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Résumé

A Case-Base Reasoning Diagnosis System for AHU (Air-Handling Unit)

Suoshi Zheng

Le directeur: Houari Sahraoui

Récemment, les systèmes de raisoimement à base de cas (CBR) sont devenus de

plus en plus populaires pour résoudre une large variété de problèmes à

connaissance intensive. Cette thèse se propose de développer un système de

diagnostic de défauts pour une unité de traitement d'air (AHU) en utilisant une

approche de CBR.

L'objectif principal du AHU est de fournir des conditions d'air appropriées pour

les bâtiments commerciaux. Le diagnostic des défauts est une tâche permettant

d'identifier les causes de tout disfonctionnement dans le AHU. Si toutes les

pannes peuvent être localisées rapidement et avec précision, alors il sera possible

d'éviter une consommation excessive d'énergie ou un inconfort des occupants.

J

CBR est une application à base de connaissance. En effet, CBR est basé sur le

principe d'utiliser les expériences précédentes comme référence pour résoudre les

nouveaux problèmes qui se présentent dans des conditions pareilles. Les apports

majeurs de l'application de CBR comme un moyen pour acquérir la faculté du

diagnostic sont discutés. Ce mémoire est aussi concerné par l'intégration des

principaux processus CBR dans un cadre d'application indépendant du domaine.

L'ultime objectif de ce cadre d'application est de faciliter le développement de

futures applications CBR par la réutilisation des conceptions et des

implementations.

Mot clés : base de cas, base de connaissance, unité de traitement d'air
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Abstract

A Case-Based Reasoning Diagnosis System for AHU (Air-Handling Unit)

Suoshi Zheng

Supervisor: Houari Sahraoui

In recent years, case-based reasoning (CBR) systems have become increasingly

popular as a way to solve a wide variety of knowledge intensive problems. This

thesis addresses the development of a fault diagnosis system for an air-handling

unit (AHU) by using a CBR approach.

The main aim of AHU is to deliver an appropriate air condition in commercial

buildings. Fault diagnosis is the task of identifying the causes of all kinds of

failures in an AHU. If all faults in AHU can be localized rapidly and accurately,

this means that it will be able to avoid excessive energy consumption and

discomforts to human occupants.

CBR is a sort of knowledge-based applications. CBR is based on the idea of using

previous experiences as references to solve new problems that have similar

situations with the previous experiences. The potential benefits of applying CBR

to enhance the diagnostic capability are discussed. This thesis is also concerned

with integrating main CBR processes into a domain-independent framework. The

greatest desire for this framework is to facilitate the development of later CBR

applications by reusing the previous designs and implementations.

3

Key words: case-based reasoning, knowledge-based system, framework, and air-

handling unit.
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Chapter 1.

Introduction

1.1. Overview

It has been often said that knowledge is power. This expression, in my opinion,

carries at least two different meanings. The first is that knowledge can be applied

to solve a new problem if we have had some relevant experiences stored in

knowledge. The second is that we should learn new knowledge constantly in

order to get ready for any potential problems in the future. There is no knowledge

that is no power. This is especially tme in the development of knowledge-based

systems.

Knowledge-based systems were initially developed in the artificial intelligence

(AI) community. A knowledge-based system is a computer system that includes a

knowledge base used to capture the essential features of a domain problem and

makes that information accessible to a problem solving procedure. The central

component of knowledge-based systems is its knowledge base, which is an

organizational data structure based on computer technologies to represent
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particular aspects of the knowledge that we are concerned with in a domain. The

knowledge in a knowledge base can be exhibited in either general or specific

manners. The general knowledge usually refers to the higher-level abstractions or

generalizations of universal principles in a given domain; the specific knowledge

refers to detailed situations about individual objects or events. In contrast with

conventional computer systems, knowledge-based systems were bom to help in

knowledge 'storages' and 'reuses'. The capabilities of expressing and processing

knowledge in knowledge-based systems are able to significantly increase the

intelligence level of computer systems and achieve better success in problem

solving.

Knowledge-based systems mn through a phase from simple collections of

frequently asked questions (FAQ) to complex systems in terms of AI engines.

Since the introduction of the first knowledge-based system in 1 970s, these kinds

of systems have made a number of success stories, especially in rule-based expert

systems. For a long time, AI research focused on mle-based expert systems that

used heuristic if-then rules to represent domain knowledge and applied an

inference procedure to manipulate those rules in order to reach a conclusion.

Rule-based expert systems can advise on, or help solve, a real problem as though

the end-users were dealing with a human expert in the particular domain.

However, despite the undoubted success of mle-based expert systems, there are

still some well-known problems in developing such systems, including knowledge

elicitation and maintaining issues [1]. In recent years, the trend of research shifted

from this rule-based approach to a new approach that is case-based reasoning

(CBR).

In this thesis, a close study of using CBR to solve a practical domain problem is

presented; namely, a CBR diagnosis system for an air-handling unit (AHU). The

basic idea of CBR is to use previous experiences as references in solving new

problems that have similar situations to the previous experiences. The key
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assumption is that if two problems look alike, then the solutions to these problems

would be highly and frequently close as well.

1.2. Problem Statement

Heating ventilating and air-conditioning (HVAC) systems have become

absolutely necessary in modem buildings. HVAC systems are certain kinds of

engineered systems that offer human occupants an acceptable indoor air condition

in the building space. The quality of the indoor air is of great importance for the

health and comfort of human occupants. Nevertheless, since there is a growing

issue concerning the Global Energy Crisis, the energy used by HVAC systems has

received greater attention among the total energy consumption in the world. The

systems with higher reliability and lower running costs are highly demanded.

An HVAC system is typically composed of an air-handling unit (AHU) and

several variable air volume (VA V) boxes. As a central element of an HVAC

system, the role of AHU is to provide high quality air condition relating to

appropriated air température, proper humidity level and adequate ventilation in

the entire building space. Normally, an AHU consists of outdoor, mixing and

return air dampers, cooling and heating coils, an air filter section, supply and

return fans, and an humidifier. AHU systems are responsible for a significant

portion of the total building energy consumption and a major assurance of

comfort conditions in the entire building space.

However, with the dramatic developments in computer auto-controlled

technologies, AHU systems have become more complex than ever. Large

numbers of sensors, control equipment and communication units have been

integrated into AHU. Due to the complexity of AHU and the long period of

mnning time, faults occurring in AHU are common, such as sensor drift, stuck

damper or fan failure. All kinds of failures can lead to excessive energy
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consumption, discomforts to human occupants, and increasing premature wear on

control equipment.

To solve these problems, there is a need for automatic and robust fault detection

and diagnosis (FDD) tools. Fault detection is a task of determining that the

operation of the building is incorrect or unacceptable in some respect, whereas,

fault diagnosis is a task of identifying or localizing of the causes of failures by

using situation descriptions and behavior characteristics [2]. Fault diagnosis is

more difficult than fault detection, because fault diagnosis usually requires a vast

amount of knowledge to understand the principles of how all elements in AHU

interact each other.

The objective of this thesis is to develop a prototype of diagnostic method and

tool for AHU, which hopefiilly can lead to a commercial diagnostic product. The

research is part of the work in the project of Fault Detection and Diagnosis Tool -

Stand Alone and Embedded Application - which is sponsored by the Energy

Diversification Research Laboratory (CEDRL) [3] and Delta Controls Company

[4]. The major research interest ofCEDRL and Delta Controls are emphasis on

establishing intelligent energy management and control systems with lower

operating costs. Moreover, this thesis is also concerned with integrating main

CBR processes into a domain-independent framework. The greatest desire for this

framework is to facilitate the development of later CBR applications by reusing

the previous designs and implementations.

1.3. Scope of Thesis

This thesis discusses the use of CBR techniques to develop a diagnosis system for

AHU. The thesis is focused on four following topics:

CBR and related research work
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Key Issues in CBR processing

Fault detection and diagnosis in AHU

CBR diagnosis system

1.3.1. CBR and Related Research Work

In order to enhance the capability of computer systems in complex problem

solving, one attempt is to build knowledge-based systems. A knowledge-based

system is a computer system that encodes sufficient knowledge into computers

and applies a certain inference mechanism to produce intelligent behaviors. In the

first topic of this thesis, typical knowledge-based systems are introduced,

including CBR systems and mle-based expert systems. The critical issues in

developing knowledge-based systems are reflected in the following questions:

How the explicit knowledge can be attained from a real domain problem? How

this knowledge can be organized into a computer-understandable form to make

the reasoning process possible? How machine learning can be performed as new

knowledge comes along? To answer these questions, knowledge acquisition issue

and knowledge representation stmctures are explained. Through the discussion of

strengths and weaknesses in CBR and rule-based approaches, a conclusion is

given that CBR is a considerable methodology to address domain problems with a

weak theory [5].

D

1.3.2. Key Issues in CBR processing

In this topic, a comprehensive overview of CBR techniques is introduced. It starts

by explaining the philosophy of CBR, which shows that CBR not only is a

powerful methodology for computer reasoning, but also fonns a common

behavior of humans to solve problems in their daily life. To understand a little bit

more of what CBR essentially does, the CBR cycle is explained. The CBR cycle
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can be looked at as a guideline to develop CBR applications. Some sub-fields

relating to this thesis in the development of CBR applications are discussed, such

as case representation, case retrieval, case adaptation, and learning mechanisms.

The case representation problem concerns how to express general and

specific domain knowledge to the case base.

The case retrieval problem concerns how to efficiently retrieve cases that

are the most similar to the current problem from the case base.

The case adaptation problem concerns how to modify a retrieved case to

make it better fit the current problem situation.

The learning mechanism problem concerns how to update the case base to

keep up with an evolving environment.

1.3.3. Fault Detection and Diagnosis (FDD) in AHU

The domain problem concerning AHU is addressed here. The fiinctionality of

each single element in AHU is described. AHU systems are responsible for

delivering an appropriated air condition in the entire building space. The purpose

of the FDD scheme is explained. The execution of the FDD task relies highly on

how to define an FDD scheme to understand system behaviors on what is

expected and what is wrong, since the raw information of each single element in

AHU does not suffice to determine whether the system mns under normal or

abnormal situations.

J

As mentioned above, the task of FDD is comprised of two essential subtasks

(fault detection and diagnosis). The fault detection is a subtask of revealing all

possible physical failures in AHU during mnning time. To detect all possible

faults, a rule-based expert system has already been developed successfiilly by
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CEDRL. The fault diagnosis is a subtask of localizing the causes. However, the

diagnostic task in AHU is more complicated than the detective task. A mle-based

expert system is no longer suitable for the diagnostic task and is likely to produce

incomplete or inaccurate results. The reasons that we proposed to use CBR to

achieve the diagnostic task can be summarized below:

The dynamic behavior of AHU is often non-linear and poorly understood.

It is very difficult to obtain adequate representation of the complex

behavior of AHU using mle-based approach; on the contrary, CBR

approach is often suitable for where rule-based systems find it hard to

generate the mles from poor theoretical domains.

The performance of mle-based expert systems does not satisfy as well as

indented for the diagnostic task in AHU; one of the reasons is that critical

information is lost after rules are formed. In AHU, all elements take affect

in a single duct so that the control behavior can be heavily influenced each

other, thus, it is required to look over entire system to determine a fault. In

CBR, a case is a snapshot of the situation of all elements at a single

moment. This snapshot can be analyzed to diagnose any faults in AHU.

There is only limited causal information for why elements fail in AHU,

and different faults might have similar symptoms. Rule-based expert

systems are not able to identify the fault unambiguously. A CBR diagnosis

system is able to compare each actual situation in detail so that the real

causes behind similar symptoms can be figured out.

D

Lastly, there is plenty of time-series data produced by building energy

management systems (BEMS) during the monitoring period. All these data

can be easily transformed into cases.
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As a result, to completely overcome the FDD problem, a mle-based detection

system and a CBR diagnosis system are blended in this project. The integration of

two knowledge-based systems is able to significantly enhance the capability of

the FDD in AHU.

1.3.4. CBR Diagnosis System

The explanation of our approach to develop a CBR diagnosis system for AHU is

given here in detail. The major intentions of this thesis are not limited to the

development of a prototype of the CBR diagnosis system, but are also concerned

in constructing an object-oriented diagnostic framework for various kinds of

domains. The basic idea is the development of a reusable and extensible

environment that integrates a domain-independent case representation model with

certain generic reasoning methods. The code and design reuse capability of

object-oriented frameworks enables higher productivity and a shorter time-to-

market of application development when compared with traditional software

systems development [6].

This thesis took a different approach to develop a diagnostics problem by using

CBR methodology. Using the CBR approach to solve the diagnostic problem and

develop the generic framework presented us with some of the following

challenges:

How to stmcture and represent the domain knowledge (AHU)?

How to map over the gap between domain-specific and domain-

independent knowledge during the design of a generic CBR framework?

• How to assess the similarity between the two cases?

3 How to achieve learning?
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In order to meet these challenges mentioned above, in our approach, we combined

typical CBR techniques with an object-oriented case representation and an open

structure of similarity measure. The diagnostic problem is accomplished by

solving the following problems:

Object-oriented case representation.

Case retrieval.

Evaluating and learning mechanism.

Case representation: In a CBR diagnosis system, each case mainly contains a

problem description, which describes features of the state of AHU when the case

occurred, and a solution, which describes the derived solution to the problem. In

this thesis, we present an object-oriented case representing structure in a CBR

framework to model the domain knowledge into object-oriented concepts. The

case representation in our approach is divided into three-layers. The top layer is

the package of Case-Base, which emphasizes the conceptual structure of the case

base rather than being domain specific. The package of Domain-Object in the

bottom layer is used to represent individual domain concepts in AHU. In the

middle layer, we defined a package called Object-Network, which denotes the

relations between the cases in the case base and domain objects in AHU for

building a completed case.

D

Case retrieval: This concerns how to find the cases that are the most similar

ones to the current problem in the case base. A k-nearest neighbor algorithm is

primarily selected to integrate into the open structure of similarity calculations.

The k-nearest neighbor is perhaps the most widely used algorithm to calculate the

similarity in CBR. It has shown to be very effective for a variety of domains. The



n
10

functions of similarity measure could be domain-independent in the CBR

framework, and it still keeps open to add new reasoning methods later on.

Evaluating and learning mechanism: New solutions should be confirmed or

validated by human experts. Human experts are able to modify the solution case if

any change is necessary. The learning mechanism is accomplished by appending a

new case to the case base.

There are several advantages in using CBR to solve the diagnostic problem for

AHU. First of all, we want to benefit from CBR to reduce the need to acquire

explicit models of problem domains. Due to the complexity of AHU systems,

sometimes, it is still difficult to get a clear idea of the interaction among all the

independent elements in AHU. Secondly, CBR systems can also be an increasing

learning process by acquiring new cases. Once a solution is found, it can be

inserted into the case base as a new case, so that the performances of CBR

systems will be improved with time. Lastly, the solutions suggested by CBR

systems may be more accurate, because each case reflects what really happened

under a particular circumstance in the past.

1.4. Organization of Thesis

The rest of the thesis is organized into the following chapters:

Chapter 2 introduces typical knowledge-based systems, including CBR

systems and rule-based expert systems. The advantages and disadvantages

of each approach in problem solving are given.

Chapter 3 generally describes the CBR methodology in problem solving.

The major sub-fields of the CBR process are explained.

J
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Chapter 4 gives a discussion of the domain problem concerning AHU and

the diagnostic scheme. The architecture of the FDD tool is introduced.

J

Chapter 5 presents our approach by using CBR to realize the fault

diagnosis system for AHU, and a conceptual CBR framework is

illustrated.

Chapter 6 explains the implementation of a CBR diagnosis system and

exhibits the result of experiment and testing.

Chapter 7 gives a final conclusion and talks about possible future work.
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Chapter 2.

CBR and Related Research Work

J

2.1. Overview

For over a half-century, in the AI community, there have been several approaches

that attempt to bring intelligence into computers in order to endow computers

with the same kind of flexibility as that of humans in problem solving. One of

these approaches is the study of building knowledge-based systems. The target of

the development ofknowledge-based systems is to emulate the high-level skills of

humans in a program numing on computers. Informally, a knowledge-based

system is a computer system that encodes sufficient knowledge into computers

and applies a certain inference mechanism to produce intelligent behaviors.

Typical knowledge-based systems include CBR systems and rule-based expert

systems. In this chapter, the typical knowledge-based systems and relevant

research works are introduced. Section 2.2 discusses the basis structure of

knowledge-based systems. Section 2.3 explains the major issues of building a

knowledge-based system, including knowledge acquisition and representation. In

section 2.4 and 2.5, CBR and rule-based systems are introduced. Section 2.6
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states the strengths and weaknesses of CBR and mle-based expert systems,

respectively.

J

2.2. Basic Structure of Knowledge-based Systems

Nowadays, with the significantly developing success in computer and information

technologies, people increasingly depend on computers to achieve 'mission

critical' tasks in their daily work. Computers are fundamentally well suited for

performing mechanical computing by using conventional programs. It is more

efficient and reliable for computers to perform simple monotonous tasks than

humans. However, for more complex problems, unlike humans - since the lack of

the mechanism of representing and reasoning knowledge, computers are not able

to understand specific situations and fit into new situations automatically; as a

result, the performance of computers in complex problem solving is limited.

Research on how to bring intelligence into computers to produce intelligent

behaviors has led to many different approaches in AI. One of these is the research

of building knowledge-based systems. Knowledge-based systems were bom to

help in utilization of computer and information technologies to store and reuse

knowledge in order to make computers more usefiil. Actually, much of the

inspiration for building such systems came from the desire to have the same kind

of ability of reusing and learning knowledge as that of humans.

A knowledge-based system is concerned with representing and reasoning

knowledge. The basic structure ofknowledge-based systems is shown in Figure 2-

l. The most important component in knowledge-based systems is its knowledge

base, which is the place to provide the permanent storage of knowledge. By

investigating the particular domain, explicit knowledge is extracted from either

domain specifications or human experts and formulates into a structured

knowledge base, which refers to something that we become aware of in the

domain. However, it is not possible and necessary for the knowledge base to

cover all aspects of the domain; some things can be treated as implicit knowledge

that we remain unaware of in the domain.
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Besides, knowledge-based systems not only serve for the storage of knowledge,

but also include the ability to use its stored knowledge in explaining what is

happening. Attached to this knowledge base are a reasoning engine and a user

interface. The reasoning engine is used to deduce the implicit knowledge in terms

of the explicit knowledge, if the problem is not directly contained in the

knowledge base. The tasks of user interfaces are interacting with end-users,

accepting and formulating problems, and providing an explanation of why and

how the system arrived at a specific conclusion.

Knonled^base

Rqresentatiai

IBâl^llMW^I

FKncgl^p

•
•

B^!a'@De|B|;

:t:

l&rmtoface

Wcrld

Domain
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<

Vaecs
0 0 ^-=,

Figure 2-1 Knowledge-based system

J

Unlike conventional programming in which processes focus on manipulating data

without understanding the underlying meaning of the data, knowledge-based

systems concentrate on interpreting the data and their relationships. In addition, in

conventional programming, such as scientific calculation, database programming

and network computing, since the processes are defined by strict step-by-step

instructions in programs, the results are predictable and certain. In knowledge-

based systems, its results are a direct reflection of the amount of the knowledge
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provided in the knowledge base. The conclusions would be satisfied if they were

'good enough' instead of a 'hundred percent correct'. [7]

Essentially, the performance of knowledge-based systems directly depends on the

quality and quantity of its encoded knowledge in the knowledge base. If there is

no adequate knowledge, the capabilities of problem solving are limited; however,

knowledge stored in a knowledge base should be in a well organized stmcture to

make a reasoning process easy to be accessed, managed and modified, otherwise,

the systems can become inefficient, and even useless.

2.3. Building Knowledge-based Systems

Building and developing knowledge-based systems is made up of two main stages

each having its functions:

Knowledge acquisition, which is the most important phase of

implementation in a knowledge-based system, as it involves how to gain

explicit knowledge from domain specifications or human experts.

Knowledge representation, in where the knowledge is organized as a set

of computerized formulations or reasoning structures that reflect the

variety of all domain concepts. A reasoning engine can draw certain

decisions based on the knowledge representation layer.

Generally speaking, the process of knowledge acquisition gets ahead of

knowledge representation design, since we need to learn about the domain before

representing it.

J
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2.3.1. Knowledge Acquisition

Knowledge acquisition is a process of gathering the explicit knowledge from any

resource available in domains. What we obtained will later be used to create and

develop a reasoning mechanism in the knowledge base. Knowledge acquistion is

a difficult process that often requires special skills and takes much time. The

work has to be done gradually, and normally consisits of gathering data,

validating it, refining it, and then repeating the entire cycle [8].

During this process, two major tasks need to be accomplished: one is obtaining

the knowledge from clients' requirements and another is defining concepts to

represent the knowledge.

The first task is concerned with identifying domain problem

characteristics and understanding the reqirements from clients. It can be

fiilfilled either by giving interviews to domain experts or by studying the

specification documents of the domain. One of the difficulties in this task

is that we have to integrate domain knowledge from multiple resources,

especially when inconsistencies and conflicts need to be resolved.

J

The second task here is concerned with defining the concepts of the

domain problem and clarifying the relations among those concepts. There

are two different approachs to this task: one approach is an attemp at

establishing an explict model of the domain, which includes the system

relying on heuristic, causal, statistical, mathematical models. However, a

huge challenge for this kind of systems is the requirement of generalizing

a bunch of reliable principles and formulations from domain problems. In

many domains, sometimes the principles and formulations may be either

impossible to produce or too large to manage. This problem is well known

to be a critical bottleneck for building such a knowledge-based system. In

order to avoid this kind of 'dirty' job, a second approach is the research of

building a system tied to specific knowledge directly as experience to
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solve the domain problem, it might hopefully decrease the overload

burden of knowledge acquisition issues by using specific experience

instead of generalized formulations.

2.3.2. Knowledge Representation

The step after obtaining explicition knowledge is the process that decides how the

knowledge about the domain can be translated into a computer language and

stored in a form that makes it possble to be accessed by a reasoning engine. This

is called the knowledge representation problem. The aims of knowledge

representation is to study how knowledge can be organized, what kinds of

reasoning can be done with its knowledge and how can learning be performed as

new knowledge comes along.

The design of knowledge representation consists of three main issues with which

we should be concerned:

Knowledge base, where the knowledge is stored. Useful infomiation is

extracted from a specific domain into a stmctured knowledge base. The

knowledge base can be looked at as mapping between the objects and

relations in the real word and the computational objects and relations in

the computer [9].

3

A reasoning engine, which is the exposition of evidence in order to arrive

at new conclusions. A reasoning engine usually consists of search and

reasoning procedures that enable a knowledge-based system to reach

solutions, and if required, provide justifications for its results. The

implementation of a reasoning engine deeply depends on the knowledge

base. Therefore, the way of reasoning engines that we design

corresponding to the way of form or stmcture that we use to represent the

knowledge.
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A learning mechanism, A widely shared view is that learning is a process

to integrate new knowledge to a knowledge base or discard useless

knowledge from a knowledge base. In order to meet the challenge of

solving a real problem, knowledge-based systems must operate within an

evolving environment, and their knowledge therefore needs continuous

updating and refinement to make it potentially useful for later problems.

Over the past several decades, many different structures of knowledge

representation corresponding to reasoning methods were proposed, such as case-

based reasoning and mle-based representation.

2.4. Case-Based Reasoning

The CBR schemes represent knowledge as a library of cases (case base). Each of

them records a particular situation of previous experiences and relevant solutions.

The cases can be organized in a flat or hierarchical structure. The central tasks of

CBR for reasoning shown in Figure 2-2 are to identify new problem descriptions,

find a similar previous case to the new problem, and reuse or adapt the solution

from the selected case to the new problem. Using CBR to solve a new problem

relies on an assumption that a similar problem has been experienced in the past,

and a solution to the problem has been saved. If it fails to find an appropriate

solution, CBR systems are able to learn from this new experience and add a new

case into the case base.

D
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Figure 2-2 CBR approach

An example case in CBR is shown as below:

Case No. 11

Problem descriptions:

Supply Air Température = 18 °C

Supply Air Température Set Pont = 22°C

Heating Coil Valve Open = 100%

• • •

Outdoor Damper Open = 0

Solution:

Heating Coil Valve is stuck

D
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2.5. Rule-Based Representation

The rule-based schemes consist of a large number ofmles and objects. The rules

are collections of "IF - THEN —" conditions. The premise specifies certain

patterns and the conclusion may be an action or assertion. The objects are a set of

attributes that describe items of interest. One object is related to another object by

symbolic links through the " IS—A—" mechanism. The rules in a knowledge base

are not a simple map of knowledge, but instead go by abstracting from a domain

specification or a human expert into a generalized way. The mles allow the

system to deduce new results from an initial set of premises.

 wi'i
PEoUenBIM

Mrich

->
u Premise

Specifies

Hburistic Rule

Conclusion

Figure 2-3 Rule-based approach

An example of rule is basically shown as following code:

J
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IF

AND

(Supply Air Température) is {less than Supply Air Set point}

(Heating Coil Valve) is {open 100%}

THEN

OR

OR

(Mixing Damper) is {failure}

(Outdoor Damper) is {failure}

(Heating Coil Valve) is {stuck}

The reasoning methods mn by tracing a path through the mles to reach the goals,

with typically following one of the top-level strategies: forward chain or

backward chain [10]. The forward chaining begins by gathering as much

information as it can, then steps through the rule-base looking for the rules that

may be satisfied by the information already gathered. Backward chaining works

from the opposite direction, it starts with a goal and then tries to find the facts to

support it. The rules are usually extracted from domains and encoded in the

equation manually. Therefore, there is no generic method to perform learning in

mle-based expert systems. As a result, the design of the learning mechanism in a

rule-based system has to be domain-dependent so far.

J

2.6. CBR & Rule-Based Expert Systems

The idea behind developing different representing schemes is to attempt to make

knowledge reasoning more efficiently. It does not mean that one representing

scheme is absolutely better than others. Each of them has own their strengths and

weaknesses according to what kind of problems are to be faced. Problem solving
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in the real world involves different types of domain problems, such as open

problems, strong theory problems, and complete theory problems [11].

An open problem is characterized by having a weak or intractable domain theory.

A weak domain theory is applicable where the background knowledge existing

for a particular domain is not powerfiil enough to completely describe all of the

phenomena in the domain. In particular, such incomplete background knowledge

may be too limited to allow the development of correct solutions for all of the

possible problems that may arise in the domain. A strong problem is described by

having more certain relationships between its concepts. A complete problem

refers to the background knowledge existing for a particular domain that is able to

cover all of the phenomena and relationships, and its facts can be expressed by

either tme or false. However, the real world is too complex to find a complete

problem.

Rule-based expert systems are one of the success stories of AI research. They

have made a great achievement in real problem solving, including strong theory

problems, and sometimes open problems. Formulating knowledge in abstracted or

generalized ways enables the mles in knowledge bases to have wide applicability;

the rules could even be applied to different domains.

However, despite the undoubted success of the mle-based expert system in many

domains, developing a mle-based expert system has met several well-known

problems:

D

Rule-based expert systems depend on a reliable causal model in domains.

The formulation of rules is not a straignhtforward matter in certain

domains where the completed comprehensible theory does not exist.

Knowledge elicitation is often referred to as the greatest bottleneck of

mle-based expert systems. It may have difficulty generating descision

rules.
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The rules may be useful for the most common situations we encountered,

but we cannot help facing many situations that violate the bounds of the

generalizations we made. Since the mles work in an abstract way with

missing the detailed information of situations, the systems are unable to

look back and know what exactly happened at that moment. Sometimes,

rule-based expert systems fail in reaching goals.

Likewise, once new problems are outside of the rule base, because of the

lack of detailed information, rule-based expert systems are unable to make

a comparison between current problem and previous experiences to

generate or update the rules, so that the mle-based expert systems hardly

perform learning.

• Building a rule-based expert system is a difficult process requiring special

skills and good understanding in the domain. It often takes a long time to

implement.

In order to overcome the limitations shown by mle-based expert systems, over the

last few years, using CBR to deal with an open problem has increasingly attracted

attention. CBR takes a very different view from other AI approaches. In CBR, the

knowledge base is not formed by generalized rules but a collection of stored cases

(case base), recording the specific situation of domains. The solutions are

generated not by chaining, but by retrieving the most similar cases from case base

and adapting them to fit new situations. Thus some advantages with CBR in

dealing with weak theory domain are shown as below:

J

CBR systems do not require an explicit domain model. CBR is able to

save the specific knowledge of previous experiences in its case base. This

avoids the bottleneck of decomposing domain knowledge into a
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generalized form. A new problem is solved through comparing experience

to experience, finding the most similar ones and reusing them.

CBR is also an incremental learning process. After each time a problem

has been solved, learning can be carried out through saving it to the case

base, so that the new case will immediately be available for fiiture

problems.

CBR systems can be quickly developed; since cases capture much of the

knowledge implicitly, a deep understanding of the domain is not essential

for developing CBR applications.

In conclusion, rule-based expert systems are suitable in narrow, well-understood

and stable domains, whereas CBR systems might be a better choice on where a

domain problem is poorly understood and dynamic. For this thesis, due to the

characters and complexity of AHU, we proposed CBR schemes to represent the

domain knowledge of AHU. A more detailed discussion of CBR and the domain

problem will be given in later chapters.

J



25

n

Chapter 3.

Key Issues in CBR processing

3.1. Overview

The aim of this chapter is to provide a comprehensive overview of CBR

techniques and to discuss the essential issues that we should be concerned with in

the development of CBR applications. CBR is a knowledge reasoning system that

in many respects is uindamentally different from mle-based systems, instead of

relying solely on general knowledge of a domain problem, or making association

along generalized relationships between problem descriptions and conclusions,

CBR is able to utilize the specific knowledge of previous experiences [12].

J

It has been widely accepted that CBR is not only a powerfiil method for computer

reasoning, but also a common behavior pattern for humans to solve problems in

their daily life. This chapter discusses several topics: Section 3.2 gives several

definitions of CBR. Section 3.3 briefly introduces the history of CBR. In section

3.4, the CBR cycle is introduced. The CBR cycle can be seen as a fundamental

principle to develop CBR applications. Section 3.5 states some major sub-fields
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of CBR, such as case representation, similarity measure, and learning

mechanisms.

3.2. Definition of Case-Based Reasoning

There are some widely accepted definitions of CBR. Several ones are given

below:

Case-based reasoning solves a new problem by remembering a previous

similar situation and by reusing information and knowledge of that

situation. [13]

• Case-based reasoning is reasoning by remembering. [14]

Case-based reasoning solves new problems by adapting solutions that

were used to solve old problems. [15]

Case-based reasoning is an approach to problem solving and learning. [16]

D

As the above definitions indicate, CBR is based on the intuition that a new

problem is often similar to previously encountered problems, and therefore, that

past solutions may be reused in the current situation. As a matter of fact, this is

also a powerful and frequent way for humans to reuse or modify past experience

in problem solving. Everyone has vast experience in working out a problem

during daily life in terms of past experiences. More specifically, while people are

facing a new problem, the first thing we usually do is to scan our memory and

check out if we have encountered a similar situation before. For instance, if you

want to make a copy of your textbook at school, before you go to the copy room,

it would not be necessary to explicitly plan how to get to there; you just take the

route that you usually go (find a solution from experiences). If there are a lot of

people standing in line for service, you may remind yourself of how you avoided
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a long waiting time under the same circumstances in the past, such as finding

another copy machine on a different floor. If it were a success, probably you

would go again (once again, find a solution from experiences). The key

assumption is that if two problems look alike, then the solutions to these problems

is frequently close as well.

3.3. A Short History for CBR

The philosophical roots of CBR could perhaps be many, but what is not in doubt

is that the research of Roger Schank and his group at Yale University is known to

be the origin of CBR. In 1977, Schank wrote scripts for knowledge

representation. The scripts were proposed as a stmcture for conceptual memory,

describing information about stereotypical events. However, experiments on

scripts showed that they were not a complete theory of memory representation. In

1982, Schank developed the Dynamic Memory Theory and Memory Organization

Pack Theory (MOP) [15]. In 1983, Janet Kolodner, who is a member of Schank's

group, developed the first CBR system called CYRUS [16], which was based on

Schank's dynamic memory and MOP theory. It was a question-answering system

with knowledge of various travels and meetings of former US Secretary of State,

Cyms Vance. Between 1985 and 1992, there appeared other systems that were

based on Schank's theories, including MEDIATOR [17], PERSUADER [18],

CHEF [19], CASEY [20] and JULIA [21].

J

Between 1986 and 1989, an early alternative approach came from Brace Porter

and his group at the University of Texas at Austin. This work initially addressed

the machine-leaming problem of concept learning for classification tasks. This led

to the development of the PROTOS system [22], which emphasized integrating

general domain knowledge and specific case knowledge into a single case-

memory model. Between 1988 and 1992, another significant contribution to the

CBR field was the work done by Edwina Rissland and her group at the university

of Massachusetts. They were primarily interested in reasoning for law application
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cases. Cases are not used here to produce a single answer, but to interpret a

situation in practice, and to produce and assess arguments for both sides in court.

Their implementation system was HYPO, introduced in [23].

In the early 1990s, the US Defense Advanced Research Projects Agency program

(DARPA) funded a series of workshops on CBR and supported the development

of a CBR tool called ReMind [24]. This tool marked the transition of CBR from

purely academic research in cognitive science and artificial intelligence into the

commercial arena. After ReMind joined in the marketplace, several other tools

were almost immediately released, including Kate [25], CBR-Works [26], CBR-

tools [27], etc.

In Europe, research on CBR was taken up a little later than in the US. The CBR

work seems to have been strongly coupled to expert systems development and

knowledge acquisition research than in the US. Between 1988 and 1992, Michael

M. Richter and his group developed the PATDEX system [28] in Europe at the

University Kaiserslautem in Germany. The main purpose of this system was to

use CBR to do technical diagnosis. In 1990, Ramon Mantaras and Enric Plaza

developed a case-based reasoning system for medical diagnosis [29]. In 1991,

Angar Aamodt developed the system CREEK [30], at the University Trondheim

in Norway. This system emphasized the integration of cases and general

knowledge.

The history of CBR is not a long one compared to other knowledge-based systems

such as mle-based expert system or logical programming. Since the theory of

CBR is intuitive nature and the relevant implementation of CBR applications is

simple, a number of CBR applications have been built in a wide range of domains

during nearly a decade, including financial analysis, risk assessment, technical

maintenance, quality control, medical diagnosis, and software support systems.

J
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3.4. CBR Cycle

The most popular process model for CBR is shown in Figure 3-1. It is called CBR

cycle [13]. As the highest level of generality, the CBR cycle provides the

fundamental guideline of CBR implementations. As shown in Figure, the CBR

cycle consists of four major sequential processes, which are the retrieval process,

the reuse process, the revise process and the retain process:

Retrieve the most similar case to the new problem.

• Reuse (adapt) the information and knowledge in that case to solve the new

problem. The selected best case has to be adapted when it does not

perfectly match the new problem.

Revise (evaluate) the proposed solution. A CBR usually requires some

feedback by asking a human expert to know what is right and what is

wrong.

Retain (learn) the part of this experience that it is likely to be saved into a

case base for ftiture problem solving. CBR can learn from either

successful solutions or failed ones.

J

In Figure 3-1, the event that fa-iggers the whole process ofCBR is the appearance

of a new problem; the first step is to retrieve a case that is the most similar to the

new problem from the case base. For this step, it is necessary to have an effective

procedure that explores the case base and assigns similarity value to each case. As

we assume that similar problems have similar solutions, we can simply reuse the

solution enclosed in retrieved cases. Although the retrieved case is the most

similar one to the new problem, it might not be identical. If necessary, adaptation

could be done in the reuse step by slightly adjusting the past solution to account

for differences between the two problems. In reality, it is not always so easy to get

a reliable solution. Therefore, it's very important to evaluate the suggested
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solution from the revise step. After evaluating the result, if the adapted solution

works, the last step is to retain the valuable confirmed solution and the problem

just solved as a new case. If the solution fails, in this situation, the new case is

formed with the problem just solved and the repaired solution, so that the same

failure can be avoided next time. The new case will be available for retrieval in

later problem solving. As indicated in the Figure, general knowledge plays a part

of role in the case base to support the CBR processes. General knowledge usually

means general domain-independent knowledge, as opposed to specific knowledge

embodied in each case. This support may range from very weak (or none) to very

strong depending on the type ofCBR applications.
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As a matter of fact, not all CBR applications use all of the above steps. In some,

there is no adaptation step; the retrieved solution is already known to be good
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enough without modification. In others, there is no case retain step; the case base

is mature and provides adequate coverage for problems in the domain.

31

In general, CBR applications are often divided into two classes: classification or

decision suggestion. The applications of CBR classification use prior cases as

reference for classifying new problems. For classification tasks, all necessary

information has to be available when the CBR process starts. The solutions of

CBR classification are clearly defined. The CBR processes map the new problem

to a set of given cases, which can be looked at as static goal definition. Examples

are risk assessment, technical and medical diagnosis. The applications of CBR

decision suggestion use prior cases to suggest solutions that might apply to new

circumstance. The applications of CBR decision support are different from the

classifications by the necessity of representing more general knowledge and the

allowance of users' interaction to a very high degree. Normally, users are required

to answer a list of questions that helps narrow the number of cases. The more

accurate solution is generated from dynamic goal definition. Examples are

looking for the right financial investment, or travel advisor.

3.5. Major Sub-fields in CBR

On the basis of the CBR process model described above, it is now rather easy to

have clues as to what are the key issues in building a usable CBR application.

First of all, that may be to define how to represent the cases to capture the tme

meaning of the domain. Next, in order to retrieve cases efficiently, it is import to

develop an indexing method to bring back a certain number of similar cases in a

rather short time. Then, it would be to design a robust fiinction to measure the

similarity between the new problem and cases. If the domain is of a kind where it

makes sense to adapt a suggested solution to the actual situation, then another key

issue is the process of adaptation. Later, if necessary, the last issue might refer to

the ability of CBR systems to carry out learning.

J
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3.5.1. Case Representation

Technically, a case is the place where it stores previous experienced situations,

usually including problem descriptions, solutions and outcomes.

Problem descriptions: The state of the world while the case was happening

and what problem needed to be solved at the time.

Solutions: The state of derived solution to the problem.

Outcomes: The state of the world after the case occurred.

Another way to describe case representation is to visualize the structure in terms

of the problem space and the solution space [31]. Figure 3-2 illustrates the

structure space. According to this stmcture, the description of problems resides in

the problem space. The retrieval process identifies a set of relevant features

between the descriptions of a new problem and solved problems. The CBR

systems use similarity functions to find the closest matching one. As soon as the

matching case is found on the problem space, a link contained in that case can

immediately reflect its solution on the solution space. The solution may be

adapted or directly used to solve the new problem.

J
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3.5.2. Case Retrieval

Case retrieval is a process that a retrieval algorithm retrieves the most similar

cases to the current problem. The case retrieval requires a combination of search

and matching. In general, two techniques are currently used by commercial CBR

applications: nearest neighbour retrieval and induction retrieval.

3

Nearest neighbor retrieval is the most popular method to measure

similarity. Nearest neighbor retrieval is used to calculate the similarity

between a new problem and past cases in the case base. Both the new

problem and the cases consist of a list of attributes or objects with values.

The algorithms of nearest neighbor retrieval determine the similarity

between the new problem and the cases in terms of these values. The
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nearest neighbor algorithms all work in a similar fashion starting from the

local similarity measure. The local similarity is the computation similarity

upon same attributes between the new problem and the past cases. The

calculations depend on the type of attributes. Similarity can be calculated

for either numeric values or non-numeric values. The following are

common methods to calculate local similarity:

Local Similarity

Numeric sim(a, b) =
\a-b\

range

Symbolic sim(a, b) =
1 if a=b
0 if a^b

Where range is the absolute value of difference between the upper and

lower boundary of the set.

Once a set of local similarities has been calculated for each attribute, then

the nearest neighbor algorithms go to count the global similarity. A typical

equation is used to compute the global similarity [32] as below:

J

Global Similarity:

Weight Block-City:
n

T,w,xsim(a^b)
sîmiîarity(A,B)=^L-

£w;
1=1
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n Where sim is the local similarity function, and a; and 6; are the values for

attribute i in the new problem and the selected case respectively. This

measure may be multiplied by a weighting factor w,, which indicates the

importance of the value of this attribute in the case. Then the sum of the

similarity of all attributes is calculated to provide a measure of the

similarity of that case in the case base. This calculation is repeated for

every case in the case base to rank a similarity value to the new problem.

The final result of nearest neighbor algorithms is usually normalized to

fall within a range of zero to one where zero is totally dissimilar and one is

an exact match.

Figure 3-3 displays a simple example for nearest neighbor algorithms. In

this two dimensional space, case3 is selected as the nearest neighbor

because similarity (NP, case3) > similarity (NP, easel) and similarity (NP,

case3) > similarity (NP, case2).

Attribute2

NP - New problem

Casei ^ Similarity (NP.Casel)
s\^
\

\ NP
Similarity (NP, Case3)

Case3

\
Case2 Similarity (NP, case2)

-*-Attribute1

Figure 3-3 Nearest neighbor algorithms

J

Induction retrieval is a technology that utilizes a collection of sample

cases as patterns to solve new problems. The sample cases, often referred

to actual historical data or synthetic cases, can be organized into a decision



36

0
tree type stmcture. The induction algorithms identify patterns amongst the

sample cases and classify a new problem into clusters. Each cluster

contains the cases that have at least one attribute similarly. A requirement

of induction is that the attributes of the sample cases are well defined. This

approach is very usefiil when a single attribute in cases is required as a

solution, and that attribute is dependent upon others. Here is a completed

decision tree (see Figure 3-4) generated from the data in Table 3-1. The

task is to predict the health status of people according to three attributes,

including ages, physical activities and smoking.

Case

No.

Health

Status
Ages

Physical Activity

(Average hours per

week)

Smoking

(Cigarettes per day)

Case

l
Good 34 7 5

Case

2
Very Bad 44 2 25

Case

3
Bad 25 20 0

Case

4

Very

Good
36 4 8

Table 3 - 1 Sample Cases

0
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Figure 3-4 Decision tree

If a new problem were presented as shown in Table 3-2, to determine the

health status of this case, the algorithm would traverse the decision tree

and search for the best matching case in the case base. For the given age,

the algorithm first chooses the left branch. After this, the algorithm

traverses to the node of physical activity and selects the right branch

according the average hours per week. The algorithm can therefore predict

that the best matching case is the Case No. l, in which the case suggests

that the health status of this person is good because the status of Case No. 1

is good.

Case

No.

Health

Status
Ages

Physical Activity

(Average hours per

week)

Smoking

(Cigarettes per day)

Problem I ? 28 10 10

Table 3 - 2 A new problem

'J
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The induction retrievals are useful where the reu-ieved goal or the case pattern

is well defined and there are enough of the sample cases of each type of goals

with which to perform inductive comparisons.

Nearest neighbor retrieval and induction retrieval are widely applied in CBR

applications and tools. The choice between two of them in CBR applications

requires experience and experimentation. Usually, it is a good choice using

nearest neighbor retrievals without any pre-indexing [31]. If retrieval time

becomes an important issue, induction retrieval is preferable, because the retrieval

time using inductive index trees is extremely quick and only increases slowly as

the number of cases in the case base increases. However, induction retrieval has

one major disadvantage: if data in the new problem is missing or unknown, it may

be impossible to retrieve a case at all. In some CBR tools, both techniques are

used: inductive indexing is used to retrieve a set of matching cases, then the

nearest neighbor algorithm is used to rank the similarity of cases in the set to fit

the new problem.

3

3.5.3. Case Indexing

Any system that is performance based on the selective use of items from a large

amount of data must find some way to organize that data so that the right items

can be found at the right time. In CBR, this problem of how to ensure effective

selective retrieval goes by the name of the index problem [38].

The retrieval of cases is closely related and depends on the indexing method used.

The simplest way of doing case retrieval is by sequential search. Clearly, this

cannot be recommended for larger amounts of cases. Therefore, more complex

problems need one or more index structures to be built, and cases are then

searched through traversing the respective index structure. Case indexing involves

assigning indexes to cases to facilitate their retrieval. The CBR community

proposed several guidelines on indexing [33]:
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Indexes should be predictive, that is, they should address the purposes the

case will be used for.

Indexes should be abstract enough to allow for widening the future use.

Indexes should be concrete enough to be recognized in future.

3.5.4. Adaptation

After a CBR system retrieves the most similar case from case base, it might

perform adaptation on the retrieved case. There are several adaptation sta-ategies

that can be used in CBR systems. Some of them are overviewed here.

• Null adaptation: a direct simple technique that applies whatever solution is

retrieved to the current problem without adapting it. Null adaptation is

useful for problems involving complex reasoning but with a simple

solution.

Simple substitution: a structure adaptation technique that compares

specified parameters of the retrieved case and the current problem to

modify the solution in an appropriate direction.

Consta-aint satisfaction: this method requires a set of constraints to be

stored in cases. The adaptation process is accomplished by checking the

constraints back and forth to decide whether or not the solution of the case

satisfies the constraints of the new problem.

D
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Clearly, the above strategies are very helpful in designing adaptation process.

However, so far, generic adaptation methods or algorithms have never yet been

exposed. The practical methods of adaptation are still domain-dependent.

3.5.5. Case Evaluation and Learning

Like case adaptation, evaluation of the goodness of retrieved cases may become a

problem for CBR applications, because evaluating candidate solutions may

require a considerable general domain knowledge and reasoning effort. Although

the methods of case evaluation have been developed to judge the quality of

solutions in some types of case base, providing the right general evaluation

methods is still difficult [14].

A commonly used definition of machine learning is: A learning machine is one

that is able to modify itself in such a way as to improve its future perfonnance,

either by increasing the efficiency or accuracy by which it performs one of its

current tasks, or by allowing the system to perform some new task that it was

unable to perform previously [9].

A CBR learns after case evaluation and possible repair by retaining relevant

information from a problem just solved. The learning of CBR can be preformed

based on either the success or failure of the proposed solution. A CBR learning

process can be a combination of adding a new case to the case base, modifying an

existing case in the case base, or removing an existing case from the case base.

D

CBR as a learning paradigm has several technical advantages. One advantage has

already been stated, since newly solved problems can be stored in the case base as

new cases for later use; then, in the future, when a problem has similar

characteristics, the solution to this problem will be remembered but not

recomputed. Other advantages are that CBR applications are able to become more

competent over time - the same mistakes can be avoided.
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Chapter 4.

Fault Detection and Diagnosis in AHU

4.1. Overview

This chapter addresses the domain problem of AHU and strategies for performing

the diagnostic task. In section 4.2, the motivation of fault detection and diagnosis

is introduced. In the following section 4.3, the AHU system description is given.

The functionality of each single element in AHU is described. Section 4.4 states

two possible approaches to fault diagnosis. Section 4.5 explains the fault detection

and diagnosis scheme and illustrates some typical failures in AHU, so that they

can be detected according to the scheme that we proposed. Section 4.6 introduces

the architecture of the FDD tool that we developed. Actually, the fault detection

and diagnosis in AHU is combined with two tasks, which are fault detections and

fault localizations, respectively. This thesis concentrates on fault diagnosis in

AHU by using CBR methodology. The reason for choosing to use CBR

techniques for this application is that the domain knowledge of AHU is exta-emely

incomplete, and it is almost impossible to generalize a complete causal model. In

J
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section 4.7, the benefits of using the FDD tool to solve detection and diagnosis

problems in AHU are discussed.

4.2. Motivation of Fault Detection and Diagnosis

As a result of economic and population growths, energy use in modem buildings

has increased rapidly in recent decades. Energy saving has become an important

issue since the Global Energy Crisis. HVAC systems are responsible for a

significant part of total energy consumption in the world. A HVAC system is

typically composed of an AHU and several VAV boxes. As the central equipment

of the HVAC system, AHU systems have a major impact on the total energy

consumption in the HVAC and the assurance of comfortable conditions in the

building space. Due to the complexity of AHU and the long period of running

time, faults occurring in AHU systems are common, such as sensor drift, stuck

damper or fan failure. All kind of failures can lead to excessive energy

consumption, discomforts to human occupants, and increasing premature wear on

control equipment.

J

Over the past decade, due to the reduction in cost and greatly increased capability

of computers, the applications of a building energy management system (BEMS)

to control AHU systems based on computer auto-control technologies have been

widely adopted. AHU systems can be equipped with numerical sensors and

computerized control units. The measured signals of all elements in an AHU are

currently available in BEMS, which seems to have sufficient capability for

monitoring system behaviors. Unfortunately, since these is little effort to isolate

the monitoring information into direct and clear data analysis tools, building

operators are not always able to notice that the system is running in unexpected

manner. Such unexpected performance could go unnoticed for long periods of

time. Damages may have been done if one waits until building occupants

complain about the lack of comfort. Therefore, there is a high demand for

developing a fault detection and diagnostic tool (FDD) to assist building operators
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in maintaining the optimal performance of AHU systems. The FDD is used to

continuously monitor the performance of an AHU in terms of all the information

input fi-omBEMS.

4.3. AH U System Description

The principal task of AHU is to deliver an appropriate air condition requested by

human occupants in the building space. This task has to be accomplished in a

reliable and economical way. Normally, the AHU systems consist of outdoor,

mixing and exhaust air dampers, cooling and heating coils, an air filter section,

supply and return fans, and a humidifier. A simplified schematic diagram of an

AHU is shown in Figure 4-1. Outside fresh air from a supply air damper suck up

to the building, pass through cooling, heating and humidity controllers so that the

air can be moisturized, cooled down or heated up, then a supply air fan blows the

air into the building space or rooms. At the same time, the air is also pulled back

by a return fan from the building space and discharged to the outdoors from an

exhaust air damper. A small amount of return air mixes with fresh air in a mixing

box to re-enter the building space through a mixing air damper.

J
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Figure 4-1 AHU schematic diagram

In AHU, all of the controllers and sensors can be grouped into four major control

loops, including air pressure, airflow, temperature, and humidity. Each control

loop is adjusted by a direct digital control system (DDC) with proportional

integral derivative (PID) algorithms. The static pressure in the supply duct is

controlled to maintain a constant static pressure at each room inlet by air volume

sensors, supply and return fans. The desired return airflow (calculated by using

supply airflow minus both the airflow through the return fan and the amount of

airflow required for building pressurization) is compared the actual return airflow

and the difference is controlled by the return fan with a variable speed. The

supply air température is controlled to maintain an appropriate temperature by

cooling or heating coils. An enthalpy control economizer allows cooling with

cooler air, and humidification is provided to maintain proper humidity in the

return air during the winter [34]. Depending on the outside air temperature, three

standard working operation modes in an AHU can be chosen.
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Heating operation: Once the cold season is coming, hot water is supplied

to the heating coil in the AHU. This coil heats up the supply air so that

wann air can be sent to all the building space.

Cooling operation: Once the hot season is in full swing, chilled water is

supplied to the cooling coil. This coil cools down the supply air so that

cool air can be sent to all the building space.

Free cooling operation: During certain times of year, the cooling

required by the building space can be satisfied by the outside air

temperature directly. In this case, both the outside and exhaust air dampers

are fully open. That is an economical way to provide acceptable air

conditions to the building space.

4.4. Approaches to Fault Diagnosis

The approaches to fault diagnosis can roughly be classified into two categories:

model-based and knowledge-based diagnosis systems.

Early efforts at developing diagnostic tools have primarily focused on model-

based systems. The concept of model-based diagnosis is based on analytical

redundancy [35]. Model-based systems use the information from mathematical

models in terms of the physical laws or empirical data of the system to generate a

shadow system or simulation system to an actual system. The type of models

generally may be first principle or black box. For both models, the generic

information about the simulation process is embodied in the equations. In the first

principle models, the parameters that appear in the equations are used to represent

one physical item in the system. By contrast, the equations in the black box are

indented to be general enough to model. The simulation system, based on a

computational model, is built to mn in parallel to an actual system.

D
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n Model-based diagnosis systems characterize failures as deviations from the actual

system and the computational model simulation system. Both systems during

execution have the same input. The output from model-based systems should be

the same as that of the actual system (if not, the model has to be modified). The

difference between the simulation model and the actual system is called residual.

The process to create the residuals is called residuals generation, shown in Figure

4-2. The residuals are used to detect the fault if one occurs in the system.

Theoretically, when the system runs under normal conditions, the residual will be

zero, and any fault occurring in the system will make the residual non-zero.
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Figure 4-2 Model-based diagnostic systems
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During the utilization in practice, several shortcomings of model-based diagnosis

systems have been revealed. First, notice that the competence of model-based

diagnosis systems crucially depends on the model to generate the prediction of the

actual system. However, it is very difficult to obtain an adequate model to

represent the real and complex systems. Secondly, the computational model in

model-based systems usually relies on the control laws used in the actual system.

If any changes happened in the control strategy of the actual system, the relating
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model would become inadequate or even useless. Thirdly, most model-based

systems require a long time to carry out tuning in order to identify the simulation

model. These factors all add cost to model-based diagnostic systems that limits

their practical applications.

By contrast, knowledge-based systems, including rule-based expert system and

CBR, often result in an easier way to construct and have enough flexibility to deal

with incremental requirements. Fault detection and diagnosis scheme determining

normal or abnormal situations in systems can be defined in a way as being

independent of control laws.

4.5. Fault Detection and Diagnosis Scheme

By means of FDD, Fault detection is the determination that the operation of the

building is incorrect or unacceptable in some respects, whereas, fault diagnosis is

the identification or localization of the cause of failure. To carry out FDD relies

on how to define the abnormal or normal behaviors of AHU, because raw

information directly given by the BEMS system does not suffice to know whether

the system can mn under an expected situation or not. The FDD scheme is a sort

of reference to indicate whether the actual performance is satisfied. In this thesis,

we use the calculation of the difference between the actual measured sensor

values and variable control signals, or certain set points, as the FDD scheme;

namely, residuals or innovations (we should not get confused with those residuals

which are different from the ones that we explained in model-based systems. The

data used to calculate the residuals here all come from the AHU itself, not

somewhere else). The residuals can be looked at as signatures or symptoms to

identify a particular fault. The process of fault detection is used to continuously

compare the deviation of the residuals to predetermined thresholds. Faults are

detected once a specified threshold limit is exceeded. Faults diagnosis is a task of

finding the causes of symptoms or malfunctions. The diagnostic procedure can

J
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also use a residuals list of behavior characteristics to infer the cause of

malfunctions.

4.5.1. Residual Description

The data inputting to the FDD tool are all from the BEMS for controls and energy

monitoring. The input data is divided into three parts. The first part is certain set

points, such as supply air temperature set point and return air humidity set point,

which are entered by building operators to indicate an expected air condition. The

second part is the measured sensors data from the AHU, such as supply air

temperature, mixing air temperature, return air temperature and return air

humidity, which reflect the actual miming situation of the AHU. The third part is

the control signals and feedback generated by variable control units in the AHU,

such as the status of the air dampers, fan speeds, steam and chilled water valves

and positions.

Basically, the residuals are defined as the difference between actual measured

values and control signals, or associated set points. There are ten residuals

existing in current AHU systems.

Air Température

The residual of the supply air temperature, RSAT is defined as

RSAT=TSA-SPSA;

Where TSA is the sensor value of supply air temperature and SPsA is the

supply air température set point.

J

• Temperature Controllers

The residual for the heating coil valve RHCV is defined as the difference

between the control signal CHCV and the measured status of the valve

SHCV.

RHCV = CHCV - SHCV;
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The residual for the cooling coil valve Rccv is defined as the difference

between the control signal Cccvand the measured status of the valve Sccv.

RCCV = Cccv - Sccv;

• Damper

The residual of the outside air damper ROAD is defined as the difference

between the control signal CQAD and the measured position of the damper

POAD.

ROAD = COAD - POAD;

The residual of the return air damper RRAD is defined as the difference

between the control signal CRAD and the measured position of the damper

PRAD.

RRAD = CRAD - PRAD;

The residual of the mixing air damper RMAD is defined as the difference

between the control signal CMAD and the measured position of the damper

PMAD.

RMAD = CMAD - PMAD;

FAN

The residual of the supply air fan RSAF is defined as the difference

between the control signal CSAF and the measured value of the fan speed

SSAF.

RSAF = CSAF - SSAF;

The residual of the return air fan RRAF is defined as the difference between

the control signal CRAF and the measured value of the fan speed SRAF.

RRAF = CRAF - SRAF;

J Humidity
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The residual of the return air humidity, RRAH is defined as

RRAH = HRA - SPpA;

Where HRA is the return air humidity and SPpA is the return air humidity

set point.

The residual for the humidifier control RHC is defined as the difference

between the control signal CHC and the measured status of the valve SHC.

RHC=CHC- SHC;

The process of fault detection is used to continuously perform threshold checking

by calculating the deviation of the residuals to thresholds. The thresholds can

usually be determined from pre-defined values. The concept of threshold is very

straightforward. If a residual is greater than an upper limit threshold limit, or is

lower than a lower threshold limit, then the process shows that the AHU system is

out of the normal state and a fault is presumed to have occurred.

4.5.2. Faults Description

How do the residuals work? In this section, some faults denoting typical failures

in an AHU system are described. The dominant residuals of each fault are also

described.

J

• Example one: There is a failure of the supply fan. During normal

operation both the supply fan and the return fan are controlled to maintain

a static pressure in the air duct. The fault causes the supply fan rotational

speed to decrease so that the supply air pressure decreases, and the control

signal to the supply fan raises automatically in an attempt to offset the

decreasing supply air pressure. At the same time, the control signal for the

return fan decreases in order to maintain the airflow between the supply

and return air ducts; however, this condition cannot be achieved due to the

failure of the supply fan so that the dominant residual of RSAF and RRAF
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will finally exceed the limit of the threshold. In addition, because there is

no airflow, the supply air temperature also goes up gradually, as a result,

the temperature control coil RHCV or Rccv (heating or cooling, depends on

what mode is on) and the supply air temperature set point RSAT might be

outside the normal range as well.

Example two: There is a failure of the return fan. The fault causes the

return fan rotational speed to decrease to zero, so that difference of airflow

between the supply and return ducts increases, and the control signal to the

return fan raises to its maximum value in an attempt to offset the

increasing flow difference. However, this condition cannot be achieved

due to the failure of the return fan. Thus, the dominant residual for this

fault is RRAF.

Example three: The stuck of heating or cooling coil valve causes supply

air température to decrease or increase gradually. In an attempt to offset

the difference between the supply air temperature and associated set point,

a control signal is sent to the coil valve to compensate. However, as the

valve is stuck, the position does not change. Over time, RHCV or Rccv, and

RSAT could be outside the normal value for this fault.

Currently, there are at least thirty faults declared in AHU. It is no surprise that

some of them might have the same list of dominant residuals. Using this FDD

scheme makes it possible to reveal all potential faults, but it is obviously not good

enough to isolate the cause of failure, as this scheme is not able to identify the

fault unambiguously; extra knowledge of the AHU is needed.

J

4.6. Architecture of the FDD Tool

Rule-based expert systems are an efficient way to perfonn deduction; as rule-base

is well designed, it is able to make a decision quickly; CBR systems are often
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n suitable for where expert systems find it hard to generate the mles from the

incomplete theoretical basis of domains. In this project, these two approaches are

integrated into a powerful FDD application. We maintain the power of the mle-

based expert system and CBR system in reasoning with knowledge, respectively.

We believe it can significantly enhance the ability of the FDD tool. The

architecture of the FDD tool is shown in Figure 4-3.

For fault detection, it is only necessary to determine whether the performance is

incorrect or unsatisfactory. The knowledge of how a particular fault affects

performance is not required. Since the existence of the FDD scheme, a mle-based

expert system is suitable for the generalization of all the definitions of residuals as

decision mles to determine all possible faults in the AHU. In fact, a rule-based

expert system based on the FDD scheme has been developed successfully by

CEDRL. This rule-based expert system is primarily intended to detect all possible

faults as well as provide a low-level diagnosis. In other words, the main goal of

this expert system is that it emphasizes the fault detection by using mles

deduction and has some basic diagnostic support.
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Fault diagnosis is more difficult than fault detection because it requires a more

detailed analysis of residuals and associated information to determine which of

the possible causes of faulty behavior are consistent with the observed behavior.

Due to the dynamic behavior of AHU is non-linear and poorly understood, it does

not suffice to explain the interaction among all of the elements in AHU if it only

depends on the FDD residuals scheme. The different faults might produce the

same symptoms (residuals), and the causal infonnation for why elements fail is

incomplete. In this case, using a mle-based expert system as a diagnosis system

would be difficult, and is likely to produce incomplete or inaccurate results.

Moreover, all elements in AHU take affect in a single duct so that the control

behavior can be heavily influenced each other, thus, it has to look over all the

detailed information of entire system to determine a fault. As a result, we decided

to use CBR techniques to achieve the task of fault diagnosis.

CBR diagnosis systems are able to express specific and concrete diagnostic

information as cases. A case is a single instance of the experience of the AHU.

The process of retrieval is to search the entire case base and compare each case

with a given problem. The comparison between the case and problem not only

limits checking to the list of residuals, but also makes possible the calculation of

the similarity measure more specific; because of this, no infonnation about the

AHU is lost in the cases; all the information of individual experience is still

available in the case base. Lastly, there is plenty of time-series data produced by

building energy management systems (BEMS) during the monitoring period. All

these data can be easily transformed into cases.

J

4.7. Benefits of the FDD TOOL

The capability to rapidly detect and diagnose faults enables us to optimize the

real-time performance of the AHU so that the whole system can operate in the

intended manner. Some of benefits are summarized as below:
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• The indoor environment is more comfortable and healthy.

J

• Diminishment of the work complexity of building operators.

• Reduction in energy consumption.

• Longer equipment life

Maintenance costs reduced
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Chapter 5.

CBR Diagnosis System

5.1. Overview

This chapter gradually introduces the CBR approach to the design of a diagnosis

system for the AHU. Our approach is based on the expressiveness of unified

modeling language (UML), which is the standard of an object-oriented modeling

language. We created a set of diagrams in UML notation illustrating the each step

of the CBR process that we developed. Once more, the major intention of this

thesis is not only to develop a prototype of a CBR diagnosis system for the AHU,

but also to construct a generic diagnostic framework for various kinds of domains.

The basic idea is the development of a reusable and extensible enviromnent that

integrates a domain-independent case representation model with a skeleton of

reasoning processes. Section 5.2 explains the prototype of the CBR diagnosis

system. Section 5.3 introduces unified modeling language (UML), which is used

to achieve all design tasks. Section 5.4 shows the development of the CBR

fi-amework.



56

n

5.2. Prototype of CBR Diagnosis System

After stmggling a long time to investigate the domain, the system requirements

and basic functionalities of a diagnosis system finally became clear. Now it is the

time to put in place the first brick. In the prototype of the CBR diagnosis system

that we proposed, two aspects of the design tasks are addressed: one as a case

representation and another as a reasoning process. Before explaining the design

tasks in detail, the whole picture for this prototype is illustrated in Figure 5-1.

J
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Figure 5-1 Prototype of CBR diagnosis system

J
Case representation is used to capture certain means of the domains. In this

prototype, we use the object-oriented concepts to realize domain modeling.
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Object-oriented modeling is a promising technique since it is considered to be

conceptually mature and expressive enough to represent various types of domain

knowledge. As shown in Figure 5-1, going through the case representation layer,

a query problem and previous available data are formulated into a unique case

representing structure. The available data denotes previous experiences that come

from the BEMS and rule-based expert system. CBR systems have a basic problem

that they cannot work alone if there are no available experiences, especially, in

the initial running period of CBR systems. So before CBR systems are ready for

miming up, the previous experiences about the AHU has to be refined and

ù-anslated into a collection of completed cases (case base). A completed case

consists of problem descriptions and a known solution. The query problem

denotes the current situation of the AHU that comes from the enviromnent, more

specifically, from the BEMS. During running time, the query problem also needs

to be translated into the new problem that has the same representing structure with

the completed case, but without the solution, which we should figure out by

comparing the problem descriptions between the new problem and the completed

cases.

The reasoning process that we defined in this prototype is fundamentally based on

the CBR cycle, even though we are still far from reaching its full coverage. The

reasoning process started by the following steps:

Step 1. Obtaining a new problem as input.

J

Step2. Retrieving several completed cases that best match the new

problem. K-nearest neighbor algorithm is chosen to rank a similarity

value to each completed case. The completed case with the highest value

is selected as a target case. The fault number enclosed with the target case

is proposed as the solution without adaptation.
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Step3. Evaluating the solution by human experts. If the proposed solution

is accepted, the reasoning process will stop with success. If the solution is

rejected, the process will ask human experts to repair the case and add it to

the case base.

In the CBR approach, the process of adaptation by slightly changing the proposed

solution to fît better with the new problem is the one of key issues in development

of CBR applications. However, the diagnostic solution in this prototype is only

about the fault number. The meaning behind this number is explained by the

expert system. Because the solution is too simple, any small change is likely to

mean that the result by the retrieval phase has to be changed. Consequently, we

did not develop the adaptation process since it appears that it is not relevant to the

current requirement of the diagnosis system. Moreover, the process of adaptation

could be involved if we were asked to go further and to provide the solution of

how to fix failures in the AHU.

As it is the first version of the CBR diagnosis system, this prototype needs to

involve the human experts who vote for whether the solution is correct or not. The

human experts are also asked to modify the target case if the solution is not good

enough. To automatically evaluate the solution and to perform learning that

concerns how to make good use of the general domain knowledge will be

discussed in fiiture works and realized in a later version of the diagnosis system.

D

5.3. Unified Modeling Language (U ML)

By illustration in the last section, the major design tasks can be separated into two

aspects: one is to design the case representation that is used to conceptualize and

represent the domain problem; another is to design the fiinctionalities of the

reasoning process that is used to manipulate the representation of the problem in

order to draw a solution. Both of them need to have a good design model, which
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is extremely helpful to make better understanding of domain concepts and to

simplify program development.

In this thesis, we utilized UML as a modeling language in case representation and

the reasoning process design. The UML is a language for specifying, visualizing

and constructing the artifacts of a software system [36]. Besides, UML is a

general notation system aimed at modeling system using object-oriented concepts.

The UML provides several diagrams for almost every sort of situation we need to

deal with in software designs. The power of using UML to support the

development of CBR applications not only limits the case representation and the

reasoning process design, but also spreads to all phases of system implementation.

Object-oriented modeling techniques are intimately related with incremental

development and reuse. The application based on the object-oriented modeling

techniques can be easily update with the times, since the changes in a part of the

code of some classes have a minimum effect in the rest of the classes. Likewise,

object-oriented modeling techniques have proven to be flexible and efficient in

handling complex problems. They are able to support a different level of

abstraction to explicitly express domain knowledge in a class hierarchy instead of

a simple structure tree, and fit to various different types of domain. Furthemiore,

UML is an industry standard modeling language supported by the Object

Management Group (OMG) and broadly recognized by the software industry.

More importantly, there are several well-known tools in terms of UML, such as

Rational Rose and Together-J, which usually provide a convenient graphical

interface, and a powerful procedure for generating source code, especially in Java

as we have chosen it as an implemented language. Using the same implemented

language both in the case representation and the reasoning process facilitates the

development of a computer program that manipulates the data in the

representation.

D
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5.4. CBR Framework

To gain higher reusability during the development of a CBR diagnosis system for

an AHU, we are also concerned with building a generic CBR diagnostic system

for various kinds of domains. The basic idea is to integrate a domain-independent

case representation stmcture and a skeleton of reasoning engine into a framework.

The greatest desire for this framework is to facilitate the development of later

CBR applications by reusing previous designs and implementations.

A practical and useful framework basically consists of two types of software

entities: classes and methods. Both kinds of entities in object-oriented concepts

are not independent but they reflect two different reusability issues: the reuse of

abstract data types and the reuse of functions. In our CBR framework approach,

we defined two types of classes: one including a set of abstract classes

corresponding to a generic case base structure, and the other also including a set

of abstract classes corresponding to common and popular reasoning methods.

With object-oriented concepts in mind, it is necessary to declare a set of interfaces

to make boundaries among those classes. During the execution, the manipulation

of an object is only possible through its defined interface. The variables and

methods in the classes are hidden. As a result, the implementation can be changed

without affecting the existing program code that uses the interface of the classes.

D

Because the CBR framework is supposed to be reused in various kinds of

domains, it should try to keep as general as possible. However, since CBR

applications always use specific domain knowledge to solve problems, sometimes

there is no evidence of distinguishing domain-specific and domain-independent

knowledge in CBR applications. What information should be kept generalized

and what should remain customized, and how should we build a map over this

gap between the domain-specific and domain-independent knowledge? This is a

crucial problem in developing a generic framework for CBR applications.
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As mentioned above, the CBR framework is composed of the case representation

and the reasoning procedure. The following Figure 5 -2 is a simplification of the

description of our design.

l l l l
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5.4.1. Case Representation

For the sake of the generalized and specified, we divided case representation into

three-layers as shown in Figure 5-3. The top layer in this case representation is the

package of the Case-Base, which emphasizes the conceptual structure of the case

base rather than the domain specific. A case in the case base mainly contains the

case identification, problem description, and associated solution. In contrast with

the Case-Base, the package of the Domain-Object in the bottom layer is used to

represent individual domain concepts, which has to be customized according to

each particular domain. In a given domain, The Domain-Object denotes a

collection of physical elements in the AHU, such as dampers and fans. Moreover,

in the middle layer, we defined a package called Object-Network, which is able to

make the connection between the package of the Case-Base and Domain-Object.

The problem description in cases has a composition relation with one Object-
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edges. The nodes map directly to the objects defined in the Domain-Object. The

Object-Network in each case has a one-to-more relation represented as an edge

that relates to the nodes. The nodes are reachable from the edges. Each edge in the

Object-Network is associated with a numerical weight value, which expresses the

importance of this node (or this domain object) as a member to the particular case.

Case-base

Acase

Case Œ)

Solution

Problem

Object-
network

->

•st:

M

Domain-

independent

tgect-lg
Netei|m|jl||

Domain-

object

<as!

1^11

»

Domain-

dependent

J

Figure 5-3 Structure of case

Clearly, the Object-Network in the CBR framework plays a role as a bridge in

that it links up the domain-specific and domain-independent knowledge. The

packages of the Case-Base and Object-Network are considered to be reusable in

the CBR formwork, since there is nothing concerning with any particular domain

knowledge but a basic skeleton of CBR representing structure. It could only be

necessary to redesign the part of Domain-Object if changing a domain problem.

The design of reasoning processes could also be domain-independent, since it

only refers to the Object-Network.
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Figure 5-4 Case representations

In Figure 5-4, the stmcture of the entire case base is illustrated. With this case

representing structure, it would be abstract enough to achieve a higher degree of

reusability and concrete enough to represent domain knowledge more accurately.

The advantages of this case representation are suinmarized as below:

The structure of the case base is flexible and extensible, since any domain

concepts can be connected to the cases.

• The case base can be tuned up during execution, since the modification of

cases is so simple; it is only concerned with changing the definition of the

edges in the Object-Network.

The design of reasoning processes could be domain-independent, since it

only refers to the Object-Nefrwork.

J
The system can handle incomplete problem queries, since the associated

weight is sensitive to the missing and noisy members.
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In addition, the design concepts of the case representation remain simple

and clear. It is easy to perform learning without changing the program

codes.

5.4.2. Reasoning Process

After the designing of case representation, the emphasis of the phase of

development is now on how to operate the knowledge that is encoded in the case

representation so that a reasonable result can be drawn. To satisfy the basis of

case reasoning, several popular similarity functions are integrated into the classes

of Distances and Algo, such as the classical nearest neighbor, k-nearest neighbor,

and so on. In the way of case representation that we designed, it allows the

methods of the reasoning process to be domain-independent in the CBR

framework, and it still keeps open to add new reasoning methods.

The reasoning process starts from the appearance of a new problem. To speed up

the case retrieval and reduce the calculation, a simplified similarity measure is

used ahead. The equation is:

LocalSim{Op,Oc)
fl if 0,=0,
[0 if 0,^0,

J

Where Op and Oc indicate a domain object contained in new problem and case,

the return value of function is one if the type of two domain objects are identical,

otherwise, the return value is zero. Clearly, this simpliiy measure does not offer

much information about similarity, but it gives a quick look at the case base to

check which case holds the same domain objects as much as the new problem. A

case quickly becomes disqualified for the further reasoning process as soon as

there are no domain objects contained in that case that match the new problem.

The qualified cases will continue to calculate the similarity measure by the k-
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nearest neighbor. Details about k-nearest neighbor technology will be explained

in a later chapter. This calculation is repeated for every qualified case in the case

base and normalized to fall within a range from zero to one where zero is totally

different and one is an exact match. If the value assigned to a given case by the k-

nearest neighbor exceeds a lower bound of diagnosis threshold that it locally

defined in case base, then this case is said to be good as a solution. A solution list

including all the cases of value that exceed the diagnosis threshold is ready for

voting on by human experts either in the positive or negative. If the result is

positive, the reasoning process will stop here with success. If not, the process will

ask human experts to repair the case and add it to the case base.

Finally, without providing basic functions supporting such as File I/O and

common algorithms, the framework is incomplete, so that we implement a set of

basic functions in the Utility class.

J
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Chapter 6.

The Implementation of a CBR Diagnosis System

6.1. Overview

In this chapter, the implementation of a CBR diagnosis system is presented.

Section 6.2 introduces the package of the Case-Base and shows the definition of

an individual case. Section 6.3 explains the package of the Domain-Object, which

focuses on the issues of domain modeling. Section 6.4 introduces the package of

the Object-Network, which is the core component of case representation. Section

6.5 illustrates similarity functions, including Minkowsky metric and Euclidean

distance. Section 6.6 discusses the evaluation and learning issues in our approach.

J

6.2. Individual Cases

In the case representation that we proposed, every individual case contained in the

case base is entitled by three interrelated items: a case identification, a problem

description, and an associated diagnostic solution. The visualization of an

individual case is shown in Figure 6-1.
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The case identification possesses an object called Case ID, which

contains a unique label to distinguish one case from others.

The problem description is an abstract Java class, which has a link to

the Object-Network. The Object-Network consists of a set of nodes

and edges. A node denotes a particular domain object in the AHU,

such as a cooling coil valve. The notes are reachable from the edges.

The solution is also an abstract Java class, which contains a unique

fault number indicating what element has failed. For convenience, the

fault number is consistent with the definition of the expert detection

system. Such a fault N0.5 in two systems has the same meaning that

says "sensor failure in return air temperature".

Each individual case is saved in a dimensional vector space. The Ith component of

the vector represents case C;. The whole of the case based is currently saved in a

sequence file. It is also possible to change the case base storage into a database, if

required.

J
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6.3. Domain Modeling

At this level we work with specific domain modeling, which is the activity of

identifying and conceptualizing domain concepts and relationships, and turning

them into a computer understanding language. In general, the process of domain

modeling based on object-oriented techniques may be broken into the following

two steps: finding objects and defining abstraction to classify those objects.

To find an object, or to isolate an object from others is the hardest part of object-

oriented analyses and designs. We need to figure out what knowledge exists in a

domain and how it can be used in problem solving. The objects in domain

modeling can be defined as physical items or abstract concepts. Since the purpose

of a CBR diagnosis system is to find the cause of physical failures, all the objects

that we defined naturally come from the physical components of the AHU or

abstracted definitions of them.

The relationship issue that is not yet discussed is how these objects should be

organized and how they relate to each other. Object-oriented modeling techniques

offer the mechanism that objects can be organized into a hierarchy so that those

objects can together form a structured representation. This hierarchy ser/es to

organize similar objects into groups named classes and then to organize similar

classes into super classes. The objects at any level of the hierarchy inherit all the

attributes and methods of the higher-level objects. This kind of inheritance

mechanism makes it possible to reduce the amount of information that has to be

stored at each level in the hierarchy.

In this thesis, all domain concepts and relationships in the AHU shown in Figure

6-2 are defined in the package of the Domain-Object, which contains the

declarations of domain states, relations, properties and values.

D
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Figure 6-2 Domain objects modeling
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The domain states are used to represent similar concepts of knowledge

that exist individually in the AHU, such as sensor-State, damper-State, etc;

or a few higher level abstracted entities, such as the class of Domain-
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Object, which does not represent any specific knowledge but can be

inherited by other classes. The domain states have a set of attributes

declarations and methods definitions. Every object in the AHU is an

instance of some domain states. For instance, in Table 6-1, the sensors of

return and mixing air temperatures are separately two physical

components in the AHU. But since two types of sensors have same

characters and functionalities, so the two objects are the instance of

sensor-States but different types. All methods on an object are defined in

the domain states of that object, or in the super class of domain states.

The relations describe how the domain states are mutually involved. The

relations can range the domain states into an inheritance hierarchy. This

inheritance makes it possible for the domain states to share attributes and

messages. The class ofDomain-Object is on the top of this hierarchy. All

other domain states are the subclass of the Domain-Object. During

execution, the search for an attribute begins at some level of the hierarchy

and proceeds to the top. Hence, an attribute at a lower level can be hidden

at a higher-level abject. For instance, in Figure 6-3 and Table 6-2, Object-

id is an attribute defined in the class ofDomain-Object; every object that

is an instance of any domain states can access this attribute by a pre-

defined method.

J

The messages describe the interaction between objects and the resulting

changes. The messages in object-oriented concepts can be looked at as

functions or procedures in conventional programming. Usually, a message

is a request to a specific object to invoke one of its methods to perform

certain operations. The same as attributes, the message at a lower level can

also be hidden at a higher-level object. In addition, the message in the

higher-level class can be defined in abstract form, which forces all

subclasses to specialize it in order to provide coherent behaviors for the

overall system. For instance, in Table 6-1 and Table 6-2, a message called
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compare-To that is used to calculate the similarity between two objects is

an abstract class defined in the class ofDomain-Object. Every object that

is an instance of any domain states has to rewrite this function according

to its own attributes.

J

The attributes and default value reflect the feature of domain concepts.

How many attributes should be declared? It depends on the ftinctional

requirements of systems. It will not be necessary to create an exhaustive

detail of each object.
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public abstract class DomainObject extends Object implements Serializable

Hierarchy java.lang.Object

+-domainObject.DomainObject

Direct Known

Subclasses

AirVolume, CirculatingPump, DamperState, EnthalpyState, FanState, HumidifierControlState, Root,

SensorState, TemperatureControlState, WaterSupply

Methods inherited

from class

java.lang.Object

getClass, hashCode, notify, notify All, wait, wait, wait

Fields ObjectID

Unit

String

String

Constructor detail DomainObject public Domain0bject()

DomainObject public DomainObject(String id, String objectUnit)

Method detail CompareTo public abstract float compareTo(DomainObject ob)

/*Compare two domainObject.

Returns: a float of the comparaison */

Equals public boolean equals(java.lang.Object domain0bject2)

/*Compare "this" with another domain object.

This method check only if two domain object are the same type or not.

Returns: Tme if two object networks are the same, false otherwise. */

EucIideanDistance public double EuclideanDistance(DomainObject other)

/*Determine the distance between two domain objects with a known weight.

Parameters: another domain object

Returns: a distance = sqrt [sum(distanceAttribut2 * weight)] */

GetAttributes public abstract float[] getAttributesQ

/*Get all attributes in an array.

Returns: an array with all attributes */

GetObjectID public String getObjectID()

/*Get the id of the domain object.

Returns: the Objectld */

GetObjectType public abstract String getObjectTypeQ

/*Get the type of a domain object.

Returns: the type */

GetObjectUnit public String getObjectUnit()

/* Get the unit of the domain object.

Returns: the unit */

ToString

Association Links

public String toStringQ

/*Convert this object into a String

Returns: a textual description of this node */

to Class java.lang.String

Table 6-1 Domain-Object class
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public class SensorState extends DomainObject

Sensor type: 1 .Supply air température

2.Retum air température

3.mixed air température

4.outside air température

5. Supply air humidity

ô.Retum air humidity

7.outside air humidity

Hierarchy java.lang.Object

+—domainObject.DomainObject

+-domain0bj ect. SensorState

Direct Known

Subclasses

SpecificSensorState

Methods inherited

from class

domainObject.Dom

ainObject

Equals, EuclideanDistance, getObjectID, getObjectUnit

Methods inherited

from class

java.lang.Object

getClass, hashCode, notify, notify All, wait, wait, wait

Fields SensorType String

Value Float

Constructor detail SensorState public sensorState(String id, String unit, String type, float status)

Method detail CompareTo public abstract float compareTo(DomainObject ob)

Compare two domainObject.

/*Retums: a float of the comparaison */

GetAttributes public float[] getAttributesQ

/* Get all attributes in an array.

Returns: an array with all attributes */

GetObjectType public abstract String getObjectTypeQ

/*Get the type of a domain object.

Returns: the type */

getSensorStatus | public float getSensorStatus()

ToString

Association Links

public String toString()

/*Convert this object into a String

Returns: a textual description of this node */

to Class java.lang.String

Table 6-2 Sensor-State class
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6.4. Object-Network

Object-Network is a bridge that connects up a case to several domain objects.

Figure 6-4 illustrates the package of Object-Network defined here. In Object-

Network, there are two basic primitives; namely, nodes and edges. The nodes may

represent any objects that declared in the package ofDomain-Objects, such as a

mixing air damper or supply air fan. An Object-Network may have a set of nodes,

in which they, all together, denote a particular case. The nodes are reachable from

the edges. Each edge is assigned to a weight that the value of weight that might

have come from experience or experiments. This weight is used to express the

importance of this object as a member for the case.

An Object-Network is used to represent the more important objects or characters

that can be compared in different cases. The case retrieval process is performed

by first calculating the distance between two nodes in different cases and then

summing up the distances of all nodes in order to indicate the similarity of two

entire cases. Figure 6-4 shows the design of the Object-Network package. A

bunch of interface and events are declared in the package.

Events are treated to take into account case stmctural modifications. The events

can be hooked with the graphic interface so that any modifications of the case can

be made, such as changing a value or redrawing a line on computer screen.

J
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Figure 6-4 Package of Object-Network

J

6.5. Similarity Measure

To be able to find cases that are similar to the current problem, we need a

similarity measiire. Usually, the similarity measure between a new problem and a

case in the case base is computed in a bottom up fashion: first at an objects level,

a local similarity measure determines the similarity between the same attributes in

two objects. The local similarity measure can be multiplied by a weight factor.

Then, at the cases level, a global similarity measure determines the similarity

between two cases by summing up the local seminaries of the belonging objects.
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n The k-nearest neighbor is perhaps the most widely used similarity measure

algorithm in CBR. The k-nearest neighbor is a conventional algorithm that

provides good perfonnance for optimal values of k. In the k-nearest neighbor

algorithm, it is supposed to have k pre-defmed cases that can be looked at as

patterns. The k-nearest neighbor is able to handle the k+1 case that can be

classified to the k pre-defmed cases. The assigned case assures that the average

distance of every attribute in the case is in a minimum to the k+1 case. The

minimum distance refers to the maximum similarity between the two cases.

A major problem of the simple approach of k-nearest neighbor is that it uses all

attributes in computing distances without weight factor. In many cases, only a few

attributes are truly relevant to the classification task. A possible way to overcome

this problem is to assign weights for different attributes. The practical

implementation used in our approach of calculating the similarity is based on the

Minkowski metric shown in Figure 6-5. The equation of the Minkowsky metric is

defined as [3 7]:

MinkowshyÇP, C)
,̂=1

x I - *^1

Where P and C are the new problem and case, whose similarity is computed; Wi is

the weight factor that assigned to every attribute; n is the number of attributes in

the new problem and case. P, and C, represent the value of the ith attribute of the
new problem and case respectively. Where r in this equation can be three different

values where each of them refers to different distance calculations: Hamming

distance (r = 7), Euclidean distance (r = 2), and Cubic distance (r = 5).

J

The Euclidean distance is one of the most immediate and most frequently used

similarity measures in CBR. It is especially suitable to the calculation of the

distance between two vectors where it is that we store the new problem and cases,

so that we declared a specialized abstract class for Euclidean distance shown in
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Figure 6-5. This measure is defined as the square root of the sum of the squared

differences between the two vectors, of which one belongs to the new problem,

and another belongs to a completed case in the case base.

J
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Figure 6 - 5 Similarity measure

The Euclidean distance is the shortest path between two points. For instance, a

geometric interpretation of the Euclidean distance between the point Pl and P2 is

explained in the Figure 6-6. The weight for both Pl and P2 are supposed to be

one in this example.

EuclideanDis\(P\,PÏ) = ^/(5 - 2)2 + (5-1)2 = 4
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n In addition, the weight can be adjusted in the CBR diagnosis system. An

appropriate weight setting enables us to increase the accuracy rate of results in the

system. The initial values of weights can be estimated from statistical experiments

and experiences. The following example in Figure 6-7 shows that the weight can

affect the result of similarity.
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Figure 6-6 Euclidean distances

EuclideanDis2(Pl, P2) = ^0.2 x (5 - 2)2 + 0.8 x(5 -l)2 = 2

J
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Figure 6 - 7 Weight factor
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0 As Figure 6-7 shows, the attribute in the horizontal axis has a greater weight (0.8)

than the one in the vertical axis (0.2), so that the Euclidean distance gives more

influence to the one in horizontal axis in the computation of the distance.

One weakness of the Euclidean distance function is that one of the input attributes

has a relatively large range, and then it can overpower the other attributes. For the

same example as above, if Pl can have values from 1 to 1000, and P2 can only

have values from 1 to 10, asa result, the influence of Pl on the Euclidean distance

will overwhelm the influence ofP2. Therefore, the Euclidean distance needs to be

normalized by dividing the distance for each attribute by the range of that

attribute, so that the Euclidean distance for each attribute is in the approximate

range of 0.. l.

In Table 6-4, shows the 5 nearest cases given by the retrieval phase when testing

on an artificial input situation. The similarity function used is Euclidean distance.

Detailed information about sample cases can be found in appendix A.

Nearest

cases

Case id Fault diagnosis Similarity

l

2

Case MF17 l H F9 0.95

Case MF39 l H F9 0.87

3

4

5

Case MF6 l H F21 0.76

Case MPI 8 l H F5 0.42

Case MF5 l DM2 F9 0.26

Table 6-3 Experiment result

J

6.6. Evaluating & Learning

In this version of the CBR diagnosis system, the evaluating and learning

mechanisms rely heavily on human experts themselves. There is no method that
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uses any general knowledge model to achieve evaluation and learning

automatically.

A list of match cases like the one shown in Table 6-4 is produced by a retrieval

process. Human experts can look through this list and examine the detailed record

of each past case, using their experiences and judgments to select the most

appropriate of the matches. Then, after fixing the failures of equipments, human

experts might vote for this case in the positive or negative. The process of

evaluation at this moment is only used to be an additional filter that reduces the

growth of the case base and improves the accuracy of case base. If the CBR

diagnosis system fails to find solution, human experts are asked to create a new

case that describes the current problem and adds it to the case base by hand. To

avoid the size of the case base growing unexpectedly, cases of forgetting can be

realized based on deleting not recently used or the least used cases. The forgetting

function has not been realized in this version yet.

J
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Chapter 7.

Conclusions and Future Work

7.1. Conclusions

This thesis discussed a system that uses CBR as a problem solving methodology

to deal with the diagnostic problems for the AHU. Several conclusions that can be

drawn from this work are summarized below:

AHU systems have played an important role in each modem building;

however, faults occurring in AHU are common. It is not an easy job to

determine the causes of faults. A certain level of the experience and

knowledge of AHU is required. Thus, it is valuable to build a knowledge-

based system to help building operators automate the fault diagnosis

process.

J

As the behavior of AHU is dynamic and poorly understood, it is difficult

to fonnalize general mles to solve diagnostic problems. In contrast, by
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using CBR techniques, a set of past experiences about AHU can be stored

in a case base to suggest solutions.

Since the burdens of knowledge acquisition issues have been shed, thus,

CBR systems can be built more easily than traditional knowledge-based

systems.

CBR systems can integrate knowledge reasoning mechanisms, knowledge

storage and learning into one platform. Therefore, a CBR system is a kind

of autonomous system that can improve performance over time.

A conceptual CBR framework is built to allow certain flexibilities and

generalities. Therefore, this CBR framework can possibly be reused and

expanded to later CBR applications without changing the entire system

structure.

An object-oriented case representation is developed in a way that is

domain-independent; thus, it is able to represent knowledge in various

kinds of domains instead of a particular domain.

7.2. Contributions and Future Work

We think that the main contributions of our approach are: First, a CBR diagnosis

system is built by using CBR techniques to solve one of the sophisticated

problems in HVAC. Secondly, a generic CBR framework is built that allows later

CBR applications to reuse and share its designs and implementations.

J

However, this system is cunrently in a prototype stage. The testing results so far

are encouraging, but it is still far from our ultimate objectives. The following

future work can be considered.
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System integration issues: an integration of CBR and other reasoning

systems is a considerable way from making CBR applications more

competent and robust to solve real problems in the world.

Case representation issues: the cases in a case base might be extended to

be able to cover all relevant knowledge types, including general and

specific knowledge in domains.

Case base management issues: an individual case base management

system is necessary to facilitate the processes of case collections and case

maintenances.

Evaluation issues: the evaluations of proposed solutions should be done

in a completely automatic way. Deeper domain knowledge can be used to

justify the solutions so that the quality of results can gradually be

improved.

Learning issues: a practical learning method is needed to modify a

rejected solution dynamically during the time of the CBR reasoning

process, so that CBR systems are able to adapt to an evolving

enviromnent.

J
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Appendix A

Sample cases

Case 1-3:

lAttributes

ICirculating pump status

ICirculating pump status
ICooling coil status

ICooling coil valve control

|Case_MF12_1_H|Case_MF16_1_H|Case_MF17_1_H

Enthalpy
Enthalpy

Exhaust air damper position status]

Heating coil status

Heating coil valve control
Humidifier control

Mixed air damper position status

Mixed air température
IQutside air damper control

putside air damper position status

lOutside air humidity

|0utside air température

Return air humidity

Return air humidity set point

Return air temperature

Return fan air flow

ISupply air humidity

[Supply air température

[Supply air température set point

ISupplyfan airflow

[Supply fan status

Fault Number

1
ol
0|
0|

-16|
25.1

ol
21.4

20
100|

ol
10.41
100|
99

61.2l
-13|

31.4|
40

24.51
215.4l
34.1
15.3
14.81

350.8i
1
5|

ol
1
0|
ol

-3|
22.1
99.5l
87.3
89.6
100|

ol
95.4
100|
99|

54.6l
-12|

32.2|
40|

20.7l
193.81
27.41
21.8l

21
324.4

1
9

ol
1

85.41
42.9l

-9|
22.71

0
64.31

64|
100

43.4l
11.91
100
99

52.9
-51

32.2
220.9
21.5

229.7
25.41
21.4l

21
350.8l

1
9|

J
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Case 4-6:

87

Attributes |Case_MF18_1_H|Case_MF39_1_H|Case_MF5_1_DM2
ICirculating pump status ol ol 0

ICirculating pump status 1 1 01

ICooling coil status 0 79.9l 35.8l

ICooling coil valve control 0 82.41 87.91

|Enthalpy -2| 0.1 23
|Enthalpy 22.51 22.9l 26.3

|Exhaust air damper position status 0 ol 49.51

IHeating coil status 64.4 11.71 0.6|
IHeating coil valve control 65.4 2| ol

IHumidifier control 100 100| ol

IMixed air damper position status 01 ol ol

IMixed air température 11.9] 13.51 25.1

lOutside air damper control 100i 100| 100|

lOutside air damper position status 991 99| 0|

lOutside air humidity 54.1 51.91 58|

lOutside air température -6| -11 18.21

IReturn air humidity 32.3 32.4l 47.8l

IReturn air humidity set point 40| 40 30

IReturn air température 21.2 21.9l 23.4l

IReturnfan airflow 208.2 350.8 215.4

ISupply air humidity 25.9 23.8 42

ISupply air température 21 27 23.1

ISupply air température set point 21 21 17.81

ISupplyfan airflow 342| 377.1 342

ISupply fan status 1 1 1

Fault Number 10| 21 4l

J
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Case 7-9:

88

Attributes ICase MF5 2 DM2|Case MF5 3 DM2|Case MF5 4 DM2

ICirculating pump status ol 01 0|

ICirculating pump status 0 ol ol

ICooling coil status 0 ol 0.5|

ICooling coil valve control 100 0| 0|

Enthalpy 25.51 25.4| 23.8l

Enthalpy 27 28.6 25.51

Exhaust air damper position status| 12.6l ol ol

Heating coil status 0.6 0.5 0.6|

bleating coil valve control 0 0| 0|
Humidifier control 0 ol ol

Mixed air damper position status 0 ol 0|

Mixed air température 22.7l 23.7 24.2l

lOutside air damper control 100 100| 100|

[Outside air damper position status ol ol ol

lOutside air humidity 44; 79.8 45.91

[Outside air température 22.4 17.5l 20.5l

Return air humidity 46.31 53.31 44.1

Return air humidity set point 30 301 301
Return air température 23.9 23.41 22.5

IReturn fan air flow 136.41 78.91 172.31

[Supply air humidity 41.3 48.6l 43.2

[Supply air température 24.41 24.71 25
20|[Supply air température set point 16.3l 17.3l

|Supply fan air flow ol 0 0|
0|

241
|Supply fan status ol Oi

Fault Number 4l 3|

J
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Case 10-11:

89

Attributes |Case_MF6_1_H |Case_MF6_2_H

ICirculating pump status 1 0

ICirculating pump status 0 1

ICooling coil status 0 0|
ICooling coil valve control 0 ol

Enthalpy -13| -7|

Enthalpy 23.2 23.4|
Exhaust air damper position status| 0 0|

Heating coil status 99 42|
Heating coil valve control 100i 41.61

Humidifier control ioo! 100|

Mixed air damper position status ol ol

Mixed air temperature 12.7 12.7

lOutside air damper control 100| 100|

lOutside air damper position status 99 99

lOutside air humidity 60.4l 57.7

lOutside air température -17| -14|

Return air humidity 31.4 31.8

Return air humidity set point 40| 40|

Return air température 22.2 22.2
Return fan air flow 272.8 258.4l

ISupply air humidity 24.2l 30.8l
[Supply air température 21.1 20.51

ISupply air température set point 20.81 20.3

ISupplyfan airflow 412.1 377.1
ISupply fan status 1 1

Fault Number 3| 3|

3
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