
Université de Montréal

Towards Combining Deep Learning and Statistical
Relational Learning for Reasoning on Graphs

par

Meng Qu

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Discipline

December 21, 2023

© Meng Qu, 2023





Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Towards Combining Deep Learning and Statistical
Relational Learning for Reasoning on Graphs

présentée par

Meng Qu

a été évaluée par un jury composé des personnes suivantes :

Yoshua Bengio
(président-rapporteur)

Jian Tang
(directeur de recherche)

Aishwarya Agrawal
(membre du jury)

Hanghang Tong
(examinateur externe)

Florian Maire
(représentant du doyen de la FESP)





Résumé

Cette thèse se focalise sur l’analyse de données structurées en graphes, un format de données
répandu dans le monde réel. Le raisonnement dans ces données est un enjeu clé en appren-
tissage automatique, avec des applications allant de la classification de nœuds à la prédiction
de liens.

On distingue deux approches majeures pour le raisonnement dans les données en graphes :
l’apprentissage relationnel statistique et l’apprentissage profond. L’apprentissage relationnel
statistique construit des modèles graphiques probabilistes, efficaces pour capturer des dépen-
dances complexes et intégrer des connaissances préexistantes, comme les règles logiques. Des
méthodes notables incluent les réseaux logiques de Markov et les champs aléatoires condi-
tionnels. L’apprentissage profond, quant à lui, se base sur l’apprentissage de représentations
pertinentes des données observées pour une compréhension et un raisonnement rapides. Les
réseaux neuronaux pour graphes (GNN) représentent un outil de pointe dans ce domaine.

La combinaison de l’apprentissage relationnel statistique et de l’apprentissage profond
offre une perspective enrichie sur le raisonnement, promettant un cadre plus robuste et effi-
cace. Cette thèse explore cette combinaison, en développant des méthodes qui intègrent les
deux approches. L’apprentissage profond renforce l’efficacité de l’apprentissage et de l’infé-
rence dans l’apprentissage relationnel statistique, tandis que ce dernier affine les prédictions
de l’apprentissage profond.

Ce cadre intégré est appliqué à un éventail de tâches de raisonnement sur les graphes,
démontrant son efficacité et ouvrant la voie à des recherches futures pour des cadres de
raisonnement encore plus robustes.

Mots-clés : Raisonnement, Graphes, Apprentissage Profond, Apprentissage
Relationnel Statistique.
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Abstract

This thesis centers on the analysis of graph-structured data, a ubiquitous data format in the
real world. Reasoning within graph-structured data has long been a fundamental problem
in machine learning, with applications spanning from node classification to link prediction.

There are two principal approaches to tackle reasoning within graph-structured data:
statistical relational learning and deep learning. Statistical relational learning techniques
construct probabilistic graphical models based on observed data, excelling at capturing in-
tricate dependencies of available evidence while accommodating prior knowledge, such as
logic rules. Notable methods include Markov logic networks (MLNs) and conditional random
fields (CRFs). In contrast, deep learning models harness the capability to learn meaningful
representations from observed data, using these representations to rapidly comprehend and
reason over the data. Graph neural networks (GNNs) have emerged as prominent tools in
the realm of deep learning, achieving state-of-the-art results across a spectrum of tasks.

Statistical relational learning and deep learning offer distinct perspectives on reasoning.
Intuitively, combining these paradigms promises to create a more robust framework that
inherits expressive power, efficiency, and the ability to model joint dependencies while simul-
taneously acquiring representations for more effective reasoning. In pursuit of this vision,
this thesis explores the concept, developing methods that seamlessly integrate deep learning
and statistical relational learning. Specifically, deep learning enhances the efficiency of learn-
ing and inference within statistical relational learning, while statistical relational learning,
in turn, refines the predictions generated by deep learning to improve the accuracy.

This integrated paradigm is applied across a diverse range of reasoning tasks on graphs.
Empirical results demonstrate the effectiveness of this paradigm, encouraging further explo-
ration to yield more robust reasoning frameworks.

Keywords: Reasoning, Graphs, Deep Learning, Statistical Relational Learn-
ing.
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Chapter 1

Introduction

1.1. Reasoning on Graph-structured Data
In today’s technologically driven era, we inhabit a complex and intricately interconnected

world where diverse objects are interlinked through a range of relationships, thereby facili-
tating the creation of vast graph-structured data.

For example, we see this kind of data in social networks, where people are connected
through friendships, forming a large network of friends. Another example is in knowledge
graphs, where different entities or concepts are linked together in various ways, helping
to show a big picture of how different information relates to each other. These scenarios
represent just a fragment of environments where graph-structured data finds its application,
illustrating the ubiquitous nature of these interconnected structures in our modern landscape.

Reasoning on such graph-structured data has anchored itself as a pivotal focal point in
the field of machine learning for an extended period. One application is node classification,
where we try to sort individual points in the network into groups based on their connections
and features. Another is link prediction, where we try to guess the possible connections
that might exist, helping to find new relationships and add to what we know already. These
applications show the big role that understanding and working with graph-structured data
has played in machine learning, helping to make sense of our connected world.

In this thesis, we focus on these reasoning tasks on such graph-structured data.

1.2. Statistical Relational Learning and Deep Learning
Reasoning on graph-structured data has been extensively studied in the literature of

statistical relational learning (SRL) and deep learning (DL).
Statistical relational learning [37], grounded in statistical and logical foundations, pro-

vides an interpretable framework which enables a detailed understanding of the patterns



learned and facilitating the integration of prior expert knowledge. The majority of statisti-
cal relational learning techniques leverage probabilistic graphical models, such as Bayesian
networks and Markov networks, to encapsulate the interdependent relationships among con-
nected objects for reasoning purposes [31, 69]. Additionally, some approaches harness the
power of inductive logic programming, incorporating first-order logic to enhance the rea-
soning process [106]. However, despite their capacity to capture joint dependencies and
incorporate logical structures, learning and inference in these methods remain hard due to
high complexity of graph structures among objects. This inherent complexity imposes severe
constraints on expressive powers and efficiency of statistical relational learning methods.

Another line of research is based on the recent advancements in deep learning [73], notably
in the domain of graph neural networks (GNNs) [42, 61, 137]. Deep learning techniques have
demonstrated remarkable powers in discerning intricate patterns and capturing non-linear
correlations by acquiring valuable representations of entities, such as nodes within graphs,
through highly expressive neural architectures. Typically, these methods are amenable to
end-to-end training, resulting in robust efficiency gains. Because of their substantial model
capacity and efficiency, deep learning approaches often yield state-of-the-art outcomes in
various applications, including node classification and link prediction. Nevertheless, these
approaches struggle to adequately capture interdependencies among disparate pieces of ev-
idence, hindering their effectiveness in facilitating reasoning. Furthermore, their limited
interpretability presents significant practical challenges.

1.3. Motivation of Combining Both Worlds
Deep learning and statistical relational learning methods inherently complement each

other. Intuitively, drawing upon the analogy presented by Bengio [5], we can liken deep
learning to the System 1 thought process in the human brain, as defined by Kahneman [54].
Deep learning operates akin to perception, characterized by speed and quick recognition
of patterns. In contrast, statistical relational learning bears resemblance to the System 2
thought process, manifesting as a slower, more logical approach. In human cognition, the
synergy between System 1 and System 2 thought facilitates more effective decision-making.
Similarly, we envision that the integration of deep learning and statistical relational learning
can culminate in a more potent framework.

Technically, deep learning has remarkable expressive power and proficiency in representa-
tion learning, while statistical relational learning excels in accommodating joint dependencies
and logic rules. The fusion of these two paradigms is poised to yield a powerful framework.
The framework marries efficiency with profound understanding, potentially yielding superior
performance in downstream tasks, while preserving interpretability and logical coherence.
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Figure 1. Framework overview. The framework presents a harmonious blend of two dis-
tinct paradigms: deep learning, which excels in fast reasoning through learned object rep-
resentations, and statistical relational learning, which effectively captures the intricate joint
dependencies of diverse evidence for more deliberate reasoning, in spite of a slower pace.
This synergy seeks to harness the strengths of both worlds to enrich the reasoning process.
Specifically, it involves leveraging the efficiency of deep learning to speed up the learning and
inference phases of statistical relational learning, while simultaneously use statistical rela-
tional learning to finetune and enhance the predictions generated by deep learning methods.

Within the scope of this thesis, we endeavor to forge these synergies by developing hy-
brid approaches that seamlessly integrate statistical relational learning and deep learning
for enhanced reasoning. The core concept is to encourage the their mutual enhancement
during the reasoning process, resulting in performance improvements. Given the nontrivial
nature of learning and inference in statistical relational learning, we leverage deep learning
techniques to aid in both tasks, employing the idea of amortized inference. Simultaneously,
we acknowledge that deep learning methods often struggle to effectively harness the joint
dependencies within diverse evidence for reasoning. To address this limitation, we leverage
statistical relational learning methods to refine and regularize the predictions generated by
deep learning techniques, aligning them with the joint dependencies and logic specified by
the statistical relational learning framework. This approach empowers deep learning meth-
ods to implicitly capture and model these dependencies. The overarching methodology is
illustrated in Figure 1. Through this harmonious integration, we harness the strengths of
both worlds, culminating in more potent reasoning approaches.

1.4. Outline
Next, we will delve into this paradigm in greater depth, elaborating on how it can be

effectively employed across a variety of reasoning tasks centered on graph-structured data.
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In Section 2, we explain how deep learning and statistical relational learning methods
model graph-structured data in a probabilistic perspective. This probabilistic lens not only
offers a deeper understanding of the rationale behind the fusion of deep learning and statis-
tical relational learning but also serves to clarify the overall motivation.

Subsequently, we introduce a range of approaches tailored to address various reasoning
tasks within the realm of graph-structured data. Our first focus lies on node classifica-
tion, and we explore this challenge from both transductive and inductive perspectives. In
Section 3, we unveil the Graph Markov Neural Network (GMNN), a novel approach that
marries the relational Markov network from statistical relational learning with the graph
convolutional network from deep learning. Moving forward to Section 4, we present another
innovative method called Structured Proxy Networks (SPN). SPN integrates the principles
of conditional random fields from statistical relational learning with the graph convolu-
tional networks from deep learning. Both GMNN and SPN not only acquire valuable node
representations but also model label dependencies between nodes, thereby elevating node
classification performance.

The aforementioned approaches focus more on homogeneous graphs characterized by
a single type of relation between nodes, yet real-world graphs often exhibit heterogeneity,
resulting in multiple relations connecting nodes. One important example is the knowledge
graph, where each edge is represented as a triplet (h, r, t), meaning that entity h relates to
entity t via relation r. Within this context, a fundamental task is link prediction, aiming
at predicting missing triplets. To tackle this challenge, we introduce the probabilistic Logic
Neural Network (pLogicNet) in Section 5. pLogicNet represents a symbiotic union of Markov
logic networks derived from statistical relational learning and knowledge graph embedding
techniques inherent to deep learning. This integration empowers pLogicNet with the ability
to adeptly deduce novel triplets. This ability is accomplished through the acquisition of
entity embeddings, coupled with the utilization of predefined first-order logic rules (e.g.,
such as the rule that dictates “father’s father is grandfather”).

However, a potential limitation of pLogicNet arises from its reliance on a predefined
set of high-quality logic rules for reasoning. To address this limitation, we delve into the
realm of learning useful logic rules for knowledge graph reasoning. In Section 6, we pro-
pose a principled probabilistic approach called the RNNLogic. RNNLogic comprises a rule
generator, parameterized by a recurrent neural network from deep learning, and a reason-
ing predictor, inspired by stochastic logic programming from statistical relational learning.
These two modules undergo optimization via an EM-based algorithm, alternating between
two major phases. During each iteration, the rule generator produces a set of logic rules,
thereby enhancing the reasoning capabilities of the reasoning predictor. In the subsequent
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phase, the reasoning predictor provides valuable feedback that refines the rule generator.
Empirical experiments substantiate RNNLogic’s capacity to autonomously acquire valuable
rules conducive to effective reasoning on knowledge graphs.

Recognizing that the optimization of RNNLogic relies on an EM-based algorithm with
associated approximations and a lack of end-to-end training, we further present DiffLogic
in Section 7. DiffLogic extends the capabilities of RNNLogic and notably can be efficiently
trained in an end-to-end manner.

Finally, in Section 9, we draw the thesis to a close, offering a summary of key findings,
and identifying several promising avenues for future research.

1.5. Article Details
The thesis includes materials from a few papers where I am the first author or co-first

author. The detailed list of these papers and my contribution are summarized as follows (*
stands for equal contribution):
• GMNN: Graph Markov Neural Networks. Meng Qu, Yoshua Bengio, Jian Tang.

International Conference on Machine Learning, 2019.
Personal Contribution. I conceived the concept of GMNN, developed its mathematical
formalization, and took charge of its implementation. I personally did all aspects of the
experimental work and wrote the majority of the paper. Yoshua Bengio contributed by
meticulously reviewing the formula, offering numerous valuable suggestions, and high-
lighting critical avenues for future research. Jian Tang played a pivotal role in shaping
the overarching framework that integrates DL and SRL, which serves as the cornerstone
of this thesis, and also played a role in refining the written content.
• Neural structured prediction for inductive node classification. Meng Qu*, Huiyu

Cai*, Jian Tang. International Conference on Learning Representations, 2022.
Personal Contribution. I conceptualized the idea and devised the mathematical formal-
ization for SPN. I took the lead in developing the initial iteration of the model and was
responsible for executing a portion of the experiments, as well as wrote the majority of
the paper. Huiyu Cai actively contributed to the inception of the idea and played a vital
role in enhancing the model precision and efficiency in its final iteration. Huiyu Cai also
took charge of conducting the majority of the experiments. Jian Tang was instrumen-
tal in the initial idea generation, providing substantial feedback, and making significant
improvements to the overall quality and clarity of the paper.
• Probabilistic Logic Neural Networks for Reasoning. Meng Qu, Jian Tang. Ad-

vances in Neural Information Processing Systems, 2019.
Personal Contribution. I introduced the mathematical formalization for pLogicNet, led
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the model implementation, managed all experimental procedures, and wrote the majority
of the paper. Jian Tang played a pivotal role in problem formulation, participated in the
initial idea generation, and contributed to refining the paper writing.
• RNNLogic: Learning logic rules for reasoning on knowledge graphs. Meng Qu*,

Junkun Chen*, Louis-Pascal Xhonneux, Yoshua Bengio, Jian Tang. International Confer-
ence on Learning Representations, 2021.
Personal Contribution. I initiated the concept and introduced the mathematical formal-
ization of RNNLogic, let the implementation of the initial model version, conducted a
portion of the experimental work, and composed the majority of the paper. Junkun Chen
took charge of implementing the subsequent model version and conducted a portion of
the experiments. Louis-Pascal Xhonneux actively participated in discussions related to
the model and its mathematical formulation. Yoshua Bengio contributed by refining the
mathematical formulation, offering crucial insights, and revising the paper writing. Jian
Tang was responsible for posing the problem related to learning logic rules, played a role
in refining the concepts, and made substantial improvements to the overall writing quality.
• End-to-End Interpretable Logic Rule Learning for Knowledge Graph Reason-

ing. Meng Qu, Jian Tang. Ongoing.
Personal Contribution. I conceived the concept and formulated the mathematics behind
DiffLogic, took the lead in implementing the model, managed all experimental aspects, and
wrote the majority of the paper. Jian Tang played a collaborative role in brainstorming
the conceptual ideas and contributed to enhancing the clarity and quality of the writing.

Furthermore, Section 8 provides a compelling glimpse into the diverse applications of
our proposed paradigm. These examples are drawn from three articles in which I have
contributed as the first author, co-first author, or second author. In that chapter, we will
delve into the details of these articles, offering a comprehensive understanding of the content
and author contributions.
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Chapter 2

Preliminary

In this section, we rigorously define the challenge of reasoning on graph-structured data
and present a formalization of this problem from a probabilistic standpoint. Within this
probabilistic framework, we subsequently demonstrate how deep learning and statistical
relational learning methods are employed for reasoning on graph-structured data respectively.

2.1. Problem Definition
This thesis is dedicated to the exploration of graph-structured data. Formally, we rep-

resent a graph as G, which inherently comprises a set of nodes denoted as V and a set of
edges as E. Optionally, additional information such as node features and logic rules may be
also available, collectively designated as I. Thus, we characterize a graph as G = (V,E, I).

When dealing with such a graph, various reasoning tasks emerge, each aimed at inferring
distinct types of knowledge embedded within the graph. For instance, node classification
endeavors to predict labels for nodes, while link prediction seeks to anticipate missing edges
within the graph. Concurrently, logic rule induction endeavors to uncover implicit logical
rules from the graph. As these forms of knowledge remain unobserved, we can represent
them collectively as a hidden variable, denoted by H.

Employing this notation, the problem of reasoning with graph-structured data can be
reframed as the task of predicting H given G. Viewing it through a probabilistic lens, this
problem revolves around modeling the distribution of H conditioned on G, i.e., p(H|G).

2.2. Statistical Relational Learning
In the realm of literature, statistical relational learning has emerged as a powerful tool for

modeling graph-structured data. Various models have been introduced, including relational
Markov networks (RMN) [129], Markov logic networks (MLN) [106], and conditional random
fields (CRF) [69]. In subsequent sections, we will delve into these approaches in details.



Fundamentally, these methods tackle the modeling of the joint distribution p(H,G) using
probabilistic graphical models, which encompass Bayesian networks and Markov networks.
Through this framework, statistical relational learning adeptly captures the interdependency
among the observed evidence G and the concealed knowledge H, enabling effective reasoning.

To acquire the joint distribution p(H,G), we aim to maximize the log-likelihood of the ob-
served graph, i.e., log p(G). However, optimizing the log-likelihood directly poses challenges
due to the presence of hidden variables in H. Typically, the solution lies in the application
of the EM algorithm, which leverages the following evidence lower bound (ELBO):

log p(G) ≥ Eq(H)[log p(H,G)]− Eq(H)[log q(H)]. (2.2.1)

Here, q(H) is a variable distribution, and the equation holds true only when the variational
distribution equates to the ground truth posterior distribution p(H|G), meaning q(H) =
p(H|G). The ELBO optimization unfolds through an iterative process involving an E-step
and an M-step. In the E-step, we refine the variational distribution q to approximate the
true posterior distribution p(H|G). In the M-step, we fine-tune the joint distribution p to
maximize the expected log-likelihood Eq(H)[log p(H,G)].

Once we have learned the joint distribution p(H,G), the reasoning tasks transition into an
inference problem within graphical models, i.e., inferring the posterior distribution p(H|G).

Despite the capability of statistical relational learning to effectively capture the intricate
relationship among observed evidence and concealed knowledge, both the learning and in-
ference processes in this field present significant challenges. The crux of the challenge lies
in the need to work with the posterior distribution p(H|G). During the learning phase,
our objective is to align the variational distribution closely with the posterior distribution,
while during inference, we aim to directly deduce the posterior itself. However, the inherent
complexity of graph-structured data leads to intricate interdependencies among G and H,
making the computation of p(H|G) exceedingly challenging.

2.3. Deep Learning
Over the past decade, deep learning has showcased remarkable success across a multitude

of domains. In the context of modeling graph-structured data, graph neural networks have
emerged as formidable tools, consistently achieving state-of-the-art performance across a va-
riety of applications. Notable approaches include graph convolutional networks (GCN) [61],
graph attention networks (GAT) [137], and message passing neural networks (MPNN) [42].

In contrast to statistical relational learning, which centers on modeling the joint dis-
tribution p(H,G), deep learning methods directly focus on characterizing the conditional
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distribution p(H|G). Similar to their statistical relational counterparts, deep learning en-
counters intricate interdependencies within the hidden knowledge H, thereby presenting
unique challenges. To tackle this complexity, deep learning methods typically resort to the
mean-field assumption, positing that different elements of H are conditionally independent
given the graph G. Formally, this assumption translates to:

p(H|G) =
∏

h∈H

p(h|G). (2.3.1)

Consequently, the core task becomes modeling each term p(h|G), representing the distri-
bution of each individual hidden knowledge conditioned on the observed graph. For this
purpose, deep learning methods frequently employ graph neural networks, which leverage a
message passing mechanism to encode the graph and subsequently model the distribution
p(h|G) based on these encodings.

The mean-field assumption brings deep learning models a significant advantage in terms
of training and inference efficiency. Moreover, the incorporation of message-passing mecha-
nisms and nonlinear architectures in deep learning models imparts a high degree of expressive
power, resulting in impressive performance across a wide array of applications. However, it
is worth noting that the mean-field assumption comes at the cost of neglecting the interplay
between hidden knowledge elements, which may yield suboptimal outcomes in complex sce-
narios and preclude the incorporation of prior knowledge (e.g., logic rules) for regularization
of the hidden knowledge.

2.4. DL and SRL Integration Blueprint
Up to this point, we have observed that deep learning excels at rapid inference but tends to

disregard joint dependencies, while statistical relational learning models these dependencies
comprehensively but operates at a slower pace.

Our innovative approach involves integrating both a deep learning model and a statistical
relational learning model, harnessing the strengths of one to compensate for the weaknesses
of the other, thus achieving a harmonious synergy. Concretely, the deep learning model,
denoted as qDL , characterizes a conditional distribution qDL(H|G) in a mean-field form, ex-
pressed as qDL(H|G) = ∏

h∈H qDL(h|G). On the other hand, the statistical relational learning
model, labeled as pSRL , models a joint distribution pSRL(H,G).

During the training process, both models are simultaneously optimized. When optimiz-
ing the statistical relational learning model pSRL , we leverage the deep learning model to
infer the hidden variables, for example, Ĥ ∼ qDL(H|G), and subsequently update pSRL to
maximize the complete log-likelihood log pSRL(Ĥ, G). By harnessing the high capacity and
efficiency of deep learning models for inferring hidden variables, the training process of the
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statistical relational learning model becomes efficient and swift. Simultaneously, for the deep
learning model qDL , we endeavor to minimize the Kullback-Leibler (KL) divergence between
the posterior distribution defined by the deep learning model and that defined by the statis-
tical relational learning model, expressed as KL(qDL(H|G)||pSRL(H|G)). In this manner, the
statistical relational learning model essentially refines the predictions of the deep learning
model regarding the hidden knowledge H. Furthermore, the patterns of joint dependencies
and logic rules captured by the statistical relational learning model are implicitly distilled
into the deep learning model, resulting in enhanced performance. Theoretically, this train-
ing framework elevates the Evidence Lower Bound (ELBO) of the log-likelihood pSRL(H,G)),
rendering it theoretically sound.

Upon completion of training, both the deep learning model qDL and the statistical rela-
tional learning model pSRL can be employed for inferring the hidden knowledge H.

In the upcoming sections, we will explore several examples that follow this blueprint,
demonstrating the integration of deep learning and statistical relational learning for the
purpose of reasoning with graph-structured data.
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Chapter 3

GMNN: Graph Markov Neural Networks

This paper studies semi-supervised object classification in relational data, which is a funda-
mental problem in relational data modeling. The problem has been extensively studied in
the literature of both statistical relational learning (e.g. relational Markov networks) and
graph neural networks (e.g. graph convolutional networks). Statistical relational learning
methods can effectively model the dependency of object labels through conditional random
fields for collective classification, whereas graph neural networks learn effective object rep-
resentations for classification through end-to-end training. In this paper, we propose the
Graph Markov Neural Network (GMNN) that combines the advantages of both worlds. A
GMNN models the joint distribution of object labels with a conditional random field, which
can be effectively trained with the variational EM algorithm. In the E-step, one graph neural
network learns effective object representations for approximating the posterior distributions
of object labels. In the M-step, another graph neural network is used to model the local
label dependency. Experiments on object classification, link classification, and unsupervised
node representation learning show that GMNN achieves state-of-the-art results.

3.1. Introduction
We live in an interconnected world, where entities are connected through various relations.

For example, web pages are linked by hyperlinks; social media users are connected via
friendship relations. Modeling such relational data is important in machine learning with
applications such as entity classification [97], link prediction [128] and link classification [26].

Many of these applications can be boiled down to the fundamental problem of semi-
supervised object classification [129]. Specifically, objects 1 are interconnected and associated

1In this paper, we will use “object” and “node” interchangeably to refer to entities in the graph, because
they are different terminologies used in the litteratures of statistical relational learning and graph neural
networks.



with some attributes. Given the labels of a few objects, the goal is to infer the labels
of other objects. This problem has been extensively studied in the literature of statistical
relational learning (SRL), which develops statistical methods to model relational data. Some
representative methods include relational Markov networks (RMN) [127] and Markov logic
networks (MLN) [106]. Generally, these methods model the dependency of object labels using
conditional random fields [69]. Because of their effectiveness for modeling label dependencies,
these methods achieve compelling results on semi-supervised object classification. However,
several limitations still remain. (1) These methods typically define potential functions in
conditional random fields as linear combinations of some hand-crafted feature functions,
which are quite heuristic. Moreover, the capacity of such models is usually insufficient.
(2) Due to the complexity of relational structures between objects, inferring the posterior
distributions of object labels for unlabeled objects remains a challenging problem.

Another line of research is based on the recent progress of graph neural networks [42, 46,
61, 137]. Graph neural networks approach object classification by learning effective object
representations with non-linear neural architectures, and the whole framework can be trained
in an end-to-end fashion. For example, the graph convolutional network (GCN) [61] itera-
tively updates the representation of each object by combining its own representation and the
representations of the surrounding objects. These approaches have been shown to achieve
state-of-the-art performance because of their effectiveness in learning object representations
on relational data. However, one critical limitation is that the labels of objects are inde-
pendently predicted based on their representations. In other words, the joint dependency of
object labels is ignored.

In this paper, we propose a new approach called the Graph Markov Neural Network
(GMNN), which combines the advantages of both statistical relational learning and graph
neural networks. A GMNN is able to learn effective object representations as well as model
label dependency between different objects. Similar to SRL methods, a GMNN includes
a conditional random field [69] to model the joint distribution of object labels conditioned
on object attributes. This framework can be effectively and efficiently optimized with the
variational EM framework [89], alternating between an inference procedure (E-step) and a
learning procedure (M-step). In the learning procedure, instead of maximizing the likelihood
function, the training procedure for GMNNs optimizes the pseudolikelihood function [6] and
parameterizes the local conditional distributions of object labels with a graph neural network.
Such a graph neural network can well model the dependency of object labels, and no hand-
crafted potential functions are required. For inference, since exact inference is intractable, we
use a mean-field approximation [95]. Inspired by the idea of amortized inference [36, 60], we
further parameterize the posterior distributions of object labels with another graph neural
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network, which is able to learn useful object representations for predicting object labels.
With a graph neural network for inference, the number of parameters can be significantly
reduced, and the statistical evidence can be shared across different objects in inference [60].

Our GMNN approach is very general. Though it is designed for object classification, it can
be naturally applied to many other applications, such as unsupervised node representation
learning and link classification. Experiment results show that GMNNs achieve state-of-the-
art results on object classification and unsupervised node representation learning, as well as
very competitive results on link classification.

3.2. Related Work
In the literature of statistical relational learning (SRL), a variety of methods have been

proposed for semi-supervised node classification. The basic idea is to model label depen-
dency with probabilistic graphical models. Many early methods [31, 38, 39, 65, 152] are
built on top of directed graphical models. However, these methods can only handle acyclic
dependencies among nodes, and their performance for prediction is usually limited. Due to
such weaknesses, many later SRL methods employ Markov networks (e.g., conditional ran-
dom fields [69]), and representative methods include relational Markov networks (RMN) [127]
and Markov logic networks (MLN) [106, 119]. Though these methods are quite effective, they
still suffer from several challenges. (1) Some hand-crafted feature functions are required for
specifying the potential function, and the whole framework is designed as a log-linear model
by combining different feature functions, so the capacity of such frameworks is quite limited.
(2) Inference remains challenging due to the complicated relational structures among nodes.
Our proposed GMNN method overcomes the above challenges by using two different graph
neural networks, one for modeling the label dependency and another for approximating the
posterior label distributions, and the approach can be effectively trained with the variational
EM algorithm.

Another category of related work is graph-based semi-supervised classification. For ex-
ample, the label propagation methods [169, 170] iteratively propagate the label of each node
to its neighbors. However, these methods can only model the linear dependency of node
labels, while in our approach a non-linear graph neural network is used to model label de-
pendency, which has greater expressive power. Moreover, GMNNs can also learn useful node
representations for predicting node labels.

Another closely related research area is that of graph neural networks [22, 42, 46, 61, 137],
which can learn useful node representations for predicting node labels. Essentially, the node
representations are learned by encoding local graph structures and node attributes, and
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the whole framework can be trained in an end-to-end fashion. Because of their effective-
ness in learning node representations, they achieve state-of-the-art results in node classifica-
tion. However, existing methods usually ignore the dependency between node labels. With
GMNNs, besides learning node representations, we also model the joint dependency of node
labels by introducing conditional random fields.

There are also some recent studies [163] using graph neural networks for inference in
probabilistic graphical models. Compared with their work, our work focuses on statisti-
cal relational learning while their work puts more emphasis on standard graphical models.
Moreover, our work utilizes two graph neural networks for both inference and learning, while
their work only uses one graph neural network for inference.

3.3. Preliminary
3.3.1. Problem Definition

The problem of semi-supervised node classification considers a graph G = (V,E,xV ), in
which V is a set of nodes, E is a set of edges between nodes, and xV stands for the attributes
of all the nodes. The edges in E may have multiple types, which represent different relations
among nodes. For simplicity, here we assume all edges belong to the same type. Given the
labels yL of a few labeled nodes L ⊂ V , the goal is to predict the labels yU for the remaining
unlabeled nodes U = V \ L.

This problem has been extensively studied in the literature of both statistical relation
learning (SRL) and graph neural networks (GNN). Essentially, both types of methods aim
to model the distribution of node labels conditioned on the node attributes and the graph
structure, i.e. p(yV |xV ,E). Next, we introduce the general idea of both methods. For
notation simplicity, we omit E in the following formulas.

3.3.2. Statistical Relational Learning

Most SRL methods model p(yV |xV ) with conditional random fields, which employ the
following formulation:

p(yV |xV ) = 1
Z(xV )

∏
(ni,nj)∈E

ψi,j(yni
,ynj

,xV ). (3.3.1)

Here, (ni,nj) is an edge in graph G, and ψi,j(yni
,ynj

,xV ) is the potential score defined on the
edge. Typically, the potential score is computed as a linear combination of some hand-crafted
feature functions, such as logical formulae.

With this formulation, predicting the labels for unlabeled nodes becomes an inference
problem, i.e., inferring the posterior label distribution of the unlabeled nodes p(yU |yL,xV ).
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Exact inference is usually infeasible due to the complicated structures between node labels.
Therefore, some approximation inference methods are often utilized, such as loopy belief
propagation [85].

3.3.3. Graph Neural Network

Different from SRL methods, GNN methods simply ignore the dependency of node labels
and they focus on learning effective node representations for label prediction. Specifically,
the joint distribution of labels is fully factorized as:

p(yV |xV ) =
∏

n∈V

p(yn|xV ). (3.3.2)

Based on the formulation, GNNs will infer the label distribution p(yn|xV ) for each node n
independently. For each node n, GNNs predict the label in the following way:

h = g(xV ,E) p(yn|xV ) = Cat(yn|softmax(Whn)),

where h ∈ R|V |×d is the representations of all the nodes, and hn ∈ Rd is the representation of
node n. W ∈ RK×d is a linear transformation matrix, with d as the representation dimension
and K as the number of label classes. Cat stands for categorical distributions. Basically,
GNNs focus on learning a useful representation hn for each node n. Specifically, each hn

is initialized as the attribute representation of node n. Then each hn is iteratively updated
according to its current value and the representations of n’s neighbors, i.e. hNB(n). For the
updating function, the graph convolutional layer (GC) [61] and the graph attention layer
(GAT) [137] can be used, or in general the neural message passing layer [42] can be utilized.
After multiple layers of update, the final node representations are fed into a linear softmax
classifier for label prediction. The whole framework can be trained in an end-to-end fashion
with a few labeled nodes.

3.4. Model
In this section, we introduce our approach called the Graph Markov Neural Network

(GMNN) for semi-supervised node classification. The goal of GMNN is to combine the
advantages of both the statistical relational learning methods and graph neural networks,
such that we can learn useful objective representations for predicting node labels, as well as
model the dependency between node labels. Specifically, GMNN models the joint distribution
of node labels conditioned on node attributes, i.e. p(yV |xV ), by using a conditional random
field, which is optimized with a pseudolikelihood variational EM framework. In the E-step,
a graph neural network is used to learn node representations for label prediction. In the
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M-step, another graph neural network is employed to model the local dependency of node
labels. Next, we introduce the details of the GMNN approach.

3.4.1. Pseudolikelihood Variational EM

Following existing SRL methods, we use a conditional random field as in Equation (3.3.1)
to model the joint distribution of node labels conditioned on node attributes, i.e. pϕ(yV |xV ),
where the potential is defined over each edge, and ϕ is the model parameters. For now, we
ignore the specific formulation of the potential function, and we will discuss it later.

We learn the model parameters ϕ by maximizing the log-likelihood function of the ob-
served node labels, i.e. log pϕ(yL|xV ). However, directly maximizing the log-likelihood func-
tion is difficult, since many node labels are unobserved. Therefore, we instead optimize the
evidence lower bound (ELBO) of the log-likelihood function:

log pϕ(yL|xV ) ≥ Eqθ(yU |xV )[log pϕ(yL,yU |xV )− log qθ(yU |xV )], (3.4.1)

where qθ(yU |xV ) is a variational distribution, and the equation holds when qθ(yU |xV ) =
pϕ(yU |yL,xV ). According to the variational EM algorithm [89], such a lower bound can be
optimized by alternating between a variational E-step and an M-step. In the variational E-
step (a.k.a., inference procedure), the goal is to fix pϕ and update the variational distribution
qθ(yU |xV ) to approximate the true posterior distribution pϕ(yU |yL,xV ).

In the M-step (a.k.a., learning procedure), we fix qθ and update pϕ to maximize the
likelihood function below:

ℓ(ϕ) = Eqθ(yU |xV )[log pϕ(yL,yU |xV )]. (3.4.2)

However, directly optimizing the likelihood function can be difficult, as we have to deal with
the partition function in pϕ. To avoid computing the partition function, we instead optimize
the pseudolikelihood function [6] below:

ℓP L(ϕ) ≜ Eqθ(yU |xV )[
∑
n∈V

log pϕ(yn|yV \n,xV )] = Eqθ(yU |xV )[
∑
n∈V

log pϕ(yn|yNB(n),xV )], (3.4.3)

where NB(n) is the neighbor set of n, and the equation is based on the independence prop-
erties of pϕ(yV |xV ) derived from its formulation, i.e. Equation (3.3.1). The pseudolikelihood
approach is widely used for learning Markov networks [62, 106]. Next, we introduce the
details of the inference and learning steps.

3.4.2. E-step: Inference Procesure

The inference step aims to compute the posterior distribution pϕ(yU |yL,xV ). Due to
the complicated relational structures between node labels, exact inference is intractable.
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Therefore, we approximate it with another variational distribution qθ(yU |xV ). Specifically,
we use the mean-field method [95], in which qθ is formulated as:

qθ(yU |xV ) =
∏

n∈U

qθ(yn|xV ). (3.4.4)

Here, n is the index of unlabeled nodes. In the variational distribution, all node labels are
assumed to be independent.

To model the distribution of each node label in qθ, we follow the idea of amortized
inference [36, 60], and parameterize qθ(yn|xV ) with a graph neural network (GNN), which
learns effective node representations for label prediction:

qθ(yn|xV ) = Cat(yn|softmax(Wθhθ,n)). (3.4.5)

Specifically, qθ(yn|xV ) is formulated as a categorical distribution, and the probability of each
class is calculated by a softmax classifier based on the node representation hθ,n. The rep-
resentation hθ,n is learned by a GNN model with the node attributes xV as features, and θ

as parameters. We denote the GNN model as GNNθ. With GNNθ, we can improve infer-
ence by learning useful representations of nodes from their attributes and local connections.
Besides, by sharing GNNθ across different nodes, we can significantly reduce the number of
parameters required for inference, which is more efficient [60].

With the above mean-field formulation, if we fix distribution qθ(yNB(n)∩U |xV ), then the
optimum of qθ(yn|xV ), denoted by q∗(yn|xV ), is specified by the following condition:

log q∗(yn|xV ) = Eqθ(yNB(n)∩U |xV )[log pϕ(yn|yNB(n),xV )] + const. (3.4.6)

See Section A.1 for the proof. Bases on that, for each node n, we optimize qθ(yn|xV ) with
a method similar to Salakhutdinov and Larochelle [109]. More specifically, we start by
using qθ(yNB(n)∩U |xV ) to compute q∗(yn|xV ), which is further treated as target to update
qθ(yn|xV ). Computing q∗(yn|xV ) in Equation (3.4.6) relies on computing the expectation
with respect to qθ(yNB(n)∩U |xV ). We estimate the expectation by drawing a sample from
qθ(yNB(n)∩U |xV ), yielding:

Eqθ(yNB(n)∩U |xV )[log pϕ(yn|yNB(n),xV )] ≃ log pϕ(yn|ŷNB(n),xV ). (3.4.7)

In the above formula, ŷNB(n) = {ŷn′}n′∈NB(n) is defined as below. For each unlabeled neighbor
n′ of node n, we sample ŷn′ ∼ qθ(yn′ |xV ), and for each labeled neighbor n′ of node n, ŷn′ is set
as the ground-truth label. In practice, we find that using one sample from qθ(yNB(n)∩U |xV )
yields comparable results with multiple samples. Therefore, in the experiments, only one
sample is used for efficiency purpose.

According to the Equation (3.4.6) and Equation (3.4.7), we can obtain an approxima-
tion for q∗(yn|xV ) as q∗(yn|xV ) ≈ pϕ(yn|ŷNB(n),xV ). Therefore, we could instead treat
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pϕ(yn|ŷNB(n),xV ) as target, and minimize KL(pϕ(yn|ŷNB(n),xV )||qθ(yn|xV )). We further use
a parallel update strategy [64] to speed up training, where we jointly optimize qθ(yn|xV ) for
every unlabeled node n, yielding the objective as follows:

Oθ,U =
∑
n∈U

Epϕ(yn|ŷNB(n),xV )[log qθ(yn|xV )]. (3.4.8)

Besides, we notice that qθ can be also trained by predicting the labels for the labeled nodes.
Therefore, we also let qθ maximize the following supervised objective function:

Oθ,L =
∑
n∈L

log qθ(yn|xV ). (3.4.9)

Here, yn is the ground-truth label of n. By adding Equation (3.4.8) and Equation (3.4.9),
we obtain the overall objective for optimizing θ:

Oθ = Oθ,U +Oθ,L. (3.4.10)

3.4.3. M-step: Learning Procedure

In the M-step, we seek to learn the parameter ϕ. More specifically, we will fix qθ and
further update pϕ to maximize Equation (3.4.3). With the objective function, we notice that
only the conditional distribution pϕ(yn|yNB(n),xV ) is required for pϕ in both the inference
and learning steps (Equation (3.4.8) and Equation (3.4.3)). Therefore, instead of defining
the joint distribution of node labels pϕ(yV |xV ) by specifying the potential function, we can
simply focus on modeling the conditional distribution. Here, we parameterize the conditional
distribution pϕ(yn|yNB(n),xV ) with another non-linear graph neural network model (GNN)
because of its effectiveness:

pϕ(yn|yNB(n),xV ) = Cat(yn|softmax(Wϕhϕ,n)). (3.4.11)

Here, the distribution of yn is characterized by a softmax classifier, which takes the node
representation hϕ,n learned by a GNN model as features, and we denote the GNN as GNNϕ.
When learning the node representation hϕ,n, GNNϕ treats all the labels yNB(n) surrounding
the node n as features. Therefore, GNNϕ essentially models local dependencies of node
labels. With the above formulation, we no longer require any hand-crafted feature functions.

The framework is related to the label propagation methods [169, 170], which also update
each node label by combining the surrounding labels. However, these methods propagate
labels in a fixed and linear way, whereas GNNϕ is in a learnable and non-linear way.

One notable thing is that when defining pϕ(yn|yNB(n),xV ), GNNϕ only uses the node
labels yNB(n) surrounding the node n as features, but GNNϕ is flexible to incorporate other
features. For example, we can follow existing SRL methods, and take both the surrounding
node labels yNB(n) and surrounding attributes xNB(n) as features in GNNϕ. We will discuss
this variant in our experiment (see Section 3.5.2).
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Algorithm 1 Optimization Algorithm
Input: A graph G, some labeled nodes (L,yL).
Output: Node labels yU for unlabeled nodes U .
Pre-train qθ with yL according to Equation (3.4.9).
while not converge do
⊡ M-Step: Learning Procedure
Annotate unlabeled nodes with qθ. Denote the sampled labels as ŷU .
Set ŷV = (yL,ŷU) and update pϕ with Equation (3.4.12).
⊡ E-Step: Inference Procedure
Annotate unlabeled nodes with pϕ and ŷV . Let the inferred distribution be pϕ(yU).
Update qθ with Equation (3.4.8) and Equation (3.4.9) based on pϕ(yU) and yL.

end while
Classify each unlabeled node n based on qθ(yn|xV ).

Another thing is that based on the overall formulation of pϕ, i.e. Equation (3.3.1), each
node label yn should only depend on its adjacent node labels yNB(n) and node attributes
xV , which implies GNNϕ should not have more than one message passing layer. However,
a common practice in the literature of graph neural networks is to use multiple message
passing layers during training, which can well model the long-range dependency between
different nodes. Therefore, we also explore using multiple message passing layers to capture
such long-range dependency.

When optimizing pϕ to maximize Equation (3.4.3), we estimate the expectation in Equa-
tion (3.4.3) by drawing a sample from qθ(yU |xV ). More specifically, if n is an unlabeled
node, then we sample ŷn ∼ qθ(yn|xV ), and otherwise we set ŷn as the ground-truth la-
bel. Afterwards, the parameter ϕ can be optimized by maximizing the following objective
function:

Oϕ =
∑
n∈V

log pϕ(ŷn|ŷNB(n),xV ). (3.4.12)

3.4.4. Optimization

To optimize GMNN, we pre-train qθ with the labeled nodes. Then we alternatively
optimize pϕ and qθ until convergence. Afterwards, both pϕ and qθ can be used to classify
unlabeled nodes. In practice, qθ consistently outperforms pϕ, and thus we use qθ to infer
node labels by default. We summarize the detailed optimization algorithm in Algorithm 1.
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Dataset Task # Nodes # Edges # Features # Classes # Training # Validation # Test
Cora OC / NRL 2,708 5,429 1,433 7 140 500 1,000

Citeseer OC / NRL 3,327 4,732 3,703 6 120 500 1,000
Pubmed OC / NRL 19,717 44,338 500 3 60 500 1,000

Bitcoin Alpha LC 3,783 24,186 3,783 2 100 500 3,221
Bitcoin OTC LC 5,881 35,592 5,881 2 100 500 5,947

Table 1. Statistics of datasets used in GMNN.

Category Algorithm Cora Citeseer Pubmed
SSL LP 74.2 56.3 71.6

SRL
PRM 77.0 63.4 68.3
RMN 71.3 68.0 70.7
MLN 74.6 68.0 75.3

GNN
Planetoid * 75.7 64.7 77.2

GCN * 81.5 70.3 79.0
GAT * 83.0 72.5 79.0

GMNN
W/o Attr. in pϕ 83.4 73.1 81.4
With Attr. in pϕ 83.7 72.9 81.8

Best results 83.7 73.6 81.9

Table 2. Results of GMNN for object classification.

Category Algorithm Cora Citeseer Pubmed

GNN
DeepWalk * 67.2 43.2 65.3

DGI * 82.3 71.8 76.8

GMNN
With only qθ 78.1 68.0 79.3

With qθ and pϕ 82.8 71.5 81.6

Table 3. Results of GMNN for unsupervised node representation learning.

3.5. Experiment
In this section, we evaluate the performance of GMNN on three tasks, including object

classification, unsupervised node representation learning, and link classification.

3.5.1. Settings

Datasets.
• For object classification, we follow existing studies [61, 137, 159] and use three benchmark

datasets from Sen et al. [115] for evaluation, including Cora, Citeseer, Pubmed. In each
dataset, 20 objects from each class are treated as labeled objects, and we use the same
data partition as in Yang et al. [159]. Accuracy is used as the evaluation metric.
• For unsupervised node representation learning, we also use the above three datasets, in

which objects are treated as nodes. We learn node representations without using any
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labeled nodes. To evaluate the learned representations, we follow Veličković et al. [138]
and treat the representations as features to train a linear classifier on the labeled nodes.
Then we classify the test nodes and report the accuracy. Note that we use the same data
partition as in object classification.
• For link classification, we construct two datasets from the Bitcoin Alpha and the Bitcoin

OTC datasets [66, 67] respectively. The datasets contain graphs between Bitcoin users,
and the weight of a link represents the trust degree of connected users. We treat links
with weights greater than 3 as positive instances, and links with weights less than -3 are
treated as negative ones. Given a few labeled links, We try to classify the test links. As
the positive and negative links are quite unbalanced, we report the F1 score.

The statistics of these datasets can be found in Table 1. Here, OC, NRL, LC represent object
classification, node representation learning and link classification respectively.

Compared Algorithms.
• GNN Methods. For object classification and link classification, we mainly compare

with the recently-proposed Graph Convolutional Network [61] and Graph Attention Net-
work [137]. However, GAT cannot scale up to both datasets in the link classification task,
so the performance is not reported. For unsupervised node representation learning, we
compare with Deep Graph Infomax [138], which is the state-of-the-art method. Besides,
we also compare with DeepWalk [97] and Planetoid [159].
• SRL Methods. For SRL methods, we compare with the Probabilistic Relational

Model [65], the Relational Markov Network [127] and the Markov Logic Network [106].
In the PRM method, we assume that the label of an object depends on the attributes of
itself, its adjacent objects, and the labels of its adjacent objects. For the RMN and MLN
methods, we follow Taskar et al. [127] and use a logistic regression model locally for each
object. This logistic regression model takes the attributes of each object and also those
of its neighbors as features. Besides, we treat the labels of two linked objects as a clique
template, which is the same as in Taskar et al. [127]. In RMN, a complete score table
is employed for modeling label dependency, which maintains a potential score for every
possible combination of object labels in a clique. In MLN, we simply use one indicator
function in the potential function, and the indicator function judges whether the objects
in a clique have the same label. Loop belief propagation [85] is used for approximation
inference in RMN and MLN.
• SSL Methods. For methods under the category of graph-based semi-supervised classifi-

cation, we choose the label propagation method [169] to compare with.

Parameter Settings.
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• Object Classification. For GMNN, pϕ and qθ are composed of two graph convolutional
layers with 16 hidden units and ReLU activation [86], followed by the softmax function,
as in Kipf and Welling [61]. We reweight each feature of a node to 1 if the original weight
is greater than 0. Dropout [120] is applied to the network inputs with p = 0.5. We use
the RMSProp optimizer [131] during training, with the initial learning rate as 0.05 and
weight decay as 0.0005. In each iteration, both networks are trained for 100 epochs. The
mean accuracy over 100 runs is reported in experiment.
• Unsupervised Node Representation Learning. For the GMNN approach, pϕ and qθ

are composed of two graph convolutional layers followed by a linear layer and the softmax
function. The dimension of hidden layers is set as 512 for Cora and Citeseer, and 256
for Pubmed, which are the same as in Veličković et al. [138]. ReLU [86] is used as the
activation function. Each node feature is reweighted to 1 if the original weight is larger
than 0. We apply dropout [120] to the inputs of both networks with p = 0.5. The Adam
SGD optimizer [58] is used for training, with initial learning rate as 0.1 and weight decay
as 0.0005. We empirically train qθ for 200 epoches during pre-training. Afterwards, we
train both pϕ and qθ for 2 iterations, with 100 epochs for each network per iteration. For
the Pubmed dataset, we transform the raw node features into binary value since it can
result in better performance. The mean accuracy over 50 runs is reported.
• Link Classification. The setting of GMNN in this task is similar as in object classifi-

cation, with the following differences. The dimension of the hidden layers is set as 128.
No weight decay and dropout are used. In each iteration, both networks are trained for 5
epochs with the Adam optimizer [58], and the learning rate is 0.01.

3.5.2. Results

1. Comparison with the Baseline Methods. The quantitative results on the three
tasks are presented in Table 2, Table 3, and Table 4 respectively. Here, the results are in
% and [*] means the results are taken from corresponding papers. For object classification,
GMNN significantly outperforms all the SRL methods. The performance gain is from two
folds. First, during inference, GMNN employs a GNN model, which can learn effective
object representations to improve inference. Second, during learning, we model the local
label dependency with another GNN, which is more effective compared with SRL methods.
GMNN is also superior to the label propagation method, as GMNN is able to use object
attributes and propagate labels in a non-linear way. Compared with GCN, which employs the
same architecture as the inference network in GMNN, GMNN significantly outperforms GCN,
and the performance gain mainly comes from the capability of modeling label dependencies.
Besides, GMNN also outperforms GAT, but their performances are quite close. This is
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because GAT utilizes a much more complicated architecture. Since GAT is less efficient, it is
not used in GMNN, but we anticipate the results can be further improved by using GAT, and
we leave it as future work. In addition, by incorporating the object attributes in the learning
network pϕ, we further improve the performance, showing that GMNN is flexible and also
effective to incorporate additional features in the learning network. For link classification,
we obtain similar results.

For unsupervised node representation learning, GMNN achieves state-of-the-art results on
the Cora and Pubmed datasets. The reason is that GMNN effectively models the smoothness
of the neighbor distributions for different nodes with the pϕ network. Besides, the perfor-
mance of GMNN is quite close to the performance in the semi-supervised setting (Table 2),
showing that the learned representations are quite effective. We also compare with a variant
without using the pϕ network (with only qθ). In this case, we see that the performance
drops significantly, showing the importance of using pϕ as a regularizer over the neighbor
distributions.

Category Algorithm Bitcoin Alpha Bitcoin OTC
SSL LP 59.68 65.58

SRL
PRM 58.59 64.37
RMN 59.56 65.59
MLN 60.87 65.62

GNN
DeepWalk 62.71 63.20

GCN 64.00 65.69

GMNN
W/o Attr. in pϕ 65.59 66.62
With Attr. in pϕ 65.86 66.83

Table 4. Results of GMNN for link classification.

2. Analysis of the Amortized Inference. In GMNN, we employ amortized inference,
and parameterize the posterior label distribution by using a GNN model. In this section, we
thoroughly look into this strategy, and present some analysis in Table 5. Here, the variant
“Non-amortized” simply models each qθ(yn|xV ) as a categorical distribution with indepen-
dent parameters, and performs fix-point iteration (i.e. Equation (3.4.6)) to calculate the
value. We see that the performance of this variant is very poor on all datasets. By parame-
terizing the posterior distribution as a neural network, which leverages the own attributes of
each object for inference, the performance (see “1 Linear Layer”) is significantly improved,
but still not satisfactory. With several GC layers, we are able to incorporate the attributes
from the surrounding neighbors for each object, yielding further significant improvement.
The above observations prove the effectiveness of our strategy for inferring the posterior
label distributions.
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Architecture Cora Citeseer Pubmed
Non-amortized 45.3 28.1 42.2
1 Linear Layer 55.8 57.5 69.8

1 GC Layer 72.9 67.6 71.8
2 GC Layers 83.4 73.1 81.4
3 GC Layers 82.0 70.6 80.7

Table 5. Analysis of amortized inference used in GMNN.

3. Ablation Study of the Learning Network. In GMNN, the conditional distribution
pϕ(yn|yNB(n),xV ) is parameterized as another GNN, which essentially models the local label
dependency. In this section, we compare different architectures of the GNN on the object
classification task, and the results are presented in Table 6. Here, the variant “1 Mean Pooling
Layer” computes the distribution of yn as the linear combination of {yn′}n′∈NB(n). This
variant is similar to label propagation methods, and its performance is quite competitive.
However, the weights of different neighbors during propagation are fixed. By parameterizing
the conditional distribution with several GC layers, we are able to automatically learn the
propagation weights, and thus obtain superior results on all datasets. This observation
proves the effectiveness of employing GNNs in the learning procedure.

Architecture Cora Citeseer Pubmed
1 Mean Pooling Layer 82.4 71.9 80.7

1 GC Layer 83.1 73.1 80.9
2 GC Layers 83.4 73.1 81.4
3 GC Layers 83.6 73.0 81.5

Table 6. Ablation study of the learning network in GMNN.

4. Convergence Analysis. In GMNN, we utilize the variational EM algorithm for op-
timization, which consists of an E-step and an M-step in each iteration. Next, we analyze
the convergence of GMNN. We take the Cora and Citeseer datasets on object classification
as examples, and report the validation accuracy of both the qθ and pϕ networks at each
iteration. Figure 2 presents the convergence curve, in which iteration 0 corresponds to the
pre-training stage. GMNN takes only few iterations to convergence, which is very efficient.

5. Results on Random Data Splits. In the previous experiment, we have seen that
GMNN significantly outperforms all the baseline methods for semi-supervised object classi-
fication under the data splits from Yang et al. [159]. To further validate the effectiveness
of GMNN, we also evaluate GMNN on some random data splits. Specifically, we randomly
create 10 data splits for each dataset. The size of the training, validation and test sets in
each split is the same as the split in Yang et al. [159]. We compare GMNN with GCN [61]
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(a) Cora (b) Citeseer

Figure 2. Convergence analysis of GMNN.

and GAT [137] on those random data splits, as they are the most competitive baseline meth-
ods. For each data split, we run each method with 10 different seeds, and report the overall
mean accuracy in Table 7. We see GMNN consistently outperforms GCN and GAT on all
datasets, proving the effectiveness of GMNN.

Algorithm Cora Citeseer Pubmed
GCN 81.5 71.3 80.3
GAT 82.1 71.5 80.1

GMNN 83.1 73.0 81.9

Table 7. Object classification results of GMNN on random data splits.

6. Results in Few-shot Learning Settings. In the previous experiment, we have proved
the effectiveness of GMNN for object classification in the semi-supervised setting. Next, we
further conduct experiment in the few-short learning setting to evaluate the robustness of
GMNN to data sparsity. We choose GCN and GAT for comparison. For each dataset, we
randomly sample 5 labeled nodes under each class as training data, and run each method
with 100 different seeds. The mean accuracy is shown in Table 8. We see GMNN significantly
outperforms GCN and GAT. The improvement is even larger than the case of semi-supervised
setting, where 20 labeled nodes under each class are used for training. This result proves
that GMNN is robust to the sparsity of training data.

Algorithm Cora Citeseer Pubmed
GCN 74.9 69.0 76.9
GAT 77.0 68.9 75.4

GMNN 78.6 72.7 79.1

Table 8. Object classification results of GMNN in few-shot learning settings.

7. Comparison with Self-training Methods. Our proposed GMNN approach is related
to self-training frameworks. In GMNN, the pϕ network essentially tries to annotate unlabeled
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objects, and the annotated objects are further treated as extra data to update qθ through
Equation (3.4.8). Similarly, in self-training, we typically use qθ itself to annotate unlabeled
objects, and collect extra training data for qθ. Next, we compare GMNN with the self-
training method for semi-supervised object classification, and the results are presented in
Table 9.

We see GMNN consistently outperforms the self-training method. The reason is that
the self-training method uses qθ for both inference and annotation, while GMNN uses two
different networks qθ and pϕ to collaborate with each other. The information captured by qθ

and pϕ is complementary, and therefore GMNN achieves much better results.

Algorithm Cora Citeseer Pubmed
Self-training 82.7 72.4 80.1

GMNN 83.4 73.1 81.4

Table 9. Comparison between GMNN and self-training methods.

8. Comparison of Different Approximation Methods. In GMNN, we use a mean-
field variational distribution qθ for inference, and the optimal qθ is given by the fixed-point
condition in Equation (3.4.6). Learning the optimal qθ requires computing the right-hand
side of Equation (3.4.6), which involves the expectation with respect to qθ(yNB(n)∩U |xV ) for
each node n. To estimate the expectation, we notice that qθ(yNB(n)∩U |xV ) can be factorized
as ∏n′∈NB(n)∩U qθ(yn′|xV ). Based on that, we can develop several empirical approximation
methods.

Single Sample. The simplest way is to draw a single sample ŷn′ ∼ qθ(yn′ |xV ) for each node
n′ ∈ NB(n) ∩ U , and then we could use the sample to estimate the expectation.

Multiple Samples. In practice, we can also draw multiple samples from qθ(yn′ |xV ) for
each node n′ ∈ NB(n) ∩ U to estimate the expectation. Such a method has lower variance
but entails higher cost.

Annealing. Another method is to introduce an annealing parameter τ in qθ(yn′ |xV ), so
that we have:

qθ(yn′|xV ) = Cat(yn′ |softmax(Wθhθ,n′

τ
)).

Then we can set τ to a small value (e.g. 0.1) and draw a sample ŷn′ ∼ qθ(yn′ |xV ) for
n′ ∈ NB(n) ∩ U to estimate the expectation, which typically has lower variance.

Max Pooling. Another method is max pooling, where we set ŷn′ = arg maxyn′ qθ(yn′|xV )
for n′ ∈ NB(n) ∩ U , and use {ŷn′}n′∈NB(n)∩U as a sample to estimate the expectation.
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Mean Pooling. Besides, we can also use the mean pooling method similar to the soft
attention method in Deng et al. [25]. Specifically, suppose that we have C classes for classifi-
cation, then the label of each node can be viewed as a one-hot C-dimensional vector. Based
on that, we set ȳn′ = Eqθ(yn′ |xV )[yn′ ] for each unlabeled neighbor n′ of the object n, which
can be understood as a soft label vector of that neighbor. For each labeled neighbor n′ of the
object n, we set ȳn′ as the one-hot label vector. Then we can approximate the expectation
as:

Eqθ(yNB(n)∩U |xV )[log pϕ(yn|yNB(n),xV )] ≈ pϕ(yn|ȳNB(n),xV )] def= Cat(yn|softmax(Wϕhϕ,n)),

with hϕ,n = g(ȳNB(n),E), where the object representation hϕ,n is learned by feeding
{ȳn′}n′∈NB(n) as features in a graph neural network g.

Comparison. We empirically compare different methods in the semi-supervised object
classification task, where we use 10 samples for the multi-sample method and the parameter
τ in the annealing method is set as 0.1. Table 10 presents the results. We see the annealing
method consistently outperforms other methods on all datasets, and therefore we use the
annealing method for all the experiments in the paper.

Method Cora Citeseer Pubmed
Single Sample 82.1 71.5 80.4

Multiple Samples 83.2 72.5 81.1
Annealing 83.4 73.1 81.4

Max Pooling 83.2 72.8 81.2
Mean Pooling 83.4 72.6 80.5

Table 10. Comparison of different approximation methods for optimizing GMNN.

3.6. Conclusion
This paper studies semi-supervised object classification, which is a fundamental problem

in relational data modeling, and a novel approach called the GMNN is proposed. GMNN
employs a conditional random field to model the joint distribution of object labels, and two
graph neural networks are utilized to improve both the inference and learning procedures.
Experimental results on three tasks prove the effectiveness of GMNN. In the future, we plan
to further improve GMNN to deal with graphs with multiple edge types, such as knowledge
graphs [7].

27





Chapter 4

SPN: Structured Proxy Networks

This paper studies node classification in the inductive setting, i.e., aiming to learn a model on
labeled training graphs and generalize it to infer node labels on unlabeled test graphs. This
problem has been extensively studied with graph neural networks (GNNs) by learning effec-
tive node representations, as well as traditional structured prediction methods for modeling
the structured output of node labels, e.g., conditional random fields (CRFs). In this paper,
we present a new approach called the Structured Proxy Network (SPN), which combines the
advantages of both worlds. SPN defines flexible potential functions of CRFs with GNNs.
However, learning such a model is nontrivial as it involves optimizing a maximin game with
high-cost inference. Inspired by the underlying connection between joint and marginal dis-
tributions defined by Markov networks, we propose to solve an approximate version of the
optimization problem as a proxy, which yields a near-optimal solution, making learning more
efficient. Extensive experiments on two settings show that our approach outperforms many
competitive baselines 1.

4.1. Introduction
Graph-structured data are ubiquitous in the real world, covering a variety of applications.

This paper studies node classification, a fundamental problem in the machine learning com-
munity. Most existing efforts focus on the transductive setting [61, 137], i.e., using a small
set of labeled nodes in a graph to classify the rest of nodes. In this paper, we study node
classification in the inductive setting [46], which is receiving growing interest. Given some
training graphs with all nodes labeled, we aim to classify nodes in unlabeled test graphs.

This problem has been recently studied with graph neural networks (GNNs) [42, 46,
61, 137]. GNNs infer the marginal label distribution of each node by learning useful node
representations based on node features and edges. Once a GNN is learned on training graphs,

1Codes are available at https://github.com/DeepGraphLearning/SPN.

https://github.com/DeepGraphLearning/SPN


it can be further applied to test graphs to infer node labels. Owing to the high capacity of
nonlinear neural architectures, GNNs achieve impressive results on many datasets. However,
one limitation of GNNs is that they ignore the joint dependency of node labels, and therefore
node labels are predicted separately without modeling structured output.

Indeed, modeling structured output has been widely explored by the literature of struc-
tured prediction [3]. Structured prediction methods predict node labels collectively, so the
label prediction of each node can be improved according to the predicted labels of neighbor-
ing nodes. One representative approach is the conditional random field (CRF) [69]. A CRF
models the joint distribution of node labels with Markov networks, and thus training CRFs
becomes a learning task in graphical models, while predicting node labels corresponds to an
inference task. Typically, the potential functions in CRFs are parameterized as log-linear
functions, which suffer from low model capacities. One remedy for this is to define potential
functions with GNNs [80, 103]. However, most of the effective methods for learning CRFs
involve a maximin game [125, 139], making learning often hard to converge, especially when
GNNs are used to parameterize potential functions. Besides, as learning CRFs requires doing
inference on the graphical models, the combined model requires a long run time.

In this paper, we address these challenges by proposing SPN (Structured Proxy Network),
which is high in capacity, efficient in learning, and able to model the joint dependency of
node labels. SPN is inspired by theoretical works in graphical models [139], which reveal
close connections between the joint label distribution and the node/edge marginal label dis-
tribution in a Markov network. Based on that, we approximate the original optimization
problem with a proxy problem, where the potential functions in CRFs are defined by com-
bining a collection of node/edge pseudomarginal distributions, which are parameterized by
GNNs that satisfy a few simple constraints. This proxy problem can be easily solved by
maximizing the data likelihood on each node and edge, which yields a near-optimal joint
label distribution on training graphs. Once the model is learned, we apply it to test graphs
and run loopy belief propagation [85] to infer node labels. Experiments on two settings
against both GNNs and CRFs prove the effectiveness of our approach.

Note that although SPN is tested on inductive node classification, this method is quite
general and can be applied to many other structured prediction tasks as well, such as POS
tagging [16] and named entity recognition [110]. Please refer to Section 4.4.3 for more details.
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4.2. Related Work
Graph neural networks (GNNs) perform node classification by learning useful node

representations [42, 61, 137]. Most earlier efforts focus on designing GNNs for transduc-
tive node classification [33, 151, 159], and many recent works move to the inductive set-
ting [12, 15, 34, 46, 74, 164]. Because of high capacity and efficient training, GNNs achieve
impressive results on inductive node classification. Despite the success, GNNs only try to
model the marginal distribution of each node label and predict node labels separately with-
out considering joint dependency. In contrast, SPN models joint distributions of node labels
with CRFs, which predicts node labels collectively to improve results.

Another type of approach for inductive node classification is structured prediction, which
focuses on modeling the dependency of node labels, so that the predicted node labels are
more consistent. One representative approach is structured SVM [30, 111, 136], but it
lacks a probabilistic interpretation to handle the uncertainty of the prediction. Another
representative probabilistic approach is conditional random field [69, 123], which models the
distribution of output spaces by using a Markov network. CRFs have been proven effective in
many applications, such as POS tagging [69], shallow parsing [116], image labeling [48], and
sequence labeling [70, 77, 81]. Nevertheless, the potential functions in CRFs are typically
defined as log-linear functions, suffering from low model capacity.

There are also some recent works trying to combine GNNs and CRFs. Some works use
GNNs to solve inference problems in graphical models [14, 22, 35, 112, 166]. In contrast, our
approach uses GNNs to parameterize the potential functions in CRFs, which is in a similar
vein to Ma et al. [78, 79, 80], Qu et al. [103], Wang et al. [141]. Among them, Ma et al. [80]
and Qu et al. [103] optimize the pseudolikelihood [6] for model learning, and Wang et al.
[141] optimizes a cross-entropy loss on each single node, which can yield poor approximation
of the true joint likelihood [64, 125]. Our approach instead solves a proxy problem, which
yields a near-optimal solution to the original problem of maximizing likelihood, and thus
gets superior results. For Ma et al. [78] and Ma et al. [79], they focus on transductive node
classification and continuous labels respectively, which are different from our work.

Lastly, learning CRFs has also been widely studied. Some works solve a maximin game
as a surrogate for learning [125] and some others maximize a lower bound of the likelihood
function [124]. However, these maximin games are often hard to optimize and the lower
bounds are often loose. Different from them, we follow Wainwright et al. [140] and build
an approximate optimization problem as a proxy, which is easier to solve and yields better
results.
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4.3. Preliminary
This paper focuses on inductive node classification [46], a fundamental problem in both

graph machine learning and structured prediction. We employ a probabilistic formalization
for the problem with some labeled training graphs and unlabeled test graphs. Each training
graph is given as (y∗

V ,xV , E), where xV and y∗
V are features and labels of a set of nodes V ,

and E is a set of edges. For each test graph (xṼ , Ẽ), only features xṼ and edges Ẽ are given.
Then we aim to solve:
• Learning. On training graphs, learn a probabilistic model to approximate p(yV |xV , E).
• Inference. For each test graph, infer node labels y∗

Ṽ
according to the distribution

p(yṼ |xṼ , Ẽ).
The problem has been extensively studied in both graph machine learning and structured
prediction fields, and representative methods are GNNs and CRFs respectively. Next, we
introduce the details.

4.3.1. Graph Neural Networks

For inductive node classification, graph neural networks (GNNs) learn node represen-
tations to predict marginal label distributions of nodes. GNNs assume all node labels are
independent conditioned on node features and edges, so the joint label distribution is fac-
torized into a set of marginals as below:

pθ(yV |xV , E) =
∏
s∈V

pθ(ys|xV , E). (4.3.1)

Each marginal distribution pθ(ys|xV , E) is modeled as a categorical distribution over label
candidates, and the label probabilities are computed by applying a linear softmax classifier
to the representation of node s. In general, node representations are learned via the message
passing mechanism [42], which brings high capacity to GNNs. Also, owing to the factor-
ization in Equation (4.3.1), learning and inference can be easily solved in GNNs, where we
simply need to compute loss and make prediction on each node separately. However, GNNs
approximate only the marginal label distributions of nodes on training graphs, which may
generalize badly and result in poor approximation of node marginal label distributions on
test graphs. Also, the labels of different nodes are separately predicted according to their
own marginal label distributions, yet the joint dependency of node labels is ignored.

4.3.2. Conditional Random Fields

For inductive node classification, conditional random fields (CRFs) build graphical models
for node classification. A popular model is the pair-wise CRF, which formalizes the joint
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label distribution as:

pθ(yV |xV , E) = 1
Zθ(xV , E) exp{

∑
s∈V

θs(ys,xV , E) +
∑

(s,t)∈E

θst(ys, yt,xV , E)} (4.3.2)

where Zθ(xV , E) is the partition function. θs(ys,xV , E) and θst(ys, yt,xV , E) are scalar scores
contributed by each node s and each edge (s,t). In practice, these θ-functions can be either
defined as simple linear functions or complicated GNNs. To make the notation concise, we
will omit xV and E in the θ-functions, e.g., simplifying θs(ys,xV , E) as θs(ys). With these θ-
functions, CRFs are able to model the joint dependency of node labels and therefore achieve
structured prediction.

However, learning CRFs to maximize likelihood pθ(y∗
V |xV , E) on training graphs is non-

trivial in general, as the partition function Zθ(xV , E) is typically intractable in graphs with
loops. Thus, a major line of research instead optimizes a maximin game equivalent to
likelihood maximization [139]. The maximin game for each training graph (y∗

V ,xV , E) is
formalized as follows:

max
θ

log pθ(y∗
V |xV , E) = max

θ
min

q
L(θ, q), with L(θ, q) =∑

s∈V

{θs(y∗
s)− Eqs(ys)[θs(ys)]}+

∑
(s,t)∈E

{θst(y∗
s , y

∗
t )− Eqst(ys,yt)[θst(ys, yt)]} −H[q(yV )]. (4.3.3)

Here, q(yV ) is a variational distribution on node labels, qs(ys) and qst(ys,yt) are its marginal
distributions on nodes and edges. H[q(yV )] := −Eq(yV )[log q(yV )] is the entropy of q(yV ).
Given the maximin game, q and θ can be alternatively optimized via coordinate descent [125].
In each iteration, we first update the node and edge marginals {qs(ys)}s∈V , {qst(ys, yt)}(s,t)∈E

towards those defined by pθ. This can be done by MCMC, but the time cost is high,
so approximate inference is often used, such as loopy belief propagation [85]. After q is
optimized, we further update θ-functions with the node and edge marginals defined by q via
gradient descent.

The optimal θ-functions are characterized by the following moment-matching conditions:

pθ(ys|xV , E) = Iy∗
s
{ys} ∀s ∈ V, pθ(ys,yt|xV , E) = I(y∗

s ,y∗
t ){(ys, yt)} ∀(s,t) ∈ E,

(4.3.4)
where Ia{b} is an indicator function whose value is 1 if a = b and 0 otherwise. See Section B.1
and Section B.2 in appendix for detailed derivation of the maximin game as well as the
moment-matching conditions.

Once the θ-functions are learned, they can be further applied to each test graph (xṼ , Ẽ)
to predict the joint label distribution as pθ(yṼ |xṼ , Ẽ). Then the best label assignment y∗

Ṽ
can

be inferred by using approximate inference algorithms, such as loopy belief propagation [85].
The major challenge of CRFs lies in learning. On the one hand, learning relies on in-

ference, meaning that we have to update {qs(ys)}s∈V , {qst(ys, yt)}(s,t)∈E to approximate the

33



Figure 3. Overview of the SPN.

node and edge marginals of pθ at each step, which can be expensive. On the other hand,
as learning involves a maximin game and the optimal q of the inner minimization problem
in Equation (4.3.3) is intractable, we can only maximize an upper bound of the likelihood
function for θ, making learning unstable. The problem becomes even more severe when θ is
parameterized by highly nonlinear neural models, e.g. GNNs.

4.4. Model
In this section, we introduce our proposed approach Structured Proxy Network (SPN).

The general idea of SPN is to combine GNNs and CRFs by parameterizing potential functions
in CRFs with GNNs, and therefore SPN enjoys high capacity and can model the joint
dependency of node labels.

However, as elaborated in Section 4.3.2, learning such a model on training graphs is chal-
lenging due to the maximin game in optimization. Inspired by the connection between the
joint and marginal distributions of CRFs, we instead construct a new optimization problem,
which serves as a proxy for model learning. Compared with the original maximin game,
the proxy problem is much easier to solve, where we can simply train two GNNs to ap-
proximate the marginal label distributions on nodes and edges, and further combine these
pseudomarginals (defined in Proposition 1) into a near-optimal joint label distribution. This
joint label distribution can be further refined by optimizing the maximin game, although it is
optional and often unnecessary, as this distribution is often close enough to the optimal one.
With this proxy problem for model learning, learning becomes more stable and efficient.

Afterwards, the learned model is used to predict the joint label distribution on test
graphs. Then we run loopy belief propagation to infer node labels. Now, we introduce the
details of our approach.
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4.4.1. Learning

The learning task aims at training θ to maximize the log-likelihood function
log pθ(y∗

V |xV , E) for each training graph (y∗
V ,xV , E), which is highly challenging. Therefore,

instead of directly optimizing this goal, we solve an approximate version of the problem as
a proxy, which is training a node GNN and an edge GNN to maximize the log-likelihood of
observed labels on nodes and edges.
The Proxy Problem. The proxy problem is inspired by Wainwright and Jordan [139],
which points out that the marginal label distributions on nodes and edges defined by a
Markov network have inherent connections with the joint distribution. This connection is
stated in the proposition below.
Proposition 1. Consider a set of nonzero pseudomarginals {τs(ys)}s∈V and {τst(ys, yt)}(st)∈E

which satisfy ∑ys
τst(ys, yt) = τt(yt) and ∑yt

τst(ys, yt) = τs(ys) for all (s,t) ∈ E.
If we parameterize the θ-functions of pθ in Equation (4.3.2) in the following way:

θs(ys) = log τs(ys) ∀s ∈ V, θst(ys, yt) = log τst(ys, yt)
τs(ys)τt(yt)

∀(s, t) ∈ E, (4.4.1)

then {τs(ys)}s∈V and {τst(ys, yt)}(s,t)∈E are specified by a fixed point of the sum-product
loopy belief propagation algorithm when applied to the joint distribution pθ, which implies
that:

τs(ys) ≈ pθ(ys) ∀s ∈ V, τst(ys, yt) ≈ pθ(ys, yt) ∀(s,t) ∈ E. (4.4.2)

The proof is provided in Section B.3. With the proposition, we observe that if
we parameterize the θ-functions by combining a set of pseudomarginals {τs(ys)}s∈V and
{τst(ys, yt)}(s,t)∈E in the way defined by Equation (4.4.1), then those pseudomarginals can
well approximate the true marginals of the joint distribution pθ, i.e., τs(ys) ≈ pθ(ys) and
τst(ys, yt) ≈ pθ(ys,yt) for all nodes s and edges (s, t). Given this precondition, if we further
have τs(ys) ≈ Iy∗

s
{ys} and τst(ys, yt) ≈ I(y∗

s ,y∗
t ){(ys,yt)}, then the moment-matching conditions

in Equation (4.3.4) for the optimal θ-functions are roughly satisfied. This implies the joint
distribution pθ(yV |xV , E) derived in this way is a near-optimal one.

With the observation, rather than directly using GNNs to parameterize the θ-functions,
we use a node GNN and an edge GNN to parameterize the pseudomarginals {τs(ys)}s∈V and
{τst(ys, yt)}(s,t)∈E. For the pseudomarginal τs(ys) on node s, we apply the node GNN to node
features xV and edges E, yielding a representation us for node s. Then we apply a softmax
classifier to us to compute τs(ys):

{us}u∈V = GNNnode(xV , E), τs(ys) = softmax(f(us))[ys], (4.4.3)

where f maps a node representation to a |Y|-dimensional logit and Y is the node label set.
Similarly, we apply the edge GNN to compute a representation vs for each node s, and model
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τst(ys, yt) as:

{vs}s∈V = GNNedge(xV , E) τst(ys, yt) = softmax(g(vs,vt))[ys, yt], (4.4.4)

where g is a function mapping a pair of representations to a (|Y| × |Y|)-dimensional logit.
Given the parameterization, we construct the following problem as a proxy for learning

θ-functions:
min
τ,θ

∑
s∈V

d
(
Iy∗

s
{ys}, τs(ys)

)
+

∑
(s,t)∈E

d
(
I(y∗

s ,y∗
t ){(ys,yt)}, τst(ys, yt)

)
,

subject to θs = log τs(ys), θst(ys, yt) = log τst(ys, yt)
τs(ys)τt(yt)

,

and
∑
ys

τst(ys, yt) = τt(yt),
∑
yt

τst(ys, yt) = τs(ys),

(4.4.5)

for all nodes and edges, where d can be any divergence measure between two distribu-
tions. By solving the above problem, {τs(ys)}s∈V and {τst(ys, yt)}(s,t)∈E will be valid pseudo-
marginals which can well approximate the true labels, i.e., τs(ys) ≈ Iy∗

s
{ys} and τst(ys, yt) ≈

I(y∗
s ,y∗

t ){(ys,yt)}. Then according to the constraint in the second line of Equation (4.4.5),
θ-functions are formed in a way to enable τs(ys) ≈ pθ(ys) and τst(ys, yt) ≈ pθ(ys,yt) as stated
in the Proposition 1. Combining these two sets of formula results in pθ(ys) ≈ Iy∗

s
{ys} and

pθ(ys,yt) ≈ Iy∗
s
{ys}. We see that the moment-matching conditions in Equation (4.3.4) for

the optimal joint label distribution are roughly achieved, implying that the derived joint
distribution pθ(yV |xV , E) is a near-optimal solution to the original learning problem.

One good property of the proxy problem is that it can be solved easily. The last con-
sistency constraint (i.e. ∑

ys
τst(ys, yt) = τt(yt) and ∑

yt
τst(ys, yt) = τs(ys)) can be ignored

during optimization, since by optimizing the objective function, the optimal pseudomarginals
τ should well approximate the observed node and edge marginals, i.e., τs(ys) ≈ Iy∗

s
{ys} and

τst(ys, yt) ≈ I(y∗
s ,y∗

t ){(ys,yt)}, and hence τ will almost naturally satisfy the consistency con-
straint. We also tried some constrained optimization methods to handle the consistency
constraint, but they yield no improvement. See Section B.4 of appendix for more details.
Thus, we can simply train the pseudomarginals parameterized by GNNs to approximate
the true node and edge labels on training graphs, i.e., minimizing d(Iy∗

s
{ys}, τs(ys)) and

d(I(y∗
s ,y∗

t ){(ys,yt)}, τst(ys, yt)). Then we build θ-functions as in Equation (4.4.1) to obtain a
near-optimal joint distribution. In practice, we choose d to be the KL divergence, yielding
an objective for τ as:

max
τ

∑
s∈V

log τs(y∗
s) +

∑
(s,t)∈E

log τst(y∗
s , y

∗
t ). (4.4.6)

This objective function is very intuitive, where we simply try to optimize the node GNN
and edge GNN to maximize the log-likelihood function of the observed labels on nodes and
edges.
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Refinement. By solving the proxy problem, we can obtain a near-optimal joint distribution.
In practice, we observe that when we have a large amount of training data, further refining
this joint distribution by solving the maximin game in Equation (4.3.3) for a few iterations
can lead to further improvement. Formally, each iteration of refinement has two steps. In
the first step, we run sum-product loopy belief propagation [85], which yields a collection of
node and edge marginals (i.e., {qs(ys)}s∈V and {qst(ys, yt)}(s,t)∈E) as approximation to the
marginals defined by pθ. In the second step, we update the θ-functions parameterized by the
node and edge GNNs to maximize:∑

s∈V

{
θs(y∗

s)− Eqs(ys)[θs(ys)]
}

+
∑

(s,t)∈E

{
θst(y∗

s , y
∗
t )− Eqst(ys,yt)[θst(ys, yt)]

}
. (4.4.7)

Intuitively, we treat the true label y∗
s and (y∗

s , y
∗
t ) of each node and edge as positive examples,

and encourage the θ-functions to raise up their scores. Meanwhile, those labels sampled from
qs(ys) and qst(ys,yt) act as negative examples, and the θ-functions are updated to decrease
their scores.

4.4.2. Inference

After learning, we apply the node and edge GNNs to each test graph (xṼ , Ẽ) to com-
pute the θ-functions, which are integrated into an approximate joint label distribution
pθ(yṼ |xṼ , Ẽ). Then we use this distribution to infer the best label y∗

s̃ for each node s̃ ∈ Ṽ ,
where two settings are considered.
Node-level Accuracy. Typically, we care about the node-level accuracy, i.e., how likely
we can correctly classify a node in test graphs. Intuitively, the best label y∗

s̃ for each test
node s̃ ∈ Ṽ should be predicted as y∗

s̃ = arg maxys̃ pθ(ys̃|xṼ , Ẽ), where pθ(ys̃|xṼ , Ẽ) is the
marginal label distribution of node s̃ induced by the joint pθ(yṼ |xṼ , Ẽ). In practice, the
exact marginal is intractable, so we apply loopy belief propagation [85] for approximate
inference. For each edge (s̃, t̃) in test graphs, we introduce a message function mt̃→s̃(ys̃) and
iteratively update all messages as:

mt̃→s̃(ys̃) ∝
∑
yt̃

{exp(θt̃(yt̃) + θs̃t̃(ys̃, yt̃))
∏

s̃′∈N(t̃)\s̃

ms̃′→t̃(yt̃)}, (4.4.8)

whereN(s̃) denotes the set of neighboring nodes for node s̃. Once the above process converges
or after sufficient iterations, the label of each node s̃ can be inferred in the following way:

y∗
s̃ = arg max

ys̃
[exp(θs̃(ys̃))

∏
t̃∈N(s̃)

mt̃→s̃(ys̃)]. (4.4.9)

Graph-level Accuracy. In some other cases, we might care about the graph-level accuracy,
i.e., how likely we can correctly classify all nodes in a given test graph. In this case, the
best prediction of node labels is given by y∗

Ṽ
= arg maxyṼ

p(yṼ |xṼ , Ẽ). This problem can be
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approximately solved by the max-product variant of loopy belief propagation, which simply
replaces the sum over yt̃ in Equation (4.4.8) with max [148]. Afterwards, the best node label
can be still decoded via Equation (4.4.9).

4.4.3. Discussion

In practice, many structured prediction problems can be viewed as special cases of in-
ductive node classification, where the graphs between nodes have some special structures.
For example in sequence labeling tasks (e.g., named entity recognition), the graphs between
nodes have sequential structures. Thus, SPN can be applied to these tasks as well. In
order for better results, one might replace GNNs with other neural models which are specif-
ically designed for the studied task to better estimate the pseudomarginals. For example in
sequence labeling tasks, recurrent neural networks can be used.

4.5. Experiment
4.5.1. Settings

Datasets. We consider datasets in two settings, which focus on node-level and graph-level
accuracy respectively.
• Node-level Accuracy. The node-level accuracy measures how likely a model can predict

the correct label of a node in test graphs. We use the PPI dataset [46, 172], which has
20 training graphs. To make the dataset more challenging, we also try using only the
first 1/2/10 training graphs, yielding another three datasets PPI-1, PPI-2, and PPI-
10. Besides, we also build a DBLP dataset from the citation network in Tang et al.
[126]. Papers from eight conferences are treated as nodes, and we split them into three
categories for classification according to conference domains 2. For each paper, we compute
the mean GloVe embedding [96] of words in the title and abstract as node features. The
training/validation/test graph is formed as the citation graph of papers published before
1999, from 2000 to 2009, after 2010 respectively.
• Graph-level Accuracy. The graph-level accuracy measures how likely a model can cor-

rectly classify all the nodes for a given test graph. We construct three datasets from the
Cora, Citeseer, and Pubmed datasets used for transductive node classification [159]. Each
raw dataset has a single graph. For each training/validation/test node of the raw dataset,
we treat its ego network 3 as a training/validation/test graph. We denote the datasets as
Cora*, Citeseer*, Pubmed*.

2ML: ICML/NeurIPS. CV: ICCV/CVPR/ECCV. NLP: ACL/EMNLP/NAACL.
3The local subgraph formed by a node and its direct neighbors.
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Compared Algorithms. We choose the following methods for comparison, including a few
well-known graph neural networks, conditional random fields, and our approach.
• Graph Neural Networks. For GNNs, we choose a few well-known model architectures

for comparison, including GCN [61], GraphSage [46], GAT [137], Graph U-Net [33] and
GCNII [12].
• Conditional Random Fields. For CRFs, we consider three variants. (1) CRF-linear.

This variant uses linear θ-functions in Equation (4.3.2), which takes the features on nodes
and edges for computation. (2) CRF-GNN. This variant parameterizes the θ-functions as
θs(ys) = f(us) and θst(ys,yt) = g(vs,vt), with f and g defined in Equation (4.4.3) and
Equation (4.4.4), where the node representations are generated by different GNN architec-
tures (e.g., CRF-GAT). We train these models via the maximin game as in Equation (4.3.3)
with sum-product loopy belief propagation. (3) GMNN. We also consider GMNN [103],
an approach combining GNNs and CRFs, which optimizes the pseudolikelihood function
for learning.
• Our Approach. For SPNs, we try different GNN architectures for defining the node

and edge GNNs (e.g., SPN-GAT). By default, we only solve the proxy problem without
performing refinement. We systematically compare the results with and without refinement
in part 2 of Section 4.5.2.

Evaluation Metrics. On Cora*, Citeseer*, and Pubmed*, we report the percentage of test
graphs where all the nodes are correctly classified (i.e., graph-level accuracy). On DBLP
and PPI, we report accuracy and micro-F1 based on the percentage of test nodes which are
correctly classified (i.e., node-level accuracy). For Cora*, Citeseer*, and Pubmed*, we run
each compared method with 10 different seeds to report the mean accuracy and the standard
deviation. For DBLP and PPI, we run each method with 5 seeds.

Algorithm
PPI-1 PPI-2 PPI-10 PPI

Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1 Accuracy Micro-F1
GCN 76.62 ± 0.10 54.55 ± 0.29 77.48 ± 0.12 56.10 ± 0.36 80.43 ± 0.10 62.48 ± 0.27 82.28 ± 0.24 66.52 ± 0.89

GraphSAGE 81.02 ± 0.07 67.30 ± 0.11 84.13 ± 0.04 72.93 ± 0.04 95.34 ± 0.03 92.18 ± 0.05 98.51 ± 0.02 97.51 ± 0.03
GAT 77.49 ± 0.20 60.72 ± 0.25 81.35 ± 0.19 68.55 ± 0.30 96.14 ± 0.15 93.53 ± 0.24 98.85 ± 0.05 98.06 ± 0.08

Graph U-Net 77.17 ± 0.07 55.54 ± 0.33 78.22 ± 0.04 59.12 ± 0.30 83.15 ± 0.04 68.70 ± 0.08 86.29 ± 0.04 75.57 ± 0.18
GCNII 80.99 ± 0.07 65.79 ± 0.25 84.81 ± 0.06 74.54 ± 0.14 97.53 ± 0.01 95.86 ± 0.01 99.39 ± 0.00 98.97 ± 0.00

CRF-linear 65.33 ± 2.77 48.30 ± 0.35 67.20 ± 2.24 49.45 ± 0.97 69.72 ± 0.65 50.17 ± 0.39 69.98 ± 0.30 50.61 ± 0.35
CRF-GCN 76.33 ± 0.21 50.79 ± 0.74 76.27 ± 0.10 49.47 ± 0.63 77.08 ± 0.07 52.36 ± 0.72 77.34 ± 0.07 53.60 ± 0.36

CRF-GraphSAGE 77.43 ± 0.28 54.57 ± 1.07 77.25 ± 0.36 53.48 ± 1.00 77.65 ± 0.38 54.44 ± 1.34 77.21 ± 0.19 54.50 ± 3.09
CRF-GAT 76.50 ± 0.49 52.95 ± 0.40 76.76 ± 0.61 55.01 ± 0.93 74.58 ± 0.92 54.98 ± 1.13 70.42 ± 0.72 53.27 ± 0.42

CRF-GCNII 79.98 ± 0.32 61.22 ± 1.10 81.73 ± 0.33 66.37 ± 0.56 92.11 ± 0.28 87.10 ± 0.40 96.94 ± 0.12 94.95 ± 0.19
GMNN 77.55 ± 0.53 57.20 ± 2.63 81.21 ± 0.87 67.46 ± 2.92 94.67 ± 2.77 90.72 ± 5.28 97.00 ± 2.98 94.69 ± 5.60

SPN-GCN 77.07 ± 0.05 54.15 ± 0.17 78.02 ± 0.05 55.73 ± 0.15 80.59 ± 0.04 61.36 ± 0.11 82.56 ± 0.20 66.70 ± 0.77
SPN-GraphSAGE 82.11 ± 0.03 68.56 ± 0.07 85.40 ± 0.05 74.45 ± 0.07 95.28 ± 0.02 91.99 ± 0.04 98.55 ± 0.02 97.56 ± 0.03

SPN-GAT 79.01 ± 0.17 64.02 ± 0.40 83.55 ± 0.12 72.37 ± 0.18 96.68 ± 0.13 94.41 ± 0.21 99.04 ± 0.06 98.38 ± 0.10
SPN-GCNII 82.01 ± 0.03 67.80 ± 0.11 85.83 ± 0.04 75.96 ± 0.05 97.55 ± 0.01 95.87 ± 0.02 99.41 ± 0.00 99.02 ± 0.00

Table 11. Result of SPN on PPI datasets.
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Algorithm Cora* Citeseer* Pubmed* DBLP
GCN 57.26 ± 0.66 46.24 ± 0.61 51.84 ± 0.45 76.60 ± 2.32

GraphSAGE 49.02 ± 2.37 41.32 ± 2.41 48.61 ± 1.28 73.81 ± 0.90
GAT 51.99 ± 3.51 47.94 ± 0.46 50.89 ± 0.52 79.16 ± 1.44

Graph U-Net 56.07 ± 0.57 45.91 ± 1.65 51.77 ± 0.97 75.21 ± 2.68
GCNII 59.15 ± 0.67 46.39 ± 0.92 53.54 ± 0.98 81.79 ± 0.88

CRF-linear 42.78 ± 3.94 40.60 ± 0.81 43.90 ± 2.91 54.26 ± 1.27
CRF-GAT 49.10 ± 3.80 42.89 ± 1.30 47.79 ± 1.33 59.14 ± 4.15
CRF-UNet 53.49 ± 2.47 43.66 ± 2.12 50.02 ± 0.88 57.46 ± 3.07

CRF-GCNII 36.18 ± 5.75 38.27 ± 4.82 41.71 ± 4.79 60.55 ± 2.23
GMNN 54.30 ± 1.15 48.46 ± 1.06 51.70 ± 1.23 76.54 ± 2.93

SPN-GAT 58.78 ± 1.21 49.02 ± 0.78 52.91 ± 0.54 84.84 ± 0.73
SPN-UNet 58.03 ± 0.54 46.97 ± 1.06 53.36 ± 0.67 80.11 ± 1.59

SPN-GCNII 60.47 ± 0.49 48.34 ± 0.50 54.35 ± 0.64 83.57 ± 1.33

Table 12. Results of SPN on Cora*, Citeseer*, Pubmed*, and DBLP.

Experimental Setup. For GNNs, by default we use the same architectures (e.g., number
of neurons, number of layers) as used in the original papers. Adam [59] is used for training.
For the edge GNN in Equation (4.4.4), we add a hyperparameter γ to control the annealing
temperature of the logit g(vs,vt) before the softmax function during belief propagation.
Empirically, we find that max-product belief propagation works better than the sum-product
variant in most cases, so we use the max-product version by default. By default, we do not
run refinement when training SPNs. See Section B.6 for details.

4.5.2. Results

1. Comparison with other methods. The main results in the two settings are presented
in Table 11 and Table 12, where the results are in %. Compared against different GNN
models, our approach achieves consistent improvement (the relative underperformance of
SPN-GCN and SPN-SAGE is related to the capacity of the backbone GNNs and is explained
in Section 6) by using these GNNs as backbone networks for approximating marginal label
distributions on nodes and edges, which demonstrates SPNs are able to model the structured
output of node labels by combining with CRFs, and thus achieve better results.

Besides, SPNs also achieve superior results to CRF-GNNs which are trained by directly
solving the maximin game in Equation (4.3.3), as well as GMNN which optimizes the pseu-
dolikelihood function. This observation proves the advantage of our proposed proxy opti-
mization problem for learning CRFs.
2. Effect of refinement. By solving the proxy optimization problem in Equation (4.4.5),
we can obtain a near-optimal joint label distribution on training graphs, based on which we
may optionally refine the distribution with the maximin game in Equation (4.3.3). Next,
we study the effect of refinement, and we present the results in Table 14. By only solving
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Table 13. Run time of SPN.

Algorithm DBLP PPI
GAT 23.15 460.81

CRF (GAT) 500.43 27136.90
SPN(GAT) 46.86 962.92

Table 14. Analysis of refinement in SPN.

Algorithm Refine PPI-2 PPI-10 PPI
SPN- w/o 71.52 ± 0.21 94.41 ± 0.21 98.38 ± 0.10
GAT with 71.58 ± 0.20 94.63 ± 0.20 98.68 ± 0.09
SPN- w/o 73.93 ± 0.08 91.99 ± 0.04 97.56 ± 0.03

GraphSAGE with 73.68 ± 0.10 92.49 ± 0.02 97.77 ± 0.02

the proxy problem, our approach already achieves impressive results, showing that the proxy
problem can well approximate the original learning problem. Only on datasets with sufficient
labeled data (e.g., PPI-10, PPI), refinement leads to some improvement.

Table 15. Analysis of the proxy problem.

Algorithm Cora* Citeseer* PPI-10

Maximin Game 49.10 ± 3.80 42.89 ± 1.30 54.98 ± 1.13

Pseudolikelihood 54.30 ± 1.15 48.46 ± 1.06 90.72 ± 5.28

Proxy Problem 58.78 ± 1.21 49.02 ± 0.78 95.87 ± 0.02

Table 16. Analysis of SPN variants.

Algorithm PPI-1 PPI-2 PPI-10

GAT 60.72 ± 0.25 68.55 ± 0.30 93.53 ± 0.24

SPN-GAT
64.02 ± 0.40 72.37 ± 0.18 94.41 ± 0.21

node and edge GNNs
SPN-GAT

63.72 ± 0.38 70.99 ± 0.25 95.19 ± 0.15
a shared GNN

3. Model architecture. SPN uses a node GNN and an edge GNN for computing node and
edge marginals independently. In practice, we can also use a shared GNN for both node and
edge marginals. We show results of this variant in Table 16, where it also achieves significant
improvement over GNNs.
4. Efficiency comparison. We have seen SPNs achieve better classification results than
GNNs and CRFs. Next, we further compare their efficiency by showing the run time on
DBLP and PPI (in seconds). For PPI, which has 121 labels, we only report the training
times on a single label. We use GAT as the backbone network for CRFs and SPNs. GAT
and CRF are trained for 1000 epochs to ensure convergence. For the SPN, we train the node
GNN and edge GNN for node/edge classification as in Equation (4.4.6) with 1000 epochs.
The run times are presented in Table 13. SPNs take twice as long for training than GAT, as
a SPN needs to train a node GNN and an edge GNN. Compared with CRFs, SPNs are much
more efficient, because the proxy optimization problem in SPNs is much easier to solve.

(a) DBLP training. (b) DBLP validation.

Figure 4. Convergence curves of SPN. Figure 5. Case study of SPN.
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5. Comparison of learning methods. Next, we investigate different methods for learning
SPNs, including directly solving the maximin game, optimizing pseudolikelihood, and solving
our proposed proxy problem. We show the results for optimizing SPN-GAT in Table 15.
We see solving maximin game yields poor results due to unstable training. Although the
pseudolikelihood method performs much better, the result is still unsatisfactory as it is not
a good approximation of the true likelihood. By solving our proposed proxy problem, SPN
achieves the best result, which proves its effectiveness.
6. Convergence analysis. To better illustrate the advantage of the proxy problem for
learning CRFs, we look into the training curves of SPNs, SPNs w/o proxy, and CRFs when
optimizing the maximin game in Equation (4.3.3). For SPNs, we optimize the node and
edge GNNs on the proxy optimization problem in Equation (4.4.5) before doing refinement
with the maximin game, while for SPNs w/o proxy we directly perform refinement with
the maximin game without solving the proxy problem. We show the results in Figure 4.
CRFs and SPNs w/o proxy suffer from high variance and low accuracy. In contrast, owing
to the near-optimal joint distribution found by solving the proxy problem, SPNs get higher
accuracy with lower variance even without refinement (see initial results of SPNs at epoch
0). Also, the refinement process quickly converges after only a few epochs, showing good
efficiency of SPNs.
7. Case study. To intuitively see how SPN outperform GNNs, we conduct some case
studies on Cora*. We use GAT as backbone networks, and show the prediction made by
the GAT (the node GNN), the edge GNN, and SPN in Figure 5. In all three cases shown
in the figure, GAT (left column) makes inconsistent predictions on linked nodes, as it fails
to model the structured output. The edge GNN (middle column) also makes a mistake in
the bottom case. Finally, by combining GAT and edge GNN with a CRF, the SPN (right
column) is able to predict the correct labels for all nodes.
8. Additional Analysis of GNN Architectures. In this analysis, we study the effect of
node/edge GNN architectures on SPNs. We fix one of the GNNs and change the capacity
of the other (Figure 6), then evaluate SPN-GAT on PPI-1-0, a subset of PPI-1 that only
contains its first label. The results show that our model benefit from capacity gain in both
node and edge GNNs, highlighting their effective synergy. This also explains the underper-
formance of SPN-GCN in Table 11, where the edge GCN backbone with only two layers and
16 hidden neurons is incapable of modeling the edge label dependencies and thus drags the
performance behind. We also find that the node and edge GNNs need not share the same
backbone, and in many cases SPNs with different node and edge GNNs perform superior to
those with same backbone (Figure 6). The expressiveness of edge GNNs is crucial to the
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performance of SPN. Though we did not optimize the design of our edge GNNs, they have
shown to be helpful in boosting the performance once plugged into our approach.

Figure 6. Analysis of GNN architectures in SPN.

9. Node-level Accuracy on Cora*, Citeseer*, and Pubmed*. In the experiment, we
report the graph-level accuracy on the Cora*, Citeseer*, and Pubmed* datasets, where SPNs
consistently outperform other methods. Besides the graph-level accuracy, we also compute
the node-level accuracy on these datasets, and the results are reported in Table 17. We can
see that our approach still consistently outperforms other methods in terms of node-level
accuracy.

Algorithm Cora* Citeseer* Pubmed*
GCN 79.85 ± 0.24 72.25 ± 0.71 78.05 ± 0.55

GraphSAGE 73.43 ± 1.67 62.48 ± 2.19 73.99 ± 1.26
GAT 79.65 ± 1.25 74.15 ± 0.12 78.62 ± 0.52

Graph U-Net 78.72 ± 0.63 71.36 ± 1.37 77.93 ± 0.60
GCNII 82.84 ± 0.37 72.61 ± 0.49 79.47 ± 0.55

CRF-linear 68.47 ± 2.13 65.88 ± 0.85 65.93 ± 2.18
CRF-GAT 77.75 ± 1.24 69.13 ± 1.10 75.96 ± 1.06
CRF-UNet 78.32 ± 1.51 70.78 ± 1.15 77.91 ± 0.56

CRF-GCNII 35.98 ± 7.40 33.73 ± 5.87 60.55 ± 4.17
GMNN 79.90 ± 0.93 72.18 ± 0.48 78.00 ± 1.04

SPN-GAT 83.13 ± 0.48 74.50 ± 0.36 79.23 ± 0.33
SPN-UNet 81.11 ± 0.55 72.28 ± 0.94 78.70 ± 0.37

SPN-GCNII 83.54 ± 0.27 74.04 ± 0.29 79.95 ± 0.38

Table 17. Node-level accuracy of SPN on Cora*, Citeseer*, Pubmed*.

10. Comparison of Sum-product and Max-product Belief Propagation. As ex-
plained in Section 4.4.2, the sum-product belief propagation algorithm is more applicable
to the case of node-level accuracy, as it aims at inferring the marginal label distribution on
each node. Nevertheless, in practice we find that the max-product algorithm usually achieves
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better empirical node-level accuracy. For example, the results on the PPI-10 dataset are pre-
sented in Table 18. Because of the better empirical results, we choose to use max-product
belief propagation by default.

Algorithm Micro-F1
Sum-product BP 94.50 ± 0.16
Max-product BP 94.65 ± 0.13

Table 18. Analysis of belief propagation in SPN.

11. Hyperparameter Analysis. Finally, We present analysis of the hyperparameter γ
(i.e., edge temperature) in Figure 7. We can see that [0.1, 0.2] is a good default range for γ.

(a) Edge temperature on Cora. (b) Edge temperature on DBLP.

Figure 7. Analysis of hyperparameters in SPN.

4.6. Conclusion
This paper studied inductive node classification, and we proposed SPN to combine GNNs

and CRFs. Inspired by the connection of joint and marginal distributions defined by Markov
networks, we designed a proxy problem for efficient model learning. In the future, we plan
to explore more advanced GNNs to model the pseudomarginals on edges, which are key to
improving node classification results in SPNs. In addition, SPNs model joint dependency of
node labels by defining potential functions on nodes and edges, and we also plan to further
explore high-order local structures, e.g., triangles.
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Chapter 5

pLogicNet: Probabilistic Logic Neural Nets

Knowledge graph reasoning, which aims at predicting the missing facts through reasoning
with the observed facts, is critical to many applications. Such a problem has been widely
explored by traditional logic rule-based approaches and recent knowledge graph embedding
methods. A principled logic rule-based approach is the Markov Logic Network (MLN),
which is able to leverage domain knowledge with first-order logic and meanwhile handle the
uncertainty. However, the inference in MLNs is usually very difficult due to the complicated
graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE,
DistMult) learn effective entity and relation embeddings for reasoning, which are much more
effective and efficient. However, they are unable to leverage domain knowledge. In this
paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the
advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets
by using a Markov logic network with first-order logic, which can be efficiently optimized
with the variational EM algorithm. In the E-step, a knowledge graph embedding model
is used for inferring the missing triplets, while in the M-step, the weights of logic rules
are updated based on both the observed and predicted triplets. Experiments on multiple
knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.

5.1. Introduction
Many real-world entities are interconnected with each other through various types of

relationships, forming massive relational data. Naturally, such relational data can be char-
acterized by a set of (h, r, t) triplets, meaning that entity h has relation r with entity t.
To store the triplets, many knowledge graphs have been constructed such as Freebase [44]
and WordNet [83]. These graphs have been proven useful in many tasks, such as question
answering [161], relation extraction [102] and recommender systems [10]. However, one big



challenge of knowledge graphs is that their coverage is limited. Therefore, one fundamental
problem is how to predict the missing links based on the existing triplets.

One type of methods for reasoning on knowledge graphs are the symbolic logic rule-
based approaches [40, 51, 106, 127, 149]. These rules can be either handcrafted by domain
experts [129] or mined from knowledge graphs themselves [32]. Traditional methods such as
expert systems [40, 51] use hard logic rules for prediction. For example, given a logic rule
∀x,y,Husband(x,y)⇒Wife(y,x) and a fact that A is the husband of B, we can derive that B
is the wife of A. However, in many cases logic rules can be imperfect or even contradictory,
and hence effectively modeling the uncertainty of logic rules is very critical. A more principled
method for using logic rules is the Markov Logic Network (MLN) [106, 119], which combines
first-order logic and probabilistic graphical models. MLNs learn the weights of logic rules in
a probabilistic framework and thus soundly handle the uncertainty. Such methods have been
proven effective for reasoning on knowledge graphs. However, the inference process in MLNs
is difficult and inefficient due to the complicated graph structure among triplets. Moreover,
the results can be unsatisfactory as many missing triplets cannot be inferred by any rules.

Another type of methods for reasoning on knowledge graphs are the recent knowledge
graph embedding based methods (e.g., TransE [8], DistMult [156] and ComplEx [135]). These
methods learn useful embeddings of entities and relations by projecting existing triplets into
low-dimensional spaces. These embeddings preserve the semantic meanings of entities and
relations, and can effectively predict the missing triplets. In addition, they can be efficiently
trained with stochastic gradient descent. However, one limitation is that they do not leverage
logic rules, which compactly encode domain knowledge and are useful in many applications.

We are seeking an approach that combines the advantages of both worlds, one which is
able to exploit first-order logic rules while handling their uncertainty, infer missing triplets
effectively, and can be trained in an efficient way. We propose such an approach called the
probabilistic Logic Neural Networks (pLogicNet). A pLogicNet defines the joint distribution
of a collection of triplets with a Markov Logic Network [106], which associates each logic rule
with a weight and can be effectively trained with the variational EM algorithm [89]. In the
variational E-step, we infer the plausibility of the unobserved triplets (i.e., hidden variables)
with amortized mean-field inference [36, 60, 95], in which the variational distribution is
parameterized as a knowledge graph embedding model. In the M-step, we update the weights
of logic rules by optimizing the pseudolikelihood [6], which is defined on both the observed
triplets and those inferred by the knowledge graph embedding model. The framework can be
efficiently trained by stochastic gradient descent. Experiments on four benchmark knowledge
graphs prove the effectiveness of pLogicNet over many competitive baselines.
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5.2. Related Work
First-order logic rules can compactly encode domain knowledge and have been extensively

explored for reasoning. Early methods such as expert systems [40, 51] use hard logic rules for
reasoning. However, logic rules can be imperfect or even contradictory. Later studies try to
model the uncertainty of logic rules by using Horn clauses [20, 56, 98, 149] or database query
languages [99, 127]. A more principled method is the Markov logic network [106, 119], which
combines first-order logic with probabilistic graphical models. Despite the effectiveness in a
variety of tasks, inference in MLNs remains difficult and inefficient due to the complicated
connections between triplets. Moreover, for predicting missing triplets on knowledge graphs,
the performance can be limited as many triplets cannot be discovered by any rules. In
contrast to them, pLogicNet uses knowledge graph embedding models for inference, which
is much more effective by learning useful entity and relation embeddings.

Another category of approach for knowledge graph reasoning is the knowledge graph
embedding method [8, 26, 92, 121, 135, 146, 156], which aims at learning effective embed-
dings of entities and relations. Generally, these methods design different scoring functions
to model different relation patterns for reasoning. For example, TransE [8] defines each rela-
tion as a translation vector, which can effectively model the composition and inverse relation
patterns. DistMult [156] models the symmetric relation with a bilinear scoring function.
ComplEx [135] models the asymmetric relations by using a bilinear scoring function in com-
plex space. RotatE [121] further models multiple relation patterns by defining each relation
as a rotation in complex spaces. Despite the effectiveness and efficiency, these methods are
not able to leverage logic rules, which are beneficial in many tasks. Recently, there are a few
studies on combining logic rules and knowledge graph embedding [27, 45]. However, they
cannot effectively handle the uncertainty of logic rules. Compared with them, pLogicNet is
able to use logic rules and also handle their uncertainty in a more principled way through
Markov logic networks.

Some recent work also studies using reinforcement learning for reasoning on knowledge
graphs [23, 76, 117, 153], where an agent is trained to search for reasoning paths. However,
the performance of these methods is not so competitive. Our pLogicNets are easier to train
and also more effective.

Lastly, there are also some recent studies trying to combine statistical relational learning
and graph neural networks for semi-supervised node classification [103], or using Markov
networks for visual dialog reasoning [100, 168]. Our work shares similar idea with these
studies, but we focus on a different problem, i.e., reasoning with first-order logic on knowledge
graphs. There is also a concurrent work using graph neural networks for logic reasoning [165].

47



Compared to this study which emphasizes more on the inference problem, our work focuses
on both the inference and the learning problems.

5.3. Preliminary
5.3.1. Problem Definition

A knowledge graph is a collection of relational facts, each of which is represented as
a triplet (h,r,t). Due to the high cost of knowledge graph construction, the coverage of
knowledge graphs is usually limited. Therefore, a critical problem on knowledge graphs is
to predict the missing facts.

Formally, given a knowledge graph (E,R,O), where E is a set of entities, R is a set of
relations, and O is a set of observed (h,r,t) triplets, the goal is to infer the missing triplets
by reasoning with the observed triplets. Following existing studies [91], the problem can be
reformulated in a probabilistic way. Each triplet (h, r, t) is associated with a binary indicator
variable v(h,r,t). v(h,r,t) = 1 means (h,r,t) is true, and v(h,r,t) = 0 otherwise. Given some true
facts vO = {v(h,r,t) = 1}(h,r,t)∈O, we aim to predict the labels of the remaining hidden triplets
H, i.e., vH = {v(h,r,t)}(h,r,t)∈H . We will discuss how to generate the hidden triplets H later
in Section 5.4.4.

This problem has been extensively studied in both traditional logic rule-based methods
and recent knowledge graph embedding methods. For logic rule-based methods, we mainly
focus on one representative approach, the Markov logic network [106]. Essentially, both types
of methods aim to model the joint distribution of the observed and hidden triplets p(vO,vH).
Next, we briefly introduce the Markov logic network (MLN) [106] and the knowledge graph
embedding methods [8, 121, 156].

5.3.2. Markov Logic Network

In the MLN, a Markov network is designed to define the joint distribution of the observed
and the hidden triplets, where the potential function is defined by the first-order logic. Some
common logic rules to encode domain knowledge include: (1) Composition Rules. A
relation rk is a composition of ri and rj means that for any three entities x, y, z, if x has
relation ri with y, and y has relation rj with z, then x has relation rk with z. Formally,
we have ∀x, y, z ∈ E,v(x,ri,y) ∧ v(y,rj ,z) ⇒ v(x,rk,z). (2) Inverse Rules. A relation rj is an
inverse of ri indicates that for two entities x, y, if x has relation ri with y, then y has relation
rj with x. We can represent the rule as ∀x, y ∈ E,v(x,ri,y) ⇒ v(y,rj ,x). (3) Symmetric
Rules. A relation r is symmetric means that for any entity pair x, y, if x has relation r

with y, then y also has relation r with x. Formally, we have ∀x, y ∈ E,v(x,r,y) ⇒ v(y,r,x).
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(4) Subrelation Rules. A relation rj is a subrelation of ri indicates that for any entity
pair x, y, if x and y have relation ri, then they also have relation rj. Formally, we have
∀x, y ∈ E,v(x,ri,y) ⇒ v(x,rj ,y).

For each logic rule l, we can obtain a set of possible groundings Gl by instantiating the
entity placeholders in the logic rule with real entities in knowledge graphs. For example,
for a rule ∀x, y,v(x,Born in,y) ⇒ v(x,Live in,y), two groundings in Gl can be v(Newton,Born in,UK) ⇒
v(Newton,Live in,UK), v(Einstein,Born in,German) ⇒ v(Einstein,Live in,German). We see that the former one
is true while the latter one is false. To handle such uncertainty of logic rules, Markov logic
networks introduce a weight wl for each rule l, and then the joint distribution of all triplets
is defined as follows:

p(vO,vH) = 1
Z

exp
∑

l∈L

wl

∑
g∈Gl

I{g is true}
 = 1

Z
exp

∑
l∈L

wlnl(vO,vH)
 , (5.3.1)

where nl is the number of true groundings of rule l based on the values of vO and vH .
With such a formulation, predicting the missing triplets essentially becomes inferring the

posterior distribution p(vH |vO). Exact inference is usually infeasible due to the complicated
graph structures, and hence approximation inference is often used such as MCMC [41] and
loopy belief propagation [85].

5.3.3. Knowledge Graph Embedding

Different from the logic rule-based approaches, the knowledge graph embedding methods
learn embeddings of entities and relations with the observed facts vO, and then predict the
missing facts with the learned entity and relation embeddings. Formally, each entity e ∈ E
and relation r ∈ R is associated with an embedding xe and xr. Then the joint distribution
of all the triplets is defined as:

p(vO,vH) =
∏

(h,r,t)∈O∪H

Ber(v(h,r,t)|f(xh,xr,xt)), (5.3.2)

where Ber stands for the Bernoulli distribution, f(xh,xr,xt) computes the probability that
the triplet (h,r,t) is true, with f(·, · ,·) being a scoring function on the entity and relation
embeddings. For example in TransE, the score function f can be formulated as σ(γ− ||xh +
xr − xt||) according to [121], where σ is the sigmoid function and γ is a fixed bias. To
learn the entity and relation embeddings, these methods typically treat observed triplets as
positive examples and the hidden triplets as negative ones. In other words, these methods
seek to maximize log p(vO = 1,vH = 0). The whole framework can be efficiently optimized
with the stochastic gradient descent algorithm.
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Figure 8. Overview of pLogicNet.

5.4. Model
In this section, we introduce our proposed approach pLogicNet for knowledge graph

reasoning, which combines the logic rule-based methods and the knowledge graph embedding
methods. To leverage the domain knowledge provided by first-order logic rules, pLogicNet
formulates the joint distribution of all triplets with a Markov logic network [106], which
is trained with the variational EM algorithm [89], alternating between a variational E-step
and an M-step. In the varational E-step, we use a knowledge graph embedding model to
infer the missing triplets, during which the knowledge preserved by the logic rules can be
effectively distilled into the learned embeddings. In the M-step, the weights of the logic rules
are updated based on both the observed triplets and those inferred by the knowledge graph
embedding model. In this way, the embedding model provides extra supervision for weight
learning.

An overview of pLogicNet is given in Figure 8. Each possible triplet is associated with a
binary indicator (circles), indicating whether it is true (✓) or not (✗). The observed (yellow
circles) and hidden (grey circles) indicators are connected by a set of logic rules, with each rule
having a weight (red number). For the center triplet, the KGE model predicts its indicator
through embeddings, while the logic rules consider the Markov blanket of the triplet (all
connected triplets). If any indicator in the Markov blanket is hidden, we simply fill it with
the prediction from the KGE model. In the E-step, we use the logic rules to predict the
center indicator, and treat it as extra training data for the KGE model. In the M-step, we
annotate all hidden indicators with the KGE model, and then update the weights of rules.

5.4.1. Variational EM

Given a set of first-order logic rules L = {li}|L|
i=1, our approach uses a Markov logic

network [106] as in Equation (5.3.1) to model the joint distribution:

pw(vO,vH) = 1
Z

exp
(∑

l

wlnl(vO,vH)
)
, (5.4.1)
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where wl is the weight of rule l. The model can be trained by maximizing the log-likelihood of
the observed indicator variables, i.e., log pw(vO). However, directly optimizing the objective
is infeasible, as we need to integrate over all the hidden indicator variables vH . Therefore,
we instead optimize the evidence lower bound (ELBO) of the log-likelihood function, which
is given as follows:

log pw(vO) ≥ L(qθ, pw) = Eqθ(vH)[log pw(vO,vH)− log qθ(vH)], (5.4.2)

where qθ(vH) is a variational distribution of the hidden variables vH . The equation holds
when qθ(vH) equals to the true posterior distribution pw(vH |vO). Such a lower bound can be
effectively optimized with the variational EM algorithm [89], which consists of a variational
E-step and an M-step. In the variational E-step, which is known as the inference procedure,
we fix pw and update qθ to minimize the KL divergence between qθ(vH) and pw(vH |vO). In
the M-step, which is known as the learning procedure, we fix qθ and update pw to maximize
the log-likelihood function of all the triplets, i.e., Eqθ(vH)[log pw(vO,vH)]. Next, we introduce
the details of both steps.

5.4.2. E-step: Inference Procedure

For inference, we aim to infer the posterior distribution of the hidden variables, i.e.,
pw(vH |vO). As exact inference is intractable, we approximate the true posterior distribution
with a mean-field [95] variational distribution qθ(vH), in which each v(h,r,t) is inferred inde-
pendently for (h, r, t) ∈ H. To further improve inference, we use amortized inference [36, 60],
and parameterize qθ(v(h,r,t)) with a knowledge graph embedding model. Formally, qθ(vH) is
formulated as below:

qθ(vH) =
∏

(h,r,t)∈H

qθ(v(h,r,t)) =
∏

(h,r,t)∈H

Ber(v(h,r,t)|f(xh,xr,xt)), (5.4.3)

where Ber stands for the Bernoulli distribution, and f(·, · ,·) is a scoring function defined
on triplets as introduced in Section 5.3.3. By minimizing the KL divergence between the
variational distribution qθ(vH) and the true posterior pw(vH |vO), the optimal qθ(vH) is given
by the fixed-point condition for all (h,r,t) ∈ H:

log qθ(v(h,r,t)) = Eqθ(vMB(h,r,t))[log pw(v(h,r,t)|vMB(h,r,t))] + const (5.4.4)

where MB(h,r,t) is the Markov blanket of (h,r,t), which contains the triplets that appear
together with (h,r,t) in any grounding of the logic rules. For example, from a grounding
v(Newton,Born in,UK) ⇒ v(Newton,Live in,UK), we can know both triplets are in the Markov blanket
of each other.

With Equation (5.4.4), our goal becomes finding a distribution qθ that satisfies the con-
dition. However, Equation (5.4.4) involves the expectation with respect to qθ(vMB(h,r,t)).
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To simplify the condition, we follow [50] and estimate the expectation with a sample
v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t). Specifically, for each (h′, r′, t′) ∈ MB(h,r,t), if it is
observed, we set v̂(h′,r′,t′) = 1, and otherwise v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)). In this way, the right
side of Equation (5.4.4) is approximated as log pw(v(h,r,t)|v̂MB(h,r,t)), and thus the optimality
condition can be further simplified as qθ(v(h,r,t)) ≈ pw(v(h,r,t)|v̂MB(h,r,t)).

Intuitively, for each hidden triplet (h, r, t), the knowledge graph embedding model
predicts v(h,r,t) through the entity and relation embeddings (i.e., qθ(v(h,r,t))), while the
logic rules make the prediction by utilizing the triplets connected with (h, r, t) (i.e.,
pw(v(h,r,t)|v̂MB(h,r,t))). If any triplet (h′, r′, t′) connected with (h, r, t) is unobserved, we
simply fill in v(h′,r′,t′) with a sample v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)). Then, the simplified optimality
condition tells us that for the optimal knowledge graph embedding model, it should
reach a consensus with the logic rules on the distribution of v(h,r,t) for every (h,r,t), i.e.,
qθ(v(h,r,t)) ≈ pw(v(h,r,t)|v̂MB(h,r,t)).

To learn the optimal qθ, we use a method similar to [109]. We start by computing
pw(v(h,r,t)|v̂MB(h,r,t)) with the current qθ. Then, we fix the value as target, and update qθ to
minimize the reverse KL divergence of qθ(v(h,r,t)) and the target pw(v(h,r,t)|v̂MB(h,r,t)), leading
to the following objective:

Oθ,U =
∑

(h,r,t)∈H

Epw(v(h,r,t)|v̂MB(h,r,t))[log qθ(v(h,r,t))]. (5.4.5)

To optimize this objective, we first compute pw(v(h,r,t)|v̂MB(h,r,t)) for each hidden triplet
(h,r,t). If pw(v(h,r,t) = 1|v̂MB(h,r,t)) ≥ τtriplet with τtriplet being a hyperparameter, then we
treat (h,r,t) as a positive example and train the knowledge graph embedding model to
maximize the log-likelihood log qθ(v(h,r,t) = 1). Otherwise the triplet is treated as a negative
example. In this way, the knowledge captured by logic rules can be effectively distilled into
the knowledge graph embedding model.

We can also use the observed triplets in O as positive examples to enhance the knowledge
graph embedding model. Therefore, we also optimize the following objective:

Oθ,L =
∑

(h,r,t)∈O

log qθ(v(h,r,t) = 1). (5.4.6)

By adding Equation (5.4.5) and Equation (5.4.6), we get the overall objective for qθ, i.e.,
Oθ = Oθ,U +Oθ,L.

5.4.3. M-step: Learning Procedure

In the learning procedure, we will fix qθ, and update the weights of logic rules w by maxi-
mizing the log-likelihood function, i.e., Eqθ(vH)[log pw(vO,vH)]. However, directly optimizing
the log-likelihood function can be difficult, as we need to deal with the partition function, i.e.,
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Z in Equation (5.4.1). Therefore, we follow existing studies [62, 106] and instead optimize
the pseudolikelihood function [6]:

ℓP L(w) ≜ Eqθ(vH)[
∑
h,r,t

log pw(v(h,r,t)|vO∪H\(h,r,t))] = Eqθ(vH)[
∑
h,r,t

log pw(v(h,r,t)|vMB(h,r,t))],

where the second equation is based on the independence property of the MLN in Equa-
tion (5.4.1).

We optimize w through the gradient descent algorithm. For each expected conditional
distribution Eqθ(vH)[log pw(v(h,r,t)|vMB(h,r,t))], suppose v(h,r,t) connects with vMB(h,r,t) through
a set of rules. For each of such rules l, the derivative with respect to wl is:

▽wl
Eqθ(vH)[log pw(v(h,r,t)|vMB(h,r,t))] ≃ y(h,r,t) − pw(v(h,r,t) = 1|v̂MB(h,r,t)) (5.4.7)

where y(h,r,t) = 1 if (h,r,t) is an observed triplet and y(h,r,t) = qθ(v(h,r,t) = 1) if (h,r,t) is hidden.
v̂MB(h,r,t) = {v̂(h′,r′,t′)}(h′,r′,t′)∈MB(h,r,t) is a sample from qθ. For each (h′,r′,t′) ∈ MB(h,r,t),
v̂(h′,r′,t′) = 1 if (h′,r′,t′) is observed, and otherwise v̂(h′,r′,t′) ∼ qθ(v(h′,r′,t′)).

Intuitively, for each observed (h, r, t) ∈ O, we maximize pw(v(h,r,t) = 1|v̂MB(h,r,t)). For
each hidden triplet (h, r, t) ∈ H, we treat qθ(v(h,r,t) = 1) as target for updating the probability
pw(v(h,r,t) = 1|v̂MB(h,r,t)). In this way, the knowledge graph embedding model qθ essentially
provides extra supervision to benefit learning the weights of logic rules.

5.4.4. Optimization and Prediction

During training, we iteratively perform the E-step and the M-step until convergence.
Note that there are a huge number of possible hidden triplets (i.e., |E| × |R| × |E| − |O|),
and handling all of them is impractical for optimization. Therefore, we only include a small
number of triplets in the hidden set H. Specifically, an unobserved triplet (h,r,t) is added
to H if we can find a grounding [premise] ⇒ [hypothesis], where the hypothesis is (h,r,t)
and the premise only contains triplets in the observed set O. In practice, we can construct
H with brute-force search as in [45].

After training, according to the fixed-point condition given in Equation (5.4.4), the pos-
terior distribution pw(v(h,r,t)|vO) for (h, r, t) ∈ H can be characterized by either qθ(v(h,r,t))
or pw(v(h,r,t)|v̂MB(h,r,t)) with v̂MB(h,r,t) ∼ qθ(vMB(h,r,t)). Although we try to encourage the
consensus of pw and qθ during training, they may still give different predictions as different
information is used. Therefore, we use both of them for prediction, and we approximate the
true posterior distribution pw(v(h,r,t)|vO) as:

pw(v(h,r,t)|vO) ∝
{
qθ(v(h,r,t)) + λpw(v(h,r,t)|v̂MB(h,r,t))

}
, (5.4.8)

where λ is a hyperparameter for combining qθ(v(h,r,t)) and pw(v(h,r,t)|v̂MB(h,r,t)). In practice,
we also expect to infer the plausibility of the triplets outside H. For each of such triplets
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(h,r,t), we can still compute qθ(v(h,r,t)) through the learned embeddings, but we cannot make
predictions with the logic rules, so we simply replace pw(v(h,r,t) = 1|v̂MB(h,r,t)) with 0.5 in
Equation (5.4.8).

5.5. Experiment
5.5.1. Settings

Datasets. In experiments, we evaluate the pLogicNet on four benchmark datasets. The
FB15k [8] and FB15k-237 [132] datasets are constructed from Freebase [7]. WN18 [8] and
WN18RR [26] are constructed from WordNet [83]. The detailed statistics of the datasets are
summarized in Section C.1.

Evaluation Metrics. We compare different methods on the task of knowledge graph rea-
soning. For each test triplet, we mask the head or the tail entity, and let each compared
method predict the masked entity. Following existing studies [8, 156], we use the filtered
setting during evaluation. The Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hit@K
(H@K) are treated as the evaluation metrics.

Compared Algorithms. We compare with both the knowledge graph embedding methods
and rule-based methods. For the knowledge graph embedding methods, we choose five
representative methods to compare with, including TransE [8], DistMult [156], HolE [92],
ComplEx [135] and ConvE [26]. For the rule-based methods, we compare with the Markov
logic network (MLN) [106] and the Bayesian logic programming (BLP) method [24], which
model logic rules with Markov networks and Bayesian networks respectively. Besides, we
also compare with RUGE [45] and NNE-AER [27], which are hybrid methods that combine
knowledge graph embedding and logic rules. As only the results on the FB15k dataset
are reported in the RUGE paper, we only compare with RUGE on that dataset. For our
approach, we consider two variants, where pLogicNet uses only qθ to infer the plausibility
of unobserved triplets during evaluation, while pLogicNet∗ uses both qθ and pw through
Equation (5.4.8).

Experimental Setup of pLogicNet. To generate the candidate rules in the pLogicNet, we
search for all the possible composition rules, inverse rules, symmetric rules and subrelations
rules from the observed triplets, which is similar to [32, 45]. Then, we compute the empirical
precision of each rule, i.e. pl = |Sl∩O|

|Sl|
, where Sl is the set of triplets extracted by the rule

l and O is the set of the observed triplets. We only keep rules whose empirical precision is
larger than a threshold τrule. TransE [8] is used as the default knowledge graph embedding
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model to parameterize qθ. We update the weights of logic rules with gradient descent. The
detailed hyperparameters settings are available in Table 19.

Dataset # Entities # Relations # Training # Validation # Test
FB15k 14,951 1,345 483,142 50,000 59,071
WN18 40,943 18 141,442 5,000 5,000

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134

Table 19. Statistics of datasets used in pLogicNet.

5.5.2. Results

Category Algorithm
FB15k WN18

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [8] 40 0.730 64.5 79.3 86.4 272 0.772 70.1 80.8 92.0
DistMult [53] 42 0.798 - - 89.3 655 0.797 - - 94.6

HolE [92] - 0.524 40.2 61.3 73.9 - 0.938 93.0 94.5 94.9
ComplEx [135] - 0.692 59.9 75.9 84.0 - 0.941 93.6 94.5 94.7

ConvE [26] 51 0.657 55.8 72.3 83.1 374 0.943 93.5 94.6 95.6

Rule-based
BLP [24] 415 0.242 15.1 26.9 42.4 736 0.643 53.7 71.7 83.0

MLN [106] 352 0.321 21.0 37.0 55.0 717 0.657 55.4 73.1 83.9

Hybrid
RUGE [45] - 0.768 70.3 81.5 86.5 - - - - -

NNE-AER [27] - 0.803 76.1 83.1 87.4 - 0.943 94.0 94.5 94.8

Ours
pLogicNet 33 0.792 71.4 85.7 90.1 255 0.832 71.6 94.4 95.7
pLogicNet∗ 33 0.844 81.2 86.2 90.2 254 0.945 93.9 94.7 95.8

Table 20. Results of pLogicNet on the FB15k and WN18 datasets.

Category Algorithm
FB15k-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

KGE

TransE [8] 181 0.326 22.9 36.3 52.1 3410 0.223 1.3 40.1 53.1
DistMult [53] 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49

ComplEx [135] 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51
ConvE [26] 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

Rule-based
BLP [24] 1985 0.092 6.2 9.8 15.0 12051 0.254 18.7 31.3 35.8

MLN [106] 1980 0.098 6.7 10.3 16.0 11549 0.259 19.1 32.2 36.1

Ours
pLogicNet 173 0.330 23.1 36.9 52.8 3436 0.230 1.5 41.1 53.1
pLogicNet∗ 173 0.332 23.7 36.7 52.4 3408 0.441 39.8 44.6 53.7

Table 21. Results of pLogicNet on the FB15k-237 and WN18RR datasets.

1. Comparing pLogicNet with Other Methods. The main results on the four datasets
are presented in Table 20 and Table 21, where H@K is in %. We can see that the pLogicNet
significantly outperforms the rule-based methods, as pLogicNet uses a knowledge graph
embedding model to improve inference. pLogicNet also outperforms all the knowledge graph
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embedding methods in most cases, where the improvement comes from the capability of
exploring the knowledge captured by the logic rules. Moreover, our approach is superior
to both hybrid methods (RUGE and NNE-AER) under most metrics, as it handles the
uncertainty of logic rules in a more principled way.

Comparing pLogicNet and pLogicNet∗, pLogicNet∗ uses both qθ and pw to predict the
plausibility of hidden triplets, which outperforms pLogicNet in most cases. The reason is
that the information captured by qθ and pw is different and complementary, so combining
them yields better performance.

2. Analysis of Different Rule Patterns. In pLogicNet, four types of rule patterns are
used. Next, we systematically study the effect of each rule pattern. We take the FB15k
and FB15k-237 datasets as examples, and report the results obtained with each single rule
pattern in Table 22. On both datasets, most rule patterns can lead to significant improvement
compared to the model without logic rules. Moreover, the effects of different rule patterns
are quite different across datasets. On FB15k, the inverse and symmetric rules are more
important, whereas on FB15k-237, the composition and subrelation rules are more effective.

Rule Pattern
FB15k FB15k-237

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
Without 40 0.730 64.7 79.4 86.4 181 0.326 22.9 36.3 52.1

Composition 40 0.752 69.3 78.7 86.0 173 0.335 24.1 37.1 52.5
Inverse 39 0.813 77.7 83.1 88.1 175 0.332 23.8 36.7 52.4

Symmetric 40 0.793 75.0 81.7 87.1 175 0.333 23.8 36.8 52.4
Subrelation 40 0.761 70.2 79.8 86.6 172 0.334 23.9 36.8 52.5

Table 22. Analysis of different rule patterns in pLogicNet.

3. Inference with Different Knowledge Graph Embedding Methods. In this part,
we compare the performance of pLogicNet with different knowledge graph embedding meth-
ods for inference. We use TransE as the default model and compare with two other widely-
used knowledge graph embedding methods, DistMult [156] and ComplEx [135]. The results
on the FB15k and WN18RR datasets are presented in Table 23. Comparing with the results
in Table 20 and Table 21, we see that pLogicNet improves the performance of all the three
methods by using logic rules. Moreover, the pLogicNet achieves very robust performance
with any of the three methods for inference.

4. Effect of Knowledge Graph Embedding on Logic Rules. In the M-step of pLog-
icNet, we use the learned embeddings to annotate the hidden triplets, and further update
the weights of logic rules. Next, we analyze the effect of knowledge graph embeddings on
logic rules. Recall that in the E-step, the logic rules are used to annotate the hidden triplets
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KGE Method Algorithm
FB15k WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

TransE
pLogicNet 33 0.792 71.4 85.7 90.1 3436 0.230 1.5 41.1 53.1
pLogicNet∗ 33 0.844 81.2 86.2 90.2 3408 0.441 39.8 44.6 53.7

DistMult
pLogicNet 40 0.791 73.1 83.2 89.5 4902 0.442 39.8 45.5 53.5
pLogicNet∗ 39 0.815 76.8 84.6 89.8 4894 0.443 39.9 45.5 53.6

ComplEx
pLogicNet 39 0.776 70.6 81.7 88.5 5266 0.471 43.0 49.2 55.7
pLogicNet∗ 45 0.788 73.5 82.1 88.5 5233 0.475 43.5 49.2 55.7

Table 23. Comparison of using different knowledge graph embedding methods in pLogicNet.

Iteration
FB15k WN18

# Triplets Precision # Triplets Precision
1 64,929 79.21% 11,146 80.99%
2 74,717 79.31% 11,430 82.06%
3 76,268 79.10% 11,432 82.09%

Table 24. Effect of KGE on logic rules in pLogicNet.

(a) Cora (b) Citeseer

Figure 9. Convergence analysis of pLogicNet.

through Equation (5.4.5), and thus collect extra positive training data for embedding learn-
ing. To evaluate the performance of logic rules, in each iteration we report the number of
positive triplets discovered by logic rules, as well as the precision of the triplets in Table 24.
We see that as training proceeds, the logic rules can find more triplets with stable precision.
This observation proves that the knowledge graph embedding model can indeed provide
effective supervision for learning the weights of logic rules.

5. Convergence Analysis. Finally, we present the convergence curves of pLogicNet∗ on
the FB15k and WN18 datasets in Figure 9. The horizontal axis represents the iteration,
and the vertical axis shows the value of Hit@1 (in %). We see that on both datasets, our
approach takes only 2-3 iterations to converge, which is very efficient.

5.6. Conclusion
This paper studies knowledge graph reasoning, and an approach called the pLogicNet is

proposed to integrate existing rule-based methods and knowledge graph embedding methods.
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pLogicNet models the distribution of all the possible triplets with a Markov logic network,
which is efficiently optimized with the variational EM algorithm. In the E-step, a knowledge
graph embedding model is used to infer the hidden triplets, whereas in the M-step, the
weights of rules are updated based on the observed and inferred triplets. Experimental
results prove the effectiveness of pLogicNet. In the future, we plan to explore more advanced
models for inference, such as relational GCN [114] and RotatE [121].
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Chapter 6

RNNLogic: Learning Logic Rules

This paper studies learning logic rules for reasoning on knowledge graphs. Logic rules provide
interpretable explanations when used for prediction as well as being able to generalize to other
tasks, and hence are critical to learn. Existing methods either suffer from the problem of
searching in a large search space (e.g., neural logic programming) or ineffective optimization
due to sparse rewards (e.g., techniques based on reinforcement learning). To address these
limitations, this paper proposes a probabilistic model called RNNLogic. RNNLogic treats
logic rules as a latent variable, and simultaneously trains a rule generator as well as a
reasoning predictor with logic rules. We develop an EM-based algorithm for optimization.
In each iteration, the reasoning predictor is first updated to explore some generated logic
rules for reasoning. Then in the E-step, we select a set of high-quality rules from all generated
rules with both the rule generator and reasoning predictor via posterior inference; and in the
M-step, the rule generator is updated with the rules selected in the E-step. Experiments on
four datasets prove the effectiveness of RNNLogic.

6.1. Introduction
Knowledge graphs are collections of real-world facts, which are useful in various appli-

cations. Each fact is typically specified as a triplet (h, r, t) or equivalently r(h,t), meaning
entity h has relation r with entity t. For example, Bill Gates is the Co-founder of Microsoft.
As it is impossible to collect all facts, knowledge graphs are incomplete. Therefore, a funda-
mental problem on knowledge graphs is to predict missing facts by reasoning with existing
ones, a.k.a. knowledge graph reasoning.

This paper studies learning logic rules for reasoning on knowledge graphs. For example,
one may extract a rule ∀X,Y,Z hobby(X,Y ) ← friend(X,Z) ∧ hobby(Z,Y ), meaning that
if Z is a friend of X and Z has hobby Y , then Y is also likely the hobby of X. Then
the rule can be applied to infer new hobbies of people. Such logic rules are able to improve



interpretability and precision of reasoning [101, 166]. Moreover, logic rules can also be reused
and generalized to other domains and data [130]. However, due to the large search space,
inferring high-quality logic rules for reasoning on knowledge graphs is a challenging task.

Indeed, a variety of methods have been proposed for learning logic rules from knowledge
graphs. Most traditional methods such as path ranking [71] and Markov logic networks [106]
enumerate relational paths on graphs as candidate logic rules, and then learn a weight for
each rule as an assessment of rule qualities. There are also some recent methods based on
neural logic programming [157] and neural theorem provers [107], which are able to learn logic
rules and their weights simultaneously in a differentiable way. Though empirically effective
for prediction, the search space of these methods is exponentially large, making it hard to
identify high-quality logic rules. Besides, some recent efforts [153] formulate the problem
as a sequential decision making process, and use reinforcement learning to search for logic
rules, which significantly reduces search complexity. However, due to the large action space
and sparse reward in training, the performance of these methods is not yet satisfying.

In this paper, we propose a principled probabilistic approach called RNNLogic which
overcomes the above limitations. Our approach consists of a rule generator as well as a
reasoning predictor with logic rules, which are simultaneously trained to enhance each other.
The rule generator provides logic rules which are used by the reasoning predictor for rea-
soning, while the reasoning predictor provides effective reward to train the rule generator,
which helps significantly reduce the search space. Specifically, for each query-answer pair,
e.g., q = (h,r,?) and a = t, we model the probability of the answer conditioned on query
and existing knowledge graph G, i.e., p(a|G, q), where a set of logic rules z 1 is treated as a
latent variable. The rule generator defines a prior distribution over logic rules for each query,
i.e., p(z|q), which is parameterized by a recurrent neural network. The reasoning predictor
computes the likelihood of the answer conditioned on the logic rules and the existing knowl-
edge graph G, i.e., p(a|G,q,z). At each training iteration, we first sample a few logic rules
from the rule generator, and further update the reasoning predictor to try out these rules for
prediction. Then an EM algorithm [89] is used to optimize the rule generator. In the E-step,
a set of high-quality logic rules are selected from all the generated rules according to their
posterior probabilities. In the M-step, the rule generator is updated to imitate the high-
quality rules selected in the E-step. Extensive experimental results show that RNNLogic
outperforms state-of-the-art methods for knowledge graph reasoning 2. Besides, RNNLogic
is able to generate high-quality logic rules.

1More precisely, z is a multiset. In this paper, we use “set” to refer to “multiset” for conciseness.
2The codes of RNNLogic are available: https://github.com/DeepGraphLearning/RNNLogic
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6.2. Related Work
Our work is related to existing efforts on learning logic rules for knowledge graph rea-

soning. Most traditional methods enumerate relational paths between query entities and
answer entities as candidate logic rules, and further learn a scalar weight for each rule to
assess the quality. Representative methods include Markov logic networks [57, 62, 106], re-
lational dependency networks [88, 90], rule mining algorithms [32, 82], path ranking [71, 72]
and probabilistic personalized page rank (ProPPR) algorithms [143–145]. Some recent meth-
ods extend the idea by simultaneously learning logic rules and the weights in a differentiable
way, and most of them are based on neural logic programming [18, 107, 108, 157, 158] or
neural theorem provers [84, 107]. These methods and our approach are similar in spirit, as
they are all able to learn the weights of logic rules efficiently. However, these existing meth-
ods try to simultaneously learn logic rules and their weights, which is nontrivial in terms of
optimization. The main innovation of our approach is to separate rule generation and rule
weight learning by introducing a rule generator and a reasoning predictor respectively, which
can mutually enhance each other. The rule generator generates a few high-quality logic rules,
and the reasoning predictor only focuses on learning the weights of such high-quality rules,
which significantly reduces the search space and leads to better reasoning results. Mean-
while, the reasoning predictor can in turn help identify some useful logic rules to improve
the rule generator.

The other kind of rule learning method is based on reinforcement learning. The general
idea is to train pathfinding agents, which search for reasoning paths in knowledge graphs to
answer questions, and then extract logic rules from reasoning paths [13, 23, 76, 117, 153].
However, training effective pathfinding agents is highly challenging, as the reward signal
(i.e., whether a path ends at the correct answer) can be extremely sparse. Although some
studies [76] try to get better reward by using embedding-based methods for reward shaping,
the performance is still worse than most embedding-based methods. In our approach, the
rule generator has a similar role to those pathfinding agents. The major difference is that
we simultaneously train the rule generator and a reasoning predictor with logic rules, which
mutually enhance each other. The reasoning predictor provides effective reward for training
the rule generator, and the rule generator offers high-quality rules to improve the reasoning
predictor.

Our work is also related to knowledge graph embedding, which solves knowledge graph
reasoning by learning entity and relation embeddings in latent spaces [4, 8, 11, 26, 92, 121,
135, 146, 156]. With proper architectures, these methods are able to learn some simple logic
rules. For example, TransE [8] can learn some composition rules. RotatE [121] can mine
some composition rules, symmetric rules and inverse rules. However, these methods can only
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Figure 10. Overview of RNNLogic.

find some simple rules in an implicit way. In contrast, our approach explicitly trains a rule
generator, which is able to generate more complicated logic rules.

There are some works studying boosting rule-based models [28, 43], where they dynam-
ically add new rules according to the rule weights learned so far. These methods have been
proven effective in binary classification and regression. Compared with them, our approach
shares similar ideas, as we dynamically update the rule generator with the feedback from the
reasoning predictor, but we focus on a different task, i.e., reasoning on knowledge graphs.

6.3. Preliminary
6.3.1. Problem Definition

Let pdata(G, q,a) be a training data distribution, where G is a background knowledge
graph characterized by a set of (h, r, t)-triplets which we may also write as r(h,t), q = (h, r, ?)
is a query, and a = t is the answer. Given G and the query q, the goal is to predict the
correct answer a. More formally, we aim to model the probabilistic distribution p(a|G, q).

6.3.2. Logic Rules

We perform knowledge graph reasoning by learning logic rules, where logic rules in this
paper have the conjunctive form ∀{Xi}l

i=0 r(X0,Xl) ← r1(X0,X1) ∧ · · · ∧ rl(Xl−1,Xl) with
l being the rule length. This syntactic structure naturally captures composition, and can
easily express other common logic rules such as symmetric or inverse rules. For example, let
r−1 denote the inverse relation of relation r, then each symmetric rule can be expressed as
∀{X, Y } r(X,Y )← r−1(X,Y ).

6.4. Model
In RNNLogic, we treat a set of logic rules which could explain a query as a latent variable

we have to infer. To do this, we introduce a rule generator and a reasoning predictor using
logic rules. Given a query, the rule generator employs a recurrent neural network to generate
a set of logic rules, which are given to the reasoning predictor for prediction. We optimize
RNNLogic with an EM-based algorithm. In each iteration, we start with updating the
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reasoning predictor to try out some logic rules generated by the rule generator. Then in the
E-step, we identify a set of high-quality rules from all generated rules via posterior inference,
with the prior from the rule generator and likelihood from the reasoning predictor. Finally
in the M-step, the rule generator is updated with the identified high-quality rules.

RNNLogic has a rule generator pθ and a reasoning predictor pw. Given a query, the
rule generator generates logic rules for the reasoning predictor. The reasoning predictor
takes the generated rules as input, and reasons on a knowledge graph to predict the answer.
RNNLogic is optimized with an EM-based algorithm. In each iteration, the rule generator
produces some logic rules, and we update the reasoning predictor to explore these rules for
reasoning. Then in the E-step, a set of high-quality rules are identified from all generated
rules via posterior inference. Finally in the M-step, the rule generator is updated to be
consistent with the high-quality rules identified in E-step.

6.4.1. Probabilistic Formalization

We start by formalizing knowledge graph reasoning in a probabilistic way, where a set
of logic rules z is treated as a latent variable. The target distribution p(a|G, q) is jointly
modeled by a rule generator and a reasoning predictor. The rule generator pθ defines a prior
over a set of latent rules z conditioned on a query q, while the reasoning predictor pw gives
the likelihood of the answer a conditioned on latent rules z, the query q, and the knowledge
graph G. Thus p(a|G, q) can be computed as below:

pw,θ(a|G, q) =
∑

z

pw(a|G, q, z)pθ(z|q) = Epθ(z|q)[pw(a|G, q, z)]. (6.4.1)

The goal is to jointly train the rule generator and reasoning predictor to maximize the
likelihood of training data. Formally, the objective function is presented as below:

max
θ,w

O(θ, w) = E(G,q,a)∼pdata [log pw,θ(a|G, q)]. (6.4.2)

6.4.2. Parameterization

Rule Generator. The rule generator defines the distribution pθ(z|q). For a query q, the
rule generator aims at generating a set of latent logic rules z for answering the query.

Formally, given a query q = (h,r,?), we generate compositional logic rules by only consid-
ering the query relation r without the query entity h, which allows the generated rules to gen-
eralize across entities. For each compositional rule in the abbreviation form r← r1∧· · ·∧rl,
it can be viewed as a sequence of relations [r, r1, r2 · · · rl, rEND], where r is the query relation
or the rule head, {ri}l

i=1 are the body of the rule, and rEND is a special relation indicating
the end of the relation sequence.
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Such relation sequences can be effectively modeled by recurrent neural networks [49], and
thus we introduce RNNθ to parameterize the rule generator. Given a query relation r, RNNθ

sequentially generates each relation in the body of a rule, until it reaches the ending relation
rEND. In this process, the probabilities of generated rules are simultaneously computed.
With such rule probabilities, we define the distribution over a set of rules z as a multinomial
distribution:

pθ(z|q) = Mu(z|N,RNNθ(·|r)), (6.4.3)

where Mu stands for multinomial distributions, N is a hyperparameter for the size of the
set z, and RNNθ(·|r) defines a distribution over compositional rules with rule head being r.
The generative process of a rule set z is quite intuitive, where we simply generate N rules
with RNNθ to form z.
Reasoning Predictor with Logic Rules. The reasoning predictor defines pw(a|G, q, z).
For a query q, the predictor uses a set of rules z to reason on a knowledge graph G and
predict the answer a.

Following stochastic logic programming [21], a principled reasoning framework, we use
a log-linear model for reasoning. For each query q = (h,r,?), a compositional rule is
able to find different grounding paths on graph G, leading to different candidate an-
swers. For example, given query (Alice, hobby, ?), a rule hobby ← friend ∧ hobby
can have two groundings, hobby(Alice,Sing) ← friend(Alice,Bob) ∧ hobby(Bob, Sing) and
hobby(Alice,Ski)← friend(Alice,Charlie)∧ hobby(Charlie, Ski), yielding two candidate an-
swers Sing and Ski.

Let A be the set of candidate answers which can be discovered by any logic rule in the
set z. For each candidate answer e ∈ A, we compute the following scalar scorew(e) for that
candidate:

scorew(e) =
∑

rule∈z

scorew(e|rule) =
∑

rule∈z

∑
path∈P (h,rule,e)

ψw(rule) · ϕw(path), (6.4.4)

where P (h,rule,e) is the set of grounding paths which start at h and end at e following a rule
(e.g., Alice friend−−−−→ Bob hobby−−−→ Sing). ψw(rule) and ϕw(path) are scalar weights of each rule
and path. Intuitively, the score of each candidate answer e is the sum of scores contributed
by each rule, i.e., scorew(e|rule). To get scorew(e|rule), we sum over every grounding path
found in the graph G.

For the scalar weight ψw(rule) of each rule, it is a learnable parameter to optimize. For
the score ϕw(path) of each specific path, we explore two methods for parameterization. One
method always sets ϕw(path) = 1. However, this method cannot distinguish between different
relational paths. To address the problem, for the other method, we follow an embedding
algorithm RotatE [121] to introduce an embedding for each entity and model each relation
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as a rotation operator on entity embeddings. Then for each grounding path of rule starting
from h to e, if we rotate the embedding of h according to the rotation operators defined by
the body relations of rule, we should expect to obtain an embedding close to the embedding
of e. Thus we compute the similarity between the derived embedding and the embedding of
e as ϕw(path), which can be viewed as a measure of the soundness and consistency of each
path. For example, given a path Alice friend−−−−→ Bob hobby−−−→ Sing, we rotate Alice’s embedding
with the operators defined by friend and hobby. Afterwards we compute the similarity of
the derived embedding and embedding of Sing as ϕw(path). Such a method allows us to
compute a specific ϕw(path) for each path, which further leads to more precise scores for
candidate answers.

Once we have the score for every candidate answer, we can further define the probability
that the answer a of the query q is entity e by using a softmax function as follows:

pw(a = e|G,q, z) = exp(scorew(e))∑
e′∈A exp(scorew(e′)) . (6.4.5)

6.4.3. Optimization

Next, we introduce how we optimize the reasoning predictor and rule generator to max-
imize the objective in Equation (6.4.2). At each training iteration, we first update the
reasoning predictor pw according to some rules generated by the generator, and then update
the rule generator pθ with an EM algorithm. In the E-step, a set of high-quality rules are
identified from all generated rules via posterior inference, with the rule generator as the
prior and the reasoning predictor as the likelihood. In the M-step, the rule generator is then
updated to be consistent with the high-quality rules selected in the E-step.

Formally, at each training iteration, we start with maximizing the objective O(θ, w) in
Equation (6.4.2) with respect to the reasoning predictor pw. To do that, we notice that there
is an expectation operation with respect to pθ(z|q) for each training instance (G, q,a). By
drawing a sample ẑ ∼ pθ(z|q) for query q, we can approximate the objective function of w
at each training instance (G, q,a) as below:

O(G,q,a)(w) = logEpθ(z|q)[pw(a|G,q, z)] ≈ log pw(a|G,q, ẑ) (6.4.6)

Basically, we sample a set of rules ẑ from the generator and feed ẑ into the reasoning
predictor. Then the parameter w of the reasoning predictor is updated to maximize the
log-likelihood of the answer a.

With the updated reasoning predictor, we then update the rule generator pθ to maximize
the objective O(θ, w) by using an EM framework.
E-step. Recall that when optimizing the reasoning predictor, we draw a set of rules ẑ for
each data instance (G, q,a), and let the reasoning predictor use ẑ to predict a. For each
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data instance, the E-step aims to identify a set of K high-quality rules zI from all generated
rules ẑ, i.e., zI ⊂ ẑ, |zI | = K.

Formally, this is achieved by considering the posterior probability of each subset of logic
rules zI , i.e., pθ,w(zI |G, q,a) ∝ pw(a|G, q, zI)pθ(zI |q), with prior of zI from the rule gener-
ator pθ and likelihood from the reasoning predictor pw. The posterior combines knowledge
from both the rule generator and reasoning predictor, so the likely set of high-quality rules
can be obtained by sampling from the posterior. However, sampling from the posterior is
nontrivial due to its intractable partition function, so we approximate the posterior using a
more tractable form with the proposition below:
Proposition 2. For an instance (G, q,a) with q = (h,r,?) and a = t, and a set of rules ẑ

generated by the rule generator pθ, we compute the following score H for each rule ∈ ẑ:

H(rule) =
{

scorew(t|rule)− 1
|A|

∑
e∈A

scorew(e|rule)
}

+ log RNNθ(rule|r), (6.4.7)

where A is the set of all candidate answers discovered by rules in ẑ, scorew(e|rule) is the
score that each rule contributes to entity e as defined by Equation (6.4.4), RNNθ(rule|r) is
the prior probability of rule computed by the generator. If s = maxe∈A |scorew(e)| < 1, then
for a subset zI ⊂ ẑ with |zI | = K, log pθ,w(zI |G, q,a) can be approximated as:∣∣∣∣∣∣log pθ,w(zI |G, q,a)−

 ∑
rule∈zI

H(rule) + γ(zI) + const
∣∣∣∣∣∣ ≤ s2 +O(s4) (6.4.8)

where const is a constant term independent from zI , γ(zI) = log(K!/∏rule∈ẑ nrule!), with K
the given size of set zI and nrule the number of times each rule appears in zI .

We prove the proposition in Section D.1. In practice, we can apply weight decay to the
weight of logic rules in Equation (6.4.4), and thereby reduce s = maxe∈A |scorew(e)| to get
a more precise approximation. The above proposition allows us to use (∑rule∈zI

H(rule) +
γ(zI) + const) to approximate the log-posterior log pθ,w(zI |G, q,a), yielding a distribution
q(zI) ∝ exp(∑rule∈zI

H(rule) + γ(zI)) as a good approximation of the posterior. It turns
out that the derived q(zI) is a multinomial distribution, and thus sampling from q(zI) is
more tractable. Specifically, a sample ẑI from q(zI) can be formed with K logic rules
which are independently sampled from ẑ, where the probability of each rule is computed as
exp(H(rule))/(∑rule′∈ẑ exp(H(rule′))). We provide the proof in Section D.2.

Intuitively, we could view H(rule) of each rule as an assessment of the rule quality, which
considers two factors. The first factor is based on the reasoning predictor pw, and it is
computed as the score that a rule contributes to the correct answer t minus the mean score
that this rule contributes to other candidate answers. If a rule gives higher score to the
true answer and lower score to other candidate answers, then the rule is more likely to be
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important. The second factor is based on the rule generator pθ, where we compute the prior
probability for each rule and use the probability for regularization.

Empirically, we find that picking K rules with highest H(rule) to form ẑI works better
than sampling from the posterior. In fact, ẑI formed by top-K rules is an MAP estimation
of the posterior, and thus the variant of picking top-K rules yields a hard-assignment EM
algorithm [64]. Despite the reduced theoretical guarantees, we use this variant in practice
for its good performance.
M-step. Once we obtain a set of high-quality logic rules ẑI for each data instance (G, q,a)
in the E-step, we further leverage those rules to update the parameters θ of the rule generator
in the M-step.

Specifically, for each data instance (G, q,a), we treat the corresponding rule set ẑI as
part of the (now complete) training data, and update the rule generator by maximizing the
log-likelihood of ẑI :

O(G,q,a)(θ) = log pθ(ẑI |q) =
∑

rule∈ẑI

log RNNθ(rule|r) + const. (6.4.9)

With the above objective, the feedback from the reasoning predictor can be effectively dis-
tilled into the rule generator. In this way, the rule generator will learn to only generate
high-quality rules for the reasoning predictor to explore, which reduces the search space and
yields better empirical results.

Algorithm 2 Workflow of RNNLogic
while not converge do

For each instance, use rule generator pθ to generate a set of rules ẑ (|ẑ| = N).
For each instance, update the predictor pw with generated rules ẑ and Equa-

tion (6.4.6).
⊡ E-step:
For each instance, identify top-K rules ẑI from ẑ based on H(rule) in Equation (6.4.7).

⊡ M-step:
For each instance, update rule generator pθ with the identified rules and Equa-

tion (6.4.9).
end while
During testing, use pθ to generate rules and feed them into pw for prediction.

Connection with REINFORCE. In terms of optimizing the rule generator, our EM algo-
rithm has some connections with the REINFORCE algorithm [150]. Formally, for a training
instance (G, q,a), REINFORCE computes the derivative with respect to the parameters θ
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of the rule generator as follows:

Epθ(z|q)[R · ∇θ log pθ(z|q)] ≃ R · ∇θ log pθ(ẑ|q), (6.4.10)

where ẑ is a sample from the rule generator, i.e., ẑ ∼ pθ(z|q). R is a reward from the
reasoning predictor based on the prediction result on the instance. For example, we could
treat the probability of the correct answer computed by the reasoning predictor as reward,
i.e., R = pw(a|G, q, ẑ).

In contrast, our EM optimization algorithm optimizes the rule generator with the objec-
tive function defined in Equation (6.4.2), yielding the derivative ∇θ log pθ(ẑI |q). Comparing
the derivative to that in REINFORCE (Equation (6.4.10)), we see that EM only maxi-
mizes the log-probability for rules selected in the E-step, while REINFORCE maximizes the
log-probability for all generated rules weighted by the scalar reward R. Hence the two ap-
proaches coincide if R is set to 1 for the selected rules from the approximate posterior and 0
otherwise. In general, finding an effective reward function to provide feedback is nontrivial,
and we empirically compare these two optimization algorithms in experiments.

6.4.4. RNNLogic+

In RNNLogic, we aim at jointly training a rule generator and a simple reasoning predictor.
Although this framework allows us to generate high-quality logic rules, the performance of
knowledge graph reasoning is limited by the low capacity of the reasoning predictor. To
further improve the results, a natural idea is to only focus on the reasoning predictor and
develop a more powerful predictor by using the high-quality rules generated by RNNLogic
as input. Next, we propose one such predictor.

Formally, let ẑI be the set of generated high-quality logic rules. Given a query q = (h,r,?),
let A be the collection of candidate answers that can be discovered by any rule in ẑI . For
each candidate answer e ∈ A, we again compute a scalar score scorew(e) for that candidate
answer as below:

scorew(e) = MLP(AGG({vrule, |P(h,rule,e)|}rule∈ẑI
). (6.4.11)

Here, vrule is an embedding vector for each rule, and |P(h,rule,e)| is the number of grounding
paths from h to e discovered by rule. AGG is an aggregator, which aims at aggregating all
the rule embeddings vrule by treating |P(h,rule,e)| as aggregation weights. We follow Zhu
et al. [171] to use the PNA aggregator [19] for its good performance. Once we get the
aggregated embedding, an MLP is further used to project the embedding to the scalar score
for candidate e.

In practice, we can further enhance the above score with knowledge graph embedding.
For each query q = (h,r,?) and candidate answer e, knowledge graph embedding methods
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are able to infer a plausibility score KGE(h, r, e), measuring how likely (h, r, e) is a valid
triplet. Based on that, we can naturally obtain a more powerful score function by combining
the score from logic rules and the score from knowledge graph embedding. For example, we
can linearly combine them as follows:

scorew(e) = MLP(AGG({vrule, |P(h,rule,e)|}rule∈ẑI
) + η KGE(h, r, e), (6.4.12)

where η controls the weight of the knowledge graph embedding score.
Once we have the score scorew(e) for each candidate e, we can again apply a softmax

function to the score as in Equation (6.4.5) to compute the probability that e is the answer,
i.e., pw(a = e|G,q, z). This predictor can then be easily optimized through maximizing
likelihood on each instance (G, q,a).

6.5. Experiment
6.5.1. Settings

Datasets. We choose four datasets for evaluation, including FB15k-237 [132], WN18RR [26],
Kinship and UMLS [63]. For Kinship and UMLS, there are no standard data splits, so we
randomly sample 30% of all the triplets for training, 20% for validation, and the rest 50%
for testing. The detailed statistics are summarized in Section D.5.
Compared Algorithms. We compare the following algorithms in experiment:
⊡ Rule learning methods. For traditional methods in statistical relational learning, we choose
Markov logic networks [106], boosted relational dependency networks [88] and path rank-
ing [71]. We also consider some methods based on neural logic programming, including
NeuralLP [157], DRUM [108] and NLIL [158]. In addition, we compare against CTP [84], a
differentiable method based on neural theorem provers. Besides, two reinforcement learning
methods are compared, which are MINERVA [23] and M-Walk [117].
⊡ Other methods. We also consider some embedding methods, including TransE [8], Dist-
Mult [156], ComplEx [135], ComplEx-N3 [68], ConvE [26], TuckER [4], RotatE [121].
⊡ RNNLogic. For RNNLogic, we consider two model variants. The first variant assigns a
constant score to different grounding paths in the reasoning predictor, i.e., ϕw(path) = 1
in Equation (6.4.4), and we denote this variant as w/o emb.. The second variant leverages
entity embeddings and relation embeddings to compute the path score ϕw(path), and we
denote the variant as with emb..
⊡ RNNLogic+. For RNNLogic+, we also consider two model variants. The first variant
only uses the logic rules learned by RNNLogic to train the reasoning predictor as in Equa-
tion (6.4.11), and we denote the variant as w/o emb.. The second variant uses both of the
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learned logic rules and knowledge graph embeddings to train a reasoning predictor as in
Equation (6.4.12), and we denote the variant as with emb..
Evaluation Metrics. During evaluation, for each test triplet (h, r, t), we build two queries
(h, r, ?) and (t, r−1, ?) with answers t and h. For each query, we compute a probability for
each entity, and compute the rank of the correct answer. Given the ranks from all queries,
we report the Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hit@k (H@k) under
the filtered setting [8], which is used by most existing studies. Note that there can be a
case where an algorithm assigns the same probability to the correct answer and a few other
entities. For such a case, many methods compute the rank of the correct answer as (m+ 1)
where m is the number of entities receiving higher probabilities than the correct answer.
This setup can be problematic according to Sun et al. [122]. For fair comparison, in that
case we compute the expectation of each evaluation metric over all the random shuffles of
entities which receive the same probability as the correct answer. For example, if there are
n entities which have the same probability as the correct answer in the above case, then we
treat the rank of the correct answer as (m+ (n+ 1)/2) when computing Mean Rank.

Besides, we notice that in MINERVA [23] and MultiHopKG [76], they only consider
queries in the form of (h, r, ?), which is different from our default setting. To make fair
comparison with these methods, we also apply RNNLogic to this setting and report the
performance.
Experimental Setup of RNNLogic. For each training triplet (h, r, t), we add an inverse
triplet (t, r−1, h) into the training set, yielding an augmented set of training triplets T . We
use a closed-world assumption for model training, which assumes that any triplet outside
T is incorrect. To build a training instance from pdata, we first randomly sample a triplet
(h, r, t) from T , and then form an instance as (G = T \ {(h, r, t)}, q = (h, r, ?),a = t).
Basically, we use the sampled triplet (h, r, t) to construct the query and answer, and use
the rest of triplets in T to form the background knowledge graph G. During testing, the
background knowledge graph G is formed with all the triplets in T .

For the rule generator of RNNLogic, the maximum length of generated rules is set to 4
for FB15k-237, 5 for WN18RR, and 3 for the rest, which are selected on validation data. See
Section D.5 for the details.

Once RNNLogic is trained, we leverage the rule generator to generate a few high-quality
logic rules, which are further utilized to train RNNLogic+. Specifically, the maximum length
of generated rules is set to 3. We generate 100 rules for each relation in FB15k-237 and 200
rules for each relation in WN18RR. The dimension of logic rule embedding in RNNLogic+
is set to 32 on all datasets. The hyperparameter η in Equation (6.4.12) is set to 2 on the
FB15k-237 dataset and 0.5 on the WN18RR dataset.
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Category Algorithm
FB15k-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

No Rule
Learning

TransE∗ 357 0.294 - - 46.5 3384 0.226 - - 50.1
DistMult∗ 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx∗ 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ComplEx-N3∗ - 0.37 - - 56 - 0.48 - - 57
ConvE∗ 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

TuckER∗ - 0.358 26.6 39.4 54.4 - 0.470 44.3 48.2 52.6
RotatE∗ 177 0.338 24.1 37.5 53.3 3340 0.476 42.8 49.2 57.1

Rule
Learning

PathRank - 0.087 7.4 9.2 11.2 - 0.189 17.1 20.0 22.5
NeuralLP† - 0.237 17.3 25.9 36.1 - 0.381 36.8 38.6 40.8
DRUM† - 0.238 17.4 26.1 36.4 - 0.382 36.9 38.8 41.0
NLIL∗ - 0.25 - - 32.4 - - - - -

M-Walk∗ - 0.232 16.5 24.3 - - 0.437 41.4 44.5 -

RNNLogic
w/o emb. 538 0.288 20.8 31.5 44.5 7527 0.455 41.4 47.5 53.1
with emb. 232 0.344 25.2 38.0 53.0 4615 0.483 44.6 49.7 55.8

RNNLogic+
w/o emb. 480 0.299 21.5 32.8 46.4 7204 0.489 45.3 50.6 56.3
with emb. 178 0.349 25.8 38.5 53.3 4624 0.513 47.1 53.2 59.7

Table 25. Results of RNNLogic on FB15k-237 and WN18RR.

Category Algorithm
FB15k-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
Rule

Learning
MINERVA∗ - 0.293 21.7 32.9 45.6 - 0.448 41.3 45.6 51.3

MultiHopKG∗ - 0.407 32.7 - 56.4 - 0.472 43.7 - 54.2

RNNLogic
w/o emb. 459.0 0.377 28.9 41.2 54.9 7662.8 0.478 43.8 50.3 55.3
with emb. 146.1 0.443 34.4 48.9 64.0 3767.0 0.506 46.3 52.3 59.2

Table 26. Results of RNNLogic on FB15k-237 and WN18RR with only (h, r, ?)-queries.

In RNNLogic+ with emb., we use RotatE [121] as the knowledge graph embedding model,
which is the same as RNNLogic with emb.. For both models, the entity and relation em-
beddings are pre-trained. The embedding dimension is set to 500 on FB15k-237 and 200 on
WN18RR.

6.5.2. Results

Comparison against Existing Methods. We present the results on the FB15k-237 and
WN18RR datasets in Table 25 and Table 26. The results on the Kinship and UMLS datasets
are shown in Table 27. In the tables, H@k is in %. [∗] means the numbers are taken from
the original papers. [†] means we rerun the methods with the same evaluation process.

We first compare RNNLogic with rule learning methods. RNNLogic achieves much better
results than statistical relational learning methods (MLN, Boosted RDN, PathRank) and
neural differentiable methods (NeuralLP, DRUM, NLIL, CTP). This is because the rule
generator and reasoning predictor of RNNLogic can collaborate with each other to reduce
search space and learn better rules. RNNLogic also outperforms reinforcement learning
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Category Algorithm
Kinship UMLS

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

No Rule
Learning

DistMult 8.5 0.354 18.9 40.0 75.5 14.6 0.391 25.6 44.5 66.9
ComplEx 7.8 0.418 24.2 49.9 81.2 13.6 0.411 27.3 46.8 70.0

ComplEx-N3 - 0.605 43.7 71.0 92.1 - 0.791 68.9 87.3 95.7
TuckER 6.2 0.603 46.2 69.8 86.3 5.7 0.732 62.5 81.2 90.9
RotatE 3.7 0.651 50.4 75.5 93.2 4.0 0.744 63.6 82.2 93.9

Rule
Learning

MLN 10.0 0.351 18.9 40.8 70.7 7.6 0.688 58.7 75.5 86.9
Boosted RDN 25.2 0.469 39.5 52.0 56.7 54.8 0.227 14.7 25.6 37.6

PathRank - 0.369 27.2 41.6 67.3 - 0.197 14.8 21.4 25.2
NeuralLP 16.9 0.302 16.7 33.9 59.6 10.3 0.483 33.2 56.3 77.5
DRUM 11.6 0.334 18.3 37.8 67.5 8.4 0.548 35.8 69.9 85.4

MINERVA - 0.401 23.5 46.7 76.6 - 0.564 42.6 65.8 81.4
CTP - 0.335 17.7 37.6 70.3 - 0.404 28.8 43.0 67.4

RNNLogic
w/o emb. 3.9 0.639 49.5 73.1 92.4 5.3 0.745 63.0 83.3 92.4
with emb. 3.1 0.722 59.8 81.4 94.9 3.1 0.842 77.2 89.1 96.5

Table 27. Results of RNNLogic on the Kinship and UMLS datasets.

methods (MINERVA, MultiHopKG, M-Walk). The reason is that RNNLogic is optimized
with an EM-based framework, in which the reasoning predictor provides more useful feedback
to the rule generator, and thus addresses the challenge of sparse reward.

We then compare RNNLogic against state-of-the-art embedding-based methods. For
RNNLogic with embeddings in the reasoning predictor (with emb.), it outperforms most
compared methods in most cases, and the reason is that RNNLogic is able to use logic
rules to enhance reasoning performance. For RNNLogic without embedding (w/o emb.), it
achieves comparable results to embedding-based methods, especially on WN18RR, Kinship
and UMLS where the training triplets are quite limited.
Results of RNNLogic+. In RNNLogic, we jointly train a rule generator and a simple rule
generator. In contrast to that, RNNLogic+ focuses on training a complicated predictor with
the high-quality rules learned by RNNLogic as input. In this way, RNNLogic+ entails high
model capacity. Next, we look into RNNLogic+ and we present its results on the FB15k-237
and WN18RR datasets in Table 25.

We can see that without the help of knowledge graph embedding (w/o emb.), RNNLogic+
already gets competitive results on both datasets, especially WN18RR, where RNNLogic+
outperforms all the other methods. Surprisingly, these results are achieved by using only a
few logic rules for prediction (100 for each relation in FB15k-237 and 200 for each relation
in WN18RR). This observation shows that the logic rules learned by RNNLogic are indeed
very useful. For now, the reasoning predictor used in RNNLogic+ is still straightforward,
and we are likely to achieve better results by designing a more powerful predictor to make
better use of the high-quality rules. We leave it as a future work.
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By further using knowledge graph embedding (with emb.), the results of RNNLogic+
are significantly improved on both datasets. Moreover, RNNLogic+ with embedding also
outperforms most knowledge graph embedding methods. On WN18RR, the method even
achieves the best result. This demonstrates that the information captured by logic rules and
knowledge graph embedding is complementary, allowing rule-based methods and embedding-
based methods to mutually enhance each other. Thus, an interesting feature direction could
be designing approaches to better combine both kinds of methods.

Figure 11. Performance w.r.t. the number of logic rules
in RNNLogic.

Figure 12. Results w.r.t.
embedding dim. in RNN-
Logic.

Quality of Learned Logic Rules. Next, we study the quality of rules learned by different
methods for reasoning. For each trained model, we let it generate I rules with highest
qualities per query relation, and use them to train a predictor w/o emb. as in Equation (6.4.5)
for reasoning. For RNNLogic, the quality of each rule is measured by its prior probability
from the rule generator, and we use beam search to infer top-I rules. The results at different
I are in Figure 11, where RNNLogic achieves much better results. Even with only 10 rules
per relation, RNNLogic still achieves competitive results.
Performance w.r.t. the Number of Training Triplets. To better evaluate different
methods under cases where training triplets are very limited, in this section we reduce the
amount of training data on Kinship and UMLS to see how the performance varies. The
results are presented in Figure 13. We see that RNNLogic w/o emb. achieves the best
results. Besides, the improvement over RotatE is more significant as we reduce training
triplets, showing that RNNLogic is more robust to data sparsity.
Performance w.r.t. Embedding Dimension. RNNLogic with emb. uses entity and
relation embeddings to improve the reasoning predictor. Next, we study its performance
with different embedding dimensions. The results are presented in Figure 12, where we
compare against RotatE [121]. We see that RNNLogic significantly outperforms RotatE at
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every embedding dimension. The improvement is mainly from the use of logic rules, showing
that our learned rules are indeed helpful.
Comparison of Optimization Algorithms. RNNLogic uses an EM algorithm to optimize
the rule generator. In practice, the generator can also be optimized with REINFORCE [150]
(see Equation (6.4.10) for details). We empirically compare the two algorithms in the w/o
emb. case. The results on Kinship and UMLS are presented in Table 28. We see EM
consistently outperforms REINFORCE.

Figure 13. Performance w.r.t. the number of training
triplets in RNNLogic.

Kinship UMLS
MRR MRR

REINFORCE 0.312 0.504

EM 0.639 0.745

Table 28. Comparison of REIN-
FORCE and EM in RNNLogic.

Case Study of Generated Logic Rules. Finally, we show some logic rules generated
by RNNLogic on the FB15k-237 dataset in Table 29. We can see that these logic rules are
meaningful and diverse. The first rule is a subrelation rule. The third and fifth rules are
two-hop compositional rules. The rest of logic rules have even more complicated forms. This
case study shows that RNNLogic can indeed learn useful and diverse rules for reasoning.
More generated logic rules are available at Table 30. In this table, h r−→ t means triplet
(h,r, t) and h

r←− t means triplet (h, r−1,t), or equivalently (t, r, h).

Appears_in_TV_Show(X,Y )← Actor_of(X,Y )
Appears_in_TV_Show(X,Y )← Creator_of(X,U) ∧ Has_Producer(U,V ) ∧ Appears_in_TV_Show(V,Y )
ORG._in_State(X,Y )← ORG._in_City(X,U) ∧ City_Locates_in_State(U,Y )
ORG._in_State(X,Y )← ORG._in_City(X,U) ∧ Address_of_PERS.(U,V ) ∧ Born_in(V,W ) ∧ Town_in_State(W,Y )
Person_Nationality(X,Y )← Born_in(X,U) ∧ Place_in_Country(U,Y )
Person_Nationality(X,Y )← Student_of_Educational_Institution(X,U) ∧ ORG._Endowment_Currency(U,V )∧

Currency_Used_in_Region(V,W ) ∧ Region_in_Country(W,Y )

Table 29. Case study of the rules generated by the rule generator.

6.6. Conclusion
This paper studies learning logic rules for knowledge graph reasoning, and an approach

called RNNLogic is proposed. RNNLogic treats a set of logic rules as a latent variable, and a
rule generator as well as a reasoning predictor with logic rules are jointly learned. We develop
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an EM-based algorithm for optimization. Extensive expemriments prove the effectiveness of
RNNLogic. In the future, we plan to study generating more complicated logic rules rather
than only compositional rules. Besides, we plan to extend RNNLogic to other reasoning
problems, such as question answering.
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Relation ← Rule (Explanation)

X
Appears_in_TV_Show−−−−−−−−−−−→ Y ← X

Has_Actor←−−−−− Y

(Definition. An actor of a show appears in the show,
obviously.)

← X
Creator_of−−−−−−→ U

Producer_of←−−−−−−− V
Appears_in_TV_Show−−−−−−−−−−−→ Y

(The creator X and the producer V of another show
U are likely to appear in the same show Y .)

← X
Actor_of←−−−−− U

Award_Nominated←−−−−−−−−− V
Winner_of←−−−−− Y

← X
Writer_of−−−−−→ U

Creater_of←−−−−−− V
Actor_of−−−−−→ Y

← X
Student_of−−−−−−→ U

Student_of←−−−−−− V
Appears_in_TV_Show−−−−−−−−−−−→ Y

(Two students X and V in the same school U are likely
to appear in the same show Y .)

X
ORG._in_State−−−−−−−−→ Y ← X

ORG._in_City−−−−−−−→ U
City_in_State−−−−−−−−→ Y

(Use the city to indicate the state directly.)

← X
ORG._in_City−−−−−−−→ U

Lives_in←−−−−− V
Born_in−−−−→

W
Town_in_State−−−−−−−−→ Y

(Use the person living in the city to induct the state.)

← X
Sub-ORG._of←−−−−−−− U

ORG._in_State−−−−−−−−→ Y

← X
Sub-ORG._of−−−−−−−→ U

Sub-ORG._of←−−−−−−− V
ORG._in_State−−−−−−−−→ Y

← X
ORG._in_City−−−−−−−→ U

ORG._in_City←−−−−−−− V
ORG._in_State−−−−−−−−→ Y

(Two organizations in the same city are in the same
state.)

X
Person_Nationality−−−−−−−−−−−→ Y ← X

Born_in−−−−→ U
Place_in_Country−−−−−−−−−−→ Y

(Definition.)

← X
Spouse−−−−→ U

Person_Nationality−−−−−−−−−−−→ Y

(By a fact that people are likely to marry a person of
same nationality.)

← X
Student_of−−−−−−→ U

ORG._Endowment_Currency−−−−−−−−−−−−−−→
V

Region_Currency←−−−−−−−−− W
Region_in_Country−−−−−−−−−−−→ Y

(Use the currency to induct the nationality.)

← X
Born_in−−−−→ U

Born_in←−−−− V
Person_Nationality−−−−−−−−−−−→ Y

← X
Politician_of−−−−−−−−→ U

Politician_of←−−−−−−−− V
Person_Nationality−−−−−−−−−−−→

Y

X
Manifestation_of−−−−−−−−−−→ Y ← X

Treats←−−−− U
Prevents−−−−−→ V

Precedes←−−−−− Y

← X
Complicates←−−−−−−− U

Precedes←−−−−− Y

← X
Location_of−−−−−−−→ U

Is_a−−→ V
Precedes←−−−−− Y

← X
Complicates←−−−−−−− U

Precedes−−−−−→ V
Occurs_in←−−−−− Y

← X
Location_of−−−−−−−→ U

Occurs_in←−−−−− V
Occurs_in←−−−−− Y

← X
Precedes−−−−−→ U

Occurs_in←−−−−− V
Degree_of←−−−−− Y

X
Affects←−−−− Y ← X

Result_of−−−−−→ U
Occurs_in−−−−−→ V

Precedes−−−−−→ Y

← X
Precedes←−−−−− U

Produces−−−−−→ V
Occurs_in←−−−−− Y

← X
Prevents←−−−−− U

Disrupts−−−−−→ V
Co-occurs_with−−−−−−−−−→ Y

← X
Result_of←−−−−− U

Complicates−−−−−−−→ V
Precedes−−−−−→ Y

← X
Assesses_Effect_of←−−−−−−−−−−− U

Method_of−−−−−→ V
Complicates−−−−−−−→ Y

← X
Process_of−−−−−−→ U

Interacts_with−−−−−−−−−→ V
Causes−−−−→ Y

← X
Assesses_Effect_of←−−−−−−−−−−− U

Result_of←−−−−− V
Precedes−−−−−→ Y

Table 30. Logic rules learned by RNNLogic.
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Chapter 7

DiffLogic: A Differentiable Approach of Rule
Learning

This paper studies interpretable reasoning on knowledge graphs (a.k.a. link prediction) by
learning symbolic logic rules, which is very critical in many applications such as recom-
mender systems and biomedicine. Exiting methods either infer logic rules in an indirect
manner through post-processing (e.g., NeurILP) or suffer from expensive computation with
alternative optimization methods (e.g., RNNLogic). In this paper, we propose an end-to-end
solution for directly learning logic rules from knowledge graphs. Specifically, we jointly train
a policy network for explicit rule generation as well as a Transformer-based reasoning network
for reasoning with generated logic rules, which enjoy high flexibility and interpretability. To
train both networks in an end-to-end fashion, we design an optimization technique based
on importance sampling, where a proposal distribution is introduced to probe different logic
rules used for training, and the proposal distribution is dynamically updated to balance
between exploitation and exploration. Extensive experiments on multiple benchmarks show
the effectiveness of our proposed approach.

7.1. Introduction
Knowledge graphs are data structures used to store real-world knowledge, where each

piece of knowledge is represented as a fact (h, r, t) or r(h, t), meaning head entity h and tail
entity t have relation r. These facts have been proven useful in many applications, including
question answering [75], drug repurposing [155], and recommender systems [142]. However,
as collecting all possible facts is impossible, knowledge graphs are inevitably incomplete.
Therefore, how to infer missing facts in a knowledge graph by reasoning with existing facts
(a.k.a., knowledge graph reasoning) has become an important task.



Recently, learning high-quality logic rules has received increasing attention for knowledge
graph reasoning. For example, one might learn a rule ∀X,Y,Z nationality(X,Y ) ←
born_in(X,Z) ∧ capital_of(Z,Y ), indicating if person X was born in city Z and city Z

is in country Y , then the nationality of X would be Y . Through a few such rules, we
can have through understanding of nationality and further apply these rules to infer new
facts. With logic rules, we are able to develop models with high interpretability [101, 166]
and generalizability [130, 171]. However, how to learn useful logic rules for reasoning on
knowledge graphs remains a nontrivial task due to the huge search space of rules.

In literature, there are mainly two kinds of methods proposed for logic rule learning.
One is the path-based method, which predicts the relation of two entities by enumerating
and aggregating the relational paths between these entities. After training, high-quality logic
rules can be extracted by post-processing these relational paths. For example, DeepPath [153]
and MINERVA [23] use reinforcement learning to identify a few important relational paths
for reasoning. GraIL [130] and NBFNet [171] employ nonlinear graph neural networks to
aggregate all possible relational paths for reasoning. However, these methods learn logic
rules indirectly by post-processing relational paths, and extracting universal logic rules from
relational paths is nontrivial, meaning these methods lack sufficient interpretability. The
other methods aim at generating logic rules directly. For example, classical rule mining
methods [32, 82] search for logic rules which are consistent with the observed facts. A recent
approach RNNLogic [105] leverages an LSTM model for generating logic rules. Despite the
good interpretability, these methods lack an end-to-end training algorithm and different logic
rules are combined in a simplistic manner.

Ideally, we would expect to develop a new approach which inherits the merits of both
methods, one with high interpretability as well as good performance. In this paper, we
propose such an approach. Our approach improves interpretability by using a policy network
to directly generate logic rules. These logic rules are further fed into a Transformer-based
graph reasoning network, which aggregates these rules for precise knowledge reasoning. By
jointly training a policy network and a reasoning network, our approach enjoys both high
interpretability and good performance. However, training them in an end-to-end fashion is
nontrivial, as computing the gradient of both networks requires sampling from the intractable
posterior distribution of logic rules. The prior comes from the policy network and the
likelihood is from the reasoning network. We address the problem by using importance
sampling, where a proposal distribution is used as a surrogate to the posterior distribution
for probing different combinations of logic rules. During training, the proposal distribution is
dynamically updated to balance between exploration of unseen logic rules and exploitation of
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promising new ones. Extensive experiments on four standard datasets prove the effectiveness
of our proposed approach.

7.2. Related Work
In knowledge graph reasoning, a variety of methods have been proposed for learning logic

rules, either indirectly or directly. Indirect rule learning methods are mainly path-based.
Their idea is to enumerate the relational paths between a pair of entities to predict their
relation, and further extract high-quality logic rules by post-processing these relational paths.
Classical path-based methods such as path ranking [71, 72] and ProPPR [143, 144, 146]
combine relational paths with log-linear models for reasoning, yet the model capacity is
limited, yielding unsatisfactory results. Some later efforts propose to use reinforcement
learning to train pathfinding agents, which are able to identify a few important important
paths for reasoning [13, 23, 76, 117, 153]. Nevertheless, as only a few relational paths are
used for reasoning, these methods suffer from inferior results, and training the pathfinding
agents is highly challenging due to sparse reward. More recent methods perform reasoning by
aggregating all the relational paths between a pair of entities via graph neural networks [61,
137]. Representative methods include neural logic programming [18, 107, 108, 157, 158],
GraIL [130], and NBFNet [171]. However, as these methods use highly nonlinear aggregators
to combine numerous relational paths for reasoning, how to extract universal logic rules from
these relational paths remains unclear, and thus these methods lack desired interpretability.
Compared with all path-based methods, our approach employs a policy network to explicitly
generate high-quality logic rules, which enjoys better interpretability. Besides, we develop a
Transformer-based reasoning network to make use of logic rules, allowing our approach to
achieve comparable results to state-of-the-art path-based methods.

The other kind of method directly generates logic rules for knowledge graph reasoning.
Most methods are based on the idea of generate-and-test, i.e., generating candidate logic
rules and testing whether they are consistent with observed facts. Traditional rule mining
algorithms [32, 82] mine logic rules by measuring rule qualities with hand-crafted heuristics.
Nevertheless, logic rules mined with such heuristics often suffer from poor results. One recent
work RNNLogic [105] improves this idea by jointly training a rule generator and a reasoning
predictor, where the rule generator produces logic rules for the reasoning predictor, which
in turn provides feedback to update the rule generator. Our approach is in a similar vein
to this work. However, this method uses EM algorithm for optimization, which cannot be
executed in an end-to-end fashion and is only compatible with log-linear predictors, leading
to worse results. In contrast, we develop an end-to-end training algorithm by using the idea
of importance sampling, which generalizes to different kinds of reasoning models. Based on
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that, we further equip our approach with a Transformer-based reasoning network, allowing
the approach to have superior results.

Lastly, there also exist various embedding-based methods for knowledge graph reasoning,
a.k.a., knowledge graph embedding models. Their idea is to learn useful entity and relation
embeddings through defining score functions to discriminate between valid (h, r, t) facts and
some noisy ones. With some well-designed score functions, knowledge graph embedding
methods can inherently capture some simple rule patterns, and thus achieve impressive
results on many datasets. Nevertheless, these methods are not able to explicitly learn logic
rules and use them for knowledge graph reasoning, whereas our approach employs a policy
network for rule generation, which has better interpretability.

7.3. Model
This paper focuses on learning logic rules for knowledge graph reasoning. Existing meth-

ods either suffer from insufficient interpretability due to indirect rule learning through post-
processing, or lack an end-to-end algorithm to train high-capacity reasoning models. We
address these limitations by proposing a principled approach. Our approach treats a set of
logic rules as latent variables, and jointly train a policy network for generating high-quality
logic rules as well as a Transformer-based network for reasoning with these logic rules. To ef-
fectively train the policy network and reasoning network in an end-to-end fashion, we propose
to combine gradient descent and importance sampling. Specifically, a proposal distribution
probes different sets of logic rules for training both networks, and the proposal distribution
is dynamically updated to balance exploration with exploitation, so that both networks can
be continuously improved.

Formally, the problem of knowledge graph reasoning involves a background knowledge
graph G, which contains all the observed facts. Then given a query x = (h, r, ?) asking which
entity has relation r with entity h, we aim to predict the answer entity y. Therefore, the
goal of knowledge graph reasoning can be formulated as modeling the conditional distribution
p(y|G,x).

Our approach solves the problem through treating logic rules as latent variables. In-
tuitively, given a query x = (h, r, ?), we start with generating a collection of logic rules z
for the query relation r with a policy network, and then feed these logic rules to a graph
reasoning network, which applies the logic rules z to the background knowledge graph G for
reasoning. In this way, the policy network defines a distribution pθ(z|r) and the reasoning
network defines pϕ(y|G,x, z), where θ and ϕ are parameters of the two networks respectively.
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The target distribution can be factorized as follows:

pϕ,θ(y|G,x = (h, r, ?)) =
∑

z
pϕ(y|G,x, z)pθ(z|r). (7.3.1)

The optimization problem for each training instance (G,x,y) can be formulated as follows:

max
ϕ,θ

log pϕ,θ(y|G,x = (h, r, ?)) = log
∑

z
pϕ(y|G,x, z)pθ(z|r). (7.3.2)

Next, we introduce how we design the policy network and the reasoning network.

7.3.1. Policy Networks

The goal of the policy network is to generate a set of useful logic rules for dealing with
each query relation, and hence the network defines the distribution pθ(y|r) with r being the
query relation.

As observed in existing works, chain-like rules play important roles in knowledge graph
reasoning, and hence this paper focuses on learning chain-like rules. Each chain-like rule has
the conjunctive form ∀{Xi}l

i=0 r(X0,Xl) ← r1(X0,X1) ∧ · · · ∧ rl(Xl−1,Xl) and thus can be
naturally represented as a sequence of relations [r, r1, r2 · · · rl], where r is the head relation
and {ri}l

i=1 are body relations.
Intuitively, the chain-like rules can be generated by LSTM models [49], and thus we

employ an LSTM-based rule generator. Given a query relation r, the model generates body
relation [r1, r2 · · · rl] of chain-like rules in an autoregressive fashion. By doing this, the
probability of each logic rule being generated can be simultaneously computed, and thus
the rule generator defines a distribution over all chain-like rules. Suppose this distribution is
prule

θ (·|r), we further define the distribution over sets of logic rules as the following multinomial
distribution:

pθ(y|r) = Mu(z|nrule, p
rule
θ (·|r)), (7.3.3)

where Mu stands for the multinomial distribution, nrule is a hyperparameter for the size of
the set z, and prule

θ (·|r) defines a distribution over chain-like rules with head being r. The
generative process of a rule set ẑ is straightforward, where we simply generate nrule rules
with prule

θ (·|r) to form ẑ.

7.3.2. Reasoning Networks

The reasoning network defines likelihood of answer, i.e., pϕ(y|G,x, z). Intuitively, given
a query x, the reasoning predictor applies logic rules in z to the knowledge graph G for
predicting the answer y.

To do that, we notice that for each chain-like rule r ← r1 ∧ · · · ∧ rl, if we start from
the entity h in query x and sequentially walk along edges corresponding to body relations
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r1, r2, · · · , rl, we will arrive at a collection of destination entities. By doing that for all
the logic rules in z, we are able to obtain a bipartite factor graph, where one set of nodes
correspond to chain-like rules in z, and the other set of nodes are entities in the knowledge
graph G. Each edge of the bipartite graph links a logic rule f and an entity e, and the weight
is defined as the number of relational paths starting from h, ending at e, and found by rule
f .

With this bipartite graph, predicting the answer becomes a graph reasoning problem,
i.e., identifying the answer entity in the bipartite graph. For this problem, we leverage an
energy-based model, which computes an energy score Eϕ(e) for each entity e in the bipartite
graph, and thus the likelihood function is defined as follows:

pϕ(y = e|G,x, z) = exp(−Eϕ(e))∑
e′∈V exp(−Eϕ(e′)) , (7.3.4)

where V is the entity vocabulary of knowledge graph G. For the energy Eϕ(e) of each entity
e, we consider information from two sources, which are the entity-wise information and the
rule-wise information, corresponding to the information coming from entity e itself and from
all logic rules in z. With this idea, we have Eϕ(e) = Eentity

ϕ (e) + Erule
ϕ (e).

For the entity-wise energy Eentity
ϕ (e), we follow existing knowledge graph embedding mod-

els for parameterization. Specifically, a knowledge graph embedding model typically uses a
score function g(h, r, e) to measure the inconsistency of the triplet (h, r, e), and thus lower
scores imply that (h, r, e) is more likely a true fact. Based on that, we can naturally param-
eterize the entity-wise energy with the score function as Eentity

ϕ (e) = g(h, r, e).
For the rule-wise energy Erule

ϕ (e), we leverage a Transformer-based model, which computes
the energy of an entity according to the logic rules connected with the entity. Formally, for
each logic rule f ∈ z, we can apply a Transforer encoder to the relation sequence of f ,
yielding a rule encoding as follows:

hf = Transformerϕ(r, r1, · · · , rl) with f = r← r1 ∧ · · · ∧ rl. (7.3.5)

Once we have the encoding hf of each logic rule, we can compute the rule-wise energy of
each entity based on rule encodings. For each entity e, we consider logic rules connected to
e, and use an aggregator to aggregate the encodings of these logic rules, yielding an entity
encoding. Then we further apply an MLP, which projects the encoding to a rule-wise scalar
energy as follows:

Erule
ϕ (e) = MLPϕ(Aggregator({hf}f∈z)). (7.3.6)

In practice, we use the PNA aggregator for its effectiveness. The pair-wise energy considers
logic rules and does not consider any entity-specific information, which is thus generalizable.
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With the above reasoning predictor, we are able to leverage both the entity-wise infor-
mation and rule-wise information for reasoning.

7.3.3. End-to-end Optimization

Although the above policy network and reasoning network bring both interpretability
and capacity to our approach, how to optimize them in an end-to-end fashion remains a
challenging problem, as the set of logic rules z serves as a latent variable. In this paper, we
resort to gradient ascent and importance sampling for a solution.

Specifically, for each training instance (G,x = (h, r, ?),y = t), the gradient of the log-
likelihood function with respect to θ and ϕ is given as follows:

∇θ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇θ log pθ(z|r)], (7.3.7)

∇ϕ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇ϕ log pϕ(y|G,x, z)]. (7.3.8)

See Section E.1 for the detailed derivation. However, we see that the computation of gradient
relies on the posterior distribution pϕ,θ(z|G,x,y) = pϕ(y|G,x, z)pθ(z|r)/Zϕ,θ. The posterior
distribution is intractable due to the partition function Zϕ,θ = ∑

z pϕ(y|G,x, z)pθ(z|r).
To address the challenge, we resort to importance sampling, where a proposal distribution

q(z) is introduce. The proposal distribution q(z) can be any distribution which is easy to
draw samples from and satisfies q(z) > 0 for any set z of logic rules. We will discuss how
to specify the proposal distribution in the next section. Suppose we have n samples (i.e., n
sets of logic rules) drawn from q(z) and denote the samples as ẑi for i = {1,2, · · · ,n}. The
gradient with respect to θ can be estimated as follows:

Epϕ,θ(z|G,x,y)[∇θ log pθ(z|r)] = Eq(z)

[
pϕ,θ(z|G,x,y)

q(z) ∇θ log pθ(z|r)
]

≃ 1
n

n∑
i=1

pϕ,θ(ẑi|G,x,y)
q(ẑi)

∇θ log pθ(ẑi|r) = 1
n

n∑
i=1

r(ẑi|G,x,y)∇θ log pθ(ẑi|r),
(7.3.9)

where r(ẑi|G,x,y) = pϕ,θ(ẑi|G,x,y)
q(ẑi) = pϕ(y|G,x,z)pθ(z|r)

q(ẑi)Zϕ,θ
is the ratio of the posterior and the

proposal.
With importance sampling, we no longer need to sample from the posterior. However,

we still need to compute the density of the posterior in the ratio r(ẑi|G,x,y), which is not
desired due to the partition function Zϕ,θ. To avoid the problem, we notice the following
approximation:

1 = Eq(z)

[
pθ(z|G,x,y)

q(z)

]
= Eq(z)[r(z|G,x,y)] ≃ 1

n

n∑
i=1

r(ẑi|G,x,y), (7.3.10)
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which implies ∑n
i=1 r(ẑi|G,x,y) ≃ n. By taking the approximation of n into the above

equation, we obtain the following approximation:

∇θ log pϕ,θ(y|G,x) ≃ 1
n

n∑
i=1

r(ẑi|G,x,y)∇θ log pθ(ẑi|r)

≈
n∑

i=1

r(ẑi|G,x,y)∑n
j=1 r(ẑj|G,x,y)∇θ log pθ(ẑi|r)

=
n∑

i=1

r̃(ẑi|G,x,y)∑n
j=1 r̃(ẑj|G,x,y)∇θ log pθ(ẑi|r),

(7.3.11)

where r̃(ẑi|G,x,y) = pϕ(y|G,x,z)pθ(z|r)
q(ẑi) . Compared with r(ẑi|G,x,y), we can see that

r̃(ẑi|G,x,y) is more tractable, as the partition function Zϕ,θ is not needed. As a result,
the above gradient can be easily computed, and intuitively the overall gradient is a weighted
average of the gradient for each ẑi.

Similarly, the gradient for the parameter ϕ of the reasoning predictor can be computed
as below:

∇ϕ log pϕ,θ(y|G,x) ≈
n∑

i=1

r̃(ẑi|G,x,y)∑n
j=1 r̃(ẑj|G,x,y)∇ϕ log pϕ(y|G,x, ẑi). (7.3.12)

In this way, we are able to optimize the model in an end-to-end fashion. One key factor of
the training algorithm lies on the choice of the proposal distribution. Next, we introduce
how we choose the proposal distribution.
Choice of the Proposal Distribution. In the optimization algorithm, the proposal distri-
bution probes different sets of logic rules for training the policy and the reasoning network.
As the number of possible rule sets is huge, one natural idea for efficient search is to balance
exploiting promising rule sets with exploring new rule sets. Towards this goal, we propose
several different strategies for probing.
• Random Exploration. For this strategy, we mine logic rules from the observed facts

using depth-first search. Then we randomly sample logic rules with equal probabilities as
the proposal distribution. In this way, our approach is able to explore different logic rules.
• Logic Rules Generated by Other Methods. Another method we can use is to generate

logic rules by using existing methods, e.g., RNNLogic. By doing this, our approach focuses
more on exploiting rules viewed important by other methods, which is thus more efficient.
• Self-exploration. We can also use the policy network itself to generate logic rules,

yielding a self-exploration method. With this method, the proposal distribution can be
dynamically updated to balance between exploiting those useful logic rules and exploring
those new logic rules.
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Category Algorithm
FB15k-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

Embedding

TransE∗ 357 0.294 - - 46.5 3384 0.226 - - 50.1
DistMult∗ 254 0.241 15.5 26.3 41.9 5110 0.43 39 44 49
ComplEx∗ 339 0.247 15.8 27.5 42.8 5261 0.44 41 46 51

ComplEx-N3∗ - 0.37 - - 56 - 0.48 - - 57
ConvE∗ 244 0.325 23.7 35.6 50.1 4187 0.43 40 44 52

TuckER∗ - 0.358 26.6 39.4 54.4 - 0.470 44.3 48.2 52.6
RotatE∗ 177 0.338 24.1 37.5 53.3 3340 0.476 42.8 49.2 57.1

Rule
Learning

PathRank - 0.087 7.4 9.2 11.2 - 0.189 17.1 20.0 22.5
NeuralLP† - 0.237 17.3 25.9 36.1 - 0.381 36.8 38.6 40.8
DRUM† - 0.238 17.4 26.1 36.4 - 0.382 36.9 38.8 41.0
NLIL∗ - 0.25 - - 32.4 - - - - -

M-Walk∗ - 0.232 16.5 24.3 - - 0.437 41.4 44.5 -
RNNLogic∗ 232 0.344 25.2 38.0 53.0 4615 0.483 44.6 49.7 55.8
NBFNet∗ 114 0.415 32.1 45.4 59.9 636 0.551 49.7 57.3 66.6

DiffLogic
only rule 296 0.346 25.8 37.8 51.9 5796 0.522 48.1 54.4 60.4

full 154 0.375 28.2 41.1 56.1 4457 0.525 48.3 54.5 60.9

Table 31. Results of DiffLogic on FB15k-237 and WN18RR.

Category Algorithm
Kinship UMLS

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

Embedding

DistMult 8.5 0.354 18.9 40.0 75.5 14.6 0.391 25.6 44.5 66.9
ComplEx 7.8 0.418 24.2 49.9 81.2 13.6 0.411 27.3 46.8 70.0

ComplEx-N3 - 0.605 43.7 71.0 92.1 - 0.791 68.9 87.3 95.7
TuckER 6.2 0.603 46.2 69.8 86.3 5.7 0.732 62.5 81.2 90.9
RotatE 3.7 0.651 50.4 75.5 93.2 4.0 0.744 63.6 82.2 93.9

Rule
Learning

MLN 10.0 0.351 18.9 40.8 70.7 7.6 0.688 58.7 75.5 86.9
Boosted RDN 25.2 0.469 39.5 52.0 56.7 54.8 0.227 14.7 25.6 37.6

PathRank - 0.369 27.2 41.6 67.3 - 0.197 14.8 21.4 25.2
NeuralLP 16.9 0.302 16.7 33.9 59.6 10.3 0.483 33.2 56.3 77.5
DRUM 11.6 0.334 18.3 37.8 67.5 8.4 0.548 35.8 69.9 85.4

MINERVA - 0.401 23.5 46.7 76.6 - 0.564 42.6 65.8 81.4
CTP - 0.335 17.7 37.6 70.3 - 0.404 28.8 43.0 67.4

RNNLogic 3.1 0.722 59.8 81.4 94.9 3.1 0.842 77.2 89.1 96.5

DiffLogic
only rule 3.4 0.648 49.6 75.0 94.5 3.2 0.841 77.2 89.6 95.8

full 3.0 0.718 58.9 81.3 95.5 3.0 0.863 80.4 90.6 96.6

Table 32. Results of DiffLogic on Kinship and UMLS.

7.4. Experiment
7.4.1. Settings

Datasets. We consider four commonly-used datasets for evaluation, including including
FB15k-237 [132], WN18RR [26], Kinship, and UMLS [63]. For Kinship and UMLS, there
exist several train/validation/test data splits, and we choose the one used in Qu et al. [105]
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as they use fewer facts for training, which is more challenging. We summarize the detailed
statistics of these datasets in Section E.2.
Compared Algorithms. The following algorithms are compared in experiment.
• Statistical Relational Learning. Some classical methods in the statistical relational learning
literature can be applied to our problem, including Markov logic networks [106] and boosted
relational dependency networks [88].
• Path-based Methods. Path-based methods indirectly learn logic rules by post-processing
relational paths. For classical path-based methods, we compare against path ranking [71].
For methods based on neural logic programming and neural theorem provers, we consider
NeuralLP [157], DRUM [108], NLIL [158], and CTP [84]. We also consider reinforcement
learning methods, including MINERVA [23] and M-Walk [117]. Besides, we also consider
NBFNet [171], which is a GNN-based method and achieves state-of-the-art results on knowl-
edge graph reasoning.
• Embedding Methods. We also consider some embedding methods, including TransE [8],
DistMult [156], ComplEx [135], ComplEx-N3 [68], ConvE [26], TuckER [4], and RotatE [121].
• Our Approach. For our approach, we consider two variants. The first variant only considers
the rule-wise energy in the reasoning predictor, and we denote the model as only rule. The
second variant uses both rule-wise and entity-wise energy in reasoning networks, and the
model is denoted as full.
Evaluation Metrics. For each fact (h, r, t) in the test set, we consider two queries (h, r, ?)
and (t, r−1, ?) with answers t and h. For each query, we compute a score for each entity in
the entity set and further consider the rank of the answer. Then the Mean Rank (MR), Mean
Reciprocal Rank (MRR), and Hit@k over all queries are reported. We always consider the
filtered setting [8] as it is used in most studies. Besides, there can be cases where multiple
entities receive the same score in a query. In such cases, we follow Qu et al. [105] to compute
the expectation of each metric over all random shuffles of entities receiving the same score.
Experimental Setup. In our problem, we observe a collection of facts in the training set.
For each of this (h, r, t) fact, we add its inverse fact (t, r−1, h) into the training fact set. To
build a training instance, we randomly sample a training fact (h, r, t). Then we form the
query and answer as x = (h, r, ?) and a = t. The background knowledge graph G is formted
as the rest of training facts. During testing, the background knowledge graph G is formed
with all the triplets in T . In the policy network for rule generation, the maximum length of
logic rules is set to 3 for FB15k-237, 5 for WN18RR, and 3 for Kinship and UMLS based on
validation performance. For the proposal distribution, we sample 100 rules for each length
to form the rule set z.
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7.4.2. Results

We present the main results in Table 31 and Table 32, where H@k is in %. [∗] means
the numbers are taken from the original papers. [†] means we rerun the methods with the
same evaluation process. For our approach which only uses rule-wise energy in the reasoning
network (e.g., only rule model), it outperforms state-of-the-art knowledge graph embedding
models such as RotatE and TuckER in most cases, which shows that these logic rules are
helpful in knowledge graph reasoning. Besides, this variant also outperforms most well-
known methods for logic rule learning, including NeuralLP, M-Walk, and RNNLogic. The
performance gain mainly comes from the use of the graph reasoning network.

By further considering the entity-wise energy in the reasoning network (e.g., full model),
our approach further achieves significant improvement, especially on FB15k-237 and Kinship.
Moreover, the result of this variant is comparable to NBFNet, which is the state-of-the-art
approach, but our approach has better interpretability, as it explicitly generates many logic
rules which are useful for reasoning.
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Chapter 8

Application

In the preceding chapters, we introduced our innovative paradigm, which combines deep
learning with statistical relational learning to facilitate reasoning on graph-based data.
Throughout these chapters, we provided several illustrative examples showcasing the ver-
satility of this paradigm across various graph reasoning tasks.

While our primary focus in the aforementioned chapters was on the domain of graph
machine learning, graph-structured data also finds relevance in other fields, such as natural
language processing and computer vision. Thus, our proposed paradigm holds the potential
to offer significant benefits when applied to applications within these domains.

Indeed, this thesis not only delves into the application of our paradigm in other domains
but also presents concrete examples to demonstrate its efficacy. In this chapter, we offer
several practical instances of its utilization, including scene graph generation, learning on
text-attributed graphs, and few-shot sentence classification.

8.1. Scene Graph Generation
In Xu et al. [154] where I involve as the second author, we apply our proposed para-

digm to scene graph generation, which is a crucial problem in computer vision. Specifically,
we integrate object instance segmentation models [47] in the deep learning field with the
conditional random field (CRF) [69] in statistical relational learning.

8.1.1. Problem Definition

The goal of the problem is to extract a scene graph, i.e., a structured representation of
visual scene from an image. Formally, we define a scene graph as G = (yO, R). yO denotes the
category labels of the objects O in the image, and it holds that yo ∈ C for each object o ∈ O,
where C stands for the set of all object categories, including the “background” category.
R = {(oh,r,ot)} is the set of relational triplets/edges with r ∈ T as the relation type from



head object oh to tail object ot (oh, ot ∈ O), where T represents all relation types, including
the type of “no relation”. With the above information, we aim at jointly modeling visual
objects and visual relations as defined below:
Joint Scene Graph Modeling. Given an image I, we aim to jointly predict object cate-
gories yO and the relationships R among all objects, which models the joint distribution of
scene graphs, i.e., p(G|I) = p(yO, R|I).

8.1.2. Model

To address this problem, we introduce Joint Modeling for Scene Graph Generation (JM-
SGG). Existing approaches typically tackle this challenge by independently predicting object
and relation labels, relying on informative representations. However, this approach limits
the extent to which different labels can benefit from the predictions of each other. JM-SGG
overcomes this limitation by employing a unified conditional random field (CRF) that jointly
models all objects and relationships within a visual scene. This unified approach enables
various object and relation labels to interact more effectively. Nevertheless, mastering the
intricacies of this complex CRF poses a nontrivial challenge. To address this, we propose a
solution that combines maximum likelihood estimation with mean-field variational inference.
The variational distribution is parameterized using deep learning models, resulting in an
efficient algorithm for both learning and inference.

In essence, our method leverages the CRF of the statistical relational learning field to
capture dependencies among object labels and relationships, while harnessing the power of
deep learning models to enhance the inference and learning processes.
Probabilistic Formalization. In the JM-SGG model, we organize the observed scene
image I and all object and relation labels in the latent scene graph (i.e., yO and R) as the
nodes in a unified conditional random field. Since the interactions of these nodes are either for
a single object or for the relationship between an object pair, we decompose the graphical
structure of whole network into two sets of components. (1) Object components: For an
object o ∈ O, we consider the dependency of its category label on its visual representation
and thus connect yo with I. (2) Relation components: for a relational triplet (oh,r,ot) ∈ R,
we consider the dependency of relation type r on the visual cues in image I, and we also
model the interdependency among the object and relation labels in this triplet (i.e., yoh

, yot

and r), which forms a relation component. By combining all object and relation components,
the CRF can capture the comprehensive label dependency within a scene graph. We now
define the joint distribution of scene graphs upon the observed scene image as below:

pΘ(G|I) = 1
ZΘ(I) fΘ(G, I), (8.1.1)
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fΘ(G, I) =
∏
o∈O

ϕ(yo, I)
∏

(oh,r,ot)∈R

ψ(r, yoh
, yot , I), (8.1.2)

where Θ summarizes the parameters of whole model, fΘ is an unnormalized likelihood func-
tion, ZΘ denotes the partition function, and ϕ and ψ are the potential functions defined on
object and relation components respectively. In this thesis, we omit the details on how we
parameterize the potential functions, so that audience can focus on the high-level idea of
how we integrate deep learning and statistical relational learning.
Learning. In the learning phase, we seek to learn the parameters of potential functions by
maximum likelihood estimation, where Θ summarizes all these parameters. Specifically, we
aim to maximize the expectation of log-likelihood function log pΘ(G|I) with respect to the
data distribution pd, i.e. L(Θ) = EG∼pd

[
log pΘ(G|I)

]
. However, the exact computation of

L(Θ) is impeded by the intractable partition function ZΘ(I) which sums over all possible
scene graphs. Therefore, we resort to gradient ascent, in which the gradient of the objective
function L(Θ) with respect to Θ can be computed as below:

∇ΘL(Θ) = EG∼pd
[∇Θ log fΘ(G, I)]− EG∼pΘ [∇Θ log fΘ(G, I)], (8.1.3)

where pΘ is the model distribution that approximates pd (i.e., the posterior distribution
pΘ(G|I) defined by JM-SGG model). In practice, we estimate the first expectation in the
above equation with the ground-truth scene graphs in a mini-batch. The estimation of the
second expectation is nontrivial, which requires to sample scene graphs from the intractable
model distribution. One option is to run the Markov Chain Monte Carlo (MCMC) sampler,
but its computational cost is high, and we therefore use mean-field variational inference for
more efficient sampling as introduced next.
Inference. The inference phase aims to compute the posterior distribution pΘ(G|I) and
also sample from it. Exact inference is always infeasible due to the complex structure among
the latent variables yO and R of the scene graph. Therefore, we approximate pΘ(G|I) with
a variational distribution qΩ(G) via the mean-field approximation:

qΩ(G) =
∏
o∈O

qΩ(yo)
∏

(oh,r,ot)∈R

qΩ(r), (8.1.4)

where each factor qΩ(yo) and qΩ(r) defines a categorical distribution. Similar to models
introduced in previous chapters, these factors are parameterized by deep learning models,
which significantly improves the effectiveness and efficiency of inference. Due to the limited
space, we omit the details.

8.1.3. Article Details

This section includes materials from the following paper where I get involved as the
second author. My contribution is summarized as follows:
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• Joint Modeling of Visual Objects and Relations for Scene Graph Generation.
Minghao Xu, Meng Qu, Bingbing Ni, Jian Tang. Advances in Neural Information Pro-
cessing Systems, 2021.
Personal Contribution. I participated in conceiving the initial idea, formulating the math-
ematical foundations of the approach, and contributed to crafting specific sections of the
paper. Minghao also contributed to the conceptualization of the idea, collaborated on
mathematical formulation, took charge of model implementation, conducted all experi-
ments, and contributed to the content of the paper. Bingbing played a role in shaping the
idea and contributed to refining the paper writing. Jian was instrumental in brainstorm-
ing the idea, providing valuable insights into its development, and played a pivotal role in
overseeing the project progression while also contributing to the final refinement.

8.2. Learning on Text-attributed Graphs
In Zhao et al. [167] which I contribute as the co-first author, we leverage our paradigm for

learning on text-attributed graphs, which is an important problem in both natural language
processing and graph machine learning. For this problem, we integrate relational Markov
networks (RMN) [127] in statistical relational learning and pre-trained language models
(PLM) [55] in deep learning.

8.2.1. Problem Definition

A Text-Attributed Graph (TAG) GS = (V,A, sV ) is composed of nodes V and their
adjacency matrix A ∈ R|V |×|V |, where each node n ∈ V is associated with a sequential text
feature (sentence) sn. There are a variety of reasoning tasks on a TAG, and here we take
node classification as an example to study as it is the most important task on TAGs. Given
a few labeled nodes yL of L ⊂ V , the goal is to predict the labels yU for the remaining
unlabeled objects U = V \ L.

8.2.2. Model

We present GLEM as a solution to address the previously described problem. In a
manner akin to GMNN, GLEM defines the joint distribution of node labels using a relational
Markov network (RMN), effectively capturing the intricate dependencies among node labels.
However, inference and learning within the RMN framework remain a challenge. To tackle
this, GLEM employs mean-field inference and parameterizes the variational distribution with
pre-trained language models (PLM), such as BERT. These two crucial components, RMN
and PLM, undergo an alternating optimization process within an EM framework.
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To summarize, the RMN in GLEM adeptly models label dependencies among nodes,
enhancing the performance of the PLM. Simultaneously, the PLM substantially boosts the
efficiency and effectiveness of both RMN inference and learning, resulting in a harmonious
fusion of these components for node classification in TAGs.
Probabilistic Formalization. GLEM is based on a pseudo-likelihood variational frame-
work, which offers a principled and flexible formalization for model design. The framework
tries to maximize the log-likelihood function of the observed node labels, i.e., p(yL|sV , A).
Directly optimizing the function is often hard due to the unobserved node labels yU , and
thus the framework instead optimizes the evidence lower bound as below:

log p(yL|sV , A) ≥ Eq(yU |sU )[log p(yL,yU |sV , A)− log q(yU |sU)], (8.2.1)

where q(yU |sU) is a variational distribution and the above inequality holds for any q. The
ELBO can be optimized by alternating between optimizing the distribution q (i.e., E-step)
and the distribution p (i.e., M-step). In the E-step, we aim at updating q to minimize the
KL divergence between q(yU |sU) and p(yU |sV , A,yL), so that the above lower bound can
be tightened. In the M-step, we then update p towards maximizing the following pseudo-
likelihood function:

Eq(yU |sU )[log p(yL,yU |sV , A)] ≈ Eq(yU |sU )[
∑
n∈V

log p(yn|sV , A,yV \n)]. (8.2.2)

Next, we introduce how we apply the framework to node classification in TAGs by instanti-
ating the p and q distributions with RMNs and PLMs respectively.
Parameterization. The distribution q aims to use the text information sU to define node
label distribution. In GLEM, we use a mean-field form, assuming the labels of different
nodes are independent and the label of each node only depends on its own text information,
yielding the following form of factorization:

qθ(yU |sU) =
∏

n∈U

qθ(yn|sn). (8.2.3)

Each term qθ(yn|sn) can be modeled by a PLM qθ parameterized by θ, which effectively
models the fine-grained token interactions.

On the other hand, the distribution p defines a joint distribution p(yV |sV , A), aiming to
model the dependency of node labels. Thus, we apply a RMN pϕ to parameterize the joint
distribution with ϕ being the model parameters. During both inference and learning, only
the joint distribution pϕ(yn|sV , A,yNB(n)) induced by the RMN pϕ is required, so we follow
GMNN and characterize the RMN with a graph neural network.
Optimization. The optimization process of GLEM remains very similar to the process of
GMNN, where an EM framework is employed. Due to the limited space, we omit the details
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of the optimization algorithm. For audience who are interested in the optimization process,
please refer to Algorithm 1.

8.2.3. Article Details

The materials of this section come from the following paper where I contribute as a co-
first author. The details of the paper and my personal contribution are summarized as below
(* stands for equal contribution):
• Learning on Large-scale Text-attributed Graphs via Variational Inference.

Jianan Zhao*, Meng Qu*, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, Jian
Tang. International Conference on Learning Representations, 2023.
Personal Contribution. I involved in the inception of the initial idea, contributed to the
development of mathematical formulations, played an active role in designing experiments,
and wrote the majority of the paper. Jianan was also instrumental in the conception of the
initial idea, took charge of model implementation, fine-tuned its performance, conducted a
significant portion of the experiments, and initiated the first draft of the paper. Hao played
a vital role in refining the model performance and actively contributed to the experimen-
tal phase. Chaozhuo, Qian, Rui, and Xing made valuable contributions through extensive
discussions on the idea and participated in the collaborative paper writing process. Jian
contributed to the formulation of the idea, enhanced the quality of paper writing, and
provided valuable project supervision.

8.3. Few-shot Sentence Classification
In Qu et al. [104] where I was the first author, the paradigm proposed in this thesis is

applied to few-shot relation extraction, which is essentially a few-shot sentence classifica-
tion problem and has a variety of applications in the field of natural language processing.
For this problem, we leverage a probabilistic formalization inspired by statistical relational
learning, and meanwhile apply the pre-trained language models (PLM) [55] in deep learning
to facilitate the inference process.

8.3.1. Problem Definition

Relation extraction is an important task in many research areas, which aims at predicting
the relation of two entities given a sentence. Existing methods typically require a large
number of labeled sentences for training, which are expensive to obtain. Thus, recent studies
focus on few-shot relation extraction, where only few examples for each relation are given as
training data. However, the results are still far from satisfactory due to limited information in
the few examples. To further improve the results, another data source should be considered.
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Therefore, we propose to study few-shot relation extraction with a global graph of rela-
tions, where a global graph describing the connections of all possible relations is assumed
to be an additional data source. More formally, we denote the global relation graph as
G = {R,L}, where R is the set of all the possible relations, and L is a collection of links
between different relations. The linked relations are likely to have similar semantic meanings.

In few-shot relation extraction, each time we only consider a subset of relations from
the whole relation set, i.e., T ⊆ R. Given a few support sentences S of these relations,
where xS = {xs}s∈S represents the text of these sentences, and yS = {ys}s∈S represents the
corresponding labels with each ys ∈ T , our goal is to learn a classifier for these relations
using the global graph and support sentences. Then for some unlabeled query sentences
xQ = {xq}q∈Q, we apply the classifier to predict their labels yQ = {yq}q∈Q with each yq ∈ T .

8.3.2. Model

We introduce REGRAB as a solution to the problem at hand. Drawing inspiration
from established methods in statistical relational learning, we reframe the problem from a
probabilistic perspective. This approach offers a deeper insight into the problem, allowing us
to effectively capture the interdependencies among support sentences and query sentences.
To enhance the inference process of our model, we take advantage of a pre-trained language
model (PLM) to improve both effectiveness and efficiency.

In summary, REGRAB borrows insights from the field of statistical relational learning
to formalize the problem and model the intricate relationships among support sentences and
query sentences, thereby enhancing the predictive capabilities of the PLM. Concurrently,
the incorporation of the PLM significantly improves the efficiency and effectiveness of the
inference process in REGRAB.
Probabilistic Formalization. REGRAB gets inspiration from statistical relational learn-
ing and formalizes the problem in a probabilistic way. More specifically, recall that given
a subset of relations T ⊆ R, the goal is to predict the labels yQ of some query texts xQ

based on a global task graph G and few support sentences (xS,yS). Formally, our goal can
be stated as computing the following log-probability:

log p(yQ|xQ,xS,yS,G). (8.3.1)

We compute the probability by representing each relation r ∈ T with a prototype vector vr,
which summarizes the semantic meaning of that relation. By introducing such prototype
vectors, the log-probability can be factorized as:

log p(yQ|xQ,xS,yS,G) = log
∫
p(yQ|xQ,vT )p(vT |xS,yS,G)dvT (8.3.2)
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where vT = {vr}r∈T is a collection of prototype vectors for all the target relations in T .
These prototype vectors are characterized by both the labeled sentences in the support set
and global task graph through the distribution p(vT |xS,yS,G). With such prototype vectors
to represent target relations, the distribution of query sentence labels can then be defined
through a softmax function as follows:

p(yQ|xQ,vT ) =
∏
q∈Q

p(yq|xq,vT ), with each

p(yq = r|xq,vT ) = exp(E(xq) · vr)∑
r′∈T exp(E(xq) · vr′) ,

(8.3.3)

where E is a sentence encoder, which encodes a query sentence xq into an encoding E(xq).
Intuitively, we compare the encoding with the prototype vector vr of each relation to estimate
how likely the sentence expresses the relation.

Under such a formalization, the key is how to parameterize p(vT |xS,yS,G), which is
the posterior distribution of prototype vectors conditioned on the support sentences and the
global relation graph. Next, we introduce how we parameterize the posterior distribution.
Parameterization of the Posterior Distribution. To model the posterior distribution
of prototype vectors, we notice that the posterior can be naturally factorized into a prior
distribution conditioned on the relation graph, and a likelihood function on the few support
sentences. Therefore, we can formally represent the posterior as follows:

p(vT |xS,yS,G) ∝ p(yS|xS,vT )p(vT |G), (8.3.4)

where p(vT |G) is the prior for the prototype vectors and p(yS|xS,vT ) is the likelihood on
support sentences. To effectively extract knowledge from the global task graph to charac-
terize the prior distribution, we introduce a graph neural network. As this part is not our
main focus, we will skip the details.

Besides the graph-based prior, we also consider the likelihood on support sentences when
parameterizing the posterior distribution of prototype vectors. Similar to the likelihood on
the query sentences, the likelihood on support sentences can be characterized as below:

p(yS|xS,vT ) =
∏
s∈S

p(ys|xs,vT ), with each

p(ys = r|xs,vT ) = exp(E(xs) · vr)∑
r′∈T exp(E(xs) · vr′) ,

(8.3.5)

where E is a sentence encoder. To improve the performance of inferring sentence labels, we
parameterize the sentence encoder E with a PLM (e.g., BERT [55]).
Summary. Through a formalization inspired by statistical relational learning and the
strategic utilization of pre-trained language models (PLMs) to enhance inference, REGRAB
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adeptly captures the intricate dependencies between support sentences and query sentences.
Consequently, this approach leads to precise inference of sentence labels.

Due to limited space, here we omit the details of how to optimize REGRAB. For audience
interested in the optimization algorithm, please refer to the paper [104].

8.3.3. Article Details

This section mainly reuses the content of the following paper where I am the first author.
We summarize the details and my contribution as follows:
• Few-shot Relation Extraction via Bayesian Meta-learning on Task Graphs.

Meng Qu, Tianyu Gao, Louis-Pascal Xhonneux, Jian Tang. International Conference on
Machine Learning, 2020.
Personal Contribution. I conceived the idea, formulated the mathematical framework, im-
plemented the model, conducted the majority of the experiments, and wrote most sections
of the paper. Tianyu contributed to conducting specific experiments. Louis-Pascal played
an engaged role in project discussions, offering valuable insights and perspectives. Jian
was instrumental in shaping the initial idea through collaborative discussions, enhanced
the quality of paper writing, and provided essential project supervision.
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Chapter 9

Conclusion

This thesis primarily revolves around reasoning on graph-structured data, encompassing a
spectrum of applications such as node classification, link prediction, and logic rule induction.

These tasks find solutions in two distinct yet harmonious realms: deep learning and
statistical relational learning. These methodologies naturally complement each other. Sta-
tistical relational learning excels at modeling intricate dependencies among evidence and
incorporates logic rules effectively. In contrast, deep learning methods excel at learning
meaningful representations of objects, offering efficiency and high-performance capabilities
across a diverse array of tasks. Recognizing the inherent synergy between these approaches,
we introduce an innovative paradigm that unites them. Specifically, deep learning techniques
play a pivotal role in speeding up the typically slower processes of inference and learning
within statistical relational learning. Simultaneously, statistical relational learning methods
refine the predictions generated by deep learning models, capitalizing on joint dependencies
and logical rules. This integrated paradigm enables the development of efficient approaches
capable of capturing complex logical dependencies.

In Section 3 and Section 4, we delve into node classification within the transductive
and inductive settings respectively, introducing GMNN and SPN as our proposed solutions.
These approaches seamlessly merge the principles of relational Markov networks and con-
ditional random fields from the statistical relational learning domain with the power of
graph neural networks from deep learning. This integration equips GMNN and SPN to
learn meaningful node representations for accurate node label predictions while effectively
capturing dependencies among node labels.

In Section 5, we tackle a more intricate challenge: knowledge graph reasoning, which
is a task of predicting missing links within a knowledge graph. To address this, we intro-
duce pLogicNet, a solution that marries knowledge graph embedding techniques from deep



learning with Markov logic networks from statistical relational learning. Through this fu-
sion, pLogicNet harnesses pre-defined logic rules to enhance entity and relation embeddings,
thereby advancing knowledge graph reasoning.

Section 6 and Section 7 further explore the automatic learning of logic rules, eliminating
the need for manual rule specification. Toward this goal, we introduce RNNLogic and Dif-
fLogic. These models integrate stochastic logic programming from the statistical relational
learning realm for reasoning tasks (i.e., reasoning predictor) and employ deep generative
models from deep learning for logic rule generation (i.e., rule generator). We present both
an EM-based optimization algorithm and an end-to-end differentiable optimization algo-
rithm, allowing effective joint optimization of the reasoning model and rule generator. This
integration empowers us to automatically uncover crucial logic rules and achieve remarkable
results in the task of knowledge graph reasoning.

The preceding chapters have applied our paradigm to pivotal applications within the
field of graph machine learning. Importantly, this paradigm exhibits the potential to extend
its utility to various other domains. In Section 8, we showcase three illustrative examples:
scene graph generation, learning on text-attributed graphs, and few-shot sentence classifica-
tion. These instances serve as compelling evidence of the versatility and adaptability of our
proposed paradigm, highlighting its capacity to excel across a wide spectrum of applications.

9.1. Future Directions
Our paradigm of integrating deep learning and statistical relational learning opens up a

vast array of promising avenues for future exploration and advancement.

9.1.1. Application to Large Language Models

In recent developments within the deep learning arena, large language models (LLMs) [93,
94, 133, 134] have demonstrated remarkable expressive capabilities in reasoning, yielding
impressive outcomes across a diverse range of tasks.

Large language models tackle reasoning problems by framing them as a text generation
task, with the ability to autonomously generate answers in an autoregressive manner. While
this approach has proven effective, it lacks the structured reasoning process that humans
employ, where we construct schema graphs in our minds to facilitate complex problem-
solving. Some recent efforts aim to address this discrepancy by introducing various schema
graphs into large language models to enhance their reasoning capabilities. Examples include
chain-of-thought (CoT) [147] and tree-of-thought (ToT) [160], which introduce chain-like
and tree-like structures, respectively, during the reasoning process of large language models.
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Despite their promising results, these methods remain in relatively nascent stages com-
pared to the structured way human reasoning operates. We firmly believe that our proposed
paradigm offers a more principled solution to this challenge by combining large language
models with statistical relational learning. By leveraging statistical relational learning, our
paradigm can extract inherent logic and dependencies from observed data, upon which we
can construct a schema graph and further build a probabilistic graphical model (e.g., Markov
logic networks [106]) to aid large language models in their reasoning. This approach enables
language models to engage in more structured reasoning processes, potentially leading to
even more robust and refined results.

9.1.2. Application in Drug Discovery

The field of drug discovery has assumed paramount importance, especially in the wake
of the COVID-19 pandemic, as it strives not only to combat infectious diseases but also to
tackle severe conditions such as cancer, making significant strides for the benefit of humanity.
Concurrently, the rapid advancement of geometric deep learning [9] has positioned these tech-
niques as potent tools in the realm of drug discovery. The underlying concept involves con-
structing a graph that represents the spatial relationships among atoms in three-dimensional
space and harnessing equivariant graph neural networks [113] to facilitate message passing
among these atoms. These methods have delivered remarkable results across a diverse spec-
trum of tasks. Notably, based on the foundations of geometric deep learning, AlphaFold2 [52]
and RosettaFold [2] have achieved groundbreaking outcomes in protein structure prediction,
marking a significant milestone in computational biology and advancing the quest for anti-
body drug design.

While geometric deep learning has demonstrated impressive performance, it relies on a
substantial volume of data to effectively learn the intricate patterns governing the interac-
tions among various biomedical entities, including proteins, drugs, and antigens. However,
the availability of such data in the realm of drug discovery remains constrained. This limi-
tation impedes the ability of these models to acquire a comprehensive understanding of the
mechanisms or rules governing entity interactions, occasionally resulting in deviations from
established biomedical principles.

To address this challenge, a promising avenue involves applying our paradigm to integrate
geometric deep learning and statistical relational learning. This approach enables us to
explicitly leverage statistical relational learning methods to model the rules and insights
distilled by human experts. These learned rules can then be employed to refine or regularize
the predictions generated by geometric deep learning models, ultimately yielding enhanced
prediction results and aligning more closely with established principles in biomedicine.
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9.1.3. Alignment with the Consciousness Prior

The consciousness prior, as proposed by Bengio [5], introduces an innovative framework
for learning high-level abstract representations. It conceptualizes consciousness as an atten-
tion mechanism that selects a limited set of concepts, condensing them into a low-dimensional
conscious state. This conscious state serves as a critical bottleneck significantly influencing
subsequent processing, with a direct correspondence to thoughts that can be articulated in
natural language. Notably, the prior posits a joint distribution between high-level concepts
characterized by a sparse factor graph, where each factor relates only to a small subset
of concepts. This design aligns seamlessly with natural language and symbolic knowledge
representations. The consciousness prior effectively facilitates the learning of disentangled
representations and fosters systematic generalization, establishing connections between deep
learning and higher cognitive functions such as reasoning, planning, and imagination.

The consciousness prior shares several key intuitions with our paradigm, particularly in
their shared objective of integrating deep learning techniques with the cognitive capabili-
ties akin to System 2 thinking. Both approaches seek to empower models with enhanced
capacity for effective and intricate reasoning. Furthermore, both methods employ graph
structures as abstract representations of high-level knowledge, leveraging them to enhance
deep learning models. While the consciousness prior endeavors to unveil a sparse factor
graph from observed evidence, our paradigm strives to learn logical patterns that elucidate
the dependencies between objects, subsequently constructing a probabilistic graphical model
to encapsulate these relationships.

Given these substantial similarities, we posit that there exists a potential for a unified
framework that bridges the consciousness prior and our paradigm. Consequently, further ex-
ploration into establishing connections between these two paradigms and potentially crafting
a more powerful framework is a topic ripe for investigation.
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Chapter A

GMNN: Graph Markov Neural Networks

A.1. Optimality Condition of the Inference Network
Theorem A.1.1. For a node n and a fixed variational distribution qθ(yNB(n)∩U |xV ) for
nodes in NB(n) ∩ U , the optimum of qθ(yn|xV ), denoted by q∗(yn|xV ), is characterized by
the following condition:

log q∗(yn|xV ) = Eqθ(yNB(n)∩U |xV )[log pϕ(yn|yNB(n),xV )] + const.

Proof. To make the notation concise, we omit xV in the proof (e.g. simplifying qθ(yn|xV ) as
qθ(yn)). Our goal for qθ(yn) is to minimize the KL divergence between qθ(yU) and pϕ(yU |yL).
Therefore, the objective for qθ(yn) is formulated as follows:

O(qθ(yn)) =−KL(qθ(yU)||pϕ(yU |yL))

=
∑
yU

qθ(yU)[log pϕ(yU |yL)− log qθ(yU)]

=
∑
yU

(∏
n′
qθ(yn′)

)[
log pϕ(yU ,yL)−

∑
n′

log qθ(yn′)
]

+ const

=
∑
yn

∑
yU\n

qθ(yn)
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n′ ̸=n

qθ(yn′)
[log pϕ(yU ,yL)−

∑
n′

log qθ(yn′)
]

+ const

=
∑
yn

qθ(yn)
∑

yU\n

∏
n′ ̸=n

qθ(yn′) log pϕ(yU ,yL)−

∑
yn

qθ(yn)
∑

yU\n

∏
n′ ̸=n

qθ(yn′)
∑

n′ ̸=n

log qθ(yn′) + log qθ(yn)
+ const

=
∑
yn

qθ(yn) logF(yn)−
∑
yn

qθ(yn) log qθ(yn) + const

=−KL
(
qθ(yn)||F(yn)

Z

)
+ const.



Here, Z is a normalization term making F(yn) a valid distribution on yn, and we have:

logF(yn) =
∑

yU\n

∏
n′ ̸=n

qθ(yn′) log pϕ(yU ,yL) = Eqθ(yU\n)[log pϕ(yU ,yL)].

Based on the above mathematical manipulation of the objective function O(qθ(yn)), if a local
optimal of qθ(yn) is denoted by q∗(yn|xV ), then q∗(yn|xV ) must be equal to F(yn)

Z
, and thus

we have:
log q∗(yn) = logF(yn) + const

= Eqθ(yU\n)[log pϕ(yU ,yL)] + const

= Eqθ(yU\n)[log pϕ(yn|yV \n)] + const

= Eqθ(yU\n)[log pϕ(yn|yNB(n))] + const

= Eqθ(yNB(n)∩U )[log pϕ(yn|yNB(n))] + const.
Here, pϕ(yn|yV \n) = pϕ(yn|yNB(n)) is based on the conditional independence property of
Markov networks. □
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Chapter B

SPN: Structured Proxy Networks

B.1. Derivation of the Maximin Game
As discussed in the Section 4.3, optimizing the joint label distribution pθ to maximize

the log-likelihood log pθ(y∗
V |xV , E) on a training graph (y∗

V ,xV , E) is equivalent to solving a
maximin game. In this section, we provide the detailed derivation.

Let ψθ(yV ,xV , E) be the potential function as below:

ψθ(yV ,xV , E) = exp

∑
s∈V

θs(ys,xV , E) +
∑

(s,t)∈E

θst(ys, yt,xV , E)

 . (B.1.1)

For each training graph (y∗
V ,xV , E), we aim at maximizing the following log-likelihood func-

tion:

log pθ(y∗
V |xV , E) = log 1

Zθ(xV , E)ψθ(y∗
V ,xV , E)

= logψθ(y∗
V ,xV , E)− logZθ(xV , E)

= logψθ(y∗
V ,xV , E)− log

∑
yV

ψθ(yV ,xV , E).

(B.1.2)

However, the term log∑yV
ψθ(yV ,xV , E) is computationally intractable, as we need to sum

over all the possible yV . To solve the problem, we introduce a variational joint distribution
q(yV ) defined on all node labels yV , and use the Jensen’s inequality to derive an estimation
of the term log∑yV

ψθ(yV ,xV , E) as follows:

log
∑
yV

ψθ(yV ,xV , E) = logEq(yV )

[
ψθ(yV ,xV , E)

q(yV )

]

≥ Eq(yV )

[
log ψθ(yV ,xV , E)

q(yV )

]
= Eq(yV )[logψθ(yV ,xV , E)]− Eq(yV )[log q(yV )].

(B.1.3)



The equation holds if and only if q(yV ) = pθ(yV |xV , E), and hence:

log
∑
yV

ψθ(yV ,xV , E) = max
q(yV )

{
Eq(yV )[logψθ(yV ,xV , E)]− Eq(yV )[log q(yV )]

}
. (B.1.4)

By taking the above result into Equation (B.1.2), we obtain:

log pθ(y∗
V |xV , E) = logψθ(y∗

V ,xV , E)− log
∑
yV

ψθ(yV ,xV , E)

= min
q(yV )

{
logψθ(y∗

V ,xV , E)− Eq(yV )[logψθ(yV ,xV , E)] + Eq(yV )[log q(yV )]
}
.

(B.1.5)

As ψθ(yV ,xV , E) = exp{∑s∈V θs(ys,xV , E) +∑
(s,t)∈E θst(ys, yt,xV , E)}, we have:

log pθ(y∗
V |xV , E) = min

q
L(θ, q), (B.1.6)

with:

L(θ, q) = −H[q(yV )]

+
∑

(s,t)∈E

{θst(y∗
s , y

∗
t )− Eqst(ys,yt)[θst(ys, yt)]}+

∑
s∈V

{θs(y∗
s)− Eqs(ys)[θs(ys)]}. (B.1.7)

Therefore, optimizing θ to maximize the log-likelihood function is equivalent to solving the
following maximin game:

max
θ

log pθ(y∗
V |xV , E) = max

θ
min

q
L(θ, q). (B.1.8)

B.2. Derivation of the Moment-matching Conditions
In the CRF model defined in the preliminary section, the parameter θ consists of the out-

put values of all θ-functions. In other words, θ = {θs(ys)}ys∈Y,s∈V ∪ {θst(ys, yt)}ys∈Y,yt∈Y,s∈V ,
where Y is the set of all the possible node labels.

By definition, pθ(yV |xV , E) belongs to the exponential family. According to proper-
ties of exponential family distributions, log pθ(y∗

V |xV , E) is strictly concave with respect
to θ. Therefore, the optimal θ is unique, which is characterized by the condition of
∂
∂θ

log pθ(y∗
V |xV , E) = 0. Formally, ∂

∂θ
log pθ(y∗

V |xV , E) can be computed as below:

∂

∂θs(ŷs)
log pθ(y∗

V |xV , E) = ∂

∂θ
logψθ(y∗

V ,xV , E)− ∂

∂θ
logZθ(xV , E). (B.2.1)
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For ∂
∂θ

logZθ(xV , E), we have:

∂

∂θ
logZθ(xV , E) = ∂

∂θ
log

∑
yV

ψθ(yV ,xV , E)

=
∑

yV

∂
∂θ
ψθ(yV ,xV , E)∑

yV
ψθ(yV ,xV , E)

=
∑

yV
ψθ(yV ,xV , E) ∂

∂θ
logψθ(yV ,xV , E)∑

yV
ψθ(yV ,xV , E)

=
∑
yV

 ψθ(yV ,xV , E)∑
y′

V
ψθ(y′

V ,xV , E)
∂

∂θ
logψθ(yV ,xV , E)


=
∑
yV

[
ψθ(yV ,xV , E)

Zθ

∂

∂θ
logψθ(yV ,xV , E)

]

= Epθ(yV |xV ,E)

[
∂

∂θ
logψθ(yV ,xV , E)

]
.

(B.2.2)

By combining the above two equations, we have:

∂

∂θ
log pθ(y∗

V |xV , E) = ∂

∂θ
logψθ(y∗

V ,xV , E)− Epθ(yV |xV ,E)

[
∂

∂θ
logψθ(yV ,xV , E)

]
. (B.2.3)

The potential function ψθ above is defined as ψθ(yV ,xV , E) = exp{∑s∈V θs(ys,xV , E) +∑
(s,t)∈E θst(ys, yt,xV , E)}. If we consider each specific scalar θs(ŷs), and taking the derivative

with respect to the scalar to 0, we obtain:

0 = ∂

∂θs(ŷs)
log pθ(y∗

V |xV , E)

= ∂

∂θs(ŷs)
logψθ(y∗

V ,xV , E)− Epθ(yV |xV ,E)

[
∂

∂θs(ŷs)
logψθ(yV ,xV , E)

]

= Iy∗
s
{ŷs}

[
∂

∂θs(ŷs)
θs(ŷs)

]
−
∑
yV

pθ(yV |xV , E)
[
Iy∗

s
{ŷs}

∂

∂θs(ŷs)
θs(ŷs)

]

= Iy∗
s
{ŷs}

[
∂

∂θs(ŷs)
θs(ŷs)

]
− pθ(ŷs|xV , E)

[
∂

∂θs(ŷs)
θs(ŷs)

]
= Iy∗

s
{ŷs} − pθ(ŷs|xV , E),

(B.2.4)

which implies pθ(ŷs|xV , E) = Iy∗
s
{ŷs} for the optimal θ. Moreover, this equation holds for all

s ∈ V and all ŷs ∈ Y .
Similarly, for each scalar θst(ŷs, ŷt), we have that ∂

∂θst(ŷs,ŷt) log pθ(y∗
V |xV , E) = 0 is equiv-

alent to pθ(ŷs,ŷt|xV , E) = Iy∗
s ,y∗

t
{ŷs, ŷt}. This equation holds for all (s, t) ∈ E and all the

choices of (ŷs, ŷt) ∈ Y × Y .
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Therefore, the optimal θ-functions are characterized by the moment-matching conditions
as below:

pθ(ys|xV , E) = Iy∗
s
{ys} ∀s ∈ V, pθ(ys,yt|xV , E) = Iy∗

s ,y∗
t
{ys, yt} ∀(s,t) ∈ E. (B.2.5)

B.3. Proof of Proposition 1 in SPN
Next, we prove Proposition 1. We first restate the proposition as follows:
Proposition Consider a set of nonzero pseudomarginals {τs(ys)}s∈V and

{τst(ys, yt)}(st)∈E which satisfy ∑
ys
τst(ys, yt) = τt(yt) and ∑

yt
τst(ys, yt) = τs(ys) for

all (s,t) ∈ E.
If we parameterize the θ-functions of pθ in Equation (4.3.2) in the following way:

θs(ys) = log τs(ys) ∀s ∈ V, θst(ys,yt) = log τst(ys, yt)
τs(ys)τt(yt)

∀(s, t) ∈ E, (B.3.1)

then {τs(ys)}s∈V and {τst(ys, yt)}(s,t)∈E are specified by a fixed point of the sum-product loopy
belief propagation algorithm when applied to the joint distribution pθ, which implies that:

τs(ys) ≈ pθ(ys) ∀s ∈ V, τst(ys, yt) ≈ pθ(ys,yt) ∀(s,t) ∈ E. (B.3.2)

Proof: To prove the proposition, we first summarize the workflow of the sum-product
loopy belief propagation algorithm. In sum-product loopy belief propagation, we introduce
a message function mt→s(ys) for each edge (s, t) ∈ E. Then we iteratively update all message
functions as follows:

mt→s(ys) ∝
∑
yt

exp(θt(yt) + θst(ys, yt))
∏

s′∈N(t)\s

ms′→t(yt)

 , (B.3.3)

where N(t) represents the set of neighbors for node t.
Once the process converges or after sufficient iterations, the approximation of the node

marginals and the edge marginals (i.e., {qs(ys)}s∈V and {qst(ys, yt)}(s,t)∈E) can be recovered
by the message functions {mt→s(ys)}(s,t)∈E as follows:

qs(ys) ∝ exp(θs(ys))
∏

t∈N(s)
mt→s(ys), (B.3.4)

qst(ys, yt) ∝ exp(θs(ys) + θt(yt) + θst(ys, yt))
∏

t′∈N(s)\t

mt′→s(ys)
∏

s′∈N(t)\s

ms′→t(yt). (B.3.5)

Next, let us move back to our case, where we parameterize the θ-functions with a set of
pseudomarginals as in Equation (B.3.1). For such a specific parameterization of the θ-
functions, we claim that one fixed point of Equation (B.3.3) is achieved when mt→s(ys) = 1
for all (s, t) ∈ E. To prove that, we notice that when all the message functions equal to 1,
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the left side of Equation (B.3.3) is apparently 1. The right side of Equation (B.3.3) can be
computed as below:

∑
yt

exp(θt(yt) + θst(ys, yt))
∏

s′∈N(t)\s

ms′→t(yt)

=
∑
yt

exp(θt(yt) + θst(ys, yt))

=
∑
yt

exp
(

log τt(yt) + log τst(ys, yt)
τs(ys)τt(yt)

)

=
∑
yt

exp
(

log τst(ys, yt)
τs(ys)

)

=
∑
yt

τst(ys, yt)
τs(ys)

=τs(ys)
τs(ys)

=1.

(B.3.6)

We can see that both the left side and the right side of Equation (B.3.3) are 1, and hence
{mt→s(ys) = 1}(s,t)∈E specifies a fixed point of sum-product loopy belief propagation. For
this fixed point, qs(ys) can be computed as follows:

qs(ys) ∝ exp(θs(ys))
∏

t∈N(s)
mt→s(ys) = exp(θs(ys)) = τs(ys). (B.3.7)

Similarly, we can compute qst(ys, yt) as:

qst(ys, yt) ∝ exp(θs(ys) + θt(yt) + θst(ys, yt))
∏

t′∈N(s)\t

mt′→s(ys)
∏

s′∈N(t)\s

ms′→t(yt)

= exp(θs(ys) + θt(yt) + θst(ys, yt))

= exp
(

log τs(ys) + log τt(yt) + log τst(ys, yt)
τs(ys)τt(yt)

)
= τst(ys, yt).

(B.3.8)

From the above two equations, we can see that {τs(ys)}s∈V and {τst(ys, yt)}(s,t)∈E are specified
by a fixed point (i.e., mt→s(ys) = 1 for all (s, t) ∈ E) of sum-product loopy belief propagation.
As sum-product loopy belief propagation often works well in practice to approximate the
marginal distributions on nodes and edges, we thus have τs(ys) ≈ pθ(ys) for each node and
τst(ys, yt) ≈ pθ(ys,yt) for each edge.

121



B.4. Solving the Proxy Problem with Constrained Op-
timization

The key innovation of our proposed approach is on the proxy optimization problem which
is used to approximate the original learning problem. Formally, the proxy optimization
problem is stated as:

min
τ,θ

∑
s∈V

d
(
Iy∗

s
{ys}, τs(ys)

)
+

∑
(s,t)∈E

d
(
I(y∗

s ,y∗
t ){(ys,yt)}, τst(ys, yt)

)
,

subject to θs = log τs(ys), θst(ys, yt) = log τst(ys, yt)
τs(ys)τt(yt)

,

and
∑
ys

τst(ys, yt) = τt(yt),
∑
yt

τst(ys, yt) = τs(ys),

(B.4.1)

for all nodes and edges, where d can be any divergence measure between two distributions.
In our implementation, we ignore these consistency constraints, i.e., ∑ys

τst(ys, yt) =
τt(yt) and ∑

yt
τst(ys, yt) = τs(ys). This ie because by by optimizing the objective, the ob-

tained pseudomarginals τ would well approximate the observed node and edge marginals,
i.e., τs(ys) ≈ Iy∗

s
{ys} and τst(ys, yt) ≈ I(y∗

s ,y∗
t ){(ys,yt)}, and hence τ would almost naturally

satisfy the constraints.
To demonstrate ignoring the consistency constraint makes sense, we also tried a con-

strained optimization method for solving the proxy problem. Specifically, we add a quadratic
term to penalize the inconsistency between τst(ys, yt) and τs(ys) as well as τt(yt), resulting
in the following problem:

min
τ,θ

∑
s∈V

d
(
Iy∗

s
{ys}, τs(ys)

)
+

∑
(s,t)∈E

d
(
I(y∗

s ,y∗
t ){(ys,yt)}, τst(ys, yt)

)

+ α
∑

(s,t)∈E

[∑
yt

{
∑
ys

τst(ys, yt)− τt(yt)}2 +
∑
ys

{
∑
yt

τst(ys, yt)− τs(ys)}2
]
,

subject to θs = log τs(ys), θst(ys, yt) = log τst(ys, yt)
τs(ys)τt(yt)

,

(B.4.2)

for all nodes and edges. Again, d is a divergence measure between two distributions, and we
choose to use the KL divergence. α is a hyperparameter deciding the weight of the penalty
term.

Algorithm
Constrained
Optimization

Cora* Citeseer* Pubmed*

SPN-GAT
w/o 49.10 ± 3.80 42.89 ± 1.30 47.79 ± 1.33
with 48.83 ± 3.51 42.04 ± 1.23 47.55 ± 1.24

Table 33. Analysis of constrained optimization methods in SPN.
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We conduct empirical comparison of this constrained optimization method and our de-
fault implementation where the consistency constraint is ignored. The results are presented
in Table 33. We can see that the constrained optimization method does not lead to improve-
ment, which shows that ignoring the consistency constraint is empirically reasonable.

B.5. Understanding SPNs as Optimizing a Surrogate for
the Log-likelihood

In the model section, we motivate SPNs from the moment-matching conditions of the
optimal θ-functions. Specifically, we initialize the θ-functions at a state where the moment-
matching conditions are approximately satisfied, yielding a near-optimal joint distribution.
Then we further tune the θ-functions to solve the maximin game. Besides this perspective,
SPNs can also be understood as optimizing a surrogate for the log-likelihood function. Next,
we introduce the details.

Remember that maximizing the log-likelihood function is equivalent to solving a maximin
game as:

max
θ

log pθ(y∗
V |xV , E) = max

θ
min

q
L(θ, q), with L(θ, q) = −H[q(yV )]

+
∑
s∈V

{θs(y∗
s)− Eqs(ys)[θs(ys)]}+

∑
(s,t)∈E

{θst(y∗
s , y

∗
t )− Eqst(ys,yt)[θst(ys, yt)]}.

(B.5.1)

Here, q(yV ) is a joint distribution on all the node labels. qs(ys) and qst(ys,yt) are the
corresponding marginal distributions.

Although the above maximin game is equivalent to the original problem of maximizing
likelihood, solving the maximin game is nontrivial. In particular, there are two key challenges,
i.e., (1) how to specify constraints to characterize a valid joint distribution q(yV ) and (2) how
to compute its entropy H(q) = −Eq(yV )[log q(yV )]. To deal with the challenge, a common
practice used in loopy belief propagation is to make the following two approximations:

(1) Instead of specifying constraints to let q(yV ) be a valid joint distribution, we intro-
duce a set of pseudomarginals as approximation to a valid joint distribution. Specifically,
these pseudomarginals are denoted as q̃ = {qs(ys)}s∈V ∪ {qst(ys, yt)}(s,t)∈E, and they satisfy∑

ys
qst(ys, yt) = qt(yt) and ∑yt

qst(ys, yt) = qs(ys) for all (s,t) ∈ E.
(2) We approximate the entropy H(q) with Bethe entropy approximation HBethe(q̃), which

is defined as follows:

HBethe(q̃) = −
∑
s∈V

Eqs(ys)[log qs(ys)]−
∑

(s,t)∈E

Eqst(ys,yt)

[
log qst(ys, yt)

qs(ys)qt(yt)

]
. (B.5.2)
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With the two approximations, we get the following maximin game as a surrogate for the
likelihood maximization problem:

max
θ

log pθ(y∗
V |xV , E) ≈ max

θ
min

q̃
LBethe(θ, q̃), (B.5.3)

with:
LBethe(θ,q̃) = −HBethe(q̃)

+
∑

(s,t)∈E

{θs,t(y∗
s , y

∗
t )− Eqst(ys,yt)[θs,t(ys, yt)]}+

∑
s∈V

{θs(y∗
s)− Eqs(ys)[θs(ys)]}. (B.5.4)

This problem is known as the Bethe variational problem (BVP) [139].
Such a problem can be solved by coordinate descent, where we alternate between updating

q̃ to minimize LBethe(θ, q̃) and updating θ to maximize LBethe(θ, q̃). According to Yedidia et al.
[162], updating q̃ to minimize LBethe(θ, q̃) can be exactly achieved by running sum-product
loopy belief propagation on pθ, where a fixed point of the belief propagation algorithm yields
a local optima of q̃. On the other hand, updating θ to maximize LBethe(θ, q̃) can be easily
achieved by gradient ascent.

In addition to that, a stationary point (θ∗, q̃∗) of the above BVP is specified by following
conditions:

∂LBethe(θ∗, q̃∗)
∂q̃∗ = 0 ∂LBethe(θ∗, q̃∗)

∂θ∗ = 0. (B.5.5)

According to Yedidia et al. [162] and Wainwright and Jordan [139], the first condition is
equivalent to the condition that q̃∗ is specified by a fixed-point of sum-product loopy belief
propagation. The second condition states that the moment-matching conditions are satisfied,
i.e., qs(ys) = Iy∗

s
{ys} on each node and qst(ys,yt) = I(y∗

s ,y∗
t ){(ys, yt)} on each edge.

For our proposed approach SPN, it can be viewed as solving the BVP as defined in
Equation (B.5.3). Through solving the proxy problem, SPN initializes θ at a state where
the conditions of stationary points in Equation (B.5.5) are approximately satisfied. Then
the fine-tuning stage of SPN further adjusts θ to solve the maximin game by alternatively
updating θ and q̃.

More specifically, when solving the proxy optimization problem, by initializing θ in the
way defined by Equation (B.3.1), the collection of pseudomarginal distributions {τs(ys)}s∈V

and {τst(ys, yt)}(s,t)∈E is specified by a fixed point of sum-product loopy belief propagation
according to Proposition 1. This implies that ∂

∂q̃
LBethe(θ, q̃) = 0 for q̃ = {τs(ys)}s∈V ∪

{τst(ys, yt)}(s,t)∈E. Meanwhile, as {τs}s∈V and {τst}(s,t)∈E are learned to match the true
labels y∗

V on each training graph, we thus have τs(ys) ≈ Iy∗
s
{ys} on each node and

τst(ys,yt) ≈ I(y∗
s ,y∗

t ){(ys, yt)} on each edge. Therefore, the conditions in Equation (B.5.5)
are approximately satisfied by (θ, q̃) with q̃ = {τs(ys)}s∈V ∪ {τst(ys, yt)}(s,t)∈E, which means
that solving the proxy problem yields a θ to roughly match the conditions of stationary
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points for the BVP in Equation (B.5.3). Afterwards, the refinement stage of SPN is exactly
trying to solve the maximin game of BVP in Equation (B.5.3), where we alternate between
updating q̃ to minimize LBethe(θ, q̃) via sum-product loopy belief propagation and updating
θ to maximize LBethe(θ, q̃) via gradient ascent.

As a result, we see that the SPN can also be understood as solving the Bethe variational
problem in Equation (B.5.3), which acts as a surrogate for the log-likelihood function.

B.6. Details of Experiments
Next, we describe our experimental setup in more details.

Dataset Task # Features # Labels
Training Graphs Validation Graphs Test Graphs

# Graphs Avg. # Nodes Avg. # Edges # Graphs Avg. # Nodes Avg. # Edges # Graphs Avg. # Nodes Avg. # Edges
PPI ML 50 121 20 2245.3 61318.4 2 3257 99460.0 2 2762 80988.0

Cora* MC 1433 7 140 5.6 7.0 500 4.9 5.8 1000 4.7 5.3
Citeseer* MC 3703 6 120 4.0 4.3 500 3.8 4.0 1000 3.8 3.8
Pubmed* MC 500 3 60 6.0 6.7 500 5.4 5.8 1000 5.6 6.7

DBLP MC 100 3 1 6488 10262 1 14142 48631 1 26813 155899

Table 34. Statistics of datasets used in SPN.

Datasets. The statistics of the datasets used in our experiment are summarized in Table 34.
For the Cora*, Citeseer*, Pubmed*, and PPI datasets, they are under the MIT license.

For the DBLP dataset, it is constructed from the citation network 1 in Tang et al. [126].
Scientific papers from eight conferences are treated as nodes, which are divided into three
categories based on conference domains 2 for classification. For each paper, we compute the
mean GloVe embedding 3 [96] of words in the title and abstract as features. We split the
dataset into three disjoint graphs for training/validation/test. The training graph contains
papers published before 1999 (with 1999 included). The validation graph contains papers
published between 2000 and 2009 (with 2000 and 2009 included). The test graph contains
papers published after 2010 (with 2010 included). There exists an undirected edge between
two papers if one cites the other one. Cross-split edges (e.g., an edge between a paper in the
training set and a paper in the validation set) are removed.

For the PPI datasets, there are 121 binary labels, and we treat each binary label as an
independent task. For each compared algorithm, we train a separate model for each task,
and report the overall results across all tasks.
Architecture Choices. To facilitate reproducibility, we use the GNN module implemen-
tations of PyTorch Geometric [29], and follow the GNN models provided in the examples
of the repository, unless otherwise mentioned. Note that most architecture choices are not

1https://originalstatic.aminer.cn/misc/dblp.v12.7z
2ML: ICML/NeurIPS. CV: ICCV/CVPR/ECCV. NLP: ACL/EMNLP/NAACL.
3http://nlp.stanford.edu/data/glove.6B.zip
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optimal on the benchmark datasets, but we did not tune them since we only aim to show
that our method brings consistent and significant improvement.
• GCN [61]. We set the number of hidden neurons to 16, and the number of layers to 2.

ReLU [87] is used as the activation function. We do not dropout between GNN layers.
• GraphSage [46]. We set the number of hidden neurons to 64, and the number of layers

to 2. ReLU [87] is used as activation functions. We do not dropout between GNN layers.
• GAT [137]. We set the number of hidden neurons to 256 per attention head, and the

number of layers to 3. The number of heads for each layer is set to 4, 4 and 6. ELU [17]
is used as the activation function. We do not dropout between GNN layers.
• Graph U-Net [33]. We set the number of hidden neurons to 64 and the number of layers

to 3. We randomly dropout 20% of the edges from the adjacency matrix. We do not
dropout node features or between layers.
• GCNII [12]. We set the number of hidden neurons to 2048 for the citation datasets

(Cora*, Citeseer*, Pubmed* and DBLP) and 256 for the PPI dataset. We set the number
of layers to 9. ReLU [87] is used as the activation function. For PPI, layer normalization [1]
is applied between the GCNII layers. We do not dropout between GNN layers. We set the
strength α of the initial residual connection to 0.5, and the hyperparameter θ to compute
the strength of the identity mapping to 1.
• The g function. In Equation (4.4.4) of the model section, we define g as a function

mapping a pair of L-dimensional representations to a (|Y| × |Y|)-dimensional logit. Two
variants of this function are used in our experiment. For the PPI and DBLP dataset,
we use the linear variant, where the pair of node representations are concatenated and
plugged into a linear layer:

glinear(vs,vt) = W[vs; vt] + b, (B.6.1)

where W ∈ R(|Y|×|Y|)×2L is the weight matrix and b ∈ R|Y|×|Y| is the bias. For the citation
datasets (Cora*, Citeseer*, Pubmed*), we use the bilienar variant, where the pair of node
representations are plugged in a bilinear mapping:

gbilinear(vs,vt) = (Wvs)(Wvt)T , (B.6.2)

where W ∈ R|Y|×L is a weight matrix.
• SPN with a shared GNN. By default, the SPN uses a node GNN and an edge GNN

to approximate the pseudomarginals on nodes and edges respectively. In the experiment,
we also consider using a shared GNN for both pseudomarginals on nodes and edges. In
other words, us = vs, ∀s ∈ V (see Equation (4.4.3) and Equation (4.4.4)). All the other
components are the same as the default SPN. The results of this variant are shown in
Table 16 of the experiment section.
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Hyperparameter Choices. For each method, we choose the hyperparameters based on
the performance on the validation set. The values of the hyperparameters are shown below.
• GNNs and SPNs. For node classification, the learning rate of the node GNN τs in GNNs

and SPNs is presented in Table 35. For edge classification, the learning rate of the edge
GNN τst is presented in Table 36. For the temperature γ used in the edge GNN τst of
SPNs, we report its values in Table 37.
• CRF-linear. For CRF-linear training, we set the learning rate to 5× 10−4.
• CRF-GNNs and SPN. For CRF and the refinement stage of SPN, we set learning rates

to 1× 10−5.
• GMNN. For GMNN training, we set the learning rate to 5× 10−3.

Algorithm PPI Cora* Citeseer* Pubmed* DBLP
GCN 5× 10−3 5× 10−3 1× 10−2 1× 10−2 1× 10−2

GraphSage 5× 10−3 5× 10−3 5× 10−3 5× 10−3 5× 10−3

GAT 5× 10−3 1× 10−2 1× 10−3 1× 10−3 1× 10−3

Graph U-Net 5× 10−3 1× 10−2 1× 10−2 1× 10−2 -
GCNII 5× 10−3 1× 10−2 1× 10−2 1× 10−2 1× 10−3

Table 35. Learning rate of the node GNN τs in SPN.

Algorithm PPI Cora* Citeseer* Pubmed* DBLP
GCN 1× 10−3 1× 10−2 5× 10−2 1× 10−2 5× 10−3

GraphSage 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

GAT 1× 10−3 1× 10−3 5× 10−4 5× 10−4 5× 10−4

Graph U-Net 1× 10−3 1× 10−2 1× 10−2 1× 10−2 -
GCNII 1× 10−3 5× 10−3 1× 10−3 1× 10−3 1× 10−4

Table 36. Learning rate of the edge GNN τst in SPN.

Algorithm PPI Cora* Citeseer* Pubmed* DBLP
GCN 10 0.2 1 2 2

GraphSage 10 10 10 10 10
GAT 10 0.2 10 0.2 0.2

Graph U-Net 10 0.5 1 0.2 -
GCNII 10 0.5 0.5 0.5 2

Table 37. Temperature γ of the edge GNN τst in SPN.

Computational Resources. We run the experiment by using NVIDIA Tesla V100 GPUs
with 16GB memory.
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Chapter C

pLogicNet: Probabilistic Logic Neural Nets

C.1. Detailed Experiment Settings
In pLogicNet, we parameterize the variational distribution qθ as a TransE model [8],

and we use the method as used in [121] for training the model. More specifically, we define
qθ(v(h,r,t)) by using a distance-based formulation, i.e., qθ(v(h,r,t) = 1) = σ(γ−||xh +xr−xt||),
where σ is the sigmoid function and γ is a hyperparameter, which is fixed during training.
We generate negative samples by using self-adversarial negative sampling [121], and use
Adam [58] as the optimizer. In addition, we filter out unreliable rules and triplets based
on the threshold τrule and τtriplet respectively. During prediction, λ is used to control the
relative weight of the knowledge graph embedding model qθ and the rule-based model pw.
The detailed hyperparameter settings can be found in Table 38.

Dataset Embedding Dim. Batch Size # Negative Samples α γ Learning Rate τrule τtriplet λ

FB15k 1000 2048 128 1.0 24 0.0001 0.1 or 0.8 a 0.7 0.5
WN18 500 512 1024 0.5 12 0.0001 0.1 0.5 100

FB15k-237 1000 1024 256 1.0 9 0.00005 0.6 0.7 0.5
WN18RR 500 512 1024 0.5 6 0.00005 0.1 0.5 100

Table 38. Hyperparameters of pLogicNet in the experiment.
aFor inverse rules and symmetric rules, the threshold is 0.1, whereas for composition rules and subrelation
rules, the threshold is 0.8.





Chapter D

RNNLogic: Learning Logic Rules

This section presents the proofs of some propositions used in the optimization algorithm of
RNNLogic.

Recall that in the E-step of the optimization algorithm, we aim to sample from the pos-
terior distribution over rule sets. However, directly sampling from the posterior distribution
is intractable due to the intractable partition function. Therefore, we introduce Proposition
1, which gives an approximation distribution with more tractable form for the posterior
distribution. With this approximation, sampling becomes much easier. In Section D.1, we
present the proof of Proposition 2. In Section D.2, we show how to perform sampling based
on the approximation of the posterior distribution.

D.1. Proof of Proposition 2 in RNNLogic
Next, we prove Proposition 2, which is used to approximate the true posterior probability

in the E-step of optimization. We first restate the proposition as follows:
Proposition Consider a data instance (G, q,a) with q = (h,r,?) and a = t. For a set of

rules ẑ generated by the rule generator pθ, we can compute the following score H for each
rule ∈ ẑ:

H(rule) =
{

scorew(t|rule)− 1
|A|

∑
e∈A

scorew(e|rule)
}

+ log RNNθ(rule|r),

where A is the set of all candidate answers discovered by rules in ẑ, scorew(e|rule) is the
score that each rule contributes to entity e as defined by Equation (6.4.4), RNNθ(rule|r) is
the prior probability of rule computed by the generator. Suppose s = maxe∈A |scorew(e)| < 1.
Then for a subset of rules zI ⊂ ẑ with |zI | = K, the log-probability log pθ,w(zI |G, q,a) could
be approximated as follows:∣∣∣∣∣∣log pθ,w(zI |G, q,a)−

 ∑
rule∈zI

H(rule) + γ(zI) + const
∣∣∣∣∣∣ ≤ s2 +O(s4)



where const is a constant term that is independent from zI , γ(zI) = log(K!/∏rule∈ẑ nrule!),
with K being the given size of set zI and nrule being the number of times each rule appears
in zI .

Proof: We first rewrite the posterior probability as follows:

log pθ,w(zI |G, q,a) = log pw(a|G, q, zI) + log pθ(zI |q) + const

= log exp(scorew(t))∑
e∈A exp(scorew(e)) + log Mu(zI |K,RNNθ(·|r)) + const,

where const is a constant term which does not depend on the choice of zI , and RNNθ(·|r)
defines a probability distribution over all the composition-based logic rules. The probability
mass function of the above multinomial distribution Mu(zI |K,RNNθ(·|r)) can be written as
below:

Mu(zI |K,q) = K!∏
rule∈ẑ nrule!

∏
rule∈ẑ

RNNθ(rule|r)nrule ,

where K is the size of set zI and nrule is the number of times a rule appears in zI .
Letting γ(zI) = log(K!/∏rule∈ẑ nrule!), then the posterior probability can then be rewrit-

ten as:
log pθ,w(zI |G, q,a)

= log exp(scorew(t))∑
e∈A exp(scorew(e)) + log K!∏

rule∈ẑ nrule!
+ log

∏
rule∈ẑ

RNNθ(rule|r)nrule + const

= log exp(scorew(t))∑
e∈A exp(scorew(e)) + γ(zI) +

∑
rule∈zI

log RNNθ(rule|r) + const

=scorew(t)− log
∑
e∈A

exp(scorew(e)) + γ(zI) +
∑

rule∈zI

log RNNθ(rule|r) + const.

The above term log∑e∈A exp(scorew(e)) makes the posterior distribution hard to deal with,
and thus we approximate it using Lemma 1, which we prove at the end of this section.
Lemma 1. Let e ∈ A be a finite set of entities, let |scorew(e)| ≤ s < 1, and let scorew be
a function from entities to real numbers. Then the following inequalities hold:

0 ≤ log
(∑

e∈A
exp(scorew(e))

)
−
(∑

e∈A

1
|A|

scorew(e) + log(|A|)
)
≤ s2 +O(s4).

Hence, using the lemma we can get the following upper bound of the posterior probability:

log pθ,w(zI |G, q,a)

=scorew(t)− log
∑
e∈A

exp(scorew(e)) + γ(zI) +
∑

rule∈zI

log RNNθ(rule|r) + const

≤scorew(t)−
∑
e∈A

1
|A|

scorew(e) + γ(zI) +
∑

rule∈zI

log RNNθ(rule|r) + const

=
∑

rule∈zI

H(rule) + γ(zI) + const,
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and also the following lower bound of the posterior probability:

log pθ,w(zI |G, q,a)

=scorew(t)− log
∑
e∈A

exp(scorew(e)) + γ(zI) +
∑

rule∈zI

log RNNθ(rule|r) + const

≥scorew(t)−
∑
e∈A

1
|A|

scorew(e) + γ(zI) +
∑

rule∈zI

log RNNθ(rule|r) + const− s2 −O(s4)

=
∑

rule∈zI

H(rule) + γ(zI) + const− s2 −O(s4),

where const is a constant term which does not depend on zI .
By combining the lower and the upper bound, we get:∣∣∣∣∣∣log pθ,w(zI |G, q,a)−

 ∑
rule∈zI

H(rule) + γ(zI) + const
∣∣∣∣∣∣ ≤ s2 +O(s4)

Thus, it only remains to prove Lemma 1 to complete the proof. We use Theorem D.1.1
from [118] as a starting point:
Theorem D.1.1. Suppose that x̃ = {xi}n

i=1 represents a finite sequence of real numbers
belonging to a fixed closed interval I = [a,b], a < b. If f is a convex function on I, then we
have that:

1
n

n∑
i=1

f(xi)− f
(

1
n

n∑
i=1

xi

)
≤ f(a) + f(b)− 2f

(
a+ b

2

)
.

As (− log) is convex and exp(scorew(e)) ∈ [exp(−s), exp(s)], Theorem D.1.1 gives us
that:

− 1
|A|

∑
e∈A

log (exp(scorew(e))) + log
(

1
|A|

∑
e∈A

exp(scorew(e))
)

≤ − log(exp(−s))− log(exp(s)) + 2 log
(

exp(−s) + exp(s)
2

)
.

After some simplification, we get:

log
(∑

e∈A
exp(scorew(e))

)

≤
∑
e∈A

1
|A|

scorew(e) + log(|A|) + 2 log
(

exp(−s) + exp(s)
2

)

=
∑
e∈A

1
|A|

scorew(e) + log(|A|) + 2s− 2 log 2 + 2 log(1 + exp(−2s))

≤
∑
e∈A

1
|A|

scorew(e) + log(|A|) + s2 +O(s4),

(D.1.1)
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where the last inequality is based on Taylor’s series log(1 + ex) = log 2 + 1
2x + 1

8x
2 + O(x4)

with |x| < 1. On the other hand, according to the well-known Jensen’s inequality, we have:

log
(

1
|A|

∑
e∈A

exp(scorew(e))
)
≥ 1
|A|

∑
e∈A

log (exp(scorew(e))) ,

which implies:

log
(∑

e∈A
exp(scorew(e))

)
≥
∑
e∈A

1
|A|

scorew(e) + log(|A|). (D.1.2)

By combining Equation (D.1.1) and Equation (D.1.2), we obtain:

0 ≤ log
(∑

e∈A
exp(scorew(e))

)
−
(∑

e∈A

1
|A|

scorew(e) + log(|A|)
)
≤ s2 +O(s4).

This completes the proof.
□.

D.2. Sampling Based on the Approximation of the True
Posterior

Based on Proposition 1, the log-posterior probability log pθ,w(zI |G, q,a) could be approx-
imated by (∑rule∈zI

H(rule)+γ(zI)+const), with const being a term that does not depend on
zI . This implies that we could construct a distribution q(zI) ∝ exp(∑rule∈zI

H(rule)+γ(zI))
to approximate the true posterior, and draw samples from q as approximation to the real
samples from the posterior.

It turns out that the distribution q(zI) is a multinomial distribution. To see that, we
rewrite q(zI) as:

q(zI) = 1
Z

exp
 ∑

rule∈zI

H(rule) + γ(zI)


= 1
Z

exp (γ(zI))
∏

rule∈zI

exp (H(rule))

= 1
Z

K!∏
rule∈ẑ nrule!

∏
rule∈ẑ

exp (H(rule))nrule

= 1
Z ′

K!∏
rule∈ẑ nrule!

∏
rule∈ẑ

qr(rule)nrule

= 1
Z ′ Mu(zI |K, qr),

where nrule is the number of times a rule appears in the set zI , qr is a distribution over all the
generated logic rules ẑ with qr(rule) = exp(H(rule))/∑rule′∈ẑ exp(H(rule′)), Z and Z ′ are
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normalization terms. By summing over zI on both sides of the above equation, we obtain
Z ′ = 1, and hence:

q(zI) = Mu(zI |K, qr).

To sample from such a multinomial distribution, we could simply sample K rules indepen-
dently from the distribution qr, and form a sample ẑI with these K rules.

In practice, we observe that the hard-assignment EM algorithm [64] works better than the
standard EM algorithm despite the reduced theoretical guarantees. In the hard-assignment
EM algorithm, we need to draw a sample ẑI with the maximum posterior probability. Based
on the above approximation q(zI) of the true posterior distribution pθ,w(zI |G, q,a), we could
simply construct such a sample ẑI with K rules which have the maximum probability under
the distribution qr. By definition, we have qr(rule) ∝ exp(H(rule)), and hence drawing
K rules with maximum probability under qr is equivalent to choosing K rules with the
maximum H values.

D.3. More Analysis of the EM Algorithm
In RNNLogic, we use an EM algorithm to optimize the rule generator. In this section, we

show why this EM algorithm is able to maximize the objective function of the rule generator.
Recall that for a fixed reasoning predictor pw, we aim to update pθ to maximize the

log-likelihood function log pw,θ(a|G, q) for each data instance (G, q,a). Directly optimizing
log pw,θ(a|G, q) is difficult due to the latent logic rules, and therefore we consider the following
evidence lower bound of the log-likelihood function:

log pw,θ(a|G, q) ≥ Eq(zI)[log pw(a|G, q, zI) + log pθ(zI |q)− log q(zI)] = LELBO(q, pθ),
(D.3.1)

where q(zI) is a variational distribution, and the equation holds when q(zI) =
pθ,w(zI |G, q,a).

With this lower bound, we can optimize the log-likelihood function log pw,θ(a|G, q) with
an E-step and an M-step. In the E-step, we optimize q(zI) to maximize LELBO(q, pθ), which
is equivalent to minimizing KL(q(zI)||pθ,w(zI |G, q,a)). By doing so, we are able to tighten
the lower bound. Then in the M-step, we further optimize θ to maximize LELBO(q, pθ). Next,
we introduce the details.
E-step. In the E-step, our goal is to update q to minimize KL(q(zI)||pθ,w(zI |G, q,a)).
However, there are a huge number of possible logic rules, and hence optimizing q(zI) on
every possible rule set zI is intractable. To solve the problem, recall that we generate a set
of logic rules ẑ when optimizing the reasoning predictor, and here we add a constraint to q
based on ẑ. Specifically, we constrain the sample space of q(zI) to be all subsets of ẑ with size
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being K, i.e., zI ⊂ ẑ and |zI | = K. In other words, we require ∑zI⊂ẑ,|zI |=K q(zI) = 1. With
such a constraint, we can further use Proposition 2 to construct the variational distribution
q to approximate pθ,w(zI |G, q,a), as what is described in the model section.
M-step. In the M-step, our goal is to update pθ to maximize the lower bound LELBO(q, pθ).
To do that, we notice that there is an expectation operation with respect to q(zI) in
LELBO(q, pθ). By drawing a sample from q(zI), LELBO(q, pθ) can be estimated as follows:

LELBO(q, pθ) = Eq(zI)[log pw(a|G, q, zI) + log pθ(zI |q)− log q(zI)]

≃ log pw(a|G, q, ẑI) + log pθ(ẑI |q)− log q(ẑI),
(D.3.2)

where ẑI ∼ q(zI) is a sample drawn from the variational distribution. By ignoring the terms
which are irrelevant to pθ, we obtain the following objective function for θ:

log pθ(ẑI |q), (D.3.3)

which is the same as the objective function described in the model section.
As a result, by performing the E-step and the M-step described in the model section,

we are able to update pθ to increase the lower bound LELBO(q, pθ), and thereby push up the
log-likelihood function log pw,θ(a|G, q). Therefore, we see that the EM algorithm can indeed
maximize log pw,θ(a|G, q) with respect to pθ.

D.4. Details of Parameterization and Implementation
Section 6.4.2 of the paper introduces the high-level idea of the reasoning predictor with

logic rules and the rule generator. Due to the limited space, some details of the models are
not covered. In this section, we explain the details of the reasoning predictor and the rule
generator.
Reasoning Predictor with Logic Rules. We start with the reasoning predictor with
logic rules. Recall that for each query, our reasoning predictor leverages a set of logic rules
z to give each candidate answer a score, which is further used to predict the correct answer
from all candidates.

Specifically, let A denote the set of all the candidate answers discovered by logic rules in
set z. For each candidate answer e ∈ A, we define the following function scorew to compute
a score:

scorew(e) =
∑

rule∈z

scorew(e|rule) =
∑

rule∈z

∑
path∈P(h,rule,e)

ψw(rule) · ϕw(path), (D.4.1)

where P(h,rule,e) is the set of grounding paths which start at h and end at e following a
rule (e.g., Alice friend−−−−→ Bob hobby−−−→ Sing). ψw(rule) and ϕw(path) are scalar weights of each
rule and path.
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For the scalar weight ψw(rule) of a rule, we initialize ψw(rule) as follows:

ψw(rule) = E(G,q,a)∼pdata

[
|P(h,rule,t)| − 1

|A|
∑
e∈A
|P(h,rule,e)|

]
, (D.4.2)

where |P(h,rule,t)| is the number of relational paths starting from head entity h, following
the relations in rule and ending at tail entity t. The form is very similar to the definition of
H values for logic rules, and the value can effectively measure the contribution of a rule to
the correct answers. We also try randomly initializing rule weights or initializing them as 0,
which yield similar results.

For the scalar score ϕw(path) of a path, we either fix it to 1, or compute it by introducing
entity and relation embeddings. In the second case, we introduce an embedding for each
entity and relation in the complex space. Formally, the embedding of an entity e is denoted
as xe, and the embedding of a relation r is denoted as xr. For a grounding path path =
e0

r1−→ e1
r2−→ e2 · · · el−1

rl−→ el, we follow the idea in RotatE [121] and compute ϕw(path) in
the following way:

ϕw(path) = σ(δ − d(xe0 ◦ xr1 ◦ xr2 ◦ · · · ◦ xrl
,xel

)), (D.4.3)

where σ(x) = 1
1+e−x is the sigmoid function, d is a distance function between two complex

vectors, δ is a hyperparameter, and ◦ is the Hadmard product in complex spaces, which could
be viewed as a rotation operator. Intuitively, for the embedding xe0 of entity e0, we rotate
xe0 by using the rotation operators defined by {rk}l

k=1, yielding (xe0 ◦ xr1 ◦ xr2 ◦ · · · ◦ xrl
).

Then we compute the distance between the new embedding and the embedding xel
of entity

el, and further convert the distance to a value between 0 and 1 by using the sigmoid function
and a hyperparameter δ.
Rule Generator. This paper focuses on compositional rules, which have the abbreviation
form r← r1∧ · · · ∧rl and thus could be viewed a sequence of relations [r, r1, r2 · · · rl, rEND],
where r is the query relation or the head of the rule, {ri}l

i=1 are the body of the rule, and
rEND is a special relation indicating the end of the relation sequence. We introduce a rule
generator RNNθ parameterized with an LSTM [49] to model such sequences. Given the
current relation sequence [r, r1, r2 · · · ri], RNNθ aims to generate the next relation ri+1 and
meanwhile output the probability of ri+1. The detailed computational process towards the
goal is summarized as follows:
• Initialize the hidden state of the RNNθ as follows:

h0 = f(vr),

where vr is a parameter vector associated with the query relation or the head relation r,
f is a linear transformation.
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• Sequentially compute the hidden state at different positions by using the LSTM gate:

ht = LSTM(ht−1, g([vr,vrt ]),

where vrt is a parameter vector associated with the relation rt, [vr,vrt ] is the concatenation
of vr and vrt , g is a linear transformation.
• Generate rt+1 and its probability based on ht+1 and the following vector:

softmax(o(ht+1)).

Suppose the set of relations is denoted as R. We first transform ht+1 to a |R|-dimensional
vector by using a linear transformation o, and then apply softmax function to the |R|-
dimensional vector to get the probability of each relation. Finally, we generate rt+1 ac-
cording to the probability vector.

D.5. Details of Experiments
The statistics of datasets are summarised in Table 39.

Dataset #Entities #Relations #Train #Validation #Test
FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
Kinship 104 25 3,206 2,137 5,343
UMLS 135 46 1,959 1,306 3,264

Table 39. Statistics of datasets used in RNNLogic.

Next, we explain the detailed experimental setup of RNNLogic. We try different configu-
rations of hyperparameters on the validation set, and the optimal configuration is then used
for testing. We report the optimal hyperparameter configuration as below.
Data Preprocessing. For each training triplet (h, r, t), we add an inverse triplet (t, r−1, h)
into the training set, yielding an augmented set of training triplets T . To build a training
instance from pdata, we first randomly sample a triplet (h, r, t) from T , and then form an
instance as (G = T \ {(h, r, t)}, q = (h, r, ?),a = t). Basically, we use the sampled triplet
(h, r, t) to construct the query and answer, and use the rest of triplets in T to form the
background knowledge graph G. During testing, the background knowledge graph G is
constructed by using all the triplets in T .
Reasoning Predictor. For the reasoning predictor in with embedding cases, the embed-
ding dimension is set to 500 for FB15k-237, 200 for WN18RR, 2000 for Kinship and 1000
for UMLS. We pre-train these embeddings with RotatE [121]. The hyperparameter δ for
computing ϕw(path) in Equation (D.4.3) is set to 9 for FB15k-237, 6 for WN18RR, 0.25 for
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Kinship and 3 for UMLS. We use the Adam [58] optimizer with an initial learning rate being
5× 10−5, and we decrease the learning rate in a cosine shape.
Rule Generator. For the rule generator, the maximum length of generated rules is set to
4 for FB15k-237, 5 for WN18RR, and 3 for Kinship and UMLS. These numbers are chosen
according to model performace on the validation data. The size of input and hidden states
in RNNθ are set to 512 and 256. The learning rate is set to 1 × 10−3 and monotonically
decreased in a cosine shape. Beam search is used to generate rules with high probabili-
ties, so that we focus on exploiting these logic rules which the rule generator is confident
about. Besides, we pre-train the rule generator by using sampled relational paths on the
background knowledge graph formed with training triplets, which prevents the rule generator
from exploring meaningless logic rules in the beginning of training.
EM Optimization. During optimization, we sample 1000 rules from the rule generator for
each data instance. In the E-step, for each data instance, we identify 300 rules as high-quality
logic rules.
Evaluation. In testing, for each query q = (h, r, ?), we use the rule generator pθ to generate
1000 logic rules, and let the reasoning predictor pw use the generated logic rules to predict
the answer a.
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Chapter E

DiffLogic: A Differentiable Approach of Rule
Learning

This section presents the proofs of claims used in DiffLogic.

E.1. Derivation of the Gradient
The the model section, we have used the following formular regarding the gradient of the

log-likelihood function with respect to θ and ϕ:

∇θ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇θ log pθ(z|r)], (E.1.1)

∇ϕ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇ϕ log pϕ(y|G,x, z)]. (E.1.2)

Next, we prove the above formular.
We first consider θ, and we have:

∇θ log pϕ,θ(y|G,x) = ∇θ
∑

z pϕ,θ(y, z|G,x)
pϕ,θ(y|G,x) =

∑
z∇θpϕ,θ(y, z|G,x)
pϕ,θ(y|G,x)

=
∑

z

∇θpϕ,θ(y, z|G,x)
pϕ,θ(y|G,x)

=
∑

z

1
pϕ,θ(y|G,x)∇θpϕ,θ(y, z|G,x)

=
∑

z

1
pϕ,θ(y|G,x)pϕ,θ(y, z|G,x)∇θ log pϕ,θ(y, z|G,x)

=
∑

z

pϕ,θ(y, z|G,x)
pϕ,θ(y|G,x) ∇θ log pϕ,θ(y, z|G,x)

=
∑

z

pϕ,θ(z|G,x,y)∇θ log pϕ,θ(y, z|G,x)

= Epϕ,θ(z|G,x,y)[∇θ log pϕ,θ(y, z|G,x)].

(E.1.3)



Based on this, we further have:
∇θ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇θ log pϕ,θ(y, z|G,x)]

= Epϕ,θ(z|G,x,y)[∇θ(log pϕ(y|G,x, z) + log pθ(z|r))]

= Epϕ,θ(z|G,x,y)[∇θ log pϕ(y|G,x, z) +∇θ log pθ(z|r)]

= Epϕ,θ(z|G,x,y)[∇θ log pθ(z|r)].

(E.1.4)

Similarly, we have the same conclusion for ϕ as below:
∇ϕ log pϕ,θ(y|G,x) = Epϕ,θ(z|G,x,y)[∇ϕ log pϕ,θ(y, z|G,x)]

= Epϕ,θ(z|G,x,y)[∇ϕ log pϕ(y|G,x, z)].
(E.1.5)

E.2. Details of Experiments
The statistics of datasets are summarised in Table 40.

Dataset #Entities #Relations #Train #Validation #Test
FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
Kinship 104 25 3,206 2,137 5,343
UMLS 135 46 1,959 1,306 3,264

Table 40. Statistics of datasets used in DiffLogic.
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