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Résumé

Une tâche fondamentale en robotique consiste à naviguer entre deux endroits. En particulier,
la navigation dans le monde réel nécessite une planification à long terme à l’aide d’images
RVB (RGB) en haute dimension, ce qui constitue un défi considérable pour les approches
d’apprentissage de bout-en-bout. Les méthodes semi-paramétriques actuelles parviennent
plutôt à atteindre des objectifs éloignés en combinant des modèles paramétriques avec une
mémoire topologique de l’environnement, souvent représentée sous forme d’un graphe ayant
pour nœuds des images précédemment vues. Cependant, l’utilisation de ces graphes implique
généralement l’ajustement d’heuristiques d’élagage afin d’éviter les arêtes superflues, limiter
la mémoire requise et permettre des recherches raisonnablement rapides dans le graphe.

Dans cet ouvrage, nous montrons comment les approches de bout-en-bout basées sur
l’apprentissage auto-supervisé peuvent exceller dans des tâches de navigation à long terme.
Nous présentons initialement Duckie-Former (DF), une approche de bout-en-bout pour la
navigation visuelle dans des environnements routiers. En utilisant un Vision Transformer
(ViT) pré-entraîné avec une méthode auto-supervisée, nous nous inspirons des champs de
potentiels afin de dériver une stratégie de navigation utilisant en entrée un masque de seg-
mentation d’image de faible résolution1. DF est évalué dans des tâches de navigation de
suivi de voie et d’évitement d’obstacles. Nous présentons ensuite notre deuxième approche
intitulée One-4-All (O4A). O4A utilise l’apprentissage auto-supervisé et l’apprentissage de
variétés afin de créer un pipeline de navigation de bout-en-bout sans graphe permettant de
spécifier l’objectif à l’aide d’une image. La navigation est réalisée en minimisant de manière
vorace une fonction de potentiel définie de manière continue dans l’espace latent O4A2.

Les deux systèmes sont entraînés sans interagir avec le simulateur ou le robot sur des
séquences d’exploration de données RVB et de contrôles non experts. Ils ne nécessitent
aucune mesure de profondeur ou de pose. L’évaluation est effectuée dans des environnements
simulés et réels en utilisant un robot à entraînement différentiel.

Mots clés: navigation visuelle, apprentissage auto-supervisé, champs de potentiel, ap-
prentissage de variétés, robotique

1Page de projet pour Duckie-Former: https://sachamorin.github.io/dino/
2Page de projet pour One-4-All: https://montrealrobotics.ca/o4a/
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Abstract

A fundamental task in robotics is to navigate between two locations. Particularly, real-
world navigation can require long-horizon planning using high-dimensional RGB images,
which poses a substantial challenge for end-to-end learning-based approaches. Current semi-
parametric methods instead achieve long-horizon navigation by combining learned modules
with a topological memory of the environment, often represented as a graph over previously
collected images. However, using these graphs in practice typically involves tuning vari-
ous pruning heuristics to prevent spurious edges, limit runtime memory usage, and allow
reasonably fast graph queries.

In this work, we show how end-to-end approaches trained through Self-Supervised Learn-
ing can excel in long-horizon navigation tasks. We initially present Duckie-Former (DF), an
end-to-end approach for visual servoing in road-like environments. Using a Vision Trans-
former (ViT) pretrained with a self-supervised method, we derive a potential-fields-like nav-
igation strategy based on a coarse image segmentation model3. DF is assessed in the naviga-
tion tasks of lane-following and obstacle avoidance. Subsequently, we introduce our second
approach called One-4-All (O4A). O4A leverages SSL and manifold learning to create a
graph-free, end-to-end navigation pipeline whose goal is specified as an image. Navigation
is achieved by greedily minimizing a potential function defined continuously over the O4A
latent space. O4A is evaluated in complex indoor environments4.

Both systems are trained offline on non-expert exploration sequences of RGB data and
controls, and do not require any depth or pose measurements. Assessment is performed in
simulated and real-world environments using a differential-drive robot.

Keywords: visual navigation, self-supervised learning, potential fields, manifold learn-
ing, robotics

3Project page for Duckie-Former: https://sachamorin.github.io/dino/
4Project page for One-4-All: https://montrealrobotics.ca/o4a/
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“m” on IoU and Acc. The DiNO architecture consists of 12 transformer
blocks: we therefore probe the intermediary patch representations by training
a segmentation head at various depths using a ViT backbone of b blocks. While
raw patch representations (“No Augmentations”) perform reasonably well,
adding standard image augmentations (“Augmentations”) is hugely beneficial,
despite the self-supervised DiNO pretraining. In both the “No Augmentations”
and “Augmentations” setup, the ViT backbone parameters are frozen and we only
train the segmentation head. As expected, unfreezing the backbone and continuing
training (“Augmentations + Finetuning”) increases both performance metrics
and is particularly beneficial for the 1-block and 2-block backbones. We could
not finetune backbones with more than 4 transformer blocks due to hardware
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Predictions of the same 3-block ViT at different resolutions. While the model
was trained in the 480p regime, it performs well on downscaled (240p) or upscaled
(960p) images. The 240p predictions are visually coarse, but accurate for nearby
objects or large distant ones. We show in Chapter 3.3.2.1 and 3.3.2.2 how 240p
and 480p predictions can be used for navigating a Duckietown environment. The
960p predictions are shown for illustrative purposes and are too slow for real-time
navigation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Segmentation masks of the 3-block ViT pretrained with DiNO compared with a
finetuned version of itself. Results demonstrate how the attention masks of the
pretrained model attend to a general variety of objects in the scene like the desk
in row three. Interestingly, the attention masks of the finetuned model attend
primarily to the objects that belong to one of the classes in our dataset, ignoring
objects that are not relevant to our task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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3.7 Visual navigation scenes used to assess DF. a) The robot is tasked with completing
laps without crossing the yellow line (left) or white line (right). We benchmarked
both the outer and inner loops. b) The robot needs to complete laps without
colliding with on-road obstacles. For this experiment, the controller ignores the
yellow line predictions and the robot can navigate both white lanes to avoid
obstacles. In total, 4 duckiebots, 2 signs and 4 groups of duckies must be avoided
during a loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 O4A consists of 4 learnable modules for image-goal navigation. Learning is entirely
achieved using previously collected RGB observation trajectories τo = {ot}T

t=1 and
corresponding actions τa = {at}T

t=1, without pose. The local backbone h (left)
takes as input RGB images to produce low-dimensional latent codes x ∈ X . The
locomotion head f † (center) uses pairs of latent codes to predict the action
required to traverse from one latent code to the other (order matters), or the
inability to do so through the NOT_CONNECTED output. h and f † are then used to
construct a directed graph G, where nodes represent images and edges represent
traversability. The forward dynamics head (bottom right) f is trained using
edges from G to predict the next code xj given the current code xi and an action
aij ∈ A. The geometry of the graph G is embedded in a neural network using a
geodesic regressor p+ (top right), which outputs the shortest path length for
any pair of codes. Once all the modules are trained, G can be discarded, and p+

be used as part of a potential function, as illustrated in Figure 4.2 and detailed in
Equation 4.2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 An illustration of our potential function P (Equation 4.2.5). Darker colors indicate
lower potential cost. (Left) Geodesic attractor, which reflects the geodesic distance
to the goal G. (Center) Visited state repulsors (B, C, D). (Right) Total potential
function P , which can be minimized by the agent at A by picking an appropriate
waypoint W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Top-down view of maze environments used for training, validation and testing
in O4A. The red square represents the agent at a random position within each
environment. The first 3 columns show the training environments, fourth column
validation and fifth column testing. All the environments share similar semantic
features but with varying topologies with the purpose to assess the navigation
capabilities of O4A over novel environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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4.4 (First row) O4A graph connectivity over test environments. Points correspond
to the location of RGB observations and are colored by the sum of their x and
y coordinates. The graphs are free of egregious spurious edges, which allows
to train effective geodesic regressors before discarding them. (Second row) 2
principal components (PCA) of the last layer in the geodesic regressor p+ with
the same coloring scheme. The unsupervised latent geometry is consistent with
the environment’s geometry, and some topological features (e.g., the obstacle
"holes") are evident in the latent space, even if the training of O4A never used
pose information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Navigation trajectories obtained with O4A within the Habitat simulator over
eight different environments. For each environment we present the following
information: the last navigation frame of the front-facing camera (left), a top-
down view of the environment (center) and the goal image (right). In the top-down
view, the goal position is depicted by a red square, the start position with a blue
square and trajectory taken by a blue line. It is noteworthy that the top-down
map serves solely for visualization purposes and is not provided to the agent.
O4A successfully navigates towards the goal across diverse environments featuring
intricate topologies, resulting in navigation paths that are almost optimal (See
Table 4.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Image augmentations used during training in O4A to improve the models’
performance. These augmentations are used for both Habitat (Chapter 4.3.2)
and real-world experiments (Chapter 4.3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Graph connectivity and unsupervised latent geometry of the eight Habitat
environments. These plots follow the same plotting scheme as Figure 4.4. Points on
the top-down view (gray map) correspond to the location of RGB observations and
are colored by the sum of their x and y coordinates. The two principal components
of the last layer in the geodesic regressor p+ are colored with the same coloring
scheme (located at right of top-down view). Remarkably, the unsupervised latent
geometry derived by O4A in: a) Annawan , d) Dunmor , e) Eastville and f)
Hambleton exhibit consistency with the topology of the environment even in
partially observable settings and without any pose information. Top-down map of
the environment and pose information are solely used for visualization purposes. 77

4.8 We use the Jackal UGV mobile platform [118] using the RGB channels (no depth)
of two Realsense D435i cameras with a 90◦ FOV. We detect forward collisions
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using a forward-facing Hokuyo laser scanner. We run O4A onboard using an Intel
i7-8700 CPU with 32 GB of RAM. We did not require a GPU for navigation. . . 78

4.9 a) Top-down view of the real-world laboratory used in our experiments (captured
with ROS GMapping [150]). b) Training graph derived with our local backbone,
where each point corresponds to an image sample and are colored based on the sum
of their x and y coordinates (as in Figure 4.4). c) unsupervised latent geometry
obtained by the 2 first principal components of the last layer in the geodesic
regressor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Images from the front-view camera during two real-world successful navigation
trials. a) The goal image corresponds to a pillar with a sticker of a duck as shown
in the last navigation frame. b) The goal image corresponds to the turtlebot
depicted in the last navigation frame. Navigation sequences start on the top-left
(START) and finish at the bottom-right (STOP) by following the arrows. . . . . . . . . . . 80

A.1 Neural architectures used in Habitat (Chapter 4.3.2) and real-world experiments
(Chapter 4.3.3). MLP stands for multi-layer perceptron and Conv1D for 1-
dimensional convolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.2 Detailed results obtained per environment and difficulties with O4A. (a) Success
Rate. (b) Soft Success Rate. (c) Success weighted by Path-Length and (d)
Distance to Goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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Chapter 1

Introduction

Over the past decade, Deep Learning (DL) has significantly contributed to improving the
state of the art in several computer vision tasks. These advances are powered by learning-
based architectures specifically designed to work within images. Examples of such models
include Convolutional Neural Networks (CNNs) [90, 67, 94] and Vision Transformers (ViTs)
[40, 93], which have replaced hand-crafted feature extractors [95, 12, 119, 106] with a set of
trainable parameters [57]. Moreover, the ability of learning-based methods to learn directly
from raw images makes them appealing to the robotics community, particularly as perception
modules [50]. Applications of DL within robotics can be seen in trajectory forecasting [22],
control [5] and most notably, navigation [124, 127, 26, 151], which is particularly relevant
to this work.

Navigation for robotics can be defined as the ability of a robot to move from one location
to another [131]. This problem is characterized by a robot’s ability to identify the most
efficient and feasible path between a start pose (position and orientation) and a goal pose in
a given environment [88]. The standard approach involves first piloting the robot within the
environment to build a map containing metric information (i.e., metric map), often using a
range sensor, and then using this representation for planning [139]. However, the memory
complexity of these classic approaches scales poorly with the size of the environment, and
they do not exploit semantic information nor visual cues [128].

Alternatively, learning-based methods for navigation also dubbed experiential learning
[92] are widely use to overcome these limitations. Unlike traditional approaches, experiential
learning operates directly with high-dimensional data (e.g., images) and reasons about non-
geometric concepts in a scene. Furthermore, these methods are more intuitive to use for
non-expert users as they allow for goal positions to be specified using images of places or
objects rather than coordinates in a metric map [26].

Although learning-based approaches offer a sound solution to robot navigation, they are
not free of limitations. Firstly, Deep Learning methods can suffer from sample inefficiency



Fig. 1.1. Semantic segmentation predictions obtained with Duckie-Former at different input
resolutions. The original input image is divided into patches (e.g., 240p input produces 30
patches at the output. The letter p stands for pixels) and a ViT-based model performs
segmentation on these patches. We demonstrate how to use these predictions for navigating
a Duckietown environment [108] in Chapter 3.

as they typically require a substantial number of annotated images to produce estimators
with good generalization capabilities [57, 41, 126]. Therefore, deployment in novel visual
environments is likely to need an expensive data annotation procedure [158]. Secondly,
DL models have been characterized by a “depth race” with architectures of increasing size
[64], which are of limited use for embodied agents requiring high inference performance on
resource-constrained hardware.

To address the first limitation, Self-Supervised Learning (SSL) has been successfully
used to train models in the absence of annotated data. The idea is to design clever pretext
tasks to extract valuable information from the data. Examples include unshuffling image
patches [38, 103], predicting image rotations [52] or reconstructing masked input [107].
Not surprisingly, experiential learning has successfully extrapolated ideas from SSL to robot
navigation. A broad variety of methods leverage SSL-based objectives to learn a global
controller that maps images directly to robot actions [149, 31, 102, 8, 25, 98]. However,
mapping images directly to actions has been shown to have poor navigation capabilities over
long-horizon tasks [127, 128]. Indeed, research in neuroscience demonstrated how humans
and animals achieve long-horizon navigation by using not only motor controls but also a
“memory map” of the environment [104, 53, 47].

Drawing inspiration from neuroscience to perform long-horizon navigation, topological
memory representations [85] are used to divide the navigation problem into two parts. First,
the memory representation is used to produce a globally coherent navigation plan, which is
then followed waypoint-by-waypoint using a learned or classical local controller [8]. Ap-
proaches that incorporate both memory and learning-based components are referred to as
semi-parametric, while approaches that rely solely on learning are known as fully-parametric.

While semi-parametric methods have proven to be effective for image-based navigation
both indoors [124, 151, 26, 81] and outdoors [127, 129], they still encounter memory
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issues. This is a result of the topological memory typically being encoded as a graph whose
nodes represent visited states (i.e., images) and edges traversability. As the environment size
increases, more nodes and edges are added to the graph, increasing the memory requirements.

In addition, spurious connections in the graph can impede navigation performance as
they may represent non-feasible transitions in the physical world, leading to failure modes in
the global planning stage. Although the literature offers partial solutions to these limitations
by pruning the graph with hand-crafted heuristics [151, 127], these add complexity to the
problem and generally require tuning for each environment.

To address the aforesaid limitations, this work demonstrates how SSL can be used to
create a neural memory representation for robot navigation within end-to-end navigation
approaches. Hence, this work first proposes Duckie-Former (DF), a fully-parametric
approach for monocular visual servoing1 using few annotated images. DF works by training
an instance segmentation model based on ViTs to perform “coarse” semantic segmentation at
the 8×8 patch level, as shown in Figure 1.1. The segmentation mask is subsequently used as
a repulsor potential in a potential-fields-based navigation and control strategy [32]2. Sample
inefficiency is addressed using standard data augmentation techniques as well as pretrained
weights from a leading self-supervised method called DiNO [21]. As for the computational
aspect, it is shown how ViTs can be used to predict labels at different resolutions, allowing a
compromise between prediction granularity, inference speed and memory footprint in real-life
robotic applications.

This approach is further extended and we propose One-4-All (O4A), an end-to-end
fully-parametric method for image-goal navigation3. O4A is trained offline using non-expert
exploration sequences of RGB data and controls. We first rely on SSL to identify neigh-
bouring RGB observations. Armed with this notion of connectivity, we compute a graph
to derive a manifold learning [137, 157] objective for our planning module, which we dub
the geodesic regressor. The geodesic regressor will learn to predict shortest path lengths
between pairs of RGB images and in that sense, encodes the geometry of the environment
and acts as our memory module [60, 51, 68, 46]. While we do compute a temporary graph
during training, we discard it for navigation, and found that it does not require the graph
pruning heuristics of existing semi-parametric methods. Intuitively, we trade a potentially
high number of nodes and edges in a graph for a fixed number of learnable parameters,
thus mitigating the memory limitations of semi-parametric approaches. Inference is also
improved: graph queries are replaced with efficient forward passes in a neural network.

Similar to Duckie-Former, O4A draws inspiration from potential fields planning [32]
for navigation and uses the output of our geodesic regressor as an attractor in a potential

1Visual servoing refers to controlling the robot’s motion using only information extracted from vision sensor.
2This work was published at the 19th Conference on Robotics and Vision (CRV) [121]
3This work is under review at the International Conference on Robotics and Automation (IROS) 2023 [101]
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(a) First trajectory. (b) Second trajectory.

Fig. 1.2. Navigation paths produced by O4A (Robot, blue) and by human teleoperation
(Expert, magenta) in a 4.65m x 9.10m laboratory. When prompted with a goal image
(red star), the robot uses its current front and back RGB observations (orange) to navigate
towards the goal by minimizing a neural potential function via gradient descent. The paths
were captured using information from a ViCON system, which was not available to the agent.

function. This allows us to frame navigation as a minimization problem, with the global
minima located at the goal image. We show how this navigation approach enables the robot
to perform long-horizon navigation and succeed even in geometrically complex environments.

To summarize, the main contributions of this work are:
• Duckie-Former

(1) Using a ViT pretrained with a label-free self-supervised method, we successfully
derive a potential-fields-based function by training a coarse image segmentation
model using only 70 training images;

(2) We show how the same model can be used to predict labels at different resolu-
tions, allowing a compromise between prediction granularity, inference speed and
memory footprint;

• One-4-All
(1) An offline self-supervised training procedure using non-expert exploration se-

quences of RGB data and controls, without any depth or pose measurements;
(2) A graph-free, end-to-end navigation pipeline that avoids tuning graph pruning

heuristics;
(3) A potential fields-based planner that avoids local minima and reaches long-

horizon goals, thanks to a geodesic attractor trained with a manifold learning
objective;

(4) An interpretable system that recovers the geometry of the environment in its
latent space, even in the absence of any pose information.
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We perform experimental validation of Duckie-Former in two visual servoing tasks using
the Duckietown environment [108]. Similarly, we show that One-4-All achieves state-of-
the-art indoor navigation in 8 simulated environments. We further provide a real-world
evaluation using the Jackal UGV platform.
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Chapter 2

Background

In this section, we first provide an overview of the preliminary background necessary to
comprehend the visual navigation problems addressed in this work. We begin by defining
the motion planning problem in Chapter 2.1.1 and provide an overview of classic techniques.
In Chapter 2.1.2, we delve into visual navigation tasks and their variations. Then, we
review representation learning in Chapter 2.1.3, including neural architectures for image
processing and their application in robotics. We conclude the preliminaries part of this
section discussing two relevant subjects for the development of this work: self-supervised
learning in Chapter 2.1.4 and manifold learning in Chapter 2.1.5. Afterwards, we present
the related work in Chapter 2.2, which is divided into two parts: First we discuss applications
of classic robot navigation in Chapter 2.2.1 and we conclude this section presenting learning
based approaches for navigation in Chapter 2.2.2

2.1. Preliminaries
2.1.1. Motion Planning

Motion planning in the context of robotics is defined by LaValle [88] as “designing algo-
rithms that generate useful motions by processing complicated geometric models”. In other
words, how to plan a sequence of motions to navigate an agent from a starting position qI to
a goal position qG in a given environment [87]. The motion planning stack fulfills a critical
role in any robotics pipeline as it is responsible for producing an efficient yet feasible path to
reach a goal. For instance, in 2005, the Stanley robot won the DARPA challenge by navigat-
ing approximately 150 miles over rugged desert roads using only onboard sensors [140]. One
of the chief ingredients for the success of Stanley was its optimization-based lateral motion
planer, whose role was primarily obstacle avoidance.

To formalize the idea of motion planning, we need to define the configuration space C.
This is defined as as the set of rigid body transformations that could be applied to a robot



Family Description Algorithm

Sampling
Based

This family of methods avoid an explicit construc-
tion of Cobs and instead probes the configuration
space C with a sampling scheme. Then, all sam-
ples that are also felt into Cobs are rejected with a
collision detection module [88, 43]. A navigation
path is retrieved by connecting samples between qI

and qG.

RPP [10]
PRM [78]
RRT [89]
RRT∗ [77]

Informed RRT [49]

Graph
Based

These methods are mainly searching algorithms
over a discrete state space. Giving a discrete repre-
sentation of the configuration space C (e.g., occu-
pancy grid, lattice, graph), planning is formulated
as a searching problem over the state space with
starting position qI and goal qG [56]. The result of
this search is a path that visit different states in C
and arrives to the goal.

Dijkstra [37]
A∗ [62]

D∗ [132]
AWA∗ [69]

Hybrid A∗ [39]

Optimization
Based

These methods frame motion planning as an opti-
mization problem subject to different constrained
variables [56]. More importantly, this family de-
fines a function over the configuration space C
whose global maxima or minima is located at the
goal location qG. The function can be arbitrarily
expressive an account for obstacles in the environ-
ment as-well as robot morphology [32].

APFs [79, 54, 32]
HPF [80]
TO [71]

UAF [156]

Table 2.1. Motion planning algorithms.

[88]. Typically, C is an n dimensional manifold (Chapter 2.1.5) where n represents the
degrees of freedom of the robot. The set of configurations that cause the robot to collide
can be defined as Cobs. Equipped with these two notions, motion planning aims to produce
a path between qI and qG in the the obstacle-free configuration space Cfree = C \ Cobs [55].

However, it is well-known that the motion planning problem is NP-complete [19]. As
a result, significant research efforts have been focused on developing planning algorithms
that are computationally tractable and can provide approximate solutions to this problem
[131]. Classic motion planning methods can be categorized into three principal families:
graph-based, sampling-based, and optimization-based [55, 56]. In Table 2.1, we provide an
overview of these methods.

It is worth noticing that each one of these methods has its own limitations and none
is the ultimate solution to the planning problem. For instance, sampling based methods
assume prior knowledge of the environment to sample the configuration space C of the robot
[88]. Graph based methods are highly sensitive to spurious connections in the graph i.e.,
edges representing unfeasible transitions in our physical world such as traversing through
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Navigation Task Goal Specification Task Description

Point-Goal
Navigation Coordinate in the environment

The agent has to navigate to a goal
coordinate (x, y, z) specified rela-
tive to the agent [100, 8].

Object-Goal
Navigation Object class

The agent has to navigate to an
specific object within the environ-
ment (e.g., TV, chair) [24, 159].

Area-goal
Navigation Place Category

The agent has to navigate to an
area category (e.g., kitchen, bath-
room) in the environment [153].

Image-goal
Navigation Image

The agent has to navigate to a goal
specified with an image [124, 127,
151].

Exploration Maximize map coverage
The agent has to maximize its cov-
erage over the free space of the en-
vironment [23, 123, 51].

Image-text goal
Navigation

Navigation instructions
specified with

natural language

The agent has to navigate to a goal
solely specified as a series of natu-
ral language instructions (e.g., nav-
igate to the red building next to the
fire hydrant) [130, 1].

Table 2.2. Visual navigation tasks.

an obstacle [56]. Assume a graph G = (V, E) of the environment, composed of vertices V

and edges E, where E = Etrue ∪ Espurious. If the number of spurious edges dominates the
graph, i.e., Espurious >> Etrue, graph based methods are doomed to fail [19]. Indeed, graph
search methods will exploit these spurious edges in the graph, yielding unfeasible navigation
paths. Lastly, optimization-based methods are subject to local minima issues and designing
the objective function is a non-trivial task [32].

This work leverages optimization methods for navigation and takes inspiration from Arti-
ficial Potential Fields (APFs). The objective function is composed of an attractive potential
p+ towards the goal and repulsive potentials p− from previously visited states. Navigation
is performed by following the local force produced by the gradient of the potential function:
P = p+ + p−. It is important to acknowledge that, in the context of traditional APFs, re-
pulsive potentials are typically defined around obstacles in the environment. However, when
such obstacles are not explicitly represented, as is the case in this work, repulsive potentials
can be defined over previously visited states instead to avoid local minima.

In O4A, we derive a potential function from neural networks, such that it avoids the local
minima issue on potential fields, and attains a global minimum at the goal qG. Notably, the
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only prior knowledge we assume over the environment is a set of RGB images collected
offline, which we use to train our neural potential function for embodied navigation.

2.1.2. Visual Navigation

The development of more expressive Deep Learning (DL) architectures have propelled
research on visual navigation for embodied agents. These approaches rely on a vision-based
sensor, such as a camera, depth camera, or event-based camera, to perceive the surroundings
[92]. Moreover, They can directly operate on high-dimensional image data. The use of vision
modalities in robot navigation has enabled a shift in the way goals are defined, allowing for
images to be used as goals instead of traditional map coordinates (x, y, z) [44]. For instance,
a navigation goal can be specified as the image of a place within the environment (e.g., living
room) or an object of interest (e.g., a plant) [126]. Visual navigation also allows for more
intuitive use by non-expert users, potentially increasing its impact on society. In Table 2.2,
we provide an overview of various visual navigation tasks, as well as recent trends in the
field that leverage multi-modal information (e.g., natural language instructions and images)
for navigation [2].

In this work we tackle specifically the problem of image goal navigation. We only
use RGB image data and assume no access to depth information to train our models. A
more detail description of visual-based methods for embodied navigation is presented in
Chapter 2.2

2.1.3. Representation Learning

Representation learning aims to extract meaningful representations from raw data such
that these can be seamlessly used in downstream tasks like classification or regression [15].
In its more basic form, DL provides a way to learn these representations by composing affine
transformations of the form f(x, W, b) = xT W + b with non-linear activation functions. The
matrix W and vector b are composed of learnable parameters optimized via gradient descent
or some variation of it [120, 134, 57]. Input data is represented by x.

Learning from raw data paved the way to design specialized DL architectures that op-
erate directly on the image domain. There are two prominent neural architectures to learn
representations from images: Convolutional Neural Networks (CNNs) [90] and Vision Trans-
formers (ViTs) [40]. These architectures, along with example applications in the field of
robotics, are presented below.

2.1.3.1. Convolutional Neural Networks. These are a specialized type of deep neural ar-
chitecture tailored to efficiently operate in grid-like topologies, such as images [90], time
series [144] or volumetric data [165]. The key component of CNNs are the convolutional
layers. These layers apply a set of learnable filters to the input data to extract relevant
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features also called feature maps [67]. Moreover, CNNs can efficiently operate with very
high-dimensional data in oppose to fully connected linear layers. This is an effect of weight
sharing in CNNs as the same matrix of parameters (i.e., filter), is used to produce a sin-
gle feature map. By concatenating a series of convolutional layers with non-linearities and
pooling layers, CNNs can capture hierarchical representations of the input data [57].

Example applications of CNNs can be found for different computer vision tasks. For
instance, object classification requires the model to determine which objects are in an image
[84, 67, 94]. In object detection, the model not only determines the class of the objects
but also their positions on the image with a bounding box [115, 113, 122]. Ultimately, in
instance segmentation the task involves partitioning the image into multiple regions, where
each region is labeled with a specific object class, thereby providing pixel-level classification
[66, 27, 6]. The latter is of particular relevance to this work as Duckie-Former derives its
potential function from an instance segmentation model.

2.1.3.2. Transformers and Vision Transformers. ViTs are an adaptation of the transformer
architecture originally proposed to address sequence-to-sequence tasks in natural language
processing [146]. The transformer architecture follows an encoder-decoder structure and is
based on a self-attention mechanism. Self-attention allows the model to selectively focus on
different parts of the input sequence when making predictions. To achieve this, the input
sequence is decomposed into tokens (i.e., words), which are mapped to queries Q, keys K

and values V using linear layers. Attention is computed using

Attention(Q, K, V ) = Softmax(QKT

√
dk

)V with Softmax(xi) = exp(xi)∑
j exp(xj)

(2.1.1)

where dk is the dimension of the keys. Intuitively, attention updates token encodings with
a weighted combination of all other token encodings. To further increase the expressivity
of the model, transformers use multiple attention heads over the input sequence, which are
finally combined with a linear layer. Both encoder and decoder employ self-attention, with
the decoder incorporating the output of the encoder and its own input to generate the final
output sequence. Advantages of transformers over standard Recurrent Neural Networks
(RNNs) [70] are their ability to handle long-range dependencies with ease and also, its
operations are easily parallelized in compute software [48].

Vision Transformers [40] adapt the transformer encoder to directly operate with images
and compete with CNNs. Echoing the original transformer formulation for natural language
processing [146], ViTs decompose images (“sentences”) into small image patches (“visual
words”), typically of size 8 × 8 or 16 × 16. ViTs learn vector encodings for each patch
via self-attention. A single transformer layer can therefore learn dependencies between any
two patches in the input image. Different improvements over the original ViT have been

37



proposed, such as non-fixed input sequence [35], hierarchical feature maps [93], and attention
windows [29].

Demonstrating the versatility of ViTs for image processing, it has been successfully ap-
plied for various tasks, including instance segmentation. For this task, ViT-based archi-
tectures normally leverage an encoder-decoder structure [7]. The idea is to reconstruct the
segmented image from patch encodings using up-sampling operators to predict labels in pixel
space [133, 163, 155, 111, 136]. In this work, we exploit a pre-trained ViT and fine-tuned
it over few annotated images where segmentation labels are predicted at the patch level.

2.1.3.3. Applications in Robotics. Not surprisingly, both CNNs and ViTs have been
widely adopted by the robotics community as perception modules [50]. For instance, Wong
et al. [152] exploit a CNNs-based segmentation module to perform pose estimation on
objects. The approach leverages a segmentation mask of objects in the scene to retrieve pre-
computed meshes of these models. Then, the pose is estimated by aligning the meshes with
the current objects in sight. In [161, 136], a convolutional segmentation backbone is jointly
used to localize a robot and generate a segmentation map of the environment using Simulta-
neous Localization and Mapping (SLAM). Object tracking for self-driving applications have
also benefitted from these neural architectures. Wang et al. [148] proposed PointTrackNet,
a neural architecture for generating a bird’s-eye-view segmentation from raw point clouds.
This segmentation is then delivered into a filtering pipeline to track other vehicles on the
road.

An example with multi-camera images is shown by Zhou et al. [164]. The authors employ
multiple cameras and their pose information to learn a bird’s-eye-view map segmentation
of the environment with ViTs. Object goal navigation is addressed in [81] by first creating
a graph with segmented objects within the environment. Subsequently, a ViT is used to
retrieve the best next navigation waypoint giving an object goal query. In Chapter 3, we
showcase the derivation of a potential-fields-based function for obstacle avoidance and lane
following using an instance segmentation model based on ViTs. The key insight is that
performing segmentation at different patch resolutions enables a balance between prediction
granularity and inference speed. Therefore, allowing the deployment of these models in
resource-constrained embodied applications.

2.1.4. Self-Supervised Learning

Self-Supervised Learning (SSL) is a subset of unsupervised learning which aims to learn
generic and expressive data representations in the absence of labels. The potential of SSL lies
in the possibility to pretrain deep architectures on massive unlabeled datasets [64]. A first
class of SSL algorithms relies on designing clever pretext tasks that will extract meaningful
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(a) Self-supervised pretext task. (b) DINO architecture.

Fig. 2.1. A self-supervised pretext task and the DINO architecture a) Example of pretext
task where the objective is to understand the spatial context of an object in an image in order
to tell the relative position between parts [38]. b) DINO is a teacher-student architecture
trained only with positive samples. It works by maximizing the similarity between the
embeddings of two augmented views of an image produced by teacher and student networks.
During training, the weights of the student are updated with gradient descent while the
teacher weights are updated with an Exponential Moving Average (EMA) of the student’s
weights [21]. Images taken from the original authors.

representations from data [38, 103, 107, 52]. An example pretext task is presented in
Figure 2.1a

A second class, more relevant to this report, is that of contrastive learning algorithms.
Contrastive learning aims to learn representations in which samples from the same class
(“positives”) are close to one another and samples from distinct classes (“negatives”) are
separated. The InfoNCE, is the most commonly used objective function for contrastive
learning. It was introduced in [143], and is defined as follows:

LInfoNCE = −E
[

log f(x, c)∑
x′∈X f(x′, c)

]
(2.1.2)

Here, f(x, c) is proportional to the ratio of the conditional distribution p(x|c) over a
positive sample x to the marginal distribution p(x) over negative samples x′. The context
vector c can be intuitively thought of as another positive sample. It is noteworthy that
InfoNCE represents a lower bound in mutual information. By optimizing this lower bound,
the mutual information between vectors x and c can be maximized [143]. In the absence of
labels, SSL usually relies on the so-called "cross-view" approach, whereby random augmen-
tations of the same image sample are assumed to be positive examples and augmentations
from different images are assumed to be negatives [28].

Image representations obtained by contrastive methods achieve state-of-the-art perfor-
mance on vision benchmarks [28, 65, 21, 64, 20, 162, 9]. However, the traditional view
of contrastive learning using positive and negative pairs was recently challenged by methods
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like BYOL [58], SimSiam [30] and DiNO [21]. In these works, the authors managed to train
visual representations using only positive pairs and/or a teacher-student paradigm. Espe-
cially noteworthy for this work is DiNO (Figure 2.1b), where the authors demonstrate how
self-supervised ViTs naturally learn explicit information about the semantic segmentation
of an image in their attention masks. In Duckie-Former, we exploit a ViT pretrained with
DiNO to derive an instance segmentation model for navigation. Likewise, in One-4-All we
rely on SSL to train the four neural components of our navigation pipeline.

2.1.5. Manifold Learning

The field of manifold learning provides an invaluable tool for representation learning
based on the geometric notion of a manifold. A manifold is a topological space that is
locally Euclidean in the vicinity of each of its points. Specifically, for every point on the
manifold, there exists a topologically equivalent neighbourhood to an open unit ball in Rd

[74]. Consider the earth as an example, locally each point can be represented as a 3D
Cartesian coordinate but globally it is a sphere embedded in a 3D space.

Manifold learning for dimensionality reduction assumes data samples lie on a low dimen-
sional manifold M embedded in a higher dimensional space. The goal is to map samples of
M embedded in a high-dimensional space Rn, to a lower dimensional space Rd (for n >> d),
such that intrinsic relations between data samples in Rn are preserved in Rd [15]. A common
instance of manifold learning is Principal Component Analysis (PCA) [75]. The PCA al-
gorithm linearly projects high-dimensional data samples onto a set of orthogonal bases that
explain the most variance in the data.

To address real-world data manifolds with non-linear correlations, manifold learning typ-
ically relies on the nearest neighbour graph approach. The goal is to optimize low dimen-
sional embedding coordinates of the input such that these preserve properties (e.g., dis-
tance) of a neighbourhood graph computed with the original high-dimensional samples of
M [138, 14, 137, 34, 145]. Moreover, neural networks are also exploited to infer low dimen-
sional representations of data via reconstruction or variational cost functions [117, 83, 116].

In O4A, we take inspiration from Isometric Mapping (IsoMap) [137] to derive a geo-
desic regressor to estimate shortest path lengths between input image observations. IsoMap
works by first creating a neighbourhood graph where each node represents a data point. The
identification of neighbours and their pairwise distances is accomplished through k-nearest
neighbours with an appropriate distance metric. Subsequently, a graph search method like
Dijkstra [37] is employed to determine the shortest path length (geodesic distances) between
each pair of nodes in the graph. Lastly, the data points are projected onto a lower dimen-
sional space that preserves pairwise geodesic distances to the greatest degree possible. O4A
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estimates the neighbourhood graph using a local backbone trained over images with SSL and
then produces a geodesic regressor trained on top of the embeddings of this local backbone.

2.2. Related Work
2.2.1. Classic Robot Navigation

Classic motion planning for robotics leverages the family of methods presented in Chap-
ter 2.1.1. As an example, in the 2007 DARPA Urban Challenge, the MIT team used RRT to
produce navigation paths [86, 91]. They employed RGB-Depth cameras with hand-crafted
filters to do line detection on the road. To sample navigation paths, they relied on those
road detections, a Velodyne laser scanner for collision detection and a prior map of the
environment using a Road Network Definition File (RNDF).

Kala and Warwick [76] proposed sampling-based multi-agent planning using RRT where
each agent path was smoothed with spline curves. Although appealing, the method was
only tested in simulation with ground-truth information of the scene. Likewise in [72],
the authors proposed an adaptive sampling scheme for PRM whereby samples are biased
towards unexplored regions in the free configuration space Cfree. In this work, we do not rely
on sampling based methods for navigation nor depth sensors, and our only prior knowledge
of the environment are a set of RGB images collected offline.

Likewise, graph-based methods are exploited to navigate agents in the real-world. Dayoub
et al. [36] relies on a LiDAR sensor to construct a 2D occupancy grid and plan over it by
employing the Dijkstra algorithm. In [42], the authors proposed to enhance metric maps
with semantic features using objects in the scene detected with SIFT [95]. Their method
combines both semantic and metric features to produce a hybrid map for planning which is
queried via graph search. Moreover, range and vision sensors can also be used to create a
sparse map of the environment consisting of landmarks, which are queryable for navigation
through graph search [63, 13].

Another common graph-based representation for planning is based on pose graphs, also
called topo-metric. These can exploit RGB-Depth sensory information to construct a graph
whose nodes contain pose information of the robot [139]. Navigation paths are retrieved
from the graph through shortest path search [141]. The A∗ algorithm has equally been
used by exploiting structured road maps to navigate the streets of Berlin [17] and on the
DARPA Urban Challenge [114]. In contrast, O4A does not assume access to any map or
pose information but instead builds an intermediate topological graph where nodes are solely
composed of RGB images from previously visited states.

Framing navigation as an optimization problem has given rise to a variety of applications.
Guivant et al. [59] retrieved a robot path by minimizing a cost matrix over the connectivity
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of local triangular regions of the environment. Likewise, Model Predictive Control (MPC) is
commonly used to predict the future trajectory of the agent while optimizing control inputs
and morphological constrains [3, 96].

To address local minima problems in optimization-based methods like APFs, strategies
like random actions [11] or genetic algorithms [142] have been proposed. Bounini et al. [18]
proposed to add negative potentials to previously visited states in the potential function to
prevent local minima. In O4A (Chapter 4), we draw inspiration from Boubini and expand on
the neural potential-like function presented in Duckie-Former (Chapter 3). Specifically, we
define a latent potential function over images instead of a metric space and include negative
potentials to each previously visited state to escape local minima.

As discussed previously, classical approaches often depend on a costly sensor suite to
acquire depth information, which is then used to generate a metric map or perform collision
checking. The exclusive use of metric representations is insufficient to capture the semantic
notions of traversability. For example, in a field, tall grass can be traversed, whereas a
wire fence cannot be traversed [128]. While metric representations may be augmented with
semantic information through “hand-crafted” feature extractors [95, 12, 119], these methods
are typically tailored to specific scenes and are susceptible to changes in the environment.

In this work, we exclusively employ inexpensive RGB cameras and demonstrate how to
learn meaningful semantic representations for navigation using SSL. In Duckie-Former, we
show how a neural monocular system can be used to navigate and avoid obstacles in a road
while being executed on resource-constrained hardware. Likewise, O4A also works with RGB
images but employs front and rear-facing cameras to address partially observability issues
in monocular applications, thereby allowing the agent to escape from semantically similar
surroundings, such as white walls or corridors in a building.

2.2.2. Learning-Based Robot Navigation

To overcome the limitations of classic approaches presented in Chapter 2.2.1, learning-
based methods or experiential learning [92] have been used. These approaches have the
advantage of being able to reason about the geometry of an environment, as well as the
semantic aspects of traversability [128, 147]. Furthermore, they are designed to learn from
high-dimensional data like images or point clouds, avoiding the need of “hand-crafted” feature
extractors.

Reinforcement Learning (RL) agents are a prominent example of experiential learning
and have been widely employed for image-based embodied navigation [99, 149, 112]. For
instance, in GAPLE [160], the authors trained an end-to-end RL policy on top of both
semantic and depth features extracted by a convolutional backbone. Furthermore, Yang et
al. [159] demonstrated how navigation policies can be improved with semantic scene priors

42



(e.g., an apple being likely inside a fridge). While these approaches provide a sound solution
to the navigation problem, RL policies are known to be data-hungry, with some offline RL
methods requiring up to 30 hours of training data [126]. In addition, end-to-end RL methods
have limited navigation capabilities over long horizons [41].

To overcome the long horizon limitation, semi-parametric approaches use a topological
memory encoded as a graph [85]. A topological graph aims to encode the topology of the
environment, where nodes correspond to spatial locations and edges represent connections
between them. This memory representation draws inspiration from research in neuroscience
that establishes how human and animals achieve long-horizon navigation by relying on “mem-
ory maps” of the environment [104, 53, 47].

Various instances in the literature take advantage of a topological memory [26, 8, 124,
151, 127, 45, 44, 97]. The topological memory serves as a global planner to generate
navigation waypoints towards a goal, which are then delivered to a local policy to produce
locomotion commands for the agent. Hahn et al. [61] presented a self-supervised approach
to construct a topological graph by leveraging SLAM for relative pose estimation. The graph
was weighted with a geodesic estimator over RGB-D observations, and an RL policy was used
for actuation. In O4A, we rely on a self-supervised objective that leverages one-step temporal
distance between samples, thereby eliminating the need for depth or a computationally
expensive SLAM pipeline to infer pose targets.

Despite the benefits of semi-parametric approaches, they suffer from two primary limita-
tions. The first is that spurious connections in the graph can adversely affect the planner’s
ability to derive a feasible plan (e.g., connections that allow warping between obstacles).
The second is that these methods do not scale well in terms of memory as the number of
vertices and edges in the graph increases with the size of the environment.

These limitations are partially addressed by hand-crafted heuristics. Examples of these
include connectivity thresholds to prune the number of spurious edges [124, 45], node spar-
sification strategies [8, 44] and lifelong updates to the graph [151]. However, these methods
end up adding a non-negligible number of parameters that require tuning and are often envi-
ronment dependant. In contrast, O4A avoids the need for such heuristics by simply training
a connectivity classifier on top of a backbone trained to do contrastive learning.

Semi-Parametric Topological Memory (SPTM) [124] and Visual Navigation with Goals
(ViNG) [127] are of particular interest for the assessment of this work. SPTM employs
a classifier to determine the connectivity between two temporally close images and creates
an unweighted graph based on those. This graph does not accurately reflect the distance
between two close or distant samples as it is unweighted, exacerbating the spurious edges
issue. Similarly, ViNG uses a classifier to estimate the temporal number of steps between
samples and weight the edges of the graph with these estimates. Planning is performed over
the graph and a relative pose predictor is paired with a PD controller to navigate waypoints.
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Both methods employ pruning and sparsification strategies. Conversely, our method O4A
does not prune the graph and directly estimates the action between two samples, allowing
us to predict connectivity and local controls simultaneously.

Furthermore, SPTM and ViNG use all training images to create a graph and generate
navigation plans using Dijkstra’s algorithm [37]. However, employing all images during
graph construction is indeed doomed to pose memory limitation. Wiyatno et al. [151],
proposed a solution that samples the dataset of observations, but their method requires pose
information and tuning of multiple hyper-parameters. In contrast, O4A uses latent codes
to weight a training graph, which is then embedded in a shortest path lengths regressor.
This approach overcomes the memory constraints associated with graph-based methods and
allows the estimation of geodesic distances over seen an unseen images, as opposed to a fixed
set defined on a graph.

There has also been research on alternative memory representations for embodied navi-
gation, including the use of semantic [81, 51, 110], spatial [60, 68, 23] or latent represen-
tations [46]. For instance, LTM [51], proposes a framework to estimate top-down semantic
maps outside the field of view of the agent to address long horizon goals. To the best of our
knowledge, none of these representations exploit a training graph to obtain an image-based
geodesic regressor for navigation.

O4A draws significant inspiration from Plan2Vec [157], which is a pure planning method.
Plan2vec uses its geodesic regressor (referred to as global metric) as a heuristic for graph
search. However, the authors only showcased Plan2vec in simulation environments and did
not address robot actuation in their work. In contrast, O4A tackles planning and navigation
simultaneously and uses the geodesic regressor in a potential function to frame navigation
as a minimization problem [32].

Lastly, it is worth noting that several existing methods rely on ground-truth pose in-
formation to learn temporal distances or relative pose between samples [8, 151, 127, 97].
Both of our methods, DF and O4A, leverage SSL and are trained using only raw RGB image
samples and actions. As a result, our methods are not dependent on ground-truth pose
information, making them compatible with low-cost camera sensors and readily scalable. In
Table 2.3 we present an overview of various learning-based methods on the literature and
how O4A differ from those.
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Method Plan2Vec
[157]

LTVN
[151]

SPTM
[124]

InvDM
[112]

ViNG
[127]

NRNS
[61]

LTM
[51]

SMT
[46] O4A

Memory
Representation Graph Graph Graph Value

function Graph Graph Semantic
map Latent Neural

Path
Planner

Graph
search

Graph
search

Graph
search

End
to

end

Graph
search

Graph
search

Goal
policy

End
to

end

Potential
function

Training SSL Supervised SSL RL
based Supervised Supervised Supervised RL

based SSL

Requires
Pose No

Simulator
& wheel
encoders

No No
Wheel

encoders &
co-training

From
SLAM Simulator Simulator No

Uses
Depth No Yes No No No No Yes Yes No

Pruning
Strategy None

Sampling &
probabilistic

updates

Defines max.
number of edges None Edge

threshold None None None None

Action
Space None Continuous Discrete Discrete Continuous Continuous Discrete Discrete Discrete

Locomotion None iLQR
controller

Inverse
dynamics RL PD

controller
Inverse

dynamics RL RL Inverse
dynamics

Interpretable
Representation Yes No No No No No Yes No Yes

Real World
Deployment No Yes No No Yes No No No Yes

Table 2.3. Comparison of learning-based methods for visual navigation. It should be noted that this table excludes DF as O4A,
our main approach, is an enhanced version of it.
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Chapter 3

Duckie-Former

In this section we present our first work called Duckie-Former (DF), a vision-based system for
monocular embodied navigation. The main objective of this section is to demonstrate how
self-supervised pre-trained models can be used to produce a simple yet effective potential-
fields-based controller for navigation. We begin by defining the navigation problem that we
are addressing in Chapter 3.1. We then present our approach and its components in Chap-
ter 3.2. Subsequently, we provide an evaluation of our segmentation model in Chapter 3.3.1,
and analyze the navigation abilities of the agent in two tasks: lane following and obstacle
avoidance in Chapter 3.3.2. We conclude this section discussing limitations of our method
in Chapter 3.4, and introduce One-4-All as an enhancement over Duckie-Former.

3.1. Problem Formulation
We consider a differential drive robot driving at a constant linear speed on a road with

a continuous action space composed of its angular velocity A = ω for a visual servoing
navigation task. Particularly, assume two common driving tasks on a road: lane following
and obstacle avoidance. Giving prior knowledge of the environment like object-classes in the
scene and the color of road lines, we assume we can estimate a segmentation masks over
those from raw RGB images.

When the agent is prompted with an RGB image ot, it has to either stay on the road
without drifting from it or avoid obstacles depending on the task at hand. These tasks must
be seamlessly achieved using only the current image observation ot and its segmentation
mask zt.

3.2. Method
In this section, we take inspiration from Artificial Potential Fields and showcase how to

navigate and control a robot by simply constructing a repulsive potential around objects of
interest in the scene.



Fig. 3.1. Coarse semantic segmentation using ViTs. We encode image patches using a
vision transformer as encoder and then predict a class label for each patch with a shallow
fully connected network. We visualize attention heads to assess the effect of training in the
transformer encoder.

3.2.1. Coarse Semantic Segmentation with Vision Transformers

Our approach is based on the following hypothesis: an agent can successfully and safely
navigate an environment with low resolution segmentation masks. Therefore, we propose
training a neural classifier gϕ to predict a class label zi

t ∈ {1, 2, . . . , K} for every image patch
oi

t ∈ Rp×p indexed with i. Our classifier is a fully-connected network that we apply over ViT
patch encodings yi

t = DiNO(ot)i ∈ Rd to predict patch labels (Equation 3.2.1). The coarse
segmentation mask zt ∈ Rn×n is obtained by concatenating all patch predictions in a grid
(Figure 3.1).

zi
t = gϕ(yi

t) (3.2.1)

To illustrate the process of obtaining patch-labels, consider a ViT with encodings of di-
mensionality d, applied to an image with a resolution of 480p1. This results in an encoding
map with dimensions of 60×60×d assuming a patch size of 8 pixels (480/8 = 60). To obtain

1For the rest of this work, p will stand for pixels.
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Fig. 3.2. Potential-fields-based controller for lane following and obstacle avoidance. The
coarse segmentation mask is used to compute a left (blue) and right (red) mask which are
delivered to a potential-fields-based controller. The controller receives the mask and maps
it as a “repulsive” potential to steer away from the half of the image with the most obstacle
patches (Equation 3.2.2).

a label for each patch during training, we downsample the original ground-truth mask ac-
cordingly using nearest neighbour interpolation. Our simple design avoids up-sampling archi-
tectural components and allows us to reuse pretrained weights from any vanilla CNNs/ViTs
architectures, such as DiNO [21].

As discussed in Chapter 2.1.3, our motivation for using ViTs is twofold: first, we hope
to leverage the ability of transformers to learn long-range dependencies in an image, which
is an appealing proposition for real-time navigation and control tasks. Second, as with
convolutional layers, a trained ViT can run segmentation on images at various resolution, as
long as the patch size is the same. This implies that a ViT trained for coarse segmentation
of 8× 8 patches will yield 30× 30 predictions for 240p images, 60× 60 predictions for 480p
images, 120 × 120 predictions for 960p images and so on. One can therefore adjust the
granularity of the prediction and the associated computational load by simply downscaling
or upscaling input images: a welcome flexibility for deployment on embodied agents with
hardware constraints. ViTs can be trained and fine-tuned at different resolutions [40] and
more advanced techniques for improving the performance at different test resolutions is a
matter of active research [155].
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3.2.2. Navigation With a Neural Potential Function

We borrow inspiration from APFs and propose a potential-fields-based strategy to navi-
gate and control the robot on the environment. Specifically, this function consists solely of
a negative or “repulsive” potential that enables the agent to avoid obstacles and stay on the
road. To this end, we leverage the coarse segmentation mask zt ∈ Rn×n for the current n×n

patches extracted from observation ot. We then compute a navigation mask mt ∈ {0,1}n×n

by identifying the pixel patches corresponding to line patches and obstacles. This mask is
used to compute a “repulsive” potential pushing the agent to steer away from the half of the
image with the most line patches or obstacles. More formally, the angular speed is controlled
based on

ωt+1 = ωt − p−(U, mt, γ) = ωt − γ
n2∑
i

vec(U ⊙mt)i (3.2.2)

where the matrix U ∈ Rn×n is a sign mask with −1 values in the first n
2 columns (left)

and -1 in the lasting columns (right). The parameter γ is a weighting factor, vec(·) transform
a matrix into a vector by stacking its rows and ⊙ denotes the Hadamarad product. This
potential-fields-based controller will reach an equilibrium by keeping the same energy on the
right and the left, i.e., by being centered between the white and yellow lines of the road in
the absence of obstacles. We present a visualization of the controller in Figure 3.2.

While our navigation strategy is not a one-to-end instance of APFs, it shares similarities
with this approach. Specifically, Equation 3.2.2 is designed to guide the robot away from the
region with the largest negative potential, denoted as p−. This objective can be understood
as an attempt to optimize (i.e., finding an equilibrium) the value of p− by steering the robot
in the opposite direction of the obstacles.

3.3. Experiments
3.3.1. Image Segmentation

3.3.1.1. Data. Our dataset is composed of RGB images gathered using the on-board cam-
era of our Duckiebot (Figure 3.3a). We collected images by teleoperating the robot in the
data collection scene presented in Figure 3.3b. To increase the diversity in the training
scene, various objects were added on the road during the episode. A total of 100 images
were sampled from the recordings and labeled with 7 classes: Duckiebot, duckie, white lane
marking, yellow lane marking, road sign and human hand. We use a 70-15-15 split for
training, validation and testing.

3.3.1.2. Implementation Details. We use a standard ViT architecture [40] and pretrained
weights from DiNO for our perception backbone. Specifically, the ViT-S/8 architecture
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(a) DB21J Robot. (b) Data collection scene.

Fig. 3.3. Experimental setup for Duckie-Former. a) Example of the differential drive DB21J
Duckiebot model used in our experiments. While other sensors are available, we only used
the camera for navigation. b) We collected 100 images by teleoperating the robot on the
scene and occasionally adding various objects on the road.

consists of 12 transformer blocks—a block includes a self-attention layer followed by 2 fully-
connected layers—and takes 8×8 patches as input. As with standard ViTs architectures, the
size of the feature map is constant throughout layers and any number of blocks will output
predictions at the same resolution. Each patch is encoded as a 384-dimensional vector which
we classify using a fully-connected segmentation head. In Figure 3.4, we vary the number of
transformer blocks in the backbone as well as the augmentations applied to the training data
in order to study segmentation performance over the test set. Encouragingly, we find that
using only a few transformer blocks is sufficient to achieve good performance. We further
observe that metrics plateau or even deteriorate with a backbone deeper than 5 blocks.
Moreover, standard data augmentations and fine-tuning the backbone still appear necessary
to maximize performance. The bigger part of the fine-tuning improvement is observed in the
road sign class, which was not heavily featured in our dataset2.

For training, we use 480p images, a batch size of 1 image (3600 8× 8 patches), and train
for 200 epochs. The validation set is used for checkpointing and the model with the best
balanced validation accuracy is retained. When training the segmentation head only, we use
the Adam optimizer with a learning rate of 1e−3. For finetuning the backbone, we continue
training for 200 epochs using the AdamW optimizer with a learning rate of 1e−4. We use
standard data augmentations where mentioned: random crops, flips, shifts, scales, rotations,
color jittering and Gaussian blur. Reported Intersection Over Union (IoU) and Accuracy
(Acc) scores are with respect to the downscaled ground-truth masks, e.g., 480p predictions
are benchmarked against the 60x60 interpolated masks to reflect patch-level performance.

2All the architectures were implemented using Pytorch (https://pytorch.org/).
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Fig. 3.4. Intersection Over Union (IoU) 1
N

∑
j(Prediction Area Overlap

True Area Union )j and Accuracy (Acc)
1
N

∑
j(Correct Sample Prediction

Total Samples )j of various segmentation models on our Duckietown segmenta-
tion test dataset. Metrics are averaged across 3 seeds, hence the “m” on IoU and Acc. The
DiNO architecture consists of 12 transformer blocks: we therefore probe the intermediary
patch representations by training a segmentation head at various depths using a ViT back-
bone of b blocks. While raw patch representations (“No Augmentations”) perform reason-
ably well, adding standard image augmentations (“Augmentations”) is hugely beneficial,
despite the self-supervised DiNO pretraining. In both the “No Augmentations” and “Aug-
mentations” setup, the ViT backbone parameters are frozen and we only train the segmenta-
tion head. As expected, unfreezing the backbone and continuing training (“Augmentations
+ Finetuning”) increases both performance metrics and is particularly beneficial for the
1-block and 2-block backbones. We could not finetune backbones with more than 4 trans-
former blocks due to hardware constraints.

3.3.1.3. Inference Results. In Table 3.1, we study the inference speed and quality of the
finetuned 1-block and 3-block ViTs segmentation models from the previous section. For
comparison, we also study backbones built with the first layers of a DiNO-pretrained ResNet-
50 CNN architecture to perform the same task. We benchmark the same models at different
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Fig. 3.5. Predictions of the same 3-block ViT at different resolutions. While the model
was trained in the 480p regime, it performs well on downscaled (240p) or upscaled (960p)
images. The 240p predictions are visually coarse, but accurate for nearby objects or large
distant ones. We show in Chapter 3.3.2.1 and 3.3.2.2 how 240p and 480p predictions can
be used for navigating a Duckietown environment. The 960p predictions are shown for
illustrative purposes and are too slow for real-time navigation.

inference resolutions and find that ViTs perform relatively well even on downscaled images.
Importantly, all models can run inference at a reasonable framerate on GPU for 240p or
480p input. CPU inference at 240p would even be conceivable. All benchmarks were run on
a 11th Gen Intel Core i7-11800H @ 2.30GHz × 16 CPU and a NVIDIA GeForce RTX 3050
Laptop GPU. Contrary to the memory efficient CNNs, the ViT 960p resolution could not fit
into GPU memory due to the unwieldy amount of patches.
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Model Parameters Input
Resolution

Output
Resolution Patches

CPU
Inference

(Im./sec) ↑

GPU
Inference

(Im./sec) ↑

GPU
RAM (GB) ↓ mIoU ↑ mAcc ↑

ViT (1 block) 2.2M
240x240 30x30 900 58 168 0.10 0.71 0.79
480x480 60x60 3,600 6 47 0.75 0.78 0.85
960x960 120x120 14,400 0.5 OOM OOM 0.75 0.83

ViT (3 block) 5.8M
240x240 30x30 900 23 131 0.11 0.76 0.84
480x480 60x60 3,600 2 29 0.93 0.86 0.90
960x960 120x120 14,400 0.2 OOM OOM 0.84 0.89

CNN (24 layers) 1.6M
240x240 30x30 900 61 214 0.03 0.67 0.77
480x480 60x60 3,600 12 103 0.08 0.79 0.85
960x960 120x120 14,400 4 50 0.16 0.71 0.80

CNN (32 layers)
+ConvTranspose 7.1M

240x240 30x30 900 40 183 0.06 0.66 0.75
480x480 60x60 3,600 9 78 0.16 0.82 0.88
960x960 120x120 14,400 3 38 0.30 0.75 0.83

Table 3.1. Quantitative assessment of segmentation quality and inference speed in Duckie-Former. “OOM” indicate models that
exhaust their available memory during inference and Im./sec stands for number images processed per second. Although the 3-block ViT
demonstrated the best segmentation results over the test set, CNNs have superior inference speed and are unaffected by OOM issues as
they do not rely on the attention mechanism. The attention mechanism possesses a time and space complexity that scales quadratically
with the number of input tokens, therefore, yielding performance issues with high-resolution images.
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(a) Input Image. (b) DiNO. (c) Finetuned.

Fig. 3.6. Segmentation masks of the 3-block ViT pretrained with DiNO compared with a
finetuned version of itself. Results demonstrate how the attention masks of the pretrained
model attend to a general variety of objects in the scene like the desk in row three. Interest-
ingly, the attention masks of the finetuned model attend primarily to the objects that belong
to one of the classes in our dataset, ignoring objects that are not relevant to our task.

Figure 3.5 provides further visualization of the predictions made by our ViT and how
prediction granularity can be enhanced with higher-resolution images while using the same
ViT model. Moreover, Figure 3.6 compares the attention masks of the pretrained 3-block
model to the finetuned one. Interestingly, the finetuned model learns to focus predominantly
on the objects that are relevant to our task, even when trained with only a few annotated
images.
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(a) Lane Following scene. (b) Obstacle avoidance scene.

Fig. 3.7. Visual navigation scenes used to assess DF. a) The robot is tasked with completing
laps without crossing the yellow line (left) or white line (right). We benchmarked both the
outer and inner loops. b) The robot needs to complete laps without colliding with on-road
obstacles. For this experiment, the controller ignores the yellow line predictions and the
robot can navigate both white lanes to avoid obstacles. In total, 4 duckiebots, 2 signs and
4 groups of duckies must be avoided during a loop.

3.3.2. Navigation

In this section, we assess the performance of the trained 1-block and 3-blocks ViTs from
Table 3.1 in two different monocular visual servoing tasks: lane following and obstacles
avoidance. The robot is controlled using the potential-fields-based controller presented in
Chapter 3.2.2. It receives as input the segmentation output produced by a trained ViT and
outputs steering commands for the robot while maintaining a fixed linear velocity as shown
in Figure 3.2. For the lane-following task, the goal is to maintain the vehicle centered in a
lane while in the obstacle avoidance task, the agent can use both lanes to navigate and avoid
obstacles3.

The scenes for both experiments are modified from the original data collection scene. In
Figure 3.7a, we show the driving environment used for lane-following where an additional U-
turn is added to measure the robustness of the driving agent. The same driving scene is reused
for the obstacle avoidance track but different objects are added on the road (Figure 3.7b).

3.3.2.1. Lane Following. The objective of this task is to navigate the vehicle on the road
(without obstacles) and maintain it centered between the yellow and white lines. To ac-
complish this, we leverage the segmentation mask and negative potential presented in Chap-
ter 3.2.

Each model is evaluated by navigating the agent for five loops (2 outer loops and 3 inner
loops) and report the number of minor and major infractions. A minor infraction occurs when
the robot steps over either the white or yellow line. A major infraction is defined as any event
3For demonstrative videos of our method see https://sachamorin.github.io/dino/
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Model Input
Resolution

Outer
Loop

Inner
Loop

Minor
Infractions ↓

Major
Infractions ↓

Baseline 480p ! 7 0
! 11 2

ViT
1 block

240p ! 1 0
! 3 0

480p ! 1 0
! 4 1

ViT
3 blocks

240p ! 1 0
! 4 3

480p ! 1 0
! 8 0

Table 3.2. Lane following results obtained with DF.

requiring human intervention to put the agent back on track. Both models are evaluated at
240p and 480p input resolutions and compared against the standard lane following system
implemented in Duckietown, which consists of HSV filters alongside a histogram filter for
state estimation [139].

The results of the lane following evaluation are reported in Table 3.2. Both ViTs perform
equally well in the outer loop, however, the inner loop proves more challenging. The best
performing model was with 1-block at 240p with a total of three minor infractions and zero
major infractions. We hypothesize this good performance is owed to the high throughput
of the model, which allows for better reaction time in the controller. Surprisingly, the
high-capacity 3-block model reports a higher number of infractions. The baseline model is
the worst-performing whose result is a likely consequence of the HSV filters producing false
positives line detections when white or yellow objects are placed in the scene (see Figure 3.7a).

These results demonstrate that even though higher capacity models perform better than
low capacity ones with respect to test segmentation metrics, more variables should be con-
sidered for real-world deployment. Additionally, while the coarse segmentation predictions
(see Figure 3.5 column 2) lower the resolution to increase inference speed, they still appear
to hold enough information to accurately navigate the agent within the environment using
our potentials-based method.

3.3.2.2. Obstacle Avoidance. The objective for the obstacles avoidance experiment is to
navigate the agent through the scene in Figure 3.7b while avoiding on-road duckies, signs
and Duckiebots. This task was designed to validate the performance of the agent within a
more challenging environment, and make use of predictions for all classes. We define the
area between both white lines as being drivable, i.e., the agent is allowed to cross the yellow
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ViT
Blocks

Input
Resolution

Minor
Infractions ↓

Major
Infractions ↓

1 240p 2 0
480p 1 2

3 240p 1 4
480p 3 1

Table 3.3. Obstacles avoidance results obtained with DF.

line to avoid obstacles without penalty. Particularly, the navigation and control strategy
is the same used in the previous experiments with the difference that the navigation mask
now includes all obstacles to be avoided. Therefore, pixels classified as white line, ducks,
signs and duckiebots are actively contributing to the “repulsive” potential. This potential
function encourages the agent to drive on the road while avoiding objects placed on it. The
assessment is similar to that of Chapter 3.3.2.1 (same number of loops) with the difference
that driving over the yellow line is permitted and small contacts with obstacles are considered
minor infractions.

We evaluate the same models as in the previous subsection (1-block, 3-block, at 240p and
480p). For this benchmark, we do not have a particular baseline in the Duckietown stack
to compare with. The results are presented in Table 3.3 and are consistent with the ones in
Table 3.2. The best performing model was once again 1-block with an input resolution of
240p, reporting a total of two minor infractions and zero major ones. The higher-capacity
model performed well but did not surpass the 1-block ViT even though the segmentation
results produced by this are of superior quality, again suggesting that visual servoing benefits
from the higher framerate of the shallow 1-block backbone.

3.4. Discussion
In this Chapter, we have explored the potential benefits of using ViTs pre-trained through

SSL for embodied visual navigation. We were able to train an end-to-end model using only
70 annotated images. This demonstrates the effectiveness of our approach, highlighting the
benefits of neural-based representations for visual navigation. We also showcases how a
simple yet effective potential-fields-based controller can be readily adapted to navigate on
a road and perform different navigation manoeuvres on it. In contrast to standard linear
probing in SSL, which typically favors large high-capacity models, we found that small models
with high-throughput may be more beneficial for embodied applications. Additionally, we
highlighted how ViTs can adjust their inference resolution based on available resources and be
used in real-world robotics applications, depending on the required precision of the embodied
agent.
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Nevertheless, our approach operates on 8x8 image patches rather than pixels, and is
not well-suited for predicting high-resolution segmentation masks, in which case an encoder-
decoder architecture should be preferred. While the low resolution of our predictions may
not hinder navigation, it may not be appropriate for safety-critical applications where the
consequences of collisions are severe. Furthermore, our approach is inspired by APFs, but it
is limited to operate only in a looping road-like scenario where obstacles in the scene and line
colors have to be known in advance. In the next chapter, we will build upon the potential-
fields-based approach developed in this section and propose a self-supervised fully-parametric
approach for image-goal navigation, which we call One-4-All.
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Chapter 4

One-4-All

In this section, we present One-4-All (O4A), a self-supervised fully-parametric approach
for image-goal navigation. O4A builds upon Duckie-Former (Chapter 3), and it seamlessly
achieves navigation by minimizing a neural potential function. Moreover, O4A is completely
trained via SSL and does not require any labeled information unlike DF. We begin by defining
the image-goal navigation problem in Chapter 4.1. Then, we present O4A in Chapter 4.2
where we discuss the data assumptions in Chapter 4.2.1, the various components of the
system in Chapter 4.2.2 and the navigation pipeline in Chapter 4.2.3. We provide an ex-
tensive evaluation in Chapter 4.3 in three different settings: a simulated maze environment
(Chapter 4.3.1), a 3D photorealistic simulator (Chapter 4.3.2), and a real-world environment
(Chapter 4.3.3). Ultimately, we conclude this section discussing O4A and its limitations in
Chapter 4.4.

4.1. Problem Formulation
We consider a robot with a discrete action space for an image-goal navigation task [2].

The action space is defined as A = {STOP, FORWARD, ROTATE_RIGHT, ROTATE_LEFT}. Using
our knowledge of the robot’s geometry and an appropriate exteroceptive onboard sensor
(e.g., a front laser scanner), we assume that the set of collision-free actions Afree can be
estimated.

When prompted with a goal image og, the agent should navigate to the goal location in
a partially observable setting using only RGB observations ot and the Afree estimates. The
agent further needs to identify when the goal has been reached by autonomously calling the
STOP action in the vicinity of the goal [2].



4.2. Method
4.2.1. Data Trajectories

We aim to achieve image-goal navigation using learned modules parameterized by deep
neural networks. For any given environment, we assume that some previously collected
observation trajectory τo = {ot}T

t=1 and corresponding actions τa = {at}T
t=1 are available.

We consider a single trajectory from a single environment for notational conciseness, but
in practice use multiple data trajectories (Figure 4.1) from different environments. We
do not require an expert data collection policy and the dataset could be the product of
teleoperation, self-exploration or random walks, as long as it sufficiently covers the free
space Cfree of the environment. As discussed in Chapter 2.2, we tackle navigation in an
unsupervised setting and do not assume access to pose estimates for each image observation,
which greatly simplifies data collection. Moreover, we do not collect any depth measurement,
and only rely on a front laser scanner at runtime for simple collision checking.

4.2.2. System

4.2.2.1. Overview. We illustrate and present an overview of our system in Figure 4.1. We
first rely on self-supervised learning (Chapter 2.1.4) to learn an RGB backbone paired with
a connectivity head to infer a graph over all images in τo. The graph will then be used
to derive training objectives for a forward dynamics module and a geodesic regressor. We
finally show how to navigate the trained system in Chapter 4.2.3.

4.2.2.2. Local Backbone. The local backbone learns a mapping from raw images to low-
dimensional latent codes h : ORGB → X . For simplicity, we will denote extracted features as
x = h(o). The function h will serve a dual purpose: 1) to extract low-dimensional features
in X = Rn that will be used as input for other modules, and 2) to learn a local metric
defined as

dh(xt, xs) = ∥xt − xs∥2 (4.2.1)

between pairs of observations. Given the lack of pose information in the training data, h

is trained via self-supervised learning using the siamese loss [157]

Lh(xt, xt+1, N ) = (m+ − dh(xt, xt+1))2

+ 1
|N |

∑
x−∈N

max(0, m− − dh(xt, x−))2,
(4.2.2)

where m+, m− ∈ R+, m+ < m− are positive and negative margins, respectively, and N
is a set of random data from τo, which are used as so-called negatives. Equation 4.2.2 is
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Fig. 4.1. O4A consists of 4 learnable modules for image-goal navigation. Learning is entirely achieved using previously collected
RGB observation trajectories τo = {ot}T

t=1 and corresponding actions τa = {at}T
t=1, without pose. The local backbone h (left)

takes as input RGB images to produce low-dimensional latent codes x ∈ X . The locomotion head f † (center) uses pairs of
latent codes to predict the action required to traverse from one latent code to the other (order matters), or the inability to do
so through the NOT_CONNECTED output. h and f † are then used to construct a directed graph G, where nodes represent images
and edges represent traversability. The forward dynamics head (bottom right) f is trained using edges from G to predict the
next code xj given the current code xi and an action aij ∈ A. The geometry of the graph G is embedded in a neural network
using a geodesic regressor p+ (top right), which outputs the shortest path length for any pair of codes. Once all the modules
are trained, G can be discarded, and p+ be used as part of a potential function, as illustrated in Figure 4.2 and detailed in
Equation 4.2.5.
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an instance of time contrastive learning: consecutive observations (positive pairs), which we
know to be indeed close in terms of pose, are encouraged to be at a distance of exactly m+

in X . Negatives are pushed to be at least at a distance of m−, reflecting the fact they should
not share the same neighbourhood even if the exact distance between them is unknown at
this stage. This latest observation motivates the term “local metric” [157], since the actual
distance dh is only informative when applied to positive pairs that are close in latent space.
It should be stressed that dh cannot predict how far negative pairs are apart in general, as
it tends to saturate around m− as discussed in [157]. Furthermore, in contrast to the coarse
segmentation module in Duckie-Former (Chapter 3), the local backbone does not necessitates
any annotated training instance.

4.2.2.3. Locomotion Head. The component f † : X ×X → A∪{NOT_CONNECTED} predicts
the action needed to travel between two latent codes, or returns the NOT_CONNECTED token
when the transition is deemed not feasible in a single action. f † therefore acts as both a loop
closing module and an inverse dynamics predictor. It is trained using the standard cross-
entropy loss on the actions observed in τa. We use the same negatives N from Equation
4.2.2 to train the NOT_CONNECTED class.

Even if most negatives in N are true negatives (in the sense that the observations are
not connectable with one action step), both h and f † can be exposed to occasional false
negatives during training (e.g., if the same location is visited twice, the induced observations
won’t be temporally consecutive and can appear in N ). These false negatives in fact cor-
respond to the loop closures that should be discovered by the trained system in the data.
Perhaps surprisingly, it turns out that f † makes “fortuitous mistakes” and does predict a
number of loop closures properly, therefore overcoming to some degree the imperfections
in its training objective. This property allows self-supervised methods to learn useful data
representations in the absence of a clean supervisory signal (for navigation, the relative pose
between samples).

4.2.2.4. Graph Construction. Equipped with h and f †, we can now build a directed
graph G whose edges are weighted using dh (Equation 4.2.1). We first treat the collected data
as a chain graph with observed edges Eo = {(ot, ot+1) : ot, ot+1 ∈ τo} and then run pairwise
computations to obtain new loop closure edges Ep = {(ot, os) : ot, os ∈ τo, f †(xt, xs) ∈ A}.
The final graph is denoted by G = (τo, Eo ∪Ep). No additional post-processing of the graph
is required, contrary to existing methods [124, 151, 127, 44] which can require tuning
numerous hyper-parameters to curate nodes and edges.

4.2.2.5. Forward Dynamics Head. The forward dynamics head is denoted by f : X ×
A → X and trained using edges/transitions from G. For any edge (ot, os) in G during
training, the module is trained with the mean squared error loss to approximate the function
(xt, f †(xt, xs)) 7→ xs, using the locomotion head f † to provide an input action even if none
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was observed. f will therefore benefit from additional transitions in Ep that were not initially
observed in Eo. The above is an instance of semi-supervised learning called co-training [16],
in which the functions h and f † are used to label unseen transitions in the training set, thus
enhancing the supervisory signal that is employed to train f .

4.2.2.6. Geodesic Regressor. The final component and core navigation module p+ : X ×
X → R+ learns to predict the shortest path lengths on G. We denote these distances as
dG(ot, og) and compute them with Dijkstra’s algorithm. dG is defined over observation pairs
from the discrete vertex set of G. We aim to extend it over the continuous latent space X
to predict shortest path lengths for any pair of images at runtime. The training loss of the
geodesic regressor is

Lp+(os, ot) = (p+(xs, xt)− dG(os, ot))2. (4.2.3)

Interpreting observations as samples from a manifold embedded in the high-dimensional
RGB space, the backbone h learns an embedding with locally Euclidean neighbourhoods (dh),
which are chained together by the graph search to compute the geodesic (intrinsic) distance
over the entire manifold (Chapter 2.1.5). Equation 4.2.3 in fact corresponds to a manifold
learning objective [157, 137], and we will show the O4A training results in interpretable
visualizations of the environment in Figure 4.7.

Once all the components have been trained, G can be discarded and is not required for
deploying the system. Indeed, both f and p+ will provide all the required information for
image-goal navigation, as we will detail in Chapter 4.2.3. In fact, the geodesic regressor p+

can be interpreted as encoding the geometry of G, thereby trading a potentially high number
of nodes and edges for a fixed number of learnable parameters.

4.2.2.7. Multiple Environment Setting. When k environments are considered, we train
both h and f † on the entire data. To provide a more challenging task for the model, we
sample negatives N from either the same environment or a different one. h and f † can
then be used to close loops and compute a set of graphs {Gi}k

i=1, one per environment. The
forward dynamics f are then trained using transitions from all the graphs. Finally, each
Gi is used to train a geodesic regressor p+

i . In summary, h, f † and f are shared across
environments while p+

i is environment-specific.

4.2.3. Navigation

In this section, we discuss how to deploy O4A for navigation. This approach iterates over
the potential function derived for DF in Chapter 3.2.2. Particularly, we plan motions over
the agent configuration space C by defining A) an attractive potential around the goal, and
B) repulsive potentials around obstacles, allowing the agent to minimize the total potential
function via gradient descent to reach the goal while avoiding obstacles.
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Fig. 4.2. An illustration of our potential function P (Equation 4.2.5). Darker colors indicate
lower potential cost. (Left) Geodesic attractor, which reflects the geodesic distance to the
goal G. (Center) Visited state repulsors (B, C, D). (Right) Total potential function P , which
can be minimized by the agent at A by picking an appropriate waypoint W.

As with APFs, O4A will navigate by minimizing an attractor located at at the goal.
Since actual agent and goal states are unobserved, the potential computations occur over
the latent space X , i.e. the extracted latent features of the agent and goal RGB observations.
As the attractor, we use the geodesic regressor p+ which estimates the geodesic distance to
the goal. Critically, this attractor factors in the environment geometry and can, for example,
drive an agent out of a dead end to reach a goal that is close in terms of Euclidean distance,
but far geodesically (c.f. Figure 4.2). This property is somewhat reminiscent of navigation
functions in APFs literature as discussed in Chapter 2.1.1.

In practice, we found that minimizing p+ alone did not suffice to successfully navigate.
The agent would often end up thrashing between two poses due to a local minimum in the
attractor landscape, which can occur due to learning errors and the discrete action space.
We therefore define a latent repulsor function—similar to Duckie-Former and Bounini et al.
[18]—which is only active in a certain radius mr ∈ R+:

p−(xt, xs) = max(0, mr − dh(xt, xs)). (4.2.4)

We use p− to drive the agent away from previously visited states, the representations of
which are saved in a buffer B. By combining repulsors around observations in B and the
geodesic attractor p+, we obtain a total potential function of

P(xt, xg,B) = p+(xt, xg) +
∑
x∈B

p−(xt, x) (4.2.5)

where xt and xg represent the encodings of the current and goal RGB images, respectively.
The detailed navigation procedure is presented in Algorithm 1. During navigation, our

agent greedily minimizes P by finding the best candidate action using forward dynamics
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Algorithm 1 Navigation algorithm for One-4-All (O4A).
Input: env, goal image og ∈ ORGB, thresh ∈ R+, backbone h, forward dynamics f ,

collision detection function γ, potential function P
o, scan← env.initialize() ▷ RGB and scan
x← h(o)
xg ← h(og)
B ← {x}
while dh(x, xg) > thresh do
Afree ← γ(scan)
a∗ ← arg min

a∈Afree

P(f(x, a), xg,B) ▷ Eq. 4.2.5

o, scan← env.step(a∗) ▷ RGB and scan
x← h(o)
B ← B ∪ {x} ▷ Update visited states

end while
env.step(STOP)

over the set Afree estimated by a collision detection function γ. This stands in contrast to
APFs, since we blacklist collision-inducing actions instead of explicitly modeling repulsors
around obstacles. In practice, since the agent rotates in place, we suppose that only the
FORWARD action can cause collisions, which greatly simplifies the collision detection γ: we
simply define a scan collision box in front of the robot based on its geometry.

4.3. Experiments
We assess our approach in both simulated and real-world environments. Our first simu-

lated experiments are conducted within maze-like environments. The discrete action space
of the agent consists of the movements A = {STOP, ↑,→, ↓,←,↗,↘,↙,↖} and its discrete
configuration space is solely determined by a tuple of indices (i, j) on the maze’s grid. The
observation is an RGB top-down view of the environment with a resolution of 64×64 pixels.
In the second block of experiments, our simulated and real-world experiments use a differ-
ential drive robot with two on-board RGB cameras, one facing forward and the other facing
backward, each with a field of view of 90◦. Each image has a resolution of 96 × 96 pixels.
Consistent with [61], the robot moves FORWARD by 0.25m and ROTATE by 15◦.

4.3.1. Simulation in Maze Environments

This section presents preliminary experiments of O4A over a simple maze-like environ-
ment. The goal is to demonstrate that a neural potential function can be indeed derived
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Training Validation Testing

Fig. 4.3. Top-down view of maze environments used for training, validation and testing in
O4A. The red square represents the agent at a random position within each environment. The
first 3 columns show the training environments, fourth column validation and fifth column
testing. All the environments share similar semantic features but with varying topologies
with the purpose to assess the navigation capabilities of O4A over novel environments

with the methodology presented in Chapter 4.2. Furthermore, we show how the two princi-
pal components (obtained with PCA) of the last layer in the geodesic regressor p+ exhibit
consistency with the topology of the environments.

4.3.1.1. Data. These experiments are conducted using a maze simulator called Mazelab
[166]. A total of 15 environments were used: 9 for training, 3 for validation, and 3 for
testing. All environments have a 20 × 20 grid layout and we collect a total of 5,000 data
points by navigating random waypoints (resulting in very suboptimal trajectories). Data
points are split into a training set (50%) and a validation set (50%). Evaluation metrics are
only reported over the three unseen test environments, and model checkpoints are obtained
using the three validation environments. A layout of all the environments is presented in
Figure 4.3.

4.3.1.2. Implementation details. All our maze models are trained using a batch size of
256. The local backbone uses 6 2D convolutions with batch norm and ReLU non-linearities,
followed by 3 linear layers. The locomotion head is composed of 4 linear layers. Both the
local backbone and locomotion heads are jointly trained for 100,000 gradient steps, using
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Test Environment SR↑ SSR↑ SPL↑
Omaze 0.96 0.96 0.77
Room 0.99 0.99 0.84
Obstacles 0.87 0.87 0.72
Average 0.94 0.94 0.78

Table 4.1. Navigation performance over 3 unseen test environments for O4A. We find that
the neural potential function proposed in O4A is capable to navigate towards the goal and
effectively call STOP. Indeed our method achieves a high Success Rate (SR), Soft Success Rate
(SSR) and Success weighted by Path-Length (SPL) across the three unseen environments,
highlighting the effectiveness of our SSL approach. As expected, the worst performance
is achieved in the obstacles environments (row three, column five in Figure 4.3) as it is
remarkably the one with the most complicated topology.

m+ = 1 and m− = 2. The forward dynamics model has 4 linear layers and is trained for
45,000 steps. The geodesic regressor has 6 linear layers, and the same architecture is used
for all environments, with training also carried out for 10,000 steps for each regressor. All
linear layers are followed by ReLU non-linearities. The models are trained using the Adam
optimizer [82] with learning rate 5e−4. Navigation is performed with |B| = 20, mr = 1.0 and
thresh = 0.5 throughout environments and experiments. At runtime, we simulate a range
measurement to perform collision checking as detailed in Chapter 4.2.31.

4.3.1.3. Evaluation. Navigation performance is assessed by sampling different starting
and goal position over the three test environments (last column Figure 4.3). For each envi-
ronment, 500 trajectories with a maximum episode length of 250 are sampled and the results
are averaged to provide an overall measure of performance. We assess navigation perfor-
mance by measuring the Success Rate (SR) and Success weighted by Path-Length (SPL) [2]
defined as:

1
N

N∑
i=1

Si
li

max(pi, li)
(4.3.1)

where li is the shortest path distance between the start and goal in trajectory i, pi

represents the length of the path actually taken for the agent and Si is a binary indicator
of success for current trajectory i. For maze experiments, a navigation trial is considered
successful if the agent comes to a STOP within the exact goal position. We equally use a Soft
Success Rate (SSR), where a trial is successful if the agent passes through the goal without
calling STOP at any point during navigation.

4.3.1.4. Results. Table 4.1 presents quantitative results of our proposed method, O4A,
for the maze environments. By training a geodesic regressor p+ on top of a self-supervised
1All neural models in O4A were implemented with PyTorch (https://pytorch.org/)
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(a) Omaze. (b) Room. (c) Obstacles.

Fig. 4.4. (First row) O4A graph connectivity over test environments. Points correspond to
the location of RGB observations and are colored by the sum of their x and y coordinates.
The graphs are free of egregious spurious edges, which allows to train effective geodesic
regressors before discarding them. (Second row) 2 principal components (PCA) of the last
layer in the geodesic regressor p+ with the same coloring scheme. The unsupervised latent
geometry is consistent with the environment’s geometry, and some topological features (e.g.,
the obstacle "holes") are evident in the latent space, even if the training of O4A never used
pose information.

local backbone h, O4A demonstrates generalization capabilities over new environments and
produce feasible navigation paths. This suggests that meaningful “local” representations
can be obtained from SSL objectives and be further mapped to a more globally coherent
representation using a nearest neighbour graph approach inspired from manifold learning
(Figure 4.4). Our approach achieves an average Success Rate of 0.94 across the three test
environments, demonstrating its navigation and generalization competences.

Furthermore, we emphasize the effectiveness of our STOP strategy discussed in Chap-
ter 4.2.3, as both SR and SSR are identical across the three test environments. Therefore,
indicating that the agent is capable of autonomously calling STOP upon reaching the goal.
The average SPL of our approach was 0.78, which intuitively indicates that the trajecto-
ries produced by our method have a path length 22% longer than the optimal path. We
note the forward dynamics of our method was equally capable of generalizing over these un-
seen environments without any fine-tuning. Ultimately, in Figure 4.4 we present the graph
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connectivity derived by O4A and the two principal components of the last layer in the geo-
desic regressor p+. Interestingly, a linear projection of O4A latent codes results in a latent
geometry that exhibits consistency with the ground-truth topology of the environments,
demonstrating it is indeed possible to embed the approximate topology of the environment
in a neural network via SSL and manifold learning.

(a) Aloha. (b) Annawan.

(c) Cantwell. (d) Dunmor.

(e) Eastville. (f) Hambleton.

(g) Nicut. (h) Sodaville.

Fig. 4.5. Navigation trajectories obtained with O4A within the Habitat simulator over eight
different environments. For each environment we present the following information: the last
navigation frame of the front-facing camera (left), a top-down view of the environment (cen-
ter) and the goal image (right). In the top-down view, the goal position is depicted by a red
square, the start position with a blue square and trajectory taken by a blue line. It is note-
worthy that the top-down map serves solely for visualization purposes and is not provided to
the agent. O4A successfully navigates towards the goal across diverse environments featuring
intricate topologies, resulting in navigation paths that are almost optimal (See Table 4.3).

71



(a) Original. (b) Brightness and
Contrast.

(c) Dropout. (d) Gaussian Noise. (e) Hue Saturation.

(f) Color Jitter. (g) Motion blur. (h) Change of per-
spective.

(i) Sharpening. (j) Shift, Scale and
Rotate

Fig. 4.6. Image augmentations used during training in O4A to improve the models’ per-
formance. These augmentations are used for both Habitat (Chapter 4.3.2) and real-world
experiments (Chapter 4.3.3).

4.3.2. Simulation in Habitat Environments

In this section, we assess the performance of O4A in a harder navigation scenario using
the 3D photorealistic Habitat simulator [135]. We provide an evaluation against competitive
baselines on the literature as-well as ablation studies over the different pieces composing our
neural potential function (Chapter 4.2.3)2.

4.3.2.1. Data. We perform our experiments using the Habitat simulator [125] with the
Gibson dataset [154]. We use the Gibson split defined in [125] and use eight environments
from it: Hambleton (67m2), Annawan (75m2), Nicut (90m2), Dunmor (90m2), Cantwell
(107m2), Sodaville (114m2), Aloha (114m2) and Eastville (121m2). A total of 240,000 data
points are collected using the same procedure described in Chapter 4.3.1.1 and samples are
split into a training set (70%) and a validation set (30%). A top-down view of the different
environments is presented in Figure 4.5.

4.3.2.2. Implementation Details. Implementation of our models for Habitat is similar to
those defined for maze experiments in Chapter 4.3.1.2. The primary differences are that
all the Habitat models are trained with a batch size of 512 and the local backbone uses
a ResNet 18 encoder [67], followed by 5 1D convolutions to fuse the latent codes of the
front and rear facing cameras. Local backbone and locomotion heads are trained for 410,000
gradient steps, using m+ = 1 and m− = 10. Both forward dynamics and geodesic regressor
have the same architecture as in maze but are trained for 330,000 steps. All models are
trained using the image augmentations shown in Figure 4.6. We use the same optimizer
and learning rate as in maze and navigation is performed with |B| = 500, mr = 2.5 and

2For further results and videos, see https://montrealrobotics.ca/o4a/
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thresh = 3.5 throughout experiments. During navigation, we use a front-facing laser scan
to perform collision checking.

Method Component Parameter Value Description

SPTM

Retrieval
R

l 10 Maximum temporal distance (steps) be-
tween two positive samples.

M 5 Temporal margin (l×M) between posi-
tive and negative samples.

Graph
G

sshortcut 0.7 Similarity threshold to create visual
shortcut in the graph.

∆Tl 5 Minimum temporal distance between
consecutive samples for visual shortcuts.

∆Tw 10 Number of samples in sequence to con-
sider while performing visual shortcuts.

Navigation

k 5 Number of nearest neighbors used to lo-
calize new sample in the graph.

slocal 0.7 Threshold used to perform only local lo-
calization.

sreach 0.7 Reachability threshold to pick next nav-
igation waypoint.

Hmin 1 Lower interval in the search window for
next navigation waypoint.

Hmax 20 Upper interval in the search window for
next navigation waypoint.

ViNG
Traversability

T dmax 20
Maximum temporal distance (steps) be-
tween two samples the model is capable
to predict.

Graph
G

δsparsify 5.0 Sparsification threshold for easily tra-
versable vertices in the graph

O4A

Local Backbone
h

m+ 1 Positive margin for siamese loss used to
train local backbone.

m− 10 Negative margin for siamese loss used to
train local backbone.

Navigation

mr 2.5 Radius at which the repulsors are acti-
vate with respect to current observation.

thresh 3.5 Minimum local metric distance between
current observation and goal to call STOP.

|B| 500
Maximum number of previously visited
states stored and used for the repulsor
function.

Table 4.2. Hyperparameters of baselines and O4A for Habitat experiments. Further detail
of the models used and their architectures are given in Chapter A.1.

4.3.2.3. Baselines. To assess the navigation performance of our method, we compare
against the following baselines:
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• Random Agent. An agent sampling actions uniformly from A\{STOP}, subject to
collision checking. The policy relies on ground-truth pose for oracle stopping.
• Goal Conditioned Behavioral Cloning (GC-BC), adapted from [33]. We ex-

tended the method with Hindsight Experience Replay (HER) [4] to relabel new goals
and enhance the training signal for the agent. This policy also relies on ground-truth
pose to call STOP. We collected a distinct set of expert trajectories for this baseline.
• SPTM [124]. This method is extended with hard-negative mining as proposed by

[127] to improve generalization performance. To call STOP, we tune a threshold on
the reachability estimator between current and goal images.
• ViNG [127]. The PD controller of the original work is replaced by an oracle Habitat

controller to handle discrete actions. We tune a threshold on the timestep predictor
to call STOP.
• O4A Without Latent Repulsors. The repulsors p− are not used during navigation

and the agent is driven towards the goal by greedily minimizing p+.
• O4A Without Geodesic Regressor. We discard the attractor p+ and only use

the latent repulsors p−.

To ensure a fair comparison, all the baselines have the same capacity and collision check-
ing strategy as O4A. We substitute the neural architectures used in the baselines with our
local backbone h and locomotion head f †. Baselines are trained for 415,000 gradient steps
and tested with various hyperparameters, the best of which were used for benchmarking. In
Table 4.2 we provide a detailed summary of the hyperparameters used for the baselines and
our model in these experiments.

4.3.2.4. Evaluation. To assess the navigation performance in the Habitat simulator, we
rank the difficulty of each trajectory as proposed by [26]. Trajectories are categorized into
easy (1.5 − 3m), medium (3 − 5m), and hard (5 − 10m) based on their geodesic distance to
the goal. We add an extra category labeled as “very hard” (>10m) to evaluate the agent’s
ability to plan for long-horizon goals. Each difficulty level is assessed over 1,000 trajectories
using a maximum episode length of 500. To ensure a comprehensive assessment, we sample
distinct starting positions and goals for each environment and difficulty, resulting in a total
of 4,000 trajectories per environment.

Evaluation metrics are the same as the ones discussed for maze experiments in Chap-
ter 4.3.1.3 (i.e., SR, SSR, SPL). However, we add an additional metric to monitor the ratio
of Collision-Free Trajectories (CFT) across all difficulties. CFT is calculated by

1
N

N∑
i=1

1(i) (4.3.2)
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G
Oracle
Stop

Easy (1.5 - 3m) Medium (3 - 5m) Hard (5 - 10m) Very-Hard (>10m)
CFT↑SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑ SR↑ SSR↑ SPL↑

Random – ✓ 0.49 0.49 0.32 0.24 0.24 0.15 0.07 0.07 0.04 0.01 0.01 0.01 0.94
GC-BC [33] – ✓ 0.42 0.42 0.25 0.21 0.21 0.10 0.07 0.07 0.03 0.02 0.02 0.01 0.94
SPTM [124] ✓ – 0.32 0.51 0.14 0.17 0.28 0.06 0.07 0.12 0.03 0.02 0.03 0.01 0.96
ViNG [127] ✓ – 0.29 0.64 0.10 0.19 0.46 0.07 0.11 0.28 0.05 0.06 0.12 0.02 0.99
O4A (Ours) – – 0.95 0.97 0.65 0.93 0.95 0.65 0.90 0.92 0.65 0.85 0.88 0.65 0.96
O4A w/o p− – – 0.11 0.36 0.11 0.07 0.22 0.07 0.03 0.09 0.03 0.01 0.02 0.01 0.99
O4A w/o p+ – – 0.45 0.70 0.13 0.27 0.47 0.09 0.13 0.23 0.04 0.04 0.07 0.02 0.90

Table 4.3. Average navigation performance over 8 simulated Gibson environments for O4A and relevant baselines. We further
study two additional variants of O4A by ablating terms in the potential function (Equation 4.2.5). We also denote which
methods rely on a graph (G) for navigation and oracle stopping (other methods need to call STOP autonomously). We find that
O4A substantially outperforms baselines, achieving a higher Success Rate (SR), Soft Success Rate (SSR), Success weighted by
Path-Length (SPL), and a competitive ratio of Collision-Free Trajectories (CFT). A more detailed presentation of these results
is provided in Chapter A.2
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where the indicator function 1(·) is equal to one if trajectory i is collision-free. A trajec-
tory is deemed collision-free if it does not collide during the experiment.

4.3.2.5. Results. We present quantitative navigation results in Table 4.3. O4A success-
fully navigates to goals of all difficulty levels and outperforms all considered baselines. The
tight gap between SR and SSR showcases the reliability of the STOP mechanism based on
the local metric dh. Surprisingly, the O4A’s SPL is stable across all difficulties, despite a
decreasing success rate. This indicates that the quality of successful paths is in fact slightly
better for distant goals. This observation, combined with visual evaluation of episodes, sug-
gests that the O4A attractor provides a clearer signal for distant goals and is noisier when
navigating nearby locations. The two O4A ablations confirm that all considered potentials
in our potential function P are essential contributors to success.

While the SPTM and ViNG performance are below those reported in the original papers,
they are in line with recent comparable benchmarks in the literature [151]. The gap can
be partially explained by variations in the experimental design. Neither method considers
collisions nor how to stop when the goal is reached. Having STOP in the action space increases
the challenge, due to the agent’s ability to prematurely terminate episodes because of a
false positive. We also note that SPTM considered omnidirectional actions, and that the
original ViNG results focused on larger-scale problems in relatively open outdoor settings.
The GC-BC results demonstrate how learning long-range navigation remains challenging for
end-to-end methods.

We further explore the O4A graph connectivity used for training and demonstrate how it
learns an interpretable latent representation in Figure 4.7. While some latent representations
display visual consistency with the topology of the environment, others like Cantwell (c) or
Nicut (g) are harder to interpret. We argue this is an effect of the robot’s heading not being
considered on these plots. The degrees of freedom of a differential drive robot is 3 (x, y, θ),
therefore, the configuration space of the robot is a three dimensional manifold which cannot
be represented in a two dimensional space. On top of that, PCA is a linear operator that
does not capture non-linear relations between the data during the projection

We decided to maintain PCA as our dimensionality reduction technique to highlight how
our method is capable of recovering representations that are linearly separable. Furthermore,
navigation trajectories over different environments are presented in Figure 4.5, where O4A
is capable of effectively navigating a variety of environments with different topologies.

4.3.3. Real-World Environment

In this section, we assess the navigation capabilities of O4A in a real-world laboratory.
Experiments demonstrate O4A can solve real-world indoor navigation tasks3.

3For a demonstrative video, see https://montrealrobotics.ca/o4a/
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(a) Aloha. (b) Annawan.

(c) Cantwell. (d) Dunmor.

(e) Eastville. (f) Hambleton.

(g) Nicut. (h) Sodaville.

Fig. 4.7. Graph connectivity and unsupervised latent geometry of the eight Habitat envi-
ronments. These plots follow the same plotting scheme as Figure 4.4. Points on the top-down
view (gray map) correspond to the location of RGB observations and are colored by the sum
of their x and y coordinates. The two principal components of the last layer in the geodesic
regressor p+ are colored with the same coloring scheme (located at right of top-down view).
Remarkably, the unsupervised latent geometry derived by O4A in: a) Annawan , d) Dunmor
, e) Eastville and f) Hambleton exhibit consistency with the topology of the environment
even in partially observable settings and without any pose information. Top-down map of
the environment and pose information are solely used for visualization purposes.
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Fig. 4.8. We use the Jackal UGV mobile platform [118] using the RGB channels (no depth)
of two Realsense D435i cameras with a 90◦ FOV. We detect forward collisions using a forward-
facing Hokuyo laser scanner. We run O4A onboard using an Intel i7-8700 CPU with 32 GB
of RAM. We did not require a GPU for navigation.

4.3.3.1. Data. For the real-world experiments, we collected data using the Jackal platform
described in Figure 4.8. The experiments are conducted in a 4.65m x 9.1m laboratory. We
collected a total of 21,000 RGB image samples via teleoperation and split them as in our
Habitat simulation experiments (Chapter 4.3.2.1).

4.3.3.2. Implementation Details. We employ the exact same neural architectures used
in the Habitat experiments (Chapter 4.3.2.2). However, all the models used for the real-
world experiments are finetuned for 30,000 gradient steps starting from the best checkpoint
obtained in the Habitat’s experiments. All the image augmentations presented in Figure 4.6
are used during training. We run navigation with |B| = 300, mr = 2.5 and thresh = 5.
During runtime we use a forward-facing Hokuyo laser scanner for collision-checking.

4.3.3.3. Evaluation. For evaluation, we chose 9 interesting episodes (3 starting positions
with 3 goal images each) and repeated each 3 times, for a total of 27 runs. The maximum
episode length was set to 300 steps, although the robot ended up exceeding 150 steps on only
2 occasions. In addition to SR and SSR (Chapter 4.3.1.3), we evaluate the final Distance to
Goal (DTG), the number of FORWARD steps, and the number of ROTATION steps. For context,
we also teleoperated the robot over the same episodes to provide an estimate of human
performance.

4.3.3.4. Results. The real-world navigation results are presented in Table 4.4. O4A solves
most episodes and achieves an average DTG of under 1m, even if most goals were not visible
from the starting location and located up to 9 meters away. The maximal measured DTG
was 1.74m. Interestingly, the number of O4A calls to the FORWARD action is comparable to
human performance, meaning the O4A paths over the plane are competitive. Moreover, the
robot collided only one time over all episodes using our collision checking strategy.
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SR ↑ SSR ↑ DTG ↓ FORWARD ↓ ROT. ↓
O4A 0.74 0.78 0.83 23 53
Human 0.96 1.00 0.46 20 18

Table 4.4. Average real-world navigation performance for O4A and human teleoperation
over 27 episodes. We report the Success Rate (SR), Soft Success Rate (SSR), final Distance
to Goal (DTG), number of FORWARD steps and number of rotation steps (ROT.).

Two navigation episodes are shown in Figure 1.2 where navigation paths are gathered
using a motion capture ViCON system. In Figure 4.10, we provide snapshots from the
front-facing camera during the aforesaid navigation experiments. Remarkably, the agent is
capable to autonomously call STOP right in front of the goal image for both navigation trials.

(a) Layout of laboratory. (b) Derived graph connectivity. (c) Unsupervised latent geome-
try.

Fig. 4.9. a) Top-down view of the real-world laboratory used in our experiments (captured
with ROS GMapping [150]). b) Training graph derived with our local backbone, where
each point corresponds to an image sample and are colored based on the sum of their x and
y coordinates (as in Figure 4.4). c) unsupervised latent geometry obtained by the 2 first
principal components of the last layer in the geodesic regressor.

The unsupervised latent geometry derived by O4A and the environment itself are shown
in Figure 4.9. Overall, O4A is capable to discover correlations between the data, as similar
colors are clustered together. However, the shape of the plot is not as interpretable as those
presented in simulation experiments. The visual complexity of the environment, dimension-
ality of the configuration space’s manifold, and the dimensionality reduction technique may
be contributing to this issue, as discussed in Chapter 4.3.2.4.

4.4. Discussion
In this chapter, we presented O4A, an end-to-end fully-parametric approach for image-

goal navigation tasks. We demonstrated how neural networks can be trained through SSL
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START→ → → ↓

↓ ← ← ←

→ → → Last frame STOP
(a) First robot trajectory (path in Figure 1.2a).

START→ → → ↓

↓ ← ← ←

→ → → Last frame STOP
(b) Second robot trajectory (path in Figure 1.2b).

Fig. 4.10. Images from the front-view camera during two real-world successful navigation
trials. a) The goal image corresponds to a pillar with a sticker of a duck as shown in
the last navigation frame. b) The goal image corresponds to the turtlebot depicted in the
last navigation frame. Navigation sequences start on the top-left (START) and finish at the
bottom-right (STOP) by following the arrows.
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and manifold learning to encode the approximate topology of the environment. Additionally,
we showed how a geodesic regressor can be used in a neural potential function to guide the
agent towards the goal and avoid local minima in the optimization landscape. Importantly,
our method does not require any annotated images or pose information, making it potentially
scalable to large-scale datasets [130].

While our final trained system is graph-free, we still require learning a geodesic regressor
for each environment to encode the geometry (in the same way current approaches need to
build an environment-specific graph). Generalizing geodesic regressors across environments
is a promising area of research, since it could allow to completely skip the graph building
stage in new settings. Moreover, another limitation is that our method needs substantial
coverage over the free configuration space of the environment to learn an informative geodesic
regressor. Overall, O4A demonstrated navigation paths that were close to optimal in simu-
lated and real-world environments and surpassed the performance of competitive baselines
in the literature.
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Chapter 5

Conclusion

We proposed two end-to-end fully-parametric approaches for robot navigation using only
RGB images and a navigation strategy inspired by APFs. The aim was to demonstrate the
usefulness of neural architectures as memory representations for robot navigation.

Our first approach (Duckie-Former), demonstrated how a ViT pre-trained with SSL can
be used to derive a reactive potential for navigation in road-like environments. The second
approach, named O4A, extended DF for image-goal navigation by leveraging SSL and man-
ifold learning. We derived a neural potential function capable to drive the agent towards
the goal via gradient descent, while escaping local minima in the optimization landscape.
Both methods succeeded in real-world navigation tasks, demonstrating their utility beyond
simulation environments and did not require any pose information.

In the primary contribution of this work, One-4-All, we addressed the data labeling
limitations of Duckie-Former and trained all models through SSL. Additionally, we tackled
limitations of graph-based navigation strategies and replaced graph search queries with an
inexpensive neural network forward pass. We also highlight how O4A managed to recover a
latent representation that is coherent with the intrinsic topology of the environments. Using
a neural regressor as a memory representation allows for long-horizon navigation in a fully-
parametric manner, which could potentially be scaled to generalize across new environments.

While O4A can navigate indoor environments from only RGB images, a new geodesic
regressor has to be learned for each new environment. Consequently, research on a condi-
tioned geodesic regressor that generalizes across environments represents a promising area of
research. Furthermore, a limitation of our approach is its discrete action space, which affects
the total number of configurations the robot can reach within an environment. An effective
way to implement continuous actions while maintaining a tractable way to minimize the neu-
ral potential function is an interesting research idea. Finally, a promising research question
is how to ground foundation models [136, 109, 105, 130, 73] with our unsupervised latent
geometry to enhance the navigation abilities of embodied agents.
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Appendix A

Additional results

A.1. Network Architectures
We present the network architectures used in our Habitat and real-world experiments in

Figure A.1. The architecture used for our GC-BC agent is the same used for O4A’s local
backbone and connectivity head but without the NOT_CONNECTED token.

A.2. Extended Navigation Results in Habitat environ-
ments

Extended navigation results in Habitat environments are shown in Figure A.2. Each
row presents a metric (SR, SSR, SPL and DTG) and columns (from left to right) show the
results over different difficulties. Overall, O4A (blue circle) surpass all the baselines and
achieves good navigation performance throughout environments without using a graph for
navigation1.

1Demonstrative videos with results can be seen in https://montrealrobotics.ca/o4a/

https://montrealrobotics.ca/o4a/


(a) O4A - Local backbone and connectivity head.

(b) O4A - Forward Dynamics. (c) O4A - Geodesic Regressor.

(d) SPTM - Retrieval Network. (e) SPTM - Locomotion Network.

(f) ViNG - T and L Networks.

Fig. A.1. Neural architectures used in Habitat (Chapter 4.3.2) and real-world experiments
(Chapter 4.3.3). MLP stands for multi-layer perceptron and Conv1D for 1-dimensional
convolutions.
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(a) Success Rate for Habitat experiments (higher is better).

(b) Soft Success Rate for Habitat experiments (higher is better).

(c) Success weighted by Path-Length for Habitat experiments (higher is better).

(d) Distance to Goal for Habitat experiments (lower is better).

Fig. A.2. Detailed results obtained per environment and difficulties with O4A. (a) Success
Rate. (b) Soft Success Rate. (c) Success weighted by Path-Length and (d) Distance to Goal.
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