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ABSTRACT 

Objective. Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial 

hypertension and death. An accepted tenet has been that the blood-brain barrier is intact and that brain edema is 

primarily caused by a cytotoxic etiology due to hyperammonemia. However, the neuropathological changes in ALF 

have been poorly studied. Using a well characterized porcine model we aimed to investigate ultrastructural changes 

in the brain from pigs suffering from ALF. Materials and methods. Sixteen female Norwegian Landrace pigs 

weighing 27–35 kg were randomised into two groups: ALF (n = 8) and sham operated controls (n = 8). ALF was 

induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries. Biopsies were harvested 

from three different areas of the brain (frontal lobe, cerebellum, and brain stem) following eight hours of ALF and 

analyzed using electron microscopy. Results. Profound perivascular and interstitial edema were found in all three 

areas. Disruption of pericytic and astrocytic processes were seen, reflecting breakdown/lesion of the blood-brain 

barrier in animals suffering from ALF. Furthermore, neurons and axons were edematous and surrounded by vesicles. 

Severe damage to Purkinje neuron (necrosis) and damaged myelin were seen in the cerebellum and brain stem, 

respectively. Biopsies from sham operated animals were normal. Conclusions. Our data support the concept that 

vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with ALF. 
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INTRODUCTION 

Cerebral edema is a serious complication of acute liver failure (ALF), which may lead to intracranial hypertension 

and death. The exact pathophysiological mechanisms responsible for the development of intracranial hypertension 

are unresolved however several lines of investigation suggest hyperammonemia is central to its pathogenesis [1–3]. 

Brain edema has been demonstrated to be closely linked with intracranial hypertension since an increase in brain 

water tissue has been observed in both patients with and animal models of ALF [4–6]. 

To date, only one human study has been published describing the neuropathological patterns associated with ALF. In 

this post mortem electron microscopic study, cerebral edema was illustrated in the frontal cortex of all patients who 
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died from brain stem herniation due to acetaminophen-induced ALF. Cerebral edema was depicted as mostly due to 

cytotoxic mechanisms and to a lesser extent vasogenic mechanisms in association with alterations in the 

permeability of the blood-brain barrier (BBB) [7]. Several animal studies over the last 30 years have demonstrated 

increased permeability of many substances across the BBB however the integrity of the BBB was not described [8,9]. 

Therefore, a study investigating the ultrastructural changes in the brain in relation to increased ICP in an animal 

model of ALF is warranted. 

Recent publications have demonstrated the importance of brain white matter changes (volume, biochemically, 

physiologically) in association with the onset of hepatic encephalopathy (HE) in patients with chronic liver disease 

[10,11]. Furthermore, we have previously demonstrated white matter as a more amenable area to treatment and 

possibly a new therapeutic target [12]. Studies are lacking describing the differentiation between ultrastructural 

changes in white versus gray matter in association with increased ICP in ALF. 

We have previously described a porcine model of ALF, induced by hepatic devascularization, which is associated 

with typical clinical and biochemical features of ALF including acute hyperammonemia, increased brain water and 

intracranial hypertension [12–17]. The aim of the present study was to use this large animal model to examine 

ultrastructural changes in the frontal lobe, cerebellum and brain stem in pigs with ALF. 

METHODS 

Study design  
The study was performed in the Surgical Research Laboratory at the University of Tromsø, Norway and was 

approved by the Norwegian Experimental Animal Board. Sixteen female pigs weighing 27–35 kg were randomised 

using the sealed envelope system into two groups: (i) ALF (n = 8); (ii) Sham operated control (n = 8). 

Two pigs (one ALF and one sham) were excluded due to technical errors. Accordingly, data from 14 pigs were thus 

included in the present study. 

Animal preparation  
The pigs were kept in the animal department for at least two days before the experiments. Details regarding the 

animal room facilities, anesthesia and surgical preparation have previously been reported [13,14]. Briefly, the 

animals were fasted overnight, but with free access to water. They were premedicated with an intramuscular 

injection of 20 mg/kg ketamine (Ketalar, Pfizer, Oslo, Norway) and 1 mg atropine (Atropin, Nycomed Pharma, Oslo, 

Norway). Anesthesia was induced with an intravenous bolus of 10 mg/kg pentobarbital (Pentobarbital, Nycomed 

Pharma, Oslo, Norway) and 10 μg/kg fentanyl (Leptanal, Janssen Pharmaceutica, Beerse, Belgium) and maintained 

during surgery with a central venous infusion of 4 mg/kg/h pentobarbital, 0.02 mg/kg/h fentanyl, and 0.3 mg/kg/h 

midazolam (Dormicum; Roche, Basel, Switzerland). The pigs underwent a tracheotomy, were incubated and 

ventilated (FiO2 = 0.5) on a volume-controlled ventilator (Servo 900, Elema-Schönander, Stockholm, Sweden). Tidal 

volume was adjusted by means of repeated arterial blood gas analyses to maintain PaCO2 between 4.5 and 5.0 kPa 

during surgery. Ventilation was not altered after t = 0. Core body temperature was maintained normothermic at 38.5 

± 1°C with a heating pad and blankets. 

All animals received 500 ml 0.9% NaCl containing 625 mg glucose as a preoperative load. During the experiment, 

0.9% NaCl was infused at a rate of 3 ml/kg/h. After ALF induction, 50% glucose and 20% human albumin 

(Octapharm, Hurdal, Norway) were continuously infused at rates of 0.6048 and 0.66 ml/kg/h, respectively. 

However, sham-operated animals received only half the amount of glucose (0.3024 ml/kg/h) in order to render the 

glucose levels comparable between the groups. 
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Anesthesia was stopped after the liver was devascularised. If the degree of sedation became insufficient, small doses 

of fentanyl and midazolam were given as a bolus. Sham operated animals received continuous anesthesia during the 

experimental period and received equal amounts of intravenous fluids. 

ALF was induced with an end-to-side portacaval shunt followed by ligation of the hepatic arteries at time 0 h and 

monitored for 8 h. These animals develop hyperammonemia, brain edema and intracranial hypertension. Details of 

the surgery, including the sham operation procedure have previously been described [13,14]. 

Positioning of catheters  
A 16G central venous catheter (Secalon T™, Ohmeda, Swindon, UK) was introduced into the left external jugular vein 

for administration of drugs and fluids. 

Biopsies  
Biopsy specimens (5 mm) were obtained from three sites of the brain at t = 8 h: 

 (1) Transcortical biopsies were examined from the precentral area from the frontal lobe. Microscopy studies 

were performed in samples obtained from the transition zone between cortex and white matter tissue. 

 (2) Brain stem biopsies were obtained from the pons region. 

 (3) Deep cortical biopsies were obtained from the inferior part of the right lobe of the cerebellum. 

All biopsies were taken from deeply anesthetized animals in the same order at each experiment. Frontal lobe 

biopsies were harvested first, then subsequently the cerebellum and pons samples as soon as the brain was 

dissected free from the cranium. The animals were then subsequently sacrificed with an overdose potassium and 

pentothal injection. 

Biopsies were fixed in McDowells fixative (> 24 h) immediately after harvesting. Post-fixation was performed in 1% 

aqueous OsO4. The specimens were dehydrated in series of graded ethanol and thereafter embedded in 

Epon/aradite. 

Semi-thin sections (2 μm) of four blocks from each biopsy were sectioned and stained with 1% toluidine blue. The 

sections were examined in light microscopy to verify representative material and to select areas for electron 

microscopic examination. 

Ultra-thin sections (70 nm) from the selected areas were contrasted with 5% uranylacetat and subsequently with 

Reynold's lead citrate. The specimens were examined in a JEOL 1010 electron microscope. 

Semiquantitative evaluation of ultrastructural changes  
We performed a semiquantitative evaluation of ultrastructural changes of the brain samples. Prior to ultrastructural 

examination, semi-thin sections for light microscopic examinations were performed and areas for further study by 

transmission electron microscopy were subsequently defined. The severity of ultrastructural changes was graded in 

a scoring system described in Tables I–III. All sections were blinded for the investing pathologist. The most 

pronounced changes in each biopsy specimens were selected for each scoring. From each pig we selected eight 

micrographs from each region, which were examined and scored. 
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RESULTS 

Gross description of the brain  
The brains from pigs with ALF were swollen with flattening of the gyri and narrowing of the sulci. No signs of 

subarachnoid bleeding were seen. The cut surfaces of the brains were wet and shiny with blurred transmission 

between cortex and white substance. The ventricles were compressed. Brains from sham operated animals appeared 

normal. 

Representative areas were chosen for the electron microscope pictures presented. In pigs with ALF we found gross 

ultrastructural changes in all regions (frontal lobe, cerebellum and brain stem) examined, while only minor changes 

were observed in sham operated controls (Figures 1A–3B). Semiquantitative evaluations were performed in all 

regions of the brain and significant differences were found in degrees of edema, morphology of astrocytes, neurons 

and oligodendrocytes/myelin in all areas examined, except for oligodendrocytes/myelin in the frontal lobe (Tables 

I–III). 

Figure 1.  (A) Frontal lobe from a sham operated control pig showing a normal ultrastructural picture except for 

minor perivascular edema. Normal myelinated fibers can be spotted across the picture. (B) Frontal lobe from a sham 

operated control pig. Neuron appears normal with distinct nucleolus. Healthy oligodendrocyte appears above. (C) 

Frontal lobe from a pig with ALF. Severely damaged endothelium can be seen as cytoplasmic papillary projections 

into the lumen. Severe perivascular edema and cellular debris can be seen. Numerous broken projections are 

radiating from the vessel wall, ending blindly into the perivascular space. (D) Frontal lobe from a pig with ALF. In the 

center a dark neuron with shrunken cytoplasm and damaged mitochondria can be seen. Perineuronal vesicles, which 

probably reflect edema, can be seen. Furthermore, a capillary with perivascular edema with electron dense 

fragments can be seen. This probably reflects rests of swollen astrocytic processes. 
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Figure 2.  (A) Cerebellum from a sham operated control pig. A normal Purkinje cell and capillary without any signs 

of perivascular edema. Two granular cells are observed at the bottom of the picture. (B) Cerebellum from a pig with 

ALF. Focal areas revealing parenchymal cells with severe ultrastructural changes with intracellular edema and 

broken cell membranes reflecting irreversible changes in granular cells. Shrunken and dark Purkinje cells are 

observed. (C), Cerebellum from a pig with ALF. This picture shows predominantly a perivascular edema. 

Perivascular edema  
Edema, mainly perivascular edema, was seen in biopsies sampled from all regions of the brain in the ALF pigs with 

minor edema seen in the sham operated controls. We evaluated all samples with a semiquantitative scoring system. 

The mildest ultrastructural changes of edema in our scoring system (score 1), reflected clear spaces between 

parenchymal cells and small perivascular clear spaces partially around the capillary (Figure 1A). Moderate edema 

(score 2) reflected more pronounced perivascular changes with clear spaces surrounding the whole capillary and 

swelling of the endothelial cells. Advanced perivascular edema (score 3) showed in addition to perivascular white 

space, ultrastructural changes in the endothelial cells including cytoplasmatic vesicles and vacuoles, margination of 

the nuclear chromatin, and small gaps in the luminal plasma membrane or projecting blebs into the lumen. The most 

severe changes which reflect rigorous perivascular edema (score 4), revealed in addition to the above alterations of 

the endothelial cells with marked intracellular edema, margination and clumping of nuclear chromatin and 

endothelial cells bulging into and encroaching upon the lumen. The most conspicuous ultrastructural finding in these 

biopsies were numerous concentric processes radiating from external vascular wall (score 4). These processes 

ended blindly into disruption of the cytoplasmic membrane with surrounding cellular debris, which are consistent 

with pericytic processes and remaining astroglial foot processes. The perivascular broken processes together with 
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massive perivascular edema reflect disruption of the perivascular cytoskeleton structure and thus breakdown of the 

BBB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  (A) Brain stem from a sham operated pig. Neuron with a distinct nucleolus without any signs of 

perivascular edema. (B) Brain stem from pig with ALF. Dark parenchymal cells, probably with irreversible damage. 

Partly swollen and partly condensated myelin processes. 

Neurons  
The ultrastructural changes in the neurons of the frontal lobe, the brainstem and the Purkinje cells in the cerebellum, 

were graded into three different categories according to severity. The mildest were cell swelling with intracellular 

edema, condensation of cytoplasma and marked nucleolus and indentations of the nuclear membrane (score 1) 

(Figures 1B, 2A and 3A). Moderate changes in the neurons revealed swelling of the cells with cytoplasmatic vesicles, 

clumping and margination of nuclear chromatin and increased electron density of the cytoplasma (score 2). Severe 

ultrastructural changes (score 3) revealed electron dense shrunken neurons, which were surrounded by vesicles. 

The vesicles contained often cellular debris, reflecting organelles and disruption of the cytoplasmic membrane, 

suggestive of necrosis (Figures 1D and 2B). 

Glia cells  
The severity of ultrastructural changes in astrocytes and oligodendrocytes were divided into three different 

morphological categories. The mildest changes (score 1) was simple intracellular edema and swelling of the 

cytoplasma. Moderate changes (score 2) in glia cells were detected when cells showed signs of increased electron 
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density and condensation of cytoplasma, with marginating and clumping of the nuclear chromatin (Figure 3A). The 

most severe grade of ultrastructural alteration in glia cells (score 3) were described as further condensation of 

cytoplasma with shrinking of the cells and cytoplasmic membrane dissolution, suggestive of irreversible changes and 

necrosis (Figure 3B). 

Oligodendrocytes/myelin  
The mildest ultrastructural changes (score 1) were swelling of the myelin sheath (Figure 1A). Moderate changes in 

the myelin fibers (score 2) were described as swelling and additional blurring with electron dense condensation of 

the lamina of the myelinated nerve fibers (Figure 3A). The most severe changes in the myelinated fibers (score 3) 

were detected when the myelin sheath was clearly swollen, irregular in shape with duplicated myelin lamina and 

electron dense areas with condensation of the lamina (Figure 3B). 

Inflammatory cells  
Few inflammatory cells were detected throughout all specimens examined. However, in the ALF group polymorph 

nuclear granulocytes were found in focal areas where they surrounded areas of necrotic cells (Figure 3A). 

Macrophages were difficult to identify with the ultrastructural technique applied, but activated platelets were 

detected within the lumen of small arterioles (Figure 1A). 

DISCUSSION 

The present study is the first ultrastructural investigation of the brain in a large animal model of ALF. Following 

eight hours of liver devascularisation, this porcine model reveals typical clinical and biochemical features of ALF 

such as hyperammonemia, increased brain edema and intracranial hypertension [12–15], which are considered 

essential for studying neuropathological changes in the brain in relation to ALF. The major findings in our study 

were: (1) vasogenic brain edema is an important pathophysiological component associated with intracranial 

hypertension and (2) evidence of severe brain injury including edema, cellular swelling and necrotic cell death 

(neurons and astrocytes). 

This study is highly relevant for clinical practice as it might change our understanding of the timeframe and 

development towards BBB breakdown in patients suffering from ALF. Our findings challenge the accepted tenet that 

BBB is intact in ALF and that brain edema observed is a purely a result of cytotoxic mechanisms [18,19]. In our study, 

we demonstrate that vasogenic brain edema is an important pathophysiological component in the development of 

intracranial hypertension in ALF. Our study has recently been supported by Chen and colleagues [20] who 

demonstrated disruptions of tight junction proteins implicated in the integrity of the BBB in mice with ALF. Kato et 

al. published the only human study over 15 years ago, looking at ultrastructural changes of the brain in patients who 

died of ALF [7]. Although they could not find any signs of ruptured BBB, significant dilatations of extracellular spaces 

were interpreted as evidence of a potential vasogenic component in the pathogenesis of brain edema. Differences in 

duration of insult and severity of liver failure might explain some of the ultrastructural differences between our 

present study and that by Kato et al. In their study, arterial ammonia levels were not reported, but all patients had 

increased ICP (> 30 mmHg) with clinical signs of cerebral edema (extensor posturing, opisthothonus, and papillary 

abnormalities) reflecting severe ALF with grade IV HE. Unfortunately the ultrastructural examinations, for ethical 

reasons were limited to only a tiny piece of frontal cortex obtained at the site of insertion of the extradural ICP 

catheter [7]. 

Disruption of the BBB is of specific interest as clinical recommendations advocate the use of hypertonic solutions to 

treat high ICP in ALF [4]. This treatment concept is based upon the presumption of an intact BBB, which may not be 

the case in severe ALF with high HE score [7,21]. The present results should therefore lead to a discussion about the 
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validity of current intensive care treatment protocols and should lead to a review of the current use of hypertonic 

fluids, which might be ineffective or even hazardous in subgroups of patients with ALF. However, the present 

investigation was not designed to study reversibility of brain edema in ALF. Accordingly, future studies should focus 

on the early stages of this disease as one or more interventions (e.g. hypothermia) may change the natural course 

and prevent the development of intracranial hypertension. 

In our present study we analyzed brain tissue from three different regions. Perivascular edema was observed in all 

regions analyzed with little cytotoxic edema. Morphological changes in neurons, astrocytes and oligodendrocytes 

were identified as well. This translates into ultrastructural changes found in both white and gray matter. However 

the brain is not homogeneously affected during ALF since no ultrastructural changes were found with myelin in the 

frontal lobe as well as with the neurons (Purkinje cells) in the cerebellum. 

Evidence from our study demonstrating severe brain damage questions whether HE induced by ALF is purely a 

metabolic syndrome and reversible. This potentially helps explain the persisting neurological complications in 

patients following liver transplantation [6,22–24]. Furthermore, even though liver transplantation dramatically 

improves the clinical neurological status, there is evidence in the literature to suggest that minimal HE may persist 

due to unknown irreversible changes in the brain [25,26]. Therefore full recovery and reversibility of HE following 

liver transplantation is currently under scrutiny [23]. 

Additional pathogenic factors such as inflammation have demonstrated to play a role in the exacerbation of ICP in 

ALF [27], however inflammatory cells (microglia) were not very prominent in the brains of pigs with ALF. This may 

be obvious since we have previously shown that systemic inflammatory markers are not raised in this model 

following 6 h of ALF [12]. Therefore we were able to demonstrate severe ultrastructural changes in the brain 

without any induction of inflammatory cells. This is clinically relevant as inflammation is believed to play a major 

role in patients with acute-on-chronic and ALF patients suffering from high grade HE [28,29]. Furthermore, the 

results of our study suggest inflammation does not play an important role in the development of brain edema and 

intracranial hypertension in ALF. 

Discrepancy in the literature concerning BBB integrity in ALF may be related to studies which measured brain 

edema and not ICP. It is intracranial hypertension which is a major cause of death in ALF, not brain edema. The 

former is impossible to occur without the latter, however brain edema can develop without increasing ICP since a 

non-linear relationship between brain edema and ICP exists. Whether cytotoxic edema precedes vasogenic edema in 

relation to increased ICP needs to be investigated in the near future. Furthermore, our data demonstrates edema is 

observed in different areas of the brain, not only one, which may explain an increase in ICP. 

In conclusion, ALF causes severe irreversible brain damage and disruption of the BBB. Our data support the concept 

that vasogenic brain edema plays an important role in the development of intracranial hypertension in pigs with 

ALF. 
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