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Résumé

L’un des défis des systèmes d’apprentissage automatique actuels est que les paradigmes d’IA
standard ne sont pas doués pour transférer (ou exploiter) les connaissances entre les tâches.
Alors que de nombreux systèmes ont été formés et ont obtenu des performances élevées
sur une distribution spécifique d’une tâche, il est pas facile de former des systèmes d’IA
qui peuvent bien fonctionner sur un ensemble diversifié de tâches qui appartiennent aux
différentes distributions. Ce problème a été abordé sous différents angles dans différents
domaines, y compris l’apprentissage continu et la généralisation hors distribution.

Si un système d’IA est formé sur un ensemble de tâches appartenant à différentes dis-
tributions, il pourrait oublier les connaissances acquises lors des tâches précédentes. En
apprentissage continu, ce processus entraîne un oubli catastrophique qui est l’un des pro-
blèmes fondamentaux de ce domaine. La première projet de recherche dans cette thèse porte
sur la comparaison d’un apprenant chaotique et d’un naïf configuration de l’apprentissage
continu. La formation d’un modèle de réseau neuronal profond nécessite généralement plu-
sieurs itérations, ou époques, sur l’ensemble de données d’apprentissage, pour mieux estimer
les paramètres du modèle. La plupart des approches proposées pour ce problème tentent
de compenser les effets de mises à jour des paramètres dans la configuration incrémentielle
par lots dans laquelle le modèle de formation visite un grand nombre de échantillons pour
plusieurs époques. Cependant, il n’est pas réaliste de s’attendre à ce que les données de for-
mation soient toujours alimenté au modèle. Dans ce chapitre, nous proposons un apprenant
de flux chaotique qui imite le chaotique comportement des neurones biologiques et ne met
pas à jour les paramètres du réseau. De plus, il peut fonctionner avec moins d’échantillons
par rapport aux modèles d’apprentissage en profondeur sur les configurations d’apprentissage
par flux. Fait intéressant, nos expériences sur différents ensembles de données montrent que
l’apprenant de flux chaotique a moins d’oubli catastrophique de par sa nature par rapport à
un modèle CNN en continu apprentissage.

Les modèles d’apprentissage en profondeur ont une performance de généralisation hors
distribution naïve où la distribution des tests est inconnue et différente de la formation. Au
cours des dernières années, il y a eu eu de nombreux projets de recherche pour comparer
les algorithmes hors distribution, y compris la moyenne et méthodes basées sur les scores.
Cependant, la plupart des méthodes proposées ne tiennent pas compte du niveau de difficulté
de tâches. Le deuxième projet de recherche de cette thèse, l’analyse de certains éléments
logiques et pratiques les forces et les inconvénients des méthodes existantes de comparaison
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et de classement hors distribution algorithmes. Nous proposons une nouvelle approche de
classement pour définir les ratios de difficulté des tâches afin de comparer les algorithmes de
généralisation hors distribution. Nous avons comparé la moyenne, basée sur le score, et des
classements basés sur la difficulté de quatre tâches sélectionnées du benchmark WILDS et
cinq algorithmes hors distribution populaires pour l’expérience. L’analyse montre d’impor-
tantes changements dans les ordres de classement par rapport aux approches de classement
actuelles.

Mots clés : Apprentissage en profondeur, Réseau Neuronal Convolutif, Apprentissage
continu, Généralisation.
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Abstract

One of the challenges of current machine learning systems is that standard AI paradigms
are not good at transferring (or leveraging) knowledge across tasks. While many systems
have been trained and achieved high performance on a specific distribution of a task, it is
not easy to train AI systems that can perform well on a diverse set of tasks that belong
to different distributions. This problem has been addressed from different perspectives in
different domains including continual learning and out-of-distribution generalization.

If an AI system is trained on a set of tasks belonging to different distributions, it could
forget the knowledge it acquired from previous tasks. In continual learning, this process
results in catastrophic forgetting which is one of the core issues of this domain. The first
research project in this thesis focuses on the comparison of a chaotic learner and a naive
continual learning setup. Training a deep neural network model usually requires multiple
iterations, or epochs, over the training data set, to better estimate the parameters of the
model. Most proposed approaches for this issue try to compensate for the effects of parameter
updates in the batch incremental setup in which the training model visits a lot of samples
for several epochs. However, it is not realistic to expect training data will always be fed
to the model. In this chapter, we propose a chaotic stream learner that mimics the chaotic
behavior of biological neurons and does not update network parameters. In addition, it
can work with fewer samples compared to deep learning models on stream learning setups.
Interestingly, our experiments on different datasets show that the chaotic stream learner
has less catastrophic forgetting by its nature in comparison to a CNN model in continual
learning.

Deep Learning models have a naive out-of-distribution (OoD) generalization performance
where the testing distribution is unknown and different from the training. In the last years,
there have been many research projects to compare OoD algorithms, including average and
score-based methods. However, most proposed methods do not consider the level of diffi-
culty of tasks. The second research project in this thesis, analysis some logical and practical
strengths and drawbacks of existing methods for comparing and ranking OoD algorithms.
We propose a novel ranking approach to define the task difficulty ratios to compare OoD
generalization algorithms. We compared the average, score-based, and difficulty-based rank-
ings of four selected tasks from the WILDS benchmark and five popular OoD algorithms for
the experiment. The analysis shows significant changes in the ranking orders compared with
current ranking approaches.
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Key Words : Deep Learning, Convolutional Neural Network, Continual Learning, Gen-
eralization.
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Chapter 1

Introduction

Artificial intelligence (AI) is defined as the study and design of rational agents [63]. An in-
telligent system is a system that tries to maximize some expected notion of performance [4].
The long-standing goal of AI is to design a system that can imitate the behavior of hu-
mans or can demonstrate human-like general intelligence [76]. In the last decades, Deep
Learning (DL), has achieved tremendous performance in different machine learning tasks,
including object recognition [35], image classification [28, 35, 60], speech recognition [30],
and natural language understanding [74, 79]. However, there are also some challenges, such
as catastrophic forgetting and poor performance on the testing data when it has different
distribution from training data. Therefore, enhancing the generalization ability of Machine
Learning models is an important topic discussed in various research fields, such as Continual
Learning, Lifelong Learning, Domain Generalization, and Out of distribution Generalization.

1.1. Machine Learning
Artificial Intelligence (AI) as a system that tries to reason and acts like humans. AI

was first introduced in 1956 [49] and since that time, scientists from different domains such
as cognitive science and computer science have made lots of advancements in understating
intelligence and developing AI systems. In the early stage, AI systems were mainly rule-based
systems. They were given a set of rules for reasoning. Later, they would do simple tasks such
as search using rules [25]. However, some things could be improved with rule-based systems.
First, these systems’ performance depends on the number of rules given to the system for
process. As a result, they do not do very well when the number of rules increases. Second,
describing most real word systems using clean and well-organized rules was difficult. Machine
learning is a subset of AI that studies problems and algorithms that automatically improve
this notion of performance through experience using raw data. Machine learning systems
hire classification, regression, and pattern recognition techniques to infer knowledge from
data [72]. There are two machine learning systems types: parametric and non-parametric
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models. Parametric models (such as logistic regression and neural networks) infer knowledge
in the given data using a set of parameters. On the other hand, non-parametric models (such
as KNN) do not learn any parameters from the given data, though they infer some metrics
and statistics such as mean for inference [72].

Learning algorithms are also categorized into supervised learning, unsupervised learning,
semi-supervised learning, self-supervised learning, and reinforcement learning [23]. In su-
pervised learning, the datasets that are given to the learner have the correct target clearly
defined, and therefore the goal of the model is to find a relationship between the input and
the learning target [72].

1.2. Deep Learning
Today, the most popular branch of machine learning that focuses on learning represen-

tation from given data is deep learning. The idea behind deep learning is to stack layers of
computational units (called layers) to create robust architecture to build a parametric model.
These layers facilitate data representation and hierarchical learning through sequential layers
of abstraction [40, 67]. Deep learning models learn automatically and extract features from
raw data using forward and backward propagation. These automatically extracted features
in higher levels of abstraction are constructed from lower-level features in the hierarchy [41].
Features passing through subsequent layers could be transformed into more complex features.
One example of deep learning models is convolutional neural networks (CNN). These net-
works are constructed by stacking convolutional and fully connected layers. CNN receives a
tensor that can represent an image’s raw data, often in three color channels (Red, Green, and
Blue). These input data will be processed in CNN models one layer after another [41, 72].

1.3. Continual Learning
One key challenge of standard AI systems is that they are not good at transferring

knowledge across different tasks. There have been many approaches to train a system that
performs well in a specific task. However, it is not easy to train an AI system that performs
well on a diverse set of tasks. Humans do not need to train over a stationary data distribu-
tion for multiple epochs. While they do not have perfect memory, they can incrementally
acquire and update knowledge over their lifetime without catastrophically forgetting the
knowledge relevant to the previous tasks. The challenge of training a system on a sequence
of tasks is keeping the essential knowledge acquired from training previous tasks. If a system
forgets the knowledge acquired from the previous task, it will show poor performance on
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previous tasks [50, 58]. This concept is referred to as catastrophic forgetting. Catastrophic
forgetting affects parametric systems by forgetting the parameters of a system learn during
training previous tasks [50, 72]. To make it clear, consider a system is trained on n different
tasks (t1, t2, ..., tn) and the goal is to train the system on a new task which is tn+1. The
best situation for the system would be learning the new task and retaining its performance
on the previous tasks. However, in practice, the system usually loses some of the previous
knowledge and may be unable to learn new tasks. This situation is explained as stability-
plasticity dilemma [72]. Plasticity refers to the fact that the system can retain previous
knowledge without forgetting them [51]. Stability refers to learning new tasks [52]. Many
research projects in machine learning focus on the stability-plasticity dilemma. Some ap-
proaches, like transfer learning, focus only on the plasticity aspect. In transfer learning, the
focus is on learning the current task, even if it results in poor performance of the previous
task [72]. Continual learning is a paradigm that focuses on both aspects: building a system
that keeps acquiring new knowledge without forgetting the prior one. Continual learning
can be applied on a single task and multi-task setup [72]. There are different setups in con-
tinual learning that categorizes problem from different perspectives. Each setup is based on
specific assumptions, such as having access to the dataset beforehand and possibly changing
the network architecture.

1.3.1. Continual Learning formulation

Consider there is a training data D = {(xi, yi)n
i=1}, that includes n pairs of input samples

xi ∈ X and their corresponding target vectors yi ∈ Y . The goal of supervised learning is to
learn a function f : X → Y . This function can use an input sample x ∈ X and predict a
target vector y ∈ Y . Now the point is to calculate how much the prediction function differs
from the ground truth. Therefore, a loss function is defined, and the risk associated with
this function is [72]:

R(f) = Ex,y∼P [L(f(x), y)] , (1.3.1)

where P (x,y) is assumed as a fixed distribution, data is drowned. Therefore, using the
Empirical Risk Minimization (ERM) principle, the optimal function that minimizes the
empirical risk R̂

R̂(f) = 1
n

n∑
i=1

L(f(xi), yi) , (1.3.2)

f̂ = argminf R̂(f) . (1.3.3)
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In continual learning setup, there is set of tasks (Ts) where each task includes a set of unique
classes C(t). The tasks come in a sequence one by one and each task t comes with its set
of data D(t) = {(xi, yi)nt+1

i=n }, where xi ∈ X and yi ⊆ C(t). Any time a new task is added
to the sequence, the output set for function f will be updated. Applying empirical risk
minimization, the risk function will be as follow [72]:

R̂(f) = 1 ∑
t=1

1
|D(t)|

∑
(xi,yi)∈D(t)

L(f(xi), yi) , (1.3.4)

f̂ = argminf R̂(f) . (1.3.5)

1.3.2. Different scenarios in Continual Learning

In studying continual learning, it is essential to understand different possible scenarios.
Each scenario specifies clear and well-defined boundaries between the tasks to be learned
during the training of the model [77]. These scenarios are Domain-incremental Learning,
Task-incremental Learning, and Class-incremental Learning. These scenarios are defined
based on whether the system knows about task identities during evaluation. Figure 1.1
depicts three scenarios that will be discussed in detail. In domain-incremental setup, there
is no access to the task identity t during evaluation. Therefore, in domain-incremental, the
input distribution is different while the output distribution is the same [72, 77]. For a and b

from the set of whole numbers (W ) we have :

∀a, b ∈ W if a ̸= b : P (x(a)) ̸= P (x(b)) ∧ C(a) = C(b)

In this setup, the model needs to infer which task it is and only focus on doing the task.
A clear real-world An example of this setup is an agent that is required to learn to survive
in different environments without explicitly identifying the environment it is confronted
with [77].

In the task-incremental scenario, the task identity is always known during train and
evaluation. In this setup, the output is disjoint between tasks, and the evaluation of the
model is based on the average performance across all tasks after training [72, 77].

∀a, b ∈ W if a ̸= b : P (x(a)) ̸= P (x(b)) ∧ P (y(a)) ̸= P (y(b)) ∧ C(a) ∩ C(b) = Φ

In this scenario, it is possible to train task-specific model components. A typical network
architecture in this scenario has a “multi-headed” output layer. It means each task has its
output units, and other units of the network is shared among tasks [77].
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Unlike the two discussed scenarios, in the class incremental learning scenario, the model
has to infer task identity and classify tasks seen so far without a task-ID [72, 77]. The
common real-world problem of incrementally learning new classes of objects.

∀a, b ∈ W if a ̸= b : P (x(a)) ̸= P (x(b)) ∧ P (y(a)) ̸= P (y(b))

(a) Domain-Incremental (b) Task-Incremental (c) Class-Incremental

Fig. 1.1. Overview of the three Continual learning scenarios [72, 77]

1.3.3. Continual Learning strategies

Many approaches have been proposed for different scenarios in continual learning. Many
approaches have been proposed for different scenarios in continual learning. Generally, con-
tinual learning methods are categorized into three categories: regularization-based, Memory-
based, and architecture-based [72]. Architecture-based methods change the model’s archi-
tecture by adding or removing a set of parameters. These methods specify a set of isolated
parameters for each task. Memory-based methods keep some examples from previous tasks
and revisit them while learning new tasks. The main feature of these approaches is episodic
memory which is a subset of the observed examples from previous tasks. This set is used to
minimize forgetting previous tasks by regularizing the learning of the upcoming tasks [72].
Regularization-based methods focus on regularizing the loss function to minimize parameter
updates for new tasks. This issue comes from the fact that when a network is trained on a
task, it tries to minimize objects on the current task. As a result, network parameters change
across different tasks and reduce performance on previous tasks, called catastrophic forget-
ting. To avoid that, regularization-based methods penalize objective functions for limiting
the changes in the model parameters when switching among different tasks. Regularization-
based methods are categorized into four categories including : importance-based regular-
ization, Bayesian-based regularization, distillation-based regularization, and optimization
trajectory-based regularization [72].
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1.4. Out-of-distribution generalization
Generalization is defined as a set of methods to reduce the gap in performance of an agent

acting in seen training situations and the same agent acting in unknown test ones [4, 5]. The
kind of generalization commonly addressed by statistical learning is in-distribution (i.i.d)
when the data-generating process from the training examples is indistinguishable from that
of the test examples. However, suppose the model is trained on a set of data but tested
on a different set that is statistically different in any way. In that case, this is not an
in-distribution generalization problem.

By definition, generalization problems that are not in-distribution are called out-of-
distribution (OoD) generalization problems [4, 5, 69]. In most real-world cases, the goal
is to build a system that performs well across many different tasks. In many high-risk real
cases, such as healthcare, military, and autonomous driving, where training and test data are
not identically and independently distributed, it is critical to generalize under distribution
shift. In the OoD setup, the model has access to multiple datasets (or tasks) during training.
Each of them includes examples collected from different environments or experimental con-
ditions. The main goal of OoD generalization algorithms is to incorporate invariance across
this training environment [26, 82].

1.4.1. Out-of-distribution generalization formulation

As we discussed in 1.3.1, classic supervised learning assumes data is drawn from a fixed
distribution P (X, Y ). However, in real-world scenarios, the test distribution on which the
model has been deployed may deviate from training distribution Ptrain(X, Y ) ̸= Ptest(X, Y ).
It means general out-of-distribution is a subset of supervised learning where the test dis-
tribution shifts from the training distribution and remains unknown during training. This
is the result of a distribution shift that could happen due to reasons such as sample se-
lection bias or data evaluation [69]. In most cases, it isn’t easy to assume what types of
shifts could happen during the test time. To make the problem feasible, there are some
assumptions on distribution shifts that could occur in test data, such as covariant shift,
diversity shift, and correlation shift [69]. Covariant shift happens when marginal distribu-
tion of X shifts from training phase Ptrain(X) ̸= Ptest(X), but label generation mechanism
Ptrain(Y/X) = Ptest(Y/X) [69]. Diversity shift usually happens when there are multiple
domains in the detests. Each domain represents a certain spectrum of diversity. Train and
test sets contain a specific group, which results in a diversity shift during the experiments.
Finally, correlation shift focus on another type of shift caused by spurious correlations.
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1.4.2. Out-of-distribution generalization methods

In recent years, many approaches have been proposed in the domain of out-of-distribution
generalization. These approaches tackle three main challenges. First, a way to characterize
and formalize distributional shift. Second, a method to design algorithms with good gen-
eralization performance. Third, a mechanism to evaluate out-of-distribution generalization
algorithms, which require specifically designed datasets with distributional shift [69]. There
are different branches of methods in literature trying to address these challenges, including
domain generalization methods [21, 53], Casual learning methods [5, 9] and Stable learning
methods [55, 68]. Domain generalization methods focus on data collected from different
domains [70, 80]. Casual learning methods use casual structures and distribution shifts to
formalize, train and test data. Finally, stable learning methods mostly use selection bias to
model distributional shifts [69].

Domain generalization methods focus on real scenarios and utilize data collected from
different domains. Data manipulating methods focus on ways to increase the diversity of
existing training data. Two popular data manipulation techniques are data augmentation
and data generation. Augmentation is one of the most helpful manipulation techniques,
which usually includes flipping, rotation, scaling, cropping, and adding noise of training
data [80]. They have been widely used in supervised learning to enhance the generalization
performance of a model by reducing overfitting [70]. Data generation is another interesting
technique that tries to increase the generalization capability of a model. The generative
function for this approach is mostly implemented using approaches such as Variational Au-
toencoder(VAE) [32] and Generative Adversarial Networks (GAN) [24]. Casual learning
methods are categorized into two groups, including domain-invariant representation learning
and feature disentanglement. They try to learn features that remain invariant across differ-
ent domains, which means the representations are general and transferable to other domains.
The goal of domain-invariant representation learning methods is to reduce the representation
discrepancy among different domains in a specific feature space to be domain invariant so
that the learned model can have a generalizable capability to the unseen domain[80]. Invari-
ant risk minimization (IRM) [4, 5] is another approach that considers another perspective
on domain invariance representation for domain generalization. The main idea of IRM is to
learn invariances across environments and find a data representation such that the optimal
classifier on top of that representation matches for all environments.
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Considering the abovementioned research, the research community has spent significant
effort developing algorithms able to generalize out-of-distribution. These proposed algo-
rithms try to consider and estimate different types of invariances from data. However,
despite the enormous importance of out-of-distribution generalization, the literature is scat-
tered [26]. Every year many different algorithms appear that are evaluated under different
datasets and model selection criteria. In this situation, it is important to have a mechanism
to evaluate and compare out-of-distribution generalization algorithms. Domainbed [26] is
proposed as a framework to streamline rigorous and reproducible experimentation in do-
main generalization. In domainbed, different domain generalization algorithms, datasets,
and some model selection criteria are implemented. In conclusion of all experiments, do-
mainbed figured out that "When equipped with modern neural network architectures and
data augmentation techniques, empirical risk minimization achieves state-of-the-art perfor-
mance in domain generalization" [26].

1.4.3. Algorithms

In recent years, many efforts have been made to address the challenges of out-of-
distribution generalization. In this section, we discuss some of the most well credited methods
from different categories discussed in previous section including Empirical Risk Minimization,
Invariant risk minimization (IRM) [4, 5].

1.4.3.1. Empirical Risk Minimization. Empirical risk minimization minimizes the av-
erage training loss across training points. Given a loss function ℓ(x, y; θ) : X × Y × Θ → R

(e.g., cross-entropy loss), ERM minimizes the following objective [5]:

JERM(θ) = 1
n

n∑
i=1

ℓ(xi, yi; θ). (1.4.1)

1.4.3.2. Invariant Risk Minimization (IRM). IRM is one approach that tries to keep
feature representation invariant across different environments by reducing the representation
discrepancy of multiple domains in a specific feature space [4, 69, 80]. Unlike most approaches
that try to match the representation distribution of all domains, IRM enforces the optimal
classifier on top of the representation space to be the same across all environments. The
intuition behind this idea is the ideal representation for prediction is the only cause of the
goal. It means the causal mechanism should not be affected by other factors [5, 80]. IRM
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can be formulated as follows:

min
g∈G,

f∈
⋂M

i=1 arg minf ′∈F ϵi(f ′◦g)

M∑
i=1

ϵi(f ◦ g) (1.4.2)

for some function classes G of g and F of f . The constraint for f embodies the desideratum
that all domains share the same representation-level classifier, and the objective function
encourages f and g to achieve a low source domain risk. However, this problem is hard to
solve as it involves an inner-level optimization problem in its constraint. The authors then
develop a surrogate problem to learn the feature extractor g that is much more practical:

min
g∈G

M∑
i=1

ϵi(g) + λ
∥∥∥∥∇fϵi(f ◦ g)

∣∣∣
f=1

∥∥∥∥2
, (1.4.3)

where a dummy representation-level classifier f = 1 is considered, and the gradient norm
term measures the optimality of this classifier. The work also presents a generalization theory
under a strong linear assumption that the ground-truth invariant classifier can be identified
for plenty of source domains [4, 5, 80].
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Chaotic Continual Learning
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2.1. Abstract
One of the challenges of current machine learning systems is that standard AI paradigms

are not good at transferring (or leveraging) knowledge across tasks. While many systems
have been trained and achieved high performance on a specific distribution of a task, it is
not easy to train AI systems that can perform well on a diverse set of tasks that belong to
different distributions. In addition, if an AI system is trained on a set of tasks belonging
to different distributions, it could forget the knowledge it acquired from previous tasks. In
continual learning, this process results in catastrophic forgetting, which is one of the core
issues of this domain. This research focuses on the comparison of a chaotic learner and
a naive continual learning setup. Training a deep neural network model usually requires
multiple iterations, or epochs, over the training data set in order to estimate the parameters
of the model better. Most proposed approaches for this issue try to compensate for the
effects of parameter updates in the batch incremental setup in which the training model
visits a lot of samples for several epochs. However, it is unrealistic to expect training data
to always be fed to the model in a batch incremental setup. We propose a chaotic stream
learner that mimics the chaotic behavior of biological neurons and does not update network
parameters. In addition, it can work with fewer samples compared to deep learning models
on stream learning setups. Interestingly, our experiments on different datasets show that
the chaotic stream learner has less catastrophic forgetting by its nature in comparison to a
CNN model in continual learning.

2.2. Introduction
Continual learning assumes that a learning agent is presented with a sequence of different

”tasks” (i.e., data coming from different probability distributions), where each task is a
sequence of experiences from the same distribution [61]. The human brain can continuously
learn different tasks without any of them negatively interfering with each other. However,
learning a set of sequential tasks in the neural networks degrades the performance of the
models. This is one of the biggest challenges in continual learning, which is known as
catastrophic forgetting [11, 50] and affects all parametric AI systems. We want the knowledge
to be transferred across tasks, while, in reality, the knowledge transfer is often uni-directional.
It means the knowledge acquired from the previous tasks are often used to improve the
performance on the current task (and only some of the tasks). Ideally, we would want
the learning systems to be bi-directional. For example, training on the current task could
improve performance on both previous and future tasks. This challenge comes from the fact

28



that AI systems are designed in a way to be trained for every new task from scratch. As it
is mentioned in [72], it is like a system that has to learn the alphabet every time it reads
a book. This example shows unlike humans, who can incrementally acquire and update
knowledge across new tasks, it is hard for AI systems to adapt to new tasks.

Continual Learning focuses on AI systems that keep accumulating new knowledge
throughout their lifetime without forgetting the prior knowledge and use this accumulated
knowledge to improve their performance on the different tasks.

Most approaches proposed to alleviate catastrophic forgetting are categorized into one
of three main categories, including replay-based, regularization-based, and parameters
isolation-based methods according to the task-specific information stored and used through
sequential learning process [14].

Replay-based methods store exemplars in the replay buffer to alleviate the catastrophic
forgetting while learning new tasks [10, 47, 59]. They apply gradient-based updates that
facilitate a high-level transfer across different tasks through the examples from the past tasks
that are simultaneously available while training on the current new task [72]. Incremental
classifier and representation learning (ICARL) [59] is a replay-based method. During the
training, ICARL selects a subset of examples per class that can best approximate the mean
of each class in the feature space being learned. Then, each new example is classified by
selecting the class whose exemplars are the most similar to it. Gradient Episodic Memory [47]
uses episodic memory to store a subset of the observed examples from a given task and
minimize catastrophic forgetting. GEM treats the losses on the episodic memories of tasks
as inequality constraints, avoiding their increase but allowing their decrease. (A-GEM) [10]
also project the gradients according to defined hard constraints

Since it is not always possible to keep exemplars, regularization-based methods propose
extra regularization to consolidate previous knowledge when learning new tasks [33]. Some of
these approaches regularize the loss function to minimize changes in the parameters impor-
tant for previous tasks. These methods are called importance-based methods. In addition,
there are distillation-based methods to preserve knowledge from previous tasks and transfer
it to the model when it is being trained on the new tasks. Elastic weight consolidation (EWC)
[33] was one of the first methods to establish this approach. It was inspired by the human
brain in which synaptic consolidation enables continual learning by reducing the plasticity of
synapses related to previously learned tasks [11]. Plasticity is the main cause of catastrophic
forgetting since the weights learned in the previous tasks can be easily modified given a new
task. More precisely, the plasticity of weights that are closely related to previous tasks is
more prone to catastrophic forgetting than plasticity of weights that are loosely connected
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to previous tasks. This motivates [33] to quantify the importance of weights in terms of
their impact on previous tasks’ performance, and selectively decrease the plasticity of those
important weights to previous tasks.

In the third approach, the capacity of the model is not restricted and the model archi-
tecture can be expanded [64, 81], copied [2] or frozen to alleviate catastrophic forgetting.
These approaches are called architecture-based methods. Some of the solutions in this ap-
proach mask out the parameters or even neurons that are used for the previous tasks [19, 48].
There are also expansion-based methods that handle catastrophic forgetting by expanding
the model capacity in order to adapt to new tasks [71].

Backpropagation is the main reason for catastrophic forgetting in continual learning, and
most proposed approaches alleviate this issue by reducing the negative effects of backpropa-
gation. In continual learning, the same way animals learn, training examples must be learned
sequentially. A training sample can only appear once, and training samples are not identi-
cally distributed in each batch. In addition, the model could be evaluated at any time. Most
above-mentioned approaches considered the input data stream as batch incremental learning.
In batch incremental learning, a learner sequentially observes labeled training data, which is
broken into different identically distributed batches. Each batch includes samples and labels
from different classes, and the model is only permitted to learn from batches sequentially.
However, the way we want to see continual learning as defined in [27] is stream learning.
Stream learning is, in fact, a batch incremental in which each batch includes one sample,
and the model may be evaluated anytime. Each sample could be visited only one time, and
the agent needs to learn very fast. This approach is more close to few shot learning [3] that
training samples can be streamed in stream learner approach and it does not require lots of
samples to train the model.

Almost all above mentioned methods of continual learning use developed based on the
batch incremental learning method which require the algorithm to go over the whole train
data set samples for several epochs. This method is only feasible in some real-world continual
learning scenarios, especially in the case of few-shot learning. In addition, most proposed
approaches for catastrophic forgetting developed in a way to reduce the effects of backprop-
agation by retraining, regularization, or even changing the structure of the model. However,
the main reason for catastrophic forgetting, parameter update during training, is still the
same.

Chaos is defined as the phenomenon of complex, unpredictable , and random-like behavior
arising from simple deterministic nonlinear systems. This is an interesting property of the
brain to exhibit “Chaos” [39]. The neuronal system works in a way that small shifts in
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their internal functional parameters result to get the desired response to different influences.
This attribute represents the dynamical properties of chaotic systems like the brain. Chaotic
behavior is exhibited not only by brain networks which are composed of billions of neurons,
but the dynamics at the neuronal level (cellular and subcellular) are also chaotic.

In [31] the first dynamical system’s model for the interaction between the ion channels
and axon membrane, which is capable of generating realistic action potentials, is proposed.
And later, approaches such [20, 29] tried to simplify that approach. All these models exhibit
chaotic behavior.

Inspired by the chaotic firing behavior of biological neurons, many approaches have been
proposed to avoid backpropagation. ChaosNet [6] is one of those approaches that proposed a
1D chaotic dynamic using the Generalized Luröth Series (GLS) as a chaotic neuron [6]. It is a
chaos-based neural network architecture using layers of neurons. The goal of ChaosNet is to
learn classification tasks using limited training samples. This chaotic behavior of individual
neurons could result in interesting properties of biological neural networks, which finally can
even accomplish challenging classification tasks comparable to or better than conventional
ANNs while requiring far less training However, ChaosNet can not compete with the deep
neural network model in an image classification task since a deep learning model can visit
training samples in several epochs. Adapting the GLS neuron in the continual few-shot
learning and stream learning can be considered as an alternative approach since it suffers
less catastrophic forgetting.

In this chapter, following the ChoasNet, we used a GLS neuron to simulate the chaotic
behavior of a biological neuron to encode images with chaotic dynamics. We propose a GLS
stream learner that uses a linear 1D ChaosNet neuron as a continual learner component.
We also propose using some chaotic transformation as a data augmentation technique. Our
results demonstrate that our chaotic learner has noticeable results in comparison to a CNN
model in the batch incremental and stream learning setups for the image class incremental
classification tasks.

2.3. GLS Stream Learner
Dendrites are exquisitely specialized cellular compartments that critically influence how

neurons collect and process information. Retinal ganglion cell (RGC) dendrites receive
synaptic inputs from bipolar and amacrine cells, thus allowing cell-to-cell communication
and flow of visual information [1]. To be able to mimic this behavior, GLS Stream Learner
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(a) (b) (c)

(d) (e) (f)

Fig. 2.1. The attractors of the Skew-Binary and Skew-Tent. (a) Skew-Tent sample for 10
steps. (b) Skew-Tent scatter plot for 1000 steps. (C) Skew-Tent sample for 10 steps . (d)
Skew-Binary sample for 10 steps. (e) Skew-Binary scatter plot for 1000 steps. (f) Skew-
Binary sample for 10 steps.

uses a linear 1D ChaosNet neuron as a continual learner component. Following the Chaos-
Net, GLS Stream Learner uses Generalized Luröth Series or GLS [6]. Generalized Luröth
Series defines the time-series creation process as follows:

q → f1(q) → f2(q) → f3(q) . . . → fi(q) . . . → fN(q) (2.3.1)

where q is the initialization of the dynamic. There are several chaotic ways to encrypt an
image, and one of them is using skew-tent and skew-binary mapping [42]. Following are
skew-tent and skew-binary mapping that are mathematically formulated as follows:

fSkew−T ent(x) =


x
b

0 ≤ x < b
(1−x)
(1−b) b ≤ x < 1

(2.3.2)

fSkew− Binary (x) =


x
b

0 ≤ x < b
(x−b)
(1−b) b ≤ x < 1

(2.3.3)

Figure 2.1 illustrates the attractor of Generalized Luröth Series using the skew-tent and
skew-binary mapping. In equations 2.3.2, b is a hyperparameter that has an important role
in the attractor of the dynamic. Figure 2.1a and 2.1d show the ten steps movement in the
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Fig. 2.2. Feature extraction process that GLS stream learner apply to decode images in-
formation.

time-series using skew-tent and skew-binary. Repeating the process for several steps shows
that the time-series numbers lie on the tent shape or two separated lines for skew-tent and
skew-binary, respectively. Red and blue colors in scatter plots illustrated in Figure 2.1b
and 2.1e can represent the active and passive status of a dendrite. It mimics either firing
or not firing the response of a neuron corresponding to the input. Figure 2.1c and 2.1f are
other points of view of showing the same behavior through time. All points above the red
line, which is defined based on "b" hyperparameter, can be considered as true (firing) and
the bellow points as false (not firing).

2.3.1. Feature extraction

GLS learner uses normalized images. So, the pixels are scalar numbers in [0, 1]. The
feature extractor process runs several threads. And, each thread encodes the pixel j from xi

to a probability of firing rate count denoted as a Pi,j. The feature extraction process creates
the GLS time-series with either skew-tent or skew-binary mapping. Then, the GLS thread
tries to find the first ϵ-neighborhood point in the time-series to the pixel information. Then,
it computes the firing rate count for each pixel as follows:

Pi,j = False count
length of frequency list , (2.3.4)

The result is the decoded information vector Pi for xi. Since we encode each pixel to a
probability number, the size of P will be the same as the image size. Figure 2.2 shows the
feature extraction process in detail.

2.3.2. Training

At the time T , a set of samples of new classes arrive in either batch incremental fashion
or as a stream of data. In this case, we have DT ⊆ Dtrain where T is the task time for N
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Fig. 2.3. (left) Skew-Tent sample for 100 steps. (middle) Skew-Binary sample for 100
steps. (right) feature extraction summary for a pixel information using skew-tent mapping
(we showed only first 100 time steps).

samples from either i.i.d or non i.i.d observations of (xi, ci) pairs where ci ∈ C. And, C is
the set of classes that the stream learner should learn at time T . For, each sample, xi, the
stream learner creates the vector Pi that is the extracted feature from xi. Then, the stream
learner computes the mean representation, MSL

ci
, for m samples of class ci that have seen at

time T as follow:
MSL

ci
= 1

m

[ m∑
i=1

P ci
i1 ,

m∑
i=1

P ci
i2 , . . . ,

m∑
i=1

P ci
in

]
, (2.3.5)

The batch incremental learner visits samples in several epochs. Therefore, GLS learner
should compute a new vector, M

bj
ci , for the epoch j and appends it to the batch incremental

representatives as follow:
MBSL

ci
=

[
M b1

ci
, M b2

ci
, . . . , M bn

ci

]
, (2.3.6)

where n is the number of epochs and M
bj
ci is computed for the epoch j using 2.3.5.

Replay Buffer: GLS stream learner keeps either MBSL
ci

or MSL
ci

for the batch incremental or
stream learning setup, respectively, in the replay buffer instead of keeping exemplars in the
buffer.

2.3.3. Classification

Let assume φ(x) extracts features for a sample x ∈ Xtest as described in 2.3.1. Then,
GLS stream learner predicts the target as follows:

y∗ = argmin
y=1,...,t

∥φ(x) − Mc∥ , (2.3.7)

Where c ∈ C (all classes have learned so far) and ∥φ(x) − Mc∥ is the cosine similarity
distance of two φ(x) and Mc vectors that can be either either MBSL

ci
or MSL

ci
for the batch

incremental or stream learning, respectively.
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2.3.4. Chaotic Data Augmentation

Augmentation techniques have been used to improve the deep learning model on unseen
data at test time. Data augmentation techniques are classified as data-dependent regulariza-
tion techniques. Similar to the deep learning model, chaotic based augmentation techniques
can also improve the performance of the continual learner through time. In this work, we
proposed using "baker’s" transformation as a chaotic data augmentation that we can use to
improve the GLS stream learner performance. The following formula is the mathematical
definition of the "baker’s" transformation dynamic mapping [17].

fbaker’s(xi, xj) =

 (2xi, λxj)
(
0 ⩽ xi ⩽ 1

2

)(
2xi − 1, λxj + 1

2

) (
1
2 < xi ⩽ 1

) (2.3.8)

where i and j are the row and column of each pixel in an image. It is called "baker’s"
transformation because it resembles the process of repeatedly stretching a piece of dough
and folding it in two. To this end, it can work as stretching and folding data augmentation.
Similarly, the dynamics of the hénon map may be decomposed into an area-preserving bend,
followed by a contraction, followed by a reflection in the line y = x. The Hénon map f :
R2 → R2 as follow:

fHénon(xi, xj) =
(
xj + 1 − ax2

i , bxi

)
(2.3.9)

2.4. Experiments
There are three different data paradigms of stream learning for evaluating continual

learning models based on the way the training data is organized [3, 27]. The model visits
a limited number of samples in only one epoch in either one of the following setups in the
stream learning context. In the first setup, the data stream is completely unordered. In
the second setup, the data stream is ordered by the class and the models learns classes
incrementally which results in catastrophic forgetting. In the third setup, data is organized
on batches from specific instances of categories that can be revisited [3]. Diversely, the model
incrementally learns new classes and it is allowed to revisits samples for several epochs while
training a new task in the batch incremental setup. To evaluate our approach we follow
the second paradigm that is more aligned with real world scenarios. Figure 2.4 shows the
comparison of batch incremental learning and the stream learning setups [38].

For the experiment, we just compare the performance of the DLL model with stream
learner in classs incremental setup. It is important to mention, here the goal is to evaluate
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Fig. 2.4. Batch Incremental (left) v.s. Stream Learning (right) [38].

Fig. 2.5. Permuted-MNIST divided into 5 tasks with 2 classes per task.

the performance of GLS stream learner compared to a deep neural network which is work-
ing based on back propagation. As a result, we did not compare the stream learner with
continual learning baseline. The CNN model that used in the experiments has the following
architecture. It has 4 convolutional and 4 fully connected layers. In addition, the convolu-
tional layers have 3, 10, 20 and 40 inputs and 10, 20, 40 and 64 output channels with 5, 5,
3, and 5 kernel size with stride of 1, respectively. The feature extractor part is followed by
two fully connected layers that contain 680 and 280 neurons followed by a softmax module.

In our experiment, we observed that Skew-binary mapping achieves 3% more accuracy
performance at each task in comparison to the Skew-tent. Therefore, all reported results
for GLS stream learner are based on Skew-binary mapping with {b = 0.331, ϵ = 0.01, q =
0.336, time step = 20000} for MNIST, Permuted-MNIST and Omniglot datasets And {b =
0.331, ϵ = 0.008, q = 0.136, time step = 30000} for CIFAR-10.
MNIST and Permuted-MNIST:. We split the MNIST and Permuted-MNIST samples into
5 tasks with two classes per task. In the stream setup, we train models with 3 batches
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Fig. 2.6. MNIST divided into 5 tasks with 2 classes per task.

Fig. 2.7. CIFAR-10 divided into 5 tasks with 2 classes per task.

Fig. 2.8. Omniglot divided into 10 tasks with 20 classes per task.
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.

Fig. 2.9. Omniglot divided into 20 tasks with 10 classes per task.

Fig. 2.10. Omniglot divided into 40 tasks and 5 classes per task.

and 32 samples per batch. Figures 2.6 and 2.5 illustrate the comparison results for MNIST
and Permuted-MNIST. They show chaotic learner has significant marginal performance in
comparison to the CNN model in both setups.
CIFAR-10: Figures 2.7 illustrate the comparison results on CIFAR-10. CIFAR-10 training
data is split into the five tasks with two classes per task. For stream learner setup, we
train models with four batches and 64 samples per batch. Unlike MNIST, the CNN model
has better performance (figures 2.7 right) in batch incremental learning setup on CIFAR-10.
However, the chaotic learner still leads to better performance in the stream setup approach.
Omniglot: To evaluate the performance on the Omniglot dataset [37], we designed two ex-
perimental setups. From 964 classes in the background TRUE set of the Omniglot dataset,
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Fig. 2.11. The process of computing a higher-level abstraction for each pixel using normal-
ized correlated extracted features.

we only chose 200 classes for this experiment. We split the selected data into 10, 20, and 40
tasks such that each task includes 20, 10, and 5 classes, respectively. We have 20 samples per
class in this setup. We selected 60 percent of the samples for training. Therefore, we have
a few samples for training in the batch incremental and stream learning setups (12 samples
per class in the training set). Figure 2.8 represents the result of the Omniglot dataset that
is divided into ten tasks. The figure contains further comparison results on Omniglot for
the 20 and 40 tasks. The chaotic stream learner shows better results compared to the CNN
model in both batch incremental and stream learner setups on Omniglot.

2.5. Future Work
To preserve the correlation between the extracted features, we can use a moving feature

extractor block on the sample xi, and calculate the correlated features for each pixel that
lies in the moving block. Figure 2.11 briefly shows the process. First, we extract features
associated with each pixel using the GLS feature extractor described in 2.3.1 for all pixels
in the block. Adding a zero padding to the extracted firing rates helps to have the same size
firing rate series. Applying an element-wise sum and then normalize the vector of the firing
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rates gives a higher-level abstraction of the correlated feature extracted for the pixel, Pij,
that is defined as follow:

Pij = Pij

∥Pij∥2
, (2.5.1)

All extracted Pij have the same size but different angles. The angles can represent the
higher-level abstraction of the correlated feature associated with each pixel and its neighbors.
Our next step in this direction is experimenting with the effectiveness of using higher-level
correlated abstraction instead of considering a standalone extracted futures using the GLS
feature extractor in the stream learning setup.

2.6. Conclusion
In this work, GLS stream learner is proposed as a novel approach to alleviate catastrophic

forgetting in the context of continual few-shot learning. This approach provides a mechanism
based on the chaotic structure of a biological neuron that provides a different perspective from
the most continual learning approaches. According to our experiment, this single chaotic
neuron causes less forgetting in comparison to a deep learning model that needs a lot of
time to train and more parameters to learn in batch incremental and stream learning setups.
The deep learning model achieved profound performance in the image classification task.
However, it suffers from catastrophic forgetting problems because of the backpropagation
mechanism to update their parameters in the continual learning context. GLS stream learner
can show the importance of thinking to find an alternative solution that is more suitable for
stream and continual few-shot learning setups.
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Chapter 3

Environment and Task difficulty in
Out-of-distribution Generalization

3.0.1. Abstract

Deep Learning models have achieved exceptional performance in many machine learning
tasks. However, they have a naive Out-of-Distribution (OoD) generalization performance
where the testing distribution is unknown and different from the training. In the last years,
there have been many research projects to compare OoD algorithms, including average and
score-based methods. However, in most proposed methods for comparing and ranking OoD
algorithms, all tasks considered have the same level of difficulty. This chapter analysis some
logical and practical strengths and drawbacks of existing methods for comparing and ranking
OoD algorithms. We propose a novel ranking approach to define the task difficulty ratios
to compare OoD generalization algorithms. We compared the average, score-based, and
difficulty-based rankings of four selected tasks from the WILDS benchmark and five popular
OoD algorithms for the experiment. The analysis shows significant changes in the ranking
orders compared with current ranking approaches.

3.1. Introduction
Many Machine learning systems that have been studied in the last ten years assume data

in training and testing sets follow the same distributions. However, in the real world, this
assumption does not hold. Out-of-Distribution (OoD) generalization focuses on the problems
rising where testing distribution is different from training distribution, called distribution
shift. This is one of the main challenges in the current machine learning systems to train deep
learning models that can generalize to unknown shifted distributions at the test time [69].
This ability of models to generalize under distribution shifts is critical in real-world cases
such as healthcare and autonomous cars, in which it is impossible to have robust models for
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all different types of distribution shifts at run time. Many datasets such as Waterbirds [65],
CelebA [46], Camelyon17 [57], and FMoW[12] have been proposed to represent distributions
shift from different aspects in realistic scenarios [80]. Each dataset is defined as a task,
and each distribution shift is expressed as an environment in these benchmark setups. OoD
generalization algorithms aim to leverage knowledge from previously trained environments to
adapt and perform well in upcoming environments in the new setting [5]. Classic supervised
learning methods cannot address the OoD generalization problem as their most fundamental
assumption is that training and testing sets are identically and independently distributed.
These approaches are not typically practical for OoD generalization since they mostly try
to minimize errors in training data. In this situation, if there is a strong distributional
shift in testing data, models optimized only with training data errors can even have worse
performance than random guesses. [5, 13, 16].

Recently, the research community has spent significant effort developing many algorithms
for OoD setup, including some well-known algorithms such as IRM [5], Group DRO [65],
Deep CORAL [73] and VREx [36]. However, despite the enormous importance of OoD
generalization, the literature in this domain is scattered. It means algorithms are evaluated in
different setups using different datasets. As a result, it is not easy to have a clear comparison
among proposed algorithms in this domain.

DomainBed [26] and WILDS [34], are two proposed frameworks for having fair and
reproducible experimentation in OoD generalization setup. Both of these benchmarks include
datasets from different domains, such as Natural language, speech processing, medicine, and
healthcare which reflect a diverse range of distribution shifts in real-world applications [34].
Domainbed is a PyTorch testbed for domain generalization. The initial implementation
includes nine algorithms, seven datasets, and three model selection methods, as well as the
infrastructure to run all the experiments and generate the results. The main datasets in
Domainbed are Colored MNIST [5], Rotated MNIST [22], PACS [18], VLCS [44], Terra
Incognita [8] and DomainNet [54]. All these datasets are multi-domain image classification
tasks. For example, Colored MNIST [5] contains 70,000 images and it is a variant version
of the famous MNIST [15] dataset. In addition, Domainbed includes the implementation of
around 20 different algorithms including Empirical Risk Minimization (ERM [78]), Group
Distributionally Robust Optimization [65], Meta-Learning for Domain Generalization [43],
Invariant Risk Minimization (IRM [5]). WILDS [34] is a curated benchmark that covers
two common types of distribution shifts: domain generalization and subpopulation shift. In
domain generalization, the training and test distributions comprise data from related but
distinct domains arising from natural distribution shifts from different cameras, hospitals,
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and time periods. In subpopulation shift, test distributions are subpopulations of the training
distribution and seek to perform well even in the worst-case subpopulation.

Domainbed compared the performance of different domain generalization algorithms on
the task of out-of-distribution generalization. As a result, they run all algorithms on all
datasets, and their results justify Emperial Rish Minimization (ERM) outperforms all pre-
viously published results. The fact domainbed tries to prove is When all conditions are
equal, no algorithm outperforms ERM by a significant margin. Their finding is obtained
by running every combination of the dataset, algorithm, and model selection criteria from
scratch. To evaluate the performance of different algorithms, Domainbed proposed a ranking
method to consider the average performance of each algorithm over all tasks as a criterion
to compare different algorithms. Using this criterion, it reported that when equipped with
modern neural network architectures and data augmentation techniques, Empirical Risk
Minimization (ERM) achieves state-of-the-art performance in domain generalization [26].

One algorithm might marginally outperform only one task and perform poorly or leniently
on the other. This situation could dominate the average result. In addition, different tasks
could implement different types of distribution shifts. As a result, they could even have a
different level of difficulty. Hence, ranking algorithms by only taking the average of their
performance across all tasks is not fair and could be misleading.

To address the concept of difficulty, some approaches tried to understand the importance
of example difficulty in Deep Neural network [7, 45]. They focus on the importance of data
points with different amounts and types of example difficulty to understand deep learning
models in a better way [75]. For example, difficulty from the perspective that the earlier
training iteration (and all its subsequent iterations) the example will be predicted correctly,
the easier it would be. Another approach is prediction depth which represents the number of
hidden layers after which the network’s final prediction is determined [7]. Prediction depth is
consistent between architecture and ransom seeds. However, it only addresses the difficulty
from the Examples’ point of view. Sample or example difficulty is not the only important
factor affecting a task’s difficulty in the context of OoD. Environment difficulty results from
distribution shifts among different environments of a single task.

The main contribution of this work is introducing a mechanism to quantify task and
environment difficulty. We introduce the task difficulty ratio to understand how difficult
a task is compared to other tasks and introduce our new ranking mechanism for OoD al-
gorithms. Using that, we evaluate the performance of different algorithms for the task of
out-of-distribution generalization.
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3.2. Current state in evaluation of out-of-distribution
generalization algorithms

Domainbed claims most of the learning algorithms for OoD generalization are almost
at the same level of performance as the classic Empirical Risk Minimization (ERM). Do-
mainbed considers the average performance of each algorithm over all tasks as a criterion
to compare different algorithms across multiple tasks [26]. However, calculating the best
performance across all datasets is unfair and has some drawbacks. One algorithm might
marginally outperform only one task and perform poorly or leniently on the other tasks.
This situation could dominate the average result. In addition, each task could have various
distribution shifts with different intensities. Such a situation leads to different levels of diffi-
culty among tasks. Hence, comparing and ranking algorithms by only taking the average of
their performance across all tasks is not fair.

To address this issue, some approaches such as [82] tried to identify and measure different
distribution shifts among a dataset. OoD-bench proposes a new comparison and ranking
method for OoD algorithms based on the type of distribution shifts ubiquitous in various
tasks. They grouped tasks due to the influences of two distinct kinds of distribution shifts,
namely diversity shift and correlation shift [82]. In this way, each dataset has a certain
level of diversity and correlation shift. For example, datasets such as VLCS, PACS, office-
Home and DomainNet have multiple domains. Each of these domains represents a certain
spectrum of diversity and training, and a test set of each dataset contains a specific group
of them which results in a diversity shift during the experiments. However, Colored MNIST
focus on another type of domain generalization problem caused by spurious correlations. In
ColorMNIST [5], colored digits are arranged into training and test environments such that
the labels and colors are strongly correlated, but the correlation relationship flips across the
environments. This type of distribution shift is different from the type of distribution shift
we have in LCS, PACS. To specify the level of each distribution in a dataset, a simple neural
network is trained to learn a feature extractor that could compute diversity and correlation
shift. OoD-bench demonstrated most of the existing OoD benchmarks dominated by one of
two discussed kinds of shifts. For example, datasets such as PACS and Camelyon mostly
reside on the y-axis, which shows they are more dominated by the diversity shift. However,
Colored MNIST reside more on the x-axis, which is dominated by correlation shift. In
addition to these specifically designed datasets, In addition, datasets such as ImageNet-A,
ImageNet-R, and ImageNet-V2, which are under unknown distribution shifts, are in the
middle of two different discussed distribution shifts [82].
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Fig. 3.1. Estimation of diversity and correlation shift in various datasets [82].

OoD-bench assigns scores -1, 0, or +1 depending on whether the attained accuracy is
lower than, within, or higher than the standard error bar of ERM accuracy on the same
dataset [82]. To rank algorithms, they added up all scores and sorted algorithms’ based on
accumulated scores. Although the OoD-bench ranking approach seems more reasonable, it
does not provide a fair comparison. First, it assumes all datasets (tasks) in one category have
the same difficulty level. Second, it gives a score of either +1 or -1 for any algorithm that
beats or loses against ERM. As a result, it ignores how much an algorithm either outperforms
or underperforms ERM on a specific task since it only considers one score point up or down.

To have a proper ranking method, finding a metric for the difficulty of tasks in OoD
generalization setup is essential. However, Measuring the level of difficulty of tasks is a chal-
lenging topic. In OoD setup, multiple environments at training time have some distribution
shifts from each other. We propose an approach to finding the difficulty ratio of a task
based on comparing training environments. The most important factor that confuses the
learner in OoD setup is extracted spurious correlated features and imposed gradients at the
training time. This problem is known as gradient starvation [56]. From one environment
to another environment, there are changes in sample distribution or in target distribution
denoted as p(x), p(y|x), or p(y). However, the classes that the learner should learn are the
same. Assuming an almost mature feature extractor is frozen and followed by trainable
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classifier layers. We use each environment’s data to train the classifiers in an isolated sys-
tem. Then, we compare the models’ performance with an unseen OoD validation set. It can
show how much spurious correlated features dominate the trained models since the feature
extractor is the same and frozen.

A set of environments with more Scattered OoD validation performances can construct
more difficult tasks to train. This situation could happen since the deep learning model
can stick with simple samples encapsulated in one environment, find a shortcut based on
these samples, and ignore others. Staying with the shortcut leads to a poor generalization
against a slight distribution shift in samples at testing time. Repeating this process at
different prediction depths can give a better analysis of the environments’ difficulty and task
difficulty. Figure 3.2 illustrates this process for a task that contains four environments. The
gray block shows the frozen feature extractor that has consecutive blocks. At the end of each
block, a pink rectangular shape represents a trainable classifier model which will be trained
in an isolated system. Then, we collect the model accuracy on an OoD validation set, an
unseen shifted environment reserved for validating the models. Assume set E represents
training environments for a task T as E = {E1, E2, ..., En}. For a feature extractor with k

consecutive blocks, set A contains the models’ accuracy corresponding to each environment.
The task difficulty ratio for task T is denoted by DT and computed as follows:

DT = 1
B · C

|E|
2

∑
k∈B

∑
i∈E

∑
j∈E |Ai,k − Aj,k|

Max(Ak) − Min(Ak) , (3.2.1)

where Ai,k is the accuracy of classifier for environment Ei at the layer k. B represents the
number of consecutive blocks that are considered prediction depths. ∑

i∈E

∑
j∈E |Ai,k − Aj,k|

is a possible pairwise accuracy differences at layer k. Max(Ak) and Max(Ak) also represent
the maximum and minimum reported accuracies at layer k. It should be normalized by di-
viding it by the distance between the maximum and minimum accuracies at layer k. Dividing
the results by the number of possible pairwise environments’ differences can provide a fair
comparison for tasks with more or fewer numbers of environments. And, the combination
of the cardinality of the set E taken two at a time without repetition is denoted by C

|E|
2 in

the Eq. 3.2.1. Then, the weighted average of a selected algorithm for all tasks is used for
ranking where the weight of a task is the task difficulty.

3.3. Experiments
For experiments, we picked four popular image-based tasks including CelebA [46], Wa-

terbirds [65], FMoW [12] and Camelyon17 [57] from WILDS [34]. WILDS is a benchmark
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Fig. 3.2. Task difficulty ratio calculation process using a pre-trained feature extractor that is
trained on the ImageNet dataset. This is a process for a task with four training environments
and one reserved environment as an OoD validation set.

that includes data from different domains reflecting a diverse range of distribution shifts in
real-world applications [34].

3.3.1. Datasets

We used WILDS [34], which is a benchmark of in-the-wild distribution shifts spanning
diverse data modalities and applications. The benchmark includes data from different do-
mains, including Medicine and healthcare, Genomics, Natural language, and speech pro-
cessing, reflecting a diverse range of distribution shifts in real-world applications [34]. For
our experiments, we used 4 datasets including CelebA [46], waterbirds [65], FMoW [12] and
camelyon17 [57] that will be discussed in details.

3.3.1.1. Waterbirds. This dataset combines bird photographs from the Caltech-UCSD
Birds-200-2011 (CUB) dataset [26]. The dataset includes two categories of birds, waterbirds
and landbirds. Waterbirds are images of seabirds or waterfowls which are cropped from their
original background and added onto a water background. The same situation for landbird
which are cropped and added to the land. Table 3.1 shows the dataset has four different
environments for training and validation.

Table 3.1. Train and validation environments in Waterbirds

Train Data OoD Val Data

y = landbird, background = land: n = 3498 y = landbird, background = land: n = 467
y = landbird, background = water: n = 184 y = landbird, background = water: n = 466
y = waterbird, background = land: n = 56 y = waterbird, background = land: n = 133
y = waterbird, background = water: n = 1057 y = waterbird, background = water: n = 133

3.3.1.2. Camelyon17. Camelyon17 dataset [57] includes a 96x96 patch of a whole-slide
image of a lymph node section from a patient with potentially metastatic breast cancer. The
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data is collected from five hospitals each of which represents a domain. The goal of this
dataset is to find out whether the patch contains a tumor or not. As shown in Table 3.2,
the dataset has five environments. There are three environments in training data and one
environment in OoD validation set.

Table 3.2. Train and validation environments in Camelyon17

Train Data OoD Val Data

hospital = 0 : n = 53425 hospital = 0 : n = 0
hospital = 1 : n = 0 hospital = 1 : n = 34904
hospital = 2 : n = 0 hospital = 2 : n = 0
hospital = 3 : n = 116959 hospital = 3 : n = 0
hospital = 4 : n = 132052 hospital = 4 : n = 0

3.3.1.3. CelebA. CelebFaces Attributes Dataset (CelebA) [46, 66] is a large-scale face
attributes dataset. The dataset includes 200,000 images with large diversities and rich at-
tribute annotations. The images in this dataset cover large pose variations and background
clutter. Table 3.3 shows CelebA has four different environments. Classifying the hair color
of celebrities as “blond” or “not blond” is considered a goal while the target is spuriously
correlated with gender [45].

3.3.1.4. FMoW. This dataset includes satellite images over the years 2002t to 2018 [12].It
can be used in different domains of global-scale monitoring such as sustainability, population
density study, and forest monitoring 3.3. FMoW includes 1 million images from over 200
countries which are coming with rich metadata provided for each image. The metadata

Table 3.3. Train and Validation Set environments of CelebA

Train Data OoD Val Data

y = not blond, male = 0 : n = 71629 y = not blond, male = 0 : n = 8535
y = not blond, male = 1 : n = 66874 y = not blond, male = 1 : n = 8276
y = blond, male = 0 : n = 22880 y = blond, male = 0 : n = 2874
y = blond, male = 1 : n = 1387 y = blond, male = 1 : n = 182
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Fig. 3.3. FMoW contains satellite images of different geographical regions and at different
times [34]

enables reasoning about location, time, sun angles, physical sizes, and other features when
making predictions about objects in the image as described in WILDS [34]. Table 3.4 shows
there are 16 environments in total in FMoW including 11 environments for the training set
and 3 environments for OoD validation set.

3.3.2. Experiment setups and results

Table 3.5 shows the hyper-parameters and value metrics that are used for training clas-
sifiers for calculating the tasks’ difficulty ratios. It worth mentioning that SGD is used as
an optimizer with 0.9 Nesterov momentum and Adam with default hyper-parameters for the
FMoW task.

In addition, we re-rank the performance of five important OoD generalization algorithms,
including IRM [5], Group DRO [65], Deep CORAL [73], VREx [36], and Empirical Risk
Minimization (ERM). We chose a pre-trained ResNet-50 model with the IamegNet dataset as
a suitable feature extractor to find the difficulty ratio. Such a feature extractor can extract
adequate essential features from samples since the model is trained on the dataset with
complex images with 1K classes and one million examples [62]. As explained in section 3.2,
we trained four classifiers for each environment on top of frozen feature extractor blocks in
the ResNet-50 model. For each dataset, we repeat the experiment for five different seeds
with a learning rate of 0.0001. For Waterbirds and CelebA, we trained classifiers for 120
epochs. Moreover, for FMoW and Camelyon17, we trained the model for 64 and 30 epochs,
respectively. We also used SGD with 0.9 Nesterov momentum as an optimizer for Waterbirds,
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Table 3.4. Train and Validation Set environments of FMoW

Train Data OoD Val Data

year = 2002 : n = 1455 year = 2002 : n = 0
year = 2003 : n = 1985 year = 2003 : n = 0
year = 2004 : n = 1545 year = 2004 : n = 0
year = 2005 : n = 2207 year = 2005 : n = 0
year = 2006 : n = 2765 year = 2006 : n = 0
year = 2007 : n = 1338 year = 2007 : n = 0
year = 2008 : n = 1975 year = 2008 : n = 0
year = 2009 : n = 6454 year = 2009 : n = 0
year = 2010 : n = 16498 year = 2010 : n = 0
year = 2011 : n = 19237 year = 2011 : n = 0
year = 2012 : n = 21404 year = 2012 : n = 0
year = 2013 : n = 0 year = 2013 : n = 3850
year = 2014 : n = 0 year = 2014 : n = 6192
year = 2015 : n = 0 year = 2015 : n = 9873
year = 2016 : n = 0 year = 2016 : n = 0
year = 2017 : n = 0 year = 2017 : n = 0

Table 3.5. Hyper-parameters and value metrics that are used on each task in tasks’ difficulty
ration calculation process.

Epoche Batch Size Optimizer weight decay Learning Rate Value Metrics

Waterbirds 128 128 SGD 1.0 1e-5 Worst group ACC
CelebA 200 64 SGD 0.0 1e-3 Worst group ACC
FMoW 60 32 Adam 0.0 1e-4 Worst region ACC
Camelyon17 10 32 SGD 0.01 1e-3 Average ACC

CelebA, and Camelyon17. For FMoW, we used Adam as an optimizer. See More detail on
the hyper-parameters in Appendix-Table 3.5.
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Figure 3.4 shows the result of the ratio calculation process for Camelyon17 (left) and
FMoW (right). ResNet-50 has four residual blocks represented on the x-axis. And the y-axis
represents the OoD validation accuracy. Figure 3.4 clearly shows that the OoD validation
accuracy in Camelyon17 task is more scattered in comparison to FMoW. Table 3.8 shows
the task difficulty ratios that are calculated by Equation 3.2.1. We repeated the process five
times and reported the ratios based on the average performance of environments in each
task. Table 3.7 and 3.6 in the Appendix contain the detailed environments comparison for
Waterbirds and CelebA.

Table 3.6 and 3.7 show the analysis of the environment used for task difficulty ratio
calculation. Table 3.9 reports the selected algorithms’ performance for the chosen tasks,
including the average (Domainbed) and tasks’ difficulty ranking (Ours) comparison. The R2

(Score-based) failed since four out of five algorithms have a score of 0. To rank them, we
have to consider the average again. R3 represents a ranking result according to the tasks’
difficulty.

Table 3.6. The accuracy of four classifiers trained for each environment on the Out-of-
Distribution (OoD) validation set for the CelebA task with four environments.

Environment Block 1 Block 2 Block 3 Block 4

E1 84.61 84.61 84.61 84.61
E2 84.61 84.61 84.61 84.61
E3 15.38 15.38 15.38 15.38
E4 15.38 15.38 15.38 15.38

Table 3.7. The accuracy of four classifiers trained for each environment on the Out-of-
Distribution (OoD) validation set for the Waterbird task with four environments.

Environment Block 1 Block 2 Block 3 Block 4

E1 77.82 77.82 77.82 77.82
E2 77.82 77.82 77.82 77.82
E3 22.19 22.19 22.19 22.19
E4 22.19 22.19 22.19 22.19
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Table 3.8. The task difficulty ratio is calculated by Equation 3.2.1. The result is based on
the average performance of environments in each task for five seeds.

Dataset Task Difficulty Ratio
Camelyon17 0.80
FMoW 0.39
Waterbirds 0.66
CelebA 0.66

Fig. 3.4. The accuracy of four classifiers trained for each environment on the OoD validation
set. Camelyon17 (left) and FMoW (right) environments.

Table 3.9. Ranking result for five algorithms on selected tasks from WILDS. R1 represents
the ranking based on average accuracy, R2 expresses the score-based (OoD-Bench) ranking
outcomes, and R3 is the ranking according to the tasks’ difficulty for the selected algorithms.
We include results from the WILDS leaderboard[34]∗ and [45]†.

Waterbirds
(Worst-group Acc)

CelebA
(Worst-group Acc)

FMoW
(Worst-Reg Acc)

Camelyon17
(Avg Acc)

Average
(Domainbed)

Score
(OoD-Bench)

Ours R1 R2 R3

ERM 72.6† 47.2† 34.1* 70.8* 56.17 0 37.25 5 5 4
IRM 77.19 51.12 32.8* 64.2* 56.33 0 37.21 4 4 5
Group DRO 91.4† 88.9† 31.1* 68.4* 69.95 0 46.46 1 2 1
Deep COROL 88.3 89.44 32.8 59.5* 67.51 0 44.42 2 3 3
V-REx 87.3 64.2 33.64 82.84 66.98 2 44.83 3 1 2
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3.4. Conclusion and future work
This work challenges the current approach for compare and ranking out-of-distribution

generalization algorithms. Existing approaches, including average (Domainbed) and score-
based (OoD-Bench) methods, have essential logical and practical drawbacks described in
this work. To better understand each OoD generalization task, we presented a mechanism
to define the task difficulty ratios and use them to compare tasks’ difficulty on Out-of-
Distribution generalization benchmarks. It helps to understand OoD generalization tasks
better by comparing the tasks’ environments. This analysis leads to a fair comparison be-
tween the OoD generalization algorithms using tasks’ difficulty ratios. Studying the difficulty
of the text-based task using the same approaches is a potential follow-up for this work.
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Chapter 4

Conclusion

The ability to transfer or leverage knowledge across tasks poses a significant challenge for
today’s machine learning systems. Despite the success of AI systems trained on a specific
task distribution, achieving high performance on diverse tasks with different distributions
remains a challenging task. Forgetting previously acquired knowledge due to learning new
tasks from different distributions is a common issue in AI systems, known as catastrophic
forgetting. This issue is the result of backpropagation mechanism used to update their
parameters. Addressing this problem has been attempted from different angles in various
domains such as continual learning and Out-of-distribution (OOD).

Continual learning (also known as lifelong learning or incremental learning) is a machine
learning paradigm where a system learns and adapts to new information over time, without
forgetting previously learned knowledge. In other words, instead of learning a fixed set of
tasks and then retraining the model from scratch when new data becomes available, a contin-
ual learning system is designed to continually learn from new data and build on its existing
knowledge, while avoiding catastrophic forgetting of the previously learned knowledge.

The first project in this thesis aims to compare a chaotic learner with a naive continual
learning approach. Traditional deep neural network models require multiple epochs to better
estimate the model parameters from the training dataset. However, compensating for the
effects of parameter updates in batch incremental learning setups is not always practical as
it is not feasible to expect the training data will always be available. This chapter, addresses
questions such as what are the alternative structures for neural networks to address those
issues? Could we use a system to mimic the behavior of biological neurons and see how
does it doing compared to neural networks? To address this issue, we propose a chaotic
stream learner that mimics the behavior of biological neurons and does not update network
parameters, requiring fewer samples compared to deep learning models in stream learning
setups. The stream learner as a new method for mitigating catastrophic forgetting in con-
tinual few-shot learning. Unlike traditional approaches, this method leverages the chaotic
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structure of biological neurons for a unique perspective. In our experiments, we found that
a single chaotic neuron used in the GLS stream learner leads to less forgetting compared to
deep learning models, which require extensive training time and parameter learning for batch
incremental and stream learning setups. Interestingly, our experiments on various datasets
reveal that the chaotic stream learner naturally has less catastrophic forgetting than a CNN
model in continual learning.

Out-of-distribution (OoD) generalization refers to the ability of a machine learning model
to perform well on data that is different from the data it was trained on. In other words,
when a model is tested on data that is not from the same distribution as its training data, it
should still be able to make accurate predictions. OoD generalization is important because
real-world data is often diverse and unpredictable, and it is impossible to train a model on all
possible variations of the data. In addition, in some cases, the data distribution may change
over time, making it important for a model to be able to generalize to new and different
distributions. The second project in this thesis addresses some questions: firstly, whether
current algorithm selection and ranking mechanisms are fair, and secondly, if they are not,
what other factors need to be considered when comparing different algorithms for the task
of Out-of-distribution generalization.

Existing methods for comparing and ranking OoD algorithms, such as average and score-
based methods, have logical and practical drawbacks, and they do not consider the task
difficulty level. In the second project of this thesis, we analyze the strengths and drawbacks
of existing methods for comparing and ranking OoD algorithms. To address the issue of
task difficulty level, we propose a novel ranking approach that defines the task difficulty
ratios to compare OoD generalization algorithms. By analyzing the environments of the
OoD generalization tasks, we can compare the tasks more accurately and achieve a fairer
comparison between different OoD generalization algorithms based on the difficulty ratios of
the tasks. We conducted experiments by comparing the average, score-based, and difficulty-
based rankings of four selected tasks from the WILDS benchmark and five popular OoD
algorithms. The analysis reveals significant changes in the ranking orders compared to
current ranking approaches. Our work suggests that future algorithms should be more
comprehensively evaluated considering metrics that measure or relates to distribution shift.
It is still an open problem whether there exist algorithms that perform well under different
types of distribution shifts. In the absence of such an algorithm, metrics such as task difficulty
could be employed to rank and select the suitable algorithms according to the task.
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