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Abstract  

To ensure robustness and generalization to real-world scenarios, test-time adap- 
tation has been recently studied as an approach to adjust models to a new data 
distribution during inference. Test-time batch normalization is a simple and popular 
method that achieved compelling performance on domain shift benchmarks by 
recalculating batch normalization statistics on test batches. However, in many 
practical applications this technique is vulnerable to label distribution shifts. We 
propose to tackle this challenge by only selectively adapting channels in a deep 
network, minimizing drastic adaptation that is sensitive to label shifts. We find that 
adapted models significantly improve the performance compared to the baseline 
models and counteract unknown label shifts.  

  



1 Introduction  

A commonly cited limitation of deep learning models is the inability to generalize 
across different domains [1]. Generalization can be simply defined as the ability of 
an algorithm to be applied to a different, yet still related, target domain. Typically, 
in real-world deployment scenarios models might encounter data with critical 
differences, hampering their performance. This decrease in performance has been 
observed in multiple areas, including life-threatening contexts, such as 
autonomous driving [2, 3] and medical diagnostics [4, 5].  

A recently emerging technique to deal with distribution shift is test-time adaptation 
(TTA) [6, 7], a type of unsupervised domain adaptation, where unlabeled test data 
is used to update the model parameters at test-time, before predictions. It is often 
assumed that data arrives in batches, and some studies have proposed a setting 
of test-time batch adaptation that take advantage of batch-level information to 
adapt to the distribution shift [8, 9, 10].  

Test-time batch normalization (TTN) [11, 12] replaces batch normalization 
statistics estimated as running averages on the training set with the statistics of 
the test data batch. Despite being a simple approach, it has been shown to improve 
robustness under covariate shift, handling particularly well various cases of image 
corruptions. Based on that, other TTA approaches apply TTN as a critical 
component in their foundation [10, 13]. Alas, most existing TTA methods consider 
the impact of covariate shifts only, in many realistic scenarios the label distribution 
of data can shift from training to testing.  

In this work, we investigate the effect of label distribution shift on TTN and observe 
that it can lead to catastrophic failures. Moreover, we notice the effects of adapting 
different layers in TTN. Motivated by it, we propose a method to correct for the 
label distribution shift based on the adaptation of some channels of the batch 
normalization layers. Our proposed method is applied for classification of  two well-
known benchmark natural images datasets (CIFAR-10 [14] and ImageNet-1K 
[15]). When deployed in target data with different distribution, our proposed method 
is effective for imbalanced adaptation.  

2 Hybrid test-time batch normalization  

The main idea behind TTA in general, and TTN in particular, is that while label 
information is not available at test time, the unlabeled data can provide information 
to estimate impact of domain shifts on neural networks. The typical setup is based 
on data being processed in batches, enabling assessment of distribution shifts 
between source and target domains.  

In order to implement TTA in these settings, TTN views a neural network f as split 
into blocks separated by BatchNorm layers:  



f =fK ◦BK−1 ◦fK−1 ◦···◦B1 ◦f1 ◦B0 ◦f0, (1) 

where f0,...,fK are blocks(i.e.,sub-networks)of hidden layers and B0,...,BK−1 are 
batch normalization operators, each Batch Norm layer modifies each neural 
activation by  

B(h(x),μk,σk,β,γ)=βh(x)−μk +γ (2) 

 
where β and γ are parameters learned during the training process, and μ and σ 
represent estimates of the mean and standard deviation of neuron activation over 
data.  

The main premise of the TTN approach is that changes in the distributions of 
activations of each neuron between source and target batches would 
predominantly be caused by unwanted covariate shifts, and therefore should be 
eliminated. However, this does not take into account other distribution shifts that 
should affect the output distribution of the network. It is often the case that the 
distribution of available labels during the training process will differ from one of 
unknown labels encountered at test time. Most successful applications of TTN did 
not contain such label distribution shift, and recent work has indicated possible 
sensitivity of TTN to such shifts [16].  

In order to mitigate the risk of adverse effects by TTN, we consider an approach 
that aims to only adapt channels or neurons which are sensitive primarily to 
covariate shift, excluding channels which are highly sensitive to shifts in the label 
distribution. Specifically, consider a model with K layers, for a layer k with source 
statistics μsk , σks and target data statistics μtk , σkt , computed for each layer 

using the input batch. We construct a new set of hybrid statistics, μhybrid = mk ⊙ 
μt + (1 − mk) ⊙ μs kkk and σhybrid = mk ⊙ σt + (1 − mk) ⊙ σs, where the binary 
mask mk will aim to not adapt neurons kkk or channels which are highly sensitive 
to label shifts.  

We base our selection of the mk on two principles, (a) channels in later layers in 
neural networks are more specialized than earlier layers, which perform generic 
feature extraction [17, 18, 19] (b) channels in layers which experience largest shifts 
will tend to be most sensitive to label shift. This intuition is illustrated in Figure 1. 
We propose to combine these notions as follows: in each layer the top T % most 
changed channels as measured by a metric (e.g. Wasserstein distance) will not be 
updated, limiting the most severe changes. The number of channels to adapt is 
modulated by c(i) where i is the layer. Based on the notion that later layers should 
change minimally, the T % of channels that are not updated will increase with 
depth. For the rest of the work we will compute distribution shift using the 
Wasserstein distance between two gaussians, W2({μs, σs}, {μt, σt}) = ∥μs − μt∥2 



+ σs + σt − 2σsσt, and for the increase of T % over layers we use a linear ramp 
c(i) = Ki . The proposed Hybrid-TTN algorithm is described in the Appendix A.1.  

3 Experiments and results  

We use two popular benchmarks datasets in our evaluations: CIFAR-10-C and 
ImageNet-1K-C.  

CIFAR-10 and CIFAR-10-C. We use the CIFAR-10 [20] dataset along with CIFAR-
10-C [21]. CIFAR- 10 is a small natural image dataset with 50k training images 
and 10k validation images. CIFAR-10-C contains corrupted versions of the CIFAR-
10 Validation set at varying severities. We train our models on the uncorrupted 
dataset.  

ImageNet-1K and ImageNet-1K-C. We use the ImageNet-1K [22] dataset along 
with ImageNet-1K-C [21]. ImageNet-1K is a large natural image dataset with 1.2 
million training images and 50k validation images. ImageNet-1K-C, similarly to 
CIFAR-10-C, contains corrupted versions of the ImageNet-1K validation set at 
varying severities. Both CIFAR-10-C and ImageNet-1K-C are popular as a 
measure of robustness to covariate shift.  

Training and architecture details. On CIFAR-10 we train a Resnet-26 model as 
defined in [23]. We use an SGD optimizer with a batch size of 128. An initial 
learning rate set to 0.1 is used in combination with a cosine annealing schedule 
[24] trained over 200 epochs. Weight decay set to 5e-4 is used along with 
momentum set to 0.9 [25]. Standard augmentation uses random crop of size 32 
with 4 padding, and random horizontal flips. For ImageNet-1K we use a pre-trained 
Resnet18 model.  

Adaptation details. We focus on the TTA setting where adaptation is done on a 
single batch without affecting the deployed model. We use a batch size of 500 for 
the experiments (sampled over multiple seeds). For the Hybrid-TTN, we use the 
Wasserstein distance as the metric for measuring the changes in the adapted 
channels.  

3.1 Shortcomings of TTN  

We first illustrate the potential pitfalls of TTN. Using the CIFAR-10 dataset, we 
show the effect of label distribution shift on TTN. Moreover, we perform 
experiments on layer-limited adaptation both with and without noise. Our results 
are shown in in Figure 2. First, we observe that on the non-corrupted train data the 
performance of class-imbalanced data degrades gradually at first and increasingly 
faster towards the later layers. This suggests that later layers can cause a large 
degradation. Secondly, for corrupted data we observe that adapting up to earlier 
layers can allow enough label distribution invariance to provide benefits under 
covariate shift.  



3.2 Evaluating Hybrid-TTN  

We now use the proposed Hybrid-TTN method on a variety of target datasets, 
covariate shifts, and label distribution shifts. We demonstrate that Hybrid-TTN can 
provide a good trade-off in being able to adapt to covariate shift without 
experiencing catastrophic failure due to label distribution shift. Our results are 
shown in Tables 1 and 2. Here we demonstrate various degrees of covariate and 
label distribution shift, and the gain or loss as compared to the source model 
performance. Unlike TTN, it is able to handle the label distribution shift, in many 
cases avoiding catastrophic failure, and in a variety of combinations of severe label 
and covariate shift improving over the source model. An ablation study, presented 
in Appendix A.2, indicate that the random selection of channels does not yield good 
outcomes, validating our premise that the selection of channels with the lowest 
Wasserstein distance is an effective strategy.  

4 Conclusions  

We have studied a popular batch-level Test-time Adaptation method in the context 
of label distribution shift. We observed that in realistic scenarios where batches at 
deployment time have label distribution shifts, this method can fail catastrophically. 
We proposed a direction for solving this problem to keep the benefits of adaptation 
without risking catastrophic failure due to label shift.  
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Figure 1: We illustrate a mechanism for explaining the observed behaviour under 
label distribution shift. We consider one class mean (green) which is shifted 
towards the data mean, as would be the case in a highly imbalanced setting. 
Classes are not well separated in early layers and thus shifts in any mean are 

relatively small and non-intrusive. In later layers classes are well separated and a 
large shift of points from one mean towards the data mean is likely to cross a 
decision boundary. Data points in other classes moving away from the data 

mean are less likely to cross a decision boundary. 

  



 

Figure 2: On CIFAR-10 we adapt models only up to the layer shown on the x-
axis, the y-axis showing the accuracy on the target data. We consider target data 

with and without corruptions, and for each we test with different label 
distributions. We consider label distributions with all (10) classes as well as 5,3, 
and 1 randomly selected and balanced classes. Note the x-axis starting value is 

the source model performance and the ending value the TTN model 
performance. We observe that adapting some layers can avoid the catastrophic 
collapse due to TTN observed on original data while maintaining the benefits of 

TTN over the source model in covariate shift. 

  



 

Table 1: CIFAR-10 evaluations on multiple label shifted distributions and 
covariate shifts (corruptions) with different degrees of label imbalance. We show 

the source model accuracy and the improvement (or degradation) as a delta 
accuracy. We observe that the proposed method provides benefits over source 
model when there is no covariate shift, while avoiding catastrophic failures and 

allowing benefits over source when there are label distribution shifts. 

  



 

Table 2: ImageNet-1K evaluations on multiple label shifted distributions and 
covariate shifts (cor- ruptions) with different degrees of label imbalance. We 

observe that the proposed method provides benefits over source model when 
there is covariate shift, while avoiding catastrophic failures when there are label 

distribution shifts. 

  



A Appendix 

 
A.1 Hybrid-TTN algorithm 

Algorithm block for the proposed Hybrid Test Time Normalization.  

 

  



A.2 Ablation  

In order to validate our proposed method, we perform an ablation study aimed at 
investigating the efficacy of channel selection strategy within Hybrid-TTN. 
Specifically, we explore an alternative approach where the T % percentage of 
channels to be adapted per layer are randomly selected, as opposed to using the 
sorted distances to determine a threshold (see Section 2).  

The results, shown in Table A1, indicate that the random selection of channels 
does not yield good outcomes, as the model is severely affected by the distribution 
shift. This ablation validates our premise that the selection of channels with the 
lowest Wasserstein distance is an effective strategy.  

Table A1: CIFAR-10 ablation. Using random channels instead of the sorted 
channels in the Hybrid- TTN. It is notable that selecting random channels is 
detrimental to the performance of the adapted models, as one would intuitively 
expect.  

 

 

 

 

 

 

 


