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^ Abstract

Most applications of machine learning (ML) and artificial intelligence (AI) are based on

constructing a knowledge model by the rule-based systems which using historical data.

The C4.5 algorithm is a machine learning algorithm that implementing the decision tree

(DT). This DT is one of the most applied rule-based systems. Fuzzy logic based

extensions of the C4.5 algorithm are the popular modifications of these decision learning

and making algorithms. The remained problems are that both the predictability and the

efficiency are not as good as they should.

To improve the predictability and the efficiency, we propose a new approach that

integrates the fuzzy logic and the neural network (NN) in process of generating DT. Our

new approach uses the fuzzy logic to improve the prediction rate by focusing on the

trends to split the DT rather than the threshold values. Using fuzzy logic aims at

combining DT with approximate reasoning offered by fuzzy representation and generates

the high knowledge comprehension of DTs. The combination had the ability to deal with

inexact and uncertain information of the knowledge base. Moreover, we set up the NN

for transferring the continuous variables to the- symbolic variables and for the

defuzzification procedure.

J

Our rule-based system is the fuzzy decision system when the classifications are the

symbolic variables, and when the classifications are the continuous variables, the system

is the fuzzy regression system. In our thesis, in addition to making some modifications to

the Marsala's fuzzy decision tree (FDT), we introduce a new method to deal with the

continuous regressions: First, we suggest to use self-organizing maps (SOM) transferring

continuous classes to symbolic classes; second, we use FDT to classify the symbolic

classifications; finally, we propose the NN for defuzzification phrase and get the

predicted values. The results are much prompted and some conclusions are given in the

end.
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n To evaluate our approach, we introduce data sets both from the academy and the industry

for testing the prediction accuracy and the completeness of learning results. This test

helps us to improve the proposed algorithms.

Keywords: rule-based system, fuzzy decision tree, fuzzy regression system, software

quality prediction, neural network.
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Résumé

C4.5 est un algorithme d'apprentissage permettant de générer un arbre de décision . Les

extensions de cet algorithme, basées sur la logique Houe de l'algorithme C4.5 sont des

modifications populaires des algorithmes d'apprentissage. Il faut cependant souligner que

des problèmes demeurent non résolus; ainsi par exemple, la capacité de prédiction et

l'efficacité ne sont pas très bonnes.

Pour résoudre ces problèmes, nous proposons une nouvelle approche qui intègre la

logique floue et les réseaux de neurones dans le processus de génération des arbres de

décisions. Cette nouvelle approche emploie la logique noue pour améliorer le taux de

prediction en se concentrant sur les tendances pour diviser l'arbre de décision plutôt que

d'utiliser des valeurs de seuil. Le but de la logique floue vise à combiner les arbres de

décision avec le raisonnement approximatif offert par la représentation floue. Cette

combinaison produit un haut niveau de compréhension des arbres de décision et offre une

capacité de traitement dans le cas des informations inexactes et incertaines de la base de

connaissance.

De plus nous employons les réseaux de neurones, d'une part pour transformer la

classification continue en une classification symbolique et d'autre part pour la procédure

de "defuzzification".

J

Quand les classifications sont des variables symboliques, notre système à base de règles

est un système de décisions floues et quand les classifications sont des variables

continues notre système est un système de régression flou. Dans notre thèse, en plus de

l'introduction de quelques modifications à l'arbre de décision flou de Marsala (FDT),

nous présentons une nouvelle méthode pour traiter les classifications continues: d'abord,

nous suggérons l'auto organisation des cartes (SOM) de transfert des classifications

continues vers les classifications symboliques; deuxièmement, nous employons les arbres

de décision flous pour classifier les variables symboliques; finalement, nous proposons
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") les réseaux de neurones pour la defuzzification afin d'obtenir les valeurs prédites. Les

résultats de nos expériences sont présentés et une conclusion est donnée à la fin.

Pour évaluer notre approche, nous présentons des données issues du milieu académique

ainsi que des données issues de l'industrie. Nous évaluons l'exactitude de prédiction et la

complétude des résultats d'apprentissage. Cet essai nous aide à améliorer l'algorithme

proposé.

Mots-clés : système à base de règles, arbre de décision flous, système de régression flous,

prediction de qualité des logiciels, réseaux de neurones.

J
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chapter i Introduction

Machine learning (ML) methods are computer methods for accumulating, changing, and

updating knowledge in artificial intelligence (AI). One of the tasks of ML is to set up

rule-based systems for class prediction. Normally, the decision tree is for predicting the

symbolic classification problems and the regression tree is for predicting the continuous

classification problems. The rule-based systems have many practical applications in

many areas, such as in this thesis, the prediction of the software quality prediction and the

prediction of the power station data. Enhancing and evolving the performance of the rule-

based systems is the highly research field and sets of methods are developed. In our

thesis, we will mainly discuss one kind of rule-based systems: the fuzzy decision and

regression system.

J
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1.1 The big picture

The rule-based systems like decision tree (DT) and regression tree (RT) using the

historical data means that they are inductive learning from the examples. These methods

assume that a set of examples or instances are known. The instances are the form of

( x,, y, ), where x, e D is a state of the domain space D and y; e 5 is the state of the

solution space S. The task is to create a system which can leam from the input/output

associations {(x, y)}. Simply speaking, it is given a set of examples (the learning set of

associated input/output pairs), deriving a general rule representing the underlying

input/output relationship, which may be used to explain the observed pairs and/or predict

output values for any new unseen inputs. This belongs to supervised learning.

In contrast to the supervised learning, where the object is clearly defined in terms of

modeling input^output relationships, unsupervised learning methods are not oriented

towards a particular prediction task. Unsupervised learning eliminates the teacher and

requires that the learner form and evaluate concepts on its own. They try to find by

themselves the existing relationships among states characterized by a set of attributes. For

example, clustering begins with a collection of unclassified objects and some means of

measuring the similarity of objects, and then organizes the objects into a hierarchy of

classes that meet some standard of quality, such as maximizing the similarity of objects

in the same class [LS98].

J

How to discriminate the classes and what stmcture should be used for generalizing new

examples? A super/ised learning technique called the inductive DT "observes" the

examples and builds the trees which can discriminate all the classes. The automatic

extraction of the knowledge from a set of data enables us to discover relationships among

these data. Furthermore, these relationships can be used for generalizing the new data

sets. Given a set of data described by means of the values of attributes and associated

with the value of the classes, DTs arc able to construct a set of rules that express the

relationships. The fuzzy decision system is the fuzzy set theory extension of the classical
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C4.5 algorithm [Qui93], one of the popular DT models. This system enables us to take

into account the imprecision values in the description of data sets.

Fuzzy set theory represents in a straight forward way of the "common sense" knowledge

and skills, or the knowledge that is subjective, ambiguous, or vague. This theory uses

analog values to realize fuzzy inference which is robust and efficient. They are the

macroscopic ways to realize human intelligence at the level of symbols and rules. Fuzzy

decision systems provide the convenient and flexible methods of reasoning and decision.

In our approach of fuzzy decision and the regression system, the attributes in the data sets

are all the continuous variables. For the special attribute, classes, we have two formats.

The first format is that the classes are symbolic variables, for example, the software

quality prediction data sets. The second data format is that the classes are continuous

variables, in our thesis for example, the hydropower station data sets.

When the classes are symbolic variables, we use our fuzzy decision tree (FDT) to do the

inductive learning which is the modification of Marsala's FDT. When the classes are

continuous variables, nonnally people use the regression tree (RT) to do the inductive

learning. Our approach is integrating the neuro-fuzzy method with the FDT to do the

inductive learning. This classification and regression system is the hybrid neuro-fuzzy

approach of the rule-based system. The results show that for the classification this

approach is better than the classical methods and for the regression it is the satisfying

approach between the accuracy and explicit trade-off.

1.2 Motivations

J

The first initiation of this approach is from the task for predicting the continuous classes

power station data provided by Alcan Ltd. Alcan company, the biggest Canadian player

in the aluminum industry, has a hydropower network constitutes a territory larger than the

province of New Bmnswick (Canada). The network has, on average, an annual energy
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n capacity of approximately 2000 megawatts; it includes 6 hydroelectric power station, 28

reserve installations, 43 turbine-altemators groups, 850 kilometers of energy transport

lines, a network of about thirty hydro-meteorological stations, etc. Alcan Ltd. needs

planning a knowledge-based system for hydroelectric power generation management.

These big industrial project between Alcan Ltd. and CREVI (Centre de Recherche

Informatique de Montréal), is supported by a joint grant from Alcan Ltd. and NSERC

(Natural Sciences and Engineering Research Council of Canada), the operation grant

number is #CRDPJ 228746-99 [BML02]. They have predicted the same data sets using

the domain knowledge and want to compare them with the rules which we get from our

rule-based system. We are fortunately the members of this research group.

As usual, the rule-based system can be divided into two sub-systems: One is the

classification system which deals with the symbolic classes; the other is the regression

system which deals with the continuous classes. The classification system performs well

in finding decision rules. But it fails in predicting continuous variables and also the

prediction ability for the symbolic variables need to be improved. The regression system

can predict efficiently for the continuous variables. But it is hard to extract rules from the

RTs, as it is very complex and not explicit.

To solve the problem of predicting the continuous regressions, while we also want to get

the explicit rules to store in the rule base. We propose a fuzzy regression system, a

combination the FDT and the RT techniques by using the neuro-fuzzy approach. Our new

approach is firstly modifying the fuzzy classification system and making it more efficient

and dynamic. After that, we add the neural network (NN) to this modified system and

make it deal with the continuous regressions. Our motivation for proposing this fuzzy

regression system is that the poor results obtained with C4.5 algorithm may be improved

by using a fuzzy binary tree instead of the regular tree used in C4.5, and by using a neural

network in the defuzzification stage, thus switching from the original binary classification

system into a neuro-fuzzy regression system. It is also known that the use of fuzzy sets

enhances the understandability and predictive ability of regular decision trees [Mar98],

J
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[Tor99]. The advantages of our new approach are in the regression system we can

generate the decision rules, and the discrimination ability is also robust.

Usually, the neuro-fuzzy approach in the fuzzy rule systems refers to the combinations of

the NNs and fuzzy systems [NK99], but does not mean they are used together in the same

way. Our neuro-fuzzy approach means that introducing the self-organizing maps (SOM)

to transfer the continuous classes into the symbolic classes, and using the back

propagation to defuzzify the FDTs.

1.3 Goals

Our goals arc using the neuro-fuzzy approach to enhance and evolve a rule-based system,

the FDT system. The main goals we get from this thesis are:

•

•

J

Modifying the Marsala's FDTs which is a typical rule-based system, with the

changes of the fuzzy partition shape, in order to be more suitable for the

mathematical morphology algorithm, the splitting criterion, and adding the

enhanced pessimistic pruning process to the building of the FDTs.

When generating the new cases, we use the min-max algorithm and the vote

method to defuzzify the FDTs.

Given an automatic formula for fuzzy regression the continuous variables. The

built models are robust and easy to extract the decision rules.

Changing the continuous classes to the symbolic classes using the unsupervised

learning method: the SOM to generate the classes automatically.

Embedding the back propagation NN to defuzzify the FDTs, we get the perfect

prediction rate for both the symbolic class applications (software quality

prediction) and the continuous class applications (hydropower station

applications).

For both the symbolic and the continuous regressions, we provide different but

suitable evaluation models, and also the necessary discussions are given.
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1.4The outlines

The rest of the thesis is organized as follows:

Chapter two presents the state of the art, some concepts which concern in this thesis, and

the related works in this domain.

Chapter three introduces the general process of building the Marsala's approach of FDT

for the symbolic class data.

Chapter four modifies the Marsala's FDT model and builds the new FDT models.

Chapter five proposes the neuro-fuzzy approach of the fuzzy regression procedure,

including the SOM method and the back propagation NN.

Chapter six provides the Java program which implements our FDT models, especially we

introduces how the C program embeds in our Java program.

Chapter seven gives the application results of the proposed algorithms both for the

software quality prediction data sets (symbolic classifications) and the hydropower

station data sets (continuous regressions). Some evaluation models are proposed.

Chapter eight draws the conclusion which comes from the discussion of the whole thesis

and the future work.

J
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Chapter 2 State Of tke Art

In chapter one, we introduced the motivation of the topics and presented the arrangement

of this thesis. In this chapter, we introduce some concepts of the rule-based system and

present the current issues of the FDT, one of the rule-based systems that we would like to

enhance and evolve.

2.1 Terminology of context

J

The rule-based system is the most practical and remaining widely used system in AI. The

others are the model-based reasoning system and the case-based reasoning system. The

model-based reasoning system is based on the knowledge-based system whose analysis is

founded directly on the specification and functionality of a physical system. Because they

are based on the theoretical understanding of the domain, model-based techniques can

break through the limitations of the heuristic approaches. On the other hand, this explicit
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model in the knowledge acquisition stage is quite demanded and program is made large

[LS98]. The case-based reasoning system uses an explicit database of problem solutions

to address the new problem-solving situations. The most difficult issue in it is the

selection of salient features for the indexing and retrieval of cases. Therefore, the case-

based reasoning system is rarely used comparing to the rule-based system.

In this section, we introduce some concepts of rule-based system and AI. These concepts

are used in this thesis thoroughly. Before we discuss the FDT construction, the

introduction to some basic definitions and tenninology will facilitate the reader's

understanding.

Data mining

Data mining is a highly multidisciplinary research field and a set of methods (involving

theoretical and applied methods from statistics, computer science, AI) to extract high

level synthetic information (knowledge) from databases containing large amounts of low

level data.

Machine learning (ML)

In knowledge discovery, ML is most frequently used to meaning the application of

induction algorithms, which is one step in the knowledge discovery process. This is

similar to the definition of empirical learning or inductive learning. The training

examples are "externally supplied", whereas they are assumed to be supplied by a

previous stage of the knowledge discovery process. ML is a field of scientific study that

concentrates on induction algorithms and other algorithms that can be said to "learn".

J

Rule-based system

Instead of representing knowledge in a relatively declarative, static way (as a bunch of

things that are true), mle-based system represents knowledge in terms of a bunch of mles

that tell you what you should do or what you can conclude in different situations. A rule-
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based system consists of a bunch of if-then mles, with the premises of the rules. The if

portion, corresponding to the condition, the then portion, corresponding to the

conclusion: When the condition is satisfying, the system takes the action of asserting the

conclusion as true. In our thesis, the rule-based system refers to the fuzzy decision mle

(tree) system.

Inductive learning

Inductive learning raises the particular to the general. A set of classes C are considered,

representing a physical or a conceptual phenomenon. This phenomenon is described by

means of a set of attributes A ={Ap...,A^,}. Each attribute A^ can take a value v.; in a

given universe X. A description is an N-tuple of attribute-value pairs (A.,v.;). Each

description is associated with a particular class c^ from the set C = {c,,...,c^.} to make up

an instance (or example, or case) e, of the phenomenon. So it is a process to generalize

from a training set £={e^,...,e } of examples to a general law and bring out relations

between descriptions and classes in C.

Top down induction of decision tree (TDIDT)

TDITD method proceeds by successively splitting the training set into subsets. Each

partition is done by means of a test on the selected attribute and leads to the definition of

a node of the tree. Thanks to the measure of discrimination, a suitable attribute is

selected. Such a measure enables us to order the attributes according to an increasing

accuracy to split the training set. The partitioning is done by means of a splitting strategy.

A stopping criterion enables us to stop splitting the data and to construct a leaf in the tree.

J

Decision tree (DT)

A DT is a set of nodes, where each node tests the value of an attribute, and each edge

from a node is labeled with a particular value of the attribute and a set of leaves, where

each leaf gives a class value. It is built from the training set, which consists of objects.
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Each object is completely described by a set of attributes and a class label. Attributes can

have ordered or unordered values (in this thesis, we only consider the unordercd values).

A DT contains a root node, zero or more internal nodes, and one or more leaf nodes. All

internal nodes have one or more child nodes. All non-terminal nodes contain splits. Each

leaf node has a class label associated with it. The number of classes is finite.

An object is misclassified by a tree if the class label output by the tree does not match the

class label of the object. The proportion of the objects classified correctly by the tree is

called accuracy, and otherwise, it is called error. Note that the tree can be translated into

an equivalent set of if-then rules. Each rule responds for each rout from the top node to

the terminal node. A DT is important not only because it summarizes what we know, i.e.

the training set, but also it may classify new cases correctly and efficiently.

C4.5 algorithm

The C4.5 algorithm is the coming from ID3 algorithm; both of them are introduced by

Quinlan for inducing classification models in the form of decision trees. The basic idea of

Id3 algorithm is:

• In the decision tree, each node corresponds to a non-categorical attribute and each

arc to a possible value of that attribute. A leaf of the tree specifies the expected

value of the categorical attribute for the records described by the path from the

root to that leaf.

In the decision tree at each node should be associated the non-categorical attribute

which is most informative among the attributes not yet considered in the path

from the root.

Entropy is used to measure how informative is a node.

C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute

ranges, and pruning of decision trees.

3
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n Fuzzy logic theory

Fuzzy logic was invented by Zadeh. The main contention is although probability theory is

appropriate for measuring randomness of information, it is inappropriate for measuring

the meaning of information. The backbone of fuzzy logic theory is fuzzy set theory which

is the basis of fuzzy model and fuzzy inference. In the fuzzy set theory, objects have a

grade of membership ranging from 0 to 1. Fuzzy inference provides the meanings to

perform the approximate reasoning. The key to a fuzzy inference system is the fuzzy rule

base, which contains infonnation relating the input conditions to the output conditions. A

fuzzy model is created when the fuzzy mle base defines the relationship between the

input domains and the output domains of some target systems. Most approaches to fuzzy

inference can be categorized as generalizations of either logical deduction or

approximation theory.

Fuzzy set theory expresses lack of precision in a quantitative fashion by introducing a set

of membership functions that can be the real values between 0 and 1. This notion of a

fuzzy set can be described as follows: Let 5 be a fuzzy set and s a member of it. A fuzzy

subset F of 5 is defined by a membership function mF(s) that measures the "degree" to

which 5 belongs to F.

Fuzzy decision tree (FDT)

Classical DTs handle symbolic attributes, but the presence of continuous or

continuous/symbol attributes leads to different kinds of DTs. Continuous/symbol

modalities are on the universe of values of the continuous attributes. Thus, fuzzy set

theory methods have been introduced to handle continuous attributes when constructing

DTs. Such methods define the FDT. Most of the FDTs implement through the TDIDT

method.

J

Regression tree (RT)

Regression problem consists on obtaining a functional model that relates the value of a

target continuous variable y with the values of variables x^x^,...,x^ (the predictor). This
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n model is obtained using samples of the unknown regression function. The RT is similar

to the DT in the form. But they are used in different situations and the methods for

discrimination are also different. As usual, DTs are used for the symbolic classifications

and RTs are used for the continuous regressions. The regression model can be

represented in the form of the tree. This tree consists of a hierarchy of nodes, starting

with a top node known as the root node. Each node of the tree contains logical tests on

the predictor variables, with the exception of the bottom nodes of the hierarchy. The

bottom nodes are usually known as the leaves of the tree.

2.2 The limitation of DTs

The rule-based systems are the oldest approach to knowledge representation in AI, and

remain as an important technique for building the knowledge-intensive problem solvers.

Using the rule-based systems, we can get the knowledge base of certain domain as if-then

rules, which can be easily understood. These descriptions serve to explain what have

been learned and what the basis is for new prediction. Moreover, it will be very helpful

for us to know the internal relationship of the domain and the rules can be used in many

other systems.

Normally the DT is the first method to be thought about when applying the rule-based

systems. The study of the DT is the dynamic part of ML. Most of the DT methods,

including the C4.5 algorithm, constmct DTs using the TDIDT method which generally

represents the inductive knowledge by selecting the best attribute to obtain the compact

trees with high predictive accuracy. Using the C4.5 DT, we can get good results from

which the attributes are symbolic. But for the continuous attributes, there are two

limitations:

J

First, when it treats the continuous attributes, the C4.5 processes them as the

symbolic attributes: Each continuous value is considered as a symbolic value and

it selects a threshold value as the splitting criterion. With such a method, the

generated DTs are very large and in details (over-fitted). Moreover, when it
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classifies the new cases, continuous values may be different from the values

within the tree.

Second, when the data values are successively distributed and there are noises in

the training/testing samples, it is easy to classify the instances into the wrong

parts.

In these two situations, errors occur as the testing samples take the wrong branch while

they arc classified by the DT. So you can not say that the threshold value as the splitting

criterion is the best choice.

In order to minimize these errors, people introduce the FDT which making the decision at

each node with the fuzzy membership functions. First, we would like to introduce that

there is an alternative method to FDT. That is the probabilistic theory approaches. These

probabilistic theory approaches are based on the naïve Bayesian model [SBLFOO] or the

Dempster-Shafer theory [WebSW]. They are testified effective and validate. The

remaining problem is that the probabilistic theory is more complex than the fuzzy logic

theory and according to Sahraoui's comparison, the results are not better than those of

FDT [SBLFOO].

The general algorithm to constmct a FDT is similar to the building of the C4.5 DT which

approaches to the problem by learning from a set of independent instances. The FDT can

bridge the gaps of the symbolic and the continuous attributes by fuzzifying the latter.

Instead of using the threshold to split the continuous attributes, FDT fuzzifies the

continuous attributes, and splits the data according the fuzzy membership function. The

branch of the FDT is the fuzzy labels of the continuous attributes. FDT is tolerance to the

training/testing data which is incomplete and imprecise and provides good tools to

discover knowledge from these data. The FDT will be introduced in the following

sections.

J
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2.3 Overview of the current technologies of FDT

As you know, FDT has many advantages over the DT. In this thesis, we focus on the

enhancing and evolving the FDT algorithm. Now, let's look at the current stage of FDTs.

All the FDTs follow the TDIDT structure. The FDT methods differ from each other by

their choices of a measure of discrimination entropy, a splitting strategy for attributes,

and a stopping criterion. Basically speaking, the FDT can be grouped by the answers to

the following questions: First, what kind of fuzzy measure it uses; second, how it gets the

fuzzy modalities.

2.3.1 FDT based on star entropy measure

There are two families of entropy measures to construct FDT. One is based on the

generalized Shannon entropy measurement. It is called star entropy. Another is based on

the other entropy measurements.

The most common used discrimination measure of the FDT is the entropy of fuzzy

events, the star entropy. It is the extension of the Shannon entropy to the fuzzy events by

fuzzy probability:

H^C)=-^p\c,)\^{p\c^.
k=\

The chosen definition of probability p' is introduced by Zadeh in 1968 [Zad68]. The

explanations are following.

J
p*(y)=^//(e,)P(e,).

i=l
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Given a fuzzy subset V= { e^...,e^ } with a membership function ju, each element e, of V

is associated with a classical probability P(e, ). This star entropy H](C) was introduced

by Tanaka et al. in 1979 [TOA79] as a measure of fuzzy information. It has been used in

several software systems to construct the FDTs.

The SAFI system [Ram92] is one of the first methods of constructing the FDT in the

inductive learning in presence of continuous/symbolic data sets. In this system, the star

entropy is used as a measure of discrimination. In SAFI system, the fuzzy modalities of

the continuous attributes (including class, the special attribute) are provided by the

domain experts. Ramdani introduces a method based on the use of the star entropy to

optimize the fuzzy modalities. The problem is, according to his research, the best fuzzy

partitions are often the classical partitions. Wehenkel [Weh96] studies this problem too.

He shows that the major drawback of the star entropy is that the optimum is its non-fuzzy

subsets.

Weber [Web92] and Janikow [Jan94] also use the star entropy to set up their own FDT

systems individually. All these systems are using the presence of given fuzzy modalities

on the universe of values of continuous attributes. Moreover, in Janikow's system, he

optimized the fuzzy partition by means of genetic algorithm.

The star entropy is also implemented in the Marsala's FDT [Mar98]. All these methods

are equal in the sense of that using the star entropy to measure the discrimination of the

fuzzy sets, although they use modifications on the fuzzy partitions and different methods

when classifying the new cases.

J

2.3.2 FDT based on other fuzzy measures

The star entropy is one of the heuristic methods in constructing the FDT. There are many

other types of entropy, besides the star entropy. The star entropy's efficiency in

constructing FDT as an information measure has been proved, while others have not been
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proved yet. As this thesis is based on the enhancing the ability of the FDT, we would like

to describe what these fuzzy classification schemes are.

The first approach is De Luca and Termini's entropy [DT72]. Given a fuzzy subset V=

{ e^...,e^ } with a membership function [i. The De Luca and Termini entropy of the fuzzy

subset V is defined as:

H D (y) = -£ (//(^, )iog(//(e, ))+(!- /,(e, )) log(l - ^(e, ))).
1=1

This measure can evaluate the fuzziness of the subset V. Another approach is made by

Kosko [Kos97]. He defines the fuzzy entropy as:

^^,£^<v^)
£^(^^^)

Where ^ ^^ is the cardinality of fuzzy subsets introduced by Zadeh, and V is the

complement of V .

There are another two applications using the fuzzy Kolmogorov-Smimov measure as the

fuzzy entropy. In Araya's approach [Ara94], when there are only two classes to

recognize, this measure values the largest distance between the distributions of

probability related to each class:

K(c,,c,)=max(\P^x)-P^x)\),

Where P^ (or P^) is the distribution of probability of class c, ( or class c^ ).

J
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0 Boyen proposes two methods to deal with the continuous/symbolic attributes [Boy95],

which are Outbound FDTs and Fussy FDTs. These two methods are based on the

Kolmogorov-Smimov measure.

Finally, a very different approach is presented by Yuan et al. [YS95]. In their method,

they introduce the cognitive uncertainty, such as vagueness and ambiguity associated

with human thinking and perception. Once the fuzzy sets are introduced, the cognitive

uncertainties represented by fuzzy sets can be measured. They are vagueness measures

E^, and the ambiguity E^ .

Vagueness measurement: Let A denote a fuzzy set on the universe U with membership

function //^(u) for all u^U . If U is a discrete set U ={u^,u^,...,u } and

//; = fÂ^ (M ), the vagueness or the fuzziness of fuzzy set A is defined by

-"L

^(A)=-r£(^ln^+(l-^)ln(i-^)).
m-^

E (A) measures the fuzziness or vagueness of a fuzzy set A.

Ambiguity or non-specificity measure: Let 7l =(7l{x~)\x^ X~) denote a normalized

possibility distribution of V onX = {x^...,x^} , the possibility measure of ambiguity or

non-specificity is defined as:

n

Ey(Y)= g(7!)=^(7T^-7T^)lni, where ^•* ={^*,^,...,^} is the permutation of the
1=1

* ^ *

possibility distribution TT ={7T(x^,7T(x^),...,7r(x^)}, sorted so that a^ >^^ for i=l... n,
*

and<^=0.

J The construction of the FDT is the process of reducing classification ambiguity with

accumulated fuzzy evidences. Fuzzy evidence is the knowledge of the particular attribute.
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The selection of additional fuzzy evidence is based on its contribution in reducing the

classification ambiguity. Their approach handles the classification problems with both

fuzzy attributes and fuzzy classes represented in linguistic fuzzy terms. It can also handle

other situations in a uniform way, where continuous values can be fuzzified to fuzzy

terms and crisp categories can be treated as a special case of fuzzy terms with zero

fuzziness. The classification ambiguity directly measures the quality of classes without

any restrictions. Another advantage of their approach is the use of significant level of

evidence and truth level threshold which provide effective control during the induction

process.

2.3.3 Determination of fuzzy modalities

The other differences of building the FDT is the procedure of obtaining the fuzzy

modalities. There are many methods to obtain the fuzzy modalities. Apparently, some

linguistic characterizations of the attributes can be given by an expert (or many experts)

of domain. However, in some particular cases, there is no available knowledge from any

domain expert, and even the expert in the domain might make mistakes and his

knowledge might be imperfect and should not take into account exactly the observed

phenomenon. Most of the FDTs are using the expert's knowledge as the bases of the

fuzzy modalities, such as the FDT introduced by Koen-Myung et al. [KKJL99], and

Yonghong et al. [YF01], and Haskell [Has99].

3

When there are no fuzzy modalities available by the expert on the studied domain, it

seems to infer an automatic way to get the fuzzy modalities. There exist a lot of methods

to construct the fuzzy partitions from the continuous attributes. Most of them come from

statistical approaches, such as the naïve Bayesian method. Some of the automatic

methods are developed by the NN theory or genetic algorithm. In this cases, the results

are still fuzzy.
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Narazaki et al [NR94] propose a method to constmct the membership function in a

learning scheme. Given a set of continuous values and a class, the mean value is

computed. This value enables to compute the distance for any elements to that class.

Thus, the distance can be translated as a membership value for the element to the class.

Sahraoui et al [SSBOO] propose the fuzzy modalities when they build the fuzzy decision

system (001 system) in the learning scheme. They use the C-means method plus the

statistical ways to get the fuzzy modalities.

Some other methods have been developed in the context of FDTs induction. For instance,

Yuan et al. [YS95] determine a set of triangular membership functions using the fuzzy

clustering based on the SOM algorithm. Assun-ie attribute A has continuous value x, the

continuous values of attribute A for all objects ueU then can be represented

by X ={x(u),ueU} . They want to cluster X to k linguistic termsT^i=l,...,k . Each

linguistic term 7^ has a triangular membership function as follows:

"r, W =
l, x<m^,

(m^—x)l(m^-m^), m^<x<m^,

0, x>m^,

UT, W ••
l, x>nlk^

; (x - m^ ) /(m^ - m^_i ), m^_i <x<m^

0, x< m^,

0, x> m^,

u^ (x) = <j (m,^ - x) /(m^ -m,), m,<x< m^, ï<i<k
0, x< /n,_,,

J
The slopes of the triangular membership functions are selected in the way that adjacent

membership functions cross at the membership value 0.5. In this case, the parameters
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needed to be determined are the set of k centers M =[m^i=\,...,k}. The centers m; can

be calculated by using Kohonen's SOM algorithm. The major drawback of this method

lies in the fact that it is not linked to the distribution of the classes.

An automatic method to construct the fuzzy partitions on the universe of values of the

continuous attributes is proposed by Marsala [MarOO]. In his method, Marsala introduces

a new way which bases on the use of operators from mathematical morphology to make

the fuzzy modalities, and these operators allow the filtering of the set of continuous

values to highlight kernels for the fuzzy modalities related to the classes. In chapter three,

we will focus on this topic.

2.3.4 The applications of FDT

As FDT is an efficient and robust rule-based system, it has many applications in different

domains in the range of ML.

In 1994, Umano et al. [UOH94] used K)T in the diagnosis of potential transformers,

which can analyze gas in oil and determine the cause of destruction of potential

transformers.

The FDT has been used in a robotic task to cut three-dimensional work pieces by a

manipulator with six degrees of freedom, which is used to extract important factors for

the task [SAT95].

In the approach of Boyen et al. [BW96], FDT has been used in the context of power

system security assessment. In this domain, FDT is used to foresee the transient stability

of a power system.

J
Bothorel et al. reported his applications of FDTs to the medical domain in 1997

[BBM97]. Here, in breast cancer recognition context, they are used to determine the
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malignancy of a micro-calcification described by fuzzy features in a mammography

image.

In chemistry, Marsala et al. [MRT98] had set up the relations of the structures of

chemical compounds and the quality of the odors using the FDT in 1998.

Sahraoui et al [SBLOO] proposed the prediction model for evaluating the stability of a

reusable class library interface using the FDT. The results they got are better than the

C4.5 and the other statistic methods. They implemented FDT to build the software

quality estimation models [SBL01] in addition.

Other applications are in the fuzzy decision inductive learning processes. For instance,

Botta et al. [BGS93] used such an approach to deduce imprecise categories from

imprecise descriptions. Maher et al. [MS93] provided an inductive learning algorithm

which is robust with regard to knowledge uncertainties. Also, in 1997, Ohno-Machado et

al [OLM97] applied the fuzzy decision model to select the measles vaccination strategies

in Brazil.

2.4 Regression trees and the remaining problems

Normally, the way to deal with the continuous regressions data sets is using the CART

(Classification and Regression Trees) algorithm to build the RT.

J

The principle of the CART algorithm is growing the maximal tree and then using

statistical techniques to prune it and obtain an optimal tree [WebMcC]. There are many

modifications of the CART algorithm: One of them is local RTs [Tor99] presented by

Torgo. He introduces a hybrid model that integrates tree-based regression with local

modeling techniques. His model is more efficient and accurate than the regular regression

methods.
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The CART algorithm and its modifications are typical techniques for classifying the

continuous regressions. But they have some defects too: One is that the trees they

generated are very large and in details and have to put more accurate prune process on

them, so the mles they generated are too complicated to use for practice; another is that

they use the crisp value as the criterion to split the RT. This is the same defect of the

DTs.

From what we have presented until now, the problems still remain because the FDTs are

easily to explain and retrieve the rules, but hard to deal with the continuous regressions.

The RTs treat the continuous regressions easily but hard to give us the sets of mles. In

chapter four and five, we will use the neuro-fuzzy approach to integrate the FDT and the

continuous regressions.

2.5 Summary

The similarity occurs in all the FDT systems. First of all, all the FDTs are constructed by

extending the classical information measurement, the entropy, so that we are able to deal

with the continuous/symbolic attributes. During all these extensions, the star entropy is

widely used. Second, few of them construct fuzzy modalities on the universe of values of

the continuous attributes. Most of them considered the fuzzy modalities are granted

given. Therefore, one of the advantages of Marsala's algorithm to build the FDT is using

the automatic learning process for the arbitrary fuzzy modalities. In chapter three, we will

present Marsala's method on how to build the fuzzy modalities and the FDT, on which

our approach is based. In chapter four and five, we will present how we use the neuro-

fuzzy approach to modify the Marsala's algorithms.

J
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chapter 3 Fuzzy Decision Tree

In chapter two, we presented the state of the art of the fuzzy rule-based systems. In this

chapter, we focus on Marsala's approach of FDT. In the first part, we give a general idea

of the Marsala's method for building the FDT. Then, we present how to build the FDT in

details accordingly. Finally, we give the conclusion of Marsala's approach.

3.1 Introduction

u

There are many new methods proposed by Marsala in building the FDT. For example,

first, the construction of FDTs is based on the knowledge of a fuzzy partition for each

continuous attribute. Marsala introduces an automatic method in generalizing the fuzzy

partition on the continuous/symbolic attributes using the mathematical morphology

operators. Second, he uses the star entropy, the measure of discrimination during the

FDTs' construction and gives a hierarchical model of functions. Third, Marsala classifies
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the previously unknown cases using a measure of the satisfying degree to evaluate the

satisfaction between the description values of the case and the corresponding values that

appear in nodes of the tree.

These methods have been implemented as a computer system named Salammbô. This

system constructs the binary FDTs and recognizes only two class values: this value

versus not this value.

To deal with the classifications with more than two class values, such as the classes are

three or four, Marsala implements another computer system named Tanit. This system

enables us to construct a fuzzy decision forest by means of integrating several Salammbô

systems.

During the classification of new cases, the membership degrees of the class values given

by each Salammbô have been aggregated by the Tanit system. Both Salammbô and Tanit

systems have been tested on various kinds of training sets. These tests enable us to

highlight the greater understandability and explain ability of decisions given by the FDT

system. Moreover, it can be shown that the size of fuzzy trees is smaller than that of

classical trees, and their classification rate is also improved.

3.2 The algorithms for constructing FDT

The general algorithm to constmct a FDT is similar to building the C4.5 DT, the

approach of learning from a set of independent instances. Marsala's building the FDT

derives from three parts: automatically fuzzy partitioning the continuous attributes;

constructing the FDT including discrimination measure, splitting strategy, stopping

criterion; and classifying the new instances.

J
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3.2.1 Fuzzy partitioning using mathematical morphology

operators

Using FDT to do the inductive inference, we should fuzzify the data set into the fuzzy

modality first. Marsala uses the mathematical morphology [Mar95] to generalize the

fuzzy partition. The advantage of using the mathematical morphology method is that it

integrates the attributes with the classification information in the fuzzification.

Mathematical morphology operators

The fundamental operators from mathematical morphology theory are the erosion

operator and the dilatation operator. They are combined to produce the opening

operator and the closure operator that can be used to filter a set of bodies. These

operators come from the pattern recognition domain and are often used to filter 2D-

pictures.

The basic operators: Erosion and dilatation enable us to modify a morphological body

(Figure 3.1). This modification is related to a structuring element.

J

S9S

as
m

m-s

13

ErosiOH

Dilatation

structuriûg element

n

Figure 3.1 Mathematical morphology operators
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0 The combination operators: Opening and closure are a combination of the two basic

operators. The opening is the combination of erosion followed by dilatation applied to a

morphological body, with the same structuring element (Figure 3.2). It enables to destmct

the small bodies in the space, with respect to the size of the chosen structuring element.

Erosion Dilatation

l•<s •^
i _

r
structuring
element

stnicturiiig

element

Figure 3.2 Opening operator

The closure is the combination of a dilatation followed by erosion applied to a

morphological body, with the same structuring element (Figure 3.3). It enables the

destruction of small vacuum places occurring in a body, with respect to the size of the

chosen structuring element.

J
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Figure 3.3 Closure operator

The open-close filter is a combination of openings and closures. It is composed by k

successive openings followed by k successive closures (^=1, 2, ...) applied to all bodies

of the space, with the same structuring element. Thus, it enables the destruction of small
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bodies presenting in the space with respect to the chosen structuring element.

Simultaneously, it enables the filling of small vacuum places occurring in bodies. The

value of k enables us to control the power of the modification.

Smoothing a set of values

Up to now, we know the basic principle of mathematical morphology. In this section, we

will see how this principle applies to the fuzzy partitions.

We present the representation of the training set T as a word describing the distribution of

classes in T, according to the values of a given attribute which is supposed to take values

in an ordered set X.

First, we transform a training set into a word, for a given attribute with values in X. Let L

be an alphabet, each letter of L representing one of the classes in T. We construct the

alphabet L = Lu{u} with M g L . The letter M is a particular letter in the system. We will

use it to determine uncertain sequences. For any alphabet A, A" denotes the set of all

possible words composed by letters from A.

For example, let the training set be F= {(17, cheap), (24, expensive), (29, expensive), (33,

expensive), (42, expensive)} with {cheap, expensive} as a set of classes and {17, 24, 29,

33, 42} as a set of values of an attribute (e.g. the attribute "size"). Let L ={c, e}, e

representing cheap and e representing expensive. The word defined in L* by the training

set is ceeee.

J

We want to obtain sequences of letters from L, as homogenous as possible, in order to

associate them with fuzzy subsets of X (constituting a fuzzy partitioning of X). Each

subset will represent a linguistic modality of the attribute (for instance, cheap and

expensive with the previous example).
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We use the operators inspired by mathematical morphology to erase non-rcpresentative

values within a word in order to smooth it. Let's recall that a transduction is a 6-tuple

<A, B, S, I, E , ô> where A is the input alphabet, B is the output alphabet, 5 is a set of

states, Z e 5 is the set of initial state of the transduction, E Œ S is the set of terminal

states of the transduction and SczSxAxBxS is the transition function.

J

A transduction reads a word ve A~ and rewrites it in a corresponding word we B'. It

proceeds sequentially from the first letter to the last one. The rewriting rules to generate

w are based on o. Let (5,,z,?,i'^)e <? , with 5';,s^. e 5,z c A andfc5 , (5;,^,r,5.) is

called a transition of the transduction. If s, is the current state and we can read z in v, we

replaced it by t and the current state becomes s^ . A convention is to use $ to match the

end of the input word, and s (the null word) is introduced when nothing has to be written.

Let's define the transduction Er with A = B = L^. This rewriting system is used for the

erosion of a word with a particular letter x e L as structuring element. It corresponds to

the reduction of sequences of x in the word.

Di is another rewriting system with A=B=L^ andxeL. This system will dilate a

sequence in a word when this sequence is surrounded with letter u. It can be proven that

for any given word v, the computed tenninal word is unique. Thus, we are sure that

Er(v) and Di^(v) exist for all the words veL^ and for all the letters x e L , and

therefore, for all training sets. Moreover, for any word v e L^ , we call Er^(v) (resp.

Dî'^(v) ), with n>0, the word obtained from v after n consecutive erosions (resp.

dilatations). With these two rewriting systems, we will define the two usual operations

from the mathematical morphology: the opening and the closure.

The opening operation is the composition Di o Er^ of the two previous operators. The n-

opening (ne N) of a word v e L with respect to x e L is defined
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n as Op"^ (y) = Di^ (Er^ (v)). The n-opening of a word allows erasing small sequences with

length smaller than In. The advantage of this operation is that we can erase all sequences

in v with length smaller than a fixed value.

The closure operation is the composition Er^ o Di^ of the two operators of erosion and

dilatation. This composition allows joining sequences of letters in a word, if these

sequences are separated by less than two letters u. the n-closure (ne N) with respect to

x e L of the word v e 4 is defined as CZ; (v) = £r; (û;; (v)). With this operation, two

sequences separated by less than 2n letters u are unified.

Finally, the filter operator is the composition of the previously described word-

transforming operation. Let v e L xe L and n e N . The n-filter of the word v with

respect to x is defined as:

Ifn=l: Fil\(y)=Cl\(Op\{v)-}

If n>l : F;7; (v) - CZ; (<9p; (Fî7;-1 (v)))

The particular combination of these operations has some interesting properties. A filter

will allow smoothing a word. First, the sequences with a length of In letters are erased,

and then we unify sequences separated by In letters.

Fuzzy partition of a set of values

J

We apply a filter to the word induced by a training set. We are able to translate small

sequences of classes into uncertain sequences. To smooth a training set, we apply an n-

filter to it. Then, we obtain the word with large sequences which the length is longer than

2n, n is ten percent of the training set size.
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The sequences of u represent uncertain sequences where the classes are highly mixed.

The certain sequences consist of a single letter x, xe L. These sequences have a single

class and they do not contain any u character. We will use these two kinds of sequences

to build a fuzzy partition of the training set T related to an attribute. Certain sequences of

letter x correspond to the kernels of the fuzzy sets of the partition.

Let r be the number of fuzzy modalities we choose for the attribute. We select the r

largest certain sequences containing one class (Figure 3.4). Suppose r=2, to each

sequence, we assign intervals from X, for instance [5mn,5™x] and[Sm\S^~\. In the

case where we cannot find r sequences, we can either reduce the number of applied

filters, or select fewer sequences. We summarize this in the following algorithm FPMM

(Fuzzy Partitioning using Mathematical Morphology), with r=2:

A

l

il

sequence 1 sequence 2

c'm-in
ffi" >1

m,aa? •m.in
^2~

m.ss-
»a x

Figure 3.4 Induced fuzzy partition

Algorithm FPMM fuzzify a training set T with respect to an attribute defined on X in two

fuzzy subsets.

l. Transform T into a word v.

2. For n fixed, smooth v.

3. Find the two larger certain sequences 5'; and S^ .

J
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4. We denote by 5, (resp. 5,max ) the value associated with the first (resp. last) letter

of S, in X, i=l, 2. S, =[5mn,5mx] (resp. ^ = [^nun ,52max ] ) with S^ <Sm\

5. The fuzzy partition is defined as a family of two fuzzy subsets. The kernel of the

first one is J-°°,5maxJ and its support isj-°°,5™XJ. The kernel of the second one

is [Smix ,+o°[ and its support is [smn,+°°[.

Thus, we have an algorithm to induce a fuzzy partition from a training set. This algorithm

smoothes a word that induced by a training set. From this smoothed word, we propose a

way to define a fuzzy partition.

3.2.2 Constructing the FDT

The FDT is constructed from a set of examples by inductive learning. The set of

examples are called training set. Each training set is a case already solved or completely

known, associated with the [description, class] pair. A common process of inductive

learning is the DTs' construction from a given set of examples [BF084].

Let A= { ApA2,...,A^} be a set of attributes and let C= { c^,c^,...,c^} be a set ofclasses.A

and C are able to construct from training data: Each training data e; is composed by an

N-tuple of attribute-value pairs ( A. ,v.; ) associated with a particular class c^ from C. The

algorithm is: Given a training set £' = { e^e^,...,e^ } of examples, a FDT is constmcted

from the root to the leaves, by successive partitioning of the training sets into subsets.

The constmction process can be done in three fundamental steps. An attribute is selected

according to the fuzzy entropy. The partitioning is done by means of splitting the set. The

stopping criterion enables us to stop splitting a set and constructed a leaf in the tree. The

algorithm is listed in Figure 3.5.

J
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0

Function induce_fuzzy_tree (Example set E, Properties P)
Begin
if all entries in E are in the same class
then return a leaf node labeled with that class
else if P is empty
then return leaf node labeled with disjunction of all classes in E
else begin

fuzzify E;
select a property prof P, and make it the root of the current tree;
for each fuzzy partition f, of pr,
begin

create a branch of the tree labeled with f-,
let partition pa be elements of E with f for pr,

call induce_fuzzy_tree (pa, P), attach result to branch f
end

end
end

Figure 3.5 FDT algorithm

The algorithm described in Figure 3.5 is discussed in more details:

Measure of discrimination

J

Haskell said, "In a binary tree classifier, a decision is made at each non-terminal node of

the tree based upon the value of one of many possible attributes or features. If the feature

value is less than the threshold then the left branch of the tree is taken, otherwise the right

branch is taken" [Has98]. This threshold is the measure of discrimination. The choice of

an attribute is done by means of a measure of discrimination. It enables us to measure the

power of discrimination of an attribute A^. relatively to the class C. It evaluates to which

extent the values of this attribute are linked to each modality of the class. Thus, all the

attributes can be compared in order to select the best one to split the training set. The

choice of the best attribute by means of a measure of discrimination is a heuristic that
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n enables us to optimize the tree built. This heuristic should minimize the size of the tree.

Let's present what heuristic method is in the constructing the FDT.

We suppose that all the values of a continuous attribute A^. are precise in the training set

E. Let {x^,x^,...,x^} be the set of values of Aj in the training set E. So the criterion of

splitting the fuzzy data is defined as:

H^c\A,)=-^pf(y^p\c, |v,,)iog,(p*(c, |y,,)).
1=1 k=ï

In this definition, P\V^ is the fuzzy probability, P\C, \V^\og^P\C, |V,,)) is the

star entropy, which the decision C is related to the attribute A.. P' (C^ | V ; ) is the fuzzy

conditional probability.

The fuzzy probability [Zad68] of modality v, is defined as:

^(v,)=ZA(^)^(^).
KKn

Where the probability P(x;) is weighted by the frequency of x, in E, and f^ is the

membership function of the fuzzy set representing v,. In practice, if n is the number of

examples in E with the value x, for A , P(JC; ) is approximated with P(x, ) = -^j- (we

denote \E\ the total number of examples in E).

J

Let {y^y^,—,yy} be the set of continuous values of the decision attribute C in E. The

fuzzy conditional probability of modality c^. of C, given v;, is defined as:

P*(c,|v,)=
p*(c.'v.) __..
P\v.)

with

pï(c.'v<)= Z Emm(4(^)'4^))p(y"^)
KKq Kkïn
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0 In practice, P(y;,^) is approximated with PCy^x^) = nyi"'k
, where n,,., is the£| ' ""^^- "•y,A^

number of examples in E with both the values x^ for A^. and y; for C.

This discrimination measure is the uncertainty of the fuzzy decision when the modalities

of the continuous/symbolic attribute A. are known. It is the criterion chosen to order the

attributes during the FDTs' construction.

Splitting strategy

The splitting strategy defines how the training set will be split by a question on the value

of an attribute. In the case of continuous/symbolic attributes, each modality v ; of an

attribute A^ defines a subset e^ of the training set, composed by the examples that

possess value v^ for A^ in which l=l...m^.

Marsala's splitting solution is using a-cut for each fuzzy set. For instance, with or = ^ , the

following crisp partition is created: VZ = l,...m^, f.; = {f, e f | ju (f, [A^ j) > y}.

Stopping criterion

The stopping criterion T enables us to know if a subset of s is homogeneous with regard

to the class. The process of construction of the FDT will stop the development of a path

on a suitable set. The stopping enterions are defined as the following strategies:

1. All the examples of s, or at least a majority of examples, are associated with the

same class. Usually, the stopping criterion T is linked to the measure of

discrimination of the algorithm. The notion of majority is evaluated by means of

a threshold for the value of the discrimination measure. The smaller the value of
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the discrimination measure, the more homogenous of the training set with regard

to the class is.

2. The number of examples in e is too small to justify a split of s.

3. There are no more sub-fuzzy sets to use. This stopping criterion is used when the

generated length of word is no longer than the two times of the recursion time in

the fuzzy partition procedure.

The stopping criterion for the FDTs' construction is quite similar to the stopping

criterion in the classical DT.

3.2.3 Classifying with FDT

As mentioned, a path of the tree is equivalent to an if...then rule. The premises for such a

rule r are composed by tests on values of attributes, and the conclusion is that the value of

the class labels the leaf of the path:

if A^ =v; and ...and A; =v; then C=c^

In FDT, a leaf can be labeled by a set of values {c,,...,c^} for the class, each value c

associated with a weight computed during the learning phase. Thus, a path of FDT is

equivalent to the following rule:

if A^ =v^ and... and A; =v; then C=c, with the degree P (c^ | (v; ,...,v; )) and...

andC = c^ w;T/i f/ie degree P (c^ \ (v; ,...v; ))

A new example e to be classified is described by means of values for each

attribute {A, = Wp...;^ =w } . The description enabling us to value the satisfying degree

of any observed modality w to the edge modality v is compared with the premises of the
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rule r by means of a measure of satisfying degree [BRB96]. The measure of satisfying

degree used here is:

Deg(w,,^L/^A
L^A if J,/-»A^0

where //^ is the membership function associated with the modality w, // is the

membership function associated with the intersection wr\v between the modality w and

the modality v, X is the universe of values where ju and // are defined.

For each premise, a satisfying degree DegCw^v^) is computed for the corresponding

value w; . Finally, given a mle r, a description is associated with the class c^ with a final

satisfying degree Fdeg^(c^.). The final satisfying degree corresponds to the satisfying

degree of the description to the premises of the rule r weighted by the conditional

probability for c^ according to the rule r in order to take into account the confidence of

the rule:

Fdeg,(c,)=T;,^D^(^,v,).P*(c,Kv^v,,.,^))

Final degrees computed from all the rules are aggregated by means of a triangular co

norm ± (for instance, the maximum triangular co norm) to obtain a single degree of

satisfy degree F deg(c. ). If n is the number of rules given by the FDT:

Fdeg(^.)=l^^Fdeg,(^)

J

For each value of the class, the description e is associated with such a satisfy degree

Fdeg(c^.) for each class c^ computed from the whole set of rules. The class c^

associated with e can be chosen as the class with the higher satisfying degree:
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r\.
< 'l

FDeg(c,) = max ^^ FDegÇc^

We use such a process of aggregation of degrees in order to have meaningful values of

degrees for each class.

3.3 Summary

In this chapter, we introduce Marsala's method to build the FDT. There arc many

important properties in his approach. Marsala proposes a new formalization of the

algorithms to construct FDTs. It highlights various aspects that differentiate an algorithm

from the others: The measure of discrimination is used to obtain ideal results during the

generalization step; the splitting strategy defines how to split the training set during the

construction of the tree; and the stopping criterion defines when the development of a

path of the tree has to be stopped. By means of this formalization, FDT is well

established.

In chapter four, we will introduce our approach to the FDT, the evolution of Marsala's

method.

J
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chapter 4 F^zzj Learning for

Symbolic Classification

From chapter two and three, we know that there are many methods available from the

literature to build the FDT. The best method up to now is Marsala's binary FDT [Mar98].

The application of fuzzy set theory enhances the understandability and prediction ability

ofDTs. By adding the fuzzy partition of the attributes, this algorithm generates the FDTs

automatically. The implementation results show that Marsala's FDTs are more robust

than the classical ones [Mar98].

In this chapter, we will provide our modifications to Marsala's approach. The

modifications focus on the fuzzy membership function and the defuzzification procedure.

The results we get are more efficient and explicit.

J
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4.1 Some defects of Marsala's FDT

The C4.5 makes a big success in classification of the symbolic attributes. When the

attributes are the continuous variables, Marsala introduces a well-built fuzzy decision

model [Mar98] of the TDIDT method, which solves them very well. In this fuzzy

decision model, Marsala proposes the mathematical morphology [MB96] operators for

automatic fuzzy partition of the continuous attributes. The experiments show that some

FDTs lead to a better accuracy rate when classifying the new cases [Mar98].

There are five problems in Marsala's approach. First, when he does fuzzy partition on a

set of values, Marsala applies an n-filter to the word induced by the length of the training

set, so it can translate small sequences of classes into uncertain sequences. The problem

is that the value n is not suitable for our system. Second, in Marsala's method, the shape

of fuzzy membership function is shoulder-left and shoulder-right, therefore, the

discrimination degrades. We change it to the standard trapezoid shape, and thus, it is

more comprehensible. Third, when building the FDT, he uses the crisp partition to split

the FDT. We modify it as the trend partition. Furthermore, Marsala's method does not

have the pruning procedure. When the trees grow large, the generated rules could be very

complicated. We add the enhanced pessimistic pruning procedure into the tree building.

At last, instead of using the probability similarity to classify the new cases, we use the

min-max algorithm and the vote method to get the predicted value.

4.2 The value of n-filter

J

To smooth a training set, we should apply an n-filter to the training data set. Then we get

a word of the large sequences with the length longer than 2n. According to Marsala's

method, n equals to the value of ten percent of the training set size. Each time the

program does the recursion for sniooth the word for n times. For the regular length data
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set, normally n is four or five. Therefore, the computational performances are bad; a lot

of time was wasted in the recursion.

According to Marsala, n is the empirical data. We find that the results are a little different

whether n is big (e.g. four or five) or small (one or two). So we change n with the

logarithm of the data set length. The performance changes a lot and the smooth degrees

are little brought down.

4.3 The shape of fuzzy membership function

Now, we would like to discuss the shape of the fuzzy membership function. According to

Marsala's FPMM algorithm, we can see that the kernel of the fuzzy membership function

is the class characters while the left and the right sides are uncertain parts. But Marsala's

method transfers the fuzzy partition as the shoulder-left or shoulder-right (Figure 4.1).

Therefore, he omitted the two sides (the left most side and the right most side) of the

uncertain parts and transferred them into the certain parts. This will degrade the

discrimination of the data set. So we change the FPMM algorithm when we determine the

shape of the fuzzy set as the trapezoid shape (Figure 4.2). Therefore, we can exactly get

the results from the mathematical morphology transformation. Using the trapezoid shape

fuzzy partition, the results are more accurate and the performance is better.

uyyyuuuuuuunnnnuuuu
-+•

Figure 4.1 Marsala's fuzzy partition

J
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->
uyyyuuuuuuunnnnuuuuu

Figure 4.2 Modified fuzzy partition

4.4 Splitting the FDT

Marsala uses the a-cut (=0.5) for splitting the fuzzy sets in his algorithms. It means that

he splits the fuzzy sets with the crisp partition. We propose to apply the splitting trend to

split the fuzzy sets instead of the crisp value. We split the FDT according to the fuzzy

partition got from the mathematical morphology. We think it is more natural and accurate

in this fuzzy context. The same idea can also be found in [SBLFOO].

4.5 Enhanced pessimistic post pruning procedure

Using TDIDT method to build the DT always continues to subdivide the training set until

each subset in the partition contains a single class, or there is no data set to split at all.

Therefore, the trees they built are always complex and "over-fit the data". This means

that the generated trees have more structures than they should have by inferring the

training cases, thus the classification ability may be weak when they treat new cases.

As you know, DTs always apply the pruning procedure to the tree in order to avoid "over

fitting the data". But Marsala's method does not provide this procedure, as he thinks that

the FDTs he built are shorter than classical ones and therefore avoid the problem and

pruning the tree may distort the results.

J
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Although Marsala's FDTs are shorter than the classical DTs and sometimes they do avoid

"over fitting the data", we think they need the pruning procedure too, because they are

also large and hard to generate the fuzzy decision rules from them. Therefore, after we

constmct the FDTs, we simplify them with the pruning process. First we provide the

pmning procedure in our project, and then we introduce the principle of the enhanced

pessimistic pruning method.

A DT is not usually simplified by deleting the whole tree in favor of a leaf. Instead, the

idea is to remove parts of the tree that do not contribute to classification accuracy on

unseen cases. This procedure is less complex and more comprehensible. In our thesis, we

have three steps in our tree pruning procedure after we build the FDTs (Figure 4.3). First,

suppose each sub-tree has two branches, of which the classifications are the same. We

merge the two branches into one. It is called the branch merging. The process is similar to

the one in [XB GOO].

Unpruned
->

tree

Branch
merging

-> Simple error
pruning

->
Pressimistic
pruning

Pruned
->

tree

Figure 4.3 The pruning process

Second, when the expected en'or rate in the sub-tree is larger than that in a single leaf of

one of its branches, we replace a whole sub-tree by its leaf node or its branches. This is

the simple error pruning process. The procedure of simple error pmning is: starting from

the bottom of the tree and examining each non-leaf sub-tree. If the replacement of this

sub-tree with a leaf, or with its most frequently used branch, would lead to a lower

predicted error rate, then the tree is pruned accordingly. The error rate for the whole tree

decreases as the error rate of any of its sub-trees is reduced. This process will lead to a

tree whose predicted error rate is minimal with respect to the pmning process.

J

Third, we prune the tree according to the enhanced pessimistic pmning method. This

method is developed by Quinlan [Qui93]. It only uses the training set from which the tree

is built as the estimation. The re-substitution error, which is the error rate on pruning a
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sub-tree using the observation on the training set from which the tree is built, is estimated

and adjusted to reïïect this estimate's bias.

Consider a leaf covering N training cases, E of them classified incorrectly, the re-

substitution error rate for this leaf is E/N. We define this result as the probability of error

over the entire population of cases covered by this leaf. For a given confidence level CF

(in our thesis CF equals to 0.25), the upper limit ( Uçp {E, N) ) on this probability can be

found from the confidence limits for the binomial distribution. The predicted error rate of

a leaf is considered to be equal to this upper limit, on the argument that the tree has been

constructed to minimize the predicted error rate. Although this conclusion is lack of the

proof of the statistical theory, like many heuristics with questionable underpinnings, it

seems produces the acceptable results.

To simplify the calculation, error estimates for leaves and sub-trees are computed

assuming that they are used to classify a set of unseen cases of the same size as the

training set. A leaf covering N training cases with a predicted error rate of U^p (E, N)

will give rise to predicted N x U^(E,N) errors. Therefore, for a sub-tree with leaves, if

the predicted error rate for the leaf (N x Ucp(E,N)) is lower than that of the sub-tree

(.^N, XÎ/CT (E,N,)~), this sub-tree is replaced by a single leaf.
1=1

4.6 The min-max algorithm and the vote method

J

After generating the FDT, we use different methods to classify the new cases. They are

the min-max algorithm and the vote method. These two methods are explicit and easy to

be implemented and the results are accurate comparing with the Marsala's satisfying

degree method. From Marsala's FPMM algorithm, we get binary fuzzy partitions and

thus generate the FDTs which are binary trees. The FDTs' number equals to the class

number. For each class, we have the correspondent tree. For example, if the classes are
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"0" and "7", we can generate two trees. The leaves of one tree are labeled with this class

"0" and not this class "/0"; The leaves of the other tree are labeled with this class "7" and

not this class "/-?". For each FDT, we use min-max algorithm to get the final value of

each branch labeled with this class or not this class. For all the FDTs, we use the vote

method to get the final class label of the new case.

J

The min-max algorithm is similar to the min-max inference of fuzzy rule evaluation

procedure [NK99]. Suppose for each tree, from the top node to each leaf, we can generate

the fuzzy mles with the number equaling to that of leaves. So the FDT model consists of

a set of fuzzy rules R^ like

Rj : if x^ is Aw and ... and x^ is Aw then y is B7

where x^,...,x^eïR arc the fuzzy values of the non-leaf node, and ^ e IR is the leaf

value. A^. : IR-» [0,1] is the fuzzy value. 5.(y) is the final label of each leaf. B(y) is the

output fuzzy set label.

5,(y)=mm{A;(^),.,A;(^)}

B(y)=max{5;(y)}
J

In a word, the min-max algorithm is minimum tmth-value along each tree path, and

maximum truth-value for each end leaf.
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0.35
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0 .2 0 .8
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0 .2 0.65

t
073 5 (T73

Figure 4.4 The min-max algorithm

For example, in Figure 4.4 according to the min-max algorithm, in the left branch, we

choose 0.65 for class "7", and 0.2 for class "O"; in the right branch, we choose 0.35 for

class "-Z", and 0.3 for class "O". The leaf value is the minimum of the branch value. For

all the leaves, we select the biggest value as the final label of the tree. So for class "O",

the fuzzy value is 0.3 and for class "7", the fuzzy value is 0.65. As for each class, we

have the correspondent tree, we have the fuzzy values of every class, and we take these

values as the input data to the vote method.

After we get the class value of each tree, the next procedure is using the vote method to

get the final class label of the new case considering all the FDTs. The vote method

considers the fuzzy value as the weight of the class, and integrates both sides of this class

and not this class. The result of the vote method is the class label of the new case.

The vote of the class C is calculated as:

J
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^(^,)=

m^({c'})+U—iïSm^({c^})
Ilcj^ci
n-1

Figure 4.5 The vote method formula

In Figure 4.5, mc (.{ciî) and mc^\.c j ï) are the fuzzy values of this class (i.e.

"7") and not other class (i.e. "/0"). N is the tree number and /^(c;) is the vote of the class.

We select the class label with the biggest vote value as the final class label of the new

case.

J

For example, suppose we have fuzzy values in Table 4.1. We have three FDTs, named

Treel, Tree2, Tree3; and three data sets El, E2, E3. For each tree, it has two classes.

Using the vote method, we select the biggest value in vote column: For El we select

0.78, for E2 we select 0.57, for E3 we select 0.55, so the correspondent class labels are

given to each data set, El's class label is Cl, E2's class label is Cl, E3's class label is

C3.

Ex Tree 1 Tree 2

El

E2

Cl

l

e,
0

0.55 l 0.6

E3 0.1 0

C2

0

0.3

0.8

e,
0.3

0.1

Table 4.1 The vote method example

Tree 3

C3

0

e3

0.8

Cl

0.78

Vote

C2

0.2

C3

0.08

0.7 l 0.32 l 0.48 l 0.57 0.42 0.48

0 0.6 ! 0.22 0.55 0.02
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4.7 Summary

In this chapter, we introduce how we modify the Marsala's FDT approach and set up our

own fuzzy decision models. The general inference procedure of the FDT we proposed for

symbolic classification shows in Figure 4.6.

inpu^

data

Mathematical

morphology
fuzzy

->
data set

Decision

tree
fuzzy trees

fuzzy rules

Min-max

algorithm
fuzzy set

labels

Vote
method

predicted
->

classification

Figure 4.6 The procedure of the FDT

The FDT model that we get is more clear, shorter and easier to explain. The features (or

modifications) of our fuzzy decision models are:

We select the n which equals to the logarithm of the data set length as a recursion

time when we smooth the sequence of the continuous values. The length of the

word's longest definite part should be longer than 2n; there should be only one

word in each sequence. On the other hand, if we cannot find the word (It often

happens when the data set length is too short), we reduce the recursion time n.

We use mathematical morphology algorithm to do the fuzzy partition inference

over a set of continuous values. These fuzzy partition shapes are trapezoid instead

of the shape of shoulder-left and shoulder-right. This fuzzy partition is depending

on the class, thus this method is better than the normal clustering methods.

• We propose using the splitting trend instead of the splitting crisp value to split the

fuzzy partition.

J
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• We introduce the enhanced pessimistic pruning procedure to prune the FDTs. We

get more general trees and the rules. Therefore, the mle-based systems we get are

more robust and powerful.

When we apply the FDTs to classify the instances, we implement the min-max

algorithm to get the fuzzy values of each tree: One belongs to this class; another

belongs to not this class. After that, we use vote method to select the class label of

the new case. The main idea is, giving the non-classification fuzzy value to the

other classification fuzzy value, and selecting the biggest one as the class label.

Using min-max algorithm and vote method to defuzzify the FDTs is clear and easy to

implement. It is comparative to the Marsala's satisfying degree method. Actually, we also

use the NN to do the defuzzification procedure, as the NN can deal with the symbolic

values. The results are a little better than the defuzzification procedure we just proposed.

In chapter five, we will focus on these issues as well as how we use the neuro-fuzzy

approach to deal with the continuous classes.

J
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chapters Fuzzy Learning for

Continuous Regression

In chapter four, we discussed the fuzzy learning procedure for the symbolic classification

data sets. Encouraged by the good results we obtained with them, we tried to deal with

the continuous regression data sets. In this chapter, we mainly present the methods such

as transferring the continuous classes into the symbolic classes and NN for

defuzzification procedures. We also introduce the concept of NN, and the classical

defuzzification methods.

5.1 Introduction

J

Predicting the continuous regressions is a big task in ML. There are many methods in

NNs or RT algorithms. Nonnally, NNs have become equally popular due to the relative

ease of application and the ability to provide gradual responses. However, they are lack

of similar levels of comprehensibility; they are really black boxes. We can not use them
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as generating the decision rules. The problems of the RT are that the models are complex

and incomprehensible and the performance is not computationally efficient.

We present a new procedure that can deal well with these defects. This new approach is,

first we transfer the continuous classes into the symbolic ones using the SOM algorithm

[YS95], and then use the FDTs to classify these symbolic classifications, and at last

introduce the NN defuzzification procedure comparing with the classical defuzzification

process (IVIOM model) to get the crisp values we predicted. We call it fuzzy regression

process (Figure 5.1).

continuous

input
data

classes ->
SOM
model

threshold
value ->

Symbolic
Classification
model

continuous attributes

FDT
input data

>
FDT
model

^1

MOM
model

NN
model

crisp
vlaue

crisp
value

Figure 5.1 The general regression procedure

5.2 Concepts of neural network

As our fuzzy regression process has two kinds of NNs, let's introduce the concepts of the

NN first. NN is a model that intelligently arises in the forms of simple, interacting

components through a process of learning or adaptation by the connections among

components. It processes the data in the layers of the neurons, and the process is

independent and simultaneous.

J

NN is not just another learning algorithm or a regression technique; it represents a new

computation model whose idea is borrowed from the human brain. It has thousands of

simple processors (called processing units, or neurons) connected by thousands of

adaptive weights, as illustrated in Figure 5.2.
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^
A neuron is based on the following parameters:

Input connections (or inputs): x^,x^,...,x . There are weights bound to the input

connections: w^,w^,...,w^.

Input function /, calculates the aggregated net input signal to the neuron:

sum=f(x,w).

An output function calculates the output signal value emitted through the output

of the neuron: y.

NN can be used in supervised, unsupervised, and reinforcement learning procedures.

When sufficient data sets are available, NN can do classification, clustering, and

prediction. In our algorithm, we use two typical NN algorithms, SOM is for the clustering

and the back propagation is for the training and prediction.

WÏJX,

wX2 2j

w.
3;

wX3 4j

X4

w
v

xn

n

sum^=^x^+e^
!=1

y^=f(sum^

Figure 5.2 An NN process unit

J
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5.3 Self-organizing maps

The transformation of the continuous classes into the symbolic classes is the process of

fuzzy conceptualization. This process is used to reduce the information overload in the

decision making process. For instance, the numerical length of a human may be

transferred into a linguistic terms, such as tail or short. The membership function can be

determined by the experts' opinion or people's common perception. It can also be

detennined by the statistic method [CT86], clustering (the C-means method) [SBC01]

and clustering based on NN (SOM method) [YS95].

The C-means clustering is an interesting approach. Sahraoui et al. propose such a method

in [SSBOO]. Originally, this paper introduces a method to build software quality

predictive models which combines both fuzzy decision processes from the software

metrics and the heuristic knowledge from the field. In exploring the software metrics, the

authors propose that the C-means clustering can be used for fuzzy partition. Using this

method, we can transfer the continuous regressions data into the symbolic classifications

data.

The C-means method is based on the distribution of the measurement data. We calculate

the frequency of each input value and derive homogeneous clusters from the resulting

curve. The clusters represent the fuzzy labels of the input metric. If it is hard to derive

homogenous clusters, we should apply a logarithmic transformation to the frequency to

boost the smaller values and flatten the larger ones. Finally, integrated with the domain

knowledge, we can get some (normally two or three) homogeneous clusters of values.

Starting from these clusters, we define some fuzzy labels for the selected metric and

assign a membership function to each of them. The fuzzy membership function can be

trapezoid or triangle shape.

J
The C-means is a good method in transferring the continuous regression to the symbolic

classification: we try to deal with one of the data sets using the C-means method, the

results are satisfying. However, it has inconvenience that at present we cannot do the
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fuzzification process automatically. So we turn to another method: SOM, the NN

clustering method, in which the process can be implemented automatically.

5.3.1 The principle of SOM

The SOM algorithm introduced by Kohonen [Koh95] has become one of the most

popular and practical NN models. The SOM represents the result of a vector quantization

algorithm that places a number of reference or codebook vectors into a high-dimensional

input data space to approximate to its data sets in an ordered fashion. When local-order

relations are defined between the reference vectors, the relative values of the latter are

made to depend on each other as if their neighboring values would lie along an "elastic

surface". This "surface" becomes defined as a kind of nonlinear regression of the

reference vectors through the data points. A mapping from a high-dimensional data space

91" onto a two-dimensional lattice of points is thereby defined.

The process in which the SOM is formed is an unsupervised learning process. Like any

unsupervised classification method, it can be used to find clusters in the input data, and to

identify an unknown data vector with one of the clusters. We use this property of the

SOM to identify the threshold value from the input vector and use it to partition the

continuous classes.

J

The SOM is a single-layer NN model (Figure 5.3). It has only one input layer and one

output layer. Each time an input vector presents to the network, its distance to each unit

in the output layer is computed, and the output unit with the smallest distance to the input

vector is declared as the "winner". The winning unit and a set of units in the

neighborhood weights are adjusted by moving the weights toward the input vector.

Initially, the neighborhood and the learning rate are quite large. As the training process

makes progresses, the neighborhood shrinks and the learning rate is decreased. At the

end, a topographic map is created.
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Adjust Weights of Winner and Units
In the Neighborhood toward the Input Pattern

Inputs •^

i

0^x-/;
v

/7,"> Q\
^
/\

K
0

^.

/0 0
/

Output units
compete

Winner is the unit 'closest' to input

Figure 5.3 SOM

We illustrate how we can get the "winner" in details:

1. The continuous values of classification for all objects ueU can be represented by X^(x

(u), ueU}. At time 0, the winner is initially set to be evenly distributed on the range of X,

such as:

m, =min {x, xeX} + (max {x, xeXf-min {x, xeX})x(i-l)/k-l), i =1, ..., k.

2. The winner is then adjusted iteratively in order to reduce the total distance of X to M,

which is defined as:

D(X,M)=^ïmn, x-mjl.
x£X

J 3. Do it recursively, until the D (X, M) converges. Therefore we can get the winner m,.
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^
5.3.2 Implementation of SOM

We selected this crisp value ("winner") as the threshold value. Now we can generate the

linguistic terms of the continuous classes using this threshold value. The class value is the

a-cut (=0.5) of the membership function, which means if the class value is smaller than

the threshold value, and then it is labeled as "small", otherwise it is labeled as "large". So

for all the continuous classes, we have the fuzzy labels on them which arc either "large"

or "small". After this transformation, we get the input data sets of the FDTs. The format

of the transferred data sets is exactly the same as those of the symbolic classification data

sets. So we use them to do the fuzzy decision induction that we presented in chapter three

and chapter four.

Implementing SOM to all the attributes in the data sets, we can get the linguistic terms of

them, as well as the special attribute, the classes. It is useful when we generate the fuzzy

decision rules from the FDTs. We can easily put these linguistic terms into the rules

construction.

5.4 Comparison of defuzzification methods

Using the transferred data sets as the input ones, we can easily build the FDTs and

generate fuzzy rules. We can get the predicted symbolic classifications by using the fuzzy

decision method and find that the accuracy rates of them are about eighty percent. It

matches the results with the FDTs for the symbolic classifications. But our goals are not

to predict the symbolic classifications; we want to predict the continuous ones. Therefore,

we should defuzzify the FDTs we have got.

J
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5.4.1 Classical defuzzification methods

The procedure of defuzzifying the FDT is a little bit different from the vote method

presented in chapter four. As we want to get the precise prediction of the continuous

values, we have to use more precise defuzzification procedure. After we use the min-max

algorithm to get the fuzzy values from all the leaves with the class label, we input these

fuzzy values into the defuzzification procedure (Figure 5.2 MOM model).

For example, we use the two different methods separately: the center of gravity (COG)

and the mean of maximum (MOIS/I) to get the crisp values, the predictions of the

classifications. The COG method finds the center of gravity of the union (u) of the fuzzy

sets. It is illustrated in Figure 5.4:

//(x) • xdx
r^(^W)=^-

]bt{x}dx

^(x),

0

Figure 5.4 The COG method

The MOM takes the mean of those points where the membership function is at a

maximum. It is illustrated in Figure 5.5:

J
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xdx
^(^)=SUP^^(,))

MOM\^'^-/V^ ~

>l//(x)=sup^^^

l^(x),

->

0
7T

Figure 5.5 The MOM method

We used two groups of data sets to implement these two defuzzification methods, and we

found that the results vary heavily depending on the methods we used: results with MOM

were better than those with COG. This suggests that there are subjective factors in the

prediction. This conclusion matches the conclusion ofVeliev et al. [VRS99].

We choose the NN as defuzzification procedure, inspired by many applications of

integrating the NN with the fuzzy system [Has98], and the conclusion of [YS95]: the

classification accuracy may be further improved if converting membership functions and

fuzzy rules into NNs and using the learning mechanism of the NNs to tune the

membership function.

5.4.2 Neural network: an objective defuzzification procedure

J
There are many applications to do the defuzzification procedure using the NN [VRS99]

[Web95] [HRG96]. The typical method is presented by Veliev et al. in [VRS99]. In their
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approach, they do not model the fuzzy processes using layers of the NN, but taking the

outputs of the fuzzy system as inputs to the NN. The NN outputs are used to determine

the crisp value. Accepting the idea from their approach, we use NN for defuzzifying the

FDTs. The differences between the two approaches are the inputs and the outputs of NN.

In their approach, the NN inputs come from the fuzzy inference system, and the NN

outputs are the intermediate results then determine the crisp value. In our approach, the

NN inputs come from FDTs, and the NN outputs are the crisp value directly.

We select the standard back propagation algorithm as the implementation of the NN. It

has the feature of the feed-forward connection topology, meaning that the data flows

through the network in a single direction, and uses a technique called the backward

propagation of errors to adjust the connection weights through the hidden layers.

t

Inputs

^

Adjust Weights using Error
(Desired-Predict)

Predict

Output
Desired

Output

J

Figure 5.6 The back propagation NN

Figure 5.6 shows a back propagation NN and illustrates the three major steps in the

training process. First, input data are presented to the input layer of units on the left, and

flow through the network until they reach the network layer of units on the right. This is

called the fonvard pass. The activations or values of the output units represent the actual

or predicted output of the network. The desired output value is also presented to the
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network, because this is the supervised learning. Next, the difference between the desired

and actual output is computed, producing the network enror. This error tenn is then

passed backwards through the network to adjust the connection weights.

The implementation training of the back propagation NN is using the data we get from

the FDTs. As we explained in chapter four, for each edge of the tree, we can get the fuzzy

value of the leaves using the min-max algorithm. Suppose we have two classes small and

large, thus we have two trees labeled with "small" and "large". For each tree, we have

four leaves, of which two are the class labels (small or large), and the others are not the

class labels (/ small or / large). Therefore, for "small" tree, we can get two fuzzy values

of the small label leaves using the min-max algorithm, and so arc two large leaves of the

"large" tree.

We use these four fuzzy values as the input data of the NN. For training procedure we put

both of the input data and the desired classes (continuous classes), and for the test

procedure we input the same data sets, but the desired classes are only for comparison

with the predicted outputs of the NN. The results show that the NN defuzzification

procedures are better than the system using the classical defuzzification methods.

5.4.3 Discussion on fuzzy membership function shape

There is a difference between the classical defuzzification and NN method. In classical

defuzzification methods, such as COG and MOM, they need the fuzzy partitions as many

as they need. When they defuzzify, they generate the crisp value with more fuzzy values,

just like considering more various situations and thus their prediction would be more

accurate. In some fuzzy systems [Has99], the number of fuzzy partition is six or seven.

But in our opinion, it is quite complicated if the fuzzy number is more than three.

J
Another issue is when we use the classical defuzzification process, such as COG and

M:OM, the fuzzy membership function shape, which gets from the procedure of the
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transferring the continuous classes to the symbolic classes, should have a single peak. If

the symbolic output is desired, flat-topped membership functions in which adjacent

functions intersect at full confidence are usually desirable; but if the continuous output

takes place, membership functions should usually have a single peak, and adjacent

functions should usually intersect at about half of full confidence [WebSil]. So we have

the fuzzy membership function in Figure 5.7.

0 29

largesmall moderate

l

0.5

98 241

Figure 5.7 The single peak fuzzy partitions

For the NN defuzzification, we only use the threshold value distinguishing the class label

small and large. Here, we do not care how many linguistic terms we have, we only care

whether or not we can generate the correct (not too simple) trees. In such a way, we can

get the suitable numbers of the input data for the NN.

5.5 Summary

In this chapter, we introduce a new approach to deal with the continuous regressions. We

use the fuzzy decision method and integrate with the SOM in transferring the continuous

classes into the symbolic classes and the back propagation NN for the defuzzification

procedure.

J
The reason that we adapted the NN as the defuzzification procedure instead of selecting

one of the classical defuzzification methods is that the NN uses all the fuzzy set values
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which are fired in the FDT, while the classical defuzzification method just uses the

representative fuzzy set values. The results suggest that these integrations we proposed

are comparable with the technology used in ML.

In chapter six, we will introduce how we implement the algorithms we presented in

chapter four and chapter five, and especially how we embed the SOM package, the C

program in our java program.

3
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chapter 6 Implementation

In chapter four and five, we described the algorithms of how to realize the FDT for the

symbolic classification data sets and the fuzzy regression methods for the continuous

regressions data sets. In this chapter, we will show that although we describe the two

algorithms separately, we implement them in one Java program with the different options.

6.1 The procedure

We use java language to implement our program because Java has the JVM which is

platform free and easy to implement ML algorithms. In addition, this program is part of a

big project of CREVI and the other programs of the project are implemented in Java.

J
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The procedure of our Java program is in Figure 6.1. We have an option for the input data

sets with the symbolic classifications or with the continuous regression. When the data

sets are with the continuous regressions, first the program changes the continuous classes

into the symbolic ones. We have another option using the training data set as the testing

data set or using the ten folders cross validations. After we generate the tree, we have the

third option of whether post pruning the tree or not. At last, we get the predicted results

using both of the classical MOM defuzzification method and the back propagation NN

defuzzification method.

training | data

cross validation
No

*

testing data
Yes

*

input data

Nsymbolic classification

Yes I

n

*

som

^ '»

FDT

Yes
pruning process

Nol

ï

pruning tree

output final trees and rules

MOM defuzzification NN defuzzification

accuracy rate

i
output file output file accuracy rate

J
Figure 6.1 TTie program follow chart
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The input data are in training data and testing data forms. Both of them have the results.

In training data, results are for the training the algorithm; in testing data results are for the

comparison. In fuzzy decision system, we use the software quality prediction data

generated from DISCOVER. In fuzzy regression system, we use the hydropower station

data from HRM (Hydropower resources management group at Alcan Ltd.).

J

6.1.1 The tools

We use JBuilder Foundation 4.0 to organize the project, edit the Java source files,

compile and execute them. It can be downloaded from [WebBor]. For JDK, the 1.3.0

version, we can get from [WebSun]. The platform is Windows 2000 professional version.

In our program, we embed the C program, the Self-Organizing Map Program Package

(SOM _PAK) Version 3.1 [WebSom], into our java program for calculating the threshold

value to split the continuous classes. In our program, there are twenty-nine classes, two

interfaces, and two execute files.

6.1.2 Embedding SOM_PAK into Java program

We use the SOM_PAK to get the split point for transferring the continuous classes into

the symbolic classes. The SOM Programming Team of the Helsinki University of the

Technology provides the SOM_PAK for the research purpose. All programs in this

package are written in ANSI C. This package includes the C source code, the makefile

and the illustration of how to use it. The principle of the SOM is presented in chapter

five. Here, we mainly talk about how it embeds in our Java program.

The SOM_PAK can be downloaded for anonymous ftp user at the internet site

cochlea.hut.fi (130.233.168.48). All programs and documentation are stored in the

directory /pub/som.pak. It has two versions, one for UNIX and the other for DOS.

Because we use JBuilder on the Windows 2000, we only consider the DOS version of the
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SOM_PAK. After downloading the SOM_PAK, we use makefile to make all the source

code in the package and get some executive files. Among these executive files, we only

choose two files, raninit.exe that is the initiate file and vsom.exe, which gets the split

point value, the result. For implementation, we copy the two files into the working

directory of JBuilder.

Figure 6.2 shows how these two command lines are embedded in our Java program.

public void set_Ls() throws lOException {
String cmdArray=null;

Process child=null;
Runtime rt=Runtime.getRuntime();

try{
cmdArray="randinit -din data.dat -coût data.cod -xdim 1 -ydim 1 -topol

hexa -neigh bubble -rand 62";
child=rt.exec(cmdArray);
cmdArray="vsom -din data.dat -cin data.cod -cout data.cod -rlen 100000 -

alpha 0.02 -radius 3";
if(child.waitFor()==0)
child=rt.exec(cmdArray);
newOutputPollster(child.getErrorStream()).start();
newOutputPollster(child.getlnputStream()).start();
} catch(IOException e){
throw e;
}
catch(Exception e) {

throw new IOException(e.toString());
}
}

Figure 6.2 The command lines embedded in Java program

J

Please pay attention to the command line "cmdAnray" in Figure 6.2. We use "cmdArray"

twice in the try-catch parses: The first cmdArray is the map initialization. The reference

vectors of the map arc first initialized to tentative values. The second cmdArray is the

map training, in this phase, the reference vectors in each unit converge to their 'correct'

values. After these two phases of training, the outputs of the C program are ready to be

used in the java program.
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^
In these command lines, there are some parameters:

-din name of the input data file.

-coût name of the file to which the reference vectors are stored.

-xdim number of units in the x-direction.

-ydim number of units in the y-direction.

-topol the topology type used in the map.

-neigh the neighborhood function type used.

-rand parameter that defines a new seed for the random-number generator is

defined.

-cin name of the file from which the reference vectors are read.

-rien running length (number of steps) in training.

-alpha initial learning rate parameter. Decreases linearly to zero during training.

-radius initial radius of the training area in SOM algorithm. Decreases linearly to

one during training.

When we embed the command line in our Java program, we should start a new thread in

the Java program [WebDev] [WebVen]. In Figure 6.2, We have two new threads: "new

OutputPollster (child.getErrorStream()).start()" and "new OutputPollster

(child.getInputSteam()).strat()". The reason is that the outputs of the program we just

launched using "(java.lang.Runtime) rt.execQ" are directed to our execution context, not

to the system console. In other words, the "Process" object (referenced by "child") is

receiving the output. Therefore, we should poll the "InputStream" objects and get the

desired output. However, if we do this inside the same thread that executes the

"commandArray", we should block until the "Process" object "child" terminates, which

may not be desirable. In this case, we should take the polling of the outputs of "Process"

object "child" on the separate threads as we do.

J
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6.1.3 Program outputs

The input files of the program are different when the option is cross validation or not.

When they select cross validation, the input file is only one file, because the program

divides the input file into ten parts and select nine parts as training data and one part as

testing data. If they do not need cross validation, the input files are composed of training

file and testing file accordingly.

In our program, only when we deal with the continuous regression, we have the disk I/O.

The program generates the data.dat file as the input file in the SOM command line, and

out puts the file named data.cod that contains the split point value for the program use.

The program generates not only the FDTs (Figure 7.3) and fuzzy decision rules (Figure

7.4) but also the fuzzy induced results and NN defuzzification results (Figure 6.3).

Please enter the training file name: iris.txt
Please enter the testing file name: iris.txt

The Fuzzy induced Result is: (150/7.0)
The Neural induced Result is: (150/1.0)

Figure 6.3 The output of the program

Using the NN for the defuzzification, we refer to the program from [JJ01]. The interface

of our program in JBuilder is Figure 6.4.

J
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Figure 6.4 The interface ofJBuilder

With the output results on the screen, the program out puts the details of the comparison

of predicted results and actual values with two defuzzification methods in the files of

fuzzy_results.txt and neural_rcsults.txt (Figure 6.5, Figure 6.6). With these two files, we

can easily find out which predicted examples are correct.

J
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n iris results

Original Class
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Predicted Class Errors
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

Figure 6.5 The output file: fuzzy _results.txt

Neural results

Original Class Predicted Class
150.0 160.89354497604798
148.0 137.23702597717374
145.0 135.9394021397919
146.0 59.24113867973112
145.0 132.01612896854093
150.0 168.74844634675694
159.0 172.050443914336
172.0 157.2572332548811 9
184.0 167.25305548585735
191.0 195.23684785146452
193.0 175.61353654492865
188.0 192.96666279853775
182.0 129.22545255286883
81.0 81.33307094708543
80.0 130.52894966122682

Error

1

2

3

Figure 6.6 The output file: neural_re suits.txt

J
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n 6.1.4 Cross validation

The obvious method for estimating the reliability of a classification model is to divide the

data sets into the training sets and the testing sets, using the training set to build the

model and examine its performance on the unseen testing sets. This is satisfying when

there are plenty of data. In more common circumstance, where there are less data sets two

problems appear: First, in order to get a reasonably accurate fix on error rate, the testing

set must be large, so the classification power of the training set becomes worse. Second,

when the available amount of data is moderate, different divisions of the data in training

sets and testing sets can produce large variations in error rates on the unseen cases.

A more robust estimation of accuracy on unseen cases can be obtained by cross

validation. In this procedure, the available data is divided into N blocks so as to make the

same number of each block of cases and class distribution as uniform as possible. N

different classification models are then built. In each model, one block is omitted from

the training data, and the resulting model is tested on the cases in that omitted block.In

this way, each case appears exactly once in the testing set. If N is not too small - ten is a

common number - the average error rate over the N unseen testing sets is a good

predictor of the error rate of a model built from all the data sets.

In our program, we select N equals to ten, thus it is ten folders cross validation. We only

apply the cross validation to the symbolic classification data. The results show that the

accuracy rate of cross validation is a little lower than that of the same data sets in training

and testing. For the continuous data sets, we do not use the cross validation, as the data

sets are enough to test the algorithms.

6.2 The options

J
The input files (Figure 7.1) of this program are the txt files. Therefore, the file name is

filename.txt. The first line of the file is the number and name of the attributes. The

second line is the number and name of the classes. The third line and the others are the
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data sets; one example occupies one line. For the continuous regression, the second line is

"2 small large" or "3 small moderate large" according to how many linguistic labels you

want to create when you transfer the continuous classes into the symbolic classes. The

format of the testing data file is same as that of the training data file.

As mentioned in the first part of this chapter, the program allows three options to be

invoked in the command line. We offer the default values of the options that are used if

the options are not invoked. The three options are:

- S (Default), the symbolic class; C, the continuous class.

- V (Default), cross validation (ten folders); N, no cross validation.

- U (Default), not pruning the tree; P, post pruning the tree.

The class Fuzzy_J45.java contains the main method. When executing the program in the

command lines, the typical command may be Fuzzy _J45 CN P.

6.3 Summary

In this chapter, we present the implementations of the Java program that are based on the

algorithms we described in chapter four and five. In our implementation, if we classify

the continuous regression, the first job is to transfer the continuous class into the

symbolic ones, so we embed the SOM_PAK into our Java program. For induce the FDT,

we utilize some options, such as using the cross validation or not, post pruning the tree or

not. For the defuzzification procedure, we have two methods, one is using the classical

MOM defuzzification method; the other one is using the NN to do the defuzzification.

J

In chapter seven, we will present our testing results from the program using the real life

data sets, which are the symbolic classification data set and continuous regression data

set.
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chapter? Experiment Results

In chapter six, we implemented our own Java program for the fuzzy decision process and

fuzzy regression process. We described how to use the Java program to implement these

fuzzy models for the symbolic classification and continuous regression discriminations.

In this chapter, we will generate some experiment results with the real life data sets to

validate and evaluate the algorithms and get some conclusions from them.

This chapter is constituted by two parts according to the data sets we implement: The first

part is using the software quality prediction data sets whose classes are symbolic

classifications. We set up the FDTs and fuzzy decision rules and provide the statistic

evaluation models. These data sets are retrieved by the DISCOVER, a commercial

software system that can analysis software for the software engineering.

J



n
Chapter 7 Experiment results 73

The second part is using the nine data sets from the records of the hydropower station to

test fuzzy regression procedure. These data sets are the continuous classes. In the end, we

perform the statistic evaluations and the useful discussions.

7.1 Experiment with symbolic classification

One of the big topics in software engineering is how to build software quality estimation

models. Suppose we have built such models using ML algorithms, we can predict which

model is good, and then we can use such conclusions to evaluate our software designs

directly. Using the rule-based system, we can setup the prediction model and predict the

quality of the new software with the explicit rules. Now, the problem is how we can get

the precise prediction model, and we need the powerful tools to help the software

engineers to setup such models. Comparing with other ML methods, FDT can

simultaneously fire several rules and allow the simultaneous validation of all the rules

[SBL01]. We choose our modified FDT as the right tool to setup the prediction models.

First, we use some tools (such as DISCOVER) to get the software quality metrics. It is

quite a task to analysis these metrics, to get the useful formula (rules), and to give the

suitable prediction to the software quality. Therefore, we need more precise method to

generate the metrics.

We have parsed five software systems using the DISCOVER. For each system, we get

some metrics of the software quality prediction. Another data set is Iris data which is the

typical data set of ML. We get it from the ftp site of Irvine University [Weblri].

7.1.1 DISCOVER

J
DISCOVER is a development information system consisting of the integrated sets of

applications and tools. It analyzes and parses the source code and creates a database
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(Information Model) that captures the interrelationships among all entities in the code

base. This Information Model provides critical information for both management and the

development team of software engineering. It can also organize software by entity type;

query software elements; and generate software graphics;

The results from the DISCOVER are in a detailed view and high-level architectural

perspective of the entire application. Specifications, documentation, tests, and test plans

are also captured as a part of the central data repository. So it is the best tool for us to

retrieve the software quality prediction metrics.

7.1.2 Six symbolic classes data sets

As you know, we use FDT to classify the symbolic classifications. The data format is in

Figure 7.1. The attributes are the software metrics, and the classes are in the last column,

in which 1 represents stable, and 0 represents unstable. All data sets are got from

DISCOVER. The meanings of the metrics are presented in Figure 7.2.

6
2
0
0
l
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

OCAEC
l 0

0
0
0
0
l
0
0
0
0
0
0
0
0
0
l
0
0
0
0
0
0
0
0
0

NOP

l
2
l
2
2
l
l
l
l
l
l
l
l
l
l
l
2
2
l
3
l
2
l
3

DIT

3
11
l 0
3 4
2 2
19
4
3
4
3
6
l 0
5
12
9
4
43
3
8
5
3 2
4 0
2
15

NAM

l
5
8
11
3
8
3
4
2
2
4
l 6
l
11
3
2
2 l
2
l
l
5
7
0
4

NAA

0
0
0.87
l
l
l
l
0
0
l
l
0
l
0
l
0
0.95
l
0
l
0 . 8
0.85
0
0.75

DAM

l
l
0
0
0
l
l
l
l
l
0
l
l
l
0
l
0
0
0
0
0
0
0
0

J
Figure 7.1 Sample data format of software metrics
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--) OCAEC: Others class-attribute expo rt coupling.
NOP: Number of parents.
DIT: Depth of inheritance tree.
NAM: Number of available me th ods.
NAA: Number of available attribute.
DAM: Data access metrics.
COH: Cohesion.
LCOMB: Lack ofcohesion in me th ods.
COM:Cohesion metric.
COMI: Cohesion metric inverse.
OCMAIC: Other class me th od attribute importcoupling.
CUBF: Number of classes that a re used by a membership fu notion of
class.
CUB: Number of classes thatare used by a class.
CUSOMAEC: Other class method attribute exportcoupling.

Figure 7.2 The definitions of the metrics

The data are from the current using software systems, which are Donne, Beans, Jetty,

Free, and Major_version. All the classes are symbolic variables and the binary

classifications except the Iris data. For details, please look at the Table 7.1.

Name Iris Donne Beans Jetty Free Major_version

Data size 150 486 391 229 50 2283

Attribute 1 sepallength OCAEC OCAEC OCAEC OCAEC

Attribute 2 Sepalwidth NOP NOP NOP NOP

Attribute 3 petallength DIT DIT DIT DIT

Attribute 4 Petalwidth NAM NAM NAM NAM

Attribute 5 NAA NAA NAA NAA

Attribute 6 DAM DAM DAM DAM

Attribute 7

Attribute 8

Attribute 9

Attribute 10

Class 1 Iris-setosa 0 0 0 0

Class 2 Iris-versicolor l l l l

Class 3 Iris-virginica

COH

LCOMB

COM

COMI

OCMAIC

CUBF

CUB

CUSOMAEC

NOC

NOP

0

l

J
Table 7.1 Data set in details
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-) After implementing the program, we get the FDT (Figure 7.3) and the fuzzy decision

rules (Figure 7.4).

DAM <= 0.0: l (75/5)
DAM > 0 . 0

l DIT <= 0.0
OCAEC <= 0.0

l NAA <= 0.0: !1 (10/5)
] NAA > 0.0: l (55/2)
OCAEC > 0.0: l (140/4)

DIT > 0. 0
NOP <= 5.0: !1 (42/2)
NOP > 5 . 0

NAA <= 5.0: l (118/8)
l NAA > 3.0
[ [ l NOP <= 8.0: l (29/9)

[ l NOP > 7.0
l l l NOP <= 8.0: l (16/5)
l l l NOP > 8.0
1111 NOP <= 9.0: !1 (28/3)
Ill] NOP > 8 . 0
11111 DAM <= 0.01: l (21/1)

DAM > 0.01: l (84/3)

Figure 7.3 Sample tree
Rule 1:

DIT <= 0.0 AND
OCAEC <= 0.0: l (45/2)

Rule 2:

DIT <= 0.0 AND
OCAEC > 0.0 AND
DAM <= 0.5 AND
NAA <= 1.0 AND
DAM <= 0.0: l (92/4)

Rule 3:

DIT <= 0.0 AND
OCAEC > 0.0 AND
DAM <= 0.5 AND
NAA <= 1.0 AND
DAM > 0.0 AND
NAA <= 0.0: l (51/2)

Rule 4 :

DIT <= 0.0 AND

OCAEC > 0.0 AND
DAM <= 0.5 AND
NAA <= 1.0 AND
DAM > 0.0 AND
NAA > 0.0: 0 (40/1)

J Figure 7.4 Sample rules
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^
These fuzzy decision rules arc well explained. If we express them in if ... then format,

such as for rule 1 :

If DIT is less than or equal to small (=0) and OCAEC is less than or equal to small (=0)

then class is stable (=-/).

7.1.3 An example: the analysis of Iris data

Iris data set, which dates back to seminal work by the eminent statistician Fisher in the

mid-1930s, is the typical test data for ML. It contains fifty examples each of the three

types of plant: Iris setosa, Iris versicolor, and Iris virginica. One class is linearly

separable from the other two; the latter two are not linearly separable from each other.

There are four attributes: sepal length, sepal width, petal length, and petal width (all

measured in continuous variables). Iris data set is excerpted in Table 7.2.

l
2
3
4
5

51
52
53
54
55

101
102
103
104
105

Sepal length

5.1
4.9
4.7
4.6
5.0

7.0
6.4
6.9
5.5
6.5

6.3
5.8
7.1
6.3
6.5

Sepal
w idth

Petal
length

Petal
w idth

Class

3.5
3.0

1.4
1.4

0.2
0.2

Iris setosa
Iris setosa

3.2
3.1

1.3
1.5

0.2
0.2

Iris setosa
Iris setosa

3.6 1.4 0.2 Iris setosa

3.2
3.2

4.7
4.5

1.4
1.5

Iris versicolor
Iris versicolor

3.1
2.3

4.9
4.0

1.5
1.3

Iris versicolor
Iris versicolor

2.8 4.6 1.5 Iris versicolor

3.3
2.7

6.0
5.1

2.5
1.9

Iris virginica
Iris virginica

3.0
2.9

5.9
5.6

2.1
1.8

Iris virginica

3.0 5.8 2.2
Iris virginica
Iris virginica

J

Table 7.2 Iris data
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We test our algorithm to the Iris data set and compare it with the algorithm C4.5. We first

use the training data set as the testing data set, and then, use ten folders cross validation.

We use the two defuzzification methods: both the MOM method and the NN method. We

notice that the performances of cross validation are little decreased than using the training

data set as the testing data set.

In our algorithm, we have the correspondent tree for each class. So in Iris data, as they

have three classes, we have three trees. We present them in Figure 7.5, Figure 7.6, and

Figure 7.7.

Petal length

<=3.3

Iris-setosa (52/2)

>1.9

! Iris-setosa (102/2)

J

Figure 7.5 Iris-setosa tree

Petal width

>1.5

<=1.8

Petal length

<=5.5 >4.9

Iris-virginica (54/6)

Iris-virginica (103/4)

Iris-virginica (9/3)

Figure 7.6 Iris-virginica tree
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Petal length

<=3.3 >1.9

Iris-versicolor (52/2)

Iris-versicolor (57/8)

Petal width

<=1.8

79

Petal width

<=1.8 >1.5~^
^Petal width

<=1.9 1.6

Iris-versicolor (49/2)

.>1.6

Iris-versicolor (9/4)
Iris-versicolor (16/2)

Figure 7.7 Iris-versicolor tree

In FDT, the branch is divided by the fuzzy partition such as "small" or "large". Notice

that the values to split the left branch of the tree are always larger or equal to those of the

right. This is the main difference between the classical DT and the FDT. The splitting

branches show in Figure 7.8.

l
Petal length (small) Petal length (large)

0 Value 2=1.9 Value 1=3.3

J Figure 7.8 Fuzzy values and fuzzy partitions
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n From these FDTs, we get fuzzy decision rules of the Iris data (Figure 7.9). It is easy to

transfer the fuzzy value into the fuzzy label, here we omit this transformation. At the end

of each rule and the leaves of each tree are the total number of the examples being fired

and the number of misclassification examples.

Fuzzy decision rules:
Rule 1:
If Petal length <= 3.3 then Iris-setosa [52/2];

Rule 2:
If Petal length > 1 .9 then ! Iris-setosa [1 02/2];

Rule 3:
If Petal length <= 3.3 then Iris-versicolor [52/2];

Rule 4:
If Petal length > 1.9 AND Petal width <= 1.8 then Iris-versicolor [57/8];

Rule 5:
If Petal length > 1.9 AND Petal width > 1.5 AND Petal width <= 1.9 AND Petal width <= 1.8
then Iris-versicolor [9/4];

Rule 6:
If Petal length > 1.9 AND Petal width > 1.5 AND Petal width <= 1.9 AND Petal width > 1.6 then
! Iris-versicolor [1 6/2];

Rule 7:
If Petal length > 1.9 AND Petal width > 1.5 AND Petal width > 1.6 then ! Iris-versicolor [49/2];

Rule 8:
If Petal width <= 1.8 AND Petal length <= 5.5 then ! Iris-virginica [103/4];

Rule 9:
If Petal width <= 1.8 AND > 4.9 then Iris-virginica [9/3];

Figure 7.9 Fuzzy decision rules

J

For inducting the Iris data, we get the accuracy rate of the prediction (Table 7.3). It shows

that using the NN defuzzification process and the training data as the testing data, the

accuracy rate is higher than that of the C4.5. The FDT is very efficient and robust, and it

always gives us the shorter trees than that of C4.5. We use the FDT to classify the Iris

data. The results are very prompting: The accuracy rate is ninety four percent. We view

the FDT as a way to heuristically find parameters of fuzzy models by processing training

data with a learning algorithm. When we do the cross validation and the MOM

defuzzification process, the accuracy rate is equal to the C4.5.
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Iris MOM NN C4.5

Training Data 95.3 99.3 98.0

Cross validation 195.3 93.3 95.3

Table 7.3 The comparison results of Iris data set

Therefore, we draw a conclusion that: For some examples, FDTs are more robust than the

C4.5 algorithm [SBLEOO]. Now we just compare the accuracy rate of the prediction. The

more precise statistic evaluation methods will be described in the next section.

7.1.4 Evaluations for the symbolic classification prediction

Although the accuracy rate is important in the evaluations of the models, it does not take

into account the cost of making incorrect classifications. Optimizing accuracy rate

without considering the cost of the errors often cause a bias. So we need formal measures

that comprise objective set of standards. We calculate the confusion matrix from the

predicted results. The three outputs of the confusion matrix can thoroughly evaluate the

results of the DTs. They are accuracy, correctness, and completeness.

According to [WF99] and [WebKos], suppose we have two-class case with class label yes

and no. we present the five different possible outcomes of a single data set in one table

(Table 7.4).

Desired class/predicted class Yes No Completeness

Yes True positive (a) False negative (b) a/(a+b)

No False positive (c) | Tme negative (d) d/(c+d)

Correctness a/(a+c) d/(b+d) Accuracy

J
Table 7.4 Different outcomes of a two-class prediction evaluation
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^ In this table, true positive and true negative are correct classifications. A false positive is

when the outcome is incorrectly predicted as yes (or positive), it is in fact no (or

negative). A false negative is when the outcome is incorrectly predicted as no (or

negative), it is in fact yes (or positive). So we get the confusion matrixes for analyzing the

results that showing the predicted and desired classifications. A confusion matrix is of

size LxL, where L is the number of different label values. For Iris data, L is three, the

others, L is two. We have standard evaluations as below:

Accuracy is defined as the percentage of components that were predicted as

belonging to certain classification group and actually did belong to that

classification group. Accuracy = (a+d)/(a+b+c+d).

Correctness is defined as the percentage of components that were predicted as

belonging to certain classification group and actually did belong to that

classification group.

Completeness is defined as the percentage of those components that belonged to

certain classification group and were identified by the model.

The three standards arc all wanted to maximize. For accuracy, it measures how correct

the model is. For correctness, if correctness is low, the model identifies more components

as being non-faulty, but in fact, they are really faulty. And for completeness, if

completeness is low, then more components that were likely to be faulty will not be

identified.

J

Another measure that can be used to evaluate the overall appropriateness of the model is

the goodness-of-fit of data. This measure can be obtained via a Chi-square test. This test

evaluates whether or not the expected cell frequencies under the respective model are

significantly different from the observed cell frequencies. The higher the value of Chi-

square test, the better the fit of the data and the model is. The corresponding p-value

points out to the statistical significance of the test. The statistical significance of the



n
Chapter 7 Experiment results 83

6t.

results is an estimated measure of the degree to which it is "tme", in the sense of

"representative of the population". The p-value represents a decreasing index of the

reliability of the results. The smaller the p-value, the more significant the test is and the

more you can believe that the observed relation among the variables in the sample. It is a

reliable indicator of the relation among the respective variables in the population. The

following six tables present the empirical results of six data sets using the statistic

methods to evaluate. They use both the MOM method and the NN method as the

defuzzification procedures. The common characters of these tables (Table 7.5-Table

7.10)are:

High overall accuracy achieved. The average value is 81.0% for fuzzy induction

and 81.3% for NN across the six experiments.

Experiments in Iris data, Free data, and Donne data show that the X-sqr values are

high; with the perfect statistical significance (p-value is small).

Iris data

Fuzzy induction Predict 0 Predict 1 Predict 2 Completeness

Desired 0 50 0 0 100

Desired 1 0 48 2 96

Desired 2 0 5 45 90

Correctness 100 90.6 95.7 95.3

X-sqr 261.3408 p<= 0.001

Neural induction Predict 0 Predict 1 Predict 2 Completeness

Desired 0 50 0 0 100

Desired 1 0 49 l 98.0

Desired 2 0 0 58 100

Correctness 100 100 98.0 99.3

X-sqr 294.1176 p<= 0.001

J
Table?.5 Iris data confusion matrix
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Donne data

Fuzzy induction Predict 0 Predict 1 Completeness

Desired 0 0 149 0

Desired 1 0 337 100

Correctness 0 69.3 69.3

X-sqr 0.00004 p<= l

Neural induction Predict 0 Predict 1 Completeness

Desired 0 16 133 10.7

Desired 1 23 314 93.2

Correctness 41.0 70.2 67.9

X-sqr 2.1437 p<= 0.20

Table 7.6 Donne data confusion matrix

Jetty data

Fuzzy induction Predict 0 Predict 1 Completeness

Desired 0 0 56 0

Desired 1 0 173 100

Correctness 0 75.5 75.5

X-sqr 0.00007 p<= l

Neural induction Predict 0 Predict 1 Completeness

Desired 0 0 56 0

Desired 1 0 173 100

Correctness 0 75.5 75.5

X-sqr 0.00007 p<= l

Table 7.7 Jetty data confusion matrix

J
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Beans data

Fuzzy induction

Desired 0

Desired 1

Correctness

X-sqr

Neural induction

Desired 0

Desired 1

Correctness

X-sqr

Predict 0 Predict 1 Completeness

0 96 0

0 295 100

0 75.5 75.5

0.00007 p<= l

Predict 0 Predict 1

0 96

0 295

0 75.5

0.00007 p<=

Completeness

0

100

75.5

l

Table 7.8 Beans data confusion matrix

Free data

Fuzzy induction Predict 0 Predict 1 Completeness

Desired 0 14 9 60.9

Desired 1 3 24 88.9

Correctness 82.4 72.7 76.0

X-sqr 13.7035 p<= 0.001

Neural induction Predict 0 Predict 1 Completeness

Desired 0 14 9 60.9

Desired 1 3, 24 88.9

Correctness 82.4 72.7 76.0

X-sqr 13.7035 p<= 0.001

Table 7.9 Free data confusion matrix

J
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Major_version data

Fuzzy induction Predict 0 Predict 1 Completeness

Desired 0 0 140 0

Desired 1 0 2143 100

Correctness 0 93.9 93.9

X-sqr 0.00067 p<= l

Neural induction Predict 0 Predict 1 Completeness

Desired 0 0 140 0

Desired 1 0 2143 100

Correctness 0 93.9 93.9

X-sqr 0.00067 p<= l

Table 7.10 Major_version data confusion matrix

7.2 Experiment with continuous regression

The hydropower network data of this part experiment is coming from HRM. The used

algorithm is that we proposed in the chapter five, the fuzzy regression system. In this

section, we introduce the problem we try to solve. And then, we present the experiment

results, and the statistic evaluations.

J

7.2.1 Problem description

The data sets are about hydrological information contained in a historical database to

improve the forecast of natural contributions flow in the short run of Chute-du-Diable

area for the summer-fall period (June 15 at November 30) from 1992 to 1999. The

objective of getting the results from the data sets can be summarized as the satisfaction of

the following requirements:

Effective use of water
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^ Account of future hydrological uncertainty

Satisfaction of energy need

Respect of safety constraints.

To reach these goals, a decision-making process of water stock management is used that

consists of four steps:

1) Weather hydro measurements and gathering of the data;

2) Data analysis;

3) Weather and hydrological forecasting;

4) Planning.

An essential component of the decision process is the prediction of natural contributions

flow. This helps evaluate the ability of the power system to face various contingencies

and to propose appropriate remedial actions. In our thesis, we focus on the step two and

step three.

The data sets are grouped into nine separate parts. All data sets are composed of 1186

examples, the class values are continuous variables and range from 300 to 1300 (Table

7.11).

J
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Class

Range

AncCD_Jl

1290

AncCD_J2

1290

AncCD_J3

1290

AncCD_J4

1290

AncCD_J5

1290

AncCD_J6

1290

AncCD_J7

1290

Vol_3j
297

Vol_7j

551

attribute 1

Attribute 2

attribute 3

Attribute 4

Attribute 5

Attribute 6

Attribute 7

Attribute 8

Attribute 9

Attribute 10

Attribute 11

Attribute 12

Attribute 13

Attribute 14

Attribute 15

Attribute 16

Attribute 17

Attribute 18

|AncCD_Pl

|AncCD_Tlj

|Qman_Pl

|Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

|Qpper_4h

|Qpper_T4h

iPbvCD_P4

PstCD_P2

PstCDP_P3

PstCDP_P2

PstMisbi2_Pl

PstManE_P2

Pprev_Jl

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qseqi_4h

|Qserp_T4h

|Qserp_T12h

Qpper_4h

Qpper_T4h

PbvCD_P3

PstCD_Pl

PstCDP_P2

PstCDP_Pl

PstMisbi2_Pl

PstManE_Pl

Pprev_Jl

Pprev_J2

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qman_T12h

Qserp_4h

Qserp_T4h

Qpper_4h

Qpper_T4h

PbvCD_P2

PbvCD_Pl

PstCDP_P2

PstCDP_Pl

PstMisbi2_Pl

Pprev_Jl

Pprev_J2

Pprev_J3

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

]Qpper_4h

|Qpper_T4h

|PbvCD_P2

|PbvCD_Pl

|PstCDP_P2

|PstCDP_Pl

|Pprev_Jl

|fprev_J2

|Pprev_J3

|Pprev_J4

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

[Qman_T12h

|Qserp_4h

|Qserp_T4h

|Qserp_T12h

|Qpper_4h

|Qpper_T4h

|PbvCD_P3

|PbvCD_P2

|PbvCD_Pl

|Pprev_Jl

|Pprev_J2

|Pprev_J3

|Pprev_J4

|Pprev_J5

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

|Qserp_T12h

[Qpper_4h

|Qpper_T4h

|PbvCD_P2

|PbvCD_Pl

|Pprev_Jl

|Pprev_J2

|Pprev_J3

|Pprev_J4

|Pprev_J5

|Pprev_J6

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

[Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

|Qserp_T12h

Qpper_4h

|Qpper_T4h

|PbvCD_Pl

|Pprev_Jl

|Pprev_J2

|Pprev_J3

|Pprev_J4

|Pprev_J5

|Pprev_J6

|Pprev_J7

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

[Qpper_4h

|PbvCD_P2

|PstCDP_P2

|PstCDP_Pl

|PstMisbi2_Pl

|PstManE_P3

|Pprev_Jl

[Pprev_J2

|Pprev_J3

|AncCD_Pl

|AncCD_Tlj

|Qman_4h

|Qman_T4h

|Qman_T12h

|Qserp_4h

|Qserp_T4h

|Qpper_4h

|Qpper_T4h

|PbvCD_P2

|PbvCD_Pl

|Pprev_J l

|Pprev_J2

|Pprev_J3

|Pprev_J4

|Pprev_J5

|Pprev_J6

|Pprev_J6

Table 7.11 Hydropower station data sets

7.2.2 Continuous regression prediction

Through the fuzzy regression induction, for each data set, we use SOM algorithm to

transfer the continuous classes into two symbolic classes. Then we generate two FDTs

and fuzzy decision rules. By using the min-max algorithm, we get the input data of the

NN for defuzzification procedure. There are three layers in back propagation NN: The

nodes of the input layer are the results of the leaves number of two trees, which are

labeled with the class. The hidden layer has the same nodes as the input nodes. The

output layer has one node that gives the crisp value we predicted. The sample input data

show in Table 12.

J
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Table 7.12 Sample input data of the NN

We implement the algorithm described in chapter five for the continuous regression. We

have three different tests in different number of classes and defuzzification methods

(Table 7.13).

Test Number of classes Defuzzification method

l 3 MOM

2 2 MOM

3 2 NN

Table 7.13 Tests on the data

J

For continuous classes transferring to symbolic classes, test 1, we use three symbolic

classifications: small, moderate, large. The defuzzification method is the MOM. Test 2,

we use two symbolic classifications: small and large. The defuzzification method is the

same as the first one. Test 3, we use the second classification transformation and the

defuzzification method is the NN. In all these tests, we use the training data sets as the

testing data sets. We select ten percent of the data range as the threshold. That means, if

the result of the desired value minus the predict value is smaller than the threshold, it

indicates that the prediction is successful.
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% CD_J1 CD_J2 CD_J3 CD_J4 CD_J5 CD_J6 CD_J7 Vol_3j |Vol_7j

l 77.1 77.9 79.3 81.2 79.6 77.2 63.2 63.8 63.1

2 55.1 40.8 31.2 54.3 47.2 52.9 73.1 58.5 23.7

82.5 ,,77.6
fâi.;.:::i:,::S«:;i

80.%, 78.1 76.8 T&M:a-
y
i.ua

,'76^111
UE w^x

Table 7.14 Accuracy rate of three tests

From Table 7.14, we conclude that for the classical defuzzification method, the more

fuzzy partition number, the more accuracy the results are. In addition, the NN

defuzzification procedure is better than that of MOM method.

Figure 7.10 is the graphic comparison accuracy rates with test 1 and test 3. It shows that

NN method is better than MOM method without much deference. In next section, we use

the statistic method to evaluate the results of test 1 and test 3, and then we can further

testify our conclusions.

90i
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50^

40^

30^

20-1

10-1

0-1

• Ei

N

'Il

•MOM I

•NN

Jl J2 J3 J4 J5 J6 J7 3j 7j

J
Figure 7.10 Accuracy rates of two defuzzification methods
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7.2.3 Statistic evaluation method

In the continuous variable prediction situation, the basic quality measures offered by the

error rate or accuracy rate are not enough: Errors are not simply present or absent, as the

data sizes may be different.

Several methods, which have more or less relations with the statistic theory, can be used

to evaluate the success of the continuous variable prediction. We choose mean, median

and standard deviation (Std.) three methods (Table 7.15) from them. All these three

methods want the small values.

Mean is also called the mean absolute error. It is the principal and commonly used

measure. It is obtained by adding the value of each quantity and divided by the

number of quantities without asking account of their sign. It has the feature that

all sizes of errors are treated evenly according to their magnitude.

Median is the value of the variable for the middle member of the population or

sample; half of the population would have value above and the other half below.

J

Standard deviation is the statistic method that takes into account the whole sample

which may therefore be distorted by rogue data.

Methods Formula

Mean ^v
•n

Median The middle value.

Std. ^X2-x^X)/(n-l)

Table 7.15 Statistic measures for continuous data prediction



0
Chapter 7 Experiment results 92

The evaluation results present in Table 7.16. Although both results are satisfying, the

result values of NN are smaller than that of the MOM. Therefore, the NN method is

better than the MOM: method.

MOM w m w m :m w, v J6 «
s^ •aim m •r"

Mean 21.9844 20.4363 20.6642 20.9531 21.3375 20.5900 54.4037 1.3802 18.8675

Median 0 0 0 0 0 0 0 0 0

Std. 80.1131 79.1718 79.8761 81.1224 81.0345 79.3304 118.0583 7.5154 46.9306

NN Jl w, V3' m J5 J6 J7 3J.-f.|-|-7JI w
:^?

Mean 12.1085 15.9230 13.1314 15.4255 11.3932 16.5626 17.9033 0.2803 17.1069

Median 0 0 0 0 0 0 0 0 0

Std. 54.6577 l 55.8703 | 46.9230 | 55.4930 147.9052 | 64.5570 | 68.2035 14.6163 142.4060

Table 7.16 Results of statistic evaluation for hydropower station data

It is easy to explain these evaluation results from the practical point of view. For

example, the 3j model is the prediction of the coming three days variations; the 7j model

is the prediction of the coming seven days variations. In Table 7.15, the values in the 3j

column are far smaller than those of the 7j column. That means to predict in three days is

easier than to predict in seven days.

7.3 Lessons learned

From the implementation of the fuzzy classification and regression system using the real

life data, we can see that some results are satisfying and some arc not as good as

expected. The following parts are the discussions of these problems.

J
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7.3.1 Symbolic classification

There is mainly a typical error in some results (Beans data, Major_version data, and Jetty

data) of the experiments. The class "0" was misclassified. The reason is when the number

of class "0" is small and they are sparsely distributed in the data set, then the FDT has

difficulty to classify them, and considering them as a certain part in the fuzzy partition.

Basically speaking, there are two reasons to form such misclassification. First we smooth

a word using the dilatation and erosion operators. After using these two operators, the

word is smoothed and it is generated into a new word, in which the same class labels are

close to each other. But if a class is sparsely distributed in the data sets, there are always

one or two class characters among other classes. For example, in Figure 7.11, there are

two classes "+", and "-". Before we use the mathematical morphology, the class is

distributed like the first figure. After the transformation (the second figure), the classes

are generated into three groups; those are sequence "+", sequence uncertain, and

sequence "-"; both the sequence "+", and sequence "-" have other classes.

The second reason is there is a limit when the FDT splits. This limit is that the generated

length of the word's longest definite part should be longer than two times of the recursion

time. If not, the tree stops splitting. Therefore, in the data set, it remains the different

classes.

J
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+ - -+++-+ - + +
l

+ + - +

5 7 8 13 14 17 20 21 22 25 29 30 35 36 38 40 42 43 45 47 49 50

Before the smooth the word

sequence + sequence uncertain sequence -

ç+ -+ +î)C+ + + - +̂ ç-:-..-^)

I

5 7 8 13 14 17 20 21 22 25 29 30 35 36 38 40 42 43 45 47 49 50

After the smooth the word

Figure 7.11 Fuzzy partition problem

7.3.2 Continuous regression

Suppose we have two classifications, class "0" and class "7". Theoretically speaking, the

generated class "/0" equals to class "7", and class "/7" equals to class "O", thus one tree

is enough. We can only use the class "0" and "/0" or class "7" or "/7". But if we have

more than two classes, we should use all the trees. The same thing is for the symbolic

classification.

Another issue is that we use the threshold value to judge the successful prediction. This is

the special character of the continuous regression predictions. We should sacrifice the

accuracy, if we want to make the program efficient and the results easy to explain with

the rules. In neuro-fuzzy techniques, we must deal with this trade-off between precision

and readability [BB97].

J
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7.4 Summary

In this chapter, we have presented the experiment results of our data sets both for the

symbolic classes and continuous classes. We give not only the accuracy rate of each

prediction, but also the statistic evaluations. The results are satisfying for both

evaluations. For the symbolic classification, we do training data set as the testing data set

and ten folders cross validation separately. The results are similar, but the accurate rate of

the cross validation is a little decreased. The part of rules for software quality prediction

we generated were used in [SBC01]. For the continuous regressions, we compare the NN

and MOM defuzzification methods. We find that the NN method for defuzzification is

better than the classical MOM defuzzification methods. And also these results are

generated in [BML02].

In chapter eight, we will give conclusions of the whole thesis and the lessons we learned

from the experiments and the discussions of the future work.

J
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chapter 8 Conclusions and Future Work

In chapter seven, we present the results of implementation of our rule-based system to

both the symbolic classification and continuous regression. We discuss and evaluate the

results and draw some conclusions. In this chapter, we will present the conclusions of the

thesis and the future work.

8.1 Conclusions

J

In this thesis, we enhance the Marsala's FDTs for some modifications. We change the

shape of the fuzzy partition, and add the enhanced pessimistic pruning process in building

the tree. We introduce a neuro-fuzzy approach to deal with the continuous regressions.

We implement the two NN algorithms, SOM and back propagation, into these fuzzy

regression procedures.
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The conclusions of this thesis are:

From our experiments, there are two advantages of using the mathematical

morphology to do the fuzzy partitions. First, this method is better than the normal

clustering method, as it associates with the classes. Also sometimes it is better

than the fuzzy partition provided by the domain experts as they have the chances

to make mistakes. Second, this method can be implemented automatically, thus

avoid the interaction with the human.

The modification of Marsala's FDT algorithm, such as changing the recursion

time, the splitting criterion and the fuzzy membership function, and adding the

pessimistic pmning procedure, can enhance the FDT's inductive and prediction

abilities.

• When we use the classical defuzzification, the more numbers of the fuzzy

partition of the FDTs we hold, the more accurate the results are. But if the fuzzy

partition numbers are too many, the fuzzification and the defuzzification

procedure will be too complicated.

For the symbolic classification, the min-max algorithm and the vote method to

defuzzy the FDTs are good choices. They can be compared with the other

methods when we classify the new cases.

J

For the continuous regression, the NN method as the defuzzification procedure is

better than the classical defuzzification methods. As the NN uses all fuzzy set

values which are "fired" in the FDT, while the classical defuzzification method

just uses the representative fuzzy set values. The results suggest that this neuro-

fuzzy approach we proposed is comparable with the technology which is used in

ML.
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Some of the software quality prediction data sets are not predicted well because of

the small number of the class and it sparsely distributes in the data sets. For the

continuous regression prediction, there is a trade-off between the accuracy and the

explicitness.

8.2 Future work

Future work will be focused on implementing more data to test and enhance the

algorithm. Using the C-means clustering to transfer the continuous classes in the

symbolic ones is also an interesting work. Now we are using the standard back

propagation algorithm for defuzzifying the FDTs. The major drawback of it is when a

large learning rate occurs. It will prevent the algorithm from descending to the desired

optimal solution. Therefore, the performance of convergence can be slow. If we use some

modified algorithms, such as resilient propagation algorithm, the performance may be

increased.

As the boosting algorithm has been testified effective to the classical DTs, we consider

using the boosting algorithms for improving the performance of FDTs. The general

procedure of boosting the FDTs can be straight forward to adapt the FDTs to the process

of weighted data vectors. The outputs from the FDTs could be combined in a linear

combination of the class probabilities. For each tree, it could be taken to give an overall

set of probabilities. In this case the weights for each tree would be determined according

to the expected performance of the trees. Alternatively, we can also use fuzzy sets to

partition the classification probability values obtained from each DT and use these to

learn a higher level DT on probability space which could then be used for combination.

J
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8.3 Closing words

Enhancing and evolving the rule-based system is not an easy job. As one of the effective

rule-based system, the FDT has many aspects to be thought over. Although there are

many modifications about it, it still needs to enhance the performance. For the fuzzy

regression procedure, we should enhance the prediction accuracy rate of it. Apparently,

there is a trade-off between the explicitness and the accuracy: If we want to get better

predicted results, we can use the RT or more complicated algorithms to classify the cases.

But it is hard to generate the rules from them. If we want to get the explicit mles, the

accuracy rate may be affected. Our approach is a satisfying approach between this trade-

off. Many deep thinking should be executed. Also the new approach may be needed.

Here, I personally thank HRM for its financial support and my supervisor Professor

Sahraoui for his academic support. The combination of these two supports is the basis of

this thesis.
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[WebVen] http://www.artma.com/iini/cvberspace/CvberspaceConsole.html
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