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Résumé
Cette thèse consiste en une série d’approches pour la modélisation de décision

structurée - c’est-à-dire qu’elle propose des solutions utilisant des modèles généra-
tifs pour des tâches intégrant plusieurs entrées et sorties, ces entrées et sorties étant
dictées par des interactions complexes entre leurs éléments. Un aspect crucial de
ces problèmes est la présence en plus d’un résultat correct, des résultats structurel-
lement différents mais considérés tout aussi corrects, résultant d’une grande mais
nécessaire incertitude sur les sorties du système. Cette thèse présente quatre articles
sur ce sujet, se concentrent en particulier sur le domaine de la synthèse vocale à
partir de texte, génération symbolique de musique, traitement de texte, reconnais-
sance automatique de la parole, et apprentissage de représentations pour la parole
et le texte. Chaque article présente une approche particulière à un problème dans
ces domaines respectifs, en proposant et étudiant des architectures profondes pour
ces domaines. Bien que ces techniques d’apprentissage profond utilisées dans ces
articles sont suffisamment versatiles et expressives pour être utilisées dans d’autres
domaines, nous resterons concentrés sur les applications décrites dans chaque ar-
ticle.

Le premier article présente une approche permettant le contrôle détaillé, au ni-
veau phonétique et symbolique, d’un système de synthèse vocale, en utilisant une
méthode d’échange efficace permettant de combiner des représentations à un ni-
veau lexical. Puisque cette combinaison permet un contrôle proportionné sur les
conditions d’entrée, et améliore les prononciations faisant uniquement usage de
caractères, ce système de combinaison pour la synthèse vocale a été préféré du-
rant des tests A/B par rapport à des modèles de référence équivalents utilisant
les mêmes modalités. Le deuxième article se concentre sur un autre système de
synthèse vocale, cette fois-ci centré sur la construction d’une représentation multi-
échelle de la parole à travers une décomposition structurée des descripteurs audio.
En particulier, l’intérêt de ce travail est dans sa méthodologie économe en cal-
cul malgré avoir été bâti à partir de travaux antérieurs beaucoup plus demandant
en ressources de calcul. Afin de bien pouvoir faire de la synthèse vocale sous ces
contraintes computationelles, plusieurs nouvelles composantes ont été conçues et
intégrées à ce qui devient un modèle efficace de synthèse vocale. Le troisième ar-
ticle un nouveau modèle auto-régressif pour modéliser des châınes de symboles.
Ce modèle fait usage de prédictions et d’estimations itérative et répétées afin de
construire une sortie structurée respectant plusieurs contraintes correspondant au
domaine sous-jacent. Ce modèle est testé dans le cadre de la génération symbolique
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de musique et la modélisation de texte, faisant preuve d’excellentes performances
en particulier quand la quantité de données s’avère limitée. Le dernier article de la
thèse se concentre sur l’étude des représentations pour la parole et le texte apprise
à partir d’un système de reconnaissance vocale d’un travail antérieur. À travers
une série d’études systématiques utilisant des modèles pré-entrâınés de texte et de
durée, relations qualitatives entre les données de texte et de parole, et études de
performance sur la récupération transmodal “few shot”, nous exposons plusieurs
propriétés essentielles sous-jacent à la performance du système, ouvrant la voie
pour des développements algorithmiques futurs. De plus, les différents modèles ré-
sultants de cette étude obtiennent des résultats impressionnants sur un nombre de
tâches de référence utilisant des modèles pré-entrâıné transféré sans modification.

Mots-clés: réseaux de neurones, apprentissage automatique, apprentissage de
représentations profondes, apprentissage supervisé, modèles génératifs, prédiction
structurée
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Summary
This thesis presents a sequence of approaches to structured decision modeling -

that is, proposing generative solutions to tasks with multiple inputs and outputs,
featuring complicated interactions between input elements and output elements.
Crucially, these problems also include a high amount of uncertainty about the
correct outcome and many largely equivalent but structurally different outcomes
can be considered equally correct. This thesis presents four articles about these
topics, particularly focusing on the domains of text-to-speech synthesis, symbolic
music generation, text processing, automatic speech recognition, and speech-text
representation learning. Each article presents a particular approach to solving
problems in these respective domains, focused on proposing and understanding
deep learning architectures for these domains. The deep learning techniques used
in these articles are broadly applicable, flexible, and powerful enough that these
general approaches may find application to other areas however we remain focused
on the domains discussed in each respective article.

The first article presents an approach allowing for flexible phonetic and charac-
ter control of a text-to-speech system, utilizing an efficient ”swap-out” method for
blending representations at the word level. This blending allows for smooth control
over input conditions, and also strengthens character only pronunciations, resulting
in a preference for a blended text-to-speech system in A/B testing, compared to an
equivalent baselines even when using the same input information modalities. The
second article focuses on another text-to-speech system, this time centered on build-
ing multi-scale representations of speech audio using a structured decomposition
of audio features. Particularly this work focuses on a compute efficient method-
ology, while building on prior work which requires a much greater computational
budget than the proposed system. In order to effectively perform text-to-speech
synthesis under these computational constraints, a number of new components
are constructed and integrated, resulting in an efficient model for text-to-speech
synthesis. The third article presents a new non-autoregressive model for modeling
symbolic sequences. This model uses iterative prediction and re-estimation in order
to build structured outputs, which respect numerous constraints in the underlying
sequence domain. This model is applied to symbolic music modeling and text
modeling, showing excellent performance particularly in limited data generative
settings. The final article in this thesis focuses on understanding the speech-text
representations learned by a text-injected speech recognition system from prior
literature. Through a systematic series of studies utilizing pre-trained text and
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duration models, qualitative relations between text and speech sequences, and per-
formance studies in few-shot cross-modal retrieval, we reveal a number of crucial
properties underlying the performance of this system, paving the way for future al-
gorithmic development. In addition, model variants built during this study achieve
impressive performance results on a number of benchmark tasks using partially
frozen and transferred parameters.

Keywords: neural networks, machine learning, deep learning, supervised learn-
ing, generative modeling, structured prediction
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1 Introduction

1.1 Creative Decisions

Effective decision making in uncertain conditions is a fundamental skill associ-

ated with intelligence, and a hallmark of human capability. Autonomous systems

which attempt to solve human-level, real-world problems must deal with risk, incor-

porating available information with prior knowledge to take consistent and logical

actions which satisfy given constraints. A broad spectrum of data driven techniques

are available to solve these decision problems, and recent methods focus particu-

larly on sequences of decisions where the ”correct” decision may be ambiguous,

ill-defined, or otherwise vague. Autonomous decision systems must nevertheless

follow certain explicit and implicit rules, which may be defined for some domain

through datasets or prior knowledge.

Consider the act of composing a piece of music. Beginning the composition,

several key questions must be asked: What type of music will this be? Which

musical tools and instruments can be used to create the mood or genre desired?

Are there constraints related to the final presentation of this work?

Given answers to these high level questions, a myriad of follow-on choices must

be made. What tempo and rhythm suit the chosen mood of the piece? What

notes fit the overall theme and the intended presentation of the work? How long

should this piece of music last? What level of complexity, both rhythmically and

harmonically, will satisfy the intended audience?

Each of these choices are critical to the final outcome, and should be make

in a holistic fashion while not limiting the resulting composition task too much.

Composing modern pop music requires radically different choices than baroque

era music, requiring different choices to satisfy the stylistic constraints from past

practice. However, creative music should also violate certain expectations from

past practice, in order to create a more satisfying musical journey. Knowing how

1



and when to ”break the rules” is a key step for moving from rote musical exercises,

toward expressive and interesting music.

During the composition journey, low-level decisions about notes, instruments

choices, and discovery of interesting musical sequences (motifs) could all lead the

composer back to re-evaluating the initial high level goals of the composition. This

kind of complex multi-scale decision making under a variety of hard and soft con-

straints is exactly the problem setting where a competent learning algorithm would

be useful.

The close relationship between musical composition and other types of creative

work such as poetry, painting, dancing, and creative writing hint that a system

which understands the complex dynamics of musical composition could be useful

in other creative areas. In fact a broad enough approach to this setting should be

applicable to a huge swath of computational tasks. This promise has been partially

shown by the applicability of automated decision systems over the years including

approaches from the field of machine learning, showing that general purpose algo-

rithms which learn from data are broadly useful for understanding, automation,

and human-in-the-loop creativity.

1.1.1 Formulation as a Sequence Learning Problem

Reducing music composition to a form of general sequence learning is a key step

to applying modern machine learning tools for sequences. Consider a sequence of

musical notes such as Figure 1.1. Denoting the piece x, made of four individual

values x1:4 gives a shorthand for referring to this particular musical piece.

Figure 1.1 – Example four quarter note
sequence D A D D at 70 beats per
minute, shown in sheet music notation

Many different pieces of music x can be further collected into a dataset X,

allowing for a variety of analyses. One possible analysis is to better understand

how likely things in a sequence (here, notes) are to exist together, also known as the

sequence likelihood. One approach is to build a model for the relationship between
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some elements of a sequence using a function f which has parameters θ, fθ. The

parameters of this function fθ are tuned on a given dataset, in order to estimate how

expected a combination of elements are. One procedure for tuning the function fθ

from a set of examples X is maximum likelihood estimation (MLE) (Bishop, 1995),

closely related to empirical risk minimization (ERM) (Vapnik, 1991). The function

f can be constrained to model probabilities (or log probabilities), resulting in a

function denoted as pθ. This process is also referenced as maximum likelihood

learning.

There is a vast literature on methods and procedures for maximum likelihood es-

timation throughout the broader machine learning literature (Murphy, 2012). This

document focuses on a particular class of functions known as neural networks for

learning probability functions from data (Goodfellow et al., 2016). These learned

neural networks form the backbone of our approach to sequential decision modeling

in uncertain conditions, by broadly treating the ability to model data likelihood

as a particular form of decision system especially for cases where the space of ”ac-

tions” and data are mixed, such as musical scores and written text. This setting is

explored in detail in Chapter 8.

1.1.2 Motivation

In this document, I demonstrate methods to improve sequential decision models,

where the term sequential decision models (Alagoz et al., 2010) is used to broadly

encompass generative modeling, structured prediction, and planning.

The primary tie uniting these diverse areas is something I refer to as configura-

tion uncertainty, where there is generally not a single correct answer but rather a set

of possible correct configurations for the output. The full properties of correct con-

figurations are generally difficult to specify, and part of the output relations must

be discovered from weak labels or fully unsupervised losses. The models demon-

strated for these areas incorporate several flavors of hierarchical structure driven

by domain knowledge, available external conditioning, desired latent variables, and

known output constraints.

In terms of techniques, recurrent neural networks (RNN) are used throughout

the experiments shown in chapters 4, 6 10. RNNs are also reviewed at a high level

in section 2.3. Masked modeling for model invariance and for imposing variable

3



ordering is discussed in chapters 4, 6, 8 with a review of masking for ordering shown

in section 2.4. Attention and self-attention modeling are used in chapters 4, 6, 8,

and 10, for incorporating conditional information as well as core modeling. The

ideas behind attention are briefly reviewed in section 2.3.4.

This work includes results for several tasks such as harmonic composition of

symbolic music, generating speech from text, and probing multi-modal representa-

tion learning to better understand speech-text modeling.

Chapters 4 and 6 focus on applications to speech generation and indirectly

text modeling, while chapter 10 analyzes speech recognition. Chapter 8 focuses

heavily on symbolic music generation with some text generation. Chapters 8 and

10 additionally show analysis of text modeling with chapter 10 heavily focused

on the analysis of learned representations between text and speech inputs in a

multi-modal speech-text modeling framework.

1.1.3 Document Organization

This dissertation begins by providing a background review for understanding

this work in Chapter 2, including beginning with autoencoders, sequence abstrac-

tions, masking for variable ordering, and augmentations to probabilistic models.

This is followed by chapters on four publications, and a conclusion discussing fu-

ture research directions.
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2 Background

2.1 Background Setup and Notation

2.2 Autoencoders and Latent Variables

Autoencoders are models that are trained to reconstruct their own input (Hinton

and Zemel, 1994; Schmidhuber, 2008), using a model typically of the form f(x) ⇒,

g(z) ⇒ x̂, argminθ d(x, x̂) for some loss function d, with f(x) commonly referred to

as the encoder and g(z) commonly referenced as the decoder. To prevent learning

trivial solutions (such as the identity function) the target of the mapping f(x) ⇒ z

is often constrained in some way. One common constraint is to make the dimensions

of z smaller than the input dimensions of x, thus forcing compression (Bengio

et al., 2009). Another approach is to require the model to solve the denoising

problem by adding noise to x and requiring x̂ to be the denoised version of the

input x (Vincent et al., 2008). Others employ different regularization techniques,

whether by contractive penalty (Rifai et al., 2011), to enforce sparse solutions

(Olshausen and Field, 1997; Makhzani and Frey, 2013), or by the introduction of a

prior and variational regularization (Kingma and Ba, 2014; Rezende et al., 2014).

See Goodfellow et al. (2016) for a detailed treatment of autoencoder variants.

2.2.1 VAE

Variational autoencoders (Kingma and Ba, 2014; Rezende et al., 2014) are a spe-

cific autoencoder architecture that allows for explicit interpretation of the learned

latent variable z. The mechanism by which this interpretation is enforced is a

combination of sampled noise in the latent variable and an explicit regularization

term in the training loss function. To ensure the ability to backpropagate into the

encoder even when sampling (which normally breaks gradient flow), VAE uses the

reparameterization trick (Evans et al., 1993) to recast the sampling for a normally
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distributed variable N (µ, σ) = N (0, 1) ∗ σ + µ. The regularization term in the

loss function takes the form of a KL divergence between the predicted mean µ and

standard deviation σ (produced by the encoder), and a prior assumption about the

distribution which is typically N (0, 1). This regularization term effectively forces

the model to trade off reconstruction quality against satisfying the KL divergence

penalty. It is possible to use different priors and modified encoder architectures to

target other probability distributions, and the VAE framework forms the backbone

of methods for stochastic computation graphs (Schulman et al., 2015) and flexible

probabilistic computation while still allowing for optimization by gradient descent.

For a detailed treatment of VAE methods see Goodfellow et al. (2016) and Kingma

et al. (2019).

2.2.2 VQ-VAE

A modification to the standard variational autoencoder (Kingma and Ba, 2014;

Rezende et al., 2014), dubbed vector quantized VAE (VQ-VAE) (van den Oord

et al., 2017) has discrete values in the latent space z in contrast to the normal

autoencoder which has real valued vectors in z. This change can be inserted into

the autoencoder setting seen earlier by the addition of a discretization function q(∗);
f(x) ⇒ z, q(z) ⇒ zq ⇒ x̂, argminθ d(x, x̂). Discretized latent values have some

unique qualities in that they are efficient to use with standard discrete compression

methods and have finite expressivity which can reduce the complexity of follow-on

processing. However, discontinuities at the boundary between discrete values and

flat regions pose practical issues in gradient-based optimization. This motivates the

use of gradient approximation methods (Jang et al., 2017; Maddison et al., 2016)

and approximate training schemes against a relaxation of the discretized problem.

Approximations for Discrete Activations

Approximate training schemes often take the form of optimizing a smoothed

version of the discrete boundary problem, gradually annealing the smooth func-

tion to more closely resemble the hard boundary over training. An alternative to

the full relaxation approach is to utilize an approximation of the gradient for the

true problem (which may not be defined at many points), such as REINFORCE or

the so-called ”straight-through” estimator (Bengio et al., 2013; Chung et al., 2016;
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Courbariaux and Bengio, 2016). In straight-through estimation, a continuous ap-

proximate gradient function is often annealed in a similar fashion as relaxation-

based approaches, to closer match the discrete function as in Chung et al. (2016).

Alternatively, the gradient from the discrete module may be copied directly to the

input, bypassing the discretization entirely in the backward pass (Bengio et al.,

2013). However, in both cases of straight-through, the forward function remains

exactly discrete.

VQ-VAE takes a straight-through style approach to this problem, utilizing vec-

tor quantization for the function q(z). The vector quantization matches an input

activation to the nearest element of a basis (based on l2 distance in the original

setting) given by a secondary array. In VQ-VAE, this secondary array is initialized

randomly and then updated throughout training, similar style to the broader set-

ting of dictionary learning methods (Mairal et al., 2009). In van den Oord et al.

(2017) this dictionary update is accomplished via secondary losses similar to the

gradient-based calculation of K-means.

The forward calculation of VQ-VAE has no issue, but the lack of a well-

defined gradient through the quantization function is a critical problem for stan-

dard gradient-based training. VQ-VAE uses the identity formulation of ”straight-

through”, as also shown in Bengio et al. (2013), and on first impression it is sur-

prising that this poor estimate for the gradient of the quantization function works

at all. However, a deeper inspection reveals this choice may not be so bad after all.

Because we know that both the activations to be quantized and the basis func-

tions themselves are adapted based on the input data and goodness-of-fit for vector

quantization, the problem closely resembles classic K-means. The gradient through

the decoder network is directed as if the last encoder activation was one of the K

cluster centers in the vector embedding dictionary, rather than its true value. We

can imagine an extreme example, where the dictionary contains every activation

possible from examples in the dataset. This case means there is always one ele-

ment in the dictionary that has a distance 0 assignment, and the identity gradient

approximation is exactly correct.

Next, we can consider the case where some activations are repeated in the

dataset. In this case, the story is the same as before, we simply need a smaller

dictionary since there are fewer unique activations. This case is further extended

by considering activations perturbed by small amounts of Gaussian noise, around
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a central activation. Similar to standard vector quantization, as long as these

centralized clusters remain well-separated, the error introduced in the gradient for

VQ-VAE is still small. It is only when the centroid of the cluster assignment is

a poor approximation of the datapoint(s) assigned that the error of this simple

estimator becomes apparent.

VQ-VAE Construction

An additional point of interest in VQ-VAE is that the function of the encoder

and decoder networks is different than a standard autoencoder. While the standard

view works at a high level, most demonstrated implementations of VQ-VAE utilize

a convolutional / transposed convolutional structure. VQ-VAE latents are there-

fore spatially distributed, based on the stride factors present in the convolutional

encoders. For images, this means the latent values z are arranged in a 2D grid, and

for 1D inputs such as audio the latent space is also 1D. Reducing this spatial latent

to a small number of values (or even a single value) is generally too extreme of a

bottleneck for effective training, making the default setting of VQ-VAE similar to

”all convolutional” CNNs, with a quantized discrete space in the center.

The decoder module of a VQ-VAE is not required to be composed of transposed

convolutions, in fact, many of the demonstrated successes in van den Oord et al.

(2017) utilize autoregressive decoder networks instead. The design tradeoff between

these two approaches is generally a choice for more computation at reconstruction

time for the autoregressive decoder but higher potential quality, or faster generation

at the expense of some quality loss. In my work, both types of network architectures

were tested, but the transposed convolutional decoder’s computational efficiency

was crucial for my application to spatio-temporal modeling.

VQ-VAE Latent Space

This also means that the latent space, while discrete, isn’t compact or compres-

sive in the usual sense (for example, standard VAE (Kingma and Welling, 2013)).

The latent space is comprised of indicator values, indexing the vector embedding

space. Based on the effective receptive field of the decoder network the individual

integers can’t be reasonably manipulated, swapped, or interchanged as the output

of the decoder is dependent on all the input values which fit in the receptive field.
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In other words, the same cluster vector or integer index has a different meaning

depending on its position in the spatial latent z. Though there may be possibili-

ties of ”bit flipping” to the next nearest cluster, or performing analysis on cluster

distances directly this has not been demonstrated to date.

The lack of ”neighborhoods” in the latent space or a simple method for sam-

pling valid configurations of the latent may seem to relegate VQ-VAE to a strictly

compressive setting rather than the generative setting where standard VAE meth-

ods are used. However, combined with a powerful autoregressive generative model

known as PixelCNN it is possible to train a ”prior”over the latent space, generating

valid z configurations from scratch which are then decoded into valid generative

outputs.

VQ-VAE is an area of active research, and many papers have demonstrated

alternative dictionary update schemes (Roy et al., 2018; Kaiser et al., 2018), im-

proved gradient approximation schemes with soft assignment (Sønderby, Poole,

and Mnih, Sønderby et al.), as well as improvements to the fundamental model

to better capture extremely long-range dependencies (Dieleman, van den Oord,

and Simonyan, Dieleman et al.) or better association in the latent space (Graves

et al., 2018). Combined with the autoregressive techniques we will discuss later in

this document, VQ-VAE is becoming a key method for compression and generative

modeling which is computationally efficient, easy to train, and useful for a variety

of data modalities.

2.3 Sequence Abstractions

Markov models are among the simplest of models for sequences. In their

base form, they assume that an input datapoint x with feature dimensions n

can be considered ordered in some way. This ordering can be chosen arbitrar-

ily, but many types of sequences such as timeseries have a natural ordering which

is commonly assumed to be along the ”time” dimension. Markov models assume

a fixed size context of past information k, resulting in a per-step model of the

sequence xi = f(xi−1, xi−2...xi−k) with some arbitrary function f(∗). This factor-

ization makes an ideal setting for modeling conditional probability distributions like
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p(xi|xi−1, xi−2...xi−k) which is an identical form to a single layer convolutional neu-

ral network with a shifted (or causal) filter window (van den Oord et al., 2016). A

generic description for f(∗) describes a host of classic signal processing techniques,

such as finite impulse response (FIR) filters, moving average smoothers, and ven-

erable neural network approaches to timeseries such as time-delay neural networks

(TDNN) (Lang and Hinton, 1988; Waibel, 1989). Since f(∗) is general, this also

covers compositions of functions (such as deep convolutional neural networks) for

sequence modeling (Fan et al., 2018). However given that any given layer has no

sense of ”history” and only a finite context, stacks of these layers combined may

have larger receptive fields than each member layer (Yu and Koltun, 2015) but will

always have a finite input receptive field (given finite layer depth).

Recurrent neural networks are another approach to sequence modeling that

takes inputs with ordering and computes a function taken over the sequence. How-

ever, in addition to the input context, recurrent neural networks also define an

accumulator, often called the ”hidden state”, which continually aggregates infor-

mation about the current frame. This gives the RNN a theoretically infinite con-

text, though in practice the fact that the aggregate information must be stored in

a fixed-size vector means the memory is lossy and compressive by nature. Break-

ing this computation into two generic functions f(∗) and g(∗), we now see hi =

g(hi−1, xi−1);xi = f(hi)∀i ∈ n, with hi representing the hidden state calculated at

step i, which captures information about x0, x1, x2...xi−1. This makes RNNs ideal

for modeling the full conditional probability per-step p(xi|xi−1, xi−2...x0), indirectly

via p(xi|hi).

2.3.1 RNN Families

Describing RNNs at this high level means there are numerous ways to actually

implement f(∗) and g(∗). The most basic form of an RNN is known by multi-

ple names including the Elman RNN (after the first author in Elman and Zipser

(1988)), tanh RNN, or simple RNN. The Elman RNN is calculated with a simple

hyperbolic tangent (tanh) activation function applied to the summation of two feed-

forward activations projecting to the same dimensionality which are then summed.

This calculation for the hidden state for a given timestep can be summarized as

hi = tanh(hi−1Wh + xiWf + b), with the initial hidden state to start the recursive

10



calculation being initialized to either all 0, or small random values from a random

or normal distribution. Furthermore, the initial hidden state can potentially be

treated as another set of parameters and optimized during training, but common

usage is to preserve the default initialization without learning. Note that there

is no need for two separate bias terms, as one learned bias vector is sufficient to

capture any additive constant.

It is well known that learning recurrent connections by gradient descent is diffi-

cult (Bengio et al., 1994; Bengio et al., 2013; Sutskever et al., 2013), and numerous

methods have been developed for improving long-term credit assignment in RNNs.

Two of the most well-known methods for this are the long short-term memory

(LSTM) (Hochreiter and Schmidhuber, 1997a; Hochreiter, 1998; Gers, 2001) and

gated recurrent unit (GRU) activations (Cho et al., 2014; Chung et al., 2014).

These compute alternate forms of the recurrent neural network in a way that is

more amendable to gradient descent, reducing vanishing and exploding gradient

issues which are crucial to learning neural networks well. As shown by Bengio

et al. (2013), repeated matrix multiplication (taking a matrix to a power Mp) will,

depending on the spectral norm of the hidden matrix, either lead to vanishing or

exploding. This problem is made worse the larger the power of the matrix (given

the same spectral norm), which means longer sequences will have problems with

vanishing or exploding.

Equation 2.1 LSTM step equations

fi = sigmoid(Wfxi + Ufhi−1 + Vfci−1)

gi = sigmoid(Wgxi + Ughi−1 + Vgci−1)

ĉi = tanh(Wcxi + Uchi−1)

ci = fi ⊙ ci−1 + gi ⊙ ĉi

oi = sigmoid(Woxi + Uohi−1 + Voci)

hi = oi ⊙ tanh(ci)

These equations are quite detailed, but on close inspection some high-level

themes emerge. There are a large number of sigm activations, most of which

form ”gates” for information into, or out of the RNN. This is crucial to controlling
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Equation 2.2 GRU step equations

zi = sigmoid(Wzxi + Uzhi−1)

ri = sigmoid(Wrxi + Urhi−1)

ĥi = tanh(Whxi + Uh(ri ⊙ hi−1))

or

ĥi = tanh(Whxi + ri ⊙ (Uhhi−1))

hi = (1− zi)⊙ hi−1 + zi ⊙ ĥi

information flow, and splitting information flow into several segments allows the

gradient to essentially skip backwards steps. In the case of GRU, if the gate zi is

close to 1, the current proposal activation hi is largely ignored. The LSTM fea-

tures several gates, but we also observe that they all control the flow of information

into, or out of, the cell state ci allowing for similar improvements in gradient flow.

The cell state is also computed through the summation of two separate inputs ci−1

and ĉi, which further improves the flow of gradients backwards. LSTM has two

types of state information, in h and c which must be preserved to form the state

of the LSTM at a particular timestep. The primary drawback of these methods is

an increase in parameter count due to the additional linear projections for gating

activations. This results in 3 times more parameters in GRU for the equivalent

output, hi size in simple RNN, and 4 times in the case of LSTM. However, both

of these methods see widespread use in practice and are generally the default ac-

tivations employed when implementing RNNs for various applications. There have

also been numerous metastudies discovering alternate architectures for RNN acti-

vations (Greff et al., 2015; Jozefowicz et al., 2015), which have found interesting

variants in gating architectures which have shown improvement in certain cases

and demonstrated the importance of initialization for LSTM and GRU.
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2.3.2 Conditional RNN

RNNs are also capable of modeling per-step conditional distributions of the

form p(xi|x<i,m) for some conditioning information m. The simplest form of this

is concatenating the conditioning vector m to every input vector xi, but this can

also be a summation (of the correct dimension) from either the vector directly,

or a projected version that matches the necessary size. These two methods are a

common way to merge information paths in neural networks, but worth reiterating

here since they form the core of the following approaches. If the conditioning

information is also a sequence of the same length as x, it can be directly modeled

by combining the correct timestep vector from m per step, forming a conditional

p(xi|x<i,m≤i). This is because the hidden state h captures all past information

about x<i and m<i, since m is another input, just like x. With these techniques,

RNNs are extremely flexible methods for forming directed, conditional generative

models. Because the hidden state is a summary of past information, we can also

consider using the last hidden state as a compressed representation of the vector

that the RNN processed. This means it is also possible to use the last state directly

as a representation to classify whole sequences, or alternately use a function that

combines all hidden states (such as a sum or a mean) for the representation vector

used in follow-on processing.

Autoencoders, as discussed earlier, are a common approach to summarizing,

compressing, and understanding information. What would a sequence autoencoder

look like? We know the input needs to handle sequences. The output should

be a sequence and it should also compress to a fixed size latent. Combining two

RNNs with a compressive section should form an autoencoder. Recall the previous

discussion regarding the last hidden state compressing (or encoding) the modeled

sequence. Taking the last hidden state should form a compressive summary of a

sequence, which is the same size no matter the length of the input. This latent

variable, he[k], represents the encoder hidden state he using the last element index

k. The variable, he[k], is considered to be directly equivalent to the latent variable,

z, discussed before. z can be specially calculated based on z = fz(he[k]), allowing

for natural extension to many of the various autoencoder families such as VAE.

The decoder can be formed using a conditional RNN where the conditioning vector

is the encoded sequence representation. This leads to an overall formulation of

p(xi|x<i, he[k]) using the decoder’s conditional RNN, where he[k] is the last hidden
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state of the encoding RNN. The repetition of x<i in the conditioning is redundant

in theory (since he[k] already contains a compressed form of the same information)

but this statement is closer to the practical implementation. In its base form, this

approach can alternately be called encode-decode RNNs or sequence to sequence

(seq2seq) (Cho et al., 2014; Sutskever et al., 2014) and it has seen widespread

application in sequence modeling. This approach can also be extended to VAE-

style latents (Bowman et al., 2016; Ha and Eck, 2017; Jaques et al., 2018; Roberts

et al., 2018).

This model setup has applications far beyond autoencoding. Noting that the

encode RNN and decode RNN are not restricted to be the same length or even

the same sequence between encoder and decoder, thanks to passing through the

compressive bottleneck, the seq2seq model can be seen as a general approach to

sequence transduction (Graves et al., 2013; Graves and Jaitly, 2014). This can be

seen as modeling a sequence y, step-wise as p(yi|y<i, he[k]) ≡ p(yi|hd[i], he[k]) where

he[k] contains all compressed information for a sequence x, and hd[i] is the decoder

hidden state capturing the current dynamics of the output sequence (and its past

interaction with he[k]). This general formulation can be used for machine translation

(a sentence in one language as x, the translated version of that sentence in another

language y), speech recognition (input audio x, desired recognition symbols y), text

to speech (input text x, output audio y), handwriting generation (input sentence

x, output handwriting trace y), and many other applications.

2.3.3 Attention

A key issue remains, as shown in Sutskever et al. (2014) performance begins to

drop for sequences of length 40 or more using these standard tools. This makes

sense, as we can easily believe that compressing long sequences into a fixed-size

vector could be more difficult than compressing short ones (depending on the se-

quences in question). In addition, using only the last hidden state may bias the

conditioning vector he[k] toward information at the end of the input sequence. Re-

versing the input sequence (Sutskever et al., 2014) may help this, but ultimately

we desire different ways to process the input, so that different elements of the input

sequence are reweighted in an automatic way. This is the fundamental idea behind

attention-based sequence to sequence modeling (Bahdanau et al., 2015; Graves,
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2013a). By introducing different aggregation functions (which are generally dy-

namic at every step) over the input hidden states, ci = a(hd[i], he), per-step condi-

tions can be extracted from the input hidden states. This allows for a new model

which flexibly uses the full input context p(yi|y<i, he) == p(yi|hd[i], a(hd[i], he)).

When the function, a, uses neural network weights defined by the decoder such as

softmax distributions (Bahdanau et al., 2015) or Gaussian distributions (Graves,

2013a), the network is able to learn to perform dynamic weighting solely through

minimizing the output loss. Introducing attention greatly improves performance

in neural machine translation systems (Bahdanau et al., 2015) when compared to

non-attentional systems, while also boosting performance on longer sequences. A

huge variety of attention modules are possible, depending on the application do-

main and inductive bias for the problem at hand (Graves, 2013b; Bahdanau et al.,

2014; Martins and Astudillo, 2016; Niculae and Blondel, 2017; Niculae et al., 2018;

Deng et al., 2018; Tachibana et al., 2017; Chorowski et al., 2015; See et al., 2017;

Peng et al., 2018; Mensch and Blondel, 2018; Vaswani et al., 2017).

2.3.4 Attention-centric Models

The introduction of soft attention and alignment mechanisms has opened the

door to architectures specifically designed using these features for variable length

input and output sequences. The core of these models can be based on recurrent

networks, as described in the previous subsection. They can also be convolution

based, using dynamic convolution kernels to align over a variable length sequence

(Wu et al., 2019). Encoder and decoder networks need not share the same build-

ing blocks, and many ideas from autoencoding can be used to learn more concise

summaries of input data, which are then attended over or used to condition autore-

gressive decoding (Bowman et al., 2016). Driving these design choices to their limit,

models which aggregate context over depth (similar to convolutional networks), but

with full-context layer-wise locality have come to the forefront of sequence model-

ing (Vaswani et al., 2017; Bradbury et al., 2017; Radford and Wu, 2019; Radford

et al., 2018). The most prominent variant of this idea for ”attention-only”modeling

of sequences can be seen in the Transformer architecture (Vaswani et al., 2017). A

transformer variant for generative modeling can be seen in Chapter 8.
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2.3.5 Beam Search

A critical component to directed generative models over sequences, particularly

sequences of symbols, is beam search (Reddy, 1977; Bahdanau et al., 2015; Cho

et al., 2014; Auli and Gao, 2014; Sutskever et al., 2014). Similar to Viterbi search

(Viterbi, 1967), beam search allows for more likely sequence proposals under the

factorized model used during training. The primary difficulty is that during train-

ing, we have ground truth information with which to optimize the model and break

step-wise dependencies. However, at evaluation time our model only produces step-

wise probabilities, meaning for any step, there will V candidates to choose from.

Computing the next set of V candidates requires input of the previous step value,

which at evaluation is chosen from a candidate set as well. The optimal (but in-

feasible) method to compute the most likely sequence is to evaluate every possible

permutation at every step S, leading to SV candidate sequences which could then

be ranked by likelihood under the probabilistic model. It is clear that this amount

of computation is infeasible for even moderate sequence lengths and candidate sizes.

Alternatively, it is simplest to take the most probable candidate at every step in

a greedy fashion. This leads to a computational complexity that is approximately

linear in the number of steps. However, we can see it may be possible that a greedy

best candidate with bad follow on probabilities could be much worse in overall se-

quence likelihood than another candidate which leads to many higher probability

follow on steps. This result is similar to Viterbi search, breadth first search, and

depth first search. Unlike Markov models, RNN based models do not make local

independence assumptions, so using Viterbi search will not be guaranteed to give

the optimal sequence for the model factorization described by standard RNNs.

We can instead adopt procedure similar to Viterbi search called beam search,

where a number of beams, b, are created using the top b most probable elements for

step 0 of the sequence based on the probabilities assigned by the neural network. We

then evaluate each of the b prefixes, getting next step probabilities from the neural

network, resulting in b× V proposed prefixes for the next step. Once all proposed

prefix sequence probabilities are evaluated, they are ordered by probability and the

top b highest-probable proposed prefixes become the new base prefixes. This is

repeated until one of the b prefixes is recognized as being finished (often through

use of a special symbol for end of sequence, or EOS). The beam capacity is then

reduced from b to b−1, and the finished beam is preserved while the others continue.

16



This proceeds until there is no capacity left at which time, all b beams are marked

complete. Once all beams are complete, they are again ranked according to highest

probability and the best beam is returned.

One common modification is to normalize these beam probabilities based on

length as depending on implementation ending a beam early can have an artifi-

cially high probability compared to longer sequences, as multiplying two probabili-

ties will always result in a smaller value leading to inaccuracy in the final reranking

of the b beams (Wu et al., 2016). It is also well known that likelihood is not a

direct correlate for quality (Theis et al., 2015), so even though beam search can

give higher probability sequences under the model it is no guarantee that these

sequences will actually be good or useful. This can incentivize returning all top

b beams directly to the user, and allowing them to select the most appropriate

result. There are a number of methods for incorporating knowledge of the decod-

ing procedure back into RNN training (Wiseman and Rush, Wiseman and Rush;

Chorowski and Jaitly, 2016; Gu et al., 2017). These include scoring to improve

proposal diversity (Vijayakumar et al., 2016; Li et al., 2016), adding stochasticity

to the decoding procedure by sampling the top proposal prefixes, using noise di-

rectly to approximate beam search using greedy decoding (Cho, 2016), and using

heaps with additional heuristics for A* search style decoding. The beam search

procedure has strong ties to many classic methods for discrete optimization, which

can further improve result quality given known constraints or secondary scoring

methods beyond RNN probabilities.

2.4 Masked Conditional Modeling

The addition of conditional information to a modeling task can radically change

(and often, improve) performance of practical systems. In more exact terms, it can

be easier to estimate p(x|c) instead of p(x), if c contains useful information for

separating groups or reducing the space of solutions for x. For example considering

x as a word in the English language, a word probability modeling task becomes

simpler if changed to p(x|c) where c is a qualifier such as ”is the name of household

product” or ”a picture containing the word x”, or any other form of information

normally used as input to machine learning systems. This induces a requirement
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that c be provided to the system in order to predict a probability for x, but in

many applications a wide array of side information may be available to improve

modeling capabilities.

Information can also be factorized to form conditional distributions, in addi-

tion to the external conditioning above. Using the chain rule of probability, it is

always possible to rewrite a joint probability as a product of conditional probabili-

ties p(x1, x2, x3...) = Πp(x1)p(x2|x1)p(x3|x2, x1).... This means that any probabilis-

tic model of some information p(x), which can in turn be broken into sub-parts

x1, x2, x3, ... can be rewritten as a product of conditional distributions. Often this

factorization can make modeling problems easier, as instead of learning probabil-

ities in one shot, a piece of the overall example such as x3 can be modeled based

on other constituent parts of x, such as x1 and x2. Realizations of this factoriza-

tion could be modeling images pixel-by-pixel, audio content sample-by-sample, or

sentences one character or word at a time.

Recurrent neural networks are built around this factorization, as well as other

autoregressive models such as NADE, MADE, RIDE, and Wavenet among others

(Larochelle and Murray, 2011; Germain et al., 2015; Theis and Bethge, 2015; van

den Oord et al., 2016; Domke et al., 2008). The primary downside of this factorized

approach is the introduction of a dependence chain that is linear in the number of

factorized pieces. Without independence assumptions, this means that sampling

from such a model is on the order O(N), where N is the number of factorized

conditional distributions modeled. Depending on the model structure, this may

also induce computational overhead at training as is the case for RNNs compared

to the other mentioned autoregressive models.

The self-factorized approach can also be combined with the external conditioned

method described beforehand, which results in probability factorizations such as

p(x1, x2, x3|c) = Πp(x1|c)p(x2|x1, c)p(x3|x2, x1, c). This allows for combining sec-

ondary knowledge as well as internal structure, which can greatly improve modeling

capabilities for likelihood estimation as well as sampling. These factorizations also

have direct impact on model architectures, and are closely related to how a partic-

ular modeling problem is formulated in the design stage.

18



2.4.1 PixelCNN

A particular line of work which extends NADE and MADE, using specially

structured RNNs and CNNs is a pair of models known as PixelRNN and PixelCNN,

from van den Oord et al. (2016) and van den Oord et al. (2016). These models

combine the idea of using masks to define factorized distributions with RNNs and

CNNs, resulting in a powerful model for autoregressive generative modeling. Of the

two methods, PixelCNN and follow on work such as PixelCNN++ (Salimans et al.,

2016) have proven excellent methods for conditional or unconditional generative

modeling, especially for images or other datatypes with spatial structure (Huang

et al., 2017a, 2018). Key details of the PixelCNN model can be seen in Figure 2.1,

Figure 2.2, and Figure 2.3.
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Figure 2.1 – Figure from van den Oord
et al. (2016) showing autoregressive
masking over space and channels as
layer depth increases.
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Figure 2.2 – Figure from van den Oord
et al. (2016) showing ideal captured
context, using combined masks and ad-
ditional architecture changes.
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Figure 2.3 – Detailed drawing of Gated PixelCNN layer from van den Oord et al. (2016)

Viewing Figures 2.1 and 2.2 specifically, we see that the mask definitions define

a conditional distribution wherein an image x with i columns of pixels, j rows,
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and k channels is carefully masked (using a multiplication of the input with a

same size image of 0s and 1s). Spatial and channel indexes into this image can

be understood as xi,j,k. The description of the masks over the channel axis x:,:,k is

shown in Figure 2.1. The additional block marked context represents the generic

ability to incorporate side information such as class identity, a spatial map (such

as previous input image for video modeling), or both - this is an important feature,

but doesn’t particularly interact with the masking process due to the design of the

architecture.

2.4.2 Mask Structure

Mask A defines a careful multiplication such that the center pixel of the in-

put (since this is a form of convolutional neural network) only has access to in-

formation to previous channels in the order RGB, meaning a partial factoriza-

tion of p(x) = Πp(x:,:,r)p(x:,:,g|x:,:,r)p(x:,:,b|x:,:,gr). This is then combined with

a secondary causal masking structure which only allows access to pixels left of

and above the center pixel in the convolutional filter. Specifically for a cen-

ter pixel xi,j, this results in a factorization over spatial position and channels

p(x) = Πp(x<i,<j,r)p(x<i,<j,g|x≤i,≤j,r)p(x<i,<j,b|x≤i,≤j,gr)∀i, j, k. Mask B is then

used in subsequent layers. Mask B defines a very similar factorization as Mask

A, with the primary difference being a subtle change from < to ≤ on certain terms

p(x) = Πp(x≤i,≤j,r)p(x≤i,≤j,g|x≤i,≤j,r)p(x≤i,≤j,b|x≤i,≤j,gr)∀i, j, k.
Mask A is applied in the first layer, and there is also a hard requirement not

to use a residual connection (He et al., 2016a) from the input, as this would vio-

late the causal factorization applied by the masking. After the input mask, every

subsequent layer can use Mask B and optional residual connections, since the first

layer preserves the causality of the masking factorization. Each convolutional layer

performs local aggregation (typically 3× 3, 5× 5, or 7× 7) but with a sufficiently

deep network each output pixel should have a local receptive field (Sermanet et al.,

2014) which can cover the entire input size, which combined with masking will ex-

actly capture the necessary inputs for the factorization implemented. The specific

form of the computation applied can be seen in Figure 2.3, and at a high level the

model has 2 components per layer - a horizontal stack and a vertical stack. This is

necessary to capture the idealized context as seen in Figure 2.2, for more detailed
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discussion of the layer design and secondary context interaction, see (van den Oord

et al., 2016).

A critical benefit of PixelCNN based methods centers on the use of teacher

forcing to greatly improve speed during training, compared to unrolling of the

probability factorization and tracking history using methods such as RNNs. In

brief, the factorization p(x1, x2, x3...) = Πp(x1)p(x2|x1)p(x3|x2, x1)... discussed ear-

lier can be computed in two ways. The first, naive way is to calculate each partial

action one by one, using the predicted outputs of each factor as input to the next.

The second, if given training data, is to use the parts of the training data to make

the evaluation of each part of the factorization independent, allowing the otherwise

sequential factorization chain to be computed in parallel during training.

2.4.3 Teacher Forcing

Mathematically, this might look like p(x1, x2, x3...) = Πp(x1)p(x2|∼x1)p(x3|∼x2,∼x1)...,

where ∼xi marks the fact that these elements (be they pixels, words, etc.) are the

exact pieces from the training input, rather than a sequence of samples from the

previous distributions in the chain as would be implied by the original formulation.

This parallelization during training is not possible in RNNs, as the normal for-

mulation is instead p(x1, x2, x3...) = Πp(x1|h0)p(x2|∼x1, h1)p(x3|∼x2, h2)..., with

h1 = f(h0), h2 = f(h1) and so on. This means that RNN factorization in a similar

way as PixelCNN would still be approximately linear in the unrolled length, where

the PixelCNN is effectively O(1) during training due to parallelism from the teacher

forcing trick.

Using training data to form independent sub-parts, which can then be evalu-

ated in parallel during training for improved speed is an extremely powerful idea,

which sees extensive use in a variety of settings. This issue is discussed further by

(Goodfellow et al., 2016), in the section on Structured Probabilistic Models for Deep

Learning. However, the PixelCNN model structure and ”teacher forcing trick” do

not change the dependency chain at sampling time, meaning autoregressive models

are typically O(N) during generation where each pass of N is a full forward evalu-

ation through a typically very deep convolutional neural network - meaning the act

of generating from such models is often prohibitive computationally, on a similar

order as RNNs but generally requiring much larger models in terms of parameter
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count.

There are extension methods (van den Oord et al., 2017) which use a discretized

autoencoder structure to first compress the input, then use PixelCNN as a prior

over the spatially reduced representation for sampling, rather than directly mod-

eling input examples. This can greatly speed up sampling times for PixelCNN

based methods, which are generally linear in the number of pixels × channels at

generation time. Even small inputs (for example 32×32×3 = 3072 neural network

forward passes) form an extremely long sequential sampling chain as factorized by

this model, making sampling speed a crucial aspect for fautoregressive generative

modeling. We discuss the use of discretized and variational autoencoders in Sec-

tion 2.2.2. There also exist computation methods related to memoization which

can greatly improve the generation speed of PixelCNN type models (Ramachan-

dran et al., 2017), which help independent of most modeling improvements and

combine well.

2.4.4 Order

Putting aside computational issues, there is a secondary concern with ”chain

factorizations” commonly seen in autoregressive models. Imagine we train an au-

toregressive language model in the style of PixelCNN which takes an English sen-

tence and factorizes it at the word level in left-to-right order,

p(s) = Πp(w1)p(w2|w1)p(w3|w2, w1).... During training, we use the teacher forcing

trick to parallelize training, and everything is training well. The generation pro-

cedure then samples words one by one, dependent on all previous words sampled

that fall within the input receptive field for the current output to sample. However,

we may randomly sample a particularly strange word near the end of the sentence,

which is incongruous with the previous generations. It is clear that the choice of

what order to factorize a given input is extremely important in practice, but how

do we choose the best ordering for the factorization for a particular data format?

If we had an iterative or multi-pass sampling procedure, it will involve a more

complicated, multi-order training but it would then be possible to resolve possible

errors related to sampling two outputs which don’t agree in the first pass. The

resulting sampling would proceed in a fashion very similar to Gibbs sampling or

coordinate descent (Bishop, 2006), repeatedly sampling some piece conditional on
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all other existing knowledge, and proceeding in a random or round-robin fashion

until convergence or boredom. This should allow for outputs which have stronger

global agreement, as context is no longer causal but dependent on all known infor-

mation. Many creative tasks such as drawing or music composition rarely involve

an ordered one-pass approach to content creation, instead preferring a multi-step

process of exploration, rough sketching, adjustment of component pieces, and final

cleanup. This is a strong intuition that for the end goal of content generation, a

one-pass ordered sampling procedure may not be the ideal method to obtain high

quality results.

This intuition has driven many methods which leverage iterative inference in

generative modeling (Gregor et al., 2015a; Huang et al., 2017a; Hadjeres et al.,

2016). In particular, CoCoNet (Huang et al., 2017a) leverages a PixelCNN style

architecture and additional data augmentation to train a model which is order in-

variant (as described by Orderless NADE (Larochelle and Murray, 2011)), resulting

in a model which learns marginal and conditional distributions for any ordering of

the data in expectation.

2.5 Augmenting Decision Making in Probabilistic

Models

Though we train probabilistic models for many tasks, the end deployment of

these systems is generally in decision making processes, where there must be a

decision or action made. Machine learning systems often compute and optimize a

relaxed surrogate for this decision process, for more details on the exact nature of

this relaxation see the discussion of empirical risk minimization by Vapnik (1991).

Consider a dataset generated by a cyclic graph of the form seen in Figure 2.4.

This dataset fundamentally always transitions from A to B, from B to C, and from

C back to A. We can train on any offset or chunk size of this infinite sequence (e.g.

[A, B, C], [C, A, B], [B, C, A]), and never see certain transitions in the training

set. If we believe the test set and validation set are random draws from the same

underlying distribution, a usual assumption in machine learning (Bishop, 2006),

this means that transitions like A to C or C to B should have a 0 probability under
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the model, or in other words, a 0% chance of occurring when sampling from the

distribution defined by a model trained on this data.

Figure 2.4 – Example cyclic generator for dataset ”A, B, C, A, B, C, A, ...”

2.5.1 Learning and Assignment

Training a model on this dataset using standard maximum likelihood methods,

such as a neural network which takes as input the previous symbol and is expected

to output the probability of the next symbol, with a categorical cross-entropy loss

over the set of potential symbols uncovers a fundamental difficulty. Maximum like-

lihood methods generally require some initial non-zero probability assignment for

every category, but we can always decrease the probability assigned to a particular

output and increase the probability of another output (ideally the correct one).

However, we can never set the probability of some event to 0 (or within machine

tolerance of 0, practically) due to numerical issues in the calculations made during

modeling.

This can be seen specifically in the logarithm computation terms in most com-

mon losses such as binary or categorical cross-entropy, though this issue applies

more broadly to maximum likelihood methods using gradient based optimization.

More advanced modeling methods such as convolutional neural networks (CNNs)

or recurrent neural networks (RNNs) cannot directly fix this issue, as it is a di-

rect consequence of the loss structure chosen and the use of maximum likelihood

training criteria (Goodfellow et al., 2016).

2.5.2 Markov Masks

Markov models or other counting based methods have no issue assigning 0

”probability” to transitions never seen in the dataset. However by assigning truly

0 probability to an event, we prevent ever utilizing that event in a given context,

possibly preventing generalization to new situations if the train and test datasets
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differ in some fundamental way (as they often do in practice). Is it possible to

have the best of both, assigning some small probability everywhere and training

with convenient relaxations, but still avoiding unreasonable decisions at evaluation

time?

A simple correction for this particular task would be to change the symbols

modeled, rather than having a symbol vocabulary of [A, B, C], to modeling tran-

sitions [A:B, B:C, C:A]. Though this solution is effective here, it can sometimes

be difficult to model edges directly, due to increases in vocabulary size from the

potential nn−1 pairwise connections in an n node graph (Belilovsky et al., 2016;

Koller and Friedman, 2009).

A keen observer will also note that the previous ”solution” still allows for impos-

sible and disconnected predicted sequences such as [A:B, C:A, B:C]. There exists

a simple solution to this problem, namely taking the highest probability output

which is connected to the existing input, rather than naively taking the highest

probability without any checking.

This change works well on the task as defined above, however things become

more complex in cases with multiple valid transitions between nodes. We can gen-

erally consider taking the ”top-K” outputs, rather than just the ”top-1”, taking

into consideration the predictions made before and the current input. A form of

this method, known informally as ”beam search” (Reddy, 1977; Cho et al., 2014;

Bahdanau et al., 2015) and discussed in Section 2.3.5, has widespread use in deep

learning and in the broader structured prediction community as well as ties to

Viterbi decoding and dynamic programming (Viterbi, 1967; Bellman, 1957). Re-

cent work in the research community has begun exploring the combination of deep

learning and methods which include search as a part of the decoding procedure

(Vinyals et al., 2014; Freitag and Al-Onaizan, 2017), or even methods which are fo-

cused directly on search driven by modeled heuristics using neural networks (Pachet

et al., 2011; Silver et al., 2016, 2017).

We can combine the benefits of Markov methods (via masking) with standard

training procedures, using methods similar to (Germain et al., 2015; van den Oord

et al., 2016; van den Oord et al., 2016; van den Oord et al., 2016). The high level

procedure is masking per-step predictions in a sequential model by a 0-1 mask,

with 1 where a transition had a count of at least 1 in the original data. The

chosen mask can additionally be given to the model as an auxiliary input, allowing
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the model to have a better conditional context with which to predict probabilities

for each output. This masking procedure introduces some of the same issues as

Markov models regarding generalization, but does allow for flexible models which

can choose from within the available good options, which are guaranteed to have

existed in the original data by design of the masks themselves.

2.5.3 Limitations of Constraints

There exists a tension between the design of models which enforce structure

and models that generalize well to new data, especially if there is a distribution

shift between training and evaluation settings. This struggle is somewhat consis-

tent with previous choices regarding inductive bias in model design, though in the

case of constraints a particularly bad choice of enforced constraint can result in

models which never capture the intended solution. These tradeoffs should not be

taken lightly, but given the ability to flexibly enforce constraints with a wide va-

riety of methods, designers should have adequate leeway to craft a model which

encompasses the solution set for the task at hand.

If we can more readily incorporate information about decision making processes

directly in the training loop or as post-hoc correction, it may enable better perfor-

mance, introspection, and safety guarantees in end deployment. Integrating rules

(in a meaningful space for their definition by humans) can leverage years of past

domain expertise in the design of expert systems, and combining these directly

is key for applying deep learning methods to real world problems which require

sequential decision making, planning, and reinforcement learning.

2.6 Speech Synthesis

The works in this dissertation develop tools and techniques related to text-to-

speech synthesis (TTS) which involve a combination of expert signal processing

techniques and learned hierarchical models. Though a full background of TTS

methods are outside the scope of this document segment, there are several high

level lines of research which are applicable to this discussion. Fundamentally, the

problem of text-to-speech involves mapping an underspecified sequence of symbols
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to a detailed representation of audio which can either be converted directly into

audio or a representation of the raw audio. For example in English TTS, the

symbol input might be ”Don’t desert me here in the desert!”, and the corresponding

audio sequence a ten second long audio recording of the sentence. Pronunciation,

timing, and speaker style are all unknowns when looking at the text alone, meaning

the learned model must inject these factors when generating, and preserve their

qualities (but vary them realistically) over the length of the sequence or sequences

to generate.

This high level information can optionally be combined with side information

about speaker type, per-timestep pitch, or many other performance level annota-

tions. These annotations generally reduce the variability of the input to output

mapping, but require careful labeling for accuracy. These labels must be captured

from expert hand-labelers or generated from approximate algorithms that were de-

veloped by professionals in fields like digital signal processing (DSP) or natural

language processing (NLP).

Historically there are a wide variety of approaches to TTS (many of which are

language dependent), but there are two broad categories of solutions, concatena-

tive TTS and paramteric TTS. Concatenative TTS is focused on creating speech by

combining atomic units into an overall audio sequence, generally through a combi-

nation of heuristic search and audio-specific tools for handling boundary issues, fine

timing, and overall alignment. Parametric TTS focuses on control of a parametric

output unit. This allows for fine-grained changes and (theoretically) generalization

outside of the atoms found in the training corpus. Despite the promise of general-

ization, parametric TTS tends to be much more sensitive to the dynamics of the

control unit when compared to concatenative TTS approaches. These two settings

are roughly equivalent to word level language modeling tasks versus character level.

2.6.1 TTS Components

Beyond these differences, another important component is the factorization and

granularity of the TTS system. Breaking the task into three high level components

(separate from the parametric/concatenative distinction), core components are re-

vealed: text processing, audio processing, and text to audio agreement. Study of

these parts can be a field unto its own (text: NLP and audio: DSP), but using
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a few choice tools from their respective fields can greatly simplify the process of

learning text to audio agreement, which is one of the key parts for data driven

TTS.

Text processing for TTS can be extremely involved, with optional features spe-

cific to languages, speaker timing, and dialect. Advanced features here can reduce

or eliminate variability in the output audio, and careful text processing is cru-

cial to high quality synthesis. For neural TTS specifically the input generally has

minimal feature engineering, instead pushing much of the complexity of timing es-

timation to the text to audio agreement layers which come deeper in the network.

Text input sequences are presented as characters, bytes, byte pairs, or phonemes.

Phonemes are a sound aware alphabet, commonly used in language understand-

ing. Normal choices for this include the International Phonetic Alphabet (IPA)

or ARPABet, but extracting these elements requires performing automatic speech

recognition (ASR) over the input data. This introduces an implicit second step

between characters (more generally called graphemes) and phonemes, or g2p. Pro-

nunciations from g2p can be predefined, or learned by a separate machine learning

model such as a seq2seq model. Phonemes are a particularly large improvement for

English TTS, as pronounciation is particularly tricky (for example, ”Don’t desert

me here in the desert!”), but other languages such as Spanish, or Romanian may be

more pronounceable directly from characters, or have romanized versions such as

pinyin. Alternatively characters, bytes or byte pairs can be input directly, forcing

the model to implicitly learn g2p as part of the overall g2a (grapheme to audio)

transformation.

Audio processing for TTS can also be complex with a huge range of transforms

both lossy and perfectly invertible available for use. These approaches were pri-

marily developed by the DSP and speech research communities using application

specific methods, and many of these specific methods have been generalized and

abstracted as machine learning models. There are two primary types of transforms

used in neural TTS, speech agnostic time-frequency transforms, and speech specific

vocoder transforms. Speech agnostic methods are built of time-frequency trans-

forms which are primarily agnostic to the type of input waveform transformed.

Some methods use perceptual transforms to compress the information, but this

transform is fundamentally useful for a broad range input types. Examples of this

approach include short time Fourier transforms (STFT), log-mel spectrograms, and
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non-stationary constant Q transforms (NS-CQT) (Smith, 2019). These transforms

can be lossy and require approximate inversion (as is the case for log-mel spec-

trograms) or exactly invertible (as in STFT). Vocoder transforms are collections

of transforms, filters, and assumptions specific to human speech with well-defined

inversion procedures. Examples of these include STRAIGHT, WORLD, Vocaine,

and YANG (Kawahara et al., 2008; Morise et al., 2016; Agiomyrgiannakis, 2015;

Kawahara et al., 2016). There are also neural vocoders (Wang et al., 2017; Shen

et al., 2017; Mehri et al., 2016; Sotelo et al., 2017; Ping et al., 2017; Ping et al.,

2018) which learn a neural network that can invert a time-frequency or vocoder

transform, but these methods generally still need the high-level audio features to

form intermediate losses during training. The exception to this is van den Oord

et al. (2016), which trained on high level aligned text, voicing, and timing features

but did not incorporate any transformed audio data. However, the subsequent

combined system of Wavenet and Tacotron dubbed Tacotron 2 (Shen et al., 2017)

used a neural vocoder-style Wavenet trained on log-mel spectrograms instead of

aligned features directly.

Text to audio agreement is the last piece of the puzzle. Dynamic time warp-

ing (DTW) and hidden markov models (HMM) have been the go-to methods for

sequence alignment (Rabiner, 1989; Fang, Fang), but the recent advent of seq2seq

models with attention (as previously discussed in Section 2.3) has provided a conve-

nient alternative for learning sequence alignment from data. Many different atten-

tion formulations are possible, the broad categories involve attention models which

exploit domain knowledge such as monotonicty (sequences both proceed forward

in time, but at variable rates), and those that don’t exploit domain knowledge. In

the former category common choices are Gaussian attention constrained to move

in one direction (Graves, 2013b; Sotelo et al., 2017), guided attention (Tachibana

et al., 2017), or softmax attention with locality constraints (Chorowski et al., 2015;

Shen et al., 2017), while the latter case is generally a softmax attention (Bahdanau

et al., 2014; Wang et al., 2017) or variants thereof.

2.6.2 Related TTS Work

All these components can be combined in different ways. There are those which

operate on the classic feature engineered inputs, performing text-to-audio feature
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alignment separately using an HMM. These models usually replace linear models

or other simple estimators with neural networks (Zen et al., 2013; Fan et al., 2015;

Wu et al., 2016). Some methods focus on the symbol-to-audio feature alignment

process (Graves, 2013b; Wang et al., 2017; Taigman et al., 2017; Nachmani et al.,

2018) (see Graves unpublished work extending the handwriting generation model

to speech 1), leaving the conversion from high-level audio features to realized audio

up to a predefined DSP method such the inverse process of the vocoder, Griffin-

Lim phase estimation (Griffin and Lim, 1984), or STFT inversion via overlap-

add. Others focus mostly on the neural vocoder (van den Oord et al., 2016; Arık

et al., 2017; Arik et al., 2017), extracting text, timing, and voicing features via

other means and performing alignment as a separate input processing step. Many

systems combine the alignment and neural vocoding into a single model (Sotelo

et al., 2017; Shen et al., 2017; Ping et al., 2017; Ping et al., 2018), with pre-training

or intermediate losses to improve convergence.

2.7 Symbolic Music Modeling

2.7.1 On the Relationship between Speech Synthesis and Music

Modeling

Some music modeling approaches bear strong similarity to TTS, taking high

level input such as text or stylistic cues to drive a low-level (time-frequency or raw

waveform) generator to create new and interesting soundscapes, based on relation-

ships defined in training data (Agostinelli et al., 2023; Copet et al., 2023; Kreuk

et al., 2022). Publications focusing on the nascent field of ”text-to-music”use many

of the same techniques as TTS, with some key considerations. The primary con-

sideration being that, unlike TTS, there is no explicit alignment between the text

description of the desired audio, and the resulting signal produced by the model.

This more closely resembles ”global style” conditioning for sequence modeling, as

seen in both TTS and handwriting synthesis systems.

Music models which target waveform or spectrogram outputs have the benefit

of a flexible, general output representation and a large volume of data available

1. https://www.youtube.com/watch?v=-yX1SYeDHbg
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for training. Due to these models making few assumptions about the underlying

compositional theories and frameworks for genre, when compared to models which

deal with specific attributes of particular genres, styles, or tertiary information,

they often lack the detailed stylistic traits and interactivity desired by musicians in

compositional tools. Instead text-to-music models act as high level inspiration or

broad compositional ideations, quickly turning over new ideas and exploring new

soundscapes and themes.

Music is woven into the fabric of many civilizations throughout history. Though

there are many commonalities between musical systems (in both the written and

oral tradition) from different cultures, each system of communicating music perfor-

mance depends heavily on the underlying instruments and performance practices

of the time and place in which the system was developed. The work in this thesis

builds upon the study of written forms developed and used in the Western musi-

cal canon, commonly known as sheet music notation, and with analysis rooted in

western music theory and classical performance practice in western Europe dating

from approximately 1300 to 1920 CE (Strayer, 2013; Schoenberg and Stein, 1969).

Figure 2.5 – Quarter note sequence D
A D D at 70 beats per minute, shown
in sheet music notation, as first seen in
Section 1.1.1

2.7.2 Time-frequency Relations

Approaching music modeling from a similar perspective as TTS, we see that just

as there are forms for conversion of written text to phonetic and sound-focused rep-

resentations (such as International Phonetic Alphabet) which describe key details

of the sentence ”performance” without finegrained details such as speaker iden-

tity, local rate variability, pitch inflection and so on. In a similar way sheet music

notation is a useful description language for musical performances based on the

foundations of the Western musical canon, which communicates high level, criti-

cal details about the important performance aspects of a piece (from composer to
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performer) without fully detailed information about the final realization.

Just as time-frequency representations are commonly used for TTS systems,

sheet music notation forms a type of time-frequency representation as well. These

music specific time-frequency representations have different scaling for both pitch/fre-

quency, and time/tempo than speech-specific formats, but fundamentally capture

similar types of information. As such we can apply similar modeling techniques

from other deep learning for sequences to music specific tasks. Models can directly

use the multi-dimensional structure of the music representation, or flattened as a

sequential modeling problem (Sturm et al., 2015; Dong et al., 2022; Liang, 2016;

Min et al., 2023; Huang et al., 2017b). Many simplified musical forms (lead sheet

format for jazz, tracker format for video game music, ABC format as a simplified

MIDI-like representation) for specific genres exist, although transcribed data for

uncommon genres is hard to find. In fact many folk music formats exist in the

aural tradition entirely, with no standard written form and relatively few audio

recordings. Systems modeling these types of music must ”scale down” to the tiny

available collections, as well as ”scaling up” to larger settings with more available

music pieces, and potentially larger models (Sturm et al., 2019). Applications of

deep models for music composition will be discussed at length in chapter 8.
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Kyle Kastner, Mila, Département d’Informatique et de Recherche Opérationnelle,
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4 Representation Mixing for
TTS Synthesis

4.1 Introduction

TTS synthesis (Hunt and Black, 1996) focuses on building systems which can

generate speech (often in the form of an audio feature sequence a), given a set

of linguistic sequences, l. These sequences, l and a, are of different length and

dimensionality thus it is necessary to find the alignment between the linguistic

information and the desired audio. We approach the alignment problem by jointly

learning to align these two types of information (Bahdanau et al., 2014), effectively

translating the information in the linguistic sequence(s) into audio through learned

transformations for effective TTS synthesis (Sotelo et al., 2017; Wang et al., 2017;

Shen et al., 2017; Tachibana et al., 2018; Ping et al., 2018).

4.1.1 Data Representation

We employ log mel spectrograms as the audio feature representation, a well-

studied time-frequency representation (Smith, 2019) for audio sequence a. Various

settings used for this transformation can be seen in Table 4.2.

Linguistic information, l, can be given at the abstract level as graphemes (also

known as characters when using English) or at a more detailed level which may

include pronunciation information, such as phonemes. Practically, character-level

information is widely available in open data sets though this representation allows

ambiguity in pronunciation.

4.1.2 Motivating Representation Mixing

In some cases, it may be impossible to fully realize the desired audio without

being given direct knowledge of pronunciation. Take as a particular example the

sentence ”All travelers were exhausted by the wind down the river”. The word
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”wind” in this sentence can be either noun form such as ”The wind blew swiftly on

the plains”, or verb form for traveling such as ”... and as we wind on down the

road”, both of which have different pronunciation.

Without external knowledge (such as additional context, or an accompanying

video) of which pronunciation to use for the word, a TTS system which operates on

character input will always have ambiguity in this situation. Alternate approaches

such as grapheme to phoneme methods (Rao et al., 2015) will also be unable to

resolve this problem. Such cases are well-known in both TTS and linguistics (Black

et al., 1998; Eddington and Tokowicz, 2015), motivating our desire to flexibly com-

bine grapheme and phoneme inputs in a single encoder. Our method allows per

example control of pronunciation during inference without requiring this informa-

tion for all desired inputs, and similar methods have also been important for other

systems (Ping et al., 2018).
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Figure 4.1 – Visualization of embedding computation

4.2 Representation Mixing Description

The input to the system consists of one data sequence, lj, and one mask se-

quence, m. The data sequence, lj, consists of a mixture between a character

sequence, lc, and a phonetic sequence, lp. The mask sequence describes which

respective sequence the symbol came from with an integer (0 or 1). Each time a

training sequence is encountered, it is randomly mixed at the word level and we

assign all spaces and punctuation as characters.

For example, a pair ”the cat”, ”@d@ah @k@ah@t”(where @ is not a used symbol

and serves only as an identifier to mark phoneme boundaries) can be resampled
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as ”the @k@ah@t”, with a corresponding mask of [0, 0, 0, 0, 1, 1, 1]. On the next

occurrence, it may be resampled as ”@d@ah cat”, with mask [1, 1, 0, 0, 0, 0]. This

resampling procedure can be seen as data augmentation, as well as training the

model to smoothly process both character and phoneme information without over-

reliance on either representation. We demonstrate the importance of each aspect

in Section 4.4.

4.2.1 Combining Embeddings

The full mixed sequence, lj, separately passes through two embedding matrices,

ec and ep, and is then combined using the mask sequence to form a joint mixed

embedding, ej. For convenience, ec and ep, are set to a vocabulary size that is

the max of the character and phoneme vocabulary sizes. This mixed embedding

is further combined with an embedding of the mask sequence itself, em, for a final

combined embedding, ef . This embedding, ef , is treated as the standard input for

the rest of the network. A diagram describing this process is shown in Figure 4.1.

ej = (1−m) ∗ ec +m ∗ ep (4.1)

ef = em + ej (4.2)

4.2.2 Stacked Multi-scale Residual Convolution

In the next sections, we describe the network architecture for transforming the

mixed representation into a spectrogram and then an audio waveform. A full system

diagram of our neural network architecture can be seen in Figure 4.2.

The final embedding, ef , from the previous section is used as input to a stacked

multi-scale residual convolutional subnetwork (SMRC). The SMRC consists of sev-

eral layers of multi-scale convolutions, where each multi-scale layer is in turn a

concatenation of 1 × 1, 3 × 3, and 5 × 5 layers concatenated across the channel

dimension. The layers are connected using residual bypass connections (He et al.,

2016a) and batch normalization (Ioffe and Szegedy, 2015) is used throughout. After

the convolutional stage, the resulting activations are input to a bidirectional LSTM

layer (Schuster and Paliwal, 1997; Hochreiter and Schmidhuber, 1997b). This ends

the encoding part of the network.
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Figure 4.2 – Encoding, attention, and one step of mel decoder

4.2.3 The Importance of Noisy Teacher Forcing

All audio information in the network passes through a multilayer pre-net with

dropout (Srivastava et al., 2014; Wang et al., 2017; Shen et al., 2017), in both

training and evaluation. We found that using pre-net corrupted audio in every

layer (including the attention layer) greatly improves the robustness of the model

at evaluation, while corruption of linguistic information made the generated audio

sound less natural.

4.2.4 Attention-based RNN Decoder

The encoding activations are attended using a Gaussian mixture (GM) attention

(Graves, 2013) driven by an LSTM network (conditioned on both the text and pre-

net activations), with a softplus activation for the step of the Gaussian mean as

opposed to the more typical exponential activation. We find that a softplus step

substantially reduces instability during training. This is likely due to the relative

length differences between linguistic input sequences and audio output.

Subsequent LSTM decode layers are conditioned on pre-net activations, atten-

tion activations, and the hidden state of the layer before, forming a series of skip

connections (Graves, 2013; Zhang et al., 2016). LSTM decode layers utilize cell

dropout regularization (Semeniuta et al., 2016). The final hidden state is projected

to match the dimensionality of the audio frames and a mean squared error loss is

calculated between the predicted and true next frames.
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4.2.5 Truncated Backpropagation Through Time (TBPTT)

The network uses truncated backpropagation through time (TBPTT) (Hochre-

iter and Schmidhuber, 1997b) in the decoder, only processing a subsection of the

relevant audio sequence while reusing the linguistic sequence until the end of the

associated audio sequence. TBPTT training allows for a particular iterator packing

scheme not available with full sequence training, which continuously packs subse-

quences resetting only the particular elements of the sequence minibatches (and the

associated RNN state) when reaching the end of an audio sequence. A simplified

diagram of this approach can be seen in Figure 4.3.

Single minibatch

Truncated minibatches with resets

Figure 4.3 – Comparison of standard minibatching versus truncation.

4.2.6 Converting Features Into Waveforms

After predicting a log mel spectrogram sequence from linguistic input, further

transformation must be applied to get an audible waveform. A variety of methods

have been proposed for this inversion such as the Griffin-Lim transform (Griffin and

Lim, 1984), and modified variants (Slaney et al., 1994). Neural decoders such as

the conditional WaveNet decoder (van den Oord et al., 2016; Shen et al., 2017) or

conditional SampleRNN (Mehri et al., 2016) can also act effectively as an inversion

procedure to transform log mel spectrograms into audible waveforms.

Optimization methods also work for inversion and we utilize an L-BFGS based

routine. This process optimizes randomly initialized parameters (representing the

desired waveform) passed through a log mel spectrogram transform, to make the

transform of these parameters match a given log mel spectrogram (Thomé, 2018).

This results in a set of parameters (which we now treat as a fixed waveform)

with a lossy transform that closely matches the given log mel spectrogram. The
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overall procedure closely resembles effective techniques in other generative modeling

settings (Gatys et al., 2016).

Inversion Method Seconds per Sample STRTF
100 L-BFGS 1.49E-4 3.285
1000 L-BFGS 1.32E-3 29.08
Modified Griffin-Lim 2.81E-4 6.206
100 L + GL 4.11E-4 9.063
1000 L + GL 1.6E-3 35.28
WaveNet 7.9E-3 174.7
100 L + GL + WN 8.3E-3 183.7
1000 L + GL + WN 9.5E-3 210.0

Table 4.1 – Comparison of various log mel spectrogram to waveform conversion techniques.
STRTF stands for ”slower than real time factor” (calculated assuming output sample rate
of 22.05 kHz), where 1.0 would be real-time generation for a single example.

4.2.7 Inversion Pipeline

This work uses a combined pipeline of L-BFGS based inversion, followed by

modified Griffin-Lim for waveform estimation (Slaney et al., 1994). The result-

ing waveform is of moderate quality, and usable for certain applications including

speech recognition. Using either L-BFGS or Griffin-Lim in isolation did not yield

usable audio in our experiments. We also found that this ordering (L-BFGS then

Griffin-Lim) in our two-stage pipeline works much better than the reverse setting.

To achieve the highest quality output, we then use the moderate quality wave-

form output from the two stage pipeline, converted back to log mel spectrograms,

for conditional WaveNet synthesis. Though other work (Shen et al., 2017) clearly

shows that log mel spectrogram conditioned WaveNet can be used directly, we find

the two stage pipeline allows for quicker quality checking during development, as

well as slightly higher quality in the resulting audio after WaveNet sampling. We

suspect this is because the pre-trained WaveNet (Yamamoto et al., 2018) that we

use is trained on ground-truth log mel spectrograms rather than predicted outputs.

The synthesis speed of each setting is shown in Table 4.1.
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4.3 Related Work

Representation mixing is closely related to the ”mixed-character-and-phoneme”

setting described in Deep Voice 3 (Ping et al., 2018), with the primary difference

being our addition of the mask embedding em. We found utilizing a mask embed-

ding alongside the character and phoneme embeddings further improved quality,

and was an important piece in the text portion of the network. The focused user

study in this paper also highlights the advantages of this kind of mixing indepen-

dent of high-level architecture choices, since our larger system is markedly different

from that used in Deep Voice 3.

The SMRC subnetwork is closely related to the CBHG encoder (Wang et al.,

2017), differing in the number and size of convolutional scales used, no max-pooling,

use of residual connections, and multiple stacks of multi-scale layers. We use a

Gaussian mixture attention, first described by Graves (Graves, 2013) and used in

several speech related papers (Sotelo et al., 2017; Skerry-Ryan et al., 2018; Taigman

et al., 2017), though we utilize softplus activation for the mean-step parameter

finding that it improved stability in early training.

Our decoder LSTMs utilize cell dropout (Semeniuta et al., 2016) as seen in prior

work (Ha et al., 2016; Ha and Eck, 2017). Unlike Tacotron (Wang et al., 2017), we

do not use multi-step prediction, convolutional layers in the mel-decoding stage,

or Griffin-Lim inside the learning pathway. Audio processing closely resembles

Tacotron 2 (Shen et al., 2017) overall, though we precede conditional WaveNet with

a computationally efficient two stage L-BFGS and Griffin-Lim inference pipeline

for quality control, and as an alternative to neural inversion.

4.4 Experiments

The model is trained on LJSpeech (Ito, 2017), a curated subset of the LibriVox

corpus. LJSpeech consists of 13, 100 audio files (comprising a total time of approx-

imately 24 hours) of read English speech, spoken by Linda Johnson. The content

of these recordings is drawn from scientific, instructional, and political texts pub-

lished between 1893 and 1964. The recordings are stored as 22.05 kHz, 16 bit WAV

files, though these are conversions from the original 128 kbps MP3 format.
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Character level information is extracted from audio transcriptions after a nor-

malization and cleaning pipeline. This step includes converting all text to lowercase

along with expanding acronyms and numerical values to their spelled-out equiva-

lents. Phonemes are then extracted from the paired audio and character samples,

using a forced alignment tool such as Gentle (Ochshorn and Hawkins, 2017). This

results in character and phoneme information aligned along word level boundaries,

so that randomly mixed linguistic sequences can be sampled repeatedly through-

out training. When using representation mixing for training, we choose between

characters and phonemes with probability .5 for each word in all experiments.

Audio Processing 22.05 kHz 16 bit input, scale between
(−1, 1), log mel spectrogram 80 mel bands,
window size 512, step 128, lower edge 125
Hz, upper edge 7.8 kHz, mean and std dev
normalized per feature dimension after log
mel calculation.

Embeddings vocabulary size (v) 49, 49, 2, embedding
dim 15, truncated normal 1√

v

SMRC 3 stacks, stack scales 1 × 1, 3 × 3, 5 × 5,
128 channels each, batch norm, residual
connections, ReLU activations, orthonor-
mal init

Enc Bidir LSTM hidden dim 1024 (128 × 4 × 2), truncated
normal init scale 0.075

Pre-net 2 layers, hidden dim 128, dropout keep
prob 0.5, linear activations, orthonormal
init

Attention LSTM nummixes 10, softplus step activation, hid-
den dim 2048 (512 × 4), trunc norm init
scale 0.075

Decoder LSTMs 2 layers, cell dropout keep prob 0.925, trun-
cated normal init scale 0.075

Optimizer mse, no output masking, Adam optimizer,
learning rate 1E−4, global norm clip scale
10

Other TBPTT length 256, batch size 64, training
steps 500k, 1 TitanX Pascal GPU, training
time 7 days

Table 4.2 – Architecture hyperparameter settings
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4.4.1 Log Mel Spectrogram Inversion Experiments

We use a high quality implementation of WaveNet, including a pre-trained

model directly from Yamamoto et. al. (Yamamoto et al., 2018). This model

was also trained on LJSpeech, allowing us to directly use it as a neural inverse to

the log mel spectrograms predicted by the attention-based RNN model, or as an

inverse to log mel spectrograms extracted from the network predictions after further

processing. Ultimately combining the two stage L-BFGS and modified Griffin-Lim

pipeline with a final conditional WaveNet sampling pass demonstrated the best

quality, and is what we used for the user study shown in Table 4.3.

4.4.2 Preference Testing

Given the overall system architecture, we pose three primary questions (refer-

enced in column Q in Table 4.3) as a user study:

1) Does representation mixing (RM) improve character-based inference over a

baseline which was trained only on characters?

2) Does RM improve phoneme with character backoff for unknown word (PWCB)

inference over a baseline trained on fixed PWCB?

3) Does PWCB inference improve over character-based inference in a model

trained with representation mixing?

To answer these questions, we pose each as a preference test by presenting study

participants with 20 paired choices. Each user was instructed to choose the sample

they preferred 1 . The 20 tests were chosen randomly in a pool of 123 possible tests

covering all three question types, from 41 possible sentences. Presentation order

was randomized for each question and every user. The overall study consisted

of 22 users and 429 responses across all categories (some users didn’t select any

preference for some questions).

We see that users clearly prefer models trained with representation mixing, even

when using identical information for inference. This highlights the data augmenta-

tion aspects of representation mixing, as regardless of information type representa-

tion mixing (RM) gives clearly preferable results compared to static representations

(Char, PWCB). The preference of representation mixing over static PWCB also

1. https://s3.amazonaws.com/representation-mixing-site/index.html
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Q Model A Model B C. A Total % A
1 RM (char) Char 101 137 73.7%
2 RM (PWCB) PWCB 106 145 73.1%
3 RM (PWCB) RM (char) 86 147 58.5%

Table 4.3 – A / B user preference study results. RM uses approach in parenthesis at
inference time. Columns ”C. A” and ”% A” indicate the number and percentage of users
which preferred Model A.

means that introducing phoneme and character information without mixing is less

beneficial than full representation mixing.

It is also clear that for representation mixing models, pronunciation information

(PWCB) at inference gives preferable samples compared to character information.

This is not surprising, but further reinforces the importance of using pronunciation

information where possible. Representation mixing enables choice in input format,

allowing the possibility to use many different inference representations for a given

sentence with a single trained model.

4.5 Conclusion

This paper shows the benefit of representation mixing, a simple method for

combining multiple types of linguistic information for TTS synthesis. Representa-

tion mixing enables inference conditioning to be controlled independently of train-

ing representation, and also results in improved quality over strong character and

phoneme baselines trained on a publically available audiobook corpus.
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6 R-MelNet

6.1 Introduction

Recent progress in text-to-speech (TTS) synthesis has been largely driven by the

integration of neural networks which parameterize various factorizations of prob-

lems and subproblems in speech modeling (Black et al., 2007). This adoption has

been driven by improved tooling (Paszke et al., 2019) as well as rapid improvement

in stability and optimization for neural network training, allowing the development

of ever larger and more complex TTS systems. Particularly, many recent neural

TTS approaches feature a two-stage process, with one stage learning features from

text-like inputs often in conjunction with a learned alignment procedure using at-

tention modeling, or other language specific duration estimation models (Sotelo

et al., 2017; Wang et al., 2017; Ping et al., 2018; Chen et al., 2021).

Following this first stage model (often denoted as the frontend), a secondary

backend network which focuses on upsampling, refining, or otherwise estimating

audio waveforms from structured, time-aligned information is used to predict the

final necessary output (Kalchbrenner et al., 2018; Chen et al., 2020). Input infor-

mation is generally a text-based representation, such as characters or phonemes,

although recent models have also used self-supervised representations which com-

bine audio and text information. Input modalities can be mixed at a per-datapoint

level (Kastner et al., 2019; Ping et al., 2018; Fong et al., 2020), in order to provide

data-based regularization during training as well as the ability to flexibly choose

between character and phonetic representations during inference.

The intermediate audio representation used for these two-stage systems is often

a well-studied time-frequency representation from digital signal and speech process-

ing, such as vocoder features, linear spectrograms, or log-mel spectrograms. These

features can be coupled with high level information about delivery style, speaker

characteristics, pitch curves, or any number of other high level controls useful for
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generative speech tasks.

The model types used for these various factorizations of the TTS problem come

in a variety of forms: recurrent networks, convolutional networks, transformer

models, or neural models combined with alternative probabilistic methods such as

HMMs (Mehta et al., 2021). One common variety of recurrent architecture builds

on an attention based system for handwriting generation and text-to-vocoder syn-

thesis (Graves, 2013), using attention based recurrent networks to learn an align-

ment for turning character based inputs into audio outputs (Sotelo et al., 2017;

Wang et al., 2017; Shen et al., 2018). The basis for our frontend model, MelNet

(Vasquez and Lewis, 2019), builds upon this foundation as well as prior work on

multi-dimensional recurrent models (Graves and Schmidhuber, 2008; Theis and

Bethge, 2015; Kalchbrenner et al., 2015; Visin et al., 2015; Van Oord et al., 2016),

in order to model time-frequency spectral features by jointly recurring over time

and frequency.

6.2 System Design

The output target for the first tier of MelNet is a heavily downsampled log-mel

spectrogram. In the case of a 5 tier melnet using a downsampling factor of 2 per

tier (as used in R-MelNet), this results in data which is downsampled by 4 in time,

and 8 in mel-frequency at the lowest level. As an example, we use a base log-

mel spectrogram size (in time, frequency format) of (448, 256), corresponding to

approximately 4 seconds of audio, as in Figure 6.1. This leads to an overall log-mel

spectrogram (in time, frequency format) of (448, 256) reducing to a downsampled

target of only (112, 32) for the first tier loss, as in Figure 6.2. This extremely

low-resolution data is predicted autoregressively (over both time and frequency),

conditioned by attending over input text features. Time-frequency autoregression

is handled by a structured arrangement of recurrent neural networks (Vasquez and

Lewis, 2019).

Subsequent tiers after the first in standard MelNet do not use an attention sub-

network, rather using the previously predicted, low-resolution log-mel spectrogram

to condition the autoregressive generation (once again, over both time and fre-

quency via recurrent networks) of a neighboring log-mel spectrogram - namely the
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Figure 6.1 – Log-mel spectrogram (T=448, F=256).

Figure 6.2 – Downsampled log-mel spectrogram (T=112, F=32).

log-mel spectrogram formed by downsampling in the same way but shifted by one

column in time, or one row in frequency. Once predicted, the input conditioning

and the predicted log-mel spectrogram are recombined by alternating either rows

or columns into a map that is effectively twice as large in either time, or frequency.

This means the overall tiers of the MelNet model a multi-scale sequence of log-mel

spectrograms which gradually increase in resolution by 2 in one-dimension at every

tier after the first.

6.2.1 A Dual-Purpose View of MelNet

The iterative checkerboard of upsampling tiers in MelNet is reminiscent of sev-

eral other image generative models (Dinh et al., 2017; Menick and Kalchbrenner,

2018; Saharia et al., 2021), and we can crudely break the overall MelNet architecture

into two segments - the first tier, which predicts a low-resolution target conditioned

only on text information using an attention subnetwork, and all subsequent tiers,

which upsample the initial low-resolution predictions (and all intermediate predic-

tions from previous tiers) into a high-quality, holistic log-mel spectrogram. Given

this view of the overall MelNet architecture, and given the high computational cost

of autoregressive sampling over larger and larger multi-dimensional maps, a natural

question arises: Can we remove the upsampling tiers entirely, and opt instead to

predict coarse, extremely low-resolution log-mel spectrograms which are paired with

another inversion routine in order to obtain audio samples?

Demonstrations of reduced tier samples from the original MelNet hint at the
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feasibility of this approach. In this work, we show that indeed, it is possible to re-

move all tiers except the first and instead use a WaveRNN to convert low-resolution

first tier log-mel spectrograms into waveforms. Our model, denoted R-MelNet pro-

duces quality TTS with fewer hardware resources and parameters compared to the

original implementation.

6.2.2 Architecture Details

The R-MelNet frontend largely follows the recipe specified in MelNet, utilizing

multi-dimensional recurrent neural networks, combined with an attention subnet-

work over text features. Many of the details below are not specifically unique to

R-MelNet, however we re-emphasize key aspects in order to clearly define our ap-

proach. The frontend network architecture uses 5 combined layers, consisting of

time, frequency, and centralized stacks (Vasquez and Lewis, 2019). The attention

network is inserted into the middle of the 5 combined layers, conditioning all sub-

sequent outputs, and all layers are connected with residual connections (He et al.,

2016b; Graves, 2013). We employ GRU units for all mel-spectrogram related re-

currence, with hidden size for each GRU to 256. For the attention subnetwork,

we use a combination of embeddings to train with representation mixing (Kastner

et al., 2019; Ping et al., 2018; Fong et al., 2020) at a 0.5 per word swap probabil-

ity between characters and phonemes, in order to enable either character-based or

phoneme-based synthesis as well as providing data augmentation during training.

The combined representation mixing embeddings are then fed directly into a bidi-

rectional LSTM, forgoing the convolutional subnet which often links embeddings

to the bidirectional LSTM in other work (Shen et al., 2018; Kastner et al., 2019).

These resulting biLSTM hidden states form the memory which is attended over

to condition the overall generation. All initial recurrent hidden states are fixed,

starting from all zeros.

6.2.3 Reduced Resource Requirements

Neural networks are often limited by hardware resources, and GPU memory in

particular is a frequent bottleneck for model training. We utilize several techniques

to minimize memory requirements, keeping the overall memory necessary for train-

ing within 11 gigabytes. All neural network code for these experiments was written
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using the PyTorch machine learning framework (Paszke et al., 2019), and trained on

a single 2080Ti NVIDIA GPU. One common way to reduce memory requirements

is changing the floating point representation, from full precision (32 bit) to half

precision (16 bit). This can bring a host of training complications due to numerical

inaccuracy, but generally gives a substantial reduction in memory usage. We use

half precision (16 bit) representations for all data and model parameters, as well as

an Adam optimizer (Kingma and Welling, 2015) adapted for 16 bit training (Brock

et al., 2018). Despite these techniques, the memory required for moderately sized

minibatches (on the order of 12 to 16) is still too large. One approach to further

reduce memory use is to aggregate the gradient computation for a batch size N

over K forward passes of sub-minibatches size M , where M×K = N (Hoffer et al.,

2019), thus allowing these virtual batches to control memory usage independently

of the effective batch size for optimization. We use a virtual batch size of 8, with

an effective batch size of 16 in this work.

6.2.4 Attention

The attention subnetwork is a critical part of the overall architecture, as all

text-based conditioning flows through this subnetwork, and the dynamics of the

learned alignment define important aspects for TTS tasks. Attention calculations

use many non-typical components and operations, and numerical precision is of

critical importance. This is directly at odds with the half precision training strategy

used in this work, and we made several modifications in order to ensure the stability

of attention dynamics during training and sampling. R-MelNet uses a modified

mixture of logistics attention (Vasquez and Lewis, 2019; Battenberg et al., 2020),

and we note that many of these changes may be necessary due to framework level

implementation details between the PyTorch used here and the Tensorflow used

in MelNet. We parameterize the mixture of logistics attention with M mixture
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components
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m
i ) + ϵκ (6.2)

βm
i = s+(β̂

m
i ) (6.3)

αm
i =

exp(α̂m
i )∑M

m=1 exp(α̂
mi)

(6.4)

Throughout the following equations, γi is used as shorthand to represent the

tuple of values κi, βi, αi parameterizing the location, scale, and weight for each

mixture component. The term ϵκ is a small value to bound the minimum possible

attention step, set to .001. Here s+ represents a stable form of the softplus function

s+(x) = log(1 + exp(−|x|)) + max(0, x) (6.5)

Crucially, the log(1+exp(−|x|)) function must be implemented in such a way that

multiple numerical cases are handled in a branching fashion (Cook, 2012), and that

each branch of the computation which can result in not a number (NaN) values

does not propagate this value outside the region of numerical stability for that

branch. In PyTorch, this is accomplished by creating an output array, creating

masks matching each branch condition, and filling subsets of the output array with

the results of each branch, rather than directly performing a where style conditional

query.

This results in a final distribution function F (u; γi) (Vasquez and Lewis, 2019)

Fi(u; γi) =
M∑

m=1

αm
i (1 + exp(

κm
i − u

βm
i

))−1 (6.6)

ϕ(u; γi) = Fi(µ+ 0.5; γi)− Fi(u− 0.5; γi) (6.7)

Here we note that ϕ(u; γi) can be parameterized using sigmoid calculations by

expanding the difference and combining exponential terms. We use the equivalence

between sigmoid and tanh to formulate a numerically similar alternative, using a

cheap approximation to tanh and the equivalence of β and 1
β
when optimizing with

the s+(x) function to avoid 1
0
instability.
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)
(6.9)

ϕ(u; γi) =
M∑

m=1

αm
i (T (u+ 0.5; γi)− T (u− 0.5; γi)) (6.10)

The term ϵβ is used to bound the minimum value, and is fixed to .01. Finally, we

use a straight-through style gradient reweighting in order to use the direct value of

ϕ(u; γi) in the forward pass, but reweight the gradient according to the number of

attention components 1√
M
. All intermediate attention values are calculated in full

precision, and recast to half precision at the end of the attention weight calculation.

6.2.5 The Importance of Inference Stochasticity

The R-MelNet frontend uses mean squared error loss, as opposed to mixture

density output and loss (Bishop, 1994; Graves, 2013; Vasquez and Lewis, 2019).

Simple mean squared error, combined with numerical stability improvements, adap-

tive optimizers, and gradient clipping results in smooth, stable training. However

when sampling, we note that the injection of stochasticity via noise is critical to

achieve stable and high quality samples.

We form an approximate distribution using Q noise samples, by combining the

average output mean predictions µ = 1
Q

∑Q
q=1 µq for a given model step with a

particular standard deviation of noise, uniformly sampled over a predefined range

R to get σr for this step. We next generate Q samples from a truncated Gaussian

distribution defined by this (µ, σr) pair, and these inputs feed the next model step.

This gives the next set of mean predictions µ̂Q
q=1, which are then averaged to form a

new estimated mean µ̂, a new σ̂r is drawn from range R, and so on. This procedure

iterates for the total number of necessary sample steps to give a complete output.

R-MelNet uses noise range 0 ≤ R ≤ 0.75, and 1 ≤ Q ≤ 100 noise samples, with

the best settings at .33 and 100 respectively. The result of sampling in this way

can be seen in Figure 6.3.

This noise computation is easy to parallelize by permuting the differently noised

inputs into the batch dimension, then averaging outputs along this dimension to
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estimate the average µ. When utilizing this batch parallelism, the noisy sampling

approach has relatively minor cost in terms of overall sampling speed. The level of

noise is critically important, as without noise or with few numbers of noise samples

Q the attention dynamics were highly unstable, and frequently led to issues with

attention dynamics stalling as in Figure 6.4. Higher noise range R often resulted

in more stable dynamics, but at the expense of final audio quality. Our results

show that simple mean squared error losses can work when combined with noisy

multi-sample inputs during sampling, though we recommend stochastic outputs

(e.g. MDN) for future exploration. Naive sampling schemes which recompute

hidden states are extraordinarily costly in MelNet style multi-dimensional recurrent

models. Sampling practically requires a fast caching/memoization scheme which

caches all previous values for time delayed and centralized stacks, only recomputing

when absolutely necessary because dependent variables change. This means that

time delayed and centralized stacks only need to be recomputed when the frequency

stack finishes an entire row of frequency predictions, while the frequency stack uses

cached versions of the time and centralized stacks for intermediate computation.

6.2.6 Framing the Context

One advantage of MelNet style architectures is the ability to condition on past

log-mel spectrogram information, in order to prime the style of the resulting audio.

This gives the ability to generate varied outputs for a single text prompt by varying

past mel-spectrum information and associated text, a critical aspect of stylistic

and expressive TTS (Graves, 2013; Chang et al., 2021; Stanton et al., 2021). This

ability to prime the model with audio context, coupled with the ability to granularly

control text information on a per-word basis using representation mixing, means it

is possible to generate many possible candidate samples for a single desired phrase.

Though this is advantageous for creating variable output, it also makes the selection

of a single best model output from a collection of different priming audio and text

sequences into a complex search problem.

For fully automated TTS, we use a simple heuristic search algorithm to refine

and rerank proposed model samples, based on the smoothness, continuity, and

completion of the attention weights. See Figure 6.4 for an example. After throwing

out attentions which failed to reach the end of the text, or broke apart (detected
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by contiguity of a mask based on the 95th percentile value), our ranking function

looks at the nearness to the median length (across all seeds which succeeded), gap

between the max and median attention trace value, gap between the max and

min attention trace value, and the reciprocal of the min attention trace value.

These four values are multiplied together, and the results ranked from lowest to

highest, choosing the result with the lowest value. This means that attentions

with a high constant value on the attention trace, that aren’t unusually short or

long compared to other seeds should get a low score, whereas uncertain or highly

variable attentions, or ones with an especially fast or slow rate will get a higher

score. This selection method could integrate automatic metrics as a direction for

future work (Huang et al., 2022).

6.2.7 Converting Low-Resolution Mel-Spectrograms into Audio

As described above, predicting low-resolution log-mel spectrograms from R-

MelNet is the first stage of the overall audio generation. Once the low-resolution

output is predicted, another stage is necessary to turn the predicted output (see

Figure 6.3) into listenable audio. We use a WaveRNN (Kalchbrenner et al., 2018)

for this purpose, in order to preserve the autoregressive nature of audio decod-

ing. Our setup follows the normal procedure for mel to audio WaveRNN training

(McCarthy, 2018), with one crucial difference. We found that modifying the con-

volutional encoder of WaveRNN to upsample the time dimension of the (112, 32)

input by 4, back to the native time resolution performed poorly. Instead, it was

beneficial to linearly interpolate (per frequency bin) the low resolution input up

to (448, 32) before input to the WaveRNN pipeline. Many models (Chen et al.,

2020; Lam et al., 2022; Morrison et al., 2021) can be used for this mel-to-audio

stage. Exploring which audio models best predict high-quality audio data given

low-resolution input is an important direction for future work, as well as analyzing

sources of pitch variation and pitch error (Morrison et al., 2021; Turian and Henry,

2020).

54



Figure 6.3 – Attention alignment and sampled output from Mel-Net frontend along with log-mel
spectrogram of final output waveform from WaveRNN backend, for example input ’their boat
sank into the icy river’, phonemized to ’dhehr bowt saengk ihntuw dhiy aysiy rihver’.

Figure 6.4 – Example of alternate successful attention alignment, and two failed alignments for
the same sentence as Figure 6.3, starting with different audio and text priming.

6.3 Experiments

Given the massive number of components to this system, we encourage readers

to refer to the experimental code 1 for hyperparameters and other key implementa-

tion details. All training for R-MelNet, as well as comparison baselines Fastspeech

2 and Portaspeech, used the LJSpeech dataset (Ito, 2017). We note that most au-

dio preprocessing settings for R-MelNet follow precedent work (Yamamoto, 2018),

with base audio at 22.050 kHz sample rate, using STFT size 6 × 200, STFT step

1. https://github.com/kastnerkyle/rmelnet
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200, and base mels 256 before downsampling. We also found global mean and std

normalization per frequency bin for the R-MelNet frontend was crucial for stable

training.

Model MOS-P (95% CI) Parameters

R-MelNet 3.686± 0.144 43M
Fastspeech 2 (Wang et al., 2020) 3.6736± 0.151 27M
Portaspeech (Ren et al., 2021) 3.278± 0.183 21.8M

Table 6.1 – MOS-P listening study results, comparing Fastspeech 2, Portaspeech, and R-MelNet.

R-MelNet performs slightly better on average in a prosody-focused mean opinion

score (MOS-P) test compared to Fastspeech 2 (as implemented by fairseq S2, with

HiFi-GAN vocoder (Kong et al., 2020)) and Portaspeech (also with HiFi-GAN

vocoder), though confidence intervals for R-MelNet and Fastspeech 2 are highly

overlapped. Test participants were asked to ignore small variations in audio quality,

so although the resulting R-MelNet audio is slightly noisier than the equivalent

outputs from Fastspeech 2 and Portaspeech, it did not overly affect ratings. In a

quality based MOS test (MOS-Q) we would expect to see lower performance than

these baselines, but pure audio quality was not the focus of our current work. We

use 14 sentences from the Harvard Sentences (iee, 1969), along with 11 custom

sentences for a total of 25 sentences, which were synthesized using all 3 models,

and presented in random order to each user in the test. Given the ratings for

this test (261 for each model, across 34 separate users), and overlap in confidence

intervals, it is difficult to discern an absolute ranking of performance. We do not

take these scores as a critique of the comparison methods, only as a validation that

R-MelNet is of comparable quality to both Fastspeech 2 and Portaspeech, proving

the validity of our approach for neural TTS. The spread of options for sampling

and high variability in R-MelNet are potentially suited to interactive use, however

in the current implementation sampling speed (∼ 4x slower than real-time) and

frame latency (∼ 50 ms per mel frame) are not fast enough for human-in-the-

loop usage. An ideal, pipelined version of R-MelNet could meet a 30 ms latency,

sub real-time output threshold which would enable interactive use, but requires

significant engineering effort. As such we leave this exploration to future work.
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6.4 Conclusions

We describe R-MelNet, a two-stage architecture for neural text-to-speech syn-

thesis. The R-MelNet frontend uses a one tier version of MelNet, which takes in a

mixed sequence of character and phoneme features, along with an optional audio

priming sequence, and outputs low-resolution mel-spectral features. These features

are in turn upsampled, and input to a WaveRNN which generates an audio wave-

form. The audio from this generative pipeline is varied and expressive, giving many

possible outputs for a single desired prompt. By incorporating practical methods

for reducing computational complexity and memory usage such as half precision

training with numerically stable implementations of core operations, our method

enables training on a single commodity gpu. This resulting model compares favor-

ably in terms of parameter count, and quality with recent non-autoregressive TTS

methods when trained on an openly available single speaker dataset.
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8 SUNMASK

8.1 Introduction

Modern approaches to content generation frequently utilize probabilistic mod-

els, which can be parameterized and learned using artificial neural networks. Com-

mon types of neural probabilistic models used for generation can be broadly strat-

ified to form two broad categories based on factorization: autoregressive models

(AR), and non-autoregressive models (NAR). We introduce SUNMASK, a NAR

generative model for structured sequences 1.

8.1.1 Autoregressive Models

AR modeling with deep neural networks has been a dominant approach for

generative modeling and feature learning (Radford and Wu, 2019; Kalchbrenner

et al., 2015; Theis and Bethge, 2015; Van Oord et al., 2016; Vasquez and Lewis,

2019) which has many crucial advantages in both training and inference. One key

concern is the necessity of defining a ”dependency chain” in the form of a (typically)

directed acyclic graph (DAG). Sampling during inference can be accomplished in

a straightforward manner using ancestral sampling - sampling from the first vari-

able or variables in the DAG, using those to conditionally estimate a probability

distribution for subsequent variables.

Many applications have straightforward orderings in which to define this chain

of variables, based on domain knowledge. For example following the flow of time for

timeseries modeling is often a logical choice, allowing models to make predictions

into the future from the past. However in many other domains, for example images,

language, or music, the process of defining a dependency chain over input variables

(e.g. pixels, characters, words, or notes) is far from straightforward, as for any

arbitrary ordering there can frequently be examples where this ordering creates

1. https://github.com/SUNMASK-web/sunmask. Last accessed 8 February 2023.

60

https://github.com/SUNMASK-web/sunmask


long-term dependencies, or otherwise makes satisfaction of dependencies during

training and evaluation more difficult than another alternative ordering.

This divide becomes further compounded in many creative applications to these

domains, as creators typically iterate repeatedly: forming a concept, sketching out

the concept, and seeing where the creative flow (based on the sketch) may lead

to alterations in the original concept, thus ”rewriting” sketched steps. Though the

resulting output may be perceived in a time-ordered fashion (for example, read-

ing a book or listening to a song), the initial creation was performed globally and

holistically. This global view is often critical to creating elements such as foreshad-

owing and tension which make the resulting output interesting or enjoyable. This

iterative process is directly at odds with a strict AR factorization, and requires well

trained AR models to cope with a high degree of uncertainty and multi-modality

for long range dependencies, which can lead to logical mistakes or other errors.

8.1.2 Non-Autoregressive Models

An alternative methodology for generative modeling is non-autoregression (NAR),

broadly covering a large number of different modeling approaches which attempt

to remove assumptions about variable ordering, instead either hand-defining per-

exemplar orderings, or modeling variables jointly without resorting to chain rule

factorization (Hill et al., 2016; Gu et al., 2018). One way to define an ordering over

variables is via masking of inputs or intermediate network representations (Ger-

main et al., 2015; Uria et al., 2016, 2014; Yang et al., 2019; Van Oord et al., 2016;

Papamakarios et al., 2017), and indeed modern AR approaches such as transform-

ers (Vaswani et al., 2017) use an autoregressive mask internally to define the chain

of variables order. These masks can either be constant over all training (as in

standard AR transformers and PixelCNN (Van Oord et al., 2016)) or dynamic per

example (as in MADE (Germain et al., 2015)). When masks are dynamic per ex-

ample, we begin to see the relationship between enforcing AR via masking and

NAR methods, as although some ordering is assumed this ordering is no longer

constant, and it becomes possible to use the same trained model to evaluate the

probability of a particular output variable under multiple possible orderings.

Closely linked to masking methods are so called diffusion models, which relax

the variable ordering problem through noise prediction (Sohl-Dickstein et al., 2015;
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Song and Ermon, 2019; Ho et al., 2020). Rather than predicting a new variable or

variables given previous ones in an arbitrarily chosen DAG, diffusion models focus

on predicting a less noisy version of many variables jointly, given a set of noisy

input variables. Iteratively applying this learned denoising improvement operator

should eventually result in predicting a fully clean output estimate, given either a

noisy version of the target domain, or even starting from pure noise. Given this

framing it is clear that diffusion models are closely linked to denoising methods

in general, specifically denoising autoencoders, as well as modern density model-

ing approaches such as generative adversarial networks (GAN (Goodfellow et al.,

2014)), variational autoencoders (VAE (Kingma and Welling, 2013)), flow-based

models (NICE (Dinh et al., 2014), RealNVP (Dinh et al., 2017), Normalizing

Flows (Rezende and Mohamed, 2015), IAF (Kingma et al., 2016), MAF (Papa-

makarios et al., 2017)), iterative canvas sampling (DRAW (Gregor et al., 2015b)),

and noise contrastive estimation (NCE (Gutmann and Hyvärinen, 2010)). Partic-

ular applications of this denoising philosophy such as BERT (Devlin et al., 2019),

WaveGrad (Chen et al., 2020), and GLIDE (Nichol et al., 2022), have resulted

in large quality improvements for feature learning and data generation for text,

images, and audio (Lee et al., 2018; Ramesh et al., 2022; He et al., 2022).

8.1.3 Trade-offs Between Autoregressive and Non-autoregressive

Approaches

The choice between AR and NAR methods is not clear-cut. For many domains,

high-quality models exist using both approaches but we can define some crucial

parameters. Some NAR methods such as GAN or VAE are capable of generating

output in only one inference step, however they are typically hard to train on

certain data modalities (e.g. text data) comparing to AR counterparts. Other NAR

methods such as diffusion models typically allow for choosing a diffusion length

during inference, which is independent of that used at training. Choosing a low

diffusion length can frequently lead to poor sample quality, and tuning this setting

(among many others) is critical to high quality generation. However if the tuned

diffusion length for a given sequence (of length T ) is shorter than the length of those

sequences, the NAR method has a computational advantage over the equivalent

AR model (which would require T steps for a T length sequence). In addition,
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the ability to tune this diffusion length can be useful in interactive applications, or

when a variety of output is desirable. This setting can also be a curse, as even well-

trained models perform poorly with improper diffusion settings. Several branches

of current research are focused on improving guarantees and convergence speed for

diffusion models (Huang et al., 2021; Song et al., 2021; Kingma et al., 2021; Lam

et al., 2022).

8.1.4 SUNMASK, a non-autoregressive sequence model

We introduce SUNMASK, a NAR sequence model which uses masks over noised,

discrete data to learn a self-improvement operator which transitions from cate-

gorical noise toward the data distribution in iterated steps. Given a target data

representation, we train a model which can map from a noisy version of input

data to a corrected form of the input. In this work, we use multinomial noise -

namely entries are corrupted to 1 of P possible values (for a given set size P ), with

the number of noised entries in a sequence defining the relative noise level for the

training example. This is similar to many diffusion approaches at a high level, and

particularly shown to be an effective tool in SUNDAE (Savinov et al., 2022) and

Coconet (Huang et al., 2017b). In addition to the use of multinomial noise, we also

form a mask representing where the data was noised, feeding this mask alongside

the input data to form a conditional probability distribution.

Figure 8.1 – Step-unrolled denoising training for SUNMASK on polyphonic music, unrolled step
length 2. Training data (left) consists of four voices corrupted by sampling a random mask per
voice and replacing the masked data (red) with random pitches (green). SUNMASK takes both
mask and corrupted training data as input, predicting denoised original data as output. In the
second step, the model takes a sampled version of the model step predictions and the same mask
as input, outputting another prediction of the original data.
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8.2 Method

The relationship between discrete diffusion and denoising autoencoders has been

explored in previous work (Hoogeboom et al., 2022; Savinov et al., 2022; Austin

et al., 2021; Hoogeboom et al., 2021). We build upon this foundation, combined

with many insights from prior orderless modeling approaches, crucially Orderless

NADE (Uria et al., 2014), Coconet (Huang et al., 2017b) (which is a more modern

variant of Orderless NADE), and SUNDAE (Savinov et al., 2022).

SUNMASK is built around a process xt ∼ fθ(·|xt−1;m) on a space X =

{1, . . . , v}N of arrays with categorical variables. This parametric transition func-

tion fθ takes an additional argument m ∈ 0, 1N . During training, m indicates

variables that were not initially corrupted, and as a consequence we can use it

during inference to tell fθ which variables to trust.

Given a sequence of masks m0, . . . ,mT−1, the generating distribution of our

model derives from a prior p0 (typically uniform noise) and repeated application of

fθ:

pT (xT ;m0, . . . ,mT−1) =
( ∑
x1,...,xT−1∈X

T∏
t=1

fθ(xt|xt−1;mt−1)
)
p0(x0) (8.1)

In practice, p0 is typically elementwise iid uniform noise, and the masksm0, . . . ,mT−1

are drawn according to a schedule and may be held constant for several steps.

To train fθ, we take a training example x ∼ pdata and draw a mask m. We apply

the corruption procedure x0 ∼ q(·|x;m) to obtain x0 which equals x where the mask

m is true and uniform random values elsewhere. Then we iterate xt ∼ fθ(·|xt−1;m)

with the aim of reconstructing x.

As in SUNDAE, the transition fθ models the variables as conditionally inde-

pendent of one another. However SUNDAE has no direct concept of masking.

SUNMASK thus combines past insights from the masked NAR models Orderless

NADE and Coconet with existing concepts from SUNDAE, along with new model

classes and inference schemes to form a powerful generative model. Similar to

SUNDAE, our objective is to minimize 1
2
(L(1) + L(2)) where
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L(t)(θ) = −Em0,··· ,mt−1E x ∼ pdata

x0 ∼ q(·|x,m0)

x1 ∼ fθ(·|x0;m0)

x2 ∼ fθ(·|x1;m1)

· · ·
xt−1 ∼ fθ(·|xt−2;mt−2)

[∑
i(1−m

(i)
t−1) log f

(i)
θ

(x(i)|xt−1;mt−1)∑
i 1−m

(i)
t−1

]

(8.2)

is the reconstruction loss for the elements of x that were corrupted. As in Orderless

NADE (Uria et al., 2014) and Coconet (Huang et al., 2017b), we weigh each term

according to the size of the mask, to ensure that the overall weight on each con-

ditional f
(i)
θ is uniform across i. Unlike previous methods, we target only masked

variables in the loss. In practice we choose m0 = · · · = mt−1 during training and

t = 2. Since we only go to t = 2, keeping the mask constant is a close enough

approximation to the masking schedule used in inference. The choice of t = 2

is driven by the ablation study in SUNDAE, where t = 2 was found to account

for nearly all performance gains in translation experiments, with higher unrollings

showing no additional benefit. In addition higher values of t unrolling generally

increase memory usage, making the training of high order unrollings complicated.

SUNMASK allows for direct control at inference using both proposal masks and

noising of variables, combining elements of both SUNDAE and Coconet. We show

a high level example of the unrolled training scheme, mask proposals, and input

data processing in Figure 8.1.

The overall unrolled mask and iterative inference setting is largely independent

of architecture choice, and as long as the internal architecture does not make any

ordering assumption over the input data we can incorporate it into SUNMASK.

We use two primary archetypes for the internal model in this paper: Attentional

U-Net and Relative Transformer.

SUNMASK uses an unrolled training scheme, similar to that shown in SUN-

DAE, as well as a mask which is input to the model and defines manipulated

variables as in Coconet. The loss is masked based on this manipulation mask,

unlike Coconet or SUNDAE. The SUNMASK loss is further weighted by the total

amount of masked variables. Comparisons of various high level modeling features

between SUNMASK, Coconet, and SUNDAE are shown in Table 8.1.
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Table 8.1 – Comparing SUNMASK, Coconet, and SUNDAE

Model SUNMASK Coconet SUNDAE
Mask input to model ✓ ✓ X

Masked loss ✓ X X
Re-weighted loss ✓ ✓ X
Unrolled loss ✓ X ✓

Inference mask schedule ✓ ✓ X
Sampling rejection step ✓ X ✓

Mask control preserves data ✓ X X

8.2.1 Model Training

During training, the internal architecture is combined with a step unrolled train-

ing procedure, as highlighted by SUNDAE (Savinov et al., 2022). Rather than di-

rectly randomizing positions, we re-write this as a masking scheme, first sampling a

mask (with 0 randomize, 1 keep, which we denote as 0-active format) then perform-

ing randomization to one of P possibilities, for the masked subset of K variables.

This random masking procedure is equivalent to the approach from SUNDAE, but

using a mask allows us to further combine the mask information with the input

data, in order to form a conditional probability estimate. In addition, this 0-active

masking scheme makes direct comparison to masking schemes with absorbing states

(such as OrderlessNADE (Uria et al., 2014), Coconet (Huang et al., 2017b), VQ-

Diffusion (Gu et al., 2022) and OA-ARDM (Hoogeboom et al., 2022)) simpler, as

the mask can be directly multiplied with the data in a 0-active format.

Each training batch is randomly sampled from the training dataset, and a cor-

responding noise value drawn from rand(N) for N examples in the minibatch. This

per-example noise value is then used to derive a per-step mask over T timesteps,

by comparing noise rand(N) < rand(N, T ). During training, this means some

examples have a high per-example noise value (e.g. .99), and thus many values

masked and noised in the training, while other examples may have a low noise

value (e.g. .01) drawn instead. Combined with a training loss which learns to

denoise the input and focuses on imputing information about masked corrupted

inputs, the overall model will learn a chain to go from more noisy data to less noisy

step-wise, resulting in a learned improvement operator (Hoogeboom et al., 2021;

Savinov et al., 2022).

This improvement operator can be applied to noisy data or pure noise, and

iterate toward a predictive sample from the training distribution. See Multinomial
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Diffusion (Hoogeboom et al., 2021) and SUNDAE (Savinov et al., 2022) for more

detail on this proof, as well as fundamental work on denoising autoencoders (Alain

and Bengio, 2014). In SUNMASK, we combine the mask used to noise the input

with the input data itself, while modifying the loss to predict only masked variables.

In addition, we downweight the loss by 1
1+

∑
1−mt

for each batch element, meaning

that losses for heavily masked entries are downweighted compared to losses on

examples with little masking, in a form of curriculum weighting based on expected

estimation difficulty.

While a one step denoising scheme can be sufficient for learning the data mani-

fold (Austin et al., 2021; Alain and Bengio, 2014), unrolling this denoising scheme

into a multi-step process can have performance benefits. SUNMASK directly uses

the unrolled loop scheme described in (Savinov et al., 2022), using a step value of 2.

For a detailed description of the step unrolled training scheme, see the overview de-

scription from SUNDAE (Savinov et al., 2022). The masked and unrolled training

can be seen as a container for any internal model which does not make ordering as-

sumptions, and we utilize both convolutional U-Net (a variant of the GLIDE (Nichol

et al., 2022) U-Net) and Relative Transformer (Dai et al., 2019; Huang et al., 2018;

Payne, 2019) models for various experiments, shown in Section 8.4.

8.2.2 Convolutional SUNMASK

SUNMASK is most closely related to Coconet (Huang et al., 2017b) and SUN-

DAE (Savinov et al., 2022). Coconet (as an instance of OrderlessNADE using

convolutional networks), trains by sampling a random mask per training example,

using this mask to set part of the input (in one hot format) to zero. The mask is

further concatenated to the zeroed data along the channel axis, and this combined

batch is passed through a deep convolutional network with small 3 × 3 kernels.

Convolutional SUNMASK uses a downweighted loss over only variables masked in

the input. However, SUNMASK additionally uses the unrolled training scheme, as

well as a different inference procedure due to preserving the values of masked out

variables during training and sampling.

Our best performing convolutional SUNMASK architecture takes hints from

recent image transformer and vector quantized generators, exchanging the small

kernels used in Coconet for extremely large kernels of shape 4×P over the time and

feature dimensions, somewhat analogous to input patches, removing the model’s
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translation invariance over the feature axis by setting kernel dimension equal to the

total feature size. However this makes the number of parameters per convolutional

layer extremely large. Convolutional SUNMASK adopts an attentional U-Net

structure which reduces only across the time axis, modified from GLIDE (Nichol

et al., 2022), rather than the deep residual convolution network used by Coconet.

Combined with the addition of step unrolled training, we are only able to train

convolutional SUNMASK with a batch size of 1 (expanded to effective batch size

2 due to step unrolling) on commodity GPU hardware with 16GB VRAM.

Due to the design choice of extremely large kernel sizes which depend on the

size of the domain, we only use convolutional SUNMASK for polyphonic music

experiments, see Section 8.4 for more details.

Attention is applied on the innermost U-Net block size as well as the middle

block, with 1 attention head (Nichol et al., 2022). Convolutions are used in all

resampling, and all resampling happens only on the time axis, making the Atten-

tional U-Net effectively a 1-D architecture. However, rather than learning both

instrument and pitch relations across channels, we isolate pitch relations and in-

strument relations into separate axes of the overall processing, the ”width” and

”channels” axes, respectively assuming (N,C,H,W ) == (N, I, T, P ) axes. As is

standard in many U-Net designs, we double the number of hidden values for layers

every time the resolution is halved, with the reverse process being used when up-

sampling. Though the parameter count here is large, it is similar in spirit to other

approaches to small datasets on text (Al-Rfou et al., 2019).

8.2.3 Transformer SUNMASK

Transformer SUNMASK relates closely to the transformer used in SUNDAE.

The architecture uses a relative multi-head attention (Dai et al., 2019; Huang et al.,

2018) and has no autoregressive masking. SUNMASK transformer also uses larger

batch sizes, typically 20 or larger, though this is far smaller than the batch sizes

seen in the experiments of SUNDAE. Sequence length and data iterator strategy

were both a critical aspect for training transformer SUNMASK. We found short

sequences (from 32 to 128) worked best, along with iteration strategies that were

example based.

Transformer SUNMASK was trained on every dataset used in this paper, and

we show performance in Section 8.4, as well as comparisons to convolutional SUN-
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MASK on symbolic polyphonic music modeling. Both convolutional and trans-

former based SUNMASK use the Adam optimizer, with gradient clipping by value

at 3. Inference hyperparameter types and general sampling strategies used are

the same with both models, though specific hyperparameter values may change

between datasets.

There is a large discrepancy in model parameter count between our best per-

forming convolutional models for JSB, and our best transformers. Training larger

transformers can work well for generation (Al-Rfou et al., 2019), but our large

parameter transformers (on the order of 400M parameters) had poor generative

performance on JSB.

Pitch size / vocabulary size, sequence length, and batch size changed for the

transformers used in the text experiments, but the global architecture remained

in the style of ”decoder only” transformers (Radford and Wu, 2019), similar to

SUNDAE. Notably, we use vocabulary size 5.7k, sequence length 52, batch size 48

for EMNLP2017 News and vocabulary size 27, sequence length 64, batch size 20,

and a slightly extended training step length of 150000 for text8.

8.2.4 Inference Specific Settings

Well-trained SUNMASK models should be applicable to full content genera-

tion, as well as a variety of partially conditional generative tasks such as infilling

and human-in-the-loop creation. Basic sampling involves creating a set of vari-

ables, with all variables randomly set to 1 of P values in the domain (or partial

randomization in the case of infilling) along with an accompanying mask, which is

initially all 0 for full generation, or mixed 1s and 0s for partial generation tasks.

Given this data and mask as input, the trained model then predicts a probability

distribution over all possible P values, for all variables. Despite the use of masked

losses in training, we sample these prediction distributions for all variables. These

predictions are then accepted or rejected from the original set, resulting in a new

variable set. We then sample a new mask (based on a predefined schedule) and

combine it with the initial mask, then iterate this overall process, updating at least

some of the variables at each step.

During inference we use several key techniques to improve generative quality.

We use typicality sampling (Meister et al., 2022) on the output probability dis-
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tribution and a variable number of diffusion steps, on the order of 100 to 2000.

Masks are randomly sampled using the schedule defined in (Huang et al., 2017b)

which linearly decreases the number of masked variables over time according to

αn = max(αmin, αmax − n
ηN

(αmax − αmin)) with αmin = .001, αmax = .999, and

η = 34, along with an optional triangular linear ramp-up and ramp-down schedule

for the probability of accepting predictions from the model into the current variable

set at each step, as shown in (Savinov et al., 2022).

Tuning hyperparameters for inference is critical to success, as improper settings

can drastically lower the performance of SUNMASK, see Section 8.4 for variance

over various inference settings in different tasks. For human-in-the-loop applica-

tions, the existence of these controls can allow a number of fine-grained workflows

to emerge, driven by expert users to create and curate interesting output (Esser

et al., 2021; Crowson et al., 2022), demonstrated in Figure 8.3.

8.3 Related Work

We state here some key related approaches, as well as how our method differ-

entiates from these previous settings. A number of recent publications on diffu-

sion models and feature learning have incorporated masks as part of their overall

training scheme (Hoogeboom et al., 2022; He et al., 2022), however these papers

use masks for blanking, rather than as indicators over stochastic variables. Many

infilling models (Donahue et al., 2020; Devlin et al., 2019), and masked image

models (He et al., 2022) feature conditional modeling with a mask (blank) token,

predicting the variables masked from the input for feature learning or generative

modeling. XLNet (Yang et al., 2019) combines the infilling and autoregressive

paradigms, learning arbitrary permuted orders over masked out variables, using

blank-out masking and randomly generated autoregressive ordering similar to Or-

derlessNADE and Coconet. Conditional diffusion generators (Meng et al., 2021)

and GAN generators (Fedus et al., 2018) have the combination of mask indicators

as well as preserving stochasticity of the masked variables. However these methods

do not use an unrolled training scheme, and generally target image related tasks,

with the notable exception of maskGAN. Many models use a concept of a working

canvas, and do repeated inference steps for generation or correction of data (Gregor
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et al., 2015b; Bachman and Precup, 2015; Ganin et al., 2018), SUNMASK differs

from these models due to architecture choices, training scheme, and loss weighting,

as well as application domain (Mittal et al., 2021; Pati et al., 2019; Rombach et al.,

2021; Nichol et al., 2022).

8.4 Experiments

We demonstrate the use of SUNMASK for polyphonic symbolic music model-

ing on the JSB dataset (Allan and Williams, 2004; Boulanger-lewandowski et al.,

2012). The JSB dataset consists of 382 four-part chorales, originally written by

Johann Sebastian Bach. These chorales are quantized at the 16th note interval,

cut into non-overlapping chunks of length 128, skipping chunks which would cross

the end of a piece. This processing results in a training dataset of 4956 examples,

with each example being size (4, 128). We train convolutional and transformer ver-

sions of both SUNMASK and SUNDAE for comparison, as well as the pretrained

Coconet (Huang et al., 2017b). For polyphonic music, the quantized data was ras-

terized in soprano, alto, tenor, bass (SATB) order, as in Music Transformer (Huang

et al., 2018) and BachBot (Liang, 2016), then chunked into non-overlapping train-

ing examples. Results are shown in Table 8.13. These results are evaluated on

Bach ground truth data (Bach GT), BachMock Transformer (BachMock (Fang

et al., 2020; Liu et al., 2020)) (closely related to the decoder from VQ-CPC (Had-

jeres and Crestel, 2020)), Coconet, SUNDAE (SD), and SUNMASK convolutional

(SMc) and SUNMASK transformer (SMt). Model sampling variants are indicated

as Typical Sampling (T).

8.4.1 Musical Evaluation

The grading function used for evaluation, referred to as BachMock here, is

designed specifically to correlate with expert analysis on Bach. In particular using

this metric to choose correct examples in a paired comparison test, outperforms

novice, intermediate, and expert listeners by varying margins (Fang et al., 2020).

This indicates that scoring well on the aggregate metric should correlate to high

sample quality. The metric has many sub-parts, ranking various musical attributes
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Table 8.2 – Quantitative results from the Bach Mock grading function (Fang et al., 2020).
Top rows compare to existing literature, bottom rows show ablation study of SUNMASK style

models. Lower values represent better chorales.

Model Note Rhythm
Parallel
Errors

Harmonic
Quality

Interval
Repeated
Sequence

Overall

Bach Data 0.24 ±0.15 0.23±0.14 0.0±0.69 0.41±0.2 0.55±0.4 1.29±0.88 4.91±1.63
BachMock 0.37±0.22 0.26±0.14 2.16±3.22 0.54±0.31 0.71±0.68 1.86±2.81 8.94±4.64
SMc-T
BEST20

0.39±0.16 0.53±0.26 0.0±0.81 0.68±0.27 0.75±0.42 1.44±0.52 7.16±0.97

AugGen - - - - - - 8.02±2.92
Coconet 0.44±0.23 1.85±0.39 2.61±6.56 1.38±0.39 0.86±0.73 6.07±1.76 17.00±6.58
SD 0.59±1.82 0.93±0.84 6.42±4.11 0.98±0.67 1.99±5.68 2.45±2.39 23.25±21.45
SD-T 0.63±2.40 0.60±0.96 3.82±4.98 0.96±0.64 2.50±5.03 1.52±3.43 20.09±23.88
SMc 0.87±2.05 0.63±0.77 1.38±6.00 1.02±0.49 2.07±5.72 2.32±2.31 22.47±20.80
SMc-T 0.57±1.79 0.69±0.35 1.28±3.73 0.93±0.49 1.10±4.68 1.81±0.83 13.43±19.27
SMt 3.00±1.85 0.74±0.90 0.00±1.95 1.64±0.70 7.90±5.58 3.10±2.97 42.87
SMt-T 3.74±2.16 0.58±0.56 0.00±2.56 1.73±0.73 7.74±4.73 2.35±1.79 46.21±17.30

crucial to codifying the style of J.S. Bach. AugGen (Liu et al., 2020) incorporated

this metric into an iterative training and sampling scheme which improved final

generative capability for a fixed model, showing the effectiveness of BachMock in

practice for ranking machine generated samples. For each grading function in the

Bach Mock grading evaluation, we show the median value and ± standard deviation

(showing the average of each interval SATB performance for brevity), as well as the

overall grade. Lower values forall metrics are better, and we see the strongest results

for convolutional SUNMASK with typicality sampling. Combined with final top-N

(N = 20) selection out of a candidate set of 200 samples, the overall sample quality

outperforms strong baselines. This high quality subset (SMc-T BEST20) rivals

both the ”BachMock” transformer and the dataset itself on this metric. We find

SUNMASK generations are qualitatively good and listenable overall, even though

some SUNMASK samples do fare poorly by the grading metrics.

8.4.2 Text Datasets

The EMNLP 2017 News dataset is a common benchmark for word-level lan-

guage modeling (Caccia et al., 2020), containing a large number of news article

sentences (Lu et al., 2018). Preprocessing steps collapse to sentences containing

the most common 5700 words, resulting in a training set of 200k sentences with a

test set of 10k. The overall maximum sentence length is 51. Common processing

for this dataset includes padding all sentences up to this maximum length, differ-

ent than the standard long sequence chunking commonly used in other language

modeling tasks.
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We show the results of several SUNMASK models for generating sentences sim-

ilar to EMNLP2017News, comparing to benchmarks using the standard Negative

BLEU/Self-BLEU evaluation (Zhu et al., 2018; Caccia et al., 2020) over generated

corpora of 1000 sentences in Figure 8.2. This set of scores, varied across temper-

ature, is compared against baseline scores (Lin et al., 2017; Yu et al., 2017; Che

et al., 2017; Guo et al., 2020; de Masson d’Autume et al., 2019; Vaswani et al.,

2017), similar to the evaluation shown in SUNDAE (Savinov et al., 2022). These

reference benchmarks used 10000 sentences to form performance estimates.

Figure 8.2 – Negative BLEU/Self-BLEU scores on EMNLP2017 News. Left (x-axis) is better,
lower (y-axis) is better. Quality/variation is controlled by changing the temperature (t), and
varying diffusion schedule (s). For SUNMASK, typical sampling results (Meister et al., 2022) are
shown.

Figure 8.3 – SUNMASK harmonization (bass, tenor, alto) of an existing melody (left), with a
mask which highlights the left half (0 to 64) soprano voice (middle), or a left half mask but
replacing right half melody as well (right)

8.4.3 Music Control

Given the flexibility of masking at inference, we perform a number of qualitative

queries to inspect how the model adapts based on noise and mask value. Figure 8.3

demonstrates the use of SUNMASK for musical inpainting, holding the top voice

(soprano) either fully or partially fixed to the well-known melody ”Ode to Joy”, by

Ludwig van Beethoven.
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8.4.4 Text Control

Masking can also used to variably increase or decrease the weight on various pre-

specified terms, held fixed throughout inference. The combination of these words,

and their mask status can be seen to influence the overall tone of the selected text

passages which showed the strongest effect in a particular inference batch. The

following qualitative samples using masks for word influence are drawn from SUN-

MASK Transformer on EMNLP2017News dataset. Though the generation quality

is flawed, we clearly see a relationship between the masked word and the emer-

gent surrounding context, for example highlighting disaster draws forth injured,

displaced, and pressure, while success instead references happy, nice, good, and

playing.

Success unmasked, disaster masked

— I think I want to leave success at the end of the disaster , but because that

’ s a nice to say it ’ s not good to be the challenge and this is a very good

thing <eos>

— That was the job I was success to have to pay my disaster but hopefully I

have been able to pull playing in the first couple of the season , I ’ ve been

happy to go through this team , he said <eos>

Success masked, disaster unmasked

— Although more than 80 , 000 success have been displaced in the disaster

since the last year , more than 700 , 000 lives have been injured in the

country , and 70 of them were killed , according to the UN media <eos>

— I haven ’ t had a success at the league , the disaster and picked running

with the door ago we have Champions , and I was a couple of pressure . . .

and it was a lot of times <eos>

8.5 Conclusion

We introduce SUNMASK, a method for masked unrolled denoising modeling

of structured data. SUNMASK separates the role of masking and correction by

conditioning predictions on the mask, allowing for fine-grained control at inference.
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When applied to text as well as symbolic polyphonic music, SUNMASK is compet-

itive with strong baselines, outperforming reference baselines on music modeling.

Leveraging the separation of mask and noise allows for subtle control at inference,

paving the way for a variety of domain specific applications and generative pipelines

for human-in-the-loop creation.

8.6 Appendix

8.6.1 Musical Co-Creation and Possible Ethical Concerns

A chief concern in generative co-creation as demonstrated by our music sam-

pling, is direct plagiarism through the training corpus or indirect plagiarism of

outside work. Direct plagiarism has a number of mitigation strategies, either with

exact matches, approximate dataset matches (Papadopoulos et al., 2014) (note se-

quences across voices, regardless of duration), or secondary tools such as automated

copyright matchers. The latter category (automated copyright matchers) can also

be used for the most difficult plagiarism - indirect plagiarism.

Due to most Western music sharing similar underlying rules and structure, it is

possible to accidentally stumble upon a copyrighted work without a version of that

work ever appearing in the training corpus. This goes especially for models trained

on foundational scores, for example the underlying harmonic rules J.S. Bach fol-

lowed and popularized underwrite a vast swath of the classical canon. Direct debut

of any generative co-creation tool should have at least some consideration for tag-

ging or labeling possible matches and conflicts, letting creators inspect the relevant

matches to decide for themselves if there is an issue which warrants modification.

Given the complexities of musical copyright, there is no clear cut automated solu-

tion but using recognition tools to provide information can help mitigate surprise

issues for end users (Briot and Pachet, 2020).

The music dataset used in this work (JSB) is fully in the public domain, as such

the ethical concerns listed above are minimized, and any secondary issues related

to music copyright are unlikely to be a problem with the direct output of this

model. The short, quantized MIDI-style output from SUNMASK is a not a suitable
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format for general listening, needing substantial post-processing, combination, and

interpretation in order to form a musical piece (Sturm et al., 2019).

8.6.2 Text

There are many complexities around generative modeling of language, and es-

pecially with generative co-creation of text. The particular datasets and schemes

used in this work are relatively limited compared to more direct and large scale

applications of language models, however it is always a key concern to think about

the limitations and biases of the underlying datasets used to train these models.

Given the propensity for using SUNMASK and related methods to infill given

context, certain applications should have strong investigations into the biases and

private information present in the underlying data. Imputing missing information

in order to strengthen downstream classification (not directly shown in this work,

but certainly possible) can be problematic with respect to imputed features am-

plifying underlying biases in the training corpus, or violating user privacy. Many

mitigation and detection strategies proposed by researchers in fairness, bias, and

privacy in machine learning (Smith et al., 2022) should be directly applicable to

SUNMASK if deemed necessary, given the commonality of the modeling and train-

ing schemes to other well studied methods such as AR transformers, and deep

learning more generally.

The text datasets used in our experiments are a common benchmark, chosen to

enable comparison to existing work. Any underlying biases or issues with models

trained on these particular datasets will be shared across many generative language

models, and any proposed corrections specific to these datasets should be directly

applicable to SUNMASK.
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8.7 Convolutional SUNMASK Model

Hyperparameters and Training Information

Training

Input channels 4
Pitch count 57
Sequence length 128
Training steps 50000
Batch size 1
Unrolled steps 2
Hidden size 64
Kernel size (4, 57)
Block scales (1, 1, 2, 4)
Residual layers per block 3
Optimizer Adam
Learning rate 1E-4
Total parameter count 417M
Downweight multiplier .75
Downweight learning rate steps 5000

8.7.1 Architecture Design

Attention is applied on the innermost U-Net block size as well as the middle

block, with 1 attention head (Nichol et al., 2022). Convolutions are used in all

resampling, and all resampling happens only on the time axis, making the Atten-

tional U-Net effectively a 1-D architecture. However, rather than learning both

instrument and pitch relations across channels, we isolate pitch relations and in-

strument relations into separate axes of the overall processing, the ”width” and

”channels” axes, respectively assuming (N,C,H,W ) == (N, I, T, P ) axes. As is

standard in many U-Net designs, we double the number of hidden values for layers

every time the resolution is halved, with the reverse process being used when up-

sampling. Though the parameter count here is large, it is similar in spirit to other

approaches to small datasets on text (Al-Rfou et al., 2019).

77



Sampling

Temperature .6
Steps 2× I × T = 2× 4× 128
Mask dwell 1
Active balance False
Final mask dwell 0
Keep prob ”triangular”
Sampling typical
Top k 3
Top p False
Intermediate noise False
Mask max .999
Mask min .001

8.7.2 Sampling Details

All parameters and sampling designs were tuned based on generated sample

quality, rather than direct tuning to the grading function used for final metric

calculation. It is likely that these numbers could be greatly improved, but tuning

directly against this metric may also result in less musical samples that exploit

quirks in the metric calculation.

During sampling we have a number of additional parameters to set. Crucially,

the use of typical sampling (Meister et al., 2022) and strong filtering (either small

top-k, small top-p, or both) resulted in generally stronger samples than both the

equivalent, or typical sampling with looser settings. We note that the importance

of this setting is demonstrated in the paper introducing typical sampling, in the

difference between settings for summarization and story generation. These settings

also interact heavily with the temperature setting.

When typical sampling top-k values or top-p values are too large, we see samples

end up with the same result for either typical or standard sampling, so setting these

filters is critical to see the full impact of typical sampling.

Triangular keep probability is described in SUNDAE, and we utilize it here

as well, linearly ramping accept probability from 0 to 1 at steps
2

, ramping back

down to 0 at steps . The keep probability schedule excludes the optional ”final mask

dwell”, which we only utilize alongside intermediate noise. We also found fixed keep

probabilities (such as .33, .5, and even 1.0) also performed well.
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Mask proposals follow the scheme proposed by Coconet, sampling bernoulli

masks with probability p, ramping from the mask min to mask max, over the

total range of steps. These masks are further combined with pre-specified masks,

specifically we allow two types of secondary specification. Focus masks hold the

input value fixed at every diffusion step, and always specify a mask value of 1 in

the model input. Keep masks allow a mask value of 0 or 1 (depending on the

bernoulli random sampled mask) in the model input, but the value will be reset

to the specified input value at each step of diffusion. The allowance of these two

different mask types is unique to SUNMASK, and seems to have a large impact on

the sampled outcome based on our testing.

When using intermediate noise, it is beneficial to set a final mask dwell, which

holds the last mask (which is set to all 1) constant and then samples repeatedly to

form final corrections. During final mask dwell, we set accept probability to 1, as

triangular sampling would by default set accept probability to near 0. Intermediate

noise is effectively disabled everywhere the mask is 1, so this is similar in spirit

to noise tapering in other applications using gaussian style noise, and allows the

SUNMASK learned improvement operator to make small changes and fixes to the

general ”skeleton” of the proposed sample.

8.8 Transformer SUNMASK Model Hyperparameters

and Training Information

There is a large discrepancy in model parameter count between our best per-

forming convolutional models for JSB, and our best transformers. Training larger

transformers can work well for generation (Al-Rfou et al., 2019), but our large

parameter transformers (on the order of 400M parameters) had poor generative

performance on JSB. Given the foundational work in SUNDAE, it is clear that it

should be possible to train these larger transformer models well, and finding the

correct recipe may drastically improve the quality of the transformer generated

musical examples.

Pitch size / vocabulary size, sequence length, and batch size changed for the

transformers used in the text experiments. Notably, we use vocabulary size 5.7k,
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Training

Pitch count 57
Training steps 120000
Sequence length (JSB) 256
Batch size (JSB) 20
Unrolled steps 2
Transformer layers 16
Embedding dim 512
Transformer input dim 512
Transformer hidden dim 2048
Transformer attention heads 8
Transformer head dim 64
Optimizer Adam
Learning rate max 5E-5
Learning rate max 5E-6
Ramp up steps (min to max) 5000
Ramp down steps (max to min) 100000
Gradient clip (value) 3
Total parameter count 50M

sequence length 52, batch size 48 for EMNLP2017 News and vocabulary size 27,

sequence length 64, batch size 20, and a slightly extended training step length of

150000 for text8.

8.9 Sampling Runtime

One chief drawback of the currently implemented SUNMASK models, primarily

the convolutional SUNMASK used in JSB, is the time to sample. In part due

to the parameter count, as well as the non-standard details of the architecture

(kernel size in particular), sampling runs at roughly 8× slower than real-time,

taking approximately 4 minutes to generate a 38 second sample (4 voices, each with

128 steps, at 16 steps per measure quantization) on V100 GPUs. On A100 GPUs,

this goes directly to 66 seconds to generate the same size sample, which gives some

indication that simply updating hardware may radically improve the runtime of

convolutional SUNMASK. Increasing batch sizes improves the effective amortized
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sample speed, but at an increase of latency. In addition, the non-causal nature of

diffusion sampling means that pipelined sampling to reduce the effective latency

felt by end-users is not easily applicable, compared to standard AR methods.

However there are many direct optimizations available for these architectures

from both the computer vision literature at large, and specifically for symbolic

music modeling (Huang, Hawthorne, Roberts, Dinculescu, Wexler, Hong, and

Howcroft, Huang et al.). More exploration of computational improvements, to-

ward fully interactive use remain a key research direction.

8.10 Code repository and samples player

We attach several folders of samples (in midi format) from our model for music,

as well as the evaluation sentences for BLEU / self-BLEU testing on EMNLP2017

News as part of the supplemental material.

Full reproduction code and sample listening page can be found at

https://github.com/SUNMASK-web/SUNMASK

8.11 Creating a ”Greatest Hits”

Music demonstrations of the model labeled ”BachMock” transformer can be

heard at https://alisawuffles.github.io/post/grading-function/. We find SUNMASK

generations are qualitatively on a similar level as these sample generations, though

some SUNMASK samples do fare poorly by the grading metrics. However the best

SUNMASK samples have remarkably good grades, on a similar level as the best

”BachMock” samples shown in the linked post, and indeed to a similar level as the

data itself.

Of particular note is the high variance in the grade of all SUNMASK models

compared to either Coconet, or the baselines. Given the existence of the grader

function, it is possible to prune generations from our SUNMASK diffusion models

to improve the overall output. Generating 200 samples from the best SUNMASK

method, and pruning to only the top 20 overall grades, we see that it is possible
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to produce high quality subsets which rival the ”BachMock” transformer and the

dataset itself on this metric.

Model Note Rhythm
Parallel
Errors

Harmonic
Quality

S Intervals A Intervals T Intervals B Intervals
Repeated
Sequence

Overall

Bach GT 0.24 (0.15) 0.23 (0.14) 0.0 (0.69) 0.41 (0.2) 0.47 (0.28) 0.49 (0.22) 0.53 (0.24) 0.69 (0.4) 1.29 (0.88) 4.91 (1.63)
BachMock 0.37 (0.22) 0.26 (0.14) 2.16 (3.22) 0.54 (0.31) 0.53 (0.35) 0.71 (0.34) 0.73 (0.38) 0.89 (0.68) 1.86 (2.81) 8.94 (4.64)
SMc-T 0.57 (1.79) 0.69 (0.35) 1.28 (3.73) 0.93 (0.49) 0.80 (4.51) 0.99 (4.01) 1.20 (4.68) 1.40 (3.91) 1.81 (0.83) 13.43 (19.27)
SMc-T-BEST20-200 0.39 (0.16) 0.53 (0.26) 0.0 (0.81) 0.68 (0.27) 0.59 (0.25) 0.88 (0.42) 0.80 (0.20) 0.71 (0.27) 1.44 (0.52) 7.16 (0.97)

While selecting directly against this metric makes it a less useful ranking scheme

for the various methods, listening to the resulting samples also reveals that this

ranked subset are also qualitatively among the best of this cohort. We stress that

this simple generate-and-test method could be used with all available models, and

potentially as part of training itself, as in published work on augmented generative

training (Liu et al., 2020).

Given that the best scoring example from Coconet has an overall grade of 12.26,

the best SUNDAE example (SD-AT in main table) grade 7.78, best SUNMASK

example from the small set (SMc-T in main table) grade 7.14, and the best SUN-

MASK example grade from the larger 200 set 4.93 it seems SUNMASK may be a

better candidate for this kind of scheme due to higher generated sample variance.

Generating more samples and then curating a top performing subset should yield

better scores for all methods tested. Comparing this approach against a broader

swath of high-performance, template based infilling methods (Hadjeres and Crestel,

2020; Bretan et al., 2016, 2017) remains an important future direction.

8.12 Full Masking Comparison Figure

Figure 8.4 – SUNMASK harmonization (bass, tenor, alto) of existing melody (soprano) based on
mask.
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Figure 8.5 – A Figure 8.6 – B Figure 8.7 – C

Figure 8.8 – D Figure 8.9 – E Figure 8.10 – F

A: SUNMASK harmonization (bass, tenor, alto) of an existing melody (soprano),
based on pre-defined mask which only highlights the first beat of each measure
(0 through 4 of every 16 on the x-axis), but preserves all notes of the melody by
overriding predictions in that voice each step.
B : SUNMASK harmonization (bass, tenor, alto) of an existing melody (soprano),
based on pre-defined mask which only highlights the first half of the melody (0
through 64 on the x-axis), but preserves all notes of the melody by overriding
predictions in that voice at each diffusion step.
C : SUNMASK harmonization (bass, tenor, alto) of an existing melody (soprano),
based on pre-defined mask which only highlights the last half of the melody (64
through 128 on the x-axis), but preserves all notes of the melody by overriding
predictions in that voice at each diffusion step.
D : SUNMASK harmonization and infilling of an existing melody (soprano), based
on pre-defined mask on the first beat of each measure (0 to 4 of every 16 on the
x-axis).
E : SUNMASK harmonization and infilling of an existing melody (soprano), based
on pre-defined mask which only preserves the first half of the melody (0 to 64 on
the x-axis).
F : SUNMASK harmonization and infilling of an existing melody (soprano), based
on pre-defined mask which only preserves the last half of the melody (64 through
128 on the x-axis).
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8.13 Full Quantitative Analysis of Bach data

Model Note Rhythm
Parallel

Errors

Harmonic

Quality
S Intervals A Intervals T Intervals B Intervals

Repeated

Sequence
Overall

Bach GT 0.24 (0.15) 0.23 (0.14) 0.0 (0.69) 0.41 (0.2) 0.47 (0.28) 0.49 (0.22) 0.53 (0.24) 0.69 (0.4) 1.29 (0.88) 4.91 (1.63)

BachMock 0.37 (0.22) 0.26 (0.14) 2.16 (3.22) 0.54 (0.31) 0.53 (0.35) 0.71 (0.34) 0.73 (0.38) 0.89 (0.68) 1.86 (2.81) 8.94 (4.64)

Coconet 0.44 (0.23) 1.85 (0.39) 2.61 (6.56) 1.38 (0.39) 0.70 (0.17) 0.86 (0.73) 0.86 (0.42) 1.02 (0.38) 6.07 (1.76) 17.00 (6.58)

SD 0.59 (1.82) 0.93 (0.84) 6.42 (4.11) 0.98 (0.67) 1.17 (5.09) 2.65 (4.08) 1.57 (5.68) 2.57 (3.28) 2.45 (2.39) 23.25 (21.45)

SD-A 0.61 (1.80) 0.93 (0.84) 5.85 (4.02) 0.98 (0.66) 1.28 (5.15) 2.69 (4.20) 1.57 (5.61) 3.28 (3.44) 2.30 (2.38) 22.88 (21.87)

SD-T 0.63 (2.40) 0.60 (0.96) 3.82 (4.98) 0.96 (0.64) 1.21 (5.03) 3.40 (4.99) 3.02 (5.02) 2.36 (3.90) 1.52 (3.43) 20.09 (23.88)

SD-AT 0.52 (2.42) 0.60 (0.95) 3.18 (5.10) 0.96 (0.64) 1.24 (5.00) 3.93 (5.03) 2.22 (5.04) 2.00 (3.91) 1.80 (3.39) 18.90 (24.15)

SMc 0.87 (2.05) 0.63 (0.77) 1.38 (6.00) 1.02 (0.49) 1.41 (5.28) 2.02 (4.36) 1.94 (5.72) 2.91 (4.94) 2.32 (2.31) 22.47 (20.80)

SMc-A 1.02 (2.22) 0.47 (0.77) 3.92 (3.91) 0.91 (0.55) 2.32 (5.23) 3.54 (4.98) 2.74 (5.30) 5.96 (4.59) 2.23 (3.82) 27.82 (18.82)

SMc-T 0.57 (1.79) 0.69 (0.35) 1.28 (3.73) 0.93 (0.49) 0.80 (4.51) 0.99 (4.01) 1.20 (4.68) 1.40 (3.91) 1.81 (0.83) 13.43 (19.27)

SMc-AT 0.66 (1.90) 0.55 (0.29) 2.76 (3.63) 0.94 (0.47) 0.91 (4.11) 1.10 (4.00) 1.26 (4.26) 1.45 (4.56) 2.05 (0.96) 16.50 (17.96)

SMc-N 2.07 (2.29) 0.63 (1.33) 7.24 (6.79) 1.06 (0.70) 5.97 (4.77) 7.62 (4.81) 7.37 (4.15) 6.73 (4.92) 1.78 (2.72) 41.67 (21.71)

SMc-AN 2.24 (2.68) 0.69 (0.35) 7.85 (4.28) 1.29 (0.47) 5.08 (4.96) 8.84 (5.41) 8.98 (4.16) 6.96 (4.02) 1.99 (1.27) 47.73 (19.19)

SMc-TN 2.36 (2.94) 0.74 (1.02) 4.42 (6.22) 1.33 (0.70) 6.79 (4.33) 8.19 (4.73) 4.83 (5.06) 6.45 (3.81) 2.36 (2.20) 47.00 (17.32)

SMc-ATN 2.24 (2.36) 0.58 (0.49) 6.82 (4.81) 1.56 (0.54) 6.46 (4.14) 8.51 (4.43) 7.21 (4.28) 7.60 (3.11) 1.47 (1.02) 43.85 (18.41)

SMt 3.00 (1.85) 0.74 (0.90) 0.00 (1.95) 1.64 (0.70) 8.94 (4.66) 6.49 (4.99) 8.47 (5.58) 7.72 (4.41) 3.10 (2.97) 42.87

SMt-A 3.00 (1.85) 0.74 (0.90) 0.00 (1.95) 1.64 (0.70) 8.94 (4.66) 6.49 (4.99) 8.47 (5.58) 7.72 (4.41) 3.10 (2.97) 42.87

SMt-T 3.74 (2.16) 0.58 (0.56) 0.00 (2.56) 1.73 (0.73) 8.75 (4.62) 6.22 (3.99) 8.05 (4.73) 7.95 (4.49) 2.35 (1.79) 46.21 (17.30)

SMt-AT 3.74 (2.16) 0.58 (0.56) 0.00 (2.56) 1.73 (0.73) 8.75 (4.62) 6.22 (3.99) 8.05 (4.73) 7.95 (4.49) 2.35 (1.79) 46.21 (17.30)
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10
Understanding Shared
Speech-Text
Representations

10.1 Introduction

The availability of vast amounts of untranscribed speech and text resources has

contributed to increased interest in semi-supervised and unsupervised learning

approaches for Automated Speech Recognition (ASR). A range of techniques that

incorporate text resources at various entry points in an end-to-end ASR model

have been explored in the literature. Text injection approaches that either inject

text into the encoder (Bapna et al., 2021, 2022; Chen et al., 2022; Sainath et al.,

2022) or decoder (Meng et al., 2022) have shown success in low resource

applications as well as domain and language transfer (Thomas et al., 2022; Chen

et al., 2022; Sainath et al., 2022), while rescoring approaches (Udagawa et al.,

2022) use first-pass recognition hypotheses to rescore with a large language model.

Maestro (Chen et al., 2022) is an approach to train a speech model using a joint

speech-text representation on transcribed speech, untranscribed speech and

unspoken text. The joint speech-text representation is learned in two ways. First,

using the paired data, activations from two modal encoders, the speech encoder

and the text encoder, are aligned and optimized to be similar through a

consistency loss term. Second, the speech encoder activations and text encoder

activations are passed through a common shared encoder. The output of the

shared encoder is the joint speech-text representation that serves as input to the

ASR decoder (RNN-T (Graves, 2012; Graves et al., 2013)). These jointly learned

representations have yielded state-of-the-art results in not only well-benchmarked,

monolingual and multilingual ASR as well as speech translation but have further

demonstrated the richness of these learned representations with the ability to

build ASR systems for languages with no transcribed speech (Chen et al., 2022).

While we know that joint speech-text representation learning improves ASR, our

understanding of the value and structure of the learned representations is less well
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developed.

In this work, we expand on this understanding in two directions. First, we

evaluate the ability to transfer information from one domain to another through

the joint representation (Section 10.4). We explore which components of the text

encoder are robust across corpora, and which are sensitive. Second, we investigate

the modal representations from the speech and text encoders (Section 10.5). We

inspect the cross-modal consistency loss as a signal of robustness, and the ability

for this loss term to generalize across corpora through T-SNE visualization of

activations and a retrieval probe task.

In this analysis, we compare the representations learned by Maestro (Chen et al.,

2022) and SLAM (Bapna et al., 2021). The contributions of this work are:

Speech-Free Domain Adaptation (Section 10.4)

— We show that for speech-free domain adaptation with speech-text

representations, duration/alignment is the most important aspect to

model. Corpus specific text-encoders are not substantially better than

using a general purpose encoder with a corpus specific duration model.

— We demonstrate that Maestro enables speech-free domain adaptation with

only text data using the corpora in SpeechStew (Chan et al., 2021).

Representation Space Analysis (Section 10.5)

— We show that the Maestro shared encoder learns a unified shared

speech-text representation space. However, the modal encoders, even when

trained with a consistency loss, learn distinct representations .

— Using a cross-modal retrieval task as a probe, we demonstrate that the

shared encoder representations provide better retrieval performance.

10.2 Related Work

The shared speech-text representations we explore in this paper are based on an

architecture in which data is passed through modal encoders, whose activations

are then consumed by a shared encoder. This structure is used by SLAM (Bapna

et al., 2021) and mSLAM (Bapna et al., 2022) where the speech and text encoder

outputs are concatenated. Maestro extended this to align the modal activations
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and present them independently to the shared encoder. Related approaches either

eliminate this alignment step entirely, using a fixed upsampling of text

embeddings (Thomas et al., 2022) or use a simpler, deterministic or independent

Gaussian duration model (Sainath et al., 2022). In contrast to an independent

text encoder, (Sato et al., 2022) performs aligned-text injection using residual

adapters in the speech encoder. Alternately, SpeechBert (Chuang et al., 2019)

and (Sunder et al., 2022) operate by unifying speech and language model

embeddings.

Canonical Correlation Analysis (CCA) between different modalities is a classical

technique (Hotelling, 1936) that enables a more direct approach to merging

representations. Later CCA was extended to DeepCCA, drawing from the

original formulations, but incorporating neural networks e.g (Sun et al., 2020).

Acoustic word embeddings take similar inspiration from CCA, learning joint

projection spaces e.g. (Hu et al., 2020; Kamper et al., 2016).

10.3 Architecture and Training

Table 10.1 – LibriSpeech Maestro adaptation results.

Method Pair Data Text Data LibriSpeech AMI CV SWBD TED

test-clean test-other ihm sdm1 test test test

LS Maestro init LS LS LM 2.22 4.27 35.42 60.02 22.48 31.77 7.73

Text Adaptation
AMI LS AMI Sup 1.57 3.09 30.26 54.52 22.46 29.90 7.10
CV LS CV Sup 1.57 3.06 34.21 57.13 21.16 31.19 7.11
SWBD LS SWBD Sup 1.51 3.07 31.19 55.40 20.70 28.97 6.66
TED LS TED Sup + LM 1.45 3.05 32.08 55.36 21.03 29.83 6.05

10.3.1 Maestro Architecture

The Maestro architecture (Chen et al., 2022) consists of a 600 million parameter

full context Conformer transducer that splits a standard ASR encoder into two

sub-encoders, a speech encoder, and a shared encoder and introduces a uni-modal

text encoder (See Figure 10.1). The speech encoder ingests log-mel features as

input and the shared encoder takes the output of the speech or text modal
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encoders. The speech encoder consists of the first 6 conformer layers, and the

shared encoder consists of the last 18 conformer layers of the base ASR encoder.

We use the text encoder architecture described in (Chen et al., 2022). The text

encoder is trained on paired data, since ground-truth text/wordpiece(wpm) and

feature mappings are available. It includes a text/phoneme encoder, a trained

duration model and re-sampling layer, and a refiner. During inference, the

duration model is responsible for predicting the duration of each input

text/phoneme token, and the re-sampling layer upsamples the text

representations according to their respective durations. The refiner takes the

upsampled representations and refines them further for modality matching.

Maestro adds an additional RNN-T phoneme decoder of the same parameter size

to train the duration model. In contrast to (Chen et al., 2022), unless explicitly

mentioned our experiments do not include a second pass fine-tuning.

Figure 10.1 – Maestro architecture.

10.3.2 SLAM Architecture

SLAM (Bapna et al., 2021, 2022) uses a similar structure to Maestro,

decomposing its encoder into a speech encoder, text encoder and shared encoder.

The major distinctions are 1) the structure of the text encoder, and 2) training of
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the model. First, the SLAM text encoder consists of a text embedding layer, and

sinusoidal position embedding. Second, when training on transcribed data, the

outputs of the speech and text encoders are concatenated and used as input to

the shared encoder (as opposed to Maestro which consumes either the speech or

text activations). To align representations and encourage consistency between

speech and text, SLAM uses a contrastive Speech-Text Matching loss, and a

Translation Language Model loss similar to (Zheng et al., 2021). mSLAM (Bapna

et al., 2022) replaces the Speech-Text matching loss with a CTC loss on the

speech representations of the transcribed data.

10.4 Text-Only Domain Adaptation

10.4.1 Data

We use subsets of SpeechStew (Chan et al., 2021) comprising of LibriSpeech,

AMI, Common Voice (CV), Switchboard (SWBD), and TED corpora for text

adaptation experiments. For all experiments, we initialize from a converged

LibriSpeech (LS) Maestro model trained on 3 types of data: LibrilLight (Kahn

et al., 2020) as untranscribed speech, LibriSpeech (960 hours) as paired data, and

LibriSpeech LM text as unspoken text. For text adaptation, we continue to train

the LS Maestro model with text from different SpeechStew corpora. During

adaptation, we construct a minibatch with 256 text utterances from the target

domain, and 256 transcribed speech utterances from LibriSpeech. The use of

supervised data during text-only adaptation stabilizes training and minimizes

catastrophic forgetting.

10.4.2 Experiments and Results

We present results of adapting with text only data from various corpora. The

text encoder is always trained on LibriSpeech data. Table 10.1 shows the results

of text-only adaptation across 4 datasets, compared to the LS Maestro baseline.

We can observe that, for all datasets, using in-domain text successfully enables

adaptation to the target domain despite using durations predicted on Librispeech,

delivering a relative WER improvement as high as 20% on TED. We also observe
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that this speech-free text adaptation benefits other testsets, even though their

in-domain text is never observed during training. This observation is the strongest

in Switchboard, where Switchboard text adaptation improves performance across

AMI, Common Voice and TED testsets with over 7+% relative WER gains.

10.4.3 Text Encoder Data Quality Ablation

Next, we study the impact of domain on text injection performance. The text

encoders can be trained on any paired data and the duration model used for

upsampling during text injection can be domain specific. As an ablation study on

text adaptation, we use the LS Maestro model and corpus specific text encoders

trained on the remaining SpeechStew corpora. We study the impact of duration

models trained on different domains while using text from the Switchboard

(SWBD) corpus alone for adaptation. We initialize a Maestro model from

w2v-BERT (Chung et al., 2021) pretrained speech encoder and randomly initialize

the text encoder. We subsequently train the text encoder with corpus-specfic

paired data for 80k steps to convergence. We use the training recipe outlined in

section 10.4.2, where we load and freeze the text encoder during text injection.

Table 10.2 presents the performance measured as WER and MSE consistency loss

(text encoder loss) of the different text encoders for text adaptation on SWB. We

hypothesize that the MSE values provide an indication of quality of the text

encoders. Supporting this hypothesis, we observe a trend between the Text

Encoder Loss and the SWBD text adaptation performance. It is interesting to

note that durations trained on the TED corpus yield the best performance on

SWB. This may suggest that TED duration model has higher quality across

domains (as indicated by the Text Encoder Loss), or if there is a similarity

between SWBD and TED speaking styles.
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Table 10.2 – Ablation of text encoder trained on different corpora with Switchboard (SWBD)
Text Adaptation, using text encoders trained on different corpora.

Method Text Encoder Loss SWBD

SWBD Supervised FT (Lower Bound) - 23.24

LS Maestro init - 31.77

AMI Duration Training 6.5 29.26

CV Duration Training 5.3 29.18

TED Duration Training 4.1 28.45

10.4.4 Text Encoder Component Ablation

We next evaluate the impact of different components of the text-encoder using

the AMI corpus for text adaptation. AMI comprises spontaneous elicited meeting

speech, while LibriSpeech is read books. We examine the two main components of

the text encoder, the duration model, and the refiner. The duration model

includes a text/phoneme projection, duration prediction and up-sampling layers.

The refiner is responsible for taking the upsampled encoding, and refining it to

match the speech encoder output. We start with an entirely in-domain AMI text

encoder, and then measure the effect of using the AMI-trained duration model,

but keeping the LibriSpeech refiner. Note that since the paired training data is

always LibriSpeech, using the LibriSpeech refiner allows us to investigate the

value of the duration model without introducing the additional complexity of

mismatched data used in training the speech encoder and text encoder refiner.

Table 10.3 includes the results.
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Table 10.3 – Ablation of importance for in-domain text encoder components with AMI Text
adaptation.

Method AMI

ihm sdm1

AMI Supervised FT (Lower Bound) 11.60 28.03

LS Maestro init 35.42 60.02

LS Duration & Refiner 30.26 54.52

AMI Duration & Refiner 28.78 53.82

AMI Duration, LS Refiner 27.20 52.13

As we switch to an AMI text encoder entirely, we see an improvement in

adaptation performance due to the in-domain text encoder. However, if we use

and freeze only the AMI duration model, and utilize a LibriSpeech refiner, the

performance improves even further. This suggests that the primary value of a

domain-specific text-encoder for text-only adaptation comes from having a high

quality duration model for the new domain.

It remains to be seen to what degree duration models can be transferred between

related corpora. For example, AMI is spontaneous, elicited speech, while

LibriSpeech is read. The impact of the duration model may be less pronounced

when adapting from LibriSpeech to another read corpus.

10.5 Representation Space Analysis

To analyze representation spaces learned by Maestro and SLAM, we use a

combination of visual inspection (via T-SNE (Van der Maaten and Hinton, 2008))

and cosine similarity retrieval probes on mean-pooled speech and text embedding

pairs. Although T-SNE is a low-dimension approximation of the overall

high-dimension space, we see that the text and speech embeddings clearly appear

to capture disparate regions, and different datasets reside in different areas of

these regions (Figure 10.2). We see a unification of both modalities after

projection through the shared encoder, and the sub-regions occupied by each

dataset in those modalities are combined into one shared space. Compared to a
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baseline SLAM (Bapna et al., 2021) text and speech encoding (Figure 10.3), the

Maestro shared encoding indicates a larger unification of the two disparate

information sources. While the included images are drawn from the LibriSpeech

(LS) Maestro model, these effects are consistent across models for other domains.

Figure 10.2 – T-SNE of LibriSpeech Maestro text (crosses) and speech (dots) encoder outputs
(left), and shared encoder output (right)

Figure 10.3 – T-SNE of SLAM text (crosses) and speech (dots) shared encoder outputs

The combined joint space after Maestro’s shared encoder is an ideal candidate for

retrieval tests between speech and text examples to examine the learned

representations, as is common in many other settings (Conneau et al., 2022;

Baevski et al., 2021; Bapna et al., 2021, 2022; Radford et al., 2021; Hinton and

95



Figure 10.4 – T-SNE of LS Maestro text encoder outputs (left), and shared encoder text output
(right), color coded by duration

Salakhutdinov, 2011). We utilize candidate sets of 1, 000 paired speech and text

examples from each dataset, testing for successful retrieval of the text which

matches the speech example. These retrieval results are detailed in Table 10.4,

and are used as a secondary inspection mechanism to understand the

representation space. We leave larger considerations of retrieval as an explicit

speech task for future work, focusing instead on simple exploratory retrieval

probes to better understand the shared speech-text representations learned by

Maestro and SLAM.

Stronger retrieval performance indicates the effectiveness of the shared encoder to

remove unwanted information and unify representations before passing to

downstream speech tasks like ASR or Speech Translation. For example, we

observe that duration information is strongly represented in the text encoder

outputs (Figure 10.4), but following the shared encoder, this influence is more

diffuse. We note that retrieval is generally a challenging inspection mechanism;

non-unified spaces often have extremely degraded retrieval performance,

rendering direct retrieval probes ineffective. For example, cosine retrieval using

the baseline SLAM model from Figure 10.3 performs at or below 1% in the same

settings as Table 10.4. This makes the Maestro retrieval performance all the more

remarkable.

The effectiveness of this approach, along with related findings on multi-language

retrieval (Conneau et al., 2022), opens a number of research questions about

retrieval using modern multi-modal models, for example using shared spaces to

directly sub-select vocabularies for ASR based on top-k retrieval results, or

expanding the potential and limits of data augmentation in a shared space. As an
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alternative to direct retrieval, ASIF (Norelli et al., 2022) uses the concept of

cross-modal anchoring in order to effectively retrieve between unimodal spaces.

Using anchored retrieval allows probing the effectiveness of unimodal or

non-unified spaces using paired multi-modal data, without further training.

Higher ASIF retrieval indicates that two modal views of a data point are

substantially related (relative to distractors) even if the respective feature spaces

are not strictly unified.

This allows us to test the output of the speech and text encoders directly. 90% of

the target set act as anchors, while the remaining portion of the target set are

used to evaluate. We repeat this procedure for 100 trials of 100 examples each

(10, 000 evaluations total), randomizing test points and anchors within the target

set each trial and reporting the mean accuracy of the final result. Table 10.5

shows the results using 900 anchors and 100 retrievals per trial, with ASIF

hyperparameters set to top k 90 (10%) and power 8. We also report the accuracy

of direct cosine retrieval under this setting, to highlight where anchoring is useful

for non-unified spaces.

Table 10.4 – Shared space cosine retrieval probe accuracy (%)

Method LibriSpeech AMI CV SWBD TED

test-clean test-other ihm sdm1 test test test

LS Maestro 83.5 68.8 23.2 12.9 28.8 35.8 70.3
AMI Maestro 89.3 76.7 47.1 31.6 30.6 53.3 75.1
CV Maestro 97.5 96.5 32.1 15.8 72.4 48.6 94.9
SWBD Maestro 96.1 90.0 31.4 8.3 42.8 56.8 79.7
TED Maestro 95.8 94.5 38.2 19.3 76.0 53.2 91.7
LS+C4 mSLAM 0.30 0.20 0.00 0.30 0.10 0.00 0.30

Here we find that relative representation retrieval (as in ASIF (Norelli et al.,

2022)) reveals the effectiveness of anchoring non-unified spaces particularly seeing

improved performance when direct cosine retrieval is degraded (for example

SWBD Maestro on TED in Table 10.5). This also reinforces the visualization

findings, indicating that the Maestro shared representation yields a substantially

more unified representation space. The text and speech encoder representations,

while related, remain distinct in many settings. While numbers across Table 10.4

and Table 10.5 cannot be directly compared due to experimental differences,

within table variations highlight the differences between direct cosine and ASIF

retrieval approaches.
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Table 10.5 – Text and speech encoder retrieval probe accuracy (%)

Method LibriSpeech AMI CV SWBD TED

test-clean test-other ihm sdm1 test test test

LS Maestro (Direct) 20.5 19.3 7.65 6.16 7.43 13.88 11.89
LS Maestro (ASIF) 45.7 31.2 7.47 5.61 10.2 10.76 16.64

AMI Maestro (Direct) 67.2 48.9 45.2 32.6 19.0 44.7 43.9
AMI Maestro (ASIF) 33.6 17.7 14.9 10.5 7.88 16.7 21.5

CV Maestro (Direct) 76.3 61.7 19.1 10.0 40.0 29.3 44.8
CV Maestro (ASIF) 50.4 34.8 14.3 7.61 20.1 19.4 28.9

SWBD Maestro (Direct) 20.3 14.1 15.9 8.61 10.3 25.3 13.8
SWBD Maestro (ASIF) 49.0 23.0 13.8 7.32 8.94 19.7 29.0

TED Maestro (Direct) 80.6 64.3 24.5 13.3 29.0 40.6 77.9
TED Maestro (ASIF) 43.6 26.9 13.3 7.96 11.8 16.8 25.8

LS+C4 mSLAM (Direct) 1.96 2.0 1.54 1.10 1.5 1.63 1.52
LS+C4 mSLAM (ASIF) 8.63 10.5 3.99 3.06 1.79 6.03 5.78

10.6 Conclusion

Through text-only domain adaptation and inspection of the learned speech and

text representations, we draw the following conclusions and hypotheses. Maestro

enables effective speech-free domain adaptation across diverse corpora. Our

ablation studies demonstrate that duration/alignment are critical elements for

successful adaptation. General purpose text encoders with corpus-specific

duration models enable adaptation with minimal targeted customization. We

hypothesize that the consistency MSE measure, text encoder loss, serves as an

effective proxy for the effectiveness of a text-encoder for domain adaptation.

Furthermore, we inspect the representations learned by Maestro and SLAM

across a variety of standard corpora, finding that modal encoders retain distinct

information for each modality: speech and text. However, after shared encoding

the Maestro modal representations are unified, and the overall shared space is a

powerful, generic representation of speech or text, based on both visual inspection

and retrieval probe tasks. We hypothesize that the coherence of this output space

in joint speech-text representation learning in Maestro enables its power for

text-only adaptation and state-of-the-art performance in both automatic speech

recognition (ASR) and speech translation (ST).
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11 Conclusion

These systems when trained allow for sampling a new data sequence which is

similar to that on which it was trained, representing a particular form of ”decision

modeling” for generative applications where each sampled datapoint must handle

the fundamental uncertainty of other possible data configurations (alternate

decisions) in order to create a holistic generation. With addition of conditional

variables such as fixed context, or phonetic controls, this also forces the sequential

decision model to flexibly account for plausible controls that may be unseen at

training. This opens the door to inference time adaptation, human in-the-loop

learning for follow-on tuning, and a broad spectrum of real-world applications if

the core sequential decision system is robust and general.

Throughout this document, a wide variety of tools and techniques have been

covered. Particularly, this work has focused on methods for weakly aligned

semi-supervised and unsupervised sequence modeling, in order to build strong

representations of data with minimal external information. In return many of

these methods must make assumptions in data representation, model

architecture, or loss construction, in order to effectively incorporate prior

knowledge about the data domain into the overall model for effective training.

11.0.1 Overview

In Chapter 4, domain knowledge came in the form of structured swapping in the

text input representation. By using the knowledge of word boundaries given for

English speech and text, model training, control, and generalization are improved

compared to baseline methods. Building on these concepts, as well as ongoing

development in text-to-speech synthesis, Chapter 6 further factorized the overall

TTS problem using a low resolution time-frequency representation of speech

audio. This low-resolution factorization allowed the initial R-MelNet model to

characterize important high-level information in the speech signal, leaving fine
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detail to the second stage ”upsampler” model using WaveRNN. Similar concepts

run throughout the preceding works to Chapter 10, and are critical concepts in

the original design of Maestro. In particular, the text encoder design hinges on

concepts from TTS, using learned durations to greatly improve and align the

learned text representations to those learned in the speech encoder. These

insights motivated the studies in Chapter 10 probing how the Maestro model

works, which components drive overall ASR task performance, and analyzing the

learned subspaces of this model for applications such as multi-modal retrieval.

Chapter 8 incorporates a view of modeling as iterative prediction, using masked

representations to learn piecewise conditional information for a generative system.

Leaning further into iterative prediction, SUNMASK features multi-step

processing and losses, which require the model to learn to fix its own mistakes for

successful training. Factorizing the model in order to enhance iterative prediction

builds on prior knowledge and insight, to build a system specifically designed for

the inherent biases of iterative prediction, improving model training and sampling.

These modeling approaches reflect the times in which they were developed, and

though many of the overall systems are no longer cutting edge, the techniques

and insights used in their development remain of interest even as underlying

modeling techniques change. Recent trends toward non-autoregressive modeling

and particularly discrete sequence modeling, highlight the extended relevance of

the most recent works in this dissertation. Discrete sequence modeling using

non-autoregressive generative models will be an area of active interest and

development in the next few years.

11.0.2 Retrospective

Over the course of my graduate research, a staggering amount of growth and

change has occurred in the field of deep learning, leading to sea changes in a wide

variety of application fields. Deep architectures have become the defacto modeling

technique for nearly all learning based systems, and with this adoption has come

a huge variety of proposed approaches both specialized and general. Many of the

methods described by work mentioned in this dissertation have been muted by

the passage of time and steady progress from collective effort on the research

front. However the foundational ideas of these methods: structured factorization
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of problems, inclusion of secondary information to guide modeling and inference,

architectures capturing structure and invariance from domain knowledge, and

custom output loss spaces capturing problem information to improve model

training, will continue to be evergreen ingredients to building real world systems.

Modeling sequences under uncertain conditions has been, and will continue to be,

a hallmark problem in machine learning. Recent advances in large language

modeling and generative AI build on a rich foundation of past work, including the

methods described in 1, while adding new modeling techniques and information

sources to build powerful tools for modeling complex dynamics from data.

Semi-supervised and generative modeling approaches will continue to find new

footholds, and new impact in the years to come.
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