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Résumé

L’objectif principal de ce travail est de proposer une méthodologie de découverte des hyper-
paramètres. Les hyperparamètres aident les systèmes à converger lorsqu’ils sont bien réglés et
fabriqués à la main. Cependant, à cette fin, des hyperparamètres mal choisis laissent les prati-
ciens dans l’incertitude, entre soucis de mise en œuvre ou mauvais choix d’hyperparamètre et
de configuration du système. Nous analysons spécifiquement le choix du taux d’apprentissage
dans la descente de gradient stochastique (SGD), un algorithme populaire. Comme objectif
secondaire, nous tentons de découvrir des points fixes en utilisant le lissage du paysage des
pertes en exploitant des hypothèses sur sa distribution pour améliorer la règle de mise à jour
dans SGD. Il a été démontré que le lissage du paysage des pertes rend la convergence possible
dans les systèmes à grande échelle et les problèmes difficiles d’optimisation de la boîte noire.
Cependant, nous utilisons des gradients de valeur stochastiques (SVG) pour lisser le paysage
des pertes en apprenant un modèle de substitution, puis rétropropager à travers ce modèle
pour découvrir des points fixes sur la tâche réelle que SGD essaie de résoudre. De plus, nous
construisons un environnement de gym pour tester des algorithmes sans modèle, tels que
Proximal Policy Optimization (PPO) en tant qu’optimiseur d’hyperparamètres pour SGD.
Pour les tâches, nous nous concentrons sur un problème de jouet et analysons la convergence
de SGD sur MNIST en utilisant des méthodes d’apprentissage par renforcement sans modèle
et basées sur un modèle pour le contrôle. Le modèle est appris à partir des paramètres du
véritable optimiseur et utilisé spécifiquement pour les taux d’apprentissage plutôt que pour
la prédiction. Dans les expériences, nous effectuons dans un cadre en ligne et hors ligne.
Dans le cadre en ligne, nous apprenons un modèle de substitution aux côtés du véritable
optimiseur, où les hyperparamètres sont réglés en temps réel pour le véritable optimiseur.
Dans le cadre hors ligne, nous montrons qu’il y a plus de potentiel dans la méthodologie
d’apprentissage basée sur un modèle que dans la configuration sans modèle en raison de ce
modèle de substitution qui lisse le paysage des pertes et crée des gradients plus utiles lors de
la rétropropagation.

mots clés: apprentissage par renforcement, optimisation des hyperparamètres, contrôle
optimal, l’apprentissage en profondeur, méta-apprentissage, apprentissage par renforcement
basé sur un modèle, optimisation à deux niveaux
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Abstract

The primary goal of this work is to propose a methodology for discovering hyperparameters.
Hyperparameters aid systems in convergence when well-tuned and handcrafted. However,
to this end, poorly chosen hyperparameters leave practitioners in limbo, between concerns
with implementation or improper choice in hyperparameter and system configuration. We
specifically analyze the choice of learning rate in stochastic gradient descent (SGD), a popular
algorithm. As a secondary goal, we attempt the discovery of fixed points using smoothing of
the loss landscape by exploiting assumptions about its distribution to improve the update
rule in SGD. Smoothing of the loss landscape has been shown to make convergence possible in
large-scale systems and difficult black-box optimization problems. However, we use stochastic
value gradients (SVG) to smooth the loss landscape by learning a surrogate model and then
backpropagate through this model to discover fixed points on the real task SGD is trying to
solve. Additionally, we construct a gym environment for testing model-free algorithms, such
as Proximal Policy Optimization (PPO) as a hyperparameter optimizer for SGD. For tasks,
we focus on a toy problem and analyze the convergence of SGD on MNIST using model-free
and model-based reinforcement learning methods for control. The model is learned from
the parameters of the true optimizer and used specifically for learning rates rather than for
prediction. In experiments, we perform in an online and offline setting. In the online setting,
we learn a surrogate model alongside the true optimizer, where hyperparameters are tuned in
real-time for the true optimizer. In the offline setting, we show that there is more potential
in the model-based learning methodology than in the model-free configuration due to this
surrogate model that smooths out the loss landscape and makes for more helpful gradients
during backpropagation.

Keywords: reinforcement learning, hyperparameter optimization, optimal control,
deep learning, meta-learning, model-based reinforcement learning, bilevel optimization
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Introduction

In the past, machine learning research has focused on the handcrafted design of features,
such as Scale Invariant Feature Transforms (SIFT) [Geng and Jiang, 2009] and Histogram of
Oriented Gradients (HOG) [Dalal and Triggs, 2005] as feature descriptors. Engineering these
features was difficult, not only in obtaining good accuracy on tasks such as recognition, but
also the engineering process itself, for example, handcrafting of new of features for different
objects. To remedy this, the focus naturally shifted to learning features within standard
MLPs such as AlexNet [Krizhevsky et al., 2017] and LeNet [LeCun et al., 1998] that, when
given enough data, easily outperformed well-engineered features. The refocus to learning
features also brought new challenges, such as a further emphasis on hyperparameter tuning.
In essence, this trades off a fraction of the difficulty of designing features on a specific sub-
task, such as learning the edges of a cat or dog, for the engineering of an architecture and
a process, such as determining how quickly to update your neural network parameters for
object recognition.

Another explanation for the shift from engineered features to learned features is that
the performance can be more reliably determined from an engineered architecture instead
of engineered features. An engineered architecture as a model has the capacity to represent
the many functions that are meant to approximate the decision boundaries of a particular
subtask, better than the heuristics applied to determine these decision boundaries directly
as a model.

However, it is still difficult to tune these architectures, leading to underperformance.
Usually, this underperformance is not due to a lack of capacity, but due to sensitivity to
certain small architectural and heuristic changes in hyperparameters. Another confounder is
inadequately judging the performance of the model or architecture on the wrong distribution
of the data by training on the wrong dataset.

To this end, the focus has once again shifted from developing with primarily architectural
and heuristic considerations to learning how to learn engineering architectures. Learning to
learn differentiates itself from engineering to learn by introducing a context over distributions
in data, or by using multiple datasets in the optimization and training of the architecture’s
parameters.



With gradient-based hyperparameter optimization approaches, there have been advances
utilizing automatic differentiation, such as forward mode, reverse mode, and implicit differ-
entiation. The advances help deliver reasonable hyperparameters, but an underlying problem
still exists with the gradient descent and approaches that nest gradients [Goodfellow et al.,
2016]. Issues with scalability due to long-term dependencies also persist [Pascanu et al.,
2013], and are compounded when using forward and backward propagation through a neural
network. Erratic dynamics result from large learning rates [Maclaurin et al., 2015a] and give
uninformative gradient information or exploding gradients, whereas small learning rates can
fail to converge reasonably quickly. This can be classified as unrolled optimization or trun-
cated unrolled optimization like truncated backpropagation through time(BPTT), TBPTT,
which, while improving in efficiency over unrolled optimization, suffers from truncation bias.

Some methods, such as Self-Tuning Networks [MacKay et al., 2019] and implicit hyperpa-
rameter optimization [Lorraine et al., 2020]seek to bypass some of the issues with gradients
with long term dependencies by trying to approximate the Jacobian through various means
such as utilizing the "best-response" Jacobian local approximation in STN, and by utilizing
the implicit function theorem(finding a fixed point where the gradient zero through some
root finding method).

Recent methods have sought to treat the hyperparameter optimization problem as a
black-box optimization problem, such as Persistent Evolutionary Strategies (PES) [Vicol
et al., 2021], doing a form of unrolled optimization but using gradient estimates. These
methods have seen a lot of success and is a piece of the framework this thesis follows, using
unrolled optimization with gradient estimates.

Another axis for modification to improve performance while reducing the engineering
difficulty is to investigate the architecture itself and the methodology in which it is learned.
Borrowing from the model-based reinforcement learning framework, the model can be used to
predict the next states of the world with respect to a current state by unrolling, which in the
context of learning to learn is predicting what the architecture could look and function like.
If this model is untrustworthy, the next state architecture should also be untrustworthy and
should not be used to represent the future performance of a distribution of data. Moreover, if
a model is trustworthy, it can then be used to represent future performance on a distribution
of data, alleviating some of the difficulty in tuning.

The work in this thesis directly utilizes the model to obtain hyperparameters on a distri-
bution of data, where the model that is learned is a transition model as a surrogate optimizer
of the true optimizer’s dynamics from a distribution of data over different contexts.
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Chapter 1

Background

1.1. Stochastic approximation
In machine learning, since [Robbins and Monro, 1951] many have sought to understand

convergence with stochastic gradient descent (SGD). Imagine one would like to find the root
of some function f , with samples from some distribution. In [Robbins and Monro, 1951], it
would be modeled as a stochastic approximation with some noise as a random variable ξ,
represented as g(x, ξ), which one can call the stochastic gradient. We would like to compute
the true gradient ∇f(x), assuming we have information about f , we assume g(x, ξ) is an
unbiased estimate of ∇f(x):

∇f(x) = Eξ[g(x, ξ)] (1.1.1)

Therefore, preceding this definition with an expectation over ξ with probability P , one
can substitute this estimate for the true gradient ∇f(x) within an update rule, with xt ∼ D

and ϵ ∼ P and αt is a step size, where there is an assumption on the smoothness (continuous
gradients) of f , but it is non-convex:

xt+1 = xt − αtg(xt, ξt) (1.1.2)

One could also incrementally compute this gradient using an incremental gradient method
(Wright), where f is a finite-sum f(x) = 1

N

∑N
i=1 fi(x). Knowing that N is large, computing

the full gradient ∇f(x) is expensive, so a procedure is performed:

Eξ(g(x, ξ)) = ∇
(

1
N

N∑
i=1

fi(x)
)

= 1
N

N∑
i=1
∇fi(x) = ∇f(x) (1.1.3)

In addition to this, one can apply the stochastic gradient to the finite-sum objective 1.1.3,
and collect a minibatch of samples, for example, of size m such that there is a subset of



samples at every iteration St, chosen uniform random:

xt+1 = xt − αt
1
m

∑
i∈St

∇fi(xt) (1.1.4)

This leads to having a lower variance estimate of∇f(xt) compared to∇fi(xt) in 1.1.3 overall,
but trades this off for being m times more expensive in computation. In the next section,
the focus shifts to empirical risk minimization, and then a discussion on dynamics in SGD
with step size and minibatch size.

1.1.1. Empirical Risk Minimization

In the optimization of machine learning, tasks can be evaluated as expected values of
error with data drawn from some distribution or simulator. Given some data drawn from
some probability distribution x ∼ p(D) and a loss function l(x,y), the true risk R is defined
as:

R(f) = E(x,y)∼p(D) [L(f(x), y)]

Given that it is intractable to minimize the risk function, instead, we opt for data drawn inde-
pendently and identically distributed (i.i.d.) from a joint distribution (x1, y1), . . . (xN , yN) ∼
p(x, y) such now it becomes the empirical risk:

Remp(f) = 1
N

N∑
i=1

l(f(xi), yi)

Such that, in expectation with respect to the sample set S = (x1:N , y1:N) drawn from data D,
the empirical risk is close to the true risk given that the empirical risk is a random variable.
This is what supervised learning intends to maximize, as the performance on given data given
an adjustment of hypothesis f . These two risks subtracted from each other constitute the
generalization gap, (R[fS]−Remp[fS]), where fS where f is a hypothesis learned on samples
S with a loss l. Finally, a critical observation would be that given we want to minimize the
true risk R[f ], can look at the following [Hardt and Recht, 2022]:

R[f ] = Remp[f ] + (R[f ]−Remp[f ])

This relation between true risk and empirical risk shows the generalization gap (R[f ]−
Remp[f ]) because in order to minimize the true risk, one must also minimize this general-
ization gap. In the following section, we illustrate methods to do optimization with respect
to the objective f(x), in a nonlinear equality-constrained optimal control setting. In future
sections, there will be a discussion on stochastic optimization and policy search, which will
revisit some of these topics. To motivate the outcomes of this work, the discussion shifts to
gradient methods and momentum as a way to accelerate toward a solution using the memory
of gradients from the past.
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1.2. Optimization
1.2.1. The Heavy Ball Method

In gradient methods, a previous iteration has information that goes unused, such that it
is basically a "memoryless" method. However, one could consider a multistep method, which
in Polyak’s words, takes into account the "prehistory" [Rivet and Souloumiac, 1987] [Polyak,
1983] of the process, or some sort of memory to be able to aid convergence. In this case,
he describes a method that makes an approximation by taking into consideration k previous
iterations:

xt+1 = ft(xt, xt−1, . . . , xt−k+1) (1.2.1)

Called a k-step method, where Newton’s method and the gradient descent method were
single-step methods. The heavy ball method, described in [Polyak, 1964], or Polyak’s mo-
mentum, introduces an inertia term β(xt − xt−1):

xt+1 = xt − α∇f(xt) + β(xt − xt−1) (1.2.2)

Which shows clearly that if β = 0, it is just the gradient method. Where starting with
dynamics dx

dt
= −∇f(x), the first fixed point occurs at ∇f(x) = 0. To further illustrate,

describe the motion of a heavy ball in a potential field under viscosity using a second-order
ODE, where µ ≥ 0 is the particle mass and p ≥ 0 is the friction during the system evolution:

µ
d2x(t)

dt2 = −∇f(x(t))− p
dx(t)

dt
Using a finite-difference approximation, such as the following:

µ
x(t + ∆t)− 2x(t) + x(t−∆t)

(∆t)2 ≈ −∇f(x(t))− p
x(t + ∆t)− x(t)

∆t

Then, after some term rearrangement and using α and β:

x(t + ∆t) = x(t)− α∇f(x(t)) + β(x(t)− x(t−∆t))

Revealing Polyak’s momentum in dynamics form. Polyak’s momentum uniquely balances
the curvature dynamics h with the update rule for convergence with step size α. Importantly,
it can be shown that for the values αt, βt, are set based on the bounds of the condition number
of the Hessian (H(x) = ∇2f(x)) of f , which bounds the entire landscape of f . Finding the
condition number κ for a symmetric matrix A:

κ = |λmax(A)|
|λmin(A)| (1.2.3)
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Nesterov’s method [Nesterov, 1983] (also known as Nesterov’s accelerated gradient method)
can be shown to be the following update rule where (xt − xt−1) is the momentum term:

xt+1 = xt − α∇f(xt + β(xt − xt−1)) + β(xt − xt−1) (1.2.4)

Nesterov’s accelerated gradient helps the ball slow before the hill slopes back up again, giving
an approximation of the next set of parameters, approximating the future of the position
of parameters. It has been shown that compared to vanilla gradient descent, which has a
convergence of O(1/t) [Rockafellar, 1970], Nesterov’s has a convergence of O(1/t2) [Ghadimi
et al., 2015]. Importantly, this shows that accelerated methods help speed up convergence.
However, this convergence benefit trades off with the increases in stochastic errors [Hardt
et al., 2016, Ramezani-Kebrya et al., 2018].

1.2.2. Errors with momentum

Underdamping, when β is too large, leads to oscillation, which can be seen in the
mass/spring example. Overdamping, such as when β is too small, which almost reduces
this to the gradient descent case, means the process takes too long to converge. Critical
damping results when the right β is picked can be chosen with respect to the step size α.

xt+1 = xt − αtg(xt, ξt) + βt(xt − xt−1) (1.2.5)

Additionally, instability arises in long-term dependencies [Bengio et al., 1994] and the archi-
tectural choice itself [Doya, 1993] [Bengio et al., 1993] [Pascanu et al., 2013]. In the following
section, we examine these long-term dependencies and architectural changes.

1.2.3. Nonlinear models and implicit regularization in deep net-
works

The empirical risk, which was described in 1.1.1 [Hardt and Recht, 2022, p.35], can be
used for nonlinear models with layers k as linear relationship structure mappings known
as features, xk+1 = ϕ(Wlxk + bk) or as a recurrent structure with xk+1 = f(xk) such as
in a deep neural network with a composition of functions f ≡ f0 ◦ f1 ◦ f2 . . . and θ =
{W0, b0, . . . WK , bK} the empirical risk is the following:

Remp(θ) = 1
N

N∑
i=1

l(f(xi; θ), yi) (1.2.6)

Can use a gradient method, such as gradient descent, to optimize, where yt are predictions
from the model fθ, and then ∇θf(x; θt) is a |θ| ×N Jacobian, and y targets such that the
update rule becomes:
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yt =


f(x0, θt)

...
f(xN ; θt))

 θt+1 = θt − α∇θf(x; θt)(yt − y)

Theorem 1.2.1 (Taylor’s Theorem). If f is a continuously differentiable function, then for
some t ∈ [0, 1],

f(x) = f(x0) +∇f(tx + (1− t)x0)⊤(x− x0)

If f is twice continuously differentiable, then,

∇f(x) = ∇f(x0) +
∫ 1

0
∇2f(tx + (1− t)x0)⊤(x− x0)dt

and for some t ∈ [0, 1]

f(x) = f(x0) +∇f(x0)⊤(x− x0) + 1
2(x− x0)∇2f(tx + (1− t)x0)⊤(x− x0)dt

Such that it can be written for a function f in the form as an approximation:

f(x + ϵν) = f(x) + ϵ∇f(x)⊤ν + ϵ2

2 ν⊤∇2f(x + δν)⊤ν (1.2.7)

Then can rewrite with respect to a prediction yt, by using Taylor’s theorem:

yt+1 = f(x; θt+1)

= f(x; θt) +∇θf(x; θt)⊤(θt+1 − θt) +
∫ 1

0
H(θt + s(θt+1 − θt))(θt+1 − θt, θt+1 − θt)ds

= yt − α∇θf(x; θt)⊤∇θf(x; θt)(yt − y) + αϵt

Note that ϵt = α
∫ 1

0 H(θt + s(θt+1 − θt))(∇θf(x; θt)(yt − y),∇θf(x; θt)(yt − y))ds, and
if y labels are removed from both sides:

yt+1 − y =
(
I− α(∇θf(x; θt)⊤∇θf(x; θt)

)
(yt − y) + αϵt

In practice, with deep learning, it can be shown that ϵt = α
2 C(yt − y)⊤(yt − y) [Hardt

and Recht, 2022, p. 131], where C is the curvature, which implicitly induces regularization
in this unrolled SGD process.

1.2.4. Unrolling

Since we are dealing with an iterative process, it is essential to acknowledge how unrolling
benefits optimization with memory and run time trade-off [Hellman, 1980]. With learned
optimization, the process of unrolling gets unrolled through time as the equations 1.2.13. We
take a short detour into software and compiler design to review unrolling as an optimization.
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In software, a common approach is an optimization known as loop unrolling [Aho et al.,
1977] or loop unwinding, which is a process of, at a high level, trading off memory for time
(space vs time complexity) using the same mathematical definition. One can reduce the cost
of loop overhead by adding the same function within the loop in multiple instances to reduce
the overall outer loop length in iterations. This trades the size of memory being used directly
for speed, but the effectiveness of loop unrolling can be shown using an unrolling factor. The
unrolling factor is the number of times the loop is unrolled. If this factor is increased, more
memory is used; decreasing this factor results in a method much closer to a standard loop.
Using an unroll factor of K, the loop body can be repeated K times, resulting in a reduced
number of overall loop iterations. Using the following example, showing an unrolled vs a
standard loop as shown in and modified from [Huang and Leng, 1999]:

Fig. 1.1. Standard loop:
1 for i in range (0 , 4) :
2 g [ i ] = a [ i ] + b ∗ c

Fig. 1.2. Fully unrolled(flattened) loop:
1 g [ 0 ] = a [ 0 ] + b ∗ c
2 g [ 1 ] = a [ 1 ] + b ∗ c
3 g [ 2 ] = a [ 2 ] + b ∗ c
4 g [ 3 ] = a [ 3 ] + b ∗ c

Fig. 1.3. Loop unrolled with K = 2:
1 for i in range (0 , 4 , 2) :
2 g [ i ] = a [ i ] + b ∗ c
3 g [ i + 1 ] = a [ i + 1 ] + b ∗ c

Loop unrolling with optimization, similarly, amounts to trade-offs in overall loop iter-
ations for storage and memory used. In the shown examples, using an unroll factor of K

reduced the number of overall iterations by repeating the loop body K times. In a similar
way, at a high level, note the trade-off of increased memory usage in forward mode, and
additional loop iterations in reverse mode with automatic differentiation. We derive reverse
mode automatic differentiation or backpropagation after a discussion on the forward mode
in the following section.

1.2.5. Forward mode and unrolling

In the following, the explanation of the unrolling process is described using a recurrent
neural network architecture. Adopting the dynamical system framework in the form of a
recurrent network [Goodfellow et al., 2016], we start with a given N -length sequence xN , to
illustrate the architecture with the following dynamical system:
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st+1 = f(st, θ)

Note, that there is a recurrence around the state s, such that at the next state timestep
st+1 comes from another call of the function f evaluated at previous state st−1 with (shared)
parameters θ.

This recursion can continue to be unrolled, similar to figure 1.2.4 as a function compo-
sition notation. Shown below with given steps N , this graph can be unrolled N − 1 times,
and explicitly written:

s1 = f(s0; θ)

s2 = f(s1; θ)

s3 = f(s2; θ)

s4 = f(s3; θ)

Which, when unrolled, reveals the structure in a nested form, starting with s0

s4 = f(f(s3, θ); θ)

= f(f(f(s2,θ); θ); θ)

= f(f(f(f(s1, θ); θ); θ); θ)

= f(f(f(f(f(s0,θ); θ); θ); θ); θ)

Using an external input xt, then the update for a recurrent model is revealed:

st = f(st−1, xt; θ)

Where the state s is defined as the carry or hidden state h of the recurrent network, such
that the update becomes:

ht = f(ht−1, xt; θ)

This can map from an input sequence of length N with the following form x =
(xN , xN−1, . . . x2, x1), by representing the full sequence as an input to g, which can be any
length as a hyperparameter, finally getting for the full sequence:
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hN = gN(xN , xN−1, . . . x2, x1)

hN = f(hN−1, x; θ)

Real-time recurrent learning [Williams and Zipser, 1989] doesn’t need to store past net-
work states, and might theoretically be used to learn dependencies of any length and online,
learning at every step. Forward mode automatic differentiation and thus RTRL have large
storage requirements, however - requiring O(k · |θ|) where k is the state size, and |θ| is the
size of the shared parameters. Using the same template gradient of the loss from above:

∇θL =
T∑
t

∂L

∂ht

∂ht

∂θt

=
T∑
t

∂L

∂ht

(
∂ht

∂θt

+ ∂ht

∂ht−1

∂ht−1

∂θ

)

Note how no loss terms appear in the unrolling, as it is happening purely with respect
to the hidden state parameters, and not unrolling through the loss - and it is updating
with respect to the loss in an iterative fashion. However, the memory requirements increase
dramatically, requiring a |θ| times more computation than the original forward pass. This is
important because in forward mode, instead of propagating tangent vectors as many times as
there are parameters, you can form the full Jacobian at each step. Basically, we would need
as many propagations as there are parameters, and a vector in each position is called a seed
vector. Another way to consider this approach is to think about the Jacobian-vector-product
(JVP), where x = J⊤v for forward mode. In reverse mode, however, you only propagate a
vector backward in time, so only one pass is needed. This can also be viewed as a Vector-
Jacobian-product (VJP), where x = v⊤J. To view this in the context of deep learning and
then control, we continue the discussion to get the update in reverse mode with respect to
the network parameters θ:

∇θL =
T∑
t

∂L

∂ht

∂ht

∂θt

Then, expanding ∂L
∂ht

by performing a unrolling through time T steps using the recursion
∂L
∂ht

= ∂L
∂ht+1

∂ht+1
∂ht

+ ∂Lt

∂ht
, which is just reverse mode where θt is just a copy of the weights at

time t:
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∇θL =
T∑
t

∂L

∂ht

∂ht

∂θt

=
T∑
t

(
∂L

∂ht+1

∂ht+1

∂ht

+ ∂Lt

∂ht

)
∂ht

∂θt

A particular problem emerges with the Jacobian ∂ht+1
∂ht

, namely exploding gradients, due
to the eigenvalues of the ratio between ∂ht+1 and ∂ht. If it is greater than 1, the gradients
explode. In early work, there were clipping [Pascanu et al., 2013] techniques applied to avoid
this issue. However, it continues to be a foundational problem with backpropagation and
recurrent networks.

1.2.6. Backprop in neural networks

There are many ways to evaluate the gradient ∇θf , or its approximation to get the full
performance J(θ). However, alternatives give way to many trade-offs in implementation
difficulty and time/space complexity. Consider a function f such as a deep network as a
nested composition of applications of layers l within f(x), and x ∈ Rn:

f(x) = (ϕ ◦ ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ2 ◦ ϕ1)(x) = ϕ(ϕl(ϕl−1(. . . (ϕ2(ϕ1(x)))) . . . )) (1.2.8)

From [Wright and Recht, 2022], note the structure within the nested composition, such
as the following where ϕ1 : Rn → Rm1 and ϕi : Rmi−1 → Rmi and ϕ : Rml → R, then if using
the chain rule ∇f(x):

∇f(x) = (∇xϕ1)(∇ϕ1ϕ2)(∇ϕ2ϕ3) . . . (∇ϕl−1ϕl)(∇ϕl
ϕ) (1.2.9)

Such that these partial derivatives are evaluated at current point ∇xϕ1 : Rn×m1 , and
∇ϕi

ϕi+1 : Rmi×mi+1 , ∇ϕl
ϕ : Rml : To properly connect this with the previous section 1.3.5 on

adjoints method, adapt these equations to yield structure among ∇θfi(x) at i stages in the
chain, where vector x = (x0, x1, . . . , xl) where xi ∈ Rni is required along with a value of the
previous function application ϕi−1:

f(x) = (ϕ ◦ ϕl ◦ ϕl−1 ◦ . . . ◦ ϕ2 ◦ ϕ1)(x) (1.2.10)

= ϕ(ϕ1(xl−1, ϕl−2(xl−2(xl, ϕl−1(. . . (x3, ϕ2(x2, ϕ1(x1)))) . . . )) (1.2.11)

It can be shown that this method of adjoints, backpropagation, which applies progressive
functions ϕ1 : Rn1 → Rm1 , ϕi ∈ Rni → Rmi−1 → Rmi where (i = 2, 3, . . . , l) and finally
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ϕ : Rml to show the final composition with any data xi:

∇xi
f(x) = (∇xi

ϕi)(∇ϕi
ϕi+1)(∇ϕi+1ϕi+2) . . . (∇ϕl−1ϕ1)(∇ϕ1ϕ) (1.2.12)

This exactly corresponds to the backward pass shown later in 1.3.24. In fact, one can observe
the following orders of convergence in the VJP vs JVP section 1.2.5. Next, we discuss TBPTT
and then work out an unrolled example at the extremes.

1.2.7. TBPTT and Unrolling SGD with an optimizer

In addition to backpropagation through time, one might consider cutting the length of
an optimization loop unrolling by, for example, setting the length in steps from N to τ ,
which is helpful in backpropagation/reverse mode because it scales linearly with the number
of iterations, by shortening the length τ < N , the unrolls become shorter. This is shown
in [Williams and Zipser, 1995, Aicher et al., 2020]. The trade-off for this technique is that
it adds bias to the gradients. In an example to illustrate, consider learning a learning rate
using the gradient descent rule, such as in [Metz et al., 2019], where m is an optimizer with
a loss l defined in the following way, similarly to [Andrychowicz et al., 2016]:

wt+1 = m(wt; α) = wt − α∇l(wt)

Then, the unrolling with l as an inner loss can be written using the following total derivative
and chain rule applied to the update, to result after T steps of gradient descent with respect
to the learning rate α (a scalar) as a single (hyper)parameter with a simplified update
w − α∇l(w), then if ∇2

wl(wt) = Ht and ∇wl(wt) = gt, noting the recursion around the
dwT −1

dα
term:

dwT

dα
= ∂wT

∂wT −1

∂wT −1

∂α
− ∂wT

∂α
(1.2.13)

=
(
I−∇2

wl(wT −1)
) dwT −1

dα
−∇wl(wT −1) (1.2.14)

= (I−HT −1)
dwT −1

dα
− gT −1 (1.2.15)

(1.2.16)

Then finally, expanding in the same way as in [Metz et al., 2019, section A] from t = 1 to
T = 1 and looking at the form of ∂dl

∂α
= ⟨gT , dwT

dα
⟩ = g⊤

T
dwT

dα
as a full unroll.

dl(wT )
dα

= ⟨gT ,−
T −1∑
i=0

 T −1∏
j=i+1

(I− αHj)
gi⟩ (1.2.17)

= −g⊤
T

T −1∑
i=0

 T −1∏
j=i+1

(I− αHj)
gi (1.2.18)
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In the section, it can also be shown that this unrolled gradient (such as in figure 1.3) can be
shown as just the negative inner product of the current and previous gradients:

dl(wT )
dα

= −⟨gT , gT −1⟩ (1.2.19)

= −g⊤
T gT −1 (1.2.20)

= −∇l(wT )⊤∇l(wT −1) (1.2.21)

This reveals reminiscent discussion 1.2.1 in prehistory and 1.2.2 momentum error. We would
like tools to analyze the stability and convergence of these systems given perturbations in
the input to observe how they behave and correct divergences.

1.3. Optimal Control
1.3.1. Optimal Control Problems

To lay the foundation for further discussion, we consider a few optimal control problems
(OCP) in the discrete-time framework, more specifically, an equality-constrained problem.
To illustrate, start with a simple linear program of the following form:

minimize c(x) minimize some function cost
subject to g(x) = 0, subject to some (equality) constraints
given 0 ≤ x ≤ 1 at endpoint constraints between 0 and 1

(1.3.1)

To start, it can be solved using a Lagrangian method formulation, given that there is an
equality constraint such as g(x) = 0 and an objective function c(x) and Lagrange multiplier
λ:

L(x, λ) = c(x) + λ⊤g(x) (1.3.2)

Moreover, in an OCP, consider the following nonlinear program with terminal cost cT (xT ),
controls U = (u0, u1, . . . , uT −1), a sum of costs ∑t ct(xt, ut) some dynamics f and an initial
state x0 to get the Bolza problem (named in continuous time):

minimize cT (xT ) +
T −1∑
t=0

ct(xt, ut)

subject to xt+1 = ft(xt, ut), t = 0, 1, . . . , T − 1
given 0 ≤ x ≤ 1

(1.3.3)

At a high level, if given open-loop problem formulation, where controls U∗ are only op-
timal for an initial state x0, one can use direct methods or indirect methods. Solving with
an indirect method can use necessary conditions (like the Pontryagin maximum principle),
whereas direct methods are solved through simulation of parameterized controls or controls
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and states. Lastly, one could use a closed-loop formulation, or with optimal control law or
policy for xt with a differential/dynamic programming (DDP/DP) approach, or linear qua-
dratic regulator (LQR). In the following section, we discuss the differentiation of these costs
and dynamics to attempt the discovery of solutions in the framework of direct methods. This
is relevant in our work because optimal control gives us an important framework to under-
stand and utilize the differentiation with a model, while also giving us tools for assumptions
like stochastic dynamics. In later discussions, such as the section on stochastic optimiza-
tion and gradient estimation, we exploit this knowledge. However, for now, we continue the
discussion in the background to build intuition on forward and reverse mode in control.

1.3.2. Dynamic Programming and Optimal Control

Bellman equation, solving 1.3.3 with the same cost, but new described as a payoff with
finite horizon maxat

∑T
t βtF (xt, at) to be maximized instead of a cost to be minimized, where

β is a discount factor 0 < β < 1 and T (x, a) is a transition model for next states.

V (x) = max
a
{F (x, a) + βV (T (x, a))} (1.3.4)

In future work, we intend to use what will be called SVG(1), in which you construct a
value function to use with SVG beyond just a method of collecting gradients. The Bellman
equation connects control to reinforcement learning. In the following section, we view the
analytic form of the policy gradient, which is differentiated directly.

1.3.3. Analytic Policy Gradient in Optimal Control

Consider the policy now parameterized by θ, which could be a neural network, such that
πθ(x, u) is now constrained by this class of functions. Also, envision that one knows the
exact environment dynamics, such that this policy gradient can be computed analytically
Then, consider some cost J(θ). Taking the total derivative d

dθ
J(θ) = ∑T

t c(xt, ut) (just the
sum of costs for simplicity) as shown in [Deisenroth et al., 2013] (section 3.3) and [Tedrake,
2004] (section 2.3):

dJ(θ)
dθ

=
T∑
t

dc(xt, ut)
dθ

(1.3.5)

=
T∑
t

∂c(xt, ut)
∂xt

dxt

∂θ
(1.3.6)

=
T∑
t

∂c(xt, ut)
∂xt

[(
∂xt

∂xt−1

)
dxt−1

∂θ
+ ∂xt

∂ut−1

dut−1

∂θ

]
(1.3.7)

(1.3.8)
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1.3.4. Forward propagation in Optimal Control

Using the OCP formulation in 1.3.3, consider the approach where one differentiates the
cost J(x, u) = cT (xT ) +

T −1∑
t=0

ct(xt, ut) and does what then use the forward dynamics xt+1 =
f(xt, ut) to do what is called forward simulation (differentiation of the dynamics). The
following emerges for decision variable uk:

∂J

∂uk

= ∂cT (xT )
∂uk

+
T −1∑
t=0

[
∂ct(xt, ut)

∂xt

∂xt

∂uk

+ ∂ct(xt, ut)
∂uk

]
(1.3.9)

∂xt+1

∂uk

= ∂f(xt, ut)
∂xt

∂xt

∂uk

+ ∂f(xt, ut)
∂uk

(1.3.10)

Which corresponds to forward propagation [Williams and Zipser, 1989]. If x ∈ RD, u ∈
RM for T time steps accumulate on the order of O(TDM).

It can be shown that, with the total derivative of the forward dynamics model in 1.3.10
followed by the chain rule:

dxt+1

duk

= df(xt, ut)
duk

(1.3.11)

= ∂xt+1

∂xt

∂xt

∂uk

+ ∂xt+1

∂uk

(1.3.12)

(1.3.13)

Here it is easy to see the recurrent Jacobian ∂xt+1
∂xt

, leading to a product of recurrent
Jacobians as it is simulated all the way to T . This recurrence leads to instability and either
exponentially exploding gradients, and when small, leads to vanishing gradients in the sum.
For vanishing gradients, adding residual connections in the architecture helps [Li et al., 2019],
and exploding gradients can be clipped [Pascanu et al., 2013], although this solution does
not guarantee convergence [Metz et al., 2021].

1.3.5. Lagrangian Method for Adjoint Equations

In this section, we develop the adjoint equations via the Lagrangian in 1.3.2 and using
the OCP defined with the cost and dynamics in 1.3.3. Setting xt+1 = f(xt, ut) = 0 →
f(xt, ut)− xt+1 gives the final term. Applying the method:
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L(x, u, λ) = cT (xT ) +
T −1∑
t=0

ct(xt, ut) + λ⊤
t

T −1∑
t=0

(f(xt, ut)− xt+1) (1.3.14)

= cT (xT ) +
T −1∑
t=0

ct(xt, ut) +
T −1∑
t=0

λ⊤
t (f(xt, ut)− xt+1) (1.3.15)

This then gives rise to actually revealing the adjoints, by taking the following partial
derivatives with respect to each argument:

∂L(x, u, λ)
∂λt

= f(xt, ut)− xt+1 = 0 (1.3.16)

xt+1 = f(xt, ut) (1.3.17)
∂L(x, u, λ)

∂xt

= ∂ct(xt, ut)
∂x

+ λ⊤
t

∂f(xt, ut)
∂x

− λ⊤
t−1 = 0 (1.3.18)

λ⊤
t−1 = ∂ct(xt, ut)

∂x
+ λ⊤

t

∂f(xt, ut)
∂x

(1.3.19)

∂L(x, u, λ)
∂xT

= ∂cT (xT )
∂x

− λ⊤
T −1 = 0 (1.3.20)

λ⊤
T −1 = ∂cT (xT )

∂x
(1.3.21)

∂L(x, u, λ)
∂uk

= ∂cT (xT )
∂x

− λ⊤
T −1 = 0 (1.3.22)

= ∂ct(xt, ut)
∂u

+ λ⊤
t

∂f(xt, ut)
∂u

(1.3.23)

Using these adjoint equations, one can write out exactly backpropagation, shown in the
following: Doing forward simulation 1.3.4, or the forward pass, start with x0 from 0 to T ,
using equation 1.3.18:

xt+1 = f(xt, ut)

Then, after the forward pass, calculate backward in time starting from T − 1 with adjoint
equation 1.3.22 to t− 1 with adjoint equation 1.3.20:

λ⊤
T −1 = ∂cT (xT )

∂x
(1.3.24)

... ... ... (1.3.25)

λ⊤
t−1 = ∂ct(xt, ut)

∂x
+ λ⊤

t

∂f(xt, ut)
∂x

(1.3.26)

(1.3.27)

Then finally get the gradients with respect to the decision variable ut with adjoint equa-
tion 1.3.23, and then sum for all decision variables:

36



∂J(x, u)
∂ut

= ∂ct(xt, ut)
∂u

+ λ⊤
t

∂f(xt, ut)
∂u

∂J(x, u)
∂uk

=
∑

t

∂J(x, u)
∂ut

∂ut

uk

This is a control-oriented perspective of backpropagation, which is shown from a process-
oriented point of view, outlined in [Tedrake, 2004, Ch. 10]. However, to apply it to neural
networks and eventually hyperparameter optimization, one will need to make the necessary
modifications of controls and states. Additionally, we discover a stochastic problem, in which
we will need additional tools. We move to a reinforcement learning perspective, where we
develop gradient estimation techniques for dealing with stochastic optimization problems.

1.4. Reinforcement learning
In the introduction section of [Sutton and Barto, 2018], Sutton describes reinforcement

learning as learning what to do and how to map situations (states s) to actions a to maximize
a reward signal r(s, a). This is in light contrast in notation to optimal control literature,
which minimizes a cost c(x, u) with controls u, but operates in a similar framework. From an
optimal control perspective, one might call reinforcement learning adaptive optimal control.

1.4.1. Policy Optimization or Dynamic Programming

There are many structural and empirical reasons to consider when choosing a reinforce-
ment learning algorithm and direction. A few reasons to consider policy optimization (PO)
over dynamic programming (DP) approaches are that with PO one can optimize directly
what one cares about, whereas, with DP, one might have to consider how to exploit the
problem structure and think more about exploration and off-policy learning. In the par-
ticular setting of hyperparameter optimization, the success of methods that optimize the
parameters directly, such as CMA-ES performs quite well for a large range of black-box opti-
mization problems. Following this perspective, we discuss stochastic optimization problems
and gradient estimation, which underpins many policy gradient methods.

1.4.2. Stochastic optimization and Policy Search

Recall the stochastic approximation examples in 1.1.1 and the minibatch example 1.1.4.
One could imagine these as pieces to the following equality constrained stochastic optimiza-
tion problem as described by [Na et al., 2022]:

minimize f(x) = E [g(x; ϵ)]
subject to h(x) = 0

(1.4.1)
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In this setting, objective f(x), gradient ∇f(x), or the Hessian ∇2f(x) = H might be
too expensive to compute or evaluate, due to an expectation over ϵ, and samples can only
be generated ϵ ∼ P . In machine learning, the objective might be of the form:

l(θ) =
∫

l(θ; x, y)dP (x,y) (1.4.2)

Such that ϵi = (xi, yi)m
i=1 ∼ P (x,y) might only be available, in this case as a minibatch. We

then approximate P (x,y) by an empirical distribution to get the following:

l(θ) = 1
m

m∑
i=1

l(θ; xi, yi) = E [l(θ; xi, yi)]

This reveals l(θ; xi, yi) to be a negative log-likelihood such as in maximum likelihood es-
timation (MLE) given constraints h(x). In stochastic optimization, the problem posed in
1.4.1 can be viewed as a connection between constrained problems with solutions that utilize
augmented Lagrangian methods and sequential quadratic programming (SQP), while solu-
tions to stochastic problems in the unconstrained setting have been approached by first-order
and second-order methods, gradient estimation, and trust-region methods. In reinforcement
learning, there are solutions proposed to deal with this unique problem, such as policy and
value-based methods. In this section, the focus is on gradient estimation, policy search, and
policy optimization, with reasons outlined in the proceeding, elaborated discussion.

1.4.3. Gradient Estimation

In this section, the discussion centers on derivative estimation [Mohamed et al., 2020] of
functions that are difficult to optimize due to stochasticity, or when the function of interest
can only be accessed through noisy observations. This is typically the case when we do
stochastic optimization, where as shown in the stochastic optimization section 1.4.1:

minE [g(x; ξ)] (1.4.3)

To look more closely, it helps to define distributional parameters, where θ only appears in
pθ, and structural parameters, where θ appears inside of the function f . This is shown below
as in [L’ecuyer, 1990], also take note that in the structural case p(·) is could be some other
distribution, as opposed to in the distributional case:

J(θ) = Eθ [f(x)] =
∫

f(x)pθ(x)dx θ is distributional (1.4.4)

J(θ) = E(·) [f(x, θ)] =
∫

f(x, θ)p(·)(x)dx θ is structural (1.4.5)

(1.4.6)

To take the derivative of this expectation, considering the distributional and structural
cases, one can derive the score-function gradient from the distributional case, in which the
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derivative pushes past the function which is our cost or loss in the integral, then we apply
the log-derivative trick ∇θ log pθ(x) = ∇θp(x)θ

p(x)θ
→ ∇θp(x)θ = p(x)θ∇θ log pθ(x) in equation

1.4.9 and rearrange to get REINFORCE [Williams, 1992]:

∇θJ(θ) = ∇θEθ [f(x)] = ∇θ

∫
f(x)pθ(x)dx (1.4.7)

=
∫

f(x)∇θpθ(x)dx (1.4.8)

=
∫

f(x)p(x)θ∇θ log pθ(x)dx (1.4.9)

= Eθ [f(x)∇θ log pθ(x)] (1.4.10)

= Eθ [∇θ log pθ(x)f(x)] (1.4.11)

Now, looking at the analogous in structural case, we can see the difficulty with getting
the derivative of ∇(·)p(·)(x) without knowing its distribution. However, in machine learning,
we can make an assumption to make our lives easier. In fact, an assumption was already
made with the score-function derivation in the distributional case, notably that θ = {µ, Σ}
such that x ∼ N (µ,σ), or in another way, that θ are parameters of f(·) as a system, or world
model, or environment from which we know the distribution. Using this information, let’s
redefine the problem through reparameterization or in the simulation community, known as
infinitesimal perturbation analysis (IPA). Define a new variable z ∼ N (0, 1) such that we can
now solve for x = µ + σz. However, what this does is quite subtle, where we need samples
of z to get x. Note, z could also come from other distributions, as long as we can apply a
change of variable to get back to x. In other words, x = F −1(z), also known as an inverse
transform. Also as an important note, to do the inverse transform method, X is a random
variable, such that X ∼ N (X | 0, 1). Another tool we can use comes from stochastic graphs
[Schulman et al., 2015a], where we want to unblock the derivative path on an directed acyclic
graph (DAG) by setting a stochastic node as a constant, thereby differentiating through it,
like the straight-through estimator (STE) [Bengio et al., 2013, Yin et al., 2019]. Armed with
these tools, we can now tackle the structural dependency case:

∇θJ(θ) = ∇θEx∼N (µ,σ) [f(x, θ)] (1.4.12)

= ∇θEz∼N (0,1) [f(x(z, θ))] (1.4.13)

= Ez∼N (0,1) [∇θf(x(z, θ))] (1.4.14)

(1.4.15)

This completes the pathwise gradient or reparameterization gradient, and to take Monte
Carlo estimators [Metropolis and Ulam, 1949] of the two approaches in 1.4.7 and 1.4.12, we
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get the following:

∇θJ(θ) = Jscore−function = 1
N

N∑
i=1
∇θ log pθ(xi)f(xi) where xi ∼ N (0, 1) (1.4.16)

∇θJ(θ) = Jpathwise = 1
N

N∑
i=1
∇θf(x(zi, θ)) where zi ∼ N (0, 1) (1.4.17)

However, the probability densities p(·) could be characterized by a different distribution.

1.4.4. Concluding thoughts

In conclusion, to compute ∇θJ(θ), which is the gradient of the performance J(θ) with
respect to parameters θ, it is important to illuminate differences between approaches and
trade-offs. These gradient estimation tools give us an extra degree of freedom for solving
stochastic optimization problems.

1.5. Hyperparameter optimization
Consider the problem of evaluating a system’s performance with a stationary configura-

tion (or context), c. Given a budget of time as a resource, T , one could run the system for
the entire budget and check the performance given the current configuration. This could
be any sort of model of which a practitioner wishes to evaluate the performance given a
budget T and configuration c with inputs from some task distribution D that gives inputs
x, xvalid ∼ D. At the end of this training budget, the practitioner evaluates this system
using a metric of their choice with xvalid to characterize performance J . Unfortunately, what
is usually found, is that the system, run to completion, results in lower performance than
desired and requires tuning. This is because the configuration c is not guaranteed to be
a sufficient configuration of the system, outside of the particular domain knowledge of the
practitioner. In particular, one way to view the optimal system configuration for hyperpa-
rameters is by using the framework from [Hutter et al., 2019], where within a configuration
space Λ the selection of the optimal hyperparameter λ ∈ Λ can be shown as the following,
where V is a way to evaluate the loss L on the algorithm or system A with a validation
protocol, such as the following:

λ∗ = arg min
λ

EDtr,Dval∼DV (L, Aλ, Dtr, Dval)

The simplest approach to a choice in hyperparameters for a given system would be to
consider a choice of a uniform range of choices over a reasonable domain. In effect, what the
practitioner intends is to provide coverage over a possible number of solutions to ensure the
optimum is among them. Grid search illustrates this approach, where the pre-determined
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domain has the hyperparameters equally spaced, giving the illusion of coverage. In fact, it is
shown with simple examples that a learning system with high sensitivity to hyperparameters
suffers in performance in training and validation. For example, with an algorithm A = SVM,
where Λ = {C = {5, 10, 20}}.

To alleviate this issue, random search [Bergstra and Bengio, 2012] proposes more cov-
erage by sampling hyperparameters in the domain of interest, making it more likely that,
in validation, better settings are discovered. Random search can be further described as
searching for random configurations of the system, in the system identification [Eykhoff,
1974] context. Using the algorithm A = SVM above, the practitioner can choose some num-
ber of m hyperparameters in configurations to use for validation λ0:m ∼ U(Λmin, Λmax), use
the same in equation 2.2.1.

1.5.1. Hyperparameter optimization in a model-free setting

In addition to these approaches, the discussion can be extended to other model-free
methods. The label model-free will be overloaded into a reinforcement learning context
later in this work. However, this section refers to model-free approaches in hyperparameter
optimization. Keeping in theme with traditional hyperparameter approaches, gradient-free
methods are natural to apply to black-box optimization, and by extension, hyperparameter
optimization. One example is a gradient-free method called CMA-ES (Covariance Matrix
Adaptation - Evolutionary Strategies) [Hansen et al., 2003] for hyperparameter optimization
of an SVM (Support Vector Machines) algorithm, or for neural networks [Friedrichs and Igel,
2005, Loshchilov and Hutter, 2016]. Similarly, there are other population-based methods,
such as Population Based Training (PBT) [Jaderberg et al., 2017] for tuning neural networks,
that be used in a model-free context. In addition, one can use early stopping to better utilize
the budget.

In the context of hyperparameter optimization, model-free approaches are consistent with
applying black-box optimization to SysID in reinforcement learning, being where the model
is the environment, and the configuration is an action from a parameterized or greedy policy.
Evolutionary strategies have also been used for reinforcement learning [Salimans et al., 2017],
and more recently, for unrolled optimization [Vicol et al., 2021], which will be discussed in
more detail in later sections, with reinforcement learning. Given a model f for the update
rule θ = θ−∇f(x), the following section outlines model-based methods for hyperparameter
optimization.

1.5.2. Model-based hyperparameter optimization

Given a model f and data x ∼ D, can use Bayesian optimization (Sequential Model-Based
Global Optimization, or SMBO) Bergstra et al. [2011], develop what is called an acquisition
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function a to decide what the next point to query will be, such as expected improvement.

a(λ) = E[max(fmin − y, 0)]

1.5.3. Differentiating through a model

To caution the adoption of a gradient-based approach, [Bengio et al., 1994] notes that
“learning long-term dependencies with gradient descent is difficult.”, and this problem is
particularly difficult given the gradients come from a learned process. It is shown that with
the training loss, the gradient becomes difficult and uninformative when the learning rate
is large for the inner process. Overfitting is also a common issue with these approaches,
where memorization can occur. There have been approaches that intend to differentiate
through a model, rather than just using one such as in Bayesian optimization. In [Maclaurin
et al., 2015a], the authors suggest that one could compute exact gradients of the valida-
tion performance with respect to the hyperparameters by chaining derivatives backwards
through training with reverse mode. This work showed that these hypergradients allow for
the optimization of multiple hyperparameters, such as step size, mometum in a layer-wise
architectural way, as shown in the example of reversing dynamics of SGD with momentum.
In addition, in later work given a model f [Franceschi et al., 2017] develop and forward and
reverse mode model for hypergradients. For the reverse mode hypergradient (Reverse-HG)
approach, where λ are the hyperparameters, and θ is an optimizer state It is also possible to
use implicit differentiation as a way to do gradient-based hyperparameter optimization. One
popular approach [Lorraine et al., 2020] shows that IFT can be used to approximate what is
called the "best response" Jacobian using an approximate inversion algorithm for the inverse
Hessian. They show hypergradients broken into multiple parts as a nested optimization
procedure, by getting an implicit function:

λ∗ = arg min
λ

L(λ, θ∗(λ)) θ∗(λ) = arg min
θ

LT (λ, θ)

Where the implicit function is θ∗(λ), which is called the "best response" of weights θ to
hyperparameters θ. Showing in the hypergradient, a hyperparameter direct gradient term
∂L(λ,θ∗(λ))

∂λ
, and a hyperparemeter indirect gradient term, which, the second part, is composed

of a parameter direct gradient ∂L(λ,θ∗(λ))
∂θ∗(λ) and then finally, the best response Jacobian ∂θ∗(λ)

∂λ
.

The previous section lay the foundation for understanding hyperparameter optimization and
its challenges, in particular with utilizing or computing the Jacobian, and its approximations.
In a similar way, we approximate gradients by using reparameterization with a learned
model, but before doing this, we show that it is possible to use reinforcement learning for
hyperparameter optimization in a model-free context.
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Chapter 2

Model-free RL hyperparameter optimization

The first example for model-free optimization can be considered as [Andrychowicz et al.,
2016], where the authors use an LSTM recurrent model to learn an update rule. Building on
this, Learning to Optimize (L2O) [Li and Malik, 2016] proposes using reinforcement learning
to optimize by framing automating algorithm design as a method to learn an optimization
algorithm. RL2 [Duan et al., 2016] proposes the task of learning algorithms using off-the-
shelf methods (such as Trust Region Policy Optimization, TRPO [Schulman et al., 2015b])
in their case to optimize the policy, which is an RNN policy, on a range of bandit-style tasks.
In their work, they learn a GRU policy to solve bandit problems, with the expectation that if
the policy is learned, it should be competitive with theoretically optimal algorithms. Inter-
estingly, RL2 authors suggest an end-to-end approach for RL, aiming for a goal analogous to
automatic machine learning via model generation. Rather than hand crafting RL algorithms,
one should prefer to learn an algorithm. In a follow up to L2O, the authors then apply this
method to learning neural nets [Li and Malik, 2017], with a method called predicted step
descent, which uses guided policy search (GPS) [Levine and Koltun, 2013] to learn using
iterative LQR estimates of a difficult-to-learn nonlinear policy and an easier-to-learn linear
policy to update the optimization process of a neural network. Benefiting in similarity from
these approaches, the model-free approach in this section is applied to optimize an algo-
rithm. Moreover, in this case, the algorithm is an optimizer (eg. SGD, Adam) on a toy
example and MNIST task, where the policy optimization is performed by Proximal Policy
Optimization (PPO)[Schulman et al., 2017] (an extension of TRPO) similar to RL2, and is
a SOTA algorithm for continuous control tasks.

2.1. Learning to optimize with RL
Adopting the L2O approach takes an objective function f ∈ F and an optimization

algorithm A and an initial iterate x0 ∼ D, which is a neural network initialization, and
produces a sequence of iterates (x1, . . . , xT ) where xT is the solution found by the optimizer.



L is some meta-loss that measures the quality of the iterates, such as L(·, ·) = ∑T
i=1 f(xi).

Finding the best algorithm for optimization amounts to:

A∗ = arg min
A∈A

Ef∈F ,x0∼D [L(f, A∗(f, x0))]

This can be minimized via policy search where the algorithm is the optimal policy A∗ = π∗

and the meta-loss is the cost to be minimized after state st following the policy π such that
L(f, A∗(f, x0)) = c(st, π∗(f, x0)), and the action a = π(f, x0) is the learning rate:

π∗ = arg min
π∈⋄

Es0,a0,...,sT

[
T∑

t=0
c(st, π∗(f, x0))

]
Recall the performance J(θ) policy search directly optimizes:

J(θ) = E [R(τ) | θ] =
∫

R(τ)pθ(τ)dτ

Where trajectory τ = (s0, a0, . . . , sT ) and pθ(τ) = pθ(s0)
∏T −1

t=0 pθ(st+1 | st, at)π(at | st) for
a stochastic policy or pθ(st+1 | st, π(st))π(at | st) for a deterministic policy. We consider a
hybrid of the episode-based setting and the step-based setting with the policy gradient given
by ∇θJ(θ) =

∫
τ ∇θpθ(τ)R(τ)dτ where the order is flipped and structure/dependencies are

shown in 1.4.12. The gradient ascent to maximize the return R(τ) (as opposed to descent,
minimizing the cost c(st, at)) is then θt+1 = θt + α∇θJ(θ) for the policy parameters θ with
a step size α. Model-free policy search is shown in 1 in the most general setting. Although
take note it is not possible to optimize the ∇θJ(θ) directly, with the true risk. It needs to
be evaluated under the empirical risk.

Algorithm 1 Model-Free Policy Search
Require: budget = N

while t < N do
τ ∼ πθt ▷ explore with generated trajectories/state-action pairs

∇θJ(θ) =
∫

τ ∇θpθ(τ)R(τ)dτ ▷ evaluate quality of trajectories/state-action pairs

θt+1 ← θt + α∇θJ(θ) ▷ update strategy (gradient ascent)

t← t + 1
end while

2.2. Hyperparameter optimization with PPO
With this template for model-free policy search, we apply the changes to convert this to a

hyperparameter optimization platform using an off-the-shelf model-free policy optimization
algorithm, such as Proximal Policy Optimization (PPO) [Schulman et al., 2017]. Consider the
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vanilla policy gradient using the likelihood ratio trick shown in section 1.4.12 for stochastic
policies ∇θJ(θ) =

∫
τ pθ(τ)∇θ log pθ(τ)R(τ)dτ = Epθ(τ) [∇θ log pθ(τ)R(τ)], and an advantage

function Aπθ
(st, at). One can derive PPO by optimizing a surrogate objective from the

importance sampled perspective where to avoid the issue of larger ratio rt(θ) = πθ(at|st)
πθold

(at|st) , a
clipped objective LCLIP (θ) where Ât is an advantage A(s,a) = Q(s,a)− V (s) estimator:

LCLIP (θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

]
The algorithm is shown below in 2 which shows an actor-critic style update for the PPO

algorithm on the hyperparameter optimization task. Changes from 1 are the policy network
and the value network.
Algorithm 2 HyperPPO(·) Model-Free Hyperparameter Optimization with PPO
Require: budget = N
Require: initial optimizer policy parameters θ0, initial value function parameters ϕ0

while k < N do
τ ∼ πθold

▷ run optimizer policy in environment for T steps to generate trajectories

Â1, . . . , ÂT ▷ compute advantage estimates from rewards-to-go R̂t and Vϕk
(st)

θk = arg maxθ Eτ

[
Et

[
LCLIP

θk
(θ)
]]

▷ evaluate quality of trajectories

ϕk = arg minϕ Eτ

[
Et

[(
Vϕk

(st)− R̂t

)2
]]

▷ evaluate quality of trajectories

θk+1 ← θk ▷ update strategy for policy parameters (gradient ascent)

ϕk+1 ← ϕk ▷ update strategy for fitting values (gradient descent)

k ← k + 1
end while
λ← πN ▷ policy that gives a learning rate for task
return optimizer policy λ

2.2.1. Gym Environment with optimizer

The gym environment 3 for these experiments sets the learning rate for an Adam op-
timizer, which runs on the meta-objective for a number of meta epochs until it reaches its
goal. The PPO policy π is responsible for outputting a learning rate α, a continuous scalar,
and the PPO algorithm is responsible for learning the best parameter for the optimizer.

2.2.2. PPO method as a hyperparameter optimizer

Hyperparameter optimization with PPO can be seen as a bilevel optimization problem
[Colson et al., 2007] of the following form:
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Algorithm 3 HyperOpt-Gym(OptTask(·, ·), HyperPPO(·))
Require: OptTask(s=flattened(params), a=learning rate) (e.g. MNIST with Adam)
Require: HyperPPO (·) ▷ hyperparameter tuning algorithm with policy

state← initialize(params) ▷ env.reset(), init network using strategy (e.g. Glorot)
for 0 ≤ episodes ≤M do

rewards = []
for 0 ≤ steps ≤ N do

action← HyperPPO(state) ▷ State is the network/task params, action is hyper
nextstate, reward, done ← OptTask(state, action) ▷ env.step(action)
if sparse then ▷ If in the "sparse" setting

if steps == N then
rewards.append(reward) ▷ Keep last reward

else
rewards.append(0.0) ▷ Observe 0 all of the other timesteps

end if
end if
if dense then ▷ If in the "dense" setting

rewards.append(reward) ▷ Keep all observed rewards
end if
state ← nextstate
if done then

stare ← initialize(params) ▷ env.reset()
end if

end for
rewards.backward()

end for

θnew = arg max
θ

LCLIP (θ; Âπold
(s = w∗, a = λlr)) (2.2.1)

w∗ = arg max
w
Ltask

T (x; w, λlr) (2.2.2)

Here, the inner task loss is run to a terminal state and either the last loss Ltask
T is returned

or the mean of the task losses. The outer loss is the PPO surrogate objective LCLIP , with the
state s being the parameters w of the inner problem optimizer, and the hyperparameter λlr

for that optimizer is the action a, only allowed to be changed at the beginning of the inner
optimization by the PPO policy πold while running on task data x. These are then used with
the advantage estimator Â. To this end, HyperPPO and the HyperGym were developed to
study hyperparameter optimization in an episodic setting mainly for experimentation and
a proof of concept. To apply this to hyperparameter tuning in a more natural setting, one
needs to consider using a model optimizer alongside the true optimizer. This leads to the
following discussion on model-based reinforcement learning hyperparameter optimization.
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Chapter 3

Model-based RL hyperparameter
optimization

Model-based learned optimization has been richly studied as a form of semi-parametric
modeling, where smoothing and kernels are often used. This statistical learning that blends
together learning from data and learning from structure [Chen et al., 2021, Section 3.2]
(e.g. priors). Of the different types of model-based learned optimizers, two popular groups
persist, namely plug-and-play optimization and unrolled algorithm optimization [Chen et al.,
2021]. Plug-and-play (PnP) learned optimizers are from a non-convex framework which
combines denoising priors into methods such as proximal methods (e.g. ADMM). These
optimizers show promise in that they can use these priors even when there is not enough
data for proper denoising even for end-to-end training [Ryu et al., 2019]. The other method
known as algorithm unrolling either focuses on learning a particular objective or to retain
reconstruction accuracy of a base signal. Gradient descent can be viewed from the perspective
of what is called a forward-backward splitting method [Singer and Duchi, 2009], where the
gradient application is the forward method applied, and the backward is just the identity
[Chen et al., 2021]. Unrolled algorithms with sparsity constraints, which are popular with
the sparse coding community consist of iterative shrinkage thresholding algorithm (ISTA)
[Daubechies et al., 2004], and its variants such as Fast ISTA (FISTA) [Beck and Teboulle,
2009], and Learned ISTA (LISTA) [Gregor and LeCun, 2010] for reconstruction given noise
to retain a base signal. One can consider algorithm unrolling in sequence models as a
backpropagation algorithm, or as unrolled optimization to solve a full-length problem by
unrolling intermediate iterations. Rather than the 2nd order derivative which can be seen
in methods like Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017], or a K-step
model which requires the storage of a Hessian at every iteration step, First-Order MAML
(FOMAML) [Nichol et al., 2018] approximates the derivative as the identity, relying on
a notion that 2nd order derivative terms carry little information because neural nets are
generally locally linear [Goodfellow et al., 2014b] [Goodfellow et al., 2014a] [Nagarajan and



Kolter, 2017]. Unrolled GANs [Metz et al., 2016] utilize this same assumption, while also
using unrolled optimization in the GAN learning problem. This paper differentiates itself,
particularly from [Goodfellow et al., 2014a] [Goodfellow et al., 2020] in that instead of keeping
the generator fixed during a discriminator update and the discriminator fixed during the
generator update, unrolled GANs unrolls the discriminator K-steps between each generator
update, using a surrogate loss fk(θG, θD). [Maclaurin et al., 2015a] uses unrolled optimization
in particular for hyperparameter optimization specifically using automatic differentiation
to evaluate gradients as opposed to writing them out explicitly shown in algorithm 2 of
[Maclaurin et al., 2015b]. Additionally, work has been done on warm-starts [Sambharya
et al., 2022], but this chapter focuses on a model-based reinforcement learning approach,
combining the learning of algorithm steps of SGD similarly to [Li and Malik, 2016], but also
learning a surrogate model. Most importantly, in this work, the surrogate model is used to
learn the actual algorithm steps in a "throw-away" format.

3.1. Model-Based Policy Search
Recall from the previous section with 1 and the discussion on a model-free policy search

method a framework for updating a policy’s parameters given a trajectory. Interestingly,
Guided Policy Search (GPS) is a model-based policy search method using guiding distribu-
tion for dynamics. The work repeatedly computes a policy that iteratively solves a linear
dynamics and quadratic reward function framework and then connects it to MDPs and max-
imum entropy to get an approximate reward projection. In this work, an assumption is later
made on the environment distribution, where we sample trajectories and perform what we
will later call noise inference to get gradients.

3.2. Differentiating through the learned model
In the previous chapter, the model-free approach to hyperparameter optimization does

not take advantage of the environment as a model, taking st+1, rt ∼ environment_step(at).
As a first consideration, one could take the approach of modeling this in a stochastic opti-
mization framework, such as in section 1.4.2. Writing this out, ξ ∼ P (env), to model the
environment as a normal distribution. Consider the following normally distributed variable:

p(y | x) = N (y | µ(x), σ(x)2) (3.2.1)

Where the µ(x) and σ(x)2 are outputs of a neural network, similar to a Gaussian parame-
terized policy network (cite). However, reparameterizing y, we can do noise inference on ξ

by the following:

y = µ(x) + σ(x)ξ ξ ∼ N (0, 1) (3.2.2)
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Such that we sample ξ to generate y, such that:

y = µ(x) + σ(x)ξ = f(x, ξ) (3.2.3)

Going back to the expectation as the stochastic optimization objective, we get the following
expectation under p(y | x):

Ep(y|x) [g(y)] =
∫

g(f(x, ξ)ρ(ξ)dξ (3.2.4)

Such that its gradient can be estimated with the pathwise gradient estimator by using
the stochastic graphs surrogate for the stochastic node g(·) by sampling ξi to compute the
expectation:

∇xEp(y|x) [g(y)] = Ep(ξ)
∂g(f(x, ξ))

∂y
∂f(x, ξ)

∂x
≈ 1

m

m∑
i=1

∂g(f(x, ξ))
∂y

∂f(x, ξ)
∂x

ξi ∼ p(env)

(3.2.5)

= 1
m

m∑
i=1

gyfx ξi ∼ p(env)

(3.2.6)

This then leaves a neural network as a "mean predictor" for g(·) and allows us to backprop-
agate through the now unblocked deterministic node, assuming we know g. Where we learn
a dynamics model g(st, at, ξ) = f̂(st, at) + ξ = st+1 = µ̂(x) + σ̂(x)ξ or a policy model with
noise η in the following way π̂(s; η; θ) = a = µ(x)+σ(x)η is the dynamics (or policy) model.
These equations underpin the allowing the policy and dynamics model to be differentiated
through with backpropagation, using samples of noise inferred from the environment. This
was first explored by [Heess et al., 2015] in reinforcement learning for stochastic value gra-
dients (SVG), an extension to the deterministic value gradient counterparts in [Fairbank,
2014]. There are a few salient ways to use these questions, namely SVG(∞), SVG(1), or
SVG(0). In the results section, we only performed hyperparameter optimization using the
SVG(∞), leaving the others for later work. The algorithm for SVG(∞) is shown in algorithm
4, where the losses are found by looking at credit assignment on computation graphs [Weber
et al., 2019]:

In reinforcement learning, pathwise gradients have recently been applied with success in
Dreamer [Hafner et al., 2019] and SAC-SVG [Amos et al., 2021]. The reparameterization
trick [Kingma and Welling, 2013] has also been used in variational inference [Miller et al.,
2017], as well as extended to other distributional families [Ruiz et al., 2016].

3.2.1. System Identification (SysID)

In [Ross et al., 2011] develop DAgger (Dataset Aggregation) and a bound for what they
call no-regret online learning in the context of imitation learning. In a similar vein, we
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Algorithm 4 SVG(∞)
τ ∼ p(envirnoment)
for t← T to 0 do:

(st, at, st+1)← τt

ξ ← (st+1 − f(st, at))/σmodel

η ← (at − π(st))/σpolicy

ξ ← stopgrad(ξ)
η ← stopgrad(η)
lmodel = 1

2(st+1 − f(st, at))2

lpolicy = 1
2(at − π(st))2

Algorithm 5 HyperSVG(gθ(·, ·),πϕ(·), Dbatch_tr,unflatten)
Require: data batches Dtraj, Dtask, policy πϕ(·), unflatten shape transformation

unflatten(·), transition model g(·, ·), task loss l(·, ·, ·)
Ensure: dynamics std σ = 0.1
Ensure: v← 0
Ensure: s, _, s′ ∼ D
Ensure: a← πϕ(s)

for t = 1 . . . T do
f̂t ← gθ(st,a)−s′

t

σ

f̂t ← stop_gradient(f̂)
ŝ′

t ← g(st, a) + σf̂t

θt ← unflatten(s′
t)

Xtask, Ytask ∼ Dtask

vt ← l(θt, Xtask, Ytask)
end for
return vT , a =0

develop a model-based approach for system identification from observations for controller
synthesis. [Ross et al., 2011] call system identification and controller synthesis model-based
reinforcement learning. In essence, a critical issue in past approaches such as [Ljung, 1998]
[Abbeel and Ng, 2004] utilizes an open-loop approach that assumes the true model exists in
the classes considered, ensuring a correct model is learned. In a hyperparameter approach
context, this shows similarities to a grid or random search approach which are non-adaptive.
It is possible the best hyperparameter λ∗ is between models selected and validated with
λleft, λright. In System Identification [Ljung, 1998] a discussion on learning from a generative
model, an open-loop approach, or by watching an expert is outlined. The Batch algorithm
[Ross et al., 2011] takes T , a class of transition models consider, ν a state/action distribution
exploration to sample the system from. Batch executes real system m, (s, a) ∼ ν sampled
iid to get m sampled transitions, then it finds the best model T̂ ∈ T , and solves the optimal
control problem (even approximately) with T̂ and known cost C to return policy π∗ for
execution.
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Algorithm 6 Offline Dyna-Style training
Ensure: trajectory data Dtraj, task data (e.g. MNIST) Dtask

Ensure: policy network πϕ(·), policy step size λπ, policy parameters ϕ
Ensure: synthetic optimizer gθ(·, ·), synthetic parameters θ
Ensure: model optimizer Adam, model optimizer step size λm

Ensure: task loss (e.g. MNIST) l(·, ·, ·), imitation loss (e.g. MNIST) lMSE(·, ·, ·), epochs N
Dtr, Dval = train_test_split(Dtraj)
a← 0.001 ▷ initial learning rate
v ← 0
for k = 0 . . . N − 1 do

Dbatch_tr ∼ Dtr ▷ batch of trajectory dynamics
Dbatch_val ∼ Dval

θ̂ ← gθ(current_states(Dbatch_tr))
v, a← HyperSVG(gθ(·, ·),πϕ(·), Dbatch_tr,unflatten) ▷ Algorithm referenced in 5
gpol ← v.backward ▷ backprop through determinstic node from reparameterization
ϕk+1 ← ϕk − Adam(λπ, gpol)
loss← lMSE(θ̂, next_states(Dbatch_tr))
gmodel ← loss.backward ▷ backprop from model loss
θk+1 ← θk − Adam(λmodel, gmodel)

3.2.2. Model learning

We motivate this work by learning a synthetic optimizer as a model of the true environ-
ment, which can be thrown away but is used specifically for hyperparameter optimization.
In this way, the learned synthetic optimizer learns a representation that learns by doing the
following:

• We assume the environment can be modeled by a dynamics model with a normal
distribution, utilizing reparameterization gradients to differentiate through the sto-
chastic node through unblocking
• Learn and use a model of the optimizer as a surrogate model [Schulman et al., 2015a]

[Maheswaranathan et al., 2019] with a simple architecture and surrogate losses [Weber
et al., 2019] rather than learning with the true optimizer
• The normal assumption on the environment smooths out the nonconvex meta-loss

landscape similar to what is shown in [Vicol et al., 2021]
• We use neural network representation, assuming a system is identifiable [Roeder et al.,

2021] "checkpoints" as a trajectory similar to [Peebles et al., 2022]
• Another departure from previous work is using not using the gradients of the true

optimizer but learning a "flattened" representation of the architecture itself. This
avoids the issues of gradient pre-processing [Hochreiter et al., 2001] [Younger et al.,
2001] [Andrychowicz et al., 2016]
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In the offline hyperparameter optimization setting, the first focus is on learning a syn-
thetic optimizer that is representative of the true optimizer. Secondly, we see if the synthetic
optimizer learned with a policy does well on task data. In the online optimizer, we use a
similar architecture to show results on a task where the synthetic optimizer "steers" the true
one with the hyperparameters (actions) from its policy.

3.3. Offline Dyna-style Hyperparameter Optimization
HyperSVG shown in algorithm 6 is Dyna-style [Sutton, 1990, 1991] in that it learns

domain knowledge of situation, or (state) and constructs a world model of the true optimizer.
This environment was developed to test if SVG(∞) gets good gradients and can construct a
useful and simple world model of the true optimizer given trajectory data.

3.4. Online Hyperparameter Optimization SVG
In the online experiments, we show the learned optimizer learning alongside the true

optimizer, which is SGD in this case. In these experiments, the synthetic optimizer runs in
different configurations to test performance. In particular, two of the most salient settings
are outlined in the following sections. For brevity, the offline and online are only different in
that instead of a batch of static data being fed to HyperSVG, it is a real optimizer state.

3.4.1. Bandit approach

We formulate a bandit-style [Bergemann and Valimaki, 2006] approach, where the learned
optimizer has a warm-up period where it is trained along side the true optimizer to get
gradient updates, and then once it reaches a set period of time for warm-up, outlined in the
experiment labels, it stops being trained and only outputs a single action (hyperparameter)
for the true optimizer.

3.4.2. Adaptive

The final discussed experiments are where the synthetic optimizer steers the true opti-
mizer at every timestep. It only uses batch data and a similar loss as the true optimizer,
but it learns a representation of the true optimizer in this online setting for learning rates.
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Chapter 4

Results and comparisons

We engage with a few questions to motivate the discussion and experiments for the described
methods in chapter 2 and 3. In this discussion, the goal is to answer the following questions,
such as:

(1) Can an agent learn a policy that discovers decent hyperparameters with model-free
reinforcement learning?

(2) Is it possible to learn a model of the optimizer?
(3) Does the model help with the optimization of hyperparameters?
(4) Can we use the model to do online hyperparameter optimization?
To answer the first question, we consider the method from chapter 2 and experiments

that look at a sparse and dense reward setting, where the agent either observes rewards at
the last timestep, or every timestep. Answering the second question, we run experiments
learning a model of the dynamics in section 4.2, where we show different trajectory lengths
and the performance of the learned model on example data. Answering the third question,
we refer to experiments in section 4.3 and section 4.3.1, where the model is used for the
episodic (HyperPPO) and offline setting (OfflineSVG). Lastly, we answer the fourth ques-
tion with section 4.3.2 on online hyperparameter optimization using a bandit-style setting
(Bandit10-SVG, Bandit20-SVG, Bandit50-SVG) and a truly adaptive setting (HyperSVG,
Adaptive). The next section outlines initial experiments, and the possibility to use model-
based reinforcement learning to learn a surrogate optimizer model.

4.1. Initial experiments
For initial experiments, we developed an imitating learned optimizer, that learned from

generated trajectory data on a toy problem illustrated in [Metz, 2021]. The goal is to fit
a model of the dynamics given the collected trajectories. In particular, we use a Gaussian
model where the mean is parameterized by an MLP defined in the configuration table in
4.3 for the toy problem. It takes as an input the current iterate θt and hyperparameter λ



and outputs the corresponding mean from the network. This is similar to 3.2.6, but without
noise inference or unrolling.

θt+1 = f̂(θt, α, ξ; w) = µ(θt, λ; w) + σξ .

In this notation, µ is a function represented by an MLP with parameters w. We will train
this MLP with maximum likelihood via the following L2 loss:

L(w) = 1
NT

N∑
i=1

T∑
t=1
∥θ(i+1)

t − f̂(θ(i)
t , λ(i), ξ

(i)
t ; w)∥2 (4.1.1)

Where the superscript represents the trajectory number and the subscript is the time index
within that trajectory. Observing some of the outputs of these trajectories reveals interesting
behavior, as it learns to follow some of the trajectories in the generated dataset, with behavior
shown of a small sample of learned optimizer outputs on the right 4.1. This serves as a proof
of concept to build upon with the following sections.

4.2. Model-free hyperparameter optimization with
PPO

4.2.1. MNIST Example

In this section, we explore learning trajectories of an optimizer training on the MNIST
[LeCun et al., 2010] dataset. To do this, there is another gym environment that was built
similar to 3, with a few modifications for evaluation, logging, and support for larger-scale
experimentation. Firstly, the PPO agent that was developed diverges from the original PPO
[Schulman et al., 2017] and the baselines version in that instead of using 64 hidden units,
a few tests were run with a 512 hidden unit layer for both the policy and value networks.
Experiments were also run with the clipping parameter, but due to the results being very
similar in all approaches, the results are left out for additional brevity, however, a few plots
are included in the appendix. The first set of shown experiments using the Coax [coa,
2020] library with heavy modification consists of a discussion on two large experiments run,
between a sparse reward setting, where the PPO agent only gets to take an action at the
beginning and observe a reward at the end of the episode. The dense setting gives the agent
access to reward at all times and an action can be taken at any time looking at 4.2, it is
clear to see that sparse is the preferred setting, which give incentives for the agent to pick
a good learning rate that will give it good overall performance through the entire run. The
trajectory length was the same as the episode, in this case, 20 steps. The interpretation here
is that note the scales of the temporal difference errors, which are near zero for the sparse
setting, and the policy loss and value loss plateau around zero when learned. Looking at
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Fig. 4.1. Example trajectories with imitation optimizer, showing rollouts from different
initializations on the toy task. These trajectories indicate that it is possible to use a learned
optimizer to learn the dynamics for a given task, where the learned optimizer is trained in the
model-based reinforcement learning fashion for hyperparameter optimization. This diverges
from previous literature, focused on model-free reinforcement learning for hyperparameter
optimization.

the evaluation average rewards, it shows the agent exploits a policy learned to get around
50 percent accuracy on the MNIST task (validation classification accuracy with a defined in
configurations 4.3 network that resets). One indication is that when using a fixed policy that
was a decent learning rate (0.01), the performance was still somewhere around 60 percent.
This indicates the difficulty of the benchmark, and also probably some additional fixes to
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the gym environment that might benefit the agent. It could be that too many resets were
occurring, crippling the capability of the agent to get higher accuracy. The average learning
rate is also shown which is the output of the MLP policy.

Fig. 4.2. Sparse vs dense reward experiment with PPO

4.3. Model-based hyperparameter optimization with
SVG

In this section, the focus will be strictly on HyperSVG with the MNIST environment
in the offline and online settings. First, beginning in the offline setting, there are a lot
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of interesting interpretations of results, and then finally, in the online setting, there is an
additional discussion that reveals interesting results for interpretation.

4.3.1. SysID Environment

In this environment the focus is imitating trajectories through Batch [Ross et al., 2011]
and [Sutton, 1991] style training, using a configuration outlined in the 4.3 The implementa-
tion of SVG(∞) is completed in PyTorch [Paszke et al., 2019]. In the loss figures in both 4.3
and 4.5, the same loss shown in 4.1.1 is minimized, but the loss is backpropagated through
the unrolled synthetic optimizer. It is clear to see that all length trajectories (5, 10, 20
length unrolls) learn a representation of the true optimizer, as the loss gets very close to
zero. The values are the synthetic optimizer trained by learning the representation of the
true optimizer on the MNIST task. The values are MNIST classifications, where it is clear
to see it approaches the blue line which is the top 20 percent of trajectories in the dataset.
The average learning rates are shown in the 4.4 and 4.6.

Fig. 4.3. 200 iterations with a length of 5, 10, 20 unrolls for SVG with loss and internal
values on MNIST offline task, showing classification validation accuracy (highest is 1.0)

Fig. 4.4. 200 iterations with a length of 5, 10, 20 unrolls for SVG with loss and internal
values on MNIST offline task (learning rates)
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Fig. 4.5. 100 iterations with a length of 5, 10, 20 unrolls for SVG with loss and internal
values on MNIST offline task, showing classification validation accuracy (highest is 1.0)

Fig. 4.6. 100 iterations with a length of 5, 10, 20 unrolls for SVG with loss and internal
values on MNIST offline task (learning rates)

4.3.2. Online HyperSVG

In the online experiments, there are bandit and adaptive approaches to learn a learning
rate for the true optimizer. These are shown in 4.8, 4.9 and, 4.10 with a comparison of best
results in 4.2, where the synthetic optimizer adapts good and bad learning rates from grid
search. To read the results, it can be seen that an optimizer starting at the hyperparameter
shown in the left accuracy plot gets adapted, whose final hyperparameter value is color
coordinated within the range of the colormap on the right plot (where the learned optimizer
policy’s last learning rate recommendation was). This shows that grid and random search
maintains a fixed learning rate, adaptive SVG tunes the learning rate online with the true
optimizer, and bandit SVG tunes it with the learned optimizer for a warmup period, outlined
by the number (10, 20, 50) and then only uses the last action from the policy, which remains
fixed afterward. The bandit experiment also takes the true optimizer and resets it completely
using the learned optimizer to initialize it after the warm-up (noting the spike in performance
in bandit 50 experiments). Another comparison is in the running time for each method,
shown in 4.11, which to be noted adds the additional runtime for the warm-up period for
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the bandit versions and little overhead for the online version. However, there is still work to
do in modifying this method to find fixed-point solutions in the forward pass, such as with
implicit methods.

4.3.3. Bayesian Optimization Baseline

As a baseline, we used a black-box optimization approach for the same experiment, using
[Nogueira, 2014–] and 100 iterations with 100 initial points, and bounds set to 1e − 1 and
1e − 5 for a black-box optimizer. We compare this to Bayesian Opt with 100 iterations,
which received 90.37 percent accuracy on the same style test, with a result of lr = 0.01581.
This result is found in figure 4.7, with each epoch being a full "meta-epoch" over the task
data and task model, with 20 steps of optimization happening at the inner level.

Fig. 4.7. 100 iterations with a length of 20 trajectories with Bayesian Optimization (BO)
baseline with found learning rate on the MNIST task, showing classification validation ac-
curacy (highest is 1.0)

4.3.4. Comparisons

It makes sense, in terms of the results to combine them based on an episodic type bench-
mark setting and an online setting. The HyperPPO, Bayesian Opt, and Offline SVG settings
can be bucketed into the episodic regime. It is natural due to the gym and gym-style frame-
works used to train and evaluate the optimizers. However, the online results and grid search
results, are meant to directly influence the true optimizer and get a measure of true per-
formance alongside it. Of the online results, they are also split into good hyerparameter
and bad hyerparameter experiments, where the learning rate is chosen from a good healthy
range of choices, or too wide a range and incorporates bad choices. This is to show that
HyperSVG can adapt badly chosen learning rates and make competitive recommendations
for good hyperparameters (in the bandit case).
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Algorithm Validation Acc. (%) Length of Experiment Chosen lr
Bayesian Opt Baseline 90.37 100 0.01581
(Ours) OfflineSVG 61 100 0.01589
(Ours) HyperPPO 48 100 0.021

Table 4.1. Episodic comparison with methods

Algorithm Validation Acc. (%) Length of Experiment Chosen lr
Grid Search 93.13 100 0.010
Random Search 93.10 100 0.00687
(Ours) HyperSVG (Adaptive) 83.1 100 0.0912
(Ours) Bandit10-SVG 92.23 100+10 0.02288568
(Ours) Bandit20-SVG 87.78 100+20 0.0732
(Ours) Bandit50-SVG 93.72 100+50 0.0090

Table 4.2. Online best-chosen comparison of last accuracy and last hyperparameter with
methods (with good learning rate ranges)

Config Toy MNIST (PPO) MNIST (SVG)
synthetic optimizer (hidden, output) (32, 32, 1) (512, 64, 64,1) (3072,1), but varies
true optimizer (hidden, output) (256, 256, 1) (784, 32, 32, 10) (784, 32, 32, 10)
activations (at hiddens) ReLU Tanh ELU
number of trajectory steps varies varies varies
nange of initializations x0 = [−10, 10] Glorot He Uniform
num epochs 100 100-200 100-200
evaluation init x0 = 7 Glorot He Uniform
outer SGD learning rate varies varies varies

Table 4.3. Environment settings
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Fig. 4.8. 100 iterations with length of 10, 20, unrolls for SVG MNIST online task, our
method is shown in yellow/green (classification validation accuracy, highest=1.0)
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Fig. 4.9. 100 iterations with length of 50 unrolls for SVG MNIST online task, our method
is shown in yellow/green (classification validation accuracy, highest=1.0)

Fig. 4.10. 100 iterations with length of adaptive SVG with MNIST online task, our method
is shown in yellow/green (classification validation accuracy, highest=1.0)
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Fig. 4.11. Different runtimes (100 iterations) of MNIST online task with different algo-
rithms (in seconds). Our methods are shown in red, blue, purple, gray
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Algorithm Acc 1.0=100% Last/learned LR
(Ours) Adaptive-SVG (starting lr = 0.10000001) 0.8127 0.16248728
(Ours) Adaptive-SVG (starting lr = 0.015848938) 0.9037 0.0
(Ours) Adaptive-SVG (starting lr = 0.0025118883) 0.91179997 0.020831108
(Ours) Adaptive-SVG (starting lr = 0.00039810775) 0.8962 0.0006833896
(Ours) Adaptive-SVG (starting lr = 6.309583e-05) 0.6899 0.21076679
(Ours) Adaptive-SVG (starting lr = 1.0000011e-05) 0.9127 0.00031906366
Grid Search (lr = 0.10000001) 0.84919995 NA
Grid Search (lr = 0.015848938) 0.92649996 NA
Grid Search (lr = 0.0025118883) 0.92289996 NA
Grid Search (lr = 0.00039810775) 0.831 NA
Grid Search (lr = 6.309583e-05) 0.5487 NA
Grid Search (lr = 1.0000011e-05) 0.18519999 NA
(Ours) Bandit10-SVG (starting lr = 0.10000001) 0.88949996 0.050463855
(Ours) Bandit10-SVG (starting lr = 0.015848938) 0.7845 0.16824883
(Ours) Bandit10-SVG (starting lr = 0.0025118883) 0.908 0.04358094
(Ours) Bandit10-SVG (starting lr = 0.00039810775) 0.8045 0.14111823
(Ours) Bandit10-SVG (starting lr = 6.309583e-05) 0.9016 0.05018574
(Ours) Bandit10-SVG (starting lr = 1.0000011e-05) 0.7468 0.15843117
(Ours) Bandit20-SVG (starting lr = 0.10000001) 0.7741 0.2983405
(Ours) Bandit20-SVG (starting lr = 0.015848938) 0.8552 0.10251433
(Ours) Bandit20-SVG (starting lr = 0.0025118883) 0.76 0.18449491
(Ours) Bandit20-SVG (starting lr = 0.00039810775) 0.691 0.17127055
(Ours) Bandit20-SVG (starting lr = 6.309583e-05) 0.7425 0.19566791
(Ours) Bandit20-SVG (starting lr = 1.0000011e-05) 0.8398 0.07704735
(Ours) Bandit50-SVG (starting lr = 0.10000001) 0.8544 0.057865024
(Ours) Bandit50-SVG (starting lr = 0.015848938) 0.765 0.18487746
(Ours) Bandit50-SVG (starting lr = 0.0025118883) 0.83769995 0.13448596
(Ours) Bandit50-SVG (starting lr = 0.00039810775) 0.8556 0.1130591
(Ours) Bandit50-SVG (starting lr = 6.309583e-05) 0.9368 0.0060367584
(Ours) Bandit50-SVG (starting lr = 1.0000011e-05) 0.7687 0.121899426
Random Search (lr=0.09751952) 0.8617 NA
Random Search (lr=002728348) 0.91279995 NA
Random Search (lr=0046155833) 0.91349995 NA
Random Search (lr=0055948693) 0.9004 NA
Random Search (lr=003826389) 0.9111 NA
Random Search (lr=008570347) 0.87729996 NA

Table 4.4. The tabular results corresponding with figure 4.13 and 4.14, where each line in
the plot is represented.
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Fig. 4.12. 100 iterations with length of 10, 20 unrolls for SVG MNIST online task, our
method is shown in yellow/green (classification validation accuracy, highest=1.0), with bad
learning rates also used from grid search + SVG initialization. This shows that with badly
chosen hyperparameters, the bandit version can adapt the badly chosen parameters in grid
search into more competitive performance.
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Fig. 4.13. 100 iterations with length of 50 unrolls for SVG MNIST online task, our method
is shown in yellow/green (classification validation accuracy, highest=1.0), with bad learning
rates also used from grid search + SVG initialization. This shows that with badly chosen
hyperparameters, the bandit version can adapt the badly chosen parameters in grid search
into more competitive performance.

Fig. 4.14. 100 iterations with length of adaptive SVG with MNIST online task, our method
is shown in yellow/green (classification validation accuracy, highest=1.0), with bad learning
rates also used from grid search + SVG initialization. This shows that with badly chosen
hyperparameters, the online version can adapt some of the badly chosen parameters in grid
search into more competitive performance.
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Chapter 5

Conclusion

In conclusion, the methods described show some promise for tuning bad learning rates, and
competitive solutions (Bandit50-SVG getting 93.72% with 100+50 epochs, 100 online epochs
+ 50 warmup period) compared to good learning rates with BO (90.37% accuracy with 100
meta-epochs) and random search (93.1% accuracy with 100 epochs). It can also be shown
that in the adaptive setting, there is much more to discuss and uncover. In particular, it will
be interesting to extend these experiments to SGD with momentum for finding more than one
hyperparameter, as well as other types of architectures beyond fully-connected networks, and
then the layer-wise discovery of hyperparameters. The synthetic optimizer could be used to
learn alongside another real optimizer on different tasks, such as robotics and reinforcement
learning rather than supervised learning. It would be interesting to see whether it is still
able to learn a representation that is identifiable. There is much to be said about what the
output of the synthetic optimizer means mathematically. It is possible the optimizer is doing
a sort of trapezoidal rule-style technique to get a learning rate approximation. For example,
looking at Heun’s method [Süli and Mayers, 2003]:

yn+1 = yn + h

2 (fn+1 + fn)

Which, after some algebra, gets the following for the optimal step size h:

h = 2(fn+1 + fn)−1(yn+1 − yn)

This could inductively be shown using a stochastic finite difference approximation using noise
ξ = s − f(s, a) that is used for noise inference in SVG to build a matrix of perturbations
with respect to the current state and next state. Additionally, given the intended smoothing
in the loss landscape, it would be interesting to explain the synthetic optimizer from the
perspective of iterative LQR/LQG. Given that there is an interpretation of iLQR as step
size and line search, it may be possible to use this to explain the backpropagation with
reparameterization of the synthetic model.
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