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Résumé

Le langage LDS (in English SDL) est largement utilisé pour modéliser des systèmes

temps-réel. Pourtant, simuler des gros systèmes de LDS prend généralement un temps

exponentiel par rapport au nombre des états dans la spécification. Afin de réduire le

temps de simulation, certains états peuvent être fusionnés (abstracted). Le système

résultant contient moins d'états et peut être considéré comme une abstraction du

système original. Comme toute abstraction, une telle simplification des spécifications

de LDS peut mener à des spécifications moins précises que les originales. Cependant,

si cela facilite le traitement du système avec les outils existants, les efforts se trouvent

justifies.

Dans ce mémoire, nous étudions des techniques pragmatiques pour l'abstraction des

états et pour l'observât! on des états EFSM/LDS et nous cherchons une façon possible

d'abstraire les spécifications de LDS en fusionnant les états. Pour valider les

techniques proposées nous implantons un ensemble d'outils expérimentaux pour

l'abstraction et l'observation des états à l'aide du langage fonctionnel Caml. A partir

d'une spécification réelle de LDS, nous démontrons que les outils développés

réussissent avec des spécifications réelles de LDS et permettent souvent de simplifier

la spécification originale.

u
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Abstract

The SDL language is widely used to model real time systeras. To simulate real size

SDL systems it usually takes time exponential to the number of states in the

specification. In order to reduce simulation time, some SDL states may be merged,

i.e., abstracted. The resulting system with fewer states can be considered as an

abstraction of the given system. As any other abstractions, such a simplification of

SDL specifications could result in specifications that are less accurate than the

original one. If, however, the system becomes more tractable with existing

simulation tools, then these efforts are well justified.

In this thesis, we consider pragmatic techniques for state abstraction and for

EFSM/SDL state observabilization and investigate one possible way of abstracting

SDL specifications by state merging. To validate the proposed techniques we

implement a set of experimental tools for state abstraction and state

observabilization using the functional language Caml. Using a real SDL

specification, we demonstrate that the developed tools perform well on a real SDL

specification and often allow one to simplify the original specification.
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Chapter 1

Introduction

The specification and description language (SDL) is an object-oriented, formal

language defined by the International Telecommunications Union-

Telecommunications Standardization Sector (FTU-T) as recommendation Z. 100

[CCFTT92]. The language SDL is used to produce formal specifications of complex,

event-driven, real-time, and interactive applications involving many concurrent

activities that communicate using discrete signals. It is especially well suited for

specification of reactive systems in general and communications protocols, in

particular. One of the main advantages of using the SDL is that an SDL specification

can be validated using a tool by exhaustively simulating its possible executions to

reveal any design flaw. At the same time, simulating these systems is not an easy

task even for an advanced simulation environment or model checker.

Real size SDL systems usually require simulation time exponential to the number of

states in the specification. To alleviate the state explosion effect, one could perform

certain abstractions of the original SDL specification by removing some

specification elements (and possibly replacing them by simpler ones).

D
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Abstraction methodology is rapidly developing in soft/hardware design, modeling,

verification, and testing. Typically, an abstraction is intended to simplify the original

specification, while preserving a number of essential properties. An abstraction

could result in specifications that are less accurate than the original one. If, however,

the system becomes more tractable with the existing simulation tools, the efforts pay

off.

While general principles underlying abstraction are known, not much work has been

done to apply them to do abstractions in systems specified in SDL. Abstraction of an

SDL process can be accomplished in several ways, however, in this work we limit

ourselves to so-called state abstraction. In order to define abstraction techniques

appropriate for the SDL language, we need to elaborate methods for state abstraction

in terms of finite state machine (FSM) and extended finite state machine (EFSM),

since they fonn a basis for this language. Moreover, as we are often interested in

observable external behavior (or set of input output sequences) of an EFSM, i.e., an

SDL process, we pay special attention to abstraction which preserves behavior of the

original system. Another important aspect of abstraction is a so-called observability

problem. A (nondeterministic) state machine is said to be non observable if after

some input output sequence of external events it may end up in several different

states. This property is usually undesirable in systems, so one has to make certain

transformation to eliminate it; this is what is called by observabilization techniques.

Performing state abstraction, we have to observabilize the transformed system.

Thus, the purpose of this work is to

Develop techniques for merging states in the FSM and EFSM models.

• Adapt the above techniques to a single SDL process to construct a simplified

SDL specification.

• Develop basic techniques for observabilizing the SDL specifications.

0
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n Implement the techniques for SDL state abstraction in a tool within the

ObjectGeode environment.

Conduct a case study to demonstrate the applicability of the developed tool and

to illustrate the effects of SDL state abstraction.

The thesis is organized in seven chapters as follows.

Chapter 2 gives a review of the related theory of formal methods and the concepts of

the finite state machine and extended finite state machine. It also introduces SDL

language and the ObjectGeode environment, which is the tool for simulating SDL

specifications.

In Chapter 3, we study state merging with respect to the preservation of the

observability and behavior of the initial machine. Main state abstraction techniques

are defined in terms of FSM and EFSM models.

In Chapter 4, we extend the methods developed in Chapter 3 for EFSM state

abstraction and observabilization to SDL processes. The correspondence between

EFSM and SDL processes is discussed first. Then the techniques of state merging

and weak observabilization for the SDL process are described and the definition for

SDL-machine is given. Finally it proposes the steps for weak observabilization of an

SDL-machine.

In Chapter 5, we first explain our choice of Caml (Categorical Abstract Machine

Language) as the implementation language and present the distinctive features of

Caml. We describe the algorithms used for state abstraction, the algorithm of

transfonnation of SDL transitions into a tree form, and the algorithm of weak

observabilization. The implementation of the algorithms is based on the CAML-SDL

API developed by France Telecom R&D. This API allows one to parse a textual

SDL specification and extract an abstract syntax tree (AST) and pretty prints a given

abstract syntax tree into a textual (pr) SDL specification. Finally, we present the

details of the tool set implementation.
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In Chapter 6, we demonstrate how the developed tool set performs when applied to a

relatively complex example SDL specification. We also use this example in order to

evaluate (in an experimental way) how state abstraction techniques developed and

implemented in this thesis affect the complexity of SDL specifications. Several

conclusions about the performance of our tool set and abstraction techniques are

drawn from this experiment.

Finally, in Chapter 7, we summarize the thesis and propose potential future work.

0
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Chapter 2

Finite State Machines and SDL Language

2.1 Formal Methods in System Development

In the current software development practice, systems are usually specified in a

natural language such that these systems inevitably contain errors and ambiguities.

Some of these Qaws may not be easy to be uncovered during the verification and

implementation phases. The primary goal of formal methods is to help system

builders to understand what they are doing, both in tenns of specification and

implementation. The Encyclopedia of Software Engineering [Marc 1994] defines

forma] methods in the following manner.

0

Formal methods used in developing computer systems are mathematically based

techniques for describing system properties. Such formal methods provide

frameworks which people can specify, develop, and verify systems in a systematic,

rather than in ad hoc manner. A method is formal if it has a sound mathematical

basis, typically given by a formal specification language. This basis provides a

means of precisely defining notions like consistency and completeness, and, more

relevant, specification, implementation, and correctness.
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Formal methods are based on Formal Description Techniques (FDTs), which allow

one to produce various descriptions from abstract to implementation-oriented. In the

context of communication protocols, FDTs have been developed for the description

of communication protocols and services. All FDTs can offer the means for

producing unambiguous descriptions of systems in a more precise and

comprehensive way than natural language descriptions. They provide a foundation

for analysis and verification of a design. The target of analysis and verification may

vary from abstract properties to concrete properties.

2.1.1 Formal Specifications

A formal specification usually describes the intended behavior of a system. An

implementation actually implements the behavior described in the specification. In

the specification we want to capture how the system should behave without being

concerned with how that behavior is to be achieved. Implementing the system we are

concerned with how to achieve the behavior on a particular hardware. Obviously a

specification serves as a basis for deriving implementations, and it should abstract

from implementation details in order to give an overview of a complex system, to

postpone implementation decisions, and not to exclude valid implementations. To

ensure that the implementation of the system is acceptable, it must be tested for

conformance to its specification. The later errors are discovered in the process of

specification, design and implementation, the more expensive the system will be.

0

A formal specification uses mathematical methods to model a system. It is possible

to formally reason about the system, i.e., it is possible to verify that in a particular

state, with particular inputs the specified system will behave in some desired way, or

will not behave in some undesired way. It is essential to have a machine-readable

form for the formal specification of systems. Once a machine-readable specification

is available, tools can be applied to validate the system, generate the implementation

code and conformance tests directly from the specification at a lower cost and in

shorter time compared to a traditional system development approach [Monk 1999].
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FDTs, such as Estelle, LOTOS and SDL are well-known specification languages

standardized by ISO [IS9074, IS8807] and ITU-T (formerly CCTTT) [CCTTT92].

They are based on the finite state machine models. The use of specification

languages makes it possible to analyze and simulate system solutions, which in

practice is impossible when using a programming language due to the cost and the

time delay.

The requirement that a formal specification be expressed abstractly usually means

that a formal specification language can not be executed directly. That is, in contrast

to a program, a formal specification (that is a specification written in a specification

language such as SDL) is not intended to be mn on a computer. The main benefit of

using a formal specification is to gain a deeper understanding of the system being

specified. It is through the specification and validation process that the developers

uncover design flaws, inconsistencies, ambiguities, and incompleteness [CW 1996].

2.1.2 Verification and Validation

The use of formal specifications provides the basis for allowing validation of the

specification towards expected behavior and verification of an implementation

according to the formal specification. The testing of an implementation is different

from the testing of a formal specification. Implementation testing is also called

verification and according to [Holzl991] validation refers to all activities "used to

check that the formal specification itself is logically consistent".

u

Formal verification is the process rigorously demonstrating that specified properties

hold in a given system. However, there are computational complexities inherent to

formal verification that makes it difficult to verify large designs. In order to formally

prove properties of a system, formal models of the system, a formal way of

expressing properties, and an algorithm for performing the check are needed. The

Finite State Machines provide an example of these models.
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0 However, formal methods can prove that an implementation satisfies a formal

specification, but they cannot prove that a formal specification captures a user's

intuitive informal understanding of a system. In other words, formal methods can be

used to verify a system, but it is hard to validate a system [Vienl993]. The

distinction is that validation shows that a product will satisfy its operational mission,

while verification shows that each step in the development satisfies the requirements

imposed by the previous steps.

The Finite State Machine (FSM) verification problem is to check the equivalence of

two FSMs [KV1992]. The verification process ofFSMs usually consists of deriving

(either explicitly or implicitly) a product machine from the given FSMs, collapsing

all the failure states into a failure state, and determining the reachability of the failure

state from the initial state of the product machine.

Verification usually relies on state exploration techniques. Two classes of

exploration algorithms have to be distinguished: exhaustive and non-exhaustive

exploration algorithms [HK+2000].

Exhaustive validation performs an analysis of the complete model. The most

common exhaustive exploration approach builds the reachability graph of a system

by visiting all reachability states. The visited states in this graph are used during the

exploration to avoid multiple visits of states. This ensures the termination of the

algorithm. A reachability graph comprises all execution paths the system is able to

perform. Deadlocks, livelocks or dead code can be discovered in this way. Due to

the state space explosion problem, this method is only applicable to relatively small

systems.

0

Non-exhaustive exploration algorithms cope with this state explosion problem by

exploring only parts of a system. Certainly, this method cannot prove error-freeness

for the whole system, but experience has shown that specification errors manifest
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themselves in many different states. Therefore, it is not necessary to cover all

execution paths of the system to spot errors. The problem is to find a sufficient

subset of all paths.

2.1.3 Test Derivation

It is essential to ensure that the approved standards and agreed specifications are

exactly followed during the implementation process and to this end the product

suppliers who implement the standards and specifications carry out testing during

the product development cycle to assess conformance.

To demonstrate conformance to a standard or specification, a set of test events need

to be executed in the fonn of data unit exchanges between a tester and the

implementation under test. Sequences of test events are grouped into test cases and

sets of test cases into test suites. A test case may not mean much if one does not

know its purposes [WL1993]. The test purposes are statements indicating what kind

of errors the test case tries to detect. Each test case usually corresponds to a specific

test purpose reflecting a unique requirement in the specification of a test suite. It is

normal that several thousand confonnance test cases may be produced at different

stages of development and executed against each implementation in a medium-size

system. This is well beyond the capability of manual test production methods.

However, with software tools, it is possible to produce error-free test suites from

specifications such as in SDL without limiting the number of test cases and test

coverage of the requirements [Monk 1999].

u

Formal test derivation methods generally rely on the use of a mathematical model

such as Labeled Transition Systems (LTSs) and Finite State Machines (FSMs)

[PB 1993]. Several formal description techniques have been standardized based on

the two mentioned mathematical models; for example, LOTOS is based on LTS

while SDL and Estelle are based on the FSM model. Much work on the test

derivation from a given system specification has been done separately for the two
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models [PB 1993]. However, these mathematical models are becoming inadequate

when applied to systems of industrial size, where data are widely used [TR 1999]. In

a practical situation, for example in a distributed system, a protocol specification

includes variables and operations based on the variables; using pure "FSM" will be

much complicated. A well-known compact model, called EFSM (Extended Finite

State Machine), see, e.g., [PB+1999] allows us to model protocols in a succinct way.

The EFSM model is based on the FSM model but is extended with data and related

concepts such as (parameters, variables, operation on data, predicates on data, etc.).

The EFSM model is the basis of the semantic representation of Formal Description

Techniques such as SDL. The concepts of FSM and EFSM model will be formally

given in the following Section 2.2. The concepts of SDL and the related tool will be

discussed in Section 2.3 and Section 2.4.

2.2 Definitions of FSM and EFSM Models

2.2.1 The FSM Model

In this section we give some important definitions and notations of finite state

machines that will be frequently used in the subsequent sections. The model of FSM

considered here is based on the so-called Mealy machine. The following definitions

and notations are taken from [HU1979, G1111962, Starl972, PY+1996].

u

Definition 2.1 (FSM):

A. finite state machine (FSM) M is a 6-tuple (X, F, 5', ^i, h, DA), where

- X is a finite set of input symbols;

- y is a finite set of output symbols;

- Sis a. finite set of states;

- si is the initial state;

- DA ^SxX is a. specification domain;

- h is a behavior function DA —> PCS x Y), where PCS x D is the powerset of Sx Y.
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The behavior function h characterises possible transitions of the machine. A

specified transition from state Si to sj with input x and output y can be represented in

the form Si-x/y->Sj. Usually, si is called the head (or initial) state of a transition and Sj

is called the tail (or final) state of a transition.

The machine M is deterministic (FSM) if for all (s, x~) e DA, \h(s, x)\ = l. In the case

of deterministic FSMs, instead of the behavior function h, we use two functions: the

transfer (or the next state) function S and the output function 2 to characterise the

behavior of the finite state machine.

Definition 2.2 (completely defined and partially defined machine):

A FSM M is said to be:

- completely defined (or specified) \i DA= S xX. It means that the behavior

function h is defined (or specified) for all the state-input combinations.

- partially defined (or specified) ifD^ c 5 x X. It means that there should be some

state-input combinations for which the behavior function h is not defined.

We will mainly consider completely defined machines in this work. So if not

mentioned explicitly, all the machines are completely defined.

Definition 2.3 (p-eauivalent, equivalent states, and equivalent FSMs):

State s of the machine Mi and state r of the machine M^ are said to be:

p-equivalent if for any input sequence of length p, the sets of output sequences

produced by the machine M-[ in state s and the machine MÎ in r in response to the

input sequence coincide. If s and r are p-equivalent for any p, then they are

equivalent. If ^ and r are not equivalent, they are said to be distinguishable. Two

complete FSMs are said to be equivalent if their initial states are equivalent.

u
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Definition 2.4 (reduced and minimal machine):

A FSM M is said to be reduced if all its states are pairwise distinguishable. A FSM

M is said to be minimal if the number of states of M is less than or equal to the

number of states of any machine Mi equivalent to M.

A minimal machine is reduced, but the converse is not tme for partially defined

machines.

DeHnition 2.5 (projection):

The hî is projection of A, where h2(s, a) = {P\^s^S [(s\ yff) e h(s, a)]}, for all
aeX\

The set h (s, a) contains all output sequences that can be produced by the FSM in

response to the input sequence a applied in the state s.

Definition 2.6 (reduction relation):

Given two FSMs Mi = (X, F, 5, .yi, /i) and FSM Mz = (X, 7, T, h. H), states se S and

fë T, state f is said to be a reduction of state ^, written ?<5', if, for all input sequences

aeX*, the condition H2(t, a)^h2(s, a) holds; otherwise t is not a reduction of 5'.

Note that t<s and s<t says that s and r are equivalent states.

The FSM model is the basis for a more powerful model of extended finite state

machines.

2.2.2 The EFSM Model

u

Similar to FSM, an EFSM contains a set of states and several transitions from one

state to another, but the data part of an EFSM transition includes input/output

parameters, context variables, and a transition firing enabling condition. The

difference between an EFSM and an FSM is that an EFSM associates each transition
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not only with input and output actions but also with assignment action and condition

[WL1993].

The model of a Mealy (finite state) machine extended with input and output

parameters, context variables, operations and predicates defined over context

variables and input parameters can be formally defined as follows [PB+1999J.

Definition 2.7 (EFSM):

An extended finite state machine (EFSM) M is a pair (S, T) of a finite set of states S

and a finite set of transitions T between states from S, such that each transition fê T is

a 7-tuple (s, x, P, op, y, up, s), where

- s, s' e S are the initial and final states of the transition, respectively;

- x e X is input, X is a set of inputs, and £>,„? is the set of input vectors, each

component of an input vector corresponds to an input parameter associated with

X;

- y e y is output, F is a set of outputs, and Dout,, is the set of output vectors, each

component of an output vector corresponds to an output parameter associated

with y;

- P, op, and up are functions, defined over input parameters and context variables

y, namely,

- P: DinpXDy —>{True, False} is a predicate, where Dv is a set of context vectors

V;

- Op: DinpXDy —>Dout^ IS an output parameter function;

- up: DinpXDy —>Dv is a context update function.

J

The function P, op, and up define the dynamic properties or the behavior of the

EFSM. An EFSM machine receives input along with input parameters (if any) and

computes the predicates that are satisfied. One transition among those labeled with

the received input and a satisfied predicate is triggered and the EFSM moves from
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one state to another state. At the same time, it produces an output along with output

parameters and changes the values of its variables according to the update function.

Specifically, we normally use (s — x. Plop, y, up—>s) to denote a transition re T. If,

in t, P is a. Tme constant, P can be dropped from the transition. Similarly, when the

transition does not change the values of the variables, the update function up can be

omitted. Also, the output parameter function can only be absent when output y has

no output parameters at all. Notations (s — x. Ply—>s), (s — xly, up^s'\ (s — xly^s)

are examples of notations used for such situations.

For pragmatic reasons we assume that update function is typically represented by a

sequence of assignments of new values to context variables and parameters, so it is

easy to deterimne which variables define new values for variables and output

parameters. Typically, in scope of a transition, each variable or output parameter

depends only on few values. Therefore, in most examples a slightly different

notation, with assignments of variables and parameters in the SDL style will be used.

In Definition 2.8, we present the main properties of the EFSM [PB+1999] that will

be used in the following chapters.

^>

Definition 2.8 (consistent, completely specified, deterministic, observable

machines):

An EFSM M is said to be:

- Consistent if for each transition t, every element in Djnp^xDy evaluates exactly

one predicate to Tme among all predicates guarding transitions with the start state

and the input of t; in other words, the predicates are mutually exclusive and their

disjunction evaluates to Tme.

- Deterministic if any two transitions outgoing from the same state with the same

input have different predicates.

- Observable if for each state and each input, every outgoing transition with the

same input has a distinct output.
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An EFSM exhibits a much richer behavior than a simple finite state machine. A

simple finite state machine equivalent to an extended machine with only a few

variables or parameters would be too large and complex to be constmcted and/or

understandable, whereas the behavior of the extended machine can be easily

followed. An extended finite state machine can also represent the behavior that is

impossible for a finite machine if some variables or parameters have an infinite

number of values, for example, if a parameter is an integer. In this case no FSM

equivalent to the given EFSM can be constructed.

2.3 An Overview of SDL Language

The specification and description language (SDL) is an object-oriented, formal

language defined by The International Telecommunications Union-

Telecommunications Standardization Sector (ITU-T) as recommendation Z. 100

[CCrTT92].

SDL has a number of advantages compared to other high-level languages and

traditional low-level languages such as C, C++, or Java. SDL has a rich grammar

that describes behavior and is unambiguous. Therefore, it is possible to build tools

for the simulation of SDL systems and for the validation of formal characteristics,

like deadlock avoidance. In short, this means that errors can be detected at a very

early stage.

J

The language SDL is intended for the formal specification of complex, event-driven,

real-time, and interactive applications involving many concurrent activities that

communicate using discrete signals. It is especially well suited for specification of

communications protocols, reactive systems such as switches and routers and

distributed systems. SDL has been designed for the specification and description of

the behavior of such systems, i.e., the interworking of the system and its
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environment. It is also intended for the description of the internal structure of a

system, so that the system can be developed one part at a time.

Figure 2.1 shows four main hierarchical levels of an SDL system. In an SDL

specification, a system consists of a number of blocks connected by channels. A

block is an enclosure for further structuring of the system. Channels connect the

blocks with each other and with the environment of the system in one-way or two-

way mode. A block consists of processes connected by signal routes. Each process is

an extended finite state machine (EFSM). These machines (or processes) run in

parallel. They are independent of each other and communicate with discrete

messages, called signals. A process can also send signals to and receive signals from

the environment of the system. The behavior of a state machine is characterized by a

set of transitions. A transition to another state or the same state occurs whenever a

stimulus (or input) is consumed. When a process is in a state it accepts stimuli from

its input port. These stimuli can be signals received by the input port or timers.

When a process enters a new state, it means that a transition terminates. EFSM

enables decisions to be made in transitions based on the value associated with a

variable so that the state which follows when a specific input is consumed is not only

determined by the existing state and input. A transition may contain the following

actions:

- Output: to send signals.

- Task: to change the value of variables. Local variables for each machine may

hold details about the history of the machine.

- Create: to create process instance.

- Decision: to split into several sequences of actions.

- Call: to activate procedures. A procedure is a parameterised part of a process

with its own scope.

- Set, reset: to manipulate timers.

J
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Figure 2.1 Four Main Hierarchical Levels of an SDL System

The SDL language supports two equivalent notations: the graphical notation (SDL-

GR) and the textual notation (SDL^PR). The graphical notation (SDL-GR) is a

standardized graphical representation of the system. SDL elements such as system,

block, process, signal etc. are drawn using standardized graphical symbols. The

textual notation (SDL-PR) is a textual phrase representation of the SDL system, or

in other words, it is a SDL "source code" [BH 1989].

2.4 An Overview of the ObjectGeode Tools

Supporting simulation, validation, code generation and test generation is the most

important reason for using SDL as a system specification language. Since SDL is

graphical and formal, it is possible to use tools to automate simulation, verification

and validation. Automation is not possible with non-formal notations and languages,

and with it designers can quickly determine the completeness and correctness of the

specifications early in the development process. SDL is accepted by the industry,

because it has a good maintenance support. SDL commercial tools, such as SDT and

ObjectGeode, provide integrated graphical environments for developing of SDL
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systems. In this work, we use the ObjectGeode environment to implement and check

our theoretical results.

ObjectGeode [GEODE-1] is a toolset dedicated to analysis, design, verification and

validation through simulation, code generation and testing of real-time and

distributed applications. Such applications are mainly used in fields such as

telecommunications, aerospace, automotive, process control or medical systems etc.

ObjectGeode is an advanced integrated environment for the development of

distributed real-time systems. The ObjectGeode environment consists of highly

advanced graphical tools. It provides graphical editors, a powerful simulator, and a C

code generator targeting popular real-time OS and network protocols, and a design-

level debugger. Complete traceability is ensured from requirements to code. It also

supports a coherent integration of complementary object-oriented and real-time

approaches based on the UML, SDL and MSC standards languages. ObjectGeode

has the following components [GEODE-1].

(1) Graphical Editor for creating and editing of the SDL system

Various editors provide for intuitive means of creating, modifying, and viewing the

diagrams of an ObjectGeode description: Architecture, Communication, State

machines and Message Sequence diagrams. Consistency and compliance with

notation rules is controlled by the Checker. Powerful multi-user features arc

available for large/distributed projects.

(2) Simulator that simulates the system in the graphical environment

u

The powerful simulation tools integrated in ObjectGeode simulator can provide

visual design level debugging, verification and validation techniques. They also can

detect modeling errors before coding start, and show proof that the model complies
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with requirements. The ObjectGeode simulator provides three simulation modes:

interactive, random, and exhaustive [GEODE-3].

The interactive or step by step mode provides a fine-grained simulation. The

user is free to decide which parts of the design that will execute, and to move up

and down the simulation process with Undo and Redo commands. Like

conventional debuggers, the simulator offers a graphical view of design being

executed, indicates the current position in the corresponding MSC, and produces

results in real-time.

The random mode derives a pattern from a number of patterns provided by the

developer to explore some of the possible application behavior.

The exhaustive mode requires the simulator to explore all behavioral paths.

When running in this mode, the simulator checks all verification properties. If a

violation is detected, a scenario is created, which reflects how to get the faulty

condition.

These three modes may be alternatively used during the same simulation session.

For each of these modes, the simulator generates scenarios containing the results of

the verification (deadlock detection etc). These scenarios can be replayed in

interactive mode and expressed graphically in the form of Message Sequence Charts

(MSCs).

(3) TestComposer & TTCN Test Suite Publisher

J

TestComposer [KJ+1999] is an automated test generation tool for conformance

testing from SDL and MSC models. TestComposer takes as inputs a SDL

specification, a specification of the test environment and a possibly empty set of user

defined test purposes. These user defined test purposes can be built interactively

using the simulator, or written using MSC or GOAL observers. The tool then
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completes the set of test purposes by computation of new test purposes according to

structural coverage. Then the generation engine is fed with each test purpose, and

produces test cases, which are stored in the test case database. Finally, through the

test case database API, the test suite is built and written in a TTCN-mp file. TTCN

Test Suite Publisher, extension to Test Composer, enables to translate the generated

test suites into TTCN format for Telelogic Tau TTCN Suite.

(4) Code Generator

Fully executable C code of the (distributed) multi-task real-time application is

automatically generated. Makefiles arc also generated to automate the building

process. Through dedicated ObjectGeode Run-Time Libraries, the generated code is

then mapped on to real-time operating systems such as CHORUS, Nucleus, OSE,

OSEK, pSOS+, VRTXsa ®, VxWorks, WIN32 or various flavors of UNDO and

network protocols such as TCP/ff. The DesignTracer allows the current design

description to be visualized interactively and trace information (including time) to be

displayed as MSC diagrams.

2.5 Conclusion

Until now we have reviewed the related theory of fonnal methods and the concepts

of the finite state machine and extended finite state machine. The EFSM model is the

basis of the semantic representation of FDTs such as SDL. The language SDL is an

object-oriented, formal language defined by ITU-T as recommendation Z. 100,

which is intended for the formal specification of complex, event-driven, real-time,

and interactive applications involving many concurrent activities that communicate

using discrete signals. The toolset ObjectGeode is dedicated to analysis, design,

verification and validation through simulation, code generation and testing of real-

time and distributed applications. In the next chapter, we discuss the ideas for state

abstraction techniques for EFSM.

J
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Chapter 3

State Abstraction Techniques for EFSM

3.1 The Need for State Abstraction

Most of model checkers used to verify finite state systems perform worse when the

number of states in the modeled system increases. This is a notorious state explosion

phenomenon. In order to alleviate the state explosion problem some states of an

FSM underlying the system can be merged. States that were different now become

identified so that the resulting machine with fewer states can be considered as an

abstraction of the given machine. The fewer states a formal specification has, the

easier all the problems of verification and test derivation (and related problems)

should be. The problem of state abstraction can be solved in various ways that differ

in the nondeterminism of resulting specifications. Our goal is to elaborate state

merging techniques such that

J

(1) The resulting specification presents the behavior of the original specification.

(2) The resulting specification is observable (its underlying EFSM is

observable).

(3) State merging can be performed on the SDL specification.
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3.2 Existing Abstraction Techniques for the FSM Model

According to [Oikol996], an abstraction of a finite state machine (FSM) M consists

in lumping (aggregating) some of its states, inputs, and outputs into classes, which

then become the states, inputs, and outputs of a smaller FSM MA. Even if M is

detenninistic, the abstracted machine MA will, in general, be nondeterministic. In

spite of nondeterminism introduced by abstraction, such an abstraction can still be

useful. For example, in the testing context, there is still a class of faults in the system

which are immediately-detectable upon occurrence using an abstracted machine

instead of the original one [Oikol996]. [Oikol996] presents some criteria for

selecting an optimal abstraction of a given finite state machine. It also gives an

algorithm which computes an approximately optimal abstraction in reasonable time.

This work concentrates only on FSM abstraction, while to abstract an SDL

specification, one has to deal with EFSMs.

[GS+1996] distinguishes three classes of reduction mechanisms, heuristics, partial

order simulation methods, and optimization strategies, which can be used for

handling the complexity of SDL specifications. Heuristics are based on the

assumptions about the behavior of the system to be tested, or its environment. They

avoid the elaboration of system traces which are not in accordance with the selected

assumptions. Partial order simulation methods avoid complexity which is caused by

an interleaving semantics of the specification language. They intend to limit the

exploration of traces for concurrent executions. Optimization strategies intend to

reduce the possible behavior of the system environment. [GS+1996] also describes

the way they work. In [GS+1996], the entire behavior of an SDL system is treated as

a labeled transition system (LTS) and is described in form of a behavior tree.

u

[LG+1995] studies the property preserving transformations for reactive systems. A

key idea of [LG+1995] is the use of Galois connection and (ec, ^-simulation which

is the same as the standard simulation often used to define implementation.
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Furthermore, (or, ^-simulation induce abstract interpretations and this allows to

apply an existing powerful theory for program analysis.

The method for machine reduction by successive merging equivalent states was

given in [Gill 1962]. This method emphasized on merging simply equivalent pair of

states successively to get a reduced machine of the original one. State minimization

for the EFSM model is a much harder problem, for which no efficient technique

exists. Moreover, we are not aware of any work done on state abstraction for EFSM

or SDL. Our main goal here is to offer techniques for state abstraction that can be

used not only for EFSM, but also for SDL specifications.

3.3 Abstracting States in the FSM Model

3.3.1 Basic model of abstraction

In this section we will give some definitions and notations needed to define state

abstraction of an FSM.

Definition 3.1 (abstracted machine):

Let A be an observable completely defined FSM with the set of states S and K= {Bi,

BÎ, ...} be a partition on S. An FSM over the same alphabets is called a factor FSM

for A, denoted An, if each state of An is a block of the partition 71 and, for each

transition (s — x/y—>s') of A, there exists a transition (n(s) — x/y^K(s')) and vice

versa.

^1

Here Tl(s) denotes the block which contains s. A state K(s) of the factor machine is

also called a factor or image of the state ^. (K{s) — xly-^K^s)) is called a factor or

image of the transition (s — xly—>s). A factor machine is also called an abstracted

machine, also known as an abstraction.
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Example:

An example of FSM A is shown in Figure 3.1. It has the state set 5= {1, 2, 3, 4}.

The machine FSM A is completely specified, deterministic, and thus observable.

0^-0
xi/yi

xj/yi
W.V2 ^2 xi/yi

XïlyïQ^>^<T)

Figure 3.1 An FSM

For the machine A, we may have partitions of 5 such as {{1, 3}, {2, 4}}, {{1, 4}, {2,

3}}, {{l}, {2,3,4}}, {{1,2,3,4}}, {{!}, {2},{3},{4}}.

For the partition 7t = {{1,3}, {2, 4}}, the abstracted machine of A can be built as

shown in Figure 3.2.

1,3

x\ly\
^ib\

-h
<-

x\ly\
^2/.Y2

2, 4 ) ) x,ly,

Figure 3.2 A Non-observable Abstracted Machine

u

Here we obtain a non-observable abstracted FSM of A because from the state {2, 4}

we have two transitions with the same input-output label x\ly\ which lead the FSM

into two different states: one to the state {2, 4}, another to the state {1,3}.
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For the partition 71 = {{1,4}, {2, 3}}, we can construct the abstracted machine of A in

Figure 3.3, it is observable, because for each state and each input, every outgoing

transition with the same input has a distinct output.

x\ly
^~~^~^

^\

"I f f 1.4
^ ^J^LlA-

XTJV
ï5Sxily

x-lfy.
'l

'2
'l

Figure 3.3 An Observable Abstracted Machine

3.3.2 Behavior Preservation by an Abstraction

The following statement says that the abstracted machine preserves the behavior of

the original machine (while a new behavior also appears).

Let SA and SB be state sets of FSMs A and B, respectively. A mapping y of >SA into SB

is called a (transition) homomorphism from A into fi if for each transition (s-i —

xly—>S2) of A there exists a transition (c<5i)—x/y—>c(s2)) of 5. When for each

transition (s\B — x/y—>s-i) of B there exists a transition (s-i — x/y—>S2) of A such that

(pÇs\) = s\B and (pC^s-i) = sf, ç>is called a homomorphism from A onto B.

Proposition 3.1

The machine B is isomorphic to an abstraction of A iff there exists a homomorphism

from A onto B.

Let (A, s) denotes FSM A initialized into the state s.

J

Proposition 3.2

(A, s) is a reduction of (A^, îi(^)).
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Proof. Clearly the partition n induces a homomorphism from (A, s') onto (A, Tl(s)). It

is easy to prove by induction that for any input sequence every output sequence

produced by FSM A in state s can also be produced by the FSM An in the state n(s).

This means that every input-output sequence produced by (A, s') is also produced by

(An, Tl(s)). Note that (An, 7c(^)) may produce input-output sequences, which (A, s) can

not. Clearly, the abstracted machines in Figure 3.2 and 3.3 preserve all behaviors of

their original machine, but the abstracted machines exhibit behaviors that the

original machine does not. For our example in Figure 3.3, the abstracted machine has

the nondeterministic behavior that the original machine does not have: {2, 3} ->

X2/yi -> {l, 4} or {2, 3} -^^2 ^ {2, 3} and {1, 4} ^ ^/yi ^ {l, 4} or {l, 4} ^

^2/y2-^{2,3}.

3.3.3 Observabilization

The factor machine An is not necessary observable, as, for example, in Figure 3.2.

Obviously, it is observable only when any two transitions of A that start from one

block of 7t with the same input/output label converge to a same block.

Proposition 3.3

An is observable iff all transitions of A with the start states in the same block and

with the same input/output label lead to the states of a same block of the partition 71.

u

The goal of abstraction is not just to reduce the cardinality of the state set but to

obtain a simpler machine that is easier to handle. However, a non-observable

machine with fewer states than the observable one may be more compact but is not

necessary easier to process. The problem is that an observable machine may be

interpreted as a deterministic automaton (acceptor), see [Starl972], while a non-

observable one cannot, and most of the effective methods in automata theory and
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testing theory are developed either for detenninistic automata or for observable

machines.

Even when a non-observable machine is simpler than the original observable one,

there exists certain lack of tools which may be used to work with these machines.

For example, we are unaware of any model checker that is capable of finding of

input sequences that allows one to deterministically [PY+1996] reach a given state

from the initial state.

Therefore, in many applications, an observable equivalent of a non-observable factor

machine is preferable, so the question arises as to how one can obtain an observable

form of an abstracted machine, preserving at least some elements of the behavior of

the original machine. There exists a well-known algorithm of determinization of an

automaton, which can be used to obtain an equivalent observable abstracted machine

from the factor machine, see, e.g., [HU1979, Starl972]. The problem of this solution

is that, in many cases, determinization gives a rise (exponential, in the worst case) in

the number of states, so the obtained machine with more states than in the abstracted

machine can hardly be considered as a simplification of the original machine.

Moreover, this method may trigger a state explosion that can be undesirable.

Therefore, we consider methods for transforming a given non-observable FSM into

another abstracted observable machine such that do not increase the number of

states. The resulting machine should either be equivalent to the factor machine or

preserve its behavior as much as possible.

In the following paragraphs, three techniques which can be used in the state

abstraction of FSM are presented. The first one uses a coarser partition than

originally given. The second one uses an additional "trap" state. The last one

redirects certain transitions.

u
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3.3.3.1 Use of a Coarser Partition

Proposition 3.4

There exists a partition 71 > 71 such that A/ is observable.

Proof. {5'} is such a partition.

It is clear from Propositions 3.1 and 3.2 that by consecutive merging state blocks in

which An can go from a block via transitions with the same input-output label, we

will obtain the minimal partition K'>.n such that A^ is observable. Such a minimal TI/

>.Kis unique for each An. However, this procedure of implied merging of states may

easily collapse all the states into a single state. In our example, Figure 3.4 shows the

observable machine, which is constmcted from the abstracted machine in Figure 3.3.

x\ly
Wy2, 3, 4l
-ï2/y2

Figure 3.4 An Observable Abstracted Machine Using a Coarser Partition

As this example shows, the resulting machine might be too "chaotic", the

observability is obtained at a cost of "over-abstracting" the original machine. So we

have to try another approach.

3.3.3.2 Using a Trap State

J

A nondeterministic FSM is non-observable if it has several transitions that share

common input-output label, starting state, but have different ending states. We call

them conflicting transitions. One can get rid of non-observability of An without

further state merging, simply by deleting all conflicting transitions. The obtained

FSM becomes partially defined. Here a partially defined FSM, unlike the SDL

process, is not understood as a machine that discards some signals. We assume that

consuming an undefined input signal a partially defined FSM can exhibit any
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behavior. Such a partially defined FSM can be modeled by a completely defined

(nondeterministic) FSM, which, for each state s of the partially defined FSM and

each undefined in state s input x, has transitions from s into a special trap "chaos"

state with the input label x and all possible outputs. We call the transitions leading to

the trap state trapping transitions. The trap state has self-looping (trapping)

transitions with all possible input-output labels.

The use of a trap state allows us to obtain a conservative abstraction of the original

machine, as in the case of the implied merging of states. Naturally, when "too many"

transitions are becoming trapping the abstracted machine may converge to a "chaos"

machine, as in the approach based on implied merging of states. At the same time, a

model checker exploring an abstraction with the trap state may be instructed to

abandon a path with a trapping transition. Intuitively, this method is preferable, even

if it is not guaranteed to always deliver better results than the approach based on the

implied merging of states.

x\ly\
Xîly

^
(2,41,3

4
-C2/y2

x\ly

trap
x\ly
jci/y2

v-ïly
^2/y2

Figure 3.5 An Abstracted Machine with a Trap State

Redirecting Conflicting Transitions

u

Instead of replacing conflicting transitions by trapping transitions, we can resolve a

conflict by keeping just one transition among the conflicting ones for each state. Let

obs(A.Tt) be a machine obtained from A^ by keeping one transition among all
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conflicting transitions, i.e., the transitions that share the same starting state and

input-output label, and erasing all the others. Speaking more precisely, we redirect

all the conflicting transitions into one state that is the ending state of one transition

among them, for example, we can choose state (2, 4) in Figure 3.2 and redirect the

two conflicting transitions to this state as shown in Figure 3.6.

1,3

x\ly
^2/3':

l

l

X2/y:
XEÎO xilyi

'2

Figure 3.6 Redirecting All the Conflicting Transitions into One State

By doing this, we extract, in fact, a maximal observable submachine of the factor

machine. Clearly, such transformation alters the behavior of the factor machine,

unless only equivalent states were merged.

We can try to identify parts of the behavior of the original machine that are

preserved in obs(A,t). For a given partition 71 we calculate a parameter? such that for

each pair of transitions (K(si) — x/y—>K(s-i)) of obs(Ajt) and (^i—x/y—>s^~) of the

original machine the states s^ and s^ are p-equivalent, p>.0. As usually, we assume

that every state produces an input-output sequence s of length 0. Therefore, any

states are 0-equivalent. The value of the parameter p characterizes

indistinguishability of ending states of conïïicting transitions. Final states of any

conflicting transitions cannot be distinguished by any input sequence of length less

than or equal to p.

The next proposition shows that the p-behavior of every state of A is preserved in a

corresponding state of obs(An). The p-behavior of state s of the machine M is the set

of all input-output sequences of length p produced by this state s of M.

u
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Proposition 3.5

The ^-behavior of a state s of A is a subset of the ^-behavior of the image state 71(5')

of obs(An). The subset is proper unless certain blocks of7i contain only ^-equivalent

states.

Now we establish how the (p+l)-behavior of A is affected by the proposed

transformation.

Proposition 3.6

Let (si — xly—>s'i) be a transition of the original machine A and (K(s\) — xly^KCs^)) be

the corresponding image transition of obs(An). Then the set of all input-output

sequences of length (p + Ï.) produced by state s^ that start with x/y is a subset of the

set of such sequences of the image state 71(^1). It is a proper subset unless certain

blocks of 71 contain only p-equivalent states.

The following statement gives a sufficient condition for the preservation of the (p +

1) behavior of a state of the original machine by the image state. The statement

shows that a certain choice of transitions preserves in obsCAjc) the (p + l)-behavior of

at least one state of the original machine in a block.

Corollary 3.7

Let si be a state of A and for every outgoing transition (s^ — xly—>s'z) of s\ there exists

an image transition (Tt(j'i)—xly—>K(s-i)) of obs(A^-). Then (p + l)-behavior of si is a
p+ï

subset of (p+1)-behavior of K(si), i.e., si ï y K(s\).

If states of the FSM A are decorated with priorities (reflecting, for instance, their

importance), according to Corollary 3.7, it makes sense to keep in obs(A^) transitions

which correspond to transitions of a state with a higher priority (importance).

u The following statement asserts that the (p + 2)-behavior may be lost in obs(Aji).
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Proposition 3.8

It is not always possible to find an image state of obs(An) which preserves elements

of the (p + 2)-behavior of a state of the original machine.

As mentioned in Chapter 2, the finite state machine in SDL is an extended finite

state machine. The problem of state abstraction becomes more involved for this type

of machines than for pure FSMs. The problem is how to treat input /output

parameters, variables and decisions appeared in the transitions of EFSM. In the

following section, we discuss techniques for abstracting states in an EFSM.

3.4 Abstracting States in the EFSM Model

The techniques developed in Section 3.3 help us address the problem of state

abstraction in EFSM. The state merging abstraction procedure is quite

straightforward, it extends from FSM onto EFSMs directly. Therefore, we feel that

there is no need to formally define it. We believe that here illustrating it on an

example EFSM in Figure 3.7 (which is borrowed from [PB+1999] with some

simplifications) will be sufficient.

a, w<Alx, w:=w+\
^, w>4/y, w:=0^

^Dl

&/z(l)

a/xalx
b/z(u)

, u=0/z(u)
¥

4 J 3
^

bly

alx, u:=\
b, u^O/x, u:=0

Figure3.7 TheEFSMM

u
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The EFSM on Figure 3.7 has four states, two integer context variables, two inputs a

and b, three outputs x, y, z, the latter is parameterized with an integer parameter, four

transitions are guarded with predicates different from Tme. Figure 3.8 represents an

abstraction of this EFSM defined by the partition {{1, 3}, {2, 4}}. Another

abstraction is given in Figure 3.10, it is defined by the partition {{1, 4}, {2, 3}}.

Similar to the FSM case, an abstracted EFSM may become non-observable. The

observabilization of EFSMs will be discussed in the following section.

3.5 Observabilization ofEFSM

There are two types of conflicting transitions in non-observable EFSM. First, all

conflicting transitions of a state with a given input/output label lead into one state.

Second, conflicting transitions of a state which have a given input/output label lead

to different states. The former case was not possible for FSM. An example machine

with conflicting transitions is depicted in Figure 3.8. Indeed, state (2, 4) has two

transitions, leading into state (1,3) with input a and output x. Moreover, the state (2,

4) has two transitions, leading into (1, 3), with the label biz. The state (1,3) has two

loops labeled with the input a and output x.

alx

a, w<4/x,w:=w+Ï
blzW

l 3
^

a, w>4/y, w:=0
&/V

alx

al x, u:=\
blz{u)
b, u^-Olx, u:=0
b, u=01z(u)

Figure 3.8 An Abstracted EFSM

^ 2,4

u

As to this type of conflicting transitions (with the same ending state) we suggest to

merge them into a single transition. The predicate of the obtained transition is the

disjunction of the predicates of merged transitions. The context variables that are
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updated in different ways on merged transitions should be removed (abstracted)

from the given EFSM along with all assignments and predicates that use them, as it

is proposed in [PB+1999]. Conservative abstraction of context variables in EFSM is

by itself an independent problem. The paper [PB+1999] suggests that, to make an

abstraction of context variables conservative one should delete the set of variables

closed under the dependency relation. The above work does formally define the

dependency relation. So we detail this concept here, mainly based on the results of

[Wang2001].

Typically, variable v, of function f(y^,...,Vr) is called essential if there exists at least

two r-tuples of values of variables of the function / that differ only in value of this

variable but deliver different values of this function. Usually, one say that a value of

a function of many variables depends on a particular variable v if this variable is

essential. Therefore, a predicate depends on a variable if the latter is an essential

variable of the predicate function. A variable v locally depends on a variable u if in

the scope of the transition a new value of the former depends on a value the latter (or

in other words, M is an essential variable of the projection of the update function onto

the variable v). The transitive closure of this relation is called the dependence. The

transitive closure is the minimum transitive relation that includes the given one.

Since the number of variables in EFSM is finite, v depends on u iff there exists a

sequence of variables that starts from v and ends with M, and each element of which

locally depends on the right-hand neighbor. Determining essential variables may be

a complex problem. But usually, in practice, update functions are represented by

sequences of assignments. A variable v is said to directly depend on a variable u if

there exists an assignment with the variable v in the left-hand part, and the variable u

in the right. The transitive closure of the direct dependence is a conservative

approximation of the dependence relation.

u

Removing a variable also implies replacing all the predicates that depends on this

variable with the Tme predicate. Moreover, all output parameters that depend on the

removed variables, should also be abstracted. We follow this approach except for
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output parameters. Complete removal of an output parameter in all appearances of

the corresponding output in transitions that depends on a context variable to be

abstracted is in a sense too "aggressive" abstraction of EFSM, because the parameter

will be removed completely from the machine even if it depends on the removed

variables only in a single transition. Therefore, we follow the output parameter

abstraction approach developed in [Wang2001]. Namely, in the abstracted machine

we extend the domain of each output parameter with a designated value '*', which

means that this parameter can take any value. Thus, instead of removing an output

parameter, we assign this value to a parameter on each transition that depends on

deleted variables. An example of such observabilization of the EFSM in Figure 3.8

is presented in Figure 3.9.

alx

blz(\) 4
l 3

aly
bly

2, 4^

alx

&/z(*)
blx

Figure 3.9 An Abstracted Observable EFSM

The behavior of the obtained machine differs from that of the original machine;

formally speaking, the original machine is not even a reduction of the abstraction

since the abstraction uses the parameter value * that is not present in the original

machine. Therefore, we introduce a quasi reduction relation.

An EFSM is called a quasi reduction of another EFSM if for each input sequence, a

possible parameterized output of the former machine is a subset of possible reactions

of the latter after substitution of * parameters values with all possible combinations

of other values of these parameters.

u
The original machine is a quasi reduction of the obtained observable machine. In the

case of parameters with finite domains, replacing each transition with star output
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parameter values by a number of transitions that together provide all the possible

combinations of the values of the parameters from the original domains, while each

transition uses only one such a combination, would result in an EFSM such that the

original EFSM becomes its reduction.

The machine obtained in our example (Figure 9) is much simpler, therefore easier to

handle than the original machine.

So far, we have discussed conflicting transitions leading to the same ending state. As

to conflicting transitions that lead to different ending states, the above approach is

not applicable. To remove those we adapt a technique based on using a trap state.

Namely, all these transitions are redirected to a trap state (and thus merged), where

output parameters are instantiated with the value *. As with the previous type of

conflicting transitions, the predicate of the obtained transition is the disjunction of

predicates of merged transitions. The behavior of the EFSM does not depend on

context variables in the trap state. Therefore, the update function may be arbitrary.

Consider the example EFSM in Figure 3.10.

a, w<^lx, w:=w4-l
alx, M: = l

b, u^-0/x, u:=(
1,4

4

a, w>4/y, w:=0
b/zW
b, u=0/z(u)

->( 2,3

bly
alx

a/x

b/z(u)

Figure 3.10 An Abstracted EFSM

The EFSM has both types of conflicting transitions. The conflicting transitions

(5'i,4—a, W^lx, W:=W+\—>S\^ and (^1,4—alx, u:=\—>s^^ lead into the same state

and therefore have to be merged. Variables w, u, as well as the dependant and

predicates are abstracted from the EFSM. Similarly, the conflicting transitions (^1,4—

b/z(ï)—>s^3) and (^1,4—b, u=Qlz(u)^s^) are merged into (^1,4—blz(*)—>sz^). The
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conflicting transitions (^2,3—a/x-^s^) and (^2,3—a/x—>si^ are merged into (>î2,3—

alx—>trap~). This gives an observable machine represented in Figure 3.11.

fc/z(*)

aly
A/z(*)

alx ^ 2,31,4
blx 4

bly

trap

alx

alx 7~ —^ ^rap
aly ^ J bly~
a/z(*) —blz(*)

Figure 3.11 An EFSM with Trap State

It can be proven that after observabilization with the above method we obtain a

machine such that the original machine is a quasi reduction of the former.

There are cases when such observabilization may be performed without altering the

behavior and it may lead to the simplification of EFSM. Namely, this is the case

when few conflicting transitions of a state share the same context update and output

parameter functions.

Let these transitions be

(s-x,P^lop,y,up^f),

(s-x,P2/op,y,up^f),

(s-x, Pn/op, y, up->t)

u

then these conflicting transitions could be safely merged into

(t-x, PïVP2-v...-vPn/op, y, up-^t)
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transitions are detected, they should be merged.

0

3.6 Conclusion

In order to alleviate the state explosion problem some states of an FSM underlying

the system can be merged. Three techniques can be used in the state abstraction of

FSM and EFSM with respect to the preservation of the observability and behavior of

the initial machine. The first technique uses a partition coarser than originally given.

The second uses an additional "trap" state. The last one redirects certain transitions.

Based on these results, in the next chapter, we present detailed abstraction and

observabilization methods for EFSM represented by SDL specifications.
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Chapter 4

Abstraction of States of SDL Processes

D

The EFSM concept is an underlying model for several languages and techniques for

specification and development of protocols, interactive software, and hardware.

These languages combine the EFSM model with complex structures of program

languages, as procedures, control operators, and data types. Such languages could

give a precise, effective, convenient, and familiar for the designer syntax (and, in the

ideal case, a precise semantics) to specify communicating processes. The syntax of

these languages is close to the syntax of common programming languages.

Moreover, often, these specification languages are not just a "syntactic sugar" for

EFSM, but considerable extensions of the basic EFSM model, which comprise many

new complex, but useful concepts. Among these languages are Chill, Estelle,

Promella, Lotos, UML, and SDL. Here we study adaptation of state abstraction and

observabilization techniques developed in the previous section for the FSM and

EFSM models for one of the above languages, Specification and Description

Language (SDL). As discussed in Chapter 2, SDL has evolved within the

telecommunication industry, however today SDL is also used in the development of

other safety-critical systems, such as factory automation systems, aerospace and

automotive applications, kidney-dialysis devices and train-control systems. We
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extend our methods for EFSM state abstraction and observabilization to SDL

processes.

4.1 Correspondence between EFSM and SDL processes

It becomes clear from the Section 2.3 that SDL processes have several stmcturcs that

are absent in EFSM. In fact, syntax and semantic discrepancies between the EFSM

and SDL process create a gap between the two notations. This questions the

applicability of the abstraction techniques developed for the EFSM model to

simplify an SDL process. We try to identify this gap by establishing the

correspondence between elements of the EFSM and SDL process and to bridge the

gap to eventually develop an appropriate abstraction technique. We analyze how

these discrepancies affect state and transition merging. At the same time, we indicate

some implementation choices of our tool.

The EFSM is a theoretical model, but it gives a practical idea of hiding of less

important or purely computational aspects into context variables and signal

parameters, while representing more important control aspects with explicit states

and signals. This idea is exploited in EFSM-based languages. However, the EFSM

represents computations with variables and parameters in a quite abstract way - with

predicates, context update function, and output parameter function. In the EFSM

definition, it is not mentioned how these functions are represented, computed, or are

they constructive at all. The variables types are not detailed at all either.

J

Below we list major discrepancies between SDL processes and our EFSM model,

discuss their affect on consistency of our approach to state abstraction and

observabilization. In this work, we do not offer a solution to all problems, moreover,

not all proposed solutions arc implemented in our experimental tool. However, we

believe that identification of these problems clarify the way SDL states could be
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abstracted. Moreover, it could be helpful for further development of SDL abstraction

and transformation tools and underlying methods.

Transitions. The correspondence between SDL transitions and transitions of EFSM

is not direct. In SDL, transition usually means action statements which reside

between states and are executed upon discrete or continuous signal arrival. Unlike

EFSM, SDL transitions are branching on variable values (or non deterministically),

i.e., they could lead into different states and invoke different action sequences.

Starting state, triggers, terminators, should be considered as components of a

transition. (However, the SDL syntax allows "transitions" which have no state or

trigger, such as initial transition and transitions starting with label in-connector).

Therefore, an SDL transition may correspond to a set of EFSM transitions. We

suggest that a (semantic) state, an input, a chain of statements, connected in the

graphical representation terminated with a stop or nextstate terminator, correspond to

an EFSM transition. The predicates, updates and output functions are implicitly

defined by that sequence of statements. Variable assignments in tasks and input

parameters shape the context update function, and, often the output parameter

function and the predicate guarding the transition. Decisions mainly contribute to the

predicates. Expressions, used as actual parameters usually define only the output

parameter function. The same statement may contribute to several different

transitions of a corresponding EFSM. This complicates transition transformations,

e.g., transitions merging. In some special cases, several chains leading to the same

state could represent a single transition, using a non-deterministic choice between

variable or output parameter assignments.

0

Outputs. An SDL transition may produce a sequence of output signals. If such a

sequence could be determined by a static analysis of a process, it does not cause any

problem for SDL transformation, for this sequence is considered as a single complex

signal of a corresponding EFSM transition. Looping transitions do not complicate

state merging however they complicate more complex transformation, i.e.,
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observabilization. Our tool observabilizes only specifications with acyclic

transitions.

Nondeterminism. While nondeterminism in EFSM arises when it has several

transitions sharing the same input, standard SDL processes may have

nondeterminism only in actions and decisions. These are ANY decision and ANY

expression. Therefore, in the ITU SDL, nondeterministic transitions could be

modeled only with ANY decisions. Fortunately, the OG extension of SDL allows

nondeterminism in input clauses, hopefully this extension will be eventually

accepted by the standardization committee.

ANY expressions are difficult to effectively represent in an EFSM model, but we do

not see how this may affect neither state abstraction nor observabilization.
•/

Time. Unlike our EFSM model, SDL processes are timed. Time, in fact, is

considered as a designated variable, which may progress nondeterministically.

Usually, in SDL processes, time aspects are expressed by a set of timers. Semantics

of time progress and timers is complex and involves communication with implicit

designated processes. Timers and time variables, used for timer setting, could be

conservatively abstracted (removed), for example by replacing an input clause with a

spontaneous transition (NONE input), though this is not implemented in the current

experimental tool, because spontaneous transitions currently are not supported by the

OG Simulator.

u

Procedures. Unlike EFSM, the SDL transition may call remote or local procedures.

They complicate the variable dependency analysis. In general, the procedures may

contain their own states and transitions. There exist methods and tools (such as

SDL2IF, available from www-verimag.imag.fr) for flattening SDL processes, though

their applicability in a general case is not clear. While a sound treatment of processes

with procedures is possible, an auxiliary tool which we are going to use for variable

removal in its current state does not support procedures. Therefore, we assume that
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all procedures (especially with states) have been flattered manually or automatically,

otherwise variables involved in procedures will not be removed.

Discard. Inputs, which are not defined for a given state explicitly arc discarded

(consumed) by so-called implicit transitions. Therefore, to insure correctness of

abstraction, implicit transitions should be defined explicitly. However, our tool does

not automate it, all inputs should be manually explicitly defined for each state when

a conservative abstraction is needed.

Q,ueue (and related clauses). The SDL process has a queue (buffer) and a number of

clauses to manipulate the order of consumption of the elements of this queue. There

are explicit SAVEs, implicit saves (guarded transitions), and continuous signals.

They do not breach the EFSM model, since a queue could be modeled by a variable

(a dynamic array), saves could be modeled with transitions, which modify this array,

continuous signals could be modeled with a designated empty input signal e of

EFSM, that triggers such a transition.

Moreover, SDL poses some syntax limitations, for example, it forbids the use of

save and input for the same signal in the same state. Priority inputs can not appear in

a state with a continuous signal. A straightforward merging of states with different

continuous signals could make the state abstraction non conservative. (Here we view

continuous signals different if their conditions or priorities are not identically equal.

The continuous signal absence is equivalent to a continuous signal with an

identically False condition. If continuous signals are the same, even followed by

distinct transition, no problem arises). The problem is that a continuous signal clause

of the merged state always fires, provided that no regular input transition is enabled

and the condition of continuous signal is true. Therefore, in the absence of external

signals, only the behavior of one merged state is reflected. A more sophisticated

abstraction will provide a nondeterministic opportunity to stay in the state. A similar

problem arises with priority inputs. Developing state abstraction for SDL processes,

u
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we will ignore all queue related operators, since it is not yet clear semantically how a

conservative transformation can be achieved.

Shorthands. The SDL syntax exploits macros and a number of other shorthands,

such as services, state lists, signal lists, input lists, star states and signals, dash

nextstate, labels. These constructs simplify a process description, but may

complicate state abstraction. Therefore, such shorthands have to be unfolded

manually or automatically.

There are some other discrepancies between SDL and EFSM, we mention them to

complete the list, but we do not see how they affect the SDL abstraction and

observabilization.

Dynamic error (exception). It may happen, for example, in case of division by zero,

when the list of answers for a decision is incomplete. Dynamic error can be also

defined explicitly by the error keyword. In general, the behavior of a system after a

dynamic error is undefined, though most of simulators can treat it. We will consider

it as a special message.

Input parameters. Values of input parameters arc assigned in SDL to variables.

These variables contribute to the global state (configuration) space. Opposed to

SDL, in EFSM, input parameters are among the arguments of the context update

function. Parameters do not contribute to the configuration space. It is a technical

detail, though it should be taken in account. An OG extension of SDL, namely

implicit variables, allows one to use parameter values only in scope of a transition,

without any contribution to the state space.

Termination. An SDL process can terminate. There are no designated terminators in

EFSM. Termination could be modeled with a designated sink state of EFSîvI.

u
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Alternatives and options are not considered. (Note that the latter are not supported

neither by the OG editor nor by our tool.)

Extended communication schemes, such as via remote procedures, remote variables

are not considered.

One of our means to bridge SDL and EFSM is the notion of an SDL machine, which

is closer to EFSM than an SDL. We believe that most of SDL processes could easily

be mapped into SDL machines. For complex manipulations with an SDL process

(such as observabilization) we transform the SDL process into an SDL machine.

4.2 SDL State Abstraction

u

Consider state merging for SDL processes. We assume that a partition on states of a

given SDL process is given. The partition defines the required abstraction of the

original specification. The question is how states belonging to a single block of the

partition could be merged into a single state of the resulting SDL process. Recall that

states of the abstracted EFSM ( see Section 3.3.1) were defined as sets of states of

the original machine. Unlike the EFSIVI case, an SDL state name (identifier) can not

be a set of other state names. SDL state names are alphanumeric strings. Therefore,

we need to introduce a correspondence from state sets into state names. It is, of

course, always possible to represent (finite) state name sets by state identifiers in an

unique and unambiguous way using one-to-one mappings, but we prefer a less strict,

but intuitive and clear method to use concatenations of state names. In the textual or

graphical description of an SDL process, the same semantic state could be

represented by multiple syntactical states. Therefore, to obtain the abstracted

specification of the process, we just replace each entry of a state name by the

concatenation of names of states from the given block in the partition. The order in

which these state names are concatenated is not important, however it should be the

same for each block. Therefore, state merging in SDL processes is performed by
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state renaming, where each state name in a process description is replaced with a

new name, which is obtained by concatenating names of all states of the block.

The proposed transformation results in a syntactically correct (for OG version of

SDL) process, which is a conservative abstraction of the original, provided that the

original SDL process has no queue related operations, shortcuts, implicit transitions,

and extended communication modes.

As we just stated, our method requires that an SDL specification be free of shortcuts

(state or input list, asterisks, implicit transitions, etc.) We do not see any other way

to correctly perform state abstraction of an SDL specification with shortcuts other

than to first unfold these shortcuts.

State merging as proposed is not conservative for SDL processes that use queue

dependent transition clauses, as it was explained above. The SDL syntax forbids the

use of several instances of same input in same state (though, it is allowed by OG).

Therefore, in the standard SDL, unlike EFSM model, a conservative state merging

requires transition merging. Our tool is intended to work in conjunction with OG,

but if the conformance to the ITU standards is needed, an ANY decision may be

used in a merged transition to model nondeterminism. Figure 4.1 depicts from left to

right a fragment of specification, a fragment of specification abstracted by a state

name replacement (that what our tool produces), and the same fragment transformed

to meet the ITU SDL standards.

u
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Figure 4.1 Merging States and Transitions

Now we discuss why and when merging of states with queue related operations by

renaming could become incorrect or non-conservative, and suggest correct and

conservative (w.r.t. the standard SDL) merging procedures. SAVES are considered

first.

u

Having an input and a SAVE with the same signal for the same state is forbidden in

SDL (in both, the standard and OG version). The SAVE of a signal is equivalent to

the input guarded with an identical False enabling condition, we do not suggest any

solution for explicit SAVEs, but concentrate on a more general case of implicit saves

(enabling conditions). OG allows several possibly guarded input clauses for the same

input signal and the same state. Though the OG tool provides a semantics in which if

a signal is saved at least with one of these transitions it will be always saved, this

does not completely preserve the intended behavior. Now, we discuss how a

syntactically correct and conservative merging could be performed in the presence of

implicit saves (enabling conditions, also known as guarding conditions). Since an

input guarded with a (identical) False condition is equivalent to a save, only more

general case of implicit save will be considered. A possible solution to add ANY

(Boolean) expression into the enabling condition of merged and ANY decisions.

Consider, for example, merging of two states, each with input x, guarded with
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conditions ;>1 andy">2, shown in Figure 4.2, (a). The state diagram (b) presents the

result of state renaming (as implemented in our tool), (c) diagram is a correct (w.r.t.

standard) and conservative abstraction of these states. A refined diagram (d) of

Figure 4.2 presents a finer, more precise, but at the same time, more complex

abstraction of these states
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Figure 4.2 Merging States with Enabling Conditions

Note that a simple disjunction of original predicates do not lead us to a conservative

abstraction.

J

The straightforward merging of states with continuous signals (or priority inputs)

could be non conservative (as explained in the previous chapter). Tricks with ANY

in the provided condition (as in the case of enabling conditions) could help here.

Another problem is that it is forbidden by ITU standard [CCFTT92] to have a priority
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input with a continues signal it the same state. Generally speaking, a correct and

conservative solution for the all above problems would be, instead of replacing old

states with a new one, to add a new state with an asterisk save and Tme continues

signal (or NONE) with an ANY decision or alternative which lead in these states

(see Figure 4.3). Then, it may happen that some of states could still be merged. Such

a solution does not always yield a specification simpler than the original one. In any

case, it may be useful when the aim of abstraction is not just simplification, but also

a strict preservation of the state behavior.

iBSlBSIs?

true

±

^Ai

® iB

Figure 4.3 Abstraction by Introducing State

We have no general method capable of simplifying arbitrary complex SDL

specifications, however, we have proposed a number of ad-hoc transformations,

which are sufficient for simplification of "realistic" specifications.

4.3 Observability in SDL Processes

u

A specification may be either nonobservable due to or become nondeterministic as a

result of abstraction. As it was explained in Chapter 3, an observable machine is

more convenient than nonobservable, therefore, a tool for observabilization is

required. For example, a method for test derivation presented in [PB+1999] requires

observable EFSM specifications. Observable machines are easy to translate into

observers (i.e., extended automata or acceptors).
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By observability of an SDL process we understand the following property:

For each semantic state s, input x, and sequence of output signals yi...yk there is a

unique corresponding chain of connected statements from state s to a terminator

nextstate or stop terminator. Statements are connected either directly in the SDL

graphical representation of a process, or with a jump and a corresponding label.

We can derive the above notion from the EFSM observability notion if we assume

that these chains correspond to EFSM transitions one to one. (i.e., the process is

observable if a corresponding EFSM is observable). Though it is not the only

possible way to establish a correspondence between processes and EFSM. Consider,

for example, state diagram in the Figure 4.4.

^î m

wz

n

Wii?-f

^

Figure 4.4 Branches with the Same Sequence of Output and Task Actions,

Nextstate

We can model this fragment of a process either with two EFSM transitions

u
(si-m2,v=0/y^s'i)

(s^-m2,v^O/y-^S2)
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(5i-m2,(v=0)v(v^0)/y-^^)

i.e., (s\-m21y—>S2). So, if all transition paths of a state with same input, outputs,

actions, output parameters, and next state are interpreted as a single EFSM

transition, we obtain a weaker notion observability. We call it a weak observability.

An SDL process is called a weakly observable process if for every state, input and

output sequence all the corresponding statement chains have the identical tasks

sequence and output parameters.

Since weakly observable process may be (automatically) transformed into an

observable one, we study first weak observabilization of SDL processes. It may be

considered as a preliminary step of the observabilization.

4.4 SDL-machine

To simplify weak observabilization we assume that there are no joins and labels in

the SDL process, and transitions of a state have a tree structure, i.e., there are no

joins and labels, and decision branches never join again. Moreover, for the sake of

simplicity, we prohibit timer and observation of global time, saves, implicit saves

(guarded inputs), priority inputs, spontaneous transitions, joins, different shortcuts

like state list, star symbols, input lists.

An SDL process satisfying this restriction is called an SDL machine. Consequently,

to apply an SDL machine-based method for a regular SDL process we need to

manually or semi-automatically transform the latter to the form close to the SDL

machine.
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Now we try to define an SDL machine structure in terms of components. Our

definition concerns only the structure and we do not detail semantics and syntax of

purely computational elements such as data types, expressions, procedures, however

the latter are supposed to be free of states and signal passing.

SDL machine is a tuple of a finite set of parameterized signals, semantic states (state

names), a variable set, a procedure set, a finite set of syntactical states, and start

transition. The latter is used to define the first executable state and to initialize

variables.

An SDL machine syntactic state is a set of transitions, which start from the same

state, where an SDL machine transition is a tree, with a state and input clause in the

root, nextstate or stop terminator on leaves, tasks, procedure calls, outputs, decision

and answers as nodes. Decisions, except ANY decision, are followed with answer

nodes. Answers are always placed after non-ANY decisions and only after them. The

start transition follows above rules but it has no state neither input cause. Syntax

states are introduced with the sole purpose to mimic SDL processes.

Input clause is a signal, optionally supplied with a list of variables, called parameters

(not to be mixed up with input parameters of EFSM). The number of parameters and

types are the same for all input clauses of a given signal, though several or all

parameters could be omitted.

Output clause is a signal, which is supplied with an optional list of expressions,

called output parameters. The number of parameters and type of each parameter are

fixed for each signal, though all or several parameters could be omitted in this list.

Task is an assignment, procedure call, timer set or reset.

u
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Decision is an expression or special ANY decision. It has at least two branches. The

decision is the only node which can have more than one branch. If a decision is not

ANY, it is followed by answers. Answers of a decision are expressions.

Functioning of SDL machines is not formalized. More work is needed to make the

notion of an SDL machine more formal in the future. In this work, we assume that it

coincides with a commonly accepted SDL process dynamics in this thesis.

4.5 Weak Observabilization ofSDL Machine

Weak observabilization of an SDL machine can be performed with the following

transformations.

l. For each state s and each pair of input and sequence of output signals labeling

at least one path in the transition tree of the state s, find the set of all paths

labeled with this pair.

If the leaves of these paths are labeled with different nextstate values then

label each nextstate with a designated "sink" state, where the "sink" state is

defined as usually, i.e., for each input and output signal the sink state has a

loop; output parameters are omitted.

If the corresponding output signals of various paths differ in the values of

output parameters, delete these parameters from the corresponding signals of

all the paths.

All variables, updated on the paths by assignments or procedure calls are

placed in the list of "undesirable" variables.

J

2. Remove the undesirable variables along with all dependent variables and

predicates defined by any of these variables.
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which preserves the behavior of the given process.

J

4.6 Conclusion

Identification of the discrepancies between an SDL process and the EFSM model

can clarify the way SDL states could be abstracted and facilitates the adaptation of

state abstraction and observabilization techniques developed for EFSM models to

SDL processes. We have no general method capable of simplifying arbitrary

complex SDL specifications, however, the concept of the weak observability of an

SDL machine is sufficient for simplification of "realistic" specifications. In next

chapter we present the algorithms and their implementation for state abstraction and

weak observabilization.



55

0

Chapter 5

Experimental Tool Set

5.1 General Tool Set Description

We have presented several abstraction (simplification) techniques in Chapter 4,

namely, for state abstraction and observabilization. To validate these techniques we

implemented a set of experimental tools. Since our observabilization method is

devised for SDL machines, any divergence between a real SDL specification and an

SDL machine may cause semantic or syntactic problems. Therefore, to make process

specification conformant with the SDL-machine notion, we also devise auxiliary

programs for expansion of SDL transitions into a tree-like form, unfolding asterisks,

and signal lists. State lists are unfolded automatically with the SDL API interface. No

other transformation, i.e., elimination of saves, priority inputs, enabling conditions

etc, is currently supported. If needed these transformations should be done manually.

0

The tool set developed here can simplify an original SDL specification and reduce the

state (configuration) space. It may be useful for automatic test generation, verification

and other related activities. For a restricted subset of SDL (see the constraints in

pages 50-52) the abstraction is conservative in the sense that it preserves the behavior

of the original processes of the SDL specification (though new traces may appear).
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The programming language used for implementation is Objective Caml ver. 3.00

[Maun 1995, Lero2000]. Caml is a state-of-the-art experimental functional language

of the ML family. Caml is developed and supported by an effective free compiler

mainly by efforts of INRIA. The compiler supports different environments and

guaranties portability of the ML code. ML stands for a Meta Language and was

developed mainly for purposes of program transformation and analysis, which

perfectly suits our goals.

The family of strict functional programming languages has many advantages over

conventional imperative languages. A program written in an imperative language

consists mainly of statements. A statement takes its input values from the

environment (such as variables), computes something, and stores the result again in

the environment. To achieve a more complex behavior, we can execute one statement

after another, or put statements into loops. Opposed to the classical imperative

programming languages, functional programs are composed of functions. There are

other benefits and advantages of functional programming:

1. There is no assignment statement. Thus, a programmer does not have to worry

about storage allocation. Functional programmers usually do not assign values to

storage locations. Instead, they give names to the values of expressions. These

names could be used in other expressions, or passed as parameters to functions.

For example 2*2 is a correct Caml program, ïet x = 2*2 definition has the same

sense as the phrase "Let's assume j;= 2 +2" in mathematics.

J

2. A name or an expression has a unique value that will never change. This is called

referential transparency. Sub-computations will deliver the same result for the

same arguments. It means that the code is safer and reusable in a similar context.
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3. Functions and values arc treated as mathematical objects, which obey well-

established mathematical rules and are therefore well suited to formal reasoning.

This provides the programmer a high level of abstraction and greater flexibility in

defining control structures and data structures.

4. There are no restrictions in the definition and usage of functions, which can be

passed as arguments or returned as values.

5. The rigorous mathematical basis provides functional languages with a clear

semantics. The syntax and semantics of functional languages tend to be simple

and so they are relatively easy to learn. Moreover, the programs tend to be more

concise and have fewer mistakes.

Caml functions are based on the mathematically sound notion of a function, and thus

differ from functions in conventional imperative programming languages. For

example, there is no possibility to store something into the environment. The

distinctive features of Caml are

1. Sophisticated data types such as lists, tuples, arrays etc., are predefined. A tuple is

an ordered collection of data, for example "x", true, 7 is a triple of string,

Boolean, and integer. Type of a tuple is a Cartesian product of element types. In

Caml, unlike Lisp, a list is a sequence of data of the same type. As a strict

language, Caml provides only a limited support of infinite lists. Examples of list

are: [l; 3; 4; 5] is a list of integers, [] is the empty list, [[1; 2]; [l; 2; 3; 4]] is a

list of lists of integers. A standard library List facilitates operations with lists.

u

2. Caml offers powerful means to define new data types: records, enumerated types.

and sum types. Records are Cartesian products (tuples) with names. For example,

in our program the bloc type is a pair (2-tuple) of a string and a process list. The

first element is labeled bloc_name and the second is labeled as processes:
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type ...

bloc =
{bloc_name: string;
processes: process list}

Sum types can be thought as a generalization of union or variant types. They

allow unrestricted definitions of heterogeneous values, tagged by data

constructors. For example, in our program statements are represented by stmt

data type, defined as sum (union) of assign, output, decision, call, and terminator

data types, which are used for description of assign, output, decision, procedure

call, or termination statements, respectively:

type ...

stmt =

Assign of assign
Output of signal
Decision of decision
Call of call
Terminator of terminator

Label of label.

The word before the keyword of is the so-called constmctor; the word after is a

type.

3. Caml supports pattern matching for the sum (variant) type. Patterns are templates

that allow selecting data types of a given shape, and binding identifiers to

components of the data types. This selection operation is called pattern matching;

its outcome is either "this value does not match this pattern", or "this value

matches this pattern, resulting in the following binding of names to values".

Pattern matching facilitates symbolic computations. The following is an example

function, which takes a stmt data (representation of a statement) and returns the

tme Boolean value for a label and false otherwise.

J

let isit_label a_stmt

match a_stmt with

Label 1 -> true
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-> false

A slightly shorter version could be

function Label _ -> true -> false

The following is a recursive definition of a function

let rec factorial = function 0 -> l n -> n * factorial(n-1)

4. There is no need to add type infonnation in programs (as in Pascal or C): type

annotations are fully automatic.

5. Caml is a safe language. The compiler performs many sanity checks on programs

before compilation. Allocation and deallocation of data structures is kept implicit

(there is no "new", "malloc", or "free" primitives). A general exception

mechanism supports error recovery.

6. The module system and separate compilation simply development of large

projects.

7. Caml provides full imperative capabilities, when needed.

There are certain problems that complicate wide usage of functional languages in

industry, as lack of competent programmers, libraries, and fancy GUIs, sometimes

complexity of efficient implementation of some algorithms. Imperative programming

even if supported could be cumbersome in functional languages. However, functional

languages, and especially Caml, perfectly suit for rapid development of complex

experimental/prototype CASE tools. For our purposes of producing an experimental

tool a high level language as Caml is preferable.

J
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5.3 Caml-SDL API and Abstract Syntax Tree

The implementation of the algorithms is based on the CAML-SDL API supplied by

France Telecom R&D. This API allows one to parse a textual SDL specification and

extract an abstract syntax tree (AST) and pretty prints a given abstract syntax tree into

a textual (pr) SDL specification. Some transfonnation, such as unfolding state lists,

transformation of timers into input signals are done automatically. API supports a

sufficiently large subset of SDL. Since all transformations are performed on AST of

SDL specifications, we describe how exactly this tree is defined. The data types are

divided into two classes. The first class corresponds to the static stmcture of the SDL-

specification, which are data types spec and bloc. The second class mainly

corresponds to the dynamic structure of the SDL-specification, that is the part of

EFSM model. The data types of this class include SDL components, such as process,

procedure, state, clause, input, signal, statement, and some other related data types.

The data types are organized in a tree-like structure. The root of the tree is data type

spec. Each node of the tree is a data type. The up level structure provides some fields

to access the next level of the SDL specification. Figure 5.1 shows the data types and

their dependencies defined in the CAML-SDL interface.

From Figure 5.1, we can notice that the data types above stmt list are a tree-like

structure and the data type stmt is recursive. Some statements, namely decisions,

contain lists of stmt (statements). Each statement list is associated with a branch of a

decision. This is a widely accepted representation of a tree in functional

programming. An SDL process is represented as a tuple of

J

A process name,

Input messages,

A variable list,

A state list,

A procedure list.

process =
{process_name: string;
messages_in: string list;
variables: Var.variable list;

.....(* some elements are skipped *)
typ—variables: Var.types_de_variables ;
states: state list;
procedures: procedure list}
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According to this kind of structure, in our implementation, typically, we first access

each node of the spec using the tree traversal algorithm.

Static data types

Dynamic data types

Plain

Recursive
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Figure 5.1 CAML-SDL Interface
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5.4 Patterns and shapes of the SDL Abstract Syntax Tree

In this section we describe other data types of SDL API Abstract Syntax Tree (AST).

Most of them are variant types. The variant (a.k.a. sum) type is declared by listing all

possible shapes (or patterns) for values of the type.

State

Data type state represent SDL (syntax) states and starts, therefore it comes in two

shapes:

state

Start of stmt list body of a(* list of statements
start transition*)

Normal of (string * clause list) (*Pair of a state name
and list of clauses*)

The first shape is for start. It follows the statement list that describes the start

transition. The second shape allows representing of a syntactic state of the process. It

consists of a state name and a clause list. Clauses represent outgoing transitions of a

state.

Clause

A clause has five shapes:

Save,

Save_star,

Input,

Input_star,

Cont_sig.

clause =
Save of string list
Save_star

Input of input_cl
Input_star of input_star_cl
Cont_sig of cont_sig_cl

u
The first two are for the two shapes of "Save" clause. The next two are for the

different shapes of "Input".
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n input_cl =
{signals: signal list;
garde_opt: Var.expression option;
stmts: stmt list;
parametres_non_signifiants: bool} and signal =

{sig_name: string;
sig^params: (Var.expression * Var.un_type) list}

and input_star_cl =
{garde_opt_star: Var.expression option;
stmts_star: stmt list}

u

The continuous signal clause type is defined as a pair of enabling (guarding)

condition and a statement list (transition body).

cont_sig_cl =
{garde: Var.expression;
stmts_cont_sig: stmt list}

Statement

In SDL, there arc six main type statements, TASK, OUTPUT, DECISION, CALL,

TERMINATOR and LABEL. The date type for statement stmt could be in one of the

following six shapes:

Assign

Output

Decision

Call

Terminator

Label

stmt

Assign of assign
Output of signal
Decision of decision
Call of call
Terminator of terminator
Label of label
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Terminator

Data type terminator has three shapes:

Return,

NextState

Join .

terminator

Return I NextState of nextstate l Join of label

Nextstate

There are two shapes for nextstate:

Minus or

NoMinus of label.

nextstate
Minus

and label

NoMinus of label

string

Decision

SDL API represents an SDL decision with a type of the same name. It consists of

expression, which describe a condition, list of regular branches, and a possibly empty

"else" branch. Each regular branch is a pair of answer (expression type) and a

transition body (stmt list).

and decision =
{var_testee: Var.expression;
branches: (Var.expression * stmt list) list;
branche_else: stmt list}

Decision is a recursive type; an instance of Decision could contain other decisions in

some branches.

Other types are obvious from the context.

u
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5.5 Underlying Algorithms

Since ML is a formal language, supported by numerous tools, and many experts on

functional programming claim that a program on formal functional language, as ML,

is a self-contained and complete description of the underlying algorithm, and a

detailed informal description in English, state charts, etc may only mislead the reader.

However, for those, who do not share this opinion, or are unfamiliar with functional

programming, we represent an informal (approximate) description of the algorithms.

All programs of the tool set take as the input and result in a textual SDL specification.

However, our algorithms are only concerned with a process transformation and

performed on the Abstract Syntax Tree.

5.5.1 State Abstraction Algorithm

The EFSM state abstraction goes as follows. Let A be a completely defined EFSM

with the set of states S and 71= {5i, ^2, ...} be a partition on S. According to the

definition of the factor machine in Chapter 3, we know that a factor for A is an

EFSM whose each state is a block of the partition K, the initial state of EFSM belongs

to initial state of the factor EFSM, and, for each transition (s — P, x/y, up, op—>s) of

A, there exists a transition (7l(s) — P, xlop, y, up—>K(s}) and vice versa.

As was described in the previous chapter, the algorithm for state abstraction performs

coping of the process while replacing each state name with a new name, designating

to the corresponding partition block of this state.

(J

Algorithm 1. The state abstraction in a process.

Input. AST of a process, list of non-singleton blocks of a partition on (semantic)

states.

Output. An AST of the abstracted process

l. Build a new syntax tree of a process as follows.
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2. Keep the same name of the process and the same data declaration part.

3. Define a new start (called here for simplicity start state) from the given start state

as follows.

Each element of the new start transition coincides with the original, except that in

nextstate statements state names are replaced with names of their partition block.

4. For each syntactic state of the original process (i.e., the description of a set of

transition between semantic states),

4.1 Define a new syntactic state of the abstracted process, where instead of the

original name of the state the name of the corresponding block is used.

4.2 For each input clause/save/continuous signal of the original syntactic state

define the same input clause/save/continuous signal. Define corresponding

transition bodies in the same way as in the original, except for nextstate

statement, where each state name is replaced with the name of the partition

block.

Remark 1. Here the name of a partition block is a concatenation of names of all states

which forms this block.

Remark 2. Caml program does not require to specify a process, it just chooses the

first process in the block.

The following is the Caml implementation of the algorithm. Details of the main

procedure, which are irrelevant to the algorithm, are briefly described in English.

(*main function, module state_merge_process *)

(*takes the name of a pr textual SDL specification from the command string

argument, loads AST of this specification with the SDL API, enters the partition of

states of the first process, computes the tree of abstracted specification with the

function process_merge of the process_merge module, and pretty prints it *)

u
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let main () =

Get the name of a pr file from the argument list (frame);

Parse this specification with an SDL API and get an AST specO;

Print the list of states and ask user to enter the non-singleton blocks of the

partitions one by one, as well as the number of blocks;

Input the number of non-singleton block block_number, then blocks

themselves, and store them as array block_list of string lists, where each string

is a state name;

Form an array of names of block merge, where each name is concatenation of

names of states in the block;

Pretty print an AST computed as process_merge specO block_list merge

block_number into the textual specification with a name frame with a suffix

merge.

5.5.2 Algorithms for Transforming SDL Transitions into a Tree Form

Decision Flattening

A decision statement consists of a conditional expression, a non-empty list of normal

branches and an 'else' branch. A normal branch consists of an answer (which is an

expression) and a statement list. The 'else' branch is a possibly empty list of

statements. A decision statement can be recursive. The special case for decision is

that, following the branches, it may have a set of common statements as shown in

Figure 5.2(a). For the sake of the observabilization, this kind of structure needs to be

flattened; that is, we have to attach these statements to each branch of the decision as

shown in Figure 5.2(b).

u
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Figure 5.2 Flattening the Decision

The flattened AST of a process is a tree of a process with a state set built as follows.

Algorithm 2. Unfolding of merging decision branches.

Input. A process AST

Output. An AST of a process with uattened decision branches.

1. Define a new start with a stmt list computed from the stmt list of the original start.

2. For each state of the original process define a state of the new process with the

same name, saves, input clauses, continuous signal with transition bodies (stmt

lists) transformed by the algorithm 2.1.

Algorithm 2.1. Unfolding branches in a stmt list (an auxiliary algorithm for the

algorithm 2)
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Input, stmt list. (List of statement - assignments, outputs, terminators, decisions with

all branches included, or a labels)

Output. A semantically equivalent stmt which does not contain merging branches of

decisions.

l. Find the first element of the ïistfst and the rest tail.

2. If the first element of the \istfst is not a decision, keep the first element without

changes and apply this algorithm to the tail recursively.

3. If the first element is a decision, the result is the list that consists of a single

decision stmt. Build this decision as follows from thefst

3.1 apply this algorithm to the list of stmts of each branch

3.2 attach tail to each list.

Label Replacement

Here we describe an algorithm for eliminating acyclic joins (out-connectors) and

detecting cyclic joins. Each acyclic out-connector is replaced with a corresponding

fragment of a transition. We need to scan the given specification twice. In the first

scan, we construct a pair list. The first element of the pair is a label name; the second

is a statement list that follows the label. With the second scan we build an equivalent

process which has no connectors (joins). The joins are iteratively substituted with the

corresponding transition fragments.

Algorithm 3. Unfolding connectors.

Input. A process.

Output. An equivalent process without joins (out connectors).

l. Build the list L of pairs of label and stmt list by applying Algorithm 3.1

2. Build a process by applying Algorithm 3.2 to each transition.

Algorithm 3. l Label list

Input. An SDL process AST

Output. List of labels along with corresponding stmt lists.
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l. Find the list of stmt making transitions of the process.

2. Apply Algorithm 3.1.1 to each stmt list.

3. Merge the results into a single list. Stop.

Algorithm 3.1.1 Extraction of labels with stmt list from a stmt list.

Input. Stmt list

Output. List of labels with stmt list

l. If stmt list is empty then the result is the empty list.

2. Otherwise, i.e., if the list consists of a head and a tail do

3. If the head is a label then the result is the list with the first element pair (head,

tail) and the rest is computed by applying this algorithm to the tail recursively.

Algorithm 3.2. Unfolding connectors in a stmt list (a transition body)

Input. Stmt list, list of labels along with corresponding stmt lists.

Output. Connector free stmt list.

l. If the stmt list is empty the result is the empty list.

2. If the first element of the stmt list is a Join j, then

2.1 Find the list of stmt corresponding to the label j

2.2 Apply this algorithm to it, the resulting list is the result

3. If the first element is a decision d.

3.1 Denote the rest of the list as tail

3.2 Build a new decision by applying this algorithm to all the branches of

this decision.

3.3 Apply this algorithm to the tail, attach new tail to the decision. This is

the result

4. If the first element is a label, then compute the result by applying this algorithm to

the tail. (label is discarded).

5. Otherwise, the first element of the result is the same, the remaining part is

computed by applying this algorithm to the tail.

0
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5.5.3 Algorithm of Observabilization

The state merging of an EFSM can result in nonobservable transitions and repeated

transitions. The observabilization algorithm takes care of these problems. Before we

give the details of this algorithm, we present a definition that is used in this algorithm.

Definition 5.1 State-Input-Output-NextState SeQuence CSION-Seguence) of an

EFSM:

Given a transition (s — P, xly\y-i...yk, up, op—>s) of an EFSM, a sequence of the source

state s, input x, outputs yi, y^, ... , Yk, and the next state s' is called SION Sequence.

ESION is the set of all state-input-output-nextstate sequences of the given EFSM.

Here we aim only at weak observabilisation, i.e., transformation that ensures that

transitions of the same state, input and outputs could differ only in predicates

(decision conditions), see Section 4.5. Observabilization consists in the following

transformations.

1. For each state s and each pair of input and sequence of output signals labeling at

least one path in the transition tree of the state s, find the set of all paths labeled

with this pair.

If the leaves of these paths are labeled with different nextstate values then label

each nextstate with a designated "sink" state, where the "sink" state is defined as

usually, i.e., for each input and output signal the sink state has a loop; output

parameters are omitted.

D

If the corresponding output signals of various paths differ in the values of output

parameters, delete these parameters from the corresponding signals of all the

paths.
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All variables, updated on the paths by assignments or procedure calls are placed

in the list of "undesirable" variables.

2. Remove the undesirable variables along with all dependent variables and

predicates defined by any of these variables.

We provide algorithm only for the first step the second step could be implemented

with another tool, written by Xiaoyu Wang [Wang2001].

u

Algorithm 4. Weak observabilisation

Input. A process.

Output. A process and list of variables to delete.

Phase 1:

Find state-input-output-sequence strings in the non-observable transition path:

l. Constmct SION string sequences for all transition paths in the given spec.

2. Determine and report the variables need to be deleted.

3. Determine all SION-sequences in non-observable transition paths:

For those with same nextstates: Keep the next state name unchanged.

For those with different nextstates: Convert the S ION sequence into an array and

then put this array to an array list. In this array, the first element is a state name;

the second element is an input signal name; the rest elements are the output signal

names in this path attached to the state and input.

Phase 2:

Redirect to the "Sink" state.

For each array in the array list of Phase 2 do:

For each state of the original process

if the state name is equal to the first element of the array, reconstruct its clause

list such that each signal list in an Input clause only contains a single signal.

For each clause in the new formed clause list, process the following statement list

to see if the rest elements of the array are the same as the output signals in this

path. If yes, replace the nextstate name with name "Sink".
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Phase 3:

Add the new state "Sink" to the state list of a process.

For each block in spec do:

For each process in a block do:

1. Add state "Sink" into the state list

2. Add a new clause list to this "Sink" state, that is, create its self-looping

(trapping) transitions with all possible input-output labels.

5.6 Details of the Tool Set Implementation

This tool set uses the Object GEODE SDL-92 Application Programming Interface

(SDL API) [GEODE-3] to load an SDL specification textual file into a C data

stmcture. An interface, provided by France Telecom R&D, transforms this C data

structure into a ML data stmcture and allows printing out of this data into an SDL-

like form. The latter is not a valid SDL; however, it can easily be transformed

manually into a valid SDL by the user by adding the signal and route/channel

description.

For an easier implementation and maintenance a module design strategy is used in the

implementation. The implementation of the tool set consists of four modules,

state_merge_process, decision_process, label_process and weak_observ_process. The

first one performs merging of the states of a process according to a specified partition,

and the second and third perform transformation (unfolding) of the process transitions

in a form convenient for observabilization. The fourth program,

weak_oberve_process, observabilizes a process. Figure 5.3 describes the modules of

the tool set and the dependencies between the modules.

u
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state_abstraction decision_process label_process weak_observ_porcess

process_merge process_decision process_labels process_weak_observ

processjoinjabel process_redirect_to_sink

add_sink_state

Figure 5.3 Modules of the Tool Set

5.6.1 State Abstraction Tool

State abstraction tool "state_merge_process" is designed to merge states that belong

to a single block of the partition described in section 5.2. This tool preserves behavior

of the original machine, while possibly adding a new behavior. It gets the SDL-

specification file from the command line argument and uses the Object GEODE SDL-

92 Application Progran-iming Interface (SDL API) and the ML SDL API to load the

SDL specification textual file.

The state_merge_process receives the specification name as a command line

argument. Then, the program outputs names of states of a process, and the user

defines constructs the specified blocks of the partition interactively and then use the

submodule process_merge to merge the states in each block (Note, the block here is a

set of states. It is different from the "block" concept in SDL). The program performs

state merging.
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The submodule "process_merge" merges the states in each block of a partition. It

returns a type "spec" with all information changed. The module process_decisions

takes this "spec" as its parameter and unfold decisions with merging branches. The

submodule process_decisions consists of seven functions. The submodule is designed

to scan the SDL system from the top-level spec and trace the each transition path to

the leaf-level terminator. The result is written into a file. The name of the file consists

of the name of the original specification file and a suffix merge.

The functions of this module are

- process_merge

It is the entry of the submodule (the function of the module used in the main

function). It calls function process_in_bloc to enter the next level node, that is block

and returns the result of the bloc type.

- process_in_bloc

It applies the function "process_in_process" to each element of the process list in the

block one by one and results in an SDL block with a new process list.

- process_in_process

It has two functionalities: First, it applies the function "rename_in_state" to each

element of state list in a process and forms a new state list of this process. Second, it

applies "process_in_procedure" to each procedure in the procedure list of the process

and forms a new procedure list.

- process_in_procedure

This function is used to treat states of a procedure by applying the "rename_in_state"

function to each eleme.nt of state list in the procedure and forms a new state list of this

procedure.

0
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- rename_in_state

If the argument is a start this function applies function "rename_in_stmt" to each

element of the stmt list and results in a start with a new stmt list. If the argument

comes in the form "Normal (state_name, clause_list)", it replaces the name of the

state with a new merged name and then applies "rename_in_clause" to each element

of the clause_list. The result is a state with a new clause list.

- rename in clause

This function is used to treat different shapes of clauses. It applies "rename_in_stmt"

to each element of the corresponding statement list.

- rename_in_stmt

This function is used to treat a terminator statement. If the argument shape is

"NextState of nextstate" and the name of nextstate is in the set of merged states, it

replaces the name with the merged name. It does not make any change to other

shapes.

5.6.2 Tools for Transformation of SDL Transitions into a Tree Form

The tools decision^rocess and label_process transform the transitions into a tree like

form, which is convenient for observabilization. It unfolds merging branches and

eliminates out-connectors. Each out-connector is replaced with a corresponding (sub)

transition. However, the connectors should not be cycled, otherwise the program does

not stop.

Module process_decisions

u

Submodule process_decisions takes a "spec" (an AST of an SDL spec) as its

argument to unfold decisions with merging branches. The submodule

process_decisions returns a new "spec" with all changed fields. There are seven

functions in the submodule.
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- proces_decisions

It is the entry of the submodule. It calls function process_decision_in_bloc to enter

the next level node, that is block, and return a specification with the new block.

- procès s_decision_in_bloc

It applies "process_decision_in_process" to each element of the process list in the

block one by one and returns a new process list of the block.

- process_decision_in_process

First, it applies the function "process_decision_in_state" to each element of state list

in a process to form a new state list of this process. Second, it applies

"process_decision_in_procedure" to each procedure in the procedure list of the

process to form a new procedure list.

- process_decision_in_procedure

This function is used to treat states in a procedure by applying function

"process_decision_in_state" to each element of the state list in the procedure to

produce a new state list of this procedure.

- process_decision_in_state

For a Start state, it applies the function "process_decision_in_stmt" to each element

of the its list "stmtjist" to trace the corresponding outgoing transition path from

"Start" state to its terminating state and results in a new statement list. For a Normal

state, it applies the function "process_decision_in_clause" to each element of the

clausejist to trace each of its outgoing transition paths to the terminating state in

each path. It results in a new clause list.

u

- process_decision_in_clause

This function is used to process different shapes of clauses. It applies

"process_decision_in_stmt" to each element of the corresponding statement list.
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- process_decision_in_stmt

This function processes each Decision statement recursively to see if there is a

merging statement for this Decision statement. If it is, it calls the function

process_decision_merge.

- process_decision_merge

This function is used to append a stmt list to each branch of the Decision statement.

Module label_process

The module label_process is responsible for unfolding connectors (joins) in the

process transitions. It uses module process_labels to finding out all labels and the

statement list of each label and then uses submodule process J oin_label to unfold

joins and delete all labels in this new "spec".

Submodule process_label

This submodule consists of six functions. Each function is described as follows.

- process_label

This function is the entry of the submodule. It applies function process_label_in_bloc

to the specification block

- process_label_in_bloc

This function applies function process_label_in_process to each process of the block.

u

- process_label_in_process

This function processes each Label statement in the process of the given

specification. It first constructs a label list of this process by calling function

process_label_in_state. This list contains all the labels in the process. Each element of
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the label list is a pair (label name, tail-statement list). The tail statement list is a list

followed this label. Then it splits this list of pairs into a pair of lists. Finally, it calls

the submodule processjoin_label to process the Join statement in the process by

means of the formed lists. After processing each process, the functions "Utils.log"

and "Spec_sdl.pretty" are called to output the changed SDL specification to a new PR

file.

- process_label_in_state

For a Start state, it applies the function "process_label_in_stmt" to each element of

the its list "stmtjist" to trace the label in outgoing transition path from "Start" state

to its terminating state and results in a new statement list. For a Normal state, it

applies the function "process_label_in_clause" to each element of the clause_list to

trace the labels on the transition paths outgoing from this Normal state. It results in a

new clause list.

- process_label_in_clause

This function is used to process different shapes of clauses. It applies

"process_label_in_stmt" to each element of the corresponding statement list.it

- process_label_in_stmt

This function processes each Label statement. If it meets a Label statement, it calls

function loop_detect to see whether or not there is a loop that exists in its tail list. If it

is, it processes its tail list using process_label_in_stmt recursively. If it is not, it

outputs a (label name, tail list) pair to a list and process the statements in the tail list

recursively. If it meets a Decision statement, it processes the statement in each of its

branches recursively.

- loop_detect

This function detects the loops that exist in the transition path and reports them.

0



80

n Submodule process_join_label

The submodule process J oin_label eliminates a connector found in the submodule

process_labels and removes all labels in the "spec". This submodule carries four

parameters, spec, a label name that needs to be removed, the tail list followed this

label, and a pair of list. Eight functions are included in this submodule.

- process J oin_label

This function is the entry of the submodule. It applies the function

process join_label_in_process to block.

- process J oin_label_in_bloc

It applies "process J oin_label_in_process" to each element of process list in the block

one by one and results in a new process list of the block.

- process join_label_in_process

This function applies the function "processjoin_label_in_state" to each element of

the state list in a process and forms a new state list of this process.

- process J oin_label_in_state

This function is used to process different shapes of states. For a Start state, it applies

the function "process J oin_label_in_stmt" to each element of the list "stmt_list" to

trace the join labels in an outgoing transition path from "Start" state to its terminating

state and results in a new statement list. For a Normal state, it applies the function

"process J oin_label_in_clause" to each element of the clause_list to trace the join

labels on the transition paths outgoing from this Normal state. It results in a new

clause list.

u
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This function is used to treat different shapes of clauses. It applies

"processjoin_label_in_stmt" to each element of the corresponding statement list of a

clause.

- processjoin_label_in_stmt

This function is used to remove the Label statement and Terminator from a statement

list. When a Terminator statement is the head element of the argument, the function

first checks if it is in the form of Join of label, if it is, it discards this statement and

processes its tail list recursively. When a Decision statement is the head, the function

processes statements in each branch recursively. When a Label statement is the head

and the label name in this statement is same as the label name carried by the

submodule processjoin_label, the function discards this label and processes its tail

list using the function process_tail_list. If the label name is not the label that it intends

to remove, the function outputs this statement to the statement list and processes its

tail list recursively. For other cases, the function outputs the statement into statement

list and processes the tail list recursively.

- procès s_tail_list

This function is used to remove the labels in the tail list.

5.6.3 Observabilization Tool

u

The weak_observ^>rocess receives the name of the specification from the command,

and then it transforms a process of the SDL specification into a weak observable

form. Namely, the program outputs a list of variables, which should be deleted to

obtain a weak observable specification, and redirects some transitions into a sink

state. The result is written into a file. The name of the file consists of the name of the

original specification file and a suffix weak.
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The removal of variables may be performed with the existing tool for abstraction of

variables. However, the latter tool could be applied only to a valid SDL specification.

Therefore, there are two possible strategies for obtaining an observable specification.

If the user needs the valid SDL specification, he first performs state observabilization

with the weak_obsenf^>rocess program, stores the list of variables that should be

removed, then manually debugs the resulting specification, and finally applies the

tool for variable abstraction. If the valid SDL specification is not needed, the user

could use the program weak_observ^)rocess to derive a list of variables to delete,

then apply the tool of variable abstraction to the initial specification, and, finally,

apply the v/eak_observ_process to the result to redirect required transitions into the

sink state.

There are three submodules in this module. The dependence between the functions is

shown in Figure 5.3. The module weak_observ process calls the submodule

process_weak_observ with the "spec" of the SDL-based specification resulted. The

submodule process_weak_observ calls process _redirect to redirect the nonobservable

transitions to into the sink state. The submodule add_sink_state is called for adding a

new state "Sink" into the state list of a process. The following is the description of the

implementation of the weak observabilization tool.

Submodule process_weak_observ

The submodule sink_process can parse and perform syntactical and semantic check of

an SDL specification, find out the state-input-output sequences, check the repeated

sequences and their corresponding transition path, report the variable that need to be

deleted and then redirect the nonobservable transition paths to a "sink" state. It uses

process_redirect and add_sink_state modules and is composed of eleven functions.

u

- process_weak_observ

This function does almost the same as the function "process_state_merges", it also

carries "spec" as its input parameter, but instead of returning a type "spec" with all



83

n
changed fields, it changes only the necessary fields of spec. At the end, it calls

"Utils.log" and "Spec_sdl.pretty" functions provided by France Telecom R&D to

output the changed SDL spec into a new PR file.

- process_in_block

This function is used to treat a block in the system.

- process_clause_in_process

This function applies the function "treat_in_state" to each element of the state list of a

process. Treat_in_state produces a list, which contains the SIGN sequence in

nonobservable transition paths for each state. The function uses the submodule

process_redirect to redirect the nonobservable transition path to a sink state using this

list as its parameter. After handling all elements of the list, the function uses

submodule add_sink_state to add a state "Sink" to the resulted specification file.

- find variables

This function is used to return the variable name in the left side of a Task statement.

- treat_in_state

This function has several functionalities. First, it reports all transition paths from a

state. Second, it constructs a SION-sequence string list for each state. Each sequence

in the list corresponds to a transition path. It returns this list to the function

"process_clause_in_process" and the function "process_clause_in_process" uses this

list as its parameter to call the submodule process_redirect. Finally, it detects the non-

observable transition paths, finds out the variables need to be deleted, and reports the

corresponding state-input-output sequence.

J

- treat in clause

This function processes each clause. First it applies function "treat_signal" to each

element of the signal list of the clause and then returns the results in a list. Each

element of the list is a list of state_input_output_nextstate_name sequence string list.
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- treat_signal

This function is used to append an input signal name to the beginning of the statement

list.

- treat in_stmts

This function processes a statement list in each path recursively to constmct a

state_input_output_nextstate_name sequence string list.

- process_clause_in_path

This function processes each SDL clause. It applies the function

"process_signal_in_path" to each input signal in the input signal list to form a list of

list of statement list.

- process_signal_in_path

As we discussed in Chapter 4, in the input symbol of SDL, instead of a single

consumed signal, there can be an input signal list. It is possible that some input

signals can cause nonobservable paths, while others can not. To treat such a situation,

we have to process each input signal individually. This function processes each input

signal and passes the statement list to the process_stmt_in_path.

- process_stmt_in_path

This function processes SDL statements in each path recursively to construct a list of

statements in a path; the last statement in the list is "NextState" statement.

u

Submoduleprocess_redirect_to_sink

This function is used to redirect a non-observable transition with the same next state

to a "Sink" state. It carries a string array list as its parameter. It includes the following

functions:
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- process_redirect_to_sink

This function is the entry of the submodule.

- process_clause_in_bloc

This function applies function process_clause_in_process to each process of process

list in the block.

- process_clause_in_process

It applies the function redirect_in_state to process each state in the list and applies the

function procès s_clause_in_procedure to process procedure list in a process.

- process_clause_in_procedure

It applies the function redirect_in_state to process each state in the state list of a

process.

- redirect_in_state

This function is used to process different shapes of states. For a Start state, the

function outputs it directly to the generated specification file. For a Normal state, if

this state is the state in the list, there are two things to be done. It applies the function

"redirect_in_clause" to each element of the clause_list.

- process_clause

This function is used to produce a new Clause list. In the case that a state has a signal

list as its input and all of these signals have the same transition path and reach the

same NextState, this function is used to flat the signal list by means of the function

treat_signal.

u

- treat_signal

This function is used to fomi an Input clause with the input signal list that contains

only a single input signal.
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- redirect_in_clause

This function processes each clause of the new formed clause list. For each signal,

which is in the SIGN list, it traces the statement list of this signal by calling the

function redirect_in_stmt.

- redirect in stmt

It processes the statement list of a signal to see if all output names and nextstate name

are the same as the SIGN of this signal. If it is the case, it changes the nextstate name

as "Sink".

Submodule add sink state

This submodule is used to add a "Sink" state to the generated spec file.

- add_sink_state

It is the entry of this function. It simply applies the function create_sink_in_bloc to

the parameter spec.

- create_sink_in_bloc

This function applies the function create_sink_in_process to each process of the

process list in the block.

- create_sink_in_process

This function appends a new state "Sink" to the state list of the process.

- create_clause_list_for_sink

This function is used to create a clause list for the new state "Sink".

u
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- create_clause_for_sink

This function creates Input clause for the state "Sink".

- create_signal_in_for_sink

It creates input signal for the created Input Clause.

- create_stmt_for_sink

It creates an output statement for the Clause.

- create_signal_out_for_sink

It creates an output signal for the Output statement.

5.7 Conclusion

In this chapter, we have described CAML-SDL API and explained the

implementation of the developed algorithms using CAML. For simplifying an

original SDL specification and reducing the state (configuration) space, a set of

experimental tools is developed for SDL machines. These tools allows one to perform

a conservative abstraction in the sense that the state abstraction preserves the behavior

of the original processes of the SDL specification (though new traces may appear). It

may be useful for automatic test generation, verification and other related activities.

In the next chapter, we apply these tools for a real SDL specification.

u
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Chapter 6

Case Study

u

In this chapter we demonstrate how the developed tool set performs when applied to

a relatively complex example SDL specification. We also use this example in order

to evaluate (in an experimental way) how state abstraction techniques developed and

implemented in this thesis affect the complexity of SDL specifications. To this end

we execute our tools on the given SDL specifications and then we use the

ObjectGeode simulator to calculate the total number of configurations (called states

in the simulator) in both the original and transformed specifications to reveal any

change in the number of configurations. Moreover, as the OG simulator reports other

important properties of the simulated SDL specification, such as the configuration

coverage rate, the number of transitions, and the transition coverage rate. These

parameters characterize the completeness of the exhaustive simulation achieved by

the OG tool when solving verification problems. The reason is that the exhaustive

(complete) simulation usually requires testing the model under all possible inputs

[Bale 1995]. Combinations of feasible values of input signals and parameters can

generate millions of logical paths in the model execution. Due to time, memory, and

budgetary constraints, it is impossible to test the correctness of that many logical

paths. So in practice, the exploration depth of simulation is bounded at least in order

to avoid the storage memory overflow problem. As a result, the OG simulator cannot
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achieve a hundred percent coverage. Thus, the configuration coverage rate and the

transition coverage rate achieved by the OG simulator implicitly characterize the

complexity of the simulated SDL specification. One may safely conclude that if,

exploring the abstracted system, the simulator reports a higher coverage compared to

the original system then the process of abstraction has facilitated the exhaustive

simulation with a chosen exploration depth.

6.1 The Original SDL Specification

The SDL specification, called mps.pr, the test example used in this work, describes a

real protocol provided by France Telecom R&D. The file mps.pr contains about

2600 lines, so the SDL specification is not trivial. This specification has seventeen

states, four input signals, four output signals, thirty-four variables (parameters) and

three timers. Three input signals and one output signal are parameterized.

Table 6. l Simulation Results for mps.pr

Exploration depth 5 10

Number of configurations 962 19517

Configurations coverage rate 62.50% 87.50%

Number of transitions 2698 50593

Transition coverage rate 38.71% 66.13%

Table 6.1 shows the simulation data for the original SDL specification mps.pr. It

indicates, for example, that the OG simulator achieves just 87.50% coverage of the

original SDL specification with the exploration depth limited to ten and 62.50% for

the depth five.

u
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6.2 Abstracting States

Next, we perform state abstraction of the specification. The original SDL mps.pr has

contains the following seventeen states:

REPOS,

MENU_GRPVIDE,

MENU_GRPPLIN,

MENU_GRPNVNP,

MENU_DEBGROU,

MENU_NUMUNIQ,

MENU_ENRGNUM1,

MENU_ENRGNUM2,

MENU_EFFCONF,

MENU_GROUAUT,

MENU_FINGROU,

MENU_CONSUIT,

MENU_PRESSER,

MENU_NUMEFFA2,

MENU_NUMER?A1,

ACCUEIL,

MENU_NUMENON

We assume that the user, by one reason or another, wants to merge them into twelve

states as follows.

vj-

REPOS_ ACCUEIL,

MENU_GRPVIDE_MENU_GRPPLIN_MENU_GRPNVNP,

MENU_DEBGROU,

MENU_NUMUNIQ,
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MENU_ENRGNUM1_MENU_ENRGNUM2,

MENU_EFFCONF,

MENU_GROUAUT,

MENU_FINGROU,

MENU_CONSUFT,

MENU_PRESSER,

MENU_NUMER?A2_MENU_NUMEFFA1,

MENU_NUMENON

Here the notation REPOS_ ACCUEIL means that two states, REPOS and ACCUEIL

are merged into a single state.

MENU_GRPVIDE_MENU_GRPPLIN_MENU_GRPNVNP comprises three states

of the original specification; MENU_ENRGNUM1_MENU_ENRGNUM2 and

MENU_NUMEFFA2_MENU_NUMEFFA1 have two states each.

We feed this data along with the SDL file mps.pr into our tool to merge states and

obtain a transformed SDL specification. The SDL file is called

mps_merge_label_decision.pr. Note that the observabilization tool is not applied at

this stage. It will be used later.

0

Table 6.2 Simulation Results for mps_merge_label_decision.pr

Exploration depth 5 10

Number of configurations 2863 124570

Configurations coverage rate 78.95% 100.00%

Number of transitions 7526 506781

Transition coverage rate 62.50% 84.38%

Table 6.2 shows simulation data for the obtained SDL specification. Comparing

Table 6.1 and Table 6.2, we can see that, for the same exploration depth limitation,
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the OG simulator performs much better on the abstracted SDL specification than on

the original file. Merging states allows to better exploring the SDL system.

6.3 Weak Observabilization of the Abstracted Specification

Our final step is to perform the observabilization step that also includes abstraction

of a number of variables that need be removed and parameters. So we use all the

tools developed in this work as well as the one of [Wang2001]. In particular, we first

merge the states from 17 to 12 using our state abstraction tool. Then we unfold the

labels and decisions in the original SDL specification by the developed tools

label_process and decision_process. After that, we use our tool

weak_observ_process to search and report parameters that need to be deleted. The

tool reports that there are 23 parameters should be removed from the original

specification. Finally all of the reported parameters are removed by means of the

variable abstraction tool developed by [Wang2001]. Finally, we obtain a transformed

SDL specification represented in the SDL file

mps_merge_label_decision_abs_abs.pr. Table 6.3 presents the simulation data of the

obtained SDL specification.

J

Table 6.3 Simulation Results for mps_merge_label_decision_abs_abs.pr

Exploration depth limited 5 10 20 30

Number of configurations 1657 5196 10189 42499

Configuration coverage rate 63.16% 94.74% 100.00% 100.00%

Number of transitions 3688 15226 29667 143099

Transition coverage rate 29.84% 60.88% 93.61% l 100.00%

In this case, when we limit the exploration depth to thirty, we achieve a hundred

percent state coverage and transition coverage and the exhaustive exploration of this

system can be completed successfully. Notice that for both SDL specifications (see

Table 6.1 and 6.2) we could not get a hundred percent state coverage and transition
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coverage for this exploration depth, and if we assume the same exploration depth,

the simulation could not be completed because of memory overflow.

Several conclusions about the performance of our tool set and abstraction techniques

could be drawn from this experiment.

Our experimental tools perfonn well on a pretty complex SDL specification (2600

lines). We do not use a special tool to monitor the exact mn time of the tools;

however, on this example, they require just under a minute to output the results. We

can conclude that the experimental tools are sufficiently efficient. We can use the

experimental tools developed in this thesis to simplify SDL specifications. SDL

abstraction may be useful for automatic test generation, verification and other related

activities.

The experimental results of Table 6.3 indicate that abstractions lead to a better

specification coverage in simulation. Simulation is intended to find design errors, so

the higher the coverage the more chances to reveal any design error in the system.

There is, however, a price to pay here, as usual is. The abstracted system has a richer

behavior than the original system, so the problem found in it does not necessarily

appear in the original SDL system. It may be introduced into the system when the

system is transformed (abstraction and observabilization).

At the same time, the experimental data demonstrate that the number of reachable

configurations may sometimes increase when state abstraction is performed. This

means that the effect of state abstractions in SDL should be evaluated on a case by

case basis.

L)
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Chapter 7

Conclusions and Future Works

This research is devoted to the problem of making abstractions in FSM, EFSM and

SDL. Our main conclusions from this work can be summarized as follows.

Abstraction techniques are usually applied to fight the so-called state explosion

problem. In order to alleviate this problem some states of state machines can be

merged. The resulting machine with fewer states can be considered as an abstraction

of the given machine. In this work, we investigated the approach and the techniques

for state merging in FSM, EFSM and eventually in SDL specifications. The main

problem considered here is how to preserve the behavior and observability of the

original machine. We proposed some solutions to this problem. To validate these

solutions and proposed techniques we implemented a set of experimental tools for

state abstraction and state observabilization. We demonstrated that the developed

tools perform reasonably well on a real SDL specification and often allow one to

simplify the original specification. The developed tool set can perform a required

abstraction of the original SDL specification. It may be useful for automatic test

generation, verification and other validation related activities.

u
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Our results show that the proposed techniques in SDL specifications can often

reduce the state (configuration) space. At the same time, they also demonstrate that

the number of reachable configurations may sometimes increase when state

abstraction is performed. The effect of state abstractions in SDL should be evaluated

on a case by case basis. At the same time, the experimental results show that

abstractions lead to a better specification coverage in simulation. This helps

detecting design errors.

We used the implementation language Caml to implement the tool set. It is very

powerful in several aspects and perfectly suited our goals. Our experience confinns

that it serves well for rapid prototyping of advanced programs and experimental tool

design.

Future works could focus on the following aspects. In this thesis, we implemented

state merging and observabilization techniques so that an SDL specification can be

observabilized provided that it meets the restrictions of the SDL-machine defined in

Section 4.4. Functioning of SDL machines we defined is not formalized. To make

the notion of an SDL machine more formal, more work is needed. On the other side,

our tools do not treat SDL specifications that contain timers, saves, implicit saves

(guarded inputs), priority inputs, spontaneous transitions, joins, and a few shortcuts

such as state list, star symbols, input lists. Although we have discussed in this thesis

rather general principles of state abstraction and observabilization, more

implementation work is needed to further relax these constraints. It should not that

difficult to remove some restrictions, which we used to simplify the problem, such as

shortcuts; but more research is needed to remove those caused by the limitations of

the Caml-SDL API.

u
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Appendix A

Program for State Abstraction

Module state_merge_process

Name:

Purpose:
Author:

state_merge_process.ml (main)
Merging states of several blocks
Hu Yun Nov 30, 2000

Copyright (c) 2000 CRIM CANADA

u

(-
(*
(*
(*
(*
(*
('
let main() =

let arg = Sys.argv in
let num = Array.length arg in
if (num = 2) then

let fname =
if (Filename.check_suffix arg.(1) ".pr")
then (Filename.chop_suffix arg.(1) ".pr")
else arg.(l) in

let e = Sdl.load 2 arg in
match e with

None ->

begin
print_endline("Echec du chargement de la specification ""arg.d));
exit 0,

end

Some _ ->

begin
let file_log = (fname^".log") in
begin

if (Sys.file_exists file_log) then Sys.remove file_log;
Utils.set_log file_log;
print_string "***\n";
let specO = Extraction.extraction e file_log in
print_string("\n\nThe number of states of the first process is ");
print_int ( (State_num. state_ni.ml spec0)-l) ;
print_string(State_name_list.state_name specO);
print_endline("\n\n") ;
let file_log = (fname^"_merge""".pr") in
if (Sys.file_exists file_log) then Sys.remove file_log;
Utils.set_log file_log;
print_string "Enter the block niunber of this partition:";
let state_list = Create_name_list.create_name_list specO in
let block_number = read_int( )
in
let merge = Array.create block_number "" in

*•*•****

)
*)
*)
*)
*)
*)
r)
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let block_list = Array.create block_number [] in
for j = 0 to block_number-l do

print_string "Enter the state niimber of the ";
print_int (j+1);
print_string " block: ";
let state_number = read_int() in
let mergelist = Array.create state_number "" in
let mergename = ref " " in
for i = 0 to state_number-l do

print_string "Enter the name of the state:";
let a = read_line() in
if (List.mem a state_list) then

begin
if (i=0) then

mergename := a^(imergename)
else

mergename := a^"_"^(!mergename) ;
mergelist.(i) <- a;
end

else

print_endline("\n\nState Name Error: No state "•'a"" in this SDL
spec file '"^fname"".pr' !!!\n\n");

done ;

merge.(j) <- 'mergename;
block_list.(j) <- Array.to_list mergelist

done ;
Utils.log (Spec_sdl.pretty (Process_merge.process_merge specO block_list

merge block_number));
print_endline("A new SDL_spec file '""fname^"_merge.pr' has been

generated!!!\n\n\n") ;
exit 0

end
end

else
begin

print_endline("State_Merge_process Error: Lack of Arguments!!!");
exit 0

end ; ;

Printexc.catch main()

(
(* Module Name:
(* Purpose:
(

open Spec_sdl;;
let statelist list_states

)
*)
*)
•)

list_states.ml

construct a string with all state names

let pretty_state state =
match state with
Start si -> "\n\n "

I Normal (s, cl)->sA";" in
String.concat "\n" (List.map pretty_state list_states)

D

Name:

Purpose:

(

(*
(*
(

let state_name my_spec =
let bl = my_spec.block in
let ps = List.hd(bl.processes) in

statelist ps. states;

state_name.ml
this function takes a spec and return state names

e
(*
(*
(*
e

Module Name: state_name.ml
Purpose: this function takes a spec and

return state number of a process

•)
*)
*)
•)

•)
*)
*)
*)
')



104

0
open Spec_sdl;;
let state_num my_spec =

let bl = my_spec.block in
let ps = List.hdfbl.processes) in

List.length ps.states;

Submodule process_merge

(
(*
(*
(*
(•
open Spec_sdl;;
exception Error of string

')
*)
*)
*)
')

Name:

Purpose:
Author:

process_merge.ml
Merging states of
Hu Yun

several blocks

** *****•*•

(
(* Name:

(* Purpose:
(
let rec rename_in_stmt block_list merge_name block_number =

function stmt ->
match stmt with

Terminator t -> (match t with
NextState n ->

(match n with
NoMinus l

let flag = ref 0 in
let num = ref 0 in

for i = 0 to block_nuniber-l do
if (List.mem l block_list.(i))
then

begin
flag := l;
num := i

end

done ;
if (!flag=l) then

Terminator (NextState (NoMinus (merge_name.(!num))))
else

stmt

_ -> stmt)
[ _ -> stmt)

Decision d -> let rename_branche block_list merge_name block_number =
function (expr, ls_stmt) ->

(expr, Li s t.map
(rename_in_stmt block_list merge_name block_number) ls_stmt)
in
Decision ({d with

branches =
List.map

(rename_branche block_list merge_name block_number)
d.branche s;
branche .else =

Li st.map
(rename_in_stmt block_list merge_name block_number)
d.branche_else})

-> stmt

)
*)
*)
')

rename_in_stmt
processing states in statement "NextState"

0

rename_in_clause
parsing states in Clause

e
(* Name:

(* Purpose:

(

let rename_in_clause block_list merge_name block_number =
function clause -> match clause with

Input ic -> Input ({ic with stmts =
List.map (rename_in_stmt block_list
merge_name block_number) ic.stmts})

[ Input_star ic -> Input_star ({ic with stmts_star =
List.map

')
*)
*)
•)



105

0
l Cont_sig ic

clause

(rename_in_stmt block_list
merge_name block_niunber)
ic.stmts_star})

•Cont_sig ({ic with stmts_cont_sig =
Li st.map
(rename_in_stmt block_list
merge_name block_niunber)
ic.stmts_cont_sig})

0

Name:

Purpose:

rename_in_state

processsing states in process or procudure

(•
(*
(*
(
let rename_in_state block_list merge_name block_number =

function state -> match state with
Start stmt_list -> Start (List.map

(rename_in_stmt block_list
merge_name block_number)
stmt_list)

l Normal (state_name, clause_list) ->
let flag = ref 0 in
let num = ref 0 in
for i = 0 to block_number-l do

if (List.mem state_name block_list.(i))
then

begin
flag := l;
num := i

end
done ;

if (!flag=l) then
Normal (merge_name.(!num),

List.map

r)
*)
*)
*)

clause_list)

clause_list)

else
Normal

(rename_in_clause block_list
merge_name block_number)

(state_name,

List.map
(rename_in_clause block_list
merge_name block_number)

procèss_clause_in_procedure
finding state list in a procedure

(-
(* Name:
(* Purpose:

let process_clause_in_procedure block_list merge_name block_number
function proc ->

{proc with
corps = List.map

(rename_in_state block_list merge_name block_number)
proc.corps}

•*•

')
")
•)
•)

process_in_clause_process
processing state list and procedure list in a process

('
(* Name:

(* Purpose:

let process_clause_in_process block_list merge_name block_number =
function single_process ->

{single_process with
states = List.map

(rename_in_state block_list merge_name block_ni.iirLber)
single_process.states;

procedures = List.map
(process_clause_in_procedure block_list merge_name block_number)
single_process.procedures}

')
t)
-)
')

e
(* Name: process_clause_in_bloc

7)
*)
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(* Purpose: processing process list in a block *)
*•*•*•*•**•*•*••*•*•*•****•*****•*•*•**********•*•******•******•**•*******•**•*•*•**•*••*•*•*•***•*• •*••* **************

let process_clause_in_bloc single_bloc block_list merge_name block_number =
(single_bloc with
processes = List.map

(process_clause_in_process block_list merge_name block_number)
single_bloc.processes}

(* Name: process_merge
(* Purpose: processing block in a spec

let process_merge spec block_list merge_name block_number
{spec with
block = process_clause_in_bloc

spec.block block_list merge_name block_number}

)
*)
*)
}

u
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Appendix B

Programs for Flattening Decisions

Module decision_process

*

Name: decision_process.ml (main)
Purpose: flattening decision
Author: Hu Yun June, 2001
Copyright (c) 2001 CRIM CANADA

')
*)
*)
*)
••)
r)

u

(
(*
(*
(*
e
e
let main() =

let arg = Sys.argv in
let num = Array.length arg in
i f (num = 2) then

let fname =

if (Filename.check_suffix arg.(1) ".pr")
then (Filename.chop_suffix arg.(1) ".pr")
else arg.(l) in

let e = Sdl.load 2 arg in
match e with

None ->
begin

print_endline("Echec du chargement de la specification "^arg.(l));
exit 0

end

Some
begin

let file_log = (fname^".log") in
begin

if (Sys.file_exists file_log) then Sys,remove file_log;
Utils.set_log file_log;
let specO = Extraction.extraction e file_log in
let file_log = (fname""_decision"A".pr") in
if (Sys.file_exists file_log) then Sys.remove file_log;
Utils.set_log file_log;
Utils.log (Spec_sdl.pretty (Process_decisions.process_decisions specO));
print_endline("A new SDL_spec file '""fname"

"_decision.pr' has been generated!!!\n\n\n");
exit 0

end
end

else
begin

print_endline("Decision process Error: Lack of Arguments!!!");
exit 0

end ; ;
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0 Printexc.catch maint)

Submodule process_decisions

u

('
(*

*

Name: process_decisions.ml
Purpose: flat decisions in a SDL_spec
Author: Hu Yun

•)
*)
*)

e
(
open Spec_sdl;;
exception Error of string

*)
r)

process_decision_merge *)
if there is still statement list after enddecision, append them *)
to each branch of the decision *)

(-
(* Name:

(* Purpose:
(*
e
let process_decision_merge tail =

function branch -> ((fst branch), (List.append (snd branch) tail))

(
( * Name :
(* Purpose:

process_decision_in_stmt
process decisions in the Decision statement statement *

•)
•)
•)
r)

let rec process_decision_in_stmt =
function ic_stmts

match ic_stmts with
[] -> []
head::tail ->

match head with
Decision d ->

if (tail==[]> then
let rec process_decision_branche =

function (expr, ls_stmt)
(expr, (process_decision_in_stmt ls_stmt)) in
[(Decision ({d with

branches = List.map process_decision_branche d.branches;
branche_else = process_decision_in_stmt d.branche_else}))]

else

if (d.branche_else = []) then
let branch_list = List.map (process_decision_merge tail) d.branches in

let rec process_decision_branche =
function (expr, ls_stmt) ->

(expr, (process_decision_in_stmt ls_stmt)) in
[(Decision ({d with

branches = List.map process_decision_branche branch_list;
branche_else = process_decision_in_stmt d.branche_else}))]

else

let branch_list = List.map (process_decision_merge tail) d.branches in
let rec process_decision_branche =

function (expr, ls_stmt) ->
(expr, (process_decision_in_stmt ls_stmt)) in
[(Decision ({d with

branches = List.map process_decision_branche branch_list;
branche_else = process_decision_in_stmt

(List.append tail d.branche_else)})) ]
[ _ -> head:: (process_decision_in_stmt tail)

procèss_decision_in_clause
parsing states in Clause

(
(* Name:
(* Purpose:
(
let process_decision_in_clause

function clause ->

match clause with

Input ic ->
Input ({ic with stmts

[ Input_star ic ->
Input_star ({ic with stmts_star

•)
*)
*)
•)

process_decision_in_stmt ic.stmts})

process_decision_in_stmt ic.stmts_star})
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l Cont_sig ic

Cont_sig ({ic with stmts_cont_sig =
process_decision_in_stmt ic.stmts_cont_sig})

l _ -> clause

u

(*. Name:

(* Purpose:

let process_decision_in_state =
function state ->

match state with
Start stmt_ls ->

Start (process_decision_in_stmt stmt_ls)
Normal (state_name, clause_list) ->

Normal (state_name, (List.map process_decision_in_clause clause_list))

}
*)
*)

procèss_decision_in_state
processsing states in process or procudure

')

(
(*
(*

')
*)
*)

(
let

Name: process_decision_in_procedure
Purpose: finding state list in a procedure

-)
process_decision_in_procedure =
function proc ->

{proc with
corps = List.map process_decision_in_state proc.corps}

( ********* * * * ******** ************************************************************* **^
(* Name: process_decision_in_process *)
(* Purpose: processing state list and procedure list in a process *)

let process_decision_in_process =
function single_process ->
{single_process with
states = List.map process_decision_in_state single_process.states;
procedures = List.map process_decision_in_procedure single_process.procedures}

(*
(* Name:
(* Purpose:

let process_decision_in_bloc single_bloc =
{single_bloc with
processes = List.map process_decision_in_process single_bloc.processes}

,**)
*)
*)
')

procèss_decision_in_bloc
processing process list in a block

e
( * Name :
(* Purpose:

let process_decisions spec =
{spec with
block = process_decision_in_bloc spec.block}

•)
*)
*)
r)

process_decisions
processing block in a spec
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Appendix C

Programs for Label Replacement

Module label_process

Name:

Purpose:
Author:

Copyright

label_process.ml (main)
Flatting labels in the spec
Hu Yun June, 2001

(e) 2001 CRIM CANADA

)
*)
*)
*)
*)

D

**

(*
(*
(*
(*
( ******************** ******** *********************** *•*****************************^
let maint) =

let arg = Sys. argv in
let num = Array.length arg in
i f ( num = 2) then

let fname =
if (Filename.check_suffix arg.(1) ".pr")
then (Filename.chop_suf fix arg.(1) ".pr") else arg.(1) in

let e = Sdl.load 2 arg in
match e with

None ->

begin
print_endline("Echec du chargement de la specification '"^arg.(l)); exit 0

end
Some

begin
let file_log = (fname^".log") in
begin

if (Sys.file_exists file_log) then Sys.remove file_log;
Utils.set_log file_log;
let specO = Extraction.extraction e file_log in
let file_log = (fname""_label"^".pr") in
if (Sys.file_exists file_log) then Sys.remove file_log;
Utils.set_log file_log;
Process_label.process_label specO;
print_endline("A new SDL_spec file '""fname^

"_label.pr'has been generated !!!\n\n\n");
exit 0

end
end

else

begin

print_endline("Label process Error: Lack of Arguments!!!");
exit 0

end ; ;
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Printexc.catch main()

Submodule process_label

u

(•
(*
(*
(*
(*
(
open Spec_sdl;;
exception Error of string

Name: process_label.ml
Purpose: construct a list, each element of the list is composed

of a label name and a list followed this label
Author: Hu Yun

')
*)
*)
*)
*)

*• •)

Name:

Purpose:

loop_detect
detecting loop in transition paths

•)
*)
*)

(
(*
(*
e
let rec loop_detect label flag =

function ls_stmt ->
match ls_stmt with
[] -> flag
head::tail ->

match head with
Terminator t ->

(match t with

Join j
if (j=label)
then

begin
flag := l;
print_string

("\n\nA loop is detected on the label: ""label""\n\n");
end

else () ;

flag
l _ -> (loop_detect label flag) tail)

Decision d
let branchelse =

if (d.branche_else = [])
then (loop_detect label flag) tail
else (loop_detect label flag) d.branche_else

in
let branch =

(loop_detect label flag) (List.flatten (snd (List.split d.branches)))
in
if ((branchelse = ref 1) [[ (branch = ref D) then flag := 1 else ( ) ;
flag

_ -> (loop_detect label flag) tail

procèss_label_in_stmt
processing label statement

(-
( * Name :
(* Purpose:

let rec process_label_in_stmt =
function ic_stmts ->

match ic_stmts with

[] -> []
I head::tail ->

match head with

Label l -> if (!((loop_detect l (ref 0)) tail)=1) then
(process_label_in_stmt tail)

else

(1, tail)

(process_label_in_stmt tail)
I Decision d -> let branchelse =

if (d.branche_else = (])
then

[]

**')
*)
*)
')
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else
let else_str = process_label_in_stmt d.branche_else
in
else_str
in
let rec process_label_branche =

function (expr, ls_stmt) ->
let branch = process_label_in_stmt ls_stmt
in
if (branch = []) then [] else branch
in
List.append ((List.append

(List.concat
(List.map process_label_branche d.branches))
branchelse)) (process_label_in_stmt tail)

_ -> process_label_in_stmt tail

Name:

Purpose:

process_label_in_clause
process a signal clause and call the corresponding
statement list to function process_label_in_stmt

**

(*
(*
(*
(

let process_label_in_clause =
function clause ->

match clause with

Input ic
process_label_in_stmt ic.stmts

Input_star ic ->
process_label_in_stmt ic.stmts_star

l Cont_sig ic ->
process_label_in_stmt ic.stmts_cont_sig

1_ -> []

r)
*)
*)
*)
•)

***

(*
(*
(

let process_label_in_state =
function state ->

match state with

Start stmt_ls

process_label_in_stmt stmt_ls
l Normal (state_name, clause_list) ->

List.flatten (List.map process_label_in_clause clause_list)

r)
*)
*)
•)

Name:

Purpose:

process_label_in_state
processsing labels in process or procudure

process_label_in_process
processing process list in a block

(•
(* Name:

(* Purpose:
(
let process_label_in_process spec =

function single_process ->
let label_list_in_process =

List.flatten (List.map (process_label_in_state) single_process.states)
in
let label_pair = List.split label_list_in_process in
let length = (List.length label_list_in_process ) in
begin
for i = 0 to length-1 do

begin
spec := Process_join_label.process_join_label !spec

(fst (List.nth (label_list_in_process) i))
(snd (List.nth (label_list_in_process ) i)) label_pair;

end

done ;

Utils.log (Spec_sdl.pretty !spec);
print_endline("\n\n") ;
end

')
*)
*)
[)

u
(* Function name: process_label_in_bloc
(* Parameter: bloc, spec

r)
*)
*)
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(* Return: void

(* Purpose: apply process_label_in_process to each process of block

let process_label_in_bloc spec =
function single_bloc -> List.iter

(process_label_in_process spec)
single_bloc.processes

*)
*)
•)

(* Function name: process_label
(* Parameter: spec
(* Return: void
(* Purpose: apply process_label_in_process to block
(
let process_label spec =

(process_label_in_bloc (ref spec)) spec.block

•)
*)
*)
*)
*)
')

Submodule process J oin_label

(•
( * Name :

(* Purpose:
(* Author:

(

open Spec_sdl;;

exception Error of string

')
*)
*)
*)
)

process_join_label.ml
remove labels in a SDL_spec
Hu Yun

Name:

Purpose:
process_tail_list
remove labels in the tail list

(•
(*
e
(
let rec process_tail_list label_list =

function tail_list ->
match tail_list with

[] -> (]
head::tail ->

match head with

Terminator t -> (match t with
Join j -> let l_list = fst label_list in

let 11 = ref 0 in
for i = 0 to (List.length l_list)-l do

if (j = (List.nth l_list i) )
then 11 := i
else ( ) ;

done ;

(process_tail_list label_list)
(List.nth (snd label_list) !11)

l _ -> head

((process_tail_list label_list) tail))
I Decision d -> let rec process_join_label_branche label_list =

function (expr, ls_stmt) ->
(expr, ( (process_tail_list label_list) ls_stmt)-)

in
(Decision ({d with

branches =

List.map
(procèss_join_label_branche label_list)
d.branches;

branche else =

(process_tail_list label_list)
â.branche_else}))

( (process_tail_list label_list) tail)
l Label l -> ((process_tail_list label_list) tail)
l _ -> head

((process_tail_list label_list) tail)

')
*)
*)
r)

u
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(* Name: process_join_label_in_stmt • *)
(* Purpose: remove labels in the Label statement and Terminator statement *)
(**********************************************************************************)
let rec process_join_label_in_stmt label tail_list label_list =

function ic_stmts
match ic_stmts with

[] -> []
I head::tail ->

match head with
Terminator t ->

(match t with

Join j -> if (j = label)
then ((process_tail_list label_list) tail_list)
else head::((process_join_label_in_stmt

label tail_list label_list) tail)
l _ -> head::((process_join_label_in_stmt

label tail_list label_list) tail»
Decision d

let rec process_join_label_branche label tail_list label_list =
function (expr, ls_stmt)

(expr,
((process_join_label_in_stmt label tail_list label_list) ls_stmt))

in
(Decision ({d with

branches = List.map (process_join_label_branche
label tail_list label_list)
d.branches;

branche_else = (process_join_label_in_stmt
label tail_list label_list) d.branche_else}))

::((process_join_label_in_stmt
label tail_list label_list) tail)

Label 1 ->
if (1 = label)
then ((process_join_label_in_stmt label tail_list label_list) tail)
else head::((process_join_label_in_stmt label tail_list label_list) tail)

l _ -> head:: ((process_join_label_in_stmt label tail_list label_list) tail)

('
(* Name:

(* Purpose:

(

•)
*)
*)
')

process_j oin_label_in_clause
parsing states in Clause

****•*******•*•*•*•*

let process_join_label_in_clause label tail_list label_list =
function clause ->

match clause with

Input ic ->
Input ({ic with stmts =

(process_join_label_in_stmt label tail_list label_list)
ic.stmts})

Input_star ic ->
Input_star ({ic with stmts_star =

(process_join_label_in_stmt label tail_list label_list)
ic.stmts_star})

Cont_sig ic
Cont_sig ({ic with stmts_cont_sig =

(process_join_label_in_stmt label tail_list label_list)
ic.stmts_cont_sig})

_ -> clause

Name:
Purpose:

process_join_label_in_state
processsing states in process or procudure

u

* *

(*
(*
(
let process_join_label_in_state label tail_list label_list =

function state

match state with

Start stmt_ls
Start ((process_join_label_in_stmt label tail_list label_list)

stmt_ls)

)

*)
*)
)
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Normal (state_name, clause_list) ->
Normal (state_name,

(List.map
(process_join_label_in_clause label tail_list label_list)
clause_list))

e •)
(* Name: process_join_label_process *)
(* Purpose: processing state list and procedure list in a process *)
***********************************************-**********'***-**********-************^

let process_join_label_in_process label tail_list label_list =
function single_process ->
{single_process with
states = List.map

(process_join_label_in_state label tail_list label_list)
single^process.states}

procèss_join_label_in_bloc
processing process list in a block

f
(* Name:

(* Purpose:

let process_join_label_in_bloc single_bloc label tail_list label_list =
{single_bloc with
processes = List.map

(process_join_label_in_process label tail_list label_list)
single_bloc.processes}

process_j oin_label
processing block in a spec

k)
*)
*)
r)

(
(* Name:
(* Purpose:

let process_join_label spec label tail_list label_list =
{spec with
block = process_join_label_in_bloc spec.block label tail_list label_list}

>**)
*)
*)
')

u
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Appendix D

Programs for Weak Observabilization

Module weak_observ_process

e
(*
(*
(*
(*

open Spec_sdl;;

Name: weak_observ_process.ml (main )
Purpose: observabilization of the spec
Author: Hu Yun June, 2001

Copyright (c) 2001 CRIM, CANADA

')
*)
*)
*)
*)
r)

u

let main() =

let arg = Sys.argv in

let num = Array.length arg in
if (num = 2) then

let fname =

if (Filename.check_suffix arg.(1) ".pr")
then (Filename.chop_suffix arg.(l) ".pr")
else arg.(1)

in
let e = Sdl.load 2 arg
in
match e with

None -> begin •
print_endline("Echec du chargement de la specification ""arg.(l));
exit 0

end

I Some _ -> begin
let file_log = (fname"".log") in

begin
if (Sys.file_exists file_log)
then Sys.remove file_log;
Utils.set_log file_log;
let specO = Extraction.extraction e file_log
in
print_string("\n\nThe number of states in the process is ");

print_int((State_num.state_num spec0)-l);
print_string(State_name_list.state_name specO);
print_endline("\n\n") ;

let file_log = (fname^"_observ"^".pr")
in
if (Sys.file_exists file_log) then Sys.remove file_log;

Utils.set_log file_log;
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Process_weak_observ.process_weak_observ specO;

exit 0
end

end
else

begin
print_endline("Process Error: Lack of Arguments!!!");
exit 0

end ; ;

Printexc.catch main()

u

(
(* Module Name:
(* Purpose:
(
open Spec_sdl;;
let statelist list_states =

let pretty_state state =
match state with

Start si ->
"\n\n "

l Normal (s, cl) ->
s"" ; " in

String.concat "\n" (List.map pretty_state list_states)

r)
list_states.ml
construct a string with all state names

*)
*)
)

e
( * Name :

(* Purpose:

(

let state_name my_spec =

let bl = my_spec.block in
let ps = List.hd(bl.processes) in

statelist ps.states;

)
*)
*)
r)

state_name.ml
this function takes a spec and return state names

(
(* Module Name:

(* Purpose:
(*

open Spec_sdl;;
let state_num my_spec =

let bl = my_spec.block in
let ps = List.hdfbl.processes) in

List.length ps.states;

•)
*)
*)
*)
•)

state_name.ml
this function takes a spec and
return state number of a process
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e
(*
(*
(*
(
open Spec_sdl;;
open Var;;
exception Error of string

Module Name: process_weak_observ.ml
Purpose: redirecting the nonobservable transitions to sink state
Author: Hu Yun

•)
*)
*)
*)
-)

(
(* Function name: process_stmt_in_path
(* Parameter: stmt list
(* Return: stmt list list
(* Purpose:

•)
*)
*)
*)
*)

process statement list in each path recursively to construct a list of stmt *)
list of a transition path, the last stmt in the list is Nextstate.

*******

(*
(*
e
let rec process_stmt_in_path =

function stmts

match stmts with

[] -> []
head::tail ->

match head with
Decision d -> let branchelse =

if (d.branche_else = []) then []
else

let else_str = process_stmt_in_path d.branche_else
in
else_str

in
let rec treat_branche =
function (expr, ls_stmt) ->
let branch = process_stmt_in_jpath ls_stmt
in
if (branch = []) then [] else branch
in
List.append (List.concat

(List.map treat_branche d.branches))
branche l s e

I Terminator t -> (match t with
NextState n -> (match n with

NoMinus l -> [[head] ]
l _ -> [])

l _ ->[])
_ -> List.map (List.append [head]) (process_stmt_in_path tail)

*)
'}

e *)
*)(* Function name: process_signal_in_path

(* Parameter: signal, stmts *)
(* Return: stmt list list *)
(* Purpose: *)
(* process each input signal and pass the stmt list to the function *)
(* process_stmt_in_path. *)
*****************************************************•***•*••*•***•*-***•****•*********•***

let process_signal_in_path stmts =
function signal -> process_stmt_in_path stmts

e

0

r)
*)
*)
*)
*)

(* Function name: process_clause_in_path
(* Parameter: a clause
(* Return: stmt list list list
(* Purpose:
(* process each clause, it apply the process_signal_in_path function the each *)
(* signal in the signal list and returns a stmt list list list in a path *)
^ * * ** * ** *** * * * ** ** * *** ** ** ** ** ** ************ ***************•******•*****************)
let process_clause_in_path =

function clause -> match clause with
Input ic -> List.map (process_signal_in_path ic.stmts) ic.signals
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!_->[]

(* Function name: treat_in_stmts *)
(* Parameter: statement list *)
(* Purpose: *)
(* process statement list in each path recursively to construct a list of *)
(* output string list of a transition path, the last string in the list is *)
(* the name of Nextstate. *)

(*********************************************************************************^
let rec treat_in_stmts =

function stmts ->
match stmts with

[] -> []
head::tail -> match head with

Output o -> List.map (List.append [o.sig_name])
(treat_in_stmts tail)

I Terminator t -> (match t with
NextState n -> (match n with

NoMinus l -> [[l]]

l _ -> [])
l _->[])

Decision d -> let branchelse =
if (d.branche_else = []) then []
else

let else_str = treat_in_stmts d.branche_else
in else_str

in
let rec process_branche =

function (expr, ls_stmt) ->
let branch = treat_in_stmts ls_stmt
in
if (branch = []) then [] else branch
in
List.append (List.concat

(List.map process_branche d.branches))
branche l s e

l _ -> treat_in_stmts tail

*****************•*•******•*•**•**•*•****•****•**•********•*•**•*-•*••*•*••*•********•*•*****-*-***•***-****

(* Function name: treat_signal *)
(* Parameter: signal, stmt list *)
(* Return: stmt list list *)
(* Purpose: append a signal to the beginning of the statement list *)
*******(•

let treat_signal stmts =
function signal -> List.map

(List.append [signal.sig_name])
(treat_in_stmts stmts)

')

(•
(* Function name:
(* Parameter:
(* Return:
(* Purpose:
(
let treat_in_clause =

function clause -> match clause with
Input ic -> List.map (treat_signal ic.stmts) ic.signals

!_->[]

')
*)
*)
*)
*)
)

treat_in_clause
a clause
string list list list
process each clause, it returns string list list list

u

(* Function name:
(* Parameter:

(* Return:

(* Purpose:

(*
(
let find_variable

function stmt -s

find_variable
stmt

variable name

to find the variable name

a Task statement

in the left side of

match stmt with

Assign a -> (match a.1eft with

r)
*)
*)
*)
*)
*)
)
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I dent v •

_ -> "")
v

treat_in_state
state, spec
void

•)
*)
*)
*)
*)
*)
*)

(* Function name:
(* Parameter:
(* Return:

(* Purpose:
(* 1. for each state, construct state-input-output string list
(* 2. for each state, construct stmt path list

let treat_in_state spec =
function state -> match state with

Start stmt_list -> []
l Normal (state_name, clause_list) ->

f********************************************************************)
(* for each state, construct a non-observable transition paths list *)

let stmt_lll = ref [] in
let stmt_lll_array = ref [] in
let cl_list = List.map treat_in_clause clause_list in
let stmt_list_list = List.map process_clause_in_path clause_list
in
let stmt_list_flatten = List.flatten (List.flatten stmt_list_list)
in
let stmt_len = (List.length stmt_list_flatten) in
let cl_list_flatten_flatten = List.flatten (List.flatten cl_list)
in
let len = (List.length cl_list_flatten_flatten) in
let str_array = Array.create len "" in
let str_list_array = Array.create len [] in
let path_array = Array.create len "" in
let flag_array = Array.create len 0 in

-—-\n");

-\n">;
print_string ("All transition paths from state: "Astate_name^" ");
print_string "\n";

to len-1 do

state_name::(List.nth cl_list_flatten_flatten i)

for i = 0
let list_nth
in
let len_nth = (List.length list_nth) in
let array_nth = Array.create len_nth "" in
let array_nth = Array.of_list list_nth in

str_array.(i) <- (String.concat " " list_nth);
str_list_array.(i) <- list_nth;
print_string str_array.(i);
print_string "\n";
let path_array_nth = Array.create (len_nth-l) "" in
for j = 0 to len_nth-2 do

path_array_nth.(j)<-array_nth.(j);
done ;
path_array.(i)<-

(String.concat " " (Array.to_list path_array_nth)) ;
done ;

print_string "\n";
print_string "\n";

do
in

in
in

for k = 0 to len-2
let flag = ref 0
let stmt_ll = ref []
let stmt_array = re f []

L)

let list_ll = ref [k] in
flag_array.(k) <- 1;

for l = k+1 to len-1 do

if (path_array.(k) = path_array.(1)&&flag_array.(1)
then

begin
flag_array.(l) <- l;

0)
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stmt_ll := (List.nth stmt_list_flatten l).: :(!stmt_ll);
list_ll := l::(ilist_ll);

end

else

0
done ;

(* find the variable need to be delete
(* construct a variable list
(* report each distinct variable
(

')
*)
*)
*)
•)

u

if (List.length (!list_ll)<>1) then
begin

stmt_ll := (List.nth stmt_list_flatten k)::(!stmt_ll);
let all_variable_list = ref [] in

for jj = 0 to (List.length (!stmt_ll))-1 do
let stmt_l = (List.nth !stmt_ll j j ) in
all_variable_list := (List.map f.ind_variable stmt_l)

(!all_variable_list);
done ;

let len_variable_list

Array.create (len_variable_list) "" in
Array.of_list (List.flatten !all_variable_list)

List.length
(List.flatten (!all_variable_list) )

in
let var_array
let var_array
in
for varl = 0 to len_variable_list-2 do
let sign = réf. O in
for var2 = varl+1 to len_variable_list-l do

if (var_array.(varl) =
var_array.(var2)&&var_array.(varl)<>" " )

then
sign :=1

else

0
done ;
if ((!sign)=0&&var_array.(varl)<>"") then

begin
print_string

(" Variable need to delete: "^var_array.(varl));
print_string "\n";

end
else

0;
done ;
print_string "\n";
print_string " ";
print_int (List.length (!stmt_ll));
print_string " ";
let len_ll = List.length (!list_ll)
in
print_string
("non-observable state-input-output-nextstate sequences
found""": \n");
let same_end_flag = ref 0 in
let identical_str = str_array.(List.nth (!list_ll) 0) in
for 11 = 1 to len_ll-l do

if (iâentical_str <> str_array.(List.nth (!list_ll) 11))
then same_end_flag := l

done ;
for 11 = 0 to len_ll-l do

begin
print_string "
print_string str_array.(List.nth (!list_ll) 11);
print_string "\n";
if (!same_end_flag = 1)
then

s tmt_lll_array : =
(Array.of_list
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(str_list_array.(List.nth (!list_ll) 11)))

( !stmt_lll_array);
end

done ;
print_string "\n";
print_string "\n";

end

else

0 ;
done ;

(!stmt_lll_array)

(* Function name:
(* Parameter:
(* Return:
(* Purpose:

process_clause_in__process
spec
void
apply treat_in_state to each process

(************************************************************************•*-**•******)
*)
*)
*)
*)

let process_clause_in_process spec =
function single_process ->

begin
let nonobe_list = List.flatten

(List.map (treat_in_state spec) single_process.states)
in
let nonobe_len = List.length nonobe_list in
let result_list = ref [] in
for j = 0 to nonobe_len-l do

if ((List.nth nonobe_list j).(O) == "") then
0

else

result_list := (List.nth nonobe_list j)::(!result_list);
done ;
let length = (List.length !result_list) in
for i = 0 to length-1 do

begin
spec := Process_redirect_to_sink.process_redirect_to_sink

! spec
(List.nth (!result_list) i);

end
done ;

spec := Add_sink_state.add_sink_state !spec;
Utils.log (Spec_sdl.pretty ispec);
print_endline("\n\n") ;

end

(* Function name:
(* Parameter:
(* Return:

(* Purpose:
(
let process_clause_in_bloc spec =

function single_bloc -> List.iter (process_clause_in_process spec)
single_bloc.processes

**********

process_clause_in_bloc
bloc, spec
void
apply process_clause_in_process to each block

*)
*)
*)
*)
•)

( •*-*
(* Function name:

(* Parameter:

(* Return:

(* Purpose:

let process_weak_observ spec = (process_clause_in_bloc (ref spec)) spec.block

procèss_weak_observ
spec
void

apply process_clause_in_process to block

r)
*)
*)
*)
*)
')

u
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Submoduleprocess_redirect_to_sink

(
(*
(*
(*
(*
(*
( ****
open Spec_sdl;;
exception Error of string

Name:

Purpose:

Author:

process_redirect_to_sink.ml

redirecting nonobservable transition path to sink state and
deleting all tasks in this transition path except the output
statement

Hu Yun

)
*)
*)
*)
*)
*)
')

(
(* Name:
(* Purpose:
(
let create_signal_out =

function msg_out ->
{sig_name = msg_out; sig_params = []}

')
*)
*)

•**)

create_signal_out
creating a output signal

*****•*••*

(***
(* Name:
(* Purpose:
e
let rec create_output_stmt =

function msg_out -> [Output (create_signal_out msg_out)]

r)
*)
*)

create_output_s tmt
creating a output statement

*•*•)

(
(* Name:

(* Purpose:
(*
(*
(*
(*
(*
(
let redirect_in_clause array_list input_name =

function clause ->
match clause with

Input ic -> if (input_name == ((List.hd ic.signals).sig_name)) then
Input ({ic with stmts =

(Li st.append
(List.flatten
(List.map create_output_stmt (Array, to_lj.st array_list) ) )
[Terminator (NextState (NoMinus "sink"))])

r)
*)
*)
*)
*)
*)
*)
*)

redirect_in_clause

for each clause, if the input name is in the SION sequence,
it creates a new stmt list for this input statement
which ignore all other statement in the transition path except
the output statement.
at last, it appends a 'sink' Nextstate Terminator to
the stmt list

')

})
else

clause

-> clause

e
(* Name:

(* Purpose:
(

let treat_signal ic
function signal ->

•)
*)
•)
')

treat_signal

Input ({ic with signals = [signal]})

u

('
(*
(*

Name:

Purpose:

procèss_clause
reconstruct clause list

let process_clause =

function clause ->

match clause with

Input ic -> if ((List.length ic.signals) > 1) then
List.map (treat_signal ic) ic.signals

else

[clause]

_ -> [clause]

*

-)
:)
*)
•)
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n Name:

Purpose:

redirect_in_state

processsing states in process or

(*•
(*
(* Purpose: processsing states in process or procudure

let redirect_in_state array_list =
function state ->
match state with

Start stmt_ls -> state
l Normal (state_name, clause_list) ->

if (array_list.(0) == state_name) then
let len = Array.length array_list in
let array_new = Array.create (len-3) "" in

begin
for i = 0 to (len-4) do

array_new.(i) <- array_list. (i+2);
done ;

end;

Normal (state_name. List.map (redirect_in_clause array_new array_list.(1))
(List.flatten (List.map process_clause clause_list)))

else

state

')
*)
*)

'**)

u

(* Name: process_clause_in_procedure *)
(* Purpose: finding state list in a procedure *)
(A*********************************************************************************)
let process_clause_in_procedure array_list =

function proc -> {proc with
corps = List.map (redirect_in_state array_list) proc.corps}

e
(* Name:
(* Purpose:

let process_clause_in_process array_list =
function single_process ->
{single_process with
states = List.map (redirect_in_state array_list) single_process.states;
procedures = List.map (process_clause_in_procedure array_list)

single_process.procedures}

**

*)
*)
')

procèss_in_clause_process
processing state list and procedure list in a process

(* Name: process_clause_in_bloc
(* Purpose: processing process list in a block

let process_in_bloc single_bloc array_list =
{single_bloc with
processes = List.map (process_clause_in_process array_list)

single_bloc.processes}

')
*)
*)
•)

A**************

(* Name: process_redirect_to_sink
(* Purpose: processing block in a spec

let process_redirect_to_sink spec array_list =
{spec with
block = process_in_bloc spec.block array_list}

')
*)
*)
•)
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Submodule add sink state

(-
(*
(*
(*
(
open Spec_sdl;;

exception Error of string

Name:

Purpose:
Author:

add_sink_state.ml
add a sink state in the SDL spec
Hu Yun

•)
*)
*)
*)
)

e
(*
(*

let create_signal_out_for_sink =
function msg_out ->

{sig_name = msg_out; sig_params

')
*)
*)

Name:

Purpose:
create_signal_out_for_sink
creating a output signal

•)

[]}

(•
(* Name:
(* Purpose:
(
let rec create_stmt_for_sink

function msg_out -> [Output

•)
*)
*)

create_s tmt_for_s ink
creating a output statement

•)

(create_signal_out_for_sink msg_out)]

(
(* Name: create_signal_in_for_sink
(* Purpose: creating an input signal
(*************•*•**•*****
let create_signal_in_for_sink =

function msg_in ->
[{sig_name = msg_in; sig_params = []}]

*•*

*)
*)
•)

(
(*
(*
(
let create_clause_for_sink msg_in =

function msg_out -> Input {signals = create_signal_in_for_sink msg_in;
garde_opt = None;
stmts = List.append

(create_stmt_for_sink msg_out)
[Terminator (NextState (NoMinus "sink"))];

parametres_non_signifiants = false}

•)
*)
*)
)

Name:

Purpose:

create_clause_for_sink
creating an Input clause

(
(*
(•
(
let create_clause_list_for_sink msg_out =

function msg_in -> List.map (create_clause_for_sink msg_in) msg_out

')
*)
*)

**•**-*••*

Name:

Purpose:

create_clause_list_for_sink
creating a clause list

(•
( * Name :

(* Purpose:
(
let create_sink_in_process msg_out =

function single_process ->
{single^process with
states = List.append

single_process.states [(Normal ("sink",
List.flatten

(Li st.map
(create_clause_list_for_sink msg_out)
single_process.messages_in)))] }

)
*)
*)
"l

create_sink_in_process
adding a new state "sink" to state list of a process

u
e
(*
(*
(•

Name: create_sink_in_bloc
Purpose: processing process list in a block

;)
*)
*)
•)
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let create_sink_in_bloc msg_out =

function single_bloc ->
(single_bloc with
processes = List.map (create_sink_in_process msg_out)

single_bloc.processes}

Name:

Purpose:

add_sink_state

processing block in a spec

(

(*

(*

let add_sink_state spec =
{spec with
block = (create_sink_in_bloc spec.messages_out) spec.block}

:)
*)
*)
•)

u


