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Sommaire

Les blocs pre-conçus et pre-vérifiés, appelés les blocs de propriété intellechielle (IP),

sont de plus en plus utilisés dans la conception des systèmes microélectroniques.

D'une part, ils facilitent la conception des systèmes et, d'autre part, ils contribuent de

façon significative à revolution du produit.

Cependant la vérification de ces systèmes, intégrant les blocs IP devient un véritable

défi et une tâche très laborieuse. En effet, la difficulté réside dans le fait qu'un bloc

IP fonctionne correctement seulement dans son propre environnement et il est peu

probable qu'il maintient ses propriétés dans un environnement arbitraire.

Afin de garantir le bon fonctionnement de ces systèmes, un bloc IP non seulement

doit être certifié mais son environnement doit être aussi mis en exergue. Dans cette

direction, I'approche supposition/garantie1 est un support idéal aussi bien pour
specifier le comportement attendu du système que pour prouver certaines de ses

propriétés. Ainsi, la spécification des blocs IP se subdivise en deux parties. La

première partie décrit les hypothèses que le composant suppose sur son

environnement tandis que la deuxième partie spécifie les propriétés du composant.

D'une manière intuitive, cette décomposition est justifiée par le fait que le composant

garantit ses propriétés lorsque son environnement satisfait les hypothèses que le

composant suppose.

J

L'inconvénient du paradigme supposition/garantie est que les hypothèses et les

propriétés sont souvent exprimées en logique temporelle ou bien dans un langage
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propre des outils qui supportent ce type de spécification, comme MOCHA à titre

d'exemple [37]. Cette dépendance de la logique ou d'un outil particulier nest pas

acceptable à la spécification des blocs IP car il limite généralité, réutilisablilité et

portabilité des blocs. C'est pourquoi, nous introduisons les automates

acceptants/imposants pour la spécification supposition/garantie des blocs IP. Ensuite,

nous proposons un paradigme formel pour la vérification compositionnelle des

systèmes intégrants de ces blocs.

Cette thèse est constituée de 6 chapitres :

Dans le premier chapitre, nous introduisons le problème d'intégration des blocs IP.

Nous discutons aussi les objectives des travaux présentés dans les chapitres suivants.

Dans le deuxième chapitre, nous présentons une synthèse de la littérature récente

reliée à la vérification formelle des composants matériels2. Ce chapitre introduit les
notions mathématiques utilisées dans la thèse et regroupe un ensemble de méthodes

supposition/garantie et les méthodes de vérification sémantique compositionelles .

Nous classifions ces méthodes par deux critères : (l) Est-ce que la méthode en

question permet un raisonnement/composition circulaire des propriétés des

composants de système? (2) Est-ce que cette méthode peut être appliquée aux

compositions des propriétés de sûreté ainsi qu'aux propriétés de vivacité?

Dans le troisième chapitre, nous proposons d'utiliser les automates

acceptants/imposants4 pour spécifier les hypothèses d'environnement de composant,
par exemple, un bloc IP. Un automate acceptant/imposant est un automate qui a été

augmenté par certaines contraintes booléennes. Ces contraintes décrivent ce que doit

être fourni à l'entrée de l'automate dans ses états. Les contraintes restent satisfaites

tant que le comportement de l'environnement de l'automate est conforme au

u

' Assume-guarantee
2 Hardware
Compositional model checking
4 Interface Recognizers/Suppliers (1RS)
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comportement décrit par ces contraintes. Ainsi, on représente le comportement par

l'automate acceptant. Supposons que nous modélisons les hypothèses

d'environnement d'un composant par un automate acceptant. Nous composons cet

automate avec le composant et nous imposons une condition que les contraintes

d'automate soient maintenues (vrais) pendant toute la vérification du composant. Le

vérificateur sémantique5 doit appliquer toute la séquence de données qui satisfait les
contraintes de l'automate. De cette façon, l'automate acceptant caractérise les

sequences de données du composant. Ce dernier nous permet de vérifier le composant

dans un environnement propre. Nous décrivons la syntaxe et la sémantique de ce type

d'automate dans ce chapitre.

En guise d'exemple, nous décrivons un modèle d'un commutateur ATM dans les

chapitres 4 et 5. Notre objectif est d'illustrer l'application de l'automate

acceptant/imposant à la spécification et vérification d'un système complexe. Ce

commutateur est comosé d'un ensemble de contrôleurs et un commutateur. Nous

décrivons les hypothèses des environnements du contrôleur et du commutateur. Dans

le chapitre 4, nous démontrons que les hypothèses des contrôleurs sont respectées par

le commutateur et vice-versa, les hypothèses du commutateur sont respectées par le

commutateur. De la même façon, nous illustrons dans le chapitre 5 que ce type

d'automate peut être utilisé pour la spécification et la vérification compositionelle des

propriétés de sûreté et de vivacité du commutateur ATM.

Nous concluons ce travail en chapitre 6 en mettant en évidence les aspects pratiques

de l automate proposé, en particulier son application à la vérification des processeurs

ainsi qu'aux systèmes de protocoles de télécommunication multicouche.

<J
5 Model checker
6 Asynchronous Transfer Mode
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Abstract

In this thesis, we review recent developments in compositional and assume guarantee

verification. We discuss whether each method supports circular/non circular

reasoning and whether it can be used when proving safety/liveness properties.

We fomiulate interface recognizers/suppliers (1RS), which are recognizers augmented

with Boolean constraints. The constraints specify what values may occur on 1RS

inputs at each state. In other words, 1RS can constrain its inputs.

We discuss a composition theorem for circular reasoning using 1RS. In this way, 1RS

framework extends non-circular constraint model checking [25] to a circular

constrainted model checking.

We demonstrate an application of 1RS in (1) specifying environment assumptions and

in (2) modeling pre conditions / post conditions of properties of an ATM switch.

Using 1RS, we specify and then verify the switch.

J
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Chapter 1

Introduction

1.1 Motivation

Predesigned, preverified silicon building blocks or cores are finding increasing use in

microelectronic system designs [50]. Examples of such cores or hardware intellectual

properties (IP) are microprocessors, DSP, PCI, MPEG and JPEG cores. Integration of

these application specific components into complex system-on-chip (SOC) designs is

a new challenge for system-level designers. As the complexity and the density ofICs

increase, verification becomes even more important than before. Traditionally,

simulation has been used for design verification, but the increasing design complexity

makes it very difficult, if not impossible, to create sufficient test vector sets. Even

with partial vector sets, simulation usually takes too long for each iteration.

International Technology Roadmap for Semiconductors (ITRS) [10] has identified

test and verification of complex systems as the challenges of the system design in the

next decade. ITRS has warned that these challenges are soon becoming crises. There

are currently 2 to 3 times more verifications engineers than designers on

microprocessor teams. Overall Cost of design threatens continuation of the

semiconductor roadmap [10].

u

Formal verification may offer a viable approach to the verification of these complex

systems. Instead of applying stimuli to a design and comparing its responses with

expected results, formal verification tools examine a design and mathematically prove

or disprove its functional properties. The huge effort needed to create fiinctional test
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vectors can be avoided except for those parts of the design where simulation is still

necessary. Putting both methods together, a thorough verification can be achieved in a

much shorter time than purely using simulation. Unlike nonexhaustive simulation,

which only aims to show the presence of bugs, fomial verification can prove their

absence. When errors are found, formal verification tools can also generate counter

examples to demonstrate the error conditions. Fonnal verification has become an

essential technology for solving today's verification problems [48].

Most formal verification methods fall into one of two classes [31]; (1) proof based

methods which use theorem provers, and (2) state-exploration methods which use

model checkers to automatically search the state space of the design. Theorem

provers use the full power of mathematics, so they are very flexible and can proof

properties of entire classes of systems [31]. The main drawback of such methods is

that they require a large amount of interaction from the users. In contrast, state-

exploration methods restrict the model to be finite-state, and use state space search

algorithms to check automatically that the specification is satisfied. The most serious

drawback of the state-exploration methods is the state explosion problem [31]. This

problem mostly arises in systems composed of multiple components operating in

parallel. Composing finite state machines in parallel leads to an exponential explosion

of states in the worst case, which imposes a strong limit on the size and complexity of

systems that can be verified by state enumeration methods [14].

J

Two main techniques have been proposed to avoid state explosion problem [31]: (1)

compositional verification and (2) abstraction. In compositional verification, the

specification of the system is separated into properties of its components. Then, the

properties of the components are separately verified. Finally, it is proven that the

components specifications imply the specification of the entire system. In abstraction,

the models are simplified by hiding details of the design. Then the simplified model is

verified. Finally, a relation between the abstract model and the original one is

established to assure that the correctness at the abstract level implies the correctness

at the detailed or refined level.

2
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Typically, a component works properly only in a given environment in the system. It

is unlikely that the component satisfies any useful property in an arbitrary

environment. This is called "the environment problem" [14]. In compositional

verification, properties or abstract models of the other components constitute a

constraining environment for verifying the given component.

The environment problem appears in a similar way when reusing IP cores in new

applications. Given that the core works properly under specific environment

assumptions, it is unlikely that it works in any arbitrary application. For a successful

core reuse, a formalism is needed to specify these assumptions.

In this thesis, we study fomial requirements for (reusable) component integration and

propose a formalism for the specification of the properties and the environment

assumptions of these cores. We use compositional verification methodologies to

enssure correct integration of cores in systems.

Our objective is also to illustrate compositional reasoning on a relatively complex

system. As a case study, we target telecommunication hardware systems. We study an

asynchronous transfer mode (ATM) switch module that consists of port controllers

and a switch fabric. ATM is a cell based switching and multiplexing technology

designed to be a general purpose transfer mode for a wide range of services [52]. It is

particularly well suited for the exchange and transfer of media intensive data such as

real time audio, video, and high quality images.

J

The ATM switch includes a complex control path and handles large data structures

like ATM cells. The switch is quite complex for current model checking tools, e.g.,

Formal Check [3], and consequently a compositional approach must be adapted for

the overall verification. Although, there have been earlier efforts in the verification of

switch fabrics [32], there is no published work on (the formal or informal)

verification of port controllers. As data rates of networks increase and more services

3
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are offered by network service providers, these port controllers are becoming more

complex since they have to handle packets in a shorter time budget and with different

qualities of service. For instance, with an OC-192 data link, the switch has a

maximum time of 51 microseconds to read, convert the header, and route each ATM

cell [26]. Becoming more complex, the switch module requires a parallel architecture

to perform its functions. Currently, major semiconductor manufacturers are starting to

sell a new type of integrated circuit, the network processors [26]. Network processors

are programmable chips like general purpose microprocessors, but are optimized for

packet processing required in network devices. This (network processor) industry is

currently at its early stage. In this thesis, we implement a relatively simple switch

module which (is not as complex as a network processor, however) performs basic

operations, e.g., cell buffering, routing, header transformation, and cell prioritization.

We aim to develop the following ideas:

l. If a switch fabric or a port controller is provided as an IP core, what would be the

environment assumptions for each of them and which specification formalism can

describe those assumptions?

2. Having specified the environment assumptions, what properties have to be

specified for switch components? Although a set of well-defined, well-established

properties is available for microprocessors, such a specification does not exist for port

controllers of an ATM switch.

3. Having the assumptions and the properties, how could one verify a correct

integration of switch components in an application? How could one show that each

component satisfies the assumptions made by its neighbors?

1.2 Contributions

The principal contributions of this thesis are as follows:

J
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l. We classify recent (and relatively poorly documented) compositional verification

methods. In chapter 2, we describe assume guarantee reasoning implemented by

theorem provers and non-circular and circular compositional verification methods

implemented by state of the art model checkers.

2. We introduce interface recognizers/suppliers (1RS) as a practical mechanism to

represent environment assumptions and interface properties of the components. 1RS is

a recognizer7 augmented with a set of Boolean constraints. By forcing the constraints
to be always true, 1RS constrains its inputs. By checking the constraints of 1RS, we

verify that a component satisfies the specification modeled by the 1RS. 1RS can thus

equally act as a recognizer of a property and as a supplier of assumptions on its

inputs.

3. We extend the application of 1RS from modeling environment assumptions to

compositional verification. Given that the reasoning with 1RS can be circular, we

develop well-foundedness conditions to avoid erroneous conclusions.

4. We model an existing port controller and switch fabric modules of an ATM switch.

(Port controllers are modeled in VHDL [9] and the fabric is translated from Verilog to

VHDL. The controller and the fabric models are about 3500 and 500 lines ofVHDL

code respectively. (See Appendix 4.)) In a 4x4 setting, there are 4 in port controllers

and one 4x4 switch fabric. This 4x4 model is about 14500 lines ofVHDL code and

includes 1500 state variables, which is far beyond the capacity of a commercial model

checker. We use 1RS to model environment assumptions of the switch fabric. Using

the same 1RS, we show that the in port controllers satisfy these assumptions. We also

show that the fabric satisfies its properties when operating under the environment

1RS.

u

5. We propose a specification and verification methodology for switch-type systems,

e.g., for this class of network devices. We specify 5 properties for in port controllers

7 Recognizer is defined in Chapter 3.

5



0 and then use 1RS to model and verify these properties. Due to the large complexity of

ATM cells, we use the data-independence assumption and cell size reduction

techniques to cany out successful verification.

We organize the thesis as follows: Chapter 2 introduces the mathematical notation

needed to describe and classify compositional verification methods.

Assume/guarantee reasoning and compositional model checking methods are also

discussed there.

In Chapter 3, we propose interface recognizers/suppliers (1RS) as a means to specify

environment assumptions and properties of (reusable) components.

Chapters 4 and 5 contain our case study: The ATM switch design is introduced and

its properties are formally verified using the 1RS methodology.

Chapter 6 presents conclusions and discusses possible extensions or improvements to

the proposed compositional verification method.

The methodology proposed in this thesis has been published in [28][29][2]. We have

also submitted a comprehensive article on the compositional reasoning using 1RS to

Formal methods in system design journal.

u
6
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Chapter 2

Compositional verification rules

In this chapter, we present the computation models and the formal notation that are

used to describe compositional verification mles. In particular, we represent the

models that have been used in compositional verification of hardware systems.

Definition 2.1 [31]: A Moore machine M = <S, Init, I, 0, T, L> is a tuple of the

following form:

l. 5" is a finite set of states.

2. Init e 5" is a nonempty set of initial states.

3. 7 is a finite set of input propositions.

4. 0 is a finite set of output propositions.

5. T e 5x2 xS is a transition relation.

6. L: S—^2° is a fiinction that maps each state to the set of output propositions tme in
that state.

It is required that /n 0 = 0 and for every s e S and v c 7, there exists some t e S

such that T(s, v, t).

J

Moore machines that have disjoint sets of outputs can be composed in a natural way.

The composition, for instance at the circuit level, corresponds to wiring outputs of

one machine to the appropriate inputs of the other. Each machine receives some of its
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inputs from the other machine and some of its inputs from an environment. The next

definition is a formal definition of the composition.

Definition 2.2. The composition of Moore machines Ml = <>S'/, Initi, Ii, Oi, Tj, L]>

and M2 = < 82, Init^, 12, Oz, Tz, L^ > (denoted M.1 [| M2) is defined when OMI 1^1 OMI =

0 and it is the Moore machine M defined by;

1.5'= S]X Sz, where x represents the Cartesian product. For instance, (sj, s 2) e S only

ïfs] e S] and ^2 £ Sz.

2. Init = Initjxlnitz.

3./=(/,u/2)-(0/u02).

4. 0= 0/ u 02.

5. T[(S], S2~), v, (s 'j, s ^)] iff Tj[sj, (v u £2^2) ) n //, 5 '/] and

T2[S2,(vUL](S]))nl2,S'2].

6. L(si, 82) = L(si) u Z(^).

This definition of Ml // M'2 has the following properties:

1. Each machine must make a transition , and

2. The inputs that each machine sees are the inputs from the overall environment plus

the outputs from the other machine in the composition. Finally, the union of the

outputs of the modules gives the outputs of the composed system. (It is possible to

restrict the global outputs to a subset of this union, e.g., 0 c 07 u 02. However, we

have reported the original definition in [31] .)

u

Kripke structures [4l] are usually used in model checking of hardware systems. We

study the relationship between Moore machines and Kripke structures. A Kripke

stmcture M = <S, Init, T, A, L> is defined as follows [31]:

1. .S' is a finite set of states.

2. Init e •S' is a nonempty set of initial states.

In this thesis, we have only assumed synchronous hardware systems.

8
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3.T^SxSïsa transition relation.

4. A is a finite set of atomic propositions.

5. Z is a function that maps each state to the set of output propositions tme in that

state.

A Kripke stmcture or structure for short does not distinguish inputs from outputs.

Moore machines, on the other hand explicitly define inputs to interact with their

environments. By incorporating inputs of a Moore machine to its states, it is possible

to obtain the corresponding Kripke structure. Figure 2.1 shows a machine M and the

corresponding structure struct(M).

a)

i=l

0

x yx y

ll

ï=0i=l

x y

b) yi»xyy x

yixxyiyi))<

i=0

-J

Figure 2.1: a) A Moore machine M and b) the corresponding structure stmct(M) [31]

Next, we review a temporal logic that is commonly used for property specification in

the literature. Temporal logic is a logical language used in the formal verification of

concurrent systems. We will use standard linear temporal logic (LTL) [51]to reason

about the composition of properties in Chapter 5. A model for an LTL formula is an

infinite sequence So, S), ... of states, representing consecutive time instants. A formula

is either an atomic proposition or one of -ip, p/\q, pVq, Xp, where p and q are

formulas, "-i" and "A" represent propositional operators not and and, respectively.

The Until operator "U" and the Next operator "X" are defined as follows:

Each formula is either true or false in a given state.

9
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We use the notation (M, Si) \=p to indicate that M satisfies^ at the fth state, i.e., s,.

\.(M,s,~)\-^pïfî(M,s,)^p.

2. (M, s,) \=p^q iff (M, Si) \=p and (M, Si) \= g.

3. (M, s,) \=pV q iff (M, s,) \= q or there exists y>! such that (M, Sj) |= q, and for all

i< k<j, (M, Sk) \=p.

4. (M, s,) \=Xp iff (M, sw) \=p.

The formula F p (eventually 7?) is an abbreviation to (true Up) and it predicts the

eventual occurrence of p becoming tme. G p (globally p~) is equivalent to -^F—ip

indicating that p is tme from now on.

We will use finite state automata to specify interface behaviors. A finite state

automaton (FA) is a 5-tuple (S, Init, A, T, F), where [30]

1. .S' is a finite set of states.

2. IniteSïs a start state.

3. A is a finite set called the alphabet.

4. T: SxA —> Sis the transition function.

5. F ^S is the set of accepting (or final) states.

The input alphabet contains the allowed input symbols. If the automaton receives an

allowed input symbol a in a state s, it moves to the next state indicated by the

transition function T. When a machine accepts a string, it ends up in an accepting

state. If L is the set of strings that machine M accepts, we say that L is the "language"

of machine M [30].

J

A finite state machine (FSM) is a model similar to FA. An FSM generates outputs in

each state of the machine. (In contrast to FA, outputs rather than final states are

considered and emphasized for FSMs.) The outputs are determined from the current

10



n state and the inputs of the machine [5]. When the output values depend only on the

state of the FSM, we get a Moore machine (Definition 2.1).

FSMs can model synchronous circuits. Suppose a machine M implements a property

p under the environment assumptions e. This is denoted by [4]

<e>M<p> (2.1)

The environment assumptions e can be supplied as a set of linear temporal logic

formulas, or equivalently by an FSM E that models these temporal formulas.

(However, to model eventuality formulas, fairness assumptions sould be added to

these FSMs.) In [6] a practical method called tableau construction is proposed to

build a maximal model for a given temporal logic formula. The tableau or the

maximal model is the one that can simulate all the models that satisfy the formula .

We denote TBLQo), the tableau for a formula p. Assertion (2.1) can then be

implemented using model checking algorithms. For instance, one can verify that

E||M|=^ (2.2)

Equivalently, it can be verified that the composed machine EM can be simulated by

the machine TBL(p) [6]

E||M ^ TBLQo) (2.3)

Assertion (2.1) can also be implemented using deduction-based algorithms, i.e,

theorem prover systems. The foranulas are expressed with first order or higher order

logics and they get an explicit time parameter /. For instance, (2.1) is implemented as:

Vt. <0^>(M(0^^)) (2.4)

J 9The simulation relation is defined in Appendix 2.
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n Having defined computational models, we proceed to study compositional

verifications methods.

2.1 Assume guarantee reasoning (A/G)

Abadi and Lamport [22] presented an assume guarantee formalism for the

specification of open systems, i.e., the systems that interact with their environment.

Suppose that the specification of a component M is represented with an assume

guarantee (A/G) specification e — J—>p, where p specifies the component

commitments and e describes its environment assumptions. This A/G specification

asserts that M maintains its commitments p if the environment satisfies the

specification e. (More precisely, fonnula e — J—>p asserts that (for all i,)p is true up

to point i of the computation if e holds up to pointy <i. This means that 7? holds at

least one step more than e does. The formula e => 7? is weaker than e — J—^p in that

it only asserts that p holds as long as e holds.)

Lamport [23] states the principles of the composition as follow. Suppose a system M

is composed of components Mi, ..., Mn. Each component guarantees its specification

under a specific environment assumption. If the following conditions are met, then

the principles of the composition infer that the global system M guarantees the global

specification^? under the global environment assumption e. These conditions are:

u

1- Every component M/ guarantees its specification pj under the environment

assumption ej. ( ej — —> pj, for 0 <j < n)

2- The environment assumption ej of each component is satisfied under the global

assumption e and the inout properties of all components. That is

(e /\p] A ... /\pn ==> e]), for 0 <j < n .

3- M guarantees p if each component My guarantees pj. This means that the global

system specification 7? is implied by the component properties^, i.e.,

12
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(e/\p]/\ ... Apn^p).

A composition mie based on the composition principles has been implemented in a

special linear temporal logic, called TLA [21]. TLA uses a theorem proving

approach. Conditions (1) to (3) of the composition are manually verified using a

proof assistant. However, Lamport and Kurshan [33] presented a hybrid approach to

compute Steps (2) and (3) of the rule by a theorem prover, and Step (1) by a model

checker.

The composition rule, as expressed in TLA can be applied only to safety properties

[15]. A safety property holds in all states of a model. Safety properties assert that bad

things "never" happen. A liveness property on the other hand talks about eventual

occurrences of events. For example, a liveness property in a communication protocol

can be as follows: if a good message is sent by the transmitter, it is eventually

received by the receiver.

J

In the next section, we review the compositional methods which use model checking

algorithms (rather than deduction-based reasoning) to implement compositional

verification. We also discuss whether each method can prove liveness properties in

addition to the safety ones.

2.2 Compositional verification

The recent developments in the compositional verification (CV) originated from the

assume guarantee (A/G) reasoning . Although very similar, the major difference is in

the way they treat the environment model. In A/G approaches, the environment

assumptions are stated explicitly, from the beginning, with the component

specifications. (That is what we wish to require for the specifications of reusable

components.) In compositional verification methods, the environment assumptions do

10These compositional approaches attempted to implement structural induction by using model
checking algorithms [31][14]. A more complete survey of compositional methods, e.g., the methods
that generally infer system properties from component properties can be found in COMPOS97
proceedings [49]
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not explicitly exist. They are subsequently obtained by the abstract models of the

components of the system, surrounding a given module. These so obtained

environment assumptions create an abstract context for the verification of the

component(s). It is thus verified that the component satisfies its properties in the

abstract environment.

2.2.1 Non circular compositional verification

Pnueli [4] presented an assume guarantee mle for the temporal logic model checking.

The rule states that if a module Ml satisfies a property pi and then assuming this

formula, a module M2 satisfies a property p2, then the system Ml // M2 satisfies the

property^.

J

<> Ml <pi> (2.5_1)

<pi> M2 <p2> (2.5_2)

-.-„„„-„- .....-„„-„- _..-..-..-^--(2.5)
oMl //M2<p2>

In the rule, (2.5_1) discharges property ^>/ which is assumed in (2.5_2). This kind of

reasoning has been implemented in model checkers such as SMV [16]. When the

properties pi and p^ are known, this mle provides the benefit that direct reasoning

about the composed system Ml // M2 is avoided. In practice, nevertheless,

determining such properties may be highly non-trivial [20].

2.2.2 Circular compositional verification

The inference rule (2.5) presented in Section 2.3.1 is not circular. The first subgoal of

the mle states that Ml satisfies pi without any further assumption. Generally, this is

not the case and Ml may make certain assumption p^ about M2 in order to maintain

pi. The rule thus becomes circular. Ml satisfies ^>/ ifM2 satisfies^ and vice-versa,

M2 satisfies ^ if Ml satisfies/?/. From propositional logic point of view, this circular

reasoning may conclude wrong results. One cannot deduce ^>/ /\p2 from pi ^> p2 and

p^^,pj. For instance, both predicates j?/ and p^ may be false and yet p] =>p2 and

14
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p2 =>?] are tme. We illustrate this by an example.

J

Example 2.1 (cycle-of-gates) Consider a cycle of NOT gates N1 and N2 in Figure

2.2a. Let p j : = (z = 0) and ps := (o = l). Under the assumption Gpj, i.e., G (f = 0), W

satisfies G p2, i.e., G (o = 1). Similarly, assuming G (o = 1), N2 satisfies G (; = 0).

However, the conclusion G(f = 0) A G(o = l) in W \\ N2 is wrong, since we may have

G(;=1)AG(0=0).

<> N1 <G [(i =0) =^ (o = l)] > (2.6_1)

<> N2 <G[(o=ï)=^ (l = 0)] > (2.6_2)

(2.6)
<> N1\\N2 <G(i=0)/\G(o=ï)> {wrong conclusion}

If there is at least one unit time delay11 in the cycle, the conclusion is valid, however,

based on induction in time [14]. Let X represent the next state operator of linear

temporal logic. We have added a register in Figure 2.2b and the following reasoning

is then sound.

a)
l l

b)

N2 A N1
l
l
'•=^T
JR2 l'À! Y N1

L-I-J

0 0
Figure 2.2: a) Cycle-of-gates. (b) The cycle is broken by a register

<>^7<G[(;=0)^(o=l)]> (2.7_1)

<>R2 <G [(o= l) ^X (/= 0)] > (2.7_2)

<>R2 <(f= 0) > (2.7_3)

<>NJ\\ R2 <G 0- =0) A G (o= 1)>

15
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Subgoal (2.7_3) in (2.7) asserts that R2 satisfies (f=0) in the initial state. Let pi('t)

denote that P] := (/ = 0) holds true at time T. Let p 2 := (o = 1). pi(0) holds tme by

(2.7_3). p2(0) holds tme by (2.7_1) at the output of W which is the input to R2. ïfp2

holds tme at the input of (register) R2 at the current time, then pi holds tme at its

output at the next time, by definition of register R2. Hence, by p2(0), pi(1) holds tme

at R2 output (which is the input to N1). Continuing this way, p] and p2 hold at all

times, i.e., G pj ^ G ps. We represent this inductive reasoning by the following

general mle:

Vt.^i(t) ^>^(t) (2.8_1)
Vt.^(t) ^^i(t+l) (2.8_2)

77i(0) (2.8_3)
..„„-„-„„—...-.„„„ (2. ga)

Vt.^(t)A^(t)

<> MKG[p]=>p2]>

<> M2<G[p2=> Xp]}>

<> M2<pi>

.—„„„„„.-„-.„„-—-....-(2.8b)

<> Ml //M2 <G (pi ^p2)>

Rule (2.8b) implements (2.8a) using temporal logic operators.

McMillan [14] proposed the following mle to implement compositional model

checking. Let p|T denote that p holds up to (including) time t = T.

pï\T ^P2(T)

pt]) ^p,(T)

Vt. p](t)Ap2(t)

(2.9_1)
(2.9_2)

(2.9)

J

This mle is also sound based on induction on T. When evaluated at time [14], (2.9_2)

asserts that P](O) holds tme. Let pi\° = P](O). Then, p2(0) holds by (2.10_1), ^/(1)
holds by (2.10_2) and so on.

11 In this thesis, we have considered synchronous haradware systems. Gates have no delay and
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Rule (2.9) replaces subgoals (2.8_2) and (2.8_3) with one subgoal (2.9_2). Moreover,

(2.9_1) and (2.9_2) can be verified using linear temporal logic formulas [15]. For

instance, we (reproduce a proof to) show that ^| =^>^i(T) can be computed by

—<(p2 U —fii). By definition, a module M satisfies (p2 U pi), if pi holds tme at the

initial state or if there exists a state Sj in which M satisfies ^17 and in all states Sk before

Sj, M satisfies^.

^i(O) v [(3/>0). (V(0<K7). ^ |=^) A s, \=p] ] (2.10)

For {p2 U —ipy), this definition becomes:

-pi(0) v [(3/->0). (V(0<^</-). ^ \=P2) A 5,-1= ^p/ ] (2.11)

By negating (2.11), i.e., —i(p/ U —p2), we obtain the following expression. ( Note that

-[(37>0).Q(/-)]=[(Vy>0).^Q(/-)].)

^i(O) A [(V/>0). ^(V(0 < k <j). Sk \=p2) v s, \=pi ]
or

7?i(0) A [(V/>0). (V(O<Â:</-). ^ \=p2) => sj \-p, ]

(2.12)

(2.13)

A module satisfies ^l^' => Pï(T) if it satisfies j?/ in the initial state and (for ally)

when module satisfies^ up to (and including) state sj-\, then it satisfies ^i at state sj.

P)(O) A [(V/>0). (V(0^</-). 5, \=p,) => ^, |=^/ ] (2.14)

That is,

J

\('f-1)\p2r'} ^^i(^]=[-(p2u^)] (2.15)

registers have one clock period delay. The clock period represents one unit "time" delay.

17
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Now, we show that p^\T => pz(T) can be computed by —i(p] U (—ipz A p])). By

definition, we have that

\Pl\T =>^2(^]= [(Pfj) A^l(^) ^>^(î)] (2.16)

Using the relation [(pA ^) ^>r] = [^ => (^ ^> ?-)], we get

\pi\T ^piw =[(p/r^A^i(^)^7?2(î)]
=\P11)^(P^^P2^}
=\P11)^ (^l(î)v^(^)] (2.17)

Rewriting (2.17) using (2.15) gives the following result:

[p]\T ^p2(T)] = [-^(p] U -, ( ^/ V^))]

= [-,(p7 U (p/ A ^p2))] (2.18)

Using (2.15) and (2.18), the circular model checking rule (2.9) is computed by

checking the following two temporal logic formulas on Ml and on M2.

0 Ml <-,(?; U (-^p2 A p]) >

<> M2 <-^(p2 U -^pi)>

-„„„.„„--„„„„.„.-...„„„-„„ (2.19)
<> Ml //M2<G(pj Ap2) >

In summary, we conclude that if there is no cycle-of-gates in the system, i.e., every

cycle is cut by at least one unit delay, the circular reasoning is sound, based on the

induction over time introduced by the delay element.

J
Note that pi and p^ can represent safety and liveness properties. Rule (2.19) (unlike

other approaches) can then be used to prove liveness properties. We will use (2.8b)
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(which is our approximation of (2.19)) to prove a liveness property of an ATM switch

in Chapter 5. In Appendix 2, we prove that (2.8b) => (2.19), i.e., (2.8a) is a

conservative approach to (2.19).

Next, we review the assume guarantee reasoning in reactive modules [35]. With

reactive modules, the specifications of components are not described using temporal

logic formulas. Instead, the specification is a higher-level design of the component,

thus another reactive module. This framework uses trace-containment relation to

show that a component implements a specification.

2.2.3 Reactive modules [35]

A réactive module M (or module M, for short) has a finite set of variables, denoted

VM. A "state" of M is a valuation for VM. The module represents a system that

interacts with an environment. VM is partitioned into three sets; input variables I,

output variables 0, and privates variables P. While 0 and P are updated by M, I is

updated by the environment. M contains two predicates to assign values to the

variables in (0 u P); an initial action that assigns initial values to (0 u P), and an

update action that assigns updated values to them. For every state s of M, and for

every valuation of I, there exists a finite number of next states for s. In other words,

the update predicate is always executable, and the system is prepared to respond to all

possible environment moves. M does not constrain the behavior of I variables and

thus interacts with the environment in a nonblocking way.

J

A module M consists of one or more atoms that control (0 u P) variables of the

module. Each atom controls one or more variable, however, every variable is

controlled by one and only one atom. Let Xa be a finite set of variables of an atom a.

Xa contains three sets of variables; a set of controlled variables ctrXa c Xa, a set of

read variables readXa c Xa, and a set of awaited variables waitXa c {-A'a \ ctrXa}. A

controlled variable of an atom may depend sequentially on a read variable of the

atom, much like a register output that depends on register input. A controlled variable
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y of an atom may depend combinationally on an awaited variable x of the atom. This

is denoted x<s,yto indicate that atom a can update y only after x has been updated.

A module M consists of its atoms which have the following properties. (1) Controlled

variables of atoms are disjoint, i.e., for every atom a and b of M, ctrXa n ctrXb = 0.

(2) The set (0 U P) of M equals the set (Ua^aioms ctrXa) of the atoms. (3) The

transitive closure of <M = (Uaeaioms <a)T is asymmetric. The third condition ensures

that the await dependencies among the variables of M are acyclic, and consequently,

there exists a consistent ordering for updating all atoms of M [35].

The execution of a module results in a trace of observation. For two states s and t of

M, the state t is a successor oî s \î t can be obtained from s, by executing updating

actions of M. A trajectory of M is a finite sequence so...Sn of states such that (1) so is

an initial state and (2) for all 0 ^ ;'< n, the state s,+i is a successor of si. If 5 is a

valuation to variables VM of M and W^ VM, then /ï] y denotes the valuation restricted

to W. Let 10 denote the variables in (IM u O^)- \f s = so—Sn is a trajectory of M, then

its projection sequence [s]/o= [so]/o—[Sn]io is a trace of M. The trace language LM of

M is the set of traces of M.

A module M implements a module N, written M ^ N, if the following conditions are

met: (l) ON e OM\{Ï)IN e (IM u OM); (3) for Vxe (//v u 0/v) and V^e (Ow ) such that

we have x <^y, then x <MV'-, and (4) if 5 is trace of M, then the projection [sjio is a

trace of N, where 10 = (IN u Opf).

Two modules M^l and M2 are "compatible" if (1) OMI n 0^2 = 0, and (2) the

transitive closure (<MI u <M2)+ is asymmetric, i.e., the await dependencies among 10

variables of MI and M2 are acyclic.

u
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n If Ml and M2 are two compatible modules, then the composition Ml // M2 is the

module with P(MI \\ M2) = PMI ^ PM2, O(MI || M2) = OM] ^ 0^2, I(Mî \\ M2) = IM\ ^ IMI \

O(MI \\M2), andAîoms(Mi \\ M2) = Atomsui uAtomsM2-

Assume guarantee [35]: Let Ml and M2 be two compatible modules, and let N1 and

N2 be two compatible modules such that 7(w || m) e /O(MI || M2). If-M7 \\N2 <: N1 and

M2 II N1 < N2, then Mî j j M2 < N] |[ N2.

The steps of the assume guarantee rule are illustrated in Figure 2.3. The proof of the

rule, based on induction on the trace length is given in Appendix 1.

a) =>fN2l b)
v/

INI
v/

Ml -+ M2 Ml
4-

e)

Ml IIM2<N1 \\N2 Ml \\N2<N1

Figure 2.3: The assume guarantee mle. Steps b) and c) prove a)

1N2|
v/

->
M2

M2\\N1<N2

<J

2.3 Summary

We have presented recent works in assume guarantee (A/G) reasoning and its

descendant, compositional model checking (CMC). In the original A/G reasoning

[22], the environment assumptions of the modules are explicitly stated, a priori along

the component specification. In this way, a closed system, (i.e., the component and its

environment assumptions) is specified, as the specification of each component. In

CMC approaches, the environment assumptions do not explicitly exist. However, an

abstract environment is obtained by the properties or abstract models of the

components of the system, surrounding a given module. These so obtained

assumptions create an abstract context for the verification of components. If we want

to apply compositional verification methods to designs constmcted using reusable
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components (e.g., intellectual property (IP) blocks), the environment assumptions of

these components must be supplied with the component specification so that the

components could be safely used in any application.

The following classification represents the works reviewed in this chapter.

l. (Non-circular compositional model checking) Long [31] presented a composition

mle that non-circularly verifies a composed system using model checking algorithms.

For instance, it is first verified that a component satisfies its properties under certain

assumptions. It is then verified that the other components of the system satisfy those

assumptions, without any assumption about the first component. Long showed how to

transform a temporal logic formula to a Kripke stmcture so that to compose

components with formulas. This composition allowed the assumtion/guarantee be

implemented using model checking systems. This framework supports both safety

and liveness property verifications.

2. (Assume guarantee reasoning) Abadi and Lamport [22] assuming an interleaving

model of concurrency, proposed a circular compositional rule to verify safety

properties of the composed systems. The mle is originally implemented by theorem

pro vers and supports only safety properties.

3. (Assume guarantee with synchronous communications) Alur and Henzinger [35]

extended the interleaving unit-delay model of the components in [22] to synchronous

Mealy machines. These machines may contain zero-delay communication from

machine inputs to machine outputs. This framework imposes a well-foundedness

condition that there must be no-cycle-of-gates in the composed Mealy machines. This

method supports only safety properties.

u

4. (Cicular compositional model checking) McMillan [14][15][17][19] contributed m

two ways to the compositional model checking literature. First, he relaxed the

condition that only one component (or one atom) constrain any output of the system.
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To resolve the conflicts, he introduced a refinement relation among those modules

that constrain one output [14]. Second, he introduced an inductive rule and verified

liveness properties of composed systems, in addition to the safety properties.

Compositional methods use abstract models of the components, either in the form of

temporal properties or in the form ofhigher-level designs to compute subgoals of the

composition mle efficiently. A mle is efficient if the abstract models are logically

sufficient to carry out the proof obligations. However, when either of them is not

strong enough, the mle cannot yield the desired results. The abstractions constitute

both the strength and the weakness of the methods. They make the computation

efficient. But in practice the problem remains how to obtain the appropriate abstract

models.

In the next chapter, we propose a compositional mle based on the interactions

observed at the interfaces of components. This method uses interface interactions as

the formalism of the specification and abstraction. We present interface

recognizers/suppliers (1RS) which enable us to symmetrically verify a property or

supply an assumption on components inputs. 1RS can be used to organize an end-to-

end verification of modular systems.

•J
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Chapter 3

u

Constraints in model checking
In chapter 2, we mentioned that during model checking, environment assumptions of

components could be provided as temporal logic formulas. Industrial model checkers,

e.g.. Formal Check [3] or Verdict [25] have mechanisms to specify these as

verification constraints. In this chapter, we suidy the requirements that the constraints

and the components must satisfy so that the reasoning about them is valid. We then

present a methodology based on interface recognizers/suppliers (1RS) to implement

constrained model checking. We propose a composition mle and discuss its well-

foundedness.

3.1 Constrained model checking

Developing environment models during formal verification of components in

modular systems is a time-consuming and error-prone activity. Kaufmann et al. [25]

suggest using "constraints" as a simple way to model the environment. A constraint

is a Boolean formula involving any signals in the design. Constraints appear at three

levels of granularity: (1) At the first level, they involve only input signals of the

component. Suppose A and B are inputs of a module M. Then, $constraint[-i(^ A -5)]

specifies a constraint in Verdict [25] that restricts the inputs of M so as to always

satisfy —i(A A B). (2) At the second level, constraints may also depend on the internal

state of the design. For instance, $constraint[(5tate = sj) => (A v B)] defines a

constraint that depends on state S] of M. Implicitly, it is assumed that the design by

itself contains the information necessary to determine what its (next) input should be.

Consequently, the inputs of the design are combinationally computed from the state
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information of the design. (3) At the third level, the inputs may depend not only on

the current state of the design but also on the history of reactions of the design to its

inputs. In this case, a finite state machine called "monitor" is defined to watch and

record the information needed to determine the next inputs to the design. With the

addition of the monitors, constraints become as expressive as environment models

[25].

Constrained model checking perfonns reachability analysis over those computations

that globally satisfy the constraints. (A computation path is an infinite sequence of

states [37].) It has to be ensured that (1) this state space is not empty, i.e., the design

has at least one initial state that satisfies the constraints. It also has to be ensured that

(2) the constrained model does not contain any "dead-end" state, i.e., every reachable

state of the constrained model should have at least one successor state that satisfies

the constraint (a dead-end state is a reachable state that does not have a next state that

satisfies the constraints [25]). Although traditional hardware modules satisfy these

conditions, no-dead-end condition may fail in the presence of constraints. These

conditions can be verified using temporal logic model checking. Suppose (M, so) |=

AG p indicates that a property p holds tme in all states of all computation paths

starting from So. Similarly, (M, so) |= EG p asserts that there exists a computation path

on which all states satisfy p. Let C denote a constraint, e.g., a Boolean formula.

Suppose that M satisfies C in some initial state sO, i.e., (M, sO) \= C. Suppose that

assuming M satisfies C in the current state, we can prove that there exists some next

state that satisfies C, i.e., (M, sO) [= AG(C => EX Q. Then, M composed with C does

not have any dead-end state. It is also said that the constrained model Me of M is

"model checkable" [25].

J

The semantics of the constrained model checking is defined as follows [25]. Let 5" be

a set, and R be a binary relation. Let Img(5', R) denote the image of S by R, i.e.,

{s'\ 3seS. R(s, s')}. Consider a Kripke stmcture M with states 5', transition relation T,

and initial states Init. Let C be a Boolean constraint over S and the signals of the

design. Let CInit ^ 0 be the initial states of M that satisfy C. States CS of Me are

25
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obtained from S by restricting the reachable states of M to the states that respect C. In

terms of the fix point computations, CS is the least fix point of the following

monotone functional F [25].

F(D = CIniî u C(/mg(7, 7)) ,

where C(Z) represents the set of states in Z that satisfy C. CS is the least set Y of

states containing Cinit such that for every (s, s') ^ T, for which se Y and s ' satisfies

C,s'eY.

3.2 Assume guarantee in constrained model checking

Let a constraint C be a simple prepositional logic formula, i.e., free of temporal logic

operators (G, F, X, U). Suppose that a model M satisfies a property j? under constraint

C. This is denoted

<GO M <p>,

where G represents the "global" operator of temporal logic. M preserves^» whenever

it works in an environment E that satisfies GC. Therefore, there is an obligation to

prove that the environment E satisfies GC. However, the verification that E satisfies

GC may fail, since E may in turn make some assumption about its inputs from M.

Kuafmann et al. [25] suggested to verify that £" |[ M satisfies GC (Figure 3.1b).

However, when the state space of-S' || M becomes larger than the capacity of the

model checker, this subgoal is infomially verified by a simulation. For instance, it is

verified that the constraint is not violated in £ M during simulation. In Section 3.4,

we show that by abstracting the component it is possible to formally discharge the

environment assumptions using a less complex subsystem.

J
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a) p

JL

^
GC M<

GCb)
JL
>

ME 4

<GC> M <p> <> £ II M <GC>

Figure 3.1: Assume guarantee reasoning in constrained model checking.
a) Module M under constraint GC satisfies property^.
b) E\\M discharges assumption GC.

Monitors can be added to the design to provide history variables for constraint

definition. This type of verification is reviewed in the next section.

3.3 Constrained model checking with monitors

The inputs of a design may depend on the current state of the design as well as on the

history of interactions that occurred between the module and its environment. In this

case, a finite state machine called monitor is defined to record such information. A

monitor has multiple inputs and one output [25]. It watches the inputs to ensure that

they are behaving as expected. It could monitor, for instance, that the interactions

follow a given protocol.

IVIonitors like auxiliary variables [19] may provide extra signals for constraint

definitions. The output of a monitor can be used in a constraint to fonn a "sequential"

constraint (Figure 3.2a). Similarly, the same monitor can be used when discharging

the constraint (Figure 3.2b). However, the system E \\ M may become very complex.

Then, M should be abstracted away from this verification. We study this kind of

verification in the next section in the context of constrained model checking using

interface recognizers/suppliers.

J
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a) r\ Monitor

p

JL
GC

^
M<

w

b) GCMonitor

J-

> M
E <

Figure 3.2: Constrained model checking using monitors.
a) < GOM [I Monitor <p>. b) <> £" |[ M || Monitor <GC>.

3.4. Interface recognizer/suppliers

We extend assume guarantee reasoning in constrained model checking in two ways.

First, we propose an interface-based verification methodology, assuming that the

internal states of the components are not accessible (or visible) to the environment.

This is the case, for instance, when the state information of the design is not provided.

In that case, whenever a sequential property (of the interface) is concerned, the use of

monitors becomes inevitable. We provide a tighter connection between monitors and

the constraints by using recognizers. Moreover, we make an abstraction of the

component when discharging the environment assumptions. This second abstraction

makes the methodology symmetric, i.e., the environment is abstracted (using the

constraints) to model check the component and the component is abstracted (using

the constraints) to model check the environment. This circular reasoning is not sound

in general. We must avoid prepositional circularity, by implementing an appropriate

framework within the compositional model checking methodologies presented in

Chapter 2.

Before presenting the formal foundation of the methodology, we give an example to

introduce interface recognizers/suppliers (1RS).

u
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Example 3.1 (Interface recognizers/suppliers) Suppose we want to design a

generator to produce pulses of unit length on signal / such that they are at least 5

clock cycles apart (Figure 3.3a). A recognizer can be developed for the generator

(Figure 3.5b). The recognition is encoded by a set of constraints in each state of the

recognizer. For instance, consider the automaton in Figure 3.3b that recognizes the

sequences that could be produced by the pulse generator. The signal/can be zero or

one in state s]. After becoming l in si, f becomes zero in s2. In s3, the recognizer

uses a counter that counts modulo 5. / should remain zero in s3 until state s J is

reached. Note that if / gets a value other than the ones specified in the specification

(in Figure 3.3a), the recognizer will not change its state.

^

(f= 0) and
(count = 4)

a) b)

f-
l

[5,oo)

^=0)

else

si 2 .^3
tf 0)(f l)

(/-= 0) and
(count < 4)

else

Figure 3.3: A recognizer for the pulse generator/.
a) Specification, b) The recognizer. The "variable" count is zero in state sl, one in
state s2, and is incremented in state s3 until reaching 5.

We define a Boolean signal C/to monitor^

C/ := [ ( (state = ^2) or {state = ^3) ) ^ (/'= 0) ] (3.1)

C f = true asserts that / is zero in states s2 and s3 of the recognizer. (Note that it does

not assert that s2 and s3 are ever reached. In fact, if s 2 and s3 arc not reached, then Cy

= true will still hold.) C f = false asserts that / is not zero in either of those states. Cy

acts like an acceptance condition of the recognizer R such that, when always true, it

verifies that the generator F respects the unit cycle as well as the 5 clock-cycle period

constraints on/ Figure 3.4a shows the generator F and the recognizer R. Suppose we

verify the recognizer (without using the generator) with a model checker like Formal

Check [3] and we set a constraint that C/be always true (Figure 3.4b). C/ = true is a

constraint of the recognizer which observes the primary input signal/. By forcing
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Cf= true, the model checker must supply only those combinations of/which respect

the constraint C/= true. The net result is that / can be 1 (or 0) at state sl and 0 at

states s2 and s3, thus generating exactly the pulses required by the specification. In

this way, R supplies constraints on its primary input/ This input-shaping feature of

the recognizer enables us to produce almost any signal characterized by the

constraints of the recognizer using any model checker. In this configuration, the

recognizer forms a supplier, i.e., it supplies constraints or assumptions on the

(otherwise free) inputs. This type of a recognizers that is augmented by Boolean

constraints is called an "interface recognizer/supplier" (1RS).

a)

F

R Cf
î^
f

b)

!~Modef-i
! checkeri

\-

R

l

Cf

f
-^ M

Figure 3.4: Interface recognizer/supplier.
a) Recognizer R for pulse generator F. b) When C/= true, R shapes/for a module M.

Definition 3.1 An 1RS machine R = <S, Init, I, C, T, 0> is a tuple of the following

fonn:

1. .S' is a finite set of states.

2. Init e 5' is a nonempty set of initial states.

3. /= {;y, ;2, ..., in} is a finite set of inputs.

4. C= {c/, C2, ..., Cm} is a finite set of constraints, where each constraint

Ci : 5'x 2' —> {false, tme} is a function that determines the constraints value

(either false or tme) from the current state and the inputs.

5. T: Sxl^ Sis a transition relation.

6.0 : S xl—> Cisa function that detemiines the constraint value (either FALSE or

TRUE) from the current state and the inputs.

J
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We require that for every state s e S and input i e I, there exists some ( e S such that

t = T(s, î). By this definition, 1RS accepts any inputs at any state, i.e., it is receptive to

all inputs. As in the automaton in Chapter 2, accepting states F can be added to the

1RS definition. We shall address the use of accepting states when we verify liveness

properties of a switch fabric in Chapter 5, otherwise, all states may be considered as

accepting.

1RS can be used in compositional model checking. Consider a system Ml // M2 in

Figure 3.5. We want to verify a property or a specification spec about the interactions

that occurr at the interface of Ml and M2. An 1RS / is first developed to represent a

model for spec. Then, two constraints Q and Cy are defined to recognize spec, i.e., to

determine what values may happen on interface signals x and y at each state of /.

Now, M7 and M2 can be separately verified using Cx and Cy as follows.

Convention: (Activating a constraint) 1RS / and its constraints Q and Cy are denoted

as I(Cx, Cy). We use the expression "activate a constraint" to indicate that the

constraint is set always tme during model checking. The formula

<GCx> M l] l <GCy> asserts that module M composed with I where G is activated

satisfies the property that Cy is always true on / (Figure 3.5b). We represent <GCx> M

\KGCy> by an 1RS model checking assertion 7(G) A M |= I(Cy). As in TLA [21], the

conjunction Ml A M2 represents the composition Ml M2.

We activate Cx to verify Ml against Cy (Figure 3.5b), and we activate Cy to verify M2

against Q. We study the problem whether it is sound to conclude Ml // M2 |= I(Cx) A

KÇy) from the subgoals /(Q A Ml ]= /(C,) and I(Çy) A M2 |= /(G). The following

example demonstrates that such circular reasoning may not be sound.

J
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J

a) y'
e,•y

b)

M2
x ;

<-
l

->

y
Ml

r- e

L-.

Ml

y

Figure 3.5: A drawing convention for interface recognizer/supplier.
a) Modules Ml, M2, and an interface recognizer 7(C^, Cy). b) Cx is activated and Cy is
checked.

Example 3.2 (Cycle-of-gates problem in 1RS) Let Ml and M2 be two registers as

shown in Figure 3.5a. The 1RS I that contains two states sO and s} and its constraints

Cx and Cy are defined in Figure 3.6. We want to verify that /(Q) A Ml \= I(Cy) (e.g.,

Figure 3.5b). Register Ml has an initial value, say ^ = 0. Then, by Cx in sO, x becomes

l. In the next cycle, i.e., in sl. Ml assigns 1 to y. Then, x becomes 0 in sl and so on.

Figure 3.6b illustrates this verification in 7(Q) A Ml. Note that, although Q and Cy

are similar, the intent in Cjc is to restrict x (i.e., the input of Ml) and the intent in Cy is

to verify a property of y (i.e., the output of Ml). The subgoal I(Cx) A MJ ]= I(Cy) is

thus successfully verified. The subgoal I(Cy) A Af2 \= /(Q) is also verified in M2 with

x= 0 initially (Figure 3.6c). But because of the initial values, we have (x= 0) A (y=

0) at all times in Ml \\ M.2. Consequently, the conclusion M.1 // M2 [= /(C^) A I{Cy),

i.e.. Ml II M2 \= G(x =: not(y~)~) is not valid. In this example, although there is no cycle-

of-gates in Ml \\ M2, there does exist a "cycle-of-gates" in the specification, i.e., in

the 1RS. From I(C^) A Ml |= I(Cy) and /(0 A M2 \= /(G), one cannot deduce Ml //

M2[= 7(Q A/(€,).
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a)

(y=not(x)) and
(x=not(y) )

sO

si

(x=not(y)) and
(y=not(x) )

G = [state = i0) => (x=not(y)} and
[(state =sl)=> (x=not(y)]

Cy = [(state = s0) => (y=not(x)'] and
[(state =sJ)=> (^not(x)]

b) Cy4e x

^ TL/^
Ml^

y
e) e

x

x
y

*M2

Y

J

Figure 3.6: Cycle of gates problem in 1RS.
a) An 1RS I and its constraints G and Cy. b) C^ is activated and Cy is checked in Ml.
e) Cy is activated and Cx is checked in M2.

To avoid erroneous conclusions, we must define a set of conditions for compositional

verification within the 1RS framework to be well-founded. For instance, we define

what it means to have no "cycle-of-gates" in an 1RS and what it means to declare that

a constraint and a module are compatible thus the constrained module is model-

checkable.

3.5 Logical foundation of composition using 1RS

Following the requirements that are proposed for assume guarantee reasoning in

reactive modules (Section 2.2.3 in Chapter 2), we propose well-foundedness

conditions for compositional verification in the 1RS framework. These conditions

mainly concern the "cycle-of-gates" and "disjoint-outputs" properties of the

subsystems involved in the subgoals of the rule. We define those properties as

follows:

Definition 3.2: (Zero-delay dependency (or zero-delay path) [14]) We write

X-
0

'My to denote that there exists a gate in module M with y as its output and x

as one of its inputs. For instance,
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x :=yorz, (3.2)

introduces y' 0
•Mx and z — °—>MX. The zero-delay dependency relation

-°—>M is transitive, that is, from x—°-^M y and y — °-^M z we get a zero delay

path x—°-^M z.

Definition 3.3 (Cycle-of-gates) Any two variables (x, y~) for which x — —^M y and

0y — U-^M x hold, introduce zero-delay paths from x to ^ and from y to x.

Consequently, they form a cycle-of-gates (or a zero-delay cycle) in M.

Transitive closure of ——>M in M is denoted by ——> M . When there are no cycle-

of-gates in the module, the relation —°—>M is irreflexive. The predicate ——^M ,

being irreflexive, anti-symmetric, and transitive becomes a well-founded partial order

-^^ on the variables of the module [19]. This means that there is a consistent

ordering for updating all variables of M.

In order to formulate a zero-delay dependency relation in 1RS machines, we follow a

convention when defining the constraints. Suppose that each constraint restricts only

one signal. A constraint that restricts a signal x in some state(s) of an 1RS I is denoted

by Cx. In the simplest case, Q = frue assigns a value a to x in some states Si, ..., sj of

/. Let P(s) := ( (5 = Si) or ... or (s = Sj) ) denote a predicate on states s of 7, i.e., given a

state s, it returns either false or true. Cx may define x in terms of other inputs^, ..., z

of 7. We denote this by a predicate R(x, y, ..., z). In general G has the following form:

J

C^.=[l\(P^^>R,(x.y, ...,z))] (3.3)

We assume that all constraints of 1RS are non-conflicting with each other. So,

whenever the constraints are activated, there exists a possible valuation in each state

of the 1RS for all 1RS inputs.
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For instance,

G := [ ((^totë = ^o) =>x = not(y)) A ( (^totë =57) =ï>x= 0) ) ] (3.4)

is such a non-conflicting constraint for the 1RS shown in Figure 3.6a.

The intention of the predicate Rj(x, y, ..., z) of G in (3.3) is to restrict x in terms of

other signals y, ..., z. We assume that when Cx is activated, the 1RS will be composed

with a module M such that M accepts x as input and has y, ..., z as outputs. Q= true

then constrains the value of x in certain states of / in relation to other variables of the

interface. Consider Rl(y, x) = (x = not(y)) in (3.4). We may call the predicate Rjl(y, x)

of Cx a conditional zero-delay dependency or conditional zero-delay path (from Ml

output^ to Ml input x, i.e., y — °—>& x). It is conditional since it is only effective in

the appropriate state(s) when the constraint is activated. Otherwise (constraint not

activated), no restriction is introduced. The conditional path y — °—^cx x introduced

byx= not(y) is like a "static" zero-delay path y — O—>M x'm

x := not(y) which constrains x in terms of y. Similarly, Q= true in (3.3) introduces

conditional zero-delay paths between x, y, ..., z, i.e., y — °—>C( x, ... , z — °-^cx x .

J

Conditional zero-delay dependencies are symmetrical. If a signal x is constrained by a

signal y via a conditional path R(y, x), then >' is also constrained by x via R(y, x). For

instance, in x = not(y), x restricts y and y restricts x. Given a predicate R(y, x), one

cannot deduce whether x restricts y or y restricts x. However, when composing a

constraint and a module, depending on the application context, it will be fixed which

variable is actually constrained and which is the constraining one. This is different

than a zero-delay path ——^M , which is inferred from the gates that clearly

distinguish causal dependency from input to output. The predicate ——^M must be

anti-symmetric to have no-cycle-of-gates m M. A cycle-of-gates in 1RS must be

defined differently to take into account the symmetrical conditional zero-delay paths

that are introduced by the constraints of the 1RS. For instance, the direction of each
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conditional path must be determined aflter composing the constraint and the

component. Then, it must be examined whether or not these paths can form a cycle.

Example 3.3: (Conditional cycle-of-gates) Let the constraints Cx and Cy of an 1RS I

be given as Cx := [(state = s,) => (x= not(y)] and Cy := [(state = sj) ^> (y= x)]. By C^,

there is a conditional binary predicate x = not(y~) over y and x in state s,, and by C^,.,

there is a conditional binary predicate x = y over x and y in state 5',. Assume that the

naming convention is respected, i.e., Cx is used to restrict x as input to one module

and Cy is used to restrict y as input to the other module. Cx and Cy introduce the paths

y — —^cxX and x — °-^cx y, respectively. If si = sj, then y — °—>cxX and

x — °—>& y form a conditional (conflicting) cycle-of-gates in the 1RS. However, if

s, ^ Sj, Cx and Cy form no cycle-of-gates in /, since states s, and sj of the 1RS are at

least one clock cycle apart. (We will proof this by Theorem l in this section.)

Example 3.3 illustrated that when conditional paths co-exist in a state of 1RS a cycle

is formed. We define conditional cycle-of-gates as follows:

Definition 3.4 (Conditional cycle-of-gates) For an /7Î5' /, let Q := [Pl(s) ^> ^7] and

Cy := [PsÇs) => R2\ be two constraints where Pl, Pz, Rj, and Rs are some predicates

and x and y are 1RS inputs. When the following conditions (C7, C2, and C3) hold, a

conditional cycle-of-gates y — °—>cx x- 0
>Cyy is formed in I(Cx) A I(Cy).

Cl (Non unary predicates) Ri and ^2 are defined over x, y, and possibly some other

variables.

^)

In this way. Ri (of Cx) establishes a "conditional" zero-delay path y <—°—>& x in /

while RZ (of Cy) establishes a conditional zero-delay path x< >cy y in /. (Figure

3.7 shows an example with Rj(x, y) := (x = not(y)) and R^Çx, y) :=: (y= not(x)).)
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C2 (Common states) Pl(s) and P2(s) are defined on some common states of /, i.e.,

there exists a state t such that Pl(f) A ^(0 is tme. Consequently, the conditional zero-

delay paths y< >cx x and x< >cy y will co-exist in t.

C3 (Directions) Cx is activated when verifying Cy in Ml (e.g., /(Q) A MJ \= I(Cy) in

Figure 3.7) and Cy is activated when verifying Q in M2 (e.g., I(Cy) A M2 |= /(C^) in

Figure3.7).

The components in the design determine the actual direction of the conditional zero-

delay paths. Without considering the design components, the direction of the

conditional paths cannot be known. Practically, when there exist some actual paths in

the design (with zero-delay or more) from x to y, Cx is activated when proving Cy.

Otherwise (no path from x to y in the design), Cx cannot help in proving Cy.

Therefore, the direction of a path in the design will choose the direction of

conditional paths. A conditional cycle-of-gates can be visualized when both

constraints Cx and Cy are simultaneously activated and more importantly the direction

of the conditional paths are known. To test for the existence of a cycle of gate, the

following has to take place:

(1) Activate all constraints of the 1RS to detect all the conditional zero-delay

paths.

(2) Determine the directions of these paths from the way the constraints are

composed with the components in the subsystem verifications.

(3) Consider the states of the 1RS that these constraints are defined on, in order

to verify that the paths co-exist in some states of the 1RS.

u

The fact that a conditional path has no direction (prior to the component verifications)

is a unique property of the 1RS that enables them to symmetrically recognize a

property or supply a constraint without further code modifications. This feature will

be used in Chapter 5 where we prove end-to-end properties of a switch module.
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Example 3.4. (Unary and binary predicates) Let Cx '.= [(state = si) => (x = not(y)}

and Cy := {(state =57) => (y = not{x)} be two constraints in Example 3.2. With these

constraints, a conditional cycle-of-gates y — °-^cx x — °-^cy y is formed in the 1RS.

However, if Cy is modified to become Cy := [(state = sj)^^ (y= 0)], then no cycle is

created since Cy does not introduce a zero-delay path from x to y (i.e., Condition Cl

of Definition 3.4 does not hold.). Cy in the latter case will contain a unary predicate

(i.e., y = 0) while Cx still contains a binary predicate (i.e., y = not(x)~). A unary

predicate like a component that has one output but no input does not introduce any

(input-output) path. Then, Cx and Cy create no cycle.

C, , /(C,, Q ^ cv

M2

x

<-

l
l
l
l
l
l

YT
{l

>

l

l

y

Ml

Figure 3.7: Conditional cycle-of-gates in 1RS I(Cx, Cy).

Having defined a conditional cycle-of-gates, we proceed to specify the well-

foundedness/compatibility conditions for the compositional verification using 1RS

machines.

3.5.1 Well-foundedness/compatibility conditions (WFC)

We present the well-foundedness conditions for compositional verification in 1RS

framework following the conditions presented for assume guarantee reasoning in

reactive modules (Section 2.2.3).

^>

Let M7, M2 be two modules and I(Cx, Cy) be their interface recognizer/supplier

machine as illustrated in Figure 3.8.
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Figure 3.8: Modules Ml and M2 and the 1RS I(C^, Cy)

The following is a list of conditions that are required for a sound composition of

modules Ml and M2 and 1RS constraints.

Ç7 (Noj:jonfl)ctmgj)utj^uts^^^^^^ The outputs of Ml and M2 are

disjoint. Only one module assigns values to a signal of the interface.

.l^^{y.o...£Yçl^~ofcgMeâJnJ!!eJMlllÊm'e^ ^^ // -^-^ contains no cycle-of-gates;

In other words, the transitive closure (—°-^M\ U——>Af2) is irreflexive.

Assuming that Ml and M2 are receptive, i.e., each one accepts all possible inputs, and

the conditions WJ and W2 hold tme, then MJ and M2 are compatible. I.e., there exists

a consistent assignment to input/output signals of Ml and M2 in Ml M2. If there

were conflicting outputs or conflicting cycle-of-gates, then Ml // M2 could deadlock

(Section 3. l).

J^«.(?i^£OJ!â^l°J!aljffJ^r9.&£atelJn»!B^ The 1RS machine I contains no

conditional cycle-of-gates (Definition 3.4).

^ (No putput-constraining) When 1RS is composed with a module, no activated

1RS constraint can constrain an output of that module.

u

We explain when an 1RS does not constrain outputs of a module. This condition in

fact imitates Wl that requires that Ml should not constrain an output ofM2 and vice-
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versa. Similarly, an activated constraint can only restrict the input of the module.

Consider the subgoal I(Çx) A Ml ]= I(Cy) where x is an input and j) is an output of Ml.

Let Cx '.= [PI(s) ==> R](y, x)]. Cx must compute a value for x and should not constrain

y in I(Cx) A M7. More precisely, for any y in Ml, there must exist a value for x such

that the predicate Rl of Cx can be satisfied. We express Condition W4 using

characteristic functions. Characteristic function ^2 of a set Z is a function that returns

1 (or true) for any element s of Z and 0 otherwise.

^eZ^/^)=l (3.5)

Let y =Y(s) be an output function of Ml that computes y, for given states of Ml. Let

fy(s, y) be the characteristic function of 7, RS denote the set of reachable states of Ml,

and letfpsCs) be the characteristic function ofRS. In 7(Q) A Ml, for 7?y(x, ^) of Cx not

to constrain the output y of MJ, for any reachable value a of y (via Ml), there must

exist a valuation b of x such that Ri(b, a) holds.

3^. (fRs(s)^fY(s,y)) =^ 3x.R](y,x) (3.6)

Similarly, I(Çy) A M2 must be checked to satisfy the no-output-constraining property

(W4).

JÎ/^(.NO.CX£le-.of-sMesJ]^heJ.^^^ The compositions I(Çx) A Ml and /(C^,) A

M2 contain no cycle-of-gates. If there is a predicate Rl(y, x) in Q (that introduces a

conditional zero-delay path y — °—>cxX~), then there has to be no (static) zero-delay

path x-^^Miy inM712.

RJ(y,x)^[-^(x—^M,y)] (3.7)

u
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n Similarly for R2(y, x) of Cy and M2.

Note that by (P ==> -i0) = (0 =^> —iP) in (3.7), one can infer that when Ml contains a

zero-delay path from x to y, predicate Rl of Cx should not contain any conditional

zero-delay path from 3^ to x to prevent forming a cycle-of-gates in I(Cx) A Ml.

After presenting the well-foundedness/compatibility conditions W1-W5, we can now

define the composition mle as follows:

Assume guarantee with 1RS: Let Ml and M2 be two modules and I(Cx, Cy) be their

1RS machine (Figure 3.8). Suppose that the systems (or subsystems) Ml \\ M2, I(Cx)

A Ml, I(Cy) A M2, and /(G) A /(Cy) that are involved in this assume guarantee

reasoning satisfy all of the well founded/compatibility conditions W1-W5. It follows

that:

/(G)AM7|=/(Q

/(C^)AM2|=/(C,)

WJ-W5

M7AM2|=/(G)A/(Q

(3.8)

Proof: We provide a proof sketch based on the same theorem in reactive modules

[36]. First, the interface machine 7(G) can be replaced by a non-deterministic model

N1 as follows. /(G) restricts x in terms of j^. module N1 has ^ as its input and

generates an x equal to that allowed by I(Cx), as its output. The input/output

sequences of N1 are exactly those accepted by /(G). Similarly, I(Cy) can be replaced

by an equivalent module N2. Let N1 \= I(Cx) assert that every trace of N1 is an

^
This condition may be too strong. For instance, Ml may also contain a conditional path, which is not
activated at the same time as the 1RS. It would be more precise to examine zero-delay paths of the
module and the 1RS at each state of the 1RS. This would then need more complex computation.
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accepted trace of 7(G). (So, the satisfaction relation |= represents trace containment

when left and right hand sides of = are both modules [44]).

Now, we recall the assumption/gurantee rule in reactive modules from Chapter 2.

Reactive modules Ml and M2 are "compatible" if (1) their outputs are disjoint and (2)

the transitive closure (<M/ u <M2)+ is asymmetric, i.e., they form no cycle-of-gates.

Let Ml and M2 be two compatible modules, and let N1 and N2 be two compatible

modules such that every input of N1 [] N2 is an input or an output of Ml \\ M2. ïfMl [|

N2 [= N1 and M2 [| N l |= 7V2, then Ml // M2 |= W || ^V2.

For comparison, let the reactive modules Ml, M2, N1, and N2 correspond

respectively to Ml, M2, I(Cy), and 7(0 in this theorem. All of the conditions of the

assume guarantee theorem in reactive modules have equivalent conditions in rule

(3.8), e.g., disjoint outputs (JV1, W4) and no cycle of gates (W2, W3, W5). Moreover,

every input of I(Cx) A I(Cy) is an input or an output oï Ml \\ M2, by constmction of

the 1RS. Given that /(C^) and N1, and I(Cy) and N2 are trace-equivalent, by /(Q) A

Ml |= I(Cy) and /(Q A M2 |= 7(C^) in the mle (3.8), we have that N2 \\ Ml \= N1 and
N l \\M2 \= N2, respectively. Then, (Ml |] M2) \= (N1 \\ N2), by the theorem of

reactive modules. From (Ml \\ M2) |= (N1 \\ N2), we get (Ml \\ M2) |= (7(G) || I(Cy))

which using 1RS notation is denoted by Ml/\ M2 |= I(Çx) A I(Cy).

(We recalled the proof of the assume/guarantee theorem in reactive modules in

Appendix 1. The theorem is proven by induction on trace length).

^

This assume guarantee mle shows that the 1RS framework is a special case of the

reactive modules. However, detecting a "conditional" cycle-of-gates (Definition 3.4)

in I(Cx) A I(Cy) is not as intuitive as detecting a "static" cycle-of-gates m N1 || N2.

Interestingly, this resemblance indicate that /(Q) A I(Cy), i.e., the 1RS when its both

constraints are activated, plays the same role as the abstraction modules N1 and N2 in

reactive modules. In this regard, by considering interactions at the interface of

components, 1RS suggests a practical approach to the abstraction module

development. 1RS represents a model for the "joint" behavior of the modules in the

composition (unlike to the separate models, e.g., N1 and N2 in reactive modules) and
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the constraints then adapt the 1RS to the specific needs of the left hand side module or

the right hand side module of the interface.

Similarly as in reactive modules, the 1RS methodology as presented so far is

applicable to safety properties only. However, in Chapter 4, we present a verification

approach using 1RS to verify liveness properties of a switch module.

In the well-foundedness/compatibility conditions, we required that I(Cx) A I(Cy)

contains no conditional cycle-of-gates (W3). In Definition 3.4, we have illustrated

how a conditional cycle-of-gates is formed in an 1RS. For instance, when appropriate

conditional zero-delay paths occur in the same state of the 1RS, i.e., they occur at the

same "time", a conditional cycle is fonned. We have implicitly assumed that if such

conditional zero-delay paths happen on disjoint sets of 1RS states, no cycle is formed.

In the following, we formally prove this assumption.

Theorem 1 (Non zero-delay cycles) Consider a module Ml with input x and output ^

and a module M2 with input y and output x. Ml and M2 and their 1RS J(Cx, C^,) is

depicted in Figure 3.9a. Let Cx contain one binary predicate Rix(~^, y~) and a finite

number of unary predicates R2x(x), .... Rnx(x). (We separate the unary predicates from

non unary predicates since a non unary predicate can introduce a zero-delay path

while a unary predicate cannot. Example 3.4 illustrated this.)

G:=[737^)^^(y,x)]A /\(P^(s)=^R^(x)] , k>2 (3.9)
k

where Pkx(s) are predicates on states s of the 1RS. Cy is defined similarly.

Cy -.= [Ply(s) ^ R,y{y, x)] A /\ ( P ty(s~) ^ Rfy(y)} ,1^2
7

(3.10)

Suppose that the systems I(Cx) A Ml, I(Cy) A M2, and Ml // M2 satisfy conditions

W1-W5 that apply. If conditional zero-delay paths introduced by Rjx(x, y) (of Cx) and

u
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R]y(x^) (of Cy) occur on disjoint sets of 1RS states, then no conditional zero-delay

cycle is fonmed by Cx and Cy, i.e., the set of constraints is well formed.

Proof: Constraint Cx defines one binary predicate over x and y and a finite number of

unary predicates over x. The proof does not change ifCx or Cy contains more than one

binary predicate, since only the closest one to the initial state of the 1RS is involved in

the proof.

Consider the subgoal 7(Q) A Ml \= I(Cy) in Figure 3.9b. Since there is a binary

predicate Rjx(x, y) in Cx, there has to be no zero-delay path (x—°—> M\ >') within Ml

for Ml A I(Cx) to satisfy the no cycle-of-gates condition (W5). We have thus shown a

register from x to y in Ml. Similarly, there has to be no zero-delay path within M2

from ^ to x, because otR]y(x, y) (Figure 3.9c).

u

a)

M2

I(C^ Cy)

'-^

"^

X.

^-
yl

Ml

b)
K\

Ml

^..-..,
^

e) M2

'y
^_

x/CC]

y

-)

Ml A M2 |= /(G, Cy) /(Q A Ml \= I(Çy) I(Cy) A M2 1= /(G)

Figure 3.9: Non zero-delay cycles in 1RS 7(Q, Cy).

Consider PJx(s) in (3.9). Let s, be the first state of the 1RS that makes P]x(s) tme.

P^(si) = true

Similarly, let sj be the first state of the 1RS that makes Ply(s) in (3.10) tme.

Ply(Sj) = true
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We have that 5 ^ s,, since othenvise there will be a conditional cycle-of-gates at s,

(Definition 3.4). Suppose, without loss of generality, that 5', < sj, i.e., s; is reached

before 5/ in the 1RS.

S,<Sj

From (Plx(si) ^> R]x(x, y~)~) in G, R]x(x, y) restricts x before R]y(x, y) from

(PlyÇsj) =^> R}y(x, y)) in Cy restricts y, since 5, < Sj. While x is restricted by R}x(x, y) in

s,, y is not restricted by R]y(x, y) at that state. Consider the projection of Cy over s,.

First, we show that this projection is not empty and therefore it provides a constraint

fory at s,. Consider the verification I(Cy) A M2 |= I(G) at 5;. We denote this by

/(Cy)A^2|=[J(G)],, (3.11)

Since there is a register in the path y to x via M2, x has a value at s,, for instance, x = a

(Figure 3.9c). In subgoal I(Cy) A M2 |= /(Q), C^, is activated in order to verify Q.

Suppose that y is not restricted at s,, i.e., [Cy]s, =0. (3.11) can then be rewritten as

follows:

[M2],, ]= [/(G)],, (3.12)

Which can be simplified to:

[M2},,\=R,^a,y} (3.13)

u

îfy is not restricted at s,, then (3.13) fails since R]x(x, y) cannot be proven tme with

x = a and y free in M2. (If (3.13) holds tme with x = a and ^ free, then Rjx(a, y) is

independent of y, i.e., it is not a binary predicate over ^ and x. However, Rjx(x, y) is a

binary predicate by assumption and introduces a zero-delay path from y to x.)

Consider the second case that y is restricted at s;, by a predicate Rpy(y) of Cy.
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[Cy]^Rpy(y) (3.14)

Rpy(y) is unary predicate and assigns a value b to y such that Rjx(b, a) holds at s,.

Rpy(y)^M2\=R,^a,V)

Rpy(y) must, in turn be discharged by verifying /(Q) A Ml [= I(Cy) (Figure 3.9b).

[/(G)AM7L|=^(y)

Suppose that to discharge Rpy(y) at s,, an extra constraint must be assumed on (the
13primary input) x at a state Sq < s,, e.g, [Cx\sij = RqxÇx) .

R^(x) ^\Ml},i\= Rpy(y) (3.15)

u

Figure 3.10 illustrates the sequence of the constraints and the states of the 1RS.

Consider the verification (3.15). Ml contains a register in the path from x to y. When

proving a property about the output of a register at time t, one cannot use an

assumption about values on its input at time t, since, the output at t is independent of

the input at t. However, if necessary, one could make an assumption about the input

at time ((-1). In order to prove (3.15), i.e., to prove Rpy(y) (on Ml output in Figure

3.9b) using Rqx(x) (on Ml input), Rqx(x) has to be declared in a state Sq < s, in 1RS

(Figure 3.10). We can trace back the chain of dependencies of constraints on the

states of the 1RS to find out how each constraint is assumed when proving the other

constraint. (Note that because of the registers in the design, this tracking is

guaranteed to move backward.) However, there has to be a ïïrst state Sb in the 1RS,

where the first constraint is ever declared. This first state exists, since at the earliest, it

could be the initial state.

13 This is similar to proving a property (y = b) at the current state of a register with input x and output y
that requires that (x = b) to be assumed in the previous state of the register.
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State of 1RS: init..... .si,. .............St............Sy.......... .....si..............s,....

e•y

Ce:

..Rby(y)........Rty(y).......................Rpy(y).....R]y(y,x).

..Rbx(x) ....................R^(x)...... .Ri^(x,y).

Figure 3.10: Projections of the constraints Cx and Cy over states of the 1RS.

There is no constraint before Sb, and every constraint at that state has to hold tme

without further assumption/constraint on the other part. At Si,, however, we may have

two constraints, e.g., [Cx]sb = Rbx(x) and [Cy]sb = -Re^Cy). Given that MJ in [/(Q) A Ml

1= I(Cy)]sb contains a register, [C.c],;, restricts the input of the register at Sb. [Cy}sb

defines the output of the register at Sb. The output of the register at each time t is

independent of its input at time t. Thus Ml has to satisfy [Cy\sb without assuming

[Cx]sb-

Ml \= [I(Cy)},b (3.16)

In the same way, M2 has to satisfy [Q]^, without using [C^,]^.

M2 |= [/(G)]^ (3.17)

After that, [Cx\sb and [Cy\sb become root assumptions. The set of

assumptions/properties is thus well-founded, i.e., there exist verified root assumptions

and the set of assumptions is not (zero-delay) circular.

u

By this theorem, non-zero-delay cycles, as opposed to the conditional cycle-of-gates

could not introduce invalid results since the dependencies in the non-zero-delay

cycles is not (zero-delay) circular. The theorem concludes that when non-unary
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0 predicates happen in disjoint sets of 1RS states, no zero-delay cycle is created. We

may call such "cycles" non-zero-delay or sequential cycles.

This theorem provides an intuitive justification for the assume guarantee rule (3.8).

The correctness of that rule can be inferred from the time delays introduced in no-

cycle-of-gates conditions (W2, W3, W5~) so that they break every cycle by at least one

unit delay [19]. Disjoint-outputs (Wl), no cycle-of-gates (W2, W3, W5) and no-

output-constraining (W4) conditions assure that all the compositions involved in the

rule are model-checkable, i.e., they could not deadlock. These requirements together

disallow any zero-delay conditional or static cycles and provide a well-founded non-

circular ordering for evaluating all variables and constraint/assumptions in the

system.

3.5.2 Generalization

We consider three (schematic) examples of the assume guarantee mle using 1RS.

u

Example 3.5 (More interface signals) Figure 3.11 represents a case where Ml and

M2 communicate using signals x, y, z. The subgoals of the composition mle are

given in Figure 3.1 Ib.

a) /(Cx, Cy, G)

M2

•y,

X.

b)

J^j

<-

^
-^
z

Ml

/(G)A/(QAM7[=7(Cz)

/(Q)AM2]=/(C,)Al(Q

Well-foundedness

MI il M21= /rc^ A T(C.^ A ^r^

Figure 3.11: Application example of the compositional rule using 1RS.
(a) Modules Ml and M2 and their 1RS J(Cx, C^,, Q). (b) Assume guarantee reasoning.

To ensure the well-foundedness of the composition, we have to verify the no-output-

constraining (Wl, W4) and the no cycle-of-gates conditions (W2, W3, W5) for

subsystems involved in the compositional reasoning. Consider I(Cx) A I(Cy) A M], for

instance. To check that this system meets W4, we verify that (1) I(Cx, Cy) does not
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0 restrict the output of Ml and (2) I(Çx, Cy) computes some values for the inputs of Ml.

Let z = Z(s) represent the output function of M7 that computes z, for a given state s.

Let RS represent the set of reachable states of Ml. We have to verify that for any

valuation of z in Ml, there exist some values for x anay such that the predicates Rl of

Cx and R2 of Cj, can be satisfied. Using the characteristic functions, we verify the

following.

(3s. fRs(s) AMs, z)) =^ (3x, y. RI A ^2) , (3.18)

u

where, fps and fz represent the characteristic functions of RS and Z, respectively.

Similar condition exists for R3 of Q. Other conditions of the well

foundedness/compatibility are similar to the basic case in Figure 3.7.

Now, consider our second example in Figure 3.12. The compositional reasoning is

given in the figure as well. We verify that all systems involved in the subgoals satisfy

the well-foundedness/compatibility conditions.

Ii{C,, Q 7,(C, C,)

Ml <-

x

-^

^
M2

r

<-
^-

z

M3

;

/(C,)AM2A/(Q|=/(C)
/(C)AM3|=/(Q
7(QAM2A/(Q|=/(Q
/(C^)AM7|=/(G)

Well-foundedness

Ml l] M2 l] M5 |= 7(Q A /(C^) A /(C) A /(G)

Figure 3.12: Three modules with 1RS machines // and /2.

Consider /(G) A M2 A /(Q). This system contains a cycle-of-gates if(1) Cx contains

a predicate Rx(x, y) over x and >' (defined in any state of 1RS /y), (2) M2 contains a

zero-delay path from x to r and a zero-delay path z to y, and (3) Cz contains a

predicate Rz(r, z) over z and r (in any state of 1RS h). Similarly, if Q contains a

predicate Rx(x, y) and M2 contains a zero-delay path from x\.o y, a cycle-of-gates is

formed in the subsystem. Therefore, if the following condition hold, there is "no"

cycle-of-gates in I(Cx) A M2 A I(Cz).
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R,(x, y) => -.[ (x—^M2 ^) v ( (x 0

•M2r)A^(r,z)A (z^^M2y)]

To respect the no-output-constraining property (W4) in /(Q) A M2 A I(Cz), a

predicate Rx oî Cx cannot constrain the output^ ofM2, if for any reachable value oî y

via M2, RX can compute a value for x.

^s. fRs(s')/^fï(s,y) =» 3x.^ ,

where y/?5 and/y denote the characteristic functions of reachable states RS of M2 and

output function Y(s) of M2, respectively. In the same way, it is checked that Cz does

not constrain output r of M2. The other systems involved in the reasoning in Figure

3.12 are verified in a similar way to meet the no-output-constraining (Wl, W4) and

the no-cycle-of-gates conditions (W2, W3, W5).

u

Example 3.6 (Transitivity rule) Consider the system and compositional reasoning in

Figure 3.13. When all the subsystems involved in the reasoning satisfy the well-

foundedness/compatibility conditions, compositional reasoning infers an end-to-end

property for the composed system. This rule resembles the transitivity mle in

prepositional logic. We will apply this rule in Chapter 5 to prove end-to-end

properties of an ATM switch.

/o(C,)
x
j

{y
Ml

/7(Q
ri

4-
->

z

M2

/2(Q

u\

~v\

/o(G)AM7|=//(C)

/,(C)AM2|=/,(C«)

Well-foundedness/compatibility

Tn(C^ A M1 A M2 l= Ï.(C.^
Figure 3.13:1RS machines Io, // and Z? allow us to prove a property for Ml \\ M2.

3.6 Summary

Kaufmann et al. [25] presented a framework for asymmetric constrained model

checking. They suggested (1) to model the environment assumptions with simple

constraints of the form G p (globally p) and (2) to use the complete system (i.e., the
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0 environment and the module) to discharge the constraints, e.g., Environment

Module/= G j9.

We have extended this framework to a symmetric constrained model checking. We

presented 1RS machines that specify the "joint" behavior of the environment and the

module at their interfaces. An 1RS defines a set of constraints that specifies what

values may happen on its inputs, i.e., on the signals of the interface. These constraints

enable us to verify the environment and the modules separately. Compared to the

monitors in asymmetric constrained model checking, the 1RS in symmetric

constrained model checking is more compact. A Monitor has an output to assert that

for instance, a component correctly follows a protocol. Unlike a monitor, an 1RS

through its constraints shapes/verifies its "inputs", i.e., it does not generate any output

signal. This key feature enables 1RS to symmetrically recognize a property or supply

assumptions on inputs. Using transitivity rule, it can be used to organize end-to-end

property verification, which is important for modular systems.

Reasoning with 1RS is circular. To avoid erroneous results, we adapted the well-

foundedness conditions from réactive modules. We defined and formulated the

conditional cycle-of-gates and the no-output-constraining conditions for the systems

composed with 1RS. In this way, (1) the constrained systems remain model-

checkable, as requested by Kaufmann et al. [25], and (2) the overall reasoning is

sound, as defined by assume guarantee reasoning in reactive modules [35]. These

properties together characterize the 1RS methodology.

In the next chapter, we report on the verification of an ATM switch module to

illustrate the applicability of the 1RS methodology to model checking of large

systems that involve complex control path and large data stmctures. We illustrate

how 1RS can be used to conduct compositional verifications in modular systems.

u
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Chapter 4

ATM Switch Specification

In this chapter, we specify properties and environment assumptions of an

Asynchronous Transfer Mode (ATM) switch. The Fairisle ATM switch [32] was

developed at Cambridge University for an experimental network. It consists of a 4x4

switch fabric that performs the actual switching, and four port controllers that handle

cell queueing, prioritizing and transfer to the fabric.

There have been earlier efforts in ATM[ switch verification [32] [46] [42]. For

example, Curzon developed a detailed model of the fabric using HOL (Higher Order

Logic). He showed that an RTL (Register Transfer Level) implementation of the

fabric implements a higher-level specification written in HOL. Tahar et al. [46] used

MDG (Multiway Decision Graph) to automate this verification. Lu et al. [13] using

the model checker VIS [48] verified certain safety and liveness properties of the

fabric. These works focused on the fabric verification and none of them addressed the

port controllers of the switch. Rajan et al [42] introduced a parametric high-level

model of an ATM switch and used a combination of formal verification methods

(e.g., theorem proving and model checking) and informal verification methods (e.g.,

simulation) to verify the design. This (validated) high-level design was then

synthesized with concrete values for the generic parameters. The idea was to avoid

verifying the synthesized concrete designs by verifying only the parameterized higher

level ones. Although this work emphasizes the integration of formal techniques in
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early design phases, their high-level model left out certain functions, e.g., cell

prioritization and data-flow regulation to a central switch controller [42].

Our model of the port controllers is more complex than the one used in the earlier

works. (Its VHDL code is about 4000 lines i.e., 7 times bigger than that of the fabric.

We provided VHDL models of the port controller and the fabric in Appendix 4.) The

controller includes features such as data-flow control and cell prioritization. The

switch module (i.e., the fabric and the port controllers) uses acknowledgements from

the destination buffers to control the transmission of cells to the buffers. Moreover,

the in port controllers contain separate queues for storing and handling the cells of

different priorities. This division splits the main cell flow inside the controller into

parallel paths. Formal verification of such systems, especially for liveness properties

is more complex than in the earlier works that do not include this cell prioritization

feature.

u

Our methodology for the formal verification of ATM switch is compositional model

checking using interface recognizer/supplier (1RS), thus different from the previous

works which used theorem proving or model checking or a combination of them to

verify (somewhat simplified/high level) models. 1RS is a formalism for modeling

assumptions and safety properties of components. It allows us to subsequently (and

easily) discharge these assumptions, i.e., to show that other modules satisfy the

assumptions that the component makes about them.

In the next section, we first use 1RS to model the environment assumptions of the

fabric. Then, we prove that these assumptions are respected by the port controllers.

4.1 Fairisle ATM switch [32]

The switch consists of three types of components: in port controllers, out port

controllers and a switch fabric (Figure 4.1). It switches ATM cells from the input

transmission lines to the output transmission lines. In a 2x2 switch, there are 2 loop

back First-In-First-Out (FIFO) buffers inside the switch that serve to return the cells

53



0 back into the switch for special routing, e.g., for multistage switching. An ATM cell

is composed of 48 bytes of data (payload) and 5 bytes of header (containing

information about the channels). The in port controllers synchronize incoming cells,

convert cell headers according to a routing table, append two routing tags hi and h2

in front of each cell, and send them to the fabric. The fabric does not use the

infonnation in the header; it is only used by the port controllers. The header is treated

by the fabric as additional data of cell. Routing tags hi contain all the control

infomiation that the fabric needs for arbitration. There is a synchronization signal

called frame start (fs) which begins a cycle of a cell transmission. When a new cycle

starts, the fabric watches the first bit of each byte on its in ports, e.g., dln0(0) in

Figure 4.1. This is the active bit of the cell routing tag (Figure 4.2). As soon as one

such bit on an in port becomes 1, that event marks the start of cells on all the in ports.

On receiving a set of routing tags in a particular frame, the fabric processes them and

arbitrates among the in ports for accesses to the requested out ports. The cells are then

forwarded to the appropriate out ports as determined by the routing tags hi. When

sending out the cells, the fabric removes hi and forwards h2 with the cell to the out

port. h2 is used internally by the out port controllers to choose either out buffers or

loop buffers to deposit the cell, and is subsequently stripped off. Out port controllers

forward the ack signal from the selected out buffers to the fabric. The port controllers

and the switch fabric all use the same clock. They use a frame start signal to ensure

that the in port controllers inject cells synchronously, i.e., the routing tags arrive at

the same time to the fabric in ports. If no in port raises the active bit throughout a

frame then the frame is inactive - no cells are processed. Otherwise, the frame is

active.

u
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Figure 4.1: A 2x2 Fairisle switch (the original switch is 4x4 [32]).
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Figure 4.2: Routing tag hi for a 4x4 Fairisle switch [32]
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0
4.2 Global specification

We specify global properties and assumptions that the switch makes about its (global)

environment. Then, we specify the local components, e.g., the in port controllers and

the fabric each one in its own specific environment. Finally, we use a compositional

approach to show that the local properties imply the global specification. Depending

on the complexity of a component, it may require fiirther utilization of compositional

reasoning. For instance, the local properties of the in port controllers will be in turn

verified by a compositional approach.

We introduce the following global properties as the most basic operations of the

switch module. (We will formally state and verify these properties using interface

recognizers/suppliers in Chapter 5.)

Gl (Extraction) The switch should correctly dequeue cells from the input FIFO

buffers. It should discard incomplete cells and deposit complete ones in cell memory.

G2 (Header conversion) The switch should convert cell headers according to the

routing table. The headers contain the channel numbers needed to route cells to

correct destinations.

G3 (Data integrity, no duplication, no loss) The switch should transfer cells to the

destination output buffers with no duplication or loss or cormption. Under certain

assumptions (e.g., acknowledgement reception and a limited number of high priority

cells), it should eventually transfer cells to the output buffers. In the case ofno-ack, it

may discard them after several attempts.

G4 (Prioritization) The switch should deliver cells based on their priorities, e.g., it

should deliver the high priority cells first.

u
G5 (Order preservation) The order of cells should be respected, i.e., there should be a

first-in-first-out order between cells of the same priority (that are arriving from the
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0 same in port and are destined to the same out port). The order between the bytes of a

single cell has also to be preserved.

As an example, suppose we want to send two very short cells "hello" and "peter" to

destination Peter. No duplication property (G3) asserts that, we are not delivering for

instance "hello", "pepeter" to Peter. G3 also guarantees that the cells are not cut to

"hel" and "pet", for example. Order preservation (G5) requires that the message not

be transferred as "peter", "hello" or "olleh", "retep" etc. The conrect header

transformation (G2) i.e., correct destination channel number ensures that the

messages will be delivered to Peter and not to John.

Next, we define environment assumptions of the switch. The switch reads the cells

from the input FIFO buffers and sends them to the appropriate output FIFO buffers. It

uses a frame start signala to synchronize its components. For a correct operation of

the components, the switch requires that the cell frame (which is delimited by the

frame start pulses) be greater than the cell size:

14Eg: The cell frame should be greater than the cell size"

4.3 Specification of the components

We (informally) defined the global properties and the environment assumptions of

the switch in Section 4.2. In the same way, we specify the switch components, i.e.,

the in port controllers and the fabric.

4.3.1 In port controller specification

The in port controller extracts the cells from the input FIFOs and sends them to the

fabric. The following is a list of local properties that characterize the desired behavior

of the in port controllers: (Formal specification using 1RS will be given in Chapter 5.)

u
14 We will consider a (fairness) assumtion on acknowledgement when we verify liveness property (G3)
of the fabric in Section 5.7 in Chapter 5.
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0 Cl (Extraction) The controller should drop incomplete cells and deposit complete

ones in a cell memory.

C2 (Header conversion) The controller should convert cell headers (in the memory)

according to the routing table. It should add two routing tags hi and h2 to each cell;

hi should indicate the start of the cell and the cell priority to the fabric. h2 should

indicate the start of the cell to the out port controllers.

C3 (Data integrity, no loss, no duplication) Upon receiving positive acknowledgment

during cell transmission, the in port controllers should forward the cells to the fabric

without duplication or loss. (Low priority cells can be transferred if (1) ack is

received and (2) the number of high priority cells is limited.)

C4 (Prioritization) Cells should be forwarded to the fabric based on their priorities,

i.e., the high priority cells should be transmitted first.

C5 (Order preservation) The order of cells should be respected, i.e., there should be

first-in-first-out order between cells of the same priority. Similarly, the order of the

bytes in a single cell should be preserved during the transfer.

The in port controllers use the frame start signal fs to synchronously inject cells to the

fabric. They assume that the frame size (supplied by the local environment) is bigger

than the cell length.

Ec The frame length has to be greater than the cell size.
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0

4.3.2 Fabric specification

The fabric receives cells on its in ports and forwards them to its out ports. It does not

store the cells, and if there is contention among the incoming cells for an out port, the

fabric arbitrates between them and sends negative acknowledgments to the

unsuccessful in ports. The successful ports however are forwarded the (positive or

negative) acknowledgment received from the destination out port.

FI (Data transfer) After dropping routing tag hi from the cells, the fabric should

forward the successful cells to the requested out ports.

F2 (Ack transfer) The fabric should forward the acknowledgement from the out ports

to the successful in ports.

F3 (Prioritization) High priority cells should be given precedence over the low

priority ones during arbitration in the fabric.

F4 (Order preservation) The fabric should preserve the order of cells. If a celll in an

in port i is to go to destination out party and a cell2 arrives to the same in port after

celll and is also to go to the destination port 7 and celll has a high priority (while

cell2 can have high or low priority), then celll may reach the out port only before

cell2 does. In other words, either celll is discarded or it reaches the out port before

cell2 does.

u

Having specified the properties, we next define the assumptions that fabric

(implementation) makes about its environment. These assumptions concerns the

relative time distance between the frame start and cell reception from the in ports. A

timing diagram (specification) for the v\ portO/fabric interface of the switch is shown

in Figure 4.3. After sending hi, h2 and the first byte of the cell on dInO, the

controller on in portO expects to receive an acknowledgement (ackOutO) fi'om the
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0 fabric for each transmitted byte of the cell. With a positive ack, a cell (of length

ATMlength) is completely transmitted to the fabric.

For proper operation, the fabric makes the following assumptions about hi a&afs that

it receives from its environment. These assumptions are going to be discharged on the

in port controllers and the frame pulse geneiatoTfsGenerator, as their properties.

Efi Cells must not arrive sooner than three cycles after the frame start signal fs. The
first byte of a cell is hi. If ^ and thi denote respectively the time that yï and hi arrive,

we have

th\ > ^ + 3 (4.1)

Ef2 Frame start cannot be asserted before three cycles, after t;,;. \îte denotes the end of

the current frame or the beginning of the next frame, then the following must hold.

te> thï+ 3 (4.2)

Efs The frame length has to be greater than the cell size.

^^ -n-TL-TLTLTLn_TUUU-LJ1_nj-1
-frame-fs ^ ••-....

••••...•:

ts [37-oa)..
"•-....

dInO •^.•kl-\-h2r\ l l
-f3-'oo) xC ^

¥^

th! "•••..,
"[2,2]

ackOutO [
^

-T
thi+3 hi+\+ATMlength

Figure 4.3: Timing diagram specification for the vs\ portOI fabric interface in
Figure 4.1
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0 Next, we model fabric environment assumptions using interface recognizers/suppliers

(1RS). Frame start pulses that are generated by the global environment can be

supplied (as assumptions) by an 1RS in Figure 4.4 (similar to the one presented in

Figure 3.3 in Chapter 3). By setting its constraint Cfs to be always tme, frame start

pulses can be generated respecting the given cell size ATMlength. As mentioned in

Chapter 3, we will use the expression "activate a constraint" to indicate that the

constraint is set always tme while model checking a component. By activating Cfs, fs

pulses are always generated with a period bigger than ATMlength. Since yï is non-

detemiinistically generated in si, fs can take any period bigger than ATMlength.

Although, the lower limit of frame sizes accepted by 1RS I/s is bounded, its upper

limit is not restricted.

b)

l{fs=0) and
(count = ATMlength+A) ] / (count = 0)

else

 =0)/~
(count = 0)

 1 y
I)(e

si 2 s3

Cfs := [ (state = s2 or state = s3) =>
(A=O)]

l(fs=0) and
(count < (ATMlength + A)) ] /

'ys=l)/^^ys=0)/v~^"~^ (count=count+l)
(count = I) (count = count + 1)

Figure 4.4:1RS and its constraint Cfs for frame start pulse/î. A parameter
(A>2+t/,/-ts) determines the frame size in Figure 4.3

We have an obligation to show that an actual component (called fsGenerator) that

generates^ pulses with a fixed period satisfies Cfs.

fsGenerator \= Ift(Cfs) (4.3)

u

After representing assumption Ef3 by Ifs, we next model assumptions Efi (4.1) and Ep

(4.2) by an 1RS lenv Figure 4.5 shows lenv, which recognizes the sequence of events

that is authorized by Efi and Ep. For instance, suppose that a frame start occurs at

state pl. The routing tag hi can then arrive at state j?4 (up to pl 1), i.e., at least 3 clock
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/'n cycles after frame start. Similarly, after hi occurs (at one of the states 7?^ top 11), the

next frame start may occur atp7, i.e., 3 clock cycles later. The switch fabric begins

the arbitration between ports as soon as it receives one hi on one of its in ports. If no

A 7 is received up to state p 11, the frame is considered late or inactive, since a

complete cell could not be transferred within a given frame size. We added the

transition ^>77 top] to distinguish inactive frames traced by pl-> ... ->pll->pl from

active frames traced by pl->...->p9->p5->...->p7. This distinction helps us to

express properties of active and inactive frames.

-^

tets
pl

(fs ^hl) - ŝ

p6p2 P7 <

ift(^A A^A7)

^ hi)p3 ( p5A

^ M)A(-fs A-nA7)

11th] p4 piop9p8

(^&A^A7) '(-^fs^-^il) (-^fs^-^hl) (-1's/^hl)

Figure 4.5: Interface machine lenv of the environment assumptions on the in ports of

the fabric.

Next, we define a constraint Chipo for lenv to state that (the active bit of) hi on inportO

should be zero at states p2,p3, and at pl and p7 when fs is 1.

u

Chipo := [ ( (state =p2) or (state =p3) or ( (state =p7 or ^tote =7?^) and fs = 1 ) )

=> (dln0(0) = 0) ] (4.4)
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0 where dln0 indicates the fabric input on in port 0. Chipi is similarly defined for in

port 1.

Chipi '•= [ ( (state =p2) or (state =pï) or ( (state = p7 or state = pl) sna. fs = 1 ) )

^ (dINl(0) = 0) ] (4.5)

After developing an 1RS, the machine has to be validated to ensure that it correctly

models the interface interactions. For instance, we activate Cfs and Chipo to verify that

after a frame starts (i.e., state s2 oflfs is reached), hi on ïnportO remains zero (i.e.,

inactive) until state p4 (i.e., ts + 3) is reached. This verification is denoted by the

following formula:

Ien.(ÇhlpO) A Ift(Çft) \= AFTER: Instate = s2)

ALWAYS: dInO(Çt) = 0

UNLESS: len^state = p4)

(4.6)

where AFTER, ALWAYS, and UNLESS denote the temporal operators of the model

checker Formal Check [3].

We have an obligation to prove that the in port controllers respect the environment

assumptions (4.4) of the fabric. To verify this, we compose lenv with an in port

controller to check that Chipo is always true on lenv The verification can be denoted

by the following formula:

Ifs(Çfs) A inPortConïroller \= Ienv(Çhjpo) (4.7)

Formula (4.7) indicates that the in port controller composed with the pulse generator

interface Ifs with the constraint Cfs activated satisfies the property that Q/ is always

tme on lenv that observes the fabric interface of the controller.

u
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n It is possible to discharge the original subgoal that the transmitter respects the

environment assumptions of the fabric directly using the proper language of the

model checker, i.e., without any use of/env or Chipo- However, by introducing 1RS lenv
which is coded in VHDL or Verilog, we get a portable and uniform representation of

these environment conditions. This representation by 1RS is portable, since it does not

use the model checker (temporal) operators. It is uniform because 1RS can uniformly

verify a property or supply an assumption using the constraints. In any new

application of the fabric, the components in the application should satisfy these

conditions to use the fabric safely. 1RS should thus accompany the specification of

any reusable component to represent its environment assumptions.

4.4 Summary

In this chapter, we (informally) specified properties and environment assumptions of

the in port controllers, the fabric, and their composed system - the switch module. We

used 1RS to model these environment assumptions. We described that the in port

controllers and the frame pulse generator fsGenerator should meet environment

assumptions of the fabric. We illustrated how we can discharge these obligations

using constraints of 1RS lenv and Ifs.

In the next chapter, we will use 1RS to specify and verify properties of the switch

components. We will then compose these local properties to prove the global ones.
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Chapter 5

Formal Verification of an ATM Switch

u

In Chapter 4, we specified the in port controller and the switch fabric. In this chapter,

we prove that the in port controllers and the fabric implementation satisfy their

properties. Then, we compose them to show that the switch module (composed of the

in port controllers and the fabric) satisfies the global properties. During these

verifications, we culd observe that model checking of the in port controller for 53-

byte ATM cells is very expensive in time and memory. Therefore, we first

decompose the in port controller into its components and use a compositional

approach to verify the global properties of the controller. Two abstraction techniques

will also be used to reduce the verification problem. First, we assume a data

independent model [34] and second, we scale down the cell size.

5.1 In Port controller implementation

The port controller of Fairisle ATM switch consists of a receiver, a dispatcher, a

scheduler, a transmitter, an arbiter, and a cell memory (Figure 5.1). In addition, there

are 5 queues (R, Pl, P2, T, and F) that contain addresses of the memory locations

where the cells are stored. These queues are implemented in the same memory, which

stores the cells. When a cell is present in one of the input FIFO buffers (e.g., FIFO L

or 7), the receiver allocates an address from the free address queue F to the cell. The

receiver then transfers the cell one word at a time from the FIFO to the memory.

After transferring a complete cell, the address is inserted into the queue R. The

dispatcher detects the presence of a cell address in queue R and proceeds to update



n the cell header in the memory. It transforms the header according to a routing table

and, moreover, it adds a fabric tag (hi) and an out port tag (/z2) to the cell. The

priority (high, low) of a cell is indicated by a bit in hi (Figure 4.2). The dispatcher

checks that bit and depending on the priority, it inserts the cell address (dequeued

from R) to either queue Pl or queue P2. The scheduler transfers cell addresses from

Pl and P2 to the transmission queue T, giving priority to the cell addresses in Pl. The

transmitter sends the ATM cells from the cell memory to the fabric one byte at a

time. After a cell has been transmitted to the fabric, its address (dequeued from 7) is

returned to the free address queue F. The arbiter regulates the accesses to the memory

shared between the receiver, the dispatcher, the scheduler and the transmitter, giving

always priority to the transmitter. Although we use independent queue models, we

assume that they are implemented in the shared memory, hence only one cell word or

one address in a queue can be accessed at a time. This is enforced by the arbiter.

^
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Figure 5.1: An ATM switch in port controller

5.2 Arbiter abstraction

The receiver, the dispatcher, and the scheduler require a permission from the arbiter

to access the memory. The transmitter has the highest priority, however, and can

access the memory as soon as it requests. We first verify that if the transmitter

releases the memory infinitely often, the arbiter can grant memory accesses to the
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n receiver, the dispatcher, and the scheduler infinitely often. We shall show in Section

5.8 that the transmitter does release the memory infinitely often, thus we abstract the

arbiter and decompose the port controller into receiver, dispatcher, scheduler, and

transmitter subsystems where each subsystem may assume to receive memory

accesses infinitely often.

5.3 Receiver subsystem

The receiver is the most complex module among the components of the port

controller. We verify the following properties of the receiver.

RI (Extraction) Incomplete cells are dropped and the complete cells are transferred

from the input FIFOs to the cell memory.

R2 (Order preservation) When depositing the cells in the memory, the order of the

bytes inside a cell is preserved. Similarly, the ordering between cells is preserved. For

instance, if a complete celll arrives to the receiver before a complete cell2, celll is

deposited to the memory before cell2 is deposited.

R3 (Address path) After depositing a cell in the memory, its address that is taken

from queue F is enqueued in queue R.

R4 (Address order preservation) While transferring the addresses from F to R, the

order among addresses is preserved.

In the input FIFOs, the bytes are made of 9 bits where the 9 bit indicates the start of
a cell (when equal to 1). When reading the cell bytes, if a start-of-cell bit is set or if

the buffer becomes empty, the cell is discarded.

u

Model checking of the receiver subsystem containing the receiver, queues F and R,

and the cell memory is practically not feasible because of the state explosion

problem. To reduce the problem, we use the data independence assumption: the
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0 queue, the memory, and the receiver are data-independent. The data-independence

assumption infers, for instance, that, a queue preserves the order among its elements,

if it does so for a reduced data set {0, 1, 2} that contains three elements (Appendix 2).

The receiver has a scalable architecture, parameterized on the cell length. This allows

us to reduce the cell to the minimum of 3 elements <start-of-cell, dataO, datal>. With

the data-independence assumption and the cell-size reduction, it is possible to verify

the receiver subsystem.

5.3.1 FIFO/receiver interface machine Ii

We use 1RS machines to verify the properties R1-R4 of the receiver described in

Section 5.3. First, we develop an interface machine Ii to recognize the interactions

between the FIFO / and the receiver (Figure 5.1). We will ultimately remove FIFO I

and use // to supply an abstract model of FIFO to the receiver as receiver

environment. /; as shown in Figure 5.2 depends on the following Boolean variables:

• sod: the 9 bit of the FIFO 7 top element, indicating start of a cell.

deqNeeded: when tme, it indicates that an address will be dequeued from F

for a new cell.

• fifolempty, qFempty: indicate whether FIFO / respectively queue F is empty.

deql, deqF: dequeue commands on the corresponding queue interfaces.

oneCellFromI: indicates whether FIFO I contains a cell, i.e., 1+53 bytes of

data where the first byte represents the start-of-cell byte.

rok: true, indicates that the receiver has the right (from the arbiter) to access

the shared memory.

u

Following the data independence principle, 1RS Ij should recognize the language

(cell0)*{celll)(cell0)*(cell2)(cell0)* and will subsequently be used to constrain the

inputs of the receiver to this language. cellO, cell], and cell2 represent three arbitrary

(but different) cells. Each cell consists of three data octet such that the soc bit of the

first octet is set. Suppose xsoc represents an arbitrary octet with soc = 1. Let the
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n sequences <xsoc, 0, 0>, <xsoc, 1, 1> and <xsoc, l, 0> represent respectively cellO,

celll and cell2. In the initial state, Ii awaits xsoc from the FIFO I. The t-ansition

sO -> si of I] recognizes this xsoc under the following condition.

{sod A oneCellfromI A ~fifolempty A û?e^7 A -qFempty A û?eç77 A roÂ; A deqNeeded )

(5.1)

This means that it observes a start of cell, FIFO I contains 53 bytes, and the receiver

is dequeuing (xsoc) from FIFO / and (an address) from queue F. Also the receiver

received permission (rok) from the arbiter to read queue F from memory. The

transitions s0->sl->s2->s3 recognize cellO. After that, in state s3, Ii awaits rok for

cellO to be written in the memory. In state s4, the address ofcelîO is written in queue

R, if queue R is not full and rok is received.

During the cell extraction from / in states sl and s2, if the soc bit is asserted then the

start of another cell is detected. This means that the current cell is incomplete and the

cell must be discarded. This is recognized by transition t3, i.e., before writing the cell

in the memory. In that case, the address dequeued from F is retained for the next cell.

The following condition will then hold at the beginning of a new cell.

(socl A oneCellfromI A -fîfolempty A û?e^/ A -deqNeeded) (5.2)

Similarly to cellO, transitions s0->sl->s5->s6->s7 and s8->s9->sl3->sl4->sl5

recognize celll and cell2, respectively. // can thus recognize the language

(cellOY(celll)(cellO)*(cell2)(cellO~)* at the interface.

u
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Figure 5.2: FIFO/receiver 1RS Ii. Transitions
sO -> si -> s2 -> s3 recognizes cellO = <xsoc, 0, 0>.
celll and cell2 are recognized similarly.

t]=(5.î)v(5.2)

t7 = (fifoloutput = 0 ) A
-fifolempty A ~socJ

A deqî

t3 =fifolempty v socl
t4 = rok

t5 = rok A -qRfull

t6 = (fifoloutput = l ) A
-fifolempty A -soc}
A deqî

// uses the following constraints Cceiio and CumCeiu_z and Ccein and Cceii2 to impose

that language on its inputs. When the constraints are activated on //, the inputs of the

receiver will be restricted to follow that language.

Ccelio := [ ( (state = s2 or state = s .10) andfifolempty = 0 and sod =0 )

^> (fifoloutput = 0)] (5.3)

u

Cceiio corresponds to transition t2. For instance, it asserts that the output of FIFO /

(fifoloutpuf) should be 0 at states s2, and s 10 to supply the data value 0 ofcellO. This

restriction on the FIFO output should be supplied whenever the FIFO is not empty

and the soc bit is not asserted. Remark that 1RS I/ allows the FIFO I to non-

deterministically be empty or even soc to be set at those states. These cases represent

incomplete cell reception (e.g., transition t3 in sl and s2). If we removed the

condition sod = 0 from Cceiio, the incomplete cell reception could be ignored in the

verifiication. When Cceiio remains true and for instance, state s3 is reached, cellO is
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n successfully extracted from the FIFO. Constraints Cceiii, Cceiu and CuniCeiii_i are

defined similarly.

Cceiii '= [ (state = s5 andfîfolempty = 0 and socl= 0 ) ^> (fîfoloutput = l)] (5.4)

Cceii2 '•= [ ( state = si 3 andfïfolempty = 0 and sod =0)=> (fifoloutput = 0)] (5.5)

CuniCelllî '-= [ ( (state = sJ6 or state = s 17) and fîfolempty = 0 and sod = 0 ) =ï>

(fifoloutput = 0)] (5.6)

By forcing (5.3), (5.4), (5.5), and (5.6) to be always tme, Ij supplies the appropriate

input sequences to the receiver and allows us to verify cell extraction (RJ) and cell-

order preservation (7?2) properties of the receiver.

5.3.2 Receiver/memory interface

An interface machine Is recognizes the writing of celll and cell2 in the memory at

addresses al and a2, respectively. These addresses were previously dequeued from F

and a copy is kept in //. The receiver extracts cells from FIFO /, octet by octet to fonn

words before writing them in the memory. Celll and cell2 are thus respectively

written as 4 and 5. By the transition m0->ml in Figure 5.3, Is detects that celll was

written in memory. This happens when // is in state s6 (waiting for the receiver to

obtain rok to write celll in the memory) and the receiver asserted the memory write

signal. The transition ml -> m2 similarly detects that cell2 was written in the

memory.

else else

el
mO in] m2

el = Instate = s6} A memlnput = 4
A (memAdrs = al) A write A rok

e2 = î {{state = sî4) A memJnput = 5
A (memAdrs = a2) A write A rok

u

Figure 5.3:1RS Is for the receiver/memory interface
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0 Consider the subsystem // A receiver A Is in Figure 5.4. Using the interface machines

Il and Is, we can verify that celll and c<?//2 are eventually written in the memory. We

set the constraints Cceiio, Cceiii, Cceiiz, and CumCeiii_î of I j to be always tme and verify

that after celll is extracted (i.e., state s6 of /; is reached) and rok is asserted, then

celll is written in the memory (i.e., state ml of Is is eventually reached).

Il(ÇcellO, Ccelll, Ccell2, Cun,CelI}_2 ) A receiver |= AFTER: rok A Instate = s6)

EVENTUALLY: Instate = ml) (5.7)

Similarly, we verify that after sl4 is reached, cell2 is eventually written in the

memory.

Il(CcellO, Ccelll, Ccell2, Cun,Celll_2~) A receiver \= AFTER: rok A Instate = sl4)

EVENTUALLY: Isolate = m2~) (5.8)

Following the data-independence assumption, we must show that celll and cell2 are

uniquely recognized at Is. We add a constraint Cmunique that asserts that after writing

celll and cell2, no ce//7 (i.e., 11) or ce'Z/2 (i.e., 10) is written in the memory anymore

(only 00 can be written then).

CmUnique := {{state = m2 and write = l) =^ (memlnput = 0)] )

We then verify that CmUmque always holds true.

Il(CcellO, , Ccell], Ccell2, CuniCe!l]_2) A receiver \= Is(C,nUnique ) (5.9)

u
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CwllO, 1,2 CwiCe!n_2

I''^- c-l^\
receiver

iVniyuf 1~-diacsnl

'.4l",Is

To queue R

->
Non-constrained

(free) address
values

To memory

Figure 5.4: Receiver subsystem. Constraints Cceiio, Cceiu, Cceiu and Cun,ceiu_2 are
activated and (property) constraints CmVnique, Cdiscard, Cai, and Caz, are checked.

To verify that no incomplete cell is written in the memory, we consider the write

signal and define a constraint Cdiscard to assert that in states other than s3, s6, sll, sl4,

and s J 8 the write signal is always deasserted. Therefore, only in states s3, s6, s 11,

sl4, sl8 where a cell is completely received, the cell can be written in the memory.

Cdiscard '•= [not ((state = s3) or (state =- s6) or (state = s 11) or (state = s 14) or

(state = sJ8)~) => (wrzte = 0)]

We checked that Cdiscard always holds true.

Il(ÇcellO, , Ccelll, Ccell2, CuniCelll_i) A receiver 1= Is(Çdiscard ) (5.10)

u

To verify the address path, we use an 1RS Is to recognize that addresses al and a2 of

celll and cell2 are successfully enqueued in queue R. We first verify that that the

address al is enqueued to R. This happens when FIFO I/Receiver 1RS 7/ is in state s7

and rok is asserted and queue R is not full.
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else €ibe

b2bl

qO ql q2

bl = Instate = s7) A rok A (~qRfulF) A
enijR A (qRinput = al)

b2 = Instate = s]S) A rok A (-qRfult) A
enqR A (qRinput = a2)

Figure 5.5:1RS /? for the receiver/queue R interface

Transition bl which is described by the following constraint detects that the receiver

asserted enqR and inserted al to queue R.

Ça] '•= [( IsÇsîate = q0) and Instate = ^T) and roÂ: and -qRfulF)

=> {enqR = l and qRinput = al)}

Using the following property, we verified that Ca] is always true:

IlÇCcellO, CcelU, Ccell2, CuniCelllî) A receiver \= IsÇÇaj ) (5.11)

u

Similarly, using a constraint Ca2 on transition b2, we verified that a2 is enqueued in

R. In summary, addresses al and a2 (of ce//7 and cell2) are con-ectly inserted in

queue R.

I](CcellO, Ccelll, Ccell2, CumCelllJl) A receiver 1= IjÇÇal, Cgz) (5.12)

Remark that we have not yet proven that these addresses are uniquely inserted. For

instance, al could have been written twice. That verification was not possible since

we did not constrain the address value supplied by F. We employ the data-

independence assumption and we verify that if a stream (0)*(1)(0)*(2)(0)* is supplied

as address values at queue F/receiver interface, the same stream is inserted in queue

R, thus, no duplication happens. This proves that, when the values 1 and 2 are
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0 supplied once (and in order), they are recognized as such. Figure 5.6 shows the 1RS /?

used to impose the stream (0)*(1)(0)*(2)(0)* as the address values to the receiver.

The constraints Cun,i and Cuni2 restrict the inputs so that the values 1 and 2 are

supplied once. For instance, Cumi asserts that the data value 1 could only be supplied

(non-deterministically) in qf0.

Cunii '•= {(state = qfl or state = qf2~) ^> (qFoutput 1= 1)]

rly-c""as8crtstevalue2couldoriybesupp"ed<non-dctelmmist'cally)m
Cuni2 '-= [(state = qf0 or state = qf2) => (qFoutput 1= 2)]

else else

dl d2
ifo qfl 1ft

d] = (qFoutput = l ) A deqF A rok A
(-CjFempty)

d2 = (qFoutput = 2) A deqF A rok A
(-qFempty)

Figure 5.6:1RS Is for queueF/receiver interface

An 1RS l's with constraints Cuniio and Cuni2o similar to Cunii and Cuni2 recognizes the

language (0)*(1)(0)*(2)(0)* at the receiver output.

e,•Ise •eels

s' g2
qrO) —^ qrl ^—^ çr2

Figure 5.7:1RS I'3 to verify the address path

gl = (qRinput = l ) A enqR A rok A
(-qRfull)

g2 =3 (qRinpul = 2) A eny^? A rok A
(-qRfull)

u

Cuniio '•= [(state = qrl or state = qr2) => (qRinput 1= 1)
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Cuni2o '•= [(state = qr0 or state = qr2) =i> (qRinput /= 2)]

We use an 1RS I'j to supply an arbitrary stream of cells, e.g., (celIO)* at

FIFOI/TGceivGT interface. It allows us to carry on the address path verification. (Ij, for

instance contains states sO to s4 of //). In the subsystem /'/ A receiver A 7^ A 13

(Figure 5.8), we verify that the address values 1 and 2 are uniquely enqueued in R so

that no address is duplicated.

l2(Cumi, Cuni2~) A receiver \= l'sÇCunilo, Cun,2o) (5.13)

rl
Cell

Cl'C^o c"""° » »CB""'
./'.

-^ l—^

cu"" l-TC""r_i'
/,•

receiver

ii2o

Is
To queue R

address

values

Figure 5.8: Cceiio, Cumi, and Cuny, are activated and Cuniio and Cuni2o are checked to
verify address path of the receiver.

Constraints CunUo and Cum2o assure that address values 1 and 2 are recognized

whenever states qrl and qr2 are reached. However, the verification of (5.13) does

ascertain that those states are ever visited. We still have to ensure that qrl and qr2 are

eventually reached. For instance, in the subsystem l'i A receiver A Ï2 A I'3 (Figure

5.8), we verify that after the state qfl of/? is reached (i.e., 1 is dequeued as an address

value by the receiver), address value 1 is eventually enqueued in R (i.e., the state qrj

ofl's is reached).

^

hÇCunii, Cuni2) A receiver \= AFTER; Instate = qfl) A l'jÇstate = s4~) A rok A -qRfull

EVENTUALLY: I'sCstate = qrl) (5.14)
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Next, we verify that the address value of 2 is eventually enqueued in R.

hÇCunii, Cuni2) A receiver \= AFTER:/2(Afû!të = ^r/2) A I'i(state = s4) A roÂ: A ~qRfull

EVENTUALLY: Is(state = qr2) (5.15)

By considering all the properties, we can conclude that the receiver discards

incomplete cells, extracts complete cells from FIFO I, writes the cells in order and

without any duplication in the cell memory, and finally it correctly writes addresses

of cells in the queue R. In the next section, we verify that the queue R correctly

forwards these addresses to the dispatcher.

5.4 Queue R interface

The queue size is a generic value. We used CBL SMV [24]to show that the generic

queue (implementation) delivers data from its input to its output. We first proved that

when the condition (enqR A -qRfull) holds, an arbitrary input enters the queue. Then,

using the SMV induction mle, we verified that the data in any position in the queue

eventually reaches the top position, assuming that the dequeue is asserted infinitely

often. This proves that the generic queue correctly delivers the data it receives.

Similarly, we proved that this queue preserves data order. (We included the queue

model and the verification results using SMV in Appendix 3).

Ql (Order preservation) If a stream (0)*(1)(0)*(2)(0)* is supplied (by Is) to the

queue input, the same sequence is recognized (by 7^) at the queue output.

IsÇCunii, Cum2) A queue \= IrfÇCunilo, Cuni2o) (5.16)

u

Q2 (Data delivery) After a value 1 is enqueued in R, it eventually reaches the queue

output, ifdeqR is repeatedly asserted.
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lîÇCunil, Cum2) A qUëUê A A2 = AFTER: IjÇstate = ^?-7)

EVENTUALLY; estate = si) (5.17)

A2 := AFTER: -qRempty EVENTUALLY: deqR = 1 (5.18)

Similarly assuming A2, after a value 2 enters the queue, it eventually reaches the

queue output.

IsCCun,], Cuni2) A queue A A2 \= AFTER: IjCstate = qr2)

EVENTUALLY: estate = s2~). (5.19)

5.5 Combining local properties of the receiver and the
queue R

We have separately verified the receiver and the queue. Before describing other

components of the in port controller, we show how to prove the composed receiver A

queue subsystem properties from the queue and the receiver properties. We will apply

this methodology to deduce end-to-end properties of the controller from properties of

its components. We prove the following properties for receiver A queue.

RQ1 (Extraction) receiver A queue discards incomplete cells and deposits complete

ones in a cell memory.

Proof: By (5.10) and (5.9), the receiver discards incomplete cells, extracts the correct

ones and writes them once and in order in the memory.

Il(CcellO, Ccell], Ccell2, CumCeUl_î) A receiver \= Is(Cdiscard, CmUnique)

J

The queue does not change header or body of cells in the memory, and consequently,

it does not affect extraction property Rl of the receiver.
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Il(ÇcellO, Ccelll, Ccell2, CuniCelllî) A receiver A qUêUeR \= /?(Cdiscard, CmUnique)

Nevertheless, we have to show that the queue, the receiver, and Ij(Cceiio, Cceiii, Cceiu,

CumCeii]_2~) meet well foundedness/compatibility conditions (W1-W5') of the

composition.

WJ (No conflicting outputs in the implementation) We verified that outputs of the

receiver and queueR are disjoint. This way, only one module can constrain a signal

of the interface.

W2 (No cycle-of-gates in the implementation) We should check that no cycle is

formed in receiver A queueR. The receiver and the queue do not contain any cycle-of-

gates, consequently, we only check that no cycle is formed in their composition.

Queue R inputs {dataln, enqR, deqR} and outputs [dataOut, qRempty, qRfull} are at

least one cycle apart. Therefore, no cycle is formed when it is composed with the

receiver.

W3 (No conditional cycle-of-gates in 1RS) We verify that // does not contain any

conditional cycle-of-gates. Consider the constraint Cceiii '•= [ (state = s5 and

fîfolempty = 0 and sod = 0 ) => (fifoloutput = 1)] of Jy. It has a predicate over

fifolempty, sod, and fifoloutput, and thus introduces conditional zero-delay paths

sod 0
•/1fifoloutput and fifolempty — —^n fifoloutput. There is no constraint in

Il that introduces a zero-delay path in the inverse direction fromfifoloutput to sod or

fîfolempty, so 7/ contains no conditional cycle-of-gates.

W4 (No output-constraining) Ii(ÇceUo, Cceiii, Cceii2, Cun,ceiii_i) should not constrain any

output of the receiver or the queue. // constrains fifoloutput which is the receiver

input. Therefore, it does not constrain the receiver or the queue output.

u

W5 (No cycle-of-gates in the subsystems) The composition I](Cceiio, Cceiu, Cceii2,

CuniCeU]_î) A receiver A queueR should contain no cycle-of-gates. Given the zero-

delay paths sod — °-^/i fifoloutput and fifolempty- 0 >/i fifoloutput by I], no
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zero-delay path should exist in receiver A queue from fifoloutput to either sod or

fifolempty. There are no such paths in the receiver (and in factfifoloutput, sod, and

fifolempty are all primary inputs of the receiver).

By WJ-W5, I] A receiver A queue satisfies the well-foundedness/compatibility

conditions of the composition theorem. Similarly, other subsystems involved in the

compositional reasoning have been checked for well-foundedness/compatibility.

After RQ1, we continue proving the other properties of the combined subsystem

receiver A queue.

RQ2 (Address order preservation') Address order is preserved in receiver A queue

subsystem. I.e., if a celll is deposited in the memory before a cell2 is deposited, then

its address is dequeued from the queue (output) before cell2 address is dequeued.

Proof: In Section 5.3.2, we showed that the receiver correctly (i.e., once and in order)

writes the cells into the memory. It then correctly inserts their addresses to queue R.

Suppose that cellO, celll and cell2 are written at addresses 0, 1 and 2 respectively. By

(5.12), we have then

I](ÇcellO, Ccelll, Ccell2, CuniCelllî) A receiver \= IjCCunil, Cuniz) (5.20)

By (5.16), queue R preserves the order of data.

IsÇCunil, Ctini2) A qUCUeR \= \4(Çun,l, Cuni2~) (5.21)

Remark that 1RS 13 acts as a recognizer in (5.20) and as a (constraint) supplier in

(5.21). As mentioned in Chapter 2, this property of 1RS allows us to implement a

transitivity rule in our reasoning. For instance, from (5.20) and (5.21), it follows that:

^ I](Ccel!0, Ccelll, CceU2, CuniCelllS) A receiver A queueR |=4(C'»«;/, Cuny)
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This proves the order preservation from the receiver input to the queue R output.

Until now, we have proven extraction and order preservation properties of receiver A

queue from the receiver and the queue local properties. These properties which are

proven using 1RS constraints are safety properties asserting that if the system states

are visited, the corresponding constraints hold true. However, if the states are not

visited, the constraints also remain true, by definition. We need then to add liveness

properties to assure that the states are eventually reached.

RQ3 (Liveness) After extracting a cell, its address is eventually enqueud in queue R.

Then, this address eventually arrives to the top of the queue, if dequeue is asserted

infinitely often.

Proof: By (5.14), we verified that after address value 1 is dequeued for depositing

celll, that address is eventually enqueued in R.

l2(Çuni], Cuni2) A receiver \= AFTER: l2(state = qfl) A Instate = s4) A 7-oÀ; A -qRfull

EVENTUALLY: ^(state = çr7) (5.22)

Verifications of queue in Section 5.4 concluded that the addresses that were enqueued

in R are eventually transferred to top of I? when dequeue is asserted infinitely often.

hÇCunii, Cuny) A queue A A2 |= AFTER: Is(state = qrl)

EVENTUALLY: estate = si), (5.23)

A2 •= AFTER: -qRempty EVENTUALLY: deqR = 1

<J

The EVENTUAL event in (5.22) matches AFTER event in (5.23). By a simple

transitivity rule of temporal logic, from (5.22) and (5.23), it follows that after celï l is

extracted by the receiver (i.e., the state s4 of I] is reached) and an address is obtained
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n for it (i.e., state qfl of ^ is reached), the address is eventually forwarded to the queue

output.

hÇCunii, Cuni2) A receiver A queue A v42 =

AFTER: l2(state = qfl) A Instate = s4) A rok A -qRfulF)

EVENTUALLY: estate = qrl) (5.24)

Similarly, it is verified that cell2 address eventually arrives to the top of R.

Assuming that dequeue happens repeatedly, queue R will supply the language

(0)*(1)(0)*(2)(0)* to the dispatcher. Before considering the dispatcher verification,

we summarize the compositional reasoning we have followed.

1 We used 1RS to specify and verify local (safety) properties of the components.

2 Using local properties, we proved the global ones. 1RS transitivity mle allowed us

to chain the local safety properties in order to prove end-to-end ones. A theorem

prover could also be used during these verifications.

3 We checked conditions WJ-W5 to conclude that the components are actually

compatible for the composition and the set of constraints are well-foundeded.

u

4 Liveness properties were added to ensure that the composed system is live. They

proved that the states that were used for constraint definitions are reachable.

5.6 Dispatcher and scheduler subsystems

We should verify that

D l : The dispatcher updates cell headers according to a routing table, and

D2: Addresses of the cells are correctly inserted into queue Pl or P2, depending

on cell priority.
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0 For these verifications, we reduce the cell size to 10 bytes. Each cell comprises 2

bytes of routing tags hi and h2, 4 bytes of cell header and 4 bytes of cell body. Figure

5.9 illustrates a cell <A7, h2, xj, x^, xs, X4, xs, XQ, xy, X8> deposited in the memory.

Each cell occupies three locations. The first location contains the routing tags hi and

h2. The second location contains the header bytes, and the third one contains (the

reduced) cell body.

cell memory

h2 hi

X4\ Xs\ Xz\ X]

Xs X7 X6 xs

routing tags of the cell

header of the cell

body of the cell

Figure 5.9:Placement of a cell <hl, h2, xj, xz, xj, X4, xs, XQ, x?, xs> in cell memory

An 1RS 4 supplies the stream (0)*(1)(0)*(2)(0)* to the dispatcher, as address values

at the queue R/dispatcher interface (Figure 5.10). These addresses are respectively

pointers to cellO, cell 1, and cell2 in the memory. We initialize these cells in the

memory and develop an 1RS I'5 (similar to memory/receiver 1RS Is) to monitor that:

l : Dispatcher reads headers of celll and cell2 from the cell memory (i.e., the second

word of each cell in memory, figure 5.9) and based on them, adds two routing tags hi

and h2 to (the first word of) each cell in the memory.

2: According to the given routing table, the dispatcher updates (correctly and in

order) the headers of celll and cell2. These headers are in the second word of each

cell in the memory.

u
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Next, we used an 1RS /$ to recognize sequences of addresses (e.g., (0)*(1)(0)*(2)(0)*

) written to queues Pl and P2. Using the subsystem 4 A dispatcher A /'5 A /$, (Figure

5.10), we thus verified that the dispatcher satisfies properties Dl and D2.

J

Cun,}

4

address
values

LÎC»,, cu""° T y^,,,o

^..
Dispatcher

î
C_hlh2 C_heade

t"
To queue
PI

memory

Figure 5.10: Dispatcher verification. We verify that the headers of cells are correctly
updated in the memory.

Similarly, using interface machines, we verified that:

SI. The scheduler orderly and uniquely transfers addresses from queue Pl to

queue T, and

S2. Assuming that there are no high priority cells in queue Pl, the dispatcher

orderly and uniquely transfers addresses from queue P2 to queue T.

5.7 Transmitter subsystem

We have shown that the receiver correctly extracts cells from input FIFOs and

deposits them in the cell memory. The dispatcher converts cell headers and then

appends routing tags to them. The scheduler transfers the addresses of cells to the

transmit queue T based on the cell priority. Now, we show that the transmitter

correctly extracts cells from the memory and fonvards them to the fabric.
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Consider the transmitter subsystem, composed of queue T, the transmitter, and the

cell memory (Figure 5.1). Using our 1RS approach, we show that the following

properties holds true in the transmitter subsystem.

Tl (Cell delivery) When queue T supplies an address a to the transmitter, the

transmitter sends out the corresponding cell, if it receives positive acknowledgement

from the fabric during this transmission. Otherwise (no ack from the fabric), the

transmitter drops them after several attempts.

T2 (Serialization) Given that the transmitter reads the cells word by word from the

memory, and sends them byte by byte to the fabric, the transmitter should correctly

convert memory words to cell bytes prior to the transmission.

T3 (Order preservation) The transmitter should preserve the order of cells. That is, if

an address al is supplied by queue T before an address a2, then the cell at al should

be sent out before the cell at address a2 be sent out.

The transmitter subsystem is different than the receiver subsystem (or other

subsystems of the in port controller) in that the later communicates through a queue,

while the transmitter communicates with the fabric without using any queue. There is

therefore a tighter (synchronization) relation between the transmitter and the fabric.

We will show how 1RS can model such (possibly reciprocal) communications.

Similar to other subsystems, we reduce transmitter verification by an appropriate data

abstraction. Following the data independence assumption, we reduce the queue data

set to two values {0, 1}. These values are respectively pointers to cell number 0 and 1

in the memory. The memory can be reduced to contain only cellO and cell 1.

Moreover, we downsize the cells to 10 bytes. This is possible since the transmitter

has a generic architecture, parameterized on the cell length. (However, the

^>
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0 architecture is such that the cell size cannot be reduced to less than 10 bytes .) With

these reductions, we initialize cellO in the memory to<l, 1, 0, 0, 0, 0, 0, 0, 0, 0>

where the first two 1's represent routing tags of the cell (which were added by the

dispatcher). Similarly, Celll, the cell that we want to track is initialized to <1, 1, 1,2,

3, 4, 5, 6, 7, 8>. This sequence of celll helps us to verify the correct serialization

property (T2) as well as the cell delivery property (H) of the transmitter.

5.7.1 Interface recognizers in the transmitter subsystem

We first develop a recognizer 1c at the queue output. Ig reads three signals of the

queue interface; top which shows the head of queue, qTempty which indicates

whether the queue is empty, and deq that dequeues an element from the queue. When

the condition ((top = 1) and (deq = 1) and (qTempty = 0)) becomes tme, /$ makes a

transition (to state ql) to detect that a 1 was dequeued (Figure 5.11). Assuming that

there is only one data value l in the data set, the head element should never get

another 1. We thus obtain the constraint Cunii shown in Figure 5.11:

qO

else

deq = l and
top = 1 and
qTempty = 0

ql^

top =0

C^i := [(state =ql)=> (top =Q)}

Figure 5.11: An 1RS for a data set reduced queue.

15 Transmitter reads 4k+2 bytes from the memory, where k is the number of words in an ATM cell
and the additional 2 bytes are routing tags. Each cell thus requires (ï + K) memory accesses. A loop in
the transmitter is repeated k times to transmit 4k bytes, but the first iteration is special since the
acknowledgement from the fabric cannot be checked before transmitting the first byte of the first
iteration (Figure 4.3). After this point, the acknowledgement (for the transmitted bytes) is checked
before transmitting any new byte. The first iteration of the loop is therefore unfolded, while the normal
loop is executed (k-ï) times. The transmitter can send cells of(2 +4 + 4 (A- 1)) bytes, where
k>.1. For (fe = 2), the cell size is reduced to a irunimum of 1 0 bytes. More foroially, one should use a
theorem prover to prove that the transmitter works properly for any k>2.
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Using the timing diagram of the transmitter! fabric interface, an 1RS //o is designed to

recognize the cells at the transmitterf fabric interface. The timing diagram and 1RS Iio

are shown in Figures 5.12 and 5.13. In the initial state, Ijo awaits a routing tag hi

from the transmitter. This happens when the fabric environment machine lenv that

monitors the fabric inputs is in state p9. (States of lenv are shown in the timing

diagram). By a transition sO -> sl, Ijo detects the statep9 oflenv and the routing tag hi

= 1. The transitions sO -> sl -> s2 -> sO trace the non-representative cell cellO, i.e.,

<1, l, 0, 0, 0, 0, 0, 0, 0, 0>. The transitions s0 -> sl-> ... -> slO recognize the cell

celll, i.e., <1, l, l, 2, 3, 4, 5, 6, 7, 8>. After that in state slO, only the values 0 or 1

are accepted, indicating that the sequence of celll has occurred once, as required by

the data independence assumption.

The ack signal has been taken into account in 1RS Iio only after recognizing hi and

h2 and the first byte of the cell body in s3. This is derived from ackOutO in the

timing diagram specification in Figure 5.13. In the case of a negative ack in states s3

to s9,1]o returns to the initial state sO, since the transmitter stops and it will retransmit

in the next frame. Remark that, following the timing diagram, after the last byte of the

cell "8" is sent in s9, no ack is expected for it in s 10. Due to the pipeline delay in the

fabric, it is supposed that the last byte of the cell will be unconditionally accepted by

the fabric, given that the preceding bytes of the cell were accepted [27].

else r&%*/> !\ ::::. •.:;-::-:::.'i:::,:l:!:l:,:l:l::l:lS
(togfô)j

state = p9 and
dln0(0) = \_ dln0(0) = l dInO = l

ackOutO = l and ackOutO = l
dInO = 2 dInO = 3

s3 s5sO s] s2 s4

els
ackOutO = 0 ckOutO 0ûf

^

ackOutO
ack0ut0=0 ack0ul0=0 ack0ut0=0

4

s]0 \4 s9 s8 s7 s6

dlnO = 0 or
dlnO = l

ackOutO = I
and rf/nO = 8

actOutO = 1— ackOutO = l ackOutO ••
and dlnO = 7 and dln0 = 6 and dInO = 5

ack0ul0= l and

dInO = 4

u

Figure 5.12:1RS Iio at the transmitter/fabric interface
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^^ -TLrLTU-m_TLnj-LTLTL_n^U1

Ienv(states) \ P1 \P2 \P3 ••• \P9 \ p5 \ p6 | p7..

frame

P7 \P7 ^ |

fs -F^j-
ts '\Ï,-^^

dlnû _""Al- ^- 2'T: l
•-•....

-f3;oo)
llenyt

/,
?f°°]

thl '[3,2]

ackOutO [
^

_T
thl+'i 1,,,+l+ATMlength

Figure 5.13: Timing diagram specification of the transmitter/fabric interface
(Figure 5. l)

The recognition conditions are encoded by the following constraints on /;o:

l. (routing tag h2) Ch2 '•= [(state = sl) => (dInO = 1)], where dInO designates the

transmitter output.

2. (data value 2) Q := [(state = s3 and ackOutO = l) =^ (û?7?!(9 = 2)]

3. (data value 0 or l) Coi := [(state = slO) ^ (dInO = 0 or dInO = l)]

Constraint €2 asserts that data value 2 is recognized in state s3, if ack is asserted in

that state. Similar constraints are stated for data values 3, 4, .., 8. Coi asserts that a

value 0 or 1 is recognized from state s5 on.

u
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0 We verified that the system composed of the transmitter, the memory, and the

interface machines Ifs, 1c, Iio satisfies all mentioned constraints. For instance, by

activating C/, (on the frame start pulse generator 1RS), we verify that

( ALWAYS: Cu = true). The entire verification can be denoted by

Ifs(Çft) A lyÇÇumi) A transmitter A memory \= //o(Ch2, €2, ..., Q, Co/).

Now, we consider the order preservation property (T3). Similar to the receiver

subsystem, we verify that the transmitter transfers the cells in order. Suppose that the

address input of the transmitter is constrained to a sequence (0)*(1)(0)*(2)(0)* by an

1RS l'y. Let cellO, cell 1, and cell2 denote three arbitrary but different cells in memory

addresses 0, 1, and 2 respectively. We use an 1RS I'io to recognize the sequence

(cellO)*(celll)(cellO)*(cell2)(ceUO)* at the transmitter output. This verification is

represented by the following formula:

Ifs(Çfs) A I'9(Ç^i,, Cun,2) A transmitter A memory \= I'io(Ç'ceiii, C'ceii2, C'unïiCelllî),

(5.25)

where C'ceiii, C'ceiu, and C'un,CeUi_i denote the constraints that recognize the sequence

oîcelll and cell2 at 7'/o.

5.7.2 Transmitter liveness

The properties checked by 1RS constraints are safety properties asserting that if a

particular state is reached, a corresponding property holds. These constraints do not

assert, for instance, that the states that satisfy the properties are actually ever reached.

Liveness properties have to be added to guarantee that these states are eventually

visited. For instance, we verify that celll is eventually sent to the fabric/out port

interface la.

u

By the definition ofljo in Figure 5.12, ackOutO has to be asserted from state s3 up to

state s9.
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CackOutO '= [ ( (state = s3) or (state = s4) or (state = s5) or (state = s6) or (state = s7)

or (state =s8) or (state =s9)) =^> (ackOutO = Î) ] (5.26)

Now, we activate (5.26) at Iio to prove that the transmitter eventually sends the

unique cell to the fabric. As usual, we use the AFTER-EVENTUALLY construct of

Formal Check [FC99] to express the following liveness property.

Ifs(Cfs) A lyÇCunii) A transmitter A memory A Iio(GcAOurô) |=

AFTER: Instate =q 1) A Instate =f2) EVENTUALLY://o(^ate = ^70) (5.27)

(5.27) asserts that the model composed of 7^ with constraint Cfs activated, queue 1RS
/p with Cunii activated, the transmitter, the memory, and //o with CackOutO activated as

an assumption has the property that after Iy reaches state ql and Ifs reaches state/2,
the transmitter eventually sends celll and thus drives Ii to state s 10. Note that when ly

reaches state ql and Ifs reaches state/2, the top element of the queue becomes 1, i.e.,
the pointer to the celll comes out to the transmitter and a frame start pulse is

generated by Ifs. Then, the unique cell is recognized at the transmitter/fabric
interface, along the sequence prescribed by Ijo-

5.8 Composing local properties of the in port
controller components

We have separately verified the in port controller components. Now, before

connecting them together, we have to verify that they are compatible, i.e., each

subsystem involved in the reasoning satisfies no-output-constraining (WÏ, W4) and

no-cycle-of-gates properties (W2, W3, W5).

u

l ( Wellfoundedness/compatibility') Similar to Ii A receiver A queueR A 14 subsystem

in Section 5.5, we verify that // A receiver A queueR A dipatcher A queuePl A

queueP2 A scheduler A queueT A transmitter A /yo satisfy well-foundedness
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0 conditions. Having verified well foundedness, local safety properties can then be

combined together to prove global ones.

2 (Safety) We have verified that the in port controller components individually

preserve data order. By a reasoning similar to the one that was used in composing of

the receiver and the queue R in Section 5.5, we use 1RS transitivity mle to conclude

that the in port controller preserves cells order.

Il(CcellO, Ccelll, Ccell2, CuniCelU_2) A mPortController \= I'lo(C'cell], C'cell2, C'uniCelHî)

(5.28)

Constraints C'ceiii and C'ce/^in (5.28) recognize the sequence of cell 1 and cell2 at Z'/o.

They assert that the headers of celll and cell2 are converted according to the routing

table and then the routing tags hi and h2 are prepended to them. We used cells of the

same priority, since otherwise the order may not be preserved. In this way, (5.28)

infers cell extraction, header transformation, no duplication, and order preservation

properties of the in port controller that are defined in Chapter 4.

Verification of (5.28) proves safety properties such that, for instance, the in port

controller cannot duplicate cells or change their order. It does not assert, however,

that any cell is eventually transferred. This is considered in liveness verification.

3 (Liveness) We have to prove that the composed system is live. Suppose a stream

(cell0)*(celll)(cell0)* is "supplied" by // at the in port controller input. From the

liveness property of the components, we should prove that after a celll (of high

priority) arrives to the input, it eventually reaches Iio at the output of the in port

controller. The following subgoal express this global liveness property. Fairness and

other assumptions needed to prove the liveness property are stated as well.

u
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Ifs(Cfs) A I](CceliO, Ccelll, CuniCelll) A inPortController /\AO /\A1 /\A2 /\A3 /\A4 /\A5

AÀ6AA7/=AFTER: Instate = s7) EVENTUALLY: Iio(state = slO) (5.29)

where AO-A7 are defined as follows: AO states that fs pulses are repeatedly generated;

Al to A7 are collected from the component verifications. In the following definitions,

rok, dok, and sok denote the arbiter permission for the receiver, the dispatcher, and

the scheduler, respectively. Interfaces //, ..., Iio are pictured in Figure 5.1.

AO := AFTER: true

Al ;= AFTER: Instate = s4)

A2:= AFTER: -qRempty A -qPlfull

A3 := AFTER: estate = si)

A4: = AFTER: ~qPl empty A -qTfull

A5 := AFTER: estate = si)

A6:= AFTER: -qTempty A -qFfull

A7.-= ALWAYS: Ijo(C^o.to)

EVENTUALLY: Instate =f2)

EVENTUALLY: (rok ^-qRfull)

EVENTUALLY: deqR

EVENTUALLY: (dok ^-qPlfull)

EVENTUALLY: deqPl

EVENTUALLY: (sok/^-qTfull)

EVENTUALLY: deqT

Primary assumptions AO and A7 should be respectively satisfied by the fs pulse

generator and the switch fabric which form the global environment of the in-port

controller. However, A1-A6 must be discharged on the components of the in-port

controller. We have to prove that rok A -qRfull, deqR , dok A -qPl full, deqPl, sok A

-qTfull, and deqToccw infinitely often.

u

Proof: We first show that rok, dok, and sok in Al, A3, and A5 are infinitely often

asserted by the arbiter. We use linear temporal logic formulas when reasoning about

liveness properties. (For instance GF p expresses "infinitely often j9", etc.) In Section

5.2, we mentioned that the arbiter can grant memory accesses to the receiver and the

dispatcher if the transmitter releases the memory repeatedly. The transmitter, in turn

releases the memory if it receives an acknowledgment from the fabric, during the cell

transmission. However, if it does not receive any acknowledgment, it tries to

retransmit the cell several times before dropping the cell. Whether the cell is
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0 discarded or sent out, the transmitter will eventually release the cell memory (GF

-transmitterMemReq). Now, the arbiter can grant memory accesses to the

components, when the transmitter is not accessing the memory.

Ifs(Cfs) A transmitter AAO /= GF (-transmitterMemReq)

Arbiter /= G (-transmitterMemReq ^> rok v dok v 50^)

Arbiter /= G (-transmitterMemReq A ~dok A ~sok ^> ro^)

Arbiter /= G (~transmitterMemReq A ~rok A ~sok => c?o^)

Arbiter /= G (-transmitterMemReq A ~rok A ~rfoÂ: ^> ^o^)

(5.30)

Next, we discharge assumptions A2, A4, and A6\iy proving that deqR, deqPl, and

deqT occur infinitely often. The transmitter asserts deqT infinitely often to transmit

new cells to the fabric.

Ift(Cft) A transmitter AÀO/=G (-qTempty A -qFfull ^> F deqT) (5.31)

(5.31) discharges ^16.

Ifs(Cfs) A transmitter AÂO /=A6 (5.32)

(5.32) is represented by an edge AO -> A6 in the "proof graph" shown in Figure 5.40.

A proof graph [15] illustrates the dependencies of assumptions on other assumptions

and properties. A non-circular proof graph ensures that the overall liveness

verification is well founded.

By (5.31), deqT'ïs asserted infinitely often as far as the queue Fis not empty and -Fis

not full. Queue F becomes infinitely often not full (i.e., ~qTfulF) letting the scheduler

write new addresses to T, which are dequeued from Pl.

u
scheduler A GF (sok) \= G (-qTfull A ~qPl empty => FdeqPl) (5.33)
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0 (5.33) is represented by GF (sok) -> A4 in Figure 5.14. By (5.33), deqPl is asserted

infinitely often, making Pl not full and letting the dispatcher write new addresses to

Pl that are dequeued from R.

dispatcher A GF (dok) \= G (-qPlfull A -qRempty ^> F deqR)

Therefore, deqR is infinitely often asserted and the queue R becomes not full. This

lets the receiver to read new cells fi-om the input FIFOs and insert their addresses to

R.

receiver A GF (roK) = G (~qRfull A ~FIFOempty A ~qFempty ^> F (deqF A

deqFIFO})

A8 in the proof graph is defined as follows:

A8 -.= AFTER: -qRfull A -FIFOempty A -qFempty

EVENTUALLY: deqT/^deqFIFO

A6 A4 A2 A8

^\ ^\ /\ /'
GF sok \ GF ^ok

\\~~" \\ ~'\\
AO GF ^ok GF rok

AS A3 Al

Figure 5.14: Proof graph to discharge assumptions A1-A6

The proof graph in Figure 5.14 indicates thatAl-A6 and A8 hold tme ifsok, dok, and

rok are infinitely often asserted and AO is respected by the pulse generator.

u

AO/\GF sokAGF dok^GF rok^Al /\A2 ^A3 AA4 AÀS AÀÔ (5.34)
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Using (5.34) and the arbiter verification (5.30), the liveness property (5.29) can be

rewritten as follows:

Ifs(Cfs) A I](Cce!10, Ccell], CumCellj) A inPortController ^.AO /\A7\=

AFTER: Instate = s7) EVENTUALLY: Instate = sl 0) (5.35)

By (5.35), if the acknowledgement is asserted during cell transmission (i.e., A7 is

respected) and frame pulses are repeatedly generated (i.e., AO is met), then (high

priority) cells will successfully be sent out to the fabric.

(5.35) proves the in port controller liveness property. Before presenting the switch

fabric and its composition with the in port controller, we first consider a stronger

liveness property, the proof of which requires circular reasoning.

5.8.1 Circular reasoning to prove liveness property

From the definition of assumptions A2, A4, and A6 in Section 5.8, it follows that the

in port controller is "active" (i.e., it reads the queues by asserting deqR, deqPl, and

deg T repeatedly) as long as the corresponding queues are not empty. However, when

the queues become empty, the controller eventually becomes inactive. We prove a

liveness property that if complete ATM cells arrive infinitely often, then the queues

R, Pl, and T become repeatedly non-empty.

u

Proof: A proof graph for the goal that the queues become repeatedly not empty is

illustrated in Figure 5.15. An edge 7? -^> q indicates that p is to be assumed in module
M when proving F q. Similarly j? ^ q indicates that p is assumed in the current state
when proving q in the next state. As shown, the graph is circular. Intuitively, g.yeue_T

becomes non-empty (i.e., ~qTempty) if enqT is asserted. The scheduler can assert

enqT if the queue Pl is not empty, since it transfers addresses from Pl to T. Pl

becomes non empty if enqPl is asserted. It is asserted if R is not empty. R becomes

non empty if enqR is asserted and enqR is asserted if the input FIFO and the queue F

are not empty. However, F to become non empty requires that enqF be asserted, and
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n it happens wh_en_T_is_not_emgtx. This reasoning is apparently circular, since T to

become non empty requires that T be non empty. As mentioned in Chapter 2, the

circularity can be resolved by induction over time. This rule is shown in Figure 5.16.

As shown, if the cycle is cut by at least one time unit delay (e.g., one ^ in the graph),

then the circular reasoning is sound by induction. While we used the X operator to

implement the proof graph, McMillan [15] uses UNTIL operator to implement it. In

Appendix 2, we show that our approach is a conserative approximation to that in [15].

FIFO
A complete CellA rrives-FIFOempty <-

rcvr\/:'

-qFempty —^> enqR -j-> -qRempty
dis\F
>t

en,PJ -^ -qPlempty -^ enqT^- -qTempty^

x

qF

Figure 5.15: A proof graph for the in port controller global liveness

a)
Gfp^q)
G(q^Xp)
p

Gp^Gq

b)

p q

x

u

Figure 5.16: Circular reasoning by induction over time. a) The mle. b) The proof
graph

Consider the graph in Figure 5.15. We assume that queue F is not empty (at the

beginning) in the initial state, otherwise, there is no place available in the memory to

deposit the very first cell. The cycle in the graph is cut by a delay of 4 time units,

since there are 4 Xs on the graph edges. (For example, consider when enqR is asserted

in the current state, R will become non-empty in the next state.)
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Using relations

[G (p=^Fq)J =^ [G (Fp ^> F q)] and [G (p =>Xq)J ^ [G (F p ^ XF q)], the

proof graph can be represented by the formulas shown in (5.36). By an inductive

reasoning similar to the basic case in Figure 5.16, it follows that all propositions on

vertices of the cycle happen infinitely often. We have assumed that [GF

-FIFOempty A GF -qFempty} =^ [GF (-FIFOempty A ~qFempty)}, because (l)

when -FIFOempty and -qFempty are tme, they remain so until the queue or the FIFO

is dequeued. (2) The receiver waits to observe that the queue F and the input FIFO

both are not empty before asserting deqF A deqFIFO. The conclusion is that the

queue and the FIFO will be both not empty at the same time if they are so separately.

This synchronization guarantees that enqR in the proof graph can be asserted

repeatedly, if -FIFOempty and -qFempty become true (independently) infinitely

often.

In summary, the queues R, Pl, and T become repeatedly non empty and dequeues are

repeatedly asserted given that complete ATM cells arrive repeatedly into input

FIFOs.

u
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G [F AcompleteCellArrives =^ XF -FIFOempty]

[GF -FIFOempty A GF -qFempty] -=> [GF (-FIFOempty A -qFempty)]

G [F (-FIFOempty A -qFempty)] => F enqR]

G [F enqR ^ XF -qRempty]

G [F -qRempty => F enqPl]

G [F enqPl ^ XF -qPlempty]

G [F -qPlempty ^> F enqT]

G [F enqT => XF -qTempty]

G [F -qTempty ^> F enqF ]

G [F enqF ^ XF -qFempty]

F [~qFempty A AcompleteCellArrives ]

„„„——„„„—„—„„„„„-„„„.-„„-—„„„————„„—„„—-—^J^

GF (AcompleteCellArrives) => [GF (-FIFOempty) A GF (enqR) A GF(-qRempty)

A GF (enqPl) A GF (-qP l empty) A GF (enqT) A GF(-qTempty) A G'F fen^F; A

GF (-qFempty)]

Proving liveness properties is more difficult than proving safety properties.

Soundness of the circular reasoning for safety properties is guaranteed by the no-

cycle-of-gates conditions of the well-foundedness rules (W1-W5). Liveness properties

usually require fairness assumptions. A proof strategy (or so called proof graph) must

be planned to discharge these fairness assumptions. For a sound circular reasoning for

liveness, every cycle in the proof graph must be cut by at least one time unit delay

[15]. This is represented by an explicit Jf operator in our representation of the proof

graph. This delay guarantees the result by induction over time.

u

After proving safety and liveness properties of the in port controller, we next consider

the fabric properties. We verify that the fabric is timing-compatible with the in port

controller. Finally, we will infer the global properties of the switch module from the

in port controllers and the fabric properties.
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5.9 Switch fabric verification

In this section, we specify the fabric properties and show how to compose them with

the in port controllers properties.

Fl (Cell transfer) After dropping the routing tag hi from the cells, the fabric should

fonvard them to the requested out ports.

F2 (Ack transfer) The fabric should forward the acknowledgement from the out ports

to the successful in ports.

F3 (Prioritization) High priority cells should be given precedence over the low

priority ones while arbitrating in the fabric.

F4 (Order preservation) The fabric should preserve the order of cells.

We use 1RS to specify and verify these properties. In Section 5.7, we proved that the

transmitter of the in port controller sends (cell0)*(celll)(cell0~}* to the fabric on Ifo.

Ifs(Cfs) A IçÇCunii) A transmitter A memory \= Iio(Çh2, €2, ..., Cs, Coi)

Now, we prove that the fabric correctly transfers these cells to an out port. To verify

Fl and F3 in a 4x4 switch fabric, we set a scenario in which inportO is requesting the

out portO, with a high priority while other in ports are fi-ee to request either of out

ports, however with a low priority. In portO should successfully be connected to out

portO.

We explain how to set up the scenario : Figure 5.18 illustrates that the inputs dInO
and dINl of the fabric have been constrained by the constraints of lenv, Iio and Ifs and

its outputs dOutO and ackOutO are observed by constraints of an 1RS ///. The

u 16We illustarte a 2x2 switch fabric, however, the verifications are carried on a 4x4 model.
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environment 1RS lenv shown in Figure 4.5 in Chapter 4 provides a correct sequence of

inputs to the fabric. Suppose that lenv begins to send a non-zero hlpo (the routing tag

on in port O), and a non-zero hlpi (the routing tag on in port 1) in state P9. Both hlyo

and A7pi should then be zero before P9. This (initial) zero segment of inputs can be

enforced by C/,/po and Chipî oflenv. Let x represent a don't care value, i.e., a 0 or 1.

Using the format shown in Figure 4.2 in Chapter 4, the scenario is initialized by

activating a constraint Cscen that assigns "xxxxOOll" to hlpo and "xxxxxxOl"to hJpï

in P9. Let Chipo, Chjpj, and Cscen denote respectively the environment and the scenario

constraints in Figure 5.18. Assuming that the fabric strips off hi before sending out

the cell body, the following 1RS la can recognize celll at out port 0.

dOutO =0 or
dOutO = l

dOutO = 8

else -(taghî). (first byte)

state =p7 and ackJnO = I and acklnO = 1 and
d0ut0(0) ^1—^ d0ut0=]^ —^ d0ut0=2,

oO } — ^( ol )—X o2 } —>{ o3

else

^ackInO = 0 oci7n0=0

acklnO = 0oP

acklnO = 0 ackhO

o8 o7 o6 o5 o4

dOutO = 7 ackInO = l ' —' acklnO = l ~—' ackInO
and dOutO = 6 and dOutO = 5 and dOutO = 4

ackInO = l
andd0ut0=3

u

Figure 5.17:1RS In for the cells at the fabric/out port interface

The tag h2 arrives at the fabric out port when 1RS lenv reaches state P7. This state is

used as a means of synchronization between the property 1RS I) i and the environment

1RS lenv which supplies the timing infra-stmcture for the verification. Constraints of

lenv ensure that hi is kept zero before P9 on all in ports of the fabric (therefore, the

ports remain inactive). From P9, the constraints of Ijo send cellO and celll to the

fabric on in port 0 (More precisely, lenv represents the environment assumptions,

while Ijo represents the preconditions of the cell delivery property). Finally,

constraints oflji recognize the cells at the fabric out port 0 (Figure 5.18).

100



Q

Cf,
u

fs
Illft
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ackfn /

Figure 5.18: The fabric subsystem for cell delivery property

The first recognition constraint is written for data value 2.

l. (data value 2) Czo := [(state = o2 and ackInO = l) ^ (dOutO = 2)]

2. (data value ï) €30 := [(state = o3 and ackInO = l) =^ (rfOurô = 3)]

3. (data value 0 or l) CQ] := [(state = o4) =» (dOutO = 0 or dOutO = l)]

Consider the subsystem Ijo A lenv A Ifs /\ fabric /\ lu in Figure 5.18. We activate

constraints (Q^, C^, ..., Cg, Coi) of Iio on the fabric inputs. We verify that the fabric

respects constraints C^o, Cso, Coio of I]], indicating that the representative cell celll is

recognized at the fabric output. The verification can be denoted by the following

formula.

u
Ifs(Cfs) A Ienv(ChlpO, Chip], Cscen) A I]o(Ch2, Q, ..., Q, Coi) /\fabrÏC
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0 l=Ill(C2o, ..., Cso, Cdlo) (5.37)

The constraints of lu (being tme) assert a conditional property that celll can be

recognized on I a if states of I a are visited. We need a liveness property to prove that

these states are eventually visited. For instance, we verify that after the transmitter

sends celll, i.e., Iio reaches its final state slO, the same cell is eventually recognized

at the fabric output, i.e., the final state o9 of In is eventually reached.

Ifs(Cft) ^fabric [= AFTER: Instate = slO) EVENTUALLY: Iii{state = oP)

Next we verify property F2 by showing that the fabric correctly forwards the

acknowledgement from the out ports to the successful in ports. First, we assume a

condition on out portO that ackInO is asserted during the cell transmission from state

ol to state 06 of I] j (Figure 5.17).

Cackino := [ ( (state = o7 ) or (state = o2) or (state = o3)

or (state = o4~) or (state = o5) or (state = 06) )

(ackInO=tF)] (5.38)

Similarly, by the definition oflio in Figure 5.12, ackOutO has to be asserted from

state s3 up to state s9.

CackOuio '-= [ ( (state = s3 ) or (state =s4)oi (state = s5) or (state = s6)

or (state = s 7) or (state = s8~) or (^^ate = ^P) ) =>

(ackOutO = l) ] (5.39)

u

Now, we can verify that the fabric correctly transfers ack from out portO to the in

portO by checking that (5.38) discharges (5.39). Verification results show that

constraint (5.38) is not strong enough to prove (5.39). The counter example indicates

that a positive ack, sent in state olbyljj could not arrive to I]Q sooner than in s4 . The
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0 switch components can be made timing-compatible as follows. Currently, the

transmitter sends routing tags hi, h2, and the first element of the cell without any ack

(Figure 5.13). The solution consists of shifting the transmitter expectation one cycle

away, e.g., it would expect the ack at s4 , after sending hi, h2, byte number 1, and

byte number 2 of the cell. Constraint (5.39) is modified as follows and the ack

transfer can then be successfully verified:

CacWutO '•= [ ( (state =s4)or (state = s3') or (state = s6) or (state = s7)

or (state = s8) or [state = s9)) =>

(ackOutO =1)] (5.40)

The ack transfer from Ii i to I]o can be recapitulated as follows:

Ifs(Cfa) A Ienv(ChlpO, Chjp], Cscen) ^fabnC A I]](CackJno) /= 11 o(C ackOutO ) (5.41)

Finally, we consider the last property of the fabric: Order preservation F4. We should

verify that if a sequence {cell0)*(celll)(cell0)*(cell2)(cell0)* is supplied by an 1RS

I'lo on the fabric input, the same sequence is recognized by I'ji at the fabric output.

However, we can simplify the verification. Given that the fabric does not store cells

and it only forwards them (with a fixed latency) to the successful out ports, we simply

prove that after the arbitration finishes, the values on a destination out port of the

fabric are equal to those that were on the (source) in port of the fabric. Consequently,

the sequence of data on the out port will equal the sequence of data on the in port.

The order will be preserved since fabric does not store any cell and cannot inverse

their order.

u

We explain how we implemented this verification. Suppose that the fabric receives

routing tags hlpo, h2po, and a cell on its in portO. lenv observes the reception of hJpo

and hzpo while it is in states P9 and p5, respectively (Figures 5.13 and 4.5). The fabric
transfers cells with a latency of two cycles to the destination out ports. Suppose that it

removes hlpo and sends h2po to the out port 0. Two cycles later, hzpo is received on the
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0 outportO (while lenv reaches state P7). Let dInO _rr denote the values on dInO that are

delayed for two cycles. The following property asserts that in the current frame from

state j? 7 (i.e., two cycles after the reception oîh^po) until state p3 (i.e., two cycles after

the next frame start) the octets of the cell at the fabric ovAportO equal to those stored

in dln0 _rr.

Ifs(Cfs) A Ienv(ChlpO, Chip], Cscen) A/û&nC /=

After: state = p7 Always: dOutO = dln0 _rr Unless: state =p3

Given that the frame is bigger than the cell size, the fabric forwards cells to the

requested out ports in the order they are received from the in ports. Let us note that

this implementation of the fabric does not contain any input or output latches, hence,

the latency has been reduced from 4 cycles (reported in [32]) to 2 cycles.

5.10 Composing in port controllers and the fabric

We have separately verified the in port controller and the fabric. Before connecting

them together, we have to verify that they are compatible. We consider compatibility

of the transmitter and the fabric, since the fabric communicates only with the

transmitter component of the in port controller.

1 (Well foundedness/compatibility) We have to verify that each subsystem involved

in the compositional reasoning satisfies no-output-constraining and no cycle-of-gates

conditions (W1-W5) (Chapter 3). For instance, we examine W3-W5 for the subsystem

110 A lenv A 7^ /\ fabric A /// shown in Figure 5.19.

u
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Figure 5.19: Well-foundedness check for the compositional verification of the
transmitter and the switch fabric

Iio introduces ackOutO — °-^/io dInO, however, there is no any zero-delay path from

dInO to ackOutO in 4nv A -/^; /\ fabric A 777. 4nv introduces yï——>ienvdInQ, and

there is no path from dInO tofs in Iio A Ifs /\ fabric A /;/. So no (static or conditional)

cycle can be formed in Iio A lenv A Ifs /\ fabric A ///. IRSs Ijo, lenv, and Ifs do not

constrain outputs (ackOutO and dOutO ) of the fabric. Therefore, Iio A 7^ A lenv A

fabric A In satisfies no-output-constraining and no-cycle-of-gates conditions.

Similarly, we checked that Iy /\ Ifs /\ transmitter A memory satisfies these conditions.

Hence, the composition is sound and the properties proven using 1RS constraints

remain valid in the composed system.

u

2 {Safety) Safety properties of the inPortController /\ fabric can be deduced from the

following verification: (1) In Section 5.8, we showed that the in port controller

correctly extracts cells, deposits them in the cell memory, converts their headers, and

appends two routing tags hi and h2 to each cell in the memory. (2) The verification

of the transmitter concluded that these cells are correctly forwarded from the memory
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to the transmitter/fabric interface Iio. (3) The verification of the fabric proved that the

same cells are correctly forwarded from Iio to the fabric/outPort interface Iji. For

instance, they illustrated that the routing tag hi is removed and that the cells once and

in order are routed to the out ports. From these verifications and the transitivity

property of 1RS Iio, it follows that the cells are correctly routed from end to the end,

from the in port controller inputs to the switch fabric output.

3 {Liveness) inPortController A fabric should be live, i.e., it should be eventually

possible to route a cell from input FIFOs to the out ports of the fabric. By (5.35), the

in port controller forwards a cell to the fabric (i.e., to Iio) if it receives ack during the

cell transmission.

Ifs(Cfs) A Il(CcellO, Ccelll, CumCelll) A inPortController /\AO /\ Iio(CackOuio) 1=

AFTER: Instate = s7) EVENTUALLY: Instate = slO) (5.42)

By (5.41), the fabric forwards ack from the out ports to the requested in ports.

Ifs(Cfs) A Ienv(ChlpO, ChJpJ, Cscen) ^fabric A I]](Cctcklno) /= Ijo(CackOuto) (5.43)

From (5.42) and (5.43) and the transitivity mle of 1RS, it follows that:

Ifs(Cft) A I](CcellO, Ccelll, CuniCelll) A inPortController /\AO ^

Ienv(ChlpO, Chip], Cscen) /\fabriC A Ill(Cacklnu) /=

AFTER: I,(state = s7) EVENTUALLY: Iio(state = slO) (5.44)

Now, after receiving the cells, the fabric eventually forwards the successful ones to

the requested out ports.

Ifs(Cft) ^fabric /= AFTER: Instate = sJO) EVENTUALLY: Iu(state = o9)

^
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From this verification, we conclude that inPortController /\ fabric can correctly route

cells from input FIFOs (i.e., from /y) to the fabric out ports (to /y/), given that it

receives ack from the out ports as specified on /; 7.

Ifs(Cft) A Ij(CcellO, Ccelll, CumCelll) A inPortController /\ AO A

Ienv(ChlpO, Chlpl, Cscen) v\fabric A Ill(Cacklno) /=

AFTER: I,(state = s7) EVENTUALLY: Iii(state = o9)

5.11 Summary and Experimental Results

We used Interface Recognizers/Suppliers (1RS) to implement circular constraint

model checking. 1RS allows us to separately verify each component of the switch and

then infer the end-to-end properties of the system. We applied the data independence

assumption and cell size reduction techniques to further reduce the verification

problem, since otherwise the verification was not possible. The 1RS key functions

provide a transitivity mle and a mechanism to prove end-to-end properties, i.e.,

supplying assumptions (as constraints on inputs) and verifying properties (using

constraints). We specified both safety and liveness properties of the ATM switch,

nevertheless, for the liveness properties, we used 1RS and temporal operators of the

model checker Formal Check [3], since 1RS alone has no mechanism to specify such

properties.

Although the concept of the proof graph and inductive circular reasoning for liveness

was recently proposed in [15], our implementation of the mle is slightly different. For

instance, we explicitly introduce an initial requirement (as the base of the induction)

and an induction step using next time (X) operator. In the original form, these steps

are computed using the until operator (U). In Appendix 2, we compare these two

implementations of the mle.

u

Using the ATM switch, we illustrated our approach including the specification, the

compositional verification rule, and the appropriate reduction techniques tailored to
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0 the verification of switch-type designs. This method can be used in the verification of

similar network components that contain queues.

Table 1 illustartes experimental results of our case study. We spent 3 months on

developing VHDL models of port controllers and 3 months out carrying on the

verifications. As Table 1 shows each model checking run took under 2 minutes,

however, developing and debugging IRSs and the switch components were the most

time-consuming activity.

u

Table l:Experimenta] results of the switch fabric verification
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Chapter 6

Conclusions and future work

In this thesis, we proposed to use interface recognizers/suppliers (1RS) as a practical

mechanism to specify environment assumptions of reusable components, e.g., DP

cores. We have also used 1RS to specify constraints and properties for model

checking.

The main advantage of 1RS is its ability to act (without any code modification) as a

supplier of assumptions or verifier of a property. This key feature allows us to

implement a compositional verification method. For instance, in one step of the

reasoning, 1RS verifies property on its inputs. Then, in the next step, it supplies that

property as an assumption to the subsequent components in the system. This easy

conversion of property/assumption provides a transitivity rule and allows us to

implement end-to-end verification of modular systems.

u

1RS is different than a monitor in that it constrains (or shapes) its inputs. A monitor

does not constraint its inputs; it only generates an output like other components in the

system. This input-constraining property of 1RS is instmmental for symmetrically

being a supplier or a recognizer. On one hand, when 1RS constraints remain true, they

indicate that the property that is represented by the constraints is satisfied by the

component. On the other hand, by forcing the constraint to be always tme, 1RS

restricts its inputs to the sequence that satisfies the property. In this way, the property

is supplied as an assumption to other components.



0 Although 1RS constraints its inputs, we have to assure that the outputs of the

components are not restricted when composed with 1RS. We established this

requirement by a set of well-foundedness/compatibility conditions that are adapted

from reactive modules [36].

The original contributions of this thesis are as follows:

1 We reviewed recent developments in compositional and assume guarantee

verification (Chapter 2). We discussed whether each method supports circular/non

circular reasoning and whether it can be used when proving safety/liveness

properties.

2 We formulated interface recognizers/supplies, which are recognizers augmented

with Boolean constraints (Chapter 3). The constraints specify what values may occur

on 1RS inputs at each state. In other words, 1RS can constrain its inputs.

3 We developed a composition theorem for circular reasoning using 1RS. In this way,

1RS framework extends non circular (or asymmetric) constraint model checking [25]

to a circular (or symmetric) constraint model checking (Chapter 3).

u

4 We demonstrated an application of 1RS in (1) specifying environment assumptions

and in (2) modeling pre conditions / post conditions of properties of an ATM switch.

We specified, implemented and verified the switch. [The 4x4 ATM switch is about

15000 lines ofVHDL code and includes more than 1500 state variables.] Verification

of such a complex system that handles cells of 53 bytes is far beyond the capacity of

current industrial model checkers like Formal Check [3]. We proposed to use

abstraction techniques, e.g., cell size reduction and data independence assumptions to

reduce the complexity of the verification. Our approach can be applied to other

systems that contain several queues or involve cell processing. Although the

application of the data-independence assumption is not new, its application to an
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n ATM switch that processes bounded cells with header and routing tags (defining cell

priorities) is new.

5 1RS can specify only safety properties. Nevertheless, we have shown how to use

1RS and temporal operators of a model checker to specify and verify liveness

properties.

6.1 Future work:

1. (Automation) We have constmcted the environment 1RS from a timing diagram

specification of the fabric. It should be possible to automatically generate

environment 1RS from timing diagrams. For instance, Allara et al. [1] have developed

a tool called STD to automatically translate timing diagrams into temporal logic

formulas. Tableau algorithm [6] generates a finite state machine (FSM) for a

temporal logic fomiula. Using STD and the tableau algorithm, one should be able to

generate FSM from the timing diagram.

Property 1RS is obtained from specifications other than the timing diagrams. We

obtained the property 1RS of the switch module from the switch specification. For

instance, the order preservation property required that a celll arrive before a cell2 to

the fabric. These specifications guided us to develop suitable 1RS to model pre

conditions/post conditions of the properties. Automatic generation of one or more

1RS from such specifications should be investigated as well. Other issues concern the

constraints. The constraints of 1RS are obtained from the transition conditions. In our

case study, we manually defined them. Automatically formulating constraints of the

1RS is another step toward ftill automation. More experiments have to be carried out

to fully understand problems related to the automatic constmction of 1RS.

u

2 (Processor verification) another possible direction is to study the application of 1RS

methodology to microprocessor verification. It should be investigated what kind of

processor specifications or properties can be modeled by 1RS. Switch is a data-

independent system, i.e., there is less interdependency between cells. A general-
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n purpose microprocessor has different characteristics. The data independence

assumption is not valid on them. In practice, there can be global dependencies

between different IRSs in the system. For instance, when a particular state of one 1RS

is reached, it may prevent another 1RS from receiving data (e.g., an operand of an

instruction, etc). These interdependencies will require one or more additional 1RS to

coordinate the local IRSs.

3 (Multiple layers of protocols) 1RS can possibly be used in multi-layer verification.

Telecommunication protocols have multi-layer stmctures. The physical layers

communicate data at bit level, data link layers at frame level, network layers at packet

level, and transport layers at user defined message level [44]. Suppose that each layer

is separately represented and verified by an 1RS. Then, how could these 1RS be

related to each other? Consider a similar problem. If for a given interface several

IRSs are defined, what relation must be established between these IRSs? There is

some pioneering work in multiple layer verification [14]. It must be investigated how

these multiple layer refinement maps could be specialized by 1RS. And, finally,

another question arises. Is it possible to replace one transition of the original 1RS by a

second 1RS like in hierarchical state charts [7]?

u
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Appendix I

Assume guarantee in reactive modules

[36]

A réactive module represents a system that interacts with an environment. A reactive

module M (or module M, for short) has a finite set of variables, denoted VM- A "state"

of M is a valuation for VM- VM is partitioned into three sets; input variables /, output

variables 0, and privates variables P. While 0 and P are updated by M, / is updated

by the environment. A module M consists of one or more atoms that control (0 UP)

variables of the module. Each atom controls one or more variable, however, every

variable is controlled by one and only one atom. Let Xa be a finite set of variables of

an atom a. Xa contains three sets of variables; a set of controlled variables ctrXa cXa,

a set of read variables readXa Œ Xa, and a set of awaited variables waitXa c- {Xa \

ctrXa}. A controlled variable of an atom may depend sequentially on a read variable

of the atom, much like a register output that depends on register input. A controlled

variable y of an atom may depend combinationally on an awaited variable x of the

atom. This is denoted x <a ^ to indicate that atom a can update y only after x has been

updated.

u

We review the assume guarantee theorem in reactive modules. Reactive modules Ml

and M2 are "compatible" if(1) their outputs are disjoint and (2) the transitive closure

(<Mi u <M2)+ is asymmetric, i.e., they form no cycle-of-gates (Chapter 2). Let Ml

and M2 be two compatible modules, and let N1 and N2 be two compatible modules

such that every input of NJ // N2 is an input or an output of Ml \\ M2. Let ^ denote
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the trace-containment relation. ïfMl //N2 < N 1 and M2 //N1 ^N2, then Ml // M2 <

N1 11N2.

Proof: Let T) = soSi.-.St represents a trace of length {t +1~) (for instance. To is a trace

of length 1). Let trace(M) represent the set of all traces of M. The relation <

represents the trace-containment (Chapter 2). Suppose a formula Ml < (N1, t) denotes

that all traces T( of Ml of length (t+1) are traces oî N 1. Let [T] M represent the

projection of a trace T over input/output variables of M (Chapter 2). The rule is

proved by an induction on trace length t. Suppose that

1. Every trace Ti-i OÎMI //M2 (of length t) is a trace of N1 || N2.

Tt-]£ trace (Ml \\ M2~). [Tt-i]w|]/v2 e trace (W || 7V2) (A.1)

2. Every trace oî M.1 ]| Ar2 is a trace of N1.

Ml \\N2<N1 (A.2)

3. Every trace ofM2 || N1 is a trace ofJV2.

M2\\N1<N2 (A.3)

u

Consider a trace T( OÏMI \\ M2:

Tt£trace(Ml ||M2) (A.4)

We have to prove that [Tt]w || w £ trace (N1 || N2). From (A.4) and the definition of

the composition, we have that the projection [Tt]Mi is a trace of Ml.

[Tt]Mi e trace (Ml) (A.5)

Consider the trace TM of Ml \\ M2. [Tt-i]w||  is a trace oîNl\\ N2, by (A.l). Then,the
projection of that trace over N2 is a trace of N2:

[Tt.i retrace (^2) (A.6)

We show that [TJM]]^ e trace (Ml|[7^2). From (A.5), we have [TMJMI £ trace (Ml).

Then, by (A.6) we get [TM]MI||  e trace (Ml || N2). We know that Ti-ie trace (Ml \\

M2~). Let Compare M7 // M2 to M7 || 7V2 when Ml // M2 makes a transition from Ti-i
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u

to Tt. We show that Ow c 0^2. For any trace, we have M2 [| N1 < N2. Given that Om

e (ÛM2 U Ow) (By the definition of M2 \\ N1 < N2), and ON] n 0/v2 = 0 (by the

definition ofNJ || N2), then 0^ e OM2. A^7 in Ml // M2 receives inputs from M2 and

also from an environment. Ml m Ml \\ N2 receives inputs from N2 and from the

environment. Since [Tt-i]Mi||/v2 e trace (Ml [| N2) and Om £ OM2, Ml receives the

same input (from M2} in [Tt-i]Mi||M2 that it receives (them from N2) in [Tt-i]Mi[|Ar2

(given that the free inputs have been adjusted accordingly). It means that at the next

time, Ml can generate the same output in M1\\N2 as it generates in Ml \\ M2. Hence,

the outputs of Ml in Ml || N2 at time T are the same as its outputs in Ml // M2 at time

t. The following denotes this.

Val(C>M7, Ml [I M2, t) = Val(C>M7, M7 || 7V2, t), (A.7)

where Val((9^7, Ml \\ M2, t) represents the value of outputs of Ml in Ml \\ M2. Now,

Similar to Om e ÛM2, we have ON i e OA//. For any trace, we have Ml \\N2 <Nl.~Bi'y

this trace containment, inputs/outputs of N1 can be assigned values equal to

inputs/outputs of M l in Ml N2.

Val([OM/]w, Ml [17V2, t) = Val(0w, t) (A.8)

(A.8) and the projection of(A.7) OVGT N1 give the following result.

Val([0^/]w, Ml I] M2, t) = Val(0w, t) (A.9)
Similarly, we can prove that

Val([ÛM2] , Ml [I M2, t) = Val(0^, t) (A. l 0)

Consider the inputs of N1 and N2. Inputs of N1 m Nl\\ N2 come from the outputs of

N2 plus some free inputs. Given the equalities (A.9) and (A. 10), and the fact that

there is no cycle of gates in the designs and that the designs are non-blocking for their

inputs, all inputs/outputs of N1 m N1 || N2 (including the free inputs and the inputs

from N2) can be assigned values equal to those oî M2 in Ml \\ M2. Therefore, the

projection of[Tt]^/ over N1, i.e., [T^NI is a trace of N1, [Tt]w£ trace (NJ). Similarly,

inputs/outputs of N2 can be assigned values equal to those of M2 in Ml \\ M2. So,

[Tt]Af2 e trace (7V2). Putting both together, we get

[Tt]w||/v2 e trace (7V71|^2) (A. 13)
Consider the base case. An empty trace (i.e., a trace of length 0) ofM7 // M2 is a trace

of all systems, including N1 N2. Consider a trace To (of length 1) of Ml M2. It
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contains a valuation for the initial states ofM7 || M2. By definition, the projection of

To (of Ml || M2) over Ml, i.e., [Fo]M/ is a trace of M7. Since, Ml and A^2 are

compatible, they contain disjoint set of outputs and no-cycle-of-gates. Therefore, Ml

accepts any (initial) value for its inputs, coming from N2. [TO\MI can thus be

extended to contain any initial valuation for variables of N2. In particular, [To}Mi//N2

that contains initial assignments to Ml and N2 becomes a trace oî M1\\N2. By Ml

N2 <. N1, we have that [FQ/W e trace (W). Similarly, from [To]M2 e trace(M2), it

follows that [TojM2//N] e trace (M2\\N1), and /TQ/  e trace(A^). By [To]w e trace

(NJ) and [Tojm £ tracer), we get that [Fo]w||  e trace (N1\\N2'). We conclude that
any trace of Ml // M2 is a trace of W || N2, by this induction on the trace length.

u
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Appendix II

Technical details

In this appendix, we review data independence assumtion, simulation relation, and

other technical details used in chapters 2, 5.

Bl. Data abstraction by data independence
assumption

Data abstraction is a technique that can be used in model checking of the systems that

employ a large number of data values. In such systems, reducing the data set to fewer

representative values may be sufficient to prove a property about the whole data set.

An assumption known as data independence [34] allows one to implement such an

abstraction. Data independent systems can be separated into two parts; a control and a

data path such that the values of the data do not affect the control state. In a data

independent system, if we change the input data, the behavior of the system will not

change, except for the corresponding values of the data output.

When a system satisfies data independence property, its data set can be reduced to a

smaller set while verifying the system properties. For instance, for the verification

that a protocol delivers all data, only two values, say 0 and 1 may be enough to prove

the data delivery property: One value for representing the data we are tracking for

data delivery, and the other one for representing all the other values.

u
Example 1 (Bounded buffer [18]) Consider a bounded first-in-first-out (FIFO) buffer.

Suppose that the data set is reduced to {0, 1}. Suppose we have verified that if data
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value 1 enters the buffer exactly once, then it reaches out exactly once. For this

verification, the model checker has used an arbitrary number of Os and only one 1 . (In

automaton terminology, a stream described by (0)*(1)(0)* is provided to the buffer

input, and the stream described by (0)*(1)(0)* is obtained on its output.) From this

verification, it follows that the buffer can deliver any data without duplication. Let

in(x) denote that a value x is enqueued in the buffer. Similarly, out(y) indicates that a

value y is dequeued from the buffer. Suppose a data, for instance 2 is duplicated in

the following sequence.

in(1); m(2); in(3); out(1); out(2) out(2); ...

If the duplicated output is changed to 1, and all others to zero, then according to the

data independence property of the buffer, we should get the following sequence.

in(0); in(1); in(0); out(0); out(1) out(1); ...

This sequence clearly violates exactly_once_in(l)/ exactly_once_out(l) property of

the buffer. Therefore, no data is duplicated by this data independent buffer, if it can

not be done for the reduced set. Kurshan [40] states that to reduce the data set to two

values during model checking, the following conditions should be met:

l. System be symmetric, with respect to permuting values,

2. The first value of data is generated precisely once, non-deterministically within a

stream of data having the second value.

u

The order preservation property can similarly be verified using a reduced data set {0,

l, 2}. Suppose that, by supplying a stream (0)*(1)(0)*(2)(0)* to the buffer input, the

same stream is recognized at its output. Notice that data values 1 and 2 are supplied

once, non-deterministically among a stream of zero. Then, it follows that the buffer

preserves the order among all the data it receives. The proof is similar to that of the
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data-delivery property. Suppose that a data, e.g., 4, enters the buffer before a data 5,

but cornes out after 5 in the following sequence.

in(1); in(4); in(2); in(5); out(1); out(5); out(2); out(4) ...

By replacing 4by 1, 5 by2, and all others with 0, we get the following sequence,

which contradicts the recognized language (0)*(1)(0)*(2)(0)* at the buffer output.

Therefore, the order will be preserved for any data set, if it is preserved for the

reduced set {0, l, 2}.

in(0); in(1); in(0); in(2); out(0); out(2); out(0); out(1) ...

B2. Simulation relation

The simulation relation [39] is classically defined over "Kripke stmctures" [41]. Let

M = <S, Init, T, A, L> and M'= <S', Init', T', A, L '> be two structures. A relation H

e S x S' is a simulation relation O\GTM xM' iff the following conditions hold:

\.(Init,Mt')^ H.

2. For all (s, ^ ') e H, L(s) = L '(s ') and

Vf [(5, 0 e T ^ 3r [ (5-, r) e F' A ^ r) e ^-] ].

Whenever there exists a simulation relation H over MxM', we write M < M' to

express that M is simulated by M'.

B3. Realtionship between upto- and at-inductions

We want to show that the at-induction

Vt. [q(0) A (p(t)^q(t+l))] (B.l)

u
implies the upto-induction:
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0 Vf. [pl(t-l)=^q(t)]. (B.2)

Proof: (B.2) at time 0 asserts c(0), by definition,. (B.l) also asserts q(0). Thus,

(B.l) => (B.2) at time 0. Consider T>0. Let A = p/ft']), B =p(t-l), and C = q(t). We
have to show that:

[B^CJ ^[A/^B=^C] (B.3)

(B.3) can be rewritten as follows:

[(^B) v cy ^ HA A ^) v cy (B.4)

For any two propositions P and Q, we have that [{P ^Q) ^'P}. This is tme whether

Q = true or Q = false. For ^4, and B this is written as follows:

[(ÀAB)^B] (B.5)

Using the relation [ (P^> 0 ^> (^ ^> -^) ], (B.5) gives the following relation.

[(^B)^-^(AAB)] (B.6)

By conjuncting both sides of (B.6) with C, we get (B.4), i.e.,

[ (^B) v C; ^ [^(A AB)^C} (B.7)

Using this proof and the relation (2.16) in Chapter 2, we conclude that the at-

induction is a conservative approximation to the upto-induction, i.e.,

[q(0)A G(p=^Xq)]^KpU^q)]

u
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It is easy to show that the upto-induction does not imply the at-induction. For

instance, let A = false, B = true, C = false in (B.3). Then, the upto-induction

(A ^,B) ==> C holds tme, while the at-induction B ^ C does not hold tme.

u
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Appendix III

SMV [24] model of a queue

We used CBL SM.V [24] to show that a generic queue delivers data from its input to

its output. In this appendix, we first prove that when the condition (enqR A -qRfull)

holds, an arbitrary input enters the queue. Then, using the SMV induction mle, we

verify that the data in any position in the queue eventually reaches the top position,

assuming that the dequeue is asserted infinitely often. This proves that the generic

queue correctly delivers the data it receives. Similarly, we prove that this queue

preserves data order

u

/* the queue model */

scalarset DATA undefined;
ordset ESTDEX 0..;

module main(enq, deq, inp){

input deq, enq : boolean;
input inp : DATA;

cells : array INDEX of DATA;
count : INDEX;

SIZE : INDEX;
next(SIZE) := SIZE;

if(enq=l&deq=0){
if(count < SIZE) { /* not full */
forall(i in INDEX)

next(cells[i]) := (i = count) ? inp
: cells[i];

next(count) := count+1 ;
}

/* if full, the action is blocked */

}

else {
forall(i in INDEX)
next(cells[i]) := cells[i],

next(count) := SIZE ;
}

1){elseif(enq= 0 & deq
if (count >0){
forall(i in INDEX)
next(cells[i]) := cells[i+l] ;

}
next(count) := count - l ;

}

else if(enq = l & deq = 1){
if (count >0){
forall(i in INDEX)
next(cells[i]) := (i < (count - l) ) ?

cells[i+l] :
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u

(i = count -1)? inp :
cells[i],

next(count) := count;
}

}

else { /* no enq no deq */
forall (i in INDEX)

next(cells[i]) := cells[i];
next(count) := count;

}

/* the property: any data can enter, if
Q Not full */

forall(j in DATA)
q[j] ; assert G ( (inp =j& count <

SIZE & enq= l & deq = 0) -> X
(cells[count-l] =j));

forallQ in DATA) forall(s in
INDEX)forall(c in INDEX)

subcase q[j][s][c] ofq[j] for SIZE = s
& count = e;

forall(j in DATA)forall(s in
WDEX)forall(c in INDEX)

using INDEX -> {s-1, s} prove
q[j][s][c]; /* s-1 is needed for count- 1
in qU] */

/* the property: any data inside the
queue finally arrives to top of queue, if
deq asserted inf. often */

forall(i in INDEX) forall(j in DATA)
P[i][j] : assert G ( (cells[i] =j & i <

count & count < SIZE) -> F (cells[0] =
j));

forall(s in INDEX) forall(i in
INDEX) forallQ in DATA)

subcase P[i][j][s] ofP[i]|j] for SIZE
=s;

fairDeq : assert G ( count > 0 -> F
(deq=l));

assume fairDeq;

/* the proof */

forall(s in INDEX)forall(i in
INDEX) forallQ in DATA)

using INDEX -> {s}, fairDeq prove
P[i]U][s];

}

/* Queue model for the order
preservation property */

/* scalarset DATA undefined; */
ordset INDEX 0..; /* index of cells */
ordset SEQ 0.. ; /* sequence number

for inputs */

module main(enq, deq, inp, out) {

input deq, enq : boolean;

input inp : struct {
valid : boolean;
seq_num : SEQ;

output out: stmct{
valid : boolean;
seq_num : SEQ;

/* data : DATA; */
}

cells : array INDEX ofstmct{
valid : boolean;
seq_num : SEQ;

/* data : DATA; */
}

count : INDEX;
cnt_i, cnt_o : SEQ;
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/* generic queue size */

SIZE : INDEX;
next(SIZE) := SIZE;

init(cnt_o) := 0; init(cnt_i) := 0;
inp.valid := (enq = l) & (count <

SIZE);

if(enq = l & deq= 0){
if(count < SIZE) { /* not full */
forall(i in INDEX)

next(cells[i]) := (i = count) ? inp
: cells[i];

next(count) :== count+1 ;

next(cnt_i) := cnt_i + l ;

}
/* if full, the action is blocked */

else {
forall(i in INDEX)
next(cells[i]) •.== cells[i];

next(count) := SIZE ;

next(cnt_i) := cnt_i;

}
}
else if(enq = 0 & deq = 1){

if (count >0){
forall(i in INDEX)
next(cells[i]) :=cells[i+l] ;

}

next(count) := count - l ;
next(cnt_o) := cnt_o + l ;

0

}

else if(enq = l & deq = 1){
if (count >0){
forall(i in INDEX)
next(cells[i]) := (i < (count - l) ) ?

cells[i+l] :

(i = count - l)? inp :
cells[i];

next(count) := count;

next(cnt_i) := cnt_i + l ;
next(cnt_o) := cnt_o + l;

}

else { /* no enq no deq */
forall (i in INDEX)

next(cells[i]) := cells[i];
next(count) := count;

next(cnt_i) := cnt_i;
next(cnt_o) := cnt_o;

/* the property */

orderedlnp : assert G ( ((enq =
l) & (count <= SIZE)) -> inp.seq_num
= cntj);

ord:assertG(((deq=l)&
(count>0) & (cells [0]. valid = 1)&
(count<SIZE)) -> cells[0].seq_num =
cnt_o);

forall(s in INDEX) forall(c in
INDEX) forall(i in SEQ)

subcase ord_case[i][s][c] oford for
cnt_o = i & SIZE = s & count = e;

forall(s in INDEX) forall(c in
INDEX) forall(i in SEQ)

using
INDEX -> {s} , ord_case[i-l]
, orderedlnp

prove

ord_case[i][s][c];
assume orderedlnp;
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Appendix IV

VHDL models of the switch fabric and

the port controller

In this appendix, we provide VHDL models of the ATM switch components, e.g., the
receiver, the dipatcher, the scheduler, the transmitter, the arbiter, and the switch
fabric.

Cl. The receiver

u

receiver module

-- Written by M. Sadegh
Jahanpour.

parameters:

-- ATMlength is scaled down to
4, so, we set ATMlengthDiv4 =
l.
-- The first packet is written
at address 0, i.e.,
firstPacketAârs = 0.
-- Queue element width is
scaled down to 2 bits.

new modifications:

-- fifoloutput is two bits
width and only the least
significant bit i.e,
fifoloutput(0) is used as input
data. start-of-cell (SOC) bit
is aââitionaly provided along
each fifo element.

use work.atmDataTypes.all;

entity receiver is
port( QFempty, QRfull,

fifolempty, sod,
receiverGrant: in bit;

fifoLempty, socL: in
bit;

QFoutput: in
bit_vector(2 - l âownto 0);

fifoloutput: in
bit_vector(2 - l downto 0);

fifoLoutput : in
bit_vector(2 - l downto 0);

reset, clock : in bit;
onePacketFromI,

onePacketFromL : in bit;
added input ports

consultFifoI,
consultQF, deql, âeqF: out bit;

consultFifoL, deqL: out
bit;

memlnput : out
bit_vector( 4-1 downto 0) ;

memAdrsRCVR : out
bit_vector(4 - l downto 0);

enqR: out bit;
receiverWillReq : out

bit;
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writeEnableRCVR : out

bit;
QRinput : out

bit,_vector(2 - l downto 0));

end receiver;

architecture stateMachine of
receiver is

combinational circuit

signals
type arbiterStates is (init,

iO, il, i2, i3, i4, last, 10,
11, 12, 13, 14) ;

type count is range 0 to 2;
-- ATMlengthDiv4

signal state_c :
arbiterStates ;
combinational

signal state :
arbiterStates; -- registers

signal wordCount : count;
signal worâCount_c : count;
signal lb : bit;

loop back register
signal lb_c : bit; --

and its wiring
signal ân_c : bit; --

internal signals for deqFneeâeâ
signal dn : bit;
signal r0_c : bit;
signal rl_c : bit;
signal r2_c : bit;
signal r3_c : bit;
signal r0 : bit;
signal rl : bit;
signal r2 : bit;
signal r3 : bit;
signal e

bit_vector(2 - l downto 0); --
a register for queue outputs
signal e_c :

bit_vector(2 - l âownto 0);

signal aârs_c :
bit_vector(4 - l âownto 0);
register input

signal address :
bit_vector(4 - l downto 0);
the register output

-- registered inputs

u

signal QFempfcy_r,
fifolempty_r, socl_r,
receiverGrant_r: bit;
primary inputs

signal fifoLempty_r,
socL_r: bit;

signal QFoutput_r:
bit_vector(2 - l âownto 0);

signal fifoloutput_r:
bit_vector(2 - l downto 0);

signal fifoLoutput_r :
bit_vector(2 - l âownto 0);
-- signal onePackefcFromI_r,
onePacketFromL r : bit;

begin -- the state machine

transitions: process (state,
QFempty, an, Ib, fifolempty,
sod, receiverGrant,
fifoLempty, socL, worâCount,
fifoloutput, address, r0, rl,
r2, r3, e, onePacketFromI,

onePacketFromL)
begin

case state is

when init =>

i f (QFempty = '0' and
dn ='l' and lb = '0 ' and

fifolempty = '0'
and sod = '1' and

receiverGrant = 'l' and

onePacketFromI = 'l'
new condition

and

onePacketFromI = 'l'

) then

state_c <= i0;

elsif (an = '0' and lb
'0' and fifolempty = '0' and

sod = 'l' and onePacketFromI =
•r

new condition

and
onePacketFromI r = 'l'

) then

state_c <= i0;

elsif(ân = •I' and
QFempty = 'l' and fifolempty =
'D then
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state c <:

init;

elsif(ân = •0' and lb
'0' and fifolempty = '0' and
sod = '0•) then

state_c <= init;

elsif(QFempty = '0' and
Ib = '0' and fifolempty = '0'
and sod = '0') then

state_c <= init;

elsif(dn = '0' and lb
0' and fifolempty = '1') thent

u

state_c <= init;

elsif(QFempty = '0' and
Ib = '0' and fifolempty = •I')
then

state_c <= init;

elsif(QFempty = '0' and
an = • l ' and lb = • 0 ' and

fifolempfcy = '0'
and sod = ' 1 ' and
receiverGrant = '0') then

state_c <= init;
now, loob back

side for the init state
elsif (QFempty = '0'

and an ='l' and Ib = '1' and
fifoLempty = '0'

and socL = '1' and

receiverGrant = 'l' and
onePacketFromL = 'l'

new condition
and

onePacketFromL r = 'l'

) then

state_c <= 10;

elsif (dn = •0- and Ib
'1' and fifoLempfcy = '0' and

socL = 'l' and onePacketFromL =

•r
new condition

and

onePacketFromL_r = 'l'
) then

state_c <= 10;

elsif(dn = 'l' and
QFempty = 'l' and fifolempty
'0') then -- l

state_c <= init;

elsif(ân = •0' and lb
'!' and fifoLempty = '0' and
socL = '0') then -- 2

state_c <= init;

elsif(QFempty = '0' and
Ib = 'l' and fifoLempty = '0'
and socL = '0') then -- 3

state_c <= init;

elsif(ân = •0' and lb =
'l' and fifoLempty = '1') then

state_c <= init;

elsif(QFempty = '0' and
Ib = 'l' and fifoLempty = 'D
then -- 5

state_c <= init;

elsif(QFempty = '0' and
an = 'l' and lb = 'l' and
fifoLempty = '0' and -- 6

socL = ' l ' and
receiverGrant = '0') then

state_c <= init;

else -- no change

state_c <= state;

end i f ;

when i0 =>

if (fifolempty = '1')
then

state_c <= init;
elsif (fifolempty

and sod = '1') then
state_c <= init;

'0
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0 elsif (fifolempty = '0'
and sod = '0') then

state_c <= il;

else -- no change

state_c <= state;

end i f ;

when il =>

if ( fifolempty = '1')

state_c <= init;
then

elsif (fifolempty = '0'
and sod = '1') then

state_c <= init;

elsif (fifolempfcy = •0'
and sod = '0') then

state_c <= i2;

else -- no change

state_c <= state;

end i f ;

' l•) then

when i3 =>

if ( fifolempty =

state_c <= init;

elsif (fifolempty =
'0' and sod = '1') then

state_c <= init;

elsif (fifolempty =
'0' and sod = '0') then

state_c <= i4;
else -- no

change

state_c <= state;

end if;

when i4 =>

if (receiverGrant =
'l' and wordCount > 0 and
fifolempty = 'l') then

state_c <= init;

elsif(receiverGrant
'0') then

state_c <= i4;

u

then

when i2 =>

if ( fifolempty = '1'

state_c <= init;

elsif (fifolempty = '0'
and sod = '1') then

state_c <= init;

elsif (fifolempty
'0' and sod = '0') then

stafce_c <=

i3;

change

state;

else no

state_c <=

end if;

elsif(receiverGrant
'l' and worâCount > 0 and
fifolempty = '0' and sod =
'l') then

state_c <= init;

elsif(receiverGrant

'l' and worâCount > 0 and
fifolempty = '0' and sod =
'0•) then

memlnput(0) <= rO;
memlnput(l) <= ri;
memlnput(2) <= r2;
memlnput(3) <= r3;

state_c <= il;

elsif(receiverGrant
'l' and worâCount = 0) then

memlnput(0) <= r0;
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change

memlnput(1) <= ri;
memlnput(2) <= r2;
memlnput(3) <= r3;

state_c <= last;

else -- no

state_c <= state;

end i f ;

when last =>

if (receiverGrant =

'0' or QRfull = '1') then
state_c <= last;

else

state_c <= init;
QRinput <= e;

end i f ;

-- loop back side of
the state machine

when 10 =>

if (fifoLempty = •1')
then

state_c <= init;
elsif (fifoLempty

'0' and socL = ' 1') then
state_c <=

init;

elsif (fifoLempty
'0' and socL = '0') then

state_c <= 11;

change

'D then

else -- no

state_c <= state;

end i f ;

when 11 =>

if ( fifoLempty =

state_c <= init;

el s if (fifoLempty =
'0' and socL = ' 1') then

state_c <= init;

elsif (fifoLempty =
'0' and socL = ' 0') then

state_c <= 12;
else -- no

change

state_c <= state;

end if;
when 12 =>

' l') then

if ( fifoLempty =

state_c <= init;

el s if (fifoLempty
' 0' and socL = '1') then

state_c <= init;

el s if (fifoLempty
'0' and socL = '0') then

state_c <= 13;

else no

change

' l') then

state_c <= state;

end i f ;

when 13 =>

if ( fifoLempty =

state_c <= init;

•oI

'0

elsif (fifoLempty =
and socL = '1') then

state_c <= init;

elsif (fifoLempty =
and socL = '0') then

state_c <= 14;

else no

change

state_c <= state;

end i f ;
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when 14 :>

if (receiverGrant
'l' and worâCount > 0 and
fifoLempty = 'l') then

state_c <= inifc;

elsif(receiverGrant

state_c <= 14;
' 0•) then

el s if(receiverGrant
'l' and worâCount > 0 and
fifoLempty = '0' and socL =
'D then

state_c <= init;

elsif(receiverGrant
'l' and wordCount > 0 and
fifoLempty = '0' and socL =
'0') then

memlnput(0) <= rO;
memlnput(l) <= ri;
memlnput(2) <= r2;
memlnput(3) <= r3;

state_c <= 11;

el s if(receiverGrant
'l' and wordCount = 0) then

memlnput(0) <= r0;
memlnput(l) <= ri;
memlnput(2) <= r2;
memlnput(3) <= r3;

change

state_c <= last;

else -- no

state_c <= state;

u

end i f ;
end case;

-- wait on state,
QFempty, dn, Ib, fifolempty,
sod, receiverGrant,
fifoLempty,

socL,

wordCount, fifoloutput,
address, r0, rl, r2, r3, e ;

end process
transitions;

âeqIConsultI: process
(state, QFempty, dn, Ib,
fifolempty, sod,
receiverGrant, wordCount,
onePacketFromI)

begin
if ( (state = init

and QFempty = '0'
and an = ' 1 '

and lb = '0' and fifolempty =
'0'

and sod =

'l' and receiverGrant = '1' and
onePacketFromI = 'l')

or (state =

init and QFempty = '0'
and an

='l' and lb = '0' and
fifolempty = '0'

and sod =
'l' and receiverGrant = ' 0 ' )

or (state =
init and dn = '1' and QFempty =
'!' and fifolempty = '0')

or (state =
init and an = '0' and Ib = ' 0 '
and fifolempty = '0' and sod =
•D

or (state =

init and dn = '0' and Ib = ' 0 '
and fifolempty = '0' and sod =
•O')

or (state =

init and QFempty = '0' and Ib =
'0' and fifolempty = '0' and
sod = •0')

or (state = iO
and fifolempty = '0' and sod =
•D

or (state = iO

and fifolempty = '0' and sod =
•O')

or (state = il

and fifolempty = '0' and sod =
•D

or (state = il

and fifolempty = '0' and sod =
•0-)
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or (state = i2

and fifolempfcy = '0' and sod =
•D

or (state = i2
and fifolempty = '0' and sod =

•O')
or (state = i3

and fifolempty = '0' and sod =
•D

or (state = i3
and fifolempty = '0' and sod =
•O')

or (state = i4
and receiverGrant = '1' and
wordCount > 0 and fifolempty =
'0' and sod = •I ' )

or (state = i4
and receiverGrant = '1' and
wordCount > 0 and fifolempty =
'0' and sod = '0')

) then

consultFifoI <:
•r ;

else

consultFifoI <

end i f ;

-- deq signals

•o';

u

if ( (state = init
and QFempty = '0' and an = ' 1 '

and lb = ' 0 '

and fifolempty = '0' and sod
'l' and receiverGrant = ' 1 '

and
onePacketFromI = 'l')

or (state =
init and QFempty = '0'

and an
= ' l ' and lb = ' 0 ' and
fifolempty = '0'

and sod
' l' and receiverGrant = ' 0 ' )

or (state =

init and dn = '1' and QFempty
'1' and fifolempty = '0')

or (state =
init and dn = '0' and Ib = ' 0 '

and fifolempty = '0' and sod =
•D

or (state =
init and dn = '0' and Ib = ' 0 '

and fifolempty = '0' and sod =
•O' )

or (state =

init and QFempty = '0' and Ib =
'0' and fifolempty = '0' and
sod = '0')

or (state = iO

and fifolempty = '0' and sod =
•D

or (state = iO

and fifolempty = '0' and sod =
•O')

or (state = il

and fifolempty = '0' and sod =
•D

or (state = il

and fifolempty = '0' and sod =
•O')

or (state = i2

and fifolempty = '0' and sod =
•D

or (state = i2
and fifolempty = '0' and sod =
•O')

or (state = i3

and fifolempty = '0' and sod =
•D

or (state = i3

and fifolempty = '0' and sod =
•O')

or (state = i4
and receiverGrant = '1' and
worâCount > 0 and fifolempty =
•O' and sod = '1')

or (state = i4
and receiverGrant = '1' and
worâCount > 0 and fifolempty =
'0' and sod = ' 0 ' )

) then

consultFifoI <
Ir;

I0-;

else

consultFifoI <:

end i f ;

4
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-- âeq signals

if ( (state = init
and QFempty = '0' and dn = ' 1 '

and lb = ' 0 •
and fifolempty = '0' and sod =
'l' and receiverGrant = ' 1 '

and

onePacketFromI = 'l')
or (state =

init and an = '0' and Ib = '0'
and fifolempty = '0' and sod =
'r

and
onePacketFromI = 'l')

or (state =
init and dn = '0' and Ib = '0'
and fifolempty = '0' and sod =
•O')

or (state =

init and QFempty = '0' and Ib =
'0' and fifolempty = '0' and
sod = '0')

or (state =

init and dn = '1' and QFempty =
'l' and fifolempty = '0')

or (state = iO
and fifolempty = '0' and sod =
•O')

or (state = il
and fifolempty = '0' and sod =
•O')

or (state = i2
and fifolempty = '0' and sod =
•0-)

or (state = i3
and fifolempty = '0' and sod =
•O')

or (state = i4
and receiverGrant = '1' and
wordCount > 0 and fifolempty =
'0' and sod = '0 ' )

) then

deql <= 'l';

else

deql <= '0' ;
end if;

wait on state,
QFempty, an, Ib, fifolempty,
sod, receiverGrant, wordCount;

end process
âeqIConsultI;

deqLConsultL: process
(state, QFempty, dn, Ib,
fifoLempty, socL,
receiverGrant, wordCount,
onePacketFromL)

begin

if ( (state = init
and QFempty = '0' and dn = ' 1 '

and lb = -I-
and fifoLempty = '0'

and socL =

'l' and receiverGrant = '1' and
onePacketFromL = 'l')

or (state =
init and an = ' 0 • and Ib = • 1 •
and fifoLempty = '0' and socL =
•r

and

onePacketFromL = 'l')
or (state =

init and an = '0' and Ib = • 1 '
and fifoLempty = '0' and socL =
•O') --2

or (state =
init and QFempty = '0' and Ib =
'1' and fifoLempty = '0' and
socL = '0 ' )

or (state = 10
and fifoLempty = '0' and socL =
'D

or (state = 10

and fifoLempty = '0' and socL =
•O')

or (state = 11

and fifoLempty = '0' and socL =
•D

or (state = 11
and fifoLempty = '0' and socL =
•O')

or (state = 12
and fifoLempty = '0' and socL =
•D

or (state = 12
and fifoLempty = '0' and socL =
•O')

or (state = 13

and fifoLempty = '0' and socL =
•D
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or (state = 13

and fifoLempfcy = '0' and socL =
•O')

or (state = 14
and receiverGrant = '1' and

worâCount > 0 and fifoLempty =
'0' and socL = ' 1 ' )

or (state = 14
and receiverGrant = '1' and

wordCount > 0 and fifoLempty =
'0' and socL = ' 0 ' )

) then

consultFifoL <=
'r;

else

consultFifoL <:

end i f ;

-- âeqL circuit

'0' ;

u

if ( (state = init
and QFempty = '0' and an =' 1'

and lb = '1'
and fifoLempty = '0' and socL =
'l' and receiverGrant = ' 1 ' )

or (state =
init and dn = '0' and Ib = '1'
and fifoLempty = '0' and socL =
•D

or (state =

init and an = '0' and Ib = ' 1 '
and fifoLempty = '0' and socL =
•O') --2

or (state =
init and QFempty = '0' and Ib =
'1' and fifoLempty = '0' and
socL = '0 ' ) -- 3

or (state = 10
and fifoLempty = '0' and socL =
•O')

or (state = 11
and fifoLempty = '0' and socL =
•O')

or (state = 12

and fifoLempty = '0' and socL =
•O')

or (state = 13

and fifoLempty = '0' and socL =
•O')

or (state = 14

and receiverGrant = '1' and
worâCount > 0 and fifoLempty =
'0' and socL = ' 0 ' )

) then

âeqL <= ' l ' ;

else

âeqL <= '0';
end i f ;

wait on state,
QFempty, an, Ib, fifoLempty,
socL, receiverGrant, worâCount;

end process
âeqLConsultL;

-- enqR circuit

enciueueR: process
(state, receiverGrant)

begin

if (state = last
and receiverGrant = '1'and
QRfull = •0• ) then

enqR <= 'l' ;
else

enqR <= '0' ;
end if;
-- wait on state,

receiverGrant;
end process enqueueR;

ConsultFâeqF: process
(state, QFempty, an, Ib,
fifolempty, sod,
receiverGrant,
fifoLempty, socL)

begin

if ( (state = init

and QFempty = '0' and dn = ' 1 '
and lb = ' 0 '

and fifolempty = '0' and sod
'l' and receiverGrant = ' 1 ' )
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or (state =

init and QFempty = '0' and dn
l

and lb =

•l' and fifoLempty = '0' and
socL = 'l' and receiverGrant

•D

) then
consultQF <= 'l';

âeqF <= 'l' ;

u

else

consultQF <= '0';

âeqF <= '0';
end i f ;

wait on state,
QFempfcy, dn, Ib, fifolempty,
sod, receiverGrant,

fifoLempty, socL;

end process
ConsultFdeqF;

-- âecïueue needed circuit

deqNeed: process
(state, QFempty, dn, Ib,
fifolempty, sod,
receiverGrant, fifoLempty,
socL,

onePacketFromI, onePacketFromL)

begin

if ( (state = init
and QFempty = '0' and an = ' 1 '

and lb = ' 0 '
and fifolempty = '0' and sod =
'l' and receiverGrant = '1' and

onePacketFromI = 'l')
or (state =

init and QFempty = '0' and
an ='l-

and lb = '1' and fifoLempty =
'0' and socL = '1' and

receiverGrant = 'l' and

onePacketFromL = 'l')

) then

dn_c <= ' 0 ' ;

elsif(state = last
and receiverGrant = '1' and

QRfull = '0') then
dn_c <= ' l ' ;

else

ân_c <= an;
end i f ;
-- wait on state,

QFempty, an, Ib, fifolempty,
sod, receiverGrant,
fifoLempty, socL;

end process âeqNeeâ;

loop back circuit,
Ib

loopBack: process
(state, QFempty, dn, Ib,
fifolempty, sod,
receiverGrant, fifoLempty,

socL, onePacketFromI,
onePacketFromL)

begin

if ( (state = init
and QFempty = '0' and an = ' 1 '

and lb = • 0 '
and fifolempty = '0' and sod =
'l' and receiverGrant = ' 1 '

and
onePacketFromI = 'l')

or (state =
init and an = '0' and Ib = ' 0 '

and fifolempty = '0' and sod =
•l-

and

onePacketFromI = 'l')
or (state =

init and an = '1' and QFempty =
•l' and fifolempty = '!•) --
dual

or (state =
init and an = '0' and Ib = ' 0 '

and fifolempty = '0' and sod =
•O')

or (state =

init and QFempty = '0' and Ib =
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'0' and fifolempty = '0' and
sod = '0' )

or (state =
init and an = '0' and Ib = '0'

and fifolempty = '1')
or (state =

init and QFempty = '0' and Ib
'0' and fifolempty = '1')

or (state
init and dn = '1' and QFempty
'l' and

fifolempty = '0')

) then

lb_c <= ' l ' ;

elsif( (state =
init and QFempty = '0' and an

and lb =

'1' and fifoLempty = '0' and
socL = 'l' and receiverGrant =
'r

and

onePacketFromL = 'l') -- new
added, may 15 2000

or (state =

init and an = '0' and Ib = '1'
and fifoLempty = '0' and socL
•r

and

onePacketFromL = 'l') -- neww
added may 15 2000

or (state =
init and an = '0' and Ib = '1'

and fifoLempty = '0' and socL =
•O') --2

or (state =

init and QFempty = '0' and Ib =
' l' and fifoLempty = '0' and
socL = '0' ) -- 3

or (state =

init and an = '0' and Ib = ' 1 '
and fifoLempty = '1')

or (state =

init and QFempty = '0' and Ib =
'!' and fifoLempty = '1')

or (state =

init and an = '1' and QFempty =
'1' and fifolempty = '0')

correction carried out

) then

lb_c <= ' 0 ' ;

else

lb_c <= lb_c;

end i f ;

-- wait on state,
QFempty, dn, Ib, fifolempty,
sod, receiverGrant,
fifoLempty, socL;

end process loopBack;

word counter

worâCounter: process
(state, QFempty, an, Ib,
fifolempty, sod,
receiverGrant, fifoLempty,
socL, worâCount)

begin

if ( (state = init
and QFempty = '0' and dn = '1 '
and lb = ' 0 '

and

fifolempty = '0' and sod = '1'
and receiverGrant = '1')

or (state =

init and an = -0' and Ib = ' 0 '
and fifolempty = '0' and socl =
•D

or (state =

init and QFempty = '0' and an
='l' and

Ib = 'l-
and fifoLempty = '0' and socL =
'l' and receiverGrant = ' 1 ' )

or (state = init
and dn = ' 0 ' and Ib = '1' and

fifoLempty = '0' and socL =
•D

) then

wordCount_c <= 2;
worâCount_c <= l;

-- changed to 1
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elsif( (state = i3

and fifolempty = '0' and socl=
•O')

or (state =

13 and fifoLempty = '0' and
socL = '0 ' )

) then

worâCount e <=

wordCount - l;

else -- no change

worâCount e <=

worâCount;

end i f ;

wait on state,
QFempty, dn, Ib, fifolempty,
sod, receiverGrant,
fifoLempty, socL, worâCount;

end process
wordCounter;

-- address circuit
adrsCircuit: process

(state, QFempty, dn, Ib,
fifolempty, sod,
receiverGrant, QFoutput,
fifoLempty, socL, address, e)

variable temp :
natural; -- temporary variable

variable elem :
bit_vector(4 - l downto 0);

begin

and

and
•r

init

'l
socL

•D

if ( (state = init
QFempty = '0' and dn = ' 1 '

and lb = ' 0 •
fifolempty = '0' and socl=
and receiverGrant = '1')

or (state =
and QFempty = '0' and dn

and lb =

and fifoLempty = '0' and
'l' and receiverGrant =

adrs_c <= QFoutput;
e_c <= QFoutput;

typée
conversion for adrs_c

temp :=
bits2natural(QFoutput);

natural2bits

(temp, elem);
adrs_c <= elem;

elsif( (state =
init and dn = '0' and Ib = ' 0 '

and fifolempty = '0' and socl=
•D

or (state =

init and an = '0' and Ib = ' 1 '
and fifoLempty = '0' and socL
•D

) then

adrs_c <= e

-- assigning

aârs_c <= e

temp : =

bits2natural(e);
natural2bits

(temp, elem);
aârs_c <= elem;

elsif( (state = i2
and fifolempty = '0' and socl=
•O')

or (state =

12 and fifoLempty = '0' and
socL = '0' )

) then

compute a

memory address from pointer e

if (
bits2natural(address) =
bits2natural(e) ) then
first address

temp :=
bits2natural(e) * (l + l) + 0;

firstPacketAdrs : natural :
0

) then

u
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ATMlengthDiv4 = 2, and 1
location is preserved

for fabric

and out controller headers

) then
e_c <= QFoutput;

else

temp := temp +
l; -- increment address

natural2bit s

(temp, elem);
aârs_c <= elem;

else

subsequent addresses

adrs e <=

increment(address) ;
end i f ;

else

aârs e <:

end i f ;
address;

^)

wait on state,

QFempty, dn, Ib, fifolempty,
sod, receiverGrant, QFoutput,
fifoLempty, socL, address, e;

end process
aârsCircuit;

-- e register, i.e, a
temporary element

tempRegister: process
(state, QFempty, an, Ib,
fifolempty, sod,
receiverGrant, QFoutput, e)

begin

if ( (state = init
and QFempty = '0' and dn = ' 1 '

and lb = • 0 •
and fifolempty = '0' and socl=
'l' and receiverGrant = ' 1 ' )

or (state =
init and QFempty = '0' and an
== ' l '

and lb =

'l' and fifoLempty = '0' and
socL = 'l' and receiverGrant =
•D

e_c <= e;
end if;

-- wait on state,
QFempty, dn, Ib, fifolempty,
sod, receiverGrant, QFoutput,
e;

end process
tempRegister;

-- register inputs

reg: process (state,
fifolempty, sod,
receiverGrant, wordCount,
fifoLempty, socL, rO, ri, r2,
r3, fifoloutput, fifoLoutput)

begin
if( (state = iO and

fifolempty = '0' and socl= '0')
or (state = i4

and receiverGrant = '1' and
wordCount > 0 and fifolempty =
'0' and socl= '0 ' )

) then

r0_c <=
fifoloutput(0); -- forget the
soc bit

elsif( (state = 10
and fifoLempty = '0' and socL =
•O')

or (state =

14 and receiverGrant = '1' and
wordCount > 0 and fifoLempty =
'0' and socL = ' 0 ' )

1

) then

r0_c <
fifoLoutput(O);

else r0_c <= rO;

end i f ;
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u

if(state = il and
fifolempty = '0' and socl= '0')
then

rl_c <=

fifoloutput(0);

elsif(state = 11 and
fifoLempty = '0' and socL =
'0') then

rl_c <=
fifoLoutput(O);

else rl_c <= rl;

end i f ;

if(state = i2 and
fifolempty = '0' and socl= '0')
then

r2_c <=

fifoloutput(0);

elsif (state = 12 and
fifoLempty = '0' and socL =
•O')

then
r2_c <=

fifoLoutput(O);

else r2_c <= r2;

end i f ;

if(state = i3 and
fifolempty = '0' and socl= '0')
then

r3_c <=

fifoloutput(0);

elsif(state = 13 and
fifoLempty = '0' and socL =
'0') then

r3 e <=

fifoLoutput(O);

else r3_c <= r3;

end if;

wait on state,

fifolempty, sod,
receiverGrant, wordCount,

fifoLempty,
socL, r0,

ri, r2, r3, fifoloutput,
fifoLoutput;

end process reg;

rw : process
(state,QFempty,dn,Ib,
fifolempty, sod,

fifoLempty,
socL, wordCount)

begin

if (
(state = init and

QFempty = '0' and an = ' 1 '
and lb = ' 0 ' and

fifolempty = '0' and socl= '1')
or (state = init

and QFempty = '0' and an = ' 1 '
and lb = '1'

and fifoLempty = '0' and socL =
•D

or (state = i4
and

0 or

•o

and

0 or

'0' and socL

) then

(worâCount =

(fifolempty
and sod= '0' ) ) )

or (state = 14

(wordCount =

(fifoLempty
'0') ) )

or (state = last)

<= • l • ;

<= '0';

receiverWillReq

else

receiverWillReq

end if;
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n
wait on

state,QFempty,an,Ib,
fifolempty, sod,

fifoLempty,
socL,worâCount;

end process rw;

sequentials: process
begin

'r;

then

wait until clock

if (reset = 'D

u

Ib <= ' 0 ' ; an <=
'1'; state <= init; worâCount
<= 0 ;

sod <= ' 0 ' ;

else

state <= state_c;
worâCount <=

worâCount_c;
Ib <= lb_c;
dn <= dn_c;

e <= e_c ;

address <=

aârs_c;
rO <= r0_c; ri <=

rl_c; r2 <= r2_c; r3 <= r3_c;

end i f ;

end process
sequent!al s;

memAârsRCVR <= adrs_c;

writeEnableRCVR <= 'l'

when ( (state = i4 and
receiverGrant = 'l'

and wordCount > 0

and fifolempty = '0' and
sod = '0 ' )

or (state = i4 and

receiverGrant = 'l' and
worâCounfc = 0)

or (state = 14 and
receiverGrant = 'l'

and wordCount > 0 and

fifoLempty = '0'

and socL = '0 ' )

or (state = 14 and
receiverGrant = 'l' and

wordCount = 0))
else

•o';

end stateMachine;

configuration config_receiver
of receiver is

for stateMachine -- the
architecture

end for;
end config_receiver;

C2. The dispatcher

use work.atmDataTypes.all;

entity dispPart is

port(processorGrantD,
QRempty,QPlfull, QP2full,
clock, reset : in bit;

QRoutput_c : in
bit_vector(2 - l âownto 0);

memOutput : in
bit_vector(4 - l âownto 0);

QRoutputEnable, âeqR,
enqPl, enqP2 : out bit;

memAdrsDISP: out

bit_vector(4 - l downto 0);
memlnput_c : out

bit_vector(4 - l downto 0);
writeEnableDISP : out

bit;
QP-l input, QP2input : out

bifc_vector(2 - l âownto 0);
freePrio: in bit

);
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^1

end âispPart;

architecture stateMachine of
dispPart is

type dispStafces is (âO, dl,
d2 , d3 , â4 ) ;

combinational circuit

signals

subtype wordType is
bit_vector(4 - l downto 0);

--a function that provides
new routing header

function newHeader (signal
oldHeader : wordType) return
wordType is

variable newHeaâ :

wordType;
begin -- a simple function

for now.

newHead := not(olâHeaâer);

return newHeaâ;
end newHeaâer;

function fabricHeaâer (signal
oldFabHead : wordType) return
worâType is

variable fabHead :

wordType;
begin -- a simple function

for now.

fabHead := not

oldFabHeaâ;
fabHead := olâFabHead ;

return fabHead;
end fabricHeader;

function heaâerPriority
(signal header : worâType;
signal freePrio : bit) return
bit is

variable prio : bit;
begin

-- A simple example. Don't
change the priority.

pria := heaaer(0);

return pria;

end headerPriority;

subtype vector is
bit_vector(4 - l downto 0);

signal state_c : âispStates ;
-- combinational

signal state : âispStates;
-- regiters

signal address, aârs_c :
bit_vector(4 - l âownto 0);

signal e, e_c : bit_vector(2
- l downto 0); -- qT-ieues
output

signal header : wordType; --
header is eiiibedded in the

memory word
signal header_c : worâType;

-- signals for latchings

begin -- the state machine

combinationalDisp: process
(QRempty, processorGrantD,
header, state, e, QPlfull,
QP2full)

begin
case state is

when d0 =>
if (processorGrantD

'0' and QRempty = '0') then

if (processorGrantD =
' 0' or QRempty = '1') then

state_c <= âO;

elsif (processorGrantD
l' and QRempty = '0' ) thenl
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0 else

state_c <= ai;

-- output signals are
given in another processes,
below

end i f ;

when dl =>

if (processorGrantD
' 0•) then

state_c <= ai;

'r
else -- processorGrantD

state_c <= â2;

end i f ;

when d2 =>
if (processorGrantD

' 0') then

'l

state_c <= â2;
else -- processorGrantD

state_c <= â3;

-- write to

memory data bus
memlnput_c <=

newHeader(header);
note: newheader ->

memlnput_c -> memory_c ->
written with clock

end if;

when d3 =>
if (processorGrantD =

'0') then
state_c <= â3;

•l

â4;

else -- processorGrantD

state c <=

u

memlnput_c <=
fabricHeaâer(header) ; -- write
the new fabric header

end if;

when â4 =>

if(processorGrantD ='1'
and headerPriority(header,
freePrio) = 'l' and QPlfull =
' 0') then

state_c <= âO;

QPlinput <= e;

elsif(processorGrantD
='1' and heaaerPriority(header,
freePrio) = '0' and QP2full =
'0') then

state_c <= d0;
QP2input <= e;

else

state_c <= â4;

end if;
end case;

end process
combinationalDisp;

memoryAârs: process (address,
state, processorGrantD)

begin

if ( (state = dl or state =
d2) and processorGrantD = '1')
then

memAdrsDISP <=
increment(address);

else

memAârsDISP <= address;
end if;

end process memoryAdrs;

values for address
(register) that goes through
queues

Qelements: process(state,
processorGrantD, QRempty,
address, QRoutput_c, e)

variable temp : natural;
temporary variable
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0 variable elem :

bit_vector(4 - l âownto 0);
-- memory address

begin
if (state = dO and

processorGrantD = 'l' and
QRempty = '0') then

e_c <= QRoutput_c;

- a copy of the address

temp :=

bits2natural(QRoutput_c) * (2 +
l) + 0;

natural2bits (temp,
elem) ;

aârs_c <= elem;

else -- no change

adrs_c <= address;

e_c <= e;

end if;
end process Qelements;

header circuit:
combinational part

headerCircuit: process
(state, processorGrantD,
header, memOutput)

begin
if (state = dl and

processorGrantD = 'l') then
header_c <= memOutpufc;

else

header_c <= header;
end i f ;

end process heaâerCircuit;

if (reset = '1') then

state <= d0;

else

state <= state_c;

address <= adrs_c;

header <= header_c;

e <= e_c;

end if;

end process;

writeEnableDISP <= 'l' when
((state = d2 or state = a3 )

and processorGrantD = '1')
else ' 0';

âeqR <= 'l' when (state = â0
and processorGrantD = '1' and
QRempty = '0')

else '0';

QRoutputEnable <= 'l'when
(state = â0 and

processorGrantD = 'l' and
QRempty = '0')

else '0';

enqPl <= 'l' when (state = d4
and processorGrantD ='1' and
heaâerPriority (header,
freePrio) = •I' and QPlfull =

•O')

else '0 ' ;

u

sequential : process

begin

wait until clock = '1'

enqP2 <= 'l' when (state = d4
and processorGrantD ='1' and
headerPriority(header,
freePrio) = '0' and QP2full =
•O')

else '0';
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end stateMachine; signal stateSchl :

schlStates;

configuration config_dispPart
of dispPart is

for stateMachine -- the

architecture

end for;
end config_dispPart;

signal e2, e2_c :
bit_vector(2 - l downto 0);

queues output

begin -- the state machine

C3. The scheduler

Scheduler module.

written by: M.Saâegh Jahanpour
-- Feb, 99

use work.atmDataTypes.all;

entity schlPart is

port(processorGrantS,
QP-îempty, QP2empty,

QTfull, clock, reset :
in bit;

QPloutput_c, QP2output_c
in bit_vector(2 - l downto

0);
QPloutputEnable, âeqPl,

QP2outputEnable,
âeqP2, enqT : out bit;
QTinput : out

bit_vector(2 - l downto 0)
);

end schlPart;

architecture stateMachine of
schlPart is

combinationalSchl: process
(processorGrantS,QP-t empty,QP2em
pty, stateSchl, e2, QTfull)

begin
case stateSchl is

when s0 =>

if(processorGrantS ='1'
and QPlempty = '0' and QTfull =
'0') then

stateSchl_c <= si;

elsif(processorGrantS
= ' l ' and QP-îempty = ' l ' and
QP2empty = '0' and QTfull =
'0') then

stateSchl_c <= si;

else

stateSchl_c <= s0;
end if;

when si =>

if (processorGrantS
'0' or QTfull = '1') then

stateSchl_c <= si;

else

type schlStates is (s0, si);

combinational circuit

signals

QTinput <= e2;
stateSchl_c <= sQ;

end if;

end case;

u
signal stateSchl_c :

schlStafces;

end process
combinationalSchl;
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end process;

Qelements2:
process(stateSchl,
processorGrantS, QP1empty,
QP2empty,

QP-!output_c, QP2output_c , e2,
QTfull)

begin

if (stateSchl = sO and

processorGrantS ='l' and
QPJempty = '0' and QTfull =
'0•) then

e2_c <= QPloutput_c ;

elsif (stateSchl = sO
and processorGrantS ='1' and
QP-lempty = ' l '

and QP2empty =
•O' and QTfull = '0') then

e2_c <= QP2output_c;

else

e2_c <= e2;

end i f ;

end process Qelements2;

seq2: process
begin
wait until clock = '1' ;

if (reset = 'D then

stateSchl <= s0;
e2 <= "00";

else

stateSchl <=

stateSchl_c;
e2 <= e2_c;

end i f ;

âeqPl <= 'l' when
(stateSchl = s0 and
processorGrantS ='l" and
QPlempty = '0' and QTfull
•O')

else '0';

QP-loutputEnable <= ' l '
when (stateSchl = sO and
processorGrantS ='1' and
QPlempty = '0' and QTfull =
•O')

else
•o';

QP2outputEnable <= 'l'
when ( stateSchl = sO and
processorGrantS ='1' and
QPlempty = 'l' and QP2empty
'0' and QTfull = '0')

else
•o' ;

u

deqP2 <= 'l' when (
stafceSchl = s0 and
processorGrantS ='1' and
QP-l empty = '1' and QP2 empty =
'0' and QTfull = '0 ' )

else -O';

enqT <= 'l' when (
stateSchl = si and

processorGrantS ='1' and QTfull
•O')

else '0';

end stateMachine;

configuration config_schlPart
of schlPart is

for stateMachine -- the
architecture

end for;
end config_schlPart;
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C4. The transmitter

transmitter module.

-- written by: M.Sadegh
Jahanpour

Feb. 99

-- data path is 4 bits wide:
one bit for actbit, one bit

for hi/lo priority,
-- and two bits to select

either of 4 out ports.
-- QToutput is two bits wide.
-- memory address is 4 bits
wide.
-- memory word is 8 bits wide.
-- address pointer 0 generates
memory address 0,
-- address pointer 1 generates
memory address 3.
-- internal registers regTO,
regTl, regT2 and regT3 are two
bits wide.

-- Aug. 99

library IEEE;
use IEEE.std_lagic_arith.all;
use work.atmDataTypes.all;

entity transmitter4 is

port(frameStart, QTempty,
ackln, clock, reset : in bit;

QToutput_c: in
bit_vector(2 -l downto 0);

memOutput : in
bit_vector(16 -l âownto 0 );

ConsultQT, âeqT, enqF :
out bit;

QFinput : out
bit_vecfcor(2 -l âownto 0);

address c : out

bit_vector(4 -l âownto 0);
transmitterWillReq : out

bit;
âataOut : out

bit_vector(2 -l âownto 0)

dataOut : out
bit_vector(4 -l âownto 0)

);
end transmitter4;

architecture stateMachine of
transmifcter4 is

combinational circuit

signals
type transmitterStates is

(tO, tl, t2, t3, t4, t5, t6,
t7, t8, t9, tlO,

til,
112, tl3, tl4, tl5, tl6);

subtype adrsType is
bit_vector(4 - l âownto 0);
concrete memory addresses

signal state_c :
transmitterStates ;
combinational

signal state :
transmitterStates;
registers

signal address : adrsType;
signal adrs_c : adrsType; -

extra wiring for address
signals

signal e, e_c : bit_vector(2
-l downto 0); -- Queues
outputs

signal wordCount : natural;
signal wordCount_c : natural;
signal retransCount :

natural; -- # of
retransmissions, tried so far

signal retransCount_c :
natural;

-- T registers
signal regTO: bit_vector(4 -1

âownto 0);
signal regTl: bit_vector(4 -1

downto 0);

signal regT2: bit_vector(4 -1
âownto 0);

signal regT3: bit_vector(4 -1
downto 0);

-- inputs of registers
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n signal regTO_c: bifc_vector(4
-l âownto 0);

signal regTl_c: bit_vector(4
-l downfco 0);

signal regT2_c: bit_vector(4
-l downto 0);

signal regT3_c: bit_vector(4
-l downto 0);

begin -- the state machine

combinational: process
(state, address, QToutput_c,
ackln, frameStart, QTempty,
memOutput, regTO, regTl, regT2,
regT3, worâCount)

begin
âataOut <= "OOOO";

case state is

when t0 =>

if (frameStart = '0' or
QTempty = 'l') then

state_c <= t0;

elsif (frameStart = 'l'
and QTempty = '0' ) then

state_c <= tl;

else -- no change
state_c <= t0;

end i f ;

when tl =>

stafce_c <= t2;

when t2 =>
regTO_c <= mem0utput(3

downto 0);

regTl_c <= memOutput(7
âownfco 4);

regT2_c <= memOutputdl
downto 8);

regT3_c <= mem0utput(15
downto 12);

state_c <= t3;

u

state_c <= t4;

when t4 =>

state_c <= t5;

when t5 =>

âataOut <= regT2;
state__c <= t6;

when 16 =>

dataOut <= regT3;

regTO_c <= mem0utput(3
âownto 0);

regTl_c <= memOutput(7
downto 4);

regT2_c <= memOutputdl
âownto 8);

regT3_c <= mem0utput(15
downto 12);

state_c <= t7;

when t7 =>

dataOut <= regTO ;
state_c <= t8;

when t8 =>

if (ackln = '0') then
âataOut <= " 0000";

state_cate_c <= tl6;
else

dataOut <= regTl;
state_c <= t9;

end i f ;

when t9 =>

if (ackln = '0') then
-- aata0ut(0) <= '0';

âataOut(l) <= •0';
âataOut <= "OOOO";
state_c <= tl6;

else

dataOut <= regT2 ;
state_c <= tl0;

end i f ;
when 13 >
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when tl0 =>

if (ackln = '0') then
-- aata0ut(0) <= '0';

aata0ut(1) <= '0';
âataOut <= "OOOO";
state_c <= tl6;

else

dataOut <= regT3 ;

regTO_c <=
memOutput(3 downto 0 ) ;

regTl_c <=
mem0utput(7 downto 4);

regT2_c <=
memOutputfll downto 8);

regT3_c <=
mem0utput(15 âownto 12);

state_c <= til;

end i f ;

when til =>

if (ackln = '0') then
-- data0ut(0) <= '0';

data0ut(1) <= '0';
dataOut <= "OOOO";
state_c <= 116;

else

dataOut <= regTO;
state_c <= tl2;

end if;

when tl2 =>

if (ackln = '0') then
data0ut(0) <= '0';

aata0ut(1) <= '0';
âataOut <= "OOOO";
state_c <= tl6;

else

dataOut <= regTl ;
state_c <= tl3;

end if;

when tl3 =>

if (ackln = '0') then
data0ut(0) <= '0';

aata0ut(1) <= '0';
dataOut <= "OOOO";
state_c <= tl6;

else

âataOut <= regT2 ;
state_c <= tl4;

end if;

when fcl4 =>

if (ackln = '0') then
dataOut(0) <= '0•;

aata0ut(1) <= '0';
dataOut <= "OOOO";
state_c <= tl6;

elsif (worâCount > 0
and ackln = '1' ) then

âataOut <= regT3;

regTO_c <=
mem0utput(3 âownto 0);

regTl_c <=
mem0utput(7 âownto 4);

regT2_c <=
memOutputdl downto 8);

regT3_c <=
mem0utput(15 âownto 12);

state_c <= til;

el s if ( wordCount = 0

and ackln = '1' ) then

dataOut <= regT3 ;
state_c <= tl5;

else

state_c <= tl4;

no change

end if;

when tl5 =>

dataOut(0) <= '0';

âataOut(l) <= '0';
âataOut <= "OOOO";
QFinput <= e;
state_c <= t0;

when 116 =>

if (retransCount = 0)

then

state_c <= tl5;
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dataOut <= "OOOO";

else
âataOut <= "OOOO";
state_c <= t0;

end i f ;

end case;

end process combinational;

aârsCircuifc: process (state,
wordCount, ackln, QToutput_c,
address, retransCount, e)

variable temp : natural;
- temporary variable

variable elem :

bit_vector(4 - l downto 0);
memory address

begin

if (state = tl or (state =
tl4 and wordCount = 0 and ackln

•D
or (state = tl6 and

retransCount = 0 ) ) then

e_cc <= QToutput_c;

temp :=
bits2natural(QToutput_c) * (2 +
l) + 0; -- firstPacketAdrs :
natural := 0

-- ATMlengthDiv4 = 2, and
l location is preserved

for fabric and out
controller headers

elem) ;

natural2bits (temp,

aârs_c <= elem;

J

elsif (state = t3 or state
t7 or (state = til and ackln
•D)

then
aârs e <=

increment(address) ;

else

aârs_c <= address ;

e_c <= e;

end i f ;

end process aârsCircuit;

-- a process to count the
number of transmitted words

worâCountCircuit : process
(state, ackln, wordCount)

begin

if (state = t4 ) then
worâCount_c <= 2;
-- ATMlengthDiv4

elsif((state = t8 and ackln
'D or (state = tl2 and

ackln = 'l') )then
worâCount e <= worâCount

l;

else

wordCount_c <= wordCount;
end if;

end process wordCountCircuit

a process for the
retransmission circuit

retransmissionCounter:

process (state, retransCount)

begin

if (state = 115) then
retransCount_c <= 4 ;

elsif(state = tl6 and
retransCount > 0) then

retransCount_c <=
retransCount - l;

else

retransCount_c <=
retransCount;

end if;
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end process
retransmis sionCounfcer;

-- to generate pulse
signals, i,e, to pull down
signals to zero

-- after being set
to one, we specify an extra
process

pulseGeneration: process
(state, wordCount, ackln,
retransCount)

begin
if ( ( state = tl4 and

wordCount = 0 and ackln = ' 1 ' )
or (

state = tl6 and

retransCount =0) ) then

âeqT <= •l•;
else

âeqT <= '0' ;
end i f ;
if (state = tl5) then enqF

<= 'r;
else enqF <= '0';
end i f ;

if (state = tl or (state =
tl4 and worâCount = 0 and ackln
'D

or (state = tl6 and
retransCount = 0 ) )then

ConsultQT <= 'l';

else

ConsultQT <= '0';
end if;

end process pulseGeneration;

tw : process (state, ackln,
retransCount)

begin

if ( (state = t2 or state
t6 or state = tl5)

or

( (state = tl0 or
state = tl4) and ackln = 'D

or (state = tl6 and

retransCount =0) ) then

'r;
transmitterWillReq <=

else transmitterWillReq <:
•o';

end if;

end process tw;

sequential: process

begin

wait until clock = '1' ;

if (reset = 'D then
state <= t0; wordCount <:

2 ; retransCoLint <= 4 ;

else

state <= state_c;

regTO <= regTO_c;
regTl <= regTl_c;
regT2 <= regT2_c;
regT3 <= regT3_c;

wordCount <= wordCount_c;
address <= aârs_c;
retransCount <=

retransCount_c;
e <= e_c;

end i f ;

end process sequential;

address_c <= aârs_c;
end stateMachine;

configuration
config_transmitter4 of
transmitter4 is

for stateMachine -- the

architecture
end for;

end config_transmitter4;
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C5. The arbiter

Arbiter module.

-- written by: M.Saâegh
Jahanpour, Jan, 99.

-- Arbitrates the memory
accesses among the receiver,
the dispatcher, the scheduler,
and the transmitter.

entity arbiter is

port(transmitterWillReq: in
bit;

receiverWillReq : in
bit;

reset : in bit;
clock : in bit;

receiverGrant: out bit;
processorGrant: out

bit);

end arbiter;

architecture stateMachine of
arbiter is

combinational circuit

signals
type arbiterStates is (a0,

al, a2, a3 ) ;
signal state_c :

arbiterStates ;
combinational

signal state : arbiterStates;
-- regiters

begin -- the state machine

cominational : process
(state, receiverWillReq,
transmitterWillReq)

begin
case state is

when a0 =>

if (transmitterWillReq
•1-) then

state_c <= a0;

elsif
(transmitterWillReq = '0' and
receiverWillReq = '0') then

state_c <= a0;

elsif

(transmitterWillReq = '0' and
receiverWillReq = 'l') then

state_c <= al;

else -- no chang, ie,
self loop

state_c <= state ;

end if;

when al =>

state_c <= a2;

when a2 =>

state_c <= a3;

when a3 =>

state_c <= a0;

end case;

end process;

outputs: process (state,
transmitterWillReq,
receiverWillReq)

begin
if (state = aO and

transmitterWillReq = '0' and
receiverWillReq = 'l') then
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receiverGrant <= 'l';

else
receiverGrant <= '0';

end i f ;

if ( (state = aO and
transmitterWillReq = '0' and
receiverWillReq = '0')

or ( (state = al or
state = a2 or state = a3) and
transmitterWillReq = '0')

)

then

processorGrant <= 'l';

else

processorGrant <= '0';
end i f ;

end process outputs;

sequential : process

begin

-- output signals are
registered

wait until clock = '1' ;

if (reset = '1') then

state <= a0;

else

state variables

state <= state_c ;

end i f ;

end process;

end stateMachine;

configuration config_arbiter of
arbiter is

for stateMachine -- the
architecture

end for;
end config_arbiter;

C6. The fabric

fabric module

-- This model has four input
ports of 8 bits each.

use work.arbt;

entity fab4b4p is
-- generic(PORTWIDTH :

positive := 4; PORTNUM :
positive := 4);

port (âInO, dlnl, âln2, âln3:
bit_vector(4 - l âownto 0);
Data inputs for all ports

ackInO, acklnl, ackln2,
ackln3 : in bit ; --
Acknowledge In signals

frameStart: in bit ;
clock: in bit;
reset : in bit;
dOutO, âOutl, d0ut2,

â0ut3 : out bit_vector(4 - 1
downto 0); --Data outputs for
all ports

ackOutO, ackOutl,
ack0ut2, ack0ut3 : out bit

end fab4b4p;

architecture mix of fab4b4p is

signal dTermO, âTerml,
dTerm2, dTerm3 : bit_vector(4 -
l downto 0); -- Intermediate
data outputs;

signal d0ut0_c,
d0utl_c,â0ut2_c,d0ut3_c :
bit_vector(4 - l âownto 0);

signal ack0ut0_c,
ack0utl_c,ack0ut2_c,ack0ut3_c :
bit;

signal co0 : bit;
- Control signals for output
signal col : bit;

- port 0 to 3. If coi is '1',
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signal co2 : bit;

- it means that output port i
signal co3 : bit;
is enable, otherwise it

disable

signal co0_c : bit;
-- Control signals for

output

signal col_c : bit;
-- port 0 to 3. If coi is

'r,
signal co2_c : bit;

-- it means that output
port i

signal co3_c : bit;
is enable, otherwise

it disable

signal ip0, -- The input
port which âestinated

ipl, -- to output
port j (i=0~3)

ip2, -- If ipi=j,
it means that input port

ip3: bit_vector(l downto
0); -- j will transfer
to the output i if

coi = l.

signal req_nopri00, --
Non-priority cell transfer
request

req_nopri01, -- from put k
to output j (req_noprikj)

req_nopri02,
req_nopri03,
req_nopril0,
req_noprill,
req_nopril2,
req_nopril3,
req_nopri20,
req_nopri21,
req_nopri22,
req_nopri23,
req_nopri30,
req_nopri31,
req_nopri32,
req_nopri33 : bit;

signal recr priOO,
Priority cell transfer reqziest

recr priOl, -- from put
k to output j (req_prikj)

req pri02,
req_pri03,
recr urilO,
reef prill,
req_pril2,
req_pril3,
req_pri20,
req_pri21,
req_pri22,
recr pri23,
req_pri30,
req_pri31,
req_pri32,
req_pri33: bit;

signal one_pri_for0,
-- At least one priority

reç[uest
one_pri_forl, -- for

output port i (one_pri_fori)
one_pri_for2,
one_pri_for3: bit;

signal one_nopri_for0,
At least one non-

priority request
one_nopri_forl,

- for output port i
( one_nopri_fori )

one_nopri_for2,
one_nopri_for3: bit;

signal state:
bit_vector(l âownto 0);
Timing state, it could be

2'bOO (RUN), 2'bOl
(WAIT)

2'bll (ROUTE)

signal state_c:
bit_vector(l downto 0);

signal anyActive: bit;
-- Anyactive for all the

input ports

-- component declaration

component arbt
port(one_pri_fori : in bit;

one_nopri_fori : in
bit;

^
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0 state : in

bit_vector(l downto 0);
rea priOi : in bit;
recr prili: in bit;
req_pri2i: in bit;
req_pri3i:in bit;
req_nopri0i :in bit;
req_noprili : in bit;
req_nopri2i : in bit;
req_nopri3i : in bit;
clock : in bit;
reset : in bit;

this is new

ipi : out bit_vector(l
downto 0)

);

end component;

begin -- the architecture

anyActive <= ( dln0(0) or
alnl(0) or dln2(0) or dln3(0)
);

-- Important note: req-nopri= 1
means either low or high prio
requests. However, req-pri

indicated only low prio
requests.

req_nopri00 <= aTerm0(0) and
(not dTermO(2)) and (not
âTermO(3));

req_nopri01 <= aTerm0(0) and
(not âTermO(2)) and dTermO (3 ) ;

re<3_nopri02 <= aTerm0(0) and
âTermO(2) and (not âTermO(3));

req_nopri03 <= aTerm0(0) and
dTermO(2) and âTermO(3);

req_nopril0 <= dTerml(0) and
(not dTerml(2)) and (not
dTerml(3));

req_noprill <= âTerml(0) and
(not dTerml(2)) and dTerml(3);

req_nopril2 <= dTerml(0) and
dTerml(2) and (not dTerml(3));

req_nopril3 <= âTerml(O) and
dTerml(2) and dTerml ( 3) ;

u

rec3_nopri20 <= aTerm2(0) and
(not aTerm2(2)) and (not
âTerm2(3));

req_nopri21 <= aTerm2(0) and
(not âTerm2(2)) and dTerm2(3) ;

req_nopri22 <= dTerm2(0) and
âTerm2(2) and (not dTerm2(3));

req_nopri23 <= aTerm2(0) and
dTerm2(2) and âTerm2(3);

req_nopri30 <= aTerm3(0) and
(not dTerm3(2)) and (not
dTerm3(3));

req_nopri31 <= dTerm3(0) and
(not aTerm3(2)) and dTerm3(3);

req_nopri32 <= aTerm3(0) and
âTerm3(2) and (not dTerm3(3));

req_nopri33 <= dTerm3(0) and
dTerm3(2) and dTerm3(3);

req_pri00 <= dTerm0(0) and
dTerm0(1) and (not âTermO(2))
and (not âTermO(3));

reef priOl <= aTerm0(0) and
aTerm0(1) and (not âTermO(2))
and dTermO(3);

req__pri02 <= dTerm0(0) and
dTermO(l) and dTermO(2) and
(not âTermO(3));

req_pri03 <= dTerm0(0) and
âTermO(l) and dTermO(2) and
âTermO(3);

recr prilO <= âTerml(0) and
dTerml(1) and (not dTerml(2))
and (not aTerml(3));

recr prill <= aTerml(0) and
dTerml(1) and (not dTerml(2))
and âTerml(3);

req_pril2 <= dTerml(0) and
âTerml(l) and dTerml(2) and
(not aTerml(3));

recr pril3 <= âTerml(O) anâ
âTerml(l) and dTerml(2) and
âTerml(3);

req_pri20 <= aTerm2(0) and
dTerm2(1) and (not âTerm2(2))
and (not dTerm2(3));

req_pri21 <= dTerm2(0) and
dTerm2(1) and (not âTerm2(2))

and âTerm2(3);

req_pri22 <= dTerm2(0) and
dTerm2(l) and dTerm2(2) and
(not âTerm2(3));

req_pri23 <= aTerm2(0) and
âTerm2(l) and âTerm2(2) and
dTerm2(3);
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req_pri30 <= dTerm3(0) and

dTerm3(1) and (not dTerm3(2))
and (not dTerm3(3));

req_pri31 <= dTerm3(0) and
aTerm3(1) and (not dTerm3(2))

and dTerm3(3);

req_pri32 <= aTerm3(0) and
dTermS(l) and âTerm3(2) and
(not dTerm3(3));

req_pri33 <= dTerm3(0) and
dTerm3(l) and âTerm3(2) and
dTerm3(3);

Finite inite state machine

to control the timing of the
fabric

control: process (state,
frameStart, anyActive)

begin

case state is

when "00" =>

if (frameStart = '1•)
then

state_c <= "01";

else

state_c <= "00";

end i f ;

when "01" =>

if (frameStart= '0' and
anyActive = 'l' ) then

state_c <= "11";

else

state_c <= "01";
end i f ;

when "11

if (frameStart = '0')
then

state_c <= "00";

else

state_c <= "01";

end if;

when "10" => state_c <:
state; -- I have added for
completeness

end case;
end process control;

ackOutO <= 'l' when (

(ackInO = 'l' and (coO
•D and (ip0 = "00")) or

( acklnl = 'l' and col
and (ipl = "00 ") ) or
(ackln2 = 'l' and co2

and (ip2 = "00")) or
(ackln3 = 'l' and co3

and (ip3 = "00")) )
else '0' ;

-- my modification

•r

'l
•l

=>

u

ackOutl <= 'l' when(

(ackInO = 'l' and (coO

'D and (ip0 = "01")) or
(acklnl = 'l' and col =

and (ipl = "01")) or
(ackln2 = 'l' and co2

'1' and (ip2 = "01")) or
(ackln3 = 'l' and co3

and (ip3 = "01"))
)

else '0';

ack0ut2 <= 'l' when(

(ackInO = 'l' and (coO
•D and (ip0 = "10")) or

(acklnl = 'l' and col

and (ipl = "10")) or
(ackln2 = 'l' and co2

'1' and (ip2 = "10")) or
(ackln3 = 'l' and co3

and (ip3 = "10"))

'l

'l

•l

•lt

l
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0 )
else '0 ' ;

ack0ut3 <= 'l' when(
(ackInO = 'l' and (coO =

•D and (ip0 = "11")) or
(acklnl = 'l' and col = 'l

and (ipl = "11")) or
(ackln2 = 'l' and co2 =

•l' and (ip2 = "11") ) or
(ackln3 = 'l' and co3 = •l'

and (ip3 = "11"))
)

else '0';

OutputData : process( co0,
col, co2, co3, ipO, ipl, ip2,
ip3, dTermO, dTerml , âTerm2,
dTerm3)

begin

d0utl_c <= âTerm2;
elsif (( col = 'l') and

(ipl = "11")) then
d0utl_c <= âTerm3;

else â0ufcl_c <= "0000";

end i f ;

if (( co2 = 'D and (ip2
"00")) then

â0ut2_c <= âTermO;
elsif (( co2 = 'l') and

(ip2 = "01")) then
â0ut2_c <= dTerml;

elsif (( co2 = 'l') and
(ip2 = "10")) then

dTermlOut2_c <= âTerm2;

elsif (( co2 = -l') and
(ip2 = "11")) then

â0ut2_c <= dTerm3;
else â0ut2_c <= " 0000";

end i f ;

outputs of the out-port 0;

if (( co0 = •l') and (ip0
"00")) then

d0ut0_c <= dTermO;
elsif ( ( co0 = 'l') and

(ipO = "01")) then
d0ut0_c <= âTerml;

elsif (( co0 = 'l') and
(ipO = "10")) then

d0ut0_c <= dTerm2;
elsif (( co0 = •l') and

(ipO = "11")) then
â0ut0_c <= dTerm3;

else â0ut0_c <= "0000";

end if;

if (( co3 = -I') and (ip3
"00")) then

d0ut3_c <= dTermO;
elsif (( co3 = 'l') and

(ip3 = "01")) then
d0ut3_c <= âTerml;

elsif (( co3 = 'D and
(ip3 = "10")) then

â0ut3_c <= dTerm3;
elsif (( co3 = 'D and

(ip3 = "11")) then
â0ut3_c <= dTerm3;

else d0ut3_c <= "0000";

end if;

end process OutputData ;

u

-- out port 1

if (( col = 'l') and (ipl
"00")) then

â0utl_c <= âTermO;
elsif (( col = 'l') and

(ipl = "01")) then
d0utl_c <= dTerml;

elsif (( col = 'D and
(ipl = "10")) then

ctrlOutSignals:
process(state, req_nopri00,
req_nopril0,
req_nopri20,req_nopri30,
frameStart,

req_nopri01, req_noprill,
req_nopri21,req_nopri31,
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req_nopri02, req_nopril2,
req_nopri22,req_nopri32,

req_nopri03, req_nopril3,
req_nopri23,req_nopri33, co0,
col, co2, co3)

begin

if (frameStart
co0_c <= '0';

' l') then

'0Icol e <

co2_c <= ' 0 • ;
co3_c <= ' 0 ' ;

elsif (state= "11") then
-- note: req-nopri

includes both pri and nopri.
But, req-pri

-- includes only pri
requests.

co0_c <=

req_nopril0 or
req_nopri30;

col_c <=
req_noprill or
req_nopri31;

co2 e <=

re<3_nopril2 or
req_nopri32;

co3 e <=

req_nopril3 or
req_nopri33;

else

co0_c <= co0;
col_c <= col;
co2_c <= co2;
co3_c <= co3;

end if;

req_nopri00 or
req_nopri20 or

req_nopri01 or
req_nopri21 or

req_nopri02 or
req_nopri22 or

req_nopri03 or
req_nopri23 or

u

end process ctrlOutSignals;

one_nopri_for0 <= req_nopri00
or req_nopril0 or req_nopri20
or recï_nopri30 ;

one_nopri_forl <= req_nopri01
or req_noprill or req_nopri21
or req_nopri31;

one_nopri_for2 <= req_nopri02
or req_nopril2 or req_nopri22
or re(3_nopri32;

one_nopri_for3 <= req_nopri03
or req_nopril3 or req_nopri23
or req_nopri33;

one_pri_for0 <= recr priOO or
req_pril0 or req_pri20 or
req pri30;

one_pri_forl <= req priOl or
req_prill or req_pri21 or
req_pri31;

one_^>ri_for2 <= req_pri02 or
req_pril2 or recr pri22 or
req_pri32;

one_pri_for3 <= rea priOS or
req_pril3 or recr pri23 or
recr pri33;

arbtO: arbt
port map (

one_pri_for0,
one_nopri_for0,
state,

recr uriOO,
req urilO,
req_pri20,
req_pri30,
req_nopri00,
req_nopril0,
req_nopri20,
req_nopri30,
clock,

reset,

ipO
);

arbtl: arbt port map
one_pri_forl,
one_nopri_forl,
state,

recr priOl,
rea prill,
req_pri21,
req__pri31,
req_nopri01,
req_noprill,
req_nopri21,
req_nopri31,
clock,

reset,

ipl
);

arbt2 : arbt port map (
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n one_pri_for2,
one_nopri_for2,
state,

req_pri02,
recr pril2,
req_pri22,
req_pri32,
req_nopri02,
req_nopril2,
req_nopri22,
rec^nopri32,
clock,

reset,
ip2
);

arbt3 : arbt port map l
one_pri_for3,
one_nopri_for3,
state,

reef pri03,
recr pril3,
recr pri23,
req_pri33,
req_nopri03,
req_nopril3,
req_nopri23,
req_nopri33,
clock,
reset,

ip3
);

d0ut0<= â0ut0_c; dOutl <=
â0utl_c;

â0ut2<= â0ut2_c; d0ut3<=
d0ut3_c;

coO <= co0_c;
col <= col_c;
co2 <= co2_c;
co3 <= co3_c;

end if;

end process sequential ;

end mix;

configuration fabric_config of
fab4b4p is

for mix
end for;

end fabric_config;

C7. Submodule arbt of the fabric

Arbittation module inside
the switch fabric

When there are several
inputs for one same destination
output port, it performs a
round-robin algorithm between
them.

u

sequential : process
begin

wait until clock = '1';

if (reset = '1') then

state <= "00";
dTermO <= (others =>

•O • ) ;
dTerml <= (others =>

•O • ) ;
âTerm2 <= (others =>

•O ' ) ;
dTerm3 <= (others =>

'0 • ) ;
else

dTermO <= dln0; dTerml <:
âlnl ;

dTerm2 <= dln2; dTerm3 <--
âln3 ;

state <= state_c;

-- This vhal program is a vhdl
translation of the switch
-- fabric aevelopped by
jianping lou in concorâia
university in verilog. For more
information see the technical
report No. 401, September 97

entity arbt is
port(one_pri_fori : in bit;

one_nopri_fori : in bit;
state : in bit_vector(l

âownto 0);
req_pri0i : in bit;
recr prili: in bit;
req_pri2i: in bit;
req__pri3i:in bit;
req_nopri0i :in bit;
req_noprili : in bit;
req_nopri2i : in bit;
req_nopri3i : in bit;
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0 clock : in bit;
reset : in bit;

this is new

ipi : out bit_vector(l
âownto 0)

);
end arbt;

architecture stateMachine of

arbt is

-- ipi_i and ipi are
registers output. ipi_c is
combinational

circuit.

signal ipi_c, ipi_i :
bit_vector(l downto 0);
internal connections

begin

combinational: process(ipi_i,
state, recr prili, recr pri2i,

req_pri3i, recr uriOi,
one_nopri_fori,

req_nopri0i,
req_noprili,req_nopri2i,

req_nopri3i)

begin

if (state= "11" and

one_pri_fori = 'l') then

case ipi_i is

when "00" =>

if ( req_prili = 'D

<J

then

'D then

'D then

ipi_c <= "01";

elsif ( req_pri2i

ipi_c <= "10";

elsif ( req_pri3i

then

ipi_c <= "II";

else

ipi_c <= "00";
end if;

when "01" =>

if (req_pri2i = '1')

ipi_c <= "10";

elsif (req_pri3i =
'D then

'D then

'D then

' l') then

'D then

ipi_c <= "11";

elsiff (req_pri0i

ipi_c <= "00";

else

ipi_c <= "01";
end if;

when "10" =>

if ( req_pri3i =

ipi_c <= "11";

elsif ( req_pri0i

ipi_c <= "00";

elsif ( req_prili

ipi_c <= "01";

else

ipi_c <= "10";

end i f ;

when "11" =>
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'l•) then

•1-) then

'l•) then

if ( req_pri0i =

ipi_c <= "00";

elsif ( req_prili

ipi_c <= "01";

elsif ( recr pri2i

ipi_c <= "10",-

else

ipi_c <= "11" ;

end if;

end case;

elsif ( state ="11" and
one_nopri_fori = 'l') then

case ipi_i is

when "00" =>

if (
re<3_noprili = 'l') then

ipi_c <=
"01";

elsif (
req_nopri2i= 'l') then

ipi_c <
"10";

elsif (
req_nopri3i= 'l') then

u

•Il";

"00";

ipi_c <:

else

ipi_c <:

end if;

req_n.op^i2i

"10";

req_nopri3i =

"Il";

(recr nopriOi

"00";

"01";

req_nopri3i

"II";

req_nopri0i

"00";

req_noprili

"01";

"10";

when "01" =>

if (
'D then

ipi_c <=

elsif (
' l') then

ipi_c <:

elsif
'D then

ipi_c <

else

ipi_c <=

end i f ;

when "10" =>

if (
'l') then

ipi_c <=

elsif (
'D then

ipi_c <:

elsif (
'D then

ipi_c <:

else

ipi_c <:

end i f ;
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0 when "11" =>

if (
req_nopri0i = 'l') then

ipi_c <=
' 00";

elsif (
req_noprili = 'l') then

ipi_c <
'01";

elsif (
req_nopri2i = 'l') then

"10";

"II";

ipi_c <=

else

ipi_c <=

end i f ;

end case;
else -- no change

ipi_c <= ipi_i;

end if;

u

end process
combinational;

sequential: process

begin

wait until clock = '1'

if (reset = '1') then

ipi_i <= "00";

else

ipi_i <= ipi_c;

end if;

end process seqT.iential;

ipi <= ipi_i;

end stateMachine;

C8. Data type ATMdataType used
in VHDL models
package atmDataTypes is

function bits2natural (signal
bits : in bit_vecfcor) return
natural;

procedure natural2bits (nat :
in natural; bits: out
bit_vector);

function increment(signal
bits : in bit_vector) return
bit_vector;

function decrement(signal
bits : in bit_vector) return
bit_vector;

procedure random (seed:
inout real; output : out real);

function bit2digit(b: in bit)
return natural;

function âigit2bit(nat: in
natural) return bit;

end atmDataTypes ;

package body atmDataTypes is

function bit2digit (b: in
bit) return natural is

variable result : natural;

begin
if(b = '0') then

result := 0;

else
result := l;

end i f ;
return result;

end bit2âigit;

function digit2bit(nat: in
natural) return bit is

variable result : bit;
begin

if(nat = 0) then
result := '0';

else

result := -l';
end i f ;
return result;

end digit2bit;
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function bits2natural (signal

bits : in bit_vector) return
natural is

variable result : natural;

begin

result := 0;
for index in bits'range

loop
result := result * 2 +

bit2digit(bits(index));

result := result * 2 +
bit'pas(bits(index)) ;

end loop;
return result;

end bits2natural;

procedure natural2bits (nat :
in natural; bits: out
bit_vector) is

variable temp: natural;
variable result :

bit_vector(bits'range);

begin
temp := nat;
for index in

bits'reverse_range loop
result(index) :=

âigit2bit(temp rem 2);
result(index) :=

bit'val(temp rem 2);
temp := temp / 2;

end loop;
bits := result;

end natural2bits;

subtype QelementSizeInBit
is bit_vector(bits'range);

variable result :
QelementSizeInBit;

variable tempNatural :
natural;

begin

tempNatural :=
bits2natural(bits) + l ;

natural2bits (tempNatural,
result);

return result;
end increment;

function decrement(signal
bits : in bit_vector) return

bit_vector is

subtype QelementSizeInBit
is bit_vector(bits'range) ;

variable result :

QelementSizeInBit;
variable tempNatural :

natural;

begin

tempNatural :=
bits2natural(bits) - l ;

natural2bits (tempNatural,
result);

return result;
end decrement;

function increment(signal
bits : in bit_vector) return
bit vector is

end atmDataTypes;

u
167


