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Résumé

L’architecture en microservices met en évidence de multiples avantages pour les entreprises
et les développeurs. Cela explique pourquoi de nombreuses entreprises technologiques choi-
sissent de migrer leurs logiciels d’une architecture monolithique vers celle des microservices.
Cependant, la migration d’un système monolithique ou d’un système hérité vers une archi-
tecture en microservices est une tâche complexe, risquée et chronophage. Pour faciliter et
améliorer ce processus, notre travail se concentrera sur la conception d’une approche semi-
automatique pour détecter et identifier les microservices dans les applications existantes.
Il s’agit d’une étape clé vers l’objectif global de migrer un système monolithique vers des
microservices. Notre approche consiste à combiner des méthodes de regroupement et d’op-
timisation de la proximité entre les dépendances structurelles à un niveau de granularité
optimal. Dans ce projet, nous nous appuyons également sur plusieurs méthodes d’intelli-
gence artificielle, en particulier des algorithmes d’apprentissage automatique, pour mettre
en œuvre notre approche. D’une part, nous effectuons l’extraction de dépendances et le
regroupement. D’autre part, nous mettons en œuvre des méthodes qui nous aideront à op-
timiser la proximité entre éléments constituant un microservice. Pour obtenir les scores de
proximité, nous ciblons à la fois les relations sémantiques et les dépendances structurelles.
L’analyse des graphes d’appels et des traces d’exécutions peut nous aider à générer les diffé-
rentes connexions structurelles. En ce qui concerne les connexions sémantiques, nous pouvons
tirer parti de techniques d’apprentissage de représentations numériques (embedding) telles
que SBERT.

Mots-clés: Microservices, Traitement du Langage Naturel, Décomposition,
Architecture Logicielle, Optimisation
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Abstract

The microservices architecture highlights multiple benefits for companies and developers.
This explains the reason why numerous tech companies choose to migrate their software from
a monolithic architecture to one of microservices. However, migrating from a monolithic or
a legacy system to a microservices architecture is a complex, risky, and time-consuming
task. To ease and improve this process, our work will focus on designing a semi-automatic
approach to detect and identify microservices in existing applications. This is a key step
toward the overall goal of migrating a monolithic system toward microservices.

Our approach consists in combining methods of clustering and optimization of proximity
between structural dependencies at an optimal level of granularity. In this project, we rely
on several Artificial Intelligence techniques as well, specifically Machine Learning algorithms,
to implement our approach. On one hand, we are performing dependency extraction and
clustering. On the other hand, we are implementing methods that will help us optimize the
proximity. To obtain the proximity scores, we are targeting both semantic relationships and
structural dependencies. Analyzing call graphs and execution traces can help us generate
the different structural links or relations. As for the semantic connections, we can take
advantage of highly useful embedding such as SBERT.

Keywords: Microservices, Natural Language Processing, Decomposition,
Software Architecture, Optimization
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Chapter 1

Introduction

1.1. Context
The rise in complex and distributed applications contributed to the emergence of new

and improved software architectural styles, such as microservices. Johannes [61] describes
microservices as small applications with a single responsibility featuring autonomous scala-
bility, isolated testing, and independent deployment.

Microservices or the Microservices Software Architecture (MSA) has become the de facto
standard for large software systems. The microservices architecture offers a multitude of
advantages among which increased scalability particularly stands out [3, 19, 25, 53]. The
term scalability in the context of microservices refers to a system’s ability to adapt to an
increasing workload or demand by providing additional resources [10]. It is a key factor in
the adoption and the success of the microservices architecture [24].

In contrast to monolithic applications, which are implemented and executed as a sin-
gle unit, microservices are designed around a specific and unique capability. Due to the
high scalability of microservices, several large companies such as Uber, Spotify, and Netflix
migrated their services from their traditional monolithic architecture to microservices. How-
ever, transitioning to a microservices architecture from a monolith or legacy system can be
difficult and time-consuming.

One of the main challenges in this migration process is identifying microservices
in monolithic applications. This requires analyzing the system and its components to
effectively extract the candidate microservices. Traditionally, this process relies on the
experience of domain experts. However, a variety of criteria and methods can be applied to
perform this analysis.



1.2. Problem
Many legacy systems are built using a monolithic architecture, which exhibits a strong

coupling and runs as a single unit. This architectural style presents many drawbacks such as
scalability and maintenance issues for the system. Migrating such systems to microservices,
where components are loosely coupled and run as independent services, is a challenging task
that requires multiple steps. The first and most important step for such a migration is to
identify potential microservices from the legacy system which is the main focus of our work.
This step is vital in ensuring the quality and efficiency of the system migration.

Because of the complexity of the identification task, not all developers have the
necessary expertise or experience [35] to perform this step effectively. Indeed, it requires
a deep understanding of the system architecture, the design principles and properties of
microservices, as well as the possible trade-offs to consider.

To address this, several approaches [29, 49, 56, 57, 62] have been proposed in the
literature to assist developers with the identification of microservices in legacy applications.
Some of these approaches are based on the static and dynamic analysis of the source code,
while some others leverage machine learning techniques such as clustering or semantic
analysis. However, these approaches present some limitations as they are either not
considering the right level of granularity (clustering classes instead of methods) or are
not considering the semantic similarity when grouping the legacy elements into microservices.

To aid in the migration process, we propose a novel approach to identify microservices
through a combination of meta-heuristics and machine learning techniques. Our approach
allows the identification of microservices while addressing the limitations of some of the prior
approaches.

1.3. Contribution
In this thesis, we propose a methodology to enable the identification of microservices in

legacy or monolithic applications. Our work leverages the benefits of combining a state-of-
the-art genetic algorithm with a sentence embedding model in Natural Language Processing.
To elaborate further, we listed our main contributions with more comprehensive details
below:

(1) An approach leveraging machine learning and meta-heuristics techniques with an
emphasis on the points below:

22



• Granularity level: our analysis of existing applications focuses on information at
the method level. We target the method signatures.

• Semantic analysis: Through the use of NLP methods such as sentence embedding
models, we perform a semantic analysis to extract crucial information that is used
at a later stage. Semantics play a meaningful role in how we decompose large
legacy systems [23] because it provides a better understanding of the meaning
and potential connections in these systems. Including a semantic analysis in
our approach facilitates a more effective and informed decomposition of these
systems.

• Genetic Algorithm: To find the best group of potential microservices, we use and
harness the power of NSGA-III to model and solve our multi-objective optimiza-
tion problem. NSGA-III enables the combination of our diverse objectives and
provides the means to an optimal solution.

(2) A semi-automated tool: A jar [14] or war [48] file of a monolithic java application
is provided as input and a list of potential microservices is given as output.

(3) A comprehensive evaluation: we assess our proposed approach in two different
ways. This evaluation relies on various metrics and techniques. In the first part, we
apply our approach to a set of two benchmark applications to analyze the optimization
results obtained. This analysis allows us to gather insights about the decomposition
of legacy systems into microservices. On the other hand, we compare our obtained
results with the ground truth using evaluation metrics such as precision and recall.

1.4. Outline
The remainder of this thesis is organized as follows. Chapter 2 presents the background

necessary to understand our approach. It also describes the related work on microservice
identification. Chapter 3 defines our approach using a combination of a genetic algorithm
and a language model embedding. In Chapter 4, we evaluate our proposed approach to some
candidate applications through the analysis of the optimization results and a comparison of
our results to the ground truth using a set of evaluation metrics. Last, in Chapter 5, we
summarize our key points and findings while discussing limitations and future work.
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Chapter 2

Background and Related Work

In this chapter on the background, we introduce some key notions and concepts that are
relevant to our work while providing examples to illustrate them. After defining these im-
portant notions, we will cover several approaches and tools similar to our work in a section
dedicated to the related works. Last, we will highlight how our approach to the identification
of microservices specifically differs from the previously discussed works in the literature.

2.1. Definition and Examples
In the following points, we provide an overview of some essential notions that are useful

to better understand our research problem as well as our contributions. Our work lies at
the intersection of Software Engineering and Artificial Intelligence, specifically focusing
on leveraging machine learning techniques to optimize microservices identification in the
domain of software architecture.

2.1.1. Software Architecture

The ultimate goal of our work is to migrate to the microservice architecture. The domain
of software architecture involves the different organizations and structures of software [7]. In
[52], Perry and Wolf distinguish software architecture from software design by emphasizing
broader principles such as codification, abstraction, standards, formal training for software
architects, and style. Multiple styles and patterns can be denoted when it comes to software
architecture. Among these, a prominent style currently shaping the scene of modern software
architecture is microservices. In contrast, a large family of architectures can be grouped into
the category of monolithic architectures.



2.1.2. Monolith architectures

By definition, the word monolith depicts an organized whole that acts as a single
unified power or a single large stone 1; hence, a monolith refers to an entity of a large
structure or system. Expanding on this concept, a monolithic architecture is characterized
as a cohesive, large-scale structure with a single code base that encompasses all essential
business functionalities [4]. This architectural style represents the traditional approach to
application development.

Figure 2.1 illustrates an example of a simple e-commerce application with a monolithic
architecture. In this figure, all components and functionalities (payment, shopping cart,
and inventory) of the application are tightly coupled into one single instance. In the event
of any modification or issue with one element of the application, the entire application may
be impacted, necessitating to be fixed or updated as a whole.

Although monolithic architectures promote simplicity and ease of development, they can
encounter several challenges as the application expands. For instance, scalability quickly
becomes an issue when there is a surge of requests on the system [53]. Moreover, monolithic
applications are more prone to complete system disruptions or single points of failure. The
failure of a single component can spread and impact the entire application. To address these
challenges, transitioning to a microservices architecture can provide an effective solution.

1https://www.merriam-webster.com/dictionary/monolith
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Fig. 2.1. Example of a monolithic architecture.

2.1.3. Microservices

The microservices architecture represents a specific type of software architecture.
Microservices are structured as a collection of small, cohesive, and loosely coupled services.
Each microservice fulfills only one set of functions in the application and communicates
with others using lightweight mechanisms. Additionally, microservices can be developed,
deployed, scaled, and fixed independently [24, 46, 65]. These characteristics elevate the
microservices architecture as a preferred architectural style, presenting numerous advantages
over traditional monolithic architectures. For instance, using microservices provides:

• Increased Flexibility: since every microservice is a unit, it is easier to bring
modifications, maintain, and fix issues in one microservice while the others are still
operating. The flexibility provided by microservices mitigates the risks associated
with single points of failure.
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• Improved Scalability: the microservices architecture allows systems to manage
an increase in demand and ensure that the quality of service is maintained. This
architecture style promotes better resource usage, especially for large software
systems.

• Teams Autonomy: Because each microservice is a unit on its own and fulfills a
specific functionality, this architecture enables different teams to work simultaneously
[22] without affecting or causing interference.

• Polyglot Capabilities: the microservices architecture enables development using
multiple programming languages, frameworks, and technologies [22, 45, 58, 65, 66].

Multiple properties and principles are associated with the microservices architecture.
One of the key features is the single responsibility principle. Figure 2.2 illustrates the
single responsibility principle. Each block in the figure is a service and represents a unique
responsibility. The services operate independently with their own database while effectively
communicating with others.

The single responsibility principle is a guiding concept that states that a service should
exist to handle a single major responsibility and only one reason should lead to a potential
change of that service [55]. In other words, a microservice should have a single and unique
responsibility. This guiding principle plays a vital role in ensuring loosely coupled and
highly cohesive microservices.
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Fig. 2.2. Example of an e-commerce microservices architecture featuring the single respon-
sibility principle.

2.1.4. Genetic Algorithm

In our work, we view the microservice identification as an optimization problem.
Genetic algorithms represent a type of meta-heuristic algorithm widely used for search and
optimization problems in numerous fields. These algorithms were designed based on the
process of natural selection and involve genetic operators such as selection, mutation, and
crossover [30, 59]. Figure 1 depicts an overview of the Genetic Algorithm cycle. Genetic
algorithms start with a randomly initialized population and apply genetic operators to the
population to generate new and fitter solutions. The process happens through multiple
iterations– generations – and eventually converges towards an optimal or near-optimal
solution [33]. We define below some key terms:
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• Selection denotes the parents’ selection based on fitness characteristics (fitness
function). It models the survival-of-the-fittest concept in natural selection [59].

• Crossover is also referred to as recombination because this genetic operator
combines individuals from the population in pairs (parents) to produce new solutions
(offsprings).

• Mutation mimics the idea of genetic mutations by enabling modifications or
alterations to some characteristics of the individuals. Mutation promotes diversity
in the population and provides an escape from local optima [33].

2.1.5. Non-dominating Sorting Genetic Algorithm III

While classical genetic algorithms aim to optimize a single objective, many optimization
problems involve many conflicting objectives. To this end, genetic algorithms have been
adapted to solve multi-objective optimization problems. One popular adaptation is the
Non-dominating Sorting Genetic Algorithm (NSGA), which stands out as a well-established
approach.

This family of algorithms was used to solve many software engineering problems, includ-
ing architectural ones. For example, in the context of software modularization [11], Candela
et al. explore the limitations of relying solely on only two objectives, i.e., coupling and
cohesion. Their findings strongly advocate for considering many objectives to choose the
best modularization solutions. These findings and many others motivated us in our choice
of a version of NSGA that is capable of handling many objectives, namely NSGA-III [17].
Although very popular, the previous version NSGA-II performs well with a few objectives
[12], generally two. Opting for NSGA-III provides our approach with greater flexibility in
implementing more objective functions and exploring the different balanced solutions. The
highlight of NSGA-III, as a genetic algorithm, lies in its handling of survival selection, which
allows effective trade-offs between our three objective functions.

Algorithm 1 provides an in-depth view of the pseudocode detailing the algorithm that
powers NSGA-III survival selection process [9]. In NSGA-III, the survival selection process
aims to determine the next generation population P (t+1) of size N from the merged popu-
lation (R(t)), which consists of parent population P (t) and offspring population Q(t). The
process begins by sorting individuals in R(t) into non-dominated fronts (F1, F2, ...).

The set S, representing the surviving solutions is initially empty. It is gradually filled by
iterating through the fronts and appending each front (denoted Fi) to S until the number
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of individuals reaches or exceeds the population size N . At the end of this iteration, the
potential splitting front (FL) is identified as the front where |S ∪ Fi| ≥ N , which is where
the union of the set of surviving solutions (S) and the current front (Fi) contains N or more
individuals.

If the total number of individuals in S and FL equals N , no further splitting is necessary.
However, if additional selection is required to determine the surviving individuals, a niching
method selects individuals from the potential splitting front (FL) associated with under-
represented reference directions.

Individuals in S are then assigned to reference directions (Z), which represent trade-offs in
the M-dimensional objective space. This is based on their normalized values using estimated
ideal and nadir points (ẑ∗, ẑnad). A niche count (ρ) is maintained throughout this process.
Finally, the remaining individuals needed to complete the population P (t+1) are selected from
the front FL, hence prioritizing those associated with under-represented reference directions.
Overall, NSGA-III prioritizes non-dominated individuals to populate the next generation
population P (t+1), aiming to include individuals representing each reference direction near
the Pareto-optimal front.

To summarize the updated mating and survival selection in NSGA-III, the mating process
involves randomly selecting parents for recombination; and survival selection incorporates
the concept of reference directions to represent trade-offs in the M-dimensional objective
space, based on objective values [9].
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Algorithm 1 NSGA-III Survival Selection
Input: Merged Population R(t), Number of surviving individuals N , Reference Directions
Z, Ideal Point Estimation ẑ∗, Nadir Point Estimation ẑnad

Output: Surviving Individuals P (t+1)

1: Compute non-dominated fronts: (F1, F2, . . .)← non_dominated_sort(R(t))
2: Initialize S ← ∅ and i← 1
3: while |S|+ |Fi| < N do S ← S ∪ Fi; i← i + 1

4: FL ← Fi

5: if |S|+ |FL| = N then S ← S ∪ FL

6: else
/* Normalize objectives space and update boundary estimation*/

7: S̄, F̄L, ẑ∗, ẑnad ← normalize(S, FL, ẑ∗, ẑnad)
/* Compute niche count, assigned Zi, perpendicular dist to Zi*/

8: p, π, d← 0
9: for k ← 1 to |S| do

10: πk, dk ← associate(S̄k, Z); pπk
← pπk

+ 1

11: end
// Remaining individuals from FL to fill up S

12: S ← S ∪ niching(F̄L, N − |S|, p, π, d)

13: end
14: P (t+1) ← S

15: return P (t+1)

2.1.6. Natural Language Processing

In our work, we consider many types of dependencies to identify microservices. Among
them, semantic dependencies can be captured with Natural Language Processing (NLP)
techniques. NLP is a field of computer science intersecting between artificial intelligence
and computational linguistics. NLP encompasses a set of techniques for computers to
understand, analyze, and represent human language [32, 64]. It involves a large range
of natural language tasks such as Part-of-speech POS tagging, named entity recognition,
speech recognition, and sentiment analysis. In terms of applications, NLP is used in various
cases such as spam detection [32], conversational agents, and text summarization. Recently,

32



NLP has seen great advancements with sophisticated techniques and tools generating
meaningful and expressive conversations.

2.1.7. Embedding Models

Embedding models play an important role in NLP. They enable the representation
of words or sentences under the vector form [1]. These vectors encode the syntactic and
semantic meaning of words and place words with similar meanings closer to each other in
a continuous vector space [31]. This capability is directly related to our project as we are
seeking semantic dependencies between program constructs. Different types of embeddings
are commonly used for everyday tasks such as text classification, sentiment analysis, named
entity recognition, and machine translation.

2.1.7.1. Traditional word embeddings-based models.

Word2Vec [41] is used in sentiment analysis to capture the tone of words. A few practical
applications of Word2Vec range from the detection of hate speech on social media [43] to
the accuracy improvement of sentiment classification [50].

GloVE [51] or Global Vectors for Word Representation is an unsupervised learning
algorithm, designed to generate vectors for word representation. The algorithm 2 is trained
on aggregated global word-word co-occurrence originating from a specific corpus to create
word embeddings.

2.1.7.2. Transformers-based models.

BERT or Bidirectional Encoder Representations from Transformers, significantly trans-
formed tasks such as name entity recognition (NER) and machine translation. BERT stands
out by being conceptually simple and empirically powerful [18]. BERT requires minimal
fine-tuning yet produces effective results [38]. Compared to traditional word embeddings,
BERT employs contextual embeddings, which means its embeddings capture the meaning of
a word based on the context surrounding the word.

2https://nlp.stanford.edu/projects/glove/
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SBERT or Sentence-BERT [54] is a variant of the BERT model, which utilizes siamese
and triplet networks to generate sentence embeddings. SBERT can be used effectively for
both lengthier text with multiple sentences and shorter text. Regarding its applications,
SBERT is highly efficient and useful for tasks such as semantic textual similarity, paraphrase
mining, and semantic search. Figure 2.3 illustrates the architecture of SBERT for assessing
similarity, which is a useful measurement for semantic textual similarity.

SBERT is a valuable alternative that mitigates the computational overhead associated
with BERT while preserving its high accuracy [54]. Table 2.1 provides a summary of the
execution time of BERT and SBERT in a clustering task involving 10,000 sentences. On
the same dataset, BERT completed the task in 65 hours, considering all the computations
of sentence combinations. In contrast, SBERT executed the same task within a time record
of 5 seconds. This comparison demonstrates the computational advantage of SBERT,
positioning it as an optimal choice for addressing semantic textual similarity 3 in large
software systems with a substantial number of methods. In such systems with extensive
data, SBERT can prove itself to be highly efficient.

In our work, we use SBERT to measure the similarity between methods that are mapped
into sentences.

Model Sentence count Execution time
BERT 10,000 65 hours

SBERT-NLI 10,000 about 5 seconds

Table 2.1. Computational time comparison for a clustering task on a large sentence count
between SBERT and BERT [54].

3Semantic Textual Similarity often requires the computation of millions of method pair combinations to
assess the similarity

34



Fig. 2.3. Overview of the SBERT architecture for similarity computation between sentence
A and B [54]

.

2.2. Related Work
In this section, we present an overview of the most relevant and prominent papers on the

identification of microservices. We will describe their work and findings to provide a deeper
yet succinct understanding of how they tackle the task of microservices identification.
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2.2.1. Mono2Micro

Kalia et al. proposed Mono2Micro, which is a tool developed at IBM to help in transi-
tioning monolithic applications to microservices. Mono2Micro uses a spatio-temporal decom-
position technique, which relies on business cases and runtime call relations to produce par-
titions at the class level [29]. This technique contributes to creating partitions of classes that
are functionally cohesive. After presenting Mono2Micro, the authors conducted an evalua-

tion of their tool by comparing it with four existing techniques on an ensemble of open-source
and proprietary applications. As a result, they showed that Mono2Micro can achieve better
modularity and independence metrics than the state-of-the-art baselines. Later, Kalia et al.
gathered feedback and suggestions from practitioners who have used Mono2Micro. Overall,
they reported positive feedback and suggestions on how their tool could be improved.

2.2.2. CARGO

CARGO is an AI graph-partitioning tool developed by Nitin et al. to refine and enrich
the partition quality for migrating toward the microservices architecture [49]. It is part of the
project Minerva for Modernization that aims to modernize legacy applications by leveraging
the power of AI.

CARGO uses Context-sensitive lAbel pRopaGatiOn to perform community detection
in the classes of an application. This technique is a new algorithm for community detection
that uses Label Propagation Algorithm (LPA) [21] as a foundation to take advantage of
the complex dependencies present in the System Dependency Graph (SDG). It helps in
distinguishing functional boundaries in the code.

The approach behind CARGO involves three main stages to obtain microservice bound-
aries. The first step is to build a context-sensitive system dependency graph (SDG). Next, the
second stage requires extracting sub-graphs of the previously built SDG to obtain contextual
snapshots. In the third and last stage, a variant of the label propagation algorithm is used
to cluster functionally bound program components in the different contextual snapshots.

The authors evaluated CARGO on five Java EE applications and showed that their tool
can effectively enhance the partition quality of four state-of-the-art microservice partitioning
techniques. Furthermore, they demonstrated some other benefits of their tool on database
transactional purity as well as run-time performance. Their evaluation showed overall that
CARGO can reduce distributed transactions, lower the latency, and increase the throughput
of the deployed microservice application.
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2.2.3. MSExtractor

In [56], Saidani et al. introduce MSExtractor as an approach to extract microservices
using multi-objective optimization. In their approach, the extraction of potential microser-
vices is presented and modeled as a combinatorial optimization problem. The goal of MSEx-
tractor is to ensure that each class belongs to exactly one microservice. To achieve this,
they create empty microservices and use NSGA-II to find the optimal class assignment for
these microservices. They define two objective functions in their implementation of NSGA-
II: minimizing coupling and maximizing cohesion. Furthermore, Saidani et al. supplemented
their approach with an empirical evaluation to measure the efficiency of MSExtractor using
a set of architectural metrics, which are connected to cohesion and coupling. The results
show that MSExtractor performs better for large-scale software systems compared to other
approaches [2, 27, 39].

Following the initial development, MSExtractor underwent further refinements to extend
the approach and enhance its capabilities. In this evolved version, the authors, Sellami et
al. [57] used the indicator-based evolutionary algorithm, known as IBEA [67], for the de-
composition and search process. In their work [57], Sellami et al. define three fundamental
objectives for the fitness function: finding the optimal granularity of the microservices, min-
imizing coupling, and maximizing cohesion. Following an evaluation of the approach, the
refined version of MSExtractor demonstrated its proficiency in extracting services character-
ized by loose coupling and cohesion.

2.2.4. MicroMiner

Trabelsi et al. developed a microservices identification approach called MicroMiner
that focuses on semantics [62]. It is a type-based approach, guided by the identification of
service types obtained through the prediction of a ML classification model such as Support
Vector Machine (SVM) and Graph Convolutional Network (GCN). The semantic analysis in
the approach relies on a pre-trained model of Word2Vec based on Google News.

Moreover, Trabelsi et al. describe the MicroMiner approach in three phases. The first
phase focuses on class typing, where they classify the classes from the system by using
a label assignment. They list the different labels under the following three layers: the
Business layer, the Entity layer, and the Utility layer. The second phase involves Typed-
Service identification. In this phase, application, entity, and utility services in each of the
previous layers are identified with a clustering technique. Services to Microservices mapping
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represents the third and last phase of the approach. This step is responsible for generating
the microservices. To do this, they employ soft clustering, which is a particular type of
clustering that allows each element to belong to more than one cluster.

In terms of evaluation, the authors of MicroMiner apply their approach to four systems
and show that microservices with high accuracy and completeness can be retrieved when
compared to two other existing approaches.

2.3. Synthesis
Table 2.2 illustrates a comparison of various approaches to microservices identification.

The comparison includes some essential features of the approaches discussed previously while
providing a brief overview of their differences.

In this section, we discuss the differences between our work and the approaches outlined
in the related works. Our approach includes a structural analysis, which reveals the different
connections between entities of a software, precisely the connections between all methods
of such systems. While structural dependencies can provide valuable information on the
connections within a system, they capture only a partial view. To address this limitation, we
add a semantic analysis to our approach to further explore the meanings and functionalities
of the system’s methods.

The semantic analysis complements the information obtained from structural dependen-
cies by providing insights into why these methods are linked and whether they may serve a
shared functionality. This combination of structural and semantic analysis in our approach
can enhance the process of clustering methods more accurately by considering both con-
nections and functionality. Therefore, using semantic analysis in our approach brings more
depth to our analysis.

Comparatively, MicroMiner also employs semantic analysis in their approach. They
utilize Word2Vec, whereas we leverage SBERT to conduct semantic analysis. SBERT, a
variation of BERT, offers a more contextual and efficient alternative for capturing the se-
mantics.

In contrast to MSExtractor, our approach employs NSGA-III for the search and opti-
mization process. In [57], Sellami et al., the authors of MSExtractor explain their preference
for IBEA over other multi-objective algorithms as they highlight the superior performance
of IBEA over both NSGA-II [16] and SPEA-II [68]. However, our choice of using NSGA-III
proves to be more advantageous in addressing the limitations identified in their analysis.
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Moreover, NSGA-III outperforms the alternatives and establishes itself as a more effective
choice [42].

Similarly to Sellami et al. [57], our optimization focuses on three objectives. In addition
to the standard objectives of coupling and cohesion, we extend our analysis to include the
semantic distance among the components within our dataset as a third objective.

In comparison to Mono2Micro and CARGO, our approach leverages the power and diver-
sity of using multi-objective optimization. Choosing NSGA-III allows us to consider several
objectives simultaneously and find the best trade-offs among a large diversity of solutions.

In contrast to all the aforementioned approaches, which took into account the classes in
the monolithic applications, our approach aims to explore the microservices identification at
a fine-grained level, i.e., method level. Indeed, a class can be involved in many microservices
in the monolithic design.
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Chapter 3

Approach: Monoliths to Microservices

In this chapter, we present our approach to identifying microservices in existing applications.
We perform this task by combining machine learning and meta-heuristics techniques. Our
approach consists of four main steps: input preparation, a two-level analysis, problem
and algorithm implementation, and clustering solution. We start our approach with input
preparation, where we build and clean our data. Next, we continue with a two-level analysis
through structural and semantic computations. Then, we model our problem and define
specific functions and parameters. This is followed by our implementation of NSGA-III.
Finally, we proceed to generate and explore the results of the optimization as clusters, each
representing a potential microservice. Figure 3.1 summarizes the key steps of our approach,
illustrating its core concepts.

Fig. 3.1. Overview of the microservices identification approach



3.1. Input preparation
3.1.1. Initialization & Source Code

The first step is to build the Java application used for input. Depending on the config-
uration, we can build it with Maven or Gradle to obtain the jar or war file. From there,
we use a static code analyzer to extract static dependencies. Numerous tools and libraries,
such as Soot [34] and WALA 1, can perform this task. In our work, we use an open-source
static code analyzer for Java applications, javacg2 to provide us with information relative
to the classes and methods present within the application. After using the static code
analyzer, we obtain a text file containing the different dependencies in the input application.
Table 3.1 shows an example of the static dependencies data obtained after running the
static code analyzer, javacg, on a Java application. These dependencies are explained in 3.1.2.

C:com.ibm.websphere.samples.daytrader.beans.MarketSummaryDataBean

com.ibm.websphere.samples.daytrader.util.FinancialUtils

C:com.ibm.websphere.samples.daytrader.beans.MarketSummaryDataBean

com.ibm.websphere.samples.daytrader.entities.QuoteDataBean

M:com.ibm.websphere.samples.daytrader.direct.TradeDirect:buy(

java.lang.String,java.lang.String,double,int)

(M)com.ibm.websphere.samples.daytrader.entities.QuoteDataBean:getPrice()

M:com.ibm.websphere.samples.daytrader.direct.TradeDirect:sell(

java.lang.String,java.lang.Integer,int)

(M)com.ibm.websphere.samples.daytrader.entities.HoldingDataBean:getQuantity()

Table 3.1. Example of static dependencies

3.1.2. Data Preprocessing

Building a robust dataset is essential for further analysis in any data-driven research.
In our approach, we initially focus on understanding the relationships between the different
entities present in the input application. Preprocessing our data allows us to transform our

1https://github.com/wala/WALA
2https://github.com/gousiosg/java-callgraph
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Fig. 3.2. Data Preprocessing pipeline

Fig. 3.3. Structure of Extracted Method Dependencies

raw data into a well-structured and insightful dataset. To create our dataset, we select the
methods from our text file, which contains both sets of the classes and methods information
of the application. In Table 3.1, we have a sample of the various dependencies. Two types
of dependency lines are present in our data file, labeled as follows: C for class descriptions
and M for method calls.

As illustrated in Figure 3.2, the data preprocessing task unfolds into four main steps:

(1) Extraction
Here, we select the interactions of interest from our dependency file. These are the
lines labeled with M, which denote the relationships between methods.

(2) Tagging
Each extracted method line follows the structure shown in Figure 3.3. In essence, it
can be stated that method1 tagged as M in class1 from package1 invokes method2
tagged (M) located in class2 within package2. Based on the format of the dependency
information, we add a tag for each method to make the distinction between caller
methods and callee methods. We store these caller-callee methods into a dataframe
using pandas3.

3https://pandas.pydata.org/docs/
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(3) Parsing
This step involves deconstructing the extracted method information into individual
parts and assigning clear labels to each component. These labels correspond to the
package, class, and method name. For example, consider the parsing process applied
to the extracted information in the third row of Table 3.1. In this instance, the
caller method is identified and associated with the package labeled direct, the class
TradeDirect, and the method name buy(). Conversely, the callee method is linked
with the entities package, the class labeled as QuoteDataBean, and the method
name getPrice().

(4) Data Structuring
We now have supplemental information about the class, package, and call types
of the different methods. In this step, we build a dataframe with pandas to hold
the information needed to build our call graph. Several types of connections are
present between the methods. Two examples of relationships between methods are
described in Figure 3.4. On the left, we denote a one-to-one relationship between
method A (caller) and method B (callee) whereas the right side depicts a one-to-
many relationship between one caller method and callee methods 1,2, and 3.

Fig. 3.4. Overview of node relationships
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3.2. Analysis
3.2.1. Dependency Graph

Utilizing the data contained in the previously built dataframe, we proceed to the con-
struction of a dependency graph to represent the input. To illustrate the complexity and
density of the systems we work with, the dependency graph of a large-scale application
is shown in Figure 3.5. This example further clarifies the context in which our proposed
approach will be implemented. In the dependency graph, the methods are represented as
nodes and the different interactions between these methods as edges. We identify two types
of nodes in our graph: source nodes for caller methods and target nodes for callee methods.

Fig. 3.5. Methods visualization of the call graph generated from a large Java application
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3.2.2. Structural Analysis

Following the construction of our call graph, we analyze the structural dependencies
so that we can identify subgraphs of methods. During this analysis, we introduce and
define several concepts and properties crucial to identifying these subgraphs. Among
these, coupling and cohesion are two concepts essential for enhancing the architecture and
performance of an application.

3.2.2.1. Coupling.
Coupling refers to the various connections that exist within a call graph from one sub-
graph to the others. In essence, it measures the degree of interdependence between methods
across the different entities or partitions. This concept becomes particularly important when
considered as an internal quality metric. Entities are described as being highly coupled when
their inter-dependencies are so correlated that a modification in one triggers changes in others
reliant on it [13, 26]. High coupling can present challenges in modifying, changing, or even
updating one module without affecting others. Therefore, we aim to achieve low coupling,
which translates to greater independence between subgraphs and hence, better microservices.
The formal definition of coupling and calculation examples are provided in Section 3.3.

3.2.2.2. Cohesion.
Cohesion in a call graph is defined as the extent to which nodes are connected within a
specific subgraph, focusing on a single functionality. It is an internal metric for dependence
within a single entity and [13] serves as a valuable metric to assess the structural quality of
software. Cohesion is a key concept, especially when considering its direct implications on
system refactoring such as the transition from a monolith to microservices. We aim for high
cohesion as it promotes better maintainability, enhance feature understanding and improve
robustness in microservices. The formal definition of cohesion and calculation examples are
provided in Section 3.3. These two metrics contribute to analyzing the structural similarity
of our graph. Further details about the computation of the structural similarity are provided
in the problem section of this chapter.

3.2.3. Semantic analysis

The semantic analysis involves assessing the semantic textual similarity (STS) among the
various methods within our legacy application. We refer to semantic similarity as the extent
to which two methods share similar meanings and functionalities. In our approach, we
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employ sentence embeddings to represent method signatures. These embeddings form the
core of our semantic analysis, complementing the previously discussed structural analysis of
the software system. Specifically, we use the SBERT model [54, 60] for its computational
efficiency on large volumes of data. Computing similarity with SBERT is done by using the
cosine similarity measure to evaluate the closeness of embeddings within a semantic space.
A high similarity score means that the embeddings are closely related to a functionality and
suggests that they could belong to the same potential microservice.

Fig. 3.6. Illustration of a sample graph with three clusters
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3.3. Multi-Objective Optimization: NSGA-III
We use the Pymoo [8] framework for our implementation of the NSGA-III algorithm

described in 2.1.5. First, we set and define our custom problem, then we specify parameters
for NSGA-III and proceed to generate and explore the solution set, guided by the funda-
mental principles of the algorithm.

3.3.1. Problem Definition

3.3.1.1. Adjacency Matrix.
Converting our call graph into a matrix presents several advantages as it provides an effi-

cient representation for our metrics computation. We can use multiple matrix operations to
establish relationships between the methods of our large input. Essentially, the call graph is
best for visual representation and the adjacency matrix is best suited for the different com-
putations [5] we make in our implementation of NSGA-III. We provide below an example of
the adjacency matrix for the sample graph illustrated in Figure 3.6. This adjacency matrix
holds the encoding of the diverse connections between the methods. 1 denotes a connection
between the corresponding pair of nodes whereas 0 implies that there is no existing relation-
ship. For example, (m3,m4) = 1 indicates that m3 and m4 are connected by an edge.

m1 m2 m3 m4 m5 m6 m7 m8 m9

m1 0 1 0 0 0 0 0 0 0

m2 1 0 1 0 1 0 0 0 0

m3 0 1 0 1 0 0 0 0 0

m4 0 0 1 0 0 0 0 0 0

m5 0 1 0 0 0 1 1 0 0

m6 0 0 0 0 1 0 0 0 0

m7 0 0 0 0 1 0 0 1 0

m8 0 0 0 0 0 0 1 0 1

m9 0 0 0 0 0 0 0 1 0



3.3.1.2. Problem class definition.
We start by defining the problem as an object and providing parameters such as the number
of clusters and the adjacency matrix. We also provide metadata information such as the
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number of variables (n_var), the lower bound (xl) and higher bound (xu), and the number
of objectives (n_obj), which are further detailed next.

3.3.1.3. Objective functions.
In 3.6, we provide a sample graph to illustrate how we compute structural and semantic
measures. In the example provided, we have a call graph with 9 nodes representing methods
labeled m1, m2, m3, ..., m9. These nodes are spread into three sub-graphs characterized by
clusters A, B, and C. To ensure clarity, we use the following terms:

• Vcluster for a set of nodes in a particular cluster,
• Eintra for a set of edges inside a cluster,
• Einter for a set of edges connecting nodes from different clusters.

Our optimization considers three points: coupling, cohesion, and semantic distance. To
perform this, we implemented 03 functions, referred to as objectives functions, to define the
optimization for each of these points. Note that in the implementation, we leverage the
information of our adjacency matrix to compute the aforementioned measures.

(1) Minimizing Coupling.
The first objective function is to minimize coupling. In graph G, illustrated in Figure
3.6, certain nodes within one cluster are interconnected with nodes belonging to other
clusters. For example, node m2 ∈ clusterA is connected to node m5 ∈ clusterB. In
this case, we talk about inter-dependence between the clusters A and B.
To obtain the coupling value, we will compute the coupling coupling(x,y) for each
pair of clusters, as a first step, before calculating the overall coupling couplingG for
the graph. Because we work at the method level, the coupling for each pair of clus-
ters is equivalent to the number of edges connecting nodes from one cluster to another:

coupling(x,y) =| Einter | (3.3.1)

, with x and y representing different clusters and | Einter | as the number of edges
connecting these clusters.
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With the coupling measures for all pairs of clusters, we can compute the average
coupling by applying this formula:

couplingG =
∑

coupling(x,y)

| Eintra + Einter |
(3.3.2)

, with | Eintra + Einter | as the total number of edges in graph G, and (x, y) as a pair
of clusters x and y from the same graph.
Table 3.2 provides the coupling measure of each pair within our sample graph G.
Applying the formula in 3.3.2, the overall coupling across the entire graph G is
represented by:

couplingG = 1 + 0 + 1
6 + 2 = 2

8 = 0.25

Inter-dependence Value Intra-cluster dependency Value

coupling(A,B) 1 cohesion(A)
3
4

coupling(A,C) 0 cohesion(B)
2
3

coupling(B,C) 1 cohesion(C)
1
2

Table 3.2. Measure of inter-dependence and intra-cluster dependency in the graph G

(2) Maximizing Cohesion.
Next, we want to maximize cohesion as our second objective function. Calculating the
cohesion in a group means evaluating the degree to which the nodes in that subgroup
are connected. Using our sample graph G in Figure 3.6, we start by examining the
relationships between the nodes of each cluster. In each of these clusters, we have a
set of nodes connected by edges. For example, we refer to the nodes m8 and m9 in
cluster C as an example of intra-cluster dependency.
The overall cohesion in the graph is equivalent to the average of the relational cohesion
[37] in each cluster. To assess the cohesion of cluster x, we compute the proportion
of internal edges over the total number of nodes in that cluster:

cohesion(x) = Ex
intra

Vcluster_x

(3.3.3)
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After calculating the cohesion for each cluster with the formula 3.3.3, we can find
the cohesion in the graph G as follows:

CohesionG =
∑

cohesion(i)∑
clusters

(3.3.4)

, with i denoting a particular cluster and
∑

clusters the total number of clusters
present in the graph.
Using the computed cohesion measure for each cluster, as presented in Table 3.2, we
derive the overall cohesion of the graph as follows:

CohesionG =
3
4 + 2

3 + 1
2

3 = 0.638 ≈ 0.64

(3) Maximizing the semantic distance.
Lastly, our third objective function targets the semantic distance and aims to
maximize this measure. The evaluation of the semantic distance using SBERT
involves computing the cosine similarity between pairs of connected nodes. The goal
is to achieve a low semantic similarity score for nodes belonging to different clusters,
inferring a high semantic distance.

For instance, considering the pair (m2, m5) in graph G, the semantic similarity score
is expected to be low as these nodes belong to different clusters (m2 ∈ Cluster(A)
and m5 ∈ Cluster(B)). In this, a low similarity score implies a large semantic dis-
tance, which ensures that there is functionality uniqueness for potential microservices.

The process involves the following steps:
• Creating a list to store node information.
• Embedding text: with pre-trained contextual embeddings, node information is

transformed into dense vector representations.
• Assessing semantic similarity: After embedding the node information, we eval-

uate the semantic similarity by applying the cosine similarity measure to the
obtained vector representations of the nodes. For reference, the cosine similarity
measures the cosine of the angle between two vectors [63]. The cosine similarity
formula between vectors α and β is:
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Cosine Similarity = α · β
∥ α ∥ · ∥ β ∥

(3.3.5)

, where ∥ α ∥ and ∥ β ∥ represent the norm or length of the vectors α and β.

The cosine similarity score ranges from -1 to 1 and offers insights into the degree
of closeness. A 0 score suggests that the vectors are orthogonal and they have
no similarity. A score of -1 indicates exact opposite and complete dissimilarity
whereas a score close to 1 suggests high similarity.

Building upon the computation process for the different objectives (coupling, cohesion, se-
mantic similarity in graph G), we establish our objective functions as:

f1 = min (coupling)

f2 = max (cohesion)

f3 = max (semantic distance)

3.3.2. Algorithm Parameters

After defining our problem and its objective functions, we proceed to configure the
parameters for our algorithm. In this section, we discuss the concepts guiding the setup of
the NSGA-III algorithm and its execution.

3.3.2.1. Algorithm Initialization.
The initialization of the NSGA-III algorithm is a critical step in setting up the optimization
process. For this step, we establish key parameters such as the population size and the ref-
erence directions. The population size is based on information from the dataset, specifically
the dimensions of our adjacency matrix represented by the number of nodes (methods) in
the dataset.

Furthermore, the reference directions play a crucial role in guiding the search for non-
dominated solutions. The reference directions represent trade-offs between different objec-
tives, which enables NSGA-III to explore diverse solutions effectively based on the objective
values [9]. A simple way to grasp the concept behind the reference directions in NSGA-III
is to visualize them as vectors that point towards different trade-offs in the objective space.
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For example, in a three-dimensional objective space, reference directions could represent dif-
ferent trade-offs between the objectives defined. We use the das-dennis method [15] to define
these reference directions, set the number of objectives (M = 3), and the desired number of
partitions (n_partitions). Moreover, with NSGA-III, custom crossover and mutation oper-
ators can be set and integrated to our optimization problem.

3.3.2.2. Algorithm Execution.
This step involves initiating the optimization process of the NSGA-III algorithm with the
defined problem and other supporting parameters. During the execution, NSGA-III iterates
through multiple generations and leverages the reference directions to guide its search and
evolution of the population.

3.4. Clustering Solution
After configuring the NSGA-III algorithm, we execute it for a predefined number of

generations to achieve population evolution. Following the execution of the NSGA-III
algorithm, the result is a set of solutions known as the Pareto-optimal set [40, 47], obtained
through the optimization process.

To comprehend the methodology behind the formation of the solution set, it is essential
to note that NSGA-III uses a non-dominated sorting approach. This approach means it
ranks the different solutions based on the dominance relationships. Therefore, a solution
is included in the Pareto set if no alternative solution can improve at least one objective
without compromising any other objective [47].

Moreover, we can further refine the solutions obtained with NSGA-III by applying a
clustering process. It involves grouping similar solutions into a predetermined number of
clusters based on their proximity in the objective space. By identifying clusters in the
Pareto-optimal set, using NSGA-III provides insights into the solutions distribution along
the reference directions in the objective space, guiding decision-making and solution selection.

In summary, a clustering solution is represented by a decomposition of a set of methods
into clusters. This decomposition results from the optimization of trade-offs between objec-
tives such as minimizing coupling, maximizing cohesion, and maximizing semantic distance.
Each method is then mapped to the corresponding cluster based on this optimization and
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each cluster represents a potential microservice.

For example, let’s consider a sample food delivery system where a solution can be rep-
resented as S = {3,3,1,1,1,1,2,2,2}. This implies that solution S contains 3 clusters with 4
methods in Cluster 1, 3 methods in Cluster 2, and 2 methods in Cluster 3. Each cluster
represents a potential microservice M . To illustrate, Table 3.3 summarizes the content of
each cluster. Cluster 1 contains methods related to order management, such as placeOrder,
trackOrder, cancelOrder, and applyPromoCode, while Cluster 2 includes methods related
to menu browsing such as browseMenu, viewSpecials, and searchItem. Cluster 3 includes
methods related to user account management, more specifically updatePaymentInfo and set-
DefaultAddress. It is important to note that while methods within a cluster may not always
have the strongest semantic connection, they could be structurally connected and still be
part of the same cluster since our optimization considers the combination of structural and
semantic connections.

Cluster 1 Cluster 2 Cluster 3

placeOrder browseMenu updatePaymentInfo

trackOrder viewSpecials setDefaultAddress

cancelOrder searchItem

applyPromoCode

Table 3.3. Example of a clustering solution content for a sample food delivery system

3.5. Conclusion
In this chapter, we have outlined our approach to identifying candidate microservices

within applications with monolithic architectures. By leveraging the evolutionary capabili-
ties of NSGA-III and the semantic analysis provided by SBERT, we can effectively explore
various trade-offs among potential solutions. Through the power of NSGA-III optimization,
we generate optimal and non-dominated solutions, which are then organized into clusters.
These clusters of methods serve as candidate microservices, offering a solution with more
manageable and scalable components.

In the upcoming chapter, we will assess the efficacy of our proposed approach across
a selection of monolithic architecture applications. This evaluation will involve comparing
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our results against ground truth data, providing valuable insights into the effectiveness and
applicability of our methodology.
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Chapter 4

Evaluation

In this chapter, we evaluate our approach and discuss our results. In the first section on
benchmarks, we apply our approach to a set of monolithic applications to evaluate the
optimization of metrics based on the number of partitions. Then in the second section,
we compare the results of our approach with the ground truth data, compute evaluation
metrics, and discuss the scores obtained. Lastly, we present some threats to the validity of
our evaluation.

4.1. Benchmark applications

RQ1: How can the architectural metrics optimization guide the choice of an optimal
number of partitions?

4.1.1. Input overview

To evaluate our approach, we use two benchmark applications that differ in scaling. We
apply the methodologies outlined in our approach to these two Java enterprise applications:
Day Trader1 and Plants2. These applications, further detailed below, are built using a
monolithic architecture:

1https://github.com/WASdev/sample.daytrader7
2https://github.com/WASdev/sample.plantsbywebsphere



• DayTrader: This application developed with Java EE7 mimics a system for online
stock trading. It allows users to interact with the platform through multiple func-
tionalities such as signing in, overseeing their portfolio, and managing stock share
transactions.

• Plants: This is a small Java EE6 version of the Plants by WebSphere Sample,
which uses a relational database to simulate an e-commerce application for purchasing
plants. Customers can manage their accounts, browse for items to purchase, and place
orders. We use the original version running on Liberty.

Additional information is provided in Table 4.1 regarding our input applications,
DayTrader and Plants by WebSphere.

Application Domain classes methods Version

Daytrader Stock e-trading 109 385 7

Plants Plants e-commerce 33 338 6

Table 4.1. Input summary of the monolithic applications

4.1.2. Implementation and Results

We use the Java static code analyzer javacg on the Daytrader jar file and Plants war
file to obtain the application dependencies, required as input for our tool. To run the
experiment, the user provides the number of partitions, needed to set the number of clusters
for the distribution of methods. We use the terms partitions and clusters interchangeably.
Both terms refer to the same concept in this chapter.

The number of partitions aims to represent the application’s functionalities or business
capabilities as closely as possible. However, it is important to note that the desired number
of functionalities might not always be explicitly known in a monolithic application, and the
scale (i.e., the number of classes, or methods) of an application can be an indicator of the
potential range of partitions to use as input. Varying the number of partitions based on
the scale of an application and observing the optimization results for coupling, cohesion,
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and semantic distance can help gain insights into the application functionalities and hence
provide a starting point for the number of microservices.

We apply our approach to our two benchmarks (Daytrader and Plants) to evaluate the
impact of the number of clusters on the optimization of the objectives (i.e., coupling, cohe-
sion, semantic distance). We define the potential range of clusters to 3, 5, 8, 10 beginning
with 3—the minimum count of known functionalities shared by both monolithic applications,
as listed in the descriptions in 4.1.1. We run the optimization for 50 generations and obtain
the results for the Pareto front. Table 4.2 and Table 4.3 summarize the results obtained
from our objectives functions based on the number of clusters.

Coupling Cohesion Semantic Distance

0.3 1.071

num_clusters 0.315 1.106 0.296

3 0.255 1.033

0.226 1.03

num_clusters 0.352 0.708

5 0.341 0.652 0.282

0.333 0.623

num_clusters 0.368 0.454 0.337

8 0.357 0.404

0.399 0.343

0.351 0.306

num_clusters 0.395 0.331 0.313

10 0.43 0.344

0.367 0.323

Table 4.2. Daytrader - Partitions count and objective functions

59



Coupling Cohesion Semantic Distance

num_clusters 0.326 0.653

3 0.265 0.643 0.339

0.336 0.692

num_clusters 0.357 0.371

5 0.37 0.408 0.417

0.315 0.34

0.346 0.229

0.409 0.274

num_clusters 0.35 0.249 0.342

8 0.36 0.253

0.394 0.264

0.373 0.182

0.395 0.197

num_clusters 0.427 0.207 0.325

10 0.337 0.177

0.456 0.214

0.425 0.202

Table 4.3. Plants - Objective functions and partitions count

4.1.3. Discussion

The Pareto front of our multi-objective optimization problem represents a set of
non-dominated solutions with a trade-off between low coupling, high cohesion, and high
semantic distance. In refining our results, our focus is on identifying a solution that exhibits
the highest cohesion among the already optimized results of the Pareto Front. Selecting
an optimized solution with the highest cohesion can provide internal consistency in the
microservices.
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It is important to note that, as presented in 3.2.2.2 and 3.3.1.3, our cohesion metric
measures the intra-cluster dependency of method calls. Because this metric addresses
internal edges, it may yield in some cases scores above 1, which reflects highly dense
interconnectivity within a cluster. We aim to select a solution with a cohesion score close
to, but less than 1 for a balanced interconnectivity. The number of clusters associated with
such a solution can help guide us toward an optimal microservices structure. For instance,
when using 3 clusters with the DayTrader application, we observe cohesion scores above 1.
This is not optimal as we target cohesion values close to, but not exceeding 1, suggesting
that a solution with more clusters might be necessary to better manage the application’s
complex and diverse functionality. For the DayTrader application, which consists of 109
classes and 381 methods, using 5 clusters offers the most favorable cohesion scores, namely
0.708, 0.652, 0.623.

In contrast, Plants, a relatively smaller application with 33 classes and 338 methods,
demonstrates that 3 clusters are more effective, as it yields the best optimization results.
This indicates that the functionalities may be managed better with fewer microservices.
These findings highlight the relationship between the scale of a monolithic application and
an optimal number of microservices.

4.2. Ground Truth

RQ2: How do the results from our approach compare to the ground truth?

4.2.1. Experimental Setup

We use two Java Spring boot versions of the Spring PetClinic application 3 as ground
truth. The Spring PetClinic project has a monolithic version, spring-petclinic 4, and a
distributed version for microservices, spring-petclinic-microservices5. PetClinic is a sample
application for a pet clinic management system handling veterinarians’ and pets’ data.

3https://spring-petclinic.github.io/
4https://github.com/spring-petclinic/spring-petclinic-angularjs
5https://github.com/spring-petclinic/spring-petclinic-microservices
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The distributed version comprises the following 7 microservices: vets-service, visits-
service, customers-service, api-gateway, admin-server, config-server, and discovery-server.
These microservices represent the different functionalities of the application. We use the
number of microservices in the PetClinic distributed version as our input number of desired
partitions.

To evaluate our approach against the ground truth, we generate the jar files of the
applications mentioned previously. Then, we apply our approach to the monolithic spring-
petclinic with our tool Mic_ID to generate clusters.

4.2.2. Results Overview

Figure 4.1 illustrates the clusters obtained from our approach to the monolithic version
of PetClinic. They represent the potential microservices for the PetClinic application. The
three best clusters 2, 3, and 5 correspond to the results for the microservices vets service,
customers service, and visits service.

A cluster contains a list of methods following the structure class.method. When
analyzing the clusters’ content, we observe that methods are not solely grouped based on
the semantic relationships, but also with consideration of the structural relationships.

For example, we have methods in cluster 2 such as setFirstName and setLastName from
the Owner class which showcase a semantic similarity. In contrast, we also have methods
such as getTelephone from the Owner class and getId from the Pet class which may not
share the strongest semantic connection but can be linked through a structural relationship.
Furthermore, we observe that certain classes, including Owner, Pet, ClinicService, and Vet,
among others appear across different clusters as depicted in Figure 4.1.
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Fig. 4.1. PetClinic - Overview of the clusters generated by our tool Mic_ID
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Figure 4.1 (continued): clusters 4-5
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Figure 4.1 (continued): clusters 6-7
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4.2.3. Evaluation metrics

4.2.3.1. Overview.
We evaluate our results by using metrics such as precision and recall. Before computing these
metrics, we start by generating a correlation matrix to get a sense of matching between the
identified clusters and the microservices.

In the context of identifying microservices in a monolithic application, we refer to the preci-
sion and recall metrics as follows:

• Precision measures the level of accuracy of our tool in identifying the methods of
the generated clusters (from the monolithic version) that belong to the microservices.
A high score in precision conveys that our tool correctly clusters methods together
that are part of a microservice and does not wrongly assign methods that belong to
other microservices. We compute precision as follows:

Precision = Number of common_elements
Total number of elements in set(cluster) (4.2.1)

• Recall measures the coverage and completeness of our microservices identification.
It evaluates how completely our tool identifies all methods that should belong to a
microservice. A high recall would mean that our tool covers all methods (from a
cluster of the monolith) that are part of a specific microservice without missing any.
We assess the recall by applying the following formula:

Recall = Number of common_elements
Total number of elements in set(microservice) (4.2.2)

In the equations for precision (4.2.1) and recall (4.2.2), the number of common elements
denotes the intersection between a cluster set (obtained from the monolithic architecture)
and a microservice set. Precision and recall are calculated for every matched pair of cluster-
microservice .
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4.2.3.2. Results and Discussion.
We obtained high precision scores for the per-cluster analysis ranging from 78.6% to
87% and low recall scores (7% - 17.7%). Table 4.4 summarizes the precision and recall
scores obtained for each matching pair, {cluster, microservice}. We discuss some points
considered in our approach and potential causes that could explain the low recall scores we
obtained.

Clusters (Monolith) cluster 6 cluster 4 cluster 1 cluster 3 cluster 7 cluster 2 cluster 5

Microservices
admin api config customers discovery vets visits

server gateway server service server service service

Precision 78.6% 81.9% 79.6% 87% 79.6% 84.3% 82.1%

Recall 16.9% 12.6% 7% 17.3% 7% 17.7% 17.3%

Table 4.4. Results - Precision and recall

• Our ground truth, PetClinic, does not represent a direct migration.
The methods used in the monolithic version of PetClinic are not automatically
mapped when transitioning to its microservices version. Instead, the content of the
microservices version is built with reference to its monolithic version. In fact, it does
not directly implement the methods based on their lexical format.
Given this context, it is both correct and expected that we observe low recall scores,
as not all methods are retrievable in the microservices version.
In the future, we plan to develop an additional computation metric better suited to
our context and the available ground truths. This work will help us further evaluate
our approach.

• Two methods have the same method name but different functionalities.
In our approach, we treated the same method name occurring in different classes and
packages within the monolithic application as distinct nodes. Beyond the method
name, the class and package association help define more accurately the boundaries
of these independent services. These methods can have the same name but serve
different functionalities depending on their class and package association. This
explains why we might see the same method name across multiple clusters of the
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monolithic application after using our tool.

• Disparity in unique method counts: Individual vs. collective set of mi-
croservices
In the distributed version of the ground truth, several methods can be found multiple
times across the different microservices. This led to a significant difference in the total
count of unique methods within each microservice compared to the aggregate count
of unique methods across all microservices collectively. An example of such recurring
methods includes those from the Java and Javax packages, which are commonly used
for utility purposes.
This impacted the recall scores obtained when comparing the extracted clusters with
the microservices. These methods are essential to the integrity of the application’s
static dependencies but do not directly define the business logic.
One solution we propose would be to assign all these methods to a separate and
dedicated Utility cluster. This would allow the analysis to remain comprehensive
while focusing significantly more on the business logic. Adding the Utility cluster
could lead to an improvement in our recall scores.

• A few methods in the microservices version of our ground truth cannot
be retrieved in the monolithic version.
After analyzing our ground truth datasets, we identify some methods exclusive to
the monolithic version, as well as other methods that are unique to the microservices
version.
These methods can be attributed to how the monolithic version handles data access
compared to how it is done in the distributed version of the application.
Additionally, some methods can be split or changed to better suit the specific
architecture. For example, in the microservices version of our ground truth,
some methods may have been split into smaller and more modular pieces to
better fit the microservices architecture. This could explain why the microservices
version has a higher method count than the monolithic version, as shown in Table 4.5.
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PetClinic All Methods count Unique Methods Count

Monolithic version 750 750

Distributed version 4483 821

Table 4.5. Differences in the method count across the microservices

It is important to note that following the identification of distinct clusters of methods as
potential microservices, a subsequent step might be required to package these clusters into
microservices. This process could involve the clusters’ encapsulation into deployable units
to ensure interconnectivity through light communication. We made our implementation
and evaluation experiments available on a GitHub repository [6] .

4.2.3.3. Comparison to other approaches.
Our approach is implemented at a fine-grained level, specifically at the method level,
in contrast to most approaches in the literature, which focus on the class level. This
difference in level of granularity can complicate or prevent direct comparisons and may
lead to potential inaccuracies with metrics used for evaluating microservices at the class level.

Moreover, there is an overlap between the objective functions of our approach and the
metrics used for evaluating and comparing other methodologies. Our approach uses the
genetic algorithm NSGA-III, which requires us to define objective functions first before
proceeding to the optimization of the solution search. We set three key objectives: two
structural metrics (coupling and cohesion), and one semantic metric (semantic distance). In
contrast, most other approaches in the literature do not incorporate these structural metrics
in their methodology design but rather include them in their evaluations.

Therefore, it would not be suitable to compare our approach with the other approaches
using these metrics to evaluate coupling and cohesion [49] such as CoHesion at Message
level (CHM) and CoHesion at Domain level (CHD) [28, 39, 57, 62].

69



4.3. Threats to validity
4.3.1. Benchmark applications

We assessed our approach using a limited set of applications, which may not fully
represent the diversity of all monolithic applications. To provide a more comprehensive
analysis, we aim to use a more exhaustive set of legacy applications featuring a monolithic
architecture. Furthermore, exploring a wider and more diverse range of applications
beyond well-documented open-source applications can be done to ensure more inclusive and
representative findings.

4.3.2. Programming language and framework

The existing applications we used, which feature a monolithic architecture, are ex-
clusively Java projects. This limitation may impact the generalization of our approach
to monolithic applications developed in other programming languages and frameworks.
Additional evaluation on applications that are not using Java can help validate our results
and improve generalization.

4.3.3. Level of granularity

Our approach operated at the method level of monolithic applications, differing in the
level of granularity from our ground truth and some other approaches in the literature. This
difference in granularity may have posed challenges when comparing our results directly with
the ground truth.

4.4. Conclusion
In this chapter, we evaluated our proposed approach, first using two benchmarks to gain

insights from our optimization and then comparing the generated clusters against the ground
truth.

The first part of the evaluation explored the relationship between the scale of a monolithic
application and the optimal number of partitions, leveraging the objectives’ optimization
results for coupling, cohesion, and semantic distance.

Additionally, we performed a comparative analysis between the generated clusters from
our approach and the defined microservices representing the ground truth. This analysis
yielded high precision scores, with the highest reaching 87%, indicating the effectiveness of
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our approach in identifying relevant methods for specific microservices. We also noted low
recall scores ranging from 7% to 17.7%, which we addressed in a discussion on the underlying
causes and suggested potential fixes and improvements.
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Chapter 5

Conclusion

5.1. Summary
In this thesis, we have introduced an approach to identify microservices in existing appli-

cations through the combination of meta-heuristic techniques and machine learning. Our ap-
proach leverages the optimization capabilities of NSGA-III, a state-of-the-art multi-objective
genetic algorithm, and the efficiency of SBERT semantic analysis, while also considering
structural dependencies. We define three objectives to guide the search for solutions in our
approach: minimizing coupling, maximizing cohesion, and maximizing semantic distance.

When handling monolithic applications where the number of functionalities is not explic-
itly showcased, we can use the scale (i.e., a combination of the class and method count) of
the application and the values of the optimization metrics obtained from our approach to
guide the search for an optimal number of clusters to represent the microservices structure.

In terms of results, our approach presents high precision and low recall scores when
compared to the ground truth. The results for the identification of microservices at the
method level are 78.6% - 87% for precision and 7% - 17.7% for recall. However, considering
a utility cluster where all utility methods (e.g., methods from the Java standard library)
are grouped could reduce the repetition of methods across the collective set of microservices;
thus, it could be interesting to consider this point as one way to mitigate the low recall scores
obtained.

Our approach and tool can offer valuable insights for the identification of microservices
in existing applications while building a strong foundation for decomposing these monolithic
applications into a distributed microservices version.



5.2. Limitations and Future Works
While our approach benefits from the diversity of solutions—offered by the genetic algo-

rithm NSGA-III—and the analytical power of language models, there are some limitations
that future research can address to advance our approach further.

The optimization of the semantic analysis can present an interesting avenue for improve-
ment. Enhancing our approach could involve extending the scope of the semantic analysis
to not only method signatures but also to the body of the method for potentially deeper
insights.

Moreover, expanding our search criteria by incorporating additional objective functions
and constraints can enrich the refinement of our approach. These additional objectives
and constraints would enable tailoring the search to more specific goals, or domain-specific
requirements. This could be facilitated by the use of NSGA-III in our approach, which has
been applied in optimization problems with a large number of objectives [20, 36].

Furthermore, exploring the different database connections and interactions in monolithic
applications could help uncover a more comprehensive understanding and representation of
microservices boundaries [44].
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