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La vérification des aspects temporels des circuits logiques synchrones est NP-dur à
cause du problème des faux chemins dans les circuits combinatoires. Les méthodes de
verification basées exclusivement sur les propriétés topologiques du circuit sont trop pes-
simistes, et les méthodes exactes ont une complexité exponentielle de temps d'exécution
au pire cas. Nous présentons dans cette thèse une méthode basée sur la satisfaction des
contraintes, ayant une complexité linéaire d'espace, et une complexité de temps qui peut
être quasi-linéaire, n x log (n) , quadratique ou exponentielle, tout dépendant du niveau de
precision requis. La méthode consiste à modéliser le circuit, les conditions de fonctionne-

ment, et les contraintes temporelles par un système de contraintes qui est consistant si et
seulement si les contraintes temporelles ne sont pas respectées. Le système de contraintes
contient un ensemble de variables, prenant valeurs de leurs domaines respectifs, et un
ensemble d'opérateurs de contraintes dont chacun opère siir un sous-ensemble des varia-
blés. Le système est résolu partiellement en appliquant répétitivement les opérateurs de
contraintes, éliminant des valeurs qui ne font partie d'aucune solution, jusqu'à ce qu'il
atteigne le point fixe, où ce n'est plus possible de changer les domaines des variables.
Lorsque la résolution résulte en une variable ayant un domaine vide, on déduit que le sys-
tème est incohérent et par conséquent les contraintes temporelles sont respectées; autre-
ment, on ne peut rien conclure.

La méthode conduit à des résultats faux négatifs dans le cas où la résolution partielle
se terminerait avec des domaines non vides, et que le système est en réalité incohérent.
Nous avons développé deux méthodes polynomiales pour réduire ce pessimisme:
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0 Le concept des dominateurs temporels, des nœuds clés dans le circuit, ayant des
domaines qui peuvent être réduits suite à des conditions nécessaires déduites en exa-
minant la fonction globale du circuit;

Une procédure de corrélation spatiale qui permet de renforcer partiellement la fonction
globale du circuit sur les nœuds ayant des branchements convergents, en restreignant
leurs domaines à des ondes qui se stabilisent à la valeur logique 0, puis à l, et en com-
binant les résultats.

Nous avons aussi développé une procédure de décision qui permet de trouver une
solution du système de contraintes (vecteur de test qui viole les contraintes temporelles)
ou de prouver que le système est effectivement incohérent.

Lorsque appliquée sur les benchmarks standards ISCAS'85, la méthode a trouvé les
bornes supérieures des délais des circuits correspondant aux délais exacts. En plus, à

l'exception du circuit c6288, la procédure de décision a trouvé des vecteurs de test pour
tous les circuits avec un nombre remarquablement restreint de retours en arrière.

On a rendu l'implantation plus complète et robuste afin de pouvoir tester la méthode
sur des circuits industriels. Le vérificateur résultant fut testé sur un circuit indusù-iel de

122 milles portes logiques, et a prouvé qu'au pire cas, la marge de sécurité de la contrainte
d'établissement des bascules est en fait 17.459% du temps de cycle, comparée à 8.74%
déduite par une analyse topologique.

u
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Abstract

Keywords
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Verifying the timing properties of VLSI circuits is NP-Hard due to the false path
problem, and considering just the topological delay of the circuit is too conservative and
may result in unnecessary redesign efforts. We present in this thesis a timing verification

method based on Waveform Narrowing. The method has linear space complexity, and has
controllable time complexity that can be virtually linear, n x log(n), quadratic, or expo-

nential, depending on the required level of accuracy. The method consists of modeling the

circuit, the timing constraints, and the operating conditions as a constraint system that is
consistent if and only if the timing constraints are violated. The constraint system is com-
posed of a finite set of variables that take values from their respective domains, and a set

of relational constraint operators, each operating on a subset of the variables. The system
is solved partially by repeatedly applying the constraints, removing from the domains val-
ues that are not part of any solution, until the greatest fixpoint is reached. If we end up
with empty domains, we conclude that the timing constraints are satisfied; otherwise, no
conclusion can be drawn.

The method results in false negative answers when we end up with non-empty
domains, and yet the constraint system has no solution. To reduce this pessimism we
developed two polynomial techniques:

The Timing dominators concept that determines key circuit nets for which the
domains can be narrowed as a consequence of necessary conditions deduced from the glo-
bal circuit function;

0
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Spatial correlation procedure that enforces partially the global circuit function by

restricting the domains of selected reconvergent fan-outs to wavefonns stabilizing at 0 and
1, and then merging the results.

Also, we developed a case analysis procedure able to find a test vector or to prove
that no violation is possible.

When tested on ISCAS'85 benchmarks, the method found tight upper bounds that

correspond to exact circuit delays for all circuits. Moreover, except for c6288, the case

analysis procedure found test vectors for all circuits with a remarkably low number of
backtracks!

We extended the method by implementing capabilities necessary to verify industrial

designs. The resulting timing verifier was tested successfully on a 122K-gate industrial

circuit, and proved that its relative safe margin is 17.459% of the clock cycle instead of
8.74% reported by topological analysis.

u
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PREFACE

Electronic Design Automation (EDA) is a multi-billion-dollar industry that is strug-
gling to keep pace with the increasing capability of silicon technology that is still follow-
ing the Moore's Law. A common cause of increasing complexity is design methodology
that is not uniform. EDA tools need to handle excessive number of special cases that make
it impossible to hard-code their user interface. Most design tools are command line utili-
ties, or shared libraries integrated using scripting extension languages like Tel, which
makes the learning curve steep and makes the design methodology open. In fact, too much
of the capabilities of the tools are exposed to designers who can easily abuse them. The
complexity of the user interface makes the EDA industry adopt methods that are easy to
code, validate, integrate, and use. For instance, although too pessimistic, topological anal-
ysis is still the basis of many commercial timing verifiers because of its simplicity. The
result is an industry that is expanding horizontally; little effort is available for advanced
research.

Academia is, however, more relaxed, and one can still dedicate effort to investigate a
new method, hoping to provide new scientific solutions that EDA and the scientific com-
munity in general may benefit from. This thesis presents the results of the investigation we
conducted on a new timing verification method based on waveform narrowing, inspired
by logic constraint programming and interval arithmetic.

It was a great challenge to write this thesis as it deals with complex subjects related to
optimization techniques, electrical engineering, and to computer science. We did our best
to make the thesis highly illustrated, self-contained, requiring no in-depth knowledge in
any of the subjects mentioned, however, mathematical maturity is a prerequisite for the
understanding of this work.

)
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CHAPTER I INTRODUCTION

Advances in very large scale integration (VLSI) technology have made digital elec-
tronics essential for a wide spread of applications. In the 1960's, circuits were fabricated
using millimetric scale discrete components such as transistors, resistors and capacitors.
Recently, Motorola succeeded in fabricating a microprocessor device using a new 0.1
micron process technology [1]. Current standard fabrication processes use 0.35, 0.25,
0.18, and 0.11 microns for the transistor size, enabling the integration of a complete sys-
tern containing millions of transistors on a single silicon chip.

The increasing complexity led the designers' community to formalize the design
flow, and made essential the use of computer assisted design and verification tools. Simu-
lation based verification of gigantic designs has become practically impossible due to the
exponential state explosion problem (e.g. A processor with 16 registers, 32 bits each, has
2512 possible states). Consequently, formal verification, an approach exploiting mathemat-
ical techniques in order to prove certain fiinctional properties without having to enumerate
all existing states, has emerged. Numerous problems are subject to formal verification,
such as the equivalence of two state machines or two logic circuits, proof that a system
stays alive (no deadlock), or verifying that timing constraints of memory elements are sat-
isfied in a sequential circuit.

The subject of this thesis is the development of a "static" timing verifier for synchro-
nous sequential circuits. The attribute "static" is used instead of formal to comply with
timing verification literature.

The remainder of this chapter introduces the principal subject as well as related sub-
jects that are necessary to the understanding of the subsequent parts of the thesis.

0



2

0
1.1 Design Flow

Figure 1 shows a simpli-

fied design flow of integrated

circuits. Starting from specifi-

cations (function, response

time, power dissipation, etc.),

the design process follows a

descending hierarchical

approach. Each level of

abstraction has to be verified

as functionally equivalent to

the one above it, and, that dif-

ferent constraints such as

power dissipation and

response time are satisfied.

Obviously, the process is

iterative, and the purpose of

design and verification tools

is to minimize the number of

iterations, especially at lower

levels, where the fabrication

of prototypes is very expen-

sive.

Behavioral Design | High level language: Verilog, VHDL

Functional Design | Registers, multipliers, multiplexers, ...

( ïSpecification

l>

Verification<

*

< Verification

> Logic Design

<

l
< Verification

lPrototype Fabrication

( ^Fabrication

irchi-fctuEB b.hnviouE of count2£S,
procair (clock)

count valu* ; natural ;• 0;

clack - -I' th«n
count^vlu» ;= (count^ylu* l- 1} nod <;
qn <--tiit'vltcouiic_vîlu« mod 2) arfr prop^
ql <« blt'v*l(counb^v»lu« / 2) >ffr prop^dïlïy

Logic gates: AND, OR, NOT,

^=ï>IE

Physical Design | Transistors, connections

^^

Figure 1
Design flow of integrated circuits.

Different Levels of Abstraction:

Behavioral Level: The system is defined using a high-level hardware description lan-
guage (HDL) such as Verilog or VHDL.

u
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Register Transfer Level: The description of the system in terms of functional blocks

(multipliers, multiplexers, registers, etc.) This description is obtained using a com-

piler for the behavioral level, i.e., the high-level language, or by manual transla-
tion.

Logic Gate Level: The definition of the system is in terms of logic gates and memory

elements (AND, OR, NOT, flip-flops, etc.). The logic synthesizer generates this
description from the Register Transfer Level.

Transistor Level: The lowest level in the hierarchy. This level is an assembly oftran-

sistors and metal connectors. A technology mapper is used to rewrite the logic gate

level in tenns of gates from a well-characterized library (e.g., TGC 1000 from

Texas Instmments). Then, placement and routing tools are applied to generate the
physical layout.

u

1.2 Post-Fabrication Testing

The production of integrated circuits is a complex lithographic process that yields a

success ratio lower than 1 . The success rate varies depending on the process technology
and the chip area.

Two major models of fabrication defects are used:

Stuck-at Fault: the output of a logic gate g is said to be stuck-at-1 (0) if its logic level
remains 1 (0) regardless of its input levels. For example, the output of an AND
gate is 1, even if one of the inputs is 0. To detect such a defect, a test vector must
be applied to the circuit inputs, propagating the fault to at least one of the outputs.
Fig. 2 shows a simple example.

Delay Fault: a gate can have an excessive delay due to a fabrication defect. A com-

mon cause of such a defect is an excessive interconnect resistance caused by a very
thin open that still permits conduction by tunneling effect. To detect such a defect,

two test vectors must be applied successively to the circuit inputs in order to trig-
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Stuck at 1 Fault Gate with a Delay Fault

l
0 —l

0

Figure 2
Stuck-at-1 fault testing.

0 in the correct circuit
1 in the faulty circuit

0

1

1

1

0 0

Output

First assignment: wait for 0 at Output

Second assignment: Output should become 1
within a predefined time interval

ger a ù-ansition that propagates to a cir- Figure 3
Delay fault testing.cuit output through the defect, as

in the example of Fig. 3.

Finally, for a specific design, a set of test vec-

tors is generated to detect possible defects. Manu-

factured chips are tested before delivery as indicated

in Fig. 4. Automatic Test Pattern Generation (^

(ATPG) is a domain that has been widely studied in

the last 30 years [31-55]. Contributions in this

domain offer a rich set of heuristics [32,33,35] that
Figure 4

help resolve the satisfiability of a Boolean formula. Post-fabrication tests.

^Fabrication Mask

lFabrication

Stuck-at fault tests

^Discarded

Delay fault tests,

^Delivery

1.3 Timing Verification

Verifying timing properties of a synchronous sequential circuit consists of determin-

ing whether it functions properly at a certain clock frequency (e.g. 500 MHz), or determin-

ing the maximal safe clock frequency. This verification can be applied to any level of

abstraction. The highest precision is obtained only after the actual physical design is avail-
able, where the different circuit components are precisely characterized. Before reaching
this stage, approximate delays are assumed for each circuit component and interconnect.

Note that the violation of timing constraints of circuit components depends on the
clock frequency, functioning semantics, and circuit topology. The following section

u
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0
defines default semantics for synchronous sequential circuits, adopted throughout this the-

sis, unless stated otherwise.

1.3.1 Simplified Model of a Synchronous Sequential Circuit

A model of a combinational logic circuit is a directed acyclic graph. Nodes represent

logic gates and each arc represents a connection (connects the output of a gate to the input

of another gate). The circuit input (output) terminals are represented by nodes with no

incident (exiting) arcs.

A synchronous sequential circuit is an

implementation of a state machine. The state is

stored in a register and the next state is calculated

by a combinational logic circuit as shown in Fig. ^]

5. The state register consists of memory elements —^

for which the memorizing action is triggered by —^

the system clock.

CQnibinatiohaI Circuit
^"' :^.

f

I
J

Register

s
l s
55

s
z

0

A

s

I

Clock

Figure 5
The default operation semantics assumes Sequential synchronous circuit.

that a new state is calculated every clock cycle.

Therefore, the clock period must be long enough for the combinational circuit to finish its

calculations and for the memory elements to store the new state at the next active clock

edge.

u

1.3.2 Constraints of Memory Elements

Two types of memory elements are used: Edge-sensitive flip-flops, and level-sensi-

tive transparent latches. The most common ones used for state memorization are the flip-
flops sensitive to the rising edge of the clock (transition from 0 to 1, see Fig. 6). When the

logic level of the clock CLK changes from 0 to 1, the logic level of input D is memorized
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and becomes present at the output Q. Like every physical

device, the memorization operation is not instantaneous;

its timing behavior is characterized by three parameters

[12]:

l) CLK to Q Delay: This delay represents the time

necessary for the memorized logic level to get

to the output Q.

D Q

CLK
A

D

CLK.

WJID j( l

Setup Constraint

I Constraint

•, CLK to Q Delay

Q j K VALID

Figure 6
Rising-edge-triggered flip-flop.2, 3)Setup Time (tg), Hold Time (tn) Constraints:

They represent the timing constraints on the

logic level of D to be memorized correctly. D must be valid (stable) in the inter-
val [IR - tg , t^ + tg] where t^ is the arrivai time of the rising edge ofCLK.

The timing verifier must check that setup and hold constraints are satisfied for each
flip-flop.

Note that the setup time constraint tends to be violated when higher clock frequency
is used, whereas, hold time constraint tends to be violated due to the circuit topology,

resulting in a system that does not function properly with any given clock frequency. In
the circuit of Fig. 7, the flip-flop does not memorize correctly the new state computed by
the inverter due to the premature disappearance of the previous value. Violation of the
hold time constraint is due to very short paths in the combinational circuit, and to clock
skew (non-simultaneous arrival time of the clock edge at different flip-flops).

Flip-flops sensitive

to the falling clock edge

(sensitive to the transi-

tion from 1 to 0 of the

clock) are defined in a

similar manner.

intervalC
There is no guarantee that the logic
level at this point is 1 because D is

t.:i^TMfa:3 not stable at 1 in the interval C.

nD Q l :

D -J
CLK to Q: 1 1QCLK l«:1

A h: 3

CLK~r
Clock Period: 10

Figure 7
-An incorrect 1 bit counter: Hold time constraint of the
flip-flop is violated.
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n The behavior of the level sensitive latch (transparent

latch) is slightly different. Consider the latch sensitive to

the high level (see Fig. 8), when the clock C is at 1, the

output follows the input (Q = D). When C falls to 0, Q

keeps its last value. Its temporal behavior is characterized
by four parameters [12]:

l) C to Q Delay: Time before Q starts to follow D,
after C rises to 1 .

2) D to Q Delay: When C = l, itis the events (logic

level change) propagation time from D to Q.

D Q

e

D

e

Q

\WllD j(

Setup Constraint |-

C to Q Delay I

Hold Constraint

(D to Q Ûelay

VALID

Figure 8
High level sensitive latch.

3, 4) Setup Time, Hold Time Constraints: The same definition as for the falling edge
flip-flop (the edge of the clock after which the latch keeps its last value).

The low level sensitive latch is defined similarly.

r-<]
02 Q2 D1 Q1 ts: 1

CLK to Q: 1

t,:1
D1 l lt»: 3

CLKcz CLKA

ï D2 _1
Clock Period: 10

Figure 9
Hold time constraint violation prevented by the use of a transparent latch.

Transparent latches are frequently used in industrial circuits to avoid violation of

hold time constraints ofedge-triggered flip-flops. Fig. 9 shows a revised version of the cir-
cuit in Fig. 7: the low level sensitive latch prevents the premature disappearance of the
previous state by delaying it to the falling edge of the clock. When CLK rises to 1, the
value of Q 1 becomes Dl after 1 time unit (CLK-to-Ql), then D2 becomes Ql after 1 time
unit, but Q2 keeps its old value until CZ falls back to 0. Of course, the latch timing con-
straints must also be satisfied.

u
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Q

rcLK to a:1

CLK
A

D
ta: 1
t»:3

CLK 1
A

T
0

0

T
10

Setup Constraint Verification:
D should stabilize before 10 - ti

Hold Constraint Verification:
D should keep previous value at least till 0 + fc

Figure 10
Unfolding clock cycles.

1.3.3 Verification ofaFlip-Flop's Constraints

According to the operation semantics of the

synchronous sequential circuit, the new value that

each flip-flop stores has been computed from values

stored on the previous clock cycle. To verify the

constraints of a flip-flop, the combinational sub-cir-

cuit that does the computation is observed and the

flip-flop setup and hold time constraints are studied

separately. Considering the example in Fig. 7, only

one flip-flop is present and the sub-circuit that does

the computation is the inverter. The flip-flop is broken down in two parts: one receives the

data computed by the combinational circuit, and the other injects a value into that same

circuit (see Fig. 10). For a period of 10 units of time, data is injected at time 0, and sam-
pled at D at time 10.

Verifying the setup time constraint comes down to verifying that D stabilizes before

10 - tg, meaning that it is the maximal delay of the combinational circuit that comes into

play. On the other hand, to check the hold time constraint, assuming that the flip-flop

injects a value at time 0, it must be verified that the previous value of D does not disappear

before t= 0 +ty. In this case, it is the minimal delay of the combinational circuit that has
to be considered.

In summary, the problem of deciding whether the setup or hold constraints are satis-

fied cornes down to comparing the maximal and minimal circuit delays to certain given
values.

Chapter 2 explains the major methodologies for computing the maximal combina-
tional circuit delay proposed in literature.

0
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1.3.4 Synchronizing Clocks

In Section 1.3.1, the synchronous sequential

circuit was introduced without exploring thoroughly

the subject of synchronizing clocks. Designers of

synchronous circuits, face many practical and con-

ceptual problems:

Digital
5)Filter

a:

A

H1

H2

HI fL

HZ JUULMJUL^JUUUlMXfL
Figure 11
Sequential circuit controlled by two
harmonically related clocks.Maximal Fan-out Capability: In a real circuit,

it is not possible for a single gate output to

drive an indefinite number of gates without risking loss of data. Therefore, the
clock signal is distributed to a number of buffers; each can then send it to a number
of memory elements and / or other buffers.

Clock Skew: To avoid violations of the hold time constraints, delays are inserted in

the clock tree to minimize the time window in which the memory elements are
activated.

Multiple Clocks: For certain applications, such as the digital filter shown in Fig. 11, it
is useful to use multiple clocks. In this particular case, for every voice sample,
many cycles are needed to perform the filtering function.

Gated Clocks: power dissipation in Complementary Metal Oxide Semiconductor
(CMOS) circuits, is directly related to the number of signal transitions (change of
logic level) on circuit nodes. To reduce power dissipation, logic gates are inserted
to prevent the clock from propagating to the parts of the circuit that are irrelevant
to the current operation.

A timing verifier must be able to deal with multiple and gated clocks without exces-
sive user intervention.

l

u
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Inverter Delay
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1.3.5 Component Delays

The delay of a component is the time neces-

sary for it to respond to a stimulus. Logic gate

delays are related to fabrication technology. A

CMOS circuit is essentially a network of P and N

transistors interconnected by metal connections.

Transistors act as switches (closed or open-circuit). 'Dda~vof~an inverter.

Gate delays: The logic level at the output of a

gate changes from 1 to 0 when the paths that lead to +V become all open and at

least one path to ground (0 volt) becomes closed. Transistor switching time is not

negligible, the electrical signal changes gradually instead of instantaneously. Fig.

12(a) shows a CMOS implementation of an inverter with its electrical response to

a rising transition at its input. Fig. 12(b) shows the logic abstraction of this circuit.

One particularity of CMOS gate delays is that they are inertial: two successive
events (impulse) at the input of a gate that have time separation (pulse width) less
than the gate delay do not afFect the output; it is absorbed by the inertial gate delay.

Interconnect delays: as opposed to gate delays, interconnect delays are not inertial.
They propagate events as waves.

u

1.3.5.1 Factors Affecting Component Delays

Gate Delays:

Gates do not have fixed delay values; their dynamic properties are affected by many
factors:

Fabrication Process: The silicon atom is an element of group 4 on the periodic table.
It forms liaisons with four other atoms to make a non-conducting crystal. To con-
struct transistors, the silicon chip is doped with atoms of group 3 such as gallium to
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.Metal

N l l N
p

^H

~K
N

p

get positive charge carriers (type P regions), and

with atoms from group 5 (arsenic) to get negative
charge carriers (N type regions). Fig. 13 shows the

structure of Metal Oxide Semiconductor (MOS)
Figure 13

fa-ansistors of types P and N. Feature size and doping p '(left) and N type transistors.
density variations introduce uncertainty in the tran-

sistor switching time. The fabrication of chips is done on silicon wafers (see

Fig. 14). It is generally accepted that component features vary depending on the

position within a wafer and from one wafer to another. On the same wafer, if A is a

point where the doping density is d^, then the density at a point B is contained

within [d^-/(AB) , d^+AAB)], where / is a positive non decreasing function such

that f[0) = 0. The latter translates into a correlation

law between the different gate delays on the same sil-

icon chip. This law will be later elaborated by con-

sidering the effect of the fabrication process along

with the effects of power supply and temperature.

The relationship between doping density and gate
Figure 14

delay is monotone, it can be increasing or decreasing Silicon wafer.

depending on the process technology.

Supply Voltage: Fluctuations in supply voltage implies a change in gate delays. Gen-

erally, the delay increases as voltage decreases.

Temperature: Ambient temperature and transistor switching activity cause tempera-

turc variations in the difFerent regions of the silicon chip. Generally, the clock dis-

tribution network is at the highest temperature. A gate delay increases as the

temperature rises.

Slew Rate: When a signal at the input of a gate switches slowly, the gate response is
also slower, resulting in a higher delay.

E

m

l
S!

u
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Interconnect Delays:

Metal connections are fabricated by depositing a conductor on the silicon substrate
using a chemical process. This is done over several layers due to the fact that circuits are
generally non-planar. An interconnect delay is affected by the depositing process, the
chips geometry, and the temperature.

1.3.5.2 Delay Models and Components Correlation

Integrated Circuit (1C) manufacturers specify the variation margins of the different
factors influencing gate delays. Fabrication process, electric power supply and tempera-
ture are the most noticeable. A delay value is defined by a set of three values (d^n, dno^'
djnax)- The actual delay is contained within the interval [d^^ , dmaxl-

d^jn: Minimal value of the delay with respect to the three factors.

•î^nom: Nominal value, defined over a predetermined condition of the three factors (e.g
temperature 25°, supply voltage 5 volts and doping density d).

dmax: Maximal value of the delay with respect to the three factors.

The effect of the influencing factors on gate delays of the same silicon chip, apart
from signal slew rate, makes it impossible for different gates to have arbitrary values
within the associated intervals [d^^, dmaxl- Fo1' example, when the delay of a gate A has
its maximum value dmaxA' the delay of a gate B is necessarily in the interval [dmaxB ~ e'
dmaxBJ- E is a positive value that depends on the degree of correlation, a number between 0
and 1 (0: no correlation, l : 100% conrelation). An elaborate delay correlation model is pre-
sented in chapter 4.

i

i

u

1.3.6 ]V[aximal Delay of a Combinational Circuit

A combinational logic circuit Ç with m inputs and n outputs implements a logic func-
tion /: B —> B where B = {0, l}. Due to gate and interconnect delays, the response of
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^, following an input stimulus, is not instantaneous and a certain lapse is necessary before
the outputs stabilize at valid values.

Definitions and Terminology:

Path: a path of Ç is an alternating sequence of connec-
tions and gates which are connected one to the next.

Path Length: the length of a path is the sum of the delays

of its gates and connections.

Maximal Topological Delay: the length of the longest

(slowest) path of Ç.

A B NOT(B) AND(A,B)

7T

0
~iT
l

T

0
~!5

0
0
l

x

0
x

l

0

0

l

l

l
x

0

x

l

x

x

x

x

0
l

x

l

0

x

0

x

x

Table I: Floating algebra.

,mInput Vector: an input vector for ^ is an element of 5'" x R. This represents logic
values applied at the inputs of Ç at a certain time f. (e^,e^,...,e^,t) is written
(ei,e2'-'em)f

Sequence of Input Vectors: a sequence of A: input vectors for ^, (v^ ,v^ ,...,v^), is an
element of (B xR) , it is assumed that /, < t^ i=\,k-l. Furthermore, when v^ is
applied at time t y it remains applied until time /;+i. Obviously, v^ remains applied
indefinitely.

Floating Algebra: it is the Boolean algebra augmented with an unknown uncorrelated

value, denoted^:. Table I defines the logic functions NOT and AND over 77= {0,1,
x} (other functions are deduced in a straight-forward fashion). Many methods use
this algebra to define and compute the delay of a combinational circuit. In that
case, Ç computes /: 7< ^ F^.

Maximal Delay of Sequences of Vectors: the maximal delay of sequences of vectors

of !,, denoted dmax(^') is: dm ax (Î,) = minimum {t>Q
V 5v = (v_^, ..., VQ') , all outputs of ^ are stable after time / when sv is applied}.
Intuitively, it is the maximal time for Ç to compute its logic function for every pos-

u
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^ sible value of an input vector applied at time 0, assuming the inputs were previ-
ously arbitrarily changing.

Maximal Transition Delay: The maximal transition-mode delay of circuit ^ , denoted
dm ax Çï,) is: dmax (^) = minimum {t>Q \ V (v_^,, Vp), all outputs of ^ are
stable after time t when (v_^ ,VQ ) is applied}. It is the maximal time for Î, to com-
pute its logic function for every possible value of an input vector VQ applied at
time 0, assuming the inputs were previously stable at arbitrary levels.

Maximal Floating Delay: The maximal floating delay of circuit !,, denoted
dm ax {^,) is: dmax (!,) = minimum {t>Q
V(v_^,vo)e (({^}mx {-°°}), (5mx{0})), all outputs of ^ are stable after
time t when (v_^ ,VQ )ls applied}. Note that the circuit outputs stabilize at values in
B.

Fig. 15 shows examples of input signals for each of the previ-

ously defined delays. Note that the ti-ansition delay is not a valid

J-LTLT
Sequence of Vectors

Q_
l

Transition

_0_model for sequential circuits because the state register changes

value at every clock cycle. Devadas et al detennined in [82] that Floating
the transition delay is valid when it is greater than (^ x topologi- figure 15
cal delay).

2 Examples of input
stimuli.

Lam and Brayton have shown in [102] that,

for real circuits, floating and sequences of vectors

delays are equal. The difference exists only in arti-

ficial cases such as the one shown in Fig. 16. In a

real circuit, the probability of having two paths of

exactly the same length is null. Consequently, the

correlation between X and Y in the circuit in Fig.

16 is highly improbable.

d^s^
E- 1 s

Y

Max. Floating Delay = 2
(X and Y are not correlated)

Max.j)elay for Sequences of Vectors = 0
(X=7atalltimes,S=0)

Figure 16
Difference between floating and
sequences of vectors maximal delays.

u
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Monotone Speed-up Property: A method for maximal circuit delay calculation that
uses fixed delay values (max.) instead of intervals is said to satisfy the monotone
speed-up property if the following holds:

Let C be a circuit for which the method calculates a max. delay of d. The
method calculates a max. delayless than or equal to d for any circuit C' that is
the same as C except that some of its components are faster.

In other words, speeding-up components of a circuit C does not result in a slower
one (as calculated by the method).

u

1.3.7 Minimal Delay of a Combinational Circuit

Definitions of minimal delays for a combinational circuit ^ are expressed in a sym-
metrical fashion with maximal delays.

Minimal Topological Delay: the minimal topological delay of ^ is the length of its
shortest path.

Minimal Delay of Sequences of Vectors: the minimal delay of sequences of vectors
of circuit Ç, denoted dmin (j^) is: dmin (f,) = maximum {t>Q

V 5v = (v_^,, VQ, ... ), all outputs of ^ are stable before / when sv is applied}.
Intuitively, it is the time before which the outputs of ^ remain stable after applying
VQ and assuming that, subsequently, inputs change arbitrarily.

Minimal Transition Delay: the minimal transition delay of circuit ^, denoted
dmin (ï,) is: dmin C^) = maximum {t>Q \ V (v_^, VQ), all outputs of ^ are
stable before t when (v_^ ,VQ ) is applied}.

Minimal Floating Delay: The minimal floating delay of circuit ^, denoted dmin1 (Ç)
is: dminF(î,) = maximum {f >0 | V (v_^, Vo) e ((5"! x {-°°}), ({x}m x {0})),
all outputs of ^ remain stable before t when (v_^ ,Vo)is applied}.

4
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1.3.8 The False Path Problem

Fig. 17 shows a circuit that has a floating delayless than its topological delay. This
phenomenon is caused by the fact that, in general, not all signal paths in a circuit can prop-
agate transitions (so called false paths). When the longest paths are false, e.g., path A-C-
D-F-G in the circuit of Fig. 17, the actual circuit delay is less than its topological delay.
Hrapcenko [57] presented early an extended discussion on the subject, and proved that
even minimal circuits may have their longest paths false. He noticed also that false paths
appear naturally in accelerated carry-skip adders. This phenomenon makes the problem of
deciding whether the maximal circuit delay is less than a certain value NP-complete, as
shown in [76].

0 1
1e-^>c EA

1D3
0 1

B GF)='

l

1e
E1

1D3
1 1

B GF)^
1

A

Figure 17
A circuit with false paths (numbers on gates represent delays):
when B stabilizes to 0 (1), G stabilizes to 1 after 5 (3) time units.
The circuit's floating delay is 5, whereas its topological delay is 7.

u

1.4 Original Contributions of this Thesis

The major contributions of this thesis are summarized as follows:

Established the mathematical foundations of the waveform narrowing method for the
purpose of floating-mode delay calculation, the original method was formulated
around the transition-mode.
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Developed a spatial correlation procedure that was effective in reducing the pessimism
of the method on standard and industrial benchmark circuits.

Developed the Timing Dominators concept that was very successful in eliminating
false violations with minimal added execution time complexity (nx log (n)).

Developed a case analysis procedure able to find a test vector, or prove that no viola-
tion is possible. The procedure is guided by heuristics inspired by ATPG techniques,
namely the controllability measure of [23] and the FAN algorithm of [33]. The proce-
dure uses a novel partitioning strategy based on timing dominators.

In order to provide support for state of the art industrial circuits, we extended the method
as follows:

Developed an intuitive formalism able to express arbitrary complex clocking schemes,

along with a procedure to deduce correct default edge selection for setup verification.

• Defined a delay correlation domain based on three-valued delay annotation (min, typ,

max) using the novel concept of normalized delays. The resulting constraints can be

used to build complex correlation networks able to model arbitrary complex compo-

nent delay correlation, like position dependence, rising-delay vs. falling-delay, etc.

Defined more than 70 constraint primitives able to model industrial cell libraries.

Developed a hard multiplexer primitive that reduces the inherent pessimism of the
floating delay model.

• Developed and automated a general concept for modeling combinational cells. And
added cell aware constraints that remove the pessimism induced by path delays of
unknown polarities.

Added support for automatic handling of combinational loops, still present in some
synchronous industrial designs.

u
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Implemented an industrial-grade version of the timing verifier in the object oriented

language C++, and evaluated the Waveform Narrowing method on industrial circuits
provided by Nortel Networks.

l.5 Plan of the Thesis

Chapter 2 presents an overview of the methods for computing maximal circuit delays
proposed in the literature.

Chapter 3 contains the proposed timing verification method, along with the results on
the standard ISCAS'85 benchmark suite.

Chapter 4 presents the extensions we implemented to enable the method to be applied
to state of the art industrial designs, along with the results on industrial circuits provided
by Nortel Networks.

Chapter 5 concludes the thesis.

u



n CHAPTER II LITERATURE REVIEW

In this chapter we review the major methodologies for computing the maximal delay

in combinational logic circuits as presented in the literature. These methods have evolved
from a simple topological sort of the PERT project by Kirkpatrick and dark in 1966 [56]
to more recent methods that consider the circuit functionality and automatically eliminate
false paths.

Motivation

In the early 1980's, the increasing complexity of logic circuits made the use ofsimu-
lators such as SPICE [9] futile for timing verification. SPICE solves differential equations

to deduce the waveform at the output of a circuit, given a precise waveform at each input.

Execution time was estimated to about a minute for each circuit transistor on a typical
computer of that era. To compute the ta-ansition delay of a circuit, an exponential number
of simulation mns is required in order to account for all possible situations. Therefore, a
trade-ofFhad to be made between execution time and precision.

u

First Approach: Limited Worst Case Simulation - Case Analysis

In 1980, McWilliams introduced SCALD [58], a gate-level timing verifier. The com-
binational circuit is represented by a directed acyclic graph. Each node represents a gate
and is associated with a delay value. Gate algebra is defined over a set of seven values {0,
l, rising-transition, falling-transition, stable, changing, unknown}. A signal is defined by a
list of values and time intervals, e.g. [stable for l ns, varying for 2 ns, stable the rest of the
cycle]. Each gate signal is computed using a lookup table, keeping track of minimal and
maximal event times. The evaluation is achieved using an event driven simulator that trig-
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gers the evaluation of a gate when all its inputs are ready (this scheduling technique is
referred to as path tracing in literature). The algorithm complexity is linear, function of the
number of connections. The advantage of this method over a simple topological sort is the
possibility to perform case analysis by allowing the user to specify constant values (0 or 1)
on certain nodes. Case analysis can eliminate false paths, however, its abuse can underes-
timate the circuit delay as will be seen later when static sensitization is discussed.

Case analysis has been adopted by many verifiers such as TV [60] and CRYSTAL
[62], both of which function at the transistor level. Other systems such as Hitchcock's [59]
allow the user to explicitly specify false paths. With the increasing complexity of digital
circuits, however, manual identification of false paths became very hard and error prone.

Automatic Identiïïcation of False Paths

Automatic false path elimination techniques are classified as follows:

1) Path Enumeration [63, 66, 70,72,73,75,76, 78,82,87, 88,89, 110, 117]: these
methods search systematically all circuit paths and use sensitization criteria
(defined later) to decide whether a path is false.

2) Reduction to a Test Generation Instance [86,93]: these methods reduce the

problem of deciding whether the maximal circuit delay is greater than a certain

value to an instance of the problem of generating a test vector for multi-stuck-at
faults.

3) Approximate: [108,114] present approximate methods that construct Boolean

expressions using a subset of the involved variables, and solve them by symbolic
methods.

4) Optimization: [85,102] present a mixed Boolean-linear programming formula-
tion, [98,109,112,118] present a formalism based on constraint satisfaction.

u
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2.1 IMethods Based on Path Enumeration

These methods search systematically to find the longest circuit path that is not false,

the so-called longest sensitized path. Sensitization criteria as explained thoroughly in the

following sub-paragraphs are predicates used to decide whether an event at a gate input

can propagate to its output. The generic algorithm that stops when the longest true path is

found is a best-first search. The first step is to mark each gate with the length of the long-

est path that reaches an output, starting from the gate itself. The marks are then used to

guide the search: paths are incrementally built, one gate at a time, starting at the inputs,

and keeping the paths in a priority queue which returns the potentially longest path when

an output is reached. Details of the algorithm are given in [66]. Simple depth-first search

is used when all true paths are to be found.

These methods compute the maximal circuit delay using the maximal delay values

for gates and connections instead of their interval of uncertainty [d^;n, dmax]- The follow-
ing definitions are required to simplify the presentation:

Side Input: for a gate g belonging to a path p, inputs of g that do not lie on p are side

inputs of p.

Controlling Value: a controlling value of a logic gate is a logic value which, if applied

at an input, determines the output independently from the other inputs, e.g., 0 for
an AND gate.

Non-Controlling Value: a non-controlling value cfa logic gate is a logic value that is
not controlling.

Consider a pathp containing n gates g^, g^,..., g^. A sensitization criterion is a con-
junction

0 =(p(gi)A(p(g2)A...A(p(g^)

u
which evaluates to true if the path is sensitizable. (p is a predicate which depends on the
gate type. It evaluates to tme if the last event at the input E that is part of 77, propagates to
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Table II
Sensitization criteria fordelayless two-input AND gate.
E: gate input belonging to the path which we check whether it is false.
X: gate input not belonging to the path.
S: gate output.
X; last event at E does not propagate to S.
•; last event at E propagates to S.
N: the decision does not affect the outcome of computing the max. delay using the criterion.
\/: cause of overestimating the delay.
U: cause for underestimating the delay.
Brand & lyengar: last event of X is determined using topological information only.

the gate output S. Tg is the occurrence time of the last event on E, T^ is the occurrence
time of the last event on a side input X. Note that the sensitization criteria are expressed
using partial information: The last events at gate inputs. Therefore, they are only heuristics
and do not necessarily reflect reality. A safe sensitization criterion is one that does not
cause delay under-estimation if it is used for maximal circuit delay computation. Table II
summarizes the sensitization criteria defined for a delayless two-input AND gate. The col-
umn labeled Conservative represents a safe criterion: the only case where the last event on
E does not propagate to S is when ^stabilizes to a controlling value earlier. It is important
to note that, when E stabilizes to a non-controlling value earlier than X, the last event on S
propagates from X. In such case, the last event on E is irrelevant for computing the maxi-
mal circuit delay. It is this property that makes the Floating-Mode sensitization criterion
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safe and equivalent to the Conservative one when it comes to computing the maximal cir-

cuit delay, though they differ when paths shorter than the circuit delay are checked for sen-

sitizability.

The following sections define the predicate (p in terms of the following:

g: Gate for which (p is defined;

• S: The output of g;

• E: Input of g that belongs to the path that is being checked for sensitizability;

T f : The occurrence time of the last event on E;

X: A side input of E;

T^: The occurrence time of the last event on A";

2.1.1 Static Sensitization

A path p is statically sensitized if there exists an input vector that sets the side inputs

of each gate g of p to non-controlling values (with respect to g).

(p(g) = X is non-controlling

u

1

'0
1

The shaded path of Fig. 18 is m

statically sensitized: all side inputs | o|

are set to non-controlling values.
0|

Proposed in [66], this crite- [xl

non can cause an under-estimation Figure 18
A path statically sensitized.

of the maximal circuit delay as

shown in [72] and [88]. Fig. 19 shows a circuit with a true path of length 3, identified by

this criterion as false. All gates have delays of l. Non conta-olling values for the side inputs

of the path {b, d, f, g} are a= 1, c=0, ande= 1. Although a = 1 implies that e = 0, it is

possible for the falling transition at b to travel to g because of the dynamic behavior of the

l



n circuit. In fact, before time 0, we have a = 1,

b= l, c=0, d= l, e=0, f= l, andg= l.

Both a and b change values from 1 to 0 at g
time 0, causing d to fall to 0 at time 1, and e b

to rise to l at time 1, causing g to fall to 0 at c

time 2. Then f falls to 0 at time 2, causing g

to rise to 1 at time 3.

This example shows the inadequate use

of case analysis based on constant logic val-

ues, as proposed in SCALD and other tools.
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Figure 19
A true path of length 3 identified as false by
static sensitization criterion.

2.1.2 The Brand-Iyengar Criterion

To avoid the delay under-estimation problem of static sensitization, the authors of
[63] suggested imposing non-controlling values only on the side inputs X for which
Top ^< Top g where Top ^ (Top ^) is the longest path from a primary input to X (E).
Therefore,

(P(g') = (Top^>Topg)\/X is non-controlling

The column Brand & lyengar in Table II gives the wrong impression that this crite-
non is equivalent to the conservative one. The fact of the matter is that it is not as tight.
The pessimism is caused by the fact that there may be cases where Top ^> Top ^ and yet
T^< Top g (the longest path from a primary input to ^ is false). In such case, Brand-Iyen-
gar criterion evaluates to tme, while the conservative one requires X to stabilize to a non-
controlling value.

0
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2.1.3 Co-Static Sensitization

This criteria is proposed by

Devadas et al in [93]. For the last

event to propagate from E to S, if

E stabilizes at a non-controlling Figure 20
A false path of length 6 identified as true by co-static

value, then X must stabilize to a sensitization (a = 0).
non-controlling value also.

db
3

9a

00

42
fe

(p(g) = (E is controlling) v ÇXis non-confa-olling)

Unlike the static sensitization, this criterion does not under-estimate the circuit delay,
however, is does over-estimate it, as can be seen in the example of Fig. 20. The Numbers
on gates represent their delays. A value of 0 at the input a implies 0 on all circuit nodes,
satisfying the criterion for the path {a, c, d, f, g} with a delay of 6. However, it is impossi-
blé for a transition to travel along this path. In fact, when a falls to 0 at time 0, b follows at
time 1, and d follows b instantaneously at time l. In this case, the last transition at g is at
most at time 5. In the case of a rising transition at a, d follows after 2 time units, but g,
controlled by the short path {d, e} because 1 is a controlling value for the OR gate, follows
d after 3 time units instead of 4.

2.1.4 Viable Sensitization

Suggested by McGeer and Brayton [72], for the last event to propagate from E to S, X
must stabilize to a non-controlling value before T g, or ^stabilizes after T^.

(P(g') = C^y> ^Ê-) v (^ stabilizes to a non-controlling value)

This is the most conservative criterion, it is the negation of a sufficient condition that
makes a path not sensitized: a side input that stabilizes to a controlling value earlier.

u
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2.1.5 Floating Mode Sensitization

This criterion is proposed by Chen and Du [71]. The last event at E propagates to S
according to the following rules:

when E stabilizes to a controlling value, Ty > Tg or (X stabilizes to a non-controlling
value and T^<Tg)

when E stabilizes to a non-controlling value, X must stabilize to a non-controlling
value and T^<Tg.

The maximal floating delay of a combinational circuit defined in section 1.3.6 is
compatible with this criterion. It is widely used by timing verifiers due to its simplicity
and the fact that it determines a tight upper bound for the maximal circuit delay. Further-
more, this bound is an upper bound for the family of circuits that have gate delays con-
tained in the interval [0 , maximal gate delay], that is, the criterion satisfies the so called
monotone speed-up property. Note that this property is satisfied in all previously stated
sensitization criteria, except static sensitization.

Another sensitization criterion, which has not been stated, is dynamic sensitization.
This criterion computes the maximal transition delay defined in section 1.3.6, taking into
consideration the instantaneous signal values. This criterion does not possess the mono-
tone speed-up property. An interval delay model has to be used instead of simply the max-
imal delay values, which makes the computation too complex to be practical.

0

2.2 Reduction to a Test Generation Problem

Ashar et al [86], and Devadas et al [93] proposed two similar methods to reduce the
problem of deciding whether a circuit delay is greater than § to an instance of a multi
stuck-at-fault test generation problem (see [31-42] for details on test generation). These
methods use the properties of the transformation of a logic circuit into a two-level circuit,
a disjunction of conjunctions, known as the equivalent normal form. This transformation
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Figure 22
Removing fan-outs results in a tree circuit

is illustrated on the example of Fig. 21 b

extracted from [93] (numbers on gates a
e

are identifiers). First, all fan-outs are

eliminated by duplicating common d

structures, resulting in the tree circuit

of Fig. 22. Then, the inverters are ^r^o be transformed to the equivalent normal
pushed back to the inputs, applying form-
DeMorgan's law resulting in the circuit b
of Fig. 23. The normal form logic

expression representing the circuit is:

A7^=(^4,6}Aa{3,4,6})v

(&{4,6} A C{1, 3, 4, 6} A Û?{1, 3, 4, 6}) v

(a{3,5,6}AC{l,3,5,6}Aâ?{2,5,6})v

(a{3,5,6}AC{l,3,5,6}A&{2,5,6})v

(a{3, 5, 6} A d{ l, 3, 5, 6} A û?{2, 5, 6}) v

(a{3, 5, 6} A d{ï, 3, 5, 6} A è{2, 5, 6})

NFE is represented by the circuit

of Fig. 24. Each variable represents an

individual path of the original circuit; Figure 23
the indices contain the identifiers of the The result ofpushing back the inverters-
path gates. To make it equivalent to the

original circuit, a delay equal to the path length is placed at each input and gates are
assumed delayless. Suppose that the maximal floating delay of the circuit is to be com-
puted for the rising transition at the output, i.e., T = maximum time separating the applica-
tion of an input vector v and the last event at the output for all v such that ENF(y) = 1
(obviously, the last event is a rising transition). Assuming that T > §, there exists an input
vector v such that, referring to the circuit of Fig. 24:
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1) all AND gates belonging only to paths shorter than

or equal to § stabilize at 0;

2) at least one AND gate belonging to a path longer
than S stabilize at 1 .

The input vector v is a test vector for multi stuck-at-0 _4-
faults injected at each of the AND gates inputs belonging to —CL
a path longer than S.

Figure 24
To compare the maximal floating delay for the falling Normal form representation.

transition, the method is simply applied to the inverted cir-
cuit..

Devadas et al suggest an algorithm in [93] that uses the original circuit without mod-
ifîcation at the cost of modifying the way the test generation is done. Ashar et al [86] use
standard tools for test-generation at the cost of modifying the circuit, which in the worst
case doubles in size by the process of pushing back the inverters to the inputs. The execu-
tion time for the circuit cl908 from the ISCAS'85 [3] benchmark is 3675 seconds for the
method in [93] on a 10 MIPS machine, and it is 800 seconds for the one in [86] on a 20
MIPS machine.

2.3 Mixed Boolean-Linear Programming

Lam et al suggested in [85] a Mixed Boolean-Linear programming formalism to
compute the exact circuit delay using the interval delay model for the gates. The dynamic
behavior of the circuit is represented by a timed Boolean function. For example, a two-
input AND gate with a delay of 2 is represented by s (t) = a (t-2) AND b(t-2) where
t is time, s is the output, a and & are the inputs. The function representing the circuit behav-
ior at its output is f(t, x? ..., x , rfp ..., d ) where x^,..., x are the inputs, u?p ..., d are
the gate delays and / is time. The computation of the maximal delay is formulated as fol-
lows:



29

0
Delay = max t such that

f{t, Xp ..., ^, ^, ..., d^) ^/(°°, xp ..., x^, û?i,..., rf^) (l)

dmin, ^ di ^ d,max,

To resolve (1) for certain values of t and the delays rf, e [d^n, d^^}
f(t, xp ..., x^, d^, ..., d^) XOR/(°°, x^,..., x^, d^,..., d^) is represented by a Binary Deci-
sion Diagram (BDD, see [15-21]) and checked for satisfiability. A BDD is a directed acy-

clic graph representation of a Boolean fonction. The disadvantage of BDDs is their size
that is exponential in the worst case (in terms of the number of variables), encountered

with multipliers for example. The execution time of this method on circuit c 1908 from the
ISCAS'85 benchmark is 12140 seconds on a 3 8 MIPS machine.

2.4 Hierarchical Method

Yalcin and Hayes [107] proposed a method applicable at different levels ofabstrac-

tion of a circuit. They represent the delay of the combinational circuit with n inputs and m

outputs with a matrix of dimensions nxm. The element (i,j) represents the delay from

input ; to output y. This delay is a set of pairs (\)/, t) where \y represents the conditions

that have to be satisfied to have a delay t from input ; to output 7. The circuit matrix is

deduced by operations on the matrices corresponding to its building blocks. Satisfiability

of conditions \y is evaluated symbolically by manipulating BDDs. The excessive require-

ments for execution time and memory inclined the authors to follow an approximate

approach in [108], by restraining the conditions \y to depend on a limited number ofsig-

nais, the conta-olling lines. In the case of a multiplier, however, there are no controlling

lines and this method simply computes the topological delay.

u
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2.5 Method Based on Constraint Satisfaction

Cemy and Zejda proposed in [98] a method based on Waveform Narrowing (WN).
Using the circuit description and the operating conditions, a constraint system is built and
partially resolved using an event driven mechanism.

A constraint system is composed of a finite set of variables {X^, X^,..., X^} that take
values from their respective domains D^, D^,..., D^, and a set of relational constraint oper-
ators {Ci, C-^,..., C^}, each operating on a subset of the variables. A domain D^ ofavari-
able X^ initially contains the set of all possible values X^ can take. A solution of the
constraint system is an assignment for all the variables, from their respective domains, that
makes the system consistent, i.e., all the constraints are satisfied. When a constraint opera-
tor Ck is applied, it removes from the domains of the associated variables values that are
not compatible, i.e., values that are not part of any solution. The resulting system contains
the same original set of solutions.

Modeling a timing verification problem using Waveform Narrowing concept consists
of:

Defining domains that represent sets of binary waveforms;

Defining domains that represent sets of delay values;

Defining constraint operators that represent logic gate functions. When applied, the
constraint operators remove from the domains associated with the gate terminals the
values that do not satisfy the local gate constraint, regardless of the global circuit func-
tion;

Building a constraint system based on the logic circuit description, the component tim-
ing properties (delays / timing constraints), and the operating conditions (clock fre-
quency). The constraint system should have a solution if and only if the timing
constraints are violated;
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Resolve the system partially by repeatedly applying the constraint operators until the

greatest fixpoint is reached; it is no more possible to change the domains by applying

the constraint operators. If the resolution results in empty domains, we conclude that

the timing constraints are satisfied. Otherwise, no conclusion can be drawn.

This method is an attractive framework for timing verification as it can efficiently

handle component delay correlation, eliminates false paths, and models the transition and

floating-mode delays. The method can give false negative results because the constraint

system resolution is partial, however, it is possible to tighten the results by investing more

processing time. The method is the basis for our work that is detailed in Chapters 3 and 4.

2.6 Summary

Timing verification is a critical phase in the design flow of VLSI circuits. In the

emerging system-on-a-chip technology, timing verifiers are faced with multi-million-gate

chips that need to be verified in hours. Therefore, quasi-linear complexity is imposed on

any commercially acceptable timing verification algorithm. Unfortunately, the timing ver-

ification problem is NP-Complete [76]. The complexity of the problem is caused by the

fact that, in general, not all signal paths in a circuit can propagate transitions (so called

false paths). Many techniques have been developed to deal with the false path problem.

Algorithms based on path enumeration suffer from poor performance, as they may have to

enumerate a very large number of paths, however, it is possible to improve the perfor-

mance by memorizing inconsistencies between sub-paths [110]. In [86,93] the authors

reduced the problem of comparing the circuit delay with § to an ATPG problem. In [85] a

method based on timed Boolean functions and a BDD representation was formulated,

however, it may experience exponential space explosion for certain circuits. To cope with

the increasing complexity, the research community tends to offer approximate solutions,

as is the case in [108] where the entries of the conditional delay matrix are restricted to be

expressed using the controlling lines, smoothing out the other variables. The group at the

Université de Montréal has developed a method based on waveform narrowing
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[98,112,118] inspired by constraint logic programming using relational interval arithmetic

[14]. Unlike other methods, it can efficiently handle component delay correlation [112]

and adapt to different circuit-delay modes (transition or floating).

A recent publication [119] is particularly interesting. It exposes the approach used to

verify the timing properties of the 600 MHz Alpha processor. This processor is built on a

one square centimeter silicon chip, containing roughly 18 million transistors. Their
approach is summarized as follows:

l) Uses a fixed delay model (nominal value) for components

2) Uses SPICE [9] to simulate the clock signal

3) The longest circuit path is responsible for its delay

Note that no automatic false path elimination technique was used. Having to deal

with a circuit of such size, even a quadratic algorithm is not acceptable. Moreover, the use

of a fixed delay model is motivated by the fact that, when the timing verifier does not han-

die component delay correlation, the use of interval delay model introduces excessive pes-

simism. Finally, the Alpha design group had to program their own timing verifier in order

to be able to handle non-standard design techniques, such as gated clocks, necessary to
achieve the 600 MHz clock frequency.

The main drawback that keeps exact false path elimination methods from serious

industrial use is their inherent computational complexity:

Methods based on BDD evaluation have an exponential space complexity in the worst

case. For example no method was able to build a BDD for the multiplier c6288 from

ISCAS-85 benchmark suite without exhausting the system memory. But they can

apply existential abstraction of variables to reduce complexity for approximate (upper
bound) values, as is the case in [108] where the variables are limited to the controlling
lines.

u
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• Methods that reduce the problem to an instance of a test generation problem have
exponential time complexity in the worst case. For instance, these methods experience
an excessive execution time for simple circuits like c 1908 from the ISCAS-85 bench-
mark suite.

Methods based on path enumeration may have to enumerate an exponential number of
paths. For instance, c6288 has more than 1018 paths!

Beyond the computational complexity issue, a methodology for circuit delay compu-
tation is required to be easy to integrate with existing EDA tools. The objective of our
work is to provide a method that has the characteristics mandatory for industrial use, such
as:

Quasi-linear time and space complexity.

Possibility to tighten results of critical circuit nodes by investing processing time.

Supports interval delays and component delay correlation.

Supports delays as defined in Standard Delay Format (SDF) [13].

Supports gated clocks.

Supports correctly transparent latches.

Supports complex clocking schemes.

Provides easy and automated cell library modeling.

The following chapter contains the proposed timing verification method, along with
the results on the standard ISCAS'85 benchmark suite.
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CHAPTER III METHOD BASED ON

WAVEFORM NARROWING

In this chapter, we present the proposed timing verification method based on the
work ofCemy and Zejda in [98]. After explaining the basic idea, two examples are used to
develop intuition. The method is then formalized and further extended using conservative
reduction techniques and a case analysis procedure. The original method was formulated
around the fa-ansition-mode delay, and implemented no pessimism reduction techniques.

3.1 Overview of the WN Method

The waveform narrowing method is a custom constraint programming system
adapted for timing verification. A constraint system is composed of a finite set of variables
{^4, X^,..., X^ that take values from their respective domains D^, D-^,..., D^, and a set of
relational constraint operators {C^, C-^,..., C^}, each operating on a subset of the variables.
A domain D^ of a variable X^ initially contains the set of all possible values X^ can take. A
solution of the constraint system is an assignment for all the variables, from their respec-
tive domains, that makes the system consistent, i.e., all the constraints are satisfied. When
a constraint operator C^ is applied, it removes from the domains of the associated vari-
ables values that are not compatible, i.e., values that are not part of any solution. The
resulting system contains the same original set of solutions.

3.1.1 Inconsistency Property

If applying repeatedly the constraints results in one of the domains becoming empty,
the constraint system has no solution. However, if all the domains are non-empty, the sys-
tern may still have no solution.
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3.2 Formalism for Timing Verification

Formulating a circuit delay computation problem by means of a constraint system

involves defining signal domains (sets of binary waveforms), delay domains (intervals),

and constraints representing logic gate functions. The variables and the relational con-

straints represent the signal values of circuit nets and the logic gate functions, respectively.

The specific circuit-delay mode and the timing constraints being verified introduce further
restrictions on the domains.

3.2.1 Abstract Waveforms

A binary waveform is a mapping/:7? —>{ 0, 1} .

The space of all binary waveforms isBW= {f. R^ {0, 1}}.

An abstract waveform is a subset of 5 ?7 defined as

w v\
,max

\lmin {fe BW\3t'e[lmin,max] f(t')^v A ^t>f f{t) = v}.
v

,max

l/OTi'n contains the binary waveforms that are stable at value v after time max and

undergo the last transition at or after time Imin.

Example:

0|^ contains the binary waveforms that: undergo 1 to 0 transition exactly at time 10,
stable at 0 after time 10, and can be anything before time 10.

Infinite bounds extension:

v|_^ contains the set of all binary waveforms that stabilize at v.

v

—00

—00

contains the binary wavefonn that is stable at v for all finite values of time.

Note that v|'"nv| v
,+°0 ,+00

and 0|'_' n 11 '„" = <)) by definition.
—00 l —00 l —00

,maxThe abstract waveform space is AW = [v\'^ \ Imin, max e R A ve{0,l}}
u {0|^,1|+:,0|::,1|::}.

\—00 / 1—00 / 1—00 •' 1—00

References to v, Imin and max of an abstract waveform w are denoted w.v, w.lmin and

w.max, respectively, w.v is the class and [w.lmin, w.max] is the last-transition interval of
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w. ïfw.lmin > w.max then [w.îmin, w.max] is empty and w itself is also empty, denoted w =
()).

Abstract waveforms are used in the fonnalization of maximal circuit delay verifica-
tion for which the relevant signal waveforms are the ones that do stabilize to a final logic
value at a finite value of time.

Imin max
w,

3.2.2 Abstract Signals Domain

The objective is to define a domain model for the set

of possible binary waveforms that an electt'ical signal,

(a)

(b)

•o

w,

± ±

I T

Transitions

min max

J: -1-

Rising clock edge
Figure 25

abstracted to the timed Boolean domain, can take values (a): Abstract signal domain.
(b): Clock edge domain.from. In timing verification, signals are considered in a

finite time interval. A signal is normally unstable for a certain period of time, and then it
stabilizes to a final binary value. Therefore, it is convenient to compose the domain using
two abstract waveforms, one containing the waveforms stabilizing at 0, the other contain-
ing the ones stabilizing at l. This subdivision is a key element when it comes to defining
the relational constraints that model the gate functions such as AND, OR, NOT, etc.

An abstract signal S is a pair of abstract waveforms (~WQ,W^) \ WQ.V = 0 and
w^.v l .

The space of all abstract signals is ^>S'={ we ^^T| w.v = 0 }x{wçAW\w.v = l }.
Domains of the variables representing digital signals are elements of AS.

References to WQ and w^ of an abstract signal S are denoted S.WQ, S.w^, respectively.
Fig. 25 (a) shows the graphical representation of the abstract signals domain used in the
examples throughout this thesis.

u

3.2.3 Other Domains

Beside abstract signals, clock domains are represented as the interval uncertainty of
the occurrence time of the relevant clock edge (Fig. 25 (b)), delays are represented as
intervals.
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3.2.4 Timing Verification

Given a logic circuit and operating conditions, we build a constraint system that is

consistent, i.e. has a solution, if and only if the timing constraints are violated. The system

is built as follows:

For each circuit net N^r we associate a variable X\^ that takes values from its domain D^.

Z)]ç initially contains the set of all possible values (waveforms) X^ can take.

For each logic gate G^ driving a net N^ (gate output), and driven by nets {N]^, ...,

N^} (gate inputs), we associate a constraint operator C^ that operates on the domains

-Dkl' -Ok2' •••' z)kh from which the variables X^,X^, ..., X^ take values, respectively.

Let f : BW" ' ->5^ be the timed Boolean function G^ implements. An assignment

to the variables {^1,^2, —,X^} satisfies the gate constraint if X^ =A^k2' •••^kh)-

When applied, the constraint operator C^ removes from each domain D^ (narrows

Z?ki) the values that, when assigned to X^, do not satisfy the gate constraint for allpos-

sible assignments to the other variables.

Constraint Operators: the constraint operator Cy of a two input gate implementing
the timed Boolean function/(^, B: domains of the inputs, Y. domain of the output) is

defined in terms of the forward and partial inverse functions defined as follows:
Forward Function:

forward\A, B) = {/(a, A) \a^A,b^B}
Partial Inverse functions:

partial!nverseA(B, Y)= {ae 5^ | 3 6e 5and^e Y,y = f(a,b')}
partial!nverseB(A, 7)= {ée 5?7| 3 ae ^ and^e Y,y = f(a,b)}

Constraint Operator: the constraint operator is defined as C^A, B, Y)= (A1, B\ F)
such that:

r=Y nforward\A,B)
A' =A ^ partialInverseA(B, Y)
B'=B n partial!nverseB(A, Y)

0
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Generalization to multiple input gates

is trivial.

Example: Fig. 26 shows the results of

applying the constraint operator of a

delayless AND gate. the and function is

a mapping and: BW-xBW—>BW,

for a,b^BW and{a,b) =y such

that ^(0 = a(t) andb(t) ^ te R.

Initial state: Fig. 26(a) shows the

initial domains of the gate inputs A

and B, and the gate output Y, before

the AND constraint operator is

applied:

A = ((j), 11"^), contains the wave-

forms stable at 1 after time 10;

B = ((|),1|"_), contains the wave-

forms stable at 1 after time 5;

Y=(0\" ,l|g'), contains the binary

(a)

10
A.w

A.H>1

']
A

5
B.fVf

B.WQ

J
B

9 li
y.»',

y.».,_

± J
7 8 y
l l

(b)

10
/4.K/1

A.WC

JL

x
JL

5
s.»,

B.w,

J
J

B

r.i»,

r."'o

9 ie y

•^*..
±^î^'

7 ~ 8 Y

s*< '̂»^,

9 10
^.Wj

A.Wy ï A

(e)
5

ff.w,

B.WO

J
B

z
Y.,.,

y.w.

9/ 10

l l
Y

'0

Figure 26
A delayless AND gate constraint operator.
(a) Initial domains.
(b) Effect on the gate output Y.
(c) Effect on the input A.

wavefonns stable at l after time 11, having transitions in [9,11], and the wave-
forms stable at 0 after time 8, having transitions in [7,8];

Effect on the output V: Fig. 26(b) shows how the gate output is narrowed by
deductions derived from the gate function: Let a e A, b e B, and y e Y wave-
forms that satisfy the AND constraint: y = and(a, b) . Since a is stable at 1 after
time 10, and b is stable at 1 after time 5, y is necessarily stable at 1 after time 10.
Therefore, Vis narrowed to ((|), l |n"): waveforms unstable after time 10 and those
stabilizing at 0 are removed.

Effect on A: Fig 26(c) shows the narrowing performed on the input A. Let y e Y,
3 t e [9,l0]\y(t) = 0. Since any waveform in B is stable at 1 after 5, waveforms



39

0
in A that satisfy the AND constraint are ae. A\a(t) = Q. Therefore, waveforms in

10A that are stable at or after time 9 are removed, resulting mA= (6^,1 |n" ).
19

Effect on B: no narrowing is possible on B because, \/ be B,3 a e A and y e Y
such that y = and(a, b). For example,

aÇt~) = y(t) = <; ; "; ' ";' satisfy^ = and(a, b) V 6 e 5.
1 otherwise

When delays are represented as intervals instead of fixed values, additional variables
and domains are associated with circuit component delays, along with appropriate
constraints that handle component delay correlation.

The system is partially resolved by an event-d-iven engine that repeatedly applies the
constraint operators until the greatest fixpoint is reached. If we get empty domains we
conclude that the timing constraints are satisfied (no violation), otherwise, no conclusions
can be drawn.

A formal presentation of the WN method is presented later, after developing intuition
by means of the following two examples.

0

3.3 Combinational Circuit Example

are:

- Input data (A and B) stable after time 0

(operating conditions).

Consider the circuit in Fig. 27(a) where | ^
(a)

the numbers on gates represent their maxi-

mal delays. The operating conditions and ,

timing requirements imposed on the circuit

10

e
10

30
G lB 10D

F
20

10

e
10

A 30
B G10D

(b)
F

20

Figure 27
(a): Combinational circuit with a false path.
(b): Combinational circuit example: step 0.
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- Output (G) stabilizes at time 61 or earlier. That is a constraint; therefore, transitions

at or after time 61 at G violate the timing requirements.

A graph of constraints is built isomorphic to the circuit, as mentioned in Section
3.2.4. The constraint associated with a logic gate is formulated around its forward logic
function and its partial inverse operating on sets of waveforms. The constraint system res-
olution is depicted in Figures 27-34.

Step 0

Initially assign the set of all possible

wavefonns (0|_^, 11_^") to the internal
nets C, D, E, and F. Inputs A and B are Figure 28

Combinational circuit example: step 1.restricted to waveforms stable after time

10

e
10

A 30
B GD 10

F
20

,0 ,00: (° IL'1 L)- The output G is
restricted to what violates the timing

requirements: transitions at or after time

6^oi;r,ii;r).

=J
10

E
e

10
A 30

B GD 10
40...

FI,
20

Figure 29
Combinational circuit example: step 2.

u

Step 1

Applying the inverter constraint operating on {A, C} removes from C (narrows C) the
waveforms having transitions after time 10. Obviously, transitions after 10 at C cannot
be caused by a signal that is stable after 0 at A, provided the inverter between A and C
has a maximal delay of 10.

Step 2

Applying the AND constraint operating on {B, C, D} removes from D the waveforms
having transitions after time 40.

Step3

Applying the Inverter constraint operat-

ing on {D, E} removes from E the wave-

forms having transitions after time 50.
Figure 30
Combinational circuit example: step 3.

10
E

e
10

A 30
- GB 10D

FI,
20
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=3—J 10

E
e

A 30
B G10D

F
20

Figure 31
Combinational circuit example: step 4.

10
E

e
10

A 30
B G10D

F
20_Il__ J

Step 4

Applying the OR constraint operating on

{B, D, F} removes from F the wave-

forms having transitions after time 60.

StepS

The OR constraint operating on {E,F,G}

has a more complex behavior as the

gate's partial inverse function comes

into play:

Figure 32
Forward function: since the gate maxi- Combinational circuit example: step 5.
mal delay is 10, and waveforms at its

inputs are stable after time 60, applying the constraint removes from G the wavefomis
having transitions after 70 (the circuit topological delay).

Partial inverse: any waveform in E that is stable at 1 (controlling value for OR) after
time 50 causes waveforms at G to be stable after 60, none of which is in the domain of

G. Therefore these wavefonns do not make part of any solution, they are removed.
Furthermore, waveforms at F stable at time 51 and after cause waveforms at G to be

stable at 61 and after, none of which is in the domain of G. Therefore, they are
removed form F which ends-up with waveforms stable after 60, having transitions in
[51,60].

It is important to get familiar with the meaning of narrowing: Step 5 narrowed the
domain of E from (0|^, 1 |^) to (0|^, ())), removing the waveforms stabilizing at 1.
Then it narrowed the domain of F from (0[6^, 1 \ J to (0|^, 11^) , removing the

,maxwavefonns stabilizing at or after 51. Narrowing v\ . either decreases the value of
max (removes late transitions), or increases the value of Imin (removes early stabiliza-
tion), or both.

0



42

n
Z1

•f10

e
w

A 30
GB 10D

40]__;

F
20

——s_.— 10
E

e
10

A 30
G10D

FI.
20

Step 6

Applying the OR constraint operating on

{B,D,F} involves also its partial inverse

function: wavefonns in the domain of B

stabilizing at 1 (controlling for OR) are /r,ayre 33
removed as they cause at F waveforms Combinational circuit example: step 6.
stable after time 20, none of which is in

its domain. Also, waveforms of D stabi-

lizing at time 31 or earlier arc removed

as they cause waveforms at F having no

transitions at or after time 51.
Figure 34
Combinational circuit example: step 7.

• Step 7

Finally, applying the AND constraint operating on {B,C,D} removes from B the wave-

forms stabilizing at 0 (controlling for AND) as they cause waveforms at D stable after

time 30, none of which is in its domain. We end up with an empty domain. Therefore,

the constraint system has no solution, and it is impossible to violate the timing require-

ments in the context of the current operating conditions (inputs stable after time 0).

This proves that no transition is possible at or after time 61, consequently, the path A-
C-D-F-G of length 70 is false.

It is important to note that the system is resolved using an event driven mechanism.

Each time a domain is narrowed, all the constraints operating on it are re-applied. The

operating conditions and the timing constraints trigger the initial operations. The system

then iterates until no domain is narrowed further, until the greatest fixpoint is reached.

In this example, only the maximal gate delay is used, and no clock signal is involved.

The objective was to illustrate false path elimination using the waveform narrowing for-

malism. The following example illustrates how component delay correlation is handled

through a simple example involving no complex logic functionality.

u
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3.4 Sequential Circuit Example

Fig. 35 illustrates a simple frequency divider circuit composed of one edge sensitive
flip-flop, one inverter, and one clock buffer. The logic behavior is as follows: Q flips its

value at each rising edge of the clock, resulting in a 50% duty cycle signal at Q having half

the clock frequency. Considering the physical components behavior, the timing constraints

of the flip-flop (setup / hold) have to be satisfied; otherwise, the circuit response is unpre-

dictable. The setup constraint verification is illustrated next, using the following parame-
ters:

Clock period: 22

Clock buffer delay: [10,20]

Inverter delay: [10,20]

J~LJ~l—n—J~L Clock û
Q

Faultless, delayless behaviour.

D Q

CLK
A.

Clock4^-
Figure 35
Frequency divider.

CLK-to-Q flip-flop delay: 0

D / CLK setup constraint: 0

D has to stabilize at least 0 time units

before the occurrence time of the clock edge.

• Component delay correlation factor: 10%

This means that, although the circuit delays can have values in [10,20], once one is

specified as d, the other is in [d- 1, d+ 1]. (10% of [10,20] interval width is 1).

As explained in Section 1.3.3, two clock cycles are unfolded. The flip-flop is broken

down into two parts: one injects a logic value at the arrival time of the active clock edge of

one cycle; the other samples the data at the next clock cycle (after one period).

The constraint system that is used to model the verification of the setup constraint of

the flip-flop is depicted in Fig. 36. The clock period is modeled by a buffer that has a fixed

delay value equal to the clock period of 22. Since the logic function is very simple, the

graphical representation of the data signal domain shows only the dynamic behavior.

Three domain types are used in this example:

• Interval delay domains, shown on the clock buffer and the inverter;
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Clock domains representing the interval

of uncertainty of the arrival time of the

rising edge. The clock falling edge is irrel-

evant in this particular case.

• Abstract signal domains for Q and D.

Initial domain values are specified as follows:

Delay Correlation: 90%
10% permitted delay
deviation: 1

DQ 10,20

Clock Edge (first cycle) CLKCLK
AA

1=

[10,20;
Lao^.pen°d.22.(nexfL'^cleLI

Figure 36
Sequential circuit example: step 0.

+0 .+00.

Q and D contain all possible waveforms: (01_^~, 11_^') .

Internal clock domains, CLK at both cycles, contain all possible rising edges
[-00 , +00].

The primary input clock domain contains a single rising edge at time 0.

Delay domains for the inverter and the clock buffer contain all possible delay values
[10,20].

Constraint Operator of the delayless Flip-Flop D/CLK half: when the flip-flop D /

CLK constraint (the part that samples data the next cycle) is applied, it removes from the

domains of D and CLK the values that do not violate its setup constraint. It removes from

CLK the edges arriving after the stabilization time of D, and removes from D the wave-

forms stabilizing before the earliest arrival time of the clock edge at CLK.

Constraint Operator of the delayless Flip-Flop Q/CLK half: when the flip-flop CLK /

Q constraint is applied, it removes from Q the waveforms unstable after the latest clock

edge, and removes from CLK the edges arriving before the latest transition at Q. The

rational behind this definition is that the data signal at Q stabilizes CLK-to-Q units of time

(0 in this case) after the arrival time of the active clock edge. Therefore, the latest transi-

tion at Q cannot happen after the arrival time of the clock edge.

Figures 37-56 depict the constraint system resolution. Each step explains the results of
applying the shaded constraint.

0
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G)

Step 1

Applying the clock buffer constraint oper-

ator narrows the CLK domain to [10,20].

Step 2

CLK / Q constraint operator removes

from Q the waveforms that are unstable

after time 20.

Step 3

The inverter constraint operator removes

from D the waveforms that are unstable

after time 20+20= 40.

Step 4

The period delay narrows the next cycle

clock domain to 22 + [10,20] = [32,42].

Step5

The D / CLK setup constraint operator has

effect on both domains, D and CLK. The

setup constraint is violated only when the

clock edge occurs before the stabilization

time of D. Therefore, clock edges occur-

ring in ]40,42] do not violate the setup

constraint, and thus the domain of CLK is

narrowed to [32,40]. The same is true for

the waveforms at D stabilizing before

time 32 (before the arrival time of any

clock edge). Therefore, the domain of D is

narrowed to (0|^,1|^). In fact, the

Delay Correlation: 90%
10% permitted delay
deviation: 1

L—

Q D10.20

Çtock_Edgeffjrst cycle) CLKCLK
AA

10.20' fe
Çtoçk Period 22 (next çyda) J

Figure 37
Sequential circuit example: step 1.

Delay Correlation: 90%
10% permitted delay
deviation: 1

Q D10,20

Clock Edge (first cycle) CLKCLK
AAL-S°1_

10,20: 22

.f^K_^.T^l^Sr}^l^^l.

Figure 38
Sequential circuit example: step 2.

Delay Correlation: 90%
10% permitted delay
deviation: 1 Q D10.20

ÇIOGlt Edge (first cycle) CLKCLK
~ÉL_ AA

10,20^: 22

^ Clock Period 22 (neKl cycle) I

Figure 39
Sequential circuit example: step 3.

Delay Correlation: 90%
10% permitted delay
deviation: 1 Q D10,20

Clock Edge CLKCLK
/\A

1":^—13&42I Jrs.zffl...

110.20; GS
Clock Period 22 (next cycle) J

Figure 40
Sequential circuit example: step 4.

Delay Correlation: 90%
10% permitted delay
deviation: 1

32-20=12

Q D10,20

32.40

Clock Edge (first cycle) CLKCLK
AA

[ï10,20

^iock Penod 22 (neri cycle]! |

Figure 41
Sequential circuit example: step 5.
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Delay Correlation: 90%

deviation: 1
Q D10,20

2.40

Clock Edge (first cycfe
l.-i5;ii7, Z.J 'r

CLKCLK
AA

n°,z°j

10,20: Os=
^ Clock PeriodClock Period 22 (nexl cycle)

Figure 42
Sequential circuit example: step 6.

Delay Correlation: 90%
10% permitted delay
deviation: 1

0

(delayless) setup constraint operator does an interval intersection operation between

the domains of D and CLK.

Step 6

The inverter constraint operator has a

backward effect on the domain of Q.

Since all waveforms at D have transitions

at or after time 32, the waveforms at Q

should all have transitions at or after 32 -

20 = 12. Therefore, the waveforms at Q

stabilizing before time 12 are removed;
,20 ,20.

the domain of Q is narrowed to (0|^, 11^).

Step?

The CLK / Q constraint operator has also

a backward effect on the domain of CLK.

Since all the waveforms at Q have transi-

tions at or after time 12, the clock edge
-Ç]ock^Penod22(nextcycle:l!cannot happen before 12. Therefore '^^ ^ -.-= =^

[10,12[ is removed from the domain of Sequential circuit example: step 7.
CLK.

Step8

The clock period consti-aint operator also

has a backward effect on the clock

domain of the previous cycle. Remember

that the clock period is 22, and the time

lapse between successive rising edges of ^^ial circuit example: step 8.
the clock is exactly 22 time units. The lat-

est arrival time of the clock on the next cycle is 40; therefore, the latest arrival time of

the clock at the previous cycle is 40- 22 = 18. It follows that the clock signal domain

must be narrowed to [12,18].

Q D10.20

-iaÏÏL-1
Clock Edge (first cycle)

l-B5L
CLKCI.K
AA

40-22=18_f 3
^

10,20 22

=JDelay Correlation: 90%
10% permitted delay
deviation: 1

Q D10,20

Clock first cycle) CLKCLK
A A

10,20 f3>ZT
Clock PerioClock Period 22 (next cycle)
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Step 9

The buffer delay constraint operator

affects its delay domain: a delay value in

[10,12[ or ] 18,20] causes the clock edges

to fall outside of [12,18]. Therefore the

buffer delay domain should be narrowed

to [12,18].

Step 10

At this point, the delay correlation factor

of 10% comes into play. Since delays can-

not differ by more than 1 unit of time, a

delay of [12,18] at the clock buffer

implies an inverter delay in [12,18] +

[-1,+1]= [11,19].

Step 11

The CLK / Q constraint operator removes

from Q the waveforms unstable after 18,

the latest arrival time of the clock.

Step 12

The inverter constraint operator removes

from D the waveforms unstable after 18 +

19=37.

Step 13

The clock period constraint operator

removes from the domain of the clock on

the next cycle the edges occurring in

[32,34[, since the earliest edge on the pre-

vious cycle occurs at time 12.

Delay Correlation: 90%
10%psrmltted delay
deviation: 1

Q D10,20

32.40

Clock Edge (first cycle) CLKCLK
i&r-- A/\

isa J

-1$5>— 22

Clock Period 22 (next cyçie)

Figure 45
Sequential circuit example: step 9.

Delay Correlation: 90% __^
10% permitted delay ^''^.
deviation; 1

/
l clc:it^.^9? (fir?t (^cle)
|B5S-_:3 i

il«L

Q D11,19

32.1°I 'l
CLKCLK
A

.[^4°1... ^

[5S12,18

_Ctock Period 22 (next cyele)

Figure 46
Sequential circuit example: step 10.

-—^18+13= 37Delay Correlation: 90%
10%permlnad delay
deviation: 1 \

Q D11.19

Clock Edge (flret cycle) CLKCLK
/\ A

isî.'a ..^

12.18 22

^ Clock Period 22 (next cycle)

Figure 47
Sequential circuit example: step 11.

Delay Correlation: 90%
10% permitted delay
deviation: 1

Q D11,19

Clock Edge (first cycle) CLKCLK
AA

.E,°I

12+22=34
L [12,18)

12,18 22

Clock Penod^22j;next^ycle}

Figure 48
Sequential circuit example: step 12.

Delay Correlation: 90%
10% permitted delay
deviation: 1

Q D1,19

Clock Edge (first cycle) CLKCLK

Ul .1 A

wx

22

..c]o.l:;k..pe_''iod22.(nexl<:.ycle)

0
Figure 49
Sequential circuit example: step 13.
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Step 14

D / CLK setup constraint operator nar-

rows D and CLK to their interval intersec-

tions: (0|^, 11^) for D, and [34, 37] for
CLK.

Step 15

The inverter constraint operator removes

from Q the waveforms that are stable

before 34 - 19 = 15. Q becomes
l18.11181
ll5' lll5/l-

Step 16

The clock period constraint operator
removes from the clock domain of the

previous cycle the edges occurring after
37-22=15.

Step 17

CLK / Q constraint operator removes

from Q the waveforms unstable after time

15, and removes from CLK the edges

occurring before 15.

Step 18

Once again, the clock buffer delay domain

is affected; it is narrowed to the single

value of 15, as the clock domain at its out-

put contains the single edge occurring at

time 15.

Delay Correlation: 90%
10% permitted delay
deviation: 1

34-19-15
12.

Q Di,ig

CLKCLK
A/\

112.Î81.

12,18: GS
^Ctock Period 22 (nml cycle)

Figure 50
Sequential circuit example: step 14.

Delay Correlation: 90%
10% permitted delay
deviation: 1 Q D11.19

l Çipck Edge (first cycle) CLKCLK
AA

-ç^ fe
Clock Period 22 (next cycle)

Figure 51
Sequential circuit example: step 15.

Delay Correlation: 90% ^^>
10% permitted delay
deviation: 1 Q D11.19

34:3

Clock Edge (first c^cle)
31

CLKCAK A

S.J
l—I"J5L_

B^12,18

Clock Period 22 (next cycle) ;

Figure 52
Sequential circuit example: step 16.

: Delay Correlation: 90%
10% permitted delay
deviation: 1

l..^

Q D11,19

[ cycle) CLKCLK
A

15,"J

-4Sâ> 22

Clock Period 22 (next cycle)

Figure 53
Sequential circuit example: step 17.

Delay Correlation; 90%
10% permitted delay
deviation: 1

a D11.19

Clock Edge (first cycle) CLKC.LK
AAMl

Ais^a.

fe:-ç^—
Clock Period 22 (next cycle)

Figure 54
Sequential circuit example: step 18.
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Delay Correlation: 90%
10% permitted delay
deviation: 1 D0 14.16

çiockEdagJfirst cycle) CLKCLK 15+16-31
AA

raw I
la

15,15 22

.clo.<::i<..peril:).d..?2..("e!)(t.cYcleî.

Figure 55
Sequential circuit example: step 19.

Delay Correlation: 30%
10% permitted delay
deviation; 1

Step 19

The delay correlation of 10% narrows the

inverter delay domain to [15,15] + [-1,+1]

=[14,16].

Step 20

Applying the inverter consfa-aint operator

narrows the domains of Q and D to (j). In

fact, waveforms at Q that are stable after

time 15 cause waveforms at D to be stable

after time 15+16=31, none of which is

in the domain of D. Therefore, we can

conclude that the constraint system has no

solutions, and the setup constraint of the

flip-flop is satisfied.

Fig. 57 illustrates graphically the domains evolution for steps 6 to 20. The height of

the shaded area represents the domain interval width. Note that during evaluation,

domains never get enlarged. They either remain the same or get narrowed.

Q D14,16

CLKCLK
AA

-E> 22

Clock Period 22 (next c/cle) j

Figure 56
Sequential circuit example: step 20.

Summary: to prove that the setup

consfa-aint of the flip-flop is satisfied,

the constraint system narrows the inverter delay

domains by keeping only the values that

violate the constraint. If we end up with

empty domains, we can conclude that

the setup constraint is satisfied.

Clock bufier
delay domain

domain

First cycle
clock domain

Next cycle
clock domain

u

The next Section fonnalizes the

notion of a relational constraint opera-

tor, and defines constraint operators for

the basic symmetrical logic gates such

as AND, OR, XOR, etc.

l
illî

B..

l...

asi a

an
SB

617 l 8 19 110111 13114115 17 18 19 20

Q domain

IBSIig:t""i1I:'!;BB
D domain ^|||!||j|.,|:[:SÏ|g||

Step

Figure 57
Waveform narrowing for steps 6 through 20.
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3.5 Relational Constraints

The relational constraints defined on abstract signals, clock domains, and delay

domains make extensive use of interval arithmetic and set operations such as union and

intersection.

Interval arithmetic:

A real interval [a, b] is a subset of R defined as [a,b] = {x e R\(x>a ^x<b)}.
When a>b the interval is empty, denoted ()).

Interval operators are derived from arithmetic and set operators. For an arithmetic

operator ® that can be anything like - , + , - , or x , the corresponding inter-

val arithmetic operator is: [a,b]®[c, d] = {m = x®y [ xe [a, b] Ay e [c,d]}.

Addition:

[a, b] + [e, d] = [a+c,b+d] when both intervals are not empty. Otherwise,

[a,b]+^ = <))+[a,è] = ()).

k+[a,b] = [a,b]+k= [k,k]+[a,b~\ = [k+a,k+b] when [a,b] is not empty.

Otherwise, k+^=^+k=^.

• Negation:

-[a, b] = [-b, -a] when [a, b] is not empty. Otherwise, -())=()).

• Subtraction:

[a,b}-[c,d} = [û,A]+(-[c,û?])

Examples:

[l, 5]+[2,4] = [3,9]
[3, 9] - [2, 4] = [-1, 7]. Note that the result is "larger" than [1,5].

Note that interval operators corresponding to arithmetic commutative operators are
also commutative.
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n Union:

[a, b] u [e, d] = [min(a, e), max(b, d)} when both intervals are not empty. Other-
wise, [a, &] u ()) = (|) u [a, b] = [a, 6].

Note that the interval union is not equivalent to the set union. For instance,
[l, 2] u [5, 6] = [1, 6], a set union does not include ]2, 5[. In fact, the interval
union is defined as to allow representing the result as an interval.

Intersection:

[a, b] n [e, û?] = [max(a, e), min(b, d)] when both intervals are not empty. Other-
wise, [a, 6] n (j) = ()) n [a, &] = (j).

Domain Operators:

Arithmetic and set operators are defined on signal (clock, data) and delay domains
(intervals) using the interval operations defined previously. Since an empty set (())) results
when any of the operands is empty, the following defines the cases when the operands are
non-empty:

Addition:

Abstract Waveform + Delay: (A Wx Reallntervals) ->AW
For v

max .+

,max

ïlmin

^; e ^ ^, [^,^, d^-\ ^(R-XR')\ d^ < d,
J

max
and Imin < max

v\'^n+^dmi^dmax ,max+d^
v\lmin+d^

mx

•in

It corresponds to the interval addition between [Imin, max] and [d ^, ^^].

0

Abstract Signal + Delay: (AS x Reallntervals) -> AS

For an abstract signal S and a delay [d^^, d^^} e (R' xR ),
s+ ldmin' dmax^ = (S-WO + ^min' dmax^ s-wl + ^n,,n' d^) •

Subtraction:

Abstract Waveform - Delay: (A Wx Reallntervals) —> AW

For vl/m^ GAWf [dmin' dma^ E (R' XR ) \dmin< dmax and lmin < max
vl/mn - [dmin' dmax^ = vl/m;n-^ •
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It corresponds to the interval subtraction between [Imin, max} and [d^^, d^^}.

Abstract Signal - Delay: (AS x Reallntervals) -> AS

For an abstract signal S and a delay [d ^, d } e {R xR ),

s- ^-dmin' d^ = (S-WO - ^dmin' dm^' s-wl - ^dmin' ^aJ) •

Union:

Abstract Waveforms: (AWxAW) ^AW

F°"C^C:^"'. "l».'!,
max, ' maxf ~ max(max^,maxy)
l/m;ni " ' \lmin^ ' \min(lmin^,lmin^)

It corresponds to the interval union between their last transition intervals.

Abstract Signals: (ASxAS)->AS

For the abstract signals S-^, S^,

(S^.WQ u S^.WQ, S^.w^ u S^.w^).sl US2

Intersection:

Abstract Waveforms: (AWxAW)^AW

^vC;,'-C::^.^-f",'},
majci ' max-i " min(max^, max-i)
l/mt'n] 1/mi'n2 \max(lmin^, Imin^)

It corresponds to the interval intersection between their last transition intervals.

Abstract Signals: (AS x AS) -> AS

For the abstract signals S^, S^,

(S^.WQnS^.WQ,S^.w^nS^.w^.s^s^

Note: for an Abstract signal S, S.WQ (S.w{) is used to denote both the abstract wave-
form S.WQ (S.w{) and the real interval [S.WQ.lmin S.WQ.max} ([S.w^.lmin S.w^.max}).

,/'
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Relational Constraint Operators:

Definition 1: let S^, S^, S^,..., S^ be n sets, and/a relation /£ S^xS^x ... x S^.

The complete relational constraint operator based on / is a mapping

Cy: 25' x252 x ... x 2s" ^2s'x2slx...x 2s" defined as follows:
îmD^S,,D^S^...,D^S,,
C/£>i, ^2, ..,/)„) = (ûi, DÎ, ...,Dn) such that, for each f e {l, 2,..., n}

D, = {x, e D, | for all j ^ i 3^. e D^, (x? ^2, ..., x^) e /}.J

^ l is incompatible with the configuration |

<o,i}A-f

<l! B-l
-Y (0)

Y. A AND B

{xe Df | xe. -D;} is the set of incompatible values of the domain £>, in the con-

text of the relation/ In fact, when applied to a set of domains, the relational con-

straint operator is said to strip out their incompatible values. Û; is the set of values

compatible with the relation/ Note that, in the

context of a constraint system, a value in Z); is

not necessarily part of a solution because all

constraints have to be satisfied not just Cy .
Figure 58
An incompatible value.

Let /= {(0, 0, 0), (0, l, 0), (l, 0, 0), (l, l, l)}. In fact / represents the logic

fimction AND, and its elements are (x ,^ , AND(x ,y)).

Referring to Fig. 5S, D^ = {0,ï},Dg = {1}, and Dy = {0}

C^û({0,l},{!},{0}) = ({0},{ l },{0}) because
(0, l, 0) e AND, but (1, l, 0) e AND. In fact, no value in B can be combined

with the value l in A so that Y results in the value 0, and therefore, the value l in A

is incompatible with the consfa-aint.

Property: let 5'? S^, S^, ..., S^ n sets, a relation /c S^xS^x... x S^ and Cy its com-

plete relational constraint operator. V Z), CiS";, ^ c^, ...,!)„ c 5', and
£>, Dn^D,,,

C/DI, ...,û,, ...,^) = C/DI, ...,û;i, ..,û^) U C/ûi, ...,û,2, ...,£>„) .
The union of (E^^, ...,E^^,

(E,^E^,,...,E,^E^).
The union of (E^^,...,E^^,(E^^...,E^^^lx...x'2" is defined as



54

0
Definition 2: let S^, Sy ..., S be n sets, and f a relation /c S^xS^x ... x S^, and let

C,:25Ix2'î2x...x2-/
s.

s,
Let E^^Ï't,E.2 : 2s1.

, ...

2-I x 2~z x ... x 2~" be its complete constraint operator.
E .s. s,

n 2"" such that Vz e {l, 2,.., n}, V^ e 2"',
3B e E ^ \ A ^B; and let Cy" be a mapping
Cf: E^xE-^x... xE^—> E^xE^x... ~xE^. Cf is said to be an optimal con-
straint operator based on/iff for every (Z)p D-^, ..., D ) e E^xE^x ... x E^
the following holds:

forC/Di,£>2'...^) = (ûi,£>2,...,£>„)

and C^D^D^, ...,D^) = {D\,D\, ...JD\)
Vfe {l,2,..,n},Z),cû'; A V^e £,, D, c^=^D', c^.

Put in intuitive terms, £)'. is the unique "smallest" member of £', that contains D; .
Note that, when it exists, an optimal constraint operator is unique.

The concept of optimal constraint operator is important for cases where it is not pos-

sible to represent efficiently members of 2~'. For example, in the context of timing verifi-
cation where logic functions are defined on binary waveforms, the logic constraints are
defined on the space of abstract waveforms (AW) instead of the space oï binary waveforms

.ssv(BJV). The reason for this is practical: representing arbitrary members of 2 may require
excessive space, whereas, representing an abstract waveform require one bit for the final
stable value and two numbers for the last-transition-interval (see Section 3.2.1). In this

case, it is not always possible for constraint operators to strip out all the incompatible val-
ues (waveforms) simply because the resulting binary waveform set has to be represented
as an abstract waveform. Therefore, it is desirable to define optimal constraint operators
on abstract waveforms.

3.5.1 Delay Constraints

+Delay Function: a delay function is a mapping del : BWx Rl —> BW, for fe BW
.+

and Je 7?' , del(f, d) = g such that ^tçR, g(t) = /(f-rf).

Example: let/ e BW such that

f{t) = 0 for?<0

f(t) = l for ?> 0



n del(f, 5) = g defined as

g{t) = 0 for ?<5

g{t) = l for t> 5 (see Fig. 59)

Delay elements in circuits propagate data and clock

l

0

I

0

0
g

0
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5

5

time

time

»

signals. The following defines delay constraints operating Figure 59
/4 delayed binary waveform.on clock and data domains.

Y
Del

Clock Delay Constraint Operator: the clock delay constraint operator operates on
three domains (see Fig. 60):

\) A is the domain corresponding to the clock [ | D
signal driving the input of the delay element. It is

the set of clock edges, represented as an interval ~~6" —"'"
(each clock edge is represented by its occurrence F19ure60

Clock delay constraint.
time).

2) Y is the domain corresponding to the clock signal at the output of the delay element,
also represented as an interval.

3) D is the domain of the delay values, represented as an interval.

Let's calculate the bounds for each domain, considering only the other two:

Yc{del(a,d)\(aeA),de D}
Y^{a+d\(açA),deD}
YcA+D (l)

A'c{ae R \del(a,d)e 7 for rf e D}
Avc{y-d \ y e Vandrfe D}

A'e Y-D (2)
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D' c{de D | d+a=yforaeA and ^ e Y}

D'^{y-a\ye Y and d e D}

D'e Y-A (3)

The clock delay constraint operator is a direct consequence of(1), (2), and (3):

ClockDelayÇA, D, Y)

A' = Ar^(Y-D)

r = Yn(A+D)

D' = Dr^(Y-A)

(A', D', Y) such that,

Property: the clock delay constraint operator is optimal.

Let Cdei be the complete clock delay constraint operator. By following the same steps as

for ClockDelay, we find that CdeM, D, T) = (A', D', Y) . In fact, when the domains of

A, B, and Y are initially intervals, the delay constraint operator is equivalent to the com-

plete relational constraint operator based on del.

-^^. f.=
Data Delay Constraint Operator: the data

^:
wl

\h,i,,m^ \ _| Det ^>~} «'i
[Imia.ms,] A

[!niifi.mn.\-\

[imiis.inax] Y

Figure 61
delay constraint operator operates on three Data delay constraint.
domains (see Fig. 61):

\) A is the domain corresponding to the data signal driving the input of the delay ele-

ment. It is the set of binary waveforms represented as an abstract signal (See section

3.2.2). A.WQ (A.w^) is the set of binary waveforms in A stabilizing at 0 (1) having at least

one transition in the interval A.WQ (A.w^).

2) Vis the domain corresponding to the data signal at the output of the delay element,

also represented as an abstract signal. Y.WQ {Y.w^) is the set of binary waveforms in 7sta-
bilizing at 0 (l), having at least one transition in the interval Y.WQ (Y.w^).

3) D is the domain of the delay values, represented as an interval.

The delay relation is the same for clock delay, except it is defined on abstract signal

domains for A and Y. Let C^ j be its constraint operator. We have
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A = A.WQ uA.w^ and Y = Y.WQ u Y.w^. Therefore,

C^(A, A Y) = C^A.WQ, D, Y) u C^(A.w,, D, Y)
C^A.WQ, D, Y) - C^A.WQ, D, Y.WQ) u C^(A.WQ, D, Y.w,)
C^(A.w,,D, Y) = C^(A.w,,D, Y.w^ u C^ÇA.w,,D, Y.w,)

Since wavefonns stabilizing at 0 (1) in^f result in waveforms stabilizing atO (1) in 7

we have:

C^(A.WO,D,Y.W^) = ((l),^),^))

C^{A.W,,D,Y.WQ) = (^^(^)
Therefore,

C^(A,D,Y) = C^(A.^,D,Y.w,)uC^A.w,,D,Y.w,)

The delay constraint operator defined on abstract signals is a composition of the

same operator defined on abstract waveforms. Let's calculate the bounds for the domains

oîcdel(A-WO'D'Y-WO~)'- . D.max
DÀin

->

1) Effect on Y:

Let a e A.Wr, then

a(t) = 0 for t>A.WQ.max

3 ^ e A.WQ | a(^) = l

A.^ sâ
/m in, max}

Y.WO I
[Imin.max]

Figure 62
Effect on Y.WQ.

for û? e D, the waveform in 7 compatible with a and rf is ^ defined as:

y(t) = a (f-^.Therefore,

y(t) = 0 for t>A.Wo.max+d

y(t^ +d)= \

In other tenns, since any waveform in A is stable at 0 after time A.wy.max, any wave-
form in 7 having transitions after time A.WQ.max + D.max is incompatible (see Fig. 62).
Also, any waveform in 7 stabilizing before time A.WQ.lmin + D.min is incompatible.
Therefore,

r.w,0 \A.WO+D

0
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2) Effect on A: Since any waveform in Y.WQ

is stable after time Y.WQ.max, any waveform inA.WQ

having transitions after Y.WQ.vn&x - D.min is incom-

patible (see Fig. 63). Also any waveform in A.WQ

stabilizing before Y.WQ.lmin - D.max is incompati-

blé.

Therefore,

•«-
D.max

D.min

A.WQ

Y.WO

ï
^Imin.max]

3-
[Imin.max]

Figure 63
Effect on A.WO.

A'.w,0' Y.WQ-D

Upper bound for D
Lower bound for D

A.WO

r.H-o

B: ï.
1[//«//Î,/Ï1AÏ]

I l
[Imiii.inax'}

Figure 64
Effect on D.

3) Effect on D: Any delay value (in D) less

than Y.WQ.lmin - A.WQ.max is incompatible as it

results in waveforms stabilizing before Y.WQ.lmin in

7 (see Fig. 64). Also a delay value greater than Y.WQ.max - A.WQ.lmin is incompatible as it

results in wavefonns having transitions after Y.WQ.max in Y. Therefore,

D' Y.WQ-A.WQ

Finally, the data delay constraint operator is defined on A, D, and Y as follows:

DataDelay(A, D, T) = (A\ D\ Y) such that,

Y = YnÇ(Y.Wy+D),(Y.w,+D))

A' = An(ÇY.Wo-D),(Y.w^-D))

D' = D^({Y.WQ-A.WQ)^J(Y.W^-A.W^~)

Property: the data delay constraint operator is optimal.

u

3.5.2 Delayless Gate Constraints

This section defines the constraint operators associated with delayless symmetrical

logic fiinctions BUFFER, INVERTER, AND, and XOR. The other symmetrical iunctions

such as OR, NAND, NOR, and XNOR are derived from AND, XOR and NOT.
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3.5.2.1 Buffer Gate (Identity)

Buffer Function: the buffer function, buf, is a mapping buf: BW—>BW, for

feBWbuf(f) =f.

Buffer Constraint Operator: the buffer constraint operator operates on two

domains of the same type (clock or data) (see Fig. 65):

l) A is the domain corresponding to the data or clock signal driving the input of the

buffer.

2) Y is the domain corresponding to the data or clock signal at the output of the

buffer.

C^A, Y) = (A\ Y) such that:
Y = YnA

A' = Ar^Y

A }'

Figure 65
Buffer Constraint.

Property: the Buffer constraint operator is optimal.

0

3.5.2.2 Inverter Gate (NOT)

NOT Function: the inverter function, NOT, is a mapping not: BW-^BW, for

f^BW not(f) = g such that g(Q = /(Q \f te R.

A F

Figure 66
NOT Constraint.

The inverter function results in waveforms stabilizing at 0

(1) when the input stabilizes at 1 (0).

NOT Constraint Operator: the NOT constraint operator

operates on two abstract signal domains (see Fig. 66):

ï) A is the domain corresponding to the data signal driving the input of the inverter.

2) Vis the domain corresponding to the data signal at the output of the inverter.
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Cj^o^A, 7) = (A\ Y) such that:

r.w,

A'.w,

0

0

Y.WQ n A.w^

A.WQ^ Y.w^

Y.w^ = Y.w^ nA.WQ

A'.wl A.w^ n Y.WQ

Property: the NOT constraint operator is optimal.

The NOT constraint operator is also defined on clock signals, where a rising (falling)

transition at the input results in a falling (rising) transition at the output. In such case, the

clock signal domain is defined as two sets of transitions: rising, and falling ones.

3.5.2.3 AND Gate

u

a

b

l

A^
Y

AND Function: the AND function

is a mapping and: BWxBW^BW, AND(a,b)

for a,beBW and{a,b) = y such Figure 67
AN Ding two binary waveforms.

that y(t) = a(f) and b(t) V / e 7?.

Fig. 67 shows an example of ANDing two binary waveforms.

Note that a transition at a (b) is reflected at y only if b (a) is stable at 1
Figure 68

(non-controlling for AND) during the transition. AND Constraint.

AND Constraint Operator: the AND constraint operator operates on three abstract

signal domains (see Fig. 68):

l) A, B are abstract signal domains for the inputs of the AND gate.

2) Y is an abstract signal domain of the output of the AND gate.

The AND constraint is much more complex than the previously defined single input

gates constraints (Delay, Buffer, and Inverter). The AND constraint is broken down into

simple cases of a single abstract waveform for each case of possible relative positions of

the last transition intervals.
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0 CAND(A, B,Y)= C^^A.WQ, B,Y)u C^(A.w,, B, 7)
CAND^-^^Y) = C^^A.WO,B.WQ,Y)UC^^A.WQ,B.W^,D
C^n(A.w,,B,Y) = C^^A.w,,B.WQ,Y)uC^^A.w,,B.w,,n
CAND(A-WO'B-WO'Y) = C^^A.WQ,B.WO,Y.WO-)UC^^A.WQ,B.WQ,Y.W^
CAND^A-WO' B-wl' r> = CAND(A-WO' B-wl' Y-WO^ u CAND(A-WO' B-wï' y-wl)
C^^A.W^B.WQ, T) = c^^(^.wp5.H'o, y.wo) u c^^A.w^B.wy, y.wp
CAND(.A-wl'B-wi'r> = C^^A.W^,B.W^,Y.WQ)UC^Q(A.W^,B.W^Y.W^

î

Therefore,

C^(A, B, Y) CAND^A-WQ'B
CAND(A-WO'B

CAND^A-WQ'B'
C^^A.WO,B.
C^^A.w^B.

CAND^A-WÏ'B'
C^^A.w^B.
CAND(A-W^B'

WQ, Y.Wy) U

WQ,Y.W^U

W^, Y.WQ) U

w^Y.w^u

wo, y.wg) u

WO,Y.W^U

Wl, Y.Wy) U

w,, y.w,)

^AND^-WO' ^•W0' Y-wï) = (())' (t)> ())) because waveforms at an AND input stabiliz-
ing at 0 (controlling value for AND) result in waveforms stabilizing at 0 at the output Y,

For similar reasons,

C^^(.A.WQ,B.W^,Y.W^ = ((j), ()), (})),
C^^(A.W^B.WQ,Y.W^ = ((j), ((), (j)), and
C^^(A.W^B.W^,Y.WQ) = (((),()),()))

Therefore,

C^(A,B,D=
c^fl(y4-wo'J8-wo'y-wo)u
C^D(A-WO'B-WÏ'Y-WO~'>U
C^S(A.W^,B.WO,Y.WQ)U

C^^A-wï'B-wï'Y-wï)

(AO)
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CAND^A-WO'B-WO'Y-wo) =

(A'.WO,B'.WO,Y.WQ)

Effect on Y.WQ:

Fig. 69 enumerates the six possibilities

for the overlap of the last transition intervals

of A.WQ and B.WQ. since waveforms in A and

B stabilize at 0, waveforms in Y are stable at

0 after time min(A.WQ.max,B.WQ.max).
This is trivial since 0 is a controlling value for

the AND gate. However, except when
T

A.WQ == B.WQ = 0\^, it is possible for 7 to
contain the binary waveform stable at 0 at all

time. This happens when we have wavefonns

a in A, and b m B that are never at l at the

same time. Therefore there is no restriction on

whether waveforms in Y have transitions in

some interval, and hence,

ifÇA.WQ = B.WQ = 0|^) then
T

y.^o^Olr
else

,min(A.Wo.max, B.Wy.max)
'•WOSU|_^
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Each subset is considered separately, and

domains are considered non-empty, as the <-, ,
case of empty domains is trivial.

Imin max

I
Imin max

A.vy

B.»b
Imin max

r."ii

±

Imin max

/l-ntl

Case 2 s.»y

y.»l,

J. J-
Imiî'//
I.

Imitî max

hnin max

A-ub

Case 3 e.wy

Y.^

I jh^
Im in maxîV
J: 3_jL

{min ^mca

/mii'/; max

I: l.
im in n;llCtX

I
Imin

3s»,

=§^.

Imin max

.ba.J.
Imin

I
max

l.
)min max

^•"b

Case 4 B.^,

Y.^

A.^

Case 5 B.wy

r.i<t

A.Wy

Case 6 B.wy

Y.»y
Figure 69
AND Constraint (A.Wg, B.Wg, Y.Wy)- effect
on Y.WO.

'nax

^

l m in max
3ïa.I

àlmin\ max

Ims n 'nax

^
max

l m in max

A.WO

s.iit,

Y.wy

^t:
îmiii max

max

Effect on A.WQ and B.WQ:

referring to Fig. 70, waveforms in A.WQ and

B.WQ stabilizing before Y.WQ.lmin are incompatible piaure 70

with the constraint because they result in waveforms A^t°^tAa^dwB'.^w0' Y'wo )

^EL
''"'"

~~~'»'l
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0 in y having no transitions at or after Y.WQ.lmin. In fact, \et y e. Y.WQ, 3 te Y.WQ such
that y (t) = l. Therefore, waveforms a in A, and b in B compatible with y are such that
aÇt) = l and b(t) = l. On the other hand, there is no restriction on whether a orb has to
stabilize after a certain time, because, for example, while a stabilizes before ï.w^.max, b
can have transitions after time Y.w^.max and yet a, b, and y are compatible
(y = AND(a,b)). Hence,

A'.WQ'

B'.WO^O\

,+t

OCOC,/
'0^°\Y.Wo.lmin

Y.Wy.lmin
+00

and

Therefore,

C^^(A.WQ,B.WQ,Y.WQ') = (A\WQ,ff.WQ,Y.Wo) such that,
ifÇA.Wy = B.WQ= 0|^){

Y.WO = r.wonoi^;
} else {

Y.w 0̂
min(A.WQ.max, B.Wg.max)

Y.WQ n 0|_
}

.+00

A'-w^ A-WOr)o\Y.^.Mn
5-^=5^ n 0|^^
// if any becomes empty, the others follow

[{(A'.WO = <^){B'.WO = (t);r.wo =<));}
if(5'.u.o = (|)){^.wo =());y.^o=(();}
if(Y'.Wo=<()){5'.Wo =^>;A'.Wo= ([);} (Al)

u

Note: C^^^ÇA.WQ, B.WQ, Y.Wy) as defined in (Al) is not equivalent to the complete rela-
tional constraint operator based on AND. For example, C^^A, B,Y) = (A, B, Y) for
A = O\"Q, 5 = 0|^, and Y= 0|^. Let x be the binary wavefonn defined as:
x(25) = 1 and x(t) = 0 for ^25 . We have x e 5 but it is incompatible with AND in
the context of A and Y. The AND constraint operator could not narrow B from 0\~"J to 0\\
because the binary waveform b defined as &(10) = 1, &(30)

11 {10, 30} is compatible with AND in the context QÎA and Z

110 ''" "110

l, b{t) = 0 for
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CAND(A-WO'B-WÏ' Y-wo) = (A'.WQ,E.W^, Y.Wy)

Effect on Y.Wy:

Fig. 71 enumerates the six cases of overlap of the last transition internals of A.WQ
and B.w^. In all cases, Y.Wy.max is bounded by A.WQ.max. Since the waveforms in
A.WQ are stable at 0 after time A.WQ. max, all compatible waveforms in V are stable at 0
after A.WQ.max. On the other hand, for Cases 2-6, the binary waveform stable at 0 in
Y.WQ is compatible: Let a e A.WQ such that,

0

a(0 = l for f = A.WQ.lmin
a(0 = 0 otherwise,

and let A e B.w^ such that,

b{t) = 0 for t<B.w^.max
b{t) = l otherwise.

For Cases 2-6 A.WQ.lmin<B.w^.max;
therefore, a and b are never l at the same

time, and ANDing them results in the stable 0

in Y.WQ . In Case l, however, the waveforms

m A.WQ have transitions after the waveforms

in B.w^ stabilized at 1. Hence, waveforms in

Y.WQ stabilizing at 0 before A.WQ.lmin are
incompatible. Therefore,

if(A.WQ.lmin>B.w^.max ) then
Y.WQ^A.WQ

else

Y.WQ^O[^A.wy.max

Im i n max

A.Wy la, ta.

Imin max
Case 1 B.w, ^ .Im in U1X

y.i^i [S

Imw max

/1.WJ)

Case 2 B.W^

y.i^i

/I.Wy

Case 3 s.w,

y.»t,

A-vb

Case 4 B.W^

y,ub

A.WQ

Case 5 /).>,<

y.»t,

I: ^s>.
îmiîi m<w ^:
J. J

Imin max

Iniin max

J- ia>»,
l m in max
I

s
T

Im in max

lie

tmiii max

.fcs»,
Imiiî max

l l
^:

Im in max

-lj

Iniin nuix

I
Imin

I
l m in

E=a

max

fîUÎX

Im in max

I 1^
7ni?>\ max

~1T~T
Im in max

-l

A.^

Case 6 B.w,

y.Hi,

Figure 71
AND Constraint (A.WQ, B.w-j, Y.WQ ) - effect
on Y.WO.
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Effect on A.WQ:

Fig. 72 enumerates the six cases of over-

lap of the last transition internals of B.w-^

and Y.WQ. Wavefonns m A.WQ stabilizing

before Y.WQ.lmin are incompatible with the

constraint because they result in waveforms

in Y having no transitions at or after

Y.WQ.lmin. In fact, let y e Y.WQ ,3 te Y.WQ

such that y(t) = 1 . Therefore, waveforms a

in A, and b va. B compatible with y are such

that a(t) = 1 and b(t) = l. On the other

hand, waveforms in A.WQ having transition

after max(Y.WQ.max, B.-w-^.max) are

incompatible with the constraint as they result

in waveforms in Y.WQ unstable after time

Y.WQ.max. Hence,

max(Y.WQ.max,B.Wf.max)
.Vf n C

~ ^Y.Wy.lmin

Effect onB.w^.

Imin max

Im in
SE

Imi
3:
Im in

Imf n
,*E

Imin max

A.WO

Case 1 B.w,

y.,<b

A-"b

Case 2 B.W^

K"ft

A.WO
_/^

Case 3 B.w^ l
bmn

y.^t,

max

3a».
x

max

max

J.

3JB..
^:

-l
Im in mew

3-

l mm mtix

.s- -l*,

f
z

mcLV

3: l

l mi n max

^E
/ Iniin

Is
max ^

Imin

s:

J
max

3:

l m in max

-»E 3&,
Imin maxz

J: -T
! mi n max

A.WO

Case 4 fl.u.,

y,«t>

A.w^

Case 5 B.W^

Y.«y

-4-"b

Case 6 B.w^

Y.WO

Figure 72
AND Constraint (A.WQ, B.w-,, Y.Wo)- effect
onA.WQ.

s: l

Im l n max

^s-
!min max

I y
l mi n. max

3: i.

Fig. 73 enumerates the six cases of overlap of the last transition intervals of A.WQ

and Y.WQ. Case 1, where A.WQ.max< Y.-WQ.lmin, is inconsistent because no waveform

in Y.WQ is stable at 0 after time A.WQ.max. For Cases 2-5, no assumption can be made on

how waveforms inB.w^ should behave. In fact, let ae A.WQ and ye Y.WQ such that,

aÇt) = l when t = max(A.WQ.lmin, Y.WQ.lmin),

a(t) = 0 otherwise,

and y = a.
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The binary waveform in 5.Wj stable at

1 is compatible with a and y. Also, the binary

waveform in B.w^ stable at l at and before

time max(A.WQ.max, Y.WQ. max), and hav-

ing transitions elsewhere is also compatible

with a and y. Therefore, for Cases 2-5,
.+00

B'.w^^ï\_~^. Case 6 is different, let

aeA.WQ, 3 te A.WQ ,a(t)= \ . Since

waveforms in Y.WQ are stable at 0 after time

Y.WQ.max, any waveform b in B.w^ com-

patible with a is such that b(t) = 0. There-

fore, 5'.w, e 11,".. ,.-......
ÏA.Wy.lmin

The effect on B.w^ is as follows:

if ( A.WQ.max < Y.v/Q.lmin ) then

5'.w; e (j)

else

if ( A.WQ.lmin > Y.-WQ.max ) then
,+00

B\W,£l l
\A.Wy.!min

else

B'.w^cl
.+00

Imin max

Im in ^
twin max

Iniin

Imin

îmifî max

l m in mcu

Imin

lin i n max

Imifî max

Im in

Imin max

l mi n max

Imin

Iniin

max

max

max

A.WO l l '>>S^ ^

Case 1 s.»\

r.»b l L

A.wg _L'• -L

Case 2 B.»\

y.iio l - L

A.Wy —l—L

Case 3 s.w,

y.ufc l:

A.Wg t -l

Case 4 B.W\

r.%b i —l

/I.MJ) _t1 :1

Case 5 fl.n,,

y.wb —1:" "- :.' ;-L

A.WO —^d—L

Case 6 fl.,v

y.ug _-~i i

Figure 73
AND Constraint (A.WQ, B.Wp Y.Wo)- effect
on B. w-i.

max

max

Im in max

imin max

•*s_
Imin max

Finally,
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CAND(A-wo'B-wrY-wo) = (A'.WQ,B'.W^,Y.WQ) such that,

if ( A.WQ.lmin > B.w^.max ) {
Y.w 0̂ Y.WQ nA.wQ

} else {
A.Wy.maxr.^o = y.u/ono|_"

}

A:^ A.^OCJ,:^'-'-"-'"
if ( A.WQ.max< Y.Wy.lmin ) {

ff.w^ = ())

} else {

if ( A.WQ.lmin > Y.WQ.max ) {
,+00B\wl B.w, r\ l
^A.Wy.lmin

} else {

5'.w; = B.wl
}

}
// if any becomes empty, the others follow

ifÇA'.Wy = ^HB'.W, = ^;Y.WQ = ^;}
if (5'.^ = ^>){A'.WQ = ^;Y.Wo =());}
if(Y-.u.o= ^){5'.^ = ^;A'.WO=^;} (A2)

CAND(A-WÏ'B-WO' y-wo) = (A'.W^B'.WQ, Y.wo)

This case is symmetrical to C^^Q(A.WQ, B.w^, Y.Wy).
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CAND(A-WI'B-WÏ' Y-wï) = (A'.w^B'.w^, Y.w^

Effect on Y. w. :l

Fig. 74 enumerates the six cases of overlap of the last transition internals of A.w^

and B.w^. In all cases, waveforms in Y.w^ having transitions after

max{A.w^.max,B.w^.max) are incompatible. Also, waveforms in Y.w^ have transitions

at or after max(A.w^.lmin,B.w^.îmin). This is caused by the fact that waveforms in

A.w^ and B.w^ are at a controlling value (0) some where in their respective last transi-

tion intervals. Therefore,

max(A.w,.max, B.w^.max)
l \max(A.w^.lmin,B.Wf.lmin)

Effect oïl A.w^ :

Fig. 75 enumerates the six cases ofover-

lap of the last transition internals of B.w-^

and V.wp In Case 1, waveforms in V.Wj

have ta-ansitions after the waveforms m B.w^

stabilized at 1. Therefore, waveforms in

A.W] stabilizing at 1 before Y.w^.lmin are

incompatible. For all cases, waveforms in

A.w^ having transition after Y.w^.max are

incompatible as they result in no waveform in

V.Wp Case 6 is inconsistent as all waveforms

m B.w^ are at a controlling value (0) at cer-

tain time in B.-w^, while the waveforms in

Y.w^ are stable at 1 at the same time. A.-w^ is

bounded as follows:

Im in max

A.w^ ^

Imin/r,max

Case 1 B.w^ ^l mi n max

s [^y.wi

Imin max

Iminf
,^±

-1-i- J
\ Imin max

3:

Im f n max

Imin,
J.

^- T
max

\ Imin max5
^L 3pf

Imin max

J:
Imin max

^
(- Jmi"

T

J*
z

A.w^

Case 2 B.W^

r.u'j

A.w^

Case 3 s.vv

K»,

À.W]

Case 4 s.w,

y.w,

A.w^

Case 5 fi.w,

Y.w,

A.w^

Case 6 B.W,

r.^i

Figure 74
AND Constraint (A.w-,, B.w-,, Y.w-,)- effect
on Y.WF

Im in

I T
Im in max

^î.
e.lmi"

•^1
majc

3:
5
^T

im.in max

î. T
Imin max

^
Imin max

^g ^
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if( B.w^.lmin> Y.w^.max ) then

A'.w^ = ())

else

if ( Y.w^.lmin> B.w^.max ) then
Y.w^.max

A\w, cl

else

A'.w^ l

Y.w f.1min

Y.w, .max•l

Effect on B.w^:

69

î min

À.w^

Case 1 B.w^

Y.WI

A.w^

Case 2 fl.u,.,

y.w'i

A.Vr\

Case 3 fl.w,

r.H'i

Imfh max

^L J^x
îmifi max z

3- J^-

Imin
î

Imin max
I T

"X
Imw max z
î. -l'-"

l m in max

Imiit

-l"fc

max

I
Imin max

I y
2

îmin max

A.»\ S—

Case 4 s.w,

y.u-i

Imin max
l l

Irnin max

3S
z

ï -J^"

Im in max

A.W]^ ^

Case 5 B.w^

y.w,

J
{min

3:
max

Irnin niax

I T-
z

îmin ^^

)•

wax

-y 'Si
Imin max
l l

l min max

A.w^

Case 6 s.w,

r.w,
Figure 75
AND Constraint (A.w^, B.w^, Y.w^ ) - effect
onA.w^.

I

This case is symmetrical to the case ofA.-w^.

0
Finally, combining the bounds onA.w^ , B.w^, and Y.w^ gives:
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C^^Q(A.W^,B.W^,Y.W^ = (A'.w^,B\w^, Y.w^) such that,

Y.wl
max(A.w^.max,S.w^.max)

n l
'max(A.w^.lmin, û.Wf.i

if ( B.w^.îmin > Y.w^.max ) {

B'.w^ = (j) ;//the others become empty later
} else {

if ( Y.w^.lmin > B.w^.max ) {
Y.w,.maxA'.wl A.w^ n l
Y.w i.1min

} else {

A'.w, = A.w, n l
1—1

Y.w^.max

}

if ( A.w^.lmin > Y.w^.max ) {

A'.w^ = ());// the others become empty later
} else {

if ( Y.w^.lmin >A.w^.max ) {
Y.w^.max5'.w

} else {

B'.w

}

l

l

B.w, n l

B.w^ n l
y.Wi.majf

}

}
// if any becomes empty, the others follow

ifÇA'.w, = ^>){ff.w, =());y'.^ = 0;}
ifÇB'.w, = <())K.^ = ^;y.w, = ^;}
ifÇr.w, = <^>){B1.w, = ^;^'.wi = ());} (A3)

(AO), (Al), (A2), and (A3) constitute the algorithm for the 2-input AND gate con-
straint operator.

u
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A.w^

À.WQ

~w
T
A

l

B.w^

5.H.O

T

6 B
i

y.w,

Y.»,

9 10
T—T

7 8 Y
l

Figure 76
AND Constraint Example.

Example: Fig. 76 depicts a situation of three domains operated on by the AND constraint:
,8

A

B

(OIL 1 i!l)
(OIL 1 L)

1-00-

,8 10,
Y= (0|;, 11?

(AO) implies:

C^c(A,B,Y) = (A', B', Y)

^z)(0|Lo[6,,0|^)u
^z)(0|Ll|Lo|^)u
^z)(l|!l,0[6^0|^)u

,10 ,,5 ^10^
-AND^i\^' 1|-»' ll9

u

Fig. 77 illustrates the case for C^^^,(0|8^, 0|6^, 0|^), it is impossible for waveforms in 7
to have transitions after time 6

because the wavefonns in B are sta- g

blé at 0 (controlling) after time 6.

Therefore,

((j), ()),())).

Sia,—l—«».

rx-
7 8

^WO|Lo|6,,o[;)

A.Wy

Jî.H.n

Y.H-n

Fl9we77 . _ . „ ^.8
AND Constraint Example: C^^(0|^, 0|^, 0]?

T—l

8

5
l.

7/ 8

Fig. 78 illustrates the case for A-wo

c47w(0|Ll|Lo|^ since wave- B-wl1
forms in A stabilize at a

Figure 78 _,8 .,5 .,8.
value (0). Waveforms that stabilize AND Constraint Example: C^^Q[_^, 1|^,0|?

I:
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r)
before 7 are incompatible as they result in waveforms in Y having no transitions at or after

7. Therefore, C^ÇO\S_, 115,, 0|^) = (0|^, 115,, 0|^).

A.w^

B.w,

y.'-o

10

6
l

7 8
J.

Fig. 79 illustrates the case for

^Z)(I|!I>O|LO|^). This is an
inconsistent situation as it is impossi- Fiaure 79

blé for waveforms in Y to have tran- AND constraint ExamP'e: CAND( 11::> 0 |_' 01;)
sitions at or after 7, while waveforms

10 ,6

in B stabilize at 0 after 6. Therefore,

^^(1|!1,0|6,,0^=((1),^(^).

Fig. 80 illustrates the case for

5
T

10
A.w, :: • . : ^:,]-

5.W,

r.w,

Figure 80
AND Constraint Example: C^^^( 1 |^

9/ 10
IZT

10
-00'
l 5

-00'11;°)
,10 5 10

^AND^- ^ 11L' ^ lloo' ^ Iç") • Since waveforms in B are stable at l when the waveforms in Y
have transitions at or after 9, waveforms in A stabilizing before 9 are incompatible. There-

ilO 1,5 ,,10, _ /, ,10 i ,5 i ,10,
fore, C^^(l ]_, l \_, 1 |;u) = (l |g", 11_, l|g").

Hence, C^^, 5, 7) = (A',B\Y)

as shown in Fig. 8 l.

(()), ()), (j)) U

(O|^|LO|^
(4), ()), ([)) U

l10.115.11101
l9 ' i l-oo' x l9 ((0^1|;()),((t),l|5J,(0|^l|;0))

0

A'.w,

A:w,.

B'.w,

B'.B-O

r'.)»,

r'.wn

5

J

9 10
l l

7 8 A'
l l

B'

9 10
J__l

78 Y'
ITL

Figure 81
Domains contents after the AND constraint is applied.
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3.5.2.4 OR - NAND - NOR Gates Constraints

The members of the family of AND, NAND, OR, and NOR gates have similar
behavior. They all have:

controlling values, 0 for AND / NAND, 1 for OR / NOR;

non-controlling values, l for AND / NAND, 0 for OR / NOR;

controlled values, i.e., the value of the gate output when one of the inputs is at a con-
trolling value: 0 for AND / NOR, 1 for NAND / OR;

non-controlled values, i.e., the value of the gate output when all inputs are at non-
controlling values: 1 for AND / NOR, 0 for AND / OR.

Although it is possible to model these gates using AND and NOT constraints, it is
more efficient to have a hard model for each. This is accomplished by parameterizing the
AND constraint algorithm using the concept of Controlling / Non-Controlling / Controlled
/ Non-Controlled values. Table III shows the abstract waveform substitutions to get the
constraints for NAND / OR / NOR from the constraint of the AND gate.

AND NAND OR NOR

A.WI'0 A.WO A.w^ A.w^

A.wl A.wl A.WO A.W{'0

B.WQ B.WQ B.WI B.w^

B.wl B.WI B.w,'0 5.wi'0

Xw,'0 Y.wl Y.wl Y.WQ
Y.wl Y.Wt'0 Y.w,'0 Y.wl

l

Table III
Substitution for Controlling / Non-Controlling / Controlled / Non-
Controlled values.

For example, to get the OR gate constraint, replace the abstract waveforms in (AO),
(Al), (A2), and (A3) as follows:
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A.WQÏ>ecomesA.w^

A.w^ becomes A.WQ

B.WQ becomes B.w^

B.w^ becomes B.WQ

Y.WQ becomes Y.w-^

Y.w^ becomes Y.WQ

A '.WQ becomes A '.w^

A '.w^ becomes A '.WQ

B '.WQ becomes B '.w^

B '.w-^ becomes B '.WQ

y'.WQ becomes Y'.w^

Y'.w^ becomes Y'.WQ

A.WQ n0\ becomes A.w^n\ \
A.w^ 1^1 11^. becomes A.WQ <^0\

IX

lYB.WQ f^0\ becomes B.w^ n l
lY
IX

IX

lY
<x

1-yB.w^ t^\ï\ becomes B.WQ n 0|'
Y.Wn n 0|/ becomes V.w, n l

IX i IX

y.wQi7. w, n l \y becomes Y.Wr, r^Q\y
'l IX IX

u

3.5.2.5 Exclusive OR Gate (XOR)

XOR Function: the XOR function is a mapping xor : BWxBW^BW, for

a, b e BW xor(a, b) = y such that, ^f te R,

y(t) = Oifa(f) = &(Q,
y (t) = l otherwise.

2 5 6

±Jr
10

J

l

Fig. 82 shows an example ofXOR-

ing two binary waveforms. At time 2,a a

and b changed values simultaneously, b

resulting in no transition for XOR(a,&). xoR(a,b)~

In fact, a transition at a (JJ) is reflected pjaure 82

at y only if b (a) is stable during the XORin9 two binary deforms.
ù-ansition.

A.

XOR Constraint Operator: the XOR constraint operator oper- B

ates on three abstract signal domains (see Fig. 83):

;x>Y

XOR Constraint.

l) A, B are abstract signal domains for the inputs of the XOR gate.

2) Y is an abstract signal domain of the output of the XOR gate.

The XOR constraint is simpler than the AND counterpart because it does not have

controlling values. In fact, 0 and 1 are both non-controlling. The presentation of the XOR

constraint follows the same exhaustive case analysis of the abstract waveforms and the

overlap of their last transition intervals.
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C^^A' B'r> = CWR^.WO, B,r,u C^o^A.w,, B, Y)
C^o^A.Wy,B, T) = C^oR(^-WQ,B.WQ,r)uC^o^A.WQ,B.w^, D

C^OR(A-WI,B,F) = C^^A-wi'B-wo'r>ucxo^A-wrB-wrr)

C^QR(A.WQ,B.WQ, Y) = C^OR(A.WQ,B.WQ, Y.WQ) u C^O^(A.WQ,B.WQ, Y.w^)

cxoR(A-wo'B-wr y) = cxoR(A-wo'B-wr y-wo) u CXOR^A-WO'B-WÏ' Y-wï)

CXOR(.A-wï'B-WO'r> = C^OR^-W^B.WO,Y.WQ)UC^O^A.W^B.WQ,Y.W^)

cxoR(A-wi'B-wrr) = C^o^A.w^,B.w^,Y.Wo)uC^oR(A.w^B.w^,Y.w)̂

Therefore,

C^^A,B,D C^O^A.WQ,B.WQ,Y.WQ)U

C^O^A.WQ,B.WQ,Y.W^U

C^^A.WO,B.W^,Y.WQ)U

CXOR(.A-WO'B-WÏ' Y-W^U

CXOR(A-WÏ'B-WO' Y-wo)u

C^O^A.W^B.WQ, Y.w^u

C^O^A.W^,B.W^,Y.WQ)U

C^oR(A-wl'B-wl'Y-wl)

C^Q^(A.WQ, B.WQ,Y.W^) = (<)),()), (|)) because waveforms at both XOR input stabi-

lizing at 0 result in waveforms stabilizing at 0 at the output Y.

For similar reasons, we have

C^^CA.w^B.w^Y.w^) = (([),()), (|>),

CAND^A-wl'B-WO'Y-wo) = (<)), <t)'(1)) ' and

CAND(A-WO'B-wl'Y-WO~) = (<))^^)-

Therefore,

C^^A,B,Y) =
C^OR^-WO,B.WO,Y.WQ)U

C^o^A-wo'B-wrY-wi)u

C^O^A.W^,B.WO,Y.W^U

CXOR^A-wl'B-wï' Y-wo)

(XO)
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Each subset is considered separately, and all domains are considered non-empty, as

the case of empty domains is trivial.

C^O^A.WQ,B.WQ, Y.WQ) = (A'.WQ, B'.WQ, Y.wy)

Effect on Y.WQ:

and B.WQ.

Fig. 84 enumerates the six cases of overlap of the last transition intervals of A.WQ

In all cases, waveforms in Y-WQ having transitions after

max(A.WQ.max,B.WQ.max) are incompatible. Also, for case 1 (6), waveforms in A.WQ

(B.Wf)) happened to have transitions when the

waveforms in 5. WQ (A.WQ) are already stable /1.1(i,
Ifvin

:s:
max

3:3.

at 0. Therefore, waveforms in Y.WQ stabiliz- case i s.,^

ing before A.WQ.lmin (A.WQ.lmin) are

incompatible. Y.WQ is bounded as follows:

îmin max ^—Y

Case 2

if(A.WQ.max<B.WQ.lmin ) then
,B.Wy.max

r.^o^oi\B.WQ.lmin

else

i{ÇB.WQ.max<A.WQ.lmin ) then
Case 3

y.v>b

A.Wg

5.11t;

Y.WO

/l-Kt)

fi.ut,

Imin Y
-rt^-

max^

Imin max

I Is.
Imin max

J: i
/mii'n max

Im in max

I l
Im in max

Ïa>.
l m f n max

r.^o^oiA.Wy.max

\A.Wy.lmin

y.»^ a l̂

else Innn max

max(A.Wg.max, B.Wy.max)
'•wocuLoo Case 4

/1.HO

fl.Hf,

y.»t,

J. ï:
l m m max

I s
Imin max

^

Effect on A.WQ:
tmin max

Case 5

/1.KJ)

B.^,

r.,^

I l
Imifî max

I 1^
îmin -^^

Case 6

^.Hj,

B.^

r.^,

Figure 84

l mi n
I

max

l
Irnin max

Fig. 85 enumerates the six cases ofover-

lap of the last transition intervals of B.WQ

and Y.WQ . In Case 1, the waveforms in Y.WQ

happen to have transitions after the wave-

forms in B.WQ stabilized. Therefore, the

waveforms m A.Wy stabilizing before XOR Constraint (A.WQ, B.WQ, Y.wo)-effect

<1 ^N
Im in max
-ti-l—14-'

on V.WQ.
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Y.Wo.lmin are incompatible. Case 6 is sym-

metrical to Case l. On the other hand, the case i

waveforms in A.WQ cannot have transitions

{win max

after the waveforms in both B.WQ and Y.WQ

have stabilized. A.WQ is bounded as follows:

if ( B.WQ.max < Y.WQ.lmin ) then
, Y. Wo.max

A'.WnŒ,
Y.Wg.lmin

else

if ( Y.WQ.max<B.WQ.lmin ) then
B.Wy.max

else

ÂI-WO^O\B.^.ln,,n

max(B.Wy.max, Y.Wy.max)
A'.WO^O[

Effect on B.WQ:

The effect on B.WQ is symmetrical to the

case for A.WQ.
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XOR Constraint ( A.WO, B.WQ, Y.wo)- effect
onA.Wo.
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In fact, all the cases of the XOR gate are symmetrical. A transition present at an input

results in a transition at the output provided the other input does not change at the same

time.

Therefore,

0
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0
C^O^(A.WQ,B.WQ,Y.WQ) = (A'.WQ,B'.WQ,Y.WQ') such that:

if( A.WQ.max<B.WQ.lmin ){
,B.Wy.max

r.wn = y.wnn
\B.Wy.lmin

} else {

if ( B.WQ.max<A.WQ.lmin ) {
,A.Wy.maxr.wo=y.^noQ;^

} else {

Y.^=Y.^nO\maJC(A-wo-max'B-wo'max)}}
if ( B.WQ.max< Y.Wy.lmin ) {

Af-WO=A-W^Q\YY^^n
} else {

if ( Y.WQ.max<B.WQ.Îmin ) {
,B.Wy.max

A'.Wn = A.Wr,D
^B.Wy.lmin

} else {

A<.^=A.^^oCX(B'wo-'nax'Y'wo-max)
}}

if(A.WQ.max<Y.WQ.lmin ){

B^-B.^O^^
} else {

if ( Y.WQ.max<A.WQ.lmin ) {
,A.w,.max

5'.Wn = B.W^n
U.Wg.lmin

} else {
^max{A.WQ.max,Y.Wy.max} ^

B'.WQ = ^^^p, o]_'J'v-"'"""""'"' "''""' } }

if(A'.WQ = ())){5'.wo = ^;Y.WQ = <));}
if(5'.u.o = ())){^'.wo =^;r.wo =<));}
if(r.wo = <))){5'.wo = ^;^'.wo = ^;} (Xl)

The algorithm for the constraint C^Q^(A.WQ,B.W^, Y.w^) = (A'.WQ, B'.w^, Y.w^)
is deduced from (Xl) by the following substitution:

u

A.WQbecomesA.WQ

B.WQ becomes B.w^

Y.WQ becomes Y.w^

A '.WQ becomes A '.WQ

B '.WQ becomes B '.w-^

y'.WQ becomes Y'.W]^

iV iVA.WQ^O\J' becomes ^.WQ n 0|''

B.WQ i^0\y becomes B.w^ ^ 11^
Y.WQ n0\y becomes Y.w^ n l\
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0
The algorithms for C^Q^(A.W^,B.WQ, Y.w-^) = (A'.W^,B'.WQ, Y.w^) and

C^Qjf(A.w^,B.w^, Y.Wy) = (A'.w^,B'.w^y.WQ) are derived from (Xl) in a similar

way. Also the Inverted XOR gate (XNOR) is symmetrical to XOR, we simply exchange

Y.WQ and y.Wj.

0

3.6 Combinational Circuit Delay Verification / Basic Modeling

Timing Check: a timing-check is a tuple a = (^, s, 5) where Ç is a combinational

circuit, ^ is a primary output ofC, 5 is a delay value, and the primary inputs of ^ are con-

sidered stable after time 0. It represents the following timing verification decision prob-

lem:

Does the output s of circuit Ï, have a delay greater than or equal to 5 ?

The timing-check a = (Ï,, s, 6) is ta-ansformed into a constraint system that is consis-

tent iff the output s has a delay greater than or equal to 5. The constraint system is built

around the sub-circuit graph corresponding to the nodes that have arcs leading to s (the

fan-in cone of s). The circuit is transformed into an equivalent form that contains only

gates that have a hard constraint model (Delays, Buffers, Inverters, 2-input-AND, etc.). In

fact, this is done in a bottom-up fashion: the logic gates of the technology cell library of

the circuit is modeled first, then each cell instance is replaced by its model. Hence the

transfonnation is straightforward and involves no complexity overhead, the cell library is

modeled once and used for all circuits designed for the cell technology. Fig. 86 shows how

a four-input-NAND gate is modeled by a constraint network, 2-input delayless AND and

NAND constraints are cascaded, and the gate delay is modeled by a delay constraint

NAND-4 Y (a)
placed at the gate output. The constraint model A —f

contains variables associated with the original ^-"j

gate terminals A, B, C, D, and Y, and variables

for the internal nodes I\,I-i, and IT,, and a variable ^

for the delay value D V. In order to simplify the B

presentation of the remainder of this chapter, we D

consider that circuits are composed of one and
NAND-4 constraint model.

(b)
h DV

AND

>î L
AliD

YDelay
HAW

h



0
80

two-input symmetrical fixed delay gates. The delay constraint is embedded (hard coded)

with the gate constraints making the constraint network isomorphic to the circuit graph. In

fact, this is suitable for combinational circuit delay verification where no clock is used.

Although the gate constraints have no notion of inputs and outputs (they are actually rela-

tions), the graph of constraints is directed, according to the combinational circuit graph.

Let î,({Gate^,Gate^ ..., Gate },{Net^,Net^, ..., Net }) be the circuit of m

gates and n nets where each gate is connected to a subset of the nets. We build a constraint

system composed of n variables X^,X^,...,X associated with the n domains

Dp D^, ...,D , respectively, and m relational constraints C^,C^, ...,C , where C. oper-

ates on the domains corresponding to the variables of the nets connected to Gate ^. The

initial values for all the domains of the constraint system of o are (0]_^', 11_^~) so as to
contain any possible BW. for floating-mode delay calculation, we restrict the primary

inputs to the set of waveforms that are stable after time 0: (01^, 11" ). To verify whether
the output s has a delay greater than or equal to 5, we restrict the signal domain of s to the

waveforms having transitions at or after time 0, i.e., D^ = (0|5 ' 115) •

The constraint system is tightened (solved) by repeatedly applying the gate constraint

operators until no narrowing (change) of any domain is possible, i.e., the greatest fixpoint

of the system of equations induced by the constraint system is reached. We implemented

this iterative computation efficiently using an event-driven scheduler. The function evalu-

ateConstraintSystemO in Appendix A (A. 1) evaluates the constraint system.

Timing-Check Compatible Waveforms: Given a timmg-check a = (Ç, s, o) and

its corresponding constraint system composed of the variables X^,X^,...,X , their

respective domains D^,D^, ...,D^, and the constraints Cj, C^, ..., C^, a binary wave-

form w e û^ is said to be ^-compatible iff it is part of a solution, i.e., iff there is a wave-

form in each Z);, i^k, such that with w from Dj^, the constraint system is satisfied, w is said

to be a-incompatible if it is not a-compatible.

u
For combinational circuits with multiple outputs, each output is considered with the

sub-circuit corresponding to its fan-in cone included in its timing check.
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n Theorem 1: Given a timing-check a = (^,5, 8) , the fixpoint of the evaluation of its cor-

responding constraint system is reached in a finite number of steps.

Proof: This is a consequence of the domains' discrete representation and the monoto-

nicity of the constraint operators. Since each domain is represented using a finite number

of 32 bit integers, the number of values a domain can take is finite. Moreover, if Z). and

D. ^. j are the values of a domain D at iterations i and (z +1), respectively, we have

Û.+ ; eu, (according to the definition of the constraint operators). The time domain of
interest for a given o = (^, j', 8) is [0 , top], top is the topological delay of the circuit Ç.

The possible values for the Imin and max parameters of D.WQ and D.w-^ are in {-°°, 0, 1,
..., top, +°°}. In fact, -°° and +00 can be represented as -1 and (top+\\ respectively. The

number of ways a non-empty interval [Imin, max] can be narrowed is ({max - Imin + 1 )

x (max-lmin+2)/2) + l, a positive number that decreases when (max - Imin)

decreases. For instance, the interval [2,3] can be narrowed to one of 4 possibilities: [2,3],

[2,2], [3,3], and (]). Let now f ^ft) be the number of ways a domain Z) can be narrowed at

iteration i.fQ:N—>Nis a finite non-increasing discrete function. Therefore, 3nyç. N \\/ n

> no' fnW = fD(no)- The minimum number after which the functions f^ of all domains
converge is the number of steps required to reach the fixpoint, and this number is finite.

The time complexity of evaIuateConstraintSystemQ is very difficult to establish. In

fact, it has a worst case of enumerating all integer values of a large interval. This worst

case happens when the constraint system has circular implications such as the case of the

sequential circuit example in section 3.4. Consider Step 5 of this example. The setup con-

straint narrowed the clock domain of the next cycle from [32, 42] to [32, 40]. In real cases,

however, delays are scaled to fine resolutions. Therefore, if a domain is narrowed one time

unit each iteration, e.g., from [6000000, 8000000] to [6000000, 7999999], it may need to

enumerate the integer values of a very large interval before the fixpoint is reached. When

such a slow convergence is encountered, the evaluation is stopped and the consti-aint sys-
tern is considered consistent. This worst case behavior is not encountered in combinational

circuits where clocks are not considered. In fact, if the gates constraints are evaluated once

in topological order, followed by another evaluation in reverse topological order, the sys-

tern become "very close" to its greatest fix point. For combinational circuits, the time

complexity of evaluateConstraintSystemQ is virtually linear with the circuit size. How-

ever, the algorithm is very pessimistic in the presence ofreconvergent fan-outs.

u
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Theorem 2: Let a = (Ç, ^, o) be a timing-check, and Z)^ the domain of s after its con-

strain! .system has been evaluated. If Z) = {((),(])} then no transition is possible on output
s at or after time §.

This is a direct consequence of the way the gate constraints are defined. The con-

straints never eliminate compatible binary waveforms fi-om any domain, although they

may include some incompatible ones to allow representing the family of waveforms by an

abstract signal value. Moreover, when a domain becomes empty, its value propagates to

all other domains because no value is compatible with an empty set of waveforms.

When the evaluation reaches a fixpoint with non-empty domains, the domains may

still contain only incompatible binary waveforms which in this case represents a false neg-

ative answer to the question: "Is the circuit output s stable at and after time o?". Only

inconsistency of the constraint system is the exact answer, implying that the output s is

stable at and after time 0.

e6

•îî^el ne4

>S3
S2 g,^•SL-^

"2e3r
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^7 n-

86
"6

Figure 87
False path circuit ofHrapcenko.

Hrapcenko false-path example: Consider the rîm;'ng'-c/;ecÂ: CT = (Ç, 5', 61) where Ç

is the circuit of Fig. 87 [57]. Assuming a delay of 10 for each gate, the topological delay of

^ is top = 70 and its floating-mode delay is known to be 60, because the path

{n^, g^, n^, g3, ^3, ^4,n4,gg, ng, g^, «7, gg, ^} is false. This can be easily proven for this

particular example: it is caused by g-^ and gg sensitization conflict, while 63 is required to

be 1 forg-2) it has to be 0 forg-g. Let's prove that the floating circuit delay is less than 61 by

resolving the constraint system associated with the timing check a. Let

u
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n
De^^D^D^D^D^D^D^D^D^D^D^D^D^,D, be the domains
associated with the variables of the corresponding nets. The initial domain values are:

0 ,0Inputs stable after time 0: D^ = (0|^, 1 \"_J, / e {1, 2, 3, 4, 5, 6, 7}

All waveforms for internal nodes: D = (0[^, 11+3, f e {l, 2, 3,4, 5, 6, 7}

Waveforms that violate the timing constraints at the output, transitions at or after time
,+00 ^ ,+00

161 ' "l616^01:," 11:D

Applying the constraint operators of the gates yields:

•£>. ,10 ,10
g-l ==> D^ = (0[^, l \^ ) the maximal delay of g; is 10; therefore, no transition is
possible on n^ after time 10.

Si

S3

ë4

es

§6

^7

20 ,20^.=(o ri, 1 ru.)
1—00

30 ,30^=(oir:'irj
•D (0|41,1|41)n^ v l—oo? l—oo

,50 , ,50
^-(ocirj

=<o£,i|!l)D
"6

•D
"7 5 (Oil, l &

g^D,=(0\^,l |^°), D^ = (0 |51, ^, û^ = (01^, 11^) : the /a^-^^«-
interval on ^ is propagated to n-j and the controlling waveforms on n^ are
removed because they "block the way" on n-, ;

S7^>^-
S6^Dn'"4

|50 i ,50^ ^ _ /^. , i0
(0|4,,1)4,),Z)^=(()),1|_)

.40 i ,40^ ^, _ /r>,0
:(ol3Ï'll3P'JD.3=(ol-'(l))

^=>^3=(o&lt^'^=^'ll°~)
^=>^=(O|^I|Î;),^=(O|L^)
g-2 =^> D^ = (0|^u, l [^"), D = ((j), (j)). This proves that no transition is possible on
s at or after t = 61, therefore, the ciTcuit floating delay is less than 61.

u
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3.7 Reduction of Pessimism

The basic waveform narrowing method is based on local consistency techniques.

Constraints consider each gate as isolated, ignoring the global circuit function. Therefore,

the system evaluation may result in false negative answers when we end-up with non-

empty domains and yet the constraint system has no solution. To reduce this pessimism we

incorporated additional constraints based on necessary conditions determined by consider-

ing the global circuit function.

3.7.1 Static Learning

Static learning [35] is a technique widely used to
A

B

F
J

H

i=^1G K
0
F^i 0

y

speed up test pattern generation. It consists of deter- c
D

mining a table of global logic implications using the g

negation of forward logic implications. For example, N<m trivial implication: A' = :1 •=> G = l

consider the circuit cl7 (ISCAS'85 benchmark) of Seaming on the circuit d 7.
Fig. 88:

0

G = 0 ^ (H= I)A(/= ï) ^> K

Therefore, -^(K =0) ^ ^(G = 0)

0

K = ï => G = ï isa non-trivial global implication that is not deduced using

local constraint operators. In fact, K = 1 can be caused by either

(^=O)A((/=O)V(/= l)) or (/=O)A((T/=O)V(//= l)). Therefore, no deduc-

tion can be made from a local stand point. Note that H = 0 => G = l isnot consid-

ered a learned implication because it is trivial. In fact, it can be determined using the local

constraint operator ofNAND. A good heuristic to distinguish trivial and non-trivial impli-

cations is to keep only what was caused by non-controlling values. For instance,

—i{K =0) => -i(G! = 0) is considered non-trivial asTC = 0 is caused by non-control-

ling values at the NAND inputs.
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n
Static learning is implemented in a pre-process- ^

ing stage that determines implications and adds new g

constraint operators to the constraint system. When a c

class (WQ or w^} becomes empty during constraint sys- ^

tern resolution, learning tables are used to impose

class restrictions on other domains wherever possible.

For instance, the added learned constraint in Fig. 89 is

defined as:

F
J

H

G

Figure 89
Learned constraint.

if ( K.WQ = ^ ) then

G= Gn(^,l|+:)
That is, if there is only the w^ waveform on K, it must be that there is only the w; wave-
form on G.

0

3.7.2 Spatial Correlation

Another way to reduce pessimism is to enforce spatial correlation on reconvergent

fan-outs. The spatial correlation procedure is as follows:

1) Select a reconvergent fan-out X;

2) Save the circuit domains as ALL;

3) Restrict the domain of X to waveforms stabilizing at 1, and evaluate the system;

4) Save the circuit domains as SC1 and restore ALL;

5) Restrict the domain of X to waveforms stabilizing at 0, and evaluate the system;

6) Merge the circuit domains with SC1;

Spatial correlation is performed on reconvergent fan-outs in topological order. Beside

reducing the pessimism of the method, this procedure enables the calculation of a tight

upper bound of the circuit delay instead of resolving a decision problem that consists of

comparing the circuit delay to a certain value. For instance, let's apply the spatial correla-

tion to 63 of the false path example of Hrapcenko without imposing any constraint on the
output s (see Fig. 90):
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Figure 90
Spatial correlation on reconvergent fan-out 63.
(a) Domains before spatial correlation
(b) Domains when 63 /s restricted to waveforms stabilizing at 1
(c) Domains when 63 /s restricted to waveforms stabilizing at 0
(d) Domains after spatial correlation on 63 (union of (b) and (c) )

Initial Domains:

0
0 , ,0• Inputs stable after time 0: D = (0 [u^, 1 \V_J, ;e {1,2, 3,4, 5, 6, 7}
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n All waveforms for internal nodes: D = (0[+^, 11+"), f e {1, 2, 3, 4, 5, 6, 7}
•00 ^ ,+00,

All waveforms for the output s: D y = (01_^', 1 |_^~)

Applying the constraint operators of the gates yields (Fig. 90 (a) ):

S,^^,=(0£,1Û
ft^^=(0|31,l|30.)
ft=>^=(o|51.i0
^7^^=(0|61,1|60J

.,=(o£,i&
s(0|41,l|41)"4

gî~^Dn

S^Dn

^6^J

^=(OI°LIIOUJ g^^
all we can conclude here is that the circuit floating delay is < 70.

D
"6 =(0|51,1|51)

•û,'(o|;l,iû

Save all domains as ALL;

Remove waveforms stabilizing at 0 in 63 (Fig. 90 (b) )

ft^fl.,=(0|21,l|21)
S7^^,=(0|!l,l|21)

§6

es

•D
"6

10
(^'10

•^°(0|<l,l|'l)
the circuit floating delay is < 60 in this case.

Save all domains as SC1 and restore ALL;

Remove waveforms stabilizing at 1 in 63 (see Fig. 90 (c) )

ë2

g^

ë6

D
"2 (Ol'l.f)-00'

30 20^=(oii:'irj
S3

§5

20 10
^=(O|I'ID

40 ,30D^=(or..,\rj
1—00/ 1—00

•D
"6

1130J 50
^ ^^=(û|^i D=<0|41,-

^^fl.=(0|'l.l|M.)
the circuit floating delay is < 60 in this case also.

Merge all domains with SC1; (Fig. 90 (d) )

40

)

Spatial correlation on stem 63 tightened the domains of «g, n-j, and s. In fact, it proved

that the circuit floating delay is < 60.

Note that, unlike the case analysis based on constant logic values [50, 60, 62], this

procedure is safe and conservative.

u
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The reconvergent fan-outs are identified as follows:

Perfonn a breadth first search backward from the output (e.g., from s in Fig. 90), mark
each node visited multiple times as a reconvergent fan-out;

Perform a depth first search backward from the output, visiting the deeper structures
first, and gather each node marked as reconvergent fan-out when its sub-structure is
already gathered, (e.g., returns {^3, n^} when applied to the circuit of Fig. 90, 63 is
deeper than ^4).

Appendix A (A.2) contains the function getOrderedReconvergentFanouts(gate)
that returns the reconvergent fan-outs in topological order, deeper nodes first. The time
complexity of this algorithm is linear with the graph size.

The procedure correlateReconvergentFanouts(gate_set) in Appendix A (A.4) per-
forms a generalized spatial correlation that does 7P system evaluations corresponding to
the restriction of p domains to waveforms stabilizing at 0 and l (p is the number of gates
of gate_set). The procedure doSpatialCorrelation(order,s) in Appendix A (A.3) deter-
mines the reconvergent fan-outs {r^, T-^, ..., r^} of the logic cone of the output s; then it
calls correlateReconvergentFanouts(gate_set) for (k - order + 1) gate sets corresponding to
{ri, r2,.., rorder}. {r2,..., rorder+l}. ••• ' {rk - order + l'-' rk}- The total number of system
evaluations is (2 x(k-order+\)). When order < 6 (a constant) and
ke. 0( graph size ) The overall time complexity of doSpatialCorrelation(order, s) is
virtually quadratic for combinational circuits.

3.7.3 Global Timing Implications

In this section we introduce the notion of static and dynamic timing dominators to
identify global implications related to the existence of transitions at or after a certain time
on some key circuit nodes.

u
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Figure 91
16-bit carry skip adder.

The propagation of the last-transition interval is the main mechanism that proves

timing properties. In the Hrapcenko's false path example (Fig. 87), only one path was the

potential carrier of the transitions at the output s. There was no ambiguity in deciding

which net is the cause of the violation when the gate constraints were individually applied:

at gate g§ the constraint was able to decide that net n^ cannot be the cause of the violation

because its waveforms stabilize too early, max(D ,WQ.max,D^ w^.max) + 10
,50

<

min(D^.WQ.lmin, D^.w^.lmin). This is why l\'_u (stabilized too early at a controlling
value) was narrowed to (|) in n^ and the last-transition interval was propagated to n-y . In
more complex circuits, such as the carry skip adder in Figure 91, we may not be able to

make such an unambiguous decision. Consider for example the output €7. Suppose that

the maximum path length from €3 to €7 is 750 and that the domain of €7 contains wave-

forms that have transitions at or after time 750, i.e., a = (Cp C-j, 750). Also, suppose
that the paths from €7 to the primary inputs that are longer than 750 constitute the shaded

sub-graph of Fig. 91. The waveforms in the domains of the unshaded nets do not have

fa-ansitions that may propagate to the last-transition interval of C-j, they stabilize too early.

Fig. 92 shows a magnified view of the paths from X to €7, and Fig. 93 (a) shows its con-
straint sub-graph. Referring always to Fig. 93, (b) shows how gj propagates the last-tran-

sition interval fi-om Cy' to R, and removes the waveforms stabilizing at the controlling

value from Q because they stabilize too early, (c) shows a similar behavior for g2. In (d),

the behavior of g3 is different. It still removes the waveforms stabilizing at the controlling

value from M because they stabilize too early, and propagates the last-transition interval

from X.w^ to P.WQ and N.WQ> but it cannot propagate X.WQ to P.WI or N.WI because the
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n

u

waveform stable at l in each domain is com-

patible with the constraint. The behavior on

g3 leads a more pessimistic result than nec-

essary for this example. However, by exam-

ining the shaded sub-graph of Fig. 91, we

can see that it converges to single nets on

Cg, €5, €4, €3, and C^. Considering that the

transitions in the last transition interval of

€7 traveled along the shaded nets, the wave-

forms in G(, stabilizing before 750 minus the

maximum path length from €5 to €7 cause

the constraint system to be inconsistent, they

are not part of any solution, therefore, they Figure 92
Carry out of 16-bit carry skip adder.

can be removed. In fact, g3 could not decide

whether the transitions in X.WQ come from P or N, but examining the circuit graph we can

decide that they necessarily come from Cg. €5 is narrowed to waveforms having transi-

tions at or after time 750 - the maximum path length from Cg to €7. The domains on nets

€5, €4, €3, and €2 are narrowed in a similar way. These nets are defined in the next sec-

tions as timing dominators.
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3.7.4 Static Timing Dominators

Static Carrier: A net x of^ is a static carrier of o = (Ç, 5, 5) iff 3 path in Ç con-
taining x and s of length greater than or equal to o. Obviously, violation of the timing

requirement (transitions at or after time 5 at s) is caused by signal transitions traveling

along the static carrier nets.

Static Carrier Circuit: The sub-circuit composed of the static carriers of

a = (Ç,5-,§) and their driving gates of Ç is the sfarîc-cffm'e»'ci'rcwtï of o.

For example, the static-carrier-circuit of o = (^, €7, 750) where ^ is the circuit
of Figure 91, is the sub-circuit of ^ composed of the shaded nets and their driving gates.

Static Timing Dominators: Let V be the static-carrier circuit of o = (î,, s, ô). Let

V be a directed acyclic graph derived from vf as follows: each net in IF corresponds to a

vertex in V; each gate in vf with k inputs x^^,...^ and one output XQ corresponds to k

edges, from the vertex corresponding to XQ to those corresponding to x? i=l to k. We add a

terminal vertex T to *?', and we add an edge to T from each vertex of an input ofV.V is

a directed acyclic graph with one source vertex S (corresponding to s) and one sink vertex

T. The nets of *F corresponding to the dominators [2] of T, i.e., the vertices that lie on

every path from S to T, are said to be the static timing dominators of o'.

For example, for o, = (^, €7, 750) where ^ is in Figure 91, €7, X, Cg, €5 arc

some of the static timing dominators of Op

Lemma: Let d be a static dominator of o' = (^, s. S). Waveforms on d that are sta-

blé at and after time (8 - maximum path length from rf to s) are a-incompatible, i.e., make

the constraint system inconsistent.

The proof is trivial, it follows from Lemma 6.1 in [8].

u



0
92

3.7.5 Dynamic Timing Dominators

The propagation of the last-transition interval of the output to the static timing domi-
nators of the circuit represents global necessary assignments. Additional global implica-
tions can be determined by analyzing the contents of the abstract signal domains. This
section presents a generalization of the concept of static timing dominators.

A'-Dynamic Carrier: Let a = (Ç, s, ô) be a timing-check, and C its associated con-
straint system. Let Dy be the domain associated with output s. If Û, -^ (()),())) then s is said to
be a 0-dynamic carrier of o. If net y isa k-dynamic-carrier and it is the output of gate g
with max. delay d^ay then an input net x of gate g is a k'-dynamic-carrier of a where k' =
(k + d^yji), provided that the domain D^ of x satisfies D^ n (0 |g^^, 1 |g^') ^ ((t)> (t)) •

Dynamic Carrier: A net x is said to be dynamic carrier ofo iff3 A:> 0 such that x
is a k-dynamic carrier of CT .

Dynamic Carrier Circuit: Let V be the circuit composed of the dynamic carriers of
o = (Ç, 5,5) and their driving gates of Ç. VP is said to be the dynamic-carrier circuit of
a.

Dynamic Distance: Let IF be the dynamic-carrier circuit of <s = (^, s, 8) and x be
a net of V. The maximum length of paths in V from x to ^ is the dynamic distance of x.

Intuitively, the dynamic distance of x is the maximum time a transition at x takes to
reach s, and is equal to the highest value k such that x is a k-dynamic carrier of o. In fact,
the concept of dynamic carriers is formulated by necessary conditions for a net to be the
cause of a violation of the timing check, and the domain of a net that is not a dynamic car-
rier of 0 = (^, 5, 8) does not contain transitions that propagate to the last-transition
interval of s.

u
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Dynamic Timing Dominators: Let Y be the dynamic-carrier circuit of
a = (Ç, s, ô) . Let VF/ be a directed acyclic graph derived from VV as follows: each net in
IF corresponds to a vertex in IP/; each gate in IF with k inputs xi^'-'-^k and one output XQ
corresponds to k edges, from the vertex corresponding to XQ to those corresponding to Xy
i=l to k. We add a terminal vertex T to y/, and we add an edge to T from each vertex of
an input oflF. <F is a directed acyclic graph with one source vertex S (corresponding to s)
and one sink vertex T. The nets of T corresponding to the dominators [2] of T, i.e., the
vertices that lie on every path from S to T, are said to be the dynamic timing dominators
ofo.

Theorem 3: For a timing-check a = (^,s, 5) and a dynamic timing dominator d, let
k be the largest integer such that d is k-dynamic carrier of CT . The waveforms in d that are
stable at and after time (5 - k) are a-incompatible, i.e., they necessarily make the con-
straint system inconsistent.

Proof: Theorem 3 is a direct consequence of the fact that any net x g V is not the
source of a timing violation, i.e., D^ do not contain transitions that propagate to within the
last-transition interval ofDy This fact can be proven by contradiction: Suppose that there
is a path p = (x, g^, n,,, ...,n^,g^.,s) such that the domain of x contains transitions that
propagate along p to the last-transition interval of D y. This implies that the same property
is true for all the nets of p. Then n^ has transitions at or after time (ô - max. delay of g^)
and consequently n^ is (§-max. delay of g^.)-(fynamfc carrier of o. Similarly ^ is
(ô - length of p) -dynamic carrier of G. x e V contradicts the original assumption. This
proves that transitions on internal nets of the circuit that cause transitions on s at or after
time 5 (a violation of the timing check) if any are originating from XF. Any waveform on a
dynamic dominator that is stable at and after time (§- its dynamic-distance) makes the
constraint system inconsistent.

u
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Corollary: Let rf be a dynamic dominator of CT = (Ï,, s, 5) and k the dynamic dis-
tance oî d. Narrowing the domain of u? by intersecting it with (1 |g^y 0|g^) maintains all
the solutions of the original system.

The proof follows from Theorem 3.

To detennine the timing dominators, a back trace is started at the output. The fan-in
gates that are in the dynamic carrier circuit are scheduled on a priority queue that returns
the closest gate to the output when queried. Each scheduled gate keeps track of its
dynamic distance which is updated when the gate is scheduled multiple times. A node d is
a dynamic dominator if the queue becomes empty after d is removed from it. The function
getTimingDominators(output) in Appendix A (A.5) is a high level algorithm that deter-
mines the timing dominators. The worst case time complexity of the algorithm is
n x log (n) (n is the circuit graph size). In practice, the apparent complexity is close to lin-
ear as the number of gates scheduled at the same time is small due to practical circuit
topologies, and to the fact that, in most cases, the dynamic carrier circuit is a small frac-
tion of the logic circuit. In fact, it is possible to determine the timing dominators in linear
time by first determining the dynamic carrier circuit, but this turned out to be more expen-
sive than the use of a priority queue in most cases. The function
evaIuateConstraintSystemTD(output) in Appendix A (A.6) is a high level algorithm
that evaluates the constraint system applying the additional narrowing on the timing dom-
inators.

u

Timing dominators concept is a very important contribution to the waveform narrow-
ing method, it leads to a powerful mechanism for reducing the pessimism of the method.
For example, the cl908-ALL-GATE circuit of the ISCAS'85 benchmark suite is a tradi-
tionally difficult case for combinational circuit delay calculation, and yet its timing prop-
erties were proven very efficiently when timing dominators were detennined. For
example, the output output_57 has a topological delay of 400. We restricted its domain to
waveforms having transitions at or after time 241 and the constraint system ended up with

l
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Figure 94
Timing dominators ofoutput_57ofc1908-ALL-GATES.

output_57
5=241

non-empty domains. This particular timing check has four timing dominators beside the

output itself, no narrowing was performed on three of them (intemal_462, intemal_1806,

and intemal_1217) by the original method (see Fig. 94). After narrowing the domains of

these dominators to waveforms having transitions at or after time ô - DynamicDistance

(e.g., 161 for intemal_462) the constraint system evaluation resulted in empty domains,
proving that the actual floating delay ofoutput_57 is < 241.

3.8 Case Analysis

When the evaluation of the constraint system associated with a timing-check

G = (Ç, S, S) ends up with non-empty domains, we cannot definitely conclude that a vio-

lation is possible. This section presents an algorithm for case analysis that does a decision

tree traversal by selecting nets, and restricting their domains to waveforms stabilizing at

either 0 or l. The objective is to find a test vector or to prove that the constraint system is

actually inconsistent, i.e., has no solution. A test vector is found when each circuit domain

is decided, i.e., is non-empty and contains wavefonns stabilizing at either 0 or l exclu-

sively. Obviously, we are dealing with an NP-Hard problem. Therefore, the algorithm

relies heavily on heuristics, and has exponential time complexity in the worst case. The

outcome of case analysis can be one of the following three:

0
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CS_INCONSISTENT, the constraint system has no solution, no timing violation is
possible. This happens when the constraint system ends up with empty domains on all
decision tree leaves;

TEST_VECTOR, all circuit nodes were successfully restricted to one abstract wave-
form (0 or 1), and the constraint system is consistent. In this case we consider that the
assignment of the primary inputs is a test vector that violates the timing requirements;

ABANDONED, the case analysis is abandoned due to excessive number of back-
tracks.

The general scheme for the decision tree traversal is depicted in the following recur-
sive algorithm:

FindTestVectorQ {

Evaluate the constraint system;

if ( result is empty domains ) return CSJNCONSISTENT;
if ( all nets are decided ) return TEST_VECTOR;
select one net N that is not yet decided and a value V; //V= 0 or 1
save system state;

restrict N to V;

result = FindTestVectorQ;

if ( result == CS_INCONSISTENT ) {
restore system state;

restrict N to V;

result = FindTestVectorQ

}
return result;

}

The key for good performance is an appropriate net selection heuristic. As a general
mle of thumb, obvious easy decisions should be made as late as possible in the decision
process. In fact, when made early in the decision tree, decisions that have conflicting
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(1) Requirements impossible to satisfy. (2) Decision tree when b is chosen the last.
(3) Decision tree when b is chosen the first.

implications are likely to prune a large part of the search space. Consider for example the
circuit in Fig. 95(1) for which our objective is to find an assignment for a, b, and c that sets
the AND gate output to 1, and the OR gate output to 0. Six decisions are needed to prove
that the requirements are impossible to satisfy when b is decided the last (see Fig. 95(2)).
In contrast, only two decisions are needed when b is selected

first (see Fig. 95(3)). Conflicting implications can be deter-
mined easily by propagating backward the requirements.

a

b

l l '
AND

l

0

Off

/'::f?l:!».

(

t
\9

0 0

Fig. 96 shows how this is done for the previous example, the
AND gate requires 1 for a and b, whereas the OR gate c

requires 0 for b and c. Therefore, b is required to be at 0 and piaure 96
1, hence it is likely to have conflicting implications. This is Requirement propagation.
the basis for a very successful strategy used in test pattern
generation. The back trace mechanism was introduced by Goel [32] as the PODEM algo-
rithm, and then refined by Fujiwara and Shimono [33] in the FAN algorithm as the multi-
pie back trace procedure. The PODEM algorithm back traced objectives all the way to
primary inputs, one path at a time, according the following rules:

If our objective can be satisfied by setting a gate input to a contt-olling value, e.g., 0 for
AND / NAND gates, then choose that input that can be "most easily" set.

If our objective can be satisfied by setting all gate inputs to a non-controlling value,
e.g., 1 for AND / NAND, then start with that input that is the "hardest" to set.

î

j
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The multiple back trace procedure follows multiple paths in a reverse levelized order.

Decisions are made on fan-out branches that receive conflicting requirements, e.g., fan-

out b in the example of Fig. 96. We adopted the multiple back trace strategy to select nets

and decisions. The objectives to satisfy, however, are derived from a timing verification

problem rather than test pattern generation one. For the timing check o = (^, s, 5), case

analysis main goal is to find a test vector that produce transitions later than 8 . Therefore,

we need to sensitize one path in *F, the dynamic carrier circuit of o . This is done incre-

mentally, starting from the output s, favoring the longest paths in XV.

Section 3.8.1 defines the controllability measure we used to distinguish between

"easy" and "hard" to set nets; Section 3.8.2 defines the back trace procedures; and Section

3.8.3 contains the case analysis algorithm.

3.8.1 Controllability Measure

Controllability is a heuristic measure associated with circuit nodes. It represents the

cost for finding a test vector that, when applied to primary inputs, sets the node to 0 or 1.

For instance, suppose that it is desirable to set the output of an AND gate to 0, this can be

achieved by setting any of the gate's inputs to 0. The conta-ollability measure is used to

choose the easiest. Controllability is a subject fairly well studied in literature [22]-[30], we

used SCOPE [23].

SCOPE controllability is defined as a couple (CQ, C^), and calculated as follows:

Primary inputs are assigned (CQ=I, C^=l)

For a circuit net driven by a gate G,Cy= (minimum cost of input assignments that pro-

duce x) + l.

i

u

for an AND gate where Y is the output, A and B are the inputs:

Co(Y)=min(Co(A),Co(B))+l
Ci(Y)=Ci(A)+Ci(B)+l
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for a NAND gate where Y is the output, A and B are the inputs:
Co(Y)=Ci(A)+Ci(B)+l
Ci(Y)=min(Co(A),Co(B))+l

for an OR gate where Y is the output, A and B are the inputs:
Co(Y)=Co(A)+Co(B)+l
Ci(Y)=min(Ci(A),Ci(B))+l

for a NOR gate where Y is the output, A and B are the inputs:
Co(Y)=min(Ci(A),Ci(B))+l
Ci(Y)=Co(A)+Co(B)+l

for a XOR gate where Y is the output, A and B are the inputs:

Co(Y) = mm (Ci(A) + Ci(B), Co(A) + Co(B)) + 1
Ci(Y) = min (Co(A) + Ci(B) , Ci(A) + Co(B)) + l

for an XNOR gate where Y is the output, A and B are the inputs:
Co(Y) = min (Co(A) + Ci(B), Ci(A) + Co(B)) + l
Ci(Y) = min (Ci(A) + Ci(B), Co(A) + Co(B)) + l

for a NOT gate where Y is the output, A is the input:
Co(Y)=Ci(A)+l
Ci(Y)=Co(A)+l

for a BUFFER or DELAY gate where Y is the output, A is the input:
Co(Y)=Co(A)+l
Ci(Y)=Ci(A)+l

This measure represents the number of nodes in the equivalent fan-out-free circuit
that need to be set to a specific value in order to set the gate output to 0 or l. Controllabil-
ity functions for other gates can be easily fonnulated.

(J
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Figure 97
Controllability measure for circuit d 7.
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Fig. 97 shows the controllability measures calculated for the circuit d 7 of the

ISCAS'85 benchmark suite.

3.8.2 Requirement Propagation / Back Trace Procedure

Logic requirements are presented in [33] as objectives: an objective is a triplet {Net,

nQ^Net), n-^(Net)~). Net is the net identifier where the objective is attached, nQ(Net) (n^Net))

is the number of times Net is required to be set to 0 (1). Objectives serving our purpose

have different semantics for fiQCNet) and n^(Net). noÇNet) (n^ÇNet)) is the potential length

of the path that is likely to be enabled if the domain of Net is restricted to waveforms sta-

bilizing at 0 (l). Objectives are propagated from a gate output to its inputs (back traced)

according to the gate type and the controllability measures of the gate inputs. During

backtracing, objectives are put in a priority queue that returns the objective attached to the

net that is the closest to the circuit primary output (in our case, the circuit has only one out-

put). Backtracing proceeds by pulling an objective out of the priority queue, calculating

the objectives for the inputs of the gate driving the objective 's net, and inserting back the

calculated objectives in the queue. When an objective is being inserted in the queue, and

another one for the same net is already queued, they are merged into one that gets the larg-

est values. For instance, merging (Net, 100, 200) and {Net, 50, 300) results in (Net, 100,

300). This deviates from the back trace procedure defined in [33] where the merged objec-

tive gets the sum of the values.

The following algorithms calculate the objectives for the inputs of the different logic

gate types. Co(X), Ci(X) are the confa-o liability measures for the net X.

0
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for a BUFFER or a DELAY gate where Y is the output, A is the input:

ni(A)=ni(Y)
no(A)=no(Y)

for a NOT gate where Y is the output, A is the input:

ni(A)=^o(Y)
no(A)=ni(Y)

for an AND gate where Y is the output, A and B are the inputs:

/îl(A)=«i(Y)
^(B)=«i(Y)
if(Co(A)<Co(B)){

no(A)=noW
"o(B)=0

} else {

no(B)=/!o(Y)
"o(A)=0

}

"o=0 C:=9
no=100
ni=50

Ani=50 /liVO

no=100'^-
nï=200

no-0 ,<M)

n;=200 ÇB-IO
C'i-14

Figure 98
Back Trace example.

Z nB=o-,
n'l=200

Fig. 98 shows a back trace example: (Y, 100, 50) is back traced as (A, 0, 50) and (B,

100,50); (Z, 0, 200) is back traced as (B, 0, 200) and (C, 0, 200); the objectives at B are

merged as (B, 100, 200). B has a conflicting requirements, the case analysis sets B to 1 as

a first attempt, to favor the path of length 200.

0

for a NAND gate where Y is the output, A and B are the inputs:

ni(A)=no(Y)
ni(B)=«o(Y)
if(Co(A)<Co(B)){

/!o(A)=ni(Y)
"o(B)=0

} else {

no(B)=«i(Y)
«o(A)=0

}
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n for an OR gate where Y is the output, A and B are the inputs:

«o(A)=«o(Y)
no(B)=^o(Y)
if(Ci(A)<Ci(B)){

^l(A)=«i(Y)
ni(B)=0

} else {

ni(B)=ni(Y)
«l(A)=0

}

for a NOR gate where Y is the output, A and B are the inputs:
/!o(A)=ni(Y)
no(B)=n,(Y)
if(Ci(A)<Ci(B)){

ni(A)=«o(Y)
^l(B)=0

} else {

/îl(B)=no(Y)
7!l(A)=0

}

0
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0 for a XOR gate where Y is the output, A and B are the inputs:

if(Co(A)+Co(B)<Ci(A)+Ci(B)){
if(Co(A)+Ci(B)<Ci(A)+Co(B)){

no(A)=max(/2o(Y),«i(Y))
no(B)=«o(Y)
«l(A)=0
ni(B)=«i(Y)

} else {

no(A)=«o(Y)
7Zo(B)=max(no(Y),ni(Y))
ni(A)=«i(Y)
ni(B)=0

}
} else {

if(Co(A)+Ci(B)<Ci(A)+Co(B)){
no(A)=«i(Y)
"o(B)=0
ni(A)=no(Y)
ni(B)=max(no(Y),ni(Y))

} else {

"o(A)=0
/!o(B)=ni(Y)
/!l(A)=max(/!o(Y),"i(Y))
»l(B)=no(Y)

}

}

The back trace procedures for XOR and XNOR gates are more complicated as 0 and
1 are both non-controlling values. They were defined in [35].

0
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for an XNOR gate where Y is the output, A and B are the inputs:

if(Co(A)+Co(B)<Ci(A)+Ci(B)){
if(Co(A)+Ci(B)<Ci(A)+Co(B)){

no(A)=max(no(Y),ni(Y))
»o(B)=^(Y)
«l(A)=0
ni(B)=«o(Y)

} else {

7ÎO(A)=/!1(Y)
no(B)=max(no(Y),ni(Y))
ni(A)=no(Y)
«l(B)=0

}
} else {

if(Co(A)+Ci(B)<Ci(A)+Co(B)){
»o(A) = no(Y)
"0(B)=0
ni(A)=ni(Y)
ni(B)=max(no(Y),ni(Y))

} else {

"o(A)=0
no(B)=»o(Y)
ni(A)=max(no(Y),ni(Y))
7!l(B)=/2i(Y)

t

}

}

0
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n
3.8.3 Case Analysis Procedure

The main idea is to compute the initial objectives so as to set those nets which are
inputs of gates in the dynamic-carrier circuit y of a that are not dynamic carriers to a
non-controlling value regarding the gates they feed into IF. This strategy is justified by the
following reasoning: The timing violation at output 5' is originating in IF, hence we need to
sensitize the paths in V. Let's illustrate how the initial objectives are established on the

_Q=0 R=0
T

61

C-—^Bi^

N l
M-^
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pB2
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J
5xaa
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G 0WR
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Timing Dominators

Figure 99
Timing check (^, 7', 61 ) fora carry skip circuit.

example of Fig. 99. This is a cany skip circuit having a topological delay of 70 (all gates
have a delay value of 10). The timing check compares the circuit delay with 61. The con-
straint system evaluation ended with non-empty domains. The dynamic carrier circuit is
the shaded sub-circuit, it contains six timing dominators: T, S, P, H, D, and C. The follow-
ing is a partial list of domain contents:

0

^<, l II;) s
^=<, 111;) 0

'l60, ll60^
l51' 'l51-

(0|;u,l|;<>)
p

e

1150.1150)
l41' ll41-
,0 , ,0(()l2i'll2l) •D=(0|i>l|i) (:'= (°|_9'1|_9)

N is restricted to waveforms stabilizing at l, non-controlling for AND. We denote
this asN = l in order to simplify the presentation.

N=1 Q=0 R=0 K=0 G=0
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The remaining nets have undecided domains (both classes, WQ and w;, are non-

empty). R and Q need no justification, they are not considered as objectives. However, N,
K, and G are still unjustified. A net is unjustified if it is possible to restrict the domains of
the inputs of its driving gate to single no empty classes (WQ or wi) and end up with an
inconsistent situation. The following objectives are selected:

(N,no=0,ni=+°°)

(K,/!o=+-,ni=0)

(G,7!o=+°°,"l=0)

(A2, «o= 0, "i = 70)

+oo is used to indicate that this objective is
mandatory to satisfy

A2 is feeding an AND gate in the dynamic carrier
circuit, the longest path that is potentially enabled
by setting A2 to 1 is of length 70.

(B2,/!o=0,ni=70)
(Al,no=0,ni=70)

(Bl, no =0, «i =70)

Once these seven objectives are put in the priority queue, the basic idea is to start the
backtracing process, and to apply decisions to the domains of the fan-out nets for which
the objective have both HQ^O and n; ^ 0. The decision is to restrict the domain to wave-
forms stabilizing at 0 (1) when «g > n, («o < "i )• The actual algorithm is more complex,
and is presented later in this section. Let us start first by stating the algorithm that com-
putes the initial objectives:

The algorithm is parameterized by a

starting and ending points, both of them are

timing dominators. Computelnitial Objectives

determines the objectives that sensitize the

sub-paths of the dynamic carrier circuit that

lie between start and end (see Fig. 100).

start

end

s
a

Figure 100
Topological partitioning for decision making.

u
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function ComputeInitialObjectives((Ç, S, S), start, end) {
compute VF the dynamic-carrier-circuit of (^, 5, §) ;
if (end ^ none) remove end from VV ;
restrict *P to the cone of start;
List = {gates in XP having inputs not in V}
H = ()) ; // H is a heap returning objectives in reversed topological order
for each gate G in List do {

for each net N, input to G not in IF do {
if domain of N contains both classes then { // N is not yet decided

if G has a controlling value then { // i.e., if G is not xor or xnor
if the non-controlling value is 0 then

add the objective (N, dynamic-distance of N + max(N), 0) to H;
// max(N) is the largest ofN.WQ.max and N.w^.max

else add the objective (N, 0, dynamic-distance of N + max(N)) to H;
// when H already contains an objective corresponding to N, adding the new objective
// results in updating the already included one so as to contain the largest
//of no and ni.

}
}
else { // N is already decided

for each unjustified net N' in the cone of N do {
if (the non-empty class of N' is 0) then add (N',+oo,Q) to H;
else add (N',0,+oo) to H;

}
}

}
}
return H;

}

In the context of test pattern generation, backtracing is restarted a minimal number of
times. In our case such a strategy resulted in poor performance because decisions on nets
may have profound effect on y, the source of the violation. The back trace is restarted
each time the size of the decision stack changes as a result of backtracks. Moreover, deci-
sions are performed in 4 phases:

Phase 1: Let ÔQ, d-^, ...,d^ be the consécutive dynamic-dominators of (Ç, s, 8) com-
puted before any decision is taken, (^o = s). Let ^ ^ be the sub-circuit of Ç composed
of the fan-in cone of d^ excluding û?, + p We fix the class value of nets in ^ ^ , ; =0to
k-l, using the function MakeDecisions((C, s, 5), û?;, ^.+ i ). Then, we fix the class of nets
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d2 d d0

(l)

in the fan-in cone of d^ using MakeDeci-
sions((Ç,5, Ô), d^, none). MakeDecisions
fixes the class only on those fan-out nets with

conflicting objectives, i.e., both no and n; -=fe 0.

Fig. 101 shows a partitioning example Tlgpuoreogi^l partitioning for phase 1.
for three timing dominators, dg, dj, and d2.

Phase 1 fix the class offan-out nodes in regions (1) first, then (2) then (3).

Phase 2: We perform decisions on the whole circuit using MakeDecisions((^, s, S),
s, none).

Phase 3: We perform decisions on the whole circuit using MakeAllDeci-
sions((Ç,^, ô)). Decisions in phases 2 and 3 are taken on fan-outs with conflicting
requirements, i.e., np and n^ are both non-zero, whereas decisions here are taken on all
fan-outs.

Phase 4: We perform decisions on the primary inputs after complete back trace from

all unjustified nets. An output of a gate G is unjustified ifF its domain is restricted to one

class and if we can intersect the domain on each input with (0[_^, (()) or (()), l [_^~) to get
non-empty input domains that are inconsistent with the gate constraint.

0

Case analysis algorithm:

function CaseAnalysis(^, S, 5) {
l. compute dynamic-dominators of (!.,, S, 5) ;

for each successive pair ofdommators rf; and aj, starting from s do {
if(MakeDecisions((Ç, S, Ô), d,, rfj) = = CS_INCONSISTENT) return CS_INCONSISTENT;

}
if(MakeDecisions((Ç, S, 8) , d, none) = = CS_DSfCONSISTENT) rctum CS_INCONSISTENT;

// decisions on the cone of the deepest dynamic-dominator d.
2. if(MakeDecisions((Ç, S, ô) , s, none) = = CSJNCONSISTENT) return CSJNCONSISTENT;

// decisions on the whole circuit

3. if(MakeAllDecisions((^, 5', 8) ) == CSJNCONSISTENT) return CS_INCONSISTENT;
4. Compute objectives for all unjustified nets;

Perform complete back trace, to the primary inputs;
while (decision stack not empty and not all inputs decided) make decision for a primary input;
if (decision stack is empty) return CS_INCONSISTENT; else return TEST_VECTOR;

}
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n function MakeDecisions((Ç, S, 8), start, end) {
H = Computelnitial0bjectives((^, S, 5) , start, end);
while (H not empty) {

remove the objective for the net closest to ^ from H and place it into obj;
if (N the net ofobj is a fan-out) {

if (both no and ni ^0) {
if (both classes of the domain of N are not empty) {

if (no > ni) then remove, i.e., make empty, class 1 of the domain of N;
else remove class 0;

while (constraint system is inconsistent) {
backtrack;

if (decision stack empty) return CS_INCONSISTENT;
}
if (the decision stack changed size because of backtracks)
H = ComputeInitialObjectives((Ç, s, Ô) , start, end);

}
if (N is an output of a gate G) {

if (class 1 of the domain of N is empty) back trace (N,+°o ,0);
else back trace (N,0,+°o );
// back trace puts the computed objectives corresponding
// to inputs of G on H

}
}
else {

if (N is an output of a gate G) {

if (both classes of the domain of N are not empty) back trace obj;
else {

if (class 1 of the domain of N is empty) back trace (N,+°° ,0);
else back trace (N,0,+°o );

}
}

}
}
else {

if (N is an output of a gate G) { // i.e., not an input
if (both classes of the domain of N are not empty) back trace obj;
else {

if (class 1 of the domain of N is empty) back trace (N,+°° ,0);
else back trace (N,0,+cx3 );

}
}

}
}

0
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n function MakeAllDecisions((^, 5, 5) ) {
H = ComputeInitialObjectives((Ç, S, ô) , s, none);
while (H not empty) {

remove the objective for the net closest to s from H and place it into obj;
if (N the net ofobj is a fan-out) {

if (both classes of the domain of N are not empty) {
if(no > n;) then remove, i.e., make empty, class 1 of the domain of N;
else remove class 0;

while (constraint system inconsistent) {
backtrack;

if (decision stack empty) return CS_INCONSISTENT;
}
if (the decision stack changed size because of backtracks) {

if(MakeDecisions((Ç, S, 6), s, none) = = CS_INCONSISTENT)
return CS_INCONSISTENT;

H = ComputeInitialObjectives((Ç, S, ô) , s, none);
}

}
if (N is an output of a gate G) {

ï f (class 1 of the domain of N is empty) back trace (N,+°° ,0);
else back trace (N,0,+00 );

// back trace puts the computed objectives corresponding
// to inputs of G on H

}
}
else {

if (N is an output of a gate G) {

if (both classes of the domain of N are not empty) back trace obj;
else {

if (class 1 of the domain of N is empty) back trace (N,+°° ,0);
else back trace (N,0,+oo );

}
}

0

The next section presents the experimental results of applying the basic waveform
narrowing method and the pessimism reduction techniques to the ISCAS'85 benchmark
suite.
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3.9 Experimental Results

The experiments were executed on a Sun SPARCstation 10 (120 MIPS). The basic
constraint system evaluation without global implications on timing dominators was able to
eliminate timing check violations for the circuits c5315 and c7552 of the NOR-gate imple-
mentations of the ISCAS'85 benchmarks [11] with delays of 10 on the outputs of all gates.
The global implications on timing dominators eliminated timing violations from c 1908
and c3 540. Spatial correlation of order 1 eliminated timing check violations fi-om c2670
and c6288. The case analysis found test vectors for all circuits except c6288. Table IV
contains the detailed checks and Table V summarizes the results. Note that the value of 5

for which a test vector is found represents the exact floating-mode delay of the circuit
when the constraint system is inconsistent for (ô + 1) on all outputs. The columns of Table
IV contain, from left to right, the following information: 1) the circuit name, 2) the output
on which the timing check was done, 3) the max. topological delay of the output, 4) the
max. topological delay of the circuit, 5) the timing constraint § on the output, 6) the result
of the first evaluation of the constraint system before the use of global implications on tim-
ing dominators, 7) the result after the use of global implications on timing dominators, 8)
the result after spatial correlation of order 1 is applied, 9) the number of backtracks in the
case analysis, 10) the result of case analysis, and 11) the total CPU time. Not included in
Table IV is the timing check performed on a 16 bit cany-skip adder, partly shown in Fig.
91. The adder has a topological delay of 2000 and a floating-mode delay of 1000. This
was determined in 25 seconds of CPU time after a total of 1636 backtracks. For 8 =1001

the case analysis proved that the constraint system is inconsistent on all outputs, and for
0=1000 found a test vector.

The global implications on timing dominators proved to be very effective in the case
of the traditionally difficult d 908 circuit. It proved that output 57_912 (topological delay
of 340) has a delayless than or equal to 200 in 0.76 seconds. This particular check has 5
timing dominators and no narrowing was performed on 3 of them by the original method.
Spatial correlation may present a processing overhead when applied by default, however,
it is necessary and proved to be efficient when the constraint system evaluates to non-
empty domains and yet no violation is actually possible as in the cases of c2670 and
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\̂ c6288. In these two cases the false paths are caused by reconvergent fan-outs that are
dynamic carriers. Without applying spatial correlation, case analysis failed to prove the
inconsistency because decisions on dynamic carriers are done in Phase 3, too far in the
decision tree.

CIRCUIT

cl7

c432

c499

c880

cl355

c 1908

e 1908

cl908

d908

c2670

c2670

c3540

c3540

c3540

c5315

c5315

c5315

c6288

c6288

c7552

c7552

c7552

OUTPUT OUTPUT

MAX.TOP.
CIRCUIT

MAX.TOP.
5 BEFORE

G.I.T.D.
AFTER
G.I.T.D.

SPATIAL
CORREL.

C.A.
#BTRCK

23GAT_10 50 50 50E p p p

432GAT_I95 190 190 190E p p p

OD31_211 250 250 250E p p p

880GAT_440 200 200 200E p p p

13550AT_558 270 270 2701,E p p p

69_908

72_909

320

320

340

340

311

311

N

N

57_912

72_909

340

320

340

340

201

310E

p

p

N

p p

225_1424

225_1424

250

250

250

250

241

240|E

p

p

p

p

N

p

405_1717

402J718

410

410

410

410

391

391

p

p

N

N
402_1717 410 410 390E p p p

658_2483

690_2484

460

460

460

460

451

451

N

N

658_2484 460 460 450E p p p

6288GAT_2447

6288GAT_2447

1230

1230

1230

1230

1221

1220"

p

p

p

p

N

p

338_3716

399_3717

380

380

380

380

371

371

N

N

399_3717 380 380 370E p p p

C.A.
RESULT

0

l

5

0

l

5

0

7

3

16

0

A

l

v

v

v

v

v

v

N

v

v

v

N

A

v

CPU

(s)

0.05

18.82

7.10

3.06

8.17

0.07

0.07

0.76

11.58

3.67

17.07

2.86

2.26

56.00

0.78

0.78

21.97

56.36

A

0.34

0.38

8.34

0

Table IV
Results on the ISCAS'85 benchmark suite

Legend for Tables IV, V, and VI: (G.I.T.D. stands for Global Implications on Timing Dominators.)
P: Possible violation of the timing-check constraint.
N: No violation of the timing-check constraint is possible.
V: Test vector found.
- (dash): Procedure not used (was not necessary).
A: Abandoned due to excessive number of backtracks.
(E): Value represents exact floating-mode delay. In this case timing checks for all outputs having topological delay greater
than or equal to the value are included in Table IV.
( ): Value represents upper bound on the maximal floating-mode delay.

Apart from c6288, case analysis heuristics proved to be extremely efficient consider-
ing the very low number of backtracks.
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CIRCUIT SlNPUTS ^OUTPUTS #GATES #NOR CIRCUIT
MAX.TOP.

FLOATING

DELAY
C.A.

#BTRCK
TOTAL

CPU (s)

cl7 5 2 26 6 50 50E 0 0.05

c432 36 7 386 129 160 190E l 18.82

c499 4l 32 1126 370 250 250E 5 7.10

c880 60 26 744 244 200 200E 0 3.06

cl355 4l 32 1206 474 270 270E l 8.17

e 1908 33 25 1216 426 340 310E 5 12.48

c2670 233 140 1946 584 250 240E 7 20.74

c3540 50 22 2134 840 410 390E 3 61.12

c5315 178 123 3718 1351 460 450E 16 23.53

c6288 32 32 4800 2352 1230 1220" 0 56.36

c7552 207 108 5806 2023 380 370E l 9.06

Table V
Summary of the results on the ISCAS'85
NOR-GATES benchmark suite

The columns of Table V contain, from left to right, the following information: 1) the

circuit name, 2) the number of circuit inputs, 3) the number of circuit outputs, 4) the num-
ber of gates, 5) the number of NOR gates the circuit has, 6) the circuit topological delay, 7)
the circuit floating delay as calculated by the waveform narrowing method, 8) the number

of backtracks of case analysis that was needed to find a test vector, 9) the total CPU time
for the timing checks that were necessary to prove the circuit timing property (floating

delay). Note that the circuits have only NOR gates, buffers and inverters. For instance,
c6288 has a total of 4800 gates, 2352 of them are NOR gates, the remaining gates (2448)
are buffers and inverters.

Compared to other methods, waveform narrowing proved to be extremely efficient

on the traditionally difficult example of c 1908. For instance, the method of [85] took
12140 seconds on a 38 MIPS workstation. This represents 3844 seconds on a 120 MIPS,

about 300 times slower than our method. For the same circuit, the method of [93] took

3675 second on a 10 MIPS workstation, still about 24 times slower than our method when
scaled to 120 MIPS.

u
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CIRCUIT
CIRCUIT

MAX.TOP.
FLOATING

DELAY
TOTAL

CPU (S)

C1908 340 -7Toir 0.86

c2670 250 240" 3.67

c3540 410 390" 5.12

c5315 460 450" 1.56

c6288 1230 1220" 56.36

c7552 380 370" 0.72

Table VI
Fa/se path elimination summary

After all, comparing execution time for exact results between different methods does
not tell the whole story. Let's not forget that the calculation of combinational circuit delays
is an NP-Hard problem, any exact method has an exponential time complexity in the worst
case. Therefore, all methods rely on heuristics biased toward resolving efficiently certain
types of circuit topologies.

The important properties a timing verification method should have are execution time
predictability, reasonable memory requirements, and implicit false path elimination. Exact
methods are not necessary in most cases. In fact, the electronic design automation (EDA)
industry is busy building timing verifiers that can be integrated in the design flow easily,
and little emphasis is given to false path elimination. The customers simply cannot afford
to wait unpredictable amounts of time before obtaining the results, not to mention that the
memory requirement of the method is critical for large industrial designs. In fact, modem
EDA physical design tools, e.g., IBM'S ChipBench, have design and verification tools
integrated in one user interface. The designer can modify the physical design and get tim-
ing feedback right after, all design data remain in core along with the data structure needed
for timing verification. These facts put the waveform narrowing method at a great advan-
tage.

Table VI summarizes the false path implicit elimination of our method, the case anal-
ysis execution is stripped out. The fact of the matter is that only 10% of the execution time
is spent on eliminating the false paths and determining a tight delay upper bound that cor-
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responds to the exact circuit delay. The remaining 90% is simply spent on proving that the
upper bound we found is in fact the exact delay. Beside the case analysis, our method has
a virtually n x log (n) time complexity (n is the circuit size) when the timing dominators
procedure is used, and a virtually quadratic time complexity when the spatial correlation
procedure is used. Moreover, the memory requirement of our method is minimal, the data
stmcture is basically a circuit graph representation, and a domain stack for each circuit
net. The domain stack can be limited to a maximum of three domain instances. The pro-
gram implementation required on the average about 400 bytes for each circuit gate.

3.10 Conclusions

In this chapter, we established the mathematical foundations of the waveform nar-
rowing method, and defined elaborate constraints for basic primitives such as symmetrical
gates, AND, XOR, NOT, BUFFER, DELAY, etc. We showed how the novel global impli-
cations on timing dominators efficiently reduced the pessimism of the method. Further
refinements were achieved by enforcing spatial correlation on reconvergent stems and by
the case analysis procedure that aims at finding exact results.

At this point, we have a method that proved to be very efficient on the standard
ISCAS'85 benchmark suite. However, it is very desirable to assess its effectiveness on
real world industrial circuits. The software implementation, part of the Power and Timing
Verification Project at the Université de Montreal, is suitable to mn standard benchmark
circuits, but it does not have the capabilities needed to run industrial designs. It needs ade-
quate capability for cell library modeling, standard delay back-annotation, complex clock-
ing schemes, etc. In order to test the method on industrial circuits, we simply had to
rewrite the timing verifier from scratch. Chapter 4 explains the work we did to bring the
wavefonn narrowing method closer to industrial use.

0
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CHAPTER IV ADVANCED MODELING

The previous Chapter presented a comprehensive constraint-based framework for
timing analysis that can be applied to circuits composed of symmetrical logic gates having
simple timing properties. When the timing environment consists of a single-phase clock
signal, it is trivial to reduce the problem of verifying setup and hold constraints of the flip-
flops to a delay calculation problem of a combinational circuit. However, when faced with
real world industrial designs, complex pragmatic aspects need to be addressed, namely:

Test Cases: VLSI chips have multiple modes of operation, e.g., test mode, scan
mode, functional mode, etc. Therefore, multiple test cases are presented to the timing ver-
ifîer; each one consists of a set of constants to be applied to primary inputs, and a set of
harmonically related clocks. The constants configure the chip in a specific mode ofopera-
tion, causing the clocks to be routed to specific sub-sets of the flip-flops. While defining
constants is trivial (instance pin = logic value), defining harmonically related clocks
require a concise and elaborate syntax.

Standard Delay Annotation: industrial component delays are specified as triplets
(minimum, typical, maximum). Since the typical delay value does not occupy a fixed rela-
tive position in the interval [minimum, maximum] over all circuit components, abstracting
the delays to their [minimum, maximum] intervals leads to errors.

Cell Libraries: the building blocks of an industrial design are components chosen
from a technology cell library that usually contains non-symmetrical and tristate logic
gates, e.g., multiplexers, tristate buffers, etc. Moreover, cell component delays are speci-
tied as selective i/o path delays for each type of transition at an output, caused by an event
at a specific input. For example, consider a tristate buffer having an output Y and two
inputs A and G, operating according to the following truth table:

0
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A G Y

0 0 Z (high impedance state)
l 0 Z

0 l 0

l l l

The output Y can hold three values (0, 1, and Z). Therefore, six transition types are
possible at Y: 01, 10, OZ, ZO, 1Z, and Zl; i/o path delays are specified as follows:

(event propagation delay from A to Y, when the resulting
event at Y is a rising transition)

Ato Y for 01

Ato Y for 10

G to Y for OZ

G to Y for ZO

GtoYforlZ

GtoYforZl.

Consequently, an extended set of constraint operator primitives is needed to allow the
modeling of cell library components.

Combinational Loops: although discouraged by modem design methodologies,
industrial designs may still contain combinational loops that the timing verifier needs to
identify and handle properly.

Section 4.1 presents the syntax adopted to specify harmonically related clocks; Sec-
tion 4.2 addresses delay modeling and component delay correlation using triplets (min,
typ, max); Section 4.3 defines an extended set ofconsfraint operator primitives necessary
to model cell library components; Section 4.4 presents the cell library modeling process;
Section 4.5 illustrates how combinational loops are handled; Section 4.6 presents a high-
level architecture of the resulting timing verifier; Section 4.7 presents the results ofverify-
ing a real world industrial design; and Section 4.8 concludes the chapter.

j

0
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4.1 Clock Definition Formalism

An important piece of information presented to timing verifiers in test cases is the
definition of clock domains, harmonically related clocks, and the functional semantics of
the circuit. It is imperative that the timing verifier distinguishes which clock edge is sam-
pling the computed new circuit state, and which one is injecting the old state to be used by
the combinational circuit to compute the new one. This section defines simple formalism
but powerful enough to express arbitrary complex clocking schemes.

Test cases are specified using a simple regular grammar syntax. We describe the part
that defines hannonically related clocks, and edge selection clauses that specify which
clock edge to use at each flip-flop when perfonning setup verification. Note that it is irrel-
evant to specify edges for a synchronizing latch; its constraint selects the pulse that propa-
gates data without violating its setup/hold constraint. The clock definitions are based on
absolute time scale.

Notation:

: : = denotes the relation "is a";
Balanced parentheses enclose syntax elements;
+ : : = one or more occurrences of the preceding syntax element;
{} : : = one of the enclosed, comma separated, syntax elements;
C++ data types and comments are used inside definitions.

A set of harmonically related clocks is specified as:
(CLOCKS

(BASE_PERIOD float_base^period)
(CLOCK clock name

(DRIVER pin driver)
(MULT unsigned_mult)
(DIV unsigned_div)
{

}
)+

{(RISE float_ideal_time [float,float])
(FALL float_ideal_time [float,float] )}+,

{(FALL float_ideal_time [float,float])
(RISE float_ideal_time [float,float] )}+

0
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'^ Each clock has a name, a driver, a clock period base_period * mult / div,
and an even number of alternating transitions, each defined by an ideal_time and an
interval of uncertainty for the edge occurrence time. ideal_time is a real number
reflecting simultaneity and edge ordering.

Example: the clocking scheme of Fig. 102 is represented as:

(CLOCKS

(BASE PERIOD 10.0)
(CLOCK clock A

(DRIVER driver A)
(MULT 3)(DIV l)
(RISE 0 [-0.1,0.1] )
(FALL 10 [11.1,11.2] )

)
(CLOCK clock B

(DRIVER driver B)
(MULT 4)(DIV l)
(RISE 20 [19,21])
(FALL 30 [30.5,32])

)
)

0 10 30 40 60 70 90 100

clock_A Period = 30

20 30 60 70,° "^À1,100 110

clock_B Period = 40

Figure 102
Clocking scheme example.

0

Examining the MULT/DIV entries, the timing verifier determines that the clocking
scheme period is 120 (4 clock A cycles, or 3 clock B cycles). If no edge selection is
provided in the test case, it generates default setup edge selection for all transitions in one
clocking scheme period. For instance, when the new state is sampled by edge 100 (see Fig.
102), the timing verifier selects the closest relevant edge before it for old state data injec-
tion, 90, 70, or 60, depending on which clock is driving the flip-flop, and which edge
polarity the flip-flop is sensitive to. An edge selection is represented by ideal_time
[translation] where ideal time is one defined in the clock definition;

f
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translation is an integer representing the number of clock periods the edge is trans-
lated by. The following is a part of the generated default setup edge selection clause.

(SETUP EDGES
(DEST clock A 0[0]
// data destination flip-flop clocked by
// clock_A edge 0 in cycle 0
(SOURCE clock A

(EDGE 0[-1])(EDGE 10 [-1]))
// if data source flip-flop is clocked
// by clock_A, select edge 0
// or edge 10 in cycle -1, whichever
// is relevant

(SOURCE clock B
(EDGE 20 [-1]) (EDGE 30 [-1]))

)

If the user provides edge selection clauses, the timing verifier uses them and gener-
ates no defaults. Correct edge selection depends on correct comparison and translation of
ideal_time, which is represented as a double precision floating point number, a repre-
sentation that may cause slight errors as a result of conversion and arithmetic operations.
Consequently, software compensation measures were taken (fuzzy comparison).

4.2 Modeling Delays

Gate delays are defined and annotated as triplets (min, typ, max), representing delays
for predefined operating conditions and manufacturing parameters (supply voltage, junc-
tion température, process). It is generally accepted that, for example, when the delay of a
gate gi is assigned its typical value, the delay of a gate g-^ is assigned a narrow interval
around its own typical value. A similar scheme is used for min. and max. delays. Typical
delays do not occupy a fixed relative position in the interval [min, max] for all gates; there-
fore, the simplistic correlation approach used in the sequential example in section 3.4 is
incorrect. In this section we address this problem by introducing the concept of normal-
ized delays.

0
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4.2.1 Normalized Delay

Normalized delay is a real value in the interval [-1, +1]. For a delay annotation d =
(min, typ, max), we define a mapping DtoN^ :[min,max}^[-\,\} such that
DtoNd([min,max]) is the two line segments (min, -1) to (typ,0) and (typ,0) to (mua, 1),
illustrated in Fig. 103. We define also the function NtoD^ as the inverse ofDtoN^.

The delay correlation degree A is a real number in the interval [0,1]: 0 for no correla-
tion, l for 100% correlation. The normalized deviation for a delay correlation degree A is
J = 2(1 - A), a real number in [0,2]. J represents the maximum deviation between any two
correlated delays at the normalized scale. For a specific normalized delay value N and
deviation J, a gate interval delay is determined as

NtoD ([V -J, N + J] n [-1,1]), see Fig. 104 (a). Fig.
104 (b) shows the gate delay bounds, function of the

normalized delay N and J. It is a polygon ABC-
DEFGH. Path delays are sums of gate delays; there-
fore, they are bounded by a similar polygon, and when
setup constraint verification is based on topological
analysis (no false path elimination), it is sufficient to

consider four cases for N: -1 + J, -J, J, and l - Jto get a
conservative figure for the slack (timing margin before

+1
Normalized
Delay

I Gate
I Dele0 Min. Typ.

Max.

-1
Figure 103
Normalized delay.
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Figure 104
Gate interval delay, function of J and N.
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+1
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Figure 105
Pourpoint slack computation.

J = 2(1 - cor. degree)

PCLK + period.

Path
Length

J l J JSlack

T T

l. J

Normalized delay
-1 0 +1

Figure 106
Slack for multiple data paths.

setup violation happens at a flip-flop). Fig.
105 (a) illustrates the case for a single data
path: the minimum clock path delay and the
maximum data path delay change linearly
between the four evaluation points, therefore
the slack, shown in Fig. 105(b), changes also
linearly (Note that N=-J orN = J does not

represent the worst case). In the case of multiple data paths, see Fig. 106 for example, the
line segment joining the highest end points of a set of line segments between -J and +J is
always above all of them. Consequently, considering that the slack changes linearly
between -J and J is conservative. In general, it is not clear whether this property holds
when the timing verifier eliminates false paths and the circuit contains delay dependent
false paths.

(J
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n 4.2.2 Delay Correlation Networks Normalized delay

Correlated gate delays

Figure 107
Simple delay correlation network.

Consider a set of delays {d^, d-^,..., dp}, correlated

by a degree A. The correlation relation is implemented

using a single normalized delay ND, and a correlation

consfa-aint for each delay, operating on the delay and

ND (see Fig. 107). For a delay d^ and its associated

DtoN^ and NtoD^ The constraint is defined using J = 2(1 - A) as follows:

ND' = ND n (DtoN^W + [-J , J])

• d,,' = dk n ^oûk(ND)

In other words,

when a delay d^ changes as a result of applying constraints, ND is narrowed to
(ûto^(dk)+[-J,J]);

when ND changes, all correlated delays d^ are narrowed to NtoD^(ND).

99% Correlation 99% Correlation

98% Correlated 99% Correlated
97% Correlated

Figure 108
One-dimensional position dependent delay correlation network.

0

A normalized delay is no different from a delay, and it is possible to use multiple cor-
related NDs. Fig. 108 and 109 illusb-ate position dependent correlated delays using two
level NDs. Arbitrary complex correlation schemes can be represented by correlation net-
works. Apart from supporting position dependent delay correlation, our timing verifier
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n supports correlation between rising delays;

between falling delays; and between rising and

falling delays, as they may be inter-correlated

with different strengths. However, more

research is needed in process characterization to
Figure 109

take full advantage from the offered flexibility. Two-dimensional position dependent delay
In general, delays associated with components correlation network.
belonging to different manufacturing steps are

correlated with lesser strengths than those belonging to the same one.

u

4.3 Modeling Building Blocks

Modeling industrial cell libraries, the building blocks of industrial designs, requires

many types of primitives and domains. Cell delays are back annotated in the Standard

Delay Format (SDF) as multiple fa-iplets (min, typ, max), one for each combination of

input tenninal and event type at the output. For example, consider a two input AND gate

for which A and B are the inputs, and Y is the output. Four path delay triplets are defined
for such a gate:

A delay to be used for an event at A that causes a 0-to-l transition at Y

A delay to be used for an event at A that causes a l-to-0 transition at Y

A delay to be used for an event at B that causes a 0-to-l transition at Y

A delay to be used for an event at B that causes a l-to-0 transition at Y

Moreover, industrial designs contain tristate gates that can have high impedance

states (Z) at their outputs. Therefore, the data domain should support this new state in

addition to the usual binary values 0 and l. This leads to heterogeneous domain types in

constraint models. For instance, the domain type at a ta-istate buffer output contains three

intervals (for 0, 1, and Z), whereas a domain at an input contains only two. Also, delays

li



n
125

for tristate gates are defined for six types of transitions: 0 to 1, 1 to 0, OtoZ,Zto l, l to Z,
and Z to 0. The remainder of this section summarizes the domain types and primitives we
implemented as building blocks for developing cell libraries.

4.3.1 Domains

The following domains are implemented:

TVintervaIDelayDomain

Delay domain used when a single interval is needed for gate or interconnect delays.

TVrfDeIayDomain

Delay domain for 0-to-l and l-to-0 transitions (two intervals).

TVonOffDeIayDomain

Delay domain for 0-to-Z, Z-to-1, 1-to-Z, Z-to-0 transitions (four intervals). This is
suitable for delays from tri-state control inputs to switch the output between nonnal
binary states and high impedance.

TVcorreIationDomain

Normalized delay domain.

TVrfCorreIationDomain

Normalized delay suitable to correlating rising and falling delays separately.

TVclockDomain

Clock domain. It contains a number of transitions depending on how the clock is
defined in the clocking scheme. Each transition is defined as a polarity flag (RISE, or
FALL), an ideal time, and an interval of uncertainty for the clock edge.

• TVsetupDomain

Abstract signal domain, it contains two intervals, WQ and wj representing
,Wy.max , ,w^.max\
Wy.min ' ' lu'i.m;ny

0
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TVsetupDomainZ

Abstract signal domain that accounts for high impedance state. It contains three inter-
.Wy.max ^w^.max _,w,.max\vais, WQ, wi, and w^ representing [0\'^^,,, l

v Wg.mi'n' Iwi.mi'n' Iw^.mi'ny

0

4.3.2 Primitive Constraints

The following logic primitives are used internally by the timing verifier, and used to

describe cell library models. Appendix B (B.l) lists the primitives necessary for cell mod-
eling, along with their terminal and delay names.

interconnectDelay

A delay primitive for interconnect delays. It is distinguished from gate delays, so that

the timing verifier can correlate its delay correctly if the user chooses to correlate

interconnect delays separately.

nonInvertingDelay

A delay primitive annotated as rising (R) and falling (F) delays. It applies R to w; and

F to WQ. Used at a cell input to model positive path delay (rising transition at input

causes rising transition at output, e.g., input of an AND gate).

invertingDelay

A delay primitive annotated as rising (R) and falling (F) delays. It applies F to w^ and

R to WQ. Used at a cell input to model negative path delay (rising transition at input

causes falling transition at output, e.g., input ofaNAND gate).

• unknownDelay

A delay primitive annotated as rising (R) and falling (F) delays. It applies R u F to

w-i and WQ. Used at a cell input to model unknown path delay (rising transition at input

may cause a rising or falling ti-ansition at output, e.g., input ofaXOR gate).

fsOzRzOFDelay, fsOzFzORDeIay, fsOzUzOUDeIay, fslzRzlFDeIay, fslzFzlRDelay,

fslzUzlUDelay, onRoffFDelay, onFoffRDelay, unknownZDelay, tristateDelay
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These delay primitives handle tristate gate delays, they differ by how annotated delays
are applied.

buf, not, and2, and3,..., or2, or3,..., nand2, nand3, ..., nor2, nor3,..., xor2, xor3,
..., xnor2, xnor3,...

Delayless symmetrical gates.

mux2

Multiplexer primitive. The multiplexer constraint is discussed in detail later.

nMux2

Inverted output multiplexer primitive.

devicelnput, deviceInOut, deviceOutput

Primitives for device inputs, outputs, and input/outputs.

vss, vdd, highZ

Primitives that provide constants (vss = 0,vdd =1, highZ = Z).

passive, passiveZ

To hide circuit nodes that have no timing assumptions, e.g., connections that are driven

exclusively by clocks not harmonically related to the current clock, the timing verifier

uses the passive primitives. Passive and passiveZ always hold the constant domains

(0|^, 1[_^) and (0|_^, 1|_^,2'|_^), respectively. When the setup constraint of a D
flip-flop is being verified, the timing verifier traces the logic cone that drives D and

breaks the connections that have no timing assumptions. The broken connections are

then routed to passive or passiveZ depending on whether high impedance state is

needed. Passive primitives disallow narrowing on the domain they hold to prevent tim-
ing optimism.

bufifO, bufifl, notifO, notin

Tristate primitives. Their outputs hold tristate domains (TVsetupDomainZ), whereas

their inputs expect binary domains (TVsetupDomain).

u
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pullup, puIlupDeviceInOut, pulldown, pulldownDeviceInOut, pullupdown

Primitives needed to accommodate circuit nets that are driven by multiple tristate
gates. In such cases, all net drivers are routed to the inputs of the pull primitive which
becomes the driver of the net sinks. Pull primitives expect tristate domains at inputs,
they hold a binary domain at the output.

latchHQ, latchLQ, latchHQZ, latchLQZ

Transparent latch primitives. They differ by whether the output is inverted or not, and

by the clock sensitivity. The latch constraint is delay dependent. Actually, latches are
delay annotated. The latch constraint determines the earliest clock window that makes

the latch transparent, respecting its setup timing requirement. For example, consider
the high level sensitive non-inverting latch (latchHQ) as defined in Section 1.3.2 (see
Fig. 8): D is the data input; C is the clock defined as a rising edge, falling edge, and a
period; Q is the output; C-to-Q is the time delay before Q starts to follow D, after C
rises to 1 ; D-to-Q is the events propagation delay from D to Q, when C= l; S isthe
setup time constraint. The latch constraint operator operates on {C, D, Q, C-to-Q, D-
to-Q,S},and it is defined as follows:

Effect on Q.WQ and D.WO:

R = uncertainty interval of the rising clock edge;

F = uncertainty interval of the falling clock edge;

period = clock period;

SafeCycle = min {n e Z D.WQ.max < f.min + period x n- S.max};

The actual falling edge interval for which the setup constraint is satisfied is:
AF = F + period x SafeCycle;

AR = uncertainty interval of the rising edge that occurs just before the edge ofAF;
if(D.WQ.lmin > AR.max){

// latch is transparent for the last-transition-interval of D.wg-
// the latch behaves like a buffer

Q'.M^O=Q-WO ^(D.Wç+D-to-Q)

D'.WQ=D.WQ n(Q.wQ-D-to-Q)
} else {

0
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0
maxO = max {AR.max + C-to-Q , 'D.WQ.max + D-to-Q};

.•>-.. ^-_-_^.. „--._. — r>imax0
.WQ.max = (^.WQ.max n

}

The effect on Q.w^ and D.w^ is symmetrical.

dffflQ, dffLQ

Primitives that inject logic values into the combinational circuit. They are used to

model the output half of a D flip-flop. dffHQ is triggered by a rising clock edge,
whereas dffLQ is triggered by a falling one. The dff relational constraint is very sim-
pie. Let C be the clock edge interval, and Q the abstract signal at the output:

C. maxÔ'.WQ = Q.WO^O\^
C.mcix

g'.wi = Q.w^nl^'

C = C ri[min(Q.WQ.lmin, Q.w^.lmin),+°o]

HsetupHold, LsetupHold

Flip-flop setup constraints. This models the input half of a D flip-flop. HsetupHold is
sensitive to the rising clock edge, while LsetupHold is sensitive to the falling one. The
relational constraint is very simple. Let C be the clock edge interval, and D the abstract
signal to check for possible overlap with the clock:

Z)'.u.o=û.^n0|^
Z)'.^=û.^n0|^
C = C D[-°<>,max(Q.WQ.max,Q.w^.max)]

dummy

used as a place holder with no functionality.

reset, resetZ, preset, presetZ

Primitives used to model active low/high reset/preset lines for flip-flops and latches.

0
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The following primitives handle delay values and component delay correlation. They
are used internally by the timing verifier.

TVconstantDelayHolder

Holds a delay domain that is not bound by component delay correlation.

TVdelayCorreIation

Single interval normalized delay primitive, used to bind a set of delay values by a cor-
relation degree.

TVrfDelayCorrelation

Dual interval normalized delay primitive, used to correlate rising and falling delays
separately.

TVintervaIDeIayValue

Holds a single interval delay.

TVrfDelayValue

Holds two interval delays, Rising and Falling.

• TVooDeIayValue

Holds four interval delays, 0-to-Z, Z-to-1, 1-to-Z, Z-to-0.

TVshDelayValue

Holds setup and hold constraints (annotated like delays) for flip-flops and latches.

TVnegIntervalDelayVaIue, TVnegRFDelayValue, TVnegOODeIayValue, TVneg-
SHDelayValue

These primitives hold delay values similar to their "positive" counterparts. However,
the delay correlation mechanism is reversed. For example, when delays in "positive"
delay primitives get their max values, delays in these primitives get their min values.
These primitives may be useful to model delays in mixed technologies where, for
example, higher temperature can cause some components to be slower, and some oth-
ers to be faster.

0
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u

Multiplexer Primitive

Multiplexers have complex non-sym-

A

(l) Y

B

A
OR

Y

B

s

A

(3)

OR

WD
B

AR

RA

OR

s
h-Y

INTERSECTION

metrical behavior. Two-to-one multiplexers g
have three inputs: A, B, and S, and one out-

put Y. When S = 0, Y=A, and when S = l,

Y = B. Special attention is given to the (2)
multiplexer primitive as it is very pessimis-

tic to use its equivalent logic model as a

timing one.

The circuits of Fig. 110(1) and (2) are

two logic models equivalent to the multi-

plexer logic function, nevertheless, they

have different floating-mode timing prop-

erties. Consider the case when A and B are pjgure 110
both stable at 0. The output of the AND- TWO~to^neJ1WMPiexer-.

(1) AND - OR logic model.
OR circuit ( 1 ) is stable at 0 regardless of S, (2) OR-AND logic model.

(3) Timing model.
whereas, the constraint model of the OR-

AND model (2) fail to get to such a conclusion. When A and B are stable at 1, however,
the OR-AND circuit behaves correctly, while the AND-OR model fail. The fact of the
matter is that the paths from S to Y are false when A and B are stable at the same logic
value, a situation thefloating-mode delay model fail to uncover.

Since the AND-OR and the OR-AND have complementary behaviors, one succeeds

when the other fail, we opted to use the intersection of both cases. The hard coded multi-
plexer constraint model is depicted graphically in Fig. 110(3), it corresponds to the
sequences of vectors delay model. The INTERSECTION constTamt is defined as follows:

INTERSECTION(RA, AR, Y) = (RA', AR', Y') such that
Y' = Yn AR n RA,

RA' = YnARnRA,

AR' = Y n ARnRA.
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0 4.4 Cell Library Modeling

The modeling of combinational cells is straightforward. Interconnect delays are

placed at the cell inputs, each interconnect delay is followed by path delays, one for each

reachable cell output. The cell logic structure is mapped to the predefined primitives coun-

terparts. The exception is when the cell contains logic structures that drive multiple out-

puts. In such cases, the common structure is duplicated in order to make the path delays

independent, as illustrated in the example of Fig. 111. The path delay types are chosen

according to the path polarity from the cell input to the cell output in question. For

instance, path delays of an AND gate are of type nonInvertingDelay, because a rising tran-

sition at the output is only caused by rising ones at inputs. Inverting and non-inverting

path polarities cause no accuracy problem for the cell timing model. However, unknown

path polarity is pessimistic, because the worst-case delay is applied at the cell input

regardless of the transition type at the output. In fact, the delay element is not aware of the

state at the cell output. To remove this pessimism, the timing verifier adds a cell-aware

constraint. It consists of the following procedure (Note that the rising/falling delay from

input A to output Y is the delay separating an event at A and the resulting rising/falling

transition at Y):

u

A-

B,:ï>^
D'

(1)

t>-
+ l nonl

^-

interconnectDelay

Inverting Delay

invertingDelay

Y1

Y2

A
J'ortA rl~^AtoY1

+

Port B rJ^BtoYI

B
Y1

C to Y1

BtoY2

+

e toY2
Y2e +

PortC
D to Y2

D

Port D
Interconnect Delays Path Delays

(2)

Figure 111
Combinational cell modeling example. (1) Cell logic function. (2) Cell constraint model.
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0 1) Save the domains of the cell (internal and terminals);

2) Apply the constraints using the rising path delays;

3) Remove from the output the waveforms stabilizing at 0;

4) Exchange the domains with the saved ones;

5) Apply the constraints using the falling path delays;

6) Remove from the output waveforms stabilizing at 1 ;

7) Merge the domains with the saved ones.

Port D

CLK-1

D—l

> [-Q
D D

HsetupHold

_A_

Q

dffHQ
_tt_

Port CLK

(1)
CLK

Interconnect Delays
(2)

+ Q

CLK_to_Q

Path Delay

Figure 112
Flip-Flop cell modeling example. (1) Cell logic function. (2) Cell constraint model.

We automated the combinational cell constraint model generation to prevent human

mistakes and omissions from corrupting the timing verification results. The sequential

cells are hand crafted. Fig. 112 shows how a flip-flop is modeled. Interconnect delays are

put at the inputs, a timing check is put between the clock and the data input signal, dffHQ

primitive is used to drive the clock-to-Q path delay that is placed at the output this time.

The setup constraint value is annotated to HsetupHold primitive. Appendix B (B.3) con-

tains the real definition of a similar flip-flop.

û

4.5 Handling of Combinational Loops

Although discouraged by synchronous design methodologies, combinational loops

are still used. Therefore, the timing verifier needs to deal with them. Our timing verifier

determine all circuit loops and resolves them by imposing additional constraints on loop
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0

nodes. An added constraint binds the stabili-

zation time of the node using the worst-case

arc (path length) from the loop input lines as

shown in the example of Fig. 113:

(a) C and E are part of a combinational
loop (in fact E = B);

(b) additional constraint for E: limit E to
waveforms stabilizing after max, the
worst case of A propagated through
path gi-gz, and D propagated through
path g2;

(c) additional constraint for C: limit C to
wavefonns stabilizing after max, the
worst case of D propagated through
path g2-gi, and A propagated through
path g i.

4.6 Timing Verifier

The timing verifier is written in C++

(about 60000 lines of code), uses a Verilog

compiler provided by Nortel Networks, and

is composed of three components (see Fig.
114):

Cell Library Compiler, generates models

for combinational cells;

(a)

E'

A— e
9i

B E92T D-

A- 929i

u

(b)D— 92

D- 9i92

e'

(e)A— 9i

Figure 113
Combinational loop example.
(a) C and E are part of a combinational loop.
(b) Loop aware constraint for E.
(c) Loop aware constraint for C.

CELL LIBRARY

VERILOG)

CIRCUIT
VERILOG

CELL LIBRARY
COMPILER

(
iZ

CONSTRAINT
NETWORK

GENERATOR

ï
CELL LIBRARY

CONSTRAINT MODELS
I CONSTRAINT ]

NETWORK I

TEST CASES
(CLOCKS,

CONSTANTS)

TIMING VERIFIER
ENGINE

£
L^LT SDF BACK-^
\sJ-^ANNOTATIONj

^RESULTS)

Figure 114
Timing Verifier Architecture

Constraint Network Generator, generates constraint networks (in terms of cell models)
from Verilog circuit descriptions;
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Core Waveform Narrowing Timing Verifier, supporting SDF back-annotation.

Input constraints that select particular circuit operation modes or test cases can be
presented to the timing verifier as sets of constants to be applied to certain circuit nodes,
and as clock domain definitions. The syntax is very simple, the following is a commented
example:

(STV_TIMING
(DESIGN "falsepath") // usually the Verilog module name
(DATE "Wed Jan 26 13:30:35 2000")
(PROGRAM "")
(VERSION "")
(DIVIDER .) // hierarchy divider, it can be either. or /
(SYSTEM_TIME_UNIT ns)
(SYSTEM_TIME_SPAN 100) // this tells the timing verifier to scale delays to

// integers so as to accommodate at least 100 ns max values.
(TEST_CASE "test 1 " // we can define multiple test cases, e.g., "Functional", "Scan Test", ...
(CONSTANTS

(DRIVER falsepath. instance l .Y H) // apply 1 to falsepath.instance l .Y
(DRIVER falsepath.instance2.Y H)
(DRIVER falsepath.instance3.Y L) //apply0to falsepath.instance3.Y
)
(CLOCKS
(BASE_PERIOD 5)
(CLOCK clock
(DRIVER falsepath.clk)
(MULT 1)
(DIV l)
(RISE 0 [0,0])
(FALL 2.5 [2.5,2.5])
)
)
(SETUP_EDGES
(DEST clock 0[0]
(SOURCE clock
(EDGEO[-1])(EDGE2.5[-1J)
)
)
)
)
)

0
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0 The verification is done as follows:

verify TestCasesQ {

. load the cell libraries, constraint network, and test cases;

. if SDF file is specified {

. . load and annotate delays;

. } else {

. . use default delays specified in the libraries;

.}
. for each test case do {

. . generate default clocks edge selection clauses if not provided by the user;

. . apply and propagate constants to circuit nodes;

. . strip inactive parts of the circuit;

. . trace and initialize clock u-ees;

. . determine testable setup checks;

// an untestable check is one that is driven exclusively by

// logic that is not controlled by any defined clock.

// Testable checks may still be conta-olled partly by logic with

// unknown timing properties, this part is routed toward passive

// constraints so that we can verify the part we know about.

. . for each edge selection clause do {

. . . select the checks that are controlled by the edge;

. . . initialize the constraint system;

// initialization includes combinational loop

// detection and additions of appropriate loop constraints if any

. . . evaluate the constraint system with no constraint on any check;

. . . while (true) {

. . . . restrict the constraint system to the check having the worst slack;

. . . . refine the check results using pessimism reduction techniques;

. . . . break if we still get the same slack;

...}
. . . print results for the edge selection;

. . } II for each edge selection clause

. } // for each test case

} // verifyTestCasesQ

l

0
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4.7 Experimental Results

The timing verifier was tested on two industrial circuits provided by Nortel Net-
works. The first circuit is a small well-characterized Nortel benchmark used mainly for
tool evaluation and debugging purposes. It has 2651 cell instances (TGC 1000 Texas
Instrument cell library) and 1160 timing checks. The test case has four clock domains and
13 constants. After constants propagation, the clock fa-ee reached 1120 timing checks; all
of them are found to be testable. The results were consistent with the results of Mirage, the
timing verifier used at Nortel Networks. The execution required 5.8 Mbytes and 0.891
seconds on a PC (P-III, 866 Mhz) detailed as:

Loading libraries: 0.12 second
Loading test cases: 0 second
Verification: 0.311 second.

Loading design: 0.15 second
Loading delays: 0.3 second

This circuit was very useful for debugging our software, it has typical industrial com-
plexity: uses synchronizing latches, flip-flops, tristate gates, etc., it is small enough to
trace easily, and it has known timing properties. This small benchmark has no value when
it comes to evaluating false path elimination effectiveness. In fact, its logic cones are tiny,
and the eliminated false paths did not affect the final timing results. Its value, however, is
in validating our clock edge selection algorithms, as well as the basic timing verification
algorithms.

The other circuit we checked is a 122 Kgates synchronous design (34 inputs, 131
inouts). The experiment was done on a Sun Ultra 10 workstation with 512 Mbytes of
RAM. The test case has 13 constants and 4 harmonically related clock domains (period =
100 ns). After constants propagation, the defined clocks reached 57118 timing checks. 55
checks were determined irrelevant (data is constant, Reset/Preset active, or data not
selected for latching in a scannable flip-flop). 57063 timing checks are testable, all
checked for setup constraint. Two delay annotation files were available: one has worst-
case delays; the other has best-case delays. We checked the design against each annota-
tion. The results are presented in Tables VII and VIII. The tables columns contain, the tim-
ing check identifier, followed by slack double columns under R (timing slack for rising

0
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n transitions) and F (timing slack for falling transitions). Each execution required 145
Mbytes of RAM, and the following CPU times for file loading across network file system:

Loading libraries: 1.65 seconds
Loading test cases: 0.01 seconds

Loading design (30 Mbytes): 101.33 seconds
Loading delays (50 Mbytes): 243.25 seconds.

0

Best
Case

No Pessimism
Reduction

1.51 minutes

Spatial Correlation
Order 1

0.2 minute

Spatial Correlation
Order 2

0.7 minute

Spatial Correlation
Order 3

0.9 minute

Spatial Correlation
Order 5

4.8 minutes

Spatial Correlation
Order 8

20.79 minutes

Check R F R F F R F R F R F
DFF_011 36.04 | 35.53 | 39.25- | 39.26-
DFF_02| 41.15 | 40.49 | 41.67' | 40.49

39.25
41.67

39.26

40.49
39.25

41,67
39.29-
40.49

39.25
41.70'

39.29
40.49

39.25

41.70

39.29

40.49
DFF_03| 41.24 | 40.79 | 41.83* | 40.79
DFF_04| 41.45 | 40.86 | 42.0T | 40.86

41.83

42.01
40.79

40.86
41.83

42.01
40.79

40.86
41,83

42.05*
40.79

40.86
41.83
42.05

40.79

40.86
DFF_05| 41.49 | 41.04 l 42.04' | 41.04
DFF_06| 41.63 | 41,09 | 42.05' | 41.09

42.04

42.05
41.04

41.09
42.04

42.05
41.04
41.09

42.05*
42.09'

41.04

41.09
42.05

42.09

41.04
41.09

DFF_07| 41.68 | 41.11 | 42.24' | 41.11
DFF_08| 41.70 | 41.12 | 42.25- | 41.12

42,24

42.25
41.11

41,12

42.24

42.25
41.11

41.12
42.27*

42.27-
41.11

41.12
42.27

42.27
41.11

41.12
DFF_09| 41.63 | 41.16 | 42.17* | 41.16
DFFJO) 41.90 | 41.17 | 42.49* | 41,17

42.17

42.49
41.16

41.17

42.17

42.49

41.16

41.17

42.2T

42.49-
41.16

41.17
42.21

42.49
41.16

41.17
DFFJ1I 41.83 | 41.19 | 42.36* | 41.19
DFFJ2| 42.09 | 41.32 | 42.48* | 41.32

42.36

42.48
41.19

41.32
42.36

42.48
41.19

41.32
42.39*

42.51-
41.19

41.32
42.39

42.51
41,19

41.32
DFF_13| 42.10 | 41,36 | 42.53' | 41.36
DFF_14| 42.15 | 41.40 | 42.7T | 41.40

42.53
42.71

41.36
41.40

42.53

42.71
41.36
41.40

42.55'
42.72*

41.36

41.40
42.55
42.72

41.36

41.40
DFFJ51 42.01 | 41.57 | 42.48* | 41.57
DFFJ61 41.58 | 41,78 | 42.05' | 41.78

42.48

42.05

41.57

41.78

42.48

42.05

41.57

41.78
42.48

42.05
41.57

41.78

42.48

42.05
41.57

41.78
DFFJ7| 42.39 | 41.63 | 43.43' | 42.24'
DFF_18| 42.09 41.92 | 42.55* | 41.92

43.43
42.55

42.24
41.92

43.43

42.55
42.24

41.92
43.43

42.55
42.24
41.92

43.43

42.55
42.24
41.92

Table VII
Results on an industrial benchmark for best-case delay annotation.

Apart from loading files, the first slack double column under "No Pessimism Reduc-
tion" corresponds to verifying all 57063 setup checks using the basic waveform narrowing
method without using the pessimism reduction techniques. The double columns under
"Spatial Correlation Order n" correspond to performing pessimism reduction only on the
cases shown in the tables. Pessimism reduction was mn independently for each column,
i.e., the basic method is applied to all 57063 checks, than pessimism reduction with spatial
correlations of order n is applied. Note that, in this particular example, little benefit was
gained by setting the spatial correlation order to higher than l. The shaded table elements
correspond to the cases for which the higher order made a difference.
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er

Worst
Case

No Pessimism
Reduction

1.46 minutes

Spatial Correlation
Order 1

0.51 minute

Spatial Correlation
Order 2

0.75 minute

Spatial Correlation
Order 3

1.24 minutes

Spatial Correlation
Order 4

1.4 minutes

Spatial Correlation
Order 8

13 minutes

Check R F R F R F R F F R F

DFF_01
DFF_19

10.92
22.04

8.740

20.96

17.79-
22.04

17.45-
20.96

17.79
22.04

17.45
20.96

17.79

22.04

17.45

20.96

17.79

22.04

17.45

20.96

17.79

22.04

17.45

20.96

DFF_02
DFF_03

21.05

22.40

21.18

21.07

21.05

22,40

21.18

21.07

21.05

22.40

21.18

21.07

21.05

22.40

21.18

21.07

21.05

22.40

21.18
21.07

21.05

22.40

21.18

21,07

DFF_20

DFF_21

22.11
22.55

21.07

21.45

22.11
22.55

21.07

21.45

22.11

22.55

21.07

21.45

22.11

22.55

21.07

21.45

22.11

22.55

21.07
21.45

22.11

22.55

21.07

21.45

DFF_22

DFFJ8

22.59

23.18

21,49

21,54

22,59

23.18

21.49

21.54

22.59

23.18

21.49

21.54

22.59

23.18

21.49

21.54

22.59

23.18

21.49

21.54

22.59

23,18

21.49

21.54

DFF_23
DFF_24

22.69

22.67

21.60

21.60

22.69

22.67

21.60

21.60

22.69

22.67

21.60
21.60

22.69
22.67

21.60

21.60

22.69

22.67

21.60

21.60

22.69

22.67

21.60

21.60

DFFJ5

DFF_25
23.01

22.38

21.71

21.73

23.01

22.38

21.71
21.73

23.01
22.38

21.71
21.73

23.01
22.38

21.71
21.73

23.01
22.38

21.71
21.73

23.01
22.38

21.71
21.73

DFF_26
DFF_27

22.82

22.82

21.74

21,76

22.82
22.82

21.74
21.76

22.82

22.82

21.74

21.76

22.82

22.82

21.74

21.76

22.82

22.82

21.74
21.76

22.82

22.82

21.74

21.76

DFF_28

DFF_04

22.5
23.52

21.86

21.89

22.5
23.52

21.86

21.89

22.5

23.52

21.86

21.89

22.5

23.52

21.86

21.89

22.5

23.52

21.86

21.89

22.5

23.52

21.86

21.89

DFF_10

DFFJ3

23.22

23.13

21.92

21.96

23.22

23.13

21.92

21.96

23.22

23.13

21.92
21.96

23.22

23.13

21.92

21.96

23.22

23.13

21.92

21.96

23.22

23.13

21.92

21.96

DFFJ1 22.99 21.96 22.99 21.96 22.99 21.96 22.99 21.96 22.99 21.96 22.99 21.96

Table VIII
Results on an industrial benchmark for worst-case delay annotation.

The results for this example are very significant; they prove that false path elimina-
tion should not be ignored by industry because it is necessary and affordable. For this
example, the waveform narrowing method proved that the slack lower bound for setup
checks is in fact 17.459 ns as compared to 8.74 ns reported by topological analysis. The
clock period in the test case is 100 ns, therefore, the relative safe margin proved to be
17.459% of the clock cycle instead of 8.74% !

The resources required by the program are minimal. The memory requirement and
execution time for the basic method without pessimism reduction scales linearly with cir-
cuit size, and the constant factor of our implementation is very efficient. Although the time
complexity of pessimism reduction procedures is bounded by the spatial correlation,
which is virtually quadratic, we expect it to grow much slower with circuit size. This
belief is backed by two facts:
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1) The complexity of the timing checks does not grow with circuit size. Timing check

cones are limited to a limited number of logic levels. Usually, deep logic structures are

broken into pipelines to keep up with the appealing higher clock frequencies. In fact, big-

ger circuits contain more checks not more complex ones.

2) When a timing check still has the worst calculated slack after it is refined by apply-

ing the techniques of pessimism reduction, there is no need to go any further.

In our example, only 19 timing checks out of 57063 have their slack less than 23 ns in

the worst-case delay annotation (Table VIII). After the worst-case DFF_01 is refined from

8.74 to 17.45 ns, it is still the worst case. Therefore, there is no need to go any further, and

pessimism reduction execution time is actually less than 2 seconds rather than the 0.51

minute for spatial correlation of order 1. The remaining checks were refined simply to col-

lect more data for the sake of this illustration.

4.8 Conclusions

In this chapter, we presented the basic concepts behind delay correlation schemes

using three valued delays (min, typ, max), accommodating cell position dependence and

the ability to support precise process characterization. We also presented the extensions

that we implemented for the method to become applicable to state of the art industrial cir-

cuits. We showed the hard primitive constraints, which are the building blocks for cell

library modeling. We presented the concepts behind combinational cell modeling support-

ing separate rising and falling i/o path delays. A simple and intuitive, yet very powerful,

clock definition formalism was presented, able to express arbitrary complex clocking

schemes. The resulting timing verifier was tested successfully on a real world industrial

synchronous design; false paths were eliminated successfully.

0



0 CHAPTER V CONCLUSIONS

We presented in this thesis an elaborate timing verification method based on Wave-
form Narrowing proposed initially by Cemy and Zejda in [98]. The method is in fact a
custom constraint programming system adapted to timing verification of logic circuits. It
consists of modeling the circuit timing constraints and operating conditions as a constraint
system that is consistent, i.e., has a solution, iff the timing constraints are violated. The
constraint system is composed of a finite set of variables {X-^, X^,..., Xy} which take values
from their respective domains D^, D^,..., D^, and a set of relational constraint operators
{Ci, C^,..., C^}, each operating on a subset of the variables. A variable represents either a
circuit net, or a gate or interconnect delay. Net domains contain sets of binary waveforms,
whereas delay domains are intervals. A constraint operator is a logic gate function defined
over sets of waveforms and interval delays. A domain D^ of a variable X^ contains ini-
tially the set of all possible values X^ can take. A solution of the constraint system is an
assignment for all the variables, from their respective domains, that makes the system con-
sistent, i.e., all the consu-aints are satisfied. When a consta-aint C^ is applied, it removes
from the domains of the associated variables values that are not compatible, i.e., values
that are not part of any solution. The system is then solved by repeatedly applying the con-
straints until the greatest fixpoint is reached. If we end up with empty domains, we con-
elude that the timing constraints are satisfied; otherwise, no conclusion can be drawn.

The foundation of the waveform narrowing method is based on local consistency
techniques. Constraints consider each gate as isolated, ignoring the global circuit function.
Therefore, the system evaluation may result in false negative answers when the resulting
domains are not empty, and yet the constraint system has no solution. To reduce this pessi-
mism we developed two polynomial techniques:

u
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Timing dominators concept, which determines key circuit nets for which the domains

can be narrowed as a consequence of necessary conditions based on the global circuit

function;

Spatial correlation procedure, which enforces partially the global circuit function by

restricting the domains of selected reconvergent fan-outs to waveforms stabilizing at 0

and 1, and then merging the results.

Also, we developed a case analysis procedure able to find a test vector (solution of

the constraint system, proof of timing violation), or prove that no violation is possible.

When tested on the ISCAS'85 benchmark suite, the original method eliminated vio-

lations from the c5315 and c7552 circuits. The use of timing dominators alone eliminated

violations from the traditionally difficult c 1908, and from c3540. Timing dominators,

combined with spatial correlation, eliminated violations from c2670 and also the tradition-

ally difficult multiplier, c6288. In summary, timing dominators and spatial correlation

techniques made the Waveform Narrowing method determine tight circuit delay upper

bounds that correspond to the exact circuit delays for all ISCAS'85 circuits. Moreover,

except for c6288, the case analysis procedure found test vectors for all circuits with a

remarkably low number of backtracks!

Motivated by the success of the method when tested on standard benchmark circuits,

we wanted to evaluate its effectiveness on real world industrial circuits. The task, how-

ever, turned out to be complex and required us to rewrite the software from scratch. We

implemented appropriate capabilities for cell library modeling, standard delay back-anno-

tation, complex clocking schemes, etc.

The resulting timing verifier was tested on a 122K-gate industrial circuit, provided by

Nortel Networks. The results were very significant because they proved that false path

elimination should not be ignored by industry because it is necessary and affordable. For

this instance, our method proved that the slack lower bound for setup checks is in fact

17.459 ns as compared to 8.74 ns reported by topological analysis. The clock period in the

j

0
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test case is 100 ns, therefore, the relative safe margin proved to be 17.459% of the clock
cycle instead of 8.74%!

0

5.1 Comparison with Other Methods

Although our method has a very competitive execution time as compared to other
methods, we believe that the real comparison comes from other points of view:

1) Timing verification is an NP-Hard problem. Therefore, any exact method has

exponential time complexity in the worst case. All algorithms that aim at finding test vec-
tors rely on heuristics biased toward resolving certain types of circuits. Commercial tim-
ing verifiers need approximate false path elimination methods that have predictable

execution time, and are statistically efficient. Our method proved to have this property on
all tested circuits. In fact only 10% of the reported execution time for the ISCAS'85 cir-

cuits (except c6288) were used for false path elimination. The remaining 90% were used
to prove that the delay upper bound we detennined is achially the exact circuit delay. The
results for the industrial circuit were even better; they showed that the execution time

required by our method grows virtually linearly with the circuit size, although the spatial
correlation is quadratic. In fact pessimism reduction techniques need to be applied only to
timing checks having the worst slacks, and bigger circuits contain more checks, not more
complex ones. For our example of 57063 checks, only 19 of them had slacks less then
23% of the clock period before pessimism reduction.

2) The memory requirement is critical in today's integrated electronic design automa-

tion tools. Our method requires a simple data stmcture that represents the graph of con-
straints, and a domain stack for each net that can be limited to three domain instances. The

implementation averaged at 1188 bytes per industrial gate. This requirement can be
brought down if fixed delay model is used instead of the three valued delay model. In con-
trast, any method that attempts to build binary decision diagrams to resolve the satisfiabil-
ity of a Boolean function/has an exponential space complexity in the worst case (in terms
of the number of variables off)\
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3) Our method has a unique delay correlation model that is able to express complex

conrelation schemes like two-dimensional position dependence.

4) As a verification environment, the waveform narrowing is very flexible and intui-

tive. In fact the constraint system resembles a simulation environment, except that the

gates operate on sets of waveforms instead of instantaneous values. The constraint net-

work that does the verification, and the circuit description, are one entity. No dynamic

stmctures need to be created for each individual check. Clock trees are traced on the fly,

and timing checks that verify the integrity of gated clocks can be inserted very easily.

5.2 A Disadvantage

A disadvantage of the waveform narrowing method is its complexity. In fact, it takes

a lot of effort before one can develop intuition about waveform narrowing. Therefore, a

new software developer allocated to maintain and enhance a timing verifier based on

waveform narrowing needs to go through a steep learning curve.

5.3 Original Contributions of this Thesis

The major contributions of this thesis are summarized as follows:

Established the mathematical foundations of the waveform narrowing method for the

purpose of floating mode delay calculation, the original method was formulated

around the transition mode.

Developed the spatial correlation procedure that was effective in reducing the pessi-

mism of the method on standard and industa-ial benchmark circuits. The added execu-

tion time complexity is quadratic.

u
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n Developed the Timing Dominators concept that was very successful in eliminating

false violations with minimal added execution time complexity (nx log (n)).

• Developed a case analysis procedure able to find a test vector, or prove that no viola-

tion is possible. The procedure is guided by heuristics inspired by ATPG techniques,

namely the controllability measure of [23] and the FAN algorithm of [33]. The proce-

dure uses a novel partitioning strategy based on timing dominators.

In order to provide support for state of the art industrial circuits, we extended the method

as follows:

• Developed an intuitive formalism able to express arbitrary complex clocking schemes,

along with a procedure to deduce correct default edge selection for setup verification.

Defined a delay correlation domain based on three-valued delay annotation (min, typ,

max) using the novel concept of normalized delays. The resulting constraints can be

used to build complex correlation networks able to model arbitrary complex compo-

nent delay correlation, like position dependence, rising-delay vs. falling-delay, etc.

Defined more than 70 constraint primitives able to model industrial cell libraries.

• Developed a hard multiplexer primitive that reduces the inherent pessimism of the

floating mode delay model;

Developed and automated a general concept for modeling combinational cells. And

added cell aware constraints that remove the pessimism induced by path delays of

unknown polarities;

Added support for automatic handling of combinational loops, still present in some

synchronous industa^al designs;

• Implemented an industrial-grade version of the timing verifier in the object oriented

language C++, and evaluated the waveform narrowing method on industrial circuits

provided by Nortel Networks.

•o
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5.4 Future Work

Two objectives were in mind when we started work on the timing verification method
based on Waveform Narrowing: First, to reduce its pessimism, then to assess its suitability
for industrial use. While we succeeded in both, there is still a lot of gaps that need to be
filled.

From an evaluation point of view:

We could not test all the capabilities of our timing verifier due to data unavailability.
For instance, it is not clear how circuit components are related. Like, how rising
delays, affected mostly by PMOS transistors, are correlated to falling delays, affected
mostly by NMOS transistors. Or how interconnect delays belonging to different metal
layers are correlated, etc. We believe that component delay correlation is a subject that
needs to be researched from a process characterization perspective.

On another front, our timing verifier is missing important features needed by com-
mercial tools. They are summarized as follows:

Support for slew dependent delays.

Support for latch based designs. Modem design methodologies favor transparent
latches to store the circuit state, due to their advantage in preventing race conditions.

Support for derived clocks. Test cases presented to timing verifiers predefine derived
clocks based on manual calculations or spice simulations that do not necessarily
reflect the current configuration of delay annotation. For example, consider a multi-
phase clocking scheme that is generated using a master low frequency clock that
drives a PLL frequency multiplier, which in turn drives a clock generation circuit.
Defining the clock generated by the PLL in the test case is no cause of errors, however,
defining the clocks generated by the clock generator involves using discrete compo-
nent delay values that are not valid in all configurations, making the clock phases rela-
tive positions incorrect.

u
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We believe that the spatial correlation procedure can be enhanced further by using the

heuristics used by case analysis instead of simply using topological sorting on recon-

vergent fan-outs. Limiting the fan-outs selected for spatial correlation to the ones with

conflicting requirements for sensitizing the longest paths would enhance the effective-

ness of higher spatial correlation orders.

u
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A.1 evaluateConstraintSystemO

This function evaluates the consta'aint system in an event driven fashion.
Returns:

CS_CONSISTENT if the evaluation ended with non-empty domains
CSJNCONSISTENT if the evaluation ended with empty domains

Notes:

queue is a global queue for event scheduling

evaluateConsù-aintSystemO {
// initially queue contains the constraints operating on the domains that were
// previously changed.
while (! queue.emptyO ){

constraint = queue.removeFirst();
apply constraint;
if ( a domain becomes empty ) return CSJNCONSISTENT;
schedule the constraints operating on the modified

domains on queue (if they're not scheduled already);
}
return CS_CONSISTENT;
}

>e,The worst case time complexity of evaluateConstraintSystemQ is 0(Nx 2") where

N is the number of domains, and B is the number of bits used to represent a domain. This

worst case may happen when each application of a constraint operator results in narrowing

one domain by one time unit, and when the constraint system has circular dependencies

like the sequential example in section 3.4.

The worst-case time complexity highly over-estimates the actual execution time of

the algorithm. In fact, when component delay correlation is not used, the constraint system

has no circular dependencies and the experimental time complexity is virtually linear with

the constraint system graph size. Figure 15 shows the experimental time complexity when

the algorithm is applied to the ISCAS'85 benchmark circuits.

l
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n
A.2 getOrderedReconvergentFanouts(gate)

This function returns an array ofreconvergent fan-outs in topological order, deeper structures first.
returns:

Array ofreconvergent fan-outs
Notes:

gate is a primary output (a setup timing check)

getOrderedReconvergentFanouts(gate){ // gate is a primary output
queue.resetO;
queue.insert(gate);
gate.setProperty(PROP_IS_VISITED);
while( ! queue.emptyO ) {// visit the graph from the output, breadth first to mark the RF

g = queue.removeFirstO;
for ( fi=0; fi < g.nbLogicFaninQ; fi++ ) {

fanin = g.fanin(fi);
if(fanin.hasProperty(PROP_IS_VISITED) ) {

fanin.setProperty(PROP_IS_RECFANOUT);
}else{

fanin.setProperty(PROP_IS_VISITED);
queue.insert(fanin);

}

L'.'.
reconvergent_fanouts.reset(); // to receive the ordered reconvergent fan-outs
stack.reset();
stack.push(gate);
gate.unsetProperty(PROP_IS_VISITED);
while(! stack. empty()){ // visit the graph to collect the RF in topological order, deepest first

gg = stack. topO;
depth_sorted_gates.reset(); // to receive the ordered fan-ins of gg
for ( i=0; i<gg.nbLogicFanin(); i++ ) {

if(gg.fanin(i).hasProperty(PROP_IS_VISITED) ) {
depth_sorted_gates.insert( gg.fanin(i) );

depth_sorted_gates.sort(); // visited fanin gates are sorted by depth of sub-graph (deepest first)
for( i=0; i<depth_sorted_gates.size(); i++ ) {

stack.push(depth_sorted_gates(i));
depth_sorted_gates(i).unsetProperty(PROP_IS_VISITED);

if(gg == stack.top()){ // finished visiting its fan-ins
stack.popO;
if( gg:hasProperty(PROP_IS_RECFANOUT) ) {

reconvergent_fanouts. insert(gg);
gg.unsetProperty(PROP_IS_RËCFANOUT);

}
}
}

}
return reconvergent_fanouts;

0
The worst-case time complexity of getOrderedReconvergentFanouts(gate) is linear

with the graph size of the fan-in cone of "gate".
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A.3 doSpatialCorrelation(order, s)

This function performs spatial correlation. It basically perform exhaustive simulation, 'order'
nodes at a time on reconvergent fan-outs in topological order, deeper structures first.
Returns:

CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains

CS_INCONSISTENT when the evaluation ends with empty domains

doSpatialCorrelation(order, s){
rec_fanouts = getOrderedReconvergentFanouts(s)
unsigned i=0;
unsigned last;
do{

last = min( i + order, rec_fanouts.size() );
cor_gs.reset();
for(gi=i;gi<last;gi++){

cor_gs.insert(rec_fanouts_(gi));
}
i++' . _ _ . . „ _.__„„-__„„.
if( correlateReconvergentFanouts(cor_gs) == CS_INCONSISTENT){

return CSJNCONSISTENT;

}while(last < rec_fanouts.size());
return CS_CONSISTENT;
}

The worst-case time complexity ofdoSpatialCorrelation(order, s) is

(9((2° x(k- order + l)) x F)

where k is the number of reconvergent fan-outs, and F is the worst-case time com-

plexityofevaluateConsta-aintSystemQ. Since À: e 0( Graph Size) and orders 0(1), the
spatial correlation worst-case is 0((Graph Size) x F).

Figure 116 shows the experimental time complexity for the spatial correlation of

degrees 1-8 applied to ISCAS'85 circuits.

Figure 117 shows the average number of times a constraint operator is applied when

evaluateConstraintSystem is called from within correlateReconvergentFanouts(cor_gs). It Is

much less expensive that the initial evaluation where all initial internal domains contained
all possible values. This confirms a quadratic experimental time complexity for a given
correlation order.

0
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Figure 116
Experimental time complexity of doSpatialCorrelation on ISCAS'85.
Graph: the graph size of the constraint system.
Order 0: basic method only is applied, no spatial correlation.
Order n: basic method is applied, then doSpatialCorrelation(n,s) is called.

0



xxxii

0
A.4 correlateReconvergentFanouts(gate_set)

This function does "exhaustive simulation" on the domains of the gates in gate_set.
Returns:

CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains

CSJNCONSISTENT when the evaluation ends with empty domains

correlateReconvergentFanouts(gate_set){
int last = gate_set.size() A 2;
save the constraint system state in STATE_1 ;
set all domains of STATE_2 to empty; // where to accumulate the results
bool consistent = false;
for(i=0;i<last;i++){

restore domains from STATE_1 ;
for( g=0; g<gate_set.size(); g++ ){
if((i&(gA2))==0){

remove wl from domain ofgate_set(g);
}else{

remove w0 from domain ofgate_set(g);

if(evaluateConstraintSystem() == CS_CONSISTENT){
accumulate system domains in STATE_2; // union
consistent = true;

restore domains from STATE_2;
if ( consistent ) return CS_CONSISTENT;
return CSJNCONSISTENT;
} - '

The worst-case time complexity of correlateReconvergentFanouts(gate_set) is

,gate_set.size()

where Fis the worst-case time complexity ofevaluateConstraintSystem(). Figure 117

shows the experimental time complexity observed for evaluateConstraintSystem() when it is

called from within correlateReconvergentFanouts(gate_set).

0
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Figure 117
Experimental time complexity of each system evaluation of the spatial correlation on ISCAS'85.
Graph: the graph size of the constraint system.
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A.5 getTimingDominators( output )

This function determines the Timing Dominators
Returns:

array of timing dominators
Notes:

'output' is a setup timing check, it is actually a timing dominator.

getTimingDominators( output ) {
dominator_set.reset();
heap.resetQ;
dominator.gate = output;
dominator.lmin = output.lmin();
heap.insert( dominator );
while (! heap.emptyO ) {

dominator = heap.removeNodeClosestToOutputQ;
if(heap.size() == 0) { // what we removed from heap is a dominator

dominator_set.insert(dominator);

for( i =0; i< dominator.gate.nbLogicFanin(); i++){
if(dominator.gate.fanin( i ).max() >=

dominator.lmin - dominator.gate.maxDelay() ){
// dommator.gate.fanin( i ) is a possible cause of the violation
if(dominator.gate.fanin( i ) is a primary input) return dominator_set;
new_dominator.gate = dominator.gate.fanin( i );
new_dominator.lmin = dominator.lmin - dominator.gate.maxDelay();
if ( heap contains a node N such that N.gate == new_dominator.gate ){

if (N. 1min > new_dominator.lmin){
N.1min = new_dominator.lmin;

}else{
heap.insert( new_dominator );

i

}
}
}

}
return dominator_set;

The worst-case time complexity of getTimingDominators( output ) is the same as

heap sort: 0(n x log(n)) where n is the graph size of the fan-in cone of "output".

u
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A.6 evaluateConstraintSystemTD( output )

This function evaluates the constraint system and applies narrowing on Timing Dominators
Returns:

CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains

CSJNCONSISTENT when the evaluation ends with empty domains

evaluateConsta-aintSystemTD( output ) {
// initially queue contains the constraints operating on the domains that were
// previously changed.
if ( queue.emptyO ) return CS_CONSISTENT;
if ( evaluateConstraintSystemO = CSJNCONSISTENT) return CS_INCONSISTENT;
dominators = getTimingDominators( output );
for each dominator d of dominators {

intersect domain of d. gate with (0| „ . , 1
\d.lmin! * \d.lmin'

if domain of d.gate changed then schedule all constraints operating on it on queue;

return evaluateConsù-aintSystemTD() ;

0
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B.l Hard Primitives Used to Model Cell Libraries.

Primitives have Named INPUTS, OUTPUTS, INOUTs, and DELAYS.
When used in cell descriptions, terminal names are used to specify how primitives are connected,
delay names are used for delay annotation.

devicelnput
OUTPUT: Y

deviceOutput
INPUT: A

deviceInOut
INOUT: A

vss

OUTPUT: Y

vdd
OUTPUT: Y

highZ
OUTPUT: Y

pullup
INOUT: A

puIlupDeviceInOut
INOUT: A

pulldown
INOUT: A

pulldownDeviceInOut
INOUT: A

pullupdown
INOUT: A

bufifO
OUTPUT: Y
INPUT: A
INPUT: GZ

0

bufifl
OUTPUT: Y
INPUT: A
INPUT: G
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0

notifO
OUTPUT: Y
INPUT: A
INPUT: GZ

notifl
OUTPUT: Y
INPUT: A
INPUT: G

and2

OUTPUT: Y
INPUT: A
INPUT: B

and3
OUTPUT: Y
INPUT: A
INPUT: B
ENPUT: C

and4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

or2
OUTPUT: Y
INPUT: A
INPUT: B

or3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

or4
OUTPUT; Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

nand2

OUTPUT: Y
INPUT: A
INPUT: B

..and26

or26
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0 nand3
OUTPUT: Y
INPUT: A
INPUT: B
WWT. C

nand4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D nand26

nor2
OUTPUT: Y
INPUT: A
INPUT: B

nor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

nor4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

xor2
OUTPUT: Y
INPUT: A
INPUT: B

xor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

xor4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

nor26

xor26

0
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xnor2
OUTPUT: Y
INPUT: A
INPUT: B

xnor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

xnor4
OUTPUT: Y
WPUT: A
INPUT: B
INPUT: C
INPUT: D .. xnor26

mux2
OUTPUT: Y
INPUT: S
INPUT: A
INPUT: B

nMux2

OUTPUT: Y
INPUT: S
INPUT: A
INPUT: B

buf
OUTPUT: Y
INPUT: A

not

OUTPUT: Y
INPUT: A

latchHQ
OUTPUT: Q
INPUT: C
DSTPUT: D
DELAY: C_TO_Q
DELAY: D_TO_Q
DELAY: SETUP_HOLD

0



xli

n latchLQ
OUTPUT: Q
INPUT: CZ
INPUT: D
DELAY: CZ_TO_Q
DELAY: D_TO_Q
DELAY: SETUP_HOLD

latchHQZ
OUTPUT: QZ
INPUT: C
INPUT: D
DELAY: C_TO_QZ
DELAY: D_TO_QZ
DELAY: SETUP_HOLD

latchLQZ
OUTPUT: QZ
INPUT: CZ
INPUT: D
DELAY: CZ_TO_QZ
DELAY: D_TO_QZ
DELAY: SETUP_HOLD

interconnectDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

tristateDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

nonInvertingDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

invertingDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

unknownDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

s

0
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0 fsOzRzOFDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fsOzFzORDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fslzRzlFDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fslzFzlRDeIay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

onRoffFDeIay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

onFoffRDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

unknownZDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

dffflQ
OUTPUT: Q
INPUT: CLK

dffLQ
OUTPUT: Q
INPUT: CLKZ

dummy
WPUT: A

0

reset

INPUT: Y
INPUT: CLR
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resetZ
INPUT: Y
INPUT: CLRZ

0

preset
WPUT: Y
INPUT: PRE

presetZ
INPUT: Y
DSTPUT: PREZ

HsetupHold
INPUT: CLK
INPUT: D
DELAY: SETUP_HOLD

LsetupHold
INPUT: CLKZ
INPUT: D
DELAY: SETUP_HOLD
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B.2 Two Input AND Gate Cell Model Example

0

The model definition contains:

1) Header: cell name, library name, version, date, vendor, program. timescale;
2) Instance Declaration: named instances with default delay values when applicable;
3) Drivers Section: specifies the driver of each input terminal
4) SDF Delay Mapping: how SDF delay annotations are mapped.

Interconnect port delays are the input instances.
IOPATH delays are driven by the interconnect delays.
Primitives at the cell pins are named after the pin names.

For multiple output cells, common logic stmctures are duplicated to make the
IOPATH delays independent.

(STV_LIBDEF
// Header
(CELL "AN210")
(LIBRARY "Library Name")
(VERSION" 1.0")
(DATE "Thu Oct 21 15:36:12 1999")
(VENDOR "Semi Conductor Vendor")
(PROGRAM "cdf) // the program that generated this description
(TIMESCALE Ins) // time scale for default delays

// Instance Declaration

// PORT delays

(INSTANCE A INPUT // INPUT keyword marks the primitive instance as a cell input
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) // NULL default

// instances of primitives with delays specify the default delay values to be used
// if no SDF annotation is performed

)
(INSTANCE B INPUT
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) //NULL default
)

// path delays to Y

(INSTANCE A_Y
(PRIMITIVE "nonInvertingDelay")
(DELAY "A_TO_Y"(0.332246:0.390227:0.582283)(0.280749:0.343123:0.515448))
)
(INSTANCE B_Y
(PRIMITIVE "nonInvertingDelay")
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n (DELAY "A_TO_Y"(0.316855:0.378051:0.57481)(0.326919:0.401621:0.595931))
)

// gates to Y

(INSTANCE Y OUTPUT // OUTPUT keyword marks the primitive instance as a cell output
(PRIMITIVE "and2")
)

// Drivers Section
(DRIVERS

// drivers to Y

(INSTANCE Y
A(A_Y)B(B_Y)

// pin "A" of instance "Y" is driven by instance "A_Y"
// pin "B" of instance "Y" is driven by instance "B_Y"

)
(INSTANCE A_Y
A(A)
)
(INSTANCE B_Y
A(B)
)
)

// SDF Delay Mapping
(TARGET_DELAY "PORT A"
(INSTANCE A "A_TO_Y")

// "PORT A" SDF delay annotation goes to instance "A", delay "A_TO_Y"
)
(TARGET_DELAY "PORT B"
(INSTANCE B "A_TO_Y")
)
(TARGET_DELAY "IOPATH A Y"
(INSTANCE A_Y "A_TO_Y")
)
(TARGET_DELAY "IOPATH B Y"
(DSTSTANCE B_Y "A_TO_Y")
)
(TARGET_DELAY "DEVICE Y"
(INSTANCE A_Y "A_TO_Y")
(INSTANCE B_Y "A_TO_Y")
)
(TARGET_DELAY "DEVICE"
(INSTANCE A_Y "A_TO_Y")
(INSTANCE B_Y "A_TO_Y")
)
)

0
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B.3 FLIP-FLOP Gate Cell Model Example

Q

(STV_LIBDEF
(CELL "FlipFlop")
(LIBRARY "LibName")
(VERSION" 1.0")
(DATE "Wed Oct 20 11:40:41 1999")
(VENDOR "VendorName")
(PROGRAM "cdf)
(TIMESCALE Ins)

// PORT delays

(INSTANCE CLK INPUT
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) //NULL default
)
(INSTANCE D INPUT
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) //NULL default
)

// path delays to Q

(INSTANCE Q OUTPUT
(PRIMITIVE "nonInvertingDelay")
(DELAY"A_TO_Y"(0.672096:0.881856:1.351029)(0.758338:1.037886:1.606180))
)

// gates to Q

(INSTANCE DFF
(PRIMITIVE "dffHQ") // positive
)

// timing check

(INSTANCE check_D_CLK
(PRIMITIVE "HsetupHold") // positive
(DELAY"SETUP_HOLD"(0.660000:0.800000:1.250000)(0.420000:0.420000:0.420000))
)

(DRIVERS
(INSTANCE Q
A(DFF)
)
(INSTANCE DFF
CLK(CLK)

j
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n )
(INSTANCE check_D_CLK
CLK(CLK)
D(D)
)
)
(TARGET_DELAY "PORT D"
(INSTANCE D "A_TO_Y")
)
(TARGET_DELAY "PORT CLK"
(INSTANCE CLK "A_TO_Y")
)
(TARGET_DELAY "IOPATH CLK Q"
(INSTANCE Q "A_TO_Y")
)
(TARGET_DELAY "DEVICE Q"
(INSTANCE Q "A_TO_Y")
)
(TARGET_DELAY "DEVICE"
(INSTANCE Q "A_TO_Y")
)
(TARGET_DELAY "SETUPHOLD D CLK"

(INSTANCE check_D_CLK "SETUP_HOLD")
)
)

0


