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Résumé

Les lentilles gravitationnelles se produisent lorsque le champ gravitationnel d’un objet massif
dévie la trajectoire de la lumière provenant d’un objet lointain, entraînant une distorsion ou
une amplification de l’image de l’objet lointain.

La transformation Starlet fournit une méthode robuste pour obtenir une représentation
éparse des images de galaxies, capturant efficacement leurs caractéristiques essentielles avec
un minimum de données. Cette représentation réduit les besoins de stockage et de calcul, et
facilite des tâches telles que le débruitage, la compression et l’extraction de caractéristiques.

La distribution a priori de fer à cheval est une technique bayésienne efficace pour promou-
voir la sparsité et la régularisation dans la modélisation statistique. Elle réduit de manière
agressive les valeurs négligeables tout en préservant les caractéristiques importantes, ce qui
la rend particulièrement utile dans les situations où la reconstruction d’une image originale
à partir d’observations bruitées est difficile.

Étant donné la nature mal posée de la reconstruction des images de galaxies à partir de
données bruitées, l’utilisation de la distribution a priori devient cruciale pour résoudre les
ambiguïtés. Les techniques utilisant une distribution a priori favorisant la sparsité ont été
efficaces pour relever des défis similaires dans divers domaines.

L’objectif principal de cette thèse est d’appliquer des techniques de régularisation favo-
risant la sparsité, en particulier la distribution a priori de fer à cheval, pour reconstruire les
galaxies d’arrière-plan à partir d’images de lentilles gravitationnelles.

Notre méthodologie proposée consiste à appliquer la distribution a priori de fer à cheval
aux coefficients d’ondelettes des images de galaxies lentillées. En exploitant la sparsité de la
représentation en ondelettes et le comportement de suppression du bruit de la distribution
a priori de fer à cheval, nous obtenons des reconstructions bien régularisées qui réduisent le
bruit et les artefacts tout en préservant les détails structurels. Des expériences menées sur des
images simulées de galaxies lentillées montrent une erreur quadratique moyenne inférieure et
une similarité structurelle plus élevée avec la distribution a priori de fer à cheval par rapport
à d’autres méthodes, validant son efficacité.

Mots clés: Prior de fer à cheval, Technique bayésienne, Transformée Starlet, Lentille
gravitationnelle, Régularisation, Problème inverse
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Abstract

Gravitational lensing, a phenomenon in astronomy, occurs when the gravitational field of
a massive object, such as a galaxy or a black hole, bends the path of light from a distant
object behind it. This bending results in a distortion or magnification of the distant object’s
image, often seen as arcs or rings surrounding the foreground object. The Starlet wavelet
transform offers a robust approach to representing galaxy images sparsely. This technique
breaks down an image into wavelet coefficients at various scales and orientations, effectively
capturing both large-scale structures and fine details.

The Starlet wavelet transform offers a robust approach to representing galaxy images
sparsely. This technique breaks down an image into wavelet coefficients at various scales and
orientations, effectively capturing both large-scale structures and fine details.

The horseshoe prior has emerged as a highly effective Bayesian technique for promoting
sparsity and regularization in statistical modeling. It aggressively shrinks negligible values
while preserving important features, making it particularly useful in situations where the
reconstruction of an original image from limited noisy observations is inherently challenging.

The main objective of this thesis is to apply sparse regularization techniques, particularly
the horseshoe prior, to reconstruct the background source galaxy from gravitationally lensed
images. By demonstrating the effectiveness of the horseshoe prior in this context, this thesis
tackles the challenging inverse problem of reconstructing lensed galaxy images.

Our proposed methodology involves applying the horseshoe prior to the wavelet coef-
ficients of lensed galaxy images. By exploiting the sparsity of the wavelet representation
and the noise-suppressing behavior of the horseshoe prior, we achieve well-regularized recon-
structions that reduce noise and artifacts while preserving structural details. Experiments
conducted on simulated lensed galaxy images demonstrate lower mean squared error and
higher structural similarity with the horseshoe prior compared to alternative methods, vali-
dating its efficacy as an efficient sparse modeling technique.

Key words: Horseshoe prior, Bayesian technique, Starlet transform, Gravitational lens-
ing, Regularization, Inverse problem
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Introduction

Gravitational lensing, has the remarkable effect of bending and distorting the light from
distant galaxies as it traverses the gravitational fields of intervening objects. This cosmic
phenomenon presents astronomers with a tantalizing opportunity: the chance to peer into
the deep cosmos through this natural lens and observe galaxies that would otherwise remain
hidden. This opportunity comes with a formidable challenge—reconstructing the original,
undistorted images of these galaxies.

Reconstructing the original undistorted galaxy images is a challenging ill-posed inverse
problem. The goal is to uncover the true galactic morphology from distorted, noisy obser-
vations with missing information.

Representing the galaxy image using the Starlet wavelet basis provides an effective ap-
proach. The wavelet decomposition yields a sparse representation that compresses the image
content into few significant coefficients. This sparsity makes wavelets well-suited for modeling
complex galaxy images. However, the reconstruction still requires overcoming ill-posedness
and noise.

In recent years, statistical techniques that promote sparsity have emerged as a powerful
tool for addressing this challenge. Among these, the horseshoe prior, a Bayesian approach to
sparsity-inducing regression and image analysis, has shown remarkable efficacy. Its ability
to shrink insignificant values while retaining salient features aligns well with promoting
sparsity. In sparse signal processing, the horseshoe prior has been extensively studied for its
effectiveness in estimating sparse signals, particularly in signal processing, machine learning,
and image processing. This prior is advantageous for its high accuracy and efficiency in
applications like signal reconstruction and has been applied in various fields including physics
for experimental measurements [44]. By applying the horseshoe prior to wavelet coefficients
of the lensed galaxy image, we can achieve effective regularization. The horseshoe prior
complements the sparsity of the wavelet basis, suppressing noise while preserving important
galactic substructures.

Moreover, the wavelet transform, particularly the Starlet basis, offers an optimal frame-
work for sparsely representing the hierarchical structures frequently observed in astronomy
images. The coefficients generated by the wavelet transformation tend to exhibit sparsity,



allowing us to compactly represent complex visual information. When combined with horse-
shoe regularization, this approach offers a comprehensive strategy for addressing the ill-posed
nature of galaxy image reconstruction.

This work seeks to explore the synergistic combination of the Starlet transform’s sparse
representation and the horseshoe prior’s shrinkage behavior to enable accurate reconstruc-
tions from noisy, distorted observations. The horseshoe prior applied to wavelet coefficients is
expected to outperform common alternatives like L1 and L2 regularization that lack adaptive
shrinkage and do not sufficiently promote sparsity.

This framework serves as an effective means to promote sparsity, resulting in well-
regularized reconstructions. By jointly utilizing the sparsity inherent in wavelet transforms
and the noise-reducing capabilities of the horseshoe prior, we aim to overcome the challenges
posed by distorted and noisy observations. This motivates our approach of using horseshoe
regularization on Starlet wavelet representations of gravitationally lensed galaxy images. The
aim is to demonstrate the effectiveness of this framework for ill-posed inverse problems where
key features must be recovered from incomplete, ambiguous data. Reconstructing obscured
distant galaxies is an important testbed for this statistical technique.

Overview of The Chapters
Chapter 1 provides the background on this ill-posed inverse problem and the need for

regularization techniques like sparsity-inducing priors.
Chapter 2 explores the statistical foundations of this work, including Bayesian inference,

priors, regularization, and sparse modeling. The horseshoe prior and its sparsity-inducing
properties are explained in detail, highlighting its noise suppression and feature retention
abilities.

Chapter 3 covers the physics of gravitational lensing, explaining how galaxy images are
warped by foreground masses. Key concepts like the lens equation and image distortions are
introduced.

Chapter 4 introduces the Starlet wavelet transform and its effectiveness as a sparsifying
dictionary for galaxy images. The wavelet decomposition and its multiscale analysis are
described, emphasizing the sparsity induced.

Chapter 5 presents the full methodology for galaxy image reconstruction using the
horseshoe-Starlet framework. The probabilistic model, Hamiltonian Monte Carlo inference,
and the implementations are covered.

Chapter 6 applies the approach to simulated galaxy images, demonstrating its perfor-
mance both visually and quantitatively using metrics like mean squared error. Compar-
isons to alternative regularization techniques validate the benefits of the horseshoe-Starlet
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framework. It concludes by discussing future potential extensions leveraging ever-advancing
computational methods.
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Chapter 1

Background

Gravitational lensing is a phenomenon in which the path of light rays from a distant galaxy
is bent by the gravitational field of a foreground galaxy or cluster of galaxies. This effect was
first predicted by Albert Einstein’s theory of general relativity in 1915 and has since been
observed and studied extensively in astrophysics. One important application of gravitational
lensing is in the study of dark matter, a form of matter that does not emit, absorb, or reflect
light, but can be detected through its gravitational effects on visible matter. Furthermore,
Gravitational lensing is a tool that can yield accurate calculations of the Universe’s expansion
speed, also known as the Hubble constant. This is a crucial metric, especially in light of the
ongoing cosmology crisis, which refers to a significant discrepancy in the measurements of this
parameter obtained from different sources [71, 43]. This is also a potent instrument capable
of charting the internal arrangement of matter within individual lens galaxies, providing
priceless insights into the nature of the elusive dark matter particle [31].

The first application of gravitational lensing is akin to using a natural telescope. Massive
cosmic structures like galaxies or clusters of galaxies bend the light from distant objects,
magnifying and intensifying it. This gravitational magnification allows astronomers to peer
further into the universe than conventional telescopes would permit, observing background
galaxies that are otherwise beyond the reach of current observational technology. By acting as
a natural magnifying lens, gravitational lensing enables the detailed study of the morphology,
luminosity, and spectral signatures of remote celestial sources, thus extending the frontiers of
our cosmic exploration. The second utility of gravitational lensing lies in its ability to infer
the mass of the lensing objects, such as a foreground galaxy. The pattern and extent of the
light bending are contingent upon the mass of the galaxy that is causing the lensing effect.
By scrutinizing these light distortions, astronomers can deduce the mass distribution of the
lensing galaxy. This technique is particularly insightful because it is independent of the
traditional observational methods that rely on the light emitted by the objects themselves.
Gravitational lensing thereby provides a unique and indispensable tool for estimating the



distribution of both visible and dark matter within galaxies, which is crucial for advancing
our understanding of the structure and composition of the universe.

By observing the distortion of light from background galaxies caused by gravitational
lensing, astronomers can infer the distribution of dark matter in the intervening foreground
galaxies or galaxy clusters. Furthermore, gravitational lensing can also provide insights
into the large-scale structure of the Universe, as the distribution of foreground galaxies or
galaxy clusters can reveal the underlying cosmic web of filaments and voids. A method
for analyzing gravitational lens images when the source light distribution is pixelized. The
method is suitable for high-resolution of a multiply-imaged extended source. The authors
show that the step of inverting the image to obtain the deconvolved pixelized source light
distribution, and the uncertainties, is a linear one. This means that the only parameters of
the non-linear problem are those required to model the mass distribution. The method is
extended in a straightforward way to include linear regularization. Applying the method to
simulated Einstein ring images and demonstrate the effectiveness of the inversion for both
the unregularized and regularized cases [70].

26



Chapter 2

Statistical context

Chapter 2 provides the statistical context for the inverse problem approach taken in this
thesis. The chapter begins with an introduction to inverse problems, including the concepts of
ill-posed and well-conditioned inverse problems. It then presents relevant probability theory
and Bayesian inference methods, with a focus on Bayes’ theorem, likelihood functions, and
maximum likelihood estimation. The chapter concludes with a discussion of regularization
techniques and prior specification, highlighting the use of Laplace, Gaussian, and horseshoe
priors. Throughout the chapter, the aim is to provide a statistical foundation for the inverse
problem methodology employed in later analyses. Key concepts are succinctly explained and
directly linked to their relevance to the thesis.

2.1. Inverse problems
This section delves into the fundamental concept of inverse problems, essential in various

scientific disciplines, involving the inference of hidden variables from observed outcomes. It
discusses how Bayesian inference helps address the inherent uncertainties and complexities,
presenting a versatile tool for handling ambiguous situations where conventional solutions
may not suffice.

2.1.1. Concept of an inverse problem

The concept of an inverse problem is a fundamental aspect of various scientific disciplines.
It involves deducing the underlying hidden variables that control observed outcomes. Inverse
problems aim to uncover causes based on effects. Mathematically, this means reversing an
equation or system to find the inputs that correspond to observed results. However, these
problems are often complex and may lack unique solutions.

For example, in medical imaging, inverse problems focus on reconstructing internal struc-
tures from external measurements [55]. In seismology, researchers decipher Earth’s properties
from recorded seismic waves. Solving these problems demands advanced math, regularization



methods, and prior knowledge. Bayesian inference is a useful approach to handle uncertainty
in both inputs and outputs.

2.1.2. Introduction to inverse problems

In many scientific problems, accurate simulators can produce synthetic observations from
a set of hidden variables that define the unobserved properties of the system under study. For
example, given the mass, air resistance, shape, and length of the string of a pendulum (which
are all hidden variables), a simulator can predict the position of the pendulum at time t. If
measurements of these positions have been recorded (observed data) for a specific pendulum,
then the simulator could be used to infer the hidden variables (mass, air resistance, shape,
and length of the string).

These problems are referred to as "inverse" problems in the sense that by having the
noisy output of a simulator (data) we would like to infer its input (latent variables). For
a specific value of these hidden variables, it is trivial to run the simulator to predict the
observed variables ("forward" model). But because of noise and other effects that result in a
loss of data, there is often no inverse simulation algorithm, making this a challenging task.
Solving inverse problems involves determining which hidden parameters, when propagated
through the forward model, best reproduce the data.

For example, in astrophysics, the observed brightness and distorted shape of a background
galaxy due to gravitational lensing depends on its true undistorted morphology. By modeling
the process of light propagating through the gravitational potential, the aim is to infer the
true image of the background source that has given rise to the observed distorted images.

In practice, noisy observations introduce uncertainty in the underlying model parameters.
So even with an accurate forward model, we may only determine a likely range of values
rather than a single solution. Assumptions about the physical processes also bring inherent
uncertainties. Drawing meaningful inferences requires grappling with these issues through a
formal probabilistic framework.

Inverse problems are inherently probabilistic, requiring statistical approaches like
Bayesian inference to handle the uncertainties. There are, however, two general classes
of inverse problems: well-posed and ill-posed problems. In summary, If the observations
contain enough information to highly constrain the model parameters they are considered
well-posed. But if there is simply not enough information in the data to meaningfully
constrain a large number of hidden variables, the problem is considered ill-posed. In
effect, the analysis of an ill-posed problem with only the given data and without any
additional assumptions results in a large range of solutions, including solutions that are
highly unphysical and unrealistic (e.g., a negative mass).
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2.1.3. Ill-posedness and well-conditioning

A well-posed problem is a mathematical problem that satisfies three criteria:
(1) Existence: A solution exists for the problem.
(2) Uniqueness: The solution is unique and not ambiguous.
(3) Stability: The solution should vary continuously with changes in the input data or

parameters.
Consider the canonical case where we have observations y belonging to Hilbert space H1.

These observations can be related to parameters of interest x residing in another Hilbert
space H2 through a well-defined forward model F : D(F ) ⊆ H2 → H1, where D(·) denotes
the domain of F . Additionally, we define the range of F as R(H1). Considering this setup,
the analysis of a well-posed problem within this framework can provide valuable insights
into the intrinsic relationships between the observations and the parameters, helping to
elucidate the underlying structure of the system being studied. This, in turn, facilitates a
deeper understanding and potentially more accurate predictions and interventions in various
applied settings.

An ill-posed problem (or ill-posedness) is the opposite. It fails to satisfy one or more
of the criteria for a well-posed problem. This means that the problem might not have a
solution, or if it does, the solution might not be unique or stable with respect to variations
in the data or parameters.

Here, we consider bounded linear operators F , for which (i) requires F is surjective, (ii)
requires F is injective, and (iii) requires the inverse of F is bounded. We refer to ill-posedness
in the sense described above, though other definitions exist.

Another key concept is conditioning, which considers how a small variation in the input
relates to the output variation. For an operator F , the relative condition number is:

lim
δy→0

sup ||F (y + δy) − F (y)||
||F (y)||

/ ||δy||
||y||

(2.1.1)

Large condition numbers imply small input perturbations δy yield large output pertur-
bations, making F ill-conditioned. Small condition numbers indicate well-posed F . Note
ill-conditioning and ill-posedness are often related but distinct concepts.

While there’s a strong correlation between ill-posedness and ill-conditioning, they aren’t
always synonymous. An ill-posed problem lacks a unique, stable solution, often due to the
insufficiency or noisy nature of the available data. This can lead to multiple valid solutions
or a solution that’s highly sensitive to input variations. On the other hand, ill-conditioning
relates to the numerical stability of solving a problem. It’s about how susceptible a problem
is to computational errors caused by limited precision or rounding in numerical calculations.
An ill-conditioned problem might have a unique and stable solution, but the calculations to
find that solution can magnify even minor errors.
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While ill − posed problems often arise from ill − conditioned situations, and vice versa,
it’s entirely possible to encounter situations where an ill − conditioned problem still pos-
sesses a unique and meaningful solution. Similarly, an ill-posed problem might involve well-
conditioned computations but still lack a definitive solution due to the nature of the problem
or data.

2.2. Probability theory and Bayesian Inference
Probability theory provides the mathematical foundation for logical reasoning and under-

lies much of scientific analysis today, including Bayesian inference and frequentist statistics
[34]. This becomes evident when recognizing that many scientific problems are ill-posed and
lead to the inference of complex latent spaces. As such, a probabilistic approach is well-
suited to tackle these challenges. In a sense, the theory of probability is isomorphic to the
consistent axioms of plausible reasoning [19].

Bayesian methodology is a prominent subdomain of probability theory widely used in as-
trophysics and other sciences. Bayesian inference offers a principled statistical framework for
quantifying uncertainty in scientific measurements based on observed data and priors. In this
paradigm, the resulting probabilities directly describe the degree of belief in a proposition.
Such inferences are principled and interpretable.

In contrast, frequentist approaches rely fundamentally on repeatable outcomes, only re-
covering direct plausibility statements in the limit of infinite realizations. In cosmology and
other sciences where few realizations may be observed, frequentist reasoning is more limited.

2.2.1. Bayes’ Theorem

The prototypical inverse problem takes the following form: given observations y of an
underlying quantity of interest x, which may be corrupted, for example, by instrumental
noise; provided with such data, under an assumed forward model M that relates y to x, and
incorporating certain prior assumptions about the nature of x, what inferences can be drawn
about x, ?. This kind of inverse problem can be succinctly expressed using Bayes’ theorem:

P (x|y,M) = P (y|x,M) · P (x)
P (y|M) (2.2.1)

Here, P (A|B) represents the conditional probability of event A occurring given that B

is known. Equation 2.2.1 is derived from fundamental rules of probabilities, where P (A) +
P (¬A) = 1 and P (A,B) = P (A|B) · P (B). The left-hand side of the equation is colloquially
known as the posterior distribution, a pivotal concept in many aspects of Bayesian inference.
It is the product of the likelihood distribution L(x) = P (y|x,M) which encodes data fidelity,
the prior distribution P (x) which encodes the a priori assumptions about x, and the a
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renormalization factor, z = P (y|M) =
∫

dx P (y|x,M), known as Bayesian evidence, which is
useful for model comparison [2].

So far, we have discussed how Bayes’ theorem enables us to reinterpret the conditional
probability, representing the plausibility of parameter configuration x given model M , in
view of observable data y. This process, often termed parameter inference, deals with prob-
abilistic entities like P (x|y,M). Alternatively, one might be fundamentally interested in the
probabilistic quantity P (M |y), directly assessing the plausibility of a model M in light of
observations y [19]; [50].

2.2.2. Likelihood

In this section, we delve into the likelihood distribution, denoted as L(x) = P (y|x,M).
This component is a conditional probability that quantifies the likelihood of observing data
y under a given parameter configuration x within model M .

The reason that observed data should be described by a probability distribution is the
presence of stochastic noise in the data. This noise is often additive, giving rise to the
following data-generating process

D = M(x) + n.

Here D is the observed data, M is the forward model which is a function of the latent variable
of interest x, and n is a vector of additive noise.

The probability of a given value of x that is under consideration is then equal to the
probability that D − M(x) is generated by noise. This means that the probability density
of a specific realization of noise, N(n), also known as the noise model, should be known to
quantify the likelihood. Therefore in the case of dealing with additive noise and when the
probability density function of noise, N , is known, the likelihood could be evaluated as

P (D|x) = N(D − M(x)).

For many problems, instrumental noise is the main stochastic source of uncertainty in the
data. Often, this noise is additive. The data generating process could then be written as

D = y + N

2.2.2.1. The Multivariate Gaussian Likelihood
An argument rooted in central limit theory often justifies the Gaussian nature of n ∼

N(µ, Σ), leading to the formulation of the likelihood distribution as the exponential of the
Mahalanobis distance (Mahalanobis, 1936):

L(x) = N(y − ỹ, Σ) = 1√
(2π)k|Σ|

exp
(

−1
2[y − ỹ − µ]T Σ−1[y − ỹ − µ]

)
,
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where y is a k-dimensional vector of observations, µ is the mean vector, and Σ is the co-
variance matrix. The covariance matrix Σ captures both the variance and inter-dependence
among individual observations yi for index i ∈ {1, 2, . . . , k}.

For computational simplicity, it’s often more convenient to work with the natural loga-
rithm of the likelihood. In this case, the natural logarithm of L(x) is given by:

ln L(x) = −k

2 ln(2π) − 1
4 ln |Σ| − 1

2[y − ỹ − µ]T Σ−1[y − ỹ − µ],

When the covariance matrix Σ is diagonal (i.e., the observations y are taken to be inde-
pendent), with diagonal elements denoted as Σ = diag(σ2

1, σ2
2, . . . , σ2

k), the logarithm of the
likelihood simplifies to:

ln L(x) = −k

2 ln(2π) − 1
4

k∑
i=1

ln(σ2
i ) − 1

2

k∑
i=1

(yi − ỹi − µi)2

σ2
i

,

Moreover, for independent variables (diagonal covariance matrix), the log-likelihood be-
comes analogous to the squared loss. By minimizing the squared loss (ordinary least squares),
one implicitly retrieves the maximum likelihood solution, given the implicit uniform prior.

The Gauss-Markov theorem establishes that both ordinary least squares (OLS) and max-
imum likelihood estimation are the minimum variance estimators within the class of linear
unbiased estimators, rendering them ’optimal’ in a basic sense. However, for seriously ill-
posed or ill-conditioned inverse problems, adopting a uniform prior (resulting in constant
regularization over a potentially infinite domain) is suboptimal. Such problems often have
insufficient data quality to effectively constrain the posterior, necessitating the introduction
of weakly informative priors to recover more desirable estimators.

2.2.2.2. The Maximum Likelihood Estimation
In the context of Bayesian statistics, maximum likelihood estimation (MLE) is a method

used to determine the parameter configuration x that maximizes the likelihood function
L(x). This estimation approach aims to find the parameter values that make the observed
data y most probable under the given model M . Mathematically, MLE can be represented
as:

x̂MLE = arg max
x

L(x) = arg max
x

P (y | x, M)

Here, x̂MLE represents the estimated parameter configuration that maximizes the likeli-
hood.

For the multivariate Gaussian likelihood, where the likelihood function is given by:

L(x) = 1√
(2π)k|Σ|

exp
(

−1
2[y − ỹ − µ]T Σ−1[y − ỹ − µ]

)
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the maximum likelihood estimation involves finding the parameter values x that lead to the
highest possible value of L(x). This corresponds to finding the values of x that best explain
the observed data y within the model M .

In the case of independent variables with a diagonal covariance matrix Σ, the log-
likelihood simplifies to:

ln L(x) = −k

2 ln(2π) − 1
4

k∑
i=1

ln(σ2
i ) − 1

2

k∑
i=1

(yi − ỹi − µi)2

σ2
i

The MLE process involves finding the parameter values x that maximize this log-
likelihood expression. This entails adjusting the parameters x in such a way that the terms
in the equation contribute to a larger overall value of ln L(x), indicating a better fit between
the model’s predictions and the observed data.

2.3. Regularization and Prior specification
In the framework of Bayesian statistics, regularization takes the form of prior distributions

that encapsulate our beliefs about the underlying solution.

2.3.1. Regularization

In many cases, the inverse problem we encounter is ill-posed or ill-conditioned. To tackle
such challenges, we incorporate prior knowledge about the problem, effectively stabilizing
the process of inversion. These stabilizing terms are commonly referred to as ’regularization
functionals’ in the field of signal processing, analogous to the prior functions in Bayesian the-
ory [2, 57]. In this thesis, we often use these terms interchangeably, although they originate
from different perspectives. It’s important to note that our approach to regularization in
this thesis is application-oriented. Beyond the scope of this work, regularization is a broader
mathematical concept.

In general terms, regularization for an ill-posed or ill-conditioned inverse problem aims
to introduce superior regularity properties. For instance, regularization may lead to a lower
condition number in the problem (as defined in section 2.1). It may also constrain the
solution space to a smaller subset, denoted as H01 ⊂ H1, to promote convergence, prevent
discontinuities, or eliminate redundant degeneracies in the solution space. In this thesis, we
mainly focus on regularization functions that restrict or adjust the solution space H1 to favor
solutions exhibiting a known or assumed structure in x. Our primary approach involves using
regularization functions that encourage sparsity, a recurring theme throughout this work.

Returning to the context of astronomical image reconstruction: suppose we possess prior
knowledge that the intensity values in an astronomical image must be positive, and we
observe neighboring regions of the sky, finding that they exhibit an average intensity I with
an approximate distribution (e.g., Gaussian). In this scenario, it’s reasonable to utilize
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this prior knowledge to adjust the degenerate solution space, favoring intensity maps with
values akin to those observed in neighboring regions. This regularization is further enhanced
by considering that astronomical sources are unlikely to exhibit intensity values drastically
different from their surroundings. Hence, we include additional constraints on the feasible
set of solutions, further reducing the degeneracy within the solution space.

A commonly adopted form of regularization in the literature is the use of sparsity-
promoting functions. These functions bias or restrict the solution space towards solutions
that can be represented with the fewest coefficients in a given dictionary [25, 29]. A dic-
tionary where the solution is assumed to be sparse is known as a sparsifying dictionary.
This use of sparsity to enhance regularity aligns with the mathematical interpretation of
Occam’s Razor or the principle of parsimony [7]. In practice, dictionaries localized solely in
the temporal or real domains, such as the Fourier or Dirac bases, respectively, are often inef-
fective at capturing sharp, abrupt features. Throughout this thesis, we will employ wavelet
dictionaries due to their inherent localization in both the temporal and real domains [35];
[36]. Wavelets are highly effective for a wide range of physical signals as they allow sparse
representations [21, 4, 56, 5, 63, 14, 37, 72, 47, 39].

2.3.2. The Priors

2.3.2.1. The Laplace prior (ℓ1 Regularization)
The Laplace prior, also known as ℓ1egularization, is a continuous probability distribution

commonly used as a sparsity-inducing prior in Bayesian analysis [46, 26, 30]. Its probability
density function is given by:

p(β|λ) = λ

2 exp(−λ|β|) (2.3.1)

where β is the parameter or coefficient being estimated, and λ > 0 is a regularization
hyperparameter controlling the spread of the distribution. For a regression model with p

predictors, independent Laplace priors can be placed on each coefficient βj:

p(β|λ) =
p∏

j=1

λ

2 exp(−λ|βj|) (2.3.2)

The logarithm of this prior density is then:

log p(β|λ) = −λ
p∑

j=1
|βj| + C (2.3.3)

where C is a normalization constant. Combining this log prior with the log-likelihood
log p(y|X,β) via Bayes’ theorem yields the posterior distribution:
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log p(β|y,X,λ) ∝ log p(y|X,β) − λ
p∑

j=1
|βj| + C (2.3.4)

The Laplace prior’s sharp peak at zero and heavy tails promote sparsity by shrinking
small coefficient values to zero while retaining a few large coefficients [15, 30]. This enables
variable selection and sparse regression in a Bayesian manner. The regularization strength
λ controls the sparsity level. Various techniques exist for learning λ, such as cross-validation
or maximum marginal likelihood estimation [26]. Overall, the Laplace prior provides a
principled Bayesian approach for achieving sparsity. The Laplace prior’s sharp peak at
zero and heavy tails promote sparsity by shrinking small coefficient values to zero while
retaining a few large coefficients [15, 30]. This enables variable selection and sparse regression
in a Bayesian manner. The regularization strength λ controls the sparsity level. Various
techniques exist for learning λ, such as cross-validation or maximum marginal likelihood
estimation [67, 26]. Overall, the Laplace prior provides a principled Bayesian approach for
achieving sparsity.

2.3.2.2. The Gaussian prior (ℓ2 Regularization)
The Gaussian or normal prior also known as ℓ2 Regularization, is another common con-

tinuous prior distribution used in Bayesian analysis:

p(β|σ) = 1√
2πσ2

exp
(

− β2

2σ2

)
(2.3.5)

β is the parameter being estimated and σ > 0 is a scale parameter controlling the variance
[67, 23]. For a model with p predictors, independent Gaussian priors can be placed on each
coefficient βj:

p(β|σ) =
p∏

j=1

1√
2πσ2

exp
(

−
β2

j

2σ2

)
(2.3.6)

The log prior density is:

log p(β|σ) = −
p∑

j=1

β2
j

2σ2 + C (2.3.7)

Combining this with the log-likelihood via Bayes’ theorem gives:

log p(β|y,X,σ) ∝ log p(y|X,β) −
p∑

j=1

β2
j

2σ2 + C (2.3.8)

Unlike the Laplace prior, the Gaussian prior does not induce rigorous sparsity. Its Gauss-
ian shape assumes parameters are centered at zero with normally distributed deviations

35



[42]. The variance σ2 controls the spread of the distribution. Various techniques like cross-
validation or empirical Bayes can be used to learn σ [15, 13]. Overall, the Gaussian prior is
a convenient choice when parameters are expected to be smooth and lack sparsity.

2.3.2.3. The Horseshoe Prior
Horseshoe prior was first introduced by Carvalho, Polson, and Scott in their 2009 paper

[15]. This prior is known for its ability to produce sparse estimates, such as estimates
that set many of the regression coefficients to zero. This is achieved by placing a heavy-
tailed distribution on the coefficients, that allow for large variability in their magnitudes,
while also shrinking many of them towards zero. It would be done by assuming a global
scale parameter on the regression coefficients to control their shrinkage towards zero. The
horseshoe estimator assumes that the coefficients are drawn from a normal distribution with
a mean zero and a scale parameter that is allowed to vary across different coefficients. The
scale parameter is itself drawn from a half-Cauchy distribution, which has heavy tails and
allows for the possibility of large-scale parameters.

The horseshoe prior can be represented as follows. Let Y be a vector of observations, X

be a matrix of predictors, and β be a vector of regression coefficients. The linear regression
model can then be written as:

Y = Xβ + ϵ, (2.3.9)

where ϵ is a vector of noise (error) [16]. The horseshoe estimator places a prior distribution
on β

βi|λi, τ ∼ N (0, τ 2λ2
i ),

λi ∼ C+(0,γ),

γ ∼ C+(0, σ),

where τ is a global shrinkage parameter that controls the overall amount of shrinkage
applied to the coefficient and it does not depend on index i, λi is a local shrinkage parameter
that the tail of the distribution exhibits a slower decay compared to an exponential rate,
which prevents significant shrinkage of βi. The local shrinkage parameter ,λi, is drawn from
a half-Cauchy distribution with scale parameter γ.

Besides, the half-Cauchy distribution has the following density function:

p(λi) = 2γ

π(λ2
i + γ2) , (2.3.10)

when γ is the scale parameter.
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There is no closed-form density function for the horseshoe prior since the distribution is
defined in terms of the scale and global shrinkage parameters. However, there are upper and
lower bounds for the horseshoe estimator that are given by

If lim
β→0

p(β) = ∞

Ifβ ̸= 0

Then,
K

2 log(1 + 4
β2 ) < p(β) < Klog(1 + 2

β2 ) (2.3.11)

when K = 1/(2π3) 1
2 . Here are Figure 2.1 and Figure 2.2 which shows different priors and its

tails [16] .

Fig. 2.1. Comparing of different priors, adapted from [16]

Fig. 2.2. Comparing of different priors’ tail, adapted from [16]

2.3.2.4. Advantages of using the horseshoe prior for sparsity
The horseshoe prior [16]; offers several notable advantages that make it well-suited for

inducing sparsity in statistical models [10].
• The horseshoe prior exhibits a sharper peak at zero and heavier tails compared to

alternatives like the Laplace prior. Therefore, it is able to shrink small signals to zero
while leaving large signals relatively untouched This is due to its "global-local" scale
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mixture structure, where the global parameter adapts to the overall sparsity and the
local parameters identify signals.

• the horseshoe adaptively adjusts the degree of sparsity via its local-global shrinkage.
The global parameter modulates the overall sparsity, while the local parameters tune
the sparsity specific to each data point. This flexibility suits the horseshoe well to
data where sparsity levels vary.

• the horseshoe prior has theoretical optimality properties related to minimax concave
penalization that make it robust for sparse estimation tasks.

• The horseshoe estimator has been shown to have good performance for prediction and
estimation in sparse linear regression models. It provides robustness against signals
of varying magnitudes.

• The horseshoe prior has heavy tails which makes it robust to outliers compared
to methods like the Lasso. The Lasso shrinks large coefficients which can lead to
bias. In cases where outliers or extreme data points are present, the horseshoe prior
demonstrates robustness. It can effectively mitigate the influence of outliers on the
estimation process, contributing to more robust and reliable results.

• Various extensions of the horseshoe have been developed for generalized linear mod-
els and other likelihood models beyond Gaussian data. This provides flexibility com-
pared to methods like Lasso which were designed for linear models. The horseshoe is
computationally efficient compared to Bayesian spike-and-slab models which require
exploring a huge model space.
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Chapter 3

Cosmological context

In Section three of this thesis, we explore gravitational lensing. This phenomenon offers cru-
cial insights into the structure of the Universe. By understanding the theoretical foundations
of gravitational lensing and its significance in astrophysics, we lay the groundwork for our
proposed sparse Bayesian approach to reconstructing background galaxies.

3.1. Gravitational lensing
Within the framework of General Relativity, gravity is interpreted as an outcome of

space-time curvature caused by the presence of massive objects. A consequential prediction
of this theory is the deflection of light as it propagates through curved space-time. This
prediction was experimentally verified for the first time in 1919 during Eddington’s solar
eclipse expedition, where the bending of starlight around the sun confirmed Einstein’s the-
ory [24]. Since then, gravitational lensing has matured into a well-established cosmological
tool, widely employed to explore and comprehend the structure and dynamics of the uni-
verse. One approach to analyzing gravitational lens images involves pixelizing the source
light distribution, particularly suitable for high-resolution, high signal-to-noise ratio data
of multiply imaged extended sources. Demonstrating linearity in the step of inverting the
image to obtain the deconvolved pixelized source light distribution, along with its associated
uncertainties, significantly simplifies parameter estimation [70]. Another pixelated method is
employed to model both the lens potential and the source-intensity distribution concurrently
[65].

3.1.1. The basics of gravitational lensing

Gravitational lensing is a phenomenon in which the path of light from a distant galaxy is
bent by the gravitational field of a foreground galaxy or cluster of galaxies. In the realm of
gravitational lensing, the influential entity responsible for bending light is referred to as the
"lens." This lens can take two forms: either point-like, exemplified by a star, or extended, as



observed in the case of a galaxy or a galaxy cluster. Conversely, the luminous entity whose
light undergoes deflection is termed the "source". The source may be a background galaxy or
a distant quasar. Gravitational lensing causes the appearance of background galaxies to be
distorted and can result in arcs or multiple images of the same galaxy as shown in Figure 3.2.

Fig. 3.1. Gravitational lensing effect, adapted from esahubble.org by NASA, ESA & L.
Calçada

There are two categories of gravitational lensing as we could see in Figure 3.1:
1) Strong lensing, which results in multiple images of background sources, often in forms

of extended arcs or Einstein rings.
2) Weak lensing, which causes subtle distortions (e.g. minor stretching) that require a

substantial amount of observational data and multiple source to extract meaningful infor-
mation through complex statistical frameworks [6].

In this work, we only study the case of strong gravitational lensing and focus on the in-
ference of the morphology of background sources given the true foregound lensing distortion.

Redshift is another important concept in gravitational lensing. Redshift can also occur
due to the gravitational influence of massive objects (gravitational redshift) and the expan-
sion of space (cosmological redshift). It is a measure of the change in wavelength of light
from a distant galaxy as it travels through space and is affected by the expanding Universe.
The redshift of a galaxy can be used to determine its distance from Earth and its velocity
relative to the observer.

3.1.2. Deflection angle

The idea that photons may be deflected by a mass located along their path was originally
expressed by Newton in the context of the Corpuscular Theory of Light (Newton, I., 1704),
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Fig. 3.2. Strong and Week Gravitational lensing, adapted from frontierfields.org by A. Feild
(STScI)

and it was later confirmed and explained by Einstein’s theory of General Relativity. As per
this theory, the characteristics of space-time are contingent on its energy-matter distribution.
Consequently, the gravitational influence of masses positioned between the source of light
and the observer leads to the bending of light paths. To calculate the angle of deflection
for the light path, we employ an assumption that the deflection angle is very small, a valid
approximation in many astrophysical scenarios. This approximation necessitates that the
Newtonian gravitational potential of the lens, denoted as Φ, satisfies the condition Φ/c2 ≪ 1.
Alternatively, an equivalent requirement is that the size of the lens should be considerably
smaller compared to the dimensions of the optical system, encompassing the observer, the
lens, and the source. Within this approximation, the Minkowski metric, which characterizes
the undisturbed space-time, undergoes slight modifications due to a small perturbation.
Consequently, the line element can be expressed as follows:

ds2 =
(

1 + 2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
(dx⃗)2 (3.1.1)

Light travels on null geodesics, for which ds2 = 0, thus the light speed in the gravitational
field is
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c′ = dx⃗

dt
= c

√√√√1 + 2Φ/c2

1 − 2Φ/c2 ≈ c

(
1 + 2Φ

c2

)
(3.1.2)

Since Φ ≤ 0, we have c′ ≤ c. Then, we can describe the space-time as a medium with
effective refraction index

n = c

c′ = 1
1 + 2Φ/c2 ≈ 1 − 2Φ

c2 ≥ 1. (3.1.3)

Employing Fermat’s principle it can be shown [52] that the deflection angle is

̂⃗α(b) = 2
c2

∫ +∞

−∞
∇⊥Φdz (3.1.4)

Under the provided assumption, light rays their path in the direction of e⃗z and encounter
the lens at a point with a specific impact parameter b when passing through the plane located
at z = 0. This outcome remains applicable when the spatial scales under consideration are
smaller than the distances separating the source, lens, and observer, and if the time scale
is sufficiently brief to render the universe’s expansion insignificant. In case of a point mass
equation (3.1.4) reads

| ̂⃗α|(b) = 4GL

c2b
(3.1.5)

where L is the mass of the lens.
Since the deflection angle of a mass L exhibits a linear dependence, when dealing with

multiple lenses represented by Li where 1 ≤ i ≤ N , their collective deflection angle can be
determined by adding together their respective individual deflection angles.

̂⃗α(ξ⃗) =
∑

i

̂⃗αi(ξ⃗ − ξ⃗i) = 4G

c2

∑
i

Li
ξ⃗ − ξ⃗i

|ξ⃗ − ξ⃗i|2
. (3.1.6)

Here ξ⃗i are the positions of the lenses, ξ⃗ represents the position where the deflection angle
is calculated.

In the field of astrophysics, employing this thin lens approximation is common and ap-
plicable to most scenarios. This approximation represents the lens as a surface mass density,
enabling a simplified yet effective description of the gravitational lensing phenomenon.

Σ(ξ⃗) = 4G

c2

∫ +∞

−∞
ρ(ξ⃗, z)dz (3.1.7)

ρ is the three-dimensional density of the lens, ξ⃗ defines a position on the lens plane and e⃗z

is the direction perpendicular to it. The thin lens approximation is applicable due to the
substantial differences in distances between the observer, lens, and source compared to the
physical size of the lens. Figure 3.3 illustrates the geometrical arrangement of a gravitational
lensing system, where the sources are presumed to lie on a plane. This approximation allows
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for a simplified representation of the lens as a surface mass density, facilitating the study of
gravitational lensing phenomena while maintaining the logical integrity of the system.

Fig. 3.3. Typical configuration of a lensing system, adapted from [51]

Under this approximation, the calculation of the deflection angle is given by:

̂⃗α(ξ⃗) = 4G

c2

∫ (ξ⃗ − ξ⃗′)Σ(ξ⃗′)
|ξ⃗ − ξ⃗′|2

d2ξ′ (3.1.8)

3.1.3. Lens equation

The lens equation establishes a coordinate transformation, mapping the true position of
a source in the universe (vector β) to its observed position (vector θ) in a two-dimensional
plane. This transformation is pivotal in gravitational lensing, as it allows astronomers to
trace the apparent distorted image back to its original alignment.

The influence of gravitational lensing relies on the relative positions and distances among
the observer, lens, and source. To measure the angular diameter distances in astronomy,
redshifts are an observational tool. The angular diameter distance is a way of expressing
how large an object appears (its angular size) and how far away it is. We will examine a lens
situated at an angular distance DL (or equivalently, redshift zL), which alters the path of
light emitted by a source at an angular distance DS (or redshift zS). To measure the angular
diameter distances in astronomy, redshifts are a fundamental observational tool. The angular
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diameter distance is a way of expressing how large an object appears (its angular size) and
how far away it is.

If the true position of the source is β⃗, it will appear as if it was located in θ⃗ because of
the deflection angle ̂⃗α, as shown in Figure 3.3.

If θ⃗, β⃗, ̂⃗α are small, the lens equation relates the true and apparent positions of the
source:

θ⃗DS = β⃗DS + ̂⃗αDLS. (3.1.9)

Here DLS represents the distance between the lens and the source.
Moreover, introducing the reduced deflection angle

α⃗(θ⃗) ≡ DLS

DS

̂⃗α(θ⃗) (3.1.10)

equation (3.1.9) would be:
β⃗ = θ⃗ − α⃗(θ⃗). (3.1.11)

Equation (3.1.9) is usually written in a dimensionless form. Considering the length scale
ξ0 on the lens plane and the corresponding length scale η0 = ξ0DS/DL on the source plane,
we can define the two vectors

x⃗ ≡ ξ⃗

ξ0
, y⃗ ≡ η⃗

η0
and the lens equation writes

y⃗ = x⃗ − α⃗(x⃗) (3.1.12)

where
α⃗(x⃗) = DLDLS

ξ0DS

̂⃗α(ξ0x⃗). (3.1.13)

Gravitational lensing conserves surface brightness. In other words, it can be seen as the
values of a scalar field under a coordinate transformation. The scalar field here represents
the intensity of the image of the background source. A region of the source at position β

now appears at a different position θ (or possibly multiple positions), but each image has the
same intensity as the true source. This means that our model of gravitational lenses that
have two sets of parameters (parameters η describing the mass morphology in the foreground
lens causing spacetime distortions and parameters S describing the true image of background
sources) are linear in the surface brightness parameters. In a simulator, if a pixel representing
the true light intensity in the background is doubled, then all the intensity of all its images (in
the distorted and lensed image) will be also doubled. This means that given the foreground
lens parameters, µ, the physical model could be written as a linear equation

y⃗pixels = L(η) S⃗brightness (3.1.14)

where L is a distortion matrix that needs to be calculated using a ray-tracing simulation
code for the foreground parameters η.
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3.1.4. Exploring Gravitational Lensing

Gravitational lensing analysis involves the intricate task of understanding the impact of
massive objects on the paths of light rays, resulting in the distortion of observed images.
The goal of such analysis is two-fold. Gravitational lensing analysis seeks to achieve two
primary goals:

1- Inferring the undistorted image of the background source galaxy. This involves recon-
structing the original appearance of the galaxy before lensing effects distorted its shape and
brightness.

2- Determining the form of the distortion caused by lensing. This requires modeling the
mass distribution of the foreground lens and how it deflects light rays from the background
galaxy.

In this work, we aim to address the intricate task of understanding the impact of massive
objects on the paths of light rays, resulting in the distortion of observed images. Our primary
focus lies in the reconstruction of the distorted images of the background galaxy. By delving
into the methodologies and techniques associated with this endeavor, we navigate through
the challenges posed by lensing-induced distortion. It’s noteworthy that throughout the
thesis, we assume the correct mass distribution for the lens. This assumption provides a
foundational framework for our exploration, particularly in the context of background image
reconstruction.

In conclusion, Chapter 3 has provided a thorough exploration of the linear modeling
framework for gravitational lensing, culminating in the formulation y⃗pixels = L(η) S⃗brightness.
This model serves as a cornerstone for our subsequent analyses, allowing us to predict and
understand the distortion effects on observed light with greater precision.

As we move to Chapter 4, we will introduce the starlet transform as a tool for decomposing
astronomical images into their constituent layers. Furthermore, the incorporation of the
horseshoe prior in our methodology will be discussed, illustrating its role in reinforcing the
sparsity of our model.
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Chapter 4

Starlet Wavelet transform

Recovering the original source image is an ill-posed inverse problem due to the information
loss induced by lensing, limited resolution, and noise. To address this challenge, we need
to infer the properties of the unlensed source based on the available distorted image. This
requires parameterizing the source using a suitable model or basis representation. Com-
mon approaches include representing the source on a pixel grid or expanding it in terms of
shapelet basis functions. Utilizing multiscale methodologies like the wavelet transform en-
ables the segmentation of an image into distinct components across varying scales, making it
particularly suited for the examination of astronomical data. The wavelet transform stands
as a potent time-frequency analysis technique devised to address the Fourier transform’s
limitation regarding local capability in the time domain. It possesses crucial attributes,
including strong localization characteristics in both time and frequency domains, and the
ability to furnish frequency details for each sub-band of a signal. In broader terms, the most
effective data breakdown results in the sparsest representation, where only a few coefficients
are significantly large, while the majority are nearly zero.

4.1. Wavelet Introduction
Wavelets are a broad category of functions, characterized by their localization in both

time and frequency domains, enabling efficient representation of non-stationary signals [38].
Analyzing a signal through its wavelet coefficients allows for the identification of features

across different scales and positions, in contrast to Fourier analysis, which is restricted to
scale.

In the context of sparse regularization for inverse problems, our interest in wavelets arises
from their capacity to provide sparse representations for most natural signals. However,
the choice of a specific wavelet type can significantly impact the quality of the result in
sparse recovery applications. Hence, careful consideration should be given to selecting an
appropriate wavelet for a given application [33, 61, 56].



In astronomy, wavelets have found broad applications spanning data filtering, deconvo-
lution, and the detection of celestial objects like stars and galaxies, as well as the removal
of artifacts like cosmic rays. Recent sparse representations such as ridgelets and curvelets
have emerged for detecting anisotropic features like cosmic strings in the cosmic microwave
background[60, 41].

SLITronomy, a sparsity-based method employing wavelets to characterize lensed sources
and optimize parameters within an analytical lens mass profile. It demonstrates wavelets’
effectiveness in reconstructing highly detailed substructures in lensed sources, especially in
high-resolution images expected from future telescopes[27]. A wavelet-based method for
modeling galaxy-scale strong gravitational lenses, Demonstrated on simulated Hubble Space
Telescope (HST) data. It accurately captures diverse mass substructures, including dark
matter subhalos and galaxy-scale multipoles [28].

The à trous wavelet transform, another type of wavelet, offers the benefit of providing
a stable, uniformly distributed, and translationally invariant conversion, making it particu-
larly suitable for applications in the analysis of astronomical data [33, 56]. Various scaling
functions can be employed with the à trous wavelet transform, allowing for flexibility in
adapting to different data characteristics and analysis requirements. Selection of the scaling
function is determined by the unique properties of the image and the specific information
sought to be extracted from it [69, 1].

In order to analyze the structure and its changes over time in an astronomical object,
it is necessary to decompose the imaged object’s structure into a collection of significant
structural patterns (SSP) that can be effectively monitored across a series of images. This
is commonly achieved by matching the structure with predetermined templates (like two-
dimensional Gaussians, disks, rings, or other shapes) [66, 66]. Furthermore, permitting their
parameters to fluctuate is essential. However, it is evident that to achieve a robust structural
decomposition without relying on preconceived notions, the generic shape of these patterns
must also be allowed to vary [41]. To enhance the method’s robustness even further, the
multiscale approach is expanded to include object detection, following a similar methodology
to that developed for the multiscale vision model [49, 58]. In related research on object and
structure detection [40, 54].

The discrete wavelet transform (DWT) is another type of the wavelets. It refines this
by discretizing the scale and translation of the fundamental wavelet [3, 18]. The wavelet
transform also offers frequency information of an image. The wavelet coefficients undergo
rearrangement in a newly structured manner dictated by the parent-child relationship among
the sub-bands. This paper [73] proposes new method to devise scanning modes that leverage
direction information from high-frequency sub-bands and introduce an optimized measure-
ment matrix with a double allocation of measurement rate.
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4.1.1. Parameterizing the Background Source

We begin our exploration by discussing the parameterization of background sources and
inference techniques. The choice of parameterization provides flexibility in modeling the
intrinsic galactic morphology and substructures.

One common approach is to use mathematical functions that describe the intrinsic mor-
phology of galaxies such as Gaussian or Sersic light profiles. The Sersic profile stands out as
a widely used model . In this case, the intensity of the background source at location β can
be computed as a simple function of the variables describing the system [68, 17, 53].

The Sersic profile provides a functional form for the intensity distribution of a galaxy,
characterized by a single parameter called the Sersic index, denoted by n. This index controls
the shape of the intensity profile, ranging from compact, centrally concentrated distributions
for small n values to more extended, diffuse profiles for larger n values. Mathematically, the
Sersic profile can be expressed as:

I(β) = I0 exp
[
−bn

((
r

re

)1/n

− 1
)]

(4.1.1)

where I(β) represents the intensity of the background source at location β,I0 is the
intensity at the center of the galaxy, r is the distance from the center of the galaxy, re is the
effective radius, defining the radius containing half of the total luminosity of the galaxy, and
bn is a constant that depends only on the Sersic index n.

This formulation allows us to model the brightness distribution of galaxies with varying
degrees of complexity, capturing both the central concentration and outer extent of their light
profiles. Such parameterization facilitates the inference process, enabling us to estimate the
intrinsic properties of the background sources from their observed, lensed counterparts.

The advantage of this approach is that the highly smooth surface brightness resulting from
simple functional forms acts as implicit regularizers. Therefore, regularization is effectively
achieved by the choice of the functional form to represent surface brightness. Additionally,
the low number of latent variables describing the system allows for easy inference in low-
dimensional spaces.

However, these approaches can only represent relatively simple galaxy morphologies.
Clumpy and complex structures with spiral arms or other complexities can not be represented
by such low dimensional variables and simplistic functional forms.

To achieve more detailed representations, higher dimensional basis functions are used.
For example, one approach is to represent the source on a pixel grid, where each pixel
intensity is a parameter to be inferred. This can be computationally expensive for high-
resolution images and requires well-defined priors (i.e. regularization) is high dimensional
space of pixels.
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An alternative is to expand the source in another basis of functions, such as shapelets,
wavelets, or sparsity-promoting dictionaries. The coefficients of the basis functions become
the parameters to infer. This compresses the image into fewer parameters [8, 48, 59, 20].

The advantage of these alternative high dimensional representations is that the basis
functions can be somewhat optimally designed for the signal of interest so that only the
combination of only a small number of them could reproduce complex signals. In this way,
the Bayesian prior, instead of explicitly defining a probability density function in the high
dimensional space of parameters, can be only enforced by requiring sparsity, meaning that
we desire that the signal be reconstructed with only a small number of the available basis
functions.

For wavelet expansion, the wavelet coefficients are the parameters of interest. The forward
process applies the wavelet transform to the source image to obtain the coefficients. Fitting
the model involves inferring these coefficients based on the observed lensed image.

The wavelet basis provides localization and sparsity, facilitating reconstruction. We will
focus specifically on the starlet wavelet transform for its effectiveness in analyzing astronom-
ical images. The starlet coefficients will form the parameters for our source model.

In the wavelet domain, we can apply regularization techniques and priors to solve this
ill-posed inversion problem. The choice of basis functions plays a key role in the source
inversion methodology.

4.1.2. Introduction to the Starlet basis

In general, a signal S, is considered sparse if most of its values are zero. Alternatively,
a signal can be considered weakly sparse or compressible if only a few of its values have a
large magnitude, while most of the other entries are in proximity to zero. In cases where a
signal does not demonstrate sparsity, it can be converted into a sparse signal through the
application of a designated data representation method. It is feasible to express a matrix
signal (here called S) as a linear combination of T basic waveforms, known as elementary
waveforms. It could be shown as follows

S = Φα =
T∑

i=1
α[i]ϕi, (4.1.2)

where Φ = [ϕ1, ..., ϕS], and α[i] = [S,ϕi] are the decomposition coefficients of S. The Isotropic
Undecimated Wavelet Transform (IUWT)[62, 64, 58], known as the starlet wavelet trans-
form, is renowned in the field of astronomy for its excellent applicability to astronomical
data. Employing a multi-scale pixel representation, wherein each pixel in the input image
corresponds to a set of pixels in the multi-scale transform. This wavelet transformation
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is particularly adept at identifying isotropic features, explaining its efficacy in astronomi-
cal image processing, consisting mainly of isotropic or quasi-isotropic objects such as stars,
galaxies, or galaxy clusters [60].

The starlet transform has several advantages over other wavelet transforms, including its
fast and efficient computation, its ability to separate the noise from the image structure, and
its ability to preserve the isotropy and rotational symmetry of the image features. These
properties make it a popular choice for a variety of image processing tasks, including denois-
ing, deconvolution, and feature extraction. The Starlet wavelet transform decomposes the
galaxy image, S0 of the size N ∗ N into a set of coefficients as follows:

S0[k,l] = SJ [k,l] +
J∑

j=1
wj[k,l], (4.1.3)

where W = {w1,...,w1, S0} is a coefficient set while wj represents the details of S0 at scale
2−j and SJ is a coarse version of the S0. When J = 1 represents the finest scale and there
are J + 1 sub-band arrays with the same dimensions as S. The process of decomposition is
accomplished through the utilization of a filter bank. When δ is a Dirac function and h1D

is 1D filter and the tensor product of two h1D is h2D. The transition from one level to the
subsequent level is achieved through the utilization of the algorithm as followes:

Cj+1[k,l] =
∑
m

∑
n

h1D[m]h1D[n]cj[k + 2jm, l + 2jn],

wj+1[k,l] = Cj[k,l] − Cj+1[k,l],

Assuming a B3-spline for the scaling function,

ϕ(x) = B3(x) =

( 1
12 |x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x + 1|3 + |x + 2|3),

when
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16
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Regarding the Reconstruction of the starlet, the original map can be accurately replicated
by combining all wavelet scales through a straightforward co-addition process. In Figure 4.1,
we demonstrate the decomposition of the original lensed galaxy and its coefficients across
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scales j = 1 to 6, providing insight into the hierarchical structure and features of the galaxy.

Fig. 4.1. decomposition of the original lensed galaxy and its Coefficients from scales j=1
to 6

4.1.2.1. The starlet basis promotes sparsity in different scales
The starlet transform [58] provides a multiscale wavelet decomposition well-suited for

analyzing astronomical images. It returns J new images xj of equal size to the original
image x, with each xj corresponding to convolution with a filter amplifying features at scale
2j pixels:

xj = hj ∗ x (4.1.4)

where hj is the wavelet kernel at scale j. The final smoothed image represents coarse-
grained averaging. The number of scales depends on the image size npix:

Jmax = ⌊log2 npix⌋ (4.1.5)

The transform operator ΦT produces coefficients αααx = ΦT x. The inverse Φ reconstructs
x = Φαααx.

In Chapter 4, we have examined the role of the transform operator and its coefficients
in image reconstruction. Building on this foundation, Chapter 5 will introduce the practical
application of these principles to astronomical imaging. We will specifically discuss how
the starlet transform can be used to model the background of astronomical images, thereby
allowing for a clearer analysis of lensed galaxies. Additionally, we will describe the use of
the horseshoe prior in Bayesian inference to promote sparsity, which is expected to improve
the accuracy of our image reconstructions.
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Chapter 5

Methodology

This chapter provides a comprehensive overview of the key methodologies central to our
study - Bayesian computation using Markov Chain Monte Carlo (MCMC) sampling and the
synergistic combination of the Horseshoe prior with the Starlet wavelet transform. MCMC
methods empower us to effectively sample from complex posterior distributions. This enables
rigorous Bayesian analysis when deriving posterior estimates and uncertainties for model pa-
rameters is intractable. By constructing Markov chains that converge to the target posterior,
MCMC generates representative samples that can estimate expectations of interest.

A major contribution of this work is showcasing the effectiveness of combining the Horse-
shoe prior with the Starlet wavelet basis for regularized sparse modeling of galaxy images.
The Horseshoe prior complements this wavelet sparsity through its adaptive shrinkage be-
havior that aggressively penalizes insignificant values while retaining important features.
Together, the joint sparsity induced by the Starlet basis and horseshoe regularization con-
strain the ill-posed inverse problem of reconstructing lensed galaxy images.

By leveraging Bayesian computational tools like MCMC, this chapter establishes a
methodological framework to perform accurate and efficient analysis of distorted astronom-
ical images.

5.1. Methodology
5.1.1. Data Preprocessing

5.1.1.1. Constructing the Lensing Matrix
In the context of gravitational lensing, lensing matrix, L, operates as a critical inter-

mediary, facilitating the conversion of pixel clusters from the true (unknown) image to the
(observed) distorted arcs. This matrix effectively encodes a coordinate transformation and
distorts a scalar field represented by an image. To illustrate, consider a scenario where four
adjacent pixels within the observed image collectively originate from a single pixel within



the original galaxy image. L acts as a mathematical operator, mapping the intensity of the
original pixel onto these four observed pixels. In this study, L is a sparse matrix with a size
of 40,000 × 10,000.

To construct L, a ray tracing simulation with parameters η is performed and the source-
plane and image-plane coordinates of pixels are used to determine the mapping between
pixels.

Fig. 5.1. Lensing function

5.1.1.2. Image Conversion and Standardization
To develop our methodology, we need to simulate the effect of lensing and data collection

and then analyze the mock data with our inference methods, trying to recover the known
ground truth used in the simulations. Of course, these simulations require an undistorted
image for the background galaxies. These ground truth images are standardized in our
pipeline by resizing the true image, xtrue, to achieve a predetermined dimension of 100×100
pixels. This step not only ensures that the image has the same resolution for analysis (to
match the size of delensing matrix L) but also reduces computational complexity during
further processing.

When dealing with color images in the form of a three-dimensional array, each pixel is
characterized by its red, green, and blue color components. Since gravitational lensing is
achromatic, these color channels could be treated independently and separately. Therefore,
in our work we only focus on grayscale images, noting that more color information can be
treated with the same methodology applied multiple times.
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To convert RGB images to grayscale, we calculate the average of the red, green, and blue
pixel values for each pixel. By doing so, the individual contributions of each color channel’s
lightness or luminance are blended into a cohesive grayscale approximation.

The resized image is converted into a format suitable for analysis by reshaping the 2D
image matrix, 100 × 100 into a 1D vector of 10,000 × 1.

The normalization process is critical in preparing the image data for subsequent analysis,
as it alleviates the impact of varying intensity scales that can result from distinct imaging
conditions, sensor characteristics, or exposure settings. By transforming the data into a
standardized range. The normalized pixel intensities become directly comparable across dif-
ferent images, making it possible to focus on the gravitational lensing effects and underlying
astrophysical features. Each element in the vector corresponds to the grayscale intensity of a
specific pixel in the image. The pixel intensity values are originally represented as grayscale
values ranging from 0 to255, where 0 corresponds to black and 255 corresponds to white.
To achieve normalization, the pixel intensity values are divided by the maximum possible
intensity value, i.e., 255. This division operation effectively scales down all pixel values to
lie within the unit interval [0, 1].

5.1.2. Lensed Image Simulation

To produce mock data for analysis (where the ground truth is known), we use the matrix L

calculated with a ray-tracing code, to produce distorted images of our galaxy images, yielding
a synthetic "lensed" image. This image, stored as matrix D, mirrors what would be observed
through the gravitational lens. The matrix D is produced through a linear transformation
of our true image. This process involves the multiplication of two key constituents: the
transpose of matrix L with a size of 40,000 times 10,000, and the normalized galaxy image
data, with a size of 10,000 × 1. Figure 5.2 shows a lensed galaxy with a simulated noisy
data.

5.1.3. Simulating Noise

After generating the simulated observation based on the lensing matrix and standardized
data, the next step is to add noise. Real data is always noisy, due to various physical processes
(photon shot noise, read-out noise, thermal noise, etc.). Although the true statistics of noise
could be potentially complex, thanks to the Central Limit Theorem, noise is often very well
approximated by a normal distribution. This is because many (possibly non=Gaussian)
stochastic effects contribute in an additive manner to the noise, resulting in an almost-
Gaussian behaviour.
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Fig. 5.2. Simulated noisy data of a lensed galaxy

To generate simulated noise, we produce random samples from a standard normal distri-
bution. The noise is subsequently added to the previously simulated lensed image resulting
in a noisy version of the observation.

This process of noise addition effectively simulates the various sources of noise encoun-
tered in astronomical observations, such as background noise, instrument noise, etc.

These steps yield two images: the Strue image, which encompasses the standardized
grayscale groud truth image of the background source, and y, the simulated noisy observation.
These images constitute the data for exploring, building and testing our analysis methods.

Figure 5.3 below showcases the flowchart corresponding subsection 5.1.1, which delineates
the sequence of steps involved in the data generation process for gravitational lensing, from
the construction of the lensing matrix to the simulation of noisy observational data.

5.2. Approaches for Solving the Inverse Problem
5.2.1. Bayesian Computation Using MCMC

5.2.1.1. Markov Chain Monte Carlo
Markov chain Monte Carlo (MCMC) methods are algorithms for sampling from complex

multidimensional probability distributions [12]. The key idea behind the MCMC algorithm
is to construct a Markov chain that converges to the target distribution as its stationary
distribution. After running the chain for a sufficient number of steps, samples can be drawn
to estimate expectations with respect to the target distribution.
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Fig. 5.3. Flowchart of the Gravitational Lensing Data Generation Process

Consider a probability distribution π(x) that is difficult to sample from directly, with
x ∈ X representing the state space. An MCMC algorithm constructs a Markov chain {Xt}∞

t=0

with state space X and transition kernel P (x′|x) that satisfies the stationary distribution
equation:

π(x) =
∫

X
P (x|x′)π(x′) dx′ (5.2.1)

This equation states that sampling x′ from the transition kernel P (·|x) and then sampling
x from the distribution π(x) yields the same joint distribution as sampling x from π(x) and
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then sampling x′ from P (·|x′) [12]. Therefore, if the chain is started in the stationary
distribution π(x), then each subsequent sample will also be drawn from π(x).

The transition kernel P (x′|x) defines the stochastic dynamics of the Markov chain and
is designed to satisfy detailed balance:

π(x)P (x′|x) = π(x′)P (x|x′) (5.2.2)

This condition, along with irreducibility and aperiodicity, ensures the Markov chain is
ergodic and has π(x) as its unique stationary distribution according to the Markov chain
convergence theorems [22].

After constructing the Markov chain, it is initialized at some state X0 = x0 and run for
N iterations until convergence to the target distribution π(x). Convergence can be assessed
using potential scale reduction factor, effective sample size, and other diagnostics [11]. The
samples {Xt}N

t=1 can then be used to estimate expectations with respect to π(x) via ergodic
averages:

E[f(x)] =
∫

X
f(x)π(x) dx ≈ 1

N

N∑
t=1

f(Xt) (5.2.3)

The central challenge in MCMC is designing the transition kernel P (x′|x) such that
detailed balance is satisfied while still allowing efficient exploration of the state space X .
Different MCMC algorithms use various strategies to construct suitable Markov chain dy-
namics.

5.2.1.2. Hamiltonian Monte Carlo
Hamiltonian Monte Carlo (HMC) is an MCMC algorithm that uses Hamiltonian dy-

namics to efficiently sample from complex multidimensional target distributions [45, 9]. It
introduces momentum variables and integrates Hamilton’s equations to propose transitions
between states.

As with all MCMC algorithms, HMC must satisfy detailed balance to ensure the correct
stationary distribution. This is achieved using the Metropolis acceptance criterion: given a
current state θ, a new proposed state θ∗ is accepted with probability

Pacc(θ, θ∗) = min
(

1,
π(θ∗)
π(θ)

)
(5.2.4)

where π(θ) is the target density. This accept/reject step compensates for any errors in
the proposals to recover the desired stationary distribution.

Consider a target probability distribution π(θ) that is difficult to sample from directly,
where θ ∈ Rd represents the parameters. HMC augments the parameter space with momen-
tum variables ρ ∈ Rd and defines a Hamiltonian function:
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H(θ, ρ) = U(θ) + K(ρ) (5.2.5)

where U(θ) = − log π(θ) is the potential energy and K(ρ) = 1
2ρT M−1ρ is the kinetic

energy with mass matrix M .
The dynamics of the Hamiltonian system are governed by Hamilton’s equations:

dθ

dt
= ∇ρH(θ, ρ) = M−1ρ (5.2.6)

dρ

dt
= −∇θH(θ, ρ) = −∇U(θ) (5.2.7)

These equations describe a deterministic proposal mapping (θ, ρ) → (θ∗, ρ∗) that pre-
serves volume in phase space and follows the contours of the target density [45]. This avoids
the random walk behavior of simpler MCMC algorithms.

Discretizing Hamilton’s equations with step size ϵ gives the leapfrog integrator which
approximates the true dynamics:

ρt+1/2 = ρt − ϵ

2∇U(θt) (5.2.8)

θt+1 = θt + ϵM−1ρt+1/2 (5.2.9)

ρt+1 = ρt+1/2 − ϵ

2∇U(θt+1) (5.2.10)

After sampling the momentum ρ from the Gaussian distribution N (0, M), the algorithm
proceeds with L leapfrog steps to simulate the Hamiltonian dynamics. Each leapfrog step
updates both the position θ and momentum ρ variables using the leapfrog integration equa-
tions. After simulating the dynamics for L steps, a Metropolis accept/reject step is applied
to satisfy detailed balance. The acceptance probability is calculated using the formula:

min (1, exp [H(θ, ρ) − H(θ∗, ρ∗)])

where (θ∗, ρ∗) represents the proposed state. This completes the description of the Hamil-
tonian Monte Carlo algorithm.

Algorithm 1 Hamiltonian Monte Carlo
Sample momentum ρ ∼ N (0, M)
Evolve (θ, ρ) → (θ, ρ) using L leapfrog steps
Accept (θ, ρ) with probability:

min (1, exp [H(θ, ρ) − H(θ∗, ρ∗)])

HMC, by approximating Hamiltonian dynamics, offers a more efficient exploratory mech-
anism in the parameter space than basic MCMC algorithms, primarily due to its avoidance
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of random walk behavior. The parameters L and ϵ can be tuned to trade off accuracy vs.
computational cost.

5.2.1.3. No-U-Turn Sampler
The No-U-Turn Sampler (NUTS) builds upon Hamiltonian Monte Carlo (HMC) by

adapting the trajectory length to efficiently sample from complex multi-modal posteriors
[32].

Whereas HMC requires manually tuning parameters like step size and number of leapfrog
steps, NUTS enhances efficiency by adaptively selecting the number of steps, recursively
building a candidate point set without the need for manual parameter tuning that trace out
a trajectory through the target distribution.

Starting from an initial state (θ, ρ), the NUTS algorithm uses a recursive build tree
procedure to extend the trajectory by applying leapfrog steps until some stopping criteria is
reached. This allows the path length to adapt based on the curvature of the target density.

The build tree algorithm is as follows:

Algorithm 2 BuildTree(j, θ, ρ, θ̄, ρ̄, ϵ, L)
if j = L then

return θ, ρ, s = j − 1
end if
Apply leapfrog update to get (θ′, ρ′)
if U(θ′) > U(θ̄) then

return θ, ρ, s = j − 1
else

(θ̄, ρ̄, s) = BuildTree(j + 1, θ̄, ρ̄, θ′, ρ′, ϵ, L)
end if
Apply leapfrog update to get (θ′′, ρ′′)
return θ̄, ρ̄, s

By recursively applying leapfrog steps in this way, NUTS adapts the trajectory length
while avoiding wasteful random walks or retracing of steps. This enables efficient exploration
of complex posteriors without extensive parameter tuning.
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Algorithm 3 Hamiltonian Monte Carlo Overview
1: Initialization: Start with an initial state x(0) and momentum p(0)

2: Simulate Hamiltonian dynamics: Propose a trajectory by numerically solving Hamil-
ton’s equations using leapfrog integration.

3: Termination Criterion: Detect U-turns in the trajectory to determine whether the
chain should continue or terminate.

4: Metropolis Acceptance: Accept the proposed state with a probability that balances
exploration and exploitation.

5: Repeat: Generate subsequent states by iteratively applying the algorithm.

Advantages of using NUTS is that the NUTS eliminates the need to manually set tun-
ing parameters and adaptively adjusts the trajectory length, leading to faster convergence
and reduced autocorrelation among samples. Its ability to explore complex distributions
efficiently makes it a valuable tool in Bayesian inference.

5.2.2. The proposed approach for galaxy image reconstruction us-
ing HMC

This subsection outlines our proposed method for reconstructing galaxy images using the
Hamiltonian Monte Carlo (HMC) technique. We present an algorithm that systematically
outlines the key steps involved in this approach. Beginning with the acquisition of a noisy
lensed image , y, and the initialization of a wavelet transform, we subsequently define the
likelihood function connecting the observed image to the image coefficients. Incorporating
a prior distribution on these coefficients, such as the horseshoe prior, we employ HMC
to sample from the posterior distribution. This leads to the reconstruction of the source
image, Destimated, and finally, the estimation of the source image through posterior mean
calculations. The following algorithm encapsulates these steps, providing a comprehensive
overview of our proposed methodology.

Algorithm 4 The proposed method for galaxy image reconstruction based on HMC
1: For galaxy image Dtrue and lensing operator L , obtain noisy lensed image y
2: Initialize wavelet transform with J scales
3: Define likelihood p(y|c) relating image to coefficients c
4: Set prior p(c) on coefficients (e.g. horseshoe)
5: Run HMC to sample from posterior p(c|y)
6: Reconstruct source images Destimated from posterior samples of c
7: Estimate source image as posterior mean D̂ = E[Sestimated|y]
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5.2.3. Methodological Foundations: Probabilistic Reconstruction
of Lensed Images

In the reconstruction of lensed galaxy images, a pivotal role is played by the integration
of Hamiltonian Monte Carlo (HMC) and the starlet transform, a combination that facili-
tates a robust and efficient inference process as shown in Figure 5.4. The starlet transform,
renowned for its ability to provide a sparse representation of galaxy images across different
scales, is utilized to decompose the background source image into a set of coefficients. These
coefficients are then treated as the parameters of our model, encapsulating the intricate
details of the galaxy’s structure. The HMC algorithm, with its proficiency in navigating
through complex, high-dimensional parameter spaces, is employed to infer these starlet co-
efficients. By generating samples from the posterior distribution of the coefficients, HMC
ensures a thorough exploration of the parameter space, capturing the uncertainty and vari-
ability inherent in the reconstruction process. The proposed values of the starlet coefficients
are utilized to reconstruct the background source image through the inverse starlet trans-
form. Subsequently, this reconstructed image undergoes a lensing transformation, aligning
it with the observational data (denoted as S). The likelihood of observing D, given our
model parameters, is then computed, providing a quantitative measure of the goodness-of-fit
between the lensed, reconstructed image and the actual observed data. This is supplemented
by a prior model, which encapsulates our prior beliefs and knowledge about the distribution
of the starlet coefficients, serving to regularize the solution and impose constraints that are
consistent with the physical nature of galaxy images.

Fig. 5.4. Illustratin of the Proposed Galaxy Image Reconstruction Methodology. This figure
outlines the step by step procedure for reconstructing galaxy images using the novel approach
described in this thesis. The methodology includes the incorporation of a lensing operator,
wavelet transform, likelihood and prior models, and Hamiltonian Monte Carlo sampling and
the lensed image
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5.3. Error Measures
In in all inference tasks, various error measures are employed to assess the quality of

reconstructed or processed data. In this section, we will discuss two commonly used error
measures: Mean Squared Error (MSE) and Structural Similarity Index (SSIM). We use these
error estimates to quantify the similarity of our reconstructed images of background sources
to the ground truths.

5.3.1. Mean Squared Error (MSE)

The Mean Squared Error (MSE) is a used error measure that quantifies the average
squared difference between the pixels of a reference image and a reconstructed image. It
provides a measure of the overall discrepancy between the two images.

Given a reference image I and a reconstructed image Î, the MSE is calculated as follows:

MSE(I, Î) = 1
N

N∑
i=1

(Ii − Îi)2 (5.3.1)

In Equation 5.3.1, N is the total number of pixels in the images, and Ii and Îi represent
the intensity values of the corresponding pixels in the reference and reconstructed images,
respectively.

A lower MSE value indicates a better resemblance between the reference and recon-
structed images, with a value of zero indicating a perfect match. However, MSE alone may
not always capture perceptual differences between images, and other factors such as noise or
distortion may affect its value.

5.3.2. Structural Similarity Index (SSIM)

The Structural Similarity Index (SSIM) is an error measure that takes into account not
only the pixel-wise differences but also the structural information and perceptual aspects of
the images. It aims to assess the similarity of the local patterns and structures between the
reference and reconstructed images.

The SSIM index is calculated as

SSIM(I, Î) = 2µIµÎ + c1 · 2σIÎ + c2

µ2
I + µ2

Î
+ c1 · (σ2

I + σ2
Î

+ c2)
,

where µI and µÎ are the average intensities of the reference and reconstructed images, respec-
tively, σI and σÎ are their respective standard deviations, and σIÎ is the covariance between
them. The constants c1 and c2 are small values added to avoid division by zero.

The SSIM index ranges between -1 and 1, with a value of 1 indicating perfect similarity.
A higher SSIM value suggests a better match between the images in terms of their structure
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and perception. SSIM is known to correlate better with human perception than MSE, making
it a valuable tool in image quality assessment.

Both MSE and SSIM provide useful information for evaluating image quality, but they
focus on different aspects. MSE primarily measures pixel-wise differences, while SSIM incor-
porates perceptual and structural similarities. It is often recommended to use a combination
of these measures to obtain a more comprehensive assessment of image fidelity and quality.
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Chapter 6

Results

6.1. Results
In this section, we present the results of applying the Bayesian framework presented

above with the Horseshoe prior and Hamilton Monte Carlo sampling to the reconstruction
of the true images of lensed galaxies. The goal is to infer the underlying structure of the
galaxy and its various scales of features from noisy observed data.

6.1.1. Description of the simulated data

In this section, we showcase the results derived from applying our proposed methodology,
which integrates the Horseshoe prior, Starlet wavelet transformation, and Hamilton Monte
Carlo (HMC) sampling to the tasks of reconstructing background galaxy images. To develop
and test our method, we use the image of a nearby galaxy that is not gravitationally lensed,
NGC4414, as a background source in strong lensing simulations and try to recover its undis-
torted image from simulated datasets. The image of NGC4414 is depicted in Figure 6.1.
This galaxy is a dusty barred spiral galaxy located in the Coma Berenices constellation. The
galaxy is characterized by a central bar, elegant spiral arms, and is situated approximately 60
million light-years away. Through this work, we aim to demonstrate the effectiveness of our
methodology in mitigating the effects of gravitational lensing and noise on the appearance
of the galaxy, ultimately yielding a clearer and more accurate representation of the structure
of lensed background galaxies.

Essential transformations were conducted to ensure that the galaxy images were rep-
resented appropriately within a numerical scale compatible with the proposed method de-
scribed in Sections 5 and 5.1.1. Following the data preparation steps outlined in Section
5.1.1, we transformed the image in Figure 6.1 into an observed lensed galaxy image. The left
subplot in Figure 6.2 presents the original NGC4441 galaxy image after grayscale conversion
and pixel intensity standardization. The right subplot in Figure 6.2 depicts the simulated



Fig. 6.1. Galaxy NGC 4414, Credit: The Hubble Heritage Team

(a) (b)

Fig. 6.2. (a) Preprocessed image of NGC 4441, illustrating the distribution of pixel inten-
sities (b) Noisy, lensed observation of NGC 4441

observed image, obtained by applying a lensing effect, multiplication by the matrix L, to the
original image, and adding noise, N (0,10), as detailed in Sections 5.1.2 and 5.1.3 respectively.
Figure 6.2 illustrates the data simulation pipeline utilized to generate realistic, noisy, lensed
images from original galaxy images, serving as a testbed for evaluating the reconstruction
methodology.

In the subsequent stage of our analysis, we employ the starlet transform, which facilitates
an effective multiscale wavelet analysis particularly apt for examining spiral galaxies such as
NGC 4414. This approach enables us to succinctly capture the galaxy’s overall shape as well
as its localized substructures, providing a comprehensive representation of its morphology.

This multi-resolution sparsification contributes to regularizing the ill-posed inverse prob-
lems associated with lensing reconstruction. In the case of NGC 4414, Figure 6.3 illustrates
the multiscale Starlet wavelet decomposition of the original galaxy image. The leftmost panel

66



shows the input galaxy image. The middle panels showcase the coefficient images obtained
at each wavelet scale. Brighter pixels indicate larger coefficient magnitudes. There are J = 6
scales displayed corresponding to different levels of image details. The coarsest scale coef-
ficient image reflects the smooth overall morphology, while finer scales capture increasingly
localized features.

The decomposition process hierarchically isolates features, ranging from the overall mor-
phology to the finest details. As we progress to finer scales, the coefficients become increas-
ingly sparse, highlighting only the most striking patterns. This multiresolution analysis is
instrumental in detecting and extracting pertinent structures within the galaxy. The sparsity
of the coefficients is a notable observation, with pixel brightness concentrating at specific
scales and spatial locations. This characteristic enables the compression of image content
into salient coefficients that represent the hierarchical structure of distinct image features.
At the finest scales, we observe the isolation of the most abrupt brightness variations, iden-
tifying features such as the core and spiral arms of the galaxy. Conversely, the coarsest
scale captures the extended shape of the galaxy, illustrating its overall structure. In essence,
this multiresolution analysis decomposes the galaxy image, transitioning from large-scale
brightness patterns to the minutiae of small-scale details.

Fig. 6.3. Illustration of multiscale decomposition of NGC 4441 via the Starlet wavelet
transform: The original galaxy image is presented in the left panel, the middle panels exhibit
the coefficient images at each of the 6 wavelet scales utilized, and the right panel depicts the
image reconstructed by summing all scales of the decomposition.
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6.1.2. Implementation Details and Probabilistic Framework

Our framework is implemented in Python, utilizing Pytorch and Pyro, and supplemented
by the integration of JAX for specific computational tasks. Pyro, as a flexible probabilistic
programming language, leverages the capabilities of PyTorch, such as automatic differentia-
tion and GPU acceleration.

In our probabilistic model, which focuses on reconstructing lensed galaxy images, we
treat the starlet coefficients, as illustrated in Figure 6.3, as parameters within a Bayesian
framework. The inference of the posterior distribution of these coefficients is carried out
using the Hamiltonian Monte Carlo (HMC) method, coupled with the No-U-Turn Sampler
(NUTS) for efficient sampling. JAX, in our framework, is employed for optimizing select
numerical computations.

As highlighted in subsection 5.2.3, the Starlet transform’s coefficients, are the parameters
we aim to infer using Hamiltonian Monte Carlo. After determining these coefficients, as
depicted in Figure 6.3, we apply the inverse starlet transform, utilizing functions such as
reconstruct_second_generation, to transform these coefficients back into the image space,
resulting in a reconstructed image of the background source. This reconstructed source is
then lensed using a lensing operator, and the resulting lensed image,Figure 6.4, is compared
to the observed data D, as shown in panel (b) of Figure 6.2. This comparison is conducted
within a likelihood framework, and together with an appropriately defined prior, it guides
the HMC algorithm in the inference process, ensuring the accurate reconstruction of the
background source image.

In the subsequent section, we will explore visual representations of our results, high-
lighting the effectiveness of our proposed methodology and the accuracy of our probabilistic
approach in reconstructing images of lensed galaxies.

6.1.3. Result Visualization

Here, we show the results of our inference using the Horseshoe prior and compare them
against the ground truth when using different priors such as the Laplace and Normal priors.

6.1.3.1. Image Reconstruction with Horseshoe Prior
The reconstructed image of NGC 4414, facilitated by the Bayesian inference model em-

ploying Horseshoe regularization, is exhibited in Figure 6.4. We have assumed that noise
follows a normal distribution N (0, 10).

Figure 6.5 illustrates the scales of the coefficients obtained through the Horseshoe regu-
larization. In the eight subplots, the hierarchical decomposition of the image reconstruction
is revealed. The first subplot, titled "Reconstructed Image," showcases the complete recon-
structed image. The following six subplots illustrate different scales of coefficients, with Scale

68



Fig. 6.4. Reconstructed image of Galaxy NGC 4414 with Horseshoe prior.

Fig. 6.5. Coefficients of the reconstructed image with Horseshoe prior, demonstrating the
hierarchical scale decomposition.

j = 1 representing the finest scale, and "Coarse Scale" showing the coarsest scale. The color
bars beside each subplot indicate the intensity values and their sizes are adjusted for clarity.
This figure provides valuable insights into the hierarchical structure of the reconstructed
image, revealing the contributions of different scales to the overall reconstruction.
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The reconstructed image underscores the effectiveness of our approach in extracting
meaningful information from noisy astronomical observations. In order to evaluate the ef-
fectiveness of our Bayesian inference model with Horseshoe regularization, we conducted a
comparative analysis between the reconstructed image and the ground truth image of NGC
4414.

Fig. 6.6. Comparative analysis of the Reconstructed Image (with Horseshoe Regularization)
versus the Ground Truth Image of Galaxy NGC 4414, accompanied by histograms of pixel
values.

Figure 6.6 presents a comprehensive comparison between the reconstructed image ob-
tained through our approach and the ground truth image. In the top-left subplot, the
reconstructed image is displayed, showcasing the galaxy’s features and structures that have
been extracted from the noisy data. On the top-right subplot, the ground truth image is
shown, providing a reference for the actual features present in NGC 4414.

Furthermore, the lower-left histogram illustrates the distribution of pixel values in the
ground truth image. In contrast, the lower-right histogram represents the distribution of
pixel values in the reconstructed image. By comparing these histograms, we can assess how
well our methodology captures the intensity distribution of the galaxy.
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The histograms in figure Figure 6.7 provide a detailed analysis of the coefficients’ distri-
bution for various scales in the reconstructed image achieved using Horseshoe regularization.
Each histogram corresponds to a specific scale, denoted by j. By examining these histograms,
we can gain insights into the statistical properties of the coefficients at different scales. The
histograms showcase the frequency distribution of the mean coefficient values.

Fig. 6.7. Histograms showcasing the distribution of mean coefficient values across different
scales in the reconstructed image with Horseshoe regularization

In order to provide a comprehensive analysis, we have considered a scenario in which no
regularization is applied to the source reconstruction. For this comparison, we assumed a
uniform regularization—effectively a scenario with minimal prior constraints. The resulting
image, as presented in Figure 6.8, serves to highlight the stark differences when regulariza-
tion is excluded. The contrasts are particularly evident; without the guiding influence of
a regularization term, the reconstruction tends to exhibit increased noise and less coherent
structures.

The reconstruction of the galaxy image of NGC4144 with horseshoe prior and different
levels of noise is shown in the following Figure 6.9. With the gradual escalation of noise
levels from 0 to 40, an observable trend emerges. The lensed and galaxy images progressively
manifest heightened degrees of blurriness. Throughout this noise-induced degradation, the
reconstructed image with the horseshoe prior, maintains a high quality, underscoring the
appropriateness of this prior for reconstructing the signal.

In addition to the analysis of NGC 4414 as a prime example, the effectiveness of the
proposed methodology was further demonstrated through the reconstruction of an additional
galaxy images. Galaxy 3147 is a spiral galaxy, which means it has swirling arms coming out
from its center. It’s in the constellation of Ursa Major, which is a pattern of stars in the sky.
This galaxy is interesting because it has a big bulge in the middle and arms that wrap around
it. When scientists look at this galaxy, they find a lot of hydrogen and helium, which are
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Fig. 6.8. Galaxy Image reconstruction using the Starlet transform with a uniform prior

Fig. 6.9. Galaxy Image reconstruction with horseshoe prior and different noise levels

the most common elements in the universe. One of the most exciting things about Galaxy
3147 is that it has a supermassive black hole in its center. Studying this black hole helps
scientists learn more about how galaxies form and change over time. Figure 6.10 provides
a visual representation of it. On the left, the original image of Galaxy 3147, showcasing its
spiral structure and central bulge. On the right, a lensed and noisy observation of the same
galaxy, illustrating the effects of gravitational lensing and observational noise on galactic
imagery.

In Figure 6.11, we compare the reconstructed galaxy image on top left, with the original
on top right. Additionally, the histogram of pixel intensity values accompanying these images
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(a) (b)

Fig. 6.10. (a) Galaxy 3147, Credit:ESA/Hubble and NASA, (b) Observed noisy image

offers insight into the distribution of luminance across the reconstructed image, providing a
quantitative perspective on the reconstruction’s fidelity.
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Fig. 6.11. A comparison between the reconstructed galaxy 3147 (left) and the unaltered
original image (right). The histograms below each image display the distribution of pixel
intensity values, showcasing the success of the reconstruction process in preserving the struc-
tural details of the galaxy.

6.1.3.2. Comparing Priors in Galaxy Image Reconstruction
In this section, we explore the impact of different regularization priors on the process of

galaxy image reconstruction. We consider three distinct priors: Laplace (L1) regularization,
Gaussian (L2) regularization, and the horseshoe prior with the image of Figure 6.1. Each of
these priors brings its unique characteristics to the reconstruction process, influencing the
final results. Our experiments involve applying each of these regularization priors to the
galaxy image reconstruction process and evaluating the results. Specifically, we examine
factors such as the Mean Squared Error (MSE), the Structural Similarity Index (SSIM).
These metrics provide insights into the accuracy and structural fidelity of the reconstructed
images.

In Figure 6.12, We compare three potential priors for wavelet-based galaxy image recon-
struction: L1 prior (Laplace distribution), L2 prior (Gaussian distribution) and Horseshoe
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Fig. 6.12. Galaxy Image reconstruction with different priors and different noise levels

prior. These priors exhibit different attributes regarding sparsity and handling of small coef-
ficients that influence the reconstructed galaxy image. The Laplace prior strongly promotes
sparsity, while the Gaussian prior encourages smoothness. The horseshoe offers a balance,
shrinking insignificant coefficients while retaining important values. By performing Bayesian
inference using each prior in turn, we can compare the resulting galaxy image reconstruc-
tions. Metrics such as mean squared error and structural similarity index will quantify the
reconstruction quality.

Mean Squared Error (MSE): Figure 6.13 presents a visual depiction of the MSE out-
comes, offering insight into the accuracy of estimations for Horseshoe, Gaussian, and Laplace
priors as the noise level escalates. Complementing this graphical analysis, Table 6.1 enumer-
ates the precise MSE values corresponding to each prior across the spectrum of considered
noise intensities. These illustrations and quantitative assessments elucidate the efficacy of
each prior in noise-robust statistical inference. To further elucidate, the following points
elaborate on the significance of MSE in our analysis.
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• MSE quantifies the pixel-wise dissimilarity between the reconstructed and original
images. Lower MSE values indicate better reconstruction quality.

• The Horseshoe Prior (HS) consistently achieved the lowest MSE, signifying the high-
est fidelity in terms of pixel-wise accuracy.

• Gaussian and Laplace regularizations, while effective, yielded slightly higher MSE
values compared to Horseshoe.

Fig. 6.13. Graphical representation of Mean Squared Errors (MSE) for Horseshoe, Gauss-
ian, and Laplace priors, illustrating the impact of increasing noise levels on estimation accu-
racy.

Prior / Noise Level 0 5 10 20 40
Horseshoe Prior 7.8714 66.2966 64.6709 254.2778 1277.5113
Gaussian Prior 8.1593 110.1288 369.8086 1594.1022 4922.5447
Laplace Prior 16.8017 208.5986 646.7087 1688.8453 4716.0925

Table 6.1. Comparison of Mean Squared Errors (MSE) for Horseshoe, Gaussian, and
Laplace priors across different noise levels.

Structural Similarity Index (SSIM):
Complementary to the Mean Squared Error analysis, the Structural Similarity Index

(SSIM) offers a perspective on perceptual image quality. In Figure 6.14, we provide a graph-
ical representation that details the SSIM values across different noise levels for the Horse-
shoe, Gaussian, and Laplace priors, showcasing their impact on perceived image integrity.
Table 6.2 presents a tabulated summary of these results, allowing for a precise comparison
of SSIM metrics under varying conditions of noise interference.

• SSIM evaluates the structural similarity between the reconstructed and original im-
ages, with values closer to 1 indicating better structural preservation.
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• HS outperformed Gaussian and Laplace in terms of SSIM across all experiments,
demonstrating its superior ability to capture fine structural details.

Fig. 6.14. Visual comparison of the Structural Similarity Index (SSIM) across varying noise
levels for Horseshoe, Gaussian, and Laplace priors, demonstrating the preservation of image
structural integrity under noise influence.

Prior / Noise Level 0 5 10 20 40
Horseshoe Prior 0.9985 0.9785 0.9453 0.9637 0.9655
Gaussian Prior 0.9984 0.9792 0.9151 0.7517 0.6937
Laplace Prior 0.9968 0.9243 0.9044 0.6820 0.7179

Table 6.2. Structural Similarity Index (SSIM) values for Horseshoe, Gaussian, and Laplace
priors under different noise conditions, indicating the robustness of each prior against noise-
induced degradation in image quality.
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Chapter 7

Discussion and conclusion

7.1. Discussion
The results demonstrate the effectiveness of the proposed Bayesian framework with horse-

shoe regularization for reconstructing gravitationally lensed galaxy images. Leveraging the
sparsity-promoting properties of the horseshoe prior coupled with the multiscale sparse rep-
resentation of the Starlet transform proved highly advantageous.

Quantitative assessments using MSE and SSIM showed the horseshoe prior outperformed
alternatives like Laplace and Gaussian regularization across different noise levels. This high-
lights its capabilities in suppressing noise while retaining important image features due to
its ability to adaptively shrink insignificant coefficients.

Visually, the horseshoe prior also better preserved the structural details of the galactic
morphology in the reconstructed images. The hierarchical nature of the Starlet decomposi-
tion further allowed isolating features at different scales, from overall galactic shape to finer
details. This multiresolution analysis provided interpretable insights into the contributing
scales.

The proposed approach overcomes the ill-posed inverse problem induced by lensing by
effectively regularizing through exploiting sparsity.

A key advantage demonstrated is the robustness of the horseshoe-Starlet approach in high
noise settings. As evident in the experiments, the reconstruction quality remained relatively
stable even as noise levels increased substantially. The horseshoe prior’s adaptive shrinkage
prevents overfitting to noise while retaining important signals. This noise resilience, coupled
with the Starlet transform’s multiscale sparse representation, provides a robust framework
for galaxy image analysis. The ability to recover fine details from noisy, low-resolution
observations makes this technique well-suited for real-world gravitational lensing data where
noise is ubiquitous. The proposed method’s stability in high noise suggests it generalizes well
to noisy astronomical images, a vital characteristic lacking in some alternative techniques.



7.2. Conclusion
This thesis presented a novel Bayesian framework leveraging the horseshoe prior and

the Starlet wavelet transform for reconstructing gravitationally lensed galaxy images. The
ill-posed inverse problem induced by gravitational lensing poses significant challenges in re-
covering the original appearance of distant galaxies. To address this, we proposed using
the sparsity-promoting horseshoe prior applied to wavelet coefficients of the source galaxy
image. The horseshoe prior’s ability to shrink insignificant values while retaining salient
features, coupled with the Starlet transform’s multiscale sparse representation of galactic
morphology, enables effective regularization of the underdetermined inversion. Through
probabilistic modeling and Markov chain Monte Carlo posterior inference, we implemented
this approach to analyze simulated observations of lensed galaxies with added noise. Our
methodology reliably extracted meaningful information from the noisy data, reconstructing
the key structural details of the original galaxy image. Quantitative assessments using met-
rics like mean squared error and structural similarity index demonstrated the superiority of
the horseshoe-Starlet method compared to alternatives like L1 and L2 regularization. The
proposed framework provides a principled Bayesian technique for galaxy image reconstruc-
tion that overcomes the challenges induced by gravitational lensing. By promoting sparsity
in a mathematically and computationally efficient wavelet domain representation, the horse-
shoe prior imposed on Starlet coefficients proves highly effective at image denoising and
deconvolution.

7.2.1. Future Work

While the presented methodology has demonstrated promising performance for gravi-
tational lens inversion, there remain several worthwhile avenues for further improving and
extending this approach. Some potential directions for future work include:

• Incorporating more complex noise models beyond the Gaussian assumption made
here, to better capture noise characteristics in real astronomical images. Possible
options include Poisson or mixed Poisson-Gaussian models.

• Exploring the use of learned priors like those based on variational autoencoders,
which can potentially capture complex galactic morphologies more accurately than
the handcrafted horseshoe prior.

• Applying the framework to analyze real observed gravitational lens data, which poses
additional challenges like unknown point spread functions and other imperfections
absent in simulated data. This can help validate effectiveness on real-world observa-
tions.

• Combining the lens inversion method with techniques for modeling the mass dis-
tribution of the foreground lensing galaxies. This allows reconstructing the lensing
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potential and underlying total mass profile jointly with inferring the background
source galaxy.

• Adapting the framework for other generalized inverse problems in astronomical imag-
ing, such as deconvolution, superresolution, and inpainting, which exhibit similar
mathematical structure.

Pursuing these directions can help improve reconstruction accuracy, enhance applicability
to real data, and expand the scope and impact of the proposed methodology on astronomical
imaging problems involving ill-posed inversions. With its robustness and computational effi-
ciency, this approach shows potential for becoming a valuable tool for analyzing gravitational
lensing observations to study distant galaxies.
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Appendix A

Appendix A

A.1. Gradient Descent-Based Regularization Frame-
work for Galaxy Image Reconstruction

In the context of the optimization framework delineated within the code, the objective is
to identify an optimal solution s subject to regularization constraints, which are encapsulated
within distinct prior models. These priors are predicated on various mathematical norms
and functions that are intrinsically linked to the inherent characteristics of the galexy image
being reconstructed.

The optimization procedure is instantiated via an iterative algorithm designed to mini-
mize a cost function composed of a data fidelity term and a regularization term. The fidelity
term, denoted as L(D, s), measures the consistency of the solution with the observed data
(the lensed image, D), whereas the regularization term, denoted as R(s), imposes a priori
constraints on the solution to encode desirable properties such as sparsity or smoothness.

The optimization algorithm operationalizes the Stochastic Gradient Descent (SGD)
method, parameterized by a learning rate and momentum. The algorithm proceeds by
iteratively updating the solution s in the direction that most steeply decreases the cost func-
tion. At each iteration i, the cost function C is evaluated, which is a weighted sum of the
data fidelity term and the regularization term, formally represented as:

Ci = L(D, si) + λR(si)

Here, λ is a regularization factor that controls the trade-off between the fidelity to the
data and the regularization constraints. This iterative process is governed by a predefined
number of iterations.

Upon completion of the iterations, the resultant solution s is transformed into a visual
representation and saved for further qualitative analysis. The success of the reconstruction
is quantified by a metric such as the mean squared error (MSE) between the reconstructed



image and the ground truth image, which provides a statistical measure of the reconstruction
accuracy.

The specific choice of regularization priors and the optimization methodology are reflec-
tive of the underlying assumptions about the image characteristics and the nature of the
noise or uncertainties in the observed data.

A.1.1. Regularization Techniques and Implementation Details

The regularization functions embedded within the optimization framework play a pivotal
role in encoding prior knowledge about the solution’s characteristics. Each regularization
function is designed to promote certain features in the solution s, based on the underlying
physical or statistical model of the data.

Horseshoe Regularization: The horseshoe prior is a heavy-tailed distribution that is
particularly suited for problems where the signal-to-noise ratio is low. It effectively shrinks
small coefficients towards zero while leaving large coefficients relatively unchanged, acting as
a bridge between the L1 and L2 norms. This makes it appropriate for scenarios with signals
that have a few significant coefficients amidst many insignificant ones.

The optimization algorithm for image reconstruction is implemented in a Python envi-
ronment leveraging the PyTorch library, which provides a dynamic computational graph that
facilitates automatic differentiation. The key components of the implementation encompass
the regularization functions, the optimization procedure, and the convergence monitoring
mechanisms. The starlet transform is carried out through [27] which is designed for efficient
multi-resolution analysis.

The algorithm employs Stochastic Gradient Descent (SGD) with momentum of 0.9 to
optimize the solution. The solution s is initialized as a trainable parameter with Gaussian
random values. The optimization loop runs for a 5000 number of iterations. Figure A.1
demonstrates the effectiveness of the minimization method in image reconstruction for galaxy
4441, utilizing the horseshoe prior for enhanced handling of sparsity and noise reduction when
the MSE of it is 71.41.
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Fig. A.1. Galaxy 4441 Reconstructed image employing the horseshoe prior with optimiza-
tion.
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Appendix B

Appendix B

B.1. Detailed Analysis of Gravitational Lensing Infer-
ence

In this thesis, as mentioned in subsection 2.2.2, the data generating equation is the
foundational equation in this process as follows:

D = LS + N (B.1.1)

Here, L is a known gravitational lensing distortion matrix, S represents the value of the
pixels of the background source we aim to infer, and N is a vector of random noise from a
known normal distribution. The ground-truth background source is denoted as STrue.

In a Bayesian framework, the posterior of S given observations D is expressed as:

P (S|D) = P (D|S)P (S)
P (D) (B.1.2)

From this formulation, we derive that:

P (S|D) ∝ 1
P (D)P (D|S) + P (S) (B.1.3)

The likelihood P (D|S) is Gaussian due to Gaussian noise in the data, and similarly, the
prior P (S) is Gaussian. Thus, the posterior probability distribution is also Gaussian. The
log posterior can be expressed as:

log P (S|D) ∝ log P (D|S) + log P (S) (B.1.4)

Further, we calculate log P (D|S) and log P (S) separately:

log P (D|S) = log
(

det(2πCN)−1/2 exp
(

−1
2(D − LS)T C−1

N (D − LS)
))

(B.1.5)



Assuming det(2πCN)−1/2 as a constant:

log P (D|S) = −1
2(D − LS)T C−1

N (D − LS) (B.1.6)

For the Gaussian prior P (S) from Equation B.1.4:

log P (S) = log
(

det(2πCS)−1/2 exp
(

−1
2ST C−1

S S
))

(B.1.7)

Simplified to:

log P (S) = −1
2ST C−1

S S (B.1.8)

In determining S, we maximize the log posterior by differentiating it with respect to S

and solving for S:

P (S|D) = −e− 1
2
[
(D − LS)T C−1

N (D − LS)
]

− e− 1
2
(
ST C−1

S S
)

(B.1.9)

Setting this derivative to zero provides the equation for Smap:

(LT C−1
N L + C−1

S )S = LT C−1
N D (B.1.10)

Defining A and B for simplification:

A = LT C−1
N L + C−1

S (B.1.11)

B = LT C−1
N D (B.1.12)

Thus, we obtain:

S = A−1B (B.1.13)

B.2. Example and Practical Implementation
This section includes a practical example demonstrating the reconstruction process of a

background galaxy 4441 image as shown in Figure B.1, showcasing the transformation of S

and D, the addition of Gaussian noise, and the creation of Dnoisy. Various optimization tech-
niques, including JAX for GPU acceleration and PyTorch for gradient descent, are employed
to achieve accurate reconstructions.

We plan to reconstruct the galaxy image by applying the equation from the last section,
in particular Equation B.1.13. The scaling of the Cs matrix will be varied using different
values of λ, defined as Cs = λ × eye(). In Figure B.1, we set λ to 0.01 and consider Cn as a
diagonal matrix where each element is one. Our aim is to reduce the residuals derived from
the subsequent equation:
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Residuals = Dnoisy − L × Smap

Following this, we present in Figure B.1 the outcomes of our reconstruction process.
The left panel of the image showcases the reconstructed galaxy 4441, achieved through the
application of the discussed techniques and parameters. The right panel, in contrast, displays
the residuals, providing a visual representation of the difference between the reconstructed
image and the original data. The mean squared error (MSE) for this reconstruction is
calculated to be 0.9354.

Fig. B.1. (a) Reconstructed Galaxy Image using optimized parameters with λ = 0.01 and
a diagonal Cn, (b) Corresponding residuals illustrating the variance from the original data

To reduce the residuals, we implemented function optimization using a downhill optimizer
and calculated the mean squared error (MSE) to improve it. This process was time-intensive,
exceeding 3 hours. To enhance efficiency, I utilized JAX for GPU-based optimization of the
posterior and transformed the matrices L and S into JAX sparse matrices (BCOO format).
However, the multiplication of these matrices could not be performed due to the lack of
implementation for this operation in JAX.

Furthermore, rather than employing linear algebraic methods to determine Smap, a nu-
merical approach was adopted. Utilizing the gradient descent method in PyTorch, L and
Smap were converted into sparse matrices, enabling their multiplication. This code was then
adapted for GPU execution using Cuda. In Figure B.2, the left panel is labeled as (a), where
the initial point was a random matrix STrue, whereas in figure (b), it started from a matrix
of zeros. These processes were iterated with varying values of lambda and iteration count,
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(a) (b)

Fig. B.2. (a) depicts the reconstructed galaxy image starting from a random matrix, (b)
the reconstruction beginning with a zero matrix

yielding the most effective results under normal noise conditions at 8000 iterations and a
lambda value of 0.01.
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