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Abstract 

A curriculum is a model for organizing and managing all kind of knowledge in computer-

based tutoring systems, which includes domain knowledge, teaching stratégies and 

didactic resources, and students knowledge. The problem of curriculum modeling 

concems the mechanism to organize and control the knowledge effectively. 

Nurnerous works have been carried out proposing solutions. These results, on the one 

hand, show that most real curricula are very complex heterogeneous knowledge systems. 

On the other hand, interactive, integrated and simple organization models and tools 

should be defined to build systems useful in practice in which tutoring outcomes, tutoring 

activities and didactic resources can be effectively organized and manipulated. 

A model is proposed to represent and organize domain and pedagogical knowledge, 

which provides 

• A simpler and more practically useful model based on the idea of a transition 

network for course generation, 

• A more central role of curriculum structures within an overall ITS design, and 

• The practical integration of various leaming théories. 

This thesis approaches the modeling of knowledge and tutoring activities by relating 

Gagnés capability and instructional event theory to Blooms objective theory. We 

propose a modeling approach of a curriculum taking into account the various aspects of 

domain knowledge (teaching outcomes), pedagogic (teaching) stratégies and didactic 

(content) materials. The pedagogical aspect of the proposed system are distributed and 

modeled at various levels of granularity, with a particular emphasis on control exerted at 

the level of transition nodes at which the teaching planning is actually taking place. The 

organization of tutoring transition consists of modeling preliminary needs to their 

realization and studying the impact that can have attack of an objective on domain 

Iv 
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lçnowledge. Last, didactic dimension produces a model that defines and organizes 

different necessary tactical means for considered resource's teaching. 

A proposed model for supporting automatic generation of courses (according to learners' 

needs) can generate multiple alternative courses for a particular goal set. We have equally 

used for supporting teaching process (recommending courses, ordering tutoring activities, 

dynamic remedy of students misconceptions and visual navigation). 

Visualization abilities are kind of important features in our models. These abilities can 

help curriculum authors visually build, organize and manage curriculum. Also, the 

proposed system can visually display the development progress in authoring progress to 

raise productivity. Learners can visually set learning goals, view alternative courses 

covering their goals and obtain instant guidance in their learning process. 

As a result, this thesis contributes to reaching the idea of an ITS both practical and useful. 
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Résumé 

Cette thèse présente une façon de concevoir et exploiter des systèmes Tutoriels 

Intelligents (STI), essentiellement centrée sur la notion de curriculum. Un curriculum est 

une organisation de connaissances multiples nécessaires au bon fonctionnement du tuteur 

intelligent. Ces connaissances recouvrent principalement les connaissances propres au 

domaine à enseigner, les connaissances relatives à la pédagogie et au suivi individuel de 

l'apprenant utilisant le STI. Le problème qui nous intéresse ici est de proposer une 

structure de curriculum qui soit facile à utiliser par des auteurs de curriculums et efficace 

pour guider l'apprenant dans son apprentissage. 

Nous nous basons sur d'importants et nombreux travaux proposant des solutions. Ce qui a 

motivé notre travail est que les structures de curriculum qui ont été proposées jusqu'à 

présent sont beaucoup trop complexes et hétérogènes pour être utilisées efficacement. 

Nous proposons donc un modèle, plus simple et pratique, ayant les caractéristiques 

suivantes: 

1 - le curriculum est une structure plus simple fondée sur la notion de graphe de transition 

adaptée pour la génération de cours. 

2 - le curriculum tient une position plus centrale au sein d'un Système Tutoriel (STI). 

3 - le curriculum intègre diverses théories de l'apprentissage. 

Cette thèse aborde la modélisation des connaissances et des activités pédagogiques en 

mettant en relation la théorie de Gagné sur les niveaux de capacités des apprenants et la 

théories des évènements instructifs formulée dans le cadre de la théorie objective de 

Bloom. Nous proposons une approche de la modélisation qui prend en compte divers 
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aspects des connaissances du domaine, de la pédagogie et des stratégies pedagogique. Les 

connaissances et structures de contrôle pédagogique sont distribuées et modélisées à 

divers degrés de granularité, avec un accent particulier sur le contrôle exercé au niveau 

des noeuds de transitions qui constituent les pôles où l'apprentissage est planifié et 

réalisé. L'organisation de ces transitions tutorielles requiert un inventaire des re-requis et 

des conséquences de leur réalisation. Enfin le modèle permet une organisation 

rationnelle des ressources didactiques qui peuvent être mises en oeuvre en divers 

endroits du curriculum. 

Notre modèle de curriculum est bien adapté à la génération de cours pour un étudiant 

particulier sous la forme de séquences tutorielles, incluant la comparaison de séquences 

alternatives pour un ensemble donné d'objectifs d'apprentissage. Nous avons également 

inclus divers moyen de supporter le processus d'enseignement (recommandation de cours 

à suivre, organisation et réorganisation des activités pédagogiques, correction des erreurs 

faites par l'apprenant et aides visuelles pour la navigations entre la fixation d'objectifs 

d'apprentissages et la réalisation d'activités pour atteindre des objectif. 

Notre système fait une large place aux possibilités de gestion visuelle du curriculum. 

Ainsi dans le cadre de la tache de composition d'un curriculum, l'auteur peut évaluer 

visuellement la progression de son travail et obtenir des informations globales sur la 

partie du curriculum déjà réalisée et ce qui reste à faire. Similairement, l'apprenant 

utilisant un curriculum peut évaluer visuellement sa progression vers ses objectifs 

d'apprentissage et réviser ses plans pour atteindre ses (nouveaux) objectifs. 

De façon générale la thèse s'organise comme suit. 

D'abord nous faisons un survol rapide de l'évolution des systèmes tutoriel intelligents 

(STI), montrant que au cours des années les chercheurs en ce domaine ont pris 

conscience des facettes multiples et très variées requises par la construction d'un STI 



efficace. Pour des raisons conceptuelles et pratiques il est apparu nécessaire de regrouper 

diverses sources de connaissances en une structure générique, c'est à dire qui puisse être 

utilisée pour la création de STI enseignant une grande variété de cours et de types de 

cours. Cette constatation fut à l'origine de la notion de curriculum, un concept qui 

dépasse la notion de syllabus et qui maintenant recouvre la réunion de toutes les 

connaissances spécifiques à un enseignement: connaissances sur la matière à enseigner, 

connaissance sur l'apprenant, connaissance sur la pédagogie, connaissance sur la mise en 

oeuvre de diverses stratégies pédagogiques 	et le contrôle de l'acquisition des 

connaissances, etc. Concrètement un curriculum se présente comme un graphe. 

Les travaux les plus récents sur la structuration d'un curriculum se sont basés sur une 

structuration en couches fonctionnelles (connaissances du domaine, connaissance de 

l'apprenant, connaissance de la pédagogie, etc.). Cette approche a l'avantage de faciliter 

l'explicitation des diverses sources de connaissances à mettre en oeuvre dans un STI. 

Toutefois elle implique la nécessité d'établir des correspondances entre les divers 

couches, une source de grande complexité. Il en résulte que créer un curriculum selon 

cette structuration nécessite un effort considérable. Notre approche dans cette thèse a été 

de chercher à simplifier l'apparence globale du graphe représentant un curriculum sans 

pour autant abandonner une quelconque des fonctionnalités supportées par les 

curriculums précédents. Cela nous a conduit également à porter une grande attention aux 

moyens visuels de gérer un curriculum. Ainsi dans la thèse nous passons en revue divers 

modes originaux de présenter l'information et concluons sur la désidér abilité d'appliquer 

certaines de ces modèles au cas du curriculum. Egalement nous nous soucions de 

l'intégration du curriculum dans un STE En fait dans cette thèse nous faisons du 

curriculum la structure de base organisant non seulement les diverses sources de 

connaissances à prendre en compte lors de la création d'un curriculum par un auteur 

(pédagogue et spécialiste du domaine à enseigner) mais également le curriculum sert à 

structurer et organiser l'enseignement effectif d'apprenants sous la forme d'interactions 

permettant une négociation entre l'apprenant et le STI portant tant sur le choix des 

objectifs d'apprentissage que sur des moyens et séquences d'activités nécessaires pour 

atteindre ces objectifs. 
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La partie centrale de la thèse est consacrée à la structure logicielle du système (VITCAM) 

que nous avons développé pour la création et exploitation de curriculums. C'est une 

architecture hiérarchique en couches fonctionnelles. Les niveaux fonctionnels de base 

créent ou exploitent les structures formant un curriculum. Du coté du processus de 

création et de gestion d'un curriculum (par un auteur de curriculum) la structure de base 

qui est obtenue est un réseau de transition (un graphe) comportant seulement deux 

catégories de noeuds. Certains noeuds modélisent des niveaux de capacités (niveau de 

maîtrise) relatives à un concept ou a une tache. Ces noeuds servent aussi à modéliser le 

niveau de maîtrise d'un apprenant particulier sur ce concept ou cette tache. Ces "noeuds 

de type capacités" sont également utilisés lors de la négociation entre le système et 

l'apprenant pour fixer les divers objectifs d'apprentissage. 

Les autres noeuds du réseau sont appelés des "transitions". Ces noeuds correspondent à 

des activités dont la réalisation avec succès par l'apprenant résulte en la mise à jours pour 

cet apprenant des niveaux de certaines capacités. Ainsi les noeuds de type capacités 

servent non seulement à établir les conditions requises pour qu'un apprenant puisse 

participer aux activités d'un noeud de transition mais également comme réceptacles pour 

la mesure de l'apprentissage obtenu par suite de la traversée avec succès d'un noeud de 

transition. Ainsi dans le graphe un noeud de transition est toujours intercalé entre deux 

noeuds de capacités. 

Cette structuration d'un curriculum peut apparaître assez simpliste si ce n'était que les 

noeuds de transition sont en fait des structures assez complexes. Un noeud de transition 

doit être considéré comme un mini système tutoriel intelligent. Le noeud de transition 

organise les activites relatives à l'acquisition de préférence dune, mais souvent de 

plusieurs, capacités à divers niveaux. Il contient également une structure dévaluation des 

activités de l'apprenant et peut mettre en oeuvre diverses stratégies pour remédier à des 

déficiences constatées dans le processus d'apprentissage. Pour des raisons conceptuelles 

ainsi que d'ordre pratique il est apparu impératif de pouvoir organiser les activités 



d'apprentissage au niveau d'un noeud de transition selon une nomenclature commune 

pour tous les noeuds de transition. Pour ce faire nous avons trouvé fort utiles les 

nomenclatures établies par Gagné et Bloom. Nous avons trouvé que ces nomenclatures 

étaient complémentaires et ainsi pour chaque noeud de transition nous avons une grille 

dont chaque cellule correspond à une activité élémentaire (de l'apprenant). Les diverses 

stratégies d'apprentissage au niveau d'un noeud de transition sont représentées par des 

chemins entre les cellules de cette grille. Nous avons exploré divers moyens d'exploiter 

cette grille pour permettre une aggrégation des noeuds de transition afin d'obtenir une 

représentation hiérarchique d'un curriculum. 

A part ce réseau de "capacités" ed "transitions" le système VITCAM permet de générer et 

exploiter diverses autre structures. Ainsi VITCAM gère une structure, appelée "modèle 

de l'apprenant" qui regroupe des informations générales sur l'apprenant et qui est 

alimentée et exploitée au niveau des noeuds de transition. Une partie plus importante de 

la thèse est consacrée à la génération de cours spécifiques pour un apprenant. Un cours 

est conçu comme un sous graphe du curriculum déterminé par le choix des objectifs 

d'apprentissage à atteindre. Un modèle baysien est développé qui a la propriété 

d'ordonner diverses alternatives possibles d'un cours en fonction des caractéristiques d'un 

apprenant déterminé. 

La thèse termine par la description du prototype créé pour valider la faisabilité du 

modèles de curriculum et STI proposé. Un exemple de curriculum et de cours est 

proposé. L'interface usager a été surtout développé pour la tache de création d'un 

curriculum. Pour l'instant il est encore trop abstrait pour être mis entre les mains 

d'apprenants réels mais nous indiquons dans la thèse comment remédier à cette situation. 

Le prototype a été écrit en Java; il est possible d'expérimenter avec diverses tâches 

d'édition et dévaluation d'un curriculum en cours de création. 
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En conclusion nous avons proposé une transformation de l'architecture générique d'un 

STI faisant une très large place à la notion de curriculum et avons démontré sa faisabilité. 
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Chapter 1 

Introduction 

1.1 Problem Areas Related to the Project 

Computer-Based Tutoring Systems have advantages over classic human teaching, such as individualized 

teaching, support of powerful and flexible multimedia resources, saving human efforts, etc. However, such 

systems are complex because they not only have to deal with the subject matter to teach but also the 

psychology and pedagogical characteristics of human teachers and learners. Our research involves several 

different directions in education, computer science and psychology. The main challenge is to get an 

adequate synthesis of these very diverse sources of knowledge into a practical and useful system. 

From the point of view of computer science, a computer-based tutoring system is a complex well integrated 

software system for teaching involving knowledge and data management technology, multimedia 
technology, networking technology and artificial intelligence (AI). 

In the educational domain, relevant theories of teaching progress (pedagogic theories) have been developed 

[Gagné 92, Bloom 69,78]. These theories propose methods and means to implement the knowledge 

acquisition and teaching processes. The integration of educational theories with actual software 

implementation is still a relatively new field and hence there is ground for much improvement. One of the 

difficulties in the teaching-leaming process is to understand student behavior. One contribution of 

psychology (in particular Cognitive Psychology) is the development of theories that explain the leaming 

process. This has resulted in more effective teaching and leaming methods [Gagné 85, Tardif 92]. 

Since the beginning of the 70s, Intelligent Tutoring Systems (ITS) have been developed with the goal of 

experimenting, via computer software, with the integration of theories linked to previous domains 

education science, cognitive psychology). Some systems, such as SHOLAR [Carbonell 70], SOPHIE 

[Brown 75], BIP [Barr 76], Geometry-Tutor STEAMER [Hollan 84], GUIDON [Clancey 82], WordTutor 

[Imbeau 90], and GEOCAM [Nkambou 92], have dealt with the complexity of ITS development, notably 

the problems of student modeling, domain expertise, integration of teaching strategies, curriculum 

integration, and the problems linked to student interactions. Most of them concentrated on the leaming 

process. Now, the remaining essential concem in the design of tutoring systems is the specification and 

organizations of teaching activities and materials (i.e. curriculum) as principal input in the teaching system 

[Finch 86]. Psychologists (humanists, behaviorists, or cognitive scientists) recognize the necessity of 

creating rich contexts that can support planning and teaching development [Grippin 84, Tardif 92]. 



2 

The concept of a curriculum has been tackled in some works [Barr76, Halff 88, Lesgold 88, McCalla 90] 

but with little impact on ITS. Halff thought that the goal of a curriculum in an ITS is to formulate the 

representation of the material, selecting and ordering actions in particular activities. McCalla gave a more 

cognitive definition: the curriculum in ITS represents the sélection and arrangement of knowledge with a 

view to realizing teaching goals that are appropriate for the current context and the current student This 

definition puts the accent on the fact that a curriculum should be flexible, and should adapt to the needs of 

students and the needs of an author of teaching material. Other works such as that of Spector, Polson and 

Muraida [Spector 93] addressed the problem of constructing environments for human teaching included 

curriculum development and course delivery. 

There are many external resources that can be managed and integrated via an ITS. They range from basic 

resources (such as graphies, video, etc.) for complex presentation of some subject matters and also 

interactive environments in which students can select objective, take decisions and observe their 

consequences. Integrating these resources in a unified and coherent structure is a complex task. In addition 

the resource management task is made more complex by the fact that these resources are constantly 

upgraded or changed. Many additional organizational components should be considered. Gauthier, Imbeau, 

and Girard [Gauthier 89, Imbeau 90, Girard 91] proposed an approach that organizes the teaching 

objectives and the element of a teaching domain in a hierarchy. Some other advance have been tackled in 

[Halff 93, Merrill 93, Tennyson 93, Gagné 93]. 

Nkambou proposed a curriculum model CREAM (Curriculum Representation and Acquisition Model) 

[Nkambou 96, Nkambou et al 98] in Project SAFARI [Gecsei and Frasson 94], in which three kinds of 

knowledge were identified and organized: capabilities, objectives and resources. CREAM organizes every 

kind of knowledge as a network with nodes and links, then another network-CKTN (Concepts Knowledge 

Transition Networks)- is defmed to associate the above three spaces to get a transition network. CREAM 

dealt with more kinds of knowledge than previous models. Organizing multiple spaces is flexible for 

manipulating knowledge. Selection of specific nodes as learning objectives facilitates the organization of 

tutoring activities. However, it is difficult to manage very large transition networks effectively. 

Visualization of large object space is a relatively new technology, which can enhance representation of 

object semantics and reduce the chance that users get lost in large object spaces. This is documented by 

researches such as the Internet, databases and software management [Gershon & Eick 95, Gerson & Brown 

96]. Though many researchers attempted to use graphics to enhance some aspects of tutoring systems [Shen 

et al 88, Resiser et al 88, Feifer et al 88, Frasson et al 88, Takeuchi & Otsuti 92, Murray 96, Kabbaj et al 

96, Nkambou et al 96], few researches have used visualization technology for curriculum development 
[Murray 98]. 
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In summary, at present, the main problem of curriculum development is the complexity of the curriculum 
itself. Most existing tutoring systems are domain-specific. Too few researches focus on general-purpose 

development tools. On the one hand, this is because most early ITS derived from expert consulting systems 

that are domain-specific, in which the researchers attempted to transfer some results in expert systems to 
tutoring domain. On the other hand the early ITS did not recognize the difficulties created by the presence 

of many diverse sources of knowledge. Besides, the subject domain to teach and all kinds of relationships 

within it, the pedagogical, psychological, cognitive and the didactic aspects are all important for a real 

tutoring system. Extracting the useful knowledge in these domains is difficult and done by an experienced 

human teacher who is able to combine the related knowledge very flexibly based on his current 

understanding of his students. When this has to be generalized to creating teaching structures adapted to a 

variety of students, their task becomes extremely hard to manage and computer support is required. 

Some researchers proposed general-purpose development environments [Merrill 93] [Gecsei & Frasson 94] 

[Nkambou 96] [Nkambou et al 98] [Murray 98]. These systems have shed light on the complexity of 

integrating various sources of knowledge and pedagogical activities. However, either they were applicable 

only to fairly restricts of teaching/learning tasks or too complex and hard to use practically. 

Since we make the curriculum the focal point of an ITS, we identify the main problems involved in 

designing a general-purpose curriculum development environment: 

• How to simplify the global network structure of a curriculum in order to make the global 

curriculum management task easy 

In order to identify teaching outcomes of a tutoring system, a curriculum author has to divide domain 

knowledge into many kinds of topics. There are various relationships between topics such as prerequisite, 

aggregation, etc. Such topics and relationships form a topic network. The topic network in most domains is 

large involving hundreds, even thousands of topic nodes. In order to organize tutoring activities to teach 

these topic another network that connect topics and tutoring activities should be built. Each tutoring activity 

has to link a series of didactic resources. As a result, the final network that is able to teach domain 

knowledge is too big and too complicated to manage easily. For example, it has been found that a topic 

network for teaching "Excel" contains about 500 topics. The final knowledge transition network contains 

more than a thousand nodes. It is very difficult to develop, maintain and manage such a large network. 
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• How to organize tutoring activities to reflect the incremental way humans learn 

Most tutoring systems form tutoring activities by attaching teaching contents or didactic resources to topic 

nodes. Although some systems can organize topic resources into several groups, for instance, in Eon 

[Murray 98], a topic's content can be organized into three levels including introduction, teach and 

summary, they cannot reflect the incremental way humans leam. Whatever is the introduction, the content 

or the summary, there are some incremental sub-process such as informing the leamer of the objective(s), 

stimulating recall and presenting course material. These sub-processes reflect the way of humans acquire 

knowledge. Currently there is a great need of a curriculum tool that provides facilities to organize activities 

for incremental delivery of domain knowledge. 

• How to visually guide curriculum authors and learners to achieve their goals. 

As mentioned-above any real curriculum is a large network. The structural complexity of a curriculum 

network can easily weaken the creativity required for developing its individual components. In the 

development process of a curriculum, the curriculum author has to enter, edit or update the information 

stored in an internai database. A curriculum development tool should help the curriculum author to control 

the development progress without frequently opening these inner databases. 

In the learning environment, the visual navigation capability offered to leamers is relatively more important 

than that in the authoring tool, because the leamer is unfamiliar with the content domain. When a leamer 

faces what environment to a large and complicated network, some information, such as what topics he 

knows, what are his goals, what is his current progress status, what is the next step, etc.; all of these and 

more is required by the learning process. The leaming environment should visually guide the leamer to 

achieve his or her leaming goals throughout the whole leaming process. 

• How to create different courses to support students evolving preferences 

One advantage of computer-based tutoring is individualized tutoring; that is, the system can organize 

specific tutoring content and activities for the current leamer. Though some domain-specific tutoring 

systems dealt with the issue, it has not yet been tackled in general-purpose curriculum development 

environments. This concerns the issues of how to formalize leamer preferences and how to evaluate the 

adaptability of a course to a specific leamer. 
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• How to dynamically manage a student's learning process 

Dynamic management of learning process refers to the mechanism to handle various possible states of a 

leamer during the learning process. As a result of a learning sequence the learner may have grasped 

nothing, a little, up to everything he or she has to learn. A learning environment should be able to handle 
the results of various possible leamer states. For example, when a leamer lacks of some prerequisite 

concepts, the learning environment should be able to organize specific tutoring activities for remedying the 

learner's missing knowledge. 

1.2 Thesis Obj ectives 

We consider that a curriculum should harmoniously integrate all kinds of knowledge that meet the needs of 

instruction both when managing the authoring process and managing the learning process. The knowledge 

should come from not only the domain expertise [Anderson 88], but also the cognitive analysis of domain 

tasks [Poison 93, Lajoie 89] and pedagogic theories [Bloom 69, 78, Gagné 85b]. A part of our work is to 

find a general approach that allows constructing a curriculum that can: 

support integrated tutoring activities to simplify the curriculum structure; 

- give a visual tool that will help both curriculum authors and learners; 

assist the teaching processes (recommending courses, sequencing tutoring activities, etc.); 

support individualized teaching for a particular student; 

- be used in as many domains as possible. 

This approach also has the advantage of proposing a learning structure that can be updated and enriched 

with its usage. Teachers and learriers can communicate through this evolving structure. 

Our concrete aims are 

1. to provide the means of knowledge representation and organization in a curriculum for facilitating 

domain instruction by pedagogic experts or domain experts as well as knowledge acquisition by 

students; 

2. to provide ways of aggregating knowledge about the subject domain and about learner capabilities so 

that the curriculum structure is practically manageable; 

3. to use the visual means to satisfy the design and use of a curriculum 

4. to propose approach for the generation of multiple alternative paths to reach a group of learning goals; 

5. to evaluate courses to enhance individualized teaching; 

6. to dynamically manage the process of remedying leamers misconceptions. 
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1.3 Contributions 

The contributions of this thesis include: 

(1) making use of visual interactive environment to satisfy the needs of curriculum authors and leamers; 

(2) augmenting the curriculum models (like CKTN) through an integrated transition network structure that 

is simpler to manage. 

• Generalizing the use of a visual interactive environment to meet the needs of both curriculum 

based course authoring and actual course delivery to students 

This thesis provides advanced graph editing abilities for visually building, organizing and manipulating 

teaching activity networks. All these fimctionalities are implemented based on a direct manipulation user 

interface. A curriculum author chooses a node template and positions a new node; the system can 

automatically create and display the new node. The author, then, can edit the visual properties (such as the 

number of capability levels) and irmer (that is not visible) attributes of the new node. Other functionalities 

such as creating links, deleting nodes, deleting links and laying out a network can also be carried out by 

simple direct manipulation. 

Color and shapes for the visual curriculum are used extensively to convey all kind of complex information 

for the authoring tasks and learning process. Visual and dynamic navigation ability is extensively 

exploitated in the thesis. When a curriculum author enters or edits the irmer attributes of nodes and links, 

the system can memorize current development progress. Colors of visual cens indicate whether or not a cell 

contains all the necessary information. It is not necessary for the author to frequently open the inner 

database to view the development progress. The mechanism of visual navigation can also be used for 

dynamic support in curriculum development process, for example for seeing all activities a didactic 

resource is used for, or for viewing the distribution of one kind of didactic resource in the whole activity 

network. The navigation ability for learners can help a learner view the whole lcnowledge network, set his 

or her leaming goals, display current states, display current recommended tutoring activities. For instance a 

student can very easily see what he/she has learned so far, which resources to be learned, and what are 

his/her next learning goal(s). 

The simplification of the global curriculum network makes it possible to create multiple alternative courses 

for a set of learning goals. Alternatively the 'camer can select his/her current preferred courses. The system 

can recommend one course among the created multiple alternatives courses, which is the most adapted 

course to the learner's current profile. 
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This thesis proposes a mechanism for dynamically managing the learning process. It can combine various 

delivery modules of tutoring activities or tutors with different diagnosis abilities. If a learner fails to 

understand a capability that is not contained M the current course, the system can go back to the overall 

curriculum to create a sub-network for teaching the rnissing capability. If the learner doesn't acquire some 

capability levels that are prerequisites of a capability, the system can create a new path for the missing 

capability levels. If a delivery module can evaluate a learner's state as only "mastery" or "not mastery", the 

system can choose alternative resources to use for teaching. 

• augmenting the existing curriculum models (like CKTN) through an integrated transition 

network structure that is simpler to manage and yet integrates the well known instructional 

theories about instructional events and teaching objective levels from Gagné and Bloom 

This thesis defmes a visual curriculum that organizes teaching outcomes, tutoring activities and didactic 

resources as a visual network with nodes and links. We absorb the overall idea for organizing transition 

networks from CREAM, i. .e., from prerequisite capabilities to transition actions and from transition actions 

to output capabilities. There are two kinds of nodes in the defmition: "capability nodes" representing 

teaching outcomes and "transition nodes" representing tutoring activities. Each node contains a group of 

visually manipulatable cells. A capability node can contain several incremental capability levels. A 

transition node consists of structured instructional events, which are organized by combining Gagnes 

instructional event theory and Blooms objective level theory [Gagné, 85, 92, Bloom 69, 78]. The 

relationship between a capability and a transition node is either a prerequisite relationship or an output 

relationship. A visual curriculum includes the means to build, organize and manage tutoring activity 

networks. A visual curriculum has to supply facilities to help authors and learners in performing their tasks. 

In order to simplify the global transition network structure (like CKTN in CREAM) of a curriculum, we 

propose the concepts of multiple-level capabilities and aggregated capabilities. A multiple-level capability 

is the capability that can be divided into several incremental levels. For example, the capability "applying 
Newtons law: F=m*a (Force equals to mass times acceleration)" may be divided into four levels: (1) 

stating the law, (2) using the dimensions of variables in the law correctly, (3) applying the law to simple 

instances, and (4) applying the law to general instances. With the help of transition nodes, a curriculum 

author can organize tutoring activities to support the teaching of each capability level. An aggregated 

capability includes a group of simple capabilities, each of which has just one level. These simple 

capabilities can have the same or different types (such as a fact, a concept or a rule). For example, 

"identifying the defmition of WVVVV" and "stating features of WWW" are two simple capabilities. They can 

be combined into an aggregated capability called "understanding WWW" with two levels: "identifying the 

defmition of WVVW" and "stating features of WWVV". The mechanism for aggregating capabilities 
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decreases the number of nodes and links in a transition network to a great extent, making it more practical 

to use by both authors and leamers. 

These ideas are verified in an authoring and learning prototype developed in the Java programming 

language. 

1.4Thesis Organization 

This thesis is divided into nine chapters. Chapter 2 is a review of computer-based tutoring system and 

curricula 

Chapter 3 reviews the graphical and visual aspects of existing tutoring systems and curriculum 

development tools. 

Chapter 4 dermes a visual curriculum structure called VITCAM (Visual Interactive Transition, Course and 

Activity Manager). VITCAM consists of three sub-models called VTRANS (Visual TRANSition model), 

VCOURSE (Visual COURSE model) and VACT (Visual ACTivity model). The VTRANS model provides 

means for organizing transition networks, whose output is a central data structure called Tnet (capability 

Transition Network). The VCOURSE model supplies ways to create multiple alternative courses for a group 

of selected goals, with a structure called Cnet containing multiple alternative paths as its output. The VACT 

model orders tutoring activities in a selected course for the current context and current student, which 

outputs a sequence of tutoring activities called Anet. 

Chapter 5 focuses on the VTRANS model. In this chapter, we propose the approaches for organizing and 

managing capability transition networks. We derme capability nodes, transition nodes and links to connect 

these two kinds of nodes for building a capability transition network, known as Tnet. Meanwhile, the 

mechanisms for visually creating and managing capability transition networks are described. 

Chapter 6 describes the mechanisms for creating multiple alternative courses (i.e. the VCOURSE model). 

Chapter 7 characterizes the dynamic management of a learning process (i.e. the VACT model) based on the 

proposed capability transition networks. This includes evaluating courses, identifying necessary tutoring 

actions for a particular student's goals, sequencing tutoring activities (i.e. Anet), and dynamically 

remedying students misconceptions. 

In Chapter 8, we present the system prototype and its application to teaching HTML. 
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Chapter 9, the last chapter, summarizes the thesis contributions, the limitations of the proposed models, the 

comparison between VITCAM and CREAM, and provides suggestions for further research and 

development. 
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Chapter 2 

Computer-Based Tutoring Systems and Curricula 

In this chapter we first review computer-based tutoring systems and authoring systems. We, then, focus on 

checking the existing curriculum structures as the main frames of tutoring systems. 

2.1 Computer-Based Teaching and Learning 

Leaming is a process by which an individual acquires new lcnowledge. It allows a leamer to develop skills, 

attitudes and values that can add them to his or her cognitive structure [Legendre 93]. Some researches 

have attempted to model the learning process, in particular those of Lansky [Lansky 75 ] and of Gagné [ 

Gagné 76, 92]. The last author seems to be more explicit. According to Gagné, leaming is the result of 

interaction between students and their environment. He had classified these interactions into an eight 

phrases model (Figure 2.1), in which each phrase corresponds to an internai process being able to produce a 

type of leaming [Robidas 89]. An (intemal) leaming process can be brought about by the extemal events 

coming from the educational environment. When these extemal events are planned with the goal of 

supporting a sequence of leaming steps, one talks of "teaching". The role of teaching (or a teacher) is to put 

certain factors in place to stimulate the leaming process [Gagné 92]. These factors can be organized to 

affect the motivation of students, their attention, or any other processes that compose a 

Le aming Phase 	 Teaching Phase 
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leaming action (figure 2.1). For example, a way to promote positive expectations (i.e. to establish 

motivation) is the communication to a student of the importance of a learning goal (that we call "teaching 

objective"). In short, teaching is one way of producing leaming in a student. 

2.1.1 Computer-Assisted Instruction 

Computer-Assisted Instruction (CAI) appeared in 1950s. A CAI system, largely abandoned now, was a 

pre-programmed system that placed the student in a simple interactive environment. He or she answered 

some questions (of true / false or multiple choices) on screens conceming texts that the system presents to 

the student. Certain systems contained evaluation tests. The evaluation of student responses permitted the 

system to decide on the next frame to present. The evaluation was limited only to decide whether the 

response was correct or wrong. The big wealcness of this approach is that there is no deep analysis of 

domain concepts and students responses. This type of system evolved with the use of pattern-matching 

techniques to analyze the responses, and later (in 70s') toward adaptive systems (generating didactic 

materials, in particular for arithrnetic problems and vocabulary acquisition) [Uhr 69]. In such a system, the 

student model is usually a summary of his past behavior parameters. This evolution represents a big step 

toward individualized teaching, but it remains insufficiency because of the difficulty of analyzing and 

comprehending students intentions as well as the inability of reasoning on the teaching domain, [Burton 

82]. 

The curriculum in these systems is not taken into account. They use just a simple linear organization 

(sequences of frame screens) in a preordained order based on students responses. For example, in the 

system of Kirnball (Integration) [Kimball 82], the advice is given to the student according to the quantity of 

entered data for his or her solution, rather than the validity of his or her response. Besides, there is no 

access to the content of a frame, so the thought domain can not be explained. 

In 1970s, Carbonell [Carbonell 70] proposed a system (SCHOLAR) where for the first time artificial 

Intelligence techniques were used. In SCHOLAR, knowledge to teaching process was separated from 

domain expertise knowledge. (often called domain knowledge). Thus, the system had a semantic network 

that represented the fact on the geography of Southem America; and another part, a program for managing 

the interaction with a student. This proposal started the evolution of CAI toward the intelligent Computer-

Assisted Instruction. 

2.1.2 Intelligent Computer-Assisted Instruction 

Unlike classic CAI systems centralizing on the interaction process between students and computers, 

intelligent computer-Assisted Instruction (ICAI) systems focus on students' knowledge and explicit 

representation of knowledge for the realization of tasks. 
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In ICAI systems, intelligence carries out the tasks that are not explicitly foreseen by the program. ICAI 

systems are often called Intelligent Tutoring Systems. Burns and Capps (1988) proposed that an ITS is a 

CAI system that is capable of following three tests: 
it should lcnow sufficient the teaching materials in order to make inferences permitting domain 

problem solving; 
it should be able to deduce the knowledge level of student on the domain; 
tutoring strategies should reduce the gap between the student's performance and the experts 

performance. 

Based on conditions of Burns and Capps, an ITS should include three principal models (figure 2.2): an 

expert model, a student model and a pedagogic (tutor) model. Besides, teaching should be developed in an 

environment integrating a communication interface between students and the system. In the same order of 

ideas, Nicaud and Vivet [Nicaud 881 proposed four components as the basic components of an ITS. 

Teaching requires an interaction between the agents implied, known as a tutor, a student, a domain expert 

and a learning environment. According to Woolf [Woolf 92b1, a teacher model (Tutor) should include the 

methods to remedy errors, the methods for the selection of examples, of analogy and of strategies for 

responding to student 's erroneous behavior. 

Environment 

Interface 

Figure. 2.2 — Basic Architecture of ITS [Burns 88] 

The student model includes students knowledge. The expert model embodies the expertise on the teaching 

domain; it should be able to solve the problems that are posed to the student with reasoning on the 

knowledge base making up the domain expertise, i.e. the teaching materials (subjects) [Nicaud 881. The 

communication model, containing an environment and a communication interface, is built on the set of 

elements that interact with the student (simulation, menu, command language...) [Frasson 91]. A system is 

considered as intelligent only if the previous four modules are well implemented [Woolf 88, Kearsley 87]. 

ITS that ascribe the same importance to all these modules are not numerous. When some ITS put more 

emphasis on the student model (Sherlock Lajoie 89], Geometry-Tutor [Anderson 93, etc.), others 
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concentrate more on the teaching strategies, or on the interface model (Cardiac Tutor [Murray 93a]). We 

have summarized in table 2.1, and give the importance degree of each module in these ITS. 

TAB. 2.1-Summary of the evaluation of importance of each module in ITS. 

Systems Domain Strategy Student Model Interface 
Cardiac Tutor [Murray 93a] * - _ ** 

Static Tutor [Murray 93a] ** * * - 

Sherlock [Lajoie 89] * _ ** - 

AMALIA [Vivet 87] ** * _ - 

Lisp Tutor [Reiser 85] ** * ** - 

Steamer [Holtan 84] ** _ _ ** 

Geometry Tutor [Anderson 83] ** _ ** ** 

SOPHIE [Brown 75] ** ** _ _ 

Each type of ITS is characterized by the way it is used for teaching or for leaming. We identify six types of 

ITS: the Socratic ITS, the task-based ITS, the simulation and demonstration systems, the exploration 

environment of learning, the critic systems, and the social systems. All those types of tutoring strategies 

around a cognitive model has been evoked by Frasson [Frasson 94a] who thought the ITS as module 

environment capable of supporting all tutoring strategies. 

Socratic ITS allows, with the help of a dialog with student (Socratic dialog, question / response ...), the 

teaching of facts and necessary skills for inferring other knowledge [Allessi 85]. 

Task-Based Systems teach necessary skills and procedures for accomplishing a task through exercises, 

examples and problems. 

Simulation and Demonstration Systems represent a concrete situation in which leamers can experiment or 

experience with problem solving [Allessi 85]. They do not teach really in the sense of Socratic or task-

based ITS. 

Exploration-Based Systems help a student learn, by exploring the learning object with some guidance. 

Critic Systems are used for criticizing the students during problem solving. The critic consists of aiding, 

preventing and reducing judgement errors with the goal to bring users toward a correct solution. 

Social Systems are the ITS that involve, in addition to the classic agents in ITS, other agents such as several 

other students, one or more other teachers [Chan 90] [[Aimeur 95a, 95b] 
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Integrated Environments can be proven to be very useful for enhancing the power of ITS; the module 
environment proposed by Frasson et al [Frasson 94a] goes in this sense. An approach building integrated 

ITS is actually implemented in the project SATARI [Frasson 94b, Gecsei & Frasson 94]. 

2.2 Authoring Systems for Instructional Design 

We have seen, in the previous paragraphs, that restricted domains do not pose the problems linked to the 

design and organi.zation of teaching. The task of teaching design, also lcnown as instructional design [Brien 

92], is a complex process requiring dedicated experts. A theory of instructional design has been developed 

[Gagné 93, Merrill 91, Tennyson 93, Reigeluth 93]. Due to the difficult, repeated and costly process, it is 

necessary to provide effective tools. The required expertise is difficult to acquire, and the integration of 

such an expertise in an authoring environment is absolutely necessary. The integration leads to the 

availability of powerful tools well integrated in the authoring environment. The development of some 

systems such as ISD Expert [Merrill 87, 91, 93], IDE [Pirolli 90], ISD Expert [Tennyson 93], GAIDA 

[Gagné 93], fall in this category. We describe some examples of authoring systems dedicated to the 

instructional design in the following paragraphs. 

2.2.1 GAIDA 

Gagné proposed an approach to the automation of instructional design [Gagné 93]. According to him, 

successful teaching requires representing knowledge in terms of capabilities that one wants the student to 

acquire as well as the teaching strategies to use for favoring the knowledge acquisition. In particular, 

teaching strategies are identified for each capability [Gagné 85b, 93]. His proposed system called GAIDA 

(Guided Approach for an Instructional Design Advisor) does not use artificial Intelligence techniques. It 

uses neither an expert system nor reasoning nor a user model; it takes on simply the designer in a dialog 

(based on the process of development proposed by Gagné) that accustoms him to a design format 

appropriate for the development of effective teaching materials. This approach is not generative to some 

extent that all teaching knowledge is entered explicitly by expert. 

2.2.2 Elaborated Frame Networks 

Merrill considered the GAIDA as the first generation and its attributes are limited as follows: 

- lack the integration of design activities; 
limited means of representation and acquisition of knowledge; 

weak specification for course organization; 

- absence of consideration of dynamic features of teaching system development. 

Thus, Merrill proposed an approach for the second generation authoring systems. According to him an 

authoring system should include the following fimctionalities: 
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Being capable of analyzing, representing and leading teaching; 

Being able to produce pedagogic prescription for the selection of sequence of teaching transactions 

[Merrill 91]. The transactions of teaching are the tactics of teaching, the interaction models, conceived 

for returning the student capable of acquiring certain types of knowledge or skills. In order to be able 

to produce the pedagogic prescriptions for the selection and the sequences of teaching transactions, the 

second generation of the systems should contain the rules of prescription of teaching strategies; 

Being the opening systems, capable of incorporating new knowledge on teaching and leaming and 

applying them to design process; 
Integrating the teaching development phases (contrary to the first generation systems where the work 

in each phase is relevant independent of other phases); 

Merrill's approach is generative in the sense where the teaching transactions can be generated from the 

rule-based expert systems [Merrill 87]. In his transaction theory, Merrill [Menin 91, 93] had identified 

three types of knowledge to represent: the knowledge of entities, the knowledge of activities (the 

knowledge of different stages of the execution of a task), and the process knowledge (for example, the 

interpretation of a state of a machine). 

A structure EFN (Elaborated Frame Network) was proposed for representing the three types of knowledge. 

The teaching transactions are built for exploiting the structure. Four types of transactions have been 

identified for acquiring the different types of knowledge: the transactions of components, the transactions 

of abstraction, the transactions of association and the transactions of enterprise. 

Transaction of Components 

It allows the teaching of entire or partial cognitive structure. Three kinds of transactions had been 

identified: 
Identifier (it has students indicate names, functions, properties and places related to all parts of an 

entity (knowledge of "What")); 

Executor (it has students acquire the stages of an activity); 

Interpreter (for the process). 

Transaction of Abstraction 

It is used to teach abstract hierarchies. Five classes were identified in this category: judge, classify, 

generalize, decide, and transfer. 
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Transaction of Association 

It teaches two or more cognitive structures connected by an association relation. This type of transaction 

allows a student to acquire a set of components in the context of another group of competence of leaming 

by analogy, of acquiring new competence by referring a competence having achieved, of invention new 

knowledge on entities or properties, or discovering new process. At least five classes had been identified in 

this type: spread, make analogy, substitute, conceive, and discover. 

Transaction of Enterprise 

It teaches all cognitive structure (and the relation among them) for a particular task. 

2.2.3 Some Other Authoring Systems 

Tennyson proposed an approach [Tennyson 931 somewhat more ambiguous than that of Merrill. He 

proposed a system (ISDExpert) that provides an adaptive interface and some ITS techniques for 

instructional designers, but lacking experimentation facilities to guide the conception of quality teaching. 

ISD Expert is used for the purpose of modeling experts knowledge on the process of instructional design 

to aid the building of teaching. It should be able to not only post up the list of applied rules (like that in 

classical expert systems), but also support and explain its recommendation and its prescriptions in the 

language of instructional design. ISD Expert will thus be a sort of ITS for instructional building, integrating 

the aspects of coach and advice (figure 2.3) and accompanying an intelligent interface for the 

communication between the author users and the system. 

Figure 2.3 Architecture of ISDExpert (Tennyson 93]) 

We cite only some other examples. 
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IDExpert [Merrill 87, 91, 93]: a prototype of rule-based expert systems for development of instruction, 
which generates recommendation based on the structure of content, on the organization of courses and 

on the teaching transactions. 
IDE [Pirolli 91] is a hypermedia environment for building teaching. It is a system for designers, which 

allows them to enter, edit and handle their analysis and specification. It allows making a knowledge 

structure, a cognitive analysis of tasks and a representation model of information to different levels of 

abstract. 
ISDExpert [Tennyson 93] is a future system of ITS for building instruction. This ITS proposes the 

integration of coach and advisor. It integrates an intelligent interface. 
DOMLNIE [Elsom-Cook 88] is an authoring environment supporting the development of teaching 

content and curriculum by direct manipulation in a graphic environment. The graphical environment is 

however passive; no behavior of graphic objects is defmed. 

- RAPIDS [Towne 90] is an authoring environment able to support the development of teaching content 

and curriculum by direct manipulation. One prepares panoplies of a simulated equipment pieces and 

assembly mies that an author will manipulate to build instruction. 

DEGREE (Environment of demonstration generation) [Nkambou 95d, 95c] is a system like RAPIDS in 

the sense of using direct manipulation. Developed in the frame of the project SAFARI, it allows to 

build tasks by direct manipulation and construct scenarios that make part of demonstration to present 

to the student. 

- SGD (Atelier De Genie Didactical) [Paquette 96], is a system for building training estimation for 

teachers. 

- CREAM Tools [Nkabmou, Frasson and Gauthier 98] (to discuss in detail later). 

- Others see ITAIED special issue on ITS authoring 1998 & 1999. 

2.3 Curriculum 

We introduce in this section a study on the notion of curriculum in teaching. This study is made also from 

the point of view of Education, of Cognitive Psychology and of Computer Science. This will clarify the 

concept of a curriculum and underline its importance in a teaching system. 

In the educational domain, the development of a curriculum passes by three stages: the identification of 

teaching content, the defmition of teaching objectives and the determination of necessary means for 

deriving the instruction steps needed to meet the defmed objectives. 

Several studies on these curriculum development stages have been undertaken [Finch 86]. The problem is 

to know by which stage it starts for obtaining an optimal curriculum. Some people propose to start by 

building the objectives before identifying the representation of content. The consequence of this approach 
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is that one can fmd objectives with weak content. However, when the content deriving materials precedes 

the identification of objectives, the result is tangible and thus is more significant. 

Determination and classification of teaching content consists of identifying and defming the knowledge that 

is used in the teaching environment. The determination of content is based on two phases: the utilization of 

strategies for the identification of relevant knowledge, and the classification and representation of retrieved 

knowledge. 

2.3.1 Strategies Determining Teaching Content 

These strategies go from more subjective to more objective. We have tried to present them in the order: 

philosophic foundation, introspection, functional approach, and task analysis. The utilization of one or 

another strategy in a process of curriculum development depends however on the particular knowledge 

domain. 

The strategy, "Philosophie Foundation", consists of using a specific philosophy or a set of philosophies as 

the foundation for the choice of content. It is based on verbal assertions from educators. For example, 

consider the following assertion: leaming driving theory is the preparation of leaming practical driving. 
Based on this assertion, all content of curriculum of driving theory does not touch the practical driving 

environment. Once the curriculum developers of agree with this assertion, the relevant content to this 

assertion has been identified. This strategy may be more subjective, but it is used widely in the 

development of curriculum in academic domains. 

An introspection strategy is based on examining the thinking and befiefs of people while implied in the 

development of a curriculum relative to a knowledge domain. It implies that one or more teachers or 

domain experts pose the following foundational question:" whether this or that item seems pertinent to 

include in the curriculum?" The different contributions will be analyzed later in order to select the most 

pertinent content. Thus, the content follows from a discussion between a group of professors. The 

advantage of this approach is that one can get a curriculum with rich content. More specific approaches 

within this identification process can be: 

Seeing the description of domain knowledge as it is progressively linked into a curriculum; 

- Identifying the general groups of implied abilities; 

- Identifying the specific performance( or behavior) for each group of general abilities; 

- Structuring the performance in a significant leaming sequence; and 

- Specifying the levels of competence for each task performance. 
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One the two previous strategies are based on the subjective judgement, another strategy is more objective: 

The latter approach is a functional approach. It is based on the definition of functions leaming environment 

in terms of the operations executed in the environment. The content is thus identified in terms of functions. 

The Task Analysis strategy involves the identification and verification of tasks executed in an environment, 

with a view of including them as the content of a curriculum. Several methodologies exist for task analysis 

[Bovair 90, Polson 93, and John 94]. 

The strategies for content determination are very diverse. The question is that given certain resources, 

which strategy could be the most appropriate for determining the content of a specific curriculum? In 

general, the utilization of a unique strategy cannot always cover all information implied in a domain; 

several strategies should be used for identifying significant content. This can render the final curriculum 

capable of covering the needs of all students. 

2.3.2 Classification of Content 

Classification of knowledge is extremely important in the cognitive design of teaching and leaming since it 

orders the strongly different teaching strategies and the representation in human memory. We introduce the 

notion of capability, in the sense of Robert Gagné, for describing the outputs of leaming carrying on 

content. By capability, what one acquires is the ability developed, allowing a person to succeed in the 

exercise of an intellectual, professional, or physic activity. It deals with information structure (knowledge 

of cognitive unit) stored in the long-term memory of the student and that give possibly a performance. It 

represents what is leamt (product of leaming) [Grippin 84]. Several theories have been developed in the 

education domain, in the psychology and in the artificial intelligence for characterizing the product of 

leaming. We introduce in the following paragraphs some of the theories. 

Gagnés Capability Theory 

In his theory of outcomes of leaming (knowledge), Gagné identified five big categories of capabilities 

[Gagné 85] that can produce most of human activities: verbal information, intellectual skills, motor skills, 

attitudes and cognitive strategies. 
Verbal information is the kind of knowledge we are able to state. The possessors of this kind of 

capabilities can explain, describe, or name objects or facts. 

Intellectual skills enable individuals to interact with their environment in terms of symbols or 

conceptualizations. For example, solving an equation, programming, etc. Gagné divided intellectual 

skills into several sub-categories ordered by the complexity of mental operations: discrimination, 

concrete concepts, defined concepts, mies and high-order rules (problem-solving 
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- Cognitive strategies are the kind of capabilities that allow acquisition of other types of capabilities and 

their management in the reasoning and the resolution of problems (learning strategies, problem-solving 

strategies 
Attitudes are the internai states that influence the choice and the actions of a person that possess them. 

For example, a favorable attitude to classic music influence the selection of information that one wants 

to listen 

- Motor skills, which remain too little consideration in the goal of learning, are a class of capabilities 

(output of learning) linked to the activities conceming the movement: driving a car, typing, sport 

activities. A curriculum can sometimes imply the acquisition of motor skills. 

One of advantages of this classification is that, the particular conditions for favoring the acquisition of all 

types of knowledge in this taxonomy have been defined by Gangé [Gagné 85b,931. 

Theory of complex learning 

According to this theory [Norman 75], the complexity of learning is defmed by the existing of experts in 

the subject. Since some experts of coolcing exist, cooking is a subject of complex learning. Norman has 

identified five categories of capabilities: 

- motor skills, 

- intellectual subjects, 

- subjects based on the procedures, 

subjects based on facts, and 

mixed subjects. 

In this theory, capabilities (products of learning) are not linked to subjects, rather than to lmowledge 

modules. The lcnowledge modules are some units of memory in the interconnected or hierarchic structure. 

They are acquired through the stages: (1) increase (2) re-organization and (3) adjustment. 

The increase stage consists of acquiring new verbal information. The critic formulated by connecting to 

learning strategies of this stage is vague (for example, study and leam). The re-organization is a process of 

reorganization of increase, in a more significant structure. The result is the new sense given to previously 

leamt information. The teaching strategies used in this phase are analogy, metaphor, or examples. The 

adjustment phase consists of refining previously leamt knowledge. During the process, the structures get 

more effective. There is neither new lcnowledge nor new structure. 

The classification of Norman does not include the teaching of learning strategies. According to him, the 

learning strategies can be leamed through the three phases. In this classification, the three phases, in fact, 

are the processes of knowledge acquisition. 
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Extended capability theory with meta-cognitive or social competence 

Grippin and Peter [Grippin 84] added a new dimension in the taxonomy of Gagné: the extension of 

cognitive strategies with meta-cognitive strategy. The utilization of this cognitive strategy needs a control 
of a student according to a situation. The capability being able to control the strategies is called meta-

cognitive strategy [Tardif 92]. In fact, meta-cognitive is the strategy that manages the cognitive strategies. 

The classification proposed by Chamberland and others [Chamberland 95] is a recent extension of Gagné s 

classification. In the classification, six categories of capabilities are described: declarative knowledge, 

intellectual knowledge, motor capabilities, strategy knowledge, attitudes and social competence. Except the 

social competence, the other categories correspond to those of the taxonomy from Gagné. 

Cognitive, Emotional and Psychomotor Theory 

The taxonomy of Bloom brings up three domains of products of leaming, each of which corresponds to a 

capability: the cognitive capability, the emotional domain and the psychomotor domain. In the cognitive 

domain, the capabilities go from the recall of facts to the interpretation of their values. The emotional 

domain handle capabilities related to attitudes; while the psychomotor domain handles capabilities relative 

to motor skills. This theory is very useful for the building of evaluation test. It can also cover a vast 

category of learning. The analysis of leaming and prescriptions for leaming based on this model are 

however too weak because of lacking the precision of strategies of acquisition. 

Component Display Theory 

The theory of Merrill proposed two categories of learning results: the capabilities following the type of 

content and the capabilities following the levels of tasks [Merrill 87, 91, 93]. From the point of view of 

content, we have facts, concepts, procedures and principles. From the point of view of tasks, we find the 

following expression: recall an instance word for word, recall an instance in other terms, recall a 

generalization word for word, recall a generalization in other terras, use a generalization and search a 

generalization. 

The two dimensions forms a matrix with 24 cells (capability matrix) each of which represents a capability 

(a product of learning) (figure 2.4) 

Some examples are: 
Example 1: division of fraction (utilization of procedure). In this example, the division of fraction 

represents the content and the utilization represents the task. 
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- 	Example 2: the defmition of a chair (recall a concept word for word). 
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Figure. 2.4 Capability matrix 

The theory results in a matrix called the matrix of teaching strategies. The combination of the capability 

matrix and the matrix of teaching strategies is able to produce the prescription for teaching. Some rules are 

developed in the theory for the prescription of teaching. The result gives the prescriptions generated by the 

sort system: "Say" an "example" for leaming a "recall an instance word for word". This explains the 

necessity of arranging the rules of prescription that gives the result. 

This theory has been used for conceiving teaching in the commercial domain. Its complexity limits its 

utilization only for the users initially implied in its development. 

Outcomes of learning Based on cognitive psychology: know versus know-do 

Three categories of knowledge have been identified in the domain: 

Declaratives: This is the theoretical knowledge often called know. One talks about also the knowledge 

of facts, of rules, of laws and of principles. This type of knowledge does not contain action. However, 

they can be translated in procedures or in conditions for actions. 

Procedures: This type of knowledge describes how to do something. It deals with the stages to realize 

an action. One talks about still the know-do or dynamic knowledge. The acquisition of this type of 

knowledge demands that the student should be placed in a context of action. They develop exclusively 

in the action. For example, solving a series of problem of multiplication. The objectives linked to the 



23 

development of procedural knowledge demands that the student be placed continuously in a context of 

relation of tasks. 

Conditional: A conditional knowledge describes the condition of use of procedures. It deals with when 

and why of the action. They are generally represented by a series of constraints following an action, for 

instance, distinguishing a square from a rectangle. 

In summary, seeing all the theories on the classification of knowledge, it seems that the classification of 

Gagné is more elaborated and include most of other theories (see Table 2.2) 

TAB 2.2—Comparison of outcomes of leaming 

Gagné Merrill Anderson Winograd Bloom 

Rules Procedures Procedures Conditional Cognitive 

Concepts Concepts Procedures 

Principles, laws Principles 

Proposition Declaration Declaration 

Cognitive Procedures Procedures Procedures 

Strategies 

Attitudes Affective 

Motor Skills Psychomotor 

In addition, Gagné has defined for each category of capability of his taxonomy, the leaming stratégies and 

the conditions in which the acquisition may be easy [Gagné 85b, 93]. We use the capability theory of 

Gagné as the outcomes of teaching in our organization model of knowledge. 

2.3.3 Knowledge Representation and Organization in ITS 

According to Newell, Hebert and Simon [Luger 93], an intelligent activity, as much in human as in a 

machine, is realized by using: 

- the symbolic representation for representing the significant aspects of a problem domain, 

- the operation on the representation that allows generating potential solutions of posed problems, and 

- the search algorithms that allow to select one solution among different solutions. 

This hypothesis, still called the hypothesis of symbolic representation, allows to distinguish two types of 

knowledge used in the symbolic systems: declarative knowledge (facts, schemes, etc.) and procedural 

knowledge. The last one can infer declarative knowledge. However, intelligence is handled as the 

integration of a set of specific facts and a set of procedures for manipulating facts. This is true in a certain 

measure, when it deals with the knowledge representation in an ITS. Two big categories of knowledge are 
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considered in an ITS: the knowledge linked to a domain to teach (frequently called domain knowledge) and 

the knowledge on teaching means (strategy knowledge). 

2.3.3.1 Representation of domain knowledge 

Representation based on rules 

This approach consists of modeling the expertise of a domain with the help of a rule base; which can 

represent the domain knowledge and make reasoning on the domain knowledge [Anderson 88]. The system 

is often modeled with the help of production rules representing domain knowledge or strategy knowledge. 

The domain or strategy knowledge is compiled in a rule packet. This approach has been used in several ITS 

like Geometry Tutor [Anderson 83], BUGGY [Burton 82], GUIDON [Clancy 82a]. The advantage of this 

approach is that it is easy to exploit and allows a good representation of procedural knowledge. The 

disadvantage is that it is difficult to represent structured knowledge such as concepts and relationships 

between them. 

Representation based on networks 

It uses network to represent domain knowledge. This representation takes into account the cognitive model 

of domain. It allows to representation most types of knowledge, but it is more appropriate for the 

representation of declarative knowledge. The advantage of this representation is intuitive for domain 

experts; it is easier for an expert to express his knowledge with this form than with the rule form. Several 

varieties of this type of representation have been proposed in AI: semantic networks [Quillian 67], 

conceptual graph [Sowa 91, Kabbaj 96] and the frame networks [Minslcy 81]. 

Semantic networks in SCHOLAR were used for representing domain knowledge (facts on the geography of 

South America). Another example using network representation approach is the subject networks proposed 

by Murray and Woolf [Murray 93a]. This is a kind of semantic network that is used to represent domain 

knowledge and different relations among them. Knowledge in a semantic network may be facts, concepts, 

procedures, principles, etc., and is represented by nodes of network. Murray and Woolf identified different 

types of links between knowledge: familiar, deep familiar, part of, error of critic concept, simple 

prerequisite, typical prerequisite (figure 2.5). The system KAFITS [Woolf 89, Murray 91] provided a 

browser that is used for building this representation. 

Representation based on Layers 

Schreiber and his colleagues [Schreiber 93] proposed an approach of knowledge representation on four 

layers: domain, inference, task, and strategy. The theory of domain contains concepts, relations between 
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concepts, expressions and relations between expressions. According to the authors, the theory models the 

static knowledge and declarative domain. There are two types of relations between concepts: aggregation 

relations (of sub-components) and relations of specification. An expression represents a property of a 

component (a concept and its states) or a test (and result of the test). Two types of relations exist between 
expressions: the relation of causality and the relation of indication. If we are in the context of systems, the 

layers represent the static and the functional aspect, introduced by the expressions and the relations 

between expressions. The mixing of static and functional levels can cause some problems at the time of 

exploitation of representation. 

Figure 2.5 A portion of subject network in STANTIC-Tutor 

Most previous representation approaches make abstraction of the aspect of knowledge organization for 

final teaching, yet it is necessary if one wants to teach [Merrill 88, Lesgold 88, and Webster 94]. 

2.3.3.2 Representation of Strategic Knowledge 

The strategy knowledge from the point of view of system concems teaching strategies (strategies for 

activity organization), planning strategies (choice of content to consider when to give teaching), and 

tutoring strategies (selection of tactics, intervention strategies and/or communication). The strategy 

knowledge in the point of view of the student deals with problem-solving strategies [Gagné 92, Schreiber 

93] and leaming strategies [Gagné 92]. From the point of view of curriculum management, the involved 

strategy knowledge mainly is the teaching and tutoring aspects. The learning strategies can be considered in 

activity deliver module in tutoring systems. 
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In most ITS (SCHOLAR, WEST, GUIDON, WUSOR), strategy knowledge is represented by production 

rules. Figure 2.6 shows an example of strategy representation by rules in GUIDON [Clancey 82b]. This 

example illustrates how the communication model of GUIDON guide the session to help the tutor's rules 

(Noted T-RULESxxx, where xxx represent the number of the rule). The language of plan and the meta 
rules [Vivet 881 are other examples of strategy representation to the help of rides. The figure 2.7 (a) and (b) 

show respectively an example of language of plan and an example of meta-rule 

T-RULE26.03 
IF: The recent context of the dialogue mentioned either a 'deep subgoal" or a 
factor relevant to the current goal 
THEN: Define the focus rule to be the d-rule that mentions this focus topic. 

Figure 2.6. An example of rule representing a strategy in GUIDON (Clancey 82 in BROWN 82) 

For verify that a theme is known 
Try successively 

-ask questions on theme formula 
-propose an exercise 
-in case of failure of exercise 

*update student model 
*assign new tasks in the agenda on the theme 
(a) 

If the student is a child 
Then keep just the pedagogic plan 
Write in a familiar language 
(b) 

Figure 2.7 — An Example of plan language and meta-rule 

Such approach of representation is more specific in the given domain and difficult to transfer from an ITS 

to another [Clancey 92]. Woolf and McDonald [Woolf 84] studied the strategy representation of GUIDON 

(complied in about fifty tutoring rules) for transferring from a domain to another. Thus, the system MEMO-

Tutor [Woolf 84, 87] goes up to an abstract level (concerning the strategies) which is higher than that in 

GUIDON. We introduce in the following some other formalisms for the strategy knowledge representation. 

Representation of Tutoring Strategies 

TUPITS [Woolf 92b] is a frame network, which represents tutoring strategies with the help of a primitive 

action vocabulary, such as teach, motivate, summarize, contrast, give examples, etc. A frame represents an 

object in TUPITS and some relations, such as prerequisites or corequisites, link each frame to other frames. 

These objects may be lessons, knowledge units, examples, questions, etc. The information associated with 

each object allows the system to dynamically reply to new tutoring situation. For example, each knowledge 

unit, or each subject represented as an object, has an associated procedural method: teach, teach 

prerequisite, test student, summary, give examples, motivate student, compare with other knowledge and 

give didactic explanation. 
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The problem in the representation is the mixing domain knowledge and strategy knowledge as if these 

strategies are implemented as the methods of a knowledge object. Against, it can specify clearly the 

strategy associated to the teaching of particular knowledge. 

Management of presentation 

Murray [Murray 91] proposed a response matrix that allows implementing response strategies and response 
tactics (figure 2.8). This matrix combines response strategies, tactics of response and actions of tutoring. 

Figure 2.8 Adapted response matrix [Woolf 92b] 

Several tactics can be associated with a response strategy. A priority thus can be given to each associated 

tactic. This is described by a value of priority in the matrix corresponding to the association, which the 

system should give to the tactic of the strategy. For example (figure 2.8), for being brief, the system should 

be prior to non-intrusive then concise. 

Management of user-system interaction 

The management of interaction between users and a system [Woolf 87] concerns the skills of the system to 

maintain the interactive discourse with a student and to adapt its response to the student according to the 
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levels of discourse. For example, the system should ensure that an interaction is directly linked to the 

student's history, to his or her leaming style and experience with the system. It should reason on the 

student's actions, on the curriculum and on the history of discourse of dynamic means. The first formalism, 

which can represent the type of interaction between the system and a student, was proposed by Woolf and 

McDonalds and used in MEMO-Tutor. The fonnalism is called DWN (Discourse Management Network); 

by the following it has evolved with another version: PAN (Parameter Action network) [Murray 93b, 93a], 

DACTN (Discourse Action Network) [Woolf 92b, 92a]. These are the mechanism in ATN (Augmented 

Transition Network) [Woods 70], which represents and controls the dialogues between a student and a 
system. 

A PAN represents possible a situation space of a discourse when to response a student's request. Arcs in 

PAN are states of knowledge and are defmed as the set of predicates, while nodes in PAN provide actions 

to tutor. The difference from the ATN is that the actions are placed on the nodes and not on the arcs. The 
advantage of the method is that allows the nodes to represent the abstract actions that will be developed 
when the node becomes accessible during the execution of PAN. 

PAN (DACTN) has been used for the representation of communication in the static domain with STATIC-
Tutor, for supporting the development of management skills of time [Slovin 88] and for explaining the 

concepts and the process in the theory of electric networks [Suthers 90]. 

2.3.4 Some Typical Curriculum Systems 

2.3.4.1 Curriculum in BIP 

BIP (Basic Instructional program) [Barr 76] is a tutoring system of an introduction course to BASIC 

programming. It individualizes the teaching sequence via the appropriate selection of series tasks in a set of 

100 examples of problems. Contrary to the approach of probability selection of Kimball [Kimball 82], BIP 

puts its selection strategy on the content information in a network called Curriculum Info Network (CIN) 
that connects tasks in the curriculum to domain objectives (curriculum issues [Lajoie 89]) 

In BIP-I, the curriculum is divided into three conceptual levels. The super level contains the principal 

themes of expertise called techniques, that are ordered in advanced following the prerequisite relations. 

These techniques are composed of knowledge units of immediately lower level called skills. The skills are 

not linked each other. The last level contains tasks that are connected to skills, allowing thus to exercise the 
last one. 

The student model is a conveyance on the skills matching with a numeric value representing the student's 

performance. The last one is compared to a sort of interview (post-test) following each exercise. The 
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strategies of selection of next exercise take into account the values of student model on the skills, on the 

interviews and on the curriculum structure. 

[Wescourt 95] refmes and increases the content information in CIN. The required skills for a 

technique are always regrouped in a set, but this time is organized in another network (figure 2.9). The 

skills are connected by the links representing pedagogic information, besides the prerequisite relations: 

analogy, class-object, functional dependence and relative difficult. Except for this extension of CIN, the 

global structure of BIP-II is identical to that in 	The task of selection should be however more refined 

and more opening. 

Control structure 

Figure 2.9 A portion of curriculum in BIP-II 

A major limitation of BEP is that it does not support diagnosis and reasoning analysis of students because 

there is not task model. However, it is one of rare ITS which the reoccupation is the teaching of a complete 

course. It explains the central role of curriculum in BIP. 

2.3.4.2 Organization of Content in SCENT 

SCENT [Bretch 90] is an adviser system for leaming of LISP. The curriculum in SCENT (SCENT-3) is 

considered as the result of the plarming of content. This approach of curriculum corresponds to the view of 

McCalla [McCalla 90], according to which the curriculum corresponds to a plan of course adapting a 

particular student. The notion is taken back in PEPE [Bretch 90] where an extended structure of the granule 

theory [McCalla 94], with the introduction to the prerequisite link, in addition to existing links (aggregation 

and generalization), is used for generating a plan called curriculum. We believe that sequencing teaching 

activities dynamically should play a role in curriculum, rather than organizing materials simply for the final 

teaching. 
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2.3.4.3 Organization of Knowledge in Sherlock 

Sherlock [Lajoie 89, Lesgold 92] is an advice-based tutoring system in which the goal is to supervise and to 

help the technician students in airplane who have taken the theoretic courses, to leam the knowledge in the 

detection of breakdown on the F15 of America army. The learning environment includes a simulation of 

test station and equipment to test. The principal strategy consists of confronting a student with a problem; 

including the task of giving a hypothesis on the origin of problem and proposing the solutions for the 
reparation. 

One of the powerful points of Sherlock is that it is based on a solid analysis of tasks (done with the help of 

experts of domain) in detecting the breakdown that poses problems conceming leamers difficulties. The 

analyses of tasks allow to identify the skills (curriculum issues) that distinguish the expect technicians from 

novice technicians. The curriculum issues have been grouped into three categories: the strategies of 
detection, the strategies of repairing, and the strategies of resolution and making decision. Sherlock has 
thus led to 61 curriculum issues, which are implemented as the pedagogic goals. 

A total of 34 problems (10 conceming the devices to test and 24 linked to the station of test) have been 

implemented in Sherlock following the analysis of tasks. Each problem is associated with a knowledge 

structure called WPS (effective problem space) that represents the possibilities of solution. A set of 

curriculum issues is associated to each node of an EPS (figure 2.10). This constitutes the second enters of 
curriculum in Sherlock. 

Figure 2.10 Organization of curriculum in Sherlock 

The development of Sherlock II [Lesgold 92] does not airn at the improvement of curriculum in Sherlock I; 

its objective is especially to improve the modeling of physic system and to refine the student model. In fact, 
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Sherlock I cari know exactly how to handle the solution of a problem, but it has some imperfect data on the 

student's knowledge. The concept reflexive follow has been introduced in Sherlock II for giving the 

possibility for the student to replay his or her solution, by the visualization of a diagram of real circuit 

simulated by the system. Another innovation in Sherlock H is the planning that of the student. The point of 

selection in the problem list is automatically adjusted following the performane of the student on the 

current problem [Katz 92]. This may be considered as an evolution of curriculum in Sherlock. 

As a domain-specific tutoring system, Sherlock achieves meaningful results. It distinguishes domain 

problems from objectives explicitly. However, it is appropriate for only some task domains, rather than a 

general-purpose curriculum model. 

2.3.4.4 Curriculum in SAFARI 

In the project SAFARI, proposed by Gecsei and Frasson [Gecsei & Frasson 94]. Nkambou proposed a 

curriculum model: CREAM [Nkambou 96, Nkambou et al 98]. CREAM organizes learning outcomes, 

objectives and didactic resources as three separated networks first. A global association network, 

Curriculum Knowledge Transition Network (CKTN), is responsible of forming tutoring activities based on 

the three separated networks. 

• CREAM Architecture 

The architecture of CREAM is shown in Figure 2.11. 

Figure 2.11 Architecture of CREAM 

Four models in CREAM are shown in the central rectangle of the architecture. Capability Model 

represents and organizes domain capabilities as leaming outcomes. Objective Model deals with objectives 

to teach capabilities. Resource Model contains all kinds of didactic resources. CKTN is the core of 

CREAM that combines the capability, objective and resource models together to get a knowledge 

transition network that is used for creating tutorial actions. 
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Two interface parts include the didactic workshop used for the acquisition of curriculum knowledge, and 

the interaction between CREAM and other tutorial components in SAFARI such as a planner. The 

CREAM based teaching development process is shown in the Figure 2.12. 

CKTN Editor  

‹. 	Course Generator  

Tutor 

CKTN 

Course Graph 

Lessons 

Tutormg Actions 

Figure 2.12 CREAM based teaching development process 

• Capability Model 

CREAM identifies leaming outcomes based on the classification of capabilities by Gagné [Gagné et al. 

92: intelligent skills, verbal information, cognitive strategies, motor skills and attitudes. Most of them 

also contain some subclasses. 

In the Capability Model, CREAM defmes five types of relationships between capabilities including 

analogy, generalization, abstraction, aggregation and deviation. When to build a capability space, a 

curriculum author should describe all relationships between capabilities. 

• Objective Model 

According to the instructional principles of Gagné, performance objective is to show progress toward the 

instructional goals. These objectives are: 

(1) to provide a means for determining whether the instruction relates to the accomplishment of goals, 

(2) to provide a means for focusing the lesson planning upon appropriate conditions of leaming, 

(3) to guide the development of measures of leamer performance, and 

(4) to assist learners in their study efforts. 

CREAM defmes an objective as a description of a set of performances that a student should be able to 

demonstrate after learning. It contains information about the levels according to Bloom, acquired skills, 

the context students should demonstrate, and success criterion. 
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The "context" in an objective refers to the concrete means to guide the tutoring. The attribute 

" Criterion of Success " gives the standard for evaluating the acquisition levels of students, which 

depends to the specific " context " attributes. 

There are three main relationships between objectives, that is, prerequisite relationships, pretext 

relationships and contribution relationships. The prerequisite relationships may be also classified as 

obligatory prerequisite and desirable prerequisites. 

• Didactic Resource Model 

Didactic resources comprise all kinds of tutoring materials that support the tutoring to achieve certain 

objectives for acquiring certain capabilities. 

In CREAM, didactic resources are classified into three principal types: tutorial resources, intelligent 

resources and dumb resources. Tutorial resources refer to the resources how to guide tutorial activities. 

Intelligent resources consist of problems, demonstrations, exercises, electronic documents, intelligent 

videos, tests, exams, etc. Dumb resources are primitive tutorial materials such as texts, images, sound, 

static multimedia and physical resources, as well as the dynarnic resources, for instance, animation, 

simulators, hypermedia, and dynamic physical resources. Organization of resources is based on the 

following six types of relationships: similarity (analogy), abstraction, particular cases, utilization, 

auxiliary and equivalence. 

• Partial Association Spaces 

In order to carry effective tutoring, CREAM identifies partial associations spaces between models: 

Capability-- > Object (C-0), Objective-- > Capability (0-C), and Objective-- >Resource (0-R), as shown 

in Figure 2.13. 

The C-0 association contains two prerequisite relationships, i.e. obligatory prerequisite and desirable 

prerequisites. Contribution relationships from objectives to capabilities, in O-C association, contain three 

levels: strong, medium and weak contributions. They represent the degree that an objective supports 

some capabilities. The O-R association reflects the relations between objectives and resources. There are 

two relationships in this subspace, i.e. critical resources and accessory resources. The accessory 

resources are used for the alternative resources when a student can not achieve certain capabilities after 

the critical resources have been used. 
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• Global Associations 

CKTN (Concept Knowledge Transition Network) is a global association space that combines the above 

three models together (Figure 2.13). 

In CKTN, a transition node connects capability nodes, objective nodes and resource nodes. The 

relationship from a capability node to an objective node is a prerequisite relationship, and from an 

objective node to a capability a contribution relationship. Resource nodes linked to objectives are real 

materials of tutoring activities. 

Figure 2.13 Relationships and Associations in CREAM 

• Characteristics and Limitations of CREAM 

Compared with most tutoring systems, CREAM exploits general-purpose curriculum development 

environment and enhances the curriculum as the central role in ITS. This motivation itself is more 

advanced than specific-domain systems. Learning outcomes in CREAM are capability theories of Gagné 

that reflects the conditions of human learning. CREAM uses multiple spaces to separate capabilities, 

objectives and resources explicitly, which makes it possible to develop a curriculum in parallel. 

Meanwhile, this enhances flexibility of Icnowledge utilization in teaching delivery stage. For example, 

analogy relationships between capabilities in Capability Model can be used by tutor module to remedy 

learners errors. 
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However, some limitations exist in CREAM. Multiple spaces increase the complexity of system 

architecture and realization. With CREAM, a real curriculum would consist of a number of nodes, for 

instance, the curriculum for teaching EXCEL includes about 500 capability nodes. Both learners and 

curriculum authors are easy to lose in such large space. If the system can supplies visual navigation 

ability, or the system can support compounding multiple capabilities, it will enhance usability of system. 

2.3.4.5 Other approaches for curriculum representation 

Hartley [Hartley 90] began on the principle that acquiring a theme (subject) of teaching may be by three 

levels: operational level, conceptual level and procedural level. Thus, in his representation, the central 

object is the theme that is represented by combination of the three levels. These themes are connected by 

links of prerequisites, of composition or of sub-classes. The objectives of teaching are selected according to 

the level of acquisition of concemed theme. Some raies allow building an order on objectives. A more 

interesting aspect of the approach is the fact that associated success to each subject can do several levels; in 

fact, the stress may be also put better on the conceptual knowledge of subjects, than in the procedural or 

operational knowledge. Each consideration corresponds to an objective. This characteristic is specified as 

an attribute of subject. An operational knowledge is defined as the utilization of conceptual and procedural 

knowledge in a certain context. Consequently, the objectives of conceptual or procedural knowledge level 

associated to a subject (and the objectives associated to its sub-subjects and specialization) should be 

realized before its operational knowledge not becomes a realizable objective. 

McCalla, Peachey and Ward [McCalla 90] proposed a representation of courses with the help of AND /OR 

graph, where the nodes represents the concepts to teach and the arcs, the necessary prerequisites. All 

successive nodes of the arcs of type AND are prerequisites. Each node of graph can be decomposed in a 

sub-graph comprising more fme concepts. One of advantages of the representation is that it is flexible 

because it can support several views (the expert can integrate different approaches of decomposition 

according to teaching style or the detail level to consider). Another advantage is its adaptability because it 

allows easily generating an individualized curriculum for a given student. However, such decomposition is 

not sufficient for the curriculum as the defmed one: the teaching objectives should be formulated and the 

necessary resources should be specified. Thus the individualization of curriculum in the approach creates a 

mixture of the notion courses and curriculum. 

Derry et al. [Derry 90] proposed a representation called knowledge model, where the teaching objectives 

are represented by nodes. Links between objectives may be the type of prerequisites, the competence to 

realize, or the attitude to know. The important aspect of this representation is the notion of teaching point 

that is expressed in terms of competence to acquire (objective to reach) and acquisition level of the 

competence. 
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Lesgold [Lesgold 88] proposed a knowledge representation in ITS with three levels: domain, pedagogic 

and strategic (figure 2.14). In this representation, a layer curriculum is represented by a specification of 

target structure, which guides the teaching of expertise represented by domain knowledge. The last 

structure is a trellis that brings out the hierarchy of objectives (which Gagné calls "leaming hierarchy"). 

The only relation presenting the level is the prerequisite. The theory of Lesgold has separated clearly the 

domain knowledge from curriculum, and the strategy knowledge is also independent of domain knowledge. 

Strate gies 

erÀ, leAl e 
mculum knowledge 

Domain knowledge 

na 
Figure. 2.14 Different Levels of knowledge in ITS (Lesgold, 1988) 

Another type of curriculum is based on the help of finite state automate [Gauthier 89, Imbeau 90, Frasson 

92]. In this model, two types of elements have been identified to represent the curriculum model: the 

knowledge unit -KU- and the teaching units —TU (figure 2.15). A KU contains leaming objectives 

(syllabus) and performance level of student (student model). A TU represents the dynamic aspect of 

curriculum and is associated to the teaching content to present. One of advantages of this representation is 

that it considers student model and teaching aspect in a curriculum. 
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2.4 Conclusion 

Most early tutoring systems are domain-specific. Many researchers focus on some aspects of tutoring such 

as reasoning on student performance, representation of domain topics, etc. Too few ITS researchers are 

interested in the notion of curriculum. This, in the education domain, goes to against a good teaching that 

requires a curriculum integrating the perspectives linked to domain, to the pedagogic and to the didactic. 

Certain approaches (McCalla, Imbeau, Ferraris) are proposed to deal with some issues.. CREAM is a 

recently proposed curriculum model that tackled more issues of curriculum and put the curriculum at the 

central role of ITS. 

In chapter 4 we introduce a visual model of curriculum representation and organization, taking into account 

not only the visualization, domain and pedagogic aspects, but also the integration of teaching objectives 

and simplification of global transition structure. The visualization characteristics in our model will enhance 

the usability of the curriculum development environment. 
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Chapter 3 

Visualization and Curriculum 

Visualization of object spaces, a recently proposed discipline, can carry more semantic information, 

enhance interaction ability and reduce user losing in large object spaces. This chapter reviews the 

visualization possibilities used in curriculum development. Classical human-computer interaction tools are 

briefly mentioned first. The information visualization is assessed in section 2. Finally we review some 

tutoring systems that rely, in certain degree, on graph based representations, for instance Graphic 

Knowledge Base (GKB) [Shen et al 88], Graphical Instruction in List (GIL) [Resiser et al 88], Sherlock 

[Feifer et al 88], PIF [Frasson et al 92]., EXPITS[Takeuchi and Otsuti 92], Eon [Murray 96, 98], Synergy 

[Kabbaj et al 96], AGD [Paquette & Girard 96] and CREAM-Tools [Nakmbou et al 98]. 

Human-Computer Interaction Tools 

One objective of this research is to determine how to visually manage a curriculum both at the authoring 

stage and when used by a learner. Relevant knowledge can be found in works concerning human-computer 

interactions and information visualization. 

Currently, lists and outlines (or trees) are the only ways to represent large object spaces with standard user 
interface tools [Guo et al 95, 96a] (Figure 3.1). 
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Figure 3.1 Outline (Trees) in standard user interface tools 
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In standard user interface tools, lists are a kind of simplest components representing a set of objects, so that 

almost all user interface tools provide lists for displaying collections of objects. One advantage of lists is 

their rapid response. Users click one button or a menu item, then all specified objects can be displayed 

rapidly. However, only dozens of ordered object names can be displayed with lists. Lists can not represent 

apparent semantics between items. 

Outlines or trees are a little more advanced over lists. The directory structure in Windows 95 is an example 

of using outlines. It can display a graphics with vertical tree structure in which nodes are the names related 

to some files or directories, and links indicate part-of relationships. Though less limited than lists, this type 

of representation is not adequate to convey meaning associated with complex collections of items. 

Standard user interface components such as the mentioned lists and outlines are basic tools for simple 

discrete objects, but they do not suffice in representing the complex information structures of a curriculum 

A common approach to represent large information spaces by using current interface tools is the graph 

structure that users may create, using the buttons or icons of the standard graphie user interface. Labels and 

colors may be used to indicate names, types and states of information items. The most recent curriculum 

prototype in SAFARI is based on this approach. 

However, this approach suffers from the fact that the graph is a static structure. This poses some viewing 

difficulties and makes it hard to modify the graph layout. Clearly the visualization of complex information 

spaces requires sophisticated display dynamics. 

3.2. Information Visualization 

3.2.1 Introduction 

Information Visualization [Gershon & Eick, 95, 98] [Gershon & Brown, 96] is now the term used to 

visualize large structured information spaces against classical WIMP (VVindows-Icons-Menus-Pointing) 

metaphor [Robertson et al. 93]. Classical user interface tools supply lists or outlines (trees) for displaying 

collections of objects. This is appropriate for only in simple cases, for example, small set of objects, single-

type relationships between objects. However, in many cases, object spaces are large network structures. 

Furthermore, the semantic relationships between nodes are complex. Standard user interface tools fail to 

display such complex structures. Information visualization technology is to enhance the ability of current 

user interface tools. It combines visualization techniques and information management techniques to raise 
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the abilities of both. Some experimentation has been carried out, for example Treemaps, Focus+Context, 

Cone Trees, Rooms, and Dynamic Query. 

3.2.2 Typical Visualization Systems 

3.2.2.1 Treemaps 

Treemaps [Shneiderman. 90, Johnson. 93] is a method for visualization of hierarchically structured 

information. Treemaps partition screen space into a collection of nested rectangular boxes representing a 

tree structure. The drawing of nodes within their bounding boxes is entirely dependent on the content of the 

nodes, and can be interactively controlled. The main objectives using Treemaps are efficient space 

utilization, interactivity, comprehension and esthetics (drawing and feedback must be esthetically). An 

example using treemaps is shown in Figure 3.2. 

Figure 3.2 Treemaps 

In Treemaps, children of a node are placed inside the display area of its parents. The structure of documents 

is implicitly represented. Users may assign some visual properties to indicate the document attributes, such 

as, colors indicating document types, sizes indicating the information amount of documents, and users may 

click any node to pop up a window to get details for the node. 

The main contribution is the efficient use of screen space. It however has some limitations: only for tree 

structures, rather than general networks; and representing only implied single-type relationships, such as 

the inclusion relationships in file directories. Treemaps fail to represent complex networks such as a 

curriculum. 
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3.2.2.2. Focus+Context 

Focus+Context [Lamping et al. 1995] is another well-known visualization technique based on the metaphor 

of logic structures. Focus+Context is used for visualizing and manipulating large hierarchies. Its goal is to 

assign more display space to a portion of hierarchy and still maintain the context of entire hierarchy. This 

scheme is to layout a hierarchy in a uniform way on a hyperbolic plane and to map this plane onto a 

circular display region. Figure 3.3 represents an example of Focus+Context. 

Within Focus+Context, the overall structure of an information space may be mapped to a circular 

hyperbolic space. Users may change the focus of the whole space to view a particular local structure and 

may bring any node to the center of the space. The authors claimed 1000 nodes can be displayed in the 

hyperbolic space (in a 600x600 pixels window). 

Figure 3.3. Focus+Context 

Advantages of Focus+Context are that users get a sense of the overall tree structure, and with focus 

technique, users may find particular nodes according to the titles of nodes. 

Focus+Context has some limitations: 

(1) The overall structure of an information space is mapped onto a circular hyperbolic space, while actual 

screen space is a rectangle, so that the screen space is not used optimally; 

(2) One change of focus causes both a change of the whole structure and changes in directions of links and 

positions of nodes, so that positions of some nodes is not stable; as a result users may be lost or find it 

difficult to retrieve some previous familiar data items; 

(3) Computing cost is high because of animation and mapping to hyperbolic space. These limitations malce 

it difficult to use for curriculum development and guiding learning. 
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3.2.2.3. Cone Trees 

Cone Trees [Robertson. 1991] are a three-dimensional extension to more familiar 2D hierarchical tree 

structures. Cone Trees are constructed by placing the root node at the apex of a translucent cone that is near 

the top of the display. All children nodes are then distributed at equal distances along the base of the cone. 

This process is repeated for each node in the hierarchy with reducing the diameters of cones at each 

descending level to ensure sufficient space to accornmodate all leaf nodes. Cone trees enable the related 

trees to bring any particular node smoothly into a focus area on screen. Figure 3.4 shows an example of 

cone trees at Xerox PARC. 

There are some other prototypes that use cone trees to display large information spaces, such as 

LyberWorld [Hemmje et al. 1994], and WebQuery [Carriere and Kazman. 97]. 

Figure 3.4 Example of Cone Trees 

Cone trees are an attractive visualization metaphor. Its intuitive correspondence to the logic structure of an 

information space makes the users navigation easier. However, cone trees are restricted to tree structures. 

Another limitation of cone tree is the high computational costs of their 3D animations. 

3.2.2.4. Rooms 

Rooms [Henderson and Card. 1986] are one of well-known early prototypes of workspaces. Its purpose is 

to prototype a workstation window manager that allows users to operate with large collections of objects. 

Within Rooms, the tasks of users are distributed in a collection of Rooms. A Room contains a set of 

window Placements, each of which indicates a window, a shape, and other presentation information. Users' 

work is distributed among several Rooms, and each Room contains a main task. 
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Rooms focus on two essential issues: simultaneous access to separated information and navigation. In order 

to deal with the simultaneous access to separated information, a window may be placed in multiple Rooms. 

This needs to reposition the shared window in different Rooms. To share collection of tools across tasks, a 

Room may be included in other Rooms. 

The navigation in Rooms deals with four issues. 

• returning to a Room, 

• general orientation to find other Rooms, 

• finding windows, and 

• finding which Rooms are connected. 

The prototype of Rooms provides an icon - Back Doors - that may be used for returning to the previous 

Room. In order to help users remember or discover the route to a particular workspace, Rooms provide a 

pop-up menu containing Room names and an overview that displays all Rooms in the system (Figure 3.5). 

Users can identify the particular window in other Rooms from the overview. 
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Figure 3.5. Overview of Rooms 

Based on the overview of Rooms, the system can generate the links that connect different Rooms to help 
users find the connected Rooms. 

Rooms contribution is that it generates an easily manipulated workspace that bridges the shared windows 

and tasks. However, when the users' task space and shared information are complex, the navigation 

abilities are still weak. Although Rooms does not provide effective means to visualize large object 

networks, the ideas of multiple tasks and sharing information may be used for some curriculum prototype 

with multiple networks such as that in SAFARI. 
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3.2.2.5. Dynamic Query 

Dynamic Query [Batafogo et al. 92, Shneiderman. 96, Tanin et al. 96. Plaisant et al. 96. Kumar et al. 97] is 

a typical example of using culling technique to help users understand information. 

Principal objectives of Dynamic Query contain: 

• visual representation of the world of action including both the objects and actions, 

• rapid, incremental and reversible actions, 

• selection by pointing (not typing), 

• immediate and continuous display of results, 

• the visual representation of query, and 

• the tight coupling between visual query components and the query results. 

Obviously, although many prototypes previously discussed have nice visual appearances, they can not 

satisfy these goals well. 

Home Finder [Alberg and Shneiderman. 94] is a prototype based on the above principles (as shown in 

Figure 3.6). Within Home Finder, the background of display area is a geographical map of a country or a 

region. With a provided attribute palette, users can form desired queries by manipulating sliders to set 

attribute values of queries, then the system creates corresponding query results (houses satisfying certain 

conditions) and displays them in the geographical map with a starfield. When the user change the attribute 

values to query, the query results dynamically follow the change. The whole query process is incremental 

and direct manipulation. Furthermore, the user may also click stars (representing houses) in the display area 

to view the details of particular houses. 

Figure 3.6 Home Finder Based on Dynamic Query 
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There are some other prototypes that use some dynamic techniques to help users understand information, 

for example, TileBars [Hearst. 95] display a rectangle that visually display the relevance statistics 

accompanying each title of the relevant documents. 

Obviously, dynamic interactions provided by Home Finder can help users understand the whole query 

process. It is intuitive for the information concerning geographical areas. The dynamic query mechanism is 

useful for some other fields such as authoring and guiding learning. However, the knowledge elements and 

the relationships between knowledge elements in a curriculum are much more complex than that in these 

mentioned prototypes. 

In sum, many ideas on visualization in the reviewed systems can be integrated into the consideration of 

visual curriculum model. However, the complexity of data types and semantic relationships in curriculum 

make it impossible to use these approaches directly to curriculum models. We have to explore the 

mechanism to integrate visualization techniques to tutoring fields. 

3.3 Graphics and Curriculum 

We, now, review some knowledge bases and curricula that use graphics in certain extent. These systems 

include: Graphic Knowledge Base (GKB) [Shen et al 88], Graphical Instruction in Lisp (GIL) [Resiser et al 

88], Sherlock [Feifer et al 88], PIF [Frasson et al 92], EXPITS [Takeuchi and Otsuti 92], Eon [Murray 96, 

98], Synergy [Kabbaj et al 96], AGD [Paquette cl Girard 96], and SAFARI [Gecsei and Frasson 94]. 

3.3.1 Graphic Knowledge Base (GKB) 

GKB (Graphic Knowledge Base) [Shen et al 88] methodology implemented a graphic knowledge base, in 

which the structured knowledge representation allows hierarchic and network representation of knowledge 

that can be used tutoring systems. This methodology includes two components; one is the representation of 

knowledge; and another is the architecture of the system. Knowledge representation contains two elements: 

objects and arrows. Each object in the representation is a knowledge entity that may contain a text file that 

describes the element. Arrows form a structured graphie knowledge base by linking knowledge entities 

together. Some shells are developed for the structured graphie knowledge base, which includes a user 

interface and a frame for describing element. Figure 3.7 shows an example of GKB methodology. 
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Figure 3.7 A snapshot of SGKB SA 

GKB is just a query system of knowledge base, because there is neither tutoring strategies nor student 

model. It is a simple system relative to a curriculum. 

3.3.2. Graphic Instruction in Lisp 

GIL (Graphical Instruction in Lisp) is an intelligent tutoring for Lisp programming developed in Princeton 

University [Reiser et al 88]. The GIL tutor is embedded in a graphical programming environment. In order 

to build a program a student can connect objects representing program constructs into a graph. Figure 3.8 
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Figure 3 8 A complete problem graph for the problem rotater 
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shows an example of graph in GIL, in which each icon represents a programming operation and has one or 

more input nodes and one output node. The input nodes are the data operated on by the particular LISP 

operator, and the output node is the result of the operation. The student may select a programming icon 

from a menu, drag it into the Program Window, and specify its inputs and outputs. The student uses 

provided graphic tools to construct a program graph for a given problem. The system then checks its 

correctness and feeds back information to the student. 

GIL is essentially a procedural simulation system. Its constructed graphs reflect explicitly LISP program 

structures. However, it is used especially in LISP programming. It cannot combination concept knowledge 

into graph, and the graphs cannot reflect tutoring strategies and student models. 

3.3.3 Graphics in Sherlock 

Feifer et al [Feifer et al 881 proposed a Graphic Mapping approach based on the Sherlock environment for 

teaching knowledge representation. It provides a learner with three components: a) a text to be represented 

pictorially, b) a screen containing icons representing concepts within the text, and c) a set of links which 

the learner can use to connect icons. Five kinds of links between icons are provided: IS-A, LEADS, 

EQUIV, CHAR and NOT. Learners are instructed to find icons that they believe are related and then 

choose the link that best represents the relationships. For example, if the learner believes that one icon 

represents a concept that is a generalization of a concept requested by a second icon, they should make an 

IS-A link between the two icons. A portion of the screen icons is pictured in Figure 3.9. Sherlock provides 

the learner with the capability to move icons, clone icons and link them together. 

Lawful Consideration 

LEADS 
Contract 

EQUIV Forbearance Promise 

Act PROP Define 

NOT Party 1 
Agreement Promises 

Figure 3.9 Opening screen showing some of the icons offered 

The approach wants Sherlock to do two things while a learner constructs a graphic map: a) when the 

learner get stuck, suggests a next step and b) when the learner makes a mistake, provide appropriate 

tutoring. 
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This approach provides intuitive representation of concepts in a paragraph of text. However, it is not a 

curriculum of direct manipulation. All it represents are only the subjects and the relations among them. It is 

difficult to use to general domains. There is no visual tutoring strategy and detailed information for the 

represented concepts. 

3.3.4 Physical, Intentional and Functional Worlds 

Frasson et al proposed an approach called PIF (Physical, Intentional, and Functional Worlds) for teaching 

the diagnosis of breakdown of physical devices [Frasson et al 92]. This is a simulation-based tutoring. It 

uses three windows (called Window P, Window F, and Window I) to visual display the realistic image of a 

simulated physical device, a more abstract schematic diagram of the object and edit plans as well 

hypotheses, for detecting the breakdown of the physical devices. The system also provides the visual 

elements simulating repair tools. When a tool is used to a part of the devices, its affection can be visually 

displayed. 

The PIF approach supports various tutoring control mechanisms. Though its example is a device of 

electronic circuits, it provides a mechanism for simulating physical devices in a wide range. However, 

tutoring strategies are not visualized. It is difficult to form a general curriculum development environment 

based on the model. 

3.3.5 EXPITS 

EXPITS [Takeuchi and Otsuti 92] is a direct manipulation environment to teach intelligent tutoring 

systems. This environment provides views and facilities to represent internal states of an intelligent tutoring 

system and to manipulate these states in order to study structures and functions of constituents of ITS. 

EXPITS divides topics in an ITS into problems-solving process, domain knowledge structure, student 

modeling, and teaching expertise. The system provides visualization facilities for these structures and 

functions in a certain extent. Figure 3.10 shows its main interactive views: resolution trees, knowledge 

structures and teaching expertise. A resolution tree displays a problem-solving process (upper-left window 

in figure 3.10). The window at the bottom-left in Figure 3.10 displays a part of a knowledge structure. The 

window on right in the figure 3.10 displays a list of teaching expertise, which is used for planning teaching 

global sequences and local teaching methods. 

Though EXPITS provides some visibility, it is still a domain-specific tutoring system. There is no visual 

manipulation ability for the displayed structures. In addition, it has no dynamic navigation ability. 
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Figure 3.10 Windows in EXPITS 

3.3.6 Eon 

As a general authoring shell, Eon [Murray 96, 98] attempts to visualize the modules in ITS, including 

learning environment, domain model and teaching model. In order to support authoring and learning, Eon 

supplies some main tools such as Topic Net Editor, Present Content Editor, Topic Contents Editor, 

Interaction Editor, Flowline Editor, and Student Model Editor. With Topic Net Editor (window at the top-

right corner in Figure 3.11), a curriculum author can visually build topic networks with provided graphical 

elements and links with different shapes and colors. These shapes and colors indicate the types and 

attributes of topics. The Present Content Editor (window at bottom-left corner in Figure 3.11) is used to 

create teaching materials. The author can connect topics with material through the Topic Content Editor. 

With the Interaction Editor (window at top-left corner in Figure 3.11), interaction windows can be 

developed. Teaching strategies can be edited through the Flowline Editor (window at bottom-right corner in 

Figure 3.11), which also sustains visual ability for organizing teaching strategies. 

The learning environment in Eon uses a knowledge-based paradigm [Murray 96a1 for representing 

instruction content, in which, each screen in a reusable template, and an author creates "content" objects to 
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fill in these templates. Eon's interaction editor contains a hierarchical pallet of user interface components 

called widgets. There are simple widgets such as button, text, pictures, sliders, movies, and hot-spots, and 

more complex widgets such as multiple-choice dialogs, tables, and graphs. 

The Eon tools, perhaps, is one of the systems with the most visual properties in existing authoring 

environments. Numerous visual properties in Eon make the system more usable in practice. However, Eon 

has some limitations. The topic nodes in Eon are graphics, rather than manipulatable components, so that 

we cannot get detail information of topics by clicking. Although Eon can connect teaching materials to 

topics, it does not visualize teaching activities. The author of Eon does not mention how to support the 

visual creation of specific course for a particular student. In addition, Eon does not support composite 

topics. In our proposed curriculum model, these limitations will be tacIded. 

Figure 3.11 Windows in Eon 
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3.3.7 Synergy 

Synergy [Kabbaj et al 96] is a graphical multiple-paradigm language to represent declarative and 

procedural knowledge. Conceptual environment of Synergy is composed of a long-term memory and of a 

work memory. The long-term memory is used to represent domain knowledge bases with generalization 

graphs. The work memory is the place where a user specifies his requests. Synergy defines a wide range of 

data types to support, from primitive types (such as number, string, Boolean, etc.) to custom types (such as 

procedures, activities). A user may use the Synergy language to write their program by drawing nodes and 

links. Each example of a Synergy "program" corresponds to a parallel activation of multiple semantic 

networks. In these semantic networks, the activation of a concept corresponds to its values activation. 

An example of application of Synergy for modeling intensive care unit is shown in Figure 3.12, which 

displays definitions of some types in the example 

As a kind of graphical programming language, Synergy is a meaningful exploitation, because of its 

intuitive presentation and supporting declarative and procedure knowledge. However, as a development 

environment of ITS, some limitations exist. For example Synergy uses same types of nodes to display all 

kinds of nodes from primitive data types, such as Boolean, to very large data types, such as tutoring 

processes, so that the system loses the explicit structured properties, and causes new losing of users 

Figure 3.12 an example of Synergy application in Intensive Care Unit 
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3.3.8 AGD 

AGD [Paquette & Girard 96] is a performance support system for content experts involved in educational 

design, which contains a task support system and an advisor based on the task support system. The task 

support system puts a strong emphasis on strategic instructional design knowledge. It identifies 156 sub-

tasks for building learning systems, which are fallen in 5 categories including defining learning situation, 

building and distributing knowledge models, designing learning systems, managing projects and planning 

the development of learning system. In AGD, the knowledge model editor provides two kinds of nodes: 

procedure nodes and concept nodes. A procedure may be linked to several sub-procedures. Meanwhile, a 

concept maybe linked a procedure as input or output of the procedure. Needs of learning may be attached to 

knowledge units. One can transfer a selected group of knowledge units from an existing model. With AGD, 

an author can also define graphically learning scenarios, in which, learning components can be linked 

didactic to learning events. AGD, in fact, is an advisor system for building ITS. Though AGD identifies 

many sub-tasks of building a learning system, only a small number of ID strategic knowledge is 

implemented. The author of AGD in their paper do not deal with how to support various instructional 

strategies, how to support individualized teaching (dealing with student model) and how to manage various 

didactic resources. 

3.3.9 SAFARI 

SAFARI [Gecsei and Frasson 94] is a domain-independent development environment for ITS. Its 

curriculum model has been reviewed in the previous chapter. An authoring environment named CREAM-

Tools [Nkambou, Frasson and Gauthier 98] has been developed to sustain the development of curriculum 

based on CREAM. 

CREAM-Tools use three ldnds of visual nodes to represent capabilities, objectives and learning resources. 

These nodes are created with rectangles and labels having certain sizes and fonts. Links between nodes 

describe relationships between corresponding components. A curriculum author can layout knowledge 

transition networks by dragging. Figure 3.13 shows an example of graphical transition networlcs in which 

the rectangle nodes are objective nodes and the rectangle nodes with arc corners are capability nodes. An 

important feature of the prototype is that it can graphically display capability spaces, objective spaces and 

resource spaces. Further, it can organize a new space-CKTN-that associate with the above three spaces to 

get a knowledge transition network (Figure 3.14). 
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Figure 3.13 An example of transition network in CREAM-Tools 

Compared to previous curriculum development environments, the graphical representation of knowledge 

transition networks in SAFARI is a new exploration. However, the nodes in the prototype are relevant 

simple because they can not carry more semantics such as capability levels, states, viewing details by 

simply clicking, etc. In addition, it does not support visualization of composite capabilities and integrated 

tutoring activities. 
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Figure 3.14 Capability, objective, resource and CKTN spaces in CREAM-Tools. 

3.4 Summary 

3.4.1. Characteristics of Existing Prototypes of Information Visualization 

All the reviewed systems attempt to explore how to easlly organize and query large object spaces from the 

point of view of visualization and human-computer interaction. Uniform data type, simple semantic 

relationships, and simple navigation ability are their common characteristics. 

• Uniform Data Types 

The data types in almost all reviewed prototypes are limited to some particular application domains such as 

documents, file management, code line management, and data pieces in structured databases. For example, 

Treemaps and Cone Trees initially are used for the file directory management. Home Finder based on 

dynamic query is specifically for the house database. 

• Simple Semantic Relationships 

Another feature in the discussed systems is that the relationships between data items are simple. Most of 

them have unique relationship. For example, the relationship between files is only the part-whole or 

inclusion relationship. In code line and code file management, the associations are the calling or called. Of 
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course, many types of relationships may be contained in database domains. However, the features of 

structured and exactly matching may be used to handle these relationships as nodes. 

• Simple Navigation Ability 

The requirements of visual navigation in the reviewed systems are relatively simple because they manage 

single type of data, simple relationships and tree structures. However, the structures in a curriculum are 

complex networks and consist of heterogeneous nodes and links. Students often lose in the unfamiliar 

concept spaces. 

3.4.2. Characteristics of Graphical Tutoring Environments 

A few tutoring and curriculum systems dealt with graphical aspects to a certain extent. These systems fall 

into three basic categories: material-oriented systems, topic-oriented systems and curriculum-oriented 

systems. 

Materials-oriented systems attempt to provide a graphical environment based on teaching materials, with 

which a physical device or a procedure to teach can be simulated. However, this kind of systems is domain-

specific. Topics, teaching activities and teaching strategies have no more visibility in such kind of system. 

What a curriculum model needs is a tool that can be used for more domains. 

Topic-oriented systems can graphically display domain topics and relationships between topics. This is 

useful for viewing structures of domain knowledge. However, the topic networks provided by most topic-

oriented systems are static graphics. One cannot visually manipulate these graphies for detail information. 

In addition, these systems cannot integrate and visualize teaching activities and strategies. This is not 

enough for a curriculum development environment. 

Curriculum-oriented systems are closely related to our research. The reviewed Eon and SAFARI are two 

typical examples. The purpose of these systems is to supply a general development environment for 

curriculum. Their exploitations on visualization achieve success to a certain extent. However, the 

visualization abilities in their systems are still limited to certain ranges. These development environments 

can display graphically topic networks, but these topic networks are just graphics and they cannot be 

visually manipulated the details of each node. No prototype can support the organization of integrated 

tutoring activities for composite topics. Visual dynamic navigation to learners and curriculum authors is 

important because any real curriculum network is so large that users often lose in such a big space. Another 

limitation of these systems is that they neither visually create multiple alternative paths to achieve a group 

of particular learning goals nor visually select and order tutoring activities for instant context and learners. 

Our proposed model will attack these issues. 
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3.4.3. Problem Complexity in Our Research 

A curriculum s characteristics may be summarized as multiple and heterogeneous data types, complex 

relationships between data items, complex information structures, multiple tasks, large and multiple spaces. 

The problem is complex because of the need to deal simultaneously with visual representation constraints 

and semantic relationships. So we need to address problems related to both areas: visual or surface 

properties of complex information structures and semantic and operational properties of complex 

information structures. 

• Powerful navigation supporting easy generation, organization and management of large 

knowledge spaces 

Figure 3.15 is a part of the capability space to teach EXCEL developed in SAFARI, there are about 500 

nodes in the space. Only dozens of nodes can be displayed on the screen. The users can not view the overall 

structure of the capability space. In order to build the capability space continuously, a curriculum author 

has to scroll the big graph frequently. It is very difficult to find a particular node because most nodes can 

not be displayed. With the larger and larger graphs, authoring efficient is lower and lower. 

• Visually making sense of, and easily manipulating information workspaces 

Current systems are well adapted to representing information and knowledge in a sequential manner even if 

combined with hypertext links (the sequentially being induced by the ordering of link following). 

Representing information and knowledge spatially has been limited to representing static structures and 

very few works make the representations evolve with the changing interests and needs of the viewer. This 

is what we intend to do in this work. 

In this research the users should be able to modify easily the visual properties of their graphs in order to 

emphasize (semantic) features of their interests. 

In a curriculum, the relationships between the various knowledge spaces are complex. We are going to 

provide visual tools to explicit these relationships. 
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Chapter 4 

A Visual Curriculum Definition 

A curriculum model [Finch 86] should includes the identification, representation and organi7ation of 

didactic materials, instructional objectives, teaching events, and learning trajectories. In this chapter, we 

first review a few defmitions of what constitutes a curriculum in our context. Then we specify what a visual 

curriculum can be. Last, we describe the central data structure for organizing capability transition networks 

in detail. 

The visual curriculum defmition we propose consists of three essential models each of which outputs a 

network structures called respectively capability transition networks, course networks and tutoring activity 

networks. A graph structure, called Tnet (Transition Network), distinguishes between knowledge states and 

teaching events conducing to new knowledge. Tnet is a structure for representing and organizing tutoring 

outcomes, tutoring events and didactic materials. Derived from a Tnet a simplified graph will represent an 

actual course a student may engage in. Cnet (Course Network)—provides a representation of the actual 

leaming goals, events and knowledge relevant to the attainment of these goals. Further refmements on a 

Cnet actually produces a sequence of instructions called Anet (Activity Network). This includes only the 

events relevant to the student's attaimnent of a homogenous set of goals. 

4.1 Some Existing Curriculum Definitions 

In the educational domain, development of a curriculum is an important stage in the process of instructional 

design. Some researches [Finch 86] consider a curriculum as the input data of a tutoring system. In 

computer-based tutoring domain, a few works have been devoted to defming a curriculum, but too few 

researchers have considered the necessity of including a visual curriculum in a tutoring system, as reviewed 

in the previous chapter. Our purpose is to characterize a well-defined visual curriculum model to support 

efficient and effective tutoring. 

In the educational domain a curriculum [Legendre 93] is defined as a structured set of instruction and 

learning experiences, in which the principal elements include content objectives, skill objectives, specific 

objectives, alternative learning paths, mies, didactic materials, and events of instruction and learning. 

In the context of ITS research, a few works have considered the notion of a curriculum [Halff 88, Lesgold 

88, McCalla 90, Nkambou 96, Nkambou et al 98]. 
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Halff [Halff 88] considered that the goal of curriculum in ITS is to structure a representation of 

instructional materials and, based on the representation, to help select and order training events. Halff 

positioned a curriculum toward the representation of didactic materials and the selection and ordering of 

tutoring events based on these materials. It did not relate these materials to outcomes of tutoring and 

teaching strategies. McCalla [McCalla 90] gave a more cognitive definition of curriculum: a curriculum in 

ITS represents the selection and the ordering of Ictiowledge in order to achieve the goals of tutoring that is 

appropriate for current context and current leamer. This definition also indicates that a curriculum should 

be flexible, evolving and adaptive to the needs of leamers and of the instruction development. Obviously, 

this definition focuses on the dynamic and more abstract aspects. Nkambou [Nkambou 96] defined a 

curriculum as a structured representation including the capabilities of Gagné as well as the capabilities and 

the didactic resources contributing to the leaming objectives. Nkambou has focused on the representation 

and organization of lcnowledge in a curriculum, rather than on dynamic aspects such as the selection and 

ordering of tutoring events from a curriculum. 

Some other works, such as that of Wipond and Jones [Wipond & Jones 88] and that of Merrill [Merrill 91], 

defme the construction environment for human teachers to develop teaching. 

Though these clef-mitions of curriculum emphasize different perspectives, no defmition of curriculum deals 

with more visual perspective. We think that in order to get an efficient, effective and practical curriculum, a 

curriculum model has to tackle the visual representation and organization of all kinds of lcnowledge related 

to teaching, the selection and ordering of tutoring events for a group of goals, and the practical interactive 

environment. In order to achieve these objectives, the following hypotheses are essential. 

4.2 Basie Hypotheses 

In order to define a visual curriculum, the following essential issues should be dealt with first: 

• Focus of curriculum 

• Factors affecting usability 

• Evolving ability 

• Systematic Methodology 

In this section we tacIde these issues as four basic hypotheses. 

Hypothesis 1: Knowledge (including the lcnowledge of content, of pedagogy, of cognitive and of student 

model) is the focus in a curriculum. 

ITS is a derived branch from Artificial Intelligence (AI). Early intelligent systems (in 50-60s) put the stress 

of AI on reasoning and control. Though these systems achieved success to a certain extent, but for lack of 
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knowledge, had difficulties when trying to move out the laboratories. In particular, the experience of the 

ambitious 10-year plan for intelligent fifth generation computers in Japan compels the researchers of AI to 

think about what is the exact focus of an AI system. At present, most AI researchers think that lcaowledge 

is the key of an AI system. A powerful intelligent system must have as much knowledge as possible. 

An intelligent tutoring system includes more types of knowledge than usual AI systems. Unlike most AI 

systems dealing with just the domain knowledge and the expertise, an ITS concerns not only domain 

knowledge, but also didactic materials, pedagogic expertise, cognitive expertise, the student model and 

software expertise. The representation, organization, manipulation and management of ail these types of 

knowledge are much more complicated than in general AI systems. 

Hypothesis 2: the Interaction and navigation environment to a great extent deterrnines the usability of an 

ITS. 

According to Murray [Murray 96, 98], the usability of an ITS contains two aspects: leamability and 

productivity. Leamability is how easy a system is to leam to use it. Productivity is how quickly a 

curriculum author can enter information and produce tutoring systems. Leamability and productivity are 

often odds, since a system that is designed to be picked up quickly by novices may not provide the 

powerful features that experienced users need to efficiently produce large systems. 

Classical ITS consists of three major components: the expertise in the domain to teach, the expertise of 

teaching, and the ability to infer something abound what students know or feel. Many ITS are developed 

based on the three components. However in order to develop useful systems for business or organizations, 

many researchers have recognized the necessity of the fourth components of ITS: the leaming interactive 

environment [Wenger 87]. 

Unfortunately, the usability of Murray does not deal with another important feature, that is, the on-line 

navigation ability to users. The dynamic navigation to curriculum authors is an important factor affecting 

productivity because curriculum authors often get lost in a large network with hundreds even thousands 

nodes. Furthermore, the on-line navigation ability is even more essential for a leamer because the learner is 

not familiar with the knowledge structure in the domain to teach at all. Therefore, we consider the 

interaction and navigation characteristics of an ITS to be of prirnary importance if the ITS is to be really 

useful. 

Hypothesis 3: A flexible, evolving and adaptive curriculum must be open to its environment with ways of 

achieving a pertinent balance between generalization and specialization. 
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Early intelligent tutoring systems are domain specific because they originate from expert systems that 

simulate the experts experience in some specific domains, so that, their knowledge structures and 

strategies are often domain specific and thus are difficult to be used for other domains. In order to reduce 

development costs and satisfy the needs of schools, enterprises and organizations, the general development 

environment for wide range of domains is necessary. 

Obvious, such an environment should be flexible, evolving and adaptive for different domains, different 

teaching strategies and leaming strategies. 

Also, making the balance between generalization and specialization is difficult. If the frame is too 

generalized, more efforts and higher skiffs from users are required to develop their own system, and if the 

frame is too specialized, the flexibility, evolving and adaptability will be lost. One of our purposes is to 

explore the balance. For example, the evaluation and diagnosis to learners' reactions are ongoing research 

issues; our system attempts to support the activity delivery modules with different abilities for evaluation 

and diagnosis. 

Hypothesis 4: The management of a curriculum should be systematic, that is, when to think about the 

representation and organization of knowledge, the feasibility of related processes in ITS should be also 

considered. 

When we take into account a curriculum management model, the representation and organization of all 

kinds of knowledge is, of course, important. Meanwhile, we should also consider the feasibility for the 

course (a sub-network of domain network, winch covers just a particular learner's goals) creation, and 

dynamically guiding the leaming process. 

4.3. Definition of a Visual Curriculum Management Model 

Our visual curriculum management model absorbs three basic ideas from CREAM: capabilities, transition 

and teaching development process. The first idea is to use capabilities defined by Gagné as teaching 

outcomes that result in the appropriate teaching strategies for certain capability types. The second idea is 

that organizing transition networks is based on a natural atomic structure: from prerequisite capabilities to 

transition nodes and then from transition nodes to output capabilities. The last idea is the teaching 

development process, i.e. Building transition networks —+ creating courses —› ordering tutoring actions —+ 

delivering tutoring. Based on these basic ideas, we define a visual curriculum management model with 

enriching visual ability, integrated components and simplified global transition structure. 
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In this work a Visual Curriculum Management Model is an architecture providing a rich graphical, 

interactive environment for the manipulation of knowledge relevant to a domain of leaming to be 

developed and exploited by teachers and leamers alike. The point of view is a radical departure from 

previous curriculum system defmitions in which leamers would exploit the structures only indirectly. Here 

the leamer has access to the same representations of the domain knowledge as the author, but with varying 

angles of view. For instance getting views of what are the current leaming goals, what has been leamt in 

the recent past, what possible leaming alternatives there may be, etc. A visual curriculum has built-in some 

coherence checks that can pinpoint to authors and leamers some current limitations of the leaming system. 

This means that a Visual Curriculum is a structure in continual development. The underlying idea is to 

reduce the distance between the activities of teachers and of leamers. By integrating into visual structures 

the teaching knowledge (domain, pedagogical, personal) and effective props for leaming, the proposed 

system will adapt fast to needed changes. 

• Definition A visual curriculum management model, known as V/TCAM (Visual Interactive 

Transition, Course and Activity Manager), is a support architecture of computer-based tutoring 

systems that helps visually interactively organize and manage teaching outcomes, means and resources 

to help the authoring and leaming processes. Concretely, VITCAM includes three sub-models: 

• A capability transition model called VTRANS (Visual TRANSition network model) that organizes and 

manages teaching outcomes and tutoring events (here didactic resources are viewed as elements of 

tutoring events); its output is a capability transition network called Tnet (Transition network), 

• A course creation model called VCOURSE (Visual COURSE model) that generates multiple 

alternative paths in a given capability transition network to cover a group of selected leaming goals; its 

output is a vector called Cnet (Course network) containing multiple alternative course networks, and 

• A dynamic activity management model called VACT (Visual ACTivity Model) that recommends 

individualized courses, identifies currently available tutoring activity sequences and dynamically 

manages the feedback from the activity delivery module; its output is a sequence of currently enable 

tutoring events called Anet (Activity network). 

Figure 4.1 shows these three models, their outputs and the relationships between them. A curriculum author 

can use the VTRANS model to visually build, organize and manage the capability transition network for a 

given domain. Based on the created capability transition network, a leamer is able to use the VCOURSE 

model to generate multiple alternative courses, and then to activate the VACT model to visually create 

currently available activity sequences and dynamically manage learning process. 
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Figure 4.1 VITCAM and its Sub-Models 

The VITCAM model uses or interacts with three kinds of basic objects: knowledge, interaction agents, and 

visual properties. Knowledge in VITCAM falls in three basic domains: the subject domain, the pedagogic 

domain and the cognitive domain. From the point of view of subject domain, the knowledge consists of 

learning outcomes, didactic resources and the relationships between learning outcomes. The pedagogic 

domain supplies the methodology of instructional design. The cognitive domain supports the methodology 

of instructional design by the cognitive mechanism of human learning. 

Human agents are the principal interactive users of a curriculum. A curriculum author interacts with the 

system to visually create, to organize and to manage all kind of knowledge and tutoring events. A learner 

can set and achieve their leaming goals with the system. The created individualized courses should refiect 

leamer profiles. In our model, some essential student information contains initial states, current states, goal 

states, static attributes of the students (such as, preference, history); and dynamic attributes (such as the 

currently preferred strategies). 

input 

Visual properties involved in the definition of curriculum are distinct from other curriculum defmitions. 

The main purpose using visual properties is to enhance the productivity of curriculum development and 

reduce leamers and curriculum authors being lost in too large a structure. Colors, shapes, positions, sizes, 
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labels, images, and borders are some important visual signs for the purpose. A visual curriculum should 

supplies the following essential visualization abilities: 

• Visually carrying much semantics about knowledge domain and the lcnowledge acquisition process, 

• Providing different views for large-scale networks and using node aggregation properties to be able to 

visualize the curriculum global structure, 

• Dynamically and visually guiding the authoring and learning processes. 

The three models in VITCAM constitute a systematic methodology for curriculum management. VTRANS 

provides the means to organize tutoring events. VCOURSE supplies the statically individualized ability for 

leamers. VACT model dynamically supports individualized leaming process. We now briefly describe three 

models and the relationships between them. The details of VTRANS model are dealt with in chapter 5. The 

details of VCOURSE model are described in chapter 6. In the chapter 7, the details of VACT model are 

tacIded. 

The Capability Transition Network Model - VTRANS- integrates, organizes and manages various lcnowledge 

in a curriculum including domain capabilities, tutoring events supporting these capabilities, and the 

relationships between capabilities and tutoring events. Concretely, VTRANS model is able to 

• support the teaching of the multiple-level capabilities and the aggregated capabilities, 

• organize tutoring events with didactic resources and general strategies by combining Gagnés 

instructional event theory and Blooms objective level theory, 

• visualize capability transition networks with visually aggregated nodes and links to represent 

capabilities, capability levels, and integrated tutoring events supporting the capabilities, 

• help curriculum authors to develop a practical curriculum rapidly, 

Figure 4.2 shows a portion of the capability transition network for teaching HTML. The oval nodes in 

figure 4.2 are capability nodes, each of which contains several levels. The rectangle nodes in the figure are 

transition nodes that organize a group of tutoring events with two hierarchies: tutoring units and tutoring 

sub-units. Each tutoring unit can help learners achieve certain capability levels and consists of a sequence 

of tutoring sub-units, each of which corresponds to one of Gagnés instructional event. The arrows in the 

figure represent either the prerequisite relations from capability nodes to transition nodes, or the output 

relations from transition nodes to capability nodes. A Tnet structure implies AND/OR relationships 

between transition nodes and capability nodes, that is, the relationship among inputs of a transition node is 

an AND relationship and the relationship among outputs of a transition node is an OR relationship. The 

complete example for teaching HTML can be found in chapter 8. 
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Figure 4.2 A portion of the capability transition network for teaching HTML 

This visual curriculum defmition also characterizes course generation and ordering tutoring events with two 

models respectively: VCOURSE and VACT. Their functionality includes 

• visually setting known and leaming goals corresponding to capability levels, 

• creating multiple alternative paths called courses that cover the same group of leaming goals; these 

altemative courses contain, besides the same group of goals, different optional capabilities, resources 

and efforts, 

• recommending relative optimal courses to a particular student, 

• dynamically sequencing available tutoring events to guide leaming process, 

• remedying leamers missing based on the diagnosis results of the activity delivery module in ITS, and 

• visually guiding the leaming process by state-driven reasoning. 
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The relationships within each model and between the two models are shown in Figure 4.3. Each model 

consists of a set of structures and a set of operation functions. We describe briefly the two models 

respectively as follows. Their details may be found in Chapter 6 and 7. 

VCOURSE model contains a basic structure called Cnet and a collection of operations to create the Cnet. 

The capability transition network Tnet defined in VTRANS model is the input of the VCOURSE model. A 

course is defmed as a minimal sub-network of Tnet that can cover learning goals of a particular learner. 

Cnet is the set of all possible courses. Because of the AND/OR structure of Tnet, for any non-empty finite 

set of learning goals, one or more course networks can be generated. The VCOURSE model defines the 

methodology to create various courses corresponding to the set of learning goals for a particular learner. 

Examples created by VCOURSE can be found in chapter 5. 

VCOURSE supplies the following categories of operations: 

--common visual operations for navigating learners, 

--operations for setting known and goal capabilities and their levels, and 

--operations for creating courses. 

Common visual operations in VCOURSE model are some functions that define and support varions visual 

manipulations. A learner can open a Tnet created by curriculum authors and visually set his/her known 

capabilities, their levels, and learning goals, by simple clicking. The operations to create courses are used 

for creating multiple alternative paths covering a group of learning goals. The decision switch in figure 4.3 

is an internai function, which, in learning process, compares the current lcnowledge states and the goal 

knowledge states for the current learner. As a result, it determines whether to create new course networks, 

or to re-sequence the tutoring events, or to transfer next tutoring activity or to exit the learning process. 

The dynamic activity management model VACT is responsible for recommending optimal courses and 

individualizing activity sequences. 

By evaluating alternative courses with a measure model that will be defined in chapter 7, VA CT 

recommends an optimal course to the learner, and then dynamically orders tutoring events to guide learning 

process. Each tutoring activity in the selected course owns a current state being either recommended, or 
enable or partial enable, or disable, or passed. The learner can select one of the recommended tutoring 

events as the current event to attend. In order to generalize our visual model of curriculum, activity delivery 

module in our model is an opening module. In order to combine the activity delivery module with different 

abilities, our model can effectively manage feedback of the learning results, which will be discussed in 

detail in chapter 7. Common visualization operations in VACT model are also defined to enhance usability. 
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Figure 4.3 VITCAM's sub-models: VCOURSE and VACT 

Figure 4.3 shows all lcinds of relationships and operations in the VCOURSE model and the VA CT model. A 

leamer, first, visually set his or her known capabilities and levels, the goal capabilities and their levels, 

based on the capability transition network created with VTRANS model. The learner then can activate the 

Course Creator to generate multiple alternative courses covering his/her learning goals. The leamer can 

select one of created courses, or admit the recommended course by the system. The Activity Identifier 

orders the events and creates the recommended tutoring events in the current course. The Activity Delivery 

Module, then, be activated to deliver the recommended events and to update the leamer's knowledge states. 

The Decision Switch compares the current knowledge states and the goal states of the leamer to determine 

the next leaming step: either to re-activate courses or to re-sequence the tutoring events, or to identify the 

next recommended activity, or exit the learning environment. 

4.4 Summary 

VITCAM is a visual curriculum model that can support both visual integrated representation and 

organization of all kinds of knowledge and tutoring events in curriculum, and selecting and ordering 

tutoring events to adapt current context and current students. This model absorbs the basic ideas of 

capability, transition and teaching development process in CREAM. 

The model has four major characteristics: the central role of knowledge in ITS, the importance of 

interaction and navigation ability, the opening to adaptation to changing conditions of use and fmally a 

coherent overall design. 
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VITCAM defmes three important sub-models for visual curriculum management: 



68 

• VTRANS, a model that provides means to organi7e the capability transition networks for a given 

domain in which teaching outcomes, teaching events, didactic resources and general teaching 

strategies are integrated; VTRANS outputs a central structure called Tnet, 

• VCOURSE, a model that creates multiple alternative courses (a course is a sub-network of Tnet) 

for teaching a group of selected leaming goals; its output is a structure called Cnet that contains 

the created multiple alternative courses, and 

• VACT, a model that dynamically orders tutoring events and manages learning process; its output is 

a vector called Anet that contains a sequence of currently available events. 

The next three chapters describe in detail each one of the sub-models in VITCAM. 



Chapter 5 

VTRANS: A Capability Transition Network Model 

This chapter presents the details of the capability transition network model VTRANS, which supports visual 

incremental integration, organization, management and testing of tutoring events. This model is the backbone 

of the overall VITCAM system; all other models are defined in reference to it. 

In this model, domain knowledge is identified as atomic capabilities based on Gagnés instructional theory. 

Further, each capability node can be a complex capability with several explicitly incremental levels or an 

aggregation of several atomic capabilities. Tutoring events are structured to support an incremental 

acquisition of these capabilities. 

The passage between capability nodes is modeled via transition nodes. A transition node organizes teaching 

events into two main levels, called respectively tutoring units and tutoring sub-units. A tutoring sub-unit is an 

instructional event, which can manipulate one or more groups of didactic resources. A tutoring unit consists 

of a sequence of sub-units, the transversal of which result in the learners achievement of a certain capability 

level. A graph structure is proposed to integrate both the task of authoring and the task of providing support 

and guidance to leamers. 

We first define the capability transition model: VTRANS then explain in detail each component involved in 

the model. Last, the visual features of the VTRANS model are dealt with. 

5.1 Definition of Capability Transition Network Model: VTRANS 

VTRANS is a capability transition network model consisting of the following two parts: 

1) a collection of structures including capabilities, resources, tutoring events and their associated 

networks, and 

2) a set of operations implementing varions functionality on these structures. 

• Collections of Structures in VTRANS Model 

We defme the following five structures in VTRANS model: 

- A capability set (given at least the prerequisite relationships between them) 

- A resource base 



70 

- A transition node collection 

- A visual property collection, and 

- A central capability transition network: Tnet. 

The capability space, the resource base and the transition node collection are basic information sources to 

organize domain capability transition networks. The capability space in VTRANS model covers all teaching 

outcomes in a domain and the relationships among them (prerequisite or aggregation relationship). Each 

capability node deals with one or more topics in a given subject domain. Each capability may be identified 

with several gradual levels, each of which may be selected as a learning goal. The resource base indicates the 

didactic resources supporting learning of all capabilities. Each resource is described with a group meta-

attributes and the content of resource. A transition node organizes a group of tutoring events to support 

achieving certain capabilities. A transition node is an ordered set of two hierarchical tutoring events: tutoring 

units and sub-units that correspond to Blooms objective levels and Gagnés instructional events respectively. 

The capability transition network: Tnet is the central data structure in this model. Tnet (capability Transition 

network) is a structured organization of tutoring outcomes and tutoring events for a given subject domain. 

Tnet is organized as a set of connected AND/OR graphs in which transition nodes are AND nodes and 

capability nodes are OR nodes. The AND/OR structure means that acquiring a capability may be by means of 

different transition nodes, and activating a transition node requires that all its prerequisite capabilities be 

achieved at certain levels. The last structure in the set of structures is the set of visual properties, which 

consists of various visual properties both for building and management of curriculum and for learning 

process. 

• Operations in VTRANS Model 

All operations to manipulate varions structures in VTRANS model fall into the following five kinds: 

--Capability node operations 

--Resources base operations 

--Transition node operations 

--View operations and 

--Common visual operations 

The capability node operations, the resources base operations and the transition node operations are used 

for visually constructing, organizing and managing capability nodes, the resources database, and the 

transition nodes. By using the transition node operations a curriculum author can organize tutoring events in 

a transition node. The view operations can create, organize, manage, test and navigate to users in capability 
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transition networks. Last, the common visual operations mark the visualization functionality for curriculum 

authors. 

Figure 5.1 shows the relations between the collection of structures and the collection of operations in 

VTRANS. The subject content domain, the pedagogic domain, the cognitive domain and the tutoring 

strategies are inputs of the model. Based on these inputs, curriculum authors can use mechanisms provided 

by this model to organize capability nodes, transition nodes and resources. As soon as the separate resource 

groups, capability nodes and transition nodes are created, authors are able to use the approach supplied by the 

model to build and manage transition networks. Authors as pedagogues can see visually how particular 

students used the network, assess for a particular student the effectiveness of the strategies that were used, 

etc.). Learners will use the visual properties of Tnet to set their leaming goals and assess their prog-ress 

towards these goals. 

Figure 5.1 VT.RANS Model 

Though resources management is really a part of transition node management, they are so important as to 

need some specialized attention and organizations. 

5.2 Tnet: A Central Capability Transition Network 

Capability nodes and transition nodes are the two categories of nodes used to organize a curriculum. The 

capability nodes correspond to various possible levels learners may have mastered a concept, a skill, etc. 

Transition nodes are where the learning is taking place. This is a highly structured component that makes 

its possible to get a curriculum structure as rich (if not more) than earlier curriculum defmitions 
[Nkambou, 96], while the overall network organization is much simpler and for this reason can now be used 

both for authoring and for teaching. 
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• Definition of Tnet 

A capability transition network Tnet is a structure defmed by the following four kinds of components: 

-- A collection of capability with one or more levels, 

-- A collection of transition nodes organized based on Gagnés and Bloom' s theories, 

--A collection of relationships between capabilities and transition nodes, and 

--Mechanism of combining capabilities and transition nodes. 

A capability is a teaching outcome in a curriculum. We adopt the capability theory of Gagné to identify 

subjects to teach in a given domain. The distinct aspect in the defmition is that it allows identifying a 

capability with one or more increment levels, or compounding multiple single-level capabilities into an 

aggregated capability with multiple levels. A curriculum author then can organize tutoring events to teach 

these levels respectively. 

A transition node consists of two kinds of elements: tutoring units and sub-units. A sub-unit consists of a 

group of interaction acts refined by resource development or the activity delivery module (An activity 

delivery module may include certain functionality such as interaction creation, resource creation, resource 

selection, evaluation, diagnosis, etc). A tutoring unit consists of a sequence of sub-units. From the point of 

view of instmctional theories, a tutoring unit relates to a level of objective defmed by Bloom, and a sub-

unit corresponds to an instructional event in Gagnés theory. From the point of view of capability 

acquisition, a tutoring unit contributes certain capability levels, and a sub-unit conducts sub-processed for 

achieving the levels. Didactic resources are not a kind of separated component in the defmition, but 

necessary essential elements in sub-units. 

We identify two types of different relationships between capability nodes and transition nodes: prerequisite 

relationship and output relationship. The relationship from a capability node to a transition node is called a 

prerequisite relationship, which indicates that in order to enable a transition node; all the capabilities 

connected to its input must be mastered at certain levels. The output relationship refers to the one from a 

transition node to a capability node, which means that after all tutoring events in a transition node are 

executed successfully, a leamer should achieve the linked output capability at certain level. In this 

definition, a capability can be linked to multiple transition nodes and a transition node can also be 

connected to multiple capabilities. Such defmition implies AND/OR relationships in a capability transition 

network. All capability nodes are OR nodes and all transition nodes are AND nodes. The upcoming 

sections describe in detail each element in Tnet. 



5.3 Capability Nodes 

The capability taxonomy of Gagné is essential in VITCAM. It sustains the teaching of the capabilities with 

several incremental levels and the capabilities that are compounded by multiple simple capabilities. In this 

section, we first introduce the classification of capabilities based on Gagnés theory. The capability levels 

are discussed in the section 5.3.3. Finally the representation of capability is depicted in the sections 5.3.4. 

Examples to identify multiple-level capabilities and aggregated capabilities can be found in the section 5.5. 

The visual features of capability nodes will be tackled in the section 5.6. 

5.3.1 Capabilities 

We think, the capability taxonomy of Gagné reflects the essence of teaching. For example, discriminating 
shapes of objects and applying Newton law both are identified as procedural knowledge in most ITS, while 

Gagné identifies them as two different intelligent skills. By using the procedural method, there is no way to 

teach them respectively by specific strategies. Obviously, the tutoring methods for teaching the two 

knowledge units are different. As a result, we adapt capability type defined by Gagné to identify domain 

knowledge. 

5.3.2 Classification of Capabilities from Gagné 

Based on the analysis of educational goals and mechanism of leaming, Gagné identified [Gagné et al 92] 

five categories of human capabilities as teaching outcomes: intellectual skills, cognitive strategies, verbal 

information, motor skills and attitudes. 

• Intellectual skills 

Intellectual skills enable individuals to interact with their environment in terms of symbols or 

conceptualizations, learning an intellectual skill means leaming how to do something of an intellectual sort. 

Generally, what is learned is called procedural knowledge. 

Gagné identifies five sub-categories of intellectual skills, including discriminations, concrete concepts, 

defined concepts, rules, and higher order rules (problem-solving). 

Discrimination is the capability of making different responses to stimuli that differ from each often along 

one or more physical dimensions, for example, discriminating a circle and a rectangle, distinguishing 

different colors, etc.. 
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A concrete concept is a capability that makes it possible for an individual to identifying a stimulus as a 

member of a class having some characteristic in common, even though such stimulus may otherwise differ 

from each other markedly. Such concepts are called concrete because the human performance they require 

is the recognition of a concrete object. Examples of object properties are round, square, blue, three, 

smooth, curved, flat, and so on 

The distinction between discrimination and a concrete concept; is easy to appreciate: the first is 

"responding to a difference"; the second is identifying something by name or other ways. 

An individual is said to have learned a defined concept when he can demotions the meaning of some 

particular class of objects, for example alien, a citizen of a foreign country. A learner demonstrates the 

defmed concept by identifying instances of concepts that are components of the definition and showing an 

instance of their relation to one another. 

A rule has been learned when it is possible to say with confidence that the learner's performance has a 

hind of "regularity" on a variety of specific situations. Inother words, the learner shows that he is able to 

respond with a class of relationships among classes of objects and events. For example," applying list tags 

in HTML" is a rule. "Applying Ohms law E = l*R" is another rule. Obviously, processing the capability 

called a rule doesn't mean just to state it verbally, but to apply it to real instances. 

High order rules (problem solving) are complex combinations of simpler rules. Moreover, it is often the 

case that these more complex or "high-order" rules are invented for the purpose of solving a practical 

problem or class of problems. The capability of problem solving is, naturally, a major aim of the 

educational process. 

• Cognitive Strategies 

A very special kind of intellectual skill, of particular importance to learning and thinking, is the cognitive 

strategy. A cognitive strategy is a control process, an internai process by which learners select and modify 

their ways of attending, learning, remembering and thinking [Gagné 85].Gagné identifies five sub-skills of 

cognitive strategies: rehearsal, elaboration, organizing, comprehension monitoring, and affective 

strategies. 

• Verbal information 

Verbal information is also called verbal knowledge; according to theory, it is stored as networks of 

propositions [Anderson 85, Gagné 85] that conform to the rules of language. Another name for it, intended 
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to emphasize the performance capability it implies, is declarative knowledge. There are three sub-

categories of verbal information in the taxonomy of Gagné: labels, facts and organized knowledge. 

Large bodies of interconnected facts, such as those pertaining to events of history or to categories of art, 

science, or literature, may also be learned and remembered. As is the case, with the leaming of single fact, 

the networks of propositions that constitute the new knowledge become linked to the large proposition 

networks already existing in memory. Large bodies of knowledge are organized from smaller units so that 

they become meaningful wholes. 

• Attitudes 

Attitudes are complex human states that affect behavior toward people, things and events. For example, "I 

like classic music" is an attitude, and "1 dont like to drive at night" is another attitude. 

• Motor skills 

Sequences of unitary motor responses are often combined into more complex performances called motor 

skills. Motor skills are learned capability that underline performances whose outcomes are reflected in the 

rapidity, accuracy, force, or smoothness of bodily movement. "Driving a car" is a typical example of 

motor skills. 

An important feature of this classification is that Gagné identifies specific teaching strategies •for each kind 

of capability. We use these categories as the foundation of organizing desired teaching outcomes in our 

VITCAM model. 

5.3.3 Capability Levels 

The capability theory of Gagné gives the general taxonomy of learning outcomes. In fact, many concrete 

capabilities may be further divided into several levels. For example, according to Gagné, "Web" is a 

defined concept and "stating Web" is a capability corresponding to the concept. This capability can be still 

divided into several levels: (1) stating the definition of Web, (2) stating the basic features of Web, (3) 

stating the advanced features of Web, and (4) identifying the instances of the concept" Web" in a group of 

given concepts. 

Another example of capability levels is the Newtons law F = m*a (Force equals to mass times 

acceleration). The law is a rule and its corresponding capability is " applying Newton 's lawF = m*a." We 

can identify this capability into the following levels: (1) stating the law, (2) applying the dimensions of the 
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three variables correctly, (3) applying the law on simple instances, (4) applying the law on complex 

instances, and (5) evaluating correctness of applying the law. 

Bloom identifies six categories of objective levels for educational goals [Bloom 69,78], which are 

acquisition, comprehension, applying, analysis, synthesis, and evaluation. Though these objective levels do 

not directly associate the capabilities defined by Gagné, they reflect that the acquisition process of human 

knowledge contains graduai levels. We can associate these objective levels with the capabilities with 

multiple levels. 

Merrill defmed two mastering levels, recite and verbalize, for verbal information, and the other two levels, 

posses and generative for concepts [Merrill 93]. Klausmerier identified four levels for concepts, including 

identify, recognize, classify and generalize [Klausmerier 90]. Nkambou used Blooms objective levels as 

the types of objective nodes [Nkambou 96]. 

There are two benefits of using explicit capability levels. One benefit of taclding with multiple-level 

capabilities is that it can aggregate in a node much information that otherwise would make the network 

structure too hard to manage. Another benefit is the relatively explicitly decomposing complex capabilities. 

An interesting issue in instructional design is how many capabilities should be identified in a given domain. 

We did not find research results on this issue. Through obviously in our framework this is ver important. For 

example, one author may identify 500 capabilities in the domain of teaching "Excel" and another author may 

identify only 300 capabilities for the same domain. This may be due to the presence of aggregated 

capabilities. If some capabilities can be aggregated into relatively large capabilities, the number of nodes in a 

given domain will be decreased, and furthermore the domain network structure covering the domain will be 

simplified, and the management of the whole system will be easier. 

We thus assume that a capability can be organized into several incremental levels by the curriculum author. 

Further, a leaner may choose any assigned capability level as one of his leaming goals. The system should 

also be able to support organizing tutoring events for achieving these capability levels. 

5.3.4 Representation of Capabilities 

In Tnet a capability refers to both a data structure for storing all detail information as a teaching outcome, 

and a visual component that the interaction agents (a curriculum author and a learner) may visually create, 

organize and manipulate. 

As a data structure, a capability contains the following information: identification name, type, authoring 

states, learning states, set of capability levels, input relationships (links from transition nodes), output 
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relationships (links to transition nodes), and additional textual description. The type of a capability is based 

on Gagne s classification, such as a fact, a concrete concept, a defined concept, a fille, etc. The authoring 

states can help a curriculum author guide his/her authoring process. Due to limits or constraints, the 

curriculum author may have capability nodes partially unspecified; i.e. the capability levels will be just 

tags from the Gagne' s classification. The learning states are information that is part of the student model 

and reflect the student's status with respect to this capability. These attributes are used for retrieving 

capabilities from a database, help curriculum authors navigate into the network, guiding the learners, and 

organizing the overall capability transition networks. 

As a visual component, a capability node is a composite icon in which there is a major visual cell 

representing the overall information of the capability node, and one or more small visual cells representing 

capability levels. Every visual cell in the capability node is amanipulatable icon. The visual properties of a 

capability node include: start point, total width, total height, width and height of the overall visual cell, 

start points of level cells, width and height of level cells, border colors of all visual cells, shapes of each 

cell, and color of each cell. The operations of each capability node consist of (1) creating, (2) dragging, (3) 

adding links, (4) removing the node, (5) removing relevant links, (6) zooming in, (7) zooming out, (8) 

clicking a cell for editing detailed views. 

5.4 Transition Nodes 

In this section, we focus on the tutoring events in VTRANS model. We first introduce the increment 

mechanisms loosed Gagnés theory and Blooms theory. Then the set of tutoring events— the transition 

node is defmed. Tutoring units and sub-units are two kinds of components in transition nodes, which are 

described in section 5.4.3 and 5.4.4 respectively. The didactic resources that directly support tutoring 

events are characterized in the section 5.4.5. 

5.4.1 Incremental Mechanisms of Knowledge Transition 

Bloom and Gagné analyze teaching outcomes from different properties. Both reflect the incremental 

learning process. 

As mentioned in previous sections, Bloom [Bloom 69, 78] defines six levels of objectives: 

• acquisition, 

• comprehension, 

• application, 

• analysis, 

• synthesis, and 
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• evaluation. 

From the point of view of educational goals, the six levels can associate with students studying at different 

levels. An elementary student is mainly to acquire basic knowledge, while a university student is mainly to 

leam the ability of analysis and synthesis. Also we can use these objective levels to the teaching of 

concrete capabilities. 

From the point of view of the teaching of concrete capabilities, the six levels reflect that the transition of 

any capability is graduai from lower levels to high levels. However, it would be difficult for usual human 

teachers to identify them in concrete capabilities. Meanwhile, when to use these levels to capabilities, each 

of the six levels may be still divided into several levels. For example, " applying HTML" is a capability; 

we can divide the capability into three levels: (1) designing simple Web, (2) designing general Web, and 

(3) designing commercial Web. As a result, though we can inspire Blooms idea about objective levels, 

these objective levels should be used flexibly. 

Another limitation of Bloom 's theory is that there is no concrete instruction strategy or event to support 

these objective levels. This makes it difficult to be used in computer based curriculum. 

Gagné identified nine instruction events to transfer capabilities based on the analysis of cognitive process 

of human learning: 

• gaining attention relating the reception of patterns of neural impulses, 

• informing learner of the objective that activates a process of executive control, 

• stimulating recall of prerequisite learning that retrieves prior learning to working memory, 

• presenting the stimulus material that emphasizes features for selective perception, 

• providing learning guidance that makes semantic coding; 

• eliciting the performance that activates response organization, 

• providing feed back about performance correctness that establishes reinforcement, 

• assessing the performance that activates retrieval and makes reinforcement possible; 

• enhancing retention and transfer that provides eues and strategies for retrieval 

This theory provides both concrete steps of instructional actions and sub-objectives in teaching process, 

which is based on the cognitive mechanism of human learning. 

However, the capability and instructional event theory of Gagné deal with neither identifying a capability 

as several incremental levels nor organizing instructional events for the capability levels. 
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If it were possible to combine Blooms objective levels and Gagnés instructional events, it would be 

possible to support an incremental acquisition of capabilities and organize concrete tutoring event to 

achieve them. We are going to define a kind of transition node that makes this possible. 

5.4.2 Definition of Transition Nodes 

A transition node is an ordered set of tutoring events, which organizes a group of tutoring events to support 

incremental transition of a group of capability levels. Concretely, a transition node consists of a sequence of 

tutoring units. Each tutoring unit contains a group of tutoring events called sub-units. The transition of a 

tutoring unit typically will increase the level of some output capabilities. The identification of tutoring units 

is based on Blooms objective level theory; that is, it reflects incremental capability levels. The idea of 

adopting tutoring sub-units is come from Gagnés instructional event theory, which refers to defining a 

sequence of concrete tutoring events to support the teaching to increase the levels of certain group of 

capabilities. The figure 5.2 shows the internai structure and external relationships of a transition node. 

This structure combines three general tutoring strategies: Strategy A - successive refinement strategy in a 

given domain, Strategy B - incremental objective levels (Blooms theory), and Strategy C - incremental 

instructional events according to Gagné s theory for certain capability levels. With this structure, a 

successive refinement strategy can be defined that organizes the acquisition of new capabilities in an 

orderly manner. This organization manner effectively utilizes the classification of bothGagné and Bloom. 

With reference to figure 5.2, the structuring of student actions in a transition node corresponds to depicting 

a path between cells of the grid. Other teaching strategies, for instance hints or question/answer, can be 

integrated into both didactic resource groups and into the activity delivery module in a tutoring system. 

In Tnet a transition node also refers to both a data structure for storing all detail information as a group 

tutoring events; and a visual component that the interaction agents (a curriculum author and a learner) may 

visually create, organize and manipulate. 
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Strategy C: Gagnés Instructional Events 

Figure 5.2 Internai structure and extemal relationships of a transition node. 

As a data structure, a transition node consists of the following information: identification, naine, scheme 

(preliminary information that is entitled into the node in order to facilitate the subsequent structuring of the 

capability transition network.), a collection of events, authoring states, learning states, a collection of input 

capabilities, a collection of output capabilities, description, and visual properties 

Each transition node in Tnet contains a set of authoring states and a set of learning states. By this we mean 

that the nodes in Tnet have some ability of self-descriptive properties, such as supporting the management 

of self qualifies such as "incomplete", ''complete", etc. These properties can give visual characteristics to 

the node in the visual curriculum, so that the curriculum authors can better assess the work done so far and 

what remains to be done. In curriculum development processes, each kind of authoring states may be either 

"not be developed" , or "partly developed" or "fully developed" . The overall state of the transition node 

is the combination of these states (see the section 5.6.5 for details). Learning states of a transition node 

include "recommended" , "enable" , "part enable" , "disable" and "passed" , which will be discussed in 

detail in chapter 6. 

The input and output relationship of a transition node contains all prerequisite capabilities and required 

minimal mastered levels, as well as the maximum contributed capability levels. 

As a visual component, a transition node is an aggregated icon in which, in addition to an overall visual 

cell and a scheme visual cell, there are multiple visual cells representing tutoring units of the transition 

node and each unit cell is allowed multiple small visual cells representing sub-units. Every visual cell in 
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the transition node is also a manipulatable icon. The visual parameters of a transition node include, start 

point, total width, total height, width and height of the overall visual cell, start points of level cells, width 

and height of level cells, border colors of all visual cells, shapes of each cell, and color of each cell. The 

visual operations of each transition node consist of (1) creating, (2) dragging, (3) adding links, (4) 

removing the node, (5) removing relevant links, (6) zoorning in, (7) zooming out, (8) clicking any cell for 

editing detailed view. 

An example of transition node is shown in figure 5.3. 

TeachWebBrowsers 
Definition of the Transition Node: 

. Number of Actions: 3 
l .TeachWebBrowserDescription, available media 
2.TeachBrowserJob, available media 
3.TeachPopBrowsers: Netscape, Mosaic, Lynx, & Explorer 

. 	Prerequisite capability: statingWeb, level 3 

. Output Capability: stating Web Browsers, level 3 

. SuccessCriterion: >60% 
TeachWebBrowsers'Description 

PresentBrowser 
Introdu cti on 

PresentBrowser 
Description 

ElicitBrowser 
description 

TestBrowser 
description 

TeachBrowsers'Job 

presentJobDescription 	elicitJobDescription 	testJobDescription 

teachPopularBrowsers 

Present 
intro 

Present 
Netsca 
pe 

Present 
Mosaic 

Present 
Lynx 

Present 
Explor 
Cr 

Elicit 
Browse 
rS 

TestPopular 
Browsers 

Figure 5.3 An example of transition node for teaching the concept: Web Browsers. 

The transition node, "teachWebBrowsers" contains a scheme that defme three tutoring units, a prerequisite 

capability and an output capability. These tutorMg units are "teachBrowsers'Description", 

"teachBrowsers'Job" and "teachPopularBrowsers", each of which consists of a sequence of sub-units. For 

example, the tutoring unit "teachBrowsers'Job" contants three sub-units: "presentJobDescription", 

"êlicitJobDescription" and "testJobDescription". The following two sections characterize tutoring units and 

tutoring sub-units. 

5.4.3 Tutoring Units 

A tutoring unit in a transition node corresponds to and doesn't limit to one of Blooms objective levels. 

Traversing a tutoring unit successfully by a leamer means the leamer has acquired certain levels of a group 

of output capabilities. A tutoring unit is both a data structure and a visual component in Tnet. 
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As a data structure, a tutoring unit contains the following attributes: identification, name, runner, sub-unit 

collection, authoring states, learning states, description, and visual properties. Most attributes are similar to 

that in a transition node except that they are specific for tutoring units. Here a runner in tutoring unit is a 

program that can deliver all tutoring events in the tutoring unit. In Figure 5.3, "teachBrowsers'description" 

and "teachBrowsers'Job" and "teachPopularBrowsers" all they are examples of tutoring units. 

As a visual component, a tutoring unit is a group of visual cells embedded in a transition node in which 

there are a large cell representing overall view of the tutoring unit and several small visual cells 

representing its sub-units. Visual arguments and operations in a tutoring unit are similar to that in 

transition nodes. 

5.4.4 Tutoring Sub-Units 

A tutoring sub-unit is a concrete tutoring event consisting of a group of interactive actions, which is 

comparable to one of Gagnés instructional events. 

A sub-unit is a sub-process of acquiring certain levels of some capabilities. Examples of sub-unit include 

"presenting a defmition", and "testing mastering degree to the definition". 

A sub-units structure is described by the following attributes: identification, name, runner, resource groups, 

authoring states, learning states, description, and visual properties. The runner for a sub-unit is also a 

program to transfer a group of interactive actions or activate the interaction functionality in the activity 

delivery module. The resource groups may contain one or more alternative resource collections. Each group 

supplies organized materials or interaction creation ftmctionality in the activity delivery module for 

interactive actions in the sub-unit. In learning process, but only a current group is active. When a learner 

encounters difficulties with the current resource group, the system can switch the current resource group to 

another to remedy the learner's lacks. If the activity delivery module can dynamically create interaction 

activities, the resources in a sub-unit can be dynamically linked or organized based on the current states of 

students. The authoring states of a sub-unit cover the development states of resource groups, the runner 

states, and the states of other attributes. The learning states contain "recommend", "enabled", "partly 

enabled", "disabled", and "passed" which are described in detail later. Some other attributes of a sub-unit are 

similar to that in tutoring units. 

As a visual component, a sub-unit is a small visual cell following a tutoring unit in a transition node. The 

operations a sub-unit can provide include (1) editing sub-unit attributes, (2) attaching resource groups to the 

sub-unit, and (3) testing the attached resource groups. 
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5.4.5 Resources 

• Definition and Representation of Resources 

In most tutoring systems, the term "resources" refers to the didactic materials. In order to get a relatively 

opening model, in VITCAM; a resource may be a didactic material, a resource selector, an interaction creator 

or a learning guidance program. 

From the viewpoint of curriculum management, we classify resources as static resources and dynamic 

resources. 

A static resource refers to various media pieces or their composition. In order to use resources inflexibly, we 

should consider storing more attributes, including identification, name, runner, type, media type, media 

format, data path, state, supported capabilities, cognitive strategies, size, inner text, description, visual 

properties. An identification of resource is a key in resource databases. For example a static resource may 

contain (1) an image for getting attention, and (2) a text for informing the learnt the objective. 

Dynamic resources in our model consists of resource selector, dynamic interaction creator (a presenter of 

static resources, a demonstrator, a simulator, etc.) and learning guidance programs (such as diagnosis and 

evaluation programs). As a general-purpose curriculum development environment, VITCAM should be open 

for some intelligent and evolving aspects. For example, diagnosis of leamers errors is a difficult issue [Guo, 

92]. We consider these programs as resources to enhance the flexibility of the system. 

• Resource Groups 

As mentioned above, a sub-unit contains several alternative resource groups. A resource group refers to a 

collection of resources that are organized by certain tutoring strategies. For example, in order to teach the 

proof process of a theorem, resources can be organized either by an induction strategy or a deduction 

strategy. We thus can get two alternative resource groups for the same teaching purpose. 

In addition to the attributes defined in the resources, an important attribute of resource groups is the cognitive 

strategy used. When to create individualized courses or when to remedy learners' misconceptions, these 

resource groups serve as alternatives. 

5.5 Organizing Tutoring Events to Support Capability Aggregation 

As mentioned-above, VTRANS supports the teaching of multiple-level and aggregated capabilities. This 

section explains, by examples, how to identify multiple-level capabilities and aggregated capabilities and 
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how to organize tutoring events for teaching these capabilities. Usually, some complex capabilities for 

instance a rule or a high-order rule (such as a physical law or a process of problem solving) can be identified 

as a multiple-level capability. Some simple capabilities such as a fact or a concrete concept can be 

aggregated into a relevant large capability. 

5.5.1 Organizing Events to Impact Multiple-Level Capabilities 

The section explains, with some examples, how to use VTRANS model to organize tutoring events for 

achieving multiple-level capabilities. 

Example 5.1 "Web" is a defmed concept and " Classifying Web" is a capability corresponding to the 

concept in the meaning of Gagné. If an individual achieves the capability, he or she should be able to 

classify instances of the concept from a variety of concepts. We can identify the capability into two 

increment levels: 

• " stating Web definition" and 

• " Identifying instances of Web concept" . 

The two levels are incremental. In order to understand the Web definition, a learner should be able to state its 

defmition first. However, if the learner can just state Web's defmition, we cannot confirm whether he/she 

really understands the defmition. If the leamer can identify the instances of the concept "Web" from a variety 

of instances of concepts, he/she understands the defmition. 

After the capability's levels are identified, the curriculum author can organize tutoring events integrated into 

a transition node to support the teaching of the two capability levels respectively. Figure 5.4 shows a 

transition node that supports the achievement of the two capability levels. This transition node include two 

tutoring units called "teachWebStatement" and "teachWebIdentification" that support the capability level 

"statingWebDefinition" and "identifyingWebInstances" respectively. Each tutoring unit consists of a sub-unit 

sequence, for instance, the tutoring unit "teachWebStatement" consists of four sub-units: "gain attention", 

"present Web definition", "exercise Web defmition" and "test Web definition". Each sub-unit contains a 

group of interaction acts with resources. For example, in order to form the sub-unit "gain attention", we may 

use a group of resources consisting of an animation that attract learners attention and a paragraph of text that 

state the objective of this tutoring unit. An alternative is that we can activate the related functionality in the 

activity delivery module (if it is available) to dynamically create interactions. 
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Figure 5.4 Organizing tutoring events to achieve a capability with multiple levels 

Example 5.2 " Applying Newtons law F = m*a (Force equals to mass times acceleration)" is a capability 

or rule in the meaning of Gagné. We can identify the capability into the following five levels: 

• Stating the law, 

• Applying the dimensions of the three variables correctly, 

• Applying the law to simple instances, 

• Apply the law to complex instances, and 

• Evaluating the correctness of applying the law. 

These five levels are incremental, too. In order to apply the law, a learner should be able state the formula 

first, i.e., he or she should Icnow the three concepts involved in the formula and the relationships between 

them. However, just reciting the formula is not the final purpose to achieve the capability. The learner 

should further understand the relationships between the dimensions of the three variables. For example, the 

dimensions of the concept "mass" include kilogram, gram, milligram, etc., and the dimensions of the 

concept " acceleration" have " lcm/(hr*hr), km/(minute*minute), lcm/(second*second), m/(second*second), 

etc. When to apply the formula, many learners often get wrong result because of the erroneous 

combination of these dimensions. If the learner can correctly understand the relationships between these 

dimensions, he or she understands the capability to a higher level than just reciting the formula. By 

continuing the analysis in the above way, finally, if the learner can correctly evaluate the correctness of 

applying the law, we say that the learner really mastered the capability. 

We can now organize tutoring events to teach these levels (figure 5.5). In figure 5.5, we use five tutoring 

units respectively to support the corresponding five capability levels. A learner can select any levet of the 

five levels as his learning goal. The system, then, identifies the necessary tutoring units to support the 

achievement of his goals. In this example, five tutoring units and sixteen sub-units are organized to support 
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the teaching of the law. Each sub-unit consists of a group of interactive acts that present teaching 

materials, receive learners reply, and provide guidance. 

Applying Newton Law:F=m *a (capability node) 
State 1--rn*a Apply dimensions Apply to simple 

instances 
Apply to 

complex instances 
Evaluate 

application 

TeachNewtonLaw P'=m *a (transition node) 
teachLawStatement 

RecallForce,mass & acceration 	presentlawStatement 	exerciseStatement 	testStatement 

teachDimensionsœVariables 
ExplainDimensions 	 bcercisellimensions 	 testDimensions 

teachApplyingSimpleInstances 
presentSimpleInstances 	exerciseSimpleinstances 	TestSimpleInstances 

teachApplyingComplexInstances 
presentComplexinstances 	exerciseComplexinstances 	testComplexInstances 

teachEvaluatingApplications 
evaluateSimpleInstances 	EvaluateComplexinstances 	testbraluations 

Figure 5.5 Organizing tutoring events to support acquisition of Newtons law 

5.5.2 Integrating Events to Achieve Aggregated Capabilities 

An interesting issue in instructional design is that how many capabilities should be identified in a given 

domain. There is too little research on this issue. In fact, this is very important for managing practical 

curriculum. For example, one author may identify 500 capabilities in the "Excel" domain, and another 

author might identify only 300 capabilities that are also able to cover the knowledge in Excel" , in which, 

some capabilities are aggregated capabilities. If some small capabilities can be nested into relative large 

capabilities, the number of nodes in a given domain will be decreased, and fiirthermore, the network 

structure covering the given domain will be simplified, and the management of the system will be easier. 

VTR,4NS model can supply the ability to aggregate separate capabilities into relative large capability nodes. 

This is a powerful means to simplify domain network structures. The following examples explain the 

aggregation ability. 

Example 5.3 aggregating capabilities about Web Browsers: "Definition of Web Browsers" , "Web 

Browsers' Job" and "Popular Browsers" are three separated concepts surround the concept "Web" . With 

existing authoring prototypes, the three capability nodes should be identified separately in its knowledge 

transition network. In our model, we can integrate the three separated capabilities into an aggregated 

capability called "Understanding Web Browsers" with three graduai levels: 



• Identifying Web browsers defmition, 

• Stating Web browsers' job, and 

• Stating Popular Web browsers. 

These three separated capabilities have different capability types. "Defmition of Web browsers" is a 

defined concept; "Web browsers' job" and "Popular browsers" are two kinds of verbal information. 

Shnilarly, the three separated capabilities reflect an incremental sequence. 

The following figure 5.6 shows a transition node that supports the acquisition of the aggregated capability. 

In summary, identification of domain capabilities is a difficult task that needs human experts to complete. 

However, our model facilities the global structure of capability transition networks by the integration ability 

supporting multiple-level capabilities and composite capabilities. 

UnderstandingWebBrowsers (composite capability) 
identifyBrowsersDefinition 	stateBrowsersjob 	statePopBrowsers 

3 

TeachWebBrowsers (transition node) 
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Figure 5.6 Organizing tutoring events to support an aggregated capability 

5.5.3 Practical Consideration to Organize Transition Nodes 
In order to organize tutoring events effectively in transition nodes, in this section, we tackle the associations 

among capabilities, objective levels, instructional events and resources. At first, we try to associate 

capabilities with objective levels. We, then, discuss the relationships among objective levels, instructional 

events and resources. 

5.5.3.1 Associating Capabilities and Objective Levels 
One advantage of Gagnes capability theory is that different capability types can use different teaching 

strategues to teach. Of these capabilities, some are simple such as a name and some others are complex such 
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as a rule or a high-order rule. A curriculum author can identify varions objective levels for these capability 

types. Figure 5.7 shows an example to associate capability types to objective levels. In the figure, each 

column relates to an objective level and each row corresponds to a type of capabilities. The marked cells 

refer to that the type of capability in the related row may identify its objective levels as indicated in the 

corresponding columns. For example, a defmed concept may contain three objective levels: stating, 

comprehension, and evaluation. The number 1,2,3... in each objective level means that the objective level 

can be further decomposed into some sub-objective levels. 
Statmg 
1,2,3... 

Comprehension 
1,2,3... 

Application 
1,2,3... 

Analysis 
1,2,3... 

Synthesis 
1,2,3... 

hvaluation 
1,2,3... 

\/ \./
discnminations 

\./ 
 

Concrete concepts 

Detmed concepts 
\./ \/ \/ 

rules 

High-order rules 

\./ 
names 

\./ 

\./
tacts 

\// 
 

Organized tacts 
\/ \./ \/ 

Cogmitive strategies \7 
7  \/ \7 \7  

attitudes 
\/ \./ 

 

Figure 5.7 Example to associate capability types with objective levels 

5.5.3.2 Associating Instructional Events, Objective Levels and Resources 

In order to organize tutoring events in a transition node, we have to associate instructional events, objective 

levels and didactic resources. A curriculum author may use a table like that in figure 5.8, in which each 

column indicates an objective or capability level and each row relates to an instructional event. The marks 
inside middle cells represent didactic resource groups. For example, there are three objective levels in the 

figure that contains resource groups. We can organize these three tutoring units to correspond to the three 

capability levels. The column entitled "comprehension" includes three groups of resources: R11, R17 and 

R18. We can organize three sub-units for the second tutoring unit, each of which uses one group of 

resources. By using such method, the curriculum author can organize transition node intuitively. The table in 

the figure 5.8 is just an example. The curriculum author can flexibly identify objective levels and combine 

instructional events to meet various needs. If there is an intelligent activity delivery module available, the 

resource links and interactions in transition nodes may be dynamically generated. In such case, each sub-unit 

can be regarded as a sub-objective. 
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Statmg 
1,2,3... 

Con-rprehension 
1,2,3... 

Application 
1,2,3... 

Analysis 
1,2,3... 

Synthesis 
1,2,3... 

Evaluation 
1,2,3... 

Gain attention R5 

Inform objective R5 

Stimulate recall 
R11 

Present materials R7 R11 R14 

Provi de guidance R15 R19 

Elicit performance R15 R17 R19 

Provide feedback R15 R17 

Assess performance R15 R17 

Enhance retention R40 

Test 12.12.7 R18 R37 

Figure 5.8 Example to organin a transition node 

5.6 VTRANS-Based Visual Authoring 

As a central structure of visual curriculum, net' s visual ability enhances its usage in teaching and leaming 

process. This section deals with visual authoring of curriculum with VTRANS model 

5.6.1 Creating Visual Components for Capability Transition Networks 

The first step of visual authoring is to be able to automatically generate various nodes and links used in the 

Tnet structure. This section describes the approaches for creating various nodes and links and for recognizing 

visual cells. 

5.6.1.1 Mechanism for Creating Capability Icons 

A capability contains its overall attributes and levels. We attempt to construct a capability node that can 

visually display both the capability and its levels. We define a visual capability node that consists of an 

overall visual cell representing the overall view of the capability and a group of small cells representing all 

levels of the capability. A relative large rectangle is used to stand for the overall cell and some variant shapes 

are used to represent the levels of the capability. The overall cells in all capabilities have the same shape, 

while different shapes of level cells distinguish the type of the capability from that of other capabilities. 

Figure 5.9 shows some example of capability icons. 
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There is no facility to directly create such defmed visual nodes in existing programming languages and 

environments. We have to find mechanism to generate such compounded node. The Algorithm 5.1 in 

Appendix A describes a mechanism to create capability icons. The idea is that we draw a graphics first and 

then change all cells in the graphics into a Java GUI component. 

5.6.1.2 Mechanism for Creating Transition Node Icons 

The transition nodes are the most complicated visual components in Tnet. Each transition node contains four 

kinds of visual cells: 

• An overall visual cell for the global view of the transition node; 

• A scheme cell for describing preliminary information of the node; 

• A group tutoring unit cells; 

• Sub-unit cells involved in each tutoring unit. 

Currently, there are two kinds of transition nodes in Tnet, one is used for inner nodes and another for leaf 

node. The shapes of sub-units distinguish the types of transition nodes. Figure 5.10 shows some examples of 

the tvvo kinds of transition nodes. 

The Algorithm 5.2 in Appendix A describes the mechanism of creating transition nodes. The idea is similar 

to that in capability node, but the calculation on positions and sizes of visual cells is more complex than that 

in capability node. 

Figure 5.10 Two kinds of transition nodes 



5.6.1.3 Mechanism for Creating Visual Links 

A link is used for representing either a prerequisite relationship from a capability node to a transition node, or 

an output relationship from a transition node to a capability node. In Tnet, a link is both a graphie and a 

manipulatable visual component, which is displayed with line with an arrow at its ends. Each link has at least 

a source icon, a destination icon and a digit label. The digit label indicates either the required minimal 

mastering level in a link from a capability node to a transition node, or the contributed maximal levels in a 

link from a transition node to a capability. The algorithm to create links is described in the Algorithrn 5.3 in 

Appendix A. 

5.6.1.4 Recognition of Visual Cells 

. Each cell in a node is a clickable element. We need an approach to recognize the visual cell clicked by a 

user. 

The idea is that when a user click a point on screen, we check all cells in all icons on screen to see if any cell 

contains the clicked point. If there is a visual cell that contains the clicked point, the system activates related 

operations corresponding to the cell to do something. Otherwise, if there is no visual cell that contains the 

clicked point, then the blank area on the screen is clicked. This is the case to create a new node. The 

algorithm to recognize clicked visual cells is omitted. 

5.6.2 Mechanism for Visual Organization 

The visual organization in Tnet including dragging and moving nodes, deleting nodes, and deleting links. 

5.6.2.1 Visually Dragging and Moving Nodes 

The main steps to drag and move a node are: 

• following the user' s dragging to dynamically change visual parameters of the dragged icon, 

• erasing the previous display from the screen, 

• drawing the icon on current position, 

• erasing all previous links of the icon and drawing these links to follow the dragging, 

• storing the visual parameters of the fmally displayed icon. 
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The algorithm to drag and move nodes is attached in the Algorithm 5.4 in Appendix A. 
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5.6.2.2 Visually Deleting Nodes 

The following steps are followed to delete nodes: 

• Erasing the clicked icon from the screen; 

• Deleting all input links and output links of the clicked icon from the screen and the inner database; 

• Deleting the related output links of the source icon of each input link, and the related input links of 

the destination icon of each output link; 

• Deleting the clicked icon from inner database. 

The corresponding algorithm 5.5 can be found in Appendix A: 

5.6.2.3 Visually Deleting Links 

The steps to delete links contain: 

• Erasing the clicked link from the screen; 

• Deleting the clicked link from its source icon; 

• Deleting the clicked lick from its destination icon; 

• Deleting the clicked lick from the inner database. 

The corresponding algorithm 5.6 is attached in Appendix. A. 

5.6.2.4 Mechanism for Visual Manipulation 

An important feature of visual curriculum is its strong ability of visual manipulation. That is, a curriculum 

author or a leamer can click any visual cell in a node to do what he wants to do. In order to satisfy this 

requirement, we need to change all graphic cells into manipulatable icons. 

The idea is that each visual cell is associated with an action handler that responses the clicking action of the 

visual cell. Currently, when a user creates a new node, the system automatically attach a related action 

handler to each visual cell in the node. These corresponding action handlers are called capability handlers, 

level handler, transition handler, scheme handler, unit handler, sub-unit handler and link handler respectively. 

These handlers are used for editing attributes, organizing resources to tutoring events, and testing tutoring 

events. 
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5.6.3 Visual Edition 

Visual edition of Tnet consists of editing visual properties (such as adding, inserting and deleting visual cells) 

and inner attributes of cells. 

1) Editing Visual Properties 

For a capability node, adding a cell refers to simply add a capability level as its last level. In a transition 

node, there are tutoring unit cells and sub-unit cells. Adding a tutoring unit cell means to add a unit as the 

transition node's last unit, and adding a sub-unit cell implies a sub-unit cell is added to the related unit as its 

last sub-unit. 

Inserting and deleting cells are more complicated than adding cells. For a capability icon, inserting or 

deleting a cell refers to inserting or deleting a capability level. For a transition node, inserting or deleting a 

cell means inserting or deleting either a tutoring unit or a sub-unit. 

The steps to insert a cell are: 

• Locate the cell to insert; 

• Move all the successive cell forward a position; 

• Initiafize the newly inserted cell. 

The Algorithm 5.7 in Appendix A describes the procedure of inserting units. Other algorithms such as 

deleting a unit, inserting a sub-unit and deleting a sub-unit are similar to this one. 

2) Editing Detailed Information in Visual Cells 

In order to create an environment for editing detailed information in each cell, a detailed view is defined for 

each cell, Currently, a dialog handler is provided for each kind of visual cell. They include the capability 

detail window, the level detail window, the transition detail window, the scheme detail window, the unit 

detail window, the sub unit detail window, and the link detail window. With each detail window, a 

curriculum author may enter or edit all detail information in the corresponding cell, and a leamer may view 

the detail information of each visual cell. The figure 5.15 in the section 5.6.7 will give examples of detailed 

views. 
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5.6.4 Attaching Resource Groups to Tutoring Sub-Units and Testing 
Tutoring Actions 

A sub-unit organizes a group of interactive acts. Each interactive act involves resource groups that are 

organized with certain tutoring strategies. Our model defmes a database for resource groups with which a 
curriculum author can group resources into meaningful structures to organize sub-units. Within the detailed 

view of sub-units, the curriculum author can open the resource database groups, choose resource groups and 

attach them to sub-units. With the help of interactive act runners, these resource groups can be displayed to 

form interaction acts. 

With the detailed views in tutoring units and sub-units, a curriculum author can test tutoring actions by 

simply clicking the corresponding sub-units in detailed views of tutoring units. If all necessary resources and 

interaction rtumers (i.e. programs to display resources and to handle interactions) work well, the related 

interaction session should carry out correctly. 

5.6.5 Use of Visual Navigation by Curriculum Authors 

Visual navigation in a large network needs to be easy and practical for both curriculum authors and leamers. 
In this work we leave aside many questions relative to the navigation in large graph structures displayed on 

relatively small computer screens, as this has be dealt with by many other researchers in the past, such as that 

in Focus+Context [Lamping et al., 95]. In this work we concentrate on developing various ways of displaying 

relevant information dependent on the context in which the curriculum author or student learner is placed. In 

our approach it is easy to obtain different views of a structure like a Tnet to highlight contextual information 

on say, current leaming goals, what are the alternatives to reach them, what are the kind of difficulties 

associated with each alternative, what has been seen by a student, at what levels, etc... 

For the curriculum authors the information could be meta-information like the development progress of a 

capability node or a transition node, alternative views on the type of tutoring events that are available for 

students to reach their leaming goals, etc. In the following those visual properties are presented in more 

detail. 

We argued, in the previous chapter, that the usability of a curriculum should not focus only on the 

leamability and the productivity, as that in a usual application [Murray 98]. The learnability and the 

productivity are important for a tutoring system, but the on-line navigation ability is also important for such a 

complex lcnowledge curriculum system. Curriculum authors needs on-line navigation for development 

progress. In particular, learners prefer online navigation because they get better guidance in areas of 

knowledge new to them. 
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Figure 5.11 States of visual cells 

In addition to visualizing the knowledge structure in a curriculum, the mechanisms of state-driven 

navigation, that now introduce, also supports real-time guidance of development and learning. We describe 
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the online navigation for curriculum authors in this section. The navigation steps available to leamers will be 

presented in Chapter 6. 

During the authoring process, the author often needs to know the development progress, that is, which nodes 

containe all necessary information, or which nodes lack necessary information. The navigation facilities in 

Tnet can display in real-time the current prog,ress. This is implemented by means of various states a node can 

be in. 

Based on the inner attributes and extemal relationships of nodes, we have defined several groups of states for 

each visual cell (as shown in figure 5.11). 

A group of rules is defmed for each kind of node to get a total state, then use a group of colors to map these 

states to visual display. 

For capability nodes and their levels, the following iules defme their states: 

Rcl : if a capability has no input and output relationship, then the capability's relation state is capSole; 
Rc2: if a capability has input relationship and no output relation, then the capability's relation state is 

capHasInNoOut; 
Rc3: if a capability has no input relationship and has output relationships, then the capability's relationship 

state is capNoInHasOut; 
Rc4: if a capability has both input and output relationships, then the capability's relation state is 

capHasInHasOut; 
Rc5: if a capability has no internai attribute, then the capability's attribute state is capNoInnerAttribute; 
Rc6: if a capability has part inner attributes, then the capability's attribute state is capPartInnerAttribute; 
Rc7: if a transition node contains all inner attributes, then the capability's attribute state is 

capFullInnerAttribute; 
Rc8: if a capability's state is capHasInHasOut & capFullInnerAttributes, then the capability's state is 

capFullAttributes; 
Rc9: if a capability's state is capSole & capNoInnerAttribute, then the capability's state is capNoAttribute; 
Rc10: if a capability is neither capFullAttributes nor capNoAttri, then the capability's state is 

capPartAttribute; 
Roll: if a capability levai has no inner attribute, then the level's state isLevelNoAttri; 
Rc12: if a capability levai has part inner attributes, then the levers state is levelPartAttri; 
Rc13: is a capability levai has all inner attributes, then the level's state is levelFullAttri. 

A transition node contains more rules for defming its visual cells state. The states of a transition node are 

divided into three kinds: overall state, scheme state and unit state. Each kind of states contains some sub-

kinds. 

Rtl: if a transition node has no input and output relationship, then the transition nodes relation state is 
transSole; 

Rt2: if a transition node has input relationship and no output relation, then the transition nodes relation 
state is transHasInNoOut; 

Rt3: if a transition node has no input relationship and has output relationships, then the transition nodes 
relationship state is transNoInHasOut; 

Rt4: if a transition node has both input and output relationships, then the transition nodes relation state is 
transHasInHasOut; 
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Rt5: if a transition node has no overall attribute, then the transition node's overall attribute state is 
transNoOverallAttribute; 

Rt6: if a transition node has part overall attributes, then the transition node's overall attribute state is 
transPartOverallAttribute; 

Rt7: if a transition node contains all overall attributes, then the transition node's overall attribute state is 
transFullOverallAttribute; 

Rt8: if a scheme has no attribute, then the scheme's attribute state is schemeNoAttribute; 
Rt9: if a scheme has part attributes, then the scheme's attribute state is schemePartAttribute; 
Rt10: if a scheme contains all attributes, then the scheme's attribute state is schemeFullAttributes; 

Rt11: if all sub-units states are subUnitNoAttribute, then the units sub-unit state is 
unitNoSubUnitAttribute; 

Rt12: if all sub-units' state are subUnitFullAttribute, then the units sub-unit state is 
unitFullSubUnitAttribute; 

Rtl 3: if a unit is neither unitNoSubUnitAttribute nor unitFullSubUnitAttribute, then the units sub-unit state 
is unitPartSubUnitAttribute; 

if a unit has no runner, then the units sub-unit state is unitNoRunner; 
if a unit has part runner, then the units sub-unit state is unitParRunner; 
if a unit has all runners, then the units sub-unit state is unitFullRunner; 

if a unit has no other attribute, then the units attribute state is unitNoOtherAttribute; 
if a unit has part other attributes, then the units attribute state is unitPartOtherAttribute; 
if a unit has full other attributes, then the units attribute state is unitFullOtherAttribute; 

Rt20: if a unit is both unitNoSubUnt, 
unitNoAttribute; 

Rt21: if a unit is both unitFullSubUnit, 
unitFullAttribute; 

Rt22: if a unit is neither unitNoAttribute 

unitNoRunner and unitNoOtherAttribute, then the units state is 

unitFullRunner and unitFullotherAttribute, then the units state is 

nor unitFullAttribute, then the units state is unitPartAttribute; 

if a sub-unit has no resource, then the sub-units resource state is subUnitNoResource; 
if a sub-unit has part resources, then the sub-units resource state is subUnitPartResource; 
if a sub-unit has full resources, then the sub-units resource state is subUnitFullResource; 

if a sub-unit has no runner, then the sub-units runner state is subUnitNoRunner; 
if a sub-unit has part runners, then the sub-units runner state is subUnitPartRunner; 
if a sub-unit has full runners, then the sub-units runner state is subUnitFullRunner; 

if a sub-unit has no other attribute, then the sub-units attribute state is subUnitNoOtherAttribute; 
if a sub-unit has part other attribute, then the sub-units attribute state is subUnitPartOtherAttribute; 
if a sub-unit has full other attribute, then the sub-units attribute state is subUnitFullOtherAttribute; 

Rt32 if a transitions all units are unitNoAttribute, then the transition node's unit state is 
transNoUnitAttribute; 

Rt33: if a transition node's all units are unitFullAttribute, then the transition node's unit state is 
transFullUnit; 

Rt34: if a transitions unit state is neither transNoUnitAttribute nor transFullUnitAttribute, then the 
transition node's unit state is transPartUnit; 

Rt35: if a transition node is transNoOverallAttribute, transNoSchenneAttribute, and transNoUnitAttribute, 
then the transition node's state is transNoAttribute; 

Rt36: if a transition node is transFullOverallAttribute, transFullSchemeAttribute and transFullUnitAttribute, 
then the transition node's state is transFullAtrribute; 

Rt37: if a transition node's state is neither transNoAttribute nor transFullAttribute, then the transtion 
node's state is transPartAttribute; 

In summary, each visual cell contains three general states: no attribute, partly attributes and full attributes. 

We use three different colors to indicate the three states for all visual cens. Meanwhile, the curriculum author 

can get the details of these states with the detailed views of visual cells. 

Rtl 4: 
Rtl 5: 
Rt16:  

Rt17:  
Rt18:  
Rt19:  

Rt23:  
Rt24:  
Rt25:  

Rt26:  
Rt27:  
Rt28:  

Rt29:  
Rt30:  
Rt31:  



5.6.6 Visualization Large Networks 

5.6.6.1 	Alternative Views 

Usually, the sizes of knowledge transition networks are much larger than actual screen size. In order to view 

the global structure of transition networks with arbitrary sizes, the system provides multiple visual views, 

including icon views, local views, and detailed views. 

Definition We define three visual views to represent varions structures of capability transition networks: 

(I) An icon view is a graph containing visual nodes with the smallest size (labels with the smallest 

fonts); 

(2). A local view is a graph containing nodes with normal sizes with which the displayed information 

of nodes will maintain the normal vision (labels with normal fonts); 

(3). A detailed view is a graph with distorted node sizes in which the details of each node are shown. 

These views may be used flexibly for varions scales of networks according to the number of nodes in 

systems and the screen sizes. Local views and detailed views are the workspaces the users often use. When 

a user wants to see the global structure of transition networks, an icon view may be used. Figure 5.12 

shows an example of icon view of the capability transition network for teaching HTML. Figure 5.13 and 

5.14 show the local views that correspond to the icon view in figure 5.12. The example of detailed view 

can be found in the section 5.6.7.2. 
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Figure 5.12 Icon view of HTML transition network 
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Figure 5.13 Local view of HTML transition network (1 of 2) 
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Figure 5.14 Local view of HTML transition network (2 of 2) 
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5.6.7 The Visual Authoring Process 

The steps for visual authoring consist of identifying domain capabilities, developing resources, organizing 

tutoring events, building Tnet, organizing Tnet, modifying Tnet, and dynamic help for curriculum authors. 

5.6.7.1 Identifying Domain Capabilities, Developing Resources and Defining Events 

VITCAM-base prototype is a visual development environment, rather than an automation tool for building 

curriculum. VITCAM requires that a curriculum author be familiar with domain knowledge and some 

pedagogic knowledge, such as Gagnés classification of capabilities and instructional events and Blooms six 

objective levels. Based on the knowledge, the curriculum author should identify all capabilities and their 

levels first, and then organize tutoring events to support the teaching of the identified capabilities. 

Meanwhile, the necessary resources should also be developed. The curriculum author can begin to build a 

curriculum with VITCAM prototype as soon as the above preparation is completed. 

5.6.7.2 Visually Building, Updating and Organizing Capability Transition Networks 

With VITCAM prototype, a curriculum author mainly works at two views: the local view and the detailed 

view. The local view contains all capability nodes, transition nodes and links, which forrn the domain 

capability transition network. The detailed view comprises all internai attributes and operations to carry out 

tutoring events. Usually, the curriculum author, first, builds the domain capability transition network with 

component templates provided by the system. Then, he or she enters and edits the details of all visual cells. 

With the visual navigation ability, the author can keep watch on the development progress. 

Figure 5.15 shows an example of the local view and the detailed view for the capability-

"statingWebBrowsers". Curriculum Authors may create, update and layout capability nodes directly by 

clicking and dragging. They can choose templates to represent particular types of capabilities such as facts, 

concepts, or rules. The difference of template shapes directly gives visual navigation information of related 

capability types. 

The necessary information for teaching involved in capability nodes is integrated in the detailed view of each 

visual cell. A curriculum author can edit, update and view the information by clicking related visual cell. In 

figure 5.15, the window on the left is the detailed view of the overall characteristics of the capability node-

"statingWebBrowsers", and the window on the right indicates the detailed view of the first level-

"statingDescription0fWebBrowsers"-of the capability. 
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Figure 5.15 An example of visual individual capability, "statingWebBrowsers", which has three levels: 

"statingDescription0fWebBrowser", "statingJobOffirowsers" and "statingPopularBrowsers". 

Figure 5.16 shows an example of transition node, which consists of five big visual cells and fourteen small 

visual cells representing sub-units. The first two big visual cells labeled as "teachWebBrowsers" and 

"scheme" respectively, indicate the overall characteristics of the transition node and the preliminary 

information of tutoring events involved in the transition node. The rest three big visual cells are the sequence 

of tutoring units, i.e., "teachBrowserDescription", teachBrowserJob" and "teachPopularBrowsers". The small 
visual cells undemeath each unit refer to sub-units involved in the unit. Clicking the related visual cell may 

get the detailed views for all internai attributes of these visual cells. The detailed views for the unit-

"teachBrowserDescription"- is shown in figure 5.17 and the detailed view for the sixth tutoring sub-unit, 

"elicitPopBrowsers", of the unit-"teachPopularBrowsers"-is given in figure 5.18. 
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Figure 5.16. Example of visual transition node 
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Figure 5.17. Detailed view of the unit "teachBrowserDescription" 
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Figure 5.18. Detailed view of the sixth sub-unit "elicitPopBrowsers" in the unit "teachPopularBrowsers" 

In order to help curriculum authors visually organize capability transition networks, a group of visual edition 

facilities are provided. Curriculum authors may visually move, remove, zoom in and zoom out visual nodes 

to get preferred visual structures (see figure 5.19 and 5.20). 
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Figure 5.19 Arbitrary movement of nodes 
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Figure 5.20 Zooming out 

5.6.7.3 Dynamic Helps for Authoring 

When building a curriculum, associations among capabilities, resources and transition nodes have been 

formed. By using these associations, a curriculum author can get dynamic helps, for instance, 

• Finding all resources that support the teaching of a particular capability; 

• Finding all capabilities that associate a particular resource; 

• Finding all resources that have the same media type; 

• Finding all resources that have the same type (e.g. multiple choice); 

• Finding the distribution of a particular resource or a particular type; 

• Finding all tutoring events associating with a particular resource; 

• Finding all transition nodes that lack resources. 

An interesting issue in dynamic support is that by adding a field indicating motivation, the transition nodes 

support the stages in the development of Tnet. For instance at the start of building a Tnet, a curriculum 
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author does not possibly have a full curriculum network in his head. He will first create some transition 

nodes and some capability nodes. The motivation for introducing a particular transition node may result 

from the availability of some teaching resources (audio, video, etc.). In order to help the curriculum author 

structure this network, we find it will clearly point to the curriculum author the kind of capability nodes 

that should be created and how to structure the network of capability and transition nodes. If the visual 

properties of the node can reflect these early categories by curriculum authors, the overall organization 

task of the Tnet will be greatly simplified. 

5.7 Conclusion 

VTRANS is the central sub-model in the visual curriculum model VITCAM. The model characterizes a central 

network structure: Tnet and various mechanisms and visual operations for building, organizing and managing 

capability transition networks. With the Tnet structure, the VTRANS model can 

• support the teaching of the multiple-level capabilities and aggregated capabilities; 

• organize tutoring events and general strategies by combining Gagnés instructional events and 

Blooms objective levels; 

• form the global capability transition networks by associating teaching outcomes (i.e. capabilities and 

their levels) and tutoring events; 

• visualize the capability transition network in a given domain with visual composite nodes and links 

to represent capabilities, capability levels, and multiple level tutoring events for different learning 

process and sub-processes respectively; 

• visual navigation to help a curriculum author develop a practical curriculum system quickly; 

• associate didactic resource groups or the dynarnic functionality in the activity delivery module to 

tutoring events. 

VTRANS model provides strong abilities for visual authoring. These abilities include supporting multiple-

level capabilities and aggregated capabilities, visually creating, organizing, manipulating capability transition 

networks, visually navigating to authoring process, and sustaining dynamic information review. 

VTRANS model supports incremental representation and organization of capabilities with multiple levels,. 

Aggregating several capabilities into a large capability node is another feature of our model. Most real 

curricula are large and complex networks (e.g. hundreds even thousands nodes). To manage such a large 

network is a difficult task. The mechanism of capability aggregation simplifies the global network structure 

to a great extent. 
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VTRANS supports three kinds of general teaching strategies: successive refinement; objective refinement; and 

event driven. The strategy of successive refinement refers to that the model can organize leaming outcomes 

according to domain knowledge structure. For all transition nodes, a curriculum author can define its 

prerequisite capabilities and output capabilities. In fact, the output capabilities are direct successive 

capabilities of prerequisite capabilities in a domain knowledge structure. The strategy of objective refinement 

means that the tutoring units in a transition node form an incremental sequence of objectives to help acquire 
certain capabilities. The strategy of event-driven corresponds to the sequence of sub-units in a tutoring unit, 

which are incremental instructional events defined by Gagné. 

Other teaching strategies can also be integrated into resources, resource groups, dynamic interaction 

programs. A curriculum author can organi7e resource groups based on different strategies for instance 

induction and deduction strategies or give links to resources for the use of the activity delivery. 

By visual operations provided by VTRANS model, a curriculum author can visually build, organize, and 

manage capability transition networks. 

With the detailed views corresponding to each kind of visual cell, the curriculum author can visually edit 

internai attributes and operations of ail visual cells. The author can also attach resource groups to tutoring 

sub-units and test tutoring events. 

The visual navigation ability is a lcind of distinct feature in VTRANS. In order to facility development 

process, each visual cell associates with a group of development states. With the progress of curriculum 

development, these states dynamically change to indicate whether the development of the cell is completed 

or not. It is very easy for the curriculum author to keep watch on the development progress. 

In order to visualizing large networks, our model provides three views that can be used in the global, the 

local and the detailed stage. 

In the development process of a curriculum, the internai associations among teaching outcomes, tutoring 

events and resources are automatically built. The system can fully use these associations to dynamically help 

the curriculum author get more useful information for further decision. 

The coming two chapters will deal with two other sub-models: VCOURSE and VACT that are used for 

creating multiple alternative courses and dynamically managing learning process respectively. Meanwhile, 

these chapters also propose various approaches to visually navigate to learning process. 



Chapter 6 

VCOURSE: A Course Network Model 

The capability transition network proposed in the previous chapter, Tnet, associates all the capabilities, 

tutoring events and relationships between them in a given subject domain. In the case of a particular student 

the Tnet network can be significantly simplified, taking into account capabilities the student has already 

acquired (and therefore may be hidden) and the fact that the student goals may involve just a small fraction 

of the set of transition nodes. So there is a need to be able to create sub-networks based on Tnet, which 

cover only the learning goals selected by the learner and other implied capabilities that are necessary to 

achieve the selected goals. We call each group of sub-networks a course. Due to the AND/OR relationship 

in a Tnet, probably, there exists multiple groups of sub-nets in Tnet that can cover the same group of 

learning goals. We call these sub-net groups alternative courses. Nkambou proposed a heuristic approach to 

automatically create courses [Nkambou et al 96, 98]. It attempts to create an optimal course based on the 

knowledge category (novice, immediate or advanced) of the current student and the strong/weak 

relationships of prerequisite or contribution between objective nodes and capability nodes . In VCOURSE, 

the basic idea for course generation is that a learner selects capability levels in a Tnet as the set of learning 

goals, the model then creates multiple alternative courses to cover this group of learning goals, and the 

learner can choose one of these alternative courses (or accept the recommendation of the system) as the 

current course. 

In this chapter, we deal with how to create multiple alternative courses for a particular learner. First, in 

section 6.1, we discuss the possibility and benefits of creating multiple alternative courses. Second, based 

on the definition of course in section 6.2, we propose a network decomposition approach for creating 

alternative courses in section 6.3. Last, the visualization of networks of courses is presented in section 6.4. 

6.1 Introduction 

In this section, we first analyze the possibility and benefits of creating multiple alternative courses. Some 

problems involved in course generation, then, are discussed. Last, the main ideas to create multiple courses 

are dealt with. A course will exhibit a network structure of capability and transition nodes involved in 

guiding the student to the achievement of some capability levels chosen as learning goals. As the student is 

performing tasks associated with the transition nodes, the capabilities are automatically updated. So we can 

speak of capability node state transition. 
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6.1.1 Possibility and Benefits of Creating Multiple Alternative Courses 

• Benefits creating multiple alternative courses 

Tnet is an AND/OR graph, that is, an output capability may come from several alternative transition nodes 

and the activation of a transition node requires that all its prerequisite capabilities be mastered at certain 

levels. The alternative transition nodes to an output capability make it possible to create multiple altemative 

paths that support the teaching of the same output capability. As a result, for a given set of learning goals 

(capabilities), there are usually more than one group of sub-networks of the Tnet, which are called courses 

and cover the same set of learning goals. In general, the courses corresponding to the same set of learning 
goals contain different prerequisite capabilities, resources, media, cognitive strategies and time costs. In 

order to support individualized tutoring, we can define a group of criteria to evaluate and compare these 

courses and, then, recommend a corresponding optimal course to the leamer. 

However, on the one hand, it is difficult to define a standard that can exactly reflect what the leamer wants 

or likes. On the other hand, leamer preferences might change; for example, in a tutoring session, the learner 

may be interested in multiple choice questions, and in another tutoring session, he/she may prefer matching 

two groups of objects. 

A good curriculum model should give users more chances to select what they like and a good deal of the 

control of the system. In the process of creating courses, the system should be able to present multiple 

alternative courses and to give the learner chances to compare and select courses. The system should also 

be able to rank the proposed courses according to their desirability to the learner.. Thus, one of the tasks of 

the curriculum model is to create multiple alternative courses for a group of leaming goals. 

• Possibility of creating multiple alternative courses 

Travelling an AND/OR graph for all paths is of exponential complexity, a NP hard problem. There is no 

effective algorithrn to decrease the complexity for a given AND/OR graph. 

However, in our model, there is a possibility to decrease the real cost for travelling all paths. The idea is to 

simplify the given AND/OR graph by reducing the number of nodes. As mentioned in previous chapters, 

one benefit of the organization mechanisms of nodes in Tnet is that it can just simplify the overall network 

structure for a given domain. The capability aggregation provides the means to combine multiple relevant 

capabilities into a relative large capability. The transition nodes with a sequence of tutoring units provide 

the way to help acquire the aggregated capabilities. 
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By comparing with CREAM model, it is feasible for VITCAM model to create multiple alternative courses. 

For example, with the CREAM prototype in the project SAFARI, the capability space of the domain 

"Excel" contains about 500 identified capabilities. Although we dont adopt the "Excel" as an example, we 

identify the capabilities in the domain "HTML" with only 17 capabilities and 17 transition nodes. 

Obviously, it is possible to create multiple alternative courses on such a simple structure. 

6.1.2. Main Steps to Create Multiple Alternative Courses 

The main idea to create multiple courses is based on the division-and-conquer approach. This approach first 

marks all principal leaming goals called head goals. A head goal is a selected goal capability whose 

successive capabilities do not contain any other selected goal. By eliminating redundant and replicate 

nodes, we obtain a group of connected sub-graphs, each of which contains a head capability as its root 

node. Each connected sub-graph is also an AND/OR graph and cover a part of leaning goals. We, then, 

create multiple alternative paths for each head capability based on the corresponding connected sub-graph. 

Any combination of alternative paths contributed by all connected sub-graphs is a course. The main steps 

for creating multiple alternative courses include: 

Step 1: Identifying all implied known capabilities and their levels based on the initial known capabilities 

selected by a learner (An implied known capability is the one the learner does not click them as 

known capabilities, but he/she has selected one of the successive capabilities of the node as a 

known capability); 
Step 2: removing redundant nodes and links (a redundant node or link is the one by eliminating which 

achievement of learning goals is not affected); 
Step 3: finding all head goals (a head goal is the goal whose successive capabilities do not contain goals); 

Step 4: recurrently creating all sub-networks of each head goal; 
Step 5: creating the complete sub-networks of all goals sub-networks (since all head goals are OR nodes, 

any sub-network of the head goal, likely, cannot cover all its sub-goals; these uncovered sub-goals 

should be found and combined to the sub-networks that miss them); 

Step 6: combining the sub-networks of all head goals into courses. 

In the next section, we first defme the VCOURSE model and a course. The algorithms for creating multiple 

alternative courses are introduced in detail in section 6.3. The visualization of Cnet is presented in section 

6.4. 
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6.2 	Definition of the VCOURSE Model 

VCOURSE is a model for creating multiple alternative courses that cover the same group of learning goals. 

A course is a sub-network of domain transition network, which covers just a group of selected goal 

capabilities. Cnet is a vector that includes multiple alternative courses for a group of selected learning 

goals. 

Definition 6.1 Given a capability transition network Tnet; let Vc be the set of visual properties; Fc be the 

set of operation functions defined on VCOURSE model; AL be a leamer agent; K be the set of known 

capability on Tnet; G be the set of learning goals, and Cnet be the set of all alternative courses, a course 

network model VCOURSE is defmed as 

VCOURSE = <Tnet, Vc, Fc, AL, K, G, Cnet> 

In the definition, Tnet is the input of VCOURSE model. All operations for setting known, setting goal 

capabilities, and creating alternative courses are based on the domain transition network Tnet. As the set of 

visual properties, Vc supplies essential needs of visual operations. Fc is the collection of operations on the 

model, which consists of two categories of operations: visual operations and internai. operations. Visual 

operations are used for displaying transition networks, viewing details of all nodes and visual cells, setting 

known capabilities, setting goal capabilities and displaying alternative courses. Internai operations are 

mainly used for creating multiple alternative courses. Usually, the interactive agent AL is a learner that 

interacts with the system to select learning goals and create alternative courses. The set of known 

capabilities K and the set of goal G are intermediate results in the process of creating alternative courses. 

Cnet, the alternative course vector, is the output of VCOURSE model that result from applying operation 

functions in Fc on the inputs and intermediate results. 

Definition 6.2 Each member of the vector Cnet is known as a course Crs: 

Crs = <Kc, G, Cc, Tc, Rct, Rtc, Vc> 

Where Kc: set of known capabilities, Kc EK in Cnet, 

G: set of all learning goals established by AL on Tnet, 

Cc: set of all capabilities in the course, 

Tc: set of all transition nodes in the course, 

Rct: all prerequisite relationships in the course (i.e. the relationships from capability nodes to 

transition nodes), 

Rtc: all output relationships in the course (i.e. the relationships from transition nodes to capability 

nodes), and 

Vc: set of visual properties. 
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The target of creating a course is to fmd all necessary capability nodes, transition nodes and the 

relationships among them, i.e. Cc, Tc, Rct, and Rtc, based on the lcnown capabilities, goal capabilities and 

the operational functions in VCOURSE defmition. 

Figure 6.1 shows an example of creating courses. In the figure, the parameters in Cnet are: 

K= {<C1,1> <C2,1> <C3,1>} 
G = {<C2,2> <C4,3>} 
C = {<C1,2> <C2, 3> <C3, 2> <C4,4>} 
T = {<T1, 3> <T2, 2>, <T3, 2> <T4, 4> <T5, 2>} 
Where <Ci,j> indicates the capability Ci at the j-th level. <Ti, j> means the transition node Ti including the 

j tutoring units. 
The courses that meet the goals are shown in the figure 6.1 (b), (c), (d) and (e). The parameter values in 
these courses are: 

Crsl: 
Kcrsl = {C1, 1><C2, 1><C4, 1>} 
Ccrsl = {C1, C2, C4} 
Tcrs 1= {T1, T3} 
Rct ={<C1 T3> <C2 T3>} 
Rtc ={<T1 Cl> <T1 C2> <T3 C4>} 

Crs2:  
Kcrs2={<C1 1> <C2 1> <C4 1>} 
Gcrs2={<C2 2> <C4 3>} 
Ccrs2={C1, C2, C4} 
Tcrs2={T1, T2, T3} 
Rct ={<C1 T3> <C2 T3>} 
Rtc = {<T1, Cl> <T2, C2> <T3, C4>} 

Crs3:  
Kcrs3={ <C2, 1> <C4, 1>} 
Gcrs3={<C2, 2> <C4, 3>} 
Ccrs3={C2, C4} 
Tcrs3={T1, T4} 
Rct ={ <C2 T4>} 
Rtc ={<T1, C2> <T4, C4>} 

Crs4:  
Kcrs4={ <C2, 1> <C4, 1>} 
Gcrs4={<C2, 2> <C4, 3>} 
Ccrs4={C2, C4} 
Tcrs4={T2, T4} 
Rct{ <C2 T4>} 
Rtc={<T2, C2> <T4, C4>} 

The different courses contain different nodes, resources, tutoring units and sub-units. The learner may 

choose anyone he/she prefers in the four courses as his or her current course to leam. 
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(b) ( c) 

T4 

(d) (e) 

(a) 

Goal level=2 Goal level=3 

Figure 6.1 A courses Example 

6.3 A Divide-and-Conquer Method for Creating Multiple Alternative 
Courses 

The approach for creating multiple alternative courses is completely different from creating just one course. 

If our target were to generate one course that supports the achievement of a group of learning goal, the 

general search methods in AND/OR graphs would be able to borrowed. The problem is complex because 

we have to consider not only multiple alternative paths, but also the known capability levels and goal 

capability levels. 

There are many alternative strategies of how to derive a course from a Tnet. One approach would be of the 

divide and assemble. For instance the system would identify all head-goals whose successive capability 
nodes do not contain any other goal. Each head-goal and all its predecessor goals form a goal collection. 

The system then would consider each of the goal collection, via backward propagation in Tnet, identify 

sub-networks of capability and transition nodes. After this decomposition stage, the varions sub-networks 

would be superposed, elirninating redundancies and connecting elements that would appear disconnected 
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(by introducing elements from the rest of the Tnet). Another approach would consider all the goal nodes 

together, however, only the lower capability level of each goal node would be considered. By considering 

the lower level of the goal (capability) nodes, many nodes of the rest of the Tnet become redundant. One 

possibility to select among the alternative candidate nodes in order to achieve a course is to order the 

candidate nodes according to their contribution to satisfying the higher level goals. Once a sub-network has 

been obtained, the higher level goals are now considered and some repair is affected in order to keep the 

course (in the process of being built) consistent with these new goal levels. This goes on until the desired 

levels for the various goals are achieved. This gives a very general idea of possible strategies for building a 

course; also the implementation details are not trivial, but quite feasible. In this thesis we have considered 

the first strategy in more detail. 

By following the steps described in the previous section 6.1, we, first, identify all implied known 

capabilities and their mastered levels based on the learner's selected known capabilities, and then find and 

remove all redundant nodes and links in Tnet. After some redundant nodes are removed, some nodes may 

become sole nodes. We should check these sole nodes or other invalid nodes and links. The next step is to 

divide all learning goals into several non-connected sub-graphs through finding head nodes whose 

successive capabilities do not contain other goals. We, then, create all sub-networks of each head goal, each 

of which covers some sub-goals of the goal group the head goal resides in. Some generated sub-networks 

of a head goal may be invalid; for example, a goal capability level is the fourth level, while the maximal 

contribution of the transition node supporting the capability to only the third level. We have to delete such 

invalid sub-networks. Owing to the existing sub-networks that do not cover all goals in the goal group, we 

have to let each sub-networks of each head goal cover all goals in the group the head goal resides in. As a 

result, each sub-network of each head goal becomes a complete sub-network that can cover all goals in the 

group the head goal resides in. Last, by combining all complete sub-networks of all head goals, all possible 

courses are gotten. The upcoming sections present each step in detail. 

6.3.1 Creating Basic Relations for Courses Generation 

Some basic relations between nodes are necessary through all steps of creating multiple alternative courses, 

which include the predecessor transition nodes of all capability nodes (allCapPreTransV), the predecessor 

capability nodes all transition nodes (AllTransPreCapV), the predecessor transition nodes of all transition 

nodes (allTransPreTransV), the predecessor capability nodes of all capability nodes (allCapPreCapV), the 

ancestor capability nodes of all capability nodes (allCapAncestCapV), the ancestor transition nodes of all 

transition nodes (allTransAncestTransV), the ancestor capability nodes of all transition nodes 

(allCapAncestorTransV), and the ancestor transition nodes of all capability nodes (allTransAncestCapV). 

These relations are defined as follows. 
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Definition 6.3 Let Cbe the set of all capability nodes in the Cnet after removing all redundancy and invalid 

elements, T the set of all transition nodes, and L the set of all links, the basic relations for creating courses 

are defined as follows: 

(1) allCapPreTransV={<Ci, Vt> l Ci EC, Vt={71 l 7:j is the source of one input link of Ci}} 
(2) allTransPreCapV={<Ti, Vc> j  Ti ET, Vc=érCj l  Cj is the source of one input link of Ti} 
(3) allCapPreCapV={<Ci, Vc> Ci EC, Vc= { Cjl Cj EC, 377c such that <Tk, Cj> EallTransPreCapV 
(4) allTransPreTransV={<Ti, Vt> l Ti eT, Vt={ Tj Tj eT, 3Ck EC such that <Ti, Ck> EallTransPreTransV 

and 3<Ck, Tj> eallCapPreTransV} 
(5) allCapAncestCapV = allCapPreCapV+  (transition closure of allCapPreCapV) 
(6) allTransAncestTransV = allTransPreTransV+  (transition closure of allTransPreTransV) 
(7) allCapAncestTransV = {<Ci, Vt>l Ci eC, Vt is a vector containing all Tk such that <Ci, Tk> 

E allCapPreTransV} 
(8) allTransAncestCapV = {Ti, Vc> l Ti E T, Vc is a vector containMg all Ck such that <Ti, Ck> 

e allTransPreCapVI 

For each of the relations, we need an algorithm to create it. The Algorithm 6.1 and 6.2 in Appendix C gives 

two of them for creating allCapPreTransV and allCapAncestCapV respectively. 

6.3.2 Identifying Implied Known Capabilities and Levels 

An implied known capability is the one that is not selected by a leamer as one of his or her known 

capabilities, but its successive capabilities have been selected as his or her known capabilities. As a 

practical curriculum model, VITCAM should not expect a learner to check all details in a domain before he 

or she can set leaming goals. For example, "applying link tags" is a capability in the curriculum for 

teaching HTML. If a learner says that he or she knows the capability "applying link tags", the system 

should be able to infer that the learner has mastered prerequisite capabilities of the capability "applying link 

tags". The prerequisite capabilities (such as the capability "applying the <HTML> tags") of the capability 

"applying link tags" are implied known capabilities. 

The mechanism to find an implied known capability is based on backtracks from the selected known 

capabilities. As soon as a capability is selected as a known capability, we assume the predecessor 

capabilities of the known capability are known, and the predecessor capabilities of the predecessor 

capabilities are also known, and so on. 

6.3.3 Removing Redundant and Invalid Elements 

We first define redundant nodes and links, then give the algorithm for removing redundancy. 
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Definition 6.4 If a capability node C or a transition node T satisfies one of the following conditions, then it 

is a redundancy for creating courses: 

1) the learning state of C is FULLY MASTERED; 
2) the state of T is PASSED; 
3) the node Chas one or more successive transition nodes; C is not a goal and the mastered levels of 

C satisfy the requirements of all its successive transition nodes; 
4) C has successive transition nodes, C is a goal, Cs goal level is mastered and C satisfies the 

requirements of all its successive transition nodes; 
5) C is a root but is not a goal; 
6) C has no successive transition node; C is a goal and the state of C is GOAL_MASTERED; 
7) C has no successive transition node, and C is not a goal. 

If the capability C has been completely mastered, the capability should not be contained in the new created 

courses. If a transition node is passed successfully by the student, the node is unnecessary for course 

generation. If a capability is not a learning goal, it has been mastered to a certain level and the level has 

been larger than the levels required by the capability's all successive transition nodes, and then the 

capability is redundant for course generation. If the capability is a leaming goal, its goal level has been 

achieved, and the mastered levels of the capability have satisfied the requirement of all its successive 

transition nodes. If a capability has no successive transition node and the capability is not a goal, it is a 

redundancy. If a capability C has no successive transition node, C is a goal and the state of C is 

GOAL_IVIASTERED, then the capability C is unnecessary for creating a course. 

After redundant nodes are removed, some invalid elements are caused, for example, a sole capability node. 

We defme an invalid element as follows: 

Definition 6.5. If a capability node C or a transition node T or a link L is one of the following cases, then 

the element C or T or L is an invalid element: 

1) C has neither input nor output link, 
2) T has no output capability node, 
3) L has no source element, 
4) L has no destination element, 
5) If L's destination element is a goal capability, the level of L is less then the goal level of the goal 

capability. 
The algorithrn for removing redundancy and invalid elements is shown in the Appendix C. 

6.3.4 Find Head Goals and Identifying Implied Goals 

This section attempts to divide all leaming goals into several non-intersection sets, each of which includes a 

root node (without any goal in its successive capabilities) and its prerequisite goals. We call the root node a 

head capability. When to create a course, we can generate sub-networks of the head capability to cover all 

sub-goals in the divided set. 
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Deflnition 6.6 A head capability or head node, called headCap, is the capability that satisfies the following 

two conditions: 

1) it is a goal; 

2) its successor capabilities do not contain any goal capability 

The Algorithm 6.5 in Appendix C is to find the maximal goal capability (i.e. a head capability whose 

predecessor capabilities contain more goals than any other head capability). And the algorithm 6.6 looks for 

all head capabilities in a given goal collection. 

Identifying all Implied goals 

An implied goal is the capability that is not selected as a goal by a leamer, but it is a prerequisite capability 

of a selected learning goal and the leamer does not master it. In order to achieve the selected leaming goal, 

before the goal capability is achieved all its prerequisite capabilities must be mastered. We call such 

prerequisite capabilities implied goals. The mechanism to find implied goals is similar to that to find 

implied lcnown capabilities. 

6.3.5 Creating a Head Goals Sub-Netvvorks 

We have divided all leaming goals into several groups, each of which is a connected sub-graph of Tnet. 

The head capability in a group of goals is the root of the corresponding connected sub-graph. Since the 

connected sub-graph is still an AND/OR graph, several paths may exist for supporting the achievement of 

the root capability. The Algorithm 6.7 in Appendix C recursively creates all sub-networks of a given head 

capability. The idea is that we, first, find all predecessor transition nodes of the head capability. Each 

predecessor transition node is viewed as an altemative path. Then recursively generate all sub-networks of 

all prerequisite capabilities for a selected transition node, and combine them with the selected transition 

node and the head capability. By combining all sub-networks of all predecessor transition nodes of the head 

capability, the sub-networks of the head capability are gotten. 

6.3.6 Creating the Complete Sub-Networks of a Head Capability 

Definition 6.7 Let H be a head capability, and G be all sub-goals of the head capability H, N be one of sub-

networks of H, if the sub-network N contains all sub-goals in G, we say that the sub-network N is a 

complete sub-network for H, otherwise, N is a incomplete sub-network for H. 

Since all sub-goals of a head capability are distributed in AND/OR branches in the connected sub-graph 

where the head capability resides in, probably, some sub-network of the head capability can not cover all its 

sub-goals. As a result, if we use one of the sub-networks of the head capability as a sub-course for the head 
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capability and all its sub-goals, some sub-goals of the head capability are probably lost. Thus, we have to 
check each sub-network of the head capability, and, if necessary, to expand the sub-network into a 

complete sub-network that can cover all sub-goals of the head capability. 

The Algorithrn 6.8 in Appendix C shows how to create all complete sub-networks of a sub-network for a 

head capability. 

6.3.7 Putting it A11 Together—Creating a Cnet 

By combining the steps through section 6.3.1 to the section 6.3.6, we get the algorithm (Algorithm 6.9 in 

Appendix C) to create multiple alternative courses, Cnet. 

The figure 6.2 gives an example of course generation. Figure 6.2 (a) shows the corresponding Tnet. The 

known capabilities include C2 at level 3, C5 at level 1, and C7 at level 1. The goal capabilities are C5 to 

level 2 and C8 to level 3. That is 

(a) Tnet 

(b) Six Alternative Courses 
Figure 6.2 An Example of Course Generation 



119 

K={<5, 1>C7, 1>1 and 

G={<C5, 2> <C3, 3>}. 
All six possible courses are shown in figure 6.2 (b). Some screen shot examples can be found in the section 

6.4.4 and chapter 8. 

6.4 Visualization of VCOURSE 

Though most efforts for creating courses are to run numerous internai algorithms, we are still able to 
visualize the learners states and created various courses to enhance the usability of the system. The 

visualization of VCOURSE model includes defming the states of capabilities and their levels, displaying 

known capabilities and goal capabilities, visualizing course networks as well as displaying the overall 

information of courses. 

6.4.1 Definition of Capability States for the Learning Process 

The following defmition 6.8 describes various possible states of capabilities in leaming process. 

Definition 6.8 Let Cbe a capability, L be the ordered set of all levels in C, Li (i 	n) be an element in 

L, S be a student, G be the set of goal capabilities, and g (0<g<=n) be goal level of the capability C. 

The following mies 1) to 10) define the states of a capability for leaming process: 

1) Cs state =CAP_UNCONCERNED if C is neither a known capability nor a goal capability nor 
a necessary capability for achieving goals; 

2) Cs state =CAP_NOTHING_MASTERED if no level is mastered by the student S; 
3) Cs state =CAP_PARTLY_MASTERED if at lease L1 is mastered and Ln is not mastered; 
4) Cs state =CAP_GOAL_MASTERED if C is a goal and the goal level g is mastered and g <n; 
5) Cs state =CAP_FULL_MASTERED if Ln is mastered and all i<n, Li is mastered; 
6) For ail i<n, Lis state =LEVEL_UNCONCERNED if Cs state =CAP UNCONCERNED; 
7) For all i<n, Lis state =LEVEL_NOT_MASTERED if the student S Floes not mastered the level 

Li; 
8) For all i<n, Lis state =LEVEL_PARTLY_MASTERED if the student S partly masters Li; 
9) For all i<n, Lis state =LEVEL_MASTERED if the student S has mastered Li, and 
10) For all i<n, Lis state = LEVEL_GOAL if Li is a goal and Lis state =LEVEL_MASTERED. 

We will use these rules through the following sections and upcoming chapters. 

6.4.2 Visualizing Known Capabilities and Levels 

In a visual curriculum, a leamer should be able to set his known capabilities and levels by direct 

manipulation. In Cnet, the known capabilities and their levels can be established by simply clicking the 

corresponding visual cells. Some resources are used to explain to the student what the capability means. 



120 

When the leamer clicks the overall capability cell in a capability icon, the state and the corresponding color 

of the capability icon will be changed. Meanwhile, the states of all levels in the capability should follow the 

change. In order to make consistency when the leamer clicks the overall capability cell or one of level cells; 

a group of rules are defïned for the consistency. 

These rules are: 

Definition 6.9 Let C be the overall cell in a capability icon, L be the ordered set of all level cells in the 

capability icon, Li (i = 1, 	n) be a level cell, Lg be the index of a goal level in the capability, 

Rkl : if C is clicked & (C.state=CAP_UNCONCERNED or C.state=CAP_NOTHING_MASTERED), 
then C.state ‹—CAP_FULL MASTERED & all Li (i<n).state=LEVEL_MASTERED; 

Rk2: if C is not a goal & C is ciicked &(C.state=CAP_FULL_MASTERED or 
C.state=CAP_PARTLY_MASTERED), then C.state‹—CAP_NOTHING_MASTERED; 

Rk3: if C is not a goal & Ln is clicked, then C.state<—CAP_FULL_MASTERED& all 
Listate‹—LEVEL_MASTERED; 

Rk4: if C is not a goal & i<n & Li is clicked, then C.state+-CAP_PARTLY_MASTERED & (all j<=i, 
Lj.state LEVEL_MASTERED) & (all k>i, k<=n, Lk.state‹—LEVEL_NOT_MASTERED); 

Rk5: if C is a goal & C is clicked & (C.state==CAP_FULL_MASTERED or 
C.state==CAP_GOAL_MASTERED), then C.state‹—CAP_NOTHING_MASTERED, 
Lg.state‹—LEVEL_GOAL and (for all i<n, except for the goal level Lg, 
Li.state<œLEVEL NOT MASTERED); 

Rk6: if C is a goal & C is clicked & C.state==CAP_PARTLY_MASTERED, then 
C.state‹—CAP_NOTHING_MASTERED, & (for all i<n, except the goal level Lg, 
astate4—LEVEL_NOT_MASTERED); 

Rk7: if C is a goal & the goal level g is clicked, then C.state‹—CAP_GOALMASTERED, & (for all 
i<=Lg, Li.state<—LEVEL_MASTERED), & (for all j>Lg, j<=n, 
Lj.state4—LEVEL_NOT_MASTERED); 

Rk8: if C is a goal & Ln is clicked, then C.state CAP_FULL_MASTERED & ( for all i<=n, 
Li.state LEVEL_MASTERED); 

Rk9: if C is a goal & Li is clicked & i< Lg<n, then C.state *-- CAP_PARTLY_MASTERED, & all j<i, 
Lj.state LEVEL_MASTERED, Lg.state‹—LEVEL_GOAL, & (for all k<Lg, k<=n, Lk.state 

LEVEL_NOT_MASTERED); 
Rk10: if C is a goal & Li is clicked & i> Lg & i<n, then C.state CAP_GOAL_MASTERED, & all 

j<=i, Lj.state 	LEVEL_MASTERED & (for all k>i, k<=n, 
Lk.state‹—LEVEL_NOT_MASTERED). 

This group of rules can meet the needs of all operations for setting, canceling and changing known 

capabilities and their levels in leaming process. 

6.4.3 Visualizing Goal Capabilities and Their Levels 

In order to visually set up and change the states of learning goals, the following definition 6.10 gives a 

group of rules. 
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Definition 6.10 Let C be the overall cell of a capability icon, L be the ordered set of all level cells in the 

capability, Li (i= 1, ..., n) be a level cell, and Lg be the index of the goal level in the capability icon, the 

raies for state transformation of goal capabilities are defined as follows: 

Rg1: if C is not a goal & C is clicked & C.state==CAP_UNCONCERNED, then 
Ln.state‹-LEVEL_GOAL & (for all i<n, Li.state<-CAP NOTH1NG_MASTERED); 

Rg2: if C is not a goal & C is clicked & C.state==(CAP_PARTLY_MASTERED or 
CAP NOTHING_MASTERED), then Ln.state‹-LEVEL_GOAL; 

Rg3: if C is not a goal & Ln is clicked & C.state==CAP_UNCONCERNED, then 
C.state<-CAP NOTHING MASTERED & Ln.state÷-LEVEL_GOAL & (for all i<n, 
Li.state‹-LEVEL_NOT_MASTERED); 

Rg4: if C is not a goal, Ln is clicked & C.state# CAP_UNCONCERNED, then 
Ln.state+--LEVEL GOAL; 

Rg5: if C is not a goal & i<n & Li is clicked & C.state==CAP_UNCONCERNED, 
thenC.state‹-CAP_NOTHING_MASTERED, astate*-LEVEL_GOAL, for all j<=n, 
Lj.state‹-LEVEL_NOT_MASTERED; 

Rg6: if C is not a goal & 1<n & Li is clicked & C.state #CAP_UNCONCERNED & 
Li.state#LEVEL_MASTERED, then Li state*-LEVEL_GOAL; 

Rg7: if C is not a goal & i<n, Li is clicked & C.state#CAP_UNCONCERNED & 
C.state#CAP FULL MASTERED & Li.state==LEVEL MASTERED, then 
C.state*-CAF7  GOKL_MASTERED; 

Rg8: if C is a goal & C is clicked & LgLEVEL_MASTERED, then 
Lg.state‹-CAP_GOAL_MASTERED; 

Rg9: if C is a goal & Ln is clicked & Lg<n & Lg.state#LEVEL_MASTERED & 
C.state#CAP_FULL_MASTERED, then Ln.state‹-LEVEL_GOAL & 
Lg.state<-LEVEL_NOT_MASTERED; 

Rg10: if C is a goal & i<n & Ln is clicked & i<Lg & Lg.state#LEVEL_MASTERED & 
Li.state==LEVEL_MASTERED, then C.state÷-CAP_GOAL_MASTERED & 
Lg.state‹-LEVEL_NOT_MASTERED; 

Rg11: if C is a goal & i<n & Li is clicked & i>Lg & Lg.state#LEVEL_MASTERED, then 
C.state+-CAP_PARTLY_MASTERED, astatef--LEVEL_GOAL & 
Lg.state<-LEVEL_NOT_MASTERED. 

These rules constitute a frame for setting learning goals. 

6.4.4 Visualizing Courses 

There are two aspects in visualizing courses; one is to display alternative courses, and the other is to display 

the overall information of the course network being displayed. 

• Visually displaying course networks 

After alternative courses are generated, the system provides two operations controlled by the learner: 

displaying the predecessor course and displaying the successive course on the screen. All states of visual 

cells are also displayed to navigate to the learner. 

• Visually display overall information of courses 
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The transition nodes, non-goal capability nodes, links, resource types, resource sizes, media types and 

cognitive strategies are, usually, different from one course to another course corresponding to the same goal 

group. In order to guide the learner to compare courses and select his preferred course, Our model provides 

a group of overall information about a course being displayed, including the number of various nodes, 

resource types, media types, cognitive strategies, and the resources sizes. 

As soon as the leamer selects a course, the system assigns the selected course as the leamer's current 

course, and records necessary information about the selected course to the leamer's profile file. Then with 

the help of tutoring delivery module in ITS, the leamer can leaner the course. 

The following figure 6.3 —6.7 are an example of creating multiple alternative courses. The figure 6.3 shows 

the Tnet for teaching a part of UML. A leamer sets the first level of the output capability 
"createSequenceDiagram" as his leaming goal. The figure 6.4 — 6.7 are four created courses supporting the 

leaming goal. 

Figure 6.3 Tnet for teaching a portion of UML 
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6.5 Conclusion 

VCOURSE model provides approaches for setting lçnown capabilities, establishing learning goals, creating 

multiple alternative courses and dynamically displaying courses. 

When to set lcnown capabilities, if the leamer clicks a capability level, a group of reasoning rules are 

activated for making consistent state change of the capability and its levels. When to set learning goals, 

another group of reasoning rules are defined for making consistency of node states. 

The approach for creating multiple alternative courses (Cnet) is based on a divide-and-conquer method by 

grouping learning goals to divide the Tnet into several disjointed sub-graphs, by removing redundant 

elements, recurrently creating all sub-courses in each sub-graph and combining all sub-courses in all sub-

graphs. 

With VCOURSE model, a learner may visually set known and goal capabilities. He/she can compare 

multiple alternative courses based on the summaries of courses, and then select his preferred course to 

learn. 

In the next chapter, we shall describe the dynamic management of learning processes with which leamers 

can be helped in selecting a particular course, in case they did not select one by themselves, and in guiding 

learning proces s es . 



Chapter 7 

Dynamic Management of 
Capability Transition (VACT) 

One distinct feature of computer-based tutoring systems is adaptation to individual needs. A tutoring system 

should be able to identify a particular content in the current context, to sequence the identified content 

[Nkambou 96, Le 98] and to use particular tutoring strategies for a particular student. In the VCOURSE 

model, multiple alternative courses corresponding to a particular student's known capabilities and goal 

capabilities are generated. In this chapter, the courses and tutoring activities are dynamically individualized 

providing help in recommending recourses, sequencing tutoring activities and dynamically managing the 

current learner sates. 

The first section analyses essential issues in individualizing courses and tutoring activities. A measure called 

utility for evaluating course adaptability is defmed in section 7.2. With this measure, a method for 

recommending courses is introduced. In the section 7.3, we describe how to identify necessary tutoring 

activities for a group of leaming goals. In order to sequence tutoring activities dynamically, a state-driven 

reasoning approach is presented in section 7.5. In section 7.6, we deal with the dynamic management for 

activity delivery Last, in section 7.7, the visualization of VACT model is tacIded. 

7.1 Overview of the Dynamic Teaching Process 

7.1.1. Essential Issues in Dynamie Management of Capability Transition 

In the process of individualizing courses and tutoring activities, some essential issues include evaluating 

courses, identifying necessary tutoring units in transition nodes for goal levels of output capabilities, 

sequencing tutoring activities, and providing dynamic feedback in tutoring process. 

7.1.1.1 Evaluating Courses 

The quality of a course depends on various factors, for instance, the well-organized structure of domain 

knowledge, good tutoring strategies, the coverage degree to leaming goals, and the adaptability to a particular 

student. The quality of organization structure of domain knowledge, in current ITS, depends on both the 

mechanisms of representation and organization of various knowledge, and the competence of the curriculum 

authors. 
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Some issues have been dealt with in the previous chapters. The characteristics of the organization structure 

proposed in VITCAM have been summarized in chapter 4 and 5, in which Gagnés and Blooms theories are 

combined. All alternative courses created by the VCOURSE model can cover all learning goals established by 

a leamer. We classify the tutoring strategies into two categories: general strategies and individual strategies. 

The VTRANS model can support general strategies in its organization structure and individualized strategies 

in resources. 

In VACT model, in order to evaluate the course adaptability degree, we focus on satisfying the preference of 

the learner and needed efforts. We think that the learner's preference is mainly reflected in the three aspects: 

• Types of didactic resources, 

• Media types in resources, and 

• Cognitive strategies in resources. 

There are varions types of didactic resources that can be developed with current computer systems, for 

instance statements, multiple choice questions, matching tvvo or more groups of objects, filling missed 

objects, asking/answering questions, sequencing a group of objects, true/false questions, etc. Different 

learners may have different interests in the resource types. If a learner is very interested in some special 

resource types, he/she will achieve some capabilities more effectively with the preferred resources. 

The media types supported by a computer system vary from platform to platform. They may include text, 

graphics, images, audio, animation, video, html, vrml, etc. Usually, complex media help learning more 

effectively. Similarly, a learner can achieve more progress with the media types he/she prefers. 

Cognitive strategies are another type of learners preferences. They are often very important to affect learners' 

studying. Gagné defmed five kinds of cognitive strategies: 

• Rehearsal (repeating, underlining, copying, ...), 

• Elaboration (associating, paraphrasing, summarizing, note talcing, generating questions with 

answers, ...), 

• Organizing (classifying, outlining main ideas, generating new organizations, comparing, collecting, 

describing, ...), 

• Comprehension monitoring ( meta-cognitive: setting goals, estimating success), 

• Affective (focusing and maintaining attention, controlling anxiety, managing time,...). 

Some other strategies such as induction and deduction may be also used in the development of courses. 
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Learning cost contains two factors: the difficulty degree of content and the access time of the content. The 

developer of didactic resources may defme a difficulty degree for each concept. The access time of a resource 

can be automatically computed by the system. 

We will use the above four kinds of information (i.e., resource types, media types, cognitive strategies and 
learning efforts) to define a measure for evaluating the individualized degree of courses. This measure, called 

is characterized in detail in section 7.2. 

7.1.1.2 Identifying Necessary Tutoring Units for Learning Goals 

In Tnet structure, a transition node consists of a group of tutoring units, and each tutoring unit corresponds to 

certain levels of output capabilities. If a student wants to learn certain output capability levels, it is not 

necessary for the student to learn all tutoring units involved in the related transition node. The following 

figure 7.1 shows an example. In figure 7.1, the capabilities C3 and C4 are output capabilities of the transition 

node T. There are five levels in C3, and four levels in C4. Assume that a learner has mastered the first two 

levels of C3 and the first two levels of C4. His leaning goals are the fourth level in C3 and the third level in 

C4. We should decide which tutoring units in the transition node have been passed by the learner, and which 

units 

Figure 7.1 The problem in identifying necessary tutoring units 

are necessary for the learning goals in C3 and C4. Since, usually, the corresponding relations between 

tutoring units and output capability levels are not one-to-one; we use probability method to identify necessary 

tutoring units for certain goal levels in section 7.3. 

7.1.1.3 Dynamically Sequencing Tutoring Actiyities 

Sequencing tutoring activities is a dynamic process to identify and estimate the instant availability of 

transition nodes and tutoring units in a course. The instant availability of a tutoring activity depends on the 

requirement of domain Icnowledge structure, the current states of the leaner, and some other factors, such as 

favoring the association and remembering in cognitive strategies. 



129 

There exist some heuristic methods for ordering tutoring activities. For instance, in order to meet the 

structured characteristic of domain lçnowledge, the tutoring activities that are far from the root goals in a 

course should be recommended first. Considering the current learner states, the direct successive tutoring 

activities related to the recently mastered capabilities should be learned first. In order to favor the association 

and remembering in cognitive strategies, the successive tutoring activities of the last executed tutoring 
activities should be given first. So, when we sequence available tutoring activities, these factors should be 

synthetically considered. 

7.1.1.4 Dynamical Adaptability of the Learning Processes 

A dynamic feedback mechanism is proposed in VA CT, which determines the next step of the system 

according to the feedback information provided by the tutoring delivery module (or tutor). This means that 

the system's decision for next step can be either to execute next recommended activity, or to re-sequence 

tutoring activities, or to re-create tutoring activity networks, or to re-create new courses to adapt the learner's 

current states. 

7.1.2 Overview of Dynamic Capability Transition 

The dynamic process delivering teaching refers to that, given a student's known and goal capability levels, 

and a group of alternative paths covering the student's goals, how to dynamically identify and deliver 

teaching activities to achieve the student's goals based on the student's dynamic reaction in learning process. 

The figure 7.2 shows an approach to handle dynamic feedback based on different tutors abilities. At the 

beginning of the dynamic management process, the function Course Creator generates multiple alternative 

courses covering a student's goals. Another function: Course Recommender, then, evaluates these alternative 

courses and recommends an optimal course to the student. After a course is selected as the current course, the 

function Unit Identifier calculates all necessary tutoring units in transition nodes to meet the needs of 

achieving goal capability levels. Then, the Unit Sequencer identifies all currently enabled tutoring units based 

on the domain lcnowledge structure and the student's states. Last, it orders these enable units to indicate the 

currently recommended tutoring units. 

VA CT model allows the Activity Deliverer module (or a Tutor, an opening module in our system) with 

various abilities, which may be from the simple evaluation of success/failure to more advanced diagnosis 

abilities. The system may manage different feedback of learners' current states 

If the Activity Deliverer module can just evaluate the student's success or failure, and cannot diagnose the 

cause of failure, the system can change didactic resources or teaching repeatedly. 
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Figure 7.2 Dynamic management process for delivering capabilities 

If the Activity Deliverer module has some advanced abilities. For example it can distinguish from: 

1) Failing to current levels 
2) Missing previous levels of the current capability; 
3) Missing some levels of previous capabilities; 
4) Missing some capabilities out of the current course. 
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This system dynamically handles these feedback of leamer states: If the Activity Deliverer can just identify 

the student's failure to the current capability levels, the system tries to change the possible resource group in 

the corresponding sub-units based on the student profile. If there is no alternative resource group, the system 

supports leaming repeatedly. If the Activity Deliverer can diagnose that the student misses some previous 

levels of the current capabilities, the system goes back to the Unit Sequencer to generate new unit sequence 

that contains the units corresponding to the missing levels. If the Activity Deliverer can diagnose that the 

student misses the levels of previous capabilities, the system goes back to the Unit Identtlier to identify the 

corresponding units to leam further. If the Activity Deliverer can diagnose that the student misses capabilities 

that are out of the current course, the system, then, goes back to the Course Creator to generate new courses 

for remedying the missing capabilities. In addition, if the Activity Deliverer can diagnose that the student's 

some particular characteristics, such as, particular preferences, the system's resource adjuster can look for 

the corresponding resources to remedy the student's missing. The remainder sections will characterize the 

mechanisms that support the above functionality in detail. 

7.2 Utility—A Measure for Evaluating Courses 

As mentioned in section 7.1, students preferences, leaming efforts and resource features are the essential 

factors to evaluate the course adaptability. We model the factors by defining a measure, called utility, for 

evaluating courses. We first deal with the relationships between student profiles, leaming efforts, resources 

and course evaluation. We, then, defme the measure to evaluating courses. 

7.2.1 Basic Requirements for Student Profiles and Resources 

In VTRANS model, some basic resource types are identified, for instance statement, multiple choice 

questions, matching two groups of objects, sequencing objects, filling the missing in object sequences, 

asking/answering questions, true/false questions, etc. We will use these resource types as a kind of learner 

preference. 

Media types are another kind of resource features. Some available media types in current computer platforms 

include text, graphics, image, audio, video, animation, html, vrml, etc. When to evaluate courses, these media 

type can be used to characterize the preference degree of a particular student. 

Gagné identified five kinds of cognitive strategies: rehearsal, elaboration, organization, comprehension 

monitoring, and effective. In addition, other strategies such as induction or deduction may be also used in the 

development of resources and interactions. These strategies are very important when to create a course that is 

adapted to a particular student. 



132 

We identify three kinds of student information to reflect students preference: resource types, media types and 

cognitive strategies. A particular student rnight prefer certain types of resources, such as, multiple choice 

questions or matching two groups of objects. Some students might prefer graphics, while some others might 

like audio. Some cognitive strategies are effective for some students, while some other cognitive strategies 

may be better for some other students. Thus, the system requires that student profiles contain such 

information. 

In addition, in order to evaluate the efforts of tutoring activities involved in a course, the difficulty degree, the 

importance degree and the size of a resource will be also important parameters. In our system, a curriculum 

author can assign a difficulty degree and an importance degree to a resource or a capability. The system 

automatically computes the size of each resource. The three parameters will be also used in course evaluation. 

7.2.2 Utility Definition 

To evaluate a course is to determine whether it is the most appropriate for a particular student, i.e. whether 
the course can satisfy the preference of a particular student to a maximal degree. In order to do so, the 

following factors are taken into account: 

• Types of resource (resType), 

• Media types (mediaType), 

• Cognitive strategies (strategyType), 

• Preferred degrees to resource types (preferredResTypeDegree), 

• Preferred degree to media types (preferredMediaDegree), 

• Preferred degree to cognitive strategies (preferredStrategyDegree), 

• Importance degree of the capabilities the resource supports (importanceDegree), and 

• Difficulty degree of the capabilities the resource supports (difficultDegree). 

In order to define precisely a measure for evaluation, we use the following vectors to describe these factors: 

resType = [TI, T2, ..., Tu] 

where Ti may be any type of resources such as statement, multiple choice questions, etc., 

mediaType = [MI. M2, ..., My] where Mi may be text, graphics, audio or video, 

strategyType=[S1, S2, ..., Sx} where Si may be rehearsal, elaboration, etc., 

preferredResTypeDegree, perferredMediaDegree, and preferredStrategyDegree are vectors in which each 

element is an integer between 0 and 10, and corresponding to the degree a student prefers the related resource 
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type, media type, and cognitive strategy respectively. The other two parameters: difficultDegree = [D1, D2, 
..., Dy], and importanceDegree = [11, 12, ..., Iz] are also vectors with the values between 0 to 10. 

We identify the other three parameters ResTypeDistribution, MediaTypeDistribution and StrategyDistribution 
for indicating the distributions of each resource type or media type or strategy type in all resources in the 
current course. We defme the distribution of a kind of resource Ri as the ratio between the number of 
resources of this type of resources and the total number of resources in the current course. We can defme two 
other distributions similarly. The formulas for computing these distributions are as follows. 

ResTypeDistribution= <number0fRiltotalNumberOfResourcesInCourse li= 1 ,2, ...> 

MediaTypeDistribution=<number0fMi/totalMediaNumberInCourse 1i= 1 ,2, ...> 

StrategyDistribution=<numberOfSi/totalStrategyNumberInCourse 1 i= 1 ,2, ...> 

Now we defme the utilities of resource types, media types and strategy types respectively as 
ResTypeUtility = preferredResTypeDegree*resDistribution 

MediaTypeUtility preferredMediaTypeDegree*mediaTypeDistribution 

StrategyTypeUtility = preferredStrategyTypeDegree*strategyTypeDistribution 

Based on these parameters, we defme the utility of a tutoring unit (Ai) as 

U(Ai).= max { (resTyprUtility * mediaTypeUtility * strategyTypeUtility)* impor tan ceDegree 
resGroup 	 I(dificulzyDegree*  sizeOf Resource) 

The utility of a course is defmed as 

U(course) =1. U(Ai) 1 

Where Ai (i = 1,2,...,.) is a necessary tutoring unit for certain goal capability levels. 

7.2.3 Algorithm for Computing Course Utilities 

The algorithm 7.1 in Appendix D is used to compute the utility of a course. For all alternative courses 

generated in the previous chapter, we can compute their utilities based on the above algorithm. The system 
then sorts these utilities to get the optimal course and recommend it to the current student. 

7.3. Identifying Necessary Tutoring Activities 

For any transition node T in a course, there may exist several output capabilities. Each output capability 
contains two important levels: the mastered level and the goal level. The mastered level implies that some 
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tutoring units have been learned. Since the goal level may be less than the maximal level of the output 

capability, some tutoring units that support the higher level than the goal level are unnecessary for acquiring 

up to the goal level. 

Thus, the necessary tutoring units for acquiring the goal level have to be identified. This section describes a 
method based on the Bayesian technique for identifying necessary tutoring units. We, first, analyze the 

characteristics and problems in identifying tutoring units. Then the identification approach is proposed. 

7.3.1 Course Characteristics 

There are distinct characteristics involved in a course, including uncertainty, heterogeneous nodes and 

links, causal propagation, and bi-directional inference. 

(1). Uncertainty 

There are several uncertain factors involved in Tnet. 

The contribution degrees of a transition node to some capabilities are uncertain. 

A transition node may have very strong contribution to one capability, say to mastering level 10, while 

there may be very weak contribution to another capability, say to mastering level 1. 

The initial mastering levels of capabilities are uncertain, which may be from 0 to 10. The desired 

mastering levels of capabilities are uncertain. Unlike the CREAM model, Tnet allows the goal capability 

levels to be any designed level. 

Another uncertainty in Tnet is the uncertainty of the levels of tutoring units involved in transition nodes. 

For example, the transition node Tj may contain three tutoring units based on the current resources, while 

T2, probably, contains six units with available resources. 

In addition the origin of contributions is uncertain. For example, the current mastering level of capabilityC 

is 2. The transition node T1 may contribute maximal mastering level 6 to C, and T2 may contribute 

maximal mastering level 4 to C. The question is that whether the current mastering level 2 comes from the 

contribution of Ti or that of T2. 

There are other two important uncertainties, one is that the mapping relations from prerequisites to 

transition nodes are not exact. Another is that the mapping relations from transition nodes to output 
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capabilities are not one-to-one relations. These uncertainties make that any existing graphical search 
technique can not be used for course generation. 

(2). Heterogeneous Nodes and Links 

Tnet includes two different kinds of nodes and links. Capability nodes and transition nodes have very 
different meanings in Tnet. Similarly, input links and output links of transition nodes do not have the same 
semantics. 

(3). Characteristics of Causal Propagation 

In Tnet, a capability acquisition process may be viewed as the causal propagation process. For example, the 

causal of acquisition of one capability is the result of some activated activities, while the activation of one 

tutoring activity is the causal that some precedent capabilities are acquired, and so forth. 

(4). Bi-directional Inference Characteristics 

A process of knowledge transition may be considered as an inference process. For example, if the 
prerequisites of transition node T are satisfied, then the tutoring units in T may be activated, and if these 
tutoring units are activated, then a student can acquire certain capabilities. 

However, when the current mastering levels of capabilities are given, and we want to confirm which 

transition nodes gave these contributions, this may be considered as a contrary inference process, i.e., the 

reasoning from effects to causes. Such bi-directional inference can not be dealt with by most existing 
uncertainty reasoning techniques. 

7.3.2 Identifying Necessary Tutoring Units by the Bayesian Technique 

In this section, we briefly review some approaches for uncertainty reasoning first. Then, the approach to 

identify necessary units in transition nodes technique is dealt with. 

7.3.2.1. Introduction 

Well-known uncertainty reasoning techniques includes non-monotonic reasoning, fuzzy logic, Certain-
Factor theory, and Bayesian techniques. 
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Non-monotonic reasoning attempts to extend first-order logic by confinning non-determined propositions 

by admitting them until negative evidences are given [Guo 96]. However, non-monotonic reasoning suffers 

from the drawback in weak ability to handle multiple values reasoning. 

Fii77y logic deals with some vague propositions that are difficult to be measured numerically. However, 

fuzzy logic can not handle bi-directional reasoning and complex dependence relationships between 

transition activities and capabilities because one transition activity may support the acquisition of multiple 

capabilities and the acquisition of one capability may relates to multiple transition activities. 

Certainty-Factors theory (CF theory) [Shortliff, 76] is a well-known uncertainty reasoning method that was 

successfully used in the medical diagnosis system MYCIN. CF  theory uses the credible degrees of 

evidences and rules to infer the credible degrees of consequences. Though CF theory has no well-found 

mathematical foundation, it is effective for the disease diagnosis of. However, one defect of CF is that it 

supports only diagnosis issues, i.e., the reasoning only from premises to consequences, and fails to sustain 

the predictive reasoning, i.e., the reasoning that, given some observation of consequences, how to decide 

the credible degrees of premises. In Tnet, a typical predicative reasoning is that, given the current 

mastering levels of output capabilities related to a transition node Ti, how to determine which level of 

tutoring activities in Ti has been executed successfully? Therefore, CF theory is not appropriate for the bi-

directional reasoning in Tnet. 

Bayesian network [Pearl, 1988] is another well-known uncertainty reasoning method based on probability 

theory. It is most appropriate for the kind of problems in which the observations of random variables can 

be measured numerically. It also sustains bi-directional reasoning. 

A Bayesian network is also called a cause-effect network, i.e., the parent nodes stand for the causes and the 

child nodes indicate the effects. However, in Tnet, the relationships from parent nodes to child nodes are 

not pure cause-effect relationships because the cause of enhancing the mastering levels of output 

capabilities is explicitly the effect of activating tutoring activities, but the relationships from prerequisites to 

transition activities are preconditions rather than the causes like that from transition nodes to output 

capabilities. Therefore, the two distinct types of relationships in Tnet make the reasoning of course 

generation complex. 

Owing to Bayesian network's distinct advantages over other uncertainty reasoning methods, for example, 

having well-founded mathematical foundations, supporting bi-directional reasoning, and the low costs for 

handling the dependency of multiple variables. We use Bayesian network techniques to identify tutoring 

units for goal capability levels. 
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In upcoming sections, we build up the association between Cnet and basic Bayesian techniques to identify 

the necessary tutoring units for the goal capability levels. Some relevant prerequisite probability formula 
can be found in Appendix D. 

7.3.2.2 Computing Corresponding Units by the Bayesian Rule 

By the Baysian rule (see Appendix D for details), we can compute the posterior probability that a tutoring 

unit is delivered given the mastered levels of output capabilities. We begin from the simplest case, i.e. a 
unit with an output capability level. 

1) Single Unit with One Output Capability Level 

Example: Given that the transition activity Au supports the acquisition of capability level Cp (as in 

Figure 7.3), assume P(Cii  =1l4) =0.8, and P (Au)=0.15. 

Hypothesis Ail 
P (Cjl I Ail) 

Evidence 

      

Figure 7.3 Tutoring activity Au relates to mastering level Cp =1 

We obtain the posterior odds by Basian rule 

°(Aii I Cil  = 1) = L(Cii  = 	)0(Ai1 ). 

P(Cii  = 114 ) p(41 ) 
P(Ci, 1H41) P(41 ) 
0.8 0.15 = — • 	=0.7059 
0.2 0.85 

This posterior odds indicates that if the output capability Cj/ is mastered, the probability that the tutoring 
activity Ail is passed successfully is 0.7059. 

2) Conditional Probability Matrix 

Let the conditional probability matrix corresponding to the link A--> C is 



A 

MCIA = P (Al e)= 

P (C1 I Al) 

P (CI 1A1) 

P (C11 Al) 

P (C11 Al) 
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P (C1 1 Al) 	P (C1 1 Al) 	P (C1 I Al) 

For the single link A---> C, if the evidence {C = cl is observed, then from Bayes Rule, the belief distribution 
of A is given by 

BEL(a) , P(a I e) = P(a) 2(a) 	 (7.1) 

where a is a possible variable of A, 

a =[P(e) l  is the normalizing constant, 

P(a) is the prior probability of A, and 

2(a) =P(e I a) = P(C=c 1 a)= M cla • 
	 (7.2) 

For the chain X--> Y 	we still can vvrite 

BEL(x) 	P(x I e)= Ce P(x)2(x). 

The likelihood vector 2(x) can no longer be directly obtained from the matrix My  , however, but must 

reflect the matix M y  as well. Conditioning and summing on the values of Y, we can write 

2(x) =P(e I x) = 	p(el y, x)p(y1x) 

P(el Y)P(YI 
v 

111 lx • A (y) 
	

(7.3) 

where M y  lx  • (y) is the dot products of M yix  and 2(y) 

Eq.(7.3) may be generalized to the chains with arbitrary length. 

In order to get P(CjkjlAi), i.e., the probability that the kj-th level of the capability Cj is mastered, given that 
the tutoring unit Ai is taught, w use the distribution of notes of several real courses in the department of 

computer science in University of Montreal including computer architecture, database, data structure and 

computer graphics as P(clkllAn) P(c2k2lAn) P(cmkmlAn). 
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We divide the note range 100 into 10 ranges, then the number of students whose notes fall in each range is 

viewed as the probability of the levels the student has mastered after the course is taught. Then we divide the 

note range 100 into 9 ranges, the number of students whose notes fall in each range is reviewed as the above 

probability. By continuing the division, a group of result probabilities is gotten (as shown in the figure 7.4). 

0 0 1 2 3 4 5 6 7 8 9 10 
1 0.0038 0.996 
2 0.0038 0.147 0.9496 
3 0.0038 0.105 0.203 0.688 
4 0.0038 0.049 0.0977 0.2894 0.5602 
5 0.0038 0.041 0.0789 0.1162 0.3233 0.4699 
6 0.0038 0.023 0.0489 0.0752 0.1617 0.3534 0.3346 
7 0.0038 0.019 0.0376 0.0564 0.0752 0.1955 0.3835 0.2256 
8 0.0038 0.015 0.0301 0.0451 0.0564 0.1053 0.1842 0.3571 0.203 
9 0.0038 0.014 0.0248 0.038 0.0513 0.0624 0.1152 0.1921 0.3199 0.1789 

10 0.0038 0.011 0.0226 0.0338 0.0451 0.0564 0.0677 0.1241 0.1992 0.282 0.1541 

Figure 7.4 Conditional probabilities corresponding to different division of note levels 

We can use these probabilities to compute a transition node's probable contributions to different capabilities. 

3). Single Unit with Multiple Output Capability Levels 

Assume that the transition activity Ail supports the acquisition of a set of capabilities C={ CI, C2, ..., Cm} in 

which each capability Ci with a current mastering level Cjk (i.e., the capability Ci at the k-th mastering 

level), as shown in Figure 7.5, and the acquisition degree of each mastering level Cjk is 

characterized by the probabilities (PCjk l Ail) and P(Cjk I -, Ail), the likelihood ratio 

Figure 7.5. Tutoring unit Ajj supporting multiple capabilities 



P(C jk  I An ) 
L(Cik  'An  ) — p(cik 	_Ail)  , 

Now we have the posterior odds 

0(Ad 	 = 	 (7.5) 

Assume that each current mastering level Cik depends only on whether the tutoring activity Au took place 

and is thereafter independent of other tutoring activities, we can write 

P(Cik , C „,k1 	= up(c,kui,) 
1=1 

and 

P(C, k , 	= HP (gkl —Aii) 

which leads to 

0(4n  I k  , cmk  ) = o(An  )11L(cm  I 	. 
1=1 

Example: Given tutoring activity Au and the output capabilities C={C1, C2} with the mastering levels { C13, 

C26}, P (Au )=0.25, P(C/314ii )=0.7, and P(C261Ai1 )=0.4, the posterior odds 

O(41 IC13 ,C26 ) = 0(4i)12-14gki An) • 

P(A ) 	P(C131A11 ) 	P(C26141 )  
P(—An) P(Ci31—,A 1 ) P(C26 I-41 ) 

=(0.25/0.75)(0.7/0.3)(0.4/0.6) =0.5185 

This means that the posterior odds of Ai/ given C/3 and C25 is 0.5185. 

4). Multiple Tutoring Units with Multiple Output Capability Levels 

Eq.(7.8) is appropriate only for one tutoring unit in a transition node. However, in fact, each transition node 

includes multiple tutoring units. The following deals with this issue. 
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(7.4) 

(7.6) 

(7.7) 

(7.8) 
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Let Ai=(Aii, ..., Ain) stand for the vector of tutoring units in transition node Ti, the set of output capabilities 

related to Ti be C=1 	... Cm}, the observation of current mastering levels on C be the vector LC=ICii, 

Cmil, as in Figure 7.6, 

C11 

Cjl 

Cml 

 

Figure 7.6. Multiple level activities relating to multiple output capabilities 

by basic Bayes rule, we have 

P(Aik 1C11 ,C21,...,C,21 )=aP(C11 ,C21, , C mi l Aik )P(Aik ) 	 (7.9) 

where cx =11P(C11, C21, ..., Cml) is a normalizing constant. 

By Eq.(7.6), we obtain 

P(Aik  I C11 , C21, ... 	œrIP(C I4k)P(Aik) 
	

(7.10) 

which indicates the probability that the tutoring unit Aik has been successfully carried out given C//, ..., Cm/. 

By combining n levels of tutoring units in Ai, we obtain the belief vector 

P(Ai l Cu , 	..,C mi )=- UP(Ai )nP(C I Ai ) 
	

(7.11) 

where 

P(Ai l Cu , C21,. ..,C mi )=[ 	 , C21,. C ne ) 

P(AI ) =[ P(An ) , , P(Ain )1, 
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Hp(cjilAi)=[r][p(cfi lAii),...,llp(cimin)Land 
j=1 	 j=1 	 i=1  

a is obtained by 	 = 1 
jk=1 

Example: Assume that 

At=(A Ai2), 

C={C7, C2, C3}, 

LC=(C15, C22, C37), where Cji means that the current mastering level of Ci is 1, 

P(Ai),(0.3, 0.4), 

P(Cji I Aik) is represented by the following matrix 

ro.3 0.2 0.41 
MC't ln' 	[0.4 0.3 0.45_1' 

we have 

P(Ai1C15, C22, C37)------ a (0.3, 0.4) (0.3*0.2*0.4, 0.4*0.3*0.5) 

=a (0.3, 0.4) (0.024, 0.054) 

=(0.25, 0.75) 

which means that the probability that Au is executed is 0.25, and the probability that AL2 S carried out is 

0.75. 

For the case that there are n units in a transition node: 

P(Al clkl, cjkj, 	cmkm) 

=P(Al, ... Ai, ... AnIC1 kl , 	Cjkj, 	Cmkm) 

=[ P(Al I Cl kl , Cjkj, Cmkm), 

P(A2I Cl kl , Cjkj, Cmkm), 

P(An1 CI kl, Cjkj, Cmkm)] 

P(C1k1,...,Onkm I A1)- 
P(C1k1 	, Cmkm I A2) 

P(C1k1,...,Crnkm I An)_ 

= a[P(A1), 	P(Ai),..., P(An) 



Al 
L4 L2 L3 1 

IA2 

A3 

fJ m 1 P(Cjkj I Al) 

I = a [P(A1), P(A2),..., P (An)] 	P(Cjkf A2)  

rim 
P(Cjkj I An) 

ce[P(A1)1Ti_1  P(Cjkj 1 A1) P(A2)11m  1 P(Cjkj I A2) 	P(An)lri i P(Cjkj I An)] 
)= 

The unit corresponding to goal capability levels is the index in the result matrix that has the maximal value. 

Now the question is that, given a transition node containing multiple tutoring units and with a contribution 

Lc, how to compute P (Aillj)? We define a heuristic function to modify the table shown in figure 7.4. Let Lui 

be the maximal contribution level of Ai 

n/m = i (i=1,2,3)/ (j=1,2,...,m-1) 

So j = (m*i)/n. 

Where n: number of tutoring units in the transition node, 

m: number of output capability levels, 

i: the index of tutoring unit, and 

j: the index of output capability level. 

We will use this function to the compute the maximal contribution level j based on m,n, and i. 

Example: As seen in the figure 7.7 

Figure 7.7 Computing conditional probability P (AilLj) 

When i = 1, the maximal contribution level j = (4*1) /3-> j = 2, 

i= 2, the maximal contribution level j = (4*2)/3 -> j = 3.i = 3, maximal contribution level j = (4*3)/3 ->j = 

4. 

We cut some columns in front of the corresponding level row in the figure 7.4, and then add the cut value 

approximately to the remaining column s after cutting. If a value is greater than other values in the remaining 

column, then the column will get more cut value. The following figure 7.8 shows an example: a transition 

node with six tutoring units supporting a capability with maximal four levels. 
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0 1 2 3 4 
0 1 
1 0.3406 0.6594 
2 0.3406 0.6594 
3 0.1031 0.3055 0.5912 
4 0.0491 0.0981 0.2905 0.5623 
5 0.0038 0.0528 0.128 0.3501 0.4653 
6 0.0038 0.0489 0.0977 0.2894 0.5602 

Figure 7.8 Conditional probability P(AilCj) 

7.3.2.3 Identifying Tutoring Units in Transition Nodes 

This section describes the algorithms for identifying tutoring activities. The algorithms are based on the 

Bayesian techniques introduced in section 7.3.2.2. 

Give a transition node T, and a set of output capabilities of the transition node: C. The conditional probability 

vectors from the maximal tutoring unit to each capability in C are based on the rows in figure 7.9. The figure 

7.9 shows the relations between the transition node T and each capability in C. 

Let the tutoring units in T be Al, A2, ..., Ai, ..., An, C,(C1, C2, 	Cj, 	Cm); the set {C1k1, C2k2, 

Cjkj, 	Cmkm} refers to either known levels or goal levels of all the capabilities. 

Cl kl 
C2k2 

Cjkj 

C mkm 

Figure 7.9 General relation between a transition node and output capabilities 

In figure 7.9, Vcjkj is the conditional probability vector in which each element P (CjkjlAi) refers to the 

probability that the levet kj of the capability Cl is acquired after the tutoring unit Ai is taught. In the •figure 

7.4, we can find the vector of condition probability VcjkjlAn. Based on the vector, the linear imitation method 

is used for other conditional probability vector. Then we get the conditional probability matrix McjkjIA:is 

P (Clkl I Al) P(C2k2 I Al) 	P (Cmkm 1 Al) 

P (Clkl I A2) P(C2k2 I A2) 	P (Cmkm I A2) 

P (Clkll An) P (C2k2 1 An) ... P (Cmkm I An) 
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Applying McjkjIA on Bayesian rules, we get the probability: P (A1C1k1, 	Cmkm), that is, the probability 

that each tutoring unit is taught after Clkl, C2k2, 	Cmkm are acquired. The tutoring unit that has the 

maximal probability value among all tutoring units in T is the boundary of tutoring unit having been taught. 

The algorithm 7.2 and 7.3 in Appendix D is used for identifying the boundary. 

7.4 Sequencing Tutoring Activities by State-Driven Reasoning 

In order to identify the availability of a tutoring unit at the current context in learning process, we define five 

kinds of states for tutoring units and sub-units, including recommended, enabled, partlylEnabled, disabled 

and passed. If a tutoring unit or sub-units state is recommended, the learner may learn the unit or sub-units. 

If a tutoring unit or sub-units state is enabled, it is not the best tutoring unit or sub-unit though it can be 

learned currently. If a tutoring unit or sub-units state is partlyEnabled, only parts of the unit or sub-unit may 

be learned. If a tutoring unit or sub-units state is disbaled, the learner cannot learn the unit or sub-unit. If a 

tutoring unit or sub-units state is passed, the unit or sub-unit has been passed successfully by the learner. 

The following rules are both definitions of the states and the foundation of reasoning for identifying the state 

of a tutoring unit or sub-unit. 

Ral: if transition node T contains recommended unit, the T's state is 
recommended, 

Ra2: if the set of current recommended units is null and all units in 
the transition node are enabled, then T is recommended, 

Ra3: if T is enabled, T's successor contains more goals than other Ts, 
then T is recommended, 

Ra4: if all units in T are enabled, then T is enabled, 
Ra5: if parts of units in T are enabled and some other unit is 

disabled, the T is partlyEnabled, 

Ra6: if there is no enabled unit, the T is disabled, 
Ra7: is all units are passed, the T is passed, 
Ra8: if a unit A is enabled & A is a direct successor of last executed 

unit, then A is recommended, 
Ra9: if A is enabled & A and the last executed unit have the same 

parent, then A is recommended, 
Ra10: if A is enabled & both A and the last executed unit have same 

descendants, then A is recommended, 
Ra11: if the required levels of all prerequisite capabilities for T 

are satisfied & all sub-units in A are available, then A is 
enabled, 

Ra12: if the prerequisite levels of all input capabilities are greater 
than assigned percent, then A is partlyEnabled, 

Ra13: if not all prerequisite levels of input capabilities are greater 
than assigned percent, then A is disabled; 

Ra14: if the sub-unit S is available, A is recommended & S is the 
first sub-unit the learner does not learn, then S is recommended, 

Ra15: if S is available, A is enabled & S is the first sub-unit that 
is not given to the learner, then S is enabled, 
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Ra16: if S is available, A is partlyEnable & S is the first sub-unit 
that is not given, then S is partlyEnable, 

Ra17: if S is not recommended, not enabled, and not partlyEnabled, 
then S is disabled, and 

Ra18: if S contains necessary resources and necessary runners, then S 
is available. 

Ra19: if S associates necessary runners and necessary dynamic 
interaction functionality in the activity deliverer, then S is 
available. 

7.5 Dynamically Transferring Tutoring Activities 

In this section, we, first, propose the protocol between VACT and the tutoring delivery function. Then, the 

dynamic transferring process combining Cnet, VACT and the tutoring delivery function is described. 

7.5.1 Basic Protocols between VACT and the Activity Delivery Module 

In VITCAM, we attempt to provide the adaptability that can combine various tutors with different abilities. 

When we define VITCAM, the tutoring delivery module or tutor is considered as an open module. The ability 

of tutoring delivery module concerns some difficult issues in ITS, such as, diagnosing learner errors and 

evaluating learner responses. 

We view the following tutor abilities as the protocols among Cnet, VACT and the activity delivery module (or 

called a tutor), except the ability to dynamically create interactions in the activity delivery module. 

• The tutor can only display resources to learners and simply give a yes/no evaluation to learner 

responses; 

• The tutor can determine what capabilities that are not in current course are needed for remedying the 

learner lacks; 

• The tutor can determine what capability levels that are in current course are needed for remedying the 

learner lacks; 

• The tutor can determine what alternative resource groups in current tutoring activities are needed for 

remedying the learner lacks. 

In next section we introduce the dynamic transference process of tutoring activities based on the four 

protocols. 

7.5.2 Dynamic Transference Process of Tutoring Activities 

In VACT, the transference process of tutoring activities is dynamic; i.e., the course creation module and the 

sequencing module may be re-activated based on certain feedback information provided by the tutoring 

delivery module. The figure 7.10 shows the dynamic process. 



Decision Switch 

Cnet Creator 
Qnet 

Student Model 

net Creator ctivity Deliverer 

Strategies Resources Capabilities 

Figure 7.10 Dynamie Transference of Tutoring Activities 
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Based on the input (Tnet) of VACT and a student's profile from student model, the Course Creator creates 

multiple alternative courses for the student, then Anet Creator is activated to evaluate and recommend 

courses. As soon as the student selects a course, Anet Creator sequences all tutoring activities in the selected 

course. The tutoring activity sequence is passed to the tutor module: Activity Deliverer. The tutor, then, 

selects a recommended tutoring unit interactively with the student and passes the selected tutoring unit to the 

student. The output of the tutor contains the following possibilities: 

• The student passes the tutoring unit successfuIly; 

• The student fails to the unit; 

• The student lacks some capability levels in the current course; 

• The student misses capabilities out of the current course. 

If the student passes the tutoring activity successfully, the decision switch determines the next step: either 

exiting when the student's all goals are achieved, or activating activity deliverer to give next recommended 

activity, or creating new recommended activities when no recommended activities. If the student fails to the 

unit and there are alternative available resource groups, then the system changes alternative resource groups 

in the tutœing unit to deliver the unit again. 

If the student lacks some previous capability levels in the current course, the Anet Creator is activated to re-

compute the necessary tutoring units in the course, and then passes the activities to the activity deliverer. 

If the student misses some capabilities out of the current course, the Cnet Creator is activated to create the 

remedy course for the missed capabilities, then the tutoring activities in the remedy course are sequenced, and 

are passed to the activity deliverer to offer the remedy activities first. If the student fails to a tutoring unit, and 

the activity deliverer has no ability to determine what the student lacks, the sequenced tutoring activities may 

be re-learned by the student. 
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7.6. Visualization of VACT 

VACT model can display the evaluated course sequence and the recommended tutoring unit sequence, 

dynamically map the visual element states to colors and navigate to learners. 

• Displaying the evaluated course sequence 

As soon as the VACT model creates alternative courses, the system can dynamically display the courses 

ordered by their utilities. Meanwhile, a student may select one of the recommended courses as his current 

course 

• Dynamically display the recommended tutoring unit sequence 

The system can dynamically display currently recommended tutoring unit sequence that is obtained by a 

group of reasoning rules according current state of the learner. 

• Mapping element states to colors and navigating to learners 

As soon as necessary tutoring units are identified, the states of all visual cells are initially determined. 

Various colors are used for possible states of capabilities and their levels, and some other colors are used for 

possible states of visual cells in transition nodes. 

Figure 7.11 Dynamic state navigation 

Since a dozen of states and colors are displayed on screen, novice users may have difficulty to recognize 

these states and colors. A state-color bar is provided in the information palette. The user can switch on the 

state-color bar at any time for the navigation to learning process. 
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In the learning process, the states of visual cells will real-time changed with the change of the student states. 

VACT model dynamically displays the corresponding changes of visual element states to supply navigation to 

learners. 

The figure 7.11 shows an example of state navigation. The learning goal is the capability 

"applyingBasicTags". The currently recommended tutoring unit is "teachHeadAndBody". 

7.7 Conclusion 

This chapter deals with the dynamic management of capability transitions including approaches for 

evaluating courses, sequencing tutoring activities, remedying student misconceptions, and visual navigation 

by learners. 

A measure, utility, is defined for comparing the course adaptability to the current student, which is based on 

the students preferred resource types, media types and cognitive strategies, as well as the needed efforts for 

learning goals. By comparing the utilities of alternative courses, a course sequence sorted by utility is 

obtained. The course with the maximal utility is the recommended course. 

In order to create courses that are adaptable to a particular student, the necessary tutoring units are identified 

by Bayesian techniques that can tackle the uncertainty between the output capabilities and tutoring activities. 

A state-driven reasoning approach is proposed for sequencing tutoring activities in a selected course. Six 

states are defined for each tutoring activity (either a transition node, or a tutoring unit, or a sub-unit), that is, 

recommended, enabled, partly enabled, disabled, unconcerned, and passed. A group of reasoning rules is 

proposed for the dynamic state change of each visual cell. 

One feature of VITCAM is the dynamic transition of tutoring activities. After a tutoring unit is transferred the 

system can make decision for the next step, either exiting the system, or changing alternative resource groups, 

or re-sequencing the tutoring activities in the selected course, or re-creating new remedy courses. 

The visualization of Anet consists of displaying sorted course sequence, displaying currently recommended 

tutoring units, mapping states of visual cells to colors, and the real-time navigation by the state-driven 

reasoning 

In the next chapter we present a prototype developed so far that supports the feasibility of the proposed 

curriculum based ITS. 
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Chapter 8 

Prototype and Application 

In this chapter we, first, briefly describe the prototype of VITCAM system including its system architecture 

and principal functionality. Based on the prototype, an example of curriculum for teaching HTML is 

introduced. The prototype of VITCAM model is implemented with 120,000 lines of Java codes (about 700 

classes). 

8.1 Architecture of the VITCAM Prototype 

The Figure 8.1 shows the system architecture of VITCAM. This architecture includes three parts: a visual 

component creator, an authoring worlcshop and a leaning workshop. 

Figure 8.1 Architecture of VITCAM prototype 

8.1.1 Visual Compouent Creator 

Visual Component Creator (Figure 8.2) is an essential module in VITCAM prototype. It is a program library 

containing dozens of component creation programs. The component library is used for creating four 

categories of visual components: a capability node group, a transition node group, a resource group and a 
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link group. A great number of operations are provided in each kind of components to support creating, 

modifying and managing varions visual and internai attributes as well all kinds of manipulations. 

Component 	 link 

Capability icons 
	 RectangelLevel 
	 TriangleLevel 	 

TeethLevel 

Transition Icons 
RectangleSubUnit 

	 OvalSubUnit 	 

Resource Icons 
	 Rectangle 

Oval 

OvalLevel 
UpFanLevel 	 
DownFanLevel 
ArcLevel 	 
CompositeRect 

TriangleSubUnit 
ImageSubUnit 

Triangle 
Image 	 

OPERATIONS: 

ChangeNames 
ChangeFillColors 
ChangePositions 
ChangeSizes 
ChangeLeveNumber 
ChangeFonts 
Zoomingln/Out 
ChangeBorderColors 
ChangeUnitnumber 
ChangeSubUnitNumber 
ChangeAuthoringStates 
ChangeLeamingStates 
RecognizePressedCell 
RecognizeContained 
ChangeActionListener 
RecognizeCloestEdgeFromAPoint 
GetVisualParameters 
GetInnerAttributes 
EditinglimerAttributes 

Figure 8.2 Visual components and the operations applied on them 

Each group of visual components includes some node templates with different shapes. These shapes can be 

used to indicate the types of nodes. For example, we use a kind of shapes to represent concepts and use 

another kind of shapes to represent mies. The visual component library contains another kind of icons for 

resources (which are not used yet in current prototype). Node shapes can be used to distinguish different 

resource types. There are two kinds of transition nodes; currently, they are used to identify an intermediate 

transition node and a leaf transition node in a capability transition network. The inks in VITCAM include 

prerequisite links and output links. We use the types of source and destination nodes to indicate the types of 

links, for instance if the source of a link is a capability node, we say that this link is a prerequisite link. 

The operations on these visual components fall into two categories: getting information and 

setting/updating information. These operations will affect the inner attributes of the nodes as well as their 

visual properties. Each operation listed in figure 8.2 consists of a group of concrete methods; for example, 

the operation "changeSizes" includes "changeTotalWidth, changeTotalHeight, changeCellWidth, 

changeCellHeight, changeTotalBounds, and changeCellBounds." Many operations in the authoring 

environment and leaming environment are based on these basic operations on visual elements. The coming 

sections explain in detail the above three parts of VITCAM. 



8.1.2 Authoring Workshop 

In the Authoring Workshop of VITCAM all visual interactive activities between a curriculum author and the 

system take place in the authoring Interface. A curriculum author can directly activate one of three studios 

including the Tnet Studio, the Resource Studio and the Detailed View Studio. The visual Tnet Studio is 

used to create, organize and layout the domain capability transition networlcs. A curriculum author can use 

the Resource Studio to develop text resources and connect images to text resources. The author can also 

open a dialog window (detailed viewer) for each visual cell in nodes to edit the internai attributes of the 

cell. 

8.1.3 Learning Workshop 

The leaming workshop is more complicated than the authoring workshop. There are four basic databases, 

including course network base, an activity network base, a resource base and a student profile base. 

There are seven modules in this workshop; that is, a visual course studio, a course recommender, a unit 

identifier, a unit sequencer, an activa)) deliverer (opening module), a decision switch and a learner 

interface. With the course studio, a leamer may visually set icnown capabilities and learning goals (i.e. 

capabilities and capability levels to leam). The leamer, then, may activate the course creator to create 

multiple alternative courses covering his/her leaming goals. Meanwhile, the course creator can display all 

generated courses and their details to let the leamer select his or her preferred course. The course 

recommender can recommend an individualized course that is currently the most appropriated course for 

the leamer. The leamer can accept the recommended course or select anyone else he currently preferred as 

his current course to leam. 

The upcoming sections describe in detail the functionality of the authoring environment and the leaming 

environment. 

8.2 Authoring Environment of VITCAM 

The authoring environment of VITCAM consists of seven groups of functionality as shown in figure 8.3: 

-File access 

-Local view editor 

-Detailed view editor 
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-Resource base editor 

-Component templates 

-System state navigator 

-Student profile viewer 

Their funetionality is briefly described as follows. 

• File Access 

The File Access Group provides all file operations. They include creating a new capability transition 

network Tnet, opening a Tnet, saving a Tnet, and saving a Tnet in different paths or under a different name. 

• Local View Editor 

The local view editor is used to create and organize the capability transition network Tnet. A visual node is 

created and displayed on the screen based on twice mouse clicking, one for selecting a node template and 

the other for positioning the component on screen, as the editor's state is "Add Node". A link can be 

created to connect two visual components by clicking the source and then the destination node. To delete a 

node or link, the user can simply click the component to delete. The system can automatically insure the 

consistency of the deleting operation, such as, if a node is deleted, all its input links and output links should 

be deleted, too. The user can also layout the Tnet on screen by simply dragging. 

• Detailed view Editor 

With this editor, a curriculum author can edit visual properties and inner attributes of visual cells. In 

addition to some visual properties that are automatically changed by the system such as sizes, colors, etc., 

the curriculum author can change the number of sub-cells, for example the number of levels of a capability, 

the number of tutoring units in a transition node. Each kind of visual cells has an inner attribute editor for 

editing the internai attributes related to this kind of cells. These editors consist of the overall capability 

attribute editor, the capability level editor, the overall transition attribute editor, the scheme editor, the 

tutoring unit attribute editor, and the sub-unit attribute editor. 

A group of sub-editors can be used for visually inserting or deleting capability levels, tutoring units and 

sub-units. In order to attach resource groups to sub-units, with the detailed view editor, the author can open 

a 



TNET 	 File Access 
	 New 

Open 
Save 

	 Save AS 
Local View Editor 
	 Add Node 

Add Link 
	 Delete Node 
	 Delete Link 
	 Layout 

Detail View Editor 
	 Capability Overall Editor (Capability Attribute Editor) 
	 Level Editor (Level Attribute Editor) 
	 Transition Overall Editor (Transition Node Attribute Editor) 
	 Scheme Editor 

Action Definition Editor 
Insert Unit 
Delete Unit 

	 Unit Editor 
	 Unit Attribute Editor 
	 Insert Sub-Unit 
	 Delete Sub-Unit 
	 Unit Tester 

	 Sub-Unit Editor 
	 Sub-Unit Attribute Editor 
	 Resource Editor 
	 Sub-Unit Tester 

Resource Base Editor 
- Resource Editor 
	 Resource Group Editor 

Component Template 
	 Capability Group 

RectLevel 
	 TriangleLevel 
	 Composite Capability 

	 Transition Group 
	 RectangleSubUnit 
	 OvalSubUnit 

	 Resource Group 
	 Rectangle 
	 Oval 
	 Triangle 
	 Image 

Operation Navigator 
	 Function State Displayer 
	 Selected Template Displayer 
	 Inner Operation Displayer 

Student Profile Viewer 

Figure 8.3 Functions of Authoring Environment in VITCAM 
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database of resource groups, visually click the wanted resource group, and the clicked resource group will 

be automatically attached the selected sub-units. 

With the detailed view editor of tutoring units or sub-units, a curriculum author can test tutoring activities 

in tutoring units and sub-units. Both tutoring units and sub-units are associated with a runner that can 

deliver the real tutoring acts. If the necessary resource groups have been attached to sub-units, the runners 

of tutoring units or sub-units will present the attached resources. The interaction activities between the 

leamer and the resources take place on the interaction windows of runners. 

• Resource Base Editor 

Currently, VITCAM prototype supplies dialog-based editors for creating resources and resource groups. 

With these two editors, a curriculum author can generate resources and resource group databases. 

• Component Templates 

The visual component templates contain various visual components for constructing capability transition 

networks (Tnet). They are divided into four groups: the capability group, the transition node group, the 

resource group and the link group. When an author wants to create a new node, he simply clicks the desired 

template (if the currently selected template is not he/she wants) and then clicks the position to display it on 

screen. The new node corresponding to the selected template is created and displayed. The author, then, can 

organize the transition network using tools for laying out and for deleting components. Finally, the author 

can edit visual properties and inner attributes of the transition network with the local view and detailed 

views. 

• System State Navigator 

The system state navigator dynamically displays current system states. These states include the selected 

template (for a curriculum authoring session), the current system tool, and the current inner operations 

(which will for instance report what the system is doing). 

• Student Profile Viewer 

An author can use the student profile viewer to get the current student information stored in the system. 

• User Interface of Authoring Environment 



I ER.FiOR 	 blatIDotmeliesClie ADD-UNIÇ lbefunranerint)Ye*(impara»Ts4 

156 

The figure 8.4 shows the user interface of the authoring environment. In this user interface, the toolbox at 

the top of the window consists of all operations the author can select. The component templates are placed 

at the left of the window. The state bar at the bottom is the system state navigator. The central area of the 

window is the user workspace where the real authoring and learning take place. 

Figure 8.4 User interface of the authoring environment 

8.3 Learning Environment—VCOURSE and VA CT Prototype 

The VCOURSE and VACT prototype provides all preparations for the activity delivery module (or tutor) in 

tutoring system. These preparations facility viewing the details of domain transition networks, setting 

known capabilities and their levels, setting goal capabilities and their levels, creating multiple alternative 

courses, recommending courses, sequencing tutoring activities, and visually navigating to a learner. 

Meanwhile, the prototype also supports remedying leamers missing by re-creating courses, or re-

sequencing tutoring activities based on the feedback information from the activity delivery module. 

The functional architecture of the VCOURSE and VA CT prototype is shown in figure 8.5. The prototype 

contains more inner operations than the VTRANS prototype. We summarize the main functionality as 

follows. 



Leamer Enter 
I 	Leamer Profile Eclitor 
	 Login 

File Access 
	 New 

Open 
	 Save 

Lay ut 
Layout Node 
Layout Link 

Detail Viewer 
	 Capability Viewer 

	 Capability Overall Viewer 
	 Level Viewer 

	 Transition Viewer (Transition Node Attribute Editor) 
	 Transition Overall Viewer 
	 Scheme Viewer 
	 Unit iewer 

Unit Attribute Viewer 
Unit Executor 

	 Sub-Unit Viewer 
	 Sub-Unit Attribute Viewer 
	 Su Unit Executor 

Presenter 
Eliciter 
Tester 

	 Link Viewer 
Settmg Known 
	 Clicking Recognizer 
	 State Reasoner 
	 State Displayer 

Settmg Goals 
	 Clicking Recognizer 
	 State Reasoner 
	 State Displayer 

Course Creator 
	 Basic Relation Creator 
	 Head Goal Finder 
	 Sub-Network Creator 
	 Complete Network Creator 
— Combination Network Creator 

Course Recommender 
	 Necessary Tutoring Activity Identifier 
	 Utility Calculator 
	 Course Sortor 
	 State Reasoner 

Information Teller 
	 State-Color Bar 
	 Shape-Type Barr 
	 Course Information Bar 

Course Selector 
Comparison Switch 
Operation Navigator 
Activity Transfer 

Figure 8.5 Functionality modules of VCOURSE & VACT prototype 
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• Leaner initialization 

Prior to a leaming session, the student must provide his or her profile to the system. This can be done 

through two processes: the login entrance and the leamer profile entrance. When a learner uses the system 

at the first time, he/she interactively establishes his/her individual profile. In later leaming sessions, the 

learner can view his leaming history and update his individual information profile. 

• File Access 

This part provides the operation for opening a new capability transition network, opening a selected course, 

and storing selected course. 

• Layout 

Since a course is a sub-network of a Tnet, the layout of a created course is based on the original layout in 

the Tnet. The learner may re-layout the selected course by dragging. 

• Detailed Viewer 

The detailed viewer is supplied to help the learner understand the overall structure of the domain 

knowledge and explain what the capabilities and their levels are. 

With the detailed viewer of transition nodes, learners can freely explore tutoring activities. Four kinds of 

viewers are provided for transition nodes: the transition overall viewer, the scheme, tutoring unit and sub-

unit viewers. The learner can get the overall information of a transition node through the transition overall 

viewer. Similarly, the scheme viewer gives the detailed defmition the transition node. The unit and sub-unit 

viewers consist of their attribute viewers and tutoring runners. The attribute viewer may be used to obtain 

detailed information on a tutoring unit or sub-unit. The tutoring runner offers an environment for freely 

exploring some particular teaching sequences present in the transition node. 

• Setting Known Capabilities 

By the functionality of setting known capabilities, a leamer can visually set his known capabilities and their 

levels. There are three operations involved in setting known capabilities: a clicking recognizer, a state 

reasoner and a state displayer. When a leamer clicks a visual cell in a capability node, the clicking 

recognizer is activated to determine exactly which visual cell is clicked. And then, the State Reasoner 

infers the states of the overall cell of the clicked capability and all its levels based on the reasoning rules 
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defined in section 6.4. After the states of all visual cells in the clicked capability are determined, the State 

Displayer changes the colors of visual cells in the clicked capability to reflect the corresponding states. 

• Setting Leaming Goals 

The process of setting leaming goals is similar to that of setting known capabilities. The only difference is 

that they use their own reasoning rules defmed in section 6.4. 

• Course Creator 

The course creator is composed of five principal modules: a basic relation creator, a head goal finder, a 

sub-network creator, a complete network creator and a combination network creator. 

The basic relation creator generates all necessary basic node relations. Owing to the two kincls of nodes in 

a Tnet, the capability node relations and the transition node relations should be found respectively. These 

relations include predecessor relations and ancestor relations. 

The head goal finder attempts to divide a network into several connected sub-networks. The root of each 

sub-network is a leaming goal and each sub-network contains a group of leaming goals that are ancestors 

of the root nodes. With such division mechanism, there is no leaming goal that across two connected sub-

networks. 

After all head goals are found, the sub-network creator generates all possible sub-networks of each head 

goal. 

As soon as the complete sub-networks of each head goal are achieved, altemative courses can be obtained 

by combining the complete sub-networks of each head goal. 

Figure 8.6 — 8.10 show an example of course generation. Figure 8.6 is a capability transition network Tnet 

for teaching part of UML. The selected leaming goal is the capability "createSequenceDiagram" to the first 

level. Figure 8.7-10 show four created altemative courses. 
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Figure 8.10 Course No. 3 in UML example 

• Course Recommender 

There are four steps for recommending courses, that is, identifying necessary tutoring units, calculating 

utilities of all alternative courses, sorting courses with utilities and inferring activity states. 

The tutoring unit identifier compute the range of the tutoring units in a transition node based on the brown 

levels and the goal levels of all output capabilities. The central approach for computing necessary tutoring 

activities is based on the Bayesian techniques described in chapter 7. 

In order to evaluate the adaptability of courses, the course recommender module computes the utilities of 

all necessary tutoring activities in all courses by using the approach defmed in chapter 7. Combining the 

utilities of all necessary tutoring units in the course may get the utility of each course. All courses are 

sorted by their utilities. The course with the maximal utility is the recommended one. 

The state reasoner is used to identify the state of all transition nodes, tutoring units and sub-units in the 

selected course. A group colors are adopted for displaying the states of all tutoring activities. The leamer 

can choose currently recommended tutoring activities to learn. 
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• Information Teller 

Since numerous visual properties are adopted in VCOURSE and VACT prototype, novice users need 

indicators for recognizing the visual properties. The information teller consists of three information bars: a 

state-color bar, a shape-type bar and a course information bar. A learner can switch on any one of the three 
information bars as the current information bar. The state-color bar displays the mapping from the states of 

visual cells to colors. The shape-type bar gives the relationships between component shapes and component 

types. The course information bar displays the overall information contained in currently displayed course, 

such as node number, resource number, media types, cognitive strategies, resource sizes, etc. 

• Course Selector 

When a learner activates the course selector, the current displayed course is considered as the selected 

course to learn. All information in the selected course is stored to the leamer's profile. 

• Decision Switch 

The decision switch is the handler for the feedback information provided by the activity deliverer module 

in tutoring system. It switches the control of VCOURSE and VA CT prototype either to the course creator or 

to the state reasoner in the course recommender to activate the corresponding modules. 

• System State Navigator 

Its functions are similar to the system state navigator in VTRANS prototype. 

• Activity Deliverer 

The activity deliverer module is viewed as an external module of VITCAM prototype. The protocol between 

the module and VITCAM supports both simple activity deliverer and powerful activity deliverer from the 

point of view of diagnosis abilities. 

8.4 Application: Example for Teaching HTML 

An example for teaching HTML is developed with VITCAM prototype. In this section, we first, describe the 

identification of capabilities in HTML. And then the capability transition network, Tnet, and the course 

network Cnet as well as the activity network Anet are dealt with. 
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8.4.1 Identification of Cap abilities 

Based on the lcnowledge structure of HTML. Seventeen capabilities are identified as shown in figure 8.11. 

Most of the capabilities are composite capabilities; that is, each of which contains several small 

capabilities. For example, the capability "Applying basic tags" includes "Applying Head Tag", " Applying 

title tag", "Applying body tag", and " "Applying paragraph tag". For the capabilities without too much 

levels, we combine them together to get a composite capability, which simplifies the global structure of 

domain transition network in a great extent. 

StatingWeb:3 
1. statingWebDescription 
2. statingWenBasicFeatures 
3. statingWebAdvancedFeatures 

statingWebBrowsers:3 
1. statingBrowsersDescription 
2. statingBrowsersjob 
3. statingPopularBrowsers 

classifyingURLs:3 
1. statingURLDefmition 
2. identifyingURLStructure 
3. identifyingPopularLTRLs 

statingHTMLIntroduction:3 
1. classifyingHTMLDefinition 
2. statingHTMLBasis 
3. identifyingURLStructure 

applyingBAsicTags: 2 
1. applyingBasicStructureTags 
2. applyingAdvancedBasicTags 

applyingLinks:4 
1. creatingLinks 
2. linkingLocalDocuments 
3 linkingOtherWebDocuments 
4. linkingSpecificPlaceWithinDocument 

applyingLists:3 
1. applyingBasicListTag 
2. applyingTypicalLists 
3. applyingAdvancedLists 

applyingTables:4 
1. applyingBasicTags 
2. aligningTables 
3. spanningRowAndColumn 
4. applyingNescapExtension 

applyingOtherTags:1 
1. 	applyingOtherTags(formating, horzonRule,BR,BlackQuoted, 

address, fontSize,background) 
applyingMultimedia:4 

1. usingImages 
2. usingExtensionImages 
3. makingImageBetter 
4. applyingExtendedMedia(extended Image, sound, video) 
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organizingWeb:5 
1. stating main steps 
2. settingGoals 
3. gettingMainTopics 
4. organizingAndNavigating 
5. usingStoryBorder 

applyingWebServer:5 
1. statingServerBasis 
2. findingAServer 
3. organizingAndInstallingYourHTMLFiles 
4. applyingBetterServerAdministrativeRules 

applyingCGI:6 
1. classifyingCGI 
2. statingUserConditionsOfCGI 
3. settingCGIOnServer 
4. statingCGIScriptBehavior 
5. applyingInteractiveSerach 
6. applyingSpecialScriptOutput 

applyingForms:6 
1. applyingFormBasis (input tag, script to present form) 
2. layoutingSimpleForms 
3. applyingTextInputFields 
4. layoutingAdvancedForms 
5. identifyingImageMap 
6. creatingImageMap 

designingSimpleWeb:2 
1. applyingBasicRules 
2. designingSimpleWeb 

designingGeneralWeb:4 
1. applyingDesignRules 
2. designingSimpleExamples (basic tags, links) 
3. designingWebWithListsAndTables 
4. designingWebWithOtherTagsAndServer 

designingBusinessWeb:4 
1. applyingDesignRules 
2. designingSimpleExamples 
3. designingGeneralBusinessWeb 
4. designingComplicatedBusinessWeb 

Figure 8.11 Identified capabilities and levels in HTML 

8.4.2 Constructing Capability Transition Network-Tnet 

Identifying tutoring activities in a capability space is an action that needs human intelligence. VITCAM 

provides an environment for curriculum authors to construct the capability transition network, Tnet. The 

capability transition network, Tnet, for HTML is shown in figure 8.12, in which the circle nodes indicate 

the capabilities and the rectangle nodes refer to the transition nodes. The number with the input links of 

transition nodes are the required minimal capability level, and the numbers with the output links of 

transition nodes are the maximal contribution levels to the output capabilities. 
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Figure 8.12 Tnet of HTML 

The details of tutoring units in each transition node are given in Appendix A. Figure 8.13 shows the details 

of the transition node: "teachApplyingServers". Figure 8.14-15 redraw the screen appearance of this 

example as in chapter 5. 

Transition node: "teachApplyingServers" 
Unit 1: teach server introduction 

Sub-unit 1: present definition of servers 
Sub-unit 2: present the job of servers 

Unit 2: finding a server 
Unit 3: installing server software 
Unit 4: organizing and installing your HTML files 
Unit 5: making better server administration & design 

Figure 8.13 Details of the transition node "teachApplyingServers" 
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Known:0 
Goal:5 

Known:3 
Goal:4 

ApplyServers:5 

7. Removing redundancy and invalid elements, and create all courses (figure 8.16-17). 
Known:0 
Goal:3 

Known:0 
ApplyTab1es:4 	Goal:3 

,z,Lt.mrt• 

ApplyLinks:4 

8.4.3 A Cnet in HTML 

The following is an example of course network corresponding to certain input. 

Given that a learner mastered the capabilities: 

ApplyingList at level No. 3 

ApplyingOtherTags at level No. 1 

ApplyingBasicTags at level No. 2 

And the leamer's goals are: 

DesigningGeneralWeb to level No. 3 

ApplyingMultimedia to level No. 2 

The following are the steps and results of creating courses: 

1. All possible known capabilities: 
ApplyingList at level No. 3 
ApplyingBasicTags at level No. 2 
ApplyingLinks at level No. 3 
ApplyingOtherTags of level No. 1 
StatingHTMLIntroduction at level No. 3 
StatingWebBrowsers at level No. 2 
StatingWeb at level No. 3 
ClassifyingURLs at level No. 2 

Figure 8.16. A course for a particular learner 
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Figure 8.17 The course on screen for the particular leamer 
In the figure 8.16, the numbers beside capability nodes indicate the goal levels and the maximal levels of 

capabilities. 

8.4.4 An Anet of HTML 

This section describes the Anet corresponding to the example in 8.4.3. The figure 8.18 indicates necessary 

tutoring units. The figure 8.19 shows the practical tutoring activity sequence (Anet) in the example. 

There are two recommended transition nodes and three disabled transition nodes at this moment: 

Recommended Transition Nodes: teachLinks (unit 4), and TeachTables (unit 1-3). 

Disable Transition Nodes: teachMultimedia (unit 1-2), teachServer (unit 1-3), 

teachGeneralDesignWeb (unit 1--3). 
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8.5 Conclusion 

The prototype of VITCAM consists of three parts: a visual component creator, an authoring environment 

and a learning environment. 

The visual component creator is used to generate a library of visual components used for representing 

capabilities, transition nodes and links. Each kind of visual component contains numerous methods for 
editing the visual properties, the inner attributes and the manipulation. These methods are foundations of 

advanced operations in both the authoring environment and the leaming environment. 

Using the tools in the authoring environment, a curriculum author can organize all kinds of knowledge in 

curriculum to visually construct the capability transition network, Tnet, in a given domain. Meanwhile, the 

author can visually organize and test the capability transition network. 

The leaming environment consists of more operational categories, including 

--Learner entrance 
--File access 
--Layout 
--Detailed viewer 
--Setting known capabilities and their levels 
--Setting goals capabilities and levels 
--Course creator 
--Course recommender 
--Information teller 
--Course selector 
--Decision switch 
--System state navigator 

A leamer can establish and edit his own profile for learning. He/she can set known capabilities and learning 

goals by simply clicking. When the leamer activates the course creator, multiple alternative courses are 

generated. The course recommender then suggests the most adaptable course for the learner. 

There are three groups of navigation facilities for leamers: 

--Information teller: indicating the meanings of visual properties and the overall information of a course, 

--On-line state navigation: using colors of visual cells to represent the current states of a learner and 

--System state navigation: telling the learner what the system is doing. 

As a practical application, the exarnple for teaching HTML is developed. This chapter describes this 

applications capability transition network Tnet, and the examples of its Cnet and Anet. 



Chapter 9 

Conclusion 

In this chapter we summarize our contributions so far, the comparison between VITCAM and other systems, 

current limitations, and future research objectives. 

9.1 Contributions 

The contributions of this thesis include 

• Augmenting the existing curriculum model, so that it is simpler to manage globally than the ones 

proposed in the past. 

• Proposing a visual useful curriculum management model that integrates the well known 

instructional design theories about instructional events and objective levels from Gagné and 

Bloom and generalizes the use of visual interactive environments to meet the needs of both 

curriculum based authoring and learning processes. 

9.1.1 Presenting a Globally Simpler Curriculum Representation Structure 

This thesis augments the existing curriculum models by presenting a visual curriculum representation 

structure (Tnet in the VTRANS sub-model) that is simpler to manage and manipulate than the ones proposed 

in the past. 

Our curriculum model includes two kinds of nodes: capability nodes and transition nodes. Capability nodes 

indicate what a leamer can acquire after certain tutoring activities. In fact, a capability node in our model is 

an ordered set of atomic capabilities or sub-capabilities identified by Gagné. Transition nodes organize 

interactive events and tutoring resources (including interaction creation or guidance programs) to support 

the acquisition of capabilities. The aggregation ability for organizing capability nodes and transition nodes 

is one of distinctions between VITCAM and other models. 

There are just two types of links to represent the relationships between capability nodes and transition 

nodes: prerequisite links and output links. A prerequisite link defines a prerequisite relationship from a 

capability node to a transition node. The prerequisite link is one of the preconditions to activate a transition 

node. An output link represents a contribution relationship from a transition node to a capability node. That 
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contribution means that after the tutoring activities in the transition node are carried out successfully the 

leamer should have acquired the transition nodes output capability. 

This approach is a great simplification of the previous curriculum models. Now the complexity of the 

curriculum is placed essentially at the level of the nodes and not at the level of the overall structure. This 

idea makes it possible to further reduce curriculum networks via node aggregation and make it much more 

practical to use curriculum visualization tools in both curriculum authoring and actual teaching. The 

VITCAM model is well adapted to knowledge representation and organization. This model supports 

acquiring 	 capabilities and aggregated capabilities. Most practical curriculum structures are 

large complex networks (e.g. hundreds even thousands of nodes). To manage such large networks is a 

difficult task. The mechanism of capability and transition node aggregation makes the global network 

easily manageable. For example, the capability transition network for teaching HTML contains just 

seventeen capability nodes and seventeen transition nodes with our prototype, in which 61 concrete 

capabilities, about 289 instructional events (an event is, in fact, an interaction session), and thousand 

resources are integrated. This makes the transition network save more than 70% of the number of nodes, 

comparing Tnet with a single-capability transition network. Such a simple network provides great favorites 

for the global management and course generation. 

9.1.2 Proposing a Visual Useful Curriculum Management Model 

The usability of the presented curriculum model comes from the following aspects [Guo, Kaltenbach, 

Frasson and Gecsei 99] [Guo 98] [Guo, Kaltenbach, Frasson and Gecsei 98a, 98 b] [Guo, Kaltenbach and 

Frasson 98a, 98b]: 

(1) Organizing tutoring transitions and general strategies by combining Gagnés instructional event 

theory and Blooms objective level theory to help the curriculum authors get good guidance and 

alternative choices when desigiing a curriculum. 

(2) Visualizing the capability transition network in a given domain with visual composite icons and 

links. This is obtained by way of visually representing capabilities, capability levels, multiple level 

tutoring évents and the relationships between capabilities and tutoring events respectively; 

(3) A dynarnic management of the authoring and leaming process he1ps both the curriculum authors 

navigate and assess a curriculum with ease and the learners achieve their leaming goals quickly. 

• Organizing capability transition by combining well knovvn instructional theories 

This thesis proposes a mechanism that combines Gagnés capability and instructional event theory with 

Blooms objective level theory. On the one hand, the transition structure reflects the incremental 
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mechanism of human leaming. On the other hand, it increases the flexibility in establishing leaming goals 

by leamers, at the same time relatively simple and useful for curriculum authors. 

Both Gagnés capability and instructional event theory and Blooms objective levels are based on the 

analysis of general human teaching and leaming, so that they can be used to guide teaching design in most 

domains. From the viewpoint of VITCAM structure, some of general teaching strategies are distributed in 

its component organization and processes. Various other teaching strategies, whether they are generic or 

domain specific, are open and can be integrated in resource development and the activity delivery module 

in VITCAM. Based on the future models and tools on resource development, interaction generation and 

teaching delivery, VITCAM based tutoring systems can be used to more domains. 

• Visualizing capability transition networks 

VITCAM defines three kinds of visually aggregated components to represent capabilities, transition nodes 

and resources. A first kind of node is a classical icon with varions shapes, which can represent many types 

of resources. A second kind of node is a composite icon with a big visual cell representing overall attributes 

of capabilities and several small visual cells representing capability levels. A third kind of node integrates 

the lower level ones and represents a transition node with tutoring units and sub-units. In our model, a 

capability transition network is a graph with composite icons and links. 

With the visual operations available in the VITCAM model [Guo et al 99, 98a, 98b], a curriculum author 

can visually build, organize, and manage capability transition networks from various perspectives: the icon 

view for the global network structure, the local view for building local network structure and the detail 

view for editing and managing the details of visual cells. 

• Helping curriculum authors and learners 

The visual dynamic properties of VITCAM make it possible for a curriculum author to assess globally 

particular properties of a curriculum, for instance how the use of a practical resource type is distributed in 

the network. 

In the development process of a curriculum, the links among teaching outcomes, tutoring activities and 

resources are automatically built. The system can fully use these links to dynamically help the curriculum 

author get useful information to modify or restructure a curriculum. 

The visualized capability transition networks developed by a curriculum author can be directly input to the 

leaming environment. The actual displays shown to students are still in development stages but the existing 
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prototypes demonstrate the feasibility of the approach. A learner then starts his/her leaming process based 

on the domain transition network. The visual interaction process for leaming contains: 

• visually setting known capabilities 

• visually establishing leaming goals 

• displaying multiple alternative courses and recommended courses 

• dynamically displaying students current states of learning 

• visually recommending the next tutoring activity to engage in. 

• Dynamically managing learning process 

In addition to creating alternative courses, evaluating courses and recommending courses to leamers, this 
system can dynamically order and reorder tutoring activities in response to the evaluation of transition node 

activities by an activities delivery module in ITS. 

The proposed state-driven reasoning approach can order tutoring activities in a selected course. Each 

tutoring event or a group of tutoring events is associated with six states: recommended, enabled, partly 

enabled, disabled, unconcerned, and passed. A group of reasoning rules is presented for dynamically and 

visually changing the states. 

9.2 Comparing VITCAM to Other Systems 

There are two existing systems that are the closest to VITCAM, i.e. CREAM {Nakmbou 96] [Nkambou et al 

98] and Eon [Murray 96, 98]. Now we can compare VITCAM to them. 

9.2.1 Similarity between VITCAM and CREAM 

There are three basic ideas in VITCAM that are absorbed from CREAM: i.e. using Gagnés capability theory 

and Blooms objective levels, the basic idea the overall transition structure and the basic idea for teaching 

development process. 

• Using Gagnés capability theory and Blooms objective levels 

The importance of Gagnés capability theory lies in that, in teaching and learning processes, the 

achievement of certain type of capabilities has its own intemal and extemal conditions [Gagné 85]. These 

internai conditions form distinct learning strategies and the extemal conditions are the basis of designing 

teaching strategies. Using capabilities as teaching outputs is one of CREAM's features. VITCAM absorbs 

this feature. 
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• The basic idea of the overall transition structure 

In CREAM, the basic idea for construction transition networks is an atomic process: 

prerequisiteCapabilities—> transition--* outputCapabilities. 

The benefit of introducing transition nodes is that it associates domain subjects, tutoring objectives and 

actions. VITCAM directly regards this atomic process as its start point. 

• The basic idea for teaching development process 

The CREAM based teaching development process is 

building transition networks, 

generating courses for a particular student, 

planning action sequences, and 

delivering teaching. 

This process supports the individual course generation based on a domain transition network. VITCAM also 

inherits this idea. 

9.2.2 Differences between VITCAM and CREAM 

There are four aspects that VITCAM are different from CREAM: visualizing as many as structure 

components, visually and dynamically navigating, differences in structure, course generation, and planning 

action sequenc es 

• Visualizing as many as structure components 

CREAM-Tools is an example that uses more visual properties to replace the classical means for 

representing object spaces. In CREAM, capability, objective and resource nodes are visualized as buttons 

with labels and different background colors. Visual links indicate the relationships between nodes. A node 

in VITCAM is a composite icon with structured visual cells. Each visual cell is a clickable button. In 

capability icons, visual cells include an overall attribute button and several capability level buttons. A 

curriculum author can click the overall cell to enter or edit the internai attribute of the capability, and click 

a level cell to enter or edit the internai attributes of the related capability level. A transition node icon is a 

structured button group with three lcinds of cells: an overall cell, tutoring unit cells and sub-unit cells. A 

curriculum author can click the overall cell to enter or edit the overall attributes of the transition node and 

defme the number of tutoring units. If he/she clicks a unit cell, the internai attributes and the number of 

sub-units can be defined. A sub-unit cell corresponds to an internai event, where resource groups (including 

interaction generation and guidance programs) can be attached and tutoring actions can take place. 

Meanwhile, VITCAM use more visual properties such as shapes, colors and sizes to carry more internai 

semantics to the screen. 
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• Visually and dynamically navigating 
CREAM-Tools use background color to distinguish the category of nodes. In VITCAM, a basic idea is to use 

colors of visual cens indicate the current states of authoring and leaming. For example, in authoring 

process, the states of capability level cell might be "All necessary information are entered", "Part of 

attribute values are entered" and "Nothing is entered". In the curriculum development process, the system 
dynamically follows the development progress and displays the current development states. The dynamic 

navigation in leaming process is more important then that in authoring process because the students dont 

know the subject domain We define some states for each visual cell in a transition node. For example, a 

sub-unit might be one of the following six states: recommended, enabled, partly enabled, disabled, passed, 

and unconcemed. A reasoning engine is defined to dynamically follow the learning process and 

automatically change the states of each visual cell. The corresponding colors also automatically. Such 

navigation ability can reduce the lost of authors and leanaers. 

• Differences in structure 

As 	mentioned 	above, 	we 	use 	the 	basic 	idea 	in 	CREAM, 	i.e. 

prerequisiteCapabilities—>transition—>outputCapabilities. However, the components in such transition 

networks are different. A capability node in CREAM is a capability defined by Gagné. This means that a 

capability node corresponds to one capability type. A transition node in CREAM mainly contains an 

objective node and association links to capability space and resource space. In VITCAM, a capability node 

is a ordered set that contains one or more capabilities, allowing the aggregation of different capability 

types. Further, a curriculum author can specify explicitly the incremental capability levels. These capability 

levels may be a decomposition of a complex capability or one concrete capability in an incremental 

capability sequence. The transition node, in VITCAM, is a two-level structured set of tutoring events, which 

is organized by integrating Gagnés instructional events and Blooms objective levels. These instructional 

events, in the teaching process, are interaction sessions. Concrete resource groups, or resource selector, or 

interaction creator, and/or evaluation programs, and/or diagnosis programs can be attached to instructional 

events to form interaction session. 

CREAM defines rich relationships between nodes, for example, required or contributed level between 

capability and objective nodes, and strong contributions and weak contributions from objective nodes to 

output capabilities. Such relationships contain more heuristics. VITCAM uses just prerequisite and output 

relationships with explicit levels. 

• Course generation 
Owing to the defined heuristic relationships between nodes, CREAM based teaching development process 

attempts to automatically and heuristically create an optimal course for a particular student, based on the 

student's knowledge category (e.g., novice, intermediate and advanced) designed by a curriculum author. 
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In VITCAM, the basic idea for course generation is that, if its the first time, a student tells (or evaluated by 

an evaluation module in ITS) the system about his/her current knowledge state (a set of known capability 

levels) and estabhshes his/her leaming goals (another group of capability levels) by viewing the domain 

transition network provided by the system (or evaluated by an evaluation module). Another idea is that 

VITCAM attempts to create multiple alternative courses for the particular students and then let the student 

choose (or accept the system's recommendation) a course he/she preferred. 

• Planning action sequences 

The CREAM based teaching planner orders tutoring activities in a given course to satisfy certain 

requirement such as duration, etc. [Le 98]. Owing to the difference of transition structure components 

between CREAM and VITCAM, VITCAM orders tutoring actions based on two steps: identifying necessary 

units and dynamically sequencing units and sub-units. One feature of VITCAM is that the model for 

ordering tutoring actions can reactivate the course creator to generate remedy courses. 

9.2.3 Comparing VITCAM to Eon 

Eon [Murray 96, 98] is another system VITCAM is close to. The similarity between Eon and VITCAM is the 

rich visual properties. Using shapes, colors and other visual properties to enhance node semantics. The 

main differences including 
A visual node in Eon is a single-component picture, while in VITCAM each node is a composite 

clickable icon. 
In Eon, topic networks and transition networks are separate, while in our model; the central 

network is the transition network that associates capabilities and structured set of instructional events. 

As a prototype with long-term development, Eon provides rich resource development environment 

and interaction editor. VITCAM supplies the major management framework of curriculum and much more 

development efforts are needed to complete a really practical teaching development environment. 

9.3 Limitations of VITCAM 

Owing to the huge development efforts of a really practical teaching development environment, the 

VITCAM completes just its main framework. Some limitations includes 

Only using 2D composite components with basic shapes to constitute transition networks, 

Lack of some other support modules in ITS, for instance resource and interaction development 

environments, to verify some features by real users, and 

Lack of more examples from different domains to verify its features. 
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These limitations require more efforts and provide some possible start points for further researches. 

9.4 Future Obj ectives 

The future work in this project includes 

• Making the interface more convivial possibly by the use of iconic compositions that represent a 

curriculum network [Kaltenbach & Preiss 94]. 

• Testing the system in a setting for a real course with real students. Admittedly at present the prototype 

needs a better interface for this testing. 

• Providing tools that simplify the creation of pedagogical resources to be used in the system. Providing 

a unified interface for these tools. 

• Developing a tool to look for relevant resources on the Internet, curriculum management will become 

much more efficient and appealing. 

• Exploiting the activity delivery module 
We would like to add an activity delivery module that is an additional open module in the current VITCAM 

prototype. This will be in the future of an agent system, tutor or companion that will assist the leamer in 

progressing in a course, by providing summary statement, environment, about the current activities the 

student is engaged in. Also, there are many issues in the activity delivery module that are still open, for 

instance, creating a generic structure for diagnosis and evaluation. Some ideas in CREAM, such as some 

heuristic approaches, likely, can be reused for the dynamic interactions in the activity delivery module. 

In addition, more helps can be provided for curriculum authors and learners, for instance, a tool for helping 

curriculum authors aggregate atomic capabilities into capability nodes, and a tool for helping leamers 

establish leaming goals. 
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Appendix A 

Some Algorithms for Visualization 

This appendix describes some algorithms for visual operations: 

Algorithm 5.1: createCapabilityIcon 

Algorithm 5.2 createTransitionNode 

Algorithm 5.3 createLink 

Algorithm 5.4 draggingAndMovingNode 

Algorithm 5.5 deletingNode 

Algorithm 5.6 deletingLink 

Algorithm 5.7 insertingUnit. 

A.1 Creating Capability Nodes 

Algorithm 5.1 ereateCapabilitykon 

Input: startPoint (coming from a user's clicking on the screen), 
TypeTemplate(coming from the user's selection on template panel), 

idandling: create a capability icon without internal attributes 
Output: display the icon on screen and store it to inner capability 

database. 

Procedure: createCapabilityIcon 
Set default visuel properties including label, levelNumber, 

fillColro, borderColor, pressedColor, selectedColor, 
currentFont, pressedState, selectedState; 

Compute cellStartPoint, cellWidth, cellheight, 
Initialize all inner attributes and exteranl relationships; 
Store the icon to inner database; 

//draw the icon 
if(pressedState[0]) fillColor[0]=pressendColor 

else if(selected[0]) fillColor[0]=selectedColor; 
drawRect(cellStartPoint[0], cellWidth[0], cellheight[0], 

fillColor[0]); 
drawBorder(cellStartPoint[0], cellWidth[0], cellHeight[0], 

border[O] ); 
setFont(currentFont); 
drawLabel(label); 

for(int I=1; I(=levelNumber, I++)I 
if(pressedState[I]) fillColor[I]=pressedColor 
else if(selectedState[I]) fillColor[I]=selectedColor; 

draw levelShape(cellStartPoint[I], cellWidth[I], 
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cellHeight[I], fillColor[I]); 
draw border(cellStartPoint[I], cellWidth[I], cellHeight[I], 

borderColor[I]); 
} 
//end procedure createCapabilityIcon 

In algorithm 5.1, the overall cell of the capability icon is drawn first, and then all its level cells. The "draw 

level shape" statement in the algorithrn will vary with the different template shape selected by the user. 

Some shape is simple such as a rectangle level and some others are complex such as a fan-shaped. 

A.2 Create Transition Nodes 

The Algorithrn 5.2 describes the mechanism of creating transition nodes. The idea is similar to that in 

capability node, but the calculation about positions and sizes of visual cells is more complex than that in 

capability node. 

Algorithm 5.2 createTransitionNode 

Input: startPoint (coming from a user's clicking on the screen); 
TypeTemplate(coming from the user's selection on the screen); 

Handling: creating a transition node icon with internal attributes; 
Output: displaying the icon on screen and store it to inner transition 

node fdatabase. 

Procedure: creatTransitionNode 

Set default visuel properties including label, unitNumber, 
subUnitNumber, fillColor, borderColor, pressedColor, 
selectedColor, currentTransFont, currentUnitFont, pressedState, 
selectedState; 
Compute cellStartPoint, cellWidth, cellHeight, 
Initialize all inner attributes and external relationships; 
Store the attribute values to inner database; 

//draw the icon 
for(int I=0; I<unitNumber+2; I++){ 

if(pressedState[I][0]) fillColor[I][0]=pressendColor 
else if(selected[I][0]) fillColor[I][0]=selectedColor; 
drawRect(cellStartPoint[I][0], cellWidth[I][0], 

cellHeight[I][0], fillColor[I][0]); 
drawBorder(cellStartPoint[I][0], cellWidth[I][0], 
cellHeight[I] [O],  border[I][0]); 
if(I==0)setFont(currentTransFont) 
else setFont(currentUnitFont); 
drawLabel(label[I]); 

if(I>1){ 
for(int j=1; j<=subUnitNumber[I], j++){ 

if(pressedState[I][j]) fillColor[I][j]=pressedColor 
else if(selectedState[I][j]) 

fillColor[I][j]=selectedColor; 



draw subUnitShape(cellStartPoint[I[j]], 
cellWidth[I][j], cellHeight[I][j], 

fillColor[I][j]); 
draw border(cellStartPoint[I][j], 

cellWidth[I][j], cellHeight[I][j], 
borderColor[I][j]); 

1 	//end if 
1//end for 
//end procedure createTransitionIcon 

A.3 Creating Links 

Algorithm 5.3 createLink 

Input: sourceElement (from the user's clicking), 
DestinationElement( from the user's clicking) 

Handling: create a link from sourceElement to destinationElement, 
Output: display the link on screen, store the link icon to inner 

database. 

Procedure: createLink{ 
Set default visuel properties including label, a=shape, 

headColor, tailColor, pressedColor, selectedColor, 
currentFont, labelColor, pressedState, selectedState; 

Compute startPoint, endPoint, arrowVector, manipulationArea; 
Initialize all inner attributes and external relationships; 
Store the attribute values to inner darabase; 

//draw the icon 
if(pressedState) tailColor=pressedColor 
else if(selectedState)tailColor=selectedColor; 
drawTail(startPoint, endPoint, tailColor); 
drawHead(startPoint, endPoijt, arrowVector, headColor); 
drawLabel(startPoint, endPoint, manipulationArea, labelColor); 

1//end procedure createLink 

A.4LayingNodesout 

The algorithm to drag and move nodes is as follows: 

Algorithm 5.4 draggingAndMovingNode 

Input: draggedIcon, currentMousePoint; 
Handling: moving the draggedIcon to currentMousePoint; 
Output: displaying the draggedIcon on currentMousePoint, storing the 

icon when mouse is released; 

Procedure: dragginAndMovingNode{ 
NotReleased=false; 
oldStartPointE—draggedIcon's startPoint; 
while(notReleased){ 
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get currentMousePoint; 
newStartPoint*-currentMousePoint; 
compute Xincrease, Yincrease from newStartPoint to 

oldStartPoint; 
change all cellStartPoint's X coordination by Xincrease; 
change all cellStartPoint's Y coordination by Yincrease; 
erase draggedIcon; 
draw draggedIcon at newStartPoint; 
find all inLinks and outLinks of the draggedIcon; 
re-compute startPoint and endPoint of each inputLink, and each 

outputLink; 
erase all inputLinks and outputLinks; 
draw new inputLinks and outputLinks; 
oldStartPoint*-newStartPoint; 

}//endWhile 

store the new attribute values of the icon to inner database; 

I//end procedure draggingAndMovingNode 

A.5 Deleting Nodes 

The following steps are followed to delete nodes: 

• erase the clicked icon from the screen; 

• delete all input links and output links of the clicked icon from the screen and the inner database; 

• delete the related output links of the source icon of each input link, and the related input links of 

the destination icon of each output link; 

• delete the clicked icon from inner database. 

The corresponding algorithm is: 

Algorithm 5.5 deletingNode 

Input: iconToDelete 
Handling: delete the iconToDelete from screen and inner database, 

delete all input links and output links of the iconToDelete, 
removing the affection of these links to other icons 

Output: the iconToDelete and its affection are selected from the screen 
and the inner database. 

Procedure deletingNode{ 
Erasing the iconToDelete fron the screen; 
inLinks*-all input links of the iconToDelete; 

outLink<--all outputLinks of the iconToDelete; 
deleting the iconToDelete from inner database; 

resoruceIcons*-null; 
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destinationIcons+-null; 
if(!inLinks.isEmpty()){ 

for(int I=0; I<linkLinks.length, I++){ 
add the resourceElements of inLinks[I] to sourceIcons;I 

I//end if 
if(!outLinks.isEmpty()){ 

for(int j=0; j<outlInks.length; j++){ 
add the destinationElements of outlInks[j] to 

destinationIcons; 
1 

}//end if 
deleting all the icons that are members of inLinks from the 

relations of each source in sourceIcons; 
deleting all the icons that ar ememebers of outLinks from the 

relations of each destination in destinationIcons; 
delete all icons in inLinks from the screen and the inner database; 
deleting all icons in outLinks from the screen and inner database; 

}//end procedure deletingNode. 

A.6 Visually Deleting Links 

The steps to delete links contain: 

• erase the clicked link from the screen; 

• delete the clicked link from its source icon; 

• delete the clicked lick from its destination icon; 

• delete the clicked lick from the inner database; 

The corresponding algorithm is as follows: 

Algorithm 5.6 deletingLink 

Input: clickedClinkto delete, and from the user's clicking); 
Handling: delete the clickedLink from the screen and from the inner 

database, as well as removing its affection; 
Output: the new screen display and the new inner database without the 

clickedLink. 

Procedure: deletingLink{ 
Erase the clickedLink from the screen; 
source—the source icon of the clickedLink; 
destination+-the destination icon of the clickedLink; 
delete the clickedLink from the output relation of the source icon; 
delete the clickedLink from the input relationships of the 

destination icon; 
delete the clickedLink from the inner database; 

}//end procedure deletingLink 



A.7 Inserting Tutoring Unit in a Transition Node 

The following algorithm 5.7 gives the steps to insert a tutoring unit. The steps to insert a cell are: 

• Locate the cell to insert; 

• Move all the successive cell forward a position; 

• Initialize the newly inserted cell. 

Algorithm 5.7 insertingUnit 

Input: T: transition node to insert to, insertedPoint(an index of 
current unit, a new unit will be inserted in front of the index); 

Handling: inserting a new unit to the related icon on the screen and in 
the inner database; 

Output: new screen display and new inner database after inserting a new 
unit. 

Procedure insertingUnit 
nmb<—number of unit in T; 
while(insertedPoint>0 &&insertedPoint<the number of unit in T){ 

expand the colume of all vectors of visual properties and inner 
attributes by 1; 

num++; 
for(int I=num; I>=insertedPoint; I--){ 

copying the (I-1)th value of each visuel properties vector to 
the ith position; 

copying the (I-1)th value of each inner attribute vector to 
the ith position; 

1 //end for 
initialize the unit at the insertedPoint; 
re-paint the transition icon on screen; 
replace the old transition icon by the new transition icon in 

the inner database; 
I//end while 

//end procedure insertingUnit. 

Other algorithms such as deleting a unit, inserting a sub-unit and deleting a sub-unit are similar to this one. 
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Appendix B 

Transition Nodes in 
the HTML Transition Network 

In the example of capability transition network for teaching HTML, shown in Chapter 8, 
there are seventeen identified capability nodes and seventeen transition nodes. The 
following shows all transition nodes, tutoring units and sub-units. 

Transition Node: Teach Stating Web 
Prerequisite: N/A 
Output Capability: Stating Web, 3 levels 
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Transition Node: Teach Identifying Web Browsers 
Prerequisite: Stating Web, minimum mastered level: 3rd  
Output Capability: Identifying Web Browsers, 3 levels 
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Transition Node: Teach classifying URLs 
Prerequisite: Stating Web Browsers, minimum mastered level: 3rd  
Output Capability: Classifying URLs, 3 levels 

Transition Node: Teach Introduction to HTML 
Prerequisite: Stating Web Browsers, minimum mastered level: 3rd  
Output Capabilities: Stating Introduction to HTML, 3 levels; 

Classifying URLs, 2 levels 

Teach Introduction to HT1VIL 
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Transition Node: Teach Applying Basic Tags 
Prerequisite: Stating Introduction to HTML, minimum mastered level: 3rd  
Output Capability: Applying Basic Tags, 2 levels 

Transition Node: Teach Applying Links 
Prerequisite: Classifying URLs, minimum mastered level: 3rd  
Output Capability: Applying Links, 4 levels 
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Transition Node: Teach Applying Lists 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: 3rd  
Output Capability: Applying Lists, 3 levels 

Transition Node: Teach Applying Tables 
Prerequisite: Applying Basic Tags, minimum mastered level: ri; 

Applying Links, minimum mastered level: 3rd  
Output Capability: Applying Tables, 4 levels 
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Transition Node: Teach Applying Other Tags 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: lst 
Output Capability: Applying Other Tags, 1 level 

Transition Node: Teach Applying Multimedia 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: 4th  
Output Capability: Applying Multimedia, 4 levels 
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Transition Node: Teach Organizing Web 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: 4th  
Output Capability: Organizing Web, 5 levels 
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Transition Node: Teacb Applying Web Servers 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: 4th  
Output Capability: Applying Web Servers, 5 levels 
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Transition Node: Teach Applying CGI 
Prerequisite: Applying Web Servers, minimum mastered level: 4th  
Output Capability: Applying CGI, 6 levels 
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rules -1,5IND.EX> tag &script URI, search search 

TeachSpecialScript Output 
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Transition Node: Teach Applying Forms 
Prerequisite: Applying CGI, minimum mastered level: 4th; 
Output Capability: Applying Forms, 6 levels 
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Transition Node: Teach Simple Design 
Prerequisite: Applying Basic Tags, minimum mastered level: 2nd; 

Applying Links, minimum mastered level: 2nd  
Output Capability: Designing Simple Web, 2 levels 

Transition Node: Teach General Design 
Prerequisite: Applying Lists, minimum mastered level: 2nd  

Applying Tables, minimum mastered level: ri; 
Applying Other Tags, minimum mastered level: le; 
Applying Web Servers, minimum mastered level: 3. 

Output Capability: Designing General Web, 4 levels 
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Transition Node: Teach Business Design 
Prerequisite: Applying Lists, minimum mastered level: 2nd; 

Applying Tables, minimum mastered level: 3; 
Applying Other Tags, minimum mastered level: 
Applying Web Servers, minimum mastered level: 3rd; 
Organizing Web, minimum mastered level: 4th; 
Applying Forms, minimum mastered level: 5th  

Output Capability: Designing Business Web, 4 levels 
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Appendix C 

Algorithms for Creating 

Multiple Alternative Courses 

This appendix presents the algorithms for creating multiple alternative courses corresponding to the content 

in Chapter 6. 

Algorithm 6.1 getAllCapPreTransV 

Input: allCapV: all capability nodes in Tnet, 
allTransV: all transition nodes in Tnet, and 
allLinkV: all links in Tnet. 

Handling: create relations of all predecessor transition nodes of all 
capability nodes. 

Output: allCapPreTransV. 

Procedure: getAllCapPreTransV{ 
01 	allCapPreTransV=null; 
02 	for all Ci E allCapV{ 
03 	theCapPreTransV=null; 
04 	inLinkV ÷- ail input links of Ci; 

05 	for all lj e inLinkV{ 
06 	theCapPreTransV.addElement(source element of lj); 
07 
08 	allCapPreTransV.addElement(<ci, theCapPreTransV>) 
09 

return allCapPreTransV; 
I//end Procedure getAllCapPreTransV 

Analysis of Algorithm 6.1; 

Let the number of capability nodes in the vector allCapV be Nc, the total number of input links of all 

capabilities be N1, and the average number of input links of each capability node be V/. For each capability 

node, the times of inner loop (line 05 — line 07) are exactly the number of input links of the capability node. 

So the total time the algorithm takes is in 

0 (Nc, N1) = 0(Nc * V1) = 0 aV1) 

Algorithm 6.2 getAllCapAncestCapV 

Input: allCapV: all capability nodes, 
allCapPreCapV: the instant predecessor capabilities of each 
capability 

Handling: finding all ancestor capability nodes of all capability nodes 
in Tnet. 
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Output: allCapAncestCapV: all ancestor capability nodes of all 
capability nodes. 

Procedure: getAllCapAncestCapV{ 
allCapAncestCapV=null; 
theCapAncestCapV; 
for all Cie allCapV f 

theCapAncestCapV<—getTheCapAncestCapV (Ci, allCapV) 
(see Algorithm 6.3); 

allCapAncestCapV.addElement(<Ci, theCapAncestCapV>); 
1 
return allCapAncestCapV; 

I//end Procedure getAllCapAncestCapV. 

Analysis of the Algorithm 6.2: 

Let the number of capability nodes be Nc. In the worse case, i.e., all capabilities are connected into a link, 

the root node will call getTheCapAncestorCapV exactly (Nc-1) times; the direct predecessor of the root 

node will call getTheCapAncestorCapV exactly (Nc-2) times, .... getTheCapAncestorCapV takes a time in 

0 (Nc) in the worse case (see the analysis of the algorithm 6.3). So the algorithm will take a time in the 

worse case in 

T(Nc)=C*((Nc-1)+(Nc-2)+ ...+2 +1) = C * (Nc*(Nc-1)/2). 

That is 0 (Nc2 ). 

Algorithm 6.3: getTheCapAncestCapV 

Input: theCap: a capability node. 
allCapPreCapV: all predecessor capability nodes of all capability 
nodes. 

Handling: finding all ancestor capability nodes of theCap. 
Output: a vector containing all ancestor capabilities of theCap. 

Procedure: getTheCapAncestCapV{ 
theCapAncestCapV=null; 
theCapPreCapV<—Cj, where 3<theCap, Cj> EallCapPreCapV; 
theCapAncestCapV.addElement(VCketheCapPreCapV); 

for all CkE theCapAncestCapV{ 
newAncestCapV=null; 
newAncestCapVE—getTheCapAncestCapV(Ck, allCapPreCapV); 
theCapAncestCapV.addElement(VCwenewAncestCapV); 

1 
return theCapAncestCapV; 

}//end Procedure getTheCapAncestCapV. 

Analysis of the Algorithm 6.3: 

This algorithm recurrently calls itself. Let the total number of capability nodes is Nc; in the worse case, i.e., 
all capability nodes except for theCap are ancestors of theCap, the algorithm takes a time in 0 (Nc) because 
each capability node is visited exactly once. 
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Algorithm 6.4 Removing Redundancy and Invalid Elements 

Input: Tnet, K: known capabilities, and G: goal capabilities. 
Handling: finding and removing all redundant and invalid 

elements. 
Output: Cnetl:the remaining parts of Tnet after the removing operation. 

Procedure: RemovingRedundancyAndInvalidElements 
CE- all capability nodes in Tnet 
T*- all transition nodes in Tnet 
LE- all links in Tnet 
Boolean changed = true; 
While(changed)( 

changedE-false; 
for(int i=0, i<C.length; I++){ 

if(C[i] .state == CAP_FULL_MASTERED)( 
remove C[i] from C; 
changed = true; 

else if(C[i] has successive transition nodes and 
c[i]eG and C[i] EK and the maximal mastered 

level of C[i] is grater than all 
levels of C[i]'s output links){ 

remove C[I] from C; 
changed = true; 

else if(C[i] has successive transition nodes, 
C[i] EG, the state of C[i]'s goal level is 
LEVEL_MASTERED, the maximal mastered level 
of C[i] is greater than all levels of its 
output links){ remove C[i] from C; 
changed = true; 

1 
else if(C[i] is not a goal, C[i] has no 

successive transition node, the state of 
C[i] is CAP GOAL MASTERED){ 
remove C[i]—from—C; 
changed = true; 

else if (C[i] has no input link in L, C[i] has 

no output link in L){ 

remove C[i] from C; 
changed =true; 

else if { C[i] has no output link, C[i] is not a 

goal){ 

remove C[i] from C; 
changed = true; 

}//end for loop 

for(int j=0; j<T.length, j++)( 
if(T[j].state ==TRANS>PASSED)( 

remove T[j] from T; 
changed = true; 

1 
else if (T[j] has no output capability in C){ 
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remove T[j] from T; 
changed = true; 

1 
]//end for (j..) 
for(int k-(1); k<L.length; k++){ 

if (L[k] has no output capability in CH 

remove L[k] from L; 
changed = true; 

else if(L[k] has input capability in CH 

remove L[k] from L; 
changed = true; 

else if(L[k] 's destination is a goal, level of L[k] 

is less than goal level of CH 

remove L[k] from L; 
changed = true; 

]//end for(k..) 
1//end while 
Cnetl‹-CuTuL 
return Cnetl; 
1 //End Procedure: removing Redundancy and Invalid Elements 

Analysis of Algorithm 6.4: 

This algorithm includes three for loops. Obviously, the algorithm takes a time in 

T(C, T, L) = k * (C.length +T.length+Liength) = 0(max{C.length, T.length, L.lengthil) 

Where C.length is the number of capability nodes, 

T.length is the number of transition nodes, 

L.length is the number of links, and 
k is a constant. 

Algorithm 6.5 getMàxGoalCap 

Input: allCapV: all capability nodes in Tnet, 
allCapAncestCapV: all ancestor capability nodes of all capabilities, 
and 

allGoalV: all goal capabilities. 

Handling: finding a goal capability whose ancestor (predecessor) 
capabilities contain the most other goals in allGoalV. 

Output: a maximal goal capability. 

Procedure: getMaxGoalCap{ 

maxGoal=null; 

maxGoalNmb=0; 

containedGoalNmb=0; 

01 	for(int i=0; i<allGoalV.length; i++){ 
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02 	ancestCapV÷-finding all ancestor capabilities of allGoalV[i] 

03 	containedGoalNmb<-counting the goal contained in 
ancestCapV; 

04 	if(containedGoalNmb > maxGoalNmb){ 
05 	maxGoalNmb‹-allGoalV[i]; 
06 	maxGoalNmb÷-containedGoalNmb; 
07 
08 	I//end for loop 

return maxGoal; 
I//end Procedure getMaxGoalCap. 

Analysis of Algorithm 6.5: 

Let allGoalVdength = Ng and the number of capability nodes in Tnet be Nc. Obviously, the loop times of 
for block (from line 01 to line 08) is Ng. The line 02 is to find all ancestors of the i-th goal. The time the 
line 02 takes is 0 (Nc) in the worse case. Each of other statements takes a constant time. So in the worse 
case (i.e. all capability nodes are goals and all capability nodes are connected into a link)), the algorithm 
takes a time in 0 (Nc2 ). 

Algorithm 6.6 getAllHeadCapV(get all head capabilities) 

Innput: allCapV, allCapAncestCapV, and allGoalV. 
Heandling: finding all head capabilities in allGoalV, these heads 
consticute a division of allGoalV. 
Output: a set of all head capabilities in allGoalV. 

Procedure: getAllHeadCapV{ 

allHeadCapV=null; 
remainedGoalV=allGoalV; 

01 	while(remainedGoalV.isEmpty()){ 
02 	candidateHead‹-getMaxGoal(allCapV, 

allCapAncestCapV, remainedGoalV); 
03 	allHeadCapV.addElement(candidatehead); 
04 	ancestCapV*-finding all ancestor capabilities of 

candidateHead in allCapHeadCapV; 
05 	for all ancestor aieancestCapV{ 
06 	if aieremainedGoalV{ 

remainedGoalV.removeElement(ai); 
07 
08 	I//end for 
09 	//end while 

return allHeadCapV; 
I//end Procedure getAllHeadCapV. 

Analysis of Algorithm 6.6: 

In the worse case (i.e. all capabilities are goals and they are conneeted into a link), the statement in line 03 

takes a time in O (Nc2 ). In this case, the while loop in line 01 takes a constant time because the for loop 

removes all ancestors of the root node. So in this case the algorithm takes a time in 0 (Nc2 ). In another case 

that every goal is not an ancestor of the other goals, the algorithm takes a time in 0 (Ng*(Nc-Ng)). 
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Algorithm 6.7 getTheheadSubNetsV 

Input: theHead: a head capability, allCapV, allCapPreTransV, 
allTransV, and allTransPreCapV, 

Handling: finding all possiblle sub-networks of theHead. 
Output: a vector, theHeadSubNetsV, containing all 

sub-networks of theHead; each sub-network consists of 
all linked elements in the sub-network. 

Procedure getTheHeadSubNetsV{ 
TheHeadSubNetsV=null; 
preTransVE-finding all predecessor transition nodes of theHead 
from all CapPreTransV; 
visitedPreTransV=null; 
if(preTRansV.siEmpty(){ 

for (all tepreTransV{ 
if (visitedPreTransV.nonContain(t)){ 

visitedPreTransV.addElement(t); 
iniNet*-link:<t, theHead>; 
theHeadSubNetsV.addElement(iniNet); 
candPreTransPreCapVE-all predecessor 

capability nodes of t from 
allTransPreCapV; 

forming all links from each predecessor 
capability nodes of t to the 
transition nodes t and add them to 
the network of t in 
theHeadSubNetsV; 

for all cecandPreTransPreCapV{ 
thePreCapSubNetsV<--recur: 

getTheHeadSubNetsV(c, allCapV, 
allCapPreTransV, allTransV, 
allTransPreCapV); 

previousNet-the network where the 
t resides in theHeadSubNetsV; 

neTnetsV<-corabining each subnetwork 
in thePreCapSubNetsV with the 
previousNet; 

replace the previousNet in 
theHeadSubNetsV with all 
networks in newNetsV; 

I //end for all 
}//end if 

I//end for 
}end if 

I//end Procedure getTheHeadSubNetsV 

Analysis of Algorithm 6.7: 

Let the number of transition nodes be Nt. If Tnet is a binary tee and all leaf nodes are transition nodes, the 

algorithm is a breadth-first search. Each intermediate transition node has two branches; i.e. each 
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intermediate transition nodes will create two sub-networks. So in this case the algorithm takes a time in 0 
(iNtt2)).  

Algorithm 6.8 getTheHeadCapOneNetCompleteNetei 

Input: theHead, theSubGoalsV: all sub-goals of theHead, 
theNet: the sub-network to check. 

Randling: generating all complete sub-networks of theNet. 
Output: a vector, theHeadCapOneNetCompleteNetsV, containing 

all complete sub-networks of theNet. 

Procedure: getTheHeadCapOneNetCompleteNetsV{ 
theHeadCapOneNetCompleteNetsV=null; 
1ostGoa1V4-find all goals that are in theSubGoalV and 

not in theNet; 
if(lostGoalV.isEmpty()) return theNet; 
if(lostGoalV.isNonEmpty()){ 

//find all sub-head capabilities in lostGoalV; 
a11SubGoa1V4—getA11HeadCapV(lostGoalV); 
allSubHeadCapSubNetsLinksV<--getAllHeadCapSubNetsV( 

allHeadCapV); 
for all nextSubHeadeallSubHeadCapV and all 

netSubHeadSubNetsVeallSubHeadSubNetsV{ 
theSubHeadCompleteSubNetsV=null; 
for all nextSubNetenextSubHeadSubNetsV{ 

theSubHeadSubGoalV<—get all sub goals 
of the nextSubHead; 
theSubHeadNexTnetCompleteNetsV*- 

getTheHeadCapOneNetCompleteNetsV( 
nextSubHead, nextSubNet, 
theSubHeadSubGoalV); 

}// end for all nextSubNet.. 
theSubHeadCompleteSubNetsV.addElement( 

theSubHeadNexTnetCompleteNetsV); 
1 //end for all nextSubHead.. 

//get all combination of allSubHeads complete 
//nets; each combination is an alternative 
//sub—case of the nextSubHead; then merge each 
//combination to theNet. 
allSubHeadCompleteNetsCombV*- 

getAllHeadNetsVCombinationV( 
theSubHeadCompleteSubNetsV); 

for allNextCombinatione 
allSubHeadCompleteNetsCombV1 
nextNewNet*-theNet.expandElement( 

nextCombination); 
theHeadCapOneNetCompleteNetsV.addElement( 

nextNewNet); 
}//end for 

}//end if(lostGoalV.isEmpty()) 
return theHeadCapOneNetCompleteNetsV; 

//end Procedure: getTheHeadCapOneNetCompleteNetsV. 



Analysis of Algorithm 6.8: 

In this algorithm, the sub-procedure: getAllHeadNetsVCombinationV attempts to get all combinations of all 

sub-networks in theSubHeadCompleteSubNetsV. Each combination will cover all sub-goals lost in theNet. 

The sub-procedure: getTheHeadCapAllSubNetsVCombinationV is to find all combinations of all complete 

sub-networks of theHead, and the sub-procedure: getAllHeadCapAllSubNetsCombinationV to get all 

combinations of all complete sub-networks of all head capabilities. In fact, each of combination of all 

complete sub-networks of all head capabilities is a course we want to create. The time the algorithm takes 

mainly depends on the recurrent statement getTheHeadCapOneNetCompleteNetV that takes a time in 0 

(2(Ne2)) in the similar case to the algorithm 6.7. So the algorithm takes a time in 0 (2(Nt/2)) in the similar case 

to that in the algorithm 6.7. 

Algorithm 6.9 creatingCnet 

Input: Tnet: a capability transition network, 
K: set of known capabilities, and 
G: set of learning goals (capabilities). 

Handling: Creating multiple alternative courses that satisfy the 
transition of all capabilities in G based on Tnet. 

Output: A vector, Cnet, containing all created courses that 
satisfy the needs of all capabilities in G; each course 
is a set of links. 

Procedure: creatingCnet{ 

Cneu<--Tnet; 

Cnet‹—removing all redundant elements and invalid 
elements in Cnet; 

Generating basic relations in Cnet including 
AllCappreTransV, allTransPreCapV, allCapPreCapV, 
allTransPeTransV, allCapAncestCapV, 
allTransAncestTransV, allCapAncestTransV, and 
allTransAncestCapV; 

allHeadCapVE—finding all head capabilities in Tnet; 

allHeadCapSubNetsV<—getAllHeadCapSubNetsV(allHeadCapV); 
allHeadCapCompleteSubNetsVE—getAllHeadCapCompleteNetsV( 

allheadCapV, allHeadCapSubNetsV); 
CnetE—getAllHeadCapCompleteSubNetsVCombinationV( 

allHeadCapV, allHeadCapCompleteSubNetsV); 
}//end Procedure creatingCnet. 

214 

Analysis of Algorithm 6.9: 
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The time the algorithm takes mainly depends on the statement getAllHeadCapSubNets V that takes a time in 

O (2) according to the analysis in the algorithm 6.8. So in the similar case as analyzed in the algorithm 

6.8, this algorithm takes a time in 0 (2("m12)). Though we cannot reduce the complexity of the algorithm for 

creating alternative courses, the Tnet structure simplifies the overall transition network. So the algorithm 

can be still used for creating altemative courses in practice. 



Appendix D 

Algorithms for Computing Utilities and 
Review of Baysian Rule 

This appendix describes algorithms for computing utilities defmed in Chapter 7 and some relevant 
probability formulae used for identifying necessary tutoring units in a course (Chapter 7). 

D.1 Algorithm for Computing Utilities 

Algorithm 7.1 ComputeCourseUtility 

Input: resType: vector including all resource types, 
MediaType: vector including all media types, 
StrategyType: vector including all strategy types, 
PreferredResTypeDegree: vector including preferred degree of all 

resource types, 
PreferredMediaTypeDegree: vector including preferred degree of 

all 
media types; 

PreferredStrategyDegree: vector including preferred degree of all 
strategy type; 

DificultyDegree: vector, all resources' difficult degree 
ImportanceDegree: vector , all resources' importance degree. 
Course: vector including all elements in the selected course 

Handling: compute the utility of the course 

Output: U(Course): the utility of the Course 

Procedure CommitingCourseUtility 
NecessaryTutoringUnit*-compute necessary tutoring units in Course; 
resTypeDistribution*-compute the resource type distribution in 
NecessaryTutoringUnit; 
mediaTypeDistribution*-compute the media type distribution in 
NecessaryTutoringUnit; 
strategyTypeDistribution*-compute the strategy type distribution 
in NecessaryTutoringUnit; 
U(Course)-null; 
For all AieNecessaryTutoringUnit{ 

U(Ai)=0; 

For all resource groups in Ai, Gj 
ResTypeUtility(Al, Gj) 

preferredResTypeDegree*ResTypeDistribution(Ai); 
mediaTypeUtility(Ai, Gj) (-- 

preferredMediaTypeDegree*MediaTypeDistribution( 
Ai); 

StrategyTypeUtility(Al, Gj) 
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preferredStrategyTypeDegree*StrategyTypeDistribution( 
Ai); 

} 	//end for all resource groups 

U(Ai)= max {
(resTyprUtility* mediaTypeUtility* strategyTypeUtility)*itnportanceDegree

1  resGroup 	 1(dificultyDegree*  sizeOf Re source) 

U(Course) <--U(Course)+U(Ai); 
1//end for all Ai_ 
return U(Course) 

//end Procedure computingCourseUtility 

D.2. Reviews of Basic Probability Formulae 

Let A, B, E, H, ... stand for events, and P(A) stand for the probability of eventA, some basic probability 

formulae related to our approaches are reviewed as follows: 

• Three basic axioms: 

P(A) 1 

P(Sure Proposition)=1 

P(A or B) =P(A) +P(B) if A and B mutually exclusive 

• 	Conditional probability of joint events 

P (A, B) 
P(A1B) — 

P (B) 

• P(A) 	 i ) = 	P(Al /3 i )P(B i ) 	 (D.5) 

where Bi is a set of exhaustive and mutually exclusive proposition. 

• P(Al K) = 	P(AI BI, K)P(B,.IK) 
	

(D.6) 

where Bi is the same as that in Eq. (D.5) 

• Chain rule: 

P(Ei  , E2 	E„) = P(E„ IE„_". ,E2  ,E1 )P(E„._ ].  I En_ 2, ...,E2e ). P(E2 I Ei)P(Ei ) 	(D.7) 

(D. 1) 

(D.2)  

(D.3)  

(D.4)  

• Basic Bayes rule 
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P(elH)P (H)  
P(HI e) — 

	

	 (D.8) 
P(e) 

where H: a hypothesis, 

e: an observation or evidence, 

P(elH): likelihood, the probability of evidence e in the context of the hypothesis H being true 

P(Hle): the posterior probability, 

P(H): the prior probability of the hypothesis H, and 

P(e): a normalizing constant, P(e)=P(e I H)P(H)+P(e —I H). 

Eq.(D.8) states that the belief we accord a hypothesis H upon obtaining evidence e can be computed by 

multiplying our previous belief P(H) by the likelihood P(eIH) that e will materialize if H is truc. 

D.3. Posterior Odds 

By Bayesian rule, we have 

P(Hle) P(e1H)P(H) P(e)  
P(—H e) 	P(e) 	P 	P(—H) 

P(e 1H) P(H)  
P(el-,H) .  P(—H) .  

Defming prior odds on H as 

13(11) 	P(11) 0(H) — 

and the likelihood ratio as 

P (el H)  
L(el H) — 

P (el —11) 

the posterior odds 

P(Hie)  
0 (HI e) — 

P(—iHI e) 

are given by the product 

0 (HI e) = L(eIH)0(H) 

P(-11) 1 — P (H) 

(D.9)  

(D.10)  

(D.11)  

(D.12)  

(D.13)  

D.4 Algorithms for Identifying Necessary Tutoring Units 
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Algorithm 7.2 Identifying MaxPassedTutoringUnit 

Input: conditional probability matrix M (in figure 7.4), 

	

A2, 	An>, where Ai is a tutoring unit in T; 

	

C---(C1, C2, 	Cj, 	Cm]: where Cj is an output capability of T, 
And Clkl, C2k2, 	Cjki, 	Cmkm: indicated levels of all 

output capabilities. 
Handling: finding the maximal tutoring unit in T, which corresponds to 

the acquirement of Clkl, 	Cikj, 	Cmkm. 
Output: maximal passed tutoring unit. 

Procedure: IdentifyingCorrespondingTutoringUnit 

lastConditionalProbVectorE—find the vector in the n-th row and the 
m-th column in figure 7.4; 

conditionalProbMatrix±-compute the conditional probability matrix 
based on lastConditionalProbVector by linear imitation 

method; 
we get: 

P(C1k1 I A1) P(C2k2 I  A1) P(Onkm A1) - 

cond Pr obMatrix 
P(C1k1 I A2) P(C2k2 I A2) 	... P(Cmkm I A2) 

P(C1k11 An) P(C2k2 I An) 	... P(Cmkm I An)_ 

Computing 

MValue = 

 

i P(Cjkj A1) un._,P(Cjkj  I A2) 

117_1 P(Cjkj I Ai) 

•-• 
P(Cjkj I An) 

   

max = index0fMaxli jm. i P(Cjkj A1),117_1 P(Cjkj I  A2),...,n 1 P(Cjkj An)} 

in Mvalue. 

return max; 
//end procedure identifyingCorrespondingTutoringUnit 

The analysis of this algorithm is easy because the time it takes depends just on the number of tutoring units 

and the number of output capability levels. The following algorithm 7.3 is used for identifying all necessary 

tutoring units to meet certain learning goals. 

Algorithm 7.3 IdentifyingNecessaryTutoringUnits 

Input: conditional probability matrix M (as shown in figure 7.4); 
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T=<A1, A2, 	An>, Ai is a tutoring unit in T, 
C—(C1, C2, 	Cj, 	Cm}, Cj is an output capability, 
Ck={Clkl, C2k2, 	Cjkj, 	Cmkm}, Cjkj is the known level of Cj, 

and 
Cg={Clgl, C2g2, 	Cjgj, 	Cmgm}, Cjgj is the goal level of Cj. 

Hàndling: finding necessary beginning tutoring unit and ending tutoring 
unit for acquiring Cg. 

Output: a vector N = <beginingUnit, endingUnit> 

Procedure: IdentifyingNecessaryTutoringUnits 
beginningUnitE—identifyingMaxPassedTutoringUnit(M, T, Ck); 
endingUnitE—identifyingMaxPassedTutoringUnit(M, T, Cg); 
return vector <beginningUnit, endingUnit>.; 

//end Procedure IdentifyingNecessaryTutoringUnits. 



Appendix E 

Glossary 

Aggregated capability: a capability, which integrates several simple capabilities to form an incrémentai 
capability séquence. 

Anet: an activity network, which is the currently tutoring activity sequence recommended by the system. 

Authoring state: the signs representing the completeness of node information, which is used for visual 
navigation by a curriculum author. 

Capability: a te= from Gagné, which refers to teaching outcomes or human knowledge 

Cnet: course networks, which is the output of the VCOURSE model and includes multiple alternative paths 
to support the achievement of a group of learning goals. 

Course: a course is a sub-network of the capability transition network for a given domain, which covers 
just the necessary nodes and links for a particular leamer' s learning goals 

Dynamic resource: a simulation, diagnosis or guidance program 

Head capability (node): same as a head goal 

Head goal: a selected leaming goal by a learner, whose successive capabilities do not include any learning 
goal 

Implied goal capabilities: in the VCOURSE model, when a student selects a capability as his/her learning 

goal, this system considers the capability's prerequisite capabilities that are not known or implied 

known capabilities as implied learning goals 

Implied known capabilities: when a student selects a capability as his/her known capability, the system 

considers the prerequisite capabilities of the selected capability as implied known capabilities 
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Inner attributes: necessary information in a node for building capability transition networks, for instance 

the type of a capability, a description of the capability, and the levels involved in the capability 

node. 

Learning state: the dynamic navigation mechanism for leaming processes; for instance a capability node 

has several states that correspond to the current leamer's states: full-mastered, partly-mastered, 

etc. A transition node has also several states related to the current context and the current student, 

for example recommended, enabled, disabled, etc. 

Maximal head goal: a head goal whose predecessor capabilities include more learning goals than any other 

head goal in a given capability transition network. 

Multiple level capability: a kind of teaching outcome, which can be identified as several incremental 

capability levels; this system provides a mechanism to organize tutoring activities for each 

capability level. 

Resource group: a set of resources that are organized based on certain teaching strategies. 

Scheme: a visual cell in a transition node in which a curriculum author can defme the frame of the 

transition node for example how many tutoring units are needed, what resource types are needed, 

and what is the success criterion, etc. 

State-driven reasoning: based on a group of rules the system can automatically infer the states of all visual 

nodes and cells when some node or cell state changes. 

Static resource: a piece of media such as text, picture, image, audio data, etc. 

Sub-unit: an instructional event that contains one or more resource groups; with the help of running 

programs a sub-unit can interactively carry out teaching activities. 

Tnet: a capability transition network for a given domain, which is the central structure in our visual 

curriculum model, and is an AND/OR graph consisting of capability nodes, transition nodes, 

prerequisite links and output links. 

Transition node: a node that represents a sequence of two-level tutoring activities (tutoring units and sub-

units); activating a transition node requires that its prerequisite capabilities be acquired at certain 

levels, and the output of a transition node is some capabilities. 



223 

Tutoring unit: a member in a transition node, which contains a sequence of instructional events and can 
deliver certain capability levels 

Utility: a proposed measure that is used for evaluating course adaptability to a particular student 

VACT: the Visual Activity sequence, a sub-model in the VITCAM, with which the system can dynamically 

recommend the current course and tutoring activities for a particular leamer 

VCOURSE: the Visual Course model, a sub-model in the VITCAM, with which the system can create 

multiple alternative courses for a particular leamer 

Visual cell: any element in a visual composite icon for representing either the overall view of a capability 

or a capability level or the overall view of a transition node or a tutoring unit or a sub-unit; a user 

can click the visual cell to view or edit its inner attributes or set it as a leaming goal or carry out 

interactive actions 

Visual properties: necessary information in a node for drawing the node, for example, node shapes, sizes, 

labels, colors, position, etc. 

VITCAM: the Visual Interactive Transition, Course and Activity Manager; it is the proposed visual 

curriculum model and consists of three sub-models: VTRANS, VCOURSE and VACT. 

VTRANS: Visual Transition model, the backbone sub-model in the VITCAM model, with which a 

curriculum author can organize transition nodes to build capability transition networks. 
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