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Résumé

Cette thèse aborde les facettes dynamiques des principes fondamentaux du problème de
l’appariement stable plusieurs-à-un. Nous menons notre étude dans le contexte du choix de
l’école et de l’appariement entre les hôpitaux et les résidents.

Dans la première étude, en utilisant le modèle résident-hôpital, nous étudions la complexité de
calcul de l’optimisation des variations de capacité des hôpitaux afin de maximiser les résultats pour
les résidents, tout en respectant les contraintes de stabilité et de budget. Nos résultats révèlent
que le problème de décision est NP-complet et que le problème d’optimisation est inapproximable,
même dans le cas de préférences strictes et d’allocations de capacités disjointes. Ces résultats
posent des défis importants aux décideurs qui cherchent des solutions efficaces aux problèmes
urgents du monde réel.

Dans la seconde étude, en utilisant le modèle du choix de l’école, nous explorons l’optimisation
conjointe de l’augmentation des capacités scolaires et de la réalisation d’appariements stables op-
timaux pour les étudiants au sein d’un marché élargi. Nous concevons une formulation innovante
de programmation mathématique qui modélise la stabilité et l’expansion des capacités, et nous
développons une méthode efficace de plan de coupe pour la résoudre. Des données réelles issues
du système chilien de choix d’école valident l’impact potentiel de la planification de la capacité
dans des conditions de stabilité.

Dans la troisième étude, nous nous penchons sur la stabilité de l’appariement dans le cadre
de priorités dynamiques, en nous concentrant principalement sur le choix de l’école. Nous intro-
duisons un modèle qui tient compte des priorités des frères et sœurs, ce qui nécessite de nouveaux
concepts de stabilité. Notre recherche identifie des scénarios où des appariements stables exis-
tent, accompagnés de mécanismes en temps polynomial pour leur découverte. Cependant, dans
certains cas, nous prouvons également que la recherche d’un appariement stable de cardinalité
maximale est NP-difficile sous des priorités dynamiques, ce qui met en lumière les défis liés à ces
problèmes d’appariement.

Collectivement, cette recherche contribue à une meilleure compréhension des capacités et des
priorités dynamiques dans les scénarios d’appariement stable et ouvre de nouvelles questions et
de nouvelles voies pour relever les défis d’allocation complexes dans le monde réel.
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Mots Clés : Appariement stable, expansion des capacités, programmation en nombres
entiers, préférences dynamiques, choix de l’école, complexité de calcul, familles
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Abstract

This research addresses the dynamic facets in the fundamentals of the many-to-one stable match-
ing problem. We conduct our study in the context of school choice and hospital-resident matching.

In the first study, using the resident-hospital model, we investigate the computational com-
plexity of optimizing hospital capacity variations to maximize resident outcomes, while respecting
stability and budget constraints. Our findings reveal the NP-completeness of the decision problem
and the inapproximability of the optimization problem, even under strict preferences and disjoint
capacity allocations. These results pose significant challenges for policymakers seeking efficient
solutions to pressing real-world issues.

In the second study, using the school choice model, we explore the joint optimization of
increasing school capacities and achieving student-optimal stable matchings within an expanded
market. We devise an innovative mathematical programming formulation that models stability
and capacity expansion, and we develop an effective cutting-plane method to solve it. Real-world
data from the Chilean school choice system validates the potential impact of capacity planning
under stability conditions.

In the third study, we delve into stable matching under dynamic priorities, primarily focusing
on school choice. We introduce a model that accounts for sibling priorities, necessitating novel
stability concepts. Our research identifies scenarios where stable matchings exist, accompanied
by polynomial-time mechanisms for their discovery. However, in some cases, we also prove the
NP-hardness of finding a maximum cardinality stable matching under dynamic priorities, shedding
light on challenges related to these matching problems.

Collectively, this research contributes to a deeper understanding of dynamic capacities and
priorities within stable matching scenarios and opens new questions and new avenues for tackling
complex allocation challenges in real-world settings.

Keywords : Stable matching, capacity expansion, integer programming, dynamic pref-
erences, school choice, computational complexity, families
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Introduction

Education serves as a vital pillar in the development of society. Despite a notable rise in literacy
rates globally, significant challenges remain, as highlighted by recent studies showing that around
14% of the world’s population still endures the hardships of illiteracy [130]. Moreover, policy-
makers are not only tasked with the expansion of the education system but also with ensuring
that this expansion is conducted fairly, accommodating diverse societal needs and expectations.
Modern mathematical tools have become integral in ensuring equitable school admissions.

While educational access has expanded, the quality of education often remains a secondary
concern. This problem is starkly evident in countries within the Organisation for Economic Co-
operation and Development, where studies indicate that median literacy levels are alarmingly near
the threshold of functional illiteracy [64]. This low literacy level has profound societal implications,
as it is strongly linked with higher incidences of crime and poverty [103]. Addressing this issue
is crucial, as improving the quality of education can lead to broader societal benefits, including
reduced crime rates and enhanced economic opportunities.

The dilemma facing contemporary policymakers is how to effectively balance the distribution
of resources between expanding educational infrastructure and enhancing the quality of education.
This includes not only improving the baseline standard of education but also channeling resources
towards supporting and nurturing talent and academic excellence. Policymakers must carefully
consider the implications of each decision, weighing the benefits of educational access against the
need for high-quality instruction. In this complex scenario, mathematical models are invaluable
for providing a framework to make informed, equitable decisions, guiding policy towards outcomes
that benefit the larger community.

Research Questions
Education can be improved from both a quantitative and qualitative perspective. In this

thesis, we develop analytical and computational tools that policymakers can use to improve the
education system.



Capacity Expansion

From a quantitative point of view, in 2015, the world average number of years that a student
dedicated to education was estimated at 9.2 [76], which is a number heavily dependent on the
amount of resources that every society dedicates to education. In this regard, it is estimated that
in 2020, the average percentage of the world budget dedicated to education was 4.3% [66]. The
main portion of the budget is often allocated to cover recurring expenses such as salaries, bills,
and facilities maintenance. As a consequence, only a small portion of the original budget can
be allocated to extend the pool of available seats for students, which can be done by increasing
the capacities of schools’ programs. Given the constrained budget on education, it is pivotal to
find the most efficient way of expanding the number of positions available to students so that
they could continue studying in their adolescence or later in life. The following question arises
naturally.

Given a budget, how should we allocate it to expand the
education system to benefit the students the most?

(1)

Formalizing this question in mathematical language requires the introduction of a model in
which all the elements in the question are present as fundamentals, variables or parameters of the
model. A classical approach is to provide a model as the one proposed in the seminal paper by
Gale and Shapley [67]. This model is built on a bipartite graph with two disjoint sets of vertices
and a set of edges that connect the vertices in the two sets. One set of vertices is interpreted as
the set of students, and the other is the set of schools; the edges that connect the students to the
schools represent the feasibility of an assignment, i.e., an edge between a student i and a school
j represents the availability of both i and j to be matched together. It is usually assumed that
a student can be matched at most to one school, and that a school can be matched to as many
students up to its capacity. A matching is defined as a subset of the set of edges that respects
the capacity constraints of the schools and matches each student to at most one school. If we
could decide which matching should be picked, i.e. how should students be assigned to schools,
it seems reasonable to focus on matchings of maximum cardinality since they match the highest
number of students in the education system. In the real world, students have preferences over
the schools that may derive from tuition-fees, scholarships, location, et cetera. On the other side,
schools may have a ranking over the students which may be a function of past grades, family
income, neighborhood and other factors. Exactly because students and schools rank each other,
choosing a maximum cardinality matching may yield an assignment that makes both sides of the
market dissatisfied. If this may be the case, then pairs of student-school can override the matching
and achieve a better outcome. In order to avoid this scenario, a stable matching can be chosen,
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i.e., loosely speaking, a matching that respects the preferences of the agents in the market. In
this setting, the actions that the agents take are of two kinds: 1) reporting their ranking, and
2) reporting their capacities (only the schools). One of the main questions policymakers need to
address when building a mechanism, is how to incentivise agents to report their true preferences
and capacities. If it is not possible to guarantee that agents can achieve their best outcome by
reporting the truth, the mechanism is subject to manipulation from the agents. Ensuring that
a mechanism cannot be manipulated guarantees its long term success. Therefore, the concern
about manipulability in mechanisms brings us to the next critical question.

Is it possible to allocate extra capacities in a way that the
mechanism is not manipulable?

(2)

Since the beginning of the 21st century, the stable matching setting started to be used as a
mathematical model for the school admission problem. Redesigning of school admission processes
took place in Boston [5, 6], New York City [3], Hungary [34], Singapore [148], Chile [50] and
San Francisco [15], to cite a few. The main concern of primary education is to ensure that each
pupil could go to school; as mentioned earlier, there are still many countries around the world
where not every student has access to education. Therefore, once a budget of extra capacities
is destined to primary education, each of these extra capacities should be used to let a student
enter the matching. On the other side, it is often the case that philanthropic institutions provide
funding for education with the aim of supporting outstanding students. Therefore, there is a
trade-off between allocating extra capacities to target access to education or to target merit. In
light of the considerations regarding the fairness of the allocation of extra capacities in education,
we find ourselves confronted with the following crucial question.

Can we allocate extra capacities with the primary goal of
guaranteeing access? Can we allocate extra capacities on
a merit basis?

(3)

Complexity

Providing a computation-time efficient algorithm is crucial for policymakers, since it allows
them to solve the problem at-hand with several configurations of parameters and choose the one
that fits the best their data-set and setting. Therefore, the emphasis on computational efficiency
in addressing capacity expansion issues underscores the significance of the ensuing question.

29



What is the computational complexity of allocating opti-
mally a budget of capacities for the benefit of the students?

(4)

As some school districts face a spike in subscriptions, others need to address the problem of
managing under-demanded schools [65]. Finding a way to aggregate classes would benefit the
public budget, help improve the schedule of teachers and may enable students to interact more
with their peers. To summarize, this problem can be formulated through the following question.

How should we reduce capacities in the schools while ob-
taining the best possible matching for the students? And
how difficult is it to solve this problem?

(5)

Another well-known application of the matching problem is the market of hospitals and res-
idents. When residents apply to hospitals, the hospitals that are under-subscribed in a stable
matching are under-subscribed in every stable matching. This phenomenon is called “Rural Hos-
pital Theorem” [132, 68, 134, 107] and it poses a serious threat for policymakers who need to
ensure that all hospitals can be run with a minimum number of residents. In order to limit the
demand for positions in Japanese urban areas, the centralized institution managing the hospital-
resident matching provides maximal regional quotas [85]. If the centralized institution has at its
disposal extra capacities in each region, the problem becomes how to impact the national market
the most. The challenge of impacting the national market from a regional standpoint leads us to
a series of pertinent questions.

How should we allocate extra regional capacities to ob-
tain a national maximum cardinality stable matching, and
a matching that benefits the most the students (or resi-
dents)? Finally, how difficult is it to find the solutions to
the aforementioned problems?

(6)

Clearly, the previous questions can also be posed when capacities should be reduced.

Sibling Priorities

Recently, the stable matching setting has found even more domains of application that range
beyond the education system. Applications include refugee resettlement [52, 17, 14], healthcare
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rationing [122, 25], market for rabbis [41], and online dating [74]. A problem that refugee
resettlement and hospital-resident matching have in common is complementarities, i.e., the joint
application of candidates who would like to be matched to the same location. In the case of the
hospital-resident matching, allowing joint applications from couples was one of the main reasons
that led to the redesign of the mechanism in the U.S.A. [136]. This is a problem faced also by
families of refugees, who cannot be split and whose application should be taken in consideration
in an aggregated fashion. Considering the real-world practice of schools giving priority to students
with siblings already enrolled, it raises the following relevant question.

How should the priority of a student in a school change if
a sibling is enrolled in that school?

(7)

Addressing this question would give the foundations for understanding how to match fami-
lies in a market where preferences rather than being static, change depending on the tentative
assignment of relatives. Providing a matching that accounts for sibling priorities would certainly
improve qualitatively the outcome of families participating in the admission process.

Contributions
The results contained in this thesis span in the fields of computational complexity, mathe-

matical programming, matching theory and game theory. Chapters 3, 4 and 5 contain each a
paper whose common thread is the study of stable matching when its building blocks become
dynamic rather than being fixed. Specifically, in Chapter 3 we answer Question 4, thus yield-
ing the computational complexity backbone of Chapter 4; additionally, in this chapter, through
Questions 5 and 6 we formalize and present new problems for which policymakers have already
expressed interest in the real world. Chapter 4 addresses Questions 1-3, the main results being the
formulation of the capacity expansion problem, an efficient cutting-plane to solve it and experi-
mental results on real world data that provide evidence of our theoretical results; moreover, we
provide a thorough computational study on artificial data in which we put in comparison different
formulations and establish the advantage of our cutting-plane algorithm. Finally, in Chapter 5 we
present for the first time Question 7 and we study it from a modeling and algorithmic perspective.

We are currently working alongside the institution that manages the Chilean school admission
process to implement the results in Chapter 4 and Chapter 5 at a national level.
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First Paper

In Chapter 3 we investigate the two problems of capacity expansion and reduction from a
computational complexity standpoint. These two problems have a very similar structure, therefore
the proof of one’s intractability can be used for the other problem as well.

It may seem natural to think that the problem of optimally allocating a budget of extra
capacities for the benefit of the students is solvable in polynomial time: It may be sufficient
to allocate the extra capacities to the most popular schools. We provide a counter-example
that shows that allocating extra capacities to the most popular school may yield a sub-optimal
solution. Indeed, our goal is to prove that the capacity expansion problem is NP-hard. In order
to achieve this goal, we start by observing that finding a minimum cost (weakly) stable matching
when there are ties in the preference lists is NP-hard and not approximable within O(n1−ε) for
every ε > 0, unless P=NP, where n is the number of schools. This result is particularly interesting
because it establishes a divide in the computation of a minimum cost stable matching as soon as
we assume preference lists may contain ties. Recall that if there are no ties, the problem can be
solved in polynomial time via the DA algorithm. Our reduction to the capacity expansion problem
will be from the problem of finding a minimum-cost (weakly) stable matching when there are
ties, and in order to do that, we introduce a new structure that we call village. In the end, we
prove that the problem of optimally expanding capacities with respect to the students’ benefit
is not approximable within O(n1/6−ε) for every ε > 0, unless P=NP, where n is the number of
schools. This result implies that no polynomial time approximation algorithm can be provided
with a constant factor approximation guarantee. By exploiting the structural similarities between
the problem of expanding and reducing capacities, we show that also the latter problem is not
approximable within O(n1/6−ε) for every ε > 0, unless P=NP.

In Chapter 3, we also study the capacity variation problem (i.e., expansion or reduction)
when the budget is partitioned in regions, i.e., sets of schools. We show that both the problem
of finding a minimum cost stable matching and that of finding a maximum cardinality one are
NP-hard, the former being also not approximable within a constant factor, unless P=NP.
Remark. In this paper, we use the language of the resident-hospital stable matching problem,
since the computational complexity literature has historically focused on this application. How-
ever, in the other papers, we change language; in the second and third paper, we refer to the
many-to-one stable matching problem as the School Choice problem, as this is the main motiva-
tion for these contributions.

Second Paper

In Chapter 4 of this dissertation, we prove that under stability constraints, optimizing the in-
dividual welfare of each student is equivalent to optimizing the social welfare of all the students.
This result is particularly important since it allows to obtain the best stable matching for each
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student (as in the Deferred Acceptance algorithm) by optimizing a mathematical programming
model that has the aggregated welfare of the students as its objective. This key result, allows
us to obtain the same outcome of the Deferred Acceptance (DA) algorithm via a mathemat-
ical programming model; there are several advantages of using a mathematical programming
formulation rather than an adaptation of the DA algorithm, as is often done in the literature.
Remarkably, a mathematical programming formulation is more flexible to adaptations than the
DA algorithm. As discussed earlier, the fundamentals of the stable matching setting are the
students, the schools, their capacities and the preferences of both schools and students. From a
practical perspective, it is often the case that capacities are not fixed, indeed, a centralized deci-
sion maker may have the power to vary capacities in order to optimize their objective function. In
Chapter 4, we introduce several mathematical programming formulations that model the problem
of capacity expansion. On one hand, running the DA algorithm would need an exponential search
in the space of all the possible allocations of extra capacities. On the other hand, solving a
mathematical programming formulation can be done with an off-the-shelf solver which exploits
the combinatorial structure of the problem. The first mathematical programming formulation,
which is quadratic, is an adaptation of the classical formulation for the stable matching problem
to the capacity expansion setting. Since the quadratic terms add extra non-convexities to the
formulations, in Chapter 4 we introduce a novel mixed-integer linear programming formulation
inspired by the work of Baïou and Balinski [26]; this formulation has a number of stability con-
straints exponential in the number of schools, which makes it impractical to solve in its entirety.
Hence, we propose a cutting-plane approach through which these constraints can be separated by
the algorithm proposed in [26]. Thanks to a series of key structural results that we provide, we
propose a novel separation algorithm that finds the most violated constraint; this algorithm can
be also applied to the original stable matching problem. Experimental results on artificial data
show that the resulting cutting-plane algorithm outperforms the generalizations of the current
state-of-the-art formulations for the stable matching problem.

We can enrich the objective function by adding a penalty for each unassigned student. When
we solve the problem of allocating optimally extra capacities in the Magallanes region of Chile1

with a high penalty for each unassigned student (e.g., the length of the preference list plus one),
we observe that the model tends to allocate the extra capacities to let previously unassigned
students enter the matching. From a theoretical standpoint, we prove that when the penalty
is sufficiently high (e.g., the square of the number of schools), the stable matching obtained
is a student-optimal maximum cardinality one. Experimentally, on the Chilean dataset, we also
observe that a low penalty (e.g., zero), induces the allocation of extra capacities to improve the
matching of students who would be matched anyway to a school. We also provide a general
theoretical result which states that for a negative penalty equal to the number of schools, the
matching obtained from the allocation of extra capacities is one of minimum cardinality. Thus,
1Dataset from 2018, we focus on the Pre-K entry level.
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the extra capacities are allocated primarily to improve the students who would be already matched
in the education system. Finally, we show that the capacity expansion problem is not immune
to manipulations from both sides of the market. Nonetheless, we prove that it is practically
non-manipulable in a large market setting.

Third Paper

In Chapter 5, we address the problem of finding a stable matching under dynamic priorities, i.e.,
when priorities are updated based on the current assignment; we use school choice with siblings
as a motivating example. To accomplish this, we introduce a model where students belong to
(potentially different) grade levels and may have siblings applying to the system (potentially in
different levels). It is assumed that each family reports preferences over the assignment of their
members and, on the schools’ side, individual students are ranked according to a strict preference
list (tie-breaker).

Motivated by the Chilean school choice problem, two types of sibling priority are introduced:
(i) static, whereby students who have a sibling currently enrolled but not participating in the
admission process get prioritized; and (ii) dynamic, whereby students with a sibling who is also
participating in the admission process get prioritized. In both cases, the priorities of a student
are with respect to the school with a sibling. Notably, the term dynamic priorities is motivated
by its application to a proposed matching (just like justified envy). In simple terms, a matching
respects dynamic priorities if no student can be moved to a preferred school that is matched with
one of her siblings. Therefore, the concept of dynamic priorities introduces a series of challenges,
since they may even override the standard definition of justified envy.

To overcome these challenges, an order of priorities among groups of students must be estab-
lished. First, it must be established if a student with priorities can take the spot of any student
in the school or not: In the first case, priorities are absolute; on the other hand, if a student with
priority cannot take the spot of a student with a better ranking than the sibling providing the
priority, then priorities are partial. Second, in order to assess which students of two competing
families will enter the school, the notion of dependent/independent justified envy is introduced:
Dependent priority gives access to the students with the sibling with the highest ranking, while
independent priority gives access to students with the highest ranking. Based on these definitions,
several notions of stability are introduced, and we show that a stable matching may not exist even
under very simple assumptions. Nevertheless, we show that a stable matching under dynamic
priorities may exist if families strictly prefer their siblings being assigned together and either (i)
families have at most two members participating in the admission process or (ii) there is a single
grade level. Moreover, we introduce a new collection of mechanisms that find such a stable
matching with dynamic priorities. Finally, we discuss other properties of the mechanism, and we
show that finding a maximum cardinality stable matching under dynamic priorities is NP-hard.
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This work on dynamic priorities contributes to the literature in several ways. To the best
of our knowledge, this is the first work to formalize different types of siblings’ priorities and
also the first to introduce the idea of dynamic priorities. The main contribution of Chapter 5
is the introduction of a novel notion of stability under dynamic priorities, where priorities are
contingent on the matching. Moreover, we also provide complexity results for a stable matching
problem with complementarities and dynamic priorities. Although we focus on school choice as a
motivating example, these results and insights may prove to be helpful in the design of matching
mechanisms where priorities depend on the assignment of others, such as in daycare assignments,
college admissions, refugee resettlement, among others.

Organization
This manuscript is organized as follows. In Chapter 1, we present the essential background

information on computational complexity, matching theory, and mathematical optimization. This
foundational knowledge is crucial for a comprehensive understanding of the subsequent chapters.
Chapter 2 is devoted to the literature review, where we outline the scientific works over which our
contribution builds on and the papers related to our contributions. The first paper is presented
in Chapter 3, the second in Chapter 4 and, finally, the third one in Chapter 5. Finally, concluding
remarks and future research directions can be found in Chapter 6.

35





Chapter 1

Background

In this chapter, we introduce the fundamental concepts necessary to present our results. We
begin by providing, in Section 1.1, an overview on the basics of computational complexity, the
study of the tractability of solving a mathematical problem. Section 1.2 is dedicated to the
introduction of matching theory, with a particular focus on stable matchings in bipartite graphs.
After introducing the main definitions, we present known fundamental structural results. From a
general perspective, researchers have focused their efforts in devising rules (mechanisms) capable
of outputting such matchings. Moreover, it is often desirable to optimize the mechanism’s output
according with a predefined objective. Therefore, in Section 1.3, we introduce the classical
mathematical programming formulations of the stable matching problem.

1.1. Computational Complexity
An algorithm is a sequence of instructions that, given an input, produces an output. One of

the key questions regarding an algorithm is understanding its computational complexity, i.e., the
amount of resources needed to run it in terms of space and time. Specifically, for the latter, given
an algorithm, we want to know in how many elementary operations the output will be produced,
and we want to express this number as a function of the input size. The primary objective of
an algorithm is to address a specific problem. Therefore, within the domain of computational
complexity, our task is to assess the feasibility of finding an efficient algorithm capable of solving
the problem efficiently in both time and space.

We introduce the well-known knapsack problem to illustrate the concept of complexity class
of decision problems. An instance of the knapsack problem consists of a weight tolerance T , a
threshold value K and a set of objects {oj}j∈J such that each object oj has a value vj and a
weight wj. The question we want to address is if there is a set of objects whose total weight is
not greater than the weight tolerance T , and whose total value is greater or equal than K. The
knapsack problem just introduced is presented as a decision problem; a decision problem is a set



of input instances for which we pose a question whose answer is yes or no. In the following, we
provide a formal description of the knapsack decision problem.

Problem 1 (Knapsack).
instance: A positive integer weight tolerance T , a positive integer threshold value K, a family
of indices J , and triplets of object-value-weight {(oj,vj, wj)}j∈J with vj and wj positive integers
for every j ∈ J .
question: Is there a subset J ′ of J such that ∑

j∈J ′ wj ≤ T and ∑
j∈J ′ vj ≥ K?

There are many variants of the knapsack problem, we compare now the classical knapsack
problem stated above and its continuous version, where a fraction of an item can be taken. In the
continuous version, the objects of the knapsack problem are divisible, so a solution maximizing
the total value can be determined by simply selecting the objects by descending order of value per
unit of weight, until the tolerance T is reached; the object at which the tolerance is reached or
exceeded is fractionally selected. Since the main step needed to compute a solution of maximum
total value for the continuous knapsack is the sorting of the objects by their value per unit of
weight, clearly, this problem can be solved in polynomial time. We denote as P the class of
decision problems that can be solved in polynomial time.

Otherwise, for the classic knapsack problem, where the objects are not divisible (for example
they are cars, computers, et cetera), no polynomial time algorithm is known. NP is the class of
decision problems for which, given a proposed solution, one can verify in polynomial time whether
the solution is correct or not. In other words, a problem is in NP if it is efficiently verifiable
by a deterministic algorithm in polynomial time once a non-deterministic algorithm provides a
potential solution. For example, if we are given a combination of objects to put in the knapsack,
we can verify in polynomial time whether the chosen combination does not violate the weight
tolerance T and if the total sum of the values is at least equal to K. Note that the class of
problems in P is included in the class NP, however it is widely believed that this inclusion is strict.

We introduced the knapsack problem as a decision problem, however, rather than finding
a set of objects that satisfies both the weight limit and the threshold value, we may want to
find the set of objects that maximises the overall value, subject to the weight constraint. More
broadly, an optimization problem, where the goal is to find a feasible solution optimizing a certain
objective, has associated a natural decision version. Given a target value b, the latter corresponds
to answering the question: Is there a feasible solution attaining an objective value better or as
good as b?

Given two classes of problems A and B, we say that we can reduce A to B, denoted as A≤B,
when there is a polynomial time transformation from any instance of IA ∈ A into an instance of
IB ∈ B such that IA is a yes instance of A if and only if IB is a yes instance of B. We say that
a problem is NP-hard when all the problems in NP can be reduced to it. It is broadly assumed
that an NP-hard problem is an intractable problem. Moreover, if an NP-hard problem is also in
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NP, then we say that the problem is NP-complete. For example, the knapsack problem (with
indivisible objects) is an NP-complete problem [88].

1.1.1. Approximation Algorithms

In this thesis, we delve into optimization problems classified as NP-hard. Consequently, it
becomes pertinent to investigate their efficient resolution through approximation algorithms. In
what follows, we proceed to introduce the concept of polynomial time approximation algorithms.

Definition 1.1.1. Given an optimization problem A, an instance I of A, and a feasible solution
x of instance I, the performance ratio of the feasible solution value objI(x) with respect to the
optimal solution optA(I) is

RA(I,x) = objI(x)
optA(I)

if the optimization is a minimization, and

RA(I,x) = optA(I)
objI(x)

if the optimization is a maximization.
Moreover, we say that A can be approximated within an approximation factor c if there is a

polynomial time algorithm p such that for every instance I of the problem A, p outputs a feasible
solution x such that RA(I,x) ≤ c. If the approximation factor c is a real number, then we say
that c is a constant approximation factor.

Note that when an optimization problem can be approximated within a constant factor 1,
then the problem can be solved in polynomial time. It is believed that it is not possible to find
such an approximation factor for an NP-hard optimization problem; however, for a given NP-hard
optimization problem we may find an approximation algorithm with an approximation factor of
1+ε, for ε > 0. An optimization problem A is considered to possess a fully polynomial time
approximation scheme (FPTAS) when it is equipped with an approximation algorithm that takes
as input an instance I and a constant ε > 0 such that, within polynomial time, dependent on both
1
ε

and the size of I, this approximation algorithm produces a feasible solution that approximates
problem A with an approximation factor of 1 + ε. For example, the optimisation version of the
knapsack problem has an FPTAS [75]. When we relax the requirement on the approximation
algorithm in the FPTAS definition to the case that it runs in polynomial time only in the size of
the instance I, then we obtain the definition of polynomial time approximation scheme (PTAS).

Let us introduce the decision problem of finding a maximum cardinality independent set in a
planar graph.

Problem 2 (Independent set).
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instance: An integer K, and planar graph (V, E), where V is a set of vertices and E a set of
edges incident to vertices in V .
question: Is there a subset of vertices V ′ of cardinality at least K for which no two vertices in
V ′ are joined by an edge in E?

Interestingly, the optimization problem of finding a maximum cardinality independent set in
a planar graph has a PTAS but no FPTAS [28].

It may happen that some NP-hard optimization problems do not admit any approximation
algorithm with a constant factor. Typically, a proof of such a case is provided by a gap-introducing
reduction from an NP-complete problem. Let us give an example. A propositional formula in
conjunctive normal form (CNF) is a conjunction of clauses made of disjunctions of literals, where
a literal is a proposition variable or its negation; when each clause in a CNF formula has size at
most three, then we have a 3CNF formula.1

Problem 3 (3CNF).
instance: A 3CNF formula θ.
question: Is there an instantiation of the propositional variables in the formula θ that satisfies
the formula?

The 3CNF decision problem is NP-complete [88]. Assume we have a decision version of a
minimization problem A with targe value b, to which 3CNF can be reduced in polynomial time;
specifically, there is a reduction function σ that given a 3CNF formula it outputs an instance
of the problem A, with the additional following property: If for a given 3CNF formula θ there
is no boolean assignment that satisfies it, then the optimal value of the A instance satisfies
optA(σ(θ)) > b; otherwise, optA(σ(θ)) ≤ a, where a < b. If we could provide an approximation
algorithm for A with approximation guarantee at most b

a
, then, thanks to the reduction σ, we

could determine whether a 3CNF formula is satisfiable in polynomial time, thus proving P=NP.
This method for proving that an optimization problem does not have an approximation algorithm
within a certain factor is known as the gap technique. We present the gap technique for a
minimization problem.

Theorem 1.1.2. Let A be an NP-hard decision problem, let B be a minimization problem, and
let σ be a polynomial time reduction from the set of instances of A into the set of instances of
B that satisfies the following two conditions for fixed rationals a < b:

• Every YES-instance of A is mapped into an instance of B with optimal objective value at
most a.
• Every NO-instance of A is mapped into an instance of B with optimal objective value

greater than b.

1An example of a 3CNF formula is θ = (c1 ∨ ¬c2 ∨ c3) ∧ (c4 ∨ ¬c2 ∨ c3) where c1, c2, c3, c4 are booleans.
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Then problem B does not have a polynomial time α-approximation algorithm with worst case
ratio α ≤ b

a
, unless P=NP. Especially, problem B does not have a PTAS unless P=NP.

1.2. Matching Theory
In this section we review the basic definitions and results in matching theory. In Section

1.2.1 we introduce the concept of matching on a graph and some fundamental results. Then, in
Section 1.2.2, we focus on stable matchings with preferences, and, in particular, on the property
of stability.

1.2.1. Matchings on Graphs

In this section we present the fundamental results on matching theory under preferences; for
further details we suggest consulting the textbooks [138, 107]. The fundamental structure in
which we will be developing our discussion is the graph. A graph (V, E) is a structure consisting
of a set of vertices (or nodes) V and a set of edges E between pairs of vertices; we will be
interested in bipartite graphs. A bipartite graph is a graph (S,C, E) where the set of vertices is
composed of two sets, S, the vertices on the left, and C, the vertices on the right; the edges in E

connect vertices in S to vertices in C. The bipartite graph provides a simple graphical model to
represent many real life problems; for example, the allocation of resources (the vertices in C) to
agents (the vertices in S) is decided by choosing which subset of E are selected. One of the most
important concepts used to establish relations among vertices is called matching. A matching of
a graph (V, E) is a subset µ of E in which there are no two edges incident with the same vertex.
If a vertex v ∈ V is paired in a matching µ, we say that v is matched (or assigned), otherwise
v is exposed (or unassigned or unmatched). If an edge {v,v′} ∈ µ then we denote the set of
vertices matched to v in µ as µ(v), in this case µ(v) = {v′}; if v′′ is an exposed vertex, then
µ(v′′) = ∅. In general, we define µ(V ′) = {v : µ(v′) = {v} for v′ ∈ V ′} where V ′ ⊆ V . We are
often concerned with finding a matching which is maximum in cardinality among all the possible
matching of a given graph; such a matching is called maximum matching (note that a graph may
have several distinct maximum matchings). An alternating path in a graph G with respect to a
matching µ is a path p in G in which alternatively one edge is in µ and the successive edge is not
in µ. If an alternating path p with respect to µ has both end-vertices exposed, then p is called
an augmenting path. This idea leads to the following fundamental theorem which characterizes
the maximum matchings in a given graph.

Theorem 1.2.1 ([33, 123]). Let (V, E) be a graph. Every matching in the graph is a maximum
matching if and only if it does not admit an augmenting path.
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A matching is perfect when all the vertices in the graph are matched. Concerning bipartite
graphs, the following result provides a sufficient and necessary condition for a perfect matching
to exist.

Theorem 1.2.2 ([73]). Let (S,C, E) be a bipartite graph. Let µ be a matching in which all
vertices of S are matched if and only if |µ(S ′)| ≥ |S ′| for every S ′ ⊆ S. Moreover, µ is a perfect
matching if and only if |S| = |C| and |µ(S ′)| ≥ |S ′| for every S ′ ⊆ S.

Let us now introduce the state-of-the-art computational result for determining maximum
matchings in a general graph.

Theorem 1.2.3 ([60, 114, 151]). Let (V,E) be a graph where |E| = m and |V | = n. A
maximum matching can be found in O(

√
n ·m) time.

1.2.2. Matchings Under Preferences

The bipartite graph framework serves as a suitable formalism for the modeling of many
mathematical and real-world scenarios, including but not limited to the assignment of students to
schools, graduate doctors to hospitals, families to public housing, matchmaking endeavors, online
advertisement distribution, and many other problems. All the aforementioned examples require
an additional superstructure to the graph in order to complete the description of the problem.
In fact, in each of these examples, some of the vertices of the bipartition represent agents that
have preferences over the vertices of the other side: Students (graduate doctors) have preferred
schools (hospitals), schools (hospitals) prefer to admit good students (doctors); families might
prefer to be assigned to certain neighborhoods. Usually, when preferences are expressed by the
agents on one side over the agents on the opposite side, we are in the framework of one-sided
matchings with preferences; when both sides of the bipartition have preferences, then we have
two-sided matchings with preferences. In this standard model, vertices represent agents, and the
action that the agents can take is to express their preferences and their capacities. In this thesis,
we focus our attention on two-sided matchings with preferences.

In general, the agents can express their preferences through orders via binary relations; in
this thesis, unless stated otherwise, we assume that preferences are expressed as preorders. The
Ranking Order List (ROL), or preference list, of an agent might include ties and can be incomplete
(i.e., not all the agents in the other side of the bipartition are ranked). A vertex ranks only the
vertices with which it is connected through an edge. This implies that whenever vertices v and v′

are linked through an edge, then they rank each other. Note that a weight function on a bipartite
graph, which provides a value to each edge incident to a vertex, yields ROLs. Given a vertex v,
we define the set of the acceptable vertices for vertex v as A(v) = {v′ ∈ V : {v,v′} ∈ E}. Next,
we introduce the concept of capacity function, which describes, for each vertex, the maximum
number of vertices with which it can be paired (e.g. how many students a school can enroll).
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Definition 1.2.4. Let (S,C, E) be a bipartite graph where V = S ⊔ C. A capacity function
associated to (S,C, E) is a function q : V → N that associates a capacity q(v) to vertex v; a
graph with an associated capacity function is said capacitated.

Given a subset µ of E, we say that a vertex v is under-subscribed, full, over-subscribed if
|µ(v)|, i.e. the cardinality of µ(v), is less, equal or greater than q(v) respectively. A matching
(or assignment) µ is a subset of E such that |µ(v)| ≤ q(v) for every vertex in the capacitated
graph, where q is the associated capacity function.

When the capacity function has value one for every vertex, then we have the one-to-one
matching problem. If, the capacity function has values greater or equal than one for a side, then
we have the many-to-one matching problem.

Now we have all the elements to define the School Choice (SC) problem, also known as
the College Admission (CA) problem or Hospital-Residents (HR) problem, which was defined by
Gale and Shapley in [67]; the School Choice problem will be the main subject of investigation
throughout this thesis.

The School Choice problem (SC) in a capacitated bipartite graph with ROLs (S,C, E, r,q)
is a many-to-one stable matching problem endowed with a profile of preference lists r = (ri)i∈V

where ri is the preference list of vertex i. We call students the vertices in S which have capacity
one; we call schools the vertices in C, which have capacity greater than or equal to one. The
one-to-one stable matching problem is usually called the Stable Marriage problem (SM), where
the students are called men and the schools are called women.2

The problem of finding a matching under the additional assumption that agents (vertices)
have preferences needs to be tackled through a more refined concept than just looking for a
maximum cardinality matching. In fact, we want to avoid the scenario in which, after a matching
is chosen, some agents could obtain a mutually better result by making a private arrangement.
This case holds when there is at least a pair of agents that blocks the matching.

Definition 1.2.5. Let I be an instance of SC in which the ROLs have strict preferences and let
µ be a matching of SC. We say that a pair {s,u} ∈ E \ µ is a blocking pair if the following two
conditions are satisfied:

• student s is unassigned or prefers school u over school µ(s),
• school u is under-subscribed or prefers student s over at least one student in µ(u).

The matching µ is said to be stable if it does not admit a blocking pair.

The problem of finding a stable matching in an SC instance with strict and complete prefer-
ences was solved in the seminal paper by Gale and Shapley [67]. In Algorithm 1 we present their
algorithm to solve the stable matching problem in O(m), where m is the number of acceptable
pairs (edges) in the given instance. This method is known as the Deferred Acceptance (DA)

2Note that this is an old terminology.
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algorithm. Note that the correctness of the DA algorithm is a proof of existence of a stable
matching for every SC instance with strict and complete preference lists.

Algorithm 1 Deferred Acceptance algorithm
Input: An instance of SC (S,C, E, r,q).
Output: A stable matching µ.

1: Initialize: µ = ∅, label all students as unassigned
2: while there is an unassigned student s who has still a school to apply to do
3: u := the school most preferred by student s, to which s has not yet applied.
4: if u is under-subscribed then
5: the pair (s,u) is included in the matching µ.
6: s is labeled matched.
7: else if there is s′ matched to u s.t. u prefers s to s′ then
8: the pair (s,u) is included in µ.
9: the pair (s′,u) is deleted from µ.

10: s is labeled matched.
11: s′ is labeled unassigned.
12: return µ.

The DA algorithm was initially formulated by Gale and Shapley for the one-to-one stable
matching problem. Here, we decided to directly provide the algorithm generalised for the SC
problem. It is important to note that the stable matching found by the algorithm is the optimal
stable matching for the students: For every student all the other stable matchings lead to same or
a worse assignment with respect to their preference lists. From a dual perspective, this formulation
of the algorithm provides the worst stable matching for the schools, i.e., each school is at least
better off in any other stable matching. The DA algorithm can be also formulated in a way to
provide the optimal stable matching for the schools (which is the worst stable matching for the
students). The key idea is that the set of vertices which proposes the match, is the one which
obtains the optimal stable matching. Let us see how these concepts apply in an example.

Example 1.2.6. Consider an instance of SC with a set of four students {si : i = 1,2,3,4} and
a set of three schools, together with their capacities, {(ui,q(i)) : i = 1,2,3} where q1 = q3 = 1
and q2 = 2. We describe the preference lists of each agent in the following table. Note that the
preference lists are linear orders in which the leftmost element in the list is the most preferred
and the rightmost element in the list is the least preferred. For example, student s1 prefers u1

over u2 and u2 over u3. In this thesis we adopt two notations for representing preference lists; for
example, the preference list of student s1 can be represented as u1, u2, u3 or as u1 ≻s1 u2 ≻s1 u3,
where the relation ≻s1 is the ranking of student s1 over pairs of schools.
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Students’ ROLs Schools’ ROLs and capacities
s1 : u1, u2, u3. u1 : s1, s2, s3, s4. q(1) = 1
s2 : u1, u2, u3. u2 : s1, s3, s2, s4. q(2) = 2
s3 : u1, u3, u2. u3 : s1, s2, s3, s4. q(3) = 1
s4 : u1, u3, u2.

The optimal stable matching for the students is {(s1,u1),(s2,u2),(s3,u3),(s4,u2)}, and the op-
timal stable matching for the schools is {(s1,u1),(s3,u2),(s2,u3),(s4,u2)}. Note that the matching
{(s1,u2),(s3,u1),(s2,u3),(s4,u2)}, despite being a maximum matching, is not a stable matching;
in fact, the pair (s1,u1) is a blocking pair because both agents s1 and u1 would prefer to be
matched to each other rather than to the agents with which they are currently matched. □

Insightful results have been proved regarding the properties of the matched and unassigned
(under-subscribed) students (schools) in an SC problem with strict and complete ROLs.

Theorem 1.2.7 (Rural Hospital Theorem, [132, 68, 134, 107]). For a given instance of SC
with strict and complete preference lists, the following properties hold:

• The same students are assigned in all stable matchings;
• Each school is assigned the same number of students in all stable matchings;
• Every school that is under-subscribed in one stable matching is assigned exactly the same

set of students in all stable matchings.

We denote the SC problem where the preference lists are strict and incomplete as SCI. Within
the framework of the one-to-one matching problem, there is a bijection between the set of stable
matchings in an instance I of where ROLs are strict and complete and the set of stable matchings
in I when the ROLs are strict and incomplete [107].

Theorem 1.2.8 ([107]). Let I be an instance of one-to-one stable matching problem with n1

students and n2 schools, where the preference lists are strict and complete. There exists an
instance I ′ with strict and incomplete ROLs of the same problem when preferences are of size n,
where n = max{n1, n2}, such that the stable matchings in I are in a bijective correspondence
with the stable matchings in I ′.

Often, in the real world, agents rank equally two vertices on the other side; therefore, we
need a more flexible representation of the preference lists in order to account for ties. A partially
ordered set (poset), is a set of elements with a reflexive, anti-symmetric and transitive order; a
linear order is a poset in which all elements are comparable. We call SCT the SC problem in
which the preferences are organized as a weak order. Since in the SCT problem it may happen
that two agents are ranked in the same position, we must reformulate the notion of stability.
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Definition 1.2.9. Let µ be a matching in an instance of the SCT problem. Let (si,uj) be a pair
in E \M , we say that (si,uj) blocks (or that it is a blocking pair of) M if one of the following
conditions is satisfied according to the required level of stability

• Weak stability:
(i) si is unassigned or prefers uj to her assigned school in M , and
(ii) uj is under-subscribed or prefers si to its worst assigned student in M ;

• Strong stability: either
(i) si is unassigned or prefers uj to her assigned school in M , and
(ii) uj is under-subscribed or prefers si to its worst assigned student in M or is indifferent

between them;
or

(i) si is unassigned or prefers uj to her assigned school in M or is indifferent between
them, and

(ii) uj is under-subscribed or prefers si to its worst assigned student in M ;
• Super stability

(i) si is unassigned or prefers uj to her assigned school in M or is indifferent between
them, and

(ii) uj is under-subscribed or prefers si to its worst assigned student in M or is indifferent
between them.

It is immediate to verify that a super stable matching in an instance of SCT is strongly stable
and that strong stability implies weak stability.

The last key notions that we present in this section regard some well-known metrics that have
been adopted to guide the search among the set of stable matchings. Note that the following
metrics are given for the one-to-one stable matching problem.

Definition 1.2.10. Let I be an instance of the one-to-one stable matching problem and let µ

be a stable matching, where S and C are the sets of students and schools in I, respectively.
Let s be an agent matched in µ, we define the rank of µ(s), rs,µ(s), for agent s as the position

of µ(s) in the preference list of s. We define the regret of µ as

regret(µ) = max
s∈Sµ∪Cµ

rs,µ(s)

where Sµ and Cµ are the students and schools matched in µ, respectively. The stable matching µ

is said to be a minimum regret stable matching if regret(µ) is minimum over all stable matchings
in I.

The cost for the students relative to µ is

costS(µ) =
∑

s∈Sµ

rs,µ(s).
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Similarly, we can define the cost for the schools costC(µ) relative to µ. More generally, the cost
of a matching µ is cost(µ) = costS(µ) + costC(µ). A stable matching µ is an egalitarian stable
matching if cost(µ) is minimum over all the stable matchings in I.

The sex-equality measure of µ, is defined as

d(µ) = |costS(µ)− costC(µ)|.

A stable matching µ is said to be a sex-equal stable matching if d(µ) is minimum over all the
stable matchings in I.

Consider an instance I of the one-to-one stable matching problem, and consider the student-
optimal stable matching µ. Assume we introduce a new school c⋆ in I, thus obtaining the
expanded instance I⋆ where the preferences of the students are the same as in I with the inclusion
of school c⋆ therein. Note that c⋆ could also be a number of capacities to be added to a school in
I. How does it change the student-optimal stable matching µ⋆ with respect to µ? Observe that
the set of students S in I is the same set of students in I⋆. It is known that every student in S
weakly prefers the matching µ⋆ to the matching µ [89, 68]. This property is known as the entry
comparative static. Recently, Kominers has shown that a similar result holds in the many-to-one
stable matching problem.

Theorem 1.2.11 ([100]). Let I be an instance of the many-to-one stable matching problem and
I∗ the instance where the capacities of some schools in I are expanded. Let µ and µ∗ be the
student-optimal stable matchings of instance I and I∗, respectively. Every student weakly prefers
their matching in µ∗ to their matching in µ.

1.2.3. Strategy-proofness

So far, we discussed the problem of finding a stable matching in an instance of the SC problem.
Stability is a a desirable property for a matching since it ensures that student-school pairs of do
not get better off by circumventing the mechanism. However, stability alone is not enough to
guarantee that agents cannot manipulate the mechanism once they have enough information
about how the mechanism works and some information about other agents’ preferences and
capacities. In this section, we introduce some fundamental notions to analyze when a mechanism
is incentive compatible.

Every student in the SC problem is an agent that decides the preference list to present when
taking part to the matching market. Every school is an agent that decides not only its preference
list, but also how many capacities to report. Therefore, given a mechanism, i.e., a procedure for
the selection of a matching, there is a game played by the agents. In this game, each student
(school) chooses an action consisting of picking the preference list (and capacity) to be revealed
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to the market; the goal of each agent is to optimize their matching with respect to their true
preferences and capacities.

Designing a mechanism where the optimal action of each agent is reporting the true pref-
erences and capacities is a fundamental objective of policymakers. A mechanism that has this
property is called strategy-proof. The DA algorithm, which runs in polynomial time, can be
devised to produce the student-optimal stable matching or the school-optimal stable matching.
Once the DA is oriented in favor of the students, thus outputting the student-optimal stable
matching, the students cannot obtain a better stable matching than that achieved by reporting
their true preferences.

Theorem 1.2.12 ([131]). Consider the many-to-one stable matching problem. The student-
optimal stable matching is weakly Pareto optimal for the students in the set of all matchings.
That is, there can be no matching (even an unstable matching) that all students strictly prefer
to the student-optimal stable matching.

The previous result provides a key insight in the set of possible outcomes that the students
can achieve, hence providing the following guarantee of strategy-proofness for the students.

Theorem 1.2.13 ([56, 131]). Consider the many-to-one stable matching problem. In the game
induced by the student-oriented DA algorithm, in which each player states a preference list, it is
a dominant strategy for each student to state her true preferences.

Interestingly, a similar result does not hold for the schools when their capacities are greater
than one [56, 131]. The previous positive result is counter-balanced by the following, which
establishes an impossibility over the number of agents for which a mechanism can be strategy-
proof.

Theorem 1.2.14 ([131]). Consider the one-to-one stable matching problem. No mechanism
outputting a stable matching exists for which stating the true preferences is a dominant strategy
for every agent.

When we restrict ourselves to the one-to-one SC problem, it has been shown that the schools
can manipulate their preferences to turn the student-optimal stable matching into the school-
optimal stable matching. In the framework of the one-to-one stable matching problem, a winning
coalition is a set of agents that coordinate their preferences to manipulate the matching into
their-side-optimal stable matching. A minimum winning coalition is a minimum-size winning
coalition.

Theorem 1.2.15 ([115]). In any instance of the SC problem, the minimum winning coalition
has cardinality at most ⌊n

2 ⌋ where n is the number of schools.
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Interestingly, schools can manipulate the matching not only by reporting false preferences,
but also by under-reporting the number of capacities.

Theorem 1.2.16. [144] Suppose there are at least two schools and three students. Then there
exists no matching mechanism that outputs a matching that is stable and non-manipulable via
capacities.

As shown by these results, providing a mechanism that is strategy-proof for at least one side
of the matching market is a crucial task that policymakers have to address.

In the context of capacity expansion, it becomes crucial assessing whether the entry com-
parative static is immune from manipulation. Let I be an instance and c⋆ a new school, the
mechanism that selects the student-optimal stable matching µ⋆ in the expanded instance I⋆ is
strategy-proof for the students. However, as Question 2 tries to suggest, when the ranking of
school c⋆ becomes a decision variable rather than being part of the input, it is not obvious any-
more whether the mechanism that selects the stable matching and the creation of the new school
is still strategy-proof.

1.3. Mathematical Programming
Mathematical programming (or mathematical optimization) is the field of mathematics that

develops algorithmic methods to solve decision problems aiming to optimize some criteria. To
define a mathematical programming problem, first we need to define the variables of the problem,
which indicate the actions controlled by the decision-maker. The variables may have a continuous
or discrete domain of existence. Once the decisions are established, we need to set the criteria
guiding our decision-making, i.e., we introduce an objective function. The goal of the optimization
can be to minimize or a maximize of the objective function. The domain of the variables can
be further restricted by introducing additional constraints. Once a problem is formulated as a
mathematical programming model, it can be solved with an off-the-shelves optimization solver,
such as the open source SCIP solver [12, 70].

In this section, we present some of the most important mathematical programming formula-
tions for bipartite matching problems under preferences.

1.3.1. One-to-one Stable Matching

The first known mathematical programming formulations of the one-to-one stable matching
problem were given by Gusfield and Irving [71] and Vande Vate [150]. Later on, Rothblum [139]
provided a characterization of the stable matchings as the extreme points of a polytope. The
relevance of these contributions is supported by the fact that the SC problem can be solved not
only with the DA algorithm in polynomial time, but also using a linear mathematical programming
formulation. Linear programming formulations offer the extra flexibility of introducing a linear
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objective function to be optimized, and importantly, they can be solved in polynomial time.
Therefore, a linear model of theone-to-one matching problem can also be addressed in polynomial
time through a mathematical programming formulation, which, in addition, provides greater
adaptability compared to the DA algorithm.

We introduce a mathematical programming formulation for the one-to-one stable matching
problem using the notation of the SC problem for ease of exposition; note that, at this point,
the only difference between the two problems lies in the fact that the capacities of all the agents
in theone-to-one matching problem are equal to one. Assume the set S of students and the set
C of schools are of the same size, and every agent can be matched to at most one agent on the
other side. Let E ⊆ S ×C denote the set of feasible pairs in an instance of the one-to-one stable
matching problem with strict and incomplete lists. Note that in the following general formulation
we aim at maximizing a general weight function associated with every feasible student-school
pair.

max
x

∑
(s,c)∈E

ws,c · xs,c (1.3.1a)

s.t.
∑

c∈C:(s,c)∈E
xs,c ≤ 1, ∀ s ∈ S, (1.3.1b)

∑
s∈S:(s,c)∈E

xs,c ≤ 1, ∀ c ∈ C, (1.3.1c)

xs,c +
∑

c′≻sc

xs,c′ +
∑

s′≻cs

xs′,c ≥ 1, ∀ (s,c) ∈ E (1.3.1d)

xs,c ∈ [0,1], ∀ (s,c) ∈ E (1.3.1e)

where ws,c is the weight assigned to the edge (s,c). The vector of decision variables x decides the
matching between students and schools: xs,c is 1 if student s is matched to c, and 0 otherwise, for
every (s,c) ∈ E . The optimization is a maximization of the objective function (1.3.1a). Note that
when ws,c = 1, we seek the maximum cardinality matching. Constraints (1.3.1b) and (1.3.1c)
establish the capacity constraints on the agents, while Constraints (1.3.1d) characterize the
stability condition. Finally, Constraints (1.3.1e) describe the original domain of existence of the
decision variables. Rothblum [139] proves that all the extreme points of the polytope defined
by the constraints of Formulation (1.3.1) are binary vectors; when a mathematical programming
formulation satisfies this property, it is said to be a perfect formulation. Hence, an optimal x is
always binary.

1.3.2. Many-to-one Stable Matching

We can extend Formulation (1.3.1) to the many-to-one stable matching problem. Note that
now every school c has a capacity q(c) ≥ 1.

50



max
x

∑
(s,c)∈E

ws,c · xs,c (1.3.2a)

s.t.
∑

c∈C: (s,c)∈E
xs,c ≤ 1, ∀ s ∈ S, (1.3.2b)

∑
s∈S: (s,c)∈E

xs,c ≤ q(c), ∀ c ∈ C, (1.3.2c)

q(c)xs,c + q(c) ·
∑

c′≻sc

xs,c′ +
∑

s′≻cs

xs′,c ≥ q(c), ∀ (s,c) ∈ E (1.3.2d)

xs,c ∈ {0,1}, ∀ (s,c) ∈ E . (1.3.2e)

First of all, note that Constraints (1.3.2b) and (1.3.2c) are similar to Constraints (1.3.1b)
and (1.3.1c) as they ensure that the capacities of the students and schools are satisfied. Second,
it is worth mentioning that we should also take in consideration the capacities of the schools in
the stability Constraints (1.3.2d). Finally, since the formulation 1.3.2 is not a perfect formulation,
we need to include binary requirements on the variables (Constraints (1.3.2e)). In order to be
able to relax the binary constraints on the variables, we need to provide a new formulation of the
many-to-one stable matching problem. This problem is addressed in the next section.

1.3.2.1. Baïou-Balinski Formulation. Baïou and Balinski [26] provide a Linear Program-
ming formulation for the SC problem which is based on a graphical intuition of the concept of
stability. Given an instance of the SC problem graph (S, C, E, r, q) with linear preferences r, we
can represent it in a matrix form by assigning to each vertex in S a column and to each vertex in C
a row. The preferences of an agent are expressed through arrows: An horizontal (vertical) arrow
from column (row) i to column (row) j means that the school (student) in the corresponding
row (column) prefers student (school) j to student (school) i.

Example 1.3.1. Consider the following example with two schools u1, u2 of capacities respectively
one and two, and three students s1, s2, s3. All the students prefer school u1 over school u2; the
preference list of school u1 is s1, s3, s2, and the preference list of school u2 is s3, s2, s1. In Figure
1, we assign a row to each school and a column to each student. Further, we represent horizontal
(vertical) preferences with blue (green) arrows. Specifically, the blue (green) arrows yield schools’
(students’) preferences, the red (black) vertices are the matched (unassigned) pairs, and the q(ui)
(i = 1,2) are the capacities of the schools. Note that the given matching is stable. □

Given the above graphical interpretation of the SC problem, Baïou and Balinski provide the
corresponding concept of stability as follows:

Lemma 1.3.2 ([26]). Let I = (S, C, E, r, q) be an instance of the SC problem and let µ be a
stable matching of I. A pair (sj,ui) is unassigned in the corresponding graphical representation
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u1

s1 s2 s3

c1 = 1

u2 c2 = 2

Fig. 1. Example of the Baïou and Balinski’s formulation.

of the stable matching µ if and only if it is followed (i.e., preferred) in row i by q(i) matched
pairs or it is followed in column j by one matched pair.

In Figure 2, we provide a graphical representation of the stability concept elaborated when
Lemma 1.3.2 is used. In order to provide the stability constraints for the LP model of SC , Baïou
and Balinski define the following graphical structures.

Definition 1.3.3. Let (S, C, E, r, q) be an instance of the SC problem. We define the set
Γ+ = {(s,u) ∈ E : (s,u) has at least q(u) − 1 successors in row u}. Given a pair (sj,ui), we
define the the set Γ− as the complementary set of Γ+.
Let (sj,ui) be a pair in Γ+, we define the following structures:

• The shaft of (sj,ui), denoted S(sj,ui), is the set of all pairs that follow (sj,ui) in row i

including (sj,ui).
• The tooth of (sj,ui), denoted T (sj,ui), is the set of all pairs that follow (sj,ui) in column

j including (sj,ui).
• A comb of (sj,ui), denoted C(sj,ui), is the union of the shaft S(sj,ui), the tooth T (sj,ui)

and the teeth of q(ui)− 1 successors of (sj,ui) in S(sj,ui). Note that for a given (sj,ui)
there might be multiple combs.

We define the set of the combs in a row u by Cu = {C(s,u) : for every pair (s,u) ∈
Γ+ that is in row u}, and we define the set of all combs by Combs = ⋃

u∈C
Cu.

For example, in both graphs of Figure 2 the shaft of (sj,ui) is S(sj,ui) =
{(sj,ui), (sj+1,ui), (sj+2,ui)}. Instead, the tooth of (sj,ui) is different in the two
graphs; in the first graph of Figure 2, T (sj,ui) = {(sj,ui)}, and in the second graph
T (sj,ui) = {(sj,ui), (sj,ui−1)}. Finally, in the first graph of Figure 2 school ui has only one
comb, C(sj,ui) = {(sj,ui), (sj+1,ui), (sj+2,ui)}; in the second graph school ui has two combs,
C(sj,ui)1 = S(sj,ui)∪ T (sj,ui)∪ T (sj+1,ui) and C(sj,ui)2 = S(sj,ui)∪ T (sj,ui)∪ T (sj+2,ui).
Additionally, in Figure 2, we provide two different examples of stable matchings corresponding to
the two cases of the stability condition for an unassigned pair (sj,ui). The blue (green) arrows
yield schools’ (students’) preferences, and the red (black) vertices are the matched (unassigned)
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pairs. A matching is stable if every unassigned pair is followed in the row of school ui by q(ui)
assigned pairs, or if it is followed in column sj by one assigned pair.

uiThe pair (sj,ui) is unassigned if:

sj sj+1 sj+2

q(ui) = 1

ui

sj

q(ui) = 2or if:

sj+1 sj+2

ui−1 q(ui−1) = 3

Fig. 2. Example of the Baïou and Balinski’s definition of stability.

We can now present the linear polyhedron for the set of stable matchings of SC introduced
in [26].

max
x

∑
(s,c)∈E

ws,c · xs,c (1.3.3a)

s.t.
∑

u∈C: (s,u)∈E
xs,u ≤ 1 ∀s ∈ S (1.3.3b)

∑
s∈S: (s,u)∈E

xs,u ≤ q(u) ∀u ∈ C (1.3.3c)

∑
(s,u)∈C

xs,u ≥ q(u) ∀u ∈ C, ∀C ∈ Cu (1.3.3d)

xs,u ≥ 0 ∀(s,u) ∈ E (1.3.3e)

where, Constraints (1.3.3b) impose that each student can be matched with at most one school,
Constraints (1.3.3c) yield a limit on the number of students matched to each school, and Con-
straints (1.3.3d) are the stability (comb) constraints. Finally, Constraints (1.3.3e) define the
non-negativity of each assignment. The following theorem establishes that the vertices of the
polytope described by Formulation (1.3.3) are the stable matchings of the SC problem.

Theorem 1.3.4 ([26]). The polyhedron described via constraints (1.3.3) corresponds to the
stable polytope of the SC problem.

Therefore, the extreme points of the polyhedron described by Constraints (1.3.3) are integer.
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Chapter 2

Literature Review

In this chapter, we provide a literature review in matching theory under preferences with a partic-
ular focus on the works related to our papers. The next three sections are dedicated to seminal
work on stable matching problems. In Section 2.1, we start by describing the historical context
in which matching markets under preferences became relevant, emphasizing their real-world ap-
plication. Then, in Section 2.2, we briefly review computational complexity results related to the
School Choice problem, since our work focuses on this type of matching markets. Section 2.3
focuses on the works using Mathematical Programming to tackle stable matching problems.
Finally, Section 2.4, briefly reviews the works related to quota expansion and matchings with
complementarities, enabling us to position the contribution of this thesis.

2.1. Historical Context
Since the publication of the seminal work by Gale and Shapley [67], researchers have focused

their attention on studying the properties of bipartite markets under preferences, such as the
design of strategy-proof mechanisms and the determination of equilibria for existing mechanisms,
e.g., [56, 89, 131]. The interest in this type of markets is not only theoretical. Indeed, it
has been observed that mechanisms in which stability is not taken into consideration are usually
not successful in the long term. A famous example is the labor market for medical interns and
residents, also known as the hospital-resident matching market. The hospital-resident matching
market has been running since the beginning of the 20th century, and is now managed by the
National Resident Matching Program (NRMP). From its inception, the decentralized matching
mechanism demonstrated significant inefficiency, adversely impacting both residents and hospitals
alike [132]. Following multiple unsuccessful attempts to rectify the issues in the hospital-resident
market through various countermeasures and rule changes, a new centralized mechanism was
introduced in 1951, which proved to be highly effective [138]. Ex-post, it was discovered that
the reason for the success of this mechanism was precisely the fact that it guaranteed stabil-
ity [132]. Interestingly, the algorithm used by the NRMP since 1951 was the same algorithm



that was independently introduced by Gale and Shapley [67], which is known as the Deferred
Acceptance (DA) algorithm (Algorithm 1). As the understanding of the properties of this mech-
anism advanced across decades, prospective residents started worrying about the manipulability
of the mechanism, i.e., whether it was a dominant action to report their true preferences rather
than strategizing in order to improve their matching. Specifically, as described in details in Sec-
tion 1.2.2, the DA algorithm can be tuned to provide the best stable matching for all the hospitals
or, dually, the best stable matching for all the residents. If, for instance, it is adopted the version
that favors the hospitals, then the residents could achieve a better matching by reporting a false
ranking of their favorite hospitals.1 The property of a mechanism not being subject to manipula-
bility is crucial for guaranteeing that merit is the main factor that determines the matching of a
resident. In order to restore confidence into the system, the NRMP redesigned the mechanism to
provide a stable matching that favors the residents [136], and therefore avoids manipulation from
the residents’ side. Since the successful implementation of the NRMP, several hospital-resident
markets worldwide have taken cues from the NRMP’s centralized matching approach, incorpo-
rating state-of-the-art insights from the field of matching theory. Examples of such adoption can
be seen in Japan [84, 87] and Canada [69].

Another rapidly growing field of application concerns the problem of assigning students to
schools, also known as the School Choice (SC) problem. Over the past few decades, many
educational systems around the world have been adopting mechanisms suggested by matching
theory to assign students at each level of education. Examples comprise the education system
in Hungary [34, 35], in Chile [50], in South Korea [23] and in China [155], daycare admis-
sion in Denmark [90], public school admission in Boston [5], in New Orleans [1] and in San
Francisco [15], university admission in Germany [44], in Spain [126] and in Turkey [27].

The list of current successful applications of matching mechanisms in bipartite markets under
preferences also include examples outside the education domain. For example, the matching
of rabbis [41], online dating [74, 82], labour market for lawyers in Germany [54], healthcare
rationing [122], refugee resettlement [52], systems to assign cadets [145, 106, 125, 154], for
studying stability in supply chains [119] and metal-only engineering change order synthesis [81].

2.2. Computational Complexity
The DA algorithm finds the student-optimal (or the school-optimal) stable matching in poly-

nomial time [67]. In general, the main focus of the literature has been on finding a maximum
cardinality stable matching, which can be easily obtained when there are incomplete and strict
preference lists; that is because the Rural Hospital Theorem (Theorem 1.2.7) guarantees that all
stable matchings have the same size. Similarly, when preference lists are complete and contain

1Note that, the DA algorithm presented in Algorithm 1, we can replace schools by hospitals and students by
residents to fit the setting of the hospital-resident matching market.

56



ties, then all weakly stable matchings have the same size; indeed, if ties are broken arbitrarily
and we find a stable matching with DA, then such a stable matching is complete and also weakly
stable in the original instance with ties.

Once we include simultaneously in SC both incomplete lists and ties, the problem of finding a
maximum cardinality stable matching becomes NP-hard even under very restrictive conditions [79,
108]. In terms of approximation ratios, the best known factor is 3

2 [110, 92, 120] and the best
lower bound is 33

29 [153]. When ties are only on one side, there exists a 25
17 approximation

algorithm [80].

2.3. Mathematical Optimization
Mathematical Optimization, also called Mathematical Programming, is the discipline that de-

velops mathematical methods of analysis to guide decision-making in a constrained environment.
Domains of application range from energy markets, to scheduling, resource allocation, and trans-
portation. In the context of matching problems, the use of mathematical programming dates
back to at least Dantzing [51], who studied the matching problem in the form of the optimal
assignment problem.

At the end of the 1980s, researchers started investigating mathematical programming formu-
lations of the stable matching problem; the first known formulations are given by Gusfield and
Irving [71] and Vande Vate [150]. Vande Vate [150] provides a linear description of the convex
hull of the characteristic vectors of one-to-one stable matchings showing that the vertices of the
polytope of stable matchings are integer tuples. This result is built upon the algorithm that finds
stable matchings through rotations by Irving et al. [77]. The result of Vande Vate is extended
to the case of one-to-one stable matching problem with incomplete lists by Rothblum [139].
Moreover, the author studies the polytope of stable matchings in the SC case. Roth et al. [137]
prove the same results in an alternative way, providing a new perspective on the subject.

Exploring in greater depth the relation between the Gale-Shapley algorithm and Mathematical
Programming, Abeledo and Rothblum [11] prove that the Gale-Shapley algorithm is an application
of the dual simplex method. Their result is shown for the version of the Gale-Shapley algorithm in
which the proposals of the agents are made successively. In the original version of the algorithm
the authors assume that the proposals are simultaneous, but it has been proven that the two
versions provide the same result [112].

In another paper, Abeledo et al. [10] prove that a fractional stable matching can be represented
through a convex combination of (integral) stable matchings and that such fractional stable
matchings yield a lattice structure (as proven in [137, 147]). In [30], Balinski and Ratier provide
instances of one-to-one stable matching that have an exponential number of stable matchings
(more precisely, as many stable matchings as the n-th Fibonacci number, where n is the number
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of agents in one side of the graph); this result showcases the importance of the selection of a
specific stable matching, specially in a context where it is required fair decision making.

Concerning the relation between the SC problem and Mathematical Programming, Baïou
and Balinski [26] characterize through linear inequalities the convex hull of its stable matchings,
obtaining the so-called admission polytope (recall Section 1.3.2). The authors prove that the
vertices of the admission polytope are integer valued (hence, we can drop the integrality con-
straints). We generalize their formulation of the SC problem in Chapter 4. Additionally, Baïou
and Balinski also provide a polynomial time separation algorithm.

Sethuraman et al. [140] expand the work by Baïou and Balinski [26] from a geometric
perspective. They further prove that a fractional stable matching can be decomposed as a
convex combination of (integral) stable matchings.

Mixed Integer Programming (MIP) approaches for SCTI matching are developed through
a series of papers that produce pre-processing heuristics [78] and exact methodologies [53] for
optimizing and speeding up the computation of the maximum cardinality stable matching. Recent
works providing MIP formulation for SCTI also include Agoston et al. [157].

Finally, Fleiner [63] provides a linear programming formulation of the many-to-many stable
matching problem and thus, a characterization of the convex polytope of stable matchings in this
case.

2.4. Related Problem Variants
In our research, we examine different versions of the School Choice problem, considering fac-

tors like changing school quotas and family preferences. To set the stage, we begin by discussing
the existing literature in this field.

The design of a stable mechanism when the number of participants of one side is increased
has already been investigated through the lens of game theory. In particular, for the one-to-one
stable matching problem, this is known as the entry comparative static ; to illustrate, it is known
that when a new school (with capacity one, since we are in the one-to-one setting) is added to
the instance, all students are matched weakly better [89, 68, 138]. Recently, Kominers [100]
extends this result to the school choice problem. In [31], the authors show that the DA algorithm
is invariant with respect to improvements of the students’ position in the preference lists of the
schools. Within the existing body of literature, as elucidated in Section 1.2.3, there has been
a considerable focus on crafting matching mechanisms that encourage participants to express
their genuine preferences. For instance, Sönmez [144] proves that schools can manipulate the
mechanism in their favor by falsely reporting a reduced capacity. Moreover, Romm [127] proves
that manipulation is still possible even if the reported capacities are enforced during the admission
process; this is particularly interesting since it seems natural that by reducing a school capacity it
follows that the outcome for that school would be worse. In Chapters 4 and 3, our contributions
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are focused on the dynamics of school capacity adjustments. Diverging from the previously
mentioned literature, our research is dedicated to investigating the development of mechanisms
that guide the optimal expansion or reduction of school capacities, under the assumption that all
agents report their true preferences and capacities. We prove that this assumption is reasonable
given that our mechanism is strategy-proof in the large [24].

In the case of the hospital-resident matching problem, allowing applications from couples was
one of the main reasons that led to the redesign of the mechanism in the U.S.A. [136]. This is a
problem faced also by families of refugees, who cannot be split and whose application should be
taken in consideration in an aggregated fashion. These problems belong to the literature on stable
matchings with complementarities, for which a solution may fail to exist [132]. Indeed, Ronn
proves that given an instance of the SC problem with complementarities, establishing if there
is a stable matching is NP-complete [129]. To overcome this limitation, Klaus et al. [93, 95]
enrich the SC setting by assuming that preferences are weakly responsive; they show that this
assumption guarantees the existence of a stable assignment. Another noteworthy path to mitigate
the potential non-existence of a stable matching is providing an upper bound on the number of
extra capacities that must be assigned in the market to guarantee the existence of a stable
matching with complementarities [117]. All these approaches maintain the assumption that
preferences are static and not subject to change. In fact, what we observe in the real world is that
schools tend to admit first students that have siblings already enrolled in one of their programs,
host countries tend to receive families of refugees without splitting them and universities tend to
hire couples altogether. Even if the members in a couple are considered as an indivisible entity
rather than individuals, McDermid and Manlove [111] prove that the problem of deciding the
existence of a stable matching is still NP-complete. On a more positive light, Dur et al. [57]
prove existence when pairs of agents are indivisible and each member of the pair applies to a
different level; for instance, when siblings apply to different grades. Finally, in the context of
the hospital-resident problem, even in the presence of single tie-breaker (or master-list) for the
hospitals, Biró et al. [37] show that the problem of deciding the existence of a stable matching
is NP-complete when there are complementarities. Chapter 5 aligns with the field of stable
matchings involving complementarities. However, in the specific context of School Choice, our
approach differs from the existing literature. We treat families of students as divisible, but we
introduce dynamic priorities to capture the families’ desire for their siblings to be placed together
in the same school.
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Chapter 3

Capacity Variation in
Many-to-one Stable Matching

by
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Prologue: In this chapter, we address the problem of assessing the computational complexity of
expanding optimally capacities subject to a budget (Question 4); note that when the preferences
of the students are all the same, the problem is trivial since it suffices to allocate all the extra-
capacities to the school ranked first by all the students. Then, we also show that the same
proof can be used to show the problem of reducing capacities to impact the least the matching
for the students (Question 5); similarly, when all the students have the same preferences, it
suffices to reduce the capacities of the least preferred schools (starting from the last) until
all the budget is met. Finally, we investigate the previous two questions when the budget of
capacities is partitioned among subsets of schools. In this chapter, we also introduce and study
the aforementioned questions when the objective function is the maximization of the number of



matched students.

Article details: This article was submitted to the Journal of Computer and System Sciences.

Contributions of the authors: Federico Bobbio participated in all the stages of the work, being
the main author of the paper. The idea to study not only the computational complexity of the
capacity expansion problem but also of the capacity reduction problem along with the problems
with regional quotas came from Federico Bobbio. He devised the proofs presented in the paper
as well as its first draft.
Margarida Carvalho, Andrea Lodi and Alfredo Torrico revised the proofs as well as the paper.

Résumé. Le problème de l’appariement stable plusieurs à un constitue l’abstraction fondamen-
tale de plusieurs marchés d’appariement réels tels que le choix de l’école et l’affectation des
résidents d’un hôpital. Ces problèmes impliquent deux groupes d’agents, souvent appelés rési-
dents et hôpitaux. La configuration classique suppose que les agents classent le côté opposé et
que les capacités des hôpitaux sont fixes. On sait que l’augmentation de la capacité d’un seul hô-
pital améliore l’allocation finale des résidents. En revanche, la réduction de la capacité d’un seul
hôpital détériore l’allocation des résidents. Dans ce travail, nous étudions la complexité de calcul
de la recherche de la variation optimale des capacités des hôpitaux qui conduit au meilleur résul-
tat pour les résidents, sous réserve de stabilité et d’un budget de variation des capacités. Tout
d’abord, nous montrons que le problème de décision consistant à trouver l’expansion optimale
de la capacité est NP-complet et que le problème d’optimisation correspondant est inapproxi-
mable en n

1
6 −ϵ, où n est le nombre de résidents. Ce résultat est valable pour des préférences

strictes et complètes, et même si nous allouons des capacités supplémentaires à des ensembles
disjoints d’hôpitaux. Deuxièmement, nous obtenons des résultats analogues d’inapproximabilité
pour le problème de la réduction des capacités. Ces résultats de complexité sont cruciaux, car
ils empêchent le développement d’un algorithme d’approximation à facteur constant en temps
polynomial pour s’attaquer à un problème réel d’un grand intérêt pour les décideurs politiques.
Mots clés : Appariement stable de plusieurs à un, problème des résidents d’hôpitaux, expansion
des capacités, réduction des capacités, complexité de calcul
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Abstract. The many-to-one stable matching problem provides the fundamental abstraction of
several real-world matching markets such as school choice and hospital-resident allocation. These
problems involve two sets of agents, often referred to as residents and hospitals. The classical
setup assumes that the agents rank the opposite side and that the capacities of the hospitals
are fixed. It is known that increasing the capacity of a single hospital improves the residents’
final allocation. On the other hand, reducing the capacity of a single hospital deteriorates the
residents’ allocation. In this work, we study the computational complexity of finding the optimal
variation of hospitals’ capacities that leads to the best outcome for the residents, subject to
stability and a capacity variation budget. First, we show that the decision problem of finding
the optimal capacity expansion is NP-complete and the corresponding optimization problem is
inapproximable within n

1
6 −ϵ, where n is the number of residents. This result holds under strict

and complete preferences, and even if we allocate extra capacities to disjoint sets of hospitals.
Second, we obtain analogous computational inapproximability results for the problem of capacity
reduction. These complexity results are crucial, as they hinder the development of a polynomial
time constant-factor approximation algorithm for tackling a real-world problem of great interest
for policymakers.
Keywords: Many-to-one stable matching, hospital-resident problem, capacity expansion, capac-
ity reduction, computational complexity

3.1. Introduction
The stable matching problem in a bipartite graph is a classical problem that requires a few

key ingredients to be defined: Two disjoint sets of nodes, a set of edges connecting the nodes in
the two sets, a capacity function for each node and a weight function for each pair of edge-node.
The weight function is often interpreted as the ranking preferences of the node over the edges.
A matching is a collection of edges that respects the capacity of each node, and it is said to
be stable when such collection cannot be simultaneously improved (w.r.t. the weight function)
for two nodes of every connected pair in the graph. It has been shown that a stable matching
always exists via a polynomial-time algorithm [67], and that all the stable matchings have the
same cardinality even if the graph is not complete [132, 68, 134]. If we assume the graph to be
complete and we assume the weight function can assign the same value to multiple edges incident
to a common node, i.e., some edges are tied in the ranking of the node, then the problem of
finding a maximum cardinality stable matching remains polynomial. Nonetheless, as soon as we
relax also the assumption that the bipartite graph is complete, then the problem of finding a
stable matching of maximum cardinality becomes NP-hard [108].

Given the simplicity of the setting in which the problem is defined, the stable matching problem
has found multiple applications in the real-world. Perhaps, the education admission process is the
most famous application setting in many countries all over the world, such as daycare admission
in Denmark [90], school and hospital-resident allocation in the USA [5, 6, 3, 132, 136], school
and university admission in Hungary [34, 36] and Chile [105, 50], school admission in Singapore
[148], university admission in China [155], Germany [44] and Spain [126]. Moreover, in the last
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years, there has been a growing interest in the use of the stable matching problem to facilitate the
integration of refugees in hosting countries [52, 17, 14], or optimizing the rationing of healthcare
services such as ventilators during the pandemic [122, 25].

Most of these applications assume that one of the two sets of nodes can be matched more
than once, which is known as the many-to-one stable matching (HR) problem, where HR stands
for hospital-resident. Henceforth, we refer to one set of nodes in the graph as hospitals and
the other nodes as residents. In this setting, the weight function represents the preferences
of the residents over the hospitals, and vice versa. The HR problem and its multiple variants,
have been widely studied in the literature from different perspectives: From a polyhedral [26,
27] and algorithmic [67] perspective, to geometry [140], mathematical programming [150],
combinatorics [97], fixed-point methods [146] and graph theory [29].

In the standard version of HR, the capacity of each hospital is fixed and known in advance.
The decision-maker in charge of the selection of a matching (assignment) does not have control
over these quota. However, there are multiple real-life situations in which the variation of the size
of the market, expansion or reduction, could play a significant role. For example, the University of
Tsukuba recently restructured the course offering by allocating a budget of capacities to courses
starting from zero [101]. From a methodological standpoint, Bobbio et al. [38, 39] were the first
to provide an exact mathematical programming formulation to find the optimal matching and
allocation of capacities for the benefit of the residents. Policymakers are often required to produce
multiple possible scenarios before choosing how to allocate a budget. This requires the use of
algorithms that output multiple solutions within a short time-window. For instance, in the Chilean
school admission system, the centralized clearinghouse needs to produce several possible scenarios
before deciding how to allocate scholarships [50]. Moreover, if finding an optimal solution, i.e.,
a feasible assignment of hospital capacities and an associated stable matching accordingly with
a given objective, turns out to be time consuming, decision-makers may resort to polynomial-
time algorithms with constant-factor guarantees. In this paper, we address precisely the question
of how difficult it is to find such a solution, and whether it is possible to have approximation
guarantees when looking for sub-optimal solutions. Roughly speaking, for the expansion of the
market, we study the following question:

«Let B ∈ Z+ be a non-negative integer. Given that B extra capacities should
be added to the hospitals, which are the hospitals whose capacities should be
expanded to obtain the best stable matching for the residents? »

On the other hand, in certain cases one side could be under-demanded, i.e., as it has been
observed with schools [65], therefore a reduction in the spots may improve the finances of the
policymaker, while minimizing the impact on the education system for the residents. Indeed, in
the second part of this work, we focus our attention on the reduction of capacities in the market.
To put it simply, we study the following question:
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«Let B ∈ Z+ be a non-negative integer. Given that B capacities should be
reduced from the hospitals, which are the spots that should be reduced to
obtain the best stable matching for the residents? »

We primarily focus on a rank-based metric (the weight function) to choose the best matching
for the residents. We also study the variants of the problems above under a cardinality-based
metric, which has been widely studied in the literature [107].

3.1.1. Contributions and Organization

This paper is organized as follows. In Section 3.2, we introduce the formal notation, the
problem of expanding capacities (Problem 4), and the problem of reducing capacities (Problem 5).
Once we have established the notation and main definitions, in Section 3.3 our main focus is to
establish the complexity of Problem 4. To achieve this result, we first observe, in Corollary 3.3.2,
that determining the stable matching of minimum average rank for the residents in the presence
of ties is NP-hard and is not approximable within n̄1−ε, for any ε > 0, where n̄ is the number of
residents. This result is fundamental since it puts a boundary on the computability of the stable
matching of minimum average rank, which is well known to be polynomially solvable when there
are no ties via the DA algorithm.1 Note that Corollary 3.3.2, which is a natural consequence of
Theorem 7 in [108], is the stepping stone needed to build our main proof. The remainder of
Section 3.3 is devoted to study the complexity of the capacity expansion problem. All our results
are proven in the special case in which the initial capacity of every hospital is one. Indeed, even
under very restrictive assumptions, finding the allocation of extra capacities to the hospitals that
lead to a minimum average rank stable matching is NP-hard, and for any ε > 0, it cannot be
approximated within a factor of (n̄) 1

6 −ε unless P=NP (Theorem 3.3.1). Our complexity proof is
based on a new structure that we call village. Each village is assigned some extra capacities, and
the preferences of the hospitals and residents in a village ensure that the extra capacities can be
optimally allocated only in a specific way. Then, in Section 3.4, we study the capacity reduction
problem. We prove that this problem is NP-hard, and for any ε > 0, it cannot be approximated
within a factor of (n̄) 1

6 −ε, unless P=NP (Theorem 3.4.1). The proof follows a similar reasoning
as in Theorem 3.3.1. We exploit again the structure of the village, with the caveat that every
hospital starts with a capacity of two seats. In Section 3.5, we study several variants of Problems
4 and 5. Specifically, we partition the set of hospitals and allocate (remove) a certain amount of
capacities to (from) each set of the partition. Theorem 3.5.2 shows that, even when we partition
the set of hospitals and we allocate to (remove from) each set at most one spot, finding the
optimal allocation is an NP-hard problem. Moreover, we prove that the optimization version of
the problem is not approximable within a factor of n̄1−ε, for any ε > 0 (Theorem 3.5.2). The
equivalent results for the reduction problem are shown in Theorem 3.5.4. We provide similar
1Note that, as proven in [38, 39], when preferences are strict, minimizing the average rank of the residents is
equivalent to find the resident-optimal stable matching.

65



results to the variant of the problems that considers as an objective function the cardinality of
the matching, Theorems 3.5.3 and 3.5.5, respectively. Finally, concluding remarks can be found
in Section 3.6. A summary of our results and relevant results from the literature can be found in
Table 1. The first top three entries in the column of maximum cardinality problems are results
from: first, [132, 68, 134, 107], second, [107] and, third, [108]. The first top result from the
second column is shown in [67, 113, 56, 131].

Decision version of the problem
Framework Maximum cardinality Average rank
HR/HRI Polynomial Polynomial
HRT Polynomial Inapprox. ([108] and Sec. 3.3)
HRTI NP-complete Inapprox. ([108] and Sec. 3.3)
HR capacity variation Trivial Inapprox. (Sec. 3.3 and 3.4)
HR cap. var. subsets Trivial Inapprox. (Sec. 3.5)
HRI cap. var. subsets NP-complete (Sec. 3.5) Inapprox. (Sec. 3.5)

Table 1. Summary of our contributions and relevant computational complexity results from the
literature.

Note: HR corresponds to the many-to-one stable matching problem, the suffixes I and T stand
for incomplete preference lists and for preference lists with ties, respectively.

3.1.2. Related Work

General context. In their seminal paper, Gale and Shapley [67] introduce the stable matching
problem and provide a polynomial-time algorithm, known as the deferred acceptance (DA) algo-
rithm. The DA algorithm computes an assignment such that there is no pair of agents that would
simultaneously prefer to be paired to each other rather than being in their current assignment;
this is known as a stable matching. In practice, the DA mechanism has been extensively used to
improve admission processes, e.g., see [3, 34]. For further details on stable matching mechanisms,
see [138, 107]. In general, the main focus of the literature has been on finding the maximum
cardinality stable matching, which can be efficiently obtained when there are incomplete prefer-
ence lists2 without ties or complete preference lists that include ties [107].3 Once we assume
both, incomplete lists and ties, the problem of finding the maximum cardinality stable matching
becomes NP-hard, even under very restrictive conditions [108]. In terms of approximation ratios,

2Not all the agents are ranked. In the case of incomplete preference lists, the Rural Hospital Theorem holds [132,
68, 134, 107], which states that all the stable matchings have the same cardinality.
3Some agents in the preference list are ranked equally. In the case of preference lists with ties, all the weakly
stable matchings are complete (under the assumption that the cardinalities on the two sides of the bipartition are
equal). Weak stability means there is no pair of agents that strictly prefer to be matched to each other rather
than being in their current assignment.
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the best known factor is 3
2 [110, 92, 120] and the best lower bound is 33

29 [153]. In general, the
existence of a stable matching is not even guaranteed in some of the most important variations
of the HR problem, such as the HR problem with couples [129, 37].

Capacity variation. The design of a stable matching mechanism, when the number of partici-
pants of one side is increased, is known as the entry comparative static. In [89, 68, 138, 100],
the authors prove that when a new hospital is added to the instance (or some extra capacities
are added parametrically), all residents are matched weakly better. A substantial part of the lit-
erature has focused on strategy-proof matching mechanisms, i.e., on matching mechanisms that
incentivize participants to reveal their true preferences. Sönmez [144] proves that hospitals can
manipulate the stable matching in their favor by falsely reporting a reduced capacity. Moreover,
Romm [127] proves that the stable matching mechanism can still be manipulated even if the
reported capacities (which may be different from the actual ones) are used during the admission
process. Another problem related to ours is addressed by Yahiro and Yokoo [152], where the
authors consider a profile of “resources” that can be allocated to “projects” (hospitals) and fo-
cus on designing strategy-proof and efficient mechanisms. Nguyen and Vohra [117] study the
problem of ensuring stability in a matching market with couples, and find that by adding at most
4 extra capacities, the existence of a stable matching is guaranteed. Surpassing the approach of
considering extra capacities a parameter, as assumed in the entry comparative static, Bobbio et
al. [38, 39] consider for the first time the allocation of extra capacities to hospitals as a decision
variable rather than a parameter; in their paper, the authors propose mixed-integer programming
techniques to solve the problem of jointly allocating extra capacities while performing the match-
ing. Another heuristic solution methodology to optimize the outcome for the residents is devised
in [9]. Recently, also Dur and Van der Linden [58] study the problem of allocating capacities, the
authors propose a general framework to devise a mechanism and they study the game theoretic
properties of it. Finally, Kumano and Kurino [101] study the problem from both a theoretical and
practical perspective. Their work was used to guide the reallocation of quotas at the University
of Tsukuba in Japan. Our work focuses on providing the computational complexity landscape of
the problem tackled in [38, 39, 9, 58, 101], as well as its counterpart where existing hospital
spots are removed, and other variants. The main variant that we study is the allocation of extra
capacities on a regional level. This is motivated by problems where some regions receive more
residence applications than others. For instance, Kamada and Kojima [85] studies matching
mechanisms that impose regional quotas for the Japan Residency Matching Program. Our work
differs from theirs, since our goal is to optimize the quotas rather than imposing them. To the
best of our knowledge the problem of reducing capacities has not yet been studied in the stable
matching literature.
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3.2. Preliminaries and Problem Definition
The many-to-one stable matching problem consists of a set of residents S = {i1, . . . ,i|S|},

a set of hospitals C = {j1, . . . ,j|C|} and a set of edges E between S and C. A resident and a
hospital are linked by an edge in E if they deem each other acceptable. In this work, we assume
(if not otherwise stated) that every resident-hospital pair is acceptable, i.e., E = S × C. Each
hospital j ∈ C has a non-negative integer capacity cj ∈ Z+ that represents the maximum number
of residents that hospital j can admit. In this setting, a matching M is a subset of E in which
each hospital j appears in at most cj pairs and each resident appears in at most one pair. We
denote by M(i) and M(j) the hospital assigned to resident i and the subset of residents assigned
to hospital j, respectively.

An instance Γ of the HR problem corresponds to a tuple Γ = ⟨S,C, ≻, c⟩, where c ∈ ZC
+

is the vector of capacities and ≻ corresponds to the profile of preferences that residents have
over hospitals and vice-versa. Specifically, we assume that the preference list of each resident
is a linear order. We use the notation j ≻i j′ to describe when resident i prefers hospital j

over hospital j′. We assume that every agent is individually rational, i.e., every agent prefers the
proposed assignment than to be unmatched. Concerning the preference list of every hospital, we
assume it is a responsive linear order over the power-set of the residents [133].4If a preference list
is a responsive linear order, it can be fully described by the linear order over single residents. We
write i ≻j i′ to denote when hospital j prefers resident i over i′. Whenever the context is clear,
we drop the subscript in ≻. We emphasize that in the HR problem, unless otherwise stated, the
preference lists are complete and strict (there are no ties). Under these assumptions, the length
of the preference list of each agent, hospital or resident, is exactly the size of the other side of
the bipartition. Therefore, preference lists can be interpreted in terms of rankings. Formally, for
each resident i ∈ S and hospital j ∈ C, we denote by ri,j ∈ {1, . . . ,|C|} the rank of hospital j

in the list of resident i. According to this notation, for example, the most preferred hospital has
the lowest ranking. Analogously, we define rj,i ∈ {1, . . . ,|S|} for all j ∈ C, i ∈ S.

Given a matching M , we say that a pair (i,j) ∈ E is a blocking pair if the following two
conditions are satisfied: (1) resident i is unassigned or prefers hospital j over M(i), and (2)
|M(j)| < cj or hospital j prefers resident i over at least one resident in M(j). The matching M

is said to be stable if it does not admit a blocking pair. Gale and Shapley [67] showed that every
instance of the HR problem admits a stable matching that can be found in polynomial-time by
the deferred acceptance method, also known simply as the Deferred Acceptance algorithm. In
particular, this algorithm can be designed to prioritize the residents in the following sense: Let
M and M ′ be two different stable matchings, we say that a resident i weakly prefers M over M ′

4For any two subsets of residents S ′,S ′′, we denote that hospital j prefers S ′ over S ′′ as S ′ ≻j S ′′. A preference
relation of a hospital is responsive if for every S ′ ⊆ S with |S ′| ≤ cj , s′ ∈ S ′ and s′′ /∈ S ′, we have that (i)
S ′ ≻j S ′ ∪ {s′′} \ {s′} if and only if {s′} ≻j {s′′}, and (ii) S ′ ≻j S ′ \ {s′} if and only if {s′} ≻j ∅. Therefore, a
responsive preference list can be obtained from the linear order over singletons.
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if M(i) ≻i M ′(i) or M(i) = M ′(i). Then, the DA algorithm can be adapted to compute the
unique stable matching that is weakly preferred by all residents over all the other possible stable
matchings. Such unique stable matching is called resident-optimal.
Notation. To ease the exposition, we avoid using the symbol ≻ when presenting a preference list,
instead we simply separate agents by “,” and use the convention that the leftmost agents are
the most preferred. For instance, we represent the preference list w ≻ w′ ≻ w′′ as w,w′,w′′.
Throughout this work, for a given integer k ≥ 1, we use the shorthand [k] := {1, . . . ,k}. Finally,
unless otherwise stated, we use indices i for residents and j for hospitals.

3.2.1. Problem Definition

In this work, we focus on the stable matchings that minimize the average hospital rank (or
cost). Throughout the paper, we assume that the total capacity of the hospitals is at least the
total number of residents, i.e., ∑

j∈C cj ≥ |S|. If this assumption does not hold, we must define
the cost of an un-assigned resident [38, 39]. A natural option is to add an artificial hospital
with large capacity that is ranked last by every resident. Therefore, un-assigned residents will
be allocated to the artificial hospital whose rank is |C| + 1. Note that as a consequence of our
assumption, ∑

j∈C cj ≥ |S|, there may be hospitals that do not fill their quota. The average
hospital rank (for the residents) of a matching M is defined as

AvgRank(M) :=
∑

(i,j)∈M

ri,j, (3.2.1)

where, without loss of generality, we do not divide by the number of hospitals ranked by each
resident.5 We consider Expression (3.2.1) as our objective function, since one can easily show
that a stable matching M is resident-optimal if, and only if, it is a stable matching of minimum
average hospital rank [38].

In our first problem, initially introduced in [38], we aim to improve the allocation of residents
by increasing the capacity of the hospitals. For a non-negative vector t ∈ ZC

+, we denote by
Γt = ⟨S,C,≻ ,c + t⟩ an instance of the HR problem in which the capacity of each hospital j ∈ C
is cj + tj. Observe that Γ0 corresponds to the original instance Γ with no capacity expansion.
Formally, we define the capacity expansion problem as follows.

5Note that our main results are given for complete preference lists, which is a special case of the incomplete
preference setting. Indeed, since we are assuming that the overall number of capacities is greater than the number
of residents, every resident will be matched to a school. Moreover, every resident ranks the same number of
hospitals (|C|), therefore, we would be dividing every addend by the same constant |C|.
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Problem 4 (Min-Avgexp HR).
instance: A HR instance Γ = ⟨S,C, ≻, c⟩, a non-negative integer
expansion budget B ∈ Z+, and a target value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
AvgRank(Mt) ≤ K,

where t satisfies ∑
j∈C tj = B and Mt is a stable matching in instance

Γt?

Given parameters B and K, Problem 4 aims to determine the existence of an allocation of B

extra spots through vector t such that there is a stable matching with an average hospital rank
of at most K.6

In our second problem, we aim to find the reduction of the hospitals’ capacities such that the
final average hospital rank is the lowest possible, i.e., that has the least impact on the allocation
of residents. As before, for a non-negative vector t ∈ ZC

+, we denote by Γ−t = ⟨S,C,≻ ,c − t⟩
an instance of the HR problem in which the capacity of each hospital j ∈ C is cj − tj. Formally,
we define our second problem as follows.

Problem 5 (Min-Avgred HR).
instance: A HR instance Γ = ⟨S,C, ≻, c⟩, a non-negative integer
reduction budget B ∈ Z+ such that −B + ∑

j∈C cj ≥ |S| and a target
value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
AvgRank(Mt) ≤ K,

where t satisfies ∑
j∈C tj = B and cj − tj ≥ 0 for every j ∈ C, and Mt

is a stable matching in instance Γ−t?

Note that in Problem 5, we have the additional constraint that the capacity of every hospital
should remain non-negative after removing spots, i.e., cj − tj ≥ 0 for all j ∈ C. We further
assume that the sum of the reduced hospitals’ capacities is greater than or equal to the number
of residents, i.e., −B + ∑

j∈C cj ≥ |S|. As in Problem 4, if this assumption does not hold, we can
transform the instance by adding an artificial hospital with a large capacity (which is ranked last
in every resident’s list) and by only allowing the reduction of capacities to the original hospitals.

6Note that we can also require that
∑

j∈C tj ≤ B; however, if we want to include a penalty for the unassigned
students as suggested in Chapter 4, then, it may be useful to enforce the allocation of extra capacities to avoid
choosing the optimal solution in which no capacities are distributed.
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3.3. The Capacity Expansion Problem
Our main result in this section establishes the computational complexity and inapproximability

of Problem 4. Denote by Min-Avgexp HR opt the optimization version of Problem 4, i.e., the
problem of finding the allocation of extra spots and the stable matching in the expanded instance
that minimizes AvgRank. Formally, our main result is the following.

Theorem 3.3.1. Min-Avgexp HR is NP-complete. Moreover, unless P=NP, for any ε > 0,
Min-Avgexp HR opt cannot be approximated within a factor of n( 1

6 −ε), where n is the number
of hospitals.

To provide insights on the difficulty of Problem 4, we present an example of how allocating
one extra capacity (B = 1) using intuitive approaches may yield a sub-optimal solution. In real
life instances, certain hospitals may be “more popular” than others, namely, some hospitals are
the most preferred according to well-known voting methods such as majority count or Borda
count [156, 43]. Thus, when B = 1, a natural approach is to assign the additional spot to the
hospital that is preferred by the majority count or by the Borda count. However, as the following
example shows, this is not necessarily optimal.
Counter example for the majority and for the Borda count. Let S = {i1,i2,i3,i4,i5, i6} and C =
{j1,j2,j3,j4}. What follows are the preference lists of the residents and of the hospitals.

i1 :j2 ≻ j1 ≻ j3 ≻ j4 j1 : i1 ≻ i2 ≻ · · · ≻ i6

i2 :j2 ≻ j3 ≻ j1 ≻ j4 j2 : i1 ≻ i2 ≻ · · · ≻ i6

i3 :j3 ≻ j2 ≻ j4 ≻ j1 j3 : i1 ≻ i2 ≻ · · · ≻ i6

i4 :j1 ≻ j4 ≻ j3 ≻ j2 j4 : i1 ≻ i2 ≻ · · · ≻ i6

i5 :j1 ≻ j4 ≻ j3 ≻ j2

i6 :j1 ≻ j4 ≻ j3 ≻ j2

Hospitals j1, j2 and j3 have each capacity 1, and hospital j4 has capacity 3. The
resident-optimal stable matching is M = {(i1,j2), (i2,j3), (i3,j4), (i4,j1), (i5,j4),(i6,j4)} with
AvgRank(M) = 11. Now, consider Problem 4 with B = 1 and K = 9. For this instance, an
intuitive solution is allocating the extra spot to j1, which is the most preferred hospital according
to both Majority vote and Borda vote; the allocation of one extra capacity to j1 is sub-optimal.
Indeed, if we expand the capacity cj1 = 1 to cj1 = 2, then resident i5 would be assigned to
hospital j1, which leaves an extra spot in hospital j4. This solution reduces the average hospital
rank by 1 unit and the resulting matching does not meet the target K = 9. Instead, if we
expand the capacity of j2 to 2, then resident i2 is admitted by hospital j2, leaving an empty spot
in hospital j3 that is filled by resident i3; the resulting matching has an average hospital rank of
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8. □

As the previous example shows, the allocation of one extra spot is not trivial when we try to
solve it by just looking at the residents’ preferences. However, we can still solve this problem,
where B = 1, in polynomial-time by doing an exhaustive search in combination with the DA
algorithm. To achieve this, we compute the resident-optimal stable matching using DA in the
instance Γt with t = 1j for each j ∈ C, where 1j ∈ {0,1}C is the indicator vector whose j-th
component is 1 and the rest is 0. Once we obtain the cost for each j ∈ C, we output the
resident-optimal stable matching of minimum average hospital rank. Finally, we compare with
our target K to decide if such an allocation exists or not. Since the DA algorithm’s runtime
complexity is O(|S| · |C|) [67], then exhaustive search runs in O(|S| · |C|2). Whether this can be
improved remains an open question.

To prove Theorem 3.3.1, we first study a variant of the egalitarian stable marriage problem
[107]. Formally, the stable marriage (SM) problem corresponds to the HR problem where cj =
1 for all j ∈ C. We use SMT to indicate the version of SM when ties are present in the
preference lists. A tie appears when an agent allocates in the same position of the list two
different participants of the opposite side. For example, if the preference list for resident i is
j4, j1, j3 , j2,7 then the rankings are ri,j4 = 1, ri,j = 2 for j ∈ {j1,j3} and ri,j2 = 4. For the
SMT problem, stable matchings can be defined in several ways, but in this paper we consider
weak stability [107]. Formally, a matching M is weakly stable if there is no pair such that both
agents strictly prefer each other over their allocation in M . An egalitarian stable matching is a
stable matching that minimizes the total sum of the rankings, i.e., ∑

(i,j)∈M [ri,j + rj,i]. Manlove
et al. [108] proved that the problem of finding an egalitarian stable matching for SMT is not
approximable within n1−ϵ, for any ϵ > 0, unless P = NP, where n is the number of hospitals. For
more details, we refer to Theorem 7 in [108].

Let us define the following variant of the egalitarian SMT problem.

Problem 6 (Min-w SMT).
Instance: An SMT instance Γ = ⟨S,C, ≻, c⟩ with cj = 1 for all
j ∈ C and a target value K ∈ Z+.
Question: Is there a weakly stable matching M such that
AvgRank(M) ≤ K?

We use Min-w SMT opt to denote the optimization version of Min-w SMT, i.e., the
problem of finding a weakly stable matching that minimizes AvgRank. Using the ideas in [108],
we can obtain the following result for Min-w SMT.

7Throughout this chapter, · brackets denote a tie.

72



Lemma 3.3.2. Min-w SMT is NP-complete. Moreover, for any ε > 0, Min-w SMT opt is
not approximable within a factor of n1−ε, unless P = NP, where n = |C|. This result holds even
if ties are only on residents’ side, there is at most one tie per list, and each tie is of length two.

For completeness, we provide the proof of this corollary in the Appendix. Let us now provide a
sketch of the steps to prove Theorem 3.3.1. Given an instance Γ of Min-w SMT, we construct
the following instance Γ̂ of Min-Avgexp HR: For every resident in Γ that has ties in its preference
list, we create a village of residents and hospitals with different capacities and strict preferences.
Then, we create multiple copies of each of these villages. In Lemma 3.3.5, we prove that the
construction can be done in polynomial-time and it leads to an associated stable matching in
the new instance. Let M be the stable matching of minimum average hospital rank in Min-w
SMT; in Lemma 3.3.6, we prove that the associated stable matching M̂t in Γ̂ is in fact the stable
matching of minimum average hospital rank in Min-Avgexp HR.

3.3.1. Design of the Instance

First, we observe that Min-w SMT is NP-complete even if ties occur only among the
preference lists of residents, in each preference list there is at most one tie of length 2, and it is
positioned at the head of the list. For more details, we refer to Remark 3.7.1 in the Appendix.
Throughout this section, we assume that an instance of SMT satisfies these properties. Now, we
introduce a polynomial transformation from such an instance of Min-w SMT to an instance of
Min-Avgexp HR.

Let Γ = ⟨S,C, ≻, c⟩ be an instance of Min-w SMT such that |S| = |C| = n. Let L ≤ n

be the number of residents with ties in their preference list. The set of residents is partitioned
in two sets S = S ′ ∪ S ′′, where S ′ is the set of residents with a tie of length two at the head
of the preference list and S ′′ is the set of residents with a strict preference list. Henceforth,
we fix an ordering of the residents in S and denote S ′ = {i1, . . . ,iL} and S ′′ = {iL+1, . . . , in}.
Since preference lists are complete, observe that in any weakly stable matching every resident is
matched.8

In the following, we create an instance Γ̂ = ⟨Ŝ,Ĉ,≻̂, ĉ⟩ of Min-Avgexp HR with a specific
target value and budget.
Hospitals and residents. First, we add n4 copies of the residents in R′′, R′′ = {ik

L+1, . . . ,ik
n}k∈[n4],

and we introduce the set of residents A = {a1, . . . , an6}. Moreover, we create n4 copies of the
hospitals in C: C = {jk

1 , . . . ,jk
n}k∈[n4]. We also introduce a set Z = {z1, . . . ,zn6} of hospitals of

size n6, and a set X = {x1, . . . ,xn7} of hospitals of size n7.
Recall that we index the residents in S ′ as i1, . . . ,iL. For every resident iℓ ∈ S ′ (ℓ ∈ [L]),

and k ∈ [n4] we introduce a structure Bk
ℓ that we call village, which is composed of

8This follows from the hypothesis that preference lists are complete and that the total capacity of the hospitals
can accommodate all the residents.
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• A set of residents Wk
ℓ = {wk

ℓ,e}e∈[n].
• A resident yk

ℓ .
• Two sets of hospitals Vk

ℓ = {vk
ℓ,e}e∈[n] and Vk

ℓ = {vk
ℓ,e}e∈[n]. Two sets of residents

Uk
ℓ = {uk

ℓ,e}e∈[n] and Uk
ℓ = {uk

ℓ,e}e∈[n].
We denote as V := ⋃L

ℓ=1
⋃n4

k=1 Vk
ℓ , V := ⋃L

ℓ=1
⋃n4

k=1 V
k

ℓ , U := ⋃L
ℓ=1

⋃n4

k=1 Uk
ℓ and U :=⋃L

ℓ=1
⋃n4

k=1 U
k

ℓ . We also denote by Y := ⋃L
ℓ=1

⋃n4

k=1{yk
ℓ }, and Vk := ⋃L

ℓ=1 Vk
ℓ . In summary,

the new instance Γ̂ is made of a the set of residents

Ŝ = S ′′ ∪ {Wk
ℓ }ℓ∈[L],k∈[n4] ∪ Y ∪ A ∪ U ∪ U ,

and a set of hospitals
Ĉ = C ∪ X ∪ V ∪ V ∪ Z.

The sole purpose of the hospitals in X is to ensure that there are sufficient capacities for
matching all the residents. The set of hospitals Z is introduced to make costly certain allocations
of extra capacities. The sets V and V are used to leverage stability and ensure that multiple
allocations of extra spots yield sub-optimal solutions.
Capacity vector. Every hospital j ∈ Ĉ has capacity one, i.e., ĉj = 1.
Preference lists. We now proceed to construct the preference lists in Γ̂.

Given a resident iℓ ∈ R′ with ℓ ∈ [L], let jσ1 , jσ2 , jσ3 . . . be her ranking of the hospitals
in the original instance Γ (recall that the · parenthesis symbolizes the tie at the head of the
list). We provide the preference lists of the residents and hospitals in village Bk

ℓ with ℓ ∈ [L] and
k ∈ [n4], namely

wk
ℓ,1 : vk

ℓ,1,V
k
ℓ \ {vk

ℓ,1},Vk+1
+ [n2], jk

σ(ℓ,1),Z, . . . ,X

wk
ℓ,2 : vk

ℓ,2,V
k
ℓ \ {vk

ℓ,2},Vk+1
+ [n2 + 1], jk

σ(ℓ,2),Z, . . . ,X

wk
ℓ,e : vk

ℓ,e,V
k

ℓ \ {vk
ℓ,e},Vk+1

+ [(n2 − 1)e + 2], jk
σ(ℓ,e),Z, . . . ,X e ∈ {3, . . . , n}

yk
ℓ : vk

ℓ,2, vk
ℓ,1, vk

ℓ,3, . . . , vk
ℓ,n,Vk+1

+ ,Z, . . . ,X

vk
ℓ,e : uk

ℓ,e,A, wk
ℓ,e, {wk′

ℓ,e}k′ ̸=k, {Wk
ℓ }ℓ,k \ {wk′

ℓ,e}k′ , . . . ,Y e ∈ [n]

uk
ℓ,e : vk

ℓ,e, . . . e ∈ [n]

vk
ℓ,e : uk

ℓ,e,A,Wk
ℓ \ {wk

ℓ,e}, yk
ℓ , {Wk′

ℓ }ℓ,k′ ̸=k \ {wk′

ℓ,e}k′ ̸=k, . . . ,Y \ {yk
ℓ } e ∈ [n]

uk
ℓ,e : vk

ℓ,e, . . . e ∈ [n]

where jσ(ℓ,e) is the hospital listed in position e by resident iℓ, and Vk
+ is the set of hospitals V

listed as follows: (Vk, . . .Vn4
,V1, . . . ,Vk−1), for k ∈ [n4]; note that when k ≥ n4 then we take

Vk
+ for k (mod n4). By Vk

+[n], we denote the first n elements of the ordered set Vk
+. The purpose

of positioning set Vk+1
+ in the preference lists of the residents wk

ℓ,e, (e ∈ [n]), is to ensure that
we can mimic riℓ,j, j ∈ C, of the original instance while also ensuring that multiple allocation of
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extra capacities to the same hospital are sub-optimal. The symbol “. . . ” means that the agents
on the other side of the bipartition not explicitly listed are ranked strictly and arbitrarily.

Now, we present the preference list of a hospital jk
e ∈ C, which is a modification of the

preference list of hospital je ∈ C. We modify the original preference list of je by substituting
every resident iℓ ∈ R′, ℓ ∈ [L], with resident wk

ℓ,r where r is the position of hospital je in the
preference list of resident iℓ (e.g., r = 2 if je is the second hospital listed in the tie at the head
of the preference list of iℓ); at the head of the preference list of jk

e , we position A. Concerning
the residents in R′′, we substitute every iℓ ∈ R′′, (ℓ ∈ {L + 1, . . . ,n}), with ik

ℓ . Then, hospital
jk

h ranks arbitrarily a strict ordering of the remaining residents, and at the end Y .
We introduce the preference list of a resident ik

ℓ ∈ S
′′ by modifying the strict preference list

of the corresponding resident iℓ ∈ S ′′: jσ(ℓ,1), . . . , jσ(ℓ,n) in Γ. The preference list of ik
ℓ in our

new instance Γ̂ is

Vk+1
+ [n2 + 2],jk

σ1 ,Vk+1
+ [n2 + 2,1],jk

σ2 ,Vk+1
+ [n2 + 2,2], . . .

. . . ,Vk+1
+ [n2 + 2,n− 1], jk

σn
,Z . . . ,X

where V k+1
+ [b,c] is the set of n2− 1 hospitals from Vk+1

+ that is listed from index b + (n2− 1) · c
onward.9

The preference lists of residents and hospitals in A,Z are as follow for every p ∈ [n6]

zp : ap, . . .

ap : zp, . . . .

The preference lists of hospitals in X are arbitrary. Finally, it is worth noting that every
stable matching in Γ̂ will include the following pairs: {(uk

ℓ,e,v
k
ℓ,e), (uk

ℓ,e,v
k
ℓ,e)}ℓ∈[L],e∈[n],k∈[n4], and

{(ap,zp)}p∈[n6], as they rank each other in the first position.
Target value and budget. Consider an instance of Min-w SMT with a given target K,
where L is the number of residents with a tie at the head of their preference list. We de-
fine the target K = n6 ·K +n6 +4n5L+3n5−n4L and budget B = L ·n5 for Min-Avgexp HR.

Finally, note that Ŝ = S ′′ ∪ {Wk
ℓ }ℓ∈[L],k∈[n4] ∪ Y ∪A ∪ U ∪ U and Ĉ = C ∪ X ∪ V ∪ V ∪ Z.

Therefore, the instance Γ̂ consists of ((n−L)n4+L(n+1)n4+n6+2n5L)+(n5+n7+2n5L+n6)
= n7 + 2n6 + n5(2 + 5L) residents and hospitals, which is O(n7); therefore the construction can
be done in polynomial-time.

Example 3.3.3. We present an example of an instance of Min-w SMT and provide its reduced
instance to an instance of Min-Avgexp HR. Consider an instance I with K = 3, C = {j1, j2, j3}
and S = {i1, i2, i3}. Every agent has capacity 1, and the preference lists are as follows.

9Note that if we go over the limit, we consider again the modulo class.
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i1 : j1, j2 , j3 j1 : i1, i2, i3

i2 : j3, j2 , j1 j2 : i2, i1, i3

i3 : j2, j1, j3 j3 : i1, i3, i2

Let us now provide the reduced instance of Min-Avgexp HR. The residents are
S ′′ = {i3}, {Wk

ℓ }ℓ∈[L],k∈[n4] = {wk
l,1, wk

l,2, wk
l,3}ℓ∈{1,2},k∈[81], Y = {yk

l }ℓ∈{1,2},k∈[81],
A = {a1, . . . , a729}, U = {uk

l,1, uk
l,2, uk

l,3}ℓ∈{1,2},k∈[81], U = {uk
l,1, uk

l,2, uk
l,3}ℓ∈{1,2},k∈[81].

The hospitals are C = {jk
1 , jk

2 , jk
3}k∈[81], X = {x1, . . . , x2187}, V = {vk

l,1, vk
l,2, vk

l,3}ℓ∈{1,2},k∈[81],
V = {vk

l,1, vk
l,2, vk

l,3}ℓ∈{1,2},k∈[81], Z = {z1, . . . , z729}. The budget of extra capacities is B = 486,
and the objective value is K = 2187 + 729 + 1944 + 729− 162 = 5427. The preferences of the
agents in the new instance are as follows.

a1 : z1, . . . z1 : a1, . . .

... ...

a729 : z729, . . . z729 : a729, . . .

x1 : . . .

...

x2187 : . . .

∀k ∈ [81] :

ik
3 : rik

3
jk

1 : wk
1,1, wk

2,2, ik
3, . . .

jk
2 : wk

2,3, wk
1,2, ik

3, . . .

jk
3 : wk

1,3, ik
3, wk

2,1, . . .

residents in Bk
1 hospitals in Bk

1

residents in Bk
2 hospitals in Bk

2

where the preference list of ik
3 is rik

3
= vk+1

1 , vk+1
2 , vk+1

3 , . . . , vk+4
2 , jk

2 , vk+4
3 , . . . , vk+7

1 , jk
1 , vk+7

2 ,

. . . , vk+9
3 , jk

3 ,Z, . . . ,X .
To illustrate, we present the preference lists of the residents in Bk

1 and the preference lists of
the hospitals in Bk

1 . Given k ∈ [81], the preference lists of the residents in Bk
1 are as follows.

wk
1,1 : vk

1,1, vk
1,2, vk

1,3, vk+1
1,1 , . . . , vk+3

1,3 , jk
1 ,Z, . . . ,X
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wk
1,2 : vk

1,2, vk
1,1, vk

1,3, vk+1
1,1 , . . . , vk+4

1,1 , jk
2 ,Z, . . . ,X

wk
1,3 : vk

1,3, vk
1,1, vk

1,2, vk+1
1,1 , . . . , vk+9

1,3 , jk
3 ,Z, . . . ,X

yk
1 : vk

1,2, vk
1,1, vk

1,3, V k+1
+ ,Z, . . . ,X

uk
1,1 : vk

1,1, . . .

uk
1,2 : vk

1,2, . . .

uk
1,3 : vk

1,3, . . .

uk
1,1 : vk

1,1, . . .

uk
1,2 : vk

1,2, . . .

uk
1,3 : vk

1,3, . . .

Given k ∈ [81], the preference lists of the hospitals in Bk
1 are as follows.

vk
1,1 : uk

1,1,A, wk
1,1, {wk′

1,1}k′ ̸=k, {Wk
ℓ }ℓ,k \ {wk′

1,1}k′ , . . . ,Y

vk
1,2 : uk

1,2,A, wk
1,2, {wk′

1,2}k′ ̸=k, {Wk
ℓ }ℓ,k \ {wk′

1,2}k′ , . . . ,Y

vk
1,3 : uk

1,3,A, wk
1,3, {wk′

1,3}k′ ̸=k, {Wk
ℓ }ℓ,k \ {wk′

1,3}k′ , . . . ,Y

vk
1,1 : uk

1,1,A,Wk
1 \ {wk

1,1}, yk
1 , {Wk′

1 }1,k′ ̸=k \ {wk′

1,1}k′ ̸=k, . . . ,Y \ {yk
1}

vk
1,2 : uk

1,2,A,Wk
1 \ {wk

1,2}, yk
1 , {Wk′

1 }1,k′ ̸=k \ {wk′

1,2}k′ ̸=k, . . . ,Y \ {yk
1}

vk
1,3 : uk

1,3,A,Wk
1 \ {wk

1,3}, yk
1 , {Wk′

1 }1,k′ ̸=k \ {wk′

1,3}k′ ̸=k, . . . ,Y \ {yk
1}

For k ∈ [81], the preference lists of the residents in Bk
2 and the preference lists of the hospitals

in Bk
2 are similar. □

Remark 3.3.4. Note that if no extra spots are assigned in our new instance, the set of hospitals
X ensures that the residents are always matched.10 Matching the residents to the hospitals in X
leads to a higher average hospital rank. In the following section, we prove that it is optimal to
assign L · n5 extra capacities to the hospitals in V , whose initial capacity is one.

3.3.2. Useful Lemmata

In this section we provide two insightful lemmata which will be useful to the proof of our
main result; recall that we are considering a budget B = L · n5, where L = |S ′| is the number of
residents with a tie in their preference list.
10This could be done also by adding a copy of themselves at the end of their list. Matching with oneself is another
usual way of representing unassigned residents.
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In the next lemma, we prove that the reduction previously introduced maps a weakly stable
matching of SMT into a stable matching of HR, where the average rank of the new matching is
proportional to the average rank of the one in SMT. The proof can be found in Appendix 3.7.2.

Lemma 3.3.5. For every weakly stable matching M in Γ with AvgRank(M) = KM , there is an
allocation t respecting the budget B = L · n5 and a stable matching M̂t in Γ̂t = ⟨Ŝ,Ĉ, ≻̂,ĉ + t⟩
with AvgRank(M̂t) = n6 ·KM + n6 + 4n5L + 3n5 − n4L.

In the next result, we show that the allocation vector and the stable matching constructed in
the proof of Lemma 3.3.5 correspond to the solution with the minimum average hospital rank, as
long as the original matching of Γ is of minimum average hospital rank. The proof can be found
in Appendix 3.7.3.

Lemma 3.3.6. Consider a weakly stable matching M in Γ of minimum average hospital rank.
Then, the allocation t and the stable matching M̂t constructed in Lemma 3.3.5 constitute a
solution of minimum average hospital rank for Γ̂ when B = L · n5.

Example 3.3.7. Given a weakly stable matching in the instance of Min-w SMT from Exam-
ple 3.3.3, we find a stable matching in the reduced instance of Min-Avgexp HR.

We consider the weakly stable matching µ = {(i1, j1), (i2, j3), (i3, j2)}, which has cost 3.
The reduction allocates one extra capacity to each school vk

1,2,v
k
1,3, vk

1,1 of village Bk
1 , and

one extra capacity to each school vk
2,2,v

k
2,3, vk

2,1 of village Bk
2 , for every k ∈ [81]. Note that

a total of 486 extra capacities are allocated, thus exhausting the overall budget B. There-
fore, the matching induced by the reduction is made of the following pairs: {(ai, zi)}i∈[729],
and, for every k ∈ [81], {(wk

l,2,v
k
l,2), (wk

l,3,v
k
l,3), (yk

l ,vk
l,1)}ℓ∈{1,2}, (wk

1,1,j
k
1 ), (wk

2,1,j
k
3 ), (ik

3,jk
2 ),

{(uk
l,h, vk

l,h),(uk
l,h, vk

l,h)}l∈[2],h∈[3]. The overall cost of the matching just described is 729 + 81 ·
(2 · (1 + 1 + 2) + 13 + 13 + 12 + 2 · 3 · (1 + 1)) = 5427, which is exactly equal to the objective
value K of the reduced instance. In Figure 1 we provide a graphic illustration of the matching
in the reduced instance, note that wk

1,1 (wk
2,1) is the only resident of village Bk

1 (Bk
2 ) that is not

matched with a school in their own village. □

As illustrated in Example 3.3.3 and 3.3.7, the role of the village is to reproduce the functioning
of ties in a stable matching where agents rank no ties. Indeed, for every resident i that ranks a
tie in an instance of Min-w SMT, we create a village in the new instance of Min-Avgexp HR:
The village contains n copies of resident i and it contains other hospitals and residents. When
resident i is matched to hospital j in the instance of Min-w SMT, the overall structure of the
village allows to match exactly one copy of i to a copy of j. In this way, we mimic the original
matching while adding a fixed cost of the village to the total cost of the matching. We display
this idea in Figure 2: Assume resident i ranks hospital j at position h and i has a preference list
that includes a tie; if i and j are matched in the instance Min-w SMT, then, in the reduced
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al

ik
3

wk
1,1

residents Bk
1 \ wk

1,1

wk
2,1

residents Bk
2 \ wk

2,1

zl

jk
1

jk
2

jk
3

hospitals Bk
1

hospitals Bk
2

Note: l ∈ [729] and k ∈ [81].

Fig. 1. Example of stable matching in the reduced instance.

instance, we match the copy wk
i,h to the hospital-copy jk; note that the rest of the village Bk

i is
matched to itself. Remarkably, we can match the remaining residents of the village Bk

i to the
hospitals in the same village in a stable way. All the agents in the village Bk

i are displayed in
colour red.

i j Min-w SMT

wk
i,h

residents in Bk
i \ {wk

i,h}

jk

hospitals in Bk
i

Min-Avgexp HR

Note: Resident i ranks hospital j in position h, and resident i has a tie in the preference list. If i is matched
with j, then, in the reduced instance, we match wk

i,h to jk and all the other residents of village Bk
i are matched

to the hospitals of Bk
i .

Fig. 2. Illustration of the key idea of the village.

79



3.3.3. NP-completeness of the capacity expansion problem

In the following, we prove the main result of this section, Theorem 3.3.1.

Proof of Theorem 3.3.1. Min-Avgexp HR is clearly in NP since given t and a matching
M̂t in instance Γ̂t, we can verify in polynomial-time whether M̂t is stable, whether the budget
B is allocated and whether its objective value is less than the target value. We now show that
Min-Avgexp HR is NP-complete.

From Lemma 3.3.2, we know that Min-w SMT is NP-complete. Consider the reduction
given in Section 3.3.1. In the constructed instance Γ̂ of Min-Avgexp HR, we set the budget to
B = L · n5 and the target value to K = n6 ·K + n6 + 4n5L + 3n5− n4L, where K is the target
value of the instance of Min-w SMT.

First, suppose that the answer to the instance of Min-w SMT is NO, i.e., there is no weakly
stable matching M with an average hospital rank less or equal than K. Let M be a weakly stable
matching with minimum average hospital rank KM ; note that KM > K. Next, we prove that
there is no allocation of extra positions and a stable matching in the respective instance Γ̂ of
Min-Avgexp HR with an objective value less or equal than n6 ·K + n6 + 4n5L + 3n5 − n4L.
Indeed, in Lemma 3.3.5, we show that there is an allocation t and a stable matching M̂t with
AvgRank(M̂t) = n6 · KM + n6 + 4n5L + 3n5 − n4L. In Lemma 3.3.6, we prove that this is a
minimum average hospital rank for Γ̂ since M is an optimal matching. Therefore, n6 · KM +
n6 + 4n5L + 3n5 − n4L > n6 ·K + n6 + 4n5L + 3n5 − n4L = K, which means that the answer
for the instance of Min-Avgexp HR is also NO.

On the other hand, consider a YES instance of Min-w SMT. Then, there is a weakly stable
matching M with an average hospital rank of KM ≤ K. Therefore, the allocation t and the
stable matching M̂t in Γ̂ constructed in Lemma 3.3.5 have an objective value of KM + n6 +
4n5L+3n5−n4L ≤ n6 ·K +n6 +4n5L+3n5−n4L = K. Hence, the instance of Min-Avgexp

HR has a YES answer.
Let us prove now that, for any ε, Min-Avgexp HR opt is not approximable within a factor

of (n)1/6−ϵ, where n is the number of hospitals, unless P=NP. Consider an instance Γ of Min-
w SMT with n hospitals and n residents, where L ≥ 1 of the residents have a tie in their
preference list. Let Myes and Mno be the stable matchings of minimum average hospital rank for
the cases in which the answer of the decision problem Min-w SMT is YES and NO, respectively.
Lemma 3.3.2 implies that, for any ε > 0, AvgRank(Mno) ≥ n1−ϵ ·AvgRank(Myes). Now, consider
the reduction presented in Section 3.3.1 from instance Γ to an instance Γ̂ of Min-Avgexp HR.
Lemma 3.3.6 implies that there are allocations t and t′, and matchings M̂yes

t and M̂no
t′ for the

respective YES and NO answers of Min-Avgexp HR such that

AvgRank(M̂yes
t ) = n6 · AvgRank(Myes) + n6 + 4n5L + 3n5 − n4L,

AvgRank(M̂no
t′ ) = n6 · AvgRank(Mno) + n6 + 4n5L + 3n5 − n4L.
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Recall that the reduction in Section 3.3.1 constructs Γ̂ with n := |Ĉ| ≤ 2n6 residents. Then, for
any ε > 0, we have

AvgRank(M̂no
t′ )

AvgRank(M̂yes
t )

= n6 · AvgRank(Mno) + n6 + 4n5L + 3n5 − n4L

n6 · AvgRank(Myes) + n6 + 4n5L + 3n5 − n4L
≥

≥ c · AvgRank(Mno)
AvgRank(Myes) ≥ c · n1−ϵ ≥ c ·

(
n

2

) 1−ε
6

for some constant c > 0. This completes the proof.
□

3.4. The Capacity Reduction Problem
In this section, we focus on Problem 5 that looks for the reduction of capacities such that

the residents’ allocations are impacted the least. Our main result establishes the computational
complexity of this problem. Formally, our result is the following.

Theorem 3.4.1. Min-Avgred HR is NP-complete. Moreover, for any ε > 0, Min-Avgred

HR opt cannot be approximated within a factor of n̄
1
6 −ε, where n̄ is the number of residents,

unless P=NP.

Proof. First, recall that Problem 5 assumes that reducing the capacities of hospitals does not
leave any resident un-assigned.

Clearly Min-Avgred HR is in NP, since for a given vector t and a matching Mt, we can
verify in polynomial-time whether t satisfies the constraint on the number of spots to be removed,
whether Mt is stable in Γ−t and if the target value is attained. Now, we focus on showing that
the problem is NP-complete.

The rest of the proof follows the same reasoning exposed in the proof of Theorem 3.3.1. We
build a reduction from an instance Γ of Min-w SMT into an instance Γ̂ of Min-Avgred HR.
We assume that Γ satisfies |S| = |C| = n, ties occur only in residents’ lists, and each of their
preference list has at most one tie of length 2 positioned at the head of it. Recall also that we
denoted by S ′ the set of residents with a tie in their preference list and by S ′′ the set of residents
with strict preference lists. The corresponding Γ̂ is defined as in the reduction presented in the
proof of Theorem 3.3.1, with the following difference:

• There is no set X .
• For every village Bk

ℓ defined for iℓ ∈ S ′ and k ∈ [n4]: Each hospital vk
ℓ,e for e ∈ [n] has

capacity 2 and each hospital in Vk
ℓ has capacity 2. All the remaining preferences and

capacities remain as in Section 3.3.1.

81



Given a weakly stable matching M in the instance Γ with an average hospital rank KM , we
provide a reduction of the capacities t that respects the budget B = n5 ·L and we build a stable
matching M̂t in Γ̂t with an average hospital rank K̄ = n6KM + n6 + 4n5L + 3n5 − n4L.

• Reduction of capacities. We remove n spots from each village Bk
ℓ in the following way:

Assume that in M , we have the pair (iℓ, j), where j is such that r = riℓ,j. Then, we
reduce by 1 the capacities of vk

ℓ,r and of each hospital in Vk

ℓ \ {vk
ℓ,r}.

• Matching. We build the matching M̂t as follows. For every pair (j,iℓ) in M , if ℓ ≤ L,
then we match (wk

ℓ,r, jk), (yk
ℓ , vk

ℓ,r), {(wℓ,e, vk
ℓ,e)}e̸=r where r = indexiℓ

(j) and k ∈ [n4];
otherwise, ℓ > L, and we match (ik

ℓ , jk), where k ∈ [n4]. The remaining pairs are the
same as in the proof of Lemma 3.3.5.

The rest of the proof is analogous to the proofs of Lemma 3.3.5, Lemma 3.3.6, and Theo-
rem 3.3.1.

□

3.5. Extensions
In this section, we investigate the variants of Problems 4 and 5 where the decision-maker

has budgets for different subsets of hospitals. In the remainder of this section, we say that
P = {C1, . . . Cq} is a partition of the set of hospitals C if ∪k∈[q]Ck = C and Ck ∩ Ck′ = ∅ for all
k,k′ ∈ [q] with k ̸= k′.

3.5.1. Allocating Extra Spots to a Partition of Hospitals

We generalize Problem 4 to the setting where the set of hospitals is partitioned and we seek
to find an allocation of extra spots such that each part has a specific budget. Formally, we study
the following problem.

Problem 7 (Min-Avgsub
exp HR).

instance: A HR instance Γ = ⟨S,C, ≻, c⟩, a partition P =
{C1, . . . Cq} of C, a budget for each part {Bk ∈ Z+ : k ∈ [q]}, and
a non-negative integer target value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
AvgRank(Mt) ≤ K,

where t is such that ∑
j∈Ck

tj ≤ Bk for each k ∈ [q] and Mt is a stable
matching in instance Γt?

The next result can be directly obtained by considering a single set of hospitals in the partition,
i.e., q = 1 and P = C, and by using Theorem 3.3.1.
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Corollary 3.5.1. Min-Avgsub
exp HR is NP-complete.

Denote by Min-Avgsub
exp HR opt the optimization version of Min-Avgsub

exp HR, i.e., the
problem of finding an allocation of extra capacities and a stable matching in the expanded instance
of minimum average hospital rank. In the following result, we show the approximation complexity
of Min-Avgsub

exp HR opt.

Theorem 3.5.2. For any ε > 0, Min-Avgsub
exp HR opt is not approximable within a factor of

n1−ε, unless P=NP, where n is the number of residents. This result holds even if the partition
P = {C1, . . . ,Cq} is such that each Ck contains at most two hospitals and Bk ∈ {0,1} for every
k ∈ [q].

Before proving Theorem 3.5.2, we need to introduce a variant of Problem 7, where the goal
is to find a stable matching whose size is at least a certain target. The problem of finding
the maximum cardinality stable matching is one of the main focus of the literature [107]. We
investigate it in relation with capacity expansion when there are incomplete preference lists. Recall
that a HR instance with incomplete preference lists means that there is at least one resident or
one hospital that does not rank completely the opposite side. Formally, we consider the following
problem.

Problem 8 (Max-Cardsub
exp HRI).

instance: A HR instance Γ = ⟨S,C, ≻, c⟩ with incomplete preference
lists, a partition P = {C1, . . . ,Cq} of C, a budget for each part {Bk ∈
Z+ : k ∈ [q]} and a non-negative integer target value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
|Mt| ≥ K,

where t is such that ∑
j∈Ck

tj ≤ Bk for each k ∈ [q] and Mt is a stable
matching in instance Γt?

Recall that if we consider complete preference lists, the problem above becomes trivial since
all stable matchings have the same size. We prove the following result.

Theorem 3.5.3. Max-Cardsub
exp HRI is NP-complete, even if the partition P = {C1, . . . ,Cq}

is such that each Ck is of size at most two and Bk ∈ {0,1} for every k ∈ [q].

The proof of this result can be found in the Appendix. Let us now focus on the proof of
Theorem 3.5.2.

Proof of Theorem 3.5.2. Let ε > 0 and define a = ⌈(3/ε)⌉. We consider an instance Γ
of Max-Cardsub

exp HRI in which the set of hospitals is C, the set of residents is S (w.l.o.g., we
assume |C| = |S| = n), every Ck is of size at most two and Bk ∈ {0,1} for every k ∈ [q]. We
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denote by Oj (resp. Oi) the preference list of hospital j (resp. resident i). We assume that the
target value K is equal to n.

We now build an instance Γ̂ of Min-Avgsub
exp HR opt. Let us define A = na−1. In this

instance, the set of hospitals is
(⋃A

h=1 Ch
)
∪C0 where Ch = {jh

1 , . . . , jh
n} is a copy of C for h ∈ [A],

and C0 = {j0
1 , . . . , j0

na}. The set of residents is
(⋃A

h=1 Sh
)
∪ S0 where Sh = {ih

1 , . . . , ih
n} is a

copy of S for h ∈ [A], and S0 = {i0
1, . . . , i0

na}. Now that the hospitals are introduced, we need to
establish how their set is partitioned; for every pair (Ck,Bk) in Γ, we establish the pair (Ch

k ,Bh
k ) in

Ch for k ∈ [q] and h ∈ [A]. The hospitals in C0 have all capacity 1; concerning the capacities of
the other hospitals, those that are in a pair have each capacity one with an extra budget of one,
and those hospitals that are in a singleton, have capacity one and no extra budget. For j ∈ C
and h ∈ [A], we denote by Oh

j the preference list obtained by substituting in the preference list
Oj the residents in S with the residents in Sh. We define similarly Oh

i for every resident i in Sh

where h ∈ [A]. The preference lists of the hospitals and residents in Γ̂ are as follows:

j0
h : i0

h, . . . h ∈ [na]

jh
s : Oh

js
,S0, . . . s ∈ [n], h ∈ [A]

i0
h : j0

h, . . . h ∈ [na]

ih
s : Oh

is
, C0, . . . s ∈ [n], h ∈ [A],

where the dots “. . . ” in the preference lists mean that the remaining agents on the other side of
the bipartition are ranked strictly and arbitrarily.

Our Min-Avgsub
exp SM instance comprises 2na residents, so that n̄ := 2na; the target value

is K ′ = ⌊na+2/2⌋. The remainder of the proof follows the same reasoning as the proof of
Lemma 3.3.2, which can be found in the Appendix. □

3.5.2. Removing Spots from a Partition of Hospitals

Similar to the problems presented in the previous section, we now study the generalization of
Problem 5 where the set of hospitals is partitioned in q parts and each part has a budget for the
removal of spots. Specifically, we consider the following problem.
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Problem 9 (Min-Avgsub
red HR).

instance: A HR instance Γ = ⟨S,C, ≻, c⟩, a partition P =
{C1, . . . Cq} of C, a budget for each part {Bk ∈ Z+ : k ∈ [q]}, and
a non-negative integer target value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
AvgRank(Mt) ≤ K,

where t is such that ∑
j∈Ck

tj ≥ Bk and cj − tj ≥ 0 for k ∈ [q], and
Mt is a stable matching in instance Γt?

For Problem 9, we prove the following inapproximability result.

Theorem 3.5.4. For any ε > 0, Min-Avgsub
red HR opt is not approximable within a factor of

n1−ε, unless P=NP, where n is the number of residents. This result holds even with a partition
in which each part Ck contains at most two hospitals and Bk ∈ {0,1} for every k ∈ [q].

To prove Theorem 3.5.4, we need to study the analogous version of Problem 8 for the capacity
reduction setting. Formally, we define the following problem.

Problem 10 (Max-Cardsub
red HRI).

instance: A HR instance Γ = ⟨S,C, ≻, c⟩ with incomplete preference
lists, a partition P = {C1, . . . Cq} of C, a budget for each part {Bk ∈
Z+ : k ∈ [q]}, and a non-negative integer target value K ∈ Z+.
question: Is there a non-negative vector t ∈ ZC

+ and a matching Mt

such that
|Mt| ≥ K,

where t is such that ∑
j∈Ck

tj ≥ Bk and cj − tj ≥ 0 for k ∈ [q], and
Mt is a stable matching in instance Γt?

In particular, we show the following result.

Theorem 3.5.5. Max-Cardsub
red HRI is NP-complete. This result holds even with a partition

in which each part Ck is of size at most two and Bk ∈ {0,1} for every k ∈ [q].

Proof. The proof is analogous to the proof of Theorem 3.5.3 with the difference that every
hospital in each part Ck has capacity 1. □

Proof of Theorem 3.5.4. The proof follows a similar reasoning as the proof of Theo-
rem 3.5.2 with the difference that every hospital in each part Ck has capacity 1. □

85



3.6. Conclusions
How should a centralized institution optimally manage a variation in the capacities of the

hospitals? The case in which capacities are increased while staying within a budget has gained
recent interest [38, 58, 101]. However, the computational complexity of solving its optimization
variant was an open question. Indeed, also the problem of reducing capacities optimally may have
a strong impact in the real-world [65]. Finally, in recent years, researchers attempted to address
the concentration of residents’ applications in urban areas by establishing quotas or by resource
redistribution on a regional level [83], for which there was not yet a clear understanding on the
computational limitations posed by this problem.

The novelty of our work is that we proceed in our investigation from two points of view:
Capacity expansion and capacity reduction. To the best of our knowledge, we are the first to pro-
pose the problem of reducing capacities in the framework of matching with stability. Remarkably,
we outline that the two problems of expanding and reducing capacities are deeply interconnected.
Moreover, we also investigate the case in which the variation of capacities may happen only on
a local level.

Our first result, establishes the approximation hardness of the problem of finding the resident-
optimal stable matching in the presence of ties. Our theorem defines a boundary on the complexity
of the resident-optimal stable matching, which is well known to be polynomial-time solvable when
there are no ties. We use this result as the first building block in the construction of the main proof
of the paper: The approximation hardness of the problem of allocating optimally extra capacities
to the hospitals to reduce the average hospital rank. Our proof introduces a crucial structure,
the village, that enables us to manage the subtleties of the allocation of extra capacities. The
problem of allocating extra resources is not easier when we restrict the distribution of capacities to
a partition of the hospitals. If the objective of the problem is the cardinality of the stable matching,
we prove that it is NP-complete when the problem has incomplete lists. If the objective is the
average hospital rank, the corresponding optimization problem cannot be approximated within a
meaningful factor.

The problem of reducing the capacities is equally interesting from both a practical and theo-
retical perspective. We show that the capacity reduction problem is NP-complete when the goal
is finding the maximum cardinality stable matching. Then, we also prove that as we partition
the set of hospitals from which we should reduce the capacities, and to each set we allocate a
number of seats to be removed, the problem remains hard to solve if we still want to obtain the
stable matching with the minimum cost for the students. For this latter problem, we prove that
its optimization version is also inapproximable.

We believe these results are significant because they emphasize the existence of an under-
lying structure in the stable matching problem which governs both the capacity expansion and
reduction. Unveiling the properties of this structure is certainly an open question worth being
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explored. We also believe that another interesting future direction of research is understanding
the role of meta-rotations in the capacity variation problem, see e.g., [71, 32, 49].

Appendix

3.7. Missing proofs
The following problem is useful for the proofs that we provide in this Appendix.

Problem 11 (Max-Card HRTI).
instance: An HRTI instance Γ = ⟨S,C, ≻, c⟩ with cj = 1 for all
j ∈ C, |C| = |S| and a non-negative integer target value K ∈ Z+.
question: Is there a weakly stable matching M such that |M | ≥ K?

Recall that HRTI corresponds to the problem with ties and incomplete preference lists.
Manlove et al. [108] proved that Max-Card HRTI is NP-complete. As the next remark
states, this result holds even if ties are at the head of the preference list, only on one side of it,
at most one tie per list, and each tie is of length 2.

Remark 3.7.1. After the proof of Lemma 1 in [108], the authors showed that the problem Max-
Card HRTI can be simplified to the case in which ties are only on one side of the bipartition
and are at the end of the preference list. Since the ties of the new instance created in Lemma 1
from [108] are of length at most two, we can use the same reasoning to assume instead, without
loss of generality, that in an instance of Max-Card HRTI and the corresponding Min-w
SMT instance of Lemma 3.3.2 ties occur only at the head of a preference list.

3.7.1. Proof of Lemma 3.3.2

In this section, we prove that Min-w SMT is NP-complete and its optimization version
cannot be approximated within a constant factor. The proof is inspired by the proof of Theorem
7 in [108]. The result in [108] is stated in the traditional notation of the stable marriage problem
where both sides are defined as women and men, instead of residents and hospitals, respectively.
To keep coherence with the previous work, for this proof we also denote both sides as women
and men.

Proof of Lemma 3.3.2. Clearly, Min-w SMT is in NP. Given ε > 0, let a = ⌈(3/ε)⌉. From
Theorem 2 in [108], we know that, when ties occur on the women’s side only, and each tie
has length two, Max-Card HRTI is NP-complete. Consider an instance of Problem 11 with
C = {m1, m2, . . . , mn} and S = {w1, w2, . . . , wn}. We assume that the target value K is equal
to n, since it was shown that even for this target value the problem is NP-complete. Let Oh
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(resp. Rh) denote the preference list of man mh (resp. woman wh) for h ∈ [n]. Next, we build
an instance of Min-w SMT. Let C := na−1, then

• the set of men is C ′ = C0 ∪
(⋃C

h=1 Ch
)

with C0 = {m0
1, m0

2, . . . , m0
na} and Ch ={

mh
1 , mh

2 , . . . , mh
n

}
for h ∈ [C];

• the set of women is S ′ = S0 ∪
(⋃

h∈[C] Sh
)

with S0 = {w0
1, w0

2, . . . , w0
na} and Sh ={

wh
1 , wh

2 , . . . , wh
n

}
for h ∈ [C];

• for each h ∈ [n] and s ∈ [C], let Os
h be the preference list obtained from Oh by replacing

woman wk in Oh by the corresponding woman ws
k, for every k ∈ [n]. We refer to the

women in Os
h as the proper women for ms

h. Similarly, we define Rs
h and the proper men

for ws
h. The preference lists for C ′ and S ′ are

m0
h : w0

h . . . h ∈ [na]

ms
h : Os

h,S0 . . . h ∈ [n], s ∈ [C]

w0
h : m0

h . . . h ∈ [na]

ws
h : Rs

h,C0 . . . h ∈ [n], s ∈ [C]

where the dots “. . . ” in the preference lists mean that the remaining agents on the other
side of the bipartition are ranked strictly and arbitrarily, and the sets mean that the agents
within are ranked according to their indices;
• the target value is K ′ = ⌊(na+2)/2⌋.

Our Min-w SMT instance comprises 2na men and 2na women, so that n̄ := 2na. Note also
that the only ties in Min-w SMT occur in the preference lists of women ws

h for h ∈ [n], s ∈ [C].
Moreover, there is at most one tie per list, and each tie has length 2.

Suppose that we have a YES instance for Max-Card HRTI, i.e., there is a stable matching
M with |M | = n. We create a matching M ′ in Min-w SMT as follows: For every h ∈ [na],
we add the pair (m0

h, w0
h) to M ′, and for each s ∈ [n], we add the pair

(
mℓ

s, wℓ
k

)
to M ′ for all

ℓ ∈ [C], where (ms, wk) ∈ M . Note that M ′ is stable for our Min-w SMT instance. We also
have that

AvgRank (M ′) ≤ na + na−1n2 ≤
⌊

na+2

2

⌋
= K ′,

since, without loss of generality, we may choose n ≥ 3. Therefore, the objective value in Min-w
SMT satisfies the target of K ′.

On the other side, let us suppose that we have a NO instance for Max-Card HRTI, i.e.,
it does not have a stable matching of cardinality n. Then, in any stable matching M ′ of Min-w
SMT, it holds that, for every s ∈ [C], there is some h ∈ [n] for which ws

h is not matched to
one of her proper men. Nonetheless, in M ′, m0

h and w0
h must be partners, for every h ∈ [na].

Therefore, there is some h ∈ [n] such that rws
h

,M ′(ws
h

> na. Hence, AvgRank (M ′) > n2a−1 > K ′

for any stable matching of our Min-w SMT instance.
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Therefore, the existence of a polynomial-time approximation algorithm for Min-w SMT opt
whose approximation ratio is as good as (2n2a−1) /na+2 = 2na−3 would give a polynomial-time
algorithm for determining whether Max-Card HRTI has a stable matching in which everybody
is matched (i.e., K = n). To conclude, we note that 2na−3 =

(
2/21−3/a

)
n̄1−3/a > n̄1−3/a >

n̄1−ε, which ends the proof. □

3.7.2. Proof of Lemma 3.3.5

Proof. Let M be a (complete) weakly stable matching in Γ. Recall that S ′ = {i1, . . . ,iL} is
the set of residents in Γ with a single tie at the head of the list. Let indexiℓ

(j) be the index
of hospital j in resident iℓ preference list, i.e., indexiℓ

(j) is equal to 1 or 2 if j is ranked first,
otherwise is equal to the rank of j. Define the following set of indices in M :

Idx(M) = {(ℓ,r) : r = indexiℓ
(j), (iℓ,j) ∈M ∩ (S ′ × C)}.

The set Idx(M) contains the information of the pairs S ′ × C that are matched in M . Given
M and Idx, we now define the following sets that will be helpful in this proof. For every k ∈ [n4],
we define the set of residents

Wk
M = {wk

ℓ,r ∈ W : (ℓ,r) ∈ Idx(M)},

and define the sets of hospitals

Vk

M = {vk
ℓ,r ∈ V : (ℓ,r) ∈ Idx(M)},

Vk
M = {vk

ℓ,e ∈ V : (ℓ,r) ∈ Idx(M), e ∈ [n] \ {r}}.

We now provide an allocation of extra spots t with a total budget B = L · n5 and a stable
matching M̂t in Γ̂t.

• Allocation of extra spots. For every k ∈ [n4], we assign n extra positions to each hospital
in Vk

M ∪ Vk
M . For the rest of the hospitals, we assign no extra capacities. Formally, for

k ∈ [n4], we have

tv =

1 v ∈ Vk
M ∪ Vk

M

0 otherwise
Since L = |S ′|, all of the extra positions B = L · n5 are used.
• Matching. For each (ℓ,r) ∈ Idx(M) with j such that r = indexiℓ

(j) in Γ, we match the
following pairs in M̂t: (wk

ℓ,r,j
k), (yk

ℓ , vk
ℓ,r), and (wk

ℓ,e, vk
ℓ,e) for e ∈ [n] \ {r} and k ∈ [n4].

Note that if j is ranked first by iℓ, the hospital is listed first or second in the tie. If j is
listed first, then r = 1 and we match the pairs {(wk

ℓ,1,j
k)}k∈[n4], otherwise, r = 2 and we

match the pairs {(wk
ℓ,2,j

k)}k∈[n4]. For each (i,j) ∈ M with i ∈ S ′′, we match the pairs
{(ik,jk)}k∈[n4] in M̂t, where jk is a copy of j in C; recall that S ′′ is the set of residents
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with a strict preference list. Formally, matching M̂t is as follows:

M̂t ={(ik,jk) : (i,j) ∈M ∩ (S ′′ × C) and k ∈ [n4]}

∪ {(wk
ℓ,r,j

k) : r = indexiℓ
(j), (iℓ,j) ∈M ∩ (S ′ × C) and k ∈ [n4]}

∪ {(yk
ℓ , vk

ℓ,r) : (ℓ,r) ∈ Idx(M) and k ∈ [n4]}

∪ {(wk
ℓ,e,v

k
ℓ,e) : (ℓ,r) ∈ Idx(M), e ∈ [n] \ {r} and k ∈ [n4]}

∪ {(uk
ℓ,e,v

k
ℓ,e), (uk

ℓ,e,v
k
ℓ,e)}ℓ∈[L],e∈[n],k∈[n4]

∪ {(ap,zp)}p∈[n6].

The only hospitals that are matched to two residents are those that receive one extra capacity
according to vector t. All the other hospitals are matched at most to one resident. Therefore, M̂t

is a matching. Let us verify that M̂t is a stable matching in Γ̂t. First, note that residents ik ∈ S ′′

and hospitals jk ∈ C cannot create blocking pairs because of their stability in M . Now, let us
check the stability of the pairs in each village Bk

ℓ , where iℓ ∈ S ′ with ℓ ∈ [L], and k ∈ [n4] . The
pairs matched in village Bk

ℓ are (wk
ℓ,r,j

k), (wk
ℓ,e, vk

ℓ,e), (yk
ℓ , vk

ℓ,r) and {(uk
ℓ,p, vk

ℓ,p), (uk
ℓ,p, vk

ℓ,p)}p∈[n]

where e ∈ [n] \ {r}.
• The agents in the pair (wk

ℓ,r,j
k) are not part of any blocking pair; in fact, wk

ℓ,r cannot be
matched to any of the hospitals in {vk

ℓ,r} ∪ V
k
ℓ \ {vk

ℓ,r} because they have capacity one
and they are all matched to their most favorite resident in U ∪U . Also jk cannot be part
of a blocking pair. Indeed, all the residents wk

ℓ′,r′ ranked in its preference list before wk
ℓ,r

are matched to hospitals of the form vk
ℓ′,r′ that they rank first or to another hospital j′k

they prefer over jk (due to the stability of M in Γ).
• For e ∈ [n] \ {r}, wk

ℓ,e ranks vk
ℓ,e first, and vk

ℓ,e has capacity two and ranks wk
ℓ,e second.

Hence the n− 1 pairs (wℓ,e, vk
ℓ,e) do not include any agent who may be part of a blocking

pair.
• If r = 2, then yk

ℓ ranks vk
ℓ,r first, and vk

ℓ,r cannot be matched to any of the residents in
Wk

ℓ \ {wk
ℓ,r} because of the previous point. Moreover, vk

ℓ,r has capacity two and is also
matched to uk

ℓ,r. Therefore, the agents in the pair (yk
ℓ , vk

ℓ,r) do not take part in a blocking
pair when r = 2. If r ̸= 2, then yk

ℓ ranks vk
ℓ,r second or more, and yk

ℓ cannot be matched
to vk

ℓ,q for q ∈ {2,1,3, . . . , r−1}: Each vk
ℓ,q has capacity one and it is already matched to

uk
ℓ,q. On the other hand, as we mentioned before, vk

ℓ,r cannot create a blocking pair with
any of the residents in Wk

ℓ \ {wk
ℓ,r} because these residents are matched to their most

preferred hospitals. Therefore, the agents in the pair (yk
ℓ , vk

ℓ,r) do not create blocking
pairs when r ̸= 2.
• The pairs {(uk

ℓ,p, vk
ℓ,p), (uk

ℓ,p, vk
ℓ,p)}p∈[n] do not involve any agent who could be part of a

blocking pair. First, each of these listed pairs matches two agents that rank each other
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first. Second, for those hospitals that have capacity two, from the previous points, we
conclude that there are no residents with which they could create a blocking pair.

Therefore, M̂t is a stable matching in Γ̂t.
Next, we compute the average hospital rank in M and M̂t. In M , we can distinguish whether

a resident is in S ′′ or S ′ and we can distinguish if a resident is matched to a hospital ranked first
or not. Let G′′ be the average hospital rank of residents in S ′′, K ′

t be the average hospital rank
of the residents in S ′ that are matched to a hospital in their ties, and K ′

s be the average hospital
rank of the residents in S ′ that are matched to a hospital they rank third or more. Note that
K ′

t is also the number of residents from S ′ matched to a hospital they rank first. The average
hospital rank of M is KM = G′′ + K ′

t + K ′
s.

We now prove that, given k ∈ [n4] and (ℓ,r) ∈ Idx(M), the average rank of the residents in
village Bk

ℓ is: (n + n2 · r + 3) + (n− 1) + (2n). The first term comes from the residents matched
in the two pairs (wk

ℓ,r,j
k) and (yk

ℓ , vk
ℓ,r): if r = 1 then wk

ℓ,1 ranks jk at position n + n2 + 1 and
yk

ℓ ranks vk
ℓ,1 at position 2, thus totaling n + n2 + 3; if r = 2 then wk

ℓ,2 ranks jk at position
n + n2 + 2 and yk

ℓ ranks vk
ℓ,2 at position 1, thus totaling n + n2 + 3; if r > 2 then wk

ℓ,r ranks jk

at position n + (n2 − 1)r + 2 + 1 and yk
ℓ ranks vk

ℓ,2 at position r, thus totaling n + n2 + 3. The
second term comes from the (n − 1) residents matched in the pairs {(wk

ℓ,e, vk
ℓ,e)}e∈[n]\{r}. The

third term comes from the 2n residents matched in the pairs {(uk
ℓ,p, vk

ℓ,p), (uk
ℓ,p, vk

ℓ,p)}. Note that
(n + n2 · r + 3) + (n− 1) + (2n) = n2 · r + 3 + (4n− 1). On the other hand, each resident ik

ℓ for
ℓ ∈ {L + 1, . . . ,n} is matched to a hospital jk, and w.l.o.g. j is ranked r by iℓ in Γ; therefore, ik

ℓ

ranks jk at position (n2 + 2) + 1 + (r− 1) · (n2 − 1) + (r− 1) = n2 · r + 3, where the first term
comes from the cardinality of the first set ranked by ik

ℓ , the second term comes from the first j

ranked by iℓ, the third term comes from the number of sets of the form Vk+1
+ [n2 + 2,e] (each of

cardinality n2 − 1) positioned before jk, and the last term is the number of hospitals j′k ranked
before jk.

Therefore, the residents in copy k have an average rank of [n2 ·G′′ + 3(n− L)] + n2 · (K ′
t +

K ′
s) + [3 + (4n− 1)] · (L) = n2 ·KM + 3(n− L + L) + (4n− 1)L = n2 ·KM + 4nL + 3n− L,

where the first term comes from the residents ik
ℓ for ℓ ∈ {L + 1, . . . ,n} (note that when we sum

the contribution of each such resident, we have the sum ∑
ℓ∈{L+1,...,n} n2 · rℓ + 3, where rℓ is

indexiℓ
(M(iℓ))), the second term comes from the residents {wk

ℓ,r, yk
ℓ } for (ℓ,r) ∈ Idx(M),11 and

the third term comes from the remaining residents in the villages indexed with k and the constant
3 multiplied by the number of students in villages matched to a hospital jk. Since k ∈ [n4], then
AvgRank(M̂t) is n4 ·(n2 ·KM +4nL+3n−L)+n6, where the last term comes from the residents
in A. Hence AvgRank(M̂t) = n6 ·KM + n6 + 4n5L + 3n5 − n4L.

□

11Note that when we sum the contribution of each resident in every village that is not matched to a hospital vk
ℓ,e,

we have the sum
∑

ℓ∈{L+1,...,n} n2 · rℓ + 3, where rℓ is indexiℓ
(M(iℓ))).
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3.7.3. Proof of Lemma 3.3.6

Proof. Let M be a stable matching in Γ of minimum average hospital rank. Recall the instance
Γ̂ constructed in Section 3.3.1, the allocation

tv =

1 v ∈ Vk
M ∪ Vk

M

0 otherwise,

and the matching

M̂t = {(ik,jk) : k ∈ [n4], (i,j) ∈M ∩ (S ′′ × C)}

∪ {(wk
ℓ,r,j

k) : k ∈ [n4], r = riℓ,j, (iℓ,j) ∈M ∩ (S ′ × C)}

∪ {(yk
ℓ , vk

ℓ,r) : k ∈ [n4], (ℓ,r) ∈ Idx(M)}

∪ {(wk
ℓ,e,v

k
ℓ,e) : k ∈ [n4], (ℓ,r) ∈ Idx(M), e ∈ [n] \ {r}}

∪ {(uk
ℓ,e,v

k
ℓ,e),(uk

ℓ,e,v
k
ℓ,e) : k ∈ [n4], e ∈ [n]}

∪ {(ap,zp) : p ∈ [n6]},

constructed in Lemma 3.3.5. Denote by K = n6 ·KM + n6 + 4n5L + 3n5 − n4L, which is the
average rank of M̂t in Γ̂. Now, we will prove that any other feasible allocation t̃ with total budget
B = L · n5 and any stable matching M̂t̃ in the expanded instance Γ̂t̃ have AvgRank(M̂t̃) ≥ K.

Given allocation t, we start by observing that it is not optimal to move one extra capacity
from a hospital vk

ℓ,e or vk
ℓ,e to a hospital in X ∪ Z. Indeed, X already has n7 positions available,

but since it is at the end of the preference list of every resident, it would be sub-optimal to match
a resident to a hospital in it. Similarly, it would be sub-optimal to allocate an extra-capacity to
Z, since all the residents are already matched to a hospital they prefer to any hospital in Z.

Regarding the hospitals in C, let us assume we move a capacity from vk
ℓ,e to a hospital jk′ ∈ C

with l ∈ [L], e ∈ [n], k, k′ ∈ [n4]. First, note that, in the best case, the extra allocation of one
capacity to jk′ will improve the matching of all the residents in copy k′ from n2·KM +4nL+3n−L

to n2 + 4nL + 3n − L if every wk′
ℓ,1 and every ik′

ℓ is matched to the j
k′

ranked first by iℓ for
ℓ ∈ [n]. Since yk

ℓ was matched to vk
ℓ,e, then yk

ℓ will be necessarily matched after Vk+1
+ , which has

cardinality O(n5 · L). Therefore, the improvement in the cost (O(n2 · KM − n2) ≤ O(n4)) is
smaller than the cost of rematching yk

ℓ (O(n5 · L)). Similarly, if the extra capacity is taken from
some vk

ℓ,e, then the corresponding wk
ℓ,e that was matched to it, will take the place of yk

ℓ in vk
ℓ,r,

thus re-matching yk
ℓ after Vk+1

+ . As before, we would have an additional cost that is greater than
any possible benefit.

Given the fact above, we only have to focus on feasible allocations to hospitals that belong
to V . In the following, we analyze why a different allocation of extra capacities in V does not
lead to a stable matching with a lower average hospital rank. First, we prove that re-arranging
one extra capacity differently within a village does not yield a stable matching with a lower cost;
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we denote by M⋆ the stable matching obtained as a consequence of the re-organization of extra
capacities in a village Bk

ℓ . Note that there are n extra capacities to allocate in village Bk
ℓ and n+1

residents that could benefit of the re-allocation. It is evident that it is sub-optimal to not allocate
one extra capacity to a hospital vk

ℓ,r′ to match yk
ℓ ; in fact, otherwise, yk

ℓ would be matched after
Vk+1

+ with an additional cost of O(n5 ·L). Therefore, the only possibility is to allocate one extra
capacity so that a certain vk

ℓ,r′ does not receive one extra capacity. Assume wk
ℓ,r′ is the resident

of village Bk
ℓ that is not matched to vk

ℓ,r′ in M⋆, and assume that jk
σ(ℓ,r) is the hospital to which

resident wk
ℓ,r is matched in M̂ . Therefore, we move one extra capacity from vk

ℓ,r to vk
ℓ,r′ . As a

consequence, (wk
ℓ,r, vk

ℓ,r) are matched and wk
ℓ,r′ is matched to vk

ℓ,r, leaving yk
ℓ to be matched after

Vk+1
+ , making the re-allocation of one extra capacity within the village sub-optimal. At this point,

the only re-allocation of one extra capacity that may improve the objective is that obtained by
transferring one extra capacity from one village to another village.

Consider iℓ, iℓ′ ∈ S ′. We now analyze the effects of moving one extra capacity from village
Bk

ℓ′ to village Bk′
ℓ . The reason why we are analyzing these transfers of extra capacities is because

the corresponding residents are not necessarily matched with their top choice so their ranking
and the overall average ranking may improve.

• From vk
ℓ,r to vk′

ℓ′,r′ . In the best case, the reallocation of extra capacities in k′ improves the
matching by O(n4). Nonetheless, yk

ℓ , who was previously matched to vk
ℓ,r, is matched

after Vk+1
+ , thus increasing the average rank by at least O(L · n5). Note that yk

ℓ cannot
be matched to vk′

ℓ′,r′ since there are at least n residents in copy k′ − 1 who would rather
be matched to vk′

ℓ′,r′ than to a jk′ .
• From vk

ℓ,r to vk′
ℓ′,r′ . As mentioned earlier, the allocation of one extra capacity to copy k′

may improve the matching by at most O(n4), but the additional cost of re-matching yk
ℓ

after Vk+1
+ is of O(L · n5).

• From vk
ℓ,e to vk′

ℓ′,r′ or to vk′
ℓ′,r′ . In both cases copy k′ improves at most by O(n4) and wk

ℓ,e

takes the spot of yk
ℓ at vk

ℓ′,e, thus re-matching yk
ℓ after Vk+1

+ with an additional cost of
O(L · n5).

Now, let us prove that it is sub-optimal to re-allocate multiple extra capacities among V ∪V .
Note that since the hospitals in Z ∪ H are always ranked by the residents after at least O(n2)
hospitals in V ∪ V , it will follow that it would also be sub-optimal to re-allocate multiple extra
capacities to hospitals in Z ∪ H; finally, it would also hold that it is sub-optimal to re-allocate
extra capacities to hospitals in Z ∪H ∪ V ∪ V , thus terminating the proof.

First, assume that as a consequence of reallocating extra capacities, some villages may have
less than n · L assigned extra capacities and others more than n · L extra capacities. Let Bk

ℓ be
a village with m′ < n− 1 extra capacities, and define m = n−m′ > 1 the number of “missing”
extra capacities. In the best case, each of the m extra capacities will ameliorate the matching in a
different copy k′, with an overall improvement in the cost of O(m ·n4); note that allocating more
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than one extra capacity to the same copy k′ could not improve the average rank in k′ by more
than O(n2 ·KM) ≤ O(n4). Given that in village Bk

ℓ there are less than n − 1 extra capacities,
it follows that at least two distinct residents wk

ℓ,e and wk
ℓ,f are not matched to vk

ℓ,e and vk
ℓ,f , thus

taking the priority to be matched to Vk
ℓ if one of the hospitals there has an extra capacity; this

implies that yk
ℓ must not be matched to Vk

ℓ . Therefore, yk
ℓ may be matched to a hospital vk′′

ℓ′′,r′′

in Vk+1
+ or may be matched after Vk+1

+ . The resident yk
ℓ can be matched to a hospital vk′′

ℓ′′,r′′ only
if at least n + 2 extra capacities are allocated to vk′′

ℓ′′,r′′ . Indeed, before yk
ℓ , vk′′

ℓ′′,r′′ prefers
(1) n residents {wk′′−1

ℓ′′′,r′′′ , ik′′−1
ℓv }ℓ′′′∈L,ℓv∈{L+1,...,n},r′′′∈[n] from copy (k′′− 1) mod n4 which are

matched to n hospitals jk′′−1 they rank worst than vk′′
ℓ′′,r′′ , and

(2) wk′′
ℓ′′,r′′ .

Therefore, in order to match yk
ℓ to a hospital vk′′

ℓ′′,r′′ in Vk+1
+ , we would need to allocate at

least n + 2 extra capacities to vk′′
ℓ′′,r′′ ; these n + 2 would come from at least two villages, hence

matching at least two residents yk′′′′
ℓ after V . Hence, w.l.o.g. we can assume that yk

ℓ is matched
after Vk+1

+ , contributing with an additional cost of O(n5 ·L). Note that at least m− 1 residents
wk

ℓ,e from village Bk
ℓ are not matched to their most preferred hospitals vk

ℓ,e nor to any hospital in
Vk

ℓ . Therefore, these m − 1 residents wk
ℓ,e may be matched to some hospital vk+1

ℓ,e′ in Vk+1
+ [n3].

For a wk
ℓ,e to be matched to vk+1

ℓ,e′ , hospital vk+1
ℓ,e′ must receive at least two extra capacities, one

for matching wk+1
ℓ,e′ and the other for matching wk

ℓ,e. Hence, the extra capacity that was originally
allocated to wk

ℓ,e would be given to vk+1
ℓ,e′ , and rather than improving the average rank of copy

k + 1 (which is un-affected), the allocation would match worst wk
ℓ,e. Therefore, everyone of the

m − 1 residents wk
ℓ,e should be matched not to a hospital in Vk+1

+ [n3]. If wk
ℓ,e is matched to a

hospital jk, then the resident ik who was previously matched to it, would be matched after Z
with an additional cost of O(n6). Therefore, w.l.o.g., each of the m − 1 residents wk

ℓ,e will be
matched after Z (if they are matched to Z, then one extra capacity should be allocated to Z)
with an additional average cost of O((m−1) ·n6), which is greater than the benefit of O(m ·n4).

Second, many extra capacities may be allocated differently than suggested by the reduction of
Lemma 3.3.5, with the condition that every village receives n extra capacities. Note that in every
village Bk

ℓ at least one extra capacity should be allocated to Vk

ℓ , this must be the case because
otherwise yk

ℓ would be matched after Vk+1
+ with an additional cost of O(n5 ·L), which is greater

than any gain that may be achieved by re-allocating differently the L · n extra capacities in copy
k (recall that the average cost of copy k is O(n2 ·KM). Then, note that it is also sub-optimal to
allocate more than one extra capacity to Vk

ℓ , because at least one resident wk
ℓ,e would be matched

to it; hence, it would be more convenient to match wk
ℓ,e to vk

ℓ,e by allocating one extra capacity
to hospital vk

ℓ,e. Hence, in every village there will be a resident wk
ℓ,e who is not matched to vk

ℓ,e

because this hospital did not receive any extra capacity. Such wk
ℓ,e cannot be matched to any

of the hospitals in Vk+1
+ [n3], unless we would provide at least two extra capacities to it (thus

matching a yk′
ℓ′ after Vk′+1

+ with an extra cost of O(n5 · L)). Therefore, wk
ℓ,e can be matched to

hospital jk
σ(ℓ,e), or after Z (with an extra cost of O(n6). So, for a fixed copy k, we would have
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that one resident in every of the L villages in copy k, may be matched at best to a hospital jk;
on the other hand, also the residents {ik

ℓ}ℓ∈{L+1,...,n} are matched at best to a hospital jk. This
implies that when each village receives n extra capacities, the best way of allocating them is by
having a resident in each village matched to a hospital jk (recall that each of these hospitals has
capacity one). Hence, at best, n residents in copy k (at most one from each village) are matched
to the n hospitals jk, thus projecting a matching M ′ in the original instance Γ. M ′ must be
a weakly stable matching of Γ since the preferences of the hospitals in H rank the residents in
copy k according to the original preferences in Γ. Note that since M was a minimal average rank
matching, then AvgRank(M) ≤ AvgRank(M ′), which implies that

n2 · AvgRank(M) + 4nL + 3n− L ≤ n2 · AvgRank(M ′) + 4nL + 3n− L, (3.7.1)

where the left-hand side of equation 3.7.1 is the average rank of copy k according to the reduction
as per Lemma 3.3.5, while the term on the right-hand side is the average rank of copy k obtained
following the reasoning above.

Therefore, there is no allocation t̃ ̸= t and a stable matching M̂t̃ with an objective value
strictly lower than K.

□

3.7.4. Proof of Theorem 3.5.3

In this section, we prove that Max-Cardsub
exp HRI is NP-complete.

Proof of Theorem 3.5.3. We build a polynomial reduction from an instance of Max-Card
HRTI with target value K, where ties are only on the hospital side, they are at the head of the
preference list and are of length two. Let C and S be the set of hospitals and residents in Γ,
respectively; C = C ′ ∪C ′′, where C ′ is the set of hospitals with a tie at the head of the preference
list and C ′′ is the set of hospitals with a strict preference list.

We build an instance Γ̂ = ⟨Ŝ,Ĉ,≻̂, ĉ⟩ of Max-Cardsub
exp HRI as follows:

• The set of residents is composed of a copy of S that we denote by S and two sets of
residents U = {uj : ∀j ∈ C ′} and U = {uj : ∀j ∈ C ′}, each of size |C ′|;
• The set of hospitals Ĉ consists of a copy of C ′′ and the set C̃ = {j′ : j ∈ C ′}∪ {j′′ : j ∈
C ′}, i.e., we make two copies per hospital in C ′. Each hospital in C̃ has capacity 1 and
each hospital in C ′′ has capacity 1;
• For each resident in S, we keep the preference list that she has in the original instance

Γ, with the exception that each j ∈ C ′ in her preference list is replaced by j′ if she does
not appear in the tie. If she is the first resident listed in the tie of j ∈ C ′, then we replace
the hospital j in the preference list by j′; otherwise, if the resident is listed second in the
tie of j ∈ C ′, then we replace the hospital j in the preference list by j′′;
• Every resident uj only ranks hospital j′, and every resident uj only ranks hospital j′′;
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• For the hospitals in C ′′, we maintain their preference lists of Γ over the residents in S.
For a hospital j ∈ C ′ with a preference list (iσ1 , iσ2),iσ3 , . . . ,iσs , the preference list of j′

becomes uj′ ,iσ1 ,iσ2 ,iσ3 , . . . ,iσs and that of j′′ becomes uj′′ ,iσ2 ,iσ1 ,iσ3 , . . . ,iσs ;
• For each hospital j ∈ C ′′, we create a set Cj = {j} with Bj = 0. For every hospital

j ∈ C ′, we create a set Cj = {j′, j′′} with Bj = 1. Clearly, the sets Cj induce a partition
of the set of hospitals Ĉ.
• The target value is K + 2L, where L = |C ′|.

First of all, note that for every j ∈ C ′, the pairs (uj′ , j′) and (uj′′ , j′′) will always be matched
in every stable matching of instance Γ̂.

Let M be a weakly stable matching of the Max-Card HRTI instance. We will show that
there is a feasible allocation of the capacities t and a stable matching Mt in Γ̂t with cardinality
|M | + 2L, and thus, establishing the problems’ equivalence. For every pair (i,j) in M , we have
to distinguish whether j ∈ C ′ or j ∈ C ′′. If j ∈ C ′′, then we add the corresponding pair (i,j) to
Mt; recall that for a hospital j ∈ C ′′, Bj = 0. Otherwise, j ∈ C ′. If i ̸= iσ2 , then we allocate the
extra capacity of part Cj to j′ and we match the pair (i,j′). If, instead, i = iσ2 , then we match
the pair (i,j′′) by assigning the extra capacity of part Cj to j′′. If there is a hospital j ∈ C ′ that
has not been assigned to any resident, then we allocate the extra capacity of part Cj to j′.

Note that Mt is stable indeed. If not, there must be a blocking pair (i,j). Note that j must
be in some Ck given that those subsets form a partition of Ĉ. Indeed, in each set Ck exactly one
hospital has one extra capacity 1, and for k = j, j is exactly such hospital. If |Cj| = 1, then
j ∈ C ′′ and, thus, it has exactly the same preference list that it has in the instance Γ; therefore
the corresponding pair (i,j) in M is a blocking pair, which yields a contradiction. If |Cj| = 2,
then we have to distinguish whether j = j′ or j = j′′. If j = j′, then we find that (i,j) is a
blocking pair in M . Otherwise, if j = j′′, then (i,j) is a blocking pair if and only if i = iσ2

since it is the only resident ranking j′′ in Γ̂. The pair (i,j′′) could be a blocking pair only if j′′

has capacity 2; the extra capacity Bj = 1 was assigned to j′′ in accordance with the reduction.
Therefore (i,j′′) is already matched in Mt and (i,j′′) cannot be a blocking pair.

Note that the reduction is injective. Moreover, given a weakly stable matching M in instance
Γ of cardinality greater than or equal to K, it immediately follows that the reduction finds a
stable matching of cardinality at least K + 2L.

On the other hand, assume there is no weakly stable matching of cardinality greater than
K. Let us assume, by contradiction that there is an allocation t of extra capacities and a stable
matching Mt in Γ̂t of cardinality at least K + 2L. Without loss of generality, if for a hospital
j ∈ C ′, both corresponding hospitals j′ and j′′ are not matched to any other resident than uj′

and uj′′ in Mt, then we assume that the extra capacity is allocated to j′. Let M ′ be the matching
that we build in instance Γ copying from Mt: Every hospital j ∈ C ′′ is matched as in Mt, and
every hospital j ∈ C ′ is matched to the same resident i ∈ R to which the copy of j in Γ̂ that
receive the extra spot is matched to (if the hospital is matched to two residents). Note that the
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matching M ′ has cardinality at least K, next we prove that it is also weakly stable. Indeed, if it
would not be stable, then there would be a blocking pair (i,j). If j ∈ C ′′, then the pair (i,j) is
also a blocking pair in Γ̂, which is not possible. Otherwise, j ∈ C ′ and it may be that j is not
matched or that j is matched to another resident î that j ranks worst than i. In the first case,
note that the extra capacity in Γ̂t is allocated to j′, which is matched only to uj′ , therefore (i, j′)
is also a blocking pair of Mt, contradicting the assumption of stability. Finally, (i,j) is a blocking
pair of M , where j is matched to î and j strictly prefers i over î. Without loss of generality,
assume the extra capacity is assigned to j′, therefore (j′, î) are matched together in Mt. Let us
denote by iσ1 ,iσ2 the two residents ranked first in the tie of hospital j. If i is neither iσ1 nor iσ2 ,
then (i,j′) is a blocking pair of Mt too since i is also more preferred than î by j′. Otherwise, i is
one of the two residents iσ1 or iσ2 . If i = iσ1 , then also j′ ranks i better than î (recall that j′ is
also matched to uj′ that is ranked first), therefore (i,j′) is also a blocking pair in Mt. Otherwise,
i = iσ2 , and (i,j) could be a blocking pair of M ′ only if î is ranked third or worst, which means
that î is ranked fourth or worst by j′, thus making (i,j′) a blocking pair of Mt too, which is
absurd.

To conclude, note that the created instance introduces a polynomial number of hospitals,
residents, preferences and pairs {(Cj, Bj)}j∈C in the input. Moreover, it can be verified in
polynomial-time that: (1) the vector of allocation t satisfies the corresponding constraints and (2)
the constructed stable matching has a cardinality greater than or equal to the target value. □
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Résumé. Nous introduisons le problème de l’augmentation conjointe des capacités des écoles
et de la recherche d’une affectation optimale des étudiants sur le marché élargi. En raison de
l’impossibilité de résoudre efficacement le problème avec les méthodes classiques, nous générali-
sons les formulations existantes de programmation mathématique des contraintes de stabilité à
notre cadre, dont la plupart aboutissent à des programmes à contraintes quadratiques entières.
En outre, nous proposons une nouvelle formulation de programmation linéaire en nombres en-
tiers mixtes qui est exponentiellement grande sur la taille du problème. Nous montrons que ses
contraintes de stabilité peuvent être séparées en exploitant la fonction objective, ce qui conduit
à un algorithme efficace de plan de coupe. Nous concluons l’analyse théorique du problème en
discutant de certaines propriétés du mécanisme. Sur le plan algorithmique, nous évaluons les
performances de nos approches dans une étude détaillée, et nous constatons que notre méthode
de plan de coupe est plus performante que notre généralisation des approches mixtes en nombres
existantes. Nous proposons également deux heuristiques qui sont efficaces pour les grandes ins-
tances du problème. Enfin, nous utilisons les données du système chilien de choix des écoles
pour démontrer l’impact de la planification de la capacité dans des conditions de stabilité. Nos
résultats montrent que chaque place supplémentaire peut bénéficier à plusieurs élèves et qu’il est
possible de cibler efficacement l’affectation d’élèves précédemment non affectés ou d’améliorer
l’affectation de plusieurs élèves grâce à des chaînes d’amélioration. Ces résultats permettent au
décideur d’ajuster l’algorithme d’appariement afin de fournir une application équitable.
Mots clés : Appariement stable, planification des capacités, choix de l’école, programmation
en nombres entiers

Abstract. We introduce the problem of jointly increasing school capacities and finding a
student-optimal assignment in the expanded market. Due to the impossibility of efficiently
solving the problem with classical methods, we generalize existent mathematical programming
formulations of stability constraints to our setting, most of which result in integer quadratically-
constrained programs. In addition, we propose a novel mixed-integer linear programming for-
mulation that is exponentially large on the problem size. We show that its stability constraints
can be separated by exploiting the objective function, leading to an effective cutting-plane al-
gorithm. We conclude the theoretical analysis of the problem by discussing some mechanism
properties. On the computational side, we evaluate the performance of our approaches in a
detailed study, and we find that our cutting-plane method outperforms our generalization of
existing mixed-integer approaches. We also propose two heuristics that are effective for large
instances of the problem. Finally, we use the Chilean school choice system data to demonstrate
the impact of capacity planning under stability conditions. Our results show that each additional
seat can benefit multiple students and that we can effectively target the assignment of previously
unassigned students or improve the assignment of several students through improvement chains.
These insights empower the decision-maker in tuning the matching algorithm to provide a fair
application-oriented solution.
Keywords: Stable matching, capacity planning, school choice, integer programming
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4.1. Introduction
Centralized mechanisms are becoming the standard approach to solve several assignment

problems. Examples include the allocation of students to schools, high-school graduates to
colleges, residents to hospitals and refugees to cities. In most of these markets, a desirable
property of the assignment is stability, which guarantees that no pair of agents has incentive to
circumvent the matching. As discussed in [138] and [135], finding a stable matching is crucial
for the clearinghouse’s success, long-term sustainability and also ensures some notion of fairness
as it eliminates so-called justified-envy.1

A common assumption in these markets is that capacities are fixed and known. However,
capacities are only a proxy of how many agents can be accommodated, and there might be
some flexibility to modify them in many settings. For instance, in some college admissions
systems, colleges may increase their capacities to admit all tied students competing for the last
seat [124]. Moreover, in several colleges/universities, the number of seats offered in a given
course or program is adjusted based on their popularity among students.2 In school choice,
school districts may experience overcrowding, where some schools serve more students than
their designed capacity.3 In response, school districts often explore alternative strategies to
accommodate the excess demand, such as utilizing portable classrooms, implementing multi-track
or staggered schedules, or adopting other temporary measures, and use students’ preferences as
input to make these decisions. In addition, school administrators often report how many open
seats they have in each grade based on their current enrollment and the size of their classrooms.
However, they could switch classrooms of different sizes to modify the seats offered on each level.
Finally, in both school choice and college admissions, affirmative action policies include special
seats for under-represented groups (such as lower-income students, women in STEM programs,
etc.) that are allocated based on students’ preferences and chances of succeeding.

As the previous discussion illustrates, capacities may be flexible, and it may be natural to
incorporate them as a decision to further improve the assignment process. By jointly deciding
capacities and the allocation, the clearinghouse can leverage the knowledge about agents’ prefer-
ences to achieve different goals. On the one hand, one possible goal is to maximize access, i.e.,
to choose an allocation of capacities that maximizes the total number of agents being assigned.

1See [128] for a discussion on the differences between stability and no justified-envy.
2Examples include the School of Engineering at the University of Chile, where all students who want to study
any of its programs must take a shared set of courses in the first two years and then must apply to a specific
program (e.g., Civil Engineering, Industrial Engineering, etc.) based on their GPA, without knowing the number
of seats available in each of them. Similarly, in many schools that use course allocation systems such as Course
Match [45], over-subscribed courses often increase their capacities, while under-subscribed ones are merged or
canceled.
3According to the results of a nationwide survey, 22% of schools in the US experienced some degree of overcrowd-
ing, and 8% had enrollments that exceeded their capacity by more than 25% [65].
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This objective is especially relevant in some settings, such as school choice, where the clearing-
house aims to ensure that each student is assigned to some school. On the other hand, the
clearinghouse may wish to prioritize improvement, i.e., to enhance the assignment of high-priority
students. This objective is common in merit-based settings such as college admissions and the
hospital-resident problem. Note that this trade-off between access and improvement does not
arise in the standard version of the problem, as there is a unique student-optimal stable matching
when capacities are fixed.

We refer to the capacity planning problem as the problem of allocating capacities while
at the same time choosing a matching. While the computation of a student-optimal stable
matching can be done in polynomial time using the well-known Deferred Acceptance (DA) algo-
rithm [67], the computation of a student-optimal matching under capacity planning is theoretically
intractable (Theorem 3.3.1 of Chapter 3, [40]). Therefore, we face two important challenges:
(i) devising a framework that takes into account students’ preferences when making capacity
decisions; and (ii) designing an algorithm that efficiently computes exact solutions of large-scale
instances of the problem. The latter is particularly relevant for a policymaker that aims to test
and balance access vs. improvement, since different settings and input parameters can lead to
extremely different outcomes. Therefore, expanding modeling capabilities (such as the inclusion
of capacity expansion) and the methodologies for solving them are crucial to amplify the flexibility
of future matching mechanisms.

4.1.1. Contributions and Paper Organization

Our work combines a variety of methodologies and makes several contributions that we now
describe in detail.

Model and mechanism analysis. To capture the problem described above, we introduce
a novel stylized model of a many-to-one matching market in which the clearinghouse can
make capacity planning decisions while simultaneously finding a student-optimal stable
matching, generalizing the standard model by Gale and Shapley [67]. We show that the
clearinghouse can prioritize different goals by changing the penalty values of unassigned
students. Namely, it can obtain the minimum or the maximum cardinality student-optimal
stable matchings and, thus, prioritize improvements and access, respectively. In addition, we
study other properties of interest, including agents’ incentives and the mechanism’s monotonicity.

Exact solution methods. First, we formulate our problem as an integer quadratically-
constrained program by extending existing approaches. We provide two different linearizations
to improve the computational efficiency and show that one has a better linear relaxation. This
is particularly important as tighter relaxations generally indicate faster running times when
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using commercial solvers. Preliminary computational results motivated us to devise a novel
formulation of the problem and, subsequently, design a cutting-plane method to solve larger
instances exactly. Specifically, we introduce a mixed-integer extended formulation where the
extra capacity allocations are determined by binary variables and the assignment variables are
relaxed. This formulation is of exponential size and, consequently, we solve it by a cutting-plane
method that uses as a starting point the relaxation of the extended formulation without stability
constraints. In each iteration, such a cutting-plane method relies on two stable matchings, one
fractional and one integral. The first one is the current optimal assignment solution, while the
second matching is obtained by applying the DA algorithm on the expanded market defined by
the current optimal integral capacity allocation. These two stable matchings serve as proxies to
guide the secondary process of finding violated constraints. The search for the most violated
constraints focuses on a considerably smaller subset of them by exploiting structural properties
of the problem.

We emphasize that this separation method does not contradict the hardness result presented
in Chapter 3 (Theorem 3.3.1), since this algorithm relies on the solution of a mixed-integer
formulation. Our separation algorithm somewhat resembles the method proposed by Baïou and
Balinski [26] for the standard setting of the stable matching problem with no capacity expansion.
However, the search space in our setting is significantly larger as we have an exponential family
of constraints defined over a pseudopolynomial-sized space. Our efficient algorithm relies on
two main aspects: The stable matchings that are used as proxies and a series of new structural
results. The sum of all these technical enhancements ensures that our cutting-plane method
outperforms the benchmarks obtained by adapting the formulations in the existing literature to
the capacity planning setting, and solved by state-of-the-art solvers.

Heuristic solution methods. As shown in Chapter 3 (Theorem 3.3.1), the problem is
NP-hard and cannot be approximated within a O

(
n( 1

6 −ε)
)

factor, where n is the number
of students, unless P=NP. Moreover, from our collaborations with the Chilean agencies, we
realized that many real-life instances could not be solved in a reasonable time, even using
our cutting plane algorithm. This motivated us to study efficient heuristics that possibly
provide near-optimal solutions. In particular, we focus on two heuristics: First, we consider
the standard Greedy algorithm for set functions that sequentially adds one extra seat in each
iteration to the school that leads to the largest marginal improvement in the objective function.
Our second heuristic, called LPH, proceeds in two steps: (i) solves the problem without
stability constraints to find the allocation of extra seats, and (ii) finds the student-optimal
stable matching conditional on the capacities defined in the first step. Our computational
experiments show that both heuristics significantly reduce the time to find a close-to-optimal
solution with LPH being the fastest. Moreover, LPH outperforms Greedy in terms of opti-
mality gap when the budget of extra seats increases and does that in a negligible amount of
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time. Hence, LPH could be a good approach to quickly solve large-scale instances of the problem.

Practical insights and societal impact. To illustrate the benefits of embedding capacity de-
cisions, we use data from the Chilean school choice system and we adapt our framework to solve
the problem including all the specific features described by Correa et al. [50]. First, we show that
each additional seat can benefit multiple students. Second, in line with our theoretical results,
we find that access and improvement can be prioritized depending on how unassigned students
are penalized in the objective. Our results show that the students’ matching is improved even
if we upper bound the total number of additional seats per school. Finally, we show that our
model can be extended in several interesting directions, including the addition of costs to expand
capacities, the addition of secured enrollment, the planning of classroom assignment to different
grades, etc.

Given these positive results, we are currently collaborating with the institutions in charge of
implementing the Chilean school choice and college admissions systems to test our framework
in the field. The computational time reduction enabled by our method(s) has been critical
to evaluate both the assignment of extra seats to schools and the rules of affirmative action
policies in college admissions, as assessing the impact of these policies requires thousands of
simulations to understand their effects under different scenarios. Moreover, our model can be
easily adapted to tackle other policy-relevant questions. For instance, it can be used to optimally
decide how to decrease capacities, as some school districts are experiencing large drops in their
enrollments [149]. Our model could also be used to optimally allocate tuition waivers under
budget constraints, as in the case of Hungary’s college admissions system. Finally, our method-
ology could also be used in other markets, such as refugee resettlement [52, 17, 14]—where
local authorities define how many refugees they are willing to receive, but they could increase
their capacity given proper incentives—or healthcare rationing [122, 25]—where policymakers
can make additional investments to expand the resources available. These examples further
illustrate the importance of jointly optimizing stable assignments and capacity decisions since it
can answer crucial questions in numerous settings.

Organization of the paper. The remainder of the paper is organized as follows. In Section 4.2,
we provide a literature review. In Section 4.3, we formalize the stable matching problem within
the framework of capacity planning; then, we present our methodologies to solve the problem,
including the compact formulations and their linearizations, our novel non-compact formulation
and our cutting-plane algorithm; and we conclude this section by discussing some properties of our
mechanism. In Section 4.4, we provide a detailed computational study on a synthetic dataset. In
Section 4.5, we evaluate our framework using Chilean school choice data. Finally, in Section 4.6,
we draw some concluding remarks. All the proofs, examples, extensions and additional discussions
can be found in the Appendix.
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4.2. Related Work
Gale and Shapley [67] introduced the well-known Deferred Acceptance algorithm, which finds

a stable matching in polynomial time for any instance of the problem. Since then, the literature
on stable matchings has extensively grown and has focused on multiple variants of the problem.
For this reason, we focus on the most closely related work, and we refer the interested reader
to [107] for a broader literature review.

Mathematical programming formulations. The first mathematical programming formulations
of the stable matching problem were studied in [71, 150, 139] and [137]. Baïou and Balinski [26]
provided thereafter an exponential-size linear programming formulation describing the convex
hull of the set of feasible stable matchings. Moreover, they gave a polynomial-time separation
algorithm. Kwanashie and Manlove [104] presented an integer formulation of the problem when
there are ties in the preference lists (i.e., when agents are indifferent between two or more
options). Kojima et al. [99] introduced a way to represent preferences and constraints to guarantee
strategy-proofness. Agoston et al. [13] proposed an integer model that incorporates upper and
lower quotas. Delorme et al. [53] devised new mixed-integer programming formulations and
pre-processing procedures. More recently, Agoston et al. [157] proposed similar mathematical
programs and used them to compare different policies to deal with ties. In our computational
experiments, we consider the adaptation of these formulations to capacity planning which then
form the baselines of our approach.

Capacity expansion. Our paper is the first to introduce the problem of optimal capacity planning
in the context of stable matching. After this manuscript’s preliminary version was released,
there has been subsequent work in the same setting. Bobbio et al. [40] (Chapter 3) studied
the capacity planning problem’s complexity and other variations. The authors showed that the
decision version of the problem is NP-complete and inapproximable within a O

(
n( 1

6 −ε)
)

factor,
unless P=NP, where n is the number of students. Abe et al. [9] studied a heuristic method to
solve the capacity planning problem that relies on the Upper Confidence Tree (a Monte Carlo tree
search method) searching over the space of capacity expansions. Dur and Van der Linden [58],
in an independent work, also analyzed the problem of allocating additional seats across schools
in response to students’ preferences. The authors introduced an algorithm that characterizes the
set of efficient matchings among those who respect preferences and priorities and analyzed its
incentives’ properties. Their work is complementary to ours in several ways. First, they discuss
different applications where capacity decisions are made in response to students’ preferences.
These include some school districts in French-speaking Belgium, where close to 1% of seats
are consistently reported after students submit their preferences, and certain college admissions
systems, such as in India, where the Ministry of Education plans to increase capacities by up to

106



50%. Second, their proposed approach can potentially recover any Pareto efficient allocation,
including the ones returned by our mechanism. However, their algorithm cannot be generalized to
achieve a specific outcome. Our methodology is flexible enough to enable policymakers to target
a particular goal when deciding how to allocate the extra seats, including access, improvement,
or any other objective beyond student optimality. Finally, Dur and Van der Linden [58] showed
that their mechanism is strategy-proof when schools share the same preferences, but it is not
in the general case. In this work, we also discuss incentive properties and expand the analysis
to study other relevant properties of the assignment mechanism, such as strategy-proofness in
the large and monotonicity. Another related capacity expansion model is considered in Kumano
and Kurino [101], where the authors study and implement the reallocation of capacities among
programs within a restructuring process at the University of Tsukuba. Their capacity allocation
constraints could be readily added to our model while maintaining the validity of our methodology.

School choice. Starting with Abdulkadiroğlu et al. [8], a large body of literature has studied
different elements of the school choice problem, including the use of different mechanisms such
as DA, Boston, and Top Trading Cycles [5, 121, 2]; the use of different tie-breaking rules [4,
18, 20]; the handling of multiple and potentially overlapping quotas [102, 143]; the addition
of affirmative action policies [61, 72]; and the implementation in many school districts and
countries [5, 46, 50, 16]. Within this literature, the closest papers to ours are those that
combine the optimization of different objectives with finding a stable assignment. Caro et al. [47]
introduced an integer programming model to make school redistricting decisions. Shi [141]
proposed a convex optimization model to decide the assortment of schools to offer to each student
to maximize the sum of utilities. Ashlagi and Shi [22] presented an optimization framework that
allowed them to find an assignment pursuing (the combination of) different objectives, such as
average and min-max welfare. Bodoh-Creed [42] presented an optimization model to find the
best stable and incentive-compatible match that maximizes any combination of welfare, diversity,
and prioritizes the allocation of students to their neighborhood school. Finally, Feigenbaum et
al. [62] introduced a novel mechanism to efficiently reassign vacant seats after an initial round of
a centralized assignment and used data from the NYC high school admissions system to showcase
its benefits.

4.3. Model
We formalize the stable matching problem using school choice as an illustrating example. Let

S = {s1, . . . , sn} be the set of n students, and let C = {c1, . . . , cm} be the set of m schools.4

Each student s ∈ S reports a strict preference order ≻s over the elements in C ∪ {∅}. Note that
we allow for ∅ ≻s c for some c ∈ C, so students may not include all schools in their preference list.

4To facilitate the exposition, we assume that all students belong to the same grade, e.g., pre-kindergarten.
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In a slight abuse of notation, we use |≻s| to represent the number of schools to which student
s applies and prefers compared to being unassigned, and we use c′ ⪰s c to represent that either
c′ ≻s c or that c′ = c. On the other side of the market, each school c ∈ C ranks the set of
students that applied to it according to a strict order ≻c. Moreover, we assume that each school
c ∈ C has a capacity of qc ∈ Z+ seats, and we assume that ∅ has a sufficiently large capacity.

Let E ⊆ S ×
(
C ∪ {∅}

)
be the set of feasible pairs, with (s,c) ∈ E meaning that s includes

school c in their preference list.5 A matching is an assignment µ ⊆ E such that each student
is assigned to one school in C ∪ {∅}, and each school c receives at most qc students. We
use µ(s) ∈ C ∪ {∅} to represent the school of student s in the assignment µ, with µ(s) = ∅
representing that s is unassigned in µ. Similarly, we use µ(c) ⊆ S to represent the set of students
assigned to c in µ. A matching µ is stable if it has no blocking pairs, i.e., there is no pair
(s,c) ∈ E that would prefer to be assigned to each other compared to their current assignment
in µ. Formally, we say that (s,c) is a blocking pair if the following two conditions are satisfied:
(1) student s prefers school c over µ(s) ∈ C ∪ {∅}, and (2) |µ(c)| < qc or there exists s′ ∈ µ(c)
such that s ≻c s′, i.e., c prefers s over s′.

For any instance Γ = ⟨S,C, ≻, q⟩, the DA algorithm [67] can find in polynomial time the
unique stable matching that is weakly preferred by every student, also known as the student-
optimal stable matching. Moreover, DA can be adapted to find the school-optimal stable match-
ing, i.e., the unique stable-matching that is weakly preferred by all schools. In Appendix 4.9.1,
we formally describe the DA version that finds the student-optimal stable matching.

Let rs,c be the position (rank) of school c ∈ C in the preference list of student s ∈ S,
and let rs,∅ be a parameter that represents a penalty for having student s unassigned.6 In
Lemma 4.3.1 we show that, for any instance Γ = ⟨S,C, ≻, q⟩, we can find the student-optimal
stable assignment by solving an integer linear program whose objective is to minimize the sum of
students’ preference of assignment and penalties for having unassigned students. The proof can
be found in Appendix 4.7.1.

Lemma 4.3.1. Given an instance Γ = ⟨S,C, ≻, q⟩, finding the student-optimal stable matching
is equivalent to solving the following integer program:

min
x

∑
(s,c)∈E

rs,c · xs,c (4.3.1a)

s.t.
∑

c:(s,c)∈E
xs,c = 1, ∀ s ∈ S, (4.3.1b)

∑
s:(s,c)∈E

xs,c ≤ qc, ∀ c ∈ C, (4.3.1c)

5To ease notation, we assume that students include ∅ at the bottom of their preference list, and we assume that
any school c ∈ C not included in the preference list is such that ∅ ≻s c.
6Note that the penalty rs,∅ may be different from the ranking of ∅ in student s preference list. As such, the
penalty does not directly affect the stability condition.
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qcxs,c + qc ·
∑

c′≻sc

xs,c′ +
∑

s′≻cs

xs′,c ≥ qc, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.1d)

xs,c ∈ {0,1} , ∀ (s,c) ∈ E . (4.3.1e)

Note that Formulation (4.3.1) can be solved in polynomial time using the reformulation and
the separation algorithm proposed by Baïou and Balinski [26].7

Notation. In the remainder of the paper, we use bold to write vectors and italic for one-
dimensional variables; for instance, t = (t1, . . . ,tm).

4.3.1. Capacity Expansion

In Formulation (4.3.1), the goal is to find a student-optimal stable matching. In this section,
we adapt this problem to incorporate capacity expansion decisions. Let t = {tc}c∈C ∈ ZC

+ be the
vector of additional seats allocated to each school c ∈ C, and let Γt = ⟨S,C,≻ ,q + t⟩ be the
instance of the problem in which the capacity of each school c is qc + tc.8 For a non-negative
integer B, the capacity expansion problem consists in finding an allocation t that does not violate
the budget B and a stable matching µ in Γt that minimizes the sum of preferences of assignment
for the students and penalties for having unassigned students. Given budget B ∈ Z+, this can
be formalized as

min
t,µ

 ∑
(s,c)∈µ

rs,c : t ∈ ZC
+,

∑
c∈C

tc ≤ B, µ is a stable matching in instance Γt

. (4.3.2)

In other words, an optimal allocation of extra seats in Formulation (4.3.2) leads to a student-
optimal stable matching whose objective value is the best among all feasible capacity expansions.
Remarks. First, note that Formulation (4.3.2) is equivalent to Formulation (4.3.1) when B = 0.
Second, Formulation (4.3.2) may have multiple optimal assignments (see Appendix 4.8.1). Third,
observe that an optimal allocation may not necessarily use the entire budget since the objective
value may no longer improve, e.g., if we assign every student to their top preference. Finally, it
is important to highlight that students’ preferences are an input of the problem; thus, capacity
decisions are made in response. This assumption is suitable when the planner can implement
these capacity decisions in a shorter timescale, such as decisions on adding additional seats in
a course/grade/program, merging neighboring schools, or re-organizing classroom assignments
to different courses/grades depending on their popularity. Nevertheless, our framework can also
help evaluate longer-term policies, especially when the number of applicants and their preferences
are consistent over time. Moreover, our framework is flexible enough to accommodate any
other objective beyond student optimality, such as minimizing implementation costs (e.g., adding

7[104] and subsequent papers name Formulation (4.3.1) as max-hrt. Although in some cases the objective
function may differ and they may consider ties or other extensions, the set of constraints they study capture the
same requirements as our constraints.
8Note that Γ0 corresponds to the original instance Γ with no capacity expansion.
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teachers, portable classrooms, etc.), transportation costs, students’ estimated welfare, or any
combination of goals. As discussed in Section 4.5.3, our framework can be used to decide the
optimal number of reserved seats to offer to under-represented groups or determine the minimum
requirements that schools should meet regarding these affirmative action policies.

Motivated by the theoretical complexity of our problem and the absence of constant factor
approximation algorithms (in Appendix 4.7.5 we show that also sub-modularity is not a viable
way), we now concentrate on mathematical programming approaches to solve Formulation 4.3.2.

4.3.2. Compact Formulation

Recall that t denotes the vector of extra seats allocated to the schools and that B ∈ Z+ is
the total budget of additional seats. Let

P =
{

(x,t) ∈ [0,1]E×[0,B]C :
∑

c:(s,c)∈E
xs,c = 1 ∀ s ∈ S,

∑
s:(s,c)∈E

xs,c ≤ qc+tc ∀ c ∈ C,
∑
c∈C

tc ≤ B

}
,

be the set of fractional (potentially non-stable) matchings with capacity expansion. Note that
the first condition states that each student must be fully assigned to a school in C ∪ {∅}. The
second condition ensures that updated capacities (including the extra seats) are respected, and
the last condition guarantees that the budget is not exceeded.

Let PZ be the integer points of P , i.e., PZ = P ∩
(
{0,1}E × {0, . . . , B}C

)
. Then, we model

our problem by generalizing Formulation (4.3.1) to incorporate the decision vector t. As a result,
we obtain the following integer quadratically constrained program:

min
x,t

∑
(s,c)∈E

rs,c · xs,c (4.3.3a)

s.t. (tc + qc) ·
1−

∑
c′⪰sc

xs,c′

 ≤ ∑
s′≻cs

xs′,c, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.3b)

(x,t) ∈ PZ. (4.3.3c)

Constraint (4.3.3b) guarantees that the matching is stable. Note that when (x,t) is allowed to
be fractional, this contraint is quadratic and non-convex, which adds an extra layer of complexity
on top of the integrality requirements (4.3.3c).

To address the challenge introduced by the quadratic constraints, we linearize them with
McCormick envelopes (see Appendix 4.9.2 for a brief background). The quadratic term tc ·∑

c′⪰sc xs,c′ in constraint (4.3.3b) can be linearized in at least two ways. Specifically, we call
• Aggregated Linearization, when for each (s,c) ∈ E , we define αs,c := tc ·

∑
c′⪰sc xs,c′ ;

• Non-Aggregated Linearization, when for each (s,c) ∈ E and c′ ⪰s c, we define βs,c,c′ :=
tc · xs,c′ .
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The mixed-integer programming formulation of the McCormick envelope for the aggregated lin-
earization reads as

min
x,t,α

∑
(s,c)∈E

rs,c · xs,c (4.3.4a)

s.t. tc − αs,c + qc ·

1−
∑

c′⪰sc

xs,c′

 ≤ ∑
s′≻cs

xs′,c, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.4b)

− αs,c + tc + B ·
∑

c′⪰sc

xs,c′ ≤ B, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.4c)

αs,c ≤ tc, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.4d)

αs,c ≤ B ·
∑

c′⪰sc

xs,c′ , ∀ (s,c) ∈ E , c ≻s ∅ (4.3.4e)

(x,t) ∈ PZ, α ≥ 0. (4.3.4f)

Constraints (4.3.4c), (4.3.4d), (4.3.4e) and the non-negativity constraints for αs,c form the Mc-
Cormick envelope. The other constraints and the objective function remain the same.

It is well known that whenever at least one of the variables involved in the linearization is
binary, the McCormick envelope leads to an equivalent formulation. This is the case for the
aggregated linearization since ∑

c′⪰sc xs,c′ ∈ {0,1} due to the constraints in PZ.

Corollary 4.3.2. The projection of the feasible region given by constraints (4.3.4b)-(4.3.4f) in
the variables t and x coincides with the region given by constraints (4.3.3b) and (4.3.3c).

We now discuss the mixed-integer programming formulation of the McCormick envelope for
the non-aggregated linearization. Formally, we have the following

min
x,t,β

∑
(s,c)∈E

rs,c · xsc (4.3.5a)

s.t. tc −
∑

c′⪰sc

βs,c,c′ + qc ·

1−
∑

c′⪰sc

xs,c′

 ≤ ∑
s′≻cs

xs′,c, ∀ (s,c) ∈ E , c ≻s ∅ (4.3.5b)

− βs,c,c′ + tc + B · xs,c′ ≤ B, ∀ (s,c) ∈ E ,∀ c′ ⪰s c ≻s ∅, (4.3.5c)

βs,c,c′ ≤ tc, ∀ (s,c) ∈ E ,∀ c′ ⪰s c ≻s ∅, (4.3.5d)

βs,c,c′ ≤ B · xs,c′ , ∀ (s,c) ∈ E ,∀ c′ ⪰s c ≻s ∅, (4.3.5e)

(x,t) ∈ PZ, β ≥ 0. (4.3.5f)

Constraints (4.3.5c), (4.3.5d), (4.3.5e) and the non-negativity constraints for βs,c,c′ form the
McCormick envelope. Similar to the case of Corollary 4.3.2, we know that this is an exact
formulation since xs,c′ ∈ {0,1}.

Corollary 4.3.3. The projection of the feasible region given by constraints (4.3.5b)-(4.3.5f) in
the variables t and x coincides with the region given by constraints (4.3.3b) and (4.3.3c).
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Therefore, Formulation (4.3.4) and (4.3.5) yield the same set of feasible solutions. Inter-
estingly, the feasible region of the relaxed aggregated linearization, i.e., when (x,t) ∈ PZ in
constraint (4.3.4f) is changed to (x,t) ∈ P , is contained in the feasible region of the relaxed
non-aggregated linearization.

Theorem 4.3.4. The feasible region of the relaxed aggregated linearization model is contained
in the feasible region of the relaxed non-aggregated linearization model.

The proof of Theorem 4.3.4 can be found in Appendix 4.7.2. Theorem 4.3.4 implies that
the optimal value of the relaxed aggregated linearized model is greater than or equal to the
optimal value of the relaxed non-aggregated linearized model. In Appendix 4.8.3, we provide an
example that shows that the inclusion in Theorem 4.3.4 is strict. Since solution approaches to
mixed-integer programming formulations are based on the quality of their continuous relaxation,
we conclude that the aggregated linearization dominates the non-aggregated one, and thus we
expect it to perform better in practice.

As discussed in Section 4.2, there are other variants of Formulation (4.3.1) in the literature.
In Appendix 4.10, we generalize the state-of-the-art formulations to the case where B > 0, and
we note that all of them involve quadratic constraints. Although linearizations similar to the
ones applied to Formulation (4.3.3) are possible, they result in a larger number of variables,
Big-M constraints, and therefore, in potentially weak relaxations. Hence, in the next section, we
provide an alternative mixed-integer programming (MIP) formulation that is non-compact, and
we introduce a cutting-plane method to solve it efficiently.

4.3.3. Non-compact Formulation

For any instance Γ, Baïou and Balinski [26] describe the polytope of stable matchings (for the
standard setting without extra capacities) through an exponential family of inequalities, called
comb constraints, and provide a polynomial time algorithm to separate them. Inspired by their
results, we propose a novel non-compact formulation to incorporate capacity decisions. One of
the main challenges is that the formulation proposed by Baïou and Balinski [26] does not directly
generalize to the capacity planning setting since the comb constraints depend on the capacity of
each school, which can be modified in our setting. To address this, we appropriately generalize
the definition of a comb and define the family of constraints by using additional decision variables.
Generalized comb definition. A tooth T (s,c) with base (s,c) ∈ E consists of (s,c) and all pairs
(s,c′) such that c′ ≻s c. For k ∈ Z+ and c ∈ C, let E+

c (k) be the set of pairs (s,c) ∈ E such that
c prefers at least qc + k − 1 students over s. For (s,c) ∈ E+

c (k), a shaft with base (s,c) where
school c has expansion k is denoted by Sk(s,c) and consists of (s,c) and all pairs (s′,c) such that
s′ ≻c s. For (s,c) ∈ E+

c (k), a comb with base (s,c) where school c has expansion k is denoted by

112



Ck(s,c) and consists of the union between Sk(s,c) and exactly qc + k teeth of (s′,c) ∈ Sk(s,c),
including T (s,c). Finally, Cc(k) is the family of combs for school c ∈ C with expansion k.

Given these definitions, we can model the capacity expansion problem using the following
mixed-integer programming formulation:

min
x,y

∑
(s,c)∈E

rs,c · xs,c (4.3.6a)

s.t.
∑

(s,c′)∈C

xs,c′ ≥ qc + k · yk
c , ∀ c ∈ C , ∀ k = 0, . . . , B ,∀ C ∈ Cc(k), (4.3.6b)

(x,y) ∈ Pext
Z = Pext ∩

(
{0,1}E × {0,1}C×{0,...,B}

)
, (4.3.6c)

where

Pext =
{

(x,y) ∈ [0,1]E × [0,1]C×{0,...,B} :
∑

c:(s,c)∈E
xs,c = 1 ∀ s ∈ S,

∑
s:(s,c)∈E

xs,c ≤ qc +
B∑

k=0
k · yk

c ∀ c ∈ C, ∀ k = 0, . . . , B ,

∑
c∈C

B∑
k=0

k · yk
c ≤ B,

B∑
k=0

yk
c = 1 ∀ c ∈ C

}
.

In Formulation (4.3.6), the decision vector y is simply the pseudopolynomial description (or unary
expansion) of t, i.e., tc = ∑B

k=0 k · yk
c . Indeed, note that there is a one-to-one correspondence

between the elements of Pext
Z and PZ. Hence, the novelty of Formulation (4.3.6) is on the

modeling of stability through the generalized comb constraints (4.3.6b). If B = 0, we obtain
the comb formulation of Baïou and Balinski [26]. Otherwise, when B > 0, for each school we
need to activate these constraints only for the capacity expansion assigned to it. For instance, if
school c ∈ C has capacity qc + k, we must only enforce the constraints for the combs in Cc(k).
This motivates the use of the binary vector y. In Theorem 4.3.5, we show the correctness of our
new formulation. The proof can be found in Appendix 4.7.3.

Theorem 4.3.5. Formulation (4.3.6), even with the integrality of x relaxed, is a valid formulation
of Formulation (4.3.2).

Let Pext
x,Z be Pext

Z with the binary requirement for x relaxed. Motivated by Theorem 4.3.5, we
define the formulation BB-cap as Formulation (4.3.6) with Pext

Z replaced by Pext
x,Z:

min
x,y

∑
(s,c)∈E

rs,c · xs,c (4.3.7a)

s.t.
∑

(s,c′)∈C

xs,c′ ≥ qc + k · yk
c , ∀ c ∈ C , ∀ k = 0, . . . , B ,∀ C ∈ Cc(k), (4.3.7b)

(x,y) ∈ Pext
x,Z = Pext ∩

(
[0,1]E × {0,1}C×{0,...,B}

)
. (4.3.7c)
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One limitation of BB-cap is that it is non-compact. For each school c ∈ C and k = 0, . . . ,B,
the family of combs Cc(k) can have exponential size, and there is a pseudopolynomial (in the
size of the input) number of these families. Hence, to cope with the size of BB-cap, we present
a cutting-plane algorithm and its associated (polynomial-time) separation method.9 Algorithm 2
describes our cutting-plane approach. The idea is to start by solving a mixed-integer problem (in
Steps 2 and 3) that only considers a subset of the comb constraints (selected in Step 1), i.e., a
relaxation of BB-cap. If the solution to this problem is not stable, then our separation algorithm
(in Step 4) allows us to find the most violated comb constraints for each school c, namely

C⋆ ∈ argmin
{ ∑

(s,c′)∈C

x⋆
s,c′ : C ∈ Cc(t⋆

c) where t⋆
c =

B∑
k=0

k · yk⋆
c

}
, (4.3.8)

and these constraints are added to the main problem, which is solved again. This process repeats
until no additional comb constraint is added to the main problem, guaranteeing that the solution
is stable and optimal (due to Theorem 4.3.5). Note that since the set of stability constraints
is finite, Algorithm 2 terminates in a finite number of steps. In the next section, we detail our
polynomial time algorithm to solve the separation problem (4.3.8).

Algorithm 2 Cutting-plane method
Input: An instance Γ = ⟨S,C, ≻, q⟩ and a budget B.
Output: The student-optimal stable matching x⋆ and the optimal vector of additional seats t⋆.

1: J ← subset of comb constraints (4.3.7b)
2: MP ← build the main program min

(x,y)∈Pext
x,Z∩J

∑
(s,c)∈E

rs,c · xs,c

3: (x⋆,y⋆)← solve MP
4: J ′ ← subset of constraints (4.3.7b) violated by (x⋆,y⋆) ▷ Apply Algorithm 3
5: if J ′ ̸= ∅ then
6: MP ← add to MP the constraints J ′ and go to Step 3
7: return x⋆ and t⋆ where t⋆

c ←
∑B

k=0 k · yk⋆

c for every c ∈ C

4.3.3.1. Separation Algorithm. A separation algorithm is a method that, given a point and
a polyhedron, produces a valid inequality that is violated (if any) by that point. This is our goal
in Step 4 of Algorithm 2. In fact, given an infeasible (x⋆, y⋆) to BB-cap, we aim to find the
constraint (4.3.7b) that is the most violated by it for each school.

Since capacities may change, we cannot use the cutting plane procedure by Baïou and Balin-
ski [26]: This is why we propose Algorithm 2. However, we could use their separation algorithm,
since in this step the capacities are fixed (recall Problem (4.3.8)).10 Nevertheless, with the aim to

9Note that in BB-cap, the decision vector y is binary. Therefore, our separation method works for x fractional
and y binary. Nonetheless, the fact that the separation runs in polynomial-time does not guarantee that the
cutting-plane method runs in polynomial time.
10The separation by Baïou and Balinski [26] runs in O(m · n2), where m is the number of schools and n is the
number of students, and is valid to separate fractional solutions when capacities are fixed (i.e., y⋆ is binary).
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speed up computations, we introduce a novel separation algorithm that relies on new structural
results that guarantee to find the most violated comb constraint.

To formalize these results, we introduce additional notation. Given an optimal solution
(x⋆, y⋆) obtained from Step 3 in Algorithm 2, let t⋆ be the projection of y⋆ in the original
problem, i.e., t⋆

c = ∑B
k=0 k · yk⋆

c for all c ∈ C. In addition, let µ⋆(t⋆) be the student-optimal
stable matching for instance Γt⋆ .11 To simplify the notation, we assume that y⋆ (and thus t⋆) is
fixed, and we use µ⋆ to represent µ⋆(t⋆). We say that a school c ∈ C is fully-subscribed in x⋆ if∑

s:(s,c)∈E x⋆
s,c = qc + t⋆

c ; otherwise, we say that school c is under-subscribed. Moreover, given a
school c, let

exceeding(c) = {s ∈ S : x⋆
s,c > 0 and µ⋆

s,c = 0}

be the set of exceeding students, i.e., the set of students assigned (possibly fractionally) to school
c in x⋆ that are not assigned to c in µ⋆, and let

block(x⋆) =

c ∈ C :
∑

s:(s,c)∈E
x⋆

s,c =
∑

s:(s,c)∈E
µ⋆

s,c = qc + t⋆
c , exceeding(c) ̸= ∅


be the set of fully-subscribed schools in both x⋆ and µ⋆ that have a non-empty set of exceeding
students. Finally, a student-school pair (s,c) is called a fractional blocking pair for x⋆ if the
following two conditions hold: (i) there is a school c′ such that x⋆

s,c′ > 0 and c ≻s c′, and (ii) c

is not fully-subscribed or there is a student s′ such that x⋆
s′,c > 0 and s ≻c s′.12

In our first structural result, formalized in Lemma 4.3.6, we show that we can restrict the
search for the most violated combs to the schools that are fully-subscribed, reducing significantly
the number of schools that we need to check at every iteration of the separation algorithm. All
the proofs in this subsection can be found in Appendix 4.7.3.2.

Lemma 4.3.6. Let (x⋆,y⋆) be the optimal solution obtained at Step 3 in some iteration of
Algorithm 2, and suppose that there is a fractional blocking pair (s,c). Then, c is fully-subscribed
in x⋆.

In Appendix 4.8.4, we present an example that shows that the set of fully-subscribed schools
is not necessarily the same for x⋆ and µ⋆, and, thus, illustrates the potential of using µ⋆ to also
guide the search for violated comb constraints.

Lemma 4.3.7. Let (x⋆,y⋆) be the optimal solution obtained at Step 3 in some iteration of
Algorithm 2 and µ⋆ the student-optimal stable matching in instance Γt⋆ , where t⋆ is the allocation

11We can obtain this by applying DA on the expanded instance Γt⋆ .
12Kesten and Ünver [91] introduce the notion of ex-ante justified envy, which, in the case of a fully-subscribed
school, is equivalent to our definition of fractional stability. Kesten and Ünver [91] define ex-ante justified envy
of student s towards student s′ if both x⋆

s,c′ , x⋆
s′,c > 0 with c ≻s c′ and s ≻c s′. Note that the definition of

fractional blocking pair implies that x⋆
s,c < 1. Moreover, a blocking pair is also a fractional blocking pair.
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defined by y⋆. If J contains all the comb constraints of every fully-subscribed school in µ⋆, then
both matchings x⋆ and µ⋆ coincide.

As we mentioned earlier, the family of comb constraints is exponentially large, so we need to
further reduce the scope of our search. Our next structural result, formalized in Lemma 4.3.8,
accomplishes this by restricting the search of violated combs only among those schools that are
in block(x⋆).

Lemma 4.3.8. If x⋆ has a fractional blocking pair, then there is at least one student-school
pair (s,c), where c is in block(x⋆), such that: (i) c prefers s over the least preferred student in
exceeding(c), and (ii) the value of the tooth T (s,c) is smaller than 1, i.e., ∑

(s,c′)∈T (s,c)
x⋆

s,c′ < 1.

Algorithm 3 Separation method
Input: An instance Γ = ⟨S,C, ≻, q + t⋆⟩ and a (fractional) matching x⋆.
Output: A non-empty set J ′ of constraints (4.3.7b) violated by (x⋆,y⋆), if it exists.

1: J ′ ← ∅ ▷ (empty set of constraints)
2: for c ∈ block(x⋆) do
3: T ← ∅ ▷ (empty list of teeths)
4: s← least preferred student in c such that x∗

s,c > 0 ▷ (last student in excess)
5: ≻c [s]← preference list of c until s
6: for s′ ∈≻c [s] do ▷ (in order following ≻c)
7: vs′,c ←

∑
c′≻c x∗

s′,c′ ▷ (value of T −(s′,c))
8: if |T | < qc + t⋆

c then
9: T ← {s′} ▷ (s′ enters T in descending order according to vs,c)

10: if |T | = qc + t⋆
c then

11: C ← {(s,c) : s ∈ T } ∪ ⋃
s∈T T −(s,c) ▷ (initial comb, made of shaft and selected

teeths)
12: else
13: s⋆ ← first student in T ▷ (student s ∈ T such that T −(s,c) has the highest value)
14: if vs′,c < vs⋆,c then
15: C ′ ← St⋆

c (s′,c) ∪ ⋃
s∈T \{s⋆} T −(s,c) ∪ T −(s′,c)

16: if ∑
(s,h)∈C′ x∗

s,h <
∑

(s,h)∈C x∗
s,h then

17: T \ {s⋆} ▷ (s⋆ is removed from T )
18: T ← {s′} ▷ (s′ enters T in descending order according to vs,c)
19: C ← C ′

20: if ∑
(s,h)∈C x∗

s,h < qc + t⋆
c then

21: J ′ ← J ′ ∪ {C}
22: return J ′

In Algorithm 3, we present our separation method. The algorithm begins by initializing the
set of violated combs J ′ equal to ∅. Based on Lemmas 4.3.6, 4.3.7 and 4.3.8, we focus only
on the schools in block(x⋆). Therefore, at Step 2, we iterate to find the most violated (i.e.,
least valued) comb of every school in block(x⋆). To do so, we first initialize as empty the list
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of teeth T (Step 3). The list T will be updated to store the set of students whose teeth are
part of the least valued comb. At Step 4, we look for the least preferred exceeding student s in
school c ∈block(x⋆), and, finally, we introduce the preference list of school c that terminates with
student s. As previously mentioned, the key idea is to recursively update T so that it contains
the students whose teeth form the least valued comb. To accomplish this, we iterate over the
set of students following the preference list ≻c, going up to s.13 At Step 6 we select the student
s′ and we find the value vs′,c of T −(s′,c) := T (s′,c) \ {(s′,c)} in x⋆ (Step 7). If the list T does
not contain a sufficient number of students to build a comb (i.e., qc + t⋆

c), we introduce s′ in
the list T while respecting a descending ordering of the elements of T according to vs,c (step 8).
Moreover, if we have obtained a set T of cardinality equal to the capacity of school c then, we
create the first comb C at Step 11. Once we have obtained the first comb, at Step 13 we define
s⋆ as the student in T with the highest value T −(s⋆,c) At Step 14, we compare the value of
T −(s′,c) with the value of T −(s⋆,c). If the former value is smaller, then it is worth pursuing the
search for a comb valued less than C with a tooth based in (s′,c); we build such a comb C ′ at
Step 15. If the value of C ′ is smaller than the value of C, then we update T to include s′ at the
place of s⋆ (Step 17 and Step 18) and we update C as C ′ (Step 19). At the end of the inner for
cycle, we obtain the least valued comb C of school c. If C has a value in x⋆ smaller than qc + tc,
then the stability condition is violated for school c. Hence, at Step 21, we add the violated comb
C to the set J ′. In Appendix 4.8.5, we exemplify the application of Algorithm 3.

Note that Algorithm 3 resembles the one introduced in [26]. However, there are two key
differences: (i) we use fractional and integer stable matchings as proxies to reduce the search
space to block(x⋆), and (ii) we begin the search of the most violated comb at the head of the
preference list of the school rather than at the tail (as in [26]), which guarantees that our method
finds the most violated comb constraint.14

Theorem 4.3.9. Algorithm 3 finds the combs solving Formulation (4.3.8) for every school in
block(x⋆) in O(m · n · q̄) time, where n is the number of students, m is the number of schools
and q̄ = max

c∈block(x⋆)
{qc + t⋆

c}. Moreover, Algorithm 3 returns a set of combs such that the
corresponding constraints (4.3.7b) are violated by (x⋆,y⋆), if x⋆ is not stable for Γt⋆ .

Remark 4.3.10. Algorithm 3 can be easily adapted to separate the comb constraints with any
linear objective function. Indeed, it is sufficient to remove Steps 4 and 5, and iterate over the
whole preference list ≻c at Step 6.

13Note that, since school c is fully-subscribed, we know that there are qc + t⋆
c students s′ ⪰c s assigned to c, and

thus the comb constraint is always satisfied.
14In Appendix 4.8.6 we show that the separation algorithm by [26] may not find the most violated constraint.
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4.3.4. Properties of the Mechanism

Now that we have devised a framework to solve the problem, we briefly discuss some properties
of the mechanism15 and the underlying optimal solutions. We provide a thorough discussion of
these properties in Appendix 4.7.4

Cardinality. In the standard setting with no capacity decisions, we know from the Rural Hospital
theorem [134] that the set of students assigned in any stable matching is the same. This result no
longer holds when we add capacity decisions, as the cardinality of the matching largely depends
on the penalty values rs,∅ of unassigned students. In Appendix 4.7.4.1, we show that if these
values are sufficiently small, then there exists an optimal solution of Formulation 4.3.2 whose
allocation of capacities yields a student-optimal stable matching of minimum cardinality among
all the possible student-optimal stable matchings (Theorem 4.7.3).16 In contrast, if the penalty
values are sufficiently high, we show that the optimal solution of the problem corresponds to a
student-optimal stable matching of maximum cardinality (Theorem 4.7.4).

Note that this result is not surprising in hindsight, as the objective function in Formula-
tion (4.3.2) is the weighted sum of the students’ preference of assignment and the value of
unassigned students. Nevertheless, Theorems 4.7.3 and 4.7.4 are valuable from a policy stand-
point, as they provide policymakers a tool to obtain an entire spectrum of stable assignments
controlled by capacity planning where two extreme solutions stand out: (i) the solution that
maximizes the number of assigned students (access), and (ii) the solution that allocates the extra
seats to benefit the preferences of the students in the initial assignment (improvement). The
former is a common goal in school choice settings, where the clearinghouse must guarantee a
spot to each student that applies to the system, while the latter is common in college admissions,
where merit plays a more critical role. Independent of the goal (or any intermediate point), our
framework allows policymakers to achieve it by simply modifying the models’ parameters resulting
in a solution approach that is flexible and easy to communicate and interpret.

Incentives. A property that is commonly sought after in any mechanism is strategy-proofness,
i.e., that students have no incentive to misreport their preferences in order to improve their
allocation. Roth [131] and Dubins and Freedman [56] show that the student-proposing version
of DA is strategy-proof for students in the case with no capacity decisions. Unfortunately, this
is not the case when students know that there exists a budget of extra seats to be allocated,
as we formally show in Appendix 4.7.4.2 (see Proposition 4.7.5). Nevertheless, we also show
that our mechanism is strategy-proof in the large [24], which guarantees that it is approximately

15Mechanism in this case stands for the optimal method that solves Problem (4.3.2).
16Interestingly, the minimum cardinality student-optimal stable matching is not necessarily the most preferred by
the set of students initially assigned when B = 0 (see Example 4.8.2 in Appendix 4.8).
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optimal for students to report their true preferences for any i.i.d. distribution of students’ reports.
As Azevedo and Budish [24] argue, this is a more appropriate notion of manipulability in large
markets, as students are generally unaware of other students’ realized preferences and priorities.
Thus, the lack of strategy-proofness is not a major concern in our setting.17

Monotonicity. Another commonly desired property in any mechanism is student-monotonicity,
which guarantees that any improvement in students’ priorities (in school choice) or scores (in
college admissions) cannot harm their assignment. [31] and [27] show that this property holds
for the student-proposing Deferred Acceptance algorithm in the standard setting. However, in
Appendix 4.7.4.3, we show that students can be harmed when adding extra seats if their rank
improves in a given school. Nevertheless, we can adapt our framework by incorporating additional
constraints that would rule out non-monotone allocations if this is a concern for policymakers.

4.4. Evaluation of Methods on Random Instances
In this section, we empirically evaluate the performance of our methods to assess which

formulations and heuristics work better. To perform this analysis, we assume that students have
complete preference lists and that the sum of schools’ capacities equals the number of students.
Since the number of variables and constraints increases with |E|, considering complete preference
lists increases the dimension of the problem and, thus, makes it harder to solve, providing a
“worst-case scenario” in terms of computing time.18

Experimental Setup. We consider a fixed number of students |S| = 1000, and we create
100 instances for each combination of the following parameters: |C| ∈ {5, 10, 15, 20}, B ∈
{0, 1, 5, 10, 20, 30}. Specifically, for each instance, we generate preference lists and capacities at
random, ensuring that the total number of seats is equal to the number of students and that no
school has zero capacity.19 Our methods were coded in Python 3.7.3, with optimization problems
solved by Gurobi 9.1.2 restricted to a single CPU thread and one hour time limit. The scripts
were run on an Intel(R) Xeon(R) Gold 6226 CPU on 2.70GHz, running Linux 7.9.20

Benchmarks. We compare the performance of the following exact methods:21

(1) Quad, which corresponds to the quadratic programming model in Formulation (4.3.3).

17Note that Dur and Van der Linden [58] independently show that their mechanism is also manipulable, and
in the special case of schools having the same preference list, they provide a mechanism that is efficient and
strategy-proof.
18We ran experiments considering shorter preference lists and including correlations between students’ preferences.
The key insights remain unchanged.
19Specifically, we generate preferences uniformly at random, and we generate capacities by first allocating one
seat to each school, and then we divide the remaining |S| − |C| seats using a multinomial distribution.
20The code and the synthetic instances are available upon request.
21We also implemented the linearized versions of MaxHrt-cap and MinCut-cap, and the generalization to
B > 0 of models available in the literature (e.g., MinBinCut [157]). We do not report the results of these
comparisons because they are dominated by MaxHrt-cap and MinCut-cap.
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(2) Agg-Lin, which corresponds to the aggregated linearization in Formulation (4.3.4).
(3) Cpm, which corresponds to our cutting-plane method described in Algorithm 2. Appen-

dix 4.11 discusses Step 1 of Algorithm 2.
(4) MaxHrt-cap, which corresponds to the formulation introduced in [53] and adapted

to the capacity expansion setting. We provide the detailed description of this model in
Formulation (4.10.1) (Appendix 4.10).

(5) MinCut-cap, which corresponds to the formulation introduced in [157] and adapted
to the capacity expansion setting. We provide the detailed description of this model in
Formulation (4.10.17) (Appendix 4.10).

For each simulated instance, we also solve the problem with two natural heuristics, called Greedy
and LPH, described in Appendix 4.12.22 To our knowledge, when B = 0 (classic School Choice
problem), MaxHrt-cap and MinCut-cap are the state-of-the-art mathematical program-
ming formulations for general linear objectives, and thus the most relevant benchmarks for our
methods.23

Results. In Table 2, we report the results obtained for the exact methods considered.
First, we observe that Quad and Agg-Lin take significantly more time to solve the problem

compared to the other exact methods. Moreover, Quad and Agg-Lin were not able to find the
optimal solution within one hour in 38.04% and 16.58% of the instances, respectively. This result
suggests that our aggregated linearization helps towards having a better formulation, but still is
not enough to solve the problem effectively. Second, we observe that, in general, execution times
increase with the number of schools and decrease with the budget (after reaching a spike). Finally,
and more interestingly, we find that our cutting-plane method (Cpm) consistently outperforms
the other benchmarks when the number of schools increases, while remaining competitive for
|C| = 5. These results suggest that our cutting-plane method is the most effective approach to
solve larger instances of the problem.

To analyze the performance of our heuristics, in Figures 1 and 2 we report the average
optimality gap and run time obtained for each heuristic, including 95% confidence intervals.24

On the one hand, from Figure 1, we observe that both heuristics find near-optimal solutions,
as their optimality gap is always below 3%. Second, we observe that Greedy performs better in
terms of optimality gap for low values of B. However, for larger budgets, we observe that LPH
outperforms Greedy both in running time and optimality gap. On the other hand, from Figure 2

22We emphasize that in Chapter 3, we show that the problem cannot be approximated within a multiplicative factor
of O

(
n( 1

6 −ε)
)

for every ε > 0, unless P=NP; therefore, these heuristics do not achieve meaningful worst-case
approximation guarantees.
23Note that, when B = 0, using the Deferred Acceptance algorithm is the fastest of all methods. However, when
B > 0, we focus on mathematical programming formulations because the DA algorithm cannot be adapted to
find the optimal capacity allocation in polynomial time, otherwise P = NP.
24Optimality gap corresponds to (HEUR − OPT)/OPT, where HEUR is the objective value obtained by the
heuristic and OPT is the optimal value obtained with our exact formulation.
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Table 2. Comparison of formulations with respect to solving time.

|S| = 1000
|C| B Quad Agg-Lin MinCut-cap MaxHrt-cap Cpm
5 0 14.15 20.1 1.43 0.47 0.74

(4.99)[100] (5.04)[100] (0.48)[100] (0.08)[100] (0.58)[100]

5 1 21.63 54.86 1.78 1.35 0.74
(9.31)[100] (43.15)[100] (0.53)[100] (0.62)[100] (0.49)[100]

5 5 12.58 34.08 2.59 2.67 1.55
(3.09)[100] (13.22)[100] (1.1)[100] (2.68)[100] (1.15)[100]

5 10 13.23 36.74 2.7 3.11 2.6
(5.42)[100] (18.55)[100] (1.34)[100] (3.83)[100] (2.3)[100]

5 20 10.36 29.83 1.76 1.27 2.02
(3.08)[100] (12.0)[100] (0.93)[100] (1.69)[100] (2.2)[100]

5 30 8.91 26.66 1.44 0.76 2.09
(2.93)[100] (13.11)[100] (0.89)[100] (1.31)[100] (2.62)[100]

10 0 815.66 266.99 8.47 2.65 1.11
(649.47)[88] (165.54)[99] (0.97)[100] (1.25)[100] (0.09)[100]

10 1 742.09 511.71 10.9 27.6 1.89
(697.51)[95] (258.3)[100] (2.64)[100] (15.9)[100] (0.71)[100]

10 5 377.12 635.38 19.98 64.21 8.14
(193.11)[100] (381.81)[100] (8.04)[100] (63.01)[100] (7.41)[100]

10 10 344.9 525.25 18.89 128.86 13.17
(211.02)[100] (358.91)[100] (6.56)[100] (201.44)[100] (10.67)[100]

10 20 440.22 303.36 15.41 63.77 6.88
(336.24)[100] (248.32)[100] (7.3)[100] (124.25)[100] (7.1)[100]

10 30 636.55 203.8 12.01 31.28 6.33
(619.27)[100] (155.09)[100] (6.68)[100] (75.07)[100] (7.19)[100]

|C| B Quad Agg-Lin MinCut-cap MaxHrt-cap Cpm
15 0 2534.88 729.08 18.34 7.2 1.69

(638.83)[21] (552.15)[86] (1.85)[100] (4.8)[100] (0.1)[100]

15 1 1858.86 1704.91 43.94 98.07 3.27
(808.95)[30] (681.47)[93] (23.44)[98] (70.53)[98] (1.17)[97]

15 5 2063.47 1967.68 101.54 785.1 20.58
(776.7)[82] (864.77)[74] (54.77)[100] (850.25)[88] (18.31)[100]

15 10 2221.03 1610.95 107.96 1076.85 31.77
(812.56)[63] (874.57)[73] (70.0)[99] (932.88)[80] (32.8)[99]

15 20 2253.21 1126.02 59.82 584.74 20.93
(858.44)[62] (780.03)[96] (36.34)[100] (624.36)[98] (26.79)[100]

15 30 1853.41 762.15 51.73 395.75 23.79
(943.74)[40] (691.37)[95] (36.76)[100] (635.21)[99] (32.39)[100]

20 0 - 2283.18 36.03 11.96 2.45
-[0] (917.36)[23] (3.73)[100] (6.03)[100] (0.16)[100]

20 1 - 2639.4 112.0 185.32 4.61
-[0] (640.23)[43] (82.99)[100] (113.22)[100] (1.47)[100]

20 5 - 2289.12 352.56 1646.98 34.31
-[0] (860.57)[25] (174.11)[100] (983.62)[49] (37.58)[100]

20 10 - 1720.38 324.23 1690.8 47.29
-[0] (844.15)[42] (193.93)[100] (1063.63)[49] (50.86)[100]

20 20 2783.57 1316.49 200.46 1219.15 71.89
(371.67)[2] (817.33)[61] (162.72)[100] (1020.87)[68] (153.08)[100]

20 30 2105.92 1050.01 94.04 727.63 50.31
(264.53)[4] (712.37)[92] (78.16)[100] (844.63)[96] (186.93)[100]

Note: The time is in seconds, with 1h time limit. We report (in square brackets) the number of instances (out
of 100) solved by each method within one hour. The average time (in seconds) and standard deviation (in

parenthesis) of the computing times are computed considering these instances.

we observe that the execution time of Greedy is increasing in the budget, while LPH is almost
invariant and takes almost no time.
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(a) |C| = 5 (b) |C| = 10

(c) |C| = 15 (d) |C| = 20

Fig. 1. Optimality Gap for the Heuristics

Overall, our simulation results suggest that Cpm is the best approach to solve larger instances
of the problem and that LPH is the best heuristic for even larger instances. This heuristic is very
relevant in terms of practical use as it is simple to describe, extremely efficient, and capable of
achieving good quality solutions.

4.5. Application to School Choice in Chile
To illustrate the potential benefits of capacity expansion, we adapt our framework to the

Chilean school choice system. This system, introduced in 2016 in the southernmost region of the
country (Magallanes), was fully implemented in 2020 and serves close to half a million students
and more than eight thousand schools each year.

The Chilean school choice system is a good application for our methodology for multiple
reasons. First, the system uses a variant of the student-proposing Deferred Acceptance algorithm,
which incorporates priorities and overlapping quotas. Our framework can include all the features
of the Chilean system, including the block application, the dynamic siblings’ priority, etc. We
refer to Correa et al. [50] for a detailed description of the Chilean school choice system and
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(a) |C| = 5 (b) |C| = 10

(c) |C| = 15 (d) |C| = 20

Fig. 2. Running Time for the Heuristics

the algorithm used to perform the allocation. Second, the Ministry of Education manages all
schools that participate in the system and thus can ask them to modify their vacancies within a
reasonable range. Finally, the system is currently being redesigned, and we are collaborating with
the authorities to include some of the ideas introduced in our work.

4.5.1. Data and Simulation Setting

We consider data from the admission process in 2018.25 Specifically, we focus on the south-
ernmost region of the country as it is the region where all policy changes are first evaluated.
Moreover, we restrict the analysis to Pre-K for two reasons: (i) it is the level with the highest
number of applicants, as it is the first entry level in the system, and (ii) to speed up the compu-
tation. In Table 3, we report summary statistics about the instance, and we compare it with the
values nationwide for the same year.26

25All the data is publicly available and can be downloaded from this website.
26In our simulations, we consider a total of 1395 students and 49 schools. The difference in the number of
students is due to students that are not from the Magallanes region but only apply to schools in that region.
The difference in the number of schools is due to some schools offering morning and afternoon seats, whose
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Table 3. Details of the instance of the Chilean dataset.

Region Students Schools Applications
Magallanes Pre-K 1389 43 4483
Overall Pre-K 84626 3465 256120
Overall (all levels) 274990 6421 874565

We perform our simulations varying the budget B ∈ {0,1, . . . , 30} and the penalty for unas-
signed students rs,∅. For the latter, we consider two cases: (i) rs,∅ = |C| + 1 for all s ∈ S, and
(ii) rs,∅ = |≻s| + 1 for all s ∈ S. Notice that the two values for rs,∅ cover two extreme cases.
When rs,∅ = |C| + 1 (or any large number), the model will use the extra vacancies to ensure
that a student that was previously unassigned gets assigned. In contrast, when rs,∅ = |≻s| + 1,
the model will (most likely) assign the extra seat to the school that leads to the largest chain
of improvements. Hence, from a practical standpoint, which penalty to use is a policy-relevant
decision that must balance access and improvement.

4.5.2. Results

We report our main simulation results in Figure 3. We produced the plots by solving Agg-
Lin, given its simplicity and running times below 1 hour for each instance. For each budget,
we plot the number of students who (1) enter the system, i.e., who are not initially assigned
(with B = 0), but are assigned to one of their preferences when capacities are expanded; (2)
improve, i.e., students who are initially assigned to some preference but improve their preference of
assignment when capacities are expanded; and (3) overall, which is the total number of students
who benefit relative to the baseline and is equal to the sum of the number of students who enter
and improve.27

First, we confirm that all initially assigned students (with B = 0) get a school at least as
preferred when we expand capacities. Second, increasing capacities with a high penalty primarily
benefits initially unassigned students. In contrast, students who improve their assignments are
the ones who most benefit when the penalty is low. Third, we observe that the total number
of students who benefit (in green) is considerably larger than the number of additional seats
(dashed). The reason is that an extra seat can lead to a chain of improvements that ends
either on a student that enters the system or in a school that is under-demanded. Finally, we
observe that the total number of students who gain from the additional seats is not strictly
increasing in the budget. Indeed, the number may decrease if the extra seat allows a student
to dramatically enhance their assignment (e.g., moving from being unassigned to being assigned

admissions are separate. Hence, 43 is the total number of unique schools, while 49 is the number of “schools”
with independent admissions processes.
27For all simulations, we consider a MipGap tolerance of 0.0% and we solve them using the Agg-Lin formulation.
By construction, the results are the same if we use any of the other exact methods discussed in Section 4.4.
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to their top preference). This effect on the objective could be larger than that of a chain of
minor improvements involving several students, and thus the number of students who benefit
may decrease.

(a) rs,∅ = |C|+ 1 (b) rs,∅ = |≻s|+ 1

Fig. 3. Effect for Students

In Figure 4, we analyze the impact of expanding capacities on the number of schools with
increased capacity and the maximum number of additional seats per school. We observe that
the number of schools with extra seats remains relatively stable as we increase the budget. In
addition, we observe that the maximum number of additional seats in a given school increases
with the budget. This is because students’ preferences are highly correlated (i.e., students have
similar preferences) and, thus, a few over-demanded schools concentrate the extra seats added
to the system. Finally, the latter effect is more prominent when the penalty is lower.

(a) rs,∅ = |C|+ 1 (b) rs,∅ = |≻s|+ 1

Fig. 4. Effect for Schools
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4.5.2.1. Practical Implementation. A valid concern from policymakers is that our approach
would assign most extra seats to a few over-demanded schools if preferences are highly correlated
and the penalty of having unassigned students is small. As a result, our solution would not be
feasible in practice. To rule out this concern, we adapt our model and include the new set of
constraints

tc ≤ bc, ∀ c ∈ C,

where bc is the maximum number of additional seats that can be allocated to school c.
In Figure 5, we compare the gap between the optimal (unconstrained) solution and the values

obtained when considering bc ∈ {2,5,10} for all c ∈ C and rs,∅ = |≻s|+ 1 for all s ∈ S. First, we
observe that the gap increases for bc ∈ {2,5} as we increase the budget, while it does not change
for bc = 10. This result suggests that the problem has many optimal solutions and, thus, we
can select one that does not over-expand some schools. Second, we observe that the overall gap
is relatively low (max of 0.8%), which suggests that we can include the practical limitations for
schools without major losses of performance. In Appendix 4.13, we discuss some model extensions
to incorporate other relevant aspects from a practical standpoint.

Fig. 5. Effect of Bounds on Expansion

4.5.2.2. Heuristics. For each value of the budget, in Figure 6, we report the gap obtained
relative to the optimal policy.28 Consistent with the results in Section 4.4, Greedy performs better
than LPH for low values of the budget, but this reverses as the budget increases. Hence, we
conclude that LPH can be an effective approach for large instances and large values of B. This
could be particularly relevant when applying our framework to other more populated regions, such
as the Metropolitan region, where close to 250,000 students apply each year.

28We consider the problem with penalty rs,∅ = |≻s|+ 1. The results are similar if we consider rs,∅ = |C|+ 1
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Fig. 6. Heuristics: Optimality Gap

4.5.3. Further Insights: An Application to the Chilean College Admission
System

Since early 2023, we have collaborated with the Ministry of Education of Chile (MINEDUC)
and the “Sistema Único de Admisión” (SUA; the Chilean college board) in several applications
of our framework. Specifically, we have been working on two main projects: (i) evaluating which
schools should be overcrowded in order to downsize under-demanded schools, and (ii) evaluating
minimum requirements regarding seats to offer to under-represented groups. The former problem
can be addressed by adapting what we discussed in the previous section, so we focus on the latter.

The centralized part of the Chilean college admissions system includes an affirmative action
policy (called “Programa PACE”), which consists of reserved seats for under-represented students
(over 10,000 students each year) and special funds for the institutions where these students enroll.
To be eligible to participate in this affirmative action policy (and potentially receive these funds),
education institutions must commit to reserving a specified number of seats following specific
guidelines defined by MINEDUC, e.g., a minimum number of reserved seats per program and a
minimum total number of reserved seats across all their programs. Conditional on satisfying these
requirements, universities can independently decide how many seats to reserve. Many universities
meet these requirements by fulfilling the minimum requirement (of one reserved seat) per program
and then devoting the additional required seats to under-demanded programs. As a result, only
18% of the reserved seats were used in the admissions process of 2022-2023.

To tackle this issue, we have been collaborating with MINEDUC to evaluate the effects of
potential changes to these requirements. Since we do not know what the objective function of
each university is (and, thus, how they allocate these reserved seats), MINEDUC asked us to
evaluate different combinations of requirements (e.g., a minimum number of seats for the most
popular programs, changes to the way to define the total number of reserved seats to offer, etc.)
and objective functions (e.g., minimize the preferences of assignment, maximize the utilization of
the reserved seats, maximize the cutoffs, maximize the average scores in Math and Verbal of the
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admitted students, among others) to obtain a wide range of possible outcomes that could result
from each set of requirements.

For each of these combinations (of requirements, objectives, and other specific parameters),
we adapted the framework described in this work and performed simulations considering the data
from the admissions process of 2022-2023. Using current data to evaluate the implementation of
these requirements in future years is without major loss, since students’ preferences are relatively
stable over time and, thus, the reported preferences of one year are the best predictor of those
in the coming years. Finally, note that having a methodology to solve the problem relatively fast
was instrumental in performing this analysis, as it required hundreds of simulations in a fairly
large instance.

This application showcases the flexibility of our methodology to answer different questions
and stresses the need to solve these problems in a reasonable time.

4.6. Conclusions
We study how centralized clearinghouses can jointly decide the allocation of additional seats

and find a stable matching. To accomplish this, we introduce the stable matching problem under
capacity planning and devise integer programming formulations for it. We show that all natural
formulations involve quadratic constraints and provide linearizations for them. Then, we develop
a non-compact mixed-integer linear program (BB-cap) and prove that it correctly models our
problem. Building on this key result, we introduce a cutting-plane algorithm to solve BB-cap. At
the core of our cutting-plane algorithm is a new separation method, which finds the most violated
comb constraint for each school in polynomial time and, when the objective is the student-optimal
stable matching, prunes the set of schools for which violated comb constraints may exist. Finally,
we show and discuss several properties of our mechanism, including how the cardinality of the
allocation varies with the penalty (and how this can be used to prioritize different goals), some
incentive properties and also the mechanism’s monotonicity.

Through an extensive numerical study, we find that our cutting-plane algorithm significantly
outperforms all the state-of-the-art formulations in the literature. In addition, we find that one
of the two heuristics that we propose (LPH) consistently finds near-optimal solutions in few
seconds. These results suggest that our cutting-plane method and the LPH heuristic can be
practical approaches depending on the size of the problem. Moreover, we adapted our framework
to solve an instance of the Chilean school choice problem. Our results show that each additional
seat can benefit multiple students. However, depending on how we penalize having unassigned
students in the objective, the set of students who benefit from the extra seats changes. Indeed,
we have theoretically shown that if we consider a large penalty, the optimal solution prioritizes
access, i.e., assigning students that were previously unassigned. In contrast, if that penalty is low,
we proved that the optimal solution prioritizes improvement, i.e., benefiting students’ preference
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of assignment as much as possible. Hence, which penalty to consider is a policy-relevant decision
that depends on the objective of the clearinghouse.

Overall, our results showcase how to extend the classic stable matching problem to incorporate
capacity decisions and how to solve the problem effectively. Our methodology is flexible to ac-
commodate different settings, such as capacity reductions, allocations of tuition waivers, quotas,
secured enrollment, and arbitrary constraints on the extra seats per school (see Appendix 4.13
for more details). Moreover, we can adapt our framework to other stable matching settings, such
as the allocation of budgets to accommodate refugees, the assignment of scholarships or tuition
waivers in college admissions, and the rationing of scarce medical resources. All of these are
exciting new areas of research in which our results can be used.

Appendix

4.7. Missing Proofs and Other Results
4.7.1. Proof of Lemma 4.3.1.

We begin by observing that Baïou and Balinski [26] show that the feasible region of max-
hrt corresponds to the set of stable matchings. Therefore, in the following proof, we only
need to focus on proving the equivalence between the student-optimal matching and a matching
minimizing the sum of the students’ rank over the set of stable matchings.

If: In a student-optimal stable matching, each student is assigned to the best school they
could achieve in any stable matching [67]. Thus, each unassigned student is unassigned in
every stable matching. Moreover, by the Rural Hospital Theorem [131, 132, 68, 134], the
same students are assigned in all stable matchings. Suppose that µ is the student-optimal stable
matching but its corresponding binary encoding is not optimal to max-hrt. Let x′ be an optimal
solution max-hrt and let µ′ = {(s,c) ∈ E : x′

s,c = 1} be the associated matching. Hence, the
following inequality holds: ∑

(s,c)∈µ rs,c >
∑

(s,c)∈µ′ rs,c. This means that there is at least one
student s′ who prefers the stable matching µ′ to the stable matching µ, which is a contradiction.
Only if: Let µ be a (stable) matching corresponding to an optimal solution of max-hrt. As
before, by the Rural Hospital Theorem, we observe that the set of students unassigned in µ is the
same set of students unassigned in every stable matching. Hence, the set of assigned students in
µ, is the same set for every stable matching. Let us suppose, again by contradiction, that µ is not
a student-optimal stable matching. Let µ′ be a student-optimal stable matching. Denote by S ′

the set of students whose assignment to schools differs in the two matchings. By construction,
the objective value of max-hrt for S \ S ′ is the same in both µ and µ′:∑

(s,c)∈µ: s∈S\S′

rs,c =
∑

(s,c)∈µ′: s∈S\S′

rs,c.
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Furthermore, S ′ is the disjoint union of the following two sets of students: S ′
1, the set of assigned

students who prefer their school in µ′, and S ′
2, the set of assigned students who prefer their school

in µ. By Gale and Shapley [67], µ′ is a stable matching in which all students are assigned the
best school they could achieve in any stable matching. Therefore, the set S ′

2 is empty. Hence,
S ′ = S ′

1, and by hypothesis ∑
(s,c)∈µ: s∈S′

1

rs,c <
∑

(s,c)∈µ′: s∈S′
1

rs,c.

However, from the definition of S ′
1, rs,µ′(s) ≤ rs,µ(s) for every s ∈ S ′

1, which leads to a contradic-
tion.

4.7.2. Proof of Theorem 4.3.4

The constraints that do not involve the linearization terms αs,c or βs,c,c′ are trivially satisfied by
a feasible solution in both formulations. Therefore, we will restrict our analysis to the remaining
constraints. Let (x,t,α) be a feasible solution of the relaxed aggregated linearized program. It
is easy to verify that by defining β̄s,c,c′ = αs,c · xs,c′ for every s ∈ S, c ∈ C and c′ ⪰s c, the
constraints of the relaxed non-aggregated linearization are all met.

4.7.3. Missing Proofs in Section 4.3.3

4.7.3.1. Proof of Theorem 4.3.5. Before proving Theorem 4.3.5, we show a couple of lemmata.
In the following lemma, we show that if a capacity variable is set to 1, then all the comb constraints
determined by supersets are satisfied.

Lemma 4.7.1. Let x̄ ∈ {0,1}E be a stable matching for some vector of extra seats ȳ ∈
{0,1}C×{0,...,B}. If ȳk

c = 1 then all constraints (4.3.6b) for the combs in Cc(k + α) with α > 0
are satisfied.

Proof. When ȳk
c = 1, the right-hand-side of constraints (4.3.6b) for combs in Cc(k + α) is qc.

Thus, we need to show that the left-hand-side of these constraints is guaranteed to be greater
than or equal to qc. By the definition of comb, for all C ∈ Cc(k + α) there is Ĉ ∈ Cc(k) such
that Ĉ ⊆ C. Hence, ∑

(s,c′)∈C

x̄s,c′ ≥
∑

(s,c′)∈Ĉ

x̄s,c′ ≥ qc + k ≥ qc,

where the second inequality follows from the hypothesis that x̄ is stable for ȳ.
□

We now prove the analogous of the previous lemma, but for comb constraints defined by
subsets.
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Lemma 4.7.2. Let x̄ ∈ {0,1}E be a stable matching for some vector of extra seats ȳ ∈
{0,1}C×{0,...,B}. If ȳk

c = 1, then all constraints (4.3.6b) for combs in Cc(k − α) with α < k

are satisfied.

Proof. When ȳk
c = 1, the right-hand-side of constraint (4.3.6b) for each comb C ∈ Cc(k− α)

is qc. Thus, we need to show that the left-hand-side of this constraint is guaranteed to be greater
than or equal to qc. Let (s,c) be the base of the comb C.

First, we show the result when there is Ĉ ∈ Cc(k) such that C ⊆ Ĉ. By the definition of
generalized comb (see Subsection 4.3.3), C contains the shaft Sk−α(s,c). Consequently, since Ĉ

contains C, if (s′,c) is the base of Ĉ, then Sk−α(s,c) ⊆ Sk(s′,c).
Let Tsr for r = 1, . . . , qc + k be the set of teeth for comb Ĉ which (obviously) contains the

teeth of comb C. Therefore,

Ĉ =
qc+k⋃
r=1

Tsr ∪ Sk(s′,c).

Let T ⊆ {1, . . . , qc + k} be the set of indices corresponding to the teeth of C; thence, |T | =
qc + k − α. There are two cases:

• If there is r ∈ T such that ∑
(sr,j)∈Tsr

x̄sr,j = 0,

then student sr is matched with a school that they prefer less than school c. Under the
stable matching x̄, this is only possible if school c is matched with exactly qc +k students
that school c prefers more than student sr:∑

(i,c)∈Sk−α(s,c)
x̄i,c = qc + k.

Since Sk−α(s,c) ⊆ C, then ∑
(i,j)∈C

x̄i,j ≥ qc + k ≥ qc.

• If ∑
(sr,j)∈Tsr

x̄sr,j = 1 for all r ∈ T , then∑
r∈T

∑
(sr,j)∈Tsr

x̄sr,j = |T | = qc + k − α ≥ qc.

Since ⋃
r∈T Tsr ⊆ C the results holds.

Second, we prove the lemma when no comb of Cc(k) contains C. Then, such situation can
only occur if it is not possible to find a shaft Sk(s′,c) where s′ = s or s ≻c s′. This means
that the number of seats qc + k is greater than the number of students that the school ranks.
Consequently, the set Cc(k) is empty and there is nothing to prove.

□

We now prove our main result in this section.
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Proof. Proof of Theorem 4.3.5. The preceding lemmas lead us to conclude the statement when
the integrality of x is imposed: for each fixed y, only the comb constraints (4.3.6b) associated
to the overall capacity of each school are enforced; the remaining are redundant. When the
integrality of x is relaxed, the statement follows directly from Baïou and Balinski [26]: when
y is fixed, the comb inequalities for the associated capacities provide the convex hull of stable
matchings for Γt where tc = ∑B

k=0 yk
c for all c ∈ C. Thus, as long as the number of seats for each

school is integer, constraints (4.3.6b) contain the comb constraints from Baïou and Balinski [26]
for Γt.

□

4.7.3.2. Missing Proofs in Section 4.3.3.1.

Proof. Proof of Lemma 4.3.6. We prove that c is fully-subscribed in x⋆ by contradiction. Let
(s,c) be a fractional blocking pair for x⋆, where c is an under-subscribed school in x⋆. Let s be
such that x⋆

s,c′ > 0 and c ≻s c′. So s prefers c over c′. Moreover, c has some available capacity
which would allow to increase x⋆

s,c by decreasing x⋆
s,c′ . Clearly, such modification would decrease

the objective value of the main program. This contradicts the optimality of x⋆. □

Proof. Proof of Lemma 4.3.7. Let C ′ be the set of fully-subscribed schools in µ⋆ and S ′ be the
set of students matched to the schools C ′ in µ⋆. We denote by C ′′ and S ′′ the complementary
sets of C ′ and S ′ respectively. Let us analyze the matches in S ′. First, note that for every student
s ∈ S ′ we have ∑

c⪰µ⋆(s) x⋆
s,c = 1, i.e., student s must be matched in x⋆ to some school that she

prefers at least as much as µ⋆(s) ∈ C ′. This is because J contains all the comb constraints of
the schools in C ′. Second, every student s ∈ S ′ must be matched in x⋆ to a school that is in
C ′, i.e., ∑

c∈C′ x⋆
s,c = 1. This is because, otherwise, s would create a blocking pair in µ⋆ with a

under-subscribed school in C ′′ due to our first argument. As a consequence of the second point,
we cannot have x⋆

s,c > 0 for a student s ∈ S ′′ and a school c ∈ C ′. This is because we proved
above that all students in S ′ are matched in C ′ and schools in C ′ are fully-subscribed. All the
above imply that we can consider S ′ and C ′ as a sub-instance of the problem and the integrality
of x⋆ is given by the comb constraints. Because of optimality, µ⋆ and x⋆ must coincide in S ′ and
C ′. Let us now analyze the assignments of the students in S ′′. First, note that the integrality of
x⋆ in the sub-instance defined by S ′′ and C ′′ is given by the integrality of the matching polytope
without stability constraints. Now, we will show that the assignments coincide in both µ⋆ and
x⋆. By contradiction, assume that the students in S ′′ are matched differently in x⋆ and in µ⋆.
First, if there is a student s ∈ S ′′ that prefers a school c over µ⋆(s), then (s, c) would be a
blocking pair in µ⋆ because c is under-subscribed in µ⋆, which is not possible. Therefore, every
student s ∈ S ′′ weakly prefers µ⋆(s) over their assignment in x⋆, and, by the hypothesis in our
contradiction argument, there is at least one student s that strictly prefers µ⋆(s) over their match
in x⋆ (i.e., the two schools are different). Given that S ′′ and C ′′ form a separate sub-instance, we
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can rearrange the matching x⋆ of every student in S ′′ by matching the student to her matching
in µ⋆. This new matching would have a lower objective than the one of x⋆, which would violate
its optimality. Therefore, both µ⋆ and x⋆ also coincide in S ′′ and C ′′.

□

Proof. Proof of Lemma 4.3.8. Suppose that the statement is false. Then, for every school
c in block(x⋆), and for every student s more preferred by c to the least preferred student in
exceeding(c), s has the tooth evaluated to 1. By Lemma 4.3.6, we know that the fractional
blocking pairs must all involve a school that is fully-subscribed in x⋆. Among these schools, it is
sufficient to focus our attention on the schools c ∈ C such that there exists s ∈ S with x⋆

s,c > 0
and student s is not matched to c in µ⋆. Therefore, for these schools the set of exceeding students
is non-empty.

We now observe that, by hypothesis, every school c in block(x⋆), has the property that all
the teeth are evaluated to 1 until the least preferred exceeding student. This implies that all
the combs in Cc(t⋆

c) are not violated since such combs are composed by qc + t⋆
c teeth. Hence,

x⋆ is a stable matching with a better objective for the students than the student-optimal stable
matching.

□

Proof. Proof of Theorem 4.3.9.
We start this proof by showing that for each school c ∈ block(x⋆), Steps 3-19 of Algorithm 3

provide the comb solving Formulation (4.3.8) in O(n · q̄).
First, let us observe that the search for the least valued comb in Cc(t⋆

c) terminates in a finite
number of steps because the preference list ≻c is finite. At the beginning of every cycle in Step 6,
we select a student s′. By the end of the (qc + t⋆

c)-th iteration, the comb C is the smallest valued
comb in Cc(t⋆

c) with a base preferred at least as s′ (i.e., the student at the base of the comb
is ranked equal or less than s′). If we prove this statement, we prove that the algorithm solves
Formulation (4.3.8) for c.

Base: At the (qc + t⋆
c)-th iteration, we create comb C at Step 11. The base of comb C is

the student s′ that is ranked qc + t⋆
c by c, and the bases of the other qc + t⋆

c − 1 teeth are the
students preferred more than s′. Since this comb is the only possible that we can create with a
base preferred more or equal than s′, it is also the least valued comb possible.

Inductive step: The inductive hypothesis states that at the end of iteration l ≥ qc + t⋆
c , after

selecting student s′, the selected comb C is the comb with the lowest value among all combs
with a base student preferred equal to or more than s′. We want to prove that at the end of step
l + 1, the algorithm selects the comb with lowest value among all combs with a base student
ranked less or equal than (l + 1). Let s′ be the student ranked l + 1 and let s⋆ be the student
in T with the highest valued T −. We need to verify if adding T −(s′,c) to T may produce a
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comb of smaller value than the one recorded. If T −(s′,c) ≥ T −(s⋆,c), then adding s′ in T would
produce a comb with equal or higher value. Otherwise, T −(s′,c) < T −(s⋆,c), and adding ′s in T
may provide a better comb. If T −(s′,c) < T −(s⋆,c), then we create a new comb C ′ with base in
(s′,c) and teeth in T \ {s⋆}. Any other choice of teeth is sub-optimal for the base (s′,c) since
they are the least valued qc + t⋆

c teeth among those in the first l + 1 positions. If the new comb
C ′ has value smaller than the comb C, then we have found the best comb among those with
base ranked at most l + 1.

If s′ is the least preferred exceeding student, then all the combs with base s′ are valued at
least qc + t⋆

c since c is a fully subscribed school. Hence, any comb that may be selected with such
a base would not be violated, and we can terminate our search.

To establish the correctness of Algorithm 3, it remains to show that it determines the violated
combs (if any) that eliminate the input solution. First, the algorithm terminates in a finite number
of steps because |block(x⋆)| ≤ |C| = m and | ≻c | ≤ |S| = n. Second, by Lemma 4.3.8 we
only need to focus our attention on the fully-subscribed schools in block(x⋆). Thus, Algorithm 3
returns the most violated comb constraint for those schools.
Running-time analysis. The procedure for finding s takes at most n operations. The inner for
loop (Step 6) takes at most n rounds and the most expensive computation within it is placing
s′ in T to maintain the list T is descending order according to the values vs,c. Note that this
task can be performed by comparing s′ with at most each element in T , i.e., in a number of
operations equal to |T | = qc + t⋆

c . Hence, the number of elementary operations for finding the
most violated comb of school c is at most O(n · (qc + t⋆

c)). To conclude, we observe that, in
Algorithm 3, the computation of block(x⋆) at Step 2 can take at most O(m · n) time, i.e., the
running time of the Deferred Acceptance algorithm. Moreover, as proved above, finding the least
valued comb of a school in block(x⋆) can take at most O(n · (qc + t⋆

c)) time. Hence, Algorithm 3
can take at most O(m · n · q̄) time, where q̄ = max

c∈block(x⋆)
{qc + t⋆

c}.
□

4.7.4. Properties of the Mechanism

4.7.4.1. Cardinality. A crucial aspect of the solutions of Formulation 4.3.2 is that they largely
depend on the value of rs,∅, i.e., the penalty for having unassigned students. We emphasize that
rs,∅ does not indicate the position of ∅ in the ranking of s over schools, but a penalty value
for being unassigned. One could expect that for larger penalty values, the optimal solution will
prioritize access by matching initially unassigned students and increasing the cardinality of the
match. In contrast, for smaller penalty values, the focus will be on the improvement of previously
assigned students by prioritizing chains of improvement that result in multiple students obtaining a
better assignment than the initial matching with no extra capacities. In Theorems 4.7.3 and 4.7.4
we formalize this intuition.
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Theorem 4.7.3. There is a sufficiently small and finite rs,∅ for all s ∈ S such that the optimal
solution of Formulation (4.3.2) returns a minimum cardinality student-optimal stable matching.

Proof. Let µ0 be the student-optimal assignment when there is no budget, and let M(µ) =
{s ∈ S : µ(s) ∈ C} be the set of students assigned in match µ. In addition, let rs,∅ = r∅ =
|S| · (1− ξ), where ξ = maxs∈S {|≻s|} is the maximum length of a list of preferences among all
students.

Let µ∗ be the optimal allocation implied by the optimal solution of the problem (x∗, t∗)
considering a budget B and the aforementioned penalties. To find a contradiction, suppose that
there exists an alternative match µ′ that uses the entire budget B and that satisfies |M(µ∗)| >
|M(µ′)|. Without loss of generality, suppose that |M(µ∗)| = |M(µ′)| + 1. We know that
M(µ0) ⊆ M(µ∗) and M(µ0) ⊆ M(µ′), since no student who was initially assigned can result
unassigned when capacities are expanded. Then, the difference in objective function between µ∗
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and µ′ can be written as:

∆ =
∑

(s,c)∈µ∗

rs,c −
∑

(s,c)∈µ′

rs,c =
∑

s∈(M(µ∗)∩M(µ′))
rs,µ∗(s) − rs,µ′(s)

+
∑

s∈M(µ∗)\M(µ′)
rs,µ∗(s) − rs,∅ +

∑
s∈M(µ′)\M(µ∗)

rs,∅ − rs,µ′(s)

+
∑

s∈S\(M(µ∗)∪M(µ′))
rs,∅ − rs,∅

=
∑

s∈(M(µ∗)∩M(µ′))
rs,µ∗(s) − rs,µ′(s)

+
∑

s∈M(µ∗)\M(µ′)
rs,µ∗(s) − rs,∅ +

∑
s∈M(µ′)\M(µ∗)

rs,∅ − rs,µ′(s)

≥
∑

s∈(M(µ∗)∩M(µ′))
(1− |≻|s)

+
∑

s∈M(µ∗)\M(µ′)
1− rs,∅ +

∑
s∈M(µ′)\M(µ∗)

rs,∅ − |≻s|

≥ |(M(µ∗) ∩M(µ′))| · (1− ξ)

+ |M(µ∗) \M(µ′)| · (1− r∅) + |M(µ′) \M(µ∗)| · (r∅ − ξ)

= |(M(µ∗) ∩M(µ′))| · (1− ξ) + (|M(µ′) \M(µ∗)|+ 1) · (1− r∅)

+ |M(µ′) \M(µ∗)| · (r∅ − ξ)

≥ |(M(µ∗) ∩M(µ′))| · (1− ξ) + (|M(µ′) \M(µ∗)|) · (1− ξ)− r∅

= (|M(µ∗) ∩M(µ′)|+ |M(µ′) \M(µ∗)|) · (1− ξ)− r∅

= (|M(µ∗) ∩M(µ′)|+ |M(µ′) \M(µ∗)|) · (1− ξ)− |S| · (1− ξ)

= (|M(µ∗) ∩M(µ′)|+ |M(µ′) \M(µ∗)| − |S|) · (1− ξ)

≥ 0,

(4.7.1)

since both terms are negative as |M(µ∗) ∩M(µ′)| + |M(µ′) \M(µ∗)| ≤ |S| and 1 ≤ ξ.
Hence, we obtain that ∆ ≥ 0, which implies that the objective function evaluated at µ′ is strictly
less than the objective function evaluated at µ∗, which contradicts the optimality of µ∗. Finally,
note that this derivation holds for any set of penalties such that rs,∅ ≤ r∅, and it also holds for the
case when the clearinghouse can decide not to allocate all the budget (as long as this condition
applies for both µ∗ and µ′), so we conclude. □

Note that the penalty used in the proof is negative. A negative penalty can be interpreted
as the policymaker willingness to allocate extra capacities to improve the assignment of students
already in the system, for example, when merit scholarships are awarded to students who already
have a secured position.
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By the stability constraints, every student that is initially assigned (i.e., when B = 0) should
be weakly better off when capacities are expanded. Hence, one may think that the minimum
cardinality student-optimal stable matching is the one that is optimal for this subset of students.
However, as we show in the Example 4.8.2 in Appendix 4.8, this is not the case.

On the other hand, in Theorem 4.7.4, we show that if the penalty values are sufficiently large,
then the optimal solution will prioritize access by obtaining a student-optimal stable matching of
maximum cardinality.

Theorem 4.7.4. There is a sufficiently large and finite rs,∅ for all s ∈ S such that the optimal
solution of Formulation (4.3.2) returns a maximum cardinality student-optimal stable-matching.

Proof. Let µ∗ be the stable-matching corresponding to the solution (x∗, t∗). To find a con-
tradiction, suppose there exists another stable matching µ′ that has a higher cardinality, i.e.,
|s ∈ S : µ′(s) = ∅| < |s ∈ S : µ∗(s) = ∅|; we also assume that rs,∅ = r̄ for all s ∈ S, where
r̄ >

∑
s∈S |≻s|. By optimality of (x∗, t∗), we know that∑

s∈S
rs,µ∗(s) <

∑
s∈S

rs,µ′(s).

On the other hand, we know that∑
s∈S

rs,µ∗(s) −
∑
s∈S

rs,µ′(s) =
∑

s∈S:µ∗(s)∈C
rs,µ∗(s) −

∑
s∈S:µ′(s)∈C

rs,µ′(s) +
∑

s∈S:µ∗(s)=∅
rs,∅ −

∑
s∈S:µ′(s)=∅

rs,∅

=
∑

s∈S:µ∗(s)∈C
rs,µ∗(s) −

∑
s∈S:µ′(s)∈C

rs,µ′(s)

+ r̄ · [|s ∈ S : µ∗(s) = ∅| − |s ∈ S : µ′(s) = ∅|]

> −
∑
s∈S
|≻s|+ r̄ · [|s ∈ S : µ∗(s) = ∅| − |s ∈ S : µ′(s) = ∅|]

> 0.

(4.7.2)
The first equality follows from rs,∅ = r̄ for all s ∈ S. The first inequality follows from the fact
that, given a student s that is assigned, the maximum improvement is to move from their last
preference, |≻s|, to their top preference, and therefore rs,µ∗(s) − rsµ′(s) > 1 − |≻s| > − |≻s|.
Then, we have that ∑

s∈S:µ∗(s)∈C rs,µ∗(s) −
∑

s∈S:µ′(s)∈C rs,µ′(s) ≥ −
∑

s∈S |≻s|. Finally, the last
inequality follows from the fact that

|s ∈ S : µ∗(s) = ∅| − |s ∈ S : µ′(s) = ∅| ≥ 1

and that r̄ is arbitrarily large. As a result, we obtain that∑
s∈S

rs,µ∗(s) −
∑
s∈S

rs,µ′(s) > 0,

which contradicts the optimality of (x∗, t∗). □
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4.7.4.2. Incentives. It is direct from [144] that our mechanism is not strategy-proof for
schools. In Proposition 4.7.5, we show that if the budget is positive and students know about it,
then the mechanism that assigns students to schools and jointly allocates extra capacities is not
strategy-proof for students.

Proposition 4.7.5. The mechanism is not strategy-proof for students.

Proof. Consider an instance with five students and five schools, each with capacity one. In
addition, suppose that B = 1 and that the preferences and priorities are:

s1 : c1 ≻ . . . c1 : s1 ≻ s3 ≻ . . .

s2 : c2 ≻ . . . c2 : s2 ≻ s3 ≻ . . .

s3 : c1 ≻ c2 ≻ c3 ≻ . . . c3 : s3 ≻ . . .

s′
1 : c′

1 ≻ . . . c′
1 : s′

1 ≻ s′
2 ≻ . . .

s′
2 : c′

1 ≻ c′
2 ≻ . . . c′

2 : s′
2 ≻ . . .

where the “. . .”represent an arbitrary completion of the preferences. If agents are truthful, the
optimal allocation is to assign the extra seat to school c1, which will admit student s3; thus, the
final matching would be {(s1, c1), (s2, c2), (s3, c1), (s′

1, c′
1), (s′

2, c′
2)}. If student s′

2 misreports her
preferences by reporting

s′
2 : c′

1 ≻ c1 ≻ c2 ≻ c′
2 ≻ c3,

the extra seat would be allocated to c′
1 and s′

2 would get her favorite school. □

Despite this negative result, in the next proposition we show that our mechanism is strategy-
proof in the large.

Proposition 4.7.6. The mechanism is strategy-proof in the large.

Proof. In an extension of their Theorem 1, [24] show that a sufficient condition for a semi-
anonymous mechanism to be strategy-proof in the large is envy-freeness but for ties (EF-TB),
which requires that no student envies another student with a strictly worse lottery number. Hence,
it is enough to show that our mechanism satisfies these two properties, i.e., semi-anonymity and
EF-TB.
Semi-anonimity. As defined in [24], a mechanism is semi-anonymous if the set of students can
be partitioned in a set of groups G. Within each group g ∈ G, each student belongs to a type t;
we denote by Tg the finite set of types that limits the actions of the students to the space Ag. In
our school choice setting, the groups are the set of students belonging to the same priority group
(e.g., students with siblings, students with parents working at the school, etc.), the types are
defined by the students’ preferences ≻s, and the actions are the lists of preferences that students
can submit. Then, two students s and s′ that belong to the same group g and share the same
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type t ∈ Tg have exactly the same preferences and priorities and differ only their specific position
in the schools’ lists, which can be captured through their lottery numbers ls, ls′ ∈ [0,1].29 Note
that G is finite because the number of priority groups is finite in most applications.30 Moreover,
since the number of schools is finite, we know that the number of possible preference lists ≻s is
finite and, thus, the number of types within each group is finite. Hence, we conclude that our
mechanism is semi-anonymous.
EF-TB. Given a market with n students, a direct mechanism is a function Φn : T n → ∆(C∪{∅})n

that receives a vector of types T (the application list of each student) and returns a (potentially
randomized) feasible allocation. In addition, let ut(c̃) be the utility that a student with type
t ∈ Tg, g ∈ G gets from the lottery over assignments c̃ ∈ ∆(C ∪{∅}) (note that, by assumption,
two students belonging to the same type have exactly the same preferences and, thus, get the
same utility in each school c ∈ C ∪ {∅}). Then, a semi-anonymous mechanism is envy-free but
for tie-breaking if for each n there exists a function xn : (T × [0,1])n → ∆(C ∪ {∅})n such that

Φn(t) =
∫

l∈[0,1]n
xn(t,l), dl

and, for all i,j,n,t and l with li ≥ lj, and if ti and tj belong to the same type, then

uti
[xn

i (t,l)] ≥ uti

[
xn

j (t,l)
]

.

In words, to show that our mechanism is EF-TB we need to show that whenever two students
belong to the same group and one of them has a higher lottery, then the assignment of the latter
cannot be worse that that of the former. This follows directly from the stability constraints, since
for any budget allocation, we know that the resulting assignment must be stable. As a result,
for any budget allocation, we know that given two students s,s′ that belong to the same type,
the resulting assignment µ satisfies µ(s) ≻s µ(s′) if s ≻c s′ for all c ∈ C. Then, it is direct
that uts [xn

s (t,l)] ≥ uts [xn
s′(t,l)], for whatever function x that captures our mechanism. Thus, we

conclude that our mechanism is semi-anonymous and EF-TB, and therefore it is strategy-proof
in the large. □

4.7.4.3. Monotonicity. Suppose there are n students and n schools, each with capacity qc = 1,
and a total budget B = 1. For each student sk with k ∈ {5, . . . , n}, we assume that their
preferences are given by ck−1 ≻sk

ck ≻sk
∅, and we assume that the priorities at school ck are

s4 ≻ck
. . . ≻ck

sn ≻ck
∅ for all k ≥ 4. In addition, we assume that the preferences and priorities

of the other agents are:

s1 : c1 ≻ c3 ≻ ∅ c1 : s1 ≻ s3 ≻ ∅

29In other words, any ordering of students ≻c in a given school c can be captured by s ≻c s′ ⇔ ls > ls′ for any
two students s,s′ belonging to the same group g ∈ G. Note that, for simplicity, we are implicitly assuming that
ties within a group are broken using a single tie-breaker; this argument can be extended to multiple tie-breaking.
30In the Chilean school choice setting, there are 5 priority groups: Students with siblings, students with working
parents at the school, students who are former students, regular students and disadvantaged students.
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s2 : c2 ≻ c3 ≻ ∅ c2 : s2 ≻ s3 ≻ ∅

s3 : c1 ≻ c2 ≻ ∅ c3 : s1 ≻ s2 ≻ ∅

s4 : c4 ≻ ∅

It is easy to see that (when B = 0) µ0 = {(s1, c1), (s2, c2), (s3, ∅), (s4, c4), . . . , (sn, cn)} . In
addition, if the penalty for having student s3 is sufficiently high (specifically, rs3,∅ > n− 5), then
the optimal budget allocation is to add one seat to school c1, so that the resulting match is
µ1 = {(s1, c1), (s2, c2), (s3, c1), (s4, c4), . . . , (sn, cn)}. As a result, student s3 is now assigned to
their top preference.

Next, suppose that student s3 improves her lottery/score in school c2, so that
now c2’s priorities are c2 : s3 ≻ s2 ≻ ∅. As a result, the initial assignment is
µ00 = {(s1, c1), (s2, c3), (s3, c2), (s4, c4), . . . , (sn, cn)}. In addition, note that (omitted
allocations are clearly dominated):

• If tc1 = 1, then both s2 and s3 improve their assignment, and thus the change in the
objective function is −2 (both students move from their second to their top preference).
• If tc2 = 1, then only s2 improves their assignment, and thus the change in the objective

function is −1.
• If tc4 = 1, then a chain of improvements going from student s5 to sn starts, with each

of these students getting assigned to their top preference. As a result, the change in the
objective function is −(n− 4).

As a result, if n > 6, it would be optimal to assign the extra seat to school c4, and the resulting
assignment would be µ11 = {(s1, c1), (s2, c3), (s3, c2), (s4, c4), (s5, c4), . . . , (sn, cn−1)}. Note that
student s3 is worse off in µ11 than in µ1, since she is now assigned to her second preference
compared to the top one when her priority in school c2 was lower.

4.7.5. Complexity

In Chapter 3, we analyze the complexity of Problem (4.3.2) and we prove that it is NP-hard
even when the preference lists of the students are complete, i.e., when students apply to all the
schools. In this context, a possible approach is to design an approximation algorithm for this
problem. Note that for a fixed t ∈ ZC

+, the value

f(t) := min
µ

 ∑
(s,c)∈µ

rs,c : µ is a stable matching in instance Γt

 (4.7.4)

can be computed in polynomial time by using the DA algorithm on instance Γt. Therefore, one
might be tempted to show that f is a lattice submodular function due to the existence of known
approximation algorithms (see, e.g., [142]). As we show in the following result, f is neither
lattice submodular nor supermodular.
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Proposition 4.7.7. The function f(t) defined in Expression (4.7.4) is neither lattice submodular
nor supermodular.

Proof. Let us recall the definition of lattice submodularity. A function f : ZC
+ → R+ is said

to be lattice submodular if f(t ∨ t′) + f(t ∧ t′) ≤ f(t) + f(t′) for any t,t′ ∈ ZC
+, where

t∨ t := max{t,t′} and t∧ t′ := min{t,t′} component-wise. Function f is lattice supermodular
if, and only if, −f is lattice submodular. Now, let us recall Expression (4.7.4)

f(t) = min

 ∑
(s,c)∈µ

rs,c : µ is a stable matching in instance Γt

 .

First, we show that f is not lattice submodular. Consider a set S = {s1, s2, s3, s4} of students
and a set C = {c1, c2, c3, c4, c5} of schools. The preference lists are as follows

s1 : c1 ≻ c2 ≻ . . . c1 : s1 ≻ s2 ≻ . . .

s2 : c2 ≻ c3 ≻ . . . c2 : s2 ≻ s3 ≻ . . .

s3 : c2 ≻ c5 ≻ c4 ≻ . . . c3 : s2 ≻ s1 ≻ . . .

s4 : c5 ≻ . . . c4 : s3 ≻ s4 ≻ . . .

c5 : s4 ≻ s3 ≻ . . .

School c1 has capacity 0 and the other schools have capacity 1. We choose the following two
allocations: t = (1,0,0,0,0) and t′ = (0,1,0,0,0). Therefore, we obtain

f(t ∨ t′) + f(t ∧ t′) = f(1,1,0,0,0) + f(0,0,0,0,0) = 4 > 3 = 2 + 1 = f(t) + f(t′).

Second, we show that f is not lattice supermodular. Consider a set S = {s1, s2, s3} of
students and a set C = {c1, c2, c3, c4, c5} of schools. The preference lists are as follows

s1 : c1 ≻ c3 ≻ . . . ch : s1 ≻ s2 ≻ . . . for all h ∈ {1,2,3}.

s2 : c2 ≻ c4 ≻ . . .

s3 : c3 ≻ c4 ≻ c5 ≻ . . .

s4 : c5 ≻ . . .

Schools c1 and c2 have capacity 0 and the other schools have capacity 1. We choose the
following two allocations: t = (1,0,0,0,0) and t′ = (0,1,0,0,0). Therefore, we obtain

f(t ∨ t′) + f(t ∧ t′) = f(1,1,0,0,0) + f(0,0,0,0,0) = 4 < 5 = 3 + 2 = f(t) + f(t′).

□
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4.8. Missing Examples
4.8.1. Multiple Optimal Solutions

Consider an instance with three schools C = {c1, c2, c3}, four students S = {s1, s2, s3, s4},
and capacities qc1 = qc2 = 1, qc3 = 2. In addition, consider preferences given by:

c : s1 ≻ s2 ≻ s3 ≻ s4, ∀c ∈ C

s1 : c1 ≻ c2 ≻ c3

s2 : c2 ≻ c1 ≻ c3

s3 : c1 ≻ c3 ≻ c2

s4 : c2 ≻ c3 ≻ c1.

Notice that, with no capacity expansion, the student-optimal stable matching is

µ∗ = {(s1, c1), (s2, c2), (s3, c3), (s4, c3)} ,

which leads to a value of 6. On the other hand, if we have a budget B = 1, note that we can
allocate it to either c1 and obtain the matching µ′ = {(s1, c1), (s2, c2), (s3, c1), (s4, c3)}, or to
school c2 and obtain the matching µ′′ = {(s1, c1), (s2, c2), (s3, c3), (s4, c2)}. In both cases, one
student moves from their second choice to their top choice, and thus in both cases the sum of
preferences of assignment is 5. Hence, we conclude that this problem has more than one optimal
solution.

4.8.2. Minimum cardinality matching

Suppose there are n+2 students and n schools, each with capacity qc = 1, and a total budget
B = 2. For each student sk with k ∈ {4, . . . , n}, we assume that their preferences are given by
ck ≻sk

∅ ≻sk
. . ., and we assume that the priorities at school ck are sk ≻ck

∅ ≻ck
. . ., where the

≻ . . . represent an arbitrary ordering of the missing agents after ∅. In addition, we assume that
the preferences and priorities of the other agents are:

s1 : c1 ≻ ∅ ≻ . . . c1 : s1 ≻ s′
2 ≻ s2 ≻ ∅ ≻ . . .

s2 : c1 ≻ c3 ≻ c2 ≻ ∅ ≻ . . . c2 : s2 ≻ s′
2 ≻ s′

3 ≻ ∅ ≻ . . .

s3 : c3 ≻ c2 ≻ ∅ ≻ . . . c3 : s3 ≻ s′
3 ≻ s2 ≻ ∅ ≻ . . .

s′
2 : cn ≻ . . . ≻ c4 ≻ c1 ≻ ∅ ≻ . . .

s′
3 : c3 ≻ ∅ ≻ . . . .

In this case, the only option is to allocate the budget between schools c1 and c3, since allocating
the budget to the other schools (c2 or ck for k ≥ 4) would have no effect. If B = 0, then the
student-optimal stable matching is µ0 = {(s1,c1), (s2,c2), (s3,c3), (s′

2,∅), (s′
3,∅)} ∪ {(sk,ck)}k≥4.
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Note that the optimal allocation for the set of students initially matched (when B = 0) is to
allocate the two extra seats to school c1.

• If tc1 = 2, then both students s2 and s′
2 get assigned to c1, and thus the change among

initially assigned students is −2 (as student s2 moves from their third to their top pref-
erence).
• If tc1 = tc3 = 1, then student s′

2 and s2 get assigned to c1 and c3, respectively. Hence,
the change among initially assigned students is −1 (as student s2 moves from their third
to their second preference).
• If tc3 = 2, then s2 and s′

3 get assigned to c3. Hence, the change among initially assigned
students is −1 (as student s2 moves from their third to their second preference).

Finally, if rs,∅ = 0 for every student s, it is easy to see that an optimal solution is to assign both
additional seats to school c3, as the change in the objective function would be 0; in the other
two cases analysed above (i.e., at least one extra capacity is allocated to c1), the change in the
objective function would be at least n−2 as student s′

2 would be assigned to c1 (c1 is the n−2-th
preferred school of student s′

2). Hence, the optimal assignment is not the one that benefits the
most those students initially assigned in µ0. Note that another optimal solution is to simply not
assign any of the additional seats, but this case is not interesting as it would lead to no gains
from the budget.

4.8.3. Inverse Inclusion in Theorem 4.3.4

The following example shows that the inverse inclusion of the statement in Theorem 4.3.4
does not necessarily hold. Let us consider the set of students S = {s1,s2,s3,s4,s5, s6} and the
set of schools C = {c1, c2, c3, c4}. The rankings of the students are as follows:

s1 : c3 ≻ c4 ≻ c1 ≻ c2 c1 : s1 ≻ s3 ≻ s2 ≻ s5 ≻ s6 ≻ s4

s2 : c2 ≻ c1 ≻ c4 ≻ c3 c2 : s4 ≻ s1 ≻ s6 ≻ s5 ≻ s2 ≻ s3

s3 : c2 ≻ c1 ≻ c4 ≻ c3 c3 : s2 ≻ s1 ≻ s5 ≻ s6 ≻ s3 ≻ s4

s4 : c1 ≻ c3 ≻ c2 ≻ c4 c4 : s6 ≻ s3 ≻ s2 ≻ s4 ≻ s5 ≻ s1

s5 : c3 ≻ c1 ≻ c4 ≻ c2

s6 : c1 ≻ c3 ≻ c4 ≻ c2.

Finally, schools’ capacities are qc1 = qc2 = 1 and qc3 = qc4 = 2. Given that we have to
allocate optimally one extra position, the optimal solution for the relaxed aggregated linearization
is xs1c3 = 1, xs2c2 = 1, xs3c1 = 0.16, xs3c2 = 0.66, xs4c1 = 0.5, xs4c2 = 0.16, xs4c3 = 0.16, xs5c3 =
0.83, xs6c1 = 0.5, xs6c4 = 0.33 and t = (0.16, 0.83, 0, 0) with the cost equal to 1.33.
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On the other hand, the optimal solution for the relaxed non-aggregated linearization is xs1c3 =
0.83, xs1c4 = 0.08, xs2c2 = 1, xs3c1 = 0.11, xs3c2 = 0.66, xs3c4 = 0.02, xs4c1 = 0.66, xs4c3 =
0.16, xs5c3 = 1, xs6c1 = 0.52, xs6c4 = 0.30 and t = (0.30, 0.66, 0, 0.03) with cost equal to 1.03.

4.8.4. Difference in the Sets of Fully-subscribed Schools

Let S = {s1, s2, s3} be the set of students and let C = {c1, c2, c3, c4} be set of schools;
every school has capacity 1. The preferences of the students are s1 : c1 ≻ c4 ≻ c3 ≻ c2;
s2 : c1 ≻ c2 ≻ c3 ≻ c4; s3 : c4 ≻ c1 ≻ c2 ≻ c3, and the preferences of the schools are
c1 : s2 ≻ s1 ≻ s3; c2 : s2 ≻ s1 ≻ s3; c3 : s1 ≻ s2 ≻ s3; c4 : s3 ≻ s1 ≻ s2. The optimal matching
with no stability constraints (i.e., J = ∅) and budget B = 0, is x⋆

s1,c1 = 1, x⋆
s2,c2 = 1, x⋆

s3,c4 = 1
and all other entries equal to zero. On the other side, the student-optimal stable matching is µ⋆ =
{(s2,c1), (s1,c3), (s3,c4)}. Note that the set of fully-subscribed schools is mutually not-inclusive.

4.8.5. Separation Algorithm: Example

Let Γ = ⟨S,C, ≻, q⟩ be the instance of the school choice problem with S = {s1, s2, s3, s4, s5}
as the set of students and C = {c1, c2, c3, c4, c5, c6} as the set of schools; every school has capacity
1. The preferences are

s1 :c1 ≻ c4 ≻ c3 ≻ c2 ≻ . . . c1 : s2 ≻ s1 ≻ s3 ≻ . . .

s2 :c1 ≻ c2 ≻ c3 ≻ c4 ≻ . . . c2 : s2 ≻ s1 ≻ s3 ≻ . . .

s3 :c4 ≻ c1 ≻ c5 ≻ c6 ≻ . . . c3 : s1 ≻ s2 ≻ s3 ≻ . . .

s4 :c5 ≻ c1 ≻ c4 ≻ c6 ≻ . . . c4 : s3 ≻ s4 ≻ s5 ≻ . . .

s5 :c4 ≻ c5 ≻ c6 ≻ c1 ≻ . . . c5 : s4 ≻ s3 ≻ s5 ≻ . . .

c6 : s5 ≻ . . .

The “. . . ” at the end of a preference list represent any possible strict ranking of the remaining
agents on the other side of the bipartition. The optimal solution of the main program with no
stability constraints (i.e., J = ∅) and budget B = 1, is (x⋆, t⋆) with x⋆

s1,c1 = 1, x⋆
s2,c2 = 1,

x⋆
s3,c4 = 1, x⋆

s5,c4 = 1, x⋆
s4,c5 = 1, t⋆

4 = 1 and all other entries equal to zero. We take the
instance Γt⋆ (with the expanded capacities in accordance to t⋆) and the matching x⋆ as the
input for Algorithm 3. At Step 1 we initialize the set of violated comb constraints J ′ to ∅. In
order to proceed, we need to compute the set block(x⋆). First, note that the student-optimal
stable matching of Γt⋆ is µ = {(s2,c1), (s1,c3), (s3,c4), (s5,c4), (s4,c5)}. Therefore, the set of
schools that are fully subscribed in both µ and x⋆ is {c1, c4, c5}. The only school that is fully
subscribed in both µ and x⋆ that has an exceeding student is c1. Hence, at Step 2, we select c1.
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We initialize the empty list T , and we select the least preferred student enrolled in c1, which is
s = s1. Note that ≻c1 [s1] = [s2,s1]. The inner loop selects s2 as the most preferred student.
At Step 7 we compute the value of T −(s2,c1), which is 0 (we set to 0 the value of an empty
T −). Then, at Step 9, we include s2 in the teeth list, i.e., T = {s2}, which is composed of
only one student because 1 is the capacity of school c1 in Γt⋆ . Therefore, we can find the comb
C with base (s2,c1) at Step 11.At the next iteration, we have that s′ = s1 and we find that
s⋆ is necessarily s2. The initial comb C built at the previous iteration is composed only by the
tooth of (s2, c1), i.e., C = T (s2, c1) = {(s2, c1)}. The value of C in x⋆ is 0. Since the value
of T −(s1, c1) is 0, the condition at Step 14 is false, meaning that it is not worth pursuing a
comb built with basis (s1,c1). Therefore, the algorithm jumps to Step 20, where it finds that the
condition is satisfied since the value of C is 0 and the capacity of c1 is 1. Hence, at Step 21, we
add C to the set of cuts to be added to the main program. Note that at this point Algorithm 3
terminates and returns to the main program the set of cuts J ′ containing only the comb based
in (s2,c1). Interestingly, the next optimal solution of the main program is the optimal solution of
the problem.

4.8.6. Separation Algorithm: Counterexample for Baïou and Balinski
(2000)

In this counterexample, we show that Algorithm 4, the separation algorithm provided in [26],
does not find the most violated comb constraint as claimed in their Theorem 5.

Let Γ = ⟨S,C, ≻, q⟩ be the instance of the school choice problem with
S = {s1, s2, s3, s4, s5, s6, s7, s8} as the set of students and C = {c1,c2, c3, c4, c5, c6, } as
the set of schools; schools c1, c6 have capacity 2, while the others have capacity 1.

The preferences and priorities are given by:

s1, s2 : c6 ≻ c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5 c1 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6 ≻ s7 ≻ s8

s3, s4 : c6 ≻ c2 ≻ c3 ≻ c4 ≻ c5 ≻ c1 c2 : s5 ≻ s6 ≻ s7 ≻ s8 ≻ s1 ≻ s2 ≻ s3 ≻ s4

s5 : c2 ≻ c3 ≻ c4 ≻ c5 ≻ c1 ≻ c6 c3 : s6 ≻ s5 ≻ s7 ≻ s8 ≻ s1 ≻ s2 ≻ s3 ≻ s4

s6 : c3 ≻ c2 ≻ c4 ≻ c5 ≻ c1 ≻ c6 c4 : s7 ≻ s6 ≻ s5 ≻ s8 ≻ s1 ≻ s2 ≻ s3 ≻ s4

s7 : c4 ≻ c2 ≻ c3 ≻ c5 ≻ c1 ≻ c6 c5 : s7 ≻ s6 ≻ s5 ≻ s8 ≻ s1 ≻ s2 ≻ s3 ≻ s4

s8 : c5 ≻ c2 ≻ c3 ≻ c4 ≻ c1 ≻ c6 c6 : s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6 ≻ s7 ≻ s8

Let us consider the following optimal matching x⋆ of the main program with no stability
constraints (i.e., J = ∅) and budget B = 0: x⋆

s1,c1 = 1, x⋆
s2,c1 = 1, x⋆

s3,c6 = 1, x⋆
s4,c6 = 1,

x⋆
s5,c2 = 1, x⋆

s6,c3 = 1, x⋆
s7,c4 = 1, x⋆

s8,c5 = 1. Note that n = 8, m = 6, q̄ = 2.
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Algorithm 4 Separation algorithm from [26]
Input: An instance Γ = ⟨S,C, ≻, q⟩, and a matching x⋆.
Output: A violated comb.

1: i← 1 ▷ index of the school
2: Q ← ∅ ▷ The students that will make the comb
3: Assign qi − 1 elements of S to Q such that x⋆((∪c′

i≻s′ ci
(c′

i, s′))) ≤ x⋆(∪c′
i≻s′′ ci

(c′
i, s′′)), for

every s′ ∈ Q, s′′ ∈ S \ Q
4: U ← S \ Q, and let s be ci least preferred applicant
5: If rankci

(s) < qci
, go to Step 17 ▷ rankci

(s) is the rank of s for ci

6: if s ∈ Q then
7: s̄ = argmin s′′∈U{x⋆(∪c′

i≻s′′ ci
(c′

i, s′′))}
8: U ← U \ {s̄}
9: Q ← (Q \ {s}) ∪ {s̄}

10: else
11: U ← U \ {s}
12: C ← S0(ci,s) ∪ T (ci,s) ∪ (∪s′∈QT (ci,s

′))
13: if x(C) < qi then
14: Return C
15: else
16: Replace s by its immediate successor in ci’s preference list and go to Step 5
17: i← i + 1
18: if i ≤ |C| then
19: Go to Step 2
20: else
21: Return ∅

If we use the separation algorithm provided by Baïou and Balinski [26], we search for a violated
comb from school c1 to c5 and we find none. Finally, we check for violated combs in school c6,
and we find the comb Cbb with base (s3,c6) and teeth bases (s3,c6) and (s2,c6). Note that comb
Cbb has value 1 in x⋆. It took O(m · n2) operations to find it.

However, if we use our Algorithm 3, we have that the only school in block(x⋆) is c6. We
find the comb C̄ with base in (s2,c6) and the other tooth in (s1,c6). Note that C̄ has value 0 in
x⋆ and it took O(m · n) operations to find it, which is the number of operations needed to find
block(x⋆).

Therefore, if we use the separation algorithm of Baïou and Balinski [26], we find a comb
which is not the most violated one.

4.9. Additional Background
4.9.1. The Deferred Acceptance Algorithm

In this section, we recall the Deferred Acceptance algorithm introduced in [67].
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Input: An instance Γ = ⟨S,C, ≻, q⟩.
Output: Student-optimal matching.
Step 1: Each student starts by applying to her most preferred school.

Schools temporarily accept the most preferred applications
and reject the less preferred applications which exceed their
capacity.

Step 2: Each student s who has been rejected, proposes to her most
preferred school to which she has not applied yet; if she has
proposed to all schools, then she does not apply. If the capac-
ity of the school is not met, then her application is temporarily
accepted. Otherwise, if the school prefers her application to
one of a student s′ who was temporarily enrolled, s is tem-
porarily accepted and s′ is rejected. Vice-versa, if the school
prefers all the students temporarily enrolled to s, then s is
rejected.

Step 3: If all students are enrolled or have applied to all the schools
they rank, return the current matching. Otherwise, go to Step
2.

4.9.2. McCormick Linearization

In this section we describe the McCormick convex envelope used to obtain a linear relaxation
for bi-linear terms [109]; if one of the terms is binary, the linearization provides an equivalent
formulation. Consider a bi-linear term of the form xi · xj with the following bounds for the
variables xi and xj: li ≤ xi ≤ ui and lj ≤ xj ≤ uj. Let us define y = xi · xj, mi = (xi − li),
mj = (xj − lj), ni = (ui−xi) and nj = (uj −xj). Note that mi ·mj ≥ 0, from which we derive
the under-estimator y ≥ xi · lj + xj · li − li · lj. Similarly, it holds that ni · nj ≥ 0, from which
we derive the under-estimator y ≥ xi · uj + xj · ui − ui · uj. Analogously, over-estimators of y

can be defined. Make oi = (ui − xi), oj = (xj − lj), pi = (xi − li) and pj = (uj − xj). From
oi · oj ≥ 0 we obtain the over-estimator y ≤ xi · lj + xj · ui − ui · lj, and from pi · pj ≥ 0 we
obtain the over-estimator y ≤ xj · li + xi · uj − uj · li. The four inequalities provided by the over
and under estimators of y, define the McCormick convex (relaxation) envelope of xi · xj.

4.10. Other Formulations of the Capacity Expansion Prob-
lem

In this section we present the generalizations to Formulation (4.3.2) of two models of the
classic School Choice problem.
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The first model that we generalize was proposed in [53]. Let gd(s) be the number of ranks
for student s ∈ S,31 gh(c) be the number of acceptable students for school c ∈ C and yd

sk a
binary variable that takes value 1 if student s is assigned to a school of rank at most k, and yh

ck

an integer variable indicating how many students of rank at most k are assigned to school c, and
zck a binary variable taking value 1 if school c is fully-subscribed to students that rank at most
k − 1 and 0 otherwise:

min
x,t,y,z

∑
(s,c)∈E

rs,c · xs,c (4.10.1)

s.t. yh
cgh(c) ≤ qc + tc, ∀c ∈ C (4.10.2)

(qc + tc)(1− yd
sk) ≤ yh

crh
s (c), ∀s ∈ S, k = 1, . . . , gd(s), c ∈ H=

k (s) (4.10.3)∑
c∈H=

1 (s)
xs,c = yd

s1, ∀s ∈ S (4.10.4)

∑
c∈H=

k
(s)

xs,c + yd
s,k−1 = yd

sk, ∀s ∈ S, k = 2, . . . , gd(s) (4.10.5)

∑
s∈S=

1 (c)
xs,c = yh

c1, ∀c ∈ C (4.10.6)

∑
s∈S=

k
(c)

xs,c + yh
c,k−1 = yh

ck, ∀c ∈ C,k = 2, . . . ,gh(c) (4.10.7)

xs,c ≤ 1− zcrh
s (c), ∀(s,c) ∈ E (4.10.8)

zck ≥ zck−1, ∀c ∈ C, k = 2, . . . , gh(c) + 1 (4.10.9)

1− zck ≤ yd
srcs

, ∀c ∈ C, k = 2, . . . , gh(c) + 1, s ∈ S=
k−1(c) (4.10.10)

(qc + tc)zcgh(c)+1 ≤ yh
cgh(c), ∀c ∈ C (4.10.11)∑

c∈C

tc ≤ B, (4.10.12)

yh
ck ∈ Z+, ∀c ∈ C, k = 1, . . . , gh(c) (4.10.13)

xs,c ∈ {0,1}, ∀(s,c) ∈ E (4.10.14)

yd
sk ∈ {0,1}, ∀c ∈ C, k = 1, . . . , gh(c) (4.10.15)

zck ∈ {0,1}, ∀c ∈ C, k = 1, . . . , gh(c) + 1 (4.10.16)

where rs,c is the rank of student s for school c, H=
k (s) is the set of schools acceptable

for student s with rank k and S=
k (c) is the set of students acceptable for school c with rank

k. Constraints (4.10.2) ensure that each school does not have assigned more students than its
capacity. Constraints (4.10.3) ensure that if student s is assigned to a school with rank superior
to k, then it must be because school c has its quota satisfied. Constraints (4.10.4)- (4.10.7)

31gd(s) is the cardinality of the set of schools that student s deems acceptable.
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establish the meaning of the y variables. In [53], it is discussed that it is not worth to merge
constraints (4.10.13) if there are no ties on the schools’ side, i.e., |H=

k (s)| = 1, in order to
improve the models’ relaxation.

The second model that we generalize was introduced by Agoston et al. [157]. The authors
propose a binary and continuous cutoff score formulations which they claim to be similar to the
integer programs in [53].

Let zc be a non-negative variable denoting the cutoff score of school c. The next formulation
is based on the fact that a student-optimal envy-free matching is equivalent to a student-optimal
stable matching:

min
x,t,f ,z

∑
(s,c)∈E

rs,c · xs,c (4.10.17)

s.t. zc ≤ (1− xs,c) · (|S|+ 1) + wsc, ∀ (s,c) ∈ E (4.10.18)

wsc + ϵ ≤ zc +
 ∑

k:k⪰sc

xs,k

 · (|S|+ 1), ∀(s,c) ∈ E (4.10.19)

fc · (qc + tc) ≤
∑

s∈S:(s,c)∈E
xs,c, ∀c ∈ C (4.10.20)

zc ≤ fc(|S|+ 1), ∀c ∈ C (4.10.21)∑
c:(s,c)∈E

xs,c = 1, ∀s ∈ S (4.10.22)

∑
s∈S

xs,c ≤ qc + tc, ∀ c ∈ C (4.10.23)
∑
c∈C

tc ≤ B, (4.10.24)

xs,c, tc ∈ Z+, ∀s ∈ S,∀c ∈ C (4.10.25)

zc ≥ 0 ∀ c ∈ C (4.10.26)

fc ∈ {0,1} ∀ c ∈ C. (4.10.27)

Constraints (4.10.18) imply that if a student s is matched with school c, then her score has
reached the cutoff score; we can establish wsc = |S| − rc,s where rc,s is the rank of student s in
the list of school c. Constraints (4.10.19) ensure the envy-freeness, i.e., if student s is admitted
to school c or to any better according to her preference, then it must be the case that she has not
reached the cutoff at school c. To complete the notion of stability it is needed to include non-
wastefulness (no blocking with empty seats); they do so in constraints (4.10.20) and (4.10.21),
where the authors include a binary variable fc indicating whether school c rejects any student in
the solution. A binary cutoff score formulation is also provided in their paper.
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4.11. Initialization Details of the Cutting-plane Method
In Algorithm 2, the initialization of J at Step 1 affects critically the gap at the root node of

the Branch-and-Bound algorithm. There are several ways in which we can improve the Algorithm
at this step.

In our formulation, we improve the root node gap by adding the two following kinds of
constraints:

• The comb constraints (4.3.7b) for the capacity vector t = 0. Since the allocation of
extra capacities weakly improves the matching for every student, it is valid to add stability
constraints for the zero expansion. The main problem can be initialized with any subset of
comb constraints J . For this numerical study, we define J as the set of comb constraints
derived from the student-optimal stable matching obtained when B = 0, which can be
efficiently obtained using DA. Specifically, let µ0 be the student-optimal stable matching
when B = 0, and let µ0(c) be the lowest priority student admitted to school c (according
to ≻c). Then, for each school c such that |µ0(c)| = qc, we add to J the comb constraint
involving Cc = Sµ0(c),c ∪

⋃
s:µ0(s)=c T −

s,c.
• The relaxed stability constraints of Formulation (4.10.1).

4.12. Heuristics
In this section, we present two natural methods: (i) a greedy approach (Grdy), and (ii) an

LP-based heuristic (LPH). These two heuristics rely on the computation of a student-optimal
stable matching, which can be done in polynomial time using the DA algorithm. The description
of DA in Appendix 4.9.1.
Greedy Approach. In Grdy, we explore the fact that the objective function is decreasing in t and
iteratively assign an extra seat to the school leading to the greatest reduction in the objective.
More precisely, Grdy performs B sequential iterations. At each iteration, we evaluate the objective
function for each possible allocation of one extra seat using DA. Then, the school leading to the
lowest objective receives that extra seat. At the end of this procedure, B extra seats are allocated.
In Algorithm 5, we formalize our Greedy heuristic.

Algorithm 5 Grdy
Input: An instance Γ = ⟨S,C, ≻, q⟩ and a budget B.
Output: A feasible allocation t and a stable matching µ in the expanded instance Γt.

1: Initialize t← 0
2: while ∑

c∈C tc < B do
3: c⋆ ∈ argmin {f(t + 1c) : c ∈ C}, where f is defined as in Expression (4.7.4)
4: t← t + 1c⋆

5: return t and µ
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In the algorithm above, 1c ∈ {0,1}C denotes the indicator vector whose value is 1 in compo-
nent c ∈ C and 0 otherwise. Recall that, for a given t, f(·) can be evaluated in polynomial time
using the DA algorithm.
LP-based Heuristic. If we relax the stability constraints, Formulation 4.3.2 can be formulated as
a minimum-cost flow problem whose polytope has integer vertices. Once we enrich this problem
with the expansion of capacities, the integrality of the vertices is preserved. Hence, LPH starts
by solving the linear program that minimizes Objective (4.3.3a), restricted to the set P . As a
result, we obtain an allocation of extra seats and an assignment that is not necessarily stable —
recall that P is the space of fractional (potentially non-stable) matchings. Then, using the DA
algorithm, we compute the student-optimal stable matching in the new instance that considers
the capacity expansion obtained by the linear program. In Algorithm 6, we formalize the LPH
heuristic.

Algorithm 6 LPH
Input: An instance Γ = ⟨S,C, ≻, q⟩ and a B.
Output: A feasible allocation t and a stable matching µ in the expanded instance Γt.

1: Obtain (x∗,t∗) ∈ argmin
{∑

(s,c)∈E rs,c · xs,c : (x,t) ∈ P
}

2: Compute stable matching µ in instance Γt∗ using the DA algorithm
3: return t∗ and µ

4.13. Model Extensions
Our model can be easily extended to capture several relevant variants of the problem. In what

follows we name some direct extensions:
• Adding budget: If there is a unit-cost pc of increasing the capacity of school c, we can

add an additional budget constraint of the form∑
c∈C

tc · pc ≤ B′,

keeping all the other elements of the model unchanged. This extension could be used to
allocate tuition waivers or other sort of scholarships that are school dependent.
• Different levels of granularity: Schools may not be free to expand their capacities by

any value in {1, . . . , B}. This limitation can be easily incorporated into our model by
considering the unary expansion of the variables tc for c ∈ C, as we did in BB-cap.
Specifically, let yk

c = 1 if the capacity of school c is expanded in k seats, and yk
c = 0

otherwise. Then, we know that ∑B
k=0 k · yk

c = tc, and we must add the constraint that∑B
k=0 yk

c = 1 for each c ∈ C. If the capacity of school c can only be expanded by values in
a subset B′ ⊆ B, we can enforce this by adding the constraints yk

c = 0 for all k ∈ B \B′.
This could also be captured using knapsack constraints.
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• Adding secured enrollment: The Chilean system guarantees that students that are cur-
rently enrolled and apply to switch will be assigned to their current school if they are not
assigned to a more preferred one. This can be easily captured in our setting by introduc-
ing a parameter ms,c, which is equal to 1 if student s is currently enrolled in school c,
and 0 otherwise, and defining M = {s ∈ S : ms,c = 1 for some c ∈ C}. Then, we would
only have to update a couple of constraints:∑

s∈S
xs,c · (1−ms,c) ≤ qc + tc, ∀ c ∈ C,

∑
c∈C

xs,c = 1, ∀ s ∈M.
(4.13.1)

The first constraint ensures that students currently enrolled do not count towards the
capacity of the school they are currently enrolled. The second constraint ensures that
all students that are currently enrolled are assigned to some schools (potentially, to the
same school they are currently enrolled).
• Room assignment: Schools report the number of vacancies they have for each level.

This decision depends on the classrooms they have and their capacity. However, schools
decide (before the assignment) what level goes in each classroom, and this determines
the number of reported vacancies for that level. This may introduce some inefficiencies,
since some levels may be more demanded, and thus assigning a larger classroom may
benefit both students in that school but also in others.
• Quota assignment: Many school choice systems have different quotas to serve under-

represented students or special groups. For instance, in Chile there are quotas for low-
income students (15% of total seats), for students with disabilities or special needs, and for
students with high-academic performance. Moreover, some of these quotas may overlap,
i.e., some students may be eligible for multiple quotas, and in most cases students count
in only one of them. The number of seats available for each quota are pre-defined by
each school, and schools have some freedom to define these quotas. Hence, our problem
could be adapted to help schools define what is the best allocation of seats to quotas in
order to improve students’ welfare.
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Chapter 5

Stable Matching with
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Prologue: Often, in the real world, when a group of siblings applies for school admission, their
priorities are updated as part of a pre-processing routine before these new priorities are included
in the input of the matching mechanism. In this chapter, we address the problem of updating
dynamically the priorities of siblings inside the mechanism, with the goal of matching them to
the same school (Question 7).

Article details: This paper was accepted at EAMMO 2023; we choose the non-archival option
of this conference. An extended version of this paper will be submitted to a peer-reviewed venue.

Contributions of the authors: Federico Bobbio participated in all the stages of the work, being
the main author of the paper. In particular, he devised the counter-examples to the non-existence
of a stable matching, the proofs on the existence of a stable matching and the algorithms to find
it. He also wrote the first draft of the paper.
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Résumé. Nous étudions le problème de la recherche d’un appariement stable dans le cadre
de priorités dynamiques, où la chambre de compensation donne la priorité à certains agents en
fonction de l’allocation d’autres agents, et nous utilisons le choix de l’école comme exemple
motivant. Pour ce faire, nous introduisons un modèle stylisé de marché d’appariement biparti
avec priorité aux familles. Nous soutenons que la notion standard de stabilité ne s’applique pas
en présence de priorités dynamiques. Pour ce faire, et motivés par la pratique, nous définissons
plusieurs hypothèses sur les préférences des familles et les priorités, nous introduisons différentes
notions de stabilité en présence de priorités dynamiques et nous montrons qu’un appariement
stable dans ces conditions peut ne pas exister. Du côté positif, nous montrons que de tels
appariements existent si les familles préfèrent strictement que leurs membres restent ensemble
dans deux situations importantes : (i) lorsque les familles sont au maximum de deux personnes, et
(ii) lorsqu’il n’y a qu’un seul niveau scolaire. En outre, nous concevons un mécanisme permettant
de trouver de telles affectations stables en temps polynomial. Enfin, nous montrons que le
problème de la recherche d’un appariement stable sous des priorités dynamiques de cardinalité
maximale est NP-difficile.
Mots clés : Appariement stable, choix de l’école, familles, priorités dynamiques

Abstract. We study the problem of finding a stable matching under dynamic priorities,
whereby the clearinghouse prioritizes some agents based on the allocation of others, and we use
school choice as a motivating example. To accomplish this, we introduce a stylized model of a
two-sided matching market with siblings’ priority. We argue that the standard notion of stability
does not apply in the presence of dynamic priorities. To address this, and motivated by practice,
we define several assumptions on families’ preferences and siblings’ priorities, introduce different
notions of stability under dynamic priorities, and show that a stable matching under these settings
may not exist. On the positive side, we show that such matchings exist if families strictly prefer
their members to remain together in two important settings: (i) when families are of size at
most two, and (ii) when there is a single grade level. In addition, we devise a mechanism to find
such stable assignments in polynomial time. Finally, we show that the problem of finding the
stable matching under dynamic priorities of maximum cardinality is NP-hard.
Keywords: Stable matching, school choice, families, dynamic priorities

5.1. Introduction
The theory of two-sided many-to-one matching markets, introduced by Gale and Shapley [67],

provides a framework for solving many large-scale real-life assignment problems. Examples include
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entry-level labor markets for doctors and teachers, education markets from daycare, school choice
and college admissions, and other applications such as refugee resettlement. A common feature in
many of these markets is the use of mechanisms that find a stable assignment, as this guarantees
that no coalition of agents has incentives to circumvent the match.

In many of these markets, the clearinghouse may be interested in finding a stable allocation,
while individual agents may care about their assignment and that of other agents. For instance,
in the hospital-resident problem, couples jointly participate and must coordinate to find two
positions that complement each other. In school choice, students may prefer to be assigned with
their siblings or neighbors. In refugee resettlement, agencies may prioritize allocating families
with similar backgrounds (e.g., from the same region or speaking the same language) to the
same cities.

One approach to accommodate these joint preferences is to provide priorities contingent on
the assignment. For instance, many school choice systems (including NYC, New Haven, Denver,
Chile, etc.) consider sibling priorities, by which students get prioritized in schools where they
have a sibling currently assigned or enrolled. Similarly, in refugee resettlement, families may get
higher priority in localities where they have relatives based on family reunification. However, most
clearinghouses assume that priorities are fixed and known before the assignment process and, thus,
cannot accommodate settings in which priorities depend on the current assignment. Similarly,
most definitions of stability and justified-envy assume that priorities are fixed and known, and
thus, also fail to capture the aforementioned setting.

In this paper, we study the problem of finding a stable matching under dynamic priorities,
i.e., when priorities are updated based on the current assignment, and we use school choice
with siblings as a motivating example. To accomplish this, we first introduce a stylized model
where students belong to (potentially different) grade levels and may have siblings applying to
the system (potentially in different levels). On the one hand, each family reports preferences
over the assignment of their members while, on the other hand, schools prioritize students with
siblings already enrolled or currently assigned, and break ties among students in the same priority
group (with or without siblings) using a random tie-breaker.

Motivated by the Chilean school choice system, we distinguish two types of sibling priority:
(i) static, whereby students who have a sibling currently enrolled but not participating in the
admission process get prioritized; and (ii) dynamic, whereby students with a sibling who is also
participating in the admission process and is currently assigned get prioritized. Notably, dynamic
priorities depend on the current assignment and, thus, must be granted and updated simultane-
ously while solving the allocation task. This simultaneity introduces a series of challenges, and
the standard notion of justified envy no longer applies.

To overcome these challenges, we start by simplifying the space of families’ preferences and
introducing several assumptions that limit how dynamic priorities work. Specifically, we present
the concepts of absolute/partial and dependent/independent justified envy to break ties across
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and within priority groups. Based on these definitions, we introduce several notions of stability
and show that a stable matching may not exist. Nevertheless, we show that a stable matching
under dynamic priorities exists if families strictly prefer that their siblings are assigned together
and either (i) families have at most two members participating in the admission process or (ii)
there is a single grade level. Moreover, we introduce a new family of mechanisms that find such a
stable matching. Finally, we discuss other properties of the mechanism, and we show that finding
a maximum cardinality stable matching under dynamic priorities is NP-hard.

Our work contributes to the literature in several ways. To the best of our knowledge, this is
the first work to formalize different types of siblings’ priorities and also the first to introduce the
idea of dynamic priorities. Consequently, we introduce a novel notion of stability under dynamic
priorities, where these are contingent on the matching. We also provide the first complexity results
for a stable matching problem with dynamic priorities. Although we focus on school choice as
a motivating example, our results and insights may deem helpful in the design of matching
mechanisms where priorities depend on the assignment of others, such as in daycare assignments,
college admissions, refugee resettlement, among others.

5.1.1. Organization

The remainder of this chapter is organized as follows. In Section 5.2, we discuss the relevant
literature. In Section 5.3, we introduce our model. In Section 5.4, we study the existence of a
stable assignment under dynamic priorities. In Section 5.5, we study the complexity of finding
a maximum cardinality stable matching under dynamic priorities. Finally, in Section 5.6 we
conclude.

5.2. Literature Review
Our paper draws from various threads of existing literature. In Section 5.2.1, we delve into

the primary stream of research within the stable matching with complementarities field. Follow-
ing that, in Section 5.2.2, we outline the placement of our contribution within this academic
landscape.

5.2.1. General Context

Matching with families. A recent strand of the literature has extended the classic school choice
model [8] to incorporate families. Dur et al. [57] consider a setting where siblings report the
same preferences, and assignments are feasible if and only if all family members are assigned to
the same school (or all of them are unassigned). The authors argue that justified envy is not an
adequate criterion for the problem. Thus, they propose a new solution concept (suitability), show
that a suitable matching always exists, and introduce a new family of strategy-proof mechanisms
that finds a suitable matching. Correa et al. [50] also consider a model with siblings applying to
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potentially different grades, but assume that each sibling submits their own (potentially different)
preference list. In addition, the authors assume that the clearinghouse aims to prioritize the
joint assignment of siblings, but they model it as a soft requirement, i.e., an assignment may be
feasible even if siblings are not assigned to the same school. To prioritize the joint assignment
of siblings, Correa et al. [50] introduce (i) the use of lotteries at the family level; (ii) a heuristic
that processes grades sequentially in decreasing order, updating priorities in each step to capture
siblings’ priorities that result from the assignment of higher grades; and (iii) the option for families
to report that they prefer their siblings to be assigned to the same school rather than following
their individual reported preferences. This last feature, called family application, prioritizes the
joint assignment of siblings by updating the preferences of younger siblings by adding the school of
assignment of their older siblings. The authors show that all these features significantly increase
the probability that families get assigned together.
Matching with couples. Our paper is also related to the matching with couples literature,
which is commonly motivated by labor markets such as the matching for medical residents. In
this setting, couples wish to be matched to the same hospital (or at least to the same region)
and hence, they report a joint preference list of pairs of hospitals. For an extension of the
stability concept with couples, Roth [132] shows that a stable matching may not exist if couples
participate. To overcome this limitation, Klaus et al. [93, 95] introduce the property of weak
responsive preferences and show that this guarantees the existence of a stable assignment. Kojima
et al. [98] provide conditions under which a stable matching exists with high probability in large
markets, and introduce an algorithm that finds a stable matching with high probability which is
approximately strategy-proof. Ashlagi et al. [19] find a similar result, as they show that a stable
matching exists with high probability if the number of couples grows slower than the size of the
market. However, the authors also show that a stable matching may not exist if the number
of couples grows linearly. Finally, Nguyen and Vohra [117] show that the existence of a stable
matching is guaranteed if the capacity of the market is expanded by at most a fixed number of
spots to the schools.
Matching with complementarities. Beyond families and couples, the matching literature has
studied other settings with complementarities. For instance, Ashlagi et al. [21] show that using
correlated lotteries can increase community cohesion by increasing the probability of neighbors
being assigned to the same schools. Dur and Wiseman [59] also study the school choice problem
with neighbors and show that a stable matching may not exist if students have preferences over
joint assignment with their neighbors. Moreover, the authors show that the student-proposing
deferred acceptance algorithm is not strategy-proof and propose a new algorithm to address this
issue. Kamada and Kojima [86] study matching markets where the clearinghouse cares about
the composition of the match and thus imposes distributional constraints. The authors show
that existing mechanisms suffer from inefficiency and instability and propose a mechanism that
addresses these issues while respecting the distributional constraints. Nguyen and Vohra [118]
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also study the problem with distributional concerns but consider these constraints as soft bounds
and provide ex-post guarantees on how close the constraints are satisfied while preserving stability.
Nguyen et al. [116] introduce a new model of many-to-one matching where agents with multi-unit
demand maximize a cardinal linear objective subject to multidimensional knapsack constraints,
capturing settings such as refugee resettlement, day-care matching, and school choice/college
admissions with diversity concerns. The authors show that a pairwise stable matching may not
exist and provide a new algorithm that finds a group-stable matching that approximately satisfies
all the multidimensional knapsack constraints. Another example in which agents care about other
agents’ assignment is the affiliate stable matching problem, where, for instance, a college is not
only interested in hiring good academic candidates, but also wishes that its graduates find good
jobs [55, 96].

5.2.2. Our Contributions and the Literature

The problem of guaranteeing the existence of a stable matching in a many-to-one stable
matching problem with complementarities is known to be intractable under general assumptions.
This problem emerged when the National Resident Matching Program noticed a decrease in the
participation of couples in the hospital-resident matching market. In this regard, Roth [132] finds
an instance of a matching market with couples where there is no stable matching. It is evident
that the non-existence of a stable matching with complementarities is due to a combination of
the following factors: (i) the way the preferences of the agents are represented, and (ii) the way
blocking coalitions are defined (i.e., the definition of stability).

The first step towards a systematization of the preferences’ representation was given with the
introduction of responsive preferences [133]. Ronn [129] was the first to prove that deciding
whether an instance of the hospital-resident problem with couples has a stable matching is NP-
complete; he proved this result even when all the hospitals have capacity one and there are
no single students. Then, other negative complexity results followed using other preference
representations and/or definitions of stability. However, the strength of this result lies in the fact
that for any definition of blocking coalition that does not encompass any particular requirement
on the preference list of the couples, there is no hope of having existence guarantees for a stable
matching. A breakthrough came with the introduction of weakly responsive prefereneces [93, 95]
which proved to be a sufficient property on the ordering of couple’s preference lists to guarantee
the existence of a stable matching. The key intuition behind this result is that when there are
no negative externalities among the members of a couple in the assignment, then we can treat
each member as an individual; e.g., if the couple only ranks the jobs in the same metropolitan
area, then each of the partners can be considered as a single agent expressing their individual
preferences. All the results mentioned consider a representation of couple preferences that allow
two partners to be matched to different locations. McDermid and Manlove [111] prove that under
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consistent preference lists and for the classic notion of stability (members of a couple are treated
as individuals) derived from [71], the problem of deciding the existence of a stable matching is
still NP-complete. Under restrictive conditions on the stability definition, the authors are able to
provide a polynomial-time algorithm that outputs a stable matching or report that none exists.
This result highlights that as a consequence of further modifications on the stability condition
(point (ii)), then existence can be guaranteed.

On the other side of the spectrum, if members in a couple are considered as an indivisible
entity rather than individuals, we find the hospital-resident problem with sizes (HRS), which is a
many-to-many matching market problem. McDermid and Manlove [111] provide a polynomial-
time algorithm that outputs a stable matching under restrictive conditions on the preference lists
and capacities, otherwise the problem remains NP-hard. Another example in which existence is
ensured when couples are indivisible, is the case in which the members of a pair apply to the
same schools but at different levels (point (i)); for example, in the case of siblings applying to
different education grades [57].

To summarize, the literature, which has been mainly focused on the case of couples (families
of size two) has been able to obtain existence of a stable matching when 1) the preferences of the
families can be considered in a fashion similar to individual preferences for each family member,
or 2) the family is treated as an indivisible block. On one side, we would like to have a flexible
representation of the preference lists such as in the weak responsive assumption, which allows
us to match family members to different schools. On the other side, given that weak responsive
preferences require a complete ranking of all the possible combinations of acceptable locations,
we would like to have a practical representation of the family preference lists such as in the
indivisible family/couple case. The advantage of the flexibility of the former model of preference
lists comes with the price that justified envy must be defined and checked among all comparable
subsets of family members of cardinality 2; on the other side, the practicality of the indivisible
representation comes at the cost of lacking the expressivity to describe the envy of a member in
a family who prefers to go to another location as a single individual.

One may hope that by further restricting the domain of preference lists, it would be possible
to guarantee the existence of a stable matching. One such way, related to many applications
in the real world, is the case in which residents (or students) are ranked by all the hospitals
(schools) according to a single tie-breaker (or master-list). However, Biró et al. [37] show that
even if both the residents in a couple and the hospitals have their preference lists derived from a
single tie-breaker, then the problem of the existence of a stable matching is NP-complete.

In this work, we opt for a practical representation of the preference lists of each member in a
family, and we provide a notion of stability that is flexible enough to express envy also as a function
of the assignment of an individual’s family member. The key insight that allows us to achieve
this result is that we let the ranking of a student depend also on the matching of their family
members, thus providing a notion of justified envy that relies on dynamic priorities. The idea of
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establishing justified envy on a dynamic notion of priority differs from the existing literature; in
fact, justified envy has previously always been defined on the basis of a static representation of
preference lists and priorities.

5.3. Model
In this section, we introduce a two-sided matching market model that includes a priority

system. To facilitate the exposition, we use school choice with sibling priorities as a concrete
application of the model.

Let S be a finite set of students and F ⊆ 2S be a partition of S where f ∈ F is called a
family and its size is denoted as |f |. For f ∈ F with |f | ≥ 2, we say that students s and s′ are
siblings if s,s′ ∈ f . If f ∈ F is such that f = {s}, then we say that s has no siblings. With
a slight abuse of notation, we define function f : S → F to map a student into their specific
family, i.e., each student s ∈ S belongs to family f(s) ∈ F . Note that students s and s′ are
siblings if f(s) = f(s′) and a student s has no siblings when f(s) = {s}.

Let C be a finite set of schools and G be the set of grade levels. We define a function
g : S → G that maps a student s ∈ S into the grade level g(s) to which they are applying to.
With a slight abuse of notation, we denote by Sg ⊆ S the set of students applying to grade level
g ∈ G. We assume that each school c ∈ C offers qg

c ∈ Z+ seats on grade level g ∈ G, where
qg

c = 0 means that school c does not offer grade g.
Let E ⊆ S × {C ∪ {∅}} be the set of feasible pairs, i.e., (s,c) ∈ E implies that student s and

school c deem each other acceptable and qg(s)
c > 0; ∅ represents being unassigned. A matching

is an assignment µ ⊆ E such that (i) each student is assigned to at most one school in C, and
(ii) each school is assigned at most its capacity in each grade level. Formally, for µ ⊆ E , let
µ(s) ∈ C ∪ {∅} be the school that student s was assigned to, µ(f) ⊆ C be the subset of schools
where the students of family f were assigned to, i.e., µ(f) = {µ(s) : s ∈ f}, and µ(c) ⊆ S
be the set of students assigned to school c. Given a grade g, we denote by µg(c) the set of
students assigned to school c at grade g. Then, a matching satisfies that (i) µ(s) ∈ C ∪ {∅} for
all students s ∈ S and (ii) |µg(c)| ≤ qg

c for all schools c ∈ C and grade levels g ∈ G.1

Each family f = {s1, . . . ,sℓ} ∈ F has a strict preference order ≻f over tuples in (C ∪ {∅})ℓ,
which means that (c1, . . . ,cℓ) ≻f (c′

1, . . . , c′
ℓ) implies that family f prefers that its members

s1, . . . ,sℓ go to schools c1, . . . ,cℓ over c′
1, . . . , c′

ℓ, respectively; notice that we implicitly assume
that students in a family are sorted, thus making the comparison of tuples of schools unambiguous.
On the other hand, each school c ∈ C has a strict preference order ≻c over feasible subsets of S
which means that for subsets S,S ′ ⊆ S that satisfy grade level capacities, S ≻c S ′ denotes that
school c prefers students in S over students in S ′.

1Notice that the model captures other single-level applications such as refugee resettlement, college admissions
and the hospital-resident problem.

160



As Roth [135] discusses, a desired property of any matching is stability, i.e., that there is no
group of agents that prefer to circumvent their current match and be matched to each other.
Given a matching µ ⊆ E , we say that student s has justified envy towards another student s′

assigned to school c if (i) g(s) = g(s′), (ii) (c, µ(f \ {s})) ≻f µ(f), and (iii) (µ(c) ∪ {s}) \
{s′} ≻c µ(c). In words, the first condition states that both students belong to the same grade
level; the second condition implies that the family prefers that s ∈ f is assigned to c rather
than µ(s), given the assignment of their siblings; and the third condition states that school c

prefers the set of student that replaces s′ with s. In addition, we say that a matching µ is
non-wasteful if there is no student s ∈ S and school c such that (c, µ (f \ {s})) ≻f µ(f) and
|{s′ ∈ µ(c) : g(s′) = g(s)}| < qg

c . Finally, we say that a matching is stable if no student has
justified envy and it is non-wasteful.

To account for sibling priorities, we aim to reshape the space of preferences of the schools.
Sibling priorities can happen in two forms:

(1) Static priority : A family f ∈ F has static priority in school c if one or more students in f

are applying to c and have a sibling who is currently enrolled in c and is not participating
in the admission process.2 Therefore, school c prefers each student in f over students in
S with no sibling priority.

(2) Dynamic priority : A family f ∈ F has dynamic priority in school c if two or more students
in f are simultaneously applying to c. Therefore, school c prefers those students in f

over students in S with no sibling priority. This type of priority is called dynamic because
students get prioritized only if another sibling is assigned to the school, i.e., priorities
adapt to the current matching.

Throughout the paper, we often shorten sibling priority as priority. Under static (resp. dy-
namic) priorities, we say that student s provides sibling priority in school c if s is currently enrolled
(resp. assigned) in c, and we say that the siblings of s receive sibling priority in school c. Note
that a student may receive static and dynamic priority in different schools or both types of priority
in the same one. For instance, suppose that a family f = {s,s′} is applying to schools c and c′,
and that s and s′ have a sibling s′′ /∈ S currently enrolled in c and not applying to the system.
If s, who receives static priority from s′′ in school c, gets assigned to school c′ in the current
matching,3 then s′ would receive static priority in c and dynamic priority in c′. In contrast, if s

gets assigned to c, then s′ receives both static and dynamic priority in c. Therefore, we assume
that static priority overrules dynamic priority, i.e., a student with potentially both priorities in a
given school can only benefit from the static priority.4 In other words, students are not addition-
ally prioritized if they have siblings enrolled and also siblings currently matched. We borrow this

2This means that this sibling is not part of the input S.
3This could happen if the family prefers s to be assigned in school c′, or it could happen if school c is over-
demanded and all the seats are filled with students with static sibling priority.
4In the example above, s′ would only have static priority.
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assumption from practice, as in certain school districts (e.g., in Chile), the clearinghouse prefers
to assign students with static priority because their probability of enrollment is higher compared
to students without siblings currently enrolled.

Given the above, in practice, these priorities define three disjoint groups of applicants in each
school: (i) students with static priority, (ii) students with dynamic priority, and (iii) students with
no priority. Within each group, all students are equally preferred by the school, and thus the
clearinghouse breaks ties using a random tie-breaker. Note that if there are only students with no
priority and families with static priorities, then the random tie-breaker defines a strict order over
the whole set of students S in each school, as the group with siblings will be always prioritized
over the group with no siblings. Thus, in this case, for any school c ∈ C, ≻c would be as if no
student had siblings, but with the group of students with sibling priority placed first in the list
and then the rest.5 This implies the following immediate proposition.

Proposition 5.3.1 ([67]). If there are no students who can receive dynamic priority, then a stable
matching exists.

Given this positive result, we focus our attention on dynamic priorities where the existence
may not be guaranteed. Henceforth, we consider the following assumption.
Assumption 5.3.2. No student has static priority in any school. Thus, in each school, the set of
students are composed by two disjoint groups of applicants: (i) students with (dynamic) sibling
priority, and (ii) students with no priority.

In the remainder of the paper, we use sibling priority and dynamic priority interchangeably. In
addition, we assume that schools break ties within each group with a random tie-breaker and we
denote by ps,c ∈ R+ the value of the random tie-breaker of student s for school c. As opposed
to static priorities, the combination of dynamic priorities and random tie-breakers do not define a
unique order among any two pair of students for each school, as this pair may change from one
priority class to the other depending on the current match of their siblings. In fact, the existence
of a stable matching is not guaranteed as shown in [50] (see their Proposition 1).

The key insight with dynamic priorities is the dependency of the priorities on the current
matching. To illustrate, consider a family f = {s,s′} and a matching mechanism that, at some
step, matches student s to school c and student s′ to some school c′ ∈ C ∪ {∅} \ {c} such that
(c,c) ≻f (c,c′). Since s and s′ are siblings, we say that s′ receives dynamic priority in c from s;
given this priority, the mechanism would attempt the assignment of s′ to c in grade level g(s′),
potentially displacing another student s′′ /∈ f without priority applying to the same grade g(s′).
Given that multiple families are simultaneously applying to different schools and grade levels, a
stable matching may not exist as we previously mentioned. To address this simultaneity challenge,
school districts have either (i) defined an order to process grades, and the clearinghouse updates

5In other words, the static priority and the random tie-breaking rule define a unique set ordering ≻c which
translates in a linear preference order.
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dynamic priorities before moving to the next grade [50]; or (ii) do not consider dynamic priorities.
As we discuss in Appendix 5.7, different processing orders of grade levels may lead to different
outcomes.

The design of dynamic sibling priorities opens four immediate important questions. First,
what is an appropriate notion of stability to capture dynamic priorities? Second, under which
assumptions can we guarantee the existence of a stable matching? Third, if such assumptions
exist, can we find a stable matching under dynamic priorities efficiently? And finally, what are
the properties of these stable matchings? Our goal in the next section is to simplify the space
of preferences and formalize how siblings’ priorities affect schools’ ordering of students, so as to
properly define a new notion of stability that considers dynamic priorities.

5.3.1. Simplifying the space of preferences and priorities

The definition of justified envy in the previous section assumes that schools have preferences
over sets of students, and that families have joint preferences over tuples of schools. However, in
most clearinghouses, preferences are not as complex. In practice, they involve students declaring
linear preferences over schools, and schools’ linear preferences are determined by a combination
of random tie-breakers and priority groups. For this reason, in the remainder of the paper, we
assume a simplified structure of preferences, as formalized in the following Assumption 5.3.3.
Assumption 5.3.3. We assume the following structure for preferences and tie-breaking rules:

(1) On the students’ side, we assume that each family reports a strict preference order over
C ∪ {∅} and that each family member s follows the same preference order as their family
among the schools that offer grade g(s).

(2) On the schools’ side, we assume that every school has sibling priority and uses a random
tie-breaker to break ties between students across applicant groups (i.e., students with or
without sibling priority).

Although Assumption 5.3.3 simplifies the reporting of preferences, the sibling priority needs
some limitations to ensure the fairness of the assignment, as the following example illustrates.

Example 5.3.4. Consider an instance with a single grade level, a set of students S =
{a1, a2, a3, s1,s2, s′

1, s′
2} where f = {s1, s2} and f ′ = {s′

1, s′
2} are siblings, and a single

school c with capacity 4. Moreover, suppose the random-tie breakers of school c are pa1,c >

pa2,c > pa3,c > ps1,c > ps2,c > ps′
1,c > ps′

2,c. Then, one possible matching is µ =
{(a1, c), (a2, c), (a3, c), (s1, c), (s2, ∅), (s′

1, ∅), (s′
2, ∅)}, which is also the student-optimal stable

matching (with the classical notion of stability). However, the alternative matchings

µ′ = {(a1, ∅), (a2, ∅), (a3, ∅), (s1, c), (s2,c), (s′
1, c), (s′

2,c)}

and
µ′′ = {(a1, c), (a2, c), (a3, ∅), (s1, c), (s2,c), (s′

1, ∅), (s′
2,∅)}
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are also feasible in terms of capacity (not in terms of the classical notion of stability); depending on
how siblings are prioritized over students with no siblings, one matching would be more desirable
than the other. □

Consider Example 5.3.4, note that in matching µ′ neither s′
1 nor s′

2 would be admitted in
school c without dynamic priority; s′

1 gives priority to s′
2 and vice-versa, thus creating a priority

cycle; arguably, such a cycle of priorities is not desirable. This differs from the case of family f ,
because there is a matching µ that only accounts for random-tie breakers (and no sibling priority)
in which s1 is matched to c and, if s2 was not matched to c, could provide dynamic priority
to s2. To rule out this issue, we restrict our attention to matchings that satisfy the following
assumption.
Assumption 5.3.5. A student cannot simultaneously provide and receive sibling priority in a
given school.

Note that the assignment µ′′ in Example 5.3.4 satisfies Assumption 5.3.5 and thus is a feasible
matching with sibling priority. On the other hand, µ′ does not satisfy this assumption, because
neither s′

1 nor s′
2 would be assigned in µ′ if the other is not part of S.

Given Assumption 5.3.5, the key question is which matchings the clearinghouse prefers. As
we saw in Example 5.3.4, sibling priority in µ′′ leads to s2 displacing another students previously
assigned in c. Before focusing on which matchings are preferred, we ask ourselves the following:
Is a student with sibling priority “allowed” to displace any other student without priority? This
question leads us to define two notions of priorities: (1) Absolute priority, in which a prioritized
student s in school c can displace any other student with no priority, regardless of their random
tie-breaker; and (2) partial priority, in which a prioritized student s in school c can displace only
certain students with no priority.6

Both notions of sibling priority have implications in terms of justified-envy and, consequently,
for the stability of the matching. Therefore, we formalize the concepts of absolute and partial
justified-envy in Definition 5.3.6. For this, let Pµ(s,c) = maxa∈f(s)\{s} {pa,c : µ(a) = c, a ≻c s}
be the function that returns the highest random tie-breaker among the siblings of student s

currently assigned to c. If the student s does not have a sibling currently assigned to c, then we
define Pµ(s,c) = ps,c.

Definition 5.3.6 (Absolute and partial justified-envy). Consider a matching µ ⊆ E .
• A student with sibling priority s has absolute justified-envy towards another student s′

without sibling priority assigned to school c if (i) g(s) = g(s′), (ii) c ≻s µ(s), (iii)
f(s′) = {s′}, and (iv) there exists a sibling s̄ ∈ f(s) \ {s} such that µ(s̄) = c.

6A common approach used in practice is to assume that a prioritized student moves up in the order of the school
until they meet their (highest ranked) siblings, displacing students with a random tie-breaker lower than the sibling
who provided them with their priority.
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• A student with sibling priority s has partial justified-envy towards another student s′

without sibling priority assigned to school c if (i) g(s) = g(s′), (ii) c ≻s µ(s), (iii)
f(s′) = {s′}, and (iv) Pµ(s,c) > ps′,c.

Note that condition (iii) of both definitions requires that student s′ has no siblings; this must
be the case since absolute and partial priority describe how the competition between a family and
an individual with no siblings ensues. If no students have siblings applying to the system, then
both definitions of partial and absolute justified-envy are null and everything is reduced to the
standard notion of justified-envy. The concepts of absolute and partial justified-envy allow us to
compare students from different applicant groups: students with sibling priority vs. students with
no priority. Hence, it remains to describe how to compare students within the same applicant
group. Among students with no priority, the schools compare their random tie-breaker and
justified-envy is defined as usual. Among students with sibling priority, we define two approaches:
(1) the Dependent rule where two students s and s′ that belong to different families and they
have sibling priority in the same school c, then school c compares the tie-breaker of their highest-
ranked sibling already matched to c; (2) the independent rule where two students s and s′ belong
to different families and they have sibling priority in the same school c, then school c compares
the tie-breaker of each competing student.

In Example 5.3.7 we illustrate the dependent and independent rules.

Example 5.3.7. Consider a single school c with capacity 3, and two families, f = {s1, s2} , f ′ =
{s′

1,s
′
2}, with all students applying to the same grade. Moreover, tie-breakers are such that

ps1,c > ps′
1,c > ps′

2,c > ps2,c. Suppose that µ(s1) = c and µ(s′
1) = c. As a result, both s2 and

s′
2 get sibling priority, but there is only one seat left. If the dependent rule is in place, then

µ(s2) = c and µ(s′
2) = ∅, since ps1,c > ps′

1,c. On the other hand, if the independent rule is in
place, µ(s2) = ∅ and µ(s′

2) = c, since ps′
2,c > ps2,c.

Note that the dependent and the independent rules are used in practice. On the one hand,
the dependent rule is used in Chile [50], where the clearinghouse breaks ties at the family level
first, and then breaks ties within each family. On the other hand, the independent rule is used in
NYC to break ties among students with sibling priority.

Based on the dependent and the independent rule, we define two notions of justified-envy:
(i) dependent-justified envy and (ii) independent-justified envy.

Definition 5.3.8 (Dependent and independent justified-envy). Consider a matching µ ⊆ E .
• A student with sibling priority s has dependent justified-envy toward another student

with sibling priority s′ from another family assigned to a school c if (i) g(s) = g(s′), (ii)
c ≻s µ(s), and (iii) Pµ(s,c) > Pµ(s′,c).
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• A student with sibling priority s has independent justified-envy toward another student
s′ with sibling priority from another family assigned to a school c if (i) g(s) = g(s′), (ii)
c ≻s µ(s), and (iii) ps,c > ps′,c.

Among students with sibling priority and from the same family, the school compares their
random tie-breaker and justified-envy is defined as usual. In summary, given two students s and
s′ from two different families, we have:

Student s Student s′ Justified-envy of s toward s′

No dynamic priority No dynamic priority Standard
Dynamic priority No dynamic priority Absolute or partial

No dynamic priority Dynamic priority Absolute or partial
Dynamic priority Dynamic priority Dependent or independent

Given Definitions 5.3.6 and 5.3.8, we can provide four notions of stability, as we formalize in
Definition 5.3.9.

Definition 5.3.9. We say that a matching µ ⊆ E is partial-dependent stable if it is non-
wasteful, and if no student has partial and dependent justified-envy. Similarly, we define
absolute-independent stable, absolute-dependent stability, partial-independent stability and
partial-dependent stability.

5.4. Existence
As discussed in [135], stability is a desirable property since it correlates with the long-term

success of the matching process. Unfortunately, as we show in Propositions 5.4.1 and 5.4.2, a
stable matching under any combination of dynamic priorities, according to Definition 5.3.9, may
not exist.

Proposition 5.4.1. An absolute-(in)dependent stable matching may not exist, even if families
are of size at most two.

Proof. There are four schools, c1, c2, c3, and c4, and one single level. The schools c1 and c3

have one seat, and both the other schools have two seats. There are five families of students,
fa = {a1, a2}, fx = {x}, fy = {y}, fd = {d1, d2}, fh = {h}. The preferences of the families
(and of each student) are the following, fa : c3 ≻ c4; fx : c2; fy : c2; fd : c1 ≻ c2 ≻ c3;
fh : c4 ≻ c1. Every school has the same tie-breaker, i.e., the following student ordering ph,c >

pd1,c > px,c > py,c > pd2,c > pa1,c > pa2,c.

Note there is only one stable matching without sibling priority:

µ = {(a1,c4),(a2, ∅),(x,c2),(y,c2),(d1,c1),(d2,c3),(h,c4)}.
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Clearly, every other matching different from µ in which two siblings are not matched together, is
not stable. Notice that the only matchings that may be stable according to sibling priority are
those that would match a1, a2 in school c4 (a1 providing priority to a2) or d1, d2 in school c2 (d1

providing priority to d2).
First, assume we have a matching where a1 provides priority to a2 in c4. a1,a2 both prefer c3

over c4, so c3 must be full. But fd is the only other family that finds c3 acceptable. Suppose di

(for i = 1,2) is in c3. Then, the other sibling in fd cannot be unmatched, otherwise both d1,d2

would prefer c2 over their current assignment, and c2, with two seats, ranks d1 second (and h

does not rank c2). Additionally, the other sibling dj (j ̸= i) cannot be matched in c2, otherwise
it would provide a priority to di, who would prefer to be matched to c2 rather than c3. Therefore,
dj must be matched to c1, but then h has justified envy towards dj at c1.

Now assume that d1 and d2 are matched together in c2. They both prefer c1, so c1 must
be full. Thus, h must be matched with c1. Since h prefers c4 and has highest priority at c4, it
must be the case that both a1 and a2 are matched with c4. But this is then wasteful as c3 is
unmatched and is the first choice of family fa.

□

Proposition 5.4.2. A partial-(in)dependent stable matching may not exist, even if families are
of size at most two and there at most two grade levels.

Proof. There are four schools, c1, c2, c3, and c4, and two levels g1 and g2. At level g1, schools
c1 and c3 have one seat, and all the other schools have two seats. At level g2, c1 has one seat,
and all the other schools have zero seats. There are five families of students, fa = {a1, a2},
fx = {x}, fy = {y}, fd = {d1, d2}, fh = {h1, h2}. All the students, except for h2, apply to
level g1. The preferences of the students (which are the same for both levels) are the following,
fa : c3 ≻ c4; fx : c2; fy : c2; fd : c1 ≻ c2 ≻ c3; fh : c4 ≻ c1. The random tie-breakers are
the same for all schools and lead to the following student ordering ph2,c > pd1,c > px,c > py,c >

pd2,c > pa1,c > ph1,c > pa2,c.
Note there is only one stable matching without sibling priority:

µ = {(a1,c4),(a2,∅),(x,c2),(y,c2),(d1,c1),(d2,c3),(h1,c4),(h2, c1)}.

Clearly, every other matching different from µ in which two siblings are not matched together,
is not stable. Notice that the only matchings that may be stable according to sibling priority are
those that would match a1, a2 in school c4 (a1 providing priority to a2) or d1, d2 in school c2 (d1

providing priority to d2) or h1, h2 in school c1 (h2 providing priority to h1).
First, assume we have a matching where a1 provides priority to a2 in c4. Note that a1,a2 both

prefer c3 over c4, so c3 must be full. But fd is the only other family that finds c3 acceptable.
Suppose di (for i = 1,2) is in c3. Then, the other sibling in fd cannot be unmatched, otherwise
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both d1,d2 would prefer c2 over their current assignment, and c2, with two seats, ranks d1 second
(and h2 does not rank c2). Additionally, the other sibling dj (j ̸= i) cannot be matched in c2,
otherwise it would provide a priority to di, who would prefer to be matched to c2 rather than c3.
Therefore, dj must be matched to c1, but then h1 has justified envy towards dj at c1 since it
receives priority from h2.

Now assume that d1 and d2 are matched together at c2. They both prefer c1, so c1 must be
full. Thus, h1 must be matched with c1. Since h1 prefers c4 and has higher priority at c4 than
a2 (there are only three students that rank c4 at level g1: h1,a1,a2), it must be the case that
both a1 and a2 are matched with c4. But this is then wasteful as c3 is unmatched and is the first
choice of family fa.

Finally, assume that h1 and h2 are matched together at c1. h2 can only be matched at c1,
while h2 would prefer to be matched with c4. Therefore, c4 must be matched with a1,a2. But
this is then wasteful as c3 is unmatched and is the first choice of family fa.

□

One important factor for the non-existence of a partial-(in)dependent stable matching is that
priorities across different grade levels can go in any possible direction, i.e., there may be families
where the provider of sibling priority is at a lower level and others where the provider is at a higher
level. In order to mitigate this, some clearinghouses may impose additional rules, such as the one
used in Chile, where there is a specified order (e.g., decreasing) in which grade levels are processed
and, consequently, sibling priorities can only move according to that order (e.g., providers are in
higher grades and receivers in lower ones). However, as we show in Proposition 5.4.3, the non-
existence results hold even if we define an order in which priorities move across grade levels.

Proposition 5.4.3. A partial-(in)dependent stable matching may not exist, even if families are
of size at most two and there is a fixed order in which siblings provide priorities between grade
levels, and there is a single tie-breaker, i.e., ps,c = ps for all c ∈ C. This non-existence result also
holds for absolute-(in)dependent stability.

Proof. Let Γ be the instance provided in the proof of Proposition 5.4.2 with the two levels g1

and g2. We create another instance Γ′ which is a copy of Γ where the families and the schools
have different names. Moreover, the names of the two levels are switched and the agents of Γ do
not rank those of Γ′ and vice-versa. When we juxtapose Γ and Γ′ to create a new instance Γ′′, we
find that for any priority ordering between grade levels g1 and g2 there is no partial-(in)dependent
stable matching. □

5.4.1. Guaranteed Existence under Refined Family Preferences

An alternative explanation for the non-existence results described in the previous section is
that, although students may benefit from the sibling priority, they still aim to be allocated in
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their most preferred school, regardless of the matching of their siblings. However, in many cases,
the primary goal of the families is to get their siblings assigned to the same school. Indeed,
some school districts may define as infeasible matchings where siblings are separated [59]. In
other cases, the clearinghouse may explicitly elicit whether the family wants to prioritize the joint
assignment of their siblings over their individual preferences. For instance, the Chilean school
choice system allows families to submit a family application, whereby the family states that they
prefer their siblings to be assigned to the same school over any assignment where this does not
happen, even if the siblings end up being assigned together in a lower preferred school (see [50]
for more details).

To capture these settings, we assume that families lexicographically prefer that their members
are assigned to the same school over any other assignment where they are separated. For instance,
if family f includes first school c and then c′ in their list, then the actual preferences of each
member of s ∈ f can be written as (c,c) ≻s (c′,c′) ≻s c ≻s c′, where the tuples represent that
student s prefers to be assigned with at least one sibling and the non-tuples refer to individual
preferences. We formalize this in Assumption 5.4.4.
Assumption 5.4.4. Students preferences are lexicographic, so that they first prefer to be assigned
with at least one of their siblings, and then to be individually assigned to the schools reported in
the family list.

Algorithm 7 Direct matching mechanism
1: Initialize: H = S, µ = ∅
2: while H ̸= ∅ do
3: Find: s⋆ = argmaxs∈H {ps}, f ⋆ = f(s⋆) ∩H = {s⋆, s⋄}, g⋆ = g(s⋆) ▷ Note:

s⋄ = ∅ ⇔ f ⋆ = {s⋆}
4: Initialize: c = ∅
5: for c ∈≻f⋆ do ▷ In decreasing order of pref.
6: if

∣∣∣µg⋆(c)
∣∣∣ < qg⋆

c then
7: if c = ∅ then
8: Update: c← c

9: if s⋄ = ∅ then
10: Update: µ← {(s⋆, c)}, H ← H \ {s⋆}
11: break
12: if s⋄ ̸= ∅ and

∣∣∣µg(s⋄)(c)
∣∣∣ < qg(s⋄)

c then
13: Update: µ← {(s⋆, c), (s⋄, c)}, H ← H \ f ⋆

14: break
15: if s⋆ ∈ H then
16: Update: µ← {(s⋆, c)}, H ← H \ {s⋆}
17: return µ.

Note that this assumption only restricts the space of families’ preferences and, thus, does not
affect the different definitions of stability under dynamic priorities stated in Definition 5.3.6.
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This assumption turns to be crucial for establishing the existence of a matching with dynamic
priorities. Before we present the theoretical result, we present the mechanism that finds such
a matching. This mechanism, outlined in Algorithm 7, extends the Random Serial Dictatorship
(RSD) algorithm [7] to jointly assign siblings if there is enough capacity to accommodate them.
Specifically, the algorithm iterates over students in decreasing order of their random tie-breaker
(Step 3). If a student s has no siblings (Step 9), the algorithm matches s to their most preferred
school among those with seats left (Step 10). If a student s has a sibling (Step 12), then the
algorithm stores (in c) s’s most preferred school with seats left in g(s) and then tries to jointly
assign the family f(s) in order of their preferences: If school c has seats left in both grades,
then both siblings are assigned to c (Step 13); in contrast, if no such school exists, student s is
assigned to c (Step 16).

As we show in Theorem 5.4.5, if families’ preferences follow Assumption 5.4.4 and families
are of size at most two, then a partial-dependent stable matching exists.

Theorem 5.4.5. A partial-dependent stable matching exists when families are of size at most
two, their preferences satisfy Assumption 5.4.4 and there is a single tie-breaker, i.e., ps,c = ps for
all c ∈ C. Moreover, such a matching can be found using Algorithm 7 in O(|S|2 log |S|+ |S|· |C|).

Proof. Since the number of agents is finite and at least one student is removed from H in each
iteration, we know that Algorithm 7 finishes. Our proof consists in demonstrating the following
statement by induction: At the end of every while iteration, the matching µ is such that no
student in S \H has partial-dependent justified envy.

Basis. At the end of the first iteration, one of the following three cases holds: (i) µ(s⋆) = ∅,
(ii) µ(s⋆) ̸= ∅ and µ(s′) = ∅ for all s′ ∈ S \ {s⋆}, or (iii) µ(s⋆) = µ(s⋄) ̸= ∅. In the first case,
it means that there is no school listed by s⋆ that has an open seat in grade g⋆ and, thus, s⋆ has
no justified-envy as no school has seats open. In the second case, s⋆ is matched to their most
preferred school with seats left in g⋆; if s⋄ = ∅, then s⋆ has no justified envy because there are
no schools that s⋆ prefers and that have open seats. If s⋄ ̸= ∅, then it means that there is no
school with seats open in g(s⋄) and, thus, the family cannot have dependent justified envy. In the
last case, family f ⋆ = {s⋆, s⋄} is matched to their most preferred school that can accommodate
both siblings at their respective grades. Note that the students in f ⋆ cannot have justified-envy
because the schools they prefer do not have enough seats to accommodate both siblings, and
they prefer to be matched together over being separated.

Inductive step. Suppose that after n iterations of the while loop, no student in S \H has
partial-dependent justified envy. We need to show that this is also true at the end of the n + 1
iteration. If H = ∅, then this holds by inductive hypothesis. Otherwise, let s⋆ be the student
in H with the highest random tie-breaker. Then, we start searching for the acceptable schools
starting from the most preferred. As soon as we find a school c with an open seat in grade g⋆
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(if any), we record it. If none of the schools listed by family f ⋆ have an open seat for grade g⋆,
then s⋆ remains unassigned and has no justified envy towards any other matched student since
they all have higher tie-breaker. Hence, we assume c ̸= ∅. If s⋆ has no siblings, then we simply
add (s⋆,c) to µ. Since all the other students previously assigned have a higher random tie-breaker
than s⋆ and c is the most preferred school by s⋆ among those with seats left, then s⋆ cannot have
justified-envy. Finally, if s⋆ has a sibling and school c cannot accommodate both siblings, we
continue to the next preference of the family. If there is no school that can accommodate both
siblings in f ⋆, then we match s⋆ to c while s⋄ remains unassigned (recall that, by construction,
s⋄ ∈ H and, thus, ps⋆ > ps⋄). As before, f ⋆ cannot have partial justified envy because there is
no school that can accommodate both {s⋆, s⋄} and all students previously assigned have a higher
random tie-breaker than both siblings. Otherwise, if there is a school c̃ ⪯s⋆ c with two open
seats for the siblings in f ⋆, then the algorithm matches both students to c̃. By Assumption 5.4.4,
we know that student s⋆ prefers being assigned with their sibling in c̃ over being separated from
their sibling and being assigned to c, and we also know that s⋄ prefers to be matched with s⋆

over being separated. Finally, since there is no school they prefer that can accommodate both
of them and all previously assigned students have a higher random tie-breaker, we conclude that
family f ⋆ cannot have partial-dependent justified envy.

So far, we have shown that at the end of the while loop we obtain a partial-dependent justify
envy free matching µ. To show that this matching is stable, it remains to show that µ is non-
wasteful. To find a contradiction, suppose it is not. Then, there exists a pair (s,c) such that
s ≻c ∅, c ≻s µ(s), and

∣∣∣µg(s)(c)
∣∣∣ < qg(s)

c . If s has no siblings, then we know that c had seats
open in grade g(s) in the iteration where s was assigned (because

∣∣∣µg(s)(c)
∣∣∣ is non-decreasing in

the iterations), so this leads to a contradiction as the algorithm would have assigned s to c. If
s has a sibling s′, there are two cases. If µ(s) ̸= µ(s′), then it means that there was no school
in the family’s list that could accommodate both siblings, and thus they were separated. In that
case, the algorithm would assign student s to school c, i.e., their most preferred school with
open seats. Since c had opened seats in that iteration, it means that c ⪰s c ≻s µ(s), and thus
s should have been assigned to c. Finally, if µ(s) = µ(s′) ̸= ∅, then s prefers being assigned
to c over µ(s) only if s can get assigned there with s′. However, this did not happen because,
when processing student s, school c had no seats left in grade g(s′) (otherwise, we would have
µ(s) = µ(s′) = c) and, thus, given Assumption 5.4.4, it would not be true that s prefers to be
assigned in c over their current assignment µ(s).

To conclude, note that in the worst case every student has no siblings and needs to apply
to every school. Recall that a set of size |S| can be sorted in O(|S| · log |S|). Steps 2-17 will
be done at most |S| times. Step 3 takes at most O(|S| · log |S|) and Steps 5-14 O(|C|). Thus,
O(|S| · (|S| · log |S|+ |C|)) = O(|S|2 log |S|+ |S| · |C|). □
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Note that the proof of Theorem 5.4.5 is constructive, as it provides a mechanism that allows
finding a stable matching under dynamic preferences. If there are families of size larger than two,
a partial-dependent stable matching may not exist, as Proposition 5.4.6 illustrates. Nevertheless,
considering that the vast majority of families that participate in these systems involve at most
two siblings,7 and that families generally prefer that their members go to the same school, this
result is of high practical value.

Proposition 5.4.6. A partial-(in)dependent stable matching may not exist, even if families are
of size at most three, there are at most two grades, student preferences satisfy Assumption 5.4.4,
and there is a single tie-breaker, i.e., ps,c = ps for all c ∈ C.

Proof. Consider an instance of the problem with five schools, c1, c2, c3, c4, and c5, and two grade
levels {g1,g2}. In g1, c1, c3 and c5 have capacity one, and all the other schools have capacity two.
In g2, c3 has capacity one, and all the other schools have capacity zero. In addition, suppose there
are five families of students, fa = {a}, fb = {b1, b′

1, b2}, fe = {e}, fd = {d1, d′
1}, fh = {h}. All

the students, except for b2, apply to level g1. The preferences of the students (which are the same
for both levels) are the following, fa : c1 ≻ c2; fb : c2 ≻ c3; fe : c4 ≻ c1; fd : c5 ≻ c4; fh : c3 ≻ c4,
and the random tie-breakers are such that pb2 > ph > pd1 > pe > pa > pb1 > pb′

1
> pd′

1
.

Note there is only one stable matching without sibling priority, namely µ = {(a,c1), (b1,c2),
(b′

1,c2), (b2,c3), (e,c4), (d1,c4), (d′
1,c5), (h,c3)}. If we then try to sequentially adjust µ following

the preferences and stability assumptions of Theorem 5.4.5, we return to µ. Moreover, any other
possible matching with sibling priority is not partial-dependent stable since the only two families
that have siblings are fb and fd. Family fb can have siblings matched together only in schools
c2 and c3, while family fd can have siblings matched together only in school c4. Both cases are
covered in the dynamics that begins from matching µ. Note that this example still holds if we
consider adaptive stability under partial independent justified-envy. □

As we formalize in Theorem 5.4.7, another case in which we can guarantee existence is when
there is a single grade level. This case is also of practical relevance, since it would allow us to
account for dynamic priorities in the presence of twins, and it would also capture other relevant
settings such as daycare and refugee resettlement, which could be thought as having a single
grade level.

Proposition 5.4.7. A partial-dependent stable matching exists when there is a single grade level,
families preferences satisfy Assumption 5.4.4 regardless of the family sizes, and there is a single
tie-breaker, i.e., ps,c = ps for all c ∈ C. Such a matching can be found in O(|S|2 log |S|+|S|·|C|).

7In Chile, less than 5% of families involve more than two siblings simultaneously participating in the assignment
process.
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Proof. The proof follows a similar reasoning as the one of Theorem 5.4.5, provided that Algo-
rithm 7 is updated as follows. First, in Step 3, the set f ⋆ may have more than two members.
In Step 13, the algorithm may try to match as many of the siblings as possible to school c,
provided that it has open seats in the corresponding grade levels. This operation can be done
safely because there is a single tie-breaker, siblings have the same preferences, and we use the
dependent rule to break ties among students with sibling priority. Therefore, the algorithm does
not cycle, which indeed may happen in the case of families of size three on multiple levels. □

5.5. Complexity Analysis: Maximum Cardinality
In this section, we analyze the computational complexity of finding a partial-dependent stable

matching that is of maximum cardinality, when preferences satisfy Assumption 5.4.4. In this
setting, there may be partial-dependent stable matchings of different cardinalities, as we show in
the following example.

Example 5.5.1. Suppose that there is one grade level, two schools c1 and c2 with capacities
three and two, respectively, and four families fa = {a}, fb = {b}, fd = {d}, fe = {e1, e2}. The
preferences of the families are fa : c2 ≻ c1, fb : c1, fd : c1, fe : c1 ≻ c2, while the random
tie-breakers are as follows: for c1 we have pa,c1 > pb,c1 > pe1,c1 > pd,c1 > pe2,c1 and for c2 we
have pe1,c2 > pe2,c2 > pa,c2 (fb and fd do not apply to c2, so we do not need tie-breakers for
them). Note that we can find two partial-dependent stable matchings of different cardinality:
µ′ = {(a,c1), (b,c1), (d,c1), (e1, c2), (e2, c2)} and µ′′ = {(a1,c2), (b,c1), (d,∅), (e1, c1), (e2, c1)}.

As the previous example illustrates, the Rural Hospital Theorem [132, 134] does not hold in
our framework. Therefore, it is essential to understand the complexity of finding the maximum
cardinality partial-dependent stable matching. We now formalize the problem of finding such a
matching.
Problem 12. Let Γ = ⟨S,C,F , ≻, c, {ps,c}s∈S,c∈C⟩ be an instance of the school choice problem
with families, incomplete preference lists for the families, and let K ∈ Z+ be a non-negative
integer target value. Is there a matching µ such that |µ| ≥ K, and µ is a partial-dependent
stable matching in Γ?

We denote this problem as Max-Cardfam.
In Theorem 5.5.2, we show that Problem 12 is NP-complete, and we defer the proof to

Appendix 5.8. Note that this result also holds if we restrict attention to partial-independent
stable matchings.

Theorem 5.5.2. Problem 12 is NP-complete, even if there are families of size at most three and
two grade levels.
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5.6. Conclusions
Motivated by the context of school choice with sibling priorities, we study the problem of

finding a stable matching under dynamic priorities, i.e., students get prioritized if they have
siblings participating in the process and who are currently assigned. We start by introducing
a model of a matching market where siblings may apply together to potentially different grade
levels. We argue that the standard notion of stability may not work if we allow priorities to
(adapt) be a function of the matching. As a result, we define a series of assumptions on families’
preferences and school priorities tailored to follow existent practices, and we introduce several
novel notions of stability under dynamic priorities. Although we show that a stable matching may
not exist in general, such a matching exists if families strictly prefer that their members remain
together over being separated and that families are of size at most two. Moreover, we show that
a stable matching also exists when there is a single grade level for any family size. Finally, we
show that finding a maximum cardinality stable matching under dynamic priorities is NP-hard.

Our results show that dynamic priorities must be carefully designed to ensure the existence
of a stable assignment. Moreover, several design choices have relevant implications, namely, how
to break ties within and across priority groups and how families prioritize the joint assignment of
their members. Hence, the insights derived from our work may help design these policies, either
in the context of school choice or in other contexts, such as daycare assignments, and refugee
resettlement, among others.

Our work opens several directions for future research. First, we are working on extending our
existence and complexity results to the other notions of stability introduced in our work. Second,
we are working on how to efficiently solve the problem of finding a stable matching under dynamic
priorities using mathematical programming tools. Finally, we are collaborating with the Ministry
of Education of Chile to showcase the potential benefits of considering dynamic priorities when
solving the assignment of students to schools.

Appendix

5.7. Extra discussion on how to process grade levels and
others

As proposed in [50], one option to handle dynamic priorities is to define an order in which
grades are processed and sequentially solve the assignment of each grade level using the student-
optimal variant of DA. More specifically, the algorithm in [50] starts processing the highest grade
(i.e., 12th grade). Then, before moving to the next grade, the sibling priorities are updated,
considering the assignment of the grade levels already processed. After processing the final grade
level (i.e., Pre-K), this procedure finishes. Notice that this heuristic obtains a stable assignment
if the preferences of families satisfy higher-first, i.e., each family prioritizes the assignment of
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their oldest member (see Proposition 2 in [50]). However, this is not the case if some families’
preferences do not satisfy this condition. In addition, as Example 5.7.1 illustrates, the order in
which grades are processed matters.

Example 5.7.1. Consider an instance with two grades g1 < g2, two schools c1 and c2 with one
seat in each grade, one family f = {f1,f2}, and two additional students, a1 and a2. Students f1

and a1 apply to grade g1, and f2 and a2 apply to grade g2. Finally, the preferences and priorities
are:

(c2,c1) ≻f (c1,c1) ≻f (c2,c2) ≻f (c1,c2)

c2 ≻a1 c1

c1 ≻a2 c2

pa1,c1 > pf1,c1 and pa2,c1 > pf2,c1

pa1,c2 > pf1,c2 and pa2,c2 > pf2,c2 .

(5.7.1)

Since the preferences ≻f are responsive, we can easily derive the related individual pref-
erences ≻f1 and ≻f2 , which are c2 ≻f1 c1 and c1 ≻f2 c2 [94, 93]. We observe that,
if grades are processed in decreasing order (as in Chile), we obtain the matching µ =
{(f1, c2), (a1, c1), (f2, c2), (a2, c1)}. In contrast, if we process grades in increasing order, we
obtain the matching µ′ = {(f1, c1), (a1, c2), (f2, c1), (a2, c2)}. □

5.8. Missing Proofs in Section 5.5
Our reduction is done from the problem of finding a maximum cardinality stable matching in

a market where schools are partitioned in sets and each set of schools receives some extra seats
that should be allocated optimally. Note that a similar proof can be given for partial-independent
priorities.
Problem 13. Let Γ = ⟨S,C,F , ≻, c, {ps,c}s∈S,c∈C⟩ be an instance of the school choice problem
with families, incomplete preference lists for the families, a partition P = {C1, . . . ,Cq} of C,
budget for each part {Bk ∈ Z+ : k ∈ [q]}, and let K ∈ Z+ be a non-negative integer target
value. Is there a non-negative allocation vector t ∈ ZC

+ and a matching µt such that |µt| ≥ K,

where t is such that ∑
j∈Ck

tj ≤ Bk for each k ∈ [q] and µ is a stable matching in the expanded
instance Γt?

We denote this problem as Max-Cardsub
exp HRI.

Proof of Theorem 5.5.2. We provide a reduction from Max-Cardsub
exp HRI [40], the prob-

lem of finding a maximum cardinality stable matching in a instance where preferences may be
incomplete, schools are partitioned into subsets and every such set has a budget to expand
schools’ capacities. From the proof of Theorem 5.2 in [40], we deduce the following assumptions
on the generic instance of Max-Cardsub

exp HRI.
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• The partition of schools P = {C1, . . . , Cp} is made of subsets of size at most two and
for each such Ck there is an extra budget Bk ≤ 1 for k ≤ l.
• Every school that is partitioned as a singleton has capacity one and an extra capacity

zero. We denote by C⋆ the set of these schools.
• Every school that is partitioned in a subset of cardinality two (Ck), has capacity zero; the

budget of extra capacities allocated to such pair of schools is one, Bk = 1. We denote by
C⋆⋆ the set of schools with capacity zero; for simplicity we assume that Ci with i ≤ t we
have the schools with capacity zero. Every school with capacity zero has a preference list
of length one, i.e., it ranks only one student; moreover, we make the crucial assumption
that one of the two students ranked by the pair of schools is ranked only once by a pair
of schools.8

The objective in instance Γ is to find a stable matching of cardinality at least K. Given an
instance Γ of Problem 12, we build an instance Γ′ of Max-Cardfam with two grades, g1, g2,
and families of size at most three. First of all, we create a copy of S in Γ′. For every school c

in C⋆ we create a copy of c in Γ′ with the same preference list and the same capacity at level
g1. For a school c in C⋆⋆, let Cr = {c′

r, c′′
r} be the subset of the partition P to which c belongs.

Assume the preference lists of c′
r, c′′

r in Γ are c′
r : s′

r and c′′
r : s′′

r , respectively. In Γ′ we create two
new schools c̄r and c+

r (note that we make no copies of c′
r and c′′

r) and three new students y′
r,

y′′
r and wr. In Γ′, students s′

r, s′′
r , wr and y′

r apply to level g1, while y′′
r applies to level g2. All the

other students in Γ that are not ranked by a school in C⋆⋆, apply in Γ′ to grade g1. On the other
hand, school c+

r has only one capacity at level g1 and one capacity at level g2; school c̄r has two
capacities at level g1 and no seats at level g2. We assume s′′

r is the student that is only ranked
once by a pair of schools in Γ, and we create the family fr = {s′′

r , y′
r, y′′

r} in Γ′. The preferences
of these agents in Γ′ are as follows.

• c̄r : y′
r ≻ s′

r ≻ wr ≻ s′′
r ≻ y′′

r .
• c+

r : wr ≻ y′
r ≻ y′′

r ≻ s′′
r .

• wr : c̄r ≻ c+
r .

• In the original preference list of s′′
r we substitute c′

r with c+
r ≻ c̄r. Therefore, the preference

list of fr is the same as s′′
r . All the schools ranked by fr that are not {c+

r , c̄r}, they rank
y′

r and y′′
r last.

• In the original preference list of s′
r we substitute c′′

r with c̄r.

8In [40],the authors prove that Max-Cardsub
exp HRI is NP-hard by proving a reduction from the problem of

finding the maximum cadinality stable matching with ties and incomplete lists [108]. The assumption that we
made (the fact that each school in a pair lists only one student), follows from the fact that in the proof of
Theorem 2 in [108], the preference list of xi,r is only made by a tie of length two. The second assumption (the
fact that one of the two students ranked by the pair is only listed by one pair) follows from the fact that wi,r is
only ranked by xi,r in the proof of Theorem 2 in [108].
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From the assumption that s′′
r is ranked only once by a pair in Γ, it follows that s′′

r has only
two siblings, which are exactly y′

r and y′′
r . Note that c+

r and y′′
r will always be matched together.

Let l be the number of paired sets from P in Γ (i.e., half the number of schools in C⋆⋆).
Let M be a stable matching in Γ of cardinality at least K. Our goal is to find a corresponding

partial-dependent stable matching M ′ in Γ′ that has a cardinality at least K +3 · l. Let (c,s) be a
pair in M . If c is in C⋆, then we match (c,s) in M ′. Otherwise, c is part of a pair Cr = {c′

r, c′′
r}.

If c = c′
r, then we match (c̄r,s

′
r), (c̄r, wr), (c+

r , y′′
r ) and y′

r with a school ranked at least as c+
r . On

the other hand, if c = c′′
r , then we match (c̄r,s

′′
r), (c̄r, y′

r), (c+
r , wr), and (c+

r , y′′
r ). Finally, it may

happen that some schools in C⋆⋆ may be under-subscribed in Γ; in this case, we match (c̄r, wr),
(c+

r , y′′
r ), and y′

r with a school ranked at least as c+
r . We need to prove that the matching M ′

that we just built is partial-dependent stable in Γ′. First, the pairs involving schools in C⋆ directly
inherit the stability from M . Note that the set of students {y′′

r , y′
r} will always be matched: As

mentioned earlier, y′′
r will always be matched to c+

r , while y′
r will be matched to a school that

is ranked at least as c̄r. Indeed, y′
r can be matched to c+

r , c̄r or a school more preferred than
these, which is under-subscribed in matching Γ. Similarly, also student wr is always matched
to the set of schools {c̄r, c+

r }. Clearly, y′′
r cannot have partial-dependent justified envy because

it is assigned to the only acceptable school with a spot in g2. If s′
r is matched to c̄r, then s′′

r

cannot have partial-dependent justified envy because it is matched or to a better school than c̄r,
or because it does not receive priority from y′

r (which, in this case, is matched to c+
r - recall that

y′
r ≻c+

r
s′′

r). If, instead, s′′
r is matched to c̄r, then s′

r, wr cannot have partial-dependent justified
envy because s′′

r uses the priority obtained by y′
r. Also y′

r cannot have partial-dependent justified
envy: c+

r is matched to its preferred student (wr) and all the schools more preferred than c̄r,
prefer s′′

r to y′
r. Finally, note that if neither s′

r nor s′′
r are matched to c̄r, then none of the students

in the pairs (c̄r, wr), (c+
r , y′′

r ), and (y′
r, c̃) (where c̃ is a school ranked at least as c+

r ) may have
partial-dependent justified envy. Therefore, we have built a partial-dependent stable matching in
Γ. Note that for every pair of schools in C⋆⋆, we have introduced three new students that are
always matched. Hence, we obtained a matching M ′ of cardinality K + 3 · l.

Let M ′ be a partial-dependent stable matching in Γ′ of cardinality K ′. Given r ≤ l, wr will
always be matched to a school in {c̄r, c+

r }, y′′
r will always be matched to c+

r , and y′
r to a school

ranked at least as c̄r. Therefore, 3 · l students will always be matched in M ′. Our goal is to find
a corresponding stable matching M in Γ of cardinality at least K = K ′− 3 · l. For every student
s matched to a school c in C⋆ in Γ′, we match (s,c) in Γ. On the other hand, if a student s is
matched to a school c̄r for a certain r ≤ l, then, if s = s′

r, in Γ we match (s′
r,c

′
r) by allocating one

extra capacity to c′
r; otherwise, if s = s′′

r , in Γ we match (s′′
r ,c′′

r) by allocating one extra capacity
to c′′

r . If some c̄r does not match any student of the form s′
r, s′′

r , then both students are matched
to a school they rank better; hence, in Γ, we can allocate the extra spot arbitrarily to c′

r and
c′′

r . We now prove the following statement: If some c̄r does not match any student of the form
s′

r, s′′
r , then both students are matched to a school they rank better. If the previous statement
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is true, then the matching M in Γ is stable since it mimics the stability of M ′ without needing
the students of the form {y′

r, y′′
r , wr}r≤l which only make sure we can do the other inclusion;

hence, we can obtain M as a restriction of matching M ′ in Γ′ without considering the students
{y′

r, y′′
r , wr}r≤l. To prove the statement, let us assume that there is r ≤ l for which s′

r and s′′
r

are not matched to c̄r and at least one of the two students is matched to a school ranked worst.
Assume s′

r is matched to c̃ such that c̄r ≻s′
r

c̃. Then, (s′
r, c̄r) is a blocking pair in Γ′ since c̄r has

capacity two and s′
r is ranked second by c̄r. Therefore, s′

r is matched to a school more preferred
than c̄r. Now let us assume that s′′

r is matched to c̃ such that c̄r ≻s′′
r

c̃. Then, (s′′
r , c̄r) is a

blocking pair in Γ′ for one of the following two reasons: 1) y′
r is matched to c̄r and s′′

r can use
sibling priority, 2) there is one empty capacity in c̄r therefore the condition of non-wastefulness
is not met. Finally, note that the students matched in Γ′ that are not of the form {y′

r, y′′
r , wr}r≤l

are exactly K, which is the number of students that we matched in M .
Note that the proof holds even if we set K = n, i.e., we are looking for a perfect stable

matching.
To build our new instance, we have introduced 3 · l new students, and we have substituted l

schools with 2 · l new schools. Since l ≤ |S|, the reduction that we built is polynomial.
□
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Chapter 6

Conclusions and Future Work

To establish a matching market, we require several essential components: The ensemble of par-
ticipating agents, the permissible pairings between them, their capacities (limiting their engage-
ments), and the rankings reflecting each agent’s pairing preferences. These fundamental elements
form the very essence of defining a matching market. These components collectively form the
essential framework for understanding and modeling matching markets, allowing us to analyze
and optimize allocation processes (matching mechanisms) in various real-world scenarios. In the
realm of education admission systems, numerous pertinent real-world challenges remain elusive
within the confines of existing matching market formalisms. As a compelling illustration, consider
the impending scenario projected for the year 2029, where an unprecedented surge in student
applications to the higher education institutions of Québec is anticipated [48]. Alas, a disheart-
ening predicament looms: The grim prospect that approximately 40,000 aspiring scholars may
find themselves without the coveted opportunity for enrollment, a predicament that underscores
the urgency for novel methodologies and solutions within the domain of education admission.

In this thesis, we formulate and address the following questions. How should scarce resources
be allocated to expand in the most impactful way the higher education system? There are also
cases in which school redistricting is necessary for a reduction in the application rate. How should
a policymaker reduce the education budget or incorporate several schools while affecting the least
the education system? In general, how can we allow the highest number of students to access
education? And, how should we promote academic merit? Siblings often apply together; how
can we match family members to the same school for the benefit of families?

In the conventional approach of the stable matching problem, capacities and priorities are
typically regarded as input parameters. In this thesis, we depart from this conventional perspec-
tive and offer fresh, conceptually sound paradigms that can inform policymaking strategies for
education systems. The theme of this thesis revolves around the examination of many-to-one
matching scenarios wherein capacities and priorities play an integral role in determining a stable
matching. Dynamic capacities and dynamic priorities herald an innovative and simple approach



for addressing the aforementioned inquiries with promising practical benefits. Our algorithmic
contribution is based on a thorough theoretical understanding of the problems we introduce. Our
methods, which are effective and exact, empower decision makers.

6.1. Dynamic Capacities
In our first two works, Chapters 3 and 4, we consider the many-to-one stable matching

problem, where capacities vary and are allocated subject to a budget. Using the terminology of
the many-to-one School Choice model, we introduce the problem of allocating optimally extra
capacities to the schools for the benefit of the students, while also deciding the matching between
them (schools and students). Allocating extra capacities to the most popular school based solely
on popularity may result in a sub-optimal solution. Indeed, we prove that this optimization
problem cannot be approximated within O(n 1

6 −ε), where n is the number of schools. This strong
theoretical limitation, motivated us to focus on mathematical programming tools that could
effectively solve the problem in practice. We introduce a new mixed-integer linear formulation
with a pseudo-polynomial number of stability constraints in the input of the problem. Despite the
exponential number of constraints, we devise a separation algorithm that exploits the structure of
the problem and yields a state-of-the-art cutting plane method. Indeed, our cutting plane method
outperforms the direct resolution of the generalization of known mathematical programming
formulations in a synthetic data-set. Moreover, our methodology is effective in solving instances
based on data from the Chilean school choice system. Solving these cases in a short time-frame
is of practical interest, as it enables policymakers to analyze different scenarios such as budget
values. In this direction, future work could focus on speeding up our methodology, in particular
by investigating improvements to our formulation and separation step.

From the modeling perspective, we observe that the introduction of penalties for unassigned
students allows the policymaker to tune the model according to their necessities: Do they need
to prioritize access of new students in the system or the improvement on the basis of merit? We
show that our formulation captures this trade-off between access and improvement by both a
theoretical and experimental perspective on real-world data from the Chilean school admission
system. We are currently collaborating with the Chilean institutions to embed our framework in
their system.

A crucial remark is that as soon as capacities are treated as a variable, there may be multiple
optimal solutions when the objective is the minimization of the students’ cost. This entails that
two different optimal allocations of capacities can benefit different sets of schools and different
sets of students. In this regard, a relevant open question is the following.

Which measures should a policymaker adopt to break ties between optimal solutions?

For instance, should a policymaker choose the allocation of capacities that assigns extra
capacities to a disadvantaged neighborhood or the allocation that expands the capacities of a
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popular school? Furthermore, if the policymaker needs to target disadvantaged students with
a certain profile, which optimal solution is the one more adherent to their policy? These are
some of the questions that a policymaker needs to address when considering the improvement of
a community, or, more simply, when it needs to impact the education of students via targeted
scholarships.

6.2. Dynamic Priorities
In real-world education admission systems, schools policies often give priority to matching

siblings to the same school by assigning additional scores to students with siblings. As a result,
these priorities are typically incorporated into the students’ rankings before the matching process
occurs.

In this thesis, we study many-to-one matching markets in which priorities are part of the deci-
sion process rather than being given as an input. We embed this idea in the framework of stable
matching with complementarities, which is one of the most challenging problems in matching
under preferences. In the realm of matching theory with complementarities, the literature has
been rife with negative outcomes over the past four decades. However, it is noteworthy that a
few scholarly contributions have successfully delineated the specific conditions under which the
existence of a stable matching can be assured within this intricate context. In this thesis, which
focuses on the context of the school choice admission process, we successfully identify definitions
of sibling priority that ensure the existence of a stable matching and those that do not; moreover,
we provide mechanisms that find such stable matchings. Our next steps involve two key aspects:
First, we aim to determine the conditions under which the Rural Hospital Theorem holds, en-
suring that all stable matchings have the same size. Second, we want to assess whether our
proposed mechanisms are strategyproof. Additionally, existing literature has demonstrated that
by introducing a fixed number of extra capacities, it becomes possible to guarantee the existence
of a stable matching in markets with complementarities. This observation prompts a question in
scenarios involving priorities:

Can we establish the minimum number of extra capacities required to ensure the existence of a
stable matching when sibling priorities are considered, regardless of the specific priority

definition?

Sibling priority seems to be a natural notion to embed in a school choice system involving
elementary school to high school students. However, it may be more difficult to justify this type of
family priority for college education or for the hospital-resident problem with couples; indeed, both
of these settings usually involve a stronger component of merit in their admission process, while
the current definition of sibling priority may violate some standard notions of merit by allowing
siblings to take the spots of students with a higher ranking. Moreover, in the hospital-resident
setting, it would be more natural to talk about partner priority, in line with the original literature
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of stable matching with complementarities. An intriguing question for future research could be
as follows.

How should we formulate partner priority in a merit-based setting?

In conclusion, this thesis has embarked upon a comprehensive exploration of matching markets,
shedding light on their intricate dynamics when incorporating capacities and priorities. By shifting
the traditional paradigm and introducing innovative concepts like dynamic capacities and dynamic
priorities, we have not only extended the theoretical boundaries of matching theory but also
provided valuable insights with practical implications, particularly in the context of education
systems. Our findings underscore the necessity for reevaluating and reformulating existing policies
to meet the evolving demands of modern society.

182



References

[1] Atila Abdulkadiroglu, Yeon-Koo Che, Parag A Pathak, Alvin E Roth, and Olivier Tercieux. Minimizing
justified envy in school choice: the design of New Orleans’ OneApp. Technical report, National Bureau of
Economic Research, 2017.

[2] Atila Abdulkadiroğlu, Yeon-Koo Che, and Yosuke Yasuda. Resolving Conflicting Preferences in School
Choice: The Boston Mechanism Reconsidered. American Economic Review, 101(1):399–410, feb 2011.

[3] Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. The New York City high school match. American
Economic Review, 95(2):364–367, 2005.

[4] Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. Strategy-proofness versus efficiency in matching
with indifferences: Redesigning the NYC high school match. American Economic Review, 99(5):1954–1978,
dec 2009.

[5] Atila Abdulkadiroğlu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. The Boston public school match.
American Economic Review, 95(2):368–371, 2005.

[6] Atila Abdulkadiroglu, Parag A Pathak, Alvin E Roth, and Tayfun Sönmez. Changing the Boston school
choice mechanism, 2006.

[7] Atila Abdulkadiroğlu and Tayfun Sönmez. Random serial dictatorship and the core from random endowments
in house allocation problems. Econometrica, 66(3):689–701, 1998.

[8] Atila Abdulkadiroğlu and Tayfun Sönmez. School choice: A mechanism design approach. American Eco-
nomic Review, 93(3):729–747, may 2003.

[9] Kenshi Abe, Junpei Komiyama, and Atsushi Iwasaki. Anytime capacity expansion in medical residency match
by Monte Carlo tree search. arXiv preprint arXiv:2202.06570, 2022.

[10] Hernán G Abeledo, Yosef Blum, and Uriel G Rothblum. Canonical monotone decompositions of fractional
stable matchings. International Journal of Game Theory, 25(2):161–176, 1996.

[11] Hernán G Abeledo and Uriel G Rothblum. Courtship and linear programming. Linear algebra and its appli-
cations, 216:111–124, 1995.

[12] Tobias Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Computation,
1:1–41, 2009.

[13] Kolos Csaba Ágoston, Péter Biró, and Iain McBride. Integer programming methods for special college
admissions problems. Journal of Combinatorial Optimization, 32(4):1371–1399, 2016.

[14] Narges Ahani, Tommy Andersson, Alessandro Martinello, Alexander Teytelboym, and Andrew C Trapp.
Placement optimization in refugee resettlement. Operations Research, 69(5):1468–1486, 2021.

[15] Maxwell Allman, Itai Ashlagi, Irene Lo, Juliette Love, Katherine Mentzer, Lulabel Ruiz-Setz, and Henry
O’Connell. Designing school choice for diversity in the San Francisco Unified School District. In Proceedings
of the 23rd ACM Conference on Economics and Computation, pages 290–291, 2022.



[16] Maxwell Allman, Itai Ashlagi, Irene Lo, Juliette Love, Katherine Mentzer, Lulabel Ruiz-Setz, and Henry
O'Connell. Designing school choice for diversity in the San Francisco Unified School District. In Proceedings
of the 23rd ACM Conference on Economics and Computation. ACM, jul 2022.

[17] Tommy Andersson and Lars Ehlers. Assigning Refugees to Landlords in Sweden: Efficient, Stable, and
Maximum Matchings. The Scandinavian Journal of Economics, 122(3):937–965, 2020.

[18] Nick Arnosti. Short lists in centralized clearinghouses. In Proceedings of the Sixteenth ACM Conference on
Economics and Computation. ACM, jun 2015.

[19] Itai Ashlagi, Mark Braverman, and Avinatan Hassidim. Stability in large matching markets with comple-
mentarities. Operations Research, 62(4):713–732, 2014.

[20] Itai Ashlagi, Afshin Nikzad, and Assaf Romm. Assigning more students to their top choices: A comparison
of tie-breaking rules. Games and Economic Behavior, 115:167–187, may 2019.

[21] Itai Ashlagi and Peng Shi. Improving community cohesion in school choice via correlated-lottery implemen-
tation. Operations Research, 62(6):1247–1264, dec 2014.

[22] Itai Ashlagi and Peng Shi. Optimal allocation without money: An engineering approach. Management
Science, 62(4):1078–1097, apr 2016.

[23] Christopher Avery, Soohyung Lee, and Alvin E Roth. College admissions as non-price competition: The case
of South Korea. Technical report, National Bureau of Economic Research, 2014.

[24] Eduardo A Azevedo and Eric Budish. Strategy-proofness in the large. The Review of Economics Studies,
86(1):81–116, 2018.

[25] Haris Aziz and Florian Brandl. Efficient, fair, and incentive-compatible healthcare rationing. In Proceedings
of the 22nd ACM Conference on Economics and Computation, pages 103–104, 2021.

[26] Mourad Baïou and Michel Balinski. The stable admissions polytope. Mathematical Programming,
87(3):427–439, 2000.

[27] Mourad Baïou and Michel Balinski. Student admissions and faculty recruitment. Theoretical Computer
Science, 322(2):245–265, 2004.

[28] Brenda S Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM
(JACM), 41(1):153–180, 1994.

[29] Michel Balinski and Guillaume Ratier. Of stable marriages and graphs, and strategy and polytopes. SIAM
review, 39(4):575–604, 1997.

[30] Michel Balinski and Guillaume Ratier. Graphs and marriages. The American Mathematical Monthly,
105(5):430–445, 1998.

[31] Michel Balinski and Tayfun Sönmez. A tale of two mechanisms: student placement. Journal of Economic
theory, 84(1):73–94, 1999.

[32] Vipul Bansal, Aseem Agrawal, and Varun S Malhotra. Polynomial time algorithm for an optimal stable
assignment with multiple partners. Theoretical Computer Science, 379(3):317–328, 2007.

[33] Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences of the
United States of America, 43(9):842, 1957.

[34] Péter Biró. Student admissions in Hungary as Gale and Shapley envisaged. University of Glasgow Technical
Report TR-2008-291, 2008.

[35] Péter Biró, Tamás Fleiner, Robert W Irving, and David F Manlove. The college admissions problem with
lower and common quotas. Theoretical Computer Science, 411(34-36):3136–3153, 2010.

[36] Péter Biró and Sofya Kiselgof. College admissions with stable score-limits. Central European Journal of
Operations Research, 23(4):727–741, 2015.

184



[37] Péter Biró, David F Manlove, and Iain McBride. The hospitals/residents problem with couples: Complexity
and integer programming models. In Experimental Algorithms: 13th International Symposium, SEA 2014,
Copenhagen, Denmark, June 29–July 1, 2014. Proceedings 13, pages 10–21. Springer, 2014.

[38] Federico Bobbio, Margarida Carvalho, Andrea Lodi, Ignacio Rios, and Alfredo Torrico. Capacity planning in
stable matching: An application to school choice. arXiv preprint arXiv:2110.00734, 2021.

[39] Federico Bobbio, Margarida Carvalho, Andrea Lodi, Ignacio Rios, and Alfredo Torrico. Capacity planning
in stable matching: An application to school choice. In Proceedings of the 22nd ACM Conference on
Economics and Computation, 2023.

[40] Federico Bobbio, Margarida Carvalho, Andrea Lodi, and Alfredo Torrico. Capacity variation in the many-
to-one stable matching problem. arXiv preprint arXiv:2205.01302v1, 2022.

[41] Lawrence Bodin and Aaron Panken. High tech for a higher authority: The placement of graduating rabbis
from Hebrew Union College—Jewish Institute of Religion. Interfaces, 33(3):1–11, 2003.

[42] Aaron L. Bodoh-Creed. Optimizing for distributional goals in school choice problems. Management Science,
66(8):3657–3676, aug 2020.

[43] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook of computa-
tional social choice. Cambridge University Press, 2016.

[44] Sebastian Braun, Nadja Dwenger, and Dorothea Kübler. Telling the truth may not pay off: An empirical
study of centralized university admissions in Germany. The BE Journal of Economic Analysis & Policy,
10(1), 2010.

[45] Eric Budish, Gerard Cachon, Judd Kessler, and Abraham Othman. Course match: A largescale implemen-
tation of approximate competitive equilibrium from equal incomes for combinatorial allocation. Operations
Research, 65(2):314–336, 2016.

[46] Caterina Calsamiglia and Maia Güell. Priorities in school choice: The case of the Boston mechanism in
Barcelona. Journal of Public Economics, 163:20–36, 2018.

[47] F Caro, T Shirabe, M Guignard, and A Weintraub. School redistricting: embedding GIS tools with integer
programming. Journal of the Operational Research Society, 55(8):836–849, 2004.

[48] Lea Carrier. Les cégeps face à une vague d’élèves. https://www.lapresse.ca/contexte/2022-04-03/
les-cegeps-face-a-une-vague-d-eleves.php, 2022-04-03. [Published online on La Presse; accessed
2023-09-30].

[49] Christine Cheng, Eric McDermid, and Ichiro Suzuki. A unified approach to finding good stable matchings
in the hospitals/residents setting. Theoretical Computer Science, 400(1-3):84–99, 2008.

[50] José Correa, Natalie Epstein, Rafael Epstein, Juan Escobar, Ignacio Rios, Nicolás Aramayo, Bastián Baha-
mondes, Carlos Bonet, Martin Castillo, Andres Cristi, Boris Epstein, and Felipe Subiabre. School Choice in
Chile. Operations Research, 70(2):1066–1087, 2022.

[51] George Bernard Dantzig. Linear programming and extensions, volume 48. Princeton University Press, 1998.
[52] David Delacrétaz, Scott Duke Kominers, and Alexander Teytelboym. Refugee resettlement. University of

Oxford Department of Economics Working Paper, 2016.
[53] Maxence Delorme, Sergio García, Jacek Gondzio, Joerg Kalcsics, David Manlove, and William Pettersson.

Mathematical models for stable matching problems with ties and incomplete lists. European Journal of
Operational Research, 277(2):426–441, 2019.

[54] Philipp D. Dimakopoulos and C. Philipp Heller. Matching with waiting times: The German entry-level labor
market for lawyers. Games and Economic Behavior, 115:289–313, 2019.

[55] Samuel Dooley and John P Dickerson. The affiliate matching problem: On labor markets where firms are
also interested in the placement of previous workers. arXiv preprint arXiv:2009.11867, 2020.

185

https://www.lapresse.ca/contexte/2022-04-03/les-cegeps-face-a-une-vague-d-eleves.php
https://www.lapresse.ca/contexte/2022-04-03/les-cegeps-face-a-une-vague-d-eleves.php


[56] Lester E Dubins and David A Freedman. Machiavelli and the Gale-Shapley algorithm. The American Math-
ematical Monthly, 88(7):485–494, 1981.

[57] Umut Dur, Thayer Morrill, and William Phan. Family ties: School assignment with siblings. Theoretical
Economics, 17(1):89–120, 2022.

[58] Umut Dur and Martin Van der Linden. Capacity design in school choice. Available at SSRN 3898719, 2021.
[59] Umut Mert Dur and Thomas Wiseman. School choice with neighbors. Journal of Mathematical Economics,

83:101–109, 2019.
[60] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
[61] L Ehlers. School choice with control. Cahiers de recherche 13-2010 CIREQ, 2010.
[62] Itai Feigenbaum, Yash Kanoria, Irene Lo, and Jay Sethuraman. Dynamic matching in school choice: Efficient

seat reassignment after late cancellations. Management Science, 66(11):5341–5361, 2020.
[63] Tamás Fleiner. On the stable b-matching polytope. Mathematical Social Sciences, 46(2):149–158, 2003.
[64] Organisation for Economic Co-operation and Development. Literacy for Life: Further Results from the Adult

Literacy and Life Skills Survey. OECD Publishing, 2011.
[65] National Center for Education Statistics. Condition of America’s Public School Facilities: 1999. Access

here., April 1999.
[66] UNESCO Institute for Statistics (UIS). Government expenditure on education. https://data.worldbank.

org/indicator/SE.XPD.TOTL.GD.ZS, 2023. [Published online on World Bank Open Data; accessed 2023-
11-01].

[67] David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The American Mathe-
matical Monthly, 69(1):9–15, 1962.

[68] David Gale and Marilda Sotomayor. Some remarks on the stable matching problem. Discrete Applied Math-
ematics, 11(3):223–232, 1985.

[69] John Gallinger, Michel Ouellette, Eric Peters, and Lisa Turriff. Carms at 50: Making the match for medical
education. Canadian Medical Education Journal, 11(3):e133, 2020.

[70] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse, Patrick
Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The SCIP optimization suite 7.0. 2020.

[71] Dan Gusfield and Robert W Irving. The stable marriage problem: structure and algorithms. MIT press,
1989.

[72] Isa E. Hafalir, M. Bumin Yenmez, and Muhammed A. Yildirim. Effective affirmative action in school choice.
Theoretical Economics, 8(2):325–363, may 2013.

[73] Philip Hall. On representatives of subsets. Classic Papers in Combinatorics, pages 58–62, 1987.
[74] Günter J Hitsch, Ali Hortaçsu, and Dan Ariely. Matching and sorting in online dating. American Economic

Review, 100(1):130–163, 2010.
[75] Oscar H Ibarra and Chul E Kim. Fast approximation algorithms for the knapsack and sum of subset problems.

Journal of the ACM (JACM), 22(4):463–468, 1975.
[76] Our World in Data. Average years of education for 15-64 years male and female youth and adults.
[77] Robert W Irving, Paul Leather, and Dan Gusfield. An efficient algorithm for the “optimal” stable marriage.

Journal of the ACM (JACM), 34(3):532–543, 1987.
[78] Robert W Irving and David F Manlove. Finding large stable matchings. Journal of Experimental Algorithmics

(JEA), 14:1–2, 2010.
[79] Kazuo Iwama, Shuichi Miyazaki, Yasufumi Morita, and David Manlove. Stable marriage with incomplete

lists and ties. In International Colloquium on Automata, Languages, and Programming, pages 443–452.
Springer, 1999.

186

https://nces.ed.gov/surveys/frss/publications/2000032/index.asp?sectionid=8
https://nces.ed.gov/surveys/frss/publications/2000032/index.asp?sectionid=8
https://data.worldbank.org/indicator/SE.XPD.TOTL.GD.ZS
https://data.worldbank.org/indicator/SE.XPD.TOTL.GD.ZS


[80] Kazuo Iwama, Shuichi Miyazaki, and Hiroki Yanagisawa. A 25/17-approximation algorithm for the stable
marriage problem with one-sided ties. Algorithmica, 68(3):758–775, 2014.

[81] Iris Hui-Ru Jiang and Hua-Yu Chang. Ecos: Stable matching based metal-only eco synthesis. IEEE trans-
actions on very large scale integration (VLSI) systems, 20(3):485–497, 2011.

[82] Kedar Joshi and Sushil Kumar. Matchmaking using fuzzy analytical hierarchy process, compatibility measure
and stable matching for online matrimony in India. Journal of Multi-Criteria Decision Analysis, 19(1-2):57–
66, 2012.

[83] Yuichiro Kamada and Fuhito Kojima. Improving efficiency in matching markets with regional caps: The
case of the Japan residency matching program. Discussion Papers, Stanford Institute for Economic Policy
Research, volume 1, 2010.

[84] Yuichiro Kamada and Fuhito Kojima. Stability and strategy-proofness for matching with constraints: A
problem in the Japanese medical match and its solution. American Economic Review, 102(3):366–370,
2012.

[85] Yuichiro Kamada and Fuhito Kojima. Efficient matching under distributional constraints: Theory and ap-
plications. American Economic Review, 105(1):67–99, 2015.

[86] Yuichiro Kamada and Fuhito Kojima. Efficient matching under distributional constraints: Theory and ap-
plications. The American Economic Review, 105(1):67–99, 2015.

[87] Yuichiro Kamada and Fuhito Kojima. Stability and strategy-proofness for matching with constraints: A
necessary and sufficient condition. Theoretical Economics, 13(2):761–793, 2018.

[88] RM KARP. Reducibility among combinatorial problems. Complexity of Computer Computations, pages
85–103, 1972.

[89] Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross substitutes.
Econometrica: Journal of the Econometric Society, pages 1483–1504, 1982.

[90] John Kennes, Daniel Monte, Norovsambuu Tumennasan, et al. The daycare assignment problem. Depart-
ment of Economics and Business Economics, Aarhus BSS, 2011.

[91] Onur Kesten and M Utku Ünver. A theory of school-choice lotteries. Theoretical Economics, 10(2):543–595,
2015.

[92] Zoltán Király. Linear time local approximation algorithm for maximum stable marriage. Algorithms,
6(3):471–484, 2013.

[93] Bettina Klaus and Flip Klijn. Stable matchings and preferences of couples. Journal of Economic Theory,
121(1):75–106, 2005.

[94] Bettina Klaus, Flip Klijn, and Jordi Massó. Some Things Couples always wanted to know about stable
matchings (but were afraid to ask). Working Papers 78, Barcelona School of Economics, September 2003.

[95] Bettina Klaus, Flip Klijn, and Toshifumi Nakamura. Corrigendum to “stable matchings and preferences of
couples”[J. Econ. Theory 121 (1)(2005) 75–106]. Journal of Economic Theory, 144(5):2227–2233, 2009.

[96] Marina Knittel, Samuel Dooley, and John Dickerson. The dichotomous affiliate stable matching problem:
Approval-based matching with applicant-employer relations. In Lud De Raedt, editor, Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pages 356–362. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. Main Track.

[97] Donald Ervin Knuth. Marriages stables. Technical report, 1976.
[98] Fuhito Kojima, Parag A Pathak, and Alvin E Roth. Matching with couples: Stability and incentives in large

markets. The Quarterly Journal of Economics, 128(4):1585–1632, 2013.
[99] Fuhito Kojima, Akihisa Tamura, and Makoto Yokoo. Designing matching mechanisms under constraints:

An approach from discrete convex analysis. Journal of Economic Theory, 176:803–833, 2018.

187



[100] Scott Duke Kominers. Respect for improvements and comparative statics in matching markets. Technical
report, Working Paper, 2019.

[101] Taro Kumano and Morimitsu Kurino. Quota adjustment process. Technical report, Institute for Economics
Studies, Keio University, 2022.

[102] Ryoji Kurata, Naoto Hamada, Atsushi Iwasaki, and Makoto Yokoo. Controlled school choice with soft
bounds and overlapping types. Journal of Artificial Intelligence Research, 58(1):153–184, jan 2017.

[103] Mark Kutner, Elizabeth Greenburg, Ying Jin, and Christine Paulsen. The Health Literacy of America’s
Adults: Results from the 2003 National Assessment of Adult Literacy. NCES 2006-483. National Center for
education statistics, 2006.

[104] Augustine Kwanashie and David F Manlove. An integer programming approach to the hospitals/residents
problem with ties. In Operations Research Proceedings 2013, pages 263–269. Springer, 2014.

[105] Tomás Larroucau, I Ríos, and Alejandra Mizala. The effect of including high school grade rankings in the ad-
mission process for Chilean universities. Revista de Investigación Educacional Latinoamericana, 52262(1):95–
118, 2015.

[106] Jay Liebowitz and James Simien. Computational efficiencies for multi-agents: a look at a multi-agent system
for sailor assignment. Electronic Government, an International Journal, 2(4):384–402, 2005.

[107] David Manlove. Algorithmics of matching under preferences, volume 2. World Scientific, 2013.
[108] David F Manlove, Robert W Irving, Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita. Hard variants

of stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.
[109] G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I - convex

underestimating problems. Mathematical Programming, 10:147–175, 1976.
[110] Eric McDermid. A 3/2-approximation algorithm for general stable marriage. In Automata, Languages and

Programming: 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I 36, pages 689–700. Springer, 2009.

[111] Eric J McDermid and David F Manlove. Keeping partners together: algorithmic results for the hospi-
tals/residents problem with couples. Journal of Combinatorial Optimization, 19:279–303, 2010.

[112] David G McVitie and Leslie B Wilson. Stable marriage assignment for unequal sets. BIT Numerical Math-
ematics, 10(3):295–309, 1970.

[113] David G McVitie and Leslie B Wilson. The stable marriage problem. Communications of the ACM,
14(7):486–490, 1971.

[114] Silvio Micali and Vijay V Vazirani. An O (v| v| c| E|) algoithm for finding maximum matching in general
graphs. In 21st Annual Symposium on Foundations of Computer Science (FOCS 1980), pages 17–27. IEEE,
1980.

[115] Ndiamé Ndiaye, Sergey Norin, and Adrian Vetta. Descending the stable matching lattice: How many
strategic agents are required to turn pessimality to optimality? In International Symposium on Algorithmic
Game Theory, pages 281–295. Springer, 2021.

[116] Hai Nguyen, Thành Nguyen, and Alexander Teytelboym. Stability in matching markets with complex con-
straints. Management Science, 67(12):7438–7454, 2021.

[117] Thành Nguyen and Rakesh Vohra. Near-feasible stable matchings with couples. American Economic Review,
108(11):3154–69, 2018.

[118] Thành Nguyen and Rakesh Vohra. Stable matching with proportionality constraints. Operations Research,
67(6):1503–1519, 2019.

[119] Michael Ostrovsky. Stability in supply chain networks. American Economic Review, 98(3):897–923, 2008.
[120] Katarzyna Paluch. Faster and simpler approximation of stable matchings. Algorithms, 7(2):189–202, 2014.

188



[121] Parag A Pathak and Tayfun Sönmez. Leveling the Playing Field: Sincere and Sophisticated Players in the
Boston Mechanism. American Economic Review, 98(4):1636–1652, Aug 2008.

[122] Parag A Pathak, Tayfun Sönmez, M Utku Ünver, and M Bumin Yenmez. Fair allocation of vaccines,
ventilators and antiviral treatments: leaving no ethical value behind in health care rationing. In Proceedings
of the 22nd ACM Conference on Economics and Computation, pages 785–786, 2021.

[123] Julius Petersen. Die theorie der regulären graphs. Acta Mathematica, 15(1):193, 1891.
[124] I. Rios, T. Larroucau, G. Parra, and R. Cominetti. Improving the Chilean College Admissions System.

Operations Research, 69(4):1186–1205, July-August 2021.
[125] Paul A Robards. Applying two-sided matching processes to the united states navy enlisted assignment

process. Technical report, Naval Postgraduate School Monterey CA, 2001.
[126] Antonio Romero-Medina. Implementation of stable solutions in a restricted matching market. Review of

Economic Design, 3(2):137–147, 1998.
[127] Assaf Romm. Implications of capacity reduction and entry in many-to-one stable matching. Social Choice

and Welfare, 43(4):851–875, 2014.
[128] Assaf Romm, Alvin E Roth, and Ran I Shorrer. Stability vs. no justified envy. No Justified Envy (March 6,

2020), 2020.
[129] Eytan Ronn. NP-complete stable matching problems. Journal of Algorithms, 11(2):285–304, 1990.
[130] Max Roser and Esteban Ortiz-Ospina. Literacy. Our World in Data, 2016. https://ourworldindata.org/literacy.
[131] Alvin E Roth. The economics of matching: Stability and incentives. Mathematics of Operations Research,

7(4):617–628, 1982.
[132] Alvin E Roth. The evolution of the labor market for medical interns and residents: a case study in game

theory. Journal of political Economy, 92(6):991–1016, 1984.
[133] Alvin E Roth. The college admissions problem is not equivalent to the marriage problem. Journal of economic

Theory, 36(2):277–288, 1985.
[134] Alvin E Roth. On the allocation of residents to rural hospitals: a general property of two-sided matching

markets. Econometrica: Journal of the Econometric Society, pages 425–427, 1986.
[135] Alvin E. Roth. The economist as engineer: Game theory, experimentation, and computation as tools for

design economics. Econometrica, 70(4):1341–1378, July 2002.
[136] Alvin E Roth and Elliott Peranson. The redesign of the matching market for American physicians: Some

engineering aspects of economic design. American Economic Review, 89(4):748–780, 1999.
[137] Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. Stable matchings, optimal assignments, and

linear programming. Mathematics of Operations Research, 18(4):803–828, 1993.
[138] Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-sided matching: A study in game-theoretic modeling

and analysis. Cambridge Univ. Press, Cambridge, MA, 1990.
[139] Uriel G Rothblum. Characterization of stable matchings as extreme points of a polytope. Mathematical

Programming, 54(1):57–67, 1992.
[140] Jay Sethuraman, Chung-Piaw Teo, and Liwen Qian. Many-to-one stable matching: geometry and fairness.

Mathematics of Operations Research, 31(3):581–596, 2006.
[141] Peng Shi. Assortment planning in school choice. 2016.
[142] Tasuku Soma and Yuichi Yoshida. A generalization of submodular cover via the diminishing return property

on the integer lattice. Advances in neural information processing systems, volume 28, 2015.
[143] T Sönmez and MD Yenmez. Affirmative action with overlapping reserves. 2019.
[144] Tayfun Sönmez. Manipulation via capacities in two-sided matching markets. Journal of Economic theory,

77(1):197–204, 1997.

189



[145] Tayfun Sönmez and Tobias B Switzer. Matching with (branch-of-choice) contracts at the United States
military academy. Econometrica, 81(2):451–488, 2013.

[146] Ashok Subramanian. A new approach to stable matching problems. SIAM Journal on Computing, 23(4):671–
700, 1994.

[147] Chung-Piaw Teo and Jay Sethuraman. The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23(4):874–891, 1998.

[148] Chung-Piaw Teo, Jay Sethuraman, and Wee-Peng Tan. Gale-Shapley stable marriage problem revisited:
strategic issues and applications. In International Conference on Integer Programming and Combinatorial
Optimization, pages 429–438. Springer, 1999.

[149] Jill Tucker. SFUSD enrollment plummets this year, doubling peak pandemic declines, new data shows.
https://www.sfchronicle.com/sf/article/SFUSD-enrollment-plummets-this-year-doubling-17073854.
php, April 2022.

[150] John H Vande Vate. Linear programming brings marital bliss. Operations Research Letters, 8(3):147–153,
1989.

[151] Vijay V Vazirani. A theory of alternating paths and blossoms for proving correctness of the general graph
maximum matching algorithm. Combinatorica, 14(1):71–109, 1994.

[152] Kentaro Yahiro and Makoto Yokoo. Game theoretic analysis for two-sided matching with resource allocation.
In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pages
1548–1556, 2020.

[153] Hiroki Yanagisawa. Approximation algorithms for stable marriage problems. Ph.D. Thesis, Kyoto University,
2007.

[154] Wei Yang, JA Giampapa, and Katia Sycara. Two-sided matching for the us navy detailing process with
market complication. Technical report, Technical Report CMU-RI-TR-03-49, Robotics Institute, Carnegie-
Mellon University, 2003.

[155] Haibo Zhang. Analysis of the Chinese college admission system. The University of Edinburgh, 2010.
[156] William S Zwicker. Introduction to the theory of voting. Handbook of Computational Social Choice, pages

23–56, 01 2016.
[157] Kolos Csaba Ágoston, Péter Biró, Endre Kováts, and Zsuzsanna Jankó. College admissions with ties and

common quotas: Integer programming approach. European Journal of Operational Research, 2021.

190

https://www.sfchronicle.com/sf/article/SFUSD-enrollment-plummets-this-year-doubling-17073854.php
https://www.sfchronicle.com/sf/article/SFUSD-enrollment-plummets-this-year-doubling-17073854.php

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of Acronyms & Abbreviations
	Acknowledgements
	Introduction
	Research Questions
	Capacity Expansion
	Complexity
	Sibling Priorities

	Contributions
	First Paper
	Second Paper
	Third Paper

	Organization

	Chapter 1. Background
	1.1. Computational Complexity
	1.1.1. Approximation Algorithms

	1.2. Matching Theory
	1.2.1. Matchings on Graphs
	1.2.2. Matchings Under Preferences
	1.2.3. Strategy-proofness

	1.3. Mathematical Programming
	1.3.1. One-to-one Stable Matching
	1.3.2. Many-to-one Stable Matching
	1.3.2.1. Baïou-Balinski Formulation



	Chapter 2. Literature Review
	2.1. Historical Context
	2.2. Computational Complexity
	2.3. Mathematical Optimization
	2.4. Related Problem Variants

	Chapter 3. Capacity Variation in Many-to-one Stable Matching
	3.1. Introduction
	3.1.1. Contributions and Organization
	3.1.2. Related Work

	3.2. Preliminaries and Problem Definition
	3.2.1. Problem Definition

	3.3. The Capacity Expansion Problem
	3.3.1. Design of the Instance
	3.3.2. Useful Lemmata
	3.3.3. NP-completeness of the capacity expansion problem

	3.4. The Capacity Reduction Problem
	3.5. Extensions
	3.5.1. Allocating Extra Spots to a Partition of Hospitals
	3.5.2. Removing Spots from a Partition of Hospitals

	3.6. Conclusions
	Appendix
	3.7. Missing proofs
	3.7.1. Proof of Lemma 3.3.2
	3.7.2. Proof of Lemma 3.3.5
	3.7.3. Proof of Lemma 3.3.6
	3.7.4. Proof of Theorem 3.5.3


	Chapter 4. Capacity Planning in Stable Matching
	4.1. Introduction
	4.1.1. Contributions and Paper Organization

	4.2. Related Work
	4.3. Model
	4.3.1. Capacity Expansion
	4.3.2. Compact Formulation
	4.3.3. Non-compact Formulation
	4.3.3.1. Separation Algorithm.

	4.3.4. Properties of the Mechanism

	4.4. Evaluation of Methods on Random Instances
	4.5. Application to School Choice in Chile
	4.5.1. Data and Simulation Setting
	4.5.2. Results
	4.5.2.1. Practical Implementation.
	4.5.2.2. Heuristics.

	4.5.3. Further Insights: An Application to the Chilean College Admission System

	4.6. Conclusions
	Appendix
	4.7. Missing Proofs and Other Results
	4.7.1. Proof of Lemma 4.3.1.
	4.7.2. Proof of Theorem 4.3.4
	4.7.3. Missing Proofs in Section 4.3.3
	4.7.3.1. Proof of Theorem 4.3.5
	4.7.3.2. Missing Proofs in Section 4.3.3.1

	4.7.4. Properties of the Mechanism
	4.7.4.1. Cardinality
	4.7.4.2. Incentives
	4.7.4.3. Monotonicity

	4.7.5. Complexity

	4.8. Missing Examples
	4.8.1. Multiple Optimal Solutions
	4.8.2. Minimum cardinality matching
	4.8.3. Inverse Inclusion in Theorem 4.3.4
	4.8.4. Difference in the Sets of Fully-subscribed Schools
	4.8.5. Separation Algorithm: Example
	4.8.6. Separation Algorithm: Counterexample for Baïou and Balinski (2000)

	4.9. Additional Background
	4.9.1. The Deferred Acceptance Algorithm
	4.9.2. McCormick Linearization

	4.10. Other Formulations of the Capacity Expansion Problem
	4.11. Initialization Details of the Cutting-plane Method
	4.12. Heuristics
	4.13. Model Extensions

	Chapter 5. Stable Matching with Dynamic Priorities
	5.1. Introduction
	5.1.1. Organization

	5.2. Literature Review
	5.2.1. General Context
	5.2.2. Our Contributions and the Literature

	5.3. Model
	5.3.1. Simplifying the space of preferences and priorities

	5.4. Existence
	5.4.1. Guaranteed Existence under Refined Family Preferences

	5.5. Complexity Analysis: Maximum Cardinality
	5.6. Conclusions
	Appendix
	5.7. Extra discussion on how to process grade levels and others
	5.8. Missing Proofs in Section 5.5

	Chapter 6. Conclusions and Future Work
	6.1. Dynamic Capacities
	6.2. Dynamic Priorities

	References

