
Université de Montréal

A Study on Two Arc Routing Problems

par

Srimathy Govindan

Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures

en vue de l'obtention du grade de

Philosophiœ Doctor (Ph.D.)

en informatique

Mai, 1998

ee3 .SuPér„.

(..)4;..

‘..#

Srimathy Govindan, 1998

Nversie 6345

Université de Montréal

Faculté des études supérieures

Cette thèse intitulée:

A Study on Two Arc Routing Problems

presentée par:

Srimathy Govindan

A été évaluée par un jury composé des personnes suivantes:

Nrre-P.n 	 président-rapporteur
(eclreau directeur de recherche

Jean-Marc Rousseau 	codirecteur
P.QtYin membre du jury

...Richar.d.Eglese examinateur externe

°
Thèse acceptée le: ...ffle 1998

ABSTRACT

This thesis focuses on two specific problems in arc routing — the Capacitated Arc

Routing Problem (CARP) and the Stochastic Eulerian Tour Problem (SETP). Both

problems have excellent application potential and deserve special attention.

The first problem that we consider is the CARP. We have developed a tabu

search based heuristic procedure, TABUCARP, for this problem. In contrast to

CARPET, another recent tabu search based heuristic for the CARP by Hertz et al.

(1996), our heuristic considers a secondary objective of balancing the total work load

(demand) fairly equally among the routes, in addition to minimizing the total cost.

We feel that it is quite important to incorporate this feature, since most applications

such as mail delivery, meter reading, and garbage collection require work load

balancing.

TABUCARP continuously moves capacity excesses and deficits from routes

farther away from the depot to one of the neighboring routes. We incorporate several

features such as self-adjusting penalties, random tabu tags, and adaptive memory to

guide the search. We have tested our algorithm on a set of 23 test problems by

DeArmon, and another set of random problems. TABUCARP produces routes

similar to CARPET for the DeArmon problems. A comparison of TABUCARP and

CARPET solutions on the random problems indicates that it is definitely

advantageous to consider work load balancing as an additional objective. The price

we pay for gaining work load balance in the TABUCARP solutions is minimal since

the deterioration in the objective fitnction (total distance traveled) of the TABUCARP

solutions is marginal when compared to the objective function of CARPET solutions.

The second problem that we consider in this thesis is the Stochastic Eulerian

Tour Problem (SETP). The SETP arises when the set of edges that have to be visited

(the set of present edges) on any particular day is random. The investigation of this

111

iv

problem was motivated by a situation in the UK postal system. Here, the postal

carriers deliver mail twice every day. During the moming delivery, typically all the

streets in the netvvork require service. However, during the aftemoon delivery, the

number of streets with demand is a very small subset of the set of all streets in the

network and this subset usually varies from day to day. Given this scenario, the mail

carrier, while following his moming route, usually skips the streets without demand

during the aftemoon delivery. Thus, given an undirected graph G = (v, E) where all

the edges in E require service, a distance matrix D and a probability distribution for

the number of present edges, the SETP seeks an a priori Eulerian tour of minimum

expected length.

We derive a closed form expression for the expected length of a given tour

when the number of present edges follows a binomial distribution. We also show that

the SETP is NP-complete, and derive further properties and a worst case ratio for the

deviation of the expected length of a random Eulerian tour from the optimal tour in

the expected sense. We also investigate some of the desirable properties of a good a

priori tour using illustrative examples.

We have also developed three heuristics for the SETP. The first heuristic

starts with an empty tour and determines the next edge to service as the one that

results in the minimum expected increase in the length when appended at the end of

the tour. The second heuristic selects the next edge of the tour from the set of edges

at the current node rather than from the set of all available edges that requires service.

Finally the third heuristic constructs several small sub-tours and then concatenates

these sub-tours while considering the expected savings in concatenating sub-tours.

We have also incorporated an adaptation of the US post-optimization procedure

developed by Gendreau et al. (1992) for the TSP.

We have tested the performance of the three heuristics on grid networks and

Euclidean graphs of various sizes. Our results indicate that when the probability of

occurrence of the edges requiring service is very low (p= 0.1), the first heuristic

seems to perform better than the other two heuristics. In other situations, the third

heuristic seems to perform well for the grid networks. For the Euclidean networks, as

the number of edges increases, the second heuristic seems to perform the best among

the three, though the margin of improvement is small. We also compared the

expected leng-ths of the tours produced by the three heuristics with the expected

length of a random Eulerian tour. Our results show that for the grid networks, the

expected length of our best solution is lower than the expected length of a random

tour by 10% on average, for lower values of p. As p increases to 1.0, this average

reduces to 6% for p = 0.5 and 1% for p = 0.9. For the Euclidean networks, the

expected length of our best solution is lower than the expected length of a random

tour by 2% on average, for low values of p.

RÉSUMÉ

Un problème commun dans les systèmes de service est la conception des parcours

pour les véhicules ou les personnes donnant ces services. Ces problèmes de tournées

représentent un champ de recherche important depuis bon nombre d'années, ceci est

dû, entre autres, à l'abondance d'applications. Avec l'augmentation du coût des

véhicules et de la main d'ceuvre, toute économie obtenue grâce à l'amélioration de la

conception des parcours sera appréciée.

Les problèmes de tournées se divisent en deux classes — Les problèmes de

tournées sur les nceuds (PTN) et les problèmes de tournées sur les arcs (PTA). Dans

un PTN, la demande (collecte ou livraison) se produit sur les nœuds d'un graphe alors

que dans un PTA, la demande se situe au niveau des arcs du graphe. Dans un PTA,

l'objectif est de construire des routes à coût minimal qui traversent un ensemble

donné d'arcs nécessitant un service. En dépit d'un nombre incroyable d'applications

réelles, les PTA n'ont pas reçu autant d'attention de la part des chercheurs que les

PTN. Alors que des progrès considérables ont été accomplis dans le développement

d'excellents résultats théoriques et de procédures donnant des solutions exactes pour

les PTN, la recherche faite du côté des PTA semble se limiter à des situations

particulières. Avec cette motivation en tête, cette thèse se concentre sur deux

problèmes précis de tournées sur les arcs -- Le problème de tournées sur les arcs avec

capacité (PTAC) et le problème de tournée stochastique eulérienne (PTSE). Ces

deux problèmes possèdent un excellent potentiel d'application et demandent une

attention particulière.

Le premier problème que nous considérons est le PTAC. Il s'agit d'un des

problèmes les plus importants de tournées sur des arcs, ceci étant dû à leurs présences

dans des applications telles que le déneigement, le nettoyage des rues, la collecte des

ordures, la distribution de courrier postal et plusieurs autres. Le PTAC est un

vi

vii

problème très difficile et il serait irréaliste de croire que des procédures exactes

puissent être utilisées pour résoudre ce problème, même en se limitant à des tailles

moyennes. Les chercheurs ont développé de nombreuses heuristiques pour les

PTAC. La plupart de celles-ci constituent une première tentative et très peu de travail

a été fait dans le développement de procédures d'amélioration locale. De plus,

chaque heuristique semble plutôt adaptée à des types particuliers de graphes.

Récemment, Hertz et al. (1996) ont développé une heuristique pour le PTAC qui est

basée sur la recherche avec tabous (CARPET).

CARPET évolue d'une solution vers une solution voisine en déplaçant un arc

à desservir de la tournée courante vers une autre tournée. Cette heuristique est

semblable à TABUROUTE (l'heuristique de recherche avec tabous pour les

problèmes de tournées de véhicules (Gendreau et al. 1994)) dans la plupart de ses

caractéristiques. L'objectif de CARPET est de produire une solution au PTAC qui ait

le coût le plus faible possible. Cependant, dans beaucoup de situations pratiques, en

plus de vouloir minimiser le coût total, il y a un second objectif qui consiste à

équilibrer la charge totale de travail de manière équitable pour chacune des routes.

Nous tenons compte aussi de cet objectif dans notre heuristique et tentons de produire

des solutions équilibrées à coût minimal.

Nous pensons qu'il est très important d'inclure cet aspect puisque la plupart

des applications telles que la distribution du courrier, la lecture des compteurs

électriques et la collecte des ordures demandent une charge de travail equilibrée.

Dans un contexte réel, si l'algorithme utilisé ne considère que le coût total, le

répartiteur doit généralement revoir la solution et la modifier à vue d'ceil afin de

l'équilibrer. À l'inverse, notre procédure (TABUCARP) vise à être plus globale et

considère cette caractéristique dans l'algorithme. Ainsi, celui-ci peut servir d'outil de

planification pour plusieurs problèmes de tournées.

TABUCARP déplace constamment les excès et déficits de capacité des

chemins qui sont éloignés du dépôt vers une des routes voisines du dépôt. Le

déplacement de base consiste à ajouter (enlever) un ou plusieurs arcs de service à une

(d'une) tournée qui est sous (sur) utilisée. Nous avons utilisé plusieurs composantes

telles que des pénalités auto-adaptables, des étiquettes tabous aléatoires et une

viii

mémoire adaptative pour guider la recherche. Nous avons testé notre algorithme sur

un ensemble de 23 problèmes tests de DeArmon ainsi que sur des problèmes générés

aléatoirement. Nous avons comparé nos résultats avec ceux de CARPET.

TABUCARP produit des trajets similaires à CARPET dans le cas des problèmes de

DeArmon. Pour les problèmes aléatoires, les solutions de TABUCARP sont

améliorées de 13,6 % en moyenne par rapport à celles de CARPET, en terme

d'équilibre de la charge de travail.

Le deuxième problème que nous avons considéré dans la thèse est le problème

de tournée stochastique eulérienne (PTSE). Pour le PTSE l'ensemble des arcs à

visiter pour une journée particulière est aléatoire. L'étude de ce problème a été

suscitée par une application réelle : dans le système postal anglais, un facteur peut

distribuer le courrier une deuxième fois dans l'après-midi; le nombre de rues à visiter

est alors très petit et varie d'une journée à l'autre. Dans un tel cas, le facteur, tout en

suivant son trajet régulier, peut généralement sauter les rues qui ne demandent pas de

visite.

Il est important de remarquer qu'il existe peut-être plus d'un parcours eulérien

pour un graphe donné. Cependant tous ces parcours possèdent le même coût, et de

par ce fait, aucune optimisation n'est nécessaire pour le problème de tournée

déterministe eulérienne. Toutefois, pour le PTSE, chaque parcours présente certains

avantages et inconvénients par rapport au saut d'arcs et a donc des longueurs espérées

différentes. Donc, étant donné un graphe nonorienté G = (V, E) où tous les arcs de E

nécessitent un service, une matrice de distances D et une distribution de probabilité

pour le nombre d'arcs requis, le PTSE cherche à determiner a priori un parcours

eulérien ayant une longueur espérée minimale.

Le PTSE n'a pas été étudié dans la littérature jusqu'à maintenant. Nous

pensons qu'il joue un rôle important dans les situations où le nombre d'arcs à visiter

chaque jour est aléatoire et petit, comparé au nombre total d'arcs présents. Ceci

motive notre examen de ce problème et de ses propriétés, ainsi que le développement

d'algorithmes spécifiques pour le résoudre.

Nous avons déterminé une expression pour la longueur espérée d'un parcours

donné lorsque le nombre d'arcs présents suit une distribution binomiale. Ce résultat

ix

peut aisément être étendu au cas où le nombre d'arcs à desservir suit n'importe quelle

loi de probabilité discrète. Nous montrons également que le PTSE est NP-complet, et

ce, même si la contrepartie déterministe se résoud en temps polynomial. Nous

présentons d'autres propriétés ainsi qu'une borne sur la déviation de la longueur

espérée du parcours eulérien aléatoire relativement au parcours optimal. Nous nous

penchons aussi sur les propriétés souhaitables d'un bon parcours a priori, ceci en

utilisant des exemples explicatifs.

Puisque le PTSE appartient à une classe de problèmes difficiles, il n'est pas

possible de résoudre des problèmes de taille réaliste en utilisant des algoritlunes

s'exécutant en temps polynomial. Nous nous concentrons donc sur le développement

d'algorithines heuristiques donnant de bonnes solutions. Nous avons construit trois

heuristiques pour le PTSE. La première, une heuristique gloutonne globale,

commence avec un parcours vide et choisit le prochain arc en déterminant celui qui

ajoutera au parcours la longueur espérée minimale, lorsque l'arc est servi à la fin du

parcours. La seconde, une heuristique gloutonne locale, choisit le prochain arc du

parcours à partir de l'ensemble des arcs du nceud courant plutôt que de l'ensemble des

arcs à desservir disponibles. Finalement, le troisième type, une heuristique de

construction de sous- parcours, produit plusieurs petits sous-parcours et ensuite réunit

ces sous-parcours en considérant les économies prévues dans un processus de

concaténation. Nous avons aussi ajouté une adaptation de la procédure de post-

optimisation US développée par Gendreau et al. (1992) pour le TSP.

Nous avons testé le rendement de ces trois heuristiques sur des réseaux

quadrillés et des graphes eulériens de tailles variées. Nos résultats montrent que

lorsque la probabilité de présence des arcs à desservir est petite, l'algorithme glouton

global semble donner de meilleurs résultats que les deux autres. Dans d'autres

situations, l'heuristique de construction de sous-parcours réagit bien pour des réseaux

quadrillés. Pour les réseaux eulériens, lorsque le nombre d'arcs augmente, la

deuxième heuristique donne le meilleur rendement, cependant l'amélioration est très

faible. Puisque toutes les heuristiques sont assez rapides (les plus gros problèmes -

des réseaux quadrillés de 9x9 et des réseaux eulériens de 20 nceuds avec densité 0,7

x

pour les arcs - prennent moins d'une minute pour chaque heuristique), nous pouvons

utiliser les trois heuristiques et choisir la meilleure solution.

Nous comparons également les longueurs espérées des parcours produits par

les trois heuristiques avec la longueur espérée d'Im parcours eulérien aléatoire. Nos

résultats montrent que pour les réseaux quadrillés, la longueur espérée de notre

meilleure solution est inférieure à la longueur prévue d'un parcours aléatoire par 10%

en moyenne, pour des petites valeurs de p. Lorsque p augmente, cette moyenne

diminue à 6% pour p = 0,5 et à 1% pour p = 0,9. Dans un cas particulier, la

longueur prévue du parcours produit par l'heuristique de construction de sous-

parcours est de 25% inférieure à la longueur prévue du parcours aléatoire. Les écarts

pour les réseaux eulériens ne sont pas aussi importants. La longueur prévue de notre

meilleure solution est inférieure à la longueur prévue du parcours aléatoire par 2% en

moyenne, pour de petites valeurs de p.

Cette thèse s'est penchée sur deux problèmes importants et intéressants dans

le domaine des itinéraires sur des arcs. Nous avons développé une heuristique de

recherche avec tabous pour le PTAC ayant comme objectif secondaire une charge de

travail equilibrée pour chacun des parcours. Nous avons aussi introduit le PTSE et

analysé plusieurs propriétés théoriques de ce problème. Finalement, nous avons

construit trois heuristiques rapides pour le PTSE. Les recherches futures incluent

l'examen de méthodes exactes et de nouvelles procédures d'amélioration pour le

PTSE.

To Shirdi Sai Baba

xi

ACKNOWLEDGEMENTS

My first note of appreciation and thanks goes to my three year old daughter, Prithvi,

who understood that her mommy was doing her thesis and rarely disturbed me. She

even stayed with her grandparents in India for a few months, when I was finishing the

major portion of my thesis. She is extremely glad that I will be finished pretty soon

and has a long list of things to do with me!

I would like to thank my thesis director, Prof. Michel Gendreau, and the co-

director, Prof. Jean-Marc Rousseau, for their belief in my work and abilities. Prof.

Gendreau has provided valuable insights and his expert comments during various

stages of my thesis. He has been more than a thesis director. In spite of his busy

schedule, he always found time to provide excellent advice about life in academia and

possibilities for my career. He is a kind and considerate person and never forgets to

enquire about my family. I would like to thank Prof Rousseau for introducing me to

the area of arc routing and providing the motivation for investigating the Stochastic

Eulerian Tour Problem.

I would also like to thank the members of my thesis committee, Prof Richard

Eglese, Prof Jacques Ferland, and Prof Jean-Yves Potvin, for their constructive and

timely feedback. A special note of thanks to Prof Gilbert Laporte who represented

the extemal examiner during my defense. He provided a lot of feedback and

suggested several changes to make the thesis more complete. Thanks to Renée

Touzin for help with the French translation and René Séguin for reading the French

summary and making sure that it conveyed the main ideas and contributions of my

thesis properly. I would like to thank Madame Claire Valois at the Département

d'informatique et de recherche opérationnelle and the staff at the Centre de recherche

sur les transports for helping me with the administrative requirements and making my

stay at the Université de Montréal a very pleasant one.

xii

This thesis would not have been possible but for the constant support and

encouragement from my husband, my family, and my husband's family. I am very

grateful to my husband for his patience and help all through my student life. He has

been there for me, both during good and bad times. My father has constantly

encouraged me to pursue my interests and taught me the value of honesty and

integrity through his work ethics. My mother has been a great friend and companion

all along and is surely the mother I would like to emulate in life. My parents-in-law

have always supported my efforts and I very much appreciate their love and care.

My brother, sister, brother-in-law, and nephew Rolly have always added fun

to my life and made me want to visit them as often as possible. Thanks to our

beloved Sai Maa for all her spiritual guidance and blessings. Last but not the least,

thanks to our second baby who is due in August, for making this pregnancy an easy

one.

Finally, I would like to acknowledge the scholarships from FCAR and the

Université de Montréal. I would also like to thank Michel Mittaz of École

Polytechnique Fédérale de Lausanne for providing me with a copy of his code for

CARPET and LB2, which helped me immensely during the computational testing of

our algoritlu-n for the CARP.

TABLE OF CONTENTS

ABSTRACT 	 iii

RÉSUMÉ 	 vi

DEDICATION 	 xi

ACKNOWLEDGEMENTS 	 xii

LIST OF TABLES 	 xvii

LIST OF FIGURES 	 xviii

CHAPTER 1: INTRODUCTION 	 1

1.1 PROBLEM MOTIVATION 	 1

1.2 LITERATURE REVIEW 	 2

1.2.1 UNCAPACITATED ARC ROUTING PROBLEMS 	 3

1.2.1.1 Undirected Chinese Postman Problem 	 4

1.2.1.2 Directed Chinese Postman Problem 	 7

1.2.1.3 Mixed Chinese Postman Problem 	 8

1.2.1.4 Undirected Rural Postman Problem 	 13

1.2.1.5 Directed Rural Postman Problem 	 17

1.2.1.6 Stacker Crane Problem 	 18

1.2.2 CAPACITATED ARC ROUTING PROBLEMS 	 20

1.2.3 APPLICATIONS OF ARC ROUTING 	 28

1.2.4 STOCHASTIC NODE ROUTING 	 31

1.3 OBJECTIVES OF THIS RESEARCH 	 33

1.4 ORGANIZATION OF THE THESIS 	 35

xiv

CHAPTER 2: TABUCARP: A TABU SEARCH ALGORITHM FOR THE

CAPACIATED ARC ROUTING PROBLEM WITH WORK LOAD

BALANCING 	 37

2.1 INTRODUCTION 	 37

2.2 TABU SEARCH IECHNIQUE 	 40

2.2.1 OBJECTIVE FUNCTION 	 41

2.2.2 PENALTY FUNCTION 	 42

2.2.3 BASIC MOVES 	 43

2.2.4 NEIGHBORHOOD STRUCTURE 	 44

2.2.5 TABU MOVES 	 47

2.2.6 STOPPING RULE 	 47

2.2.7 TABU SEARCH PROCEDURE 	 47

2.3 TABUCARP ALGORITHM 	 49

2.3.1 INITIAL SOLUTIONS 	 50

2.3.2 ADAPTIVE MEMORY 	 51

2.3.3 DESCRIPTION OF TABUROUTE 	 52

2.4 COMPUTATIONAL RESULTS 	 52

2.5 CONCLUSION 	 57

CHAPTER 3: THE STOCHASTIC EULERIAN TOUR PROBLEM 	58

3.1 INTRODUCTION 	 58

3.2 IMPORTANT RESULTS FOR THE SETP 	 63

3.2.1 DEFINITIONS AND ASSUMPTIONS 	 63

3.2.2 EXPECTED LENGTH OF A GIVEN TOUR 	 65

3.2.3 NP-COMPLETENESS 	 70

3.3 PROPERTIES AND BOUNDS FOR THE SETP 	 72
3.4 ILLUSTRATIVE EXAMPLE 	 78

3.5 CONCLUSION 	 81

xvi

CHAPTER 4: HEURISTICS FOR THE STOCHASTIC EULERIAN TOUR

PROBLENI 	 82

4.1 INTRODUCTION 	 82
4.2 THEORETICAL PRELIMINTARIES 	 84

4.2.1 ADDITION OF A WHITE EDGE TO A PATH 	 86
4.2.2 MERGING OF SUB-TOURS 	 87

4.3 HEURISTIC PROCEDURES 	 88
4.3.1 HEURISTIC 1: GLOBAL GREEDY 	 88
4.3.2 HEURISTIC 2: LOCAL GREEDY 	 91
4.3.3 HEURISTIC 3: SUB-TOUR CONSTRUCTION 	 92
4.3.4 POST-OPTIMIZATION: DROP-ADD 	 95

4.4 COMPUTATIONAL RESULTS 	 96
4.4.1 EFFECT OF DROP-ADD 	 98
4.4.2 PERFORMANCE OF THE HEURISTICS 	 110
4.4.3 COMPARISON OF HEURISTICS WITH RANDOM TOUR 	110

4.5 CONCLUSION 	 111

CHAPTER 5: CONCLUSION 	 112

5.1 CONTRIBUTIONS OF THIS THESIS 	 112
5.1.1 THEORETICAL CONTRIBUTION 	 112
5.1.2 METHODOLOGICAL CONTRIBUTIONS 	 113

5.2 DIRECTIONS FOR FUTURE RESEARCH 	 115

REFERENCES 	 117

LIST OF TABLES

1. Computational Results for DeArmon's Problems 	 54

2. Results for Lower Density Problems 	 56

3. Results for Higher Density Problems 	 56

4. Results for the 4x4 grid network 	 99

5. Results for the 5x5 grid network 	 99

6. Results for the 6x6 grid network 	 100

7. Results for the 7x7 grid network 	 100

8. Results for the 8x8 grid network 	 101

9. Results for the 9x9 grid network 	 101

10. Results for 8 node Euclidean network (density - 0.3) 	 109

11. Results for 8 node Euclidean network (density - 0.5) 	 102

12. Results for 8 node Euclidean network (density - 0.7) 	 103

13. Results for 10 node Euclidean network (density - 0.3) 	 104

14. Results for 10 node Euclidean network (density - 0.5) 	 104

15. Results for 10 node Euclidean network (density - 0.7) 	 105

16. Results for 15 node Euclidean network (density - 0.3) 	 106

17. Results for 15 node Euclidean network (density - 0.5) 	 106

18. Results for 15 node Euclidean network (density - 0.7) 	 107

19. Results for 20 node Euclidean network (density - 0.3) 	 108

20. Results for 20 node Euclidean network (density - 0.5) 	 108

21. Results for 20 node Euclidean network (density - 0.7) 	 109

22. Overall average of best results for grid and Euclidean networks 	109

xvii

LIST OF FIGURES

1. The seven bridges of Königsberg problem 	 2

2. Concatenation of tour in the End-Pairing algorithm 	 6

3. Original graph G 	 14

4. Original graph G 	 15

5. Transformed graph G 	 15

6. Penalty Function 	 42

7. Eulerian graph and two different tours for the same graph 	 60

8. Tours 3 and 4 for the 3x3 grid 	 78

9. Tour 5 for the 3x3 grid 	 79

10. Tour 6 for the 3x3 grid 	 80

11. Example graph for heuristic 1 	 89

xviii

CHAPTER 1

INTRODUCTION

1.1 PROBLEM MOTIVATION

A very common problem in service systems is the design of routes for vehicles or

people delivering service. These routing problems have been an important area of

research for a long time due to the abundance of practical applications. With the

rising cost of labor and operating vehicles, any savings obtained through the design of

better routes would be well appreciated. As a result, govemment and private

organizations continue to encourage research on designing optimal or near-optimal

routes for service delivery systems.

Routing problems fall into two classes - Node Routing Problems (NRPs) and
Arc Routing Problems (ARPs). In an NRP demand (pickup or delivery) occurs on the

nodes or vertices of a graph, while in an ARP the demand occurs along the arcs or

edges of a graph. Typically, in an NRP the objective is to visit, at the lowest cost

possible, a given set of points in order to satisfy the demands at these points. In an

ARP, the objective is to design minimum cost routes that traverse a given set of arcs

or edges that require service. The well-knovvn Traveling Salesman Problem (TSP)
belongs to the class of NRPs, and the Chinese Postman Problem (CPP) and the Rural
Postman Problem (RPP) belong to the class of ARPs. Specific node routing

examples include coin collection from public telephone booths, mail pickup from

specific drop-off points, and distribution of newspapers to newsstands. Everyday

problems of street sweeping, snow plowing, meter reading, school bus routing and

household garbage collection are excellent examples of ARPs.

2

In spite of the numerous real world applications, ARPs have not received as

much attention from researchers as NRPs. While researchers have made considerable

progress in developing excellent theoretical results and exact solution procedures for

several NRPs, the research work in the field of arc routing tends to be tailored to

specific situations. With that as the motivation, this research focuses on two specific

problems in arc routing — the Capacitated Arc Routing Problem (CARP) and the

Stochastic Eulerian Tour Problem (SETP). Both problems have excellent application

potential and deserve special attention. Before describing the objectives and

contributions of this research in detail, we provide a review of the relevant literature

on arc and node routing.

1.2 LITERATURE REVIEW

Researchers have been working on several theoretical and practical ARPs for a long

time. The earliest work that we know of is the seven bridge problem at the Russian

city of Königsberg (now Kaliningrad), examined by the great Swiss mathematician

Leohnard Euler. It was in connection with a promenade to be taken across seven

bridges -that connected two islands with each other and with the two banks of the

Pregel river (See Figure 1).

Figure 1. The seven bridges of Königsberg problem

3

Euler was interested in determining if there existed a way in which the promenade

could cross the seven bridges exactly once. In 1736, Euler proved that this was not

possible for this problem and derived the conditions for the existence of a closed walk

on a graph G, containing each arc exactly once. A graph with this property is called

an Eulerian or unicursal graph. Fleischner (1990) notes that in 1873, Heirholzer

solved the problem of determining this closed walk on an undirected graph.

Guan (1962) documented the first ARP as we define it today. Guan defined

the Chinese Postman Problem (CPP) as follows: "A mailman has to cover his

assigned segment before returning to the post office. The problem is to find the

shortest walking distance for the mailman". Guan showed that if a graph is not

unicursal, it contains an even number of odd degree vertices and the graph can be

made unicursal by replicating edges between odd degree vertices. He also derived the

necessary and sufficient conditions for an Eulerian tour to be optimal.

Since the introduction of the CPP, several researchers have worked on the

undirected and directed CPP and have shown that polynomial time algorithms exist

for these problems. When only a subset of the links (edges or arcs) of the graph

require service, the problem becomes the Rural Postman Problem (RPP). Lenstra and

Rinnooy Kan (1976) proved that the undirected and directed RPP are NP-hard.

Golden and Wong (1981) introduced the capacitated ARPs, and have shown that

these problems are NP-hard. Hence, research has progressed in developing efficient

exact procedures and heuristics for these hard problems. We discuss the nature of

these research efforts in the following sections. A recent two-part survey by Eiselt,

Gendreau, and Laporte (1995) and another survey by Assad and Golden (1995)

present an overview of most of the relevant literature on arc routing. An earlier

survey by Bodin et al. (1983) also provides information on arc routing problems.

1.2.1 UNCAPACITATED ARC ROUTING PROBLEMS

In the uncapacitated ARPs, the service delivery unit has unlimited capacity and hence,

the single unit can serve the demand on all arcs. Polynomial time algorithms exist for

4

all uncapacitated ARPs, if the underlying graph G is Eulerian or unicursal. When G is

not Eulerian, we need to augment G with a set of arcs or edges at the minimum cost to

make it unicursal. For the undirected and the directed CPP, polynomial time

algorithms exist for solving the least cost augmentation problem. All the other

uncapacitated ARPs are NP-hard and the general trend is to use heuristics to

determine a low cost augmentation of the graph. We review the relevant literature on

the undirected, directed, and mixed versions of the CPP and the RPP below.

1.2.1.1 Undirected Chinese Postman Problenn

We noted earlier that Euler first proved the necessary and sufficient condition for an

undirected graph to be unicursal. Guan (1962) showed that a graph that is not

unicursal always has an even number of odd degree vertices. This observation helped

researchers (Edmonds 1965a, Busacker and Saaty 1965) to address the least cost

augmentation problem as a weighted matching problem on the odd degree vertices of

the underlying graph G.

We present below the integer linear programming formulation of the

undirected CPP. The problem is to make the given graph G = , E) a unicursal

graph G by replicating edges at the minimum cost. Let xu < j) be the number of

times edge (v„ vj needs to be added to graph G, cu the cost of traversing edge

(v„ v , and 8(1) be the set of edges incident to vertex vi . Also let T cV be the set

of odd degree vertices. Then the formulation is as follows.

minimize

subject to:

(v; 	E
	C •

1.1
• X • •

v, ,vi) e5(i)
xU 	 (1.2)

1 (1110d 2) if y, T
0 (mod 2) if v1 E VIT

X if 0 	V (1) ,V)E E 	 (1.3)

	

integer 	V (v i ,vi E E 	 (1.4)

5

Constraints (1.2) ensure that the degree of all vertices in the graph are even and the

objective function ensures that the set of edges added are at the lowest possible cost.

As noted above, we can solve this problem as a minimum weighted matching problem

on a graph Go= (T, ET), where ET is the set of edges connecting all the odd degree

vertices, and the cost of each edge (v„ vi) in Go is the cost of the shortest path

between vertices vi and vi in G. Lawler (1976) provides an 0(1113) time algorithm

for solving the weighted matching problem. Once we solve the matching problem,

we can augment G with the shortest paths corresponding to the optimal matching

solution to obtain the unicursal graph G. .

Edmonds and Johnson (1973) have completely characterized the convex hull

of (1.2), (1.3), and (1.4) as a polyhedron using additional inequalities called the

blossom inequalities. The polyhedron given by (1.3) and the blossom inequalities

completely describes the convex hull of the undirected CPP. Edmonds and Johnson

provide an adaptation of Edmonds (1965b) blossom algorithm for matching to solve

this problem. Thus the least cost augmentation problem is well solved for the

undirected CPP.

Edmonds and Johnson have also given three algorithms for determining an

Eulerian cycle on the unicursal graph G. . Prior to this, a very simple algorithm due

to Fleury was used. This algorithm starts at an arbitrary vertex vi and traverses

successively the edges of the graph while deleting each edge from G as it is traversed.

At every point, care is taken not to traverse an edge whose removal would disconnect

the remaining graph. While this method is very easy to follow, it is not well suited for

computer solution since determining the next edge to delete at each step could be time

consuming.

The three algorithms by Edmonds and Johnson are the End-Pairing algorithm,

Next-Node algorithm, and the Maze-Search algorithm. All three algorithms are

similar in that they begin by tracing out a simple tour which may not include all

edges, form another non-overlapping tour starting at any node on the current tour, and

then append the two tours to form a single longer tour. The procedure continues until

6

all edges are covered. The difference between the algorithms arises in the way the

tours are appended. We present below a summary of the end-pairing algorithm.

End-Pairing Algorithm

Step 1: Trace out a simple tour. If it includes all edges, stop. If not, go to Step 2.

Step 2: Begin at any node vo on the tour incident to edges not on the tour and trace

out another tour not overlapping the previous one.

Step 3: Combine the two tours into a single longer tour as follows. Let edges el and

e2 be incident to node vo on the first tour, and edges e3 and e4 be incident

to vo on the second tour. Start with edge e3 , traverse the second tour

completely, and reach vo through edge e4 . Now follow the first tour starting

with edge e2 and reach vo through edge e1. If all edges of the graph have

been traversed, stop. Otherwise go to Step 2.

The following figure helps understand this concatenation process used in the end-

pairing algorithm.

e, 	• e,

Figure 2. Concatenation of tours in the End-Pairing algorithm

7

1.2.1.2 Directed Chinese Postman Problem

The necessary and sufficient condition for a connected, directed graph G to be
unicursal is that the graph be symmetric, i.e., the number of arcs entering and leaving

each vertex must be equal. Note however that the graph has to be strongly connected

for a solution to exist. When the graph is not symmetric, the additional arcs to be

added to the graph to make it unicursal can be determined from the solution of a

transportation problem (Edmonds and Johnson 1973, Beltrami and Bodin 1974, and

Orloff 1974). The transportation problem is defined on the subgraph induced by the

nodes for which the number of arcs entering and leaving the node are not equal, and

all the arcs incident to such nodes. If the number of incoming arcs exceeds the
number of outgoing arcs at a node v1 by si , then we can interpret s to be a supply at
node vi Similarly, a node vi for which the number of outgoing arcs exceeds the

number of incoming arcs by di can be thought of as having a demand of di . Let I be

the set of supply nodes and J, the set of demand nodes, and cii be the cost of the

shortest path from a supply node v to a demand node vi . The decision variable x is

1 if we need to add a copy of all arcs corresponding to the shortest path from vi to v1,

and 0 otherwise. The transportation problem can be formulated as follows.

minimize 	I Ecx 	 (1.5)
iel jeJ

subject to 	E xi, = s 	vi E 	 (1.6)
vi e.I

Ex y -= d V vi e J 	(1.7)
Vj E1

xii 	?. 0 	V vi El, vi e J 	(1.8)

The solution to this problem indicates the number of times each arc has to be
replicated in the graph G to make it unicursal. Orloff (1974) notes that the least cost

augmentation problem for the directed CPP can also solved as a minimum cost

8

network flow problem. The objective is to attain a minimum cost circulation on the

network such that each arc flow is at least 1.

In order to determine the Eulerian tour, we can adapt Fleury s algorithm to a

directed graph, but we still have the problem of choosing the next arc to traverse.

Edmonds and Johnson (1973) present an algorithm by van Aardenne-Ehrenfest and de

Bruijn (1951) to determine the tour. We now provide a step-by-step description of

this algorithm.

van Aardenne-Ehrenfest and de Bruiin Algorithm

Step 1: Construct a spanning arborescence rooted at any vertex

Step 2: Label all arcs as follows: order and label the arcs outgoing from Vr in an

arbitrary fashion; order and label the arcs out of any other vertex

consecutively in an arbitrary fashion, so long as the last arc is an arc used in

the arborescence.

Step 3: Obtain an Euler tour by first following the lowest labeled arc emanating

from an arbitrary vertex; whenever a vertex is entered, it is left through the

arc not yet traversed having the lowest label. The procedure ends with an

Euler circuit when all arcs have been covered.

1.2.1.3 Mixed Chinese Postman Problem

The mixed CPP is defmed on a graph G that contains both arcs and edges.

Papadimitriou (1976) has shown that this problem is NP-hard even if the underlying

graph is planar or if all cii s are equal. Hence, research has concentrated on

developing efficient exact algorithms and heuristics that replicate enough arcs and

edges in the graph to satisfy the necessary and sufficient conditions for unicursality.

Once the graph is unicursal, we need to determine an Eulerian tour on it.

A mixed connected graph G = (v, A u E) where A is the set of arcs and E is

the set of edges, is said to be unicursal if and only if:

(i) every node is incident to an even number of directed and undirected arcs; and

9

(ii) for every S c V, the difference between the number of directed arcs from S to

V I S and the number of directed arcs from VIS to S is less than or equal to the

number of undirected arcs joining S and V I S .

The second condition is called the balanced set condition and a graph that satisfies

this property is called a balanced graph. If a graph is even and symmetric, then it is

balanced. Several researchers have made use of this and have tried to make the

underlying graph even and syrnmetric and thus, Eulerian. (See Edmonds and Johnson

1973, Frederickson 1979, Kappauf and Koehler 1979, Christofides, Benavent,

Campos, Corberân, and Mota 1984, and Gréitschel and Win 1992.) Nobert and Picard

(1996) make the graph Eulerian by addressing the evenness and balanced set

conditions directly. We present below a brief summary of the work directed at

maldng a mixed graph Eulerian.

Exact Methods

(A) Kappauf and Koehler (1979) were the first to suggest an exact procedure for

solving the mixed CPP. They have formulated the problem as an integer linear

program and outlined an algorithm based on the exhaustive analysis of the extreme

points of the underlying polyhedron. The formulation uses two integer variables for

each edge and arc of the graph, for each direction of traversal. The constraints in the

formulation ensure that each edge and arc is traversed at least once and force every

vertex to be symmetric.

Grôtschel and Win (1992) have used the same formulation along with

additional valid inequalities (odd cut inequalities). They have devised a branch and

cut procedure to solve instances of the mixed CPP. They use results from Minieka's

research and adopt a three-way branching scheme. They have attempted 9 problems

and solved all of them to optimality without any branching. The problem ranges were

52 	IV
	

172, 37 	154, and 31_1,11.116.

(B) Christofides et al. (1984) have used a similar formulation along with redundant

constraints which state that the total arcs and edges incident to every vertex must be

10

even. They solve the mixed CPP using a branch and bound algorithm. They use two

lower bounds obtained from two different Lagrangean relaxations of the problem

formulation. The first relaxes the symmetry constraints. They solve the sub-problems

as minimum cost perfect matching problems on the odd vertices of the graph. The

second bound does not use the redundant even degree constraints. The authors relax

the constraints that ensure that every edge and arc is traversed at least once, and solve

a minimum cost flow problem to calculate the second bound. Using their

enumerative algorithm, the authors have solved 34 randomly generated problems with

7 __ IV __50, 4 I.E'l 39, and 3 __IA1-_ 85.

(C) Nobert and Picard (1996) use an integer linear programming formulation which

forces the even degree and balanced set conditions directly. Their formulation uses

only one variable for each edge as opposed to the previous formulation. The authors

also use a generalized form of Edmonds and Johnson' s (1973) blossom inequalities to

tighten the linear relaxation.

Nobert and Picards algorithm starts with a linear program which includes the

blossom inequalities associated with the odd nodes, the balanced set constraints

associated with the unbalanced nodes and most unbalanced set of nodes, and the non-

negativity constraints. The algorithm successively adds constraints corresponding to

most unbalanced sets and to violated blossom inequalities. The authors check if the

intermediate solution satisfies the balanced set condition by solving a maximum flow

problem based on the previous work of Picard and Ratliff (1975). Picard and

Queyranne's (1980) work helps to find all the most unbalanced sets if the graph is not

balanced. At every iteration, balanced set constraints and blossom inequalities that

are violated are added. If the solution is fractional and no more violated constraints

can be added, Gomory cuts are added to help achieve integrality. Finally, branching

can be used to gain integrality, if necessary. The algorithm has solved 313 problems

out of 440 to optimality at the root of the tree. The problem ranges were

6 IV" 225, 5 lE1 4455, and 2 Al 5569.

11

Heuristie Methods

(A) Edmonds and Johnson (1973) present a heuristic algorithm for the mixed CPP.

Frederickson (1979) calls it heuristic MDCED1 and shows that the algorithm has a

worst-case bound of 2. He also modifies the algorithm to ensure that the graph is

even at the end of the process. The algorithm first modifies the given graph to make

the degree of each vertex even. This is done by solving a minimum cost matching

problem on the odd vertices. The links used in the matching are added to G. The
algorithm then makes the graph symmetric by solving a minimum cost flow problem.

Edmonds and Johnson's version of the algorithm terminates at this stage showing the

existence of a minimum cost solution to the network flow that maintains the even

degree of each vertex. However, Frederickson shows that the network flow

constraints are not sufficient to fmd such a solution. So he adds a third step to the

algorithm to make sure that the graph is even, while keeping the graph symmetric.

(B) Frederickson (1979) presents another heuristic MDCED2, which is essentially the

reverse of MDCED1. This algorithm first makes the graph symmetric using the same

procedure as in the second step of MDCED1. In order to make the graph even, the

algorithm then performs a minimum cost matching on the odd vertices of the

augmented graph using shortest path distances between these vertices. The edges

used in the matching are then added to the graph. Christofides et al. (1984) describe a

procedure which can be considered equivalent to MDCED2. They suggest a simple

improvement procedure also. For each arc (v, ,), if cu is greater than the cost of a

directed path from v, to vf , then arc (v, , y is deleted and the arcs in the shortest

path are duplicated. This applies to edges also since they can be considered as two

directed arcs. The authors provide some computational results also. On 34 test

problems with 7 5_ ¡VI 5 50, 4 51E15 39, and 3 51AI :5 85, the procedure produced

solutions within 3% of optimality on average.

12

Determining an Eulerian Tour

Once the mixed graph is made Eulerian using either an exact or a heuristic method,

one has to determine the actual Eulerian tour. The general idea is to orient all the

edges of the graph to make it completely directed and then use the van Aardenne-

Ehrenfest and de Bruijn algorithm for directed graphs to determine the tour. If we

know that the Eulerian graph is symmetric then the following simple procedure

presented in Eiselt, Gendreau, and Laporte (1995), can be used to orient the graph.

Step 1: Mali the edges are directed, stop.

Step 2: Let v be a vertex with at least one incident undirected edge (v, w). Set v1 <—

v and v2 	w.

Step 3: Orient (vi , v2) from v1 to v2 . If v2 ---- v, go to Step 1.

Step 4: Set v1 <— v2 and identify an edge (v1, v2) incident to v1 . Go to Step 3.

Most exact and heuristic methods make the mixed graph Eulerian by making it

even and symmetric. So the above procedure is sufficient to completely orient the

graph. However some methods (Nobert and Picard 1991) make the graph Eulerian by

making it even and balanced. It is important to note that a unicursal graph need not

be symmetric. Hence, it is necessary to make the graph symmetric first and then use

the above procedure.

Ford and Fulkerson (1962) have described a procedure to assign directions to

some of the edges of a graph to make it symmetric. The procedure begins with

replacing each edge in the graph with two oppositely directed arcs. All the arcs from

the original graph are assigned a lower bound of 1 and the arcs obtained from the

edges, a lower bound of O. Also, all arcs are assigned an upper bound of 1. The

authors suggest obtaining a feasible circulation on the new graph and using that

solution to orient some of the edges as follows. If (v, 	E E, xii =1 and x — O,

then orient the edge (vi , v) from v to v.. The resulting graph is symmetric.

13

Minieka (1979) introduced the Windy Postman Problem (WPP), a problem

closely related to the mixed CPP. The problem is described on an undirected graph,

but the cost of traversing the edges of the graph depends on the direction of travel.

The objective of the WPP is to determine a least cost traversal of all the edges.

Brucker (1981) and later Guan (1984) have shown that the WPP is NP-hard. Win

(1989) proves that the WPP is solvable in polynomial time if the underlying graph is

Eulerian. He also shows that the mixed CPP can be transformed into a WPP by

properly defining the costs. Thus, the undirected, directed, and the mixed CPP can be

thought of as special cases of the WPP. Greitschel and Win (1992) have used a

formulation similar to the formulation of Kappauf and Koehler (1979) and have

devised a cutting plane algorithm. They have solved 31 instances of the problem out

of 36 with 52 1V1 264 , and 78 1E1-.5_, 489 .

1.2.1.4 Undirected Rural Postman Problem

In the undirected RPP, the underlying graph G = , E) is completely undirected.

Associated with each edge is a cost cij of traversing it. The undirected RPP seeks a

minimum cost traversal of a subset R c E of the edges. The traversal may include

edges from El R if necessary. Note that when R = E, the undirected RPP reduces to

an undirected CPP. Lenstra and Rinnooy Kan (1976) have shown that the undirected

RPP is NP-hard. Hence, it is necessary to resort to heuristics to obtain a low cost

augmentation for the undirected RPP. However, exact methods have also been

developed.

All uncapacitated RPPs are solved on a modified graph G = (y' , E'). The

puipose of this modification is to eliminate the unnecessary vertices from V and the

unnecessary edges from El R. As a first step in this transformation, we form an

intermediate graph G = ,E) as follows. Let Fc V be the set of vertices that are

incident to at least one edge in R and É be the set of edges in R and an edge (v, ,

for every vi ,v e F whose cost c is the length of the shortest chain between v, and

5

3 4 7

3

5 	F 	5

14

vi 	Finally, we get the modified graph G' = (v, E) as follows. Set V = , E' = Ë,

and delete all edges (y, , v)e E R for which cy = C.k + ckl. for some k e V' , and all

edges in E' R which are one of two parallel edges if both edges have the same cost.

This procedure can be applied to directed and mixed graphs also.

We illustrate this graph modification using the following simple example.

Figure 3 shows the given undirected graph G where the plain arcs belong to the set of

required arcs, the dashed arcs belong to the set EIR, and the numbers along the

edges denote the edge costs. The given graph contains seven vertices, four required

edges and seven edges that belong to the set El R. Figure 4 shows the intermediate

graph G- and Figure 5 shows the transformed graph G' that contains five vertices,

four required edges and three edges that belong to the set El R. Note that in the

transformed graph G' the set R induces p connected components G1 ,...,G p with

respective vertex sets 	V p forming a partition of V. .

Figure 3. Original graph G

15

8
..._

A , "-- 	3 	B 	5 	' -'s . C —* , ›\.• / 	'-'• - 6 	. 	s 	 , ' 	\
. 	. 	 , / 	 ... 	1 	' - %

/ S. 	 N / 	 , 	 Il s.

3

. 	

4

' .,
	

.
,. . . .• .. ,..«.. 	

2
) é

I

r
i 2

9 	 G

Figure 4. Intermediate graph G

3 5

3 	4 3S.

\/

Figure 5. Transformed graph G'

Christofides, Campos, Corberân, and Mota (1981) have provided an integer

linear programming formulation for the undirected RPP and have developed a branch

and bound algoritlu-n. In the formulation, the decision variables xu < j) represent

the number of times edge (v„vi is replicated in the optimal solution if (vi ,vj)e R.

G

16

If (v„ v e E I R, then xu is the number of times edge (v„ 	is traversed. The

problem is formulated as follows.

minimize

subject to

X ii)±

	

(vi «)eR 	 (vi ,v j)EEU?

i+ X)+ 	(1+ X ii) 	 X if

	

eR 	 vi ,v j ER 	 (vi ,v)eE'IR
j>i 	 j<i 	 j>i

(1.9)

x 	2z; 	V v; €V' 	(1.10)
(vi ,vj EE'112

j<i

Exi;
vi eS,vi e7

0 and integer

z, 	0 and integer

VS= Uljk , Pc{1, —,P}
ftEr

V (y; , vj 	Er

v, e V'

(1.12)

(1.13)

Constraints (1.10) force the degree of all the vertices in V' to be even and constraints

(1.11) ensure that the p components of the graph G' are cormected. The branch and

bound solution procedure is very similar to that proposed by Held and Karp (1971) for

the TSP. By relaxing constraints (1.10) in a Lagrangean fashion, it is easy to see that

the problem reduces to a Shortest Spanning Tree (SST) problem on a graph whose

vertices correspond to the connected components of G. . The authors use this

relaxation to obtain a lower bound for the problem. In order to obtain an upper

bound, the authors describe the following heuristic algorithm.

The algorithm first determines a SST solution T to connect the p components

of G. . If all the vertices in the graph induced by R u T are of even degree, then this

graph is a solution to the augmentation problem. If the degree of some of the vertices

is odd, then the authors determine a minimum cost matching on the odd vertices of

this graph. Let M be the set of edges in the matching. Then the graph induced by

RuTu M is unicursal and an Eulerian tour can be determined on this graph. This

heuristic provides an upper bound for the branch and bound algorithm. The authors

have solved 24 randomly generated problems with 9 I/184, 13 	184 ,

17

4 	78, and 2 Ipl 8 to optimality. It is interesting to note that when the graph

G = (v, 	is cormected, i.e., the graph G has only one component, the problem

reduces to a CPP on the graph induced by the set of edges in R.

1.2.1.5 Directed Rural Postman Problem

The directed RPP is defined on a completely directed graph G = (v, A) . As explained

in the previous section, this problem is also solved on a transformed graph

G' = (V' , A). Christofides, Campos, Corberân, and Mota (1986) have proposed a

branch and bound algorithm and a heuristic for the directed RPP. Both are quite

similar to the procedures described for the undirected RPP.

The integer linear programming formulation is as follows. The decision

variables xu represent the number of times arc (v„v j is replicated in the optimal

solution if (vi ,v j)ER. If (vi , v j e A' I R, then xu is the number of times arc

is traversed. They use the following proposition to split the xu variables for

(v„ v j)e R. In graph G' , for all v, e V' with outdegree equal to 1 (indegree = 1) the

arc 	(v„v 	R (arc (v i ,vje R) must be repeated at least rb = [indegree - 1]

([outdegree - 1]) times in any solution to the directed RPP. Thus, xu = xb +rb . In

order to make the exposition simple, we present a simplified formulation with the

original xu variables, without loss of generality. The formulation with respect to a

particular vertex set V e 	is

minimize 	 ci; (1 + xii)+ 	cij xij
,vj 	 (v,,v i EAR

subject to 	E(1+xu)+ E xi, -
, i, 	 , i,
kv, y 1)ER 	(vi ,vi)EA'IR 	1v j ,v i)ER

(1.14)

Ex„, 	 V vi e V' 	(1.15)

6./.,,v;)1

18

1 	xii ...1 VS= UVk ,Pc {1,...,p},V c S 	(1.16)
vi ES,vie.-S-' 	 kEP

E 	x,.-1 vs. uvk ,pc {1,...,p}, V c S (1.17)
vi ES,viEg 	 keP

X if 	0 and integer 	V (vi ,vi) A 	(1.18)

Constraints (1.15) state that the indegree equals the outdegree for all vertices in V. .
Constraints (1.16) ensure that the optimal solution connects all the components.

Constraints (1.17) are a set of redundant connectivity constraints.

The authors relax constraints (1.15) in a Lagrangean fashion and ignore (1.17)

initially, to calculate a lower bound. They solve the subproblem by finding a Shortest

Spanning Arborescence (SSA) over all the connected components of the graph G. .
The lower bound can be strengthened by introducing any violated constraints from

(1.17) into the objective function in a Lagrangean fashion. To compute an upper

bound, the authors describe the following heuristic. The heuristic first constructs a

SSA rooted at any vertex vi e V' of the graph G' and connecting the components

p . Let the resulting graph be = (V', R {arcs in SSA}). The graph Õ is

then made symmetric by solving a transportation problem defmed as for the directed

CPP (See Section 1.2.1.2). Finally the heuristic constructs an Eulerian tour on the

resulting graph.

The branch and bound procedure solved 22 out of 23 randomly generated

problems with 3 IT/.1 80, 24-A 180, 7 1/21 74, and 2
	

8 to optimality.

The heuristic itself seems to perform well. It produced the optimal solution in 10

problems out of 22, and on average, the heuristic solution was within 1.3% of

optimality.

1.2.1.6 Stacker Crane Problem

One version of the mixed RPP is called the Stacker Crane Problem (SCP). The SCP

is defined on a mixed graph G =(V , Au E) where A is the set of directed arcs and E

19

is the set of edges. The problem is to obtain a least cost circuit which includes each

arc in A at least once. The problem can be used to model practical situations like

operating a crane or making deliveries. Frederickson, Hecht, and Kim (1978) show

how an instance of the TSP can be transformed into an instance of the SCP.

Essentially, the SCP is equivalent to the TSP if the cost cii of every arc is O. Thus, the

SCP is also NP-hard.

Frederickson, Hecht, and Kim (1978) describe two heuristics, LARGEARCS

and SMALLARCS, for a mixed graph in which each vertex is incident to at least one

arc and the edge costs satisfy the triangle inequality. We provide an outline of the

two algorithms below. For a detailed description of the algorithms, see Frederickson

et al. If the total cost of the arcs in the graph, CA, is large relative to the cost of the

optimal tour, C , the authors use the fact that the cost of an equivalent of a minimum

spanning tree for the arcs will be small, to devise the algorithm LARGEARCS. The

algorithm basically performs a minimum cost matching on the heads and tails of the

arcs. The matching produces a number of disjoint connected components. The

algorithm then determines a shortest tree spanning these components using the

original edge costs, and finally link the components with two arcs (one in each

direction) for each spanning edge. The resulting graph is Eulerian. This algorithm

produces a tour whose cost is at most 3 C* - 2C A .

The authors propose another heuristic, SMALLARCS, when CA is small

relative to C* . We already know that when the arc costs cu are 0, the SCP is

equivalent to a TSP. Thus, in this case, it would be ideal to solve the SCP as a TSP.

The algorithm shrinks the arcs to nodes and determines a traveling salesman tour on

the associated graph. Edges are added between vertices of odd degree. The resulting

graph is unicursal and an Eulerian tour can be determined. This algorithm produces a

tour whose cost is at most 3 C* /2 + C A /2. Since it is difficult to estimate the cost of

an optimal tour a priori, the authors suggest applying both algorithms and choosing

the tour with the lower cost. In this case, the cost of the tour is at most 9/5 times the

cost of the optimal tour.

1.2.2 CAPACITATED ARC ROUTING PROBLEMS

In the capacitated ARPs, the service delivery unit has limited capacity, more than one

unit might be required to serve the demand on all arcs or edges. Capacitated ARPs

are usually necessary to model real world situations accurately. Golden and Wong

(1981) defmed the capacitated version of the RPP known as the Capacitated Arc

Routing Problem (CARP). In this problem, given an undirected network, associated

with each edge (v, ,v j is a non-negative demand qu , in addition to the edge cost c.

A fleet of m homogenous vehicles with capacity Q is based at the depot. The CARP

consists of deten-nining a set of minimum cost cycles servicing all edges with positive

demand such that:

(a) every cycle starts and ends at the depot,

(b) the total demand of all edges serviced by any vehicle does not exceed Q, and

(c) each edge with a positive demand is serviced by exactly one vehicle.

If the edge demands qii are positive for all the edges in the graph, then the problem is

referred to as a Capacitated Chinese Postman Problem (CCPP).

Golden and Wong point out that the TSP and the VRP can be considered

special cases of the CARP. The constraint that a node must be serviced can be

incorporated into the CARP by splitting the node into two nodes joined by an edge

with cir 0 and qii = demand of the associated node. The authors also show that if

the edge costs satisfy the triangle inequality, the 0.5 approximation of the CCPP on a

tree network is NP-hard, i.e., the problem of finding a CCPP solution whose cost is

less than 1.5 times the optimal solution, is NP-hard. Sahni and Gonzalez (1976) have

shown that if the edge costs do not satisfy the triangle inequality, the a-approximate

version of the TSP is NP-hard for any finite a. Since the TSP and CCPP are both

special cases of the CARP, the results hold for the CARP too.

There are, however specific cases of the CCPP that are well-solved. Assad,

Peam, and Golden (1987) show that the CCPP on a single path with a homogenous

20

fleet and all edge demands equal to 1 is solvable in 0(1V)time. They prove a similar

21

result for the CCPP on a cycle graph with identical demands. They also show that the

CCPP on a complete network is solvable if edge demands are less than or equal to

WITTI if IVI is odd, and OVI —1) if IVI is even.

Just as the VRP can be transformed into a CARP, Pearn, Assad, and Golden

(1987) show that the CARP on an undirected graph can be transformed into a VRP.

The authors replace each edge (v„v3) with 3 nodes sii , mii , and sii . The set of

nodes in the VRP is N 	 E and qri > 0} , where v1 is the

depot in the CARP. Each of the nodes corresponding to the edge (v„ 	has a

demand of q /3. The distance between the nodes is defined as follows.

(cu + cki)/4 + p(vi ,vk) if (vi ,vi)# (vk ,vi)
0 	 if (vi ,vi)= (vk ,vi)

cl(su ,ski)=

cl(v1 ,su)=cii i4+p(v1,v1)

c /4 	-= su or si")
co 	otherwise

where p(vi ,v j) is the length of the shortest path from vi to vi in G. Note that due to

the way the distances are defmed, any middle node mii must always be visited by the

same vehicle that visits sy and sii , and in the sequence s , mii , sii or s ji , mii , sii .

It might not be practical to use this transformation to solve the CARP since

the resulting VRP has 3 R+1 nodes where 	 > o is the number of

edges with positive demand. Hence, in the following section, we look at a few exact

methods and heuristics for the CARP.

Formulation and Exact Method

Golden and Wong (1981) have proposed the following integer linear prog-ramming

formulation for the CARP. The decision variables are xuk and yuk . Xiik is equal to

22

1 if edge 	is traversed from vi to vi and 0 otherwise, and yuk is equal to 1 if

edge (y, ,vj is serviced while traveling from y; to vi and 0 otherwise.

minimize E E CijXijk
k=1 (v,,v,)EA

subject to 	 xiik ---- 0
EA

m

Yiik)= 1°1 iiff k=1

Xijk ?-. Yijk

Yijk W
(1)/ ,1". E A

(1.19)

V V . e V
k=1,...,m
	(1.20)

V(vi ,v)e E (1.21) 1

(1.22)

Vk=1,...,m 	(1.23)

2 S Xijk
v,,vieS

EEXiik
vi eSvi seS

S U kS +W k

U kS ,W kS E{0,1}

Xiik ,yek e {0,1}

	

VSOEV1{v1 };S=0; 	
(1.24)

V (vi ,vi 	E 	(1.25)

Constraints (1.20) state that at each node, every vehicle that comes in must go out.

Constraints (1.21) ensure that only the edges with positive demand are serviced.

Constraints (1.22) state that an edge is serviced by a vehicle if and only if it is

traversed by that vehicle. (1.23) are the vehicle capacity constraints and (1.24) are the

subtour elimination constraints. A subtour in S not connected to the depot could

satisfy constraints (1.20)-(1.23), but is not valid. Constraints (1.24) ensure that any

cycle traversed by vehicle k in S is connected to VIS and thus to the depot since,
s 	s Xek > 	1 	 = 1 wk =

A 	
> 1 .

ES 	 V, ES V JOS

23

Belenguer and Benavent (1991) have proposed another formulation using

undirected variables. (See Belenguer and Benavent 1991 or Eiselt, Gendreau and

Laporte 1995 for a description of the formulation.) They have also derived a number

of valid inequalities and have devised a branch and cut procedure to solve the CARF'.

Using this algorithm, they have solved two relatively small instances (IVI = 16, IAI =

26 and lvl = 24, IA1 = 34) optimally.

Heuristics

Since the CARP is NP-hard, researchers have developed a wide variety of heuristics

and lower bounds for it. The recent survey by Eiselt, Gendreau, and Laporte (1995)

provides a good overview of the work done so far in this area. These heuristics can

be classified into three categories:

1. Simple constructive heuristics: These are one-shot procedures with no local

improvement procedures. The five different heuristics that fall under this category

are as follows:

• The construct-strike algorithm proposed by Christofides (1973) and,

modified by Pearn (1989). This algorithm successively constructs feasible

cycles and removes them from the graph until all edges are covered. The

Christofides version uses a 1-Matching algorithm to keep the graph

connected at all times, while the Pearn version uses a minimum spanning

tree algorithm to connect the several components of the graph, and then

the matching algorithm to generate an Euler cycle.

• The path-scanning algorithm developed by Golden, DeArmon, and Baker

(1983), and modified by Pearn (1989). The Golden et al. algorithm

constructs feasible cycles one at a time using one of five different myopic

optimality criteria. The solution to the problem is the best among the five

solutions. Pearn uses a criterion at random, at each step of cycle

construction.

24

• The augment-merge algorithm by Golden, DeArmon, and Baker (1983)

which initially constructs a different cycle for each edge to be serviced,

and then combines different cycles using a savings criterion.

• The parallel-insert algorithm by Chapleau et al. (1984). This algorithm is

part of a school bus routing system which aims at reducing zigzag routes

in addition to minimizing the total routing cost. In order to achieve this

objective the algorithm that works like the path scanning algorithm,

constructs several routes in parallel.

• The augment-insert algorithm by Peam (1991). Peam developed this

algorithm specifically for sparse graphs with large edge demands. The

algorithm first creates feasible cycles using either a cost or a demand

criterion as long as it is possible. Once feasible cycles cannot be found,

the remaining edges are inserted into the existing cycles using a savings

criterion.

2. Two-phase constructive heuristics: The two types of heuristics in this category

develop cycles in two phases. The cluster-first, route-second heuristics (Win

1987, Benavent et al. 1990) first group the edges into clusters, each having a

weight of at most Q, and construct a vehicle route for each cluster during the

second phase. On the other hand, the route-first, cluster-second heuristics (Win

1987, Ulusoy 1985) construct a giant Euler tour over all edges with positive

demand first, and then partition the tour into feasible clusters.

3. Improvement heuristics: These are post-optimization heuristics that can be applied

to the solution obtained using any of the heuristics mentioned above. Ulusoy

(1985) mentions one particular scheme in his application. Hertz, Laporte and

Nanchen (1996) have developed a number of improvement procedures for the

undirected RPP which can be directly applied to the individual routes of a CARP

solution. Hertz, Laporte and Mittaz (1996) describe a procedure called POSTOPT

that combines all the routes of a CARP solution into a single tour and then cuts

this giant tour into smaller routes satisfying the capacity constraints, while trying

to determine a new CARP solution with a lower objective value.

25

4. Metaheuristics: Hertz, Laporte and Mittaz (1996) have developed CARPET, a

tabu search based heuristics for the CARP. CARPET minimizes the total cost of

traversing all the cycles. It incorporates some of the concepts contained in

TABUROUTE (Gendreau, Hertz, and Laporte 1994), a tabu search algorithm for

the VRP, and the improvement heuristics described in Hertz et al. (1994) and

Hertz et al. (1996). The basic move consists of moving an edge that requires

service from it current route to another route. The heuristic contains several

features of tabu search such as random tabu tags, self-adjusting penalties,

diversification by frequency counts, and intensification by applying the POSTOPT

local improvement procedure if the best known solution is not updated for a fixed

number of iterations. Computational results indicate that the algorithm is robust

and produces the optimal solution for several benchmark problems.

The performance of the heuristics can be measured in terms of the heuristic solutions'

deviation from the optimal solutions. Since it is difficult to obtain optimal solutions

for most instances of the CARP, most researchers use lower bounds to get an estimate

on the optimality gap. The following section describes several lower bounds for the

CARP.

Lower Bounds

Benavent, Campos, Corberân, and Mota (1992) provide a review and comparison of

all the lower bounds that researchers have developed for the CARP. Golden and

Wong (1981) were the first to suggest a matching based lower bound (MLB). In this

bound, the authors use m as a lower bound on the number of

vehicles needed in any solution to the CARP. Since any solution to the CARP has at

least m cycles, each passing through the depot, the degree of the depot has to be

increased from d1 (degree of the depot) to 2m. Hence, the basic idea is to construct a

matching graph and obtain a minimum cost augmentation of G to ensure that the

graph is even.

26

Let Â. = 2m - d1 if d1 is even, and 2m - d1 -1 if d1 is odd. The matching graph

consists of S, the set of vertices in G that have an odd number of edges with non-zero

demand incident to them, and two sets of artificial vertices A = (ai ,...,a2 } and

B = 	. Each of the artificial vertex represents a copy of the depot. The

authors define a matching graph H = u Au B, D) and define the cost of the edges

as follows:

• If vi , vi E S , then cy = length of the shortest path between nodes vi and vi

• If v E S and vi e A, then cy = length of the shortest path between the depot and

vi

• If vi e A and vi B, then cy =the length of the shortest edge out of the depot.

• If vi e B and vi E B, then d = O.

The basic idea is to match vertices of odd degree to nodes in set A (copies of the

depot). If all the nodes in A are not paired with nodes in S (since some of the nodes in

S might be matched with one another), then they are matched with nodes in B.

Finally, any unmatched nodes in B are matched with each other. We do not connect

the nodes in A with one another using edges of length 0, since this would be counter-

productive to the idea of matching nodes in S to the depot. If z(H) is the value of the

minimum cost 1-matching on the matching graph, then Golden and Wong show that

MLB = z(H)+ 	cif (1.26)

is a valid lower bound for any optimal solution to the CARP.

Assad, Pearn, and Golden (1987) describe a node scanning lower bound

(NLB) for the CCPP. In this case, the authors increase the degree of the depot by

adding minimum cost paths from the nodes to the depot. They add the shortest path

first and continue in the increasing order of path lengths. Let cu denote the length of

27

the shortest chain between nodes vi and v • and di denote the degree of node vi , and

let vertex v1 denote the depot. The algorithm can be described as follows.

• Renumber all the vertices in non-decreasing order c/1 , .

• Let / m where i is defmed as in the matching based lower
i=2

bound. Reset di = .1-Edi and calculate NLB as
i=2

NLB = 	c y.. 	 (1.27)

Since we need to add 1 paths to the given graph, we start with the vertex vi with the

lowest value of c/1 , and add di paths from this vertex to the depot. We continue the

process until 1 paths are added. The result can be extended to the CARP by

considering the graph induced by the edges with positive demand. Pearn (1988) has

proposed a lower bound that combines the ideas behind these two methods and shows

that it dominates MLB. Win (1987) has also developed several lower bounds that

dominate MLB.

Benavent et al. (1992) have compared all these bounds and have developed

four different lower bounds. Three of these bounds require solving a minimum cost

matching problem, and the fourth is a dynamic programming algorithm producing a

lower bound. Their computational results show that one of their lower bounds that

solves a minimum cost matching problem, LB2 outperforms the others based on

quality of the bound and computational time. LB2 and the bounds proposed by Win

improve upon MLB by considering the number of vehicles required for certain

subgraphs, and not just the vehicles necessary to cover the whole graph. For a

detailed discussion of all the bounds, see Benavent et al. In the next section, we

provide an overview of several application areas for ARPs. For each application area,

we present a few of the significant real-world applications.

28

1.2.3 APPLICATIONS OF ARC ROUTING

Arc routing problems have a wide variety of applications. Most problems occur in the

delivery of services like snow plowing, garbage collection, and mail delivery. In most

applications, it is not necessary to service all arcs of the graph. In addition, more than

one vehicle or person is necessary to deliver the service and several additional

constraints might have to be incorporated. Considering all these, the most useful

problem for modeling real world situations is the CARP. However, the RPP and the

CPP might be subproblems in many situations and an understanding of these

problems would help in developing algorithms.

The CPP has been used to model practical problems in a few situations.

Malek, Mourad, and Pandya (1989) show how the topological testing of computer

systems can be modeled as a CPP. The authors form a graph in which the nodes

represent the hardware (processors, registers, etc.) for the specific level at which

testing is to be done, and the arcs represent the data flow. They achieve the objective

of sending a testing packet traversing all the arcs and vertices in minimal time by

finding an Eulerian circuit on the underlying graph.

Barahona (1990) describes several applications that are similar to the CPP.

One of the problems is in the design of VLSI circuits. Here, the chip components are

arranged in two layers. Wires connecting the components must be assigned to the

layers such that they do not cross each other on the same layer, but may go from one

layer to another through special connections called vias. The objective is to minimize

the number of vias. The author shows that one can construct a planar graph in which

the vertices correspond to wire end points and crossings and edges correspond to

sections of wire between these. The number of vias is minimized by determining the

smallest number of edges to remove to make the graph bipartite.

Garbage Collection

Garbage collection is one of the most essential and common applications of arc

routing. Beltrami and Bodin (1974) discuss the overall procedure adopted for

29

developing garbage collection routes for New York City. They first address the issue

of location of dumpsites and assignment of days to streets. Then they form the actual

collection routes to minimize total deadheading. They use a route-first, cluster-

second heuristic. Bodin, Fagin, Welebny, and Greenberg (1989) give the computer

implementation details of this project. Clark and Gillean (1975) and Clark and Lee

(1976) describe the results of a similar study conducted in Cleveland, Ohio. McBride

(1975) addresses the problem of reducing the number of left and U-turns while

routing garbage collection trucks. Turner and Hougland (1975) present another study

performed at Blacksburg, Virginia.

Mail Delivery

ARPs in the context of mail delivery have been studied well in Canada and the United

States. Roy and Rousseau (1989) explain that in the Canadian Postman Problem, the

letter carrier starts and ends his work day at the post office. From the post office,

each postal carrier travels to a depot to start his route. Travel times to and from the

post office are included in the work day. The routes are not constrained by the

capacity of a postal bag since relay boxes are conveniently located along the route.

Bouliane and Laporte (1992) study the problem of locating relay boxes. In addition to

the routing, since the problem deals with the location of the depots for each carrier, it

is viewed as an arc oriented location-routing problem. Levy and Bodin (1988, 1989)

also view the US post problem as a location-routing problem. In this case, the

concept of relay boxes does not exist. So, routes have to be developed taking into

consideration the maximum load of a postal bag. Levy and Bodin describe that the

problem consists of partitioning the arcs into balanced clusters and then locate depots.

The letter carrier drives to a depot, delivers mail to an adjacent cluster, returns to the

depot, and continues with all adjacent clusters in a similar fashion. He then drives to

another depot and continues till the end of the work day.

30

Meter Reading

In this application, meter readers periodically visit and read the meters of customers in

their service area. Stern and Dror (1979) describe the problem as an m-postman

problem where the objective is to minimize m and design routes that satisfy maximum

duration constraint. Their heuristic algorithm provides a 40% reduction in the

number of tours on data from the city of Beersheva in Israel. Wunderlich, Collette,

Levy and Bodin (1992) describe a computerized system implemented for the Southern

California Gas Company.

School Bus Routing

Another application area is school bus routing. Here the objective is to minimize the

number of buses and the total distance traveled by all the buses. This problem usually

involves a number of additional constraints on several issues such as the number of

students in the bus, the time spent by a student in the bus, and student mix, just to

mention a few. Desrosiers, Ferland, Rousseau, Lapalme, and Chapleau (1986) have

developed an algorithm based on column generation to schedule buses for 60 schools

and 20,000 students. Braca, Bramel, Posner and Simchi-Levi (1993) describe a

computerized system for routing and scheduling school buses throughout the five

boroughs of New York city. Earlier studies on school bus routing include Bennet and

Gazis (1972), Bodin and Berman (1979), and Swersey and Ballard (1984).

Snow Plowing

Snow plowing is an interesting and important arc routing application. Typically, the

roads have different priority levels and the roads with higher priority have to be

cleared before the roads with lower priority. This problem has been defined as the

Hierarchical Postman Problem by Dror, Stern, and Trudeau (1987). Haslam and

Wright (1991) have developed an algorithm for snow and ice control in Indiana.

Lemieux and Campagna (1984) describe a similar problem and address several

additional issues such as the composition and size of the fleet and the number and

31

location of service centers. Cook and Alprin (1976) have developed an algorithm for

routing sait spreader trucks in Tulsa, and Eglese and Li (1992) have studied the

gritting operations for the Lancashire County Council in England.

Street Sweeping

One of the unique aspects of street sweeping is that streets can be swept only during

particular time slots when parking is prohibited on the street. Bodin and Kursh (1978,

1979) describe a study performed in New York City and Washington, D. C. They

have developed a computerized system to develop routes for a given time slot such

that the work is balanced among the fleet of sweepers and all streets are provided

sufficient coverage. Eglese and Murdock (1991) present a study where the

availability of the streets for sweeping is not constrained by parking regulations. They

point out that in their study all streets can be considered as two way streets as opposed

to the study by Bodin and Kursh.

1.2.4 STOCHASTIC NODE ROUTING

Most of the current research on arc routing addresses ARPs in a deterministic context.

In this thesis, we define the Stochastic Eulerian Tour Problem (SETP) and investigate

several characteristics of the problem and develop heuristics to obtain good solutions.

In order to gain an understanding of the work done on the equivalent node routing

problem, we present a brief summary of the literature on the Probabilistic Traveling

Salesman Problem (PTSP). For a recent survey of most stochastic VRPs, see

Gendreau, Laporte and Séguin (1996).

The stochastic version of the TSP arises when some elements of the problem

are random. For example, the travel times between nodes can be stochastic or the set

of customers or nodes to be visited can be random. We concentrate on the TSP with

stochastic customers. Generally, stochastic programs are modeled in two stages. The

first stage consists of determining an a priori solution to the problem. For any given

instance of the problem, in the second stage, a corrective action or recourse is applied

32

to tailor the first stage solution. The cost of this action is also generally figured while

determiiiing the a priori solution that minimizes the total expected cost. This is the

basic idea behind a stochastic program with recourse.

Jaillet (1985) introduced the TSP with stochastic customers as the PTSP. It is

essentially a TSP where each vertex vi is present with a probability pi , and hence the

number of vertices to be visited is a random variable. Consider a problem of routing

through a set of n known points. On any given instance of the problem, one needs to

visit only a subset consisting of k (0 k n) points. The recourse action Jaillet uses

is to follow an a priori tour and simply skip absent customers. Under the assumption

that pi= p for all vertices, Jaillet derives closed form expressions for computing the

expected length of a tour. He also derives bounds and several interesting properties of

the problem. Most of the results in billet (1985) are summarized in billet (1988),

and Jaillet and Odoni (1988).

Jaillet shows that an optimal TSP tour can be arbitrarily bad for the TSP with

stochastic customers. He also shows that an optimal tour for the TSP with stochastic

customers may intersect itself in the Euclidean plane. This is in contrast to what

holds for optimal TSP tours. These results indicate that algorithms have to be

developed specifically with the stochastic problem in mind. Jaillet has developed a

number of heuristics by suitably modifying several well-known TSP heuristics such

as the Clarke-Wright (1964) algorithm and tour merging algorithms. Rossi and

Gavioli (1986) present computational results after having tested three of Jaillet 's

heuristics.

Bertsimas (1988) and Bertsimas and Howell (1993) have developed a few

more heuristics based on probabilistic 2-opt edge exchange, vertex moves within a

tour, and space filling curves (Bartholdi and Platzman 1982). Laporte and Louveaux

(1993) have developed a branch and cut algorithm called Integer L-Shaped method

that is applicable to many stochastic programs with recourse. Laporte, Louveaux and

Mercure (1994) have applied this method to the stochastic TSP and solved instances

with up to 50 vertices optimally.

33

1.3 OBJECTIVES OF THIS RESEARCH

The general objective of ARPs is to determine a least cost traversal of a specific

subset of edges of the graph, with or without additional constraints. As described

earlier, these problems occur in a wide variety of practical contexts. This research

addresses two specific problems in arc routing that have excellent application

potential.

The first problem that we consider is the CARP. The CARP is one of the

most important problems in arc routing due to its presence in applications such as

snow plowing, street cleaning, garbage collection, mail delivery, and many others.

The CARP is a very hard problem, and it is quite unrealistic to believe that exact

procedures can be used to solve even average sized problems. Researchers have

developed several heuristics for the CARP. Most of these heuristics are simple one-

shot heuristics. Also, each heuristic tends to perform well on specific types of graphs.

As described earlier, Hertz, Laporte and Mittaz (1996) have developed a tabu search

based heuristic, CARPET, for the CARP. 	This incorporates several local

improvement procedures and outperforms the earlier heuristics for the CARP.

Tabu search first proposed by Glover in 1986, is a metaheuristic that makes

use of memory structures and exploration strategies based on information stored in

memory to search beyond local optima. (See Glover 1989, 1990 and Glover, Taillard,

and de Werra 1993 for recent overviews.) Here, the procedure repeatedly moves from

one solution to the best among its neighboring solutions.

The objective of CARP is to produce a solution that has the minimum

traversal cost. However, in many practical situations, in addition to minimizing the

total cost, a secondary objective of balancing the total work load (demand) fairly

equally among the routes plays an important role. We consider this secondary

objective also in our heuristic and try to produce solutions that balance the work load

of the least cost.

We feel that it is quite important to incorporate this feature, since most

applications such as mail delivery, meter reading, and garbage collection require work

load balancing. In a real world scenario, if the existing algorithm considers only the

34

total cost, generally, the planner revisits the solution and moves demand among the

various routes myopically in order to balance the load. On the other hand, our

procedure aims to be a little more global and builds this additional feature into the

algoritlun, and hence can serve as a useful planning tool for several arc routing

applications.

The second problem that we consider in this thesis is the Stochastic Eulerian

Tour Problem (SETP). The SETP arises when the set of edges that have to be visited

on any particular day is random. The investigation of this problem was actually

motivated by the existence of a real world problem. In the UK postal system, the

carriers deliver mail a second time in the afternoon when the number of streets to be

visited is very small and varies from day to day. Given this scenario, the mail carrier,

while following his regular route, usually skips the streets that do not require a visit.

Given an Eulerian graph, it is important to note that there may be more than

one Eulerian tour for a given graph. However, all these tours have the same cost and

hence there is no optimization involved in the deterministic Eulerian Tour Problem.

However, for the SETP, each tour has certain advantages and disadvantages with

respect to skipping edges, and thus has different expected lengths. Thus, given an

undirected graph G = (T 7 , E) where all the edges in E VI= n) require service, a

distance matrix D, and a probability distribution for the number of required edges

present, the SETP seeks an a priori Eulerian tour of minimum expected length.

The SETP has not been investigated in the literature thus far. We feel that it

plays an important role in scenarios where the number of edges to be visited each day

is random and smaller compared to the total number of edges that require service.

This motivates our investigation of this problem and its properties. We show that the

SETP is NP-hard, and hence it is not possible to solve realistic sized problems

optimally using algorithms that would run in polynomial time. Hence, this thesis also

concentrates on the development of heuristic algorithms specifically for the SETP.

35

1.4 ORGANIZATION OF THE THESIS

As an introduction and motivation for the thesis, this chapter provided a review of

some of the basic literature in arc routing, and additional literature that is most

relevant to the proposed research, and finally the objectives of the three papers. The

review began with the origins of research on ARPs and then presented an overview of

the literature on uncapacitated ARPs. While the undirected and directed CPP are

solvable in polynomial time, the other uncapacitated ARPs are combinatorially hard.

Exact methods and heuristics have been developed for these problems using the

conditions for unicursality. Most of the exact methods are adaptations of algorithms

for NRPs, and do not seem to perform as well as they perform on the NRPs.

The next section presented a discussion of the CARP and related research. It

highlighted the CARP as an important and difficult problem and described several

lower bounds and heuristics. The following two sections discussed the literature on

arc routing applications and the PTSP.

This literature review attempted to provide an understanding of the research

done in the area of arc routing. The overview of arc routing applications helps us

understand the prevalence of CARP applications in several everyday problems. Many

of the applications also have the inherent requirement of developing fairly equally

loaded cycles or route. This motivated the first problem that we address in this thesis.

Chapter 2 presents TABUCARP, the tabu search based heuristic for the

CARP, that considers work load balancing as a secondary objective. TABUCARP

drops (adds) one or more edges from a route that is over (under) capacity to a

neighboring route. The algorithm continuously moves capacity excesses and deficits

towards the depot. We describe the several features such as self-adjusting penalties,

random tabu tags, and adaptive memory incorporated in our algorithm. We also

present computational results on a set of benchmark problems and another set of

random problems. The results indicate that while our solutions are similar to

CARPET's solutions on the benchmark problems, the total distance traversed by

TABUCARP solutions for the random problems is 2.78% greater when compared to

that of CARPET solutions. However, this deterioration in the objective function

36

value is marginal when we consider the fact that the routes produced by TABUCARP

are better balanced thon the routes produced by CARPET.

We defme the SETP in Chapter 3. We derive a closed form expression for the

expected length of a given tour when the number of present edges follows a binomial

distribution. We also show that the SETP is NP-hard, even though the deterministic

countelpart is solvable in polynomial time. We derive further properties and a worst

case ratio for the deviation of the expected length of a random Eulerian tour from the

optimal tour in the expected sense. Finally, we present some of the desirable

properties in a good a priori tour using illustrative examples.

Chapter 4 describes three heuristics for the SETP. The first heuristic is a

simple greedy heuristic that determines the next edge to service based on the increase

in the expected length by adding that edge. Finally, based on the order of visiting the

edges, the heuristic constructs the actual Eulerian tour. The second heuristic is a

modification of the first heuristic. This heuristic constructs the actual tour while

adding the edges. It starts at the designated depot and determines the next edge to

service among the edges adjacent to the depot, as the one that results in the minimum

increase in the expected length when appended of the end of the tour. The process

continues until all edges are added to the tour. The third heuristic takes advantage of

the results from Chapter 3. The heuristic constructs several small sub-tours and then

concatenates the sub-tours to form the a priori Eulerian tour. We also use a post-

optimization procedure that is a modification of the US procedure proposed by

Gendreau et al. (1992) for the TSP.

We present computational results comparing the performance of the three

heuristics and also, comparing the expected length of the tours with that of a random

Eulerian tour. Our computational results indicate that the sub-tour construction

heuristic along with the post-optimization procedure consistently produces good tours

for grid networks, while the second heuristic and the post-optimization procedure

seems to be better for general Euclidean networks. Finally, Chapter 5 summarizes the

results and contributions of this thesis and presents directions for future research.

CHAPTER 2

TABUCARP: A TABU SEARCH ALGORITHM
FOR THE CAPACITATED ARC ROUTING
PROBLEM WITH WORK LOAD BALANCING

2.1 INTRODUCTION

Arc routing problems play an important role in distribution management, and occur in

a wide variety of practical problems such as mail delivery, school bus routing, snow

clearance, street sweeping, garbage collection, and several others where streets have

to be traversed for performing work. This chapter presents a tabu search heuristic for

the Capacitated Arc Routing Problem (CARP), one of the most important problems in

the area of arc routing. We can define the CARP formally as follows. Let G =(v, E)

be a graph where V = {vo, 	vn } is the vertex set and E ={(1,,,v): i # j} is the

edge set. A fieet of m identical vehicles of capacity Q is based at the depot v0 . The

value of m is either fixed at a constant or bounded above by riz . Each edge (y, ,v

has a non-negative demand qu and cost cassociated with it. The CARP consists of

determining a set of minimum cost cycles traversing all edges with positive demand

such that:

(a) each cycle starts and ends at the depot,

(b) the total demand of all edges serviced by any vehicle does not exceed Q, and

(c) each edge with a positive demand is serviced by exactly one vehicle.

Note that a vehicle may traverse an edge without servicing it.

38

As mentioned above, the CARP (usually with additional side constraints)

occurs in many practical day-to-day problems. In several realistic situations, in

addition to developing minimum cost solutions, the concept of balancing the work

load among the cycles plays an important role. For example, when developing routes

for letter carriers or meter readers, the planner would like to assign a fairly equal

amount of work to each member or the crew. The union regulations might also

require this. Hence, it becomes an important practical consideration. Hence in our

research, we consider work load balancing as a secondary objective for the traditional

CARP.

The CARP is known to be NP-hard, and hence, researchers have developed a

wide variety of heuristics and lower bounds for it. The recent survey by Eiselt,

Gendreau, and Laporte (1995) provides a good overview of the work done so far in

this area. We also provided a brief review of the several simple and two phase

constructive heuristics and the lower bounds for the CARP in the previous chapter.

The chapter also provided a description of CARPET, a tabu search based heuristic

for the CARP developed by Hertz, Laporte, and Mittaz (1996). CARPET minimizes

the total cost of traversing all the cycles. Computational results indicate that the

algorithm is robust and produces the optimal solution for several benchmark

problems. However, their basic moves that guide the search do not consider the

additional factor of balancing the workload among the various cycles.

Tabu Search (TS) is a metaheuristic that makes use of memory structures and

exploration strategies based on information stored in memory to search beyond local

optima. (See Glover 1989, 1990, Glover and Laguna 1997 and Glover, Taillard, and

de Werra 1993 for recent overviews.) Here, the procedure repeatedly moves from one

solution to the best among its neighboring solutions. The procedure accepts non-

improving moves at certain circumstances to get away from local optima. In this

situation, to prevent cycling, certain moves are temporarily forbidden and inserted

into short term memory in a tabu list which is updated constantly. Two important

strategies that use long term memory to improve the search process are intensification

and diversification. Intensification is based on the idea that a good solution will be

39

more likely to lie within a promising region. An example of simple intensification

can be simply retuming to the best solution found so far and search around it more

thoroughly. The purpose of diversification is to cover larger regions of the solution

space. Diversification can be carried out simply by partially or fully re-starting the

search process. Frequency-based memory can be useful in diversifying the search by

penalizing frequently performed moves so that exploration towards regions not visited

in previous search will be encouraged.

Researchers have used TS successfully to find very good solutions to several

combinatorially difficult problems. Three main areas of application are production

scheduling, graph theory, and vehicle routing. In the area of production scheduling, a

number of TS heuristics have been developed for the flowshop sequencing problem

(Widmer and Hertz 1989, Taillard 1990, Daniels and Mazola 1993). Dell'Amico and

Trubian (1993) and Brandimarte (1993) have developed tabu heuristics for the job

shop scheduling problem. Hertz and de Werra (1987) used TS techniques for graph

coloring. Friden, Hertz, and de Werra (1989, 1990) have developed a very good TS

heuristic for finding stable sets in large graphs and a TS based exact algorithm for

determining the maximum independent set in a graph. Gendreau, Soriano, and

Salvail (1993) present an efficient TS heuristic for fmding maximum cliques in a

graph. In the area of vehicle routing, several TS heuristics have been developed for

the vehicle routing problem (VRP) and the VRP with time windows. Several

researchers have developed TS heuristics for the VRP including Pureza and França

(1991), Osman (1991, 1993), Semet and Taillard (1993), Taillard (1992), Gendreau,

Hertz, and Laporte (1994), and Rego and Roucairol (1996). Some of these algorithms

have produced impressive results. For the VRP with time windows, the TS heuristics

by Potvin, Kervahut, Garcia, and Rousseau (1996) and Taillard, Badeau, Gendreau,

Geurtin, and Potvin (1997) produce near optimal solutions. As mentioned earlier,

Hertz, Laporte, and Mittaz (1996) have developed an efficient tabu search heuristic

for the CARP.

In this chapter, we present TABUCARP, a tabu search heuristic for the CARP.

There are several differences between TABUCARP and CARPET. TABUCARP

40

considers the additional objective of balancing work load among the various cycles.

Hence the basic move strategies are different for the two algorithms. We present a

detailed description of the basic definitions and the various components of the

neighborhood search technique in Section 2.2. Section 2.3 presents a description of

the TABUCARP heuristic. We provide the computational results in Section 2.4, and

conclusions in Section 2.5.

2.2 TABU SEARCH TECHNIQUE

The central idea of any TS heuristic is the iterative local search procedure that moves

from a current solution to one of its neighbors. This local search advances keeping

the objective of the problem in perspective. The overall objective of our problem is to

develop minimum cost feasible cycles such that the work load (demand) is balanced

among the cycles. In order to achieve this objective, we try to move the capacity

excess or deficit from one cycle to another neighboring cycle. We start with the

cycles that are farthest from the depot and work towards the depot. Thus, we try to

move all the deficits and excesses among the cycles while attempting to balance the

work load among cycles.
With this overall methodology in mind, we defme the following to help us

describe the basic procedures that we use in our search. A solution S to the CARP

consists of m cycles C1, C2 ,...,Cm . A solution might contain empty cycles also. If

all the m cycles of a solution S satisfy the capacity constraint, then solution S is

feasible. If one or more cycles violate the capacity constraint, the solution S is

infeasible. Edges that are serviced by cycle Ck are called service edges on cycle Ck ,

and all the other edges on the route that are just traversed are called non-service edges

on cycle Ck . Cycle Ck is represented as Ck = (Pout (k) 5 Pk 5 P (k)) 5 where

Pout(k) =
	the path from the depot to the first service edge on cycle Ck ,

containing only non-service edges

Pk
	the path from the first to the last service edge on cycle Ck

41

Pifl(k) = 	the path from the last service edge on cycle Ck to the depot,

containing only non-service edges.

Let d„,(k) and dout(k) be the length of the paths Prn (k) and Pouf (k) respectively. Note

that an edge may appear more than once in a cycle. Let no, be the number of times

an edge 	v appears in a cycle Ck , and Ek be the set of edges with positive

demand that are serviced on cycle Ck. For each cycle, we also define a distance

measure, dk , to keep track of the cycles proximity to the depot. We define the

distance measure of cycle Ck as dk = max(1, max(c 1 ,,,(k),c 1 ou,(k))). We next describe

some of the main components of the tabu search procedure.

2.2.1 OBJECTIVE FUNCTION

The objective ftmction value F1 (s), of any feasible solution S is

Fi(S) = E 	nuk
k 	(v, ,v;C

(2.1)

where (v1, vi E Ck means edge (v„vi is part of cycle Ck . We define a cycle Ck to

be violating capacity if the total demand served on this cycle is more than the capacity

Q or less than a threshold t, where t is a parameter. The tabu search procedure allows

capacity violation at a cost. In this case, we define the cost of violation as the

weighted sum of the distance measure times a penalty for capacity violation, over all

cycles. For a solution violating capacity, let F be the set of cycles that are over

capacity and D be the set of cycles with demand less than t. In case of a solution S

violating capacity, the objective function value F2 (s) can be written as

(

F2(S) 	(S) E dka,
CkEF V; Ek 	

Q E d/flic , 	, e D
t- 	q if (2.2)

42

where ak and ßk are positive penalties for cycles violating capacity. ak denotes the

penalty for the cycles that are over capacity and ßk denotes the penalty for cycles

serving demand less than t. Note that when a solution S is feasible and the cycles are

balanced, FaS) = F2 (s). Let F1* and F; denote respectively the lowest values of

F1(S) and F2 (s) obtained during the search, S* be the best known feasible solution,

and :§* be the best lcnown solution (feasible or not).

2.2.2 PENALTY FUNCTION
The penalty function is of the form shown in Figure 6. The function consists of two

parts — one corresponding to cycles that are over capacity and the other to cycles that

serve a total demand of less than t. The penalty for over capacity is more than the

penalty for under capacity.

y-

t-3 t-2 t-1 t 	Q Q+1 0+2 Q+3

Durand served on cycle

Figure 6. Penalty Function

Note that the slope of the penalty fimction for cycles that are over capacity (0.5) is

twice that of slope of the penalty function for cycles that are under capacity (0.25). If

the demand served by a cycle Ck is in the interval [t, Q], that cycle does not incur any

penalty. If the demand served is —1) or (Q +1), the cycle incurs a penalty of 1. If

the demand served is less than —1) or greater than 	+1), then the penalty

43

incurred depends on the demand served on the cycle and the slope of the fimction. We

set the threshold t =1-0.9 Q1.

We also use self-adjusting penalties as in Gendreau et al. (1994). Every

iterations, if all previous 2 iterations were feasible, we set a=a1 2 and ,6 = 61 2,

and thus the penalty coefficients are halved. We double the penalty coefficients by

setting a= 2 a and A' = 2ß if all of the previous 2 iterations were infeasible. This

helps the search procedure to produce a mix of feasible and infeasible solutions.

Based on initial experimentation, we set the value of Ä. =5 in our implementation.

2.2.3 BASIC MOVES

The basic move in our heuristic consists of moving a path with at least one service

edge from the current cycle to one of the other cycles in the solution. In the rest of

this chapter, we refer to a cycle that is over capacity as an excess cycle and a cycle

that is under capacity as a deficit cycle. Given a solution S, we move to a neighboring

solution using one of the following moves:

• drop move: move a path containing at least one service edge out of an excess

cycle into one of its neighboring cycles;

• add move: move a path containing at least one service edge into a deficit cycle

from one of its neighboring cycles.

Next we describe the steps involved in the drop and add moves in detail.

Given a solution S, we pick the cycle with the maximum distance measure as

the candidate cycle Ck and a drop or add move is performed based on the total

demand served by this cycle. We perform a drop move if the candidate cycle is an

excess cycle and an add move if it is a deficit cycle. If the cycle with the maximum

distance measure is at capacity, we pick the next farthest. If all the cycles are at

capacity, we perform a perturb move so that the search will not be stalled. The

perturb move picks the cycle with the least distance measure as the candidate cycle

and drops the service edge with the least demand from this cycle into one of its

neighboring cycles, and the search continues.

44

It is important to defme the neighborhood of a solution precisely in order to

guide the search process. At each step, one of the options is to perform an exhaustive

search of the neighborhood. But this option could be very expensive in terms of

computation times. So, we evaluate a reduced neighborhood of the solution at each

step. However, we have to be careful not to limit the size of the neighborhood

excessively, since this could eliminate good solutions from being examined. We next

describe the steps used to defme the structure of the neighborhood in TABUCARP.

2.2.4 NEIGHBORHOOD STRUCTURE

Given a solution S and a candidate cycle Ck in S, we consider only a subset of all the

cycles in S for evaluating the next move. Specifically, we choose the set of all cycles

such that I dk - 	å, where 6 is a parameter, as the set of neighboring cycles

of cycle Ck . If the given solution S has less than m cycles, we include an empty cycle

in the set of neighboring cycles. We define parameter 8 as the average distance of all

service edges from the depot, where the distance of an edge from the depot is the

maximum of the shortest path distances to its extremities.

If the candidate cycle Ck is an excess cycle, then we have to perform a drop

move. We consider all the paths starting with an edge served on the candidate cycle

and with total demand on the path less than or equal to w, where w = (total demand

served on the candidate cycle Ck —the threshold t). Among these paths, we randomly

choose q paths for evaluation. For each one of the q paths, we drop the path from

cycle Ck and add it to each one of the neighboring cycles in turn using the DROP and

ADD procedures described in Hertz et al. (1996b). We provide a summary of the

DROP and ADD procedures at the end of this sub-section. The set of solutions thus

generated forms the neighborhood of the current solution S.

If the candidate cycle Ck is a deficit cycle, then we have to perform an add

move. In this case, we randomly choose q paths from each of the neighboring cycles

for evaluation. The candidate paths have to start with an edge serviced on the

45

neighboring cycle and the total demand on the path has to be less than or equal to w,

where w = (Q — total demand served on cycle Ck). We drop each of the q paths from

the neighboring cycles and add it to the candidate cycle Ck , and the neighborhood of

the current solution S consists of the set of all solutions generated thus.

The DROP and ADD procedures use another procedure terrned SHORTEN.

Given a cycle Ck =(1,0 	 =V0) starting and ending at the depot and

serving a set of edges Rk , this procedure tries to identify a shorter cycle Ci starting

and ending at the depot and serving the same set of edges, but not necessarily in the

same order. We introduce an artificial depot vio connected to v0 , and a service edge

(vo ,) of zero demand and zero cost, so that vo does not get deleted while

perfonning the SHORTEN procedure. We first provide a detailed description of

procedure SHORTEN.

Procedure SHORTEN
Step 1: Set r 1 and C'k +— C k

Step 2: Set s 	1 and Ck = 	= 	jir+i = 	= v js). Let bu = Oforall

edges (y, , vs/)e C , and au = the number of times an edge (v„vi)e Rk

appears in C. .

Step 3: If (vis ,vis+,)e Rk ,

b.,, 	and b
J S, S+1 	 35+1.38

smallest index h

< a 	—

go to Step 4. Else, if bis , j,, < a _I, j• s+, —1, then increment

by 1 and go to Step 4. Otherwise, attempt to find the

> s such that V h = v - , and either)e Rk or

1. 	If no such index exists, stop. 	Otherwise, if
fh-1 	jh 	ih-1 jh

,Vjh)E Rk , increment b jhl fh and b jh fhl
by 1. Reverse the chain

(vis ,...,vih) in Ci .

Step 4: Set s 	s +1 . If s = t, go to Step 5, otherwise go to Step 3.

46

Step 5: Let Ci,' =(11 =V is 	 =Vis). If Ec i 	< the length of the
h=1

shortest chain between vii and vis , go to Step 7.

Step 6: Let P 	 =vis) be the shortest chain used in Step 5. Set

t<—t—s+p, and r<— 1. Go to Step 2.

Step 7: If r=t— 1 , stop. Otherwise, set r‹—r+1 and go to Step 2.

Given a cycle Ck and a starting vertex indexed by r, steps 2 through 4 of the

procedure attempts to find another vertex vis such that all the edges of Rk appear at

least once in the chain following vis . If we identify such a vertex, we can replace the

chain from v 1 to vis with a shorter chain consisting of non-service edges, if one is

available. We repeat this procedure using each vertex in the cycle Ck as the starting

vertex of the cycle in an attempt to produce a shorter cycle. We next provide detailed

descriptions of procedures DROP and ADD as in Hertz et al. (1996).

Procedure DROP

Given a cycle Ck and a path P on this cycle with at least one service edge, this

procedure moves all the service edges on this path from Rk to E, and then applies

procedure SHORTEN to the resulting cycle.

Procedure ADD

Given a cycle Ck and a path P=(vki ,v4 ,...,vir)s) on another cycle C1 with at least

one service edge, the procedure adds this path P to cycle Ck . 	Thus,

Rk = Rk l) {the service edges on path P}.

Step 1: If all the service edges in P are already in Rk , stop.

47

Step 2: If either vki or v/5. (say vki) or both vertices appear in Ck , replace

Ck =(1, 	 with Ck =(Vii ,...,V ki ,V k2 ,...,V kp ,...,V i,). 	Go to

Step 4.

Step 3: If neither vki or vk, appears in Ck , find the vertex v of Ck yielding

min 	{c jr, 	
C jr.kp } . Set Ck

Step 4: Apply procedure SHORTEN to the cycle Ck .

2.2.5 TABU MOVES

When a path containing a set of service edges is moved from a cycle Ck to another

cycle Cl , each one of the edges in the path cannot be moved back from cycle C/ to

cycle Ck for 0 iterations. In order to determine the value for 8, we use the idea of

random tabu tags described in Gendreau et al. (1994). 0 is a randomly selected

integer in the interval Omin = 5 and Orna), = 10.

2.2.6 STOPPING RULE
The local search procedure terminates if FI. or F2* have not decreased for LS max

consecutive iterations. The actual value for LS max is set to be IRI , where R is the set

of edges with positive demand, in our implementation. We next provide a detailed

description of the tabu search procedure, which is the main part of algorithm

TABUCARP.

2.2.7 TABU SEARCH PROCEDURE

The tabu search Tabu _Searce, LS max) starts with a given solution S and

terminates based on the parameter LSmax . We also use a post-optimization procedure

that is an adaptation of the Unstringing-Stringing (US) procedure developed by

48

Gendreau et al. (1992) for the TSP. Hertz et al. (1996) call this adaptation as DROP-

ADD and use it for the undirected rural Postman Problem.

Given a cycle C k procedure DROP-ADD attempts to fmd a cycle C'k serving

the same set of edges by successively removing the service edges from the cycle and

then adding them at the best possible position. This procedure uses the DROP and

ADD procedures described earlier to remove and insert edges into a cycle. The post-

optimization procedure DROPs the first service edge from the given cycle and then

ADDs this service edge back to the shortened cycle. If the length of the resulting

cycle is less than the original cycle, we start again with the first service edge on the

resulting cycle. Otherwise, we continue with the remaining service edges until all

service edges are dropped and added. We next provide a step by step description of

the tabu search procedure.

Step 0: Initialization

Set iteration count ,u <-1. Consider solution S. Calculate the distance measure and

penalty for all cycles. If S is feasible, set Fi* 4— F (S) and S* <— S. Set F2* E- F2 (S)

and Š* ‹— S. No move is tabu.

Step 1: Candidate Cycle Selection

Consider solution S and pick the candidate cycle C k as described in Section 2.2.3.

Step 2: Evaluation of Candidate Moves

• If cycle C k is an excess cycle perform a drop move, else if it is a deficit cycle,

perform an add move, else perform a perturb move. Generate all the neighbors

S of S as described in Section 2.2.4.

• If a neighboring solution S' is generated by a tabu move, it is not considered

further, unless S' is feasible and Fi (S')< Fi* , or S' is infeasible and F2(S r) < F.

49

Step 3: Identification of Best Move

Set 	argmin {F2 (S')}

Step 4: Identification of Next Solution

Solution S is set equal to Š unless the following three conditions are satisfied:

(i) F2 (š)> F2 (s) (ii) 5 is feasible, and (iii) procedure DROP-ADD was not used at

iteration 1u -1. If the three conditions are satisfied, it means that we have a feasible

solution with a lower objective value that was not obtained using the DROP-ADD

procedure. So there is a possibility that we might be able to improve the feasible

solution S using DROP-ADD. In this case, the new solution is obtained by applying

procedure DROP-ADD to S.

Step 5: Update

Set ,u 	,u + 1. Adjust penalty function as described in Section 2.2.2, if necessary.

If procedure US was not used in Step 4, tabu moves. Update distance measures and

penalties for all cycles of the new solution, and best known solutions and objective

function values.

Step 6: Termination Check

If Fi* and F2* have not decreased for the past LS iterations, stop. Otherwise go to

Step 1.

2.3 TABUCARP ALGORITHM

TABUCARP is motivated by a recent work of Rochat and Taillard (1995) on using

probabilistic diversification and intensification strategies for VRPs. The algorithm

exploits an adaptive memory that contains individual routes from previously visited

best solutions. The routes from several different solutions are then combined to form

new starting solutions for the tabu search procedure described in the previous section.

50

Genetic algorithms (Holland 1975) inspire the concept of combining parts of previous

solutions to form a new solution. The procedure starts with an adaptive memory

filled with a pool of routes from several different initial solutions. TABUCARP then

methodically combines several routes in the adaptive memory to form new starting

solutions, applies tabu search to these solutions, and uses the routes from the resulting

solutions to update the adaptive memory.

2.3.1 INITIAL SOLUTIONS

In order to start the TABUCARP procedure we have to fill the adaptive memory with

routes from several different initial solutions. Given a giant Euler tour over all the

edges with positive demand, we generate Ø = max (1R1- m ,15) different initial

solutions as follows.

Step 0: Set k 	1, l 	1 .

Step 1: Construct the kth solution as follows. Start at the depot and take the shortest

path to the /th edge on the Euler tour that requires service. The first vehicle

services edges starting with this edge and proceeds until its capacity is

blocked. If the capacity is violated while servicing edge (v, , v), the

vehicle returns to the depot from node y,. The second vehicle starts from the

depot and reaches node v. The first edge serviced by this vehicle is edge

(v1 , vi) and the cycle construction proceeds as for the first vehicle. The

process continues until either all edges are serviced, or until cycles are

constructed for (m - 1) vehicles. In this case, the remaining edges are

assigned to vehicle m (the solution may be infeasible in this case).

Step 2: Set k <—k +1. If k > Ø, stop. If not, go to Step 3.

Step 3: Set l 	+1. If the /th service edge on the giant tour is a starting edge for

one of the vehicle tours on the first initial solution go back to Step 3. If not,

go to Step 1.

2.3.2 ADAPTIVE MEMORY

In the beginning, the adaptive memory contains individual cycles from the initial

solutions. All the cycles associated with a single solution are contiguous and the

solutions are sorted in the ascending order of their objective function value. The

process of selection of cycles for forming a new incumbent solution is biased in favor

of the best cycles. If the size of the adaptive memory C is ICI , then the cycle in

position i has a probability of 	— i + lisum of all the position indices) =

51

— j + 1) = (2 	— i +1))/(ICI IC +11). In our implementation, we
(
ici -i

j=1

restrict the size of the adaptive memory to 250 routes. After sorting the cycles in the

adaptive memory, if the number of cycles is more than 250, we remove the last ICI -

250 cycles from the adaptive memory. If we let the adaptive memory grow

indefinitely, the computational time would increase dramatically. At the same time,

too small an adaptive memory would limit the capability of the search process to

develop new solutions. Our initial experimentation indicated that the computational

times increase dramatically when we increased the size from 250 to 300 and the

improvement in the solution quality was marginal.

As Rochat and Taillard explain, once we perform the probabilistic selection of

cycles several times, the search tends to concentrate in promising regions of the

solution space. This is due to the fact that we choose the cycles with a bias towards

"better" cycles and the worst cycles are removed from the adaptive memory to

maintain its size. Also note that since we allow identical cycles (from different

solutions) to be added to the adaptive memory, the "better" cycles are more often used

to form the new incumbent solution and the process slowly changes from a

diversification phase to an intensification phase.

52

2.3.3 DESCRIPTION OF TABUCARP

Step 0: Initialization

• Generate Ø different initial solutions as described in Section 3.1.

• For each solution S,

Call procedure Tabu _Search(S,IR).

Label each cycle of the resulting solution with the value of the solution.

Load cycles with more than one service edge into adaptive memory (defmed

as set C).

Step 1: Diversification and Intensification

• Repeat the following steps for 100 iterations.

• Sort the cycles in adaptive memmy in ascending order of the labels.

• Set C' C and S<— 0 .

• While C' 0, do the following:

. Choose a cycle from C' , probabilistically such that the cycle in the ith

position of C has a probability of (2 (1C' — i 	C' +11 of being

selected.

. Add this cycle to S and remove from C' all cycles with one or more edges

belonging to this cycle.

• If some of the edges of R are not serviced by the cycles in S, construct an

additional cycle with these edges and add to the solution S.

• Call procedure Tabu _SearcleIRI).

• Label each cycle of the resulting solution with the value of the solution.

• Load cycles with more than one service edge into adaptive memory.

2.4 COMPUTATIONAL RESULTS

We coded TABUCARP in C and tested it on 23 problem instances used by Pearn

(1989) and Hertz, Laporte and Mittaz (1996) to test their algorithms. The best known

53

solutions for these instances are produced by either the modified Construct-Strike

(MCS) heuristic (Peam 1989) or CARPET. So we present a comparison of our

results with those of CARPET and MCS in Table 1.

We use the instance number as in Hertz et al. (1996). The lower bound we use

for comparison (LB2) is the lower bound LB2 described in Benavent et al. (1992),

except for instance 15 which has a higher lower bound as reported in Hertz et al.

(1996). The deviation of a solution from the lower bound is calculated as (Solution

value/Lower bound). The average deviation is the average over the 23 instances and

the worst deviation gives the worst deviation over the 23 instances.

Table 1 shows that TABUCARP produces solutions with the same value as

CARPET in 22 out of the 23 instances. The total distance traversed by the

TABUCARP solution for instance 2 is more than the corresponding value for the

CARPET solution. However, a closer investigation of the routes shows that the work

load is better balanced among the routes in this instance for the TABUCARP

solution. In order to measure the quality of a solution with respect to work load

balancing, we define the Measure of Capacity Deviation (MCD) as follows. Let Ek

be the set of edges with positive demand that is serviced on cycle Ck and B be the set

of cycles that service at least one edge. For each cycle Ck E B, let vk be the total

demand served on that cycle. Then,

and

Vfk = 	qy 	 (2.3)
vj eE k

standard deviation of tyik :C k E BI MCD = 	 x100 	(2.4)
average of {11/k :C k E B}

The benchmark problems vary quite dramatically in their sizes and hence the

computational times also vary. The simplest problem takes less than one second on a

Sun Sparc work station and the biggest computational time was recorded for problem

25 (3125 seconds). TABUCARP is in general computationally more expensive when

compared to CARPET. TABUCARP takes 1.26 times the time taken by CARPET,

on average to solve the benchmark problems.

Instance
Number

1V1 1E1 MCS CARPET TABUCARP BEST
KNOWN

LB2

1 12 22 323 316 316 316 310
2 12 26 345 339* 353 339 339
3 12 22 275* 275* 275* 275 275
4 11 19 287 287 287 287 274
5 13 26 386 377 377 377 376
6 12 22 315 298 298 298 295
7 12 22 325 325 325 325 312

10 27 46 366 360 360 348 326
11 27 51 346 311 311 311 277
12 12 25 275* 275* 275* 275 275
13 22 45 406 395* 395* 395 395
14 13 23 645 462 462 458 428
15 10 28 544* 544* 544* 544 544**
16 7 21 102 100* 100* 100 100
17 7 21 58* 58* 58* 58 58
18 8 28 127* 129 129 127 127
19 8 28 91* 91* 91* 91 91
20 9 36 164* 164* 164* 164 164
21 11 11 63 55* 55* 55 55
22 11 22 123 123 123 121 121
23 11 33 156* 158 158 156 156
24 11 44 200* 200* 200* 200 200
25 11 55 233* 235 235 233 233

Average deviation 1.0579 1.0209 1.0227
Worst deviation 1.507 1.1227 1.1227
Number of optima 10 11 10
Number of best 12 17 16

* Indicates an optimal solution
** Lower bound as used in Hertz et al. (1996)
Numbers in bold indicate a best known solution

54

Table 1. Computational Results for DeArmon's Problems

55

In order to better understand the effect of work load balancing on the solution

quality, we tested TABUCARP on 50 instances of randomly generated problems and

compared the results with the corresponding CARPET solutions. We generated the

random problems as follows. We generated grid networks (specified as a x b, where

a is the number of rows and b is the number of columns in the grid) of five different

sizes — 7x6, 9x8, 10x5, 10x8, and 12x5. An a x b instance has ab vertices and (2ab —
a — b) edges. The lengths of the edges were generated according to a discrete uniform

distribution on bv _ min , /v _ rn. jJ ([4,8] in our experimentation) for the vertical edges

and on frh _mtn 5 1h _maxi ([5,10] in our experimentation) for the horizontal edges. Some

edges were randomly included in R with a probability generated in one of the two

intervals [0.2, 0.5] or [0.6, 0.9]. The depot was chosen randomly from the ab
vertices. Demands for the edges in R were generated according to a discrete uniform

distribution on [1, d.]. (dmax is set to 10 in our experimentation.)

The vehicle capacities were generated as follows. We are given the number of

vehicles m (4 for the lower density problems and 5 for the higher density problems)

and vehicle filling capacity a (90%) for each problem instance. The vehicle capacity

Q is set equal to (Total demand over all edges) (ma). For each combination of

problem size and problem density, we generated five instances. We obtained

solutions using both TABUCARP and CARPET for all 50 instances. Tables 2 and 3

summarize the results for the random instances.

We express the deviation in TABUCARP's solution value (TC) from

CARPET 's solution value (CP) as ((TC-CP)/CP)x 100 and the deviation in

CARPET's MCD (CPM) finm TABUCARP's MCD (TCM) ((CPM-

TCM)/TCM)x 100. From both Tables 2 and 3, we can see that on average the total

distance traveled for the CARPET solutions is 3.23% lower for the lower density

problems and 2.33% lower for the higher density problems. However, the work loads

of the cycles are better balanced in the solutions produced by TABUCARP as

indicated by the MCD. On an average, the MCD for TABUCARP solutions is

20.98% lower for the lower density problems and 6.20% lower for the higher density

problems. Over all the 50 instances, TABUCARP yields solutions whose MCD are

56

Problem
Size

TABU CARP CAR PET DEVIA TION%
SOLN/LB2 MCD SOLN/LB2 MCD SOLN MCD

7x6 1.3429 12.84 1.2902 14.60 4.24 13.69
9x8 1.2443 10.08 1.2443 10.08 0.00 0.00
10x5 1.3261 21.80 1.2887 22.86 2.87 4.86
10x8 1.2532 12.50 1.1974 22.02 4.65 76.17
12x5 1.2632 14.62 1.2102 16.11 4.38 10.18

Average 3.23 20.98

Table 2. Results for Lower Density Problems

Problem
Size

TABU CARP CAR PET DEVIA TION%
SOLN1LB2 MCD SOLN1LB2 MCD SOLN MCD

7x6 1.1625 10.98 1.1069 13.60 5.02 23.81
9x8 1.1039 11.20 1.0873 11.80 1.54 5.36
10x5 1.1660 23.01 1.1121 23.43 5.08 1.81
10x8 1.0647 22.29 1.0647 22.29 0.00 0.00
12x5 1.1068 9.74 1.1068 9.74 0.00 0.00

Average 2.33 6.20

Table 3. Results for Higher Density Problems

57

on average 13.60% lower than the MCD for the CARPET solutions; however, the

solution value is 2.78% higher on average. It is important to note that CARPET does

not attempt to balance the work load and that is the reason for the increase in the

MCD for CARPET solutions. But, we compare the two solutions to understand the

price one has to pay to achieve work load balance in the solutions. Our results clearly

indicate that it is defmitely advantageous to consider work load balancing as a

secondary objective, since the deterioration in objective function value is marginal

when compared to the nature of the routes produced by TABUCARP.

We should also note that the solutions produced by TABUCARP would be

quite sensitive to the work load balance term in the objective function. If we removed

this term from the objective function and considered only the total distance traveled,

our solutions would be worse than CARPET solutions since our neighborhoods and

basic moves are based on the idea of balancing the total demand among the cycles.

2.5 CONCLUSION

In this chapter, we have presented TABUCARP, a new tabu search based heuristic,

for the CARP. This heuristic attempts to balance the work load among the routes

while minimizing the cost of traversing all the edges and satisfying demand. The

concept of work load balancing is very important in several applications such as mail

delivery and meter reading, where the amount of work done by each service delivery

unit has to be fairly equal. We have tested TABUCARP on a set of benchmark

problems and on several randomly generated problem instances. On the set of

benchmark problems, our heuristic performs as well as CARPET, the heuristic that

produces the best known solution for 17 out of the 23 benchmark problems for the

CARP. The results from the randomly generated problems indicate that TABUCARP

in fact produces routes that are better balanced in terms of work load on average, but

the total distance traversed tends to be a little more than the corresponding distances

in the CARPET solutions. Over the 50 instances that we tested, TABUCARP's

solutions are 13.6% better on average in terms of work load balancing, and the total

distance traversed is 2.78% higher, when compared to CARPET solutions.

CHAPTER 3

THE STOCHASTIC EULERIAN TOUR PROBLEM

3.1 INTRODUCTION

One of the most common problems in routing is the design of routes for people or

vehicles delivering service. Such routing problems are of two types -- node routing

and arc routing problems, depending on whether the service request is at a node or on

an arc/edge. The underlying problem for most arc routing problems is determining a

giant tour that starts and ends at a designated depot, and traverses all edges requiring

service at least once. This is the deterministic Eulerian Tour Problem (ETP).

A connected graph is Eulerian if there exists a closed walk in the graph

containing each edge exactly once. If the given graph is not Eulerian, the first step is

to add a least cost set of arcs or edges to the graph to make it Eulerian. This is called

the least cost augmentation problem. Edmonds and Johnson (1973) show that this

problem can be solved in polynomial time for the undirected CPP using an adaptation

of Edmonds blossom algorithm. Thus, given an undirected graph G = (v, E) in

which all the edges in E 	n) require service, we can make it Eulerian in

polynomial time. Once we have this Eulerian graph, we can determine the actual

Eulerian tour in polynomial time too. Edmonds and Johnson (1973) have described

three different algorithrns for the ETP on an undirected graph. These are the end-

pairing algorithm, the next-node algorithm, and the maze-search algorithm. The ETP

is well solved for directed and mixed graphs also. van Aardenne-Ehrenfest and de

Bruijn describe the spanning arborescence algorithm for the ETP on directed graphs.

59

For mixed graphs, one usually assigns directions to the undirected edges to transform

the mixed graph into a symmetric graph, and then completely orient the remaining

undirected edges so that the indegree equals to the outdegree for all vertices of the

graph. Now we can use the spanning arborescence algorithm to determine the

Eulerian tour.

It is important to note that there may be more than one Eulerian tour for a

given graph. However, all these tours have the same cost and hence there is no

optitnization involved in the ETP. But there exist quite a few situations in practice,

when not all the edges that require service need to be visited everyday. In such cases,

the number of edges that require a visit is a random variable. For example, consider a

postal carrier who has to deliver mail to n different streets. The postal company

wishes to minimize the total wallcing distance for the carrier. When the carrier has

to visit all the n streets every day, any Eulerian tour would suffice, since all the

Eulerian tours are of equal length. But in reality, based on the realization of demand,

the carrier might have to visit only a subset of the edges requiring service on any

particular day.

Consider the following alternative in that situation: the postal carrier follows

the predetermined tour as long as he has to visit the next edge on the tour to provide

service. If at any point on the tour, the postal carrier does not have to visit an edge, he

skips that edge, and takes the shortest path to the next edge on the tour that requires a

visit. With this alternative, the ETP takes on a different dimension. The different

possible Eulerian tours of a graph yield themselves better to skipping certain edges of

the graph. For example consider the Eulerian tours 1 and 2 for the undirected 3x3

grid in Figure 7. All edges in the graph have a weight of I and all edges require

service. Node 0 represents the depot. The dotted lines represent the edges that are

only traversed and not serviced. The numbers on the edges of the two tours represent

the order in which one visits the edges in these tours. On a particular day, let us

assume that edges A, B, C, and D require service. This translates to edges 2, 6, 10,

and 14 on tour 1 and edges 4, 5, 12, and 13 on tour 2. If we start at the depot, visit the

edges in the same order that they appear in the respective tours and return to the depot

1 4
A

3

14 V e'É

10

2 16

13

7

6
11

GIVEN EULERIAN GRAPH

0

A

B

D

TOUR 1
	

TOUR 2

60

12
	

9
	

10
	

9

Figure 7. Eulerian graph and two different tours for the same graph

61

tour 1 results in a length of 10 (Depot-1-2-7-6-11-10-15-14-15-16-Depot), while tour

2 results in a length of 12 (Depot-1-2-3-4-5-6-15-12-13-10-11-16-Depot). Thus, tour

1 is better for this instance. On the other hand, if edges A, C, E and F require service,

tour 2 which has a length of 6 (Depot-1-2-3-4-5-1-Depot) is better than tour 1 which

has a length of 8 (Depot-1-2-3-4-5-6-3-1-Depot). Hence, the objective is to determine

not just any Eulerian tour, but a particular tour (if more than one tour exists for the

given graph) which will have the shoitest tour length "on an average". This motivates

the investigation of the Stochastic Eulerian Tour Problem (SETP) which we define

below.

We are given a graph G = (v, E) in which all the edges in E 	n) require

service (We shall call them "white" edges following the notation in Jaillet (1985).),

and a distance d(vi ,v j betvveen every pair of directly connected nodes vi and v1.

On any instance of the problem, only a subset R of the n white edges is present, and

hence, requires a visit. The number of present edges follows a specified probability

distribution. The objective is to determine an a priori Eulerian tour that visits all the n

edges and minimizes the expected length of the tour. On any given instance, one

visits and services the present edges in the same order as in the a priori tour, while

skipping the ones that are absent. The SETP can be similarly defined when only a

subset R121= n) of the edges in E consists of white edges. We would like to

highlight the fact that we assume that we have solved a least cost augmentation

problem for the given graph and have a Eulerian graph and solve the SETP for this

Eulerian graph.

Our investigation of the SETP has been motivated by a real-world problem.

In the UK postal system, the carriers usually deliver mail a second time in the

aftemoon. During the first mail delivery, the carriers have to visit all the streets

almost always, whereas the second mail delivery is typically very light. Only a small

subset of the streets requires service during the afternoon delivery. While any

Eulerian tour would be sufficient for the first mail delivery, it is definitely

advantageous to determine a tour that minimizes the total length in an expected sense

62

for the second mail delivery. It is important to note that even though the ETP is well

solved, it is not feasible to determine a new tour for each day, since following a new

tour every day would decrease the operating efficiency of the postal carrier

considerably. In certain applications, like Canada Post, the mail carrier collects the

mail to be delivered at various points along the route from relay boxes. On any given

day, the present edges are known only after the carrier starts his route and thus, it is

not possible for the carrier to determine a new route at the start of each day. In such

situations, it is certainly efficient to let the mail carrier follow the same route every

day, while allowing the flexibility of skipping streets, if necessary.

Stochastic arc routing is an entirely new area of research. However,

researchers have investigated several stochastic node routing problems over the past

decade. In the following section, we present some of the related research on

stochastic node routing. For results about these studies and a recent survey on

stochastic vehicle routing, see Gendreau, Laporte and Séguin (1996). Specifically,

Jaillet (1985) introduced the TSP with stochastic customers as the Probabilistic

Traveling Salesman Problem (PTSP). It is essentially a TSP where each vertex vi is

present with a probability pi , and hence the number of vertices requiring a visit is a

random variable. Jaillet shows that an optimal TSP tour can be arbitrarily bad for the

PTSP. He also shows that an optimal tour for the PTSP may intersect itself in the

Euclidean plane. This is in contrast to what we know about optimal TSP tours.

These results indicate that algorithrns have to be developed specifically with the PTSP

in mind. Jaillet has developed a number of heuristics by suitably modifying several

well-known TSP heuristics such as the Clarke-Wright algorithm and tour merging

algorithms. Rossi and Gavioli (1986) present computational results after testing three

of Jaillet's heuristics. Bertsimas (1988) and Bertsimas and Howell (1993) have

developed a few more heuristics based on probabilistic 2-opt edge exchange, vertex

moves within a tour, and space filling curves (Bartholdi and Platzman 1982).

Laporte, Louveaux and Mercure (1994) have applied the integer L-shaped method to

the stochastic TSP and have solved instances with up to 50 vertices optimally.

63

In this chapter, we introduce the SETP and present the motivations for

studying this problem. Section 3.2 states the defmitions and assumptions for the

SETP, and presents the method to obtain the expected length of a given tour

efficiently. In this section, we also prove that the SETP is NP-hard. We investigate

some of the properties of a given tour and derive bounds for the expected length of

this given tour in Section 3.3. Section 3.4 highlights some of the desirable properties

in an a priori tour using illustrative examples, and Section 3.5 presents the

conclusions for this chapter.

3.2 IMPORTANT RESULTS FOR THE SETP

In this section, we first present the basic defmitions and assumptions before formally

defming the SETP. We then derive an expression for calculating the expected length

of a given tour t. We family show that the SETP is NP-hard even though the ETP is

solvable in polynomial time.

3.2.1 DEFINITIONS AND ASSUMPTIONS

G = (v, E) is an undirected graph where V is the set of nodes and E is the set of

edges. All the edges in E require service, and hence, denote the set of white edges.

Associated with each edge (y, ,v j) in E is a non-negative real number c/(vi , vi), the

direct distance from node v, to node v.. The graph G has a node designated as the

depot where the Eulerian tour starts and ends. In order to facilitate the representation

and analysis, we duplicate the depot and represent the duplicated node as v0 , which

now serves as the depot. The duplicated node vo is connected to the original depot by

two edges of length O.

Given an Eulerian tour t , we have an ordering of the nodes and edges, and

thus, a direction of traversal (and service) for each of the n edges in E. If we

traverse edge e, from node vk to v1 , we define vk as the in-node for edge e,(vt,n)

64

and v1 as the out-node for edge ei (vra). Thus, given the in-node and the out-node

for each edge in E, we represent an Eulerian tour t as

t = (vo,vr , e1 , v ,v12n e2 v2nut 	vnin , en , yr/ ,), where the edges e1 ,e2 ,•••,en are

numbered in their order of appearance in tour t. The length of the tour t, L(t) is

given by:

L(t) = El(e;)+Ed(vut,vi)
i=o

(3.1)

with vr = vnin+1 = vo, and

1(e,)= length of edge e,

If nodes v and v j are not directly connected, then 	, vi is the shortest distance

between v and v J •

Each edge e, in E is present with probability p,. Thus, for any given

instance, the number of white edges present (i.e., requiring a visit) is a random

variable. We assume that if k edges require a visit on a particular day, then every set

of k edges out of the n white edges is equally likely. Note that when p, = p for all

i, the number of present edges follows a binomial distribution.

Thus, given G =(v,E), a set of n white edges, a distance matrix D and a

probability p, of white edge e, being present, the SETP seeks an a priori tour that

minimizes the expected length of the tour. Looking at it as a stochastic program with

recourse, in the first stage, we construct an a priori Eulerian tour of minimum

expected length. Once we lcnow the set of present edges, we can describe the second

stage solution as follows start at the depot, travel to the in-node of the first present

edge via the shortest path, traverse and service the first edge and then take the shortest

path from the out-node of the first present edge to the in-node of the second present

edge. We continue in a similar manner until we reach the out-node of the last present

edge and then take the shortest path back to the depot. Given this recourse action and

65

the precise defmition for tour representation, we are ready to present the results for

calculating 44], the expected length of a given tour t.

3.2.2 EXPECTED LENGTH OF A GIVEN TOUR

The length of any given tour consists of two parts, namely, the total length of the

present white edges, and the total distance traveled from the out-node of one present

white edge to the in-node of the next present white edge (i.e., the inter-edge traversal

distances). The SETP is similar to the PTSP with n white nodes and one depot in

certain aspects. The inter-city traversal distances in the PTSP would correspond to

the inter-edge traversal distances. The main difference between the two problems is

that in the SETP, in addition to the inter-edge traversal distances, we have to consider

the length of the white edges also. Thus, many off our results are extensions of

Jaillet's (1985, 1988) results for the PTSP.

In order to derive a concise expression for the inter-edge traversal distances,

we defme the following n quantities that are similar to the ones defmed in Jaillet

(1988).

Let
n

= 	d(Vu' vin) J 	j+r+1
.1=0

V r 	{0,• •-,n —1} 	(3.2)

where ,out ,in
vo 	= n+1 = VO

j+r+1=(j+r)mod (n+1)+1

oul , d(vout vin)=
v 	 if 0 j

' j+r+1 C1(111it ,V 0)1- cl(v 	if n—r<jn j—n+r

Note that when r = O, L is the total inter-edge traversal distance for the given tour t

and g + Ede,) is the length of the given Eulerian tour t. For 1 r n-1, Lr, is

66

the sum of (n + 1) elements. Each element represents the distance from the out-node

of edge e to the in-node of its + iÿh successor edge (i.e., edge e j+7,+1) with respect

to the given tour t, i.e., we start at the out-node of edge e., skip the next r edges on

the tour and travel to the in-node of the (r +1r edge follovving edge e.. Note that

whenn—r<j_n, to reach the in-node of edge e 	from the out-node of edge e j ,

we defme 	,) as reaching the depot from the out-node of e j and then

traveling from the depot to the in-node of e 	We first obtain the conditional

expected length of a given tour t when k of the n white edges are not present.

Lemma 1: Given a graph G with n white edges, a designated depot vo , and a

probability of occurrence p for each white edge, the conditional expected length of a

tour t, given k of the n white edges are not present in the given tour t is

E[Li l(n— k) edges present] =

0 	 if k = n

(11n)[±1(ei) + g-1] 	 if k = n-1 	(3.3)

4. 1÷ (n-2—r\ r i
k —r) if k = 0,1,...,n — 2

Proof: (i) k = n: Since none of the white edges are present, this case is obvious.

(ii) k = n-1: Only one white edge is present and each one of the n edges is

equally likely to be present. We have to travel from the depot to the in-

node of this present edge, service the edge, and travel from its out-node

back to the depot. Thus, from the defmition of L7-1 , this case follows.

1=1

67

(iii) k = 0,1, ...,n — 2: The expected length can be described as the sum of the

total length of the white edges traversed (the first term in the expression)

and the total inter-edge traversal distances (the second term in the

expression). The proof for the second term is similar to the proof of

Lemma 2.2 of Jaillet (1985) with the following differences. Instead of

traveling from a present node to the next present node as in the PTSP, we

travel from the out-node of a present edge to the in-node of the next

present edge.

(n

Note that we can have k of the n white edges missing in different

)

equiprobable ways. When k edges are missing, the resulting total inter-

edge traversal distance is a sum of n-k elements. Since some of the

elements might be repeated in the varions combinations, we regroup them

using L . Consider an element dkle, vin r-1-1,) of E, for a given J 	i+

r E {0,1,...,n— 2}. For this element to be included, the white edges e j and

+r+1 have to be present and the edges between them have to be absent.

Since we have only k edges missing, if r > k , dvt j+r+1 will never J

appear and rt will not be used in calculating E[L,1 (n—k)edgespresent].

However, if

	

	we still need to choose the remaining k—r white

edges that are missing from a total of n— 2 — r available white edges, and

[il— 2 — rj
this can be done in

	

	 ways. Since this is valid for all
k —r

j c {0,1,..., n}, it follows that each L appears 	
2 —

k —r

times while

calculating E[L1 1 (n— k)edges present].

Now, we have to account for the number of times the white edges are

actually traversed. When k out of the n edges are missing, we have

number of times an edge e occurs in E[L1] is
n\

(n — k)/n= •
k

68

n 	n
different combinations of the present edges. Each

n— k)

combination has — k) white edges. Since each one of the n white

edges appears an equal number of times over all the combinations, the

Now that we have a closed form expression for the conditional expected length, we

can calculate E[L] using the appropriate probabilities.

Theorem 1: Given a graph G, with n white edges, a designated depot v0 , and a

probability of occurrence p for each white edge, the expected length of a given tour

t is:

E[L1]= p2 [Ë(1— 	41+ p (1— p)n-1 L7-1 + p['Él(e) (3.4)
r=0 	 i=1

n
Proof: E[L1]=E E[L1 1 n — k edges present]x Prob{n — k edges present} (3.5)

k=0

where, Prob{n — k edges present} =
(n` n-k(p)k

n-2 	n`\ (-,' 	—1'
l(e i) + iÉ

n — 2 — rj
EV t].=

E (1/[
Lit-\- zi 	k 	 k — r k=0 	I C .1) i=1 	I 	r=0 	 / _

n 	_ (1 I n)[tÉl(e i) + Er1][jp o.pr-1(
n —1 i=1

[(kri: pn-k 	p)k] +

n-2 [k

r=

(n

k=0 	

_ 2 _ r)
ft 	

n-2

= E E 	I pn-k
k=0 0 k r

1(e i) p — p)n-1 	p — p)n -1

1 (e i) pn-k - p)k

(3 .6)
i=1

Let us now consider each term of (3.6).

The first terni can be expressed as:

69

n-2 	[n-2 (n _ 2 _ E rt E k — r) r=0 	k=r

p n-k p)k] (3.7)

Setting u = k — r and s = n — 2 — r , (3.7) reduces to
n-2 5 (5 	 n-2 E p 2 — 4[E

14
p s-u 	E p 2 — p)r L; 	(3.8)

r=0 	 r=0

The second and third terms can be combined as:

± (e 	/71) pn -k — p)1
1=1 	k=0

-1
= pEl(ei)[t[n-1 p n -1 - k 	.= p z

1=1 	k=0 1=1

From (3.6), (3.8), and (3.9), we get
?2_7_?

	

E[L, = p2 [2:4 (1— p)r Lrt]+ 	g-' + p[El(e ;)1•
r =0 	 1=1

Since each Lrt is the sum of n +1 elements, given a tour t, we can calculate E[L1] in

O(n2 time using (3.4). Also, note that if the number of white edges present does not

follow a binomial distribution, but some other specified probability distribution, we

can substitute the appropriate probabilities in (3.5) to calculate E[Lt]. However, the

(n — k) present edges must be chosen at random from the set of n white edges to use

(3.5). In certain scenarios when each white edge e, is present with probability p. , we

can calculate 	using the following formula.

n 	\ 	1-1 	n 	f 	\ 	n
E[L1]= pxe,)+E d)p n(i_pk).„ 	,vo)pi 	(1_ pk)

1=1 	1=1 	 k=1 	 i=1 	 k=1+1

n n 	 I-1 +E E d rd 	p . (1_ „k I
1=1 j=i+1 	 k=1+1

(3.10)

(3.9)

70

We can derive (3.10) by looking at the probability of the following events:

• each white edge being present (first term)

• link between the depot and the in-node of each white edge being present (second

term)

• link between the out-node of each white edge and the depot being present (third

term)

• link between the out-node of a white edge e, and the in-node of each white edge

following e, in tour t being present (fourth term)

Expression (3.10) is similar to the closed form expression for calculating the expected

length of a given tour for the PTSP with one black node (the depot) and n white

nodes. The main difference is that for the SETP, we have to consider the length of

the white edges in addition to the distance traveled between edges. We use this

similarity to prove that the SETP is NP-hard, in the following section.

3.2.3 NP-COMPLETENESS

We first define the decision problems for the SETP and the PTSP before presenting

the NP-completeness proof.

Decision Problem for the SETP

Given an undirected graph G = (v, E) , a distance c/(v„ v associated with every edge

in E, a subset R 1?1-= n) of E consisting of the white edges, a rational number

p, 0 < p < 1 and a bound B, is there an Eulerian tour t for G with

EVA= p2 	— pY Et + p(1.— prl 4-1 + pÈl(e,) B?

71

Decision Problem for the PTSP

Given an undirected graph G = (V ' , E 1) , V = n +1, a distance cr(v, ,vj

associated with every edge in E' , a black node vo (the depot) and n white nodes, a

rational number q, 0 < q < 1 and a bound B' , is there a traveling salesman tour t'

for G' with

EVel= q 2 EO.-e +q(1.— 	4-1 < B ?
r=0

Theorem 2: The SETP is NP-hard.

Proof: The SETP belongs to class NP, since given a tour t, we can calculate E[Li]

in polynomial time (0(n2)) which we can then compare with the bound B. We

reduce the PTSP to the SETP to show that it belongs to the class NP-complete.

Given an instance of the PTSP, we construct the graph G =(V,E) as follows:

For each white node vi• in the PTSP, define two nodes v,'n and vrt .

v = {yr , vra V i =1,...,n}u {1, 0 }

E ={(vin ,v7t),v =1,...,n}u{(vo,v n) , (vo,v t)v

u (viola , 	v (vi vi)e

R={(viin , vre),V i =1,...,n}

d(v:n tout) = 0,V =1,...,n;d(vr t ,v fin)= d'(vi ,v i),V (vi ,v 	E', i,j =1,...,n

d(vo ,v:n) = d(vo ,vr t) = d'(vo ,vi), i =1,...,n

B = B' ;p=q

in 	out in 	out 	in 	out Let t =(vo ,vi , el , v1 , v2 ,e2 ,v2 ,...,vn ,en ,vn ,vo) be a feasible Eulerian tour for

G with E[Lt]B . Since each edge ei is of length 0, it is clear that from the

Eulerian tour t, we can construct a tour t' 	 which is feasible for

72

G. . Also, note that Et = rt , for all r = 0,...,n —1 by construction of G, and hence

E[Le] = 	B = B. . Similarly, we can show that if the PTSP has a feasible

solution with E[L,,]. B' , then the SETP has a feasible solution with MM B, and

hence the SETP is NP-hard. •

3.3 PROPERTIES AND BOUNDS FOR THE SETP

In this section, we examine a few properties of the SETP. In order to derive these

properties, we express E[L] succinctly in a weight-form notation as in Jaillet (1985).

Let W be the random variable that represents the number of present white edges.

n-1 	n-1
E[Lt]=Ea rLrt +C/3k

r=0 	k=0

n-2
where, ar = 	

k — r
- 2 — r

JI
k

(11\
1 Probe = 	n—k) 	Vr e {0, • • • ,n — 2}

k=r 	 \

an_1 =Probe = 1)1n , 16k = 11 k jP robe = n — k), and C = 1(e i) .
i=1

We first describe a few properties of ar , fik and L. . We then use these properties to

derive an expression for the maximum deviation of the expected length of a given

Eulerian tour t from the expected length of the optimal Eulerian tour for the SETP,

t . We should point out that many of the properties associated with ar and rt are

similar to the corresponding properties for the PTSP; however, there are quite a few

differences that allow one to derive further simplifications for the SETP. When the

properties are different, we explain them in detail; otherwise, we refer the reader to

Jaillet (1985, 1988) for detailed explanations.

73

Property 1: Given a tour t for an Eulerian graph G with n white edges,

4-1 is a constant independent of t ;

are tour-dependent; and

+ C is the length of the tour t
n r

From the defmition of ri , we see that Lnt -1 = 	i"t , V 0)-E d(V 0 ,V:n)], and hence, it

is tour independent. However, L , r = 1,. . . , n — 2 depend on the order in which the

edges are visited, and hence are tour independent. By defmition, L9 gives the

shortest distances between the out-node of the edge e , to the in-node of edge e +1 for

all white edges. Thus, Ét) + El(e1) is the length of the given tour t . Note that in the

PTSP, L9 is the length of the given tour t .

Property 2: The set of edges that define L along with E, the set of required

edges, consists of (r + 1) sub-tours, each starting and ending at the depot v0 . This is

very similar to the PTSP, except that one needs to consider E, the set of the required

edges.

It is important to note that even if the given distance matrix D is symmetric (and

hence the matrix of shortest path distances is also symmetric), d(vut , v)is in

general, not equal to 47,). Hence, several properties of the PTSP do not hold

for the SETP. However, if we assume D to satisfy the triangular inequality, then

c/(11e , yit" 	d(V,0ut , yr)+ ci(vk0le , vs;), i.e., the inter-edge traversal distances also

satisfy the triangular inequality. Under this condition, we can deduce the following.

Property 3: If D satisfies the triangular inequality, we can show that, for a given

tour t of an Eulerian graph G,

74

Lrt 	L°t 	 V r E {0,..., n —1}

This follows since, 	L + C = length of (r + 1) sub-tours with vo as a common node

length of the given Eulerian tour t

= L + C

From property 2, we know that the set of edges that defme L along with the set of

white edges form (r + 1) sub-tours with the depot as a common node. Under the

triangularity assumption, we can merge these (r + 1) sub-tours into a single tour

whose length will be less than or equal to the length of the given tour. The length of

this merged tour is in turn greater thon or equal to the length of the given Eulerian

tour t .

Hence, rt 	V t. E {0,..., n i}.

Property 4: Given a tour t of an Eulerian graph G with a depot vo and n white

edges,

Lrt 	L2 + Lrt —rt-1 	V r E {1, , n —1}, and 0 	r —1

Hence, Lrt 	+ 1)LcIt 	V r E {1,..., n —1}

The proof is similar to that of Lemma 3.3 of billet (1985) since only the inter-edge

traversal distances are involved. We present here an adaptation of Jaillet's proof to

our situation.
n

Lrt = drt vin) J ' j+r+1
j=0

n 	/ 	 n I d 	V in)-1- E d 	 v'f4 j+ri +1 	 j+ri +1' j+r+1
.j=0 	 i=0

by the triangularity assumption

E (1 	 ' y ji7+r+1 = E d (1,71 	 ' y jin+r-r,-1+1 But, 	d
i=o 	 i=o

75

Hence, 4 L2 + LÇ 1 	V r 	n —11, and 0 	r —1

If we let, r1 = r —1 in Lr, 	, we get L'; 	+L. Using the same

relationship for 4-1 we get L; Lri-2 2rt Thus,

L I; 	(r +1)Lc; 	V r 	—1}

Propertv 5: Given a discrete probability distribution for W,
n-1

(i) a,. = E[Wil n 	 Vn ?_ 1
r=0

(ii) E(r +1)a r =1— Proe = 0] 	Vn >1
r=0

(iii) Ëflk = E[Wl/n 	 Vn 1
k=0
n-1

(iv) E (ni — k» k =1 — Prob[W = 0] Vn ?_ 1
k=0

Parts (i) & (ii) are identical to Fact 3.6 of Jaillet (1985). We present a surnmary of the

proofs below.

(i)
n-2 	n-2 n-2 (n — 2 — r \ (n \
Ear = E I 	k _ r) \ k

)
1 Prob (W = n — k)

r=0 	r=0 L k=r \

n-2 (
= E 	Prob (W = n — kY

fn
il

n — 2 — r
k j 	k — r

k=0 \ 	 r=0

(3.11)

— 2 — 	[n
k — r 	k

r=0

But, (3.12)

From (3.11) and (3.12), we get
kn- a 2 , = 	(n _
„LI= 	kz_do= k ljAnk j Prob (W = n — k)

By replacing n — k by u in (3.13), we get

(3.13)

76

n-2 	n U E 0r = E —Prob (PET = u) = -1 [E[W]- Prob (w = i)]
r=0 	u=2 n 	 n

Since an _1 = Prob (W = 1) , the result follows.
n

1-2 'Ë [1-2 frn - 2 - r) /(nj (7. + 0 ar _
(ii) 	 (r + 1) Prob e = n - 01

r=0 	 r=0 L k=r 	k-r)1 k
j

+ ()
=

n-2 r+o
[Prob (W = n - k)A 	

rn-2-r

k=0 	 k rh-20 	k - r)

1± (7- + 0[11 -k 2- -r rj = (nk j
r=0

n-2 	n-2
Hence, E(r+ 1) a r = E Prob (W = n - k) = 1 - P rob (W = 0)- Prob (W =i)

r=0 	k=0

Since an_1 = Prob e = 1) , the result follows.
n

n-1 	n-2
E flic = E Pic +fln,
k=0 	k=0

n-2

Iflk = E 	 Prob e = n - k)
k=0 k=0 n

= ï 1 Prob e = u)
u=2 n

= 1[E[W]- Prob (W =i)]
n

Since, ign_1 = Prob [FTT = 1]/n , the result follows.

n-1 	 n-1

(iv) 	E (n I (n -d /6k =E Proie = n - k] = 1 - Prob[W = 0]•
k=0 	 k=0

But,

77

Lemma 2: Given a graph G with n white edges, a depot vo , for any given tour t ,

(i) E[Lt 	n)[4) +

(ii) t (1 — P r °eV = 0]) [L° + Cl

Proof: 	(i) 4.4] =
n-1 	n-1
Earrt +Cßk
r=0 	k=0

n-1 	n-1
rt Ea + CE Pk

r=0 	k=0

= (E[FrIn)[L +c]
n-1 	n-1

(ii) E[L1] =Ear rt +CEA
r=0 	k=0

n-1 	 n-1
(1- + 1) a,. + CE (1/1 (n k))fl k

r =o 	k=0

= (1— Prob[W = 0]) [L't + Cl

[from Prop. 3]

[from Prop. 5]

[from Prop. 3 & 4]

[from Prop. 5] •

Next, we derive the worst case ratio for the expected length of a random Eulerian tour

when compared to the optimal tour for the SETP.

Theorem 3: Given a graph G with n white edges, and a designated depot, a

distance matrix D that satisfies the triangular inequality, the optimal tour t* for the

SETP and a random Eulerian tour t ,

(E[L t] — 	t.])I 	t.1 1 — E[W]/n — Prob (Ff7 = 0))1 (E[W] n)

Proof: From Lemma 2,

Ekt. (L't. + C)[E[W n]

Since all Eulerian tours are of the same length, Lt° + C = L. + C , and

A 	

2

78

Ekt. (L° + C)[E[W]in] 	 (3.14)

Also, 44 Ekt. (Lct) + 0[1 E[Tf 1/n Prob [W 0]] 	(3.15)

Dividing (3.15) by (3.14), we get the desired result. •

Note that when W follows a binomial distribution, with parameter p, E[W]=np and

hence Theorem 3 implies (E[Lt]— Ekt. 1)/(E[Lt.1) (1— p 	p)n)/ p .

3.4 ILLUSTRATIVE EXAMPLE

In this section, we will present an example to investigate the characteristics of

different a priori tours for a given graph. Consider the 3x3 grid network given earlier

in Figure 7. All vertical edges are of length 1 and all horizontal edges are of length 2.

The dotted lines indicate the edges traversed but not serviced on the Eulerian tour t.

All edges are white and W is binomial with parameter p, (0 < p <1). Note, that the

length of any tour is 24. Several tours are possible for this graph. Let us consider

tours 3 and 4 given in Figure 8 and compare their expected lengths.

TOUR 3
	

TOUR 4

14
	

9
	

6
	

5

Figure 8. Tours 3 and 4 for the 3x3 grid

The length of both tours is 24. However, the expected length of tour 3, .E{/, 1, is less

than E[Li , for all values of p between 0 and 1. Specifically, for p = 0.45, 443 1 is

79

17% lower than Eki l. The reason for this is quite obvious from the nature of the

tours. In tour 3, edges (2,3,4,5) and edges (10,11,12,13) together form two separate

sub-tours. This allows one to skip these sub-tours when the respective edges are not

present. Also note that if edges 6 and 7 (or edges 14 and 15) are absent, tour 3

facilitates skipping that section of the tour. On the other hand, tour 4 has only one

sub-tour with 8 edges [edges 8-15] other than the outer sub-tour. We can reach the

inner sub-tour only after traversing most of the outer sub-tour. Thus, inherently tour 4

necessitates traversing more edges than tour 3, on most instances. Thus, we see that

the number of sub-tours clearly has an effect on the expected length of the tour.

Another interesting observation is the effect of the orientation of the edges in

the inner sub-tour of tour 4. All the edges are serviced from the outside towards the

center. If on a particular instance, edges 2, 8 and 14 are present, the length of the tour

is 10. However, if we change just the orientation of edge 14, the length reduces to 8,

since, the out-node of edge 8 is the in-node of edge 11 and hence, we do not have to

traverse edge 13 before serving edge 14. If we change the orientation of edges 10, 12,

and 14, E[L4] drops from 20.08 to 19.81 for p = 0.6. Hence, another factor to take

into consideration while developing tours is the orientation of the edges in a sub-tour.

We also tested other tours to understand the impact of the size of the sub-

tours. Consider tour 5 with 2 inner sub-tours (Figure 9). One of the sub-tours has 6

edges (edges 2-7) while the other has only 2 edges (10 and 11).

TOUR 5

14
	

13

Figure 9. Tour 5 for the 3x3 grid

80

445 is less than E[L f, land greater than Ekt, for all values of p. Note that tours

5 and 3 have two sub-tours each, while tour 4 has only one sub-tour. Though tours 3

and 5 have the same number of sub-tours, the sub-tours of tour 5 are not balanced.

Our example also illustrates that having a larger number of balanced sub-tours

does not necessarily mean lower expected length. Consider the following tour 6

whose edges are oriented exactly the same way as in tour 3. But tour 6 consists of 4

sub-tours each with 2 edges, while tour 3 consists of 2 sub-tours each with 4 edges.

TOUR 6

12
	

9

Figure 10. Tour 6 for the 3x3 grid

The expected length of tour 3 is marginally less than that of tour 6 for all values of p.

The order in which the edges are visited changes the values of 4 for the two tours.

Whenever 4 for tour 3 is less than the corresponding 4 for tour 6, it is for a lower

value of r when compared to the opposite situation, and hence the expected length

for tour 3 reduces slightly when compared to the expected length of tour 6.

This simple example illustrates that the nature (i.e., number and size) and

orientation of the sub-tours play an important role in determining the expected length

of the tour. Specifically, the better tours in the expected sense, have more balanced

sub-tours when compared to the worse tours. Also, the edges of the sub-tours should

be oriented to minimize inter-edge traversal distances.

81

3.5 CONCLUSION

In this chapter, we first defined the SETP as the problem seeking the Eulerian tour of

minimum length in the expected sense, when the number of edges present follow a

specified probability distribution. We then derived a closed form expression for

calculating the expected length of a given tour in 0(n2)time. We also showed that

the SETP is NP-hard even though the deterministic ETP is solvable in polynomial

time. We also derived a worst case ratio of the deviation of the expected length of a

random Eulerian tour from the optimal tour. Finally, using an illustrative example,

we investigated some of the desirable properties in an a priori tour. In the next

chapter, we take advantage of the results obtained in this chapter to develop heuristic

solution procedures for the SETP.

CHAPTER 4

HEURISTICS FOR THE STOCHASTIC EULERIAN

TOUR PROBLEM

4.1 INTRODUCTION

This chapter presents several heuristic procedures for the Stochastic Eulerian Tour

Problem (SETP). We defmed the SETP in Chapter 3 as follows. We are given an

undirected graph G = , E) and a distance ci(v„vi between every pair of directly

connected nodes vi and v All of the edges in E (lEl= n) require service and are

termed ``white edges". On any instance of the problern, only a subset of the n white

edges is present, and hence, requires a visit. The number of present edges follows a

specified probability distribution. The objective is to determine an a priori Eulerian

tour that visits all the n edges and minimizes the expected length of the tour. On any

given instance, one visits and services the present edges in the same order as in the a

priori tour, while skipping the ones that are absent.

We also presented the 'UK postal system as a motivation for the investigation

of this problem. In this system, the carriers usually deliver mail a second time in the

afternoon. During the first mail delivery, the carriers have to visit all the streets

almost always, whereas the second mail delivery is typically very light. Only a small

subset of the streets requires service during the afternoon delivery. Thus it is

defmitely advantageous to determine a tour that minimizes the total length in an

expected sense for the second mail delivery. It is important to note that even though

the deterministic ETP is well solved, it is not feasible to determine a new tour for

83

each day, since following a new tour each day would decrease the operating efficiency

of the postal canier. In certain applications, like Canada Post, the mail carrier collects

the mail to be delivered at various points along the route from relay boxes. On any

given day, the present edges are known only aller the carrier starts his route and thus,

it is not possible for the carrier to determine a new route at the start of each day. In

such situations, it is certainly efficient to let the mail carrier follow the same route

every day, while allowing the flexibility of skipping streets, if necessary.

In Chapter 3, we also derived a closed form expression for the expected length

of a given tour t when the number of present white edges follows a binomial

distribution with parameter p. The result can be easily extended when the number of

white edges present follows an arbitrary edge invariant discrete probability

distribution. We also show that the SETP is NP-hard even though the deterministic

Eulerian tour Problem is solvable in polynomial time. We presented several

interesting properties of the SETP, and derive bounds for the expected length of a

given tour. Finally, the examples presented in that chapter illustrate that the expected

lengths of different Eulerian tours vary greatly. Hence it is important to construct

tours that would have lower expected length rather than using a random Eulerian tour

for any given instance of the problem.

Stochastic arc routing is a relatively new area of research. However,

researchers have investigated several stochastic node routing problems over the past

decade. Jaillet (1985) introduced the TSP with stochastic customers as the

Probabilistic Traveling Salesrnan Problem (PTSP). He derived several theoretical

properties of the SETP and has proposed a number of heuristics by suitably modifying

several well-lcnown TSP heuristics such as the Clarke-Wright algorithm and nearest

neighbor algorithm. Rossi and Gavioli (1986) present computational results after

testing three of Jaillet's heuristics. Their computational results indicate that the

probabilistic Clarke-Wright algorithm produces TSP tours with lower expected

lengths than the corresponding deterministic TSP heuristics when the probabilities are

low (between 0 and 0.6). Bertsimas (1988) and Bertsimas and Howell (1993) have

developed a few more heuristics based on probabilistic 2-opt edge exchange, vertex

84

moves within a tour, and space filling curves (Bartholdi and Platzman 1982). Lapone,

Louveaux and Mercure (1994) have developed a branch-and-cut algorithrn for the

stochastic TSP and have solved instances with up to 50 vertices optimally.

As shown in Chapter 3, since the SETP belongs to a class of hard problems, it

is not possible to solve realistic sized problems optimally using algorithms that would

run in polynomial time. Hence, we concentrate on developing heuristic algorithms

that would provide good solutions. In this chapter, we present three different tour

construction heuristics for the SETP. The first heuristic is a simple greedy heuristic

that determines the next white edge to add to the tour as the one that results in the

least increase in the expected length when appended at the end of the tour. The

second heuristic also greedily selects the next edge of the tour. The difference is that

this heuristic selects the next white edge from the set of edges incident to the current

node rather than from the set of all available white edges. Finally the third heuristic

constructs several small sub-tours and then concatenates these sub-tours while

considering the expected savings in concatenating sub-tours. We have also

incorporated an adaptation of a post-optimization procedure introduced by Gencireau,

Hertz, and Laporte (1992) for the TSP. Hertz, Laporte, and Nanchen (1996) call this

adaptation as DROP-ADD and have used it for the undirected Rural Postman

Problem.
We first sununarize some of the important results of Chapter 3 in Section 2.

This section also presents some of the theoretical preliminaries that we use to design

our heuristics. Section 3 presents detailed descriptions of the three tour construction

heuristics and the post optimization procedure for the SETP. We present detailed

computational results in Section 4 and provide the conclusion and directions for

future research in Section 5.

4.2 THEORETICAL PRELIMINARIES

G = (v, E) is an undirected graph where V is the set of nodes and E is the set of

edges. Associated with each edge (v, v) in E is a non-negative real nimber

85

d(v, ,), the direct distance from node v, to node v.. All the edges in E (1E1= n)

are white edges. The graph G has a node designated to be the depot where the

Eulerian tour starts and ends. In order to facilitate the representation and analysis, we

duplicate the depot and represent the duplicated node as v0 , which now serves as the

depot and is connected to the original depot by two edges of length 0, one of which is

a white edge.

Given an Eulerian tour t for the graph G, we have an ordering of the nodes

and edges, and thus, a direction of traversal (and service) for each of the n white

edges. If we traverse edge e, from node vk to v1 , we defme vk as the in-node for

edge e z (vr) and v, as the out-node for edge ei (v7t). Thus, given the in-node and

the out-node for each edge in R, we represent an Eulerian tour t as

t=(vo,vr ,e1,viout ,v12n ,e2 ,vr 	 ,v0), where the edges el , e2 , • • • , en are

numbered in their order of appearance in tour t. When the number of present white

edges follows a binomial distribution with parameter p, the expected length of a

given tour t can be represented as

E[L,]= p 2 [E(1 p)r 41+ p (1— pr -1 4-1 + p[El(e ,)]
n-2

where 	 L =E 	J 	j+r+1
	 Vr e{0,•••,n-1}

1=0

wth 	 out 	in i Vo 	= V n+i = Vo

j+r +1=(j +r)mod(n +1)+1, and

(c/ v7t ,vii7+,+i)
d(vout ,v in)=

j+r+1
CI(V 	C1(1, ,V i.;7_,+,.)

if 05_j_n—r

if n—r < j

Note that if nodes v. and v are not directly connected, then 	is the shortest

distance between v and v J •

(4.1)
r=0 	 i=1

86

4.2.1 ADDITION OF A WHITE EDGE TO A PATH

Consider a path P starting at the depot vo and servicing i < n) white edges. Let us

now add white edge e,+1 to the path. We can calculate the expected increase in the

length of the path by adding edge e,+1 by considering the following two cases:

• the white edges el , e2 e. already in the path are not present;

• k of the i white edges in the path are not present.

Thus, E [increase in length of path by adding edge ei+1]=

p ,e,+1 A= p — pY 40 ,11+1 1)+ p 2 E 1_,)k a ,(vnut k v i)+ pde i+1) (4.2)
k=0

The first term of expression (4.2) corresponds to the situation where edge e,÷1 is the

first edge present on the tour and the previous i edges are absent. Hence, we need to

consider the direct distance between the depot and the in-node of edge e,+1 . The

probability associated with this event is p(1 — d -1 . Similarly, the second term

corresponds to the scenario where exactly k edges (k = 0,1,2, ..., i —1) are absent

before edge e 1 . In this case, edges e,_k and ei+i are present and edges

through e, are absent. Hence, we need to consider the distance between the out-node

of edge e j_k and the in-node of edge e,+1 , and the associated probability is

p 2 	- p)k . The last term corresponds to the probability that edge e,+1 is present.

Note that in order to calculate E[I(I,p ,e,+1)] using (4.2), we need to designate

one of the ends of edge ei+i as the in-node, i.e., we need to fix v 1 . If e1+1 .(vk ,v1),

we calculate E (I, p , e.+1)] for both orientations of e1±1 , i.e., by fixing v 1 as vk once

and as v1 once, and pick the orientation with the minimum expected increase.

87

4.2.2 MERGING OF SUB-TOURS

The probabilistic Clarke-Wright algorithm proposed by Jaillet (1985) for the PTSP

serves as a motivation for the results in this sub-section. In our case, a sub-tour for

the given graph G starts at the depot, services i (i < n) white edges, and returns to the

depot. Let us consider two sub-tours ST1 and ST2 which do not service any common

white edge. Sub-tours ST1 and ST2 service n1 and n2 edges, respectively.

ST1 =(v v m e vmd vrn e 	out 	„m 	,out ,
o 	1,1 , 1,1 , 1,2 	12 ,

„
, 	,• • • 	 vl 	v0

in 	,out "in 	,out 	in
ST2 = (vo , v

,
2 ,1,c2,1, v2 ,1 , v 2,2 	, v2,2 ,..., v

, 2m2 	,«Vrnt2 ,v0,

Let E[LsT, I and E[LsT, be the expected length of the sub-tours ST1 and ST2 . When

we merge ST1 and ST2 by edges el , and e2,1 (i.e., v2in1 directly follows vi'un on the

merged sub-tour), the expected length of the merged sub-tour could be less than or

equal to the total expected lengths of ST1 and ST2 . This expected savings in the

length of the merged sub-tour could be calculated by considering the following events

and the associated probabilities.

• Edge eu (i 5_ i n1) is the last present white edge on ST1 --

probability: p (1— p)"1-1

• Edge e2 , j 	j n 2) is the first present white edge on ST2 --

probability: — p

When el is the last present edge on ST1 and e2 ,i is the first present edge on ST2 , the

savings incurred in the distance traversed is

S(eu ,e2 ,i)= cl(vr,d , vo)+ 40 ,1/127i)— cl(11” 	 j) 	 (4.3)

Let E [S (ST1 , ST2 : e1 ,1 ,e2 ,1)] represent the expected savings when we merge ST1 and

ST2 through edges el,„, and e2,1.

88

E[S(ST1 ,ST2 =
ni 	n2

s (e • e2 • 	D ,,).‘
i=1

(4.4)

where, 	= p 2 O. p)(n1 -i)+(j-1)

and 	 is given by (4.3)

Note that we have four different ways to merge ST1 and ST2 . We can merge the sub-

tours through edges etni and e2,1 , or etni and e22 , or eu and e2.1 , or eu and e22 .

The best way to merge ST1 and ST2 is through the edge concatenation that yields the

maximum expected savings. Thus, the expected savings from merging ST1 and ST2

is

max
E[S(ST1 ,ST21 	„ 	, [E [s (sTi ,sT2 : 	e2,k 	(4.5)

h e 	n1 k tl, n2

4.3 HEURISTIC PROCEDURES

In this section, we present detailed descriptions of the three heuristics that we have

developed for the SETP. All three are tour construction procedures. The first and the

second heuristics construct the tour by adding one white edge of a time, while the

third heuristic constructs several small sub-tours and then concatenates these to form

the Eulerian tour. Finally, we also describe the post-optimization procedure DROP-

ADD that is analogous to the US procedure (Gendreau et al., 1992) for the TSP.

4.3.1 HEURISTIC 1: GLOBAL GREEDY

This heuristic starts with an empty path and successively adds one edge at a time to

the path. The edge added to the path is the one that results in the least expected

increase in the length of the resulting path. Once all the n edges are added,

89

we complete the tour by returning to the depot from the out-node of the last added

white edge.
Two components contribute to the expected increase in the path length as

computed by (4.2). The first is the inter-edge traversal distances between the white

edges on the path and the candidate edge, and the second is the length of the candidate

edge. Hence, the heuristic tends to select shorter edges closer to the out-node of the

last edge in the path. As a result, in certain situations, the tours produced by this

heuristic could be longer than necessary when all the white edges are present. For

example, consider the graph in Figure 11 with 12 white edges. Node 1 is the depot.

The length of all the edges on the three outer triangles is 5 and the length of the edges

on the connecting inner triangle is 1.

When each edge in the graph is present with a probability p = 1.0, the global

greedy heuristic produces the tour (1-4-9-1-2-3-1-4-5-6-4-9-7-8-9-1) of length 51.

But, it is obvious that we can reduce the total length to 48 since the edges (1,4), (4,9),

and (9,1) are traversed twice. In titis case, the expected length will also be reduced

since p = 1.0.

Figure 11. Example graph for heuristic 1

90

Using this as a motivation, we apply the procedure SHOR'IEN (Hertz et al.,

1996) to the tour produced by the global greedy heuristic. We provide a detailed

description of this procedure in Section 2.2.4 of Chapter 2. Basically, this procedure

starts with node r (= 1), and moves all the white edges as far to the right as possible.

It then replaces the path from node r to the in-node of the first white edge by the

shortest chain. If the length of the resulting tour is smaller, we renumber all the nodes

on the new tour and start the procedure again at node r (= 1). If not, we increment r

by 1 and continue until r is greater than the total number of nodes on the tour.

If we apply procedure SHORTEN to the above tour, when r = 1, the value of

the index s is 4, since edges (1,4), (4,9), and (9,1) can be serviced the second time

they are traversed. Now we can remove the path from node 1 to node 4 containing

only non-service edges and we get the tour (1-2-3-1-4-5-6-4-9-7-8-9-1) of length 48.

For values of p less than 1.0, the expected length of the shortened tour could be

greater than the expected length of the original tour since the ordering and the

orientations of the white edges could be changed during the SHORIEN procedure.

Hence, we calculate the expected length of the shortened tour and retain this tour as

the final result only if its expected length is less than or equal to the expected length

of the original tour. We now present a step-by-step description of algoritlu-n

GLOBAL GREEDY.

Step 0: 	Initialize P<—(v0) and B<—E.

Step 1: 	For every edge e, in B, calculate E[I(L p ,e,)] as described in Section

4.2.1.

Step 2: 	Set k argmin {E[I(L p ,e,)]}. Append the tour segment (vikn ,ek ,vrt)to

P. Set 1?4—B-{e1 }.

Step 3: If B=0 , append the return path from the out-node of the last added white

edge to the depot to P to get tour t and go to Step 4. If not, go to Step 1.

Step 4: 	Apply procedure SHORTEN to tour t to obtain tour t'. If E[Le]_E[Lt],

t' is the final tour, else t is the final tour.

4.3.2 HEURISTIC 2: LOCAL GREEDY

This heuristic is a modification of the global greedy heuristic. At each iteration,

instead of selecting the next white edge from among all the available white edges, we

choose from only among the edges incident to the node we are at. Thus, this heuristic

starts at the depot, adds the white edge with the least expected increase in length from

among all the white edges incident to the depot, and repeats the process at the out-

node of the added white edge. If of any point, there are no white edges incident to the

node we are at, there may be a matching edge incident to this node, that was added to

the graph while solving the augmentation problem. If this is the case, we traverse the

matching edge and continue the process, until all white edges are added and we have a

complete tour.

This heuristic ensures that when p= 1.0, the length of the tour generated

using this heuristic is equal to the length of a random Eulerian tour. We feel that this

heuristic should perform better than the global greedy heuristic for most values of p.

The detailed description of the local greedy heuristic is as follows.

Step 0: 	Initialize P (v0) and B E. Calculate the degree of all the nodes in

the graph. Let current_node 	vo .

Step 1: 	Let W = set of white edges incident to current_node. If W # ø, calculate

E[I(L p ,e,)] as described in Section 4.2.1 for every edge e, in W, and go

to Step 2. If W = ø, go to Step 3.

Step 2: 	Set k 4— areigine win {E[I(L p ,e,)]}. Append the tour segment (1) ,e k ,qe) to

P. Set B B -{e,} . Decrease degree of current_node and vr by 1.

Set current_node 	v ° , and go to Step 4.

Step 3: 	If degree[current node] > 0, there is a matching edge incident to

current node. Traverse this matching edge. Decrease degree of

91

92

current _node and the out-node of the matching edge by 1. Set

current node 	out_node of the matching edge, and go to Step 4.

If degree[current _node] = 0, backtrack on the partial tour just developed,

to a node vi with degree > O. Set current _node 	v , and go to step 4.

Step 4: If B = ø, append the return path from the out-node of the last added white

edge to the depot to P to get tour t and go to Step 5. If not, go to Step 1.

Step 5: Apply procedure SHORTEN to tour t to obtain tour t' . If E [L 	E [L ,

t is the final tour, else t is the fmal tour.

4.3.3 HEURISTIC 3: SUB-TOUR CONSTRUCTION

The third heuristic is also a tour construction heuristic, but is quite different from the

global and local greedy heuristics. This heuristic first constructs a single giant sub-

tour using a set C of eligible edges, and another outer tour using the edges in EIC

The sub-tour construction heuristic then breaks up the giant sub-tour into as many

small separate sub-tours as possible. Finally, the heuristic inserts these small sub-

tours at appropriate insertion points on the outer tour to obtain the Eulerian tour. We

first describe each of the procedures of the algorithm and then provide a detailed

description of the overall heuristic.

Determination of the set of eligible edges

This procedure forms a set of edges that can be used to form the giant sub-tour. If the

degree of a node is greater than 2, then this node occurs more than once in the final

Eulerian tour, and hence there is a sub-tour out of this node. This fact motivates the

idea behind forming the set C. In order to determine C, we need to consider only

edges whose both end points are of degree greater than 2.

Step 1: 	Set C ø. Calculate the degree of all the nodes in the graph.

Step 2: If the two end points of an edge e EE are both of degree > 2, then add

edge e1 E E to the set C.

93

Breaking up a single sub-tour into smaller sub-tours
This procedure breaks a sub-tour that starts at the in-node of a white edge in C and

ends at the out-node of another white edge in C into as many small sub-tours as

possible. Given a giant sub-tour, we have an ordering of the nodes. The procedure

uses this ordering and results in more than one sub-tour if one or more nodes are

visited more than once in the giant sub-tour. Let the given sub-tour containing k

nodes be represented as ST =(v 	 Since the in-node of the first edge on

a given sub-tour and the out-node of the last white edge are the same, we do not store

the out-node of the last white edge in ST for notational simplicity. However, when we

merge a given sub-tour with another sub-tour or the outer tour, we always ensure that

the last white edge on the given sub-tour is traversed, by visiting the out-node of the

last white edge. We store the resulting smaller sub-tours in the array sub_tour.

Step 0: 	Set sub tour[1] 	ST. For each node v. E V, set count[v,] 	.

Step 1: 	Set count[v5 ,1]<---- count[v i+ 1 for all i =1,..., k , num_tours <— 1, and

Step 2: 	If count[v5,,]> 1, let j be the position of node v,,,, the second time it

occurs on the given sub-tour. If not, set i i +1 , and go to Step 4.

Step 3: 	Remove the sub-tour (vs,, 	v_1) from ST. For each node in this

smaller sub-tour, decrease count by 1. Set num_tours 	num_tours + 1,

and sub tour[num _tours]<—(v ,,v 	1_1).

Step 4: 	If i < k , go to Step 2.

If not, if num_tours > 1, use this procedure to break up

sub 	tour [2] to sub tour[num _tours]. If num tours = 1, the given tour

has no sub-tours, STOP.

94

Insertinq the sub-tours into the outer tour

This procedure inserts the num_tours sub-tours into an outer tour. Each sub-tour ST,

is represented as ST, =(v 	v3.). This procedure determines a common

node between the outer tour and each one of the sub-tours, if one exists, and inserts

the sub-tours starting at this common node. Note that there is at least one sub-tour

having a common node with the outer tour during the first iteration. While inserting

the sub-tours, we make sure that we insert the sub-tour directly into the outer tour and

not into another sub-tour. We repeat the procedure if there are still some sub-tours

remaining to be inserted into the outer tour. We present below a detailed description

of the procedure. Note that we store the position on the outer tour at which a common

node exists between sub-tour ST, and the outer tour in pos _outer[i] and the

corresponding position on the sub-tour ST, in pos _subtour[i].

Step 0: 	Let t outer 	outer tour, and A 4.— set containing the num_tours sub-tours.

Set pos _outer[i] 	0 for i =1,...,num _tours .

Step 1: 	For i =1,...,num _tours , if a common node exists between the outer tour

and sub-tour ST„ determine its position on t outer and ST„ and update

pos _outer[i] and pos _subtour[i].

Step 2: 	Let B be the set of all sub-tours with pos outer[i]> 0, and 1B 	. Set

j<-1.

Step 3: argmax Let k 	e B {pos _outer (i)} . Insert sub-tour STk starting of the node

in pos _subtour[k] into the outer tour starting at pos _outer[k]. Set

j 	 j +1, pos _outer[k]<— -1.

Step 4: 	If j < m, go to step 3. If not, go to Step 5.

Step 5: 	If there is one or more sub-tour ST, with pos _outer[i] = 0, go to Step 2.

If not, to,„, contains the final Eulerian tour, stop.

Overall Procedure

95

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Construct the set C of the eligible edges for sub-tour construction using the

procedure described earlier.

For each edge e, E C , construct a sub-tour ST, = (vo , yr, e ,v°"' ,v 0). Let A

<— set of all sub-tours.

Calculate E[S (SI; , ST j)] using (4.5) as described in Section 4.3.2 for

every pair of sub-tours in A.

Let k arg max{E[S (ST , ST j)] } and i and j' be the indices yielding k.

Concatenate sub-tours i' and f using the appropriate orientation of the

sub-tours. Add the concatenated tour to A. Set A A -(ST,, , ST , and

A

If 1/11 =1, SHORTEN the giant sub-tour in set A and go to Step 7. If not,

go to Step 3.

Break up the giant subtour in set A into as many smaller sub-tours as

possible using the procedure described earlier.

If E\C ø, construct a tour t outer with the edges in E C using the

global greedy heuristic and SHORTEN the tour. If not, set t outer 	{v0} •

Insert the smaller sub-tours from Step 7 into the outer tour from Step 8

using the procedure described above.

4.3.4 POST-OPTIMIZATION: DROP-ADD

The post-optimization procedure that we use is an adaptation of the Unstringing-

Stringing (US) procedure developed by Gendreau et al. (1992) for the TSP. Hertz et

al. (1996) call this adaptation as DROP-ADD and use it for the undirected rural

Postman Problem. Given an Eulerian tour t with expected length 	procedure

DROP-ADD attempts to fmd a tour t' with E[Ly] 5_ E[Lt] by successively removing

96

white edges from the solution and then adding them at the best possible position. This

procedure uses the ADD procedure as described in Hertz et al. (1996) to insert edges

into a tour. We provide a step-by-step description of the DROP-ADD procedure

below.

Step 1: 	Let the given Eulerian tour be t with expected length z* = E [L t]. The n

white edges of the tour are numbered in their order of appearance in the

tour. Let i 	1.

Step 2: Remove edge ei from the tour t and SHORTEN the tour to obtain tour

Step 3: Add edge ei to tour T using procedure ADD as described in Hertz et al.

(1996). We explain this procedure in detail in Section 2.2.4 of Chapter 2.

Step 4: 	Set t 	T. If E [L1] < z* , set t 	t, z* 	E 	i 	1; go to Step 2.

Step 5: 	If i = n, stop. If not, set i 	+ 1 and go to Step 2.

4.4 COMPUTATIONAL RESULTS

We coded all the heuristics and the post-optimization procedure in C and tested them

on two classes on randomly generated problems. The first class of problems consists

of grid networks of varying sizes. We generated grids of sizes 4x4, 5x5, 6x6, 7x7,

8x8, and 9x9 for our computations. For each one of the problems the lengths of the

horizontal edges is randomly selected in the interval [5,10] and the length of the

vertical edges in the interval [4,8]. All the edges of the grid are white edges. The

location of the depot is randomly selected from all the vertices. For each of the grid

sizes, we generated 10 instances, thus generating 60 grid networks in all.

For the second class of problems, we generated a specified number of vertices

(8, 10, 15, and 20 in our computations) in the [0,1012 square. We generate a first set

of edges by constructing a random Hamiltonian cycle on these vertices. This ensures

97

that the graph is connected. We then add more edges to the graph randomly until a

pre-specified graph density was reached. For our computations, we generate graphs

of density 0.3, 0.5 and 0.7 for each value of the number of vertices. We chose the

depot as the median of all the vertices of the graph. Finally, for each combination of

number of vertices and graph density, we generated 10 problem instances, thus

generating 120 Euclidean graph instances in all.

The biggest of the grid networks contains 174 white edges and the biggest

Euclidean network contains 153 graphs. In a real world scenario, such as a mail

delivery or a meter reading application, the SETP has to be solved for each mail

carrier or meter reader separately. Under this condition, we feel that the problem

sizes that we have considered are quite realistic.

For all the 180 problem instances, we obtained Eulerian tours when the

probability of occurrence of a white edge, p, ranges from 0.1 to 1.0 (in steps of 0.1).

For each instance, we also generated a random Eulerian tour, and calculated the

expected length of this tour for the different values of p. Tables 4-9 present the

results for the grid networks, and Tables 10-21 present the results for the Euclidean

networks. Each cell in the tables contains two numbers. The first number represents

the average over 10 instances of the ratio of the expected length of the tour obtained

using a particular heuristic and the expected length of the random Eulerian tour. The

second number gives the average over 10 instances of the time taken in seconds for

that heuristic on a Sun Sparc work station.

Each row of the tables presents the average results over 10 instances for a

given probability, for all three heuristics without and with the post-optimization

procedure. The number in bold (for each row) indicates the heuristic with the best

average result over 10 instances for that probability. For example, in Table 4, for a

probability of 0.1 the first heuristic along with the DROP-ADD procedure has the best

average result over 10 instances. The last row of the tables present the best result

over all the 100 runs (10 instances X 10 probabilities of occurrence) for each heuristic

without and with the DROP-ADD procedure. The following describes the contents of

each column in the tables.

98

Column 1: Value of p

Coins= 2: Expected length of tour by global greedy heuristic/expected length

of random Eulerian tour

Column 3: Expected length of tour by global greedy heuristic + DROP-ADD/

expected length of random Eulerian tour

Column 4: Expected length of tour by local greedy heuristic/expected length

of random Eulerian tour

Column 5: Expected length of tour by local greedy heuristic + DROP-ADD/

expected length of random Eulerian tour

Column 6: Expected length of tour by sub-tour construction heuristic /

expected length of random Eulerian tour

Column 7: Expected length of tour by sub-tour construction heuristic +

DROP-ADD / expected length of random Eulerian tour

4.4.1 EFFECT OF PROCEDURE DROP-ADD

Our computational results indicate that the post-optimization procedure DROP-ADD

is quite effective in producing new Eulerian tours with lower expected lengths. For

the grid networks, the expected length of the tours produced by the global and local

greedy heuristics drops by 2-4% on average (for the various values of p) after using

the DROP-ADD post-optimization procedure. This decrease in the expected length is

a little higher for the sub-tour construction heuristic. On a tour produced by the sub-

tour construction heuristic, when a white edge is removed from the tour and has to be

re-inserted during the DROP-ADD phase, there is typically more options for points of

insertion of this edge into the tour. Hence, the post-optimization procedure is more

effective on tours produced by the third heuristic. The improvement is the least on

tours produced by the second heuristic. For the Euclidean networks, the decrease in

the expected length is between 1% and 3% for all three heuristics. The tours

produced by the three heuristics for the Euclidean networks are quite similar and

hence the effect of DROP-ADD is similar too.

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0079 0.9799 1.0051 0.9917 1.0133 0.9868
0.01 0.24 0.00 0.08 0.01 0.12

0.2 1.0128 0.9524 1.0108 0.9799 1.0200 0.9735
0.01 0.20 0.00 0.09 0.01 0.11

0.3 1.0142 0.9543 1.0130 0.9725 1.0097 0.9707
0.01 0.15 0.00 0.08 0.01 0.10

0.4 1.0039 0.9570 1.0133 0.9703 1.0055 0.9514
0.01 0.17 0.00 0.09 0.01 0.11

0.5 1.0485 0.9768 1.0131 0.9673 1.0233 0.9676
0.01 0.13 0.00 0.08 0.01 0.09

0.6 1.0761 0.9848 1.0123 0.9718 1.0282 0.9619
0.01 0.18 0.00 0.09 0.01 0.10

0.7 1.0759 1.0014 1.0105 0.9779 1.0243 0.9690
0.01 0.13 0.00 0.09 0.01 0.10

0.8 1.0831 1.0015 1.0077 0.9847 1.0200 0.9787
0.01 0.15 0.00 0.08 0.01 0.10

0.9 1.0872 0.9935 1.0040 0.9921 1.0172 0.9878
0.01 0.12 0.00 0.08 0.01 0.10

1.0 1.0722 1.0000 1.0000 1.0000 1.0058 1.0000
0.00 0.09 0.00 0.06 0.01 0.06

Best 0.92 0.89 0.91 0.88 0.93 0.88

Table 4. Results for the 4x4 grid network

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9506 0.9395 0.9836 0.9551 1.0045 0.9542
0.04 1.04 0.00 0.74 0.07 0.78

0.2 0.9524 0.9117 0.9767 0.9341 0.9776 0.9074
0.03 0.81 0.00 0.77 0.08 0.79

0.3 0.9916 0.9117 0.9793 0.9305 1.0123 0.8939
0.03 0.69 0.00 0.72 0.08 0.94

0.4 1.0385 0.9412 0.9856 0.9419 0.9846 0.9280
0.04 0.75 0.00 0.70 0.08 0.89

0.5 1.0383 0.9465 0.9922 0.9515 1.0150 0.9437
0.03 0.95 0.00 0.68 0.08 0.85

0.6 1.0401 0.9565 0.9973 0.9600 1.0243 0.9466
0.03 0.78 0.00 0.68 0.08 0.93

0.7 1.0458 0.9755 1.0004 0.9717 1.0315 0.9583
0.03 0.78 0.01 0.66 0.08 0.70

0.8 1.0632 0.9832 1.0016 0.9804 1.0179 0.9657
0.03 0.75 0.00 0.74 0.10 0.79

0.9 1.0635 0.9892 1.0012 0.9905 1.0075 0.9796
0.03 0.81 0.00 0.71 0.10 0.77

1.0 1.0473 1.0000 1.0000 1.0000 1.0307 0.9956
0.02 0.40 0.00 0.26 0.06 0.41

Best 0.91 0.85 0.84 0.77 0.84 0.77

Table 5. Results for the 5x5 grid network

99

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9188 0.9165 0.9828 0.9712 1.0048 0.9500
0.11 3.91 0.01 0.77 0.33 2.62

0.2 0.9329 0.9143 0.9680 0.9534 0.9918 0.9232
0.11 3.02 0.01 0.85 0.34 2.38

0.3 1.0003 0.9283 0.9691 0.9546 0.9430 0.8852
0.11 3.23 0.00 0.88 0.37 2.51

0.4 1.0106 0.9479 0.9776 0.9622 0.9796 0.9179
0.11 2.68 0.00 0.89 0.38 2.28

0.5 1.0452 0.9667 0.9865 0.9720 1.0066 0.9441
0.11 2.29 0.00 0.89 0.39 1.98

0.6 1.0545 0.9683 0.9931 0.9805 1.0251 0.9605
0.11 2.84 0.00 0.88 0.39 2.44

0.7 1.0629 0.9809 0.9969 0.9869 1.0326 0.9787
0.11 3.05 0.00 0.89 0.40 2.01

0.8 1.0607 0.9946 0.9986 0.9894 1.0311 0.9892
0.11 3.23 0.01 0.94 0.40 2.05

0.9 1.0646 1.0022 0.9992 0.9945 1.0296 0.9952
0.11 3.09 0.01 0.96 0.41 1.54

1.0 1.0646 1.0191 1.0000 1.0000 1.0084 0.9962
0.06 0.89 0.00 0.63 0.25 0.78

Best 0.86 0.86 0.91 0.88 0.88 0.84

Table 6. Results for the 6x6 grid network

Prob. Heur 1 Hl+DA Heur 2 IL2+DA Heur 3 H3+DA

0.1 0.8778 0.8680 0.9543 0.9206 0.9746 0.9335
0.31 9.55 0.02 4.88 1.02 5.81

0.2 0.9224 0.9043 0.9399 0.9056 0.9684 0.8956
0.31 8.43 0.02 4.91 1.10 7.93

0.3 0.9907 0.9145 0.9492 0.9174 0.9760 0.8942
0.30 8.18 0.02 4.74 1.14 7.94

0.4 0.9835 0.9388 0.9654 0.9351 0.9852 0.9027
0.30 6.53 0.02 5.29 1.17 9.69

0.5 1.0172 0.9632 0.9805 0.9520 1.0095 0.9264
0.31 6.73 0.02 5.70 1.21 10.27

0.6 1.0669 0.9750 0.9915 0.9674 1.0279 0.9558
0.30 7.84 0.02 6.21 1.24 9.64

0.7 1.0517 0.9882 0.9982 0.9795 1.0462 0.9761
0.29 6.30 0.02 6.51 1.26 9.61

0.8 1.0482 0.9853 1.0011 0.9891 1.0624 0.9788
0.29 8.16 0.02 5.97 1.29 9.04

0.9 1.0530 0.9929 1.0013 0.9952 1.0354 0.9953
0.30 8.97 0.02 6.04 1.31 8.28

1.0 1.0597 1.0053 1.0000 1.0000 1.0444 1.0004
0.16 3.37 0.02 1.73 0.78 3.36

Best 0.79 0.79 0.88 0.83 0.86 0.79

Table 7. Results for the 7x7 grid network

100

Prob. Heur 1 HI+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.8801 0.8643 0.9337 0.9216 1.0118 0.9060
0.72 22.05 0.03 6.13 2.61 19.55

0.2 0.9065 0.8945 0.9169 0.9045 0.9582 0.8839
0.71 16.15 0.03 6.24 2.94 18.17

0.3 0.9395 0.9127 0.9336 0.9218 0.9716 0.8850
0.72 18.12 0.03 6.24 3.02 19.92

0.4 1.0083 0.9462 0.9553 0.9433 0.9652 0.9133
0.71 12.12 0.03 6.31 3.12 15.49

0.5 1.0246 0.9649 0.9733 0.9610 0.9989 0.9371
0.72 13.93 0.03 6.71 3.25 19.43

0.6 1.0338 0.9759 0.9861 0.9756 1.0184 0.9609
0.69 16.07 0.03 6.76 3.26 19.51

0.7 1.0510 0.9930 0.9940 0.9858 1.0264 0.9752
0.69 18.59 0.03 6.96 3.33 15.36

0.8 1.0581 1.0018 0.9998 0.9922 1.0358 0.9921
0.69 16.35 0.03 6.99 3.43 18.38

0.9 1.0484 1.0089 0.9995 0.9964 1.0507 1.0059
0.69 16.76 0.03 6.92 3.49 17.42

1.0 1.0478 1.0212 1.0000 1.0000 1.0254 1.0048
0.35 5.21 0.02 3.47 1.95 4.56

Best 0.85 0.84 0.85 0.84 0.84 0.79

Table 8. Results for the 8x8 grid network

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.8396 0.8387 0.8892 0.8581 0.9624 0.8637
1.50 47.98 0.05 35.00 6.37 69.63

0.2 0.8620 0.8539 0.8809 0.8491 0.9534 0.8664
1.49 38.75 0.05 33.56 6.01 42.08

0.3 0.9646 0.8956 0.9137 0.8780 0.9743 0.8832
1.51 38.91 0.04 35.44 7.02 54.01

0.4 0.9957 0.9371 0.9476 0.9096 1.0194 0.9352
1.47 35.34 0.04 44.31 7.13 53.33

0.5 1.0199 0.9560 0.9732 0.9393 1.0637 0.9628
1.51 32.68 0.04 47.02 7.55 57.29

0.6 1.0393 0.9711 0.9901 0.9606 1.0688 0.9787
1.46 54.79 0.06 43.07 7.48 55.16

0.7 1.0440 0.9824 0.9995 0.9766 1.0725 0.9816
1.46 39.21 0.04 57.72 7.67 46.09

0.8 1.0674 0.9959 1.0025 0.9870 1.1342 1.0370
1.46 48.79 0.05 58.07 7.84 47.35

0.9 1.0637 0.9979 1.0019 0.9940 1.1345 1.0224
1.46 49.89 0.05 38.67 8.05 62.26

1.0 1.0675 1.0000 1.0000 1.0000 1.0945 1.0105
0.72 14.02 0.03 7.54 5.01 30.73

Best 0.79 0.79 0.83 0.77 0.86 0.75

Table 9. Results for the 9x9 grid network

101

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9954 0.9847 1.0012 0.9863 0.9924 0.9845
0.00 0.01 0.00 0.00 0.00 0.01

0.2 1.0062 0.9879 1.0078 0.9891 1.0055 0.9878
0.00 0.01 0.00 0.01 0.00 0.01

0.3 1.0140 0.9872 1.0129 0.9882 1.0054 0.9851
0.00 0.01 0.00 0.01 0.00 0,00

0.4 1.0119 0.9862 1.0159 0.9874 1.0053 0.9846
0.00 0.00 0.00 0.00 0.00 0.00

0.5 1.0113 0.9839 1.0169 0.9873 1.0002 0.9873
0.00 0.01 0.00 0.01 0.00 0.01

0.6 1.0106 0.9884 1.0160 0.9881 1.0044 0.9903
0.00 0.01 0.00 0.00 0.00 0.00

0.7 1.0318 0.9881 1.0134 0.9899 1.0050 0.9900
0.00 0.01 0.00 0.01 0.00 0.01

0.8 1.0200 0.9912 1.0095 0.9926 1.0006 0.9912
0.00 0.01 0.00 0.01 0.00 0.01

0.9 1.0145 0.9953 1.0049 0.9960 1.0003 0.9953
0.00 0.01 0.00 0.01 0.00 0.00

1.0 1.0509 1.0000 1.0000 1.0000 1.0000 1.0000
0.00 0.00 0.00 0.00 0.00 0.00

Best 0.98 0.96 0.96 0.96 0.96 0.96

Table 10. Results for 8 node Euclidean network (density - 0.3)

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9947 0.9836 0.9976 0.9828 1.0001 0.9824
0.00 0.04 0.00 0.04 0.00 0.03

0.2 1.0000 0.9746 1.0005 0.9734 0.9952 0.9765
0.00 0.04 0.00 0.04 0.01 0.03

0.3 1.0053 0.9734 1.0015 0.9693 1.0035 0.9745
0.00 0.03 0.00 0.04 0.01 0.04

0.4 1.0200 0.9736 1.0020 0.9718 1.0019 0.9737
0.00 0.05 0.00 0.04 0.01 0.04

0.5 1.0139 0.9713 1.0022 0.9733 1.0116 0.9706
0.00 0.04 0.00 0.04 0.00 0.03

0.6 1.0143 0.9749 1.0022 0.9750 1.0222 0.9747
0.00 0.04 0.00 0.03 0.01 0.03

0.7 1.0155 0.9819 1.0018 0.9808 1.0218 0.9827
0.00 0.05 0.00 0.03 0.00 0.03

0.8 1.0125 0.9851 1.0013 0.9879 1.0241 0.9853
0.00 0.05 0.00 0.03 0.01 0.03

0.9 1.0145 0.9948 1.0006 0.9930 1.0180 0.9910
0.00 0.04 0.00 0.03 0.01 0.04

1.0 1.0068 1.0000 1.0000 1.0000 1.0313 1.0000
0.00 0.02 0.00 0.02 0.00 0.02

Best 0.95 0.93 0.97 0.94 0.96 0.93

Table 11. Results for 8 node Euclidean network (density - 0.5)

102

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9952 0.9873 1.0035 0.9852 0.9969 0.9872
0.00 0.09 0.00 0.09 0.02 0.06

0.2 1.0031 0.9795 1.0040 0.9755 0.9921 0.9763
0.00 0.11 0.00 0.10 0.02 0.09

0.3 1.0030 0.9747 1.0039 0.9760 0.9899 0.9708
0.00 0.08 0.00 0.09 0.02 0.08

0.4 1.0001 0.9722 1.0029 0.9770 0.9909 0.9768
0.01 0.10 0.00 0.08 0.02 0.08

0.5 1.0026 0.9767 1.0018 0.9801 0.9940 0.9788
0.00 0.10 0.00 0.07 0.02 0.06

0.6 1.0085 0.9813 1.0010 0.9819 0.9977 0.9789
0.00 0.08 0.00 0.07 0.02 0.07

0.7 1.0124 0.9845 1.0008 0.9829 0.9912 0.9810
0.00 0.08 0.00 0.08 0.03 0.08

0.8 1.0071 0.9878 1.0008 0.9872 0.9967 0.9877
0.01 0.07 0.00 0.08 0.02 0.07

0.9 1.0042 0.9938 1.0008 0.9936 0.9994 0.9932
0.00 0.08 0.00 0.07 0.03 0.08

1.0 1.0007 1.0000 1.0000 1.0000 1.0000 1.0000
0.00 0.04 0.00 0.04 0.02 0.04

Best 0.95 0.93 0.98 0.93 0.95 0.93

103

Table 12. Results for 8 node Euclidean network (density - 0.7)

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 0.9958 0.9822 0.9950 0.9857 0.9984 0.9852
0.00 0.04 0.00 0.03 0.00 0.04

0.2 1.0036 0.9809 1.0000 0.9756 0.9898 0.9746
0.00 0.03 0.00 0.03 0.00 0.03

0.3 1.0210 0.9754 1.0040 0.9696 0.9918 0.9677
0.00 0.03 0.00 0.04 0.00 0.04

0.4 1.0184 0.9711 1.0065 0.9686 1.0111 0.9687
0.00 0.03 0.00 0.03 0.00 0.03

0.5 1.0315 0.9648 1.0078 0.9608 1.0314 0.9685
0.00 0.04 0.00 0.03 0.00 0.03

0.6 1.0207 0.9620 1.0080 0.9637 1.0217 0.9707
0.00 0.04 0.00 0.03 0.00 0.04

0.7 1.0235 0.9728 1.0071 0.9679 1.0209 0.9709
0.00 0.03 0.00 0.03 0.00 0.04

0.8 1.0203 0.9790 1.0054 0.9818 1.0229 0.9802
0.00 0.03 0.00 0.03 0.00 0.03

0.9 1.0226 0.9914 1.0029 0.9901 1.0234 0.9889
0.00 0.03 0.00 0.03 0.00 0.03

1.0 1.0149 1.0011 1.0000 1.0000 1.0189 1.0011
0.00 0.02 0.00 0.02 0.00 0.02

Best 0.94 0.91 0.97 0.91 0.95 0.92

Table 13. Results for 10 node Euclidean network (density - 0.3)

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0009 0.9866 1.0004 0.9848 0.9980 0.9842
0.01 0.20 0.00 0.21 0.03 0.14

0.2 1.0110 0.9798 1.0015 0.9747 0.9974 0.9733
0.00 0.18 0.00 0.15 0.03 0.17

0.3 1.0073 0.9753 1.0027 0.9687 1.0085 0.9758
0.00 0.17 0.00 0.19 0.03 0.14

0.4 1.0069 0.9753 1.0035 0.9786 1.0057 0.9746
0.00 0.14 0.00 0.18 0.03 0.19

0.5 1.0052 0.9790 1.0038 0.9802 1.0076 0.9788
0.00 0.15 0.00 0.16 0.04 0.15

0.6 1.0089 0.9793 1.0034 0.9791 1.0098 0.9786
0.00 0.15 0.00 0.17 0.04 0.14

0.7 1.0115 0.9833 1.0026 0.9812 1.0124 0.9812
0.01 0.15 0.00 0.18 0.04 0.16

0.8 1.0113 0.9873 1.0016 0.9868 1.0133 0.9841
0.00 0.17 0.00 0.15 0.04 0.18

0.9 1.0170 0.9924 1.0007 0.9922 1.0178 0.9911
0.01 0.17 0.00 0.14 0.04 0.17

1.0 1.0064 1.0000 1.0000 1.0000 1.0157 1.0008
0.00 0.07 0.00 0.07 0.03 0.08

Best 0.98 0.95 0.98 0.94 0.97 0.95

Table 14. Results for 10 node Euclidean networlc (density - 0.5)

104

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0038 0.9879 1.0018 0.9861 1.0038 0.9856
0.02 0.42 0.00 0.39 0.09 0.44

0.2 1.0077 0.9853 1.0050 0.9794 1.0068 0.9818
0.01 0.36 0.00 0.44 0.09 0.44

0.3 1.0079 0.9836 1.0068 0.9792 1.0067 0.9790
0.01 0.39 0.00 0.51 0.09 0.43

0.4 1.0136 0.9863 1.0070 0.9844 1.0074 0.9842
0.01 0.39 0.00 0.40 0.09 0.35

0.5 1.0148 0.9910 1.0062 0.9875 1.0064 0.9845
0.01 0.45 0.00 0.37 0.10 0.33

0.6 1.0165 0.9905 1.0049 0.9903 1.0101 0.9853
0.01 0.40 0.00 0.32 0.10 0.44

0.7 1.0097 0.9907 1.0035 0.9910 1.0120 0.9897
0.01 0.31 0.00 0.33 0.10 0.46

0.8 1.0082 0.9924 1.0022 0.9920 1.0143 0.9923
0.01 0.30 0.00 0.43 0.11 0.29

0.9 1.0094 0.9966 1.0011 0.9947 1.0210 0.9964
0.02 0.32 0.00 0.39 0.11 0.36

1.0 1.0086 1.0017 1.0000 1.0000 1.0087 1.0033
0.01 0.16 0.00 0.14 0.07 0.15

Best 0.98 0.96 0.99 0.96 0.98 0.97

Table 15. Results for 10 node Euclidean network (density - 0.7)

105

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0076 0.9802 0.9921 0.9757 0.9976 0.9812
0.01 0.39 0.00 0.36 0.08 0.37

0.2 0.9996 0.9611 0.9884 0.9597 0.9999 0.9648
0.02 0.51 0.00 0.34 0.08 0.31

0.3 1.0159 0.9648 0.9877 0.9588 1.0037 0.9634
0.01 0.37 0.00 0.38 0.09 0.45

0.4 1.0041 0.9676 0.9882 0.9607 1.0057 0.9616
0.02 0.41 0.00 0.38 0.09 0.36

0.5 1.0028 0.9758 0.9893 0.9646 1.0094 0.9700
0.02 0.25 0.00 0.35 0.09 0.31

0.6 1.0122 0.9730 0.9907 0.9688 1.0196 0.9772
0.01 0.35 0.00 0.38 0.09 0.32

0.7 1.0158 0.9752 0.9926 0.9728 1.0145 0.9787
0.02 0.39 0.00 0.35 0.10 0.37

0.8 1.0149 0.9848 0.9948 0.9816 1.0109 0.9858
0.01 0.40 0.00 0.31 0.10 0.33

0.9 1.0253 0.9913 0.9973 0.9908 1.0086 0.9930
0.01 0.33 0.00 0.27 0.10 0.29

1.0 1.0222 1.0024 1.0000 1.0000 1.0324 1.0031
0.01 0.17 0.00 0.14 0.06 0.17

Best 0.96 0.93 0.95 0.92 0.93 0.92

Table 16. Results for 15 node Euclidean network (density - 0.3)

Prob. Heur 1 Hl+DA Heur 2 112+DA Heur 3 H3+DA

0.1 1.0058 0.9794 0.9996 0.9777 1.0023 0.9807
0.07 2.20 0.01 1.85 0.40 1.66

0.2 1.0047 0.9724 0.9983 0.9726 1.0013 0.9690
0.08 2.04 0.00 1.96 0.41 1.94

0.3 1.0057 0.9731 0.9968 0.9728 0.9997 0.9798
0.07 1.96 0.01 2.15 0.42 1.86

0.4 1.0050 0.9768 0.9959 0.9792 0.9968 0.9762
0.08 1.73 0.00 1.73 0.44 1.80

0.5 1.0023 0.9789 0.9955 0.9805 0.9995 0.9831
0.07 1.92 0.01 1.72 0.45 1.58

0.6 1.0068 0.9851 0.9959 0.9834 1.0077 0.9875
0.07 1.78 0.01 1.74 0.47 1.52

0.7 1.0045 0.9862 0.9969 0.9855 1.0068 0.9877
0.07 1.77 0.01 1.77 0.48 1.89

0.8 1.0058 0.9926 0.9983 0.9908 1.0149 0.9925
0.07 1.23 0.00 1.35 0.49 1.51

0.9 1.0098 0.9953 0.9995 0.9949 1.0209 0.9956
0.07 1.78 0.01 1.23 0.51 1.74

1.0 1.0092 1.0000 1.0000 1.0000 1.0234 1.0003
0.03 0.77 0.00 0.56 0.31 0.88

Best 0.99 0.95 0.98 0.96 0.96 0.96

Table 17. Results for 15 node Euclidean network (density - 0.5)

106

Prob. Heur 1 HI+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0034 0.9851 0.9966 0.9808 0.9996 0.9838
0.19 5.28 0.02 3.00 1.08 4.86

0.2 1.0028 0.9814 0.9929 0.9755 0.9998 0.9807
0.19 4.90 0.02 4.47 1.09 5.16

0.3 0.9999 0.9819 0.9897 0.9762 0.9976 0.9785
0.20 4.66 0.01 4.04 1.13 5.85

0.4 1.0020 0.9827 0.9882 0.9750 0.9967 0.9831
0.19 5.00 0.03 4.36 1.20 3.90

0.5 0.9998 0.9826 0.9883 0.9806 1.0001 0.9842
0.20 4.45 0.02 3.29 1.23 5.58

0.6 1.0019 0.9874 0.9900 0.9831 1.0044 0.9867
0.19 4.99 0.02 3.19 1.29 5.12

0.7 1.0031 0.9918 0.9926 0.9886 1.0026 0.9911
0.19 3.77 0.02 2.64 1.31 4.15

0.8 1.0032 0.9938 0.9958 0.9924 1.0087 0.9956
0.20 3.97 0.02 2.93 1.38 3.57

0.9 1.0031 0.9967 0.9986 0.9964 1.0097 0.9969
0.18 3.34 0.03 3.14 1.41 3.68

1.0 1.0052 1.0000 1.0000 1.0000 1.0128 1.0000
0.10 1.64 0.02 1.31 0.82 1.75

Best 0.98 0.96 0.97 0.95 0.98 0.97

Table 18. Results for 15 node Euclidean network (density - 0.7)

107

Prob. Heur 1 Hl+DA Heur 2 112+DA Heur 3 H3+DA

0.1 0.9959 0.9676 0.9991 0.9691 0.9934 0.9699
0.09 2.30 0.00 2.04 0.63 3.08

0.2 0.9978 0.9664 0.9964 0.9603 0.9963 0.9635
0.09 2.67 0.01 2.29 0.66 2.64

0.3 1.0032 0.9635 0.9931 0.9619 0.9973 0.9588
0.10 3.09 0.01 2.37 0.68 2.91

0.4 1.0069 0.9766 0.9910 0.9664 0.9984 0.9734
0.09 2.52 0.01 2.82 0.69 2.48

0.5 1.0079 0.9724 0.9905 0.9703 1.0014 0.9717
0.10 2.04 0.00 2.46 0.82 2.61

0.6 1.0114 0.9788 0.9914 0.9733 1.0071 0.9782
0.08 2.20 0.01 2.31 0.78 2.13

0.7 1.0083 0.9817 0.9932 0.9793 1.0068 0.9828
0.09 2.00 0.01 1.99 0.81 2.38

0.8 1.0127 0.9867 0.9956 0.9851 1.0185 0.9881
0.10 2.49 0.00 1.76 0.84 2.43

0.9 1.0161 0.9922 0.9980 0.9917 1.0166 0.9946
0.10 2.83 0.01 1.80 0.86 2.35

1.0 1.0166 1.0000 1.0000 1.0000 1.0307 1.0006
0.05 1.06 0.00 0.72 0.39 1.12

Best 0.97 0.94 0.98 0.94 0.97 0.92

Table 19. Results for 20 node Euclidean network (density - 0.3)

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0001 0.9788 1.0000 0.9746 0.9993 0.9796
0.40 11.02 0.04 14.16 2.90 13.55

0.2 1.0013 0.9770 0.9980 0.9757 0.9962 0.9756
0.41 12.61 0.03 12.53 2.99 11.26

0.3 1.0036 0.9762 0.9960 0.9739 1.0022 0.9749
0.43 14.81 0.03 16.43 3.14 14.34

0.4 1.0001 0.9796 0.9948 0.9769 0.9967 0.9783
0.40 11.23 0.03 14.63 3.39 14.97

0.5 1.0029 0.9833 0.9948 0.9818 1.0020 0.9847
0.41 11.20 0.04 10.19 3.86 12.31

0.6 1.0038 0.9874 0.9956 0.9866 1.0036 0.9870
0.40 12.46 0.03 9.18 3.66 12.55

0.7 1.0049 0.9914 0.9970 0.9881 1.0091 0.9911
0.41 10.07 0.04 9.85 3.83 11.95

0.8 1.0047 0.9937 0.9986 0.9919 1.0095 0.9958
0.41 11.58 0.03 11.92 3.93 12.26

0.9 1.0069 0.9963 0.9999 0.9960 1.0104 0.9986
0.41 13.91 0.04 11.83 4.02 11.15

1.0 1.0061 1.0006 1.0000 1.0000 1.0176 1.0021
0.21 4.32 0.02 3.09 1.76 3.73

Best 0.99 0.96 0.99 0.96 _ 	0.98 0.96

Table 20. Results for 20 node Euclidean network (density - 0.5)

108

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA

0.1 1.0008 0.9813 0.9917 0.9684 0.9923 0.9764
1.12 32.75 0.08 38.08 6.30 34.27

0.2 1.0000 0.9761 0.9845 0.9665 0.9947 0.9720
1.12 35.44 0.08 29.97 6.31 43.79

0.3 0.9936 0.9718 0.9810 0.9676 0.9962 0.9719
1.14 47.44 0.08 35.85 6.54 49.35

0.4 0.9962 0.9771 0.9807 0.9697 0.9963 0.9782
1.12 36.66 0.08 32.38 6.68 33.26

0.5 0.9969 0.9806 0.9826 0.9758 0.9953 0.9811
1.13 31.46 0.08 24.82 6.97 35.93

0.6 0.9985 0.9877 0.9861 0.9804 0.9987 0.9854
1.12 26.96 0.08 29.14 7.66 34.41

0.7 0.9996 0.9899 0.9906 0.9867 1.0054 0.9906
1.11 37.92 0.08 25.19 8.05 36.07

0.8 1.0013 0.9941 0.9951 0.9920 1.0060 0.9951
1.12 25.96 0.08 29.53 8.46 27.70

0.9 1.0032 0.9978 0.9988 0.9969 1.0126 0.9977
1.12 28.37 0.08 30.65 9.14 30.58

1.0 1.0024 1.0000 1.0000 1.0000 1.0170 1.0004
0.56 9.89 0.04 7.64 4.80 10.93

Best 0.98 0.96 0.97 0.95 0.98 0.96

Table 21. Results for 20 node Euclidean network (density - 0.7)

Prob. Grid Euclidean
0.3 0.5 0.7

0.1 0.9013 0.9775 0.9797 0.9800
0.2 0.9005 0.9706 0.9728 0.9742
0.3 0.8984 0.9676 0.9712 0.9734
0.4 0.9205 0.9701 0.9749 0.9753
0.5 0.9430 0.9699 0.9775 0.9794
0.6 0.9577 0.9731 0.9808 0.9819
0.7 0.9723 0.9770 0.9839 0.9865
0.8 0.9819 0.9842 0.9880 0.9909
0.9 0.9913 0.9917 0.9933 0.9953
1.0 0.9986 1.0000 1.0000 1.0000

109

Table 22. Overall average of best results for grid and Euclidean networks

110

4.4.2 PERFORMANCE OF THE HEURISTICS

Our results indicate that when the probability of occurrence of the white edges is very

low (p= 0.1), the global greedy heuristic along with DROP-ADD seems to perform

better than the other two heuristics. For other values of p, the sub-tour construction

heuristic along with DROP-ADD clearly seems to perform better than the other two

heuristics for grid networks.
For the Euclidean networks, as the number of edges increases, the local

greedy heuristic along with DROP-ADD seems to perform the best among the three,

though the margin of improvement is very small. For problems with smaller number

of white edges, the best results seem to be spread among the three heuristics for the

various values of p.

The results on our computational times indicate that all the three heuristics are

quite fast. For the largest problems (9x9 grid networks, and 20 node Euclidean

networks with edge density of 0.7), all the heuristics (including the post-optimization

phase) generate tours in about a minute. So we can generate tours using all the three

heuristics and choose the tour with the best expected length.

4.4.3 COMPARISON OF HEURISTICS WITH RANDOM TOUR

We also compared the expected lengths of the tours produced by the three heuristics

with the expected length of a random Eulerian tour. Table 22 contains average results

for the grid and Euclidean networks. For a given probability, we pick the results

produced by the heuristic with the best average result over 10 instances for each

problem size, and compute the overall average best result over all the problem sizes

using these results. Our results show that for the grid networks, the expected length

of our overall average best solution is lower than the expected length of a random

tour by 10% on average, for lower values of p. As p increases to 1.0, this average

reduces to 6% for p = 0.5 and 1% for p = 0.9. In one particular 9x9 instance, the

expected length of the tour generated by the sub-tour construction heuristic is 25%

lower than the expected length of the random Eulerian tour. For the Euclidean

111

networks, the gaps are not as dramatic. The expected length of our overall average

best solution is lower than the expected length of a random tour by 2% on average,

for low values of p. These results clearly show that it is advantageous to use

heuristics designed specifically for the SETP rather than generate a random Eulerian

tour.

4.5 CONCLUSION

In this chapter, we have presented three different heuristics for the SETP and the

DROP-ADD post-optimization procedure. The global greedy heuristic starts with an

empty tour and determines the next edge to service as the one that results in the

minimum expected increase in the length when appended at the end of the tour. The

local greedy heuristic selects the next edge of the tour from the set of edges at the

current node rather than from the set of all available white edges. Finally the sub-tour

construction heuristic constructs several small sub-tours and then concatenates them

while considering the expected savings in concatenating sub-tours.

We have tested the performance of the three heuristics on grid networks and

on Euclidean graphs of various sizes. Our results indicate that the sub-tour

construction heuristic performs well when p > 0.1 for the grid networks. For the

Euclidean networks, as the number of edges increases, the second heuristic performs

the best among the three, though the margin of improvement is small.

We also compared the expected lengths of the tours produced by the three

heuristics with the expected length of a random Eulerian tour. Our results show that

for the grid networks, the expected length of our overall average best solution is

lower than the expected length of a random tour by 10% on average, for lower values

of p. As p increases to 1.0, this average reduces to 6% for p = 0.5 and 1% for p =

0.9. For the Euclidean networks, the expected length of our overall average best

solution is lower than the expected length of a random tour by 2% on average, for low

values of p. This chapter is a good start to the methodological contribution to the

SETP and the results can defmitely be used as a starting point for the development of

meta-heuristics for the SETP.

CHAPTER 5

CONCLUSION

5.1 CONTRIBUTIONS OF THIS THESIS

This thesis focused on two specific and important problems in arc routing — the

Capacitated Arc Routing Problem (CARP) and the Stochastic Eulerian Tour Problem

(SETP). Both problems have excellent application potential and deserve special

attention.

5.1.1 THEORETICAL CONTRIBUTION

The theoretical contribution of this thesis is through the Stochastic Eulerian Tour

Problem (SETP), the second problem that we considered in this thesis. As explained in

the previous chapters, the SETP arises when the set of edges that have to be visited on

any particular day is random. The investigation of this problem was actually motivated

by the existence of a real world problem. In the UK postal system, the carriers deliver

mail a second time in the afternoon when the number of streets to be visited is very small

and varies from day to day. Given this scenario, the mail carrier, while following his

regular route, usually skips the streets that do not require a visit. Thus, given an

undirected graph G = (v, E) where all the edges in E require service, a distance matrix D

and a probability distribution for the number of required edges present, the SETP seeks

an a priori Eulerian tour of minimum expected length.

This thesis has defined and investigated this problem for the first time. We feel

that it plays an important role in scenarios where the number of edges to be visited each

day is random and smaller compared to the total number of edges that require service.

113

We have derived a closed form expression for the expected length of a given tour when

the number of present edges follows a binomial distribution. This result can be easily

extended to the situation where the number of white edges present follows any discrete

probability distribution if the set of present white edges can be chosen randomly from the

set of all white edges. We have also shown that the SETP is NP-hard, even though the

deterministic counter part is solvable in polynomial time. We have derived further

properties and a worst case ratio for the deviation of the expected length of a random

Eulerian tour from the optimal tour in the expected sense.

5.1.2 METHODOLOGICAL CONTRIBUTIONS

The methodological contributions of this thesis are the new tabu search algorithm for the

CARP that considers work load balancing, and the three heuristics for the SETP. The

CARP is one of the most important problems in arc routing due to its presence in

applications such as snow plowing, street cleaning, garbage collection, mail delivery, and

many others. The CARP is a very hard problem, and it is quite unrealistic to believe that

exact procedures can be used to solve even average sized problems. Researchers have

developed several heuristics for the CARP. Most of these heuristics are simple one-shot

heuristics. Recently, Hertz, Laporte, and Mittaz (1996) have developed a tabu search

based heuristic, CARPET, for the CARP that incorporates local improvement routines.

We have developed a new tabu search based algorithm, TABUCARP, that

considers a secondary objective of balancing the total work load (demand) fairly equally

among the routes, in addition to minimizing the total cost. We feel that it is quite

important to incœporate this feature, since most applications such as mail delivery, meter

reading, and garbage collection require work load balancing. In a real-world scenario, if

the existing algorithm considers only the total cost, generally, the planner revisits the

solution and moves demand among the various routes myopically in order to balance the

load. On the other hand, our procedure (TABUCARP) aims to be a latte more global and

builds this additional feature into the algorithm. This is an important contribution of this

thesis since this is a first step towards using TABUCARP as a useful planning tool for

several arc routing applications.

114

We have tested TABUCARP on a set of 23 test problems by DeArmon, and

another set of random problems. TABUCARP produces routes similar to CARPET for

the DeArmon problems. On the random problems, the total distance traversed by

TABUCARP' s solutions is 2.78% higher than CARPET' s solution on average. However,

for this relatively small increase we get better work load balancing. The coefficient of

variation for work load balance is 7.69% lower for TABUCARP's solutions.

The SETP belongs to a class of hard problems, and hence, it is not possible to

solve realistic sized problems optimally using algorithms that would run in polynomial

time. Hence, we have developed three heuristics for the SETP. The fffst heuristic, a

global greedy heuristic, starts with an empty tour and determines the next edge to service

as the one that results in the minimum expected increase in the length when appended at

the end of -the tour. The second heuristic, a local greedy heuristic, selects the next edge of

the tour from the set of edges at the current node rather than from the set of all available

white edges. Finally the third heuristic, a sub-tour construction heuristic, constructs

several small sub-tours and then concatenates these sub-tours while considering the

expected savings in concatenating sub-tours. We have also incorporated an adaptation of

the US post-optimization procedure developed by Gendreau et al. (1992) for the TSP.

We have tested the performance of the tlaree heuristics on grid networks and

Euclidean graphs of varions sizes. Our results indicate that when the probability of

occurrence of the white edges is very low (p= 0.1), the global greedy heuristic seems to

perform better the other two heuristics. In other situations, the sub-tour construction

heuristic seems to perform well for the grid networks. For the Euclidean networks, as the

number of edges increases, the second heuristic seems to perform the best among the

three, though the margin of improvement is small.

We also compared the expected lengths of the tours produced by the three

heuristics with the expected length of a random Eulerian tour. Our results show that for

the grid networks, the expected length of our best solution is lower than the expected

length of a random tour by 10% on average, for lower values of p. For the Euclidean

networks, the expected length of our best solution is lower than the expected length of a

random tour by 2% on average, for low values of p.

115

5.2 DIRECTIONS FOR FUTURE RESEARCH

This thesis has addressed two important problems in the area of arc routing. There are

several theoretical and practical issues that we would like to investigate further as part of

contùming research in this arca.

• The TABUCARP algorithm that we have developed seems to perform well in terms

of producing fairly balanced routes. As a first step towards developing a planning

tool for several applications, we would like to test and validate the algorithm with real

world data. Once this process is completed successfully, TABUCARP could form the

backbone for developing a user friendly scheduling tool for several arc routing

applications.

• The definition and formulation of the SETP has made it possible to investigate the use

of the SETP methodology in actual applications such as the UK postal situation. The

results from Chapter 4 indicate that even a simple application of the concepts

developed in this thesis could result in a reasonable reduction of the expected lengths

of the postman tours in these applications. Here again, the use of real world data

would help validate the methodology.

• We would like to explore the possibility of developing exact solution procedures for

the SETP. One possibility is to formulate the problem as a stochastic integer

program, and use the integer L-shaped method to devise a branch-and-cut algorithm

for the SETP. Obtaining the optimal solutions for possible instances would also help

assess the accuracy of the heuristics we have developed in Chapter 4.

• The sub-tour construction heuristic presented in Chapter 4 does not fully exploit the

desirable properties of a good a priori tour. We can develop meta-heuristics such as

tabu search based heuristics that moves edges among sub-tours to produce a large

number of small and balanced sub-tours. The concept of work load balancing from

TABUCARP can be extended to this situation to balance the size of the various sub-

tours.

• Finally, for the SETP, this thesis focussed on finding the Euleriari tour of minimum

expected length after the given graph is made Eulerian by solving the minimum cost

augmentation problem. However, based on Jaillet's results for the PTSP, we feel that

116

it will be worth the effort to consider the augmentation problem and the SETP

simultaneously. In this situation, it might be possible to develop an Eulerian tour of

smaller expected length compared to a random Eulerian tour on an augmented graph,

even when all the white edges are present in the given graph.
We hope that this thesis has provided the motivation for exploring the SETP and several

other stochastic arc routing problems further.

REFERENCES

Assad, A. A. and B. L. Golden, "Arc Routing Methods and Studies," in Network
Routing, Handbooks in Operations Research and Management Science, M. O.
Ball, T. L. Magnanti, C. L. Monma and G. L. Nemhauser (eds.), North-
Holland, Amsterdam, 1995.

Assad, A. A., W. -L. Pearn, B. L. Golden, "The Capacitated Chinese Postman
Problem: Lower Bounds and Solvable Cases," American Journal of
Mathematical and Management Sciences, 7 (1987), 63-88.

Barahona, F., "On Some Applications of the Chinese Postman Problem," in Paths,
Flows and VLSI-Layout, Algorithms and Combinatorics, 9, B. Korte,
L. Lovàsz, H. J. Promel, and A. Schriver, Eds., Springer-Verlag, Berlin, 1990.

Bartholdi, J. J. and L. K. Platzman, "An (N log N) Planar Traveling Salesman
Heuristic Based on Spacefilling Curves," Operations Research Letters, 1
(1982), 121-125.

Belenguer, J. M. and E. Benavent, "Polyhedral Results on the Capacitated Arc
Routing Problem," Working Paper, Department° de Estadistica e
Investigacion Operativa, Universidad de Valencia (1991).

Beltrami, E. L. and L.D. Bodin, "Networks and Vehicle Routing for Municipal Waste
Collection," Networks, 4 (1974), 65-94.

Benavent, E., V. Campos, A. Corberàn, and E. Mota, "The Capacitated Arc Routing
Problem: A Heuristic Algorithm," Quaderns d 'Estadistica, Sistemes,
Informatica I Investigacio Operativa (QUESTII0), 14 (1990), 107-122.

Benavent, E., V. Campos, A. Corberân, and E. Mota, "The Capacitated Arc Routing
Problem: Lower Bounds,"Networks, 22 (1992), 669-690.

Bennet, B. and D. Gazis, "School Bus Routing by Computer," Transportation
Research, 6 (1972), 317-326.

Bertsimas, D. J., Probabilistic Combinatorial Optimization Problems, Ph. D. Thesis,
Report No. 193, Operations Research Center, Massachusetts Institute of
Technology, Cambridge, MA, 1988.

117

118

Bertsimas, D. J. and L. H. Howell, "Further Results on the Probabilistic Traveling
Salesman Problem," European Journal of Operational Research, 65 (1993),
68-95.

Bodin, L. D. and O. Berman, "Routing and Scheduling of School Buses by
Computer," Transportation Science, 13 (1979), 113-129.

Bodin, L. D., G. Fagin, R. Welebny, and J. Greenberg, "The Design of a
Computerized Sanitation Vehicle Routing and Scheduling system for the
Town of Oyster Bay, New York," Computers & Operations Research, 16
(1989), 45-54.

Bodin, L. D., B. L. Golden, A. A. Assad, and M. O. Ball, "Routing and Scheduling of
Vehicles and Crews. The State of the Art," Computers & Operations
Research, 10 (1983), 63-211.

Bodin, L. D. and S. J. Krush, "A Computer-Assisted System for the Routing and
Scheduling of Street Sweepers," Operations Research, 26 (1978), 525-537.

Bouliane, J. and G. Laporte, "Locating Postal Relay Boxes Using a Set Covering
Algorithm," American Journal of Mathematical and Management Sciences,
12 (1992), 65-74.

Brandimarte, P., "Routing and Scheduling in a Flexible Job Shop by Tabu Search,"
Annals of Operations Research, 41 (1993), 327-342.

Brucker, P., "The Chinese Postman Problem for Mixed Graphs," in Graph Theoretic
Concepts in Computer Science, H. Noltemeier (ed.), Springer-Verlag, Berlin,
1981.

Busacker, R. G. and T. L. Saaty, Finite Graphs and Networks, McGraw-Hill, New
York, 1975.

Chapleau, L., J. A. Ferland, G. Lapalme, and J.-M. Rousseau, "A Parallel-Insert
Method for the Capacitated Arc Routing Problem," Operations Research
Letters, 3 (1984), 95-99.

Christofides, N., "The Optimum Traversal of a Graph," Omega, 1 (1973), 719-732.

Christofides, N., E. Benavent, V. Campos, A. Corberân, and E. Mota, "An Optimal
Method for the Mixed Postman Problem," in System Modelling and
Optimization, Lecture Notes in Control and information Sciences, 59, P.
Thoft-Christensen (ed.), Springer-Verlag, Berlin, 1984.

Christofides, N., V. Campos, A. Corberân, and E. Mota, "An Algorithm for the Rural
Postman Problem," Imperial College Report IC.O.R. 81.5, 1981.

119

Christofides, N., V. Campos, A. Corberân, and E. Mota, "An Algorithm for the Rural
Postman Problem on a Directed Graph," Mathematical Programming Study,
26 (1986), 155-166.

Clark, R. M. and J. I. Gillean, "Analysis of solid Waste Management Operations in
Cleveland, Ohio," Interfaces, 6 (1975), 32-42.

Clark, R. M. and C. H. Lee, Jr., "Systems Planning for Solid Waste Collection,"
Computers & Operations Research, 3 (1976), 157-173.

Clarke, G. and J. M. Wright, "Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points," Operations Research, 12 (1964), 568-581.

Cook, T. M. and B. S. Alprin, "Snow and Ice Removal in an Urban Environment,"
Management Science, 23 (1976), 227-234.

Daniels, R. L. and J. B. Mazola, "A Tabu Search Heuristic for the Flexible-Resource
Flow Shop Scheduling Problem," Armais of Operations Research, 41 (1993),
207-230.

Dell'Amico, M. and T. Trubian, "Applying Tabu Search to the Job-Shop Scheduling
Problem," Annals of Operations Research, 41 (1993), 231-252.

Desrosiers, J., J. A. Ferland, J. -M. Rousseau, G. Lapalme, and L. Chapleau,
"TRANSCOL: A Multi-Period School Bus Routing and Scheduling System,"
TIMS Studies in the Management Sciences, 22 (1986), 47-71.

Dror, M., H. Stern, and P. Trudeau, "Postman Tour on a graph with Precedence
Relation on Arcs," Networks, 17 (1987), 283-294.

Edmonds, J., "The Chinese Postman's Problem," ORSA Bulletin, 13 (1965a), 73.

Edmonds, J., "Paths, Trees, and Flowers," Canadian Journal of Mathematics, 17
(1965b), 449-467.

Edmonds, J. and E. L. Johnson, "Matching, Euler Tours and the Chinese Postman
Problem," Mathematical Programming, 5 (1973), 88-124.

Eglese, R. W. and L. Y. O. Li, "Efficient Routeing for Winter Gritting," Journal of
the Operational Research Society, 43 (1992), 1031-1034.

Eglese, R. W. and H. Murdock, "Routeing Road Sweepers in a Rural Area," Journal
of the Operational Research Society, 42 (1991), 281-288.

Eiselt, H. A., M. Gendreau, and G. Laporte, "Arc Routing Problems. Part I: The
Chinese Postman Problem," Operations Research, 43 (1995), 231-242.

120

Eiselt, H. A., M. Gendreau, and G. Laporte, "Arc Routing Problems. Part II: The
Rural Postman Problem," Operations Research, 43 (1995), 399-414.

Fleischner, H., Eulerian Graphs and Related Topics (Part I, Volume 1), Annals of
Discrete Mathematics, 45, North-Holland, Amsterdam, 1991.

Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton University Press,
Princeton, New Jersey, 1962.

Frederickson, G. N., "Approximation Algorithms for Some Postman Problems,"
Journal of the Association for Computing Machinery, 26 (1979), 538-554.

Frederickson, G. N., M. S. Hecht, and C. E. Kim, "Approximation Algorithms for
Sonie Routing Problems," SIAM Journal on computing, 7 (1978), 178-193.

Friden, C., A. Hertz and D. de Werra, "STABULUS: A Technique for Finding Stable
Sets in Large Graphs with Tabu Search," Computing, 42 (1989), 35-44.

Friden, C., A. Hertz and D. de Werra, "TABARIS: An Exact Algorithm Based on
Tabu Search for Finding a Maximum Independent Set in a Graph,"
Computers and Operations Research, 17 (1990), 437-445.

Gendreau, M., A. Hertz, and G. Laporte, "New Insertion and Postoptimisation
Procedures for the Traveling salesman Problem," Operations Research, 40
(1992), 1086-1094.

Gendreau, M., A. Hertz, and G. Laporte, "A Tabu Search Heuristic for the Vehicle
Routing Problem," Management Science, 40 (1994), 1276-1290.

Gendreau, M., G. Laporte and R. Séguin, "Stochastic Vehicle Routing," European
Journal of Operational Research, 88 (1996), 3-12.

Gendreau, M., P. Soriano, and L. Salvail, "Solving the Maximum Clique Problem
Using a Tabu Search Approach," Annals of Operations Research, 41 (1993),
385-404.

Glover, F., "Future Paths for Integer Programming and Links to Artificial
Intelligence," Computers and Operations Research, 13 (1986), 533-549.

Glover, F., "Tabu Search - Part I," ORSA Journal on Computing, 1 (1989), 190-206.

Glover, F., "Tabu Search- Part II," ORSA Journal on computing, 2 (1990), 4-32.

Glover, F. and M. Laguna, Tabu Search, Kluwer, Massachusetts, USA, 1997.

Glover, F., E. Taillard, and D. de Werra, "A User's Guide to Tabu Search," Annals of

121

Operations Research, 41 (1993), 3-28.

Golden, B. L. and R. T. Wong, "Capacitated Arc Routing Problems," Networks, 11
(1981), 305-315.

Golden, B. L., J. S. DeArmon, and E. K. Baker, "Computational Experiments with
Algorithms for a Class of Routing Problems," Computers & Operations
Research, 10 (1983), 47-59.

Grtitschel, M. and Z. Win, "A Cutting Plane Algoritlu-n for the Windy Postman
Problem," Mathematical Programming, 55 (1992), 339-358.

Guan, M., "Graphic Programming Using Odd and Even Points," Chinese
Mathematics, 1 (1962), 273-277.

Guan, M., "On the Windy Postman Problem," Discrete Applied Mathematics, 9
(1984b), 41-46.

Haslam, E. and J. R. Wright, "Application of Routing Technologies to Rural Snow
and Ice Control," Transportation Research Record, No. 1304 (1991), 202-
211.

Held, M. and R. M. Karp, "The Traveling Salesman Problem and Minimum Spanning
Trees: Part II," Mathematical Programming, 1 (1971), 6-25.

Hertz, A. and D. de Werra, "Using Tabu Search Techniques for Graph Coloring,"
Computing, 29 (1987), 345-351.

Hertz, A., G. Laporte, and M. Mittaz, "A Tabu Search Heuristic for the Capacitated
Arc Routing Problem," Working Paper, Département de Mathématiques,
École Polytechnique Fédérale de Lausanne, December 1996.

Hertz, A., G. Laporte, and P. Nanchen, "Improvement Procedures for the Undirected
Rural Postman Problem," Publication CRT-96-30, Centre de recherche sur
les transports, Université de Montréal, August 1996.

Holland, J. H., Adaptation in Natural and Artificial Systems, The University of
Michigan Press, Ann Arbor, 1975.

Jaillet, P., Probabilistic Traveling Salesman Problem, Ph. D. Thesis, Report No. 185,
Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA, 1985.

Jaillet, P., "A Priori Solution of a Traveling Salesman Problem in Which a Random
Subset of Customers are visited," Operations Research, 36 (1988), 929-936.

Jaillet, P. and A. R. Odoni, "The Probabilistic Vehicle Routing Problem," in Vehicle

122

Routing: Methods and Studies, B. L. Golden and A. A. Assad (eds.), North-
Holland, Amsterdam, 1988.

Kappauf, C. H. and G. J. Koehler, "The Mixed Postman Problem," Discrete Applied
Mathematics, 1 (1979), 89-103.

Laporte, G. and F. V. Louveaux, "The Integer L-Shaped Method for Stochastic
Integer Programs with Recourse," Operations Research Letters, 13 (1993),
133-142.

Laporte, G. F. V. Louveaux, and H. Mercure, "A Priori Optimization of the
Probabilistic Traveling Salesman Problem," Operations Research, 42 (1994),
543-549.

Larson, R. C. and A. R. Odoni, Urban Operations Research, Prentice-Hall, Engle-
Wood Cliffs, New Jersey, 1981.

Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart &
Winston, New York, 1976.

Lemieux, P. F. and L. Campagna, "The Snow ploughing Problem Solved by a Graph
Theory Algorithm," Civil Engineering Systems, 1 (1984), 337-341.

Lenstra, J. K. and A. H. G. Rinnooy Kan, "On General Routing Problems," Networks,
6 (1976), 273-280.

Levy, L. and L. D. Bodin, "Scheduling the Postal Carriers for the United States
Postal Service: An Application of Arc Partitioning and Routing," in Vehicle
Routing: Methods and Studies, B. L. Golden and A. A. Assad (eds.), North-
Holland, Amsterdam, 1988.

Levy, L. and L. D. Bodin, "The Arc Oriented Location Problem, INFOR, 27 (1989),
74-94.

Malek, M., A. Mourad, and M. Pandya, "Topological Testing," Proceedings of the
IEEE 1989 International Test Conference, 1989, 103-110.

McBride, R., "Controlling Left and U-Turns in the Routing of Refuse Collection
Vehicles," Computers & Operations Research, 9 (1982), 145-152.

Minieka, E., "The Chinese Postman Problem for Mixed Networks," Management
Science, 25 (1979), 643-648.

Nobert, Y. and J.-C. Picard, "An Optimal Algorithm for the Mixed Chinese Postman
Problem," Networks, 27 (1996), 95-108.

Orloff, C. S., "A Fundamental Problem in Vehicle Routing," Networks, 4 (1974),

123

35-64.

Osman, I. H., "Metastrategy Simulated Annealing and Tabu Search Algorithms for
the Vehicle Routing Problem," Annals of Operations Research, 41 (1993),
421-451.

Papadimitriou, C. H., "On the Complexity of Edge Traversing," Journal of the
Association for Computing Machinery, 23 (19760, 544-554.

Picard, J. -C. and M. Queyranne, "On the structure of all Minimum Cuts in a
Network and Applications," Mathematical Programming Study, 13 (1980),
8-16.

Picard, J. -C., and H. D. Ratliff, "Minimum Cuts and Related Problems," Networks,
5 (1975), 357-370.

Peam, W. -L., "New Lower Bounds for the Capacitated Arc routing Problem,"
Networks, 18 (1988), 181-191.

Peam, W.-L., "Approximate Solutions to the Capacitated Arc Routing Problem,"
Computers & Operations Research, 16 (1989), 589-600.

Pearn, W.-L., "Augment-Insert Algorithms for the Capacitated Arc Routing
Problem," Computers & Operations Research, 18 (1991), 189-198.

Peam, W. -L., A. A. Assad, and B. L. Golden, "Transforming Arc Routing into Node
Routing Problems," Computers & Operations Research, 14 (1987), 285-288.

Potvin, J.-Y., T. Kervahut, B. L. Garcia, and J.-M. Rousseau, "The Vehicle
Routing Problem with Time Windows — Part I: Tabu Search," INFORMS
Journal on Computing, 8 (1996), 158-164.

Pureza, V. M., and P. M. França, "Vehicle Routing Problems via Tabu Search
Metaheuristic," Publication CRT-747, Centre de recherche sur les transports,
Université de Montréal, Canada, 1991.

Rego, C., and C. Roucairol, "A Parallel Tabu Search Using Ejection Chains for the
Vehicle Routing Problem," in Meta-Heuristics: Theory and Applications, I. H.
Osman and J. P. Kelly (eds.), Kluwer, Massachusetts, USA, 661-676, 1996.

Rochat, Y. and É. Taillard, "Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing," Journal of Heuristics, 1 (1995), 147-167.

Rossi, F. A. and I. Gavioli, "Aspects of Heuristic Methods in the Probabilistic
Traveling Salesman Problem," in Advanced School on Stochastics in
Combinatorial Optimization, G. Andreatta, F. Mason and P.Serafini (eds.),
World Scientific, Singapore, 214-227, 1988.

Roy, S. and J. -M. Rousseau, "The Capacitated Canadian Postman Problem,"
INFOR, 27 (1989), 58-73.

Sahni, S. K. and T. Gonzalez, "P-Complete Approximation Problems," Journal of
the Association for Computing Machinery, 23 (1976), 555-565.

Semet, F. and É. Taillard, "Solving Real-Life Vehicle Routing Problems Efficiently
Using Tabu Search," Annals of Operations Research, 41 (1993), 469-488.

Stern, H. and M. Dror, "Routing Electric Meter Readers," Computers & Operations
Research, 6 (1979), 209-223.

Swersey, A. J. and W. Ballard, "Scheduling School Buses," Management Science, 30
(1984), 844-853.

Taillard, É., "Some Efficient Heuristic Methods for the Flowshop Sequencing
Problem," European Journal of Operational Research, 47 (1990), 65-74.

Taillard, É., "Parallel Iterative Search Methods for Vehicle Routing Problems,"
Networks, 23 (1993), 661-673.

Taillard, É., P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin, "A Tabu Search
Heuristic for the Vehicle Routing Problem with Soft Time Windows,"
Transportation Science, 31 (1997), 170-186.

Turner, W. and E. Hougland, "The Optimal Routing of Solid Waste Collection,"
AIIE Transactions, 7 (1975), 427-431.

Ulusoy, G., "The Fleet Size and Mix Problem for Capacitated Arc Routing,"
European Journal of Operational Research, 22 (1985), 329-337.

van Aardenne-Ehrenfest, T. and N. G. de Bruijn, "Circuits and Trees in Oriented
Linear Graphs," Simon Stevin, 28 (1951), 203-217.

Widmer, M. and A. Hertz, "A New Method for the Flow Sequencing Problem,"
European Journal of Operational Research, 41 (1989), 186-193.

Win, Z., Contributions to Routing Problems, Doctoral Dissertation, Universitât
Augsburg, 1987.

Win, Z., "On the Windy Postman Problem on Eulerian Graphs," Mathematical
Programming, 44 (1989), 97-112.

Wunderlich, J., M. Collette, L. Levy, and L. D. Bodin, "Scheduling Meter Readers
for Southern California Gas Company," Interfaces, 22 (1992), 22-30.

124

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143

