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Résumé 

L’application des métaux de transition à la fonctionnalisation directe a ouvert la 

voie à une nouvelle classe de réactions pour la formation de liens carbone-carbone. De par 

l'omniprésence des liaisons C–H, l’introduction de nouvelles fonctionnalités chimiques par 

voie directe et pré-activation minimale s’impose comme une stratégie de synthèse très 

attrayante. Ainsi, il est envisageable de préparer de manière rapide et efficace des supports 

complexes menant à des molécules complexes, qui pourraient être utiles dans divers 

domaines de la chimie. 

L'objectif principal de la présente thèse vise la fonctionnalisation directe des arènes 

hétérocycliques et non hétérocycliques et, plus précisément, les techniques d’arylation. 

Dans un premier temps, nous allons aborder le thème de l’arylation directe tout en mettant 

l’accent sur les pyridines (Chapitre 1). Ces molécules sont à la base d'une multitude de 

composés biologiquement actifs et jouent un rôle important dans le domaine des sciences 

des matériaux, de l’agrochimie et de la synthèse des produits naturels. Dans un deuxième 

temps, nous discuterons de nos travaux sur l’arylation directe catalysé par un complex de 

palladium sur des ylures de N-iminopyridinium en soulignant la dérivatisation du sel de 

pyridinium après une phénylation sp2 (Chapitre 2). L’étude de ce procédé nous a permis de 

mettre en lumière plusieurs découvertes importantes, que nous expliquerons en détails une 

à une : l’arylation benzylique directe lorsque des ylures N-iminopyridinium substituées 

avec un groupement alkyl à la position 2 sont utilisés comme partenaires dans la réaction; 

les allylations Tsuji-Trost catalysée par un complex de palladium; et l’alkylation directe et 

sans métal via une catalyse par transfert de phase.  

Plusieurs défis restent à relever pour le développement de procédés directs utilisant 

des métaux de transition peu coûteux, d’autant plus que la synthèse par transformation 

directe des pyridines 2-alcényles, lesquelles sont pertinentes sur le plan pharmacologique, 

n’a pas encore été rapportée à ce jour. Avec cette problématique en tête, nous avons réussi à 

mettre au point une alcénylation directe catalysé par un complex de cuivre sur des ylures de 
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N-iminopyridinium. Nous discuterons également d’une nouvelle méthode pour la 

préparation des iodures de vinyle utilisés dans les couplages. Ces réactions sont non 

seulement remarquablement chimiosélectives, mais sont aussi applicables à plusieurs 

substrats (Chapitre 3). En optimisant ce procédé direct, nous avons découvert une façon 

unique de synthétiser les pyrazolo[1,5-a]pyridines 2-substituées (Chapitre 4). Le 

mécanisme global met en jeu une séquence tandem de fonctionnalisation-cyclisation directe 

et un procédé direct en cascade, qui n’avais jamais été rapporté. Cela simplifie ansi la 

synthèse autrement compliquée de ces substrats en y apportant une solution à un problème 

de longue date. 

Dans les deux derniers chapitres, nous examinerons en détail les techniques 

d’arylation directe qui n'impliquent pas les partenaires de couplage hétérocycliques. Entre 

autres, au Chapitre 5, nous soulignerons notre découverte d’un umpolung dirigé et catalysé 

par un complexe de palladium du benzène et de quelques autres dérivés arènes. Il s’agit là 

du premier cas de fonctionnalisation directe dans laquelle le groupe directeur se trouve sur 

le partenaire halogène et il s’ajoute à la courte liste d’exemples connus dans la littérature 

rapportant une arylation directe du benzène. Finalement, au Chapitre 6, nous passerons en 

revue une nouvelle arylation directe catalysée au fer, qui se veut un procédé peu coûteux, 

durable et présentant une économie d’atomes. Nous discutons des substrats possibles ainsi 

des études mécanistiques réalisés. 

 

Mots-clés : Ylures de N-iminopyridinium, arylation directe, vinylation, catalyse, palladium, 

cuivre, fer, groupement directeur. 
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Abstract 

The application of transition metals towards direct functionalization processes has 

exposed an opportunistic new class of carbon-carbon bond forming reactions. Given the 

undeniable ubiquity of C–H bonds, the possibility of introducing functionality through 

direct means with minimal preactivation is an irresistible strategy in synthesis. As such one 

can envision rapidly and efficiently building up complex scaffolds towards complex 

molecules of interest in a plethora of chemical fields. 

The focus of this thesis is on the direct functionalization of heterocyclic and non-

heterocyclic arenes, focusing on arylation technologies. First, the topic of direct arylation 

will be introduced, with special emphasis being on pyridines (Chapter 1). These molecules 

comprise the backbone of a myriad of biologically active compounds, and are also relevant 

in material sciences, agrochemicals, and natural products synthesis. This will be followed 

by a discussion of work on the palladium-catalyzed direct arylation of N-iminopyridinium 

ylides with accent on the derivatization of the pyridinium following the sp2 phenylation 

(Chapter 2). The exploration of this process led to the discovery of direct benzylic arylation 

when 2-alkyl N-iminopyridinium ylides are employed as reacting partners, in addition to 

palladium-catalyzed Tsuji-Trost allylations, and metal-free direct alkylation via phase 

transfer catalysis. All of these findings will be discussed in detail. 

There remains a significant challenge in developing direct processes utilizing 

inexpensive transition metals. Furthermore, the synthesis of pharmacologically relevant 2-

alkenyl pyridines through direct transformations had not yet been reported. We focused on 

these challenges and developed a copper-catalyzed direct alkenylation of N-

iminopyridinium ylides. A novel method to prepare the vinyl iodide coupling partners will 

also be discussed. The scopes of these reactions are quite large and remarkably 

chemoselective (Chapter 3). Through the optimization of this direct process we uncovered 

an unique means of synthesizing 2-substituted pyrazolo[1,5-a]pyridines (Chapter 4). The 

global process involved a tandem direct functionalization/cyclization sequence, and may be 
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the first account of a direct process used in a cascade. This work also solves an important 

problem, as the synthesis of these substrates through alternate means is not straightforward. 

The last two chapters will detail direct arylation technologies that do not involve 

heterocyclic coupling partners. Chapter 5 will highlight our uncovering of a palladium-

catalyzed, directed, umpolung arylation of benzene and other arene derivatives. This was 

the first account of a direct functionalization whereby the directing group is situated on the 

pseudo electrophile. Also, it adds to the few examples of direct benzene arylation exisiting 

in the literature. Finally, a discussion of an atom economical, inexpensive, sustainable iron-

catalyzed direct arylation process will be presented with special emphasis on substrate 

scope and mechanistic investigations (Chapter 6). 

 

Keywords : N-Iminopyridinium ylides, direct arylation, alkenylation, catalysis, palladium, 

copper, iron, directing group. 
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Chapter 1                                                                   

Transition Metal Mediated Direct Functionalization of 

Pyridine Derivatives 

1.1 Introduction 

Six-membered nitrogen-containing heterocycles are privileged structures present 

in many aspects of the physical and biological sciences.1 They are prevalent in nature, 

pharmacophores, as well as in supramolecular and organomaterials.2 The importance of 

their biological activity is reflected in recent surveys of several pharmaceutical companies 

demonstrating that 88% of small molecules in the drug pipeline contain 6-membered 

aromatic heterocycles, and the majority of these are nitrogen based.3,4,5 Given this reality, 

it is of no surprise that these motifs have garnered much interest from synthetic chemists 

and significant efforts have been put forth in the development of new and efficient 

reaction methodologies towards their structural elaboration (Figure 1).1,2  

Figure 1. Examples of molecules bearing 6-membered azacycles. 
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The pyridine family is the simplest of the azines. The presence of the endocyclic 

nitrogen atom has several important implications for their properties and reactivity. The 

lone pair of this Lewis basic site is perpendicular to the "-system, and is essential for the 

binding motifs in many compounds. The electronegative nitrogen atom provides the 

heterocycle with a dipole of 2.22 D, giving access to unique macromolecular chemical 

reactivity.1 The nitrogen lone pair brings additional anisotropy to the system, further 

increasing the electron deficiency at the 2- and 6- positions relative to the 3- and 5- 

positions.1,2a Given these actualities, pyridine is amenable to derivatization, giving 

potential access not only to pyridine products, but also to various dihydro- and 

tetrahydropyridines, as well as piperidines (Figure 2). Covering all facets of pyridine 

elaboration is not possible without writing an extensive review. As such, this chapter will 

focus on outlining past work of both 1) transition metal-mediated and catalyzed activation 

and 2) direct functionalization of activated pyridine derivatives, with later emphasis on 

direct arylation processes, as this aspect is most pertinent to this research.  
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Figure 2. Various heterocycles accessed from pyridine. 

1.2 A Brief Overview of Direct Arylation Reactions 

The synthesis of biaryl compounds can be traced back to the Ullmann reaction first 

disclosed in 1901 (Scheme 1).6,7 This reaction effectively couples two iodo or 

bromoarenes in the presence of copper salts at elevated reaction temperatures. Despite the 



 

 

 

3 

power of this transformation there are a few drawbacks to this reaction.6,8 First the 

reaction is largely limited to the synthesis of symmetrical biaryl compounds. 

Heterocoupling is possible when one of the two halide partners is more electron-rich, 

though limited accounts of this type of coupling have been described.8b Secondly, in many 

cases an activated copper species is needed, potentially increasing the cost of the reaction. 

In conjunction, the majority of the cases reported use stoichiometric quantities of metal 

reagent, decreasing the overall economy of the process. Lastly, many cases require 

elevated reaction temperatures, leading to potential problems with functional group 

tolerance. Curiously, the exact mechanism of the reaction remains unknown.8b,c 

Scheme 1. Original Ullmann reaction. 
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The development of several important cross-coupling reactions provided powerful 

tools for the preparation of biaryl scaffolds. These now traditional methods have 

dominated the way these compounds have been synthesized since the 1970s (Scheme 

2).6,8a,9 The first accounts of a nickel-catalyzed cross coupling between an aryl Grignard 

reagent and an aryl halide were reported independently in 1972 by Kumada and Corriu.10 

This was later developed into a palladium-catalyzed process and Stille found that the aryl 

magnesium species could be replaced with more stable aryl stannanes.11 Suzuki and 

Miyaura found that non-toxic boronic acids and esters were viable pseudo-nucleophiles, 

followed later by a report of the application of organosilanes in the 1980s by Hiyama.12 

Given the plethora of available coupling partners available, it is no surprise that these 

procedures are the methods of choice in the synthesis of biaryl compounds. However, as 

with the Ullmann coupling, there are a few drawbacks to these reactions. The most 

important of these is the need for both a pseudo-nucleophile and a pseudo-electrophile to 

effect the coupling. This preactivation decreases the atom economy of the process as the 
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organometallic or organohalide species must first be synthesized, in addition to the 

generation of stoichiometric quantities of sometimes toxic salts during the transformation. 

The activation of C–H bonds is a conspicuous challenge due to their high energy 

and relative inertness, and has received much attention in recent years.13 The ideal 

coupling situation would involve the oxidative coupling of two C–H groups. Though 

stunning efforts have been made in this domain, there are issues with reactivity, and 

perhaps more importantly with selectivity.13j,14 As a compromise, efforts over the past 

half-decade have been directed towards direct arylation reactions whereby one of the two 

preactivating groups is replaced by a simple C–H bond.13 Clearly the challenge in such a 

reaction lies in breaking the strong sp2 C–H bond in a chemoselective manner. This is 

illustrated by the fact that benzene homocoupling is disfavored by 3.4 kcal/mol.13a Despite 

this, numerous catalytic systems have been reported describing intra and intermolecular 

arylation reactions, as well as numerous other direct transformations.13 

Scheme 2. Various modern methods for the synthesis of biaryl compounds. 

 

 



 

 

 

5 

Scheme 3. Various proposed mechanisms for direct arylation reactions. 
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Though direct arylation reactions have been largely successful on arenes and electron-rich 

heteroarenes, electron-poor arenes such as pyridine have presented a significant 

challenge.15 Several mechanisms for direct arylations have been proposed, each of which 

are difficult to apply to electron-poor species. The first is a SEAr pathway (Scheme 3, 

path A). This route requires an electron-rich arene to attack the transition metal center, 

generating a Wheland intermediate. Rearomatization and reductive elimination then 

provides the biaryl product. This route would be difficult to obtain with pyridine adducts 

as the electron density is not sufficient to attack the metal center, and the resulting 

Wheland intermediate would be energetically not favored. Similarly, concerted SE3 

sequences have been reported (Scheme 3, path B), though such a mechanism would lead 

to a partial build up of positive charge in the arene, which again would be disfavored in 

electron-poor substrates. The same can be said for a #–bond metathesis pathways 

(Scheme 3, path C). Heck-like mechanisms have been proposed, though are often not 

considered due to the unlikelihood of anti !-hydride elimination (Scheme 3, path D), and 

the high cost of isomerization to permit syn elimination. The last proposed addition 
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involved the oxidative addition into the aryl C–H bond. This is possible for certain but not 

all transition metals. Given these studies, it becomes clear the difficulties in performing 

the direct arylation, and other C–H activation, of pyridine. 

 Classical cross coupling at the 2-position of pyridine has also been problematic. 

Catalyst poisoning by the Lewis basic nitrogen must be considered, though can be 

overridden with the judicious choice of ligand.16 2-Halopyridines are viable pseudo-

electrophiles, though their commercial availability is limited (as evidenced by their cost) 

and synthesis often non-selective.2a 2-Metallopyridines are largely limited to Stille cross 

coupling reactions, which present environmental challenges with regards to toxicity of tin 

reagents (Scheme 4).15 Pyridines bearing a zinc or boronic acid at the 2-position are also 

viable pseudo-nucleophiles,15 though their synthesis and stability are not trivial. Again this 

is reflected in their high cost. In light of these realities, the development of transition-

metal catalyzed activation $ to the nitrogen atom would provide not only an efficient 

route to synthesize more complex pyridine derivatives, but would also solve the two 

aforementioned outstanding problems in the elaboration of this azine.  

Scheme 4. Example of Stille cross coupling on pyridine.15e 
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The following sections will outline progress made towards transition metal-

mediated activation and functionalization of pyridyl C–H bonds with particular emphasis 

on processes involving d-block transition elements. The first section will outline some of 

the early work in the area, with the focus on early transition metals and their use to 

activate the pyridine ring followed by their insertion into the pyridyl C–H bond. Several 
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of these transformations, though requiring a stoichiometric amount of metal reagent, 

describe the first forays into C–H activation and functionalization. This section will be 

non-exhaustive, providing only a flavour of the work in the area. This will be followed by 

a description of the application of catalytic quantities of transition metal to the 

functionalization of pyridines leading into current direct arylation methodologies with late 

transition metals.  

1.3 Transition Metal Activation of Pyridyl C–H Bonds 

1.3.1. Initial Studies of Groups III, IV, and Other Metals to Form Pyridine-Metal 

Complexes 

Observations in the early 1980s noted that sp2 hybridized C–H bonds were deemed more 

reactive towards insertion than their sp3 counterparts despite their increased bond 

strengths, due to the initial formation of a %-complex with the metal. However, accessing 

the C–H bonds of pyridine still proved problematic due to the electron-poor nature of the 

azine.17 Consequently, by using a more electrophilic metal, it was reasoned that systems 

with increased reactivity could be employed to activate these elusive bonds.17 This was 

exploited by Bercaw and co-workers as they applied derivatives of permethylscandocene 

prepared from ScCl3 in C–H activation of various arenes, most notably the $-position of 

pyridine, through a metathecal pathway (Scheme 3, path C). While non-heterocyclic 

arenes formed &1 complexes, pyridine provided an orthometallated C,N–&2 compound as 

determined by X-ray crystallography (Scheme 5).17 The C–H insertion first occurs with 

the scandium reagent coordinating with the Lewis basic nitrogen as a reaction between 

Cp*
2ScMe and pyridine provided a Cp*

2ScMe(Pyr) complex 1 that was observable by 1H 

NMR.17 This quarternization of the nitrogen presumably activates the pyridine ring, 

further favoring the insertion into the C–H bond, liberating methane in the case of 

Cp*
2ScMe. Complex 2 does not aggregate in solution due to the crowded coordination 

sphere of the scandium. As such, they were found to have poor affinity towards basic 

phosphine and aza reagents, due to the lack of access of the metal, thereby limiting their 



 

 

 

8 

application towards structural elaboration.17 Various derivatives of Cp*
2ScR were applied 

to confirm that the insertion does occur via a #-bond metathesis pathway (Scheme 5). 

More recently DFT studies demonstrated that though the scandium does insert via #-bond 

metathesis, this might not be the case for all Group III metals, as evidence points to ionic 

pathways being more favorable with later metals having larger ionic radii.18  

Scheme 5. Insertion of pyridine into Cp*
2ScMe. 
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Titanium is the first element of the Group IV metals, and the first transition metal 

believed to be involved in a C–H insertion into the $-position pyridine. In 1978 Klei and 

Teuben described the insertion of Cp*
2TiMe into 2-picoline to give C,N–&2

 titanocycles 3, 

4, and 5 at the 6-position of the ring, isolated as purple crystals.19 The Cp*
2TiMe was 

prepared from Cp*
2TiCl, which in turn arose from a reduction of Cp*

2TiCl2 by iPrMgCl. 

This was the first report of a 3-membered azametallocycle. The colour change during the 

reaction (due to the partly filled d-orbitals of the metal) suggested the complexation of the 

titanium with the pyridyl nitrogen, thereby generating a more reactive pyridinium species, 

and the insertion was observed via the evolution of methane.20 Substitution at the 2-

position was mandatory for the reaction to occur and a small substrate scope was explored 

(Scheme 6). The $-substitution is required to force the pyridine ring out of plane to force 

interaction with the % system and favour #-bond metathesis (Scheme 6).20 In 2005 it was 

found that unsubstituted pyridine does undergo C–H insertion with Cp*
2TiCl, but instead 

forms the ‘dimeric’ compound 6 bearing two titanium atoms separated by a hydride 

bridge as inferred by X-ray crystallography.21 This insertion was suggested to be 
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concerted in nature, avoiding the build-up of positive charge in the transition state. This 

complex though thermally stable, is extremely air sensitive.  

Scheme 6. Insertion of pyridine into Cp*
2TiMe. 
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Other Group IV metals (Zr, Hf, Th) have also been demonstrated to insert $- to the 

nitrogen of pyridine. A common feature of these reagents is their increased 

electropositivity, permitting attack of electron poor arenes, such as pyridine, on the metal. 

Zirconium is perhaps most applied, in particular with the direct functionalization of 

pyridine, forming C,N–&2
 metallocycles (vide infra). Hafnium has been seldom 

reported.22 Thorium, though in the same group exhibits unique properties in part to its 

large atomic radius, thus reactivity is often governed by sterics, and its access to 5f 

orbitals.22 Unlike Ti, Zr, and Hf, it does not have a tendency to complex to sp2 and sp 

hybridized systems. Despite this, where (C5Me5)2ZrMe2 and (C5Me5)2HfMe2 reagents 

show no ability to insert into the $ C–H bond, (C5Me5)2ThMe2 readily inserts forming a 

C,N–&2 metallocycle similar to that reported with Sc and Ti (Scheme 5, Scheme 6).22 

Additionally, the thorium reagent can also insert into the $-site of pyridine N-oxide, 

generating an &1 organometallic species.22 This metal has not been applied in the 

derivatization of pyridine. 

Several late transition metals have been known to generate pyridinium-like 

complexes that permit functionalization of the heterocycle. For example, 

Cp*(CO)2FeSiMe2NPh2 will lead to silyl-metallation of pyridine (Scheme 7).23,24 

Irradiation complexes the pyridine to the iron reagent, simultaneously expelling carbon 
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monoxide. Heating to 60 ºC, initiated the hydrosilation of the activated Fe-Pyr complex 

through an &1–#–allyl intermediate, which following isomerization provided the observed 

&3–(C,C,C) Fe-Pyr product.23  

Scheme 7. Insertion of pyridine into Cp*(CO)2FeSiMe2NPh2. 
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Metals such as Ta, Cr, Mn, Re, Os, and U are known to activate pyridine and 

insert to give $-metalated C,N–&2 complexes.25,26,27 In most of these cases, the complexes 

were not used to further elaborate the azacycle. The following section will describe the 

use of stoichiometric quantities of Zr, Ti, Ru, and other reagents to activate and further 

functionalize the pyridine ring. 

1.3.2. Application of Metal Complexes Towards Further Pyridine Activation and 

Functionalization 

1.3.2.1 Zirconium-Mediated Functionalization 

Zirconium was one of the earlier metals reported in the activation/functionalization 

of the pyridine ring (vide supra). This Group IV metal had long been known to be able to 

activate and insert into molecular hydrogen via a four-centered transition state following 

initial coordination of the H–H #-bond.29 It was reasoned that a similar metathecal 
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pathway should be possible for C–H bonds on molecules complexed to the metal 

centers.28 The fact that such transformations would undergo a concerted #-bond 

metathesis pathway would make it compatible with a myriad of insertion and !-hydride 

elimination chemistries, leading to the direct functionalization of molecules.28 

Furthermore, at the time this was the only way seen to perform such C–H activated 

transformations as conditions for similar reactions with late transition metal chemistry 

were not yet discovered. Such 18-electron complexes were made through the oxidative 

addition of the metal into the C–H bond, and the resulting compounds were resistant to 

insertion and !-hydride elimination chemistry.28 

In the mid 1980s Rothwell and coworkers described the use of Zr(2,6-di-tert-

butylphenoxide)2Me2 in the synthesis of $,$-disubsituted-2,6-pyridinedimethoxide 

compounds from pyridine and carbon monoxide (Scheme 8).29 These products are an 

important class of ligands and have been applied as metalloenzyme models.30 It was found 

that the methyl-group could be replaced with benzyl functionality without an appreciable 

drop in yields (50-75%).30 The presence of groups at the 4-position appear to be required, 

and perhaps function as ‘blocking groups’ despite the fact that this position is outside the 

coordination sphere of the metal. Where bipyridine could be directly alkylated with a 

similar zirconium reagent,31 carbon monoxide was determined to be essential. Though the 

role of 2,6-di-tert-butylphenoxide is unclear, it is also required and the steric hindrance of 

the ligand suggests a role as a non-transferable group. It is possible to liberate the bis-

substituted pyridine product from the metal through hydrolysis and purification via 

elution on silica. 
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Scheme 8. Zr-Mediated synthesis of bis-hydroacylated pyridines. 
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The mechanism of the reaction was found to proceed through the migratory 

insertion of CO into the Zr-alkyl bond generating an !2-complex. The pyridine then 

complexes to the zirconium and the COR proceeds to insert into the 2- and 6-positions of 

the heterocycles (Scheme 9). The N–Zr bond length is 0.18 Å shorter than expected, 

indicating a strong interaction and the likelihood of the pyridine ring being activated by 

the metal center.29 The primary kinetic isotope effect was found to be 1, suggesting that 

the rate limiting step is the complexation of the pyridine ring and not the insertion into the 

C–H bond. The acyl group is thought to be carbene-like, and thus the electrophilicity on 

the carbon affects the reactivity (Scheme 9).29,30 As only the disubstituted pyridine is 

observed, the formation of the C,N–!2 complex observed with other Group III and IV 

metals is ruled out (Scheme 6), as steric congestion would inhibit reactions at the 6-

position.30 Addition of the 2,6-position exclusively and not the 4-position is a result of the 

acyl nucleophile addition to the pyridine within the coordination sphere of the metal. 

Scheme 9. Proposed mechanistic pathways for pyridine acylation. 

LnZr R
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The Jordan group has been active in applying cationic zirconium complexes in the 

functionalization of pyridine derivatives. The authors found that the highly Lewis acidic 

Cp2
*ZrMe(THF) could quickly complex and insert into 2-picoline (and derivatives) 
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generating a stable C,N–!2 complex as a single isomer bearing a THF ligand while 

liberating methane.32 This in turn was found to react with various unsaturated compounds 

via migratory insertion (Scheme 10). Tetrahydrofuran does not undergo C–H insertion as 

crystal structures show that steric considerations force the $ C–H bonds out of plane 

relative to the LUMO of the zirconium center, precluding any reaction.28 The lability of 

the Zr–O interaction is key to the reaction of pyridine, as when the insertion is attempted 

in THF no C,N–!2
 Zr-Pyr complex is noticed, presumably as pyridine cannot gain access 

the metal center. When bound, the pyridine is found to be perpendicular to the plane 

between the two cyclopentadiene ligands. This places the $-pyridine hydrogen atoms in 

the LUMO of the zirconium, and initiating a weak agostic interaction that is observable 

by 1H NMR leading to the insertion.28 Substitution at the 2-position of the pyridine ring is 

needed to help force this arrangement. 

Scheme 10. Mechanism and scope of Zr-mediated functionalization of pyridine with 

unsaturated compounds. 
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The scope of the reaction is quite general, providing 5-membered azametallacycles 

in all cases. 2-Butyne (Scheme 10, (8)), ethylene, and propene are all viable reagents for 

insertion, in decreasing order of reactivity.28 Addition of allyltrimethylsilane, propene, 

and allyl ethyl ether afforded 1,2-insertion products (compounds 9-11).33,34 This is the 

expected insertion product as the least encumbered metal complex is formed, and the '+ is 

stabilized by being on the more hindered carbon atom (Figure 3).34 However, a reverse 

2,1-insertion product is observed with vinyltrimethylsilane, styrene, and 2-vinyl pyridine 

(12). In these cases, electronic effects outweigh steric considerations. It is reasoned that in 

the case of vinyltrimethylsilane the silicon atom is able to simulatenously stabilize both 

the positive and negative charges built up in the polar transition state.34 This was later 

confirmed through DFT calculations, showing that the 2,1-transition state is lower in 

energy.35 Furthermore, the steric repulsion between the TMS group and the Cp groups is 

not as strong as initially thought, due to the longer C–Si bond.34,35 The addition of alkenes 

to the Zr–Pyr complex is thermally reversible as was demonstrated through competition 

studies, though the addition of alkynes is not. 2-Substituted pyridines react faster than 

pyridine itself, though the products obtained from 2-methyl pyridine were significantly 

more soluble than 2-phenyl pyridine.34 The 5-membered azametallocycle could be 

hydrolyzed to liberate the free pyridine through several ways. 2-Alkenyl pyridine could be 

prepared through !-hydride elimination. However, this was only possible in MeCN as the 

cyano nitrogen atom was effective in trapping the Zr–H species generated.28 Hydrolysis in 

water provided 2-alkyl pyridines,34 and alkynyl adducts were not susceptible to 

hydrolysis. 

N NR R
Zr Zr

Cp CpCpCp
SiMe3

SiMe3

!+
!-

!-

!-

!-

!+

 

Figure 3. Site selectivity for the addition of allyl and vinyl silane to pyr-Zr complexes. 
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As can be seen in the scope of the reaction (Scheme 10, products 9, 10, 11), it is 

possible to generate a stereogenic center. The use of chiral zirconium complexes bearing 

either ethylenebis(indenyl) (EBI) or ethylenebis(tetrahydroindenyl) (EBTHI) ligands  

permitted the elaboration of a stereoselective version of this reaction (Table 1).36 

Moderate to excellent diastereoselectivities were obtained with both ligands, though again 

2-substitution was required on the pyridine ring. In the case of propene and 1-hexene, the 

major diastereomer obtained had the alkyl group pointing towards the Cp ring. The 

orientation is the result of the steric interaction of the 2-position of the pyridine ring with 

the other Cp unit, causing a ‘tipping’ of the pyridine ring.37 In the case of vinyl silane and 

styrene, the Si and Ph group point away from the cyclopentadienyl ring, presumably due 

to %–% interactions. Low temperature studies indicate that the major diastereomer formed 

is the kinetic product, as heating leads to racemization and isomerization.37 

Table 1. Selected scope for the diastereoselective addition of alkenes to Zr-activated 

pyridines. 

NZr

Me

C4Hn

C4Hn
 n = 4; EBI
 n = 8; EBTHI

b

Zr

C4Hn

C4Hn

N
b

c

a

H

Me

cH

a

 

entry ligand a b c de 

1 EBI H H Me 83 
2 EBTHI H H Me 64 
3 EBI H H Bu 83 
4 EBTHI Ph H H >98 
5 EBI Ph H H >98 
6 EBTHI Si H H >98 
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1.3.2.2 Activation and Functionalization by Other Metals 

In the late 1980s Tilley and co-workers demonstrated the ability of C,N–!2 

pyridine complexes of both halfnium38 and tantalum39 to undergo silaacylation reactions 

(Scheme 11). As was previously reported by Rothwell with zirconium,30 the reactions first 

proceed by insertion of carbon monoxide into the M–Si bond, forming an !2-complex.38,39 

Pyridine can then coordinate to this complex, activating the ring and permitting attack of 

the silicon atom to the 2-position. With both metals the reaction proceeds smoothly in the 

absence of any substitution on the pyridine ring. Unlike in Rothwell’s study, only mono 

acylated products were reported. 

Scheme 11. Hydroacylation of pyridine by halfnium and tantalum. 

Cp*ClxMSiMe3

M = Ta, X = 3 
M = Hf, X = 2

N
Cp*ClxM O

TMS
CO

N
+

 

Teuben described the cyclometallation of pyridine with (Cp*
2YH)2 to form C,N–!2 

Y–Pyr complexes, showing that Group III metals can also be used to derivatize pyridine 

(Scheme 12).40 These complexes were determined to be quite robust, though reversibly 

bound with benzene at elevated temperatures. These Y-Pyr complexes were found to react 

with ethylene and propene to produce 2-alkyl pyridine adducts. In the case of propene, the 

1,2-insertion product was observed. It should be noted that the rate of reaction with 

propene was much slower (4 d at 60 ºC vs 1 h at rt). This is reasoned to be the result of the 

steric saturation of the yttrium center, thereby the bigger the molecule, the more difficult 

it is to access.40 Propyne and 2-butyne did not insert and only the alkynyl metal complex 

was observed. Curiously, 2-pentyne did successfully insert in 63% yield after two days at 

75 ºC. This was reasoned to be the result of steric hindrance forcing insertion.40 A unique 

feature of these complexes is their reaction with CO to prepare bi-metallic bis-pyridine 
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compounds (Scheme 12). In all these cases no attempts were reported to liberate the free 

pyridine ring.  

Scheme 12. Yttrium-mediated carbonylation of pyridine to make bis-pyridyl adducts. 

N
YCp2

CO
N
Y
Cp2

O

N
YCp2 N

O
N

Cp2Y YCp2

 

Finally, other metal complexes of titanium19,20 and thorium41 have been 

demonstrated to insert at the 2-position of the pyridine ring. However, these efforts will 

not be discussed due to limited scope and reactivity. 

1.3.3. Catalytic Functionalization of Pyridine Derivatives 

These methodologies were essential in providing the understanding required to 

minimize the pre-functionalization of the pyridine moiety necessary for structural 

elaboration. However, the use of a catalytic amount of transition metal is usually desired. 

Group III, lanthanide, actinide, as well as late transition metals tend to be costly, as are 

several of the ligands needed to induce their desired reactivity, several of which must be 

synthesized. Additionally, the reduced environmental impact and improved atom 

economy of catalytic quantities of transition metal is important to enable the use of a 

methodology on scale. This section will highlight progress and advances towards the 

catalytic application of both early and late transition metals in the direct alkylation and 

arylation of pyridine.  

1.3.3.1 Direct Alkylation and Acylation of Pyridine 

Jordan’s first account of zirconium-mediated alkylation of 2-picoline was 

developed into a catalytic reaction.32 Through the application of a catalytic quantity of H2 

(1 atm), 4 mol % of the complex 7 could be used to directly functionalize pyridine with 
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alkenes, providing 2-alkylpyridine derivatives. The catalytic cycle proceeds as follows 

(Scheme 13). First the C,N–!2 complex undergoes migratory insertion into propene, 

giving a 5-membered azametallocycle (A). The C–Zr bond is then cleaved by the addition 

of H2 (B). Isolating the metallocycle and submitting it to hydrogenation verified this 

cleavage.32 Later, DFT calculations indicated that this was energetically favorable as it 

relieves steric strain, replacing a bulky alkyl group with a hydride.35 The sterically 

encumbered 2-methyl-6-isopropyl pyridine is then displaced by a less hindered 2-picoline 

(C), liberating the intended product. Again, this was determined to be thermodynamically 

favored, and is likely driven by the tighter binding association of the 2-picoline due to 

decreased crowding of the complex. Insertion of the zirconium into the $-position of the 

pyridine simultaneously regenerates H2 and the C,N–!2 Zr–Pyr complex (D). 

Enantioenriched 2-alkylpyridine products were obtained using the chiral ligands described 

above in the catalytic Zr species. One example was provided, using 1-hexene (R)-2-Me, 6-

(2-hexyl)pyridine was isolated with 58% ee (c.f. 64% de for the metallocycle prepared 

with the stoichiometric chiral reagent, Table 1 entry 2).36 Curiously, there have been few 

if any accounts of similar transformations since this disclosure. The scope of the reaction 

is largely unexplored, and the need for simpler catalytic systems remains. 

Scheme 13. Catalytic cycle for the Zr-catalyzed direct alkylation of pyridine. 
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An analogous methodology using yttrium was also reported. However, in this case 

hydrogen was not required to effect the catalytic cycle.40 The cycle is driven by the fact 

that Group III metals undergo more readily metathecal transformations due to their 

increased electrophilicity, and thus the yttrium azametallocycle can directly insert into 

another molecule of pyridine. It was found that 2-ethylpyridine could be prepared in 44% 

yield from pyridine, 3 mol % of complex 13 (Scheme 14) and 40 bar of ethylene.40 

Another advantage of the reaction is that substitution at the 2-position of the pyridine ring 

is not needed to drive the reaction, though this is offset by the high cost of the metal.  

Scheme 14. Yttrium-catalyzed ethylation of pyridine. 

N
YCp2

13

ethylene (40 bar)

N
+

(3 mol %)1 (equiv)

N

44%

 

More recently Ellman and Bergman reported a [RhCl(coe)2]2 catalyzed direct 

alkylation of 2-substituted pyridines with 3,3-dimethyl-1-butene in the presence of PCy3 

(Scheme 15).42 This elegant approach is the first account of a late transition metal 

catalyzed direct alkylation of pyridine. Though an in-depth mechanistic investigation was 

not performed, the reaction presumably proceeds though the coordination of the Rh–

phosphine complex to the Lewis basic nitrogen, activating the pyridine ring. The alkene 

may then coordinate to the complex, possibly generating a carbene-like species that can 

proximally insert into the 2-position of the pyridine ring.42 The scope of the alkene was 

explored with only the quinoline series, which provided superior results to pyridines due 

to the decreased aromaticity of the heterocycle. However, 2-isopropyl and 2-

triisopropylsilyl (TIPS) pyridine were found to be effective partners with moderate yield 

(products 14 and 15).42 The latter is of particular interest as the TIPS can serve as a 

blocking group (16), as demonstrated though its cleavage by HF. However, a drawback of 
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the reaction is the relative high catalyst loading, as well as reaction temperatures that 

exceed 160 ºC. 

Scheme 15. Ellman's direct alkylation of pyridine.  

NR NR
+

[RhCl(coe)2]2 (5 mol %)
PCy3•HCl (15 mol %)

165 ºC, THF

14, R = Me, 59%
15, R = iPr, 83%
16, R = TIPS, 64%

 

Triruthenium dodecylcarbonyl was found to catalyze the direct acylation of 

pyridine in presence of terminal alkenes under a CO atmosphere (Scheme 16).43 Carbon 

monoxide is essential as the photochemical direct alkyation of pyridine with Ru3(CO)12 

was not observed. The metal activates the pyridine ring through a trinuclear cluster. The 

fact that the reaction was found to be first-order with regards to the catalyst and zero-

order in CO led the authors to postulate that the reaction proceeds first through pyridine 

coordination and ortho insertion into the heterocycle.43 Olefin coordination and insertion 

into the bridging hydride is followed by alkyl to acyl migratory insertion and reductive 

elimination. 2-Substitution on the ring was permitted, though electron-withdrawing 

groups on the heterocycle inhibited the reaction, presumably by decreasing the ability of 

the basic nitrogen to coordinate to the metal center. Finally, other systems bearing a 

pyridine ring (i.e. quinoline) are reactive, albeit less so than pyridine.43 As with the 

rhodium-catalyzed direct alkylation, the reaction suffers from the drawback of elevated 

reaction temperatures.  
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Scheme 16. Ru-catalyzed direct acylation of pyridine. 
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1.3.3.2 Late Transition Metal Catalyzed Direct Arylation of Pyridine Derivatives 

Though there have been very recent advances in the synthesis and cross-coupling 

of 2-metallopyridine derivatives, as mentioned earlier, historically this approach to the 

synthesis of 2-arylpyridines has been problematic.44,45 This is due to the lack of stability 

in these organometallic reagents, in particular pyridines with a boronic acid at the 2-

position, which readily undergo proto-deborylation reactions. In the mid 2000s, the direct 

arylation of pyridine was viewed as a solution to the problem of cross-coupling of 2-

pyridine. It can be argued that the work described in the previous section provided better 

understanding in the activation of pyridyl C–H bonds. This section will cover the progress 

and development in the area of direct arylation. 

In 2005 Sames described the cross-coupling of pyridine with iodobenzene to give 

2-aryl pyridines in the presence of a ruthenium catalyst.46 Initial screening led to the 

discovery that the same Ru3(CO)12 used in the aforementioned direct acylation provided 

the desired product in 36% yield in presence of 1.2 equiv of Cs2CO3 in tBuOH (Scheme 

17). Optimization led to the discovery that the inclusion of PPh3 provided vastly improved 

yields (70%). Mechanistic investigations demonstrated that the phosphine likely disrupts 

the trinuclear complex formed upon oxidative insertion into pyridine, thereby giving a 

phosphido-bridged binuclear ruthenium complex though sequential C–H and C–P bond 
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cleavage (Scheme 17, A).46 This complex could in turn oxidatively add into iodobenzene 

(B), providing the biaryl product after reductive elimination (C). The scope of the reaction 

was not explored.  

Scheme 17. Sames' ruthenium-catalyzed arylation of pyridine 

 

Aside from this ruthenium-catalyzed direct arylation of pyridine by Sames, there 

had been no reports of direct arylation reactions on pyridine and only more electron-rich 

arenes such as indoles and non-heterocyclic aromatic systems had been applied in these 

processes. It was thought that an SEAr pathway was required for the arylation to proceed, 
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which an electron deficient arene should not be able to participate.47 However, around the 

same time as Sames’ disclosure, Fagnou reported the palladium-catalyzed direct arylation 

of pyridine N-oxides with aryl bromides.47 An advantage of the N-oxide group was that it 

prevented nonproductive binding between the transition metal catalyst and the nitrogen 

lone pair (and poisoning the catalyst), thus favoring productive %-binding interaction with 

the arene ring.16 The N-oxide functionality also helped to increase the electron density in 

the pyridine ring, while increasing the Brönsted acidity of the C–H bonds at the 2-

position.16 Because of the former, the use of a more expensive, electropositive early 

transition metal complex could be avoided. Finally, though the argument can be made that 

forming the pyridine N-oxide is a form of preactivation, their high stability, wide 

commercial availability, and ease of synthesis makes them an attractive alternative to 2-

metallopyridines. 

The initial conditions with aryl bromides used 4 equiv of the pyridine N-oxide in 

the presence of Pd(OAc)2 (5 mol %), P(tBu)3•HBF4 (15 mol %), K2CO3 (2 equiv) in 

toluene at 110 ºC.47 The scope of the reaction tolerated hindered, electron-rich, and 

electron-poor substrates, though the latter provides slightly lower yields (Table 2). 

Though a large excess of the pyridine reagent was needed, it was reported that 95% of the 

unreacted material could be recovered. It was later discovered that by increasing the 

catalyst:ligand ratio from 1:3 to 1:1.2 and decreasing the base loading from 2 equiv to 1.5 

equiv permitted the use of 2 equiv of the pyridine N-oxide while maintaining moderate 

yields.48 Similar reaction conditions allowed the reaction to be scaled-up, being performed 

on a 50 mmol scale.16  
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Table 2. Selected scope for Fagnou’s direct arylation of pyridine N-oxides. 

N R1
O

R2

R3

NAr R1

R2

R3

O

+ Ar–Br

Pd(OAc)
P(tBu)3•HBF4

K2CO3

toluene, 110 ºC

R4 R4

H

 

entry Ar R1 R2 R3 R4 yield (%) 

1 4-MePh H H H H 91 
2 3-MeOPh H H H H 97 
3 4-CF3Ph H H H H 76 
4 4-MePh Me H H H 54 
5 3,5-MePh H Ph H H 80a 

6 3,5-MePh H H H F 78a 
a Isolated yield of the major isomer. 

The use of aryl triflates was explored (Scheme 18) due to their ease of synthesis 

from phenols, and thus has applications in the late stage synthesis of complex 

molecules.49 Though aryl triflates are known to undergo oxidative insertion at comparable 

rates to aryl bromides,8 in this instance they proved more reactive and had an increased 

propensity to form diarylated products (Scheme 19). As such, reaction conditions were re-

optimized and two sets of conditions were reported (Scheme 18, Reactions A and B), one 

for unsubstituted pyridines and one for 2-substituted pyridine derivatives. The former 

required Pd(OAc)2 (5 mol %), bulky PCy3 (10 mol %), Rb2CO3 (2 equiv), and PivOH  (40 

mol %) as an additive.49 The scope of the reaction was found to be general, though like 

the bromides electron-rich aryl triflates outperformed electron-poor substrates. Unlike 

with the aryl bromides, steric hindrance led to decreased reaction yields.  
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Scheme 18. Overview of various Pd-catalyzed arylations of pyridine N-oxide derivatives. 

N
O

N
Me

R1

R2

R3
Ar–OTf 

Pd(OAc)2 (5 mol %)
P(Cy)3•HBF4 (10 mol %)

Rb2CO3 (2 equiv)
PivOH (40 mol %)

toluene, 100 ºC

N Ar
O

N Ar
O

R
R = alkyl
       aryl

Ar–OTf 
Pd(OAc)2 (5 mol %)
P(tBu2Me)•HBF4 (10 mol %)
K2CO3 (2 equiv)
PivOH (30 mol %)
toluene, 110 ºC

Reaction B

Reaction A

Ar–Br 
Pd(OAc)2 (5 mol %)

DavePhos (15 mol %)

Cs2CO3 (2 equiv)
PivOH (30 mol %)

toluene, 110 ºC

N NAr
O

Reaction C

Ar–Br
Pd2dba3 (2.5 mol %)

X-Phos (5 mol %)
NaOtBu (3 equiv)
toluene, 110 ºC

N
O

Ar

Ar–Br
Pd(OAc)2 (5 mol %)

P(tBu)3•HBF4 (15 mol %)
CuCN (10 mol %)
K2CO3 (2 equiv)
dioxane, 110 ºC

Y
X

N Ar
O

X, Y = C, N

Reaction DReaction E  

Scheme 19. Example of bis-arylation of pyridine N-oxides with aryl triflates. 

N
O

CO2Me

N
O

CO2Me

TfO

CF3

CF3F3C

+

Pd(OAc)2 (5 mol %)
P(t-Bu2Me)•HBF4 (10 mol %)

K2CO3 (2 equiv)
PivOH (30 mol %)

toluene, 110 ºC, 15 h

76%  

With a wide variety of pseudo electrophiles tested, various pyridine derivatives 

were considered. Substitution on the pyridine ring was tolerated. As mentioned, in the 

case of aryl triflates, a separate set of conditions using Pd(OAc)2 (5 mol %), 
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P(tBu2Me)•HBF4 (10 mol %), K2CO3 (2 equiv), and PivOH (30 mol %) were required for 

2-substituted pyridines (Scheme 18, Reaction B).49 It is reasoned that the bulkier substrate 

requires a less hindered ligand, facilitating the insertion of the transition metal into the C–

H bond. In the case of aryl bromides, 2-substitution was tolerated under the standard 

reaction conditions, with the exception of a 2-methyl where decreased yields were noted. 

It was found that this is due to competing arylation at the benzylic site (Scheme 18, 

Reaction E).48 Optimization led to the use of a stronger base (KOtBu) and X-Phos to 

provide excellent arylation of the sp3 hybridized site, which in turn provided conditions 

for the site-selective arylation of the picoline (6– vs benzylic).48 3-Substituted pyridines 

provide unsymmetrical products (Table 2, entries 5, 6), with a mixture of 2- and 6- aryl 

products observed. When the 3-group was phenyl or ethyl ester, strong preference for the 

least hindered product was noted.16 3-Picoline N-oxide gave weak preference for the less 

hindered substrate, possibly due to competing weak agostic interactions. Other groups 

such as F, CN, and NO2 gave strong preference for the more hindered product.16 

However, this phenomenon is not unknown with palladium-catalyzed processes, and may 

be the result of a combination of increased acidity and electrostatic interactions at reaction 

site. Competition studies between 4-nitropyridine N-oxide (17) and 4-methoxypyridine N-

oxide (18) showed that electron poor heterocycles reacted much faster (Scheme 20).47 

This may be in part due to the increased Brönsted acidity at the reaction site of these 

substrates. Other heterocycles such as diazine N-oxides and quinolines N-oxides were also 

possible, but required either the inclusion CuCN as a catalytic additive, or less sterically 

demanding ligands (Scheme 18, Reaction D).16,50 

Scheme 20. Competition studies in Fagnou’s direct arylation of pyridine N-oxides. 
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N-Methyl 6- and 7-azaindole N-oxides readily undergo arylation with bromoarenes 

$- to the pyridyl nitrogen atom in moderate to excellent yields (Scheme 18, Reaction 

C).51 The optimized conditions employed 5 mol % Pd(OAc)2, 15 mol % DavePHOS, 30 

mol % PivOH, 2 equiv Cs2CO3 in toluene at 110 ºC. By applying the Larrosa arylation 

conditions (Pd(OAc)2, Ag2O, 2-NO2PhCO2H) selective azole arylation with iodoarenes 

was also achieved (Scheme 21), thereby offering site selectivity for the arylation 

process.51 

Scheme 21. Site-selective Larossa arylation of azaindoles. 

N N

I
+

N N

Pd(OAc)2 (5 mol %)
Ag2O (0.75 equiv)

2-NO2PhCO2H (1.5 equiv)

DMF, 80 ºC

76%  

The reaction has been postulated to proceed through a concerted metallation-

deprotonation (CMD) sequence (Figure 4).52 Not surprisingly an SEAr pathway was 

calculated to have too high of an energy barrier due to the buildup of a positive charge on 

an already deficient species, as would oxidative insertion leading to PdIV 

intermediates.53,54,55 A key feature to these reactions is the necessity for palladium acetate 

and in some cases pivalic acid. Both acetate and pivalate groups are known to be effective 

proton shuttle agents. The deprotonation step was determined to be the rate-determining 

step as the KIE was measured to be 4.7. The 6-membered transition state that is postulated 

to be active is also energetically favored. Finally, DFT calculations have shown that the 

activation energy for CMD metallation of the 2-position of pyridine N-oxide is ~3 

kcal/mol lower than at the 3- and 4-positions, explaining the selectivity for that site 

(Figure 4).52  
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Figure 4. Mechanistic pathway for the Pd-catalyzed arylation of pyridine N-oxides. 

An advantage of using pyridine N-oxides is the fact that the arylation products 

themselves are activated pyridinium species and are amenable to further reactions. Also, 

deprotection of the nitrogen to prepare the naked pyridine is possible under many 

reductive techniques.16 Though large excess of the pyridinium were needed, it could be 

recovered. The application of aryl triflates in the bis-arylation of pyridine N-oxide 

provided a 2,6-bisarylated pyridine derivative that is a key intermediate in the preparation 

of a biologically active molecule known to exhibit antimalarial and antimicrobial 

activity.49 This route employed three fewer steps than previously reported methodologies. 

The use of aryl iodides was also employed in the preparation of a sodium channel 

inhibitor in only five steps with 31% overall yield (Scheme 22).16  
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Scheme 22. Pyridine N-oxide arylation in the synthesis of a Na pump inhibitor. 
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Daugulis and co-workers have described the copper-catalyzed direct arylation of 

2-phenylpyridine N-oxide with iodobenzene in 66% yield.56 The obvious advantage of a 

Cu-catalyzed process over Pd, Rh, Ru, etc. is the low cost of the catalyst. The initial 

reaction conditions employed CuI (10 mol %), LiOtBu (2 equiv), at 140 ºC in DMF. 

There were however a few issues with the reaction. First, it was determined that the 

copper catalyst was not stable at the required reaction temperature. The stability was 

improved through the inclusion of bathophenanthroline, which was found to stabilize the 

organocopper intermediates formed in the reaction.57 Secondly, the use of KOtBu led to 

regioselectivity issues, through the formation of benzyne. The regioselectivity issue was 

remedied through the use of weaker bases such as LiOtBu and K3PO4.57 When a stronger 

base was needed for less reactive substrates, the very hindered KOCEt3 was determined to 

be effective, minimizing both substitution and benzyne formation. The scope of the 

reaction was explored, though lower yields were obtained relative to Fagnou’s palladium-

catalyzed method. 2-Picoline N-oxide gave decreased yield, likely due to the 
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aforementioned acidity of the benzylic group (Table 3). For 2-iodopyridine, alkoxide 

bases could not be used due to the formation of 2-alkoxidepyridines.57 

Table 3. Direct arylation of pyridine N-oxides with iodoarenes under copper catalysis. 

N
O

NAr R1
O

+ Ar–I

CuI (10 mol %)
bathophenanthroline (10 mol %)

base
DMF, 125 ºCR1

 

entry R1 Ar base yield (%) 

1 H Ph LiOtBu 58 
2 H Pyr K3PO4 41 
3 Me Ph LiOtBu 43 
4 Ph 4-CF3Ph LiOtBu 80 
5 Ph naphthyl LiOtBu 91 

 

 1.4. Conclusions and Research Goals. 

C–H functionalization constitutes an exciting class of chemical reactions that is 

enjoying resurgence in the current literature. The direct functionalization of electron-

deficient heterocycles, most notably pyridine, remains a synthetic challenge. This is 

substantiated by the fact that far more accounts of rich arenes continue to be reported in 

the literature. Though some elegant forays into the direct functionalization of pyridine 

were achieved in the mid 1980s through the early-to-mid 1990s, the majority of these 

accounts require stoichiometric quantities of expensive early group metals, or in the case 

of catalytic systems, the multi-step synthesis of the active catalytic species. Additionally, 

the substrate scope of these reactions have not yet been fully explored.  

More recently, some research groups have begun to explore late-transition metal 

catalyzed process for the functionalization of pyridine. Again, though clever altering of 
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the electronic properties of pyridine have provided seemingly attractive tools towards 

solving this problem, the chemistry is largely limited to the use of large excesses of 

pyridine N-oxides. Furthermore there remains a deficiency in both the arylation of sp3 

hybridized groups, and the use of less expensive transition metals. 

The goal of this thesis is to describe our work towards solving problems associated 

with the direct functionalization of pyridine and other arene derivatives. Chapter 2 will 

briefly describe our work on the direct arylation of N-iminopyridinium ylides and focus 

on our efforts towards the derivitization of the benzylic position of N-imino-2-picolinium 

ylides. Chapter 3 will describe our work on the use of copper catalysis in the synthesis of 

2-alkenyl pyridines, which prior to this thesis was still a challenge in synthesis. Chapter 4 

will describe the palladium-catalyzed addition of halostyrenes and alkynes to the 2-

position of N-iminopyridinium ylides to access a pyrazolopyridine core. Finally, the last 

two chapters will highlight our work on the palladium and iron catalyzed direct arylation 

of non-heterocyclic arenes. 

 

 

 



 

 

Chapter 2                                                                       

Benzylic Functionalization of 2-Alkyl N-

Iminopyridinium Ylides  

2.1 Introduction 

2-Alkyl pyridine derivatives are an important class of compounds often seen in a 

variety of pharmacophores (Figure 5). In particular, 6-membered azaheterocycles such as 

Concerta© and CGP 49823 bear a phenyl ring separated from the piperidine core by a 

single methylene group, and display important biological activity. Given that the piperidine 

motif can be accessed from pyridine (Section 1.1), a reasonable synthetic route to these 

compounds could be via the direct arylation of 2-alkyl pyridine derivatives.  

 

Figure 5. Various biologically active 2-alkyl pyridine and piperidine derivatives. 
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The direct functionalization of sp3 hybridized C–H bonds has received increased 

attention in recent years.58 However, the arylation of benzylic sites of alkyl substituted 

pyridine and other aromatic azine derivatives have not been well addressed. In the early 

1990s Jordan reported the first example of a transition metal-catalyzed direct 

functionalization of picolines.59 This elegant account described the insertion of a 

Cp*
2ZrMe•THF complex into the benzylic site of 2,6-lutidine (Scheme 23). The 

dissociation of the tetrahydrofuran ligand allows for coordination and insertion of various 

unsaturated systems to provide the 2,1-insertion products in good to excellent yields. They 

later reported that the resulting 6-membered azametallocycle Zr–N complex can be broken 

upon hydrolysis in water and that the pyridine scope can be expanded to include 2,6-

diethylpyridine.60 The relief of ring strain drives the reaction as the 4-membered 

azametallocycle is converted into a less constrained 6-membered ring.  

Scheme 23. Jordan's direct functionalization of pyridyl benzylic sites. 
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The first benzylic arylation of azaheterocycles was reported by Miura in 1997.85 

During their studies of the arylation of electron poor arenes, they found that 4-

methylpyrimidine could be readily arylated in the presence of Pd(OAc)2, PPh3, and Cs2CO3 

in DMF. The reaction provides only the bis-arylated product in 68% yield (Eq. 1). Given 

the high solubility of the Cs2CO3 in DMF the reaction is proposed to occur through the 

deprotonation of the benzylic methylene carbon atom. The formation of the bis-arylated 

product can be reasoned by the increased acidity of the benzylic protons following the first 

arylation, facilitating a second deprotonation event. 

N

N
+

Br

N

N

Pd(OAc)2 (5 mol %)
PPh3 (20 mol %)

Cs2CO3 (2.1 equiv)

DMF, 140 ºC

68%

(1)

 

In 2005 Sanford described the arylation of 8-methylquinoline (19) with aryl 

iodonium salts.61 Though the alkyl group of interest is not directly linked to the pyridine 

ring, this is still an excellent example displaying the potential of benzylic arylation 

reactions. The reaction was thought to proceed by an oxidative insertion process where the 

palladium acetate first inserts into the benzylic C–H bond (Scheme 24). This process is 

likely directed, and stabilized by the Lewis basic quinoline nitrogen atom, and the resulting 

PdII species then oxidatively adds into the phenyl iodonium salt. Reductive elimination of 

the PdIV species gives the desired product. A useful feature of this reaction is the ability to 

control mono vs di-arylation by altering the stoichiometry of the reaction.61 Two years later 

the process was improved to a palladium-catalyzed oxidative cross coupling with benzene 

in the presence of benzoquinone and Ag2CO3 (Eq. 2).62 This advancement eliminates the 

need for prefunctionalization of the coupling partners, affording a highly economical 

methodology. 
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Scheme 24. Pd-catalyzed oxidative benzylic arylation of 8-methylquinoline. 

N

H

Pd(OAc)2
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-HOAc
N

PdII

OAc

N
PdIV

OAc
PhI

Ph

[Ph2I]BF4
N

Ph

When 2 equiv 19 = 72%

N

Ph Ph
When 2 equiv [Ph2I]BF4 = 60%

N

H

H
+ N

48%

(2)

Pd(OAc)2 (10 mol %)
Ag2CO3 (2 equiv)

BQ (0.5 equiv)
DMSO (4 equiv)

130 ºC

OR

 

Yorimitsu and Oshima were the first to describe a benzylic arylation of 2-alkyl 

pyridines through the chelate-assisted retroaldol-type reaction of 2-pyridyl alcohols 

(Scheme 25).63 The reaction proceeds first through the oxidative addition into an aryl 

halide (step A). The pyridyl nitrogen and the hydroxyl group then chelate the resulting PdII 

species (B). This promotes cleavage of the Csp3–Csp3 bond, irreversibly liberating pivalone 

(B). Migration of the palladium on the pyridyl amide (C) and reductive elimination 

generates the 2-benzylpyridine (D). Aryl chlorides are viable cross coupling partners in the 

presence of PCy3, though PPh3 can be used with aryl iodides without sacrificing yields.63 

The reaction was demonstrated to indeed proceed through the aformentioned double 

chelation, as when the pyridine moiety is replaced with benzene, or if the aliphatic alcohol 

was placed at the 4-position of the heterocycle, none of the desired product was observed. 

Though a wide range of substrates are reported giving products in moderate to excellent 

yields, the reaction suffers from the drawback of poor atom economy and the need of 

reaction temperatures in excess of 150 ºC. 



 

 

 

36 

Scheme 25. Proposed catalytic cycle for the benzylic arylation of 2-alkyl pyridines through 

chelation assisted cleavage of Csp3–Csp3 bonds. 

Pd

Pd ClPh

N

iPr

OH

iPr

N

iPr

O

iPr

Pd
Ph

N
Pd

N
Pd

Ph

Ph

N
Ph

iPr iPr

O

Ph–Cl
88%

A

B

C

D

 

Shortly after this account they also reported the benzylic arylation of 2-

benzylpyridines (Eq. 3).64 The reaction relies on the deprotonation of the benzylic site by 

cesium hydroxide followed by a presumed cesium/palladium transmetallation to afford the 

product following reductive elimination. This process relies on the methylene site being 

doubly arylated, as the acidity of the protons is otherwise not sufficient for the reaction to 

occur, and thus the only products that can be obtained are triarylmethanes.64 Another 

problem is again the elevated reaction temperatures needed for the process.  

X N

Cl
+

X N

PdCl2(MeCN)2 (5 mol %)
PCy3 (15 mol %)

CsOH•H2O (2 equiv)
xylene, reflux

X = CH; 87%
X = N; 91%

(3)
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 Our group’s foray into the benzylic arylation of 2-alkyl N-iminopyridinium ylides 

begins with our work on the direct sp2-arylation of the 2-position of these pyridiniums. The 

following section will describe the work in the area performed by Alexandre Larivée, as 

well as some work performed following his graduation. This will lead into the main topic 

of this chapter. 

2.2 Direct sp2-Arylation of N-Iminopyridinium Ylides 

2.2.1 Introduction 

Over the past decade the Charette group has exploited the use of N-iminopyridinium 

ylides in the elaboration of pyridine structures.65 These reagents are readily prepared in a 2-

step/one-pot process where pyridine is reacted with O-(2,4-dinitrophenyl)hydroxylamine 

followed by benzoyl chloride in presence of aq. NaOH.66 These pyridinium compounds 

have been effective in undergoing attack by Grignard reagents to give a variety 2-alkyl 

tetrahydropyridine (Scheme 26). The presence of the N-imino moiety plays a dual role in 

both activating the pyridine and directing the delivery of the organomagnesium 

nucleophile. 

Scheme 26. Directed addition of Grignard reagents to N-iminopyridinium ylides. 
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As mentioned in the introductory chapter, in 2005 the Fagnou group reported the 

palladium-catalyzed direct arylation of pyridine N-oxides with various aryl bromides 

(Scheme 27).47 This was a breakthrough for the arylation of pyridines, and demonstrated 

the power of pyridinium species in such transformations. An important drawback however 

was this need for a large excess of the N-oxide partner. Almost simultaneously, Daugulis 

disclosed the ortho arylation of various protected anilines with aryl iodides (Scheme 

27).67,68 A key feature of this process is the directing ability of the Lewis basic N-Piv 

group.69 Unlike the arylation of pyridine N-oxides, an excess of the halide partner was 

necessary for good reaction yields. Given the ability of pyridinium species to undergo the 

desired C–H phenylation, and the similarity of the N-imino group to the anilide group, we 

reasoned that these N-iminopyridinium ylides would not only be suitable for such 

processes, but may also be able to do so without large excess of either coupling partner. 

The next section will highlight our work in the area disclosing novel reactivity of these 

ylides.70 

Scheme 27. Comparison of pyridinium and anilide arylation. 
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2.2.2 Reaction Optimization, Scope, and Application 

Alexandre Larivée explored the optimization and scope of the reaction. A selected 

optimization is provided in Table 4.70 A series of palladium catalysts were screened and 

Pd(OAc)2 was proven to be most effective. A range of phosphine and amine ligands were 

studied and P(tBu)3 proved superior (entry 1), suggesting the need for a bulky, 

monodentate, electron-rich phosphine to effect the intended transformation. Curiously, the 

air-stable BF4 salt of the ligand provided decreased yields (entry 2). The pre-made 

palladium-phosphine complex gave slightly better results (entry 3), but the increased cost 

of the reagent did not justify its use.70 The process is sensitive to the loading of the ylide 

(entries 4 to 6), with 1.5 equiv proving optimal. Diluting the reaction had minimal impact 

(entries 7, 8). Slightly higher yields were obtained with molecular sieves present, though 

the presence of water in the reaction vessel did not severely impair the transformation 

(entries 9, 10). Aryl bromides were chosen due to their wider availability and lower cost.  
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Table 4. Selected optimization for the direct sp2 arylation of N-iminopyridinium ylides. 

 

entry ligand X equiv of ylide conc. (M) temp. (°C) yield (%)a 

1 tBu3P Br 1.5 0.30 125 87 
2 tBu3P•HBF4 Br 1.5 0.30 125 55 
3 Pd(tBu3P)2

b Br 1.5 0.30 125 90 
4 tBu3P Br 1.5 0.30 110 66 
5 tBu3P Br 1.3 0.30 125 64 
6 tBu3P Br 1.0 0.30 125 36 
7 tBu3P Br 1.5 0.10 125 82 
8 tBu3P Br 1.5 0.050 125 73 
9c tBu3P Br 1.5 0.30 125 81 

10d tBu3P Br 1.5 0.30 125 83 
11 tBu3P I 1.5 0.30 125 95 
12 tBu3P Cl 1.5 0.30 125 42 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the 
internal standard. b 5 mol % of Pd(PtBu3)2 was used instead of Pd(OAc)2/ligand. c Run 
without 3 Å mol. sieves. d Run without 3 Å mol. sieves and in presence of 5 equiv of H2O. 

The scope of the reaction was then investigated using various aryl bromide coupling 

partners (Scheme 28).70 Under the optimized reaction conditions of 20 (1.5 equiv), 

Pd(OAc)2 (5 mol %), P(tBu)3 (15 mol %), K2CO3 (3 equiv), 3Å mol. sieves, toluene at 125 

°C using bromobenzene (1 equiv), the 2-phenyl-N-iminopyridinium ylide 21 was obtained 

in 80% isolated yield.  Electron-rich and more encumbered substrates provided the products 

in good yield (22-24). Electron-poor aryl bromides arylated with moderate to good results 

(25-29), though an additional equivalent of ylide 20 was needed to promote the 

transformation.70 Enolizable centers were tolerated (25), highlighting the mild reaction 

conditions. Of note was the ability of heterocyclic aryl bromides to affect the arylation (30-
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32). Again an extra equivalent of 20 was needed, except with 3-bromopyridine where the 

original conditions were sufficient to give the biaryl in 83% yield. 

Scheme 28. Scope of the aryl bromide in the arylation of ylide 20. 
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N
NBz

Ar–X
Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)

toluene, 3 Å MS, 125 ºC
ArH

 

Cognizant that many pyridines are available already bearing substitution, Dr. 

Larivée next considered the scope of the pyridinium ylide. For the most part, the substrates 

provided poorer yields and an excess of bromobenzene was required, giving the 2-phenyl 

azines in moderate yields (33, 35, 36).70 An exception was noted with isoquinoline 34 

where 1.5 equiv of the pyridinium and 1 equiv of the Ph–Br could be used with the 

arylation proceeding in good yield. Furthermore, the reaction proceeded giving the product 

as a single regioisomer. A similar result was noted with the 3-methyl-N-iminopyridinium 

ylide, with the arylation occurring on the least hindered position (35).70  
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Scheme 29. Scope of the pyridinium ylide. 
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The synthetic potential of this methodology was demonstrated though the synthesis 

of (±)-anabasine (Eq. 4). It was reasoned that this natural product could be obtained from 

the chemoselective hydrogenation of ylide 32.70 Indeed this was the case, as only the 

activated pyridine moiety was reduced under standard conditions affording the racemic 

natural product.  

 

N

N
NBz

32

N
H

N •TFA
(±±)-anabasine

73% over 3 steps

1) H2, PtO2, MeOH
2) SmI2, HMPA, THF
3) TFA, CH2Cl2 (4)

 

2.2.3 Further Investigations 

A few concerns of the reaction were raised following Dr. Larivée’s departure from 

the Charette group. Among these included the possibility of synthesizing 2,6-diarylated 

pyridinium ylides, as well as cleavage of the ylide N–N bond to give access to the free 

arylated pyridine. Several trials were made to form the diarylated product from the 2-
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phenyl-N-iminopyridinium ylide, however they were unsuccessful, providing <5% of the 

desired product. Attempts included using excesses of both coupling partners, increased 

catalyst loadings, and temperature variation. We believe that the reaction was not 

successful due to the conformation of the directing group following the arylation (Figure 

6).71 As can be seen in the crystal structure of the non-arylated ylide A the N–carbonyl 

moiety is approximately in plane with the heterocycle, allowing for conjugation and 

positioning the Lewis basic group to direct the palladium catalyst following complexation 

of the metal. However, following arylation, the activating/directing group is twisted to be 

perpendicular to the plane of the heterocycle (crystal structure B). This is likely due to a 

combination of steric and "–" interactions between the 2-phenyl and benzoyl rings. 

Consequently, the N-imino group is no longer in position to direct palladium towards the 6-

position, possibly precluding any further reaction from occurring. 

 

Figure 6. Comparison of crystal structures before (A) and after (B) arylation. 

Efforts to cleave the N–N bond of the biaryl were more fruitful. Initial attempts were 

made with SmI2 due to our success applying this reagent in the cleavage of this bond in 

other substrates, though the reagent proved ineffective in this case.70 Alvarez-Builla 

reported several accounts of methylating the nitrogen atom of similar ylides and performing 
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a range of reductive transformations on the corresponding pyridinium salt and cleaving the 

N–N bond.72,73 The ylide methylation proceeded smoothly employing iodomethane in 

acetone at reflux overnight (Scheme 30). The resulting pyridinium salt was then subjected 

to several hydride sources (Et3SiH, LAH, NaBH3CN), though no conversion of the starting 

material was observed. In Alvarez-Builla’s accounts, they described the use of HCO2NH4 

as a hydride source in the presence of Pt/C as being effective for the cleavage of the N–N 

bonds of pyridinium salts.72 These conditions proved effective in providing the 2-

phenylpyridine. Other reported conditions were also attempted in order to provide a variety 

of possible conditions and thus give flexibility towards functional group tolerance. Radical 

cleavage by tristrimethylsilyl silane and AIBN proved equally effective,73 as was zinc dust 

in acetic acid.73 Given the latter could be performed at room temperature the scope of the 

N–N cleavage was then considered. Ylides 23, 34, and 35 all provided the 2-phenyl 

heterocycles in good yields over the two steps (Scheme 30). 2-Phenyl quinolinium ylide 33 

gave poor yields, though this is believed to be related to the poor stability of the compound, 

and other reduction methods were not attempted, as they required elevated reaction 

temperatures. 
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Scheme 30. Efforts towards cleaving N–N bond. 
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In 1975 Sainsbury and co-workers described the addition of KCN in presence of 

NH4Cl to 1-(N-methylacetamide)pyridinium salts en route to the synthesis of 4-

cyanopyridine derivatives.74 To date that process had not been applied to the benzoyl salts, 

and given the similarities between the two pyridinium species it was reasoned that the 

reaction should proceed. Indeed this was determined to be true as 2-phenyl-4-cyanopyridine 

42 was obtained in 69% yield when water was used as the reaction medium (Eq. 5). Given 

the incomplete solubility of the salts in water, methanol and methanol/water mixtures were 

attempted to improve solubility, though this proved to be detrimental to the yield of the 

reaction. 
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N
BzN Me

I KCN (1.5 equiv)
NH4Cl (2.0 equiv)

solvent N

CN

(5)

42

Solvent = H2O; 69%
Solvent = MeOH; 58%

 

2.3 Direct Benzylic Arylation of 2-Alkyl N-Iminopyridinium Ylides 

2.3.1 Reaction Optimization and Scope 

During the course of our direct arylation studies, it was noted that the 2-picolonium 

ylide 43 gave a marked decrease in the yield for the expected product 44 (Eq. 6). 

Investigation of this found that the arylation of the benzylic position was indeed preferred, 

giving product 45. Not only did these results add to one of the few examples of direct 

arylation of sp3-sites, they provided for facile access to these privileged motifs. Excited by 

this we pursued the optimization of the reaction conditions.75 

Ph–Br (1 equiv)
Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)
N
NBz

N
NBz

Me Me Ph N
NBz

Ph+

44
7%

45
19%

(6)
toluene, M.S. 3Å 

125 °C
1.5 equiv

43  

Several N-heterocyclic carbene (NHC) complexes failed to provide any conversion 

to the desired product (Table 5, entries 1-3), though bulky, monodentate, electron-rich 

phosphines generally provided encouraging results. Tricyclohexylphosphine only provided 

7% of the desired product (entry 4), though (2-biphenyl)di-tert-butylphosphine, PMe(tBu)2 

and CyJohnPhos proved superior to P(tBu)3 (entries 5-8). Interestingly PPh3 provided the 

desired product in good yield (entry 9) while DavePhos and PhenDavePhos proved to be 
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the best (entries 10 and 11).75 However, given the similar yields, low cost, and wide 

availability of PPh3, this was chosen as the ligand for the remainder of the optimization. 

Table 5. Ligand screening for the direct benzylic arylation of N-iminopyrdinium ylides. 

Ph–Br (1 equiv)
Pd(OAc)2 (5 mol %)
Ligand (15 mol %)

K2CO3 (3 equiv)N
NBz

N
NBz

Me Me Ph N
NBz

Ph+

44 45toluene [0.8M], M.S. 3Å 
125 °C, 16-19 h1.5 equiv

43
 

entry ligand yield 44 (%)a yield 45 (%)a 

1 PEPPSI b,c <5 <5 
2 (IMes)2PdCl2

b,c <5 <5 
3 IMes•HClc <5 <5 
4 PCy3 <5 7 
5 P(tBu)3 7 19 

6 
P(tBu)2

 
<5 20 

7 PMe(tBu)2 8 33 

8 
PCy2

   
<5 33 

9 PPh3 <5 40 

10 
PCy2

Me2N  
<5 83 

11 
PPh2

Me2N  
<5 42 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the 
internal standard. b Pd(OAc)2 not added. c Cs2CO3 used in place of K2CO3. 

We next considered the reaction concentration and solvent. The transformation 

appeared insensitive to the concentration (entries 1-3) and 0.80 M was chosen for ease of 

the reaction set-up. Dimethylformamide (DMF) as the solvent provided the best results as 
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other solvents gave slightly lower yields.75 This may be due to the increased solubility of 

the base, facilitating deprotonation and enabling the reaction to proceed. Furthermore, 

formation of 44 was not observed in any case. 

Table 6. Solvent optimization for benzylic arylation of N-iminopyridinium ylides. 

Ph–Br (1 equiv)
Pd(OAc)2 (5 mol %)

PPh3 (15 mol %)
K2CO3 (3 equiv)N

NBz
N
NBz

Me Me Ph N
NBz

Ph+

Solvent [X], M.S. 3Å 
125 °C, 16-19 h

44 45
1.5 equiv

43
 

entry solvent (conc.) yield 44 (%)a yield 45 (%)a 

1 toluene (0.40 M) <5 27 
2 toluene (1.5 M) <5 27 
3 toluene (0.80 M) <5 24 
4 DMA (0.80 M) <5 16 
5 MeCN (0.80 M) <5 17 
6 1,4-dioxane (0.80 M) <5 21 
7 DME (0.80 M) <5 22 
8 DMF (0.80 M) <5 31 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the 

internal standard. 

A survey of bases showed that only alkali carbonates were viable in effectuating the 

arylation (Table 7). Silver carbonate, NaHMDS, KOtBu, and CuOAc were effective in 

consuming the ylide starting material (entries 1-4), though the resulting side-products could 

not be identified. Sodium acetate was ineffective (entry 5). An encouraging result was 

obtained when employing Cs2CO3 as the yield was increased to 63% (entry 7). This is 

likely attributed to the ‘Cesium Effect’ whereby the large ionic radius and high 

polarizability allows for easy solvation and formation of naked ions in highly polar solvents 

such as DMF.76 These properties give this reagent a basicity much greater than K2CO3, 
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while remaining considerably milder than strong bases such as the tert-butoxides.76 

Replacing PPh3 with DavePhos (12 mol %) increased the yield by 21% and it was found 

that 1.1 equiv of the ylide relative to the aryl bromide was tolerated (entry 8).75 

Table 7. Base screening for the direct benzylic arylation of N-iminopyridinium ylides. 

Ph–Br (1 equiv)
Pd(OAc)2 (5 mol %)
Ligand (15 mol %)

Base (3 equiv)N
NBz

N
NBz

Me Me Ph N
NBz

Ph+

44 45
DMF [0.8M]

125 °C, 16-19 h1.5 equiv
43  

entry base ligand yield 44 (%)a yield 45 (%)a 

1 Ag2CO3 PPh3 <5 <5 
2 NaHMDS PPh3 <5 <5 
3 KOtBu PPh3 <5 <5 
4 CuOAc PPh3 <5 <5 
5 NaOAc PPh3 <5 <5 
6 K2CO3 PPh3 <5 31 
7 Cs2CO3 PPh3 <5 63 
8b Cs2CO3 DavePhos 10 84 

a Yields are measured by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard. b 
1.1 equiv of 43 and 12 mol % of DavePhos used.  

Bromobenzene and chlorobenzene were both effective coupling partners at 125 ºC 

giving the benzyl arylated products in 84% and 88% 1H NMR yield respectively (Figure 

7).75 Milder conditions were sought and the reaction temperature could be lowered to 70 ºC 

for aryl clorides while still maintaining 86% yield while the typically more reactive 

bromobenzene gave poorer results (66%). The reaction was not reproducible with 

iodobenzene and none of the phenyl halides were reactive at room temperature. The 

increased reactivity towards aryl chlorides can be attributed to the application of DavePhos, 

which is well known to be able to oxidatively add into aryl chloride bonds.77 Coupling 
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reactions using aryl chlorides has received much recent interest due to the wide availability 

and low cost of the reagents. 

 

 

Figure 7. Comparison of phenyl halides at various reaction temperatures. 

Finally we studied the conversion of the ylide to arylated product as a function of 

time (Figure 8). This was achieved by analyzing aliquots of the reaction mixture by 1H 

NMR at designated time intervals. The reaction was deemed essentially complete after 8 h, 

though it was decided to leave it overnight for ease and efficiency.75 
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Figure 8. Ratio of product to starting material as a function of time. 

Under the optimized conditions we eagerly pursued the scope of the reaction.75 As 

seen in Table 8, chlorobenzene afforded the desired benzyl arylated product in 86% yield. 

As evidenced by 2-chlorotoluene (entry 2), steric encumbrance did not hinder the reaction 

and a range of electron-rich substrates are tolerated (entries 2-5). Most electron-poor 

substrates reacted with moderate to good yields (entries 6-12), though reagents bearing 

electron-poor substrates ortho to the halide tended to couple less effectively (entries 10 and 

11).  6-Chloroquinoline gave poor yields and may be the result of catalyst poisoning by the 

reagent. Functional group tolerance is broad, permitting ethers, esters, ketones and Boc-

protected amines (entry 13). However, free alcohols and amines, as well as nitro and ketone 

groups bearing enolizable centers remain a challenge. It should be noted that in cases where 

lower yields are noted the results are attributed to unreacted starting material and not side 

reactions.75 As a result, these materials may be recuperated and reused in further 

transformations. 
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Table 8. Reaction scope of the aryl chlorides for the sp3 arylation of 43. 

Pd(OAc)2 (5 mol %)
DavePhos (12 mol %)

Cs2CO3 (3 equiv)N
NBz

Me N
NBzDMF [0.8M], 70 °C, 16 h

43   1.1 equiv

+ R
Cl R

1 equiv  
 

entry product yield  
(%)a entry product yield 

(%)a 

1 N
NBz

45

 
86 8 N

NBz

F3C

52

 

64 

2 N
NBz

46

 
93 9 N

NBz

F

53

 

94 

3 N
NBz

47

 
76 10 N

NBzCO2Me
54

 
43 

4 N
NBz

48

 
72 11 N

NBzCF3

55

 
11 

5 N
NBz

MeO

49

 

69 12 N
NBz

N

56

 
19 

6 N
NBz

MeO2C

50

 
72 13 N

NBz

BocHN

57

 
48 

7 
N
NBz

Bz

51

 

71    

a Yield of isolated product.  

The reaction conditions were readily transposable to other pyridinium species 

(Table 9).75 The 2,5- and 2,3-dimethyl ylides reacted exclusively at the expected 2-position 
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(entries 1 and 2). Interestingly, though electronically equivalent, the more hindered 

substrate provided the arylated product in higher yield. 2-Ethyl-N-iminopyridinium ylide 

also reacted exclusively at the benzylic site. No side-products from potential !-hydide 

elimination were observed, and aryl chlorides with electron-rich and poor substituents were 

tolerated (entries 3-6).  

Table 9. Effect of the ylide in the benzylic arylation reaction. 

 

entry  ylide aryl chloride product yield (%)a 

1 N
NBz

58

 

Cl

 
N
NBz

61

 

43 

2 N
NBz

59

 

Cl

 
N
NBz

62

 

92 

3 N
NBz

60

 

Cl

 
N
NBz

63

 

86 

4 N
NBz

60

 

Cl

OMe  
N
NBz

MeO

64

 

79 

5 N
NBz

60

 

Cl

CO2Me  
N
NBz

MeO2C

65

 

53 

6 
N
NBz

60

 

Cl

CF3  
N
NBz

F3C

66

 

69 

a Yield of isolated product. 
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It is noteworthy that the double arylation of the benzylic site was formed in a non-

reproducible manner in most of these reactions. This side product was easily removed via 

column chromatography.75 Cognizant of this, we subjected the ylide to the reaction 

conditions in presence of an excess of chlorobenzene (Eq. 7). This furnished the di-sp3-

arylated product in 72% yield.75 

Ph–Cl (2.2 equiv)
Pd(OAc)2 (5 mol %)

DavePhos (12 mol %)
Cs2CO3 (3 equiv)

N
NBz

Me N
NBzDMF [0.8M], 70 °C, 16 h

43   
1 equiv

(7)N
NBz

+

45
15%

67
72%  

 

2.3.2 Asymmetric Benzylic Arylation of 2-Ethyl-N-Iminopyridinium Ylides. 

Given the formation of a stereogenic center in products 63-66, we became interested 

in the possibility of performing the arylation in an asymmetric fashion. A survey of the 

literature at the time confirmed that this indeed has not yet been reported and further 

convinced us to investigate the reaction.78 

Given the results published by Oshima describing the high acidity of 2-benzyl 

pyridines (Eq. 3), we were concerned about epimerization of the product under the reaction 

conditions. Consequently racemic 63 was separated by SFC and the individual enantiomers 

were submitted to the reaction conditions for 3 h (Eq. 8). Analysis of the resulting ylides 

demonstrated only 13% ee erosion, suggesting that if the reaction time is kept relatively 

short, an asymmetric process should be viable. Bearing this in mind several chiral ligands 

were screened with the focus being on finding a chiral ligand with similar reactivity to 

DavePhos. Bisoxazoline ligands were inoperative under both palladium and nickel 
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catalysis. MeDuPhos monoxide and PHOX derivatives were unsuccessful at converting the 

starting materials (Table 10, entries 1 and 2). In light of this, the reaction temperature was 

increased to 110 ºC and bromobenzene was used in place of chlorobenzene in an effort to 

facilitate the oxidative addition. While BinaPhane did not give the arylated product (entry 

3), other bidentate phosphines such as DIOP, SegPhos, and Ferrotane did give some of the 

arylated product (entries 4-7). Not surprisingly, due to its similarity to DavePhos, MOP 

gave improved yields (entry 8). The best conversions were found with S-NMDPP as yields 

of 81% were obtained for reactions left for 16 h (entry 9). However, only 10% ee was 

observed, and even leaving the reaction for 1 h gave the product in 8% yield also with 10% 

ee, suggesting that ee erosion by the reaction conditions is not an issue (entry 10).  To this 

point results suggested that the transformation with this system would persist to be 

problematic without a complete design of the catalyst-ligand match. Given advances in 

other research projects, this research was not pursued further. 

 

 

 

 

 

 



 

 

 

56 

Table 10. Ligand screening for the asymmetric arylation of N-iminopyridinium ylides. 

 

entry  ligand X temp. (ºC) ee (%)a yield (%)b 

1 PP
O

 
Cl 70 n/a <5 

2 P
Ph  

Br 110 n/a <5 

3 
Ph2P

N

O  
Br 110 n/a <5 

4 PP

 
Br 110 n/a <5 

5 
Ph2P

O O

PPh2

 
Br 110 n/a 15 

6 

O

O PPh2
O

O

PPh2

 

Br 110 n/a 21 

7 P
P

Et

Et

Et

Et

Fe

 
Br 110 n/a 22 

8 OMe
PPh2

 

Br 110 0 33 

9 
PPh2

 
Br 70 10 81 

10c 
PPh2

 
Br 70 10 8 

a ee determined via SFC using a Chiralpak AD-H 25 cm column. b Yields are measured by 
1H NMR using 1,3,5-trimethoxybenzene as the internal standard. c Reaction time of 3 h. 
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2.3.3 Proposed Catalytic Cycle 

Córdova demonstrated that enamines are suitable nucleophiles in palladium 

catalysis.79,80 This was shown through the palladium-catalyzed intramolecular addition of 

enamines to unsaturated systems. Though a delocalized aromatic system, one can see the 

possible similarities between imines and the pyridinium system. Deprotonation of the 

methylene site would lower the energy of the endocyclic nitrogen atom, and the negative 

charge on the adjacent nitrogen can be delocalized into the more electronegative oxygen 

atom (Figure 9). Furthermore, with an alkyl substituent at the 2-position, one can consider 

the possibility of forming an enamine-like intermediate under basic conditions. As such, 

given the elimination of the positive charge on nitrogen atom, a weak base should be able 

to enable the desired deprotonation of the benzylic site.  

R3

N
R2R1

R3

N
R2R1

N
NBz

N
NBz

N
N

O Ph

 

Figure 9. Comparison of enamines to 2-alkyl N-iminopyridinium ylides. 

The reaction mechanism is believed to proceed as follows (Scheme 31). Following 

reduction of PdII to Pd0 by the phosphine ligand, the catalyst undergoes oxidative addition 

into the aryl chloride (A). Simultaneously the 2-alkyl pyridinium ylide is deprotonated and 

converted into an enamine-like species (B). Presumably there is an excess of this carbon 

nucleophile in solution as the Cs2CO3 is largely soluble under the reaction conditions. The 

Lewis basic N-imino group then coordinates the palladium catalyst bearing the aryl 

coupling partner and direct carbopalladation (C) takes place. Cis/trans isomerization  (D) 

followed by reductive elimination (E) then provides the arylated product whilst 

regenerating the active Pd0 catalyst.  
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Scheme 31. Proposed catalytic cycle for the benzylic arylation of N-iminopyridinium 

ylides. 

 

2.4 Direct Allylation of 2-Alkyl N-Iminopyridinium Ylides 

2.4.1 Origins 

Given the ability of cyclopropanes to undergo cross coupling reactions, in addition 

to our group’s interest in cyclopropane chemistry and our expertise on activated pyridinium 

species, it seemed reasonable to use a halocyclopropane as a coupling partner in the direct 

functionalization of 2-methyl-N-iminopyridinium ylides. As we disclosed accounts for the 

synthesis of iodocyclopropane derivatives these substrates were tested first under the 

optimal reaction conditions for the direct arylation.81 However, none of the desired product 

was observed. Given the absence of cyclopropane in the crude reaction mixture we became 

concerned about the stability of these reagents at elevated reaction temperatures. 
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Consequently, we attempted bromocyclopropane as a coupling partner, hoping that the 

reagent would be less susceptible to degradation under the reaction conditions. To our 

delight the starting material was completely consumed, however the observed product was 

the bis-allylated ylide 68 (Eq. 9). These products are interesting due to the wide potential of 

coupling partners, leading to the potential synthesis of a library of interesting and 

synthetically useful compounds. 

N
NBz

Br

DMF, 125 ºC
N
NBz

N
NBz

68
91 %

69
9 %43

++

1.1 equiv 1 equiv

Pd(OAc)2 (5 mol %)
DavePhos (12 mol %)

Cs2CO3 (3 equiv) (9)

 

Given that halocyclopropanes have been reported to ring open to "-allyl 

intermediates in the presence of palladium,82 we reasoned that the electrophilic Pd-"-allyl 

species could be attacked by the deprotonated pyridinium ylide. The net process would be 

akin to a Tsuji-Trost allylation reaction.83 Though heteroatoms are often employed as the 

nucleophiles, several accounts of carbon nucleophiles, often in the form of enolates, have 

been described.83 This fact allows us to propose a potential reaction cycle as follows. 

Palladium is reduced to Pd0
 and can form the desired "-allyl intermediate. As with the 

aforementioned arylation (Scheme 31), the pyridinium is deprotonated under the basic 

conditions and the Lewis basic site directs carbopalladation. Reductive elimination 

provides the product while regenerating the active catalyst. The explanation of double 

allylation may be the result of coordination of the palladium to both the N-iminobenzoyl 

group and the "-orbitals of the alkene following the first allylation. This ‘sandwhiching 

effect’ places the catalyst near the benzylic site, and thus in position for a second 

carbopalladation (Scheme 32). 
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Scheme 32. Possible explanation for the double allylation. 

N
N

Bz Pd

N
N

Bz Pd

N
N

Bz
Pd

 

2.4.2 Optimization 

The reaction optimization commenced with an effort to find a suitable electrophile 

as a coupling partner (Table 11). While allyl bromide was extremely effective in promoting 

the reaction, it provided primarily the bisallylated product (entry 1). Efforts to control 

mono- and di-allylation through excess of either coupling reagent proved detrimental to the 

reaction. Cinamyl acetate proved more reactive than allyl acetate (entries 2, 3), and a 

preformed Pd-allyl complex when used in stoichiometric quantity was also operative (entry 

4), confirming that this is the likely intermediate in the coupling reaction. Though it 

provided lower conversion, allyl acetate was chosen to proceed due to its improved 

selectivity towards mono-allylation, ease of preparation, and the overall green nature of the 

reagent. It should be noted that allyl alcohol is also a viable partner. Both Tamaru84 and 

Nomura85 demonstrated that Lewis acids can be used to activate allyl alcohols towards 

Tsuji-Trost processes. A single test did show that Et3B was effective in activating alcohol 

in the allylation of the ylide, giving a ratio of 1:1.5:4.9 for 69:68:43, however the yields of 

the reaction were not determined. 

 

 

 

 



 

 

 

61 

Table 11. Pseudoelectrophile screening for the allylation of N-iminopyridinium ylides. 

N
NBz DMF, 125 ºC

N
NBz

N
NBz

68 6943

+

1.1 equiv

Pd(OAc)2 (5 mol %)
DavePhos (12 mol %)

Cs2CO3 (3 equiv)+ Electrophile

 

entry electrophile yield 68 (%)a yield 69 (%)a 

1 Allyl Bromide 10 51 
2 Ph OAc 70  67 17 
3 

OAc 71
 39 15 

4 b [(&3-C3H5)PdCl]2
  50 27 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. b 1 equiv of the allyl Pd 
and 1 equiv of DavePhos used.  

With a suitable electrophile in hand we first elected to perform a preliminarly 

screening of reaction temperatures (Table 12). The yield increased with decreasing reaction 

temperature. This may speak towards the stability of the reaction intermediates and was 

considered an advantage due to potential functional group tolerance and may make the 

methodology amenable to future asymmetric allylations. Some conversion was noted at 

room temperature (entry 1), however 40 ºC provided the best results and was used for 

further optimization (entry 2). 
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Table 12. Temperature screening for the allylation of N-iminopyridinium ylides. 

N
NBz DMF, XX ºC

N
NBz

N
NBz

68 6943

+

1.5 equiv

Pd(OAc)2 (5 mol %)
DavePhos (12 mol %)

Cs2CO3 (3 equiv)+ OAc

71
1 equiv  

entry temperature (ºC) yield 68 (%)a yield 69 (%)a 

1 22 <5 9 
2 40 52 33 
3 60 35 28 
4 80 18 41 
5 120 15 35 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard.  

 

Solvent verification noted that ethereal solvents generally provided the best results 

(Table 13). Polar solvents appeared to be necessary (entries 4-7), and this may be due to 

the increased solubility of the Cs2CO3. Though DME provided the highest yield (entry 7) 

with a combined yield of the two products at 90%, 1,4-dioxane was chosen to proceed as 

the best selectivity towards monoallylation was observed (entry 3).  
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Table 13. Optimization of solvents for the allylation of N-iminopyridinium ylides. 

 

entry solvent yield 68 (%)a yield 69 (%)a 

1 DCM 14 22 
2 toluene 12 26 
3 1,4-dioxane 11 28 
4 DCE 35 37 
5 DMF 52 33 
6 THF 40 45 
7 DME 55 35 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard.  

PEPPSI was unable to catalyze the reaction, suggesting that NHC ligands may not 

be compatible. Palladium chloride, Pd(PPh3)4, and PdI2 all gave low conversion while 

Pd(dba)2, Pd(OAc)2, and PdCl2(NCPh)2 provided similar results. Pd(TFA)2 presented an 

improvement in the yield, and performing the reaction in THF gave not only good yields, 

but also improved selectivity. A small ligand screen demonstrated that PCy3 in dioxane also 

gave good yield, albeit with poor selectivity, while P(tBu)3 and ‘Trost’s Ligand’ were non 

operative.  
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Table 14. Screening of palladium and ligand sources for the allylation of N-

iminopyridinium ylides. 

 

entry palladium ligand yield 68 (%)a yield 69 (%)a 

1 PEPPSI DavePhos <5 <5 
2 PdCl2 DavePhos <5 12 
3 Pd(PPh3)4 DavePhos <5 16 
4 PdI2 DavePhos 7 12 
5 Pd(dba)2 DavePhos 12 26 
6 Pd(OAc)2 DavePhos 11 28 
7 PdCl2(NCPh)2 DavePhos 12 28 
8 Pd(TFA)2 DavePhos 14 30 
9b Pd(TFA)2 DavePhos 18 52 
10 Pd(TFA)2 PCy2 46 38 
11 Pd(TFA)2 P(tBu)3 <5 <5 
12 Pd(TFA)2 Trost’s Ligand <5 <5 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. b Reaction performed in THF.  

Finally, a study of the base loading showed that 2 equiv of Cs2CO3 was optimal in 

terms of providing the allylated product with 95% 1H NMR yield, albeit as a 1:1 mixture of 

the mono- and di-allylated products. No other base was attempted in the reaction. 
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Given that the 2-ethyl-N-iminopyridinium ylide 60 did not give any bis-arylated 

product, we tested this substrate to see whether monoallylation could be obtained. Indeed 

this was the only product observed in 60% yield (Eq. 10). Using a slight excess of the 

acetate provided the allylated pyridinium in 92% yield by 1H NMR. However, at the time 

of these investigations, Trost disclosed a similar allylation methodology using BF3•OEt2 to 

activate 2-alkyl pyridines towards asymmetric benzylic allylation reactions.86,87 These 

reactions were reported to proceed in good yield and high ee (Eqs 11, 12). As a result, 

given success we were having in other projects (vide infra), we chose not to concentrate our 

efforts on this avenue. 

N
NBz THF, 40 ºC

N
NBz

7260

Pd(OAc)2 (5 mol %)
DavePhos (12 mol %)

Cs2CO3 (3 equiv)+ OAc

71

(10)

1.5 equiv 1.0 equiv 60%
1.0 equiv 1.5 equiv 92%  

N
R

OBoc

n

+
N

R
n

[(!3-C3H5)PdCl]2 (2.5 mol %)
Ligand (6 mol %)

LiHMDS (3.5 equiv)
BF3•OEt2 (1.3 equiv)
dioxane, 25 ºC, 10 h

11 examples
71-99% yield
92-96% ee

(11)HNNH
OO

Ph2PPPh2

Ligand

 

N
+

N

[(!3-C3H5)PdCl]2 (2.5 mol %)
Ligand (6 mol %)

LiHMDS (3.5 equiv)
BF3•OEt2 (1.3 equiv)
nBuLi (1.0 equiv)

dioxane, 25 ºC, 10 h

9 examples
70-99% yield

94-98% ee, up to 19:1 dr

(12)

R R
H

OPiv

NH HN
O O

PPh2Ph2P

Ligand
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2.5 Alkylation of 2-Alkyl Pyridinium Ylides Through Phase Transfer 

Catalysis 

2.5.1 Origins 

During the course of the optimization of the allylation reaction, it was noted that at 

elevated temperatures the 2-methyl pyridinium ylide could be allylated in absence of the 

palladium catalyst (Eq. 13). It was reasoned that the cesium carbonate is soluble in the 

DMF at these temperatures, increasing the likelihood of deprotonation.  The elevated 

reaction temperature also provides additional energy to aid in promoting addition onto an 

electrophile. 

N
NBz

43

Br N
NBz

N
NBz

68
n/o

69
10%

+

1.5 equiv 1 equiv

+
Cs2CO3 (3 equiv)

DMF, 125 ºC
(13)

 

Starks introduced phase transfer catalysis in the 1970s as a tool to effect the 

alkylation of various carbon nucleophiles.88 This methodology permits the reaction between 

reagents in biphasic solutions. As such, relatively benign bases in aqueous solutions can be 

applied in these transformations, affording a cheaper, greener process. In the 1980s the 

Merck group applied the use of quartenary ammonium salts derived from readily available, 

inexpensive cinchona alkaloids in the asymmetric alkylation of indanone derivatives (Eq. 

14).89 Following this report a plethora of ammonium salt catalysts were disclosed. Though 

various carbon nucleophiles have been described, this methodology has been largely 

employed towards the synthesis of chiral, non-natural amino acid derivatives through the $-

alkylation of glycine Schiff base derivatives.90 The overall process is believed to proceed as 

follows.91 At the interface of the aqueous and organic layers, the nucleophile is 

deprotonated by the base (Scheme 33). The deprotonated base forms an anionic complex 
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with the quartenary ammonium salt. This complex then reacts with a suitable electrophile, 

providing the alkylated product with a high-level of stereoselectivity. This selectivity is 

governed by the facial blocking of the nucleophile with only one site being open for the 

anionic coordination, and the subsequent approach of the electrophile (Scheme 33). 

Furthermore, in order to ensure reaction selectivity, formation of the anionic complex 

between the nucleophile and the ammonium salt must be faster than the reaction between 

the uncomplexed nucleophile and the electrophile, as the latter would lead to the formation 

of a racemic product.91 

Ph

OCl
Cl

MeO

OCl
Cl

MeO Ph
Me

Catalyst  (10 mol %)
Me–Cl

toluene, 50% aq. NaOH
rt, 18 h

95% yield
92% ee

N+

N

HO
Br

CF3

(14)
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Scheme 33. Mechanism for the asymmetric alkylation of Schiff base glycine derivatives. 

 

Given the ionic nature of the pyridinium ylides, and the fact that they are able to 

undergo alkylation by simple deprotonation, we elected to pursue the asymmetric alkylation 

of these ylides in presence of cinchona-based phase transfer catalysts. The following 

section will describe our initial work in this area. 

 

 

 

 

Figure 10. Proposed model for the coordination of the pyridinium to the PTC. 
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2.5.2 Reaction Optimization 

The first task was to determine whether the metal-free alkylation could be achieved 

under milder reaction conditions. In order to verify this, KOtBu was chosen as a base due to 

its solubility in polar organic solvents, in addition to its high basicity. Gratifyingly the 

reaction between the 2-picolonium ylide and allyl bromide proceeded with full conversion 

of the electrophile, giving a 1:1 mixture of the mono- and bisallylated products (reaction 

followed by 1H NMR, Eq 15).  It is noteworthy that the 2-methyl pyridine N-oxide was less 

effective, giving only 52% conversion (Eq. 16) and 2-picoline proved unreactive. Given 

that benzyl bromide is a common electrophile in the alkylation of glycine Schiff base 

derivatives, we tested this electrophile with ylide 60. The desired product was isolated in 

35% yield (Eq. 17).  

N
NBz

Br

1 equiv

N
NBz

N
NBz

1.2 equiv

THF 40 ºC
KOtBu (2 equiv)

++

100% conversion,  2:1 ratio of di vs mono

(15)

1.2 equiv 1 equiv 100% conversion,  1:1 ratio of di vs mono  

N
O

Br

1 equiv

N
O

N
O

1.2 equiv

THF 40 ºC
KOtBu (2 equiv)

++

52% conversion,  1:1 ratio of di vs mono

(16)

 

N
NBz

60
1.2 equiv

Br+

1.0 equiv

N
NBz

73
35%

KOtBu (1 equiv)

THF, 40 ºC
(17)

 

In collaboration with a summer intern (Guillaume Poutiers), we next considered 

performing the reaction under phase transfer catalysis (PTC) conditions. A series of known 
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(-)-cinchonidine-based catalysts were synthesized using standard conditions (Figure 

11).92,93,94 Control reactions in absence of any catalyst provided little or no conversion in 

presence of common hydroxide bases (Table 15, entries 1-4). These bases were then used 

in presence of the four first catalysts prepared (74-77). Toluene was chosen as the solvent 

as it is commonly used in such reactions.91 Also habitually reported in these reactions is a 

large excess of the benzyl bromide in order to help promote the reaction.  Low to moderate 

yields for the benzylated pyridinium were obtained. Generally, NaOH (entries 6, 10, 13, 16) 

and KOH (entries 7, 11, 14, 17) were superior to LiOH (entries 5, 9) and CsOH (entries 8, 

12, 15, 18). Though a degree of enantioselectivity was found to be low, it was sufficiently 

high to encourage us to proceed with screening. Catalyst 75 in presence of NaOH was 

selected for further testing as it provided the desired product in 62% yield and 21% ee.  
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Figure 11. Phase transfer catalysts prepared. 
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Table 15. Base optimization for the PTC catalyzed alkylation of N-iminopyridinium ylides. 

N
NBz

Br
N
NBz

+
Catalyst (10 mol %)

Base (10 equiv)

toluene, rt, 16-18 h

5 equiv1 equiv
7360

 

entry catalyst base yield (%)a ee (%)b 

1 - LiOH 0 - 
2 - NaOH 6 - 
3 - KOH 1 - 
4 - CsOH 3 - 
5 74 LiOH 0 - 
6 74 NaOH 57 20 
7 74 KOH 35 27 
8 74 CsOH 15 - 
9 75 LiOH 20 19 

10 75 NaOH 62 21 
11 75 KOH 40 19 
12 75 CsOH 7 18 
13 76 NaOH 32 14 
14 76 KOH 19 14 
15 76 CsOH 5 9 
16 77 NaOH 17 8 
17 77 KOH 23 25 
18 77 CsOH 3 - 

a Isolated yield. b ee determined via SFC using a Chiralpak AD-H 25 cm column. 

Toluene proved to be the most effective solvent with catalyst 75 (Table 16). Non-

aromatic solvents not only gave lower yields, but also had a detrimental effect on the 

selectivity, suggesting a possible role of %-stacking in the transition state. Chlorinated 

solvents gave the poorest results (entries 8, 9). When benzene was used in place of toluene, 

the enantioselectivites were consistent while decreasing the yield of the target compound. 
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Table 16. Solvent screen for the PTC catalyzed alkylation of N-iminopyridinium ylides. 

N
NBz

Br
N
NBz

+
75 (10 mol %)

aq. NaOH (10 equiv)

solvent, 40 ºC, 16-18 h

5 equiv1 equiv
7360

 

entry solvent yield (%)a ee (%)b 

1 toluene 62 21 
2 benzene 29 23 
3 DME 43 6 
4 ethyl ether 33 11 
5 1,4-dioxane 19 7 
6 hexanes 27 2 
8 DCM 8 2 
9 DCE 10 2 

a Isolated yield. b ee determined via SFC using a Chiralpak AD-H 25 cm column. 

Lastly we considered the temperature of the reaction and effect of electronics on the 

PTC. Cognizant that lower temperatures often lead to improved selectivity,91 we attempted 

the reaction at 0 ºC, –10 ºC, and –30 ºC. Though the enantioselectivity marginally 

improved, the product yield dramatically decreased as a function of temperature. 

Consequently we chose to perform the reaction at room temperature. A small screening of 

further catalysts found that an electron-withdrawing benzylic group on the amine of the 

catalyst increased the ee’s while slightly decreasing the yield. 
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Table 17. Temperature and further catalyst screening for the PTC catalyzed alkylation of 

N-iminopyridinium ylides. 

N
NBz

Br
N
NBz

+
Catalyst (10 mol %)

NaOH (10 equiv)

toluene, Temp, 16-18 h

5 equiv1 equiv
7360

 

entry temperature (ºC) catalyst yield (%)a ee (%)b 

1 –30 75 9 7 
2 –10  75 12 27 
3 0 75 33 22 
4 20 75 62 21 
5 20 78 46 30 
6 20 79 19 14 

a Isolated yield. b ee determined via SFC using a Chiralpak AD-H 25 cm column. 

Again, due to progress in later projects, this work was temporarily placed on the 

side. Recently it has been revived by a current Ph.D. student (Daniela Sustac-Roman), and 

she has demonstrated that interesting results can be achieved by altering the electronics of 

the pyridinium ylide (Eq 18).  By increasing the electron deficiency of the ylide improved 

yields and enantioselectivities are observed. The improved yield may be a consequence of 

the increased acidity of the methylene protons. The improved selectivites are currently 

under investigation. 

N
N

N
N

+

78 (10 mol %)
aq. NaOH (10 equiv)

toluene, rt, 16-18 h
BrO O

CF3CF3

74% yield
38% ee

(18)
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2.6 Summary 

In summary were had developed a range of efficient direct methodologies for the 

elaboration of the pyridine motif. Through the activation of the heterocycle with an N-

iminobenzoyl group was effected a directed arylation at the 2-position of the pyridine ring. 

Using this methodology we performed a chemoselective reduction in the synthesis of (±)-

anabasine. The 2,6-diarylation however was not achieved, and this is thought to be due to 

the unfavourable orientation of the directing group following the first transformation. We 

also demonstrated that the N-N bond could be easily cleaved in high yield following 

arylation. 

Next we explored the direct benzylic arylation of 2-alkyl N-iminopyridinium ylides. 

Reaction optimization determined that relatively mild temperatures could be employed and 

a range of aryl chlorides were effective coupling partners. This is of note due to the large 

commercial availability of these compounds at relatively low cost.  The reaction 

mechanism is believed to proceed through an enamine-like intermediate. While the 

asymmetric arylation for now seems unlikely without the design of new phosphine ligands, 

the palladium-catalyzed allylation of this site was discovered. The reaction proceeds at 

even milder conditions than the arylation and the process is largely optimized.  

Lastly, phase transfer catalysis is a viable method to perform metal-free alkylation 

of 2-alkyl N-iminopyridinium ylides. Preliminary results show that cinchonidine-based 

catalysts can afford the alkylated product in high yields with moderate enantioselectivities.



 

 

Chapter 3                                                                        

Copper-Catalyzed Direct Alkenylation of N-

Iminopyridinium Ylides 

3.1 Introduction 

3.1.1 Overview and Conventional Methods of 2-Alkenyl Pyridine Synthesis 

Derivatives of 2-alkenyl pyridine are relevant pharmacophores and are an important 

class of transition metal ligands (Figure 12). For example, Singulair© by Merck is a 

leukotriene receptor antagonist used in the treatment of respiratory ailments and has 

generated $2.9B in sales in 2008.95 CGS23113 has been reported to be a potent LTB4 

inhibitor displaying interesting anti-inflammatory properties.96 The natural product lobelane 

is a known psychostimulant bearing a piperidine core that can be accessed from pyridine.97 

Other alkenyl pyridines of medicinal interest are metabotropic glutamate antagonists98 and 

5-HT2A ligands that can be used to treat insomnia.99 As mentioned, these compounds also 

find applications as ligands for iron and other transition metals, generating precursors that 

are amenable to C–H insertion processes (Figure 12).100,101 Though this list of utilization is 

not complete, it does highlight that the 2-phenylethenylpyridine core is a recurring theme in 

various chemical fields, particularly in medicinal chemistry. Consequently, there has been 

interest in developing effective methods for their synthesis. 



 

 

 

76 

 

Figure 12. Various 2-alkenyl pyridine derivatives. 

Despite their importance, there are relatively few conventional tools available for 

the synthesis of these privileged compounds (Scheme 34). Perhaps the oldest method is 

through the condensation of 2-picoline with benzaldehyde under strongly basic conditions 

(route A).100,102 Though this is a reliable method featuring economical materials, the harsh 

reaction conditions that often involve refluxing in DMSO or acetic anhydride suggest 

potential functional group incompatibilites. Azzena has described a Horner-Wadsworth-

Emmons alkenylation between picolinaldehyde and a prepared aryl phosphonate, though 

the substrate scope is limited, affording the desired product in moderate yields (route B).103 

Other methods rely on expensive late transition metal catalysis. One such account details a 

Sonogoshira coupling between phenylacetylene and a 2-halopyridine, followed by 

reduction of the 2-alkynylpyridine to the 2-phenylethenylpyridine (route C).104 This 

technology depends on the availability of aryl acetylenes and one must consider the cost of 

various 2-halopyridine derivatives. Molander and others have delineated a Suzuki cross 

coupling method between 2-bromo and 2-chloropyridines and various vinylboronic acids 

(route D).105 Though this coupling is very efficient, as mentioned in the previous chapter, it 

suffers from the drawback in that both partners must be preactivated, initiating potential 

lengthy syntheses or high costs and invoking large quantities of waste. Finally, Heck-type 
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coupling between 2-vinyl pyridine and aryl chlorides can give the desired product in 

moderate yields (route F).106 Although the inverse of this process has also been uncovered, 

yields remain low (route E).107,108  

Scheme 34. Common ways to synthesize 2-alkenylpyridines. 

 

All these reports have positive aspects, however important drawbacks include 

potential functional group sensitivity, high cost of starting materials, and multistep 

syntheses of the required starting materials. As such, a more modern route would utilize an 

economical direct approach whereby the $ C–H bond of the pyridine would be amenable to 

the addition of an alkene. 
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3.1.2 Direct Alkenylation of Pyridine  

In contrast to the arylation methodologies described in the previous chapter, the 

direct alkenylation of arenes has received little attention.109 Moreover, there are scant 

reports on the vinylation of heterocycles.110 Of these disclosures, the limited application of 

pyridine-based heterocycles has received the most attention. Murakami reported the first 

example of a direct alkenylation with the ruthenium-catalyzed addition of vinylidene 

complexes to pyridine.111 The reaction is proposed to proceed as follows (Scheme 35). First 

the cationic ruthenium vinylidine complex generated from aryl trimethyl silyl acetylenes 

and CpRu(PPh3)2Cl undergoes a [2+2] heterocycloaddition with the pyridine to form a 4-

membered ruthenacycle complex A. Deprotonation of the !-hydrogen atom (B) followed 

by protonolysis gives the observed 2-alkenyl pyridine in moderate to excellent yield.111 

Though this sequence should afford the cis alkene, only the trans double bond is observed. 

This was explained by the thermodynamic isomerization of the alkene under the reaction 

conditions.111 A possible criticism of the reaction is the limited substrate scope devoid of 

functionality, and the need of highly elevated reaction temperatures to provide the products 

in a timely fashion. Nevertheless, this process laid the groundwork for future late transition 

metal-catalyzed direct alkenylations of pyridine. 
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Scheme 35. Murakami's Ru-catalyzed vinylation of pyridine. 
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No examples of direct vinylation were reported for the following five years until 

Hiyama disclosed a Ni-catalyzed hydroalkynylation of pyridines (Scheme 36).112 Prior to 

this account they had demonstrated that 5-membered electron-rich heterocycles undergo a 

Ni-catalyzed Fujiwara-type coupling of alkynes in presence of PCy3 in the synthesis of 

alkenyl heterocycles. Though pyridine itself was unreactive, they were able to take 

advantage of the reactivity of pyridine N-oxide and effect the addition of alkynes, 

synthesizing 2-alkenyl pyridines N-oxides with high selectivity at low temperature.112 A 

range of symmetrical alkynes was tolerated, however no functional groups were included in 

the scope. Unsymmetrical alkynes bearing groups whereby one is more bulky than the other 

can be added with complete regioselectivity. Terminal alkynes do not couple, presumably 

due to the rapid oligomerization, revealing another limitation.112 Substitution on the N-

oxide ring is tolerated, but reactions of pyridines bearing electron-withdrawing groups (Cl, 

Br, NO2) were said to be sluggish. The mechanism of the reaction is postulated to proceed 

first through coordination of the nickel to the alkyne. This nickel species then undergoes 
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oxidative insertion into the pyridinium giving the pyridyl-nickel hydride. Hydronickelation 

and reductive elimination then gives the 2-alkenyl pyridine N-oxide (Scheme 36).112 

Scheme 36. Proposed mechanism for Hiyama's hydroalkynylation of pyridine N-oxide. 
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A year later they improved the methodology through the catalytic activation of the 

pyridine ring.113 This was attained via the addition of a mild Lewis acid (Eq. 19). The 

inclusion of 6 mol % of ZnMe2, ZnPh2, or AlMe3 was sufficient to generate 2-alkenyl 

pyridines. Excess of pyridine was needed to avoid 2,6-dialkenylation. The use of a mild 

Lewis acid was likely needed to enable reversible complexation to the pyridyl nitrogen 

atom. The zinc Lewis acids provided the mono-alkenylated products whereas the 

aluminium gave the bis-adduct.113 Unsurprisingly, based on their results with the N-oxide, 

electron-poor pyridines gave lower yields than electron-rich pyridines. The catalytic cycle 

is postulated to be similar to the one proposed for the hydroalkynylation of pyridine N-

oxides.113 
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N

PrPr
+

Ni(cod)2 (3 mol %)
P(iPr)3 (12 mol %)

LA (6 mol %)
toluene, 50 ºC N

Pr
Pr

N
Pr

Pr

Pr
Pr

+

LA = ZnMe2
95%

LA = AlMe3
82%

(19)

 

Chang described the oxidative addition of alkenes to pyridine N-oxides.114 Pyridine 

N-oxide in presence of Pd(OAc)2, Ag2CO3, a pyridine additive, in 1,4-dioxane at 100 ºC 

gives the 2-alkenylated pyridines in moderate to excellent yields (Eq. 20). The scope of the 

reaction is largely limited to Heck-acceptors, perhaps giving insight into the reaction 

mechanism. The N-oxide bound palladium complex was synthesized and was found to be 

inactive in the reaction.114 This corroborated the fact that the N-oxide group does not play a 

role in directing the reaction, and that the site selectivity is likely due solely to electronic 

activation, as reported by Fagnou and Gorelsky.52 The role of the pyridine additive is not 

fully understood, but given its replacement with K2CO3 leads to only a modest drop in yield 

suggesting it acts as a weak base. Finally, arylation with benzene is also possible under the 

same reaction conditions, giving the 2-phenyl pyridine N-oxides in moderate to good 

yield.114 A year later Wu reported a similar version of this alkenylation with quinoline N-

oxides without the inclusion of an external oxidant.115  

N
O

+ R N
O

R

4 equiv 1 equiv

Pd(OAc)2 (10 mol %)
Ag2CO3 (1.5 equiv)
pyridine (1 equiv)

1,4-dioxane 100 ºC

R = CO2Et, 91%
R = CONMe2, 87%
R = C(O)Me, 62%
R = PO(OEt)2 70%

(20)

 

3.1.3 Copper-Catalyzed Direct Functionalization 

The well-known Ullmann reaction is the first transition metal-mediated process for 

the synthesis of bi-aryl compounds (vide supra).6 However, due to limitations in the 
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preparation of unsymmetrical compounds, the elevated temperatures typically required, and 

the advent of palladium as well as nickel-catalyzed cross coupling chemistry, the catalytic 

application of copper catalysts have been largely put on the wayside. This is despite their 

typical high stability, low cost, and low toxicity relative to palladium and nickel.8a In the 

mid-1990’s Liebeskind divulged a copper-mediated Stille-type cross coupling reaction (Eq. 

21).116 The reaction could be employed at low temperature, providing an inexpensive and 

highly active catalytic system. This work laid the foundation for work towards replacement 

of expensive metal catalysts, and copper has been since applied in various other cross 

coupling reactions,117 amination reactions (even bearing ppb levels of copper),118,119,120 and 

has been applied in the synthesis of various heterocycles.121 Though progress has been 

made in the application of copper catalysts in more traditional processes, it can be argued 

that the use of this reagent still lags behind less sustainable palladium and nickel systems. 

Sn(nBu)3 I Br
+

Br

93%

NMP, 0 ºC, 5 min

Cu(TC) (1.5 equiv)
(21)

 

Perhaps due to the increased familiarity of the metal as a result of cross coupling 

technology, palladium has dominated the domain of C–H functionalization chemistry.8c,13 

Consequently, less costly copper and iron catalytic systems are seldom reported. A 

summary of copper applications can be seen below. Perhaps one of the first examples of 

aromatic C–H derivation is the directed ortho-amination of 2-phenylpyridines by Chatani 

(Scheme 37).122 The reaction employs inexpensive Cu(OAc)2, though necessitates 

refluxing in mesitylene and the reported functional group scope is limited. Two years later 

Buchwald reported an intramolecular amination with amidines to form a range of 

benzimidoles using the same copper source, though this time as a catalyst (Scheme 37).123 

The reaction was performed at 100 ºC, required an O2 atmosphere, and delineated a large 
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substrate scope. Similar to amination reactions, Yu applied conditions employing 

stoichiometric copper in the directed oxygenation of 2-phenylpyridine (Scheme 37).124 

Scheme 37. Copper-catalyzed direct amination and hydroxylation reactions. 

 

Cacchi described an interesting C–C bond formation process through the synthesis 

of multisubstituted indole skeletons from N-aryl enaminones.125,126 The reaction engaged a 

CuI/phenanthroline catalytic system, in presence of Li2CO3 in DMF at 100 ºC (Eq. 22).  

N CH

Ar1

R O Ar2

N

C
Ar1

O
Ar2

R

XX

CuI (5 mol %)
phenanthroline (17.5 mol %)

Li2CO3 (2 equiv)
DMF, 100 ºC

(22)

27 examples
51-83%  

More pertinent to our research interests are copper-catalyzed direct arylation 

reactions. Electron-rich heterocycles have been most used in these methodologies. In 2007 

Daugulis detailed a CuI catalyzed arylation of benzoxazole derivatived with aryl iodides 

(Scheme 38).57 Both KOtBu and LiOtBu could be applied as bases, with the former 

initiating a likely benzyne intermediate during the course of the reaction. This reaction was 
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used by You in the arylation of caffeine en route to the synthesis of fluorescent probes.127 

Not surprisingly, as reported by Miura, 1,3,4-oxadiazoles and 1,2,4-triazoles couple with 

aryl iodides effectively, though PPh3 is needed in addition to the copper catalyst (Scheme 

38).128 Gaunt communicated an elegant arylation of indoles with aryl iodonium salts in 

presence of a catalytic amount of Cu(OTf)2 (Scheme 38).129 They displayed exceptional 

control of the arylation of the C2 and C3 sites by tuning the substitution of the endocylic 

nitrogen atom. 

Scheme 38. Copper-catalyzed direct arylation reaction with electron-rich arenes. 

 

Gaunt followed this account with the first example of a meta-selective direct 

arylation.130 Anilides could be arylated meta to the functional group by aryl iodononium 

salts under copper catalysis (Scheme 39). Not only does this go against electrophilic 

aromatic substitution as the anilide group is ortho- and para-directing, similar palladium-

catalyzed C–H arylation occurs ortho to the group presumably due to directing effects.58 

Daugulis reported the arylation of perfluoroarenes under mildly basic conditions (Scheme 

39).131 Germane to the topic at hand, he also uncovered the copper-catalyzed direct 

arylation of pyridine N-oxides.57 The reaction is believed to proceed primarily due to the 

relative high acidity of the $-protons of the pyridinium ring (Section 1.3.3). 
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Scheme 39. Copper-catalyzed direct arylation of electron-poor arenes. 

 

Piguel exposed the only example of a direct alkenylation in 2008 (Eq. 23).132,133 

They established that oxazoles could be alkenylated by vinyl chlorides, bromides, and 

iodides in presence of a catalytic system composed of CuI and trans-N,N’-

dimethylcyclohexane-1,2-diamine. As with Daugulis, LiOtBu was employed as a base. The 

scope of the reaction tolerated a wide range of functionalities, giving the products in good 

to excellent yields. 

 

3.1.4 Research Goals 

Given the above summary, there remains a challenge in synthesizing 2-alkenyl 

pyridines in an efficient fashion, bearing serviceable functionality, and using inexpensive, 
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non-toxic catalysts. Furthermore, there are few copper-catalyzed direct functionalization 

reactions relative to more expensive metals, and only a single example of a copper-

catalyzed direct alkenylation. This example is on an electron-rich arene, and no electron-

poor species have been published at the start of this work. The following sections will 

describe our work on the copper-catalyzed direct alkenylation of N-iminopyridinium ylides. 

We will first start with the description of a novel method to make a range of alkenyl 

halides. This will be followed by the optimization of the alkenylation, and the application 

of these newly prepared halides in the derivitization of N-iminopyridinium ylides. 

3.2 Stereoselective Synthesis of (E)-!!-Aryl Vinyl Iodides 

3.2.1 Introduction 

Over the past four decades aryl and vinyl halides have become increasingly 

important reagents due to the advent of cross coupling and, more recently, C–H 

functionalization reactions. These methods have permanently facilitated, and thus altered 

the way we construct carbon skeletons. Whilst aryl halides are widely commercially 

available, the corresponding stereochemically pure vinyl halides are much less so, as is 

reflected in their high cost. Ergo, there has been much interest in developing systematic 

methods for the synthesis of these compounds. In particular, (E)-!-aryl vinyl halides are 

attractive materials as vinyl aryls are present in several compounds bearing biological and 

medicinal activity.132,134 

Several methods have been disclosed for the preparation of these compounds 

(Scheme 40). However, these techniques are largely inefficient, necessitating the formation 

of the requisite alkene precursor followed by installation of the desired halide. One method 

to form these useful reagents is via the Hunsdiecker reaction whereby cinnamic acid 

derivatives are decarboxylated and quenched with a halide (route A).135 A drawback of this 

is the need for expensive pure and scrupulously dry silver salts, though this can replaced by 
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thalium or mercury salts leading to increased toxicity. Cross-metathesis with a vinyl 

boronate (route B),136 or reduction of an alkyne followed by the appropriate electrophile 

quench (route C) is also a means to prepare (E)-!-aryl vinyl halides,137 though these routes 

suffer from multistep syntheses and potential high cost of reagents. Homologative methods 

include the Wittig (route D)138 and Takai139 olefination processes (route E). These are often 

high yielding, the former tends to provide only moderate selectivity, and the latter often 

requires large excesses of toxic Cr salts, decreasing the appeal of the method. 

Scheme 40. Various means of preparing !-aryl halides. 

 

During the course of his work in the synthesis of gem-diiodoalkanes through the 

alkylation of diiodomethane with alkyl bromides or iodides,140 a former post-doctoral 

researcher (Dr. James Bull), noted that during the alkylation of NaCHI2 with benzyl 

bromide the diiodide produced tended to undergo elimination to give (E)-!-phenyl vinyl 

iodide (Scheme 41). Given that the elimination product could be obtained in high yield 
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through a one-pot homologation/elimination, and benzyl bromide derivatives are widely 

available, this was envisioned as a solution to some of the aforementioned challenges 

typically encountered in the synthesis of these reagents. The following section will outline 

work conducted towards the optimization and exploration of the reaction.   

Scheme 41. Synthesis of (E)-!-aryl vinyl iodide from benzyl bromide. 

 

3.2.2 Optimization and Scope 

3.2.2.1 Synthesis of (E)-"-Aryl Vinyl Iodides 

The conditions above (Scheme 41) used 5 equiv of NaCHI2 propared from 

diiodomethane and CH2I2 as required in the alkylation with alkyl iodides. We felt 

optimistic that it would be possible to reduce the excess reagents to provide a more efficient 

reaction while increasing the yield. However, initial studies with reduced equivalents 

showed that the loading could be reduced maintaining complete conversion of the benzyl 

bromide. However, complete elimination was not always obtained, leaving the diiodide, 

which caused problems with purification. Separately we found that 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) was effective in driving the elimination of the 

diodide in quantitative yield (Eq. 24). An exploratory run determined that the DBU could 

be added to the reaction mixture following the alkylation to afford only the styryl iodide 

(Eq. 25), However, residual diiodomethane proved difficult to separate from the product. 

With this knowledge in hand, Dr. Bull proceeded with the optimization for the vinyl 

iodides.141 
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II I

DBU (1 equiv)

THF, rt, 1 h
(24)

98%  

Br I
(25)

1) CH2I2 (2 equiv), NaHMDS (2.5 equiv)
    –78 ºC to rt, 16 h

2) DBU (1.8 equiv)
    rt, 1 h 100% conversion

1 : 0.15 product to CH2I2  

Previously the synthesis of the gem-diiodoalkane derived from benzyl bromide was 

achieved by using LiHMDS in a 1:1 ratio with CH2I2 with minimal elimination to the 

vinyliodide (Table 18, entry 1).140 As evidenced by Scheme 41, the application of the more 

reactive sodium anion favours the stereoselective elimination to the desired product.141 

Investigating the equivalents of base and diiodomethane (entries 2-4) determined that full 

conversion with 73% elimination could be obtained with 3 equiv NaHMDS and 1.5 equiv 

CH2I2, while destroying any residual inseparable diiodomethane in the reaction mixture. As 

expected, the addition of DBU eliminated the remaining gem-diiodide, giving the (E)-!-

phenyl vinyl iodide exclusively in a 99:1 E/Z ratio (entry 5). This is due to the minimization 

of unfavourable steric interactions during the elimination (Scheme 41).141 Increasing the 

reaction concentration (entries 6-8) gave higher levels of elimination, though 0.2 M was 

chosen for sake of reproducibility. Additionally, the reaction times could be shortened 

dramatically under these conditions (entry 9). Finally, the DBU was included to ensure 

complete elimination across a range of substrates (entry 10, Method A). Also, for more 

sensitive substrates a new set of conditions employing LiHMDS followed by addition of 

DBU was developed (entry 11, Method B).141 As expected, based on the result in entry 1, 

the involvement of DBU was essential for the elimination to proceed.   

 



 

 

 

90 

Table 18. Selected optimization for the synthesis of (E)-!-aryl vinyl iodides from benzyl 

bromide. 

 

entry equiv 
NaHMDS 

equiv 
CH2I2 

conditionsa concn 
(M)b 

convn 
(%)c 

elimn 
(%)d 

1 2.0e 
(LiHMDS) 2.0 –78 ºC to rt over 16 h 0.05 100 5 

2 2.0 2.0 –78 ºC to rt over 16 h 0.05 97 16 
3 2.0 1.0 –78 ºC to rt over 16 h 0.05 91 71 
4 3.0 1.5 –78 ºC to rt over 16 h  0.05 100 73 

5 3.0 1.5 –78 ºC to rt over 16 h then 
DBU 1 hf

 
0.05 100 100 

6 3.0 1.5 –78 ºC to rt over 16 h 0.1 100 94 
7 3.0 1.5 –78 ºC to rt over 16 h 0.2 100 99 
8 3.0 1.5 –78 ºC to rt over 16 h 0.3 100 100 
9b 3.0 1.5 –78 ºC 1.5 h, to rt 1 h 0.2 100 87 

10g 3.0 1.5 –78 ºC 1.5 h, to rt 30 min then 
DBU 1 h 0.2 100 100 

11h 2.0 e 
(LiHMDS) 2.0 –78 ºC to rt over 16 h, then 

DBU 1 hi 0.2 100 100 
a Reaction performed on a 1 mmol scale. b Concentration of BnBr in solution. c Determined 
by analysis of the crude mixture by 1H NMR. d Percentage of the gem-diiodide that 
underwent elimination to the vinyl iodide. e LiHMDS used in place of NaHMDS. f One 
equivalent of DBU used. g Method A. h Method B. i Two equivalents of DBU used. 

With the two sets of optimized conditions in hand (Table 18, entries 10, 11) we 

explored the scope of the reaction.141 Alkyl-substituted and naphtyl derived benzyl 

bromides provided the corresponding styryl iodides in good to excellent yields with near 

complete E-selectivity (Table 19, entries 1-5). As seen by entry 1, Method A (Table 18 

entry 10) provided superior results with shorter reaction times and thus were our conditions 
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of choice.141 Electron-rich arenes were well tolerated, (entries 6-9) though a slight excess of 

DBU was needed to complete the elimination, and the milder conditions employing 

LiHMDS were needed for 4-OBn benzyl bromide (entry 9). Electron-poor substrates fared 

less well (entries 10-12), with the milder reaction conditions needed to obtain synthetically 

useful quantities of the desired products (Method B, Table 18 entry 11).141 In all cases very 

good E-selectivity was obtained. 
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Table 19. Synthesis of (E)-!-aryl vinyl iodides. 

 

entry a BnBr derivative methodb product yield (%)c E/Zd 

1 A 92 98:2 
2 

Br

 B 

I
80

 82 97:3 

3 Br

 
A 

I
81

 
93 99:1 

4 Br

 
A 

I
82

 
90 99:1 

5 Br

 
A 

I
83

 
70 98:2 

6 
Br

MeO  
Af 

I
84

MeO  
92 97:3 

7 BrMeO

 
Af 

I
85

MeO

 
95 99:1 

8 BrO

O  
Af 

I
86

O

O  
93 99:1 

9 
Br

BnO  
Bg 

I
87

BnO  
76 99:1 

10 
Br

F  
A 

I
88

F  
85 98:2 

11 
Br

NC  
B 

I
89

NC  
51 99:1 

12 Br

F3C  
B 

I
90

F3C  
63 99:1 

a Reactions performed on 4.0 mmol scale. b Method A: CH2I2 (1.5 equiv), NaHMDS (3.0 
equiv), 0.2 M, –78 ºC (1.5 h) to rt (30 min), then DBU (1 equiv for 1 h). Method B: CH2I2 
(2.0 equiv), LiHMDS (2.0 equiv), 0.2 M, –78 ºC to rt (16 h), then DBU (2 equiv for 1 h). c 
Yield of the isolated product. d Ratio determined by 1H NMR spectroscopy. f Used 1.5 
equiv DBU. g Used 3.0 equiv DBU. 
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We became interested in the synthesis of lynchpin fragments whereby halides would 

also be present on the arene ring. As such, cross coupling partners could be made to couple 

different groups selectively at different sites.141 (E)-!-aryl vinyl iodides with chlorine 

(Table 20, entry 1), bromine (entries 2-7), or iodine (entry 8) on the aromatic ring were 

prepared in moderate to very good yields. In these cases, these reactions benefited from the 

conditions with LiHMDS, though for most cases either method provided acceptable yields. 

Finally, the bis-vinyl iodide 96 could be readily prepared with excellent selectivity from 

$,$’-dibromo-m-xylene (entry 9). 

Table 20. Synthesis of vinyl iodide lynchpins. 

 

entry a BnBr derivative methodb product yield (%)c E/Zd 

1 
Br

Cl  
A 

I
91

Cl  
78 98:2 

2 A 43 99:1 
3 

Br

Br  B 

I
92

Br  87 99:1 
4 A 62 99:1 
5 

Br
Br

 B 

I
93

Br

 87 98:2 
6 A 4 99:1 
7 

Br

Br  B 

I
94

Br  88 98:2 

8 
Br

I  
B 

I
95

I  
73 99:1 

9e BrBr

 
A 

I
96

I

 
73 97:3 

(EE/EZ) 
a Reactions performed on 4.0 mmol scale. b Method A: CH2I2 (1.5 equiv), NaHMDS (3.0 
equiv), 0.2 M, –78 ºC (1.5 h) to rt (30 min), then DBU (1 equiv for 1 h). Method B: CH2I2 
(2.0 equiv), LiHMDS (2.0 equiv), 0.2 M, –78 ºC to rt (16 h), then DBU (2 equiv for 1 h). c 
Yield of the isolated product. d Ratio determined by 1H NMR spectroscopy. e Same 
procedure as Method A, though the quantities of NaHMDS, CH2I2, and DBU are doubled. 
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The above reactions were performed on a 4 mmol scale. Given the potential 

application of the methodology in large-scale processes we proceeded to investigate the 

scale up of the reaction. Indeed it was found that the reaction could be performed with 30 

mmol of benzyl bromide, giving 6.0 g of (E)-(2-iodovinyl)benzene.142 Little optimization 

was needed as the stoichiometry of the reagents could be maintained from method A. The 

main difference required was extended reaction times with warming from –78 ºC to rt over 

16 h to ensure complete consumption of the reagents.142 

3.2.2.2 Synthesis of (E)-"-Aryl Vinyl Chlorides and Bromides 

Dr. Bull applied this strategy towards the synthesis of vinyl chlorides and 

bromides.141 Gratifyingly, deprotonating ICH2Cl with NaHMDS prior to the addition of 

benzyl bromide provided the vinyl chloride in moderate to very good yields with excellent 

selectivity (Table 21). Relative to the synthesis of vinyl iodides, extended reaction times 

were needed to ensure complete consumption of the benzyl bromide. However, the addition 

of DBU was not needed, as complete elimination was achieved in all cases.141 Importantly, 

when NaHMDS was used, only the vinyl chloride was noted, as the elimination of HCl 

from the 1,1-chloroiodoalkane intermediate was not observed. The scope was general, and 

again LiHMDS could be used on more sensitive substrates to afford the desired products 

with improved yields (entries 2, 7).141 
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Table 21. Synthesis of (E)-!-aryl vinyl chlorides. 

BrR R
Cl

ICH2Cl (1.5 equiv)
NaHMDS (3 equiv)

Et2O:THF (1:1) [0.2 M]
–78 ºC to rt, 16 h  

entry a BnBr derivative product yield (%)b E/Zc 

1 89 97:3 
2d 

Br

 

Cl
97

 90 97:3 

3 Br

 

Cl
98

 
85 97:3 

4 
Br

MeO  

Cl
99

MeO  
88 96:4 

5 
Br

Cl  

Cl
100

Cl  
55 >99:1 

6 69 >99:1 
7d 

Br

Br  

Cl
101

Br  80 94:6e 

a Reactions performed on 1.0 mmol scale. b Yield of the isolated product. 
c Ratio determined by 1H NMR spectroscopy. d Used LiHMDS under 
otherwise identical conditions. e 2% vinyl iodide present. 

Widening the breadth to the synthesis of vinyl bromides required modification of 

the reaction conditions to be successful as CH2Br2 proved more problematic than CH2I2. In 

many cases, byproducts were observed, including the formation of the alkyne from double 

elimination.141 These were minimized by using an excess of the dibromomethane relative to 

the alkali base, consequently reducing the basicity of the reaction. As with the vinyl 

chlorides, the inclusion of an additional base was not needed as none of the gem-dibromide 

intermediate was observed.141 The substrate scope was general, with electron-rich (Table 

22, entries 1-3), electron-poor (entry 4), and functionalized arenes (entry 5) being tolerated. 
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Table 22. Synthesis of (E)-!-aryl vinyl bromides. 

BrR R
Br

CH2Br2 (4 equiv)
NaHMDS (3 equiv)

Et2O:THF (1:1) [0.2 M]
–78 ºC to rt, 19 h  

entry a BnBr derivative product yield (%)b E/Zc 

1 Br

 

Br
102

 
92 98:2 

2 Br

 

Br
103

 
82 97:3 

3 
Br

MeO  

Br
104

MeO  
93 99:1 

4 
Br

F  

Br
105

F  
90 99:1 

5 Br

Br  

Br
106

Br  
63 99:1 

a Reactions performed on 1.0 mmol scale c Yield of the isolated product.      
d Ratio determined by 1H NMR spectroscopy.  

3.3 Direct Alkenylation of N-Iminopyridinium Ylides 

3.3.1 Reaction Optimization 

Our approach to the direct synthesis of 2-alkenyl pyridine derivatives was through 

the coupling of vinyl halides at the 2-position of the N-iminopyridinium ylides (Scheme 

42). To date there had been no examples of such alkenylations of electron-deficient 

heterocycles. We believed that this might provide a potential solution to some of the 

aforementioned challenges in the synthesis of these relevant molecules (vide supra, Section 

3.1) as we have documented the facile synthesis of ylides66 and applied them in various 

reactions.65,70,75 Furthermore, these ylides not only generate activated pyridinium species 

that are amenable to a myriad of transformations, they also demonstrate a powerful 
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directing group capability, and this should favour metal-mediated transformations at the 2-

position.65,70,75 Now equipped with a veritable library of potential vinyl halide coupling 

partners,141,142 and with the aforementioned experience in the direct functionalization of 

these ylides, we embarked on the optimization and exploration of this reaction. 

Scheme 42. Proposed direct alkenylation of N-iminopyridinium ylides. 

N
NBz

H + R2

R3
X

R1

N
NBz R1

R2

R3

 

3.3.1.1 Initial Attempts under Palladium Catalysis 

Based on our antecedent work on the direct sp2 arylation, we first elected to try the 

reaction under palladium catalysis as it deemed to be a logical extension of the process.70 

Starting with our optimized arylation conditions (Table 23), and as aryl iodides were viable 

coupling partners in the direct arylation reaction, we chose styryl iodide 80 as our model 

coupling partner. This was to ensure that the oxidative addition into the vinyl-halide bond 

by the catalyst would not be a limiting factor (entry 1). This was verified to be the most 

reactive of the halides, as the vinyl bromide and chloride provided inferior yields (entries 2, 

3). A screening of Pd(TFA)2 gave similar results to Pd(OAc)2 (entry 4), and these were 

superior to all other palladium sources tested (entries 5-8), though Pd(dba)2 did give 

moderate results (entry 5). Palladium/ligand complexes were largely ineffective (entries 9-

12), and Pd-NHC complexes failed to provide any conversion (entries 13, 14).  
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Table 23. Screening of palladium catalysts in the direct alkenylation of N-iminopyridinium 

ylides. 

N
NBz

I
N
NBz

+

Pd (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)

toluene, 125 ºC

1078020
1.5 equiv 1 equiv

 

entry Pd source yield (%)a entry Pd source yield (%)a 

1 Pd(OAc)2 55 8 PdCl2(NCPh)2 0 
2 Pd(OAc)2

b 23 9 Pd(tBu3P)2
d 11 

3 Pd(OAc)2
c 20 10 Pd(PPh3)4

 d
 10 

4 Pd(TFA)2 58 11 (PPh3)2Pd(OAc)2
 d

 9 
5 Pd(dba)2 45 12 PCy2PdCl2

 d <5 
6 PdI2 34 13 Pd(iMes)•Napquin d <5 
7 PdBr2 14 14 PEPPSI d <5 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the 
internal standard. b (E)-!-phenyl vinyl bromide 102 in place of 80. c (E)-!-phenyl vinyl 
chloride 97 in place of 80.d P(tBu)3 was not included into the reaction mixture. 

Ligand screening was not fruitful as out of 14 phosphines tested only P(tBu)3 

(Table 23, entry 1) and P(oTol)3 (17% by 1H NMR) provided any product whatsoever. The 

vinylation proceeded best when a 1:1 ratio of ylide to iodide was placed in the reaction 

mixture, as excesses of either starting material led to decreased yields. Temperature 

screening determined that an elevated reaction temperature of 125 ºC was needed for the 

reaction to proceed. Increasing the reaction temperature above this point was not beneficial, 

and conversions decreased below this point, and little conversion noted under 100 ºC.  

Given that the conditions to this point remained largely unchanged, we proceeded 

with a screening of solvents (Table 24). It was found that non-heterocyclic aromatic and 

ethereal solvents to be best for the C–H transformation. Pyridine, DCE, and NMP were 

ineffective (entries 1-3) while DMA and DMF as the reaction medium provided poorer 
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reactivity (entries 4, 5), despite the improved homogeneity of the reaction mixture. 

Xylenes, DME, and 1,4-dioxane gave improved yields (entries 6-8), with toluene and THF 

giving the best conversions (entries 9, 10). Despite its relative high volatility, THF was 

chosen as the solvent for the remainder of the optimization. 

Table 24. Solvent screening for the Pd-catalyzed direct alkenylation of N-iminopyridinium 

ylides. 

N
NBz

I
N
NBz

+

Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)

solvent, 125 ºC

1078020
1 equiv 1 equiv

 

entry solvent yield (%)a 

1 pyridine <5 
2 dichloroethane <5 
3 N-methylpyrrolidinone <5 
4 dimethylacetamide 15 
5 dimethylformamide 19 
6 xylenes 32 
7 dimethoxyethane 43 
8 1,4-dioxane 49 
9 toluene 55 
10 THF 59 

a Yields are measured by 1H NMR spectropscopy using 
1,3,5-trimethoxybenzene as the internal standard.  

Exploring the range of bases proved unproductive (Table 25). Potassium carbonate 

proved to be the optimal base, though phosphate and other carbonate bases were mildly 

compatible. Of note is the absence of any reactivity when employing stronger bases such as 

NaOtBu, KOtBu, and KH. Not only was there no conversion towards the alkenylated 
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pyridinium, in these cases the ylide starting material was completely destroyed, with only 

degradation products noted by 1H NMR spectroscopy. 

Table 25. Base screening for the Pd-catalyzed direct alkenylation of N-iminopyridinium 

ylides. 

N
NBz

I
N
NBz

+

Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

base (3 equiv)

THF, 125 ºC

1078020
1 equiv 1 equiv

 

entry base yield (%)a 

1 K2CO3 59 
2 K3PO4 45 
3 Cs2CO3 17 
4 KHCO3 7 
5 Na2CO3 <5 

a Yields are measured by 1H NMR spectroscopy using 
1,3,5-trimethoxybenzene as the internal standard.  

3.3.1.2 Optimization under Copper Catalysis 

As the standard reaction parameters failed to lead to significant improvement in 

yield, we next considered the application of various additives to assist the reaction (Table 

26). Lithium chloride was added to assist in oxidative addition (entry 2),8a though this 

appeared to completely halt any reaction with only unreacted starting material being 

observed in the crude 1H NMR spectrum. Fagnou reported much success administering 

pivalic acid to facilitate concerted metallation/deprotonation (CMD) sequences,52,58a,i 

though this proved detrimental to our efforts (entry 3). Inclusion of water to increase the 

solubility of the base led to decreased yields (entry 4), as did molecular sieves (entry 5). 

The latter is likely due to an inhibition of the agitation of the reaction mixture. 

Benzoquinone was ineffective (entry 6).13 Interestingly, adding DMSO was beneficial 
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providing the desired product in 60% yield (entry 7). This is known to inhibit aggregation 

of Pd0 intermediates, improving the turnover of the catalyst.62,143 Copper (I) bromide was 

incorporated into the mixture as copper has been used to mask Lewis basic sites in other 

catalytic systems involving nitrogenous heterocycles, further activating the ring towards 

direct arylation processes.50 This proved particularly effective in our catalytic system with a 

yield of 63% being observed along with evidence for the formation of the 2,6-divinylated 

N-iminopyridinium ylide.144 

Table 26. Addition of additives to the direct alkenylation of N-iminopyridinium ylides 

N
NBz

I
N
NBz

+

Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)
additive

THF, 125 ºC

1078020
1 equiv 1 equiv

 

entry additive equiv yield (%)a 

1 none n/a 54 
2 LiCl 3.0 <5 
3 PivOH 0.4 24 
4 H2O 10 vol % 16 
5 MS 3Å 1:1 with 20 35 
6 benzoquinone 1.5 30 
7 DMSO 10 vol % 60 
8 CuBr 0.5 63b 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. b Evidence of 2,6-diarylation 
in crude reaction mixture by LCMS and 1H NMR spectroscopy. 

We were curious as to the role of the copper additive (Table 27). The inclusion of 

10 mol % CuBr, while giving comparable yields towards the mono-alkenylated product as 

the Cu-free reaction (entry 2), led to overall superior conversions due to the presence of a 

significant amount of 2,6-disubsituted pyridinium ylide. Increasing the copper loading to 
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0.5 equiv did lead to increased amounts of the mono-alkenylated product (entry 3), and 

supplementing with an additional 0.5 equiv did not improve conversions (entry 4). In light 

of these results we postulated that copper alone may be promoting the reaction.144 

Gratifyingly, removing palladium in presence of 50 mol % CuBr provided the same result 

with or without palladium was present (entries 5, 6), and superior results to palladium 

catalysis, suggesting that copper may indeed be a more reactive catalyst. Decreasing the 

copper loading to 10 mol % still provided the desired product in 37% yield, clearly 

demonstrating a copper-catalyzed transformation (entry 7).144  

Table 27. Investigation of the role of the copper additive. 

N
NBz

I
N Ph
NBz

+

Pd(OAc)2 
P(tBu)3 
CuBr

K2CO3 (3 equiv)
THF, 125 ºC

1078020
1 equiv 1 equiv

N Ph
NBz

108

Ph+

 

entry Pd(OAc)2 
(mol %) 

CuBr 
(equiv) 

P(tBu)3  
(mol %) 

yield 107 
(%)a 

yield 108 
(%)a 

total  convn 80 
(%) 

1 5 0 15 55 <5 55 
2 5 0.1 15 53 27 80 
3 5 0.5 15 64 22 86 
4 5 1.0 15 61 25 86 
5 0 0.5 15 62 18 80 
6 0 0.5 50 63 20 83 
7 0 0.1 15 37 <5 37 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as the 
internal standard.  

Due to the low cost, wide abundance, low toxicity, and few accounts of copper 

catalyzed direct C–H functionalization reactions we proceeded with the optimization of the 

vinylation with this metal. A small examination of potential ligands indicated that PHOX 

and triphenylphosphine derivatives might be optimal (Scheme 44). However, upon 
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exploring the effect of the ligand to catalyst ratio it was discovered that acceptable 

conversions could be obtained in absence of an external ligand (Figure 13).144 This is 

postulated to be due to the presence of the N-iminobenzoyl moiety that can serve as an 

intramolecular ligand.  

Scheme 44. Ligand investigation for the copper-catalyzed direct alkenylation of N-

iminopyridinium ylides. 

 

N
NBz

I
N Ph
NBz

+

CuBr (10 mol %)
ligand (15 mol %)
K2CO3 (3 equiv)

THF, 125 ºC

1078020
1 equiv 1 equiv

N Ph
NBz

108

Ph+

N N BnHN NHBn

P P

O

N
Ph2P

<5% 50% 107
9% 108

64% 107
22% 108

56% 107
37% 108

65% 107
29% 108  
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Figure 13. Dependancy of PPh3 loading on the direct alkenylation of the pyridinium ylides. 

Motivated by these results we proceeded with the optimization in the absence of an 

external ligand. The alkenylation was largely insensitive to the source and oxidation state of 

the copper (Table 28).144 Both CuBr and CuBr2 gave similar conversions (entries 1,2), 

though CuBr2 displayed improved selectivity towards the monoalkenylation. Other 

comparable sources included CuI, CuCl, Cu(OAc), Cu(OAc)2, and CuOTf•Tol (entries 3-

7). Even copper dust proved quite reactive (entries 8, 9). As a test of the generality of the 

process, a copper reaction vessel was fabricated and used in the transformation (Figure 14) 

with the direct functionalization occurring without the inclusion of an additional source of 

copper. The reaction could be promoted by a penny, even though there is a relatively small 

amount of copper in the plating of the coin.144 Only copper oxides gave decreased yields 
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(entries 10, 11), with Cu2O providing the product in 55% yield and CuO giving no 

conversion whatsoever.  Of note is the relative low cost of all these potential catalysts. 

Where Pd(OAc)2 costs ~25 000$/mol, the cost of these salts is largely under 100$/mol, 

providing an inexpensive technology in the synthesis of these compounds.145 Ultimately 

CuBr2 was chosen as the catalyst of choice due to its improved selectivity and known 

stability.  

Table 28. Screening of copper catalysts. 

N
NBz

I
N Ph
NBz

+
copper (10 mol %)

K2CO3 (3 equiv)
THF, 125 ºC

1078020
1 equiv 1 equiv

N Ph
NBz

108

Ph+

 

entry copper 
source cost/mol yield 107 

(%)a 
yield 108 

(%)a 
total  convn 80 

(%) 

1 CuBr 71$ 51 32 83 
2 CuBr2 112$ 61 19 80 
3 CuI 49$ 61 21 82 
4 CuCl 12$ 60 26 86 
5 Cu(OAc) 1054$ 54 26 80 
6 Cu(OAc)2 303$ 53 23 76 
7 CuOTf•Tol 1479$ 53 32 85 

8b Cu dust 
(98%) 

20$ 82 n/a 82 

9 b 
Cu dust 

(99.999%) 
736$ 88 n/a 88 

10 b Cu2O 11$ 55 n/a 55 
11 b CuO 14$ <5 n/a <5 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. b Reaction performed with 1.5 
equiv of 20, 2 equiv of K2CO3, in chlorobenzene. 
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Figure 14. Alternate sources of copper employed. 

Aromatic and ethereal solvents provided the best results (Table 29).144 While 

DMPU, DCE, DMSO, MeCN, and DMF gave low to moderate yields (entries 1-5), THF, 

dioxane, DME, xylenes, toluene, and chlorobenzene provided very good overall 

conversions (entries 6-11). Chlorobenzene was chosen as the optimal solvent due to its low 

volatility, though less expensive toluene could be used in place with nearly identical results. 

 

 



 

 

 

107 

Table 29. Solvent screen for the copper-catalyzed direct alkenylation of N-

iminopyridinium ylides. 

N
NBz

I
N Ph
NBz

+

CuBr2 (10 mol %)
K2CO3 (3 equiv)

solvent, 125 ºC

1078020
1 equiv 1 equiv

N Ph
NBz

108

Ph+

 

entry solvent yield 107 
(%)a 

yield 108 
(%)a 

total  convn 80 
(%) 

1 DMPU 19 <5 19 
2 DCE 22 <5 22 
3 DMSO 38 <5 38 
4 MeCN 39 <5 39 
5 DMF 40 <5 40 
6 THF 59 11 70 
7 dioxane 64 22 86 
8 DME 65 22 87 
9 xylenes 60 24 84 
10 PhMe 68 20 88 
11 PhCl 67 22 89 

a Yields are measured by 1H NMR using 1,3,5-trimethoxybenzene 
as the internal standard.  

Though PhCl gave excellent overall conversion (89%), it provided less than ideal 

selectivity with the 2-vinyl ylide obtained in 67% yield. As a result we reasoned that it 

should be possible to suppress the unwanted 2,6-bisalkenylated product by applying an 

excess of the pyridinium ylide (Figure 15). Indeed it was found that only a 1.5 fold excess 

of the ylide relative to the styryl iodide was needed to statistically contain the double 

functionalization, giving 85% yield of the desired product.144 Though slightly improved 

yields were noted with further increases of the ylide loading, these were not deemed 



 

 

 

108 

significant enough to warrant the application of large excesses of the starting material. 

 

 

Figure 15. Suppression of the bis-vinylation. 

Owing to the low cost and high efficiency of K2CO3, we elected to continue with 

this base (Table 30, entries 1-5).144 It was found that the loading of K2CO3 could be 

decreased from 3.0 equiv to 1.5 equiv without significant decrease in yield (entries 1-3). 

However, 2 equiv was chosen for sake of reproducibility (entry 2). The reaction remained 

effective with copper loadings as low as 2.5 mol %, though 10 mol % was chosen again for 

the repeatability of the reaction (Table 30, entries 6-9). The optimal temperature was 

discovered to indeed be 125 ºC, as lower temperatures decreased yields, (Table 1, entries 
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10-13). Lastly, though mostly complete through 5 h, the reaction was run overnight to 

maximize reaction yields (Figure 16).144 

Table 30. Base and catalyst loading in the copper-catalyzed direct alkenylation of N-

iminopyridinium ylides. 

N
NBz

I
N
NBz

+

CuBr2 (XX mol %)
K2CO3 (X equiv)

PhCl, temp

1078020
1.5 equiv 1 equiv

 

entry K2CO3 
equiv 

CuBr2 loading 
(mol %) 

temperature 
(ºC) 

yield 107 
(%)a 

1 3.0 10 125 84 
2 2.0 10 125 83 
3 1.5 10 125 80 
4 1.0 10 125 46 
5 0 10 125 <5 
6 2.0 10 125 84 
7 2.0 5.0 125 82 
8 2.0 2.5 125 74 
9 2.0 0 125 <5 

10 2.0 10 125 84 
11 2.0 10 115 82 
12 2.0 10 105 72 
13 2.0 10 90 31 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard.  
 



 

 

 

110 

 

 

Figure 16. Reaction yield vs time for the direct alkenylation of N-iminopyridinium ylides. 

3.3.2 Scope for the Direct Alkenylation of N-Iminopyridinium Ylides 

With the optimal conditions consisting of the ylide 20 (1.5 equiv), vinyl iodide (1.0 

equiv), CuBr2 (10 mol %), K2CO3 (2 equiv), in chlorobenzene at 125 ºC for 16 h we studied 

the breadth of the transformation. The scope of the copper-catalyzed reaction was found to 

be quite general.144 Unsubstituted arenes present on the double bond reacted well, with E-

iodides proving more reactive than cis-electrophile (Table 31, entries 1-3). This is thought 

to be due to steric congestion, as the electronics between the two substrates are very 

similar. Curiously, only the E-product was recovered, suggesting isomerization to the more 

thermodynamically favoured conformation. Furthermore, the unreacted ylide could be 

readily recovered (entry 1). Substitution at the 2-position of the arene has little impact 

(entry 4), though a methyl group on the alkene where it is less removed from the reaction 
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site provides the intended product in moderate yield (entry 5). The bis(vinyl iodide) 96 also 

converted to give the dipyridinium adduct in synthetically useful yields (entry 6).144  

Table 31. Scope of various 2-aryl alkenes bearing electron-neutral groups. 

N
NBz

I N R2
NBz

+

20
1.5 equiv 1 equiv

R2

R1
R1CuBr2 (10 mol %)

K2CO3 (3 equiv)
PhCl, 125 ºC, 16-24 h

 

entry alkenyl iodide product yield  (%)a 

1 
I
80

 
81 (93)b 

2 109I

 

N
NBz

107  71 

3 
I
83

 
N
NBz

110  

81 

4 
I
82

 
N
NBz

111  

78 

5 I
112

 
N
NBz

113  

48 

6c 
I
96

I

 
N
NBz

114

N
NBz  

63 

a Yield of isolated product. b Yield based on recovered starting material. c Used 3.1 equiv of 
ylide 20.  

The reaction was determined to be insensitive to the electronics of the arene 

component on the alkene (Table 32).144 More electron-rich substrates provided products in 

good to excellent yield (entries 1-4), with more hindered 2-substitution on the phenyl ring 
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being a non-factor (entries 2, 3). Substrates marked with electron-withdrawing functionality 

displayed similar reactivity (entries 5-7), furnishing the 2-alkenyl substituted ylides in very 

good yields. Diene 125 bearing a distal ester functionality coupled in 41% yield (entry 8). 

Table 32. Scope of electron-rich and poor alkenes. 

entry alkenyl iodide product yield  (%)a 

1 
I
84

MeO  
N
NBz

115 OMe  

87 

2 
I
116

OBn  
N
NBz 117

OBn

 
71 

3 
I
118

OMe  
N
NBz 119

OMe

 
93 

4 
I
86

O

O  
N
NBz 120 O

O

 

75 

5 
I
90

F3C  
N
NBz

121 CF3  

71 

6 
I
89

NC  
N
NBz

122 CN  

89 

7 
I
123

F  
N
NBz 124 F  

83 

8 I 125
EtO2C

 
N
NBz 126

CO2Et

 
41 

a Reaction conditions: Ylide 20 (1.5 equiv), iodide (1.0 equiv), CuBr2 (10 mol %), K2CO3 
(2 equiv), PhCl [0.2 M], 125 ºC, 16-24 h. b Yield of isolated product.  
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Reactivity with iodoalkenes possessing sp3 substitution proved to be substrate 

dependant (Table 33).144 Alkenes containing a cyclopropyl moiety proceeded with 

moderate conversion (entry 1). While 1-iodocyclohexene reacted giving the product in 52% 

yield (entry 2), 1-iodopentene proved much less reactive (entry 3). Several other substrates 

were attempted (Figure 17), each giving little or no product. When the protected vinyl 

iodide 133 was used the desired pyridinium was obtained in 30% yield (entry 4). This could 

be useful in the synthesis of bioactive compounds (Figure 12). When the unprotected 

allylic alcohol is used the resulting ketone is formed from an in situ allylic isomerization 

(entry 5). Though such oxidations are known with other late-transition metals, to the best of 

our knowledge, this is the first such example performed in presence of copper. 
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Table 33. Scope of alkyl substituted alkenyl iodides. 

 

entry alkenyl iodide product yield  (%)a 

1 I
127Ph  N

NBz 128
Ph

 
53 

2 
I
129

 
N
NBz
130  

52 

3 I
131  N

NBz 132  

15 

4 I
133

OPMB  
N
NBz

134
OPMB

 

30 

5 I
135

OH  
N
NBz

136
O

 

22 

a Yield of isolated product.  

O

O
I

I OTIPS
OEt

O

I I

OH

137 138 139 140  

Figure 17. Examples of non-productive alkenyl iodides. 

Perhaps the most striking feature of the reaction is its chemoselectivity (Table 

34).144 Halogen substituents (Cl, Br, I) on the phenyl ring were tolerated (entries 1-4), with 
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the coupling occurring selectively on the alkenyl iodide in moderate to good yields, and no 

arylated products were observed. These compounds are of particular usefulness as they 

contain reactive handles that could be used as a scaffold for the synthesis of more complex 

molecules. The bis(vinyl iodide) can be selectively reacted at one site under unmodified 

reaction conditions, leaving an iodoalkene present in the final product (entry 5).144  

Table 34. Chemoselectivity of the direct alkenylation. 

 

entry alkenyl iodide product yield  (%)a 

1 
I
91

Cl  
N
NBz 141

Cl

 
74 

2 
I
94

Br  
N
NBz

Br

142  

65 

3 
I
92

Br  
N
NBz

143 Br  

74 

4 
I
95

I  
N
NBz

144
I

 

47 

5 
I
96

I

 
N
NBz

145
I

 
41 

a Yield of isolated product.  

Again cognizant that pyridine derivatives may be desired coupling partners, we next 

explored the scope of various pyridinium ylides (Table 35).144 Subsitution at the 2-, 3-, and 
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4-positions of the pyridinium ring was tolerated (entres 1-3). Unsymmetrical 2-, 6- 

bisvinylated ylides can be prepared when starting with a pyridinium species already 

alkenylated at the 2-site. In the case of 3-methyl pyridine, the C–H functionalization occurs 

exclusively at the less hindered 6-position.  The 2-alkenylated quinolonium ylide was 

isolated with moderate yield, demonstrating that other 6-membered azaheterocycles are 

viable coupling partners.  

Table 35. Scope of the pyridinium ylide in the direct alkenylation reaction. 

N
NBz

I
CuBr2 (10 mol %)
K2CO3 (3 equiv)

PhCl, 125 ºC, 16-24 h N
NBz

R2
R2

R1 R1

+

 

entry ylide alkenyl iodide product yield  (%)a 

1 N
NBz

107  

I
118

OMe  
N
NBz
146

OMe
 

74 

2 N
NBz
147  

I
80

 
N
NBz

148  

65 

3 N
NBz
149

Ph

 

I
80

 N
NBz 150

Ph

 

74 

4 N
NBz

151  

I
80

 
N
NBz
152  

41 

a Yield of isolated product.  

In our previous arylation account we were successful in cleaving the N-N bond 

through various reductive techniques.70 It is noteworthy that it is possible to transpose this 
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to these newly formed substrates leaving the valuable double bond intact. The N-N scission 

occurs in good yields over the two steps in presence of zinc dust and acetic acid (Eq. 26).144  

N
NBz

R
i) MeI, Acetone, 75 ºC

ii) Zn dust, AcOH, rt N R

153 R = Ph                81%
Ph154 R =  77%

(26)

 

3.3.3 Mechanistic Investigations 

To gain some mechanistic insight into the pathway of the reaction we performed 

isotopic studies. A primary isotope effect value of 1.45 was obtained through a competition 

study (Eq. 27). 146,147,144 This low value indicates that the transition state is either product-

like or reactant-like in that the hydrogen atom is either close to the base of the starting 

materical respectively. Also, as varying the isotope typically has little effect on reactivity 

and only on the rate of the reaction, the value implies that there is little difference between 

the presence of H or D, and thus the bond breaking is likely not the rate limiting step.147 it 

also suggests that the reaction does not proceed through a radical pathway as this class of 

arylation typically gives a KIE value of 1.0. 

N
NBz

N
NBz

DD

D
D

D

H

H
H

H

H
+

CuBr2 (10 mol %)
K2CO3 (3 equiv)

PhCl, 125 ºC, 16-24 h

80 (1 equiv)

1 equiv 1 equiv

N
NBz

N
NBz

D

D
D

DH
H

H

H
+

Ph Ph

1.45 1.00

(27)

 

We were curious as to the directing group ability of the N-iminobenzoyl moiety. We 

performed the alkenylation reaction in presence of 20 vol % MeOH and still obtained 80% 

yield of the desired product. As such we hypothesized that the inclusion of this proton (or 
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deuterium) source does not adversely affect or alter the reaction. Consequently, we 

embarked on a labeling study (Table 36).144 Mixing ylide 20 in PhCl with 20 vol % 

CD3OD at 125 ºC for 16 h failed to provide any deuterium incorporation into the 

pyridinium (entry 1). Performing the same process in presence of K2CO3 gave equal 90% D 

incorporation at the 2, 4, and 6 positions (entry 3). This was expected as these are known to 

be the most labile protons in similar pyridinium species.1 The inclusion of CuBr2, in 

absence of any base, still gave deuterium incorporation at the 2- and 6-sites of the 

pyridinium exclusively (entry 3), suggesting that the copper readily inserts in a directed 

fashion without the aid of the base.144 The exact level of incorporation could not be 

determined due to peak broadening in the 1H NMR spectrum, implying that a stable 

cupracycle may be formed, though efforts to crystallize this were unsuccessful. Curiously, 

under the complete reaction conditions with both CuBr2 and K2CO3, again selective 

deuterium incorporation at the 2- and 6- site were noted, with no deuterium present at the 4- 

site, this despite the large excess of carbonate relative to the copper catalyst (entry 4). 

Furthermore, unlike when CuBr2 was used in absence of base, the level of deuterium could 

be determined, implying the possible presence of a different catalytic reagent. 
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Table 36. Deuterium labelling study in the direct alkenylation of N-iminopyridinium 

ylides. 

N
NBz

H

H
H

H

H

metal/base
PhCl, CD3OD (20 vol %)

125 ˚C, 16 h
N
NBz

H

H
H

H

H N
NBz

D

H
H

H

D N
NBz

D

H
D

H

D

A B C  

entry metal/base % D 
incorporationa 

LCMS     
[M + 1] product 

1 none 0 199.2 A 
2 CuBr2 (10 mol %) n/a 201.2 B 
3b K2CO3 (2 equiv) 90 202.2 C 
4 CuBr2 (10 mol %), K2CO3 (2 equiv) 92 201.2 B 

a Incorporation determined by 1H NMR. b Equal D incorporation in 2,4,6-positions.  

These results led us to propose the following catalytic cycle (Figure 18).144 Given that a 

wide range of active catalysts were equally operative (Table 28, Figure 14), and the result 

obtained in the previous table ( 
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Table 36, entry 4), it is believed that a single active copper species is responsible 

for the alkenylation. An additional note is the fact that the reaction works in presence of 

Cu0, CuI, and CuII salts, also giving weight to this hypothesis. We believe that the active 

copper species is a CuI intermediate. Copper (II) can be reduced to copper (I) via the 

pyridinium ylide (Figure 18, A), as this is known with various nitrogen nucleophiles, or 

through known disproportionation to CuI/CuIII. 129,148 The fact that this occurs would also 

explain the lag in reaction observed in the first hour of the transformation (Figure 16). 

Additionally, the characteristic red-brown colour of copper (I) salts is observed following 

the reaction, suggesting its formation.149  In the case of copper (0), the ylide can add into 

the copper, generating a copper (II) intermediate that is again converted to the active copper 

(I) catalyst.150 Once the CuI reagent is available it may undergo a known ligand exchange 

with K2CO3 (B) to generate CuCO3 that can undergo a possible directed CMD insertion 

into the 2-position of the pyridinium ring (C).151,152 As noted, the carbonate, though not 

needed to effect the insertion, is required for the reaction to proceed and may ultimately act 

in controlling the pH of the reaction through the formation of potassium bicarbonate. The 

metallated pyridinium can oxidatively add into the alkenyl iodide (D),153 forming a high 

energy CuIII intermediate that undergoes rapid reductive elimination to liberate the product 

(E) and CuI, that then reinserts into the catalytic cycle.144  
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Figure 18. Proposed catalytic cycle for the direct alkenylation of N-iminopyridinium 

ylides. 

3.4 Summary 

In summary we have presented solutions to three problems present in organic 

synthesis. Firstly, we developed a high yielding, extremely selective synthesis of (E)-!-aryl 

vinyl iodides, with a large scope tolerating a breadth of functional groups. This method is 

advantageous as it avoids multistep syntheses by using readily available benzyl bromides, it 

does not employ expensive or toxic metal reagents, and offers facile reaction work-up.  

These reagents were then employed in the copper-catalyzed direct alkenylation of 

N-iminopyridinium ylides. This provides a relatively general and facile method to access 2-

alkenyl pyridines with moderate to excellent yields. Previous reported methods, though 
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efficient, suffer from harsh reaction conditions and poor functional group tolerance. In 

addition to supplying a new method for the synthesis of these compounds, we discovered 

that the reaction can be indeed be copper-catalyzed, adding to the few known examples of 

copper-catalyzed direct functionalizations, and the first copper-catalyzed direct 

alkenylation of electron-poor arenes.  

 



 

 

Chapter 4                                                                    

Synthesis of 2-Substituted Pyrazolo[1,5-a]pyridines 

4.1 Introduction 

Pyrazolopyridines (Figure 20) are an important class of nitrogen-containing 

compounds and are often employed as the backbone of pharmacologically active 

molecules. They are applied as indole isosteres due to their relatively high metabolic 

stability. Notably, pyrazolo[1,5-a]pyridines (Figure 21), specifically when substituted 

in the 2-position, are known for their ability to act as dopamine D3 agonists and 

antagonists, and are used in the treatment of various psychostimulant addictions.154 

Indeed the D3 receptor controls dopamine synthesis, release, neuronal firing and is 

linked to the pathophysiology of Parkinson’s disease as well as schizophrenia.154 Other 

applications of pyrazolo[1,5-a]pyridines include adenosine A1 receptor antagonists with 

potent diuretic activity as well as in the treatment of cardiac arrhythmias and for the 

diagnosis of ischemic heart diseases.155 Finally, certain pyrazolo[1,5-a]pyridine 

derivates have also been found to have superior reactivity than Acyclovir and its 

prodrug Valacyclovir as antiherpetic agents.155 

N

[1,5-a]

N N N
H

N
N

N
H

N N N
H

N
N

N
H

N

[3,4-b] [4,3-b] [4,3-c][3,4-c]  

Figure 20. Various pyrazolopyridine analogues. 
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N N

O

NH

NN

Dopamine D3 antagonist

N N
Ph

N
O

HO

Diuretic adenosine A1 Antagonist

N N

HN

N
N

F

H
N

Antiherpetic

N N
Ph

N
N

O

Adenosine Receptor Antagonist

OMe

CO2H

N
N

N N Cl

Dopamine D4 Antagonist

N N

O
NH

N

5HT3 Antagonist

 

Figure 21. Various biologically active pyrazolo[1,5-a]pyridine derivatives. 

Despite their clear importance, the synthesis of 2-substituted pyrazolo[1,5-

a]pyridines (from here on generalized as pyrazolopyridines) remains a challenge. The 

most reported and perhaps reliable method involves a [3+2] cycloaddition onto an N-

amino pyridinium salt (Scheme 45).156 Though 2-substitution is possible, typically 2-, 

3-disubstituted or 3-substituted pyrazolopyridines are observed. Additional limitations 

of this process include the need for an electron-withdrawing group on the dipolarophile, 

and the moderate yields of the products.156 2-Substituents on the heterocyclic system are 

possible through various intramolecular cyclizations, including displacements,157 radical 

additions,158 nitrenes,159 and via rearrangements of pyridine derivatives bearing 

aziridine intermediates (Scheme 45).156b,160 Several of these transformations have been 

reported with good yield, though several synthetic steps are often required to build-up 

these building blocks, hampering the efficiency of the preparation of these compounds. 
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Scheme 45. Various methods for the synthesis of pyrazolopyridines.  

N
NH2

R1

Y
Y = H or leaving group

R1 = EWG

X
+

N
NH2

X

R2

N R1

R2N3

R2

N
HO

N

N
N

N
Y

Br

Y = N, C–H

N N

R2

MeS
SMe

OH

CO2H

[3 + 2] Cycloaddition

Intramolecular
Cyclization

Nitrene
Intermediates

Aziridine Intermediates

Radical
Cyclization

Intramolecular
Cyclization

N N

R1

R2

 

4.1.1 Research Goals 

One way to improve the convergence of these reactions is through the use of 

cascade processes. Modern synthetic methodology emphasizes molecular complexity 

while minimizing the requisit number of synthetic steps. As such, cascade, or tandem, 

processes in which several bonds can be made/broken in a single reaction vessel have 

garnered much attention.161 These domino sequences are often atom economical, and 

save considerable resources in both time and cost by limiting the number of operations 
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required to reach a specific target. An ideal scenario would also involve direct 

transformations in the cascade, further improving the overall economy of the process. 

While several applications of N-iminopyridinum ylides have been presented in this 

dissertation, until recently they have not been applied in tandem reactions. The 

following sections will describe the efficient synthesis of 2-substituted 

pyrazolopyridines from these pyridinium ylides through a direct 

functionalization/cyclization reaction involving various vinyl halides and alkynes. This 

is thought to be the first example of a direct functionalization/cyclization sequence. The 

total reaction sequence is two-steps from pyridine (Scheme 45), and the wide 

availability of coupling partners allows for the facile build-up of a library of medicinally 

relevant compounds.162 

Scheme 45. Facile two-step synthesis of pyrazolo[1,5-a]pyridines from pyridine. 

N

OH2N

NO2

NO2

BzCl N
NBz

N
N

R

Transition
Metal 

Catalysis

 

4.2 Results and Discussion 

4.2.1 Reaction Optimization 

During the work towards developing a palladium-catalyzed direct alkenylation 

reaction on N-iminopyridinium ylides,144 we found that substituting K2CO3 with 

Ag2CO3 as the base led to the formation of 2-phenylpyrazolopyridine 155 (Scheme 46), 

as confirmed by x-ray crystallography. In the crude reaction mixture, no uncyclized 

product 107 was observed, and only the unreacted ylide 20 along with 80 and benzoic 

acid were present.162 The initial explanation for this result was a palladium-catalyzed 

direct alkenylation followed by a silver-mediated cyclization process. The benzoic acid 
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generated was presumably formed from the cleavage of the benzoyl moiety of the ylide. 

Mindful of the biological relevance of these compounds, in addition to the lengthy 

syntheses typically associated with them, we embarked on the optimization of this 

transformation.  

Scheme 46. Initial synthesis and x-ray structure of pyrazolo[1,5-a]pyridine 155. 

N
NBz

IPh

Pd(OAc)2 (5 mol%)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)

Pd(OAc)2 (5 mol%)
P(tBu)3 (15 mol %)
Ag2CO3 (3 equiv)

N N
Ph

N Ph
NBz

50%

45%

20

107

155
80

 

Angélique Fortier, a current M.Sc. student, largely performed the optimization 

(Table 37).162 A screening of silver salts determined that a carbonate/acetate motif was 

necessary to promote the reaction (entries 1-4), with silver benzoate being optimal 

(entry 4). Although Pd(OAc)2 displayed similar reactivity, PdBr2 proved to be superior 

to other palladium catalysts (entries 4-6). The process was relatively insensitive to the 

phosphine ligand employed, though P(4-MeOPh)3 did provide the best yields (entries 6-

9). Etheral solvents were validated to be the best reaction media, with 1,4-dioxane 

chosen due to its relatively low volatility (entries 10-13), and a slight increase of the 

loading of ylide 20 gave the optimal reaction conditions (entry 14).162 Ms. Fortier also 

considered other conditions such as reaction time and temperature, though it was 

discovered that decreasing time or lowering the heat available to the system proved 

deleterious. 
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Table 37. Selected optimization for the synthesis of 2-substituted pyrazolo[1,5-

a]pyridines. 

N
NBz
20

I Ph

80

N N
Ph

155

+

palladium (5 mol %)
ligand (15 mol %)

silver (3 equiv)

solvent, 125 ºC, 16 h

 

entry palladium ligand silver solvent yield (%)a 

1 Pd(OAc)2 P(tBu)3 AgOTf PhMe <5 
2 Pd(OAc)2 P(tBu)3 AgOAc PhMe 13 
3 Pd(OAc)2 P(tBu)3 Ag2CO3 PhMe 45 
4 Pd(OAc)2 P(tBu)3 AgOBz PhMe 50 
5 Pd2(dba)3 P(tBu)3 AgOBz PhMe 31 
6 PdBr2 P(tBu)3 AgOBz PhMe 52 
7 PdBr2 PPh3 AgOBz PhMe 59 
8 PdBr2 P(2-MePh)3 AgOBz PhMe 60 
9 PdBr2 P(4-MeOPh)3 AgOBz PhMe 63 
10 PdBr2 P(4-MeOPh)3 AgOBz DMF 46 
11 PdBr2 P(4-MeOPh)3 AgOBz THF 64 
12b PdBr2 P(4-MeOPh)3 AgOBz DME 63 
13 PdBr2 P(4-MeOPh)3 AgOBz 1,4-dioxane 69 
14c PdBr2 P(4-MeOPh)3 AgOBz 1,4-dioxane 80 

a Yield was determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as an 
internal standard. b 1 equiv of 20 was used. c 2 equiv of 20 was used. 

4.2.2 Scope of the Reaction 

4.2.2.1 Vinyl Halides 

With these conditions in hand we next explored the scope of the halide coupling 

partner. Given the plethora of vinyl halides already prepared,141 and due to the 

medicinal interest of 2-phenyl pyrazolopyridines (Figure 21), we first considered these 
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pseudo-electrophiles. (Table 38). Both E and Z substituted styryl iodides provided the 

desired 2-phenyl pyrazolopyridine, though improved yields were noted for the E-alkene 

(entries 1, 2).162 Styryl bromides were equally efficient (entries 3, 4), though chlorides 

proved unreactive with only starting material observed in the crude reaction mixture 

(entry 5).163 The curious result obtained in entry 4 will be discussed further in Section 

4.2.2.2. When the bis(vinyl) iodide 96 was employed, the bis-pyrazolopyridine was 

isolated in 40% yield (entry 8). 

Table 38. Scope of unsubstituted styryl halides. 

 

entry alkenyl halide product yield  (%)a 

1 
I
80

 
78 

2 109I

 
64 

3 
Br
102

 
80 

4 156

Br

 
58 

5 
Cl
97

 

N N
155

 

n/r 

6b 
I
96

I

 

NNNN 157

 

40 

a Yield of isolated product. b 4 equiv of 20 was used in the reaction. 
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We next considered electron-neutral substitution on the arene ring of the vinyl 

iodide (Table 39).162,163 Napthalene was tolerated, though the product was obtained in 

moderate yield (entry 1). Methyl groups at the 2- and 4- positions were well endured 

(entries 2, 3), though with a slight negative effect in the former, presumably due to 

increased steric conjestion. As seen in the previous table, vinyl iodides and bromides 

displayed similar reactivity (entry 4).  

Table 39. Study of electron-neutral substitution on the styryl halide arene ring. 

 

entry alkenyl halide product yield  (%)a 

1 
I
83

 N N
158

 
61 

2 
I
82

 N N
159

 
70 

3 
I
81

 
79 

4 
Br
103

 

N N
160

 76 
a Yield of isolated product.   

Electron-donating groups at the 2-, 3-, and 4-positions were operative in 

providing the product (Table 40). Interestingly benzyl ethers appeared more reactive 

than the 4-methoxy analogue.162 Again, styryl bromides were equally reactive (entry 

3).163 
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Table 40. Scope of electron-rich styryl halides. 

 

entry alkenyl halide product yield  (%)a 

1 
I
118

OMe  N N
161

MeO

 
70 

2 
I
85

MeO

 N N
162

OMe

 
65 

3 
Br
104

MeO  
N N

163OMe
 

63 

4 
I
87

BnO  
N N

164OBn
 

87 

a Yield of isolated product.   

Next the effects of electron-poor arenes on the vinyl halide were explored.162,163 

Generally moderate to good yields were obtained (Table 41, entries 1, 3), and though 

not an arene, the diene 125 bearing a distal ester also reacted with synthetically useful 

results (entry 4). As noted in the previous chapter with the copper-catalyzed 

alkenylation, excellent chemoselectivity was observed with substrates containing 

halides on the aryl component (entries 5-8). With aryl chlorides and bromides no 

evidence of direct arylation was noted, with the 2-substituted pyrazolopyridine being the 

only outcome observed. Aryl iodides, however, yielded complex mixtures where the 

reaction byproducts could not be identified. This possibility was expected due to the 

large excess of silver salts required for the reaction to proceed. 
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Table 41. Scope of electron-poor and haloarenes in the synthesis of 2-substituted 

pyrazolopyridines.   

 

entry alkenyl halide product yield  (%)a 

1 
I
89

NC  
N N

165CN
 

61 

2 
I
123

F  
86 

3 
Br
105

F  

N N
166F

 
79 

4 I 125
EtO2C

 N N
167

CO2Et

 
49 

5 
I
91

Cl  N N
168

Cl

 
63 

6 
I
94

Br  
70 

7 
Br
106

Br  

N N
169

Br

 60 

8 
I
93

Br

 N N
170

Br

 
60 

a Yield of isolated product.   

As with the copper-catalyzed alkenylation, alkyl substitution on the double bond 

was a limiting factor in the process (Table 42).162 Only vinyl iodide 127 bearing a 

cyclopropane provided satisfactory results (entry 1). Where the 1-iodocyclohexene 129 
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was effective in the alkenylation, it failed to react in a productive fashion towards the 

pyrazolopyridine, with the crude reaction mixture displaying only starting material 

(entry 2). Iodide 131 proved completely unreactive (entry 3), as were various vinyl 

bromides bearing alkanes, such as cis-1-bromo propene (entry 4).  

Table 42. Scope of vinyl halides bearing alkanes in the synthesis of 2-substituted 

pyrazolopyridines. 

 

entry alkenyl halide product yield  (%)a 

1 I
127Ph  N N

171
Ph

 
62 

2 
I
129

 N N  
<5 

3 I
131  N N  

<5 

4 Br
 N N  

<5 
a Yield of isolated product.   

Having exhausted many of the possibilities with regards to the halide coupling 

partner, we next considered the scope of the pyridinium ylide (Table 43).162 A nitrile at 

the 4-position of the heterocyclic ring had little effect on the reaction (entry 1). Both the 

isoquinolonium and quinolonium ylides were viable partners (entries 2, 3), with the 

latter giving the pyrazolopyridine derivative in excellent yield. When the ylide derived 

from 6-methoxyquinoline was employed the yield decreased to 69% (entry 4), 

suggesting a possible effect of acidity at the 2-position of the ring in the transformation. 
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The pyrazine ylide 179 reacted, also furnishing the desired product in 69% yield (entry 

5). Finally, 3-substituted pyridines reacted in good yields, with the least hindered 

product being the major product in both cases (entries 6, 7).  
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Table 43. Scope of the ylide in the synthesis of pyrazolopyridines from vinyl halides. 

 

entrya ylide product yield  (%)b 

1 N
NBz

NC
172

 N N
173

NC

 
62 

2 N NBz
174

 N N
175

 

60 

3 N
NBz

151

 

N N
176

 

90 

4 N
NBz

177

O

 

N N
178

O  

69 

5 
N

N NBz
179

 N
N

N
180

 
69 

6 N
NBz

147

 

N N
181

N N  

77 

7 
N
NBz

182

Cl

 

N N
183

N NCl

Cl

 

90 

a Yield of isolated product.   
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4.2.2.2  Alkyne Coupling Partners 

We were puzzled by the result obtained with $-bromostyrene 156 (Table 38, 

entry 4), as the expected product was the 3-substituted pyrazolo[1,5-a]pyridine (Scheme 

47). It was reasoned that the observed 2-substitution might result from first elimination 

of the alkene forming phenylacetylene, and that this may indeed be the reactive species 

in all the above cases.163 To test this hypothesis, phenylacetylene was employed as the 

coupling partner under the reaction conditions and we were elated to find that the 2-

phenyl pyrazolopyridine was isolated in 56% yield. Encouraged by this we embarked on 

a small reaction optimization with the goal of obtaining comparable reaction yields to 

those obtained with the styryl iodides and bromides. A short optimization sequence 

determined that the presence of the palladium catalyst, phosphine ligand, and silver 

source were essential to effect the transformation. Furthermore, the yields could be 

easily improved to 76% by adding an extra equivalent of both the ylide and silver salt 

(Table 44, entries 1-6). Though it can be argued that this decreases the efficiency of the 

reaction, the majority of the unreacted ylide could be recovered, giving a yield based on 

recoverd ylide starting material of 95% (entry 6).  

Scheme 47. Proposed intermediate in the synthesis of 2-substituted pyrazolopyridines. 
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Table 44. Optimization for the sythesis of 2-pyrazolopyridines from phenylacetylene. 

N
NBz

N N

PdBr2 (5 mol %)
P(4-MeOPh)3 (15 mol %)

AgOBz (X equiv)

1,4-dioxane, 125 ºC, 16 h
+

X equiv 1 equiv
20  

entry equiv ylide equiv AgOBz yield  (%)a 

1 2 3 62 
2 1 3 46 
3 2 2 33 
4 3 2 36 
5 2 4 65 
6 3 4 76b (95)c 

a Yield was determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as an internal standard. b Yield of isolated product. 
c Yield based on recovered ylide starting material. 

With the slightly modified reaction conditions we explored the scope of the 

reaction with alkyne coupling partners.163 Given the large scope obtained with (E)-!-

aryl vinyl halides, and the fact that phenyl acetylene (Table 45, entry 1) gave nearly 

identical result to the styryl iodide 80  (76% vs 78%), we elected to pursue the scope of 

other substrates. 1-Ethynylcyclohexene reacted to give the desired pyrazolopyridine in 

85% yield (entry 2), while the analogous 2-methyl-1-buten-3-yne only reacted in 29% 

(entry 3). Of note were 1-octyne, 1-hexyne, and 3,3-dimethyl-1-butyne, which reacted 

giving the 2-alkyl pyrazolopyridines in moderate to good yields (entries 4-6). This result 

demonstrated the complimentarity of these alkynes, as alkyl substituted vinyl halides 

proved largely incompatible. Internal alkynes were a limitation of the reaction 

displaying no reactivity (entry 7).  
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Table 45. Scope of alkynes in the synthesis of 2-substituted pyrazolopyridines. 

 

entry alkyne product yield  (%)a 

1 
 

N N
155

 
76 (95)b 

2 
 

N N
184

 
85 

3 
 N N

185
 

29 

4  N N
186

 
50 

5  N N
187

 
55 

6 
 N N

188
 

64 

7 

 N N  
<5% 

a Yield of isolated product. b Yield based on recovered starting material.  

Finally we considered the scope of the ylide (Table 46). Though these results 

are preliminary, the isoquinolinium ylide reacted well, affording the product in 72% 

yield (entry 1). As with the iodo styrene, substitution at the 3-position gave the product 

in 64% yield, with an inseparable 3:1 mixture favouring the least hindered adduct (entry 

2). The 2-alkenyl ylide reacted in only 21% (entry 3).  
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Table 46. Scope of the pyridinium in the synthesis of 2-subsituted pyrazolopyridines 

from alkynes. 

 

entry ylide product yield  (%)a 

1 N NBz
174

 N N
188

 

71 

2 N
NBz

147

 

N N
189

N N  

64 

3 N
NBz

107

 

N N
190

Ph  

21 

a Yield of isolated product.  

4.2.2.4 2-Methyl N-Iminopyridinium Ylides 

When the 2-picolonium ylide was applied in the reaction the anticipated 

methylated pyrazolopyridine was not observed. Instead the 2-phenyl, 3-acetyl 

pyazolopyridine was isolated in 29% yield (Scheme 48). The structure of the product 

was confirmed through X-ray crystallography. Additionally 191 was obtained without 

employing styryl iodide 80, though the palladium catalyst and silver benzoate were 

needed to effect the transformation.163 A complete optimization of this was not pursued 
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due to insufficient time, though it was found that replacing AgOBz with AgOAc did 

improve reaction yields to 49% (Eq. 28). 

Scheme 48. Product obtained from 2-methyl N-iminopyrididinium ylide 43. 

 

N
NBz43

PdBr2 (5 mol %)
P(4-MeOPh)3 (15 mol %)

AgOAc (4 equiv)

1,4-dioxane, 125 ºC, 16 h
N

N

O

O

(28)

49%  

4.2.3 Mechanistic Investigations 

As with the other direct functionalizations presented to date, we performed some 

mechanistic investigations to gain insight into the transformation.163 As suggested vide 
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supra we believed that the active coupling partner in all cases was indeed the alkyne. A 

series of control experients were performed whereby the styryl iodide 80 was subjected 

to varients of the reaction conditions without the presence of the ylide (Table 47). In the 

presence of the palladium catalyst and phosphine ligand the iodide was recovered in 

84% yield, with the balance appearing to be from degradation products (entry 1). In the 

presence of AgOBz alone, it was recovered in 73% yield, though there was some 

evidence for the elimination to the alkyne (entry 2). This suggests, though while 

halophilic, the silver source alone was not enough to dehalogenate the material. Finally, 

when the complete reaction conditions are employed, the iodide is completely 

consumed towards phenyl acetylene (entry 3). As evidenced by both 1H and 13C NMR, 

the resulting product was found to be the silver acetylide.  

Table 47. Control studies for the fate of the alkenyl iodide. 

I I
+

A B

conditions

80
 

entry conditions product  (%)a 

1 iodide 80 (1 equiv), PdBr2 (5 mol %), P(4-MeOPh)3 (15 mol 
%), 1,4-dioxane [0.2 M], 125 ºC, 16 h A (84) 

2 iodide 80 (1 equiv), AgOBz (4 equiv), dioxane [0.2 M],   
125 ºC, 16 h A (73) 

3 iodide 80 (1 equiv), PdBr2 (5 mol %), P(4-MeOPh)3 (15 mol 
%), AgOBz (4 equiv), 1,4-dioxane [0.2 M], 125 ºC, 16 h B (>95) 

a Yields of isolated product.  

Confirming that the alkyne can indeed be formed in situ we performed a labeling 

study to understand how the alkyne may couple to the pyridinium (Scheme 49).163 The 

deuterated vinyl iodide was synthesized and employed in the reaction conditions. No 

deuterium was found in the final product, confirming the possible presence of the silver 

acetylide. 
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Scheme 49. Labelling study in the synthesis of 2-substituted pyrazolopyridines from 

vinyl iodides. 

N
NBz

N
N

+

Ph

PdBr2 (5 mol %)
P(4-MeOPh)3 (15 mol %)

AgOBz (3 equiv)

1,4-dioxane, 125 ºCPh
I

D

D

H No deuterium 
incorporation

PhI
D

D

Ag
Ph

D AgOBz

DOBz

Ph

Ag

via

 

The low yield obtained for product 190 (Table 46, entry 3) partly results from 

the intramolecular cyclization of the alkene to give the 2-phenyl pyrazolopyridine 155 

in 14% yield. As such we performed a series of control experiments akin to those of the 

styryl iodide. In the presence of the palladium or silver alone no cyclization was 

observed with only the 2-alkenyl pyridinium ylide recovered.162 However, under the 

complete reaction conditions the 2-phenyl pyrazolo[1,5-a]pyridine could be isolated in 

56% yield (Eq. 29),164 suggesting that a tandem coupling cyclization pathway and not a 

[3+2] cycloaddition pathway was operative.  

 

Finally, primary isotope values of 1.7 and 1.5 were noted when 80 and phenyl 

acetylene were used as coupling partners respectively.163 As with what was observed in 

the Cu-catalyzed alkenylation, this suggests that the hydrogen atom lies either near the 

ylide or near the base in the transition state, making the state either reactant-like or 
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product-like. In addition, their similar value suggest that analogous reaction pathway is 

likely.  

With this information in hand the following catalytic cycle is proposed. First, 

palladium undergoes directed insertion into the 2-position of the pyridinium ring 

(Scheme 50, A). This may happen via #-bond metathesis, generating HBr that can be 

buffered by the excess benzoate. The palladated ylide then can add into the silver 

acetylide giving the metallocycle B. This is analogous to Fujiwara-type alkynylation 

reactions.165 The role of the silver may be to activate the triple bond,164 and the fact that 

this species is needed may explain why internal alkynes are not viable partners.  It is 

possible that vinyl iodides bearing alkyl groups were non-operative as the elimination to 

the alkyne is more difficult for these substrates. When it was demonstrated that the 

uncyclized 2-vinyl ylide could undergo the cyclization, similar Pd-complexes had been 

reported, as has Pd-catalyzed conjugate addition of amines.166 Reductive elimination 

(C) then gives the cyclic intermediate that rearomatizes through the expulsion of the 

benzoyl moiety (D). This may be assisted by silver acting as a Lewis acid. Protonolysis 

of the C–Ag bond at C3 upon work up gives the observed product, explaining the lack 

or deuterium incorporation in the labeling studies (E).  
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Scheme 50. Proposed catalytic cycle for the synthesis of 2-substituted 

pyrazolopyridines. 

 

4.3 Summary 

In summary we have presented a novel, facile method for the synthesis of 2-

substituted pyrazolo[1,5-a]pyridines in two steps from pyridine. Previous methods to 

prepare these compounds either require multi-step syntheses, or cannot avoid possible 

undesired substitution on the 3-position of the product that would require further 
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sequences for its removal. We solved these problems by developing an efficient cascade 

direct functionalization/cyclization process. As the two steps occur in tandem, the 

reaction can be said to be economical, and excess substrates employed can be recovered 

and reused. The scope of potential coupling partners tolerates a range of pyridinium 

species in conjunction with complimentary vinyl iodides, bromides, and alkynes. The 

flexibility of the reaction is likely due to the presence of a single reactive species, 

allowing chemists a wide choice of possible reagents in the preparation of these 

biologically relevant compounds. 

 



 

 

Chapter 5                                                                   

Palladium-Catalyzed Umpolung Direct Arylation 

Reactions 

5.1 Introduction 

The previous four chapters have been focused on direct transformations of electron-

deficient arenes, covering arylation, alkenylation, and alkynylation/cyclization processes. 

Though this has been the primary focus of this doctoral research, we have also considered 

solving quandaries with non-heterocyclic arenes. As alluded in Chapter 1, the biaryl motif 

is a privileged structure (Figure 22), present in many facets of chemistry and biology. This 

motif is part of the scaffold of many pharmaceutically active reagents, natural products, 

agrochemicals, dyes, as well as in supramolecular and organomaterial sciences.2e,f, 5, 6,167 

Direct arylation reactions have provided a solution to some of the problems associated with 

cross coupling chemistry that has dominated the means of the synthesis of these 

compounds.8,9,13 This technology has achieved this by eliminating one of the two (if not 

both) of the preactivated handles needed on the coupling partners. 

NH

Me

Me

OH

OH

HO

Natural Products
(Korupensamine A)

OMe

CO2HC4H9

O

N
N

N NH
Pharmaceuticals
(Diovan - Novartis)

C8H17O

NC C7H15

Liquid Crystals
(NCB 807 - Merck)

Me2N
PCy2

Phosphine Ligands
(DavePhos - Buchwald)  

Figure 22. Selected examples of the biaryl motif. 

Of the direct arylations described, the most dominant class of reactions involves the 

use of a directing group to facilitate the addition of a transition metal, typically palladium, 
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into the C–H bond. There are too many examples to enumerate here, but a common theme 

outlines that the resulting metallocycle then oxidatively adds into an aryl halide to generate 

a high-energy species that quickly reductively eliminates to afford the desired product 

(Scheme 53).14c,168 There have been a plethora of accounts, describing various directing 

groups and coupling partners, covering a wide range of potential substrates. However, the 

umpolung version of this process, until recently, had not been described. This approach 

would rely on a directing group facilitating oxidative addition into an ortho C–X bond 

where X is a suitable leaving group. The stabilized metallocycle could then be used in a 

direct arylation reaction with an unactivated arene. The advantage of this method is that the 

aryl halide can be readily prepared from inexpensive starting materials by directed 

orthometallation chemistry.169 Also, the arene undergoing C–H substitution can be used not 

only as a reactive species, but also as a solvent and separated and reused for further 

reactions. 

Scheme 53. General catalytic-cycle for traditional directed direct arylation reactions. 
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There have been very few examples of the direct arylation of benzene (Scheme 54). 

In 2006 Fagnou reported the palladium-catalyzed arylation of benzene with aryl 

bromides.53 This elegant account can be considered a seminal paper in directing group-free 

arylation methodologies, though suffers from several drawback such as limited substrate 

scope, mostly moderate yields, and the inclusion of several reagents/additives into the 

reaction mixture, complicating the reaction set-up. Subsequently they disclosed a direct C–

H / C–H coupling of benzene with indoles.14a Albeit remarkably atom economical and a 

vital precedent, again limited substrate scope and the inclusion of multiple items into the 

reaction mixture can be considered as a drawback. Qin described the arylation of benzene 

with iodoarenes, though an excess of silver salts and trifluoroethanol were needed, while 

reporting limited scope.170 Finally Lei disclosed an iron-catalyzed arylation of benzene in 

2010, though this will be discussed further in the following chapter.171  

Scheme 54. Few known examples of the direct arylation of benzene. 

 

More often, the arylation of benzene derivatives occurs with electron-poor arenes, 

namely perfluoroarenes (Scheme 55). Studies have elucidated that this is a consequence of 

the increased acidity of the reactive C–H bonds, as well as the coordinative properties of 
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the fluorine atom. Again Fagnou was among the pioneers in this area, publishing two 

accounts and using these substrates to help elucidate the often cited ‘concerted metallation-

deprotonation’ pathway for arylation.54,172 Daugulis has also disclosed a few accounts 

applying copper catalysis.57,131 This reaction is believed to pass through a simple 

deprotonation and metallation of the arene, explaining the need for more electron-poor 

substrates. When very strong bases are employed, benzyne intermediates have been 

proposed. Recently Zhang uncovered an oxidative C–H / C–H coupling between electron-

rich thiophenes and perfluoroarenes.173 The role of Ag2CO3 in this account is thought to be 

that of an oxidant, regenerating the active PdII catalyst. They also applied this process to 

Heck-like reactions whereby the perfluoroarene was added across an alkene.174 

Scheme 55. Application of electron-deficient non-heterocyclic arenes in direct arylation 

reactions. 

 

5.1.1 Research Goals 

The remainder of this chapter will discuss the work on a facile, high-yielding, 

palladium-catalyzed direct arylation reaction between an aryl halide bearing an ortho-

directing group and an unactivated arene. This displays opposite reactivity to what has been 
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typically reported in such transformations and adds to the few examples of the direct 

arylation of benzene derivatives. As will be described, the procedure nessitates only a 

catalytic amount of palladium in absence of a phosphine ligand and a substoichiometric 

amount of silver carbonate.175 

Scheme 56. Proposed direct arylation reaction. 

 

5.2 Results and Discussion 

5.2.1 Reaction Optimization 

 The origins of this project stemmed through attempts of intramolecular 

cyclopropane arylation. It was reasoned that the cyclopropane in Scheme 57 would be 

ideally configured to undergo C–H arylation, being additionally activated considering it is 

also at the benzylic site. Several efforts were made to effect the transformation with little 

success. However, when applying Ag2CO3 as the base 93% of the starting material was 

consumed. Further analysis determined that the observed product was the result of the 

toluene solvent coupling with the aryl bromide.  
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Scheme 57. Discovery of the palladium-catalyzed umpolung arylation. 

 

We postulated early that the cyclopropane moiety of the molecule might simply be 

acting as an exotic ester, directing the catalyst towards oxidative addition.  To verify this, 

ethyl 2-bromobenzoate 191 was prepared and subjected to the reaction conditions, this time 

using benzene as the reaction medium (Table 48). We were delighted to observe the 

desired biaryl in 93% yield using 100 equiv of benzene (entry 1). Also, reproducibility 

could be improved by increasing the temperature to 125 ºC (entry 2). Conscious of the 

literature precedent detailing few examples of benzene arylation processes, in addition to 

the fact that directing groups had not yet been employed in this fashion, we embarked on a 

preliminary optimization of the reaction. We found that excellent conversions were 

obtained with as little as 30 equiv of the reagent/solvent (entries 3, 4). Good conversions 

were obtained with lower amounts, though the reaction was less clean, yielding complex 

mixtures (entry 5). This however could be improved through the use of a co-solvent (entry 

6). For sake of simplicity, we elected to use 100 equiv of the arene as the solvent. 
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Table 48. Initial umpolung arylation optimization with ethyl 2-bromobenzoate. 

EtO O

Br

Pd(OAc)2 (5 mol %)
PCy3 (15 mol %)
Ag2CO3 (2 equiv)

benzene 
125 ºC, 16 h

EtO O

191 192
1 equiv  

entry solvent equiv C6H6 yield 192 (%)a 
1b benzene 100 92 
2 benzene 100 93 
3 benzene 120 98 
4 benzene 30 93 
5 benzene 15 66 
6 10% benzene in 1,4-dioxane 20 73 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as the internal standard. b Reaction performed at 110 ºC 

A former M.Sc. student (Fredéric Vallée) assisted with the screening of palladium 

and ligand sources. As anticipated, the reaction did not proceed in absence of the catalyst 

(Table 49, entry 1). We quickly determined that Pd(OAc)2 was by far the most reactive 

catalyst (entries 2-6). Nickel (entries 7, 8), copper (entries 9, 10), and iron catalysts (entries 

11, 12) were not effective in providing the biaryl compound. 
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Table 49. Screening of catalysts in the palladium-catalyzed direct arylation of benzene. 

EtO O

Br

catalyst (5 mol %)
PCy3 (15 mol %)
Ag2CO3 (2 equiv)

EtO O

191 192
1 equiv

benzene (100 equiv)
125 ºC, 16 h

 

entry catalyst yield 192 
(%)a

 
entry catalyst yield 192 

(%)a
 

1 none <5 7b Ni(COD)2 <5 
2 Pd(OAc)2 92 8 Ni(COD)2 <5 
3 PdI2 7 9 CuI <5 
4 Pd2(dba)3 6 10 CuBr2 <5 
5 Pd(PPh3)4 <5 11b Fe(acac)3 <5 
6 PEPPSI <5 12 Fe(acac)3 <5 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as 
the internal standard. b Reaction performed in absence of a ligand. 

Ligand screening found little sensitivity towards the phosphine additive, tolerating 

both mono (Table 50, entries 1-3) and bidentate species (entries 4-6), with all reagents 

attempted providing yields in excess of 80%. We were elated to discover that the best 

conditions observed involved the absence of any ligand (entry 7), giving a more economical 

reaction in terms of both cost and time. Furthermore, inert atmosphere was not required, 

with the arylation performing equally well in the presence of air, bestowing the product in 

97% yield (entry 8). 
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Table 50. Screening of ligands in the palladium-catalyzed direct arylation of benzene. 

EtO O

Br

Pd(OAc)2 (5 mol %)
ligand (15 mol %)
Ag2CO3 (2 equiv)

EtO O

191 192
1 equiv

benzene (100 equiv)
125 ºC, 16 h

 

entry ligand yield 192 
(%)a

 
entry ligand yield 192 

(%)a
 

1 PCy3 92 5 BINAP 91 

2 PPh3 87 6 MeDuPhos 
monoxide 95 

3 DavePhos 84 7 none 97 
4 DIOP 80 8b none 97 

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as 
the internal standard. b Performed in presence of air. 

Though it could be argued that optimal conditions were in hand, we studied the 

silver reagent in order to gain a better understanding of the process. A small screening 

determined that carbonate/acetate motif was again essential for the reaction, with Ag2CO3 

proving to be most favourable (Table 51). An investigation of the loading gave particularly 

interesting results denoting complete linearity (Figure 23). Only 0.51 equiv of Ag2CO3 was 

need to effect 98% conversion to the biphenyl, and 0.25 equiv have 53 %, and 0.11 equiv 

yielded 21%. Consequently, 0.51 equiv was chosen as the loading. While substoichiometric 

in quantity, for every mole of the reagent there are two moles of silver, demonstrating an 

efficient methodology whereby all the silver included in the reaction goes towards the 

formation of the desired biaryl. 
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Table 51. Silver screening for the optimization of the palladium-catalyzed umpolung 

arylation of benzene. 

EtO O

Br
Pd(OAc)2 (5 mol %)

silver (2 equiv)

benzene (100 equiv)
125 ºC, 16 h

EtO O

191 192
1 equiv  

entry silver yield 192 
(%)a

 
entry silver yield 192 

(%)a
 

1 Ag2CO3 98 4 AgNO2 <5 
2 AgOAc 71 5 none <5 
3 AgO <5    

a Yields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as 
the internal standard. b Performed in presence of air. 

 

Figure 23. Dependancy of yield on silver loading. 

Finally, we re-verified the reaction temperature only to determine that the optimal 

conditions were indeed 125 ºC, with yields tumbling rapidly below 110 ºC (Table 52). An 

investigation of the reaction time demonstrated that 8 h was needed to obtain 90% 
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conversion to the product (Figure 24), though 16 h was chosen for ease of set-up and work-

up, in addition to maximize conversions. 

Table 52. Effect of temperature on the palladium-catalyzed direct umpolung arylation of 

benzene. 

EtO O

Br
Pd(OAc)2 (5 mol %)
Ag2CO3 (0.5 equiv)

benzene (100 equiv)
temperature

EtO O

191 192
1 equiv  

entry reaction temperature (ºC) yield 192 (%)a 
1 125 98 
2 110 78 
3 100 37 
4 90 25 
5 80 15 
6 60 <5 

a Yields are measured by 1H NMR spectroscopy using 
1,3,5-trimethoxybenzene as the internal standard.  

 

Figure 24. Conversion vs time for the palladium-catalyzed direct arylation of benzene. 
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5.2.2 Scope of the Reaction 

With the optimized conditions in hand the scope of the directing group was explored 

with Melanie Lorion, a summer intern student (Table 53).175 The presence of the 

coordinating functionality ortho to the halide is essential, as meta and para substituted 

halides provided poor conversion to the product (entries 1-3). Aryl iodides were equally 

reactive (entry 4), though 2-chloroethylbenzoate was unresponsive. This was expected, as 

typically electron-rich phosphines are needed to assist palladium in the oxidative addition 

into the C–Cl bond. A notable trend is improved yields as the Lewis basicity of the 

directing group is increased.175 Consequently phenyl ketone (entry 5) is more responsive 

than esters (entries 1, 4), and amides are also very reactive (entry 6). 2’-

Bromoacetophenone reacts in moderate yield despite the presence of an enolizable center 

(entry 7). 2-Bromobenzaldehyde reacts in good yield (entry 8). 2-Bromobenzoic acid gave 

full conversion though the desired product was only isolated in 42% yield (entry 9). This 

was thought to be the result of decarboxylation of the product under the reaction conditions, 

and the resulting biphenyl was removed during purification. This could not be verified 

however as biphenyl resulting from homocoupling of benzene was always observed, albeit 

in a non-reproducible manner.175 Thus differentiating the biphenyl from decarboxylation of 

the naturally occurring by-product was not possible. Pivalate protected 2-bromophenol and 

2-bromoaniline gave products in 25% and 33% respectively (entries 10, 11). In both cases 

the halide was completely consumed, and the balance of the material in the reaction was a 

complex mixture. This poorer reactivity is believed to be the result of the formation of a 

six-membered palladacycle intermediate, as opposed to a more kinetically favoured 5-

membered cycle, as the Lewis basicity of the O- and N-Piv groups are comparable to those 

of the ester and aldehyde respectively.175 Other directing groups such as tetrazole, and both 

cyclic and acyclic acetals were not suitable (entries 12-14). 
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Table 53. Scope of the directing group in the palladium-catalyzed direct umpolung 

arylation of benzene. 

entrya aryl 
bromide product yield  

(%)b entrya aryl 
bromide product yield  

(%) b 

1 

EtO O

Br

191  

EtO O

Ph

192  

88 8 

O

Br

205  

O

Ph

206  

74 

2 

EtO O

Br
193  

EtO O

Ph
194  

<5 9 

CO2H
Br

207  

CO2H
Ph

208  

42 

3 

Br

EtO
O

195  Ph

EtO
O

196  

<5 10 

OPiv
Br

209  

OPiv
Ph

210  

25 

4 

EtO O

I

197  

EtO O

Ph

198  

81 11 

NHPiv
Br

211  

NHPiv
Ph

212  

33 

5 

Ph O

Br

199  

Ph O

Ph

200  

94 12 Br

213

N
NN

HN

 

Ph

214

N
NN

HN

 

<5 

6 

Me2N O

Br

201  

Me2N O

Ph

202  

87 13 Br

215

OO

 

Ph

216

OO

 

<5 

7 

O

Br

203  

O

Ph

204  

51 14 
Br

217

OEtEtO

 

Ph

218

EtO OEt

 

<5 

a Reaction conditions: aryl halide (1 equiv), benzene (100 equiv), Pd(OAc)2 (5 mol %), 
Ag2CO3 (0.51 equiv), 125 ºC, 16–20 h. b Yield of the isolated product. 



 

 

 

159 

We next considered the functional group tolerance of the halide partner (Table 

54).175 Methyl and ethyl ester functional groups were chosen as the directing component 

due to their combination of reactivity and flexibility towards potential further structural 

elaboration. A methyl group meta to the bromine atom was well tolerated, giving the biaryl 

product in 82% yield (entry 1). Conversely, when the methyl is ortho only 25% conversion 

was noted, indicating sensitivity of the system towards steric hindrance. Electron-poor 

substrates (entries 2, 3), even those bearing a potentially troublesome nitro group performed 

well (94% yield),8a presumably by futher facilitating oxidative addition of the catalyst. 

Likewise electron-rich species such as protected hydroxyl and amino moieties provided 

products in moderate yields (entries 4, 5).175 These functional groups absolutely required 

masking, as the presence of free OH or NH2 in the haloarene was found to be deleterious to 

the reaction (entries 6, 7).  
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Table 54. Functional group tolerance on the aryl bromide in the direct umpolung arylation. 

R1O O

Br
Pd(OAc)2 (5 mol %)
Ag2CO3 (0.5 equiv)

benzene (100 equiv)
125 ºC, 16 h

R1O O

1 equiv

R2 R2

 

entry aryl bromide product yield (%)a 

1 Br

OMeO

219  

OMeO

220  

82 

2 Br

O2N

OMeO

221  
O2N

OMeO

222  

94 

3 Br

F

OMeO

223  F

OMeO

224  

89 

4 
Br

OMe

OMeO

225  
OMe

OMeO

226  

48 

5 Br

BocHN

EtO O

227  BocHN

EtO O

228  

47 

6 

  

<5 

7 

  

<5 

a Yield of the isolated product. 
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Given the few reported examples of substituted arenes, we next scrutinized the 

scope of the C–H coupling partner (Table 55).175 Where 100 equivalents of benzene was 

used in the previous reactions for a cleaner process, it was found that 50 equivalents of 

high-boiling reagents was sufficient to effect the desired transformation with acceptable 

results. 1,3,5-Trifluorobenzene reacted in good yield (entry 1). The result obtained was 

comparable to those noted with benzene, suggesting that the role of fluorine interacting 

with the catalyst while simultaneously increasing Brønsted acidity is not a major factor in 

the arylation.176 Interestingly 1,3-bis(trifluoromethyl)benzene reacted poorly, possibly due 

to poor %-complexation with the palladium catalyst (entry 2). Again electron-donating 

species afforded the products in moderate yields (entries 3, 4). Substrates providing lower 

yields are the result of incomplete consumption of the bromide starting material. Efforts to 

improve this through additional heating or increased Ag2CO3 loading were unsuccessful. A 

striking feature is the regioselectivity of the process as in many cases where multiple 

products were possible, only one regioisomer was observed (entries 2, 3, 5). Entries that 

can provide three isomers also give only two. This coincides with the previous observation 

of steric sensitivity.175  
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Table 55. Scope of the arene component in the palladium-catalyzed arylation of arenes. 

 

entry  aryl bromide arene product yield 
(%)a 

1 

EtO O

Br

191  F

F

F  

EtO O
F

F

F

229  

80 

2b 

EtO O

Br

191  

CF3F3C

 

EtO O
CF3

CF3

230  

27 

3b 
EtO O

Br

191  

OMe

OMe  

EtO O

OMe

OMe

231  

43 

4 
EtO O

Br

191  

MeO OMe

 

EtO O

OMe

OMe
EtO O

OMe

OMe

232 233  

48c 

5 
EtO O

Br

191  
 

EtO O

234  

77 

6 

EtO O

Br

191  
 

EtO O

235
0:1:1 o:m:p  

88 

a Yield of the isolated product. b 1 equiv of Ag2CO3 employed. c Yield of the combined 
products. 232 was isolated in 30% yield and 233 in 18% yield. 
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5.2.3 Mechanistic Investigations 

Several facets of this transformation were particularly intriguing. Perhaps the most 

interesting parameter was the nature of the palladium catalyst. Given the absence of a 

phosphine ligand, no species were present in the reaction mixture to reduce the palladium 

(II) species to the expected palladium (0), suggesting that a Pd0/PdII manifold was not 

operative. There have been accounts of electron-rich alkenes donating %-electrons to 

palladium, effectively reducing the metal.177 However, no accounts of arenes have been 

described to do this, and though one can argue of its feasibility given the arene is in 2000-

fold excess with regards to the catalyst, the poor reactivity of electron-donating substrates 

(Table 55, entries 3, 4) suggests this hypothesis to be doubtful. 

To elucidate the mechanistic pathway we performed a series of control 

experiments.175 Based on initial results during the reaction optimization, a palladium (II) 

catalyst appeared to be vital for the reaction to proceed. This was confirmed through the 

application of Pd2(dba)3 under the optimal conditions as the reaction was ineffective both 

with and without the presence of a phosphine ligand (Table 56, entries 2, 3). Interestingly, 

most of the reactivity could be restored though the addition of KOAc in a 2:1 ratio with 

Pd2(dba)3, demonstrating the importance of the acetate unit (entry 4). As mentioned earlier 

in this dissertation, this motif is a vital proton shuttle in metallation/deprotonation 

sequences.52,55,178,179 Bearing this in mind we tested Pd(TFA)2, as the TFA moiety should 

be a less effective shuttle, and indeed the reaction proceeded in only 51% yield (entry 5). 

Again, much reactivity was recovered through the addition of KOAc (entry 6). To see if 

acetate in absence of carbonate was sufficient we re-attempted AgOAc under the best 

conditions and obtained only 50% yield (entry 7). The inclusion of K2CO3 as an external 

carbonate source increased the conversion by 15% (entry 8), implying that the carbonate 

may play a role in the regulation of the pH of the reaction mixture, and is not necessarily 

involved in the deprotonation. Lastly, a large primary isotope effect of 5.4 was observed. 

This indicates that the hydrogen atom in the activated complex is almost equally shared 
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between the base and the arene. Also, the large value demonstrates the protium reacts 

fasters than deuterium, and as their chemical reactivity is the same, implies that the C–H 

breaking event may be rate-determining, though this cannot be determines absolutely 

without further kinetic studies.147,175  

Table 56. Role of the reagents in the palladium-catalyzed benzene arylation. 

EtO O

Br

191

+

EtO O

192

125 ºC, 20 h

palladium
silver
additive

1 equiv 100 equiv
 

entrya Pd source silver source additive yield  (%)a 
1 Pd(OAc)2

b Ag2CO3
 d

 none 90 
2 Pd2(dba)3 Ag2CO3

 d none <5 
3 Pd2(dba)3

 c Ag2CO3
 d PCy3 (7.5 mol %) <5 

4 Pd2(dba)3
 c Ag2CO3

 d KOAc (10 mol %) 76 
5 Pd(TFA)2

 b
 Ag2CO3

 d none 51 
6 Pd(TFA)2

 b Ag2CO3
 d KOAc (10 mol %) 73 

7 Pd(OAc)2
 b AgOAc e none 50 

8 Pd(OAc)2
 b AgOAc e K2CO3 (0.51 equiv) 65 

aYields are measured by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as 
the internal standard. b 5 mol % of catalyst employed. c 2.5 mol % of catalyst 
employed. d 0.51 equiv employed. e 1 equiv employed. 

In 1965 van Helden described a PdCl2-mediated homocoupling of benzene in 

presence of a large excess of NaOAc and acetic acid (Scheme 58).180 The reaction is 

believed to proceed by a #–% coordination between the palladium and benzene, followed 

byrapid attack of the acetate ion to generate C6H6 •PdCl2 Wheland pair, dimerization of the 

system and disproportionation to give biphenyl, PdCl2 and Pd0.180 Kinetic studies disclosed 

that the initial coordination is reversible and rate determining. Though PdCl2 is regenerated, 

Pd0 nanoparticles quickly agglomerate, precipitate, and become inactive. More recently, 
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Sasson rendered the process catalytic through the inclusion of chlorobenzene, which can 

trap the palladium (0) generated, and through disproportionation fully convert the 

palladium to the supposed active form, PdCl2.181 Given knowledge recently gained by 

Fagnou and Echavarren, and the suspicious requirement of large amount of acetate in 

solution,52,55,178 it is not unreasonable to propose an alternate pathway to van Helden’s 

reaction (Scheme 58). It is conceivable that the metal undergoes ligand exchange to 

generate Pd(OAc)2 in situ. This is the species that then coordinates to the arene, and inserts 

into the C–H bond through a CMD pathway. Given the excess of acetic acid in solution, 

this process is reversible. Disproportionation with another palladated species then affords 

Pd(OAc)2 and PdPh2, which following reductive elimination gives the corresponding 

biphenyl and palladium black. 

Scheme 58. Palladium-mediated homocoupling of benzene as reported by van Helden. 
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Based on our own studies and the aforementioned precedent, we propose the 

following catalytic cycle (Scheme 59).175 As with van Helden, we believe the palladium 

reversibly adds into the aromatic ring, albeit through a CMD mechanism (A). The 

phenylated palladium is then quickly trapped by the Lewis basic group of the halide partner 

and undergoes a silver-assisted oxidative addition (B). Due to the generation of AgBr, the 

formation of a highly activated cationic palladium (IV) species occurs that is stabilized by 

the directing group (C).182 This intermediate reductively eliminates to give the 

corresponding biaryl (D). Simultaneously the acetic acid generated in the carbopalladation 

step is deprotonated by the carbonate (E) and religates to the palladium, regenerating the 

active palladium catalyst (F). We believe this cycle explains the need for only one 

equivalent of silver atoms, the need for acetate, and the possible role of carbonate in 

regulating the reaction. This pathway also accounts to the aforementioned formation of 

trace quantities of biphenyl, as if the phenylated palladium is not trapped it may proceed 

through the disproportionation and continue through the non-productive pathway similar to 

what was previously reported.180,181 Free hydroxyl and amine groups may not be operative 

due to potential complexation with the palladium catalyst or silver reagent, and may alter 

the pH balance of the reaction. 
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Scheme 59. Proposed catalytic cycle. 

Pd
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AgCO3
- 

or HCO3
-

AgCO3H
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AcO-

+

Br

A

B

CD

E
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5.3 Summary 

We have disclosed an efficient palladium-catalyzed direct arylation reaction 

performed in absence of an external base and requires only substoichiometric amounts of 

silver carbonate. This work describes a directed arylation process that is opposite to what 

has been typically reported to date, in that the directing group is ortho to the halide. This is 

advantageous, permiting the facile synthesis or a wide array of starting materials, and 

enables the use of inexpensive benzene (or other arenes) as both reaction medium and 

feedstock. Though a large excess of benzene is applied, it can be recovered and reused in 

future transformations, and preliminary work during the optimization phase indicated that a 

decrease in loading is viable. This work adds to the few examples of known arylation of 

unactivated arenes, and experiments performed allowed for the proposal of a viable 

reaction mechanism. 

 



 

 

Chapter 6                                                                           

Iron-Catalyzed Direct Arylation through an Aryl Radical 

Transfer Pathway 

6.1 Introduction 

 6.1.1 Iron 

Iron is the most abundant element on Earth, forming much of the planet’s core. This 

element is the fifth most common, and it is the second most present metal in the planet’s 

crust.183 It is a paramagnetic metal of the Group VIII family. One of the key features of this 

element is its existence over a wide range of oxidation states as Fe-II, Fe0, FeI, FeII, FeIII, 

FeIV, FeV, and FeVI species have been reported.183 Moreover it possesses a multitude of 

possible geometries, varying the coordination sphere of the metal, and making it amenable 

for a myriad of chemical transformations. Iron can exist as high or low spin complexes that 

are tunable by ligands, and permiting a degree of control over reactivity. Nature has taken 

advantage of this abundance and of its oxidative/reductive potential, as it is a key 

component of the heme group of hemoglobin, present in many enzymatic cofactors, and 

functional in other cellular mechanisms.184 

6.1.2 Iron in Catalysis 

Given its abundance, several iron catalysts are available at low cost. As seen in 

Table 57, the price of iron reagents is often lower than more traditional palladium, 

rhodium, and iridium species. However, despite this economy, in addition to their low 

toxicity and applicability towards sustainable practices, the use of iron catalytic species 

remains largely unexplored.185 Perhaps the first example of its use in coupling reactions 

was disclosed by Kochi in the early 1970s.186 He described a Kumada-type cross coupling 

employing FeCl3  (Scheme 58). In this process, some of the Grignard reagent is sacrificed 
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to generate an iron (I) intermediate (A) that can oxidatively add into the carbon-halide bond 

(B) of the pseudo-electrophile. Transmetallation of the resulting iron (III) with another 

equivalent of organomagnesium species (C), followed by reductive elimination affords the 

desired product (D) while liberating Fe (I), that is free to re-enter the catalytic cycle.186 

Table 57. Cost of various transition metal reagents per mole.a 

catalyst cost ($) catalyst cost ($) 
FeCl3 3.24 Fe(acac)3 229.57 
CuCl 6.93 FeCl2 292.79 
CuCl2 10.76 Fe(OAc)2 825.25 
ZnCl2 15.00 PdCl2 4610.32 

FeCl2•4H2O 15.91 Pd(OAc)2 8281.94 
NiCl2 46.65 AuCl 15 944.01 
CoCl2 67.51 RhCl3 22 808.90 
CrCl5 99.76 IrCl3 23 288.46 
RuCl3 207.43   

a Prices obtained from Strem Chemicals November 21 2010. 

Scheme 58. Kochi's iron-catalyzed cross coupling reaction. 

R1 MgBr Br
R2 R1 R2+

FeCl3 (5-10 mol %)

0 ºC to rt 3 examples
64-83%

FeIFeIII
R1 MgBr

Br
R2 FeIII

R2

Br

FeIII
R2

R1

R1 MgBr

MgBr2

R1 R2

A

B

C

D
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In the early 2000s Fürstner and co-workers revisited this chemistry reporting an 

iron-catalyzed cross coupling reaction with more nucleophilic Fe-II complexes.187 Again, 

the coupling is between Grignard reagents and aryl halides in the presence of a catalytic 

amount of FeCl2. The proposed mechanism suggests that the catalyst reacts with 4 equiv of 

Grignard reagent to generate the active catalyst, MgX2 salts, and a variety of unproductive 

carbon chains (Scheme 59).187 The catalyst then undergoes oxidative addition (A) into an 

aryl halide bond, and following transmetallation (B) / reductive elimination (C) the desired 

product is obtained.  

Scheme 59. Fürstner's iron-catalyzed cross coupling reaction. 

 

Needless to say, the application of a direct process minimizing activated partners is 

more desired, however, until very recently, little or no examples of direct functionalization 
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processes, and more specifically arylation reactions, have been explored.188 Yu disclosed 

the first example of an iron-mediated direct arylation in 2008 whereby an aryl boronic acid 

is coupled to benzene.189 The active metal species is a Fe2(SO4)3•7H2O / cyclen complex 

that it used in stoichiometric quantities. The scope is general with regards to the arene and 

the boronic acid, tolerating an array of coupling partners (Eq. 30). The only limitation was 

that of ortho substitution with regards to the aryl boronic acid, as these substrates proved 

unreactive as a result of steric sensitivity.189 Another drawback is the use of cyclen due to 

its highly prohibitive cost (Eq. 30). For now, the role of the pyrazole additive remains 

unknown. The high kinetic isotope effect and the fact that radical scavengers do not inhibit 

the transformation precludes a radical pathway, though the exact mechanism of the process 

was not elucidated. 

R1

B(OH)2
+ R2

1 equiv solvent R1

R2

Fe2(SO4)3•7H2O (1 equiv)
cyclen (1 equiv)
K3PO4 (4 equiv)

pyrazole (2 equiv)

80 ºC, 48 h NH HN

HNNH

cyclen
>$100K/mol

(30)

17 examples
25-83%  

More pertinent to this research is the work published by Nakamura. In 2008 he 

disclosed a directed arylation of aryl magnesium bromides into sp2-hybridized C–H bonds 

catalyzed by a Fe(acac)3 / 1,10-phenanthroline system.190 This elegant approach was 

achieved under extremely mild conditions, permitting a large substrate scope. Later the 

directing group was improved from pyridine to an imine, allowing greater flexibility 

towards further structural elaboration.191 The scope in both processes is extensive, 

supporting a myriad of functional groups (Scheme 60). Drawbacks however include the 

addition of 3 equiv of ZnCl2 / TMEDA, and the need for 2 equiv of 1,2-dichloro-2-

methylpropane, which can no longer be purchased form Sigma Aldrich nor Alfa Aesar. 
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Scheme 60. Nakamura's iron-catalyzed directed sp2 arylation. 

 

In 2010 Nakamura also described an iron-catalyzed arylation of sp3-hybridized C–H 

bonds.192 As seen in Scheme 61, though not described, it is reasonable to assume that the 

FeI species is sacrificially generated by some of the Grignard reagent (A).186 The reaction 

then proceeds through the generation of a proximal aryl radical (B) that can be transferred 

to the alkane via 1,5-hydrogen radical shift (C). The newly formed radical is stabilized by 

the adjacent nitrogen atom, and is trapped by the iron catalyst (D) (Scheme 61). 

Transmetallation and reductive elimination affords the corresponding product (E). A range 

of aryl, vinyl and even alkyl Grignard reagents were viable coupling partners.192 
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Scheme 61. Nakamura's iron-catalyzed sp3 arylation. 

 

Around the same time as the disclosure of the work in this chapter, Lei published an 

iron-catalyzed arylation of arene derivatives with an array of aryl bromides.171 The radical 

process employs DMEDA as the ligand and LiHMDS as the base (Eq. 31). A range of 

coupling partners was operative, though sensitivity towards electron-poor and sterically 

encumbered substrates was noted. Also, though relatively mild with regards to the reaction 

temperature, extended reaction times are required. Interestingly, aryl chlorides also 

displayed modest reactivity, though selectivity towards bromides was demonstrated in 

substrates bearing both chlorine and bromine atoms. The mechanism of arylation is not 

clear, as there is no evidence of a benzyne intermediate, and the observed KIE of 1.7 is too 

high for a radical process.147  

Br

R1

R2

R1

R2

+

FeCl3 (15 mol %)
DMEDA (30 mol %)

80 ºC, 48 h
(31)
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6.1.3 Proposed Research 

Though several methods of arylation have been presented in this dissertation 

(Figure 24), with several of these technologies providing improvements over classical 

techniques, there still remains several unsolved challenges. Perhaps one of the biggest 

quandaries lies in developing inexpensive, sustainable catalytic systems. Though some 

progress has been made employing iron reagents, the most common drawbacks include the 

need for directing groups, in addition to large excesses of zinc salts and other additives. The 

remainder of this chapter will focus on our work towards the development of a high-

yielding, efficient iron-catalyzed direct arylation sequence without the addition of 

stoichiometric amount of metal additives or other reagents, while circumventing the need 

for a directing group.193  

 

Figure 24. Various ways to synthesize the biaryl motif. 
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6.2 Results and Discussion 

6.2.1 Reaction Optimization 

During the course of the optimization of the palladium-catalyzed umpolung direct 

arylation discussed vide supra Frédéric Vallée considered employing a more sustainable 

catalytic system to effect the biaryl formation. Though we showed that a reaction 

incorporating Fe(acac)3, PCy3, and Ag2CO3 failed to provide any of the desired product 

(Section 5.2.1 and Table 58 entry 1), we quickly recognized that such phosphines have not 

been reported with iron catalysts for arylations, and we could not rule out a possible 

detrimental role of the Ag2CO3, which is a known oxidant. Aware of other arylation 

precedents using phenanthroline-based ligands we were pleased to observe 28% yield by 

GC/MS when replacing the phosphine with bathophenanthroline (entry 2). Mr. Vallée 

proceeded with the reaction optimization.193 It was found that substituting the aryl bromide 

with an aryl iodide quickly improved yields (entry 3). A sampling of catalysts determined 

that Fe(OAc)2 was most reactive (entries 4-6). Verification of ligands confirmed the use of 

bathophenanthroline as the reagent of choice, though unsurprisingly 1,10-phenanthroline 

also provided encouraging yields (entries 7-12). Potassium tert-butoxide was the optimal 

base with KHMDS displaying only slightly lower reactivity (entries 13-15). Interestingly 

catalyst loading as low as 0.5 mol % still provided 76% conversion at 125 ºC (entry 16), 

though 5 mol % was chosen for ease of set-up (entry 17). We were pleased to see that the 

yield improved at 80 ºC, increasing the energetic economy of the process, and moderate 

yields could be achieved as low as 40 ºC (entries 18-20). Finally the arylation did not 

proceed in absence of the iron reagent, nor the ligand (entries 21-22). It should be noted 

that the reaction proceeded most smoothly when the iron, ligand, and base were stirred in 

benzene for 20 min prior to the addition of the aryl iodide.193  
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Table 58. Selected optimization for the direct arylation of benzene with 4-iodotoluene. 

I
+

iron (y mol %)
ligand (2x y mol %)

base (2 equiv)

temperature, 16-20 h  

entry iron ligand Fe  
(mol %) 

base temp. 
(ºC) 

yield 
(%)a 

1 Fe(acac)3
 
 PCy3

b 5 Ag2CO3 125 <5 
2 Fe(acac)3 bathophenanthroline 8 KOtBu 125 28 

3 Fe(acac)3 bathophenanthroline 8 KOtBu 125 68 

4 FeCl3 bathophenanthroline 8 KOtBu 125 21 

5 Fe(phthalo-
cyanine) none 8 KOtBu 125 37 

6 Fe(OAc)2 bathophenanthroline 8 KOtBu 125 70 
7 Fe(OAc)2 none 8 KOtBu 125 22 
8 Fe(OAc)2 P(tBu)3 8 KOtBu 125 20 
9 Fe(OAc)2 DavePhos 8 KOtBu 125 32 

10 Fe(OAc)2 TMEDA 8 KOtBu 125 35 
11 Fe(OAc)2 bipyridine 8 KOtBu 125 35 
12 Fe(OAc)2 1,10-phenanthroline 8 KOtBu 125 59 
13 Fe(OAc)2 bathophenanthroline 8 none 125 2 
14 Fe(OAc)2 bathophenanthroline 8 NaOMe 125 12 
15 Fe(OAc)2 bathophenanthroline 8 KHMDS 125 75 
16 Fe(OAc)2 bathophenanthroline 0.5 KOtBu 125 76 
17 Fe(OAc)2 bathophenanthroline 5 KOtBu 125 87 
18 Fe(OAc)2 bathophenanthroline 5 KOtBu 40 45 
19 Fe(OAc)2 bathophenanthroline 5 KOtBu 60 69 
20 Fe(OAc)2 bathophenanthroline 5 KOtBu 80 91 
21 none none n/a KOtBu 80 0 
22 none bathophenanthroline 10 KOtBu 80 0 

aYields are measured by GC/MS using 1,3,5-trimethylbenzene as the internal standard. b 
15 mol % of ligand employed and PhBr used in place of PhI.  
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6.2.2 Scope of the Reaction 

Elated as we optimized conditions that minimized the need for stoichiometric 

additives and did not require a directing group, we next investigated the scope of the 

reaction. Gratifyingly, the arylation proved quite general. Electron-neutral iodobenzene, 

iodonaphthalene, 4-iodotoluene, and even 4-bromotoluene reacted in moderate to very good 

yields (Table 59, entries 1-4). Unlike what was observed with the aforementioned 

palladium-catalyzed arylation, steric hinderance was a non-issue, as 2-iodotoluene provided 

the product in 80% yield, though more elevated reaction temperatures were needed.193 

Table 59. Scope of electron-neutral iodides in the Fe-catalyzed direct arylation of benzene. 

 

entry  aryl halide product yield (%)a 

1 I
 

236
 

89 

2 

I  

237

 

60 

3 I
 

86 

4 Br
 

238
 46 

5b 
I
 

239

 
80 

aYield of the isolated product. b Reaction performed at 125 ºC.  

Electron-rich iodides proved to be amongst the most reactive substrates. Ethers 

located at the para and meta positions arylated in good to excellent yields (Table 60, 
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entries 1-4). We exploited this trend, stirring 4-iodoanisole in the reaction conditions at 

room temperature over 60 h (entry 2). We were pleased to isolate the desired biaryl in 51% 

yield.193 

Table 60. Scope of electron-rich arenes in the iron-catalyzed direct arylation of benzene. 

 

entry  aryl iodide product yield (%)a 
1 93 
2b 

IMeO
 

240MeO
 51 

3 
I

MeO

 
241

MeO

 
88 

4 IO

O  

242O

O  
72 

aYield of the isolated product. bReaction performed at rt for 60 h. 

Though operative, electron-poor species fared less well in the arylation, largely 

providing biaryls in moderate yields (Table 61). Of note however is the tolerance towards 

enolizable centres and as well as esters (entries 1, 2) despite the presence of a harsh base. 

Chemoselectivity was noted, with fluorine and chlorine atoms remaining untouched (entries 

3, 4). The balance of the product in the reaction mixture was unreacted staring material. 

Electron-poor heterocyclic iodoarenes functioned well, with 2- and 3-iodopyridine being 

operative, as well as 2-iodopyrazine (entries 5-7), giving potential access to a range of 

medicinally relevant compounds.70, 193 
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Table 61. Scope of electron-poor iodides in the iron-catalyzed direct arylation of benzene. 

 

entry  aryl iodide product yield (%)a 

1 b I
O

 
243

O

 
69  

2 I
EtO

O

 
244

EtO

O

 
40 

3 IF
 

245F
 

86 

4 I

Cl

Cl
 

246

Cl

Cl
 

53 

5 
N

I
 N

247
 

85 

6 
N

I
 N

248
 

85 

7 

N

N
I
 

N

N
249

 
79 

a Yield of the isolated product. bReaction performed at 90 ºC.  

Next we considered the scope of various arene derivatives. Substituted arenes 

coupled with aryl iodides to afford the corresponding biaryl products in moderate to good 

yields (Table 62). Toluene coupled with 4-iodoanisole with moderate results, affording a 

mixture of regioisomers favouring the more hindered ortho substituted product (entry 1). 

This is in contrast to PhTMS which favoured the para adduct (entry 2). The poor yield of 

this substrate is possibly due to desilylation, leading to complex mixtures. A striking 

feature is the robustness of the method towards hindered arenes such as p-xylene, 
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mesitylene, and trimethoxybenzene, while all reacted in moderate to good yields (entries 3-

6).193 

Table 62. Scope of the arene partner in the iron-catalyzed direct arylation reaction. 

 

entry  arene aryl halide product yield 
(%)a 

1 

 
IMeO
 

OMe

o  = 3.1
m = 1.9
p  = 1.0

250

 

50b 

2 TMS
 

I
 

TMS o  = 3.3
m = 7.1
p  = 1.0

251

 

28b 

3 
 

I
 

252

 
81 

4 
 

I
 

253

 
63 

5 MeO

OMe

OMe

 

I
 

MeO

OMe

OMe

254

 

54 

6 MeO

OMe

OMe

 

IMeO
 

MeO

OMe

OMe

OMe 255

 

41 

a Yield of the isolated product. b Yield determined as a mixture of isomers.  
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6.2.3 Possible Role of Contaminants 

Recently Buchwald and Bolm investigated the role of metal impurities in iron-

catalyzed amination and amidation reactions.194 Bolm discovered that the source of the 

purity of the FeCl3 catalyst had significant impact on the yield. For example, they reported 

the FeCl3-catalyzed coupling between 2-iodoanisole and an aromatic amide in 79% when 

using a catalyst of 98% purity (Eq. 32), and no conversion when using catalysts of 99.995% 

purity. They subsequently found that the same reaction proceed in 97% yield when the iron 

is substituted with 5ppm Cu2O, indicating that the presence of copper impurities may in 

fact may be promoting the transformation (Eq. 33). Further evidence for this was 

determined in absence of the ligand, where a modest 34% yield of product was obtained 

when using 5ppm Cu2O alone.194  

OMe
I

NH2

O O

N
H OMe

(32)

FeCl3 (20 mol %)
DMEDA (20 mol %)

K3PO4

toluene 
135 ºC, 24 h

+

79%  

OMe
I NH2

O O

N
H OMe

(33)

Cu2O (5ppm)
DMEDA (20 mol %)

K3PO4

toluene 
135 ºC, 24 h

+

97%  

Conscious of this we investigated whether a catalytic amount of copper could 

influence the outcome of the reaction.193 The purity of iron does not seem to play a 

significant role in the reaction (Table 63, entries 1, 2), in fact superior results were obtained 

with the high purity catalyst. Both copper (I) and (II) acetate were ineffective in initiating 

the arylation (entries 3, 4), and when used in conjunction with Fe(OAc)2 lower yields were 

obtained (entries 5, 6). Consequently, it reasonable to assume that the process is indeed 

iron-catalyzed.193  
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Table 63. Direct arylation in presence of iron and copper catalysts. 

 

entry  catalyst purity (%) source yield 
(%)a 

1 Fe(OAc)2 99.995 Aldrich 98 (87)b 

2 Fe(OAc)2 97 Strem 91 
3 Cu(OAc) 99 Strem 6 
4 Cu(OAc)2 97 Strem 9 
5 Fe(OAc)2 + Cu(OAc) 99.995 + 99 Aldrich/Strem 57 
6 Fe(OAc)2 + Cu(OAc)2 99.995 + 97 Aldrich/Strem 48 

a Yield determined by GCMSanalysis using 1,3,5-trimethylbenzene as an internal standard. 
b Yield of isolated product.  

6.2.4 Mechanistic Investigations 

A kinetic isotope experiment was performed in order to gain some understanding of 

the reaction (Eq. 34).193 Curiously, an isotopic value of 1.04 was obtained. This was 

surprising given our past experience with direct processes, and quickly prompted us to 

consider a radical pathway.  Radical arylations are known to exhibit such low values, as the 

rate-limiting step is often the formation of the radical species.147,195 Furthermore, radical-

mediated arylation often favours the formation of more hindered ortho substituted products 

as we observed with toluene (Table 62, entry 1).147 This is in order to form a tertiary 

radical intermediate stabilized through hyperconjugation. This potential mechanism was 

further confirmed through the inclusion of an equivalent of galvinoxyl or TEMPO, known 

radical scavengers that effectively suppressed the arylation (Scheme 62).196  
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Fe(OAc)2 (5 mol %)
ligand (10 mol %)
KOtBu (2 equiv)I

80 ºC, 20 h
+

d6

50 equiv

50 equiv

d5

+ (34)

KIE = 1.04  

Scheme 62. Effect of radical inhibitors in the iron-catalyzed arylation. 

Fe(OAc)2 (5 mol %)
bathophenanthroline (10 mol %)

KOtBu (2 equiv)I

80 ºC, 20 h

H
+

No Scavanger = 91% (GC)
TEMPO = <1% (GC)
Galvinoxyl  = <1% (GC)  

Other experiments performed suggested that KOtBu is not the source of radical, as 

had been reported in an elegant account by Itami (Table 64, entry 2).193 The presence of 20 

mol % AIBN gave 17% of the desired product (entry 3), indicating a stoichiometric role of 

the radical initiator, and suggesting a possible metal-free process. Though the base likely is 

not involved in the formation of a radical intermediate, its presence is needed, as no 

arylated product was observed employing Fe(OAc)2 and AIBN alone.193 
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Table 64. Direct arylation in presence of iron and AIBN. 

 

entry  catalyst ligand loading   
(mol %) KOtBu loading yield 

(%)a 
1 Fe(OAc)2 10 2 equiv 91 

2 none 10 2 equiv <1 
3 AIBN none 2 equiv 17 
4 Fe(OAc)2 + AIBN 10 none <1 

aYield determined by GCMS analysis using 1,3,5-trimethylbenzene as an internal standard.  

Given these results, we believe that the reaction proceeds through a mechanistic 

pathway akin to a metal-catalyzed living radical polymerization (Scheme 63).197 The first 

step of the process involved activation of the C–I bond by a one-electron oxidation of the 

metal center. This reversibly forms the initiating radical species (in this case an arene) that 

is associated to an oxidized metallo-intermediate (A). This radical intermediate is then 

transformed into the desired biaryl product by addition onto the unactivated arene that is 

possibly pre-coordinated to the iron catalyst (B). Proximal abstraction of the iodine permits 

rearomatization while regenerating the active iron (II) catalyst (C). At this stage the radical 

is no longer bound to the iron reagent, but instead the duo forms a tight pair.197 This 

generates HI that can be quenched by the presence of KOtBu, though we cannot for the 

time being rule-out another possible role for the base (D). As in metal-catalyzed 

polymerization pathways the reaction relies on creating a dynamic equilibrium between a 

low concentration of the propagating species, and a large amount of dormant species that 

cannot propagate. Consequently, side-reactions are minimized, and the coupling process is 

efficient. Furthermore, such a mechanism would explain the increased effectiveness of 

electron-rich iodides, as radical intermediates would be better stabilized. 
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Scheme 63. Proposed catalytic cycle for the iron-catalyzed direct arylation of arenes. 

 

6.3 Summary 

We demonstrated that the ecofriendly and relatively inexpensive catalytic system 

comprising of Fe(OAc)2 and bathophenanthroline is highly effective in catalyzing direct 

arylation reactions between aryl iodides and a variety of unactivated arenes. This work adds 

to the few examples of iron-catalyzed arylation processes and solves previous limitations 

that necessitate directing groups and large excesses of a myriad of additives. Mechanistic 

investigations confirmed that the reaction is indeed iron-catalyzed and proceeds through a 

radical pathway. This process constitutes a powerful and practical direct technology under 

mild conditions and will be of interest across a range of chemical sciences. 



 

 

Chapter 7                                                                    

Conclusions and Future Considerations 

7.1 Direct Benzylic Functionalization of N-Iminopyridinium Ylide 

Derivatives 

7.1.1 Arylation 

As mentioned early in this thesis, the direct functionalization of C–H bonds has 

presented a new opportunistic means of synthesis of carbon-carbon bonds. Our foray into 

this work began with the palladium-catalyzed direct arylation at the 2-position of N-

iminopyridinium ylides with a range of aryl bromides. While we demonstrated that 2,6-

diarylation might not be feasible, we applied four methodologies to cleave the N-N bond of 

the ylide, liberating the free pyridine.  

This work was the genesis of the direct benzylic arylation of 2-alkyl N-

iminopyridinium ylides. In short, we developed a new method for sp3 arylation, which up to 

the time of its disclosure, had been seldom reported. The reaction is performed at a 

relatively mild 70 ºC and utilizes aryl chloride coupling partners. The latter is particularly 

attractive due to their low cost and wide commercial availability. While attempts of 

asymmetric arylation gave low selectivities, part of the problem may lie in the choice of 

ligand. An alternate possible route would be through the synthesis of BINAP variants of 

DavePhos (Scheme 64), and exploring their reactivity/selectivity. Buchwald has 

successfully employed these ligands in enantioselective enolate arylation processes.198 
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Scheme 64. Known synthesis of BINAP variants of DavePhos. 
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7.1.2 Allylation 

We have exploited the nucleophilicity of the N-iminopyridinium ylide in a Tsuji-

Trost allylation reaction. Though selectivity towards bis-allylation is readily achieved, 

selectivity towards mono allylation remains a challenge. However, judicious screening of 

catalyst/ligand has determined that 3:1 ratio of mono to di-allylation is possible, and other 

parameters remain to be tested. Furthermore, in the case of 2-ethyl pyridinium ylides, only 

mono addition is observed with excellent yields, presenting avenues for asymmetric 

transformations. The reaction tolerates allyl acetate, bromide, and cyclopropyl bromide 

electrophiles. 

7.1.3   Alkylation Under Phase Transfer Catalysis 

We have demonstrated that, in presence of a strong base, metal-free 

functionalization of N-iminopyridinium ylides is possible. We exploited the use of 

cinchonidine-based chiral phase transfer catalysts in an effort to effect a green asymmetric 

alkylation reaction. To date we have a process that through the modification of the ylide 

electronics, gives a good yields and moderate selectivity. It may be possible to bias the 

selectivity through the inclusion of functional groups at the 3-position of the pyridinium 

ylide, favouring the formation of the Z-enamine (Figure 25). 
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Figure 25. Comparison of enamine-like intermediates. 

7.2 Copper-Catalyzed Direct Alkenylation Reactions 

Through this work we uncovered a highly flexible copper-catalyzed direct 

alkenylation reaction. The process tolerates a large scope of styryl iodides and can employ 

virtually any copper (0), copper (I), or copper (II) source as the catalyst. This methodology 

permits access to biologically relevant 2-alkenyl pyridines. Mechanistic work performed 

indicates that the N-imino moiety plays a vital role in directing the copper catalyst to the 2-

position of the heterocyclic ring. Also, a new method detailing the synthesis of vinyl 

iodides was discussed, providing a library of compounds for the alkenylation substrate 

scope. This methodology was also found to be readily scalable.  

The reactivity of these alkenylated pyridinium compounds remains unexplored. One 

could easily envisage applying them to conjugate addition, Heck, and Diels-Alder 

reactions. Also, in the case of substituted alkenes, asymmetric hydrogenations could be 

performed, giving chiral 2-alkyl pyridines (Figure 26).  
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Figure 26. Proposed reactions on 2-alkenyl N-iminopyridinium ylides. 

Other potential processes include a direct benzylic alkenylation transformation (Eq. 

34). Similar to the analogous direct arylation, the direct vinylation of sp3 centers remains 

relatively unknown. This may be possible under either (or both) copper or palladium 

catalysis. Also, the copper-catalyzed arylation of these ylides is only in the early stages of 

exploration.  

N
NBz

R1 N
NBz

R1

R2

transition metal
+ X R2

(34)

 

7.3 Synthesis of 2-Substituted Pyrazolo[1,5-a]pyridines 

Herein we described the efficient synthesis of 2-substituted pyrazolopyridines in 2-

steps from pyridine. Previous reports detailing the synthesis of these medicinally relevant 
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compounds require either multi-step syntheses, or cannot avoid substitution at the 3-

position. The reaction may be the first such example of a tandem direct functionalization 

cyclization sequence, tolerating a myriad of vinyl iodide and vinyl bromide coupling 

partners. Mechanistic investigations quickly suggested that the reactive intermediate was 

indeed an alkyne and, consequently, we ascertained that these unsaturated compounds are 

indeed viable coupling partners.  

Concurrently we found that the presence of a methyl group at the 2-position of the 

pyridinium led to an intramolecular cyclization giving the 2,3-disusbtituted 

pyrazolopyridine. Yields can be improved by increasing the nucleophilicity of the ligand on 

silver. It remains to be seen if using more electron-withdrawing groups on the ylide moiety 

can positively influence the acidity of the benzylic protons, further improving reactivity.  

7.4 Palladium-Catalyzed Umpolung Direct Arylation  

We disclosed a novel palladium-catalyzed arylation that proceeds in absence of an 

external ligand or base, necessitating only a substoichiometric quantity of silver carbonate. 

The reaction displays inverse reactivity to what is typically observed with direct arylation 

reactions, whereby the directing group is ortho to the halide functionality. The process is 

also one of the few that describes the arylation of benzene and other unactivated arenes, 

which are used both as material feedstock and the reaction medium. It can be recovered and 

recycled towards other reactions. The presence of acetate was clearly demonstrated to be 

necessary, suggesting a concerted metallation deprotonation pathway. The mechanism is 

postulated to proceed through a cationic palladium (IV) species whereby the high-energy 

palladium generated is stabilized by the presence of the directing group. The substrate 

scope with regards to the halide and arene was deemed to be forgiving, giving the products 

in moderate to very good yields. 
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7.5 Iron-Catalyzed Direct Arylation Through Radical Intermediates.  

Though the discovery of direct arylation reactions has led to a more efficient means 

of the synthesis of biaryl motifs, traditionally they rely on expensive, non-sustainable rare-

earth elements as catalysts. A more desirable route would utilize inexpensive and abundant 

iron reagents. Though elegant accounts for this exist, they often require the inclusion of a 

large excess of metal and/or non-metal additives, in addition to a directing group decreasing 

the efficiency of the transformation. With this work we developed an iron-catalyzed 

arylation that proceeds under mild reaction temperatures, without the insertion of 

stoichiometric additives, or necessitating a directing group. The scope is widely general and 

the technology can be applied at room temperature with electron-rich substrates. 

Mechanistic investigations elucidated a radical pathway analogous to living radical 

polymerizations. 

A logical extension of this would be to couple the styryl iodides prepared in Chapter 

3 (Eq. 35). The resulting stilbenes would be of potential interest to materials and 

supramolecular chemists. Preliminary studies have demonstrated that with slight 

modification of reaction conditions this should indeed be possible.  

+ X
R2

iron catalysis
(35)

R2

 

 

7.6 Final Thoughts 

At the beginning of this doctoral research the study of direct reactions was still a 

relatively new area of chemistry. Though far from a mature science, it has been quite 

astonishing to witness first hand the incredibly rapid growth of the field. Several new 

transformations can be seen every day in the literature and, given the importance and 

attractiveness of these methods, one can only assume that this will continue to be an 
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upward trend.  It has been a great pleasure to have added a few pieces to the toolbox of 

direct transformations, and hope that this work will have an important impact on the 

synthesis of heterocyclic and non-heterocyclic arenes. More importantly, it has been 

gratifying to open the door for others to continue various avenues of this work. 

Undoubtedly this chemistry will continue to advance, and change the way we approach the 

synthesis of carbon-carbon bonds. 

 

 

 



 

 

Experimental Section 

All reactions requiring anhydrous conditions were performed using standard 

techniques under an argon atmosphere in glassware that was dried either for a minimum of 

8 h at 120 ºC in an oven, or by flame with cooling under a flow of argon. 199 All of the 

chemical products were of reagent or technical grade and were purchased from Sigma 

Aldrich Chemical Company, Strem Chemicals, Alfa Aesar, Oakwood Products, or Acros 

Organics. Purification of these products was left to the chemist’s discretion, and if need be, 

was performed under standard techniques.200 Solvents used were of ACS or HPLC grade 

and were obtained from VWR or Anachemia. Anhydrous solvents were dried and 

deoxygenated with drying columns on a GlassContour system (Irvine CA). the reported 

yields represent the yields of products isolated following either distillation, flash 

chromatography, preparative TLC, HPLC, or recrystallization. 

Thin layer chromatography (TLC) was performed on glass-backed silica plates 

(Merck GF-UV254, 0.25 mm, or SiliCycle TLG-R10011B, 0.25 mm) and contained a 

fluorescence indicator. Following elution, the products were visualized with the following 

methods or stains: UV lamp, CAM solution (aqueous ammonium molybdate and cerium 

sulfate), aqueous KMnO4 solution, aqueous PMA (phosphomolybdinamic acid), p-

anisaldehyde in 95% ethanol, or a solution of vanillin in 85% ethanol. Flash 

chromatography was performed as per the method developed by Still201 using either Merck 

9385 or Silicycle R10030B (40-60 µm; 230-240 mesh) silica gel. Preparative High 

Performance Liquid Chromatography was performed on an Agilent 1100 Series LC system 

equipped with simultaneous diode array UV detection. Data are reported as follows: 

(column type, eluent, flow rate: retention time (tr)). 

Nuclear Magnetic Resonance spectra (1H, 13C, and 19F) were taken on the following 

instruments using BBO, QNP, or DUAL probes: Bruker AMX-300 (300 MHz and 75 

MHz), Bruker ARX-400 (400 MHz and 100 MHz), AV-400 (400 MHz, 100 MHz), AV-

300 (300 MHz, 75 MHz, 282 MHz (19F)). Chemical shifts for 1H NMR spectra are 

recorded in parts per million from tetramethylsilane with the solvent resonance as the 
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internal standard (chloroform, d = 7.27 ppm).202  Data are reported as follows: chemical 

shift, multiplicity (s = singlet, d = doublet, t = triplet, q =quartet, qn = quintet, sext = sextet, 

h = heptet, o = octet, m = multiplet and br = broad), coupling constant in Hz and 

integration. Chemical shifts for 13C NMR spectra are recorded in parts per using the solvent 

resonance as the internal standard. All 13C NMR spectra were obtained with complete 

proton decoupling. When need be, COSY, HMQY, HMBC, NOESY, and DEPT135 

experiments were performed. 

Analytical supercritical fluid chromatography was performed with a Berger SFC 

fashioned with a UV diode detector. Data are reported as follows: (column type, eluent,  

retention time (tr)). Low-resolution mass sprectra were performed either on a GC/MS 

Agilent 6890 Series GC system equipped with an Agilent 5973 Network-G2578A Standard 

Turbo EI MSD and/or on an Agilent 1100 Series LC/MSD system equipped with an APCI 

mass detector with simultaneous diode array UV detection. 

Melting points were obtained on a Thomas Hoover apparatus and are not corrected. 

Infrared spectra were taken on a Perkin Elmer Spectrum One FTIR with the important 

vibrations being reported in cm-1. High resolution mass spectra were performed by the 

Centre régional de spectroscopie de masse de l’Université de Montréal Under either EI, ES, 

FAB, MAB, or APCI ionization modes. Combustion analyses were performed by the 

Laboratoire d’analyse élémentaire de l’Université de Montréal. X-ray structures were 

obtained though Laboratoire de diffraction des rayons-X de l’Université de Montréal using 

an Enraf-Nonius CAD-3 or CAD-4 apparatus.  

Experimental protocols and characterization data for new compounds and selected 

known compounds presented in this thesis are described in the following Annex, as are data 

obtained from x-ray analysis.  
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Direct sp2 Arylation and N-N-Cleavage 

General Procedure for the Synthesis of N-Iminopyridinium Ylides1  

 

N
+ OH2N

NO2

NO2

40 ºC N
NH2

ODNP BzCl, NaOH
N
NBz

rt

 
Pyridine (0.100 mL, 1.24 mmol) and O-(2,4-dinitrophenyl)hydroxylamine (272 mg, 1.36 

mmol) were added to H2O/THF (1:1 mixture, 1.0 mL). The reaction flask was sealed with a 

septum, and the resulting suspension was stirred at 40 °C for 16 h. During this period, the 

reaction mixture turned dark red. The reaction was poured into aqueous NaOH (2.5 N, 6 

mL) at room temperature, stirred for 5 min, and then benzoyl chloride (0.215 mL, 1.84 

mmol) was added in one portion. After 5 h, the reaction was diluted with H2O (5 mL) and 

extracted with CHCl3 (3 ! 10 mL). The combined organic phases were washed with NaOH 

(2.5 N, 5 mL). The organic phase was dried over Na2SO4, filtered, and concentrated under 

reduced pressure affording the N-iminobenzoylpyridinium ylide as a beige solid (236 mg, 

96% yield). The observed characterization data (1H) was consistent with that previously 

reported in the literature.1 1H NMR (400 MHz, CDCl3) " 8.81 (d, J = 5.9 Hz, 2H), 8.16 (d, 

J = 5.7 Hz, 2H), 7.87 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.0 Hz, 2H), 7.48- 7.37 (m, 3H). 

 

 

 

 

 
!!!!!!!!!!!!!!!!!!!!!!!!!  
1 All ylides were previously reported, see: Legault, C. Y.; Charette, A. B. J. Org. Chem. 

2003, 68, 7119. 
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General Procedure for the Formation of 2-Aryl-N-Iminopyridinium 

Ylides Derived from N-Iminopyridinium ylides2  

N
NBz

N
NBz

Ar–Br
Pd(OAc)2 (5 mol %)
P(tBu)3 (15 mol %)

K2CO3 (3 equiv)

toluene, 3 Å MS, 125 ºC
ArH

R R

 

The desired N-iminobenzoylpyridinium ylide (0.52 mmol, 1.5 equiv), Pd(OAc)2 (0.02 

mmol, 5 mol %), tBu3P (0.05 mmol, 15 mol %), anhydrous powdered K2CO3 (1.09 mmol, 

3 equiv) and 3 Å molecular sieves (105.7 mg) were charged with a stir bar in a Schlenk 

flask inside a glovebox. Toluene (1.2 mL, 0.3 M) was added and the suspension was stirred 

vigorously at rt for 5 min. Then, ArBr (2) (0.35 mmol, 1 equiv) was added and the 

vigorously stirred reaction mixture was heated to 125 °C in an oil bath. After 16-20 h of 

reaction the suspension was chilled to rt, filtered on a short pad of silica (washing with 15% 

methanol in dichloromethane) and the filtrate was concentrated under reduced pressure. 

Preparative High Performance Liquid Chromatography afforded the pure compound.  

21

N
NBz

 

2-Phenyl-N-benzoyliminopyridinium ylide (21).2 Prepared according to the general 

procedure (page IV). The title compound was purified by reverse phase preparative High 

Performance Liquid Chromatography (ZORBAX Eclipse XDB-C8, 2% to 60% MeCN in 

H2O over 10 min, 20 mL/min: tr = 7.77 min) afforded 21 as a pale yellow solid (76.1 mg, 

80%). Rf  = 0.42 (methanol/hexanes/dichloromethane, 15/25/60). mp: 96-100 ºC. 1H NMR 

(CDCl3, 400 MHz) " 8.73 (dd, J = 6.4, 0.9 Hz, 1H), 7.99 (td, J = 7.7, 1.4 Hz, 1H), 7.94 (dd, 

J = 8.1, 1.4 Hz, 2H), 7.75 (dd, 8.0, 1.3 Hz, 1H), 7.68-7.62 (m, 3H), 7.48-7.30 (m, 6H). 13C 

!!!!!!!!!!!!!!!!!!!!!!!!!  
2 Larivée, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52. 



 V 
NMR (CDCl3, 100 MHz) " 170.4, 153.1, 146.0, 137.2, 136.8, 132.0, 130.0, 129.5, 129.0, 

128.0, 127.9, 127.6, 127.4. FTIR (neat) 3060, 1591, 1549, 1478, 1332, 764, 712, 697 cm-1. 

LRMS (APCI) Calcd for C18H15N2O (M + H)+: 274.11. Found: 275.2. 

23

O

O

N
NBz

 

2-(1,3-Dibenzodioxol-5-yl)-N-benzoyliminopyridinium ylide (23).2 Prepared according 

to the general procedure (page IV). The title compound was purified by reverse phase 

preparative High Performance Liquid Chromatography (ZORBAX Eclipse XDB-C8, 2% to 

60% MeCN in H2O over 10 min, 20 mL/min: tr = 7.85 min) afforded 3c as a white foam 

(54.7 mg, 69%). Rf = 0.40 (methanol/hexanes/dichloromethane, 15/25/60). mp: 165-167 ºC. 
1H NMR (CDCl3, 400 MHz) " 8.63 (dd, J = 6.4, 1.1 Hz, 1H), 8.00-7.91 (m, 3H), 7.69 (dd, J 

= 8.0, 1.4 Hz, 1H), 7.58 (ddd, J = 7.4, 6.4, 1.7 Hz, 1H), 7.41-7.31 (m, 3H), 7.20 (d, J = 1.8 

Hz, 1H), 7.15 (dd, J = 8.2, 1.8 Hz, 1H), 6.84 (d, J = 8.1 Hz, 1H), 5.98 (s, 2H). 13C NMR 

(CDCl3, 75 MHz) " 170.9, 153.3, 149.6, 147.7, 146.4, 137.9, 137.2, 130.1, 128.5, 128.2, 

128.0, 125.9, 124.5, 124.2, 109.9, 108.4, 101.8. FTIR (neat) 3061, 2973, 2844, 1611, 1590, 

1544, 1473, 1340, 1230, 1033, 714 cm-1. LRMS (APCI) Calcd for C19H15N2O3 (M + H)+: 

318.10. Found: 319.2.  

N
NBz

33  

2-Phenyl-N-benzoyliminoquinolinium ylide (33).2 The title compound 33 was prepared 

according to the general procedure described above (page IV), except that 2.5 equiv of 

bromobenzene was used instead of 1.0 equiv, 1.0 equiv of the ylide was used instead of 1.5 

equiv and the concentration used was 1.0 M instead of 0.3 M. The title compound was 

purified by reverse phase preparative High Performance Liquid Chromatography 

(ZORBAX Eclipse XDB-C8, 40% to 20% MeCN in H2O over 15 min, 20 mL/min: tr = 

4.05 min) afforded 33 as a yellow solid (48.9 mg, 50%). Rf  = 0.48 
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(methanol/hexanes/dichloromethane, 5/30/65). mp: 85-89 ºC. 1H NMR (CDCl3, 400 

MHz) " 8.56 (d, J = 8.6 Hz, 1H), 8.50 (d, J = 7.8 Hz, 1H), 8.07-7.97 (m, 3H), 7.92 (ddd, J 

= 8.7, 7.1, 1.6 Hz, 1H), 7.85-7.73 (m, 4H), 7.47-7.32 (m, 6H). 13C NMR (CDCl3, 100 MHz) 

" 171.1, 155.6, 140.6, 139.1, 137.5, 134.2, 134.0, 130.6, 130.0, 129.4, 129.3, 129.1, 128.8, 

128.5, 128.3, 128.0, 124.2, 121.6;.FTIR (neat) 3059, 1593, 1548, 1342, 1295, 903, 712 cm-

1. LRMS (APCI) Calcd for C22H17N2O (M + H)+: 325.13. Found: 325.2.  

N NBz

34  

1-Phenyl-N-benzoyliminoisoquinolinium ylide (34).2 Prepared according to the general 

procedure (page IV). The title compound was purified by preparative thin liquid 

chromatography (5% MeOH/30% hexane/CH2Cl2) afforded 34 as a beige solid (46.7 mg, 

78%). Rf  = 0.30 (methanol/hexanes/dichloromethane, 5/30/65). mp: 232-235 ºC. 1H NMR 

(CDCl3, 400 MHz) " 8.48 (d, J = 6.8 Hz, 1H), 8.07-8.01 (m, 2H), 7.92 (ddd, J = 8.2, 7.0, 

1.3 Hz, 1H), 7.84-7.80 (m, 3H), 7.70 (ddd, J = 8.2, 7.1, 1.3 Hz, 1H), 7.60-7.52 (m, 5H), 

7.37-7.26 (m, 3H). 13C NMR (CDCl3, 100 MHz) " 171.3, 155.4, 138.7, 137.7, 135.4, 133.3, 

130.6, 130.3, 129.8, 129.4, 129.3, 128.8, 128.5, 128.1, 127.8, 127.3, 123.6. FTIR (neat) 

3061, 1591, 1548, 1514, 1493, 1448, 1330, 1295, 1146, 907, 764, 712, 714, 701 cm-1. 

LRMS (APCI) Calcd for C22H17N2O (M + H)+: 325.13. Found: 325.2. 

N
NBz

35  

5-Methyl-2-phenyl-N-benzoyliminopyridinium ylide (35).2 The title compound 35 was 

prepared according to the general procedure described above (page IV), except that 2.5 

equiv of bromobenzene was used instead of 1.0 equiv, 1.0 equiv of the ylide was used 

instead of 1.5 equiv and the concentration used was 1.0 M instead of 0.3 M. The title 



 VII 
compound was purified by preparative Thin Liquid Chromatography 

(methanol/hexanes/dichloromethane, 15/25/60) afforded 35 as beige needle like crystals 

(35.6 mg, 54%). Rf  = 0.31 (methanol/hexanes/dichloromethane, 10/25/65). mp: 189-192 

ºC. 1H NMR (CDCl3, 400 MHz) " 8.53 (s, 1H), 7.94 (dd, J = 8.5, 1.6 Hz, 2H), 7.79 (dd, J = 

8.3, 1.3 Hz, 1H), 7.65-7.60 (m, 3H), 7.46-7.28 (m, 6H), 2.49 (s, 3H). 13C NMR (CDCl3, 

100 MHz) " 170.8, 151.0, 145.9, 139.1, 137.3, 135.6, 132.4, 130.3, 130.0, 129.5, 128.3, 

128.1, 127.9 (2), 18.4. FTIR (neat) 3059, 1591, 1547, 1487, 1335, 1295, 710 cm-1. LRMS 

(APCI) Calcd for C19H17N2O (M + H)+: 288.13. Found: 289.2. 

Methods for the Reductive Cleavage of the N-N Bond2 

37

N

 

2-Phenylpyridine (37) 

Method A. A Schlenk flask equipped with a stir bar was charged with compound 21 (146.0 

mg, 0.532 mmol, 1.0 equiv) and purged with argon. Acetone (4.1 mL) followed by 

iodomethane (0.25 mL, 4.0 mmol, 7.5 equiv) was added via syringe and the mixture was 

heated to 75 ºC with stirring for 16 h. The solvent was evaporated to give a beige powder. 

To this solid was added zinc dust (<10 micron, 610.0 mg, 9.3 mmol, 17.6 equiv), acetic 

acid (3.2 mL), and the mixture was stirred at room temperature for 16 h. The mixture was 

filtered through celite, concentrated and purified by flash chromatography (ethyl 

acetate/hexane, 1/4) to give a clear liquid (65.0 mg, 80% yield). Rf = 0.58 (ethyl 

acetate/hexane, 1/4). Spectrum matches reagent available through Sigma-Aldrich. 1H NMR 

(CDCl3, 400 MHz) " = 8.71 (d, J = 7.1 Hz, 1H), 8.01 (m, 2H), 7.71-7.80 (m, 2H), 7.40-7.52 

(m, 3H), 7.22-7.27 (m, 1H).  

Method B. A Schlenk flask equipped with a stir bar was charged with compound 21 (168.2 

mg, 0.613 mmol, 1.0 eq.) and purged with argon. Acetone (4.1 mL) followed by 

iodomethane (0.250 mL, 4.0 mmol, 6.5 equiv) was added via syringe and the mixture was 

heated to 75 ºC with stirring for 16 h. The solvent was evaporated to give a beige powder. 
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To this powder was added Pt/C (70 mg), ammonium formate (411.0 mg, 6.5 mmol, 

11.0 equiv) and the flask was purged with argon. Dry methanol was added (2.5 mL) and the 

suspension was heated to 75 ºC with stirring for 16 h. The mixture was filtered through 

celite, concentrated and purified by flash chromatography (ethyl acetate/hexane, 1/4) to 

give a clear liquid (80.0 mg, 83% yield). Rf = 0.58 (ethyl acetate/hexane, 1/4). Spectrum 

matches reagent available through Sigma-Aldrich. 1H NMR (CDCl3, 400 MHz) " = 8.71 (d, 

J = 7.1 Hz, 1H), 8.01 (m, 2H), 7.71-7.80 (m, 2H), 7.40-7.52 (m, 3H), 7.22-7.27 (m, 1H).  

Method C. A Schlenk flask equipped with stir bar was charged with compound 21 (109.0 

mg, 0.400 mmol, 1.0 equiv) and purged with argon. Acetone (2.5 mL) followed by 

iodomethane (0.170 mL, 2.7 mmol, 6.8 equiv) was added via syringe and the mixture was 

heated to 75 ºC with stirring for 16 h. The solvent was evaporated to give a beige powder. 

The solid was placed in a round bottom flask with a stir bar, suspended in toluene (2.0 mL), 

and purged with argon. Tris(trimethylsilyl)silane (0.234 mL, 0.76 mmol, 2.0 equiv) and 

AIBN (0.125 mg, 0.76 mmol, 2 equiv) were dissolved in toluene (10 mL) and added to the 

above prepared suspension via a drop funnel over 30 min at 85 ºC. Following addition, the 

mixture was left to stir at this temperature for 16 h. The resulting solution was concentrated 

and purified by flash chromatography (ethyl acetate/hexane, 1/4) to give a clear liquid (50.1 

mg, 85% yield). Rf = 0.58 (ethyl acetate/hexane, 1/4). Spectrum matches reagent available 

through Sigma-Aldrich. 1H NMR (CDCl3, 400 MHz) " = 8.71 (d, J = 7.1 Hz, 1H), 8.01 (m, 

2H), 7.71-7.80 (m, 2H), 7.40-7.52 (m, 3H), 7.22-7.27 (m, 1H).  

O

O

N

38  

2-(Benzo[d][1,3]dioxol-5-yl)pyridine (38). Method A was used to prepare the title 

compound (page VII). The resulting product was concentrated and purified by flash 

chromatography (ethyl acetate/hexane, 1/4) to give a clear liquid (31.2 mg, 86 % yield). Rf 

= 0.42 (ethyl acetate/hexane, 1/4). The observed characterization data (1H) was consistent 
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with that previously reported in the literature.3 1H NMR (CDCl3, 400 MHz) " = 8.64 (d, J 

= 4.8 Hz, 1H), 7.72 (t, J = 5.5 Hz, 1H), 7.64 (d, J = 7.8 Hz, 1H), 7.47-7.55 (m, 2H), 7.16-

7.23 (m, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.02 (s, 2H).  

N

39  

1-Phenylisoquinoline (39). Method A was used to prepare the title compound (page VII). 

The resulting product was concentrated and purified by flash chromatography (ethyl 

acetate/hexane, 1/4) to give a clear liquid (5.1 mg 80% yield). Rf = 0.33 (ethyl 

acetate/hexane, 1/4). The observed characterization data (1H) was consistent with that 

previously reported in the literature.4 1H NMR (CDCl3, 400 MHz) " = 8.63 (d, J = 5.8 Hz, 

1H), 8.12 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.65-7.74 (m, 4H), 7.50-7.58 (m, 

4H).  

N

40  

5-Methyl-2-phenylpyridine (40). Method A was used to prepare the title compound (page 

VII). The resulting product was concentrated and purified by flash chromatography (ethyl 

acetate/hexane, 1/4) to give a clear liquid (15.1 mg, 84% yield). Rf = 0.76 (ethyl 

acetate/hexane, 1/4). The observed characterization data (1H) was consistent with that 

previously reported in the literature. 5 1H NMR (CDCl3, 400 MHz) " = 8.54 (s, 1H), 7.98 (d, 

!!!!!!!!!!!!!!!!!!!!!!!!!  
3 Dipannita, K.; Sanford, M. S. Org. Lett. 2005, 7, 4149. 
4 Korn, T. S.; Schade, M. A.; Cheemala, M. N.; Wirth, S.; Guevara, S. A.; Cahiez, G.; 

Knochel, P. Synthesis 2006, 21, 3547. 
5 Francis, R. F.; Crews, C. D.; Scott, B. S. J. Org. Chem. 1978, 43, 3227. 



 X 
J = 7.1 Hz, 2H), 7.64 (d, J = 8.1 Hz, 1H), 7.56 (dd, J = 8.1, 2.3 Hz, 1H) 7.48 (t, J = 8.2 

Hz, 2H), 7.38-7.43 (m, 1H), 2.38 (s, 3H).  

N

41  

1-Phenylquinoline (41). Method A was used to prepare the title compound starting from 

0.213 mmol of the ylide (page VII). The resulting product was concentrated and purified by 

flash chromatography (ethyl acetate/hexane, 1/4) to give a clear liquid (6.7 mg 15% yield). 

Rf = 0.67 (ethyl acetate/hexane, 1/4). 1H NMR (CDCl3, 400 MHz) " = 8.24 (d, J = 8.6 Hz, 

1H), 8.20-8.16 (m, 2H), 7.90-7.88 (m, 1H), 7.85-7.83 (m, 1H), 7.76-7.72 (m, 1H), 7.57-

7.52 (m, 3H), 7.49-7.43 (m, 2H). Spectrum matches reagent available through Sigma-

Aldrich. 

N

CN
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2-Phenyl-4-Cyanopyridine (42) A Schlenk flask equipped with stir bar was charged with 

compound 21 (109.0 mg, 0.400 mmol, 1.0 equiv) and purged with argon. Acetone (2.5 mL) 

followed by iodomethane (0.170 mL, 2.7 mmol, 6.8 equiv) was added via syringe and the 

mixture was heated to 75 ºC with stirring for 16 h. The solvent was evaporated to give a 

beige powder. Of this powder 73.0 mg (0.175 mmol, 1 equiv) was added to a test tube with 

a stir bar. Water (0.2 mL) was added followed by NH4Cl (20.0 mg, 0.37 mmol, 2.1 equiv) 

and KCN (15.0 mg, 0.230 mmol, 1.5 equiv). After stirring for 4 h at rt, MeOH (2 mL), and 

water (2 mL) were added. The product was extracted with dichloromethane, concentrated 

and purified by column chromatography to give a beige oil (21.8 mg, 69% yield). Rf = 0.73 

(ethyl acetate/hexane, 1/4). 1H NMR (CDCl3, 400 MHz) ! 8.89-8.86 (m, 1H), 8.03-7.99 (m, 

2H), 7.97-7.95 (m, 1H), 7.55-7.50 (m, 3H), 7.46 (dd, J = 6.4, 1.8 Hz, 1H); 13C NMR 



 XI 
(CDCl3, 100 MHz) " 158.8, 150.7, 137.3, 130.3, 129.1, 127.0, 123.2, 122.1, 121.2, 

116.7. Spectrum matches literature values.6 

N
NBz

Me Ph

44  

Direct Benzylic Functionalization of N-Iminopyridinium Ylides 

6-Methyl-2-phenyl-N-benzoyliminopyridinium ylide (44). The title compound 44 was 

prepared according to the general arylation procedure described above, except that 2.5 

equiv of Ph–Br were used instead of 1.0 equiv, 1.0 equiv of 43 was used instead of 1.5 

equiv and the concentration used was 1.0 M instead of 0.3 M. Reverse phase preparative 

High Performance Liquid Chromatography (ZORBAX Eclipse XDB-C8, 2% to 72% 

MeCN in H2O over 12 min, 20 mL/min: tr = 7.98 min) afforded 43 as a yellow solid (23.6 

mg, 7%). 1H NMR (CDCl3, 400 MHz) " 7.92 (t, J = 7.6 Hz, 1H), 7.84 (dd, J = 8.4, 1.7 Hz, 

2H), 7.66-7.55 (m, 4H), 7.42-7.26 (m, 6H), 2.76 (s, 3H); 13C NMR (CDCl3, 100 MHz) " 

170.4, 155.7, 155.4, 137.8, 137.6, 133.7, 130.1, 129.7, 128.9, 128.3, 128.1, 127.9, 126.9, 

126.4, 20.3. FTIR (neat) 3060, 1592, 1551, 1478, 1348, 718 cm-1. LRMS (APCI) Calcd for 

C19H17N2O (M + H)+: 289.13. Found: 289.2. 

N
NBz

N
Ar

NBz
DMF 70 ˚C

Ar-Cl
Pd(OAc)2, DavePHOS

Cs2CO3

R'R'

RR

 

General procedure for the benzylic aryaltion of 2-substituted-N-

benzoyliminopyridinium ylides.7 2-Alkyl N-benzoyliminopyridinium ylide (1.1 equiv), 

Pd(OAc)2 (5 mol %), DavePHOS (12 mol %), anhydrous powdered Cs2CO3 (3 equiv) were 

added with a stir bar in a 2 mL microwave vial inside a glovebox and sealed with teflon 

!!!!!!!!!!!!!!!!!!!!!!!!!  
6 Guchlait, S. K; Kashyap, M.; Saraf, S. Synthesis 2010, 7, 1166. 
7 Mousseau, J. J.; Larivée, A.; Charette, A. B. Org. Lett. 2008, 10, 1641. 



 XII 
lined cap. A 1.6 M solution of Ar–Cl (1 equiv) in dry, degassed N,N-

dimethylformamide (DMF) was added via syringe and then diluted with an equal volume of 

DMF to bring the reaction concentration to 0.8 M. The mixture was heated to 70 °C in an 

oil bath. After 16-20 h of reaction the suspension was cooled to rt, filtered on a short pad of 

silica (washing with methanol/dichloromethane, 15/85) and the filtrate was concentrated 

under reduced pressure. The crude mixture was purified using flash chromatography using 

a gradient of 20/10/70 toluene/methanol/ethyl acetate to 10/90 methanol in ethyl acetate to 

give the pure product. 

N
NBz
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2-Benzyl-N-benzoyliminopyridinium ylide (45).7 The title compound 45 was prepared 

according to the general procedure described above (page XI) as a yellow oil (163.4 mg, 

86%). Rf = 0.31 (toluene/methanol/ethyl acetate, 1/1/8). 1H NMR (400 MHz, CDCl3) " 8.68 

(dd, J = 6.3, 1.1 Hz, 1H), 8.24-8.19 (m, 2H), 7.77 (td, J = 7.8, 1.4 Hz 1H), 7.52-7.48 (m, 

1H), 7.47-7.23 (m, 9H), 4.45 (s, 2H). 13C NMR (100 MHz, CDCl3) " 170.0, 156.2, 145.1, 

137.2, 137.1, 135.1, 130.1, 129.8, 129.1, 128.0, 127.0, 127.5, 126.7, 123.4, 37.6. FTIR 

(neat) 3151, 2981, 1592, 1551, 1333, 1055, 713 cm-1. HRMS Calcd for C19H17N2O (M + 

H)+: 289.13354. Found: 289.13380. 

N
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2-(2-Methylbenzyl)-N-benzoyliminopyridinium ylide (46).7 The title compound 46 was 

prepared according to the general procedure described above (page XI) as a pale yellow 

solid (172.8 mg, 93%). Rf = 0.30 (toluene/methanol/ethyl acetate, 1/1/8. mp: 106-109 ºC. 
1H NMR (300 MHz, CDCl3,) " 8.70 (d, J = 6.1 Hz, 1H), 8.20 (m, 2H), 7.73 (t, J = 7.9 Hz 

1H), 7.49 (t, J = 6.4 Hz, 1H), 7.40 (m, 3H), 7.24-7.14 (m, 4H), 7.03 (d, J = 7.9 Hz 1H), 

4.42 (s, 2H), 2.15 (s, 3H). 13C NMR (75 MHz, CDCl3,) " 170.0, 155.8, 145.1, 137.2, 137.2, 

137.1, 133.5, 130.9, 130.8, 130.1, 128.0, 128.0, 127.8, 126.8, 125.9, 123.3, 35.6, 19. 4. 



 XIII 
FTIR (neat) 3062, 1594, 1555, 1489, 1332, 1177, 713 cm-1. HRMS Calcd for 

C20H20N2O (M + H)+: 303.14918. Found: 303.14902. 
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2-(3-Methylbenzyl)-N-benzoyliminopyridinium ylide (47).7 The title compound 47 was 

prepared according to the general procedure described above (page XI) as a yellow oil 

(148.3 mg, 76%). Rf = 0.30 (toluene/methanol/ethyl acetate, 1/1/8). 1H NMR (300 MHz, 

DMSO) " 8.68 (dd, J = 6.3, 1.1 Hz, 1H), 8.24-8.19 (m, 2H), 7.77 (dt, J = 7.8, 1.4 Hz 1H), 

7.52-7.48 (m, 1H), 7.47-7.23 (m, 9H), 4.45 (s, 2H). 13C NMR (100 MHz, CDCl3) " 170.0, 

156.2, 145.1, 137.2, 137.1, 135.1, 130.1, 129.8, 129.1, 128.0, 127.0, 127.5, 126.7, 123.4, 

37.6. FTIR (neat) 3061, 1593, 1553, 1489, 1330, 1177, 712 cm-1. HRMS Calcd for 

C20H20N2O (M + H)+: 303.14918. Found: 303.14987. 
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2-(4-Methylbenzyl)-N-benzoyliminopyridinium ylide (48).7 The title compound 48 was 

prepared according to the general procedure described above (page XI) as a pale yellow 

solid (137.8 mg, 72%). Rf = 0.32 (toluene/methanol/ethyl acetate, 1/1/8). mp: 118-120 ºC. 
1H NMR (400 MHz, CDCl3) " 8.65 (dd, J = 6.3, 1.1 Hz, 1H), 8.22 (m, 2H), 7.74 (td, J = 

7.8, 1.2 Hz 1H), 7.49-7.40 (m, 4H), 7.24 (m, 1H), 7.15 (m, 4H), 4.40 (s, 2H), 2.34 (s, 3H). 
13C NMR (100 MHz, CDCl3) " 169.8, 156.4, 144.9, 137.0, 132.0, 130.0, 129.69, 129.66 

127.9, 127.7, 126.6, 123.2, 37.2, 21.0. FTIR (neat) 3024, 2922, 1593, 1553, 1489, 1330, 

1177, 712 cm-1.  HRMS Calcd for C20H20N2O (M + H)+: 303.14918. Found: 303.15024. 

N
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 2-(4-Methoxybenzyl)-N-benzoyliminopyridinium ylide (49).7 The title compound 

49 was prepared according to the general procedure described above (page XI) as a 

yellow/brown oil (164.7 mg, 69%). Rf = 0.31 (toluene/methanol/ethyl acetate, 1/1/8). 1H 

NMR (300 MHz, CDCl3) " 8.61 (dd, J= 6.3, 0.9 Hz, 1H), 8.18 (dt, J = 4.8, 2.4 Hz, 2H), 

7.73 (td, J = 7.8, 1.1 Hz, 1H), 7.48-7.37 (m, 4H), 7.24-7.13 (m, 3H), 6.87-6.84 (m, 2H), 

4.34 (s, 2H), 3.76 (s, 3H). 13C NMR (CDCl3, 75 MHz) " 169.9, 158.9, 156.6, 144.9, 137.2, 

137.1, 130.9, 130.0, 128., 127.8, 126.9, 126.6, 123.3, 114.4, 55.2, 36.7. FTIR (neat) 3061, 

2934, 2835, 1593, 1552, 1551, 1489, 1331, 1247, 1177, 1032, 714 cm-1. HRMS Calcd for 

C20H20N2O2 (M + H)+: 319.14410. Found: 319.14305. 
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 2-[(4-Methoxycarbonyl)benzyl]-N-benzoyliminopyridinium ylide (50).7 The title 

compound 50 was prepared according to the general procedure described above (page XI), 

as a brown solid (136.2 mg, 73%). Rf = 0.25 (toluene/methanol/ethyl acetate, 1/1/8). mp: 

64-67 ºC. 1H NMR (300 MHz, CDCl3) " 8.69 (dd, J = 6.3, 1.0 Hz, 1H), 8.18-8.15 (m, 2H), 

8.03-7.99 (m, 2H), 7.80 (td, J = 7.8, 1.4 Hz, 1H), 7.56-7.51 (m, 1H), 7.45-7.39 (m, 3H), 

7.33 (d, J = 8.4 Hz, 2H), 7.28-7.25 (m, 1H), 4.49 (s, 2H), 3.90 (s, 3H). 13C NMR (75 MHz, 

CDCl3) " 170.0, 166.6, 155.0, 145.3, 140.4, 137.4, 136.8, 130.22, 130.15, 129.7, 129.3, 

127.9, 127.8, 126.7, 123.8, 52.1, 37.6. FTIR (neat) 3152, 2981, 1717, 1592, 1553, 1331, 

1281, 1111, 1033, 713 cm-1. HRMS Calcd for C21H20N2O3 (M + H)+: 347.13929. Found: 

347.13927. 

 

N
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2-(4-Benzoylbenzyl)-N-benzoyliminopyridinium ylide (51).7 The title compound 51 was 

prepared according to the general procedure described above (page XI)  as a light brown oil 



 XV 
(170.1 mg, 71%). Rf  = 0.29 (toluene/methanol/ethyl acetate, 1/1/8). 1H NMR (300 

MHz, DMSO) " 8.77 (d, J = 5.8 Hz, 1H), 8.13 (t, J = 7.6 Hz, 1H), 8.00 (d, J = 6.7 Hz), 2H), 

7.85 (d, J = 8.0 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1 H), 7.71-7.58 (m, 5H), 7.58-7.49 (m, 2H), 

7.49-7.33 (m, 5H), 4.46 (s, 2H). 13C NMR (75 MHz, DMSO) " 196.6, 169.2, 154.6, 147.0, 

142.8, 139.8, 139.0, 138.3, 136.7, 133.9, 131.2, 130.9, 130.8, 130.6, 129.8, 129.2, 129.0, 

128.9, 125.9, 38.14. FTIR (neat) 3060, 1655, 1594, 1555, 1490, 1446, 1319, 1278, 1177, 

701 cm-1. HRMS Calcd for C26H21N2O2 (M + H)+: 393.15975. Found: 393.16014. 
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 2-(4-Trifluoromethylbenzyl)-N-benzoyliminopyridinium ylide (52).7 The title 

compound 52 was prepared according to the general procedure described above (page XI) 

as a yellow oil (132.8 mg, 64%). Rf  = 0.31 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H 

NMR (400 MHz, CDCl3) " 8.71 (dd, J = 6.3, 1.0 Hz ,1H), 8.17 (dd, J = 7.8, 1.7 Hz, 2H), 

7.80 (td, J = 7.8, 1.1 Hz, 1H), 7.60 (d, J = 8.1 Hz, 2H), 7.55-7.51 (m, 1H), 7.44-7.37 (m, 

5H), 7.27 (d, J = 8.1 Hz, 1H), 4.49 (s, 2H). 13C NMR (100 MHz, CDCl3) " 169.9, 154.7, 

145.4, 139.4, 137.3, 136.9, 130.1, 130.0, 129.7 (q, 32.1 Hz), 127.9, 127.8, 126.7, 125.9, 

124.6 (q, J = 271.8 Hz), 123.8, 37.4. FTIR (neat) 3064, 1593, 1554, 1490, 1323, 1163, 

1120, 1066, 712 cm-1. HRMS Calcd for C20H17F3N2O (M + H)+: 357.12092. Found: 

357.12227. 
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 2-(4-Fluorobenzyl)-N-benzoyliminopyridinium ylide (53).7 The title compound 53 was 

prepared according to the general procedure described above (page XI) as a pale yellow oil 

(172.0 mg, 94%). Rf  = 0.55 (toluene/methanol/ethyl acetate, 1/1/8).1H NMR (300 MHz, 

CDCl3) " 8.64 (dd, J = 6.3, 1.1 Hz, 1H), 8.20-8.17 (m, 2H), 7.80 (td, J = 7.8, 1.4 Hz, 1H), 



 XVI 
7.53-7.48 (m, 1H), 7.45-7.38 (m, 3H), 7.27-7.20 (m, 3H), 7.06-7.00 (m, 2H), 4.40 (s, 

2H). 13C NMR (75 MHz, CDCl3) " 170.0, 162.1 (d, J = 246.5 Hz) 155.8, 145.1, 137.4, 

136.9, 131.4, 131.3, 130.8, 130.7, 130.1, 127.9, 127.8, 126.6, 123.6, 15.9 (d, J = 21.5 Hz), 

36.8. FTIR (neat) 3062, 2924, 1592, 1551, 1508, 1489, 1328, 1220, 1158, 712 cm-1. HRMS 

Calcd for C19H16FN2O (M + H)+: 307.12412. Found: 307.12379. 

N
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 2-[(2-Methoxycarbonyl)benzyl]-N-benzoyliminopyridinium ylide (54).7 The title 

compound 54 was prepared according to the general procedure described above (page XI), 

as a brown oil (83.5 mg, 43%). Rf  = 0.68 (toluene/methanol/ethyl acetate, 1/1.5/7.5). 1H 

NMR (300 MHz, CDCl3,) " 8.69 (d, J = 5.6 Hz, 1H), 8.25-8.21 (m, 2H), 8.05 (dd, J = 7.8, 

1.4 Hz, 1H), 7.72 (dt, J = 7.6, 1.0 Hz, 1H), 7.56-7.36 (m, 7H), 7.09 (d, J = 8.0 Hz, 1H), 

4.78 (s, 2H), 3.77 (s, 3H). 13C NMR (75 MHz, CDCl3,) " 169.9, 166.9, 156.4, 144.7, 137.1, 

137.0, 136.7, 132.9, 132.8, 131.5, 130.0, 129.9, 128.1, 127.8, 127.7, 126.0, 123.0, 52.2, 

36.8. FTIR (neat) 3063, 2950, 1716, 1593, 1552, 1490, 1330, 1268, 1080, 712 cm-1. HRMS 

Calcd for C21H20N2O3 (M + H)+: 347.13929. Found: 347.13917. 

 

 

N
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2-(2-Trifluoromethylbenzyl)-N-benzoyliminopyridinium ylide (55). The title compound 

55 was prepared according to the general procedure described above (page XI) as a yellow 

oil (21.7 mg, 11%). Rf  = 0.41 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (300 

MHz; CDCl3): ! 9.00 (dd, J = 6.4, 1.0 Hz, 1H), 8.18-8.14 (m, 2H), 7.98 (d, J = 7.8 Hz, 1H), 

7.83 (td, J = 7.8, 1.4 Hz, 1H), 7.72-7.70 (m, 2H), 7.61 (dd,  J = 7.7, 1.6 Hz, 1H), 7.55-7.39 

(m, 5H), 7.15 (dd, J = 8.0, 1.6 Hz, 1H), 6.62 (s, 2H). 13C NMR (75 MHz, CDCl3) " 171.6, 



 XVII 
141.5 (q, J = 283.4 Hz), 138.5, 137.5, 133.4, 131.4, 129.7, 129.6, 128.8, 128.6, 127.1 

(q, J = 5.7 Hz), 126.6, 126.5, 125.6, 122.9, 78.1, 68.2. FTIR (neat) 3070, 1592, 1547, 1489, 

1310, 1155, 1124, 1037, 712 cm-1. HRMS Calcd for C20H15F3N2O (M + H)+: 357.11365. 

Found: 357.11929. 
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2-(6-Quinoline)benzyl)-N-benzoyliminopyridinium ylide (56). The title compound 56 

was prepared according to the general procedure described above (page XI)  as a yellow oil 

(40.5 mg, 19%). Rf  = 0.27 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (400 MHz, 

CDCl3) " 8.93-8.90 (m, 1H), 8.71-8.69 (m, 1H), 8.21-8.18 (m, 2H), 8.11-8.07 (m, 2H), 

7.83-7.79 (m, 1H), 7.73 (s, 1H), 7.61-7.53 (m, 2H), 7.47-7.39 (m, 4H), 7.32-7.30 (m, 1H), 

4.62 (s, 2H). 13C NMR (75 MHz, CDCl3) "  171.1, 155.6, 140.6, 139.1, 137.5, 134.2, 134.0, 

130.6, 130.0, 129.4, 129.3, 129.1, 128.8, 128.5, 128.3, 128.0, 124.2, 121.6. FTIR (neat) 

3062, 1591, 1552, 1333, 1281, 913, 712 cm-1; LRMS (APCI) Calcd for C22H17N3O (M + 

H)+: 340.14. Found: 340.2. 
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2-(4-(tert-Butoxycarbonylamino)benzyl)-N-benzoyliminopyridinium ylide (57). The 

title compound 57 was prepared according to the general procedure described above a 

(page XI) s a brown solid (90.6 mg, 48%). Rf  = 0.61 (toluene/methanol/ethyl acetate, 

1/1.5/7.5). mp = 171-174 ºC 1H NMR (300 MHz, CDCl3) " 8.63 (dd, J = 6.3, 1.0 Hz, 1H), 

8.24-8.20 (m, 2H), 7.73 (td, J = 7.8, 1.3 Hz, 1H), 7.49-7.33 (m, 6H), 7.20 (dd, J = 8.0, 1.2 

Hz, 1H), 7.11 (t, J = 9.8 Hz, 3H), 4.36 (s, 2H), 1.48 (s, 9H). 13C NMR (75 MHz, CDCl3) 



 XVIII 
" 170.0, 156.4, 152.8, 144.9, 137.9, 137.3, 137.00, 130.3, 130.1, 129.1, 128.0, 127.8, 

126.6, 123.3, 119.1, 80.4, 36.9, 28.2. FTIR (neat) 3236, 2977, 2929, 1716, 1593, 1530, 

1342, 1240, 1158, 713 cm-1. HRMS Calcd for C24H26N3O3 (M + H)+: 404.19687. Found: 

404.19727. 

N
NBz

61

 

2-Benzyl-5-methyl-N-benzoyliminopyridinium ylide (61).7 The title compound 61 was 

prepared according to the general procedure described above (page XI) as a yellow oil 

(76.1 mg, 43%). Rf  = 0.58 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (300 MHz, 

CDCl3) " 8.45 (s, 1H), 8.18 (m, 2H), 7.56 (d, J = 8.2 Hz, 1H), 7.41-7.21 (m, 8H), 7.10 (d, J 

= 8.2 Hz, 1H), 4.36 (s, 2H), 2.39 (s, 3H). 13C NMR (75 MHz, CDCl3) " 170.0, 153.3, 

144.5, 138.4, 137.1, 135.4, 134.3, 130.0, 129.8, 129.0, 128.0, 127.8, 127.3, 126.1, 37.1, 

18.2. FTIR (neat) 3058, 2910, 2846, 1591, 1536, 1509, 1344, 712 cm-1. HRMS Calcd for 

C20H20N2O (M + H)+: 303.14918. Found: 303.14939. 
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2-Benzyl-3-methyl-N-benzoyliminopyridinium ylide (62).7 The title compound 

62 was prepared according to the general procedure described above (page XI) as a yellow 

solid (149.3 mg, 92%). Rf  = 0.58 (toluene/methanol/ethyl acetate, 1/1.2/7.8). mp = 123-127 

ºC. 1H NMR (400 MHz, CDCl3) " 8.57 (d, J = 6.2 Hz 1H), 8.17-8.14 (m, 2H), 7.67 (d, J = 

7.5 Hz, 1H), 7.45-7.34 (m, 4H), 7.29-7.19 (m, 5H), 4.55 (s, 2H), 2.38 (s, 3H). 13C NMR 

(100 MHz, CDCl3) " 169.9, 153.6, 143.4, 138.9, 137.1, 137.0, 135.3, 129.8, 128.7, 128.4, 

127.9, 127.6, 126.8, 122.9, 34.5, 19.3. FTIR (neat) 3026, 2966, 1592, 1551, 1476, 1326, 



 XIX 
1170, 1027, 713, 697 cm-1. HRMS Calcd for C20H20N2O (M + H)+: 303.14918. Found: 

303.14868.1 
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2-(1-Phenylethyl)-N-benzoyliminopyridinium ylide (63).7 The title compound 63 was 

prepared according to the general procedure described above (page XI) as a yellow oil 

(105.5 mg, 86%). Enantiomeric excess (10 % ee) as determined by SFC analysis on chiral 

phase (Chiralpak AD-H 25 cm, 15% MeOH, 2 mL/min, 26.7 °C, 151 psi, tr (minor) 19.3 

min, tr (major) 26.0 min);Rf  = 0.60 (toluene/methanol/ethyl acetate, 1/1.5/7.5). 1H NMR 

(400 MHz, CDCl3) "  8.65 (dd, J = 6.4, 1.0 Hz, 1H), 8.22-8.19 (m, 2H), 7.81 (td, J = 7.8, 

1.4 Hz, 1H), 7.50-7.41 (m, 5H), 7.35-7.24 (m, 5H), 5.25 (q, J = 7.2 Hz, 1H), 1.70 Hz (d, J = 

7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) " 169.9, 160.1, 145.6, 141.1, 137.3, 137.1, 123.0, 

128.7, 128.0, 127.9, 127.7, 127.2, 125.5, 123.1, 39.6, 19.0. FTIR (neat) 3060, 2972, 2933, 

1592, 1550, 1488, 1327, 1176, 712, 700 cm-1. HRMS Calcd for C20H20N2O (M + H)+: 

303.14918. Found: 303.14838. 

 

N
NBz

MeO

64

 

2-(1-(4-Methoxyphenyl)ethyl)-N-benzoyliminopyridinium ylide (64).7 The title 

compound 64 was prepared according to the general procedure described above (page XI) 

as a yellow oil (110.1 mg, 79%). Rf = 0.26 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H 

NMR (400 MHz, CDCl3) " 8.64 (dd, J = 6.4, 1.1 Hz, 1H), 8.21 (m, 2H), 7.81 (td, J = 7.8, 

1.4 Hz, 1H), 7.50-7.40 (m, 5H), 7.24 (m , 2H), 6.90-6.85 (m, 2H), 5.18 (q, J = 7.2 Hz, 1H),  

3.79 (s, 3H), 1.68 (d, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) " 170.8, 161.6, 159.6, 

146.5, 138.15 134.0, 130.9, 129.9, 128.9, 128.7, 126.3, 123.9, 115.0, 56.1, 39.7, 20.0. FTIR 

(neat) 2971, 2835, 1593, 1555, 1511, 1487, 1329, 1248, 1178, 1032, 713 cm-1. HRMS 

Calcd for C21H20N2O2 (M + H)+: 333.15975. Found: 333.16085. 
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65

 

2-(1-(4-Methoxycarbonyl)-N-benzoyliminopyridinium ylide (65).7 The title compound 

65 was prepared according to the general procedure described above (page XI), as a yellow 

oil (82.0 mg, 53%). Rf = 0.26 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (400 

MHz, CDCl3) " 8.67 (d, J = 6.2 Hz, 1H), 8.14 (dd, J = 7.7, 1.6 Hz, 2H), 7.98 (d, J = 8.3 Hz, 

2H), 7.88-7.84 (m, 1H), 7.54-7.39 (m, 5H), 7.35 (d, J = 8.3 Hz, 2H), 5.22 (q, J = 7.2 Hz, 

1H), 3.89 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) " 169.8, 166.7, 

159.1, 146.2, 145.9, 137.3, 136.9, 130.1, 130.0, 129.1, 128.0, 127.9, 127.80, 125.3, 123.52, 

52.1, 39.3, 19.1. FTIR (neat) 3063, 1717, 1593, 1552, 1329, 1282, 1111, 714 cm-1. HRMS 

Calcd for C22H21N2O3 (M + H)+: 361.15467. Found: 361.15415. 

 

N
NBz
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 2-(1-(4-(Trifluoromethyl)phenyl)ethyl)-N-benzoyliminopyridinium ylide (66).7 The 

title compound 66 was prepared according to the general procedure described above (page 

XI), as a yellow oil (82.0 mg, 53 %). Rf = 0.27 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 
1H NMR (300 MHz, CDCl3) " 8.68 (dd, J = 6.3, 1.0 Hz, 1H), 8.16-8.12 (m, 2H), 7.89 (td, J 

= 7.9, 1.4 Hz, 1H), 7.58-7.38 (m, 9H), 5.23 (q, J = 7.2 Hz, 1H), 1.72 (d, J = 7.2 Hz, 3H). ±C 

NMR (75 MHz, CDCl3) " 170.7, 159.7, 146.9, 146.1, 138.3, 137.8, 131.0, 130.2 (q, J = 

32.4 Hz), 129.1, 128.86, 128.7, 126.5, 126.1, 124.5, 121.1 (q, J = 272.0 Hz), 40.6, 20.2. 

FTIR (neat) 3062, 2974, 1593, 1552, 1488, 1321, 1162, 1112, 1067, 844, 711 cm-1. HRMS 

Calcd for C21H18F3N2O (M + H)+: 371.13657. Found: 371.13741. 
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67  

2-Benzhydryl-N-benzoyliminopyridinium ylide (67).7 The title compound 67 was 

prepared according to the general procedure described above (page XI), except that 2.2 

equiv of chlorobenzene were used. Product 3r was isolated as a beige oil (129.2 mg, 72 %). 

Rf = 0.42 (toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (300 MHz, CDCl3,) " 8.76-

8.74 (m, 1H), 7.98 (dd, J = 7.9, 1.6 Hz, 2H), 7.77 (td, J = 7.8, 1.0 Hz, 1H), 7.52-7.47 (m, 

1H), 7.37-7.21 (m, 10H), 7.10-7.07 (m, 4H), 6.39 (s, 1H). 13C NMR (75 MHz, CDCl3) 

" 169.3, 157.5, 145.8, 139.1, 137.1, 136.5, 129.9, 129.2, 128.7, 127.9, 127.6, 127.6, 127.3, 

123.5, 52.1. FTIR (neat) 3061, 1593, 1555, 1487, 1326, 1177, 700 cm-1. HRMS Calcd for 

C25H21N2O (M + H)+: 365.16484. Found: 365.16503. 

N
NBz

68  

2-(hepta-1,6-dien-4-yl)-N-benzoyliminopyridinium ylide (67). To a mircowave vial 

charged with a stir bar was added 2-methyl N-iminopyridinium ylde 43 (46.2 mg, 0.218 

mmol, 1.1 equiv), Pd(OAc)2 (2.2 mg, 5 mol %), DavePhos (9.4 mg, 12 mol %), and Cs2CO3 

(193.0 mg, 1.00 mmol, 3.0 equiv) in a dry-box. The vial was crimped shut and THF (0.424 

mL), followed by allyl bromide (0.124 mL, 0.198 mmol, 1.0 equiv). The mixture was 

stirred at 40 ºC for 16 h, after which it was filtered on a pad of silica gel (9/1 DCM/MeOH 

eluent) and concentrated. Purified by flash chromatography (9/1 DCM/MeOH) yielded the 

major product as a light brown oil (14.5 mg, 50%). Rf = 0.32 (methanol/DCM, 1/9) 1H 

NMR (400 MHz, CDCl3,) " 8.72-8.70 (m, 1H), 8.23-8.20 (m, 2H), 7.87 (td, J = 7.9, 1.4 Hz, 

1H), 7.53-7.40 (m, 5H), 5.73-5.63 (m, 2H), 5.05-4.99 (m, 4H), 4.12-4.06 (m, 1H), 2.57-

2.47 (m, 4H). 13C NMR (75 MHz, CDCl3) " 169.3, 157.5, 145.8, 139.1, 137.1, 136.5, 

129.9, 129.2, 128.7, 127.9, 127.6, 127.6, 127.3, 123.5, 52.1. FTIR (neat) 3061, 2980, 1592, 
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1552, 1486, 1328, 1294, 1177, 1055, 1033 cm-1. LRMS (APCI) Calcd for C19H21N2O 

(M + H)+: 293.11. Found: 293.2. 

N
NBz

69  

2-(but-3-enyl)-N-benzoyliminopyridinium ylide (69). Same reaction as for 68 and the 

product is isolated as the minor product as a beige oil (4.5 mg, 11 %). Rf = 0.22 

(toluene/methanol/ethyl acetate, 1/1.2/7.8). 1H NMR (400 MHz, CDCl3,) " 8.69-8.67 (m, 

1H), 8.21-8.18 (m, 2H), 7.88 (t, J = 7.7 Hz 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.58-7.51 (m, 

1H), 7.47-7.40 (m, 3H), 5.87-5.77 (m, 1H), 5.10-5.01 (m, 2H), 3.20 (t, J = 7.5 Hz,  2H), 

2.58 (q, J = 7.5 Hz, 2H). 13C NMR (75 MHz, CDCl3) " 169.3, 157.5, 145.8, 139.1, 137.1, 

136.5, 129.9, 129.2, 128.7, 127.9, 127.6, 127.6, 127.3, 123.5, 52.1. FTIR (neat) 3060, 2980, 

1582, 1554, 1486, 1328, 1294, 1187, 1045, 1031 cm-1 LRMS (APCI) Calcd for C16H17N2O 

(M + H)+: 253.11. Found: 253.2. 

Ph OAc 70  

Cinnamyl Acetate (70).8 To a round-bottomed flask charged with a stir bar was was added 

cinnamyl alcohol (1.34 g, 10.0 mmol, 1 equiv), acetic anhydride (1.89 mL, 20 mmol, 2 

equiv), DMAP (0.122 g, 10 mol %) and pyridine. The solution was left to stir at room 

temperature for 18 h, after which water (10 mL) then saturated aq. NaHCO3 (50 mL). The 

mixture was extracted 3x with ethyl ether, and the organic phase was washed with CuSO4 

solution until no longer purple. Washed with 2x30 mL water and concentrated to afford the 

pure product as a clear oil (1.78 g, 99%). Spectrum matches reagent available through 

Sigma-Aldrich. Rf = 0.85 (40% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) " 7.42-

7.39 (m, 2H), 7.36-7.32 (m, 2H), 7.29-7.25 (m, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.30 (dt, J = 

15.9, 6.5 Hz, 1H), 4.74 (dd, J = 6.5, 1.3 Hz, 2H), 2.11 (s, 3H). 

!!!!!!!!!!!!!!!!!!!!!!!!!  
8 Abd El Samii, Z. K. M.; Al Ashmawy, M. I.; Mellor, J. M. J. Chem. Soc. Perkin 1 1988, 

2509. 
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OAc 71  

Allyl Acetate (71).9 To a round-bottomed flask charged with a stir bar was was added allyl 

alcohol (1.40 mL, 20.0 mmol, 1 equiv) and acetyl chloride (1.8 mL, 22.0 mmol, 1.14 

equiv). The solution was cooled on an ice bath, afterwhich zinc oxide (0.170g, 2.1 mmol, 8 

mol %) was added portion-wise. Following the evolution of gas and additional 0.5 mL of 

allyl alcohol and acetyl chloride were added and the mixture was let to stir for 1 h. The 

reaction mixtre was then diluted in DCM, washed with saturated aq. NaHCO3, dired on 

sodium sulfate to give the product as a clear oil (1.818 g, 65%). Spectrum matches reagent 

available through Sigma-Aldrich. 1H NMR (400 MHz, CDCl3) " 5.95-5.85 (m, 1H), 5.33-

5.27 (m, 1H), 5.22 (ddt, J = 10.4, 2.1, 1.0 Hz, 1H), 4.55 (dt, J = 5.7, 1.4 Hz, 2H), 2.07 (s, 

3H). 

N
NBz

72  

2-(2-(pent-4-en-2-yl)-N-benzoyliminopyridinium ylide (72). To a mircowave vial 

charged with a stir bar was added 2-ethyl N-iminopyridinium ylde 60 (84.0 mg, 0.373 

mmol, 1.1 equiv), Pd(OAc)2 (3.8 mg, 5 mol %), DavePhos (16.0 mg, 12 mol %), and 

Cs2CO3 (331.0 mg, 1.00 mmol, 3 equiv) in a dry-box. The vial was crimped shut and THF 

(0.424 mL), followed by allyl acetate 71 (0.037 mL, 0.339 mmol, 1.0 equiv). The mixture 

was stirred at 40 ºC for 16 h, after which it was filtered on a pad of silica gel 

(methanol/dichloromethane, 1/9 eluent) and concentrated. Purified by flash 

chromatography (methanol/dichloromethane, 1/9) yielded the product as a light brown oil 

(54.0 mg, 60%). Rf = 0.32 (methanol/dichloromethane, 1/9). 1H NMR (400 MHz, CDCl3,) " 

8.68-8.67 (m, 1H), 8.23-8.20 (m, 2H), 7.92 (td, J = 7.8, 1.3 Hz, 1H), 7.61 (dd, J = 8.1, 1.4 

Hz, 1H), 7.54-7.51 (m, 1H), 7.48-7.42 (m, 3H), 5.79-5.69 (m, 1H), 5.07 (dd, J = 4.3, 2.8, 

1H), 5.03 (s, 1H), 4.03-3.98 (m, 1H), 2.63-2.56 (m, 1H), 2.42-2.34 (m, 1H), 1.35 (d, J = 7.0 

Hz 3H). 13C NMR (75 MHz, CDCl3) " 169.3, 157.5, 145.8, 139.1, 137.1, 136.5, 129.9, 

!!!!!!!!!!!!!!!!!!!!!!!!!  
9 Tamaddar, F.; Amrollahi, M. A.; Sharafat, L. Tetrahedron Lett. 2005, 46, 7841. 
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129.2, 128.7, 127.9, 127.6, 127.6, 127.3, 123.5, 52.1. FTIR (neat) 3061, 2982, 1582, 

1554, 1486, 1325, 1294, 1187, 1041, 1030 cm-1. LRMS (APCI) Calcd for C17H19N2O (M + 

H)+: 267.14. Found: 267.2. 

N
NBz

73  

2-(1-phenylpropan-2-y)-N-benzoyliminopyridinium ylide (73). To a round-bottom flask 

equipped with a stirred bar was added 2-ethyl-N-benzoyliminopyridinium ylide (0.22 

mmol, 1 equiv), followed successively by benzyl bromide (0.14 mL, 1.16 mmol, 5 rquiv), 

PTC (0.022 mmol, 10 mol %)), 2 mL of toluene, and 10% aqueous NaOH (0.19 mL, 2.33 

mmol). The mixture was stirred at room temperature for 16 h. During this period, the 

solution turned orange brown. Purification by flash chromatography (methanol/DCM 5/95) 

afforded the product as a beige oil. Enantiomeric excess were determined by SFC analysis 

on chiral phase (Chiralpak AD-H 25 cm, 20% MeOH, 2 mL/min, 40 °C, 15 psi, tr (minor) 

25.3 min, tr (major) 31.1 min). Rf = 0.59 (methanol/chloroform, 1/9). 1H NMR (300 MHz, 

CDCl3) !  8.69 (dd, J = 7.2, 1.2 Hz, 1H), 8.27 (m, 2H), 7.86 (td, J = 7.8, 1.2 Hz, 1H), 7.49 

(m, 5H),7.19 (m, 3H), 7.10 (m, 2H), 4.21 (m, 1H), 3.22 (dd, J = 13.3, 4.7 Hz, 1H), 2.76 (dd, 

J = 13.3, 9.0 Hz, 1H), 1.29 (d, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) !  170.18, 

160.29, 146.24, 138.49, 137.37, 137.33, 130.27, 129.47, 128.45, 128.21, 128.01, 126.58, 

124.59, 123.22, 41.08, 36.03, 17.73. FTIR (neat) 3386, 3026, 2971, 1593, 1551, 1491, 

1332, 1176, 713. HRMS Calcd for C21H20N2O (M + H)+: 317.1648. Found: 317. 1655. 

N

N

HO
Br

74  

N-Benzylcinchonidinium bromide (74). To a suspension of cinchonidine (2.50 g, 8.5 

mmol) in toluene (40 mL) was added benzyl bromide (1.52 g, 8.9 mmol, 1.1 equiv), and the 

mixture was stirred at reflux for 2 h. The solution was cooled to 23 °C, poured onto 200 mL 
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of diethyl ether and filtered. The solid was collected to obtain the desired product as a 

light pink solid (3.17 g, 97%). 1H NMR (300 MHz, CDCl3) ! 8.81 (d, J = 4.8 Hz, 1H), 8.22 

(dd, J = 7.8, 2.1 Hz, 1H), 7.86 (d, J = 4.5 Hz, 1H), 7.73 (m, 1H), 7.67 (d, J = 6.9 Hz, 2H), 

7.20 (m, 5H), 6.66 (d, J = 6.0 Hz, 1H), 6.53 (m, 1H), 5.90 (d, J = 5.7 Hz, 1H), 5.53 (d, J = 

12 Hz, 1H), 5.43 (m, 1H), 5.26 (d, J = 8.1 Hz, 1H), 4.91 (d, J = 10.5 Hz, 1H), 4.62 (m, 

1H), 4.14 (t, 1H), 3.90 (d, J = 12.9, 1H), 3.12 (m, 2H), 2.48 (m, 2H), 2.08 (t, J =11 Hz, 

1H), 1.88 (m, 2H), 1.59 (m, 1H), 1.06 (m, 1H) ppm. LC/MS : 385.3. Spectrum matches 

literature values.10 

N

N

O
Br

75  

O-(9)-Allyl- N-benzylcinchonidinium bromide (75). To a suspension of 74 (0.739 g, 1.92 

mmol, 1.0 equiv) in 10 mL of CH2Cl2 was added allyl bromide (0.5mL, 5.77 mmol, 5.7 

equiv) and 2.5 mL of 50% aqueous KOH (24.4 mmol). The resulting mixture was stirred 

vigorously at 23 °C for 4 h, during which time all of the solid was dissolved. The mixture 

was diluted with 20 mL of water and was extracted with CH2Cl2 (3x50 mL). The combined 

organic extracts were dried over Na2SO4, filtered, and concentrated in vacuo. The solid was 

collected to obtain the desired product as a light pink solid (0.792 g, 97% yield. 1H NMR 

(300 MHz, CDCl3) !  8.99 (d, J = 3.6 Hz, 1H), 8.91 (d, J = 4.5 Hz 1H), 8.16 (d, J = 6.3 Hz, 

1H), 7.94 (m, 3H), 7.83 (m, 1H), 7.52 (m, 3H), 7.31 (m, 1H), 6.72 (d, J = 8.7 Hz, 1H), 6.11 

(m, 2H), 5.76 (m, 1H), 5.44 (m, 2H), 5.40 (m, 1H), 5.21 (m, 1H), 5.06 (m, 1H), 4.57 (m, 

1H), 4.25 (m, 2H), 4.01 (m, 1H), 3.42 (m, 2H), 3.24 (t, 1H), 2.61 (m, 1H), 2.11 (m, 4H), 

1.80 (m, 1H), 1.44 (m, 1H) ppm. LC/MS: 425.3. Spectrum matches literature values.11 

!!!!!!!!!!!!!!!!!!!!!!!!!  
10 Corey, E. J..; Xu, F.; Noe, C. M. J. Am. Chem. Soc. 1997, 119, 12414. 
11 Fowelin, C.; Schüpbach, B.; Terfort, A. Eur. J. Org. Chem. 2007, 1013. 
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76  

N-9-Anthracenylmethylcinchonidinium chloride (76). To a suspension of cinchonidine 

(2.50 g, 8.5 mmol) in toluene (40 mL) was added 9-chloromthylanthracene (2.01 g, 8.9 

mmol, 1.1 equiv), and the mixture was stirred at reflux for 2 h. The solution was cooled to 

23 °C, poured onto 200 mL of diethyl ether and filtered. The solid was collected to obtain 

the desired product as a yellow solid (81% yield). 1H NMR (300 MHz, CDCl3) ! 9.03 (d, J 

= 9.0 Hz, 1H), 8.83 (m, 2H), 8.74 (d, J = 9.0 Hz, 1H), 8.19 (d, J = 5.4 Hz, 1H), 8.02 (m, 

1H), 7.63 (m, 3H), 7.41 (m, 1H), 7.22 (m, 6H), 7.07 (m, 2H), 6.74 (m, 2H), 5.43 (m, 1H), 

5.24 (m, 1H), 4.90 (d, J = 9.6 Hz, 1H), 4.72 (m, 2H), 4.03 (d, J = 12.6 Hz, 1H), 2.58 (t, J 

=9.7 Hz, 1H), 2.43 (td, 1H), 2.13 (m, 1H), 1.80 (m, 2H), 1.72 (m, 2H), 1.12 (m, 2H) ppm. 

LC/MS: 485.2. Spectrum matches literature values.11 

N

N

O

Br

77  

O-(9)-Allyl-N-9-Anthracenylmethylcinchonidinium bromide (77). To a suspension of 

76 (0.931 g, 1.92 mmol, 1.0 equiv) in 10 mL of CH2Cl2 was added allyl bromide (0.5mL, 

5.77 mmol, 5.7 equiv) and 2.5 mL of 50% aqueous KOH (24.4 mmol). The resulting 

mixture was stirred vigorously at 23 °C for 4 h, during which time all of the solid was 

dissolved. The mixture was diluted with 20 mL of water and was extracted with CH2Cl2 

(3x50 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The solid was collected to obtain the desired product as a light 

yellow solid (0.897 g, 89% yield).  1H NMR (400 MHz, CD3OD) !  9.06 (d, J = 9.0 Hz, 
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1H), 8.71 (m, 2H), 8.61 (d, J = 9.0 Hz, 1H), 8.16 (d, J = 5.2 Hz, 1H), 8.02 (d, J = 

4.4 Hz, 1H), 7.96 (s, 1H), 7.63 (d, J = 8.2 Hz, 1H),7.60 (m, 1H), 7.56 (d, J = 8.2 Hz, 1H), 

7.38 (m, 1H), 7.24 (m, 4H), 7.20 (m, 2H), 6.83 (d, J = 13.5 Hz, 1H), 6.67 (d, J = 13.6 Hz, 

1H), 5.42 (m, 1H), 5.25 (dd, J = 17.3, 1.0 Hz, 1H), 4.90 (dd, J = 10.5, 1.3 Hz, 1H), 4.62 

(m, 2H), 3.93 (bd, J =12.9 Hz, 1H), 2.56 (dd, J = 12.8, 10.7 Hz, 1H), 2.35 (app. , J = 11.1 

Hz, 1H), 2.12 (bs, 1H), 1.90 (m, 2H), 1.72 (bs, 1H), 1.18 (m, 1H), 1.06 (m, 1H) ppm; 

LC/MS: 525.2.  

N

N

HO
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78  
N-4-(trifluoromethyl)benzylcinchonidinium bromide (78). To a suspension of 

cinchonidine (2.50 g, 8.5 mmol) in toluene (40 mL) was added 4-(trifluoromethyl)benzyl 

bromide (2.13 g, 8.9 mmol, 1.1 equiv), and the mixture was stirred at reflux for 2 h. The 

solution was cooled to 23 °C, poured onto 200 mL of diethyl ether and filtered. The solid 

was collected to obtain the desired product as a light purple solid (3.85 g, 95% yield).  1H 

NMR (300 MHz, CDCl3) ! 8.81 (d, J = 5.4 Hz, 1H), 8.12 (m, 2H), 7.89 (d, J = 7.5 Hz, 

2H), 7.80 (d, J = 4.5 Hz, 1H), 7.58 (m, 1H), 7.43 (d, J = 8.1 Hz, 2H), 7.06 (m, 2H), 6.53 

(m, 2H), 6.23 (d, J = 11.7 Hz, 1H), 5.63 (d, J = 11.7 Hz, 1H), 5.36 (m, 2H), 4.92 (dd, 1H), 

4.68 (dd, 1H), 4.17 (td, 1H), 3.92 (q, 1H), 2.96 (m, 2H), 2.49 (m, 1H), 2.09 (m, 1H), 1.92 

(m, 1H), 1.84 (m, 1H), 1.02 (m, 1H) ppm. LC/MS: 453.2. Spectrum matches literature 

values.12 
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79  
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O-(9)-Allyl-N-4-(trifluoromethyl)benzylcinchonidinium bromide (79). To a 

suspension of 78 (0.870 g, 1.92 mmol, 1.0 equiv) in 10 mL of CH2Cl2 was added allyl 

bromide (0.5mL, 5.77 mmol, 5.7 equiv) and 2.5 mL of 50% aqueous KOH (24.4 mmol). 

The resulting mixture was stirred vigorously at 23 °C for 4 h, during which time all of the 

solid was dissolved. The mixture was diluted with 20 mL of water and was extracted with 

CH2Cl2 (3x50 mL). The combined organic extracts were dried over Na2SO4, filtered, and 

concentrated in vacuo. The solid was collected to obtain the desired product as a light 

yellow solid (0.946 g, 100% yield).  1H NMR (300 MHz, CDCl3) !  8.98 (d, J = 4.5 Hz, 

1H), 8.91 (d, J = 8.4 Hz 1H), 8.15 (d, J = 8.4 Hz, 3H), 7.96 (m, 1H), 7.82 (d, J = 7.5 Hz, 

1H), 7.76 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 11.7 Hz, 1H), 6.11 (m, 2H), 5.72 (m, 1H), 5.42 

(m, 1H), 5.17 (m, 2H), 5.07 (m, 1H), 5.04 (m, 1H), 4.81 (m, 1H), 4.62 (d, J = 11.7 Hz, 1H), 

4.39 (m, 1H), 4.30 (m, 1H), 4.02 (m, 1H), 3.33 (td, J = 11.9, 3.0 Hz, 1H), 3.14 (t, J = 11.4 

Hz, 1H), 2.63 (m, 1H), 2.14 (m, 3H), 1.82 (m, 1H), 1.44 (m, 1H) ppm. LC/MS: 493.2. 

Spectrum matches literature values.13 
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12 Corey, E. J..; Xu, F.; Noe, C. M. J. Am. Chem. Soc. 1997, 119, 12414. 
13 Arai, S.; Tsuge, H.; Oku, M.; Miura, M.; Shioiri, T. Tetrahedron 2002, 58, 1623. 
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Experimental Section of Chapter 3 
 

Synthesis of (E)-##-Aryl Vinyl Iodides from Benzyl Bromides and CH2I2  

 
R

Br
MHMDS, CH2I2

THF/ether
IR

–78 ºC to rt;
then DBU, rt  

 
Method A: 
A solution of CH2I2 (483 mL, 6.0 mmol) in THF (1.5 mL) was added dropwise to a 

solution of NaHMDS (2.20 g, 12.0 mmol) in THF (8 mL) and ether (8 mL) at –78 °C (dry 

ice/acetone bath) in the dark. After 20 min, a solution of the benzyl bromide substrate (4.0 

mmol) in THF (3 mL) was added dropwise. The reaction mixture was stirred for 90 min 

then removed from the cold bath to warm to rt. After 30 min, DBU (597 mL, 4.0 mmol) 

was added dropwise and the solution stirred for 1 h before ether (50 mL) was added. The 

mixture was filtered through a plug of celite/silica (approximately 3 cm celite over 3 cm 

silica) and the solvent removed under reduced pressure. The residue was purified by flash 

chromatography to provide the pure vinyl iodide. 

 

Method B: 

A solution of CH2I2 (644 mL, 8.0 mmol) in THF (1.9 mL) was added dropwise to a 

solution of LiHMDS (1.34 g, 8.0 mmol) in THF (8 mL) and ether (8 mL) at –78 °C (dry 

ice/acetone bath) in the dark. After 20 min, a solution of the benzyl bromide substrate (4.0 

mmol) in THF (3 mL) was added dropwise. The reaction mixture was stirred at –78 ºC 

allowing to warm to rt slowly over 16 h. After this time DBU (1.19 mL, 8.0 mmol) was 



 XXX 
added dropwise and the solution stirred for 1 h before ether (50 mL) was added. The 

mixture was filtered through a plug of celite/silica (approximately 3 cm celite over 3 cm 

silica) and the solvent removed under reduced pressure. The residue was purified by flash 

chromatography to provide the vinyl iodide. Where necessary, residual CH2I2 following 

flash chromatography was removed under high vacuum. 

 

I
80

 

(E)-(2-Iodovinyl)benzene (80). Prepared according to the general procedure (Method A, 

page XXX) starting from benzyl bromide (684 mg, 4.0 mmol). Purification by flash 

chromatography (hexanes, 100%) afforded vinyl iodide 80 as a yellow oil (849 mg, 92%, 

98:2 E:Z).  The observed characterization data (1H, 13C) was consistent with that 

previously reported in the literature.14 Rf  = 0.65 (hexanes, 100%). 1H NMR (300 MHz; 

CDCl3) " 7.44 (d, J = 14.9 Hz, 1H), 7.38-7.27 (m, 5H), 6.84 (dd, J = 14.9, 1.8 Hz, 1H). 13C 

NMR (75 MHz; CDCl3) " 145.0, 137.6, 128.7, 128.4, 126.0, 76.7. FTIR (neat) 3059, 3021, 

1595, 1494, 1444, 1210, 1169, 1070, 945, 726, 688 cm-1. 

I
81

 

(E)-1-(2-Iodovinyl)-4-methylbenzene (81). Prepared according to the general procedure 

(Method A, page XXX) starting from 4-methylbenzyl bromide (740 mg, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 81 as an off-

white solid (906 mg, 93%, 99:1 E:Z). The observed characterization data (1H) was 

consistent with that previously reported in the literature.15 Rf = 0.54 (hexanes, 100%). 1H 

NMR (300 MHz, CDCl3) " 7.40 (d, J = 14.9 Hz, 1H), 7.21-7.13 (m, 4H), 6.75 (d, J = 14.9 

!!!!!!!!!!!!!!!!!!!!!!!!!  
14 Lee, G. C. M.; Tobias, B.; Holmes, J. M.; Harcourt, D. A.; Garst, M. E. J. Am. Chem. 

Soc. 1990, 112, 9330. 
15 Shastin, A. V.; Korotchenko, V. N.; Varseev, G. N.; Nenaidenko, V. G.; Balenkova, E. S. 

Russ. J. Org. Chem. 2003, 39, 403. 
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Hz, 1H), 2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) " 144.7, 138.2, 134.9, 129.3, 

125.8, 75.4, 21.3. FTIR (neat) 3053, 3029, 2915, 2859, 1608, 1591, 1561, 1509, 1379, 

1280, 1189, 1172, 958, 939, 827, 765 cm-1. 

 

 

I
82

 

(E)-1-(2-Iodovinyl)-2-methylbenzene (82) Prepared according to the general procedure 

(Method A, page XXX) starting from 2-methylbenzyl bromide (740 mg, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 82 as an off-

white solid (879 mg, 90%, 99:1 E:Z). The observed characterization data (1H) was 

consistent with that previously reported in the literature.14 Rf = 0.63 (hexanes, 100%). 1H 

NMR (300 MHz, CDCl3) " 7.63 (d, J = 14.7 Hz, 1H), 7.32-7.11 (m, 4H), 6.68 (d, J = 14.7 

Hz, 1H), 2.32 (s, 3H). 13C NMR (75 MHz, CDCl3) " 143.3, 136.9, 134.7, 130.3, 128.2, 

126.2, 125.6, 77.7, 19.7. FTIR (neat) 3055, 3017, 2921, 1587, 1562, 1479, 1457, 1379, 

1280, 1190, 1176, 947, 740 cm-1. 

I
83

 

(E)-2-(2-Iodovinyl)naphthalene (83). Prepared according to the general procedure 

(Method A, page XXX) starting from 2- (bromomethyl)napthylene (884 mg, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 83 as a yellow 

solid (782 mg, 70%, 98:2 E:Z). The observed characterization data (1H, 13C) was consistent 

with that previously reported in the literature.14 Rf = 0.53 (hexanes, 100%). 1H NMR (300 

MHz, CDCl3) " 7.81-7.75 (m, 3H), 7.65 (s, 1H), 7.56 (d, J = 14.9 Hz, 1H), 7.46 (m, 3H), 

6.94 (d, J = 14.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) " 145.0, 135.0, 133.3, 133.1, 128.4, 

128.2, 127.7, 126.6, 126.4, 126.2, 122.7, 77.0. FTIR (neat) 3049, 1599, 1585, 1507, 1433, 

1293, 1274, 1216, 1181, 1152, 952, 828, 781, 765, 735 cm-1. 
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I
84

MeO  

(E)-1-(2-Iodovinyl)-4-methoxybenzene (84) Prepared according to a modification of the 

general procedure (Method A, page XXX) on a 1 mmol scale starting from 4-

methoxybenzyl bromide (220 mg, 1.1 mmol) and employing excess DBU (240 µL, 1.5 

mmol). Purification by flash chromatography (ether/hexanes, 5/95) afforded vinyl iodide 84 

as a white solid (265 mg, 92%, 97:3 E:Z). The observed characterization data (1H) was 

consistent with that previously reported in the literature.14 Rf = 0.71 (ether/hexanes, 5/95). 
1H NMR (300 MHz, CDCl3) " 7.37 (d, J = 14.9 Hz, 1H), 7.26-7.23 (m, 2H), 6.88-6.85 (m, 

2H), 6.64 (d, J = 14.9 Hz, 1H), 3.82 (s, 3H). 13C NMR (75 MHz, CDCl3) " 159.7, 144.3, 

130.7, 127.2, 114.0, 73.6, 55.3. IR (neat) 3055, 3005, 2965, 2933, 2838, 1602, 1509, 1460, 

1250, 1177, 1028, 948, 840, 770 cm-1. 

I
85

MeO

 

(E)-1-(2-Iodovinyl)-3-methoxybenzene (85). Prepared according to a modification of the 

general procedure (Method A, page XXX) starting from 3-methoxybenzyl bromide (834 

mg, 4.1 mmol) and employing excess DBU (900 µL, 6.0 mmol). Purification by flash 

chromatography (ether/hexanes, 5/95) afforded vinyl iodide 85 as a yellow oil (1.038 g, 

95%, 99:1 E:Z). Rf  = 0.70 (ether/hexanes, 5/95). 1H NMR (400 MHz, CDCl3) " 7.43 (d, J = 

14.9 Hz, 1H), 7.27 (t, J = 7.9 Hz, 1H), 6.93-6.85 (m, 4H), 3.84 (s, 3H).13C NMR (100 

MHz, CDCl3) " 159.6, 144.7, 138.8, 129.6, 118.5, 113.9, 111.2, 77. 1, 55.2. FTIR (neat) 

3057, 2999, 2936, 2832, 1596, 1572, 1490, 1463, 1428, 1313, 1284, 1261, 1152, 1048, 944, 

757, 684 cm-1. HRMS Calcd for C9H9IO [M + H]+: 259.9693 Found: 259.9691.16  

I
86

O

O  

!!!!!!!!!!!!!!!!!!!!!!!!!  
16 Compound previously reported: Furstner, A.; Dierkes, T.; Thiel, O. R.; Blanda, G. Chem. 

Eur. J. 2001, 7, 5286. 
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(E)-5-(2-Iodovinyl)benzo[d][1,3]dioxole (86). Prepared according to a 

modification of the general procedure (Method A, page XXX) starting from 3,4-

(methylenedioxy)benzyl bromide17 (860 mg, 4.0 mmol) and employing excess DBU (896 

µL, 6.0 mmol). Purification by flash chromatography (ether/hexanes, 5/95) afforded vinyl 

iodide 86 as a white solid (1.02 g, 93%, 99:1 E:Z). Rf = 0.42 (ether/hexanes, 5/95). 1H 

NMR (300 MHz, CDCl3) " 7.31 (d, J = 14.9 Hz, 1H), 6.81 (m, 1H), 6.74 (m, 2H), 6.62 (dd, 

J = 14.8, 0.1 Hz, 1H), 5.96 (d, J = 0.2 Hz, 2H). 13C NMR (75 MHz, CDCl3) " 148.0, 147.8, 

144.3, 132.2, 120.9, 108.3, 105.2, 101.3, 74.1. FTIR (neat) 3058, 2890, 2777, 1499, 1487, 

1444, 1350, 1247, 1171, 1037, 943, 928, 762 cm-1. HRMS Calcd for C9H7IO2 [M + H]+: 

273.9485 Found: 273.9491.18 

I
87

BnO  

(E)-1-(2-Iodovinyl)-4-benzyloxybenzene (87) Prepared according to a modification of the 

general procedure (Method B, page XXX) starting from 1-(benzyloxy)-4-

(bromomethyl)benzene19 (1.11g mg, 4.0 mmol) and employing excess DBU (1.8 mL, 12.0 

mmol). Purification by flash chromatography (ether/hexanes, 1/99) afforded vinyl iodide 87 

as an off-white solid (1.02 g, 76%, 99:1 E:Z). Rf = 0.18 (ether/hexanes, 1/99). 1H NMR 

(300 MHz, CDCl3) " 7.44-7.32 (m, 6H), 7.24-7.19 (m, 2H), 6.94-6.90 (m, 2H), 6.62 (d, J = 

14.9 Hz, 1H), 5.05 (s, 2H). 13C NMR (75 MHz, CDCl3) " 158.9, 144.2, 136.6, 130.9, 128.6, 

128.0, 127.44, 127.26, 115.0, 73.8, 70.0. FTIR (neat) 3054, 2932, 2868, 1600, 1508, 1467, 

1454, 1377, 1281, 1250, 1181, 999, 947, 836, 768, 747, 735, 701 cm-1. HRMS Calcd for 

C15H13IOAg [M + Ag]+: 442.9057 Found: 442.9063.  

!!!!!!!!!!!!!!!!!!!!!!!!!  
17 Prepared according to previously reported procedure: Imperio, D.; Pirali, T.; Galli, U.; 

Pagliai, F.; Cafici, L.; Luigi Canonico, P.; Sorba, G.; Genazzani, A. A.; Cesare 

Tron, G. Bioorg. Med. Chem. 2007, 15, 6748. 
18 Compound previously reported: Naskar, D.; Roy, S. Tetrahedron 2000, 56, 1369. 
19 Prepared from 4-benzyloxybenzyl alcohol by a previously reported procedure: Albert, S.; 

Soret, A.; Blanco, L.; Deloisy, S. Tetrahedron 2007, 63, 2888. 
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I
88

F  

(E)-1-Fluoro-4-(2-iodovinyl)benzene (88). Prepared according to the general procedure 

(Method A, page XXX) starting from 4-fluorobenzyl bromide (756 mg, 4.0 mmol). 

Purification by flash chromatography (100% hexane) afforded vinyl iodide 88 as a yellow 

solid (843 mg, 85%, 98:2 E:Z).Rf = 0.66 (hexanes, 100%). 1H NMR (300 MHz, CDCl3) " 

7.36 (d, J = 14.9 Hz, 1H), 7.27-7.22 (m, 2H), 7.02-6.95 (m, 2H), 6.73 (dd, J = 14.9, 0.6 Hz, 

1H). 13C NMR (75 MHz, CDCl3) " 162.5 (d, J = 249 Hz), 143.7, 133.9 (d, J = 3 Hz), 127.6 

(d, J = 8 Hz), 115.7 (d, J = 22 Hz), 76.1 (d, 2.5 Hz). FTIR (neat) 3056, 1598, 1578, 1505, 

1230, 1172, 1157, 949, 837, 769 cm-1. HRMS Calcd for C8H6FI [M]+: 247.9493 Found: 

247.9493.  

I
89

NC  

(E)-4-(2-Iodovinyl)benzonitrile (89) Prepared according to the general procedure (Method 

B, page XXX) starting from 4-(bromomethyl)benzonitrile 756 mg, 4.0 mmol). Purification 

by flash chromatography (ether/hexanes 1/9) afforded vinyl iodide 89 as a pale yellow solid 

(843 mg, 51%, 99:1 E:Z). Rf = 0.34 (ether/hexanes 1/9). 1H NMR (300 MHz, CDCl3) " 

7.59-7.56 (m, 2H), 7.40 (d, J = 15.0 Hz, 1H), 7.35-7.33 (m, 2H), 7.06 (d, J = 15.0 Hz, 1H). 
13C NMR (75 MHz, CDCl3) " 143.2, 141.4, 132.5, 126.3, 118.5, 111.5, 81.7. FTIR (neat) 

3242, 3048, 2221, 1601, 1407, 1173, 937, 840, 771 cm-1. HRMS Calcd for C9H6INAg [M + 

Ag]+: 361.8590 Found: 361.8596.20 

I
90

F3C  

(E)-1-(2-Iodovinyl)-4-(trifluoromethyl)benzene (90) Prepared according to the general 

procedure (Method B, page XXX) starting from 4-(trifluoromethyl)benzyl bromide (956 
!!!!!!!!!!!!!!!!!!!!!!!!!  
20 Compound previously reported: Furstner, A.; Brunner, H. Tetrahedron Lett. 1996, 37, 

7009. 
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mg, 4.0 mmol). Purification by flash chromatography (hexanes, 100%) afforded 

vinyl iodide 90 as a yellow solid (750 mg, 63%, 99:1 E:Z). Rf = 0.39 (hexanes, 100%). 1H 

NMR (300 MHz, CDCl3) " 7.58 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 15.0 Hz, 1H), 7.39 (d, J = 

8.3 Hz, 2H), 7.03 (d, J = 15.0 Hz, 1H). 13C NMR (75 MHz, CDCl3) " 143.6, 140.7 (q, J = 1 

Hz), 130.1 (q, J = 33 Hz), 126.1, 125.7 (q, J = 4 Hz), 124.0 (q, J = 274 Hz), 118.6. IR 

(neat) 3055, 1614, 1409, 1322, 1160, 1106, 1066, 940, 844, 776 cm-1.21 

I
91

Cl  

(E)-1-Chloro-2-(2-iodovinyl)benzene (91). Prepared according to the general procedure 

(Method A, page XXX) starting from 2-chlorobenzyl bromide (823 mg, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 91 as a yellow 

oil (816 mg, 78%, 98:2 E:Z). Rf = 0.75 (hexanes, 100%). 1H NMR (400 MHz, CDCl3) " 

7.80 (d, J = 14.9 Hz, 1H), 7.42-7.33 (m, 2H), 7.26-7.21 (m, 2H), 6.90 (d, J = 14.9 Hz, 1H). 
13C NMR (100 MHz, CDCl3) " 141.2, 135.6, 132.0, 129.9, 129.2, 126.9, 126.7, 79.6. FTIR 

(neat) 3057, 1590, 1466, 1438, 1274, 1180, 1121, 1051, 946, 747 cm-1. HRMS Calcd for 

C8H6ClI2 [M]+: 263.9197 Found: 263.9200. 

I
92

Br  

(E)-1-Bromo-4-(2-iodovinyl)benzene (92) Prepared according to the general procedure, 

(Method B, page XXX) starting from 4-bromobenzyl bromide (1.0 g, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 92 as an off-

white solid (1.07 g, 87%, 99:1 E:Z). Rf = 0.74 (hexanes, 100%). 1H NMR (300 MHz, 

CDCl3) " 7.44-7.40 (m, 2H), 7.34 (d, J = 14.9 Hz, 1H), 7.15-7.12 (m, 2H), 6.84 (d, J = 14.9 

Hz, 1H). 13C NMR (75 MHz, CDCl3) " 143.7, 136.5, 131.8, 127.4, 122.3, 77.6. FTIR (neat) 

3044, 1582, 1483, 1394, 1169, 1072, 1007, 959, 941, 832, 766, 708 cm-1. HRMS Calcd for 

C8H6BrI [M]+: 307.8692 Found: 307.8700. 
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I
93

Br

 

(E)-1-Bromo-3-(2-iodovinyl)benzene (93) Prepared according to the general procedure, 

(Method B, page XXX) starting from 3-bromobenzyl bromide (1.0 g, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 93 as a yellow 

oil (1.08 g, 87%, 98:2 E:Z). The observed characterization data (1H) was consistent with 

that previously reported in the literature.22 Rf = 0.56 (hexanes, 100%). 1H NMR (300 MHz, 

CDCl3) " 7.42-7.37 (m, 2H), 7.33 (d, J = 14.9 Hz, 1H), 7.20-7.14 (m, 2H), 6.87 (d, J = 14.9 

Hz, 1H). 13C NMR (75 MHz, CDCl3) " 143.3, 139.4, 131.1, 130.1, 128.8, 124.5, 122.8, 

78.7. FTIR (neat) 3056, 1590, 1557, 1474, 1209, 1071, 942, 755 cm-1. 

I
94

Br  

(E)-1-Bromo-2-(2-iodovinyl)benzene (94) Prepared according to the general procedure, 

(Method B, page XXX) starting from 2-bromobenzyl bromide (1.0 g, 4.0 mmol). 

Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 94 as a yellow 

oil (1.09 g, 87%, 98:2 E:Z). The observed characterization data (1H, 13C) was consistent 

with that previously reported in the literature.15 Rf = 0.48 (hexanes, 100%). 1H NMR (400 

MHz, CDCl3) " 7.76 (d, J = 14.8 Hz, 1H), 7.55 (dd, J = 7.9, 1.3 Hz, 1H), 7.40 (dd, J = 7.9, 

1.7 Hz, 1H), 7.30-7.26 (m, 1H), 7.16 (td, J = 7.7, 1.7 Hz, 1H), 6.86 (d, J = 14.8 Hz, 1H). 
13C NMR (75 MHz, CDCl3) " 143.7, 137.5, 132.9, 129.5, 127.6, 127.0, 122.3, 79.9. FTIR 

(neat) 3056, 1587, 1461, 1434, 1180, 1027, 945, 938, 743 cm-1. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
21 Compound previously reported: Shimizu, M.; Shimono, K.; Schelper, M.; Hiyama, T. 

Synlett 2007, 1969. 
22 Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748. 
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I
95

I  

(E)-1-Iodo-2-(2-iodovinyl)benzene (95) Prepared according to the general procedure 

(Method B, page XXX) on a 1 mmol scale, starting from 2-iodobenzyl bromide  (297 mg, 

1.0 mmol). Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 95 

as a yellow oil (260 g, 73%, 99:1 E:Z).Rf = 0.57 (hexanes, 100%). 1H NMR (300 MHz 

CDCl3) " 7.82 (dd, J = 7.9, 1.2 Hz, 1H), 7.60 (d, J = 14.7 Hz, 1H), 7.37-7.28 (m, 2H), 7.01-

6.95 (m, 1H), 6.78 (d, J = 14.7 Hz, 1H). 13C NMR (75 MHz; CDCl3): " 148.4, 141.1, 139.5, 

129.7, 128.5, 126.7, 98.0, 80.0. FTIR (neat) 3053, 1584, 1456, 1429, 1323, 1177, 1015, 

1007, 935, 742 cm-1. HRMS Calcd for C8H7I2 [M]+: 356.8632 Found: 356.8647. 

I
96

I

 

1,3-bis((E)-2-Iodovinyl)benzene (96) A solution of CH2I2 (483 µL, 6.0 mmol) in THF (1.5 

mL) was added dropwise to a solution of NaHMDS (2.20 g, 12.0 mmol) in THF (8 mL) 

and ether (8 mL) at –78 °C (dry ice/acetone bath) in the dark. After 20 min, a solution of 

","’-dibromo-m-xylene  (528 mg, 2.0 mmol) in THF (3 mL) was added dropwise. The 

reaction mixture was stirred for 90 min then removed from the cold bath to warm to rt. 

After 30 min, DBU (597 µL, 4.0 mmol) was added dropwise and the solution stirred for 1 h 

before ether (50 mL) was added. The mixture was filtered through a plug of celite/silica 

(approximately 3 cm celite over 3 cm silica) and the solvent removed under reduced 

pressure. Purification by flash chromatography (hexanes, 100%) afforded vinyl iodide 96 as 

a pale yellow solid (560 mg, 73%, 97:3 EE:EZ). Rf = 0.44 (hexanes, 100%). 1H NMR (300 

MHz, CDCl3) " 7.39 (d, J = 14.9 Hz, 2H), 7.26-7.17 (m, 4H), 6.84 (d, J = 14.9 Hz, 2H). 13C 

NMR (75 MHz, CDCl3) " 144.4, 138.1, 129.1, 125.8, 123.6, 77.6. FTIR (neat) 3046, 1598, 

1584, 1569, 1481, 1172, 945, 752 cm-1. HRMS Calcd for C10H8I2 [M]+: 381.8710 Found: 

381.8707. 

109I

 



 XXXVIII 
(Z)-1-Iodo-2-phenylethene (109) Prepared according to literature procedure.23 

Iodomethylenetriphenylphosphorane (0.550 g, 1.0 mmol, 1.2 equiv) was added to a flame-

dried flask with stir bar. The flask was sealed with a septum, purged with argon, and 

suspended in THF (2.3 mL). NaHMDS (1 mL of a 1 M solution) was added slowly and the 

resulting solution was cooled to -60 ºC. HMPA (0.3 mL) was added and the solution was 

cooled further to -78 ºC.  Benzaldehyde (0.082 mL, 0.8 mmol, 1 equiv) was added and the 

mixture was stirred at -78 ºC for 1 min, and then allowed to warm to rt over 35 min. Ethyl 

ether (20 mL) was added, and the mixture was filtered over a pad of Celite. Purification by 

column chromatography yielded 109 as a yellow liquid (0.132 g, 72%). The observed 

characterization data (1H) was consistent with that previously reported in the literature.24 Rf 

= 0.72 (100% hexane). 1H NMR (300 MHz, CDCl3) " 7.68-7.60 (m, 2H), 7.39-7.34 (m, 

3H), 7.30 (d, J = 8.5 Hz, 1H), 6.56 (d, J = 8.5 Hz, 1H). 

I
112

 

(E)-(1-Iodoprop-1-en-2-yl)benzene (112)25 AlMe3 (1.44 g, 20 mmol, 2 equiv) was added 

dropwise to a solution of Cp2ZrCl2 (2.92 g, 10 mmol, 1 equiv) in DCE (25 mL) to give a 

yellow solution. Phenylacetylene (1.02 g, 10 mmol, 1 equiv) was then added and the 

reaction mixture was left to stir for 16 h. The reaction mixture was then cooled to 0 ºC and 

I2 (3.04 g, 12 mmol, 1.2 equiv) in THF (15 mL) was added via syringe over 3 min. After 2 

h the resulting dark solution faded and the reaction mixture was quenched with H2O/ether 

(1:1, 50 mL). The organic layer was separated, washed with Na2S2O3, dried with MgSO4, 

concentrated and purified by flash chromatography (hexanes, 100%) to afford 112 as a 

single isomer (1.86 g, 76%). Rf = 0.70 (hexanes, 100%). The observed characterization data 

(1H) was consistent with that previously reported in the literature.25 1H NMR (300 MHz, 

CDCl3) " 7.30 (m, 5H), 6.42-6.57 (q, J = 1.5 Hz, 1 H), 2.29 (d, J = 1.5 Hz, 3H). 

!!!!!!!!!!!!!!!!!!!!!!!!!  
23 Stork, G.; Kang, Z. Tetrahedron Lett. 1989, 2173. 
24 Carpita, A.; Ribecai, A.; Rossi, R.; Stabile, P. Tetrahedron 2002, 58, 3673. 
25 Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc. 1985, 107, 6639. 
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I
116

OBn  

(E)-1-(2-Iodovinyl)-2-benzyloxybenzene (116) Prepared according to a modification of 

the general procedure (Method B, page XXX) on a 1.3 mmol scale starting from 2-

benzyloxybenzyl bromide (360 mg, 1.3 mmol). Purification by flash chromatography 

(ether/hexanes, 5/95) afforded the vinyl iodide 116 as a white solid (315 mg, 72%, 98:2 

E:Z). Rf = 0.68 (ether/hexanes, 5/95). 1H NMR (400 MHz, CDCl3) " 7.82 (d, J = 14.9 Hz, 

1H), 7.48 (m, 4H), 7.42 (m, 1H), 7.36 (dd, J = 9.3, 1.7 Hz, 1H), 7.29 (td, J = 8.2, 1.7 Hz, 

1H), 7.01-6.96 (m, 3H), 5.15 (s, 2H). 13C NMR (100 MHz, CDCl3) " 155.3, 140.4, 132.9, 

129.3, 128.6, 128.0, 127.6, 127.2, 126.8, 121.0, 112.5, 78.3, 70.3. FTIR (neat) 3031, 2923, 

2859, 1596, 1483, 1449, 1241, 1102, 1033, 1012, 949, 735 cm-1. HRMS Calcd for 

C15H13IO (M + Na)+: 358.98931. Found: 358.99033. 

I
118

OMe  

(E)-1-(2-Iodovinyl)-2-methoxybenzene (118). Prepared according to the general 

procedure (Method B, page XXX) starting from 2-methoxybenzyl bromide (804 mg, 4.0 

mmol). Purification by flash chromatography (ether/hexanes, 5/95) afforded vinyl iodide 

118 as a yellow oil (784 mg, 75%, 98:2 E:Z). Rf = 0.68 (ether/hexanes, 5/95). The observed 

characterization data (1H, 13C) was consistent with that previously reported in the 

literature.26 1H NMR (400 MHz, CDCl3) " 7.70 (d, J = 14.9 Hz, 1H), 7.29 (t, J = 7.7 Hz, 

2H), 6.97-6.88 (m, 3H), 3.88 (s, 3H).  

I 125
EtO2C

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
26 Graven, A.; Jorgensen, K. A.; Dahl, S.; Stanczak, A. J. Org. Chem. 1994, 59, 3543. 
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Ethyl-(2E, 4Z)-5-iodopenta-2,4-dienoate (125) To a solution of ethyl (Z)-#-

iodoacrylate27 (5.0 mL, 39 mmol, 1 equiv) in DCM (90 mL) at -78 ºC was added DIBAL 

(43 mmol, 1.1 equiv) over 10 min. After stirring for 5 min the reaction was quenched with 

MeOH (7.0 mL), followed by sodium potassium tartrate (200 mL). Following warming to 

room temperature Et2O (100 mL) was added, stirred for 1 h, then further diluted with ether 

and water (50 mL). The organic layer was separated and he aqueous phase was extracted 

with Et2O (4x 80 mL). The combined organic extracts with washed with brine, dried with 

K2CO3 and concentrated to give the crude aldehyde. Separately trimethyl phosphonoacetate 

(8.20 mL, 41 mmol, 1.1 equiv) in THF (80 mL) was cooled to -78 ºC. To this solution was 

added n-BuLi (1.7M in hexanes, 41 mmol, 1.1 equiv) and the solution was stirred for 30 

min. The previously prepared aldehyde in THF (40 mL) was then canulated in. The reaction 

mixture was allowed to warm to rt over 2 h, and then stirred at rt for 1 h after which 

ether/water (50/50, 100 mL) was added. The organic layer was separated and the aqueous 

phase was extracted 4x with Et2O. The combined organic extracts were washed with brine, 

dried with Mg2SO4, concentrated, and purified via column chromatography (ethyl 

acetate/petroleum ether, 5/95) to give 125 as a yellow liquid. The observed characterization 

data (1H) was consistent with that previously reported in the literature.28 Rf = 0.41 (ethyl 

acetate/petroleum ether, 1/9). 1H NMR (400 MHz, CDCl3) " 7.39 (ddd, J = 15.2, 10.3, 0.9 

Hz,  1H), 6.90 (ddd, J = 11.2, 7.7, 0.8 Hz,  1H), 6.82 (ddd, J = 7.9, 0.8, 0.8 Hz,  1H), 6.10 

(ddd, J = 15.2, 0.7, 0.7 Hz,  1H), 4.23 (q, J = 7.3 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). 

I
127Ph  

(E)-(2-(2-Iodovinyl)cyclopropyl)benzene (127) A stirred solution of DME (7.7 mL, 74.5 

mmol, 2 equiv) in CH2Cl2 (170 mL) was cooled to –15 ºC. ZnEt2 (7.6 mL, 74.5 mmol, 2 

equiv) was added dropwise while maintaining the temperature of the solution below –14 

ºC. Diiodomethane (12.0 mL, 149.0 mmol, 4 equiv) was added dropwise, maintaining the 

reaction temperature below –6 ºC. After stirring for 10 min a solution of cinnamyl alcohol 
!!!!!!!!!!!!!!!!!!!!!!!!!  
27 Marek, I.; Meyer, C.; Normant, J.-F. Org. Synth. 1997, 74, 194. 
28 Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.; Shin, S.; 

Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666. 
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(5.0 g, 37.3 mmol, 1 equiv) in CH2Cl2 (30 mL) was added dropwise, keeping the 

reaction temperature below –5 ºC. The reaction was left to stir and warm to room 

temperature over 16 h after which saturated NH4Cl solution (50 mL) was added followed 

by aqueous HCl (10%, 100 mL). The mixture was diluted with Et2O (300 mL), then the 

organic layer was separated, washed with Na2SO3, NaHCO3, and saturated NaCl solutions, 

dried over MgSO4 and concentrated. The crude cyclopropane was purified with column 

chromatography (30% EtOAc/Hexane). To remove unreacted cinnamyl alcohol, the flashed 

product was dissolved in actone/water (1:1, 184 mL), then NMO (6.5 g, 55 mmol, 1.5 

equiv) and OsO4 (0.061M in tBuOH, 15 mL, 2.5 mol %) were added. The reaction was 

stirred in the dark for 16h then diluted with Et2O and washed with Na2SO3 (100 mL). The 

organic layer was removed and the aqueous phase was extracted with Et2O (3 ! 100 mL). 

The combined organic layers were washed with NaHCO3 (100 mL) and brine, dried over 

MgSO4 and purified by column chromatography (ethyl acetate/hexanes, 3/7) to give trans-

2-phenylcyclopropylmethanol (3.85 g, 26 mmol, 70%). 

PCC (1.02 g, 4.8 mmol, 1.1 equiv) was added to a solution of trans-2-

phenylcyclopropylmethanol (0.630 g, 4.2 mmol, 1 equiv) in CH2Cl2 (25 mL). The reaction 

mixture was stirred for 14 h, then filtered through a pad of silica and celite (ethyl 

acetate/hexanes, 3/7) to afford the cyclopropyl aldehyde (0.513 g, 3.6 mmol, 88%).  

CrCl2 (3.10 g, 25.2 mmol, 7 equiv) was dissolved in THF (20 mL) and the mixture 

cooled to 0 ºC. The previously prepared cyclopropyl aldehyde (0.513 g, 3.6 mmol, 1 equiv) 

was diluted in THF (15 mL) and iodoform (2.83 g, 7.2 mmol, 2 equiv) was dissolved in this 

solution. The resulting solution was added to the CrCl2 solution at 0 ºC via syringe and the 

mixture was left to stir for 3 h. Water (100 ml) was added and the organic layer was 

separated. The aqueous phase was extracted with Et2O (3 ! 100 mL) and the combined 

organic layers were dried with Na2SO4, concentrated, and purified by column 

chromatography (hexanes, 100%) to afford the title compound 127 as a colourless oil 

(0.608 g, 61%, 7.5:1 E:Z). Rf = 0.55 (hexanes, 100%). 1H NMR (300 MHz, CDCl3) " 7.29 

(t, J = 7.3 Hz, 2H), 7.20 (d, J = 7.3 Hz, 1H), 7.09 (d, J = 7.3 Hz, 2H), 6.20 (dd, J = 14.4, 8.8 

Hz, 1H), 6.04 (d, J = 14.4 Hz, 1H), 2.03 (m, 1H), 1.74 (m, 1H), 1.29 (m, 1H), 1.18 (m, 1H). 
13C NMR (75 MHz, CDCl3) " 147.9, 141.3, 128.4, 125.9, 125.7, 71.8, 29.5, 24.7, 16.1. 



 XLII 
FTIR (neat) 3025, 1604, 1495, 1458, 1277, 1199, 1180, 1127, 1073, 942 cm-1. GCMS 

Calcd for C11H11I: 269.99. Found: 270. 

I
129

 

1-Iodocyclohexene (129) Cyclohexanone (5.2 mL, 50 mmol, 1 equiv) was added dropwise 

over 5-10 min to hydrazine monohydrate (15 mL, 310 mmol, 6 equiv) while stirring 

vigorously. A white precipitate formed and the reaction mixture was refluxed at 150 ºC for 

2 h. The mixture was cooled to room temperature, then CH2Cl2 (100 mL) was added. The 

organic layer was separated and the aqueous phase was extracted with CH2Cl2 (100 mL). 

The combined organic layers were washed with saturated NaCl solution (50 mL), dried 

with Na2SO4 and concentrated to give the crude hydrazone. Tetramethylguanidine (37 mL, 

300 mmol, 6 equiv) in THF (55 mL) was added to iodine (14 g, 300 mmol, 6 equiv) in THF 

(80 mL). The resulting solution was cannulated onto the crude hydrazone (2.8 g) in THF 

(25 mL) at 0 ºC. The reaction mixture was allowed to warm to room temperature overnight 

and then refluxed for 2 h at 85 ºC and then cooled to room temperature. The organic layer 

was washed with aqueous HCl (1M, 100 mL) and saturated NaCl solution. The aqueous 

layer was extracted with Et2O (2 x 100 mL), dried with MgSO4, concentrated, and purified 

via column chromatography (hexanes, 100%) to give 129 as a colorless oil (0.970 g, 20% 

over two steps). The observed characterization data (1H) was consistent with that 

previously reported in the literature.29 Rf = 0.8 (hexanes, 100%). 1H NMR (400 MHz, 

CDCl3) " 6.32 (m, 1H), 2.51 (m, 2H), 2.10 (m, 2H), 1.60-1.70 (m, 4H). 

I
131  

1-Iodopentene (131). To a flame-dried round-bottomed-flask was added pentyl (4.2 mL, 

42.6 mmol, 1.0 equiv), and hexanes (50 mL). The solution was cooled to –78 ºC afterwhich 

DIBAL (9.5 mL, 53.3 mmol, 1.3 equiv) was added over 30 min. The reaction temperature 
!!!!!!!!!!!!!!!!!!!!!!!!!  
29 Jarho, E. M.; Venalainen, J. I.; Poutiainen, S.; Leskinen, H.; Vepsalainen, J.; Christiaans, 

J. A. M.; Forsberg, M. M.; Mannisto, P. T.; Wallen, E. A. A. Bioorg. Med. Chem. 

2007, 15, 2024. 
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was warmed to rt overnight and then cooled to –78 ºC. Iodine (13.8 g, 54.3 mmol, 1.3 

equiv) was dissolved in THF (50 mL) and added via syringe. The solution was left to stir at 

–78 ºC for 30 min and then left to stir at rt for 1 h. The solution was poured onto 100 mL of 

iced 1M HCl and an additional 100 mL 1M HCl was added. The organic layer was 

separated and the aqueous phase was extracted with 3 x 100 mL pf pentane. The organic 

layers were combined, washed with 2x100 mL sat. NaHCO3 solution, 2x100 mL sat. 

Na2S2O3 solution, and 2x100 mL sat. NaCl solution, then dried with MgSO4. Filtration on 

silca and concentration in vacuo afforded 131 as a clear liquid (1.9235 g, 25%). The 

observed characterization data (1H) was consistent with that previously reported in the 

literature.30 Rf = 0.81 (hexanes, 100%). 1H NMR (400 MHz, CDCl3) " 6.51 (dt, J = 14.5, 

1.5 Hz, 1H), 5.96 (dt, J = 14.5, 1.5 Hz, 2H), 2.03 (m, 2H), 1.43 (s, J = 7.5 Hz, 2H), 0.91 (t, 

J = 7.5 Hz, 3H). 

I
133

OPMB

I
135

OH  

(E)-1-((1-Iodonon-1-en-3-yloxy)methyl)-4-methoxybenzene (133), (E)-1-iodonon-1-en-

3-ol (135) A solution of ethyl (Z)-#-iodoacrylate31 (1.13 g, 5 mmol, 1 equiv) in CH2Cl2 (10 

mL) was cooled to –78 ºC with an acetone/liquid nitrogen bath. DIBAL-H (neat, 0.890 mL, 

5 mmol, 1 equiv) was added via syringe and the internal temperature was not allowed to 

increase above –75 ºC. The solution was allowed to warm to 0 ºC over 1.5 h and then 

cooled to –20 ºC. Hexylmagnesium bromide (2.0 M in ether, 2.75 mL, 5.3 mmol, 1.1 

equiv) was then added and the reaction was warmed to room temperature over 1.5 h after 

which ethyl ether (50 mL) and aqueous HCl (1M, 50 mL) were added. The mixture was 

extracted with Et2O (3 ! 100 mL), dried over MgSO4, concentrated and the crude allylic 

alcohol was purified via column chromatography (ethyl acetate/hexanes, 15/85) to give (E)-

1-iodonon-1-en-3-ol (135) as a white solid (0.610g, 46%) 

!!!!!!!!!!!!!!!!!!!!!!!!!  
30 Barrett, A. G. M.; Bennett, A. J.; Menzer, S.; Smith, M. L.; White, A. J. P.; Williams, D. 

J. J. Org. Chem. 1999, 64, 162. 
31 Marek, I.; Meyer, C.; Normant, J.-F. Org. Synth. 1997, 74, 194. 
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The allylic alcohol (0.300 g, 1.1 mmol, 1 equiv) was dissolved in THF (6 mL) 

and the solution was cooled to 0 ºC. NaH (0.304 g, 60% in mineral oil) was added. The 

mixture was left to stir for 20 min and PMBBr (0.175 mL, 1.2 mmol, 1.1 equiv) was added. 

The reaction mixture was left to warm to room temperature overnight after which Et2O (50 

mL) was added and resulting mixture was washed with aqueous HCl (1M, 100 mL). The 

organic layer was separated and the aqueous phase was extracted with Et2O (3 ! 100 mL). 

The combined organic layers were dried with Na2SO4, concentrated and purified by column 

chromatography (ethyl acetate/hexanes, 15/85) to give 133 as a yellow oil (0.321 g, 78%). 

Rf 0.61 (ethyl acetate/hexanes, 15/85). 1H NMR (400 MHz, CDCl3) " 7.27 (d, J = 8.5 Hz, 

2H), 6.90 (d, J = 8.5 Hz, 2H), 6.49 (dd, J = 14.5, 7.8 Hz, 1H), 6.30 (d, J = 14.5 Hz, 1H), 

4.55 (d, J = 11.5 Hz, 1H), 4.30 (d, J = 11.5 Hz, 1H), 3.82 (s, 3H), 3.73 (q, J = 6.7 Hz, 1H), 

1.63 (m, 1H), 1.58 (m, 1H), 1.28 (m, 8H), 0.91 (t, J = 7.0 Hz, 3H). 13C NMR (100 MHz, 

CDCl3) " 158.8, 146.9, 129.9, 129.0, 113.4, 80.8, 77.5, 69.8, 54.9, 34.6, 31.8, 28.8, 24.8, 

22.3, 13.8. FTIR (neat) 2926, 2855, 1611, 1512, 1246, 1172, 1082, 1037, 949, 821 cm-1. 

HRMS Calcd for C17H25IO2 (M + Na)+: 411.07914. Found 411.08048. 

 

Synthesis and Characterization of 2-Vinyl Pyridinium Ylides 

N
NBz

I N R2
NBz

+

1.5 equiv 1 equiv

R2

R1
R1CuBr2 (10 mol %)

K2CO3 (3 equiv)
PhCl, 125 ºC, 16-24 h

R3 R3

 

General Procedure 

To a microwave vial with a stir bar was added the N-iminopyridinium ylide (0.6 

mmol, 1.5 equiv), CuBr2 (0.04 mmol, 10 mol %), and crushed dry K2CO3 (0.8 mmol, 2 

equiv). The vial was then sealed with a septum and purged with argon for 5 min. To a 

separate vial was added the vinyl iodide  (0.4 mmol, 1 equiv). The iodide was diluted in 

chlorobenzene (0.5 mL) and added to the reaction vessel via syringe. The vial and syringe 

were then rinsed three times with chlorobenzene (0.5 mL) bringing the total reaction 

volume to 2 mL. The reaction was stirred vigorously for 16 h at 125 ºC. Following cooling, 



 XLV 
2 mL of CH2Cl2/MeOH (9:1) was added, and the solution was filtered though a 

silica/Celite pad. The pad was then rinsed with 15 mL of CH2Cl2/MeOH (9:1). The 

combined solution was concentrated and the crude mixture was purified via column 

chromatography to afford the vinylated pyridinium products. 

N
NBz

107  

2-(E)-Styryl-N-benzoyliminopyridinium ylide (107) The title compound 109 was 

prepared according to the general procedure described above (page XLV) using vinyl 

iodide 80 or 109, and purified by column chromatography (methanol/dichloromethane, 

5/95) as a cream colored solid (98.2 mg, 81%). 47.8 mg of the unreacted ylide was also 

recovered. Rf = 0.26 (methanol/dichloromethane, 5/95). mp: 199-201 ºC. 1H NMR (300 

MHz, CDCl3) " 8.59 (d, J = 6.9 Hz, 1H), 8.25 (d, J = 7.0 H, 2H), 7.99 (d, J = 8.2 Hz, 1H), 

7.85 (t, J = 8.2 H, 1H), 7.78 (d, J = 16.6 Hz, 1H), 7.52-7.41 (m, 7H), 7.36-7.34 (m, 3H).  
13C NMR (75 MHz, CDCl3) "  151.9, 146.2, 140.3, 137.7, 136.0, 131.0, 130.9, 129.8, 

129.3, 129.0, 128.8, 128.7, 128.4, 124.1, 124.0, 119.4. FTIR (neat) 3054, 1612, 1590, 1552, 

1483, 1325, 1289, 1173, 1066, 965 cm-1. HRMS Calcd for C20H17N2O (M + H)+: 

301.13354. Found: 301.13502. 

N
NBz

110  

2-(E)-(2-(Naphthalen-2-yl)vinyl)-N-benzoyliminopyridinium ylide (110) The title 

compound 110 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 83, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a yellow/brown oil (113.2 mg, 81%). Rf = 0.35 

(methanol/dichloromethane, 1/9). 1H NMR (300 MHz, CDCl3) " 8.58 (d, J = 6.3 Hz, 1H), 

8.31 (m, 2H), 8.03 (dd, J = 8.3, 1.2 Hz, 1H), 7.88-7.68 (m, 6H), 7.61-7.56 (m, 2H), 7.51-

7.45 (m, 5H), 7.43-7.40 (m, 1H). 13C NMR (75 MHz, CDCl3) "  151.9, 146.1, 140.6, 138.2, 
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137.7, 134.9, 134.0, 133.5, 131.1, 130.6, 129.6, 129.4, 129.2, 129.0, 128.9, 128.8, 

128.6, 128.0, 127.5, 124.0, 123.9, 119.2. FTIR (neat) 3056, 1609, 1591, 1550, 1497, 1326, 

1293, 1175, 1066, 962 cm-1. HRMS Calcd for C24H19N2O (M + H)+: 351.14919. Found: 

351.15033. 

N
NBz

111  

2-(E)-(2-Methylstyryl)-N-benzoyliminopyridinium ylide (111). The title 

compound 111 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 82, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a cream colored solid (97.6 mg, 78%). Rf = 0.36 

(methanol/dichloromethane, 1/9). mp: 182-184 ºC. 1H NMR (300 MHz, CDCl3) " 8.61 (d, J 

= 6.2 Hz, 1H), 8.24 (m, 2H), 8.05 (d, J = 8.2, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.70 (s, 2H), 

7.57 (d, J = 7.6 Hz, 1H), 7.50-7.42 (m, 5H), 7.26-7.17 (m, 2H), 2.43 (s, 3H). 13C NMR (75 

MHz, CDCl3) "  152.0, 146.2, 138.1, 137.9, 137.7, 135.1, 131.6, 130.9, 130.7, 128.9, 128.7, 

127.5, 127.4, 127.1, 124.2, 124.1, 120.7, 78.2, 20.8. FTIR (neat) 3060, 1592, 1552, 1492, 

1331, 1294, 1176, 910 cm-1. HRMS Calcd for C21H19N2O (M + H)+: 315.14919. Found: 

315.15057. 

N
NBz

113  

2-(E)-(2-Phenylprop-1-enyl)-N-benzoyliminopyridinium ylide (113) The title compound 

113 was prepared according to the general procedure described above (page XLV) using 

vinyl iodide 112, and purified by column chromatography (methanol/dichloromethane, 

5/95) as a brown solid (61.0 mg, 48%). Rf = 0.55 (methanol/dichloromethane, 1/9). mp: 

155-157 ºC. 1H NMR (300 MHz, CDCl3) " 8.71 (dd, J = 6.4, 0.9 Hz, 1H), 8.21-8.18 (m, 

2H), 7.92 (t, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.8, 1.6 Hz, 1H), 7.56-7.30 (m, 9H), 7.13 (d, J = 

0.5 Hz, 1H), 2.35 (d, J = 0.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) " 170.8, 151.9, 146.3, 
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146.2, 142.4, 138.2, 137.2, 130.9, 129.6, 129.4, 128.9, 128.7, 128.6, 127.1, 124.1, 

119.8, 19.1. FTIR (neat) 3061, 2981, 1612, 1592, 1554, 1486, 1328, 1294, 1177, 1055, 

1033 cm-1. HRMS Calcd for C21H19N2O (M + H)+: 315.14919. Found. 315.15044. 

N
NBz

114

N
NBz

 

(2,2'-(1E,1'E)-2,2'-(1,3-Phenylene)bis(ethene-2,1-diyl)bis(pyridinium-2,1-

diyl))bis(benzoylamide) (114) The title compound 114 was prepared according to the a 

modification of the general procedure described above (page XLV) using 3 equiv of ylide 

20 and bis-vinyl iodide 96, and purified by column chromatography (gradient 5/5/90 

Et3N/MeOH/DCM to 5/95 MeOH/DCM) as a cream colored solid (63.6 mg, 63%). Rf = 

0.26 (methanol/dichloromethane, 5/95). mp: 199-201 ºC. 1H NMR (400 MHz, CDCl3) " 

8.58 (d, J = 5.8 Hz, 2H), 8.27 (m, 4H), 7.97 (d, J = 8.1 Hz, 2H), 7.81 (t, J = 7.6 Hz, 2H), 

7.67 (d, J = 16.6 Hz, 2H), 7.48-7.41 (m, 11H), 7.35 (d, J = 16.6 Hz, 2H), 7.22 (t, J = 7.6 

Hz, 1H) 13C NMR (100 MHz, CDCl3) " 170.0, 150.5, 145.0, 138.4, 136.8, 136.6, 135.5, 

129.9, 129.4, 129.3, 128.2, 128.1, 127.8, 127.6, 123.2, 119.1. FTIR (neat) 3060, 1612, 

1591, 1545, 1489, 1336, 1294, 1176, 1066 cm-1. HRMS Calcd for C34H27N4O2 (M + H)+: 

523.21285. Found. 523.21476. 

N
NBz

115 OMe  

2-(E)-(4-Methoxystyryl)-N-benzoyliminopyridinium ylide (115) The title 

compound 115 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 84, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a cream colored solid (95.2 mg, 78%). Rf = 0.26 

(methanol/dichloromethane, 5/95). mp: 201-202 ºC. 1H NMR (300 MHz, CDCl3) " 8.51 (d, 

J = 5.6 Hz, 1H), 8.27 (m, 2H), 7.97 (d, J = 8.2 Hz, 1H), 7.80 (t, J = 7.6 Hz, 1H), 7.63 (d, J 

= 16.6 Hz, 1H), 7.48-7.83 (m, 7H), 6.86 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H) 13C NMR (75 
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MHz, CDCl3) " 162.1, 152.2, 145.9, 140.1, 137.6, 131.6, 130.9, 130.4, 128.9, 

128.8, 128.7, 123.6, 123.4, 116.8, 115.2, 114.9, 56.2. FTIR (neat) 3060, 2930, 2831, 1610, 

1591, 1547, 1327, 1245, 1024, 910 cm-1. HRMS Calcd for C21H19N2O2 (M + H)+: 

331.14410. Found: 331.14416. 

N
NBz 117

OBn

 

2-(E)-(2-(Benzyloxy)styryl)-N-benzoyliminopyridinium ylide (117) The title compound 

117 was prepared according to the general procedure described above (page XLV) using 

vinyl iodide 116, and purified by column chromatography (methanol/dichloromethane, 

5/95) as a cream colored solid (115.0 mg, 71%). Rf = 0.48 (methanol/dichloromethane, 

5/95). mp: 186-187 ºC. 1H NMR (300 MHz, CDCl3) " 8.55 (d, J = 6.1 Hz, 1H), 8.24 (m, 

2H), 7.95 (d, J = 8.2 Hz, 1H), 7.87 (s, 2H), 7.81 (t, J = 7.9 Hz, 1H), 7.59 (d, J = 7.7 Hz, 

1H), 7.45-7.25 (m, 10H), 6.95 (m, 2H), 5.13 (s, 2H). 13C NMR (75 MHz, CDCl3) " 157.8, 

152.4, 146.0, 138.1, 137.6, 137.5, 135.2, 130.9, 129.6, 129.3, 128.95, 128.93, 128.8, 128.7, 

128.1, 125.5, 124.0, 123.8, 122.1, 119.6, 113.6, 71.3. FTIR (neat) 3062, 1610, 1593, 1553, 

1492, 1452, 1331, 1235, 1000 cm-1. HRMS Calcd for C27H23N2O2 (M + H)+: 407.17540. 

Found: 407.17545. 

N
NBz 119

OMe

 

2-(E)-(2-Methoxystyryl)-N-benzoyliminopyridinium ylide (119) The title compound 119 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 118, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

brown solid (130.1 mg, 93%). Rf = 0.45 (methanol/dichloromethane, 5/95). mp: 102-104 

ºC. 1H NMR (300 MHz, CDCl3) " 8.52 (d, J = 6.3 Hz, 1H), 8.26 (m, 2H), 8.02 (dd, J = 8.3, 

1.4 Hz, 1H), 7.90-7.76 (m, 3H), 7.52 (dd, J = 7.7, 1.6 Hz, 1H), 7.46-7.38 (m, 4H), 7.3 (t, J 

= 7.7 Hz, 1H), 6.95-6.85 (m, 2H), 3.79 (s, 3H). 13C NMR (75 MHz, CDCl3) " 158.8, 152.5, 
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145.9, 138.2, 137.2, 135.6, 132.2, 130.9, 129.3, 129.0, 128.7, 125.0, 123.9, 123.7, 

121.7, 120.0, 111.9, 56.3. FTIR (neat) 3060, 2938, 2836, 1591, 1547, 1481, 1329, 1243, 

1176, 1024, 911 cm-1. HRMS Calcd for C21H19N2O2 (M + H)+: 331.14410. Found: 

331.14393. 

N
NBz 120 O

O

 

2-(E)-(2-(Benzo[d][1,3]dioxol-5-yl)vinyl)-N-benzoyliminopyridinium ylide (120) The 

title compound 120 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 86, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a beige oil (102.9 mg, 75%). Rf = 0.25 

(methanol/dichloromethane, 5/95). mp: 199-201 ºC. 1H NMR (300 MHz, CDCl3) " 8.49 (d, 

J = 5.9 Hz, 1H), 8.21 (m, 2H), 7.91 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 7.5 Hz, 1H), 7.55 (d, J 

= 16.5 Hz, 1H), 7.43-7.27 (m, 5H), 6.95-6.90 (m, 2H), 6.71 (d, J = 8.0 Hz, 1H), 5.93 (s, 

2H). 13C NMR (75 MHz, CDCl3) " 151.0, 149.3, 148.2, 145.1, 139.1, 137.2, 136.6, 130.0, 

129.6, 127.9, 127.8, 124.1, 122.7, 122.6, 116.3, 108.4, 106.2, 101.5, 77.2. FTIR (neat) 

3062, 2981, 2894, 1591, 1549, 1489, 1445, 1328, 1235, 1034, 910 cm-1. HRMS Calcd for 

C21H17N2O3 (M + H)+: 345.12337. Found. 345.12483. 

N
NBz

121 CF3  

2-(E)-(4-(Trifluoromethyl)styryl)-N-benzoyliminopyridinium ylide (121). The title 

compound 121 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 90, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a beige solid (103.9 mg, 71%). Rf = 0.26 

(methanol/dichloromethane, 5/95). mp: 166-168 ºC. 1H NMR (300 MHz, CDCl3) " 8.68 (d, 

J = 6.4 Hz, 1H), 8.24 (m, 2H), 8.03 (dd, J = 8.2, 1.6 Hz, 1H), 7.95-7.84 (m, 2H), 7.62 (s, 

4H), 7.55 (m, 1H), 7.49-7.42 (m, 4H). 13C NMR (75 MHz, CDCl3) " 170.2, 150.2, 145.2, 



 L 
138.3, 137.3, 136.8, 131.2 (q, J = 32.1 Hz), 127.9, 127.8, 127.7, 125.7, 125.6, 124.1 (q, J 

= 271.9 Hz), 123.7, 123.4, 120.9  FTIR (neat) 3062, 1592, 1549, 1488, 1319, 1294, 1165, 

1117, 1066, 1016, 910 cm-1. HRMS Calcd for C21H16F3N2O (M + H)+: 369.12092. Found: 

369.12252. 

N
NBz

122 CN  

2-(E)-(4-Cyanostyryl)-N-benzoyliminopyridinium ylide (122). The title 

compound 122 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 89, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a beige solid (117.1 mg, 89%). Rf = 0.29 

(methanol/dichloromethane, 5/95). mp: 194-195 ºC.  1H NMR (300 MHz, CDCl3) " 8.66 

(d, J = 6.4 Hz, 1H), 8.23 (m, 2H), 8.01 (dd, J = 8.2, 1.5 Hz, 1H), 7.92-7.81 (m, 2H), 7.63-

7.52 (m, 5H), 7.48-7.38 (m, 4H). 13C NMR (75 MHz, CDCl3) " 150.9, 146.4, 140.2, 138.7, 

137.84, 137.81, 137.5, 133.5, 131.2, 129.0, 128.9, 128.8, 125.1, 124.5, 123.0, 119.3, 

113.8.  FTIR (neat) 3063, 2225, 1592, 1554, 1487, 1330, 1293, 1175, 1066, 1024, 911 cm-1. 

HRMS Calcd for C21H16N3O (M + H)+: 326.12879. Found: 326.12983. 

N
NBz 124 F  

2-(E)-(4-Fluorostyryl)-N-benzoyliminopyridinium ylide (124). The title compound 124 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 88  (123), and purified by column chromatography (methanol/dichloromethane, 

5/95) as a yellow oil (109.1 mg, 83%). Rf = 0.36 (methanol/dichloromethane, 5/95). 1H 

NMR (400 MHz, CDCl3) " 8.55 (d, J = 6.2 Hz, 1H), 8.25 (d, J = 6.2 Hz, 2H), 7.98 (d, J = 

8.2 Hz, 1H), 7.83 (t, J = 7.7 Hz, 1H), 7.67 (d, J = 16.6 Hz, 1H), 7.48-7.37 (m, 7H), 7.02 (t, 

J = 8.5 Hz, 2H). 13C NMR (75 MHz, CDCl3) "  164.5 (d, J = 251 Hz), 151.7, 146.0, 139.1, 

137.9, 132.2 (d, J = 3.4 Hz), 131.1, 130.6, 130.5, 128.9, 128.8, 128.7, 124.1, 124.0, 119.0, 



 LI 
116.9 (d, J = 22.1 Hz). FTIR (neat) 3060, 1591, 1547, 1508, 1487, 1329, 1293, 1227, 

1158, 1067, 967 cm-1. HRMS Calcd for C20H16HN2O (M + 1)+: 319.12412. Found: 

319.12392. 

N
NBz 126

CO2Et

 

Ethyl-(2E, 4E)-5-[N-benzoyliminopyridinium ylide]-penta-2,4-dienoate (126). The title 

compound 126 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 125. The title compound 126 was purified by preparatory thin 

layer chromatography (methanol/dichloromethane, 5/95) as a brown-colored oil (52.1 mg, 

41%). Rf = 0.28 (methanol/dichloromethane, 5/95). 1H NMR (400 MHz, CDCl3) " 8.69 (d, 

J = 6.4 Hz, 1H), 8.22 (dd, J = 7.6, 2.0 Hz, 2H), 7.97-7.88 (m, 2H), 7.59-7.55 (m, 2H), 7.47-

7.40 (m, 4H), 7.17 (dd, J = 15.2, 4.4 Hz, 2H), 6.15 (d, J = 15.6 Hz, 1H), 4.23 (q, J = 7.2 Hz, 

2H), 1.32 (d, J = 7.2 Hz, 3H).  13C NMR (100 MHz, CDCl3) "  170.1, 165.8, 149.4, 145.4, 

142.0, 136.8, 136.6, 135.6, 130.2, 128.7, 128.0, 127.8, 126.9, 124.3, 60.8, 14.1. FTIR (neat) 

3406, 3061, 2981, 1707, 1591, 1548, 1488, 1444, 1331, 1175, 1026, 713 cm-1. HRMS 

Calcd for C20H17N2O (M + H)+: 323.13902. Found: 323.13893. 

N
NBz 128

Ph
 

 2-(E)-(2-(2-Phenylcyclopropyl)vinyl)-N-benzoyliminopyridinium ylide (128). The title 

compound 128 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 127, and purified by column chromatography 

(methanol/dichloromethane, 5/95) as a light brown solid (72.0 mg, 53%). Rf = 0.41 

(methanol/dichloromethane, 5/95). mp: 179 ºC 1H NMR (300 MHz, CDCl3) " 8.49 (d, J = 

6.2 Hz, 1H), 8.25 (m, 2H), 7.83-7.76 (m, 2H), 7.45-7.37 (m, 4H), 7.27 (t, J = 7.6 Hz, 2H), 

7.22-7.17 (m, 2H), 7.04 (d, J = 7.2 Hz, 2H), 6.37 (m, 1H), 2.18 (m, 1H), 1.94 (m, 1H), 1.46 

(m, 1H), 1.32 (m, 1H).  13C NMR (75 MHz, CDCl3) "  171.2, 151.7, 147.6, 145.7, 141.4, 

138.0, 137.8, 131.0, 129.3. 128.9, 128.7, 127.0, 126.6, 123.6, 123.5, 119.5, 29.4, 28.2, 



 LII 
19.2. FTIR (neat) 3061, 1632, 1593, 1553, 1490, 1330, 1175, 713 cm-1. HRMS Calcd for 

C23H21N2O (M + H)+: 341.16484. Found: 341.16601. 

 

N
NBz
130  

2-(E)-Cyclohexenyl-N-benzoyliminopyridinium ylide (130). The title compound 130 was 

prepared according to the general procedure described above (page XLV) using vinyl 

iodide 129, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

pale yellow oil (58.9 mg, 52%). Rf = 0.33 (methanol/dichloromethane, 5/95). 1H NMR (300 

MHz, CDCl3) " 8.62 (d, J = 6.2 Hz, 1H), 8.16 (m, 2H), 7.85 (t, J = 7.5 Hz, 1H), 7.54 (m, 

2H), 7.41 (m, 3H), 6.06 (m, 1H), 2.46 (m, 2H), 2.21 (m, 2H), 1.67 (m, 4H). 13C NMR (75 

MHz, CDCl3) " 170.8, 156.9, 146.7, 138.3, 134.5, 134.1, 130.7, 128.9, 128.6, 128.1, 124.6, 

78.1, 27.6, 26.4, 23.1, 22.4. FTIR (neat) 3061, 2980, 1592, 1552, 1486, 1328, 1294, 1177, 

1055, 1033 cm-1. HRMS Calcd for C18H19N2O (M + H)+: 279.14919. Found: 279.14885. 

N
NBz 132

 

2-(E)-Pentenyl-N-benzoyliminopyridinium ylide (132). The title compound 132 was 

prepared according to the general procedure described above (page XLV) using vinyl 

iodide 131, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

pale yellow oil (12.0 mg, 15%). Rf = 0.39 (methanol/dichloromethane, 5/95). 1H NMR (300 

MHz, CDCl3) " 8.56-8.54 (m, 1H), 8.23-8.20 (m, 2H), 7.85 (d, J = 4.0 Hz, 2H), 7.44 (m, 

4H), 7.15-7.09 (m, 1H), 6.70 (dt, J = 16.0, 6.9 Hz, 1H), 2.31 (q, J = 7.3 Hz, 2H), 1.53 (q, J 

= 7.4 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) " 171.1, 145.9, 144.6, 

138.1, 137.6, 130.8, 128.9, 128.6, 124.3, 124.0, 123.9, 122.3, 36.3, 22.0, 14.5. FTIR (neat) 

3062, 2983, 1592, 1542, 1486, 1326, 1290, 1187, 1065, 1033 cm-1. LRMS (APCI) Calcd 

for C17H19N2O (M + H)+: 267.14. Found: 267.2. 



 LIII 
 

N
NBz

134
OPMB

 

2-(E)-(3-(4-methoxybenzyloxy)non-1-enyl)-N-benzoyliminopyridinium ylide (134). The 

title compound 134 was prepared according to the general procedure described above (page 

XLV) using vinyl iodide 133, and purified by preparative HPLC (ZORBAX Eclipse XDB-

C8, 2% to 98% MeCN in H2O over 10 min, 20 mL/min: tr = 9.75 min) as a colourless oil 

(41.0 mg, 30%). Rf = 0.41 (methanol/dichloromethane, 5/95). 1H NMR (300 MHz, CDCl3) 

" 8.65 (d, J = 6.1 Hz, 1H), 8.21 (m, 2H), 7.86 (m, 2H), 7.53 (dt, J = 6.7, 2.2 Hz, 1H), 7.45 

(m, 3H), 7.27 (d, J = 16.3 Hz, 1H), 7.17 (d, J = 8.7 Hz, 2H), 6.72 (d, J = 8.7 Hz, 2H), 6.56-

6.58 (m, 1H), 4.53 (d, J = 11.6 Hz, 1H), 4.32 (d, J = 11.6 Hz, 1H), 3.94 (q, J = 6.2 Hz, 1H), 

3.76 (s, 3H), 1.68 (m, 1H), 1.56 (m, 1H), 1.24 (m, 8H), 0.85 (t, J = 7.0 Hz, 3H). 13C NMR 

(75 MHz, CDCl3) " 170.9, 160.0, 151.5, 146.1, 143.6, 138.0, 137.7, 130.9, 130.4, 129.0, 

128.7, 124.6, 123.6, 118.3, 114.6, 79.2, 78.1, 71.3, 56.1, 36.2, 32.6, 30.0, 26.1, 23.4, 

14.9. FTIR (neat) 3061, 2927 2856, 1612, 1593, 1512, 1331, 1295, 1247, 1176, 1034, 713 

cm-1. HRMS Calcd for C29H35N2O3 (M + 1)+: 459.26422. Found: 459.26289. 

N
NBz

136
O

 

2-(E)-( 3-oxononyl)-N-benzoyliminopyridinium ylide (136). The title compound 136 was 

prepared according to the general procedure described above (page XLV) using vinyl 

iodide 135, and purified by preparative HPLC (ZORBAX Eclipse XDB-C8, 2% to 98% 

MeCN in H2O over 10 min, 20 mL/min: tr = 9.65 min) as a colourless oil (18.0 mg, 22%). 

Rf = 0.41 (methanol/dichloromethane, 5/95). 1H NMR (400 MHz, CDCl3) " 8.69-8.66 (m, 

1H), 8.21-8.18 (m, 2H), 7.88-7.83 (m, 1H), 7.78-7.75 (m, 1H), 7.56-7.51 (m, 1H), 7.47-

7.44 (m, 3H), 3.34 (t, J = 6.6 Hz, 2H), 2.99 (t, J = 6.5 Hz, 2H), 2.36 (t, J = 7.3 Hz, 2H), 

1.53-1.44 (m, 2H), 1.26-1.17 (m, 6H), 0.87 (t, J = 6.6 Hz, 3H). 13C NMR (100 MHz, 



 LIV 
CDCl3) "  190.1, 171.2, 145.6, 145.6, 139.1, 137.2, 130.2, 129.0, 128.6, 124.2, 122.0, 

36.4, 36.2, 32.6, 30.0, 29.2, 26.1, 23.4, 14.9. FTIR (neat) 3065, 2925 2876, 1702, 1593, 

1515, 1321, 1275, 1247, 1177, 1033, 712 cm-1. LRMS (APCI) Calcd for C21H27N2O2 (M + 

1)+: 339.20. Found: 339.2. 

N
NBz 141

Cl

 

2-(E)-(2-Chlorostyryl)-N-benzoyliminopyridinium ylide (141). The title compound 141 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 91, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

cream colored solid (98.9 mg, 74%). Rf = 0.63 (methanol/dichloromethane, 1/9). mp: 202-

204 ºC. 1H NMR (300 MHz, CDCl3) " 8.64 (d, J = 6.1 Hz, 1H), 8.26 (m, 2H), 8.06 (dd, J = 

8.2, 1.4 Hz, 1H), 7.94-7.75 (m, 3H), 7.67 (m, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46-7.39 (m, 

4H), 7.31-7.23 (m, 2H). 13C NMR (75 MHz, CDCl3) " 151.5, 146.3, 138.0, 137.8, 135.7, 

135.4, 134.1, 131.7, 131.0, 130.9, 128.9, 128.8, 128.4, 128.2, 128.0, 124.6, 124.4, 

121.9. FTIR (neat) 3055, 1590, 1554, 1485, 1444, 1324, 1289, 1171, 1050, 967, 910, 719 

cm-1. HRMS Calcd for C20H16ClN2O (M + H)+: 335.09457. Found. 335.09611. 

N
NBz

Br

142  

2-(E)-(2-Bromostyryl)-N-benzoyliminopyridinium ylide (142). The title compound 142 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 94, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

brown oil (102.7 mg, 65%). Rf = 0.28 (methanol/dichloromethane, 5/95). 1H NMR (300 

MHz, CDCl3) " 8.66 (dd, J = 5.4, 0.9 Hz, 1H), 8.25 (m, 2H), 8.10 (dd, J = 8.3, 1.5 Hz, 1H), 

7.95 (t, J = 8.5 Hz, 1H), 7.88-7.59 (m, 4H), 7.54 (m, 1H), 7.47 (m, 3H), 7.32 (dt, J = 7.4, 

0.9 Hz, 1H), 7.21 (m, 1H). 13C NMR (75 MHz, CDCl3) "  170.1, 150.4, 145.3, 137.4, 

137.0, 136.8, 134.8, 133.1, 131.8, 130.9, 130.0, 128.4, 128.0, 127.7, 127.3, 125.0, 123.6, 



 LV 
121.1. FTIR (neat) 3061, 1673, 1592, 1550, 1490, 1332, 1295, 1176, 1025, 713 cm-1. 

HRMS Calcd for C20H16BrN2O (M + H)+: 379.04405. Found. 379.04352. 

N
NBz

143 Br  

2-(E)-(4-Bromostyryl)-N-benzoyliminopyridinium ylide (143). The title compound 143 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 92, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

beige solid (112.0 mg, 74%). Rf = 0.28 (methanol/dichloromethane, 5/95). mp: 204 ºC. 1H 

NMR (300 MHz, CDCl3) " 8.62 (d, J = 6.3 Hz, 1H), 8.24, (d, J = 7.5 Hz, 2H), 7.99 (d, J = 

7.5 Hz, 1H), 7.87 (t, J = 7.8 Hz, 1H), 7.74 (d, J = 16.6 Hz, 1H), 7.51-7.46 (m, 6H), 7.38-

7.34 (m, 3H). 13C NMR (75 MHz, CDCl3) " 171.3, 151.6, 146.3, 138.9, 137.9, 137.8, 

134.9, 133.0, 131.1, 130.1, 129.0, 128.8, 125.1, 124.4, 12.1, 120.0. FTIR (neat) 3056, 1612, 

1594, 1490, 1333, 1294, 1179, 1070, 1007, 711 cm-1. HRMS Calcd for C20H16BrN2O (M + 

H)+: 379.04405. Found. 379.04544. 

N
NBz

144
I

 

2-(E)-(2-Iodostyryl)-N-benzoyliminopyridinium ylide (144). The title compound 144 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 95, and purified by column chromatography (methanol/dichloromethane, 5/95) as a 

cream colored solid (80.1 mg, 47%). Rf = 0.37 (methanol/dichloromethane, 5/95). mp: 199-

201 ºC  1H NMR (400 MHz, CDCl3) " 8.67 (d, J = 6.4 Hz, 1H), 8.24 (m, 2H), 8.07 (dd, J = 

8.2, 1.5 Hz, 1H), 7.94 (dt, J = 7.9, 1.3 Hz, 1H), 7.88 (dd, J = 7.9, 1.3 Hz, 1H), 7.68 (s, 2H), 

7.61 (dd, J = 9.5, 1.6 Hz, 1H), 7.53 (dt, J = 7.9, 1.3 Hz, 1H), 7.45 (m, 3H), 7.34 (dt, J = 7.6, 

1.2 Hz, 1H), 7.04 (m, 1H) 13C NMR (100 MHz, CDCl3) " 170.1, 150.3, 145.3, 142.3, 

139.7, 138.0, 137.0, 136.8, 130.9, 130.0, 128.7, 128.0, 127.8, 127.4, 123.6, 123.5, 121.3, 



 LVI 
101.1. FTIR (neat) 3057, 2922, 1592, 1552, 1488, 1327, 1293, 1175, 1012, 712 cm-1. 

HRMS Calcd for C20H16IN2O (M + H)+: 427.03018. Found: 427.03195. 

N
NBz

145
I

 

2-(E)-(3-((E)-2-Iodovinyl)styryl)-N-benzoyliminopyridinium ylide (145). The title 

compound 145 was prepared according to the general procedure described above (page 

XLV) using bis-vinyl iodide 96, and purified by column chromatography 

methanol/dichloromethane, 5/95) as a cream colored solid (95.2 mg, 78%). Rf = 0.26 

(methanol/dichloromethane, 5/95). mp: 200-201 ºC. 1H NMR (400 MHz, CDCl3) " 8.61 (d, 

J = 5.8 Hz, 1H), 8.27 (m, 2H), 8.02 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 7.5 Hz, 1H), 7.76 (d, J 

= 16.6 Hz, 1H), 7.51-7.25 (m, 10H), 6.83 (d, J = 15.0 Hz, 1H). 13C NMR (100 MHz, 

CDCl3) "  170.0, 150.5, 144.9, 143.7, 138.5, 137.9, 136.7, 136.6, 135.3, 130.0, 128.9, 

127.7, 127.6, 127.0, 126.9, 125.3, 123.1, 123.0, 118.9, 77.8. FTIR (neat) 3053, 1612, 1590, 

1545, 1489, 1332, 1293, 1176, 1066, 947, 762, 709 cm-1. HRMS Calcd for C22H18IN2O (M 

+ H)+: 453.04583. Found: 453.04716. 

N
NBz
146

OMe
 

2-(E)-2-methoxystyryl-6-(E)-styryl-N-benzoyliminopyridinium ylide (146). The title 

compound 146 was prepared according to a modification of the general procedure 

described above (page XLV) using 0.267 mmol of vinyl iodide 118 and ylide 107. The title 

compound 146 was purified by column chromatography (methanol/dichloromethane, 5/95) 

as a yellow solid (73.2 mg, 64%). Rf = 0.55 (methanol/dichloromethane, 5/95). mp: >220 

ºC 1H NMR (300 MHz, CDCl3) " 8.30 (m, 2H), 7.86-7.62 (m, 6H), 7.48 (m, 6H), 7.38-7.27 

(m, 5H), 6.87 (m, 2H), 3.73 (s, 3H).  13C NMR (75 MHz, CDCl3) "  158.8, 153.6, 152.8, 

139.6, 138.1, 137.3, 136.3, 135.5, 131.8, 130.8, 129.7, 129.6, 129.1, 128.8, 128.6, 125.2, 

122.1, 121.9, 121.6, 120.9, 120.6, 111.8, 56.1. FTIR (neat) 3058, 2939, 1592, 1556, 1479, 



 LVII 
1330, 1246, 1207, 1173, 1025 cm-1. HRMS Calcd for C26H24N2O2 (M + H)+: 

433.19105. Found: 433.19181. 

N
NBz

148  

5-Methyl-2-(E)-styryl-N-benzoyliminopyridinium ylide (148). The title compound 148 

was prepared according to the general procedure described above (page XLV) using vinyl 

iodide 80 and ylide 147. The title compound 148 was purified by column chromatography 

(methanol/dichloromethane, 5/95) as a brown colored oil (89.3 mg, 72%). Rf = 0.48 (5 

methanol/dichloromethane, 5/95). 1H NMR (300 MHz, CDCl3) " 8.40 (s, 1H), 8.25 (m, 

2H), 7.89 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 16.6 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.32 (m, 

9H), 2.40 (s, 3H).  13C NMR (75 MHz, CDCl3) "  149.2, 145.4, 139.2, 139.0, 138.2, 136.2, 

135.2, 130.9, 130.7, 129.7, 128.9, 128.7, 128.6, 123.5, 119.3, 19.1 FTIR (neat) 3055, 2990, 

1592, 1551, 1507, 1328, 1262, 1210, 1171, 1067 cm-1. HRMS Calcd for C21H18N2O (M + 

H)+: 315.14919. Found: 315.14930. 

N
NBz 150

Ph

 

4-Phenyl-2-(E)-styryl-N-benzoyliminopyridinium ylide (150). The title compound 150 

was prepared according to the general procedure described above using (page XLV) vinyl 

iodide 80 and ylide 149. The title compound 150 was purified by column chromatography 

(methanol/dichloromethane, 5/95) as a pale yellow solid (113.4 mg, 76%). Rf = 0.58 

(methanol/dichloromethane, 5/95). m.p.: >220 ºC. 1H NMR (400 MHz, CDCl3) " 8.68 (d, J 

= 6.7 Hz, 1H), 8.28 (m, 2H), 8.17 (s, 1H), 7.86 (d, J = 16.6 Hz, 1H), 7.75 (m, 2H), 7.67 (m, 

1H), 7.67-7.39 (m, 12H).  13C NMR (100 MHz, CDCl3) "  171.5, 152.1, 151.6, 150.4, 

149.2, 146.1, 145.5, 140.0, 139.1, 138.3, 136.1, 131.5, 131.2, 130.9, 130.5, 129.9, 120.0, 

128.7, 128.1, 126.5, 122.9, 122.5, 121.9, 121.3, 119.8. FTIR (neat) 3055, 1589, 1537, 1476, 



 LVIII 
1332, 1297, 1175, 1067 cm-1. LRMS Calcd for C26H20N2O (M + H)+: 377.16484. 

Found: 377.16524. 

N
NBz
152  

2-(E)-Styryl-N-benzoyliminopyridinium ylide (152). The title compound 152 was 

prepared according to the general procedure described above (page XLV) using vinyl 

iodide 2a and ylide 151, except that CuBr was used in place of CuBr2. The title compound 

152 was purified by preparatory thin layer chromatography (methanol/dichloromethane, 

5/95) as a pale green solid (68.0 mg, 49%). Rf = 0.28 (methanol/dichloromethane, 5/95). 

m.p. >220 ºC. 1H NMR (300 MHz, CDCl3) " 8.56 (d, J = 8.9 Hz, 1H), 8.36 (m, 3H), 8.09 

(d, J = 8.9 Hz, 1H), 7.95-7.82 (m, 3H), 7.71-7.65 (m, 2H), 7.56-7.49 (m, 5H), 7.37-7.35 (m, 

3H).  13C NMR (75 MHz, CDCl3) "  171.1, 153.0, 143.2, 141.1, 138.5, 137.9, 136.0, 134.4, 

131.3, 131.0, 129.8, 129.5, 129.4, 129.23, 129.19, 129.1, 128.8, 121.8, 120.7, 119.7. FTIR 

(neat) 3348, 3059, 1592, 1557, 1519, 1334, 1211, 1149, 1001, 743 cm-1. HRMS Calcd for 

C24H19N2O (M + H)+: 351.16919. Found: 351.14901. 

 

N-N Bond Cleavage 

N
NBz

R
i) MeI, Acetone, 75 ºC

ii) Zn dust, AcOH, rt N R

153 R = Ph                81%
Ph154 R =  77%

 

2-Styrylpyridine (153). A Schlenk flask equipped with a stir bar was charged with 

compound 107 (53.0 mg, 0.177 mmol, 1.0 equiv) and purged with argon. Acetone (1.0 mL) 

followed by iodomethane (0.10 mL, 1.6 mmol, 9.0 equiv) was added via syringe and the 

mixture was heated to 75 ºC with stirring for 16 h. The solvent was evaporated to give a 



 LIX 
beige powder. To this solid was added zinc dust (<10 micron, 174.0 mg, 2.7 mmol, 

15.0 equiv), acetic acid (1.5 mL), and the mixture was stirred at room temperature for 16 h. 

The mixture was filtered through celite, concentrated and purified by flash chromatography 

(ethyl acetate/hexanes, 35/65) to give 153 as a white solid (26.0 mg, 81%). The observed 

characterization data (1H) was consistent with that previously reported in the literature.32 Rf 

= 0.41 (ethyl acetate/hexanes, 35/65); 1H NMR (CDCl3, 400 MHz) " = 8.64 (d, J = 6.4 Hz, 

1H), 7.71-7.60 (m, 4H), 7.43-7.39 (m, 3H), 7.33 (t, J = 7.2 Hz, 1H), 7.22-7.16 (m, 2H). 

 

2-(E)-(2-(2-Phenylcyclopropyl)vinyl)-pyridine (154). A Schlenk flask equipped with a 

stir bar was charged with compound 128 (41.0 mg, 0.120 mmol, 1.0 equiv) and purged with 

argon. Acetone (0.8 mL) followed by iodomethane (0.072 mL, 1.12 mmol, 9.4 equiv) was 

added via syringe and the mixture was heated to 75 ºC with stirring for 16 h. The solvent 

was evaporated to give a beige powder. To this solid was added zinc dust (<10 micron, 

118.0 mg, 1.8 mmol, 15.0 eq.), acetic acid (1.2 mL), and the mixture was stirred at room 

temperature for 16 h. The mixture was filtered through celite, concentrated and purified by 

flash chromatography (ethyl acetate/hexanes, 1/4) to give a clear liquid (20.4 mg, 77%). Rf 

= 0.48 (ethyl acetate/hexanes, 35/65); 1H NMR (400 MHz, CDCl3) " 8.54 (d, J = 4.8 Hz, 

1H), 7.62 (d, J = 7.6 Hz, 1H), 7.32-7.27 (m, 2H), 7.20 (t, J = 8.0 Hz, 2H), 7.14-7.09 (m, 

3H), 6.58 (d, J = 15.2 Hz, 1H), 6.49 (m, 1H), 2.18 (m, 1H), 1.91 (m, 1H), 1.42 (m, 1H), 

1.34 (m, 1H).  13C NMR (100 MHz, CDCl3) "  155.2, 149.1, 141.5, 137.6, 136.1, 128.0, 

127.5, 125.44, 125.42, 121.1, 120.8, 27.2, 25.8, 17.0. FTIR (neat) 3002, 1646, 1584, 1469, 

1431, 966 cm-1. HRMS Calcd for C20H17N2O (M + H)+: 222.12794. Found: 222.12773. 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
32 Molander, G. A.; Bernardi, C. R. J. Org. Chem. 2002, 67, 8424. 
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Kinetic Isotope Experiments 

N
NBz

N
NBz

N
NBz

N
NBz

I
H

H
H

H

D
DD

D

H

H
H

H

H D

D
D

D

D
+ +

CuBr2 (10 mol %)
K2CO3 (2 equiv)

PhCl, 125 ºC, 16 h

1 equiv 1 equiv 1 equiv

KIE = 1.45   

To a microwave vial with a stir bar was added the N-iminopyridinium ylide 20 (0.4 mmol, 

1.0 equiv), N-iminopyridinium ylide d5
33 (0.4 mmol, 1.0 equiv), CuBr2 (0.04 mmol, 10 mol 

%), and crushed dry K2CO3 (0.8 mmol, 2 equiv). The vial was then sealed with a septum 

and purged with argon for 5 min. To a separate vial was added the vinyl iodide 80 (0.4 

mmol, 1 equiv). The iodide was diluted in chlorobenzene (0.5 mL) and added to the 

reaction vessel via syringe. The vial and syringe were then rinsed three times with 

chlorobenzene (0.5 mL) bringing the total reaction volume to 2 mL. The reaction was 

stirred vigorously for 16 h at 125 ºC. Following cooling, 2 mL of CH2Cl2/MeOH (9:1) was 

added, and the solution was filtered though a silica/Celite pad. The pad was then rinsed 

with 15 mL of CH2Cl2/MeOH (9:1). The combined solution was concentrated and the crude 

mixture was purified via column chromatography (5% MeOH/DCM) to afford the 

vinylated pyridinium. 

The kinetic isotope was determined through integration of the proton at the C6 

position of the pyridinium ring and the d1 of the 1H NMR pulse sequence was set at 10 s to 

ensure maximum relaxation.34 

!!!!!!!!!!!!!!!!!!!!!!!!!  
33 For synthesis of the deuterated ylide same procedure used for 1 was applied with the 

exception that pyridine-d5 and D2O were used.  
34 KIE determined as follows (0.592/0.408 = 1.45).  
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Experimental Section of Chapter 4 
 

Sythesis and Characterization of Vinyl Bromides 
 

CH2Br2 (4 equiv)
NaHMDS (3 equiv)

Ar Br
Ar Br

[0.2 M],  –78 ºC to rt (19 h)  
 

General Method 

Dibromomethane (281 µL, 4 mmol) was added dropwise to a solution of NaHMDS (550 

mg, 3.0 mmol) in THF (2 mL) and ether (2 mL) at –78 °C (dry ice/acetone bath) in the 

dark. After 20 min, a solution of the benzyl bromide substrate (1.0 mmol) in THF (1 mL) 

was added dropwise. The reaction mixture was maintained at –78 ºC for at least 3 h then 

continued stirred at –78 ºC allowing to warm to rt slowly over 16 h. Ether (50 mL) was 

added then the mixture was filtered through a plug of celite/silica (approximately 3 cm 

celite over 3 cm silica) and the solvent removed under reduced pressure. The residue was 

purified by flash chromatography to provide the vinyl bromide. These compounds were all 

prepared by Dr. James Bull. 

 



 LXII 
Br
102

 

(E)-(2-Bromovinyl)benzene (102). Prepared according to the general procedure (page 

LXII) for vinyl bromides starting from benzyl bromide (171 mg, 1.0 mmol). Purification by 

flash chromatography (hexanes, 100%) afforded vinyl bromide 102 as a colourless oil (127 

mg, 69%, 99:1 E:Z). The observed characterization data (1H, 13C) was consistent with that 

previously reported in the literature.35 Rf = 0.60 (hexanes, 100%). 1H NMR (300 MHz, 

CDCl3) " 7.37-7.29 (m, 5H), 7.12 (d, J = 14.0 Hz, 1H), 6.78 (d, J = 14.0 Hz, 1H). 13C NMR 

(75 MHz, CDCl3) " 137.1, 135.9, 128.8, 128.2, 126.1, 106.5. FTIR (neat) 3074, 3024, 

1607, 1496, 1445, 1221, 939, 730 cm-1. 

Br
103

 

(E)-1-(2-Bromovinyl)-4-methylbenzene (103). Prepared according to the general 

procedure (page LXII) for vinyl bromides starting from 4-methylbenzyl bromide (186 mg, 

1.0 mmol). Purification by flash chromatography (hexanes, 100%) afforded vinyl bromide 

103 as a white solid (179 mg, 91%, >99:1 E:Z). The observed characterization data (1H, 
13C) was consistent with that previously reported in the literature.35 Rf = 0.59 (hexanes, 

100%). 1H NMR (300 MHz, CDCl3) " 7.24-7.12 (m, 4H), 7.08 (d, J = 14.0 Hz, 1H), 6.71 

(d, J = 14.0 Hz, 1H), 2.34 (s, 3H). 13C NMR (75 MHz, CDCl3) " 138.1, 136.9, 133.1, 

129.4, 125.9, 105.4, 21.2. FTIR (neat) 3070, 2914, 1602, 1509, 1226, 1194, 949, 936, 907, 

825, 769, 725 cm-1. 

Br
104

MeO  

(E)-1-(2-Bromovinyl)-4-methoxybenzene (104). Prepared according to the general 

procedure (page LXII) for vinyl bromides starting from 4-methoxybenzyl bromide (201 

mg, 1.0 mmol). Purification by flash chromatography (ether/hexanes, 5/95) afforded vinyl 

!!!!!!!!!!!!!!!!!!!!!!!!!  
35 Kuang, C.; Senboku, H.; Tokuda, M. Tetrahedron, 2002, 58, 1491. 
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bromide 104 as a white solid (153 mg, 72%, >99:1 E:Z). The observed 

characterization data (1H, 13C) was consistent with that previously reported in the 

literature.35 Rf = 0.46 (ether/hexanes, 5/95). 1H NMR (300 MHz, CDCl3) " 7.24-7.20 (m, 

2H), 7.02 (d, J = 13.9 Hz, 1H), 6.85-6.82 (m, 2H), 6.59 (d, J = 13.9 Hz, 1H), 3.79 (s, 3H). 
13C NMR (75 MHz, CDCl3) " 159.5, 136.4, 128.6, 127.2, 114.1, 103.9, 55.2. FTIR (neat) 

3067, 2956, 2932, 2837, 1605, 1510, 1460, 1304, 1254, 1177, 1028, 950, 836, 776 cm-1. 

Br
105

F  

(E)-1-Fluoro-4-(2-bromovinyl)benzene (105). Prepared according to the general 

procedure (page LXII) for vinyl bromides starting from 4-fluorobenzyl bromide (189 mg, 

1.0 mmol). Purification by flash chromatography (hexanes, 100%) afforded vinyl bromide 

105 as a colourless oil (159 mg, 79%, >99:1 E:Z). The observed characterization data (1H, 
13C) was consistent with that previously reported in the literature.36 Rf = 0.53 (hexanes, 

100%). 1H NMR (300 MHz, CDCl3) " 7.27-7.22 (m, 2H), 7.07-6.97 (m, 3H), 6.67 (dd, J = 

14.0, 0.4 Hz, 1H). 13C NMR (75 MHz, CDCl3) " 162.6 (d, J = 248 Hz), 136.0, 132.1 (d, J = 

3 Hz), 127.7 (d, J = 8 Hz), 115.8 (d, J = 22 Hz), 106.9 (d, 2.5 Hz). FTIR (neat) 3056, 1590, 

1557, 1474, 1421, 1209, 1071, 942, 755 cm-1. 

Br
106

Br  

(E)-1-Bromo-2-(2-bromovinyl)benzene (106). Prepared according to the general 

procedure (page LXII) for vinyl bromides starting from 2-bromobenzyl bromide (250 mg, 

1.0 mmol). Purification by flash chromatography (hexanes, 100%) afforded vinyl bromide 

106 as a colourless oil (175 mg, 67%, >99:1 E:Z). The observed characterization data (1H, 
13C) was consistent with that previously reported in the literature.37 Rf  = 0.56 (hexanes, 

100%). 1H NMR (300 MHz, CDCl3) " 7.55-7.52 (m, 1H), 7.42 (d, J = 13.9 Hz, 1H), 7.38-

!!!!!!!!!!!!!!!!!!!!!!!!!  
36 Kuang, C.; Yang, Q.; Senboku, H.; Tokuda, M. Synthesis, 2005, 1319-1325. 
37 Horibe, H.; Fukuda, Y.; Kondo, K.; Okuno, H.; Murakamia, Y.; Aoyama, T. Tetrahedron 

2004, 60, 10701–10709. 
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7.35 (m, 1H), 7.28-7.23 (m, 1H), 7.16-7.11 (m, 1H), 6.74 (d, J = 13.9 Hz, 1H). 13C 

NMR (75 MHz, CDCl3) " 136.2, 135.9, 133.1, 129.6, 127.6, 127.1, 122.7, 109.2. FTIR 

(neat) 3069, 1603, 1463, 1435, 1219, 1020, 931, 740 cm-1. 

 

Synthesis of 2-Substituted Pyrazolopyridines from Vinyl Halides 

N
NBz

R2
N N

R2+

PdBr2 (5 mol %)
P(4-MeOPh)3 (15 mol %)

AgOBz (3 equiv)
1,4-dioxane, 125 ºC, 16 hX

R1
R1

 

General procedure for the synthesis of 2-substituted-pyrazolo[1,5-a]pyridines. To a 3 

mL conical microwave vial equipped with a spin vane was added pyridinium ylide (1.0  

mmol, 2 equiv). In a glove box was added para-tris-methoxyphenylphosphine (0.15 equiv), 

palladium bromide (0.05 equiv), and silver benzoate (1.5 mmol, 3 equiv). The microwave 

vial was crimped shut. The alkenyl iodide derivative (0.5 mmol, 1 equiv) was diluted in 0.5 

mL 1,4-dioxane and added via syringe. The syringe was rinsed three times with 0.5 mL 

dioxane to reach a final volume of 2 mL. The solution was heated to 125 ºC with fast 

stirring. Within five minutes a colour change was observed. The mixture was stirred for 16 

h. The solution was cooled to room temperature. Dichloromethane was added and the 

precipitate was filtered on cotton plug and washed with dichloromethane. Saturated sodium 

bicarbonate was added and the organic phase was extracted with dichloromethane. The 

solution was dried with sodium sulfate and concentrated under reduced pressure and 

purified via column chromatography to afford the title compounds. 

N N
155

 

2-Phenylpyrazolo[1,5-a]pyridine (155). The title compound 155 was prepared as per the 

general procedure  (page XLV) using 0.5 mmol of (E)-(2-iodovinyl)benzene. The product 

was purified by column chromatography (hexane/dichloromethane, 5/95) to give a light 

yellow powder (75.3 mg, 78%). Rf = 0.79 (dichloromethane, 100%). mp: 110-113 ºC. 1H 

NMR (300 MHz, CDCl3) ! 8.47 (d, J = 6.9 Hz, 1H), 7.97 (d, J = 7.5 Hz, 2H), 7.54-7.34 (m, 



 LXV 
1H), 7.08 (t, J = 7.8 Hz, 1H), 6.80 (s, 1H), 6.73 (t, J = 6.8 Hz, 1H). 13C NMR (75 

MHz, CDCl3) ! 154.2, 142.5, 134.2, 129.4, 129.2, 124.2, 118.7, 112.7, 94.4. FTIR (neat) 

3086, 1630, 1508, 1467, 1327, 763, 688 cm–1; HRMS Calcd for C13H11N2 [M+H]+: 

195.09167. Found: 195.09088. 

NNNN 157

 

1,3-Di(pyrazolo[1,5-a]pyridin-2-yl)benzene (157). The title compound 157 was prepared 

as per the general procedure  (page XLV) using 0.244 mmol of 96. The product was 

purified by column chromatography (toluene/ethylacetate, 6/4) to give a light yellow oil in 

(75.3 mg, 40%). Rf = 0.80 (toluene/ethylacetate, 6/4). 1H NMR (400 MHz, CDCl3) ! 8.58-

8.57 (m, 1H), 8.54 (dd, J = 7.0, 1.0 Hz 2H), 8.00 (dd, J = 7.7, 1.7 Hz 2H), 7.59-7.54 (m, 

3H), 7.15-7.11 (m, 2H), 6.93-6.92 (s, 2H), 6.79-6.75 (dt, J = 6.9, 1.4 Hz, 2H). 13C NMR 

(100 MHz, CDCl3) ! 153.1, 141.2, 133.4, 128.9, 128.2, 126.1, 124.3, 123.0, 117.6, 111.4, 

93.6; FTIR (neat) 3077, 2975, 1634, 1520, 1459, 1329, 1256, 770 cm–1. HRMS Calcd for 

C20H15N4 [M+H]+: 311.12912. Found: 311.12912. 

N N
158

 

2-(Naphthalen-2-yl)pyrazolo[1,5-a]pyridine (158). The title compound 158 was prepared 

as per the general procedure  (page XLV) using 0.5 mmol of 83. The product was purified 

by column chromatography (hexane/dichloromethane, 1:1) to give a light yellow/orange 

powder (75.6 mg, 61%). Rf = 0.79 (dichloromethane, 100%). mp: 61 ºC. 1H NMR (300 

MHz, CDCl3) ! 8.53 (d, J = 7.0 Hz, 1H), 8.49 (s, 1H), 8.13 (dd, J = 8.5, 1.4 Hz, 1H), 7.95 

(dd, J = 8.8, 3.6 Hz, 2H), 7.90-7.87 (m, 1H), 7.55-7.48 (m, 3H), 7.09 (m, 1H), 6.93 (s, 1H), 

6.75 (t, J = 6.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) ! 154.2, 142.5, 134.2, 129.4, 129.2, 

124.2, 118.7, 112.7, 94.4. FTIR (neat) 3104, 3051, 2918, 1632, 1506, 1497, 1327, 1254, 

1141, 827, 777 cm–1. HRMS Calcd for C17H13N2 [M+H]+: 245.10732. Found: 245.10732. 
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N N
159

 

2-(2-methylphenyl)pyrazolo[1,5-a]pyridine (159). The title compound 159 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-(2-iodovinyl)-2-

methylbenzene. The product was purified by column chromatography (dichloromethane, 

100%) to give a light beige powder (73.3 mg, 70%). Rf = 0.27 (dichloromethane, 100%). 

mp: 59-63 ºC. 1H NMR (300 MHz, CDCl3) ! = 8.52 (d, J = 6.9 Hz, 1H), 7.75-7.67 (m,  

1H), 7.55 (d, J = 9.6 Hz, 1H), 7.30 (s, 3H), 7.12 (t, J = 6.8 Hz 1H), 6.65 (s, 1H); 2.56 (s, 

3H).   13C NMR (75 MHz, CDCl3) ! = 154.9, 141.8, 137.4, 134.0, 131.8, 130.8, 129.3, 

129.2, 126.8, 124.3, 118.7, 112.4, 97.8, 22.2. IR (neat) 1720, 1631, 1507, 1459, 1328, 

1250, 748, 759, 724 cm–1. HRMS Calcd for C14H13N2 [M+H]+ : 209.10732. Found: 

209.10685. 

N N
160

 

2-(4-methylphenyl)pyrazolo[1,5-a]pyridine (160). The title compound 160 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-(2-iodovinyl)-4-

methylbenzene. The product was purified by column chromatography (dichloromethane, 

100%) to give a light beige powder in (82.5 mg, 79%). Rf = 0.23 (hexane/dichloromethane, 

10/90). mp: 117-118 ºC. 1H NMR (300 MHz, CDCl3) ! = 8.49 (d J = 6.9 Hz, 1H), 7.90 (d, J 

= 8.1 Hz,  2H), 7.50 (d, J = 9.3 Hz, 1H), 7.30 (d, J = 8.1 Hz, 2H), 7.08 (t, J = 8.0 Hz 1H), 

6.77 (s, 1H), 6.72 (t, J = 6.9 Hz, 1H), 2.41 (s, 3H).  13C NMR (75 MHz, CDCl3) ! = 154.5, 

142.6, 139.4, 131.4, 130.3, 129.2, 127.8, 124.4, 118.5, 112.2, 94.7, 22.3. FTIR (neat) 1632, 

1513, 1472, 1424, 1328, 1250, 827, 774, 744 cm–1. HRMS Calcd for C14H13N2 [M+H]+: 

209.10732. Found: 209.10644. 
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N N
161

MeO

 

2-(2-Methoxyphenyl)pyrazolo[1,5-a]pyridine (161). The title compound 161 was 

prepared as per the general procedure (page LXV) using 0.5 mmol of (E)-1-(2-iodovinyl)-

2-methoxybenzene. The product was purified by column chromatography 

(dichloromethane, 100%) to give a light beige powder in (78.9 mg, 70%). Rf = 0.27 

(hexane/dichloromethane, 10/90). mp: 55 ºC. 1H NMR (300 MHz, CDCl3) ! 8.50 (d, J = 

7.0 Hz, 1H), 8.11 (dd, J = 7.7, 1.5 Hz, 1H), 7.53 (d, J = 8.9 Hz, 1H), 7.40-7.34 (m, 1H), 

7.12-7.03 (m, 4H), 6.72 (t, J = 6.8 Hz, 1H), 3.96 (s, 3H). 13C NMR (75 MHz, CDCl3) !  

151.1, 146.8, 130.5,5, 130.46, 130.41, 129.2, 124.1, 122.6, 121.8, 118.9, 112.6, 112.2, 99.0, 

56.4; FTIR (neat) 3005, 2934, 1633, 1582, 1519, 1478, 1328, 1272, 11244, 1024, 753 cm–1; 

HRMS Calcd for C14H13N2O [M+H]+: 225.1022. Found: 225.1015. 

N N
162

OMe

 

 2-(3-Methoxyphenyl)pyrazolo[1,5-a]pyridine (162). The title compound 162 was 

prepared as per the general procedure using 0.5 mmol of (E)-1-(2-iodovinyl)-3-

methoxybenzene. The product was purified by column chromatography (dichloromethane, 

100%) to give a yellow powder (73.4 mg, 65%). Rf = 0.23 (dichloromethane, 100%). mp: 

43-45 ºC. 1H NMR (300 MHz, CDCl3) !  8.48 (d, J = 6.9 Hz, 1H), 7.58-7.52 (m,  2H), 7.49 

(d, J = 9.0 Hz, 1H), 7.36 (t, J = 8.3 Hz, 1H), 7.06 (t, J = 6.9 Hz, 1H), 6.93 (d, J = 8.1 Hz, 

1H); 6.79 (s, 1H), 6.71 (t, J = 6.9 Hz, 1H).  13C NMR (75 MHz, CDCl3) ! 160.8, 154.2, 

142.3, 135.6, 130.6, 129.4, 123.7, 119.9, 118.7, 115.1, 112.6, 112.4, 94.8, 56.0. FTIR (neat) 

2833, 1603, 1583, 1520, 1470, 1245, 1158, 1041, 768, 737 cm–1. HRMS Calcd for 

C14H13N2O [M+H]+ : 225.10224. Found: 225.10151. 
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N N
163OMe

 

2-(4-Methoxyphenyl)pyrazolo[1,5-a]pyridine (163). The title compound 163 was 

prepared as per the general procedure using 0.5 mmol of (E)-1-(2-iodovinyl)-4-

methoxybenzene. The product was purified by column chromatography (dichloromethane, 

100%) to give a yellow powder (72.4 mg, 63%). Rf = 0.23 (dichloromethane, 100%). mp: 

100-101 ºC. 1H NMR (300 MHz, CDCl3) !  8.45 (d, J = 6.9 Hz, 1H), 7.93-7.88 (m, 2H), 

7.47 (d, J = 8.9 Hz, 1H), 7.09-6.97 (m, 3H), 6.72-6.67 (m, 2H), 3.86 (s, 3H).  13C NMR (75 

MHz, CDCl3) !  160.7, 154.3, 142.5, 129.3, 128.6, 126.8, 124.2, 118.5, 115.0, 112.2, 93.9, 

56.2. FTIR (neat) 3076, 2954, 1631, 1613, 1514, 1463, 1243, 1178, 1028, 842, 771 cm–1; 

HRMS Calcd for C14H13N2O [M+H]+ : 225.10224. Found: 225.10223. 

N N
164OBn

 

2-[4-(benzyloxy)phenyl]pyrazolo[1,5-a]pyridine (164). The title compound 164 was 

prepared as per the general procedure (page LXV) using 0.5 mmol of (E)-1-(2-iodovinyl)-

4-benzyloxybenzene. The product was purified by column chromatography 

(dichloromethane, 100%) to give a light yellow powder (131 mg, 87%). Rf = 0.24 

(dichloromethane, 100%). mp: 164-165 ºC. 1H NMR (300 MHz, CDCl3) !  8.47 (d, J = 6.9 

Hz, 1H), 7.92 (d, J = 9.0 Hz, 2H), 7.50-7.31 (m,  6H), 7.10-7.04 (m, 3H), 6.73-6.67 (m, 

2H), 5.13 (s, 2H). 13C NMR (75 MHz, CDCl3) !  160.1, 154.4, 142.5, 137.9, 129.5, 129.3, 

128.8, 128.6, 128.4, 127.1, 124.3, 118.6, 115.9, 112.2, 93.9, 71.0. FTIR (neat) 3031, 1612, 

1451, 1250, 1176, 1043, 836, 777, 725 cm–1. HRMS Calcd for C20H17N2O [M+H]+: 

301.13354. Found: 301.13310. 

N N
165CN

 

4-Pyrazolo[1,5-a]pyridin-2-ylbenzonitrile (165). As per general procedure (page LXV) 

using 0.5 mmol of (E)-4-(2-iodovinyl)benzonitrile. The product was purified by column 

chromatography (hexanes/dichloromethane, 10/90) to give a yellow powder (67 mg, 61%). 

Rf = 0.63 (dichloromethane, 100%). mp: 214-216 ºC. 1H NMR (300 MHz, CDCl3) ! 8.46 
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(d, J = 6.9 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 9.3 

Hz, 1H), 7.13 (t, J = 7.9 Hz, 1H), 6.84 (s, 1H), 6.80 (t, J = 6.6 Hz,  1H). 13C NMR (75 

MHz, CDCl3) ! 152.3, 142.7, 138.7, 133.2, 129.6, 127.7, 124.6, 119.9, 119.1, 113.4, 112.5, 

95.3. FTIR (neat) 3032, 2223, 1632, 1603, 1505, 1427, 842, 778, 753 cm–1. HRMS Calcd 

for C14H10N3 [M+H]+ : 220.08692. Found: 220.08626. 

N N
166F

 

2-(4-Fluorophenyl)pyrazolo[1,5-a]pyridine (166). The title compound 166 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-fluoro-4-(2-

iodovinyl)benzene. The product was purified by column chromatography 

(hexane/dichloromethane, 5/95) to give a beige powder (96.4 mg, 86%). Rf = 0.79 

(dichloromethane, 100%). mp: 145-147 ºC. 1H NMR (300 MHz, CDCl3) ! 8.48 (d, J = 6.3 

Hz, 1H), 7.95-7.90 (m, 2H), 7.48 (d, J = 8.4 Hz, 1H), 7.18-7.02 (m, 3H), 6.75-6.69 (m, 2H).   
13C NMR (75 MHz, CDCl3) ! 163.3 (d, J = 247.2 Hz), 153.5, 142.5, 130.3 (d, J = 3.3 Hz), 

129.3, 129.0 (d, J = 9.1 Hz), 124.4, 118.7, 116.5 (d, J = 21.7 Hz), 112.6, 94.3. FTIR (neat) 

1630, 1599, 1512, 1473, 1429, 1213, 836, 772, 745 cm–1. HRMS Calcd for C13H10FN2 

[M+H]+ : 213.08225. Found: 213.08138. 

N N
167

CO2Et

 

 (E)-Ethyl-2-(pyrazolo[1,5-a]pyridin-2-yl)acrylate (167). The title compound 167 was 

prepared as per the general procedure using 0.4 mmol of the ethyl-(2E, 4Z)-5-iodopenta-

2,4-dienoate. The product was purified by column chromatography 

(hexane/dichloromethane, 10/90) to give a light brown oil (42.1 mg, 49% yield). Rf = 0.26 

(dichlomethane/hexanes, 95/5); 1H NMR (300 MHz, CDCl3): ! 8.41 (d, J = 7.1 Hz, 1H), 

7.79 (d, J = 16.1 Hz, 1H), 7.50 (d, J = 8.9 Hz, 1H), 7.12 (d, J = 7.0 Hz, 1H), 6.78 (t, J = 6.9 

Hz, 1H), 6.67 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H);  13C NMR (75 

MHz, CDCl3): ! 167.6, 150.3, 142.1, 137.2, 129.3, 124.6, 122.1, 119.2, 113.7, 97.4, 61.4, 

15.1; FTIR (neat) 2980, 1711, 1650, 1634, 1299, 1269, 1173, 1034, 979 cm–1; HRMS 

Calcd for C12H13N2O2 [M+H]+ : 217.09715, found: 217.09671. 
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N N
168

Cl

 

2-(2-Chlorophenyl)pyrazolo[1,5-a]pyridine (168). The title compound 168 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-chloro-2-(2-

iodovinyl)benzene. The product was purified by column chromatography 

(hexanes/dichloromethane, 5/95) to give a yellow powder (72.4 mg, 63%). Rf = 0.79 

(dichloromethane, 100%). mp: 45-47 ºC. 1H NMR (300 MHz, CDCl3) ! 8.51 (d, J = 7.2 Hz, 

1H), 7.97 (d, J = 6.9 Hz,  1H), 7.58-7.49 (m, 2H), 7.39-7.27 (m, 2H), 7.11 (t, J = 7.8 Hz 

1H), 7.04 (s, 1H); 6.76 (t, J = 6.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) ! 151.8, 141.5, 

133.6, 133.1, 132.3, 131.2, 130.2, 129.3, 127.8, 124.2, 119.1, 112.9, 99.0. FTIR (neat) 

3031, 1634, 1518, 1462, 1333, 1048, 775, 740, 724 cm–1. HRMS Calcd for C13H10ClN2 

[M+H]+ : 229.0527. Found: 229.05273. 

N N
169

Br

 

2-(2-Bromophenyl)pyrazolo[1,5-a]pyridine (169). The title compound 169 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-bromo-2-(2-

iodovinyl)benzene. The product was purified by column chromatography 

(dichloromethane, 100%) to give a yellow-brown powder (96.0 mg, 70%). Rf = 0.39 

(dichlomethane/hexanes, 9/1). mp: 45-46 ºC. 1H NMR (300 MHz, CDCl3,) ! 8.51 (d, J = 

6.9 Hz, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 

7.43 (t, J = 7.8 Hz,  1H), 7.27 (t, J = 8.1 Hz,  1H), 7.14 (t, J = 8.1 Hz,  1H), 6.99 (s, 1H), 

6.78 (t, J = 6.6 Hz,  1H). 13C NMR (75 MHz, CDCl3) ! 153.5, 141.5, 135.4, 134.5, 132.7, 

130.5, 129.3, 128.3, 124.2, 123.3, 119.0, 112.8, 98.8. FTIR (neat) 3055, 1633, 1519, 1458, 

1330, 1024, 755, 737, 726 cm–1. HRMS Calcd for C13H10BrN2 [M+H]+ : 273.00219. 

Found: 273.00219. 
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N N
170

Br

 

2-(2-Bromophenyl)pyrazolo[1,5-a]pyridine (170). The title compound 170 was prepared 

as per the general procedure (page LXV) using 0.5 mmol of (E)-1-bromo-3-(2-

iodovinyl)benzene. The product was purified by column chromatography (hexanes/ethyl 

acetate (1:1) to give a yellow-brown powder (81.5 mg, 60%). Rf = 0.63 

(dichlomethane/hexanes, 9/1). mp: 126 ºC. 1H NMR (300 MHz, CDCl3,) ! 8.46 (d, J = 7.0 

Hz, 1H), 8.14 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.52-7.48 (m, 2H), 7.31 (t, J = 7.9 Hz, 1H), 

7.10 (t, J = 7.8 Hz, 1H), 6.76-6.72 (m, 2H). 13C NMR (75 MHz, CDCl3) ! 152.8, 142.5, 

136.2, 132.1, 131.1, 130.2, 129.3, 125.8, 124.5, 123.8, 118.9, 113.0, 94.8. FTIR (neat) 

3045, 1633, 1519, 1465, 1330, 1068, 772, cm–1. HRMS Calcd for C13H10BrN2 [M+H]+ : 

273.00219. Found: 273.00234. 

N N
171

Ph

 

2-(2-Phenylcyclopropyl)pyrazolo[1,5-a]pyridine (171). The title compound 171 was 

prepared as per the general procedure (page LXV) using 0.5 mmol of the iodocyclopropane 

127. The product was purified by column chromatography (hexanes/dichloromethane, 

10/90) to give a light brown powder (73 mg, 62%). Rf = 0.26 (dichlomethane/hexanes, 

95/5). mp: 53-55 ºC. 1H NMR (300 MHz, CDCl3) ! 8.371 (d, J = 7.5 Hz, 1H), 7.35 (d, J = 

8.4 Hz, 1H), 7.34-7.29 (m, 2H), 7.22-7.17 (m, 3H), 7.04 (t, J = 7.8 Hz,  1H), 6.65 (t, J = 6.9 

Hz,  1H), 6.28 (s,  1H), 2.49-2.36 (m, 2H), 1.69-1.62 (m, 1H), 1.55-1.48 (m, 1H). 13C NMR 

(75 MHz, CDCl3) ! 157.6, 143.0, 142.0, 129.2, 129.0, 126.7, 126.6, 124.1, 118.1, 111.7, 

94.4, 28.4, 22.6, 19.3. FTIR (neat) 3027, 1724, 1632, 1520, 1493, 745, 695 cm–1. HRMS 

Calcd for C16H15N2 [M+H]+ : 235.12297. Found: 235.12373. 

N N
173

NC

 

2-Phenylpyrazolo[1,5-a]pyridine-5-carbonitrile (173). The title compound 173 was 

prepared as per the general procedure (page LXV) using 1.0 mmols of 4-cyano-N-
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benzoyliminopyridinium ylide 173. The product was purified by column 

chromatography (hexanes/dichloromethane, 5/95) to give a yellow powder (67.4 mg, 62%). 

Rf = 0.76 (dichloromethane, 100%). mp: 186-189 ºC. 1H NMR (300 MHz, CDCl3) ! 8.51 

(d, J = 7.2 Hz, 1H), 7.96-7.92 (m, 3H), 7.50-7.38 (m, 3H), 7.69 (s, 1H), 6.83 (d, J = 7.4 Hz, 

1H). 13C NMR (75 MHz, CDCl3) ! 156.1, 140.8, 132.7, 130.2, 130.1, 129.8, 127.5, 125.3, 

118.4, 112.5, 107.7, 97.7. FTIR (neat) 3048, 2229, 1523, 1476, 1455, 1431, 1258, 898, 753, 

718, 680 cm–1. HRMS Calcd for C14H10N3 [M+H]+ : 220.08692. Found: 220.08705. 

N N
175

 

2-Phenylpyrazolo[1,5-a]isoquinoline (175). The title compound 175 was prepared as per 

the general procedure (page LXV) using 1.0 mmol of N-benzoyliminoisoquinolinium ylide 

174. The product was purified by column chromatography (hexanes/dichloromethane, 

10/90) to give a beige powder (73.7 mg, 60%). Rf = 0.84 (dichloromethane, 100%); mp: 

115-117 ºC. 1H NMR (300 MHz, CDCl3) ! 8.27 (d, J = 6.9 Hz, 1H), 8.12 (d, J = 7.8 Hz, 

1H), 8.03 (d, J = 6.3 Hz, 2H), 7.65 (d, J = 8.1 Hz, 1H), 7.62-7.47 (m, 4H), 7.44-7.37 (m, 

1H), 7.29 (s,  1H), 6.98 (d, 1H).  13C NMR (75 MHz, CDCl3) ! 153.9, 140.7, 134.0, 129.7, 

129.2, 128.8, 128.5, 128.1, 127.2, 125.3, 124.6, 113.0, 95.4. FTIR (neat) 1537, 1460, 1360, 

792, 756, 695 cm–1. HRMS Calcd for C17H13N2 [M+H]+ : 245.10732. Found: 245.1067. 

N N
176

 

2-(1-(4-Methoxyphenyl)ethyl)-N-benzoyliminopyridinium ylide (176). The title 

compound 176 was prepared as per the general procedure (page LXV) using 1.0 mmol of 

N-benzoyliminoquinolinium ylide 151. The product was purified by column 

chromatography (hexanes/dichloromethane, 10/90) to give a yellow powder (110.2 mg, 

90%). Rf = 0.81 (dichlomethane, 100%). mp: 92-95 ºC. 1H NMR (300 MHz, CDCl3) ! 8.70 

(d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.1 Hz, 2H), 7.75 (m, 2H), 7.52-7.37 (m, 1H), 6.90 (s, 1H);  
13C NMR (75 MHz, CDCl3) ! 153.7, 140.4, 135.8, 134.4, 130.2, 129.6, 129.2, 129.1, 125.5, 
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124.0, 117.5, 116.4, 97.6. FTIR (neat) 1732, 1603, 1454, 1392, 1812, 753, 743, 690, 

679 cm–1; HRMS Calcd for C17H13N2 [M+H]+ : 245.10732. Found: 245.10727. 

N N
178

O  

7-Methoxy-2-phenylpyrazolo[1,5-a]quinoline (178). The title compound 178 was 

prepared as per the general procedure (page LXV) using 0.3244 mmol of N-

benzoyliminoquinolinium ylide 177. The product was purified by column chromatography 

(dichloromethane/hexanes, 1:1) to give a yellow powder (30.3 mg, 69%). Rf = 0.65 

(dichloromethane/hexanes, 1:1). mp: 115 ºC;=. 1H NMR (300 MHz, CDCl3):= !8.61 (d, J = 

9.1 Hz, 1H), 8.06 (d, J = 7.7 Hz, 2H), 7.45 (m, 3H), 7.35-7.27 (m, 3H), 7.15 (m, 1H), 6.88 

(s, 1H), 3.93 (s, 3H). 13C NMR (75 MHz, CDCl3):! 152.4, 141.8, 138.1, 135.1, 134.4, 

130.0, 129.8, 129.1, 127.3, 124.3, 118.1, 115.9, 98.2, 55.4. FTIR (neat) 3372, 2935, 1728, 

1619, 1563, 1482, 1456, 1247, 1167, 1043, 760 cm–1. HRMS  Calcd for C18H15N2O 

[M+H]+ : 275.11789. Found: 275.11824. 

 N
N

N
180

 

2-Phenylpyrazolo[1,5-a]pyrazine (180). The title compound 180 was prepared as per the 

general procedure (page LXV) using 0.5 mmol of N-benzoyliminopyrazonium ylide 179. 

The product was purified by column chromatography (hexanes/dichloromethane, 10/90) to 

give a white powder (81.5 mg, 60%). Rf = 0.63 (dichloromethane/hexanes, 1:1). mp: 142 

ºC. 1H NMR (300 MHz, CDCl3) ! 9.04 (s, 1H), 8.39 (d, J = 4.7 Hz, 1H), 7.98 (d, J = 7.4 

Hz, 2H), 7.86 (d, J = 4.7 Hz, 1H), 7.51-7.39 (m, 3H), 7.05 (s, 1H). 13C NMR (75 MHz, 

CDCl3) ! 154.9, 145.3, 138.0, 133.0, 130.1, 129.9, 129.8, 129.4, 128.2, 127.5, 122.5, 96.1. 

FTIR (neat) 3127, 3020, 1527, 1469, 1421, 1331, 1233, 1080 cm–1. HRMS Calcd for 

C12H10N3 [M+H]+ : 196.08692. Found: 196.08726. 
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N N
181

N N  

3/6-methyl-2-phenylpyrazolo[1,5-a]pyridine (181). The title compound 181 was prepared 

as per the general procedure using 1.0 mmol of 3-methyl-N-benzoyliminopyridinium ylide 

147. The product was purified by column chromatography (hexanes/dichloromethane, 

10/90) to give a beige powder (45 mg, 77% ). Rf = 0.43 (dichlomethane, 100%); mp: 121-

129 ºC. 1H NMR (300 MHz, CDCl3) ! 8.29 (s, 1H), 7.98 (d, J = 7.5 Hz, 2H), 7.52-7.34 (m, 

4H), 6.94 (d, J = 8.4 Hz,  1H), 6.75 (s, 1H). 13C NMR (75 MHz, CDCl3) ! 153.7, 143.7, 

141.2, 134.4, 129.6, 129.0, 127.4, 123.2, 122.4, 118.0, 112.7, 94.1, 93.5, 18.8. FTIR (neat) 

1507, 1438, 1318, 1027, 809, 761, 691 cm–1. HRMS Calcd for C14H13N2 [M+H]+ : 

209.10732. Found: 209.10685. 

N N
183

N NCl

Cl

 

3/6-chloro-2-phenylpyrazolo[1,5-a]pyridine (183). The title compound 183 was prepared 

as per the general procedure using 1.0 mmol of 3-chloro-N-benzoyliminopyridinium ylide 

182. The product was purified by column chromatography (hexanes/dichloromethane, 

10/90) to give a beige powder (45 mg, 77%). Rf = 0.43 (dichlomethane, 100%). mp: 121-

129 ºC. 1H NMR (300 MHz, CDCl3). ! 9.42 (m, , 1H), 9.22-9.20 (m, 2H), 8.15 (m, J, 4H), 

8.10-8.04 (m, 7H), 7.70-7.65 (m, 3H), 7.58-7.46 (m, 18H), 7.08-6.99 (m, 6H). 13C NMR 

(major, 75 MHz, CDCl3) ! 154.7, 141.6, 133.5, 129.7, 127.9, 127.4, 124.6, 123.4, 111.9, 

94.9. FTIR (neat) 3141, 3069, 3030, 1630, 1533, 1513, 1464, 1314, 1181, 955, 745 cm–1. 

HRMS Calcd for C13H10ClN2 [M+H]+ : 229.05270. Found: 229.05282. 
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Synthesis of 2-Substituted Pyrazolopyridines from Alkynes 

N
NBz

R2 N N
R2

PdBr2 (5 mol %)
P(4-MeOPh)3 (15 mol %)

AgOBz (4 equiv)

1,4-dioxane, 125 ºC, 16 h
+

R1
R1

 

General procedure for the synthesis of 2-substituted-pyrazolo[1,5-a]pyridines. To a 3 

mL conical microwave vial equipped with a spin vane was added pyridinium ylide (1.5  

mmol, 3 equiv). In a glove box was added para-tris-methoxyphenylphosphine (0.15 equiv), 

palladium bromide (0.05 equiv), and silver benzoate (2.0 mmol, 4 equiv). The microwave 

vial was crimped shut. The alkyne derivative (0.5 mmol, 1 equiv) was diluted in 0.5 mL 

1,4-dioxane and added via syringe. The syringe was rinsed three times with 0.5 mL dioxane 

to reach a final volume of 2 mL. The solution was heated to 125 ºC with fast stirring. 

Within five minutes a colour change was observed. The mixture was stirred for 16 h. The 

solution was cooled to room temperature. Dichloromethane was added and the precipitate 

was filtered on cotton plug and washed with dichloromethane. Saturated sodium 

bicarbonate was added and the organic phase was extracted with dichloromethane. The 

solution was dried with sodium sulfate and concentrated under reduced pressure and 

purified via column chromatography to afford the title compounds. 

N N
155

 

2-Phenylpyrazolo[1,5-a]pyridine (155). The title compound 155 was prepared as per the 

general procedure  (page LXXVI) using 0.5 mmol of phenyl acetylene. The product was 

purified by column chromatography (hexanes/dichloromethane, 5/95) to give a light yellow 

powder (73.7 mg, 76%). Rf = 0.79 (dichloromethane, 100%). mp: 110-113 ºC. 1H NMR 

(300 MHz, CDCl3) ! 8.47 (d, J = 6.9 Hz, 1H), 7.97 (d, J = 7.5 Hz, 2H), 7.54-7.34 (m, 1H), 

7.08 (t, J = 7.8 Hz, 1H), 6.80 (s, 1H), 6.73 (t, J = 6.8 Hz, 1H). 13C NMR (75 MHz, CDCl3) 

! 154.2, 142.5, 134.2, 129.4, 129.2, 124.2, 118.7, 112.7, 94.4. FTIR (neat) 3086, 1630, 

1508, 1467, 1327, 763, 688 cm–1. HRMS Calcd for C13H11N2 [M+H]+: 195.09167. Found: 

195.09088. 
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N N
184

 

2-Cyclohexenylpyrazolo[1,5-a]pyridine (184). The title compound 155 was prepared as 

per the general procedure  (page LXXVI) using 0.5 mmol of the alkyne. The product was 

purified by column chromatography (dichloromethane/hexanes, 1/1) to give a light brown 

powder (84.2 mg, 85%). Rf = 0.43 (dichloromethane/hexanes, 1/1); mp: 44-45 ºC; 1H NMR 

(300 MHz, CDCl3): ! 8.36 (d, J =7.0 Hz, 1H), 7.42 (d,  J = 9 Hz, 1H), 7.00-6.95 (m, 1H), 

6.63-6.52 (m, 2H), 6.44 (s, 1H), 2.52-2.60 (m, 2H), 2.21-2.20 (m, 2H), 1.81-1.63 (m, 4H); 
13C NMR (75 MHz, CDCl3): ! 155.5, 140.9, 130.2, 128.2, 126.6, 122.9, 117.4, 110.9, 92.4, 

26.1, 25.5, 22.6, 22.1; FTIR (neat) 3075, 2922, 2854, 1629, 1516, 1488, 1327, 1252, 1138, 

918, 767 cm–1; HRMS Calcd for C13H15N2 [M+H]+: 199.12297. Found: 199.12269. 

N N
185

 

2-(Prop-1-en-2-yl)pyrazolo[1,5-a]pyridine (185). The title compound 185 was prepared 

as per the general procedure  (page LXXVI) using 0.5 mmol of the alkyne. The product was 

purified by column chromatography (hexanes/dichloromethane, 3/7) to give a light brown 

oil (22.7 mg, 29%). Rf = 0.63 (hexanes/dichloromethane, 3/7). 1H NMR (400 MHz, CDCl3) 

! 8.43 (dd, J = 7.0, 0.9 Hz, 1H), 7.46 (d, J = 8.9 Hz, 1H), 7.08-7.04 (m, 1H), 6.70 (td, J = 

6.9, 1.2 Hz, 1H), 6.59 (s, 1H), 5.78 (s, 1H), 5.23 (s, 1H), 2.26 (s, 3H). 13C NMR (75 MHz, 

CDCl3) ! 155.6, 141.9, 137.7, 129.2, 124.1, 118.6, 114.7, 112.3, 94.5, 21.4. FTIR (neat) 

3085, 2972, 2921, 1631, 1518, 1245, 1055, 1033, 1014, 893, 777, 752, 734 cm–1. HRMS 

Calcd for C10H11N2 [M+H]+: 159.09167. Found: 159.09142. 

N N
186

 

2-Hexylpyrazolo[1,5-a]pyridine (186). The title compound 186 was prepared as per the 

general procedure  (page LXXVI) using 0.390 mmol of the alkyne. The product was 

purified by column chromatography (hexanes/dichloromethane, 5/95) to give a light brown 

oil (39.3 mg, 50%). Rf = 0.73 (dichloromethane, 100%). 1H NMR (300 MHz, CDCl3) ! 

8.37 (d, J = 7.0 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 7.04 (t, J = 7.8 Hz, 1H), 6.65 (t, J = 6.9 
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Hz, 1H), 6.29 (s, 1H), 2.82 (m, 2H), 1.74 (q, J = 7.6 Hz, 2H), 1.41-1.31 (m, 6H), 

0.88 (t, J = 6.7 Hz, 3H). 13C NMR (75 MHz, CDCl3) ! 157.4, 141.8, 129.0, 123.9, 118.2, 

111.5, 95.9, 32.5, 30.6, 30.0, 29.5, 23.5, 14.9. FTIR (neat) 3081, 2925, 2855, 1634, 1520, 

1488, 1328, 1253, 1142, 1021, 765 cm–1. HRMS Calcd for C13H19N2 [M+H]+: 203.15428. 

Found: 203.15410. 

N N
187

 

2-Butylpyrazolo[1,5-a]pyridine (187). The title compound 187 was prepared as per the 

general procedure  (page LXXVI) using 0.366 mmol of the alkyne. The product was 

purified by column chromatography (hexanes/dichloromethane, 5/95) to give a light brown 

oil (34.9 mg, 55%). Rf = 0.69 (dichloromethane, 100%). 1H NMR (300 MHz, CDCl3) ! 

8.38 (d, J = 7.0 Hz, 1H), 7.41 (dd, J = 8.9, 0.8 Hz, 1H), 7.04 (d, J = 7.3 Hz, 1H), 6.65 (t, J = 

6.9 Hz, 1H), 6.29 (s, 1H), 2.83 (t, J = 7.7 Hz, 2H), 1.75 (quintet, J = 7.5 Hz, 2H), 1.43 

(sextet, J = 7.4 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) ! 157.3, 

141.8, 129.0, 123.9, 118.2, 111.5, 95.9, 32.8, 29.1, 23.4, 14.8. FTIR (neat) 3072, 2955, 

2859, 1635, 1520, 1474, 1329, 1254, 1238, 1144, 1023, 767 cm–1. HRMS Calcd for 

C11H15N2 [M+H]+: 175.12297. Found: 175.12282. 

N N
188

 

2-tert-Butylpyrazolo[1,5-a]pyridine (188). The title compound 187 was prepared as per 

the general procedure  (page LXXVI) using 0.5 mmol of the alkyne. The product was 

purified by column chromatography (hexanes/dichloromethane, 5/95) to give a light brown 

oil (55.3 mg, 64%). Rf = 0.75 (dichloromethane, 100%). 1H NMR (400 MHz, CDCl3) ! 

8.42 (d, J = 7.0 Hz, 1H), 7.42 (d, J = 8.9 Hz, 1H), 7.04-7.00 (m, 1H), 6.65 (t, J = 6.8, Hz, 

1H), 6.35 (s, 1H), 1.44 (s, 9H). 13C NMR (100 MHz, CDCl3) ! 164.6, 140.4, 128.0, 122.5, 

117.1, 110.3, 92.5, 32.0, 30.4. FTIR (neat) 3078, 2958, 2864, 1632, 1519, 1492, 1327, 

1236, 770 cm–1. HRMS Calcd for C11H15N2 [M+H]+: 175.12297. Found: 175.12277. 
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N N
188

 

2-Cyclohexenylpyrazolo[5,1-a]isoquinoline (188). The title compound 188 was prepared 

as per the general procedure  (page LXXVI) using ylide 174 and 0.25 mmol of the alkyne. 

The product was purified by column chromatography (dichloromethane, 100%) to give a 

yellow powder (44.5 mg, 72%). Rf = 0.83 (dichloromethane, 100%). mp: 87-88 ºC. 1H 

NMR (300 MHz, CDCl3) ! 8.19 (d, J = 7.4 Hz, 1H), 8.08-8.06 (m, 1H), 7.71-7.68 (m, 1H), 

7.55 (m, , 2H), 7.01 (s, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.60 (m, 1H), 2.63-2.59 (m, 2H), 

2.32-2.26 (m, 2H), 1.88-1.71 (m, 4H). 13C NMR (75 MHz, CDCl3) ! 155.9, 139.9, 131.2, 

129.7, 128.6, 128.3, 128.0, 127.4, 127.2, 125.3, 124.5, 112.2, 94.3, 27.0, 26.5, 23.5, 23.1. 

FTIR (neat) 2924, 2856, 1634, 1537, 1477, 1368, 1054, 1033, 787, 754 cm–1. HRMS Calcd 

for C17H17N2 [M+H]+: 249.13862. Found: 249.13856. 

N N
189

N N  

2-cyclohexenyl-6 and 4-methylpyrazolo[1,5-a]pyridine (189). The title compound 189 

was prepared as per the general procedure  (page LXXVI) using ylide 147 and 0.25 mmol 

of the alkyne. The product was purified by column chromatography as an inseparable 4:1 

mixture towards the least hindered product (dichloromethane, 100%) to give a yellow 

powder (44.5 mg, 72%). Rf = 0.83 (dichloromethane, 100%). mp: 46-47 ºC. 1H NMR (300 

MHz, CDCl3) ! 8.28-8.25 (m), 8.20 (s, 1H), 7.33 (d, J = 9.0 Hz, 1H), 6.89 (d, J = 9.1 Hz, 

1H), 6.59-6.55 (m, 1H), 6.44 (m, 1H), 3.71 (s, 1H), 2.56-2.51 (m, 3H), 2.43 (s, 1H), 2.30-

2.21 (m, 6H), 1.84-1.66 (m, 6H). 13C NMR (75 MHz, CDCl3) ! 156.0, 155.8, 142.9, 140.4, 

131.3, 128.1, 127.3, 127.1, 127.0, 126.9, 126.8, 122.7, 121.6, 117.1, 112.0, 92.9, 92.2, 67.9, 

54.3, 27.1, 26.5, 23.0, 23.1, 19.1, 18.9. FTIR (neat) 2922, 1642, 1517, 1485, 1435, 1319, 

1261, 1054, 1033, 797 cm–1. HRMS Calcd for C14H17N2 [M+H]+: 213.13862. Found: 

213.13841. 
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N N
190

Ph  

(E)-2-Cyclohexenyl-7-styrylpyrazolo[1,5-a]pyridine (190). The title compound 189 was 

prepared as per the general procedure  (page LXXVI) using ylide 107 and 0.25 mmol of the 

alkyne. The product was purified by column chromatography (dichloromethane, 100%) to 

give a yellow powder (13.9 mg, 21%). Rf = 0.73 (dichloromethane, 100%). mp: 95-98 ºC. 
1H NMR (300 MHz, CDCl3) ! 7.82 (s, 2H), 7.64-7.60 (m, 2H), 7.41-7.36 (m, 3H), 7.33-

7.27 (m, 1H), 7.08-7.03 (m, 1H), 6.97-6.94 (m, 1H), 6.68-6.63 (m, 1H), 6.53 (s, 1H), 2.63-

2.56 (m, 2H), 2.30-2.22 (m, 2H), 1.84-1.71 (m, 4H). 13C NMR (75 MHz, CDCl3) ! 154.7, 

141.8, 137.3, 136.9, 133.9, 130.5, 128.6, 128.3, 127.1, 126.4, 122.7, 120.1, 115.9, 109.3, 

92.8, 26.1, 25.6, 22.6, 22.2. FTIR (neat) 3057, 2924, 1632, 1522, 1448, 1305, 1260, 1080, 

965, 782, 717 cm–1. HRMS Calcd for C21H21N2 [M+H]+: 301.16993. Found: 301.16961. 

Synthesis of 2,3-Disubstituted Pyrazolopyridines 

N
N

O

O

191  

2-Phenylpyrazolo[1,5-a]pyridin-3-yl benzoate (191). To a 3 mL conical microwave vial 

equipped with a spin vane was added pyridinium ylide 43 (0.279  mmol, 1 equiv). In a 

glove box was added para-tris-methoxyphenylphosphine (0.15 equiv), palladium bromide 

(0.05 equiv), and silver benzoate (1.15 mmol, 4 equiv). The microwave vial was crimped 

shut. 1,4-Dioxane was added via syringe. The solution was heated to 125 ºC with fast 

stirring. Within five minutes a colour change was observed. The mixture was stirred for 16 

h. The solution was cooled to room temperature. Dichloromethane was added and the 

precipitate was filtered on cotton plug and washed with dichloromethane. Saturated sodium 

bicarbonate was added and the organic phase was extracted with dichloromethane. The 

solution was dried with sodium sulfate and concentrated under reduced pressure and 
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purified via column chromatography (dichloromethane/methanol, 9/1) to afford the 

title compound 191. (30.0 mg, 34%). Rf = 0.23 (dichloromethane, 100%). mp: 86-88 ºC. 1H 

NMR (300 MHz, CDCl3) ! 8.43 (d, J = 7.0 Hz, 1H), 8.31 (d, J = 7.8 Hz, 2H), 7.98 (d, J = 

7.7 Hz, 2H), 7.73-7.68 (m, 1H), 7.58 (t, J = 7.7 Hz, 2H), 7.46-7.34 (m, 4H), 7.12 (m, , 1H), 

6.79 (t, J = 6.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) ! 165.2, 144.4, 134.8, 134.2, 132.4, 

131.3, 129.7, 129.6, 129.5, 129.4, 128.2, 124.0, 122.9, 117.3, 113.0; FTIR (neat) 3062, 

1741, 1474, 1348, 1255, 1237, 1202, 1087, 1049, 1022, 741 cm–1. HRMS Calcd for 

C20H15N2O2 [M+H]+: 315.11280. Found: 315.11307. 

N
N

O

O

 

2-Phenylpyrazolo[1,5-a]pyridin-3-yl acetate. To a 3 mL conical microwave vial equipped 

with a spin vane was added pyridinium ylide 43 (0.50  mmol, 1 equiv). In a glove box was 

added para-tris-methoxyphenylphosphine (0.15 equiv), palladium bromide (0.05 equiv), 

and silver acetate (2.0 mmol, 4 equiv). The microwave vial was crimped shut. 1,4-Dioxane 

was added via syringe. The solution was heated to 125 ºC with fast stirring. Within five 

minutes a colour change was observed. The mixture was stirred for 16 h. The solution was 

cooled to room temperature. Dichloromethane was added and the precipitate was filtered on 

cotton plug and washed with dichloromethane. Saturated sodium bicarbonate was added 

and the organic phase was extracted with dichloromethane. The solution was dried with 

sodium sulfate and concentrated under reduced pressure and purified via column 

chromatography (acetone/chloroform, 5/95) to afford the title compound. (62.1 mg, 49%). 

Rf = 0.83 (acetone/chloroform, 5/95). mp: 64-66 ºC. 1H NMR (300 MHz, CDCl3) ! 8.38 (d, 

J = 7.0 Hz, 1H), 7.95-7.92 (m, 2H), 7.51-7.45 (m, 2H), 7.43-7.37 (m, 1H), 7.32 (d, J = 9.0 

Hz, 1H), 7.10 (m, 1H), 6.75 (td, J = 6.9, 1.3 Hz, 1H), 2.42 (s, 3H). 13C NMR (75 MHz, 

CDCl3) ! 169.6, 144.2, 134.2, 132.4, 129.5, 129.4, 129.3, 128.2, 123.9, 122.9, 117.0, 112.9, 

21.6. FTIR (neat) 3041, 2932, 1762, 1638, 1472, 1432, 1368, 1348, 1190, 1077, 740, 695 

cm–1. HRMS Calcd for C15H13N2O2 [M+H]+: 253.09715. Found: 253.09712. 
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Experimental Section of Chapter 5 
 

Synthesis of Starting Material 
 

Starting materials not listed below were obtained commercially and the reagents were used 

without further purification. 

OPiv
Br

209  

2-Bromophenyl pivalate (209) To a flame-dried flask was added 2-bromophenol (0.35 

mL, 3.0 mmol), CH2Cl2 (5 mL), and Et3N (0.84 mL, 6.0 mmol). The resulting solution was 

cooled to 0 ºC after which PivCl (0.37 mL, 3.0 mmol) was added dropwise. The solution 

was stirred at this temperature for 30 min and then at rt for three days. The reaction mixture 

was washed with 20 mL of saturated NaHCO3 solution followed by 20 mL water, dried 

over MgSO4 and concentrated. Purification by column chromatography (ethyl 

acetate/hexanes, 4/6) afforded 209 as a while oil (0.57 g, 65%). Rf = 0.81 (ethyl 

acetate/hexanes, 4/6). The observed characterization data (1H) was consistent with that 
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previously reported in the literature.38 1H NMR (300 MHz, CDCl3) " 7.59-7.56 (d, 

J = 8.4 Hz, 1H), 7.33-7.28 (t, J = 8.2 Hz, 1H), 7.11-7.06 (t, J = 8.6 Hz, 2H), 1.38 (s, 9H). 

NHPiv
Br

211  

N-(2-bromophenyl)pivalamide (211) To a round-bottomed flask equipped with a stir bar 

was added 2-bromoaniline (0.53 g, 4.4. mmol), Na2CO3 (0.93 g, 8.8 mmol), CH2Cl2 (10 

mL), and water (10 mL). The mixture was stirred at rt until all the reagents dissolved and 

then refluxed for 3 h. The mixture was then diluted with CH2Cl2, washed with 10% aq. 

NaOH, water, and then dried over Na2SO4. Purification by column chromatography 

(ether/hexanes, 1/9) afforded the product as a cream coloured oil (0.906 g, 80%). Rf = 0.40 

(ether/hexanes, 1/9). The observed characterization data (1H) was consistent with that 

previously reported in the literature.39 1H NMR (400 MHz, CDCl3) " 8.42 (dd, J = 8.3, 1.5 

Hz, 1H), 8.04 (bs, 1H), 7.55 (dd, J = 8.0, 1.4 Hz, 1H), 7.33 (t, J = 8.7 Hz, 1H), 6.99 (dt, J = 

8.0, 1.6 Hz, 1H), 1.38 (s, 9H). 

Br

213

N
NN

HN

 

2-Bromo-1-trazolobenzene (213). To a round-bottomed flasked equipped with a stir bar 

and reflux condenser was added 1-bromo-2-cyanobenzene (0.465 g, 2.5 mol, 1 equiv), 

TMSN3 (0.660 mL, 5 mmol, 2 equiv), Bu2SnO (0.065g, 10 mol %), and toluene (5 mL). the 

mixture was refluxed for 38 h. The crude reaction mixture was added to water, and then 

extracted with 3x 40 mL ether. The title compound was obtained following column 

!!!!!!!!!!!!!!!!!!!!!!!!!  
38 Miller, J. A. J. Org. Chem. 1987, 52, 322. 
39 Matsuhira, T.; Yamamoto, H.; Okamura, T.-a.; Ueyama, N. Org. Biomol. Chem. 2008, 6, 

1926. 
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chromatography (ether/hexanes, 1/1 as a white solid (0.360 g, 64%). (1H) was 

consistent with that previously reported in the literature.40 1H NMR (300 MHz, CD3OD) 

" 7.84 (dd, J = 6.0, 1.1 Hz, 1H), 7.70 (dd, J = 7.0, 2.0 $z, 1H), 7.48-7.60 (m, 2H). 

Br
O

MeO
219  

Methyl 2-bromo-4-methylbenzoate (219). To a round-bottomed flask with stir bar was 

added 2-bromo-4-methylbenzoic acid (0.500 g, 2.3 mmol), CH3OH (9 mL) and 5 drops of 

H2SO4. The flask was fitted with a reflux condenser and heated to 70 ºC for 12 h. The 

reaction mixture was diluted in EtOAc, washed with water, sat. NaHCO3, dried with 

Na2SO4, and concentrated to give the product as a white solid (0.42 g, 80%). Rf = 0.40 

(ether/hexanes, 1/9). The observed characterization data (1H) was consistent with that 

previously reported in the literature.41 1H NMR (300 MHz, CDCl3) "  7.65 (d, J = 8.0 Hz, 

1H), 7.41 (s, 1H), 7.07 (dd, J = 7.9, 0.5 Hz, 1H), 3.84 (s, 3H), 2.28 (s, 3H). 

Br

F

OMeO

223  

Methyl 2-bromo-5-fluorobenzoate (223). To a round-bottomed flask with stir bar was 

added 2-bromo-4-methylbenzoic acid (0.500 g, 2.3 mmol), CH3OH (9 mL) and 5 drops of 

H2SO4. The flask was fitted with a reflux condenser and heated to 70 ºC for 12 h. The 

reaction mixture was diluted in EtOAc, washed with water, sat. NaHCO3, dried with 

Na2SO4, and concentrated to give the product as a white solid (0.335 g, 63%). Rf = 0.40 

(ether/hexanes, 1/9). The observed characterization data (1H) was consistent with that 

!!!!!!!!!!!!!!!!!!!!!!!!!  
40 Wittenberger, S. J.; Sonner, B. G. J. Org. Chem. 1993, 58, 4139. 
41 Chang, D.-J.; Yoon, E.-Y.; Lee, G.-B.; Kim, S.-O.; Kim, Y.-M.; Jung, J.-W.; An, H.; 

Suh, Y.-G. Biorg. Med. Chem. Lett. 2009, 19, 4416.  
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previously reported in the literature.42 1H NMR (300 MHz, CDCl3) "  7.56 (dd, J 

= 8.8, 5.1 Hz, 1H), 7.46 (dd, J = 8.8, 3.1 Hz, 1H), 7.05-6.98 (m, 1H), 3.88 (s, 3H). 

Br

BocHN

EtO O

227  

Ethyl 2-bromo-5-(tert-butoxycarbonylamino)benzoate (227). To a round-bottomed flask 

equipped with stir bar was added ethyl 2-bromo-5-aminobenzoate (0.500 g, 2.0 mmol), 

Et3N (0.42 mL, 4.8 mmol), and THF (5 mL). Then (Boc)2O (1.05 g, 4.8 mmol) was added 

and the mixture was refluxed for 2 h, followed by stirring at rt for 2 h. The mixture was 

diluted in EtOAc, washed with sat. NaHCO3, H2O, and dried over Na2SO4. Purification by 

column chromatography (ethyl acetate/hexanes, 1/1) afforded the product as a beige oil 

(0.41g, 60%). Rf = 0.31 (ethyl acetate/hexanes, 1/1). 1H NMR (300 MHz, CDCl3) " 7.78 (s, 

1H), 7.44-7.36 (m, 2H), 7.22 (d, J = 6.1 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.43 (s, 9H), 

1.30 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) "   141.1, 128.7, 126.9, 126.7. FTIR 

(neat) 3342, 2980, 1700, 1521, 1391, 1367, 1226, 1151, 1108, 1055, 1031, 736 cm-1. LRMS 

Calcd for C14H18BrNO4 M+: 344.20. Found: 344. 

 

Arylation Products 

General Arylation Procedure. 

To a microwave vial equipped with a stir bar was added Pd(OAc)2 (5.4 mg, 5 mol %), and 

Ag2CO3 (71 mg, 0.51 equiv). The aryl halide was weighed into a separate vial (0.5 mmol, 1 

equiv). The halide was dissolved/mixed in # the amount of arene coupling partner and 

added to the reaction vessel via syringe. The vial ws then rinsed 3x # the volume of the 

arene to reach the total reaction volume. The microwave vial was sealed with Teflon cap 

and stirred at 125 ºC for 16 h. Upon cooling, the reaction was filtered through a silica plug 

!!!!!!!!!!!!!!!!!!!!!!!!!  
42 Ikeuchi, Y.; Taguchi, T.; Hanzawa, Y. J. Org. Chem. 2005, 70, 4354. 



 LXXXV 
(ether/hexanes, 1/1). The combined solution was concentrated and the crude 

mixture was purified via column chromatography to afford the biphenyl products. 

EtO O

Ph

192  

Ethyl biphenyl-2-carboxylate (2a). The title compound 192 was prepared according to the 

general procedure described above (page LXXXV) using ethyl 2-bromobenzoate 191 with 

benzene (100 equiv), and purified by column chromatography (ether/hexanes, 1/9) as a 

clear oil (99.7 mg, 88%). Rf = 0.37 (ethyl acetate/hexanes, 1/9). The observed 

characterization data (1H, 13C) was consistent with that previously reported in the 

literature.43 1H NMR (400 MHz, CDCl3) "  7.87 (d, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 

1H), 7.47-7.34 (m, 7H), 4.15 (q, J = 7.1 Hz, 2H), 1.03 (t, J = 7.1 Hz, 3H). 13C NMR (100 

MHz, CDCl3) "  168.5, 142.1, 141.2, 131.0, 130.8, 130.2, 129.4, 128.0, 127.6, 126.81, 

126.80, 60.6, 13.3. LRMS Calcd for C15H14O2 M+: 226.27. Found: 226. 

Ph O

Ph

200  

Biphenyl-2-yl(phenyl)methanone (200). The title compound 200 was prepared according 

to the general procedure described above (page LXXXV) using (2-

bromophenyl)(phenyl)methanone 199 with benzene (100 equiv), and purified by column 

chromatography (ether/hexanes, 1/9) as a clear oil (122.0 mg, 94%). Rf = 0.41 

(ether/hexanes, 1/9). The observed characterization data (1H) was consistent with that 

previously reported in the literature.44 1H NMR (400 MHz, CDCl3) "  7.71-7.68 (m, 2H), 

7.61 (td, J = 7.4, 1.5 Hz, 1H), 7.57-7.47 (m, 3H), 7.46-7.41 (m, 1H), 7.32-7.28 (m, 4H), 

7.25-7.16 (m, 3H). LRMS Calcd for C19H14O M+: 258.31 Found: 258. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
43 Liu, Q.; Lau, Y.; Liu, J.; Li, G.; Wu, Y.-D.; Lei, A. J. Am. Chem. Soc. 2009, 131, 10201. 
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Me2N O

Ph

202  

N,N-Dimethylbiphenyl-2-carboxamide (202). The title compound 202 was prepared 

according to the general procedure described above (page LXXXV) using 2-bromo-N,N-

dimethylbenzamide 201 with benzene (100 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 3/7) as a clear oil (98.0 mg, 87%). Rf = 0.34 (ethyl acetate/hexanes, 

1/1). The observed characterization data (1H, 13C) was consistent with that previously 

reported in the literature.43 1H NMR (300 MHz, CDCl3) "  7.45-7.29 (m, 9H), 2.81 (s, 3H), 

2.35 (s, 3H). 13C NMR (75 MHz, CDCl3) "  171.3 139.9, 138.6, 135.7, 132.6, 129.3, 128.4, 

128.3, 127.6, 127.5, 127.3, 37.9, 34.5; LRMS Calcd for C15H15NO M+: 225.12. Found: 225. 

O

Ph

204  

1-(Biphenyl-2-yl)ethanone (204). The title compound 204 was prepared according to the 

general procedure described above (page LXXXV) using (2-bromophenyl)ethanone 203 

with benzene (100 equiv), and purified by column chromatography (ethyl acetate/benzene, 

1/9) as a clear oil (49.8 mg, 51%). Rf = 0.72 (ethyl acetate/benzene, 1/9). The observed 

characterization data (1H, 13C) was consistent with that previously reported in the 

literature.45 1H NMR (400 MHz, CDCl3) "  7.59-7.52 (m, 2H), 7.48-7.36 (m, 7H), 2.03 (s, 

3H). 13C NMR (100 MHz, CDCl3) "  204.6, 140.6, 140.4, 140.2, 130.4, 129.9, 128.5, 128.3, 

127.54, 127.51, 127.1, 30.1. LRMS Calcd for C14H12O M+: 196.24 Found: 196. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
44 Cahiez, G.; Luart, D.; Lecomte, F. Org. Lett. 2004, 6, 4395. 
45 Zeng, F.; Yu, Z. J. Org. Chem., 2006, 71, 5274. 
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O

Ph

206  

Biphenyl-2-carbaldehyde (206). The title compound 206 was prepared according to the 

general procedure described above (page LXXXV) using 2-bromobenzaldehyde 205 with 

benzene (100 equiv), and purified by column chromatography (ether/hexanes, 1/4) as a 

while solid (67.0 mg, 74%). Rf = 0.42 (ether/hexanes, 1/4). The observed characterization 

data (1H, 13C) was consistent with commercially available biphenyl-2-carboxylic acid. 1H 

NMR (300 MHz, CDCl3) "  10.01 (s, 1H), 8.07-8.04 (d, J  = 8.6 Hz, 1H), 7.66 (t, J = 7.5 

Hz, 1H), 7.54-7.40 (m, 7H). 13C NMR (75 MHz, CDCl3) "  193.3, 146.8, 138.6, 134.6, 

134.4, 131.6, 131.0, 129.3, 129.0, 128.6, 128.4. LRMS Calcd for C13H10O M+: 182.22. 

Found: 182. 

CO2H
Ph

208  

Biphenyl-2-carboxylic acid (2g). The title compound 208 was prepared according to the 

general procedure described above (page LXXXV) using 2-bromobenzoic 207 with 

benzene (100 equiv), and purified by column chromatography (methanol/dichloromethane, 

1/4) as a while solid (41.2 mg, 42%). Rf = 0.82 (methanol/dichloromethane, 1/4). The 

observed characterization data (1H, 13C) was consistent with commercially available 

biphenyl-2-carboxylic acid. 1H NMR (300 MHz, CDCl3) "  7.96 (d, J = 7.8 Hz, 1H), 7.60-

7.55 (m, 1H), 7.46-7.36 (m, 7H). 13C NMR (75 MHz, CDCl3) "  173.2, 143.2, 140.9, 132.0, 

131.1, 130.6, 129.2, 128.3, 128.0, 127.2, 127.1. LRMS Calcd for C13H12O2 M+: 198.22. 

Found: 198. 
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OPiv

Ph

210  

Biphenyl-2-yl pivalate (210) The title compound 210 was prepared according to the 

general procedure described above (page LXXXV) using 2-bromophenyl pivalate 209 with 

benzene (100 equiv), and purified by column chromatography (ether/hexanes, 2/5) as a 

viscous beige oil (32.0 mg, 25%). Rf = 0.84 (ether/hexanes, 2/5). The observed 

characterization data (1H, 13C) was consistent with that previously reported in the 

literature.46 1H NMR (400 MHz, CDCl3) "  7.40 (m, 5H), 7.38-7.32 (m, 2H), 7.28 (s, 2H), 

7.12-7.10 (m, 1H), 1.14 (s, 9H). 13C NMR (100 MHz, CDCl3) "  176.7, 175.9, 148.3, 148.0, 

137.4, 135.1, 133.2, 130.7, 129.1, 128.6, 128.3, 127.9, 127.3, 127.0, 125.9, 123.6, 122.6, 

116.1, 39.2, 38.7, 27.1, 26.9. LRMS Calcd for C17H18O2 M+: 254.32. Found: 254. 

NHPiv
Ph

212  

N-(biphenyl-2-yl)pivalamide (212). The title compound 212 was prepared according to 

the general procedure described above (page LXXXV) using N-(2-

bromophenyl)pivalamide 211 with benzene (100 equiv), and purified by column 

chromatography (ether/hexanes, 1/3) as a viscous beige oil (41.2 mg, 33%). Rf = 0.48 

(ether/hexanes, 1/3). The observed characterization data (1H, 13C) was consistent with that 

previously reported in the literature.47 1H NMR (300 MHz, CDCl3) "  8.36 (d, J = 8.3 Hz 

1H), 7.50-7.32 (m, 7H), 7.24-7.21 (m, 1H), 7.15 (dt, J = 7.3, 1.2 Hz, 1H), 1.07 (s, 9H). 13C 

NMR (75 MHz, CDCl3) "  176.2, 138.0, 135.0, 132.0, 129.6, 129.2, 128.9, 128.4, 127.9, 

123.8, 120.7, 39.7, 27.3. LRMS Calcd for C17H19NO M+: 253.34. Found: 253. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
46 Tomomichi, I.; Mako, O.; Toshiaki, I. Bull. Chem. Soc. Jpn. 1986, 59, 3621. 
47 Seganish, W. M.; DeShong, P. J. Org. Chem. 2004, 69, 6790. 
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O

MeO
220  

Methyl 5-methylbiphenyl-2-carboxylate (220). The title compound 220 was prepared 

according to the general procedure described above (page LXXXV) using methyl 2-bromo-

4-methylbenzoate 219 with benzene (100 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 1/9) as a beige oil (93.0 mg, 82%). Rf = 0.38 (ethyl acetate/benzene, 

1/9). The observed characterization data (1H, 13C) was consistent with that previously 

reported in the literature.48 1H NMR (400 MHz, CDCl3) "  7.82 (d, J = 7.9 Hz, 1H), 7.46-

7.34 (m, 5H), 7.28-7.23 (m, 2H), 3.67 (s, 3H), 2.46 (s, 3H). 13C NMR (75 MHz, CDCl3) 

"  169.8, 143.7, 142.6, 142.5, 132.5, 131.0, 129.2, 128.8, 128.7, 128.6, 128.0, 52.6, 22.3. 

LRMS Calcd for C15H14O2 M+: 226.67. Found: 226. 

O2N

OMeO

222  

Methyl 4-nitrobiphenyl-2-carboxylate (222). The title compound 222 was prepared 

according to the general procedure described above (page LXXXV) using methyl 2-bromo-

5-nitrobenzoate 221 with benzene (100 equiv), and purified by column chromatography 

(ether/hexanes, 3/7) as a beige solid (122.0 mg, 94%). Rf = 0.38 (ether/hexanes, 3/7). The 

observed characterization data (1H) was consistent with that previously reported in the 

literature.49 1H NMR (300 MHz, CDCl3) "  8.69 (d, J = 2.4 Hz, 1H), 8.37 (dd, J = 8.5, 2.5 

Hz 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.48-7.45 (m, 3H), 7.35-7.32 (m, 2H), 3.73 (s, 3H). 

LRMS Calcd for C14H11NO4 M+: 257.24. Found: 257. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
48 Wang, D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. 
49 Deng, C.-L.; Guo, S.-M.; Xie, Y.-X.; Li, J.-H. Eur. J. Org. Chem. 2007, 1457. 
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OMeO

224  

Methyl 4-fluorobiphenyl-2-carboxylate (224). The title compound 224 was prepared 

according to the general procedure described above (page LXXXV) using methyl 2-bromo-

5-fluorobenzoate 223 with benzene (100 equiv), and purified by column chromatography 

(ether/hexanes, 1/4) as a beige solid (102.3 mg, 89%). Rf = 0.69 (ether/hexanes, 1/4). The 

observed characterization data (1H) was consistent with that previously reported in the 

literature.50 1H NMR (300 MHz, CDCl3) "  7.57 (dd, J = 9.0, 2.7 Hz, 1H), 7.45-7.36 (m, 

4H), 7.32-7.23 (m, 3H), 3.68 (s, 3H). LRMS Calcd for C14H11FO2 M+: 230.23. Found: 230. 

OMe

OMeO

226  

Methyl 5-methoxybiphenyl-2-carboxylate (226). The title compound 226 was prepared 

according to the general procedure described above (page LXXXV) using methyl 2-bromo-

4-methoxybenzoate 225 with benzene (100 equiv), and purified by column chromatography 

(80% DCM in hexanes) as a beige oil (57.6 mg, 48%). Rf = 0.35 (80% DCM in hexanes). 

The observed characterization data (1H, 13C) was consistent with that previously reported in 

the literature.51 1H NMR (400 MHz, CDCl3) "  7.42-7.29 (m, 7H), 7.11-7.08 (m, 1H), 3.90 

(s, 3H), 3.65 (s, 3H). 13C NMR (75 MHz, CDCl3) "  169.9, 159.4, 141.9, 135.8, 132.7, 

132.6, 129.2, 128.8, 127.7, 118.4, 115.2, 56.4, 52.9. LRMS Calcd for C15H14O3 M+: 242.27. 

Found: 242. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
50 Eli Lilly Patent WO2005/20975 A1, 2005. 
51 Kotnis, A. S. Tetrahedron Lett. 1990, 31, 481. 
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BocHN

EtO O

228  

Ethyl 4-(tert-butoxycarbonylamino)biphenyl-2-carboxylate (228). The title compound 

228 was prepared according to the general procedure described above (page LXXXV) 

using ethyl 2-bromo-5-(tert-butoxycarbonylamino)benzoate 227 with benzene (100 equiv), 

and purified by column chromatography (ethyl acetate/hexanes, 1/1) as a beige oil (59.1 

mg, 47%). Rf = 0.33 (ethyl acetate/hexanes, 1/1). 1H NMR (400 MHz, CDCl3) " 7.75-7.66 

(m, 2H), 7.41-7.30 (m, 6H), 6.69 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 1.56 (s, 9H) 1.02 (t, J = 

7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) "   168.1, 152.3, 140.7, 137.2, 136.6, 131.4, 

131.0, 128.1, 127.6, 126.6, 120.7, 119.1, 80.6, 60.7, 28.0, 13.3. FTIR (neat) 3342, 2979, 

2300, 1699, 1586, 1521, 1366, 1308, 1226, 1152, 756 cm-1. LRMS Calcd for C20H23NO4 

M+: 341.40. Found: 341. 

EtO O
F

F

F

229  

Ethyl 2',4',6'-trifluorobiphenyl-2-carboxylate (229). The title compound 229 was 

prepared according to the general procedure described above (page LXXXV) using ethyl 2-

bromobenzoate 191 with 1,3,5-trifluorobenzene (50 equiv), and purified by column 

chromatography (ethyl acetate/benzene, 5/95) as a beige solid (112.0 mg, 80%). Rf = 0.31 

(ethyl acetate/benzene, 1/9). The observed characterization data (1H) was consistent with 

that previously reported in the literature.52 1H NMR (400 MHz, CDCl3) "  8.14 (d, J = 6.8 

Hz 1H), 7.62 (t, J = 7.6 Hz 1H), 7.54 (t, J = 6.8 Hz 1H), 7.36 (d, J = 7.65 Hz, 1H), 6.77 (t, J 

= 7.6 Hz, 2H), 4.22 (q, J = 7.4 Hz, 2H), 1.21 (t, J = 7.4 Hz, 3H). LRMS Calcd for 

C15H11F3O2 M+: 280.24. Found: 280. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
52 Martin, R.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3844. 
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EtO O
CF3

CF3

230  

Ethyl 3',5'-bis(trifluoromethyl)biphenyl-2-carboxylate (230). The title compound 230 

was prepared according to the general procedure described above (page LXXXV) using 

ethyl 2-bromobenzoate 191 with 1,3-(bis)trifluoromethylbenzene (50 equiv), and purified 

by column chromatography (ethyl acetate/benzene, 5/95) as a beige oil (49.0 mg, 27%). Rf 

= 0.34 (ethyl acetate/benzene, 5/95). 1H NMR (400 MHz, CDCl3) "  8.03 (d, J = 7.6 Hz 

1H), 7.91 (s, 1H), 7.79 (s, 2H), 7.63 (dt, J = 7.6 Hz, 1.1, 1H), 7.55 (dt, J = 7.6 Hz, 1.1, 1H), 

7.37 (d, J = 7.6 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 1.05 (t, J = 7.1 Hz, 3H). 13C NMR (100 

MHz, CDCl3) "   167.7, 144.2, 140.1, 132.3, 131.8, 131.5, 131.1, 131.0, 129.2, 129.1, 123.8 

(q, J = 272.7 Hz), 121.3 (m, 3.9 Hz), 61.6, 14.0. FTIR (neat) 2986, 1720, 1379, 1274, 1172, 

1126, 1057, 899, 763, 706 cm-1. LRMS Calcd for C17H12F6O2 M+: 362.27. Found: 362. 

EtO O

OMe

OMe

231  

Ethyl 3',4'-dimethoxybiphenyl-2-carboxylate (231). The title compound 231 was 

prepared according to the general procedure described above (page LXXXV)  using ethyl 

2-bromobenzoate 191 with 1,2-anisole (50 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 15/85) as a beige oil (59.0 mg, 43%). Rf = 0.34 (ethyl 

acetate/benzene, 15/85). The observed characterization data (1H) was consistent with that 

previously reported in the literature.53 1H NMR (400 MHz, CDCl3) "  7.79 (d, J = 7.4 Hz, 

1H), 7.53 (t, J = 6.3 Hz, 1H), 7.41 (t, J = 6.3 Hz, 2H), 6.94-6.88 (m, 3H), 4.14 (q, J = 7.1 

Hz, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 1.07 (t, J = 7.1 Hz, 3H). LRMS Calcd for C17H18O4 M+: 

286.32. Found: 286. 

!!!!!!!!!!!!!!!!!!!!!!!!!  
53 Pfizer Inc. US6194439 B1 2001. 
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EtO O

OMe

OMe

232  

Ethyl 2',4'-dimethoxybiphenyl-2-carboxylate (232). The title compound 232 was 

prepared according to the general procedure described above (page LXXXV) using ethyl 2-

bromobenzoate 191 with 1,3-anisole (50 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 15/85) as a beige oil (42 mg, 30%). Rf = 0.23 (ethyl 

acetate/benzene, 15/85). 1H NMR (400 MHz, CDCl3) "  7.87 (d, J = 7.7 Hz, 1H), 7.56-7.52 

(m, 1H), 7.41-7.37 (m, 1H), 7.33 (dd, J = 7.6, 0.6 Hz, 1H), 7.19 (d, J = 8.3 Hz, 1H), 6.59 

(dd, J = 8.3, 2.3 Hz, 1H), 6.51 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H), 3.72 (s, 3H), 

1.11 (t, J = 7.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) "   168.9, 160.9, 157.5, 138.9, 132.5, 

131.79, 131.77, 130.7, 129.8, 127.2, 124.0, 104.6, 98.6, 61.0, 55.8, 55.6, 14.4. FTIR (neat) 

2937, 2836, 1713, 1610, 1438, 1281, 1254, 1206, 1157, 1032, 764 cm-1. LRMS Calcd for 

C17H18O4 M+: 286.32. Found: 286. 

EtO O

OMe

OMe

233  

Ethyl 3',5'-dimethoxybiphenyl-2-carboxylate (233). The title compound 233 was 

prepared according to the general procedure described above (page LXXXV) using ethyl 2-

bromobenzoate 191 with 1,3-anisole (50 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 15/85) as a beige oil (25 mg, 18%). Rf = 0.34 (ethyl 

acetate/benzene, 15/85). 1H NMR (400 MHz, CDCl3) "  7.81 (dd, J = 7.6, 0.8 Hz, 1H), 

7.55-7.51 (m, 1H), 7.45-7.40 (m, 2H), 6.50 (s, 3H), 4.16 (q, J = 7.1 Hz, 2H), 3.82 (s, 6H), 

1.08 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) "   169.3, 160.8, 143.9, 142.5, 132.0, 

131.4, 130.7, 129.9, 127.7, 107.0, 99.9, 61.4, 55.8, 14.2. FTIR (neat) 2937, 2837, 1714, 

1591, 1456, 1420, 1287, 1255, 1203, 1126, 1064, 763 cm-1. LRMS Calcd for C17H18O4 M+: 

286.32. Found: 286. 
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EtO O

234  

Ethyl 3',4'-dimethylbiphenyl-2-carboxylate (234). The title compound 234 was prepared 

according to the general procedure described above (page LXXXV) using ethyl 2-

bromobenzoate 191 with o-xylene (50 equiv), and purified by column chromatography 

(ethyl acetate/benzene, 5/95) as a beige oil (98.8 mg, 77%). Rf = 0.28 (ethyl 

acetate/benzene, 5/95). 1H NMR (400 MHz, CDCl3) " 7.85-7.83 (m, 1H), 7.54 (td, J = 7.5, 

1.2 Hz, 1H), 7.48-7.40 (m, 2H), 7.21-7.10 (m, 3H), 4.18 (q, J = 7.1 Hz, 2H), 2.35 (s, 6H), 

1.11 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3) "   168.9, 142.3, 138.8, 136.0, 135.4, 

131.3, 130.9, 130.5, 129.5, 129.4, 129.2, 126.7, 125.7, 60.8, 19.7, 19.4, 13.7. FTIR (neat) 

2977, 2937, 1712, 1445, 1288, 1275, 1123, 1086, 1053, 762 cm-1. LRMS Calcd for 

C17H18O2 M+: 254.32. Found: 254. 

EtO O

235
0:1:1 o:m:p  

Ethyl tolylbiphenyl-2-carboxylate (235). The title compound 235 was prepared according 

to the general procedure described above (page LXXXV) using ethyl 2-bromobenzoate 1a 

with toluene (100 equiv), and purified by column chromatography (ethyl acetate/benzene, 

15/85) as a beige oil (104.2 mg, 88%). Rf = 0.33 (ethyl acetate/benzene, 15/85). Products 

determined based on known literature results.54 

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
54 Eli Lilly WO2004/052848 A1 2004. 
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Experimental Section of Chapter 6 
 

Experimental Procedures and Characterization Data 

Fe(OAc)2 (5 mol %)
ligand (10 mol %)
KOtBu (2 equiv)I

80 ºC, 20 h

H
+R

R

ligand

N
N

Ph

Ph

 

General procedure for the synthesis of biaryl products 
 
In a drybox under argon atmosphere, to a flame dried microwave vial equipped with a stir 

bar, was added the Fe(OAc)2 (0.025 mmol, 5 mol %), bathophenanthroline (0.05 mmol, 10 

mol %), and crushed dry KOtBu (1.0 mmol, 2 equiv). The vial was then sealed with a 

septum. To a separate flame dried vial was added the aryl iodide (0.5 mmol, 1 equiv). The 

vial was subsequently sealed with a septum and purged with argon. The iodide was diluted 

in the corresponding dried arene (12.5 mmol, 25 equiv) and added to the reaction vessel via 

syringe. The vial and syringe were then rinsed with the arene (3 x 12.5 mmol, 25 equiv), 

bringing the total amount of arene added to 100 equiv. The reaction was stirred vigorously 

at room temperature for 20 min and then at 80 ºC for 20 h. Following cooling, 2 mL of 

dichloromethane/hexanes (1:1) was added, and the solution was filtered though a silica pad. 

The pad was then rinsed with 15 mL of dichloromethane/hexanes (1:1). The combined 



 XCVI 
solution was concentrated and the crude mixture was purified via column 

chromatography to afford the biphenyl products. 

236
  

Biphenyl (236). The title compound 236 was prepared according to the general procedure 

described above (page XCVI) using iodobenzene with benzene, and purified by column 

chromatography (hexanes, 100%) as a white solid (75 mg, 89%). Rf = 0.37 (hexanes, 

100%). The observed characterization data (1H) was consistent with that previously 

reported in the literature.55,56  1H NMR (300 MHz, CDCl3) " 7.64-7.50 (m, 4H), 7.47 (t, J = 

7.6 Hz, 4H), 7.43-7.34 (m, 2H). 13C NMR (75 MHz, CDCl3) "  141.1, 128.7, 126.9, 126.7. 

LRMS Calcd for C12H10 M+: 154.08. Found: 154. 

237

 

1-Phenylnaphthalene (237). The title compound 237 was prepared according to the 

general procedure described above (page XCVI) using 1-iodonapthalene with benzene, and 

purified by preparative HPLC (ZORBAX Eclipse XDB-C18, 50:50 MeOH:H2O over 20 

min at 20 mL/min, go to 90:10 MeOH:H2O over 4 min at 30 mL/min rt = 26.50 min) as a 

colourless oil (61.7 mg, 60%). Rf = 0.31 (100% hexanes). The observed characterization 

data (1H) was consistent with that previously reported in the literature. 57, 58, 59 1H NMR 

(400 MHz, CDCl3) "  7.98 (t, J = 6.3 Hz, 2H), 7.93 (d, J = 8.2 Hz, 1H), 7.60-7.54 (m, 6H), 

!!!!!!!!!!!!!!!!!!!!!!!!!  
55 M. Lafrance, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 16496. 
56 S. Proch, R. Kempe, Angew. Chem. Int. Ed. 2007, 46, 3135; Angew. Chem. 2007, 119, 

3196. 
57 M. Kuriyama, R. Shimazawa, R. Shirai, Tetrahedron 2007, 63, 9393. 
58 P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 2005, 7, 2085. 
59 A. C. Spivey, C.-C. Tseng, J. P. Hannah, C. J. G. Gripton, P. de Fraine, N. J. Parr, 

Scicinski, J. J. Chem. Commun. 2007, 2926. 
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7.53-7.45 (m, 3H).13C NMR (75 MHz, CDCl3) "  141.7, 141.2, 134.7, 132.5, 131.0, 

129.2, 128.6, 128.1, 127.8, 127.0, 126.7, 126.3. LRMS Calcd for C16H12 M+: 204.08. 

Found: 204. 

238
 

4-Methylbiphenyl (238). The title compound 238 was prepared according to the general 

procedure described above (page XCVI)  using 4-iodotoluene with benzene, and purified 

by column chromatography (hexanes, 100%) as a white solid (75.3 mg, 86%). Rf = 0.45 

(hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.57, 58, 60, 61  1H NMR (300 MHz, CDCl3) " 7.66 (d, J = 

6.7 Hz, 2H), 7.59 (d, J = 8.3 Hz 2H), 7.51 (t, J = 7.9, 2H), 7.43-7.36 (m, 1H), 7.33 (d, J = 

7.9 Hz, 2H), 2.47 (s, 3H). 13C NMR (75 MHz, CDCl3) "  141.5, 138.7, 137.3, 129.8, 129.1, 

127.3, 21.3. LRMS Calcd for C13H12 M+: 168.09. Found: 168. 

239

 

2-Methylbiphenyl (239). The title compound 239 was prepared according to the general 

procedure described above (page XCVI) using 2-iodotoluene with benzene, and purified by 

preparative HPLC (ZORBAX Eclipse XDB-C18, 50:50 MeOH: H2O over 20 min at 20 

mL/min, go to 90:10 MeOH:H2O over 4 min at 30 mL/min rt = 25.60 min) as a colorless 

oil (69.8 mg, 80%).  Rf = 0.41 (hexanes, 100%). The observed characterization data (1H) 

was consistent with that previously reported in the literature.57, 58, 60 1H NMR (400 MHz, 

CDCl3) " 7.42 (t, J = 7.7 Hz, 2H), 7.39-7.30 (m, 3H), 7.22-7.27 (m, 4H), 2.29 (s, 3H). 13C 

NMR (75 MHz, CDCl3) " 142.32, 142.26, 135.7, 130.7, 130.1, 129.6, 128.5, 127.6, 127.2, 

126.1, 20.1. LRMS Calcd for C13H12 M+: 168.09. Found: 168. 

240MeO
 

!!!!!!!!!!!!!!!!!!!!!!!!!  
60 K. Ueura, T. Satoh, M. Miura, Org. Lett. 2005, 7, 2229.  
61 L. Zhang, J. Wu, J. Am. Chem. Soc. 2008, 130, 12250. 



 XCVIII 
4-Methoxybiphenyl (240). The title compound 240 was prepared according to the 

general procedure described above (page XCVI) using 4-iodoanisole with benzene, and 

purified by column chromatography (hexanes, 100%) as a white solid (89.2 mg, 93%). Rf = 

0.14 (hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature. 57, 58, 60, 61  1H NMR (300 MHz, CDCl3) " 7.61 (t, J = 

7.6 Hz, 4H), 7.48 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 6.9 Hz, 1H), 7.03 (d, J = 8.7 Hz, 2H), 3.90 

(s, 3H). 13C NMR (75 MHz, CDCl3) " 159.6, 141.2, 134.1, 129.1, 128.5, 127.1, 127.0, 

114.5, 55.7. LRMS Calcd for C13H12O M+: 184.09. Found: 184. 

241

MeO

 

3-Methoxybiphenyl (241). The title compound 241 was prepared according to the general 

procedure described above (page XCVI) using 3-iodoanisole with benzene, and purified by 

column chromatography (hexanes, 100%) as a colorless oil (83.8 mg, 88%). Rf = 0.14 

(hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.55, 60   1H NMR (300 MHz, CDCl3) " 7.63 (d, J = 7.6 

Hz, 2H), 7.48 (t, J = 7.9 Hz, 2H), 7.40 (m, 2H), 7.25-7.15 (m, 2H), 6.94 (dd, J = 8.2, 2.5 

Hz, 1H), 3.90 (s, 3H). 13C NMR (75 MHz, CDCl3) " 160.2, 143.1, 141.4, 130.0, 129.0, 

127.7, 127.5, 120.0, 113.2, 113.8, 55.6. LRMS Calcd for C13H12O M+: 184.09. Found: 184. 

242O

O  

1-Phenyl-3,4-methylenedioxybenzene (242). The title compound 242 was prepared 

according to the general procedure described above (page XCVI) using 1-iodo-3,4-

methylenedioxybenzene with benzene, and purified by column chromatography (hexanes/ 

ether, 9/1) as a cream colored solid (74.8 mg, 72%). Rf = 0.15 (hexanes, 100%). The 

observed characterization data (1H) was consistent with that previously reported in the 

literature.62 1H NMR (300 MHz, CDCl3) " 7.56 (d, J = 8.1 Hz, 2H),7.44 (t, J = 7.7 Hz, 2H), 

!!!!!!!!!!!!!!!!!!!!!!!!!  
62 C. M. So, H. W. Lee, C. P. Lau, F. Y. Kwong, Org. Lett. 2009, 11, 371. 
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7.38-7.31 (m, 1H), 7.10 (d, J = 7.7 Hz, 2H), 6.92 (d, J = 7.7 Hz, 1H), 6.02 (s, 2H). 
13C NMR (75 MHz, CDCl3) " 148.9, 148.0, 141.8, 136.5, 129.7, 127.79, 127.76, 121.5, 

109.5, 108.6, 102.0. LRMS Calcd for C13H10O2 M+: 198.07. Found: 198. 

243
O

 

4-Acetyl-biphenyl (243). The title compound 243 was prepared according to the general 

procedure described above (page XCVI) using 4'-iodoacetophenone with benzene, and 

purified by column chromatography (hexanes, 100% to hexanes/ether, 80/20) as a cream 

colored solid (64.5 mg, 69%). Rf = 0.32 (hexanes/ether, 80/20). The observed 

characterization data (1H) was consistent with that previously reported in the literature.63 1H 

NMR (400 MHz, CDCl3) " 8.05 (d, J = 8.3 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 

8.3 Hz, 2H), 7.51-7.40 (m, 3H), 2.65 (s, 3H). 13C NMR (75 MHz, CDCl3) " 197.9, 146.3, 

140.3, 136.2, 129.3, 129.2, 128.5, 127.6, 127.5, 27.0; LRMS Calcd for C14H12O M+: 

196.07. Found: 196. 

244
EtO

O

 

Ethyl 4-phenylbenzoate (244). The title compound 244 was prepared according to the 

general procedure described above (page XCVI)  using ethyl 4-iodobenzoate with benzene, 

and purified by column chromatography (hexanes/ether, 9:1) as yellow solid (47.6 mg, 

40%). Rf = 0.34 (hexanes/ether, 9:1). The observed characterization data (1H) was 

consistent with that previously reported in the literature.64, 65, 66 1H NMR (400 MHz, 

CDCl3) " 8.15 (d, J = 8.3 Hz, 2H), 7.72-7.60 (m, 4H), 7.48 (t, J = 7.4 Hz, 2H), 7.41 (t, J = 

!!!!!!!!!!!!!!!!!!!!!!!!!  
63 A. R. Hajipour, S. E. Mallakpour, I. M. Baltork, H. Adibi, Syn. Commun., 2001, 

31, 1625. 
64 K. Ueura, T. Satoh, M. Miura, Org. Lett. 2005, 7, 2229. 
65 L. Zhang, J. Wu, J. Am. Chem. Soc. 2008, 130, 12250. 
66 K. Inamoto, J. Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T. Sakamoto, 

Organometallics 2006, 25, 3095. 



 C 
7.5 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.6 Hz 3H). 13C NMR (75 MHz, CDCl3) 

" 167.1, 146.1, 140.5, 130.4, 129.5, 129.2, 128.4, 127.6, 127.3, 61.3, 14.7. LRMS Calcd for 

C15H14O2 M+: 226.1. Found: 226. 

245F
 

4-Fluorobiphenyl (245). The title compound 245 was prepared according to the general 

procedure described above (page XCVI) using 1-fluoro-4-iodobenzene with benzene, and 

purified by column chromatography (hexanes, 100%) as a white solid (81.8 mg, 86%). Rf = 

0.42 (hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.67  1H NMR (300 MHz, CDCl3) " 7.63-7.56 (m, 4H), 

7.49 (t, J = 7.6 Hz, 2H), 7.40 (m, 1H), 7.18 (t, J = 8.8 Hz,  2H). 13C NMR (75 MHz, 

CDCl3) " 164.4, 161.1, 140.6, 137.7, 137.6, 129.1 (t, J = 8.0 Hz), 127.4 (d, J = 18.8 Hz), 

115.9  (d, J = 22.2 Hz). 

246

Cl

Cl
 

3,4-Dichlorobiphenyl (246). The title compound 246 was prepared according to the 

general procedure described above (page XCVI)  using 3,4-dichloroiodobenzene with 

benzene, and purified by column chromatography (hexanes, 100%), (59.6 mg, 53%). Rf = 

0.53 (hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.65  1H NMR (300 MHz, CDCl3) " 7.69 (s, 1H), 7.60-

7.38 (m, 7H). 13C NMR (75 MHz, CDCl3) " 141.6, 139.1, 133.2, 131.7, 131.0, 129.32, 

129.27, 128.4, 127.3, 126.7; LRMS Calcd for C12H8Cl2 M+: 223.1. Found: 223. 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
67 J. Lemo, K. Heuze, D. Astruc, Org. Lett., 2005,  7, 2253. 
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247

 

2-Phenylpyridine (247). The title compound 247 was prepared according to the general 

procedure described above (page XCVI) using 2-iodopyridine with benzene, and purified 

by column chromatography (dichloromethane/ether, 80/20) as colorless oil (75.4 mg, 85%). 

Rf = 0.50 (dichloromethane/ether, 90/10). The observed characterization data (1H) was 

consistent with that previously reported in the literature.64 1H NMR (400 MHz, CDCl3) " 

8.72 (td, J = 4.9, 1.5 Hz 1H), 8.02 (dd, J = 7.2, 1.5 Hz 2H), 7.78-7.72 (m, 2H), 7.49-7.43 

(m, 3H), 7.26-7.20 (m, 1H). 13C NMR (75 MHz, CDCl3) " 158.3, 150.6, 140.3, 137.6, 

129.9, 129.7, 127.8, 123.0, 121.5. LRMS Calcd for C11H9N M+: 155.07. Found: 155. 

N
248

 

3-Phenylpyridine (248). The title compound 248 was prepared according to the general 

procedure described above (page XCVI) using 3-iodopyridine with benzene, and purified 

by column chromatography (dichloromethane/ether, 80/20) as yellow oil (68.8 mg, 85%). 

Rf = 0.20 (dichloromethane/ether, 90/10). The observed characterization data (1H) was 

consistent with that previously reported in the literature.57, 60, 68  1H NMR (400 MHz, 

CDCl3) " 8.87 (s, 1H), 8.60 (s, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.51-

7.45 (m, 2H), 7.44-7.33 (m, 2H). 13C NMR (75 MHz, CDCl3) "  148.8, 148.7, 138.1, 136.9, 

134.7, 129.4, 128.4, 127.5, 123.9. LRMS Calcd for C11H9N M+: 155.07. Found: 155. 

N

N
249

 

2-Phenylpyrazine (249). The title compound 249 was prepared according to the general 

procedure described above (page XCVI)  using iodopyrazine with benzene, and purified by 

column chromatography (dichloromethane/ether, 80/20) as a cream solid (59.0 mg, 79%). 

Rf = 0.34 (dichloromethane/ether, 90/10). The observed characterization data (1H) was 

consistent with that previously reported in the literature.68 1H NMR (400 MHz, CDCl3) " 

!!!!!!!!!!!!!!!!!!!!!!!!!  
68 A. Núñez, A. Sánchez, C. Burgos, J. A-Builla Tetrahedron 2004, 60, 6217. 



 CII 
9.05 (s, 1H), 8.65 (s, 1H), 8.52 (s, 1H), 8.04-8.01 (m, 2H), 7.56-7.45 (m, 3H). 13C NMR 

(75 MHz, CDCl3) "  153.2, 144.5, 143.3, 142.6, 136.7, 130.3, 129.4, 127.3. LRMS Calcd 

for C10H8N2 M+: 156.07. Found: 156 (M+). 

OMe

o  = 3.1
m = 1.9
p  = 1.0

250

 

Mixture of 4'-methoxy-2-methylbiphenyl, 4'-methoxy-3-methylbiphenyl, 4'-methoxy-

2-methylbiphenyl (250). The title compound 250 was prepared according to the general 

procedure described above (page XCVI) using 4-iodoanisole with toluene, and purified by 

column chromatography (5% ethyl ether/hexanes) as colorless oil (49.5 mg, 50%). Rf = 

0.40 (ethyl ether/hexanes, 5/95). HRMS Calcd for C14H14O M+: 198.10392. Found: 

198.10394 (M+). 

TMS o  = 3.3
m = 7.1
p  = 1.0

251

 

Mixture of Trimethyl(4’-methylbiphenyl-4-yl)silane, Trimethyl(4’-methylbiphenyl-3-

yl)silane, Trimethyl(4’-methylbiphenyl-2-yl)silane (251). The title compound 251 was 

prepared according to the general procedure described above (page XCVI) using 4-

iodotoluene with phenyltrimethylsilane, and purified by column chromatography (hexanes, 

100%) as colorless oil (26.3 mg, 28%). Rf = 0.20 (hexanes, 100%). Trimethyl(4’-

methylbiphenyl-4-yl)silane: trimethyl(4’-methylbiphenyl-3-yl)silane: trimethyl(4’-

methylbiphenyl-2-yl)silane = 2.0: 1.4: 1.0, The ratio of the regioisomers was determined by 
1H NMR.69,70 HRMS Calcd for C14H14O M+: 240.13288. Found: 240.13299 (M+). 

!!!!!!!!!!!!!!!!!!!!!!!!!  
69 Kaufmann, D. Chem. Ber. 1987, 120, 901. (o- and p- compounds) 
70 Ogawa. S.; Tajiri. Y.; Furukawa. N. Bull. Chem. Soc. Jnp. 1991, 64, 3182. (m- 

compound) 



 CIII 

252

 

2,4',5-Trimethyl biphenyl (252). The title compound 252 was prepared according to the 

general procedure described above (page XCVI) using 4-iodotoluene with p-xylene, and 

purified by column chromatography (hexanes, 100%) as colorless oil (76.3 mg, 81%). Rf = 

0.48 (hexanes, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.71   1H NMR (400 MHz, CDCl3) " 7.24 (s, 4H), 7.18, 

(d, J = 7.9 Hz, 1H), 7.08 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H), 2.37 (s, 3H), 2.26 (s, 3H).13C 

NMR (75 MHz, CDCl3) " 142.0, 139.5, 136.6, 135.5, 132.6, 131.0, 130.6, 129.1, 128.1, 

127.8, 126.7 21.5, 21.3, 20.4; LRMS Calcd for C15H16 M+: 196.13. Found: 196 (M+). 

253

 

2,4,4',6-Tetramethylbiphenyl (253). The title compound 253 was prepared according to 

the general procedure described above (page XCVI) using 4-iodotoluene with mesitylene, 

and purified by column chromatography (pentane, 100%) as colorless oil (64.0 mg, 63%). 

Rf = 0.24 (pentane, 100%). The observed characterization data (1H) was consistent with that 

previously reported in the literature.72   1H NMR (400 MHz, CDCl3) " 7.23 (d, J = 7.7 Hz, 

2H), 7.04, (d, J = 7.7 Hz, 2H), 2.42 (s,  3H), 2.35 (s, 3H), 2.02 (s, 6H).13C NMR (75 MHz, 

CDCl3) " 139.4, 138.3, 136.8, 136.5, 136.3, 129.5, 129.4, 128.4, 21.6, 21.4, 20.1. LRMS 

Calcd for C16H18 M+: 210.14. Found: 210 (M+). 

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
71 Warner, K. F.; Bachrach, A.; Rehman, A.-u; Schnatter, W. F. K.; Mitra, A.; Shimanskas, 

C. J. Chem. Research (S), 1998, 814. 
72 Limmert, M. E.; Roy, A. H; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364. 



 CIV 

MeO

OMe

OMe

254

 

2,4,6-trimethoxy-4'-methylbiphenyl (254). The title compound 254 was prepared 

according to the general procedure described above (page XCVI) using 4-iodotoluene with 

1,3,5-trimethoxybenzene, and purified by column chromatography (ethyl ether/hexanes, 

1/9) as colorless oil (34.0 mg, 54%). Rf = 0.38 (ethyl ether/hexanes, 1/9). The observed 

characterization data (1H) was consistent with that previously reported in the literature.73 1H 

NMR (300 MHz, CDCl3) " 7.23 (m, 4H), 6.24, (s, 2H), 3.88 (s, 3H), 3.74 (s, 6H), 2.39 (s, 

3H). 13C NMR (75 MHz, CDCl3) " 160.8, 158.7, 136.4, 131.35, 131.29, 112.7, 91.2, 56.2, 

55.7, 21.7. LRMS Calcd for C16H18O3 M+: 258.13. Found: 258 (M+). 

MeO

OMe

OMe

OMe 255

 

2,4,4',6-tetramethoxybiphenyl (255). The title compound 255 was prepared according to 

the general procedure described above (page XCVI)  using 4-iodoanisole with 1,3,5-

trimethoxybenzene, and purified by column chromatography (ethyl ether/hexanes, 1/9) as 

colorless oil (28.3 mg, 54%). Rf = 0.28 (ethyl ether/hexanes, 1/9). The observed 

characterization data (1H) was consistent with that previously reported in the literature.74   
1H NMR (400 MHz, CDCl3) " 7.29 (d, J = 8.9 Hz, 2H), 7.26, (d, J = 8.9 Hz, 2H), 6.24 (s, 

2H), 3.88 (s, 3H), 3.84 (s, 3H), 3.74 (s, 6H). 13C NMR (75 MHz, CDCl3) " 160.6, 158.7, 

132.5, 126.5, 113.6, 112.3, 91.2, 56.2, 55.7, 55.4. LRMS Calcd for C16H18O4 M+: 274.12. 

Found: 274 (M+). 

 
 

!!!!!!!!!!!!!!!!!!!!!!!!!  
73 Ban, I.; Sudo, T.; Taniguchi, T.; Itami, K. Org. Lett. 2008, 10, 3607. 
74 Becht, J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett., 2007, 7, 1781. 



 CV 
Kinetic Isotope Experiments75 

Fe(OAc)2 (5 mol %)
ligand (10 mol %)
KOtBu (2 equiv)I

80 ºC, 20 h
+

d6

50 equiv

50 equiv

d5

+

KIE = 1.04  

KIE study using benzene as the reagent. The reaction was performed with a modification 

of the general procedure using a 1:1 mixture of benzene and benzene-d6 (50 mmol each). 

The crude mixture was purified via column chromatography to afford the biphenyl product. 

The kinetic isotope was determined through integration of the proton at the C2 position of 

the benzene ring and the d1 of the 1H NMR pulse sequence was set at 10 s to ensure 

maximum relaxation.76 The protons of the C2 of the tolyl ring were chosen as calibration.  

 

 

 

 

 

 

 

 

!!!!!!!!!!!!!!!!!!!!!!!!!  
75 For similar study see: Campeau, L. C.; Rousseaux, S.; Fagnou, K., J. Am. Chem. Soc. 

2005, 127, 18020. 
76 KIE determined as follows: 1.02/0.98 = 1.04.  
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Annex 2 : Crystal and Molecular Structure 

of molecule 155 
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Structure  solved and refined in the laboratory of X-ray 
diffraction Université de Montréal by Francine Bélanger.  

 



! "!
  
   
      Table 1.  Crystal data and structure refinement for C13 H10 N2.  
   
   
      Identification code               cha197  
   
      Empirical formula                 C13 H10 N2  
   
      Formula weight                    194.23  
   
      Temperature                       150K  
   
      Wavelength                        1.54178 Å  
   
      Crystal system                    Orthorhombic  
   
      Space group                       Pna21  
   
      Unit cell dimensions              a = 15.86(3) Å    ! = 90°  
                                        b = 10.73(2) Å    " = 90°  
                                        c = 5.8704(12) Å    # = 90°  
   
      Volume                            999.0(4)Å3  
   
      Z                                 4  
   
      Density (calculated)              1.291  g/cm3  
   
      Absorption coefficient            0.609 mm-1  
   
      F(000)                            408  
   
      Crystal size                      0.12 x 0.03 x 0.03 mm  
   
      Theta range for data collection   4.98 to 67.62°  
   
      Index ranges                      -18 $ h $ 18, -11 $ k $ 12, -6 $ ! $ 4  
   
      Reflections collected             15715  
   
      Independent reflections           980 [Rint = 0.099]  
   
      Absorption correction             Semi-empirical from equivalents  
   
      Max. and min. transmission        0.9819 and 0.4709  
   
      Refinement method                 Full-matrix least-squares on F2  
   
      Data / restraints / parameters    980 / 91 / 136  
   
      Goodness-of-fit on F2             1.574  
   
      Final R indices [I>2sigma(I)]     R1 = 0.1200, wR2 = 0.3536  
   
      R indices (all data)              R1 = 0.1578, wR2 = 0.3807  
   
      Largest diff. peak and hole       0.808 and -0.296 e/Å3  



! #!
  
         Table 2.  Atomic coordinates (x 104) and equivalent isotropic  
         displacement parameters (Å2 x 103) for C13 H10 N2.  
   
         Ueq is defined as one third of the trace of the orthogonalized  
         Uij tensor.  
   
         ________________________________________________________________  
   
                         x             y             z           Ueq  
         ________________________________________________________________  
   
          N(1)         6868(5)       4961(7)      10745(19)      63(2)  
          N(2)         6297(6)       5968(8)      11008(19)      78(3)  
          C(1)         5881(5)       5982(8)       9072(18)      49(2)  
          C(2)         6149(8)       5081(8)       7520(20)      73(3)  
          C(3)         6755(6)       4481(10)      8600(20)      64(3)  
          C(4)         7336(6)       3388(9)       8030(20)      66(3)  
          C(5)         7879(6)       3052(9)       9662(19)      55(2)  
          C(6)         7898(7)       3681(9)      11750(20)      69(3)  
          C(7)         7397(7)       4658(9)      12220(20)      71(3)  
          C(11)        5209(6)       7031(9)       8750(20)      63(3)  
          C(12)        5119(6)       7860(12)     10520(20)      80(4)  
          C(13)        4479(6)       8872(10)     10320(20)      69(3)  
          C(14)        4035(6)       8886(10)      8310(20)      65(3)  
          C(15)        4198(6)       7996(9)       6690(20)      70(3)  
          C(16)        4783(7)       7114(10)      6880(30)      79(3)  
         ________________________________________________________________  
 



! $!
  
         Table 3. Hydrogen coordinates (x 104) and isotropic displacement  
         parameters (Å2 x 103) for C13 H10 N2.  
   
         ________________________________________________________________  
   
                         x             y             z           Ueq  
         ________________________________________________________________  
   
          H(2)         5943          4934          6022          87  
          H(4)         7314          2972          6606          79  
          H(5)         8256          2379          9399          66  
          H(6)         8281          3404         12890          83  
          H(7)         7443          5099         13621          85  
          H(12)        5458          7788         11848          96  
          H(13)        4386          9464         11495          83  
          H(14)        3620          9507          8041          78  
          H(15)        3869          8011          5336          84  
          H(16)        4886          6554          5654          95  
         ________________________________________________________________  
 



! %!
  
    Table 4.  Anisotropic parameters (Å2 x 103) for C13 H10 N2.  
   
         The anisotropic displacement factor exponent takes the form:  
   
                 -2 %2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
   
    _______________________________________________________________________  
   
              U11        U22        U33        U23        U13        U12  
    _______________________________________________________________________  
   
    N(1)     62(4)      52(4)      75(5)     -10(4)      11(5)       8(4)  
    N(2)     90(5)      78(5)      66(6)      -3(5)       7(5)     -16(5)  
    C(1)     53(4)      46(4)      48(5)      -5(4)      -3(4)     -13(4)  
    C(2)     80(6)      66(5)      72(6)     -10(5)       0(6)     -13(5)  
    C(3)     44(4)      72(5)      78(6)      36(6)     -14(5)      -5(4)  
    C(4)     60(5)      65(5)      72(7)      -4(5)       8(5)     -10(4)  
    C(5)     54(4)      49(5)      61(6)      -3(4)      -2(5)       9(4)  
    C(6)     68(5)      60(5)      79(7)       0(5)       8(5)       0(5)  
    C(7)     74(6)      59(5)      80(6)      -6(5)      -5(6)      10(5)  
    C(11)    54(5)      51(5)      84(7)      -8(5)      11(5)      -5(4)  
    C(12)    61(5)     108(7)      71(7)      45(6)     -23(5)     -24(5)  
    C(13)    67(5)      67(5)      75(7)       1(5)       1(5)       8(5)  
    C(14)    49(4)      67(5)      78(7)       2(5)      -7(5)       1(4)  
    C(15)    60(5)      65(5)      86(7)      -6(5)     -10(6)       0(5)  
    C(16)    83(6)      64(6)      91(7)      -8(6)      -3(6)       8(5)  
    _______________________________________________________________________  
 



! &!
  
      Table 5.  Bond lengths [Å] and angles [°] for C13 H10 N2  
    ______________________________________________________________________  
  
    N(1)-C(7)              1.250(15)  
    N(1)-C(3)              1.374(17)  
    N(1)-N(2)              1.418(13)  
    N(2)-C(1)              1.315(15)  
    C(1)-C(2)              1.396(15)  
    C(1)-C(11)             1.562(13)  
    C(2)-C(3)              1.319(15)  
    C(3)-C(4)              1.528(14)  
    C(4)-C(5)              1.336(15)  
    C(5)-C(6)              1.402(18)  
    C(6)-C(7)              1.344(15)  
    C(11)-C(16)            1.292(19)  
    C(11)-C(12)            1.377(17)  
    C(12)-C(13)            1.491(16)  
    C(13)-C(14)            1.375(18)  
    C(14)-C(15)            1.371(16)  
    C(15)-C(16)            1.330(13)  
   
    C(7)-N(1)-C(3)         128.9(9)  
    C(7)-N(1)-N(2)         123.4(11)  
    C(3)-N(1)-N(2)         107.6(9)  
    C(1)-N(2)-N(1)         103.6(9)  

    N(2)-C(1)-C(2)         113.9(9)  
    N(2)-C(1)-C(11)        117.2(9)  
    C(2)-C(1)-C(11)        128.8(1)  
    C(3)-C(2)-C(1)         104.2(12)  
    C(2)-C(3)-N(1)         110.7(11)  
    C(2)-C(3)-C(4)         135.2(12)  
    N(1)-C(3)-C(4)         114.0(8)  
    C(5)-C(4)-C(3)         116.2(1)  
    C(4)-C(5)-C(6)         120.7(9)  
    C(7)-C(6)-C(5)         122.9(12)  
    N(1)-C(7)-C(6)         117.2(13)  
    C(16)-C(11)-C(12)      122.9(1)  
    C(16)-C(11)-C(1)       120.7(1)  
    C(12)-C(11)-C(1)       116.3(1)  
    C(11)-C(12)-C(13)      118.8(1)  
    C(14)-C(13)-C(12)      115.1(11)  
    C(15)-C(14)-C(13)      119.4(9)  
    C(16)-C(15)-C(14)      124.7(12)  
    C(11)-C(16)-C(15)      119(12)  
   
    

______________________________________________________________________  
   
   
           
 



! '!
  
         Table 6.  Torsion angles [°] for C13 H10 N2.  
  ______________________________________________________________________________  
  
  C(7)-N(1)-N(2)-C(1)      178.3(1)  
  C(3)-N(1)-N(2)-C(1)        1.9(1)  
  N(1)-N(2)-C(1)-C(2)       -1.7(11)  
  N(1)-N(2)-C(1)-C(11)    -177.9(7)  
  N(2)-C(1)-C(2)-C(3)        0.8(12)  
  C(11)-C(1)-C(2)-C(3)     176.5(9)  
  C(1)-C(2)-C(3)-N(1)        0.5(11)  
  C(1)-C(2)-C(3)-C(4)      179.5(1)  
  C(7)-N(1)-C(3)-C(2)     -177.6(11)  
  N(2)-N(1)-C(3)-C(2)       -1.5(11)  
  C(7)-N(1)-C(3)-C(4)        3.1(15)  
  N(2)-N(1)-C(3)-C(4)      179.3(7)  
  C(2)-C(3)-C(4)-C(5)     -179.6(11)  
  N(1)-C(3)-C(4)-C(5)       -0.7(12)  
  C(3)-C(4)-C(5)-C(6)        0.1(14)  
  C(4)-C(5)-C(6)-C(7)       -1.6(17)  
  C(3)-N(1)-C(7)-C(6)       -4.6(17)  

  N(2)-N(1)-C(7)-C(6)      179.8(1)  
  C(5)-C(6)-C(7)-N(1)        3.6(17)  
  N(2)-C(1)-C(11)-C(16)    179.1(11)  
  C(2)-C(1)-C(11)-C(16)      3.5(16)  
  N(2)-C(1)-C(11)-C(12)      0.7(12)  
  C(2)-C(1)-C(11)-C(12)   -174.8(1)  
  C(16)-C(11)-C(12)-C(13)    2.4(16)  
  C(1)-C(11)-C(12)-C(13)  -179.3(8)  
  C(11)-C(12)-C(13)-C(14)   -0.7(14)  
  C(12)-C(13)-C(14)-C(15)    0.6(14)  
  C(13)-C(14)-C(15)-C(16)   -2.1(17)  
  C(12)-C(11)-C(16)-C(15)   -3.8(18)  
  C(1)-C(11)-C(16)-C(15)   178.0(9)  
  C(14)-C(15)-C(16)-C(11)    3.7(18)  
   
  

______________________________________________________________________________  
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ORTEP view of the C13 H10 N2 compound with the numbering 
scheme adopted. Ellipsoids drawn at 30% probability level. 
Hydrogen atoms are represented by sphere of arbitrary size.  
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Annex 3 : Crystal and Molecular Structure 

of 2-Phenylpyrazolo[1,5-a]pyridin-3-yl 

acetate. 
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Structure  solved and refined in the laboratory of X-ray 
diffraction Université de Montréal by Francine Bélanger.  
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      Table 1.  Crystal data and structure refinement for C20 H14 N2 O2.  
   
   
      Identification code               cha195  
   
      Empirical formula                 C20 H14 N2 O2  
   
      Formula weight                    314.33  
   
      Temperature                       150K  
   
      Wavelength                        1.54178 Å  
   
      Crystal system                    Monoclinic  
   
      Space group                       P21/n  
   
      Unit cell dimensions              a = 3.9864(3) Å    ! = 90°  
                                        b = 21.6026(15) Å    " = 93.004(5)°  
                                        c = 17.7499(14) Å    # = 90°  
   
      Volume                            1526.5(2)Å3  
   
      Z                                 4  
   
      Density (calculated)              1.368  g/cm3  
   
      Absorption coefficient            0.724 mm-1  
   
      F(000)                            656  
   
      Crystal size                      0.15 x 0.05 x 0.03 mm  
   
      Theta range for data collection   3.22 to 67.39°  
   
      Index ranges                      -3 $ h $ 4, -25 $ k $ 25, -21 $ ! $ 21  
   
      Reflections collected             23109  
   
      Independent reflections           2728 [Rint = 0.064]  
   
      Absorption correction             Semi-empirical from equivalents  
   
      Max. and min. transmission        0.9785 and 0.6860  
   
      Refinement method                 Full-matrix least-squares on F2  
   
      Data / restraints / parameters    2728 / 0 / 217  
   
      Goodness-of-fit on F2             1.098  
   
      Final R indices [I>2sigma(I)]     R1 = 0.0586, wR2 = 0.1396  
   
      R indices (all data)              R1 = 0.0724, wR2 = 0.1519  
   
      Largest diff. peak and hole       0.275 and -0.412 e/Å3  
   



! #!
         Table 2.  Atomic coordinates (x 104) and equivalent isotropic  
         displacement parameters (Å2 x 103) for C20 H14 N2 O2.  
   
         Ueq is defined as one third of the trace of the orthogonalized  
         Uij tensor.  
   
         ________________________________________________________________  
   
                         x             y             z           Ueq  
         ________________________________________________________________  
   
          N(1)         2175(4)       5980(1)       4899(1)       38(1)  
          N(2)         4015(4)       5861(1)       5543(1)       40(1)  
          C(3)         4008(5)       6400(1)       5941(1)       38(1)  
          C(4)         2139(5)       6846(1)       5528(1)       38(1)  
          C(5)          950(5)       6583(1)       4859(1)       38(1)  
          C(6)        -1016(5)       6762(1)       4215(1)       42(1)  
          C(7)        -1694(5)       6342(1)       3656(1)       46(1)  
          C(8)         -418(5)       5727(1)       3728(1)       46(1)  
          C(9)         1479(5)       5555(1)       4343(1)       43(1)  
          O(10)        1352(4)       7437(1)       5786(1)       41(1)  
          C(11)        2491(5)       7934(1)       5400(1)       39(1)  
          O(11)        4019(4)       7892(1)       4843(1)       53(1)  
          C(12)        1611(5)       8522(1)       5778(1)       39(1)  
          C(13)          20(5)       8535(1)       6453(1)       44(1)  
          C(14)        -670(6)       9098(1)       6791(1)       51(1)  
          C(15)         269(6)       9645(1)       6447(2)       56(1)  
          C(16)        1858(6)       9631(1)       5781(2)       54(1)  
          C(17)        2531(5)       9075(1)       5435(1)       47(1)  
          C(18)        5746(5)       6435(1)       6685(1)       39(1)  
          C(19)        7465(6)       5918(1)       6980(1)       46(1)  
          C(20)        9075(6)       5934(1)       7682(1)       51(1)  
          C(21)        9036(6)       6463(1)       8122(1)       51(1)  
          C(22)        7331(6)       6980(1)       7837(1)       52(1)  
          C(23)        5737(6)       6969(1)       7131(1)       45(1)  
         ________________________________________________________________  
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         Table 3. Hydrogen coordinates (x 104) and isotropic displacement  
         parameters (Å2 x 103) for C20 H14 N2 O2.  
   
         ________________________________________________________________  
   
                         x             y             z           Ueq  
         ________________________________________________________________  
   
          H(6)        -1864          7172          4170          50  
          H(7)        -3017          6459          3219          55  
          H(8)         -913          5436          3337          55  
          H(9)         2320          5144          4388          51  
          H(13)        -600          8159          6685          53  
          H(14)       -1772          9109          7253          62  
          H(15)        -195         10031          6675          67  
          H(16)        2505         10008          5555          64  
          H(17)        3606          9068          4970          57  
          H(19)        7520          5549          6689          55  
          H(20)       10234          5577          7868          62  
          H(21)       10150          6472          8609          61  
          H(22)        7267          7346          8132          62  
          H(23)        4612          7329          6943          54  
         ________________________________________________________________  
 



! %!
  
    Table 4.  Anisotropic parameters (Å2 x 103) for C20 H14 N2 O2.  
   
         The anisotropic displacement factor exponent takes the form:  
   
                 -2 %2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
   
    _______________________________________________________________________  
   
              U11        U22        U33        U23        U13        U12  
    _______________________________________________________________________  
   
    N(1)     52(1)      17(1)      47(1)      -1(1)       8(1)       0(1)  
    N(2)     55(1)      19(1)      46(1)       0(1)       7(1)       0(1)  
    C(3)     51(1)      19(1)      47(1)       0(1)      13(1)      -1(1)  
    C(4)     53(1)      15(1)      47(1)      -2(1)      11(1)       1(1)  
    C(5)     50(1)      16(1)      49(1)       0(1)      12(1)       1(1)  
    C(6)     54(1)      23(1)      49(1)       1(1)       8(1)       2(1)  
    C(7)     54(1)      35(1)      50(1)      -1(1)       5(1)       3(1)  
    C(8)     57(1)      28(1)      54(1)      -8(1)       8(1)      -4(1)  
    C(9)     56(1)      20(1)      53(1)      -6(1)      10(1)      -1(1)  
    O(10)    59(1)      15(1)      49(1)      -1(1)      12(1)       3(1)  
    C(11)    53(1)      20(1)      43(1)       2(1)       4(1)       1(1)  
    O(11)    81(1)      24(1)      55(1)       0(1)      23(1)       0(1)  
    C(12)    49(1)      21(1)      45(1)      -1(1)      -4(1)       3(1)  
    C(13)    54(1)      29(1)      49(1)      -4(1)      -1(1)       6(1)  
    C(14)    55(1)      40(1)      58(1)     -15(1)      -3(1)      11(1)  
    C(15)    56(1)      28(1)      81(2)     -18(1)     -13(1)       9(1)  
    C(16)    59(1)      20(1)      81(2)      -2(1)      -6(1)       0(1)  
    C(17)    56(1)      23(1)      62(1)       3(1)       0(1)       1(1)  
    C(18)    50(1)      22(1)      46(1)       3(1)      11(1)      -1(1)  
    C(19)    58(1)      27(1)      52(1)       1(1)       8(1)       2(1)  
    C(20)    60(1)      38(1)      57(1)      10(1)       6(1)       4(1)  
    C(21)    55(1)      49(1)      48(1)       4(1)       4(1)      -4(1)  
    C(22)    65(1)      39(1)      53(1)      -7(1)       9(1)      -2(1)  
    C(23)    58(1)      27(1)      51(1)      -1(1)       8(1)       0(1)  
    _______________________________________________________________________  
 



! &!
  
      Table 5.  Bond lengths [Å] and angles [°] for C20 H14 N2 O2  
    ______________________________________________________________________  
  
    N(1)-N(2)              1.350(2)  
    N(1)-C(9)              1.366(2)  
    N(1)-C(5)              1.393(2)  
    N(2)-C(3)              1.361(2)  
    C(3)-C(4)              1.402(3)  
    C(3)-C(18)             1.460(3)  
    C(4)-C(5)              1.377(3)  
    C(4)-O(10)             1.399(2)  
    C(5)-C(6)              1.406(3)  
    C(6)-C(7)              1.360(3)  
    C(7)-C(8)              1.425(3)  
    C(8)-C(9)              1.347(3)  
    O(10)-C(11)            1.363(2)  
    C(11)-O(11)            1.192(2)  
    C(11)-C(12)            1.487(3)  
    C(12)-C(13)            1.385(3)  
    C(12)-C(17)            1.397(3)  
    C(13)-C(14)            1.390(3)  
    C(14)-C(15)            1.390(3)  
    C(15)-C(16)            1.370(4)  
    C(16)-C(17)            1.383(3)  
    C(18)-C(19)            1.397(3)  
    C(18)-C(23)            1.399(3)  
    C(19)-C(20)            1.372(3)  
    C(20)-C(21)            1.385(3)  
    C(21)-C(22)            1.390(3)  
    C(22)-C(23)            1.375(3)  
   
    N(2)-N(1)-C(9)         124.48(15)  
    N(2)-N(1)-C(5)         113.22(15)  
    C(9)-N(1)-C(5)         122.29(18)  
    N(1)-N(2)-C(3)         105.18(15)  
    N(2)-C(3)-C(4)         109.35(18)  
    N(2)-C(3)-C(18)        119.97(17)  

    C(4)-C(3)-C(18)        130.67(16)  
    C(5)-C(4)-O(10)        125.83(17)  
    C(5)-C(4)-C(3)         108.55(16)  
    O(10)-C(4)-C(3)        125.35(18)  
    C(4)-C(5)-N(1)         103.71(17)  
    C(4)-C(5)-C(6)         137.77(17)  
    N(1)-C(5)-C(6)         118.52(17)  
    C(7)-C(6)-C(5)         119.41(18)  
    C(6)-C(7)-C(8)         120.0(2)  
    C(9)-C(8)-C(7)         120.9(2)  
    C(8)-C(9)-N(1)         118.93(18)  
    C(11)-O(10)-C(4)       117.94(15)  
    O(11)-C(11)-O(10)      123.69(16)  
    O(11)-C(11)-C(12)      125.57(17)  
    O(10)-C(11)-C(12)      110.74(16)  
    C(13)-C(12)-C(17)      120.15(18)  
    C(13)-C(12)-C(11)      122.43(17)  
    C(17)-C(12)-C(11)      117.40(18)  
    C(12)-C(13)-C(14)      120.1(2)  
    C(13)-C(14)-C(15)      119.3(2)  
    C(16)-C(15)-C(14)      120.52(19)  
    C(15)-C(16)-C(17)      120.7(2)  
    C(16)-C(17)-C(12)      119.2(2)  
    C(19)-C(18)-C(23)      117.5(2)  
    C(19)-C(18)-C(3)       119.83(17)  
    C(23)-C(18)-C(3)       122.61(18)  
    C(20)-C(19)-C(18)      121.2(2)  
    C(19)-C(20)-C(21)      121.0(2)  
    C(20)-C(21)-C(22)      118.5(2)  
    C(23)-C(22)-C(21)      120.8(2)  
    C(22)-C(23)-C(18)      121.1(2)  
   
    

______________________________________________________________________  
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         Table 6.  Torsion angles [°] for C20 H14 N2 O2.  
  ______________________________________________________________________________  
  
  C(9)-N(1)-N(2)-C(3)     -178.44(17)  
  C(5)-N(1)-N(2)-C(3)        0.1(2)  
  N(1)-N(2)-C(3)-C(4)       -0.1(2)  
  N(1)-N(2)-C(3)-C(18)     179.00(16)  
  N(2)-C(3)-C(4)-C(5)        0.0(2)  
  C(18)-C(3)-C(4)-C(5)    -178.89(19)  
  N(2)-C(3)-C(4)-O(10)     174.35(17)  
  C(18)-C(3)-C(4)-O(10)     -4.6(3)  
  O(10)-C(4)-C(5)-N(1)    -174.27(17)  
  C(3)-C(4)-C(5)-N(1)        0.0(2)  
  O(10)-C(4)-C(5)-C(6)       5.4(4)  
  C(3)-C(4)-C(5)-C(6)      179.7(2)  
  N(2)-N(1)-C(5)-C(4)        0.0(2)  
  C(9)-N(1)-C(5)-C(4)      178.50(17)  
  N(2)-N(1)-C(5)-C(6)     -179.78(16)  
  C(9)-N(1)-C(5)-C(6)       -1.2(3)  
  C(4)-C(5)-C(6)-C(7)     -178.9(2)  
  N(1)-C(5)-C(6)-C(7)        0.7(3)  
  C(5)-C(6)-C(7)-C(8)        0.1(3)  
  C(6)-C(7)-C(8)-C(9)       -0.4(3)  
  C(7)-C(8)-C(9)-N(1)       -0.1(3)  
  N(2)-N(1)-C(9)-C(8)      179.33(18)  
  C(5)-N(1)-C(9)-C(8)        0.9(3)  
  C(5)-C(4)-O(10)-C(11)    -67.5(3)  
  C(3)-C(4)-O(10)-C(11)    119.2(2)  
  C(4)-O(10)-C(11)-O(11)     2.6(3)  
  C(4)-O(10)-C(11)-C(12)  -176.49(16)  

  O(11)-C(11)-C(12)-C(13) -175.6(2)  
  O(10)-C(11)-C(12)-C(13)    3.4(3)  
  O(11)-C(11)-C(12)-C(17)    2.8(3)  
  O(10)-C(11)-C(12)-C(17) -178.21(17)  
  C(17)-C(12)-C(13)-C(14)    0.1(3)  
  C(11)-C(12)-C(13)-C(14)  178.40(19)  
  C(12)-C(13)-C(14)-C(15)   -0.3(3)  
  C(13)-C(14)-C(15)-C(16)    0.0(3)  
  C(14)-C(15)-C(16)-C(17)    0.6(4)  
  C(15)-C(16)-C(17)-C(12)   -0.9(3)  
  C(13)-C(12)-C(17)-C(16)    0.5(3)  
  C(11)-C(12)-C(17)-C(16) -177.88(19)  
  N(2)-C(3)-C(18)-C(19)      1.2(3)  
  C(4)-C(3)-C(18)-C(19)   -180.0(2)  
  N(2)-C(3)-C(18)-C(23)   -177.89(18)  
  C(4)-C(3)-C(18)-C(23)      1.0(3)  
  C(23)-C(18)-C(19)-C(20)    0.2(3)  
  C(3)-C(18)-C(19)-C(20)  -178.93(19)  
  C(18)-C(19)-C(20)-C(21)    0.2(3)  
  C(19)-C(20)-C(21)-C(22)   -0.1(3)  
  C(20)-C(21)-C(22)-C(23)   -0.4(3)  
  C(21)-C(22)-C(23)-C(18)    0.9(3)  
  C(19)-C(18)-C(23)-C(22)   -0.7(3)  
  C(3)-C(18)-C(23)-C(22)   178.36(19)  
   
  

______________________________________________________________________________  
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ORTEP view of the C20 H14 N2 O2 compound with the numbering 
scheme adopted. Ellipsoids drawn at 30% probability level. 
Hydrogen atoms are represented by sphere of arbitrary size.  
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