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Résumé

Le sous-titrage d’images est la tâche de l’intelligence artificielle (IA) qui consiste à décrire
des images en langage naturel. Cette tâche d’IA a plusieurs applications sociétales utiles,
telles que l’accessibilité pour les malvoyants, la génération automatisée de contenu, l’inter-
action humain-robot et l’analyse d’imagerie médicale. Au cours des huit dernières années, la
recherche sur le sous-titrage d’images a connu d’énormes progrès dans la création de modèles
solides, la collecte d’ensembles de données à grande échelle ainsi que le développement de
mesures d’évaluation automatique.

Malgré ces progrès remarquables, la recherche sur le sous-titrage d’images est confrontée
à deux défis majeurs: 1) Comment construire des modèles efficaces en termes de paramètres,
et 2) Comment construire des métriques d’évaluation automatique robustes. Dans cette
thèse, nous apportons notre contribution à la résolution de chacun de ces défis.

Premièrement, nous proposons une méthode efficace en termes de paramètres (MAPL
[65]) qui adapte des modèles pré-entraînés unimodaux de vision uniquement et de langage
uniquement pour la tâche multimodale de sous-titrage d’images. MAPL apprend un mappage
léger entre les espaces de représentation des modèles unimodaux. Ainsi, MAPL peut exploiter
les fortes capacités de généralisation des modèles unimodaux pré-entraînés pour des tâches
multimodales telles que le sous-titrage d’images.

Deuxièmement, nous présentons une étude systématique de la robustesse des mesures
d’évaluation des sous-titres d’images récemment proposées. Même si ces métriques corres-
pondent bien aux jugements humains, nous avons constaté qu’elles ne sont pas robustes pour
identifier les erreurs fines dans les légendes générées par le modèle. Il faut donc faire preuve
de prudence lors de l’utilisation de ces métriques pour l’évaluation des sous-titres d’images.
Nous espérons que nos résultats guideront de nouvelles améliorations dans l’évaluation au-
tomatique du sous-titrage d’images.

Mots-clés : paramètre-efficace, sous-titrage d’images, évaluation, métriques,
sans référence
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Abstract

Image captioning is the artificial intelligence (AI) task of describing images in natural lan-
guage. This AI task has several useful societal applications, such as accessibility for the visu-
ally impaired, automated content generation, human-robot interaction, and medical imaging
analysis. Over the last eight years, image captioning research has seen tremendous progress
in building strong models, collecting large scale datasets as well as developing automatic
evaluation metrics.

Despite such remarkable progress, image captioning research faces two major challenges:
1) How to build parameter-efficient models, and 2) How to build robust automatic evaluation
metrics. In this thesis, we make contributions towards tackling each of these challenges.

First, we propose a parameter efficient method (MAPL [65]) that adapts pre-trained
unimodal vision-only and language-only models for the multimodal task of image captioning.
MAPL learns a lightweight mapping between the representation spaces of the unimodal
models. Thus, MAPL can leverage the strong generalization capabilities of the pre-trained
unimodal models for multimodal tasks such as image captioning.

Second, we present a systematic study of the robustness of recently proposed image
captioning evaluation metrics. Even though these metrics correlate well with human judg-
ments, we found that these metrics are not robust in identifying fine-grained errors in model
generated captions, and thus, caution needs to be exercised when using these metrics for
image captioning evaluation. We hope our findings will guide further improvements in the
automatic evaluation of image captioning.

Keywords: parameter-efficient, image captioning, evaluation, metrics,
reference-free
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Introduction

One objective of Artificial Intelligence (AI) is to create systems capable of visually perceiving
images (comprehending the content of an image, including identifying individuals, activities,
and locations) and expressing this understanding to humans using natural language. These
systems are referred to as vision-language (VL) systems and demand the modeling of mul-
timodal data. These systems must be adept at joint modeling of visual and textual data.
Applications of such systems span various scenarios:

• Aiding individuals with visual impairments (User: "Describe the painting in front of
me," AI: "It depicts a lively scene with rolling hills under a clear blue sky."),

• Facilitating engaging learning experiences for children (AI: "This is a simulation of
the solar system. The bright object in the center is the sun and the smaller objects
orbiting it are planets."),

• Simplifying online shopping through natural language queries (User: "Find me a floral
mini-dress with a blue background."),

• Elevating interactions with personal home robots (User: "Did you notice when our
red car exited the garage?").

In recent years, there has been significant interest in vision and language models driven
by their pivotal applications. Beyond their evident societal applications, the acquisition of
multimodal vision-language (VL) learning stands as an indispensable milestone on the path
toward artificial general intelligence (AGI).

Although significant progress has been made in vision and language research, numer-
ous challenges persist, motivating ongoing efforts for improvement. This thesis focuses on
addressing challenges in the vision and language field, particularly in the domain of image
captioning. Our primary objectives include overcoming the demand for parameter-efficient
learning, which entails developing models that can learn with fewer parameters, enabling
them to operate in resource-constrained environments. Additionally, we target the formi-
dable challenge of robust automatic evaluation, as it involves developing evaluation metrics
that can accurately assess the performance of vision and language models, especially when
human annotation is unavailable.



In a broader picture, our work intersects with challenges such as out-of-distribution gener-
alization, which involves training vision and language models to generalize beyond the data
distribution seen during training. We also delve into data-efficient learning that involves
adapting a pre-existing model to a novel task or a new dataset within the same task using
a limited number of samples. Another facet of our research involves tackling the challenges
of interpretability and explainability, which involves developing models that can provide in-
terpretable and explainable outputs, enabling users to understand how the model arrived at
its output.

Below is an overview of the specific dimensions of image captioning that I study in this
thesis.

0.1. MAPL: Parameter-Efficient Adaptation of Uni-
modal Pre-Trained Models for Vision-Language
Few-Shot Prompting (Chapter 2)

In our first work, MAPL [65], we develop a parameter-efficient method, MAPL, for
repurposing pre-trained unimodal models for multimodal tasks. In this method, we learn a
lightweight mapping between the representation spaces of the pre-trained vision encoder and
the pre-trained language model using aligned image-text data. By doing so, it can generalize
to unseen vision-language tasks with only a few in-context examples, making it effective
for low-data and in-domain learning. In addition, our model reuses frozen vision-only and
language-only foundation models; hence, the expensive computational resources used to train
these models can be saved to help reduce energy and carbon costs.

0.2. An Examination of the Robustness of Reference-
Free Image Captioning Evaluation Metrics (Chap-
ter 3)

In our second work, we examine CLIPScore [37], UMIC [50], and PAC-S [79], three
recently proposed image captioning metrics. We carried out controlled experiments to assess
the responsiveness of these metrics to diverse visual and linguistic aspects, including fine-
grained distinctions between captions, the count and size of objects in images referenced in
captions, sentence structure, and negation of captions. The goal of this study is to assess
the robustness and sensitivity of these metrics in various contexts, as well as to pinpoint
opportunities for enhancing reference-free evaluation in the field of image captioning.
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0.3. Our Contribution
This thesis addresses and explores primary challenges in the field of image captioning,

which are outlined as follows:

• In our initial work, MAPL, we addressed specific challenges within the image cap-
tioning domain:

– Parameter-Efficient Learning Challenge: Strategic reuse of frozen vision-only and
language-only foundation models in our approach, which leads to Parameter-
Efficient Learning.

– Data-Efficient Learning Challenge: Achieved generalization to novel vision-
language tasks with only a few in-context examples.

– Out-of-Distribution Generalization Challenge: Developed a lightweight mapping
between pre-trained vision encoders and language models using aligned image-
text data, which demonstrated effective generalization to new vision-language
tasks with minimal in-context examples and also generalization to the same task
but for other datasets.

• In our second study, where we examine the robustness of three recently introduced
metrics for image captioning, we made contributions to two critical challenges:

– Robust Automatic Evaluation Challenge: Conducted a thorough assessment of
the robustness and sensitivity of three recently proposed image captioning metrics
across diverse visual and linguistic contexts.

– Interpretability and Explainability Challenge: Delved into an examination of
three recently proposed image captioning metrics, evaluating their responsiveness
to various visual and linguistic aspects (such as fine-grained distinctions between
captions, the count and size of objects referenced in images, sentence structure,
and the presence of negation in captions) and provided insights that empower
users of these metrics to comprehend how these factors influence the assigned
scores by these metrics, guiding them on when to exercise caution in employing
these metrics.

0.4. Thesis layout
In the first chapter, we supply the necessary background knowledge for comprehend-

ing the two works presented in this thesis. We delve into the architectures of vision and
language models, covering aspects such as pre-training, transfer to downstream tasks, and
image captioning evaluation. In the second chapter, we introduce our work titled ‘MAPL:
Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-
Shot Prompting’. The third chapter presents our work, ‘An Examination of the Robustness
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of Reference-Free Image Captioning Evaluation Metrics’. Lastly, chapter four includes con-
clusions derived from this thesis, along with suggestions for future research endeavors.
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Chapter 1

Background

In this chapter, we delve into the detailed technical background required to comprehend the
architecture of vision-language models, and vision-language models’ training and evaluation.

1.1. Vision-language models architecture
Building on the remarkable success of transformers in natural language processing, re-

searchers have extended this approach to multimodal contexts, such as tasks involving vision
and language. Architectures for vision and language models generally fall into two categories.
The first category encompasses models that independently process each modality of vision
and language, followed by a distinct module that integrates these modalities. In contrast,
the second category comprises models that simultaneously accept image and language in-
puts, learning a unified representation for both concurrently. Subsequently, we will provide
a detailed explanation of each architecture and its corresponding components.

• Dual-encoder: Dual encoder models such as ALIGN[42] and CLIP [71]) comprise
two essential components: a vision-encoder and a text-encoder. Each encoder is
specifically designed to learn representations of vision-only and text-only modalities
independently. The two learned representations are then projected into the same
space and then, using a simple operation such as dot product, can be interpreted
as a similarity score for two modalities (exemplified by CLIP [71]). These models
excel in image-retrieval tasks and, when trained with extensive data and techniques
like contrastive learning, exhibit exceptional performance as vision models. However,
since the two modalities are learned separately, these models tend to underperform
in tasks that necessitate a more complicated interpretation of vision and language
together, such as visual question answering.



• Unified model: To handle complex tasks that necessitate deep interactions between
two modalities, models often incorporate a vision-encoder, text-encoder, and addi-
tional transformer layers to learn the interplay between the two modalities. There
are two different ways to use transformers for vision and language tasks:
(1) Single-stream: Models such as VisualBERT [54], VLP [112], VL-BERT [87],

OSCAR [55], UNITER [20], VinVL [108] and ViLT [46] utilize a single stack
of transformers to model both the vision and text modalities. These models
concatenate the text and visual features and feed them into a single transformer
block, allowing the transformer to learn relationships between the two modalities.

(2) Dual-streams: Models such as ViLBERT [60], LXMERT [90], and METER [28]
employ a two-stream architecture in which text and visual features are input into
separate transformer blocks independently. Techniques such as cross-attention,
alongside self-attention, are utilized to learn the interactions between two modal-
ities.

Fig. 1.1. This figure is from [15] and demonstrates the architecture of single stream and
two streams unified vision and language models.

In the following, our primary objective is to describe the essential components of vision
and language models: the vision-encoder, the text-encoder and large language models.

1.1.1. Vision-encoder

There are primarily three types of vision encoders employed to extract image features:

• CNNs: Convolutional Neural Networks (CNNs) are commonly used to extract fea-
tures from grid-like data. Typical CNN architecture includes convolution and pooling
layers, followed by one or more fully connected layers. Some of the widely used CNN
architectures for feature extraction include AlexNet [48], VGGNet [85], GoogLeNet
[89], and ResNet [36].
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There are two primary ways to utilize the learned representation of an image from a
CNN. One approach involves using grid features from earlier layers, which allows
for incorporating spatial and local information in the image. In contrast, the other
approach employs global features obtained after fully connected layers, which learn
visual features of the entire image. This method may result in capturing more salient
features of the image as a whole at the expense of losing local information about
features of the image. Recent models, including PixelBERT [40], SOHO [39], and
SimVLM [101], mainly employ various ResNet [36] variants as their vision-encoder.
CLIP-ViL [83] utilizes versions of CLIP [71] with different ResNet backbones. Uti-
lizing CLIP as a vision encoder offers advantages over traditional CNNs. CLIP com-
prises a visual encoder and a text encoder that independently encodes input images
and text. The dot product between the two embeddings is then employed as the simi-
larity score between the input image and text. CLIP is pre-trained using a contrastive
loss, where the model aims to maximize similarity for positive pairs (where image and
caption match) and minimize it for randomly selected negative samples. pre-trained
on 400 million image-text pairs from the internet, CLIP has a significantly richer
vocabulary compared to the common method of training ResNet models on image
classification datasets like ImageNet [78], which only encompass a limited range of
visual concepts.

• Object Detectors: Models like VinVL [108], VisualBERT [54], ViLBERT [60],
LXMERT [90], and UNITER [20] depend on object detectors to extract information
from images, making the quality of the underlying object detector a critical factor
in their performance, also extracting region features can also be a time-consuming
process. Object detectors recognize objects in an image and output labels along with
corresponding bounding boxes. One of the most widely used object detectors is the
Faster R-CNN [75], which is pre-trained on the Visual Genome dataset [47]. Utilizing
object detectors allows for extracting region features at the object level, which can
be highly beneficial for complex vision and language tasks such as VQA.

• Vision Transformers: Various vision transformers have been employed in vision
and language tasks, including plain ViT [27], DeiT [93], BEiT [9], CLIP-ViT [71],
Swin Transformer [59], DINO [14], and MAE [35]. The first Vision Transformer
(ViT) initially divides an image into patches, which are then flattened and linearly
projected to a lower-dimension. Positional embeddings are subsequently added to
the beginning of each of these embeddings. To facilitate learning the image represen-
tation, a learnable special token [CLS] is appended to the start of these embeddings.
Theses embeddings are then fed into a standard transformer [97]. Vision transform-
ers are pre-trained on extensive datasets, enabling them to acquire robust visual
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representations. In our work, MAPL [65], we utilize grid features from CLIP [71]
with ViT [27] backbone.

1.1.2. Text-encoder

Various types of text modules are used in vision and language models. The first type,
encoder-only, is inspired by BERT [25]. First, words are divided into subwords and tok-
enized, and special tokens are added at the beginning and end of the tokens sequence. These
tokens then pass through transformer layers based on the model’s architecture, whether
a dual-encoder or unified model. Models that perform generation tasks, such as caption-
ing, use encoder-only modules to generate text sequences token by token with a causal
mask. Encoder-only models are pre-trained with a masked language modeling objective that
uses bi-directional attention to predict missing words, and therefore, generation tasks utilize
causal masks. Models like BLIP [51] employ an encoder-decoder architecture for gen-
eration, where the decoder generates text autoregressively using both previously generated
tokens and the encoder’s generated representations.

1.1.3. Large Language Models

Recent models such as Flamingo [4] and MAPL [65] use large language models (LLMs).
LLMs are models pre-trained on large-scale unsupervised text data and finetuned for specific
tasks such as text classification, sentiment analysis, question-answering, and summarization.
In Flamingo [4] and MAPL [65] the LLM can act as both encoder and decoder, generating
text by attending to previous tokens only and predicting the next token.

1.2. Vision-language training and evaluation
1.2.1. Pre-training techniques

Training a model for a particular task acquires a specialized representation tailored to
that specific task’s requirements. However, despite the diversity of tasks, there often exists
a significant overlap in the fundamental understanding of vision and language. pre-training
approaches capitalize on this shared foundation by training models using objectives designed
to cultivate a versatile representation of both images and language. This pre-trained model,
typically trained on extensive datasets, serves as a knowledge-rich starting point. Subse-
quently, usually fine-tuning is applied on task-specific datasets to adapt the model to the
particular downstream task. This approach yields substantial energy savings since the model
already possesses a strong foundation in general vision and language comprehension, facil-
itating the fine-tuning process and enhancing overall efficiency. In the pre-training phase,
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models typically train with multiple objectives. Here, we introduce some of the most com-
monly used objectives for Vision-Language Models (VLMs).

• Contrastive learning: Contrastive learning for pre-trained vision and language
models was first used by the CLIP [71] model and later used by models such as
ALIGN [42] and ALBEF [53]. Contrastive learning aims to have image and text
representations in the same space, aiming to minimize the distance between matched
pairs and maximize the distance between negative samples, which are essentially
randomly unmatched image-text pairs. Different models define distance in various
ways. For example, CLIP projects the learned image and text representations into
the same space and calculates the cosine similarity between them. Thus, for a batch
size of N , the objective is to maximize the similarity between the N matched image-
text pairs and minimize the similarity between the N2 − N unmatched pairs. One
advantage of CLIP is that it is trained on a vast dataset of 400 million image-text
pairs gathered from the internet. By being supervised with rich natural language, it
can learn a substantial number of visual concepts.

• Image-text matching (ITM): Image-text matching is often viewed as a classifica-
tion task, where the model must predict whether image and text pairs are matched
(positive samples) or unmatched (negative samples). A special [CLS] token is ap-
pended to the beginning of the embeddings to learn a joint representation for the
image-text pair, which is then passed through a linear layer for binary classification
to determine if the image-text pairs are matched or not. This loss is crucial for
training an effective visually grounded text-encoder.

• Masked language modeling (MLM): In this approach, the model is trained with
the MLM objective, where it is presented with captions containing randomly masked
words, and its task is to predict these masked word tokens. This objective encourages
the model to generate image descriptions grounded on visual context from the image.

1.2.2. Transfer to downstream tasks

Transferring knowledge from pre-trained models to downstream tasks involves several
strategies to make the most of the prelearned information. The choice of strategy depends
on the specific characteristics of the pre-trained model, the nature of the downstream task,
the availability of data, and computational resources. Effective knowledge transfer enables
models to leverage existing knowledge and adapt to new challenges efficiently. In this section
we discuss two main approaches, fine-tuning and few-shot prompting.

• Fine-tuning: The objective of fine-tuning is to adapt the pre-trained model’s knowl-
edge and representations to perform well on the new, task-specific data without train-
ing a model from scratch.
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• In context few-shot prompting: As demonstrated by PICa [105], Frozen [95],
MAPL [65], and Flamingo [4], Vision-Language Models (VLMs) have the capability
to rapidly adapt to new downstream tasks through a technique known as few-shot
prompting. This approach allows the model to acquire proficiency even with minimal
in-context examples. For instance, consider a scenario where a model originally pre-
trained for captioning is presented with only a handful of Visual Question Answering
(VQA) support examples. Remarkably, through these few in-context examples, the
model can learn that it should provide answers to questions related to the presented
image, showcasing the remarkable adaptability and versatility of few-shot prompting
in transfer learning scenarios.
Nonetheless, it is important to note that while few-shot prompting offers adaptability,
its performance may not match that of direct fine-tuning on the task. However, this
approach remains highly efficient on multiple fronts. Firstly, it doesn’t necessitate
parameter updating, which can be resource-intensive. Secondly, few-shot prompting
shines in scenarios where data for a specific task is scarce, offering a pragmatic solu-
tion to training models effectively in data-scarce environments. It strikes a valuable
balance between performance and efficiency, making it a compelling option in various
practical applications.

1.2.3. Evaluation

While evaluation may appear straightforward at first glance, it becomes notably challeng-
ing for tasks that are open-ended and have multiple valid answers. Take, for instance, the
captioning task, where numerous sentences can effectively describe an image, even without
any common words.

In this section, we provide a brief overview of how the community typically approaches the
evaluation of image captioning task. However, it is essential to recognize that these evaluation
methods come with their own limitations, which we will delve into more comprehensively in
Chapter 3, particularly concerning the evaluation of image captioning.

Traditionally, image caption quality has been automatically evaluated through a
reference-based approach, which compares generated captions to a set of reference captions
provided by human annotators. The majority of automatic evaluation metrics for captioning,
such as BLEU [68], ROUGE [57], CIDEr [98], and METEOR [8], compute n-gram (set of
n contiguous words) matches between candidate and reference captions (measuring lexical
overlap).

However, this approach can be limiting, as it does not necessarily capture the full range of
acceptable captions for a given image. Moreover, it suffers from the issue of high scores being
awarded to captions that employ similar vocabularies but possess vastly different semantic
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meanings. To address these limitations, recent studies like CLIPScore [37], UMIC [50], and
PAC-S [79] have proposed reference-free approaches for evaluating caption quality, which
more closely align with how humans judge captions. These approaches leverage large pre-
trained image-text matching models to generate a score that measures the similarity between
the provided image and the candidate caption.
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Chapter 2

MAPL: Parameter-Efficient Adaptation of
Unimodal Pre-Trained Models for

Vision-Language Few-Shot Prompting

2.1. Prologue to Paper
2.1.1. Paper Details

MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-
Language Few-Shot Prompting, Oscar Mañas, Pau Rodríguez*, Saba Ahmadi*, Aida Ne-
matzadeh, Yash Goyal, Aishwarya Agrawal.

- Please note that ‘*’ denotes equal contribution.
This paper [65] is published at the European Chapter of the Association for Computa-

tional Linguistics (EACL), 2023.

2.1.2. My Contributions

My contributions included implementing some baselines, setting up training and evalu-
ation pipelines for some settings, analyzing the model outputs by creating visualizations of
model output distributions, and helping with paper writing.



2.2. Abstract
Large pre-trained models have proved to be remarkable zero- and (prompt-based) few-

shot learners in unimodal vision and language tasks. We propose MAPL, a simple and
parameter-efficient method that reuses frozen pre-trained unimodal models and leverages
their strong generalization capabilities in multimodal vision-language (VL) settings. MAPL
learns a lightweight mapping between the representation spaces of unimodal models using
aligned image-text data, and can generalize to unseen VL tasks from just a few in-context
examples. The small number of trainable parameters makes MAPL effective at low-data
and in-domain learning. Moreover, MAPL’s modularity enables easy extension to other
pre-trained models. Extensive experiments on several visual question answering and image
captioning benchmarks show that MAPL achieves superior or competitive performance com-
pared to similar methods while training orders of magnitude fewer parameters. MAPL can
be trained in just a few hours using modest computational resources and public datasets. We
release our code and pre-trained model weights at https://github.com/mair-lab/mapl.

2.3. Introduction
Over the past few years, natural language processing and computer vision have witnessed

impressive progress in learning models capable of transferring to unseen tasks or benchmarks
[11, 110, 70, 41]. Recently referred to as foundation models [10], these can be adapted to
a wide range of unimodal vision and language tasks without any additional training.

In this work, we study reusing such powerful unimodal foundation models for multi-
modal vision-language (VL) downstream tasks. In particular, we propose to connect a
vision encoder, such as CLIP [71], to an autoregressive language model (LM), such as
GPT [72, 73, 11], with minimal additional training on multimodal data. Our goal is
to obtain a single VL model that can leverage the in-context learning abilities [11] of the
pre-trained LM to generalize to unseen VL tasks from just a few examples.

One challenge in connecting vision encoders with LMs is aligning the visual and textual
representation spaces. Recent works have approached this by adapting the LM to visual
representations, either by fine-tuning the entire LM [23] or training adapter layers [29,
5]. These systems are computationally expensive to train as they have a large number of
learnable parameters (hundreds of millions to a few billions) and use large-scale multimodal
training data. On the other hand, Frozen [94] keeps the LM frozen, thus learning ∼10× less
parameters than the above methods. However, it requires training a visual encoder from
scratch, which is also computationally expensive.

Differently, we aim to reuse large pre-trained unimodal models while keeping them com-
pletely frozen and free of adapter layers. We present MAPL (Multimodal Adaptation of
Pre-trained vision and Language models), a simple and parameter-efficient VL model capable
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of tackling unseen VL tasks. MAPL learns a lightweight mapping between the representation
spaces of pre-trained unimodal models. MAPL has orders of magnitude fewer parameters
than previous methods (including Frozen) and can be trained in just a few hours. Moreover,
MAPL’s modularity makes it general-purpose and easily extensible to newer and/or better
pre-trained models. We evaluate MAPL on various image captioning and visual question
answering (VQA) benchmarks and compare with Frozen [94] in a controlled setup. MAPL
significantly outperforms Frozen and achieves competitive performance compared to other
methods [29, 23] trained on comparably sized data.

We further investigate the parameter efficiency of MAPL by training on only 1% of mul-
timodal data (thousands of examples); we call this setting low-data learning. We also study
in-domain learning: training on image-text pairs from the same domain as the downstream
task domains. We train MAPL directly on 100% and 1% of in-domain data for each down-
stream task, without first pre-training on large-scale domain-agnostic data. Thus, we train
specialized versions of MAPL for each downstream domain. Such low-data and in-domain
learning are particularly useful when it is difficult to pre-train on large-scale domain-agnostic
data. We found MAPL to be more effective than Frozen trained under the same settings.

To summarize, our contributions are: 1) we introduce MAPL, a parameter-efficient
method capable of tackling unseen VL tasks, which can be trained using only modest com-
putational resources and public datasets; 2) we conduct extensive experiments spanning
various image captioning and VQA benchmarks, demonstrating MAPL achieves superior or
competitive performance compared to similar methods while training orders of magnitude
fewer parameters; and 3) we further investigate the parameter-efficiency of MAPL in two
settings: low-data and in-domain. Our experiments show that MAPL is more effective than
the considered methods in both settings.

2.4. Related Work
Fine-tuning based VL methods. A popular family of VL methods are based on the pre-
training + fine-tuning paradigm. These methods are either encoder-only [61, 91, 18, 56,
109] or encoder-decoder methods [21, 102, 43, 52] and use transformer-based architectures.
These transformers are first pre-trained on domain-agnostic image-text pairs (e.g., Concep-
tual Captions [81]) using self-supervised objectives, and then fine-tuned for each downstream
task (e.g., VQA, image captioning). More recent models that are designed specifically for
the task of image captioning use large pre-trained LMs (e.g., GPT-2 [73]) and fine-tune
these models with image-caption pairs [16, 67, 62]. While all these approaches yield state-
of-the-art performance for the tasks they are fine-tuned on, the learned model weights are
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highly specialized for a single task and cannot transfer to new tasks with zero or few exam-
ples. Differently, MAPL reuses the same set of weights for all downstream tasks without any
additional training.
Few-shot learning based VL methods. Most similar to MAPL are methods that tackle unseen
VL tasks in a zero/few-shot manner, by leveraging the in-context learning abilities of large
pre-trained LMs (e.g., GPT-3 [11]. These methods connect a vision encoder with a pre-
trained LM to tackle VL tasks. Some methods [23, 34] achieve this connection by fine-tuning
the entire LM on image-text data, while others only train adapter layers inserted into the
LM [29]. The vision encoder is pre-trained and kept frozen in both cases. Concurrent work
Flamingo [5] pushes this idea even further by scaling up the amount of training data and
the LM size. While inserting adapter layers requires training fewer parameters compared to
fine-tuning the entire LM, the number of trainable parameters is still >100M; in contrast,
MAPL only has 3.4M trainable parameters. Additionally, inserting adapter layers is not
straightforward since it requires modifying the computational graph of the LM; MAPL only
adds an external mapping network, which is easier to incorporate on top of pre-trained
models. On the other hand, Frozen [94] keeps the pre-trained LM frozen and instead trains
a vision encoder from scratch. This approach does not scale well with larger vision encoders
(Sec. 2.6.5). MAPL keeps both the vision encoder and the LM frozen (thus further reducing
the number of trainable parameters) and only learns a lightweight mapping network to
connect both frozen models. Similar to MAPL, concurrent work LiMBeR [66] also proposes
to connect a frozen vision encoder with a frozen LM but using a linear mapping, which is
not as parameter- and compute-efficient as MAPL (Sec. 2.6.5).
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Fig. 2.1. MAPL leverages a pre-trained vision encoder and a pre-trained LM, and learns a
small mapping network to convert visual features into token embeddings. During training,
only the mapping network is updated, keeping the vision encoder and the LM frozen (red
arrows indicate gradient flow). At inference time, the system can take as input an arbitrary
sequence of interleaved images and text, and generates free-form text as output.
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Mapping networks. MAPL trains a mapping network to align the visual and textual repre-
sentations of the visual encoder and the LM, respectively. The architecture of our mapping
network has some similarities with that in ClipCap [67] and the Perceiver Resampler in
Flamingo [5]. They all share a core transformer stack and a fixed number of learned constant
embeddings. However, MAPL’s mapping network is specifically designed to be parameter-
efficient while maintaining expressivity (Sec. 2.5.1), containing only 3.4M parameters – orders
of magnitude fewer than ClipCap’s (43M) and Flamingo’s (194M).

2.5. Method
MAPL is a vision-language (VL) multimodal model capable of generating text from a

combination of visual and textual inputs. Our model builds on top of pre-trained vision-only
and language-only models and leverages their strong generalization capabilities (e.g., zero-
shot transfer, in-context learning) to tackle unseen VL tasks. MAPL is agnostic to the choice
of these pre-trained unimodal models as long as they show such capabilities (Sec. 2.6.5).
Concretely, MAPL maps the image representations from a vision encoder’s output embedding
space to a LM’s token embedding space, so that the LM can be conditioned both on visual
and textual information. To this end, we train a mapping network with an image captioning
objective (Sec. 2.5.1, 2.5.2), while keeping the weights of the vision encoder and the LM
frozen. Once the mapping network is trained, MAPL can be prompted with a few examples
of unseen VL tasks and predict the response via text generation (Sec. 2.5.3). The overall
model architecture is depicted in Figure 2.1.

2.5.1. Architecture

Pre-trained vision encoder. The vision encoder extracts a compact representation from
an image. We use a CLIP [70] pre-trained vision encoder, which is trained on web-scale
data and has shown strong zero-shot transfer capabilities to unseen image domains. In
particular, we use CLIP’s ViT-L/14 backbone [26] since we empirically found it yields the
best downstream VL performance among all variants. We use the flattened grid of spatial
features (16 × 16) before the final projection layer and the representation corresponding to
the [class] token, resulting in a sequence of Li = 257 vectors of dimensionality Di = 1024
each. This sequence of vectors is then fed to the mapping network.
Pre-trained autoregressive language model. Given an input text, the language model (LM)
predicts its most likely completion by generating free-form text. For our LM, we use a pre-
trained GPT-J model [99] 1, a publicly-released 6B-parameter autoregressive LM trained
on the Pile dataset [31]. We chose this LM due to its strong in-context learning abilities,
similar to that of GPT-3 [11] (which is not publicly available). The LM takes as input a text
1We also experiment with an OPT model, see Sec. 2.6.5.
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Fig. 2.2. The mapping network takes a flattened grid of Li visual features of dimension Di

each from the vision encoder and transforms it into a sequence of token embeddings of length
Lo and dimension Do, where Do is the token embedding dimension of the LM. Note that
the parameters are shared across fully-connected (FC) layers, on both sides of the encoder
transformer.

string, which is first divided into a sequence of discrete tokens by the LM’s tokenizer. Each
token is then individually transformed into a continuous embedding (of size Do = 4096) by
the LM’s embedder. The sequence of token embeddings is fed to the self-attention layers in
the LM’s transformer block (using causal attention), which outputs a sequence of categorical
distributions over the token vocabulary. Finally, a decoding mechanism generates free-form
text from these distributions (greedy decoding in our case).
Mapping network. The mapping network transforms a sequence of visual features from the
vision encoder to a sequence of continuous embeddings which can be consumed by the LM’s
transformer. We design our mapping network considering the trade-off between expressivity
(to learn a good mapping) and parameter count. Our architecture is based on a transformer
encoder with 4 layers and 8 heads each. This transformer could directly take a sequence
of projected visual features (from Di to Do) and output a sequence of embeddings of size
Do. However, in order to keep a low parameter count, we decouple the transformer hidden
size Dh from the visual feature size Di and the LM embedding size Do by introducing a
dimensionality bottleneck (Figure 2.2). In particular, each visual feature is first linearly
projected from Di = 1024 to Dh = 256 using a set of fully-connected (FC) layers. This
sequence of projected features is then fed to the transformer, and the output representations
are linearly projected from Dh to Do = 4096 using another set of FC layers. To further
reduce the parameter count of our mapping network, we share parameters across all FC
layers in each set.
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Yet another idea we use in our mapping network is to decouple the output sequence
length of the transformer (Lo) from the input sequence length (Li). We do this to obtain
a much smaller Lo = 32 compared to Li = 257, in order to reduce the computational
complexity in the subsequent LM’s self-attention layers, which in turn speeds up training
and inference time. To achieve this decoupling, inspired by DETR [13], we concatenate a
small and fixed number (Lo) of learned constant embeddings with the input sequence of
the transformer and only use the output representations corresponding to these constant
embeddings (Figure 2.2). Note that these output representations are conditioned on the
input visual features via cross-attention in the transformer. The resulting mapping network
architecture is shown in Figure 2.2. In total, our mapping network contains only 3.4M
parameters. Since this is the only trainable component of our model, MAPL has orders of
magnitude fewer total trainable parameters than existing methods such as Frozen (40.3M)
or Flamingo (10.2B).

2.5.2. Training

Following previous works [94, 29], we train our model using a standard language modeling
objective on image captions with teacher forcing [49], i.e., we minimize the negative log-
likelihood of the reference captions under the LM conditioned on the corresponding images.
We only train the mapping network (from scratch) while keeping the vision encoder and
the LM entirely frozen. This preserves the pre-trained models’ capabilities while making
the system modular and parameter-efficient. Even though the LM’s weights are kept frozen,
gradients are still back-propagated through its self-attention layers to train the mapping
network.

2.5.3. Zero- and Few-shot Evaluation

Once the mapping network is trained, MAPL can tackle unseen VL tasks by prompting
the LM with a combination of visual and textual inputs. We study zero-shot transfer to
unseen image captioning benchmarks and few-shot transfer (via in-context learning) to the
unseen task of visual question answering (VQA). For image captioning, we simply feed the
mapped image embedding to the LM and start generating a caption. For zero-shot VQA, fol-
lowing [94], we feed the mapped image embedding followed by the text “Please answer the
question. Question: {question} Answer:”2 and start generating the answer. For n-
shot VQA, we select n support examples (image, question, answer) from the training set
at random, and prepend them to the query; for each support example, we concatenate

2Here {question} indicates a placeholder which gets replaced by the corresponding question in each example.
Same applies to {answer} in the few-shot setting.

39



the mapped image embedding with the text “Please answer the question. Question:
{question} Answer: {answer}”.

2.6. Experiments
2.6.1. Experimental settings

Evaluation benchmarks. We evaluate MAPL on several VL benchmarks spanning VQA and
image captioning. Note that our model is never trained for the task of VQA. For VQA, we
evaluate on the validation splits of VQAv2 [32], OK-VQA [64], TextVQA [86] and VizWiz-
VQA [33], and report performance using VQA accuracy (after the standard normalization
[7]). For image captioning, we evaluate on the Karpathy-test split [44] of COCO Captions
[17], and the validation splits of Conceptual Captions (CC) [81]3, TextCaps [84] and VizWiz-
Captions [33], and report performance using the BLEU@4, ROUGE-L, METEOR, CIDEr
and SPICE metrics.
Training settings. We consider two settings to train our mapping network: domain-agnostic
and in-domain training (described below). For each of these settings, we also study low-data
learning by training our model on randomly sampled subsets of 1% training image-text pairs.
Such low-data learning is useful when it is difficult to train models on large-scale data due
to constraints on compute resources, data availability, etc.

For domain-agnostic training, we use the CC dataset, which is gathered by auto-
matically scraping images and their corresponding alt-text fields from web pages. Thus,
this dataset is not as clean as manually-curated datasets such as COCO Captions (e.g., the
caption may not describe the image). Nevertheless, due to its large size (3.3M) and great
diversity, it is the most commonly used dataset for domain-agnostic pre-training of VL mod-
els. However, for our model – having orders of magnitude less trainable parameters than
other methods –, we observed the negative effect of noise in CC to be stronger than the
positive effect of its large size (Sec. 2.6.4). Therefore, we train MAPL on a filtered version of
CC (CC-clean) consisting of the top 398K most similar image-text pairs ranked by CLIP’s
image-text similarity score.4 For completeness, we also report MAPL’s performance when
trained on the unfiltered CC dataset.

For in-domain training, we use image-caption pairs that come from the same domain
as the downstream task domains, i.e., they have similar image and language distributions as
those in the downstream datasets. For the image captioning downstream task, this amounts
to the IID setting. The in-domain image captioning and VQA dataset pairs we consider are
shown in Table 2.1. Each pair uses the same set of images, and focuses on the same set of VL

3Due to broken image URLs, we only managed to download 13K out of 15K validation images.
4We selected a threshold on CLIP’s similarity score such that the size of the filtered dataset is comparable
to the size of manually curated datasets such as COCO Captions.
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skills; for instance, scene understanding (COCO Caps and VQAv2), reading and reasoning
about text in images (TextCaps and TextVQA), understanding images captured by visually-
impaired users (VizWiz-Caps and VizWiz-VQA), thus leading to similar image and language
distributions across image-captioning and VQA. We train MAPL on both 100% and 1% of
in-domain image-caption data and evaluate on all downstream benchmarks (including out-
of-domain ones, e.g., VizWiz-VQA when trained on COCO Caps). Such in-domain training
can be useful when it is difficult to first train on large-scale domain-agnostic data and then
adapt to in-domain data by either fine-tuning or few-shot prompting.

VQAv2 OK-VQA TextVQA VizWiz-VQA
COCO Caps ✓ ✓
TextCaps ✓
VizWiz-Caps ✓

Table 2.1. In-domain dataset pairs.

Training details. For Conceptual Captions, TextCaps and VizWiz-Captions, we carve out
a minival split consisting of 6% of training examples and train on the remaining 94%; for
COCO Captions, we use the Karpathy-val split as minival. We use the AdamW optimizer
with β1 = 0.9, β2 = 0.95, and a weight decay of 0.01. The learning rate is increased linearly
from 0 to 3 × 10−4 (7 × 10−4 for OPT-based models) over the first 1500 steps (15 for 1% of
data) and kept constant for the rest of training. We use a batch size of 128 and we do early
stopping based on the minival loss. We do not add any special tokens at the beginning of
sentence, as GPT-J was not trained with <BOS> tokens. In order to fit a 6B-parameter LM
into GPU memory, we use DeepSpeed ZeRO [74] stage 2 optimizations. Freezing the LM’s
weights also brings massive savings in GPU memory during training, as fine-tuning with an
Adam-based optimizer would require at least 4× GPU memory to store gradients, average,
and squared average of the gradients. The whole system was trained on 4 A100 (40GB)
GPUs for about 4 hours (for the CC-clean dataset). Unless otherwise stated, we repeat the
experiments with two different random seeds and report the average performance.
Existing methods and baselines. We report the performance of several baselines and existing
methods. First, to verify that the LM in MAPL is not ignoring the visual input, inspired by
[94], we train a blind version of MAPL (MAPLblind) where the input images are replaced
with zeros but the mapping network weights are still trained (to serve as prompt-tuning
for the LM). Second, to estimate the upper-bound on how well we can do in VQA by
representing images with text (rather than with continuous embeddings), we evaluate
PICa [104], which directly prompts the LM with image captions, followed by questions for
VQA. We reimplement PICa (denoted PICa∗) using MAPL’s LM (and evaluate on VQAv2
and OK-VQA using ground-truth COCO captions) for controlled comparison. Third, we
compare MAPL with Frozen [94], as this is the most similar method to ours that also uses
a frozen LM. We reimplement Frozen (denoted Frozen∗) using MAPL’s LM for controlled
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Trainable Training n-shot VQAv2 n-shot OK-VQA n-shot TextVQA n-shot VizWiz-VQA n-shot Overall
params examples 0 4 8 0 4 8 0 4 8 0 4 8 0 4 8

Existing methods using domain-agnostic training
Frozen 40.3M† 3.3M 29.50 38.20 - 5.90 12.60 - - - - - - - - - -
MAGMA CC12M 243M† 3.8M 36.90 45.40 - 13.90 23.40 - - - - 5.60 10.60 - - - -
VLKD CC3M 406M 3.3M 38.60 - - 10.50 - - - - - - - - - - -
LiMBeR-CLIP‡ 12.6M† 3.3M 33.33 40.34 - - - - - - - - - - - - -
Flamingo‡ 10.2B >2.1B - - - 50.60 57.40 57.50 35.00 36.50 37.30 - - - - - -

100% domain-agnostic training
MAPL-blind CC-clean 3.4M 374K 20.62 35.01 35.11 4.84 14.68 14.28 3.68 5.43 5.82 3.18 8.65 9.55 8.08 15.94 16.19
Frozen∗

CC-clean 40.3M 374K 25.98 37.80 38.52 5.51 18.86 19.91 5.11 6.15 6.30 4.33 11.28 16.68 10.23 18.52 20.35
MAPL CC-clean 3.4M 374K 33.54 45.13 45.21 13.84 24.25 23.93 8.26 8.88 8.77 11.72 18.46 19.52 16.84 24.18 24.36

1% domain-agnostic training
Frozen∗

CC-clean 40.3M 3.7K 26.22 36.69 37.41 5.50 18.76 20.51 5.71 7.19 7.53 3.83 11.71 16.66 10.31 18.58 20.53
MAPL CC-clean 3.4M 3.7K 30.80 37.38 37.95 8.77 18.18 19.15 6.40 7.07 7.74 5.68 9.26 10.58 12.91 17.97 18.85

100% in-domain training
PICa∗ 0 0 20.61 46.86 47.80 11.84 31.28 33.07 - - - - - - - - -
Frozen∗

COCO 40.3M 414K 32.09 38.90 39.42 9.81 20.72 21.83 7.54 6.82 6.74 5.87 12.07 17.35 13.82 19.63 21.33
Frozen∗

TextCaps 40.3M 103K 32.49 37.39 38.03 11.34 19.87 20.82 8.83 7.33 7.51 6.25 12.26 16.86 14.73 19.21 20.80
Frozen∗

VizWiz 40.3M 110K 26.93 37.38 37.91 5.85 19.12 20.64 6.38 7.44 7.47 5.57 13.06 18.06 11.18 19.25 21.02
MAPL COCO 3.4M 414K 43.51 48.75 48.44 18.27 31.13 31.63 10.99 11.10 11.08 14.05 17.72 19.18 21.70 27.17 27.58
MAPL TextCaps 3.4M 103K 38.83 43.34 43.43 16.33 25.07 25.92 22.27 19.53 19.75 12.31 16.69 18.18 22.43 26.15 26.82
MAPL VizWiz 3.4M 110K 32.80 42.94 43.20 11.70 24.91 25.73 9.27 10.36 10.23 10.42 20.63 23.10 16.05 24.71 25.56

1% in-domain training
Frozen∗

COCO 40.3M 4.1K 30.18 37.23 37.89 9.33 19.60 20.71 7.43 7.65 7.67 4.37 12.00 16.48 12.83 19.12 20.69
Frozen∗

TextCaps 40.3M 1.0K 32.09 36.72 37.25 10.75 18.85 19.51 8.17 7.57 7.28 5.39 11.79 16.20 14.10 18.73 20.06
Frozen∗

VizWiz 40.3M 1.1K 29.62 37.30 37.87 7.57 19.36 20.60 7.16 7.17 7.25 4.53 12.51 17.56 12.22 19.08 20.82
MAPL COCO 3.4M 4.1K 37.69 40.42 40.84 13.92 21.66 22.41 8.30 6.96 6.84 6.94 10.72 12.43 16.71 19.94 20.63
MAPL TextCaps 3.4M 1.0K 33.57 36.70 36.87 12.46 17.45 18.21 9.34 8.29 8.62 6.54 9.58 11.62 15.48 18.00 18.83
MAPL VizWiz 3.4M 1.1K 31.88 36.81 37.04 9.59 17.64 17.64 7.25 5.99 6.04 4.73 9.48 11.33 13.36 17.48 18.01

Table 2.2. Evaluation on few-shot VQA. For MAGMA CC12M and VLKD CC3M, we report
their best results when training only on domain-agnostic data (CC12M and CC3M, respec-
tively). (†) indicates our informed estimation. (‡) indicates concurrent work.

comparison. Lastly, we report the performance of other methods similar to MAPL: MAGMA
[29], VLKD [23], LiMBeR [66], ClipCap [67] and the published numbers from Frozen [94].5

Note that all these methods (unless otherwise noted) are trained on domain-agnostic data,
so we only compare with MAPL trained on CC-clean. For completeness, we also report
results from Flamingo [5], which has orders of magnitude more learnable parameters than
MAPL and is trained on considerably more data.

2.6.2. Evaluation of domain-agnostic learning

We report few-shot VQA results in Table 2.2 and image captioning results in Table 2.3.
Subscripts in the first column denote the training dataset. Overall accuracies denote average
of per-benchmark accuracies. First, we see that MAPLCC-clean substantially outperforms
MAPLblindCC-clean both on VQA and image captioning, proving that the visual inputs are
not ignored by the LM in MAPL. Second, we find that MAPLCC-clean outperforms Frozen∗

CC-clean by a considerable margin on all VL benchmarks (with overall accuracy improvements
of +6.61% 0-shot and +5.66% 4-shot on VQA tasks, +4.35 BLEU@4 and +33.55 CIDEr on
image captioning tasks). Importantly, this is achieved while training an order of magnitude
fewer parameters (3.4M vs 40.3M). Next, MAPLCC-clean is competitive compared to existing
methods (MAGMA, VLKD, ClipCap) and concurrent work LiMBeR, despite training one-
two orders of magnitude fewer parameters on significantly less multimodal data. Lastly,
5We only add results which are reported on the same dataset splits as in MAPL.
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Trainable Training CC COCO TextCaps VizWiz-Caps Overall
params examples B@4 CIDEr B@4 CIDEr B@4 CIDEr B@4 CIDEr B@4 CIDEr

Existing methods using domain-agnostic training
ClipCap CC3M 43M 3.3M - 71.82 - - - - - - - -
VLKD CC3M 406M 3.3M - - 18.20 61.10 - - - - - -

100% domain-agnostic training
MAPL-blind CC-clean 3.4M 374K 0.35 5.05 2.75 5.75 1.35 2.15 1.50 1.80 1.49 3.69
Frozen∗

CC-clean 40.3M 374K 2.45 22.60 5.25 13.90 2.65 4.60 2.05 2.65 3.10 10.94
MAPL CC-clean 3.4M 374K 6.75 79.75 12.30 54.30 5.80 22.95 4.95 20.95 7.45 44.49

1% domain-agnostic training
Frozen∗

CC-clean 40.3M 3.7K 0.75 6.55 3.05 5.25 1.70 1.65 1.50 1.40 1.75 3.71
MAPL CC-clean 3.4M 3.7K 1.75 19.65 5.80 17.85 2.70 5.40 2.15 4.85 3.10 11.94

100% in-domain training
Frozen∗

COCO 40.3M 414K 0.65 9.05 20.05 61.35 6.95 11.75 5.45 6.20 8.28 22.09
Frozen∗

TextCaps 40.3M 103K 0.20 3.55 4.05 6.70 8.85 16.95 4.40 5.25 4.38 8.11
Frozen∗

VizWiz 40.3M 110K 0.25 4.40 3.75 6.05 4.10 5.65 19.00 76.85 6.78 23.24
ClipCap COCO 43M 414K - - 33.53 113.08 - - - - - -
MAPL COCO 3.4M 414K 2.25 34.50 36.45 125.20 16.60 41.40 18.00 41.35 18.33 60.61
MAPL TextCaps 3.4M 103K 0.90 13.05 9.80 28.65 18.35 62.55 11.20 31.85 10.06 34.03
MAPL VizWiz 3.4M 110K 0.90 18.80 13.55 48.35 11.35 31.20 34.70 141.30 15.13 59.91

1% in-domain training
Frozen∗

COCO 40.3M 4.1K 0.25 3.60 6.20 12.80 2.80 3.15 2.85 2.30 3.03 5.46
Frozen∗

TextCaps 40.3M 1.0K 0.10 2.60 1.65 2.80 3.65 5.00 2.00 2.25 1.85 3.16
Frozen∗

VizWiz 40.3M 1.1K 0.20 3.40 2.90 3.20 3.35 3.45 12.70 40.55 4.79 12.65
MAPL COCO 3.4M 4.1K 0.80 12.10 19.65 65.90 7.00 12.85 6.20 9.60 8.41 25.11
MAPL TextCaps 3.4M 1.0K 0.30 3.90 4.10 8.05 8.35 16.90 5.00 7.25 4.44 9.03
MAPL VizWiz 3.4M 1.1K 0.20 3.90 2.95 4.80 3.45 5.05 18.40 71.10 6.25 21.21

Table 2.3. Evaluation on image captioning. For VLKD CC3M, we report their best results
when training only on domain-agnostic data (CC3M).

Training VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall
examples 4-shot 4-shot 4-shot 4-shot CIDEr CIDEr CIDEr CIDEr 4-shot CIDEr

Frozen∗
CC-clean 0.4M 37.79 19.29 6.25 11.11 22.70 14.00 5.00 2.70 18.61 11.10

Frozen∗
CC-cleanish 1.0M 37.82 18.49 6.12 10.16 37.60 20.60 6.60 3.20 18.15 17.00

Frozen∗
CC 2.7M 37.81 18.33 5.56 9.97 57.60 22.20 8.00 4.20 17.92 23.00

MAPL CC-clean 0.4M 44.35 24.03 9.65 17.33 72.70 54.60 23.80 21.10 23.84 43.05
MAPL CC-cleanish 1.0M 46.63 25.99 8.48 19.65 88.30 54.10 22.30 19.80 25.19 46.13
MAPL CC 2.7M 43.26 20.96 5.20 19.31 101.10 44.10 16.70 15.90 22.18 44.45

Table 2.4. Impact of data quality and size. These experiments are run with one seed only.

MAPLCC-clean’s performance is still far from the performance of Flamingo, which trains
orders of magnitude more parameters on orders of magnitude more data. However, we believe
MAPL to be an effective method for scenarios with constrained computational resources. For
MAPL’s qualitative results, see App. 2.6.6.
Low-data learning. When trained on only 1% domain-agnostic data, MAPLCC-clean out-
performs Frozen∗

CC-clean for all image captioning evaluations (by +1.35 BLEU@4 and +8.23
CIDEr, overall) and all 0-shot VQA evaluations (by +2.60% overall accuracy), while achiev-
ing competitive performance on 4- and 8-shot VQA evaluations. In summary, these results
show the effectiveness of our method in low-data settings, highlighting its usefulness for
applications where data is scarce.

43



Vision Language Mapping VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall
encoder model network 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot CIDEr CIDEr CIDEr CIDEr 0-shot 4-shot CIDEr

Frozen∗ NF-ResNet-50 GPT-J Transformer 27.98 36.66 5.88 18.44 4.56 7.87 3.67 10.32 21.79 14.87 5.42 3.03 10.52 18.32 11.28
Frozen∗ ViT-L/16 GPT-J Transformer 27.82 36.60 5.64 16.26 3.67 5.27 4.70 11.77 13.19 8.77 2.88 2.35 10.46 17.48 6.80
Frozen∗ ViT-L/14 GPT-J Transformer 24.45 36.03 4.14 16.27 3.91 5.33 3.27 10.09 13.89 8.27 2.66 2.50 8.94 16.93 6.83
MAPL CLIP-ViT-L/14 GPT-J Transformer 33.54 45.13 13.84 24.25 8.26 8.88 11.72 18.46 79.75 54.30 22.95 20.95 16.84 24.18 44.49
MAPL IN-NF-ResNet-50 GPT-J Transformer 28.12 40.86 10.86 21.66 6.15 7.01 6.40 14.22 39.64 32.99 12.41 9.55 12.88 20.94 23.65
MAPL IN-ViT-L/16 GPT-J Transformer 31.70 43.75 11.13 25.50 6.16 7.40 8.93 16.45 56.33 45.80 17.12 16.28 14.48 23.28 33.88
Frozen∗ NF-ResNet-50 OPT-6.7B Transformer 30.16 32.72 8.10 13.79 5.44 6.81 7.15 6.77 25.40 17.80 6.90 4.00 12.71 15.02 13.53
MAPL CLIP-ViT-L/14 OPT-6.7B Transformer 23.26 33.95 15.27 16.25 8.90 6.41 15.40 9.47 66.60 54.40 23.30 19.60 15.71 16.52 40.98
MAPL CLIP-ViT-L/14 GPT-J Linear 30.55 37.09 12.20 16.69 7.02 5.80 8.81 12.49 60.00 43.80 18.30 13.70 14.65 18.02 33.95
MAPL CLIP-ViT-L/14 GPT-J MLP 28.99 43.69 11.07 25.33 6.60 8.39 9.73 17.14 70.40 49.10 20.90 20.30 14.10 23.64 40.18

Table 2.5. Ablation studies. We assess the impact of the choice of vision encoder (top),
LM (middle) and mapping network architecture (bottom). All models are trained on 100%
of CC-clean with a single seed. IN stands for ImageNet pre-training.

2.6.3. Evaluation of in-domain learning

In Tables 2.2 and 2.3, we observe that both MAPL and Frozen∗ benefit from directly train-
ing on in-domain data, compared to few-shot transfer from large-scale domain-agnostic pre-
training. For instance, MAPLCOCO and Frozen∗

COCO respectively outperform MAPLCC-clean

and Frozen∗
CC-clean on VQAv2, OK-VQA and COCO Captions when trained on 100% of

data. Interestingly, this performance gap is larger for MAPL compared to Frozen∗ by +2%
0-shot accuracy and +3.77% 4-shot accuracy averaged across VQAv2 and OK-VQA, and
+9.35 BLEU@4 and +23.45 CIDEr on COCO Captions. A similar trend can be observed
for TextCaps and TextVQA. Surprisingly, for 0-shot VQA and image captioning, training
on just 1% of in-domain data outperforms 100% CC training for all benchmarks (except
VizWiz-VQA) and both models. These results demonstrate the benefits of in-domain learn-
ing. When comparing MAPL vs. Frozen∗, we observe that MAPL outperforms Frozen∗ for all
tasks and benchmarks (except VizWiz-VQA) under both 100% and 1% in-domain settings.
In fact, MAPL trained on just 1% in-domain data outperforms Frozen∗ trained on 100%
in-domain data by +3.41% 0-shot accuracy and +1.14% 4-shot accuracy averaged across
VQAv2, OK-VQA and TextVQA. Thus, MAPL is more effective than Frozen∗ at in-domain
learning.

Contrary to the above trends, we observe that MAPLVizWiz under 1% in-domain training
performs worse than MAPL COCO or MAPL TextCaps when evaluated on VizWiz-VQA. We
hypothesize the visual embeddings extracted from CLIP’s vision encoder for VizWiz images
are not as good as those for COCO or TextCaps’ images because the distribution of images
in VizWiz (captured by visually-impaired people) is rather different from the distribution of
images CLIP is trained on (scraped from the web), whereas for COCO and TextCaps this
isn’t the case. When training MAPL’s mapping network on only 1% of VizWiz data, we
believe the data is not large enough to compensate for the OOD pretrained vision encoder,
so MAPL trained on COCO/TextCaps performs better on VizWiz-VQA. For in-domain
training with 100% of data and 4/8-shot VQA, the mapping network has enough data to
learn from and compensate for the OOD phenomenon. On the other hand, Frozen∗ does not
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suffer from this issue because its vision encoder is trained from scratch, allowing it to adapt
to the image distribution.

Lastly, we observe that MAPLCOCO outperforms ClipCap COCO by +2.92 BLEU@4 and
+12.12 CIDEr on COCO Captions. MAPLCOCO also outperforms PICa∗ (which represents
images with ground-truth COCO captions) on VQAv2 and 0-shot OK-VQA, and achieves
competitive results on few-shot OK-VQA; this demonstrates representing images with con-
tinuous embeddings is beneficial over caption-based image representations. Overall, we see
that in-domain learning is beneficial and MAPL is more effective at it than similar methods.

2.6.4. Impact of data quality and size

To measure the impact of noise in the training data, we additionally train MAPL and
Frozen∗ on the full CC dataset, consisting of 2.8M6 examples, as well as on a clean-ish
version consisting of the 1.0M most similar image-text pairs. In Table 2.4, we observe
Frozen∗ achieves similar performance on few-shot VQA tasks when trained on noisy vs.
clean data; however, Frozen∗’s performance on image captioning decreases when trained on
cleaner but smaller data. In contrast, MAPL generally benefits from cleaner training data,
with the exception of evaluation on CC. We hypothesize both models perform better on CC
when trained on larger (yet noisier) data because the CC validation set is IID with the full
(noisy) CC training set. In the case of Frozen∗, as we move away from the IID setting, the
benefits from more data start diminishing (CC captioning > other captioning tasks > VQA
tasks). For MAPL, the benefit from reduced noise in training data exceeds the degradation
caused by a smaller data size, thanks to the reduced number of trainable parameters. These
trends align with previous observations that larger models are more robust to noisy training
data since they have enough capacity to model both noise and the desired function [77],
while smaller models are more sample-efficient [96], i.e. they need less (clean) data to train
effectively. Note that although MAPL’s overall performance is higher when training on 1.0M
than on 0.4M examples, we decided to train with 0.4M examples because training on ∼2.5×
more data (1.0M instead of 0.4M) required ∼5× more iterations (always early-stopping based
on validation loss). So we did not think the slight performance increase due to more data was
worth the ∼5× longer training time, especially because we were operating under a limited
compute budget.

2.6.5. Ablation studies

In this section, we evaluate how the choice of vision encoder, LM and mapping network
architecture impact MAPL’s performance, and compare it with corresponding versions of

6This is not the full 3.3M CC due to broken URLs.
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Frozen∗ (where applicable). Results are presented in Table 2.5. Please refer to App. A.0.5
for more ablations.

First, to assess the impact of the choice of vision encoder, we train additional versions
of MAPL replacing the CLIP pre-trained vision encoder (ViT-L/14 – 303M parameters)
with encoders pre-trained on ImageNet: NF-ResNet-50 (23.5M) and ViT-L/16 (303M), and
compare their performance with corresponding versions of Frozen∗. We observe that: 1)
MAPL outperforms Frozen∗ for each configuration of vision encoder, suggesting that MAPL
is robust to the choice of vision encoder’s pre-training data and architecture; and
2) Frozen∗ ’s performance drops with bigger vision encoders (likely due to more trainable
parameters), whereas MAPL improves due to the use of stronger pre-trained encoders. Thus,
training the vision encoder from scratch (Frozen∗) has limited application, while MAPL’s
performance scales alongside the pre-trained vision encoder.

Next, to evaluate the impact of the choice of LM, we train both MAPL and Frozen∗

replacing GPT-J by OPT-6.7B [110]. We see that in all settings except 0-shot VQAv2,
MAPL outperforms Frozen∗. See App. A.0.2 for discussion on 0-shot VQAv2 results. This
suggests that MAPL is robust to the choice of LM. The above results also highlight how
MAPL’s modularity allows to easily replace the pre-trained vision encoder or the LM.

Lastly, to assess the impact of the choice of mapping network architecture, we replace the
proposed transformer-based mapping network with two simpler architectures – a linear layer
and a 2-layer MLP (see App. A.0.4 for details). We observe both these versions generally
underperform the original setting (transformer-based), highlighting the effectiveness of
the proposed design. We also note that in these simpler versions, the parameter count is
directly proportional to the vision encoder’s representation size and LM’s embedding size,
whereas in MAPL we decouple this using a dimensionality bottleneck (Sec. 2.5.1), making
our mapping network more parameter-efficient by design.

2.6.6. Qualitative results

Figure 2.3 shows some selected samples from the web illustrating our interface at inference
time using MAPLCC-clean. The first two columns show successful results while the last column
shows failure cases. For image captioning (top row), success cases show MAPL can generate
meaningful and detailed textual descriptions of the scene. For zero-shot VQA (bottom
row), success cases indicate that MAPL is able to parse the question and connect visual
information to encyclopedic knowledge contained in the pre-trained LM. However, MAPL’s
visio-linguistic understanding is evidently still far from being perfect. More qualitative results
(both success and failure cases) are provided in App. A.0.6.
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What does this animal eat?

Squirrels eat nuts, seeds, 
berries, and insects.

a man watches the sea birds 
as they fly over the beach.

a rail crossing with a sign 
warning of trains.

What kind of leaf is this?

A maple leaf.

What type of cheese is on 
these vegetables?

broccoli.

a boy playing soccer in the 
field.

Fig. 2.3. Qualitative samples from the web using MAPLCC-clean. (Multimodal) input is in
gray, and MAPL’s output is in green (success) or red (failure).

2.7. Conclusion
We introduce MAPL, a simple and parameter-efficient method to repurpose pre-trained

and frozen unimodal models for multimodal tasks. Our experiments demonstrate that MAPL
achieves superior or competitive performance compared to similar methods on several VL
benchmarks while training orders of magnitude fewer parameters. Importantly, we also show
that MAPL is effective in the low-data and in-domain settings thanks to its reduced number
of trainable parameters. We leave as future work exploring training on a weighted mixture of
image-text datasets, evaluating on more downstream tasks such as NLVR2 [88] and Visual
Dialog [24], and investigating the use of masked LMs [80, 22] with MAPL.

2.8. Limitations
MAPL achieves reasonable performance on VL tasks, but it is still far from the per-

formance of recent methods leveraging large-scale data and compute. On the other hand,
MAPL is a preferable alternative in scenarios with constrained computational resources.
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We observed our mapping network is sensitive to initialization, so different random seeds
can yield non-negligible variance in downstream performance. We think this might be related
to the reduced number of trainable parameters. We tried to reduce the effect of this variance
by reporting average performance across different seeds. We also observed MAPL struggles
to leverage more shots for in-context learning. We hypothesize this could be caused by our
model being trained on single image-caption pairs – as opposed to the sequences of multiple
images and texts seen during few-shot transfer, so a better pretext task might help (see
App. A.0.1 for further discussion).

MAPL builds on top of pre-trained vision-only and language-only models, inheriting their
capabilities but also their limitations. An important risk is that our model might inherit the
existing social, gender or racial biases of pre-trained models. However, our limited qualitative
analysis (see App. A.0.8) shows that providing visual information significantly changes the
prior answer distribution of the LM. Therefore, how much of the underlying bias is retained
remains an empirical question.

2.9. Ethics Statement
Model recycling. MAPL reuses vision-only and language-only foundation models. Hence,
the expensive computational resources used to train these models can be amortized to help
reduce energy and carbon costs.
Public datasets. MAPL is trained uniquely on publicly available datasets, which facilitates
reproducibility and provides transparency on the origin and the characteristics of the data
the model has seen.
Undesired biases. MAPL could be exposed to undesired biases from different sources. The
pre-trained vision encoder might have been trained with data where certain races or genders
are underrepresented, hence biasing our representation of images. The pre-trained LM might
also be biased towards generating toxic or offensive language when fed with certain prompts.
Finally, the image-text data used to align the representation spaces of such models was
annotated by humans, so it might reflect a biased view of the world.
Broader impact. This work shows how one can easily adapt pre-trained vision encoders and
LMs for multimodal tasks. Given the parameter-efficiency of our method, we believe it
should be of great interest to the sections of the community that do not have access to large
compute resources (e.g., small academic labs and independent researchers), and for low-data
applications. While MAPL can be applied in many useful applications (e.g., aiding visually-
impaired people), it also makes it simpler to create malicious or offensive multimodal systems
from existing unimodal models. Further research efforts are needed on how to safely deploy
such systems so that their behavior always aligns with ethical values.

48



Chapter 3

An Examination of the Robustness of
Reference-Free Image Captioning Evaluation

Metrics

3.1. Prologue to Paper
3.1.1. Paper Details

An Examination of the Robustness of Reference-Free Image Captioning Evaluation Met-
rics, Saba Ahmadi, Aishwarya Agrawal.

This paper is under review at The European Chapter of the Association for Compu-
tational Linguistics (EACL), 2024. This work was also presented at Workshop on Open-
Domain Reasoning Under Multi-Modal Settings at IEEE / CVF Computer Vision and Pat-
tern Recognition Conference (CVPR), 2023.

3.1.2. My Contributions

I designed the analysis and experiments presented in this paper under the guidance of
Professor Aishwarya Agrawal. Furthermore, I executed all aspects of the implementation
and experiments.



3.2. Abstract
Recently, reference-free metrics such as CLIPScore [37], UMIC [50], and PAC-S [79]

have been proposed for automatic reference-free evaluation of image captions. Our focus lies
in evaluating the robustness of these metrics in scenarios that require distinguishing between
two captions with high lexical overlap but very different meanings. Our findings reveal
that despite their high correlation with human judgments, CLIPScore, UMIC, and PAC-S
struggle to identify fine-grained errors. While all metrics exhibit strong sensitivity to visual
grounding errors, their sensitivity to caption implausibility errors is limited. Furthermore,
we found that all metrics are sensitive to variations in the size of image-relevant objects
mentioned in the caption, while CLIPScore and PAC-S are also sensitive to the number of
mentions of image-relevant objects in the caption. Regarding linguistic aspects of a caption,
all metrics show weak comprehension of negation, and CLIPScore and PAC-S are insensitive
to the structure of the caption to a great extent. We hope our findings will guide further
improvements in reference-free evaluation of image captioning.

3.3. Introduction
Image caption quality has been traditionally evaluated using a reference-based approach,

with metrics like BLEU [68], ROUGE [57], METEOR [8], and CIDEr [98] assessing the lex-
ical overlap between generated and reference captions. However, this approach is restrictive
as the set of references may not capture the full range of valid captions, and furthermore,
lexical overlap-based metrics tend to favor captions with similar vocabulary but different
meanings. To address these limitations, recent studies like CLIPScore [37], UMIC [50] and
PAC-S [79] have proposed reference-free approaches for evaluating image caption quality,
which more closely aligns with human judgments. These approaches leverage large pre-
trained image-text matching models to measure the similarity between a given image and a
candidate caption. However, the evaluation benchmarks for these metrics do not necessarily
involve differentiating between captions with significant lexical overlap but vastly different
meanings (Fig. 3.1). In this work, we evaluate the robustness of these reference-free met-
rics in scenarios where the correct and incorrect captions have high lexical overlap. To our
surprise, we found that all metrics fail to distinguish between correct and incorrect
captions ∼46% of the time.

In a pursuit to identify what aspects of a caption (e.g., plausibility, visual grounding,
number and size of objects mentioned in the caption, negation and sentence structure) these
metrics are most sensitive to, we conduct several controlled experiments, varying one aspect
at a time. We found that:
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Fig. 3.1. Recently proposed reference-free image captioning evaluation metrics such as
CLIPScore, UMIC, and PAC-S are far from perfect. This figure shows how these met-
rics cannot tell apart an incorrect caption (shown in red) from a correct caption when there
is a high lexical overlap between them.

• All metrics show limited sensitivity to caption implausibility errors but a heightened
sensitivity to visual grounding errors.

• CLIPScore and PAC-S show high sensitivity to the number of image-relevant objects
mentioned in the caption while UMIC shows limited sensitivity.

• All metrics are sensitive to the size of image-relevant objects mentioned in the caption.
• All metrics exhibit a weak understanding of negation.
• UMIC is sensitive to sentence structure, whereas CLIPScore and PAC-S demonstrate

limited sensitivity.
• UMIC prioritizes correct sentence structure over mentions of larger objects or number

of objection mentions in captions, whereas CLIPScore and PAC-S exhibit the opposite
behavior.

Our primary contribution is highlighting specific areas where reference-free metrics ex-
hibit limitations so that caution can be exercised when using these metrics for image cap-
tioning evaluation. We hope our findings will guide further improvements in reference-free
evaluation of image captioning.

3.4. Related Works
Reference-free metrics: We study the robustness of CLIPScore [37], UMIC [50] and

PAC-S [79]. CLIPScore measures the similarity between the image and the candidate caption
using a scaled cosine similarity of the image and text representations from the CLIP [71]
model. On the other hand, UMIC utilizes the UNITER [19] model, which is pre-trained to
align image and text pairs, and finetunes it via contrastive learning to distinguish reference
captions from its hard negatives. PAC-S [79] introduces a novel metric that strategically
curates positive pairs for contrastive learning, enhancing the multimodal embedding space of
CLIP. PAC-S employs scaled cosine similarity, akin to CLIPScore, to evaluate the similarity
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Long Answer: The color of the shirt this tennis player is 
wearing is red.

Completed 
By Model

Please summarize the question and answer in one sentence.
Question: What color is the table?

Answer: brown

Long answer: The color of table is brown.

Question: What color is the front of the train?

Answer: red and black

Long Answer: The color of the front of the train is red and black.

Support 
Examples

Question: What color of shirt is this tennis player 
wearing?
Answer: red

Prompt

Fig. 3.2. Generating caption-like sentences by transforming visual question-answer pairs
using GPT-J.

between the candidate caption and the provided image. SMURF [30] is another recently
proposed metric for image caption evaluation, which has a reference-free evaluation of the
fluency of the caption; however, the evaluation of the semantic correctness of the caption
is still reference-based. Also, InfoMetIC [38] has the capability to pinpoint incorrect words
and overlooked image areas at a fine-grained level while also providing an overall quality
score at a coarse-grained level.

Vision-language benchmarks: Recently, a number of vision-language benchmarks
have been proposed to evaluate the fine-grained understanding of relations, attributes, ac-
tions, and visio-linguistic compositionality in vision-language models, such as CAB [103],
Winoground [92], ARO [106], VL-checklist [111], CREPE [63] and VALSE [69]. Although
these evaluations also highlight the limitations of current models towards fine-grained under-
standing, our focus is specifically on evaluating the robustness of recently proposed reference-
free image-captioning metrics. Our goal is to identify the scenarios where these metrics fail
to distinguish between correct and incorrect captions to ensure the cautious use of these
metrics in such scenarios.

3.5. Datasets Used to Conduct the Examination
3.5.1. Dataset Creation

To conduct our examination of the robustness of the metrics, we use a dataset of generated
image captions. We generate image captions in one of the following ways, depending on the
question we are trying to answer (see section 3.6 for more details):
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QA to caption conversion: We employ GPT-J prompting to transform visual question-
answer pairs into caption-like sentences. We used the questions from the popular VQAv2 [32]
dataset. The answers could either be ground-truth answers or model generated depending on
the analysis. Figure 3.2 shows an example caption-like sentence generated by GPT-J along
with the prompt and support examples. The support examples are specific to the question
type of the input question. More details about support example selection can be found in
B.0.1).

Caption templates: We generate captions in a controlled setting in the format of the
“There is a/an [object name].” for objects present in the image. We utilized the COCO
detection dataset [58] to extract the names of objects in each image. This dataset provides
object tags across 90 categories and attributes like objects’ areas. The sentence construction
process is elaborated within each baseline description.

We will make the dataset containing all the generated captions publicly available for the
purpose of reproducibility and future use by the community.

3.5.2. Dataset Analysis

We conduct the following analyses of our generated captions dataset:
Human verification: We verify the quality of the generated captions, we conduct hu-

man verification. For a random subset of the captions generated via the QA to caption
conversion method, we provide an expert human (graduate student) with the original ques-
tion, the original answer and the generated caption. We ask the expert human to manually
examine each caption and judge if the caption: 1) is grammatically correct, 2) contains all
the information present in the original question-answer pair, 3) does not contain any hallu-
cinated facts that are not present in the original question-answer pair. Upon examining 500
random samples, our analysis identified only 22 captions with grammatical errors, and only
14 captions with issues related to either hallucinating information or missing information
from the original question and answer pairs.

We extended this analysis to 100 randomly sampled captions generated using the caption
template method, and all samples were found to be correct, benefiting from their straight-
forward format.

Comparing generated captions with human written captions: For the captions
generated using the QA to caption conversion method, it is worth asking how the distri-
bution of such captions compares with that of human written captions in existing datasets,
such as, COCO captions [17]. To throw light on this, we refer to [6] where they compared
the distributions of nouns, verbs, and adjectives mentioned in COCO captions with those
mentioned in the VQA questions and answers, and found that they are statistically signif-
icantly different from each other (Kolmogorov-Smirnov test, p < 0.001). Consequently, we
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Fig. a: CLIPScore Fig. b: UMIC Fig. c: PAC-S

Fig. 3.3. Histograms of CLIPScore (Fig. a), UMIC (Fig. b), and PAC-S (Fig. c) for
correct and incorrect caption-like sentences created using correct and incorrect answers from
ALBEF for VQAv2 questions.

expect the captions generated through our QA to caption conversion method to exhibit dif-
ferent distributions of nouns, verbs, and adjectives compared to the human-written captions.
However, [6] also show that the VQA questions and answers require a deeper understanding
of images beyond what (human written) image captions typically capture. Thus, in spite of
the differing word distributions between our generated captions and human written captions,
we posit that our captions can be extremely valuable in stress testing the robustness of
image caption evaluation metrics.

3.6. Experiments and Results
Preliminary experiment: First, we describe our preliminary experiment that served

as a motivation for the rest of the study. We were interested in examining how different the
scores assigned by reference-free image captioning metrics are for correct/incorrect captions
created by converting questions and correct/incorrect answers from the VQAv2 dataset to
caption-like sentences. Captions generated in this way are unique in that even for incorrect
captions, a significant portion of it (corresponding to the question part) is still correct. Thus,
such a dataset of captions serves as a good stress test dataset for examining the robustness
of reference-free image captioning metrics.

To obtain correct and incorrect answers, we obtained predictions from the ALBEF [53]
visual question answering model on the validation splits of the VQAv2[32] dataset. We
fine-tuned ALBEF on this dataset and conducted IID evaluation. We then converted each
question and its corresponding ALBEF answer into a caption-like sentence as described in
Section 3.5. We only use answers that match with either three or more human answers (and
we classify them as correct answers) or that do not match with any human answers (and we
classify them as incorrect answers), resulting in a total of 179,297 answers (43389 incorrect
and 135908 correct). The histograms of results for the VQAv2 dataset are presented in

54



Answer Type CLIPScore UMIC PAC-S
VQAv2- Correct 0.480 0.394 0.558
VQAv2- Incorrect 0.481 0.403 0.549

Table 3.1. CLIPScore, UMIC, and PAC-S comparison for caption-like sentences for incor-
rect and correct answers generated by ALBEF model for VQAv2 dataset.

Answer Type CLIPScore UMIC PAC-S
Correct yes/no 0.457 0.355 0.540
Incorrect yes/no 0.470 0.392 0.547
Correct numbers 0.468 0.354 0.561
Incorrect numbers 0.477 0.387 0.553
Correct others 0.512 0.452 0.578
Incorrect others 0.485 0.411 0.548

Table 3.2. CLIPScore, UMIC, and PAC-S comparison for correct and incorrect caption-like
sentences generated with different answer types from VQAv2 dataset.

Figure 3.3. We see a significant overlap between the distributions of scores for correct and
incorrect captions for all metrics, highlighting the limitations of these metrics in precisely
assessing caption quality.

Score normalization: The UMIC final score, which is an output of a sigmoid function,
has a value range between 0 and 1. On the other hand, the CLIPScore and PAC-S use the
cosine similarity score scaled by a factor of 2.5 and 2, respectively. Although theoretically,
CLIPScore can vary between -2.5 and 2.5, and PAC-S can vary between -2 and 2, we have
not observed negative scores, and they rarely exceed 1.0. The distributions of metrics are
illustrated in Figure 3.3. While we do not directly compare the values of these metrics in
this paper, we aim to contrast their sensitivity to different factors. To achieve this, we apply
the min-max normalization separately to each metric for every experiment. This method
allows us to evaluate the respective sensitivities of the metrics effectively. Please note that
all reported scores are normalized, but the histograms are plotted using the original scores
to accurately represent the original distributions.

Score normalized results: As shown in Table 3.1, CLIPScore and UMIC assign higher
average scores to incorrect captions compared to correct captions; however, PAC-S assigns
higher average scores to correct captions. We conducted further analysis by examining the
average scores assigned by these metrics for different answer types of the VQAv2 dataset
(please refer to Table 3.2 for detailed scores). Specifically, we observed that for the ‘yes/no’
answer type, on average, all the metrics assign higher scores to incorrect captions. For
the ‘number’ answer type, only PAC-S was able to assign higher average scores to correct
captions. However, for the ‘others’ answer type, all the metrics assign higher average scores
to correct captions.
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Question CLIPScore CLIPScore UMIC UMIC PAC-S PAC-S
Type Incorrect Correct Incorrect Correct Incorrect Correct

how many 0.475 0.468 0.372 0.354 0.559 0.562
what color 0.454 0.466 0.420 0.517 0.514 0.542
what sport 0.480 0.584 0.299 0.342 0.513 0.628
what animal 0.436 0.544 0.257 0.322 0.488 0.623
what time 0.469 0.405 0.333 0.282 0.528 0.492
what brand 0.440 0.458 0.481 0.511 0.497 0.508
what type/kind 0.485 0.537 0.382 0.417 0.544 0.594
where 0.501 0.551 0.380 0.435 0.561 0.620
which 0.495 0.529 0.419 0.414 0.556 0.581
what is/are the 0.497 0.543 0.436 0.468 0.559 0.605
others 0.480 0.471 0.412 0.370 0.549 0.550

Table 3.3. CLIPScore, UMIC, and PAC-S for correct and incorrect caption-like sentences
generated for different question types of VQAv2.

For further investigation, we look at results for specific question types for VQAv2. As
illustrated in Table 3.3), for CLIPScore, we observe that incorrect captions received higher
scores on average for three question types: ‘how many’, ‘what time’ and ‘others’. Also,
UMIC assigns higher scores on average to incorrect captions for four question types: ‘how
many’, ‘what time’, ‘which’, and ‘others’. On the other hand, PAC-S assigns higher scores
on average to incorrect captions for ‘what time’ and ‘others’ question types, suggesting all
metrics show poor performance for ‘what time’ questions, which is considered to
be a hard question type. Moreover, CLIPScore and UMIC show poor performance
for ‘how many’ questions. Although PAC-S assigns higher average to correct captions
over incorrect captions for ‘how many’ question type, the gap between the absolute values
of average scores for correct and incorrect captions for ‘how many’ question is less than that
for other question types.

Controlled investigation to identify sensitivity to various factors: Having estab-
lished that these metrics struggle to distinguish the set of incorrect captions from the set of
correct captions, in the following sections, we delve deeper into understanding the underlying
reasons for their failure. To validate the comparisons made between different group means
and ensure the reliability of our claims, we conducted a t-test for each comparison, using
a p-value threshold of 0.01 (p-value < 0.01). Notably, all reported comparisons successfully
satisfied this predetermined threshold, affirming the robustness of our statistical analyses.

3.6.1. Sensitivity to fine-grained errors

The primary objective of this section is to determine the sensitivity of these metrics to
fine-grained errors. An incorrect caption is said to have “fine-grained errors” if it has high
lexical overlap with a correct caption. To obtain such pairs of correct and incorrect captions,
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Answer Type CLIPScore UMIC PAC-S
Ground Truth 0.479 0.422 0.542
Incorrect from ALBEF 0.468 0.404 0.535

Table 3.4. CLIPScore, UMIC, and PAC-S comparison for caption-like sentences for incor-
rect answers generated by ALBEF model for VQAv2 and captions generated with its ground
truth counterpart.

we first generate incorrect captions corresponding to the questions for which ALBEF pro-
duced incorrect responses. Then, we generate correct captions using ground-truth answers
for the same set of questions. We convert the questions and answers into captions using the
method described in Section 3.5. We excluded questions with yes/no answers from this study
as we discuss them in Section 3.6.4. In total, we analyzed 38383 samples for this experiment.

We quantify the degree of lexical overlap between a pair of correct and incorrect cap-
tions in our dataset by measuring the F1 score between them. The mean F1 score across all
such pairs in our dataset is 0.725. To place this in context, we measure the F1 score between
pairs of correct (human-written) and incorrect (generated by image captioning models) cap-
tions from the Composite dataset [1], a widely-used dataset for evaluating image captioning
metrics (see B.0.2 for more details on F1 score computation for Composite dataset). The
mean F1 score across all such pairs from the Composite dataset is 0.224, which is signifi-
cantly lower than that for our dataset. This highlights the difficulty of our dataset making
it suitable for stress testing the robustness of image captioning metrics.

As demonstrated in Table 3.4, for all metrics, captions with ground truth answers received
a higher average score compared to captions with fine-grained errors. Despite the higher
average scores assigned to correct captions, the ranking results reveal that these metrics
often fail to prioritize correct captions over incorrect ones. CLIPScore fails to rank correct
captions above incorrect captions in 46.34% of cases, while UMIC fails to do so in 45.99% of
cases. Also, PAC-S ranks incorrect captions over correct captions in 46.84% of times. Thus,
all metrics show weak sensitivity to detecting fine-grained errors.

We also report a human baseline for the task of distinguishing correct captions from
the ones with fine-grained errors. Presenting 1000 randomly sampled images, each with one
correct and one incorrect caption, we instructed an expert human subject (graduate student)
with the prompt: “An image is presented alongside two corresponding descriptions. Please
identify the description that best aligns with the content depicted in the image.”. The human
subjects encountered difficulty ranking the correct caption above an incorrect one in only
16% of cases. Thus, the human performance is far better than that of automatic metrics .
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Answer Type CLIPScore UMIC PAC-S
Ground Truth 0.501 0.487 0.576
Plausible 0.474 0.242 0.527
Object from Image 0.526 0.354 0.601
Random 0.458 0.275 0.522

Table 3.5. CLIPScore, UMIC, and PAC-S comparison for caption-like sentences from
VQAv2 ground truth, plausible, object from image and random answers.

3.6.2. Are metrics differently sensitive to different kinds of fine-
grained errors?

The main aim of this experiment is to assess if the metrics exhibit varying sensitivity
to different types of fine-grained errors, in particular visual grounding errors and caption
implausibility errors. To assess this, we generated three types of incorrect captions for
each correct caption by replacing the ground-truth answer in the correct caption with: a
plausible but incorrect answer (visual grounding error), an object found in the image (caption
implausibility error), and a random answer (see Figure 3.4 for an example and see Appendix
B.0.3 for more details on plausible answers).

For this experiment, we limited our investigation to the following question types: ‘what
number is’, ‘what time’, ‘what color’, and ‘what brand’, as their answers are non-object enti-
ties and, therefore, are not present in the COCO Detection dataset. Thus, when constructing
a sentence using an object in the image, we can be sure that it would result in an incorrect
caption for the image. We analyzed 23841 sets of 4 captions each for this experiment.

As illustrated in Table 3.5, the score difference between the correct captions and the
captions with implausibility errors is significantly smaller than the difference between the
correct captions and the captions with visual grounding errors. This indicates that the met-
rics exhibit lower sensitivity to caption implausibility errors and higher sensitivity
to visual grounding errors. Notably, both CLIPScore and PAC-S assigned higher average
scores to captions with implausibility errors compared to ground truth answers, and only
UMIC assigned higher average score to captions with ground truth answers. In the following
sections, we further examine the sensitivity of the metrics to various visual and linguistic
aspects.

3.6.3. Visual Aspects

3.6.3.1. Sensitivity to the number of object mentions in the caption. In this
section, our objective is to assess the sensitivity of the metrics to the number of objects
mentioned in the caption. To conduct this evaluation, we filter images from COCO Detection
dataset [58] having a minimum of three object tags and randomly select three object tags for
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Fig. 3.4. Captions from ground truth, plausible answer, an object from the image and a
random asnwer of VQAv2.

Fig. 3.5. Captions referring to different number of objects from the image.

Number of Objects CLIPScore UMIC PAC-S
One Object 0.449 0.205 0.500
Two Objects 0.512 0.212 0.540
Three Objects 0.561 0.195 0.578
Shuffled One Object 0.445 0.139 0.503
Shuffled Two Objects 0.499 0.148 0.541
Shuffled Three Objects 0.540 0.169 0.576

Table 3.6. CLIPScore, UMIC, and PAC-S comparison for sentences with various number
of objects name, and their shuffled counterparts.

each image and utilize their corresponding object names to form sentences, depicting one,
two, and three objects presented in the image (see Figure 3.5). We analyzed 19412 images
for this experiment.
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Candidate Captions CLIPSore UMIC PAC-S

Small Object: There is a 

knife.
0.460 0.507 0.561

Big Object: There is a pizza. 0.632 0.469  0.718

Shuffled Small Object: A 

there knife is.
0.480 0.268 0.561

Shuffled Big Object: A 

there pizza is.
0.664 0.250  0.719

Fig. 3.6. Captions referring to small and large area of the image and their shuffled coun-
terparts.

Object Size CLIPScore UMIC PAC-S
Small Object 0.396 0.317 0.492
Big Object 0.434 0.232 0.580
Shuffled Small Object 0.390 0.205 0.495
Shuffled Big Object 0.436 0.170 0.590

Table 3.7. CLIPScore, UMIC, and PAC-S comparison for captions referring to small and
a big objects in the image, and their shuffled counterparts.

As presented in the first three rows of Table 3.6, CLIPScore and PAC-S scores for captions
with three objects are significantly higher than for captions with two objects. Also, captions
with two objects score significantly higher than those with one object. In contrast, for
UMIC, captions with one, two, and three objects received average scores of 0.205, 0.212, and
0.195, respectively. Although the t-test indicated statistically significant differences between
scores across different object counts, the gap between absolute score values is smaller for
UMIC than for CLIPScore and PAC-S. In conclusion, CLIPScore and PAC-S display a
heightened sensitivity to the number of image-relevant objects mentioned in the
caption, while UMIC shows limited sensitivity towards this factor.

3.6.3.2. Sensitivity to size of objects mentioned in the caption. In this experiment,
our primary goal is to examine the effect of object size mentioned in captions on the metrics.
To achieve this, we utilize the COCO Detection dataset [58] to select one small and one
large object from the same image with a noticeable difference in the area (see Figure 3.6
for an example and for detailed explanation see Appendix B.0.4.). As a result, we selected
24610 images for further analysis.
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As demonstrated in the first two rows of Table, 3.7, for CLIPScore and PAC-S, captions
with smaller objects received a lower average score than those with bigger objects. On the
other hand, UMIC assigned a higher average score to captions with smaller objects compared
to captions with bigger objects. Overall, all metrics demonstrate sensitivity to the size
of image-relevant objects mentioned in the caption.

3.6.4. Linguistic Aspects

3.6.4.1. Sensitivity to negation. To assess the ability of metrics to distinguish between
correct captions and their negated versions, we created 80530 captions-like sentences by using
the questions with ‘yes’ or ‘no’ ground-truth answers from the validation split of VQAv2.
Additionally, we generated negated captions by negating the ground truth answer.

For CLIPScore, correct captions received a higher score of 0.457, and their negated
versions got 0.450 on average. For UMIC, correct captions received a higher average of
0.359, and their negated versions got 0.335 on average. Correct captions received a higher
average of 0.556 for PAC-S, and their negated versions got 0.548 on average. Although the
correct captions scored statistically significantly higher than the negated ones, CLIPScore,
UMIC, and PAC-S ranked the negated caption above the correct caption incorrectly in
41.36%, 44.24%, and 41.83% of cases, respectively. Thus, all metrics exhibit a weak
understanding of negation.

3.6.4.2. Sensitivity to the sentence structure. To evaluate the sensitivity of the met-
rics to sentence structure, we generated 214354 caption-like sentences with VQAv2 ground
truth answers and then shuffled them. For CLIPScore, correct captions received 0.469, and
their shuffled version got 0.450 on average. For UMIC, correct captions received 0.400, and
their shuffled version got 0.211 on average. Correct captions received 0.548 for PAC-S, and
their shuffled version got 0.539 on average. Despite higher average scores assigned to cor-
rect captions, the ranking results reveal that CLIPScore fails to rank the correct caption
higher than the shuffled one in 34.32% of cases, contrasting with UMIC, where this occurs
in only 9.18% of cases. Additionally, PAC-S falls short, assigning a higher score to the cor-
rect caption than the shuffled one in 43.05% of cases. This indicates that UMIC is more
responsive to the structure of the sentence compared to CLIPScore and PAC-S.

3.6.5. Visio-Linguistic Aspects

3.6.5.1. Sentence Structure versus Visual Aspects. To evaluate the sensitivity of
the metrics to sentence structure, we generated 214354 caption-like sentences with VQAv2
ground truth answers and then shuffled them. For CLIPScore, correct captions received
0.469, and their shuffled version got 0.450 on average. For UMIC, correct captions received
0.400, and their shuffled version got 0.211 on average. Correct captions received 0.548
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for PAC-S, and their shuffled version got 0.539 on average. Despite higher average scores
assigned to correct captions, the ranking results reveal that CLIPScore fails to rank the
correct caption higher than the shuffled one in 34.32% of cases, contrasting with UMIC, where
this occurs in only 9.18% of cases. Additionally, PAC-S falls short, assigning a higher score
to the correct caption than the shuffled one in 43.05% of cases. This indicates that UMIC
is more responsive to the structure of the sentence compared to CLIPScore and
PAC-S.

3.7. Conclusion and Discussion
In conclusion, recently proposed reference-free image captioning evaluation metrics are

far from perfect; they cannot distinguish an incorrect caption from a correct caption when
the difference between them is fine-grained. The sensitivity of CLIPScore, UMIC, and PAC-
S varies across different error types: they are less affected by plausibility errors yet more
by visual grounding errors. All metrics struggle with understanding negation. All metrics
are influenced by the size of the relevant objects mentioned in the caption, and CLIPScore
and PAC-S also responds to the number of object mentions. UMIC is responsive to sentence
structure, while CLIPScore and PAC-S disregards it often. Moreover, UMIC prioritizes
sentence structure over the number and size of objects mentioned in the caption; in contrast
CLIPScore and PAC-S prioritize the object size and number of object mentions over sentence
structure.

Our primary contribution is highlighting specific areas where reference-free metrics ex-
hibit limitations. The root cause of these limitations is traced to the insufficient fine-grained
understanding of the CLIP and UNITER models upon which these reference-free metrics
rely. Promising avenues for enhancing this understanding include exploring object-centric
representations and incorporating training with hard negatives [106, 107, 12]. Given the re-
stricted fine-grained understanding of the underlying models shaping these metrics, caution
is advised when employing them as evaluation metrics for image captioning.

3.8. Limitations
As a limitation, it is important to consider that responses marked as incorrect may not

always be incorrect due to the stringent nature of VQA evaluation metrics [3]. Our approach
does not account for this factor. However, for our experiments, since we fine-tune ALBEF for
each domain, the risk of this issue is low. To get a quantitative sense, we randomly sampled
100 incorrect answers (as deemed by the VQA automatic metric) generated by ALBEF for
VQAv2, and in only 10% of cases, the answer was actually correct (as deemed by an expert
human). Furthermore, it is important to note that we do not account for the saliency of
objects mentioned in the caption, which could be a confounding factor in our evaluation.
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3.9. Ethics Statement
To enhance transparency and explainability, we conducted experiments aimed at shed-

ding light on the evaluation process of the metric. By doing so, we aimed to provide insights
and explanations that enable users to better comprehend and trust the metric’s evalua-
tions. Furthermore, we evaluated the robustness of the metrics, contributing towards the
development of less biased evaluation metrics.

While we assess various aspects of existing metrics, it is important to note that our eval-
uation does not specifically examine metrics’ potential biases across different demographics,
including gender or race. While our research does not include an explicit experiment on
bias perpetuation or amplification, we strongly encourage future studies to investigate how
metrics may interact with biases present in datasets. This research direction is crucial in
developing metrics that are less biased and more inclusive towards diverse demographics.
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Chapter 4

Conclusion

This thesis focuses on delving into a multimodal Artificial Intelligence (AI) task known as
Image Captioning. Image Captioning represents a crucial intersection of computer vision
and natural language processing, aiming to bridge the semantic understanding gap between
visual content and textual representation. The complexity of this task lies in the ability to
not only recognize and interpret diverse visual elements within an image but also to convey
this understanding in a linguistically coherent and contextually relevant manner.

The primary contribution of this thesis, MAPL [65], introduces a parameter-efficient
method for repurposing pre-trained unimodal models for multimodal tasks including image
captioning. The method, called MAPL, learns a lightweight mapping between the represen-
tation spaces of a pre-trained vision encoder and a pre-trained language model using aligned
image-text data. This approach allows the model to generalize to unseen vision-language
tasks with only a few in-context examples, making it effective for low-data and in-domain
learning.

There are several promising avenues for future research in modeling vision and language,
which we will highlight. One potential avenue for future research into pre-training vision
and language models is the learning of fine-grained representations. Including fine-grained
details is critical for enriching semantic information, improving generalization across diverse
datasets, increasing robustness to variations in input data, and ensuring better alignment
between visual and linguistic modalities. Exploring methods to integrate fine-grained fea-
tures during pre-training effectively will contribute to advancing vision and language models,
enabling them to achieve more nuanced understanding and improved performance in various
applications, including image captioning. One other promising research avenue for Vision
and Language Models (VLMs) is to learn efficiently with limited data. Present methodolo-
gies often entail training VLMs with substantial data and resource-intensive computations,
posing sustainability challenges. A practical resolution involves the development of effective
VLMs using constrained image-text data. Instead of relying solely on individual image-text



pairs, a more valuable approach is integrating supervision across multiple image-text pairs,
providing richer insights. One potential area for further investigation is pre-training Vision
and Language Models (VLMs) with multiple languages. This strategy aims to address bi-
ases inherent in the prevalent practice of training these models with a single language, often
English. By doing so, the models can acquire a broader understanding of diverse cultural
visual characteristics linked to the same word meanings across different languages.

Our second study investigates the robustness of reference-free evaluation metrics for im-
age captioning. Traditionally, the evaluation of image caption quality has been based on a
reference-based methodology that measures the lexical overlap between generated and ref-
erence captions. However, this approach has limitations, as the set of references may not
encompass the full range of acceptable captions. Additionally, metrics based on lexical over-
lap have a tendency to favor captions with similar vocabulary but very different meanings.
To overcome these constraints, recent metrics, exemplified by CLIPScore [37], UMIC [50],
and PAC-S [79], have introduced reference-free methodologies for evaluating image caption
quality, aligning more closely with human judgments. Our primary contribution is high-
lighting specific areas where reference-free metrics exhibit limitations. Despite their strong
correlation with human judgments, our findings indicate that CLIPScore, UMIC, and PAC-
S encounter challenges in pinpointing fine-grained errors. These constraints stem from the
insufficient fine-grained understanding of the CLIP and UNITER models, upon which the
foundation of these reference-free metrics relies. Promising avenues for enhancing this un-
derstanding include exploring object-centric representations and incorporating training with
hard negatives [106, 107, 12]. Given the restricted fine-grained understanding of the under-
lying models shaping these metrics, caution is advised when employing them as evaluation
metrics for image captioning.

We anticipate that our insights will pave the way for further refinements in the parameter-
efficient training and reference-free evaluation of image captioning.
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Appendix A

Appendix for MAPL: Parameter-Efficient
Adaptation of Unimodal Pre-Trained Models

for Vision-Language Few-Shot Prompting

A.0.1. Leveraging more shots

In Table 2.2, we observe MAPL’s performance rapidly plateaus as the number of few-
shot examples increases beyond 4. We hypothesize this could be related to the mapping
network being trained on single image-caption pairs, and/or the visual embeddings still not
being fully in-distribution with the language embeddings. Intuitively, a handful of examples
may often help with task location [76]; however, the more shots are added, the more out-of-
distribution the multimodal prompt becomes. This issue could be mitigated with in-context
example selection [104] or better mixing of visual and textual modalities.

A.0.2. 0-shot VQAv2 results with OPT

In Table 2.5, we observe Frozen∗-OPT outperforms MAPL-OPT on 0-shot VQAv2. Upon
close inspection, we notice MAPL-OPT often generates longer answers for yes/no questions,
which receive a score of 0 according to VQA accuracy and VQAv2 reference answers – this
is a problem of the metric and not the model itself [2]. After filtering all answers starting
with "yes" or "no" to leave only the short answer, MAPL-OPT achieves a VQA accuracy of
40.14% while Frozen∗-OPT only reaches 32.03%.

A.0.3. 4-shot results with OPT

In Table 2.5, we also observe that few-shot VQA performance is considerably lower for
configurations using OPT-6.7B as language model. This is possibly due to the lack of a
relative positional encoding [82] in OPT, which is required for the transformer to generalize



Ablated Original Changed VQAv2 OK-VQA TextVQA VizWiz-VQA CC COCO TextCaps VizWiz-Caps Overall ∆
setting value value 4-shot 4-shot 4-shot 4-shot CIDEr CIDEr CIDEr CIDEr 4-shot CIDEr

MAPL 46.39 25.49 9.87 20.02 71.90 54.90 23.30 21.70 0 0
(i) Vision encoder CLIP-ViT-L/14 CLIP-ViT-B/32 43.48 24.43 7.85 15.97 59.20 47.00 19.00 15.70 -2.51 -7.73

(ii) Visual features Grid Global 43.75 22.90 8.81 18.20 66.70 49.70 18.40 19.90 -2.03 -4.28

(iii) Mapping Medium Small 44.83 26.37 9.68 17.78 68.30 55.50 21.30 20.80 -0.78 -1.48
network size Large 45.03 23.92 8.88 19.01 73.40 57.10 24.00 23.10 -1.23 +1.45

(iv) Output 32 16 44.18 25.16 9.01 18.15 72.80 56.20 22.50 21.80 -1.32 +0.37
seq. length 64 45.22 25.07 10.35 18.89 74.80 58.30 24.30 24.80 -0.56 +2.60

(v) Learned constant Yes No 40.87 19.31 11.42 16.79 80.52 57.49 30.07 26.16 -3.35 +5.61embeddings

(vi) Data quality Clean Noisy 42.80 22.59 6.06 17.33 93.80 42.10 15.60 15.70 -3.25 -1.15Visual features Grid Global

Table A.1. Ablation studies. "Overall ∆" refers to the difference (ablated model - base
model), averaged across datasets per task.

to prompt sequences where an image is not always in the first absolute position, or which
contain more than one image [94].

A.0.4. Implementation details on simpler mapping networks

In Sec. 2.6.5, we ablate the choice of mapping network architecture and replace it by
simpler architectures. Similarly to [29, 66], the linear mapping is applied per-position on
top of a flattened grid of visual features, and it projects from Di = 1024 to Do = 4096
dimensions (4.2M parameters). The output sequence length Lo is thus equal to Li = 257
(instead of 32) – as explained in Sec. 2.5.1, this increases the computational complexity
in the subsequent LM, which in turn increases training and inference time considerably.
Similarly to [67], the 2-layer MLP is applied on top of a global vector of visual features. The
MLP’s hidden dimensionality Dh is equal to Di = 1024, and the output dimensionality is
Do = 32 ∗ 4096, which we split into 32 vectors of 4096 dimensions (135.3M parameters).

A.0.5. Additional ablation studies

Table A.1 shows the results of our additional ablation studies. Unless specified otherwise,
we perform all ablations on MAPLCC-clean trained with 100% of the data. These experiments
are run only once and early stopping is based on the validation split of Conceptual Captions.
Pre-trained vision encoder. We ablate the pre-trained vision encoder used to compute image
representations. We report results in row (i) of Table A.1. We compare two CLIP [70]
variants, our choice based on the ViT-L/14 backbone and the ViT-B/32 backbone. Indeed,
the ViT-L/14 based vision encoder has an average +20% advantage over the ViT-B/32
variant. We hypothesize this improvement is probably due to finer-grained image patches
and a bigger model size.
Global vs. grid visual features. Grid features – as opposed to global features – preserve
the spatial information in images. This kind of fine-grained information might be useful for
complex VL tasks. To measure the impact of grid features, we train a version of MAPL where
we use the global image representation from CLIP’s multimodal embedding space. Results
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are reported in row (ii) of Table A.1. We observe an average -10% drop in performance,
validating our choice of using grid over global visual features.
Mapping network architecture. We ablate the architectural design of our mapping network
in rows (iii) and (v) of Table A.1. First, we ablate the size of our mapping network in terms
of depth and hidden size. We explore three options: Small (2 layers and hidden size of 128),
Medium (4 layers and hidden size of 256), and Large (8 layers and hidden size of 512). We see
that using a smaller mapping network generally performs slightly worse than the base model.
On the other hand, using a larger mapping network improves only in image captioning tasks,
while increasing significantly the number of trainable parameters (from 3.4M to 19.5M). We
also ablate the output sequence length Lo of our mapping network. Similarly, reducing the
output sequence length to 16 yields slightly lower performance overall, and increasing it
to 64 only improves in image captioning tasks. In the extreme, we completely remove the
learned constant embeddings and output the same sequence length coming from the vision
encoder, i.e., Lo = Li = 257. Following the trend, increasing the number of mapped visual
embeddings is beneficial for image captioning but hurts VQA performance, while notably
reducing training and inference throughput.
Data quality & visual features. This ablation setting aims to be the most similar to Frozen:
training on the full (noisy) Conceptual Captions dataset while using global visual features.
Results are reported in row (vi) of Table A.1. The overall performance is worse than that of
our base model (-16% on average), but still better than Frozen∗

CC on Table 2.4 (+81% on
average). This validates our choice of using grid visual features while training on a subset of
cleaner data.

A.0.6. Additional qualitative results

Figures A.1-A.12 show additional qualitative results of MAPLCC-clean on random samples
from different image captioning and VQA datasets. For VQA, in-context learning from 4
shots is performed.

A.0.7. Interpretability of visual embeddings

Using MAPLCC−clean, we extract mapped visual embeddings (after the mapping net-
work) for ∼30 images from the COCO Karpathy-test set, and compute the nearest token
embeddings (from the LM’s vocabulary) using cosine similarity. We rarely found the top-5
nearest tokens correspond to concepts present in the image, suggesting these embeddings
are not interpretable. We hypothesize this is perhaps because they carry a combination of
task-inducing and image-specific information, also pointed out by [67]. We further cluster
the mapped visual embeddings with K-means, and observe that each cluster often represents
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some visual concept (e.g., animals, food, sports). This means the mapped visual embed-
dings retain visual information from the vision encoder, which we also verify with MAPL’s
performance on VL benchmarks.

A.0.8. Analysis of VQA answer distributions

In this section, we show the distribution of answers for selected VQAv2 question types.
We compare MAPL with several baselines of our model to get insights into how the model’s
predictions change when training on increasing multimodal data. For the text-only baseline,
we only provide the question text to the LM. This is different from the previously introduced
blind baseline (Sec. 2.6.1), where a blacked-out image is also provided. In particular, we
compare the predicted answer distribution of MAPLCOCO evaluated on on zero- and few-
shot VQA with the aforementioned baselines and the ground truth. Overall, we observe the
predicted answer distribution gets closer to the ground truth answer distribution (Figure
A.18) as more information from the image-question pair is provided to the model. We notice
a considerable shift in the answer distribution from the text-only baseline (Figure A.13) to
the blind baseline, which demonstrates the impact caused by the captions alone. Moreover,
we see the predicted answer distribution of MAPL zero-shot is closer to the ground truth
answer distribution than that of the blind baseline (Figure A.14), which indicates that MAPL
is leveraging the additional information from the visual input. For instance, we observe
MAPL’s predicted answer distribution for the "what color" question type (second column)
looks more similar to the ground truth distribution compared to the text-only and blind
baselines. Finally, when performing in-context learning from four shots (Figure A.16), we
see the answer distribution gets even closer to the ground truth distribution. However, we
do not observe much difference in answer distribution when increasing the number of shots
from four to eight (Figure A.17).
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Input

Ground truth
stadium coming alive on game 

day !.

and what 's the umbrella for 
? a woman braves deep flood 

water.

my little brother will 
probably have this cake for 

his birthday.
the hand of person --.

sunset from the stadium.
a woman holds an umbrella as 
she walks through the flooded 

streets.

a cake for a video game 
themed birthday party.

a superman logo with a fist 
and lightning bolt.

Completion

Fig. A.1. MAPL’s image captioning on Conceptual Captions.

Input

Ground truth
A couple of large long trains 

on a track.
A bird perched on top of a 

wooden power pole.

Parking meter that is 
expired, with damp street 

below

The meal consists of chopped 
chicken with cheese and 

brocolli.

a train passes a station with 
a woman and a child.

a crow perched on a power 
pole.

the vending machine is a 
relic of the past.

this is what i made for 
dinner tonight.

Completion

Fig. A.2. MAPL’s image captioning on COCO Captions.

Input

Ground truth An old book has a picture of 
a baby sat in a swing and an 
article of the same name next 

to it.

Tyler Hanover is displayed on 
a outfield scoreboard.

A English two pence coin is 
seen close up wedged into a 

piece of wood.

Imperial Oat oatmeal stout is 
shown having a yellow can 
with a horse drawing on it.

a child's swing from a 
magazine.

a sign outside the stadium 
with a picture of baseball 

player on it.
a penny on a tree. brewery's new beer, a golden 

ale, is named after a horse.

Completion

Fig. A.3. MAPL’s image captioning on TextCaps.
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Input

Ground truth
I see two cans of select 

harvest on a table

A white paper has braille 
textured writing in a 

sentence.

a black colored laptop 
computer back with different 

description labels

A black monitor with white 
font lettering on top of it

product of the week - canned 
beans. the old braille on the sheet. the laptop has a sticker on 

the back.
a close up of a blurred image 

of the letters e and s.

Completion

Fig. A.4. MAPL’s image captioning on VizWiz Captions.
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Support examples Query

Input

Question: Is this 
duck on land? 
Answer: no.

Question: How tall 
is the grass? 

Answer: very tall.

Question: Is it 
night time? 
Answer: no.

Question: Where are 
the flowers? 

Answer: in vase.

Question: What 
drink is being 
served? Answer:

Ground truth

beer
beer
beer
soda
beer
Beer
tea
beer
beer
beer

beer.

Completion

Support examples Query

Input Ground truth

on clock
on clock
on clock
on clock

 perched on clock
on top of clock
top of clock
on clock

on top of clock
on top of clock

on the clock.

Completion

Support examples Query

Question: What are 
the wearing around 

their necks? 
Answer: 

credentials.

Question: Is there 
a ball in the air? 

Answer: yes

Question: How many 
red cars can you 
spot? Answer: 2.

Question: Are 
these people water 
skiing? Answer: 

no.

Question: Where 
are the birds? 

Answer:

Support examples Query Ground truth

Ground truth

yes
no
no
no
no
no
no
no
no
yes

Completion

Input

no.

Support examples Query

Question: What 
color is the 

persons sweater? 
Answer: black.

Question: Is the 
number of placemats 
the same as the 
number of chairs? 

Answer: no.

Question: Is there 
a tree behind the 
sign? Answer: yes.

Question: Has this 
area been blocked 
off? Answer: no.

Question: Is the 
flag at half mast? 

Answer:

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

toilet
in toilet
Toilet
toilet
toilet

in toilet
toilet
toilet
toilet
toilet

in the toilet.

Completion

Query

Input

Question: What is 
the bird looking 
at? Answer: 
camera.

Question: Why are 
there shadows? 
Answer: from 
lights.

Question: How many 
people are actively 
cooking or preparing 
food in the kitchen? 
Answer: 0.

Question: Is the 
street light as 
tall as the clock 
tower? Answer: no.

Question: Where is 
the cat? Answer:

Fig. A.5. MAPL’s 4-shot VQA on VQAv2, success cases.
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Support examples Query

Input Ground truth

patty cake
 food
food
food
food
food

origami
appetizers

food
dinner

noodles.

Completion
Question: What are 

the children 
making? Answer:

Question: Are 
these people on 
their way to 

school? Answer: 
no.

Question: Is there 
a person looking 
at the back? 
Answer: no.

Question: What 
color is the 
surfboard? 

Answer: blue.

Question: How 
many smaller 

boxes are in the 
larger box? 
Answer: 1.

Support examples Query

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Question: Is this 
indoors? Answer: 

no.

Question: Is the 
street busy? 
Answer: no.

Support examples

Ground truth

Afternoon
day

daytime
Day

afternoon
morning
daytime
evening
afternoon
 daytime

it's a sign.

Question: Which 
color is dominant? 
Answer: brown.

Question: Is this 
a waiting room? 
Answer: yes.

Question: What 
time of day is it? 

Answer

Completion

Query

Input

Support examples Query

Input

Question: How 
many parasails 
do you see? 
Answer: 4.

 Question: How 
many cats are in 
the picture? 
Answer: 2.

Question: How 
many books are in 
the background on 

the table? 
Answer: 11.

 Question: What 
type of pizza is 
this? Answer: 

cheese.

Question: Where 
should a person 
stand in order to 
be seen here? 

Answer:

Ground truth

 by sign
by sign

stop sign
in light

on corner
by stop sign
by stop sign
at stop sign

in light in front of sign
in front

in the middle of 
the road.

Completion

Support examples Query Ground truth

Ground truth

bread
bread
food
bread
bread
bread
rolls
bread
bread
banana

Completion

Input

Question: Is the 
man wearing a 

wetsuit? Answer: 
no.

Question: Is 
there a window 
in the kitchen? 
Answer: yes.

Question: Do 
they all play 
for the same 
team? Answer: 

yes.

Question: Is 
this a market? 
Answer: yes.

Question: What is 
in the bowl? 

Answer:
cheese, fruit, 

bread, butter, jam, 
yoghurt, milk.

Support examples Query

Fig. A.6. MAPL’s 4-shot VQA on VQAv2, failure cases.
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Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

cat
cat
cat
cat

inhumane and noisy
inhumane and noisy
there is cat in it
there is cat in it

cat in bag
cat in bag

cat.

Completion

Query

Input

Question: What 
breed of dog is 
this? Answer: 

boxer.

Question: What type 
of knife is being 
used to cut this 

apple? Answer: flick 
knife.

Question: What 
powers the front 
most vehicle? 
Answer: feet.

Question: What is the 
green vegatable in 
the salad? Answer: 

green pepper.

Question: What issues 
would someone have 

bringing this suitcase 
on a plane? Answer:

Ground truth

picnic
picnic
 picnic
picnic

fall party
fall party
 lunch
lunch
party
 party

picnic.

Completion

Input

Support examples Query

Question: Horses 
typically eat what 
types of fruits? 
Answer: apple.

Question: What is a 
slang name for this 
type of motorcycle? 

Answer: crotch 
rocket.

Question: Who uses 
this mode of 

transportation? 
Answer: travel.

Question: What 
type of energy is 
moving the board? 
Answer: kinetic 

energy.

Question: What 
type of function 
is happening here? 

Answer:

Support examples Query Ground 
truth

Ground truth

llama
llama
llama
llama
horse
horse
goat
goat
alpaca
alpaca

Completion

Input

llama.

Support examples Query

Question: Namw what 
kind of wood is used 
to make this table 

shown in this 
picture? Answer: oak.

Question: Which 
brand of car is 
shown in this 

picture? Answer: 
chevrolet.

Question: What 
insturments could be 
used while the man is 

singing? Answer: 
guitar.

Question: What emotion 
are the people in the 
photo experiencing 
towards each other? 

Answer: love.

Question: What is 
the animal to the 

left?

Support examples Query

Input Ground truth

cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
cardboard
wooden
wooden

cardboard.

Completion

Support examples Query

Question: What is 
this toy made of? 

Answer:

Question: Which 
type of animal is 
shown? Answer: 

zebra.

Question: Who owns 
the horses? 

Answer: farmer.

Question: From what 
vegetable does the food 
come from in the top 
left of the picture? 

Answer: potato.

Question: Would you 
eat this for 

breakfast or for a 
snack? Answer: 
breakfast.

Fig. A.7. MAPL’s 4-shot VQA on OK-VQA, success cases.
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Support examples Query Ground truth

Ground truth

learn
learn
learn
learn
learn
learn
study
study
study
study

Completion

Input

working on a 
computer.

Support examples Query

Question: Namw what 
kind of wood is used to 
make this table shown 

in this picture? 
Answer: oak.

Question: Which 
brand of car is 
shown in this 

picture? Answer: 
chevrolet.

Question: What 
insturments could be 
used while the man is 

singing? Answer: 
guitar.

Question: What emotion 
are the people in the 
photo experiencing 
towards each other? 

Answer: love.

Question: What item 
does the male and 
female in the 

foreground have in 
common? Answer:

Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Support examples

Ground truth

 macbook
macbook
 macbook
 macbook
dell
dell

 samsung
 samsung

 macbook air
macbook air

laptop.

Completion

Query

Input

Question: What 
emotion is this 
person feeling? 
Answer: anger.

Question: How does 
this table close? 
Answer: it fold 

up.

Question: Can this 
room be rented to 

hold meetings in or 
is it free? Answer: 

rented.

Question: What kind 
of relationship do 
these people have? 
Answer: co worker.

Name the laptop 
model shown in 
this picture?

Ground truth

clock
clock
clock
clock

 tell time
tell time
residential
residential
lighthouse
lighthouse

it is a sundial.

Completion

Input

Support examples Query

Question: What is 
the red part of 
this vehicle 

called? Answer: 
bumper.

Question: When a person 
wears a purse or bag in 
this way what is it 
called? Answer: 

crossbody.

Question: What 
type of bed is in 
the photo? Answer: 

canopy bed.

Question: What is 
the object that the 
dog is holding used 
for? Answer: brush.

Question: What is 
the purpode of the 
tower to the left? 

Answer:

Support examples Query

Input Ground truth

bill gate
bill gate
bill gate
bill gate

charles babbage
charles babbage

osborne
osborne

adam osborne
adam osborne

person.

Completion

Support examples Query

Question: Who 
invented these 
items? Answer:

Question: What 
country could 
these people be 

in? Answer: kenya.

 Question: What 
type of shirt is 
the man on the 
right wearing? 

Answer: collared.

Question: What breed 
of cat could this 

be? Answer: domestic 
shorthair.

Question: Where is 
the brim on this 
fellows hat? 

Answer: in back.

Fig. A.8. MAPL’s 4-shot VQA on OK-VQA, failure cases.
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Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Support examples

Ground truth

ships
ships
ships
ships
ships
ships
ships
ships
ships
ships

ships.

Completion

Query

Input

Question: what 
brand of soda is in 

the bottles? 
Answer: pepsi and 

diet pepsi.

Question: what does 
the black sign say? 

Answer: und 
filmgesselschaft 
baden-wurttemberg.

Question: what 
symbol is used to 
show danger in the 
water? Answer: 

exclamation point.

Question: when was 
the photo taken? 
Answer: 2015.

Question: what is 
the sky filled 
with? Answer:

Support examples Query

Input Ground truth

stop
stop
stop
stop
stop
stop
stop
stop
stop
stop

stop.

CompletionQuestion: what 
number is the 

pitcher? Answer: 
30.

Question: where is 
2 km away? Answer: 
appletreewick.

Question: where is 
the ship from? 

Answer: duty free.

Question: what is 
the brand name? 
Answer: casarsa.

Question: what 
does the red sign 
mean? Answer:

Support examples Query

Input Ground truth

 old labour
working class
working-class
new labour
working

working-class
working class
unanswerable

working
lucky strike

the working 
class.

Completion

Support examples Query

Question: what class 
were the people who 
had resisted on this 

page? Answer:

Question: who 
brews this? 

Answer: the urkney 
brewery.

Question: what 
title is shown on 
screen? Answer: 
mac on intel.

Question: what is 
the player's 

number? Answer: 
23.

Question: what does 
the paper warn us 
of? Answer: meter 

broken.

Support examples Query Ground 
truth

Ground truth

yes
yes
yes
yes
Yes

le web
yes
yes
yes
yes

Completion

Input

yes.

Support examples Query

 Question: what is 
the first time frame 

listed? Answer: 
8:45.

Question: what's 
on the tv crew 
shirts? Answer: 

numbers.

Question: are they 
celebrating a 

mainstream gaming 
anniversary? Answer: 

yes.

Question: what's the 
likely name of this 

device? Answer: 
john's snow.

Question: was this 
picture sent? 

Answer:

Fig. A.9. MAPL’s 4-shot VQA on TextVQA, success cases.
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Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales
cave of a thousand tales

the book of 
tales.

Completion

Query

Input

Question: what is 
the plane's call 
sign? Answer: 

usaf.

Question: what is 
this suppose to do? 

Answer: keep 
recycling materials.

Question: who 
produced this 

product? Answer: 
pilot.

Question: what 
model of product 
is this? Answer: 

m1-100.

Question: what is 
the title? Answer:

Support examples Query

Input Ground truth

q
q
q
22
q
q
q
q
q
q

a mouse.

Completion
Question: what 
does the book 

title say? Answer: 
ex delicto.

Question: who is 
the author of the 

book? Answer: 
steven brust.

Question: what 
is the weight of 

this coin? 
Answer: 1/4oz.

Question: what 
does it say on the 

bottom row of 
text? Answer: et a 
classe unique.

Question: what is 
to the right of 
the tab key? 

Answer:

Support examples Query

Input Ground truth

unanswerable
3m

post-it
post it

3m
3m

post-it
3m

post-it
3m

person.

Completion

Support examples Query

Question: what 
company in on the 
bottom corner of 
the box? Answer:

Question: what is 
written on the 
white labels on 
these containers? 
Answer: mcub.

Question: what tab 
is highlighted 

above the desktop? 
Answer: console.

Question: what 
number is the man 

holding the 
jacket? Answer: 4.

Question: what 
hour does the 

black sport watch 
show? Answer: 12.

Support examples Query Ground truth

Ground truth

army medical museum
 5:30

army medical museum 
army medical museum
army medical museum
 surgeon general's 

office
 army medical museum
 army medical museum
 army medical museum
 army medical museum

Completion

Input

the first 
christmas.

Support examples Query

Question: what is the 
name of the state on 
the sign the airplane 
is carrying? Answer: 

iowa.

Question: what are 
the words in red? 
Answer: merry 
christmas!.

Question: what 
time is it? 

Answer: 18:53.

Question: what is the 
motto written on the 
jamestown awning ad? 
Answer: we've got you 

covered.

 Question: what is 
the title of the 
paper? Answer:

Fig. A.10. MAPL’s 4-shot VQA on TextVQA, failure cases.
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Support examples Query

Input Ground truth

white
 purple
purple
blue
purple
blue
purple
purple
blue
purple

purple.

Completion
Question: This is the 
display of a treadmill, 
can you tell me the 
distance in miles, 

please? Answer: 3.28.

Question: What's the 
name of this album and 
can you tell me the 
picture of the album 

please? Answer: picture 
smiling man in hat.

Question: Could you 
please tell me what 
is this? Thank you. 
Answer: red tipped 

cable.

Question: I need to 
know what kind of 
build this is. 

Answer: 
unanswerable.

Question: What 
color is this 
marker? Answer:

Support examples Query

Input Ground truth

ginger ale
canada dry ginger ale

ginger drink
ginger ale
gingerale
gingerale
gingerale

canada dry ginger
canada dry ginger ale

ginger ale

ginger ale.

Completion

Support examples Query

Question: What is 
in this can? Thank 

you. Answer:

Question: What 
does this mean? 
Answer: radio 

time.

Question: Are you 
able to tell if 
there is any mold 
on the bread? 
Answer: no.

Question: What is 
this? Answer: 

pizza.

 Question: Does 
this text say? 
Answer: braille.

Question: Do you 
think that cake is 
for the child or 

adult? Answer: child.

Question: What is on 
the man on the 

right's forearm? 
Answer: hair.

Support examples

Ground truth

glasses
glasses
glasses

eyeglasses
 pair glasses

glasses
 pair glasses

 glasses
eye glasses
pair glasses

glasses.

Completion

Query

Input

Question: What kind 
of cleaning product 
is this? Answer: rug 
doctor high traffic 

pre treatment.

Question: Do you 
see any number on 
the CD? Answer: 

no.

Question: What tv 
show is this? 

Answer: unable to 
see tv.

 Question: I'm trying 
to figure out what 

this phone is. 
Answer: unanswerable.

Question: What is 
this? Answer:

Support examples Query Ground truth

Ground truth

rug
 blanket

rug
rug

unsuitable
mattress
 blinds
rug

unanswerable
placemat

Completion

Input

a rug.

Support examples Query

Question: What is 
in this box? 
Answer: pasta 
meatballs.

Question: What 
color is my hair? 

Answer: 
unsuitable.

Question: What 
kind of juice is 
this? Answer: 
unanswerable.

Question: What is 
this? Answer: 
unanswerable.

 Question: Hey, 
what is this? 

Answer:

Fig. A.11. MAPL’s 4-shot VQA on VizWiz-VQA, success cases.
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Support examples Query

Input Ground truth

persons back
 boy

 mans head
person

Back someones head 
shoulders
 back man

unanswerable
 grey shirt

boy
picture back person

a wireless mouse.

Completion
Question: What is 
this? Answer:

Question: What 
color is this 
pen? Answer: 

black.

Question: What are 
the c.i.d. number and 

password on the 
bottom of this modem? 
Answer: unsuitable 

image.

Question: What 
color is this 

blanket? Answer: 
brown.

Question: What 
do you see in 
this picture? 
Answer: gas 

pump.

Support examples Query

Support examples Query Ground truth

Ground truth

country fried chicken gravy
country fried chicken gravy
country fried chicken gravy

chicken
country fried chicken gravey
country fried chicken gravy
marie callenders country 

fried chicken gravy
country fried steak mashed 

potatoes corn
country fried chicken gravy
country fried chicken gravy

Completion

Input

Question: Are you 
able to see how 

much water to use? 
Answer: unsuitable.

 Question: Can I 
use this for a 

headache? 
Answer: 

unsuitable.

Question: What 
kind of coffee is 
this? Answer: 

colombia supremo 
la valle verde.

Question: What is 
this? Answer: 
cream mushroom 
condensed soup.

Question: Can you 
tell what dinner 
this is? Answer: chicken and 

broccoli.

Support examples Query

Support examples Query

Question: What's the 
name of this album 
and can you tell me 
the picture of the 

album please? 
Answer: chad morgan.

 Question: Whats 
this? Answer: 
money from 
iraqi.

Question: What 
is this? Answer: 

playstation 
controller.

Question: What 
is this? Answer: 

heineken.

Question: What 
kind of shirt am I 
wearing? Answer:

unsuitable
silk

unsuitable
unsuitable

white
unsuitable

unanswerable
unsuitable
unsuitable
unsuitable

a shirt.

Completion

Input Ground truth

Question: Do you 
think that cake is 
for the child or 
adult? Answer: 

child.

Question: What is 
on the man on the 
right's forearm? 
Answer: hair.

Question: What is 
this thing? 

Answer: plant.

Question: Can you 
please describe this 
card and then is it 
upside down? Answer: 
stained glass no.

Support examples

Ground truth

strawberry.
juice box
 juice
juice

 unanswerable
strawberry kiwi 

juice
juice box

fruitables juice
 unanswerable

 juice
strawberry kiwi

a strawberry.

Question: I am looking for 
a handheld radio, kind of 
like a walkie talkie. I 
have a big radio and a 
smaller radio. Answer: 

unanswerable.

Question: What 
brand is this? 

Thank you. Answer: 
unsuitable.

Question: What is 
this package? 

Answer:

Completion

Query

Input

Fig. A.12. MAPL’s 4-shot VQA on VizWiz-VQA, failure cases.
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Fig. A.13. Predicted answer distributions for selected VQAv2 question types with the text-
only baseline.

Fig. A.14. Predicted answer distributions for selected VQAv2 question types with the blind
baseline.

Fig. A.15. Predicted answer distributions for selected VQAv2 question types with MAPL
0-shot.

Fig. A.16. Predicted answer distributions for selected VQAv2 question types with MAPL
4-shot.
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Fig. A.17. Predicted answer distributions for selected VQAv2 question types with MAPL
8-shot.

Fig. A.18. Ground truth answer distributions for selected VQAv2 question types.
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Appendix B

Appendix for An Examination of the
Robustness of Reference-Free Image

Captioning Evaluation Metrics

B.0.1. Generating Caption-like Sentences

To generate caption-like sentences from each question and answer pair of VQA datasets,
we utilize pre-trained GPT-J [100] in a few-shot manner. To accomplish this, we first
constructed a support examples dataset using the VQAv2 [32] training split. For each of
the sixty-four predefined question types in the VQAv2 dataset, we randomly selected four
examples from the VQAv2 training split. Then, we transformed both the questions and
answers into single sentences, which we wrote ourselves. When generating captions for
VQAv2 validation split, we first match the question type to one of the predefined sixty-four
question types. Then, we select four support examples associated with that question type
and prompt GPT-J to generate a transformed sentence. If the question type does not match
any of our predefined question types, we randomly select eight support examples from the
entire pool of support examples. Please see Figure 3.2 and note that we visualized a 2-shot
prompt for simplification.

B.0.2. F1 score computation for the Composite Dataset

We calculated the F1 score between the human-written correct captions and model gener-
ated incorrect captions in the Composite dataset [1]. We used the captions generated by the
Karparthy model [45] as they were better in quality. In the Composite dataset, each model
generated caption has an associated correctness score (provided by humans) ranging from 1
(‘The description has no relevance to the image’) to 5 (‘The description relates perfectly to
the image’). For our F1 score computation, we considered all captions with score less than
or equal to 4 as incorrect captions.



B.0.3. Plausible Answers

To generate plausible captions for each question type, we first compiled a list of plausible
answers derived from the ground truth multiple-choice answer of the same question type in
the validation split of VQAv2. Subsequently, an answer was randomly selected from this list
of plausible answers. This chosen answer was used to replace the ground truth answer in the
original caption, thus generating a plausible alternate caption.

B.0.4. Picking a large and small object from the image

In this experiment, our primary objective is to investigate how the object size mentioned
in captions affects the scores assigned by CLIPScore and UMIC. To select small and large
objects that are distinctly different in size, we could sort the objects by their associated area
in the COCO Detection dataset. However, this approach may not always yield accurate
results because multiple objects with the same name may appear in an image. For instance,
if there are two cars in an image, one smaller but further away and the other larger but closer,
sorting by area would lead to incorrect identification of the smallest and largest objects. This
would result in identical captions for both objects, such as “There is a car." which is not
ideal for comparison.

To overcome this issue, we added up the area of all object categories with the same
name and sorted the total areas of each object category in the image. We then calculated
the difference between the areas associated with the largest and smallest categories. If the
difference exceeded our threshold, we selected those objects for analysis. As a result, we
selected 24610 images for further analysis (See Figure 3.6).

B.0.5. Computational Resources

In all experiments detailed in this paper, we employed a single NVIDIA Quadro RTX
8000 with 48 GB GDDR6 GPU Memory. Specifically, for the primary task of generating
caption-like sentences from the VQAv2 dataset, we performed inference using the GPT-J
model with 6 billion parameters, executing the process over a duration of 24 hours.

B.0.6. Dataset Terms of Use

We will distribute our datasets (both generated with caption template and QA to caption
conversion method) under the Creative Commons Attribution 4.0 License. It is noteworthy
to mention that this licensing choice aligns with the terms of use governing both the COCO
and VQAv2 datasets, foundational to the creation of our datasets.
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B.0.7. Editorial Assistance

We would like to disclose that ChatGPT was utilized for refining the language and struc-
ture of this academic paper. While the primary content and research remain the work of
the authors, the assistance provided by ChatGPT was limited to the improvement of writing
quality.
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