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ABSTRACT 

Chronic liver failure leads to hyperammonemia and consequently increased brain 

ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to 

regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on 

the amidation of glutamate to glutamine through glutamine synthetase, to efficiently 

clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not 

capable of increasing its capacity to remove ammonia, which even decreases in some 

regions of the brain. This non-induction of glutamine synthetase in astrocytes could 

result from possible limiting substrates or cofactors for the enzyme, or an indirect 

effect of ammonia on glutamine synthetase expression. In addition, there is evidence 

that nitration of the enzyme resulting from exposure to nitric oxide could also be 

implicated. The present review summarizes these possible factors involved in 

limiting the increase in capacity of glutamine synthetase in brain, in chronic liver 

failure. 
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INTRODUCTION 

There is a substantial body of evidence to suggest that ammonia has adverse effects 

on the brain and is therefore believed to play a major role in the pathogenesis of the 

neuropsychiatric disturbances observed in hepatic encephalopathy. When liver, the 

major ammonia-removing organ in the body, fails and is incapable of efficiently 

converting ammonia to urea or glutamine, hyperammonemia develops, leading to 

increased levels of ammonia in the brain. Unlike liver, brain is devoid of an effective 

urea cycle and therefore relies entirely on glutamine synthesis for the removal of 

blood-borne ammonia. Glutamine synthetase (GS) is strictly an astrocytic enzyme, 
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which is responsible for the adenosine triphosphate (ATP)-dependent amidation of 

glutamate to glutamine: 

Glutamate + NH4+ + ATP → Glutamine + ADP + Pi 

This specific reaction proceeds via a γ -glutamyl phosphate intermediate, and is 

dependent upon the presence of divalent cations such as manganese (Mn2+ ). 

GLUTAMINE SYNTHETASE IN CHRONIC LIVER FAILURE 

Portal hypertension is a serious complication of chronic liver failure and is relieved 

either naturally from spontaneous collaterals between the portal vein and the 

systemic venous circulation, or surgically (as treatment) with a portacaval 

anastomosis or more commonly used today, transjugular intrahepatic portosystemic 

shunt (TIPS). In either case, portal-systemic shunting results in an increase in blood 

and brain ammonia, and hepatic encephalopathy developes. 

In rats, 4 weeks following portacaval anastomosis, Girard et al. (1993) found an 

increase in brain ammonia and a concomitant decrease of GS activity in the brain. 

This finding was region selective, being observed in 3/7 brain regions (cerebral 

cortex, cerebellum, and hippocampus) (Fig. 1) with no change found in the other 

regions. Using the same model, studies by Butterworth et al. (1988) revealed a 

similar reduction in GS activity in cerebral cortex, and more recently Desjardins et 

al. (1999) reported similar findings in both cerebral cortex and cerebellum. Cooper 

et al. (1985) on the other hand did not find a decrease in GS activity and found no 

change in whole brain from portacaval-shunted rats. Others were unable to detect 

any significant increase in net glutamine synthesis in brain, following portacaval 

anastomosis (Cremer et al., 1975; Ukida et al., 1988). Many possible explanations 

have been forwarded (see later) to explain why the capacity of brain GS to remove 

ammonia is not increased to compensate for the elevated brain ammonia 

concentrations, in chronic liver failure. Cooper et al. (1985) showed that GS activity 

in the brain operates at near maximal capacity under normal physiological 

conditions and that induction does not occur. This lack of induction or, even worse, 

decrease of brain GS activity is a likely explanation for the precipitously high levels 

of brain ammonia in conditions of chronic liver failure (Butterworth et al., 1988). 
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Figure 1. Effect of portacaval anastomosis on glutamine synthetase (GS) activity in different brain 

regions. White bars, sham-operated; black bars, portacaval anastomosis. The asterisk (∗) indicates 

significantly different from sham-operated; NS, nonsignificant (modified from Girard et al., 1993). 

FACTORS INVOLVED IN LIMITING GLUTAMINE SYNTHETASE CAPACITY 

TO REMOVE AMMONIA 

Cell (Astrocyte) Loss 
Chronic liver failure does not result in significant loss of neural cells (i.e., neurons or 

astrocytes) in the brain (Butterworth, 2003). It is therefore highly unlikely that the 

reductions in the activity of GS in brain reported following portacaval anastomosis are 

the consequence of the loss of cells rich in this enzyme, since neuropathologic studies do 

not reveal evidence of astrocytic cell loss. However, alterations of the functional integrity 

of astrocytes have been described (Norenberg, 1987). 

Decreased Protein or Gene Expression 
It has been shown that the loss of activity of the GS enzyme is not associated with the 

loss of GS protein or gene expression in the brains of portacaval-shunted rats 

(Desjardins et al., 1999). 

Limited Concentrations of Glutamine Synthetase Enzyme 

Substrate 
With increasing concentrations of ammonia in the brain during chronic liver failure, it is 

obvious that the amidation of glutamate to glutamine is not limited by the substrate 

ammonia in the pathogenesis of hepatic encephalopathy. However, many other factors 

may be altered, resulting in a decrease or non-induction of GS in astrocytes. 

Glutamate is the substrate for GS, and therefore a decrease or increase in intracellular 

glutamate may affect GS activity. Termination of the action of glutamate in the synaptic 

cleft relies to a significant degree on its reuptake by high-affinity glutamate transporters 
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into perineuronal astrocytes where glutamate is transformed via GS into glutamine. 

Studies in astrocytes cultured from different brain regions of the rat demonstrate that 

the capacity for glutamate uptake correlates with regional GS activities (Hansson et al., 

1986). In chronic liver failure, using in vivo microdialysis, no increase in extracellular 

glutamate was observed in cerebral cortex (Rao et al., 1995) or striatum (Tossman et al., 

1983) of rats with portacaval anastomosis. It has been demonstrated that chronic 

hyperammonemia results in a region-selective loss of glutamate transporter sites. 

However, Desjardins and Butterworth found no change in gene expression of the 

astrocytic glutamate transporters EAAC-1 and EAAC-2 in cerebral cortex of rats with 

portacaval anastomosis (unpublished results). On the contrary, Suarez et al. (2000) 

described a significant loss of both astrocytic and neuronal glutamate transporter 

expression in cerebellum of portacaval-shunted rats (Suarez et al., 2000). In brain tissue, 

concentrations of glutamate have been found to be decreased in portacaval-shunted rats 

(Giguere and Butterworth, 1984; Hindfelt et al., 1977; Gjedde et al., 1978) (Fig. 2). 

Together this data provides evidence to support that glutamate availability may be 

limited in some brain structures of portacaval-shunted rats. On the countray, whether 

concentrations of glutamate in the astrocyte compartment (available to GS) are reduced 

remains unclear. 

 

 

 

 

 

 

Figure 2. Brain glutamate concentrations following portacaval anastomosis. Results are expressed 

in µmol/g wet weight tissue as mean ± SD. The asterisk (∗ ) indicates significantly different from 

sham-operated (modified from Giguere and Butterworth, 1984). 

Each of the 12 active sites of GS requires two Mn+ ions, a metallic ion whose avail-ability 

is not limited in chronic liver failure. On the contrary, it has been demonstrated that 

increased manganese deposition occurs in the brain (more specifically in the basal 

ganglia) of patients with chonic liver failure (Rose et al., 1999) and with spontaneous or 

surgically-induced portal-systemic shunting (Spahr et al., 1996). Similar observations 

were found in rats with both portal-systemic shunting and liver dysfunction (Fig. 3). 

These results suggest that in chronic liver failure, manganese availability is adequate to 

maintain GS activity. 

GS is an ATP-dependent enzyme. Although ammonia has been shown to inhibit α-

ketoglutarate dehydrogenase in the tricarboxylic acid (TCA) cycle with the potential to 
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cause energy impairment, no evidence of energy failure has been reported in the brains 

of rats with chronic liver failure (Hindfelt et al., 1977). 

 

 

 

 

 

 

 

 

Figure 3. Manganese concentration in rat brain tissue. Data are expressed as mean ± SEM. The 

asterisk (∗ ) indicates significantly different from normal and sham-operated (modified from Rose 

et al., 1999). 

 

 

 

 

 

 

 

 

Figure 4. GS nitration in brain in chronic liver failure. PCA rats were sacrificed 4 weeks following 

portacaval anastomosis. (A) Brain proteins were precipitated with the anti-3 -nitrotyrosine 

antibody and analyzed using Western blot for the presence of tyrosine-nitrated GS (NO2Tyr-GS). 

(B) Densimetric quantification of tyrosine nitration of GS (modified from Schliess et al., 2002). 

There is recent evidence to suggest that a decrease in GS activity can also result from 

nitration of its tyrosine residues, leading to a loss of enzymatic activity. Ammonia-
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induced tyrosine nitration of many proteins has been demonstrated in both in vivo (4-

week portacaval-shunted rats) (Fig. 4) and in vitro models of hyperammonemia 

(Schliess et al., 2002). It has been demonstrated in vitro (cultured astrocytes) that an 

increase in GS tyrosine nitration induced by ammonia is accompanied with a ∼30% 

decrease in GS activity (Schliess et al., 2002). Tyrosine nitration is mediated by reactive 

nitrogen species such as peroxynitrite anion (ONOO− ) and nitrogen dioxide (•NO2), 

formed as secondary products of nitric oxide (• NO) metabolism in the presence of 

oxidants includ-ing superoxide radicals (O2− ), and hydrogen peroxide (H2O2). • NO 

diffuses freely across cell membranes and is believed to play a major role in the nitration 

of GS. Nitric ox-ide synthase (NOS) catalyses the production of • NO with the oxidation of 

L-arginine to L-citrulline. 

Arginine + 2NADPH + 2O2 → Citrulline + NADP + 2H2O 

An increase in • NO production could lead to increased production of reactive nitrogen 

species and hence nitration of GS, lowering its capacity to remove ammonia. 

L-Arginine is the obligate substrate for NOS reaction; its intracellular availability 

depends exclusively on its transport. There is convincing evidence for a stimulatory 

effect of ammonia on cellular L-arginine uptake. For example, hyperammonemia 

increases the transport of L-[3H]arginine into synaptosomes of portacaval-shunted rats, 

and precipitation of severe encephalopathy following ammonia administration to these 

rats results in a further increase in synaptosomal l-[3H]arginine uptake (Rao et al., 

1997a). Furthermore, hyperammonemia without liver dysfunction also stimulates 

arginine uptake by increasing the Vmax without changing the affinity of L-arginine for the 

transporter. It was demonstrated that increased NOS activity was not responsible for the 

increased L-arginine uptake (Rao et al., 1997a). None of the NOS inhibitors studied (L-

NAME, L-NOARG, L-NMMA) had any effect on the ammonia-induced increase in 

synaptosomal L-arginine uptake, suggesting that ammonia directly activates the 

transport of l-arginine and that inhibition of NOS has little, if any, effect on this process. 

Furthermore, Rao et al. (1995) found that increased NOS activities were the 

consequence of increased availability of the enzyme substrate L-arginine. Overall, 

ammonia-induced L-arginine uptake is an important pathway in regulating NOS activity. 

There are three different genes encoding NOS: (1) nNOS (NOS-1), which until recently, 

was considered to be expressed only in neurons; (2) iNOS (NOS-2), the inducible form, 

usually found in macrophages and turned on by an appropriate stimulus; and (3) eNOS 

(NOS-3) found in the endothelial cells that line the lumen of blood vessels. nNOS and 

eNOS are constitutively expressed and synthesize • NO in response to increases in 

intracellular calcium. Rao et al. (1997b) reported an increased nNOS protein and mRNA 

expression in the brains of portacaval-shunted rats (Fig. 5). 
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Calcium is an important regulator of NOS, acting through the binding of calmodulin. 

Felipo and colleagues demonstrated that ammonia-induced increases of NOS activity are 

dependent upon N-methyl D-aspartate (NMDA) receptor activation, resulting in an 

opening of the ion channel and entry of calcium. This leads to activation of soluble 

guanylate cyclase, leading to an increased formation of cyclic guanosine monophosphate 

(cGMP). Part of the cGMP formed is released into the extracellular space where it can be 

collected and served as a marker of NMDA-receptor-mediated NOS activity. This 

pathway is blocked by the pre-treatment of MK-801, a glutamate (NMDA) receptor 

antagonist (Hermenegildo et al., 1996, 2000). Overactivation of NMDA receptors leading 

to an increase in NMDA/NOS/cGMP pathway has been shown to occur in acute 

hyperammonemia (Marcaida et al., 1992; Montoliu et al., 2002). However, in chronic 

liver failure, overactivation of NMDA recep-tors does not occur. Peterson et al. 

demonstrated a region-selective reduction of NMDA receptor densities in brains of 

portacaval-shunted rats (Peterson et al., 1990). It is therefore unlikely that NMDA-

receptor-mediated increases of the NO–cGMP signal transduction pathway are 

responsible for GS nitration in chronic liver failure. 

 

 

 

 

 

 

 

Figure 5. (A) nNOS expression (total RNA) in cerebellum of 4-week portacaval-shunted (lane 2–4) 

and sham-operated (lanes 5–7) rats. (B) Western blot analysis of cytosol protein from cerebellum 

of 4-week portacaval-shunted (lanes1–3) and sham-operated (lanes 4–6) rats (modified from Rao 

et al., 1997b). 
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Figure 6. Hypothesis whereby ammonia stimulates L-arginine uptake into the cell, which activates 

NOS, resulting in an increased production of NO and consequently tyrosine nitration of GS. Even 

though GS is localized in astrocytes, the source of NO is yet to be defined, as NOS is found in both 

neurons and astrocytes (Baltrons and Garcia, 2001). 

In summary, under hyperammonemic conditions, the brain is not capable of increas-ing 

its capacity to remove ammonia via its principal ammonia-removing mechanism, the 

astrocytic GS pathway. A review of currently available evidence supports the view that 

the reduction in GS capacity in brain (or lack of its induction, depending upon the brain 

region) in chronic liver failure does not result from a limitation in availability of 

substrates (NH4
+ , glutamate) or cofactors (ATP, Mn2+ ). The most likely explanation is GS 

nitration resulting from ammonia-induced increased synthesis of NO. This later 

mechanism appears to be independent of NMDA activation but dependent upon L-

arginine (Fig. 6). 
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