Amil. 3894, §

Université de Montréal

XMLFinder : an Intelligent Agent Based on CBR

for E-Commerce

Par:
YanPing Ma

Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures
en vue de l'obtention du grade de

Maitre en Informatique

Juillet, 2001

©YanPing Ma, 2001

—— s.aMm o
P .»a_wat.:% — xm,“w Mf.w.&) WMHM ﬁ.““.uwv

e —

— T2 RN b

\/ . ey <=
|

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé:

XMLFinder : an Intelligent Agent Based on CBR

for E-Commerce

Présenté par:

YanPing Ma

a été évalué par un jury composé des personnes suivantes:

Claude Frasson Président-rapporteur
Esma Aimeur Directrice de recherche
Sahraoui Houari Membre

Mémoire accepté le H éﬂ)‘()Tﬂww 200)

Acknowledgement

This work has been a challenging experience through which I learned about frontiers of
research and many exiting technologies. Through the year, I received a lot of support

from the professors and friends in our department.

First, I would like to thank Prof. Esma Aimeur, my supervisor, whose continued
guidance, encouragement, enthusiasm, and support are greatly appreciated. I also owe
my gratitude to Prof. Gilles Brassard for his great comments on my project and
published paper. Great thanks are also given to Prof. Jian-Yun Nie, Prof. Jan Gecsei and

Dr. Jalal Kia for their encouragement and help.

Many thanks to all of my friends for their encouragement and thoughtful discussions. I
also would like to thank the people who evaluated my system, and gave me their

valuable comments.

Great thanks to my husband for his support, patience and faith in me, and to my lovely

son for his understanding and the joy he brings to my life.

Résumé

Le commerce électronique est un aspect de 1'Internet qui croit trés rapidement. 1l existe
divers types de sites d'achats en ligne qui aident des consommateurs 3 trouver les
produits recherchés. L'agent intelligent est parmi les technologies les plus prometteuses
dans les systémes de recommandation, et le raisonnement a base de cas (CBR, Case-
Based Reasoning) est une technique hautement efficace pour développer de tels agents.
Nous proposons dans ce mémoire un agent intelligent basé sur le CBR, appelé

XMLFinder qui recommande des produits aux clients en ligne.

Il y a deux caractéristiques principales dans ce systéme. La premiére, en utilisant la
technologie de CBR, concerne la maniére dont le systéme permet aux consommateurs
d'évaluer et d'adapter leurs exigences aux produits. Habituellement, obtenir des résultats
similaires est plus important que l'obtention de résultats totalement correspondants,
parce que la plupart des clients en ligne ne sont pas capable de formuler une requéte
exacte décrivant leurs exigences. Une nouvelle notion appelée I’insuffisance
(“deficiency”), est présentée. L’insuffisance d'un attribut mesure a quel point le systéme
considére cet attribut approprié aux préférences de la part de l'utilisateur. L heuristique
proposée est exprimée comme suit : si le client ne choisit pas le plus “déficient” des cas
considérés, alors 1'importance des aspects le plus déficient doit diminuer et 1'importance
l'aspect préféré doit augmenter. La justification intuitive derrieére cette heuristique est
que les clients ont tendance a choisir d'abord 1'aspect auquel ils attachent le plus
d'importance. C’est ce qui constitue le profil a court terme dans ce mémoire. Cela
permet a notre systéme, en combinant cette approche avec le profil a long terme (telles
que les contraintes des consommateurs), de fournir des recommandations de maniére

plus efficace.

La deuxi¢me caractéristique est l'utilisation de XML (eXtensible Markup Language).
XML est un langage de transmission permettant & de grands paquets d'information
formatée d'étre échangés réduisant de ce fait le trafic de réseau. XMLFinder est
construit sur une architecture de trois couches, dans laquelle les documents XML jouent
un rdle dans chaque couche. Etant une alternative possible de HTML, XML aide le Web
a supporter les applications intelligentes. XSL (eXtensible Stylesheet Language) est
employé pour fournir une séparation nette entre le contenu lui-méme (XML) et le
format spécifique exigé par un programme ou un document cible. Ainsi un emballage
(wrapper) est fourni pour le catalogue en un fichier XML traduit par XSL. La
représentation des cas et des similitudes en XML est une nouvelle maniére de décrire
les connaissances. De ce fait la communication entre le client et le serveur est rendue

plus robuste.

La mode féminine est choisie comme domaine d'application pour ce travail parce que
c'est un domaine familier comportant des produits avec des caractéristiques communes
(tels que la marque, la couleur, etc.). Il y a 1a un potentiel a fournir un site Web
attrayant, auquel beaucoup de clients seraient possiblement sensibles. En outre une
€valuation statistique est faite afin de tester la validité de 1'approche que nous avons
proposée. De nos jours, il y a beaucoup d’applications de commerce électronique sur le
Web. Seule, un petit nombre d’entre-elles utilise des techniques de CBR pour la
recherche de produit, méme si il existe beaucoup de systémes qui offrent des
fonctionnalités pour personnaliser les produits. Notre approche dans ce mémoire permet

la détermination efficace des produits qui répondent aux exigences de I’ utilisateur.

Un article [Ma & Aimeur, 2001] basé sur ce travail a été accepté par IEEE Computer
Society Press dans les Proceedings of the Tenth IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative Research, MIT, Cambridge,

Massachusetts.

Abstract

E-commerce is a rapidly growing area on the Internet. There are various types of online
shopping sites that help consumers find products to purchase. The intelligent agent is
among the most promising technologies used in building e-commerce systems. CBR
(Case-Based Reasoning) is a highly effective mechanism for developing intelligent
agents. In this thesis, we propose an intelligent agent based on CBR, called XMLFinder,

which recommends products to online customers.

There are two main characteristics in this proposed agent system. The first characteristic
which is based on CBR technology is concerned with the way in which this system
enables the consumers to weight, score and adapt their product requirements. Usually,
similarity based results (close enough results) are more important than getting results
with an exact match, because most online shoppers can’t give an exact query to describe
their requirements. A new notion, called the deficiency, is introduced. The deficiency of
an attribute measures to what degree the system considers this attribute to be susceptible
to a user's preference. The proposed heuristic can then be expressed as such: if the client
does not choose the most deficient of the considered cases, then the importance of the
most deficient aspects must decrease and the importance of the preferable aspect must
increase. The intuitive justification behind this heuristic is that clients have a tendency
to first choose his preferable aspect to which they attach more importance. This is called
short-term profiling in this thesis. Also the combination with long-term profiling such
as the consumers’ constraints makes our system provide recommendations more

efficiently.

\4

The second characteristic is the use of XML (eXtensible Markup Language). XML is a
useful communication language enabling large packets of formatted information to be
exchanged thereby reducing network traffic. XMLFinder is constructed on a three-tier
net architecture, in which XML documents take a key role in each tier. As a possible
replacement to HTML, XML helps the web support intelligent application. XSL
(eXtensible Stylesheet Language) is used to provide a clean separation between the
content itself (XML) and the specific format required by a target application or output
document. So a wrapper is provided for the catalogue in XML file translated by XSL.
The cases and similarities’ representation in XML is a new way to describe the

knowledge. This makes the communication between client and server more robust.

The women fashion is chosen as an application domain for this thesis because it is a
common product with common characteristics (such as brand, color, etc.). There is a
potential to provide an attractive web site, which most people can relate to. Further
more a statistical evaluation is made in order to test the validity of the approach we

proposed.

Nowadays, there’re many electronic commerce applications on the Web. But only a
very small number of these applications use CBR techniques for product retrieval, apart
from that fact, there are not many systems, which offer possibilities to customize the
products. Our approach in this thesis allows efficient determination of products that

meet the user’s requirements.

A paper [Ma & Aimeur, 2001] about this work has been accepted by IEEE Computer
Society Press in the proceedings of the Tenth IEEE Workshop on Enabling
Technologies: Infrastructure for Collaborative Research, Knowledge Media Networking

Workshop, MIT.

Table of Contents

ACKNOWIEdZEMENL.t e i
RESUME. ... e ii
ADSITACT. ..o v
Table Of CONLENES.vueinitit i e e, vi
List Of FIGUIES....uniniiit e e ix
Last of TabIes. .. cuoueii i Xi
Chapter 1 INtroduCtioncociiiiiiitiiii e, 1
1.1 Objective and scope of this thesis........c..veiviiiiiiiiiiiiiiiie e 3
1.2 Organization of this thesis.............cocviiiiiiiiiiiiiii e 3
Chapter 2 State of the Art -- Agent-based Systems in E-Commerce......................... 6
2.1 Consumer Buying Behaviormodelc.coooiiiiiiiii 6
2.2 Agents’ roles in €-COMMEICE SYSEIMS ..uvuvuvnrrrireriieeiieeereeeeerenenenennnns 8
2.2.1 Product BrOKering.ououenrieiitiiniiie e, 9

2.2.2 Merchant broKering...........c.vueiniiiiiiieiiiii et e, 11
2. 2.3 NEGOUALION ...euvniniiiinit ettt e e ee e ee e e aneans 12
2.3 Technologies used in agent-based e-commerce SyStems................cceuurnnn. 13
2.3.1 Content-based filtering............c.coeviiiiiiiiiiiiiiiiiicceeeeee 14
2.3.2 Collaborative-based filtering.............c.cccoeiiiiiiiiiiii i, 14
2.3.3 Constraint-based filteringccoeiiiiiiiiiiiiii e, 14

2.3.4 Case-based reasoningcocvuvueniiiiiniriiiiiiiiiiiie e eeeieen, 15
Chapter 3 Technologies Used in XMLFINdercccocvuviiiiiiiiiiiniiiiiieiieeeinnnen 19

3.1 Overview of Electronic COMMETICEovvvirrereee e et eeeeeeeeer e, 20

3.1.1 History of €-COMMEICEcovuiieireritiiiniie e, 20
3.1.2 StatisticCs ON €-COMMIETCEuvneneniiniianeneteieeieareieeieneanenennnnns. 22
3.1.3 Factors stimulating and limiting growth in e-commerce 23
3.1.4 Technical support of €-COMMEICe........o.vuiuiniiniiiiiieiniiininiinnns 24

3.2 Agents teChNOIOZYvuiniiii it 25
3.2.1 Intelligent agent and its Propertiescccovvveeineneriininenreninnnn.n. 25
3.2.2 Electronic COMMETCE AZENLS ...ceuvvrnrenirenrntrterenenieneneneserenenrennens. 27

3.3 Case-Based Reasoning technology...........cceveviiiiiniiiiiniiiniiiiiieienean, 28
3.3.1 The concept Of CBRcvnininiiiiiiiiii e, 29
3.3.2 The principle techniques in CBRc.cociiiiiiiiiiiiiiiiiin, 30
3.3.3 CBR in €-COMIMEICE SYStEIM .eoeuvnerninineesesenenenenenesennenerneneenns 31

3.4 XML teChNOIOZY ..o eieeieieie e e, 34
3.4.1 The concept of XML.......oouiiiiiiiiiniiiiiiii e eaerenes 35
3.4.2 Properties Of XMLcouiiiniiiiiii i, 36
3.4.3 Access to XML doCUMENt.......c.eveiuiuiiiniiieieiiiieiieieeeeeanenen, 38

3.5 JSP technology and its XML SOIUtON.eevuinininiriiiiereieinieeeeieeenea, 41
Chapter 4 Architecture of XMLFINAET.........ciiiiiieiiiiii e 45
4.1 Creation of XMLFinder agent SyStemM...........c..vvveuiienireininineeninineinnnnn, 45
4.2 Three-tier net architecture of XMLFinderccccoevvviiiiiininininnann.... 46
4.3 BaCK-ENA tOT. ... cueninititiiii e 48
4AMIAAIE tET «.uovniiiii i e 51
LR 11 11 1< TR 53
4.6 Client-tier description of Fashion Agentcccoveviviniiiiiiniiniinnn.. 56
Chapter 5 Methodologies and Algorithm...............ooviiiiiiiiiiiii e 59
5.1 Local similarity Measures.vuveurreniuireeeiiiiierereieieneeeeneieeeeeanen 61
5.2 Similarities storage and representation in XMLc.ceeininieninnnnnn.. 64

5.3 Short-term profiling and weight modificationccovviniinnnn, 68

5.4 Long-term profiling and case representationcc..cevuivienennnnnnn... 71
S.5AdAPLAtION.uuttinie e 73
Chapter 6 Implementation of XMLFinder -- Fashion Agent......................c.... 75
6.1 Selection of Web server technologies...........c..oooeviviiiiniiiiiiiiiinenne, 75

6.1.1 Web sever technologies -- CGI, ASP, or JSP..........cccovvvveneveninann.. 75

6.1.2 The Jakarta Project -- Tomcat.............coviiiriiiiiiiiniiieiiieeane, 78

6.1.3 Configuration to Tomcat 3.1..........coevviiiiiniiiiiiiii e, 78

6.1.4 RUNNINg €NVIrONMENt.vuieitieiiieieeeiaeet et et eiiieneeenenaneens 79

6.2 The dOmaincoeuiuiiiiiiii e 79

6.3 Implementation of Fashion Agent...............ccoiviiiiiiiniiiiiiiieiieeneennn. 81
6.3.1 Starting up the Fashion Agent...........ccccoeiiiiiiiiiiiiiiiiiiiieinen., 82

6.3.2 Editing the CONStraints.ouveeiuieneriiiiiitieiieee e 82

6.3.3 Optimizing the recommendation results......................ccceuevvennnn... 83

6.3.4 Update the user’s profile...........c.coveiiiiiiiiiiiiiiiiiiieeee, 84

6.4 Discussion on generalization.............co.vee covueeniiiiniiniieiiie e, 86
Chapter 7 Experiment and Evaluation............cocoiiiiiiiiiiiii e 87
7.1 Testing conditions and methodology...........ccevvvvviiiiiiniiiiiiiiinenee, 87

7.2 Hypothesis and precondition............oc.veueueineniineieiiiiiieieiceieeneeanaan 89
T3 EVAIUALON. .. cuvtit et 90
7.4 Summary of this evaluation............c.covviiiiiiiiiiii 96
Chapter 8 Conclusion and Future Work.............coeoviiiniiiiiiiiiniiciieeee, 97
References.... ..o, 100

List of Figures

Figure 2.1 Consumer Buying Behavior Modeloooiviiviniiiiiiiiiiiiie i 6
Figure 3.1 Technologies' Architecture of XMLFIinder..............c.ccoviiiiiniiiniiininiiinnn, 19
Figure 3.2 Agent Classification.cocoeuiiniiiiiiii e e 26
Figure 3.3 Traditional CBR CYCle.......uiuiiiiiiii i 32
Figure 3.4 The CBR Cycle for Electronic Sales Support Applications............c.c.cveevenn.n. 34
Figure 3.5 JAXP Parser Working Model............cccoiiiiiiiiiiiiiiiiiiiiii e 41
Figure 3.6 Data Accessing in JavaServer Pages Technology............c.cccovviiininiiniininnn, 42
Figure 3.7 An Example of Converting XML Data to Server-side Objects.......................... 43
Figure 4.1 The Architecture of XMLFInder..............oooiiiiiiiiiiiiiiiiii e 46
Figure 4.2 Basic Model of Three-tier Logic Networkc.coeoveiiiiiiviiiiiiiniiiienane. 47
Figure 4.3 Back End Tier Model............oooiiiiiiiiiiiiii e 50
Figure 4.4 Middle Tier Application SeIVeT..........cvuvuiuiniiiriniiiiriteiieeei e, 52
Figure 4.5 Presenting Services Directly to a Browser.........c...coocveiiiiiiiiininiiiiinneeineen, 55
Figure 4.6 Providing JavaBeans Components to @ BrOWSer...............coovvviiiiiinieninennnn., 56
Figure 4.7 Processing of RegiStration.o.ovuiuiiiiiiiiiiiiiiiiin e 57
Figure 4.8 Gathering Requirement Information from Users...............coceeviviiiiiiiniiinn., 57

Figure 5.1 Usage of similarity in CBR:

cases are distributed over an n-dimension problem space................ccceveiiiinennn... 60
Figure 5.2 Continuous SImilarity...........oouveiuiiiiiiiiiii e, 63
Figure 5.3 Continuous Similarity Function...........c.coooeiiiiiiiiiniiiiiiiiiiiienccec e 63
Figure 5.4 Examples of Similarities' Data Representation in XML...........cccccovvnviniinennnn... 67

Figure 5.5 XML Document Modelcccouiuiiiiiiiiiiiiiiiie e e 67

Figure 5.6 An example of User’s Profile in XMLcoviiiriiiiniiiiiieiiee e, 72
Figure 5.7 An example of User’s Constraint Profile in XML..........c..coooviiiiiiiiininiiinn. 72
Figure 6.1 First Page of Fashion Agent...........cccoiuiiiiiiiiiiiiniiiii i eeeeae e, 81
Figure 6.2 Querying Page...........oooiiiiiniiiiiii i 82
Figure 6.3 Editing COnStraints.coeuetiritiiiiitir e reee e neee e ae e e et eeenneeenans 83
Figure 6.4 Recommendation Results............co.vuviiiiiiniiiiiii i 84
Figure 6.5 Optimized Recommendation Results..............ccooiiiiiiiiiiiiiiiiiiiiineiee, 85
Figure 6.6 Shopping Cart........c.c.ouiiiuiiiii it ae e e eeaan e 85
Figure 7.1 Test Conditions in the EXperiment.............cuuivveeniiienininiininiriniieenereerinenn 88
Figure 7.2 Tester Percent in Three Similarities Level...............ccoooviiiiiiiiiiiiini i, 93
Figure 7.3 Mean Similarities in Each Testing Conditioncc...coveveiiiiiiiniiiinininnnin., 93
Figure 7.4 Mean Rating in Each Testing Condition.ccovveviiiiiniiiieiiiiieieieneinan 94

Figure 7.5 Tester Percent in Three-point Rating Scale in Each Testing Condition.................95

Xi

List of Tables

Table 2.1 Roles of some Agents-based Systems in E-Commerce...........c.coevvenieninininnnnn... 9
Table 2.2 Technologies” Comparison of some Agent-based Systems in E-commerce............ 13
Table 3.1 Properties that Software Agents can EXhibit...........cccoeviiiiiiniiiiiiniiiiin., 26
Table 4.1 User’s Preferences Example.cooiiiiiiiiiiiiiiiiiiiiiiie e, 58
Table 5.1 Asymmetric Similarity Attribute-value Pairs................cccovviiiiininiiiniinin 62
Table 5.2 Symmetric Similarity Attribute-value Pairscooviiiiiiiiiiiiiin, 62
Table 5.3 Symmetric Similarities Stored in Separated Tables..............cccccevveivernenninnn.... 64
Table 5.4 All attributes’ Similarities Stored in one table..............ccovvviiieiiiniininiininnn..... 65
Table 5.5 Relational data model..............cooiiiiiiiiiiiii e 67
Table 5.6 Before computing new Weights.........covuvuiuiiiiiiiiiiiiii e, 69
Table 5.7 After computing the Weights...........ocvuviviiiiiiiiiiiiiireei e, 70
Table 6.1 Comparisons Between ASP and JSP..........covviiiiiiiiiiiiii e, 77
Table 6.2 Attributes and Values in Clothes Domain.coceviviniiiiiiiiiiininiiieinns, 80
Table 7.1 Testing Form of Fashion Agent System.............ccviuviiiiiiiiniiiieiiinieeen, 89

Table 7.2 An Example of Comparing Similarities With and Without Weights 92

Chapter 1

Introduction

Electronic commerce [Adam et al, 1999] [CommerceNet] offers a huge variety of ap-
plication areas nowadays. Much effort is put into research and exploration of these ar-
eas. The online shopping sales support is one of the most important problems. The turn
of Internet to a big electronic marketplace has given rise to a lot of difficulties. Finding
relevant information offered in a huge search-space and coping with the many different
user interfaces can cause significant problems for a human being. Even when the prob-
lems of finding relevant information are solved, we still face the issue of the non-
uniform way of presentation. The terms "lost in hyperspace" and "information-
overload" have been widely used to describe these problems. The best thing to do would
be to instruct an intelligent assistant -- intelligent agent, to provide some product rec-
ommendation. This thesis is concerned with this problem. We construct a shopping
agent model — XMLFinder by using modern technologies to make consumers free from
the information overload and to make their decision-making easier when shopping on-

line.

Intelligent agents [Nwana & Ndumu, 1998] [Hayzelden & Bigham, 1999] are software
programs that independently perform tasks on behalf of a user in a network. It is differ-
ent from current programs in three ways. They are proactive — initiate actions; they are
adaptive -- learn from the user's preference and habits and they are personalized --
change their way of helping the user according to what they have learned from users
[Maes, 1994a]. Electronic shopping agents are agents that assist in searching for prod-
uct items on behalf of a user. Upon receiving a request, the agent searches products da-
tabase or relevant online shops throughout the Internet for items that match the search
criteria. The agent would return to the user a detailed description of the items, the price

of the items and a direct link to the virtual store.

Case-based Reasoning (CBR) [Aamodt & Plaza, 1994] [Andrew_Broad] [Al-cbr.org] is
a promising technology and it is becoming highly effective mechanism for developing
intelligent agents. The main idea of the CBR is to use the solution of a problem that has
been solved earlier in order to solve a new problem. The obvious cases are descriptions
of the commodities on sales and the task is to identify the case configuration that meets
the user’s requirements. XMLFinder utilizes CBR technology as its intelligent mecha-
nism to provide the products’ recommendations to consumers. The detailed techniques

of CBR would be discussed in this thesis.

There are some shopping agents that already exist on the Internet. The problem is that
most agents need to do a lot of maintenance to translate data from different sources to a
well-known format. As a result, in many instances browsers can’t get data automati-
cally. They have to first collect information and then assemble it in a useful format. A
better way for vendors to publish their information would be through the use of a well-
known data format. XML (eXtensible Mark-up Language) [W3.org] [XMLS.com]
[XEDlLorg] standard meets most of the required criteria and provides a promising tool
in the development of this critical area of Internet development. It is an excellent format
for agent interaction. Because XML is tagged, the agents expecting only well formed
XML format can be extremely fault-tolerant, ignoring tags they don’t understand.
XMLFinder is constructed on three-tier net architecture, in which XML takes an impor-
tant role. Each tier has its own responsibilities; together they form a cohesive, flexible,

and scalable shopping application.

I Introduction

1.1 Objective and scope of this thesis
The objective of this research is to construct an intelligent agent (XMLFinder) to meet
the consumers’ needs when shopping on-line in order to reduce “information overload”.

This thesis would focus on the following issues:

1. Study the user's shopping behaviors in general, and particularly in business-to-
consumer e-commerce applications so that we can employ agent technologies in
different stages of the user's purchases.

2. Construct shopping agents network architecture — XMLFinder in order to meet the
usability, interoperability, and dynamic content requirement of e-commerce. And
provide a well-known data format on solving the problems on data interchanging
and data presentation.

3. Adopt CBR technology as the recommendation mechanism, which is focused on the
similarity measure, weight modification, case representation and adaptation. And
explore the ways of building a user model (user profiling) to acquire the knowledge,
because software agents need the specific knowledge from users to assist them in
achieving their goals.

4. Construct a Fashion agent on the web as a prototype of XMLFinder. And an ex-
periment and evaluation are made in order to test the validity of the approach we

proposed.

1.2 Organization of this thesis

This thesis is divided into eight chapters. Its content is organized as follows:

Chapter 2 provides a literature review of the intelligent agent in e-commerce. A CBB
(Consumer Buying Behavior) model is presented as a common framework for exploring
user's shopping needs as well as the roles of agents in electronic commerce applications.
Several sample agent-based systems are introduced and their underlying techniques are

analyzed.

I Introduction

Chapter 3 introduces the related knowledge and technologies used in our system.
XMLFinder system is a synthesis of many concepts; it fuses various latest technologies,
tools and protocols. CBR technologies are introduced as the agent’s intelligent mecha-
nism; XML is used as the communication foundation; JSP (JavaServer Page)
[SUN_JSP] is described as web server to support web applications, which also provides
the support to XML documents. Also an overview of e-commerce and agents technolo-

gies is presented.

Chapter 4 describes the three-tier network architecture of XMLFinder, in which XML
takes a key role in each tier. In middle tier, it presents a multi-agent -- a Recommend-
Agent and an XMLAgent. The former gets personalized content from client browsers,
and then runs a task on behalf of the user. The latter is responsible for the generation,

integration and publishing of XML documents.

Chapter 5 presents the detailed methodologies and algorithms, which is based on a new
e-commerce CBR-cycle proposed in [Wilke et al, 1998], which is modified from the
traditional CBR cycle [Aamodt & Plaza, 1994]. We adopt a metric in the context of the
nearest neighbor method, and then use this cycle combined with a heuristic we devised
to create the users’ short-term and long-term profiles. Also the similarity measure, case

representation and adaptation are discussed in this chapter.

Chapter 6 presents a Fashion Agent to explain how the prototype of XMLFinder archi-
tecture and methodologies function. We introduce the application domain, the running
environment, and implementation. In this chapter, we will also explore other domains in

addition to the clothes domain.

I Introduction

5

Chapter 7 describes an experiment and evaluation of this system, which is based on the
collection of the user's feedback. Two methods are used in evaluation. One is using the
normalized Euclidean distance to measure the similarities between the recommended
results and its re-rank orders provided by testers. Another is comparing the rating results

to find the whole performance of the agent in general.

Chapter 8 concludes with the features of XMLFinder as an intelligent agent, and the
contributions of this thesis. And then discusses its future work. A paper [Ma & Aimeur,
2001] about this work has been accepted by IEEE Computer Society Press in the pro-
ceedings of the Tenth IEEE Workshop on Enabling Technologies: Infrastructure for
Collaborative Research, MIT, Cambridge, Massachusetts.

I Introduction

Chapter 2

State of the Art --
Agent-based Systems in E-Commerce

The Internet will revolutionize the way people buy products in the future. Intelligent
agents — software programs that will attempt to deliver what a network or database user
is looking for-- it has been a major focus of computer research labs for several years.
The popularity of the World Wide Web has created the most fertile ground ever for
commercial application of agent technology -- shopping agents or “bots”, which provide

recommendations to users on the web.

2.1 Consumer Buying Behavior model

Stemming from the traditional marketing Consumer Buying Behavior (CBB), [Guttman
et al, 1998] divide the electronic marketplace into six stages: Needs identification,
Product brokering, Merchant brokering, Negotiation, ‘Purchase and Delivery’ and ‘Ser-

vices and Evaluation’ (Figure 2.1).

6. Service and Evaluation

5. Payment and Delivery

4. Negotiation

3. Merchant Brokering

2. Product Brokering

1. Need Identification

Figure 2.1 Consumer Buying Behavior Model

7

Although CBB research focuses on many areas, it has some limitations. For example,
CBB research focuses primarily on retail markets, and even in retail market, not all
shopping behaviors are captured (e.g. impulse purchasing), still, it is a wonderful tool to

understand the roles of agents as mediators in electronic commerce.

e Need identification
This stage characterizes the consumer becoming aware of some unmet need, and to
stimulate consumers through product information. For example, the need can be
achieved by added functions like advertisement features, email and similar notification
services, which will keep the consumer up to date with new products and goods avail-
able on the market. Generally, the information corresponds with users’ profile and their

last deals.

e Product Brokering
This stage is responsible for the retrieval of information to help the consumers to deter-
mine what to buy based on criteria they provide. For example the consumer provides a
set of specific criteria for a desired product, and then the agent will give some answers

according to the set of the user’s preferences.

e Merchant Brokering
This stage is based on the merchant’s information and provides the evaluation of mer-
chant alternatives according to consumer-selected criteria. Combining with product

brokering stage, it will help consumers to determine who to buy from.

e Negotiation
Negotiation [Wilke et al, 1998] is an important part of the selling process via the Inter-
net, and in order to support customers in a sufficient way, electronic commerce system

needs the ability to negotiate. There are different protocols when negotiating, such as

II State of the Art — Agent-based Systems in E-Commerce

8

cooperative negotiation, classified negotiation, stock market negotiation, retail auction

negotiation, cooperative negotiation, etc [Guttman & Maes, 1998].

e Purchase and Delivery
This stage can either signal the termination of the negotiation or occur sometime after-
wards in cases where it includes the payment transaction using online payment systems.
The actual online delivery of the products is possible if the good is in electronic form,
but physical goods have to be shipped by the traditional way by the merchants. In some
cases, the available payment or delivery options can influence product and merchant

brokering.

¢ Product service and Evaluation
This stage involves product service, customer service, and an evaluation of the satisfac-
tion of the overall buying experience and decision. Agent-based distributed trust and
reputation mechanisms enable customers to share and combine their experiences and
use merchant and product reputations as additional aspects of brokering and negotiation.
For example the system can include some special deal for specific agents, enabling all
sorts of special offers prize cut downs for handling either long time or first time cus-

tomers.

2.2 Agents’ roles in e-commerce systems

In CBB model, these stages represent an approximate simplification of complex behav-
iors. From this CBB perspective, we can identify the roles for agents as mediators in
electronic commerce. We will describe some agent-based e-commerce systems, and
then compare them in the main stages of CBB model namely product brokering, mer-
chant brokering, and negotiation stages. Table 2.1 lists the three main stages and which

category each system falls in.

II State of the Art — Agent-based Systems in E-Commerce

Table 2.1 Roles of some Agent-based Systems in E-Commerce

Persona | FireFly | Virtual | Selecting | HVAC | Bargain | MySimon | Auction | Tete-a
Logic Letting | Mobile Finder Bot -Tete
Agent Phone
Product X X X X X X X
Brokering
Merchant X X X
Brokering
Negotiation X X

2.2.1 Product brokering

This stage will allow consumers to determine what to buy by searching/retrieving some
product information in order to meet their requirement. As shown in table 2.1, all sys-
tems except for AuctionBot [Auctionbot.com] and Bargain Finder [BargainFinder] fall

in this category. And most of commercial shopping agents are in this category.

Personal ogic [Personalogic.com]

“What college? Which car? What pet? ... Why not take the head scratching out of deci-
sion-making and use one of our guides? They're easy-to-use and highly informative.”
This is the foreword of PersonaLogic system. The Web shopping system can filter out
the unwanted product according to the needs of consumers by specifying their con-
straints. PersonalLogic is marketed as a service that merchants offer to their customers,

which enables them to select the best product from merchants’ catalog.

Firefly [Firefly.com]

Firefly has created agent system software called Firefly Password. They hope that the
software will become the standard in shopping agent software. The Firefly Passport is
free to users who agree to fill out surveys and rank Web site as they surf the Internet.

Based on the data collected a customer profile is created, and a process of collaborative

IT State of the Art — Agent-based Systems in E-Commerce

10

filtering is used. The web site operators can then match users with similar profiles and
make recommendations based on users’ shared interests. This system is mainly used to

recommend commodity products such as music and books.

WEBSELL [Cunningham, 2000]

WEBSELL is a project done by four commercial companies and two universities. They
have developed an intelligent sales support technology that supports Web shoppers in
two aspects of the sales process: "Helping the users identify and articulate their re-
quirements" and " Identifying the products best suited to those requirements." Its modu-
lar architecture has several components, which include:

e Representation of product data and knowledge,

e Dialogue with the customer (Pathway),

e Product search through case-based retrieval,

e Personalization and collaborative recommendation,

e Product presentation,

e Product customization

But, none of available demonstration applications exploits all the facilities that WEB-

SELL offers. Here we introduce two key roles for WEBSELL.

Virtual Letting Agent
It is a system for finding apartments for renting, it helps the users identify and "articu-

late" their requirements and find products best suited to those requirements. The re-
quirement elicitation process is straightforward. The user's input is captured in a single
screen, the set of requirements are passed to the case-base product retrieval engine on

the server and the most suitable apartments available are returned.

II State of the Art — Agent-based Systems in E-Commerce

11

Selecting a Mobile Phone [Cykopahts.com]

The application is for helping users to select a mobile phone. In this scenario, express-
ing the user's requirement is not so straightforward. It is a classic application where
WEBSELL can assist because there is a difficulty in defining the user's requirements
and in mapping those requirements to available phones and connection packages. Deci-

sion tree technique is used to manage a dialog and to identify a requirement description.

HVAC

HVAC [Watson & Gardingen, 1999] is an air conditioning sales support system of
Western Air (a distributor of air conditioning system) in Australia. It helps the sales
staff to be able to give fast accurate estimates to prospective customers on the spot, so
that it can avoid a danger that the less knowledgeable sales staff might give technically
incorrect quotes. The system uses a web site that sales staff could access from anywhere
in the country. Through a forms interface the prospects requirements could be entered
into the system. Then they would be passed to a CBR system that could search the li-

brary of similar and past installations.

2.2.2 Merchant brokering
Whereas the product brokering stage compares product information, the Merchant bro-
kering stage compares the information provided by merchants, such as price, or other

added services.

BargainFinder [BargainFinder]

It was the first shopping agent for on-line price comparison. Just type in the artist and
album name of a rock or pops CD, and let the agent get prices from several retailers. At
the beginning, merchants always have the option to "block" an agent pinging their sites
for data. It's technically easy to screen out traffic from specific IP addresses. Three

years ago when BargainFinder launched to get compact disc prices, it found some on-

II State of the Art — Agent-based Systems in E-Commerce

12

online music merchants blocking the technology. But now few merchant sites block

agents because they know that the price is just only one part of comparison.

MySimon [MySimon.com]

MySimon's Internet e-commerce hub is the largest comparison shopping site on the web
with over 2000 merchants, in categories such as computers, book & music, electronic,
fashion, flows, sporting goods, toys and many more. MySimon's shopping service offers
unbiased information on products and merchants, including price comparison, availabil-
ity and other merchant information.

Unlike some agents, MySimon doesn't charge merchants to be part of its searches. In-
stead, its business model is commission -- 2%-5% of each sale made to a buyer who

accessed the site through a MySimon search.

2.2.3 Negotiation

Negotiation is the process of determining the price and other terms of a transaction. The
negotiation in traditional commerce includes market, fine art auction house, flower auc-
tion, and various special haggling. However, the intelligent agents negotiate with each
other using sophisticated strategies based on rule-based system or some utility function

defined by the individual user.

AuctionBot [Auctionbot.com]

AuctionBot comes in many varieties, depending on the type of goods involved, the
mechanism for determining prices and communication protocols. AuctionBot is de-
signed to support a range of auction types and customization parameters, according to
the specifications of whoever sets up the auction.

Nowadays, sellers operate most Internet auctions. It creates a potential conflict of inter-
est, providing an incentive to introduce the rules and use bid information so to maxi-

mize revenue over time. In contrast, the AuctionBot dose not favor particular individu-

II State of the Art — Agent-based Systems in E-Commerce

13

als or particular outcomes. Rather they are interested in a smoothly run mechanism,

with well-defined and well-explained rules, and faithful implementation.

Tete-a-Tete

It is a research project following the widely known Kasbah project in MIT Media lab. It
incorporates the idea of value comparison rather than just simple price comparison. The
value comparison is achieved with a utility function to maximize the individual user's
needs, using a multi-attribute utility theory (MAUT). It negotiates across multiple terms
of a transaction such as warranty length and options, shipping time and cost, service
contract, return policy, etc. It integrates all three stages in CBB model. But Tete-a-Tete
dose not offer auction mechanism or payment and delivery functionality and also lacks

brokering functions.

2.3 Technologies used in agent-based e-commerce systems

The majority of agent-based e-commerce systems are developed using content-based,
collaborative-based, or constraint-based filtering methods. Recently, case-based reason-
ing is becoming a promising technology in e-commerce agent systems. In this section,
we will discuss these technologies and the related agent systems. Table 2.2 lists the
main technologies and their associated providers.

Table 2.2 Technologies’ Comparison of some Agent-based Systems in E-commerce

Persona | FireFly | Virtual | Selecting | HVAC | Bargain | MySimon | Auction | Tete
Logic Letting | Mobile Finder Bot -a-
Agent Phone Tete
Content- X X
Based
Collaborative- X
based
Constraint- X X X
based
Case- X X X
based

II State of the Art — Agent-based Systems in E-Commerce

14

2.3.1 Content-based filtering
Perhaps the most straightforward method used by agent systems is the one that analyzes
the objects and compares them with the user’s preferences. This is called content-based

method since the starting point of the adaptation is the content of the object.

BargainFinder tries to collect information from many different Web information
sources. When users specify the details (title and author) of the CD they went to buy,
BargainFinder transparently searches multiple online bookshop databases worldwide.
Those web information sources intended to be read by humans and their content is ren-
dered according by (i.e. HTML). Different sources have different inputs (e.g. CGI, Ap-
plets) and presentation methods, so agent systems have to adjust their interaction meth-

ods depending on the Web site.

2.3.2 Collaborative-based filtering

The Collaborative Recommenders recommend products by using collaborative tech-
nique. They use feedback and rating from different consumers to filter out irrelevant
information. Firefly uses this technology, in the sense that it tries to analyze or under-
stand the features or the descriptions of the products. The ranking of the consumer is
used to create a "likability" index for each document. This index is not global, but is

computed for each user on the fly by using other users with similar interests.

2.3.3 Constraint-based filtering

Like the content-based approaches, constraint-based filtering uses features of items to
determine their relevance. However, unlike most feature-based techniques, which ac-
cess data in their native formats, constraint-based techniques require that the problem
and solution space to be formulated in terms of variables, domains, and constraints.

Once formulated in this way, however, a number of general purposes (and powerful)

II State of the Art — Agent-based Systems in E-Commerce

15

constraint satisfaction problem (CSP) techniques can be employed to find a solution

[Tsang, 1993].

Many problems can be formulated as a CSP such as scheduling, planning, configura-
tion, and machine vision problems. In Personal.ogic, CSP techniques are used in the
Product Brokering CBB stage to evaluate product alternatives. Given a set of con-
straints on product features, Personal.ogic filters products that don’t meet the given
"hard" constraints and prioritizes the remaining products using "soft" constraints (which

need not be completely satisfied).

Tete-a-Tete uses CSP techniques to assist shoppers in the Product Brokering, Merchant
Brokering, and Negotiation CBB stages. Consumers will provide product constraints (as
in Personal.ogic) as well as merchant constraints such as price, delivery time, warranty,
etc. Hard and soft constraints are used to filter and prioritize products and merchants as
well as to construct a multi-attribute utility that are used to negotiate with the mer-
chants. Tete-a-Tete’s argumentative style of negotiation resembles a distributed CSP
with merchants providing counter-proposals to each customer’s critiques.

MySimon's proprietary Virtual Learning Agent (VLA) technology takes the approach
that creates mass quantities of intelligent agents that mimic human behavior. MySimon
can be "trained" to extract specific information from any merchant Web sites. The
agents are created by SPIs (MySimon Product Intelligent) who are non-programmers
that interact with the VLA system. The VLA system translates the SPI's Web navigation
behavior into a proprietary programming language called "V" to produce mass quanti-

ties of agents.

2.3.4 Case-based reasoning
Case-based reasoning is a problem-solving paradigm that in many respects is funda-

mentally different from other major AI approaches. Instead of relying solely on general

II State of the Art — Agent-based Systems in E-Commerce

16

knowledge of a problem domain, or making associations along generalized relationships
between problem descriptors and conclusions, the central tasks that all case-based rea-
soning methods have to deal with are to identify the current situation, find a past case
similar to the new case, use that case to suggest a solution to the current problem,
evaluate the proposed solution, and update the system by learning from this experience
[Aamodt & Plaza, 1994]. Retrieval is a huge area of research in CBR. And right now
the commercial CBR tools normally offer the two alternatives of k-Nearest Neighbors
and Decision Tree [Cunningham, 1998]. It would be content-based or constraint-based.

More detail about CBR technologies will be discussed in chapter 3.

WEBSELL is a CBR-based intelligent sales assistant project. The retrieval component
of WEBSELL project provides different similarity-based retrieval algorithms such as
"complete brute-force search”, "case-retrieval nets" and "similarity-based retrieval by
approximation with SQL queries." The main source of intelligence in Virtual Letting
Agent is the similarity measure that identifies goods matching and the score from this

metric is used to rank the apartment returned. Selecting a Mobile Phone uses a technol-

ogy of WEBSELL, called "Pathways", which allows the requirement elicitation process
to be expressed as a tree. The user starts at the root node and is led through a series of
questions to elicit a complete requirement description. The output from the navigation
of a pathway is the data gathered or computed during the run; the output is in a custom-
izable format, usually XML. In addition to the case-based recommendation approach,
WEBSELL also provides a facility for collaborative recommendation based on user
profiling. In the context of WEBSELL, user profiles support the potential personaliza-

tion of all aspects of the sales process.

HVAC uses a nearest neighbor retrieval algorithm, in which a similarity table is used to
rank a set of cases. This system is constructed on client-server architecture. On the sales

staff (client) a Java applet is used to gather the customer's requirements and send them

II State of the Art — Agent-based Systems in E-Commerce

17

as XML documents to the server. On the server side another Java applet (a servlet) uses
this information to query the database in order to retrieve a set of relevant records. Once
retrieval from the database is complete, the records are ranked by a nearest neighbor
algorithm and dynamically converted into XML for presentation to the client browser.

An XML case representation is used by this system.

BidFind [BidFind]

BidFind is an auction search. Thousands of items indexed daily from popular online
auction sites visited by their agents. It collects data from thousands of dynamic pricing
related sites on the net, auctions, barter, collectibles, exchanges, etc. BidFind's agent

technology services can provide data collection for the companies or businesses.

Bonzi Buddy [bonzi.com]

Bonzi Buddy is an active MS Agent who lives on the browser window. He can surf the
web with the users as their sidekick. He can talk, joke, browse, search, e-mail, and
download like no other friend the users have ever had. He can keep the users on sched-
ule. He also can track their appointments and tasks with his built-in calendar. He even

has the ability to compare prices on the products and help users save money.

BottomDollar [BottomDollar.com]
Bottom Dollar finds the lowest prices on the Web - fast. Just pick one of the categories
(books, music, movies, hardware, software and toys) in the title, and then start search-

ing. Prices are always the newest and they are direct from the sellers.

Fido-theShoppingdoggie [Shopfido.com]
Fido provides a frequently updated, centralized database of vendor products and prices

with a simple searching mechanism. Fido's database contains 100,000 products from

100 vendors.

II State of the Art — Agent-based Systems in E-Commerce

18

One-Click Computer ESP Bargain Agent [Uversion.com]

Computer ESP Agent is JavaScript-Powered. There are four versions: Product Descrip-
tion Agent, Stock Symbol Agent, Full Text Description Agent, and Vendor Part Num-
ber Agent.

RoboShopper [RoboShopper.com]

RoboShopper is an add-in to Netscape Navigator and Microsoft Internet Explorer,
which makes online shopping fast and easy. Just tell RoboShopper what you are looking
for, and it will automatically query online stores and then display the results in a con-

venient report, so you easily compare and make the best buying decision.

Shopping Explorer [ShoppingExplorer.com]
Shopping Explorer is a software package that allows you to simply tell its shopping

agent what you are looking for and it will search the web sites of hundreds of participat-

ing online merchants all over the world.

VirtualOutlet.com [VirtualOutlet.com]

They have a nice database of products from different cyber-merchants where you can

make a comparison between products and services on the Web.

II State of the Art — Agent-based Systems in E-Commerce

Chapter 3

Technologies Used
in XMLFinder

XMLFinder is a synthesis of many concepts. It fuses various modern technologies, tools
and protocols. It has following features:
e Case-based Reasoning (CBR) is used as the intelligent mechanism
e JavaServer Page (JSP) is used as the communication architecture
e XML is used as its "data interchange modeling" layer
e Object-Oriented Java language is used as programming tool, JDBC is used as
the data providing layer
Figure 3.1 shows the technologies’ architecture of our system.
In this chapter, we overview e-commerce, agent technology and related technologies

used in the agent-based e-commerce system.

XML Parser JSP
(JAXP) (JavaServer Page)

\/

XMLFinder
(Agent)

/ I

Agent Mechanism: JAVA and JDBC
Case-Based Reasoning

Figure 3.1 Technologies' Architecture of XMLFinder

20

3.1 Overview of Electronic Commerce

The term e-commerce has no widely accepted definition. In a loose sense it means do-
ing business over the Internet, selling goods and services which are delivered offline as
well as products that can be “digitized” and delivered online, such as computer soft-
ware. E-commerce may be defined as “the technology, processing, and operations,
which occur when business transactions are done automatically over networks, using IT
[OKlgroup].” E-commerce includes transactions between businesses and consumers
(B2C), businesses and businesses (B2B), as well as operations internal to companies,
the conversion of government procurement to electronic systems, and transactions be-
tween consumers. Mostly trades can be among businesses or between businesses and
consumers. But the Internet also encompasses a wider spectrum of potential commercial
activities and information exchanges. For instance, it offers firms, individuals, and gov-
emments an electronic infrastructure, which enables the creation of virtual auction-
markets for goods and services where previously they did not exist. EBay.com, for ex-
ample, was among the first successful sites to provide a framework where consumers
can trade a wide diversity of goods and services with each other (consumer to con-
sumer, C2C) and, at least in principle, with businesses (consumer to business, C2B)

[Adam et al, 1999].

3.1.1 History of e-commerce

It can be argued that e-commerce had its advent upon the completion of the first Trans-
Atlantic telegraph cable near the turn of the 19th century. However, modemn e-
commerce truly began to emerge with the introduction of Electronic Data Interchange
(EDI) [Clarke, 1998] in the 1970's and 80's. EDI created many opportunities for busi-
ness but there were plenty of challenges as well. For instance, EDI offered the ability to

exchange data and information very quickly.

Electronic Data Interchange is a safe and secure means of exchanging standardized

business forms electronically. Since the late 1970s, it has been used to automate the

III. Technologies Used in XMLFinder

21

procurement process and reduce costs. Analysts estimate that business trade is in excess
of $150 billion over EDI and obtains savings of 5-10% (US Department of Commerce).
However, because EDI is usually run over value-added Networks, the costs are high.

For example, the cost to add one trading partner can exceed $50,000 [Bolin, 1998].

While the value of EDI transactions are currently 14 times higher than business-to-
business transactions over the Internet, a transition is occurring. The Gartner Group
[Gartner.com] predicts that 80% of current EDI users will implement extranets by 2003.
This transition will allow small businesses that traditionally conduct business via fax
and phone to cost-effectively participate in the procurement process and become the

suppliers to larger companies.

However the most serious problem businesses were facing was how this electronic ex-
change should be formatted so that their respective systems could communicate. In
many ways, the same challenge exists today. Other challenges that businesses struggled
with included security and accessibility. As a result, early e-commerce was limited to
large corporations with deep pockets. The revolutionary impact on commerce will be
dramatic, as companies come to realize that e-commerce is more than just EDI. How-

ever EDI and Internet-based e-commerce may coexist in a long period.

E-commerce has the added capability to both attract and service customers. This may
provide a further, more compelling reason to invest increasing resources in it. The util-
ity of Internet and the Extensible Markup Language (XML) has lowered the entry-level
barriers to commerce, in both cost and complexity. XEDI.ORG presents a more direct
and effective approach for translating EDI into XML called XEDI (zee-dee)
[XMLS.com] [XEDLorg], which allows the integration of XML with the traditional
method of EDI.

II. Technologies Used in XMLFinder

22

3.1.2 Statistics on e-commerce

It is difficult to measure how widespread e-commerce is. Two often-cited indicators that
can be compared internationally are the numbers of Internet hosts and secure servers.
These indicators show e-commerce expanding at a very rapid pace. In March 2000 there
were 66,810 secure servers, up 97 percent compared with a year earlier and Internet
hosts have increased at exponential rates [Coppel, 2000]. Other indicators of Internet
usage, such as the number of web users, web sites, and new domain name registrations

also imply rapid growth. But disparity across countries and regions is wide.

The value of e-commerce transactions is more difficult to measure. Few statistical
agencies systematically measure electronic transactions, although a number of countries
intend, or are in the process of developing indicators related to electronic business proc-
esses. A number of consulting groups, however, have published estimates of e-
commerce transactions. Those vary widely, due to diverse definitions and scope. Never-

theless, taken together they all reveal an extremely rapid growth of e-commerce.

With the majority of growth occurring in the business-to-business category, IDC
[IDC.com] predicts that online sales will total $900 billion between 1999 and 2002.
Business-to-Business e-commerce will rise from a predicate $131 billion in 1999 to
$1.5 trillion in 2003 (Forrester Research [Forrester.com]). The forecast for e-commerce
is expressed by the following statement: “ By2003, the Internet will become the pre-
dominant mechanism for conducting business -- either to consumers or between busi-

nesses,” according to a Gartner Group analyst.

The number of electronic consumers in the US is a total of 41.20 millions in 2000 —
over double their number of 21.10 millions in 1998, and it is predicted that the number
of purchasers would be 72.10 million in 2003 (Donaldson, Lufkin & Jenrette)
[DLJ.com].

III. Technologies Used in XMLFinder

23

The online purchase revenues are $45 billion in 2000, much more than the $8 billion in
1998, and it is predicted to be $300 billion in 2004 [KeenanVision.com]. Business-to-
business spending over the Internet increases from $30 billion in 1998 to $100 billion in
2000, and to approximately 1.0 trillion in 2004 [KeenanVision.com]. “By 2004, most
corporations will start becoming enterprise service providers, and will begin managing
Internet access as an integral part of the company networking strategy, with both Intra-

net and extranet business services [Gartner.com].”

3.1.3 Factors stimulating and limiting growth in e-commerce

Several factors will contribute to e-commerce growth. On the whole, these factors in-
clude lower purchasing costs, reduced and more accurate inventory, lower cycle times,
improved customer services, lower sales and marketing costs, and new sales opportuni-
ties.

Stimulating factors:

e Reduced and more accurate inventory

e Lower cycle times

e Improved customer service

¢ Lower sales and marketing costs

While the Internet and e-commerce bring extensive benefits to organizations and their
customers, they also face challenges that may limit growth. Two major technical factors
likely to influence the future expansion of e-commerce are the extent to which IT com-
panies can invest in network capacity and the speed of data transmission. As regarding
technical problems, consumers have concerns over privacy, consumer protection, and

security of credit card purchases, order fulfillment, and delivery.

Limiting factors [Adam et al, 1999][Coppel, 2000] would be:

e Lack of a predictable legal structure

e Unclear content regulation

III. Technologies Used in XMLFinder

24

¢ Insufficiently defined government involvement
e Lack of privacy protection (this inhibits growth)
E-commerce still continues to develop rapidly and it could have profound impacts on

the economy and technology of this world.

3.1.4 Technical support of e-commerce

E-commerce systems require a technical architecture that is scalable, enables resource
sharing, is based on asymmetrical protocols, and provides transparency of data locations
and decision support. It also supports multimedia information, allows mix-and-match of
various software and hardware platforms, encapsulates services, support communica-
tions through message based exchanges, and guarantees security and integrity of data.
Central to providing such features is a standardized telecommunication infrastructure
with sufficient bandwidth for efficient transmission of text, voice, image, and voice

data. We will discuss the networking architecture of XMLFinder in chapter 4.

One important technology component in the world of e-commerce is interoperability,
which requires distributed object management and agent software that can help users in
solving business problems. The emerging of XML in conjunction with XSL injects a
fresh blood into e-commerce, which is as a powerful yet standard mechanism for deal-
ing with disparate application data formats, and providing a sound, flexible data integra-
tion solutions [XML/XSL, 1999]. We will discuss XML in the following section. Some

of the related technologies used recently in e-commerce are:

e Telecommunication infrastructure (J2EE)

e Decision support system (data warehouse, data mining, etc)

e Interoperability (CORBA, intelligent agent, etc)

e Markup Languages (HTML, XML)

This thesis concentrates on intelligent agents, Case-based reasoning and XML. They are

described in the following sections.

III. Technologies Used in XMLFinder

25

3.2 Agents technology
The Internet provides us with enormous amounts of information, and it is involving

more and more people in its world of bits. Computers are becoming essential tools for
entertainment, socializing, and obtaining information or news. Improvements in com-
puter technology allow us to have access to information from anywhere at anytime.
People need help in dealing with this information overload to separate useful informa-

tion from noise. An intelligent agent is used to perform that function.

3.2.1 Intelligent agent and its properties

There is no widely accepted definition for, or approach to, agents. Intelligent agents,

called also software agents, are a new category of information-society tools. Generally,

the term refers to software programs that independently perform tasks on behalf of a

user in a network. Intelligent agents are different from current programs in three ways

[Maes, 1994b]:

1. they are proactive — initiate actions,

2. they are adaptive -- learn from the user's preference and habits,

3. they are personalized -- change their way of helping the user according to what they
have learned from users.

Agent terminology is used to refer to a wide range of solutions being proposed by dif-

ferent organizations for different purposes. One view of intelligent agents in [Nwana &

Ndumu, 1998] is that they use three intelligent attributes to derive three types of agents:

collaborative agents, interface agents, and truly smart agent (as shown in Figure 3.2)

III. Technologies Used in XMLFinder

26

Autonomous
Software
System

Cooperate

Collaborative
Agent

Interface
Agent

Figure 3.2 Agent Classification

Agents are also classified as information agents, task agents, and interface agent in

[Maes, 1994b]. Task agents help users perform tasks by formulating problem solving

plans and carrying out these plans through querying and exchanging information with

other software agents; information agents provide intelligent access to a heterogeneous

collection of information sources; interface agents interact with users, providing a

mechanism whereby users can specify tasks, and inspect the results, they may acquire,

model, and utilize user preferences to guide system coordination in support of the user's

tasks. The table below summarizes some of the attributes of agents that researchers have

highlighted.

Table 3.1 Properties that Software Agents can Exhibit [Hayzelden & Bigham, 1999]

Property Description
Social ability | A software agent is able to use communication as a basis to signal inter-
est or information to either homogeneous or heterogeneous agents that
constitute a part of its environment. The agents may work toward a sin-

gle global goal or separate individual goals.

Autonomy |Agents should operate without the intervention of external elements
(other agents or humans). They have some kind of control over their ac-
tions and internal states.

Reactivity |Agents perceive their environment and respond in a timely fashion to
changes that may occur.

Adaptability | Agents are characterized by their flexibility, adaptation, and facility to

II. Technologies Used in XMLFinder

27

set up their own goals based on their implicit purpose (interest). One of
the major characteristics of agents is their ability to acquire and process
information about the situation, both spatially and temporally.

Agent
Granularity
Degrees

Agents may have degree of complexity; Most simple agents are charac-
terized by the lack of intelligent behavior. More complex agents are
characterized by their ability to know their environment, to act on them-
selves and on the environment; their observed behavior is a consequence
of their perception knowledge, and interactions.

Learning

Either the agency itself may perform some learning ability or each indi-
vidual agent may be embedded with a learning algorithm. Learning often
allows the agent to alter its future action sequences and behavior such
that future mistakes can be alleviated. Learning is often a factor that pro-
vides an agent's ability to demonstrate adaptive behavior.

Pro-activity

Agents should exhibit goal directed behavior such that their performed
actions cause beneficial changes to the environment. This capability of-
ten requires the agent to anticipate future situations rather than just sim-
ply responding to changes within their environment.

3.2.2 Electronic commerce agents

Electronic shopping agents are agents that assist in searching Internet for product items

on behalf of a user. Users interact with a shopping agent by submitting agent requests.

Upon receiving a request, the agent searches products database or relevant online shops

throughout the Internet for items that match the search criteria. The agent would return

to the user a detailed description of the items found, the price of the items and a direct

link to the virtual store where the user can purchase the items. The agent would format

the information in a manner facilitating comparison-shopping by the user. The items

returned might be sorted by price for example. A shopping agent is one type of interface

agents.

[Maes, 1994b] concludes that user interface agents can assist users in a range of differ-

ent tasks including:

They perform tasks on the user's behalf

They can train or teach the user

III. Technologies Used in XMLFinder

28

. They help different users collaborate

. They monitor events and procedures

An agent is different from a search engine. At first glance, search engines such as Ya-
hoo, Lycos, and WebCrawler seem to match some of the capabilities of basic agents.
The key difference is that an agent is more interactive and can accomplish many tasks at
many different locations. For example, searching on a keyword using a search engine
such as Yahoo, people will get a list of matches. They can then follow those links and
possibly get their information. If an agent is used, on the other hand, the agent could
submit the keywords to many search engines, follow the corresponding links, and gather
the information, all without any intervention from the user. It should be noted, however,
that the search engines have much aided web users over the past years, yet it is time for

the evolution of agents in the searching field.

E-commerce is a rapidly growing area for agents. Consumers are looking for products
and services on the Internet, meanwhile, suppliers are looking for buyers to increase
market share. The vast amount of information on the Internet causes a great deal of
problems for both consumers and sellers. Without shopping agents, shopping on the
Internet is a game of chance. Shopping agents can go searching for products for con-
sumers by using things such as store locators, brand locators, category locators, and
product locators. They will also be able to query the user's opinions on certain products.
In short, the consumer will need to make certain specifications and the agent will then

find products that match these specifics.

3.3 Case-Based Reasoning technology
Over the last few years, Case-Based Reasoning (CBR) [Andrew_Broad] [Al-cbr.org]

has grown from a rather specific and isolated research area to a field of widespread in-

terest. Activities are rapidly growing - as seen by the increased rate of research papers,

II. Technologies Used in XMLFinder

29

availability of commercial products, and also reports on applications in regular use. Es-
pecially, with the development of Internet, CBR technologies have been used in Elec-

tronic Commerce broadly.

3.3.1 The concept of CBR

The case-based reasoning is an area of exploration within Artificial Intelligence (AI).
Studies of case-based reasoning begin with notions about how humans perceive the
world and work out problems. A case-based reasoning system simulates these human
methods in modeling real world problems. The premise of case-based reasoning is that
once a problem has been solved, it often moves efficiently to solve the next similar
problem by starting from the old solution rather than by rerunning all the reasoning that
was necessary in the first time. So the main idea of the case-based reasoning is to use
the solution of a problem that has been solved earlier in order to solve a new problem

[Janet, 1993]

A case-based reasoner is the key component of the CBR system. It has the ability to
learn from its past experiences. It requires feedback from the objects it applied to. So it
can interpret what was right and what was wrong with its solutions. Without feedback,
the reasoner might get faster at solving problems but would repeat its mistakes and
never increase its capabilities. So in the case-based reasoning, the evaluation and repair

are very important.

A case is the most basic element that represents an experienced situation. The case-
based reasoning emphasizes the use of concrete instance over abstract operators. It also
emphasizes the manipulation of cases over composition, decomposition, and re-
composition processes. As a result, the use of more specific knowledge is more efficient

than the use of less specific knowledge.

III. Technologies Used in XMLFinder

30

3.3.2 The principle techniques in CBR
The techniques that make up the CBR are case representation, indexing, retrieval tech-

niques, and adaptation. The case-based reasoning is a cyclic and integrated problem-
solving paradigm, which utilizes the specific knowledge of previously experienced,
concrete problem situations (cases) to find a similar past case, and reuse its solution in

the new problem situation, otherwise to solve a new problem.

e Case representation

The representation problem in CBR is primarily the problem of deciding what to store
in a case, finding an appropriate structure for describing case contents, and deciding
how the case memory should be organized and indexed for effective retrieval and reuse.
An additional problem is how to integrate the case memory structure into a model of

general domain knowledge, to the extent that such knowledge is incorporated.

The case storage is an important aspect in designing an efficient CBR system, which
has tight relationship with case representation. The case-base should be organized into a
manageable structure that supports the efficient search and retrieval methods. The de-
signer should balance between the richness of cases’ preservation and the simplification

of the access and retrieval of relevant cases.

e Indexing

The idea of indexing is central to the representation, storage and retrieval of cases. Each
case is tagged with a set of indexes, which serve to guide the search process for retriev-
ing cases appropriate to the current problem situation. Indexing avoids a linear search
through the entire case library, which can often contain thousands of cases!

A good index is one that is distinct but not unique, so that a small set of cases will be
retrieved [Riesbeck & Schank, 1989]. The more specialized a case is, the larger its set

of indexes will be.

III. Technologies Used in XMLFinder

31

e Retrieval
In retrieval, matching or similarity-assessment is digging deeper to realize the similar
problem by using indexing vocabulary. People use CBR to build decision-aiding sys-
tems, which can retrieve cases better. Case retrieval includes two steps, one is recalling
previous cases: retrieve "good" cases that can support reasoning come in the next step.
Another is selecting the best subset: select the most promising case(s) to reason with
those generated from step one. Recently, two general ways to do cases retrieval are the
nearest neighbor retrieval, and inductive retrieval.
e Adaptation
Old solutions are used as inspiration for solving new problems. If they are not exactly
matched, old solutions must be fixed to fit new situations, this is the adaptation.
There are four general methods for adaptation:
e Substitution: substitute values appropriate for the new situation for values in the
old solution.
e Transformation: transform an old solution into one that will work in a new situa-
tion.
e Special-purpose adaptation and repair: used to carry out domain-specific and
structure-modifying adaptations not covered by the above methods.
e Derivational replay: reuses the method for deriving an old solution or solution

piece to derive a solution in a new situation.

3.3.3 CBR in e-commerce system

Aamodt and Plaza [Aamodt & Plaza, 1994] established CBR-cycle, which was de-
scribed by the following four processes (Figure 3.3):

e Retrieve the most similar case or cases

¢ Reuse the information and knowledge in that case to solve the problem

e Revise the proposed solution

e Retain the parts of this experience likely to be useful for future problem solving

III. Technologies Used in XMLFinder

32

Learned
Gase

Confirmec Suggestea
Soiution Safution

Figure 3.3 Traditional CBR cycle

The development trends of CBR methods can be associated around four main topics
[Aamodt & Plaza, 1994]: Integration with other learning methods, integration with
other reasoning components, incorporation into massive parallel processing, and

method advances by focusing on new cognitive aspects.

[Wilke et al, 1998] modified the cycle in their sales support application as shown in
Figure 3.4. First, the sales process starts with a set of initial demands stated by the user
followed by a retrieval process for similar products in the product base of all available
products is performed. Second, the retrieved products may be reused in a product con-
figuration phase. In this phase, the products are tailored to the specific demands of the

user. These modified products are offered to the customer. Third, the user evaluates

III. Technologies Used in XMLFinder

33

these offers during the revise phase, which results in a set of evaluated products. The
customer can state that he accepts certain products or parts of the products or he may
state that something is not appropriate. Finally, a new step called refine is introduced.
This step dose not occur in the traditional CBR cycle. Here, the current user demands
are refined based on the evaluations given by the customer. This is required if the cur-
rent demands cannot be fulfilled on the basis of the available products. After this refine
phase the e-commerce cycle is re-entered. Here, a retain phase must not happen because
a successful selling of a product dose not lead to an additional product in the product
base. The user demands accompany the products from the product base during all
phases. This cycle must possibly be re-entered several times until a sufficient negotia-

tion result (meeting of demands and offered product) is archived.

III. Technologies Used in XMLFinder

34

Figure 3.4 The CBR Cycle for Electronic Sales Support Applications

By looking at the trends of CBR application, we find out several applications in e-
commerce [AI_EC]. These systems may open up for a more general coupling of CBR -
and Al in general - to information systems. The use of cases for human browsing and
decision-making is also likely to lead to an increased interest in intelligent computer --
aided learning, training, and teaching. The growing amount of ongoing CBR research in
e-commerce has the potential to lead to significant breakthroughs in AI methods and

applications.

3.4 XML technology
The web is changing every day. It is not only a place for beautiful web pages, but also a
communication medium where businesses can perform daily routines. Therefore the

buzz of e-commerce is everywhere. E-commerce is not about creating a shopping center

III. Technologies Used in XMLFinder

35

on the web. Rather it is about how a business can communicate with its partners, cus-
tomers and suppliers. Although HTML is a widespread standard for the presentation of
simple documents, it does not disclose anything about either the content or context of
the data. By contrast, XML delivers information that separates content from presenta-
tion. XML provides the recipient of the data with a business context that allows the re-

cipient to act intelligently on the data.

3.4.1 The concept of XML

“XML is the eXtensible Markup Language, a proposed specification from the World
Wide Web Consortium that takes a giant leap beyond HTML [W3.org].” XML will
make documents multidimensional, capable of being processed by different programs,
delivered by different methods and viewed differently by different users. XML data can
further describe itself by including a document type definition (DTD). The DTD defines
the structure of the data object up front so that applications can ascertain what attributes
is included and what fields are optional. This enables application servers to interpret

data on the fly and respond dynamically.

’The main point of XML is that, by defining their own markup language, authors can
encode the information of their documents much more precisely than with HTML. This
means that the programs that process these documents can "understand" them much bet-
ter, and then process the information in ways that are impossible with HTML.

XML is not HTML. Despite the obvious superficial similarities, the basic HTML be-
haviors, such as the idea that includes an image, or that <p>
starts a paragraph, are not built in to XML. Early generalizations of XML have led
many people believe that XML is just a method for extending HTML by adding new
tags. In fact XML and HTML exist in entirely different layers of markup technology.
HTML is a tag language (more formally, a markup language) — a set of standard delim-

iters with standardized meanings that can be put into documents in order to indicate the

III. Technologies Used in XMLFinder

36

role of particular pieces of the document. For example, anything between <H2> and
</H2> in an HTML document is understood to be a second-level document head. How-
ever, XML is SGML (Standard Generalized Markup Language, ISO 8879), which is
same with HTML in this point. But XML is only a fairly small subset of SGML, which
retains the key SGML advantages of extensibility, structure, and validation in a lan-

guage that is designed to be vastly easier to learn, use and implement than full SGML.

3.4.2 Properties of XML
XML provides a number of compelling benefits to developers and users. Also it brings

so much power and flexibility to Web-based applications [MSN-XML]:
1. Searching with meaning

The use of tag in XML document makes the data meaningful. It allows customers to
search by features. Without XML, it is necessary for the searching application to
understand the schema of each database, which describes how it is built. This is vir-
tually impossible because every database describes its data differently. With XML,
however, books, for example, could be easily categorized in a standard way by au-
thor, title, ISBN number, or other criteria. Agents could then search these identified

bookstore sites in a consistent way.
2. Developing flexible web applications

Text-based XML document is easy to be delivered to other applications, objects, or
middle-tier servers for further processing. Or it can be delivered to the desktop for
viewing in a browser. XML, together with HTML has the ability for display, script-
ing for logic and a common object model that provides the technologies needed for

flexible three-tier Web application development.
e Data integration from disparate sources

The ability to search multiple, incompatible databases is virtually impossible to-

day. XML enables structured data from different sources to be easily combined.

IMI. Technologies Used in XMLFinder

37

Software agents can be used to integrate data on a middle-tier server from back-
end databases and other applications. This data can then be delivered to clients
or other servers for further aggregation, processing, and distribution.

The extensibility and flexibility of XML allow it to describe data contained in a
wide variety of heterogeneous applications, from describing collections of Web
pages to data records. Again, since XML-based data is self-describing, data can
be exchanged and processed without having a built-in description of the incom-

ing data.

e Local computation and manipulation

After being delivered to the client, data in XML format can be parsed and lo-
cally edited and manipulated, with computations performed by client applica-
tions. Users can manipulate data in various ways, rather than merely presenting
it. Data computations can be performed without additional return trips to the

Server.

Separating the user interface that views data from data itself makes the applica-
tions more powerful. XML technology can create a simple, flexible and open
format to satisfy the web application. However, it is performed only on high-end

database before.
e Multiple representation of data

Once data has been delivered to the desktop, it can be represented in different
ways. By describing structured data in a simple, open, robust, and extensible
manner, XML complements HTML, which is widely used to describe user inter-
faces. Again, while HTML describes the appearance of data, XML describes
data itself. Since the display is now separated from data, it results in data being
presented appropriately. Otherwise local data can be presented dynamically in a

manner determined by client configuration, user preference, or other criteria.

III. Technologies Used in XMLFinder

38

CSS and XSL provide declarative mechanisms for describing a particular view

of the data.

3. Delivering data on the Web

Because XML is an open text-based format, it can be delivered using HTTP in the
same way that HTML can do today without any changes to existing networks.
Because XML completely separates the markup notion from its intended display,
authors can embed the procedural descriptions in different structure, so that they can
show the document in different data views. This is an incredibly powerful mecha-
nism for offloading as much user interaction as possible to the client computer while
reducing server traffic and browser response times. In addition, XML lets individual
pieces of data be altered with only an update notice, greatly enhancing server scal-
ability as a result of a far lower workload.

XML compresses extremely well due to the repetitive nature of the tags used to de-
scribe data structure. It is necessary to compress XML data. XML can use the com-

pression standard in HTTP 1.1 servers and clients.

3.4.3 Access to XML document

XML is not a programming language. We can't declare variables, set triggers events,
loop 30 times, or do anything except using XML to describe information. XML does
not have any built-in scripting languages. However, XML is the data structure of the
fundamental part programming. So a language is needed to manipulate the data struc-

tures.

From the beginning, Java distinguished itself among programming languages by being
platform-independent. Objects created in Java would run on any platform that supports
Java. In a way, XML is platform-independent data. If the programmers accept the ar-
gument that programs and data go hand-in-hand, then they can see why Java and XML

III. Technologies Used in XMLFinder

39

are such a perfect fit. So Java helps in its interaction with XML documents, but Java is
not unique in that sense.

In order for a programming language to effectively interact with XML documents two
types of transformations must be captured. First of all, the program must have a way to
interact with the various nodes (elements, attributes, text, etc); second, it must have a
way to navigate the hierarchical data structure of an XML document. So a parser is
needed, which is a program that reads and interprets an XML document. It does the
low-level interaction with a physical XML file or a stream of data representing an XML
document; and exposes the elements within an XML document and hierarchical struc-
ture of the document. There are a number of parsers available in recent years. Such as:

e XML Parser from IBM

e Project X from Sun Microsystems

e DataChannel and Microsoft XML Parser

e XP by James Clark, etc.

When programmers know how to write XML document and DTD, and they have a
parser in hand, for examples Project X, how are they going to work with them? Two
tool sets can help: one lays on the document in time (SAX), the other in space (DOM).
SAX and DOM are the main tools to process XML and DTD.

e SAX (Simple API for XML) [SUN-XML]
SAX associates an event with tag (opening or closing) and each block of text. It can be
used to read an XML file sequentially. It's the event-driven, serial-access mechanism

that doses element-by-element processing.

e DOM (Document Object Mode)

DOM [W3C_DOM] is a programming interface independent of a language and plat-
form, which permits scripts to access and modify the content, structure and style for
HTML and XML documents. The DOM Core defines the tag-document of XML as a

III. Technologies Used in XMLFinder

40

tree-like structure of node objects; in other words it breaks up the document into a hier-
archy. JAXP produced by SUN makes it possible to operate XML document by DOM
and SAX.

e JAXP (Java API for XML Parsing)

JAXP lets developers easily build Java technology-based applications powered by XML
for e-commerce, enterprise application integration and Web publishing. Specifically, it
allows developers to read, manipulate, and generate XML documents using pure Java
APIs. As an optional package, JAXP is not part of the JRE (Java Runtime Environ-
ment), but it can be added for specific development needs. JAXP is the new standard

method for a Java platform-based application to plug in any XML-conformant parser.

JAXP is the parser, which reads XML text within an application and a standard that
gives developers flexibility of choice in parsers. JAXP makes it easier for developers to
get started with XML by providing a standard, seamless interface for applications to
support any XML-conformant parsers. It fully conforms to XML standards established
by the World Wide Web Consortium (W3C) and the XML community.

As shown in Figure 3.5, the JAXP APIs contained in the jaxp. jar file, is comprised of
the javax.xml.parsers package. The package contains two vendor-neutral factory
classes: SAXParserFactory and DocumentBuilderFactory that give programmers a SAX
parser and a DocumentBuilder respectively. The DocumentBuilder, in turn, creates

DOM-compliant Document object.

III. Technologies Used in XMLFinder

41

Figure 3.5 JAXP Parser Working Model [SUN-XML)]

3.5 JSP technology and its XML solution
Java has traditionally been known as providing great Web client-side application sup-

port. Java is also a great platform for writing the server side Web-based applications.
JSP (JavaServer Pages) [SUN_JSP] offers Web builders a very powerful way of dealing
with unknown or thin client requirements. With the same features with Java, JSP is an

excellent platform for writing client and server applications.

Using JSP technology, organizations are able to leverage existing Java platform exper-
tise and create highly scalable enterprise applications. It has following features
[JSP_XML]:

e FEasy and Rapid Web Development, Deployment and Maintenance

e Emphasizing Reusable Components

III. Technologies Used in XMLFinder

42

e Separating Content Generation from Presentation
e Open Development and Widespread Industry Support
e Platform Independence

e Simplifying Page Development with Tags

JSP technology provides a number of capabilities that are ideally suited for working
with XML. JSP pages can contain any type of text-based data, so it is straightforward to
generate documents that contain XML markup. Also, JSP pages can use the full power
of the Java platform to access programming language objects to parse and transform
XML messages and documents. In particular, as part of the Java software environment,
JSP pages can use objects that leverage the new Java APIs for processing XML data.
Finally JSP technology provides an abstraction mechanism to encapsulate functionality
for ease of use within a JSP page. Figure 3.6 shows the data accessing structure among

JSP server, client and data source.

Figure 3.6 Data Accessing in JavaServer Pages Technology[SUN_JSP]

III. Technologies Used in XMLFinder

43

e Using multiple data sources

It is easy to use multiple data sources, including XML sources, in a JSP page. The data
could be XML document, database, or object. A page may connect to a data source
through a server-side object, transform the information into data abstractions, and then

render the data using JSP elements.

e Converting XML to server-side objects and extracting object properties

XML/Java Binding technology (JSR 31) in the future will process XML document
automatically by converting XML to server-side objects and extracting object proper-
ties, except for using DOM or SAX and encapsulating into a custom tag or a JavaBeans

component in order to create these objects. An example is shown in Figure 3.7.

<% @ taglib uri="..." prefix="tl" %>
<html>
<tl:parse id="customer" type="Customer"
xml="XML_Customer_URL"/>
<tl:parse id="saleBooks" type="BookInventory"
xml="XML_Book_Inventory_URL"/>
<head>
<title>Welcome</title>
</head>
<body>
Welcome
<jsp:getProperty name="customer" property="lastName"/>

<jsp:getProperty name="customer" property="firstName"/>
<table border="0" width="50%">
<tl:iterate id ="book" type="Book"
collection="<%= saleBooks.getBooks() %>" >
<tr>
<td>
<jsp:getProperty name="book"
property="title"/>
</td>
<td>
<jsp:getProperty name="book"
property="price"/>
<ftd>
</tr>
</tl:iterate>
</table>
</body>
</html>

Figure 3.7 An Example of Converting XML Data to Server-side Objects

III. Technologies Used in XMLFinder

44

¢ Generating Markup Languages Using JSP Pages

We saw a lot of different types of user-oriented clients for Web-based applications, such
as PDAs, WAP-enabled mobile phones, and landline voice clients. JSP technology and
XML are the natural partners for developing multilingual Web applications that use het-
erogeneous data sources and support multilingual clients.

As the world quickly moves toward "Write Once, Run Anywhere" capability-based so-
lutions, JavaServer Pages will fast become a requisite technology for developing dy-

namic web pages [JSP features].

III. Technologies Used in XMLFinder

Chapter 4

Architecture of
XMLFinder System

The description of a customer’s requirement usually is more general and not exactly
clear facing various products. So we have to utilize the ambiguous information and
other information that the customer can provide, such as their preferences and con-
straints to help them find a satisfactory answer. Communication between servers or
agents also poses a problem, where the data consumers and data providers all come to-
gether -- each talking a different language. The result is that the system looks like a
"Tower of Babel" [CoCo, 1998]. Fortunately, XML -- the universal format data for data

interchanging can tame this chaos by acting as the object model for distributed data.

4.1 Creation of XMLFinder agent system

We proposed a shopping agent system -- XMLFinder, which will give consumers the
products' recommendation according to users’ preferences and constraints. It would
look like a product broker, which will find a list of products based on user criteria
through a desirable user interface that prompts shoppers to input their constraints and

gets information through standard search procedures.

Of course, there are some brokers’ web sites that already exist on the Internet. The
problem is that most agents need to do a lot of maintenance to translate data from dif-
ferent sources to a well-known format. As a result, in many instances browsers can’t get
data automatically. They have to first collect information and then assemble it in a use-
ful format. A better way for vendors to publish their information would be through the
use of a well-known data format. The XML standard meets most of the required criteria

and provides a promising tool in the development of this critical area of Internet devel-

46

opment. By taking advantage of existing features of XML, in combination with other
new technologies, our multi-agent system (XMLFinder) would be unique as a web ap-

plication in electronic commerce field for recommending products for e-shoppers.

XMLFinder is composed of two agents — an XMLAgent and a RecommendAgent. The
first is responsible for the generation, integration and publishing of XML documents;
the second is responsible for the retrieval of information by using agent techniques.
These two agents work and interact with each other. Figure 4.1 shows the architecture
of our system. It is constructed on three-tier architecture. Each tier has its own responsi-
bilities; together they form a cohesive, flexible, and scalable shopping application,
where XML will take an important role at each tier. The ‘intelligent mechanism’ would

be introduced in next chapter.

RecommendAgent

v 1

Similarity Measure
JDBC

Similarity o
Database
Case-base

Figure 4.1 The Architecture of XMLFinder

User Profile
(XML)

4.2 Three-tier net architecture of XMLFinder
Why do we use the three-tier network architecture? The concept of tiers provides a con-

venient way to group different classes of architecture. Basically, if an application is

IV. Architecture of XMLFinder System

47

running on a single computer, it has a one-tier architecture. If an application is running
on two computers — for instance, a typical Web CGI application that runs on a Web
browser (client) and a Web server — then it has two tiers. In a two-tier system, there are
a client program and a server program. The main difference between these two is that
the server responds to requests from many different clients, while the clients usually

initiate the requests of information from a single server [Schussel, 2000].

Often, a two-tier application will need to store data on a server, usually, the information
is stored on the file system; however, data integrity issues arise when multiple clients
simultaneously ask server to perform tasks. That makes us adopt the three tier net struc-

ture.

A three-tier application adds a third program to the mix, usually a database, in which
the server stores its data. It is an incremental improvement to the two-tier architecture.
The flow of information is still essentially linear: a request comes from the client to the
server; the server requests or stores data in the database; the database returns informa-
tion to the server; the server returns information back to the client. The basic three-tier

logic network architecture is shown in Figure 4.2.

Client Browser
Tier

Middle Tier Ap-
plication

Back-end Tier

Figure 4.2 Basic Model of Three-tier Logic Network

IV. Architecture of XMLFinder System

48

Generally, our web-based shopping agent system (XMLFinder) follows this basic struc-
ture that consists of three logical tiers, in which each tier communicates with one an-
other.

e A client tier, which consists of a Web browser,

¢ A middle tier, which has host’s application, and

e A back-end tier, which hosts databases and data services.

The back-end tier is the third tier, which represents the XML document and relational
database. The middle-tier is the business tier, which is the heart of the system. It repre-
sents a Java-based Web application. This tier corresponds with XML, either statically
generated (served from an XML file) or dynamically generated (served by the JSP). Us-
ing XML instead of HTML, as we shall see, means that we can have dynamic content
without sacrificing usability or interoperability. The first tier of our application includes
a browser. It is also called the presentation tier; its main function is to send messages to

the middle tier by encoding commands and arguments in HT TP requests.

4.3 Back-end tier
Back-end tier (also called data processing tier) is responsible for locating and storing
data, in which data services will process an abstraction to the middle tier, so that the

middle tier doesn’t need to care about the location of data, or how to access, etc.

XML is used in the back end as an efficient storage format for any highly structured in-
formation -whether it is document or application data. If the data is hierarchical when it
is in use, it makes sense to preserve the structure in storage. Storing it in another format
requires the conversion of data and the inefficiency of imposing an inappropriate struc-
ture onto the data. In the case of a traditional relational database, richly structured data

has to be decomposed into its elements, mapped to rows and columns, and then recon-

IV. Architecture of XMLFinder System

49

structed when accessed. XML is a convenient and efficient storage format for any richly

structured data.

XML is the ideal format for data processing tier as it is a common format for different
data sources without special format and structure. In EDI processing, XML is taking the
place of binary formats. Not only XML is easier to write than the proprietary EDI for-
mats, but also XML can transmit HTTP traffic.

In our system, XMLAgent is responsible for part of data processing required for inte-
grating XML documents from several data sources (such as ODBC database,) and trans-
ferring them to the middle tier. Figure 4.3 shows the back-end tier structure of our sys-
tem. The back-end tier, which uses case representation, is discussed in the next chapter
in detail. XML faces some problems in replacing the database despite being beneficial
for data integrating and publishing [North, 2000]. Data volume can be a problem. Man-
aging and searching XML data is hard when content exceeds a small number of files.
Publishing projects deliver pages to a browser but they may need to search among a
large amount of data in the database. Version control for collaboration and security of
applications having sensitive information also pose a problem if there are multiple au-
thors or users. Another issue is the need for sophisticated indexing and searching tech-
niques. These are required to search a large collection of documents or to execute con-
tent-based queries. A content-based query can match text in an XML document, pat-

terns in an image, a location in an area, or all three.

IV. Architecture of XMLFinder System

50

Middle-Tier
Application

UserProfile

Case-base
(XML)

T
/

Data Server

Figure 4.3 Back End Tier Model

We adopted a relational database (Microsoft Access) to store our products and users’
registration information; therefore it’s necessary for this system to exchange XML
document and database data [XML-DB]. Fortunately, because of the widespread adop-
tion of SQL, there are a lot of APIs for accessing SQL database. JDBC enables devel-
opers to use Java, SQL and advanced objects such as array and disconnected row-sets.
We’ll get well-formed file from database structure to access XML document by using
JDBC-ODBC Bridge driver produced by Sun. Here are the examples showing the com-
bination between XML document and database. Example 1 is a SQL structure that
shows the creation of a product table of an Access database, which is constructed
manually. Example 2 shows what the counterpart XML DTD might be for defining the

product description as a case base in CBR.

Example 1: SQL for products

CREAT TABLE products (PRONO INTEGER,
BRAND CHAR (50),
STYLE CHAR (50),
PRICE DOUBLE,
SIZE CHAR (50),
COLOR CHAR (50),
PICTURE CHAR (50)
primary key (PRONO))

IV. Architecture of XMLFinder System

51

Examples2: DTD of case base for products
<xml version="1.0" encoding = ‘us-assii’ 7>

<!-- DTD for case base of users>
<!-- start of element declarations -- >

<!ELEMENT user (case)+ >
<ATTLIST user uid #REQUIRED>

<!ELEMENT case (caseNo?, Pbrand, Pstyle, Psize, Pcolor, Pprice, date, time)>

<!ELEMENT Pbrand (value, weight)>
<!ELEMENT Pstyle (value, weight)>
<!ELEMENT Psize (value, weight)>
<!ELEMENT Pcolor (value, weight)>
<!ELEMENT Pprice (value, weight)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT time (#PCDATA)>

<!ELEMENT value (#PCDATA)>
<!ELEMENT weight (#PCDATA)>

4.4 Middle tier

Middle tier application, also known as business service tier, is responsible for exchang-
ing data with client browser and interfacing to back-end tier data, aggregating informa-
tion from necessary sources, processing it with internal business logic, and creating a

set of information to be sent to the client.

In our system the middle tier application takes the role of RecommendAgent and
XMLAgent. The former gets personalized content from client browsers, then runs on
behalf of the user in order to perform a task; the later sets up an agent program by using

the improved searching capability of XML using content tags. The agent can search

IV. Architecture of XMLFinder System

52

from the information sources to get a combined data that matches the selection criteria

from user. Figure 4.4 shows the main tasks of the middle tier in our system.

—
, - RecommendAgent
e Get the user’s requirement
from user’s interface

e Fetch information from different vendor
data sources (database)
e Utilize the similarity mechanism of

o

CBR
© ° JSP
S e Send the synthesized XML document to
user Server
e Filter relevant data to form user’s pro-
L~ file (XML file) v
XML Agent

WEB Application Server

Figure 4.4 Middle Tier Application Server

The RecommendAgent is represented as a CBR mechanism, which uses a similarity en-
gine to get mind-like searching results similar to the user's requirement. The intelligent
RecommendAgent employs the user’s preference and constraints to sift through the in-
formation provided by numerous content providers. The information is aggregated by
the RecommendAgent and is represented as a profile form, which is then transferred to

the client tier for publication.

The XMLAgent can be used to solve some of the most difficult issues related to appli-
cation design and system integration. The middle tier is where communication and data

sharing takes place. It includes transfers between application servers and communica-

IV. Architecture of XMLFinder System

53

tion, and data sharing between application servers and back-end storage engines. Be-
cause XML is self-describing, it can be used as a universal format for data interchange,

which significantly simplifies the potential chaos in the middle tier.

4.5 Client tier

First-tier application, also called the user browser tier, or the client tier, serves as the
interface between the end-user and an application running on a server. The client tier is
the means by which end users interact with the application; it allows end users to view
information generated by the application server and to input new information and sub-

mit request to the application server.

Our system is created on JSP platform, which supports several types of clients. JSP ser-
vices can interact with their clients via dynamically generating HTML pages and forms.
More sophisticated services will interact with their first-tier by directly exchanging
business data. JSP and servlet are used to form this business data in a way that is easy
for clients to work with. These clients can be both Java applets running on a web

browser and Java technology-based programs.

XSL (XML Style Language) style sheet of an XML document are used to produce an
output on the presentation tier. Because XSL can provide a clean separation between the
content itself and the specific format required by a target application or output docu-
ment. By separating content from the format in which it's used, XSL makes it easier to

share information across multiple systems.

To apply an XSL style sheet of an XML document, a client must have an XSL proces-
sor. Currently IE5 [IE web site] is the only browser with an XSL processor. In the
newer drafts, XSL provides not just a formatting capability, but also through XSLT, a

full transformation capability for manipulating both tags and data content.

IV. Architecture of XMLFinder System

54

Examples3: XSL which translate a XML file

<?xml version="1.0" encoding="ISO-8859-1" 7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">

<xsl:template match="/">
<html>
<head></head>
<body>
<table align="top">

<form name = "form2" type ="post" action = "newcase.jsp" >
<xsl:for-each select="ShopGuide/Entity">
<tr> <td width="8%"> <xsl:value-of select="CaseNo" /> </td>
<td width="12%"> <xsl:value-of select="Brand" /> </td>
<td width="12%"> <xsl:value-of select="Style" /> </td>
<td width="12%"> <xsl:value-of select="Size" /> </td>
<td width="12%"> <xsl:value-of select="Color" /> </td>
<td width="8%"> <xsl:value-of select="Price" /> </td>
<td width="8%"> <xsl:value-of select="Score" /> </td>
<td width="8%">
<xsl:element name="input">
<xsl:attribute name="type" >checkbox</xsl:attribute>
<xsl:attribute name="name" >cart</xsl:attribute>
<xsl:attribute name="value" ><xsl:value-of select="ToCart" /></xsl:attribute>
</xsl:element></td>
<td width="8%"> <a><xsl:attribute name="href">./image/<xsl:value-of se-
lect="Picture” /></xsl:attribute> show </td>
<td width="5%"> <xsl:value-of select="No" /> </td>
</tr>
</xsl:for-each>

</form>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

e HTML Page Based Clients
A service can be presented directly to a user's web browser as dynamically generated
HTML pages. JavaServer Pages technology is an easy way to dynamically compose

these pages using a familiar scripting paradigm that combines HTML and Java technol-

IV. Architecture of XMLFinder System

55

ogy-based code. In some cases, a service may require some fairly complex code. This
can be handled by placing code in JavaBeans components and calling it from a JSP. A
service can also be directly programmed in the Java programming language using a

servlet, as shown in Figure 4.5.

Middle Tier
Web Client
User
Html/Forms B Interface
JSP/servlet

Figure 4.5 Presenting Services Directly to a Browser

e HTTP Content Based Clients
It is often useful to provide functionality directly at the client tier to help a user organize
and interact with the service's information. In this case, the service exchanges raw con-
tent with the client instead of HTML pages. This content is typically in the form of

XML documents that is exchanged between the client and the service using HTTP.

Typically this XML content is handled in the first-tier by JavaBeans components that
are provided by the service in an applet that is automatically downloaded into a user's

browser, as shown in Figure 4.6.

IV. Architecture of XMLFinder System

56

Browser Middle Tier

JSP/
P Serviet

>

Java

Figure 4.6 Providing JavaBeans Components to a Browser

In our system, the client tier serves the following purposes.

e User’s registration

e Gathering information from the user

¢ Displaying recommendation information that has received from RecommendAgent
¢ Ending the transaction

In the following section, we provide an example to show how the client-tier works in

our system.

4.6 Client-tier description of Fashion Agent

A prototype system of XMLFinder, Fashion Agent has been constructed. As a web ap-
plication it gives recommendations when consumers buy clothes. For example, a lady
comes to this agent and wants to buy a dress. The following steps are the procedures of
the lady’ dealing with this Fashion Agent from registering, querying, the agent’s re-

sponding to and ending this transaction.

IV. Architecture of XMLFinder System

57

1. User’s registration

Figure 4.7 shows the procedure of the user’s registration. The procedure includes:

Old | P Verification Start-
—4 Transac-
New User

Figure 4.7 Processing of Registration

New user’s registration (name, password, email, etc) to Fashion agent

Old user sign-in procedure (name and password) to their agent system
Browser's sending the message to the server for verification

Server confirming the registration

Gathering information from the user, and then relaying back to the application

server for further processing

Figure 4.8 shows the procedure of gathering information from users.

There are two pieces of information which are required from users, one is the prefer-

ences, which are given before each purchasing, another is the constraints, which show

the likes or dislikes of users, which are stored in XML file form. The user can modify

them at any time. The lady planning to buy her dress from the fashion agent might have

the following preferences and constraints:

User

>

Edit
‘ Constraints Edit
Preferences Searching

Figure 4.8 Gathering Requirement Information from Users

IV. Architecture of XMLFinder System

e Inputting preferences

58

As shown in Table 4.1, the lady will give the following attributes value pairs, in which

the weights in the table will be discussed in chapter 5.

Table 4.1 User’s Preferences Example

Attributes Value Weight
Brand Polo 0.18
Style Formal Dress 0.22
Color Pink 0.2
Size Medium 0.23
Price 50-100 0.17

e Inputting or editing user’s constraints

Such as:

-- I never buy this brand : "Nike"

-- Don't recommend this style to me: "Short dress"
-- This color never fit me : "Black"

-- Don’ t show me the products whose price are more than 5 times than my price.

3. Displaying information received from Fashion agent

e Display the recommended searching results according to the user’s requirements in
HTML format

e Display the user’s Profile in XSL format

4. Ending the transaction

e User cancels her search processing

e User confirms the searching results and puts them in the shopping cart

e Fashion agent saves the confirmed results to case-base as the user’s profile.

e User terminates the relationship with Fashion agent

IV. Architecture of XMLFinder System

Chapter 5

Methodologies and Algorithm

The basic idea of CBR is to solve new problems by comparing them to problems al-
ready solved [Aamodt &Plaza, 1994]. The key assumption is that if two problems are
similar, then their solutions are probably also similar. In XMLFinder, a problem is typi-
cally the assignment of the particular product to a requirement stated by the customer.

Products’ retrieval based on k-Nearest Neighbor is used.

Nearest Neighbor (NN) is one of the oldest and more popular classifier techniques,
which is wildly used in Case-Based Reasoning (CBR) system for similarity retrieval. In
CBR cycle [Aamodt & Plaza, 1994] (a loop of retrieve, reuse, revise and retain steps)
the retrieval phase is devoted to find the similar case among the cases stored in the case
base depending on similarity criteria. This technique is at the base of many implementa-
tions of case-based reasoning systems [Aha & Goldstone, 1989] [Ricci & Avesani,
1995], because CBR systems have additional domain knowledge built into them com-
pared with the traditional database system. The case base in CBR system is described as
the training set in NN terminology. Therefore the researchers abstract the functions to

assess the similarity of a given query to the cases in the case-base systems.

A similarity measure SIMILAR (q, c) can be used to represent the similarity between
the query and the specific product attribute. Typically, similarity measure generates
value 0 for query and specific case exhibiting no agreement among the selected attrib-
utes, value 1 when perfect agreement is detected and intermediate values for cases of
partial agreement. To understand how such a similarity measure is used to find the best
solution for a given problem, we can consider the cases being represented as a fixed-
length vector n. These attributes may have several values and their values can be ar-

ranged to reflect some kinds of order. The problem space can now be seen as an n di-

60

mensional space (as shown in Figure 5.1). When a new query is represented to the sys-
tem, the similarities to all the cases in the case base are calculated. The cases within a

similarity range of a certain threshold are then presented to the user.

Attributel
A Casel= (attrl1, attr12, attr13)

Query = (attr01, attr02, attr03)
Case2 =(attr21, attr22, attr23)

---=P Attribute2

Attribute3 Case3 = (attr31, attr32, attr33)

Figure 5.1 Usage of similarity in CBR: cases are
distributed over an n-dimension problem space

In the real world, the cases are described by several attributes, which may be repre-
sented by all possible pairs of attribute’s values, or other data structure such as Boo-
lean, taxonomy or a more complex object. In our prototype system, the cases are the
descriptions of products -- clothes, which are described using several attributes (such as
brand, style, color, etc). We adopt a metric in the context of nearest neighbor’s method
and find the weighted sum of local similarities. Then we show the first ten best cases to

the users after scoring all the cases' similarities.

n
SIM (q,¢) =,2103i Si(qi » ¢)
i=

Where SIM (q, c) is the global similarity between the query (q) and case (c), S; is the

local similarity between query and case at attribute i, n is the number of parameters of

V. Methodologies and Algorithm

61

each case, (0; is the weight given to parameter i, which shows the user's preferences to

different attributes. Therefore, the heart of our agent system based on CBR is the com-

putation of global similarity between a new case - the user’s input (query) - and previ-
ous cases stored in a case base. The key is to compute: S; (q; , ¢;) and); initially in or-

der to get the global similarities.

5.1 Local similarity measures

Cases are associated with qualitative and quantitative parameters called features or at-
tributes. The CBR algorithm calculates the similarity between cases based on attribute-
value pairs between the new and each historical case. We call the similarities as local
similarity. The calculation of the local similarities depends on the type of the attribute
and the range the attribute-value may take. The local similarities for discrete and con-

tinuous values are calculated in different ways.

e Discrete similarity
The similarity values of some attributes are listed in a table. They are the combination
of the similarities to the possible attributes. There are two kinds of tables: symmetric

and asymmetric table according to the native feature of the different attribute's values.

The asymmetric attribute values differentiate between a query attribute value of x and a
case value of y, and vice versa (as shown in Table 5.1). For example, if the attribute is a
“product’s rating” and the user is looking for a product with three-stars, both a three-
star and a five-star will satisfy this query (the similarity is 1). If the query is five-stars,
on the other hand, the three-stars product does not satisfy the user’s criterion (the simi-

larity is 0.65).

V. Methodologies and Algorithm

62

Table 5.1 Asymmetric Similarity Attribute-value Pairs

Case
One-star Three-stars Five-stars
Query
One-star 1 1 1
Three-stars 0.6 1 1
Five-stars 0.4 0.65 1

The symmetric similarity attribute values are the same between a query attribute value
of x and a case value of y, and vice versa (as shown in Table 5.2). For example, if the
attribute is “color” and the user is looking for a “red” dress, only the “red” case can ex-

actly satisfy the user’s query (similarity is 1).

Table 5.2 Symmetric Similarity Attribute-value Pairs

Case
Red Rose Blue
Query
Red 1 0.85 0.5
Rose 0.85 1 0.45
Blue 0.5 0.45 1

e Continuous Similarity

The similarity values of some attributes such as the product price are continuous. It
can’t be listed in a table like discrete attributes. Therefore we need a function to de-
scribe it. In Fashion agent, we define a similarity function for the clothes’ price as

shown in Figures 5.2 and 5.3.

V. Methodologies and Algorithm

63

0 x0 x1 5x1

Figure 5.2 Continuous Similarity

0.5+P/2X, P< X,
(1 Xo<P< X
SIM (q,c) =
1.25-P/4X, X, <P<5X%;
0 P>5X;

Figure 5.3 ContinuousSimilarity Function

When users intend to buy products, they usually have a price range in mind. In most
cases, this is not an exact price. For example, when a lady wants to buy a dress in the
$50-100 (x0—x1) range, she will be satisfied whether the price is $60 or $75 (the simi-
larity is 1); however if the price is lower than her threshold (e.g. $40), we define the
similarity to be between 0.5 and 1. Although the cheaper price is preferred (defined as
more than 0.5), it doesn't mean better. On the other hand, if the price is higher than the
user’s required limit, we define the similarity to be between 0 and 1. Also we define the
similarity to be O if the price is more than 5 times the user’s maximum price. In the pre-
vious example, if the lady's highest query is $100, then the highest price she will con-

sider paying is $500. As a consequence, she will not consider any price higher than

V. Methodologies and Algorithm

64

$500, and the similarity is thus 0. The adaptation mechanism in our system adjusts the

price function. We will discuss this at section 5.5.

5.2 Similarities storage and representation in XML

The Agent can get the continuous similarities immediately through the computation of
functions. What we need is a way to get the discrete attributes’ similarities. That means
that we need an effective way to access the similarities in a table.

The values in the discrete similarity table have following features as shown in Table
5.3:

e Each attribute constructs a matrix, and

e Each matrix has different rows and columns, and

e Only half of data in the table is usable (limits at symmetric table in our system).

Table 5.3 Symmetric Similarities Stored in Separated Tables

Attribute A (Color):
Attribute: Red Rose Blue
size
1.Red 1
2.Rose A21 1
3.Blue A3l A32 1
Attribute B (Style):
Attribute: | Formal | Casual Jacket | Short
Style Dress Dress Dress
Formal 1
Dress
Casual B21 1
Dress
Jacket B31 B32 1
Short B41 B42 B43 1
Dress

V. Methodologies and Algorithm

65

Relational database is very popular and mature to data storage in a long run. There
would be two ways to store the discrete similarity data in a relational database. One way
is to save each attribute in a different table, that means we have the tables with a num-
ber of attributes’ amounts, but each table only has half of data to be used (as shown in
Table 5.3). Another way is to put all the attributes’ values in one table, in which each
attribute occupies one row, that means the numbers of rows equal to the attributes’
amounts, but the numbers of columns in each row are not equal. In other words, there is

still much redundancy in this system (as shown in Table 5.4).

Table 5.4 All attributes’ Similarities Stored in One Table

1 A21 A31 A32
2 B21 B31 B32 B41 B42 B43
3 |

DBMS has a lot of advantages such as centralized control, data independence, and con-
flict resolution, etc. It’s an effective database system for managing a large volume of
data. However DBMS didn’t show its benefits in our scenario due to factors such as
high cost and relatively fixed data scheme. A point to remember is that the similarity

structure is composed of the values of product attributes that are changeable.

How do we store the discrete similarity (e.g. symmetric similarity) values in a table?
Adopting XML documents as the storage form of similarity data gives our system
unique capabilities. This approach is more effective than saving it in a database or text
file format since it is less costly than database storage (as shown in Tables 5.3 and 5.4).
Moreover, it allows the extraction of the attribute’s meanings directly from the XML
tag. We refer to the XML document of similarity representation as the back-end simi-
larities database (More detailed discussion is given on whether the XML document can
be called a database, in [Ajit, 2000] [Quin, 2000]). Figure 5.4 shows an example of the

similarities’ representation of XML in our system.

V. Methodologies and Algorithm

<?xml version="1.0" encoding ="ISO-8859-1" 7>
<root>
<attribute id="style">
<ShortDress>
<FormalDress>0.55</FormalDress>
<CasualDress>0.75</CasualDress>
<Jacket>0.45</Jacket>
<Suit>0.65</Suit>
</ShortDress>
<FormalDress>
<CasualDress>0.60</CasualDress>
<Jacket>0.55</Jacket>
<Suit>0.85</Suit>
</FormalDress>
<CasualDress>
<Jacket>0.70</Jacket>
<Suit>0.55</Suit>
</CasualDress>
<Jacket>
<Suit>0.35</Suit>
</Jacket>
</attribute>
<attribute id="size">
<Small>
<Medium>0.90</Medium>
<Large>0.80</Large>
<Extralarge>0.65</Extral.arge>
</Small>
<Medium>
<Large>0.80</Large>
<Extralarge>0.65</Extral.arge>
</Medium>
<Large>
<ExtraLarge>0.80</Extralarge>
</Large>
</attribute>
<attribute id="color">
<Rose>
<Sage>0.45</Sage>
<Sand>0.60</Sand>
<Wine>0.60</Wine>
</Rose>
<Sage>
<Sand>0.90</Sand>
<Wine>0.80</Wine>
</Sage>
<Sand>
<Wine>0.80</Wine>
</Sand>
</attribute>

V. Methodologies and Algorithm

67

</root>

Figure 5.4 Examples of Similarities' Data Representation in XML

XML permits searching based on content tags, it is possible to search any number of
information sources that matches the selection criteria, which have been indicated by
the user. XML allows data to be stored in a format more suited to object-orientation,
which offers a standard data format that allows objects to be created in a programming
language like Java. XML exists in the form that can be transported across the Internet
and processed. An XML document is a tree data structure (Table 5.5), as compared
with a relational database, which is represented in a rectangular grid table (Figure 5.5).
DOM and SAX parsers are effective to parse XML documents composed of node struc-
tures. XML nodes can be easily parsed into elements that store the data in object form

and maintain the hierarchies of the nodes.

XML is also a convenient and efficient storage format for any richly structured data and
a number of databases already support XML data formats. There is a growing industry
support for a standard XML query language (XQL). XQL allows applications to search

and retrieve information from a document in the same way as querying a database.

Table 5.5 Relational data model Figure 5.5 XML document model

V. Methodologies and Algorithm

68

Clearly, if data are stored in XML format on the back-end tier the job of the integration
server is greatly simplified. The use of XML on the back end is being driven by the
adoption of XML as a universal data format on the middle tier. We have tried this new

area on our system.

5.3 Short-term profiling and weight modification

When shopping, except for his specific request, which is shown in attribute-value pairs,
usually a client attaches a relative significance to the various parameters describing the
product sought. For example, A lady who is looking for a dress may pay more attention
to the brand than to the price. In this case, the agent should respect the user’s prefer-
ences and pay more importance on the brand in its search. This kind of preference is
temporary; hence it is called “short-term” [Aimeur & Vezeau, 2000]. If the user had a
limited budget next time she does the shopping, the price would get the most important
position as far as user preference is concerned and other attributes become secondary.
In other words, we think the short-term profiling is a valid method used in CBR cycle.
So we have this hypothesis that among the various critiques formulated by a client when
searching for the ideal products, the short-term requirement is a good source of informa-
tion to construct profile automatically. When a client frequently chooses his a preferable
attribute such as the brand, he attaches greater importance to this concept. Therefore the
shopping agent will keep on modifying the weights to grasp the user’s preferences on

different attributes.

Local similarity measurement functions re-rank feature relevance (weight) based on the
feature values of the probe cases [Ricci & Avesani, 1999]. Therefore, it is possible to
increase the feature relevance under certain conditions (user input) and decrease the
relevance in other situations. In other words, the local weight may have to be changed

depending on its task. A mathematical concept deficiency (Di), which measures what

V. Methodologies and Algorithm

69

degree the system is considering this attribute to be susceptible to a user’s critique, has

to be defined as follows:
Di = m; (1- Si (qi, ci))
In this equation, (); represents the relative importance of attribute i. There are quantities

to be modified when the user selects an attribute, which can be measured by a defi-
ciency of the attribute. Once the deficiency of each parameter i is computed, we cover
each parameter whose deficiency is higher than the preferable parameter, which we call
D*.

;= ;- (Di-D*) D> D+ for all i

Finally, the weight of the preferable parameter is more than at least one other attribute;
i.e. the weight of the other attributes will be reduced.

W+ = W« + Z(D;-D+) D;>D= for all 1
Therefore, there will have been at least one parameter whose deficiency is higher than

the critical deficiency.
As an example, Tables 5.6 and 5.7 represent the changed weights. When a user chooses
a preferable attribute such as brand, we increase the weight of “brand” using the above

algorithm.

Table 5.6 Before Computing New Weights

Attributes Weight [Local Similarity| Deficiency
Size 0.20 0.75 0.05
Style 0.20 0.85 0.03
Color 0.20 0.80 0.04

Brand 0.20 0.90 0.02
Price 0.20 1 0.0

V. Methodologies and Algorithm

Table 5.7 After Computing the Weights

70

Attributes Weight |Local Similarity| Deficiency
Size 0.17 0.75 0.05
Style 0.19 0.85 0.03
Color 0.18 0.80 0.04

Brand 0.24 0.90 0.02
Price 0.2 1 0.0

For example, a user is searching for a dress using the following search criteria:

Brand: Polo, Style: Formal Dress, Price: 50-100, Color: Pink, and Size: Small

The product database may have a dress in pink, which is the formal dress style with
small size, Polo brand, and a price equal to $120. It is an almost perfect fit for her
search criteria. However, because the price is $120, it doesn’t fit into the price range
exactly. The traditional technologies like SQL alone will not include this case in the
result sets, because the case has to be matched exactly with the query. However through
our case-base reasoning mechanism this case would present 99% match to the search
criteria, the score of which case is 0.99 (computed by our metric). By utilizing the short-
term profiling mechanism, we can grasp the short-term preferences to satisfy the user’s

requirement.

The initial weights can be equal to each of attributes if the user has not any preferences.
For example, we initialize the new user's preferences to be equal (each initial weight is
0.2 if there are 5 attributes). However, old users can also save their preferences (includ-
ing the weights) in their profile as a case (this will be discussed in the next section). At
the time of next purchase, the new query’s weights can be initialized by the weights of
the user's last successful case (if it exists in the user profile), which reduces the opti-

mized time and adaptation times.

V. Methodologies and Algorithm

71

5.4 Long-term profiling and case representation
The user’s shopping habit such preferences or constrains usually lasts a longer time, it is

called long-term profile. It gives us the important signal to grasp the user’s requirement.

The long-term user profile is a collection of <attribute, value> pair. It is accessible and
modifiable by user himself, and it includes two kinds of information. One is composed
of the last successful purchase case, another is the user’s constrains that the user can
modify at any time. The availability of the user profile is important for our system, it
presents a longer-term's case to join short-term profiling in the case-based reasoning
implementation. Another unique feature of our system is that the case base of the user
profile is constructed by XML file, which is possible to be exchanged with by other
agents conveniently. Figure 5.6 shows the example of the constraints file in XML for-

mat, and we represent its DTD file in Figure 5.7.

<?xml version="1.0" encoding ="ISO-8859-1" 7>

<root>
<user uid="maya">
<case>

<caseNo>1</caseNo>

<Pbrand>
<value>dELiAs</value>
<weight>0.186</weight>

</Pbrand>

<Pstyle>
<value>ShortDress</value>
<weight>0.2</weight>

</Pstyle>

<Psize>
<value>Large</value>
<weight>0.186</weight>

</Psize>

<Pcolor>
<value>Black</value>
<weight>0.2</weight>

</Pcolor>

<Pprice>
<value>46.0</value>
<weight>0.342</weight>

V. Methodologies and Algorithm

</Pprice>

<date>2000-12-20</date>

<time>9:25</time>
</case>

<case>
<caseNo>4</caseNo>

</case>
</user>

<user uid="maria">
<case>

</case>

<user uid="david" />
</root>

Figure 5.6 An Example of User’s Profile in XML

<xml version="1.0" encoding = ‘us-assii’ 7>

<!-- DTD for users’constraints -->
<!-- start of element declarations -- >

<!ELEMENT user (constraint)+ >
<ATTLIST user
uid #REQUIRED>

<!ELEMENT constraint (Cbrand, Cstyle, Ccolor, Cprice)>

<!ELEMENT Pbrand (#PCDATA)>
<!ELEMENT Pstyle (#PCDATA)>
<!ELEMENT Pcolor (#PCDATA)>
<!ELEMENT Pprice (fPCDATA)>

Figure 5.7 An Example of User’s Constraint Profile in XML

For example, a customer has following constraints:
C1: I never buy the ‘Polo’ brand

C2: Don’t provide the ‘short dress, to me

C2: Idon’t buy the ‘black’ dress

72

V. Methodologies and Algorithm

73

C2: The highest price should not be 6 times more than my query.

The name-value pair structure is used by XML document as a case representation
means. This means that the communication between client and server is more robust.
The application using a name-value structure will look for the name and then processes
the value. The robustness results from the fact that XML doesn't require that elements
appear in particular order. This method contrasts with using a specific record layout like
relational database as the fields must be in specific order, otherwise error will occur, or

data will be processed incorrectly.

5.5 Adaptation

Another point that makes CBR different from standard database approaches is its ability
to not only retrieve existing cases, but also adapt their old solution to the newly pre-
sented problem and thus create new solutions that were not represented in the case base.
In general, the researchers distinguish between three categories of products considering

their ability to be customized:

e Unchangeable products, e.g., integrated circuits, books, etc.
e Products with few changeable features, e.g., vacations, houses, etc.

e Products with many changeable features, e.g., computers, cars, design tasks, etc.

Many products can't be adapted because they have no modifiable structure, such as
books, which belong to the first category. Adaptation is indispensable if the system
must perform some kind of configuration task, like interactive configuration of personal
computers or cars. Adaptation is dependent on the application domain, using a process
which can be more or less complicated. Computer domain is the most suitable domain
in adaptation. In the computer shopping system, the transformational adaptation is

adopted. Researchers employ a fixed set of transformation rules, which depend on the

V. Methodologies and Algorithm

74

differences between problem attributes in the query and the problem attributes in the
similar case for which the actual solution is modified. Transformational adaptation re-
quires domain knowledge on how certain differences in the problem lead to differences
in the solution.

One possible representation is a set of rules that perform certain actions given that the
required preconditions for the actions are valid. For example, there is following repre-
sentation in computer shopping system.

If (query.database and similar.database>5)

Do: soluton.diskspace = solution.diskspace + 2G

If (query.games >0 and similar.games=0)

Do: Object: joystick

In our fashion scenario, some products are configurable, such as dress and shoes. For
example, some stores have the services of cutting the pants to the required size. We can
use this as one of adaptation mechanisms. It is represented in this way:

if query.pants = true and case.size=false

do: case.size = true;

case.price := case.price + $5;

To the author’s knowledge, there is currently no commercial CBR-based product cata-
log that supports adaptation. The simplest kind of adaptation is null adaptation. where
the case base is searched for a similar case containing the most similar user require-
ments and the solution from this case is taken to solve the current problem without any
modification. Null adaptation means the adaptation is left to the user or it is even not
necessary to adapt at all. This is the main adaptation mechanism we adopted in Fashion

Agent.

V. Methodologies and Algorithm

Chapter 6

Implementation of XMLFinder
--- Fashion Agent

In order to illustrate the XMLFinder architecture and methodology, we constructed a
Fashion Agent as a web application to give recommendations when consumers buy
clothes. Because the next-generation agent-based system needs to run on a usable, in-
teroperable and dynamic content requiring environment, we choose Apache’s Tomcat

3.1 as our Web server with JSP engine to serve XML.

6.1 Selection of Web server technologies

There are many Web support technologies in the world. Apache and Microsoft-IIS are
the most popular servers. Having compared Common Gateway Interface (CGI), Active
Server Pages (ASP) and JavaServer Pages (JSP), we have selected JSP technology as

our Web server foundation.

6.1.1 Web sever technologies -- CGI, ASP, or JSP

Common Gateway Interface, or CGI, has been the dominant interface for extending web
server for years. Because CGI support was built into every web server on the market,
CGI was a great choice for development tools and applications that could add dynamic
capabilities to the web site.

CGI was developed at a time when most of the content on most web sites was static;
The CGI script would then provide a limited amount of dynamic content on a fraction
of the site. Traditionally, CGI languages include C, C++, and Perl, with Perl being the
dominant CGI language. The main disadvantages of CGI are speed and the need for a

separate program.

76

CGI scripts are still useful and will probably continue to be useful for years to come,
however, they are not suitable for the construction of a large production site, especially

for the e-commerce application.

Other major approaches to dynamic content in use today are based on Server side script-
ing of ASP and JSP. Microsoft Active Server Pages (ASP) and JavaServer Pages (JSP)
have many similarities. Both enable developers to separate programming logic from
page design through the use of components that are called from the page itself. Also,
they both provide an alternative to creating CGI scripts that makes page development
and deployment easier and faster. The biggest difference between JSP and ASP tech-

nologies lies in the approach to the software design itself.

Because it uses ActiveX controls for its components, ASP technology is basically re-
stricted to Microsoft Windows-based platforms. Offered primarily as a feature of Mi-
crosoft IIS, ASP technology does not work easily on a broader range of Web servers

because ActiveX objects are platform specific.

However, JSP technology adheres to the Write Once, Run Anywhere philosophy of the
Java architecture, It is modeled after ASP, and borrows many of its features: separating
content from design and built-in objects like sessions, application variables and server-
side-includes. JSP uses the powerful Java programming language, which gives develop-
ers more programming options than the scripting languages with ASP. JSP has the ad-
vantage of cross-platform support with its generic Java byte codes that run on any Java

compliant machine.

ASP runs on other platforms as well but requires that COM objects either be written in

Java or be compiled on the same platform that the server runs on. JavaBean components

VI. Implementation of XMLFinder -- Fashion Agent

77

are easier to develop than COM objects and may be distributed across several different

servers without needing to be re-compiled.

While both ASP and JSP use a combination of tags and scripting to create dynamic
Web pages, JSP technology enables developers to extend the JSP tags available. JSP
developers can create custom tag libraries, so page authors can access more functional-
ity using XML-like tags and depend less on scripting. With custom tags, developers can
shield page authors from the complexities of page creation logic and extend key func-
tions to a broader range of authors. Table 6.1 shows the main differences between ASP

and JSP.

Table 6.1 Comparisons between ASP and JSP

ASP technology JSP technology
‘Web Server Microsoft IIS or Per- Any Web server, including Apache,
sonal Web Server Netscape, and IIS
Platforms Microsoft Windows Most popular platforms, including

the Solaris Operating Environment,
Microsoft Windows, Mac OS,
Linux, and other UNIX platform

implementations
Reusable, Cross- No JavaBeans, Enterprise JavaBeans,
Platform Components custom JSP tags
Security Against Sys- |No Yes
tem Crashes
Memory Leak Protec- |No Yes
tion
Scripting Language VBScript, JScript Java
Customizable Tags No Yes

The power of JSP is not limited to big enterprise or companies that can afford an appli-
cation server, at the 1999 JavaOne conference, Sun announced a partnership with the
makers of the Apache web server to provide full support for JSP under Apache. The Ja-

karta project — Tomcat [Apache.org], as it has been named, will allow anyone with a

VI. Implementation of XMLFinder -- Fashion Agent

78

computer to develop and deploy JSPs (free download from [Apache.org]). Therefore

Tomcat -- Jakarta Project is chosen as JSP engine for our Fashion Agent system.

6.1.2 The Jakarta Project -- Tomcat

Sun Microsystems has delivered the latest versions of JavaServer Pages™ (JSP) and
Servlets source code to the Apache Software Foundation to be developed and released
under the Apache development process as the official JSP 1.1/Servlets 2.2 reference
implementation. Apache, Sun, and a variety of other companies and individuals are
openly developing a robust reference implementation that is freely available to any
company or individual. This reference implementation developed under the project
name Jakarta and code-named Tomcat, will be the only reference implementation avail-
able. This implementation is available to any company or developer to be used in Web

servers, development tools, and to create dynamic, interactive Web sites.

The mission of the Jakarta Project is to provide commercial-quality server solutions
based on the Java Platform that is developed in an open and cooperative fashion. The
flagship product, Tomcat, is a reference implementation of the Java Servlet and
JavaServer Pages™ (JSP) Specifications, which can run standalone as well as integrated
into the Apache Web Server. This reference implementation provides an operational
definition for the Enterprise Java ™ JSP and Servlet application programming interfaces
(APIs). All final releases of the Servlet and JSP implementations will conform to the
latest versions of the Servlet and JavaServer Pages specifications available from Sun.
These specifications are defined and evolved through the Java Community Process and

can be found at [SUN_Servlet] and [SUN_JSP].

6.1.3 Configuration to Tomcat 3.1
Our system runs on Windows NT, in which JSP server -- Tomcat is setup and config-

ured in the following steps.

VI. Implementation of XMLFinder -- Fashion Agent

79

¢ Download and install the Tomcat binaries from the Jakarta Project at the Apache
Software Foundation.

e Set the JAva_HOME environment variable to the top-level JSDK directory
For windows, the command would be the following, depending upon the JSDK ver-

sion and drive:
SET JAVA_HOME=C:\jdk1.2.2

e Start the web server. This involves running the startserver script from the jakarta-
tomcat\bin directory.
e Create an HTML file with JSP content. In the jakarta-tomcat\webapps\ROOT di-

rectory, create .jsp file.

6.1.4 Running environment of Fashion Agent

We need the following running environment for Fashion Agent.

First, We select a Web server with JSP engine named Apache's Tomcat 3.1;

Second, we need a Web browser that supports XSL Translations (XSLT) that currently
leaves us with one choice: Microsoft Internet Explorer 5, Netscape (even the Netscape 6
preview release) will not work right now;

Third, we need Java JDK. We use JDK1.3. If there are applets, a plug-in will be needed.
Fourth, the code requires Sun's Project X -- XML parser [SUN_XML]. (Any W3C-

component DOM parser should work).

6.2 The domain

To solve the information overload, as we mentioned, the shopping agents recommend
products from books, CDs, to software, hardware, almost everything. The domain we
are considering contains direct support to recognized regular customers. There is an of-
fering of products for which the customers apply their preferences and constrains. This

provides a base for the long-term profiling mechanism.

VI. Implementation of XMLFinder -- Fashion Agent

80

The clothes domain was chosen as the context for this thesis because it is a common
product with common characteristics (such as brand, color, etc.). There is a potential to
provide an attractive web site, which most people can relate to. Also purchasing desired
clothes need much time and energy than some products, hence the need for the clothes’
agent is needed. This choice was also made simply because the clothes domain is famil-
iar to the author.

For the purpose of the modeling, the domain is required to have some degree of object-
persistence. With object-persistence we mean that the interest for a certain type object is
likely to be persistent over time. The ‘clothes’ domain has object-persistence in the
sense that the interests for a brand, for example, last over time, whereas the persistence
of a product such as a newspaper is much lower. Today’s news is less relevant tomor-
row. However, clothes domain is more persistent. For example, the style, color or brand

maybe not change in the same way as a person’s characteristic or occupation does.

Our case base includes 200 cases for clothes that are described by the following five
attributes: brand, style, color, size, and price range. Those cases are made up of 13
brands, 6 kinds of style, 10 kinds of color, 5 kinds of size, and 7 kinds of price range (as
shown in Table 6.2) and more than 200 pictures of those clothes. Each attribute's local

similarities are defined between 0 and 1 and are represented in an XML file.

Table 6.2 Attributes and Values in Clothes Domain

Brand Style Color | Price Range | Size
BestProm Dress | Short Dress Black | $0-$30 Extra Small
Bisou Bisou Jacket Blue $30-$50 Small
Chadwick's Suit Green | $50-$100 Medium
Chelsea Nites Casual Dress | Pink $100-$300 Large
dELiAs Formal Dress | Purple | $300-$500 Extra Large
Gap Long Dress Red $500-$700

Gordmans Rose $700-$1000

Isabella Bird Sage

VI. Implementation of XMLFinder -- Fashion Agent

81

Laura Sand
Molly Malloy White
Nordstorm Wine
Polo

Spiegel

6.3 Implementation of Fashion Agent

As a complete shopping agent, we have constructed a web application which includes a
lot of information about fashion, such as the level of interest in Chinese clothes, the
clothes size recommendation table, pictures of various kinds of clothes and fashion
models and hot links to various clothes stores, as shown in Figure 6.1. However, in this

thesis we just focus on describing the recommended mechanism in XMLFinder system.

g

ent—

o To give you the reconvmendation i
in a case-base-reasoning R
approuch.

To mpet E-commerce's
requirement witls the usability of
dynariic content.

To use JavaServerPage (JSF) to

Figure 6.1 First Page of Fashion Agent

VI. Implementation of XMLFinder -- Fashion Agent

82

6.3.1 Starting up the Fashion Agent

The registered user can start using the agent after log in. The agent page is opened (see
Figure 6.2) after registering successfully. In this page, the user will provide the prefer-
ences and weights when she starts her agent for the first time. Each attribute has a cor-
responding weight. It can be set to the initial values or the weight of the last successful
case. Users are not allowed to modify the weights freely (except for setting their initial

values). This is a technical task allocated to the agent. After providing the preferences,

the user just clicks GO! To let the agent do the search.

' Home | Joinin | My Profile | About

Copyright © 2000 XMLFinder{Angnt) All ights reserved, -
RO, University.de Montreal, Quebes, Canada. .~/ {

Figure 6.2 Querying Page

6.3.2 Editing the constraints
The user can give his constraints anytime after registry, as mentioned in section 5.4.
The agent will filter out the cases according to the user's constraints. The price range is

adapted to the price function set by the user. Higher price range enables the user to have

VI. Implementation of XMLFinder -- Fashion Agent

83

a wider selection range with less change in similarity value (the detail of the adaptation
algorithm is represented in section 5.5). If there is no constraint provided by the user on
price attribute, the range value defaults to 5. Figure 6.3 shows the user's constraints

editing page.

Hemie | Call agent | My PmﬂlefAbgut 5

IRO, University de Montreal, Quebec, Canada
Email: maya@iro.umontreal.ca

Figure 6.3 Editing Constraints

6.3.3 Optimizing the recommendation results

The agent will provide the first ten recommended results through scoring each case ac-
cording to the preferences and constrains provided by the user as shown in Figure 6.4.

If the user is not satisfied with the results and still keeps the same query, she can click a
button called Better to change the weight option. This button is a means of improving

the effect of an attribute. The agent will score each case again. The further recom-

VI. Implementation of XMLFinder -- Fashion Agent

84

mended results are shown in Figure 6.5, which are scored according to the user's further

requirement by clicking “better” on brand.

By clicking the button called Show picture, the user can view pictures of clothes and the

models of each case in order to make a more informed decision.

0 W s Wi e B

5
@)
ARCE.
-

o

12 ' LongDress - " Stnall 130.0 0.78
Weight 0.20 S0200% S 0200 0 7 020 0.20
Changé Yous Prefer - & o ol fo

‘. New 'Q‘gegg‘ : t vour ¢ t

Gopyright © 2000 XML Fister{Azes) Al rights ressived
IRO; University de Montreal, Quebec, Canada
L[Bmail; maya@iraumontrealia;.

Figure 6.4 Recommended Results

6.3.4 Update the user’s profile
The agent almost finishes his task in our prototype system. The last step is letting the
user choose one case as the next purchase's reference. This will be saved in the user's

profile. Figure 6.6 shows the shopping cart page.

VI. Implementation of XMLFinder -- Fashion Agent

"
Ly
>
4

S B e

BisouBiséu
. dELiAs

Spiegel Lk g N
BisouBisol . - Mg divan fac 6807 show

£

Coasy
U /Edit your constraint

Copyright © 2000 XMLEinder(Ageat) All ights seserved =
... IRO, University de Montreal, Quebec, Canada .~ -
" Bimat: mapa@iroumontrealica. |

Home | Call agent | My Profile | About

T

L

i3
A

BT

" Copyright © 2000 XM Findec{Ag e&)g\@u;ﬁm‘w {
i ']B.O.Universi!y"éc Montreal, Quebec, Canada
o 2 ,!7_ @ writo !ca TG

SHHHHTT]

Figure 6.6 Shopping Cart

85

VI. Implementation of XMLFinder -- Fashion Agent

86

6.4 Discussion on generalization

XMLFinder is based on a general architecture, which can be applied in many domains,
such as “selling books, CD”, “travel package”, “selling used cars”, “renting apart-
ments”, etc. The approach we proposed in XMLFinder can directly be used in some
domains, such as clothes, travel package, etc. However, because the approach is based
on the attributes of ‘products’, there are some differences when it is applied in other
domains. The “renting apartment” domain is used as an example in the following sec-

tion to show the differences with the XMLFinder as used in the clothes domain.

e Similarity measurement
The main attributes in renting apartment domain are: living area, numbers of bedroom,
accommodation type, rental price, required date (e.g. right now, 1 month, 2 month,...),
and parking space. The similarities’ representation of these attributes all fall in the three
categories: symmetric similarity (living area, numbers of bedroom, parking space),
asymmetric similarity (accommodation type), and continuous similarity (rental price,
required date), some of which are similar to the clothes domain. However, the similarity
functions of the attributes “rental price” and “required date” may be different e.g. the

price of clothes and renting apartment tend to have different values.

e Short-term profiling
XMLFinder has a hypothesis: the customers have no preferences when they initially use
the agent system, which means the initialized weights of all attributes are equal. We
find there is no difference between clothes domain (5 attributes) and renting apartment
domain (6 attributes). However, in books domain, there seems to be an important at-
tribute namely the book’s “title” which readers pay more attention to. So we have to

give a higher weight to "title" attribute than others at any time.

VI. Implementation of XMLFinder -- Fashion Agent

86a

e Long-term profiling
People have different reasons when they change their apartments. So the current
preferences may be not useful for the future situation. This suggests that it is not
necessary to create the long-term profiles of the customers in renting apartment domain

unlike the book and clothes domains.

e Adaptation
Adaptation is domain-independent. Different adaptation mechanisms may be used in
different domains. In renting apartment and book domain, because there are no
configured parts to be adapted, the adaptation is not needed. However, in used car
domain, the cars’ parts are often assembled and changed, so the adaptation mechanism

may play a key role in the case of used cars.

VI. Implementation of XMLFinder -- Fashion Agent

Chapter 7

Experiment and Evaluation

In order to test the validity of the approach we proposed in XMLFinder, an experiment

was carried out where a group of testers were asked to run the system and give their

feedback. This chapter reports on the results of this experiment. The objectives of this

experiment are as follows:

e To find the performance of short-term profiling through interacting with the system
by criticizing and modifying particular attributes.

e To find the performance of the long-term profiling by comparing the search results
both in the presence and absence of constraints.

e To find the performance of combining the short-term and the long-term profiling.

7.1 Testing conditions and methodology

The method of experiment and evaluation is based on the collection of the user's feed-
back. The respondents are asked to fill in a testing form when they run the agent system.
In order to analyze the performance of Fashion Agent clearly, the whole recommended
mechanism is tested in eight separate testing conditions C1-C8 (as shown in Figure 7.1).

In the experiment, the respondents are instructed to go through the following procedure.

1. Users run the system.
The users provide their query first, and then the agent gives the products’ recommenda-
tion under the eight testing conditions (C1-C8) respectively after they register to this

system.

2. Users evaluate the recommended results provided by Fashion Agent.

88

They are asked to reorder the recommended results provided by Fashion Agent depend-
ing on their own requirements, and then the reorder results are filled in the testing form
(Table 7.1). The range of reordering is from 1 to 10 (1= most satisfied). For example, a
tester has following order -- 2, 1,9, 3, 7, 4, 5, 6, 10, 8 in the first testing condition C1.
He fills them in the first line in Table 7.1, then keeps testing and reordering in C2~CS8.

C1: Without constraints in the long-term profiling, and no preference in short-term pro-
filing (simple searching)

C2: Without constraints in the long-term profiling, select one preferable attribute X

C3: After testing condition 2, select attribute X again

C4: After testing condition 3, select another preferable attribute
C35: With constraints in the long-term profiling, and no preference in short-term profil-
ing

C6: With constraints in the long-term profiling, select one preferable attribute X

C7: After testing condition 6, select attribute X again

C8: After testing condition 7, select another attribute.

Note: In this evaluation, the preference in short-term profiling is based on the tempo-
rary preferences to a certain attribute; the long-term profiling here means the con-
straints of the values of one or more attributes are provided by users. The more details
about the short-term and long-term profiling are discussed in chapter 5.

Figure 7.1 Testing Conditions in the Experiment

3. Users rate the agent system.

They are asked to rate the recommended results under eight testing conditions in a lin-
ear seven-point scale, ranging from 1 to 7, where l=not satisfied, 4=average, and
T=excellent results. The satisfied degree can be considered very successful on these fea-

tures if 50% or more of the respondents rate the recommended results in the eight test-

VII. Experiment and Evaluation

89

ing conditions, ratings of 4-5 are "average" and usually signal that some improvement
may be considered. Rating of 3 or low indicate serious problems. For example, a tester
gives arating: 5 on C1 (testing condition), he fills it in the first line, and then keeps test-
ing and rating in C2~C8.

Table 7.1 Testing Form of Fashion Agent System

) Rank the recommendation results according to your preferences | Rating in
Testing seven-
condi- :

t, Ist 2nd 3rd 4& 5th 6!!1 7!}1 sth 9th 10!& p01nt
lon Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice scale

Cl1 2 1 9 3 7 4 5 6 10 8

C2

C3

C4

C5

C6

C7

C8

7.2 Hypothesis and precondition

When shopping, people usually have their personal preferences and constraints. It is re-

alistic. For example, a lady wants to buy a dress, she knows that she never buys the

clothes in "yellow" color, or/and she really hates the "Polo" brand. So we have this pre-

condition:

e The user has his constraints in mind, such as brand = "Polo" or/and color
="Yellow". The Fashion Agent may not know these constraints.

In order to get more clear comparison results we make following assumptions:

e The user tests the system with the same query in the eight different testing condi-
tions.

e The order of agents' recommended results is always from 1-10 according to the

computed global similarity.

VII. Experiment and Evaluation

90

7.3 Evaluation

21 testers, who are the students and teachers in our department joined the experiment.
We adopted two approaches to analyze and evaluate the 21 forms. One of the methods
uses "Euclidean Distance" to measure the similarity between the recommended results
provided by Fashion Agent and the evaluated orders by the testers. This will indicate
the degree of satisfaction with the Agent’s recommended results. Another method ana-
lyzes the rating results provided by users, so that we can get the performance of the
agent in general users’ view. Finally, we will compare these two evaluations and make

some conclusions.

Method 1: The analysis of the agent's recommended results with Euclidean distance

Euclidean distance (as shown in Formula 7.1) is popular in distance measure, and it is
used widely in similarity measures in Information Retrieval to measure two vectors’
similarities [Schroeder & Noy, 2001]. In our case, the two vectors are the ranked se-
quences provided by Fashion Agent and users. One of vectors (B) is provided by the
agent, which always has the format 1, 2, ... , 10. Another vector (A) is provided by the
users, which is the reorder of the agent’s recommended results (e.g. 1, 2, 3, 4, 10, 6, 7,
8,9, 5). Euclidean distance is used to measure these vectors’ similarities, so that we can

find the degree of users’ satisfaction with the agent’s recommended results.

BD = 34, - B

Formula 7.1 Euclidean Distance

However, in our scenario, the elements in the two vectors not only show the numeric
values, but also the ranked order, which have different importance for each element po-
sition. For example, there are two evaluation results: A =(1, 2, 3,4, 10,6,7,8,9, 5) or

A =(6.2,3,4,51,7, 8,9, 10). The distances away from the Agent’s sequence B = (1,

VII. Experiment and Evaluation

91

2, 3, ... 10) is same (DEap = 7.07) if they are computed by Formula 7.1. However we
find that the top four elements in vector A are matched perfectly with vector B, only the
fifth and the last one have some distance compared to the Agent’ results; on the other
hand, the first and fifth element in the second vector A’ are far to the agents’ results. In
human sense, the first result is closer to Agent’s result than the second one. That means
that previous elements are more important than the later ones. So different weights have
to be added to each element in a vector to modify the formula. Also we know that the
larger the distance, the smaller the similarity, and vice versa. As a result, a similarity
formula (Formula 7.2) is defined through the normalized Euclidean distance as shown

below. The similarity falls in O < Simap < 1.

S 2
1 Zwi(A"Bi)
SimAB=1"—1'\,— i i
Wi
i=1

Formula 7.2 Normalized Euclidean Distance

In Formula 7.2, Simyg is the similarity between two vectors; B; is the order sequence
provided by Fashion Agent, which is always (1, 2, ... 10) in our scenario; A, is the re-
order sequence provided by the users; w; represents the weight, which is given a value
between 1 and 10 for each element. Weight 10 is given to the first order the user
choose, 9 is given to the second one, until weight 1 is given the last one. N is the num-
ber of elements in a vector, which is the total number of recommended products. It

equals to 10 in our case.

Also, through measuring and analyzing various cases, we define a three-point scale
evaluated level depending on the normalized Euclidean distance (Simap): Similarity
ranges: 0~0.6 means the users are not satisfied by the recommended results, 0.6~0.8

means average satisfaction, and 0.8~1 means excellent match.

VII. Experiment and Evaluation

92

An example below shows how to compute the similarity between A (4, 1, 2, 3, 5, 6, 7,
8,10, 9) and (1, 2, ... 10). The computed result is 0.85, which means the similarity be-

tween the recommended results and the users’ requirement is 85%.

. 1 \/10*(4—1)2+9*(1—2)2 +8*%(2-3)2+7%(3-4) +..+1%¥(9-1)?
Sim,, =1-—
10 10+9+...+1
=0.85

In the example mentioned above, the similarities of vector A and A’ to vector B are
computed, as shown in Table 7.3. We find that the similarity of A to vector B, is higher
than A’, even through they have the same Euclidean distance. So this confirms the

validity of the normalized similarity formula.

Table 7.2 An Example of Comparing Similarities
With and Without Weights

Vector Elements of the vector Euclidean distance Similarity
B 112134151617 /8(9]10]| WithFormulal With Formula 2

A
A 16[2]|3]4]5

—
[\

3/4/1016]1718|9}5 7.07 0.826
71819110 7.07 0.703

[y

All of the similarities between the agents’ recommended results and the testers’ re-
ranked results in each testing conditions are computed. The analyzed results are shown
in Figure 7.2, which presents the testers percent in a three-point similarity scale. The
similarity of 37% testers is in the range 0.8~1, which is considered to be an excellent
match, 53% is on average level with the similarity values from 0.6 to 0.8; only 10% of
the recommended results fall in poor region with similarity values less than 0.6. This
indicates that 90% of results is above average level, hence demonstrating the validity of

our mechanism.

VII. Experiment and Evaluation

93

0.8~1

0.6~0.8

Similarity level

0~0.6

Tester percent

Figure 7.2 Tester Percent in Three Similarities Level

In order to analyze the recommend mechanism in detail, we especially list the mean

similarities in each testing conditions as shown in Figure 7.3.

Q
o N ®

Testing Condition
0O 0 O 0
O

Q
(]

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Mean Similarity

0.90

Figure 7.3 Mean Similarities in Each Testing Condition

The recommended results in C2~C5 have moderately higher similarities than in C1.

This indicates that when the users provide their preferences or constraints to the agent,

better matched results to users’ requirement are achieved. This verifies the key role the

short-term profiling or long-term profiling plays in the XMLFinder system. Moreover,

VII. Experiment and Evaluation

94

we can see that there are strong higher similarities in C6 ~C8 than others. This means
that when the users provide their short-term and long-term request to the agent, they
can get the satisfied results. This also indicates that the combination of short-term and

long-term profiling provides the more satisfying performance in our system.

Method 2: The analysis of rating of the recommended results
In Table 7.1, the testers give the ratings of the recommended results under eight testing
conditions. We compute the average values. The mean value is shown in Figure 7.4,

and the testers percent in three-point rating scale is shown in Figure 7.5 for each condi-

tion.

Testing condition

0.00 1.00 2.00 3.00 4.00 5.00 6.00
Mean rating

Figure 7.4 Mean Rating in each Testing Condition

As shown in Figure 7.4, we can see that the mean ratings in each testing condition, ex-
cept in Cl1, are in average level (4~5), which reflects that the testers basically are satis-
fied with the recommended results. Also we find that the ratings in C2~C5 are higher

than in C1, and lower than in C6~C8. It shows a similar conclusion to the one obtained

VII. Experiment and Evaluation

95

in method 1. It further confirms that the short-term or long-term profiling is able to pro-
vide better performance than the simple searching (in C1) and the combination of short-
term and long-term profiling could provide more satisfactory performance in this sys-
tem. The evaluation results also show when the users interact with this system more

than one time, their performance can be further improved or consistently satisfied.

|@Poor (1~3) BAverage (4~5) OExcellent (6-7) |

Testing condition

0% 10% 20% 30% 40% 50% 60% 70%

Tester percent

Figure 7.5 Tester Percent in Three-point Rating Scale
in Each Testing Condition

However, as shown in Figure 7.5, we find that about 10% of the testers give poor rating
in each testing condition, which indicates that testers are unsatisfied to some extent with
presented the results. The main reason is that there are not enough products’ cases in the
database. This is due to the fact that one suitable query would get an excellent recom-
mended result; on the other hand, another query, for which there is no similar product in
the database may get a poor result. And then when we add the products’ cases from 100
to 200, for example, by adding various colors and sizes to each brand clothes, a distinct

improvement of the recommended results is obtained.

VII. Experiment and Evaluation

96

7.4 Summary of this evaluation

From method 1 and 2, the following conclusions can be made from this evaluation:

e The performance in C1 (simple searching) is inferior to other scenarios, but it is ac-
ceptable. This is due to the fact that this scenario implements the learning mecha-
nism. The recommended results are ranked by the agent according to the user’s ba-
sic requirement.

e Short-term profiling gives better performance than the simple searching.

¢ Long-term profiling also gives better performance than the simple searching. But its
performance is not better than the short-term profiling.

e The combination of short-term and long-term profiling obtains the best perform-
ance.

In summary, we confirm that the approach -- the combination of short-term profiling

and long-term profiling that we adopted in our system is efficient. Moreover, the feed-

back from the testers response shows that this system is easy to use. However, further
improvement and testing are needed, such as adding more cases in database or finding

more participants to evaluate the system.

VII. Experiment and Evaluation

Chapter 8

Conclusion and Future Work

XMLFinder is a shopping agent, which recommends products according to users’ pref-
erences and constraints to on-line shoppers, in order to reduce the “information over-
load” when shopping on Internet. It first uses SQL retrieval to obtain a set of broadly
similar cases and then uses the nearest neighbor retrieval to rank those cases. If the rec-
ommended results do not exactly fit to the parameters entered, the customer increases
the priorities of the most important parameters. Again, the system displays the ten best
matches to the refined query, thus further improving the quality of the returned results.
As an intelligent agent, XMLFinder, whose intelligent mechanism is based on CBR, can
automate the profile-building process and finding a match to user's needs. The functions

the agents could perform in this context are:

It adjusts its own profiling mechanisms according to the user feedback

It performs tasks on the user's behalf for searching and browsing various products,

and comparing on products’ attributes.

It can train or teach the user to find products based on their preferences and con-

straints.

XMLFinder is constructed on a three-tier net architecture. Each tier has its own respon-
sibilities; together they form a cohesive, flexible, and scalable shopping application,
where XML takes an important role at each tier. XML is a useful communications lan-
guage enabling large packets of formatted information to be exchanged thereby reduc-
ing network traffic. As a possible replacement to HTML it helps the web support intel-
ligent applications. XSL is used to provide a clean separation between the content itself

(XML) and the specific format required by a target application or output document.

98

CBR is a promising technology to develop intelligent agents. CBR systems are playing

an increasingly important role in product selection and specification on-line. This work

confirms that CBR is an effective methodology for e-commerce problem solving.

The main contributions of this work are:

Development of an intelligent agent based on CBR technology, which uses an
algorithm based on the combination of short-term and long-term profiling. It is
verified that the approach can recommend products to on-line consumers effi-
ciently.

Discrete similarities’ representation in XML document. According to the au-
thors’ knowledge, no other system finds discrete similarities to be stored and
represented in XML. Our method provides a more effective way than storing
data in a database or text file format since it is less costly than database storage
and it allows the extraction of the attribute’s meanings directly from XML tags.
JavaServer Page (JSP) is used as a platform to develop an agent system. A Fash-
ion Agent, as the protot7ype of XMLFinder is a web application built on Java
Web server to give recommendations when consumers buy clothes. JSP scripts
provide an alternative to creating CGI scripts that makes page development and
deployment easier and faster. The programs include the programming logic
knowledge sources implemented in an SQL and Java, and the data and knowl-
edge sources implemented in XML document and an SQL database with the in-
ternal communications implemented using ODBC over TCP/IP.

Providing performance comparison testing and evaluation to verify the valida-
tion of the approach we proposed. A normalized Euclidean distance is intro-
duced to evaluate the users’ degree of satisfaction by measuring similarities of

the recommendation results.

VIII. Conclusion and Future Work

99

Despite our effort to make XMLFinder a robust system, there are still areas for im-

provement. Some areas for future work are considered below:

e Since adaptation is the most important step in CBR, we need to add more solu-
tions to make our system more intelligent. Adaptation is still a research issue in
case-based reasoning that is also getting increasingly important in practice as the
complexity of applications increases. However, all recent approaches lack a sys-
tematic approach to design considering the knowledge available in this domain.

e Collaboration with external agents, e.g. the use of existing shopping agents to
gather more products information to provide for the users.

e Other more detailed studies are needed in different areas, such as adding more
attributes, trying more complex query conditions, applying it in a larger context,
maintaining similarity database automatically, etc.

e Making it to be a super assistant in a big shopping mal. It will combine several
catalogs of different shops, so that the consumers can get the products' recom-
mendations before they ask several different assistants in many shops. This will

save a lot of consumers' time when they select their desired products.

Finally, there is an increased amount of information available on the Web. This in-
formation abundance increases the complexity of locating relevant information.
Complexity drives the need for improved search and retrieval approaches. Intelli-
gent agents are a way to improve search and retrieval as a personal assistant. The
combination of the intelligent agent, CBR technology, and the universal capability
of XML addresses the trust and competence issues of agents, enabling a further push

towards the development of e-commerce systems.

VIII. Conclusion and Future Work

References:

[Aamodt & Plaza, 1994] Aamodt, A. and Plaza, E. Case-based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches, Vol. 7(1). pp.39-59, Al
Communications, 1994,

[Adam et al, 1999] Adam, N.R. Kogramaci, O. Gangopadhyay A. and Yesha, Y. Elec-
tronic Commerce --- Technical, Business, and Legal Issues. pp.5-8 Prentice Hall, 1999.

[Aha & Goldstone,1989] Aha, D.W. and Goldstone, R.L. Concept Learning and Flexi-
ble Weighting. In Proceedings of a Workshop on Case-Based Reasoning, Pensacola
Beach, FL, pp.72-76, Morgan Kaufmann. 1989.

[Aimeur, & Vezeau, 2000] Aimeur, E. Vezeau M. Short-term Profiling for a Case-based
Reasoning. Machine Learning: ECML 2000, Lecture Notes in Artificial Intelligence
1810, pp.23-30, 2000.

[Ajit, 2000] Ajit, S. XML RDBMS and OODBMS: Peaceful Coexistence? XML Jour-
nal, Vol. 1(2), pp.50-53, 2000.

[Bolin,1998] Bolin, S. E-commerce: A Market Analysis and Prognostication, Stan-
dardView Vol. 6(3): pp.97-105, 1998.

[Coppel, 2000] Coppel, J. E-commerce: Impacts and Policy Challenges, Economics De-
partment Working Paper, No.252, 2000.

[Cunningham, 1998] Cunningham, P. CBR: Strengths and Weaknesses. In Proceedings
of 11" International Conference on Industrial and Engineering Application of Artificial
Intelligence and Expert Systems, eds A. P. del Pobil, J. Mira & M. Ali, Lecture Notes in
Artificial Intelligence 1416, Vol. 2: pp.517-523, Springer Verlag, 1998.

[Guttman & Maes, 1998] Guttman, R. and Maes, P. Agent-mediated Integrative Nego-
tiation for Retail Electronic Commerce, In proceedings of the Workshop on Agent Me-
diated Electronic Trading (AMET'98), Minneapolis, Minnesota, May 1998.

[Guttman et al, 1998] Guttman, R. Moukas, A. and Maes, P. Agent-mediated Electronic
Commerce: A Survey, Knowledge Engineering Review, Vol. 13:3, June 1998.

101

[Hayes & Cunningham, 1999] Hayes, C. Cunningham, P. Shaping a CBR View with
XML. Third International Conference on Case-Based Reasoning, ICCBR-99 Seeon
Monastery, Germany, pp.468-481, 1999.

[Hayzelden & Bigham, 1999] Hayzelden, A. & Bigham, J. Software Agents for Future
Communication System. pp.5-6. Springer, 1999.

[Janet, 1993] Janet, K. Case-Based Reasoning. pp.150-152. Morgan Kaufmann Publi-
shers, Inc. 1993,

[Kozierok & Maes,1993] Kozierok, R. and Maes, P. A Learning Interface Agent for
Scheduling Meetings. Proceedings of the ACM-SIGGHI International Workshop on In-
telligent User Interfaces, New York, ACM Press, pp. 81-88, January 1993.

[Ma & Aimeur, 2001] Ma, Y. and Aimeur, E. Intelligent Agent in Electronic Commerce
XMLFinder, I10th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Research, Knowledge Media Networking Workshop,
MIT, Cambridge, MA, June 2001.

[Maes, 1994a] Maes, P. Modeling Adaptive Autonomous Agents. Artificial Life Jour-
nal, edited by Langton, C. Vol. 1(1-2): pp.135-162, MIT Press, 1994.

[Maes, 1994b] Maes, P. Agents that Reduce Work and Information Overload. Commu-
nications of the ACM, Vol. 37(7):pp.31-40, 146, ACM Press, July 1994.

[Mitchell et al, 1994] T. Caruana, R., Freitag, D., McDermott, J. and Zabowski, D.
1994. Experience with a Learning Personal Assistant, Communications of the ACM. vol.
37(7) : pp- 80-91, 1994.

[North, 2000] North, K. XML and Database: There’s Too Much Confusion. XML Jour-
nal, Vol. 1 (2): pp26-30, 2000.

[Nwana & Ndumu, 1998] Nwana, H.S. and Ndumu, D.T. BT Research Labs. A Brief
Introduction to Software Agent Technology, Agent Technology --Foundation, Applica-
tions, and Markets, pp.31, Springer, 1998.

[Payne, Edwards & Green, 1997] Payne, T., Edwards, P. and Green, C.L. Experience
with Rule Induction and K-nearest Neighbor Methods for Interface Agents that Learn.
IEEE Transactions on Knowledge and Data Engineering 9, 2, pp.329-335, March 1997.

[Quin, 2000] Quin, L. Open Source XML Database Toolkit. Wiley, pp.166, 2000.

References & URLs

102

[Ricci & Avesani, 1995] Ricci, F. and Avesani, P. Learning a Local Similarity Metric
for Case-Based Reasoning. In Proceedings of Case-Based Reasoning Research and De-
velopment, pp.301-312, Springer, 1995.

[Ricci & Avesani, 1999] Ricci, F. and Avesani, P. Data compression and local metrics
for nearest neighbor classification. IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 21(4) : pp.380-384, 1999.

[Riesbeck & Schank, 1989] Riesbeck, C.K. and Schank, R.C., editors. Inside Case-
Based Reasoning. pp.30-33 Lawrence Erlbaum Associates, Hillsdale, NJ. ISBN 0-
89859-767-6, pp.30-33, 1989.

[Robert,1973] Robert A. Principles of Statistics and Probability. Prindle, Weber &
Schmidt, Incorporated, pp.126-128, 1973.

[Schmitt et al, 2000] Schmitt, S. Maximini, R. Landeck, G. & Hohwiller, J] A Product
Customization Module Based on Adaptation Operators for CBR System in E-
Commerce Environments. 5" European Workshop, EWCBE 2000, Springer, pp.504-
516, 2000.

[Schroeder& Noy, 2001] Schroeder, M. & Noy, P. Multi-Agent Visualization Based on
Multivariate Data, In Proceeding of 5™ International Conference on Autonomous
Agents, pp.85-91, 2001.

[Shardanand & Maes, 1995] Shardanand, U. & Maes, P. Social Information Filtering:
Algorithms for Automating 'Word of Mouth'. Proceedings of the Computer-Human In-
teraction Conference (CHI’95), Denver, CO, pp.210-217, May 1995.

[Vollrath et al, 1998] Vollrath, I., Wilke, W. and Bergmann, R. Case-based Reasoning
Support for On-line Catalog Sales. IEEE Internet Computing. Vol. 2(4): pp.47-54, July-
August, 1998.

[Watson & Gardingen, 1999] Watson, I. & Gardingen, D. A Distributed Case-based
Reasoning Application for Engineering Sales Support. In Proceeding of 16™ Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Vol. 1: pp.600-605, Morgan
Kaufmann Publishers Inc. 1999.

[Wilke et al, 1998] Wilke, W. Bergmann, R. and Wess, S. Ne%otiation During Intelli-
gent Sales Support with Case-Based Reasoning. GWCBR’98, 6" German Workshop on
Case-based Reasoning, 1998.

References & URLs

103

URLs:

[AI_EC] Al for e-commerce, http://www.cs.umbc.edu/aiec/contents.shtml

[Al-cbr.org] Ai-cbr website, http://www.ai-cbr.org/theindex.html

[Andrew_Broad] Andrew Broad’s Website — Case-Based Reason-
ing,http://www.cs.man.ac.uk/~broada/cs/cbr/cs3411.html

[Apache.org] Apache web site: http://www.apache.org

[Auctionbot.com] Auctionbot Web site: http://www.auctionbot.com/

[BargainFinder] BargainFinder Web site: http://bf.cstar.ac.com/bf

[BidFind] BidFind Web site: http://www.vsn.net/af/

[Bonzi] Bonzi.com Web site: http://www.bonzi.com/

[BottomDollar.com] BottomDollar Web site: http://www.bottomdollar.com

[XML-DB] XML : DB Web site: http://www.xmldb.org/index.html

[Clarke, 1998] Clarke, R. Electronic Data Interchange (EDI): An Introduction. 1998
http://www.anu.edu.au/people/Roger.Clarke/EC/EDIIntro.html

[CoCo, 1998] CoCo, J. Server-Side XML Taming the Tower of Babel, 1998.
http://www.infoloom.com/gcaconfs/WEB/chicago98/jaenicke.htm

[CommerceNet] CommerceNet: http://eco.commerce.net/

[Cunningham et al, 2000] Cunningham, P. Bergmann, R. Schnitt, S. Traphoner, R.
Breen, S. & Smyth, B. WEBSELL: Intelligent Sales Assistants for the World Wide
Web, TCD-CS-2000-42. ftp://ftp.cs.tcd.ie/pub/tech-reports/reports.00/TCD-CS-2000-

42.pdf

[Cykopahts.com] www.cykopaths.com

[DLJ.com] DLJ group: http://www.dlj.com/

References & URLs

104

[Firefly.com] Firefly Web site: http://www.firefly.com/

[Forrester.com] Forrester group: http://www.forrester.com/

[Gartner.com] Gartner group: http://www.gartner.com/

[IDC.com] IDC group: http://www.idc.com

[IE web site] Internet Explore Web site:
http://www.microsoft.com/windows/ie/default.htm

[JSP features] White Paper, JavaServer PagesTM Key Features
http://java.sun.com/products/jsp/keyfeatures.html

[JSP_XML] White Paper, Developing XML Solutions with JavaServer Pages Technol-
ogy http://java.sun.com/products/jsp/html/JSPXML.html

[KeenanVision.com] Keenan Vision group: http://www.keenanvision.com/

[MSN-XML] MSN - XML Development Center page, http://msdn.microsoft.com/xml/

[MySimon.com] MySimon Web site: http://www.mysimon.com/

[OKIgroup] OKI group: http://www.okibusiness.com/

[Personalogic.com] Personalogic Web site: http://www.personalogic.com/

[RoboShopper.com] RoboShopper Website: http://www.roboshopper.com/

[Schussel, 2000] Schussel, G. Client/Server: Past, Present and Future.
http://news.dci.com/geos/dbsejava.html

[Shopfido.com] Fido Web site: http://www.shopfido.com/

[ShoppingExplorer.com] Shopping Explorer Website:
http://www.shoppingexplorer.com/

[SUN_JSP] Sun's JSP web site: http://java.sun.com/products/jsp/

[SUN_Servlet] Sun's Java Servlet web site: http://java.sun.com/products/serviet/

References & URLs

105

[SUN-XML] Sun — Java Technology and XML page, http://java.sun.com/xml/

[Tsang, 1993] Tsang, E. Foundations of Constraint Satisfaction Problems: A Survey.
Academic Press, 1993. http://cswww.essex.ac.uk/CSP/edward/FCS.html

[Uversion.com] One-Click Computer ESP Bargain Agent Web site:
http://oracle.uversion.com/shop/index.html

[VirtualLettingAgent] www.hookemacdonald.com

[VirtualOutlet.com] VirtualOutlet.com Website: http://www.virtualoutlet.com/

[W3.org] W3C - XML Web page, http://www.w3.org/ XML/

[W3C_DOM] W3C - Document Object Model page, http://www.w3.0org/DOM/

[XEDIorg] XEDI.ORG: http://www.xedi.org

[XMLS.com] XML Solution: http://www.xmls.com

[XML/XSL, 1999] White paper. XMIL/XSL: The Lifeblood of E-Commerce, Forrester
Research, Inc. April 1999
http://www.itpapers.com/cgi/PSummaryIT.pl?paperid=994&scid=201

References & URLs

Appendix A

Investigation and Evaluation of XMLFinder system

In order to evaluate the validity of the approach we proposed in XMLFinder, we require
your assistance to test this prototype system -- Fashion Agent. Try to understand the
testing conditions and testing procedure before filling in the testing form. When you
finish, please leave your evaluation form in Heron Lab (room 2374) or email to me.

Thank you for your time and assistance.

1. Testing conditions

C1: Without constraints in the long-term profiling, and no preference in short-term pro-
filing.

C2: Without constraints in the long-term profiling, selected preference (“better” in one
attribute)

C3: Repeat C2 with same preference (“better” in this attribute again)

C4: Repeat C2, but with different preference (“better” in another attribute)

C35: With constraints in the long-term profiling, and no preference in short-term profil-
ing (go to edit your constraints)

C6: With constraints in the long-term profiling, selected preference ("better" in one
attribute)

C7: Repeat C6 with same preference ("better” in the same attribute again)

C8: Repeat C6, but with different preference ("better" in another attribute)

Note: In this evaluation, the short-term profiling is the temporary preferences to a cer-
tain attribute; the long-term profiling here means the constraints of the values of one or

more attributes provided by users.

2. Operation and testing procedure

1. Open Fashion Agent system by going to my home page

2. Fill in a simple registration form to register to this system;

107

3. After giving your preference, you will get the recommended results. Then fill the

following testing form;

4. Upon completion of the testing form, leave it in Heron lab, or email to me.

3. Testing form

It’s better to download and print this form because you will fill it when interacting with

this Fashion agent several times.

) Rank the recommendation results according to your preferences | Rating in
Testing seven-
ngil 1* 2™ 3 4" 5t 6 7 gt 9t 10® point
Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice | Choice scale
C1
C2
C3
C4
C5
C6
C7
C8
Your constraints: Brand: Color:
Size: Style:
Your query: Brand: , Style:
Color: , Size: Price:

Note: The seven-point scale ranges from 1 to 7, where 1= not satisfied, 4 = average,

T=excellent results.

Appendix A

