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Résumé 

Introduction : L'objectif de cette étude était de comparer la différence entre l'analyse 

céphalométrique manuelle et l'analyse automatisée par l’intelligence artificielle afin de confirmer 

la fiabilité de cette dernière. Notre hypothèse de recherche était que la technique manuelle est 

la plus fiable des deux méthodes. 

Méthode : Un total de 100 radiographies céphalométriques latérales étaient recueillies. Des 

tracés par technique manuelle (MT) et par localisation automatisée par intelligence artificielle 

(AI) étaient réalisés pour toutes les radiographies. La localisation de 29 points céphalométriques 

couramment utilisés était comparée entre les deux groupes. L'erreur radiale moyenne (MRE) et 

un taux de détection réussie (SDR) de 2 mm étaient utilisés pour comparer les deux groupes. Le 

logiciel AudaxCeph version 6.2.57.4225 était utilisé pour l'analyse manuelle et l'analyse AI.  

Résultats :  Un des radiographies a été éliminé de l’étude , parce que l’échelle millimétrique 

manquait, laissant 99 radiographies dans l’étude. Le MRE et SDR pour le test de fiabilité inter-

examinateur étaient respectivement de 0,87 ± 0,61mm et 95%. Pour la comparaison entre la 

technique manuelle MT et le repérage par intelligence artificielle AI, le MRE et SDR pour tous les 

repères étaient respectivement de 1,48 ± 1,42 mm et 78 %.  Lorsque les repères dentaires étaient 

exclus, le MRE a diminué à 1,33 ± 1,39 mm et le SDR a augmenté à 84 %. Lorsque seuls les repères 

des tissus durs étaient inclus (excluant les points des tissus mous et dentaires), le MRE a diminué 

encore à 1,25 ± 1,09 mm et le SDR a augmenté à 85 %. Lorsque seuls les points de repère des 

tissus mous étaient inclus, le MRE a augmenté à 1,68 ± 1,89 mm et le SDR diminue à 78 %. 

Conclusion: La performance du logiciel était similaire à celles précédemment rapportée dans la 

littérature pour des logiciels utilisant un cadre de modélisation similaire. Nos résultats ont  révélé 

que le repérage manuel a donné lieu à une plus grande précision. Le logiciel a obtenu de très 

bons résultats pour les points de tissus durs, mais sa précision a diminué pour les tissus mous et 

dentaires. Nous avons conclu que cette technologie est très prometteuse pour une application 

en milieu clinique sous la supervision du docteur.  

Mots-clés : Identification automatique ; analyse céphalométrique; points céphalométriques ; 

Intelligence artificielle ; Apprentissage automatique ; Apprentissage profond  



 
 

Abstract 

Introduction: The objective of this study was to compare the difference between manual 

cephalometric analysis and automatic analysis by artificial intelligence, to confirm the reliability 

of the latter. Our research hypothesis was that the manual technique was the most reliable of 

the methods and is still considered the gold standard. 

Method: A total of 100 lateral cephalometric radiographs were collected in this study. Manual 

technique (MT) and automatic localization by artificial intelligence (AI) tracings were performed 

for all radiographs. The localization of 29 commonly used landmarks were compared between 

both groups. Mean radial error (MRE) and a successful detection rate (SDR) of 2mm were used 

to compare both groups. AudaxCeph software version 6.2.57.4225 (Audax d.o.o., Ljubljana, 

Slovenia) was used for both manual and AI analysis.  

Results: One of the radiographs was eliminated from the study since it was lacking the millimetric 

scale, leaving 99 radiographs in the study. The MRE and SDR for the inter-examiner reliability test 

were 0.87 ± 0.61mm and 95% respectively. For the comparison between the manual technique 

MT and landmarking with artificial intelligence AI, the MRE and SDR for all landmarks were 1.48 

± 1.42mm and 78% respectively.  When dental landmarks were excluded, the MRE decreased to 

1.33 ± 1.39mm and the SDR increased to 84%. When only hard tissue landmarks were included 

(excluding soft tissue and dental points) the MRE decreased further to 1.25 ± 1.09mm and the 

SDR increased to 85%. When only soft tissue landmarks were included the MRE increased to 1.68 

± 1.89mm and the SDR decreased to 78%. 

Conclusion: The software performed similarly to what was previously reported in the literature 

for software that use analogous modeling framework.  Comparing the software’s landmarking to 

manual landmarking our results revealed that the manual landmarking resulted in higher 

accuracy. The software operated very well for hard tissue points, but its accuracy diminished for 

soft and dental tissues. Our conclusion was that this technology shows great promise for future 

application in clinical settings under the doctor’s supervision. 

Keywords: Automated identification; Cephalometric analysis; Cephalometric landmarks; 

Artificial intelligence; Machine learning; Deep learning 
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1 Introduction 

Since the beginning of cephalometric radiography in the 1930s, cephalometric analysis 

has always been an important tool in diagnosis, treatment planning and growth analysis, 

as well as a method to quantify the effects of orthodontic and surgical treatments. 

Manual cephalometric tracing is a painstaking and time-consuming task. Although digital 

tracing software can automatically calculate cephalometric measurements and angles, 

time is required for manual localization and positioning of cephalometric landmarks on 

the monitor. In addition, errors in cephalometric point location, operator experience, and 

the subjective nature of tracking also pose problems with this approach. To overcome 

these shortcomings, a fully automated approach based on the use of artificial intelligence 

is now available to automatically position cephalometric points.  

The purpose of this study was to compare the difference between manual analysis and 

automatic analysis by artificial intelligence, to confirm the reliability of the latter. Our 

research hypothesis was that the manual technique is the most reliable of the methods. 

 

 

 

 

 

 

 

 

 



 
 

2 Literature Review 

2.1 Cephalometry  

2.1.1 History of Cephalometry 

 

The first efforts in craniofacial studies began with anthropologists and artists from the 13th to 15th 

centuries.  Anthropologists used direct measurements on dry skulls to obtain data on facial 

shape. Leonardo da Vinci, in the 1400s, provided the first applicable form of facial 

characterization using a multi-line system that allowed him to reliably reproduce the position of 

the head and assess aspects of facial shape (1). Two important developments in the second half 

of the 19th century paved the way for cephalometric radiography.  The first was the need to 

standardize the position of the skull, which led to the first craniostat by Pierre Broca, a French 

anthropologist, and the second was the use of X-rays, for which Wilhelm C. Roentgen received 

the Nobel Prize in 1917. (1)  

In 1924, orthodontist Dr. Holly Broadbent modified Dr. Wingate Todd's craniostat by adding a 

millimeter scale that allowed direct measurements on dry skulls (Figure 1. – ).  In 1925, Drs. 

Broadbent and Todd modified the craniostat a second time by adding an X-ray sensor (the 

"roentgenographic craniometer"). This allowed for accurate standardization of skull radiographs 

using dry skulls. In 1926, Broadbent adapted the X-ray craniometer to hold the head of a living 

subject, while taking lateral and posterior-anterior radiographs(2). A few years later, in 1931, the 

first commercial cephalometer was introduced: "The Broadbent-Bolton cephalometer" (Figure 

2).  (1) 
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Figure 1. –  Craniostat developed by Broadbent and Todd(1) 

Broadbent and Todd realized that the true value of cephalometric radiography was its ability to 

study changes in the anatomy of the normal human skeleton over time. Longitudinal growth 

studies thus became popular. In Cleveland, Todd initiated the Brush survey to study normal 

skeletal development from birth to adulthood, and Broadbent directed the Bolton study that 

focused on lateral and frontal cephalometric radiographs. The Bolton Study began in 1929 and 

examined the craniofacial and dentofacial development of 4309 children, twice a year from 

infancy to age 20. In 1937 Broadbent presented the results of the Bolton Study to the Angle 

School of Orthodontia. He demonstrated the growth in the vertical dimension, the impact of 

tooth eruption on the vertical dimension, the downward and forward growth of the face, the 

position of the hard palate during growth, and the cessation of growth around 9 years of age of 

the spheno-occipital suture. (3) 
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Figure 2. –  The first cephalometer on display on the third floor of the dental school in the Bolton 

Brush Growth Study Center, Cleveland, Ohio (1)   

 

About twenty years after its introduction to the market, the cephalometer became a 

popular modality in clinical and pedagogical orthodontics, as a result of W.B. Downs publishing 

in 1948, the first cephalometric analysis of dental and skeletal patterns. (4)    In 1953, Steiner 

introduced  the notion of using cephalometry in the establishment of a treatment plan, by 

considering the skeletal elements, the angulation of the incisors, the amount of overlap and the 

profile of the patient. (5)     Another important advancement was the 1975 publication of the 

"Bolton Standards" by Dr. Broadbent Jr., based on the Bolton Study subjects.   In 1979, Ricketts 

popularized the "Visual Treatment Objective (V.T.O.)", to better establish treatment plans and  

also proposed the superimposition of pre-treatment and post-treatment cephalograms to 

understand the effects of orthodontic treatment. In the same study, Ricketts proposed methods 

for predicting growth using the cephalogram. (6) 
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 Cephalometry occupied a significant presence in the orthodontic literature in the 20th 

century and gave the specialty two important tools. Firstly, imaging allowed the production of 

serial radiographs, which led to the development of superimposition techniques that allowed us 

to isolate changes in skeletal and tooth movement over time and to evaluate the effects of our 

treatments. Finally, cephalometry has given us a diagnostic tool to confirm our clinical 

assessment of a patient's craniofacial morphology. (1)   

 

  2.1.2 Clinical importance of cephalometry 

 

In the early 20th century, Angle taught his students how to develop a treatment plan based on 

the patient's profile and dental malocclusion (7). Since the popularization of cephalometric 

radiography after World War II, orthodontists have been able to measure the changes in the 

teeth and jaws produced by both growth and treatment. These radiographs have clearly 

demonstrated that a large majority of Class-II and Class-III malocclusions have  skeletal  

components that  are not necessarily associated with the dental relationships.(8) In fact, the 

majority of malocclusions have a combination  of both components. An example often reported 

in the literature is the excessive overjet demonstrated by Bjork in 1961. Figure 3. – schematically 

demonstrates how excessive horizontal overjet can be a result of alveolar protrusion/retrusion, 

maxillary/mandibular incisor tilt, or maxillary protrusion/mandibular retrognathism giving 243 

possible combinations that may contribute to the presence of an increased overjet in our 

patients(7). Therefore, when developing a treatment plan, most orthodontists will obtain 

diagnostic models, intra-oral and extra-oral photographs, as well as panoramic and 

cephalometric radiographs to fully understand and analyze the source of the malocclusion(9).  

 

 

 



15 
 

 

The goals of cephalometric analysis can be summarized into three categories: 

1. To evaluate the vertical and horizontal relationships of the five major functional 

components of the face: the cranium or  cranial base, the skeletal maxilla, the skeletal 

mandible, the maxillary dentition and its alveolar process, the mandibular dentition and 

its alveolar process (Figure 4. –  (8)  

2. To analyze growth and treatment effects  

3. To make a prediction or simulation of growth or treatment (7) 

 

 

Figure 3. –  Possible combinations of dentoalveolar and skeletal relationships in cases with excessive 

overjet (7) 
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Figure 4. –  The five structural components of the face as seen on a cephalometric x-ray (8) 

2.1.3 Cephalometric Analysis 

 Cephalometric analysis begins with the acquisition of a radiological image of the lateral 

or frontal surface (posterior-anterior cephalometry). This requires an x-ray source, an adjustable 

cephalostat, a film cassette or digital image device (Figure 5). The cephalostat is used to maintain 

the patient’s head position through bilateral ear rods placed in the external auditory canals.  The 

orthodontist must then perform the analysis by defining skeletal and dental structures named 

cephalometric landmarks, connecting these points to create a cephalometric tracing, and finally 

making measurements of angles, distances, and ratios on these tracings.   

 

Figure 5. –  Diagrammatic representation of the American standard for lateral cephalometric image 

capture. Figure modified from Fig 6.42 in Proffit W.R.’s Contemporary Orthodontics 6th 

edition (8) 

5 ft 
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Cephalometric landmarks are a series of points which can either be defined as exact positions on 

a physical model, an extreme point (e.g. most anterior point of the chin), or as a constructed 

point such as the intersection of two planes(8).   Cephalometric landmarks can be divided into 

hard tissue, soft tissue and dentoalveolar landmarks. The most commonly used landmarks can 

be found in Figure 6 and their definitions can be found in Table 1. - Common cephalometric 

landmarks and their definitions (13).  

Errors in cephalometric analysis may occur for many reasons. The most important type of errors 

involves the inconsistent and imprecise landmark identification, and may sometimes lead to 

erroneous diagnoses and treatment plans (10). Since cephalometric x-rays are two-dimensional 

images of many bilateral structures, there will inevitably be different degrees of superimposition. 

The localizations of certain landmarks such as porion (Po), orbitale (Or), condylion (Co), anterior 

and posterior nasal spine (ANS & PNS), may be more difficult to locate and thus more prone to 

error due to the overlapping structures superimposed on the landmarks. Another source of error 

is the quality of the radiographic image which can interfere with the identification of landmarks 

such as Po, Co, Or, ANS, gonion (Go), and glabella (G). Additionally, some authors have argued 

that the level of an observer’s experience plays an important role in landmark identification. 

Studies have shown that the landmarks with the largest localization variability among 

orthodontists were ANS, Or, Po, Co and Me (10) (11). Some cephalometric landmarks seem to be 

more reliable in the horizontal (x) or in the vertical (y) planes, which indicates that the distribution 

of error is asymmetric on lateral cephalograms. Studies have shown that differences along the x- 

axis tend to be greater than those on the y-axis(10, 11) .  Some authors have argued that 

landmark identification errors of less than 1 mm are clinically acceptable. The consensus in the 

literature is that that errors of less than 2 degrees or 2 mm would likely not make a significant 

difference in the diagnosis and treatment (10-12).  
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Figure 6. –  (A) Cephalometric hard tissue landmarks (13), (B) Cephalometric soft tissue landmarks 

(13), (C) Cephalometric dentoalveolar landmarks. 
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Table 1. - Common cephalometric landmarks and their definitions (13) 

Landmark  Abbreviation Definition 

Hard Tissue Points 

Subspinale A Deepest point on the maxilla below ANS 

Anterior nasal spine ANS Anterior point of maxilla. 

Articulare Ar 
Point on the posterior border of the ramus at the intersection with the 
basilar portion of the occipital bone 

Supramentale B Most posterior point on the bony curve of the mandible above pogonion 

Condylion Cd Most superior and posterior point on the head of the condyle 

Gonion Go Most posterior and inferior point on the outline of the angle of the mandible 

Menton Me Lowest point on the symphysis of the mandible 

Nasion N Junction of frontonasal suture 

Orbitale Or Inferior border of orbit 

Pogonion Pg or Pog Most anterior point of bony chin 

Posterior Nasal Spine PNS Posterior point of bony hard palate. 

Porion Po Top of external auditory meatus. 

Pterygomaxillary Fissure PTM 
Most posterior and superior point on the outline of the pterygomaxillary 
fissure 

Sella S Mid-point of sella turcica 

Soft Tissue Points 

Soft tissue A point A' or SLS Deepest midline point on outline of the Superior labial sulcus. 

Soft tissue B point B' or ILS Deepest midline point on outline of the Inferior labial sulcus 

Soft tissue Glabelle G’ Most prominent point in the mid sagittal plane of the forehead. 

Labius Inferius LL or Li Most anterior point on outline of lower lip (vermillion border) 

Soft tissue Menton Me' Lowest point on outline of soft tissue chin. 

Soft tissue Nasion N’ Deepest part of the soft tissue outline in front of Nasion. 

Soft tissue Pogonion Pg’ of Pog’ Most anterior point on outline of soft tissue chin 

Pronasale Pn or P Anterior tip of the nose 

Subnasale Sn Junction of nasal columella and upper lip in mid-sagittal plane. 

Stomium Superior STM or Stms Lowest midline point on outline of upper lip. 

Stomium Inferior St- or Stmi Highest midline point on outline of lower lip. 

Labius Superius UL or Ls  Most anterior point on outline of upper lip (vermillion border) 

Dental Points 

Apex of upper incisor +1a Tip of the apex of the upper incisor 

Apex of lower incisor -1a Tip of the apex of the lower incisor 

Incisal edge of upper incisor +1i Tip of the incisal edge of the upper incisor 

Incisal edge of lower incisor -1i Tip of the incisal edge of the lower incisor 

Upper molar mesial Apex +6a Mesial Apex of the first upper molar 

Lower molar mesial apex -6a Mesial apex of the first lower molar 

Mesial Buccal Cusp of upper 
1st Molar 

+6c Tip of the mesiobuccal cusp of the first upper molar 

Mesial buccal Cusp of Lower 
1st Molar 

-6c Tip of the mesiobuccal cusp of the first lower molar 
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The traditional method for analyzing cephalometric radiographs was by manual tracing, where 

the orthodontist manually identified landmarks, reference planes and angles on a matte acetate 

tracing paper viewed through a light source. Angular and linear measurements were done using 

a protractor and millimeter scale (14). Nowadays, computer assisted cephalometric analysis is 

more commonly used with the advent of digital x-ray films. The points are identified directly on 

a monitor, the computer software then completes the analysis by automatically measuring angles 

and distances (14).  Many cephalometric analyses have been developed, and the common names 

are the Down, Steiner, Sassouni, McNamara, Harvold & Wits, and Enlow’s analyses (8).  The 

analysis is completed when the patient's measurements are compared with average values from 

the literature, which are averages of patients with "ideal" dental and skeletal relationships. A 

major database for contemporary analysis is the Michigan growth study. Other major sources are 

the Burlington growth study and the Bolton study in Cleveland (8).  Most orthodontists 

understand that these average values should not be considered as absolute values since most of 

the databases are based on Caucasians of European ancestry. These averages provide only an 

indication to help the orthodontist characterize the patient's facial morphology, and the standard 

deviations give an idea of the severity of the deviation. These values are sometimes viewed as 

treatment goals with the idea that if the patient does not conform to these averages, there must 

be an underlying problem. This is an erroneous concept, as this type of practice will futilely guide 

the clinician's treatment plan to follow cephalometric numbers, as opposed to evaluating and 

treating patients’ faces. It is important to remember that there are many racial and ethnic groups 

among our patients, and also that the aesthetic goals of one group may be different from 

another(7).  

 

2.1.4 Controversy over the use of cephalometry 

 

In 1979, Dr. George Silling asked the question, "Is a cephalometric radiograph always 

necessary to establish a treatment plan?" He explains that some clinicians find this radiograph 

indispensable in all cases, while others find it useful only in specific situations or for certain 
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malocclusions such as Class II Division 1 malocclusions.(15) In 2002, 90% of orthodontists in the 

United States routinely asked for cephalometric radiographs in their diagnostic records (16). The 

arguments that some authors suggest against their use are that the clinical examination could 

give us enough information to establish the treatment plan,  and that a cephalometric analysis 

based on standardized normative values can mislead the orthodontist, due to the great variation 

in craniofacial morphology of our patients. In 2011, Devereux et al published a study in the 

American Journal of Orthodontics and Dentofacial Orthopedics where six patients were 

presented to 199 orthodontists. The availability of a lateral cephalometric radiograph and its 

tracing did not make a significant difference in treatment planning decisions, except for one 

patient who was Class I dental but Class II skeletal(17). A second more recent study done in 

Portugal with 43 patients and 10 orthodontists concluded that while all 10 orthodontists felt that 

it was important to have the cephalometric radiograph to establish a treatment plan,  the results 

of the study showed that its presence did not have an impact on it (18).  

According to the ALARA principle, it is necessary to reduce radiation exposure and eliminate 

unnecessary radiography. As with any form of radiography, there is an associated dose of ionizing 

radiation to which the patient will be exposed. Although the radiation dose from lateral 

cephalometric radiographs is relatively low, lateral cephalometric radiography still emits 

radiation to several organs that are considered radiosensitive, such as the brain, bone marrow, 

thyroid gland and salivary glands(19).  

The effective dose of lateral cephalometric radiographs with photostimulable phosphor is 5.6 

microsieverts, which represents a 51% increase in effective dose compared to the calculated 

effective dose in 1990. This trend of increasing effective dose is an important indicator to study 

the diagnostic value of radiographs and whether there are acceptable methods to limit patient 

radiation exposure. The ionizing radiation dose delivered by lateral cephalometry is an important 

concern in the field of orthodontics because orthodontic patients are often children and 

adolescents who are still in the growth and development phase. Ionizing radiation has the 

potential to damage DNA and thus increase the overall risk of cancer. (9) 
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2.2 Artificial Intelligence (AI) 

2.2.1 General Concepts  

Artificial intelligence (AI) is the general term used to describe technologies that allow 

machines to perform tasks that would normally require human cognition(20). This technology is 

a branch of computer science and it’s ultimate goal is to build intelligent machines that are often 

under the form of software programs(21). These programs are composed of a sequence of 

operations that are designed to perform a specific task. Historically, the task of “teaching” a 

machine to perform an intelligent task required knowledge of the specific domain and manual 

fine tuning of a software. This type of program required what we call supervised learning, 

meaning that the programmer needed to teach the software the algorithms and patterns that it 

wanted it to detect.  The term AI is not new, as it was first used in 1956. Since the 1950’s, AI has 

gone through several phases of popularity and disappointments. These periodic downfalls of AI 

throughout history were called “AI Winters” and are shown in Figure 7. – along with a brief history 

of its development.   

 

2.2.2 Machine Learning (ML) 

 

Machine learning (ML) is a more recent subfield of AI where the system learns rules from 

data, rather than having humans provide these rules. A basic analogous example of this method 

is one of an adult showing a series of photos of cats to a child, and the child eventually learns the 

patterns necessary in recognizing a cat(21). The data that is used for ML can be simple or 

complex, and when complex data is used, neural networks (NNs) are usually employed(20). The 

main constituent of any NN is the artificial neuron that was inspired by the human brain (22). The 

artificial neural network (ANN) is a structure composed of many communicating neurons that are 

organized in layers. The basic composition of the neural network is to have an input layer, an 

output layer, and at a minimum, one hidden layer (Figure 9. –  The term “hidden” is used to 

describe the layers in between the input and output because their values are not pre-determined 
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nor visible, and their goal is to build progressively from information from the visible input layer, 

to then calculate an output which is then taken as input by the next layer, and ultimately 

computes the correct value of the visible output layer. (21)   

 

Figure 7. –  Timeline illustration of AI development (20) 
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2.2.3 Deep Learning  

 

When an ML process requires the application of multilayered neural networks it would be 

defined as Deep Learning (DL). The hierarchy from AI to deep learning is shown in Figure 8. Deep 

learning is a more recent sub-branch of ML that uses a hierarchy of composable patterns that 

build on each other (21), and the term “deep learning” is a reference to the “deep” / multilayered 

NN architectures. DL is especially suitable for complex data structures such as imagery, where 

they can represent an image and its hierarchical features such as edges, corners and macroscopic 

patterns.(22) If we use the same analogy as in ML for the DL example, the child will not recognize 

a cat from a single pattern matching step (layer), but will rather recognize edges and simple 

shapes that will help outline groups such as eyes or ears, and these will then lead in the 

recognition of larger groups such as legs, bodies and heads. A particular grouping of these defines 

the whole cat. (21)  

 

Figure 8. –  Hierarchy of AI (20) 
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2.2.4 Convolutional neural networks  

 

The most used deep learning algorithm for image recognition and processing in medicine and 

dentistry is a subclass of ANN called the convolutional neural network (CNN) (Figure 9. –  The 

CNN algorithm uses a sliding filter to scan a small neighborhood of inputs in order to analyze a 

larger image(21).  Its strong impact on computer vision is thanks to an architecture based on the 

mathematical operation called “convolution”, that is applied as a matrix multiplication between 

the filter and the data. CNNs were first introduced in the 1980’s but only became popular once 

more powerful computers were developed with access to larger quantities of data. As previously 

mentioned, what makes CNNs so popular for computer vision is its ability to extract features from 

data. Previously, these features had to be extracted by hand for later processing, and was 

considered one of the toughest and most complex tasks in computer vision.  

 

Figure 9. –  Schematic representation of ANNs. a) ANN with a single hidden layer, typically referred 

to as ML. b) ANN with multiple layers of hidden neurons (DL). c) Convolutional neural 

networks use filters to scan a local zone of inputs(21) 
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2.2.5 The scope of AI in healthcare 

 

The introduction of artificial intelligence in healthcare is revolutionizing and pushing the industry 

towards advancements in many clinical specialties and hospital processes. Even the most modern 

of healthcare organizations face many challenges in collecting, organizing and applying 

structured and unstructured data to diagnose and treat diseases(23). The data mining and 

recognition abilities of AI can provide effective methods for patient care and can lead the clinician 

to provide unprecedented diagnosis, treatment and care to the patient at the correct time(24).  

The three major steps of medical diagnosis are (Figure 10): 

1. Collecting patient medical history, signs and symptoms, observation and examination, 

and interpretation of the data obtained from the patient. 

2.  Formulation of a diagnosis based on the clinician’s knowledge and experience  

3. Establishment of a therapeutic plan  

 

Figure 10. –  Conventional medical diagnostic cycle (23) 

In this conventional diagnostic cycle, the clinician represents the intelligent agent, the patient 

data represents the input, and the diagnosis represents the output. There are various advantages 

to implementing AI into this cycle: 
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1. AI allows for more curated and structured collection of patient data 

2. AI will reduce the chance of human error, and reducing the bias associated with clinician 

knowledge and experience 

3. Diagnostic and treatment costs are reduced. 

4. Lowering costs of treatment by reducing routine tasks 

5. Reducing the traditional tedious tasks associated to collecting patient details and thus 

increases more time for face-to-face discussion between patient and clinician. (25) 

AI is currently mostly present in research labs and tech firms rather than in clinical practice. Barely 

a week goes by without a claim that a firm has developed an approach to use AI to diagnose and 

treat a disease with greater accuracy than a human clinician. Many of these findings are based 

on radiological image analysis, retinal scanning or genome-based precision medicine(24). Tech 

firms and startups are also involved in developing AI for the healthcare industry. For example, 

Google is building prediction models from big data to alert clinicians of high-risk conditions such 

as sepsis and heart failure(26). Jvion, a healthcare & clinical AI platform, helps identify which 

patients are more at risk, as well as those that are more likely to respond to therapeutic 

protocols. The immensely complex genetic nature of certain cancers makes it inevitably very 

difficult for clinicians to understand all the cancer genetic variants  and their response to 

protocols. Firms like Foundation Medicine and Flatiron Health build AI that specifically focus on 

diagnosis and treatment recommendations for certain cancers based on their genetic profiles 

(24). Machine learning models are also being developed to assess population health, such as 

predicting populations at risk for specific diseases, accidents or hospital readmissions(27).  

2.2.6 Clinical use of AI in dentistry 

 

Thanks to the fact that most of our medical data is now stored digitally, deep artificial neural 

networks can be applied to many medical fields. In the field of dentistry,  CNNs have shown very 

promising results in diagnosis and prediction in both radiology and pathology  through the use of 

disease identification and image segmentation (20). Furthermore, deep learning algorithms are 



28 
 

being implemented to assist in the clinical decision-making process and even treatment planning 

in the fields of orthodontics(28) (29). 

 

2.2.6.1 Disease identification and radiology 

 

Dental caries is a chronic infectious disease and is experienced by more than 90 percent of all 

adults in the United States. Although dental caries represent the main dental disease that general 

dentists treat on a regular basis, there still seem to be difficulties with their detection using 

traditional methods. Studies have shown that caries detection by clinicians using visual, tactile, 

radiographic or a combination of these, have overall mean sensitivity of 19%-94%, meaning that 

sometimes up to 80% of lesions can be missed (30). A more accurate detection and diagnosis of 

dental caries would reduce the cost of oral health management and increase the likelihood of 

natural tooth preservation. ANNs have been used successfully in the detection of dental caries 

from periapical and bitewing radiographs. In 2018, a group used a pre-existing CNN network 

(GoogleNet inception v3) and trained it with 3000 periapical radiographs to detect and diagnose 

dental caries in premolars and molars. The detection sensitivity was 84.0 % for premolars and 

92.3 % for molars (31). Another study also used another pre-existing CNN network (U-net) and 

trained it with 3686 bitewings radiographs and found that the neural network had a sensitivity 

of 75% while the dentists in the study were at 36%(32). Another impressive study showed that 

through a deep ANN, they were able to distinguish subjects with an absence of caries from those 

subjects with caries or restorations with a high degree of accuracy using only their demographic 

and dietary factors as input(33). 

The detection and diagnosis of oral pathologies by dentists is of utmost importance during 

routine examinations, as their early detection can have a significant impact on their prognosis, 

especially for lesions that may be cancerous or precancerous in nature. Unfortunately, the overall 

prognosis of oral cancer remains poor because over half of patients are diagnosed at advanced 

stages (34). To aid in the  detection and  diagnosis of oral cancer and to improve the prognosis, 

hyperspectral images were used as input in CNNs and yielded an accuracy of 91.4% for the 
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classification of cancerous versus benign tumors, and an accuracy of 94.5% for the classification 

of cancerous versus normal tissues(35). For the detection of oral cancer, a CNN was trained with 

44,409 clinical images of biopsy proven oral cavity squamous cell carcinoma and reached a 

detection accuracy of 92.3% (34). One study trained a CNN to distinguish radiographically 

between ameloblastomas and keratocystic odontogenic tumors, which can have similar 

radiologic presentations. The accuracy of the CNN was similar to that of clinical specialists (83.3% 

versus 83.2%, respectfully), the main difference being that the specialists took an average of 23.1 

minutes to distinguish the differences on all images, while the total calculation time taken by the 

CNN to analyze all the images was 38 seconds (36).  

Osteoporosis is a systemic disease that is characterized by low bone mineral density and 

deterioration of bone architecture. According to the International Osteoporosis Foundation, one 

in three women and one in five men above the age of 50 will experience an osteoporotic bone 

fracture. The gold standard in diagnosing osteoporosis is by evaluating bone mineral density 

using dual-energy X-ray absorptiometry, but this technique is known to be complex and 

expensive. (37) Recently, digital images of dental panoramic radiographs have been deemed a 

cost-effective and available method for screening osteoporosis thanks to the widespread use of 

panoramic radiographs in dentistry. These methods utilized manual categorization of feature 

indexes for screening osteoporosis from panoramic images (38). Four different CNN models were 

proposed and trained for screening of osteoporosis with panoramic radiographs. The best model 

yielded an accuracy of 84% in detecting osteoporosis from panoramic images (39). These results 

are very promising since the earlier detection of this disease can help prevent fractures in older 

populations. 

2.2.6.2 Periodontics 

Globally, there exist over 4000 different types of dental implant systems (40). If periodontists are 

unable to identify and classify what implant system is present when mechanical or biological 

complications occur, they would be more likely to treat with a more invasive modality. Deep 

CNNs have been found useful in tackling the issue of identifying the implant system on 
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radiographs, and were found to have an accuracy of 97.1% compared to 92.5% from board 

certified periodontists (41).    

The American Academy of Periodontology clinically classified  the two forms of periodontitis as 

either aggressive or chronic , and since the pathogenesis of this disease is so complex, there is no 

clinical, histopathological, microbiological or genetic test that can discriminate between the two 

forms(21). An ANN was developed and used to distinguish between the two forms of 

periodontitis and used specific immunologic parameters as inputs such as leukocytes, 

interleukins and IgG antibodies, and had an accuracy of 90-98% in classifying patients as having 

either the aggressive or chronic forms(42).   

Another challenge in the field of periodontics is establishing the proper diagnosis and prognosis, 

such as the need for extraction of periodontally compromised teeth. A CNN algorithm was used 

to evaluate if artificial intelligence would be a useful tool to assist in establishing the diagnosis 

and prognosis of periodontally compromised teeth. The algorithm yielded an accuracy of 76.7-

81% in evaluating the diagnosis of periodontally compromised teeth, while it yielded an accuracy 

of 73.4-82.8% in detecting the prognosis of these teeth(43). According to the authors, this range 

in accuracy was due to differences in the complexity of root anatomy between molars and 

premolars, where the CNN exhibited more difficulty with multirooted teeth.  

2.2.6.3 Endodontics 

 

Although mandibular molars tend to have straightforward root canal systems, several atypical 

differences can complicate their morphology. Cone-beam computed tomography (CBCT) has 

become the gold standard method of imaging in endodontics, as it helps guide the endodontist 

through the root canal anatomy and minimize treatment failures. The issue with CBCT is its higher 

dose of radiation, and for this reason it is not yet used systematically in all cases (44), especially 

not where tooth morphologies tend to be straightforward. A deep learning method has been 

proposed using a CNN to help identify the presence of additional root canals in the distal root of 

mandibular first molars using only dental panoramic radiographs. Once the CBCT confirmed the 

presence of an additional canal, the corresponding panoramic radiograph was used to train the 
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neural network. The CNN yielded a high accuracy of 86.9% in detecting additional root canals 

(45). The implementation of such technology can lead to lower doses of radiation for patients 

undergoing endodontic therapy.  

Vertical root fractures are dental diseases that are difficult to diagnose and treat. Endodontically 

treated teeth are more likely to suffer from vertical root fractures and is predominantly seen in 

mandibular posterior teeth(46). Although the typical treatment for a tooth with vertical root 

fracture is extraction, an early diagnosis may   allow for treatment by hemisection or root 

separation.  This approach can have relatively high survival rates, ranging from 94% and 64% for 

5 and 10 years, respectively (47).  While the gold standard for detection of a vertical root fracture 

is CBCT, as mentioned previously, they provide a higher dose of radiation, and it should be noted 

that endodontically treated teeth don’t always show symptoms when root fractures are present. 

For these reasons, panoramic radiographs would be useful in screening for vertical root fractures 

during routine examinations. A CNN based deep learning model for the detection of vertical root 

fractures from panoramic radiographs was trained. Of the 330 vertical root fractures, 267 were 

detected, which shows it to be a promising tool for the early diagnosis of vertical root fractures, 

with the goal of saving natural teeth (48).  

2.2.7 Clinical use of AI in orthodontics 

 

The term malocclusion refers to a common dental condition that can have many adverse 

repercussions (8): 

1) Psychosocial problems: Often the main reason for consultation, a severe malocclusion can 

represent a social handicap and can severely affect one’s self esteem.  

2) Occlusal function: Even though oral function can adapt relatively well to a malocclusion, 

for some it can add difficulties and necessitate additional effort during function. 

3) Dental trauma: Malocclusions, more specifically in the presence of protrusive maxillary 

incisors in Class II malocclusions, can increase the risk of dental trauma in children.  

4) Oral Health: Malocclusions  with severely crowded teeth can increase the incidence of 

caries and periodontal disease due to the added difficulty in dental hygiene (8).  
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An American epidemiologic survey showed that 57%-59% of each racial group had some degree 

of orthodontic treatment need(49). In 2015 the American Dental Association reported the 

following statistics on oral health and well-being(50):  

1) One in four adults, and one in three young adults avoid smiling because of the condition 

of their mouth and teeth. 

2) 22% of young adults reduce participation in social activities due to the condition of their 

mouth and teeth. 

3) 23% of adults, and 35% of young adults feel embarrassment due to the condition of their 

mouth and teeth. 

4) 82% of adults believe that straight, bright teeth help you get ahead in life. 

5) One in five adults experience anxiety due to the condition of their mouth and teeth (50). 

In order to achieve acceptable orthodontic treatment outcomes,  treatment planning must be 

meticulously performed before the therapy begins(8). The practice  of orthodontics is considered 

by some to be partly an art and  partly a science, that is based upon the experience and bias of 

each clinician (51). The fact that all malocclusions are unique makes it impossible for the human 

brain to predictably correlate the different patterns expressed by the entire stomatognathic 

system(52).  Clinically speaking, the fact that orthodontists treat one patient at a time makes it 

difficult to gather and share large datasets of their treatment outcomes to make connections 

from multiple clinical observations.  Instead, they usually rely on their experience to provide the 

treatment plan and treatment modality that provides them with their perceived “maximum” 

efficiency. Thorough and careful evaluation of numerous factors can make treatment planning a 

complex process without any objective patterns, and greatly depends on the subjective judgment 

of the clinician (53). This treatment approach, that is based purely on experience, may lead to 

non-optimal outcomes and prolonged treatment times(54). Based on how AI has helped the 

numerous dentistry fields previously described, one can only imagine that the introduction of 

artificial intelligence in orthodontics will offer a new method to achieve sharper predictions from 

data by concurrently analyzing the different variables present in a malocclusion.  This  will 

facilitate the clinician in  obtaining the best outcomes when treating malocclusions, or even assist 

him in determining the need for orthodontic treatment(55).    
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The traditional diagnostic method for evaluating and diagnosing a malocclusion possesses many 

difficulties which can bring uncertainty with treatment outcomes due to the numerous variables 

present in the analysis. When an orthodontist is faced with the variety of variables in a 

malocclusion, he or she must mentally evaluate and compute the best approach to solve the 

problem often based on previous experience. In order to help make this process simpler, many 

orthodontists adopt a process called the “feedforward approach” shown in Figure 11. This 

workflow shows the traditional forward build up based on information received during the initial 

examination but does not necessarily incorporate any feedback mechanisms to help improve on 

previous diagnostics and outcomes analyses. This lack of  a feedback mechanism makes it difficult 

to re-evaluate treatments and learn from previous positive or negative outcomes(56). Although 

this traditional method is accepted and advocated by clinicians, its drawbacks are now evident 

and thus can be deemed inefficient to treat patients(57).   

The ideal scenario would be one where the orthodontist can find potential negative outcomes 

and go backwards in the workflow to prevent creating errors. This process would add value in 

the diagnostic procedure and immensely improve the traditional unidirectional thought process.  

Deep learning is starting to be used to input large amounts of malocclusions and letting the 

algorithm predict the “ideal” treatment options. In order to predict a suitable treatment plan to 

a given malocclusion despite the numerous variables presented, this requires that the software 

accumulates and trains on a large quantity of data, and this data must be correctly labeled and 

weighted. 
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Figure 11. –  Conventional orthodontic treatment planning workflow (57) 

 

As previously mentioned, an artificial neural network (ANN) has the power of mining features 

from massive medical data, and in recent years it has been used to help in orthodontic treatment 

planning(28, 53, 58).  

A 2010 study published in Angle Orthodontist attempted to use ANN modeling to help clinicians 

in deciding whether extractions were necessary prior to orthodontic treatment. By training a 

Back Propagation ANN model with 120 extraction cases and 80 non extraction cases, they used 

a data set of 20 patients to test the algorithm (Figure 12). They established 23 quantifiable 

indexes: 5 indexes derived from cast measurements, 13 from hard tissue cephalometrics and 5 

from soft tissue cephalometrics. The untrained data from the 20 patients in the testing set were 

80% accurate in determining whether extraction or nonextraction treatment was best for the 

malocclusion. Another interesting result that the algorithm yielded was that the two most 

important index inputs for determining extraction/nonextraction were “anterior teeth 

uncovered by incompetent lips” and the Incisor -mandibular plane angle -IMPA (L1-MP) , while 

the least important index was the Frankfort-mandibular plane angle- FMA (FH-MP)(28).  
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Figure 12. –  Deep neural network designed to allow for learning through back propagation(57) 

 

A Korean study published in the AJO-DO in 2016 performed a similar study to the one 

previously mentioned but took it one step further. They not only attempted to determine 

between extraction/nonextraction treatment plans, but also trained the ANN to output what the 

best extraction pattern would be for the given malocclusion. The output data was split into 5 

groups: 

1. Nonextraction 

2. Extraction of upper and lower second premolars 

3. Extraction of upper and lower first premolars 

4. Extraction of upper first and lower second premolars 

5. Extraction of upper first premolars  

In the diagnosis of extraction vs nonextraction, the accuracy was 93% and 84% for the 

detailed diagnosis of extraction patterns. Although in a real orthodontic setting there are many 

more possibilities for extraction patterns, the results were quite promising considering that these 

are the most common patterns encountered in daily practice (58). 
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Another study, published in 2019, also focused on predicting  the necessity of extractions and 

on extraction patterns. An  important additional factor when determining a treatment plan is the 

anchorage requirement in the case of space closure, especially in cases requiring maximum 

anchorage where appropriate means must be taken into account early in the treatment process 

(8). This newer study introduced the prediction of anchorage types for closing extraction spaces 

using additional factors such as the patient’s nasolabial angle, the relationship between upper lip 

and lower lip to the esthetic plane, and lip incompetence (53) (Figure 13). The predictive accuracy 

for the extraction/nonextraction decision reached 94%, the extraction pattern prediction 

reached 84.2%, and the accuracy for prediction of anchorage type was 92.8%. These results 

suggest that ANN’s could potentially be useful tools in assisting orthodontists in making more 

detailed treatment plans.  

 

Figure 13. –  Structure of the neural network to predict the need for extraction, extraction patterns 

and anchorage patterns. (53) 
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2.2.7.1 AI for Cephalometric Landmark Detection 

 

Another interesting use of AI in the field of orthodontics is in the automatic localization of 

cephalometric landmarks. The diagnostic value of a given cephalometric analysis will highly rely 

on the clinician’s accuracy and reproducibility in landmark identification (59). Errors in 

cephalometric analysis can be either systematic or random. A systematic error can arise when no 

compensation is made for the variable geometry of a cephalogram, while random error involves 

tracing, landmark identification and measurement errors. Studies have shown that variability in 

landmark identification was five times greater than measurement variability. With the use of 

computer aided software, measurement errors have greatly been reduced, but landmark 

identification remains a necessary time-consuming human task and will still involve variability 

and error. For these reasons there have been efforts to automate the analysis with the following 

goals:  

1. Reducing the time required to complete the analysis 

2. Improve the accuracy and reproducibility of landmark identification  

3. Reduce human error and subjectivity related to landmark identification 

The first attempt at developing an automated landmarking software for cephalograms was done 

by Cohen et al. in 1984 (60). Since then, many authors have attempted to design software using 

different ways that involve computer vision and artificial intelligence, and these can be classified 

into four categories(61): 

1. knowledge-based approaches (edge detection + image-processing techniques), 

2. model-based approaches,  

3. soft-computing approaches (neural networks and support vector machines) 

4. hybrid systems (a combination of the three previous methods). (61) 

Throughout the various techniques and studies that have been presented, many did not yield 

results that were accurate enough for use in clinical practice (14). Different success levels in 

landmarking detection were reported depending on the approach that was used and the number 

of landmarks that the software was asked to detect The accepted accuracy standard for 
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automized cephalometric landmark detection in  the literature is that if the distance between the 

position of the manual localization (“gold standard”) and the position of the automatic 

localization is less than 2mm (Euclidean distance) , the detection is considered accurate or 

“correct”  (61-63).This measure is known as the successful detection rate (SDR). If the distance is 

less than 4mm, the detection is considered acceptable. Table 2 shows a summary, in 

chronological order, of the studies in the  literature published on the subject from 1989 to today, 

along with their successful detection rates (SDR) of 2mm or less, mean radial error (MRE), and 

the number of landmarks that they were designed to detect.  

The issue with basing ourselves on the success rates of each study is that only a certain number 

of landmarks were selected to be studied, and this is especially true for the older studies where 

a specific approach was only good for a certain set of landmarks. Furthermore, one cannot quickly 

judge the performance of a study’s approach/software based only on the published MRE and 

SDR, since each test set of radiographs can be very different. Thanks to the 2015 International 

Symposium on Biomedical Imaging (ISBI) that launched challenges on cephalometry landmark 

detection, the best  studies that were published were where all teams had to test their proposed 

algorithms on the same cephalometric x-ray data sets, thus eliminating the bias associated to 

testing on different sets. (64) The nineteen landmarks that were part of the 2015 ISBI challenge 

are shown in Figure 14.Can you make Figure 14 less blurry? The studies in Table 2 that used the 

2015 ISBI are labeled in the “No. of x-rays tested” column. Concerning the 2-mm SDR, Song et al 

(64), Oh et al (65), Zhong et al (66) and Gilmour et al (67) showed the highest performance on 

the 2015 grand challenge in dental x-ray image dataset by reaching more than 86% of landmarks 

with less than 2-mm SDR. Gilmour et al (67) reported the lowest MRE of 1.01 mm. 
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Table 2.- Summary of the articles published on landmark detection in lateral cephalometry 

Research Group Year 
No. of  

Landmarks 
No. of  

X-rays tested 
MRE  
(mm) 

SDR  
< 2mm 

Architecture/modelling framework 

Parthasarathy et al (68) 1989 9 5 2.06 58% Image filtering plus knowledge-based  

Tong et al (69) 1989 17 5 0.33 76% Image filtering plus knowledge-based 

Cardillo et al (70) 1994 20 40 NR 75% Model-based  

Forsyth et al (71) 1996 19 10 NR 79% Image filtering plus knowledge-based 

Rudolph et al (72) 1998 15 14 3.07 13% Model-based  

Hutton et al (73) 2000 16 63 4.08 35% Model-based  

Liu et al (74) 2000 13 38 2.86 23% Hybrid 

Grau et al (75) 2001 17 20 1.03 88.6% Hybrid 

Yang et al (76) 2001 16 11 NR 80% Hybrid 

Innes et al (77) 2002 3 109 NR 72% Artificial Neural Network (Soft-Computing) 

Chakrabartty et al (78) 2003 8 40 NR 93% Machine Learning (Soft Computing) 

Ciesielski et al  (14) 2003 4 36 NR 85% Soft-Computing 

El-Feghi et al (79) 2004 20 600 NR 90% Artificial Neural Network (Soft Computing) 

Giordano et al (14) 2005 8 26 1.07 85% Hybrid 

Yue et al (80) 2006 12 86 NR 71% Hybrid 

Ibragimov et al (81) 2014 19 250  (ISBI 2015) 
1.82-
1.92 

71.70% Hybrid : Random Forests (RF) and Game Theory 

Vandaele et al (82) 2014 19 100 1.83 75.37% 
Hybrid: Random Forests & simple pixel-based 

multiresolution features 

Kaur and Singh (83) 2015 18 85 1.84 89.50% Soft-Computing  (Zernike Moments) 

Lindner and Cootes (84) 2015 19 250  (ISBI 2015) 1.67 74.84% Machine Learning -Random Forests (RF)  

Ibragimov et al (85) 2015 19 150 1.84 75.40% Hybrid : Random Forests (RF) and Game Theory 

Lindner et al (86) 2016 19 250  (ISBI 2015) 1.2 84.70% Machine Learning -Random Forests (RF)  

Arik et al. (87) 2017 19 250  (ISBI 2015) NR 75.58% Deep Learning / Convolutional Neural Networks 

Hwang et al. (59) 2019 80 283 1.46 NR Deep Learning / Convolutional Neural Networks 

Qian et al(88) 2019 19 250  (ISBI 2015) NR 82.50% Deep Learning / Convolutional Neural Networks 

Chen et al (89) 2019 19 250  (ISBI 2015) 1.17 86.21% Deep Learning / Convolutional Neural Networks 

Zhong et al (66) 2019 19 250  (ISBI 2015) 1.14 86.74% Deep Learning / Convolutional Neural Networks 

Lee JH et al. (41) 2020 19 250  (ISBI 2015) 1.53 82.11% Deep Learning / Convolutional Neural Networks 

Song et al (64) 2020 19 250  (ISBI 2015) 1.3095 86.40% Deep Learning / Convolutional Neural Networks 

Gilmour et al (67) 2020 19 250  (ISBI 2015) 1.01 88.32% Deep Learning / Convolutional Neural Networks  

Oh et al (65) 2020 19 250  (ISBI 2015) NR 86.20% Deep Learning / Convolutional Neural Networks 

Kim et al (90) 2020 19 250  (ISBI 2015) 1.16 83.13% Deep Learning / Convolutional Neural Networks 

Yao et al (62) 2021 
19 
37 

250  (ISBI 2015) 
100 

1.14 
1.04 

86.84% 
97.30% 

Deep Learning / Convolutional Neural Networks 

*NR = not reported 
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Figure 14. –  The nineteen landmarks of the  ISBI 2015 Grand Challenges in Dental X-ray Image 

Analysis (62) 

With evolving computational power and newer advanced algorithms, recent approaches have 

shown significant improvement in accuracy, increasing their interest for clinical use (87) (86) (62) 

(91).  As previously mentioned, deep learning (DL) is a newer branch of machine learning, and it 

is only recently since 2017 that some authors have used this method in automatic cephalometric 

analysis (87). Its increasing popularity has  led to increased research for DL in cephalometric 

analysis (59) (62, 63, 91). 

A study in 2019 conducted an experiment with the purpose of comparing two of the latest deep 

learning algorithms (YOLOv3 and SSD) for automatic identification of landmarks on lateral 

cephalograms in order to compare their accuracies in detecting 80 landmarks (Figure 15) (59). 

Both algorithms yielded promising results, with YOLOv3 yielding more accurate detections at 

higher computational speeds (0.05 seconds versus 2.89 seconds per cephalogram).  
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Figure 15. –  Cephalogram indicating the 80 cephalometric landmarks detected in the study (59) 

In this study, 80.4% of the landmarks were less than 2mm (SDR < 2mm) away from the manual 

reference, while 96.2% of the landmarks were less than 4mm away from the gold standard. These 

results showed a 5% increase in detection since the first time DL algorithms were used for 

detection of cephalometric landmarks only two years prior (87).  

After realizing that the first study showing that DL algorithms yielded excellent results, the same 

team conducted a second study with one question in mind: “Might it be better than human?”. In 

order to answer this question, they compared the AI to a human examiner with 28 years of clinical 

orthodontic practice experience, who was  considered the “gold standard”. (63) They then 

compared the human examiner to a second human examiner (3rd year orthodontic resident) to 

determine whether the differences between AI and human examiners would be smaller than 

those between both human examiners. They also wanted to test the reproducibility of the AI 

versus the reproducibility of the human examiners. Their results showed that out of 46 skeletal 

landmarks, the AI had better accuracy for 14/46 landmarks, the human had better accuracy for 
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14/46, and the remaining 18 did not show statistically significant differences, and the results 

were very similar for soft tissues. The mean detection error between AI and human was 1.46 ± 

2.97mm, while the difference between human examiners was 1.50 ± 1.48mm. They noticed that 

the DL software behaved similarly to human examiners in the sense that when the human had 

difficulties in identifying landmarks on poor quality images, so did the AI. AI always detected 

identical landmark positions which can imply that AI might be a more reliable option for 

repeatedly identifying multiple cephalometric landmarks.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 – Research Article 

3.1 Abstract 

Introduction: The objective of this study was to compare the difference between manual 

cephalometric analysis and automatic analysis by artificial intelligence to confirm the reliability of the 

latter. Our research hypothesis is that the manual technique is the most reliable of the methods and 

is still considered the gold standard. 

Method: A total of 100 lateral cephalometric radiographs were collected in this study. Manual 

technique (MT) and automatic localization by artificial intelligence (AI) tracings were performed for 

all radiographs. The localization of 29 commonly used landmarks were compared between both 

groups. Mean radial error (MRE) and a successful detection rate (SDR) of 2mm were used to compare 

both groups. AudaxCeph software version 6.2.57.4225 (Audax d.o.o., Ljubljana, Slovenia) was used 

for both manual and AI analysis.  

Results: The MRE and SDR for the inter-examiner reliability test were 0.87 ± 0.61mm and 95% 

respectively. For the comparison between the manual technique MT and landmarking with artificial 

intelligence AI, the MRE and SDR for all landmarks were 1.48 ± 1.42mm and 78% respectively.  When 

dental landmarks are excluded, the MRE decreases to 1.33 ± 1.39mm and the SDR increases to 84%. 

When only hard tissue landmarks are included (excluding soft tissue and dental points) the MRE 

decreases further to 1.25 ± 1.09mm and the SDR increases to 85%. When only soft tissue landmarks 

are included the MRE increases to 1.68 ± 1.89mm and the SDR decreases to 78%. 

Conclusion: The software performed similarly to what was previously reported in the  literature for 

software that use analogous modeling framework.  Comparing the software’s landmarking to manual 

landmarking our results reveal that the manual landmarking resulted in higher accuracy. The software 

operated very well for hard tissue points, but its accuracy went down for soft and dental tissue. Our 

conclusion is that  this technology shows great promise for application in clinical settings under the 

doctor’s supervision. 

Keywords: Automated identification; Cephalometric analysis; Cephalometric landmarks; Artificial 

intelligence; Machine learning; Deep learning 



44 
 

3.2 Introduction 

 

Since the beginning of cephalometric radiography in the 1930s, cephalometric 

analysis has always been an important tool in diagnosis, treatment planning and growth 

evaluation, as well as a method to quantify the effects of orthodontic and surgical 

treatments. Manual cephalometric tracing is a meticulous and time-consuming task. 

Although digital tracing software can automatically calculate cephalometric 

measurements and angles, time is required for manual localization and positioning of 

cephalometric landmarks. In addition, errors in cephalometric point location, operator 

experience, and the subjective nature of landmarking also pose problems with this 

approach. To overcome these shortcomings, many fully automated approaches based on 

the use of artificial intelligence are now commercially available to automatically position 

cephalometric points and perform the analysis.  

The introduction of artificial intelligence in healthcare is revolutionizing and 

pushing the industry towards advancements in many clinical specialties(23).  In the field 

of dentistry,  Convolutional Neural Networks (CNNs) have shown very promising results 

in diagnosis and prediction in both radiology and pathology  through the use of disease 

identification and image segmentation (20). Furthermore, deep learning algorithms are 

being implemented to assist in the clinical decision-making process and even in treatment 

planning in the field of orthodontics (28) (29). Random Forest regression-voting (RFRV) is 

one of the most popular and commonly used machine learning algorithms across real-life 

data science projects as well as data science competitions (92). Several studies trained 

and tested the application of RFRV to automatically detect cephalometric landmarks (82) 

(83) (85) (86) (87), and their results can be found in Table 3. 
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Table 3- Studies that used RF regression-voting for cephalometric landmarking 

Research Group Year 
No. of  

Landmarks 
No. of  

X-rays tested 
MRE  
(mm) 

SDR  
< 2mm 

Architecture/modelling framework 

Ibragimov et al (81) 2014 19 250  (ISBI 2015) 
1.82-
1.92 

71.70% Hybrid : Random Forests (RF) and Game Theory 

Vandaele et al (82) 2014 19 100 1.83 75.37% 
Hybrid: Random Forests & simple pixel-based 

multiresolution features 

Lindner and Cootes (84) 2015 19 250  (ISBI 2015) 1.67 74.84% Machine Learning -Random Forests (RF)  

Ibragimov et al (85) 2015 19 150 1.84 75.40% Hybrid : Random Forests (RF) and Game Theory 

Lindner et al (86) 2016 19 250  (ISBI 2015) 1.2 84.70% Machine Learning -Random Forests (RF)  

 

The latest study using RFRV by Lindner et al (87) obtained an MRE of 1.2mm and 2mm 

SDR of 84.70%, which was a significant improvement from the previously seen SDR’s. 

Recent studies introduced deep learning algorithms to improve the landmark 

detection(62, 64, 87-90). Yao et al in their 2021 study tested their DL / CNN algorithm on 

37 landmarks and obtained an MRE of 1.04mm and 97.30% SDR which are numbers that 

come close to human error (62). The purpose of this study is to compare manual analysis 

and automatic analysis by artificial intelligence to confirm the reliability of a commercially 

available AI driven software that uses RFRV. We will then compare our results with newer 

studies that use more advanced deep learning algorithms. Our research hypothesis is that 

the manual technique is the most reliable of the methods. 

3.3 Methodology  

The Ethics Committee for Clinical Research of the Université de Montréal assessed and approved 

this study (CERC Projet # 2022-1334 , Appendix 1).  

This is a reliability study conducted at the University of Montreal's Faculty of Dentistry’s post-

graduate orthodontic clinic. One hundred (100) digital lateral cephalometric radiographs 

belonging to patients treated at the University clinic were randomly selected and anonymized to 

remove all patient related information. The sample was drawn from the pre-treatment 

cephalograms of patients taken at the orthodontic clinic between the years 2000 and 2020. 

Gender, age, racial group, dental occlusion, skeletal class, or stage of dentition were not 
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considered. Exclusion criteria were the presence of a syndrome that could alter craniofacial 

development, rigid post-surgical fixations, and obvious malposition of the head in the 

cephalostat. All radiographs were taken with the Instrumentarium Orthoceph OC200D (KaVo, 

Biberach, Germany). A maximum of 85 kVp was used to produce digital images (computed 

radiography) of the cephalometric radiograph. The size of the cephalograms was 2304 by 2832 

pixels. The images were grayscale with 8 bits per pixel and the resolution was 302 DPI. In this 

study, a total of twenty-nine (29) commonly used cephalometric landmarks were chosen to be 

analyzed; thirteen (13) hard tissue points, eight (8) dental points, and 8 soft tissue points. The 

landmarks along with their abbreviations and definitions are found in Table 4. 

Table 4. - Definition of landmarks 

Landmark  Definition 

Hard Tissue Points 

1 A, Subspinale Deepest point on the maxilla below ANS 

2 ANS, Anterior nasal spine Anterior point of maxilla. 

3 Ar, Articulare Point on the posterior border of the ramus at the intersection with the basilar portion of the occipital bone 

4 B, Supramentale Most posterior point on the bony curve of the mandible above pogonion 

5 Go, Gonion Most posterior and inferior point on the outline of the angle of the mandible 

6 Me, Menton Lowest point on the symphysis of the mandible 

7 N, Nasion Junction of frontonasal suture 

8 Or, Orbitale Inferior border of orbit 

9 Pg, Pogonion Most anterior point of bony chin 

10 PNS, Posterior Nasal Spine Posterior point of bony hard palate. 

11 Po, Porion Top of external auditory meatus. 

12 PTM, Pterygomaxillary 
Fissure 

Most posterior and superior point on the outline of the pterygomaxillary fissure 

13 S, Sella Mid-point of sella turcica 

Soft Tissue Points 

14 G’, Soft tissue Glabelle Most prominent point in the mid sagittal plane of the forehead 

15 LL, Labius Inferius Most anterior point on outline of lower lip 

16 Pg’, Soft tissue Pogonion Most anterior point on outline of soft tissue chin 

17 Pn, Pronasale Anterior tip of the nose 

18 Sn, Subnasale Junction of nasal septum and upper lip in mid-sagittal plane. 

19 STM, Stomium Superior Lowest midline point on outline of upper lip. 

20 St-, Stomium Inferior Highest midline point on outline of lower lip. 

21 UL, Labius Superius  Most anterior point on outline of upper lip 

Dental Points 

22 +1a, Apex of upper incisor Tip of the apex of the upper incisor 

23 -1a, Apex of lower incisor Tip of the apex of the lower incisor 

24 +1i, Incisal edge of upper 
incisor 

Tip of the incisal edge of the upper incisor 

25 -1i, Incisal edge of lower 
incisor 

Tip of the incisal edge of the lower incisor 

26 +6a, Upper molar mesial 
apex 

Mesial Apex of the first upper molar 

27 -6a, Lower molar mesial 
apex 

Mesial apex of the first lower molar 

28 +6c, Upper 1st molar cusp Tip of the mesiobuccal cusp of the first upper molar 

29 -6c, Lower 1st molar cusp Tip of the mesiobuccal cusp of the first lower molar 
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The manual tracing technique (MT) used in this study was a computer-assisted technique where 

the operator manually selects the cephalometric points on the monitor and allows the software 

to generate all measurements. In this method, the test set of 100 radiographs were analyzed by 

the same operator by positioning the cephalometric points manually using AudaxCeph version 

6.2.57.4225 software (Audax d.o.o., Ljubljana, Slovenia).  

To assess the intra-examiner reliability of the MT technique, 25 digital radiographs randomly 

selected were retraced one month later by the main author. These same 25 radiographs were 

traced by a second experienced examiner to determine the inter-examiner reliability.  

The artificial intelligence (AI) technique consisted of fully automatic software generated 

positioning and tracing. With the click of a button, the algorithm automatically positioned the 

cephalometric landmarks and generated the cephalometric measurements. The same 

AudaxCeph software offers this feature and was used to analyze the test set of 100 radiographs.  

AudaxCeph uses Hough Forest approach to detect the structure of interest in the image, and then 

applies Random Forest Regression-Voting in the Constrained Local Model framework to locally 

refine all point positions. 

Using this software, the landmarks of interest were selected and converted into pixel coordinates 

(x, y) that were subsequently recorded on spreadsheets. These coordinates were then converted 

to millimeters on the spreadsheet using the millimetric reference scale contained on each digital 

x-ray. The same radiograph was analyzed five times by Image J to assess the operator’s accuracy 

in selecting cephalometric points. 

Statistical analyses: Two indexes were used to compare both methods and for the intra-examiner  

and inter-examiner reliability. The first one was the mean radial error (MRE). The radial error R 

was calculated as follows: 

 

Where Δx and Δy are the absolute distances in the x-direction and y-direction between the 

predicted and referenced landmarks, respectively. MRE and standard deviation were calculated 

as follows: 
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For each landmark, if the distance between the predicted and standard position was higher than 

a certain value d, the automatic localization was successful. The second index used was the 

successful detection rate (SDR) within the range of 2mm.   

 

where Ld and Lr are the location of the predicted and referenced landmark, respectively. Ω is 

the number of detections made and j Є Ω (where j is an element of the set Ω). Additionally, the 

Dahlberg and the Bland-Altman methods were used.  

3.4 Results  

The intra-examiner and inter-examiner results for 25 randomly selected x-rays (725 total 

landmarks) are shown in Table  and Table 6. The MRE and SDR for the intra-examinator reliability 

test were 0.59 ± 0.44mm and 99% respectively. The MRE and SDR for the inter-examinator 

reliability test were 0.87 ± 0.61mm and 95% respectively.  

Table 5. - Intra-examiner results for 25 x-rays retraced by the same examiner 

  MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.02 0.47 99% 725 

ΔX (pixel) 0.11 3.18   725 

ΔY (mm) -0.03 0.56 100% 725 

ΔY (pixel) -0.17 3.79   725 

D (mm) 0.59 0.44 99% 725 

D (pixel) 3.96 2.97   725 
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Table 6.- Inter-examiner results for 25 x-rays traced by a second examiner 

 MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.00 0.66 99% 725 

ΔX (pixel) -0.02 4.42   725 

ΔY (mm) -0.15 0.82 97% 725 

ΔY (pixel) -0.98 5.49   725 

D (mm) 0.87 0.61 95% 725 

D (pixel) 5.84 4.06   725 

 

One of the x-rays had to be removed from the test set because it did not contain a millimetric 

scale, leaving ninety-nine total x-rays in the test set, for a total of 2871 landmarks tested. For the 

comparison between the manual technique MT and landmarking with artificial intelligence AI, 

the MRE and SDR were 1.48 ± 1.42mm and 78% respectively.  The results, including broken down 

measurements on the horizontal (x) and (y) axis are shown in  Table 7 

Table 7 - Results for all x-rays in test set (99) – comparison between MT and AI 

  MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.57 1.33 87% 2871 

ΔX (pixel) 3.86 8.94   2871 

ΔY (mm) -0.02 1.46 91% 2871 

ΔY (pixel) -0.12 9.83   2871 

D (mm) 1.48 1.42 78% 2871 

D (pixel) 10.00 9.56   2871 

 

0represent column charts for all landmarks where the y-axis corresponds to the mean error 

between manual and automatic techniques. Figures 16 A, B and C correspond to mean errors in 

the horizontal axis, vertical axis, and mean radial error (Euclidean distance), respectively, and 

Table 6 shows the detailed values for MRE and SDR. To better visualize the strengths (and 

weaknesses) of the AI algorithm, certain groups of landmarks were excluded and isolated from 

the analysis. The first subset analysis was done by excluding all molar related landmarks: 6c, +6a, 

-6c, -6a. The second and third subset analysis were done by including only the hard tissue points 
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and lastly only the soft tissue points from Table 8. - The MRE and SDR of landmarks in our test 

set  These results can be found in Table 7, Table 8 and Table 9.  

 

Figure 16. Column charts with A) mean x-axis error measurements for all landmarks, B) mean y-

axis error for all landmarks C) MRE for all landmarks. Error bars represent ±1 SD. 
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Table 8. - The MRE and SDR of landmarks in our test set 

Landmark MRE (mm) SD SDR (<2mm) 

Hard tissue points 

N 0.93 0.68 90.91% 

S 0.94 0.48 97.98% 

Po 1.72 1.01 71.72% 

Or 1.33 0.99 83.84% 

PTM 0.85 1.22 86.87% 

Ar 1.21 0.88 88.89% 

Me 1.01 0.74 92.93% 

Go 1.31 0.91 82.83% 

Pg 0.88 0.92 94.95% 

B 1.82 2.07 71.72% 

A 2.03 1.06 57.58% 

ANS 1.13 0.94 84.85% 

PNS 1.04 0.67 93.94% 

Dental Points 

(+1i) 0.70 0.66 95.96% 

(+1a) 1.18 0.92 87.88% 

(-1i) 0.73 0.85 94.95% 

(-1a) 1.09 0.76 90.91% 

(+6c) 3.35 0.89 4.04% 

(+6a) 1.37 0.68 85.86% 

(-6c) 3.21 0.99 6.06% 

(-6a) 1.76 1.02 73.74% 

Soft Tissue Points 

G’ 3.64 3.26 40.40% 

Pn 0.89 0.65 95.96% 

Sn 0.96 0.93 90.91% 

UL 0.90 0.60 96.97% 

LL 1.33 1.07 79.80% 

STM 2.37 2.16 65.66% 

St- 1.93 1.75 71.72% 

Pg’ 1.43 1.07 78.79% 
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Table 9. - Results for all x-rays – excluding landmarks associated with molars (+6c, +6a, -6c, -6a) 

  MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.38 1.15 93% 2475 

ΔX (pixel) 2.52 7.70   2475 

ΔY (mm) -0.11 1.50 90% 2475 

ΔY (pixel) -0.73 10.09   2475 

D (mm) 1.33 1.39 84% 2475 

D (pixel) 8.99 9.34   2475 

 

Table 10.- Results for all x-rays – hard tissue points only 

  MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.33 0.99 94% 1287 

ΔX (pixel) 2.21 6.66   1287 

ΔY (mm) 0.04 1.29 92% 1287 

ΔY (pixel) 0.26 8.66   1287 

D (mm) 1.25 1.09 85% 1287 

D (pixel) 8.40 7.34   1287 

 

Table 11. -  Results for all x-rays – soft tissue points only 

  MRE (mm) SD  SDR (<2mm) nb 

ΔX (mm) 0.56 1.44 90% 792 

ΔX (pixel) 3.76 9.68   792 

ΔY (mm) -0.48 1.94 86% 792 

ΔY (pixel) -3.24 13.05   792 

D (mm) 1.68 1.89 78% 792 

D (pixel) 11.32 12.66   792 

 

When dental landmarks are excluded from the mean averages, the MRE decreases to 1.33 ± 

1.39mm and the SDR increases to 84%. When only hard tissue landmarks are included (excluding 

soft tissue and dental points), the MRE decreases further to 1.25 ± 1.09mm and the SDR increases 

to 85%. When only soft tissue landmarks are included (excluding hard tissue and dental points), 

the MRE increases to 1.68 ± 1.89mm and the SDR decreases to 78%. 
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3.5 Discussion 

The present study was done to evaluate whether AI could be a reliable option to replace the 

repetitive and time-consuming task of identifying cephalometric landmarks on a two-

dimensional lateral x-ray. The software was tested on 99 x-rays and 29 landmarks. The global 

MRE and 2 mm SDR were 1.48 ± 1.42mm and 78%, which means that the average difference 

between the manual landmarking and automatic landmarking was 1.48mm and that 78% of 

landmarks detected by AI were less than 2mm away from the manually placed landmarks. 

AudaxCeph uses Hough Forest approach to detect the structure of interest in the image, and then 

applies Random Forest Regression-Voting in the Constrained Local Model framework to locally 

refine all point positions. Several studies developed and tested similar modeling frameworks (81) 

(83) (85) (86) (87). The latest study using Random Forest Regression-Voting by Lindner et al (87) 

obtained an MRE of 1.2mm and 2mm SDR of 84.70%  (Table 3- Studies that used RF regression-

voting for cephalometric landmarking). When compared to our results, Lindner et al’s MRE is 

lower by 0.28mm and SDR higher by 6.7%. These differences can be explained by the fact that 

they did not include any molar landmarks in their study, which because of super-impositions on 

2D cephalograms, make it difficult for both humans and AI to accurately predict their positions. 

In order to account for this, we calculated the MRE and SDR of all points while excluding the ones 

associated with the upper and lower molars (Table 9). In this analysis, we obtained improved 

MRE and SDR of 1.33 ± 1.39mm and 84%, which are values that compare well to the ones from 

Lindner et al.  

When the results are isolated for hard tissue points and soft tissue points, the software has a net 

advantage for identifying hard tissue. The MRE and SDR for hard tissue points are 1.25 ± 1.09mm 

and 85%, while for soft tissue points the performance drops to an MRE of 1.68 ± 1.89mm and 

SDR decreases to 78%. These differences may be attributed to the contrast differences between 

the soft and hard tissues on lateral cephalograms, making it easier for the algorithm to identify 

the hard tissues.  

Cephalometric landmarks seem to  have slightly different reliability  in the horizontal (x) versus 

the  vertical (y) planes, which indicates that the distribution of error is asymmetric on lateral 
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cephalograms. Studies have shown that differences along the x- axis tend to be greater than 

those on the y-axis(10, 11). These findings seem to be in accordance with the results that were 

obtained in this study, as the SDR for ΔX errors was 87% while the ΔY errors was 91%.  

For the hard tissue points, those having the largest MRE and SDR were Po (1.72 ± 1.01 & 71.72%), 

A (2.03 ± 1.06 & 57.58%) and B (1.82 ± 2.07 & 71.72%). The error for Po can be mainly attributed 

to an x-axis error as seen in 0while the errors for the A and B points can mainly be attributed to 

errors on the y-axis error as also seen in  0Literature and experience has shown that Po is among 

the most difficult landmarks to distinguish due to the overlapping structures superimposed on 

the landmarks (10).  

As it was previously reported, landmarks attributed to molars, and more particularly to upper 

and lower molar cusp tips (+6c, -6c) had the highest errors among the dental landmarks, with 

MRE’s ranging from 3.21-3.35mm and SDR of 4.04%-6.06%. These types of errors may be 

attributed to increased superimposition between the left and right molars causing the 

identification of the wrong cusp tips, since the premolars and second molars are within the 

landmarking area. Landmarks located on molars can be used for quick visualization of the molar’s 

Angle classification on the tracing or for measuring treatment effect on molar position. For 

cephalometric analysis, the most important use of molar landmarks is in the determination of 

the occlusal plane, a measure used in many important analyses such as the Wits and  Sassouni 

(8). The original occlusal plane (OOP), as defined by Downs, is a line connecting the point bisecting 

the first molar cusp height and the point bisecting the incisal overbite (4). The major impact that 

an error on these points could have would be if the errors were done in the y-axis, affecting the 

angulation or orientation of the occlusal plane angle. Luckily for us, the major error detected with 

regards to the molars is seen in the x-axis as seen on Figures 16A and 16B, and the ΔY error 

remained below the 2mm SDR. The x-axis error is in the positive or right-side direction, meaning 

that the software had the tendency to landmark cusps associated to premolars rather than 

molars. Yao et al’s recent 2021 study trained their CNN algorithm to identify 37 landmarks 

including the upper and lower molar cusp tips (62), and obtained an MRE/SDR(2mm) of 

1.060mm/90% for the upper molar cusp tip and 1.11mm/88% for the lower molar cusp tip which 

is a significant difference from what was found in the current study.  
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As previously mentioned, the software’s landmarking was not as accurate for the soft tissue 

points. When compared to hard tissue points, the MRE for the soft tissue analysis was on average 

0.43mm less accurate, and the SDR was 7% smaller. The two highest sources of error were G’ and 

STM. Studies have shown that glabella is also a common source of cephalometric error mainly 

due to image quality (10). When the G’ error is broken down, Figure 16A,B demonstrates that the 

error is predominantly a Y-axis error, and the direction is in the negative or downward direction, 

meaning that the software had a tendency to place the G’ landmark closer to soft tissue nasion 

and the supra-orbital rim rather than looking for the most prominent point in the mid sagittal 

plane of the forehead. The error associated to STM soft tissue point was mainly associated with 

x-axis error, where the software had more difficulties pinpointing the correct location of the 

lowest outline of the upper lip. Surprisingly, the software was able to detect well when the 

patient’s lips were in contact or not and demonstrated acceptable accuracy on the y-axis.  

The best way to evaluate whether AI could potentially be more accurate than humans to detect 

landmarks would be to compare human-human error with human-AI error, similarly to what was 

done in the study conducted by Hwang et al (63). In this study, the main investigator was a third-

year orthodontic resident, and the second investigator that examined the x-rays for the inter-

examiner reliability was an experienced orthodontist with 15 years of clinical experience. The 

inter-examiner results in Table  show that between the human examiners the MRE was 0.87 ± 

0.61mm and SDR was 95%. When comparing these numbers to the global MRE & SDR in Table  

one can easily argue that manual localization remains the gold standard. Generally speaking, the 

literature review has shown that since the introduction of deep learning in automatic 

landmarking in 2017 (87), there has  been a trend to improvement in the MREs and SDRs (Table 

2.- Summary of the articles published on landmark detection in lateral cephalometry. If we 

attempt to compare the results obtained by Yao et al in their 2021 study (62) with our results, 

we see that their software  which was tested on their test set that included 37 landmarks, 

obtained an MRE of 1.04mm and 97.30% SDR, while our human-human MRE and SDR were 0.87 

± 0.61mm and 95% on a smaller number of landmarks, meaning that we performed better for 

the MRE index but their AI software performed better for the SDR. Since the reproducibility of 

landmark positions is always constant with the AI software, one can argue that the SDR is a more 
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accurate measure of accuracy and reliability for AI imaging algorithms (63). From that 

perspective, the SDR obtained from Yao et al. did yield a better result on a larger number of 

landmarks and on the larger number of x-rays. As previously mentioned, it is impossible to truly 

compare two studies that used different test sets as too many factors come into play with regards 

to data sets. To argue this point further, when Yao et al. tested their software on the 250 x-rays 

from the 2015 International Symposium on Biomedical Imaging (ISBI), their MRE and SDR 

dropped to 1.14mm and 86.84%.  

From a clinical perspective, our opinion is that currently, AI could never replace a trained 

orthodontic specialist’s analysis. Most orthodontists understand that the values obtained from 

the analysis should not be considered as absolute values. These averages provide only an 

indication to help the orthodontist characterize the patient's facial morphology and the standard 

deviations give an idea of the severity of the deviation (7). When these concepts are understood, 

supplementing a patient’s treatment planning with AI software should not be a concern, 

especially when the more recent deep learning software will be commercially available. AI 

software could therefore be compatible with a clinical environment under the constant 

supervision of an expert, since even the most advanced of software seem to incorporate a certain 

error. 

The initial question regarding the general reliability of AI for automatic landmarking could be 

answered from different perspectives.  When using our data set and results, the conclusion would 

be that the software AudaxCeph is accurate enough to yield landmarking localization within 2 

mm for 78% of the 29 landmarks tested in our study. The way this result can be translated to a 

clinical standpoint would be to allow the software to generate the tracing, then manually replace 

the following points: A, B, +6c, -6c, G’, Po and STM. This implies a few clinical advantages for a 

busy orthodontist. Firstly, the time-consuming task of manually tracing or landmarking all the 

initial, progress or final cephalometric x-rays can be cut down to a task necessitating only a few 

seconds and minor concentration. Although it was not a measure that was recorded in this study, 

getting the software to generate the automatic landmarking took between 5-10 seconds. In a 

clinical setting, we would then add a few seconds to manually relocate a few outlying landmarks. 

Yao et al reported that their software took 3 seconds to locate 37 landmarks (62). CPU 
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performance would play an important role in the speed of the analysis, therefore this number 

will vary depending on the amount of working data that the software necessitates and on the 

specifications of the computer that it is being run on. Many tasks are typically delegated from 

the orthodontist to a licensed dental hygienist in North-American orthodontic clinics, and these 

tasks can vary from taking impressions, fitting or cementing bands and appliances, indirect 

bonding set-ups, taking photographs and radiographs (93). Manual cephalometric landmarking 

and analysis is a skill that is taught in orthodontic residency and thus can not easily be delegated. 

Therefore, a second clinical advantage can be found in the delegation of the automated 

cephalometric landmarking task. After the hygienist has taken the radiograph, the automatic 

landmarking can be quickly performed. As with all other delegated tasks, the orthodontist’s duty 

would then be to double check that the x-ray was well taken and fine tune the landmark positions 

if judged necessary. Finally, the fact that the landmarking is less time-consuming and can now be 

delegated, the orthodontist could be more likely to take more lateral x-rays for treatment 

progress analysis or superimposition on final x-rays to understand the true outcome of the 

treatment.  

One major strength with our study was that we third-party tested an AI driven software with no 

financial benefit, leading to unbiased results of the software’s performance. All other studies 

generally involve training and testing their own data sets, which could inevitably involve some 

level of performance bias. One obvious limitation of the current study was that only one AI 

software was used on a single test set coming from the same cephalometric x-ray machine, 

meaning that most of our generalized conclusions were drawn from a single source, when there 

is other software readily available on the market. To better understand the validity and reliability 

of AI for cephalometric landmarking, one should investigate different software on different test 

sets that come from different cephalometric x-ray machines to understand and test the impact 

of different image qualities on landmark detection, and to compare the different strengths and 

weaknesses of various software.  
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3.6 Conclusions  

We tested a commercially available AI based automatic landmark localization software on a data 

set composed of 99 lateral x-rays with 29 landmarks per image. The software performed similarly 

to what was previously reported in the literature for software that use analogous modeling 

framework.  Comparing the software’s landmarking to manual landmarking, and when 

considering the accuracy of our intra- and inter-observer evaluations, our results reveal that the 

manual landmarking resulted in higher accuracy. The software performed very well for hard 

tissue points, but its accuracy went down for soft tissue and more so for dental landmarks. 

Nonetheless, this technology shows great promise for application in clinical settings to 

automatically conduct cephalometric analyses and can be a useful tool for better time 

management, easy task delegation and to facilitate the acquisition of detailed cephalometric 

analyses, as long as the orthodontist supervises and fine tunes the results.  

 

3.7 Avenues for further research 

As was discussed in the limitations of our current study, further third-party testing of automatic 

cephalometric x-ray software should be done to test their reliability, using a larger number of 

images in the test sets along with a higher number of landmarks. Additionally, with 3-dimensional 

CBCT x-rays gaining popularity (94-96), more research should be conducted on the use of AI for 

landmarking 3D images and performing 3D growth predictions, surgical simulations, and 

treatment outcomes.  

3.8 Funding 

No funding source was required. All x-rays, software and equipment were provided by the 

orthodontic clinic at the University of Montreal. 

 

 

 



 

Bibliography 

1. Hans MG, Palomo JM, Valiathan M. History of imaging in orthodontics from Broadbent to 
cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2015;148(6):914-21. 
2. Behrents RG, Broadbent BH A Chronological Account of the Bolton-Brush Growth Studies 
1984. 
3. Hans MG, Broadbent BH, Jr., Nelson SS. The Broadbent-Bolton Growth Study--past, 
present, and future. Am J Orthod Dentofacial Orthop. 1994;105(6):598-603. 
4. Downs WB. Variations in facial relationships; their significance in treatment and 
prognosis. Am J Orthod. 1948;34(10):812-40. 
5. Steiner CC. Cephalometrics for you and me. Am J Orthod. 1953;39(10):729-55. 
6. Ricketts RM, Gugino C , Hilgers J, Schulhof R. Visual treatment objective or V.T.O. 
Bioprogressive therapy. Rocky Mountain Orthodontics. Denver, Colo (1979):pp. 35-54. 
7. Nielsen IL. L’analyse morphologique céphalométrique : que peut-elle nous enseigner ? Int 
Orthod. 2011;9(3):316-24. 
8. Proffit WR, Fields HW, Larson B, Sarver DM, Contemporary Orthodontics , 6th Edition: 
Elsevier; 2019. 
9. Dinesh A, Mutalik S, Feldman J, Tadinada A. Value-addition of lateral cephalometric 
radiographs in orthodontic diagnosis and treatment planning. The Angle Orthodontist. 2020;90. 
10. Durão APR, Morosolli A, Pittayapat P, Bolstad N, Ferreira AP, Jacobs R. Cephalometric 
landmark variability among orthodontists and dentomaxillofacial radiologists: a comparative 
study. Imaging Sci Dent. 2015;45(4):213-20. 
11. Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability 
in anatomical landmark identification using two-dimensional digital cephalometrics and three-
dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol. 2009;38(5):262-
73. 
12. Chen YJ, Chen SK, Huang HW, Yao CC, Chang HF. Reliability of landmark identification in 
cephalometric radiography acquired by a storage phosphor imaging system. Dentomaxillofac 
Radiol. 2004;33(5):301-6. 
13. Hlongwa P. Cephalometric analysis: manual tracing of a lateral cephalogram. South 
African Dental Journal. 2019;74. 
14. Leonardi R, Giordano D, Maiorana F, Spampinato C. Automatic cephalometric analysis. 
Angle Orthod. 2008;78(1):145-51. 
15. Silling G, Rauch MA, Pentel L, Garfinkel L, Halberstadt G. The significance of 
cephalometrics in treatment planning. Angle Orthod. 1979;49(4):259-62. 
16. Durão AR, Pittayapat P, Rockenbach MI, Olszewski R, Ng S, Ferreira AP, et al. Validity of 
2D lateral cephalometry in orthodontics: a systematic review. Prog Orthod. 2013;14(1):31. 
17. Devereux L, Moles D, Cunningham SJ, McKnight M. How important are lateral 
cephalometric radiographs in orthodontic treatment planning? Am J Orthod Dentofacial Orthop. 
2011;139(2):e175-81. 
18. Durão AR, Alqerban A, Ferreira AP, Jacobs R. Influence of lateral cephalometric 
radiography in orthodontic diagnosis and treatment planning. Angle Orthod. 2015;85(2):206-10. 



60 
 

19. Silva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone-beam computed 
tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J 
Orthod Dentofacial Orthop. 2008;133(5):640.e1-5. 
20. Rodrigues JK, Schwendicke F, Demystifying artificial intelligence and deep learning in 
dentistry. Braz oral res. 2021;35. 
21. Nguyen T-TD, R. Use of Artificial Intelligence in Dentistry: Current Clinical Trends and 
Research Advances. J Can Dent Assoc. 2021;87(17). 
22. Schwendicke F, Samek W, Krois J. Artificial Intelligence in Dentistry: Chances and 
Challenges. J Dent Res. 2020;99(7):769-74. 
23. Tandon D, Rajawat J. Present and future of artificial intelligence in dentistry. J Oral Biol 
Craniofac Res. 2020;10(4):391-6. 
24. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future 
Healthc J. 2019;6(2):94-8. 
25. Naylor CD. On the Prospects for a (Deep) Learning Health Care System. JAMA. 
2018;320(11):1099-100. 
26. Rysavy M. Evidence-based medicine: a science of uncertainty and an art of probability. 
Virtual Mentor. 2013;15(1):4-8. 
27. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep 
learning with electronic health records. NPJ Digit Med. 2018;1:18. 
28. Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are 
necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262-6. 
29. Rousseau M, Retrouvey JM. Machine learning in orthodontics: Automated facial analysis 
of vertical dimension for increased precision and efficiency. Am J Orthod Dentofacial Orthop. 
2022;161(3):445-50. 
30. Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic 
and management methods. J Dent Educ. 2001;65(10):960-8. 
31. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep 
learning-based convolutional neural network algorithm. J Dent. 2018;77:106-11. 
32. Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries 
lesions of different radiographic extension on bitewings using deep learning. J Dent. 
2020;100:103425. 
33. Zanella-Calzada LA, Galván-Tejada CE, Chávez-Lamas NM, Rivas-Gutierrez J, Magallanes-
Quintanar R, Celaya-Padilla JM, et al. Deep Artificial Neural Networks for the Diagnostic of Caries 
Using Socioeconomic and Nutritional Features as Determinants: Data from NHANES 2013⁻2014. 
Bioengineering (Basel). 2018;5(2). 
34. Fu Q, Chen Y, Li Z, Jing Q, Hu C, Liu H, et al. A deep learning algorithm for detection of oral 
cavity squamous cell carcinoma from photographic images: A retrospective study. 
EClinicalMedicine. 2020;27:100558. 
35. Jeyaraj PR, Samuel Nadar ER. Computer-assisted medical image classification for early 
diagnosis of oral cancer employing deep learning algorithm. J Cancer Res Clin Oncol. 
2019;145(4):829-37. 
36. Poedjiastoeti W, Suebnukarn S. Application of Convolutional Neural Network in the 
Diagnosis of Jaw Tumors. Healthc Inform Res. 2018;24(3):236-41. 



61 
 

37. Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J 
Rheumatol. 2017;4(1):46-56. 
38. Taguchi A, Suei Y, Ohtsuka M, Otani K, Tanimoto K, Ohtaki M. Usefulness of panoramic 
radiography in the diagnosis of postmenopausal osteoporosis in women. Width and morphology 
of inferior cortex of the mandible. Dentomaxillofac Radiol. 1996;25(5):263-7. 
39. Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. Evaluation of Transfer Learning with Deep 
Convolutional Neural Networks for Screening Osteoporosis in Dental Panoramic Radiographs. J 
Clin Med. 2020;9(2). 
40. Esposito M, Ardebili Y, Worthington HV. Interventions for replacing missing teeth: 
different types of dental implants. Cochrane Database Syst Rev. 2014(7):Cd003815. 
41. Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the 
identification and classification of dental implant systems, using panoramic and periapical 
radiographs: A pilot study. Medicine (Baltimore). 2020;99(26):e20787. 
42. Papantonopoulos G, Takahashi K, Bountis T, Loos BG. Artificial neural networks for the 
diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS One. 
2014;9(3):e89757. 
43. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally 
compromised teeth using a deep learning-based convolutional neural network algorithm. J 
Periodontal Implant Sci. 2018;48(2):114-23. 
44. Zhang X, Xiong S, Ma Y, Han T, Chen X, Wan F, et al. A Cone-Beam Computed Tomographic 
Study on Mandibular First Molars in a Chinese Subpopulation. PLoS One. 2015;10(8):e0134919. 
45. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial 
intelligence system for assessment of root morphology of the mandibular first molar on 
panoramic radiography. Dentomaxillofac Radiol. 2019;48(3):20180218. 
46. Hekmatian E, Karbasi Kheir M, Fathollahzade H, Sheikhi M. Detection of Vertical Root 
Fractures Using Cone-Beam Computed Tomography in the Presence and Absence of Gutta-
Percha. ScientificWorldJournal. 2018;2018:1920946. 
47. Prithviraj DR, Bhalla HK, Vashisht R, Regish KM, Suresh P. An overview of management of 
root fractures. Kathmandu Univ Med J (KUMJ). 2014;12(47):222-30. 
48. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an 
artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral 
Radiol. 2020;36(4):337-43. 
49. Proffit WR, Fields HW, Jr., Moray LJ. Prevalence of malocclusion and orthodontic 
treatment need in the United States: estimates from the NHANES III survey. Int J Adult Orthodon 
Orthognath Surg. 1998;13(2):97-106. 
50. Association AD. Oral Health and Well-Being in the United States 2015 [Available from: 
https://www.ada.org/en/science-research/health-policy-institute/oral-health-and-well-being. 
51. Ackerman JL. Orthodontics: Art, Science, or Trans-science? Angle Orthod. 1974;44(3):243-
50. 
52. Tarvit DJ, Freer TJ. Assessing malocclusion--the time factor. Br J Orthod. 1998;25(1):31-4. 
53. Li P, Kong D, Tang T, Su D, Yang P, Wang H, et al. Orthodontic Treatment Planning based 
on Artificial Neural Networks. Sci Rep. 2019;9(1):2037. 
54. Brightman BB, Hans MG, Wolf GR, Bernard H. Recognition of malocclusion: an education 
outcomes assessment. Am J Orthod Dentofacial Orthop. 1999;116(4):444-51. 

https://www.ada.org/en/science-research/health-policy-institute/oral-health-and-well-being


62 
 

55. Thanathornwong B. Bayesian-Based Decision Support System for Assessing the Needs for 
Orthodontic Treatment. Healthc Inform Res. 2018;24(1):22-8. 
56. Merrifield LL, Klontz HA, Vaden JL. Differential diagnostic analysis system. Am J Orthod 
Dentofacial Orthop. 1994;106(6):641-8. 
57. Retrouvey J-M. The role of AI and machine learning in contemporary orthodontics. APOS 
Trends in Orthodontics.11. 
58. Jung S-K, Kim T-W. New approach for the diagnosis of extractions with neural network 
machine learning. Am J Orthod Dentofacial Orthop. 2016;149(1):127-33. 
59. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of 
cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods 
YOLOV3 and SSD. Angle Orthod. 2019;89(6):903-9. 
60. Cohen AM, Ip HH, Linney AD. A preliminary study of computer recognition and 
identification of skeletal landmarks as a new method of cephalometric analysis. Br J Orthod. 
1984;11(3):143-54. 
61. Shahidi S, Oshagh M, Gozin F, Salehi P, Danaei SM. Accuracy of computerized automatic 
identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol. 
2013;42(1):20110187. 
62. Yao J, Zeng W, He T, Zhou S, Zhang Y, Guo J, et al. Automatic localization of cephalometric 
landmarks based on convolutional neural network. Am J Orthod Dentofacial Orthop. 
2022;161(3):e250-e9. 
63. Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of 
cephalometric landmarks: Part 2- Might it be better than human? Angle Orthod. 2020;90(1):69-
76. 
64. Song Y, Qiao X, Iwamoto Y, Chen Y-w. Automatic Cephalometric Landmark Detection on 
X-ray Images Using a Deep-Learning Method. Applied Sciences. 2020;10(7):2547. 
65. Oh K, Oh IS, Le VNT, Lee DW. Deep Anatomical Context Feature Learning for 
Cephalometric Landmark Detection. IEEE Journal of Biomedical and Health Informatics. 
2021;25(3):806-17. 
66. Zhong Z, Li J, Zhang Z, Jiao Z, Gao X, editors. An Attention-Guided Deep Regression Model 
for Landmark Detection in Cephalograms. Medical Image Computing and Computer Assisted 
Intervention – MICCAI 2019; 2019 2019//; Cham: Springer International Publishing. 
67. Gilmour L, Ray N, editors. Locating Cephalometric X-Ray Landmarks with Foveated 
Pyramid Attention. International Conference on Medical Imaging with Deep Learning; 2020. 
68. Parthasarathy S, Nugent ST, Gregson PG, Fay DF. Automatic landmarking of cephalograms. 
Comput Biomed Res. 1989;22(3):248-69. 
69. Tong W, Nugent ST, Jensen GM, Fay DF, editors. An algorithm for locating landmarks on 
dental X-rays. Images of the Twenty-First Century Proceedings of the Annual International 
Engineering in Medicine and Biology Society; 1989 9-12 Nov. 1989. 
70. Cardillo J, Sid-Ahmed MA. An image processing system for locating craniofacial landmarks. 
IEEE Trans Med Imaging. 1994;13(2):275-89. 
71. Forsyth DB, Davis DN. Assessment of an automated cephalometric analysis system. Eur J 
Orthod. 1996;18(5):471-8. 
72. Rudolph DJ, Sinclair PM, Coggins JM. Automatic computerized radiographic identification 
of cephalometric landmarks. Am J Orthod Dentofacial Orthop. 1998;113(2):173-9. 



63 
 

73. Hutton TJ, Cunningham S, Hammond P. An evaluation of active shape models for the 
automatic identification of cephalometric landmarks. Eur J Orthod. 2000;22(5):499-508. 
74. Liu JK, Chen YT, Cheng KS. Accuracy of computerized automatic identification of 
cephalometric landmarks. Am J Orthod Dentofacial Orthop. 2000;118(5):535-40. 
75. Grau V, Alcañiz M, Juan MC, Monserrat C, Knoll C. Automatic localization of cephalometric 
Landmarks. J Biomed Inform. 2001;34(3):146-56. 
76. Yang J, Ling X, Lu Y, Wei M, Ding G. Cephalometric image analysis and measurement for 
orthognathic surgery. Med Biol Eng Comput. 2001;39(3):279-84. 
77. Innes A, Ciesielski V, Mamutil J, John S. Landmark Detection for Cephalometric Radiology 
Images Using Pulse Coupled2002. 511-7 p. 
78. Chakrabartty S, Yagi M, Shibata T, Cauwenberghs G, editors. Robust cephalometric 
landmark identification using support vector machines. 2003 International Conference on 
Multimedia and Expo ICME '03 Proceedings (Cat No03TH8698); 2003 6-9 July 2003. 
79. El-Feghi I, Sid-Ahmed MA, Ahmadi M. Automatic localization of craniofacial landmarks for 
assisted cephalometry. Pattern Recognition. 2004;37(3):609-21. 
80. Yue W, Yin D, Li C, Wang G, Xu T. Automated 2-D Cephalometric Analysis on X-ray Images 
by a Model-Based Approach. IEEE Trans Biomed Eng. 2006;53(8):1615-23. 
81. Ibragimov B, editor Automatic Cephalometric X-Ray Landmark Detection by Applying 
Game Theory and Random Forests2014. 
82. Vandaele R, Marée R, Jodogne S, Geurts P, editors. Automatic Cephalometric X-Ray 
Landmark Detection Challenge 2014: A tree-based algorithm2014. 
83. Kaur A, Singh C. Automatic cephalometric landmark detection using Zernike moments and 
template matching. Signal, Image and Video Processing. 2015;9(1):117-32. 
84. Lindner C, Cootes T. Fully Automatic Cephalometric Evaluation using Random Forest 
Regression-Voting2015. 
85. Ibragimov B, Likar B, Pernus F, Vrtovec T, editors. Computerized Cephalometry by Game 
Theory with Shape-and Appearance-Based Landmark Refinement2016. 
86. Lindner C, Wang CW, Huang CT, Li CH, Chang SW, Cootes TF. Fully Automatic System for 
Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci Rep. 
2016;6:33581. 
87. Arık S, Ibragimov B, Xing L. Fully automated quantitative cephalometry using 
convolutional neural networks. J Med Imaging (Bellingham). 2017;4(1):014501. 
88. Qian J, Cheng M, Tao Y, Lin J, Lin H. CephaNet: An Improved Faster R-CNN for 
Cephalometric Landmark Detection. 2019 IEEE 16th International Symposium on Biomedical 
Imaging (ISBI 2019). 2019:868-71. 
89. Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and 
future perspectives. Quintessence Int. 2020;51(3):248-57. 
90. Kim H, Shim E, Park J, Kim Y-J, Lee U, Kim Y. Web-based fully automated cephalometric 
analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513. 
91. Gil S-M, Kim I, Cho J-H, Hong M, Kim M, Kim S-J, et al. Accuracy of auto-identification of 
the posteroanterior cephalometric landmarks using cascade convolution neural network 
algorithm and cephalometric images of different quality from nationwide multiple centers. Am J 
Orthod Dentofacial Orthop. 2022;161(4):e361-e71. 



64 
 

92. Ravindran SK. Random Forest in Simple English: Why is it so popular? 2021 [Available 
from: https://towardsdatascience.com/random-forest-in-simple-english-why-is-it-so-popular-
3ba04d0374d. 
93. Seeholzer H, Adamidis JP, Eaton KA, McDonald JP, Sieminska-Piekarczyk B. A survey of the 
delegation of orthodontic tasks and the training of chairside support staff in 22 European 
countries. J Orthod. 2000;27(3):279-82. 
94. Knoops PGM, Borghi A, Breakey RWF, Ong J, Jeelani NUO, Bruun R, et al. Three-
dimensional soft tissue prediction in orthognathic surgery: a clinical comparison of Dolphin, 
ProPlan CMF, and probabilistic finite element modelling. Int J Oral Maxillofac Surg. 
2019;48(4):511-8. 
95. Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK. A knowledge-based 
algorithm for automatic detection of cephalometric landmarks on CBCT images. Int J Comput 
Assist Radiol Surg. 2015;10(11):1737-52. 
96. Hung K, Yeung AWK, Tanaka R, Bornstein MM. Current Applications, Opportunities, and 
Limitations of AI for 3D Imaging in Dental Research and Practice. Int J Environ Res Public Health. 
2020;17(12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://towardsdatascience.com/random-forest-in-simple-english-why-is-it-so-popular-3ba04d0374d
https://towardsdatascience.com/random-forest-in-simple-english-why-is-it-so-popular-3ba04d0374d


 

Appendix 

1. Ethics Approval 

 

 



66 
 

 


