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Résumé

La modélisation générative pour la vision par ordinateur a connu d’immenses progrès ces

dernières années, révolutionnant notre façon de percevoir, comprendre et manipuler les

données visuelles. Ce domaine en constante évolution a connu des avancées dans la génération

d’images, l’animation 3D et la prédiction vidéo, débloquant ainsi diverses applications dans

plusieurs domaines tels que le divertissement, le design, la santé et l’éducation. Alors que la

demande de systèmes de vision par ordinateur sophistiqués ne cesse de croître, cette thèse

s’efforce de stimuler l’innovation dans le domaine en explorant de nouvelles formulations de

modèles génératifs conditionnels et des applications innovantes dans les images, les animations

3D et la vidéo.

Notre recherche se concentre sur des architectures offrant des transformations réversibles

du bruit et des données visuelles, ainsi que sur l’application d’architectures encodeur-décodeur

pour les tâches génératives et la manipulation de contenu 3D. Dans tous les cas, nous

incorporons des informations conditionnelles pour améliorer la synthèse des données visuelles,

améliorant ainsi l’efficacité du processus de génération ainsi que le contenu généré.

Les techniques génératives antérieures qui sont réversibles entre le bruit et les données

et qui ont connu un certain succès comprennent les flux de normalisation et les modèles de

diffusion de débruitage. La variante continue des flux de normalisation est alimentée par

les équations différentielles ordinaires neuronales (Neural ODEs) et a montré une certaine

réussite dans la modélisation de la distribution d’images réelles. Cependant, elles impliquent

souvent un grand nombre de paramètres et un temps d’entraînement élevé. Les modèles de

diffusion de débruitage ont récemment gagné énormément en popularité en raison de leurs

capacités de généralisation, notamment dans les applications de texte vers image.

Dans cette thèse, nous introduisons l’utilisation des Neural ODEs pour modéliser la

dynamique vidéo à l’aide d’une architecture encodeur-décodeur, démontrant leur capacité à

prédire les images vidéo futures malgré le fait d’être entraînées uniquement à reconstruire

les images actuelles. Dans notre prochaine contribution, nous proposons une variante

conditionnelle des flux de normalisation continus qui permet une génération d’images à

résolution supérieure à partir d’une entrée à résolution inférieure. Cela nous permet d’obtenir
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une qualité d’image comparable à celle des flux de normalisation réguliers, tout en réduisant

considérablement le nombre de paramètres et le temps d’entraînement.

Notre prochaine contribution se concentre sur une architecture encodeur-décodeur flexible

pour l’estimation et l’édition précises de la pose humaine en 3D. Nous présentons un pipeline

complet qui prend des images de personnes en entrée, aligne automatiquement un personnage

3D humain/non humain spécifié par l’utilisateur sur la pose de la personne, et facilite l’édition

de la pose en fonction d’informations partielles.

Nous utilisons ensuite des modèles de diffusion de débruitage pour la génération d’images

et de vidéos. Les modèles de diffusion réguliers impliquent l’utilisation d’un processus gaussien

pour ajouter du bruit aux images propres. Dans notre prochaine contribution, nous dérivons

les détails mathématiques pertinents pour les modèles de diffusion de débruitage qui utilisent

des processus gaussiens non isotropes, présentons du bruit non isotrope, et montrons que la

qualité des images générées est comparable à la formulation d’origine. Dans notre dernière

contribution, nous concevons un nouveau cadre basé sur les modèles de diffusion de débruitage,

capable de résoudre les trois tâches vidéo de prédiction, de génération et d’interpolation.

Nous réalisons des études d’ablation en utilisant ce cadre et montrons des résultats de pointe

sur plusieurs ensembles de données.

Nos contributions sont des articles publiés dans des revues à comité de lecture. Dans

l’ensemble, notre recherche vise à apporter une contribution significative à la poursuite de

modèles génératifs plus efficaces et flexibles, avec le potentiel de façonner l’avenir de la vision

par ordinateur.

Mots-clés: Apprentissage profond, vision par ordinateur, modèles génératifs, apprentis-

sage de la représentation, modèles de diffusion
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Summary

Generative modeling for computer vision has shown immense progress in the last few years,

revolutionizing the way we perceive, understand, and manipulate visual data. This rapidly

evolving field has witnessed advancements in image generation, 3D animation, and video

prediction that unlock diverse applications across multiple fields including entertainment,

design, healthcare, and education. As the demand for sophisticated computer vision systems

continues to grow, this dissertation attempts to drive innovation in the field by exploring

novel formulations of conditional generative models, and innovative applications in images,

3D animations, and video.

Our research focuses on architectures that offer reversible transformations of noise and

visual data, and the application of encoder-decoder architectures for generative tasks and 3D

content manipulation. In all instances, we incorporate conditional information to enhance

the synthesis of visual data, improving the efficiency of the generation process as well as the

generated content.

Prior successful generative techniques which are reversible between noise and data include

normalizing flows and denoising diffusion models. The continuous variant of normalizing flows

is powered by Neural Ordinary Differential Equations (Neural ODEs), and have shown some

success in modeling the real image distribution. However, they often involve huge number of

parameters, and high training time. Denoising diffusion models have recently gained huge

popularity for their generalization capabilities especially in text-to-image applications.

In this dissertation, we introduce the use of Neural ODEs to model video dynamics using

an encoder-decoder architecture, demonstrating their ability to predict future video frames

despite being trained solely to reconstruct current frames. In our next contribution, we

propose a conditional variant of continuous normalizing flows that enables higher-resolution

image generation based on lower-resolution input. This allows us to achieve comparable image

quality to regular normalizing flows, while significantly reducing the number of parameters

and training time.

Our next contribution focuses on a flexible encoder-decoder architecture for accurate

estimation and editing of full 3D human pose. We present a comprehensive pipeline that

takes human images as input, automatically aligns a user-specified 3D human/non-human
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character with the pose of the human, and facilitates pose editing based on partial input

information.

We then proceed to use denoising diffusion models for image and video generation. Regular

diffusion models involve the use of a Gaussian process to add noise to clean images. In

our next contribution, we derive the relevant mathematical details for denoising diffusion

models that use non-isotropic Gaussian processes, present non-isotropic noise, and show that

the quality of generated images is comparable with the original formulation. In our final

contribution, devise a novel framework building on denoising diffusion models that is capable

of solving all three video tasks of prediction, generation, and interpolation. We perform

ablation studies using this framework, and show state-of-the-art results on multiple datasets.

Our contributions are published articles at peer-reviewed venues. Overall, our research

aims to make a meaningful contribution to the pursuit of more efficient and flexible generative

models, with the potential to shape the future of computer vision.

Keywords: Deep learning, computer vision, generative models, representation learning,

diffusion models
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Chapter 1

Introduction

1.1 Computer vision and machine learning

Computer vision is a field of study that aims to enable machines to understand and interpret

visual information, including images and videos. The goal of computer vision systems is to

replicate the capabilities of human vision, such as object detection, motion tracking, and

understanding spatial relationships. This field has seen significant progress over the past

several decades, especially due to machine learning in the recent past. In particular, generative

modeling for computer vision has gained significant prominence in the past few years, and

promotes a wide variety of applications.

Early work in computer vision focused on simple image processing techniques, such as

edge detection and thresholding. In the 1960s and 1970s, researchers began to develop

more sophisticated algorithms for image analysis, including pattern recognition and feature

extraction. One of the most influential works from this era was the book “Digital Picture

Processing” by A. Rosenfeld and A. C. Kak (1976) [Rosenfeld and Kak, 1969], which provided

a comprehensive overview of image processing techniques.

In the 1980s and 1990s, computer vision research shifted towards more advanced techniques,

such as machine learning and neural networks. The seminal book “Parallel Distributed

Processing” by D. E. Rumelhart and J. L. McClelland (1986) [McClelland et al., 1986]

introduced the idea of using neural networks for image analysis, which paved the way for the

development of deep learning techniques in the 21st century.

Today, computer vision systems are used in a wide range of applications, from autonomous

vehicles to medical imaging to facial recognition systems. Recent advances in deep learning

have enabled machines to achieve human-level performance on many computer vision tasks,

including object detection and recognition, image segmentation, and pose estimation.

The following sections introduce generative modeling in computer vision and applications.

Relevant generative modeling techniques are discussed, with a special focus on two methods

relevant to this thesis : continuous normalizing flows, and denoising diffusion models.



1.2 Generative modeling

Generative modeling is a sub-field of machine learning that aims to learn the underlying

probability distribution of a given dataset, and use this knowledge to generate new, realistic

samples that are similar to the original data. This has many applications, such as image and

video synthesis, data augmentation, style transfer, etc.

One of the earliest and most popular generative models is the Restricted Boltzmann

Machine (RBM), which was introduced by Smolensky in 1986 [Smolensky, 1986]. RBMs

are a type of neural network that learn to model the joint probability distribution of the

input data. RBMs have been used in a variety of applications, including image and speech

recognition, recommendation systems, and collaborative filtering.

Another important early generative model is the Autoencoder, which was first introduced

by Rumelhart et al. in 1986 [Rumelhart et al., 1986]. Autoencoders are neural networks that

learn to encode input data into a lower-dimensional representation, and then decode this

representation back into the original data. Autoencoders can be used for a variety of tasks,

such as data compression, denoising, and anomaly detection.

In recent years, generative modeling has emerged as an exciting area of research. In

the context of computer vision, generative models can be used to create realistic images,

videos, and other visual media. Generative modeling for computer vision is typically based

on deep learning architectures such as Generative Adversarial Networks (GANs) [Goodfellow

et al., 2014], Variational Auto-Encoders (VAEs) [Kingma and Welling, 2013], Normalizing

flows [Dinh et al., 2015, 2017], Continuous normalizing flows [Chen et al., 2018a], and

Denoising diffusion models [Song and Ermon, 2019, Ho et al., 2020].

GANs were introduced in 2014 by Goodfellow et al. and have since become one of the

most popular and widely used generative models for computer vision. GANs consist of two

neural networks, a generator network and a discriminator network, that are trained together

in a game-like setting. The generator network learns to create realistic images that can fool

the discriminator network into thinking they are real, while the discriminator network learns

to distinguish between real and fake images.

VAEs, on the other hand, are based on the idea of learning a low-dimensional representation

of the data that can be used to generate new samples. They were introduced in 2014 by

Kingma and Welling, and have since become a popular choice for generative modeling in

computer vision. VAEs consist of an encoder network that learns to map input images to a

latent space, and a decoder network that learns to generate new images from the latent space.

Normalizing flows are a family of generative models that learn to transform a simple

distribution, such as a standard normal distribution, into a complex distribution that resembles

the target distribution of the data. Normalizing flows have shown impressive results in image

generation, and have been used to create high-resolution images.
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The upcoming sections introduce two specific generative modeling techniques: Continuous

normalizing flows, and Denoising diffusion Models. These techniques have been chosen due to

their direct relevance to the contributions presented in the following chapters. Furthermore,

conditional variants, and the diverse applications of generative models will be discussed.

1.2.1 Continuous normalizing flows

Continuous Normalizing Flows (CNFs) are another class of generative models that have

shown great promise in recent years that leverage Neural Ordinary Differential Equations

(Neural ODEs). Instead of specifying a fixed sequence of transformations like Normalizing

Flows, Neural ODEs learn a continuous-time dynamics model that evolves over time by

using a neural network to approximate the solution to an ordinary differential equation.

This approach provides a flexible and adaptive way of modeling complex systems. Neural

ODEs have been successfully applied to a range of applications, including image and speech

generation, data imputation, and scientific simulations.

Continuous Normalizing Flows go a step further, and assume that on one end of these

Neural ODE-based transformations is a simple distribution, such as a standard normal

distribution, resulting in a flexible and expressive generative model. CNFs have been shown

to be effective in a range of applications, including image and speech generation, and have

the potential to be used in a wide range of scientific and engineering applications. However,

they can be challenging to train, and there is ongoing research to develop more efficient and

effective training algorithms for these models.

1.2.2 Denoising diffusion models

Denoising diffusion models are a relatively new class of generative models that learn a

stochastic process that gradually transforms a known distribution, such as a standard normal

distribution, into the target distribution of the data. Unlike normalizing flows which learn a

series of invertible transformations, diffusion models leverage a series of noise processes that

act as a stochastic diffusion process. This makes diffusion models well-suited for modeling

complex high-dimensional distributions, and they have shown great promise in a range of

applications, including image synthesis and denoising tasks.

The ability of diffusion models to generate high-quality data with realistic textures and

fine details has been demonstrated in several recent studies [Ho et al., 2020, Chen et al., 2021a,

Voleti et al., 2022a, Poole et al., 2023], where they have been used to generate images, audio,

videos, and 3D objects that are virtually indistinguishable from real-world data. Furthermore,

diffusion models have been shown to have a number of advantages over other generative

models, including improved training stability, better likelihood estimation, and the ability to

handle missing data. Despite these successes, there are still many challenges to be addressed
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in the development and application of diffusion models, and ongoing research is focused on

improving their scalability, robustness, and efficiency.

1.3 Conditional generative modeling

Conditional generative modeling involves generating new data samples based on a given

set of conditions. The conditioning aspect of the modeling refers to providing additional

information to the generative model in the form of inputs or labels, which are used to guide

the generation process. In other words, the model is trained to generate data samples that

are conditioned on specific inputs or labels. This approach is particularly useful when the

generated data needs to meet certain criteria, or follow specific patterns. For example, in

image generation, the conditional inputs may include the desired object category, color, or

size. The conditioning information can be incorporated into the model architecture in various

ways, such as by adding an additional input layer, or by modifying the loss function to

account for the conditioning information.

Text-to-image diffusion models are a type of conditional generative model that involves

generating high-quality images based on textual descriptions [Rombach et al., 2022]. The

conditioning information in this case includes the textual description of the image to be

generated, such as the color, shape, and position of various objects. The generation process

in text-to-image diffusion models involves iteratively refining the image based on the given

textual input. One of the key advantages of text-to-image diffusion models is their ability

to generate highly customized images based on specific textual inputs. This makes them

particularly useful in applications such as e-commerce, where personalized images can be

generated based on the customer’s description of the product they want to purchase. This

can be expanded to other modalities such as audio, video, etc.

1.4 Applications

Generative modeling for computer vision has many exciting applications, such as image and

video synthesis, data augmentation, and style transfer. These models can be used to create

new, realistic images and videos from scratch, and to manipulate existing visual media in

creative ways. For example, generative models can be used to translate images into different

styles [Gatys et al., 2016] such as converting a photo into a painting or a sketch, or to create

realistic animations of objects and scenes [Unterthiner et al., 2018, Voleti et al., 2022a].

Another important application of generative modeling in computer vision is in data

augmentation. Data augmentation refers to the process of creating new training samples by

applying random transformations to existing samples. This technique enhances deep learning

models by expanding the training set and boosting performance. Generative models can
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generate new, realistic training samples to augment the training set [Zhang et al., 2021],

potentially improving the accuracy and robustness of the model.

One of the most prominent applications of image, 3D, and video generation is in the

entertainment industry. The ability to generate realistic images and animations has enabled

filmmakers and game developers to create stunning visual effects and immersive worlds that

were previously impossible to achieve using traditional methods [Mildenhall et al., 2020].

In advertising, image and video generation enables realistic product simulations and

virtual try-on experiences for customers [Jiang et al., 2022]. This can enhance sales and

reduce returns by allowing customers to visualize the product’s fit before making a purchase.

In healthcare, image and video generation can be used for a variety of applications, such

as training medical professionals and developing new treatments. For example, medical

simulations can be generated to train surgeons and other healthcare professionals in complex

procedures, while virtual environments can be created to simulate and test new medical

treatments before they are used on patients [Mirchi et al., 2020].

Overall, conditional generative modeling is a powerful technique for generating highly

customized and realistic data samples. It has broad applications across various industries and

fields. The ability to create realistic images, 3D objects, and videos based on specific conditions

brings numerous benefits. As generative modeling techniques advance, we anticipate even

more exciting applications in image, 3D, and video generation in the future.

1.5 Thesis overview
This thesis aims to explore various aspects of conditional generative modeling. The following

is a list of peer-reviewed publications based on these contributions:

• NeurIPS 2022 - “MCVD: Masked Conditional Video Diffusion for Prediction, Gener-

ation, and Interpolation”, V. Voleti, A. Jolicoeur-Martineau, C. Pal arXiv

• NeurIPS 2022 Workshop - “Score-based Denoising Diffusion with Non-Isotropic

Gaussian Noise Models”, V. Voleti, C. Pal, A. Oberman arXiv

• SIGGRAPH Asia 2022 - “SMPL-IK: Learned Morphology-Aware Inverse Kinematics

for AI-Driven Artistic Workflows”, V. Voleti, B. N. Oreshkin, F. Bocquelet, F. G.

Harvey, L. Ménard, C. Pal arXiv

• ICML 2021 Workshop - “Improving Continuous Normalizing Flows using a Multi-

Resolution Framework”, V. Voleti, C. Finlay, A. Oberman, C. Pal

• NeurIPS 2019 Workshop - “Simple Video Generation using Neural ODEs”, V. Voleti*,

D. Kanaa*, S. E. Kahou, C. Pal arXiv

Through a comprehensive literature review, original research, and analysis, this thesis

provides an understanding of the application of (conditional) generative modeling in the

domains of:

• images: Chapters 4 and 6,
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• 3D animations: Chapter 5, and

• video: Chapters 3 and 7.

The chapters are arranged in the chronological order of publication of the respective

articles. Chapter 2 provides essential background information that lays the foundation for

subsequent chapters. Chapter 3 employs Neural Ordinary Differential Equations (Neural

ODEs) in an encoder-decoder framework. Chapter 4 builds on Continuous Normalizing Flows

(CNFs), a development on Neural ODEs. Chapter 5 utilizes an encoder-decoder framework

for 3D pose estimation. Chapters 6 and 7 further develop and employ denoising diffusion

models.

Chapter 2 consists of relevant background information that is useful for the later chapters.

Section 2.2 introduces Neural ODEs, and Section 2.3 presents Continuous Normalizing Flows

(CNFs). These concepts shall be helpful to understand Chapters 3 and 4. Section 2.4

introduces denoising diffusion models, including relevant mathematical details. It involves the

derivations of two broad streams of diffusion models called Denoising Diffusion Probabilistic

Models (DDPM) (Section 2.4) and Score-Matching Langevin Dynamics (SMLD) (Section 2.5).

These concepts shall be helpful to understand Chapters 6 and 7.

Chapter 3 describes our novel application of Neural ODEs to video prediction. Section 3.2

details relevant prior work. Section 3.3 provides an overview of Neural ODEs. Section 3.4

explains our method of using Neural ODEs to model the dynamics of a video. Section 3.5

demonstrates the application of our method on the MovingMNIST dataset. Section 3.6

discusses the limitations of our method and future work. This work was published at a

workshop at NeurIPS 2019.

Chapter 4 derives a conditional variant of continuous normalizing flows called Multi-

Resolution Continuous Normalizing Flows (MRCNF), and applies it to image generation.

Section 4.2 details background information, and Section 4.3 builds on them to derive MRCNF.

Section 4.4 reviews prior related works, with a focus on WaveletFlow in Section 4.4.1.

Section 4.5 presents experimental results on image generation, showcasing MRCNF’s efficiency

in terms of number of parameters and training time. It also includes various conclusions from

ablation studies. Section 4.7 analyzes the out-of-distribution (OoD) properties of MRCNFs,

and shows that they are similar to those of other normalizing flows. This work was published

as a workshop paper at ICML 2021, and a version is currently under review for a journal.

Chapter 5 focuses on incorporating a 3D human pose prior in inverse kinematics i.e.

estimation of full 3D pose from partial inputs. Section 5.2 expands on relevant background

information. Section 5.3 presents our learned morphology-aware inverse kinematics module

involving an encoder-decoder architecture that is flexible in input space. Section 5.4 details

our proposed method to apply the estimated pose on non-human 3D characters. Section 5.5

presents our proposed artistic workflow for 3D scene authoring from an image. Section 5.6

provides details on the neural network architecture, training, and evaluation. Sections 5.7
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and 5.8 report experimental results and limitations of our method, and Section 5.9 provides

demo videos. This work was published at SIGGRAPH Asia 2022.

Chapter 6 presents a novel mathematical derivation of Non-Isotropic Denoising Diffusion

Models, a variant of denoising diffusion models that uses an underlying non-isotropic Gaussian

noise model. Section 6.2 derives Non-Isotropic DDPM (NI-DDPM), and Section 6.3 derives

Non-Isotropic SMLD (NI-SMLD). Figure 6.2 is dedicated to a direct comparison between

DDPM and NI-DDPM. Section 6.5 presents an instantiation of a non-isotropic noise process

called Gaussian Free Fields (GFF), and Section 6.6 reports results from experiments on image

generation from GFFs using NIDDPM. This work was published as a workshop paper at

NeurIPS 2022.

Chapter 7 presents a novel application of denoising diffusion models to modeling video in a

conditional fashion. Section 7.2 derives the use of diffusion models to solve three video-related

tasks : video prediction, video generation, video interpolation, all using a single model.

Section 7.2.4 explains the model architecture used. Section 7.3 provides a direct comparison

with prior relevant methods, and discusses other prior methods. Section 7.4 details state-of-

the-art results on all tasks, and Section 7.5.4 mentions various ablation studies conducted.

Section 7.7 provides qualitative results of generated videos. This work was published as a

conference paper at NeurIPS 2022.

Overall, I hope this thesis provides a comprehensive presentation of these key modern

methods for constructing conditional generative models for images, 3D animations, and video,

and their potential impact on the field of computer vision and deep learning.
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Chapter 2

Background

This chapter introduces the relevant details of ODEs (Section 2.1), Neural ODEs (Section 2.2),

and Continuous Normalizing Flows (Section 2.3). These concepts will be helpful for Chapters 3

and 4. It then introduces the main mathematical details of DDPM [Ho et al., 2020] (Section 2.4)

and SMLD [Song and Ermon, 2019] (Section 2.5). These concepts will be helpful for Chapters 6

and 7.

2.1 Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) are mathematical tools used to model dynamic

systems that evolve over time [Courant et al., 1965, Apostol, 1991, Strang, 1991]. They

are used to describe phenomena such as population growth, chemical reactions, motion of

particles, heat transfer, and electrical circuits, to name a few, and have a wide range of

applications in various fields of science and engineering, including physics, chemistry, biology,

economics, and engineering. ODEs come in various forms, from simple linear equations to

complex non-linear systems, and can be solved analytically or numerically. Many numerical

methods have been developed to solve ODEs, making them an essential tool for modeling

and simulating various dynamical systems in a variety of fields.

2.1.1 Initial Value Problem (IVP)

Typically, the context of ODEs begins with the Initial Value Problem. For a state x(t) that

changes dynamically with time t, if the rate of change is described by a function f , and if the

initial value of the state x at time t0 is given, then what is the value of x(t) at some other

time step t1?

dx(t)

dt
= f(x(t), t); x(t0) is given; x(t1) = ? (2.1.1)

Here, f is called the differential of x with respect to time t. Many physical processes

follow this template of the Initial Value Problem (IVP).



The solution to the Initial Value Problem is:

x(t1) = x(t0) +
∫ t1

t0
f(x(t), t) dt. (2.1.2)

As an example,

dx

dt
= 2t; x(0) = 2; x(1) = ? (2.1.3)

=⇒ x(1) = x(0) +
∫ 1

0
2t dt,

= x(0) + (t2♣t=1 − t2♣t=0),

= 2 + 12 − 02,

= 3. (2.1.4)

2.1.2 Numerical integration

The above example involved the use of analytical integration for
∫ t1
t0
f(x(t), t) dt. However, in

some cases, it may not be possible to use simple integration to estimate the solution. For

example, the solution to the following IVP requires some non-trivial simplification:

dx

dt
= 2xt ; x(0) = 3; x(1) = ? (2.1.5)

=⇒
∫ 1

2x
dx =

∫
t dt,

=⇒ 1

2
log x =

1

2
t2 + c0,

=⇒ x(t) = cet
2

. (2.1.6)

We know that x(0) = 3 =⇒ c = 2,

=⇒ x(t) = 2et
2

,

=⇒ x(1) = 5.436. (2.1.7)

Hence, the analytic solution is:

Analytic solution: x(t) = 2et
2

=⇒ x(1) = 5.436. (2.1.8)

In such cases, in order to automate the integration process in a computer, the integration

is approximated using Numerical Integration methods, or ODE Solvers. There are several

ODE Solvers, the simplest for them being the Euler method. This is illustrated in Figure 2.1,

and is described below:



tn+1 = tn + h,

x(tn+1) = x(tn) + h f(x(tn), tn).
(2.1.9)
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Fig. 2.1. Illustration of 1st-order Runge-Kutta / Euler’s method of numerical integration.

Hence, using Euler’s method in Equation (2.1.9), the numerical solution to the above

problem is:

Numerical solution:

Let h = 0.25. (2.1.10)

x(0.25) = x(0) + 0.25 ∗ f(x(0), 0),

= 3 + 0.25 ∗ (2 ∗ 3 ∗ 0),

= 3. (2.1.11)

x(0.5) = x(0.25) + 0.25 ∗ f(x(0.25), 0.25),

= 3 + 0.25 ∗ (2 ∗ 3 ∗ 0.25),

= 3.375. (2.1.12)

x(0.75) = x(0.5) + 0.25 ∗ f(x(0.5), 0.5),

= 3.375 + 0.25 ∗ (2 ∗ 3.375 ∗ 0.5),

= 4.21875. (2.1.13)

x(1) = x(0.75) + 0.25 ∗ f(x(0.75), 0.75),

= 4.21875 + 0.25 ∗ (2 ∗ 4.21875 ∗ 0.75),

= 5.8008. (2.1.14)

We can see that the analytic solution 5.436 and the numerical solution 5.8008 are not

equal. Indeed, the numerical solution is only an approximation of the analytical solution.

Better approximations are obtained using higher order methods such as Runge-Kutta meth-

ods [Pontyagin et al., 1962, Kutta, 1901, Hairer et al., 2000], multi-step algorithms such as

the Adams-Moulton-Bashforth methods [Butcher, 2016, Hairer et al., 2000, Quarteroni et al.,

2000], etc. More advanced algorithms provide better control over the approximation error

and the accuracy [Press et al., 2007]. For example, the 4th order Runge-Kutta method is
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used as the default ODE solver in many applications:




tn+1 = tn + h,

s1 = f(x(tn), tn),

s2 = f(x(tn) + h
2
s1, tn + h

2
),

s3 = f(x(tn) + h
2
s2, tn + h

2
),

s4 = f(x(tn) + hs3, tn + h),

x(tn+1) = x(tn) + h
6
(s1 + 2s2 + 2s3 + s4).

(2.1.15)

Hence, we shall now use “ODESolve” as a placeholder for the user’s choice of ODE Solver.

The solution to the Initial Value Problem is thus:

x(t1) = ODESolve( f(x(t), t), x(t0), t0, t1 ), (2.1.16)

where x(t1) is the value of the state x to be estimated at time step t1, x(t0) is the initial

value of x at initial time step t0, and f is the differential function of x.

Suppose f is continuously differentiable. Then, considering the solution curves as plotted

on a plane with time t on one axis and state x on the other axis/axes,

(1) the solution curves for this differential equation completely fill the plane, and

(2) the solution curves of different solutions do not intersect.

This means the solution of an ODE is a flow, it involves non-intersecting solution curves.

This is illustrated in Figure 2.2, as provided in Yan et al. [2020].

Fig. 2.2. Illustration of the solution to ODEs being flows (taken from Yan et al. [2020]).
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2.2 Neural Ordinary Differential Equations (Neural

ODEs)
Neural ODEs formulate ODEs such that the differential function is a neural network [Chen

et al., 2018a]. This represents a paradigm shift in the way ODEs were typically solved.

Whereas earlier ODEs governing natural phenomena were hand-designed, now using the

framework of Neural ODEs, the ODE could be learnt through backpropagation into a

parameterized neural network.

Suppose the problem of classification is taken up. Given an input data point x(t0), it

is transformed into a feature x(t1) using a Neural ODE fθ parameterized by θ. Then, a

classification loss function is applied on the feature. In general, any objective function L can

be applied on x(t1). Then, the neural network is trained through backpropagation to update

its parameters θ to minimize the loss L.

There are parallels that could be drawn with a residual network, if the residual network

shares its parameters across all layers. This is illustrated in Figure 2.3.

ODEs
Residual 

networks

Update    to reduce     .Update    to reduce     .

Skip connection

Stacked ResBlocks

Euler discretization

Forward propagation:

Fig. 2.3. Illustration of the solution to ODEs being flows.

2.2.1 Adjoint method

However, computing the gradient of the loss L with respect to the parameters θ i.e. ∂L/∂θ,

incurs a high memory cost, since all activations of all iterations of ODESolve need to be

stored in memory to complete backpropagation. This is sub-optimal, can we do better?

It turns out that there is a way to compute ∂L/∂θ without having to save all activations

from t0 to t1. This is made possible by what is called the “adjoint method” [Pontyagin et al.,

1962]. The adjoint a(t) of a state x(t) is defined as:
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adjoint a(t) =
∂L

∂x
, (2.2.1)

da

dt
= −a(t)⊤∂f(x(t), t, θ)

∂x
. (2.2.2)

The adjoint a(t1) can be computed from the loss L and the final state x(t1) after one forward

propagation pass through the ODESolve function:

x(t1) = ODESolve( f(x(t), t, θ), x(t0), t0, t1 ), (2.2.3)

=⇒ a(t1) =
∂L

∂x(t1)
. (2.2.4)

Then, Pontyagin et al. [1962] showed that ∂L/∂θ can be computed by solving another ODE

involving the adjoint, in the reverse direction from t1 to t0:

∂L

∂θ
=
∫ t0

t1
−a(t)⊤∂f(x(t), t, θ)

∂θ
dt. (2.2.5)

This can be computed using our ODESolve function from t1 to t0, with the initial value as 0,

and the differential as defined in eq. (2.2.5):

∂L

∂θ
= ODESolve(−a(t)⊤∂f(x(t), t, θ)

∂θ
, 0♣θ♣ , t1, t0). (2.2.6)

However, for this ODESolve to work, the values of a(t) and x(t) at all intermediate steps of

numerical integration are required. Hence, two other ODESolves are performed from t1 to t0:

one to compute a(t), and the other for x(t). The initial values for these ODESolves are a(t1)

and x(t1), which were computed in the forward pass in Equations (2.2.3) and (2.2.4):

x(t0) = ODESolve( f(x(t), t, θ) , x(t1), t1, t0). (2.2.7)

a(t0) = ODESolve(−a(t)⊤∂f(x(t), t, θ)

∂x
, a(t1), t1, t0). (2.2.8)

These three ODESolves can be combined into a single ODESolve:



x(t0)

a(t0)

∂L
∂θ




= ODESolve







f(x(t), t, θ)

−a(t)⊤ ∂f(x(t), t, θ)
∂x

−a(t)⊤ ∂f(x(t), t, θ)
∂θ



,




x(t1)

a(t1)

0♣θ♣



, t1, t0



. (2.2.9)

Thus, at the end of ODESolve, ∂L/∂θ is directly obtained in the third part of the augmented

state. ∂L/∂θ is then used to update θ using gradient descent, thus training the Neural ODE.

Because a Neural ODE ultimately describes an ODE, the fundamental theorem of ODEs

applies to the solution f : Neural ODEs describe a homeomorphism/flow i.e. they preserve

dimensionality, and they form non-intersecting solution trajectories. Moreover, Neural ODEs

are reversible architectures : the same ODE can be solved forwards or backwards.
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2.3 Continuous Normalizing Flows (CNFs)

Neural ODEs can then be used in a generative modeling framework by setting the final state

to be a sample from a known distribution, typically a noise distribution such as the standard

normal. Thus, a Neural ODE can then be trained to map between a data distribution

and the normal distribution. Since a Neural ODE describes a (geometric) flow, and in this

framework is used to map to the normal distribution, this framework is a normalizing flow.

To distinguish it from the usual normalizing flow in literature [Dinh et al., 2017], considering

the fact that it operates in continuous space while normalizing flows operate in discrete steps,

this framework is called “Continuous Normalizing Flow” (CNF).

Suppose a CNF g transforms its state v(t) using a Neural ODE, with the differential

defined by the neural network f parameterized by θ. v(t0) = x is, say, an image, and at the

final time step v(t1) = z is a sample from a known noise distribution.

dv(t)

dt
= f(v(t), t, θ), (2.3.1)

=⇒ v(t1) = g(v(t0)) = v(t0) +
∫ t1

t0
f(v(t), t, θ) dt, (2.3.2)

=⇒ z = g(x) = x +
∫ t1

t0
f(v(t), t, θ) dt. (2.3.3)

This integration is typically performed by an ODE solver, as shown in Equation (2.1.16).

Since this integration can be run backwards as well to obtain the same v(t0) from v(t1), a

Continuous Normalizing Flows (CNF) is a reversible model.

CNFs can now be trained by maximizing the likelihood of real data points under the

model. This is equivalent to transforming the real data point v(t0) to the the final state v(t1),

and maximizing the likelihood of v(t1) under the standard normal distribution. Given this

maximum likelihood objective function, the neural network f in the CNF can be optimized

as described in Section 2.2.1.

The change-of-variables formula describes how the likelihood of the real data point x can

be computed as a combination of the likelihood of the final point z and the change in the

likelihood under the CNF transformation g:

log p(x) = log

∣∣∣∣∣det
∂g

∂v

∣∣∣∣∣+ log p(z) = ∆ log pv(t0)→v(t1) + log p(z). (2.3.4)

The second term, log p(z), is computed as the log probability of z under a known noise

distribution, typically the standard normal N (0, I). However, the log determinant of the

Jacobian (first term on the right) is often intractable. Previous works on normalizing flows

have found some ways to estimate this efficiently.
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Chen et al. [2018a] and Grathwohl et al. [2019] instead proposed a more efficient variant

in the CNF context, the instantaneous change-of-variables formula:

∂ log p(v(t))

∂t
= −Tr

(
∂fθ
∂v(t)

)
, (2.3.5)

=⇒ ∆ log pv(t0)→v(t1) =
∫ t1

t0
−Tr

(
∂fθ
∂v(t)

)
dt. (2.3.6)

Here, “Tr” implies the trace operation i.e. the sum of the diagonal elements in the matrix.

Hence, the change in log-probability of the state of the Neural ODE i.e. ∆ log pv(t0)→v(t1)

is expressed as another differential equation. The ODE solver now solves both differential

equations Equations (2.3.3) and (2.3.6) by augmenting the original state. Thus, a CNF

forward pass provides both the final state v(t1) as well as the change in log probability

∆ log pv(t0)→v(t1) together:



z

∆ log pv(t0)→v(t1)


 = ODESolve






f(v(t), t, θ)

−Tr
(
∂fθ

∂v(t)

)


 ,




x

0


 , t0, t1


 . (2.3.7)

Thus, having estimated z and ∆ log pv(t0)→v(t1), log p(x) can be computed using Equa-

tion (2.3.4). Taking the objective function to be maximizing log p(x) i.e. maximizing the

likelihood of real data under the model, the CNF can be trained as described in Section 2.2.1.
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2.4 Denoising Diffusion Probabilistic Models (DDPM)

The formulations related to DDPM [Ho et al., 2020] are introduced here. Chapter 6 builds

on this and derives a formulation with non-isotropic DDPM. Chapter 7 applies DDPM to

video prediction, generation and interpolation.

DDPM focuses on modeling the diffusion process of noisy samples to approximate the

clean data distribution. In its practical implementation, DDPM uses a neural network to

estimate the noise to be subtracted from the noisy data to make it cleaner. At training time,

a noise sample is added to a clean data sample, and the neural network is trained to predict

the noise sample from the noisy data. At sample time, a noise sample is iteratively cleaned

little by little, by estimating the noise to be subtracted at each step.

2.4.1 Forward (data to noise) for DDPM

In DDPM, for a fixed sequence of positive scales 0 < β1 < · · · < βL < 1, ϵt ∼ N (0, I) is a

noise sample from a standard normal distribution N with zero mean 0 and identity covariance

matrix I, and x0 is a clean data point, the transition “forward” noising process is:

pDDPM
βt

(xt ♣ xt−1) = N (xt ♣
√

1− βtxt−1, βtI), (2.4.1)

=⇒ xt =
√

1− βtxt−1 +
√
βtϵt (2.4.2)

Then, the cumulative “forward” noising process can be derived as:

pDDPM
t (xt ♣ x0) = pDDPM

βt
(xt ♣ xt−1) p

DDPM
βt

(xt−1 ♣ xt−2) · · · pDDPM
βt

(x1 ♣ x0). (2.4.3)

Using ᾱt =
∏t
s=1(1− βs), the cumulative “forward” noising process can be simplified to:

pDDPM
t (xt ♣ x0) = N (xt ♣

√
ᾱtx0, (1− ᾱt)I), (2.4.4)

=⇒ xt =
√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), (2.4.5)

=⇒ ϵ =
xt −

√
ᾱtx0√

1− ᾱt
. (2.4.6)

2.4.2 Score for DDPM

Then, the score i.e. ∇xt
log pt(xt ♣ x0) can be calculated as:

log pDDPM
t (xt ♣ x0) = log (const)− 1

2(1− ᾱt)
(xt −

√
ᾱtx0)

T (xt −
√
ᾱtx0), (2.4.7)

=⇒ Score s = ∇xt
log pDDPM

t (xt ♣ x0) = − 1

(1− ᾱt)
(xt −

√
ᾱtx0), (2.4.8)

= − 1√
1− ᾱt

[
xt −

√
ᾱtx0√

1− ᾱt

]
= − 1√

1− ᾱt
ϵ. (2.4.9)
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2.4.3 Score-matching objective function for DDPM

The score-matching objective for DDPM at noise level t is the expected Mean Square Error

(MSE) between the true score in eq. (2.4.8), and the predicted score from a neural network sθ:

ℓDDPM(θ; ᾱt) ≜
1

2
Ept(xt♣x0)p(x0)

[ ∥∥∥∥∥sθ(xt, ᾱt) +
1

(1− ᾱt)
(xt −

√
ᾱtx0)

∥∥∥∥∥

2

2

]
. (2.4.10)

sθ predicts the score from the noisy image xt, and the noise level ᾱt (or just the time step t).

The overall loss is the weighted sum of the losses at each step:

LDDPM(θ; ¶ᾱt♢Lt=1) ≜ Et λ(ᾱt) ℓ(θ; ᾱt). (2.4.11)

To let the loss have equal weight across all noise levels, the weight λ(ᾱt) is the inverse of the

variance of the true score at that noise level.

2.4.4 Variance of score for DDPM

E

[∥∥∥∇xt
log pDDPM

t (xt ♣ x0)
∥∥∥

2

2

]
= E



∥∥∥∥∥−

1

(1− ᾱt)
(xt −

√
ᾱtx0)

∥∥∥∥∥

2

2


 ,

= E



∥∥∥∥∥

√
1− ᾱtϵ

(1− ᾱt)

∥∥∥∥∥

2

2


 =

1

1− ᾱt
E

[
∥ϵ∥2

2

]
=

1

1− ᾱt
. (2.4.12)

2.4.5 Overall objective function for DDPM

The overall objective function in Ho et al. [2020] used the inverse of the variance of the score

at each time step (from eq. (2.4.12)) as the weight λ(ᾱt):

λDDPM(ᾱt) ∝ 1/E
[ ∥∥∥∇xt

log pDDPM
t (xt ♣ x0)

∥∥∥
2

2

]
, (2.4.13)

=⇒ λDDPM(ᾱt) = 1− ᾱt. (2.4.14)

Then, the overall objective in eq. (2.4.11) changes to:

LDDPM(θ; ¶ᾱt♢Lt=1) ≜ Et,pt(xt♣x0)p(x0)

[ ∥∥∥∥∥
√

1− ᾱtsθ(xt, ᾱt) +
(xt −

√
ᾱtx0)√

1− ᾱt

∥∥∥∥∥

2

2

]
, (2.4.15)

= Et,pt(xt♣x0)p(x0)

[ ∥∥∥
√

1− ᾱtsθ(xt, ᾱt) + ϵ
∥∥∥

2

2

]
. (2.4.16)

2.4.6 Noise-matching objective for DDPM

Upon inspection of eq. (2.4.9), one can recognize that the score is a −1/
√

1− ᾱt factor of ϵ,

hence only ϵ needs to be estimated:

sθ(xt, ᾱt) = − 1√
1− ᾱt

ϵθ(xt, ᾱt). (2.4.17)
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In this case, the overall objective function changes to the noise-matching objective:

LDDPM(θ; ¶ᾱt♢Lt=1) ≜ Et,ϵ,x0

[
∥−ϵθ(xt, ᾱt) + ϵ∥2

2

]
,

= Et,ϵ,x0

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, ᾱt)

∥∥∥
2

2

]
. (2.4.18)

This eq. (2.4.18) is Equation 14 in the DDPM paper [Ho et al., 2020]. The DDPM

paper [Ho et al., 2020] retains conditioning of ϵθ on ᾱt (or just t), but the SMLD paper [Song

and Ermon, 2019] omits it.

2.4.7 Reverse (noise to data) in DDPM

The goal is to estimate the reverse transition probability qDDPM
t (xt−1 ♣ xt). However, this

is intractable to compute, but it is possible to estimate it conditioned on x0, using Bayes’

theorem:

qDDPM
t (xt−1 ♣ xt,x0) =

qDDPM
t (xt ♣ xt−1) qDDPM

t (xt−1 ♣ x0)

qDDPM
t (xt ♣ x0)

, (2.4.19)

=
N (xt ♣

√
1− βtxt−1, βtI) N (xt−1 ♣

√
ᾱt−1x0, (1− ᾱt−1)I)

N (xt ♣
√
ᾱtx0, (1− ᾱt)I)

. (2.4.20)

This can be simplified to:

=⇒ qDDPM
t (xt−1 ♣ xt,x0) = N (xt−1 ♣ µ̃t−1(xt,x0), β̃t−1I), where

µ̃t−1(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt; β̃t−1 =

1− ᾱt−1

1− ᾱt
βt. (2.4.21)

=⇒ xt−1 = µ̃t−1(xt,x0) + β̃t−1z where z ∼ N (0, I) is a noise sample. (2.4.22)

Given xt, eq. (2.4.5) is used to estimate x0 by first estimating noise ϵ using a neural

network ϵθ(xt, t):

x̂0 =
1√
ᾱt

(xt −
√

1− ᾱtϵθ(xt, t)). (2.4.23)

[∵ xt =
√
ᾱtx0 +

√
1− ᾱtϵ from eq. (2.4.5), and loss is minimized when ϵθ∗(xt) = ϵ.]

Hence, using x̂0 estimated from xt using eq. (2.4.23), xt−1 is computed from eq. (2.4.22) as:

xt−1 =

[√
ᾱt−1βt

1− ᾱt
x̂0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt

]
+
√
β̃t−1z. (2.4.24)

where z ∼ N (0, I) is a noise sample.

2.4.8 Sampling in DDPM

Ho et al. [2020] splits sampling at each time step into 2 steps:

Step 1 (from eq. (2.4.23)): x̂0 =
1√
ᾱt

(xt −
√

1− ᾱtϵθ∗(xt, ᾱt)). (2.4.25)
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Step 2 (from eq. (2.4.24)): xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt +

√
β̃t−1zt−1.

(2.4.26)

This can be simplified as:

=⇒ µ̃t−1(xt, x̂0) =

√
ᾱt−1βt

1− ᾱt

(
1√
ᾱt

(
xt −

√
1− ᾱtϵθ∗(xt)

))
+

√
1− βt(1− ᾱt−1)

1− ᾱt
xt,

=

√
ᾱt−1√
ᾱt

βt
1− ᾱt

xt −
√
ᾱt−1√
ᾱt

βt√
1− ᾱt

ϵθ∗(xt) +

√
1− βt

1− ᾱt
(
1− ᾱt−1

)
xt,

=
1√

1− βt
βt

1− ᾱt
xt +

√
1− βt

1− ᾱt

(
1− ᾱt

1− βt

)
xt −

1√
1− βt

βt√
1− ᾱt

ϵθ∗(xt),

=
1√

1− βt

[
βt

1− ᾱt
xt +

(1− βt)
1− ᾱt

(
1− ᾱt

1− βt

)
xt −

βt√
1− ᾱt

ϵθ∗(xt)

]
,

=
1√

1− βt

[
βt + 1− βt − ᾱt

1− ᾱt
xt −

βt√
1− ᾱt

ϵθ∗(xt)

]
,

=
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ∗(xt)

)
.

=⇒ xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ∗(xt)

)
+
√
β̃t−1 zt−1, (2.4.27)

=
1√

1− βt
(xt + βtsθ∗(xt, ᾱt)) +

√
β̃t−1 zt−1. (2.4.28)

However, an alternative sampler mentioned in Song et al. [2021b] contains βt−1 instead of

β̃t−1:

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ∗(xt)

)
+
√
βt−1zt−1, (2.4.29)

=
1√

1− βt
(xt + βtsθ∗(xt, ᾱt)) +

√
βt−1zt−1. (2.4.30)

Another alternative sampling technique called Denoising Diffusion Implicit Models (DDIM)

was introduced by Song et al. [2021a], as discussed below.

2.4.9 Sampling using DDIM

DDIM [Song et al., 2021a] replaces Step 2 in eq. (2.4.26) with the DDPM forward process

eq. (2.4.5):

Step 1: x̂0 =
1√
ᾱt

(xt −
√

1− ᾱtϵθ∗(xt)). (2.4.31)

Step 2: xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ∗(xt). (2.4.32)
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This is derived from the following distributions from Song et al. [2021a]:

pDDIM
L (xL ♣ x0) = N (xL ♣

√
ᾱLx0, (1− ᾱL)I), (2.4.33)

qDDIM
t−1 (xt−1 ♣ xt,x0) = N

(
xt−1 ♣

√
ᾱt−1x0 +

√
1− ᾱt−1

xt −
√
ᾱtx0√

1− ᾱt
,0

)
, (2.4.34)

=⇒ pDDIM
t (xt ♣ x0) = N

(
xt ♣
√
ᾱtx0, (1− ᾱt)I

)
. (2.4.35)

Proof by induction: From 2.115 in Bishop and Nasrabadi [2006]:

For a random variable u distributed as a normal with mean µ and covariance matrix Λ−1,

and a dependent variable v conditionally distributed as a normal with mean Au + b and

covariance matrix L−1:

p(u) = N (u ♣ µ,Λ−1), (2.4.36)

p(v ♣ u) = N (v ♣ Au + b,L−1), (2.4.37)

the marginal probability of v is distributed as:

=⇒ p(v) = N (v ♣ Aµ + b,L−1 + AΛ−1AT ). (2.4.38)

In the case of DDPM, considering p(u) = pDDPM
t (xt ♣ x0), and p(v ♣ u) = qDDPM

t−1 (xt−1 ♣ x0):

pDDPM
t (xt ♣ x0) = N (xt ♣

√
ᾱtx0, (1− ᾱt)I) from eq. (2.4.4), and

qDDPM
t−1 (xt−1 ♣ xt,x0) = N

(
xt−1 ♣

√
ᾱt−1x0 +

√
1− ᾱt−1

xt −
√
ᾱtx0√

1− ᾱt
,0

)
from eq. (2.4.21),

then the marginal p(v) = qDDPM
t−1 (xt−1 ♣ x0) is computed using eq. (2.4.38) as:

=⇒ qDDPM
t−1 (xt−1 ♣ x0) = N

(
xt−1 ♣

√
ᾱt−1x0 +

√
1− ᾱt−1

√
ᾱtx0 −

√
ᾱtx0√

1− ᾱt
,

0 +
1− ᾱt−1

1− ᾱt
(1− ᾱt)I

)
, (2.4.39)

= N
(
xt−1 ♣

√
ᾱt−1x0, (1− ᾱt−1)I

)
. (2.4.40)

Hence xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ∗(xt) in eq. (2.4.32).

2.4.10 Expected Denoised Sample (EDS) for DDPM

From Saremi and Hyvarinen [2019], for isotropic Gaussian noise, we know that the expected

denoised sample x∗
0(xt, ᾱt) ≜ Ex0∼qt(x0♣xt)[x0] and the optimal score sθ∗(xt, ᾱt) are related as:

sθ∗(xt, ᾱt) = E

[
∥∇xt

log pt(xt ♣ x0)∥2
2

]
(x∗

0(xt, ᾱt)− xt). (2.4.41)

For DDPM, using eq. (2.4.12), this simplifies to:

sθ∗(xt, ᾱt) =
1

1− ᾱt
(x∗

0(xt, ᾱt)− xt) , (2.4.42)
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=⇒ x∗
0(xt, ᾱt) = xt + (1− ᾱt) sθ∗(xt, ᾱt) = xt −

√
1− ᾱt ϵθ∗(xt, ᾱt). (2.4.43)

While so far the noising/denoising processes have been considered discrete, the following

section takes up the continuous formulation of DDPM using Stochastic Differential Equations

(SDEs).

2.4.11 SDE formulation : Variance Preserving (VP) SDE

In the continuous formulation, the discrete βt is now a predefined continuous β(t). For DDPM

i.e. Variance Preserving (VP) SDE, given w is a Weiner process i.e. standard Brownian

motion, the forward equation and transition probability are (derived below):

dx = −1

2
β(t)x dt+

√
β(t) dw, (2.4.44)

pVP
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0) e− 1

2

∫ t

0
β(s)ds, I− Ie−

∫ t

0
β(s)ds

)
. (2.4.45)

2.4.11.1 Derivations :

Forward process: We know from eq. (2.4.2) that:

xt =
√

1− βtxt−1 +
√
βtϵt−1. (2.4.46)

=⇒ x(t+ ∆t) =
√

1− β(t+ ∆t)∆t x(t) +
√
β(t+ ∆t)∆t ϵ(t), (2.4.47)

≈
(

1− 1

2
β(t+ ∆t)∆t

)
x(t) +

√
β(t+ ∆t)∆t ϵ(t), (2.4.48)

≈ x(t)− 1

2
β(t)∆t x(t) +

√
β(t)∆t ϵ(t), (2.4.49)

=⇒ dx = −1

2
β(t)x dt+

√
β(t) dw. (2.4.50)

We know from eq. 5.50 and 5.51 in Särkkä and Solin [2019] that, given that a random

variable x follows a stochastic process with drift coefficient f(x, t) and diffusion coefficient

G(x, t):

dx = f(x, t)dt+ G(x, t)dw, (2.4.51)

the mean µ and covariance Σcov follow the following differential processes:

dµ

dt
= Ex[f(x, t)], (2.4.52)

dΣcov

dt
= Ex[f(x, t)(x− µ)T ] + Ex[(x− µ)f(x, t)T ] + Ex[G(x, t)QGT (x, t)], (2.4.53)

where w is Brownian motion, Q is the PSD of w. For Gaussian noise, Q = I.

Hence, Mean (from eq. 5.50 in Särkkä and Solin [2019] i.e. eq. (2.4.52) above):

dx = f dt+ G dw =⇒ dµ

dt
= Ex[f ]. (2.4.54)
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For DDPM, f = −1
2
β(t)x.

∴
dµDDPM(t)

dt
= Ex[−1

2
β(t)x] = −1

2
β(t)Ex(x) = −1

2
β(t)µDDPM(t), (2.4.55)

=⇒ dµDDPM(t)

µDDPM(t)
= −1

2
β(t)dt =⇒ log µDDPM(t)♣t0 = −1

2

∫ t

0
β(s)ds, (2.4.56)

=⇒ log
µDDPM(t)

µ(0)
= −1

2

∫ t

0
β(s)ds, (2.4.57)

=⇒ µDDPM(t) = µ(0) e− 1
2

∫ t

0
β(s)ds. (2.4.58)

Covariance (from eq. 5.51 in Särkkä and Solin [2019] i.e. eq. (2.4.53) above):

dx = f dt+ G dw,

=⇒ dΣcov

dt
= Ex[f(x− µ)T ] + Ex[(x− µ)fT ] + Ex[GGT ]. (2.4.59)

For DDPM, f = −1
2
β(t)x,µ = 0,G =

√
β(t)I.

∴
dΣDDPM(t)

dt
= Ex[−1

2
β(t)xxT ] + Ex[x(−1

2
β(t)x)T ] + Ex[

√
β(t)I

√
β(t)I], (2.4.60)

= −β(t)ΣDDPM(t) + β(t)I = β(t)(I−ΣDDPM(t)), (2.4.61)

=⇒ dΣDDPM(t)

I−ΣDDPM(t)
= β(t)dt =⇒ − log(I−ΣDDPM(t))♣t0 =

∫ t

0
β(s)ds, (2.4.62)

=⇒ − log(I−ΣDDPM(t)) + log(I−Σx(0)) =
∫ t

0
β(s)ds, (2.4.63)

=⇒ I−ΣDDPM(t)

I−Σx(0)
= e−

∫ t

0
β(s)ds =⇒ ΣDDPM(t) = I− e−

∫ t

0
β(s)ds(I−Σx(0)), (2.4.64)

=⇒ ΣDDPM(t) = I + e−
∫ t

0
β(s)ds(Σx(0)− I). (2.4.65)

For each data point x(0), µ(0) = x(0), Σx(0) = 0:

=⇒ µDDPM(t) = x(0) e− 1
2

∫ t

0
β(s)ds, (2.4.66)

ΣDDPM(t) = I + e−
∫ t

0
β(s)ds(0− I) = I− Ie−

∫ t

0
β(s)ds. (2.4.67)

∴ DDPM i.e. pVP
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0) e− 1

2

∫ t

0
β(s)ds, I− Ie−

∫ t

0
β(s)ds

)
in eq. (2.4.45).

Calculating
∫ t

0 β(s)ds using a linear beta schedule:

β(t) = βmin + t(βmax − βmin) =⇒
∫ t

0
β(s)ds = tβmin +

t2

2
(βmax − βmin). (2.4.68)
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2.5 Score Matching Langevin Dynamics (SMLD)

The formulations related to SMLD [Song and Ermon, 2019, 2020] are introduced here.

Chapter 6 builds on this and derives a formulation for non-isotropic SMLD.

While DDPM and SMLD both provide excellent generative sample quality, there are key

differences in their approaches. In the following sections, the same mathematical derivations

as for DDPM are repeated for SMLD so that the differences are made clear. DDPM focuses

on modeling the diffusion process of noisy samples to approximate the clean data distribution.

In contrast, SMLD directly estimates the gradient from noisy to clean samples i.e. the score

function, and employs Langevin dynamics to traverse from noise to data. While DDPM

defines a variance preserving SDE, SMLD defines a variance exploding SDE, as will be

detailed below.

In their practical implementations, DDPM and SMLD employ different approaches to

achieve their objectives. DDPM uses a neural network to estimate the noise to be subtracted

from the noisy data to make it cleaner. SMLD uses a neural network to estimate the score i.e.

the gradient from noisy to cleaner data. As shall be seen, the score and noise are inter-related,

so training to predict one is equivalent to predicting the other.

2.5.1 Forward (data to noise) for SMLD

In SMLD, for a fixed sequence of positive scales 0 < σ1 < · · · < σL < 1, and a noise sample

ϵ ∼ N (0, I), and a clean data point x0, the cumulative “forward” process is:

qSMLD
σt

(xi ♣ x0) = N (xi ♣ x, σ2
i I) =⇒ xi = x0 + σiϵ. (2.5.1)

The transition “forward” process can be derived as:

qSMLD
σi

(xi+1 ♣ xi) = N (xi+1 ♣ xi, (σ2
i+1 − σ2

i )I) =⇒ xi = xi−1 +
√
σ2
i − σ2

i−1ϵi−1. (2.5.2)

2.5.2 Score for SMLD

For isotropic Gaussian noise as in SMLD,

qSMLD
σt

(xi ♣ x0) = N (xi ♣ x0, σ
2
i I), (2.5.3)

=⇒ ∇xi
log qSMLD

σi
(xi ♣ x0) = − 1

σ2
i

(xi − x0) = − 1

σi
ϵ. (2.5.4)

2.5.3 Score-matching objective function for SMLD

The objective function for SMLD at noise level σi is:

ℓSMLD(θ;σi) ≜
1

2
EqSMLD

σi
(xi♣x0)p(x0)

[ ∥∥∥∥∥sθ(xi, σi) +
1

σ2
i

(xi − x0)

∥∥∥∥∥

2

2

]
. (2.5.5)
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2.5.4 Variance of score for SMLD

E

[∥∥∥∇xi
log qSMLD

σi
(xi ♣ x0)

∥∥∥
2

2

]
= E



∥∥∥∥∥−

(xi − x0)

σ2
i

∥∥∥∥∥

2

2


 ,=

1

σ2
i

E

[
∥ϵ∥2

2

]
=

1

σ2
i

. (2.5.6)

2.5.5 Overall objective function for SMLD

Song and Ermon [2019, 2020] chose a geometric series of σi’s, i.e. σi−1/σi = γ. The overall

objective function was a weighted combination of the objectives at different noise levels, the

weight λ(σi) being the inverse of the variance of the score from eq. (2.5.6) i.e. λ(σi) = σ2
i :

LSMLD(θ; ¶σi♢Li=1) ≜
1

2L

L∑

i=1

EqSMLD
σi

(xi♣x0)p(x0)

[ ∥∥∥∥∥σisθ(xi, σi) +
(xi − x0)

σi

∥∥∥∥∥

2

2

]
,

=
1

2L

L∑

i=1

EqSMLD
σi

(xi♣x0)p(x0)

[
∥σisθ(xi, σi) + ϵ∥2

2

]
. (2.5.7)

2.5.6 Unconditional SMLD score estimation

Song and Ermon [2020] discovered that empirically the estimated score was proportional to
1
σ
. So an unconditional score model is:

sθ(xi, σi) = − 1

σi
ϵθ(xi). (2.5.8)

In this case, the overall objective function changes to:

LSMLD(θ; ¶σi♢Li=1) ≜
1

2L

L∑

i=1

EqSMLD
σi

(xi♣x0)p(x0)

[
∥ϵ− ϵθ(xi)∥2

2

]
, (2.5.9)

=
1

2L

L∑

i=1

EqSMLD
σi

(xi♣x0)p(x0)

[
∥ϵ− ϵθ(x0 + σiϵ)∥2

2

]
.

2.5.7 Sampling in SMLD

Unlike DDPM, SMLD does not explicitly define a reverse process. Instead, Song and Ermon

[2019, 2020] use an iterative variant of Langevin Sampling called Annealed Langevin Sampling

to transform from noise to data. i = 0 corresponds to data, and i = L corresponds to noise,

hence time order for noise to data is L to 0.

Forward : xi = xi−1 +
√
σ2
i − σ2

i−1ϵi−1.

Reverse: Using Annealed Langevin Sampling from Song and Ermon [2019, 2020]:

xML ∼ N (0, σmaxI).
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xMi = x0
i+1.

αi = ϵσ2
i /σ

2
min.

xm−1
i ← xmi + αisθ∗(xmi , σi) +

√
2αiϵ

m−1
i ,m = M, · · · ,0.

=⇒ xm−1
i ← xmi − αi

σi
ϵθ∗(xmi ) +

√
2αiϵ

m−1
i ,m = M, · · · ,0.





i = L, · · · , 1 (2.5.10)

Using Consistent Annealed Sampling from Jolicoeur-Martineau et al. [2021b]:

αi = ϵσ2
i /σ

2
min = ησ2

i ; β =
√

1− γ2(1− ϵ/σ2
min)2; γ = σi/σi−1;σi > σi−1.

xi−1 ← xi + αisθ∗(xi, σi) + βσi−1ϵi−1, i = L, · · · , 1.
=⇒ xi−1 ← xi − ησiϵθ∗(xi) + βσi−1ϵi−1, i = L, · · · , 1. (2.5.11)

2.5.8 Expected Denoised Sample (EDS) for SMLD

From Saremi and Hyvarinen [2019], for isotropic Gaussian noise, we know that the expected

denoised sample x∗
0(xi, σi) ≜ Ex0∼qσi

(x0♣xi)[x0] and the optimal score sθ∗(xi, σi) are related as:

sθ∗(xi, σi) =
1

σ2
i

(x∗
0(xi, σi)− xi),

=⇒ x∗
0(xi, σi) = xi + σ2

i sθ∗(xi, σi) = xi − σiϵθ∗(xi). (2.5.12)

2.5.9 SDE formulation : Variance Exploding (VE) SDE

For SMLD i.e. Variance Exploding (VE) SDE, the forward equation and transition probability

are derived (below) as:

dx =

√
d[σ2(t)]

dt
dw, (2.5.13)

pVE
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0), σ2(t)I

)
. (2.5.14)

2.5.9.1 Derivations :

Forward process: We know from eq. (2.5.2) that:

xi = xi−1 +
√
σ2
i − σ2

i−1ϵi−1.

=⇒ x(t+ ∆t) = x(t) +
√

(σ2(t+ ∆t)− σ2(t))∆t ϵ(t),

≈ x(t) +

√
d[σ2(t)]

dt
∆t w(t).

=⇒ dx =

√
d[σ2(t)]

dt
dw. (2.5.15)

Thus, eq. (2.5.13) is derived.
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Mean µ and Covariance Σcov (from eq. 5.50 and eq.5.51 in Särkkä and Solin [2019]) for

a random variable x that changes according to a stochastic process with drift and diffusion

coefficients f and G, change as:

dx = f dt+ G dw =⇒ dµ

dt
= Ex[f ], (2.5.16)

dΣcov

dt
= Ex[f(x− µ)T ] + Ex[(x− µ)fT ] + Ex[GGT ]. (2.5.17)

For SMLD i.e. VE SDE, f = 0,µ = 0,G =
√

d[σ2(t)]
dt

I.

dµSMLD(t)

dt
= Ex[0] = 0,

=⇒ µSMLD(t) = µ(0) = x(0).

dΣSMLD(t)

dt
= Ex


0 + 0 +

√
d[σ2(t)]

dt

√
d[σ2(t)]I

dt


 =

d[σ2(t)]

dt
I,

=⇒ ΣSMLD(t) = σ2(t)I.

∴ SMLD i.e. pVE
0t (x(t) ♣ x(0)) = N (x(t) ♣ x(0), σ2(t)I). Thus, eq. (2.5.14) is derived.
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Chapter 3

Simple video generation using Neural

ODEs [Voleti et al., 2019]

3.0 Prologue to article

3.0.1 Article details

Simple video generation using Neural ODEs. Vikram Voleti*, David Kanaa*, Samira

Ebrahimi Kahou, Christopher Pal (*denotes equal contribution). Advances in Neural Infor-

mation Processing Systems (NeurIPS) 2019 Workshop

Personal contribution: The project began with discussions between the authors at Mila

during Christopher Pal’s research group meetings. The idea was to try to see if Neural ODEs

were capable of modeling the dynamics of a video, to such an extent as to predict future

frames. Vikram Voleti proposed the preliminary experiments to test the hypothesis, and wrote

the code. Vikram Voleti and David Kanaa wrote further code, performed several experiments

with various settings, discussed the mathematical foundations of the method, proposed

further ideas about the architecture of the model, coded two variants in the architecture,

performed experiments using the Moving MNIST dataset, and wrote parts of the paper.

Samira Ebrahimi Kahou and Christopher Pal provided advice and guidance throughout the

project and wrote parts of the paper.

3.0.2 Context

Despite having been studied to a great extent, the task of conditional generation of sequences

of frames—or videos—remains extremely challenging. It is a common belief that a key

step towards solving this task resides in modelling accurately both spatial and temporal

information in video signals. A promising direction to do so has been to learn latent variable

models that predict the future in latent space and project back to pixels, as suggested in

literature. Recently, Neural ODEs were proposed as a way to model continuous dynamics



using neural networks. However, whether they were capable of modeling the dynamics in

videos had not been explored yet.

3.0.3 Contributions

Building on top of a family of models introduced in prior works, Neural ODE, this work

investigates an approach that models time-continuous dynamics over a continuous latent

space with a differential equation with respect to time. The intuition behind this approach is

that these trajectories in latent space could then be extrapolated to generate video frames

beyond the time steps for which the model is trained. We show that our approach yields

promising results in the task of future frame prediction on the Moving MNIST dataset with

1 and 2 digits. To the best of our knowledge, this is the first work that explores the use of

Neural ODEs in the space of video generation.

3.0.4 Research impact

Our main hypothesis that Neural ODEs are capable of capturing the dynamics of a video has

been re-validated and improved upon by future works. This work influenced several future

publications that used Neural ODEs as part of generative models for images [Finlay et al.,

2020, Ghosh et al., 2020, Wang et al., 2021, Voleti et al., 2021], as well as improved video

generation [Çagatay Yildiz et al., 2019, Park et al., 2021, Xu et al., 2023, Auzina et al., 2023].

Some of these works expanded upon topics we introduced in this paper, such as interpolation

of video by oversampling the ODE trajectory.
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3.1 Introduction

Conditional frame generation in videos (interpolation and/or extrapolation) remains a chal-

lenging task despite having been well studied in the literature. It involves encoding the first

few frames of a video into a good representation that could be used for subsequent tasks, i.e.

prediction of the next few frames. Solving the task of conditional frame generation in videos

requires one to identify, extract and understand latent concepts in images, as well as ade-

quately model both spatial and temporal factors of variation. Typically, an encoder-decoder

architecture is used to first encode conditioning frames into latent space, and then recurrently

predict future latent points and decode them into pixel space to render future frames.

In this paper, we investigate the use of Neural Ordinary Differential Equations [Chen

et al., 2018a] (Neural ODEs) for video generation. The intuition behind this is that we

would like to enforce the latent representations of video frames to follow continuous dynamics.

Following a dynamic means that frames close to each other in the space-time domain (for

example, any video of a natural scene) are close in the latent space. This implies that if

we connect the latent embeddings of contiguous video frames, we should be able to obtain

trajectories that can be solved for with the help of ordinary differential equations.

Since these trajectories follow certain dynamics in latent space, it should also be possible

to extrapolate these trajectories in latent space to future time steps, and decode those latent

points to predict future frames. In this paper, we explore this possibility by experimenting on

a simple video dataset — Moving MNIST [Srivastava et al., 2015] — and show that Neural

ODEs do offer the advantages described above in predicting future video frames.

Our main contributions are:

• we repurpose the encoder-decoder architecture for video generation with Neural ODEs,

• we show promising results on 1-digit and 2-digit Moving MNIST,

• we discuss the future directions of work and relevant challenges.

To the best of our knowledge, this is the first work that explores the use of Neural ODEs

in the space of video generation.

3.2 Related work

Early work on using deep learning algorithms to perform video generation has tackled the

problematic in various ways, from using stacked regular LSTM layers [Srivastava et al., 2015]

to combining convolution with LSTM modules in order to extract local spatial information

which correlates with long-term temporal dependencies [Xingjian et al., 2015]. Prabhat et al.

[2017] show 3D convolution can be effectively used to extract spatio-temporal information

from sequences of images for extreme weather detection. Wang et al. [2018] use a generative

model guided with segmentation maps to generate single step future frame. While their results

may be interesting, the model might rely too much on segmentation due to the conditioning.
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Other work in the recent literature [Babaeizadeh et al., 2018, Denton and Fergus, 2018, Lee

et al., 2018a] incorporate stochastic components to their model that encodes the conditioning

frames into latent space similar to a prior distribution, which is then sampled from to predict

the next frames. This ensures the uncertainty over possible futures is taken into account.

More recently, [Castrejón et al., 2019] show that using a hierarchy of latent variables to

improve the expressiveness of their generative model can lead to noticeably better performance

on the task of video generation. [Clark et al., 2019] use a Generative Adversarial Network

combined with separable spatial and temporal attention models applied on latent feature

maps in order to handle spatial and temporal consistency separately.

While some of the above methods have yielded state-of-the-art results, some still struggle

to produce smooth motions and for those who do produce continuously smooth ones, they

enforce it through temporal regularisation in the optimisation objective, or through a specific

training procedure. Drawing from recent work on using parameterised ODE estimators [Chen

et al., 2018a] to model continuous-time dynamics, we choose to approach this problem with

the intuition that we would like the video frames to be smoothly connected in latent space

according to some continuous dynamics which we would learn. Unlike recurrent neural

networks and other purely auto-regressive approaches which require observations to occur

at uniform intervals, and may require three different models to extrapolate forward and

backwards, or interpolate, continuously-defined dynamics should naturally allow to process

observations occurring at non-uniform intervals and generate at any time, thus reducing the

number of models required to perform extrapolation and interpolation to one.

3.3 Neural Ordinary Differential Equations (Neural

ODEs)

Neural Ordinary Differential Equations [Chen et al., 2018a] (Neural ODEs) represent a family

of parameterised algorithms designed to model the evolution across time of any system, of

state ξ(t) at an arbitrary time t, governed by continuous-time dynamics satisfying a Cauchy

(or initial value) problem 



ξ(t0) = ξ0,

∂ξ

∂t
(t) = f(ξ(t), t).

By approximating the differential with an estimator fθ ≃ f parameterized by θ, such as a

neural network, these methods allow to learn such dynamics (or, trajectories) from relevant

data. Thus formalised, the state ξ(t) of such a system is defined at all times, and can be

computed at any desired time using a numerical ODE solver, which will evaluate the dynamics

fθ to determine the solution.
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(ξ0, ξ1, . . . , ξn) = ODEsolver(fθ, ξ0, (t0, t1, . . . , tn)).

For any single arbitrary time value ti, a call to the ODEsolver computes a numerical

approximation of the integral of the dynamics from the initial time value t0 to ti.

ξi = ODEsolver(fθ, ξ0, (t0, ti)) ≃ ξ0 +
∫ ti

t0
fθ (ξ(s), s) ds = ξ(ti).

There exist in the literature a plethora of algorithms to perform numerical integration of

differential equations. Amongst the most common are : the simplest, Euler’s method; higher

order methods such as Runge-Kutta methods [Pontyagin et al., 1962, Kutta, 1901, Hairer et al.,

2000]; as well as multistep algorithms like the Adams-Moulton-Bashforth methods [Butcher,

2016, Hairer et al., 2000, Quarteroni et al., 2000]. More advanced algorithms have been

proposed to provide better control over the approximation error and the accuracy [Press

et al., 2007]. In their implementation1 [Chen et al., 2018a] use a variant of the fifth-order

Runge-Kutta with adaptive stepsize and local truncation error monitoring to ensure accuracy.

The optimisation of the Neural ODE is performed through the framework of adjoint

sensitivity [Pontyagin et al., 1962] which can be formalised as follows. Provided a scalar-valued

objective function:

L(θ) = L
(

ξ0 +
∫ ti

t0
fθ (ξ(s), s) ds

)
,

the gradient of the objective with respect to the model’s parameters follows the differential

system:

da(t)

dt
= − a(t)⊤ ∂f(ξ(t), t, θ)

∂ξ
,

dL

dθ
= −

∫ t0

ti
a(s)⊤ ∂f(ξ(s), s, θ)

∂θ
ds,

where the a(t) = ∂L/∂ξ is the adjoint.

3.4 Our approach
Our approach combines the familiar encoder-decoder architecture of neural network models

with a Neural ODE that works in the latent space.

(1) We encode the conditioning frames into a point in latent space

(2) We feed this latent embedding to a Neural ODE as the “initial value” at time t = 0,

and use it to predict latent points corresponding to future time steps.

(3) We decode each of these latent points into frames in pixel space at different time steps

More formally, in accordance with established formulations of the task of video prediction,

let us assume a setting in which we have a set of m contextual frames C = ¶(xi, ti)♢i∈J0 , mK.

We seek to learn a predictive model such that, provided C, we can make predictions P(C) =

1 https://github.com/rtqichen/torchdiffeq
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¶(xj, tj)♢j∈Jm, m+nK about the evolution of the video across time, arbitrarily in the future or

past (extrapolation) or even in between observed frames (interpolation).

Let x(t) denote the continuous signal representing the video stream from which C is

sampled, that is :

∀(xi, ti) ∈ C, x(ti) = xi.

The temporal changes in the raw signal x(t) can be interpreted as effects of temporal variations

in the latent concepts embedded within it. For example, suppose we have a video of a ball

moving, any temporal change in the video will be observed only on pixels related to the latent

notion of "moving ball". Because the concept "ball" follows some motion, the related pixels

will change accordingly. From this statement it follows the intuition to model dynamics in

latent space and capture spatial characteristics separately. Thus we learn a predictor P which

• learns a latent representation of the observed discrete sequence of frames that captures

spatial factors of variation, as well as

• infers plausible latent continuous dynamics from which the aforementioned discrete

sequence may be sampled i.e. which better explains the temporal variations within

the sequence.

The proposed model follows the formalism of latent variable model proposed by [Chen

et al., 2018a] in which the latent at the current time value z(tm) is sampled from a distribution

PZ , the latent generative process is defined by an ODE that determines the trajectory followed

in latent space from the initial condition z(tm), and a conditional PX♣Z with respect the latent

vectors predicted along the trajectory at provided times is used to independently sample

predicted images:

zm ∼ PZ (·) ,

z(ti) = I(fθ, zm, tm, ti) = zm +
∫ ti

tm
f (z(s), s; θ) ds ∀ti ∈ Jtm , tm+nK,

x(ti) ∼ PX♣Z (· ♣ z(ti)) , x(ti) ⊥⊥ x(tj) ∀ti, tj ∈ Jtm , tm+nK.

In practice, we use an approximate posterior qϕ(· ♣ C) instead of PZ , and similarly, instead

of PX♣Z , we use an estimator pψ(· ♣ z(tm)). Together, these estimators function as an encoder-

decoder pair between the space of image pixels and that of latent representations.

We investigate a deterministic setting where a unique and non-recurrent pair encoder-

decoder is used to process every frame. The encoder projects a frame (xi, ti) onto an

embedding zti = zi = qϕ(xti), then the ODE defining the latent dynamics is integrated to

produce the value of the latent embedding zti = I(fθ, z0, t0, ti). Finally, the decoder is used

to project z(tj) back into an image x̂tj = pψ(ztj ). In terms of objective function used to

optimise the parameters of the model, we use a combination of an L2 reconstruction in pixel
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space, and an L2 distance between the latent points predicted by the NeuralODE and the

embeddings of each frame:

L(ϕ, θ, ψ) =
∑

Jtm , tm+nK

∥xti − pψ ◦ I(fθ, qϕ(xt0), t0, t)∥2
2

+ ∥qϕ(xti)− I(fθ, qϕ(xt0), t0, ti)∥2
2. (3.4.1)

The latter component of the objective function is meant to ensure that we learn a compact

latent subspace to which both the learnt dynamics and the encoder project. More precisely,

it enforces the latent representation predicted by the Neural ODE to match that estimated

for each time step by the encoder.

We also inquire into the sequence-to-sequence architecture [Chen et al., 2018a], where

PZ = N (µ(C), σ2(C)), PX♣Z = N (µ(z(tm)), σ2(z(tm))),

thus,

qϕ(· ♣ C) = (µϕ(C),σ2
ϕ(C)), pψ(· ♣ z(tm)) = (µψ(z(tm)), σ2

ψ(z(tm))).

In practice, σψ(z(tm)) is set to a constant value σ = 1 and µψ(z(tm)) = xm, the true frame

observed at time tm. In this setting, the variational encoder qϕ used is based on an RNN model

over the context C = ¶(xi, ti)♢i∈J0 , mK, whereas the decoder pψ is non-recurrent—hypothesis of

independence between generated frames; the temporal dependencies are modelled by the ODE.

At training time, the entire estimator is optimised as a variational auto-encoders [Kingma

and Welling, 2013, Rezende et al., 2014] through the maximisation of the Evidence Lower

Bound (ELBO):

E(ϕ, θ, ψ) =
∑

Jtm , tm+nK

−Ezm∼qφ(· ♣ C)[log pψ(x̂t ♣ I(fθ, zm, tm, t)]

︸ ︷︷ ︸
reconstruction term

+DKL(qϕ(· ♣ C) ∥N (0, I)).

(3.4.2)

3.5 Experiments on Moving MNIST

We explore two different methods of combining an encoder-decoder framework with ODEs

for 1-digit and 2-digit Moving MNIST [Srivastava et al., 2015]. In each case, we use the first

10 frames as both input to the model and as ground truth for reconstruction, which is the

output of the model. We then check how the model performs on the subsequent 10 frames.
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(a) (b)

Fig. 3.1. Architectures for Encoder-ODE-Decoder

3.5.1 1-digit Moving MNIST with non-RNN Encoder

This method, corresponding to Equation 3.4.1, involves an encoder and a decoder that each

act on a single frame to embed and decode, respectively, a latent representation. Figure 3.1

(a) shows this architecture. Here, we try to enforce this representation to follow a continuous

dynamics in latent space such that there is a one-to-one mapping between the raw pixel space

and the latent space from both the encoder side as well as the decoder side.

This model takes one frame as the conditioning input, encodes it, feeds it to the ODE

which then predicts the latent representations of the first 10 time steps (including the one

which was fed to it), each of which is then decoded to pixel space. We then compute a loss

between the reconstructed output and the original input. In addition, each frame of the

original video is also encoded separately, and we compute another loss on the encoded latent

representations and those predicted by the ODE. This is to enforce the latent representations

provided by the encoder to follow the dynamics implicit in the Neural ODE.

We used 1000 video sequences of length 10 as conditioning input (as well as reconstruction

output), and a batch size of 100. The encoder and decoder have inverted architectures with

the same number of channels in their respective orders. Figure 3.2 shows samples from using

this architecture.
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Reconstruction (1-10) Prediction (11-20)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Train

(b) Validation

Fig. 3.2. Samples predicted at 20 time steps, conditioned on the first 10 time steps with
frames from (a) train set and (b) validation set using Non-RNN Encoder — ODE — Decoder
(Figure 3.1a). In each, top row are original samples, and bottom row are predicted samples.
For this figure, we use the trained model to reconstruct the first 10 frames and then predict
the next 10 frames

3.5.2 1-digit Moving MNIST with RNN Encoder

While the previous architecture works pretty well on the training samples, We see that it

does not work very well on validation data. We believe that there are two things that must

be corrected:

• The encoder must be conditioned on multiple frames.

• The latent representation provided by the encoder must be stochastic in nature

Since the Neural ODE is only seeing the first frame of the video to base its latent dynamic

trajectories on, it is a highly constrained problem. However, we would like to relax this

constraint by conditioning the Neural ODE on multiple frames, which is commonly practiced

in video prediction/generation.

We would also like to make the model stochastic. The previous model is deterministic, so

there is a high chance it simply memorizes the training data. So, given an input frame, there

is exactly 1 trajectory the Neural ODE is able to generate for it, so there is no scope of any

variation in the generated videos. We would like to generate different videos given the same

conditioning input, since it matches with real world data.

Figure 3.1 (b) shows such an architecture that solves both the above issues, corresponding

to Equation 3.4.2. It is similar to a Variational Recurrent Neural Network [Chung et al.,

2015], except here a Neural ODE handles the latent space.

We feed the first 10 frames as conditioning input to a Recurrent Neural Network (RNN).

This network outputs the mean and variance of a multivariate Gaussian distribution. We

sample a latent point from this distribution, and feed this to a Neural ODE as the initial

value of the latent variable at t = 0. The Neural ODE then predicts latent representations at

the first 10 time steps, which we then decode independently to raw pixels. We compute a
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reconstruction loss between the predicted frames and the original frames in the first 10 time

steps. We also add a KL-divergence loss between the predicted Gaussian distribution and

the standard normal distribution, to constrain the latent representation to follow a standard

normal prior.

The model architectures of the encoder (except the recurrent part) and the decoder are

the same as in the previous model. We provide 10000 videos as training input, and use a

batch size of 128. Figure 3.3 shows the results using this architecture. We can see that the

model has been able to capture both structural information and temporal information.

3.5.3 2-digit Moving MNIST with RNN Encoder

We use the same architecture as for 1-digit Moving MNIST (Figure 3.1 (b)) to try to

reconstruct 2-digit Moving MNIST. We used the same model settings (number of layers,

number of channels, etc.) and the same optimization settings. At the time of writing this

paper, we stopped the training at 2000 epochs, same as that for 1-digit Moving MNIST.

Figure 3.4 shows some samples from a model trained on 2-digit Moving MNIST. We

believe the spatial trajectories of each individual digit are being recorded very well by the

Neural ODE. However it would take many more epochs for the encoder and decoder to

reconstruct the images better. This phenomenon of the Neural ODE training earlier than the

encoder-decoder was observed while training 1-digit Moving MNIST as well.

3.5.4 A note on the problem formulation

Note the difference in our training formulation compared to the typical approach for generating

videos. The typical training procedure involves conditioning the model on initial frames, and

training it to predict future steps. Then in evaluation, conditioned on initial frames of unseen

videos, the model is used to predict for time steps including and beyond the trained steps.

However, we formulate our training problem as reconstruction instead of prediction i.e.

conditioned on initial frames, our model is only trained to reconstruct the same frames during

training. Despite this, we can still predict future frames effectively by leveraging the preserved

dynamics of the training set, by following the trajectory in latent space and decoding.

3.6 Future work

There are several future directions we are looking at:

• We would first like to improve the results for 2-digit Moving MNIST. As of the time

of writing this paper, we are already making progress in this direction.

• Scaling up: We would like to scale this up to bigger datasets such as KTH [Schuldt

et al., 2004], the Kinetics dataset [Kay et al., 2017], etc. As of the time of writing

this paper, we are already making progress in this direction.
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Reconstruction (1-10) Prediction (11-20)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Train

(b) Validation

Fig. 3.3. Predicted samples at 20 time steps conditioned on the first 10 time steps using RNN
Encoder-ODE-Decoder (Figure 3.1b). Original (top row) and predicted (bottom row) samples
are shown for both (a) train and (b) validation sets. The model is trained to reconstruct the
first 10 frames and predict the next 10 frames.
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Reconstruction (1-10) Prediction (11-20)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Train

(b) Validation

Fig. 3.4. (top) Original and (bottom) predicted samples of RNN Encoder — ODE — Decoder
on 2-digit Moving MNIST

• Fair comparison: We would like to explore how well it performs when conditioning

on some frames and training to predict the subsequent frames, as it is typically

tackled by many of the recent papers on video generation [Denton and Fergus, 2018,

Babaeizadeh et al., 2018, Lee et al., 2018a], so we can make a fair comparison of our

approach with these methods.

• Disentanglement: We would like to examine the latent representation created by

the Neural ODE in this domain in more detail. We would like to explore whether it

implicitly disentangles spatial and temporal information, which it seems to be doing

so from the evidence so far.

• Visualization: We would like to visualize the latent representation in lower dimen-

sional space, to check the evidence of trajectories as being enforced by the Neural

ODE. The best reason to use Neural ODE is so that the latent representation is now

more interpretable i.e. consecutive time steps lie on a lower-dimensional trajectory.

We would like to prove this, and show how exploring in latent space maps to intuitive

changes in the decoded frames. We plan on using tools such as t-SNE [van der Maaten

and Hinton, 2008] and UMAP [McInnes et al., 2018] for visualization.

• Temporal interpolation of videos: Since videos follow continuous dynamics in

latent space, it is possible to sample latent points for fractional time steps, i.e. time

steps that are in the continuous range between the time steps of the original video,

and decode them using the same decoder. Hence, it should be possible to increase the

frame rate of any given video without additional effort. This also opens the door to

the use of learned representation for other downstream tasks in video.
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• Better metric for evaluation: We would also like to have a better metric to

estimate the quality of generated videos. The shortcomings of the current metrics

of PSNR and SSIM have been mentioned [Lee et al., 2018a]. More recently, [Clark

et al., 2019] use the popular image quality metrics of Inception Score [Salimans et al.,

2016] and FID [Heusel et al., 2017], however, these metrics do not necessarily account

for consistency in temporal information. Since many recent models have a stochastic

component, it is all the more important to be able to effectively measure the difference

in the real and predict distributions.

3.7 Conclusion
In this paper, we explored the use of Neural ODEs for video prediction. We showed very

promising results on the 1-digit and 2-digit Moving MNIST dataset. We investigated two

different architectures, with and without a recurrent component, respectively stochastic and

deterministic. Even though we formulated the training problem as reconstruction, we were

able to use our model for prediction of future frames because the Neural ODE learns the

temporal evolution of continuous-time dynamics governing the latent features. We discussed

in detail many future directions that would be useful to support our current approach, as

well as help the space of video generation. We also discussed how our approach could be

directly applied to other tasks such as temporal interpolation of videos. We hope that the

research community uses our approach and takes advantage of the implicit feature of Neural

ODEs to model continuous dynamics.
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Chapter 4

Multi-Resolution Continuous Normalizing

Flows [Voleti et al., 2021]

4.0 Prologue to article

4.0.1 Article details

Improving Continuous Normalizing Flows using a Multi-Resolution Framework.

Vikram Voleti, Chris Finlay, Adam Oberman, Christopher Pal. International Conference on

Machine Learning 2021 Workshop (also under review at a journal).

Personal contribution: This project began when Vikram Voleti contacted Chris Finlay,

then a PhD candidate at McGill University with Prof. Adam Oberman. Chris Finlay had

earlier worked on a publication that improved the dynamics of Neural ODEs for image

generation, and Vikram had worked on a project that used Neural ODEs for video generation.

Vikram Voleti and Chris Finlay brainstormed over ideas for improving image generation

using the continuous normalizing flows framework of Neural ODEs. Adam Oberman and

Christopher Pal provided advice and guidance throughout the project and wrote parts

of the paper. With help from Adam Oberman and Christopher Pal, Vikram derived the

mathematical framework. With help from Chris Finlay, Vikram designed the experiments,

wrote the code, ran experiments, proposed and executed on out-of-distribution analysis, and

wrote the paper.

4.0.2 Context

Neural Ordinary Differential Equations (Neural ODEs) can serve as generative models of

images using the perspective of Continuous Normalizing Flows (CNFs). Such models offer

exact likelihood calculation, and invertible generation/density estimation. However, they

had not been used in a multi-resolution framework yet, and most implementations using

normalizing flows had very high number of parameters as well as high training time. A



concurrent work called WaveletFlow also used a multi-resolution framework, however it

incurred high parameter cost and training time.

4.0.3 Contributions

In this work we introduce a Multi-Resolution variant of CNFs called Multi-Resolution CNF

(MRCNF), by characterizing the conditional distribution over the additional information

required to generate a fine image that is consistent with the coarse image. We introduce

a transformation between resolutions that allows for no change in the log likelihood. We

show that this approach yields comparable likelihood values for various image datasets, with

improved performance at higher resolutions, with fewer parameters, using only one GPU.

Further, we examine the out-of-distribution properties of MRCNFs, and find that they are

similar to those of other likelihood-based generative models.

4.0.4 Research impact

This work derived the use of continuous normalizing flows in the context of image generation

in a multi-resolution framework. Although there are concurrent and follow-up works that also

show the validity of our approach [Yu et al., 2020], the adoption of our proposed continuous

normalizing flows framework however hasn’t been as widespread as we had hoped.
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Fig. 4.1. The architecture of our MRCNF method (best viewed in color). Continuous
normalizing flows (CNFs) gs are used to generate images xs from noise zs at each resolution,
with those at finer resolutions conditioned (dashed lines) on the coarser image one level
above xs+1, except at the coarsest level where it is unconditional. Every finer CNF produces
an intermediate image ys, which is then combined with the immediate coarser image xs+1

using a linear map M from Equation 4.3.6 to form xs. The multiscale maps are defined by
Equation 4.3.16.

4.1 Introduction

Reversible generative models derived through the use of the change of variables technique [Dinh

et al., 2017, Kingma and Dhariwal, 2018, Ho et al., 2019a, Yu et al., 2020] are growing in

interest as alternatives to generative models based on Generative Adversarial Networks

(GANs) [Goodfellow et al., 2016] and Variational Autoencoders (VAEs) [Kingma and Welling,

2013]. While GANs and VAEs have been able to produce visually impressive samples

of images, they have a number of limitations. A change of variables approach facilitates

the transformation of a simple base probability distribution into a more complex model

distribution. Reversible generative models using this technique are attractive because they

enable efficient density estimation, efficient sampling, and computation of exact likelihoods.

A promising variation of the change-of-variable approach is based on the use of a continuous

time variant of normalizing flows [Chen et al., 2018a, Grathwohl et al., 2019, Finlay et al.,

2020], which uses an integral over continuous time dynamics to transform a base distribution

into the model distribution, called CNF. This approach uses ordinary differential equations

(ODEs) specified by a neural network, or Neural ODEs. CNFs have been shown to be capable

of modelling complex distributions such as those associated with images.

While this new paradigm for the generative modelling of images is not as mature as GANs

or VAEs in terms of the generated image quality, it is a promising direction of research as it

does not have some key shortcomings associated with GANs and VAEs. Specifically, GANs
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are known to suffer from mode-collapse [Lin et al., 2018], and are notoriously difficult to

train [Arjovsky and Bottou, 2017] compared to feed forward networks because their adversarial

loss seeks a saddle point instead of a local minimum [Berard et al., 2020]. CNFs are trained

by mapping images to noise, and their reversible architecture allows images to be generated

by going in reverse, from noise to images. This leads to fewer issues related to mode collapse,

since any input example in the dataset can be recovered from the flow using the reverse

of the transformation learned during training. VAEs only provide a lower bound on the

marginal likelihood whereas CNFs provide exact likelihoods. Despite the many advantages of

reversible generative models built with CNFs, quantitatively such methods still do not match

the widely used Fréchet Inception Distance (FID) scores of GANs or VAEs. However their

other advantages motivate us to explore them further.

Furthermore, state-of-the art GANs and VAEs exploit the multi-resolution properties of

images, and recent top-performing methods also inject noise at each resolution [Brock et al.,

2019, Shaham et al., 2019, Karras et al., 2020, Vahdat and Kautz, 2020]. While shaping

noise is fundamental to normalizing flows, only recently have normalizing flows exploited

the multi-resolution properties of images. For example, WaveletFlow [Yu et al., 2020] splits

an image into multiple resolutions using the Discrete Wavelet Transform, and models the

average image at each resolution using a normalizing flow. While this method has advantages,

it suffers from many issues such as high parameter count and long training time.

In this work, we consider a non-trivial multi-resolution approach to continuous normalizing

flows, which fixes many of these issues. A high-level view of our approach is shown in Figure 4.1.

Our main contributions are:

(1) We propose a multi-resolution transformation that does not add cost in terms of

likelihood.

(2) We introduce Multi-Resolution Continuous Normalizing Flows (MRCNF).

(3) We achieve comparable Bits-per-dimension (BPD) (negative log likelihood per pixel)

on image datasets using fewer model parameters and significantly less training time

with only one GPU.

(4) We explore the out-of-distribution properties of (MR)CNF, and find that they are

similar to non-continuous normalizing flows.

4.2 Background

4.2.1 Normalizing flows

Normalizing flows [Tabak and Turner, 2013, Jimenez Rezende and Mohamed, 2015, Dinh

et al., 2017, Papamakarios et al., 2019, Kobyzev et al., 2020] are generative models that map

a complex data distribution, such as real images, to a known noise distribution. They are

trained by maximizing the log likelihood of their input images. Suppose a normalizing flow g
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produces output z from an input x i.e. z = g(x). The change-of-variables formula provides

the likelihood of the image under this transformation as:

log p(x) = log

∣∣∣∣∣det
dg

dx

∣∣∣∣∣+ log p(z). (4.2.1)

The first term on the right (log determinant of the Jacobian) is often intractable, however,

previous works on normalizing flows have found ways to estimate this efficiently. The second

term, log p(z), is computed as the log probability of z under a known noise distribution,

typically the standard Gaussian N (0, I). The normalizing flow is trained by maximizing the

log-likelilhood of the data x in the real distribution i.e. log p(x), using Equation 4.2.1.

4.2.2 Continuous Normalizing Flows (CNF)

Continuous Normalizing Flows (CNF) [Chen et al., 2018a, Grathwohl et al., 2019, Finlay

et al., 2020] are a variant of normalizing flows that operate in the continuous domain. A CNF

creates a geometric flow between the input and target (noise) distributions, by assuming

that the state transition is governed by an Ordinary Differential Equation (ODE). It further

assumes that the differential function is parameterized by a neural network, this model is

called a Neural ODE [Chen et al., 2018a]. Suppose CNF g transforms its state v(t) using

a Neural ODE, with the differential defined by the neural network f parameterized by θ.

v(t0) = x is, say, an image, and at the final time step v(t1) = z is a sample from a known

noise distribution.

dv(t)

dt
= f(v(t), t, θ) =⇒ v(t1) = g(v(t0)) = v(t0) +

∫ t1

t0
f(v(t), t, θ) dt. (4.2.2)

This integration is typically performed by an ODE solver. Since this integration can be

run backwards as well to obtain the same v(t0) from v(t1), a CNF is a reversible model.

Equation 4.2.1 can be used to compute the change in log-probability induced by the CNF.

However, Chen et al. [2018a] and Grathwohl et al. [2019] proposed a more efficient variant in

the CNF context, the instantaneous change-of-variables formula:

∂ log p(v(t))

∂t
= −Tr

(
∂fθ
∂v(t)

)
, (4.2.3)

=⇒ ∆ log pv(t0)→v(t1) = −
∫ t1

t0
Tr

(
∂fθ
∂v(t)

)
dt. (4.2.4)

Hence, the change in log-probability of the state of the Neural ODE i.e. ∆ log pv is expressed

as another differential equation. The ODE solver now solves both differential equations

Equation 4.2.2 and Equation 4.2.4 by augmenting the original state with the above. Thus, a

CNF provides both the final state v(t1) as well as the change in log probability ∆ log pv(t0)→v(t1)

together.
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Prior works [Grathwohl et al., 2019, Finlay et al., 2020, Ghosh et al., 2020, Onken et al.,

2021, Huang and Yeh, 2021] have trained CNFs as reversible generative models of images by

maximizing the image likelihood:

z = g(x) ; log p(x) = ∆ log px→z + log p(z). (4.2.5)

where x is an image, z and ∆ log px→z are computed by the CNF using Equation 4.2.2 and

Equation 4.2.4, and log p(z) is the likelihood of z under a known noise distribution, typically

the standard Gaussian N (0, I). Novel images are generated by sampling z from the noise

distribution, and running the CNF in reverse.

4.3 Our method

Our method is a reversible generative model of images that builds on top of CNFs. We

introduce the notion of multiple resolutions in images, and connect the different resolutions

in an autoregressive fashion. This helps generate images faster, with better likelihood values

at higher resolutions, using only one GPU in all our experiments. We call this model

Multi-Resolution Continuous Normalizing Flow (MRCNF).

4.3.1 Multi-resolution image representation

Multi-resolution representations of images have been explored in computer vision for

decades [Burt, 1981, Marr, 2010, Witkin, 1987, Burt and Adelson, 1983, Mallat, 1989,

Lindeberg, 1990]. Much of the content of an image at a resolution is a composition of low-

level information captured at coarser resolutions, and high-level information not present in the

coarser images. We take advantage of this by first decomposing an image in resolution space

i.e. by expressing it as a series of S images at decreasing resolutions: x→ (x1,x2, . . . ,xS),

where x1 = x is the finest image, xS is the coarsest, and every xs+1 is the average image of

xs. Thus, each xj, j > i is deterministic if xi is given. This called an image pyramid, or a

Gaussian Pyramid if the upsampling-downsampling operations include a Gaussian filter [Burt,

1981, Burt and Adelson, 1983, Adelson et al., 1984, Witkin, 1987, Lindeberg, 1990]. In this

work, we obtain a coarser image simply by averaging pixels in every 2x2 patch, thereby

halving the width and height. , i.e. we express a 32 × 32 image into, say, 3 images of

resolutions: (8 × 8, 16 × 16, 32 × 32), each image being an average of its immediate finer

image. However, this representation is redundant since much of the information in x1 is

contained in xs>1. Instead, We then express x as a series of high-level information ys not

present in the immediate coarser images xs+1, and a final coarse image xS, and our overall

method is to map these S terms to S noise samples using S CNFs.:

x→ (y1,x2)→ (y1,y2,x3)→ · · · → (y1,y2, . . . ,yS−1,xS). (4.3.1)

74



4.3.2 Defining the high-level information ys

Fig. 4.2. Tetrahedron in 3D space with 4 corners. c = 22/3

We choose to design a linear transformation with the following properties: 1) invertible

i.e. it should be possible to deterministically obtain xs from ys and xs+1, and vice versa ; 2)

volume preserving i.e. determinant is 1, change in log-likelihood is 0 ; 3) angle preserving ;

and 4) range preserving.

Consider the simplest case of 2 resolutions where x1 is a 2x2 image with pixel values

x1, x2, x3, x4, and x2 is a 1x1 image with pixel value x̄ = 1
4
(x1 + x2 + x3 + x4). We require

three values (y1, y2, y3) = y1 that contain information not present in x2, such that x1 is

obtained when y1 and x2 are combined.

This could be viewed as a problem of finding a matrix M such that: [x1, x2, x3, x4]
⊤ =

M [y1, y2, y3, x̄]⊤. We fix the last column of M as [1, 1, 1, 1]⊤, since every pixel value in

x1 depends on x̄. Finding the rest of the parameters can be viewed as requiring four 3D

vectors that are spaced such that they do not degenerate the number of dimensions of their

span. These can be considered as the four corners of a tetrahedron in 3D space, under any

configuration (rotated in 3D space), and any scaling of the vectors (see Figure 4.2).

Out of the many possibilities for this tetrahedron is the matrix that performs the Discrete

Haar Wavelet Transform [Mallat, 1989, Mallat and Peyré, 2009]:



x1

x2

x3

x4




=


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1
2

1
2

1
2

1
1
2
−1

2
−1

2
1

−1
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2
1

−1
2
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2
1
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1
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
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
⇐⇒


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y1

y2
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x̄




=


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2
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2
1
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−1
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1
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1
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




x1

x2

x3

x4



. (4.3.2)

However, this transformation incurs a cost in terms of log-likelihood:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣∣∣det(M−1)

∣∣∣ = log(1/2). (4.3.3)

and is therefore not volume preserving. Other simple scaling of Equation 4.3.2 has been used

in the past, for example multiplying the last row by 2, yielding an orthogonal transformation,
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such as in WaveletFlow [Yu et al., 2020]. However, this transformation neither preserves the

volume i.e. the log determinant is not 0, nor the maximum i.e. the range of xs changes.

We wish to find a transformation M where: one of the results is the average of the

inputs, x̄; it is unit determinant; the columns are orthogonal; and it preserves the range

of x̄. Fortunately such a matrix exists – although we have not seen it discussed in prior

literature. It can be seen as a variant of the Discrete Haar Wavelet Transformation matrix

that is unimodular, i.e. has a determinant of 1 (and is therefore volume preserving). It is also

preserving the range of the images for the input and its average, , i.e. it is range preserving

such that min(x) = min(x̄) and max(x) = max(x̄). It is obtained by multiplying the 3 rows

corresponding to the non-average terms with 22/3. This is shown in Figure 4.2):



x1

x2

x3

x4




=
1

a




c c c a

c −c −c a

−c c −c a

−c −c c a





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y1

y2

y3

x̄



⇐⇒




y1

y2

y3

x̄




=




c−1 c−1 −c−1 −c−1

c−1 −c−1 c−1 −c−1

c−1 −c−1 −c−1 c−1

a−1 a−1 a−1 a−1







x1

x2

x3

x4



, (4.3.4)

where c = 22/3, a = 4. Hence, there is no cost to the log-likelihood due to the transformation:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣∣∣det(M−1)

∣∣∣ = log(1) = 0. (4.3.5)

This can be scaled up to larger spatial regions by performing the same calculation for

each 2x2 patch. Let M be the function that uses matrix M from above and combines every

pixel in xs+1 with the three corresponding pixels in ys to make the 2x2 patch at that location

in xs using Equation 4.3.4:

xs = M(ys,xs+1) ⇐⇒ ys,xs+1 = M−1(xs). (4.3.6)

Equation 4.2.1 can be used to compute the change in log likelihood from this transformation

xs → (ys,xs+1):

log p(xs) = ∆ log pxs→(ys,xs+1) + log p(ys,xs+1),

= log
∣∣∣det(M−1)

∣∣∣+ log p(ys,xs+1), (4.3.7)

where log ♣det(M−1)♣ can be determined for the Wavelet transform in Equation 4.3.2 using:

log
∣∣∣det(M−1)

∣∣∣ = dims(xs+1) log(1/2), (4.3.8)

where “dims” is the number of pixels times the number of channels (typically 3) in the image,

and for our unimodular transform in Equation 4.3.4 using Equation 4.3.5 as :

log
∣∣∣det(M−1)

∣∣∣ = 0. (4.3.9)
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4.3.3 Multi-Resolution Continuous Normalizing Flows (MRCNF)

Using the multi-resolution image representation in Equation 4.3.1, we characterize the

conditional distribution over the additional degrees of freedom (ys) required to generate a

higher resolution image (xs) that is consistent with the average (xs+1) over the equivalent pixel

space. At each resolution s, we use a CNF to reversibly map between ys (or xS when s=S)

and a sample zs from a known noise distribution. For generation, ys only adds information

missing in xs+1, but conditional on it.

This framework ensures a coarse image could generate several potential fine images, but

these fine images share the same coarse image as their average. This fact is preserved across

resolutions. Note that the 3 additional pixels in ys per pixel in xs+1 are generated conditioned

on the entire coarser image xs+1, thus maintaining consistency using full context.

In principle, any generative model could be used to map between the multi-resolution image

and noise. Normalizing flows are good candidates for this as they are probabilistic generative

models that perform exact likelihood estimates, and can be run in reverse to generate novel

data from the model’s distribution. This allows model comparison and measurement of

generalization to unseen data. We choose to use the CNF variant of normalizing flows at each

resolution. CNFs have recently been shown to be effective in modeling image distributions

using a fraction of the number of parameters typically used in normalizing flows (and non

flow-based approaches), and their underlying framework of Neural ODEs have been shown to

be more robust than convolutional layers [Yan et al., 2020].

Training: We train an MRCNF by maximizing the average log-likelihood of the images

in the training dataset under the model. The log probability of each image log p(x) can be

estimated recursively using the sequence of variables in Equation 4.3.1, and the corresponding

simplification of the log-probability using Equation 4.3.7 as (here, x1 = x):

log p(x) = ∆ log px1→(y1,x2) + log p(y1,x2),

= ∆ log px1→(y1,x2) + log p(y1 ♣ x2) + log p(x2),

= ∆ log px1→(y1,x2) + log p(y1 ♣ x2)

+ ∆ log px2→(y2,x3) + log p(y2 ♣ x3) + log p(x3),

...

=
S−1∑

s=1

(
∆ log pxs→(ys,xs+1) + log p(ys ♣ xs+1)

)
+ log p(xS). (4.3.10)

where ∆ log pxs→(ys,xs+1) is given by Equation 4.3.9, while log p(ys ♣ xs+1) and log p(xS)

(at the coarsest resolution S) are given by Equation 4.2.5:

zs = gs(ys ♣ xs+1); log p(ys ♣ xs+1) = ∆ log p(ys→zs)♣xs+1 + log p(zs), (4.3.11)
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zS = gS(xS); log p(xS) = ∆ log pxS→zS
+ log p(zS). (4.3.12)

The coarsest resolution S can be chosen such that the last CNF operates on the image

distribution at a small enough resolution that is easy to model unconditionally. All other

CNFs are conditioned on the immediate coarser image. The conditioning itself is achieved by

concatenating the input image of the CNF with the coarser image. This model could be seen

as a stack of CNFs connected in an autoregressive fashion.

Typically, likelihood-based generative models are compared using the metric of bits-per-

dimension (BPD), i.e. the negative log likelihood per pixel in the image. Hence, we train our

MRCNF to minimize the average BPD of the images in the training dataset, computed using

Equation 4.3.13:

BPD(x) = − log p(x)/dims(x). (4.3.13)

We use FFJORD [Grathwohl et al., 2019] as the baseline model for our CNFs. In addition,

we use to two regularization terms introduced by RNODE [Finlay et al., 2020] to speed up

the training of FFJORD models by stabilizing the learnt dynamics: the kinetic energy K(θ)

and the Jacobian norm B(θ) of the flow f(v(t), t, θ) described in subsection 4.2.2:

K(θ) =
∫ t1

t0
∥f(v(t), t, θ)∥2

2 dt ; (4.3.14)

B(θ) =
∫ t1

t0
∥ϵ⊤∇zf(v(t), t, θ)∥2

2 dt, ϵ ∼ N (0, I). (4.3.15)

Parallel training: Note that although the final log likelihood log p(x) involves sequen-

tially summing over values returned by all S CNFs, the log likelihood term of each CNF is

independent of the others. Conditioning is done using ground truth images. Hence, each

CNF can be trained independently, in parallel.

Generation: Given an S-resolution model, we first sample zs, s = 1, . . . ,S from the

latent noise distributions. The CNF gs at resolution s transforms the noise sample zs to

high-level information ys conditioned on the immediate coarse image xs+1 (except gS which is

unconditioned). ys and xs+1 are then combined to form xs using M from Equation 4.3.4. This

process is repeated progressively from coarser to finer resolutions, until the finest resolution

image x1 is computed (see Figure 4.1). It is to be noted that the generated image at one

resolution is used to condition the CNF at the finer resolution.




xS = g−1
S (zS) s = S,

ys = g−1
s (zs ♣ xs+1); xs = M(ys,xs+1) s = S-1→ 1.

(4.3.16)

4.3.4 Multi-resolution noise

We further decompose the noise image as well into its respective coarser components. This

means ultimately we use only one noise image at the finest level, and it is decomposed into
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multiple resolutions using Equation 4.3.4. xs+1 is mapped to noise of 1/4 variance, ys is

mapped to noise of c-factored variance (see Figure 4.1). Although this is optional, it preserves

interpretation between the single- and multi-resolution models.

4.3.5 8-bit to uniform

The change-of-variables formula gives the change in log probability from the transformation

of u to v:

log p(u) = log p(v) + log

∣∣∣∣∣det
dv

du

∣∣∣∣∣ .

Specifically, the change from an 8-bit image to one with pixel values in range [0, 1] is:

b
(p)
S =

a
(p)
S

256
,

=⇒ log p(aS) = log p(bS) + log

∣∣∣∣∣det
db

da

∣∣∣∣∣ ,

=⇒ log p(aS) = log p(bS) + log
(

1

256

)DS

,

=⇒ log p(aS) = log p(bS)−DS log 256.

=⇒ bpd(aS) =
− log p(aS)

DS log 2
,

=
−(log p(bS)−DS log 256)

DS log 2
,

=
− log p(bS)

DS log 2
+

log 256

log 2
,

= bpd(x) + 8,

where bpd(x) is given from Equation 4.3.13.

4.3.6 Simple example of density estimation in MRCNF

If Euler method is used as the ODE solver, density estimation Equation 4.2.2 reduces to:

v(t1) = v(t0) + (t1 − t0)fs(v(t0), t0 ♣ c), (4.3.17)
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where fs is a neural network, t0 is the “time” at which the state is image x, and t1 when it is

noise z. We start at scale S with an image sample xS, and assume t0 = 0 and t1 = 1:




zS = xS + fS(xS, t0 ♣ xS−1),

zS−1 = xS−1 + fS−1(xS−1, t0 ♣ xS−2),
...

z1 = x1 + f1(x1, t0 ♣ x0),

z0 = x0 + f0(x0, t0).

(4.3.18)

Then, density is estimated using Equation (4.3.10).

4.3.7 Simple example of generation using MRCNF

If Euler method is used as the ODE solver, generation Equation 4.2.2 reduces to:

v(t0) = v(t1) + (t0 − t1)fs(v(t1), t1 ♣ c), (4.3.19)

i.e. the state is integrated backwards from t1 (i.e. zs) to t0 (i.e. xs). We start at scale 0 with

a noise sample z0, and assume t0 and t1 are 0 and 1 respectively:




x0 = z0 − f0(z0, t1),

x1 = z1 − f1(z1, t1 ♣ x0),
...

xS−1 = zS−1 − fS−1(zS−1, t1 ♣ xS−2),

xS = zS − fS(zS, t1 ♣ xS−1).

(4.3.20)

4.4 Related work

Multi-resolution approaches already serve as a key component of state-of-the-art GAN [Denton

et al., 2015, Karras et al., 2018, Karnewar and Wang, 2020] and VAE [Razavi et al., 2019,

Vahdat and Kautz, 2020] based deep generative models. The idea is to take advantage of the

fact that much of the information in an image is contained in a coarsened version, which allows

us to deal with simpler problems (coarser images) in a progressive fashion. This helps make

models more efficient and effective. Deconvolutional CNNs [Long et al., 2015, Radford et al.,

2015] use upsampling layers to generate images more effectively. Modern state-of-the-art

generative models have also injected noise at different levels to improve sample quality [Brock

et al., 2019, Karras et al., 2020, Vahdat and Kautz, 2020]. Several works [Oord et al., 2016,

Reed et al., 2017, Menick and Kalchbrenner, 2019, Razavi et al., 2019] have also shown how

the inductive bias of the multi-resolution structure helps alleviate some of the problems of

image quality in likelihood-based models.
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Several prior works on normalizing flows [Kingma and Dhariwal, 2018, Hoogeboom et al.,

2019a,b, Song et al., 2019, Ma et al., 2019, Durkan et al., 2019, Chen et al., 2020, Ho et al.,

2019a, Lee et al., 2020, Yu et al., 2020] build on RealNVP [Dinh et al., 2017]. Although they

achieve great results in terms of BPD and image quality, they nonetheless report results from

significantly higher number of parameters (some with 100x!), and several times GPU hours

of training.

STEER [Ghosh et al., 2020] introduced temporal regularization to CNFs by making the

final time of integration stochastic. However, we found that this increased training time

without significant BPD improvement.

STEER [Ghosh et al., 2020]:





v(t1) = v(t0) +
∫ T
t0
f(v(t), t) dt;

T ∼ Uniform(t1 − b, t1 + b); b < t1 − t0.
(4.4.1)

“Multiple scales” in prior normalizing flows: Normalizing flows [Dinh et al., 2017,

Kingma and Dhariwal, 2018, Grathwohl et al., 2019] try to be “multi-scale” by transforming

the input in a smart way (squeezing operation) such that the width of the features progressively

reduces in the direction of image to noise, while maintaining the total dimensions. This

happens while operating at a single resolution. In contrast, our model stacks normalizing

flows at multiple resolutions in an autoregressive fashion by conditioning on the images at

coarser resolutions.

Other classes of generative models that map from a complex distribution to a known noise

distribution are Denoising diffusion probabilistic models (DDPM) [Sohl-Dickstein et al., 2015,

Ho et al., 2020, Song et al., 2021b] which use a predefined noising process, and score-based

generative models [Song and Ermon, 2019, 2020, Jolicoeur-Martineau et al., 2021b, Song

et al., 2021b] which estimate the gradient of the log density with respect to the input (i.e.

the score) of corrupted data with progressively lesser intensities of noise. In contrast, CNFs

learn a reversible noising/denoising process using a Neural ODE.

4.4.1 WaveletFlow

WaveletFlow [Yu et al., 2020] is a recent innovation on the normalizing flow, wherein the image

is decomposed into a lower-resolution average image, and 3 other informative components

using the Discrete Wavelet Transformation. The 3 components at each resolution are mapped

to noise using a normalizing flow conditioned on the average image at that resolution.

WaveletFlow builds on the Glow [Kingma and Dhariwal, 2018] architecture. It uses an

orthogonal transformation, which does not preserve range, and adds a constant term to the

log likelihood at each resolution. Best results are obtained when WaveletFlow models with a

high parameter count are trained for a long period of time. We fix these issues using our

MRCNF.
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Comparison to WaveletFlow: We emphasize that there are important and crucial

differences between our MRCNF and WaveletFlow. We generalize the notion of a multi-

resolution image representation (subsection 4.3.2), and show that Wavelets are one case of

this general formulation. WaveletFlow builds on the Glow [Kingma and Dhariwal, 2018]

architecture, while ours builds on CNFs [Grathwohl et al., 2019, Finlay et al., 2020]. We also

make use of the notion of multi-resolution decomposition of the noise, which is optional, but

is not taken into account by WaveletFlow. WaveletFlow uses an orthogonal transformation

which does not preserve range ; our MRCNF uses Equation 4.3.4 which is volume-preserving

and range-preserving. Finally, WaveletFlow applies special sampling techniques to obtain

better samples from its model. We have so far not used such techniques for generation, but we

believe they can potentially help our models as well. By making these important changes, we

fix many of the previously discussed issues with WaveletFlow. For a more detailed ablation

study, please check subsection 4.6.3.

4.5 Experimental details

4.5.1 Models

We used the same neural network architecture as in RNODE [Finlay et al., 2020]. The CNF

at each resolution consists of a stack of bl blocks of a 4-layer deep convolutional network

comprised of 3x3 kernels and softplus activation functions, with 64 hidden dimensions, and

time t concatenated to the spatial input. In addition, except at the coarsest resolution, the

immediate coarser image is also concatenated with the state. The integration time of each

piece is [0, 1]. The number of blocks bl and the corresponding total number of parameters

are given in Table 4.1.

Table 4.1. Number of parameters for different models with different total number of
resolutions (res), and the number of channels (ch) and number of blocks (bl) per resolution.

resolutions ch bl Param

1
64 2 0.16M

64 4 0.32M

64 14 1.10M

2
64 8 1.33M

64 20 3.34M

64 40 6.68M

3
64 6 1.53M

64 8 2.04M

64 20 5.10M
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4.5.2 Gradient norm

In order to avoid exploding gradients, We clipped the norm of the gradients [Pascanu et al.,

2013] by a maximum value of 100.0. In case of using adversarial loss, we first clip the gradients

provided by the adversarial loss by 50.0, sum up the gradients provided by the log-likelihood

loss, and then clip the summed gradients by 100.0.

4.6 Experimental results

We train MRCNF models on the CIFAR10 [Krizhevsky et al., 2009a] dataset at finest

resolution of 32x32, and the ImageNet [Deng et al., 2009] dataset at 32x32, 64x64, 128x128.

We build on top of the code provided in [Finlay et al., 2020]1. In all cases, we train using

only one NVIDIA RTX 20280 Ti GPU with 11GB.

In Table 4.2, we compare our results with prior work in terms of (lower is better in all

cases) the BPD of the images of the test datasets under the trained models, the number

of parameters used by the model, and the number of GPU hours taken to train. The most

relevant models for comparison are the 1-resolution FFJORD [Grathwohl et al., 2019] models,

and their regularized version RNODE [Finlay et al., 2020], since our model directly converts

their architecture into multi-resolution. Other relevant comparisons are previous flow-based

methods [Dinh et al., 2017, Kingma and Dhariwal, 2018, Song et al., 2019, Ho et al., 2019a, Yu

et al., 2020], however their core architecture (RealNVP [Dinh et al., 2017]) is quite different

from FFJORD.

BPD: At lower resolution spaces, we achieve comparable BPDs in less time with far fewer

parameters than previous normalizing flows (and non flow-based approaches). However, the

power of the multi-resolution formulation is more evident at higher resolutions: we achieve

better BPD for ImageNet64 with significantly fewer parameters and less time using only one

GPU. A more complete table can be found in the appendix.

Train time: All our experiments used only one GPU, and took significantly less time to

train than 1-resolution CNFs, and all prior works including flow-based and non-flow-based

models. For example on CIFAR-10, Glow [Kingma and Dhariwal, 2018] used 8 GPUs for 7

days, MintNet [Song et al., 2019] used 2 GPUs for ≈ 5 days, 1-resolution FFJORD [Grathwohl

et al., 2019] used 6 GPUs for ≈ 5 days. All our models used 1 GPU for ≤ 1 day.

To make a fair comparison with previous methods, we report the total time taken to

train the CNFs of all resolutions one after another on a single GPU. We also maintained

the batch size of the finest resolution the same as that in the previous CNF works, but used

bigger batch sizes to train coarser resolutions. However, since all the CNFs can be trained in

parallel, the actual training time in practice could be much lower.

1 https://github.com/cfinlay/ffjord-rnode
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Table 4.2. Unconditional image generation metrics (lower is better): parameters (P), bits-
per-dimension, time (in hours). All our models were trained on only one NVIDIA V100 GPU.

CIFAR10 ImageNet32 ImageNet64

BPD P Time BPD P Time BPD P Time

Non Flow-based Prior Work

PixelRNN [Oord et al., 2016] 3.00 3.86 3.63
Gated PixelCNN [Van den Oord et al., 2016] 3.03 3.83 60 3.57 60
Parallel Multiscale [Reed et al., 2017] 3.95 3.70
Image Transformer [Parmar et al., 2018] 2.90 3.77
PixelSNAIL [Chen et al., 2018b] 2.85 3.80
SPN [Menick and Kalchbrenner, 2019] 3.85150.0M 3.53 150.0M
Sparse Transformer [Child et al., 2019] 2.80 59.0M 3.44 152.0M 7days
Axial Transformer [Ho et al., 2019b] 3.76 3.44
PixelFlow++ [Nielsen and Winther, 2020] 2.92
NVAE [Vahdat and Kautz, 2020] 2.91 55 3.92 70
Dist-Aug Sparse Tx [Jun et al., 2020] 2.56 152.0M 3.42 152.0M

Flow-based Prior Work

IAF [Kingma et al., 2016] 3.11

RealNVP [Dinh et al., 2017] 3.49 4.28 46.0M 3.98 96.0M
Glow [Kingma and Dhariwal, 2018] 3.35 44.0M 4.09 66.1M 3.81 111.1M
i-ResNets [Behrmann et al., 2019]
Emerging [Hoogeboom et al., 2019a] 3.34 44.7M 4.09 67.1M 3.81 67.1M
IDF [Hoogeboom et al., 2019b] 3.34 4.18 3.90
S-CONF [Karami et al., 2019] 3.34
MintNet [Song et al., 2019] 3.32 17.9M≥5days 4.06 17.4M
Residual Flow [Chen et al., 2019] 3.28 4.01 3.76
MaCow [Ma et al., 2019] 3.16 43.5M 3.69 122.5M
Neural Spline Flows [Durkan et al., 2019] 3.38 11.8M 3.82 15.6M
Flow++ [Ho et al., 2019a] 3.08 31.4M 3.86169.0M 3.69 73.5M
ANF [Huang et al., 2020] 3.05 3.92 3.66
MEF [Xiao and Liu, 2020] 3.32 37.7M 4.05 37.7M 3.73 46.6M
VFlow [Chen et al., 2020] 2.98 3.83
Woodbury NF [Lu and Huang, 2020] 3.47 4.20 3.87

NanoFlow [Lee et al., 2020] 3.25

ConvExp [Hoogeboom et al., 2020] 3.218

Wavelet Flow [Yu et al., 2020] 4.08 64.0M 3.78 96.0M 822

TayNODE [Kelly et al., 2020] 1.039

1-resolution Continuous Normalizing Flow

FFJORD [Grathwohl et al., 2019] 3.40 0.9M≥5days ‡
3.96

‡2.0M ‡
>5days x x

RNODE [Finlay et al., 2020] 3.38 1.4M 31.84 ‡
2.36 2.0M ‡

30.1
∗
3.83 2.0M∗

256.4
§
3.49

§1.6M §
40.39

FFJORD + STEER [Ghosh et al., 2020] 3.40 1.4M 86.34 3.84 2.0M >5days

RNODE + STEER [Ghosh et al., 2020] 3.397 1.4M 22.24 2.35 2.0M 24.90
§
3.49

§1.6M §
30.07

(Ours) Multi-Resolution Continuous Normalizing Flow (MRCNF)

2-resolution MRCNF 3.65 1.3M 19.79 3.77 1.3M 18.18 3.44 2.0M 42.30

2-resolution MRCNF 3.54 3.3M 36.47 3.78 6.7M 17.98 x 6.7M x

3-resolution MRCNF 3.79 1.5M 17.44 3.97 1.5M 13.78 3.55 2.0M 35.39

3-resolution MRCNF 3.60 5.1M 38.27 3.93 10.2M 41.20 x 7.6M x

- Unreported values. †As reported in Chen et al. [2019]. ‡As reported in Ghosh et al. [2020].
§Re-implemented by us. ‘x’: Fails to train. ∗RNODE [Finlay et al., 2020] used 4 GPUs to train.

84



4.6.1 Super-resolution

Our formulation also allows for super-resolution of images (Figure 4.3) free of cost since our

framework is autoregressive in resolution. At any stage, one can condition on a ground truth

low-resolution image and generate the corresponding high-resolution image.

Fig. 4.3. ImageNet: Example of super-resolving to 64x64 from ground truth 16x16. Row 1:
ground truth 16x16, Row 2: generated 32x32, Row 3: generated 64x64 Row 4: ground truth
64x64.

4.6.2 Progressive training

We trained an MRCNF model on ImageNet128 by training only the finest resolution (128x128)

conditioned on the immediate coarser (64x64) images, and attached it to a 3-resolution model

trained on ImageNet64. The resultant 4-resolution ImageNet128 model gives a BPD of 3.31

(Table 4.3) with just 2.74M parameters in ≈60 GPU hours.

Table 4.3. Metrics for unconditional ImageNet128 generation. Param is number of param-
eters, Time is in hours. ‘-’ indicates unreported values.

ImageNet128 (↓) BPD Param Time

Parallel Multiscale [Reed et al., 2017] 3.55 - -
SPN [Menick and Kalchbrenner, 2019] 3.08 250.00M -

(Ours) 4-resolution MRCNF 3.31 2.74M 58.59

4.6.3 Ablation study

Our MRCNF method differs from WaveletFlow in three respects:

(1) we use CNFs, while WaveletFlow uses the discrete vairant of normalizing flows,

(2) we use Equation 4.3.4 instead of Equation 4.3.2 as used by WaveletFlow,

(3) we use multi-resolution noise.

We check the individual effects of these changes in an ablation study in Table 4.4, and

conclude that:
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(1) Simply replacing the normalizing flows in WaveletFlow with CNFs does not produce

the best results. It does improve the BPD and training time compared to WaveletFlow.

(2) Using our unimodular transformation in Equation 4.3.4 instead of the original Wavelet

Transformation of Equation 4.3.2 not only improves the BPD, it also consistently

decreases training time.

(3) As expected, the use of multi-resolution noise does not have a critical impact on

either BPD or training time. We use it anyway so as to retain interpretation with

1-resolution models.

Table 4.4. Ablation study across using Wavelet in Equation 4.3.2, and multi-resolution
noise formulation in subsection 4.3.4. P is number of parameters, Time is in hours. Lower is
better in all cases. ‘-’ indicates unreported values. ‘x’ : Fails to train3.

CIFAR10 ImageNet64

(↓) BPD P Time BPD P Time

WaveletFlow [Yu et al., 2020] - - - 3.78 98.0M 822.00
1-resolution CNF (RNODE) [Finlay et al., 2020] 3.38 1.4M 31.84 3.83 2.0M 256.40

2-resolution

eq. (4.3.2) WaveletFlow with CNF w/o multi-res noise 3.68 1.3M 27.25 x 2.0M x
eq. (4.3.2) WaveletFlow with CNF w/ multi-res noise 3.69 1.3M 25.88 x 2.0M x
eq. (4.3.4) MRCNF w/o multi-res noise 3.66 1.3M 19.79 3.48 2.0M 42.33
eq. (4.3.4) MRCNF w/ multi-res noise (Ours) 3.65 1.3M 19.69 3.44 2.0M 42.30

3-resolution

eq. (4.3.2) WaveletFlow with CNF w/o multi-res noise 3.82 1.5M 22.99 3.62 2.0M 43.37
eq. (4.3.2) WaveletFlow with CNF w/ multi-res noise 3.82 1.5M 25.28 3.62 2.0M 44.21
eq. (4.3.4) MRCNF w/o multi-res noise 3.79 1.5M 17.25 3.57 2.0M 35.42
eq. (4.3.4) MRCNF w/ multi-res noise (Ours) 3.79 1.5M 17.44 3.55 2.0M 35.39

Thus, our MRCNF model is not a trivial replacement of normalizing flows with CNFs in

WaveletFlow. We generalize the notion of multi-resolution image representation, in which

the Discrete Wavelet Transform is one of many possibilities. We then derived a unimodular

transformation that adds no change in likelihood.

4.6.4 Adversarial loss

Several works [Makhzani et al., 2015, Grover et al., 2018, Lee et al., 2018a, Beckham et al.,

2019] have found it useful to add an adversarial loss to pre-existing losses to generate

images that better resemble the true data distribution. Similar to [Grover et al., 2018], we

conducted experiments with an additional adversarial loss at each resolution. However in

our experiments so far, we could achieve neither better BPDs nor better Fréchet Inception

Distance (FID)s [Heusel et al., 2017]. As noted in [Theis et al., 2016], since likelihood-based

models tend to cover all the modes by minimizing KL-divergence while GAN-based methods
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tend to mode collapse by minimizing JS-divergence, it is possible that the two approaches

are incompatible, and so combining them is not trivial.

4.6.5 FID v/s temperature

Table 4.5 lists the FID values of generated images from MRCNF models trained on CIFAR10,

with different temperature settings on the Gaussian.

Temperature

1.0 0.9 0.8 0.7 0.6 0.5

1-resolution CNF 138.82 147.62 175.93 284.75 405.34 466.16
2-resolution MRCNF 89.55 106.21 171.53 261.64 370.38 435.17
3-resolution MRCNF 88.51 104.39 152.82 232.53 301.89 329.12
4-resolution MRCNF 92.19 104.35 135.58 186.71 250.39 313.39

Table 4.5. FID v/s temperature for MRCNF models trained on CIFAR10.

4.7 Examining Out-of-Distribution (OoD) behaviour

Fig. 4.4. Histogram of log likelihood per dimension i.e. −BPD (estimated using normalized
empirical Kernel Density Estimation) of OoD datasets (TinyImageNet, SVHN, Constant)
under (MR)CNF models trained on CIFAR10. As with other likelihood-based generative
models such as Glow & PixelCNN, OoD datasets have higher likelihood under (MR)CNFs.

The derivation of likelihood-based models suggests that the density of an image under

the model is an effective measure of its likelihood of being in-distribution. However, recent

works [Theis et al., 2016, Nalisnick et al., 2019a, Serrà et al., 2020, Nalisnick et al., 2019b]

have pointed out that it is possible that images drawn from other distributions have higher

model likelihood. Examples have been shown where normalizing flow models (such as Glow)

trained on CIFAR10 images assign higher likelihood to SVHN [Netzer et al., 2011] images.
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This could have serious implications on their practical applicability. Some also note that

likelihood-based models do not generate images with good sample quality as they avoid

assigning small probability to OoD data points, hence model likelihood (-BPD) is not effective

for detecting OoD data in such models.

We conduct the same experiments with (MR)CNFs, and find that similar conclusions

can be drawn. Figure 4.4 plots the histogram of log likelihood per dimension (-BPD) of

OoD images (SVHN, TinyImageNet) under MRCNF models trained on CIFAR10. It can be

observed that the likelihood of the OoD SVHN is higher than CIFAR10 for MRCNF, similar

to the findings for Glow, PixelCNN, VAE in earlier works [Nalisnick et al., 2019a, Choi et al.,

2018, Serrà et al., 2020, Nalisnick et al., 2019b, Kirichenko et al., 2020].

One possible explanation put forward by Nalisnick et al. [2019b] is that “typical” images

are less “likely” than constant images, which is a consequence of the distribution of a

Gaussian in high dimensions. Indeed, as our Figure 4.4 shows, constant images have the

highest likelihood under MRCNFs, while randomly generated (uniformly distributed) pixels

have the least likelihood (not shown in figure due to space constraints).

[Choi et al., 2018, Nalisnick et al., 2019b] suggest using “typicality” as a better measure of

OoD. However, [Serrà et al., 2020] observe that the complexity of an image plays a significant

role in the training of likelihood-based generative models. They propose a new metric S as

an out-of-distribution detector:

S(x) = BPD(x)− L(x). (4.7.1)

where L(x) is the complexity of an image x measured as the length of the best compressed

version of x (we use FLIF [Sneyers and Wuille, 2016] following Serrà et al. [2020]) normalized

by the number of dimensions.

We perform a similar analysis as Serrà et al. [2020] to test how S compares with -bpd for

OoD detection. For different MRCNF models trained on CIFAR10, we compute the area under

the receiver operating characteristic curve (auROC) using -bpd and S as standard evaluation

for the OoD detection task [Hendrycks et al., 2019, Serrà et al., 2020]. Table 4.6 shows that

S does perform better than -bpd in the case of (MR)CNFs, similar to the findings in Serrà

et al. [2020] for Glow and PixelCNN++. SVHN seems easier to detect as OoD for Glow than

MRCNFs. However, OoD detection performance is about the same for TinyImageNet. We

also observe that MRCNFs are better at OoD than CNFs.

Other OoD methods [Hendrycks and Gimpel, 2017, Liang et al., 2018, Lee et al., 2018b,

Sabeti and Høst-Madsen, 2019, Høst-Madsen et al., 2019, Hendrycks et al., 2019] are not

suitable, as identified in Serrà et al. [2020].
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Table 4.6. auROC for OoD detection using -bpd and S[Serrà et al., 2020], for models trained
on CIFAR10.

CIFAR10 SVHN TIN
(trained) -BPD S -BPD S
Glow 0.08 0.95 0.66 0.72
1-res CNF 0.07 0.16 0.48 0.60
2-res MRCNF 0.06 0.25 0.46 0.66
3-res MRCNF 0.05 0.25 0.46 0.66

(a) (b)

Fig. 4.5. (a) Example of shuffling different-sized patches of a 32x32 image: (left to right, top
to bottom) 1x1, 2x2, 4x4, 8x8, 16x16, 32x32 (unshuffled) (b) Histogram of log likelihood per
dimension (normalized empirical Kernel Density Estimate) for MRCNF models at different
resolutions, trained on CIFAR10.

4.7.1 Shuffled in-distribution images

Prior work [Kirichenko et al., 2020] concludes that normalizing flows do not represent images

based on their semantic contents, but rather directly encode their visual appearance. We

verify this for continuous normalizing flows by estimating the density of in-distribution test

images, but with patches of pixels randomly shuffled. Figure 4.5 (a) shows an example

of images of shuffled patches of varying size, Figure 4.5 (b) shows the graph of the their

log-likelihoods.

That shuffling pixel patches would render the image semantically meaningless is reflected

in the FID between CIFAR10-Train and these sets of shuffled images — 1x1: 340.42, 2x2:

299.99, 4x4: 235.22, 8x8: 101.36, 16x16: 33.06, 32x32 (i.e. CIFAR10-Test): 3.15. However, we

see that images with large pixel patches shuffled are quite close in likelihood to the unshuffled

images (Figure 4.5 (b)), suggesting that since their visual content has not changed much they

are almost as likely as unshuffled images under MRCNFs.
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4.8 Qualitative samples

We show qualitative examples from the MNIST [Deng, 2012] and CIFAR10 [Krizhevsky et al.,

2009b] in figs. 4.6 and 4.7.

(a) Generated samples at 16x16 (b) Corresponding generated samples at 32x32

Fig. 4.6. Generated samples from MNIST at different resolutions.

(a) 8x8 (b) 16x16 (c) 32x32

Fig. 4.7. Generated samples from CIFAR10 at different resolutions.
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4.9 Conclusion
We have presented a Multi-Resolution approach to Continuous Normalizing Flows (MRCNF).

MRCNF models achieve comparable or better performance in significantly less training time,

training on a single GPU, with a fraction of the number of parameters of other competitive

models. Although the likelihood values for 32x32 resolution datasets such as CIFAR10

and ImageNet32 do not improve over the baseline, ImageNet64 and above see a marked

improvement. The performance is better for higher resolutions, as seen in the case of

ImageNet128. We also conducted an ablation study to note the effects of each change we

introduced in the formulation.

In addition, we show that (Multi-Resolution) Continuous Normalizing Flows have similar

out-of-distribution properties as other Normalizing Flows.
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Chapter 5

Neural Inverse Kinematics with 3D Human

Pose Prior [Voleti et al., 2022b]

5.0 Prologue to article

5.0.1 Article details

SMPL-IK: Learned Morphology-Aware Inverse Kinematics for AI Driven Artistic

Workflows. Vikram Voleti, Boris Oreshkin, Florent Bocquelét, Felix Harvey, Louis-Simon

Ménard, Christopher Pal. SIGGRAPH Asia 2022 (Technical Communications)

Personal contribution: The project began with discussions between the authors during

Vikram’s internship at Unity Technologies partly funded by MITACS, Canada. This project

was in collaboration with Boris Oreshkin, and the DeepPose team at Unity Labs, Montreal.

Christopher Pal provided advice and guidance throughout the project. Vikram performed a

literature survey on the state-of-the-art pose estimation models from image/video, identifying

and comparing 20+ datasets of 2D and 3D human pose in various formats, and 20+ methods

of 3D human pose estimation. Vikram also learned the technical details of 3D character editing

in Unity, 3D graphics pipelines, etc. Boris Oreshkin proposed the main idea of leveraging a 3D

human pose model as a prior to improve existing pose estimation methods. Vikram analyzed

the literature, identified a strong 3D human pose prior (SMPL), and convinced the team to

use SMPL prior for 3D animation tasks moving forward. Boris Oreshkin, Florent Bocquelét,

and Vikram collectively worked on integrating SMPL into the team’s state-of-the-art human

pose estimation model ProtoRes. Vikram identified a huge human pose dataset in the SMPL

format called AMASS. Boris and Vikram worked on training SMPL-integrated ProtoRes on

AMASS, and testing on other standard datasets (Human3.6M, etc.). Vikram and Boris also

worked on stacking an image-to-pose model (ROMP) before this to extract 3D pose from

an image, and calculated metrics on standard datasets. Vikram worked with Louis-Simon

Ménard on integrating this into the Unity Labs software. Boris and Florent proposed shape

inversion to expand the pipeline to work on non-human characters. Project progress was



managed and tracked by the full team using JIRA, as well as through weekly team meetings

and regular chats on Slack. Vikram made a demo of the full pipeline from image to 3D pose

editing of human and non-human 3D characters. The team compiled the work into a research

paper published in the Technical Communications track at SIGGRAPH Asia 2022. Vikram

made a video for the conference (SIGGRAPH Asia) explaining the paper, methodology, and

results.

5.0.2 Context

Inverse Kinematics (IK) systems are often rigid with respect to their input character, thus

requiring user intervention to be adapted to new skeletons. Many computer vision pose

estimation algorithms naturally operate in the Skinned Multi-Person Linear (SMPL) space,

and this extension would open new content authoring opportunities. However, to date SMPL

models have not been integrated with advanced machine learning IK tools, and this represents

a clear research gap.

5.0.3 Contributions

In this paper we aim at creating a flexible, learned IK solver applicable to a wide variety of

human morphologies. We extend a state-of-the-art machine learning IK solver to operate on

the well known Skinned Multi-Person Linear model (SMPL). We call our model SMPL-IK,

and show that when integrated into real-time 3D software, this extended system opens up

opportunities for defining novel AI-assisted animation workflows. For example, when chained

with existing pose estimation algorithms, SMPL-IK accelerates posing by allowing users to

bootstrap 3D scenes from 2D images while allowing for further editing. Additionally, we

propose a novel SMPL Shape Inversion mechanism (SMPL-SI) to map arbitrary humanoid

characters to the SMPL space, allowing artists to leverage SMPL-IK on custom characters.

In addition to qualitative demos showing proposed tools, we present quantitative SMPL-

IK baselines on the H36M and AMASS datasets. Our code is publicly available https:

//github.com/boreshkinai/smpl-ik, and a video explaining the paper at SIGGRAPH

Asia 2022 is available at https://www.youtube.com/watch?v=FixF406owB4.

5.0.4 Research impact

This work integrated the use of SMPL in the context of pose estimation using ProtoRes.

Although there are follow-up works that also show the validity of our approach [Ma et al.,

2022], the adoption of our work hasn’t been as widespread yet as we had hoped in the research

community. Our work at Unity continues to be used in Unity’s products, specifically in the

Unity Labs software, allowing animators to edit 3D characters with flexibility.
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Fig. 5.1. Our approach unlocks novel artistic workflows such as the one depicted above. An
animator uses an image to initialize an editable 3D scene. Thus a multi-person 3D scene
acquired from an RGB picture is populated with custom user-defined characters whose 3D
poses are further edited with the state-of-the-art machine learning inverse kinematics tool
integrated in a real-time 3D development software.

5.1 Introduction

Inverse Kinematics (IK) is the problem of estimating 3D positions and rotations of body

joints given some end-effector locations [Kawato et al., 1993, Aristidou et al., 2018]. IK is an

ill-posed nonlinear problem with multiple solutions. For example, given the 3D location of

the right hand, what is a realistic human pose? It has been shown recently that machine

learning IK model can be integrated with 3D content authoring user interface to produce

a very effective pose authoring tool [Oreshkin et al., 2021, Bocquelet et al., 2022]. Using

this tool, an animator provides a terse pose definition via a limited set of positional and

angular constraints. The computer tool fills in the rest of the pose, minimizing pose authoring

overhead.

The Skinned Multi-Person Linear (SMPL) model is a principled and popular way of

jointly modelling human mesh, skeleton and pose [Loper et al., 2015]. It would seem natural

to extend this model with inverse kinematics capabilities: making both human shape/mesh

and pose editable using independent parameters. Additionally, many computer vision pose

estimation algorithms naturally operate in the SMPL space making them natively compatible

with a hypothetical SMPL IK model. This extension would open new content authoring

opportunities. However, to date SMPL models have not been integrated with advanced

machine learning IK tools, and this represents a clear research gap.

In our work we close this gap, exploring and solving two inverse problems in the context

of the SMPL human mesh representation: SMPL-IK, an Inverse Kinematics model, and

SMPL-SI, a Shape Inversion model. We show how these new components can be used to

create new artistic workflows driven by AI algorithms. For example, we demonstrate the tool
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integrating SMPL-IK and SMPL-SI with an off-the-shelf image-to-pose model, initializing a

multi-person 3D scene editable via flexible and easy-to-use user controls.

We demonstrate the tool integrating SMPL-IK with an off-the-shelf image-to-pose model,

and use that as a starting point for an editable SMPL character whose gender, shape and

pose are editable via flexible and easy-to-use user controls. Furthermore, we show that by

including the proposed SMPL-SI model in the workflow we add the additional flexibility of

handling custom user supplied characters in the same universal SMPL space by finding an

SMPL approximation of the user supplied character via SMPL-SI.

In summary, SMPL-IK accelerates posing by allowing users to bootstrap 3D scenes from

2D images, while allowing for further realistic editing. Additionally, we propose a novel

SMPL shape inversion mechanism to map arbitrary humanoid characters to the SMPL space,

allowing artists to leverage SMPL-IK on custom 3D characters.

Our main contributions are as follows:

• made SMPL-IK by integrating SMPL into a state-of-the-art 3D human pose estimation

model called ProtoRes [Oreshkin et al., 2021].

• achieved 3D human pose estimation in SMPL format with only partial input pose

required, by training SMPL-IK on AMASS dataset [Mahmood et al., 2019].

• calculated 3D human pose metrics on standard 3D human pose datasets (AMASS

and Human3.6M) in Table 5.2.

• expanded this model’s capability to non-human bodies by proposing Shape Inversion.

• stacked an image-to-pose model (ROMP [Sun et al., 2021b]) before this, thus making

an 3D human pose estimator from images.

• unified everything into a pipeline that makes a realistic 3D pose editor requiring only

partial pose input, initialized by a 3D human pose from an image.

5.2 Background

5.2.1 Skinned Multi-Person Linear model (SMPL)

Skinned Multi-Person Linear model (SMPL) is a realistic 3D human body model based

on skinning and blend shapes [Loper et al., 2015]. It is parameterized by two kinds of

parameters: shape/beta parameters that control the body shape, and pose parameters that

control pose-dependent deformations. SMPL realistically represents a wide range of human

body morphologies, and pose-dependent deformations of the body. There have been some

extensions to the SMPL model such as SMPL+H [Romero et al., 2017], SMPL-X [Pavlakos

et al., 2019], STAR [Osman et al., 2020], etc. SMPL remains a widely accepted model to

represent realistic human body pose and is prevalently used for 3D pose estimation of humans

in images and video [Bogo et al., 2016, Luo et al., 2020, Li et al., 2021, Rajasegaran et al.,

2021, Sun et al., 2021a].
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5.2.2 3D human pose datasets

In Table 5.1, we identify various datasets that contain ground truth information on human

motion. We also add comments on the type of data contained in the datasets i.e. whether

they are images or videos or only 3D content such as Motion Capture (MoCap), whether the

dataset contains indoor or outdoor scenes, whether they are of a single person or multiple

people. In addition, we specify some details each dataset such as the type of people, how the

data was processed, number of images, number of subjects, number of hours of recording, etc.

5.2.3 Inverse Kinematics (IK)

Inverse Kinematics (IK) is the estimation of 3D positions and rotations of body joints given

some end-effector locations. It is a prominent problem in robotics and animation, and is

traditionally solved by analytical or iterative optimization methods comprehensively reviewed

by Aristidou et al. [2018]. Solving IK using machine learning techniques has consistently

attracted attention [Bócsi et al., 2011, D’Souza et al., 2001, De Angulo and Torras, 2008], with

more work focusing on neural networks based methods [El-Sherbiny et al., 2018, Bensadoun

et al., 2022, Mourot et al., 2022].

In the animation space, the current neural IK state-of-the-art is ProtoRes [Oreshkin et al.,

2021]. It takes a variable set of effector positions, rotations or look-at targets as inputs,

and performs IK to reconstruct all joint locations and rotations. Its effectiveness in editing

complex 3D character poses has been demonstrated in a real-time live demo [Bocquelet et al.,

2022]. One limitation of ProtoRes is that, being trained on a fixed skeleton, it does not

explicitly include any learnt body shape prior.

In this work, we relax this limitation by integrating SMPL into ProtoRes, and training

on a large dataset of SMPL human pose data called AMASS [Mahmood et al., 2019].

5.2.4 Retargeting

Retargeting is the task of transferring the pose of a source character to a target character

with a different morphology (bone lengths) and possibly a different topology (number of

joints, connectivity, etc.) [Gleicher, 1998]. Retargeting is a ubiquitous task in animation,

and procedural tools exist for retargeting between skeletons of different morphologies and

topologies [3D, 2022].

5.2.5 SMPL and IK

There is very little prior work that attempts to use an IK-enabled SMPL model for 3D

character animation. Bebko et al. [2021] pose SMPL characters in the Unity platform, but

do not perform any IK. Zhou [2020] performs IK on SMPL parameters using standard

optimization, but only in the full pose context, which has very limited applicability for artistic
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Table 5.1. Table of 3D human pose datasets

Dataset Type of data Comments

images + 3D pose

CMU MoCap data images + 3D pose - >11k motions, 40hrs of motion data, 300+ subjects

(NOT synchronized) - MoCap NOT synced with images!

- GT using cameras, etc.

video + 3D pose

HumanEva video + 3D pose - 40k frames+3D pose @60Hz with 7 Vicon cameras

[Sigal et al., 2010] - Single person, indoor - 30k frames of pure MoCap

- GT with MoCap software

H3D (UCB) video + 3D pose - 2k frames (1500 train, 500 test)

[Bourdev and Malik,

2009]

- Single person, outdoor - 19 keypoints (joints, eyes, nose, etc.)

(small dataset) - GT from manual annotation

Human 3.6M video + 3D pose - 3.6M frames+poses indoor with 4 Vicon cameras

[Ionescu et al., 2014] - Single person, indoor - 11 professional actors (5F, 6M) imitate real poses

- Hybrid dataset: virtual character in real video

- GT using 4 cameras, software, etc.

MPI-INF-3DHP video + 3D pose - >1.3M frames, 14 cameras (500k frames, 5 cameras

at chest height)

[Mehta et al., 2017] - Single person, indoor - 8 actors (4M, 4F), 8 activity sets each of ≈1min

- walking, sitting, exercise poses, dynamic actions

- more pose classes than Human3.6m

- 2 sets of clothing: casual everyday, plain-colored

- GT from multi-view marker-less MoCap

TotalCapture video + 3D pose - 1.9M frames using 8 Vicon cameras

[Trumble et al., 2017] - Single person, indoor - 5 people (4M, 1F) perform 5 actions repeated 3 times

- GT 3D MoCap w/ 8 Vicon cameras + IMUs

MuCo-3DHP video + 3D pose - Composited from MPI-INF-3DHP

[Mehta et al., 2018] - Multi-person, indoor - GT 3D pose using multi-view marker-less MoCap

video + 3D pose in SMPL format

UP-3D video + 3D pose (SMPL) - 7k frames

[Lassner et al., 2017] - Single person, outdoor - 5.5k from LSP, LSP-extended, MPII-HumanPose

- 1.5k from FashionPose

- GT 3D pose by fitting SMPL on 2D pose

MuPoTS-3D video + 3D pose (SMPL) - >8k frames, 20 sequences, 8 subjects

[Mehta et al., 2018]

(eval only)

- Multi-person, indoor &

outdoor

- GT 3D pose using multi-view marker-less MoCap
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Mannequin video + 3D pose (SMPL) - 24k frames, 567 scenes, 742 subjects (≤5 per frame)

[Mehta et al., 2018] - Multi-person, outdoor - Videos from mannequin challenge

- Videos: people as man-

nequins

- GT using optimization of SfM and tracking to SMPL

3DPW video + 3D pose (SMPL) - >51k frames, 60 sequences, 1700secs @ 30Hz

[von Marcard et al.,

2018]

- Multi-person, outdoor - 7 actors in 18 clothing styles

- GT “MoCap” using IMUs→ 3D pose by fitting SMPL

SMART Sport video + 3D pose

(SMPL)

- 45k frames of 30 athletes, 9 activities

[Chen et al., 2021b] - Multi-person, indoor - GT marker-based MoCap using 12 Vicon cameras →
SMPL

MoVi video + 3D pose (SMPL) - 700k frames with 90 subjects (60 female, 30 male, 5

left-handed)

[Ghorbani et al., 2021] - Multi-person, indoor - 20 pre-defined actions and 1 self-chosen movement

- 5 data capture rounds, only ‘S1’ and ‘S2’ for

video+3D

- GT using 4 cameras + IMU → 3D pose using

MoSh++

Only 3D pose

AMASS Only 3D pose (SMPL) - 42 hours of MoCap, 346 subjects, 11451 motion

[Mahmood et al.,

2019]

- Combines CMU, MPI-HDM05, MPIPose Limits, KIT,

BioMotion Lab, TCD, ACCAD

- SMPL 3D shape (16), DMPL soft tissue coeffs (8),

and full SMPL pose (90)

Synchronized Scans

and Markers (SSM)

Only 3D pose (Mo-

Cap+Body)

Part of AMASS training: dense 3D meshes in motion,

with marker-based mocap

pose editing. VPoser [Pavlakos et al., 2019] trains a Variational Auto-Encoder (VAE) to

work as a prior on 3D human pose obtained from SMPL. This VAE is used as an iterative IK

solver for a pose defined via keypoints. However, the VPoser architecture only works with

relatively dense positional inputs (no ability to handle sparse heterogeneous effector scenarios

has been demonstrated). It also requires on-line L-BFGS optimization, making it too rigid

and computationally expensive for pose authoring. There is a clear gap between SMPL and

IK: existing IK models suitable for artistic pose editing do not support SMPL, and existing

SMPL-based models have insufficient IK cababilities.
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5.3 SMPL Inverse Kinematics (SMPL-IK)

We propose SMPL-IK, a learned morphology-aware inverse kinematics module that accounts

for SMPL shape and gender information to compute the full pose including the root joint

position and 3D rotations of all SMPL joints based on a partially-defined pose specified by

SMPL β-parameters (body shape), gender flag, and a few input effectors (positions, rotations,

or look-at targets). SMPL-IK supports effector combinations of arbitrary number and type.

SMPL-IK extends the learned inverse kinematics model ProtoRes [Oreshkin et al., 2021].

ProtoRes only deals with a fixed morphology scenario in which an ML-based IK model

is trained on a fixed skeleton. We remove this limitation by conditioning the ProtoRes

computation on the SMPL β-parameters and gender (see Section 5.6.1 for technical details).

This results in an IK model that can operate on the wide range of morphologies incorporated

in the expansive dataset used to create the SMPL model itself.

There are multiple advantages of this extension, including the following. First, rich public

datasets can be used to train a learned IK model, in our case we train on the large AMASS

dataset [Mahmood et al., 2019]. Second, an animator can now edit both the pose and the

body shape of a flexible SMPL-based puppet using a state-of-the-art learned IK tool, which

we demonstrate in Section 5.9.1. Third, training IK in SMPL space unlocks a seamless

interface with off-the-shelf AI algorithms operating in a standardized SMPL space, such as

computer vision pose estimation backbones.

5.4 SMPL Shape Inversion (SMPL-SI)

SMPL-SI maps arbitrary humanoid skeletons onto their SMPL approximations by learning a

mapping from skeleton features to the corresponding SMPL β-parameters (solving the inverse

shape problem). Therefore, it can be used to map arbitrary user-supplied skeletons in the

SMPL representation, and hence integrate SMPL-IK with custom user skeletons. Recall that

the SMPL model implements the following forward equation:

p = SMPL(β, θ), (5.4.1)

mapping shape parameters β ∈ R
10 and pose angles θ ∈ R

22×3 into SMPL joint positions

p ∈ R
24×3. Datasets such as H36M contain multiple tuples (pi, βi, θi). In principle, the pairs

of H36M’s skeleton features fi extracted from (pi, θi) and corresponding labels βi, could be

used for training a shape inversion model:

β̂ = SMPL-SI(f). (5.4.2)

However, the H36M training set contains only 6 subjects, meaning the entire dataset has only

6 distinct βi vectors, thus insufficient for learning any meaningful SMPL-SI.
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Accordingly, we propose to train the SMPL-SI model as follows. We randomly sample

20k tuples (pi, βi) with β̃i = [ϵi, si], where ϵi ∈ R
10 is a sample from uniform distribution

U(−5, 5) and si ∈ R is the scale sampled from U(0.2, 2). Scale si is used to account for the

variation in the overall size of the user-supplied characters relative to the standard SMPL

model. We then use the SMPL forward equation equation 5.4.1 to compute joint positions

p̃i corresponding to β̃i and θi set to the T-pose. We then compute skeleton features f̃i for

each p̃i as distances between the following pairs of joints: (right hip, right knee), (right knee,

right ankle), (head, right ankle), (head, right wrist), (right shoulder, right elbow), (right

elbow, right wrist). Finally, we implement the kernel density estimator using the 20k samples

and the user skeleton features f to estimate the shape parameters β̃ of the SMPL model:

β̂ =
∑

i

β̃iwi∑
j wj

, wi = k((f − f̃i)/h). (5.4.3)

The implementation uses a Gaussian kernel k with width h = 0.02. The reason for this is

that since there can be multiple equally plausible β’s for each skeleton (making SMPL-SI

an ill-defined problem, like many other inverse problems), a point solution of the inverse

problem may be degenerate. To address this, the general solution is formulated in probabilistic

Bayesian terms based on the joint generative distribution of skeleton shape and features p(β̃, f).

The Bayesian β-estimator is then derived from the corresponding posterior distribution of β

parameters given features:

β̂ =
∫
β̃p(β̃♣f)dβ̃, (5.4.4)

Note that β̂ mixes a few likely values of β̃ corresponding to posterior distribution modes.

Decomposing p(β̃, f) = p(f ♣β̃)p(β̃) we get:

β̂ =
∫ β̃p(f ♣β̃)p(β̃)dβ̃
∫
p(f ♣β̃)p(β̃)dβ̃

. (5.4.5)

Since the joint distribution p(β̃, f) is unknown, we approximate it using a combination

of kernel density estimation and Monte-Carlo sampling. Assuming conservative uniform

prior for p(β̃), we sample β as described above and we use a kernel density estimator

p(f ♣β̃) ≈ 1
hN

∑
i k( f−f̃i

h
). Using this in equation 5.4.5 together with Monte-Carlo sampling

from p(β̃), results in equation 5.4.3.

5.5 Proposed workflow

Figure 5.1 presents a high-level summary of the proposed artistic workflow for 3D scene

authoring from an image, while Figure 5.2 provides the detailed overview of how it is imple-

mented for a user-defined humanoid character. Section 5.9.1, Section 5.9.3 and Section 5.9.2

depict simpler workflows for authoring SMPL poses, image labeling in the SMPL space and
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(Image to 3D pose)

(Pose editing)

Image
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SMPL
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Posed 
SMPL-Character
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Character

Edited
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SMPL-Character
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Character
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Fig. 5.2. Pipeline for pose estimation and editing from a 2D image to a custom humanoid
3D character in the same pose as the human in the 2D image. Using any advanced animation
tool, our approach enables an animator to apply poses extracted from an image to a custom
user-defined 3D character and edit them further using SMPL-IK, our state-of-the-art machine
learning inverse kinematics tool, integrated in real-time 3D development software (such as
Unity as shown here). Given an RGB image of a human in a certain pose, a pose estimation
algorithm is used to estimate the human’s pose in terms of SMPL parameters. Our novel
SMPL-SI then maps the skeleton of the user-defined 3D character onto its SMPL approxi-
mation, and the estimated human pose is retargeted onto the SMPL shape approximation
obtained from SMPL-SI. This gives an SMPL mesh in the human pose with the morphology
of the custom 3D character. From here, the animator can perform pose editing in the SMPL
space of pose parameters, using our proposed SMPL-IK, while keeping the shape parameters
fixed. To provide the user with effectors that control the pose of the 3D character (shown
in purple in the demo videos), our proposed Effector Recovery method extracts only a few
effectors to create an editable initial pose, while best preserving the estimated pose.
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authoring poses on custom characters from scratch. These were implemented in the 3D

real-time Unity engine for validation. These workflows leverage SMPL-IK and SMPL-SI

building blocks as well as some others described in the rest of this section.

5.5.1 Overall pipeline

Our overall pipeline from an image with a human to a custom humanoid 3D character in

the same pose as the human is as is shown in Figure 5.2. The individual components are

expanded upon in the below subsections.

Image to 3D pose: First, given an RGB image of a human in a certain pose, a state-

of-the-art pose estimation algorithm is used to extract an estimate of the human’s pose in

terms of simple parameters. In practice, we use the ROMP model [Sun et al., 2021b] for pose

estimation, but any other pose estimation model that outputs SMPL parameters could be

used. As mentioned before, SMPL parameters consist of shape/beta parameters that control

the body shape, and pose parameters that control pose-dependent deformations.

Custom character shape estimation using SMPL-SI: Then, we use our novel

framework of SMPL Shape Inversion (SMPL-SI) to map the skeleton of a user-defined

humanoid 3D character onto its SMPL approximation. SMPL-SI learns a mapping from

skeleton features to the corresponding simple shape/beta parameters, thus solving the inverse

shape problem. These features are the distance between key joints in the canonical pose, like

distance between the elbow and the wrist of the character. We achieve this by implementing

the kernel density estimator for the shape parameters of the SMPL model, approximating

the user-supplied skeleton.

Retarget pose to custom character: We then retarget the initial pose estimation

result onto the SMPL shape approximation of the custom 3D character obtained via SMPL-SI.

This gives us an SMPL mesh in the pose provided in the image, but with the morphology of

the custom 3D character.

Pose editing: From here, we perform pose editing using our proposed SMPL-IK in the

SMPL space of pose parameters, keeping the shape parameters fixed. The user is provided

with effectors that control the pose of the 3D character (shown in purple in the demo videos).

When a user edits the pose of one or more effectors, a new full pose is estimated by SMPL-IK.

SMPL-IK computes the full pose, including the root joint position and 3D rotations of all

SMPL joints, based on a partially defined pose specified by SMPL beta parameters, that is

the body shape, gender flag, and a few input effectors, such as the positions, rotations, or

look-at targets. SMPL-IK supports effector combinations of arbitrary number and type.

Effector recovery: We also propose effector recovery to extract only a few effectors

to create an editable initial pose, while best preserving the estimated pose. More effectors

means better reconstruction at the cost of less freedom to the posing model.
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Hence, given the edited SMPL character with the new full pose, this pose is then retargeted

back to the custom 3D character. Because the morphology of the SMPL character is similar

to that of the custom character, this retargeting best preserves the edited pose.

Each of these stages is expanded upon below.

5.5.2 Image to 3D pose

We propose to process a monocular RGB image to initialize an editable 3D scene as shown in

Figure 5.1. Several methods exist for pose estimation from RGB inputs, most recent of which

include ROMP [Sun et al., 2021a] and HybrIK [Li et al., 2021]. In our approach, we use a

pre-trained ROMP model that predicts shape, 3D joint rotations and 3D root joint location

for each human instance in the image. The outputs of pose estimation can be directly used

to edit the estimated 3D SMPL mesh using SMPL-IK, leading to advanced 3D labelling tools

that can be used to refine pose estimation and augmented reality datasets, as described in

Section 5.9.2. Alternatively, pose estimation results can be retargeted to user-supplied 3D

characters, in which case the 3D scene with retargeted characters is further edited through

the combination of SMPL-IK and SMPL-SI as explained below.

5.5.3 Custom character shape estimation using SMPL-SI

Pose estimation algorithms output pose in the standardized SMPL space, whereas users

may wish to repurpose the pose towards their own custom character. We use SMPL-SI to

find the best approximation of the custom character by estimating its corresponding SMPL

β parameters from the custom skeleton features (e.g. certain bone lengths). The SMPL

character created using SMPL-SI provides a good approximation of the user character hence

providing for its smooth integration with SMPL-IK, operating in the standard SMPL space.

5.5.4 Retarget pose to custom character

In Figure 5.2, procedural retargeting first retargets the initial pose estimation result onto

the SMPL approximation of the user-defined character obtained via SMPL-SI. Second, it

retargets the pose edited by the animator with SMPL-IK back on the user character. On

both occasions, SMPL-SI makes the job of procedural retargeting easier. First, it aligns the

topology of user character with the SMPL space. Second, the SMPL character derived via

SMPL-SI is a close approximation of the user character, simplifying the transfer of the pose

edited with SMPL-IK back onto the user character.

5.5.5 Pose editing

Pose editing relies on the Unity UX integration of SMPL-IK similar to one of ProtoRes

and augmented with the SMPL shape editing controls as well as pose estimation, SMPL-SI,
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retargeting and effector recovery integrations. Editing happens directly in the user character

space following the WYSIWYG paradigm. A full pipeline demo is presented in Section 5.9.5.

5.5.6 Effector recovery

Pose estimation outputs a full pose (24 3D joint angles and 3D root joint location) of each

human in the scene. The pose editing process constrained by this information would be very

tedious. SMPL-IK makes pose authoring efficient using very sparse constraints (e.g. using

5-6 effectors). Therefore, we propose to extract only a few effectors to create an editable

initial pose. We call this Effector Recovery, which proceeds starting from an empty set of

effectors, given the full pose provided by the computer vision backbone, in an iterative greedy

fashion. Out of the remaining effectors, we add one at a time, run a new candidate effector

configuration through SMPL-IK, and obtain the pose reconstructed from this configuration.

We then choose a new effector configuration by retaining the candidate effector set that

minimizes the L2 joint reconstruction error in the character space. We repeat this process

until either the maximum number of allowed effectors is reached, or the reconstruction error

falls below a fixed threshold. We find this greedy algorithm very effective in producing

a minimalistic set of effectors most useful in retaining the initial pose, which is shown in

supplementary video discussed in Section 5.9.4.

5.6 SMPL-IK details

5.6.1 SMPL-IK neural network diagram

Figure 5.3 shows the overall architecture of the model. The inputs to the model are a

variable number of 3D positions, rotations, look-at (direction of the head), the tolerance in

the estimation, the ID of the joints being given as input, their type (position or rotation or

look-at), and the SMPL parameters of body shape and gender. These inputs are fed to a

variant of the ProtoRes model [Oreshkin et al., 2021]. The power of the ProtoRes model is

that it is capable of handling a variable number of inputs using a specific architecture in the

Pose Encoder module. Then, a Pose Decoder module transforms the features encoded by the

Pose Encoder into meaningful outputs for the full pose : all joint positions and rotations.

The Pose Decoder consists of a global position decoder, an inverse kinematics decoder that

outputs the joint rotations, and a forward kinematics decoder that outputs the joint positions.

It is in the Pose Decoder that we incorporate SMPL. The inverse and forward kinematics

are handled by the relevant equations in SMPL, conditioned on the body shape and gender

provided by the user.
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Fig. 5.3. SMPL-IK neural network diagram. Note input conditioning on β and gender
inputs.

5.6.2 SMPL-IK training details

The training process overall follows that of ProtoRes [Oreshkin et al., 2021]. We found that

naively training on AMASS works well, while for H36M, simply training on its 6 subjects

results in the lack of generalization in the β subspace of inputs. To overcome this, we used

the following β augmentation strategy. For each sample drawn from the H36M dataset, we

added white Gaussian noise with unit variance, and recalculated joint positions based on

the augmented β value and the pose θ from the dataset. The model was trained on the

augmented H36M dataset. We found that overall, the model quality was better when it was

trained on the AMASS dataset, although the quality of the H36M model was also acceptable.

5.6.3 SMPL-IK evaluation details

The datasets used to measure quantitative generalization results are H36M and AMASS.

We used H36M train and test splits derived in ROMP [Sun et al., 2021a], which in turn

follow H36M Protocol 2 (subjects S1, S5, S6, S7, S8 for training and S9, S11 for test, plus

1:10 subsampling of the training set). For AMASS, we take the train/validation/test splits

from Mahmood et al. [2019] (valdation datasets: HumanEva, MPI_HDM05, SFU, MPI_mosh;

test datasets: Transitions_mocap, SSM_synced; training datasets: everything else).

The evaluation metrics we chose to quantify SMPL-IK are commonly used in the context

of H36M and AMASS datasets: MPJPE, PA-MPJPE, and the geodesic rotation error, which

was shown to be important in quantifying the quality of realistic poses in Oreshkin et al.

[2021]. The metrics are defined as follows.
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Mean Per Joint Position Error (MPJPE) is computed by flattening all poses and joints

into the leading dimension, resulting in the ground truth p ∈ R
N×3 and its prediction p̂:

MPJPE(p, p̂) =
1

N

N∑

i=1

∥pi − p̂i∥2. (5.6.1)

PA-MPJPE, Procrustes aligned MPJPE, is MPJPE calculated after each estimated 3D

pose in the batch is aligned to its respective ground truth by the Procrustes method, which

is simply a similarity transformation.

GE, geodesic error, between a rotation matrix R and its prediction R̂, Salehi et al. [2018]:

GE(R, R̂) = arccos
[
(tr(R̂TR)− 1)/2

]
. (5.6.2)

All metrics in Table 5.2 are computed on test sets of AMASS and H36M using models

trained on respective training sets using the randomized effector benchmark framework

described in detail in Oreshkin et al. [2021]. Notably, we evaluate the model’s performance by

assessing pose reconstruction quality from sparse variable inputs. We randomly sample 2 to

64 effectors to be used as inputs and average reconstruction errors across multiple iterations.

5.7 Empirical results

Table 5.2. SMPL-IK benchmark following the randomized effector scheme [Oreshkin et al.,
2021] on AMASS and H36M datasets, based on MPJPE (Mean Per Joint Position Error),
PA-MPJPE (Procrustes-Aligned MPJPE), and GE (Geodesic Error) metrics.

AMASS H36M

MPJPE PA-MPJPE GE MPJPE PA-MPJPE GE
59.3 52.5 0.1602 65.8 57.9 0.224

In Table 5.2, we report pose reconstruction errors of our SMPL-IK approach for two

datasets: AMASS [Mahmood et al., 2019] and Human3.6M [Ionescu et al., 2014] (see

Section 5.6.3 for more details). Since the evaluation metrics are reconstruction errors from

sparse inputs, it is not possible to compare with prior methods that don’t use this ramndomized

effector scheme [Oreshkin et al., 2021].

5.8 Limitations
SMPL-IK and SMPL-SI are most effective when dealing with realistic human shapes and poses,

because they are trained on the SMPL model and realistic 3D pose data from the AMASS

dataset. Obviously, they perform worse when dealing with unrealistic and disproportionate

human body types, such as those of certain cartoon characters. SMPL-SI relies on a set of

joints to compute user character features. These joints are present in most characters, but

without them its operation is not viable.
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5.9 Demos

All demo videos are available here: https://drive.google.com/drive/u/1/folders/

1bHwoZjAX9njFCGszzLpUtOFGXxs0sWKW.

5.9.1 Editing both shape and pose demo

Fig. 5.4. Morphology-aware learned IK. Left: posing the average male SMPL character.
Center: result of modifying only the SMPL gender parameter. Right: result of additionally
modifying the SMPL β shape parameters.

This is shown in the video Demo_Pose_and_Shape_Editing.mp4. Compared to ProtoRes,

SMPL-IK adds the additional flexibility of editing body shape together with pose. Figure 5.4

demonstrates the user interface of shape editing, including the gender setting and the controls

for the 10 SMPL β parameters. In addition, the demo video shows how pose and shape of

the SMPL character can be edited simultaneously. In this video, we demonstrate the benefit

of SMPL-IK in pose authoring. First, we show how different effectors can be successfully

manipulated using SMPL-IK leading to different realistic poses of the same body. Then,

we show how changing body type, described by gender and scale, leads to different realistic

versions of the same pose for different bodies. Finally, we show fine-grained modification of

the body type by manipulating the SMPL shape parameters of the body. At every step, the

corresponding pose is estimated using our SMPL-IK approach.
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5.9.2 Labeling tool demo

Fig. 5.5. Pipeline for 2D image labeling with accurate 3D pose.

This is shown in the video Demo_Labeling_Tool.mp4. One of the drawbacks of the

current pose estimation datasets based on real data is that only 3D or 2D positions of joints

are actually labeled. However, it was shown that rotations are very important for representing

a believable naturally looking pose [Oreshkin et al., 2021]. SMPL-IK can be used as a labeling

tool to add the missing 3D-rotation information to existing datasets, elevating them to the

next level with minimal human effort. Given an image of a human, our SMPL-IK approach

(combined with an off-the-shelf image-to-pose estimator) provides an editable 3D SMPL

model in a pose close to the one in the image (see Figure 5.5). The labeling tool based

on SMPL-IK and its integration with Unity can be used to correct the joint rotations and

specify the correct lookat (head/eyes direction) that is most often estimated incorrectly by

the current state-of-the-art pose estimation algorithms due to the absence of this information

in the current pose estimation datasets.

5.9.3 Pose authoring on a custom character

Figure 5.6 depicts the simplified workflow that is used for authoring a pose for the custom

user defined character using a combination of SMPL-IK and SMPL-SI. Supplementary videos

Demo_Authoring_Pose_Child.mp4, Demo_Authoring_Pose_Child.mp4, Demo_Authoring_

Pose_Female.mp4, Demo_Authoring_Pose_Male.mp4, Demo_Authoring_Pose_Strong.mp4

show how SMPL-SI can be used to manipulate 4 custom characters (child, female, male and

strong male) with different proportions and morphologies.

5.9.4 Effector recovery

The video Demo_Effector_Recovery.mp4 demonstrates the effector recovery mechanism in

action. It shows the effect of changing the maximum number of effectors hyperparameter as

well as the effect of changing number of recovered effectors on the initial pose extracted from

image. It is clear that a relatively small number of effectors are sufficient to recover a good

initialization for the editable pose.
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Fig. 5.6. Pose authoring with a custom humanoid character via SMPL-IK and SMPL-SI.

5.9.5 Full pipeline demos

5.9.5.1 Demo_Crouch_FineTuning.mp4 :

In this video, we show how to edit a pose in Unity using our approach. First, given a

user-provided 3D character, SMPL-SI is used to estimate the SMPL body shape parameters

that best fit the character. This SMPL-Character is shown in the video transparently along

with the 3D character, and is also shown in the second image in Section 5.9.3. Then, given

an image of a human in a pose, such as the crouched baby in Section 5.9.2, an off-the-shelf

image-to-pose estimator is used to obtain its SMPL pose parameters. Then, the SMPL-

Character is retargeted onto the estimated pose. Next, for further editing of the character

from the new pose, Effector Recovery is performed to recover the best effectors that describe

that pose for that character. The effectors are shown in purple. These effectors can now be

used to edit the pose as the user wishes. Optionally, more effectors could be activated for

further fine-tuned editing, including both positional and rotational effectors.

5.9.5.2 Demo_Sitting_Editing.mp4 :

In this video, we demonstrate the case shown in Figure 5.1, with two humanoid 3D

characters. As image of two people sitting is loaded, the poses of the two people are estimated

using an off-the-shelf image-to-pose model, and the two 3D characters are retargeted to these

estimated poses. Further, the pose of the 3D characters are then edited by manipulating the

effectors. The video shows the various effectors and the effect of manipulating them. Every

manipulation uses our SMPL-IK approach to estimate the realistic pose of that character.
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5.10 Conclusion
In this work, we introduce SMPL-IK, an integration of SMPL into ProtoRes, a state-of-the-art

inverse kinematics-based 3D human pose estimation model. Using this integrated model, we

achieved full 3D human pose estimation from only partial input pose by training SMPL-IK

on AMASS dataset. This included a thorough investigation into publicly available 3D human

pose datasets. We then expanded this model’s capability to non-human bodies by proposing

Shape Inversion, a retargeting technique. We also extended its capability to 3D human pose

estimation from images, by stacking an image-to-pose model (ROMP) before SMPL-IK. Our

model also allows pose editing by running SMPL-IK on newer poses formed by change in few

pose effectors. We also proposed Effector Recovery, an iterative method to extract the minimal

set of pose effectors that critically define a full pose. Finally, we unified everything into a

pipeline that makes a realistic 3D pose editor requiring only partial pose input, initialized by

a 3D human pose from an image.
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Chapter 6

Non-Isotropic Denoising Diffusion

Models [Voleti et al., 2022c]

6.0 Prologue to article

6.0.1 Article details

Score-based Denoising Diffusion with Non-Isotropic Gaussian Noise Models.

Vikram Voleti, Christopher Pal, Adam Oberman. Advances in Neural Information Processing

Systems (NeurIPS) 2022 Workshop.

Personal contribution: The project began with discussions between the authors at Mila.

Vikram worked on deriving a non-isotropic formulation of the noise process in denoising

diffusion models. Adam Oberman and Christopher Pal provided advice and guidance

throughout the project, including explaining the mathematical details of Stochastic Differential

Equations, providing text books and source material to understand Gaussian processes better.

Vikram derived the relevant equations for the isotropic Gaussian formulations (DDPM and

SMLD covered in Chapter 2), then derived the equations for the non-isotropic Gaussian

variant. Adam Oberman provided the literature on Gaussian Free Fields (GFFs). Vikram

Voleti wrote the code for the non-isotropic variant of DDPM, GFF, and conducted experiments

on image generation.

6.0.2 Context

Generative models based on denoising diffusion techniques have led to an unprecedented

increase in the quality and diversity of imagery that is now possible to create with neural

generative models. However, most contemporary state-of-the-art methods are derived from

a standard isotropic Gaussian formulation. A non-isotropic Gaussian variant had not been

explored yet.



6.0.3 Contributions

In this work, we examine the situation where non-isotropic Gaussian distributions are used.

We present the key mathematical derivations for creating denoising diffusion models using an

underlying non-isotropic Gaussian noise model. We also provide initial experiments with the

CIFAR10 dataset to help verify empirically that this more general modelling approach can

also yield high-quality samples.

6.0.4 Research impact

This work derived the use of non-isotropic Gaussian process in the context of denoising

diffusion models. Other works then derived the use of non-Gaussian noise processes such

as Gamma noise [Nachmani et al., 2021], Poisson noise [Xu et al., 2022], Heat dissipation

process [Rissanen et al., 2022]. The results on image generation using this non-isotropic

formulation are by themselves not much better than those using the isotropic formulation.

However, other work has utilized the real power of this formulation, and expanded the

modality to a continuous domain i.e. a function space. Thus, as the forward process perturbs

input functions gradually using a Gaussian process, instead of the data itself, it is now

possible to model infinite-dimensional data using denoising diffusion models. This is shown

by Hagemann et al. [2023], Bond-Taylor and Willcocks [2023], and concurrently by Lim et al.

[2023] — a project Vikram contributed to in collaboration with NVIDIA.
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(a) Isotropic (b) Non-isotropic

Fig. 6.1. Gaussian noise samples.

6.1 Introduction
Score-based denoising diffusion models Song and Ermon [2019], Ho et al. [2020], Song et al.

[2021b] have seen great success as generative models for images Dhariwal and Nichol [2021],

Song and Ermon [2020], as well as other modes such as video Ho et al. [2022b], Yang et al.

[2022], Voleti et al. [2022a], audio Kong et al. [2021], Chen et al. [2021a], etc. The underlying

framework relies on a noising "forward" process that adds noise to real images (or other

data), and a denoising "reverse" process that iteratively removes noise. In most cases, the

noise distribution used is the isotropic Gaussian i.e. noise samples are independently and

identically distributed (IID) as the standard normal at each pixel.

In this work, we lay the theoretical foundations and derive the key mathematics for a

non-isotropic Gaussian formulation for denoising diffusion models. It is our hope that these

insights may open the door to new classes of models. One type of non-isotropic Gaussian

noise arises in a family of models known as Gaussian Free Fields (GFFs) Sheffield [2007],

Berestycki [2015], Bramson et al. [2016], Werner and Powell [2020] (a.k.a. Gaussian Random

Fields). GFF noise can be obtained by either convolving isotropic Gaussian noise with a

filter, or applying frequency masking of noise. In either case this procedure allows one to

model or generate smoother and correlated types of Gaussian noise. In Figures 6.1 and 6.3,

we compare examples of isotropic Gaussian noise with GFF noise obtained using a frequency

space window function consisting of w(f) = 1
f
.

Our contributions here consist of the following: (1) deriving the key mathematics for

score-based denoising diffusion models using non-isotropic multivariate Gaussian distributions,

(2) examining the special case of a GFF and the corresponding non-Isotropic Gaussian noise

model, and (3) showing that diffusion models trained (eg. on the CIFAR-10 dataset Krizhevsky

et al. [2009a]) using a GFF noise process are also capable of yielding high-quality samples

comparable to models based on isotropic Gaussian noise.

Section 6.2 and Section 6.3 contain detailed derivations of our Non-Isotropic DDPM

(NI-DDPM) and Non-Isotropic SMLD (NI-SMLD) denoising diffusion models. Section 6.4

provides a direct comparison between DDPM [Ho et al., 2020] and our NI-DDPM. Section 6.5

derives Gaussian Free Fields (GFFs) in connection with the previous sections. Section 6.6

provides results of image generation experiments using DDPM and our NI-DDPM.
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6.2 Non-isotropic DDPM (NI-DDPM)

6.2.1 Forward (data to noise) for NI-DDPM

For a fixed sequence of positive scales 0 < β1 < · · · < βL < 1, ᾱt =
∏t
s=1(1 − βs), the

transition “forward” process is:

pNI-DDPM
t (xt ♣ xt−1) = N (xt ♣

√
1− βtxt−1, βtΣ) =⇒ xt =

√
1− βtxt−1 +

√
βt
√

Σzt−1,

(6.2.1)

where
√

Σ is the matrix square root of Σ (e.g. as given by Cholesky decomposition).

Note :
√

Σ is not the element-wise square root of Σ.

The cumulative “forward” process can be derived as:

pNI-DDPM
t (xt ♣ x0) = N (xt ♣

√
ᾱtx0, (1− ᾱt)Σ). (6.2.2)

=⇒ xt =
√
ᾱtx0 +

√
1− ᾱt

√
Σϵ =⇒ ϵ =

√
Σ−1

xt −
√
ᾱtx0√

1− ᾱt
. (6.2.3)

6.2.2 Score for NI-DDPM

∇xt
log pNI-DDPM

t (xt ♣ x0) = −Σ−1 xt −
√
ᾱtx0

1− ᾱt
= − 1√

1− ᾱt
√

Σ−1ϵ. (6.2.4)

Derivation of the score value:

pNI-DDPM
t (xt ♣ x0) = N (xt ♣

√
ᾱtx0, (1− ᾱt)Σ),

=
1

(2π)D/2((1− ᾱt)♣Σ♣)1/2
exp

(
− 1

2(1− ᾱt)
(xt −

√
ᾱtx0)

TΣ−1(xt −
√
ᾱtx0)

)
.

=⇒ log pNI-DDPM
t (xt ♣ x0) = − log((2π)D/2((1− ᾱt)♣Σ♣)1/2)

− 1

2(1− ᾱt)
(xt −

√
ᾱtx0)

TΣ−1(xt −
√
ᾱtx0),

=⇒ ∇xt
log pNI-DDPM

t (xt ♣ x0) = − 1

2(1− ᾱt)
2Σ−1(xt −

√
ᾱtx0) = − 1√

1− ᾱt
√

Σ−1ϵ.

6.2.3 Score-matching objective for NI-DDPM

The objective for score estimation in NI-DDPM at noise level ᾱt is:

ℓNI-DDPM(θ; ᾱt) ≜
1

2
EpNI-DDPM

t (xt♣x0)p(x0)



∥∥∥∥∥sθ(xt, ᾱt) + Σ−1 xt −

√
ᾱtx0

1− ᾱt

∥∥∥∥∥

2

2


 , (6.2.5)

≜
1

2
EpNI-DDPM

t (xt♣x0)p(x0)



∥∥∥∥∥sθ(xt, ᾱt) +

1√
1− ᾱt

√
Σ−1ϵ

∥∥∥∥∥

2

2


 .
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6.2.4 Variance of score for NI-DDPM

E

[∥∥∥∇xt
log qNI-DDPM

ᾱt
(xt ♣ x0)

∥∥∥
2

2

]
,= E



∥∥∥∥∥−Σ−1 xt −

√
ᾱtx0

1− ᾱt

∥∥∥∥∥

2

2


 ,

= E



∥∥∥∥∥Σ

−1

√
1− ᾱt

√
Σϵ

1− ᾱt

∥∥∥∥∥

2

2


 =

1

1− ᾱt
Σ−1

E

[
∥ϵ∥2

2

]
=

1

1− ᾱt
Σ−1. (6.2.6)

6.2.5 Overall objective function for NI-DDPM

The overall objective function weights the score-matching objective by the inverse of the

variance of the score at each time step:

LNI-DDPM(θ; ¶ᾱt♢Lt=1) ≜ Et λ(ᾱt) ℓ
NI-DDPM(θ; ᾱt). (6.2.7)

We consider three possibilities for the loss weight λ(ᾱt):

(a) λa(ᾱt) = (1 − ᾱt)Σ.

LNI-DDPM
a (θ; ¶ᾱt♢Lt=1) ≜ Et,pt(xt♣x0)p(x0)



∥∥∥∥∥
√

1− ᾱt
√

Σsθ(xt, ᾱt) +
√

Σ−1
(xt −

√
ᾱtx0)√

1− ᾱt

∥∥∥∥∥

2

2


 ,

= Et,ϵ,x0

[∥∥∥
√

1− ᾱt
√

Σsθ(xt, ᾱt) + ϵ
∥∥∥

2

2

]
. (6.2.8)

(b) λb(ᾱt) = (1 − ᾱt).

LNI-DDPM
b (θ; ¶ᾱt♢Lt=1) ≜ Et,pᾱt (xt♣x0)p(x0)



∥∥∥∥∥
√

1− ᾱtsθ(xt, ᾱt) + Σ−1 (xt −
√
ᾱtx0)√

1− ᾱt

∥∥∥∥∥

2

2


 ,

= Et,ϵ,x0

[∥∥∥
√

1− ᾱtsθ(xt, ᾱt) +
√

Σ−1ϵ
∥∥∥

2

2

]
. (6.2.9)

(c) λc(ᾱt) = (1 − ᾱt)Σ2.

LNI-DDPM
c (θ; ¶ᾱt♢Lt=1) ≜ Et,pt(xt♣x0)p(x0)



∥∥∥∥∥
√

1− ᾱtΣsθ(xt, ᾱt) +
(xt −

√
ᾱtx0)√

1− ᾱt

∥∥∥∥∥

2

2


 ,

= Et,ϵ,x0

[∥∥∥
√

1− ᾱtΣsθ(xt, ᾱt) +
√

Σϵ
∥∥∥

2

2

]
. (6.2.10)

6.2.6 Noise-matching objective for NI-DDPM

A score model that matches the actual score-noise relationship in eq. (6.2.4) is:

sθ(xt, ᾱt) = − 1√
1− ᾱt

√
Σ−1ϵθ(xt, ᾱt). (6.2.11)

In this case, the overall objective function changes to the noise-matching objective:

LNI-DDPM
a (θ; ¶ᾱt♢Lt=1) ≜ Et,ϵ,x0

[
∥ϵ− ϵθ(xt, ᾱt)∥2

2

]
. (6.2.12)
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LNI-DDPM
b (θ; ¶ᾱt♢Lt=1) ≜ Et,ϵ,x0

[ ∥∥∥
√

Σ−1ϵ−
√

Σ−1ϵθ(xt, ᾱt)
∥∥∥

2

2

]
. (6.2.13)

LNI-DDPM
c (θ; ¶ᾱt♢Lt=1) ≜ Et,ϵ,x0

[ ∥∥∥
√

Σϵ−
√

Σϵθ(xt, ᾱt)
∥∥∥

2

2

]
. (6.2.14)

6.2.7 Reverse (noise to data) for NI-DDPM

The goal is to estimate the reverse transition probability qt(xt−1 ♣ xt). This is intractable,

but it is possible to estimate it conditioned on x0 i.e. qt(xt−1 ♣ xt,x0).

We know from the forward process that:

pNI-DDPM
t (xt ♣ x0) = N (xt ♣

√
ᾱtx0, (1− ᾱt)Σ).

=⇒ x̂0 =
1√
ᾱt

(xt −
√

1− ᾱt
√

Σϵθ∗(xt, ᾱt)). (6.2.15)

From Bayes’ theorem, we compute the parameters of qt(xt−1 ♣ xt,x0) i.e. the reverse

process additionally conditioning on x0, with the help of Bishop and Nasrabadi [2006] 2.116.

For a variable u distributed as a normal with mean µ and covariance matrix Λ−1, and a

dependent variable v conditionally distributed as a normal with mean Au + b and covariance

matrix L−1, the marginal distribution of v, and the other conditional distribution p(u ♣ v)

are given as:

p(u) = N (u ♣ µ,Λ−1),

p(v ♣ u) = N (v ♣ Au + b,L−1)

=⇒ p(v) = N (v ♣ Aµ + b,L−1 + AΛ−1AT ),

=⇒ p(u ♣ v) = N (u ♣ C(ATL(v− b) + Λµ),C),C = (Λ + ATLA)−1.

For NI-DDPM, p(u) = pNI-DDPM
t−1 (xt−1 ♣ x0), p(v) = pNI-DDPM

t (xt):

pNI-DDPM
t−1 (xt−1 ♣ x0) = N (xt−1 ♣

√
ᾱt−1x0, (1− ᾱt−1)Σ).

pNI-DDPM
t (xt ♣ xt−1,x0) = N (xt ♣

√
1− βtxt−1, βtΣ).

=⇒ Given p(u) = pNI-DDPM
t−1 (xt−1 ♣ x0), p(v ♣ u) = pNI-DDPM

t (xt ♣ x0),

we need p(u ♣ v) = qNI-DDPM
t−1 (xt−1 ♣ xt,x0).

=⇒ µ =
√
ᾱt−1x0,Λ

−1 = (1− ᾱt−1)Σ,A =
√

1− βt,b = 0,L−1 = βtΣ.

=⇒ C =

(
1

1− ᾱt−1

Σ−1 + (1− βt)
1

βt
Σ−1

)−1

=

(
��βt + 1−��βt − αt

(1− ᾱt−1)βt
Σ−1

)−1

,

=
1− ᾱt−1

1− ᾱt
βtΣ = β̃tΣ.

=⇒ C(ATL(y− b) + Λµ) =
1− ᾱt−1

1− ᾱt
βtΣ

(√
1− βt

1

βt
Σ−1xt +

1

1− ᾱt−1

Σ−1
√
ᾱt−1x0

)
,
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=

√
ᾱt−1βt

1− ᾱt
x0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt.

Thus, the parameters of the distribution of the reverse process are:

∴qNI-DDPM
t (xt−1 ♣ xt,x0) = N (xt−1 ♣ µ̃t−1(xt,x0), β̃t−1Σ) , where

µ̃t−1(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt; β̃t−1 =

1− ᾱt−1

1− ᾱt
βt. (6.2.17)

=⇒ xt−1 = µ̃t−1(xt, x̂0) +
√
β̃t−1

√
Σz, (6.2.18)

where

µ̃t−1(xt, x̂0) =

√
ᾱt−1βt

1− ᾱt

(
1√
ᾱt

(
xt −

√
1− ᾱt

√
Σϵ∗

))
+

√
1− βt(1− ᾱt−1)

1− ᾱt
xt,

=

√
ᾱt−1√
ᾱt

βt
1− ᾱt

xt −
√
ᾱt−1√
ᾱt

βt√
1− ᾱt

√
Σϵ∗ +

√
1− βt

1− ᾱt

(
1− ᾱt−1

)
xt,

=
1√

1− βt
βt

1− ᾱt
xt +

√
1− βt

1− ᾱt

(
1− ᾱt

1− βt

)
xt −

1√
1− βt

βt√
1− ᾱt

√
Σϵ∗,

=
1√

1− βt

(
βt

1− ᾱt
xt +

1− βt
1− ᾱt

(
1− ᾱt

1− βt

)
xt −

βt√
1− ᾱt

√
Σϵ∗

)
,

=
1√

1− βt

(
��βt +

❳❳❳❳❳❳1✟✟✟−βt − ᾱt
❳❳❳❳1− ᾱt

xt −
βt√

1− ᾱt
√

Σϵ∗

)
,

=⇒ µ̃t−1(xt, x̂0) =
1√

1− βt

(
xt −

βt√
1− ᾱt

√
Σϵθ∗(xt)

)
. (6.2.19)

(6.2.20)

=⇒ xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

√
Σ ϵθ∗(xt)

)
+
√
β̃t−1

√
Σ z, (6.2.21)

=
1√

1− βt
(
xt + βtΣ sθ∗(xt, ᾱt)

)
+
√
β̃t−1

√
Σ z. (6.2.22)

6.2.8 Sampling in NI-DDPM

We perform sampling at each time step in 2 parts:

Step 1 (from eq. (6.2.15)): x̂0 =
1√
ᾱt

(xt −
√

1− ᾱt
√

Σϵθ∗(xt, ᾱt)). (6.2.23)

Step 2 (from eq. (6.2.18)): xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt +

√
β̃t−1

√
Σz.

(6.2.24)
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6.2.9 Sampling in NI-DDPM using DDIM

DDIM replaces Step 2 with the NI-DDPM forward process eq. (6.2.3):

Step 1: x̂0 =
1√
ᾱt

(xt −
√

1− ᾱt
√

Σϵθ∗(xt)). (6.2.25)

Step 2: xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1

√
Σϵθ∗(xt). (6.2.26)

This is derived from the following distributions from Song et al. [2021a]:

pNI-DDPM
L (xL ♣ x0) = N (xL ♣

√
ᾱLx0, (1− ᾱL)Σ). (6.2.27)

qNI-DDIM
t (xt−1 ♣ xt,x0) = N

(
xt−1 ♣

√
ᾱt−1x0 +

√
1− ᾱt−1

xt −
√
ᾱtx0√

1− ᾱt
,0

)
. (6.2.28)

=⇒ pNI-DDIM
t (xt ♣ x0) = N

(
xt ♣
√
ᾱtx0, (1− ᾱt)Σ

)
. (6.2.29)

6.2.10 Expected Denoised Sample (EDS) for NI-DDPM

From Saremi and Hyvarinen [2019], we know that the expected denoised sample x∗
0(xt, ᾱt) ≜

Ex0∼qt(x0♣xt)[x0] and the optimal score sθ∗(xt, ᾱt) are related as (as mentioned earlier in

eq. (2.4.41)):

sθ∗(xt, ᾱt) = E

[
∥∇xt

log pt(xt ♣ x0)∥2
2

]
(x∗

0(xt, ᾱt)− xt). (6.2.30)

For NI-DDPM with non-isotropic Gaussian noise of covariance (1− ᾱt)Σ,

sθ∗(xt, ᾱt) =
1

1− ᾱt
Σ−1(x∗

0(xt, ᾱt)− xt). (6.2.31)

=⇒ x∗
0(xt, ᾱt) = xt + (1− ᾱt)Σ sθ∗(xt, ᾱt) = xt −

√
1− ᾱt

√
Σ ϵθ∗(xt). (6.2.32)

6.2.11 SDE formulation : Non-Isotropic Variance Preserving (NIVP)

SDE

For NI-DDPM i.e. Non-Isotropic Variance Preserving (NIVP) SDE, the forward equation

and transition probability are derived (below) as:

dx = −1

2
β(t)x dt+

√
β(t)
√

Σ dw. (6.2.33)

pNIVP
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0) e− 1

2

∫ t

0
β(s)ds,Σ(I− Ie−

∫ t

0
β(s)ds)

)
. (6.2.34)

6.2.11.1 Derivations :

Forward process: We know from eq. (6.2.1) that:

xt =
√

1− βtxt−1 +
√
βt
√

Σϵt−1.

=⇒ x(t+ ∆t) =
√

1− β(t+ ∆t)∆t x(t) +
√
β(t+ ∆t)∆t

√
Σϵ(t),
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≈
(

1− 1

2
β(t+ ∆t)∆t

)
x(t) +

√
β(t+ ∆t)∆t

√
Σϵ(t),

≈ x(t)− 1

2
β(t)∆t x(t) +

√
β(t)∆t

√
Σϵ(t).

=⇒ dx = −1

2
β(t)x dt+

√
β(t)
√

Σ dw. (6.2.35)

Mean (from eq. 5.50 in Sarkka & Solin (2019)):

dx = f dt+ G dw =⇒ dµ

dt
= Ex[f ].

∴
dµNI-DDPM(t)

dt
= Ex[−1

2
β(t)x] = −1

2
β(t)Ex(x) = −1

2
β(t)µNI-DDPM(t),

=⇒ dµNI-DDPM(t)

µNI-DDPM(t)
= −1

2
β(t)dt =⇒ log µNI-DDPM(t)♣t0 = −1

2

∫ t

0
β(s)ds,

=⇒ log µNI-DDPM(t)− log µ(0) = −1

2

∫ t

0
β(s)ds =⇒ log

µNI-DDPM(t)

µ(0)
= −1

2

∫ t

0
β(s)ds,

=⇒ µNI-DDPM(t) = µ(0) e− 1
2

∫ t

0
β(s)ds.

Covariance (from eq. 5.51 in Sarkka & Solin (2019)):

dx = f dt+ G dw =⇒ dΣcov

dt
= Ex[f(x− µ)T ] + Ex[(x− µ)fT ] + Ex[GGT ].

∴
dΣNI-DDPM(t)

dt
= Ex[−1

2
β(t)xxT ] + Ex[x(−1

2
β(t)x)T ] + Ex[

√
β(t)
√

Σ
√
β(t)
√

Σ],

= −β(t)ΣNI-DDPM(t) + β(t)Σ = β(t)(Σ−ΣNI-DDPM(t)),

=⇒ dΣNI-DDPM(t)

Σ−ΣNI-DDPM(t)
= β(t)dt =⇒ − log(Σ−ΣNI-DDPM(t))♣t0 =

∫ t

0
β(s)ds,

=⇒ − log(Σ−ΣNI-DDPM(t)) + log(Σ−Σx(0)) =
∫ t

0
β(s)ds,

=⇒ Σ−ΣNI-DDPM(t)

Σ−Σx(0)
= e−

∫ t

0
β(s)ds =⇒ ΣNI-DDPM(t) = Σ− e−

∫ t

0
β(s)ds(Σ−Σx(0)),

=⇒ ΣNI-DDPM(t) = Σ + e−
∫ t

0
β(s)ds(Σx(0)−Σ).

For each data point x(0), µ(0) = x(0), Σx(0) = 0:

=⇒ µNI-DDPM(t) = x(0) e− 1
2

∫ t

0
β(s)ds,

ΣNI-DDPM(t) = Σ + e−
∫ t

0
β(s)ds(0−Σ) = Σ(I− Ie−

∫ t

0
β(s)ds).

∴ NI-DDPM i.e. pNIVP
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0) e− 1

2

∫ t

0
β(s)ds,Σ(I− Ie−

∫ t

0
β(s)ds)

)
.
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6.3 Non-isotropic SMLD (NI-SMLD)

6.3.1 Forward (data to noise) for NI-SMLD

In NI-SMLD, for a fixed sequence of positive scales 0 < σ1 < · · ·σL < 1, and a noise sample

ϵt ∼ N (0, I) from a standard normal distribution, and a clean data point x0, the cumulative

“forward” process is:

qNI-SMLD
σi

(xi ♣ x0) = N (xi ♣ x0, σ
2
i Σ). (6.3.1)

=⇒ xi = x0 + σi
√

Σϵ =⇒ ϵ =
√

Σ−1
xi − x0

σi
. (6.3.2)

The transition “forward” process can be derived as:

qNI-SMLD
σi

(xi+1 ♣ xi) = N (xi+1 ♣ xi, (σ2
i+1 − σ2

i )Σ). (6.3.3)

=⇒ xi = xi−1 +
√
σ2
i − σ2

i−1

√
Σϵi−1. (6.3.4)

6.3.2 Score for NI-SMLD

qNI-SMLD
σi

(xi ♣ x0) = N (xi ♣ x0, σ
2
i Σ). (6.3.5)

=⇒ ∇xi
log qNI-SMLD

σi
(xi ♣ x0) = −Σ−1 xi − x0

σ2
i

= −
√

Σ−1
ϵ

σi
. (6.3.6)

6.3.3 Score-matching objective function for NI-SMLD

The objective function for SMLD at noise level σ is:

ℓNI-SMLD(θ;σi) ≜
1

2
EqNI-SMLD

σi
(xi♣x0)p(x0)

[ ∥∥∥∥∥sθ(xi, σi) + Σ−1 xi − x0

σ2
i

∥∥∥∥∥

2

2

]
, (6.3.7)

=
1

2
EqNI-SMLD

σi
(xi♣x0)p(x0)

[ ∥∥∥∥sθ(xi, σi) +
1

σi

√
Σ−1ϵ

∥∥∥∥
2

2

]
. (6.3.8)

6.3.4 Variance of score for NI-SMLD

E

[∥∥∥∇xi
log qNI-SMLD

σi
(xi ♣ x0)

∥∥∥
2

2

]
= E



∥∥∥∥∥−Σ−1 xi − x0

σ2
i

∥∥∥∥∥

2

2


 ,

= E



∥∥∥∥∥Σ

−1σi
√

Σϵ

σ2
i

∥∥∥∥∥

2

2


 =

1

σ2
i

Σ−1
E

[
∥ϵ∥2

2

]
=

1

σ2
i

Σ−1. (6.3.9)

6.3.5 Overall objective function for NI-SMLD

The overall objective function weights the score-matching objective ℓNI-SMLD(θ;σi) by the

inverse of the variance of the score at each time step =⇒ λ(σi) = σ2
i Σ:

LNI-SMLD(θ; ¶ᾱt♢Lt=1) ≜ Et λ(ᾱt) ℓ
NI-SMLD(θ; ᾱt),
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=
1

2L

L∑

i=1

EqNI-SMLD
σi

(xi♣x0)p(x0)

[ ∥∥∥∥∥σi
√

Σsθ(xi, σi) +
√

Σ−1
(xi − x0)

σi

∥∥∥∥∥

2

2

]
,

=
1

2L

L∑

i=1

EqNI-SMLD
σi

(xi♣x0)p(x0)

[ ∥∥∥σi
√

Σsθ(xi, σi) + ϵ
∥∥∥

2

2

]
. (6.3.10)

6.3.6 Unconditional NI-SMLD score estimation

An unconditional score model is:

sθ(xi, σi) = −
√

Σ−1
1

σi
ϵθ(xi). (6.3.11)

In this case, the overall objective function changes to:

LNI-SMLD(θ; ¶σi♢Li=1) ≜
1

2L

L∑

i=1

EqNI-SMLD
σi

(xi♣x0)p(x0)

[
∥ϵ− ϵθ(xi)∥2

2

]
,

=
1

2L

L∑

i=1

EqNI-SMLD
σi

(xi♣x0)p(x0)

[ ∥∥∥ϵ− ϵθ(x0 + σi
√

Σϵ)
∥∥∥

2

2

]
. (6.3.12)

6.3.7 Sampling i.e. Reverse (noise to data) for NI-SMLD

Similar to SMLD, NI-SMLD does not explicitly define a reverse process. Instead, similar

to Song and Ermon [2019, 2020], Jolicoeur-Martineau et al. [2021a], we derive Annealed

Langevin Sampling below to transform from noise to data.

Forward : xi = xi−1 +
√
σ2
i − σ2

i−1

√
Σϵi−1.

Reverse: Annealed Langevin Sampling for NI-SMLD:

x0
L ∼ N (0, σmax

√
Σ).

x0
i = xMi+1,

xm+1
i ← xmi + αisθ∗(xmi , σi) +

√
2αi
√

Σϵm+1
i ,m = 1, · · · ,M.



 i = L, · · · , 1 (6.3.13)

αi = ϵσ2
i /σ

2
L.

Consistent Annealed Sampling [Jolicoeur-Martineau et al., 2021b] for NI-SMLD:

xi−1 ← xi + αisθ∗(xi, σi) + βσi−1

√
Σϵi−1, i = L, · · · , 1. (6.3.14)

αi = ϵσ2
t /σ

2
min; β =

√
1− γ2(1− ϵ/σ2

min)2; γ = σt/σt−1;σt > σt−1.

6.3.8 Expected Denoised Sample (EDS) for NI-SMLD

From Saremi and Hyvarinen [2019], assuming non-isotropic Gaussian noise of covariance σ2Σ,

we know that the EDS x∗
0(xt, σ) ≜ Ex0∼qσ(x0♣xt)[x] and optimal score sθ∗(xI , σ) are related as:

sθ∗(xi, σ) =
1

σ2
Σ−1(x∗

0(xi, σ)− xt).

=⇒ x∗
0(xi, σ) = xi + σ2Σ sθ∗(xi, σ) = xi − σ

√
Σ ϵθ∗(xi). (6.3.15)
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6.3.9 SDE formulation : Non-Isotropic Variance Exploding (NIVE)

SDE

For NI-SMLD i.e. Non-Isotropic Variance Exploding (NIVE) SDE, the forward equation and

transition probability are derived (below) as:

dx =

√
d[σ2(t)]

dt

√
Σ dw. (6.3.16)

pNIVE
0t (x(t) ♣ x(0)) = N

(
x(t) ♣ x(0), σ2(t)Σ

)
. (6.3.17)

6.3.9.1 Derivations :

Forward process: We know from eq. (6.3.4) that:

xi = xi−1 +
√
σ2
i − σ2

i−1

√
Σϵi−1.

=⇒ x(t+ ∆t) = x(t) +
√

(σ2(t+ ∆t)− σ2(t))∆t
√

Σϵ(t),

≈ x(t) +

√
d[σ2(t)]

dt
∆t
√

Σw(t).

=⇒ dx =

√
d[σ2(t)]

dt

√
Σ dw. (6.3.18)

Thus, eq. (6.3.16) is derived.

Mean and Covariance (from eq. 5.50 and eq.5.51 in Särkkä and Solin [2019]) for a

random variable x that changes according to a stochastic process with drift and diffusion

coefficients f and G, change as:

dx = f dt+ G dw =⇒ dµ

dt
= Ex[f ], (6.3.19)

dΣcov

dt
= Ex[f(x− µ)T ] + Ex[(x− µ)fT ] + Ex[GGT ]. (6.3.20)

For NI-SMLD, f = 0,µ = 0,G =
√

d[σ2(t)]
dt

√
Σ.

dµNI-SMLD(t)

dt
= Ex[0] = 0, (6.3.21)

=⇒ µNI-SMLD(t) = µ(0) = x(0). (6.3.22)

dΣNI-SMLD(t)

dt
= Ex


0 + 0 +

√
d[σ2(t)]

dt

√
Σ

√
d[σ2(t)]

dt

√
Σ


 =

d[σ2(t)]

dt
Σ, (6.3.23)

=⇒ ΣNI-SMLD(t) = σ2(t)Σ. (6.3.24)

∴ NI-SMLD i.e. pNIVE
0t (x(t) ♣ x(0)) = N (x(t) ♣ x(0), σ2(t)Σ). Thus, eq. (6.3.17) is

derived.
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6.3.10 Initial noise scale for NI-SMLD

Building on Proposition 1 in Song and Ermon [2020], let p̂σ1(x) ≜ 1
N

∑N
i=1 p

(i)(x), where

p(i)(x) ≜ N (x ♣ x(i), σ2
1Σ). With r(i)(x) ≜ p(i)(x)∑N

k=1
p(k)(x)

, the score function is ∇x log p̂σ1(x) =
∑N
i=1 r

(i)(x)∇x log p(i)(x).

We know that:

N (x ♣ x(i), σ2
1Σ) =

1

(2π)D/2σD1 ♣Σ♣1/2
exp

(
− 1

2σ2
1

(x− x(i))TΣ−1(x− x(i))

)
.

Ep(i)(x)[r
(j)(x)] =

∫ p(i)(x)p(j)(x)
∑N
k=1 p

(k)(x)
dx ≤

∫ p(i)(x)p(j)(x)

p(i)(x) + p(j)(x)
dx,

=
1

2

∫ 2
1

p(i)(x)
+ 1

p(j)(x)

dx ≤ 1

2

∫ √
p(i)(x)p(j)(x)dx,

=
1

2

1

(2π)D/2σD1 ♣Σ♣1/2

∫
exp

(
− 1

4σ2
1

(
(x− x(i))TΣ−1(x− x(i)) + (x− x(j))TΣ−1(x− x(j))

)
dx,

=
1

2

1

(2π)D/2σD1 ♣Σ♣1/2

∫
exp

(
− 1

4σ2
1

(
(x− x(i))TΣ−1(x− x(i)) + (x− x(j))TΣ−1(x− x(i)),

+ (x− x(j))TΣ−1(x(i) − x(j))

)
dx,

=
1

2

1

(2π)D/2σD1 ♣Σ♣1/2

∫
exp

(
− 1

4σ2
1

(
(x− x(i))TΣ−1(x− x(i)) + (x− x(i))TΣ−1(x− x(i)),

+ (x(i) − x(j))TΣ−1(x− x(i)) + (x− x(i))TΣ−1(x(i) − x(j)),

+ (x(i) − x(j))TΣ−1(x(i) − x(j))

)
dx,

=
1

2

1

(2π)D/2σD1 ♣Σ♣1/2

∫
exp

(
− 1

2σ2
1

(
(x− x(i))TΣ−1(x− x(i)) + 2(x− x(i))TΣ−1 (x(i) − x(j))

2
,

+
(x(i) − x(j))

2

T

Σ−1 (x(i) − x(j))

2
− (x(i) − x(j))

2

T

Σ−1 (x(i) − x(j))

2
,

+
1

2
(x(i) − x(j))TΣ−1(x(i) − x(j))

)
dx,

=
1

2
exp

(
− 1

8σ2
1

(x(i) − x(j))TΣ−1(x(i) − x(j))

)
.

It is desirable to choose σ1 that is proportional to the numerator term so that Ep(i)(x)[r
(j)(x)]

has a reasonably large value. To make this happen, from Song and Ermon [2020]:

=⇒ 1

σ2
1

(x(i) − x(j))TΣ−1(x(i) − x(j)) ≈ 1,

=⇒ (
√

Σ−1(x(i) − x(j)))T (
√

Σ−1(x(i) − x(j))) ≈ σ2
1,
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=⇒
∥∥∥
√

Σ−1(x(i) − x(j))
∥∥∥

2
≈ σ1,

=⇒
∥∥∥σN Real

(
W−1

N KWN(x(i) − x(j))
)∥∥∥

2
≈ σ1,

=⇒
∥∥∥σNW−1

N KWNx(i) − σNW−1
N KWNx(j)

∥∥∥
2
≈ σ1.

For CIFAR10, this σ1 ≈ 20 for NI-SMLD (whereas for SMLD σ1 ≈ 50).

6.3.11 Other noise scales

Building on Proposition 2 in Song and Ermon [2020], let image x ∈ R
D ∼ N (0, σ2I), and

r = ♣♣x♣♣2. For simplification of analysis, because image dimensions D are typically quite

large, we can assume:

pσi
(r) = N (r ♣ mi, s

2
i ),where mi ≜

√
Dσi; s

2
i ≜ σ2

i /2.

Using the three-sigma rule of thumb [Grafarend, 2006], pσi
(r) has high density in:

Ii ≜ (mi − 3si,mi + 3si).

Given the discrete nature of σis, we need the radial components of pσi
(x) and pσi−1

(x) to have

large overlap. This naturally leads us to fix pσi
(r ∈ Ii−1) to be a moderately high constant,

Song and Ermon [2020] chose 0.5. Given Φ(.) is the Cumulative Density Function (CDF) of

standard Gaussian, and γ ≜ σi−1/σi considering a geometric progression of σis:

pσi
(r ∈ Ii−1) = Φ

(
(mi−1 + 3si−1)−mi

si

)
− Φ

(
(mi−1 − 3si−1)−mi

si

)
,

= Φ

(√
2

σi
(
√
Dσi−1 +

3σi−1√
2
−
√
Dσi)

)
− Φ

(√
2

σi
(
√
Dσi−1 −

3σi−1√
2
−
√
Dσi)

)
,

= Φ
(

1

σi
(
√

2D(σi−1 − σi) + 3σi−1)
)
− Φ

(
1

σi
(
√

2D(σi−1 − σi)− 3σi−1)
)
,

= Φ
(√

2D(γ − 1) + 3γ
)
− Φ

(√
2D(γ − 1)− 3γ

)
≈ 0.5.

From the previous discussion, given σ1 = 20, and setting σL = 0.01, L = 207, γ = 1.0376

(whereas for SMLD σ1 = 50, L = 232).

6.3.12 Configuring annealed Langevin dynamics

Building on Proposition 3 in Song and Ermon [2020], γ = σi−1

σi
. For α = ϵ · σ2

i

σ2
L

, we have

xT ∼ N (0,Var[xT ]), where

Var[xT ]

σ2
i

= γ2PTΣPT +
2ϵ

σ2
L

T−1∑

t=0

(PtΣPt), (6.3.25)

where P = I− α
σ2

i

Σ−1 = I− ϵ
σ2

L

Σ−1 (proof below).
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Hence, we choose ϵ s.t. V ar[xT ]
σ2

i

≈ 1, =⇒ ϵ = 3.1e−7 for T = 5, ϵ = 2.0e−6 for T = 1

(whereas for SMLD ϵ = 6.2e−6 for T = 5)

Proof:

First, the conditions we know are:

x0 ∼ pσi−1
(x) = N (x ♣ 0, σ2

i−1Σ) =
1

(2π)D/2σDi−1♣Σ♣1/2
exp

(
− 1

2σ2
i−1

xTΣ−1x

)
,

∇x log pσi
(xt) = ∇x

(
− log(const.)− 1

2σ2
i

xTt Σ−1xt

)
= − 1

σ2
i

Σ−1xt,

xt+1 ← xt + α∇x log pσi
(xt) +

√
2αgt = xt − α

1

σ2
i

Σ−1xt +
√

2αgt,

where gt ∼ N (0,Σ), α = ϵ
σ2

i

σ2
L

. Therefore, the variance of xt satisfies

Var[xt] =




σ2
i−1Σ if t = 0

Var[
(
I− α

σ2
i

Σ−1
)
xt−1] + 2αΣ otherwise.

Var[Ax] = AVar[x]AT =⇒ Var[xt] =
(
I− α

σ2
i

Σ−1
)
Var[xt−1]

(
I− α

σ2
i

Σ−1
)

+ 2αΣ.

Let P = I− α
σ2

i

Σ−1 = I− ϵ
σ2

L

Σ−1.

=⇒ Var[xt] = PVar[xt−1]P + 2αΣ = P(PVar[xt−2]P + 2αΣ)P + 2αΣ

= PPVar[xt−2]PP + 2α(PΣP + Σ) = P(2)Var[xt−2]P
(2) + 2α(PΣP + Σ),

=⇒ Var[xT ] = P(T )Var[x0]P
(T ) + 2α

T−1∑

t=0

(P(t)ΣP(t)) = σ2
i−1P

(T )ΣP(T ) + 2ϵ
σ2
i

σ2
L

T−1∑

t=0

(P(t)ΣP(t)),

=⇒ Var[xT ]

σ2
i

= γ2P(T )ΣP(T ) +
2ϵ

σ2
L

T−1∑

t=0

(P(t)ΣP(t)).

6.3.13 Optimal conditional score function

Jolicoeur-Martineau et al. [2021b] discovered in Appendix E that for SMLD, the conditional

score estimate in expectation does not match the theoretic value when derived from the

unconditional score model in the case of a single data point x0:

unconditional sθ(xi) =
1

L

L∑

i=1

(
Ex0∼qσi

(x0♣xi)[x0]− xi

σi

)
=

x0 − xi
σH

, (6.3.26)

=⇒ conditional sθ(xi, σi) =
1

σi
sθ(xi) =

x0 − xi
σiσH

̸= x0 − xi
σ2
i

, (6.3.27)

where 1
σH

= 1
L

∑L
i=1

1
σi

, i.e. σH is the harmonic mean of the σis used to train.
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In the case of NI-SMLD, using calculus of variations,

∂L
∂s

=
∫ ∫

qσ(xi,x, σ)
(

s(xi) +
√

Σ−1
xi − x

σ

)
dxdσ = 0,

⇐⇒ s(xi)q(xi) =
√

Σ−1

∫ ∫
qσ(xi,x)p(σ)

(
xi − x

σ

)
dxdσ,

⇐⇒ s(xi)q(xi) =
√

Σ−1Eσ∼p(σ)

[∫
qσ(xi ♣ x)q(xi)

(
xi − x

σ

)
dx
]
,

⇐⇒ s(xi) =
√

Σ−1Eσ∼p(σ)

[∫
qσ(xi ♣ x)

(
xi − x

σ

)
dx
]
,

⇐⇒ unconditional s(xi) =
√

Σ−1Eσ∼p(σ)

[
Ex∼qσ(x♣xi)[x]− x

σ

]
.

For SMLD, in the case of a single data point x0:

unconditional s(xi) =
√

Σ−1
x0 − xi
σH

,

=⇒ conditional sθ(xi, σi) =
1

σi

√
Σ−1sθ(xi) = Σ−1 x0 − xi

σiσH
̸= Σ−1 x0 − xi

σ2
i

. (6.3.28)

Hence, even for NI-SMLD, the discrepancy between the theoretical value of the score, and

the estimated conditional score derived from the unconditional score persists. We correct for

this discrepancy while sampling:

conditional sθ(xi, σi) =
σH
σi

[
1

σi

√
Σ−1sθ(xi)

]
=
σH
σ2
i

√
Σ−1sθ(xi). (6.3.29)

6.4 Isotropic DDPM v/s Non-isotropic DDPM

Below is an essential summary of isotropic and non-isotropic Gaussian denoising diffusion

models for a more direct comparison.

6.4.1 Isotropic Gaussian denoising diffusion models (DDPM)

We perform our analysis below within the Denoising Diffusion Probabilistic Models

(DDPM) [Ho et al., 2020] framework, but our analysis is valid for all other types of

score-based denoising diffusion models.

In DDPM, for a fixed sequence of positive scales 0 < β1 < · · · < βL < 1, ᾱt =
∏t
s=1(1−βs),

and a noise sample ϵ ∼ N (0, I), the cumulative “forward” noising process is:

qt(xt ♣ x0) = N (
√
ᾱtx0, (1− ᾱt)I) =⇒ xt =

√
ᾱtx0 +

√
1− ᾱtϵ. (6.4.1)

The “reverse” process involves iteratively sampling xt−1 from xt conditioned on x0 i.e.

pt−1(xt−1 ♣ xt,x0), obtained from qt(xt ♣ x0) using Bayes’ rule. For this, first ϵ is estimated

using a neural network ϵθ(xt, t). Then, using x̂0 =
(
xt −

√
1− ᾱtϵθ(xt, t)

)
/
√
ᾱt from
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Fig. 6.2. Isotropic v/s Non-Isotropic Denoising Diffusion Probabilistic Models

eq. (6.4.1), xt−1 is sampled:

pt−1(xt−1 ♣ xt, x̂0) = N ( µ̃t(xt, x̂0), β̃tI ) =⇒ xt−1 = µ̃t(xt, x̂0) +
√
β̃tzt , where (6.4.2)

µ̃t(xt, x̂0) =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
1− βt(1− ᾱt−1)

1− ᾱt
xt ; β̃t =

1− ᾱt−1

1− ᾱt
βt ; zt ∼ N (0, I) . (6.4.3)

The objective to train ϵθ(xt, t) is simply an expected reconstruction loss with the true ϵ:

Lϵ(θ) = Et∼U(1,··· ,L),x0∼p(x0),ϵ∼N (0,I)

[∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥∥
2

2

]
. (6.4.4)

From the perspective of score matching, the score of the DDPM forward process is:

Score s = ∇xt
log qt(xt ♣ x0) = − 1

(1− ᾱt)
(xt −

√
ᾱtx0) = − 1√

1− ᾱt
ϵ. (6.4.5)
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Thus, the overall score-matching objective for a score estimation network sθ(xt, t) is the

weighted sum of the loss ℓs(θ; t) for each t, the weight being the inverse of the score variance

at t i.e. (1− ᾱt):

Ls(θ) = Et (1− ᾱt) ℓs(θ; t) = Et,x0,ϵ

[ ∥∥∥
√

1− ᾱtsθ(xt, t) + ϵ
∥∥∥

2

2

]
. (6.4.6)

When the score network output is redefined as per the score-noise relationship in eq. (6.4.5):

sθ(xt, t) = − 1√
1− ᾱt

ϵθ(xt, t) =⇒ Ls(θ) = Et,x0,ϵ

[
∥−ϵθ(xt, t) + ϵ∥2

2

]
= Lϵ(θ) (6.4.7)

Thus, Ls = Lϵ i.e. the score-matching and noise reconstruction objectives are equivalent.

sθ∗(xt, t) = E

[
∥∇xt

log qt(xt ♣ x0)∥2
2

] (
x∗

0(xt, t)− xt
)

=
1

1− ᾱt
(
x∗

0(xt, t)− xt
)
, (6.4.8)

=⇒ x∗
0(xt, t) = xt + (1− ᾱt) sθ∗(xt, t) = xt −

√
1− ᾱt ϵθ∗(xt, t). (6.4.9)

The EDS is often used to further improve the quality of the final image at t = 0.

6.4.2 Non-isotropic Gaussian denoising diffusion models (NI-

DDPM)

We formulate the Non-Isotropic DDPM (NI-DDPM) using a non-isotropic Gaussian noise

distribution with a positive semi-definite covariance matrix Σ in the place of I.

The forward noising process is:

qt(xt ♣ x0) = N (
√
ᾱtx0, (1− ᾱt)Σ) =⇒ xt =

√
ᾱtx0 +

√
1− ᾱt

√
Σϵ. (6.4.10)

Thus, the score of NI-DDPM is (see Section 6.2.2 for derivation):

Score s = ∇xt
log qt(xt ♣ x0) = −Σ−1 xt −

√
ᾱtx0

1− ᾱt
= − 1√

1− ᾱt
√

Σ−1ϵ. (6.4.11)

The score-matching objective for a score estimation network sθ(xt, t) at each noise level t

is now:

ℓ(θ; t) = Ex0∼p(x0),ϵ∼N (0,I)

[ ∥∥∥∥∥sθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t) +

1√
1− ᾱt

√
Σ−1ϵ

∥∥∥∥∥

2

2

]
. (6.4.12)

The variance of this score is:

E

[
∥∇xt

log qt(xt ♣ x0)∥2
2

]
= E



∥∥∥∥∥−

1√
1− ᾱt

√
Σ−1ϵ

∥∥∥∥∥

2

2


 =

1

1− ᾱt
Σ−1

E

[
∥ϵ∥2

2

]
. (6.4.13)

The overall objective is a weighted sum, the weight being the inverse of the score variance

(1− ᾱt)Σ:

L(θ) = Et∼U(1,··· ,L) (1− ᾱt)Σ ℓ(θ; t) = Et,x0,ϵ

[ ∥∥∥
√

1− ᾱt
√

Σsθ(xt, t) + ϵ
∥∥∥

2

2

]
. (6.4.14)
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Following the score-noise relationship in eq. (6.4.11):

sθ(xt, t) = − 1√
1− ᾱt

√
Σ−1ϵθ(xt, t). (6.4.15)

The objective function now becomes (expanding sθ as per eq. (6.4.15)):

L(θ) = Et∼U(1,··· ,L),x0∼p(x0),ϵ∼N (0,I)

[ ∥∥∥−ϵθ(
√
ᾱtx0 +

√
1− ᾱt

√
Σϵ, t) + ϵ

∥∥∥
2

2

]
. (6.4.16)

This objective function for NI-DDPM seems like Lϵ of DDPM, but DDPM’s ϵθ network cannot

be re-used here since their forward processes are different. DDPM produces xt from x0 using

eq. (6.4.1), while NI-DDPM uses eq. (6.4.10). See Section 6.2.5 for alternate formulations of

the score network.

Sampling involves computing pt−1(xt−1 ♣ xt, x̂0) (see Section 6.2.8 for derivation):

qt(xt ♣ x0) = N (
√
ᾱtx0, (1− ᾱt)Σ) =⇒ x̂0 =

1√
ᾱt

(
xt −

√
1− ᾱt

√
Σϵθ(xt, t)

)
.

(6.4.17)

pt−1(xt−1 ♣ xt, x̂0) = N (µ̃t(xt, x̂0), β̃tΣ) =⇒ xt−1 = µ̃t(xt, x̂0) +
√
β̃t
√

Σzt. (6.4.18)

where µ̃t, β̃t and zt are the same as eq. (6.4.3).

Alternatively, Song et al. [2021b] mentions using βt instead of β̃t:

pβt

t−1(xt−1 ♣ xt, x̂0) = N (µ̃t(xt, x̂0), βtΣ) =⇒ xt−1 = µ̃t(xt, x̂0) +
√
βt
√

Σzt. (6.4.19)

Alternatively, sampling using DDIM Song et al. [2021a] invokes the following distribution

for xt−1:

pDDIM
t−1 (xt−1 ♣ xt, x̂0) = N

(√
ᾱt−1x̂0 +

√
1− ᾱt−1

xt −
√
ᾱtx̂0√

1− ᾱt
, 0

)
. (6.4.20)

=⇒ xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1

√
Σϵθ(xt, t). (6.4.21)

The Expected Denoised Sample x∗
0(xt, t) and the optimal score sθ∗ are now related as:

sθ∗(xt, t) = E

[
∥∇xt

log qt(xt ♣ x0)∥2
2

] (
x∗

0(xt, t)− xt
)

=
1

1− ᾱt
Σ−1

(
x∗

0(xt, t)− xt
)
. (6.4.22)

=⇒ x∗
0(xt, t) = xt + (1− ᾱt) Σsθ∗(xt, t) = xt −

√
1− ᾱt

√
Σϵθ∗(xt, t). (6.4.23)

SDE formulation: Score-based diffusion models have also been analyzed as stochastic

differential equations (SDEs) Song et al. [2021b]. The SDE version of NI-DDPM, which we

call Non-Isotropic Variance Preserving (NIVP) SDE, is (see Section 6.2.11 for derivation):

dx = −1

2
β(t)x dt+

√
β(t)
√

Σ dw. (6.4.24)

=⇒ p0t

(
x(t) ♣ x(0)

)
= N

(
x(0) e− 1

2

∫ t

0
β(s)ds, Σ(I− Ie−

∫ t

0
β(s)ds)

)
. (6.4.25)
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Finally, Section 2.4 and Section 6.2 contain more detailed derivations of the above

equations for DDPM Ho et al. [2020] and our NI-DDPM. See Section 2.5 and Section 6.3 for

the equivalent derivations for Score Matching Langevin Dynamics (SMLD) Song and Ermon

[2019, 2020], and our Non-Isotropic SMLD (NI-SMLD).

6.5 Gaussian Free Field (GFF) images

An instantiation of non-isotropic Gaussian noise is Gaussian Free Field [Sheffield, 2007]

(GFF). In 2D, this manifests as a GFF image. A GFF image g can be obtained from a

normal noise image z as follows [Sheffield, 2007]:

Fig. 6.3. (left to right) 10 GFF images (each varying downwards) as a function of the power
γ of the index (mentioned on the left).
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(1) First, sample an n× n noise image z from the standard complex normal distribution

with covariance matrix Γ = IN where N = n2 is the total number of pixels, and

pseudo-covariance matrix C = 0: z ∼ CN (0, IN ,0).

The standard complex normal distribution is one where the real part x and imaginary

part y are each distributed as the standard normal distribution with variance 1
2
IN .

Let Σab be the covariance matrix between a and b. We know that Σxx = Σyy = 1
2
IN ,

and Σxy = Σyx = 0N Then:

Γ = Ez[zzH ] = Σxx + Σyy + i(Σyx −Σxy) = IN . (6.5.1)

C = Ez[zzT ] = Σxx −Σyy + i(Σyx + Σxy) = 0N . (6.5.2)

(2) Apply the Discrete Fourier Transform using the N ×N weights matrix WN : WNz.

(3) Consider a diagonal N×N matrix of the reciprocal of an index value kij per pixel (i,j)

in Fourier space : K−1 = [1/♣kij♣](i,j), and multiply this with the above: K−1WNz.

(4) Take its Inverse Discrete Fourier Transform (W−1
N ) to make the raw GFF image:

W−1
N K−1WNz. However, this results in a GFF image with a small non-unit variance.

(5) Normalize the above GFF image with the standard deviation σN at its resolution N ,

so that it has unit variance (see Section 6.5.1 for derivation of σN):

gcomplex =
1

σN
W−1

N K−1WNz ⇐⇒ z = σNW−1
N KWNgcomplex. (6.5.3)

(6) Extract only the real part of gcomplex, and normalize (see Section 6.5.1 for derivation):

g =
1√

2NσN
Real

(
W−1

N K−1WNz
)
. ⇐⇒ z =

√
2NσNReal

(
W−1

N KWNg
)
. (6.5.4)

See Figures 6.1 and 6.3 for examples of GFF images. Effectively, this prioritizes lower

frequencies over higher, making noise smoother and correlated.

The probability distribution of GFF images g can be seen as a non-isotropic multivariate

Gaussian with mean 0, and a non-diagonal covariance matrix Σ (see Section 6.5.1 for

derivation):

p(g) = N (0,Σ). (6.5.5)

Σ =
√

Σ
√

Σ
T
. (6.5.6)

√
Σ =

1√
2NσN

Real
(
W−1

N K−1WN

)
. (6.5.7)

=⇒ g =
√

Σz. (6.5.8)
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6.5.1 Probability distribution of GFF

Let the probability distribution of GFF images be G. This can be seen as a non-isotropic

multivariate Gaussian with a non-diagonal covariance matrix Σ:

g ∼ G = N (µ,Σ) = N (0N ,Σ). (6.5.9)

We know from the properties of Discrete Fourier Transform (following the normaliza-

tion convention of the Pytorch / Numpy implementation) that, given the Discrete Fourier

Transform matrix WN :

WN = WT
N ; W−1

N = W−1
N

T
; W−1

N =
1

N
W∗

N =
1

N
WH

N . (6.5.10)

Here, g is real and z is complex, and gc is complex (real+imaginary).

µ is given by:

µ = Eg[g] = Eg[
1

2σN
(gc + g∗

c) ] =
1

2σN
(Eg[gc] + Eg[g∗

c ]) ,

=
1

2σN

(
Ez[W−1

N K−1z] + Ez[(W−1
N K−1z)∗]

)
,

=
1

2σN

(
W−1

N K−1
Ez[z] + W−1∗

N K−1
Ez[z∗]

)
,

=⇒ µ = 0N . [∵ Ez[z] = Ez[z∗] = 0N ] (6.5.11)

Σ is given by:

Σ = Eg[ g gT ],

= Eg[
1

2σN
(gc + g∗

c)
1

2σN
(gc + g∗

c)T ],

=
1

4σ2
N

Eg[ (gc + g∗
c) (gTc + gHc ) ],

=
1

4σ2
N

Eg[ gcg
T
c + gcg

H
c + g∗

cgTc + g∗
cgHc ],

=
1

4σ2
N

(
Eg[gcg

T
c ] + Eg[gcg

H
c ] + Eg[g∗

cgTc ] + Eg[g∗
cgHc ]

)
.

Eg[gcg
T
c ] = Ez[W−1

N K−1z (W−1
N K−1z)T ],

= Ez[W−1
N K−1z zTK−1W−T

N ], [∵ K−1 is diagonal ]

= W−1
N K−1

Ez[zzT ]K−1W−T
N ,

= 0N . [∵ Ez[zzT ] = 0N (eq. (6.5.2))]

Eg[gcg
H
c ] = Ez[W−1

N K−1z (W−1
N K−1z)H ],

= Ez[W−1
N K−1z zHK−1W−H

N ], [∵ K−1 is real diagonal ]
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= W−1
N K−1

Ez[zzH ]K−1 1

N
WN , [∵ W−1

N =
1

N
WH

N (eq. (6.5.10))]

=
1

N
W−1

N K−1K−1WN . [∵ Ez[zzH ] = IN (eq. (6.5.1))]

Eg[g∗
cgTc ] = Ez[(W−1

N K−1z)∗ (W−1
N K−1z)T ],

= Ez[W−1∗
N K−1z∗ zTK−1W−1

N ],

=
1

N
WNK−1

Ez[z∗zT ]K−1W−1
N , [∵ W−1

N =
1

N
W∗

N (eq. (6.5.10))]

=
1

N
WNK−1K−1W−1

N . [∵ Ez[z∗zT ] = Ez[zzH ]∗ = IN (eq. (6.5.1))]

Eg[g∗
cgHc ] = Ez[(W−1

N K−1z)∗ (W−1
N K−1z)H ],

= Ez[W−1∗
N K−1z∗ zHK−1W−H

N ],

= W−1∗
N K−1

Ez[z∗zH ]K−1W−H
N ,

= 0N . [∵ Ez[z∗zH ] = Ez[zzT ]∗ = 0N (eq. (6.5.1))]

=⇒ Σ =
1

4σ2
N

(
0N +

1

N
W−1

N K−1K−1WN +
1

N
WNK−1K−1W−1

N + 0N

)
,

=
1

4Nσ2
N

(
W−1

N K−1K−1WN + WNK−1K−1W−1
N

)
,

=
1

4Nσ2
N

(
W−1

N K−1K−1WN + (NW−1∗
N )K−1K−1(

1

N
W∗

N)
)
,

=
1

2Nσ2
N

(
1

2

(
W−1

N K−1K−1WN + (W−1
N K−1K−1WN)∗

))
,

=⇒ Σ =
1

2Nσ2
N

Real
(
W−1

N K−1K−1WN

)
. (6.5.12)

√
Σ =

1√
2NσN

Real
(
W−1

N K−1WN

)
, (6.5.13)

Σ−1 = 2Nσ2
N Real

(
W−1

N KKWN

)
, (6.5.14)

√
Σ−1 =

√
2NσN Real

(
W−1

N KWN

)
. (6.5.15)

6.5.2 Log probability of transformation

g =
√

Σz =⇒ log p(g) = log p(z)− log

∣∣∣∣∣det
dg

dz

∣∣∣∣∣ = log p(z)− log
∣∣∣det
√

Σ
∣∣∣

= log p(z)− log

∣∣∣∣∣det
1√

2NσN
Real

(
W−1

N K−1WN

)∣∣∣∣∣

= log p(z)− 1√
2NσN

log
∣∣∣det K−1

∣∣∣ .

This is useful for building (normalizing) flows using non-isotropic Gaussian noise.
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6.5.3 Varying K

The index matrix K involves computation of an index value kij per pixel (i,j). However, this

index value could be raised to any power γ i.e. ♣kij♣γ . The effect of varying γ can be seen in

Figure 6.3 : greater the γ, the more correlated are neighbouring pixels.

6.6 Experimental results

Table 6.1. Image generation metrics FID, Precision (P), and Recall (R) for CIFAR10 using
DDPM and NI-DDPM, with different generation steps.

CIFAR10 steps FID ↓ P ↑ R ↑

DDPM

1000 6.05 0.66 0.54

100 12.25 0.62 0.48

50 16.61 0.60 0.43

20 26.35 0.56 0.24

10 44.95 0.49 0.24

NI-DDPM

1000 6.95 0.62 0.53

100 12.68 0.60 0.49

50 16.91 0.57 0.45

20 30.41 0.52 0.35

10 60.32 0.43 0.23

We train two models on CIFAR10, one using DDPM and the other using NI-DDPM with

the exact same hyperparameters (batch size, learning rate, etc.) for 300,000 iterations. We

then sample 50,000 images from each, and calculate the image generation metrics of Fréchet

Inception Distance (FID) Heusel et al. [2017], Precision (P), and Recall (R). Although the

models were trained on 1000 steps between data and noise, we report these metrics while

sampling images using 1000, and smaller steps: 100, 50, 20, 10.

As can be seen from Table 6.1, our non-isotropic variant performs comparable to the

isotropic baseline. The difference between them increases with decreasing number of steps

between noise and data. This provides a reasonable proof-of-concept that non-isotropic

Gaussian noise works just as well as isotropic noise when used in denoising diffusion models

for image generation. These conclusions could be generalized to denoising diffusion models of

any modality, since the theoretical framework of Non-Isotropic Denoising Diffusion Models

remains intact irrespective of the modality of data.
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6.7 Conclusion
We have presented the key mathematics behind non-isotropic Gaussian DDPMs, as well as a

complete example using a GFF. We then noted quantitative comparison of using GFF noise vs.

regular noise on the CIFAR-10 dataset. In the appendix, we also include further derivations

for non-isotropic SMLD models. GFFs are just one example of a well known class of models

that are a subset of non-isotropic Gaussian distributions. In the same way that other work

has examined non-Gaussian distributions such as the Gamma distribution [Nachmani et al.,

2021], Poisson distribution [Xu et al., 2022], and Heat dissipation processes [Rissanen et al.,

2022], we hope that our work here may lay the foundation for other new denoising diffusion

formulations.
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Chapter 7

MCVD: Masked Conditional Video

Diffusion [Voleti et al., 2022a]

7.0 Prologue to article

7.0.1 Article details

MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and

Interpolation. Vikram Voleti*, Alexia Jolicoeur-Martineau*, Christopher Pal (*denotes

equal contribution). Advances in Neural Information Processing Systems (NeurIPS) 2022.

Personal contribution: The project began with discussions between the authors at Mila.

The idea was to apply denoising diffusion models to model the modality of video. Since

denoising diffusion models were shown to work very well on images, it was to be seen whether

they could be trained to generate videos. Vikram Voleti and Alexia Jolicoeur-Martineau

initially discussed some ideas with other members of the research community, however they

did not work as expected. Then Vikram Voleti worked on an initial idea, wrote the code,

and conducted preliminary experiments using Moving MNIST that proved that it was indeed

possible for denoising diffusion models to model video successfully. Vikram Voleti and Alexia

Jolicoeur-Martineau then joined forces to scale this up to bigger and more complex datasets.

Christopher Pal provided advice and guidance throughout the project, provided the idea

of masking the past and future frames so that a single model can solve all video tasks

simultaneously, and wrote parts of the paper. Vikram and Alexia both contributed to the

code, experimental design, experiments, improvements to the model architecture, metrics for

evaluation, sampling techniques, writing of the final publication, rebuttal, release of code and

model checkpoints.

7.0.2 Context

Video prediction is a challenging task. The quality of video frames from current state-of-the-

art generative models tends to be poor and generalization beyond the training data is difficult.



Furthermore, existing prediction frameworks are typically not capable of simultaneously

handling other video-related tasks such as unconditional generation or interpolation. The

recently proposed denoising diffusion models, although very successful at generating images,

had not been applied to the modality of video yet.

7.0.3 Contributions

In this work, we devise a general-purpose framework called Masked Conditional Video

Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional

score-based denoising diffusion model, conditioned on past and/or future frames. We train

the model in a manner where we randomly and independently mask all the past frames

or all the future frames. This novel but straightforward setup allows us to train a single

model that is capable of executing a broad range of video tasks, specifically: future/past

prediction – when only future/past frames are masked; unconditional generation – when

both past and future frames are masked; and interpolation – when neither past nor future

frames are masked. Our experiments show that this approach can generate high-quality

frames for diverse types of videos. Our MCVD models are built from simple non-recurrent

2D-convolutional architectures, conditioning on blocks of frames and generating blocks of

frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our

approach yields state-of-the-art results across standard video prediction and interpolation

benchmarks, with computation times for training models measured in 1-12 days using ≤ 4

GPUs.

Project page: https://mask-cond-video-diffusion.github.io

Code: https://mask-cond-video-diffusion.github.io/

7.0.4 Research impact

Denoising diffusion models have quickly become the default generative models for most

modalities: images, video, audio, 3D, etc. Since our work was published, several works

(including a few concurrent works) have used denoising diffusion models to generate videos [Ho

et al., 2022b, Yang et al., 2022, Harvey et al., 2022, Höppe et al., 2022, Yu et al., 2023, He et al.,

2022, Nikankin et al., 2022, Luo et al., 2023, Yin et al., 2023]. Others have further conditioned

them on text prompts to make text-to-video models, including Make-A-Video by Meta [Singer

et al., 2022], ImagenVideo by Google [Ho et al., 2022a], Phenaki by Google [Villegas et al.,

2023], MagicVideo by ByteDance [Zhou et al., 2022], Gen2 by RunwayML [Esser et al., 2023],

etc. This has been taken to the next level in Make-A-Video3D by Meta [Singer et al., 2023],

which Vikram contributed to during an internship at Meta, to generate 4D scenes from text

prompts i.e. text-to-4D based on text-to-video models.
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Real Past  = 1  = 2  = 3  = 4  = 5  = 6  = 7
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Predictions

Fig. 7.1. Our approach generates high quality frames many steps into the future: Given
two conditioning frames from the Cityscapes [Cordts et al., 2016] validation set (top left), we
show 7 predicted future frames in row 2 below, then skip to frames 20-28, autoregressively
predicted in row 4. Ground truth frames are shown in rows 1 and 3. Notice the initial large
arrow advancing and passing under the car. In frame 20 (the far left of the 3rd and 4th row),
the initially small and barely visible second arrow in the background of the conditioning
frames has advanced into the foreground. Result generated by our MCVD method (concat
variant). Note that some Cityscapes videos contain brightness changes, which may explain
the brightness change in this sample.

7.1 Introduction

Predicting what one may visually perceive in the future is closely linked to the dynamics of

objects and people. As such, this kind of prediction relates to many crucial human decision-

making tasks ranging from making dinner to driving a car. If video models could generate

full-fledged videos in pixel-level detail with plausible futures, agents could use them to make

better decisions, especially safety-critical ones. Consider, for example, the task of driving a

car in a tight situation at high speed. Having an accurate model of the future could mean the

difference between damaging a car or something worse. We can obtain some intuitions about

this scenario by examining the predictions of our model in Figure 7.1, where we condition

on two frames and predict 28 frames into the future for a car driving around a corner. We

can see that this is enough time for two different painted arrows to pass under the car. If

one zooms in, one can inspect the relative positions of the arrow and the Mercedes hood

ornament in the real versus predicted frames. Pixel-level models of trajectories, pedestrians,

potholes, and debris on the road could one day improve the safety of vehicles.
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Although beneficial to decision making, video generation is an incredibly challenging

problem; not only must high-quality frames be generated, but the changes over time must

be plausible and ideally drawn from an accurate and potentially complex distribution over

probable futures. Looking far in time is exceptionally hard given the exponential increase

in possible futures. Generating video from scratch or unconditionally further compounds

the problem because even the structure of the first frame must be synthesized. Also related

to video generation are the simpler tasks of a) video prediction, predicting the future given

the past, and b) interpolation, predicting the in-between given past and future. Yet, both

problems remain challenging. Specialized tools exist to solve the various video tasks, but

they rarely solve more than one task at a time.

Given the monumental task of general video generation, current approaches are still very

limited despite the fact that many state of the art methods have hundreds of millions of

parameters [Wu et al., 2021, Weissenborn et al., 2019, Villegas et al., 2019, Babaeizadeh

et al., 2021]. While industrial research is capable of looking at even larger models, current

methods frequently underfit the data, leading to blurry videos, especially in the longer-term

future and recent work has examined ways in improve parameter efficiency [Babaeizadeh

et al., 2021]. Our objective here is to devise a video generation approach that generates high-

quality, time-consistent videos within our computation budget of ≤ 4 GPU) and computation

times for training models ≤ two weeks. Fortunately, diffusion models for image synthesis

have demonstrated wide success, which strongly motivated our use of this approach. Our

qualitative results in Figure 7.1 also indicate that our particular approach does quite well at

synthesizing frames in the longer-term future (i.e., frame 29 in the bottom right corner).

One family of diffusion models might be characterized as Denoising Diffusion Probabilistic

Models (DDPMs) [Sohl-Dickstein et al., 2015, Ho et al., 2020, Dhariwal and Nichol, 2021],

while another as Score-based Generative Models (SGMs) [Song and Ermon, 2019, Li et al.,

2019, Song and Ermon, 2020, Jolicoeur-Martineau et al., 2021b]. However, these approaches

have effectively merged into a field we shall refer to as score-based diffusion models, which

work by defining a stochastic process from data to noise and then reversing that process to

go from noise to data. Their main benefits are that they generate very 1) high-quality and 2)

diverse data samples. One of their drawbacks is that solving the reverse process is relatively

slow, but there are ways to improve speed [Song et al., 2021a, Jolicoeur-Martineau et al.,

2021a, Salimans and Ho, 2022, Liu et al., 2022, Xiao et al., 2022]. Given their massive success

and attractive properties, we focus here on developing our framework using score-based

diffusion models for video prediction, generation, and interpolation.

Our work makes the following contributions:

(1) A conditional video diffusion approach for video prediction and interpolation that

yields state-of-the-art (SOTA) results.
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(2) A conditioning procedure based on masking past and/or future frames in a blockwise

manner giving a single model the ability to solve multiple video tasks: future/past

prediction, unconditional generation, and interpolation.

(3) A sliding window blockwise autoregressive conditioning procedure to allow fast and

coherent long-term generation (Figure 7.2).

(4) A convolutional U-net neural architecture integrating recent developments with a

conditional normalization technique we call SPAce-TIme-Adaptive Normalization

(SPATIN) (Figure 7.4).

By conditioning on blocks of frames in the past and optionally blocks of frames even

further in the future, we are able to better ensure that temporal dynamics are transferred

across blocks of samples, i.e. our networks can learn implicit models of spatio-temporal

dynamics to inform frame generation. Unlike many other approaches, we do not have explicit

model components for spatio-temporal derivatives or optical flow or recurrent blocks.

7.2 Masked conditional diffusion for video

Let x0 ∈ R
d be a sample from the data distribution pdata. A sample x0 can corrupted from

t = 0 to t = T through the Forward Diffusion Process (FDP) with the following transition

kernel:

qt(xt♣xt−1) = N (xt;
√

1− βtxt−1,βtI). (7.2.1)

Furthermore, xt can be sampled directly from x0 using the following accumulated kernel:

qt(xt♣x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) =⇒ xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (7.2.2)

where ᾱt =
∏t
s=1(1− βs), and ϵ ∼ N (0, I).

Generating new samples can be done by reversing the FDP and solving the Reverse

Diffusion Process (RDP) starting from Gaussian noise xT . It can be shown (Song et al.

[2021b], Ho et al. [2020]) that the RDP can be computed using the following transition kernel:

pt(xt−1♣xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI),

where µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt and β̃t =

1− ᾱt−1

1− ᾱt
βt. (7.2.3)

Since x0 given xt is unknown, it can be estimated using eq. (7.2.2): x̂0 =
(
xt −√

1− ᾱtϵ
)
/
√
ᾱt, where ϵθ(xt♣t) estimates ϵ using a time-conditional neural network parame-

terized by θ. This allows us to reverse the process from noise to data. The loss function of

the neural network is:

L(θ) = Et,x0∼pdata,ϵ∼N (0,I)

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ ♣ t)

∥∥∥
2

2

]
. (7.2.4)
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Note that estimating ϵ is equivalent to estimating a scaled version of the score function

(i.e., the gradient of the log density) of the noisy data:

∇xt
log qt(xt ♣ x0) = − 1

1− ᾱt
(xt −

√
ᾱtx0) = − 1√

1− ᾱt
ϵ. (7.2.5)

Thus, data generation through denoising depends on the score-function, and can be seen

as noise-conditional score-based generation.

Score-based diffusion models can be straightforwardly adapted to video by considering

the joint distribution of multiple continuous frames. While this is sufficient for unconditional

video generation, other tasks such as video interpolation and prediction remain unsolved.

A conditional video prediction model can be approximately derived from the unconditional

model using imputation [Song et al., 2021b]; indeed, the contemporary work of Ho et al.

[2022b] attempts to use this technique; however, their approach is based on an approximate

conditional model.

7.2.1 Video prediction

We first propose to directly model the conditional distribution of video frames in the immediate

future given past frames. Assume we have p past frames p = ¶pi♢pi=1 and k current frames in

the immediate future x0 = ¶xi0♢
k
i=1. We condition the above diffusion models on the past

frames to predict the current frames:

Lvidpred(θ) = Et,[p,x0]∼pdata,ϵ∼N (0,I)

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ ♣ p, t)

∥∥∥
2
]
. (7.2.6)

Given a model trained as above, video prediction for subsequent time steps can be achieved

by blockwise autoregressively predicting current video frames conditioned on previously

predicted frames (see Figure 7.2). We use variants of the network shown in Figure 7.4 to

model ϵθ in Equation 7.2.6 here, and for Equation 7.2.7 and Equation 7.2.8 below.

1 2 3 4 5

4 5 6 7 8

Real Prediction

PredictionPrediction

9 10

1c 2c

Fig. 7.2. Blockwise autoregressive prediction with our model.
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Real Past t = 1 t = 2 t = 3 t = 4 t = 5

t = 8 t = 9 t = 10 t = 11 t = 12t = 7t = 6

Predictions

Fig. 7.3. This figure shows our block autoregressive strategy where the top row and third
row are ground truth, and the second and fourth rows show the blockwise autoregressively
generated frames using our approach.

7.2.2 Video prediction + generation

Our approach above allows video prediction, but not unconditional video generation. As a

second approach, we extend the same framework to video generation by masking (zeroing-out)

the past frames with probability pmask = 1/2 using binary mask mp. The network thus learns

to predict the noise added without any past frames for context. Doing so means that we

can perform conditional as well as unconditional frame generation, i.e., video prediction

and generation with the same network. This leads to the following loss (B is the Bernouilli

distribution):

Lvidgen(θ) = Et,[p,x0]∼pdata,ϵ∼N (0,I),mp∼B(pmask)

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ ♣ mpp, t)

∥∥∥
2
]
. (7.2.7)

We hypothesize that this dropout-like [Srivastava et al., 2014] approach will also serve as

a form of regularization, improving the model’s ability to perform predictions conditioned

on the past. We see positive evidence of this effect in our experiments – see the MCVD

past-mask model variants in Tables 7.5 and 7.9 versus without past-masking. Note that

random masking is used only during training.
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7.2.3 Video prediction + generation + interpolation

We now have a design for video prediction and generation, but it still cannot perform video

interpolation nor past prediction from the future. As a third and final approach, we show

how to build a general model for solving all four video tasks. Assume we have p past frames,

k current frames, and f future frames f = ¶f i♢fi=1. We randomly mask the p past frames

with probability pmask = 1/2, and similarly randomly mask the f future frames with the same

probability (but sampled separately). Thus, future or past prediction is when only future or

past frames are masked. Unconditional generation is when both past and future frames are

masked. Video interpolation is when neither past nor future frames are masked. The loss

function for this general video machinery is:

L(θ) = Et,[p,x0,f ]∼pdata,ϵ∼N (0,I),(mp,mf )∼B(pmask)

[∥∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ ♣ mpp,mf f , t)

∥∥∥
2
]
.

(7.2.8)

The three video tasks and our solutions are visualized in Figure 7.6.

7.2.4 Network architecture

For our denoising network we use a U-net architecture [Ronneberger et al., 2015, Honari

et al., 2016, Salimans et al., 2017] combining the improvements from Song et al. [2021b] and

Dhariwal and Nichol [2021]. This architecture uses a mix of 2D convolutions [Fukushima and

Miyake, 1982], multi-head self-attention [Cheng et al., 2016], and adaptive group-norm [Wu

and He, 2018]. We use positional encodings of the noise level (t ∈ [0,1]) and process it using

a transformer style positional embedding:

e(t) =
[
. . . , cos

(
tc

−2d
D

)
, sin

(
tc

−2d
D

)
, . . .

]T
, (7.2.9)

where d = 1, . . . ,D/2 , D is the number of dimensions of the embedding, and c = 10000.

This embedding vector is passed through a fully connected layer, followed by an activation

function and another fully connected layer. Each residual block has an fully connected layer

that adapts the embedding to the correct dimensionality.

To provide xt, p, and f to the network, we separately concatenate the past/future frames

and the noisy current frames in the channel dimension. The concatenated noisy current

frames are directly passed as input to the network. Meanwhile, the concatenated conditional

frames are passed through an embedding that influences the conditional normalization akin

to SPatially-Adaptive (DE)normalization (SPADE) [Park et al., 2019] to account for the

effect of time/motion, we call this approach SPAce-TIme-Adaptive Normalization (SPATIN).

We also try passing the direct concatenation of the conditional and noisy current frames

as the input. In our experiments below, we show some results with SPATIN and some with

concatenation (concat). For simple video prediction with Equation 7.2.6, we experimented

with 3D convolutions and 3D attention. However, this requires an exorbitant amount of
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Fig. 7.4. Noisy current frames are given to a U-Net whose residual blocks receive conditional
information from past/future frames and noise-level. The output is the predicted noise in the
current frames, which is used to denoise the current frames.

memory, and we found no benefit in using 3D layers over 2D layers at the same memory (i.e.

the biggest model that fits in 4 GPUs). We also tried and found no benefit from gamma

noise [Nachmani et al., 2021], L1 loss, and F-PNDM sampling [Liu et al., 2022].

7.3 Related work
Score-based diffusion models have been used for image editing [Meng et al., 2022, Saharia

et al., 2021, Nichol et al., 2021] and our approach to video generation might be viewed as an

analogy to classical image inpainting, but in the temporal dimension. The GLIDE or Guided

Language to Image Diffusion for Generation and Editing approach of Nichol et al. [2021]

uses CLIP-guided diffusion for image editing, while Denoising Diffusion Restoration Models

(DDRM) Kawar et al. [2022] additionally condition on a corrupted image to restore the clean

image. Adversarial variants of score-based diffusion models have been used to enhance quality

[Jolicoeur-Martineau et al., 2021b] or speed [Xiao et al., 2022].
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Contemporary work to our own such as that of Ho et al. [2022b] and Yang et al. [2022] also

examine video generation using score-based diffusion models. However, the Video Diffusion

Models (VDMs) work of Ho et al. [2022b] approximates conditional distributions using a

gradient method for conditional sampling from their unconditional model formulation. In

contrast, our approach directly works with a conditional diffusion model, which we obtain

through masked conditional training, thereby giving us the exact conditional distribution as

well as the ability to generate unconditionally. Their experiments focus on: a) unconditional

video generation, and b) text-conditioned video generation, whereas our work focuses primarily

on predicting future video frames from the past, using our masked conditional generation

framework. The Residual Video Diffusion (RVD) of Yang et al. [2022] is only for video

prediction, and it uses a residual formulation to generate frames autoregressively one at a

time. Meanwhile, ours directly models the conditional frames to generate multiple frames in

a block-wise autoregressive manner.

Recurrent neural network (RNN) techniques were early candidates for modern deep

neural architectures for video prediction and generation. Early work combined RNNs with a

stochastic latent variable (SV2P) Babaeizadeh et al. [2018] and was optimized by variational

inference. The stochastic video generation (SVG) approach of Denton and Fergus [2018]

learned both prior and a per time step latent variable model, which influences the dynamics

of an LSTM at each step. The model is also trained in a manner similar to a variational

autoencoder, i.e., it was another form of variational RNN (vRNN). To address the fact that

vRNNs tend to lead to blurry results, Castrejón et al. [2019] (Hier-vRNN) increased the

expressiveness of the latent distributions using a hierarchy of latent variables. We compare

qualitative result of SVG and Hier-vRNN with the concat variant of our MCVD method in

Figure 7.5. Other vRNN-based models include SAVP Lee et al. [2018a], SRVP Franceschi

et al. [2020], SLAMP Akan et al. [2021].

The well known Transformer paradigm [Vaswani et al., 2017] from natural language

processing has also been explored for video. The Video-GPT work of Yan et al. [2021]

applied an autoregressive GPT style [Brown et al., 2020] transformer to the codes produced

from a VQ-VAE [Van Den Oord et al., 2017]. The Video Transformer work of Weissenborn

et al. [2019] models video using 3-D spatio-temporal volumes without linearizing positions in

the volume. They examine local self-attention over small non-overlapping sub-volumes or

3D blocks. This is done partly to accelerate computations on TPU hardware. Their work

also observed that the peak signal-to-noise ratio (PSNR) metric and the mean-structural

similarity (SSIM) metrics [Wang et al., 2004] were developed for images, and have serious

flaws when applied to videos. PSNR prefers blurry videos and SSIM does not correlate well

to perceptual quality. Like them, we focus on the recently proposed Frechet Video Distance

(FVD) [Unterthiner et al., 2018], computed over entire videos and which is sensitive to visual

quality, temporal coherence, and diversity of samples. Rakhimov et al. [2020] (LVT) used
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Fig. 7.5. Comparing future prediction methods on Cityscapes: SVG-LP (Top Row), Hier-
vRNNs (Second Row), Our Method (Third Row), Ground Truth (Bottom Row). Frame 2, a
ground truth conditioning frame is shown in first column, followed by frames: 3, 5, 10 and 20
generated by each method vs the ground truth at the bottom.

transformers to predict the dynamics of video in latent space. Le Moing et al. [2021] (CCVS)

also predict in latent space, that of an adversarially trained autoencoder, and also add a

learnable optical flow module.

Generative Adversarial Network (GAN) based approaches to video generation have also

been studied extensively. Vondrick et al. [2016] proposed an early GAN architecture for video,

using a spatio-temporal CNN. Villegas et al. [2017] proposed a strategy for separating motion

and content into different pathways of a convolutional LSTM based encoder-decoder RNN.

Saito et al. [2017] (TGAN) predicted a sequence of latents using a temporal generator, and

then the sequence of frames from those latents using an image generator. TGANv2 Saito

et al. [2020] improved its memory efficiency. MoCoGAN Tulyakov et al. [2018] explored style

and content separation, but within a CNN framework. Yushchenko et al. [2019] used the

MoCoGAN framework by re-formulating the video prediction problem as a Markov Decision

Process (MDP). FutureGAN Aigner and Körner [2018] used spatio-temporal 3D convolutions
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in an encoder decoder architecture, and elements of the progressive GAN Karras et al. [2018]

approach to improve image quality. TS-GAN Munoz et al. [2021] facilitated information flow

between consecutive frames. TriVD-GAN Luc et al. [2020] proposes a novel recurrent unit in

the generator to handle more complex dynamics, while DIGAN Yu et al. [2022] uses implicit

neural representations in the generator.

Video interpolation was the subject of a flurry of interest in the deep learning community

a number of years ago [Niklaus et al., 2017, Jiang et al., 2018, Xue et al., 2019, Bao et al.,

2019]. However, these architectures tend to be fairly specialized to the interpolation task,

involving optical flow or motion field modelling and computations. Frame interpolation is

useful for video compression; therefore, many other lines of work have examined interpolation

from a compression perspective. However, these architectures tend to be extremely specialized

to the video compression task [Yang et al., 2020].

The Cutout approach of DeVries and Taylor [2017] has examined the idea of cutting out

small continuous regions of an input image, such as small squares. Dropout [Srivastava et al.,

2014] at the FeatureMap level was proposed and explored under the name of SpatialDropout

in Tompson et al. [2015]. Input Dropout [de Blois et al., 2020] has been examined in the

context of dropping different channels of multi-modal input imagery, such as the dropping of

the RGB channels or depth map channels during training, then using the model without one

of the modalities during testing, e.g. in their work they drop the depth channel.

Regarding our block-autoregressive approach, previous video prediction models were

typically either 1) non-recurrent: predicting all n frames simultaneously with no way of

adding more frames (most GAN-based methods), or 2) recurrent in nature, predicting 1 frame

at a time in an autoregressive fashion. The benefit of the non-recurrent type is that you can

generate videos faster than 1 frame at a time while allowing for generating as many frames

as needed. The disadvantage is that it is slower than generating all frames at once, and takes

up more memory and compute at each iteration. Our model finds a sweet spot in between

in that it is block-autoregressive: generating k < n frames at a time recurrently to finally

obtain n frames.

7.4 Experiments

7.4.1 Tasks

We show state-of-the-art results on three video tasks:

(1) Video prediction i.e. prediction of future frames conditioned on past frames,

(2) Video generation i.e. unconditional generation of video frames, and

(3) Video interpolation i.e. prediction of intermediate frames conditioned on past and

future frames

These tasks and our proposed solutions are visualized in Figure 7.6.
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Fig. 7.6. Visualization of video (a) tasks and (b) our proposed masked solutions.

7.4.2 Datasets

Our choice of datasets is in order of progressive difficulty: 1) SMMNIST: black-and-white

digits; 2) KTH: grayscale single-humans; 3) BAIR: color, multiple objects, simple scene; 4)

Cityscapes: color, natural complex natural driving scene; 5) UCF101: color, 101 categories of

natural scenes. We process these datasets similarly to prior works. For Cityscapes, each video

is center-cropped, then resized to 128× 128. For UCF101, each video clip is center-cropped

at 240×240 and resized to 64×64, taking care to maintain the train-test splits. We generate

128x128 images for Cityscapes and 64x64 images for the other datasets.

(1) Video prediction : We show the results of our video prediction experiments on test

data that was never seen during training in Tables 7.3 - 7.5 for Cityscapes [Cordts

et al., 2016], Stochastic Moving MNIST (SMMNIST) [Denton and Fergus, 2018,

Srivastava et al., 2015], KTH [Schuldt et al., 2004] and BAIR [Ebert et al., 2017]

respectively.

(2) Video generation : We present unconditional generation results for BAIR in

Table 7.6 and UCF-101 [Soomro et al., 2012] in Table 7.7.

(3) Video interpolation : We show interpolation results for SMMNIST, KTH, and

BAIR in Table 7.8.

7.4.3 Training details

Unless otherwise specified, we set the mask probability to 0.5 when masking was used.

For sampling, we report results using the sampling methods DDPM [Ho et al., 2020] or

DDIM [Song et al., 2021a] with only 100 sampling steps, though our models were trained

with 1000, to make sampling faster. We observe that the metrics are generally better using

DDPM than DDIM (except for UCF-101). Using 1000 sampling steps could yield better

results.

Note that all our models are trained to predict only 4-5 current frames at a time, unlike

other models that predict ≥10. We use these models to then autoregressively predict longer
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sequences for prediction or generation. This was done in order to fit the models in our GPU

memory budget. Despite this disadvantage, we find that our MCVD models perform better

than many previous SOTA methods.

We provide some additional information regarding model size, memory requirements,

batch size and computation times in Table 7.1. This is followed by additional results and

visualizations for SMMNIST, KTH, BAIR, UCF-101 and Cityscapes.

Table 7.1. Compute used. “steps” indicates the checkpoint with the best approximate FVD,
“GPU hours” is the total training time up to “steps”.

Dataset, params CPU mem batch GPU GPU mem steps GPU

model (GB) size (GB) hours

SMMNIST concat 27.9M 3.6 64 Tesla V100 14.5 700000 78.9

SMMNIST spatin 53.9M 3.3 64 RTX 8000 23.4 140000 39.7

KTH concat 62.8M 3.2 64 Tesla V100 21.5 400000 65.7

KTH spatin 367.6M 8.9 64 A100 145.9 340000 45.8

BAIR concat 251.2M 5.1 64 Tesla V100 76.5 450000 78.2

BAIR spatin 328.6M 9.2 64 A100 86.1 390000 50.0

Cityscapes concat 262.1M 6.2 64 Tesla V100 78.2 900000 192.83

Cityscapes spatin 579.1M 8.9 64 A100 101.2 650000 96.0

UCF concat 565.0M 8.9 64 Tesla V100 100.1 900000 183.95

UCF spatin 739.4M 8.9 64 A100 115.2 550000 79.5

7.4.4 Metrics

As mentioned earlier, we primarily use the FVD metric for comparison across models as

FVD measures both fidelity and diversity of the generated samples. Previous works compare

Frechet Inception Distance (FID) [Heusel et al., 2017] and Inception Score (IS) [Salimans

et al., 2016], adapted to videos by replacing the Inception network with a 3D-convolutional

network that takes video input. FVD is computed similarly to FID, but using an I3D network

trained on the huge video dataset Kinetics-400. We also report PSNR and SSIM.

We tried to add the older FID and IS metrics (as opposed to the newer FVD metric

which we used above) for UCF-101 as proposed in Saito et al. [2017], but we had difficulties

integrating the chainer [Tokui et al., 2019] based implementation of these metrics into our

PyTorch [Paszke et al., 2019] code base.

7.5 Results

Our MCVD concat past-future-mask and past-mask results are of particular interest as they

yield SOTA results across many benchmark configurations.
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7.5.1 Video prediction

Table 7.2. Video prediction on Cityscapes (128× 128), 2 past frames, predicting 28.

Cityscapes (128× 128) [2 → 28; trained on k] k FVD↓ LPIPS↓ SSIM↑
SVG-LP [Denton and Fergus, 2018] 10 1300.26 0.549 ± 0.06 0.574 ± 0.08
vRNN 1L [Castrejón et al., 2019] 10 682.08 0.304 ± 0.10 0.609 ± 0.11
Hier-vRNN [Castrejón et al., 2019] 10 567.51 0.264 ± 0.07 0.628 ± 0.10
GHVAE [Wu et al., 2021] 10 418.00 0.193 ± 0.014 0.740 ± 0.04
MCVD spatin past-mask (Ours) 5 184.81 0.121 ± 0.05 0.720 ± 0.11
MCVD concat past-mask (Ours) 5 141.31 0.112 ± 0.05 0.690 ± 0.12

Table 7.3. Video prediction results on SMMNIST (64× 64) for 10 predicted frames condi-
tioned on 5 past frames. We predicted 10 trajectories per real video, and report the average
FVD and maximum SSIM, averaged across 256 test videos.

SMMNIST [5 → 10; trained on k] k FVD↓ SSIM↑
SVG [Denton and Fergus, 2018] 10 90.81 0.688
vRNN 1L [Castrejón et al., 2019] 10 63.81 0.763
Hier-vRNN [Castrejón et al., 2019] 10 57.17 0.760
MCVD concat (Ours) 5 25.63 0.786
MCVD spatin (Ours) 5 23.86 0.780

Table 7.4. Video prediction results on KTH (64× 64), predicting 30/40 frames from 10 past
frames using models trained to predict k frames at a time. All models test on 256 videos.

KTH [10 → pred; trained on k] k pred FVD↓ PSNR↑ SSIM↑
SV2P [Babaeizadeh et al., 2018] 10 30 636 ± 1 28.2 0.838
SVG-LP [Denton and Fergus, 2018] 10 30 377 ± 6 28.1 0.844
SAVP [Lee et al., 2018a] 10 30 374 ± 3 26.5 0.756
MCVD spatin (Ours) 5 30 323 ± 3 27.5 0.835
MCVD concat past-future-mask (Ours) 5 30 294.9 24.3 0.746
SLAMP [Akan et al., 2021] 10 30 228 ± 5 29.4 0.865
SRVP [Franceschi et al., 2020] 10 30 222 ± 3 29.7 0.870

Struct-vRNN [Minderer et al., 2019] 10 40 395.0 24.29 0.766
MCVD concat past-future-mask (Ours) 5 40 368.4 23.48 0.720
MCVD spatin (Ours) 5 40 331.6 ± 5 26.40 0.744
MCVD concat (Ours) 5 40 276.6 ± 3 26.20 0.793
SV2P time-invariant [Babaeizadeh et al., 2018] 10 40 253.5 25.70 0.772
SV2P time-variant [Babaeizadeh et al., 2018] 10 40 209.5 25.87 0.782
SAVP [Lee et al., 2018a] 10 40 183.7 23.79 0.699
SVG-LP [Denton and Fergus, 2018] 10 40 157.9 23.91 0.800
SAVP-VAE [Lee et al., 2018a] 10 40 145.7 26.00 0.806
Grid-keypoints [Gao et al., 2021] 10 40 144.2 27.11 0.837

153



Table 7.5. Video prediction results on BAIR (64× 64) conditioning on p past frames
and predicting pred frames in the future, using models trained to predict k frames at
at time.

BAIR [past (p) → pred (pr) ; trained on k] p k pr FVD↓ PSNR↑ SSIM↑
LVT [Rakhimov et al., 2020] 1 15 15 125.8 – –
DVD-GAN-FP [Clark et al., 2019] 1 15 15 109.8 – –
MCVD spatin (Ours) 1 5 15 103.8 18.8 0.826
TrIVD-GAN-FP [Luc et al., 2020] 1 15 15 103.3 – –
VideoGPT [Yan et al., 2021] 1 15 15 103.3 – –
CCVS [Le Moing et al., 2021] 1 15 15 99.0 – –
MCVD concat (Ours) 1 5 15 98.8 18.8 0.829
MCVD spatin past-mask (Ours) 1 5 15 96.5 18.8 0.828
MCVD concat past-mask (Ours) 1 5 15 95.6 18.8 0.832
Video Transformer [Weissenborn et al., 2019] 1 15 15 94-96a – –
FitVid [Babaeizadeh et al., 2021] 1 15 15 93.6 – –
MCVD concat past-future-mask (Ours) 1 5 15 89.5 16.9 0.780

SAVP [Lee et al., 2018a] 2 14 14 116.4 – –
MCVD spatin (Ours) 2 5 14 94.1 19.1 0.836
MCVD spatin past-mask (Ours) 2 5 14 90.5 19.2 0.837
MCVD concat (Ours) 2 5 14 90.5 19.1 0.834
MCVD concat past-future-mask (Ours) 2 5 14 89.6 17.1 0.787
MCVD concat past-mask (Ours) 2 5 14 87.9 19.1 0.838

SVG-LP [Akan et al., 2021] 2 10 28 256.6 – 0.816
SVG [Akan et al., 2021]. 2 12 28 255.0 18.95 0.8058
SLAMP [Akan et al., 2021] 2 10 28 245.0 19.7 0.818
SRVP [Franceschi et al., 2020] 2 12 28 162.0 19.6 0.820
WAM [Jin et al., 2020] 2 14 28 159.6 21.0 0.844
SAVP [Lee et al., 2018a] 2 12 28 152.0 18.44 0.7887
vRNN 1L Castrejón et al. [2019] 2 10 28 149.2 – 0.829
SAVP [Lee et al., 2018a] 2 10 28 143.4 – 0.795
Hier-vRNN [Castrejón et al., 2019] 2 10 28 143.4 – 0.822
MCVD spatin (Ours) 2 5 28 132.1 17.5 0.779
MCVD spatin past-mask (Ours) 2 5 28 127.9 17.7 0.789
MCVD concat (Ours) 2 5 28 120.6 17.6 0.785
MCVD concat past-mask (Ours) 2 5 28 119.0 17.7 0.797
MCVD concat past-future-mask (Ours) 2 5 28 118.4 16.2 0.745

a 94 on only the first frames, 96 on all subsquences of test frames
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7.5.2 Video generation

Table 7.6. Unconditional generation of BAIR video frames.

BAIR (64× 64) [0 → pred; trained on 5] pred FVD↓
MCVD spatin past-mask (Ours) 16 267.8
MCVD concat past-mask (Ours) 16 228.5

MCVD spatin past-mask (Ours) 30 399.8
MCVD concat past-mask (Ours) 30 348.2

Table 7.7. Unconditional generation of UCF-101 video frames.

UCF-101 (64× 64) [0 → 16; trained on k] k FVD↓
MoCoGAN-MDP [Yushchenko et al., 2019] 16 1277.0
MCVD concat past-mask (Ours) 4 1228.3
TGANv2 [Saito et al., 2020] 16 1209.0
MCVD spatin past-mask (Ours) 4 1143.0
DIGAN [Yu et al., 2022] 16 655.0

7.5.3 Video interpolation

Table 7.8. Video Interpolation results (64 × 64). Given p past + f future frames →
interpolate k frames. Reporting average of the best metrics out of n trajectories per test
sample. ↓ (p+f) and ↑k is harder. We used MCVD spatin past-mask for SMMNIST and
KTH, and MCVD concat past-future-mask for BAIR. We also include results on SMMNIST
for a "pure" model trained without any masking.

SMMNIST (64× 64) KTH (64× 64) BAIR (64× 64)
p+f k n PSNR↑ SSIM↑ p+f k n PSNR↑ SSIM↑ p+f k n PSNR↑ SSIM↑

SVG-LP 18 7 100 13.543 0.741 18 7 100 28.131 0.883 18 7 100 18.648 0.846
FSTN 18 7 100 14.730 0.765 18 7 100 29.431 0.899 18 7 100 19.908 0.850
SepConv 18 7 100 14.759 0.775 18 7 100 29.210 0.904 18 7 100 21.615 0.877
SuperSloMo 18 7 100 13.387 0.749 18 7 100 28.756 0.893 – – – – –
SDVI full 18 7 100 16.025 0.842 18 7 100 29.190 0.901 18 7 100 21.432 0.880
SDVI 16 7 100 14.857 0.782 16 7 100 26.907 0.831 16 7 100 19.694 0.852

MCVD (Ours)
10 10 100 20.944 0.854 15 10 100 34.669 0.943 4 5 100 25.162 0.932
10 5 10 27.693 0.941 15 10 10 34.068 0.942 4 5 10 23.408 0.914

pure 18.385 0.802 10 5 10 35.611 0.963

We compare our MCVD method with previous methods of video interpolation on the

standard datasets of SMMNIST, KTH, and BAIR: SVG-LP Denton and Fergus [2018],

FSTN Lu et al. [2017], SepConv Niklaus et al. [2017], SuperSloMo Jiang et al. [2018], and

SDVI Xu et al. [2020].
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7.5.4 Ablation studies

We were able to draw the following conclusions from ablation studies, expanded upon below:

• A model trained on multiple tasks performs better than one trained on individual

tasks. This shows that solving tasks like interpolation helps in solving more complex

tasks like prediction and generation.

• In general, the concat variant performs better than the spatin variant.

In Table 7.5 we compare models that use concatenated raw pixels as input to U-Net

blocks (concat) to SPATIN variants. We also compare no-masking to past-masking variants,

i.e. models which are only trained predict the future vs. models which are regularized by

being trained for prediction and unconditional generation. It can be seen that our model

works across different choices of past frames and generates better quality for shorter videos.

This is expected from models of this kind. Moreover, it can be seen that the model trained

on the two tasks of Prediction and Generation (i.e., the models with past-mask) performs

better than the model trained only on Prediction!

In Table 7.9, we provide results for an ablation study using SMMNIST on the different

design choices: concat vs concat past-future-mask vs spatin vs spatin future-mask vs spatin

past-future-mask. In Figure 7.7 we provide some visual results for SMMNIST.

Table 7.9. Results on the SMMNIST evaluation, conditioned on 5 past frames, predicting
10 frames using models trained to predict 5 frames at a time.

SMMNIST [5 → 10; trained on 5] FVD↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓
MCVD spatin future-mask 44.14 ± 1.73 16.31 0.758 0.141 0.027
MCVD spatin past-future-mask 36.12 ± 0.63 16.15 0.748 0.146 0.027
MCVD concat 25.63 ± 0.69 17.22 0.786 0.117 0.024
MCVD spatin 23.86 ± 0.67 17.07 0.785 0.129 0.025
MCVD concat past-future-mask 20.77 ± 0.77 16.33 0.753 0.139 0.028

It can be seen that concat is, in general, better than spatin. It can also be seen that

the past-future-mask variant, which is a general model capable of all three tasks, performs

better at the individual tasks than the models trained only on the individual task. This was

demonstrated in Table 7.5 as well. This shows that the model gains helpful insights while

generalizing to all three tasks, which it does not while training only on the individual task.

We conducted preliminary experiments with a larger number of frames. Since the models

with a larger number of frames were bigger, we could only run them for a shorter time with

a smaller batch size than the smaller models. In general, we found that larger models did

not substantially improve the results. We attribute this to the fact that using more frames

means that the model should be given more capacity, but we could not increase it due to

our computational budget constraints. We emphasize that our method works very well with

fewer computational resources.
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Examining these results we remark that we have SOTA performance for prediction on

SMMNIST, BAIR and the challenging Cityscapes evaluation. Our Cityscapes model yields

an FVD of 145.5, whereas the best previous result of which we are aware is 418. The quality

of our Cityscapes results are illustrated visually in Figure 7.1 and Figure 7.2. While our

completely unconditional generation results are strong, we note that when past masking

is used to regularize future predicting models, we see clear performance gains in Table 7.5.

Finally, in Table 7.8 we see that our interpolation results are SOTA by a wide margin, across

experiments on SMMNIST, KTH and BAIR – even compared to architectures much more

specialized for interpolation.

It can be seen that our proposed method generates better quality videos, even though

it was trained on a shorter number of frames than other methods. It can also be seen that

training on multiple tasks using random masking improves the quality of generated frames

than training on the individual tasks.

7.6 Conclusion
We have shown how to obtain SOTA video prediction and interpolation results with randomly

masked conditional video diffusion models using a relatively simple architecture. We found that

past-masking was able to improve performance across all model variants and configurations

tested. We believe our approach may pave the way forward toward high quality larger-scale

video generation.

7.6.1 Limitations

Videos generated by these models are still small compared to real movies, and they can

still become blurry or inconsistent when the number of generated frames is very large. Our

unconditional generation results on the highly diverse UCF-101 dataset are still far from

perfect. More work is clearly needed to scale these models to larger datasets with more

diversity and with longer duration video. As has been the case in many other settings, simply

using larger models with many more parameters is a strategy that is likely to improve the

quality and flexibility of these models – we were limited to 4 GPUs for our work here. There

is also a need for faster sampling methods capable of maintaining quality over time.

Given our strong interpolation results, conditional diffusion models which generate skipped

frames could make it possible to generate much longer, but consistent video through a strategy

of first generating sparse distant frames in a block, followed by an interpolative diffusion step

for the missing frames.

7.6.2 Broader Impacts

High-quality video generation is potentially a powerful technology that could be used by

malicious actors for applications such as creating fake video content. Our formulation focuses
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on capturing the distributions of real video sequences. High-quality video prediction could

one day find use in applications such as autonomous vehicles, where the cost of errors could be

high. Diffusion methods have shown great promise for covering the modes of real probability

distributions. In this context, diffusion-based techniques for generative modelling may be a

promising avenue for future research where the ability to capture modes properly is safety

critical. Another potential point of impact is the amount of computational resources being

spent for these applications involving the high fidelity and voluminous modality of video

data. We emphasize the use of limited resources in achieving better or comparable results.

Our submission provides evidence for more efficient computation involving fewer GPU hours

spent in training time.

7.7 Qualitative results
Below are prediction/generation examples from Stochastic Moving MNIST, KTH, BAIR,

UCF-101, and Cityscapes. For more examples including videos, please visit https://

mask-cond-video-diffusion.github.io
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7.7.1 Stochastic Moving MNIST

Fig. 7.7. SMMNIST 5 → 10, trained on 5 (prediction). For each sample, top row is real
ground truth, bottom is predicted by our MCVD model.
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7.7.2 KTH

Fig. 7.8. KTH 5 → 20, trained on 5 (prediction). For each sample, top row is real ground
truth, bottom is predicted by our MCVD model. (We show only 2 conditional frames here)
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7.7.3 BAIR

Fig. 7.9. BAIR 2 → 28, trained on 5 (prediction). For each sample, top row is real ground
truth, bottom is predicted by our MCVD model.
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7.7.4 UCF-101

Fig. 7.10. UCF-101 4 → 16, trained on 4 (prediction). For each sample, top row is real
ground truth, bottom is predicted by our MCVD model.

Fig. 7.11. UCF-101 0 → 4 (generation)
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7.7.5 Cityscapes

Here we provide some examples of future frame prediction for Cityscapes sequences condi-

tioning on two frames and predicting the next 7 frames.

Fig. 7.12. Cityscapes: 2 → 7, trained on 5 (prediction); Conditioning on the two frames in
the top left corner of each block of two rows of images, we generate the next 7 frames. The
top row is the true frames, bottom row contains the generated frames. We use the MCVD
concat model variant.

163





Chapter 8

Conclusion

The articles presented in this thesis reside at the intersection of generative modeling and

computer vision, focusing on inventing novel ideas and combinations of techniques to advance

the state of the art in image generation, improved 3D animation, and enhanced video

prediction, generation, and interpolation. Our endeavors of the diverse projects within this

thesis have embraced a multifaceted notion of improvement, encompassing aspects such as

quality enhancement as well as computational efficiency. Leveraging the abundant intellectual

(and other) resources at Mila, University of Montreal, we delved into various successful

projects, contributing to the advancement of generative modeling in computer vision and

paving the way for future exploration and innovation in this exciting field:

(1) Neural ODEs for video prediction: novel use of Neural ODEs to model the

dynamics of a video [Voleti et al., 2019].

(2) Multi-Resolution Continuous Normalizing Flows (MRCNF): a normalizing

flow approach that uses fewer parameters and significantly less time to train than

existing works [Voleti et al., 2019].

(3) Neural inverse kinematics with 3D human pose prior: integrating the most

useful inverse kinematics approach for animators (ProtoRes) with the best 3D human

pose prior (SMPL) trained on the biggest 3D human pose dataset (AMASS) [Voleti

et al., 2022b].

(4) Non-isotropic denoising diffusion models: a novel formulation of denoising

diffusion models that expands their capabilities beyond the original formulation [Voleti

et al., 2022c].

(5) Denoising diffusion models for video prediction, generation, interpolation:

novel use of denoising diffusion models to solve all three video tasks simultaneously

with the same model [Voleti et al., 2022a].

Towards the end of the last project on video prediction using denoising diffusion models,

diffusion-based text-to-image models gained significant traction, followed by text-to-3D object,



text-to-video, and text-to-4D. The success of denoising diffusion models has sparked a surge

of interest in this area, with many researchers exploring novel ideas and techniques to improve

upon existing methods and further advance the field of generative modeling. As the field

continues to grow, there are several areas of focus that researchers are likely to explore in the

future.

One area of interest is the development of more efficient and scalable generative models that

can handle larger datasets and produce more realistic results. Text has emerged as a powerful

input modality in driving the generation of images, 3D models, and videos, showcasing

significant progress in recent years. Text-to-image models include DALL-E(2) [Ramesh et al.,

2021, dal, 2021], Imagen [Saharia et al., 2022], and the open source Stable Diffusion [Rombach

et al., 2022]. Text-to-3D models such as DreamFusion Poole et al. [2022], Magic3D [Lin

et al., 2023], Shap-E [Jun and Nichol, 2023] leverage text-to-image models to synthesize 3D

objects from text. Recent text-to-video models include Make-A-Video by Meta [Singer et al.,

2022], ImagenVideo by Google [Ho et al., 2022a], Gen2 by RunwayML [Esser et al., 2023],

etc. Make-A-Video3D [Singer et al., 2023], which Vikram had contributed to, enables the

generation of 4D scenes from text prompts, utilizing the foundations of text-to-video models.

Advanced techniques of controlling and editing the synthesized results of generative models

have grown immensely in the recent past as well. Diffusion-based controllable methods include

Textual Inversion [Gal et al., 2022], Dreambooth [Ruiz et al., 2023], Imagic Kawar et al.

[2023], ControlNet [Zhang and Agrawala, 2023], InstructPix2Pix [Brooks et al., 2023], etc.

Among recent GAN-based methods, DragGAN [Pan et al., 2023] exhibits promising potential

in offering unprecedented levels of controllability in image editing using generative models. A

recently developed work called DragDiffusion [Shi et al., 2023] showcases this controllability

using denoising diffusion models.

Another area of interest in the research community is the integration of generative models

with other machine learning techniques, such as reinforcement learning, to enable the creation

of more intelligent and interactive synthetic environments. Additionally, there is likely to be

increased focus on the ethical implications of generative models, including issues related to

bias, privacy, and intellectual property.

In conclusion, the future of generative modeling holds tremendous promise, offering a

multitude of exciting possibilities for further research and innovation in the domains of image

generation, 3D modeling, and video synthesis. The advancements achieved thus far have

propelled the field forward, pushing the boundaries of what is conceivable and laying the

foundation for groundbreaking applications. As the field continues to evolve, we can expect

breakthroughs that redefine our understanding and capabilities in generating images, 3D

models, and videos. The potential applications are vast, ranging from entertainment and

creative industries to healthcare, robotics, and beyond.
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I hope this thesis has contributed to the understanding and advancement of generative

modeling, exploring its applications in computer vision, discussing various techniques, and

highlighting the significance of conditional variants. As the field continues to mature, it is

essential to embrace new challenges, address limitations, and explore novel directions. The

journey towards harnessing the full potential of generative modeling has just begun, and the

future holds tremendous opportunities for further research, innovation, and transformative

applications in the world of computer vision.
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