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ABSTRACT 

This thesis focuses on two specific problems in arc routing — the Capacitated Arc 

Routing Problem (CARP) and the Stochastic Eulerian Tour Problem (SETP). Both 

problems have excellent application potential and deserve special attention. 

The first problem that we consider is the CARP. We have developed a tabu 

search based heuristic procedure, TABUCARP, for this problem. In contrast to 

CARPET, another recent tabu search based heuristic for the CARP by Hertz et al. 

(1996), our heuristic considers a secondary objective of balancing the total work load 

(demand) fairly equally among the routes, in addition to minimizing the total cost. 

We feel that it is quite important to incorporate this feature, since most applications 

such as mail delivery, meter reading, and garbage collection require work load 

balancing. 

TABUCARP continuously moves capacity excesses and deficits from routes 

farther away from the depot to one of the neighboring routes. We incorporate several 

features such as self-adjusting penalties, random tabu tags, and adaptive memory to 

guide the search. We have tested our algorithm on a set of 23 test problems by 

DeArmon, and another set of random problems. TABUCARP produces routes 

similar to CARPET for the DeArmon problems. A comparison of TABUCARP and 

CARPET solutions on the random problems indicates that it is definitely 

advantageous to consider work load balancing as an additional objective. The price 

we pay for gaining work load balance in the TABUCARP solutions is minimal since 

the deterioration in the objective fitnction (total distance traveled) of the TABUCARP 

solutions is marginal when compared to the objective function of CARPET solutions. 

The second problem that we consider in this thesis is the Stochastic Eulerian 

Tour Problem (SETP). The SETP arises when the set of edges that have to be visited 

(the set of present edges) on any particular day is random. The investigation of this 
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problem was motivated by a situation in the UK postal system. Here, the postal 

carriers deliver mail twice every day. During the moming delivery, typically all the 

streets in the netvvork require service. However, during the aftemoon delivery, the 

number of streets with demand is a very small subset of the set of all streets in the 

network and this subset usually varies from day to day. Given this scenario, the mail 

carrier, while following his moming route, usually skips the streets without demand 

during the aftemoon delivery. Thus, given an undirected graph G = (v, E) where all 

the edges in E require service, a distance matrix D and a probability distribution for 

the number of present edges, the SETP seeks an a priori Eulerian tour of minimum 

expected length. 

We derive a closed form expression for the expected length of a given tour 

when the number of present edges follows a binomial distribution. We also show that 

the SETP is NP-complete, and derive further properties and a worst case ratio for the 

deviation of the expected length of a random Eulerian tour from the optimal tour in 

the expected sense. We also investigate some of the desirable properties of a good a 

priori tour using illustrative examples. 

We have also developed three heuristics for the SETP. The first heuristic 

starts with an empty tour and determines the next edge to service as the one that 

results in the minimum expected increase in the length when appended at the end of 

the tour. The second heuristic selects the next edge of the tour from the set of edges 

at the current node rather than from the set of all available edges that requires service. 

Finally the third heuristic constructs several small sub-tours and then concatenates 

these sub-tours while considering the expected savings in concatenating sub-tours. 

We have also incorporated an adaptation of the US post-optimization procedure 

developed by Gendreau et al. (1992) for the TSP. 

We have tested the performance of the three heuristics on grid networks and 

Euclidean graphs of various sizes. Our results indicate that when the probability of 

occurrence of the edges requiring service is very low (p= 0.1), the first heuristic 

seems to perform better than the other two heuristics. In other situations, the third 

heuristic seems to perform well for the grid networks. For the Euclidean networks, as 

the number of edges increases, the second heuristic seems to perform the best among 



the three, though the margin of improvement is small. We also compared the 

expected leng-ths of the tours produced by the three heuristics with the expected 

length of a random Eulerian tour. Our results show that for the grid networks, the 

expected length of our best solution is lower than the expected length of a random 

tour by 10% on average, for lower values of p. As p increases to 1.0, this average 

reduces to 6% for p = 0.5 and 1% for p = 0.9. For the Euclidean networks, the 

expected length of our best solution is lower than the expected length of a random 

tour by 2% on average, for low values of p. 



RÉSUMÉ 

Un problème commun dans les systèmes de service est la conception des parcours 

pour les véhicules ou les personnes donnant ces services. Ces problèmes de tournées 

représentent un champ de recherche important depuis bon nombre d'années, ceci est 

dû, entre autres, à l'abondance d'applications. Avec l'augmentation du coût des 

véhicules et de la main d'ceuvre, toute économie obtenue grâce à l'amélioration de la 

conception des parcours sera appréciée. 

Les problèmes de tournées se divisent en deux classes — Les problèmes de 

tournées sur les nceuds (PTN) et les problèmes de tournées sur les arcs (PTA). Dans 

un PTN, la demande (collecte ou livraison) se produit sur les nœuds d'un graphe alors 

que dans un PTA, la demande se situe au niveau des arcs du graphe. Dans un PTA, 

l'objectif est de construire des routes à coût minimal qui traversent un ensemble 

donné d'arcs nécessitant un service. En dépit d'un nombre incroyable d'applications 

réelles, les PTA n'ont pas reçu autant d'attention de la part des chercheurs que les 

PTN. Alors que des progrès considérables ont été accomplis dans le développement 

d'excellents résultats théoriques et de procédures donnant des solutions exactes pour 

les PTN, la recherche faite du côté des PTA semble se limiter à des situations 

particulières. Avec cette motivation en tête, cette thèse se concentre sur deux 

problèmes précis de tournées sur les arcs -- Le problème de tournées sur les arcs avec 

capacité (PTAC) et le problème de tournée stochastique eulérienne (PTSE). Ces 

deux problèmes possèdent un excellent potentiel d'application et demandent une 

attention particulière. 

Le premier problème que nous considérons est le PTAC. Il s'agit d'un des 

problèmes les plus importants de tournées sur des arcs, ceci étant dû à leurs présences 

dans des applications telles que le déneigement, le nettoyage des rues, la collecte des 

ordures, la distribution de courrier postal et plusieurs autres. Le PTAC est un 
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problème très difficile et il serait irréaliste de croire que des procédures exactes 

puissent être utilisées pour résoudre ce problème, même en se limitant à des tailles 

moyennes. Les chercheurs ont développé de nombreuses heuristiques pour les 

PTAC. La plupart de celles-ci constituent une première tentative et très peu de travail 

a été fait dans le développement de procédures d'amélioration locale. De plus, 

chaque heuristique semble plutôt adaptée à des types particuliers de graphes. 

Récemment, Hertz et al. (1996) ont développé une heuristique pour le PTAC qui est 

basée sur la recherche avec tabous (CARPET). 

CARPET évolue d'une solution vers une solution voisine en déplaçant un arc 

à desservir de la tournée courante vers une autre tournée. Cette heuristique est 

semblable à TABUROUTE (l'heuristique de recherche avec tabous pour les 

problèmes de tournées de véhicules (Gendreau et al. 1994)) dans la plupart de ses 

caractéristiques. L'objectif de CARPET est de produire une solution au PTAC qui ait 

le coût le plus faible possible. Cependant, dans beaucoup de situations pratiques, en 

plus de vouloir minimiser le coût total, il y a un second objectif qui consiste à 

équilibrer la charge totale de travail de manière équitable pour chacune des routes. 

Nous tenons compte aussi de cet objectif dans notre heuristique et tentons de produire 

des solutions équilibrées à coût minimal. 

Nous pensons qu'il est très important d'inclure cet aspect puisque la plupart 

des applications telles que la distribution du courrier, la lecture des compteurs 

électriques et la collecte des ordures demandent une charge de travail equilibrée. 

Dans un contexte réel, si l'algorithme utilisé ne considère que le coût total, le 

répartiteur doit généralement revoir la solution et la modifier à vue d'ceil afin de 

l'équilibrer. À l'inverse, notre procédure (TABUCARP) vise à être plus globale et 

considère cette caractéristique dans l'algorithme. Ainsi, celui-ci peut servir d'outil de 

planification pour plusieurs problèmes de tournées. 

TABUCARP déplace constamment les excès et déficits de capacité des 

chemins qui sont éloignés du dépôt vers une des routes voisines du dépôt. Le 

déplacement de base consiste à ajouter (enlever) un ou plusieurs arcs de service à une 

(d'une) tournée qui est sous (sur) utilisée. Nous avons utilisé plusieurs composantes 

telles que des pénalités auto-adaptables, des étiquettes tabous aléatoires et une 
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mémoire adaptative pour guider la recherche. Nous avons testé notre algorithme sur 

un ensemble de 23 problèmes tests de DeArmon ainsi que sur des problèmes générés 

aléatoirement. Nous avons comparé nos résultats avec ceux de CARPET. 

TABUCARP produit des trajets similaires à CARPET dans le cas des problèmes de 

DeArmon. Pour les problèmes aléatoires, les solutions de TABUCARP sont 

améliorées de 13,6 % en moyenne par rapport à celles de CARPET, en terme 

d'équilibre de la charge de travail. 

Le deuxième problème que nous avons considéré dans la thèse est le problème 

de tournée stochastique eulérienne (PTSE). Pour le PTSE l'ensemble des arcs à 

visiter pour une journée particulière est aléatoire. L'étude de ce problème a été 

suscitée par une application réelle : dans le système postal anglais, un facteur peut 

distribuer le courrier une deuxième fois dans l'après-midi; le nombre de rues à visiter 

est alors très petit et varie d'une journée à l'autre. Dans un tel cas, le facteur, tout en 

suivant son trajet régulier, peut généralement sauter les rues qui ne demandent pas de 

visite. 

Il est important de remarquer qu'il existe peut-être plus d'un parcours eulérien 

pour un graphe donné. Cependant tous ces parcours possèdent le même coût, et de 

par ce fait, aucune optimisation n'est nécessaire pour le problème de tournée 

déterministe eulérienne. Toutefois, pour le PTSE, chaque parcours présente certains 

avantages et inconvénients par rapport au saut d'arcs et a donc des longueurs espérées 

différentes. Donc, étant donné un graphe nonorienté G = (V, E) où tous les arcs de E 

nécessitent un service, une matrice de distances D et une distribution de probabilité 

pour le nombre d'arcs requis, le PTSE cherche à determiner a priori un parcours 

eulérien ayant une longueur espérée minimale. 

Le PTSE n'a pas été étudié dans la littérature jusqu'à maintenant. Nous 

pensons qu'il joue un rôle important dans les situations où le nombre d'arcs à visiter 

chaque jour est aléatoire et petit, comparé au nombre total d'arcs présents. Ceci 

motive notre examen de ce problème et de ses propriétés, ainsi que le développement 

d'algorithmes spécifiques pour le résoudre. 

Nous avons déterminé une expression pour la longueur espérée d'un parcours 

donné lorsque le nombre d'arcs présents suit une distribution binomiale. Ce résultat 
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peut aisément être étendu au cas où le nombre d'arcs à desservir suit n'importe quelle 

loi de probabilité discrète. Nous montrons également que le PTSE est NP-complet, et 

ce, même si la contrepartie déterministe se résoud en temps polynomial. Nous 

présentons d'autres propriétés ainsi qu'une borne sur la déviation de la longueur 

espérée du parcours eulérien aléatoire relativement au parcours optimal. Nous nous 

penchons aussi sur les propriétés souhaitables d'un bon parcours a priori, ceci en 

utilisant des exemples explicatifs. 

Puisque le PTSE appartient à une classe de problèmes difficiles, il n'est pas 

possible de résoudre des problèmes de taille réaliste en utilisant des algoritlunes 

s'exécutant en temps polynomial. Nous nous concentrons donc sur le développement 

d'algorithines heuristiques donnant de bonnes solutions. Nous avons construit trois 

heuristiques pour le PTSE. La première, une heuristique gloutonne globale, 

commence avec un parcours vide et choisit le prochain arc en déterminant celui qui 

ajoutera au parcours la longueur espérée minimale, lorsque l'arc est servi à la fin du 

parcours. La seconde, une heuristique gloutonne locale, choisit le prochain arc du 

parcours à partir de l'ensemble des arcs du nceud courant plutôt que de l'ensemble des 

arcs à desservir disponibles. Finalement, le troisième type, une heuristique de 

construction de sous- parcours, produit plusieurs petits sous-parcours et ensuite réunit 

ces sous-parcours en considérant les économies prévues dans un processus de 

concaténation. Nous avons aussi ajouté une adaptation de la procédure de post-

optimisation US développée par Gendreau et al. (1992) pour le TSP. 

Nous avons testé le rendement de ces trois heuristiques sur des réseaux 

quadrillés et des graphes eulériens de tailles variées. Nos résultats montrent que 

lorsque la probabilité de présence des arcs à desservir est petite, l'algorithme glouton 

global semble donner de meilleurs résultats que les deux autres. Dans d'autres 

situations, l'heuristique de construction de sous-parcours réagit bien pour des réseaux 

quadrillés. Pour les réseaux eulériens, lorsque le nombre d'arcs augmente, la 

deuxième heuristique donne le meilleur rendement, cependant l'amélioration est très 

faible. Puisque toutes les heuristiques sont assez rapides (les plus gros problèmes - 

des réseaux quadrillés de 9x9 et des réseaux eulériens de 20 nceuds avec densité 0,7 
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pour les arcs - prennent moins d'une minute pour chaque heuristique), nous pouvons 

utiliser les trois heuristiques et choisir la meilleure solution. 

Nous comparons également les longueurs espérées des parcours produits par 

les trois heuristiques avec la longueur espérée d'Im parcours eulérien aléatoire. Nos 

résultats montrent que pour les réseaux quadrillés, la longueur espérée de notre 

meilleure solution est inférieure à la longueur prévue d'un parcours aléatoire par 10% 

en moyenne, pour des petites valeurs de p. Lorsque p augmente, cette moyenne 

diminue à 6% pour p = 0,5 et à 1% pour p = 0,9. Dans un cas particulier, la 

longueur prévue du parcours produit par l'heuristique de construction de sous-

parcours est de 25% inférieure à la longueur prévue du parcours aléatoire. Les écarts 

pour les réseaux eulériens ne sont pas aussi importants. La longueur prévue de notre 

meilleure solution est inférieure à la longueur prévue du parcours aléatoire par 2% en 

moyenne, pour de petites valeurs de p. 

Cette thèse s'est penchée sur deux problèmes importants et intéressants dans 

le domaine des itinéraires sur des arcs. Nous avons développé une heuristique de 

recherche avec tabous pour le PTAC ayant comme objectif secondaire une charge de 

travail equilibrée pour chacun des parcours. Nous avons aussi introduit le PTSE et 

analysé plusieurs propriétés théoriques de ce problème. Finalement, nous avons 

construit trois heuristiques rapides pour le PTSE. Les recherches futures incluent 

l'examen de méthodes exactes et de nouvelles procédures d'amélioration pour le 

PTSE. 



To Shirdi Sai Baba 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM MOTIVATION 

A very common problem in service systems is the design of routes for vehicles or 

people delivering service. These routing problems have been an important area of 

research for a long time due to the abundance of practical applications. With the 

rising cost of labor and operating vehicles, any savings obtained through the design of 

better routes would be well appreciated. As a result, govemment and private 

organizations continue to encourage research on designing optimal or near-optimal 

routes for service delivery systems. 

Routing problems fall into two classes - Node Routing Problems (NRPs) and 
Arc Routing Problems (ARPs). In an NRP demand (pickup or delivery) occurs on the 

nodes or vertices of a graph, while in an ARP the demand occurs along the arcs or 

edges of a graph. Typically, in an NRP the objective is to visit, at the lowest cost 

possible, a given set of points in order to satisfy the demands at these points. In an 

ARP, the objective is to design minimum cost routes that traverse a given set of arcs 

or edges that require service. The well-knovvn Traveling Salesman Problem (TSP) 
belongs to the class of NRPs, and the Chinese Postman Problem (CPP) and the Rural 
Postman Problem (RPP) belong to the class of ARPs. Specific node routing 

examples include coin collection from public telephone booths, mail pickup from 

specific drop-off points, and distribution of newspapers to newsstands. Everyday 

problems of street sweeping, snow plowing, meter reading, school bus routing and 

household garbage collection are excellent examples of ARPs. 
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In spite of the numerous real world applications, ARPs have not received as 

much attention from researchers as NRPs. While researchers have made considerable 

progress in developing excellent theoretical results and exact solution procedures for 

several NRPs, the research work in the field of arc routing tends to be tailored to 

specific situations. With that as the motivation, this research focuses on two specific 

problems in arc routing — the Capacitated Arc Routing Problem (CARP) and the 

Stochastic Eulerian Tour Problem (SETP). Both problems have excellent application 

potential and deserve special attention. Before describing the objectives and 

contributions of this research in detail, we provide a review of the relevant literature 

on arc and node routing. 

1.2 LITERATURE REVIEW 

Researchers have been working on several theoretical and practical ARPs for a long 

time. The earliest work that we know of is the seven bridge problem at the Russian 

city of Königsberg (now Kaliningrad), examined by the great Swiss mathematician 

Leohnard Euler. It was in connection with a promenade to be taken across seven 

bridges -that connected two islands with each other and with the two banks of the 

Pregel river (See Figure 1). 

Figure 1. The seven bridges of Königsberg problem 
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Euler was interested in determining if there existed a way in which the promenade 

could cross the seven bridges exactly once. In 1736, Euler proved that this was not 

possible for this problem and derived the conditions for the existence of a closed walk 

on a graph G, containing each arc exactly once. A graph with this property is called 

an Eulerian or unicursal graph. Fleischner (1990) notes that in 1873, Heirholzer 

solved the problem of determining this closed walk on an undirected graph. 

Guan (1962) documented the first ARP as we define it today. Guan defined 

the Chinese Postman Problem (CPP) as follows: "A mailman has to cover his 

assigned segment before returning to the post office. The problem is to find the 

shortest walking distance for the mailman". Guan showed that if a graph is not 

unicursal, it contains an even number of odd degree vertices and the graph can be 

made unicursal by replicating edges between odd degree vertices. He also derived the 

necessary and sufficient conditions for an Eulerian tour to be optimal. 

Since the introduction of the CPP, several researchers have worked on the 

undirected and directed CPP and have shown that polynomial time algorithms exist 

for these problems. When only a subset of the links (edges or arcs) of the graph 

require service, the problem becomes the Rural Postman Problem (RPP). Lenstra and 

Rinnooy Kan (1976) proved that the undirected and directed RPP are NP-hard. 

Golden and Wong (1981) introduced the capacitated ARPs, and have shown that 

these problems are NP-hard. Hence, research has progressed in developing efficient 

exact procedures and heuristics for these hard problems. We discuss the nature of 

these research efforts in the following sections. A recent two-part survey by Eiselt, 

Gendreau, and Laporte (1995) and another survey by Assad and Golden (1995) 

present an overview of most of the relevant literature on arc routing. An earlier 

survey by Bodin et al. (1983) also provides information on arc routing problems. 

1.2.1 UNCAPACITATED ARC ROUTING PROBLEMS 

In the uncapacitated ARPs, the service delivery unit has unlimited capacity and hence, 

the single unit can serve the demand on all arcs. Polynomial time algorithms exist for 
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all uncapacitated ARPs, if the underlying graph G is Eulerian or unicursal. When G is 

not Eulerian, we need to augment G with a set of arcs or edges at the minimum cost to 

make it unicursal. For the undirected and the directed CPP, polynomial time 

algorithms exist for solving the least cost augmentation problem. All the other 

uncapacitated ARPs are NP-hard and the general trend is to use heuristics to 

determine a low cost augmentation of the graph. We review the relevant literature on 

the undirected, directed, and mixed versions of the CPP and the RPP below. 

1.2.1.1 Undirected Chinese Postman Problenn 

We noted earlier that Euler first proved the necessary and sufficient condition for an 

undirected graph to be unicursal. Guan (1962) showed that a graph that is not 

unicursal always has an even number of odd degree vertices. This observation helped 

researchers (Edmonds 1965a, Busacker and Saaty 1965) to address the least cost 

augmentation problem as a weighted matching problem on the odd degree vertices of 

the underlying graph G. 

We present below the integer linear programming formulation of the 

undirected CPP. The problem is to make the given graph G = , E) a unicursal 

graph G by replicating edges at the minimum cost. Let xu  < j) be the number of 

times edge (v„ vj  needs to be added to graph G, cu  the cost of traversing edge 

(v„ v , and 8(1) be the set of edges incident to vertex vi  . Also let T cV be the set 

of odd degree vertices. Then the formulation is as follows. 

minimize 

subject to: 

(v; 	E 
	C • 

1.1
• X • • 

v, ,vi ) e5(i) 
xU 	 (1.2) 

1 (1110d 2) if y, T 
0 (mod 2) if v1  E VIT 

X if  0 	V (1) ,V )E E 	 (1.3) 

	

integer 	V (v i ,vi  E E 	 (1.4) 
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Constraints (1.2) ensure that the degree of all vertices in the graph are even and the 

objective function ensures that the set of edges added are at the lowest possible cost. 

As noted above, we can solve this problem as a minimum weighted matching problem 

on a graph Go= (T, ET),  where ET  is the set of edges connecting all the odd degree 

vertices, and the cost of each edge (v„ vi  ) in Go  is the cost of the shortest path 

between vertices vi  and vi  in G. Lawler (1976) provides an 0(1113) time algorithm 

for solving the weighted matching problem. Once we solve the matching problem, 

we can augment G with the shortest paths corresponding to the optimal matching 

solution to obtain the unicursal graph G. . 

Edmonds and Johnson (1973) have completely characterized the convex hull 

of (1.2), (1.3), and (1.4) as a polyhedron using additional inequalities called the 

blossom inequalities. The polyhedron given by (1.3) and the blossom inequalities 

completely describes the convex hull of the undirected CPP. Edmonds and Johnson 

provide an adaptation of Edmonds (1965b) blossom algorithm for matching to solve 

this problem. Thus the least cost augmentation problem is well solved for the 

undirected CPP. 

Edmonds and Johnson have also given three algorithms for determining an 

Eulerian cycle on the unicursal graph G. . Prior to this, a very simple algorithm due 

to Fleury was used. This algorithm starts at an arbitrary vertex vi  and traverses 

successively the edges of the graph while deleting each edge from G as it is traversed. 

At every point, care is taken not to traverse an edge whose removal would disconnect 

the remaining graph. While this method is very easy to follow, it is not well suited for 

computer solution since determining the next edge to delete at each step could be time 

consuming. 

The three algorithms by Edmonds and Johnson are the End-Pairing algorithm, 

Next-Node algorithm, and the Maze-Search algorithm. All three algorithms are 

similar in that they begin by tracing out a simple tour which may not include all 

edges, form another non-overlapping tour starting at any node on the current tour, and 

then append the two tours to form a single longer tour. The procedure continues until 
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all edges are covered. The difference between the algorithms arises in the way the 

tours are appended. We present below a summary of the end-pairing algorithm. 

End-Pairing Algorithm  

Step 1: Trace out a simple tour. If it includes all edges, stop. If not, go to Step 2. 

Step 2: Begin at any node vo  on the tour incident to edges not on the tour and trace 

out another tour not overlapping the previous one. 

Step 3: Combine the two tours into a single longer tour as follows. Let edges el  and 

e2  be incident to node vo  on the first tour, and edges e3  and e4  be incident 

to vo  on the second tour. Start with edge e3 , traverse the second tour 

completely, and reach vo  through edge e4 . Now follow the first tour starting 

with edge e2  and reach vo  through edge e1. If all edges of the graph have 

been traversed, stop. Otherwise go to Step 2. 

The following figure helps understand this concatenation process used in the end-

pairing algorithm. 

e, 	• e, 

Figure 2. Concatenation of tours in the End-Pairing algorithm 
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1.2.1.2 Directed Chinese Postman Problem 

The necessary and sufficient condition for a connected, directed graph G to be 
unicursal is that the graph be symmetric, i.e., the number of arcs entering and leaving 

each vertex must be equal. Note however that the graph has to be strongly connected 

for a solution to exist. When the graph is not symmetric, the additional arcs to be 

added to the graph to make it unicursal can be determined from the solution of a 

transportation problem (Edmonds and Johnson 1973, Beltrami and Bodin 1974, and 

Orloff 1974). The transportation problem is defined on the subgraph induced by the 

nodes for which the number of arcs entering and leaving the node are not equal, and 

all the arcs incident to such nodes. If the number of incoming arcs exceeds the 
number of outgoing arcs at a node v1  by si , then we can interpret s to be a supply at 
node vi  Similarly, a node vi  for which the number of outgoing arcs exceeds the 

number of incoming arcs by di  can be thought of as having a demand of di . Let I be 

the set of supply nodes and J, the set of demand nodes, and cii  be the cost of the 

shortest path from a supply node v to a demand node vi  . The decision variable x  is 

1 if we need to add a copy of all arcs corresponding to the shortest path from vi  to v1, 

and 0 otherwise. The transportation problem can be formulated as follows. 

minimize 	I Ecx 	 (1.5) 
iel jeJ 

subject to 	E xi, = s 	vi E 	 (1.6) 
vi e.I 

Ex y  -= d V vi  e J 	(1.7) 
Vj E1 

xii 	?. 0 	V vi  El, vi  e J 	(1.8) 

The solution to this problem indicates the number of times each arc has to be 
replicated in the graph G to make it unicursal. Orloff (1974) notes that the least cost 

augmentation problem for the directed CPP can also solved as a minimum cost 
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network flow problem. The objective is to attain a minimum cost circulation on the 

network such that each arc flow is at least 1. 

In order to determine the Eulerian tour, we can adapt Fleury s algorithm to a 

directed graph, but we still have the problem of choosing the next arc to traverse. 

Edmonds and Johnson (1973) present an algorithm by van Aardenne-Ehrenfest and de 

Bruijn (1951) to determine the tour. We now provide a step-by-step description of 

this algorithm. 

van Aardenne-Ehrenfest and de Bruiin Algorithm  

Step 1: Construct a spanning arborescence rooted at any vertex 

Step 2: Label all arcs as follows: order and label the arcs outgoing from Vr  in an 

arbitrary fashion; order and label the arcs out of any other vertex 

consecutively in an arbitrary fashion, so long as the last arc is an arc used in 

the arborescence. 

Step 3: Obtain an Euler tour by first following the lowest labeled arc emanating 

from an arbitrary vertex; whenever a vertex is entered, it is left through the 

arc not yet traversed having the lowest label. The procedure ends with an 

Euler circuit when all arcs have been covered. 

1.2.1.3 Mixed Chinese Postman Problem 

The mixed CPP is defmed on a graph G that contains both arcs and edges. 

Papadimitriou (1976) has shown that this problem is NP-hard even if the underlying 

graph is planar or if all cii s are equal. Hence, research has concentrated on 

developing efficient exact algorithms and heuristics that replicate enough arcs and 

edges in the graph to satisfy the necessary and sufficient conditions for unicursality. 

Once the graph is unicursal, we need to determine an Eulerian tour on it. 

A mixed connected graph G = (v, A u E) where A is the set of arcs and E is 

the set of edges, is said to be unicursal if and only if: 

(i) every node is incident to an even number of directed and undirected arcs; and 
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(ii) for every S c V, the difference between the number of directed arcs from S to 

V I S and the number of directed arcs from VIS to S is less than or equal to the 

number of undirected arcs joining S and V I S . 

The second condition is called the balanced set condition and a graph that satisfies 

this property is called a balanced graph. If a graph is even and symmetric, then it is 

balanced. Several researchers have made use of this and have tried to make the 

underlying graph even and syrnmetric and thus, Eulerian. (See Edmonds and Johnson 

1973, Frederickson 1979, Kappauf and Koehler 1979, Christofides, Benavent, 

Campos, Corberân, and Mota 1984, and Gréitschel and Win 1992.) Nobert and Picard 

(1996) make the graph Eulerian by addressing the evenness and balanced set 

conditions directly. We present below a brief summary of the work directed at 

maldng a mixed graph Eulerian. 

Exact Methods  

(A) Kappauf and Koehler (1979) were the first to suggest an exact procedure for 

solving the mixed CPP. They have formulated the problem as an integer linear 

program and outlined an algorithm based on the exhaustive analysis of the extreme 

points of the underlying polyhedron. The formulation uses two integer variables for 

each edge and arc of the graph, for each direction of traversal. The constraints in the 

formulation ensure that each edge and arc is traversed at least once and force every 

vertex to be symmetric. 

Grôtschel and Win (1992) have used the same formulation along with 

additional valid inequalities (odd cut inequalities). They have devised a branch and 

cut procedure to solve instances of the mixed CPP. They use results from Minieka's 

research and adopt a three-way branching scheme. They have attempted 9 problems 

and solved all of them to optimality without any branching. The problem ranges were 

52 	IV 
	

172, 37 	154, and 31_1,11.116. 

(B) Christofides et al. (1984) have used a similar formulation along with redundant 

constraints which state that the total arcs and edges incident to every vertex must be 
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even. They solve the mixed CPP using a branch and bound algorithm. They use two 

lower bounds obtained from two different Lagrangean relaxations of the problem 

formulation. The first relaxes the symmetry constraints. They solve the sub-problems 

as minimum cost perfect matching problems on the odd vertices of the graph. The 

second bound does not use the redundant even degree constraints. The authors relax 

the constraints that ensure that every edge and arc is traversed at least once, and solve 

a minimum cost flow problem to calculate the second bound. Using their 

enumerative algorithm, the authors have solved 34 randomly generated problems with 

7 __ IV __50, 4 I.E'l 39, and 3 __IA1-_ 85. 

(C) Nobert and Picard (1996) use an integer linear programming formulation which 

forces the even degree and balanced set conditions directly. Their formulation uses 

only one variable for each edge as opposed to the previous formulation. The authors 

also use a generalized form of Edmonds and Johnson' s (1973) blossom inequalities to 

tighten the linear relaxation. 

Nobert and Picards algorithm starts with a linear program which includes the 

blossom inequalities associated with the odd nodes, the balanced set constraints 

associated with the unbalanced nodes and most unbalanced set of nodes, and the non-

negativity constraints. The algorithm successively adds constraints corresponding to 

most unbalanced sets and to violated blossom inequalities. The authors check if the 

intermediate solution satisfies the balanced set condition by solving a maximum flow 

problem based on the previous work of Picard and Ratliff (1975). Picard and 

Queyranne's (1980) work helps to find all the most unbalanced sets if the graph is not 

balanced. At every iteration, balanced set constraints and blossom inequalities that 

are violated are added. If the solution is fractional and no more violated constraints 

can be added, Gomory cuts are added to help achieve integrality. Finally, branching 

can be used to gain integrality, if necessary. The algorithm has solved 313 problems 

out of 440 to optimality at the root of the tree. The problem ranges were 

6 IV" 225, 5 lE1 4455, and 2 Al 5569. 
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Heuristie Methods  

(A) Edmonds and Johnson (1973) present a heuristic algorithm for the mixed CPP. 

Frederickson (1979) calls it heuristic MDCED1 and shows that the algorithm has a 

worst-case bound of 2. He also modifies the algorithm to ensure that the graph is 

even at the end of the process. The algorithm first modifies the given graph to make 

the degree of each vertex even. This is done by solving a minimum cost matching 

problem on the odd vertices. The links used in the matching are added to G. The 
algorithm then makes the graph symmetric by solving a minimum cost flow problem. 

Edmonds and Johnson's version of the algorithm terminates at this stage showing the 

existence of a minimum cost solution to the network flow that maintains the even 

degree of each vertex. However, Frederickson shows that the network flow 

constraints are not sufficient to fmd such a solution. So he adds a third step to the 

algorithm to make sure that the graph is even, while keeping the graph symmetric. 

(B) Frederickson (1979) presents another heuristic MDCED2, which is essentially the 

reverse of MDCED1. This algorithm first makes the graph symmetric using the same 

procedure as in the second step of MDCED1. In order to make the graph even, the 

algorithm then performs a minimum cost matching on the odd vertices of the 

augmented graph using shortest path distances between these vertices. The edges 

used in the matching are then added to the graph. Christofides et al. (1984) describe a 

procedure which can be considered equivalent to MDCED2. They suggest a simple 

improvement procedure also. For each arc (v, , ), if cu  is greater than the cost of a 

directed path from v, to vf , then arc (v, , y is deleted and the arcs in the shortest 

path are duplicated. This applies to edges also since they can be considered as two 

directed arcs. The authors provide some computational results also. On 34 test 

problems with 7 5_ ¡VI 5 50, 4 51E15 39, and 3 51AI :5 85, the procedure produced 

solutions within 3% of optimality on average. 



12 

Determining an Eulerian Tour 

Once the mixed graph is made Eulerian using either an exact or a heuristic method, 

one has to determine the actual Eulerian tour. The general idea is to orient all the 

edges of the graph to make it completely directed and then use the van Aardenne-

Ehrenfest and de Bruijn algorithm for directed graphs to determine the tour. If we 

know that the Eulerian graph is symmetric then the following simple procedure 

presented in Eiselt, Gendreau, and Laporte (1995), can be used to orient the graph. 

Step 1: Mali the edges are directed, stop. 

Step 2: Let v be a vertex with at least one incident undirected edge (v, w). Set v1  <— 

v and v2 	w. 

Step 3: Orient (vi  , v2 ) from v1  to v2 . If v2  ---- v, go to Step 1. 

Step 4: Set v1  <— v2  and identify an edge (v1, v2 ) incident to v1 . Go to Step 3. 

Most exact and heuristic methods make the mixed graph Eulerian by making it 

even and symmetric. So the above procedure is sufficient to completely orient the 

graph. However some methods (Nobert and Picard 1991) make the graph Eulerian by 

making it even and balanced. It is important to note that a unicursal graph need not 

be symmetric. Hence, it is necessary to make the graph symmetric first and then use 

the above procedure. 

Ford and Fulkerson (1962) have described a procedure to assign directions to 

some of the edges of a graph to make it symmetric. The procedure begins with 

replacing each edge in the graph with two oppositely directed arcs. All the arcs from 

the original graph are assigned a lower bound of 1 and the arcs obtained from the 

edges, a lower bound of O. Also, all arcs are assigned an upper bound of 1. The 

authors suggest obtaining a feasible circulation on the new graph and using that 

solution to orient some of the edges as follows. If (v, 	E E, xii  =1 and x — O, 

then orient the edge (vi  , v)  from v to v.. The resulting graph is symmetric. 
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Minieka (1979) introduced the Windy Postman Problem (WPP), a problem 

closely related to the mixed CPP. The problem is described on an undirected graph, 

but the cost of traversing the edges of the graph depends on the direction of travel. 

The objective of the WPP is to determine a least cost traversal of all the edges. 

Brucker (1981) and later Guan (1984) have shown that the WPP is NP-hard. Win 

(1989) proves that the WPP is solvable in polynomial time if the underlying graph is 

Eulerian. He also shows that the mixed CPP can be transformed into a WPP by 

properly defining the costs. Thus, the undirected, directed, and the mixed CPP can be 

thought of as special cases of the WPP. Greitschel and Win (1992) have used a 

formulation similar to the formulation of Kappauf and Koehler (1979) and have 

devised a cutting plane algorithm. They have solved 31 instances of the problem out 

of 36 with 52 1V1 264 , and 78 1E1-.5_, 489 . 

1.2.1.4 Undirected Rural Postman Problem 

In the undirected RPP, the underlying graph G = , E) is completely undirected. 

Associated with each edge is a cost cij  of traversing it. The undirected RPP seeks a 

minimum cost traversal of a subset R c E of the edges. The traversal may include 

edges from El R if necessary. Note that when R = E, the undirected RPP reduces to 

an undirected CPP. Lenstra and Rinnooy Kan (1976) have shown that the undirected 

RPP is NP-hard. Hence, it is necessary to resort to heuristics to obtain a low cost 

augmentation for the undirected RPP. However, exact methods have also been 

developed. 

All uncapacitated RPPs are solved on a modified graph G = (y' , E'). The 

puipose of this modification is to eliminate the unnecessary vertices from V and the 

unnecessary edges from El R. As a first step in this transformation, we form an 

intermediate graph G = ,E) as follows. Let Fc V be the set of vertices that are 

incident to at least one edge in R and É be the set of edges in R and an edge (v, , 

for every vi  ,v e F whose cost c is the length of the shortest chain between v, and 
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vi 	Finally, we get the modified graph G' = (v,  E) as follows. Set V = , E' = Ë, 

and delete all edges (y, , v )e E R for which cy  = C.k + ckl. for some k e V' , and all 

edges in E' R which are one of two parallel edges if both edges have the same cost. 

This procedure can be applied to directed and mixed graphs also. 

We illustrate this graph modification using the following simple example. 

Figure 3 shows the given undirected graph G where the plain arcs belong to the set of 

required arcs, the dashed arcs belong to the set EIR, and the numbers along the 

edges denote the edge costs. The given graph contains seven vertices, four required 

edges and seven edges that belong to the set El R. Figure 4 shows the intermediate 

graph G-  and Figure 5 shows the transformed graph G' that contains five vertices, 

four required edges and three edges that belong to the set El R. Note that in the 

transformed graph G' the set R induces p connected components G1 ,...,G p  with 

respective vertex sets 	V p  forming a partition of V. . 

Figure 3. Original graph G 
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Figure 5. Transformed graph G' 

Christofides, Campos, Corberân, and Mota (1981) have provided an integer 

linear programming formulation for the undirected RPP and have developed a branch 

and bound algoritlu-n. In the formulation, the decision variables xu  < j) represent 

the number of times edge (v„vi  is replicated in the optimal solution if (vi ,vj  )e R. 

G 
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If (v„ v e E I R, then xu  is the number of times edge (v„ 	is traversed. The 

problem is formulated as follows. 

minimize 

subject to 

X ii )± 

	

(vi « )eR 	 (vi ,v j )EEU? 

i+ X)+ 	(1+ X ii ) 	 X if  

	

eR 	 vi ,v j  ER 	 (vi ,v)eE'IR 
j>i 	 j<i 	 j>i 

(1.9) 

x 	2z; 	V v;  €V' 	(1.10) 
(vi ,vj  EE'112 

j<i 

Exi;  
vi eS,vi e7 

0 and integer 

z, 	0 and integer 

VS=  Uljk , Pc{1, —,P} 
ftEr 

V (y;  , vj 	Er 

v, e V' 

(1.12) 

(1.13) 

Constraints (1.10) force the degree of all the vertices in V' to be even and constraints 

(1.11) ensure that the p components of the graph G' are cormected. The branch and 

bound solution procedure is very similar to that proposed by Held and Karp (1971) for 

the TSP. By relaxing constraints (1.10) in a Lagrangean fashion, it is easy to see that 

the problem reduces to a Shortest Spanning Tree (SST) problem on a graph whose 

vertices correspond to the connected components of G. . The authors use this 

relaxation to obtain a lower bound for the problem. In order to obtain an upper 

bound, the authors describe the following heuristic algorithm. 

The algorithm first determines a SST solution T to connect the p components 

of G. . If all the vertices in the graph induced by R u T are of even degree, then this 

graph is a solution to the augmentation problem. If the degree of some of the vertices 

is odd, then the authors determine a minimum cost matching on the odd vertices of 

this graph. Let M be the set of edges in the matching. Then the graph induced by 

RuTu M is unicursal and an Eulerian tour can be determined on this graph. This 

heuristic provides an upper bound for the branch and bound algorithm. The authors 

have solved 24 randomly generated problems with 9 I/184, 13 	184 , 
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4 	78, and 2 Ipl 8 to optimality. It is interesting to note that when the graph 

G = (v, 	is cormected, i.e., the graph G has only one component, the problem 

reduces to a CPP on the graph induced by the set of edges in R. 

1.2.1.5 Directed Rural Postman Problem 

The directed RPP is defined on a completely directed graph G = (v, A) . As explained 

in the previous section, this problem is also solved on a transformed graph 

G' = (V' , A). Christofides, Campos, Corberân, and Mota (1986) have proposed a 

branch and bound algorithm and a heuristic for the directed RPP. Both are quite 

similar to the procedures described for the undirected RPP. 

The integer linear programming formulation is as follows. The decision 

variables xu  represent the number of times arc (v„v j  is replicated in the optimal 

solution if (vi  ,v j )ER. If (vi  , v j  e A' I R, then xu  is the number of times arc 

is traversed. They use the following proposition to split the xu  variables for 

(v„ v j )e R. In graph G' , for all v, e V' with outdegree equal to 1 (indegree = 1) the 

arc 	(v„v 	R (arc (v i ,vje R) must be repeated at least rb  = [indegree - 1] 

([outdegree - 1]) times in any solution to the directed RPP. Thus, xu  = xb +rb . In 

order to make the exposition simple, we present a simplified formulation with the 

original xu  variables, without loss of generality. The formulation with respect to a 

particular vertex set V e 	is 

minimize 	 ci;  (1 + xii  )+ 	cij xij  
,vj 	 (v,,v i  EAR 

subject to 	E(1+xu )+ E xi, -  
, i, 	 , i, 
kv, y 1  )ER 	(vi  ,vi)EA'IR 	1v j  ,v i  )ER 

(1.14) 

Ex„, 	 V vi  e V' 	(1.15) 

6./.,,v; )1 
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1 	xii ...1 VS= UVk ,Pc {1,...,p},V c S 	(1.16) 
vi  ES,vie.-S-' 	 kEP 

E 	x,.-1 vs. uvk ,pc {1,...,p}, V c S (1.17) 
vi  ES,viEg 	 keP 

X if 	0 and integer 	V (vi ,vi  ) A 	(1.18) 

Constraints (1.15) state that the indegree equals the outdegree for all vertices in V. . 
Constraints (1.16) ensure that the optimal solution connects all the components. 

Constraints (1.17) are a set of redundant connectivity constraints. 

The authors relax constraints (1.15) in a Lagrangean fashion and ignore (1.17) 

initially, to calculate a lower bound. They solve the subproblem by finding a Shortest 

Spanning Arborescence (SSA) over all the connected components of the graph G. . 
The lower bound can be strengthened by introducing any violated constraints from 

(1.17) into the objective function in a Lagrangean fashion. To compute an upper 

bound, the authors describe the following heuristic. The heuristic first constructs a 

SSA rooted at any vertex vi  e V' of the graph G' and connecting the components 

p . Let the resulting graph be = (V', R {arcs in SSA}). The graph Õ is 

then made symmetric by solving a transportation problem defmed as for the directed 

CPP (See Section 1.2.1.2). Finally the heuristic constructs an Eulerian tour on the 

resulting graph. 

The branch and bound procedure solved 22 out of 23 randomly generated 

problems with 3 IT/.1 80, 24-A 180, 7 1/21 74, and 2 
	

8 to optimality. 

The heuristic itself seems to perform well. It produced the optimal solution in 10 

problems out of 22, and on average, the heuristic solution was within 1.3% of 

optimality. 

1.2.1.6 Stacker Crane Problem 

One version of the mixed RPP is called the Stacker Crane Problem (SCP). The SCP 

is defined on a mixed graph G =(V , Au E) where A is the set of directed arcs and E 
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is the set of edges. The problem is to obtain a least cost circuit which includes each 

arc in A at least once. The problem can be used to model practical situations like 

operating a crane or making deliveries. Frederickson, Hecht, and Kim (1978) show 

how an instance of the TSP can be transformed into an instance of the SCP. 

Essentially, the SCP is equivalent to the TSP if the cost cii  of every arc is O. Thus, the 

SCP is also NP-hard. 

Frederickson, Hecht, and Kim (1978) describe two heuristics, LARGEARCS 

and SMALLARCS, for a mixed graph in which each vertex is incident to at least one 

arc and the edge costs satisfy the triangle inequality. We provide an outline of the 

two algorithms below. For a detailed description of the algorithms, see Frederickson 

et al. If the total cost of the arcs in the graph, CA, is large relative to the cost of the 

optimal tour, C , the authors use the fact that the cost of an equivalent of a minimum 

spanning tree for the arcs will be small, to devise the algorithm LARGEARCS. The 

algorithm basically performs a minimum cost matching on the heads and tails of the 

arcs. The matching produces a number of disjoint connected components. The 

algorithm then determines a shortest tree spanning these components using the 

original edge costs, and finally link the components with two arcs (one in each 

direction) for each spanning edge. The resulting graph is Eulerian. This algorithm 

produces a tour whose cost is at most 3 C* - 2C A . 

The authors propose another heuristic, SMALLARCS, when CA is small 

relative to C*  . We already know that when the arc costs cu  are 0, the SCP is 

equivalent to a TSP. Thus, in this case, it would be ideal to solve the SCP as a TSP. 

The algorithm shrinks the arcs to nodes and determines a traveling salesman tour on 

the associated graph. Edges are added between vertices of odd degree. The resulting 

graph is unicursal and an Eulerian tour can be determined. This algorithm produces a 

tour whose cost is at most 3 C* /2 + C A /2. Since it is difficult to estimate the cost of 

an optimal tour a priori, the authors suggest applying both algorithms and choosing 

the tour with the lower cost. In this case, the cost of the tour is at most 9/5 times the 

cost of the optimal tour. 



1.2.2 CAPACITATED ARC ROUTING PROBLEMS 

In the capacitated ARPs, the service delivery unit has limited capacity, more than one 

unit might be required to serve the demand on all arcs or edges. Capacitated ARPs 

are usually necessary to model real world situations accurately. Golden and Wong 

(1981) defmed the capacitated version of the RPP known as the Capacitated Arc 

Routing Problem (CARP). In this problem, given an undirected network, associated 

with each edge (v, ,v j  is a non-negative demand qu  , in addition to the edge cost c. 

A fleet of m homogenous vehicles with capacity Q is based at the depot. The CARP 

consists of deten-nining a set of minimum cost cycles servicing all edges with positive 

demand such that: 

(a) every cycle starts and ends at the depot, 

(b) the total demand of all edges serviced by any vehicle does not exceed Q, and 

(c) each edge with a positive demand is serviced by exactly one vehicle. 

If the edge demands qii  are positive for all the edges in the graph, then the problem is 

referred to as a Capacitated Chinese Postman Problem (CCPP). 

Golden and Wong point out that the TSP and the VRP can be considered 

special cases of the CARP. The constraint that a node must be serviced can be 

incorporated into the CARP by splitting the node into two nodes joined by an edge 

with cir 0 and qii  = demand of the associated node. The authors also show that if 

the edge costs satisfy the triangle inequality, the 0.5 approximation of the CCPP on a 

tree network is NP-hard, i.e., the problem of finding a CCPP solution whose cost is 

less than 1.5 times the optimal solution, is NP-hard. Sahni and Gonzalez (1976) have 

shown that if the edge costs do not satisfy the triangle inequality, the a-approximate 

version of the TSP is NP-hard for any finite a. Since the TSP and CCPP are both 

special cases of the CARP, the results hold for the CARP too. 

There are, however specific cases of the CCPP that are well-solved. Assad, 

Peam, and Golden (1987) show that the CCPP on a single path with a homogenous 
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fleet and all edge demands equal to 1 is solvable in 0(1V )time. They prove a similar 
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result for the CCPP on a cycle graph with identical demands. They also show that the 

CCPP on a complete network is solvable if edge demands are less than or equal to 

WITTI if IVI is odd, and OVI —1) if IVI is even. 

Just as the VRP can be transformed into a CARP, Pearn, Assad, and Golden 

(1987) show that the CARP on an undirected graph can be transformed into a VRP. 

The authors replace each edge (v„v3 ) with 3 nodes sii  , mii  , and sii  . The set of 

nodes in the VRP is N 	 E and qri  > 0} , where v1  is the 

depot in the CARP. Each of the nodes corresponding to the edge (v„ 	has a 

demand of q  /3. The distance between the nodes is defined as follows. 

 

(cu  + cki )/4 + p(vi ,vk ) if (vi ,vi )# (vk ,vi ) 
0 	 if (vi ,vi )= (vk ,vi ) 

cl(su ,ski )= 

 

cl(v1 ,su )=cii i4+p(v1,v1 ) 

c /4 	-= su  or si") 
co 	otherwise 

where p(vi ,v j ) is the length of the shortest path from vi  to vi  in G. Note that due to 

the way the distances are defmed, any middle node mii  must always be visited by the 

same vehicle that visits sy  and sii  , and in the sequence s , mii , sii  or s ji  , mii  , sii  . 

It might not be practical to use this transformation to solve the CARP since 

the resulting VRP has 3 R+1 nodes where 	 > o is the number of 

edges with positive demand. Hence, in the following section, we look at a few exact 

methods and heuristics for the CARP. 

Formulation and Exact Method 

Golden and Wong (1981) have proposed the following integer linear prog-ramming 

formulation for the CARP. The decision variables are xuk  and yuk . Xiik is equal to 
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1 if edge 	is traversed from vi  to vi  and 0 otherwise, and yuk  is equal to 1 if 

edge (y, ,vj  is serviced while traveling from y;  to vi  and 0 otherwise. 

minimize E E CijXijk 
k=1 (v,,v,)EA 

subject to 	 xiik  ---- 0 
EA 

m 

Yiik)=  1°1 iiff  k=1 

Xijk ?-. Yijk 

Yijk W  
(1)/  ,1". E A 

(1.19) 

V V . e V 
k=1,...,m 
	(1.20) 

V(vi ,v )e E (1.21) 1 

(1.22) 

Vk=1,...,m 	(1.23) 

2 S Xijk  
v,,vieS 

EEXiik  
vi eSvi seS 

S U kS  +W k  

U kS  ,W kS  E{0,1} 

Xiik ,yek  e {0,1} 

	

VSOEV1{v1 };S=0; 	
(1.24) 

V (vi  ,vi 	E 	(1.25) 

Constraints (1.20) state that at each node, every vehicle that comes in must go out. 

Constraints (1.21) ensure that only the edges with positive demand are serviced. 

Constraints (1.22) state that an edge is serviced by a vehicle if and only if it is 

traversed by that vehicle. (1.23) are the vehicle capacity constraints and (1.24) are the 

subtour elimination constraints. A subtour in S not connected to the depot could 

satisfy constraints (1.20)-(1.23), but is not valid. Constraints (1.24) ensure that any 

cycle traversed by vehicle k in S is connected to VIS and thus to the depot since, 
s 	s Xek > 	1 	 = 1 wk =

A 	
> 1 . 

ES 	 V, ES V JOS 
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Belenguer and Benavent (1991) have proposed another formulation using 

undirected variables. (See Belenguer and Benavent 1991 or Eiselt, Gendreau and 

Laporte 1995 for a description of the formulation.) They have also derived a number 

of valid inequalities and have devised a branch and cut procedure to solve the CARF'. 

Using this algorithm, they have solved two relatively small instances (IVI = 16, IAI = 

26 and lvl = 24, IA1 = 34) optimally. 

Heuristics  

Since the CARP is NP-hard, researchers have developed a wide variety of heuristics 

and lower bounds for it. The recent survey by Eiselt, Gendreau, and Laporte (1995) 

provides a good overview of the work done so far in this area. These heuristics can 

be classified into three categories: 

1. Simple constructive heuristics: These are one-shot procedures with no local 

improvement procedures. The five different heuristics that fall under this category 

are as follows: 

• The construct-strike algorithm proposed by Christofides (1973) and, 

modified by Pearn (1989). This algorithm successively constructs feasible 

cycles and removes them from the graph until all edges are covered. The 

Christofides version uses a 1-Matching algorithm to keep the graph 

connected at all times, while the Pearn version uses a minimum spanning 

tree algorithm to connect the several components of the graph, and then 

the matching algorithm to generate an Euler cycle. 

• The path-scanning algorithm developed by Golden, DeArmon, and Baker 

(1983), and modified by Pearn (1989). The Golden et al. algorithm 

constructs feasible cycles one at a time using one of five different myopic 

optimality criteria. The solution to the problem is the best among the five 

solutions. Pearn uses a criterion at random, at each step of cycle 

construction. 
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• The augment-merge algorithm by Golden, DeArmon, and Baker (1983) 

which initially constructs a different cycle for each edge to be serviced, 

and then combines different cycles using a savings criterion. 

• The parallel-insert algorithm by Chapleau et al. (1984). This algorithm is 

part of a school bus routing system which aims at reducing zigzag routes 

in addition to minimizing the total routing cost. In order to achieve this 

objective the algorithm that works like the path scanning algorithm, 

constructs several routes in parallel. 

• The augment-insert algorithm by Peam (1991). Peam developed this 

algorithm specifically for sparse graphs with large edge demands. The 

algorithm first creates feasible cycles using either a cost or a demand 

criterion as long as it is possible. Once feasible cycles cannot be found, 

the remaining edges are inserted into the existing cycles using a savings 

criterion. 

2. Two-phase constructive heuristics: The two types of heuristics in this category 

develop cycles in two phases. The cluster-first, route-second heuristics (Win 

1987, Benavent et al. 1990) first group the edges into clusters, each having a 

weight of at most Q, and construct a vehicle route for each cluster during the 

second phase. On the other hand, the route-first, cluster-second heuristics (Win 

1987, Ulusoy 1985) construct a giant Euler tour over all edges with positive 

demand first, and then partition the tour into feasible clusters. 

3. Improvement heuristics: These are post-optimization heuristics that can be applied 

to the solution obtained using any of the heuristics mentioned above. Ulusoy 

(1985) mentions one particular scheme in his application. Hertz, Laporte and 

Nanchen (1996) have developed a number of improvement procedures for the 

undirected RPP which can be directly applied to the individual routes of a CARP 

solution. Hertz, Laporte and Mittaz (1996) describe a procedure called POSTOPT 

that combines all the routes of a CARP solution into a single tour and then cuts 

this giant tour into smaller routes satisfying the capacity constraints, while trying 

to determine a new CARP solution with a lower objective value. 
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4. Metaheuristics: Hertz, Laporte and Mittaz (1996) have developed CARPET, a 

tabu search based heuristics for the CARP. CARPET minimizes the total cost of 

traversing all the cycles. It incorporates some of the concepts contained in 

TABUROUTE (Gendreau, Hertz, and Laporte 1994), a tabu search algorithm for 

the VRP, and the improvement heuristics described in Hertz et al. (1994) and 

Hertz et al. (1996). The basic move consists of moving an edge that requires 

service from it current route to another route. The heuristic contains several 

features of tabu search such as random tabu tags, self-adjusting penalties, 

diversification by frequency counts, and intensification by applying the POSTOPT 

local improvement procedure if the best known solution is not updated for a fixed 

number of iterations. Computational results indicate that the algorithm is robust 

and produces the optimal solution for several benchmark problems. 

The performance of the heuristics can be measured in terms of the heuristic solutions' 

deviation from the optimal solutions. Since it is difficult to obtain optimal solutions 

for most instances of the CARP, most researchers use lower bounds to get an estimate 

on the optimality gap. The following section describes several lower bounds for the 

CARP. 

Lower Bounds  

Benavent, Campos, Corberân, and Mota (1992) provide a review and comparison of 

all the lower bounds that researchers have developed for the CARP. Golden and 

Wong (1981) were the first to suggest a matching based lower bound (MLB). In this 

bound, the authors use m as a lower bound on the number of 

vehicles needed in any solution to the CARP. Since any solution to the CARP has at 

least m cycles, each passing through the depot, the degree of the depot has to be 

increased from d1  (degree of the depot) to 2m. Hence, the basic idea is to construct a 

matching graph and obtain a minimum cost augmentation of G to ensure that the 

graph is even. 
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Let Â. = 2m - d1  if d1  is even, and 2m - d1 -1 if d1  is odd. The matching graph 

consists of S, the set of vertices in G that have an odd number of edges with non-zero 

demand incident to them, and two sets of artificial vertices A = (ai ,...,a2 } and 

B = 	. Each of the artificial vertex represents a copy of the depot. The 

authors define a matching graph H = u Au B, D) and define the cost of the edges 

as follows: 

• If vi  , vi  E S , then cy  = length of the shortest path between nodes vi  and vi  

• If v E S and vi  e A, then cy  = length of the shortest path between the depot and 

vi  

• If vi  e A and vi  B, then cy  =the length of the shortest edge out of the depot. 

• If vi  e B and vi E B, then d = O. 

The basic idea is to match vertices of odd degree to nodes in set A (copies of the 

depot). If all the nodes in A are not paired with nodes in S (since some of the nodes in 

S might be matched with one another), then they are matched with nodes in B. 

Finally, any unmatched nodes in B are matched with each other. We do not connect 

the nodes in A with one another using edges of length 0, since this would be counter-

productive to the idea of matching nodes in S to the depot. If z(H) is the value of the 

minimum cost 1-matching on the matching graph, then Golden and Wong show that 

MLB = z(H)+ 	cif  (1.26) 

 

is a valid lower bound for any optimal solution to the CARP. 

 

Assad, Pearn, and Golden (1987) describe a node scanning lower bound 

(NLB) for the CCPP. In this case, the authors increase the degree of the depot by 

adding minimum cost paths from the nodes to the depot. They add the shortest path 

first and continue in the increasing order of path lengths. Let cu  denote the length of 
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the shortest chain between nodes vi  and v • and di  denote the degree of node vi  , and 

let vertex v1  denote the depot. The algorithm can be described as follows. 

• Renumber all the vertices in non-decreasing order c/1 , . 

• Let / m where i is defmed as in the matching based lower 
i=2 

 

bound. Reset di  = .1-Edi  and calculate NLB as 
i=2 

NLB = 	c y.. 	 (1.27) 

Since we need to add 1 paths to the given graph, we start with the vertex vi  with the 

lowest value of c/1 , and add di  paths from this vertex to the depot. We continue the 

process until 1 paths are added. The result can be extended to the CARP by 

considering the graph induced by the edges with positive demand. Pearn (1988) has 

proposed a lower bound that combines the ideas behind these two methods and shows 

that it dominates MLB. Win (1987) has also developed several lower bounds that 

dominate MLB. 

Benavent et al. (1992) have compared all these bounds and have developed 

four different lower bounds. Three of these bounds require solving a minimum cost 

matching problem, and the fourth is a dynamic programming algorithm producing a 

lower bound. Their computational results show that one of their lower bounds that 

solves a minimum cost matching problem, LB2 outperforms the others based on 

quality of the bound and computational time. LB2 and the bounds proposed by Win 

improve upon MLB by considering the number of vehicles required for certain 

subgraphs, and not just the vehicles necessary to cover the whole graph. For a 

detailed discussion of all the bounds, see Benavent et al. In the next section, we 

provide an overview of several application areas for ARPs. For each application area, 

we present a few of the significant real-world applications. 
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1.2.3 APPLICATIONS OF ARC ROUTING 

Arc routing problems have a wide variety of applications. Most problems occur in the 

delivery of services like snow plowing, garbage collection, and mail delivery. In most 

applications, it is not necessary to service all arcs of the graph. In addition, more than 

one vehicle or person is necessary to deliver the service and several additional 

constraints might have to be incorporated. Considering all these, the most useful 

problem for modeling real world situations is the CARP. However, the RPP and the 

CPP might be subproblems in many situations and an understanding of these 

problems would help in developing algorithms. 

The CPP has been used to model practical problems in a few situations. 

Malek, Mourad, and Pandya (1989) show how the topological testing of computer 

systems can be modeled as a CPP. The authors form a graph in which the nodes 

represent the hardware (processors, registers, etc.) for the specific level at which 

testing is to be done, and the arcs represent the data flow. They achieve the objective 

of sending a testing packet traversing all the arcs and vertices in minimal time by 

finding an Eulerian circuit on the underlying graph. 

Barahona (1990) describes several applications that are similar to the CPP. 

One of the problems is in the design of VLSI circuits. Here, the chip components are 

arranged in two layers. Wires connecting the components must be assigned to the 

layers such that they do not cross each other on the same layer, but may go from one 

layer to another through special connections called vias. The objective is to minimize 

the number of vias. The author shows that one can construct a planar graph in which 

the vertices correspond to wire end points and crossings and edges correspond to 

sections of wire between these. The number of vias is minimized by determining the 

smallest number of edges to remove to make the graph bipartite. 

Garbage Collection 

Garbage collection is one of the most essential and common applications of arc 

routing. Beltrami and Bodin (1974) discuss the overall procedure adopted for 
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developing garbage collection routes for New York City. They first address the issue 

of location of dumpsites and assignment of days to streets. Then they form the actual 

collection routes to minimize total deadheading. They use a route-first, cluster-

second heuristic. Bodin, Fagin, Welebny, and Greenberg (1989) give the computer 

implementation details of this project. Clark and Gillean (1975) and Clark and Lee 

(1976) describe the results of a similar study conducted in Cleveland, Ohio. McBride 

(1975) addresses the problem of reducing the number of left and U-turns while 

routing garbage collection trucks. Turner and Hougland (1975) present another study 

performed at Blacksburg, Virginia. 

Mail Delivery 

ARPs in the context of mail delivery have been studied well in Canada and the United 

States. Roy and Rousseau (1989) explain that in the Canadian Postman Problem, the 

letter carrier starts and ends his work day at the post office. From the post office, 

each postal carrier travels to a depot to start his route. Travel times to and from the 

post office are included in the work day. The routes are not constrained by the 

capacity of a postal bag since relay boxes are conveniently located along the route. 

Bouliane and Laporte (1992) study the problem of locating relay boxes. In addition to 

the routing, since the problem deals with the location of the depots for each carrier, it 

is viewed as an arc oriented location-routing problem. Levy and Bodin (1988, 1989) 

also view the US post problem as a location-routing problem. In this case, the 

concept of relay boxes does not exist. So, routes have to be developed taking into 

consideration the maximum load of a postal bag. Levy and Bodin describe that the 

problem consists of partitioning the arcs into balanced clusters and then locate depots. 

The letter carrier drives to a depot, delivers mail to an adjacent cluster, returns to the 

depot, and continues with all adjacent clusters in a similar fashion. He then drives to 

another depot and continues till the end of the work day. 
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Meter Reading 

In this application, meter readers periodically visit and read the meters of customers in 

their service area. Stern and Dror (1979) describe the problem as an m-postman 

problem where the objective is to minimize m and design routes that satisfy maximum 

duration constraint. Their heuristic algorithm provides a 40% reduction in the 

number of tours on data from the city of Beersheva in Israel. Wunderlich, Collette, 

Levy and Bodin (1992) describe a computerized system implemented for the Southern 

California Gas Company. 

School Bus Routing 

Another application area is school bus routing. Here the objective is to minimize the 

number of buses and the total distance traveled by all the buses. This problem usually 

involves a number of additional constraints on several issues such as the number of 

students in the bus, the time spent by a student in the bus, and student mix, just to 

mention a few. Desrosiers, Ferland, Rousseau, Lapalme, and Chapleau (1986) have 

developed an algorithm based on column generation to schedule buses for 60 schools 

and 20,000 students. Braca, Bramel, Posner and Simchi-Levi (1993) describe a 

computerized system for routing and scheduling school buses throughout the five 

boroughs of New York city. Earlier studies on school bus routing include Bennet and 

Gazis (1972), Bodin and Berman (1979), and Swersey and Ballard (1984). 

Snow Plowing 

Snow plowing is an interesting and important arc routing application. Typically, the 

roads have different priority levels and the roads with higher priority have to be 

cleared before the roads with lower priority. This problem has been defined as the 

Hierarchical Postman Problem by Dror, Stern, and Trudeau (1987). Haslam and 

Wright (1991) have developed an algorithm for snow and ice control in Indiana. 

Lemieux and Campagna (1984) describe a similar problem and address several 

additional issues such as the composition and size of the fleet and the number and 
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location of service centers. Cook and Alprin (1976) have developed an algorithm for 

routing sait spreader trucks in Tulsa, and Eglese and Li (1992) have studied the 

gritting operations for the Lancashire County Council in England. 

Street Sweeping 

One of the unique aspects of street sweeping is that streets can be swept only during 

particular time slots when parking is prohibited on the street. Bodin and Kursh (1978, 

1979) describe a study performed in New York City and Washington, D. C. They 

have developed a computerized system to develop routes for a given time slot such 

that the work is balanced among the fleet of sweepers and all streets are provided 

sufficient coverage. Eglese and Murdock (1991) present a study where the 

availability of the streets for sweeping is not constrained by parking regulations. They 

point out that in their study all streets can be considered as two way streets as opposed 

to the study by Bodin and Kursh. 

1.2.4 STOCHASTIC NODE ROUTING 

Most of the current research on arc routing addresses ARPs in a deterministic context. 

In this thesis, we define the Stochastic Eulerian Tour Problem (SETP) and investigate 

several characteristics of the problem and develop heuristics to obtain good solutions. 

In order to gain an understanding of the work done on the equivalent node routing 

problem, we present a brief summary of the literature on the Probabilistic Traveling 

Salesman Problem (PTSP). For a recent survey of most stochastic VRPs, see 

Gendreau, Laporte and Séguin (1996). 

The stochastic version of the TSP arises when some elements of the problem 

are random. For example, the travel times between nodes can be stochastic or the set 

of customers or nodes to be visited can be random. We concentrate on the TSP with 

stochastic customers. Generally, stochastic programs are modeled in two stages. The 

first stage consists of determining an a priori solution to the problem. For any given 

instance of the problem, in the second stage, a corrective action or recourse is applied 



32 

to tailor the first stage solution. The cost of this action is also generally figured while 

determiiiing the a priori solution that minimizes the total expected cost. This is the 

basic idea behind a stochastic program with recourse. 

Jaillet (1985) introduced the TSP with stochastic customers as the PTSP. It is 

essentially a TSP where each vertex vi  is present with a probability pi , and hence the 

number of vertices to be visited is a random variable. Consider a problem of routing 

through a set of n known points. On any given instance of the problem, one needs to 

visit only a subset consisting of k (0 k n) points. The recourse action Jaillet uses 

is to follow an a priori tour and simply skip absent customers. Under the assumption 

that pi= p for all vertices, Jaillet derives closed form expressions for computing the 

expected length of a tour. He also derives bounds and several interesting properties of 

the problem. Most of the results in billet (1985) are summarized in billet (1988), 

and Jaillet and Odoni (1988). 

Jaillet shows that an optimal TSP tour can be arbitrarily bad for the TSP with 

stochastic customers. He also shows that an optimal tour for the TSP with stochastic 

customers may intersect itself in the Euclidean plane. This is in contrast to what 

holds for optimal TSP tours. These results indicate that algorithms have to be 

developed specifically with the stochastic problem in mind. Jaillet has developed a 

number of heuristics by suitably modifying several well-known TSP heuristics such 

as the Clarke-Wright (1964) algorithm and tour merging algorithms. Rossi and 

Gavioli (1986) present computational results after having tested three of Jaillet 's 

heuristics. 

Bertsimas (1988) and Bertsimas and Howell (1993) have developed a few 

more heuristics based on probabilistic 2-opt edge exchange, vertex moves within a 

tour, and space filling curves (Bartholdi and Platzman 1982). Laporte and Louveaux 

(1993) have developed a branch and cut algorithm called Integer L-Shaped method 

that is applicable to many stochastic programs with recourse. Laporte, Louveaux and 

Mercure (1994) have applied this method to the stochastic TSP and solved instances 

with up to 50 vertices optimally. 
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1.3 OBJECTIVES OF THIS RESEARCH 

The general objective of ARPs is to determine a least cost traversal of a specific 

subset of edges of the graph, with or without additional constraints. As described 

earlier, these problems occur in a wide variety of practical contexts. This research 

addresses two specific problems in arc routing that have excellent application 

potential. 

The first problem that we consider is the CARP. The CARP is one of the 

most important problems in arc routing due to its presence in applications such as 

snow plowing, street cleaning, garbage collection, mail delivery, and many others. 

The CARP is a very hard problem, and it is quite unrealistic to believe that exact 

procedures can be used to solve even average sized problems. Researchers have 

developed several heuristics for the CARP. Most of these heuristics are simple one-

shot heuristics. Also, each heuristic tends to perform well on specific types of graphs. 

As described earlier, Hertz, Laporte and Mittaz (1996) have developed a tabu search 

based heuristic, CARPET, for the CARP. 	This incorporates several local 

improvement procedures and outperforms the earlier heuristics for the CARP. 

Tabu search first proposed by Glover in 1986, is a metaheuristic that makes 

use of memory structures and exploration strategies based on information stored in 

memory to search beyond local optima. (See Glover 1989, 1990 and Glover, Taillard, 

and de Werra 1993 for recent overviews.) Here, the procedure repeatedly moves from 

one solution to the best among its neighboring solutions. 

The objective of CARP is to produce a solution that has the minimum 

traversal cost. However, in many practical situations, in addition to minimizing the 

total cost, a secondary objective of balancing the total work load (demand) fairly 

equally among the routes plays an important role. We consider this secondary 

objective also in our heuristic and try to produce solutions that balance the work load 

of the least cost. 

We feel that it is quite important to incorporate this feature, since most 

applications such as mail delivery, meter reading, and garbage collection require work 

load balancing. In a real world scenario, if the existing algorithm considers only the 
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total cost, generally, the planner revisits the solution and moves demand among the 

various routes myopically in order to balance the load. On the other hand, our 

procedure aims to be a little more global and builds this additional feature into the 

algoritlun, and hence can serve as a useful planning tool for several arc routing 

applications. 

The second problem that we consider in this thesis is the Stochastic Eulerian 

Tour Problem (SETP). The SETP arises when the set of edges that have to be visited 

on any particular day is random. The investigation of this problem was actually 

motivated by the existence of a real world problem. In the UK postal system, the 

carriers deliver mail a second time in the afternoon when the number of streets to be 

visited is very small and varies from day to day. Given this scenario, the mail carrier, 

while following his regular route, usually skips the streets that do not require a visit. 

Given an Eulerian graph, it is important to note that there may be more than 

one Eulerian tour for a given graph. However, all these tours have the same cost and 

hence there is no optimization involved in the deterministic Eulerian Tour Problem. 

However, for the SETP, each tour has certain advantages and disadvantages with 

respect to skipping edges, and thus has different expected lengths. Thus, given an 

undirected graph G = (T 7  , E) where all the edges in E VI= n) require service, a 

distance matrix D, and a probability distribution for the number of required edges 

present, the SETP seeks an a priori Eulerian tour of minimum expected length. 

The SETP has not been investigated in the literature thus far. We feel that it 

plays an important role in scenarios where the number of edges to be visited each day 

is random and smaller compared to the total number of edges that require service. 

This motivates our investigation of this problem and its properties. We show that the 

SETP is NP-hard, and hence it is not possible to solve realistic sized problems 

optimally using algorithms that would run in polynomial time. Hence, this thesis also 

concentrates on the development of heuristic algorithms specifically for the SETP. 



35 

1.4 ORGANIZATION OF THE THESIS 

As an introduction and motivation for the thesis, this chapter provided a review of 

some of the basic literature in arc routing, and additional literature that is most 

relevant to the proposed research, and finally the objectives of the three papers. The 

review began with the origins of research on ARPs and then presented an overview of 

the literature on uncapacitated ARPs. While the undirected and directed CPP are 

solvable in polynomial time, the other uncapacitated ARPs are combinatorially hard. 

Exact methods and heuristics have been developed for these problems using the 

conditions for unicursality. Most of the exact methods are adaptations of algorithms 

for NRPs, and do not seem to perform as well as they perform on the NRPs. 

The next section presented a discussion of the CARP and related research. It 

highlighted the CARP as an important and difficult problem and described several 

lower bounds and heuristics. The following two sections discussed the literature on 

arc routing applications and the PTSP. 

This literature review attempted to provide an understanding of the research 

done in the area of arc routing. The overview of arc routing applications helps us 

understand the prevalence of CARP applications in several everyday problems. Many 

of the applications also have the inherent requirement of developing fairly equally 

loaded cycles or route. This motivated the first problem that we address in this thesis. 

Chapter 2 presents TABUCARP, the tabu search based heuristic for the 

CARP, that considers work load balancing as a secondary objective. TABUCARP 

drops (adds) one or more edges from a route that is over (under) capacity to a 

neighboring route. The algorithm continuously moves capacity excesses and deficits 

towards the depot. We describe the several features such as self-adjusting penalties, 

random tabu tags, and adaptive memory incorporated in our algorithm. We also 

present computational results on a set of benchmark problems and another set of 

random problems. The results indicate that while our solutions are similar to 

CARPET's solutions on the benchmark problems, the total distance traversed by 

TABUCARP solutions for the random problems is 2.78% greater when compared to 

that of CARPET solutions. However, this deterioration in the objective function 
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value is marginal when we consider the fact that the routes produced by TABUCARP 

are better balanced thon the routes produced by CARPET. 

We defme the SETP in Chapter 3. We derive a closed form expression for the 

expected length of a given tour when the number of present edges follows a binomial 

distribution. We also show that the SETP is NP-hard, even though the deterministic 

countelpart is solvable in polynomial time. We derive further properties and a worst 

case ratio for the deviation of the expected length of a random Eulerian tour from the 

optimal tour in the expected sense. Finally, we present some of the desirable 

properties in a good a priori tour using illustrative examples. 

Chapter 4 describes three heuristics for the SETP. The first heuristic is a 

simple greedy heuristic that determines the next edge to service based on the increase 

in the expected length by adding that edge. Finally, based on the order of visiting the 

edges, the heuristic constructs the actual Eulerian tour. The second heuristic is a 

modification of the first heuristic. This heuristic constructs the actual tour while 

adding the edges. It starts at the designated depot and determines the next edge to 

service among the edges adjacent to the depot, as the one that results in the minimum 

increase in the expected length when appended of the end of the tour. The process 

continues until all edges are added to the tour. The third heuristic takes advantage of 

the results from Chapter 3. The heuristic constructs several small sub-tours and then 

concatenates the sub-tours to form the a priori Eulerian tour. We also use a post-

optimization procedure that is a modification of the US procedure proposed by 

Gendreau et al. (1992) for the TSP. 

We present computational results comparing the performance of the three 

heuristics and also, comparing the expected length of the tours with that of a random 

Eulerian tour. Our computational results indicate that the sub-tour construction 

heuristic along with the post-optimization procedure consistently produces good tours 

for grid networks, while the second heuristic and the post-optimization procedure 

seems to be better for general Euclidean networks. Finally, Chapter 5 summarizes the 

results and contributions of this thesis and presents directions for future research. 



CHAPTER 2 

TABUCARP: A TABU SEARCH ALGORITHM 
FOR THE CAPACITATED ARC ROUTING 
PROBLEM WITH WORK LOAD BALANCING 

2.1 INTRODUCTION 

Arc routing problems play an important role in distribution management, and occur in 

a wide variety of practical problems such as mail delivery, school bus routing, snow 

clearance, street sweeping, garbage collection, and several others where streets have 

to be traversed for performing work. This chapter presents a tabu search heuristic for 

the Capacitated Arc Routing Problem (CARP), one of the most important problems in 

the area of arc routing. We can define the CARP formally as follows. Let G =(v,   E) 

be a graph where V = {vo, 	vn } is the vertex set and E ={(1,,,v ): i # j} is the 

edge set. A fieet of m identical vehicles of capacity Q is based at the depot v0 . The 

value of m is either fixed at a constant or bounded above by riz . Each edge (y, ,v 

has a non-negative demand qu  and cost cassociated with it. The CARP consists of 

determining a set of minimum cost cycles traversing all edges with positive demand 

such that: 

(a) each cycle starts and ends at the depot, 

(b) the total demand of all edges serviced by any vehicle does not exceed Q, and 

(c) each edge with a positive demand is serviced by exactly one vehicle. 

Note that a vehicle may traverse an edge without servicing it. 
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As mentioned above, the CARP (usually with additional side constraints) 

occurs in many practical day-to-day problems. In several realistic situations, in 

addition to developing minimum cost solutions, the concept of balancing the work 

load among the cycles plays an important role. For example, when developing routes 

for letter carriers or meter readers, the planner would like to assign a fairly equal 

amount of work to each member or the crew. The union regulations might also 

require this. Hence, it becomes an important practical consideration. Hence in our 

research, we consider work load balancing as a secondary objective for the traditional 

CARP. 

The CARP is known to be NP-hard, and hence, researchers have developed a 

wide variety of heuristics and lower bounds for it. The recent survey by Eiselt, 

Gendreau, and Laporte (1995) provides a good overview of the work done so far in 

this area. We also provided a brief review of the several simple and two phase 

constructive heuristics and the lower bounds for the CARP in the previous chapter. 

The chapter also provided a description of CARPET, a tabu search based heuristic 

for the CARP developed by Hertz, Laporte, and Mittaz (1996). CARPET minimizes 

the total cost of traversing all the cycles. Computational results indicate that the 

algorithm is robust and produces the optimal solution for several benchmark 

problems. However, their basic moves that guide the search do not consider the 

additional factor of balancing the workload among the various cycles. 

Tabu Search (TS) is a metaheuristic that makes use of memory structures and 

exploration strategies based on information stored in memory to search beyond local 

optima. (See Glover 1989, 1990, Glover and Laguna 1997 and Glover, Taillard, and 

de Werra 1993 for recent overviews.) Here, the procedure repeatedly moves from one 

solution to the best among its neighboring solutions. The procedure accepts non-

improving moves at certain circumstances to get away from local optima. In this 

situation, to prevent cycling, certain moves are temporarily forbidden and inserted 

into short term memory in a tabu list which is updated constantly. Two important 

strategies that use long term memory to improve the search process are intensification 

and diversification. Intensification is based on the idea that a good solution will be 



39 

more likely to lie within a promising region. An example of simple intensification 

can be simply retuming to the best solution found so far and search around it more 

thoroughly. The purpose of diversification is to cover larger regions of the solution 

space. Diversification can be carried out simply by partially or fully re-starting the 

search process. Frequency-based memory can be useful in diversifying the search by 

penalizing frequently performed moves so that exploration towards regions not visited 

in previous search will be encouraged. 

Researchers have used TS successfully to find very good solutions to several 

combinatorially difficult problems. Three main areas of application are production 

scheduling, graph theory, and vehicle routing. In the area of production scheduling, a 

number of TS heuristics have been developed for the flowshop sequencing problem 

(Widmer and Hertz 1989, Taillard 1990, Daniels and Mazola 1993). Dell'Amico and 

Trubian (1993) and Brandimarte (1993) have developed tabu heuristics for the job 

shop scheduling problem. Hertz and de Werra (1987) used TS techniques for graph 

coloring. Friden, Hertz, and de Werra (1989, 1990) have developed a very good TS 

heuristic for finding stable sets in large graphs and a TS based exact algorithm for 

determining the maximum independent set in a graph. Gendreau, Soriano, and 

Salvail (1993) present an efficient TS heuristic for fmding maximum cliques in a 

graph. In the area of vehicle routing, several TS heuristics have been developed for 

the vehicle routing problem (VRP) and the VRP with time windows. Several 

researchers have developed TS heuristics for the VRP including Pureza and França 

(1991), Osman (1991, 1993), Semet and Taillard (1993), Taillard (1992), Gendreau, 

Hertz, and Laporte (1994), and Rego and Roucairol (1996). Some of these algorithms 

have produced impressive results. For the VRP with time windows, the TS heuristics 

by Potvin, Kervahut, Garcia, and Rousseau (1996) and Taillard, Badeau, Gendreau, 

Geurtin, and Potvin (1997) produce near optimal solutions. As mentioned earlier, 

Hertz, Laporte, and Mittaz (1996) have developed an efficient tabu search heuristic 

for the CARP. 

In this chapter, we present TABUCARP, a tabu search heuristic for the CARP. 

There are several differences between TABUCARP and CARPET. TABUCARP 
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considers the additional objective of balancing work load among the various cycles. 

Hence the basic move strategies are different for the two algorithms. We present a 

detailed description of the basic definitions and the various components of the 

neighborhood search technique in Section 2.2. Section 2.3 presents a description of 

the TABUCARP heuristic. We provide the computational results in Section 2.4, and 

conclusions in Section 2.5. 

2.2 TABU SEARCH TECHNIQUE 

The central idea of any TS heuristic is the iterative local search procedure that moves 

from a current solution to one of its neighbors. This local search advances keeping 

the objective of the problem in perspective. The overall objective of our problem is to 

develop minimum cost feasible cycles such that the work load (demand) is balanced 

among the cycles. In order to achieve this objective, we try to move the capacity 

excess or deficit from one cycle to another neighboring cycle. We start with the 

cycles that are farthest from the depot and work towards the depot. Thus, we try to 

move all the deficits and excesses among the cycles while attempting to balance the 

work load among cycles. 
With this overall methodology in mind, we defme the following to help us 

describe the basic procedures that we use in our search. A solution S to the CARP 

consists of m cycles C1, C2 ,...,Cm . A solution might contain empty cycles also. If 

all the m cycles of a solution S satisfy the capacity constraint, then solution S is 

feasible. If one or more cycles violate the capacity constraint, the solution S is 

infeasible. Edges that are serviced by cycle Ck  are called service edges on cycle Ck , 

and all the other edges on the route that are just traversed are called non-service edges 

on cycle Ck . Cycle Ck  is represented as Ck = (Pout (k) 5  Pk 5 P (k)) 5 where 

Pout(k) = 
	the path from the depot to the first service edge on cycle Ck , 

containing only non-service edges 

Pk 
	the path from the first to the last service edge on cycle Ck 
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Pifl(k) = 	the path from the last service edge on cycle Ck to the depot, 

containing only non-service edges. 

Let d„,(k)  and dout(k)  be the length of the paths Prn (k)  and Pouf  (k)  respectively. Note 

that an edge may appear more than once in a cycle. Let no, be the number of times 

an edge 	v appears in a cycle Ck , and Ek  be the set of edges with positive 

demand that are serviced on cycle Ck. For each cycle, we also define a distance 

measure, dk  , to keep track of the cycles proximity to the depot. We define the 

distance measure of cycle Ck  as dk  = max(1, max(c 1 ,,,(k ),c 1 ou,(k ))). We next describe 

some of the main components of the tabu search procedure. 

2.2.1 OBJECTIVE FUNCTION 

The objective ftmction value F1  (s), of any feasible solution S is 

Fi(S) = E 	nuk  
k 	(v, ,v;C 

(2.1) 

where (v1, vi  E Ck  means edge (v„vi  is part of cycle Ck . We define a cycle Ck  to 

be violating capacity if the total demand served on this cycle is more than the capacity 

Q or less than a threshold t, where t is a parameter. The tabu search procedure allows 

capacity violation at a cost. In this case, we define the cost of violation as the 

weighted sum of the distance measure times a penalty for capacity violation, over all 

cycles. For a solution violating capacity, let F be the set of cycles that are over 

capacity and D be the set of cycles with demand less than t. In case of a solution S 

violating capacity, the objective function value F2  (s) can be written as 

( 

F2(S) 	(S) E dka, 
CkEF V; Ek 	

Q E d/flic , 	, e D 
t- 	q if  (2.2) 
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where ak  and ßk  are positive penalties for cycles violating capacity. ak  denotes the 

penalty for the cycles that are over capacity and ßk  denotes the penalty for cycles 

serving demand less than t. Note that when a solution S is feasible and the cycles are 

balanced, FaS) = F2  (s). Let F1*  and F; denote respectively the lowest values of 

F1(S) and F2  (s) obtained during the search, S*  be the best known feasible solution, 

and :§* be the best lcnown solution (feasible or not). 

2.2.2 PENALTY FUNCTION 
The penalty function is of the form shown in Figure 6. The function consists of two 

parts — one corresponding to cycles that are over capacity and the other to cycles that 

serve a total demand of less than t. The penalty for over capacity is more than the 

penalty for under capacity. 

y- 

t-3 t-2 t-1 t 	Q Q+1 0+2 Q+3 

Durand served on cycle 

Figure 6. Penalty Function 

Note that the slope of the penalty fimction for cycles that are over capacity (0.5) is 

twice that of slope of the penalty function for cycles that are under capacity (0.25). If 

the demand served by a cycle Ck  is in the interval [t, Q],  that cycle does not incur any 

penalty. If the demand served is —1) or (Q +1), the cycle incurs a penalty of 1. If 

the demand served is less than —1) or greater than 	+1), then the penalty 
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incurred depends on the demand served on the cycle and the slope of the fimction. We 

set the threshold t =1-0.9 Q1. 

We also use self-adjusting penalties as in Gendreau et al. (1994). Every 

iterations, if all previous 2 iterations were feasible, we set a=a1 2 and ,6 = 61 2, 

and thus the penalty coefficients are halved. We double the penalty coefficients by 

setting a= 2 a and A' = 2ß if all of the previous 2 iterations were infeasible. This 

helps the search procedure to produce a mix of feasible and infeasible solutions. 

Based on initial experimentation, we set the value of Ä. =5 in our implementation. 

2.2.3 BASIC MOVES 

The basic move in our heuristic consists of moving a path with at least one service 

edge from the current cycle to one of the other cycles in the solution. In the rest of 

this chapter, we refer to a cycle that is over capacity as an excess cycle and a cycle 

that is under capacity as a deficit cycle. Given a solution S, we move to a neighboring 

solution using one of the following moves: 

• drop move: move a path containing at least one service edge out of an excess 

cycle into one of its neighboring cycles; 

• add move: move a path containing at least one service edge into a deficit cycle 

from one of its neighboring cycles. 

Next we describe the steps involved in the drop and add moves in detail. 

Given a solution S, we pick the cycle with the maximum distance measure as 

the candidate cycle Ck  and a drop or add move is performed based on the total 

demand served by this cycle. We perform a drop move if the candidate cycle is an 

excess cycle and an add move if it is a deficit cycle. If the cycle with the maximum 

distance measure is at capacity, we pick the next farthest. If all the cycles are at 

capacity, we perform a perturb move so that the search will not be stalled. The 

perturb move picks the cycle with the least distance measure as the candidate cycle 

and drops the service edge with the least demand from this cycle into one of its 

neighboring cycles, and the search continues. 
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It is important to defme the neighborhood of a solution precisely in order to 

guide the search process. At each step, one of the options is to perform an exhaustive 

search of the neighborhood. But this option could be very expensive in terms of 

computation times. So, we evaluate a reduced neighborhood of the solution at each 

step. However, we have to be careful not to limit the size of the neighborhood 

excessively, since this could eliminate good solutions from being examined. We next 

describe the steps used to defme the structure of the neighborhood in TABUCARP. 

2.2.4 NEIGHBORHOOD STRUCTURE 

Given a solution S and a candidate cycle Ck  in S, we consider only a subset of all the 

cycles in S for evaluating the next move. Specifically, we choose the set of all cycles 

such that I dk  - 	å, where 6 is a parameter, as the set of neighboring cycles 

of cycle Ck . If the given solution S has less than m cycles, we include an empty cycle 

in the set of neighboring cycles. We define parameter 8 as the average distance of all 

service edges from the depot, where the distance of an edge from the depot is the 

maximum of the shortest path distances to its extremities. 

If the candidate cycle Ck  is an excess cycle, then we have to perform a drop 

move. We consider all the paths starting with an edge served on the candidate cycle 

and with total demand on the path less than or equal to w, where w = (total demand 

served on the candidate cycle Ck  —the threshold t). Among these paths, we randomly 

choose q paths for evaluation. For each one of the q paths, we drop the path from 

cycle Ck  and add it to each one of the neighboring cycles in turn using the DROP and 

ADD procedures described in Hertz et al. (1996b). We provide a summary of the 

DROP and ADD procedures at the end of this sub-section. The set of solutions thus 

generated forms the neighborhood of the current solution S. 

If the candidate cycle Ck  is a deficit cycle, then we have to perform an add 

move. In this case, we randomly choose q paths from each of the neighboring cycles 

for evaluation. The candidate paths have to start with an edge serviced on the 
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neighboring cycle and the total demand on the path has to be less than or equal to w, 

where w = (Q — total demand served on cycle Ck ). We drop each of the q paths from 

the neighboring cycles and add it to the candidate cycle Ck , and the neighborhood of 

the current solution S consists of the set of all solutions generated thus. 

The DROP and ADD procedures use another procedure terrned SHORTEN. 

Given a cycle Ck  =(1,0 	 =V0 ) starting and ending at the depot and 

serving a set of edges Rk , this procedure tries to identify a shorter cycle Ci starting 

and ending at the depot and serving the same set of edges, but not necessarily in the 

same order. We introduce an artificial depot vio  connected to v0 , and a service edge 

(vo  , ) of zero demand and zero cost, so that vo  does not get deleted while 

perfonning the SHORTEN procedure. We first provide a detailed description of 

procedure SHORTEN. 

Procedure SHORTEN 
Step 1: Set r 1 and C'k  +— C k  

Step 2: Set s 	1 and Ck  = 	= 	jir+i = 	= v js  ). Let bu  = Oforall 

edges (y, , vs/  )e C , and au  = the number of times an edge (v„vi  )e Rk  

appears in C. . 

Step 3: If (vis  ,vis+, )e Rk , 

b.,, 	and b 
J S, S+1 	 35+1.38 

 
 

smallest index h 

< a 	—  

go to Step 4. Else, if bis , j,, < a _I, j•  s+, —1, then increment 

by 1 and go to Step 4. Otherwise, attempt to find the 

> s such that V h  = v - , and either 	)e Rk  or 

1. 	If no such index exists, stop. 	Otherwise, if 
fh-1 	jh 	ih-1 jh 

,Vjh  )E Rk , increment b jhl fh and b jh fhl 
by 1. Reverse the chain 

(vis  ,...,vih  ) in Ci . 

Step 4: Set s 	s +1 . If s = t, go to Step 5, otherwise go to Step 3. 
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Step 5: Let Ci,' =( 11  =V is 	 =Vis ). If Ec i 	< the length of the 
h=1 

shortest chain between vii  and vis  , go to Step 7. 

Step 6: Let P 	 =vis ) be the shortest chain used in Step 5. Set 

t<—t—s+p, and r<— 1. Go to Step 2. 

Step 7: If r=t— 1 , stop. Otherwise, set r‹—r+1 and go to Step 2. 

Given a cycle Ck  and a starting vertex indexed by r, steps 2 through 4 of the 

procedure attempts to find another vertex vis  such that all the edges of Rk  appear at 

least once in the chain following vis  . If we identify such a vertex, we can replace the 

chain from v 1  to vis  with a shorter chain consisting of non-service edges, if one is 

available. We repeat this procedure using each vertex in the cycle Ck  as the starting 

vertex of the cycle in an attempt to produce a shorter cycle. We next provide detailed 

descriptions of procedures DROP and ADD as in Hertz et al. (1996). 

Procedure DROP  

Given a cycle Ck  and a path P on this cycle with at least one service edge, this 

procedure moves all the service edges on this path from Rk  to E, and then applies 

procedure SHORTEN to the resulting cycle. 

Procedure ADD  

Given a cycle Ck  and a path P=(vki ,v4 ,...,vir)s ) on another cycle C1  with at least 

one service edge, the procedure adds this path P to cycle Ck . 	Thus, 

Rk  = Rk  l) {the service edges on path P}. 

Step 1: If all the service edges in P are already in Rk , stop. 
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Step 2: If either vki  or v/5.  (say vki  ) or both vertices appear in Ck , replace 

Ck  =(1, 	 with Ck =(Vii ,...,V ki ,V k2 ,...,V kp ,...,V i,). 	Go to 

Step 4. 

Step 3: If neither vki  or vk,  appears in Ck , find the vertex v of Ck  yielding 

min 	{c jr, 	
C jr.kp } . Set Ck  

Step 4: Apply procedure SHORTEN to the cycle Ck . 

2.2.5 TABU MOVES 

When a path containing a set of service edges is moved from a cycle Ck  to another 

cycle Cl , each one of the edges in the path cannot be moved back from cycle C/  to 

cycle Ck  for 0 iterations. In order to determine the value for 8, we use the idea of 

random tabu tags described in Gendreau et al. (1994). 0 is a randomly selected 

integer in the interval Omin  = 5 and Orna), = 10. 

2.2.6 STOPPING RULE 
The local search procedure terminates if FI. or F2*  have not decreased for LS max  

consecutive iterations. The actual value for LS max  is set to be IRI , where R is the set 

of edges with positive demand, in our implementation. We next provide a detailed 

description of the tabu search procedure, which is the main part of algorithm 

TABUCARP. 

2.2.7 TABU SEARCH PROCEDURE 

The tabu search Tabu _Searce, LS max ) starts with a given solution S and 

terminates based on the parameter LSmax . We also use a post-optimization procedure 

that is an adaptation of the Unstringing-Stringing (US) procedure developed by 
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Gendreau et al. (1992) for the TSP. Hertz et al. (1996) call this adaptation as DROP-

ADD and use it for the undirected rural Postman Problem. 

Given a cycle C k  procedure DROP-ADD attempts to fmd a cycle C'k  serving 

the same set of edges by successively removing the service edges from the cycle and 

then adding them at the best possible position. This procedure uses the DROP and 

ADD procedures described earlier to remove and insert edges into a cycle. The post-

optimization procedure DROPs the first service edge from the given cycle and then 

ADDs this service edge back to the shortened cycle. If the length of the resulting 

cycle is less than the original cycle, we start again with the first service edge on the 

resulting cycle. Otherwise, we continue with the remaining service edges until all 

service edges are dropped and added. We next provide a step by step description of 

the tabu search procedure. 

Step 0: Initialization 

Set iteration count ,u <-1. Consider solution S. Calculate the distance measure and 

penalty for all cycles. If S is feasible, set Fi*  4— F (S) and S*  <— S. Set F2*  E- F2  (S) 

and Š*  ‹— S. No move is tabu. 

Step 1: Candidate Cycle Selection 

Consider solution S and pick the candidate cycle C k  as described in Section 2.2.3. 

Step 2: Evaluation of Candidate Moves 

• If cycle C k  is an excess cycle perform a drop move, else if it is a deficit cycle, 

perform an add move, else perform a perturb move. Generate all the neighbors 

S of S as described in Section 2.2.4. 

• If a neighboring solution S' is generated by a tabu move, it is not considered 

further, unless S' is feasible and Fi  (S')< Fi* , or S' is infeasible and F2(S r ) < F. 
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Step 3: Identification of Best Move 

Set 	argmin {F2 (S')} 

Step 4: Identification of Next Solution 

Solution S is set equal to Š unless the following three conditions are satisfied: 

(i) F2  (š)> F2  (s) (ii) 5 is feasible, and (iii) procedure DROP-ADD was not used at 

iteration 1u -1. If the three conditions are satisfied, it means that we have a feasible 

solution with a lower objective value that was not obtained using the DROP-ADD 

procedure. So there is a possibility that we might be able to improve the feasible 

solution S using DROP-ADD. In this case, the new solution is obtained by applying 

procedure DROP-ADD to S. 

Step 5: Update 

Set ,u 	,u + 1. Adjust penalty function as described in Section 2.2.2, if necessary. 

If procedure US was not used in Step 4, tabu moves. Update distance measures and 

penalties for all cycles of the new solution, and best known solutions and objective 

function values. 

Step 6: Termination Check 

If Fi*  and F2*  have not decreased for the past LS iterations, stop. Otherwise go to 

Step 1. 

2.3 TABUCARP ALGORITHM 

TABUCARP is motivated by a recent work of Rochat and Taillard (1995) on using 

probabilistic diversification and intensification strategies for VRPs. The algorithm 

exploits an adaptive memory that contains individual routes from previously visited 

best solutions. The routes from several different solutions are then combined to form 

new starting solutions for the tabu search procedure described in the previous section. 
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Genetic algorithms (Holland 1975) inspire the concept of combining parts of previous 

solutions to form a new solution. The procedure starts with an adaptive memory 

filled with a pool of routes from several different initial solutions. TABUCARP then 

methodically combines several routes in the adaptive memory to form new starting 

solutions, applies tabu search to these solutions, and uses the routes from the resulting 

solutions to update the adaptive memory. 

2.3.1 INITIAL SOLUTIONS 

In order to start the TABUCARP procedure we have to fill the adaptive memory with 

routes from several different initial solutions. Given a giant Euler tour over all the 

edges with positive demand, we generate Ø = max (1R1- m ,15) different initial 

solutions as follows. 

Step 0: Set k 	1, l 	1 . 

Step 1: Construct the kth solution as follows. Start at the depot and take the shortest 

path to the /th edge on the Euler tour that requires service. The first vehicle 

services edges starting with this edge and proceeds until its capacity is 

blocked. If the capacity is violated while servicing edge (v, , v ), the 

vehicle returns to the depot from node y,. The second vehicle starts from the 

depot and reaches node v. The first edge serviced by this vehicle is edge 

(v1 , vi  ) and the cycle construction proceeds as for the first vehicle. The 

process continues until either all edges are serviced, or until cycles are 

constructed for (m - 1) vehicles. In this case, the remaining edges are 

assigned to vehicle m (the solution may be infeasible in this case). 

Step 2: Set k <—k +1. If k > Ø, stop. If not, go to Step 3. 

Step 3: Set l 	+1. If the /th service edge on the giant tour is a starting edge for 

one of the vehicle tours on the first initial solution go back to Step 3. If not, 

go to Step 1. 



2.3.2 ADAPTIVE MEMORY 

In the beginning, the adaptive memory contains individual cycles from the initial 

solutions. All the cycles associated with a single solution are contiguous and the 

solutions are sorted in the ascending order of their objective function value. The 

process of selection of cycles for forming a new incumbent solution is biased in favor 

of the best cycles. If the size of the adaptive memory C is ICI , then the cycle in 

position i has a probability of 	— i + lisum of all the position indices) = 
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— j + 1) = (2 	— i +1) )/( ICI IC +11). In our implementation, we 
( 
ici -i 

j=1  

restrict the size of the adaptive memory to 250 routes. After sorting the cycles in the 

adaptive memory, if the number of cycles is more than 250, we remove the last ICI - 

250 cycles from the adaptive memory. If we let the adaptive memory grow 

indefinitely, the computational time would increase dramatically. At the same time, 

too small an adaptive memory would limit the capability of the search process to 

develop new solutions. Our initial experimentation indicated that the computational 

times increase dramatically when we increased the size from 250 to 300 and the 

improvement in the solution quality was marginal. 

As Rochat and Taillard explain, once we perform the probabilistic selection of 

cycles several times, the search tends to concentrate in promising regions of the 

solution space. This is due to the fact that we choose the cycles with a bias towards 

"better" cycles and the worst cycles are removed from the adaptive memory to 

maintain its size. Also note that since we allow identical cycles (from different 

solutions) to be added to the adaptive memory, the "better" cycles are more often used 

to form the new incumbent solution and the process slowly changes from a 

diversification phase to an intensification phase. 
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2.3.3 DESCRIPTION OF TABUCARP 

Step 0: Initialization 

• Generate Ø  different initial solutions as described in Section 3.1. 

• For each solution S, 

Call procedure Tabu _Search(S,IR ). 

Label each cycle of the resulting solution with the value of the solution. 

Load cycles with more than one service edge into adaptive memory (defmed 

as set C). 

Step 1: Diversification and Intensification 

• Repeat the following steps for 100 iterations. 

• Sort the cycles in adaptive memmy in ascending order of the labels. 

• Set C' C and S<— 0 . 

• While C' 0, do the following: 

. Choose a cycle from C' , probabilistically such that the cycle in the ith 

position of C has a probability of (2 (1C' — i 	C' +11 of being 

selected. 

. Add this cycle to S and remove from C' all cycles with one or more edges 

belonging to this cycle. 

• If some of the edges of R are not serviced by the cycles in S, construct an 

additional cycle with these edges and add to the solution S. 

• Call procedure Tabu _SearcleIRI). 

• Label each cycle of the resulting solution with the value of the solution. 

• Load cycles with more than one service edge into adaptive memory. 

2.4 COMPUTATIONAL RESULTS 

We coded TABUCARP in C and tested it on 23 problem instances used by Pearn 

(1989) and Hertz, Laporte and Mittaz (1996) to test their algorithms. The best known 
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solutions for these instances are produced by either the modified Construct-Strike 

(MCS) heuristic (Peam 1989) or CARPET. So we present a comparison of our 

results with those of CARPET and MCS in Table 1. 

We use the instance number as in Hertz et al. (1996). The lower bound we use 

for comparison (LB2) is the lower bound LB2 described in Benavent et al. (1992), 

except for instance 15 which has a higher lower bound as reported in Hertz et al. 

(1996). The deviation of a solution from the lower bound is calculated as (Solution 

value/Lower bound). The average deviation is the average over the 23 instances and 

the worst deviation gives the worst deviation over the 23 instances. 

Table 1 shows that TABUCARP produces solutions with the same value as 

CARPET in 22 out of the 23 instances. The total distance traversed by the 

TABUCARP solution for instance 2 is more than the corresponding value for the 

CARPET solution. However, a closer investigation of the routes shows that the work 

load is better balanced among the routes in this instance for the TABUCARP 

solution. In order to measure the quality of a solution with respect to work load 

balancing, we define the Measure of Capacity Deviation (MCD) as follows. Let Ek  

be the set of edges with positive demand that is serviced on cycle Ck  and B be the set 

of cycles that service at least one edge. For each cycle Ck  E B, let vk  be the total 

demand served on that cycle. Then, 

and 

Vfk = 	qy 	 (2.3) 
vj  eE k 

standard deviation of tyik  :C k  E BI  MCD = 	 x100 	(2.4) 
average of {11/k :C k  E B} 

The benchmark problems vary quite dramatically in their sizes and hence the 

computational times also vary. The simplest problem takes less than one second on a 

Sun Sparc work station and the biggest computational time was recorded for problem 

25 (3125 seconds). TABUCARP is in general computationally more expensive when 

compared to CARPET. TABUCARP takes 1.26 times the time taken by CARPET, 

on average to solve the benchmark problems. 



Instance 
Number 

1V1 1E1 MCS CARPET TABUCARP BEST 
KNOWN 

LB2 

1 12 22 323 316 316 316 310 
2 12 26 345 339* 353 339 339 
3 12 22 275* 275* 275* 275 275 
4 11 19 287 287 287 287 274 
5 13 26 386 377 377 377 376 
6 12 22 315 298 298 298 295 
7 12 22 325 325 325 325 312 

10 27 46 366 360 360 348 326 
11 27 51 346 311 311 311 277 
12 12 25 275* 275* 275* 275 275 
13 22 45 406 395* 395* 395 395 
14 13 23 645 462 462 458 428 
15 10 28 544* 544* 544* 544 544** 
16 7 21 102 100* 100* 100 100 
17 7 21 58* 58* 58* 58 58 
18 8 28 127* 129 129 127 127 
19 8 28 91* 91* 91* 91 91 
20 9 36 164* 164* 164* 164 164 
21 11 11 63 55* 55* 55 55 
22 11 22 123 123 123 121 121 
23 11 33 156* 158 158 156 156 
24 11 44 200* 200* 200* 200 200 
25 11 55 233* 235 235 233 233 

Average deviation 1.0579 1.0209 1.0227 
Worst deviation 1.507 1.1227 1.1227 
Number of optima 10 11 10 
Number of best 12 17 16 

* Indicates an optimal solution 
** Lower bound as used in Hertz et al. (1996) 
Numbers in bold indicate a best known solution 
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Table 1. Computational Results for DeArmon's Problems 
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In order to better understand the effect of work load balancing on the solution 

quality, we tested TABUCARP on 50 instances of randomly generated problems and 

compared the results with the corresponding CARPET solutions. We generated the 

random problems as follows. We generated grid networks (specified as a x b, where 

a is the number of rows and b is the number of columns in the grid) of five different 

sizes — 7x6, 9x8, 10x5, 10x8, and 12x5. An a x b instance has ab vertices and (2ab — 
a — b) edges. The lengths of the edges were generated according to a discrete uniform 

distribution on bv _ min  , /v _ rn. jJ ([4,8] in our experimentation) for the vertical edges 

and on frh _mtn 5 1h _maxi ( [5,10] in our experimentation) for the horizontal edges. Some 

edges were randomly included in R with a probability generated in one of the two 

intervals [0.2, 0.5] or [0.6, 0.9]. The depot was chosen randomly from the ab 
vertices. Demands for the edges in R were generated according to a discrete uniform 

distribution on [1, d. ]. (dmax  is set to 10 in our experimentation.) 

The vehicle capacities were generated as follows. We are given the number of 

vehicles m (4 for the lower density problems and 5 for the higher density problems) 

and vehicle filling capacity a (90%) for each problem instance. The vehicle capacity 

Q is set equal to (Total demand over all edges) (ma). For each combination of 

problem size and problem density, we generated five instances. We obtained 

solutions using both TABUCARP and CARPET for all 50 instances. Tables 2 and 3 

summarize the results for the random instances. 

We express the deviation in TABUCARP's solution value (TC) from 

CARPET 's solution value (CP) as ((TC-CP)/CP)x 100 and the deviation in 

CARPET's MCD (CPM) finm TABUCARP's MCD (TCM) ((CPM-

TCM)/TCM)x 100. From both Tables 2 and 3, we can see that on average the total 

distance traveled for the CARPET solutions is 3.23% lower for the lower density 

problems and 2.33% lower for the higher density problems. However, the work loads 

of the cycles are better balanced in the solutions produced by TABUCARP as 

indicated by the MCD. On an average, the MCD for TABUCARP solutions is 

20.98% lower for the lower density problems and 6.20% lower for the higher density 

problems. Over all the 50 instances, TABUCARP yields solutions whose MCD are 
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Problem 
Size 

TABU CARP CAR PET DEVIA TION% 
SOLN/LB2 MCD SOLN/LB2 MCD SOLN MCD 

7x6 1.3429 12.84 1.2902 14.60 4.24 13.69 
9x8 1.2443 10.08 1.2443 10.08 0.00 0.00 
10x5 1.3261 21.80 1.2887 22.86 2.87 4.86 
10x8 1.2532 12.50 1.1974 22.02 4.65 76.17 
12x5 1.2632 14.62 1.2102 16.11 4.38 10.18 

Average 3.23 20.98 

Table 2. Results for Lower Density Problems 

Problem 
Size 

TABU CARP CAR PET DEVIA TION% 
SOLN1LB2 MCD SOLN1LB2 MCD SOLN MCD 

7x6 1.1625 10.98 1.1069 13.60 5.02 23.81 
9x8 1.1039 11.20 1.0873 11.80 1.54 5.36 
10x5 1.1660 23.01 1.1121 23.43 5.08 1.81 
10x8 1.0647 22.29 1.0647 22.29 0.00 0.00 
12x5 1.1068 9.74 1.1068 9.74 0.00 0.00 

Average 2.33 6.20 

Table 3. Results for Higher Density Problems 
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on average 13.60% lower than the MCD for the CARPET solutions; however, the 

solution value is 2.78% higher on average. It is important to note that CARPET does 

not attempt to balance the work load and that is the reason for the increase in the 

MCD for CARPET solutions. But, we compare the two solutions to understand the 

price one has to pay to achieve work load balance in the solutions. Our results clearly 

indicate that it is defmitely advantageous to consider work load balancing as a 

secondary objective, since the deterioration in objective function value is marginal 

when compared to the nature of the routes produced by TABUCARP. 

We should also note that the solutions produced by TABUCARP would be 

quite sensitive to the work load balance term in the objective function. If we removed 

this term from the objective function and considered only the total distance traveled, 

our solutions would be worse than CARPET solutions since our neighborhoods and 

basic moves are based on the idea of balancing the total demand among the cycles. 

2.5 CONCLUSION 

In this chapter, we have presented TABUCARP, a new tabu search based heuristic, 

for the CARP. This heuristic attempts to balance the work load among the routes 

while minimizing the cost of traversing all the edges and satisfying demand. The 

concept of work load balancing is very important in several applications such as mail 

delivery and meter reading, where the amount of work done by each service delivery 

unit has to be fairly equal. We have tested TABUCARP on a set of benchmark 

problems and on several randomly generated problem instances. On the set of 

benchmark problems, our heuristic performs as well as CARPET, the heuristic that 

produces the best known solution for 17 out of the 23 benchmark problems for the 

CARP. The results from the randomly generated problems indicate that TABUCARP 

in fact produces routes that are better balanced in terms of work load on average, but 

the total distance traversed tends to be a little more than the corresponding distances 

in the CARPET solutions. Over the 50 instances that we tested, TABUCARP's 

solutions are 13.6% better on average in terms of work load balancing, and the total 

distance traversed is 2.78% higher, when compared to CARPET solutions. 



CHAPTER 3 

THE STOCHASTIC EULERIAN TOUR PROBLEM 

3.1 INTRODUCTION 

One of the most common problems in routing is the design of routes for people or 

vehicles delivering service. Such routing problems are of two types -- node routing 

and arc routing problems, depending on whether the service request is at a node or on 

an arc/edge. The underlying problem for most arc routing problems is determining a 

giant tour that starts and ends at a designated depot, and traverses all edges requiring 

service at least once. This is the deterministic Eulerian Tour Problem (ETP). 

A connected graph is Eulerian if there exists a closed walk in the graph 

containing each edge exactly once. If the given graph is not Eulerian, the first step is 

to add a least cost set of arcs or edges to the graph to make it Eulerian. This is called 

the least cost augmentation problem. Edmonds and Johnson (1973) show that this 

problem can be solved in polynomial time for the undirected CPP using an adaptation 

of Edmonds blossom algorithm. Thus, given an undirected graph G = (v, E) in 

which all the edges in E 	n) require service, we can make it Eulerian in 

polynomial time. Once we have this Eulerian graph, we can determine the actual 

Eulerian tour in polynomial time too. Edmonds and Johnson (1973) have described 

three different algorithrns for the ETP on an undirected graph. These are the end-

pairing algorithm, the next-node algorithm, and the maze-search algorithm. The ETP 

is well solved for directed and mixed graphs also. van Aardenne-Ehrenfest and de 

Bruijn describe the spanning arborescence algorithm for the ETP on directed graphs. 
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For mixed graphs, one usually assigns directions to the undirected edges to transform 

the mixed graph into a symmetric graph, and then completely orient the remaining 

undirected edges so that the indegree equals to the outdegree for all vertices of the 

graph. Now we can use the spanning arborescence algorithm to determine the 

Eulerian tour. 

It is important to note that there may be more than one Eulerian tour for a 

given graph. However, all these tours have the same cost and hence there is no 

optitnization involved in the ETP. But there exist quite a few situations in practice, 

when not all the edges that require service need to be visited everyday. In such cases, 

the number of edges that require a visit is a random variable. For example, consider a 

postal carrier who has to deliver mail to n different streets. The postal company 

wishes to minimize the total wallcing distance for the carrier. When the carrier has 

to visit all the n streets every day, any Eulerian tour would suffice, since all the 

Eulerian tours are of equal length. But in reality, based on the realization of demand, 

the carrier might have to visit only a subset of the edges requiring service on any 

particular day. 

Consider the following alternative in that situation: the postal carrier follows 

the predetermined tour as long as he has to visit the next edge on the tour to provide 

service. If at any point on the tour, the postal carrier does not have to visit an edge, he 

skips that edge, and takes the shortest path to the next edge on the tour that requires a 

visit. With this alternative, the ETP takes on a different dimension. The different 

possible Eulerian tours of a graph yield themselves better to skipping certain edges of 

the graph. For example consider the Eulerian tours 1 and 2 for the undirected 3x3 

grid in Figure 7. All edges in the graph have a weight of I and all edges require 

service. Node 0 represents the depot. The dotted lines represent the edges that are 

only traversed and not serviced. The numbers on the edges of the two tours represent 

the order in which one visits the edges in these tours. On a particular day, let us 

assume that edges A, B, C, and D require service. This translates to edges 2, 6, 10, 

and 14 on tour 1 and edges 4, 5, 12, and 13 on tour 2. If we start at the depot, visit the 

edges in the same order that they appear in the respective tours and return to the depot 



1 4 
A 

3 

14 V  e'É 

10 

2 16 

13 

7 

6 
11 

GIVEN EULERIAN GRAPH 

0 

A 

B  

D 

TOUR 1 
	

TOUR 2 

60 

12 
	

9 
	

10 
	

9 

Figure 7. Eulerian graph and two different tours for the same graph 



61 

tour 1 results in a length of 10 (Depot-1-2-7-6-11-10-15-14-15-16-Depot), while tour 

2 results in a length of 12 (Depot-1-2-3-4-5-6-15-12-13-10-11-16-Depot). Thus, tour 

1 is better for this instance. On the other hand, if edges A, C, E and F require service, 

tour 2 which has a length of 6 (Depot-1-2-3-4-5-1-Depot) is better than tour 1 which 

has a length of 8 (Depot-1-2-3-4-5-6-3-1-Depot). Hence, the objective is to determine 

not just any Eulerian tour, but a particular tour (if more than one tour exists for the 

given graph) which will have the shoitest tour length "on an average". This motivates 

the investigation of the Stochastic Eulerian Tour Problem (SETP) which we define 

below. 

We are given a graph G = (v, E) in which all the edges in E 	n) require 

service (We shall call them "white" edges following the notation in Jaillet (1985).), 

and a distance d(vi ,v j  betvveen every pair of directly connected nodes vi  and v1. 

On any instance of the problem, only a subset R of the n white edges is present, and 

hence, requires a visit. The number of present edges follows a specified probability 

distribution. The objective is to determine an a priori Eulerian tour that visits all the n 

edges and minimizes the expected length of the tour. On any given instance, one 

visits and services the present edges in the same order as in the a priori tour, while 

skipping the ones that are absent. The SETP can be similarly defined when only a 

subset R121= n) of the edges in E consists of white edges. We would like to 

highlight the fact that we assume that we have solved a least cost augmentation 

problem for the given graph and have a Eulerian graph and solve the SETP for this 

Eulerian graph. 

Our investigation of the SETP has been motivated by a real-world problem. 

In the UK postal system, the carriers usually deliver mail a second time in the 

aftemoon. During the first mail delivery, the carriers have to visit all the streets 

almost always, whereas the second mail delivery is typically very light. Only a small 

subset of the streets requires service during the afternoon delivery. While any 

Eulerian tour would be sufficient for the first mail delivery, it is definitely 

advantageous to determine a tour that minimizes the total length in an expected sense 
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for the second mail delivery. It is important to note that even though the ETP is well 

solved, it is not feasible to determine a new tour for each day, since following a new 

tour every day would decrease the operating efficiency of the postal carrier 

considerably. In certain applications, like Canada Post, the mail carrier collects the 

mail to be delivered at various points along the route from relay boxes. On any given 

day, the present edges are known only after the carrier starts his route and thus, it is 

not possible for the carrier to determine a new route at the start of each day. In such 

situations, it is certainly efficient to let the mail carrier follow the same route every 

day, while allowing the flexibility of skipping streets, if necessary. 

Stochastic arc routing is an entirely new area of research. However, 

researchers have investigated several stochastic node routing problems over the past 

decade. In the following section, we present some of the related research on 

stochastic node routing. For results about these studies and a recent survey on 

stochastic vehicle routing, see Gendreau, Laporte and Séguin (1996). Specifically, 

Jaillet (1985) introduced the TSP with stochastic customers as the Probabilistic 

Traveling Salesman Problem (PTSP). It is essentially a TSP where each vertex vi  is 

present with a probability pi , and hence the number of vertices requiring a visit is a 

random variable. Jaillet shows that an optimal TSP tour can be arbitrarily bad for the 

PTSP. He also shows that an optimal tour for the PTSP may intersect itself in the 

Euclidean plane. This is in contrast to what we know about optimal TSP tours. 

These results indicate that algorithrns have to be developed specifically with the PTSP 

in mind. Jaillet has developed a number of heuristics by suitably modifying several 

well-known TSP heuristics such as the Clarke-Wright algorithm and tour merging 

algorithms. Rossi and Gavioli (1986) present computational results after testing three 

of Jaillet's heuristics. Bertsimas (1988) and Bertsimas and Howell (1993) have 

developed a few more heuristics based on probabilistic 2-opt edge exchange, vertex 

moves within a tour, and space filling curves (Bartholdi and Platzman 1982). 

Laporte, Louveaux and Mercure (1994) have applied the integer L-shaped method to 

the stochastic TSP and have solved instances with up to 50 vertices optimally. 
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In this chapter, we introduce the SETP and present the motivations for 

studying this problem. Section 3.2 states the defmitions and assumptions for the 

SETP, and presents the method to obtain the expected length of a given tour 

efficiently. In this section, we also prove that the SETP is NP-hard. We investigate 

some of the properties of a given tour and derive bounds for the expected length of 

this given tour in Section 3.3. Section 3.4 highlights some of the desirable properties 

in an a priori tour using illustrative examples, and Section 3.5 presents the 

conclusions for this chapter. 

3.2 IMPORTANT RESULTS FOR THE SETP 

In this section, we first present the basic defmitions and assumptions before formally 

defming the SETP. We then derive an expression for calculating the expected length 

of a given tour t. We family show that the SETP is NP-hard even though the ETP is 

solvable in polynomial time. 

3.2.1 DEFINITIONS AND ASSUMPTIONS 

G = (v, E) is an undirected graph where V is the set of nodes and E is the set of 

edges. All the edges in E require service, and hence, denote the set of white edges. 

Associated with each edge (y, ,v j  ) in E is a non-negative real number c/(vi  , vi  ), the 

direct distance from node v, to node v.. The graph G has a node designated as the 

depot where the Eulerian tour starts and ends. In order to facilitate the representation 

and analysis, we duplicate the depot and represent the duplicated node as v0 , which 

now serves as the depot. The duplicated node vo  is connected to the original depot by 

two edges of length O. 

Given an Eulerian tour t , we have an ordering of the nodes and edges, and 

thus, a direction of traversal (and service) for each of the n edges in E. If we 

traverse edge e, from node vk  to v1 , we define vk  as the in-node for edge e,(vt,n) 
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and v1  as the out-node for edge ei (vra ). Thus, given the in-node and the out-node 

for each edge in E, we represent an Eulerian tour t as 

t = (vo,vr , e1  , v ,v12n e2  v2nut 	vnin , en  , yr/ , ), where the edges e1 ,e2 ,•••,en  are 

numbered in their order of appearance in tour t. The length of the tour t, L(t) is 

given by: 

L(t) = El(e; )+Ed(vut,vi) 
i=o 

(3.1) 

with vr = vnin+1  = vo, and 

1(e,)= length of edge e, 

If nodes v and v j  are not directly connected, then 	, vi  is the shortest distance 

between v and v J • 

Each edge e, in E is present with probability p,. Thus, for any given 

instance, the number of white edges present (i.e., requiring a visit) is a random 

variable. We assume that if k edges require a visit on a particular day, then every set 

of k edges out of the n white edges is equally likely. Note that when p, = p for all 

i, the number of present edges follows a binomial distribution. 

Thus, given G =(v,E), a set of n white edges, a distance matrix D and a 

probability p, of white edge e, being present, the SETP seeks an a priori tour that 

minimizes the expected length of the tour. Looking at it as a stochastic program with 

recourse, in the first stage, we construct an a priori Eulerian tour of minimum 

expected length. Once we lcnow the set of present edges, we can describe the second 

stage solution as follows start at the depot, travel to the in-node of the first present 

edge via the shortest path, traverse and service the first edge and then take the shortest 

path from the out-node of the first present edge to the in-node of the second present 

edge. We continue in a similar manner until we reach the out-node of the last present 

edge and then take the shortest path back to the depot. Given this recourse action and 
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the precise defmition for tour representation, we are ready to present the results for 

calculating 44], the expected length of a given tour t. 

3.2.2 EXPECTED LENGTH OF A GIVEN TOUR 

The length of any given tour consists of two parts, namely, the total length of the 

present white edges, and the total distance traveled from the out-node of one present 

white edge to the in-node of the next present white edge (i.e., the inter-edge traversal 

distances). The SETP is similar to the PTSP with n white nodes and one depot in 

certain aspects. The inter-city traversal distances in the PTSP would correspond to 

the inter-edge traversal distances. The main difference between the two problems is 

that in the SETP, in addition to the inter-edge traversal distances, we have to consider 

the length of the white edges also. Thus, many off our results are extensions of 

Jaillet's (1985, 1988) results for the PTSP. 

In order to derive a concise expression for the inter-edge traversal distances, 

we defme the following n quantities that are similar to the ones defmed in Jaillet 

(1988). 

Let 
n 

= 	d(Vu' vin 	 ) J 	j+r+1 
.1=0  

V r 	{0,• •-,n —1} 	(3.2) 

where ,out ,in 
vo 	= n+1 = VO 

j+r+1=(j+r)mod (n+1)+1 

oul , d(vout vin 	)= 
v 	 if  0 j 

' j+r+1 C1(111it  ,V 0 )1- cl(v 	if n—r<jn j—n+r 

Note that when r = O, L is the total inter-edge traversal distance for the given tour t 

and g + Ede,) is the length of the given Eulerian tour t. For 1 r n-1, Lr, is 
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the sum of (n + 1) elements. Each element represents the distance from the out-node 

of edge e to the in-node of its + iÿh successor edge (i.e., edge e j+7,+1 ) with respect 

to the given tour t, i.e., we start at the out-node of edge e., skip the next r edges on 

the tour and travel to the in-node of the (r +1r edge follovving edge e.. Note that 

whenn—r<j_n, to reach the in-node of edge e 	from the out-node of edge e j , 

we defme 	, 	) as reaching the depot from the out-node of e j  and then 

traveling from the depot to the in-node of e 	We first obtain the conditional 

expected length of a given tour t when k of the n white edges are not present. 

Lemma 1: Given a graph G with n white edges, a designated depot vo , and a 

probability of occurrence p for each white edge, the conditional expected length of a 

tour t, given k of the n white edges are not present in the given tour t is 

E[Li l(n— k) edges present] = 

0 	 if k = n 

(11n)[±1(ei ) + g-1] 	 if k = n-1 	(3.3) 

4. 1÷ (n-2—r\ r i 
k —r ) if k = 0,1,...,n — 2 

Proof: (i) k = n: Since none of the white edges are present, this case is obvious. 

(ii) k = n-1: Only one white edge is present and each one of the n edges is 

equally likely to be present. We have to travel from the depot to the in-

node of this present edge, service the edge, and travel from its out-node 

back to the depot. Thus, from the defmition of L7-1  , this case follows. 

1=1 
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(iii) k = 0,1, ...,n — 2: The expected length can be described as the sum of the 

total length of the white edges traversed (the first term in the expression) 

and the total inter-edge traversal distances (the second term in the 

expression). The proof for the second term is similar to the proof of 

Lemma 2.2 of Jaillet (1985) with the following differences. Instead of 

traveling from a present node to the next present node as in the PTSP, we 

travel from the out-node of a present edge to the in-node of the next 

present edge. 

 

( n 

 

Note that we can have k of the n white edges missing in different 

   

) 

equiprobable ways. When k edges are missing, the resulting total inter-

edge traversal distance is a sum of n-k elements. Since some of the 

elements might be repeated in the varions combinations, we regroup them 

using L . Consider an element dkle, vin  r-1-1,  ) of E, for a given J 	i+ 

r E {0,1,...,n— 2}. For this element to be included, the white edges e j  and 

+r+1  have to be present and the edges between them have to be absent. 

Since we have only k edges missing, if r > k , dvt j+r+1 will never J  

appear and rt  will not be used in calculating E[L,1 (n—k)edgespresent]. 

However, if 

	

	we still need to choose the remaining k—r white 

edges that are missing from a total of n— 2 — r available white edges, and 

[ il— 2 — rj 
this can be done in 

	

	 ways. Since this is valid for all 
k —r 

j c {0,1,..., n}, it follows that each L appears 	
2 — 

k —r 

 

times while 

 

calculating E[L1 1 (n— k)edges present]. 

Now, we have to account for the number of times the white edges are 

actually traversed. When k out of the n edges are missing, we have 



number of times an edge e occurs in E[L1 ] is 
n\ 

(n — k)/n=   • 
k 
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n 	n 
different combinations of the present edges. Each 

n— k)  

combination has — k) white edges. Since each one of the n white 

edges appears an equal number of times over all the combinations, the 

Now that we have a closed form expression for the conditional expected length, we 

can calculate E[L]  using the appropriate probabilities. 

Theorem 1:  Given a graph G, with n white edges, a designated depot v0 , and a 

probability of occurrence p for each white edge, the expected length of a given tour 

t is: 

E[L1 ]= p2  [Ë(1— 	41+ p (1— p)n-1  L7-1  + p[ 'Él(e) (3.4) 
r=0 	 i=1 

n 
Proof: E[L1 ]=E E[L1 1 n — k edges present]x Prob{n — k edges present} (3.5) 

k=0 

where, Prob{n — k edges present} = 
( n` n-k( p )k 

n-2 	n`\  ( -,' 	—1' 
l(e i) + iÉ

n — 2 — rj 
EV t ].= 

E (1/[ 	
Lit-\- zi 	k 	 k — r k=0 	I C  .1 ) i=1 	I 	r=0 	 / _ 

n 	_ ( 1 I n)[ tÉl(e i ) + Er1][jp o.pr-1( 
n —1 i=1 

[( kri: pn-k 	p )k] +  

n-2 [k 

r= 

( n  

k=0 	

_ 2 _ r) 
ft 	

n-2 

= E E 	I pn-k  
k=0 0 k r 

1(e i ) p — p)n-1 	p — p)n -1  

1 (e i ) pn-k  - p)k 

(3 .6) 
i=1 



Let us now consider each term of (3.6). 

The first terni can be expressed as: 
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n-2 	[n-2 (n  _ 2 _ E rt  E k — r ) r=0 	k=r 

p n-k p )k] (3.7) 

Setting u = k — r and s = n — 2 — r , (3.7) reduces to 
n-2 5 (5 	 n-2 E p 2  — 4[E 

14 
p s-u 	E p 2  — p)r  L; 	(3.8) 

r=0 	 r=0 

The second and third terms can be combined as: 

± (e 	/71) pn -k  — p)1 
1=1 	k=0 

-1 
= pEl(ei)[t[n-1 p n -1 - k 	.= p  z  

1=1 	k=0 1=1 

From (3.6), (3.8), and (3.9), we get 
?2_7_? 

	

E[L, = p2 [2:4 (1— p)r  Lrt ]+ 	g-' + p[El(e ; )1• 
r =0 	 1=1 

Since each Lrt  is the sum of n +1 elements, given a tour t, we can calculate E[L1 ] in 

O(n2  time using (3.4). Also, note that if the number of white edges present does not 

follow a binomial distribution, but some other specified probability distribution, we 

can substitute the appropriate probabilities in (3.5) to calculate E[Lt ]. However, the 

(n — k) present edges must be chosen at random from the set of n white edges to use 

(3.5). In certain scenarios when each white edge e, is present with probability p. , we 

can calculate 	using the following formula. 

n 	\ 	1-1 	n 	f 	\ 	n 
E[L1 ]= pxe,)+E d 	)p n(i_pk).„ 	,vo )pi 	(1_ pk  ) 

1=1 	1=1 	 k=1 	 i=1 	 k=1+1 

n n 	 I-1  +E E d rd 	p . (1_ „k  I 
1=1 j=i+1 	 k=1+1 

(3.10) 

(3.9) 
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We can derive (3.10) by looking at the probability of the following events: 

• each white edge being present (first term) 

• link between the depot and the in-node of each white edge being present (second 

term) 

• link between the out-node of each white edge and the depot being present (third 

term) 

• link between the out-node of a white edge e, and the in-node of each white edge 

following e, in tour t being present (fourth term) 

Expression (3.10) is similar to the closed form expression for calculating the expected 

length of a given tour for the PTSP with one black node (the depot) and n white 

nodes. The main difference is that for the SETP, we have to consider the length of 

the white edges in addition to the distance traveled between edges. We use this 

similarity to prove that the SETP is NP-hard, in the following section. 

3.2.3 NP-COMPLETENESS 

We first define the decision problems for the SETP and the PTSP before presenting 

the NP-completeness proof. 

Decision Problem for the SETP  

Given an undirected graph G = (v, E) , a distance c/(v„ v associated with every edge 

in E, a subset R 1?1-= n) of E consisting of the white edges, a rational number 

p, 0 < p < 1 and a bound B, is there an Eulerian tour t for G with 

EVA= p2 	— pY Et  + p(1.— prl  4-1  + pÈl(e,) B? 
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Decision Problem for the PTSP  

Given an undirected graph G = (V ' , E 1 ) , V = n +1, a distance cr(v, ,vj  

associated with every edge in E' , a black node vo  (the depot) and n white nodes, a 

rational number q, 0 < q < 1 and a bound B' , is there a traveling salesman tour t' 

for G' with 

EVel= q 2  EO.-e +q(1.— 	4-1 < B ? 
r=0 

Theorem 2:  The SETP is NP-hard. 

Proof: The SETP belongs to class NP, since given a tour t, we can calculate E[Li ] 

in polynomial time (0(n2 )) which we can then compare with the bound B. We 

reduce the PTSP to the SETP to show that it belongs to the class NP-complete. 

Given an instance of the PTSP, we construct the graph G =(V,E) as follows: 

For each white node vi• in the PTSP, define two nodes v,'n and vrt  . 

v = {yr , vra  V i =1,...,n}u {1,  0 } 

E ={(vin ,v7t),v =1,...,n}u{(vo,v n) , (vo,v t)v  

u  (viola , 	v  (vi vi  )e  

R={(viin , vre  ),V i =1,...,n} 

d(v:n tout) = 0,V =1,...,n;d(vr t  ,v fin)= d'(vi  ,v i ),V (vi ,v 	E', i,j =1,...,n 

d(vo ,v:n) = d(vo ,vr t ) = d'(vo ,vi ), i =1,...,n 

B = B' ;p=q 

in 	out in 	out 	in 	out Let t =(vo ,vi  , el  , v1  , v2  ,e2 ,v2  ,...,vn  ,en ,vn  ,vo ) be a feasible Eulerian tour for 

G with E[Lt ]B . Since each edge ei  is of length 0, it is clear that from the 

Eulerian tour t, we can construct a tour t' 	 which is feasible for 
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G. . Also, note that Et  = rt , for all r = 0,...,n —1 by construction of G, and hence 

E[Le ] = 	B = B. . Similarly, we can show that if the PTSP has a feasible 

solution with E[L,,]. B' , then the SETP has a feasible solution with MM B, and 

hence the SETP is NP-hard. • 

3.3 PROPERTIES AND BOUNDS FOR THE SETP 

In this section, we examine a few properties of the SETP. In order to derive these 

properties, we express E[L]  succinctly in a weight-form notation as in Jaillet (1985). 

Let W be the random variable that represents the number of present white edges. 

n-1 	n-1 
E[Lt ]=Ea rLrt  +C/3k  

r=0 	k=0 

n-2 
where, ar  = 	

k — r 
- 2 — r 

JI
k

(11\
1 Probe = 	n—k) 	Vr e {0, • • • ,n — 2} 

k=r 	 \ 

an_1  =Probe = 1)1n , 16k  = 11 k jP robe = n — k), and C = 1(e i ) . 
i=1 

We first describe a few properties of ar  , fik  and L. . We then use these properties to 

derive an expression for the maximum deviation of the expected length of a given 

Eulerian tour t from the expected length of the optimal Eulerian tour for the SETP, 

t . We should point out that many of the properties associated with ar  and rt  are 

similar to the corresponding properties for the PTSP; however, there are quite a few 

differences that allow one to derive further simplifications for the SETP. When the 

properties are different, we explain them in detail; otherwise, we refer the reader to 

Jaillet (1985, 1988) for detailed explanations. 
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Property 1: Given a tour t for an Eulerian graph G with n white edges, 

4-1 is a constant independent of t ; 

are tour-dependent; and 

+ C is the length of the tour t 
n r  

From the defmition of ri  , we see that Lnt -1  = 	i"t  , V 0 )-E d(V 0  ,V:n )], and hence, it 

is tour independent. However, L , r = 1,. . . , n — 2 depend on the order in which the 

edges are visited, and hence are tour independent. By defmition, L9 gives the 

shortest distances between the out-node of the edge e , to the in-node of edge e +1  for 

all white edges. Thus, Ét )  + El(e1 ) is the length of the given tour t . Note that in the 

PTSP, L9 is the length of the given tour t . 

Property 2: The set of edges that define L along with E, the set of required 

edges, consists of (r + 1) sub-tours, each starting and ending at the depot v0 . This is 

very similar to the PTSP, except that one needs to consider E, the set of the required 

edges. 

It is important to note that even if the given distance matrix D is symmetric (and 

hence the matrix of shortest path distances is also symmetric), d(vut , v )is in 

general, not equal to 47, ). Hence, several properties of the PTSP do not hold 

for the SETP. However, if we assume D to satisfy the triangular inequality, then 

c/(11e  , yit" 	d(V,0ut , yr )+ ci(vk0le  , vs; ), i.e., the inter-edge traversal distances also 

satisfy the triangular inequality. Under this condition, we can deduce the following. 

Property 3: If D satisfies the triangular inequality, we can show that, for a given 

tour t of an Eulerian graph G, 
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Lrt 	L°t 	 V r E {0,..., n —1} 

This follows since, 	L + C = length of (r + 1) sub-tours with vo  as a common node 

length of the given Eulerian tour t 

= L + C 

From property 2, we know that the set of edges that defme L along with the set of 

white edges form (r + 1) sub-tours with the depot as a common node. Under the 

triangularity assumption, we can merge these (r + 1) sub-tours into a single tour 

whose length will be less than or equal to the length of the given tour. The length of 

this merged tour is in turn greater thon or equal to the length of the given Eulerian 

tour t . 

Hence, rt 	V t. E {0,..., n i}. 

Property 4:  Given a tour t of an Eulerian graph G with a depot vo  and n white 

edges, 

Lrt 	L2 + Lrt —rt-1 	V r E {1, , n —1}, and 0 	r —1 

Hence, Lrt 	+ 1)LcIt 	V r E {1,..., n —1} 

The proof is similar to that of Lemma 3.3 of billet (1985) since only the inter-edge 

traversal distances are involved. We present here an adaptation of Jaillet's proof to 

our situation. 
n 

Lrt  = drt vin 	 ) J ' j+r+1 
j=0 

n 	/ 	 n I d 	V in 	 )-1-  E d 	 v'f4 j+ri  +1 	 j+ri +1' j+r+1 
.j=0 	 i=0  

by the triangularity assumption 

E (1 	 ' y  ji7+r+1 = E d (1,71 	 ' y jin+r-r,-1+1 But, 	d 
i=o 	 i=o 
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Hence, 4 L2 + LÇ 1 	V r 	n —11, and 0 	r —1 

If we let, r1  = r —1 in Lr, 	, we get L'; 	+L. Using the same 

relationship for 4-1  we get L; Lri-2  2rt  Thus, 

L I; 	(r +1)Lc; 	V r 	—1} 

Propertv 5:  Given a discrete probability distribution for W, 
n-1 

(i) a,. = E[Wil n 	 Vn ?_ 1 
r=0 

(ii) E(r +1)a r  =1— Proe = 0] 	Vn >1 
r=0 

(iii) Ëflk  = E[Wl/n 	 Vn 1 
k=0 
n-1 

(iv) E (ni — k» k  =1 — Prob[W = 0] Vn ?_ 1 
k=0 

Parts (i) & (ii) are identical to Fact 3.6 of Jaillet (1985). We present a surnmary of the 

proofs below. 

(i) 
n-2 	n-2 n-2 ( n — 2 — r \  ( n \ 
Ear = E I 	k  _ r  ) \ k

)
1 Prob (W = n — k) 

r=0 	r=0 L  k=r \ 

n-2 ( 
= E 	Prob (W = n — kY

fn
il 

n — 2 — r 
k j 	k — r 

k=0 \ 	 r=0 

 

 

(3.11) 

 

— 2 — 	[n 
k — r 	k 

r=0 

 

But, (3.12) 

  

From (3.11) and (3.12), we get 
kn- a  2 ,  = 	(n  _ 
„LI= 	kz_do=  k  ljAnk j Prob (W = n — k) 

By replacing n — k by u in (3.13), we get 

(3.13) 
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n-2 	n  U E 0r  = E —Prob (PET = u) = -1 [E[W]- Prob (w = i)] 
r=0 	u=2 n 	 n 

Since an _1  = Prob (W = 1)  , the result follows. 
n 

1-2 'Ë [ 1-2  frn - 2 - r) /(nj (7.  + 0 ar  _ 
(ii) 	 (r + 1) Prob e = n - 01 

r=0 	 r=0 L k=r 	k-r )1 k
j 

 

+ ( ) 
= 

n-2 r+o 
[Prob (W = n - k)A 	

rn-2-r 

k=0 	 k rh-20 	k - r ) 

1± (7- + 0[11 -k  2-  -r  rj = (nk j 
r=0 

n-2 	n-2 
Hence, E(r+ 1) a r  = E Prob (W = n - k) = 1 - P rob (W = 0)- Prob (W =i) 

r=0 	k=0 

Since an_1  = Prob e = 1)  , the result follows. 
n 

n-1 	n-2 
E flic = E Pic +fln, 
k=0 	k=0 

n-2 

Iflk = E 	 Prob e = n - k) 
k=0 k=0 n 

= ï 1 Prob e = u) 
u=2  n 

= 1[E[W]- Prob (W =i)] 
n 

Since, ign_1  = Prob [FTT = 1]/n , the result follows. 

n-1 	 n-1 

(iv) 	E (n I (n -d /6k  =E Proie = n - k] = 1 - Prob[W = 0]• 
k=0 	 k=0 

But, 
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Lemma 2:  Given a graph G with n white edges, a depot vo , for any given tour t , 

(i) E[Lt 	n)[4)  + 

(ii) t  (1 — P r °eV = 0] ) [L° + Cl 

Proof: 	(i) 4.4] = 
n-1 	n-1 
Earrt  +Cßk  
r=0 	k=0 

n-1 	n-1 
rt Ea + CE Pk 

r=0 	k=0 

= (E[FrIn)[L +c] 
n-1 	n-1 

(ii) E[L1 ] =Ear rt  +CEA 
r=0 	k=0 

n-1 	 n-1 
(1- + 1) a,. + CE (1/1 (n k))fl k 

r =o 	k=0 

= (1— Prob[W = 0] ) [L't  + Cl 

[from Prop. 3] 

[from Prop. 5] 

[from Prop. 3 & 4] 

[from Prop. 5] • 

Next, we derive the worst case ratio for the expected length of a random Eulerian tour 

when compared to the optimal tour for the SETP. 

Theorem 3:  Given a graph G with n white edges, and a designated depot, a 

distance matrix D that satisfies the triangular inequality, the optimal tour t*  for the 

SETP and a random Eulerian tour t , 

(E[L t ] — 	t.])I 	t.1 1 — E[W]/n — Prob (Ff7  = 0) )1 (E[W] n) 

Proof: From Lemma 2, 

Ekt. (L't. + C)[E[W n] 

Since all Eulerian tours are of the same length, Lt°  + C = L. + C , and 
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Ekt. (L° + C)[E[W]in] 	 (3.14) 

Also, 44 Ekt. (Lct)  + 0[1 E[Tf 1/n Prob [W 0] ] 	(3.15) 

Dividing (3.15) by (3.14), we get the desired result. • 

Note that when W follows a binomial distribution, with parameter p, E[W]=np and 

hence Theorem 3 implies (E[Lt  ]— Ekt. 1)/(E[Lt.1) (1— p 	p)n )/ p . 

3.4 ILLUSTRATIVE EXAMPLE 

In this section, we will present an example to investigate the characteristics of 

different a priori tours for a given graph. Consider the 3x3 grid network given earlier 

in Figure 7. All vertical edges are of length 1 and all horizontal edges are of length 2. 

The dotted lines indicate the edges traversed but not serviced on the Eulerian tour t. 

All edges are white and W is binomial with parameter p, (0 < p <1). Note, that the 

length of any tour is 24. Several tours are possible for this graph. Let us consider 

tours 3 and 4 given in Figure 8 and compare their expected lengths. 

TOUR 3 
	

TOUR 4 

14 
	

9 
	

6 
	

5 

Figure 8. Tours 3 and 4 for the 3x3 grid 

The length of both tours is 24. However, the expected length of tour 3, .E{/, 1, is less 

than E[Li , for all values of p between 0 and 1. Specifically, for p = 0.45, 443 1 is 
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17% lower than Eki l. The reason for this is quite obvious from the nature of the 

tours. In tour 3, edges (2,3,4,5) and edges (10,11,12,13) together form two separate 

sub-tours. This allows one to skip these sub-tours when the respective edges are not 

present. Also note that if edges 6 and 7 (or edges 14 and 15) are absent, tour 3 

facilitates skipping that section of the tour. On the other hand, tour 4 has only one 

sub-tour with 8 edges [edges 8-15] other than the outer sub-tour. We can reach the 

inner sub-tour only after traversing most of the outer sub-tour. Thus, inherently tour 4 

necessitates traversing more edges than tour 3, on most instances. Thus, we see that 

the number of sub-tours clearly has an effect on the expected length of the tour. 

Another interesting observation is the effect of the orientation of the edges in 

the inner sub-tour of tour 4. All the edges are serviced from the outside towards the 

center. If on a particular instance, edges 2, 8 and 14 are present, the length of the tour 

is 10. However, if we change just the orientation of edge 14, the length reduces to 8, 

since, the out-node of edge 8 is the in-node of edge 11 and hence, we do not have to 

traverse edge 13 before serving edge 14. If we change the orientation of edges 10, 12, 

and 14, E[L4]  drops from 20.08 to 19.81 for p = 0.6. Hence, another factor to take 

into consideration while developing tours is the orientation of the edges in a sub-tour. 

We also tested other tours to understand the impact of the size of the sub-

tours. Consider tour 5 with 2 inner sub-tours (Figure 9). One of the sub-tours has 6 

edges (edges 2-7) while the other has only 2 edges (10 and 11). 

TOUR 5 

14 
	

13 

Figure 9. Tour 5 for the 3x3 grid 
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445  is less than E[L f, land greater than Ekt, for all values of p. Note that tours 

5 and 3 have two sub-tours each, while tour 4 has only one sub-tour. Though tours 3 

and 5 have the same number of sub-tours, the sub-tours of tour 5 are not balanced. 

Our example also illustrates that having a larger number of balanced sub-tours 

does not necessarily mean lower expected length. Consider the following tour 6 

whose edges are oriented exactly the same way as in tour 3. But tour 6 consists of 4 

sub-tours each with 2 edges, while tour 3 consists of 2 sub-tours each with 4 edges. 

TOUR 6 

12 
	

9 

Figure 10. Tour 6 for the 3x3 grid 

The expected length of tour 3 is marginally less than that of tour 6 for all values of p. 

The order in which the edges are visited changes the values of 4 for the two tours. 

Whenever 4 for tour 3 is less than the corresponding 4 for tour 6, it is for a lower 

value of r when compared to the opposite situation, and hence the expected length 

for tour 3 reduces slightly when compared to the expected length of tour 6. 

This simple example illustrates that the nature (i.e., number and size) and 

orientation of the sub-tours play an important role in determining the expected length 

of the tour. Specifically, the better tours in the expected sense, have more balanced 

sub-tours when compared to the worse tours. Also, the edges of the sub-tours should 

be oriented to minimize inter-edge traversal distances. 
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3.5 CONCLUSION 

In this chapter, we first defined the SETP as the problem seeking the Eulerian tour of 

minimum length in the expected sense, when the number of edges present follow a 

specified probability distribution. We then derived a closed form expression for 

calculating the expected length of a given tour in 0(n2  )time. We also showed that 

the SETP is NP-hard even though the deterministic ETP is solvable in polynomial 

time. We also derived a worst case ratio of the deviation of the expected length of a 

random Eulerian tour from the optimal tour. Finally, using an illustrative example, 

we investigated some of the desirable properties in an a priori tour. In the next 

chapter, we take advantage of the results obtained in this chapter to develop heuristic 

solution procedures for the SETP. 



CHAPTER 4 

HEURISTICS FOR THE STOCHASTIC EULERIAN 

TOUR PROBLEM 

4.1 INTRODUCTION 

This chapter presents several heuristic procedures for the Stochastic Eulerian Tour 

Problem (SETP). We defmed the SETP in Chapter 3 as follows. We are given an 

undirected graph G = , E) and a distance ci(v„vi  between every pair of directly 

connected nodes vi  and v All of the edges in E (lEl= n) require service and are 

termed ``white edges". On any instance of the problern, only a subset of the n white 

edges is present, and hence, requires a visit. The number of present edges follows a 

specified probability distribution. The objective is to determine an a priori Eulerian 

tour that visits all the n edges and minimizes the expected length of the tour. On any 

given instance, one visits and services the present edges in the same order as in the a 

priori tour, while skipping the ones that are absent. 

We also presented the 'UK postal system as a motivation for the investigation 

of this problem. In this system, the carriers usually deliver mail a second time in the 

afternoon. During the first mail delivery, the carriers have to visit all the streets 

almost always, whereas the second mail delivery is typically very light. Only a small 

subset of the streets requires service during the afternoon delivery. Thus it is 

defmitely advantageous to determine a tour that minimizes the total length in an 

expected sense for the second mail delivery. It is important to note that even though 

the deterministic ETP is well solved, it is not feasible to determine a new tour for 
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each day, since following a new tour each day would decrease the operating efficiency 

of the postal canier. In certain applications, like Canada Post, the mail carrier collects 

the mail to be delivered at various points along the route from relay boxes. On any 

given day, the present edges are known only aller the carrier starts his route and thus, 

it is not possible for the carrier to determine a new route at the start of each day. In 

such situations, it is certainly efficient to let the mail carrier follow the same route 

every day, while allowing the flexibility of skipping streets, if necessary. 

In Chapter 3, we also derived a closed form expression for the expected length 

of a given tour t when the number of present white edges follows a binomial 

distribution with parameter p. The result can be easily extended when the number of 

white edges present follows an arbitrary edge invariant discrete probability 

distribution. We also show that the SETP is NP-hard even though the deterministic 

Eulerian tour Problem is solvable in polynomial time. We presented several 

interesting properties of the SETP, and derive bounds for the expected length of a 

given tour. Finally, the examples presented in that chapter illustrate that the expected 

lengths of different Eulerian tours vary greatly. Hence it is important to construct 

tours that would have lower expected length rather than using a random Eulerian tour 

for any given instance of the problem. 

Stochastic arc routing is a relatively new area of research. However, 

researchers have investigated several stochastic node routing problems over the past 

decade. Jaillet (1985) introduced the TSP with stochastic customers as the 

Probabilistic Traveling Salesrnan Problem (PTSP). He derived several theoretical 

properties of the SETP and has proposed a number of heuristics by suitably modifying 

several well-lcnown TSP heuristics such as the Clarke-Wright algorithm and nearest 

neighbor algorithm. Rossi and Gavioli (1986) present computational results after 

testing three of Jaillet's heuristics. Their computational results indicate that the 

probabilistic Clarke-Wright algorithm produces TSP tours with lower expected 

lengths than the corresponding deterministic TSP heuristics when the probabilities are 

low (between 0 and 0.6). Bertsimas (1988) and Bertsimas and Howell (1993) have 

developed a few more heuristics based on probabilistic 2-opt edge exchange, vertex 
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moves within a tour, and space filling curves (Bartholdi and Platzman 1982). Lapone, 

Louveaux and Mercure (1994) have developed a branch-and-cut algorithrn for the 

stochastic TSP and have solved instances with up to 50 vertices optimally. 

As shown in Chapter 3, since the SETP belongs to a class of hard problems, it 

is not possible to solve realistic sized problems optimally using algorithms that would 

run in polynomial time. Hence, we concentrate on developing heuristic algorithms 

that would provide good solutions. In this chapter, we present three different tour 

construction heuristics for the SETP. The first heuristic is a simple greedy heuristic 

that determines the next white edge to add to the tour as the one that results in the 

least increase in the expected length when appended at the end of the tour. The 

second heuristic also greedily selects the next edge of the tour. The difference is that 

this heuristic selects the next white edge from the set of edges incident to the current 

node rather than from the set of all available white edges. Finally the third heuristic 

constructs several small sub-tours and then concatenates these sub-tours while 

considering the expected savings in concatenating sub-tours. We have also 

incorporated an adaptation of a post-optimization procedure introduced by Gencireau, 

Hertz, and Laporte (1992) for the TSP. Hertz, Laporte, and Nanchen (1996) call this 

adaptation as DROP-ADD and have used it for the undirected Rural Postman 

Problem. 
We first sununarize some of the important results of Chapter 3 in Section 2. 

This section also presents some of the theoretical preliminaries that we use to design 

our heuristics. Section 3 presents detailed descriptions of the three tour construction 

heuristics and the post optimization procedure for the SETP. We present detailed 

computational results in Section 4 and provide the conclusion and directions for 

future research in Section 5. 

4.2 THEORETICAL PRELIMINARIES 

G = (v, E) is an undirected graph where V is the set of nodes and E is the set of 

edges. Associated with each edge (v, v ) in E is a non-negative real nimber 
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d(v, , ), the direct distance from node v, to node v.. All the edges in E (1E1= n) 

are white edges. The graph G has a node designated to be the depot where the 

Eulerian tour starts and ends. In order to facilitate the representation and analysis, we 

duplicate the depot and represent the duplicated node as v0 , which now serves as the 

depot and is connected to the original depot by two edges of length 0, one of which is 

a white edge. 

Given an Eulerian tour t for the graph G, we have an ordering of the nodes 

and edges, and thus, a direction of traversal (and service) for each of the n white 

edges. If we traverse edge e, from node vk  to v1 , we defme vk  as the in-node for 

edge e z (vr) and v, as the out-node for edge ei (v7t ). Thus, given the in-node and 

the out-node for each edge in R, we represent an Eulerian tour t as 

t=(vo,vr ,e1,viout  ,v12n  ,e2 ,vr 	 ,v0 ), where the edges el  , e2 , • • • , en  are 

numbered in their order of appearance in tour t. When the number of present white 

edges follows a binomial distribution with parameter p, the expected length of a 

given tour t can be represented as 

E[L,]= p 2 [E(1 p)r  41+ p (1— pr -1  4-1  + p[El(e ,)] 
n-2 

where 	 L =E 	J 	j+r+1 
	 Vr e{0,•••,n-1} 

1=0  

wth 	 out 	in i Vo 	= V n+i  = Vo 

j+r +1=(j +r)mod(n +1)+1, and 

(c/ v7t ,vii7+,+i ) 
d(vout ,v in )= 

j+r+1 
CI(V 	C1(1,  ,V i.;7_,+,.) 

if 05_j_n—r 

if n—r < j 

Note that if nodes v. and v are not directly connected, then 	is the shortest 

distance between v and v J • 

(4.1) 
r=0 	 i=1 
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4.2.1 ADDITION OF A WHITE EDGE TO A PATH 

Consider a path P starting at the depot vo  and servicing i < n) white edges. Let us 

now add white edge e,+1  to the path. We can calculate the expected increase in the 

length of the path by adding edge e,+1  by considering the following two cases: 

• the white edges el  , e2  .....e. already in the path are not present; 

• k of the i white edges in the path are not present. 

Thus, E [increase in length of path by adding edge ei+1 ]= 

p  ,e,+1 A= p — pY 40 ,11+1  1 )+ p 2  E 1_,)k a  ,(vnut k v i )+ pde i+1 ) (4.2) 
k=0 

The first term of expression (4.2) corresponds to the situation where edge e,÷1  is the 

first edge present on the tour and the previous i edges are absent. Hence, we need to 

consider the direct distance between the depot and the in-node of edge e,+1 . The 

probability associated with this event is p(1 — d -1  . Similarly, the second term 

corresponds to the scenario where exactly k edges (k = 0,1,2, ..., i —1) are absent 

before edge e 1 . In this case, edges e,_k  and ei+i  are present and edges 

through e, are absent. Hence, we need to consider the distance between the out-node 

of edge e j_k  and the in-node of edge e,+1 , and the associated probability is 

p 2 	- p)k  . The last term corresponds to the probability that edge e,+1  is present. 

Note that in order to calculate E[I(I,p ,e,+1 )] using (4.2), we need to designate 

one of the ends of edge ei+i  as the in-node, i.e., we need to fix v 1 . If e1+1 .(vk ,v1 ), 

we calculate E (I, p  , e.+1 )] for both orientations of e1±1 , i.e., by fixing v 1  as vk  once 

and as v1  once, and pick the orientation with the minimum expected increase. 
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4.2.2 MERGING OF SUB-TOURS 

The probabilistic Clarke-Wright algorithm proposed by Jaillet (1985) for the PTSP 

serves as a motivation for the results in this sub-section. In our case, a sub-tour for 

the given graph G starts at the depot, services i (i < n) white edges, and returns to the 

depot. Let us consider two sub-tours ST1  and ST2  which do not service any common 

white edge. Sub-tours ST1  and ST2  service n1  and n2  edges, respectively. 

ST1  =(v v m e vmd  vrn e 	out 	„m 	,out , 
o 	1,1 , 1,1 , 1,2 	12 ,

„
, 	,• • • 	 vl 	v0 

in 	,out "in 	,out 	in 
ST2 = (vo , v

,
2 ,1,c2,1, v2 ,1 , v 2,2 	, v2,2  ,..., v

,  2m2 	,«Vrnt2  ,v0, 

Let E[LsT, I and E[LsT, be the expected length of the sub-tours ST1  and ST2 . When 

we merge ST1  and ST2  by edges el , and e2,1  (i.e., v2in1  directly follows vi'un  on the 

merged sub-tour), the expected length of the merged sub-tour could be less than or 

equal to the total expected lengths of ST1  and ST2 . This expected savings in the 

length of the merged sub-tour could be calculated by considering the following events 

and the associated probabilities. 

• Edge eu  (i 5_ i n1 ) is the last present white edge on ST1 -- 

probability: p (1— p)"1-1  

• Edge e2 , j 	j n 2 ) is the first present white edge on ST2  -- 

probability: — p 

When el  is the last present edge on ST1  and e2 ,i  is the first present edge on ST2 , the 

savings incurred in the distance traversed is 

S(eu  ,e2 ,i )= cl(vr,d  , vo )+ 40 ,1/127i )— cl(11” 	 j ) 	 (4.3) 

Let E [S (ST1 , ST2  : e1 ,1 ,e2 ,1 )] represent the expected savings when we merge ST1  and 

ST2  through edges el,„, and e2,1. 
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E[S(ST1 ,ST2  = 
ni 	n2 

s (e • e2 • 	D ,, ).‘ 
i=1 

(4.4) 

where, 	= p  2 O.  p )(n1 -i)+(j-1) 

and 	 is given by (4.3) 

Note that we have four different ways to merge ST1  and ST2 . We can merge the sub-

tours through edges etni  and e2,1 , or etni  and e22 , or eu  and e2.1 , or eu  and e22 . 

The best way to merge ST1  and ST2  is through the edge concatenation that yields the 

maximum expected savings. Thus, the expected savings from merging ST1  and ST2  

is 

max 
E[S(ST1 ,ST21 	„ 	, [ E [s (sTi ,sT2  : 	e2,k 	(4.5) 

h e 	n1  k tl, n2  

4.3 HEURISTIC PROCEDURES 

In this section, we present detailed descriptions of the three heuristics that we have 

developed for the SETP. All three are tour construction procedures. The first and the 

second heuristics construct the tour by adding one white edge of a time, while the 

third heuristic constructs several small sub-tours and then concatenates these to form 

the Eulerian tour. Finally, we also describe the post-optimization procedure DROP-

ADD that is analogous to the US procedure (Gendreau et al., 1992) for the TSP. 

4.3.1 HEURISTIC 1: GLOBAL GREEDY 

This heuristic starts with an empty path and successively adds one edge at a time to 

the path. The edge added to the path is the one that results in the least expected 

increase in the length of the resulting path. Once all the n edges are added, 
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we complete the tour by returning to the depot from the out-node of the last added 

white edge. 
Two components contribute to the expected increase in the path length as 

computed by (4.2). The first is the inter-edge traversal distances between the white 

edges on the path and the candidate edge, and the second is the length of the candidate 

edge. Hence, the heuristic tends to select shorter edges closer to the out-node of the 

last edge in the path. As a result, in certain situations, the tours produced by this 

heuristic could be longer than necessary when all the white edges are present. For 

example, consider the graph in Figure 11 with 12 white edges. Node 1 is the depot. 

The length of all the edges on the three outer triangles is 5 and the length of the edges 

on the connecting inner triangle is 1. 

When each edge in the graph is present with a probability p = 1.0, the global 

greedy heuristic produces the tour (1-4-9-1-2-3-1-4-5-6-4-9-7-8-9-1) of length 51. 

But, it is obvious that we can reduce the total length to 48 since the edges (1,4), (4,9), 

and (9,1) are traversed twice. In titis case, the expected length will also be reduced 

since p = 1.0. 

Figure 11. Example graph for heuristic 1 
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Using this as a motivation, we apply the procedure SHOR'IEN (Hertz et al., 

1996) to the tour produced by the global greedy heuristic. We provide a detailed 

description of this procedure in Section 2.2.4 of Chapter 2. Basically, this procedure 

starts with node r (= 1), and moves all the white edges as far to the right as possible. 

It then replaces the path from node r to the in-node of the first white edge by the 

shortest chain. If the length of the resulting tour is smaller, we renumber all the nodes 

on the new tour and start the procedure again at node r (= 1). If not, we increment r 

by 1 and continue until r is greater than the total number of nodes on the tour. 

If we apply procedure SHORTEN to the above tour, when r = 1, the value of 

the index s is 4, since edges (1,4), (4,9), and (9,1) can be serviced the second time 

they are traversed. Now we can remove the path from node 1 to node 4 containing 

only non-service edges and we get the tour (1-2-3-1-4-5-6-4-9-7-8-9-1) of length 48. 

For values of p less than 1.0, the expected length of the shortened tour could be 

greater than the expected length of the original tour since the ordering and the 

orientations of the white edges could be changed during the SHORIEN procedure. 

Hence, we calculate the expected length of the shortened tour and retain this tour as 

the final result only if its expected length is less than or equal to the expected length 

of the original tour. We now present a step-by-step description of algoritlu-n 

GLOBAL GREEDY. 

Step 0: 	Initialize P<—(v0 ) and B<—E. 

Step 1: 	For every edge e, in B, calculate E[I(L p ,e,)] as described in Section 

4.2.1. 

Step 2: 	Set k argmin {E[I(L p ,e,)]}. Append the tour segment (vikn ,ek ,vrt )to 

P. Set 1?4—B-{e1 }. 

Step 3: If B=0 , append the return path from the out-node of the last added white 

edge to the depot to P to get tour t and go to Step 4. If not, go to Step 1. 

Step 4: 	Apply procedure SHORTEN to tour t to obtain tour t'. If E[Le ]_E[Lt ], 

t' is the final tour, else t is the final tour. 



4.3.2 HEURISTIC 2: LOCAL GREEDY 

This heuristic is a modification of the global greedy heuristic. At each iteration, 

instead of selecting the next white edge from among all the available white edges, we 

choose from only among the edges incident to the node we are at. Thus, this heuristic 

starts at the depot, adds the white edge with the least expected increase in length from 

among all the white edges incident to the depot, and repeats the process at the out-

node of the added white edge. If of any point, there are no white edges incident to the 

node we are at, there may be a matching edge incident to this node, that was added to 

the graph while solving the augmentation problem. If this is the case, we traverse the 

matching edge and continue the process, until all white edges are added and we have a 

complete tour. 

This heuristic ensures that when p= 1.0, the length of the tour generated 

using this heuristic is equal to the length of a random Eulerian tour. We feel that this 

heuristic should perform better than the global greedy heuristic for most values of p. 

The detailed description of the local greedy heuristic is as follows. 

Step 0: 	Initialize P (v0 ) and B E. Calculate the degree of all the nodes in 

the graph. Let current_node 	vo . 

Step 1: 	Let W = set of white edges incident to current_node. If W # ø, calculate 

E[I(L p ,e,)] as described in Section 4.2.1 for every edge e, in W, and go 

to Step 2. If W = ø, go to Step 3. 

Step 2: 	Set k 4— areigine win  {E[I(L p ,e,)]}. Append the tour segment (1) ,e k ,qe ) to 

P. Set B B -{e,} . Decrease degree of current_node and vr by 1. 

Set current_node 	v ° , and go to Step 4. 

Step 3: 	If degree[current node] > 0, there is a matching edge incident to 

current node. Traverse this matching edge. Decrease degree of 
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current _node and the out-node of the matching edge by 1. Set 

current node 	out_node of the matching edge, and go to Step 4. 

If degree[current _node] = 0, backtrack on the partial tour just developed, 

to a node vi  with degree > O. Set current _node 	v , and go to step 4. 

Step 4: If B = ø, append the return path from the out-node of the last added white 

edge to the depot to P to get tour t and go to Step 5. If not, go to Step 1. 

Step 5: Apply procedure SHORTEN to tour t to obtain tour t' . If E [L 	E [L , 

t is the final tour, else t is the fmal tour. 

4.3.3 HEURISTIC 3: SUB-TOUR CONSTRUCTION 

The third heuristic is also a tour construction heuristic, but is quite different from the 

global and local greedy heuristics. This heuristic first constructs a single giant sub-

tour using a set C of eligible edges, and another outer tour using the edges in EIC 

The sub-tour construction heuristic then breaks up the giant sub-tour into as many 

small separate sub-tours as possible. Finally, the heuristic inserts these small sub-

tours at appropriate insertion points on the outer tour to obtain the Eulerian tour. We 

first describe each of the procedures of the algorithm and then provide a detailed 

description of the overall heuristic. 

Determination of the set of eligible edges  

This procedure forms a set of edges that can be used to form the giant sub-tour. If the 

degree of a node is greater than 2, then this node occurs more than once in the final 

Eulerian tour, and hence there is a sub-tour out of this node. This fact motivates the 

idea behind forming the set C. In order to determine C, we need to consider only 

edges whose both end points are of degree greater than 2. 

Step 1: 	Set C ø. Calculate the degree of all the nodes in the graph. 

Step 2: If the two end points of an edge e EE are both of degree > 2, then add 

edge e1  E E to the set C. 
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Breaking up a single sub-tour into smaller sub-tours  
This procedure breaks a sub-tour that starts at the in-node of a white edge in C and 

ends at the out-node of another white edge in C into as many small sub-tours as 

possible. Given a giant sub-tour, we have an ordering of the nodes. The procedure 

uses this ordering and results in more than one sub-tour if one or more nodes are 

visited more than once in the giant sub-tour. Let the given sub-tour containing k 

nodes be represented as ST =( v 	 Since the in-node of the first edge on 

a given sub-tour and the out-node of the last white edge are the same, we do not store 

the out-node of the last white edge in ST for notational simplicity. However, when we 

merge a given sub-tour with another sub-tour or the outer tour, we always ensure that 

the last white edge on the given sub-tour is traversed, by visiting the out-node of the 

last white edge. We store the resulting smaller sub-tours in the array sub_tour. 

Step 0: 	Set sub tour[1] 	ST. For each node v. E V, set count[v,] 	. 

Step 1: 	Set count[v5 ,1 ]<---- count[v i+ 1 for all i =1,..., k , num_tours <— 1, and 

Step 2: 	If count[v5,,]> 1, let j be the position of node v,,,, the second time it 

occurs on the given sub-tour. If not, set i i +1 , and go to Step 4. 

Step 3: 	Remove the sub-tour (vs,, 	v_1 ) from ST. For each node in this 

smaller sub-tour, decrease count by 1. Set num_tours 	num_tours + 1, 

and sub tour[num _tours]<—(v ,,v 	1_1 ). 

Step 4: 	If i < k , go to Step 2. 

If not, if num_tours > 1, use this procedure to break up 

sub 	tour [2] to sub tour[num _tours]. If num tours = 1, the given tour 

has no sub-tours, STOP. 
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Insertinq the sub-tours into the outer tour 

This procedure inserts the num_tours sub-tours into an outer tour. Each sub-tour ST, 

is represented as ST, =( v 	v3.  ). This procedure determines a common 

node between the outer tour and each one of the sub-tours, if one exists, and inserts 

the sub-tours starting at this common node. Note that there is at least one sub-tour 

having a common node with the outer tour during the first iteration. While inserting 

the sub-tours, we make sure that we insert the sub-tour directly into the outer tour and 

not into another sub-tour. We repeat the procedure if there are still some sub-tours 

remaining to be inserted into the outer tour. We present below a detailed description 

of the procedure. Note that we store the position on the outer tour at which a common 

node exists between sub-tour ST, and the outer tour in pos _outer[i] and the 

corresponding position on the sub-tour ST, in pos _subtour[i]. 

Step 0: 	Let t  outer 	outer tour, and A 4.— set containing the num_tours sub-tours. 

Set pos _outer[i] 	0 for i =1,...,num _tours . 

Step 1: 	For i =1,...,num _tours , if a common node exists between the outer tour 

and sub-tour ST„ determine its position on t outer  and ST„ and update 

pos _outer[i] and pos _subtour[i]. 

Step 2: 	Let B be the set of all sub-tours with pos outer[i]> 0, and 1B 	. Set 

j<-1. 

Step 3: argmax Let k 	e B  {pos _outer (i)} . Insert sub-tour STk  starting of the node 

in pos _subtour[k] into the outer tour starting at pos _outer[k]. Set 

j 	 j +1, pos _outer[k]<— -1. 

Step 4: 	If j < m, go to step 3. If not, go to Step 5. 

Step 5: 	If there is one or more sub-tour ST, with pos _outer[i] = 0, go to Step 2. 

If not, to,„, contains the final Eulerian tour, stop. 
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Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7: 

Step 8: 

Step 9: 

Construct the set C of the eligible edges for sub-tour construction using the 

procedure described earlier. 

For each edge e, E C , construct a sub-tour ST, = (vo  , yr, e ,v°"' ,v 0 ). Let A 

<— set of all sub-tours. 

Calculate E[S (SI; , ST j )] using (4.5) as described in Section 4.3.2 for 

every pair of sub-tours in A. 

Let k arg max{E[S (ST , ST j )] } and i and j' be the indices yielding k. 

Concatenate sub-tours i' and f using the appropriate orientation of the 

sub-tours. Add the concatenated tour to A. Set A A -(ST,, , ST , and 

A 

If 1/11 =1, SHORTEN the giant sub-tour in set A and go to Step 7. If not, 

go to Step 3. 

Break up the giant subtour in set A into as many smaller sub-tours as 

possible using the procedure described earlier. 

If E\C ø, construct a tour t  outer with the edges in E C using the 

global greedy heuristic and SHORTEN the tour. If not, set t  outer 	{v0} • 

Insert the smaller sub-tours from Step 7 into the outer tour from Step 8 

using the procedure described above. 

4.3.4 POST-OPTIMIZATION: DROP-ADD 

The post-optimization procedure that we use is an adaptation of the Unstringing-

Stringing (US) procedure developed by Gendreau et al. (1992) for the TSP. Hertz et 

al. (1996) call this adaptation as DROP-ADD and use it for the undirected rural 

Postman Problem. Given an Eulerian tour t with expected length 	procedure 

DROP-ADD attempts to fmd a tour t' with E[Ly ] 5_ E[Lt ] by successively removing 
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white edges from the solution and then adding them at the best possible position. This 

procedure uses the ADD procedure as described in Hertz et al. (1996) to insert edges 

into a tour. We provide a step-by-step description of the DROP-ADD procedure 

below. 

Step 1: 	Let the given Eulerian tour be t with expected length z* = E [L t ]. The n 

white edges of the tour are numbered in their order of appearance in the 

tour. Let i 	1. 

Step 2: Remove edge ei  from the tour t and SHORTEN the tour to obtain tour 

Step 3: Add edge ei  to tour T using procedure ADD as described in Hertz et al. 

(1996). We explain this procedure in detail in Section 2.2.4 of Chapter 2. 

Step 4: 	Set t 	T. If E [L1 ] < z*  , set t 	t, z* 	E 	i 	1; go to Step 2. 

Step 5: 	If i = n, stop. If not, set i 	+ 1 and go to Step 2. 

4.4 COMPUTATIONAL RESULTS 

We coded all the heuristics and the post-optimization procedure in C and tested them 

on two classes on randomly generated problems. The first class of problems consists 

of grid networks of varying sizes. We generated grids of sizes 4x4, 5x5, 6x6, 7x7, 

8x8, and 9x9 for our computations. For each one of the problems the lengths of the 

horizontal edges is randomly selected in the interval [5,10] and the length of the 

vertical edges in the interval [4,8]. All the edges of the grid are white edges. The 

location of the depot is randomly selected from all the vertices. For each of the grid 

sizes, we generated 10 instances, thus generating 60 grid networks in all. 

For the second class of problems, we generated a specified number of vertices 

(8, 10, 15, and 20 in our computations) in the [0,1012  square. We generate a first set 

of edges by constructing a random Hamiltonian cycle on these vertices. This ensures 
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that the graph is connected. We then add more edges to the graph randomly until a 

pre-specified graph density was reached. For our computations, we generate graphs 

of density 0.3, 0.5 and 0.7 for each value of the number of vertices. We chose the 

depot as the median of all the vertices of the graph. Finally, for each combination of 

number of vertices and graph density, we generated 10 problem instances, thus 

generating 120 Euclidean graph instances in all. 

The biggest of the grid networks contains 174 white edges and the biggest 

Euclidean network contains 153 graphs. In a real world scenario, such as a mail 

delivery or a meter reading application, the SETP has to be solved for each mail 

carrier or meter reader separately. Under this condition, we feel that the problem 

sizes that we have considered are quite realistic. 

For all the 180 problem instances, we obtained Eulerian tours when the 

probability of occurrence of a white edge, p, ranges from 0.1 to 1.0 (in steps of 0.1). 

For each instance, we also generated a random Eulerian tour, and calculated the 

expected length of this tour for the different values of p. Tables 4-9 present the 

results for the grid networks, and Tables 10-21 present the results for the Euclidean 

networks. Each cell in the tables contains two numbers. The first number represents 

the average over 10 instances of the ratio of the expected length of the tour obtained 

using a particular heuristic and the expected length of the random Eulerian tour. The 

second number gives the average over 10 instances of the time taken in seconds for 

that heuristic on a Sun Sparc work station. 

Each row of the tables presents the average results over 10 instances for a 

given probability, for all three heuristics without and with the post-optimization 

procedure. The number in bold (for each row) indicates the heuristic with the best 

average result over 10 instances for that probability. For example, in Table 4, for a 

probability of 0.1 the first heuristic along with the DROP-ADD procedure has the best 

average result over 10 instances. The last row of the tables present the best result 

over all the 100 runs (10 instances X 10 probabilities of occurrence) for each heuristic 

without and with the DROP-ADD procedure. The following describes the contents of 

each column in the tables. 
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Column 1: Value of p 

Coins= 2: Expected length of tour by global greedy heuristic/expected length 

of random Eulerian tour 

Column 3: Expected length of tour by global greedy heuristic + DROP-ADD/ 

expected length of random Eulerian tour 

Column 4: Expected length of tour by local greedy heuristic/expected length 

of random Eulerian tour 

Column 5: Expected length of tour by local greedy heuristic + DROP-ADD/ 

expected length of random Eulerian tour 

Column 6: Expected length of tour by sub-tour construction heuristic / 

expected length of random Eulerian tour 

Column 7: Expected length of tour by sub-tour construction heuristic + 

DROP-ADD / expected length of random Eulerian tour 

4.4.1 EFFECT OF PROCEDURE DROP-ADD 

Our computational results indicate that the post-optimization procedure DROP-ADD 

is quite effective in producing new Eulerian tours with lower expected lengths. For 

the grid networks, the expected length of the tours produced by the global and local 

greedy heuristics drops by 2-4% on average (for the various values of p) after using 

the DROP-ADD post-optimization procedure. This decrease in the expected length is 

a little higher for the sub-tour construction heuristic. On a tour produced by the sub-

tour construction heuristic, when a white edge is removed from the tour and has to be 

re-inserted during the DROP-ADD phase, there is typically more options for points of 

insertion of this edge into the tour. Hence, the post-optimization procedure is more 

effective on tours produced by the third heuristic. The improvement is the least on 

tours produced by the second heuristic. For the Euclidean networks, the decrease in 

the expected length is between 1% and 3% for all three heuristics. The tours 

produced by the three heuristics for the Euclidean networks are quite similar and 

hence the effect of DROP-ADD is similar too. 



Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0079 0.9799 1.0051 0.9917 1.0133 0.9868 
0.01 0.24 0.00 0.08 0.01 0.12 

0.2 1.0128 0.9524 1.0108 0.9799 1.0200 0.9735 
0.01 0.20 0.00 0.09 0.01 0.11 

0.3 1.0142 0.9543 1.0130 0.9725 1.0097 0.9707 
0.01 0.15 0.00 0.08 0.01 0.10 

0.4 1.0039 0.9570 1.0133 0.9703 1.0055 0.9514 
0.01 0.17 0.00 0.09 0.01 0.11 

0.5 1.0485 0.9768 1.0131 0.9673 1.0233 0.9676 
0.01 0.13 0.00 0.08 0.01 0.09 

0.6 1.0761 0.9848 1.0123 0.9718 1.0282 0.9619 
0.01 0.18 0.00 0.09 0.01 0.10 

0.7 1.0759 1.0014 1.0105 0.9779 1.0243 0.9690 
0.01 0.13 0.00 0.09 0.01 0.10 

0.8 1.0831 1.0015 1.0077 0.9847 1.0200 0.9787 
0.01 0.15 0.00 0.08 0.01 0.10 

0.9 1.0872 0.9935 1.0040 0.9921 1.0172 0.9878 
0.01 0.12 0.00 0.08 0.01 0.10 

1.0 1.0722 1.0000 1.0000 1.0000 1.0058 1.0000 
0.00 0.09 0.00 0.06 0.01 0.06 

Best 0.92 0.89 0.91 0.88 0.93 0.88 

Table 4. Results for the 4x4 grid network 

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9506 0.9395 0.9836 0.9551 1.0045 0.9542 
0.04 1.04 0.00 0.74 0.07 0.78 

0.2 0.9524 0.9117 0.9767 0.9341 0.9776 0.9074 
0.03 0.81 0.00 0.77 0.08 0.79 

0.3 0.9916 0.9117 0.9793 0.9305 1.0123 0.8939 
0.03 0.69 0.00 0.72 0.08 0.94 

0.4 1.0385 0.9412 0.9856 0.9419 0.9846 0.9280 
0.04 0.75 0.00 0.70 0.08 0.89 

0.5 1.0383 0.9465 0.9922 0.9515 1.0150 0.9437 
0.03 0.95 0.00 0.68 0.08 0.85 

0.6 1.0401 0.9565 0.9973 0.9600 1.0243 0.9466 
0.03 0.78 0.00 0.68 0.08 0.93 

0.7 1.0458 0.9755 1.0004 0.9717 1.0315 0.9583 
0.03 0.78 0.01 0.66 0.08 0.70 

0.8 1.0632 0.9832 1.0016 0.9804 1.0179 0.9657 
0.03 0.75 0.00 0.74 0.10 0.79 

0.9 1.0635 0.9892 1.0012 0.9905 1.0075 0.9796 
0.03 0.81 0.00 0.71 0.10 0.77 

1.0 1.0473 1.0000 1.0000 1.0000 1.0307 0.9956 
0.02 0.40 0.00 0.26 0.06 0.41 

Best 0.91 0.85 0.84 0.77 0.84 0.77 

Table 5. Results for the 5x5 grid network 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9188 0.9165 0.9828 0.9712 1.0048 0.9500 
0.11 3.91 0.01 0.77 0.33 2.62 

0.2 0.9329 0.9143 0.9680 0.9534 0.9918 0.9232 
0.11 3.02 0.01 0.85 0.34 2.38 

0.3 1.0003 0.9283 0.9691 0.9546 0.9430 0.8852 
0.11 3.23 0.00 0.88 0.37 2.51 

0.4 1.0106 0.9479 0.9776 0.9622 0.9796 0.9179 
0.11 2.68 0.00 0.89 0.38 2.28 

0.5 1.0452 0.9667 0.9865 0.9720 1.0066 0.9441 
0.11 2.29 0.00 0.89 0.39 1.98 

0.6 1.0545 0.9683 0.9931 0.9805 1.0251 0.9605 
0.11 2.84 0.00 0.88 0.39 2.44 

0.7 1.0629 0.9809 0.9969 0.9869 1.0326 0.9787 
0.11 3.05 0.00 0.89 0.40 2.01 

0.8 1.0607 0.9946 0.9986 0.9894 1.0311 0.9892 
0.11 3.23 0.01 0.94 0.40 2.05 

0.9 1.0646 1.0022 0.9992 0.9945 1.0296 0.9952 
0.11 3.09 0.01 0.96 0.41 1.54 

1.0 1.0646 1.0191 1.0000 1.0000 1.0084 0.9962 
0.06 0.89 0.00 0.63 0.25 0.78 

Best 0.86 0.86 0.91 0.88 0.88 0.84 

Table 6. Results for the 6x6 grid network 

Prob. Heur 1 Hl+DA Heur 2 IL2+DA Heur 3 H3+DA 

0.1 0.8778 0.8680 0.9543 0.9206 0.9746 0.9335 
0.31 9.55 0.02 4.88 1.02 5.81 

0.2 0.9224 0.9043 0.9399 0.9056 0.9684 0.8956 
0.31 8.43 0.02 4.91 1.10 7.93 

0.3 0.9907 0.9145 0.9492 0.9174 0.9760 0.8942 
0.30 8.18 0.02 4.74 1.14 7.94 

0.4 0.9835 0.9388 0.9654 0.9351 0.9852 0.9027 
0.30 6.53 0.02 5.29 1.17 9.69 

0.5 1.0172 0.9632 0.9805 0.9520 1.0095 0.9264 
0.31 6.73 0.02 5.70 1.21 10.27 

0.6 1.0669 0.9750 0.9915 0.9674 1.0279 0.9558 
0.30 7.84 0.02 6.21 1.24 9.64 

0.7 1.0517 0.9882 0.9982 0.9795 1.0462 0.9761 
0.29 6.30 0.02 6.51 1.26 9.61 

0.8 1.0482 0.9853 1.0011 0.9891 1.0624 0.9788 
0.29 8.16 0.02 5.97 1.29 9.04 

0.9 1.0530 0.9929 1.0013 0.9952 1.0354 0.9953 
0.30 8.97 0.02 6.04 1.31 8.28 

1.0 1.0597 1.0053 1.0000 1.0000 1.0444 1.0004 
0.16 3.37 0.02 1.73 0.78 3.36 

Best 0.79 0.79 0.88 0.83 0.86 0.79 

Table 7. Results for the 7x7 grid network 
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Prob. Heur 1 HI+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.8801 0.8643 0.9337 0.9216 1.0118 0.9060 
0.72 22.05 0.03 6.13 2.61 19.55 

0.2 0.9065 0.8945 0.9169 0.9045 0.9582 0.8839 
0.71 16.15 0.03 6.24 2.94 18.17 

0.3 0.9395 0.9127 0.9336 0.9218 0.9716 0.8850 
0.72 18.12 0.03 6.24 3.02 19.92 

0.4 1.0083 0.9462 0.9553 0.9433 0.9652 0.9133 
0.71 12.12 0.03 6.31 3.12 15.49 

0.5 1.0246 0.9649 0.9733 0.9610 0.9989 0.9371 
0.72 13.93 0.03 6.71 3.25 19.43 

0.6 1.0338 0.9759 0.9861 0.9756 1.0184 0.9609 
0.69 16.07 0.03 6.76 3.26 19.51 

0.7 1.0510 0.9930 0.9940 0.9858 1.0264 0.9752 
0.69 18.59 0.03 6.96 3.33 15.36 

0.8 1.0581 1.0018 0.9998 0.9922 1.0358 0.9921 
0.69 16.35 0.03 6.99 3.43 18.38 

0.9 1.0484 1.0089 0.9995 0.9964 1.0507 1.0059 
0.69 16.76 0.03 6.92 3.49 17.42 

1.0 1.0478 1.0212 1.0000 1.0000 1.0254 1.0048 
0.35 5.21 0.02 3.47 1.95 4.56 

Best 0.85 0.84 0.85 0.84 0.84 0.79 

Table 8. Results for the 8x8 grid network 

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.8396 0.8387 0.8892 0.8581 0.9624 0.8637 
1.50 47.98 0.05 35.00 6.37 69.63 

0.2 0.8620 0.8539 0.8809 0.8491 0.9534 0.8664 
1.49 38.75 0.05 33.56 6.01 42.08 

0.3 0.9646 0.8956 0.9137 0.8780 0.9743 0.8832 
1.51 38.91 0.04 35.44 7.02 54.01 

0.4 0.9957 0.9371 0.9476 0.9096 1.0194 0.9352 
1.47 35.34 0.04 44.31 7.13 53.33 

0.5 1.0199 0.9560 0.9732 0.9393 1.0637 0.9628 
1.51 32.68 0.04 47.02 7.55 57.29 

0.6 1.0393 0.9711 0.9901 0.9606 1.0688 0.9787 
1.46 54.79 0.06 43.07 7.48 55.16 

0.7 1.0440 0.9824 0.9995 0.9766 1.0725 0.9816 
1.46 39.21 0.04 57.72 7.67 46.09 

0.8 1.0674 0.9959 1.0025 0.9870 1.1342 1.0370 
1.46 48.79 0.05 58.07 7.84 47.35 

0.9 1.0637 0.9979 1.0019 0.9940 1.1345 1.0224 
1.46 49.89 0.05 38.67 8.05 62.26 

1.0 1.0675 1.0000 1.0000 1.0000 1.0945 1.0105 
0.72 14.02 0.03 7.54 5.01 30.73 

Best 0.79 0.79 0.83 0.77 0.86 0.75 

Table 9. Results for the 9x9 grid network 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9954 0.9847 1.0012 0.9863 0.9924 0.9845 
0.00 0.01 0.00 0.00 0.00 0.01 

0.2 1.0062 0.9879 1.0078 0.9891 1.0055 0.9878 
0.00 0.01 0.00 0.01 0.00 0.01 

0.3 1.0140 0.9872 1.0129 0.9882 1.0054 0.9851 
0.00 0.01 0.00 0.01 0.00 0,00 

0.4 1.0119 0.9862 1.0159 0.9874 1.0053 0.9846 
0.00 0.00 0.00 0.00 0.00 0.00 

0.5 1.0113 0.9839 1.0169 0.9873 1.0002 0.9873 
0.00 0.01 0.00 0.01 0.00 0.01 

0.6 1.0106 0.9884 1.0160 0.9881 1.0044 0.9903 
0.00 0.01 0.00 0.00 0.00 0.00 

0.7 1.0318 0.9881 1.0134 0.9899 1.0050 0.9900 
0.00 0.01 0.00 0.01 0.00 0.01 

0.8 1.0200 0.9912 1.0095 0.9926 1.0006 0.9912 
0.00 0.01 0.00 0.01 0.00 0.01 

0.9 1.0145 0.9953 1.0049 0.9960 1.0003 0.9953 
0.00 0.01 0.00 0.01 0.00 0.00 

1.0 1.0509 1.0000 1.0000 1.0000 1.0000 1.0000 
0.00 0.00 0.00 0.00 0.00 0.00 

Best 0.98 0.96 0.96 0.96 0.96 0.96 

Table 10. Results for 8 node Euclidean network (density - 0.3) 

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9947 0.9836 0.9976 0.9828 1.0001 0.9824 
0.00 0.04 0.00 0.04 0.00 0.03 

0.2 1.0000 0.9746 1.0005 0.9734 0.9952 0.9765 
0.00 0.04 0.00 0.04 0.01 0.03 

0.3 1.0053 0.9734 1.0015 0.9693 1.0035 0.9745 
0.00 0.03 0.00 0.04 0.01 0.04 

0.4 1.0200 0.9736 1.0020 0.9718 1.0019 0.9737 
0.00 0.05 0.00 0.04 0.01 0.04 

0.5 1.0139 0.9713 1.0022 0.9733 1.0116 0.9706 
0.00 0.04 0.00 0.04 0.00 0.03 

0.6 1.0143 0.9749 1.0022 0.9750 1.0222 0.9747 
0.00 0.04 0.00 0.03 0.01 0.03 

0.7 1.0155 0.9819 1.0018 0.9808 1.0218 0.9827 
0.00 0.05 0.00 0.03 0.00 0.03 

0.8 1.0125 0.9851 1.0013 0.9879 1.0241 0.9853 
0.00 0.05 0.00 0.03 0.01 0.03 

0.9 1.0145 0.9948 1.0006 0.9930 1.0180 0.9910 
0.00 0.04 0.00 0.03 0.01 0.04 

1.0 1.0068 1.0000 1.0000 1.0000 1.0313 1.0000 
0.00 0.02 0.00 0.02 0.00 0.02 

Best 0.95 0.93 0.97 0.94 0.96 0.93 

Table 11. Results for 8 node Euclidean network (density - 0.5) 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9952 0.9873 1.0035 0.9852 0.9969 0.9872 
0.00 0.09 0.00 0.09 0.02 0.06 

0.2 1.0031 0.9795 1.0040 0.9755 0.9921 0.9763 
0.00 0.11 0.00 0.10 0.02 0.09 

0.3 1.0030 0.9747 1.0039 0.9760 0.9899 0.9708 
0.00 0.08 0.00 0.09 0.02 0.08 

0.4 1.0001 0.9722 1.0029 0.9770 0.9909 0.9768 
0.01 0.10 0.00 0.08 0.02 0.08 

0.5 1.0026 0.9767 1.0018 0.9801 0.9940 0.9788 
0.00 0.10 0.00 0.07 0.02 0.06 

0.6 1.0085 0.9813 1.0010 0.9819 0.9977 0.9789 
0.00 0.08 0.00 0.07 0.02 0.07 

0.7 1.0124 0.9845 1.0008 0.9829 0.9912 0.9810 
0.00 0.08 0.00 0.08 0.03 0.08 

0.8 1.0071 0.9878 1.0008 0.9872 0.9967 0.9877 
0.01 0.07 0.00 0.08 0.02 0.07 

0.9 1.0042 0.9938 1.0008 0.9936 0.9994 0.9932 
0.00 0.08 0.00 0.07 0.03 0.08 

1.0 1.0007 1.0000 1.0000 1.0000 1.0000 1.0000 
0.00 0.04 0.00 0.04 0.02 0.04 

Best 0.95 0.93 0.98 0.93 0.95 0.93 
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Table 12. Results for 8 node Euclidean network (density - 0.7) 



Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 0.9958 0.9822 0.9950 0.9857 0.9984 0.9852 
0.00 0.04 0.00 0.03 0.00 0.04 

0.2 1.0036 0.9809 1.0000 0.9756 0.9898 0.9746 
0.00 0.03 0.00 0.03 0.00 0.03 

0.3 1.0210 0.9754 1.0040 0.9696 0.9918 0.9677 
0.00 0.03 0.00 0.04 0.00 0.04 

0.4 1.0184 0.9711 1.0065 0.9686 1.0111 0.9687 
0.00 0.03 0.00 0.03 0.00 0.03 

0.5 1.0315 0.9648 1.0078 0.9608 1.0314 0.9685 
0.00 0.04 0.00 0.03 0.00 0.03 

0.6 1.0207 0.9620 1.0080 0.9637 1.0217 0.9707 
0.00 0.04 0.00 0.03 0.00 0.04 

0.7 1.0235 0.9728 1.0071 0.9679 1.0209 0.9709 
0.00 0.03 0.00 0.03 0.00 0.04 

0.8 1.0203 0.9790 1.0054 0.9818 1.0229 0.9802 
0.00 0.03 0.00 0.03 0.00 0.03 

0.9 1.0226 0.9914 1.0029 0.9901 1.0234 0.9889 
0.00 0.03 0.00 0.03 0.00 0.03 

1.0 1.0149 1.0011 1.0000 1.0000 1.0189 1.0011 
0.00 0.02 0.00 0.02 0.00 0.02 

Best 0.94 0.91 0.97 0.91 0.95 0.92 

Table 13. Results for 10 node Euclidean network (density - 0.3) 

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0009 0.9866 1.0004 0.9848 0.9980 0.9842 
0.01 0.20 0.00 0.21 0.03 0.14 

0.2 1.0110 0.9798 1.0015 0.9747 0.9974 0.9733 
0.00 0.18 0.00 0.15 0.03 0.17 

0.3 1.0073 0.9753 1.0027 0.9687 1.0085 0.9758 
0.00 0.17 0.00 0.19 0.03 0.14 

0.4 1.0069 0.9753 1.0035 0.9786 1.0057 0.9746 
0.00 0.14 0.00 0.18 0.03 0.19 

0.5 1.0052 0.9790 1.0038 0.9802 1.0076 0.9788 
0.00 0.15 0.00 0.16 0.04 0.15 

0.6 1.0089 0.9793 1.0034 0.9791 1.0098 0.9786 
0.00 0.15 0.00 0.17 0.04 0.14 

0.7 1.0115 0.9833 1.0026 0.9812 1.0124 0.9812 
0.01 0.15 0.00 0.18 0.04 0.16 

0.8 1.0113 0.9873 1.0016 0.9868 1.0133 0.9841 
0.00 0.17 0.00 0.15 0.04 0.18 

0.9 1.0170 0.9924 1.0007 0.9922 1.0178 0.9911 
0.01 0.17 0.00 0.14 0.04 0.17 

1.0 1.0064 1.0000 1.0000 1.0000 1.0157 1.0008 
0.00 0.07 0.00 0.07 0.03 0.08 

Best 0.98 0.95 0.98 0.94 0.97 0.95 

Table 14. Results for 10 node Euclidean networlc (density - 0.5) 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0038 0.9879 1.0018 0.9861 1.0038 0.9856 
0.02 0.42 0.00 0.39 0.09 0.44 

0.2 1.0077 0.9853 1.0050 0.9794 1.0068 0.9818 
0.01 0.36 0.00 0.44 0.09 0.44 

0.3 1.0079 0.9836 1.0068 0.9792 1.0067 0.9790 
0.01 0.39 0.00 0.51 0.09 0.43 

0.4 1.0136 0.9863 1.0070 0.9844 1.0074 0.9842 
0.01 0.39 0.00 0.40 0.09 0.35 

0.5 1.0148 0.9910 1.0062 0.9875 1.0064 0.9845 
0.01 0.45 0.00 0.37 0.10 0.33 

0.6 1.0165 0.9905 1.0049 0.9903 1.0101 0.9853 
0.01 0.40 0.00 0.32 0.10 0.44 

0.7 1.0097 0.9907 1.0035 0.9910 1.0120 0.9897 
0.01 0.31 0.00 0.33 0.10 0.46 

0.8 1.0082 0.9924 1.0022 0.9920 1.0143 0.9923 
0.01 0.30 0.00 0.43 0.11 0.29 

0.9 1.0094 0.9966 1.0011 0.9947 1.0210 0.9964 
0.02 0.32 0.00 0.39 0.11 0.36 

1.0 1.0086 1.0017 1.0000 1.0000 1.0087 1.0033 
0.01 0.16 0.00 0.14 0.07 0.15 

Best 0.98 0.96 0.99 0.96 0.98 0.97 

Table 15. Results for 10 node Euclidean network (density - 0.7) 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0076 0.9802 0.9921 0.9757 0.9976 0.9812 
0.01 0.39 0.00 0.36 0.08 0.37 

0.2 0.9996 0.9611 0.9884 0.9597 0.9999 0.9648 
0.02 0.51 0.00 0.34 0.08 0.31 

0.3 1.0159 0.9648 0.9877 0.9588 1.0037 0.9634 
0.01 0.37 0.00 0.38 0.09 0.45 

0.4 1.0041 0.9676 0.9882 0.9607 1.0057 0.9616 
0.02 0.41 0.00 0.38 0.09 0.36 

0.5 1.0028 0.9758 0.9893 0.9646 1.0094 0.9700 
0.02 0.25 0.00 0.35 0.09 0.31 

0.6 1.0122 0.9730 0.9907 0.9688 1.0196 0.9772 
0.01 0.35 0.00 0.38 0.09 0.32 

0.7 1.0158 0.9752 0.9926 0.9728 1.0145 0.9787 
0.02 0.39 0.00 0.35 0.10 0.37 

0.8 1.0149 0.9848 0.9948 0.9816 1.0109 0.9858 
0.01 0.40 0.00 0.31 0.10 0.33 

0.9 1.0253 0.9913 0.9973 0.9908 1.0086 0.9930 
0.01 0.33 0.00 0.27 0.10 0.29 

1.0 1.0222 1.0024 1.0000 1.0000 1.0324 1.0031 
0.01 0.17 0.00 0.14 0.06 0.17 

Best 0.96 0.93 0.95 0.92 0.93 0.92 

Table 16. Results for 15 node Euclidean network (density - 0.3) 

Prob. Heur 1 Hl+DA Heur 2 112+DA Heur 3 H3+DA 

0.1 1.0058 0.9794 0.9996 0.9777 1.0023 0.9807 
0.07 2.20 0.01 1.85 0.40 1.66 

0.2 1.0047 0.9724 0.9983 0.9726 1.0013 0.9690 
0.08 2.04 0.00 1.96 0.41 1.94 

0.3 1.0057 0.9731 0.9968 0.9728 0.9997 0.9798 
0.07 1.96 0.01 2.15 0.42 1.86 

0.4 1.0050 0.9768 0.9959 0.9792 0.9968 0.9762 
0.08 1.73 0.00 1.73 0.44 1.80 

0.5 1.0023 0.9789 0.9955 0.9805 0.9995 0.9831 
0.07 1.92 0.01 1.72 0.45 1.58 

0.6 1.0068 0.9851 0.9959 0.9834 1.0077 0.9875 
0.07 1.78 0.01 1.74 0.47 1.52 

0.7 1.0045 0.9862 0.9969 0.9855 1.0068 0.9877 
0.07 1.77 0.01 1.77 0.48 1.89 

0.8 1.0058 0.9926 0.9983 0.9908 1.0149 0.9925 
0.07 1.23 0.00 1.35 0.49 1.51 

0.9 1.0098 0.9953 0.9995 0.9949 1.0209 0.9956 
0.07 1.78 0.01 1.23 0.51 1.74 

1.0 1.0092 1.0000 1.0000 1.0000 1.0234 1.0003 
0.03 0.77 0.00 0.56 0.31 0.88 

Best 0.99 0.95 0.98 0.96 0.96 0.96 

Table 17. Results for 15 node Euclidean network (density - 0.5) 
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Prob. Heur 1 HI+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0034 0.9851 0.9966 0.9808 0.9996 0.9838 
0.19 5.28 0.02 3.00 1.08 4.86 

0.2 1.0028 0.9814 0.9929 0.9755 0.9998 0.9807 
0.19 4.90 0.02 4.47 1.09 5.16 

0.3 0.9999 0.9819 0.9897 0.9762 0.9976 0.9785 
0.20 4.66 0.01 4.04 1.13 5.85 

0.4 1.0020 0.9827 0.9882 0.9750 0.9967 0.9831 
0.19 5.00 0.03 4.36 1.20 3.90 

0.5 0.9998 0.9826 0.9883 0.9806 1.0001 0.9842 
0.20 4.45 0.02 3.29 1.23 5.58 

0.6 1.0019 0.9874 0.9900 0.9831 1.0044 0.9867 
0.19 4.99 0.02 3.19 1.29 5.12 

0.7 1.0031 0.9918 0.9926 0.9886 1.0026 0.9911 
0.19 3.77 0.02 2.64 1.31 4.15 

0.8 1.0032 0.9938 0.9958 0.9924 1.0087 0.9956 
0.20 3.97 0.02 2.93 1.38 3.57 

0.9 1.0031 0.9967 0.9986 0.9964 1.0097 0.9969 
0.18 3.34 0.03 3.14 1.41 3.68 

1.0 1.0052 1.0000 1.0000 1.0000 1.0128 1.0000 
0.10 1.64 0.02 1.31 0.82 1.75 

Best 0.98 0.96 0.97 0.95 0.98 0.97 

Table 18. Results for 15 node Euclidean network (density - 0.7) 
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Prob. Heur 1 Hl+DA Heur 2 112+DA Heur 3 H3+DA 

0.1 0.9959 0.9676 0.9991 0.9691 0.9934 0.9699 
0.09 2.30 0.00 2.04 0.63 3.08 

0.2 0.9978 0.9664 0.9964 0.9603 0.9963 0.9635 
0.09 2.67 0.01 2.29 0.66 2.64 

0.3 1.0032 0.9635 0.9931 0.9619 0.9973 0.9588 
0.10 3.09 0.01 2.37 0.68 2.91 

0.4 1.0069 0.9766 0.9910 0.9664 0.9984 0.9734 
0.09 2.52 0.01 2.82 0.69 2.48 

0.5 1.0079 0.9724 0.9905 0.9703 1.0014 0.9717 
0.10 2.04 0.00 2.46 0.82 2.61 

0.6 1.0114 0.9788 0.9914 0.9733 1.0071 0.9782 
0.08 2.20 0.01 2.31 0.78 2.13 

0.7 1.0083 0.9817 0.9932 0.9793 1.0068 0.9828 
0.09 2.00 0.01 1.99 0.81 2.38 

0.8 1.0127 0.9867 0.9956 0.9851 1.0185 0.9881 
0.10 2.49 0.00 1.76 0.84 2.43 

0.9 1.0161 0.9922 0.9980 0.9917 1.0166 0.9946 
0.10 2.83 0.01 1.80 0.86 2.35 

1.0 1.0166 1.0000 1.0000 1.0000 1.0307 1.0006 
0.05 1.06 0.00 0.72 0.39 1.12 

Best 0.97 0.94 0.98 0.94 0.97 0.92 

Table 19. Results for 20 node Euclidean network (density - 0.3) 

Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0001 0.9788 1.0000 0.9746 0.9993 0.9796 
0.40 11.02 0.04 14.16 2.90 13.55 

0.2 1.0013 0.9770 0.9980 0.9757 0.9962 0.9756 
0.41 12.61 0.03 12.53 2.99 11.26 

0.3 1.0036 0.9762 0.9960 0.9739 1.0022 0.9749 
0.43 14.81 0.03 16.43 3.14 14.34 

0.4 1.0001 0.9796 0.9948 0.9769 0.9967 0.9783 
0.40 11.23 0.03 14.63 3.39 14.97 

0.5 1.0029 0.9833 0.9948 0.9818 1.0020 0.9847 
0.41 11.20 0.04 10.19 3.86 12.31 

0.6 1.0038 0.9874 0.9956 0.9866 1.0036 0.9870 
0.40 12.46 0.03 9.18 3.66 12.55 

0.7 1.0049 0.9914 0.9970 0.9881 1.0091 0.9911 
0.41 10.07 0.04 9.85 3.83 11.95 

0.8 1.0047 0.9937 0.9986 0.9919 1.0095 0.9958 
0.41 11.58 0.03 11.92 3.93 12.26 

0.9 1.0069 0.9963 0.9999 0.9960 1.0104 0.9986 
0.41 13.91 0.04 11.83 4.02 11.15 

1.0 1.0061 1.0006 1.0000 1.0000 1.0176 1.0021 
0.21 4.32 0.02 3.09 1.76 3.73 

Best 0.99 0.96 0.99 0.96 _ 	0.98 0.96 

Table 20. Results for 20 node Euclidean network (density - 0.5) 
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Prob. Heur 1 Hl+DA Heur 2 H2+DA Heur 3 H3+DA 

0.1 1.0008 0.9813 0.9917 0.9684 0.9923 0.9764 
1.12 32.75 0.08 38.08 6.30 34.27 

0.2 1.0000 0.9761 0.9845 0.9665 0.9947 0.9720 
1.12 35.44 0.08 29.97 6.31 43.79 

0.3 0.9936 0.9718 0.9810 0.9676 0.9962 0.9719 
1.14 47.44 0.08 35.85 6.54 49.35 

0.4 0.9962 0.9771 0.9807 0.9697 0.9963 0.9782 
1.12 36.66 0.08 32.38 6.68 33.26 

0.5 0.9969 0.9806 0.9826 0.9758 0.9953 0.9811 
1.13 31.46 0.08 24.82 6.97 35.93 

0.6 0.9985 0.9877 0.9861 0.9804 0.9987 0.9854 
1.12 26.96 0.08 29.14 7.66 34.41 

0.7 0.9996 0.9899 0.9906 0.9867 1.0054 0.9906 
1.11 37.92 0.08 25.19 8.05 36.07 

0.8 1.0013 0.9941 0.9951 0.9920 1.0060 0.9951 
1.12 25.96 0.08 29.53 8.46 27.70 

0.9 1.0032 0.9978 0.9988 0.9969 1.0126 0.9977 
1.12 28.37 0.08 30.65 9.14 30.58 

1.0 1.0024 1.0000 1.0000 1.0000 1.0170 1.0004 
0.56 9.89 0.04 7.64 4.80 10.93 

Best 0.98 0.96 0.97 0.95 0.98 0.96 

Table 21. Results for 20 node Euclidean network (density - 0.7) 

Prob. Grid Euclidean 
0.3 0.5 0.7 

0.1 0.9013 0.9775 0.9797 0.9800 
0.2 0.9005 0.9706 0.9728 0.9742 
0.3 0.8984 0.9676 0.9712 0.9734 
0.4 0.9205 0.9701 0.9749 0.9753 
0.5 0.9430 0.9699 0.9775 0.9794 
0.6 0.9577 0.9731 0.9808 0.9819 
0.7 0.9723 0.9770 0.9839 0.9865 
0.8 0.9819 0.9842 0.9880 0.9909 
0.9 0.9913 0.9917 0.9933 0.9953 
1.0 0.9986 1.0000 1.0000 1.0000 
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Table 22. Overall average of best results for grid and Euclidean networks 
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4.4.2 PERFORMANCE OF THE HEURISTICS 

Our results indicate that when the probability of occurrence of the white edges is very 

low (p= 0.1), the global greedy heuristic along with DROP-ADD seems to perform 

better than the other two heuristics. For other values of p, the sub-tour construction 

heuristic along with DROP-ADD clearly seems to perform better than the other two 

heuristics for grid networks. 
For the Euclidean networks, as the number of edges increases, the local 

greedy heuristic along with DROP-ADD seems to perform the best among the three, 

though the margin of improvement is very small. For problems with smaller number 

of white edges, the best results seem to be spread among the three heuristics for the 

various values of p. 

The results on our computational times indicate that all the three heuristics are 

quite fast. For the largest problems (9x9 grid networks, and 20 node Euclidean 

networks with edge density of 0.7), all the heuristics (including the post-optimization 

phase) generate tours in about a minute. So we can generate tours using all the three 

heuristics and choose the tour with the best expected length. 

4.4.3 COMPARISON OF HEURISTICS WITH RANDOM TOUR 

We also compared the expected lengths of the tours produced by the three heuristics 

with the expected length of a random Eulerian tour. Table 22 contains average results 

for the grid and Euclidean networks. For a given probability, we pick the results 

produced by the heuristic with the best average result over 10 instances for each 

problem size, and compute the overall average best result over all the problem sizes 

using these results. Our results show that for the grid networks, the expected length 

of our overall average best solution is lower than the expected length of a random 

tour by 10% on average, for lower values of p. As p increases to 1.0, this average 

reduces to 6% for p = 0.5 and 1% for p = 0.9. In one particular 9x9 instance, the 

expected length of the tour generated by the sub-tour construction heuristic is 25% 

lower than the expected length of the random Eulerian tour. For the Euclidean 
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networks, the gaps are not as dramatic. The expected length of our overall average 

best solution is lower than the expected length of a random tour by 2% on average, 

for low values of p. These results clearly show that it is advantageous to use 

heuristics designed specifically for the SETP rather than generate a random Eulerian 

tour. 

4.5 CONCLUSION 

In this chapter, we have presented three different heuristics for the SETP and the 

DROP-ADD post-optimization procedure. The global greedy heuristic starts with an 

empty tour and determines the next edge to service as the one that results in the 

minimum expected increase in the length when appended at the end of the tour. The 

local greedy heuristic selects the next edge of the tour from the set of edges at the 

current node rather than from the set of all available white edges. Finally the sub-tour 

construction heuristic constructs several small sub-tours and then concatenates them 

while considering the expected savings in concatenating sub-tours. 

We have tested the performance of the three heuristics on grid networks and 

on Euclidean graphs of various sizes. Our results indicate that the sub-tour 

construction heuristic performs well when p > 0.1 for the grid networks. For the 

Euclidean networks, as the number of edges increases, the second heuristic performs 

the best among the three, though the margin of improvement is small. 

We also compared the expected lengths of the tours produced by the three 

heuristics with the expected length of a random Eulerian tour. Our results show that 

for the grid networks, the expected length of our overall average best solution is 

lower than the expected length of a random tour by 10% on average, for lower values 

of p. As p increases to 1.0, this average reduces to 6% for p = 0.5 and 1% for p = 

0.9. For the Euclidean networks, the expected length of our overall average best 

solution is lower than the expected length of a random tour by 2% on average, for low 

values of p. This chapter is a good start to the methodological contribution to the 

SETP and the results can defmitely be used as a starting point for the development of 

meta-heuristics for the SETP. 



CHAPTER 5 

CONCLUSION 

5.1 CONTRIBUTIONS OF THIS THESIS 

This thesis focused on two specific and important problems in arc routing — the 

Capacitated Arc Routing Problem (CARP) and the Stochastic Eulerian Tour Problem 

(SETP). Both problems have excellent application potential and deserve special 

attention. 

5.1.1 THEORETICAL CONTRIBUTION 

The theoretical contribution of this thesis is through the Stochastic Eulerian Tour 

Problem (SETP), the second problem that we considered in this thesis. As explained in 

the previous chapters, the SETP arises when the set of edges that have to be visited on 

any particular day is random. The investigation of this problem was actually motivated 

by the existence of a real world problem. In the UK postal system, the carriers deliver 

mail a second time in the afternoon when the number of streets to be visited is very small 

and varies from day to day. Given this scenario, the mail carrier, while following his 

regular route, usually skips the streets that do not require a visit. Thus, given an 

undirected graph G = (v, E) where all the edges in E require service, a distance matrix D 

and a probability distribution for the number of required edges present, the SETP seeks 

an a priori Eulerian tour of minimum expected length. 

This thesis has defined and investigated this problem for the first time. We feel 

that it plays an important role in scenarios where the number of edges to be visited each 

day is random and smaller compared to the total number of edges that require service. 
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We have derived a closed form expression for the expected length of a given tour when 

the number of present edges follows a binomial distribution. This result can be easily 

extended to the situation where the number of white edges present follows any discrete 

probability distribution if the set of present white edges can be chosen randomly from the 

set of all white edges. We have also shown that the SETP is NP-hard, even though the 

deterministic counter part is solvable in polynomial time. We have derived further 

properties and a worst case ratio for the deviation of the expected length of a random 

Eulerian tour from the optimal tour in the expected sense. 

5.1.2 METHODOLOGICAL CONTRIBUTIONS 

The methodological contributions of this thesis are the new tabu search algorithm for the 

CARP that considers work load balancing, and the three heuristics for the SETP. The 

CARP is one of the most important problems in arc routing due to its presence in 

applications such as snow plowing, street cleaning, garbage collection, mail delivery, and 

many others. The CARP is a very hard problem, and it is quite unrealistic to believe that 

exact procedures can be used to solve even average sized problems. Researchers have 

developed several heuristics for the CARP. Most of these heuristics are simple one-shot 

heuristics. Recently, Hertz, Laporte, and Mittaz (1996) have developed a tabu search 

based heuristic, CARPET, for the CARP that incorporates local improvement routines. 

We have developed a new tabu search based algorithm, TABUCARP, that 

considers a secondary objective of balancing the total work load (demand) fairly equally 

among the routes, in addition to minimizing the total cost. We feel that it is quite 

important to incœporate this feature, since most applications such as mail delivery, meter 

reading, and garbage collection require work load balancing. In a real-world scenario, if 

the existing algorithm considers only the total cost, generally, the planner revisits the 

solution and moves demand among the various routes myopically in order to balance the 

load. On the other hand, our procedure (TABUCARP) aims to be a latte more global and 

builds this additional feature into the algorithm. This is an important contribution of this 

thesis since this is a first step towards using TABUCARP as a useful planning tool for 

several arc routing applications. 
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We have tested TABUCARP on a set of 23 test problems by DeArmon, and 

another set of random problems. TABUCARP produces routes similar to CARPET for 

the DeArmon problems. On the random problems, the total distance traversed by 

TABUCARP' s solutions is 2.78% higher than CARPET' s solution on average. However, 

for this relatively small increase we get better work load balancing. The coefficient of 

variation for work load balance is 7.69% lower for TABUCARP's solutions. 

The SETP belongs to a class of hard problems, and hence, it is not possible to 

solve realistic sized problems optimally using algorithms that would run in polynomial 

time. Hence, we have developed three heuristics for the SETP. The fffst heuristic, a 

global greedy heuristic, starts with an empty tour and determines the next edge to service 

as the one that results in the minimum expected increase in the length when appended at 

the end of -the tour. The second heuristic, a local greedy heuristic, selects the next edge of 

the tour from the set of edges at the current node rather than from the set of all available 

white edges. Finally the third heuristic, a sub-tour construction heuristic, constructs 

several small sub-tours and then concatenates these sub-tours while considering the 

expected savings in concatenating sub-tours. We have also incorporated an adaptation of 

the US post-optimization procedure developed by Gendreau et al. (1992) for the TSP. 

We have tested the performance of the tlaree heuristics on grid networks and 

Euclidean graphs of varions sizes. Our results indicate that when the probability of 

occurrence of the white edges is very low (p= 0.1), the global greedy heuristic seems to 

perform better the other two heuristics. In other situations, the sub-tour construction 

heuristic seems to perform well for the grid networks. For the Euclidean networks, as the 

number of edges increases, the second heuristic seems to perform the best among the 

three, though the margin of improvement is small. 

We also compared the expected lengths of the tours produced by the three 

heuristics with the expected length of a random Eulerian tour. Our results show that for 

the grid networks, the expected length of our best solution is lower than the expected 

length of a random tour by 10% on average, for lower values of p. For the Euclidean 

networks, the expected length of our best solution is lower than the expected length of a 

random tour by 2% on average, for low values of p. 
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5.2 DIRECTIONS FOR FUTURE RESEARCH 

This thesis has addressed two important problems in the area of arc routing. There are 

several theoretical and practical issues that we would like to investigate further as part of 

contùming research in this arca. 

• The TABUCARP algorithm that we have developed seems to perform well in terms 

of producing fairly balanced routes. As a first step towards developing a planning 

tool for several applications, we would like to test and validate the algorithm with real 

world data. Once this process is completed successfully, TABUCARP could form the 

backbone for developing a user friendly scheduling tool for several arc routing 

applications. 

• The definition and formulation of the SETP has made it possible to investigate the use 

of the SETP methodology in actual applications such as the UK postal situation. The 

results from Chapter 4 indicate that even a simple application of the concepts 

developed in this thesis could result in a reasonable reduction of the expected lengths 

of the postman tours in these applications. Here again, the use of real world data 

would help validate the methodology. 

• We would like to explore the possibility of developing exact solution procedures for 

the SETP. One possibility is to formulate the problem as a stochastic integer 

program, and use the integer L-shaped method to devise a branch-and-cut algorithm 

for the SETP. Obtaining the optimal solutions for possible instances would also help 

assess the accuracy of the heuristics we have developed in Chapter 4. 

• The sub-tour construction heuristic presented in Chapter 4 does not fully exploit the 

desirable properties of a good a priori tour. We can develop meta-heuristics such as 

tabu search based heuristics that moves edges among sub-tours to produce a large 

number of small and balanced sub-tours. The concept of work load balancing from 

TABUCARP can be extended to this situation to balance the size of the various sub-

tours. 

• Finally, for the SETP, this thesis focussed on finding the Euleriari tour of minimum 

expected length after the given graph is made Eulerian by solving the minimum cost 

augmentation problem. However, based on Jaillet's results for the PTSP, we feel that 
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it will be worth the effort to consider the augmentation problem and the SETP 

simultaneously. In this situation, it might be possible to develop an Eulerian tour of 

smaller expected length compared to a random Eulerian tour on an augmented graph, 

even when all the white edges are present in the given graph. 
We hope that this thesis has provided the motivation for exploring the SETP and several 

other stochastic arc routing problems further. 
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