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ABSTRACT 

ALLOTMENT OF AIRCRAFT 
SPARE PARTS USING GENETIC 

ALGORITHMS 

by Pascale Batchoun 

This thesis attempts to determine the optimal distribution of aircraft parts used as 

spares for replacement of defective parts on-board of a departing flight. In order 

to minimize the cost of delay caused by unexpected failures, Genetic algorithms 

(GAs) are used to distribute the initial quantity of parts among the airports. GAs 

are a class of adaptive search procedures, and distinguish themselves from other 

optimization techniques by the use of concepts from population genetics to guide 

the search. Problem-specific knowledge is incorporated into the problem and 

efficient parameters are identified and tested for the task of optimizing the 

distribution of parts. 



RÉSUMÉ 

Quand une pièce d'avion devient défectueuse, il faut la remplacer par une autre 

en réserve avant de permettre le décollage. Dans le cas où il n'y a pas de pièce de 

rechange sur place, le vol est retardé jusqu'à l'arrivée d'un autre vol en 

provenance d'un endroit où une telle pièce est disponible. De plus, la pièce 

défectueuse est acheminée à l'usine d'entretien pour réparation. Si l'usine dispose 

d'une pièce de rechange en bon état, elle en retourne une à la station 

immédiatement. Dans le cas contraire, la pièce défectueuse est réparée puis 

retournée à cet endroit. Le but est de réduire les coûts de délai dus aux pannes 

imprévisibles en redistribuant adéquatement les pièces de rechange aux divers 

aéroports du réseau et à l'usine d'entretien pour permettre le remplacement des 

pièces défectueuses. Dans ce mémoire, nous résolvons ce problème de 

redistribution optimale d'un nombre spécifié de pièces de rechange à laide de 

méthodes de recherche adaptative de type génétiques. 

Le réseau d'Air Canada couvre 60 aéroports avec plus de 3 300 vols 

hebdomadaires. La flotte est composée de 190 appareils de 8 types différents. 

Plus de 1 250 types de pièces de rechange différents doivent être redistribués. Le 

nombre de pièces de rechange disponibles pour chacun des types varie entre 1 et 

11. Puisque la redistribution des pièces d'un type est indépendante de celles des 

autres, il s'ensuit que chaque problème peut être résolu indépendamment des 

autres. 

Considérons un type spécifique de pièce. Une solution du problème 

correspondant est une redistribution des pièces de rechange aux aéroports du 

réseau et à l'usine d'entretien. Elle est optimale si son coût de délai dû aux pannes 

imprévisibles est minimale. Nous faisons l'hypothèse que le nombre moyen de 
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pannes pour chaque pièce d'un type spécifique est distribué selon une loi de 

Poisson. Son paramètre est estimé à partir des données historiques des pannes en 

considérant les type d'avion où nous la retrouvons et les heures de vols 

complétées par la flotte. Le coût moyen de délai dû à une panne est estimé en 

référence à l'horaire courant des vols. Il faut rappeler que le délai dû à une panne 

imprévisible de la pièce à un aéroport donné est fonction des arrivées des vols 

en provenance d'origines où une telle pièce est disponible. Lors d'une panne, le 

nombre de pièces de rechange disponibles à un aéroport peut être différent de 

celui prévu dans la redistribution initiale. En effet d'autres pannes peuvent avoir 

entraîné l'utilisation de certaines pièces de rechange et l'acheminement des pièces 

défectueuses à l'usine pour réparation. Ainsi, la probabilité d'avoir une pièce de 

rechange lors d'une panne dépend également du temps de réparation à l'usine si 

une pièce de rechange en bon état n'est pas disponible pour acheminement 

irnrnédiat à l'aéroport. Il s'ensuit que l'évaluation du coût d'une solution exige 

beaucoup d'effort de calcul principalement dû au fait que tout l'horaire courant 

des vols doit être pris en compte. 

Il serait difficile d'utiliser des méthodes de résolution conventionnelle basées sur 

des algorithmes exacts puisque la fonction économique est très complexe et 

requiert beaucoup d'effort de calcul. De plus, celle-ci ne comporte pas de 

structure particulière qui pourrait être exploitée afin d'évaluer facilement l'effet de 

modifier légèrement une solution. Lorsque le nombre de pièces de rechange est 

petit (c'est-à-dire égal à un ou deux), une méthode de recherche exhaustive peut 

être utilisée pour déterminer la solution optimale puisque l'espace des solutions 

est réduit. Par contre, l'espace des solutions augmente rapidement avec le 

nombre de pièces de rechange et peut atteindre une dimension de plus de quatre 

millions de solutions. Dans ces cas, la recherche exhaustive devient beaucoup 

trop coûteuse et nous devons avoir recours à des méthodes heuristiques. C'est ce 
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qui nous a conduit à utiliser des méthodes de type génétique pour résoudre notre 

problème de redistribution des pièces de rechange. 

Les méthodes génétiques sont des techniques d'optimisation globale permettant 

de contourner certaines difficultés rencontrées avec les méthodes de recherche 

locale où en particulier le risque d'identifier une solution qui n'est que localement 

optimale est plus grand. Ces méthodes utilisent des populations de solutions qui 

héritent de certaines propriétés des populations antérieures. Elles permettent une 

recherche plus exhaustive de l'espace des solutions. Dans un algorithme 

génétique, la façon de représenter les solutions est un élément important de la 

méthode pour faciliter la génération des populations. Les solutions sont dénotées 

chromosomes, et à chaque itération (ou génération) nous disposons d'une 

population de ceux-ci. Une nouvelle population est générée en incorporant 

certaines caractéristiques des populations précédentes. Par analogie avec le 

phénomène de l'évolution et de la sélection naturelle, nous voulons favoriser la 

transmission des meilleurs gènes en sélectionnant les meilleurs chromosomes 

pour générer la prochaine population. Ainsi, il faut évaluer le coût de délai de 

chaque chromosome de la population courante afin de pouvoir choisir les 

meilleurs pour se reproduire. Une fois sélectionnés, ils sont regroupés par paires 

pour produire des chromosomes enfants à l'aide de divers mécanismes de 

croisement qui donnent lieu à diverses variantes de la méthode. Un opérateur de 

mutation permet de modifier légèrement ces chromosomes enfants à l'aide de 

perturbations aléatoires pour mieux explorer tout l'espace des solutions. La 

dimension des populations successives est maintenue constante en sélectionnant 

certains chromosomes enfants et certains de la population courante qui sont à 

leur tour utilisés pour générer la prochaine population. Cette procédure itérative 

est répétée pour un nombre fini de fois, et la meilleure solution rencontrée est 

retenue. Certaines variantes de la procédure s'arrêtent lorsque les chromosomes 

de la population sont presque identiques. 



iv 

Plusieurs paramètres doivent être ajustés pour obtenir une variante performante 

pour résoudre le problème. Il faut d'abord choisir les solutions (chromosomes) 

qui constituent la population initiale. Pour notre problème de redistribution de 

pièces de rechange, il semble naturel de croire que le coût de délai est plus petit 

pour les solutions où davantage de pièces de rechange sont disponibles aux 

aéroports où la fréquence des départs est plus grande. Nous avons vérifié cette 

hypothèse à l'aide d'une série de tests préliminaires. Ainsi, certaines solutions 

exploitant la structure du problème sont générées où la redistribution des pièces 

aux divers aéroports est proportionnelle à la fréquence relative des départs. De 

plus, nous avons analysé quelle devrait être la proportion de telles solutions 

présentes dans la population initiale. Des tests numériques indiquent qu'une 

proportion égale à 50% permet d'obtenir des meilleures résultats qu'avec des 

proportions de 20% ou 80%. 

La dimension de la population à chaque génération est aussi un paramètre 

important. Elle est en général proportionnelle à la dimension du problème, ce qui 

correspond au nombre de pièces de rechange à redistribuer dans notre cas. Les 

meilleurs résultats sont obtenus avec des populations de dimension égale à cinq 

fois le nombre de pièces à redistribuer. 

Dans notre problème la représentation des solutions sous forme de 

chromosomes consiste à associer à chaque solution un vecteur de dimension 

égale au nombre de pièces à redistribuer où chaque élément correspond à un 

aéroport où une pièce est affectée. 

La sélection des chromosomes de la population qui sont utilisés pour la 

reproduction est complétée selon un processus aléatoire biaisé en faveur de ceux 

qui sont plus performants. Alors plus un chromosome a un coût de délai faible 

plus il a de chances d'être sélectionné. Ainsi, le même chromosome peut être 

sélectionné à plusieurs reprises. Les chromosomes sélectionnés sont regroupés 



par paires pour générer deux chromosomes enfants selon un processus de 

croisement. Les résultats numériques indiquent que des meilleurs résultats sont 

obtenus avec un croisement de type webrme plutôt qu'avec un croisement de type 

1-point. L'opérateur de mutation permet de modifier chaque chromosome enfant 

en remplaçant avec une très faible probabilité chaque élément du vecteur 

correspondant par un autre aéroport choisi aléatoirement. 

La nouvelle population où seront choisis les prochains chromosomes pour 

reproduction est constituée des parents et des chromosomes enfants. Les 

résultats numériques indiquent qu'il vaut mieux conserver 10% des meilleurs 

parents de la population précédente et sélectionner les autres avec le processus 

de sélection aléatoire biaisé précédent. 

La structure de notre problème, la représentation des solutions et les opérateurs 

utilisés permettent d'assurer que les chromosomes enfants générés satisfont les 

contraintes de notre problème. Pour des problèmes différents associés à des 

pièces différentes et appartenant à des types d'avion différents, les résultats 

numériques indiquent que le coût des solutions générées diffère d'au plus 1.3% de 

celui de la meilleure solution obtenue. 

Dans le dernier chapitre, nous comparons notre modèle avec METRIC (Multi-

Echelon Technique For Recoverable Item Control) developpé par la gestion 

d'inventaires d'éléments reparables. Nous soulignons les similarités et les 

différences entre ces deux modèles. Également, nous résumons brièvement le 

modèle RAPS de Tedone (1989) qui est utilisé chez American Airlines. 

Finalement, il importe de noter que l'algorithme requiert beaucoup de temps de 

calcul. Or, ceci est un moindre mal en considérant qu'originalement l'algorithme 

était destiné à être utilisé mensuellement pour redistribuer les pièces lors des 

changements d'horaire de vols. 11 faut également rappeler que le plus gros de 
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l'effort de calcul est consacré à l'évaluation des coûts de délai. Ainsi, si 

l'algorithme devait être utilisé sur une base plus fréquente, ou en temps réel, il y 

aurait lieu de remplacer l'évaluation des coûts de délai par des approximations 

plus faciles à obtenir pour accélérer le processus de résolution. Il serait également 

intéressant de poursuivre les recherches afin d'identifier des opérateurs de 

croisements mieux adaptés et tirant avantage de la structure spécifique du 

problème. 
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INTRODUCTION 

When a repairable item on an aircraft becomes defective, it is removed and 

replaced by another item from the spare stock. The defective part is then sent to 

the maintenance shop for repair. Should the station not have a spare part in 

stock, the aircraft will remain on ground and will be delayed until an incoming 

flight brings a replacement part. In this context, a repairable item represents any 

aircraft part from a small electronic component to a whole engine. Spare 

inventory is placed at line stations to decrease time delays due to unanticipated 

failures, and is placed at the maintenance shop to quicldy replenish remote station 

allotments while their parts are being repaired. 

The objective of the study is to answer the following question: given the initial 

provisioning of repairable spare parts, what appropriate amount should be 

allocated at the different stations around the world and at the maintenance shop 

to adequately and economically keep the airline fleet flying with minimal delay 

costs? 

This work attempts to determine the optimal distribution of parts using a class of 

adaptive search procedures called genetic algorithms (GAs). The class of GAs 

distinguish themselves from other optirnization techniques by the use of concepts 

from population genetics to guide the search. 

In the next chapter, the problem is described in details, presenting the process of 

replenishment of unserviceable parts and the role of the repair shop. Then the 

problem formulation is introduced in chapter 2, as well as the failure process of 

parts and the evaluation of the delay for a given solution. Like other classes of 

algorithms, GAs include several parameters and strategies leading to several 

variants. In Chapter 3, we describe the Genetic Algorithm implementation and 
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its variations. Chapter 4 includes the experiments to identify efficient parameters 

for the task of optimizing the distribution of parts. In the last chapter, our model 

is compared to the METRIC model, a well-known mathematical model for 

spares inventory, and is also compared to other recent researches. 



GLOSSARY 

Part. A repairable equipment on-board of an aircraft 

Serviceable Part. A part that is fully functional. 

Unserviceable Part. A part that is defective, non-functional. 

Station. An airport that is part of the airline's network. 

Maintenance Capability. A station is said to have maintenance capability for a 

specific part if there exist at all times maintenance personnel that can check the 

part when it becomes defective, remove it and replace it by a serviceable one. A 

station can have maintenance capability for a specific part and not for another. 

Rernoval. The failure and removal of a part that becomes defective. 

AOG. Aircraft On Ground: An aircraft that is unserviceable due to a defective 

part. 

MOT Regulations. Minister Of Transport Regulations 

MTBR. Mean Time Between Removals is the expected flying hours between 

two removals. 

Shop Float. The number of spare parts placed at the maintenance shop for 

replenishment purposes. 

Transit Tirne. The tirne it takes to send an unserviceable part to the 

maintenance shop for repair plus the time for the shop to send back a serviceable 

one to the station. 
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Tum Around Time (TAT). Time required to repair a defective part at the shop. 

Replenishm.ent Mme. Time required to receive a serviceable part at the station 

from the shop in replacement of its unserviceable one. It is equal to the Transit 

Time in the case where the shop hos the part in stock. In the case where the 

shop float is nil, the replenishment tirne is equal to the Transit Time plus the 

Turn Around Time. 



Chapter 1 

PROBLEM DESCRIPTION 

1.1 Background 

Air Canadas network of flights covers a total of 60 destinations, with more than 

3,300 flights per week. The fleet includes 190 aircraft of 8 different types. The 

Purchasing group at Air Canada determines the number of spare parts needed 

every tirne a new aircraft is purchased. The spares are then distributed among the 

airports that are covered by the flight schedule in order to replace defective parts 

onboard a departing flight. The spare parts are distributed in a way to minimize 

the delay caused by unexpected failure of parts, and it is based on historical data 

for failure of parts per station. However, there are 1,258 different types of parts 

to be distributed among the stations. Furthermore, every time the schedule 

changes, the allotment of parts hos to be revisited since the allotment of spares is 

dependent on the frequency of departures per station, per aircraft type. Most of 

the work is done manually and parts are not ahvays distributed in an optimal way. 

This thesis intends to automate the process of optirnizing the distribution of 

1,258 different types of spare parts among the stations in order to minimize the 

cost of delay. 

1.2 	Nature of parts 

The essentiality code of a part determines how quickly a defective part should be 

replaced in order for the aircraft to become serviceable. There are three 

essentiality codes: If a part has an essentiality code 1, then the aircraft becomes in 
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an unserviceable state should one of these parts become unserviceable. When a 

part of code 1 fails, the aircraft is grounded (AOG status) until the defective part 

is replaced by a functional one. If a part has an essentiality code 2, then the 

defective item should be replaced within the time interval specified in its 

qualifying conditions. For example a part might have to be replaced within 3 

consecutive days following its failure, or the aircraft becomes unable to operate 

an overseas flight until the part is replaced. An essentiality code of 3 implies that 

the functionality of the aircraft is independent of the status of the part. 

Therefore, when a part with essentiality code 3 becomes unserviceable, the 

aircraft will remain in a serviceable state. 

The aircraft parts that are considered in this study are of essentiality code 1. This 

type of parts is causing the aircraft to be in an unserviceable state should one of 

them becomes unserviceable. Therefore, the aircraft is grounded, and the 

departure of the flight is delayed until the defective part is replaced by a 

functional one. There are 1,258 different types of parts of essentiality code 1 for 

a total of 3,178 parts. The initial quantity of spares per part type varies between 1 

and 11 spares and their distribution is illustrated in Figure 1. 

Figure 1: Quantity per Part Type 
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For example, there are 100 diffèrent types of parts having an initial quantity of 4, 

and 33 other types with an initial quantity of 7. Note that the functionality of one 

type is totally independent of another type, and therefore each type of parts yields 

a separate optimization problem. 

	

1.3 	Replenishm.ent of unserviceable parts 

When an unexpected failure of a part happens prior to a flight departure, the 

defective part is replaced from the stations stock should the departure station at 

the time of failure have a serviceable spare. Otherwise, if spare stock at the 

station is nil, the only way to receive a replacement part is through a scheduled 

flight arriving at that station, bringing a part from the spare stock of its 

originating station. In this case, the flight is delayed until a serviceable part 

becomes available at the station. 

	

1.4 	Repair Shop 

When a part on an aircraft becomes defective, it is sent to the shop for repair. 

There is only one repair shop, located at the Dorval station (YUL). Repair times 

or Turn Around Times vary from one type of part to another. However, the 

average repair time per part is about 30 days. The shop keeps spare inventory in 

order to quickly replenish the station allotments. So when the shop receives a 

defective part, it sends immediately a serviceable one to the station, in 

replacement of the unserviceable part. If there is no spore available at the shop, 

the unserviceable part is repaired and sent back to its station. The shippin.  g time 

of the part to the shop and back to its original station is called the Transit Time. 

Note that spare stock of the repair shop is the same as the one of Dorval station. 

	

1.5 	Pooled Items 

"International Airlines Technical Pool" is an agreement between airlines to share 

specific parts at specific stations when parts fail. An airline is said to be the 
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provider of a part at a specific station, when all the participant airlines of the 

agreement can borrow from the spare stock of the provider. For example, when 

a part of a participant airline becomes defective at a specific station, the prvvider 

airline is expected to provide a replacement part. There is a pool list that gets 

updated every two to three months, indicating the part being pooled, the station 

at which it is pooled, the provider of the part, and the list of participants. 

When Air Canada is the provider of a part at a station, a minimum of one part is 

allocated by Air Canada at that station. When Air Canada is a participant for a 

part at a station, the airline doesn't allocate any parts of this type, since it is reliant 

on the provider. 

1.6 	Maintenance Ability 

A station is said to have maintenance ability for a certain part, when there is 

maintenance staff at the station accredited to remove and replace the defective 

part on the aircraft. When there is no maintenance ability for a specific part at a 

station, the aircraft with a defective part remains on ground until a technician flies 

into the station along with a replacement part. Therefore, the stations are given 

nil allotment for parts with no maintenance ability. Note that there might be 

accredited personnel at a station to replace some type of parts but not a11 types. 

Taking into account the pooling opportunities and the maintenance 

accreditations, the maximum number of stations where spare parts can be allotted 

(feasible stations) is reduced from 60 to 15 stations. Depending on the part type 

and on the aircraft types to which it belongs, the number of feasible stations 

varies between 10 and 15. 



Chapter 2 

PROBLEM FORMULATION 

The mathematical formulation of the problem is quite straight forward, but 

the evaluation of the objective function is complex and time consuming. Since 

the notation required is quite involved, we summarize it in the following 

section. 

2.1 Notations 

Ni : The quantity of parts of type j to be distributed among all stations 

S: The total number of stations that are covered by the airline's network of 

flights 

A: Set of indices associated with all stations i or airports covered by the airline's 

network 

Set of all stations i where Air Canada is the provider of the pool for part j 

Á. : Set of all stations i where Air Canada is a participant to pool part j 

M i : Set of all stations i where there exists maintenance capability for part j 

: The initial number of parts of type j allocated at station i 

( ): The number of spares of type j available of time of failure t at station i 
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= 	 : A solution vector for parts of type j 

D(Xi ): The expected cost of delay caused by unexpected failure of parts j . It 

is a function of the solution vector Xi  

ciù  : The average cost of one delay per part failure of type j , for all flights 

departing from station i 

8 uk : The delay in minutes that might be caused by failure of part j on-board 

fl.ight k, departing from station i 

8 	(i 0 ) : The delay å, given that a replacement part was supplied by station io , 

on a flight from station io  to station i 

: Mean Time between Removals of part j 

Q(j,u): Quantity of parts j on board an aircraft of type u 

H(u): Total number of flying hout-s per week completed by all the aircrafts of 

type u 

F(i,u): Total frequencies of flights departing from station i per year, and 

operated by aircraft of type u 

: Expected number of removals of part j per year 

: Expected number of remova1s of part j at station i per year 

Ri : Replenishment time of part j 
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TT  : Transit Time 

TAf  : Turn Around Time of Part j 

L: Service level or probability of replenishment of a serviceable part right after 

the unserviceable one is received at the repair shop 

: Expected number of removals of part j causing a delay at station i 

2.2 	Objective ftmction and constxaints 

Consider a specific part type j ,  with initial quantity N f  on hand. Let S be the 

total number of stations operated by the airline: S =IA1 . Let xi., be the number 

of parts j allocated at stations i E A. The problem is to distribute the N., parts 

at the S stations in order to minimize the expected cost of delay D(X1 ) due to 

unexpected failures. The problem then is to determine the optimal solution 

X f  = (x11 , x21, .., x f ) to the following optimization problem: 

Min D(X1 ) 

Eq. 2- 1 

xif  =N1  

xif 	Vic P f  

xij =o V i Af  

xu  =0 ViEMi 

s. t. 
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P, = i € A /Air Ccmada is the provider of part j at station il 

PA  = E A /Air Canada is a participant to pool part j at station i 

M = 	e A /3 maintenance capabiliC; for part j at station il 

Mi  = A —Mi  

Note that 1 j 1,258 and 1 N 11. Each type of part is a separate 

problem; i.e., there are 1,258 different optimization problems. 

2.3 	Evaluation of the cost of delay D(Xi ) 

A solution is a way of distributing or allotting spare parts at the stations and at the 

maintenance shop. A solution Xi  = (xii , x2, , xsi ) is said to be optimal if it 

induces the least cost of delay due to unexpected failures. In this section, we 

indicate how to determine the excepted cost of delay D(X1 ) given a specific 

allotment of spares X.. 

2.3.1 Average cost of dele per removal 

The total time delay due to the failure of a part j prior to flight departure k 

includes the time to receive a serviceable part and the time to replace it on the 

aircraft Since the replacement time of part j is constant regardless of the 

number of spares allocated of the station, it is not included in the time delay êijk  . 

Then if a station has a spare part fo replace the unserviceable one at the time of 

failure, the time delay is nil. Otherwise, if there is no spare stock at the station, 

then a spare part has to be flown in through an airline's scheduled flight arriving 

at the station i , and originating at some other station io  . Therefore in this case, 

the time delay S is the time it takes to receive a part through this incoming 

flight. 
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The flights considered in this study belong to a one week flight schedule. 

Consider the flight k , i 	i , from the origin station i to a destination station 

i d • To determine the time delay 8 in the case where no spare part j is 

available of the time of failure on flight k, we take into account each flight 

leaving from origin station i o , within 24 hours after the scheduled 

departure time of flight k, such that station io  can provide a spare part j . 

Denote b;jk  (io ) the time delay of flight k if the spore part j is provided at 

station i by an incoming flight at station i and originating from station i o . To 

illustrate the evaluation process, consider the flights illustrated in Table 1. 

id 
	

jo 	 5ijk a) 

#870 	KIN 	YYZ 	13:40 	MBJ 	18:05 	265 

#275 	YYC 	YEG 	12:55 	YYZ 	15:28 	153 

YWG 17:20 265 

#556 	YYZ 	DCA 	19:00 	YUL 	20:12 	72 

BOS 	20:55 	115 

EWR 	21:12 	132 

Table 1: Example for Replenishment of Parts 

First, consider flight k, #870, from origin i, KIN, to destination i d , YYZ. It is 

	

scheduled to leave from i at 13:40 GMT 	=13:40, the departure Greenwich 

time from station i of flight i —> id ). Suppose that a part j breaks down on the 
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aircraft servicing flight k , #870, and suppose also that xu  (t) = 0 (the number of 

spare parts j at station i at time t = 13:40 is equal to 0). The only incoming 

flight to i, KIN, within 24 hours after 13:40 is coming from MBJ (flight MBJ —> 

KIN), and it arrives at 18:05 GMT (a 	=18:05, the arrivai tirne at i of flight 

io  —> i). Hence, flight io  —> i arrives 265 minutes after the scheduled departure 

time of flight i —> id . Now, if station MBJ has spare part j available in stock at 

tirne t (i.e. x1  (t) > O), then flight KIN —> YYZ has a 265 minutes delay: i.e., in 

this case, xu  (t) = O, xioi  (t) > O, and 

= 8  (i0 ) = a — d 1  = 265 minutes. 

On the other hand, if MBJ has no part in stock at tirne t (i.e. x, (t) = O), and 

since no other incoming flight in KIN can provide a spare part j within the next 

24 hours, then the time delay is assumed to be 

8 iik  -= 24 x 60 = 1440 minutes. 

In the second example, the flight k, #275, is such that there exist two incoming 

flights in its origin i, YYC, within 24 hours of its scheduled departure time. 

Suppose that a part j breaks clown on the aircraft servicing flight k, and 

suppose that no spare part j is available at station i at time t =- 12 : 55 (i.e. 

x (  t) = O). If station /01 , YYZ, has a spare part j in stock, (i.e. 	(t) > 0), 

then a spare part j can be flown in i through flight YYZ —> YYC. Hence 

Se  = Se  (i01 ) = a 	— 	= 153 minutes. 
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Now, if station iol  , YYZ, has no spare part j in stock, but station i02  , YWG, 

does, then 

uk  = 8uk  (i02 ) = 	— d ; 	= 265 minutes. 

Otherwise, no spare part j can be provided with 24 hours, and hence it is 

assumed that 

= 24 x 60 = 1440 minutes. 

In the third example where flight k is #556, the same line of reasoning applies, 

and in this case three different stations can provide a spare part. 

Recall that our model is a planning tool to be used at the tactical level. Hence we 

do not know precisely which station will have a spare part j to provide to station 

i prior to departure of flight k. Therefore we set g the time delay due to 

failure of part j prior to departure of flight k by the following: 

{

= min {8.. (i » 	if 3 10  Szik iocrik  uk , 

= 1440 	otherwise 
Eq. 2- 2 

where Fik  =- {i0  : io  is the origin station of a flight incoming to i such that its 

departure time is within 24 hours after the scheduled departure time of k, and 

> 0} . 

Let du  denote the average cost per delay caused by the failure of part j prior to 

any flight departure at station i. If the airline is a participant to pool part j at 

station i, then the provider of the part is responsible to provision a replacement 
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to the airline at all time. In this case, the assumption is that no delay occurs. 

Otherwise, the total cost of delay is a function of the time delay, and it has been 

shown to be a non-linear function. According to a study done at Air Canada, the 

cost of delay is assumed to follow the square root function shown in the graph 

below: 

Figure 2: Cost of Delay Function 

Let Kit  denote the set of flights departing from station i during the week, and 

that are operated with an aircraft using part j. Hence, 

1 
{du  EX 

kEKU 
d = 0 

e 

V i 

Eq. 2- 3 

2.3.2 Expected removals 

The number of removals per part j is the expected number of times a part fails 

during a time period. Based on historical data, a Mean Time Between Removals 
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(MIBR) v , is defined for each part j .  v , represents the average number of 

flying hours between two successive removals of part type j. 

A part j can belong to one or more types of aircraft. Let Q(j,u) be the 

quantity of parts j belonging to the aircraft of type u. LetH(u)be the total 

hours operated by aircraft of type u during the week. Then the total expected 

number of removals 2.1  for part j in a year is calculated as follows: 

=I
H(u)* Q(j,u)* 52 	

Eq. 2- 4 

In order to calculate the expected number of removals per station, we need to 

calculate the total number of parts on aircraft of type u used to operate flights 

leaving from station i. Let F(i,u) be the total frequencies of flights per year 

with aircraft of type u, departing from station i. Then the expected number of 

removals 	of part j at station i is as follows: 

* E F(i,u)* Q(,  u)\,  

E 	F(i,u)*Q(j,u) 
Eq. 2- 5 

and  

2.3.3 Process offailure 

When failure of parts occurs at a rate less than 10 during a certain period, 

removals are assumed to follow a Poisson Process. Since 	is the expected 

number of removals of part j during a year, let k be the Poisson variable 
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representing the number of removals of part j in [0,4 The probability of 

having exactly U removals during an interval of time t is given by: 

Pp(k = U) — „ 
e-  (/1, i t)u  

Eq. 2- 6 
U ! 

The probability of having U removals or less during the sarne time interval t is 

given by: 

- U 

	

P (k < U) = E Pp (k =r)= E 	 p 	- 
 

r=0 	 r=0 	r! 
Eq. 2- 7 

Since /1 is the expected number of removals of part j at station i during one 

year, then the probability of having V removals or less of part j at station i in [o, t} 

is: 

v —lut 
P(  k 1  V ) = E e  (2 t 

 )
T 

r=0 	r! 
Eq. 2- 8 
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When failures of a part j occur at a rate greater thon or equal to 10 per period 

(23. 10), removals are assumed to follow a Normal distribution, an 

approximation of the Poisson distribution. Then the number of removals in [0, t] 

is assumed normal with mean equal to 21t and standard deviation cr =1Fit 

Then the probability of having U removals or less during an interval of time t is 

given by: 

(J
U — a t 

__U) -= PN  Z 	3  
0-  

Eq. 2- 9 

where k2., is a normal random variable with mean ytit and standard deviation 

CI equals to 1Fit and z denotes the Standard Normal variable. 

2.3.4 Expected delgys 

The variable x„ denotes the initial number of spares of type j allocated at 

station i. However this number is reduced whenever a spare part is being used. 

Let xi./  (t) be the number of spare parts j available at time of failure t at station 

i: 

Eq. 2- 10 

Two cases have to be considered to calculate the expected delay for station i 

according to the fact that x„ = 0 or x, > O . 
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2.3.4.1 	0 : 

In this case, no spare part is allocated at station i. Hence xi/0 = O, V t. Then, 

when a part j breaks clown prior to a flight departure at station i, the time the 

flight will be delayed is the time it takes to get the earliest supply from a flight 

coming into station i, originating from station io  . Station io  should be able to 

supply a replacement part from its spare stock (i.e. x,, > 0). Hence, when 

= 0, the expected number of removals of part j at station i causing a delay 

is equal to the expected number of removals 2 (see equation 2-4 and 2-5) of 

part j at station i . 

2.3.4.2  

In this case, a failure of a part j happens at a station i that has an initial 

allotment of spores. Hence, we need to calculate the probability of having a 

failure during the time when stock runs out, i.e. when xij(t)= 0 given x, >0 O. 

As mentioned before, spare inventory is placed at Dorval shop (denoted as 

station D) to quickly replenish station allotrnents: when a part at a station 

becomes unserviceable, it is sent to the Dorval shop for repair. In the case where 

the shop has no serviceable part to send to the station in replacement of its 

unserviceable one, the replenishment time R. , will be the time it takes to repair 

the stations unserviceable part TA3  plus the transit time TT  . But for the case 

where Dorval has a serviceable part to send to the station upon receiving the 

defective one, the replenishment time Ri  will be only the transit time T.. Note 

that TT  is an average shipping time from and to the station, and is assumed to be 

independent of part type or location of part. Let I be an indicator defined as 

follows: 



111 = 0 	(t) > 0 

=1 ,x (t) 0 
Eq. 2- 11 
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Ri  = TT  +I iTAi  , TT  is constant Vj 	Eq. 2- 12 

To simplify the computations, the expected number of removals of a part j at 

the shop D is taken to be equal to the total expected number of removals 23  

(2.3  = 	). The service level L is defined as the probability of replenishment 

right after a removal of part j is flagged, i.e. when xD3  (t) > 0 and therefore, 

when I = 0. The probability L is computed using the Poisson Distribution 

function when 21  <10 or using the Normal distribution when 23  10. Given 

xpi  to be the initial shop's quantity of spares of type j and xpi  (t) the quantity 

of spares at the time of failure, 

L = P(xpi  (t) > 0) = P(R j  = TT ) 	Eq. 2- 13 

and this probability is approximated by: 

P(k2 	xDj ) 

L1 ) is the probability that Dorval will delay the replenishment until the 

unserviceable part is repaired, i.e. when x pi  (t) = 0 and therefore /3  = 1. Then 

the replenishment tirne will be (TT  + T,): 

I — L = P(xpi  (t) = 0) = P(Ri  = TT  + T Ai ) 	Eq. 2- 14 



22 

and this probability is approximated by: 

From the basic definition of expected value or mean À, of a discrete random 

variable, we know that: 

CO 

= 0 *P(1c = 0) + 1 *P(k = 1) + 2 *P(k-Â, = 2) + = E sP(ka, = s) 
s = 

Let 	be the expected number of removals of part j at station i per year 

causing a delay. Note that pu. 	Vi, j Let,u,f  [t] be the expected number of 

removals of part j at station i during a time period t , causing a delay. Then given 

the allotrnentxu  , 

,u„ [ = 0 * P(k2 	+ 1* P(k2v, = x + I) + 2 * P(kÀut  = 	+2)+... 

GO 

= E (s — xii )P(k =s) 
S = Xu 

= EsP(k = 	 = s) 
S=Xy 	 S=Xij 

xi;  -1 	 xu - 
= 	 =s)1  — xi) 1-1P(k2,t  =s) 

s=0 

xij  —1 

— 	= s)— 	— ylif t) 
	

Eq. 2- 15 
s = 0 
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This derived value is the expected number of removals causing a delay during a 

period of leng-th t. In this section, we are interested in the expected removals 

when x > O, and during the time when stock runs out at station i, which is the 

replenishment tirne R . . Relying on equations 2-13 and 2-14, 

{ P(Ri  =TT )-= Li  

P(R = TT  +TA ) = 1-Li  

Therefore, if xi., > O, then the expected number of removals pzi  of parts j 

causing a delay at the station i is as follows: 

=L1  * ,uu [TT ]+ (I — i ),uu [T, +T Ai ] 	Eq. 2- 16 

Let 

	

1

J ii  = 0 	x ii. > 0 

	

Jii  = I 	xi./  = 0 

be the status indicator of the initial allotment of part j at station i. Recall that 

the value of d'if  given by the equation 2-3 denotes the average cost of dela), perfailure 

of part j on flights departing from station i when no spore part j is available 

(when x (t) = O). If D(X1 ) denotes the expected total cost of delay caused by 

a failure of parts j given the allotment X 	 then: 

s 
D(X1 ) = d 	+ (I — J 	 Eq. 2- 17 

It is worthy of note that we have to scan the weekly schedule file in order to 

evaluate the function D(X j ) for each solution X. . Since the schedule may 
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include up to 3,300 flights, this implies that the function evaluation of D(X1 ) is 

in general costly and computation-intensive to run. 



Chapter 3 

SOLUTION APPROACH USING GENETIC 
ALGORITHMS 

3.1 	Exact Algorithms versus Heuristic Algorithms 

Conventional computational techniques, or exact algorithms, are difficult to apply 

to our optimization problem since, as mentioned before, the objective function is 

very complex and time consuming to evaluate. Furthermore, it does not include 

any nice structure to take advantage of to easily evaluate the effect on its value 

induced by a slight modification of the solution. If the search space is not too 

large, one can usually develop an enurneration search strategy with appropriate 

heuristic cutoffs, to keep the computation time under control. If the search space 

is large, exhaustive search techniques are computationally too expensive and 

some special artificial intelligence techniques have to be employed. Heuristic or 

approximate algorithms are often preferred in this case to generate quickly a 

solution within few percent of the optimum. Genetic algorithms are global 

optirnization techniques that avoid some of the shortcomings exhibited by local 

search techniques on large search spaces. They are population based heuristic 

algorithms relying on the genetic inheritance, and allowing a more exhaustive 

search of solution space. Our approach to solve the optimum distribution of 

aircraft spare parts uses genetic algorithms as the main search approach. 

3.1.1 Exhaustive search 

Exhaustive search is the enumeration of all possible solutions in the search space 

in order to identify the optimal one. Denote by F(S,N) the total number of 
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possible solutions for a part with an allotrnent of N spares to be allocated at S 

feasible stations. F(S,N) is formulated as follows: 

F(S,N)= 
f.N+S-1 = (N+S-1)! 
	• 

N 	y 	N!(S —1)! 

For N =1, F (S , N) = S. 

(S2  + S) 
For N = 2, F (S , N) — 

2 

For S = 10 and N = 1, the total number of feasible solutions F (S , N) is 10. 

For S = 10 and N = 2, F (S , N) = 55. Since the total number of feasible 

stations varies between 10 and 15, the total number of solutions for problems 

where N = 1 or 2 varies between 10 and 120 solutions. So for all parts j where 

N 2, the exhaustive search method is used in order to find the optimal 

solution, since the search space of solutions is small. There are 813 part types 

that have 1 or 2 initial spores. 

However, for a part where S = /5 feasible stations and N = 6 parts, the total 

number of feasible solutions increases to 38,760 (F(S,N) = 38,760). If N 

incrases to 1/, the search space can be as large as 4,457,400 solutions. The time 

required to enumerate and evaluate all four million solutions for one part grows 

rapidly. Therefore, for all part types j where Ni  3 (i.e. when the search space 

is large) a heuristic search using genetic algorithm described in the following 

section is applied. There are 445 types of parts that have more thon 3 initial 

spores. 
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3.2 	Genetic Algorithms 

During the past thirty years, there has been a growing interest in solution 

procedures based on principles of evolution and inheritance. Genetic Algorithms 

(GAs) are evolutionary procedures representing a class of adaptive search 

techniques that have been described and extensively analyzed in the literature 

(Holland (1975), De Jong (1980), Grefenstette (1986)). John Holland developed 

the genetic algorithm and provided its theoretical foundation in his book 

Adaptation in Natural and Artificial Systems (1975). A GA is a search procedure 

modeled on the mechanics of natural selection, rather than of simulated 

reasoning process. 	Domain knowledge is embedded in the abstract 

representation of a candidate solution called Chromosome. Chromosomes are 

grouped into sets called populations. 	Successive populations are called 

generations. A GA is an iterative procedure modifying the current population 

and maintaining its size constant from one generation to another. At each 

generation, the chromosomes in the current population are evaluated, and, on the 

basis of those evaluations, a new population of candidate solutions is generated. 

3.2.1 Presentation of the algorithm 

An initial population of n chromosomes or solutions is created. All n 

chromosomes are evaluated, i.e. their fitness is evaluated. At each generation, n 

chromosomes are chosen for reproduction from the current population. The 

selection is completed according to the proportional selection. It is a randomized 

process that ensures that the expected number of tirnes a chromosome is chosen 

is approxirnately proportional to that chromosomes performance relative to the 

rest of the population. Hence the same chromosome can be selected more than 

once. New chromosomes are generated by means 61 genetic recombination operators. 

The recombination operator is called crossover, and in general, it generates two new 

solutions called offsprings. Then some perturbations are applied to the 

offsprings with low frequency via the mutation operator. All the new offsprings 
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are added to the set of parents to create a temporary population of size 2n. n 

chromosomes are selected from the temporary population via proportional 

selection, to create a new generation of size n. This process is repeated until a 

maximum number of generations is reached. The genetic algorithm used in our 

study is summarized in Figure 3: 

1. Create a temporary initial population of n Chromosomes 
(Generation 0) 

2. Evaluate the fitness of each chromosome 

REPEAT WHILE the number of generations is less than the 
maximum number of generations: 

3. Select n parents from the temporary population via 
proportional selec-tion to create a new generation 

Repeat until all parents are selected (n offsprings are created): 

4. Choose a pair of parents for mating. Apply the 
crossover to create two offsprings 

5. Process each offspring by the mutation operator. 

End Repeat 

6. Evaluate the fitness of each offspring 

7. Add the offsprings to the set of parents to form a new 
temporary population of size 2n 

END REPEAT 
Figure 3: Simple Genetic Algorithra 

Figure 4 below illustrates in a diagram the different steps of the genetic algorithm 

described in Figure 3: 
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Figure 4: Genetic orithm Diagram 

3.2.2 Encoding of a solution 

A crucial operation in using a genetic algorithm to solve a problem is the way of 

representing or encoding a solution. The technique for encoding a solution may 

vary from one problem fo another. In earlier works, researchers used to encode 

ail solutions as bit strings, reg-ardless of the problem. Later, other types of 

encoding techniques were used. In our case, a bit string encoding is not natural, 

and we prefer to use the following one: 
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We refer to the solution vector X = (x1i ,x2i ,..,xsi ) as the phenoepe form of the 

solution. Each component x represents the number of parts j allocated at 

station i. The dimension of the vector solution Xi  is S. The solution is 

encoded into a genoepe form, representing the artificial chromosome associated 

with it. The genotype form of a solution is a new vector of dimension N 

where Ni  is the initial number of spare parts j .  Each vector component 

contains the station index where one part is allocated. If more than one part is 

allocated at the station, the station index is repeated for the next vector 

component. Denote G. = 	 the genotype representation of a 

vector solution, where gij  E A, 1= 	and A is the set of all stations. For 

example, for a part j where Ni  = 6 and S = 60, let X. = 

= (1,0,2,0,..,0,3). Note that E x, = N 	. The genotype vector Gi  is 

represented as G = (1,3,3,60,60,60). 

3.2.3 Population Sie 

The population size n is the number of solutions or chromosomes per 

population. The population size remains constant from generation to generation. 

Population size is a fundamental parameter of any GA. On the one hand, if the 

selected population size is too small, the algorithm will converge too quickly. On 

the other hand, a population with too many members offers a larger pool of 

diverse solutions, but might result in long execution times for significant 

improvement. Recall that in our case, the evaluation of a solution is very 

complex and time consuming since the structure of the cost function does not 

allow to take advantage of the current solution value to obtain the new solution 

value. Davis in (Davis, 1991), states that "... the most 6ffective population size is 
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&pendent on the problem being solved, the representation uset4 and the operators inanipulating 

the representation". For our problem, the population size is proportional to the 

length of the genotype vector N 	Experimental results to determine 

appropriate population sizes are included in chapter 4. 

3.2.4 Generation of initial population 

The key feature of GAs is their ability to take advantage of the cumulated 

information about an initially unknown search space in order to bias subsequent 

search into useful subspaces. Most genetic algorithm implementations do begin 

with random populations. However, if problem-specific knowledge is available 

to indicate interesting regions of the feasible domain, then it should be used to 

guide the process. Initial solutions generated according to problem specific-

knowledge are called "seeded" solutions. Only the initial population is seeded 

with "good" initial members. The need to take advantage of the problem-specific 

knowledge has been recognized for a long time. 

For the Aircraft Spares problem, it seems naturaI to conjecture that the time delay 

is smaller for solutions where more parts are assigned to stations with high 

frequency of departures. To justify this assumption, consider a part j (part #21- 

50-155 in our set of data) for which the number of spare parts N. =-8, and where 

the number of feasible stations is 10. Two different extreme situations are 

analyzed. In the first situation, ten different solutions are evaluated, where the 

total number of parts is assigned to one station, and none to the other 9 stations. 

The results are surnrnarized in Table 2. For example, in solution 1, all 8 parts are 

assigned to the YYZ station and the time delay is equal to 97mns. In solution 3, 

all the parts are assigned to the YVR station and the time delay is equal to 187Inns. 
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Solution Station Frequency 
Parts@ 
station 

Delay 
(mns) 

#1 YYZ 317 8 97 
#2 YUL 134 8 149 
#3 YVR 103 8 187 
#4 YYC 101 8 178 
#5 YHZ 79 8 180 
#6 YVVG 79 8 196 
#7 YOVV 53 8 224 
#8 YEG 7 8 261 
#9 SFO 7 8 246 
#10 MIA 1 8 257 

Table 2: First Situation: Seeded Solutions 

The relation between the frequency of departures at the station where the 8 spare 

parts are assigned and the time delay of the corresponding solution is illustrated 

by the graph in Figure 5. This graph indicates that, in general, the time delay 

decreases when spare parts are assigned to stations with higher frequencies. 

FRE-QUENC1E 

Figure 5: First Situation: Frequency-Delay Reladonship 

Since the time delay at a station does not depend uniquely on the number of 

spare parts but also on the providing from the neighboring stations, another 

situation is analyzed. Here, we use the same part with the same feasible 

stations, but we assume that 72 spare parts are available. Ten different 

solutions are evaluated where no spare part is assigned to one station and 8 
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spares to each of the other 9 stations. The results are summarized in 

Table 3, and the relation between the frequency of departures at the station 

having no spares and time delay of the corresponding solution is illustrated in 

the graph of Figure 6. For example, in solution 1, no part is assigned to the 

YYZ station and 8 parts are assigned to each of the other stations, resulting in a 

time delay of 64mns. 

Solution Station Frequency 
Parts @ 
station 

Delay 
(mns) 

#1 YYZ 317 0 64 
#2 YUL 134 0 40 
#3 YVR 103 0 43 
#4 YYC 101 0 43 
#5 YHZ 79 0 38 
#6 YWG 79 0 40 
#7 YOVV 53 0 40 
#8 YEG 7 0 35 
#9 SFO 7 0 35 
#10 MIA 1 0 34 

Table 3: Second situation: Seeded Solutions 

The graph in Figure 6 illustrates that, in general, the time delay increases with the 

frequency of the station having no spare part. 

Figure 6: si-rond situation: Frequency-Delay Relationship 

Relying on these observations, the initial population can be partially seeded using 

frequency of departures per station as a parameter. In this case, some seeded 
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chromosomes are included in the initial population. Each seeded chromosome is 

specified according to the following proportional selection process. First, the 

stations are ordered in some sequence. To determine a station in each position of 

the chromosome, a random positive integer smaller or equal to the total number 

of flights is generated. Then we select the first station in the sequence such that 

the sum of its frequency and those of the previous stations in the sequence is 

greater than or equal to the random number. This proportional selection process 

ensures that the expected number of tirnes a station is chosen is approxim-  ately 

proportional to that station frequency relative to the rest of the stations. Station 

indices per generated solution are sorted in ascending order, i.e. for an initial 

solution Gi 	 V / m. In chapter 4, numerical 

results are used to analyze the influence of the percent  e of seeded solutions in 

the initial population and the effect of sorted initial solutions. 

3.2.5 Fitness of a solution 

The fitness function associates a quality measure to the chromosomes. Selecting 

solutions based on their fitness value is a major factor in the efficiency of GAs. 

The greater the fitness value of a chromosome is, the more likely the 

chromosome is selected for recombination. In a sense, individuals contribute to 

the gene pool in proportion to their relative fitness. In our problem, the quality of 

a chromosome is inversely proportional to its cost of delay. Therefore, the 

fitness of a chromosome solution G denoted as f (G .) , is defined to be the 

inverse of the cost of delay function 

D(X1) 
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3.2.6 Pmportional Selection & Replacement Strategy 

Proportional selection is a randomized selection procedure that ensures that the 

expected number of times a chromosome is chosen is approximately 

proportional to its performance relative to the rest of the population. At each 

generation, n new parents are selected from the temporary population. Each 

new parent is selected according to a proportional selection process, also lçnown 

as the roulette wheel parent selection. First the fitness values of all chromosomes 

in the current population is determined and the chromosomes are ordered in 

some sequence. Then the following procedure is applied to deterrnine each of 

the n parents: 

1. Generate a random number between 0 and the total of the fitness values 

2. Select the first chromosome in the sequence whose fitness value added to 

the sum of the fitness values of the previous chromosomes in the 

sequence is greater than or equal to the random number. 

As mentioned before, proportional selection process is applied to the temporary 

population formed by n parents and their n offsprings, in order to form a new 

generation of n chromosomes (with the exception of the temporary initial 

solution which contains only n initial solutions). The advantage of this selection 

technique is that it directly promotes reproduction of the fittest population 

members. Several other replacement strategies are currently used where only a 

portion of the population is kept from one generation to another. In chapter 4, 

numerical results are used to evaluate the efficiencies of other strategies, by 

keeping a small percentage of best performing chromosomes from generation to 

generation and selecting the rest of the population via proportional selection. 

3.2.7 Cmssover Operator 

Crossover is an extremely important component of genetic algorithm. It is 

regarded as the distinguishing feature of GAs and as a critical accelerator of the 
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search process. Crossover is a structured yet randomized information exchange 

between two chromosomes. The role of the crossover operator is to combine 

two solutions into an offspring that shares characteristics from both parents. The 

more widely used operators are the 1-point, the 2-point, and the uniform 

crossovers. Since the dimension of the vector solution varies between / and / /, 

only the 1-point and the uniform operators are compared. 

In the 1-point crossover, we randomly select a cut point in the parents. Then 

offsprings are generated by combining the genetic material of one parent on the 

left-hand side of the cut point with that of the other parent for the positions on 

the right-hand side (and including the cut point). Figure 7 illustrates an example 

where two parents are combined via the 1-point crossover. 

P arent1 
	

MIA SFO YEG YHZ YVR YWG YUL YUL YYZ 

Parent 2 
	

SFO YEG YHZ YWG YWG YUL YYZ YYZ YYZ 

Randon; Position 

Offspiing1 	MIA SFO YEG YHZ YVR YUL YYZ YYZ YYZ 

Offspring 2 	SFO YEG YHZ YWG YWG YWG YUL YUL YYZ 

Figure 7: 1-Point Crossover 

In the uniform crossover operator, a random bit string of size N. is generated. 

The station in each position of the offsprings is specified according to the bit 

string as follows: If there is a 0 in a given position of the bit string, the offspring 

1 inherits the station of parent 2 for the same position, and offspring 2, that of 

parent 1. If there is a / instead, offspring 1 inherits the station of parent 1, and 

offspring 2, that of parent 2. Figure 8 illustrates the combination of two parents 

using a uniform crossover. 
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P arentl 	MIA SFO YEG YHZ YVR YWG YUL YUL YYZ 

Parent 2 	SFO YEG YHZ YWG YWG YUL YYZ YYZ YYZ 

Randon; Bit String 0 	1 	1 	1 	O 	1 	0 	0 	0 

Offspangl 	SFO SFO YEG YHZ YWG YWG YYZ YYZ YYZ 

Offspring 2 	MIA. YEG YHZ YWG YVR YUL YUL YUL YYZ 

Figure 8: Uniform Crossover 

Why is the Crossover operator regarded as a critical feature by the GA 

practitioners? The point they make is that crossover acts to combine building 

blocks of good solutions from diverse chromosomes. 

CHROMOSOME (01101) CONTAINS 32 SCHEMATA: 

0##O# #1### 011#1 ##### 01101 0#1#1 

Figure 9: Examples of schema in a single bit string 

A single chromosome of length 5 in a bit representation is shown in Figure 9, 

along with some of the building blocks contained in that chromosome. Each 

building block is represented as a list made up of three characters: 1, 0, and "#". 

A 1 or a 0 at any position in the building block means that the chromosome must 

have the same value at that position for it to contain the building block. A "#" of 

any position in the block means that the value of the chromosome at that 

position is irrelevant to deterrnining whether the chromosome contains the 

building block. Holland colis each building block a schema. Holland's Schema 

Theorem says that a schema occurring in chromosomes with above-average 

evaluations will tend to occur more frequently in the next generation, and one 

occurring in chromosomes with below-average will tend to occur less frequently. 

When applying the crossover operator, the best schema should appear more 
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frequently in the population, and their recombination should produce high quality 

combinations of schemata on single chromosomes. 

3.2.8 Mutation Operator 

Mutations are perturbations of solutions, occurring with small probabilities. The 

role of the mutation operator is to randomly perturb solutions in order to 

maintain an appropriate level of diversity in the population. The mutation 

operator offers the opportunity for new genetic material to be introduced into a 

population. The new genetic material does not originate from the parents and it 

is not introduced into the children via the crossover. Rather, it occurs after 

crossover is applied, but only a small percentage of the time. As described in step 

#5 in Figure 3, each offspring in the population is processed by the mutation 

operator. With a 1% probability, every component of each vector solution is 

replaced by a random feasible station. 

3.2.9 Feasibikp, of generated chromosomes 

For some problems, Genetic Algorithms did not provide for successful 

applications because of their inability to deal with non-trivial constraints. Then, 

an important issue is to use a proper encoding in order to maintain feasibility of 

the solutions generated via the crossover and mutation operators. 

In our problem, a solution X j  = (x x..,x 	for a part of type j is said to 

be feasible if it satisfies all four constraints as presented in section 2.2.: 

s 
Ex, = Ni  

x, 	\/ iP  

JC =0 V iE Ai  

=0 VIEM1 
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Let the vector G.= 	 be the genotype representation of a 

solution X where gij E A, 1= 1..N, and A is the set of all station indices. 

This representation of a solution facilitates the task of building feasible solutions 

from one generation to another. In term of the genotype vector Gj  , the 

constraints become: 

i

llGill =Ni 
grj  e P j  for some 1 

g1 	Á. y 1 	Eq. 2- 18 

gli  elf4., v / 

1 	/ < N. 

is the dimension of the vector G. . 

The following indicates how feasibility is guaranteed for chromosomes generated 

in the initial population, and for solutions generated when either the crossover or 

the mutation operators are applied: 

Feasibility-  of fr constraint: GA=Nj  

All initial solutions G. include N j  stations. Then, the vector 

G. = 	 for all initial solutions, where g G A, 1=1..N1  satisfies 

the first constraint: IIGJ = Ni . Also, as indicated in section 3.2.7, each offspring 

generated by the crossover operator has automatically the same vector size as the 

parent chromosomes. As for the mutation operator, the dimension of a vector 

solution never changes when the operator is applied. Then, solutions at all 

generation levels satisfy the first constraint. 



Feasibility of21d  constraint: g1  EP., for some / 

çb implies that there exist stations where Air Canada is the provider of the 

part j to other airlines. In this case, at least one part has to be assigned to each 

station i belonging to P. Then we assig-n exactly one part to all pooling 

stations. Let 11P1  be the cardinal of the set P. . Note that it is assumed that 

11
P 	N,, which means that there exist initially enough parts to distribute 

among the pooling stations. Let Ar; be defined as follows: N= N — P 

The problem is transformed to become of size N. with only .AT parts to be 

distributed, and G; = 	 ,i ) where g;,./  c A, l = 1 ..N; . Note that 

the new set P for the transformed problem is empty. Then the second 

constraint is automatically satisfied at all generations. 

Feasibility-  off d  and 4th constraints: 

Let Ci  = A — (A i  114-  j ) . Hence Ci  is the set of all feasible stations that 

satisfy the last two constraints. If any initial solution G., = g is 

such that each station index is chosen from the set ci , then it verifies the 31d  and 

drh  constraints. Now, since any offspring generated by the crossover operator 

inherits a combination of station indices from the parents, it also satisfies these 

constraints. Finally, feasibility is maintained during mutation if a station index 

g13  is replaced by an index from the set Ci  = A —(A 

39 
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Thus, feasibility is easily maintained without any additional computational effort. 

This is one of the reasons that make Genetic Algorithms attractive to solve the 

Spare Parts problem. 



Chapter 4 

NUMERICAL RE SULT S 

Choosing a suitable population size, the right combination operator or even a 

reasonable stopping criteria are key decisions faced by all genetic algorithm users. 

Pararneter settings greatly influence performance. Choosing the best values for 

these parameters is generally difficult, mainly because of the interactions existing 

between parameters, and also, because of the long rime required to evaluate a 

single set of pararneters. In the following sections, we consider different values 

for each of the GA parameters mentioned in the previous chapter. Some of the 

pararneters are tested individually and some dependent parameters are tested 

when combined. In order to test one parameter, all the others are fixed and the 

tested parameter is assigned various values. The following specifies the part types 

used in the tests and the selection criteria for the best parameter values. 

In order to make firm conclusions on the performance of each parameter value, 

there should be a good sample of part types, each having different initial number 

of spares. Three part types are chosen and tested throughout most of the 

experiments. As shown in Table 4, one part type has 3 initial spares, the second 

has 6 spares and the third has 9 spares. Note that initial quantities of spares for 

ail part types where GA is applied vary between 3 and 11 spares. Each part type 

belongs to a different aircraft type, but each fleet covers a similar network of 

stations. The fourth column in Table 4 shows the number of parts per aircraft. 
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The number of flight departures per week is also given for each fleet type. The 

last colurnn shows the number of feasible stations covered by the fleet type. 

PART # / 

TypE j 
INITIAL 

QUANTrry 

Nj 

AIRCRAFT 

TypE(s) 
QI JANTrry 	DEPARTURES 	FEASII3LE 

mit 	PER WEEK 	STATIONS 

AIRCRAFT 

21-10-157 3 DC9-15 2 864 10 

DC9-32 2 

21-50-373 6 B767-233 9 410 10 

21-20-365 9 A320 2 1222 12 

Table 4 Part types 

For each pararneter testing, 10 tests are performed for each of the three part 

types. The "Best Value" column shown in the test tables below is the minimum 

delay cost achieved arnong the total number of runs, and which "might" be the 

optimal solution. The average cost of delay for the 10 tests is calculated along 

with the confidence interval, with 95% confidence level. A confidence interval of 

±fl indicates that for 100 tests, 95 out them have a cost of delay belonging to 

the interval D(X j )± i  6, where D(X i ) is the mean of the 100 tests. The 

number of tests resulting in the best value out of the 10 tests is also given. 

Finany, the last two columns of the show the average number of solutions 

explored or generated per test, along with the average time of execution. The 

computer used for the tests is PC based Toshiba 4030CDS, 233 MHZ. 

4.1 	Stopping criteria 

Several stopping criteria exist for the genetic algorithm. The algorithm may be 

stopped when all chromosomes in the generation are identical, i.e. 
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f(G7)= f(G) for all G7 and G; solutions belonging to the same 

generation. However, a reasonable number of solutions must be explored. A 

convergence criterion may not be efficient, especially if it generates as many 

solutions as the exhaustive search. Such a criteria is too costly lçnowing that the 

evaluation of the cost of delay Ð(X1 ) per chromosome or per solution X. is 

long (see section 2.3 Evaluation of a solution). The alternative criterion used in 

the tests below is to stop the process after a fixed number of generations. This 

fixed number of generations was set to be /0 * [Ni /21, where N is the 

problem size or the initial number of spares for part j.  This stopping criterion 

results in exploring a reasonable number of solutions and obviously not 

exceeding the total number of feasible solutions. This choice seems appropriate 

as confirmed in the following sections when testing different parameters. 

4.2 	Tests of population size 

The population size n is the number of solutions or chromosomes generated per 

population. The population size remains constant from generation to generation. 

Population sizes are usually a function of the problem size and are directly 

proportional to the length of the genotype vector Ni : n=aNi , where a is a 

positive integer. Three different values of a are tested for each of the three part 

types. The results are summarized in Table 5. The pararneters are fixed as 

follows: 

Population Size test n= 3N1  or n = 5N or n = 7N1  (a =3, 5 or 7). 

o Mutation operator rate: 1% 

Percentage of seeded solutions in initial population: 50% 

cI 	Percentage of best solutions for new generation: 10`)/0 

o Crossover Operator: Uniform 

o Initial solutions are sorted: G = (g 	 , 	5_ g m. Y / m • 
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Problem Bcst Population Arg. Cost 

Size Nj Value 	Size n 	of Delay 

D (Xi) 

Confidence 'rotai Solutions Tinte 

Intetval 	Best generated (mns) 

Solutions 

Table 5: Population Size Test Results 

For a =3, 5 to 6 runs out of the 10 tests resulted in the best value for each of the 

3 types. As for a = 7, the results are much better. For example, for the tests of 

the third part type, 10 tests out of 10 resulted in the best value. As might be 

expected, larger populations lead to better performance because of the larger pool 

of diverse schernata available in a larger population. However, the bigger the 

population size is, the more solutions are evaluated, and therefore solution time 

increases. The results when a =5 are very close to the ones when a =7, and run 

tirnes are more manageable. Also, the confidence intervals for the 10 tests are 

very short. Therefore, the population size n = 5N is selected for the rest of the 

numerical results. 

4.3 	Tests of seeded initial population 

As it has been indicated in Section 3.2.4, the delay is inversely proportional to the 

frequency of departures. Therefore, solutions that are seeded according to the 

selection criteria in Section 3.2.4 perform better than randomly generated 
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solutions. However, the presence of too many highly fit chromosomes in the 

initial population results in premature termination at a local optimum. In order 

to identify the best strategy, three values are tested for the percentages of seeded 

initial solutions: 

Percentage of seeded solutions in initial population: 20% or 50% or 80% 

o Population Size n= 5N1  

o Mutation operator rate: 1% 

o Percentage of best solutions for new generation: 10`)/0 

1=1 Crossover Operator: Uniform 

O Initial solutions are sorted: G3  -= 	 g i; 	V 1<m. 

Problem Best Seed Arg. Cost Confidence Total Solutions Time 

Size Ni Value Percentage of Delay Inten-al Best Generated (mns) 

D (Xj) Solution 

Table 6: Initial Population Test Results 

An initial population with 50`)/0 seeded solutions seems to generate better results 

than with 20% or 80%. Figure 10 illustrates how the cost of delay decreases 

during the resolution for each percentage (20%, 50%, 80%) for the problem with 

N1=3. 



0 
	

2 
	

4 	 6 
	

8 
	

10 
Gene rations 

C
os

t  o
f D

el
ay

  
45.00 

40.00 

35.00 

30.00 

25.00 

20.00 

15.00 

Seeded 
-411—  50% Seeded 

80% Seeded 

:ee• 

46 

Figure 10: Seeded Population Comparison 

Each point on the graph represents the average cost of delay for the n solutions. 

As expected, for initial population with 20% seeded solutions (i.e. 80% random 

solutions), the average cost is initially higher, and it takes longer to converge to a 

minimum. However, for In.  itial population with 80 1̀/0 seeded solutions, the 

average cost is initially better and it converges rapidly, reaching sometimes a local 

minimum. With a 50% seeded initial population, the algorithm seems to 

converge to optimal solutions more likely than with 20% or 80%. 

4.4 	Tests of offsprings selection 

A new generation can be created by completely replacing the parent generation 

by a new one obtained via proportional selection, or by keeping a small 

percentage of best performing chromosomes and selecting the remainder of the 

population via proportional selection. The results for four different strategies are 

summarized in Table 7: 

);> Percentage of best solutions: 0% or 4% or 10% or 25% 

Ei Population Size n =5Ni 



Problerre Best I3est At g. Cost Confid. Total Best Solutions Tinte 

Sie Nj Value Solutions • of Delay huerta! Solutions Generated •(mus) 

D(Xj) 
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• Mutation operator rate: 1% 

ci Percentage ofseeded solutions in initial population: 50% 

• Crossover Operator: Uniform 

o Initial solutions are sorted: G. = 	 gni.;  V 

Table 7: Offsprings Selection Test Results 

When the best performing solutions are not forced to remain from generation to 

generation (best solutions percentage = 0%), they tend to be lost. Hence, the 

results in Table 7 indicate that the algorithm talces longer to regenerate good 

performing solutions. However, when the percentage selection is 10% or 25%, 

the results for all 3 problem-tests are very good. For the problem when N j  =3, a 

percentage selection of 25% seems to be a bit too aggressiye as 3 out of 10 tests 

converges to a local minimum. 
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4.5 	Tests of crossover operator 

The role of the crossover operator is to combine two solutions into an offspring 

that shares characteristics from both parents, by exchanging parts of their 

corresponding chromosomes. The two operators that are tested in this section 

are the uniform crossover and the 1-point crossover operators. An additional 

component is added to the tests of the crossover operators in order to analyze 

the relevancy of sorting the chromosomes in the initial solutions. Both 

parameters are tested jointly since the value of one can be dependent on the 

other. The results surnmarized in Table 8 are obtained using the following 

pararneters: 

> Crossover operators: Uniforrn or 1-point. 

> Initial solutions are sorted: G 	 / n or (g/Pg2i ,••• , gNii) , 	5--  gni.' 
non-sorted. 

O Percentage of best solutions: 10°A 

o Population Size n = 5Nj  

O Mutation operator rate: 1°/0 

o Percentage of seeded solutions in initial population: 50% 

The results for the problem where N. = 6 are not very conclusive, since the 

average values for the 4 combinations of the two parameters are very sirnilar and 

the confidence intervals are small. Now, for the problems with N j  = 3 and 

= 9, the results in Table 8 show that sorting the initial solutions (i.e. sorting 

the station indices within each chromosome), seems to allow generating better 

chromosomes, and therefore the algorithm converges to better solutions. The 

behavior of the algorithm with sorted initial solutions can be somehow explained 

by Holland's Schema Theorem described in section 3.2.7. When station indices 

in a chromosome are sorted, each position in the schema will have a smaller 



initial 

solutions 

Sorteil 	Avg. Cost 	Confid. 	• Total 	Tinte 

	

Interntl. 	Best 	(Enns) 

Solution 

Problent 	Best 	Crosso%-er 

Size Ni Value Operator 

111 

49 

number of values to be assigned to, compared to when solutions are not sorted. 

By sorting the solutions, the schema theory can be applied and is more likely 

preserved than having each station index assig-ned to a random position. 

Table 8: Crossover Test Results 

The uniform crossover is more efficient than the 1-point crossover in 5 out of 6 

cases, as shown in the "Total Best Solutions" column. This result is consistent 

with the one obtained in Syswerda, 1989 (Section 4.6 - Other problems of various 

sizes). 

Other results are obtained for other problems including different number of 

spare parts (3 5_ Ni  5 11), and belonging to different aircraft types. Table 9 

includes the average results taken over 10 tests for each problem. The percentage 

variance of the average cost from the best value (shown in the 4th  column) varies 

between 0.0')/0 and 1.3%. These results are yery encouraging, showing the good 

performance of the Genetic Algorithms to solve the Spares problem. 



Prublem Best Ag. Cost % Variance Total Best 

Size Nj Value of Delay From Best Solutions out of 

I)(XD Value 10 tests 

Table 9: Test Results for various part types 
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Chapter 5 

A COMPARISON WITH THE METRIC 
MODEL AND OTHER RESEARCH 

5.1 	METRIC Model Description 

During the past four decades, a substantial number of mathematical models 

have been developed relating to the management of repairable inventory 

systems. A well-known mathematical model called METRIC, or Multi-Echelon 

Technique for Recoverable Item Control, was formulated over 30 years ago by 

C.C. Sherbrooke (1968). This optimization problem is capable of determining 

base and depot stock levels (two-echelon inventory system) for recoverable 

items — items subject to repair when they fail. METRIC was specially designed 

for the Air Force and The RAND Corporation (see W. S. Demmy (1981)). 

METRIC is designed for application at the weapon-system level, where a 

particular item may be demanded at several bases or stations, and the stations 

are supported by one central depot. The item demand for the METRIC model 

follows a compound Poisson distribution with a mean estimated by a Bayesian 

procedure. When a failure occurs at a base, a demand is placed on base supply 

to replace a corresponding part. Depending on the nature of the failure, the 

failed part is then either repaired at that base with a probability r, or is sent to 

the depot for repair with a probability (1— r) . If repair is done at the base, re- 

supply of base supply comes from the base maintenance, otherwise, the re-

supply comes from the depot. Thus, the inventory policy for placing orders on 

the bases maintenance organization or the depot is an (s —1, s) policy. It is a 

policy that replenishes back to level s once the inventory level drops to (s —1), 
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which means that items are not batched for repair or re-supply requests. 

The (s —1,$) is an appropriate policy for high-cost, low-demand items. No 

lateral re-supply between bases is considered in the METRIC model. 

5.2 	Model Purposes 

As stated in "METRIC: Multi-Echelon Technique for Recoverable Item 

Control" by C.C. Sherbrooke (1968), METRIC has three main purposes: 

1. Optimization: A governing purpose of the model is to determine 

optimal base and depot stock levels for each item, subject to a 

constraint on system investment or system performance. 

2. Redistribution: The model takes fixed stock levels for each item, and 

optimally allocates or redistributes the stock between the bases and 

the depot. 

3. Evaluation: The model evaluates the performance and investment 

cost for any allocation of stock between the bases and the depot. 

Optimiation is of prime interest in the early acquisition phase. By considering the 

unit cost of the item, the METRIC approach focuses management attention on 

the entire weapon system, so that an appropriate combination of system 

effectiveness and system cost can be selected. Optimization targets are expressed 

as system investment in dollars or expected backorders per item. Redistribution is a 

major concern when items are in long or short supply. For example, when no 

new procurement budget is available, the decision to redistribute might depend 

on the increased effectiveness over the current distribution levels. 'When budget 

is available, redistribution decision is based on comparing the cost of the 

redistribution with the cost and effectiveness of a new procurement. Evaluation is 

important throughout the life of a weapon system. 
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5.3 	A comparison with the Allotment of Aircraft Spare Parts model 

The fact that our problem aims at allocating aircraft parts given their initial 

quantifies, and not at determining their quantifies based on investments or 

effectiveness constraints, we are then only interested in comparing it with the 

METRIC concepts of redistribution. In his article, Demmy (1979) shows the 

major discrepancies between an actual Air Force redistribution problem and 

METRIC assumptions. Some differences and also some similarities exist 

between the METRIC algorithm and our allocation problem. This is also due to 

the fact that our allocation assumptions are different than the Air Force 

redistribution assumptions. Some of the major differences are: 

1. No lateral re-supply between bases or stations is considered in the 

METRIC model. However, the fact that parts are transported on 

one of the Air Canada scheduled flights, receiving a serviceable part 

from a neighboting station onboard a flight is the most efficient and 

cost effective way to re-supply. 

2. In the METRIC model, demand obeys a compound Poisson 

process. It is a logarithmic Poisson process obtained by considering 

batches of demand where the number of batches follows a Poisson 

process and the number of demands per batch has a logarithmic 

distribution. In our model, demand or failure does not happen by 

batches. It is assumed to follow the Poisson distribution or Normal 

distribution when failure rate is high. 

3. The objective of the METRIC model is to minimize backorders. A 

backorder exists when there is an unsatisfied demand at the base and 

is dependant on how quickly the base repair shop or the depot repair 

shop can provide a serviceable part. Our objective in the aircraft 

allotment model is to minimize the cost of flight delays due to 

unsatisfied demand. However, the length of flight delays is 
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dependent on the stock levels of other stations or bases and also on 

the repair shop's stock level. 

4. With a probability r, repair is done at the base level for the 

METRIC model, otherwise, it is sent to the depot for repair. As for 

the Allotment model, all repairs are made at one central repair shop 

which is the Dorval shop. 

Some of the similarities of both models are: 

1. The demand process is stationary over the prediction period, and the 

parameters of the demand process are known. Even though those 

parameters are dependent on the aircraft flying hours and therefore 

change with the revision of the schedule, the assumption is still valid 

due to the fact that redistribution decisions are made every time the 

schedule changes. 

2. Both models assume infinite repairs with no condemnations. This 

assumption is said to be conservative if redistribution does not 

happen frequently. However, the fact that aircraft parts have low 

condemnation rates, initial quantifies of spares are adjusted with 

every redistribution of stock, to most effectively meet current 

conditions. 

3. Both models assume infinite repair capabilities at the depot. As 

Albright (1989) has pointed out, models assuming infinite repair 

capacity always underestimate the amount of congestion in the 

system. More recently, Kim et 42000) studied the model under 

finite repair capacities. 
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5.4 	Other research 

Since the publication of the METRIC model by Sherbrooke (1967), substantial 

work has been devoted to extend and refine the METRIC model (see Cho and 

Parlar (1991)). Fox and Landi (1970) suggested a Lagrangian approach for 

solving the metric problem. Later on, Muckstadt (1978) developed a method for 

estimating the value of the Lagrangian multiplier, reducing computation tirnes, 

and also suggests a simple approximation for estimating the optimal depot stock 

level. Later on, Muckstadt and Thomas (1980) show that adaptations of single 

location methods are inferior to method designed to take advantag-e of a system's 

structure, a multi-echelon inventory system. Graves (1985) considered a two-

echelon inventory system with a small variant to Sherbrooke's METRIC model. 

The main difference is that Graves does not allow repairs at the bases. On a set 

of test problems, he showed that his model provides a more accurate 

approximation than the METRIC model. More recently, Zorn et aZ(1999) 

introduced a piece-wise linear modeling framework for the United States Air 

Force hierarchical inventory model. 

Muckstadt (1973) also proposed a model for multi-indenture parts. This model, 

called MOD-METRIC, an extension of METRIC, permits the explicit 

consideration of a hierarchical parts structure. The question of reparable spare 

parts is an issue in both the public and private sectors. Tedone (1989) describes a 

system utilized by American Airlines, the Rotables Allocation and Planning 

System, or RAPS, that has similarities to the METRIC system. It is a PC-based 

decision support system that provides forecasts for the future demand of rotable 

parts as a first phase, and recommends the allocation of parts among the stations 

with least-cost for the second phase. To calculate total expected system demand 

per part type, RAPS uses linear regression to establish a relationship between part 

rernovals and flying hours. In the second phase, the demand forecast or the 

initial quantity of parts required for the system is distributed arnong the stations 
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according to weights assigned to each station. Those weights reflect the level of 

activity evaluated through the flight schedule, the history of part removals and the 

maintenance schedules. 



CONCLUSION 

Since the problem includes a small number of constraints, Genetic Algorithms 

seem to be very appropriate to deal with the Spare Parts problem. The results 

indicate that on average, the solutions generated are within 1.3% of the best 

solution or optimum solution. This is the case for all problem sizes, for various 

part types and aircraft types. 

It is worth to note that the algorithm is computation intensive. Originally, the 

project was designed for the operation of Air Canada requiring to run the 

optimization algorithm once a month in order to redistribute the parts when the 

flight schedule changes. The evaluation of a solution is making the algorithm 

computationally expensive, as the delay is estimated for every single flight of the 

week. Should this optimization be required on a more frequent basis, or within 

few hours, the cost of delay could be simulated instead of being fully evaluated. 

By doing so, the execution time is reduced, and the reallocation of the parts can 

be done more frequently. 

Another avenue for future research would be to identify a more specific 

crossover operator, by taking advantage of the problem structure. 
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