20: p. 9-17.
141. Hurwitz, C.A., et al., Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer 2000. 88: p. 1964-1969.
142. McCabe, M.A., H. Crowe, and R. Quinones, Neurodevelopmental side effects of bone marrow transplantation : two case illustrations of identical twins. Journal of Pediatric Hematology/Oncology, 1997. 19(2): p. 145-150.
143. Chou, R.H., et al., Toxicities of total-body irradiation for pediatric bone marrow transplantation. International Journal of Radiation Oncology, Biology, Physics, 1996. 34(4): p. 843-851.
144. Dobkin, P.L., et al., Predictors of physical outcomes in pediatric bone marrow transplantation. Bone Marrow Transplantation, 2000. 26: p. 553-558.
145. Attia, J., et al., How to use an article about genetic association - A - Background concepts. Journal of the American Medical Association, 2009. 301(1): p. 74-81.
146. Hall, I.P. and M. Pirmohamed, Pharmacogenetics, Taylor \& Francis, New York, 324 pages. 2006.
147. Davies, S.M., Pharmacogenetics, pharmacogenomics and personalized medicine: Are we there yet? American Society of Hematology, 2006. 2006: p. 111-117.
148. Attia, J., et al., How to use an article about genetic association - C - What are the results and will they help me in caring for my patients? Journal of the American Medical Association, 2009. 301(3): p. 304-308.
149. Cheok, M. and W.E. Evans, Acute lymphoblastic leukaemia: A model for the pharmacogenomics of cancer therapy. Nature Reviews Cancer, 2006. 6: p. 117-227.
150. Ross, J.A., et al., Genetic Variation in the Leptin Receptor Gene and Obesity in Survivors of Childhood Acute Lymphoblastic Leukemia: A Report From the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2004. 22(17): p. 3558-3562.
151. Blanco, J.G., et al., Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H: Quinone oxidoreductase 1 gene NQ01 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 2008. 112(12): p. 2789-2795.
152. Chen, S.H., et al., Genetic variations in GRIA1 on chromosome $5 q 33$ related to asparaginase hypersensitivity. Clinical Pharmacology and Therapeutics, 2010. 88(2): p. 191-196.
153. Hosking, F.J., et al., Genome-wide homozygosity signatures and childhood acute lymphoblastic leukemia risk. Blood 2010. 115(22): p. 4472-4477.
154. Rousseau, J., Les polymorphismes de gènes encodant les protéines apoptotiques Bim et Bax: leur rôle dans la réponse thérapeutique ches les enfants ayant la leucémie lymphoblastique aiguë - Mémoire de maîtrise, in Département de Pharmacologie. 2009, Université de Montréal: Montréal. p. 96.
155. Kraus, J.P., et al., The human cystathionine B-synthase (CBS) gene: Complete sequence, alternative splicing, and polymorphisms. Genomics, 1998. 52: p. 312-324.
156. Barbaux, S., R. Plomin, and A.S. Whitehead, Polymorphisms of genes controlling homocysteine/folate metabolism and cognitive function. Neuroreport, 2000. 11: p. 1133-1136.
157. Costea, I., et al., Folate cycle gene variants and chemotherapy toxicity in pediatric patients with acute lymphoblastic leukemia. Haematologia, 2006. 91: p. 1113-1116.
158. Costea, I., A. Moghrabi, and M. Krajinovic, The influence of cyclin D1 (CCND1) 870A>G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2003. 13: p. 577-580.
159. Davies, S.M., et al., Pharmacogenetics of minimal residual disease response in children with B-precursor acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2008. 111: p. 2984-2990.
160. Al-Shakfa, F., et al., DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clinical Cancer Research, 2009. 15(22): p. 6931-6938.
161. Labuda, M., et al., Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leukemia Research, 2010. 34: p. 492-497.
162. Gahier, A., Polymorphismes des gènes impliqués dans le métabolisme et la voie d'action des glucocorticoïdes chez les enfants atteints de leucémie lymphoblastique aiguë - Mémoire de maîtrise, Université de Montréal, 82 pages. 2006.
163. Van West, D., et al., Associations between common arginine vasopressin 1 b receptor and glucocorticoid receptor gene variants and HPA axis responses to psychosocial stress in a child psychiatric population. Psychiatry Research, 2010. 179: p. 64-68.
164. Van Rossum, E.F.C., et al., A polymorphism in the glucocorticoid receptor gene which decreases sensitivity to glucocorticoids in vivo, is associated with low insulin and cholesterol levels. Diabetes 2002. 51: p. 3128-3134.
165. Russcher, H., et al., Increased expression of the glucocorticoid receptor-A translational isoform as a result of the ER22/EK23 polymorphism. Molecular Endocrinology, 2006. 19(7): p. 1687-1696.
166. Van Rossum, E.F.C., et al., Polymorphisms of the glucocorticoid receptor gene and major depression. Biological Psychiatry, 2006. 59: p. 681-688.
167. Van Rossum, E.F.C., et al., Glucocorticoid receptor variant and risk of demetia and white matter lesions. Neurobiology of Aging, 2008. 29: p. 716-723.
168. Huizenga, N.A., et al., A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. Journal of Clinical Endocrinology and Metabolism, 1998. 83(1): p. 144-151.
169. Panarelli, M., et al., Glucocorticoid receptor polymorphism, skin vasoconstriction, and other metabolic intermediate phenotypes in normal human subjects. Journal of Clinical Endocrinology and Metabolism, 1998. 83(6): p. 1846-1852.
170. Kumsta, R., et al., Glucocorticoid receptor gene polymorphisms and glucocorticoid sensitivity of subdermal blood vessels and leukocytes. Biological Psychology, 2008. 79: p. 179-184.
171. Van Rossum, E.F.C., et al., Identification of the Bcll polymorphism in the glucocorticoid receptor gene: association with sensitivity to glucocorticoids in vivo and body mass index. Clinical Endocrinology, 2003. 59: p. 585-592.
172. Brouwer, J.P., et al., Prediction of treatment response by HPA-axis and glucocorticoid receptor polymorphisms in major depression.
Psychoneuroendocrinology, 2006. 31: p. 1154-1163.
173. Kumsta, R., et al., Sex specific associations between common glucocorticoid receptor gene variants and hypothalamus-pituitary-adrenal axis responses to psychosocial stress. Biological Psychiatry, 2007. 62(8): p. 863-869.
174. Spijker, A.T., et al., Functional polymorphism of the glucocorticoid receptor gene associates with mania and hypomania in bipolar disorder. Bipolar Disorders, 2009. 11: p. 95-101.
175. Imanishi, H., et al., Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. Journal of Human Genetics, 2007. 52: p. 166-171.
176. Stanulla, M., et al., Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood, 2000. 95: p. 12221228.
177. Mertens, A.C., et al., XRCC1 and glutathione-S-transferase gene polymorphisms and susceptibility to radiotherapy-related malignancies in survivors of Hodgkin disease: A report from the childhood cancer survivor study. Cancer 2004. 101(6): p. 1463-1472.
178. Anderer, G., et al., Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics, 2000. 10: p. 715-726.
179. Brüggemann, M., et al., Multidrug resistance associated protein 4 (MRP4) gene polymorphisms and treatment response in adult acute lymphoblastic leukemia. Blood 2009. 114: p. 5400-5401.
180. Krajinovic, M., et al., Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics Journal, 2004. 4: p. 66-72.
181. Tantawy, A.G.A., et al., Methylene tetrahydrofolate reductase gene polymorphism in Egyptian children with acute lymphoblastic leukemia. Blood Coagulation and Fibrinolysis, 2010. 21: p. 28-34.
182. Aplenc, R., et al., Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Research, 2005. 65(6): p. 2482-2487.
183. Pietrzyk, J.J., et al., Additional genetic risk factor for death in children with acute lymphoblastic leukemia: A common polymorphism of the MTHFR gene. Pediatric Blood Cancer, 2009. 52: p. 364-368.
184. Shimasaki, N., et al., Influence of MTHFR and RFC1 polymorphisms on toxicities during maintenance chemotherapy for childhood acute lymphoblastic leukemia or lymphoma. Journal of Pediatric Hematology/Oncology, 2008. 30: p. 347-352.
185. Chiusolo, P., et al., MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leukemia Research, 2007. 31: p. 1669-1674.
186. Taub, J.W., et al., Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 2002. 16: p. 764-765.
187. Tong, N., et al., Methylenetetrahydrofolate reductase polymorphisms, serum methylenetetrahydrofolate reductase levels, and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Science, 2010. 101: p. 782-786.
188. Kantar, M., et al., Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leukemia and Lymphoma, 2009. 50(6): p. 912-917.
189. Krull, K., et al., Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. Journal of Pediatrics, 2008. 152: p. 101-105.
190. Mahadeo, K.M., et al., Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatric Hematology and Oncology, 2010. 27: p. 46-52.
191. Strunk, T., et al., Subacute leukencephalopathy after low-dose intrathecal methotrexate in an adolescent heterozygous for the MTHFR C677T polymorphism. Medical Pediatric Oncology, 2003. 40: p. 48-50.
192. Frosst, P., et al., A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics, 1995. 10: p. 111-113.
193. Van Der Put, N.M.J., et al., A second common mutation in the methylenetetrahydrofolate reductase gene: An additional risk factor for neuraltube defects? American Journal of Human Genetics, 1998. 62: p. 1044-1051.
194. Wilson, A., et al., A common variant in methionine synthase reductase combined with low cobalamin (Vitamin B12) increases risk for spina bifida. Molecular Genetics and Metabolism, 1999. 67(317-323).
195. Gaughan, D.J., et al., The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis, 2001. 157: p. 451-456.
196. Nakayama, M., et al., T-786C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 1999. 99: p. 2864-2870.
197. Venturelli, E., et al., The T-786C NOS3 polymorphism in Alzheimer's disease : association and influence on gene expression. Neuroscience Letters, 2005. 382: p. 300-303.
198. Rujescu, D., et al., NOS-I and -III gene variants are differentially associated with facets of suicidal behavior and aggression-related traits. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 2008. 147B: p. 42-48.
199. Veldman, B.A., et al., The Glu298Asp polymorphism of the NOS3 gene as a determinant of the baseline production of nitric oxide. Journal of Hypertension, 2002. 20: p. 2023-2027.
200. Joshi, M.S., et al., Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB Journal, 2007. 21: p. 2655-2663.
201. Sofowora, G., et al., In vivo effects of Glu298Asp endothelial nitric oxide synthase polymorphism. Pharmacogenetics, 2001. 11: p. 809-814.
202. Brown, K.S., et al., Genetic evidence that nitric oxide modulates homocysteine: The NOS3 894TT genotype is a risk factor for hyperhomocysteinemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003. 23: p. 1014-1020.
203. Da Silva Silveira, V., et al., Polymorphisms of xenobiotic metabolizing enzymes and DNA repair genes and outcome in childhood acute lymphoblastic leukemia. Leukemia Research, 2009. 33: p. 898-901.
204. Ashton, L.J., et al., Reduced folate carrier and methylenetetrahydrofolate reductase gene polymorphisms: Associations with clinical outcome in childhood acute lymphoblastic leukemia. Leukemia 2009. 23: p. 1348-1351.
205. Faganel Kotnik, B., et al., Relationship of the reduced folate carrier gene polymorphism G80A to methotrexate plasma concentration, toxicity, and disease outcome in childhood acute lymphoblastic leukemia. Leukemia and Lymphoma, 2010. 51(4): p. 724-726.
206. Gregers, J., et al., The association of reduced folate carrier 80G>Apolymorphism to outcome in childhood acute lymphoblastic leukemia interacts with chromosome 21 copy number. Blood 2010. 115(23): p. 46714677.
207. Shimasaki, N., et al., Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. Journal of Pediatric Hematology/Oncology, 2006. 28: p. 64-68.
208. Robert, P., Le Petit Robert - Dictionnaire alphabétique et analogique de la langue française. 1993, Dictionnaires Le Robert - Paris: Paris. p. 2551.
209. Lupien, S.J., et al., Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neurosciences, 2009. 10: p. 434-445.
210. Achenbach, T.M., Empirically based assessment and taxonomy: Applications to clinical research. Psychological Assessment, 1995. 7(3): p. 261-274.
211. Caldwell, S.M., Measuring family well-being; conceptual model, reliability, validity, and use. In: Waltz CF, Strickland OL (eds), Measurements of nursing outcomes: Measuring client outcomes. Springer Publishing, New York, pp 396416. 1988.
212. Fearnow-Kenney, M. and W. Kliewer, Threat appraisal and adjustment among children with cancer. Journal of Psychosocial Oncology, 2000. 18(3): p. 1-17.
213. Moore, I.M., et al., Behavioral adjustment of children and adolescents with cancer: teacher, parent, and self-report. Oncology Nursing Forum, 2003. 30(5): p. E84-E91.
214. Jurbergs, N., et al., Adaptive style and differences in parent and child report of health-related quality of life in children with cancer. Psycho-Oncology, 2008. 17: p. 83-90.
215. Dowling, J.S., M. Hockenberry, and R.L. Gregory, Sense of humour, childhood cancer stressors, and outcomes of psychosocial adjustment, immune functions, and infections. Journal of Pediatric Oncology Nursing, 2003. 20(6): p. 271-292.
216. Clarke, S.-A., et al., Parental communication and children's behaviour following diagnosis of childhood leukaemia. Psycho-Oncology, 2005. 14: p. 274-281.
217. Earle, E.A. and C. Eiser, Children's behaviour following diagnosis of acute lymphoblastic leukemia : a qualitative Iongitudinal study. Clinical Child Psychology and Psychiatry, 2007. 12(2): p. 281-293.
218. Chao, C.-C., et al., Psychosocial adjustment among pediatric cancer patients and their parents. Psychiatry and Clinical Neurosciences, 2003. 57: p. 75-81.
219. Von Essen, L., et al., Self-esteem, depression and anxiety among Swedish children and adolescents on and off cancer treatment. Acta Paediatrica 2000. 89(229-236).
220. Phipps, S. and D.K. Srivastava, Repressive adaptation in children with cancer. Health Psychology, 1997. 16(6): p. 521-528.
221. Brown, R.T., et al., Parental psychopathology and children's adjustment to leukemia. Journal of American Academy of Child and Adolescent Psychiatry, 1993. 32(3): p. 554-561.
222. McGrath, P., M.A. Paton, and N. Huff, Beginning treatment for pediatric acute myeloid leukemia: the family connection. Issues in Comprehensive Pediatric Nursing, 2005. 28(2): p. 97-114.
223. Kupst, M.J., et al., Family coping with childhood leukemia: one year after diagnosis. Journal of Pediatric Psychology, 1982. 7(2): p. 157-174.
224. Sawyer, M., A. Crettenden, and I. Toogood, Psychological adjustment of families of children and adolescents treated for leukemia. American Journal of Pediatric Hematology/Oncology, 1986. 8(3): p. 200-207.
225. Kupst, M.J. and J.L. Schulman, Long-term coping with perdiatric leukemia: A six-year follow-up study. Journal of Pediatric Psychology, 1988. 13(1): p. 7-22.
226. Kupst, M.J., Family Coping - Supportive and obstructive factors. Cancer, 1993. 71(10): p. 3337-3341.
227. Rocha-Garcià, A., et al., The emotional response of families to children with leukemia at the lower socio-economic level in central Mexico : a preliminary report. Psycho-Oncology, 2003. 12: p. 78-90.
228. Goldbeck, L., The impact of newly diagnosed chronic paediatric conditions on parental quality of life. Quality of Life Research, 2006. 15: p. 1121-1131.
229. Birenbaum, L., Family coping with childhood cancer. The Hospice Journal, 1990. 6(3): p. 17-33.
230. Kupst, M.J., et al., Family coping with pediatric leukemia: ten years after treatment. Journal of Pediatric Psychology, 1995. 20(5): p. 601-617.
231. Brown, R.T., et al., Psychiatric and family functioning in children with leukemia and their parents. Journal of American Academy of Child and Adolescent Psychiatry, 1992. 31(3): p. 495-502.
232. Kazak, A.E. and A.T. Meadow, Families of young adolescents who have survived cancer: Social-emotional adjustment, adaptability, and social support. Journal of Pediatric Psychology, 1989. 14(2): p. 175-191.
233. Klassen, A., et al., Developing a literature base to understand the caregiving experience of parents of children with cancer: a systematic review of factors related to parental health and well-being. Supportive Care in Cancer, 2007. 15: p. 807-818.
234. Grootenhuis, M.A. and B.F. Last, Adjustment and coping by parents of children with cancer: a review of the literature. Supportive Care in Cancer, 1997. 5: p. 466-484.
235. Vrijmoet-Wiersma, C.M.J., et al., Assessment of parental psychological stress in pediatric cancer : a review. Journal of Pediatric Psychology, 2008. 33(7): p. 694-706.
236. Phipps, S., et al., Psychosocial predictors of distress in parents of children undergoing stem cell or bone marrow transplantation. Journal of Pediatric Psychology, 2005. 30(2): p. 139-153.
237. Dahlquist, L.M., D.I. Czyzewski, and C.L. Jones, Parents of children with cancer: A longitudinal study of emotional distress, coping style, and marital adjustment two and twenty months after diagnosis. Journal of Pediatric Psychology, 1996. 21(4): p. 541-554.
238. Hovén, E., et al., The influence of pediatric cancer diagnosis and illness complication factors on parental distress. Journal of Pediatric Hematology/Oncology, 2008. 30: p. 807-814.
239. Kazak, A.E. and L.P. Barakat, Brief report : parenting stress and quality of life during treatment for childhood leukemia predicts child and parent adjustment after treatment ends. Journal of Pediatric Psychology, 1997. 22(5): p. 749-758.
240. Hung, J.W., Y.-H. Wu, and C.-H. Yeh, Comparing stress levels of parents of children with cancer and parents of children with physical disabilities. PsychoOncology, 2004. 13: p. 898-903.
241. Wijnberg-Williams, B.J., et al., Psychological adjustment of parents of pediatric cancer patients revisited: five years later. Psycho-Oncology, 2006. 15: p. 1-8.
242. Santacroce, S., Uncertainty, anxiety, and symptoms of posttraumatic stress in parents of children recently diagnosed with cancer. Journal of Pediatric Oncology Nursing, 2002. 19(3): p. 104-111.
243. Norberg, A.L., F. Lindblad, and K.K. Boman, Support-seeking, perceived support, and anxiety in mothers and fathers after children's cancer treatment. Psycho-Oncology, 2006. 15: p. 335-343.
244. Hoekstra-Weebers, J.E.H.M., et al., Psychological adaptation and social support of parents of pediatric cancer patients: a prospective longitudinal study. Journal of Pediatric Psychology, 2001. 26(4): p. 225-235.
245. Wijnberg-Williams, B.J., et al., Psychological distress and the impact of social support on fathers and mothers of pediatric cancer patients : long-term prospective results. Journal of Pediatric Psychology, 2006. 31(8): p. 785-792.
246. Abbe, M., et al., A survey of language barriers from the perspective of pediatric oncologists, interpreters, and parents. Pediatric Blood Cancer, 2006. 47: p. 819-824.
247. Patistea, E. and F. Babatsikou, Parent's perceptions of the information provided to them about their child's leukaemia. European Journal of Oncology Nursing, 2003. 7(3): p. 172-181.
248. Best, M., et al., Parental distress during pediatric leukemia and posttraumatic stress symptoms (PTSS) after treatment ends. Journal of Pediatric Psychology, 2001. 26(5): p. 299-307.
249. Axia, G., et al., Post-traumatic stress symptoms during treatment in mothers of children with leukemia. Journal of Clinical Oncology, 2006. 24(14): p. 22162217.
250. Yalug, I., et al., Posttraumatic stress disorder and and risk factors in parents of children with a cancer diagnosis Pediatric Hematology and Oncology, 2008. 25: p. 27-38.
251. Kazak, A.E., et al., Posttraumatic stress symptoms during treatment in parents of children with cancer. Journal of Clinical Oncology, 2005. 23: p. 7405-7410.
252. Sawyer, M., et al., Childhood cancer: A 4-year prospective study of the psychological adjustment of children and parents. Journal of Pediatric Hematology/Oncology, 2000. 22(3): p. 214-220.
253. Barlow, J.H. and D.R. Ellard, The psychosocial well-being of children with chronic disease, their parents and siblings: An overview of the research evidence base. Child: Care, Health and Development, 2006. 32(1): p. 19-31.
254. Labey, L.E. and G.A. Walco, Brief report : empathy and psychological adjustment in siblings of children with cancer. Journal of Pediatric Psychology, 2004. 29(4): p. 309-314.
255. Buizer, A.I., et al., Behavioral and educational limitations after chemotherapy for childhood acute lymphoblastic leukemia or Wilms tumour. Cancer 2006. 106: p. 2067-2075.
256. Houtzager, B.A., et al., Coping and family functioning predict longitudinal psychological adaptation of siblings of childhood cancer patients. Journal of Pediatric Psychology, 2004. 29(8): p. 591-605.
257. Wellisch, D.K., et al., Psychosocial impacts of a camping experience for children with cancer and their siblings. Psycho-Oncology, 2006. 15: p. 56-65.
258. Bass, H.P., N. Trocmé, and G. Leverger, Réflexions concernant un groupe de fratries d'enfants malades dans un service d'oncologie pédiatrique. Revue francophone de psycho-oncologie, 2005. 2: p. 90-95.
259. Lackner, H., et al., Prospective evaluation of late effects after childhood cancer therapy with a follow-up over 9 years. European Journal of Pediatrics, 2000. 159: p. 750-758.
260. Mody, R., et al., Twenty-five year follow-up among survivors of childhood acute lymphoblastic leukemia: A report from the childhood cancer survivor study. Blood, 2008. 111(12): p. 5515-5523.
261. Robison, L.L., et al., Study design and cohort characteristics of the Childhood Cancer Survivor Study : A multi-institutional collaborative project. Med Pediatr Oncol, 2002. 38: p. 229-239.
262. Stovall, M., et al., Genetic effects of radiotherapy for childhood cancer: gonadal dose reconstruction. International Journal of Radiation Oncology, Biology, Physics, 2004. 60(2): p. 542-552.
263. Herbig, U., et al., Cellular senescence in aging primates. Science 2006. 311: p. 1257.
264. Sedelnikova, O.A., et al., Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biology, 2004. 6(2): p. 168-170.
265. Wang, C., et al., DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 2009. 8: p. 311-323.
266. Sharpless, N.E. and R.A. DePinho, How stem cells age and why this makes us grow old. Nature Reviews Cell Biology, 2007. 8: p. 703-713.
267. Rossi, D.J., et al., Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007. 447: p. 725-730.
268. Wang, Y., et al., Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006. 107: p. 358-366.
269. Le, O.N.L., et al., lonizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell, 2010. 9(3): p. 398-409.
270. Aguilera, A. and B. Gomez-Gonzalez, Genome instability: a mechanistic view of its causes and consequences. Nature Reviews Genetics, 2008. 9: p. 204-217.
271. Ciccia, A. and S.J. Elledge, The DNA damage response: Making it safe to play with knives. Molecular Cell Review, 2010. 40: p. 179-204.
272. Taylor, R.C., S.P. Cullen, and S.J. Martin, Apoptosis: controlled demolition at the cellular level. Nature Reviews Molecular Cell Biology, 2008. 9: p. 231-241.
273. Campisi, J. and F. D'Adda di Fagagna, Cellular senescence: When bad things happen to good cells. Nature Reviews Molecular Cell Biology, 2007. 8: p. 729740.
274. Schwartz, C.L., et al., Survivors of childhood and adolescent cancer - A multidisciplinary approach, 2nd Edition. 2005, St-Louis: Springer. 348.
275. Von Der Weid, N.X., Adult life after surviving lymphoma in childhood. Support Care Cancer, 2007.
276. Armstrong, G.T., et al., Long-term health status among survivors of childhood cancer: Does sex matter? . Journal of Clinical Oncology, 2007. 25(28): p. 4477-4489.
277. Bhatia, S., Late effects among survivors of leukemia during childhood and adolescence. Blood Cells, Molecules, and Diseases, 2003. 31: p. 84-92.
278. Çetingül, N., et al., Neuropsychologic sequelae in the long-term survivors of childhood acute lymphoblastic leukemia. Pediatric Hematology and Oncology, 1999. 16(3): p. 213-220.
279. Warner, J.T., Body composition, exercise and energy expenditure in survivors of acute lymphoblastic leukemia. Pediatric Blood Cancer, 2008. 50: p. 456-461.
280. Oeffinger, K.C., et al., Obesity in adult survivors of childhood acute lymphoblastic leukemia: A report from the childhood cancer survivor study. Journal of Clinical Oncology, 2003. 21: p. 1359-1365.
281. Ciesielski, K.T., et al., Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia, 1997. 35(5): p. 643-655.
282. Meeske, K., et al., Parent proxy-reported health-related quality of life and fatigue in pediatric patients diagnosed with brain tumours and acute lymphoblastic leukemia. Cancer 2004. 101: p. 2116-2125.
283. Atkinson, S.A., Vitamin D status and bone biomarkers in childhood cancer. Pediatric Blood Cancer, 2008. 50: p. 479-482.
284. Hockenberry, M., et al., Longitudinal evaluation of fine motor skills in children with leukemia. Journal of Pediatric Hematology/Oncology, 2007. 29: p. 535539.
285. Lussier, F. and J. Flessas, Neuropsychologie de l'enfant - Troubles développementaux et de l'apprentissage, Dunod, Paris, 593 pages. 2009.
286. Von Der Weid, N., et al., Intellectual outcome in children and adolescents with acute lymphoblastic leukaemia treated with chemotherapy alone: age- and sexrelated differences. European Journal of Cancer, 2003. 39: p. 359-365.
287. Apter, A., I. Farbstein, and I. Yaniv, Psychiatric aspects of pediatric cancer. Child and adolescent psychiatric clinics of North America, 2003. 12: p. 473-492.
288. Butler, R.W., et al., Interventions to improve neuropsychological functioning in childhood cancer survivors. Developmental Disabilities Research Reviews, 2008. 14: p. 251-258.
289. Campbell, L.K., et al., Executive function, coping, and behavior in survivors of childhood acute lymphocytic leukemia. Journal of Pediatric Psychology, 2009. 34(3): p. 317-327.
290. Olson, A.L., et al., Overall function in rural childhood cancer survivors - the role of social competence and emotional health. Clinical Pediatrics, 1993. 32(6): p. 334-342.
291. Schultz, K.A.P., et al., Behavioral and social outcomes in adolescent survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2007. 25(24): p. 3649-3656.
292. Michalowski, M., et al., Emotional and behavioral symptoms in children with acute leukemia. Haematologia, 2001. 86(8): p. 821-826.
293. Rourke, M.T. and A.E. Kazak, Psychological aspects of long-term survivorship; in Schwartz CL, Hobbie WL, Constine LS, Ruccione KS, Survivors of childhood and adolescent cancer - A multidisciplinary approach. Springer, Berlin, Heidelberg. 350 p. 2005: p. 295-304.
294. Dejong, M. and E. Fombonne, Depression in paediatric cancer : an overview. Psycho-Oncology, 2006. 15: p. 553-566.
295. Zebrack, B.J., et al., Psychological outcomes in long-term survivors of childhood brain cancer: A report from the childhood cancer survivor study. Journal of Clinical Oncology, 2004. 22(6): p. 999-1006.
296. Recklitis, C.J., et al., Suicide ideation in adult survivors of childhood cancer: a report from the childhood cancer survivor study. Journal of Clinical Oncology, 2010. 28(4): p. 655-661.
297. Barrera, M., et al., Educational and social late effects of childhood cancer and related clinical, personal, and familial characteristics. Cancer 2005. 104: p. 751-760.
298. Hill, J., et al., Adult psychosocial functioning following childhood cancer : the different roles of sons' and daughters' relationships with their fathers and mothers. Journal of Child Psychology and Psychiatry, 2003. 44(5): p. 752-762.
299. Laverdière, C., et al., Long-term outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. Journal of the National Cancer Institute, 2009. 101(16): p. 1131-1140.
300. Langevelt, N., et al., Educational achievement, employment and living situation in long-term young adult survivors of childhood cancer in the Netherlands. Psycho-Oncology, 2003. 12: p. 213-225.
301. Campbell, L.K., et al., A meta-analysis of the neurocognitive sequelae of treatment for childhood acute lymphocytic leukemia. Pediatric Blood Cancer, 2007. 49: p. 65-73.
302. Stehbens, J.A., et al., CNS Prophylaxis of Childhood Leukemia: What Are the Long-Term Neurological, Neuropsychological, and Behavioral Effects? Neuropsychology Review, 1991. 2(2): p. 147-177.
303. Cousens, P., et al., Cognitive effects of cranial irradiation in leukemia: A survey and meta-analysis. Journal of Child Psychology and Psychiatry, 1988. 29(6): p. 839-852.
304. Lee, E.-S.Y., et al., Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes. Toxicologic Science, 2009. 110(1): p. 156-167.
305. Zhang, Q.-G., et al., Estrogen attenuates ischemic oxidative damage via an estrogen receptor alpha-mediated inhibition of NADPH oxidase activation. Journal of Neurosciences 2009. 29(44): p. 13823-13836.
306. Calabrese, P. and U. Schlegel, Neurotoxicity of treatment; in Von Deimling A, Gliomas - Recent results in cancer research, Volume 171. Springer, Berlin, Heidelberg, 260 pages. 2009: p. 165-174.
307. Hampton, T., Studies reveal underlying mechanism for chemotherapy's adverse effects on brain. JAMA, 2008. 299(21): p. 2494.
308. Hede, K., Chemobrain is real but may need new name. Journal of the National Cancer Institute, 2008. 100(3): p. 162-164.
309. Meyers, C.A. and J.R. Perry, Cognition and cancer. 2008, Cambridge: Cambridge University Press. 341.
310. Dickens, W.T. and J.R. Flynn, Heritability estimates versus large environmental effects: the IQ paradox resolved. Psychological Review, 2001. 108(2): p. 346369.
311. Maruish, M.E.E., The use of psychological testing for treatment planning and outcomes assessment - 2nd Edition. Lawrence Erlbaum Associates Publishers, New Jersey, 1507 pages. 1999.
312. Achenbach, T.M., Manual for the child behavior checklist/4-18 and 1991 profile Burlington, Vermont, University of Vermont, Department of Psychiatry, 1991.
313. Achenbach, T.M., Manual for the child behavior checklist/2-3 and 1992 profile. Burlington, Vermont, University of Vermont, Department of Psychiatry, 1992.
314. Ivanova, M.Y., et al., Testing the 8-syndrome structure of the Child Behavior Checklist in 30 societies. Journal of Clinical Child and Adolescent Psychology, 2007. 36(3): p. 405-417.
315. Rescorla, L.A., et al., International comparisons of behavioral and emotional problems in preschool children: Parents' reports from 24 societies. Journal of Clinical Child and Adolescent Psychology, 2011. 40(3): p. 456-467.
316. Crijnen, A.A.M., T.M. Achenbach, and F.C. Verhulst, Problems reported by parents of children in multiple cultures: The Child Behavior Checklist syndrome constructs. American Journal of Psychiatry, 1999. 156: p. 569-574.
317. Bravo, G., et al., Correlates of care quality in long-term care facilities: A multilevel analysis. Journal of Gerontology, 1999. 54B(3): p. 180-188.
318. Andrews Espy, K., et al., Chemotherapeutic CNS prophylaxis and neuropsychologic change in children with acute lymphoblastic leukemia: A prospective study. Journal of Pediatric Psychology, 2001. 26(1): p. 1-9.
319. Hox, J., Multilevel analysis - Techniques and applications. 2002, New Jersey: Lawrence Erlbaum Associates, Publishers. 299.
320. Singer, J.D. and J.B. Willett, Applied longitudinal data analysis - Modeling change and event occurrence. Oxford University Press, New York, 644 pages. 2003.
321. Raftery, A.E., Bayesian model selection in social research. Sociological Methodology, 1995. 25: p. 111-163.
322. Weiss, B., Chemobrain: A translational challenge for neurotoxicology. Neurotoxicology, 2008. 29(5): p. 891-898.
323. Anderson-Hanley, C., et al., Neuropsychological effects of treatments for adults with cancer: A meta-analysis and review of the literature. Journal of the International Neuropsychological Society, 2003. 9: p. 967-982.
324. Hermann, D.M., et al., Role of Drug Efflux Carriers in the Healthy and Diseased Brain. Annals of Neurology, 2006. 60: p. 489-498.
325. Erdelyi, D.J., et al., Synergistic interaction of $A B C B 1$ and ABCG2 polymorphisms predicts the prevalence of toxic encephalopathy during anticancer chemotherapy. Pharmacogenomics Journal, 2008. 8: p. 321-327.
326. Finkelstein, J.D. and J.J. Martin, Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosylethionine. Biochemistry and Biophysic Research Community, 1984. 118(1): p. 14-19.
327. Olteanu, H. and R. Banerjee, Human Methionine Synthase Reductase, a Soluble P-450 Reductase-like Dual Flavoprotein, Is Sufficient for NADPHdependent Methionine Synthase Activation. Journal of Biological Chemistry, 2001. 276(38): p. 35558-35563.
328. Arinze, I.J., Facilitating understanding of the purine nucleotide cycle and the one-carbon pool - Part II: Metabolism of the one-carbon pool. Biochemistry and Molecular Biology Education, 2005. 33(4): p. 255-259.
329. Fotoohi, A.K. and F. Albertioni, Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leukemia and Lymphoma, 2008. 49(3): p. 410-426.
330. Kay, H.E.M., et al., Encephalopathy in acute leukaemia associated with methotrexate therapy. Archives of Disease in Childhood, 1972. 47: p. 344-354.
331. Rubnitz, J.E., et al., Transient encephalopathy following high-dose methotrexate treatment in childhood acute lymphoblastic leukemia. Leukemia, 1998. 12: p. 1176-1181.
332. Allen, J.C., et al., Leukoencephalopathy following high-dose iv methotrexate chemotherapy with leucovorin rescue. Cancer Treatment Reports, 1980. 64(12): p. 1261-1273.
333. Jaffe, N., et al., Transient neurologic disturbances induced by high-dose methotrexate treatment. Cancer 1985. 56(6): p. 1356-1360.
334. Poskitt, K.J., P. Steinbok, and O. Flodmark, Methotrexate leukoencephalopathy mimicking cerebral abscess on CT brain scan. Childs Nervous System, 1988. 4(2): p. 119-121.
335. Hoffman, D.R., W.E. Cornatzer, and J.A. Duerre, Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions. Canadian Journal of Biochemistry, 1979. 57(1): p. 56-65.
336. Kennedy, B.P., et al., Elevated S-adenosylhomocysteine in Alzheimer brain: Influence on methyltransferases and cognitive function. Journal of Neural Transmission, 2004. 111: p. 547-567.
337. Stamler, J.S., et al., Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. Journal of Clinical Investigation, 1993. 91: p. 308-318.
338. Loscalzo, J., The oxidant stress of hyperhomocyst(e)inemia. Journal of Clinical Investigation, 1996. 98(1): p. 5-7.
339. Mudd, S.H. and H.L. Levy, Plasma homocyst(e)ine or homocysteine? New England Journal of Medicine, 1995. 333(5): p. 325.
340. Starkebaum, G. and J.M. Harlan, Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. Journal of Clinical Investigation, 1986. 77: p. 1370-1376.
341. Misra, H.P., Generation of superoxide free radical during the autoxidation of thiols. Journal of Biological Chemistry, 1974. 249(7): p. 2151-2155.
342. Ignarro, L.J., et al., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84: p. 9265-9269.
343. Azuma, H., M. Ishikawa, and S. Sekizaki, Endothelium-dependent inhibition of platelet aggregation. British Journal Pharmacology, 1986. 88: p. 411-415.
344. Radomski, M.W., R.M. Palmer, and S. Moncada, Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987. 2(8567): p. 1057-1058.
345. Fukuo, K., et al., Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. Journal of Clinical Investigation, 1995. 95: p. 669-676.
346. Zylberstein, D.E., et al., Serum homocysteine in relation to mortality and morbidity from coronary heart disease: A 24-year follow-up of the population study of women in Gothenburg. Circulation, 2004. 109: p. 601-606.
347. Folsom, A.R., et al., Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: The artherosclerosis risk in communities (ARIC) study. Circulation 1998. 98: p. 204-210.
348. Wald, D.S., M. Law, and J.K. Morris, Homocysteine and cardiovascular disease: Evidence on causality from a metaanalysis. BMJ, 2002. 325: p. 1202.
349. Stehouwer, C.D.A., et al., Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men : A 10-year follow-up. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998. 18: p. 1895-1901.
350. Whincup, P.H., et al., Serum total homocysteine and coronary heart disease: Prospective study in middle aged men. Heart, 1999. 82: p. 448-454.
351. Cui, R., et al., Serum total homocysteine concentrations and risk of mortality from stroke and coronary heart disease in Japanese: The JACC Study. Artherosclerosis, 2008. 198: p. 412-418.
352. Teunissen, C.E., et al., Homocysteine in relation to cognitive performance in pathological and non-pathological conditions. Clinical Chemistry and Laboratory Medicine, 2005. 43(10): p. 1089-1095.
353. Seshadri, S., et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New England Journal of Medicine, 2002. 346(7): p. 476483.
354. Quinn, C.T., et al., Elevation of homocysteine and excitatory amino acid neurotransmitters in the CSF of children who receive methotrexate for the treatment of cancer. Journal of Clinical Oncology, 1997. 15(8): p. 2800-2806.
355. Becker, A., et al., Marked elevation in homocysteine and homocysteine sulfinic acid in the cerebrospinal fluid of lymphoma patients receiving intensive treatment with methotrexate. International Journal of Pharmacology and Therapeutics, 2007. 45(9): p. 504-515.
356. Sterba, J., et al., Pretreatment plasma folate modulates the pharmacodynamic effect of high-dose methotrexate in children with acute lymphoblastic leukemia and non-hodgkin lymphoma: "folate overrescue" concept revisited. Clinical Chemistry, 2006. 52(4): p. 692-700.
357. Quinn, C.T., et al., Effects of intraventricular methotrexate on folate, adenosine, and homocysteine metabolism in cerebrospinal fluid. Journal of Pediatric Hematology/Oncology, 2004. 26(6): p. 386-388.
358. Valik, D., et al., Severe encephalopathy induced by the first but not the second course of high-dose methotrexate mirrored by plasma homocysteine elevations and preceded by extreme differences in pretreatment plasma folate. Oncology 2005. 69(3): p. 269-272.
359. Selhub, J., Homocysteine metabolism. Annual Review of Nutrition, 1999. 19: p. 217-246.
360. Frosst, P., et al., A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genetics, 1995. 10: p. 111-113.
361. Weisberg, I., et al., A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Molecular Genetics and Metabolism, 1998. 64: p. 169-172.
362. Girelli, D., et al., Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: Evidence for an important genetic-environmental interaction. Blood 1998. 91: p. 4158-4163.
363. Jacques, P.F., et al., Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996. 93(1): p. 7-9.
364. Rozen, R., Molecular genetic aspects of hyperhomocysteinemia and its relation to folic acid. Clinical and Investigative Medicine, 1996. 19(3): p. 171-178.
365. Goyette, P., et al., Seven Novel Mutations in the Methylenetetrahydrofolate Reductase Gene and Genotype/Phenotype Correlations in Severe Methylenetetrahydrofolate Reductase Deficiency. American Journal of Human Genetics, 1995. 56: p. 1052-1059.
366. Das, P.M. and R. Singal, DNA methylation and cancer. Journal of Clinical Oncology, 2004. 22(22): p. 4632-4642.
367. Dutta, S., et al., Screening for methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in Indian patients with idiopathic mental retardation. Nutritional Neuroscience 2008. 11(1): p. 18-24.
368. Martınez-Frıas, M.-L., et al., Maternal polymorphisms 677C-T and 1298A-C of MTHFR, and 66A-G MTRR genes: Is there any relationship between polymorphisms of the folate pathway, maternal homocysteine levels, and the
risk for having a child with down syndrome? American Journal of Medical Genetics Part A, 2006. 140A: p. 987-997.
369. Scala, I., et al., Analysis of seven maternal polymorphisms of genes involved in homocysteine/folate metabolism and risk of Down syndrome offspring. Genetics in Medicine, 2006. 8(7): p. 409-416.
370. Chango, A., et al., No association between common polymorphisms in genes of folate and homocysteine metabolism and the risk of Down's syndrome among French mothers. British Journal of Nutrition, 2005. 94: p. 166-169.
371. Chango, A., et al., A polymorphism (80G->A) in the reduced folate carrier gene and its association with folate status and homocysteinemia. Molecular Genetics and Metabolism, 2000. 70: p. 310-315.
372. Coppedè, F., et al., Folate gene polymorphisms and the risk of Down Syndrome pregnancies in young Italian women. American Journal of Medical Genetics Part A, 2006. 140A: p. 1083-1091.
373. Guéant, J.-L., et al., Homocysteine and related genetic polymorphisms in Down's syndrome IQ. Journal of Neurology Neurosurgery and Psychiatry, 2005. 76: p. 706-709.
374. Kara, I., et al., Association of the C677T and A1298C polymorphisms in the 5,10 methylenetetrahydrofolate reductase gene in patients with migraine risk. Molecular Brain Research, 2003. 111: p. 84-90.
375. Scher, A.I., et al., Migraine and MTHFR C677T genotype in a population-based sample. Annals of Neurology, 2006. 59(2): p. 372-375.
376. Lea, R.A., et al., The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura. BMC Medecine, 2004. 2: p. 1-8.
377. Oterino, A., et al., MTHFR T677 homozygosis influences the presence of aura in migraineurs. Cephalalgia, 2004. 24: p. 491-494.
378. Kowa, H., et al., The homozygous C677T mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for migraine. American Journal of Medical Genetics (Neuropsychiatric Genetics), 2000. 96: p. 762-764.
379. Kawamoto, R., et al., An association of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 2005. 14(2): p. 67-74.
380. Brattström, L., et al., Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: The result of a meta-analysis. Circulation, 1998. 98: p. 2520-2526.
381. Trabetti, E., Homocysteine, MTHFR gene polymorphisms, and cardiocerebrovascular risk. Journal of Applied Genetics, 2008. 49(3): p. 267-282.
382. Sebastio, G., et al., The molecular basis of homocystinuria due to cystathionine β-synthase deficiency in italian families, and report of four novel mutations. American Journal of Human Genetics, 1995. 56: p. 1324-1333.
383. Kluijtmans, L.A.J., et al., A common 844 INS 68 insertion variant in the cystathionine β-synthase gene. Biochemical and Molecular Medicine, 1997. 62: p. 23-25.
384. De Stefano, V., et al., Linkage disequilibrium at the cystathionine β synthase (CBS) locus and the association between genetic variation at the CBS locus and plasma levels of homocysteine. Annals Human Genetics, 1998. 62: p. 481490.
385. Dekou, V., et al., Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men. Thrombosis and Haemostasis, 2001. 85(1): p. 67-74.
386. Zhang, G. and C. Dai, Gene polymorphisms of homocysteine metabolismrelated enzymes in chinese patients with occlusive coronary artery or cerebral vascular diseases. Thrombosis Research, 2001. 104: p. 187-195.
387. Leclerc, D., et al., Human methionine synthase: cDNA cloning and identification of mutations in patients of the cbIG complementation group of folate/cobalamin disorders. Human Molecular Genetics, 1996. 5(12): p. 1867-1874.
388. Ma, J., et al., A polymorphism of the methionine synthase gene: Association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiology, Biomarkers and Prevention, 1999. 8: p. 825-829.
389. Bosco, P., et al., Methionine synthase (MTR) $2756(A \rightarrow G)$ polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down Syndrome. American journal of Medical Genetics, 2003. 121A: p. 219-224.
390. Laraqui, A., et al., Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. European Journal of Internal Medicine, 2007. 18: p. 474-483.
391. Laraqui, A., et al., Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease. Acta Cardiologica, 2006. 61(1): p. 5161.
392. Linnebank, M., et al., Acute methotrexate-induced encephalopathy - Causal relation to homozygous allelic state for MTR c.2756A>G (D919G)? Journal of Chemotherapy, 2007. 19(4): p. 455-457.
393. Leclerc, D., et al., Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene. Gene, 1999. 240: p. 75-88.
394. Van Der Linden, I.J.M., et al., The methionine synthase reductase 66A>G polymorphism is a maternal risk factor for spina bifida. Journal of Molecular Medicine, 2006. 84: p. 1047-1054.
395. Bethke, L., et al., Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma. Cancer Epidemiology, Biomarkers and Prevention, 2008. 17(5): p. 1195-1202.
396. Yoshimura, M., et al., A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Human Genetics, 1998. 103: p. 65-69.
397. Henskens, L.H.G., et al., Association of the Angiotensin II Type 1 Receptor A1166C and the Endothelial NO Synthase G894T Gene Polymorphisms With Silent Subcortical White Matter Lesions in Essential Hypertension. Stroke, 2005. 36: p. 1869-1873.
398. Tanus-Santos, J.E., et al., Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics, 2002. 12(5): p. 407-413.
399. Brown, K.S., et al., Genetic evidence that nitric oxide modulates homocysteine: The NOS3 894TT genotype is a risk factor for hyperhomocystenemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003. 23: p. 1014-1020.
400. Heil, S.G., et al., The 894 G > T variant of endothelial nitric oxide synthase (eNOS) increases the risk of recurrent venous thrombosis through interaction with elevated homocysteine levels. Journal of Thrombosis and Haemostasis, 2004. 2: p. 750-753.
401. Kerkeni, M., et al., Hyperhomocysteinemia, endothelial nitric oxide synthase polymorphism, and risk of coronary artery disease. Clinical Chemistry, 2006. 52(1): p. 53-58.
402. Rossi, G.P., et al., The T-786C endothelial nitric oxide synthase genotype Is a novel risk factor for coronary artery disease in caucasian patients of the GENICA study. Journal of the American College of Cardiology, 2003. 41(6): p. 930-937.
403. Shimizu, T., et al., Protective role of glutathione synthesis on radiation-induced DNA damage in rabbit brain. Cellular and Molecular Neurobiology, 1998. 18(3): p. 299-310.
404. Guo, G., et al., Manganese Superoxide Dismutase-Mediated Gene Expression in Radiation-Induced Adaptive Responses. Molecular and Cellular Biology, 2003. 23(07): p. 2362-2378.
405. Spitz, D.R., et al., Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer and Metastasis Reviews, 2004. 23: p. 311-322.
406. Rubin, P., et al., Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiotherapy and Oncology, 1994. 31(1): p. 51-60.
407. Soloviev, A.I., et al., Mechanisms of endothelial dysfunction after ionized radiation: Selective impairment of the nitric oxide component of endotheliumdependent vasodilation. British Journal of Pharmacology, 2003. 138: p. 837844.
408. Qi, F., et al., Functional and morphological damage of endothelium in rabbit ear artery following irridiation with cobalt. British Journal of Pharmacology, 1998. 123: p. 653-660.
409. Sugihara, T., et al., Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation Research, 1999. 100: p. 635-641.
410. Zhang, X.-H., et al., Normalization by edaravone, a free radical scavenger, of irradiation-reduced endothelial nitric oxide synthase expression. European Journal of Pharmacology, 2003. 476: p. 131-137.
411. Joshi, G., et al., Free radical mediated oxidative stress and toxic side effects in brain induced by the anti cancer drug adriamycin: Insight into chemobrain. Free Radical Research 2005. 39: p. 1147-1154.
412. Joshi, G., et al., Glutathione elevation by c-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implication for chemobrain. Journal of Neuroscience Research, 2007. 85: p. 497-503.
413. Alsbeih, G., et al., Radiosensitivity of human fibroblasts is associated with amino acid substitution variants in susceptible genes and correlates with the number of risk alleles. International Journal Radiation Oncology Biology Physics, 2007. 68(1): p. 229-235.
414. Andreassen, C.N., et al., Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiotherapy and Oncology, 2003. 69: p. 127-135.
415. Jankovic, M., et al., Association of 1800 cGy cranial irradiation with intellectual function in children with acute lymphoblastic leukaemia. ISPACC. International Study Group on Psychosocial Aspects of Childhood Cancer. Lancet 1994. 344(8917): p. 224-227.
416. Spiegler, B.J., et al., Comparison of long-term neurocognitive outcomes in young children with acute lymphoblastic leukemia treated with cranial radiation
or high-dose or very high-dose intravenous methotrexate. Journal of Clinical Oncology, 2006. 24(24): p. 3858-3864.
417. Mantadakis, E., P.D. Cole, and B.A. Kamen, High-dose methotrexate in acute lymphoblastic leukemia: Where is the evidence for Its continued use? Pharmacotherapy, 2005. 25(5): p. 748-755.
418. Mullenix, P.J., et al., Interactions of steroid, methotrexate, and radiation determine neurotoxicity in an animal model to study therapy for childhood leukemia. Pediatrics Research, 1994. 35(2): p. 171-178.
419. Mustafa, S., et al., 5-fluorouracil chemotherapy affects spatial working memory and newborn neurons in the adult rat hippocampus. European Journal of Neuroscience, 2008. 28: p. 323-330.
420. Redish, A.D., The hippocampal debate: Are we asking the right questions? Behavioural Brain Research, 2001. 127: p. 81-98.
421. Het, S., G. Ramlow, and O.T. Wolf, A meta-analytic review of the effects of acute cortisol administration on human memory. Psychoneuroendocrinology, 2005. 30: p. 771-784.
422. Roozendaal, B., Stress and memory: Opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiology of Learning and Memory, 2002. 78: p. 578-595.
423. Herman, J.P., et al., Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 2003. 24: p. 151-180.
424. Gaynon, P.S. and A.L. Carrel, Glucocorticosteroid therapy in childhood acute lymphoblastic leukemia. Advanced Experimental Medicine and Biology, 1999. 457: p. 593-605.
425. De Kloet, R.E., M. Joëls, and F. Holsboer, Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 2005. 6: p. 463-475.
426. Fleury, I., et al., Characterization of the Bcll polymorphism in the glucocorticoid receptor gene. Clinical Chemistry 2003. 49(9): p. 1528-1531.
427. Tissing, W.J.E., et al., Genetic variations in the glucocorticoid receptor gene are not related to glucocorticoid resistance in childhood acute lymphoblastic leukemia. Clinical Cancer Research, 2005. 11(16): p. 6050-6056.
428. Association, A.P., Diagnostic and statistical manual of mental disorders (DSMIV), 4th Edition, Washington, D.C. 1994.
429. Williams, J.B., A structured interview guide for the Hamilton Depression Rating Scale. Archives of General Psychiatry, 1988. 45(8): p. 742-747.
430. Heuser, I., A. Yassouridis, and F. Holsboer, The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. Journal of Psychiatry Research, 1994. 28(4): p. 341-356.
431. Van Rossum, E.F.C. and S.W.J. Lamberts, Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Progress in Hormone Research, 2004. 59: p. 333-357.
432. Kirschbaum, C., K.M. Pirke, and D.H. Hellhammer, The 'Trier Social Stress Test' - A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 1993. 28(1-2): p. 76-81.
433. Drigan, R., A. Spirito, and R.D. Gelber, Behavioral effects of corticosteroids in children with acute lymphoblastic leukemia. Medical Pediatric Oncology, 1992. 20(1): p. 13-21.
434. Harris, J.C., et al., Intermittent high dose corticosteroid treatment in childhood cancer: behavioral and emotional consequences. Journal of the American Academy of Child Psychiatry, 1986. 25(1): p. 120-124.
435. DeRijk, R.H. and R.E. De Kloet, Corticosteroid receptor polymorphisms: Determinants of vulnerability and resilience. European Journal of Pharmacology, 2008. 583: p. 303-311.
436. Meissner, B., et al., The GSTT1 deletion polymorphism is associated with initial response to glucocorticoids in childhood acute lymphoblastic leukemia. Leukemia 2004. 18(11): p. 1920-1923.
437. Tomlinson, E.S., et al., In vitro metabolism of dexamethasone (DEX) in human liver and kidney: the involvement of CYP3A4 and CYP17 (17,20 LYASE) and molecular modelling studies. Biochemistry and Pharmacology, 1997. 54(5): p. 605-611.
438. Dollery, C., Beyond Genomics. Clinical Pharmacology and Therapeutics, 2007. 82(4): p. 366-370.
439. Blomgren, K., M. Leist, and L. Groc, Pathological apoptosis in the developing brain. Apoptosis, 2007. 12: p. 93-1010.
440. Volpe, J.J., Brain injury in the premature infant: Overview of clinical aspects, neuropathology, and pathogenesis. Seminars in Pediatric Neurology, 1998. 5(3): p. 135-151.
441. Szyf, M., I. Weaver, and M. Meaney, Maternal care, the epigenome and phenotypic differences in behavior. Reproductive Toxicology, 2007. 24: p. 9-19.
442. Mulhern, R.K., et al., Social competence and behavioral adjustment of children who are long-term survivors of cancer. Pediatrics 1989. 83: p. 18-25.
443. Noll, R.B., et al., Social, emotional, and behavioral functioning of children with cancer. Pediatrics 1999. 103: p. 71-78.
444. Holmbeck, G.N., E.F. Bruno, and B. Jandasek, Longitudinal research in pediatric psychology: an introduction to the special issue. Journal of Pediatric Psychology, 2006. 31(10): p. 995-1001.
445. Copeland, D.R., et al., Neuropsychologic effects of chemotherapy on children with cancer: A longitudinal study. Journal of Clinical Oncology, 1996. 14: p. 2826-2835.
446. Sawyer, M., et al., Childhood cancer: a two-year prospective study of the psychological adjustment of children and parents. Journal of American Academy of Child and Adolescent Psychiatry, 1997. 36(12): p. 1736-1743.
447. Silverman, L.B., et al., Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001. 97: p. 1211-1218.
448. Baron, R.M. and D.A. Kenny, The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 1986. 51(6): p. 1173-1182.
449. Meikle, W.A. and F.H. Tyler, Potency and duration of action of glucocorticoids: effects of hydrocortisone, prednisone and dexamethasone on human pituitaryadrenal function. American Journal of Medicine, 1977. 63(2): p. 200-207.
450. Ito, C., et al., Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology, 1996. 14: p. 2370-2376.
451. Saracco, P., et al., Steroid withdrawal syndrome during steroid tapering in childhood acute lymphoblastic leukemia. Journal of Pediatric Hematology/Oncology, 2005. 27: p. 141-144.
452. Bostrom, B.C., et al., Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute
lymphoblastic leukemia: A report from the Children's Cancer Group. Blood 2003. 101: p. 3809-3817.
453. Igarashi, S., et al., No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children's Cancer Study Group L95-14 protocol. Journal of Clinical Oncology, 2005. 23(27): p. 6489-6498.
454. Kadan-Lottick, N.S., et al., A comparison of neurocognitive functioning in children previously randomized to dexamethasone or prednisone in the treatment of childhood acute lymphoblastic leukemia. Blood 2009. 114: p. 1746-1752.
455. Zukauskiené, R., et al., Evaluating behavioral and emotional problems with the Child Behavior Checklist and Youth Self-Report scales : cross-informant and longitudinal associations. Medicina 2004. 40(2): p. 169-177.
456. Robaey, P., et al., Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy Developmental Disabilities Research Reviews, 2008. 14: p. 211-220.
457. De Rijk, R.H. and R.E. De Kloet, Corticosteroid receptor genetic polymorphisms and stress responsivity. Endocrine 2005. 28(3): p. 263-269.
458. Hayashi, R., et al., Effects of glucocorticoids on gene transcription. European Journal of Pharmacology, 2004. 500: p. 51-62.
459. McKay, L.I. and J.A. Cidlowski, Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: Mechanisms of mutual antagonism. Molecular Endocrinology, 1998. 12: p. 45-56.
460. Abrams, M.T., et al., Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. Journal of Biological Chemistry, 2004. 279(53): p. 55809-55817.
461. Wang, Z., et al., Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. Journal of Biological Chemistry, 2003. 278(26): p. 23861-23867.
462. Stephens, M., N.J. Smith, and P. Donnelly, A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 2001. 68: p. 978-989.
463. Stephens, M. and P. Donnelly, A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics, 2003. 73: p. 1162-1169.
464. Naber, C.K., et al., Relevance of the NOS3 T-786C and G894T variants for cholinergic and adrenergic coronary vasomotor responses in man. Basic Research in Cardiology, 2005. 100: p. 453-460.
465. Halliwell, B. and J.M.C. Gutteridge, Free radicals in biology and medicine, 3rd Edition. 2002, Toronto: Oxford University Press. 936.
466. Demas, G.E., et al., Elimination of aggressive behavior in male mice lacking endothelial nitric oxide synthase. Journal of Neuroscience 1999. 19(RC30): p. 1-5.
467. Hafezi-Moghadam, A., et al., Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase. Nature Medicine, 2002. 8(5): p. 473-479.
468. Gulati, K., A. Chakraborti, and A. Ray, Modulation of stress-induced neurobehavioral changes and brain oxidative injury by nitric oxide (NO) mimetics in rats. Behavioural Brain Research, 2007. 183: p. 226-230.
469. Tsujita, Y., et al., Association analyses between genetic polymorphisms of endothelial nitric oxide synthase gene and hypertension in Japanese: The Suita Study. Journal of Hypertension, 2001. 19: p. 1941-1948.
470. Kajiyama, N., et al., Lack of association between T-786 \rightarrow C mutation in the 5'flanking region of the endothelial nitric oxide synthase gene and essential hypertension. Hypertension Research, 2000. 23: p. 561-565.
471. Reif, A., et al., Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Archives of General Psychiatry, 2009. 66(1): p. 41-50.
472. Retz, W., et al., Association of a functional variant of neuronal nitric oxide synthase gene with self-reported impulsiveness, venturesomeness and empathy in male offenders. Journal of Neural Transmission, 2010. 117: p. 321324.
473. Mestan, K.K.L., et al., Neurodevelopmental outcomes of premature infants treated with inhaled nitric oxide. New England Journal of Medicine, 2005. 353: p. 23-32.
474. Ellis, J.A., Psychosocial adjustment to cancer treatment and other chronic illnesses. Acta Paediatrica 2000. 89: p. 134-141.
475. Audet-Lapointe, M., Le processus d'accommodation (coping) de l'enfant et de l'adolescent confrontés à des situations stressantes: Stress de la vie quotidienne ou leucémie, in Département de Psychologie. 2004, Université de Montréal: Montréal. p. 203.
476. Caspi, A., et al., Genetic sensitivity to the environment: The case of the serotonin transporter gene and its implications for studying complex diseases and traits. American Journal of Psychiatry, 2010. 167: p. 509-527.
477. Caspi, A., et al., Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003. 301(5631): p. 386-389.
478. Medh, R.D., et al., Gene expression profile of human lymphoid CEM cells sensitive and resistant to glucocorticoid-evoked apoptosis. Genomics, 2003. 81: p. 543-555.
479. Schwartz, C.L., et al., Improved response with higher corticosteroid dose in children with acute lymphoblastic leukemia. Journal of Clinical Oncology, 2001. 19: p. 1040-1046.
480. Eden, T.O., et al., Systematic review of the addition of vincristine plus steroid pulses in maintenance treatment for childhood acute lymphoblastic leukaemia an individual patient data meta-analysis involving 5,659 children. British Journal of Haematology, 2010. 149(5): p. 722-733.
481. Webb, S.J., C.S. Monk, and C.A. Nelson, Mechanisms of postnatal neurobiological development: Implications for human development. Developmental Neuropsychology, 2001. 19(2): p. 147-171.
482. Shaw, P., et al., Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience 2008. 28(14): p. 3586-3594.
483. Zilles, K., N. Palomero-Gallagher, and A. Schleicher, Transmitter receptors and functional anatomy of the cerebral cortex. Journal of Anatomy, 2004. 205: p. 417-432.
484. Najman, J.M., et al., Bias influencing maternal reports of child behaviour and emotional state. Society of Psychiatry and Psychiatric Epidemiology, 2001. 36: p. 186-194.
485. Bingham, R.C., et al., Parental ratings of son's behavior problems in high-risk families: Convergent validity, internal structure, and interparent agreement. Journal of Personality Assessment, 2003. 80(3): p. 237-251.
486. Glatz, K., et al., Glucocorticoid-regulated human serotonin transporter (5-HTT) expression is modulated by the 5-HTT gene-promoter-linked polymorphic region. Journal of Neurochemistry, 2003. 86(5): p. 1072-1078.
487. Kinnally, E.L., et al., Effects of early experience and genotype on serotonin transporter regulation in infant rhesus macaques. Genes and Brain Behavior 2008. 7(4): p. 481-486.
488. Barr, C.S., et al., Functional CRH variation increases stress-induced alcohol consumption in primates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(34): p. 14593-14598.
489. Barr, C.S., et al., CRH haplotype as a factor influencing cerebrospinal fluid levels of corticotropin-releasing hormone, hypothalamic-pituitary-adrenal axis activity, temperament, and alcohol consumption in rhesus macaques. Archives of General Psychiatry, 2008. 65(8): p. 934-944.
490. Cascorbi, I., Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology and Therapeutics 2006. 112(2): p. 457-473.
491. Selhub, J. and I.H. Rosenberg, B vitamins and the aging brain. Nutrition Reviews, 2010. 68(Suppl. 2): p. S112-S118.
492. Wachs, T.D., Models linking nutritional deficiencies to maternal and child mental health. American Journal of Clinical Nutrition, 2009. 89: p. 935S-939S.
493. McGowan, P.O., M.J. Meaney, and M. Szyf, Diet and epigenetic (re)programming of phenotypic differences in behavior. Brain research 2008. 1237: p. 12-24.
494. McGowan, P.O. and M. Szyf, The epigenetics of social adversity in early life: Implications for mental health outcomes. Neurobiology of Disease, 2010. 39: p. 66-72.
495. Masri, S. and P. Sassone-Corsi, Plasticity and specificity of the circadian epigenome. Nature Neuroscience, 2010. 13(11): p. 1324-1329.
496. Wong, C.C.Y., et al., A longitudinal study of epigenetic variation in twins. Epigenetics, 2010. 5(6): p. 516-526.
497. Nugent, B.M., J.M. Schwarz, and M.M. McCarthy, Hormonally mediated epigenetic changes to steroid receptors in the developing brain: Implications for sexual differentiation. Hormones and Behavior, 2010. E-pub ahead of print.
498. Silingardi, D., et al., Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. European Journal of Neuroscience, 2010. 31: p. 2185-2192.
499. Iskandar, B.J., et al., Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. Journal of Clinical Investigation, 2010. 120(5): p. 1603-1616.
500. Champagne, D.L., et al., Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience 2008. 28(23): p. 6037-6045.
501. Grimaldi, B., et al., Chromatin remodeling, metabolism and circadian clocks: The interplay of CLOCK and SIRT1. International Journal of Biochemistry and Cell Biology, 2009. 41: p. 81-86.
502. Devlin, A.M., et al., Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One, 2010. 5(8): p. e12201(1-8).
503. Conklin, H.M., et al., Acute neurocognitive response to methylphenidate among survivors of child cancer: A randomized, double-blind, cross-over trial. Journal of Pediatric Psychology, 2007. 32(9): p. 1127-1139.
504. Robison, L.L., et al., Long-term outcomes of adult survivors of childhood cancer. Cancer, 2005. 104(11): p. 2557-2564.
505. Park, E.R., et al., Health Insurance Coverage in Survivors of Childhood Cancer: The Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2005. 23(36): p. 9187-9197.
506. Zebrack, B.J., et al., Psychological distress in long-term survivors of solid tumors diagnosed in childhood: A report from the Childhood Cancer Survivor Study. Pediatric Blood Cancer, 2007. 49: p. 47-51.
507. Zeltzer, L.K., et al., Psychosocial outcomes and health-related quality of life in adult childhood cancer survivors: A report from the Childhood Cancer Survivor Study. Cancer Epidemiology, Biomarkers and Prevention, 2008. 17(2): p. 435446.
508. Krull, K.R., et al., Adolescent behavior and adult health status in childhood cancer survivors. Journal of Cancer Survivorship 2010. 4: p. 210-217.
509. Zeltzer, L.K., et al., Psychological status in childhood cancer survivors: A report from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2009. 27(14): p. 2396-2404.
510. Kadan-Lottick, N.S., et al., Childhood cancer survivors' knowledge about their past diagnosis and treatment: Childhood cancer survivor study. JAMA, 2002. 287(14): p. 1832-1839.
511. Oeffinger, K.C., et al., Health care of young adult survivors of childhood cancer: A report from the childhood cancer survivor study. Annals of Family Medecine, 2004. 2: p. 61-70.
512. Shaw, A.K., et al., Use of health care services by survivors of childhood and adolescent cancer in Canada. Cancer, 2006. 106: p. 1829-1837.
513. Castellino, S.M., et al., Minority adult survivors of childhood cancer: A comparison of long-term outcomes, health care utilization, and health-related behaviors from the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 2005. 23(27): p. 6499-6507.
514. Mertens, A.C., et al., Characteristics of childhood cancer survivors predicted their successful tracing. Journal of Clinical Epidemiology, 2004. 57: p. 933-944.
515. Ness, K.K., et al., Characteristics of responders to a request for a buccal cell specimen among survivors of childhood cancer and their siblings. Pediatric Blood Cancer, 2010. 55: p. 165-170.
516. Ness, K.K., et al., Assessment of selection bias in clinic-based populations of childhood cancer survivors: A report from the Childhood Cancer Survivor Study. Pediatric Blood Cancer, 2009. 52(3): p. 379-386.

[^0]: ${ }^{1}$ http://www.cancer.ca/ccs/internet/standard/0,3182,3172_14279_402555597_langId-fr,00.html (consulté le 4 octobre 2010)
 ${ }^{2}$ http://www.cancer.ca/ccs/internet/mediareleaselist/0,3543 434465 442933 langId-fr,00.html (consulté le 4 octobre 2010)

[^1]:

[^2]: ${ }^{4}$ TINA $=$ Taux d'incidence normalisés selon l'âge. Reproduction et adaptation libre de 17.
 Société canadienne du cancer et Institut national du cancer du Canada: Statistiques
 canadiennes sur le cancer 2008 - Sujet particulier: cancer chez les enfants Société canadienne du cancer, Toronto, Canada. 115 p., 2008.

[^3]: ${ }^{5}$ http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5648a1.htm?s_cid=mm5648a1_e\#top (consulté le 4 octobre 2010)

[^4]: ${ }^{6}$ Adapté de 55. Larsson, J. and S. Karlsson, The role of Smad signaling in hematopoiesis. Oncogene 2005. 24: p. 5676-5692.

[^5]: ${ }^{7}$ Librement adapté de 38. Pizzo, P.A. and D.G. Poplack, Principles and Practice of Pediatric Oncology ${ }_{8}^{5}$ th Edition. Lippincott Williams \& Wilkins, New York, 1780 pages. 2006. (pp. 544-545, 563-566)
 ${ }^{8}$ Controversé

[^6]: ${ }^{10}$ Librement adapté de 72. Bomken, S.N. and J.H. Vormoor, Childhood leukemia. Paediatrics and Child Health, 2009. 19(8): p. 345-350.
 ${ }^{11}$ Basé sur les informations disponibles à http://www.cancer.gov/cancertopics/pdq/treatment/childALL/HealthProfessional/page4 et pages connexes. (Pages consultées le 13 octobre 2010)

[^7]: ${ }^{12}$ Basé sur les informations disponibles à http://www.cancer.gov/cancertopics/pdq/treatment/childALL/HealthProfessional/page4 et pages connexes. (Pages consultées le 13 octobre 2010)

[^8]: ${ }^{13}$ Librement adapté de 76. Silverman, L.B., et a 1., Long-term r esults of D ana-Farber C ancer I nstitute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia 2010. 24: p. 320-334., 63. Silverman, L.B., e t a 1., Results of D ana-Farber C ancer Institute Consortium protocols for children with ne wly diagnosed ac ute lymphoblastic leukemia (19811995). Leukemia 2000. 14: p. 2247-2256., 62. Dalle, J.-H., et a l., Second induction in pe diatric patients w ith r ecurrent ac ute l ymphoid l eukemia us ing DCFI-ALL pr otocols. Journal of P ediatric Hematology/Oncology, 2005. 27: p. 73-79. Complété avec des communications personnelles de Caroline Laverdière.

[^9]: ${ }^{14}$ Librement adapté de 76. Silverman, L .B., e t a 1., Long-term re sults of D ana-Farber C ancer I nstitute A LL C onsortium pr otocols for children with ne wly diagnosed acute lymphoblastic leukemia (1985-2000). Leukemia 2010. 24: p. 320-334., 63. Silverman, L .B., e ta 1., Results of D ana-Farber Ca ncer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981-1995). Leukemia 2000. 14: p. 2247-2256. , 62. Dalle, J.-H., e ta l., Second i nduction i n pediatric pat ients with r ecurrent ac ute l ymphoid l eukemia us ing $D C F I-A L L$ pr otocols. Journal o f P ediatric Hematology/Oncology, 2005. 27: p. 73-79. 94. Clavell, L.A., et al., Four agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. New England Journal of Medicine, 1986. 315(11): p. 657-663.

[^10]: ${ }^{15} \mathrm{http}: / /$ lecerveau.mcgill.ca/flash/a/a_08/a $08 \mathrm{~m} / \mathrm{a} _08 \mathrm{~m}$ dep/a 08 m dep.html (consulté le 31 août 2010)

[^11]: ${ }^{16}$ Reproduction et adaptation libre d'une traduction, par Aurélie Chapdelaine, d'un tableau tiré de 100.
 Chabner, B.A. and D.L. Longo, Cancer chemotherapy \& biotherapy - Principles and practice 3th edition, Lippincott Williams \& Wilkins, New York, 1140 pages. 2001.

[^12]: ${ }^{17}$ Reproduction d'une traduction, par Aurélie Chapdelaine, d'un tableau tiré de 100. Ibid.

[^13]: ${ }^{18}$ Basé sur les informations disponibles à http://www.cancer.gov/cancertopics/pdq/treatment/childALL/HealthProfessional/page4 et pages connexes. (Pages consultées le 21 octobre 2010)

[^14]: ${ }^{19}$ Traduit et librement adapté d'un tableau tiré de 110. Peedell, C., Concise Clinical Oncology. Elsevier Butterworth Heinemann, Toronto, 476 pages. 2005. (p. 60)

[^15]: ${ }^{20}$ Librement adapté de $146 . \quad$ Hall, I.P. and M. Pirmohamed, Pharmacogenetics, Taylor \& Francis, New York, 324 pages. 2006. (p. 129), 145. Attia, J., et al., How to use an article about genetic association - A - Background concepts. Journal of the American Medical Association, 2009. 301(1): p. 74-81.

[^16]: ${ }^{21}$ Risque accru de façon importante dans les organes exposés à la XRT

[^17]: ${ }^{22}$ Par souci de concision, le lecteur est référé à la section 5.2.3 pour une revue détaillée de la littérature sur ce sujet.

[^18]: ${ }^{23}$ Afin d'éviter le s d oublons, c ertains p roblèmes to uchant p lusieurs s ystèmes ont é té v olontairement associés à un seul. (E.g. : les problèmes visuo-moteurs auraient pu se trouver dans les catégories Système visuel et Système nerveux)

[^19]: ${ }^{24}$ Reproduction et adaptation libre d'un tableau tiré de 312. Achenbach, T.M., Manual for the child behavior checklist/4-18 and 1991 profile Burlington, Vermont, University of Vermont, Department of Psychiatry, 1991.

[^20]: $\overline{{ }^{25} \text { Raw (non-standardized) coefficients }}$

[^21]: ${ }^{29}$ Is a subset of questions from the CBCL.

[^22]: ${ }^{30}$ Schimmer B P, Parker K L, 20 06. A drenocorticotropic hormone; a drenocortical steroids a nd their synthetic analogs; inhibitors of the synthesis and actions of adrenocortical hormones. Dans Brunton L L (ed.). Goodman \& Gilman's The Pharmacological Basis of Therapeutics, 11e édition. McGraw-Hill, New Yo rk. [En 1 igne] http://online.statref.com/document.aspx?fxid=75\&docid=573 (Consulté le 5 décembre 2010)
 ${ }^{31} \mathrm{http}: / / \mathrm{www} . c a n c e r . g o v /$ cancertopics/pdq/treatment/childALL/HealthProfessional/page5/print (consulté le 17 novembre 2010)

[^23]: ${ }^{32}$ http://www2.cochrane.org/reviews/en/protocol 5FDDEC7D82E26AA2010C34A91F9AFF5F.html (consulté le 17 novembre)

[^24]: ${ }^{33}$ One dose fits all.

[^25]: ${ }^{34}$ Bourse déclinée par l'étudiante (cause : cumul de bourses non-autorisé)

