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0 Résumé:

Le déploiement massif de l'Intemet s'accompagne d'un vaste développement des

applications multimédias distribuées. Leurs domaines d'utilisation sont très vastes:

télé-enseignement, systèmes de diffusion à la demande ou en direct, applications

coopératives diverses. Traditionnellement installés sur des réseaux locaux ou RNIS

(Réseaux Numériques à Intégration de Services), les systèmes de vidéoconférences

étaient jusqu'ici construits principalement sur des protocoles propriétaires. Leur

déploiement sur Internet impose l'utilisation de protocoles plus standardisés qui

permettent l'adaptation aux contraintes du réseau et un certain niveau

d'interopérabilité.

La principale caractéristique des applications multimédia est l'introduction et la

manipulation de médias continus tels l'audio, la vidéo et le transfert d'information

sensible au temps. Leur défi est de satisfaire aux exigences des usagers en fonction

des possibilités du réseau utilisé. Les solutions proposées, et celles qui restent a venir,

tournent toutes autour du concept de « Qualité de Service » (QdS). Ce dernier désigne

un ensemble de propriétés, perceptibles par l'utilisateur, qui caractérisent la

performance du service qui lui est offert. Actuellement, l'Intemet ne peut supporter de

telles garanties et offre un service qualifié de «best effort». La gestion des paquets de

données est prise en charge de façon simple mais ne garantie ni la livraison ni la

ponctualité.

Pour satisfaire les contraintes temporelles induites par la manipulation de données

continues, un ensemble de fonctionnalités de gestion de la QdS est nécessaire.

Beaucoup de recherches en ce sens ont focalisé sur la réservation de ressources dans

des réseaux à circuit virtuel tel qu'ATM. Le modèle de commutation par paquets qui

est à la base des réseaux IP rend l'application de la réservation de ressources

impossible. De nombreuses techniques basées sur la differentiation de paquets et de

classes de services ont cependant été proposées afin de d'introduire une certaine QdS

dans l'architecture d'Intemet.
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n Dans ce mémoire, nous suggérons une architecture qui intègre des mécanismes de

contrôle et de gestion de la QdS. L'accent est mis sur les stratégies d'adaptation qui

permettent à l'application de réagir à des fluctuations de services du réseau. Nous

introduisons le concept de réseaux multiples, où une machine client et une machine

serveur sont reliées par plusieurs réseaux offrant une QdS différente. Un prototype de

support à une application a été développé en tenant compte des mesures de QdS. Le

prototype est conforme aux standards afin d'etre compatible et interoperable avec

d'autres applications suivant ces mêmes normes. Nos travaux s'appuient sur le

standard H.323 qui définit des spécifications pour la communication multimédias sur

réseaux à commutation par paquets tel Internet.

Comme on le mentionne dans le paragraphe précédent, nous proposons de travailler

sur trois plans: l'amélioration de la définition de la QdS et le support qu'elle requiert,

l'interopérabilité, et finalement la polyvalence de l'application. Voici un bref aperçu

des solutions et stratégies adoptées dans chacun de ces aspects.

Le concept de QdS et la façon de l'utiliser sont à la base de notre travail. Des

recherches approfondies nous ont permis de comprendre que les paramètres de QdS

implantés dans les rares applications qui les supportent sont souvent trop près des

mesures de réseau. Dans ces circonstances, un certain niveau d'expertise est requis

par l'utilisateur. Afin d'en faciliter la compréhension et la manipulation, nous

introduisons des classes de services qualitatives plutôt que quantitatives. Ces

dernières sont ensuite transposées en mesures quantifiables afin d'etre prises en

charge par un réseau. Toujours en fonction des préférences de l'usager, différents

paramètres de réseau (délais, intervalles d'arrivé, nombre de paquets perdus) peuvent

être pris en compte.

Ces derniers sont par la suite soumis à un algorithme d'adaptation qui ajustera les

caractéristiques d'un flot binaire en fonction des fluctuations de service. L'algorithme

est capable de travailler avec un des trois paramètres spécifiés plus haut. Les niveaux
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0
de tolérence et les actions à prendre dans certaines situations critiques sont

entièrement contrôlés par l'usager. Par exemple, ce dernier peut demander de

favoriser les connexions audio au dépend des connexions vidéo, avec une vitesse de

transmission minimale de 20 Kb/sec pour l'audio et 50 Kb/sec pour la vidéo. Chaque

connexion est traitée de façon individuelle, ce qui implique que chacune a sa propre

specification de QdS et que ces spécifications ne sont pas inter-reliées.

Afin de faciliter la gestion des connexions et de gérer l'algorithme de dégradation,

une série d'objets offrant une abstraction de haut niveau (API - Application

Programming Interface) à été développée. En plus d'encapsuler plusieurs processus

de bas niveaux, ces objets permettent de faciliter la manipulation du système et de

réduire le nombre de tâches d'implantation.

Puisque notre système est destiné à la formation de personnel à distance, il est

important qu'il puisse interagir avec d'autre applications qui pourraient

éventuellement avoir été conçues par d'autres équipes. Puisque nous travaillons dans

un environnement distribué, il est également préférable que l'architecture suive les

directives d'implantation standards afin d'en améliorer la polyvalence.

Pour ce faire, nous appuyons nos efforts sur deux spécifications standards qui servent

actuellement de plan d'implantation dans plusieurs produits commerciaux. L'une

d'elle spécifie les protocoles RTP et RTCP tandis que l'autre se concentre sur

l'architecture H.323.

RTP est un protocole de couche application qui encapsule les données multimédia en

fonction de spécifications précises. De plus, son en-tête inclut plusieurs champs

d'information généralement nécessaire pour la reconstruction des signaux. Des

numéros de séquence, des estampilles temporelles et l'identification du mode de

codage en sont des exemples. RTCP est le protocole de contrôle qui introduit les

mesures de qualité de services offertes par le réseau. La manipulation de ces mesures
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n
donne de l'information sur les performances de transfert qui autrement ne figurent pas

dans les services offerts par couche IP.

H. 3 23 est définitivement la plus complète des spécifications en ce qui concerne

l'implantation de système multimédia sur réseau à commutation - IP, Ethernet, cell

relay, ... . Cette spécification est la fondation de notre travail. En s'y conformant, il

nous est possible d'espérer que notre application aura certaines fonctionnalités

communes avec des systèmes développés par d'autres équipes. H.323 indique les

normes à suivre et les types d'encodages à utiliser pour optimiser l'acheminement de

contenu médiatique. Il utilise également les protocoles RTP/RTCP présentés ci-haut

pour l'encapsulation et l'acheminement des données. Ce standard est sans contredit

voué à un avenir très florissant. En effet, plusieurs compagnies l'implantent

actuellement dans une vaste gamme de produits allant de l'ordinateur de bureau au

téléphone numérique.

En troisième lieu, nous abordons le concept de polyvalence en modifiant le modèle de

couche réseau actuel en ajoutant la possibilité de communiquer avec plusieurs

interfaces réseau simultanément. Avec ce nouvel apport, il est possible pour un

usager d'acheminer un flot de voix sur réseau ISDN, un flot de données sur ATM et

d'effectuer un transfert de fichier sur IP parallèlement. Toute la gestion des

différentes couches transport est prise en charge par l'architecture et les méthodes de

gestion de QdS mentionnées plus haut.

u

Afin de concrétiser le concept, nous dotons notre architecture d'une couche transport

qui identifie le réseau sur lequel est destiné un paquet en fonction des spécifications

préalablement établie par l'usager. Afin de prioriser certains types de médias, nous

ajoutons trois files d'attentes pour chaque interface réseau: audio, vidéo et données.

De ce fait, l'algorithme de séquencement peut sélectionner les données à acheminer

en fonction de leur importance pour l'usager et leurs caractéristiques temporelles. De

plus, nous permettons à l'architecture de permuter les réseaux de support lorsqu'un de

ceux-ci n'est pas en mesure de supporter les paramètres demandés. Par exemple, si le
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n
système détecte une vitesse de transmission trop faible sur IP, il peut décider

d'acheminer l'information sur ATM. Le changement de réseau s'effectue alors sans

interruption de service et l'usager est informé de l'événement par un des panneaux de

contrôle.

Un prototype concrétisant l'architecture présentée ci-dessus a été réalisé et

expérimenté afin de valider notre proposition. Le prototype implante de manière

presque complète cette architecture.

Du côté du serveur, l'experimentation s'est faite sans codecs (pour des raisons de

coût). Le générateur de flux utilisé ne produit pas un ûux réel mais simule des

données. Les niveaux de services accessibles à l'usager ont également été simplifiés.

Le prototype actuel travaille avec 5 classes de service qui gouvernent la vitesse de

transmission des flots de données. D'autres paramètres comme le nombre de paquets

perdus ou l'intervalle de temps entre la réception des paquets pourraient également

être utilisés, mais n'ont pas été implantés dans le protoype faute de temps.

Du côté client, une interface utilisateur à été installée au dessus de l'API de QdS.

Cette interface présente revolution dynamique des paramètres réseaux tel que

rapportés par les paquets RTCP.

Enfin, des protocoles de gestion des connexions ainsi que des modules de support ont

été introduis pour simplifier l'interaction avec les protocoles H.225 et H.245. Ces

derniers étaient nécessaires pour alléger la charge de développement.

Nos simulations ont été obtenues à partir de tests de performance effectués à

différentes périodes de la journée dans le laboratoire de téléinformatique de

l'université de Montréal. Les équipements de support sont des ordinateurs de type PC

fonctionnant sous la tutelle du système d'exploitation windowsNT 4.0, des

processeurs 433 MHZ Celeron d'Intel, et des cartes réseaux ethernets à lOMbs. Le
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0
réseau interne du laboratoire est organisé en étoile avec des liens de fibres optiques à

lOOMbs et un hub cental qui travaille généralement à 75% de ses capacités.

Bien que cet environnement de test ne reflète pas exactement les conditions

d'engorgement d'un Internet ouvert, nous sommes d'avis que l'hétérogénéité des

ordinateurs et des applications qui l'utilisent sont près de la réalité. En effet, ce même

réseau est utilisé pour connecter des ordinateurs PC, Mac, Sun et HP. Les systèmes

d'exploitations et les services demandés varient grandement d'une plate-forme à

l'autre, ce qui introduit différentes formes de dégradations de services allant

d'engorgements extremes à une bande passante maximale.

La réalisation de ce projet présente indéniablement plusieurs défits de tailles à

relever. Dans un premier temps, nous avons dû définir le concept de qualité de

service ainsi que les façons de rappliquer et ses impacts sur les applications

distribuées. La définition et l'étendue des spécifications des systèmes collaboratifs

ont également posés plusieurs problèmes. Ces derniers sont en effet très complexes à

comprendre et à implanter puisque plusieurs outils tel que planche à dessins, partage

d'applications et soutient de média font parties de ses caractéristiques.

Le fait de travailler avec des spécifications standards a considérablement alourdi la

tâche. A cause de contraintes temporelles, il nous a été impossible d'implanter tout

les services en fonction des spécifications. Plusieurs protocoles ont été simplifiés et

modifiés pour exhiber uniquement les caractéristiques nécessaires. Nous sommes

conscient que ces altérations causeraient des problèmes d'interopérabilité dans

l'optique un déploiement sérieux.

Finalement, un nombre important de considérations sont toujours requises afin

d'amener le prototype à un produit mature. Notamment au niveau de l'acquisition, la

compression, la paquetisation, la synchronisation et le rendu des données multimédia.

D'autres défis se situent au niveau de la représentation, la réservation et l'acquisition

u
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0
de ressources dans les systèmes d'exploitation et les équipements de réseautique afin

de concrétiser le concept du chemin bout-en-bout.

La structure de l'ouvrage se présente comme suit:

Après une brève introduction décrivant le contexte de notre travail, nos motivations et

les stratégies proposées, le deuxième chapitre traite des caractéristiques propres aux

applications multimedia. Plus précisément, nous tentons de classifer les différentes

variantes en plus d'en définir les caractéristiques propres.

En troisième lieu, nous passons en revue des concepts classiques reliés à la définition,

le support et la gestion de la qualité de services. Sur la même lancée, certaines

méthodes permettant de concrétiser les concepts precedents sont présentées. En plus

d'avoir fait l'objet de nombreux ouvrages, les algorithmes choisit sont couramment

implantés dans les équipements de télécommunication actuels.

Le chapiter 4 traite des travaux déjà réalisés dans le domaine de la qualité de service

et des supports qu'elle requiert. Nous présentons donc différentes architectures

développées par des groupes de recherche reconnus pour leurs expertises et savoir-

faire dans ce champ d'intérêts.

Nous voyons par la suite (chapitre 5) certains protocoles applicatifs ayant été définis

pour le support et le contrôle d'information multimédia. Plus précisément, les

protocoles RTP, RTCP et RTSP sont expliqués. Travaillant en relation étroite, ils

offrent plusieurs fonctionalités qui complètent et enrichissent les services actuels.

Le sixième volet de l'ouvrage engloble l'ensemble du matériel abordé jusqu'ici en

décrivant le standard H.323. Celui-ci est un plan détaillé qui spécifie le matériel et

les protocoles devant interagir afin de rendre possible le support d'audio et de video

dans des environnements qui n'offrent pas de qualité de service - typiquement

Internet. Depuis son adoption en 1998, H.323 s'est imposé comme référence dans le

développement de systèmes interopérables.
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Notre architecture, décrite dans le chapitre 7, est également basée sur le standard

H.323. Nous ajoutons à la norme plusieurs modules qui introduisent de nouveaux

services. Les nouvelles fonctionalités se situent au niveau de la définition, la

declaration et le traitement des paramètres de qualité de service. Nous ajoutons

également des moyens permettant de mesurer le niveau de service donné par un

réseau ainsi que des mécanismes pour s'y adapter. Afin de maximiser les

performances de transfert, la couche "transport" de notre modèle fût enrichie

d'interfaces capables d'interagir avec plusieurs modes de commutation

simultanément.

u

La réalisation d'un prototype est décrite dans le chapitre 8. On y voit comment les

solutions proposées travaillent, l'efficacité des algorithmes d'adaptation et certaines

interfaces de manipulation. Malgré plusieurs einbûches d'ordre technique, la plupart

des défis reliés à la gestion de la QdS de bas niveau ont été réalisés avec succès.

Nous terminons le travail en donnant une liste de nos réalisations ainsi que l'apport

qui s'en suit. Des indications générales quant à l'avenir du projet et des idées de

travail futur sont également mentionnées.
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0 Abstract:

Unlike other technologies such as ATM or ISDN, IP networks don't offer
provisioning mechanisms to meet real-time requirements introduced by multimedia
content.

Today's applications need guaranteed end-to-end service classes - namely QoS -
capable of coping with time constraints required by delayed sensitive data streaming.
In network equipment, the above services are modelled by preferential packet
treatment to enhance rate forwarding and reduce packet queueing to a minimum. As
for end-systems, they translate in a set of mechanisms to declare, reserve and control
quality parameters.

In this work, QoS is motivated by the need of distant learning and implies the
distribution of time sensitive data on networks that cannot provide information
concerning their status and offered services. More precisely, we give details about
functionalities added to the H.323 standard to support user defined QoS
specifications.

The intention of designing such architecture is to establish a set of quality of service
configurable interfaces that formalize quality of service in the end-system and
network, providing a framework for the integration of QoS control and management
mechanisms. Finally, we add our personal flavor by enabling the stack with several
network interfaces capable of seamlessly dealing with a variety of network layer
technologies.

Key words: Quality of services, real-time requirements, media streaming, QoS
Architecture.
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AAL: ATM Application Layer.

AAL5 : ATM Application Layer version 5.

AF: Assured Forwarding.

API: Application Programming Interface.

A/V: Audio and Video.

ATM: Asynchronous Transfer Mode.

CODEC : Coder / Decoder.

DCT: Discrete Cosine Transform.

DiffServ: Differentiated Services Architecture.

DMA: Distributed Multlimedia Application.

DMS-CC: Digital Media Storage - Command and Control.

DS: Differentiated Services.

EF: Expidited Forwarding.

FIFO: First in. First out.

HDTV: High Definition Television.

HTTP: HyperText Transfer Protocol.

IETF: Internet Engineering Task Force.

InstServ: Integrated Services Architecture.

IP: Internet Protocol.

Ipv4: Internet Protocol version 4.

Ipv6: Internet Protocol version 6.

ISDN: Integrated Service Digital Network.

ISP: Internet Service Provider.

ITU: International Teleconferencing Union.

LAN: Local Area Network.

LDAP: Lightweigh Directory Access Protocol.

LDP: Label Distribution Protocol.

MCU: Multipoint Control Unit.

MM: Multimedia.
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MSC: Message Sequential Chart.

NTP: Network Time Protocol.

OS: Operating System.

OSI: Open System Interconnection.

PDU: Protocol Data Unit.

PHB: Per-Hop-Behavior.

POTS : Plain Old Telephone S ystem.

PVC: Pennanent Virtual Circuit.

QoS: Quality of Service.

RAS: Registration/Admission/Status.

RFC: Request For Comments.

RSVP: ReSerVation Protocol.

RTCP: Real-Time Control Protocol.

RTP: Real-Time Transport Protocol.

RTSP: Real-Time Streaming Protocol.

RTT: Round Trip Time.
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n 1 - Introduction:

1.1 -Overview:

For more than two decades now, computers have exchanged different kinds of

information by making use of network infrastructure. In the early beginning,

researchers scattered among research institutes were the first beneficiaries. Since

then, many efforts have been made to open computer networking services to a

broader range of users. Ongoing improvement of the available bandwith, the

introduction of efficient transfer protocols and the stumbling of computer prices are

all factors that contributed to exponentially increase the amount of interconnected

people.

Surprisingly enough, one of the oldest network protocol not only survived the

evolution wave but also established itself as the foundation of the most popular

network switching scheme in use today. IP, the Internet Protocol, is the enabling

technology governing the Internet, a giant cloud of connected network all speaking

the same common language as defined by the IP standard protocol.

Throughout the years, several factors have kept IP on top of networking technologies.

Among them, its flexibility, reliability and efficiency in transporting documents

among distributed sites were particularly appreciated. In fact, IP was among the first

protocol to be defined and since it provided so much functionality, people simply

continued to use it.

With the advent of available bandwidth and network connectivity, more and more

users became acquainted with network services. Nowadays, the Internet is a

communication tool used for an infinite number of purposes. Entertainment,

advertisement and distributed work are valid examples. The services demanded by

the ever-growing community of users has not only increased, but also changed.

Indeed, it is now familiar to encounter live media broadcast, animation and

interactive environment on the Internet.
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0 1.2 - Problem Description:

The nature of the above-mentioned services varies significantly from the

former and more conventional static data exchanges. In fact, they pause severe

network constraints that were initially not part of the requirements and information

transfers suffer therefore from various transition hazards.

When static content is sent from one host to another, it is desirable for data to reach

its destination as soon as possible. Nevertheless, moderately long end-to-end delays,

up to tens of seconds, are often tolerated. On the other hand, audio and video content

are highly sensitive to delay introduced by the best-effort service offered by IP'S

switching scheme. They are also tolerant to loss; occasional packet dropping causes

minor glitches in the audio/video playback, and can often be partially or fully

concealed by interpolation algorithms. Thus, in terms of service requirements,

streaming applications are the opposite of static-content applications: multimedia

applications are delay sensitive and loss tolerant whereas static-content applications

are delay tolerant and loss intolerant [53].

In today's world of network interconnection, the paradigm of 'Quality of Service'

(QoS) is becoming the ultimate goal. QoS is the enabling factor for time sensitive

information distribution - audio, video, and real-time data - over IP networks. This

notion had been used with various meanings, though we take it in the context of

multimedia application where the following definition can be applied: " The quality

of service represents the set of those quantitative and qualitative characteristics of a

distributed multimedia system necessary to achieve the required functionality of an

application" [91].

u

Defining QoS is a challenging task since its characteristics and the pertaining services

significantly change with the context in which it is used. Moreover, understanding

and manipulating the wide range of description parameters is often too difficult for

unacquainted users. The latter are usually more interested in the services yielded by

an application and thus are less concerned with complex environment settings.
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n Incorporating the concept of QoS in actual IP networks basically means that core-

switching equipment must be capable of differentiating data packets to provide faster

treatments. Moreover, streaming applications must request and reserve sufficient

amounts of resources in the system to guarantee that real-time processes will be

serviced in accordance with their time requirements. The latter two form an end-to-

end guaranteed path, from application-to-application, that is capable of assuring flow

service from the remoter server, in the network, to the intended client(s). This end-to-

end path must also follow a common representation to enable equipment and

applications developed by different vendors to efficiently communicate and work

together.

Finally, sustaining realistic QoS is hardly achievable with a single network

technology. Indeed, each switching scheme (ATM, IP, cell relay, etc.) offers

different service possibilities that may not be found in other networks. Such

possibilities are affected by the underlying network technology, the type of

connection (connection oriented or not), the available bandwith and the operating

costs. Nowadays, many new technologies are available to users at affordable prices,

but little - or nothing - has been done to incorporate them in a single and easy-to-use

platform.

The above paragraphs depict the problems addressed in this thesis: 1) the difficult

task of defining, specifying and manipulating QoS parameters, 2) a lack of

standardization to properly specify QoS requirements among vendors, and 3) the

absence of support for multiple network interfaces to take full advantage of available

network technologies.

u

1.3 - Goals and Motivations:

Researchers around the world envisioned the situation and began to think

about ways to enable realistic media streaming over ff*. To this date, considerable

achievements have been made and several prototypes proved the concept feasible.
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0 Nevertheless, the suggested solutions are generally incomplete in a number of ways.

Most are tied to restrictive evolution contexts in which bold assumptions are made -

some not even applicable to an IP based network. They lack mechanisms to define,

control and support QoS parameters and sometimes rely on network protocols to

guarantee their services. Finally, an overall framework is needed to develop

architectures to build upon and offer media streaming among different vendors.

In this work, QoS is motivated by the need of distant learning and implies the

distribution of time sensitive data for networks that cannot provide information

concerning their status and offered services. The usual network that refers to such a

characteristic is governed by the Internet protocol. Our goal is to produce a platform

capable of sustaining real time requirements for distant learning medical applications.

To solve the constraints added by heavy-streamed media on IP and promote tool

interoperability, in 1998 the ITU approved the ITU approved the H.323 protocol

stack - an open framework that guides implementers in their design choices. The

goal of our work is to produce an architecture that is both compliant to H.323 and

capable of offering user specific QoS. The intention of defining such architecture is

to establish a set of quality of service configurable interfaces that formalize quality of

service in the end-system and network, providing a framework for the integration of

QoS control and management. Finally, we add our personal uavor by enabling the

stack with several network interfaces capable of seamlessly dealing with a variety of

network layer technologies.

1.4 - Organization of the Work:

To correctly address the challenges related to the implementation of QoS in

multimedia applications, a myriad of topics must be reviewed and understood. In this

context, the actual document is organized as follows.
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0 Our quest starts in chapter 2 where multimedia applications are presented. More

precisely, they are classified in accordance with their characteristics and the context

in which they work. Since they deal with highly sensitive content (audio and video),

a list of requirements guaranteeing optimum results is presented along with a

description of how they affect ongoing presentations.

In chapter 3, general mandatory concepts believed to enable QoS provisioning in IP

networks are listed. Such concepts are commonly encountered in work involving

QoS implementation and have proven to be useful starters in many realizations.

Directly after, we introduce different implementation techniques that reproduce the

behaviors described in the above. Basically, they are scheduling algorithms for core

network equipment and traffic modeling for How shaping in end-system platforms. It

closes with QoS management activities that provide interfaces for administrating

flows and sustaining requirements throughout the data path.

Chapter 4 concentrates on end-systems. End-systems are usually called distributed

multimedia applications since they support media streaming and work in

heterogeneous environments connected by multiple network technologies. The

chapter describes the essence of existing multimedia applications developed by

leading universities renowned for their work in the support of time sensitive flows

over network links. The most successful projects are presented along with an

assessment of their pros, cons and feasibility.

0

Chapter 5 presents a set of protocol enabling standard distribution and manipulation

of media streams. More precisely, RTP (Real-time Transport Protocol) provides a

common way to encapsulate media information in data packets to be sent on the

network. Its companion control protocol, RTCP (Real-time Transport Control

Protocol), allows application level monitoring of the data delivery, a feature not

provided by IP. It also conveys minimal control and identification functionality.

Thirdly, the Real-time Streaming Protocol (RTSP) is briefly approached. The latter

serves to manipulate media stream with video-like commands, e.g. play/pause.
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0
Following (chapter 6) is the presentation of the H.323 protocol umbrella. It is a

flexible yet powerful specification covering several aspects of media distribution in

packet based network lacking the support of service specification - typically IP, but

other technologies such as Ethernet can apply. It addresses problems pertaining to

time constraints and network deficiencies by offering a mean for client application to

select parameters that are best suited for their environment. It also delivers a standard

set of technology requirements (codec, protocol, signaling) that insures common

understanding among all participants.

Chapter 7 and 8 are respectively concerned with the design and implementation of a

QoS aware protocol stack suitable for the support of media streaming for distant

learning applications. Our design choices are explained along with the assumptions

and tradeoffs that were made. Despite many conception hazards, a working prototype

has been realized, proving that our solutions are viable. We conclude by looking

back at our work, assessing achievements and problems encountered. Finally we

address future work required to bring the prototype to full implementation.

1.5 - Author's Contributions:

The project described in this thesis has been implemented by a joint effort from

the author and two other students - Jean-Marc Ng Wing Keng and Yong Guo.

Although each participant has contributed to all design aspects of the work, Jean-

Marc Ng Wing Keng and Yong Guo were respectively concerned with implementing

the multi-transport layer and the QoS definition and management. The author's

contributions mostly related to handling or imitating H.323 services and arc

specifically outlined in the following list. They correlate to aforementioned goals by

providing basic connection and protocol support to higher level applications and

other services needed by different modules of the architecture.

Design and implementation of a client module capable of working with the server
prototype.
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n Implementation, generation and management of RTP/RTCP simulation packets
whose base mnemonics has been taken from a third-party library.

Production of QoS information based on the reception of RTCP packets.

Design and implementation of a set of protocols imitating connection-specific
H.323 protocols.

Design and implementation of a global framework into which modules from
other collaborators were inserted.

Design and implementation of a messaging API allowing reliable, asynchronous
message exchanges between architecture components.

Design of the state machine allowing the introduction, manipulation and
departure of users in multimedia session.

All other H-323-related aspects such as protocol definition, media streaming and
connections specification, establishment and management.

0
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0 2 - Distributed Multimedia Applications:

All the concepts relating to QoS have one thing in common: They all pertain

to specific applications called Multimedia Applications. Nowadays, most arc

connected by network infrastructure and are thus referred to as Distributed

Multimedia Applications (DMA). The characteristics of these differ in many ways

from classical applications handling static data such as word processors, internet

browsers and presentation tools. In fact, they are so special that their design and the

environment in which they execute must be carefully planned to ensure successful
results.

The specific issues to consider when dealing with MM applications originate from the

type of content they usually manipulate, that is, audio and video. The latter are both

particularly sensitive to processing delays in the end application and network links,

while being relatively tolerant to packet loss. This is strikingly different from legacy

applications in terms of requirements: MM tools are delay sensitive and tolerant to

loss whereas static content applications are unaffected by delay but highly disturbed

by loss.

2.1 -Classifying Multimedia Applications:

Most MM applications can be classified in three groups that broadly

encompass all capabilities. These classes are presented below with a description and

some implementation examples [37,39,53].

0

2.1.1 - Broadcasting Applications:

As implied by the name, this type of application is similar to regular broadcast

of radio or video with the exception that signals are delivered over the Internet
instead of airwaves or copper wires. Similarly to television and radio, users can

browse between channels carrying unicast or multicast transmissions.
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The difficulty in building broadcasting applications relates to the important

throughput and minimum delay required. This is especially true with live broadcast

where acquisition, compression, delivery and rendering are made in real-time. When

acquired from a permanent storage, care must be taken to ensure that all equipment

on the data path is capable of sustaining the required time constraints. This is

particularly difficult since traditional file systems are characterized by slow seek time

and network links most likely congested. Nevertheless, successful implementations

of architectures and prototypes had proven the concept feasible. Such examples can

be found at Berkeley [1, 60,65], Lancaster [59] and Montreal [49].

2.1.2 - Media-On-Demand Applications:

Those can be seen as a subset of the broadcasting applications depicted above.

In the same way, they are used to retrieve media files from a remote host. The

distinction lies in the following aspects: 1) they do not support live broadcast, 2)

unless it is multicast enabled, they don't support large audience screening and 3) they

are mostly used for working or learning.

With this class of application, a client requests on-demand media files stored on

servers and after a small delay (within ten seconds), the playback begins on the

client's machine while it continues to arrive. Interactivity is also a common feature

that allows one to temporally alter media states, e.g., play/pause/rcsume.

Since they don't have to deal with hard real-time requirements, media-on-demand

applications impose less stringent demands in terms of delay and jitters and are

therefore easier to build. As such, several commercial applications are available

including RealPlayer from RealNetworks [71], NetShow from Microsoft [61] and

Internet Wave from Vocaltec [90].
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0 2.1.3 - Cooperative Work Tools:

Cooperative work tools are by far the most complex and difficult applications

to build. This is caused by the amount of requirements and the functionality needed

to allow several people to collaborate in real-time over network links. Examples of

such applications include tele-conferencing, tele-education, tele-commuting, and

remote medical systems [37]. These kind of distributed meetings also permit one to

share documents, manage sessions, do floor control, support audio/video streams and

synchronize participants to ensure peaceful workflow.

Most cooperative work tools gather both the functionality of broadcasting and media-

on-demand applications, in addition to other utilities such as whiteboards, shared

presentation and remote appliance control. The available tools are not usually capable

of fulfilling all requirements and custom parts and modules must therefore be added.

The most popular cooperative application on the market today is definitively

NetMeeting by Microsoft [61]. This popularity stems from the fact that it's very

functional and relatively simple to use, although not ready for extensive traffic and

still under Microsoft's ruling servers. Other applications were produced in the

academic and scientific communities. Some examples of successful projects are the

JVTOS (Joint Viewing and Tele-Operation Service) [27,36], the Upper Atmospheric

Research Collaboratory [68] and the Collaborative Remote Observing at W.M Keck

Observatory [50].

2.2 - Multimedia Application Requirements:

In this sub-section, we take a look at some general requirements needed by

multimedia applications. Here, we make no discrimination about the class to which

an application belongs since the following are believed to be relevant to all three

classes. Even if the discussion tends to be generic, we focus on requirements that can

sustain media, playback.
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As stressed before, the handling of audio, video and real-time data transfer is

significantly different from classic data content and affects both the communication

links and the end-points in terms of throughput, time constraints, service

commitments and group communication [3,20,75].

Media

Uncompressed CD-quality
audio

Avs. bit rate

100-200 Kbit/s

Uncompressed standard-
quality video

140 Mbit/s

Uncompressed high
definition HDTV

1.2Gbit/s

2.2.1 -High Throughput:

Handling MM files introduces an incredible amount of data to be supported

and managed by underlying network systems (Table 2.1). The bandwidth needed for

video transmission ranges from p x 64

Kbit/s - with p taking the value of 1 to

30 for ISDN channels -to 1.2 Gbits

for High Definition TV (HDTV)

[56,88]. Data rates are usually reduced

by compression algorithms bringing
Table 2. l : Average data rates of some media [35].

less flexibility, increased image

degradation and augmented latency. Even with the actual compression standards,

audio and video streaming still take a heavy toll on networks and platforms. Unless

high-speed networks and real-time operating systems are available, realistic media

streaming is not feasible.

Compressed HDTV
MPEG video

128 Mbit/s

2Mbit/s

0

Today's MM applications working over IP networks typically use the H. 261 and

H. 263 codecs, whose lowest bit rates are respectively 64 Kbit/s and 20 Kbit/s [21].

2.2.2 - Time Constraints:

Media streams are closely related to temporal dimensions resulting in a set of

synchronization requirement [39] mapped in three categories: stream synchronization,

event synchronization and group synchronization.
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Stream synchronization:

Stream synchronization deals with delays and jitters introduced between the

segmentation of the signal at the origin and its reconstruction on the client's machine.

In agreement with Hafid [37,39] and Kurose [53], two kinds of stream

synchronization exist (Figure 2.2):

Synchronizadon
entities

monitor Decoder 1

Inter-stream sync.
\

speaker Decoder 2

Intra-stream sync. protocol i

Protocol

entity
Network Network

l2

\

Server workstation 1

Protocol

entity
File

system

/

Server workstation 2

Client workstation

Protocol
entity

Network

4
Network

3
Protocol

entity
File

system

Intra-stream sync. protocol

Figure 2.2: Inter/Intra stream sync. [52].

Intra-Stream Synchronization: This is to guarantee an upper liinit on the

acceptable delay that any data will experience. If this upper bound is passed

beyond a set point, the information becomes useless. Each step between the

media generation on the server's machine and the presentation at the client side

contributes to a fraction of the total delay.

Inter-Stream Synchronization: Sometimes related streams are sent over networks

in separate flows. We assume that prior to their separation, streams were

synchronized and thus need to be re-synchronized when played at the other end.

Event Synchronization:

Many kinds of events can occur in a MM application. Depending on their nature, they

inform the system that the network state had changed, that someone joined or left a

group, that the state of a stream had been modified, etc. They induce severe

constraints since each time such events happen, proper actions must be taken while

still guaranteeing ongoing services.
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Group Synchronization:

Group synchronization deals with the concept that everyone participating in a session

must see the same thing. All members of a group must therefore have the same view

of shared windows at virtually the same time. This is especially important for

applications concerned with interactions between several users who may receive the

same media stream at the same moment. Group synchronization must be supported

by an important range of applications such as teleconferencing systems and

collaboration tools [37].

2.2.3 - Service Commitments:

It was said earlier that MM streams have service requirements well above the

more conventional static data. This means that all equipment along the data path,

server and client machines included, must be capable of reserving and sustaining a

pre-established service to avoid delays, jitters and packet loss.

The problem is to know exactly, at all times, what resources are committed and how

much can be given to accommodate a maximum amount of clients with as many

guarantees as possible. Resource allocation is difficult to achieve because it requires

the handling of a call request that states future service requirements. Even when such

service is available, it is still problematic to keep track of all accepted connections

since memory and physical storage are limited.

u

2.2.4 - Group Communication:

Two things must be considered when talking about group communication.

First, how participants communicate when working in the same group and secondly,

how media stream reach the intended users. In the former case, different network

topologies can be established to allow participants to talk to any of the other peers

[83]. High point-to-point or multipoint connections must therefore be created to

13.



0
service the (n! x(n - 1)!) 2! possible links - where n is the number of participants.

For very large groups, point-to-point link management becomes too heavy and other

group communication mechanisms like sub-groups and multicast addresses must be

used.

In the second case (reaching participants), stream broadcasting with a multicast

enabled network is more efficient than traditional unicast - but most people are still

connected by the fourth version of IP, which doesn't offer such a feature. Therefore,

we still face a scalability problem in point-to-point connections for larger

applications. Multicast networks like Ipv6 have been designed with this exact idea in

mind [30, 51]. Instead of establishing one link per media, groups are maintained in

network routers responsible for the replication of media packets. Servers are thus

relieved from the expensive duplication overhead.

Although convenient from a scalability point of view, multicast networks also bring

their share of burdens. This is the case when clients having different processing

powers share the same stream. In this situation, multilayered media streams must be

used to accommodate both fast and slow machines [62, 69, 82].

2.3-Summary:

The past section gave an insight about distributed multimedia applications and

their characteristics. We began by classifying them into three broad classes generally

encompassing the available implementations. Applications belonging to the third

class, the cooperative work tools, are particularly difficult to implement due to the

enormous amount of specifications and interacting technologies. Nevertheless,

successful implementations had proved the concept feasible and brought interesting

results to their users.

0

Secondly, we looked at MM application requirements and outlined the fact that they
significantly differ from conventional designs. High throughput, restrictive time
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0 constraints, service commitment and group communication are all aspects to address

when designing streaming tools.

The next section tackles the problem of differentiating time sensitive from non-time

sensitive packets in core network equipment. Favouring media packets is especially

important since it reduces delays and latency in the end-to-end path. To this date,

several propositions have been envisioned to replace IP'S best-effort model that is not

capable of such differentiation.

0
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0 3 - QoS Principles for Packet Switched Network:

The support of QoS classes is cmcial to differentiate audio and video packets

from non-real time packets in network equipment. It is well known and understood

that multimedia applications need QoS that goes beyond the original best effort

service offered by the Internet. But it is very difficult to provide QoS on IP networks

since the original architecture was not designed to support real-time constraints. The

following constitute the basic knowledge required to understand and implement

packet differentiation (hence, QoS) in IP. This introductory material is currently used

by governing QoS standards and will be referred to in later sections of this work.

The concepts explained in this section are widely used in telecommunication

networks as means to regulate packet forwarding. IntServ [9,10,96,97], DiffServ

[6,41,48] andMPLS [2,14,43,72] are commonly known as leading switching scheme

enabling packet differentiation, therefore implementing different classes of service.

3.1 - Four Principles for Providing QoS Support:

QoS is not easy to sustain in IP networks. Since its beginning, designers have

foreseen the need for several classes of service. At the time, the ToS (Type of

Service) field of the IP packet was supposed to serve the purpose of packet service

identifier. The intentions were never carried to full implementation. Today, ISP

(Internet Service Providers) are desperately trying to establish ways to offer

guaranteed services to their customers. This effort led to multiple ideas and

mechanisms that are still being discussed in standard boardroom meetings. Four

principles are presently widely accepted as foundation rules for future QoS

provisioning [53]. Their implementation is underway in several standards that were,

or will be issued. Each is briefly presented below. In upcoming sections, we'll see

how they are put to work in current network services.
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Packet marking and policing: This is directly taken from the original approach

envisioned by IP designers and allows packets to be distinguished among different

classes of traffic. That way, proper processing can be made in network gateways and

core systems. In gateways, packets can be modeled to shape the network

transmission scheme. In the core, networking equipment can use a packet's tag for

easier handling and more precise QoS delivery. But packet marking itself will not

guarantee service provisioning. Handling mles, known as policies, must also be set in

order for routers to distinguish packets and treat them differently. The marking itself

is relatively feasible through software upgrades. On the other hand, policy

establishment must be agreed amongst all network providers and equipment vendors.

Traffic isolation: Traffic isolation is mainly useful to guard streams against each

other's behavior. In some cases, applications' bit rate may not respect the pre-

established bandwidth consummation contract and therefore cause starvation to other

Hows going through the same node. Isolated Hows are constrained to a specific bit

rate than can't be trespassed. Rate bounding is achieved with scheduling algorithms

at network access points and routers. When contract violation occurs, packets can be

delayed or dropped, depending on policy mles.

Maximum resource utilization: The strictness of traffic isolation can also lead to

resource waste. Once allocated a link, applications can only use granted bandwidth

and therefore cannot work with a bandwidth that is allocated to other applications, but

not currently used. It is desirable to optimize bandwidth utilization, allowing one

flow to use another flow's unused bandwidth at any given moment.

0

Call admission: Call admission is especially hard to achieve in IP since the base

architecture is built on a connectionless, packet switching scheme. Unlike ATM,

whose adaptation layers can be configured to model a virtual circuit, IP'S architecture

can't support end-to-end virtual channels. The basic idea behind call admission is to

send a notification message carrying QoS information before exchanging binary

content. Once granted, applications are guaranteed that network resources are
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sufficient enough to accommodate their needs. If resources are insufficient, the call is

blocked and returned to the sender with an error mention. Call admission is very

difficult to implement because it requires severe changes in networking equipment.

With the above presentation in mind, we now look at practical methods used to

materialize these concepts - both in core network equipment and end-systems.

3.2 - Scheduling and Policing Mechanisms:

Scheduling and policing are very important for QoS specification and

implementation. The former is a guideline for packet handling at entry points while

the latter explicitly controls the way packets are exchanged in the network. One

might think that both disciplines are only relevant in router design and network

management. However, they are also useful in controlling the output of an

application and in performing call admission control at network ingress - two

activities directly related with the implementation of the aforementioned QoS

principles.

Here, we present the algorithms that are used by Cisco Systems [19,70] in their

network equipment. Most of the algorithmic complexity is kept silent since our goal

is not to compare them, but to get a general understanding.

3.2.1 -Scheduling:

The most simple and known scheduling model is the classic FIFO queue,

where arriving packets are stored in a waiting area when transmission devices are

busy with other packets. When the waiting area becomes full, packets are dropped in

accordance with the packet discarding policy [53]. FIFO selects packets for

transmission in the same order that they arrive at the input link queue. Although very

simple and easy to implement, FIFO does not offer much in terms of QoS. It doesn't

(.
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support any priority requirements and no guarantees can be made on packet delivery

when congestion is high.

Because FIFO was simple, communication companies were not ready to let it go

easily. To improve efficiency and provide QoS support, they simply added multiple

waiting areas: The priority queueing. Each area is targeted to a service requirement.

Packet storing is based on the priority class marked in the packet header. When

choosing a packet for transmission, the queueing algorithms will transmit packets

from the highest priority class that is not empty. The choice among packets in the

same class is done in a FIFO manner. The problem with priority queueing is that if a

stream associated to a high priority takes all the processing capabilities of the

equipment, packets in other waiting areas will suffer from service degradation.

The Round Robin queueing

architecture addresses the classil

above deficiency by forcing

a rotation among waiting

queues. Both models are the

same, except for the

selection of the packet to be

transmitted.

w.
l

link

^

—^ \N.
2

departures
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Figure 3.1: Weighted Fair
Queueing.
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From all algorithms, the

Weighted Fair queueing (WFQ) [19,87] seems to be the most adequate. It provides

fair bandwidth allocation to all network traffic by mixing several properties of the

above algorithms. Figure 3.1 shows the architecture. First, packets are classified in

queues in accordance with their priority tag. As with the round robin queueing, each

class is served with different amount of attention. WFQ differs in that each class may

receive a different amount of service in any interval of time. More precisely, each

class Wi is assigned a weight that has the proportion of Wi/CLWj), where the

denominator is the summation of all weights associated to each class. The service
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offered to each queue is directly related to its weight. In the worst case, even if all

waiting areas have queued packets, the service will always be honored. This is of

prime importance since it allows one to exactly predict the worst time that packets

will wait at a node. WFQ plays a central role in QoS architectures and is widely

implemented in today's router product.

3.2.2 - Policing:

Policing is one of the cornerstones of any QoS architecture. It is a mechanism

for regulating the bit rate that an application is allowed to inject in the network.

Many aspects of a data flow can be policed. Three of the most common are the

Average rate, the Peak rate and the Burst size. The latter, which is probably the only

one that needs clarification, refers to the maximum number of packets that can be sent

into the network over an extremely short period of time.

The simplest policing algorithm that encompasses the above mentioned aspects is the

Leaky Bucket [11,83]. It consists of a bucket that can hold a defined number of b

tokens (see figure 3.2). Tokens are always added at a constant rate, let's say r. When

the bucket is full, no tokens are added. Before sending a packet, the application must

remove one token from the token jar. If it's empty, the application must wait for a

new token to be generated. Thus, the token generation rate serves to limit the number

of packets that will be sent.

Combining the Leaky Bucket and the Weighted Fair Queueing gives a provable

maximum delay that packets will experience in a queue. At first sight, aggregating

both methods may seem troublesome, but no simple solution exists to predict packet

delays, especially in IP networks. The last statement is sustained by a number of

articles addressing the subject of statistical analysis for approximating delays and

jitters [26,52,70]. A very good discussion on the suitability of various approaches for

multimedia applications can also be found in [35].

(J
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Figure 3.2: The leaky bucket.

It is important to outline that the

selection of the above algorithms for
bucket holds up to

b tokens QoS implementation is closely tied

with the content to be carried.

Today's routers and interfaces can be

configured to model different types

of queueing. When working in a

proprietary network, users can easily

select and tune their equipment for

-I» to
network

maximum results. The task of offering the same services when crossing network

boundaries is far more difficult. In fact, no assurance or guarantees can be made on

the choice of scheduling and policing algorithms that are effective in foreign

installations. This is especially obvious in the Internet, since it is an interconnection

of networks. Therefore, complex mechanisms are necessary to announce and map the

needed services across networks. Clean interoperability can only be achieved

through standard protocols and QoS architectures. Due to the number and variability

of requirements to address, defining such standards causes serious difficulties.

3.3 - QoS Management Activities:

QoS management ensures that user requirements will be satisfied by their ISP

(Internet Service Provider). They can be defined as a set of activities that permit the

support, by the Internet service provider, of a desired QoS. When the ISP commits to

a requested service, the system must monitor the delivered QoS and take meaningful

actions when the established conventions cannot be supported. Depending on the

MM application capacities, three actions can be performed: the connection is shut

down, the bit rate is adapted to network capacities, or a contract re-negotiation is

started.

u
Service contracts are based on three generic classes of service that encompass all the

desired requirements, regardless of their specific characteristics. The deterministic
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class [31] offers hard real-time, mathematically provable bounds on delays in the

end-to-end path. The predictive class [20] is better suited for soft real-time

requirements, where time constraints are important, but at a lower level then the

previous class. Perdictive services provide guarantees that will fail when the network

state becomes too restrictive. Finally, the best effort class doesn't make any

guarantees about the service to be offered. This means that no matter how important

you are and how much money you have, your packets will have to wait in the queues

of network routers - typically, this is the case with IP.

Based on the contract that a client has with its ISP, the management functions

(activities) to perform are: QoS mapping, admission control, resource reservation,

QoS monitoring, QoS adaptation, QoS accounting and QoS policing [39]. Each is

brieûy depicted below.

3.3.1 - QoS mapping:

The primary role of QoS mapping is to translate service requirements issued

by users into meaningful, quantifiable network parameters for ISPs. This step is

important since application users understand QoS parameters in qualitative ways that

are sometimes far from network metric parameters. For example, the network

provider cannot manage the frame rate of an application, but is well aware of the

throughput parameter in bits per second. In his work, Hafid [39] defines three types

of mapping: Q,oS layer mapping, which formalizes qualitative parameters as they

descend the protocol stack, Q,oS resource mapping to derive the amount of resources

required to support the requested QoS and QoS system mapping that tunes system

components (both hardware and software) like synthesizers and image processing

device.

u

Most likely, the result of a mapping process will not accurately reflect the genuine

requirements since the number of network parameters are far smaller than the client's

qualitative choices.
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3.3.2 - Admission Control:

Once formalized, users' QoS parameters are submitted to the admission

control procedure that verifies if the requested services can be accepted given the

current system load and resource availability. The decision to accept an incoming

request is based on the scheduling mechanisms, the characteristics of the data traffic

to accommodate and the committed resources. An example of such a process is the

classic algorithm found in [57] where a set of m periodic task with processing time pi

and periods of r;, for 1 ^ i ^ m, is acceptable if Z ;=/ (pi-ti ) ^ï, with ^ = ?; + p,

where rf, indicates the deadline for task ;'.

•.,

3.3.3 - Resource Reservation:

Resource reservation is the step where user requested resources are fetched

from network and system equipment. At this point, the admission control process has

agreed to accept the newly requested call and thus ensures that QoS can be

maintained throughout the end-to-end path. The reservations are made with a

signaling call that carries QoS specifications. Reservations can be made in hard state

or soft state. Hard state means that once accepted, a call can only be torn down by a

release message whereas in soft state, hosts must periodically refresh the reservation

by sending other reservation messages [10,45,52,96].

u

3.3.4 - QoS Monitoring:

Monitoring plays a very important part in the support of QoS since it informs

the system about the current state of the network. It can therefore ask the system to

take meaningful actions when quality parameters are shattered. QoS monitoring

involves network measurement procedures accounting for parameters such as the

number of packet loss, delay and throughput. Such measures must be made available
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through a network layers protocol such as ATM's management cells or ST-H's

feedback mechanism, a functionality that is not provided by IP.

3.3.5 - OoS Adaptation:

When the monitoring activity detects a QoS violation, manipulation on flow

characteristics must be made to maintain the agreed contract. QoS adaptation must

be capable of handling graceful degradation, reacting adaptively to changes in the

environment. The goal is to keep providing the service even if it implies a decrease

in quality. Three different techniques are mainly used: interpolation of the missing

data caused by packet dropping, dynamic compression techniques that manipulate

quantization ratios to reduce the bit rate [34,56,94], and scalable coding [69,87] that

decodes an incoming stream based on the different quality levels of the latter and the

processing capabilities of the receiving peer.

3.3.6- QoS Accounting:

QoS accounting is concerned with charging users for whatever resources

they're using. It is a key activity since without cost constraints, users would ask for

the best QoS available, and thus increase the blocking probability of the system since

resources are finite. Accounting is only feasible if communication amongst parties

resides in the same network. Otherwise, it is impossible to account for all the billing

possibilities caused by network interworking. Up to now and to the best of our

knowledge, no proposal has been made to compute and charge for distributed

resource usage.

0

3.3.7- QoS Policing:

Policing is most likely to be made at the ingress of a network, where user

traffic is entering the cloud of nodes. It ensures that an application's bit rate does not

go beyond the agreed contract, maliciously or not. This activity prevents sources

from affecting each other and thus determinant for ensuring QoS. When an
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application misbehaves, actions such as packet dropping, user notification, and cost

increases can be taken to address the situation. The choice about which action to

perform is entirely left to the service provider.

3.4-Summary:

In this section, we acknowledged the fact that special care must be taken when

trying to implement multimedia applications in packet switched networks that are not

offering service classes for packet differentiation.

We first saw four basic principles widely recognized as a foundation for providing

service classes in IP. Packet marking, traffic isolation, maximum resource utilization

and call admission control are the first steps toward QoS implementation. They can

be made in core network equipment (traffic isolation, maximum resource utilization)

or end-system application (packet marking, call admission control), depending on the

expected behavior.

The second part showed some of the enabling algorithms to concretize the above

mentioned principles. The key concept to remember is that aggregating the Weighted

Fair Queuing scheduling algorithm with the Leaky Bucket policing method ensures a

firm, mathematically provable bound on delays that packets will experience in

network switching equipment. Such information is then used by admission control

procedures to accept or deny an incoming flow.

We finally had a look at management activities, namely QoS management, that

manipulate the characteristics of a stream to model the state of the network. QoS

management is responsible for adapting to service variations by gracefully decreasing

the perceived quality of a connection. It should also deal with service accounting and

billing.

u
In the next section, we concentrate on the end-points of the end-to-end concept.

More precisely, a special type of application that supports real-time constraints to
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enable the processing of audio and video over networked links is presented. Such

application is advantageous in activities like distant learning, entertainment and

distributed cooperative work.

u

26



0 4 - Existing Architectures for MM Applications:

4.1 - Existing Architectures for Multimedia Applications:

A Quality of service architecture (QoS architecture) is the gathering of several

blocks providing support for MM applications. The goal of a QoS architecture is to

define a set of configurable class of services formalizing QoS parameters in the end-

system and network, while providing QoS control management and mechanisms

[4,26].

The present sub-section provides an overview of actual QoS architectures meeting

real-time requirements. Most provide support for the entire distributed system,

therefore encompassing both end-systems and network aspects of the QoS. Although

proving that QoS in packet switched networks is possible, they sometimes make

restrictive assumptions and important tradeoffs that jeopardize their suitability for

generic purposes.

4.1.1- IBM'S Heidelberg QoS Platform:

A comprehensive QoS model that provides guarantees in both end-systems

and networks had been developed at IBM'S European Networking Center in

Heidelberg [92].

As depicted in figure 4.1, the communication architecture relies on a

continuous media transport system (HieTS/TP) [4,40] that provides QoS mapping

and scaling. The network layer of the stack is based on ST-II, a protocol that

supports guaranteed and statistical levels of service. The network layer also supports

QoS-based routing and filtering through a QoS finder algorithm.

0
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The administration of end-system

resources is handled by the resource

administration module [40]. The latter is

mainly concerned with QoS negotiation,

calculation, admission control, network

adaptation and resource scheduling. The

model was design to serve QoS demands

coming from users working over

heterogeneous networks in multicast

groups. The adaptivity to network

fluctuation is supported by filtering and
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Figure 4.1 : The Heidelberg QoS Model.

scaling techniques [25] - filtering alters the stream at network ingress whereas

scaling matches the source with receivers' QoS capabilities in switches and routers.

4.1.2 - The Tenet Approach:

BIN

lsi i^ BS•

Figure 4.2 : The Tenet Real-Time
Protocol Suite [65].

The Tenet group at

University of California at Berkeley

[84] designed, implemented and

tested the first suite of protocols

supporting real-time channels. In

particular, these guarantee network

performance in terms of throughput,

delay, jitters, and reliability with

mathematicall provable performance

measures [5]. The protocol suite can

run on any packet switched network

and interoperate with the Internet

protocol suite.
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In essence, the Tenet architecture is simply a stack of protocols (figure 4.1) that

guarantees performance at all levels. If a layer is incapable of supporting some

performance bound, all the above layers will not guarantee that bound either. In all,

five protocols provide the desired functionality: the network layer real-time

Internetwork Protocol (RTIP); two transport layer protocols - the Real-Time Message

Transport Protocol (RMTP) and the Continuous Media Transport Protocol (CMTP)

[95]; the Real-Time Channel Administration Protocol (RCAP) for control functions

and finally; the Real-Time Control Message Protocol (RTCMP) to detect and recover

data transfer failures [32]. Figure 4.2 shows the placement of the protocols in the

Tenet stack and their equivalent in terms of Internet protocols.

4.1.3 - Lancaster's QoS-A:

The Quality of Service Architecture (QoS-A) developed at Lancaster

University integrates QoS that spans the entire end-to-end path and supports QoS

performances for a wide range of

applications [17]. Although retaining

the best effort model of IP as a special

case, QoS-A provides a new class of

services (hard and soft end-to-end

performance guarantees) through

ATM connections. These services

were designed to work with highly

dynamic environments and thus

provide facilities such as performance

monitoring, notification of QoS

degradation and QoS re-negotiation.

The architecture incorporates the

following notions: flows, which are related to the production, transmission and

consuming of single media stream with related QoS; service contracts, which are

binding agreements of service levels between users and providers; and flow

SSiSIBBSBSiëBSSII^U

IBIB —i

au• ®

811

Management
planes

Figure 4.3: Quality of Service Architecture.
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management, that provides the network monitoring and maintenance of the contracted

QoS level [8,15,16].

QoS-A is built upon other research projects taking place at Lancaster. More

precisely, the ATM infrastmcture and network interfaces were taken from

experimentations of a new class of AAL providing extra services uncommon to actual

standard specifications. Furthermore, resource management activities are based on

the Choms micro-kemel that provides scheduling and communication services for

continuous media applications [23].

4.2 - Comparison and Discussion:

The QoS architectures presented in section 4.1 are just a sampling of all the

work done in the quest for QoS support [4]. All the examples sustain MM

requirements through service provisioning made by a client, which is fundamental in

capturing application level QoS requirements. With careful examination of

individual architecture structures, it is relatively feasible to point out common and

diverging aspects.

In most of the work encountered in the literature (and also tme with the above cases),

the notion of QoS specification is made on a per-flow basis. This means that flows

are treated in accordance with their individual characteristics, without concern about

what might happen with other flows. In the same way, QoS violations occur on a

per-flow basis, regardless of how those violations are treated by the network and/or

end-point applications.

u

To have QoS specification and violation, two crucial assumptions must hold: First,

QoS specification must be communicated to stream handling devices through some

mechanisms. This is usually made with a set-up call, which is basically a message

that contains flow requirements used to calculate resource allocation throughout a

data path. Second, QoS violation can only be detected if network services can be
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monitored. The architectures presented earlier performed network monitoring by

using either ATM's management cells or a feedback-enable network protocol such as

ST-II.

Finally, all architectures somehow dealt with the concept of service agreement

specifying the QoS boundaries (the minimum and maximum level of service)

received by flows during transmission. Service agreements usually imply that

established connections are permanent and that network protocols are "connection

oriented".

On the other hand, obvious differences are observed in the type of low level

switching scheme. Comet, Tenet and QoS-A rely on ATM's signalling and hard state

characteristics to guarantee QoS specifications whereas IBM'S Heidelberg QoS

platform works with ST-II. The advantages offered by ATM's AAL5 application

layer makes it particularly attractive to sustain time-sensitive communications.

Indeed, connections are made "on-the-fly" and QoS specifications are easily modelled

into ATM's signalling call. ST-II is also a suitable contestant since it provides

network feedback with EP-like characteristics. Moreover, ST-H can easily work with

conventional IP switches since their header and packet formats are almost alike.

Since ST-II is just a network layer protocol, UDP, TCP and other IP-specific

protocols can be transported seamlessly.

Some differences between architectures are also noticeable when looking at the

signalling protocol used to issue the call set-up. When working with ATM, the

solution is trivial since each AAL has its own standard call. In the case of ST-EE or

other switching schemes, each architecture suggests a different call mechanism that

perfectly fits applications'needs.

0

The options and design choices made in the realization of the four projects are good,

valid and logical since they help reach the specified goal of sustaining application

level QoS. But these choices also cause tradeoffs that make the architectures either
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not adapted for today's networks or not feasible in terms of cost and technology

availability. Moreover, the number of differences and technologies involved make

interoperability almost impossible to achieve.

It is well accepted that ATM networks offer advantages in terms of throughput and

built-in QoS that go far beyond all other available network technology. But ATM is

very costly and therefore not accessible to the Internet community in general. Also,

POTS lines, which are still the main connection link between clients and their ISP,

are definitively not capable of sustaining ATM's lowest bit rate (1.5Mbits). As for

ST-II, lack of use and support by the industry made it disappear in a shadowy comer

of the FTU were it sits under several other experimental protocols waiting to be

reviewed for standardisation. This situation leaves us with no real suitable network

protocol that can be easily used on a large scale.

Other problems are caused by the specification of the required QoS parameters,

which differ from application to application. Divergences in their definition lead us

to call request incompatibilities that cannot be encompassed. Even if a consensus

about the latter is ever achieved, we'd still have to come up with an agreement on

media presentation and cope with interoperability problems in terms of network

infrastmcture and rendering platforms.

The above-mentioned challenges are simply caused by a lack of standardisation.

Standardisation is the only way that enables application interoperability over different

networks. Indeed, standard guidelines help application designers to build

components that can communicate with other systems coming from different vendors.

The mj envisioned this solution and issued the H.323 standard for MM support in IP

networks. Since its approval, legacy application projects as presented above (section

4.1.1 to 4.1.3) were abandoned in favour ofH.323 compliant systems.

u
H.323 is a standard for the presentation of MM content in packet switched networks.

It can deal with several network layer protocols and media-coding schemes through a
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set of conventions and protocols (more on H.323 in section 6). Unfortunately,

capability usually implies complexity, which is exactly the case with H.323.

Therefore, very few successful implementations have been built outside the industrial

community.

4.3 - Summary:

This section gave an insight about distributed multimedia applications and

their characteristics.

We first started by classifying them into three broad classes that generally

encompasses the available implementations. Applications belonging to the third

class, cooperative work tools, are particularly difficult to implement due to the

enormous amount of specifications and interacting technologies. Nevertheless,

successful implementations have proven the concept feasible and brought interesting

results to their users.

Secondly, we looked at MM application requirements and outlined the fact that they

significantly differ from conventional designs. High throughput, restrictive time

constraints, service commitment and group communication are all aspects to address

when designing streaming tools.

The third sub-section draws a close relation between MM application and their

supporting architecture, on which relies the burden of dealing and coping with

application layer requirements. To guarantee end-to-end QoS, architectures must

provision both network and end-system resources. To help grasp the concept, four

models developed by leading universities were presented, along with a resume of

their features and capabilities.

The next chapter describes the RTP and RTCP protocols. As outlined before, the IP

protocol doesn't provide feedback information. To address the deficiency, the above
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two application layer protocols were introduced. Along with feedback-added

capabilities, they were specifically designed to carry time sensitive data. Also

presented is the RTSP protocol - a text based protocol commonly used to control and

alter the state of media presentations.

u
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0 5 - Protocols for MM Applications:

We continue our quest for QoS and MM application implementation in IP

networks by presenting a set of protocols enabling standard distribution and

manipulation of media streams. Since the primary purpose of streaming media is to

reach as many people as possible, interoperability issues must be addressed.

Interoperability essentially relates to a common representation of some infonnation

among all participants, regardless of the tool one uses to manipulate the information.

Hereafter are presented three protocols promoting interoperability. RTP (Real-time

Transport Protocol) provides a common way to encapsulate media chunks in data

packets to be sent on the network. Its companion control protocol, RTCP (Real-time

Transport Control Protocol), allows monitoring of the data delivery in a manner

scalable to large multicast groups. It also provides minimal control and identification

functionality. Thirdly, the Real-time Streaming Protocol (RTSP) is briefly

approached. The latter serves to manipulate media streams with video-like

commands, e.g. play/pause.

5.1 - RTP/RTCP Explained:

5.1.1 -RTP Basics:

u

Since all media streams have a close relation with time, it is convenient to

have a packet format that represents time information in a standard way. Other

important aspects resulting from media packetization (the segmentation of a media bit

stream in a series of disjoint packets) could also benefit from a common

representation. The RTP protocol, defined in RFC 1889 [76] and RFC 1890 [77],

offers a standard packet structure that includes sequence numbers, timestamps,

payload identification, and synchronization information. Through these mechanisms

RTF provides end-to-end transport for real-time data over datagram network, a
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feature that made the protocol an important part of the IETF Internet telephony

architecture [80].

Although not making any

discrimination about the

transport protocol to be used,

RTF typically runs on top of

UDP (User Datagram

Protocol) [18]. Audio and

video chunks of media,

generated by the sending

side, are packaged in RTP

Application

RTF

UDF

IP

Data Link

Physical

Application

RTF

Socket Interface

UDF

IP

Data I.ink

Physical

Figure 5.1a: RTP viewed as
asub-layeroflayer3.

Figure 5.1b: RTP as part of
the application layer.

packets which are in turn encapsulated in UDP segments. Since RTP provides

services to multimedia applications (timestamps, sequence numbers, etc.), it can be

viewed as a sublayer of the transport layer (figure 5. la). From a developer's point of

view though, RTF is not included in the standard IP protocol stack and therefore not

part of the socket API (Application Programming Interface).

RTF packets are integrated at the application layer where developers must merge the

protocol with a media codec. The resulting packets are sent into a UDP socket

interface. Similarly, at the recipient side, RTP segments enter the application through

the UDP interface and thus, coded instmctions must be written to extract media

information from the packet (figure 5.1b). Taken from [58], the following list

summarizes some of its features.

u

l. RTP itself does not provide any mechanism to ensure timely delivery. It needs

support from lower protocols having control over end-to-end resources such as

RSVP for signalling and UDP for data transport.

2. RTP doesn't assume anything about the underlying network, except that it

provides framing. RTP typically mns on top of UDP to make use of its

multiplexing and checksum services.
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3. RTP doesn't offer any form of reliability or flow/congestion control. It provides

timestamps and sequence numbers as hooks for adding reliability and flow

control, but implementation is entirely left to designers. [12,28].

4. RTP is a protocol framework deliberately incomplete. It is open to new payload

formats and multimedia software. Each supported media comes with an extra

standard document describing the correct implementation, e.g. [44].

5. RTP only carries real-time content and is not responsible for high-level tasks like

stream assembly and synchronization. These must be done at the application

level.

5.1.2 - RTP Packet Format:

As mentioned previously, the RTP format provides a standard representation

of media-dependant information usually needed for coding and decoding audio/video

streams. As defined in [58], a packet header has the following format:

0123
01234567890123456789012345678901

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|V=2|P|X| CC |M] PT | sequence number
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RTF timestamp
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

synchronization source (SSRC) identifier |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

contributing source (CSRC) identifiers

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.2 : RTF Packet Header.

The first twelve octets are present in every RTP packet, while the list of CSRC

(Contributing Senders) identifiers are present only when flows are mixed together.

The fields have the following signification:

0
Version (V): 2 bits. The version of RTP, which is actually in its second revision.
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Padding (P): Ibit. If set, the end of the packet contains one or more additional

padding octet(s) that arc not part of the payload. The last octet of the padding

contains the number of octet to ignore.

Extension (X): l bit. If set, the fixed header is followed by exactly one header

extension. Extensions are needed when adding proprietary features.

CSRC count (CC): 4 bits. The number of CSRC identifiers following the fixed

header. This number is more than one if the payload contains data from several

senders.

Marker (M): l bit. Defined by a profile, the marker is intended to allow significant

events such as frame boundaries to be marked in media streams.

Payload type (PT): 7 bits. Identifies the format of the RTP payload (H.261, Wav,

MPEG) and determine its interpretation by the application.

Sequence Number: 16 bits. Incremented by one for each data packet sent. It may

also be used by receivers to detect packet loss and to restore packet sequence.

Timestamp: 32 bits. The sampling instant of the first octet in the RTF data packet.

The time representation is based on the carried data format and may not reflect

wallclock time.

SSRC: 32 bits. The Source Synchronization identifier gives a random and unique

number to all participants in the same session. It servers to uniquely detect the sender

of a stream.

CSRC list: 32 bits each. The contributing source(s) for the payload contained in the

packet. The number of identifiers) is given by the CC field and limited to 15.

Aside from media support, RTF was found to be useful for many kinds of application

imposing hard time constraints such as distributed simulation, industrial assembly

lines and critical communication systems. More details about RTP and RTCP (the

latter coming up next) can be found on their creator's web page and other related

sources [22,65,79].

0
The time representation known and used in every day purposes, e.g. HH:MM:SS.MM
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5.1.3 - RTCP Control Protocol Basics:

RTCP constitutes the second part of RFC 1889 [76] and is designed to work

closely with RTP. It conveys control information based on the periodic transmission

of packets to all participants in a session using the same distribution mechanism. It

performs four functions:

l. It provides feedback on the quality of the data distribution, for both senders and

receivers.

2. It carries sufficient information to identify each participant in a session with other

means than the SSRC.

3. It enables the scaling of sessions by making the number of participants in the

exchange available.

4. The fourth and optional function is to bring minimal session control information.

Several kinds of control reports are specified to carry a variety of management

information. In all, five types are defined: l) SR (sender report), for the transmission

and reception of statistics from participants that are active senders; 2) RR (receiver

report), for receiving statistics from passive participants; 3) SDES (source description

item) that contains the information about a given participant; 4) BYE indicates the

termination of participation and finally; 5) the APP, which specifies application

specific functions. Each RTCP packet begins with a fixed header similar to that of

RTP, followed by specific control related information.

5.1.4 - RTCP Packet Format and Monitoring Capabilities:

Among the above-described reports, the sender (SR) and receiver (RR) types

are particularly important since they provide the reception quality feedback. Both are

alike except for an extra 20 byte included in the SR report. Figure 5.3 depicts such a

report and shows how the information can be used to compute monitoring statistics.

u
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Only the most important fields are described to lighten the presentation. Details on

the missing contents can be found in section 5.1.2 or RFC 1889 [76].

0123
01234567890123456789012345678901

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|V=2 l P RC PT=SR=200 l length | header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

SSRC of sender

NTP timestamp, most significant word sender
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ info

NTP timestamp, least significant word
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

RTP timestamp
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sender's packet count
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

sender's octet count

+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

SSRC_1 (SSRC of first source) [ report
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ block

fraction lost | cumulative number of packets lost | 1
-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

extended highest sequence number received
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

interarrival jitter
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

last SR (LSR)

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

delay since last SR (DLSR) [
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

SSRC_2 (SSRC of second source) | report
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ block

: 2
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

profile-specific extensions
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5.3 : Sender report RTCP packet.

Many fields presented in figure 5.3 are common to those of RTP's header. A few are

relatively easy to figure (packet count, octet count and lost measures) thanks to their

explicit name. Here is an insight about the remainings.

0

NTP timestamps: 32 bits each. Time representation in RTP/RTCP protocols follow

the international Network Time Protocol (NTP) [63] standard. According to the

latter, time is presented with a 64 bit structure. The most significant word presents

time to a precision of a second, while the least significant word is for milliseconds.
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Last SR timestamp (LSR): 32bits. The middle 32 bits out of 64 in the NTP

timestamp [63] received as part of the most recent RTCP sender report (SR) from the

souce SSRC_n. It is used, along with the DLSR (see below), in the round trip time

computation (RTT).

Delay since last SR (DLSR): 32 bits. The delay, expressed in units of 1/65536

seconds, between receiving the last SR packet from source SSRC_n and sending this

reception report block. Taken from [76], figure 5.4 shows the relation between LSR

and DLSR and how both measures are used.

LSR=[10nov 1995 11:33:25.125]

Host A . SR(n)

A =[10 nov 1995 11:33:36.5]
A =b710:8000 (46864.500s)

'\
\

Ntp_sec = Oxb44db705

Ntp_frac = 0x20000000

(3024992016.125s)

Host B

\
\

/
^ ->

Dlsr = 0x0005 (5.250s)

Lsr = Oxb705:2000 (46853.125s)

/

+
RR(n)

DLSR
(5.250s)

^==^

Figure 5.4: LSR and DLSR explained.

(Time)
->

LSR and DLSR are very useful to evaluate the throughput yielded by links between

communicating peers. In accordance with figure 5.4, the round trip time can be

computed as follow:

RTF =( A- (DLSR + LSR) ) [ l ]

From equation [1], it is easy to figure that RTT/2 is the approximative time taken by

the RTCP packet to travel from host B to host A. The throughput of the link, for an

RTCP packet is thus:

ThroughputRTcp = RTCP packet AVG. / (RTT/2) [2]

0

where RTCPpackeiAvc is the average size of a receiver report. Combining equation [1]

and [2] gives the estimated throughpout for RTP packets:

ThroughputRTp = ( RTF packet AVG. *ThroughputRTcp)/RTP packet AVG. [3]
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Even if the bandwidth calulation of equation [3] is obviously not precise, it gives

enough information about the state of a link which can later be used to adapt an

application's bit rate. In most cases, imprécisions introduced by the above

computation are not significant since media streams are jitter prone by nature.

Interarrival jitter: 32 bits. An estimate of the statistical variance of RTF packet

interarrival time, measured in media-time units. This interarrival value is the mean

deviation (smoothed absolute value to minimize nuctuations) of the difference D in

packet spacing.

For each two packets ; and 7 arriving, the value D is computed:

D(i,j)=(Rj-Ri)-(Sj-Si) [4]

where Si is the RTP timestamp from packet i, and Ri is the time of arrival (still in

timestamp units) of packet ;. Equation [4] is performed continuously as each data

packet ; is received from a sender, using the difference D of that packet and the

previous packet (i - 1), yeilding:

J=J+(\D(i-l,i)\-J)/16 [5]

The value of J is sampled each time a reception report is issued. This algorithm is the

optimal first-order estimator and the 1/16 gain gives a good noise reduction ratio

while keeping a reasonable convergence rate [13].

0

Given the information presented above, sending and receiving applications can

compute many useful network parameters. The interarrival jitter provides a short-

term measure of congestion. Packet loss tracks persistent congestion while jitter

measures track transient congestion. Throughput measures can be combined to depict

long-terms network performance used by congestion pridiction algothims. Finally,

RTCP reports are useful to compute the number of participants in a session. The

result is then used to scale the amount of feedback information with the size of a

session [73] to avoid network flooding by feedback packets.
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5.2 - RTSP:

The Real Time Streaming Protocol is an Internet Engineering Task Force

standard for the control of streaming media on the Internet [78]. It essentially

provides an extensible framework to manipulate on-demand delivery of real-time data

such as audio and video coming from live feeds or digital storage. The protocol is

intended to handle multiple data delivery sessions and provide a means for choosing

channels like UDP, multicast UDP or TCP.

u

The idea behind RTSP was to design a protocol that could include sufficient amounts

of vocabulary allowing users to control the state of dynamic data flows. The base

principle is the same as HTTP. The two fundamentally differ in a couple of aspects

though. First, RTSP introduces many new methods and has a different protocol

identifier. Since it can control more than one stream at the time, RTSP servers must

track of individual stream ,;i;;' ;^, ; „ j .^^.i
!;:
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time constraints.
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Figure 5.5: Typical RTSP operations [85].

In short, RTSP is only concerned

with stream identification and

control. Thus, the retrieval of

media from a server, the invitation of a server to a conference and the addition of

media to an existing presentation (showed in figure 5.5) consitute its main

capabilities. Finally, it is extendable, secure, easy to parse, and transport

independent. The company RealNetworks, its main promoter, keeps a wealth of

information about the protocol on its web site [74].
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5.3 - Summary:

The intention of this chapter was to present different protocols defined for the

support of real-time requirements. As depicted, implementers usually have to provide

support and algorithms since standard documents are only concerned with format

specification.

The first two protocols have been designed to bring a common agreement on packet

format tailored to the transport of time-sensitive information. As such, RTP provides

sequence numbers, timestamps, payload identification, and synchronization

information which are believed to have a common use in all stream transport

protocol. Its related control protocol, RTCP, provides the network feedback feature

that is not supported by IP. With the conveyed reception report, it is possible to have

network sampling measures such as the number of packet loss, an approximation of

the throughput and an evaluation of jitters introduced by each step of a data path.

Nowadays, RTF and RTCP are both accepted protocols widely used for the transport

of audio and video in packet switched networks.

Third and last was RTSP, a text-based protocol allowing for the identification and

control of media streams. Even if RTSP is currently implemented in major

multimedia applications, its future may not be guaranteed. Another efficient and

widely used stream control mechanism, the DMS-CC (Digital Media Storage -

Command and Control), was released with the MPEG-2 standard as part of the new

features included with the compression scheme. With the rapid acceptance of

MPEG-2 for A/V compression, DMS-CC gained popularity and hot debates on which

should be used are still frequent in the multimedia community.

0

In the upcoming section, the H.323 suite is presented. It is an architecture consisting

of components and standard protocols (some of which were presented above)

allowing a clear and open definition of guidelines for designing interoperable MM

applications. It is supported by most industry players and believed to represent

tomorrows streaming standard for all implementations.
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0 6 - The H.323 Standard for MM Applications:

The last five chapters described different aspects and knowledge about QoS

and MM applications. In fact, each topic was a building block of an overall

technology that enables media streaming in packet based networks that don't support

QoS by any means.

This section combines the material viewed in previous discussions to present the

H.323 standard for MM application. H.323 is a specification engineered by FTU's

Study Group 16 to describe terminal, equipment, and services for media exchange

over packet based networks such as the Internet. It is an aggregate of different

interworking technologies addressing call control, media management, bandwidth

management and interfaces between LANs and other networks. To this day, H.323 is

the most complete, efficient, and interoperable architecture. Since the beginning, it

has been accepted and supported by many industry leaders.

The following presents a summary of the H.323 standard. We first start by

introducing the model's general features. Next we depict the main protocols for audio

and video streaming. The section closes by making a brief look at the components of

a complete H.323 system.

0

6.1 - H.323 Introduced:

As defined in [47], H.323 is a standard that specifies the components,

protocols and procedures that provide multimedia communication services - real-time

audio, video, and data communications - over packet networks. In addition to media

conferencing terminals and other related equipment, the specification describes

interoperation of H.323 systems with other audio/video conferencing tools on ISDN

(Integrated Service Digital Networks), POTS (Plain Old Telephone Systems), ATM,

and other LAN technologies [86]. It provides a wide range of services and can
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therefore be applied to a large variety of areas such as consumer, business and

entertainment applications.

The H. 323 recommendation is comprehensive and flexible. It can be applied to

voice-only handsets and full multimedia video-conferencing stations. Among its

many features, the following are particularly interesting [24]:

Codec Standard: H.323 establishes standards for compression and decompression of

audio and video data streams, ensuring that equipment from different vendors will

have some area of common support.

Interoperability: Besides ensuring that receivers can decompress the information, it

describes methods for allowing clients to communicate their capabilities to other

participants.

Network Independence: H.323 is designed to mn on top of common network

architectures. As network technology evolves, and as bandwidth management

techniques improve, the actual based solutions should take advantage of those

enhanced capabilities.

Platform and Application Independence: The standard is not tied to any hardware or

operating system. It can be implemented in any platform such as video-enabled

personal computers, dedicated platforms, IP-enabled telephone handsets and other

embedded devices.

Inter-Network Conferencing: H.323 uses a gateway to link different network

technologies together. It uses codec from several videoconferencing standards to

minimize transcoding delays and provide optimum performance.

u
Other key benefits like multipoint support, bandwidth management, multicast support

and implementation flexibility are also considered as prime technology advancement.
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6.2 - H.323 Architecture Protocols:

The H.323 standard uses an assortment of protocol that ensures standard

communication control over four critical aspects: call control functions, audio, video

and data exchange. Communication in the stack is considered to be a mix of the

above. Audio capabilities, Q.931 call setup, RAS (Registration/Admission/Status)

control and H.245 signalling are required (figure 6.1). All other features such as

video and data conferencing are optional. Finally, the RTP/RTCP protocols form the

base support for encapsulation and transmission of media streams.

u

Inspired from [24,86,93], we describe below the four mentioned aspects in terms of

functionality and protocols pertaining to one another. Where possible, the relation

between protocols and how they compare to those of section 5 will be outlined.

6.2.1 - Call Control Functions:

The call control functions are

the heart of the H.323 terminal. These

functions include signalling for call

setup; capability exchange; signalling

of commands and indications; and

messages to open and describe the

content of logical channels. All audio,

video, and control signals pass

through a control layer that formats

data streams into messages for output

to the network interface. The reverse

process takes place for incoming

streams.

T.
share

Data

l.126

T.124

T.122
T.125

T.123

l.127

TCP

Conference

Control & Audio
Call

Signalling
G.722
G.728
0.723
0.729

Video

IP

LAN

UDF

Figure 6.1: H.323 protocols. Mandatory

H.261

H.263
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Overall system control is provided by three separate signalling functions: the H. 245

Control Channel, the Q.931 Call Signalling Channel, and the RAS Channel. The

H.245 Control Channel is a reliable connection that carries control messages

governing operation of the H.323 entity including capability exchanges; opening and

closing of logical channels; preference requests; flow control messages; and general

commands and indications. Capability exchanges are enabled by H.245 that provides

for separate receivers and transmit capabilities. Methods to describe those details to

other H.323 terminals arc also defined. There is only one H.245 Control Channel per

call.

The Call Signalling Channel uses Q.931 to establish a connection between two

terminals. The RAS signalling function performs registration, admission, bandwidth

changes, status, and disengage procedures between endpoints and Gatekeepers. RAS

is not used if a Gatekeeper is not present.

The control capabilities expressed in H.323 are far more advanced than RSVP or

even DMS-CC. This is caused by amount equipment managed and the complexity

inherent in the exchange of audio, video and data at the application level.

6.2.2-Audio:

Audio signals contain digitized and compressed speech. The compression

algorithms supported by H.323 are all proven ITU standards. Terminals must at least

support the G.711 voice standard for speech compression. Other voice support

standards are optional.

0

The different ITU recommendations for digitizing and compressing speech signals

reflect variable tradeoffs between speech quality, bit rate, computer power, and signal

delay. G.711, originally designed for continuous bit-rate networks, generally

transmits voice at 56 or 64 kbps - which is well within the bandwidth limit likely to

be found on a LAN.
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6.2.3 - Video:

While video capabilities are optional, any video-enabled terminal must

support the H.261 codec; support for H.263 is optional. Video information is

transmitted at a rate no greater than that selected during the capability exchange.

H.261, which provides a measure of compatibility across different FTU

recommendations (sub-QCEF, QCIF, CIF, 4CDF, 16 GIF), is used with

communication channels that are multiples of p x 64 kbps (p = 1,2,3...30). H.261's

encoding algorithm is based on the discrete cosine transform (DCT) and makes use of

intra-frame coding. Motion compensation vectoring, which improves image quality,

is an option [46,56].

H.263 is a backward-compatible updated to H.261. H.263's picture quality is greatly

improved by using a Vz pixel motion estimation technique, predicted frame coding,

and a Huffman coding table optimized for low bit rate transmissions. H.263 defines

five standardized picture formats, including QCIF. This common support facilitates

communications between H.261 and H.263 systems [64].

6.2.4 - Data:

Data conferencing is an optional feature. When supported, it enables

collaboration through applications such as shared whiteboards, application sharing,

and file transfer.

H.323 supports data conferencing through the T.120 specification (Figure 6.1). As an

FTU standard, T.120 addresses point-to-point and multipoint data conferences. It

provides interoperability at the application, network, and transport level with the

T. 12X set of protocol.

0
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0

6.3 - H.323 Architecture Components:

The standard specifies four kinds of components, which, when networked

together, provide point-to-point and point-to-multipoint communication services. As

shown in figure 6.2, these components are physical entities located in a "H.323 zone".

Here, a zone is the collection of all terminals, gateways and MCUs (Multipoint

Control Units) managed by a single gatekeeper.

:.323 Zone
H.323 MCU

H.323

gatepel

/••"""- """
Guar./ OSTN B-ISDN

7
H.310Speech H.322

terminal

H.321
terminal

Speech H.320
termina:termina]

V.70
terminal

H.324
terminal

Figure 6.2 : The H.323 Architecutre Components.

Terminals: Used for real-time bi-directional multimedia communication. It can be

applied to any system capable of running the H.323 protocol stack (see section 6.1)

with the required capabilities. It should also interact with H.324 on SCN and wireless

networks, H.320 terminals on N-ISDN, H.321 on B-ISDN and H.322 terminals on

guaranteed QoS LANs.

Gateways: A gateway connects two dissimilar networks. It provides connectivity

between an H.323 and a non-H.323 network. This connectivity of incompatible

technologies is achieved by translating protocols for call setup and release, converting

media formats, and transferring information among networks connected by the

gateway. The presence of a gateway is not required for communication among

parties using the same network technology.
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Address
Translation

Gatekeepers: The gatekeeper is the most important component of an H.323 enabled

network. It acts as the central point for all calls within its zone and provides call

control services to registered endpoints. Although not mandatory, it performs

important management services such as addressing, authorization and authentication

of terminals and gateways; bandwidth management; accounting; billing; and

charging. Figure 6.3 lists

the required base

functionalities. If present

in a zone, terminals must

make use of the services

offered by the

gatekeeper. In this case,

RAS protocols (refer to

6.2) are used to perform

mandatory management

Translation of alias address to transport address
using a table that is updated with registration
messages.

Admission
Control

Authorization of LAN access using ARQ, ARC
and ARJ messages. Access may be based on
call authorization, bandwidth, or some other
criteria.

Bandwidth
Control

Support for bandwidth request, confirm and
reject messages (BRQ, BCF, BRJ).

Zone

Management
The gatekeeper provides the above functions for
terminals, MCUs, and gateways that have
registered within its zone control.

activities. Figure 6.3: Gatekeeper's mandatory functions.

MCU (Multipoint Control Units): The MCU supports conferences between three or

more endpoints. Under H.323, an MCU consists of a required Multipoint Controller

(MC) and zero or more Multipoint Processors (MP). MC and MPs are entities

enabling centralized and decentralized multipoint conferences. All terminals

participating in the conference establish a connection with the MCU. The latter

manages conference resources, negotiates between terminals to determine the AfV

codecs to use, and may handle media streams.

0

The second version ofH.323 was approved in 1998 and addresses deficiencies found

in version l. It introduces new functionality within existing protocols, such as Q.931,

H.245 and H.225. The most significant advances were made in security, fast call

setup, supplementary services and the aggregation of T.120 with H.323 protocols

[24]. The standard video codec H.263 was also added to provide enhanced picture

quality in videoconferencing application working on high bandwidth networks.
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6.4 - Summary:

H.323 compliant systems offer a practical and realistic solution to MM

streaming in packet base networks. Moreover, the ability to work with heterogeneous

technologies, both in terms of network and platform, make H.323 much more

efficient and appropriate than any of the architectures of section 4.

H.323 is a set of architecture components and protocols working together to establish

a framework viable for real-time data streaming. It tackles problems pertaining to

time constraints and network deficiencies by providing a means for client application

to select parameters that are best suited for their environment. It also delivers a

standard set of technology requirements (codec, protocol, signalling) that ensures

common understanding among all participants.

The idea behind the recommendation is also stronger than the changes introduced in

the switching models of section 3. Recall that IntServ [9,10,96,97], DiffServ [85,99]

and MPLS [2,14,43,72] all modified the present Internet switching scheme by

differentiating traffic in core network equipment. Instead, H.323 tries to live with

network gaps by adapting to the environment, which is a more suitable solution for

acceptance and implementation.

H.323 is undoubtedly powerful enough to undertake tomorrow's multimedia

challenges. Even if the amount of realization requirements and the number of

specification (as outlined in this section) cause a serious threat to rapid deployment,

many serious players have begun its implementation for various devices, ranging

from personal computers to hand held devices.

This section concludes the material to be reviewed for the implementation of an end-

system QoS aware protocol stack. Next we present a solution that introduces QoS

adaptation in error prone environments.

0
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0 7 - The Suggested Architecture:

This section presents a QoS architecture designed in a joint effort by three

students - Jean-Marc Ng Wing Keng, Yong Guo and Mathieu Poirier. The project is

motivated by distant learning and implies the distribution of time sensitive media on

IP networks. To solve the constraints added by heavy-streamed media and promote

tool interoperability, the ITU's H.323 protocol stack of section 6 constitutes the

foundation of our work. The goal is to produce an architecture that is both compliant

to H.323 and capable of offering application level QoS specification.

To achieve the above goals, we bring several new modules to the existing stack. The

purpose of the added components is threefold. First, we want to introduce an easier

QoS representation and specification process, both for clients and servers. This

feature should help users choose media parameters more easily. Second, we

recognized that media session should adapt to network service fluctuations in

agreement with users' preferences. Modifications are made to the original H.323

stack since it's not concerned with such matters. Finally, the novel idea of interacting

with several transport layers (ATM, IP, Wireless) is added.

<J

The upcoming material is organised as follows: First, we picture the global

architecture in its environment and depict the general behaviour and functionality of

each component. The second part discusses about the assumptions and tradeoffs that

make the realization of a prototype feasible. To avoid loosing sight of our primary

concerns, several abstractions have been applied and priority given to QoS enabling

modules.

7.1 -Architecture and Components:

We hereby present the design of our QoS stack by describing the added

modules and their interactions with other components of the system. We concentrate

on the new functionality and assume that H.323 basic knowledge has been acquired
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in section 6. But before dwelling on the heart of the subject, let's look at the main

features brought together by our work.

•

•

Since it's based on H.323, all the characteristics and advantages of the latter are

inherited.

It can handle several network interfaces seamlessly, which is desirable in

exploiting different features offered by available network technologies.

Allows for an easier QoS representation and specification by presenting

parameters that can be understood by common users.

Automatic translation of the above-mentioned user comprehensible parameters to

network specific values and bounds.

Capable of handling data, audio and video streams in accordance with users' QoS

specifications. These are also used to modify connection properties when

network services Huctuate.

Monitoring of each uow separately to guarantee better responses and

independence among ongoing connections.

We enhanced the H.323 standard with two main modules: one (the Q.oS Manager)

that considers user requirements and network status to take actions that degrade or

improve the perceived QoS and another (the Transport Controller), to control

interactions with the available network interfaces. The dark-greyed blocks in figure

7.1 highlight these modules. The remaining coloured blocks have also been added to

support the desired services. Here is the description and purpose of each component.

0

7.1.1 - The QoS Manager:

The Quality of Service Manager (QoS Manager) - designed and implemented

by Yong Guo - is the 'intelligent' entity responsible for adapting stream

characteristics to network changes based on user requirements. To do so, it refers to a

set of predefined instructions clustered in a file called user profile. Each user
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Figure 7.1: An improved H.323 Stack.

involved in media exchanges must have such a user profile to guide the Q,oS

Manager in its decision. Profiles are independent of one another, which guarantees

independence between clients.

A user profile forms part of a series of recommendations issued by a client. Those

recommendations specify the actions to follow upon network service fluctuations.

Also referred as adaptation strategies, recommendations can instmct the manager to

close a media connection when network throughput goes below a given threshold or

when the number of packet loss becomes too important. Less drastic measures can

include the reduction of the frame rate or an increase of the compression level to

reduce the required bit rate.

The Q,oS Manager takes network state information from the Stream Generator who is

responsible for computing such data. Infonnation updates are made more than four

times per second. Whenever the QoS Manager receives an update, it refers to the

user profile associated with the connection. If a QoS violation (a level of service that
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is inadequate for media transmission) occurs, actions are taken based on user

specifications to properly adapt the ongoing presentation.

0

7.1.2 - The Transport Controller:

The transport layer - design and implemented by Jean-Marc Ng Wing Keng -

in this architecture is somehow special. Whereas classic transport layers are

concerned with a single network, ours can handle multiple network interfaces. This

means that the stack can communicate with distant clients over different networks

such as IP, ATM, ISDN or others. The type of network itself is not important - most

significant are the services offered by a network based on users' needs.

A client can therefore participate in media exchanges over more than one network,

following the requirements for each media. If a connection requires high throughput

and low packet loss, ATM or ISDN network will be favoured. On the other hand, for

bulk data transfer, a less costly network such as IP should be used. Obviously, the

cost factor is the only aspect that will prevent everyone from choosing high quality

connections. In that context, we assume the system is working in an economically

balanced environment where offer and demand levels are established.

The network chosen for media transport is governed by the Q.oS Manager described

in the above section. The latter takes its decision after user specification. The

manager can also instruct to change the network onto which a media is streamed if

the actual network quality becomes insufficient. This kind of network switching is

also submitted to a billing process and as such, the Manager should always make sure

that it chooses a connection that maximizes the cost/efficiency ratio.

Within the layer and for each network, different queues separate audio, video and

data packets. The added level of refinement enables to favour a media over another

based on its importance for the client. Typically, audio has the prime consideration,

followed by video and then data. Clients can always change this order and the

amount of bandwidth given to each media in their user profile.
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7.1.3 - The Connection Manager:

The Connection Manager - designed and implemented by the author - is

mainly concerned with call establishment, bit rate negotiation, media parameters and

the selection of rendering tools. More generally, it makes sure that each entity

involved in a media exchange agrees on the parameters to be used during the session.

This module is not part of the standard H.323 systems and was introduced to bypass

the complexity inherent to using H.225 and H.245 connection establishment

protocols. To this date, the connection manager is equipped with basic call

establishment capabilities. Although not used, provisioning had been made to

include rate negotiation, media parameters and rendering tool selection in the request

protocol.

Recall that in H.323, the above functionality is achieved by using two protocols,

H.245 and H.225. The H.245 is mainly concerned with dialogue between the

gatekeeper, clients and servers. It is also mandatory when calling from another

network than IP or when using the Lightweight Directory Access Protocol (LDAP)

for interaction with the Plain Telephone Switched Network.

u

H.225 is specifically charged to negotiate port

selection, media codec, and machine

capabilities between peers. The might of this

protocol is shadowed by the complexity

inherent to several tuning and dialogue features

included in the specification. To overcome the

problem and to introduce application specific

mnemonic exchanges, we have designed a

home bred protocol. This deviation from the

standard specification automatically poses

interoperability issues that shall be addressed if

conformance tests are performed.

Client Server

REQ

ACK/DN

Figure 7.2: Call establishment
procedure.
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This new protocol is composed of three messages: REQ., ACK and DN (please refer to

Figure 7.2). The first is used to request a connection from client to server. ACK and

DN are the answer to that request. The former is a positive reply and includes the

necessary parameters that will complete the call establishment. After the reception of

such an acknowledgement, media streaming can begin.

DN is a denial response and includes a message explaining the reason for the

turndown.

Each media needs a call request. Such design patterns allow every connection to

have unique characteristics, which are taken care of by the server on a client basis.

Characteristics are specified in a user profile that is included in the REQ. message

along with other connection specificity.

Figure 7.3 depicts the packet format and information carried in each message. The

first two fields are common to each mnemonic. The former is a packet identifier

indicating which processing should be made upon reception.

REQ »!

ACK KB

•

DN s^

Figure 7.3 : Connection Packets.

0

The ID field enables the marking of call establishment. Each is unique and permits

an asynchronous reply from the server. Therefore, the order in which connections are

requested and answered is not automatically the same. This can be explained by the

connection acceptance process performed by the Q,oS Manager. Depending on the
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requirements and the type of link requested by a user, connection answer time can

differ. IP_Param is the gathering of all information needed to establish a media

session such as port numbers for RTP/RTCP, IP addresses, session name and so on.

User defined preferences are packaged in the QoS_Spec which is handled by the QoS

Manager once received at the server side. Finally, the Media field conveys

information about the requested media to be played.

7.1.4 - The Stream Generator:

The Stream Generator - designed and implemented by the author - is usually

called Streamer. It was introduced in the architecture (figure 7.1) to simulate the

acquisition and packetization of media information. This is motivated by the fact that

H.323 compliant codecs are retailed at exaggerated prices going beyond our

capabilities. In H.323 compliant systems though, media acquisition, compression and

packetization is made at the application level by dedicated multimedia applications

enabled with codecs following the standard guidelines. The streamer is not part of

market applications and its sole purpose is to create simulation data. To this date, it is

enabled with variable streaming rate, though no real media data are sent.

The acquisition of simulation data is made through a network port, a file or a capture

device, depending on the type of session. Media information is then tokenized and

packetized in RTF packets. Each connection is represented by a MMSession object

serving as a stream manager (Figure 7.4).

<J

Each time a connection is requested,

an instantiation of a MMSession is

made. From an object-oriented point

of view, it consists of three sub-

objects: the stream controller, the

packet sender and the packet receiver.

control

RTSPI

MMSession
RAW

Receiver Sender

RTCP RTF

Figure 7.4 : A MMSession Object.
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Figure 7.4 shows the relation. The controller, as its name implies, controls the state

of the stream. It provides stream manipulation functionality that match conventional

video operations such as 'start', 'stop' and 'pause'. For the time being, it is not possible

to browse through streams with commands like 'forward' or 'rewind' since only a few

codecs arc capable of such support. Since our goal was to accommodate as many

media as possible, it was decided to strictly use mnemonics supported by all AfV

compressors. Media specific QoS monitoring is carried in each MMSession object by

making use of RTCP packets. Throughput, jitter and lost rate are calculated in

accordance with algorithms presented in chapter 5.

The Real Time Streaming Protocol (RTSP) is now established as a standard in

multimedia tools for stream control puq)oses. Most commercially available products

are using this convention. In that sense, a set of mnemonic replicating its most

important features was implemented on the reliable TCP links since guarantees of

arrival are desired for convenience.

The media information is carried by the Real Time Protocol (RTP), which has been

specially defined to carry time sensitive data. RTP works closely with its control

protocol, the Real Time Control Protocol (RTCP), which introduces the needed

network feedback information useful for stream adjustment. RTF and RTCP are

respectively handled by the sender and receiver objects, running in two independent

threads of execution to reduce delays in both operations.

Since media stream can easily tolerate information losses, the communication links

are established over UDP connections. The latter is much faster than its reliable TCP

counterpart, a feature that outweighs its lossy characteristic. Moreover, it is now a

widely accepted practice to run media streams over UDP, which is another step

toward interoperability.

<J
The uncoloured blocks depicted on figure 7.1 are a genuine part of the H.323 stack.

On the same figure, it is also possible to distinguish between two kinds of arrows.
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The thin black ones indicate that related blocks exchange internal communication

messages. Messages can be of any kind, ranging from QoS violation alerts to

connection information used by several modules. Communication between blocks is

asynchronous and assumed to be reliable.

Most internal communication is triggered by incoming network messages carrying

information. This information can be media data, connection related messages or

stream control messages. Each incoming message is handled in accordance with the

port on which it is received. The carried payload is then sent to different modules for

proper manipulation. White thick arrows highlight the exchange of data between

stack blocks.

Finally, both client and server work the same way. Most parts are present at both

ends of the connection to allow bi-directional QoS communication. This feature is

usually required when peers are senders and receivers at the same time, as is the case

for on-line teaching.

7.2 - Separation of the Work:

As specified before, our QoS stack in mainly concerned with three aspects: l) an

easier QoS definition and manipulation, 2) a multi-network transport layer for the

support of multiple network interface and 3) increased interoperability capabilities by

working with the H.323 standard.

All three students working on the project took part in the design of the general

architecture of the QoS stack. The definition of the modules along with their

capabilities is the result of a joint effort. In a similar way, communication protocol

and the nature of the exchanges between components have been established in

accordance with the communication requirements of each block.

<J
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The implementation task was separated following the aspects presented above. More

precisely, Yong Guo undertook the realization of the Q.oS manager along with the

QoS definition, specification and management. Jean-Marc Ng Wing Keng

implemented the transport controller and the related network management pertaining

to such matter.

The author concentrated on all H.323 issues such as the generation of streams {stream

generator), management of connection acceptance processes (connection manager),

simulation/replication of complex H.323 procedures and compliance with involved

protocols. He is also responsible for the production and computation of network

feedback information used in the stream adaptation process.

Aside from performing the task of integrating of all the above-mentioned components

in a framework environment the author created, designed and implemented a

messaging mechanism providing reliable and asynchronous information exchanges

between components. Finally, following Guo's QoS representation, the author

designed and implemented a client end-application capable of exploiting newly

introduced facilities conveyed by the QoS stack.

7.3 -Assumptions & Tradeoffs:

As seen in section 7.1, designing and realizing new QoS related services in

the H.323 standard is a tremendous task. First and foremost, it is cmcial to have a

thorough understanding of the current H.323 model and the interworking constituent

technologies. An in-depth knowledge of actual IP challenges in terms of multimedia

streaming and how they should be handled is also a definite asset. Finally, a clear

and finite definition of the final product and assumptions taken in such a process must

be recognized. In this context, the following paragraphs provide a list of assumptions

and tradeoffs inherent to the earlier described QoS protocol stack.

0
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Our first assumption was that network equipment is capable of offering packet

differentiation through one or a combination of IntServ, DiffServ and MPLS core

switching schemes. At end-system stations, we assumed that media acquisition,

compression and rendering were provided through software implementation and

therefore didn't deal with those issues. We also recognized that media information is

most likely to be packaged in RTP by that same software. Since the goal of the

suggested stack is to adapt connections' bit rate with network fluctuation, codec

implementation should offer dynamic tuning capabilities. Such property is supported

by some standards, which have obviously been selected first.

Most architecture supporting real-time services work with operating systems that are

enhanced with time-cntical mechanisms. These OS are either commercial products

or home bred implementations. For complexity, expertise and programmer scarcity

reasons, we did not work on those aspects and assumed that resources were always

sufficient in both server and client machines.

Nonetheless, we are well aware that such Utopian situations will most likely never

happen and future work on this project should address those issues. The same remark

applies to stream synchronization and reconstruction, two important aspects that were

also set aside.

Tradeoffs were introduced to lighten the heavy implementation task. Since this work

deals extensively with standard protocols, correct implementation would have taken

years to complete. Therefore, we built our own set of protocols that closely imitate

the behaviour of standard specifications. This is the case for connection

establishment protocols, application capability distribution and QoS data exchange.

QoS parameters are closely related to the application and thus, are not relevant for all

QoS aware architectures. The latter however, is usually a characteristic common to

all projects of this type.

0
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Although convenient to implement, the above assumptions and tradeoffs implies that

some features are proprietary and thus not supported by all types of multimedia tool.

7.4 - Summary:

In this chapter, we focused on our own implementation of a QoS aware

protocol stack capable of sustaining real-time services for MM application. To do

this, we used the knowledge contained in all previously addressed material. The

result is an architecture based on the H.323 model enhanced with features allowing

common users to specify QoS parameters more efficiently.

We also add significant contributions to the actual standard in terms of adaptation

strategies for QoS degradation, group management, per-flow monitoring services and

decision making based on user specifications. The model is supported by a transport

layer that works seamlessly with multiple commutation technologies such as IP,

ATM, and airwaves. The design of a compatible client ensuring bi-directional QoS

support has also been completed. Finally, it is important to remember that the stream

generator and the connection manager are modules that have been introduced as

conveniences simulating H.323 features and are not part of the standard stack.

0

We are well aware that added features and utilisation of proprietary protocols induce

serious interoperability problems. These design tradeoffs were supported by many

constraints that would have otherwise compromised the provability of our concepts.

The next section describes a concreate realization of the architecture presented above.

Therein, details about simplified H.323 protocols are given along with the general

behavior of the adaptation algorithm. A glimpse about the internals of the multi-

network transport layer and some simulation results conclude the work.
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0 8 - Project Implementation:

This chapter is concerned with the concrete realization of the QoS aware

protocol stack of chapter 7. We present several aspects and implementation choices

that lead to a workable prototype.

More precisely, we give details about the simplified connection process made

possible by our home bred set of mnemonics, the general behavior of the adaptation

algorithm and the internals of the multi-network transport layer. Before we conclude

by showing some of our results, the client and server monitoring interfaces are

presented with a small description of the rendered information.

8.1 - Communication Protocol Between Modules:

Many interactions between internal parties of the stack must co-operate when

a connection request is logged. To ensure that information is properly transmitted

among entities, a suite of internal messages had been defined.

Bellow, we give a sampling of the connection acceptance process and the messages

that are exchanged (figure 8.1). The latter depicts a correct execution sequence for a

valid session establishment. Error conditions and connection denials are not

presented since they only represent a small extension of the process. All message

exchanges within the stack are asynchronous. Therefore, once a module sends

information to another, it does not wait for an acknowledgement and relies on the

native OS'S inter-thread message interface to reliably carry the information.

0

The exchange of messages follows the MSC formalism. The name of the messages

are exactly the same as found in the implementation and the syntax is given in

appendix 1. The notation is in C (the programming language) for conformity and

clarity.
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At this point, the connection is established and the streaming can start.
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Figure 8.1: A simple connection
establishment examples.

The connection process is incremental, meaning that if one of the concerned modules

cannot cope with the amount of requested resources, the process automatically ends

and the incoming call is dropped.

0

The Connection Manager is the first one involved. It accepts calls from a predefined

port and extracts all network related information such as IP addresses and RTP/RTCP

port numbers. The conveyed data are stored in a temporary storage and the call is

placed on a waiting list. Information about the client and the required QoS is sent to

the QoS Manager that is responsible for accepting or rejecting the call if internal

resources are not sufficient. It is also concerned with creating and managing groups.
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If the QoS Manager accepts, it sends a notification to the Connection Manager. In

turn the latter issue an internal media request to the Stream Generator that can also

accept or reject the request. Upon acceptance, an acknowledgement message is again

sent to the Q,oS Manager and a notification dispatched to the client. At this point,

session parameters have been established and media streaming can start. This intense

message exchange has to be made whenever a connection is requested. It may seems

complex, but compared to H.225 and H.245 connection establishment processes, it is

rather simple.

The number of messages presented here is only a small subset of all defined

messages. The complete list can be found in appendix 1. The amount of messages

and the complexity of their structure reflect the seriousness of the design and give

insight into the software engineering challenges that had to be addressed.

8.2 - Adaptation Strategies:

Once connections have been established, the QoS aware stack must monitor

network changes and adapt the state of the ongoing presentation to model the offered

services. The adaptation process is governed by a set of adaptation strategies

reflecting users'preferences and capabilities of end-stations.

u

Adaptation strategies are very difficult to establish since every application has

different needs. Moreover, those needs are heavily influenced by the content of a

presentation, the environment in which they work and the targeted audience. To this

date, no general methodology has been established despite the numerous attempts to

define and implement the concept [33,38,89]. Even if the notion of adaptation is

changing among authors and their projects, the concept a degradation path is

commonly encountered. The latter refers to a set of predefined importance/priority

(made either by users or IS Ps) specifying which QoS parameters are to be affected

after a QoS violation occurs, e.g., higher frame rate over image size or sound quality

over image quality. The parameters are usually assigned weights that reflect their

importance [66].
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Initial(QoS)
New(QoS)

ViolationState(T or F)
Degrade()
EnhanceO
SwitchATMO

SwitchIPO
QoSViolationO
OnIPO
OnATMO
PromptUserC'")
CheckIPC'bandwidth")

CheckATMC'bandwidth")

Initially agreed QoS
New QoS as result of degradation or enhancement (Present QoS
Supported)
IfNew(QoS) < Initial(QoS)
Degrade QoS
Enhance QoS
Switch flow to ATM network. Invokes admission control function for
ATM connection.
Switch flow to IP network

QoS Violation notification from Monitoring module
Checking whether on IP network
Checking whether on ATM network
Prompt user remark
Check whether IP network has enough bandwidth to meet QoS
requirements.
Check whether ATM network has enough bandwidth to meet QoS
requirements.

Figure 8.2: Summary of the API used in the control of
degradation paths [66].

0

If OnIP() // Assuming the IP network is configured
If QoSViolationO

SwitchATMO .or. Degrade() //depending on degradation path profile
ViolationState(T)

Else If ViolationState(T) //Already In violation state
IfCheckIP("bandwidth")

EnhanceO
If initial(QoS) = new(QoS)

ViolationState(F)
Else ViolationState(T)

Else PromptUserC'Possibility of upgrade ofQoS")

If OnATM() //Assuming that ATM network is configured
If QoSViolationQ

Degrade()
ViolationState(T)

Else If Violation State(T)
IfCheckIP("bandwidth")// started on IP

SwitchIPO
Ifinitial(QoS)=new(QoS)

ViolationState(F)
Else ViolationState(T)

Else If CheckATMC'bandwidth")
EnhanceO
Ifinitial(QoS) = new(QoS)

ViolationState(F)
Else ViolationState(T)

Figure 8.3: Degradation algorithm for duplicate network
configuration [66]. Complexity: 0(n).
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0 In figure 8.2, the API specifically designed to control the degradation process is

presented. It allows for a high level management of the required information and a

lighter programming style for the adaptation algorithm presented in figure 8.3. This

algorithm was successfully implemented in the Q.oS Manager and lies at the centre of

the decision making process.

In this example, IP and ATM configuration are available, therefore offering more

flexibility to intensive steaming needs. It makes extensive use of the network

monitoring module that provides information on QoS parameters such as jitter, delay

and packet/cell loss rate for video, voice and data uows. The existence of a

degradation path profile created by the user to specify the priority of QoS parameters

and actions in case of degradation is also taken into account.

8.3 - Multi-Network Transport Layer:

The transport layer of our stack (layer 4 of the OSI standard stack) is

somewhat distinctive from all other transport layers encountered to this date. Indeed,

it is capable of working seamlessly with several network interfaces. The kind of

network is not relevant since all particularities pertaining to its configuration and

interaction are embedded in the layer. Only QoS parameters are exchanged and the

module makes decision based on the capabilities of its connected network(s). As

such and aside from financial considerations, users are not concerned about the above

decision process nor the different networks used to exchange media information.

The component modularity shown in figure 8.4 is the key principle enabling easy and

clean configuration of supported networks. Time sensitive information is generated

and packaged in RTP packets by the streamer (section 7). The latter transmits the

information to the Transport Controller using a pipe, which is a shared memory

mechanism built in the operating system allowing for asynchronous information

exchanges between processes.

u
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Figure 8.4: The Transport Controller and
its Environment.

To guarantee processing efficiency, a thread - the Packet Classifier - is specifically

devoted to the reading of information from the above stated pipe. Upon reception of

data packets, the Packet Classifier refers to a LookUpTable to route the acquired

information through different Priority Queues. While the LookUpTable contains

infromation about all ongoing connections such as the network onto which a stream

should be sent, Priority Queues arc temporary information repository gathering

incoming packets in accordance with their content and intended network. A set of

three queues (audio, video, and data) for each configured network are created and

sending priority is based on the weithted fair queuing algorithm of section 3.

0

In our example, we assume that IP and ATM are configurated. Therefore, selected

packets are sent either on UDP/IP sockets or AAL5/ATM cell-interfaces after another

thread - the Scheduler - performs network access balancement based on availability.

Figure 8.4 also shows that the LookUpTable is accessed by both the Q.oS Manager

and QoS Monitor to share media management and control information.
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8.4 - Client / Server Interfaces:

The primary concern of this sub-section is the user interface. For that, well

present and describe the interfaces created at both endpoints. The proposed facilities
belong to the streamer and the monitor. Each is updated as network feedback is
compiled and rendered to the screen. Also, care was taken in the design of the system
to separate screen rendering from internal computation. The interface is therefore not
subject to internal blockage caused by network failure and always stays available for
user control. The above features and the following material were entirely designed
and implemented by the author, as part of his contributions to the project.

Stream
control
buttons.

The main purpose of the client interface (figure 8.5) is to create and control media
sessions. Although not used at this side of the connection, network feedback is
displayed for convenience. It gives a good approximation about the provided QoS in
network terms. For users that are not familiar with such notation, we also include
user-defined QoS parameters. Both information panels are respectively updated upon
feedback packet reception and notifications of QoS violations from servers.

Session
related
Information

User defined
QoS
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Figure 8,5: Client's main monitor
interface.
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Functionally speaking, the server side of the connection doesn't need an interface. As

with the client side, it was logically separated from internal computing to avoid

display blockages. It also mns in its own thread of execution to maximize server

performance and avoid overhead. Moreover, since it reflects session evolution, users

don't have access to control functionalities. The interface is governed by client

commands coming from foreign sites.

Client
identification

Transmission

speed

Actual
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m
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• r

•
a

Figure 8.6: The server's monitor
interface.

Network
feedback
information on

a per-flow basis

0

The monitor interface (figure 8.6) at the server side conveys much more information

than its counterpart. Aside from network feedback information seen on the right part

of the panel, the transmission speed, the network providing the service and the

throughput class are presented. As with the client, each panel is concerned with

information coming from one media stream whose user name and type are displayed

in the first field of the dialogue box. Finally, Increase and decrease buttons were

also added to simulate network quality fluctuations and used to create test-bed events.
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0 8.5 - Simulation Results:

To help visualize simulation results, Yong Guo put tremendous efforts into

creating an interface gathering users' QoS specifications, monitoring information and

degradation behavior. Figure 8.7 shows such interface and highlights the

effectiveness of our degradation algorithm.

0

In the upper panel the network throughput is displayed, as conveyed by the last 25

RTCP packets against user define preferences. The dark bands represent the

throughput required by media stream at different quality levels. Levels are specified

by the user in its user profile and dispatched to the server in the connection

establishment process. The pale bands reflect the actual network throughput at the

reception of network feedback. The results clearly demonstrate that the first 14

packets received premium performance. Service degradation is reported by the 15th

reception. This is automatically handled by the QoS Manager that instructs a stream

rate diminution. The next six packets also indicate that network quality is decreasing

and again, stream's bit-rate is adapted to model such events.

9

Bii

N
l

^

^

S-sS

Bi m

•

Figure 8.7: QoS adaptation to a network service
decrease.
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At the reception of the twenty-second packet, the lowest rate is adopted and stays at

that level until network resources become available again. Another choice could have

been to start another connection over ATM and have the media flow routed on this

new service. The latest solution is left to the user to specify in its requirement and

assumes he is ready to pay for such functionality.
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Figure 8.8: QoS adaptation to a service
increase.

Figure 8.8 shows how our solution reacts to a service increase. It is easy to notice

that the QoS Manager is much more careful in augmenting the rate than in decreasing

it. This is supported by the belief that network services are most likely expected to

decrease much faster than they'll increase. In that sense, the algorithm adjusts the bit-

rate incrementally, based on positive re-enforcement from network services. If the

connection had been routed on another network, the Q,oS Manager will optimize its

options and switch it back to the original service provider. The threshold values and

decision parameters can be changed dynaniically to accommodate a wider range of

requirements and offer more flexible services.

0
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0 8.6 - Implementation Framework:

The simulation results of section 8.5 were acquired from test cases made at

different times of the day in our telecomputing laboratory at the University of

Montreal. The targeted platforms are PCs equipped with 433Mhz Intel celeron

processors and 128 Mb of RAM, working under windowsNT 4.0. 10 Mbs Ethernet

network cards are connected to a lOOMbs optic fiber network governed by a central

hub generally mnning at 75% of its capacity.

While acknowledging the fact that this environment does not adequately reflect the

congestion problems of an open Internet, we believe that the heterogeneity of

computers and applications using the network are closely reflect reality. Indeed, the

same network is used to interconnect PC, Mac, Sun and HP platforms. The operating

systems and services required by each are highly variable and therefore introduce

several forms of service impairments usually common to the Internet.

We estimate that the total number of code lines goes beyond 25,000, all programmed

in C/C++ with Microsoft's VC++ 6.0 compiler. We also used MCF interface classes

in the design of user interfaces. To synchronize the access of resources and data

structures from the average 15 threads working simultaneously, we used guarding

mechanisms such as semaphore, mutex and shared resources provided by the native

Win32 system library. Finally, all networking interactions were made possible by the

Winsock 2.0 library and programmed in C.

u

To help in the support of the H.323 protocol stack, we borrowed a standard compliant

product developed by Elemedia Software Inc. [29], a subsidiaries of Lucent

Technologies. Despite many collaboration efforts from our side, the lack of support

by the former entity prevented us from taking advantage of most features provided by

the H.323 standard. We were therefore unable to implement the required support for

audio and video streams and had to fill functionality gaps with the aforementioned set

of in-house protocols and simulation modules {stream generator and connection

manager).
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0 8.7-Summary:

Section 8 described some of the important implementation issues of our QoS

aware protocol stack. Other protocols viewed in section 5 and 6 were also put to

work. The H.323 protocol stack was borrowed from Elemedia Software [29] who

produced a standard H.323 compliant protocol stack that includes all the

functionality, ranging from call establishment to RTP/RTCP library. For complexity

reasons and lack of cooperation from the manufacturer, most features were not

exploited. In fact, only the RTP/RTCP library had been used, even though most

results were useless since no documentation was provided.

Since the foundation of the architecture could not be used, we implemented our own

mechanisms that replicate the behavior of standard H.323 protocols. Such was the

case with the call establishment process, although we didn't deal with gatekeepers,

MCUs and gateways. Home bred protocols had been designed to model application

level QoS specifications. Algorithms capable of translating and working with

degradation paths were also developed.

The novel concept of our work is definitively the introduction of a multi-network

enabled transport layer. It consists of a series of network interfaces and queues

scheduled by a sorted weighted fair queueing algorithm that provides optimum

sequencing results, as mentioned in section 3 and proved by many efforts on the

topic.

Finally, client and server primary interfaces for monitoring were presented with a

short description of the information they report and how it is used. Simulation results

close the present section by showing how our degradation algorithm handles network

fluctuations.

0

The next chapter concludes this work by summarizing the aforementioned content.

An insight into the remaining challenges to address is also given along with

guidelines for future expansions.
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n 9 - Conclusion:

9.1 -Thesis Summary:

The master thesis presented to you addresses the problem of carrying time

sensitive infonnation - audio, video, and data - over network infrastructures that

don't make provisions about time delivery and service availability. An example of

such networks is governed by the IP protocol, whose interconnections are commonly

called the Internet.

The Internet is the most common and available network structure in use today. Since

its early beginning in the 70's, its relatively low cost, flexibility and reliability

characteristics have helped distributed users in many aspects of their work. As the

number of connected users became more important and technology advancements

significantly increased available bandwidth, new types of information exchanges

were requested. Indeed, audio, video and other real-time content such as assembly

line data are now transported over IP.

The main problem stemming from these newly introduced media is that IP was not

designed for such purposes. From the start, IP was not suited for real-time

acquaintance since it is packet based and that TCP - its transport protocol - replicates

corrupted or lost packets infinitely if required to. Another disturbing factor is that the

Internet is suffering from its own popularity and therefore always congested.

Congestion introduces severe delays in core network equipment and leads to packet

loss and corruption. Finally, the highly heterogeneous cloud brought by IP network

interconnection makes any service prediction impossible.

0

The above-described problems lead researchers to design and implement solutions

that could reduce the effect of IP'S real-time deficiencies. Although undoubtedly

ingenious, their work has only corrected some of the encountered gaps and many

more are still to be addressed to efficiently enable IP networks with real-time

capabilities.
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Far from introducing a revolutionary model encompassing the actual challenges

related to multimedia transport in IP, our work presents a gathering of existing

technologies and solutions. The goal is to take as many advantages found in

available concepts and models to build a protocol stack capable of sustaining user

QoS requirements. The final product should be used for distant learning and work in

the Internet environment.

To undertake such a colossal task, we've reviewed state-of-the-art concepts in this

document, as well as technologies related to quality of services and multimedia

distribution in non-guaranteed environments.

The adventure began with the presentation of actual work in terms of real-time

multimedia models (architecture and protocol stack for end-systems). More

precisely, MM applications were classified in three categories encompassing the

available implementations. Requirements for such products were outlined and the fact

that they significantly differ from conventional data transfer applications was

recognized. High throughput, restrictive time constraints, service commitment and

group communication are all valid examples.

We then followed with basic principles that constitute the foundation and support of

QoS in streaming application. In doing so, we saw that packet marking, traffic

isolation, maximum utilization of resources and call admission control are widely

accepted facts lying at the bottom of successful QoS implementations. To concretize

these concepts, enabling algorithms such as the weighted fair queueing and the leaky

bucket policing method were explained. Many efforts on the subject proved that the

aggregation of both ensures a firm and mathematically provable bound on delays that

packets experience in network switching equipment.

0

Still related to basic QoS principles, management activities - namely QoS

management - were addressed. They manipulate stream characteristics to model the

state of the network, adapt to service variations by gracefully decreasing the
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perceived connection quality and deal with service administration such as accounting

and billing.

Chapter 4 describes the essence of existing multimedia applications developed by

leading universities renowned for their work in the support of time sensitive flows

over network links. The most successful projects are presented along with an

assessment of their pros, cons and feasibility.

Chapter 5 presented three protocols actually used by applications requiring media

streaming and manipulation. RTP and RTCP have been designed to bring a common

agreement on packet format tailored to the transport of time-sensitive information.

As such, RTP provides sequence numbers, timestamps, payload identification, and

synchronization information believed to have a common use in all stream transport

protocol. RTCP brings the network feedback feature not supported by IP. With the

conveyed reception report fields, it is possible to have network sampling measures

such as the number of packet loss, an approximation of the throughput and an

evaluation of the jitters introduced by hops on the data path. As for the manipulation

of media streams, RTSP a common choice today. All three protocols are standards,

which should allow interoperability among applications.

The above material was combined with the sixth chapter to present the H.323

protocol umbrella. H. 3 23 is a set of architecture components and protocols working

together to establish a framework viable for real-time data streaming. It addresses

problems pertaining to time constraints and network deficiencies by providing a

means for client applications to select parameters that are best suited to their

environment. It also delivers a standard set of technology requirements (codec,

protocol, signalling) that ensures a common understanding among all participants.

H.323 is a standard ITU specification and already up to its second version. To this

date, it is the most complete model available. It is backed by several industry players

and used in many products ranging from desktop computers to hand held devices.

u
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The H.323 standard is the foundation of our QoS aware protocol stack - chapter 7.

As such, our desire was to incorporate its benefits while introducing features that are

actually not supported. Three main characteristics had been envisioned. First, an

easier QoS representation and specification process to allow for simpler manipulation

by unacquainted users. Second, we recognized the fact that media sessions should be

capable of adapting to network service fluctuations in accordance with users'

specifications. This contrasts with actual implementations where media streams are

becoming glitchy with service impairments. Finally, the novel idea of interacting

with more than a single transport layer sounded interesting for offering a wider range

of possibilities.

Implementing the idea presented in the above paragraph was an endeavouring task.

Our first obstacle was the huge amount of interworking technologies involved in the

design. The best software engineering techniques alone could not solve all related

issues, which left many of them unaddressed. The decision to take an H.323 stack as

a foundation was definitively sound since it follows the actual wave. Nevertheless,

working with this powerful specification introduced a fair amount of complexity that

wasn't been foreseen at first. The lack of support by the manufacturer was also a

disruptive factor.

Our second challenge was to merge the concept of quality of service with distant

learning application. The former is definitively troublesome to define since it

changes from author to author, depending on the research project and target goals.

As for learning applications, they can be classified in the "cooperative work tool"

class of section 2. Most people will agree that such applications pose severe design

and implementation problems induced by the amount of requirements to satisfy - this

project was no exception.

0

Despite these challenges, a working prototype was implemented, proving that our

work is viable. To this date, all stack related issues have been addressed and QoS

parameters can be sustained for packets carrying data. Audio and video streams are
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0 not currently supported since they require supplementary knowledge and modules

going beyond the scope of this work. Chapter 8 described our implementation in

greater details.

The project described in this thesis was implemented by a joint effort from the author

and two other students - Jean-Marc Ng Wing Keng and Yong Guo. Although each

participant contributed to all design aspects of the work, Jean-Marc Ng Wing Keng

and Yong Guo were respectively concerned with implementing the multi-transport

layer and the QoS definition and management. The author's contributions mostly

relate to handling or imitating H. 323 services and are specifically outlined in the

following:

All H.323-related aspects such as protocol definition, media streaming and
connection specification, establishment and management.

• Design and implementation of a client module capable of working with the server
prototype.

• Implementation, generation and management of RTP/RTCP simulation packets
along with the supporting stream generator module.

• Production of QoS information based on the reception of RTCP packets.

• Design and implementation of a set of protocols imitating connection-specific
H.323 protocols used in the connection manager.

• Design and implementation of a global framework into which modules from other
collaborators were inserted.

• Design and implementation of a messaging API allowing reliable, asynchronous
message exchanges between architecture components.

• Design of the state machine allowing for the introduction, manipulation and
departure of users in multimedia session.

0
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0 9.2 - Future Work:

Our final statement concerns some of the work that should be undertaken to

bring the actual realization to a fully working product. The intention is to guide other

researchers in their decisions and provide some guidelines that may ease the design

process of similar prototypes. All topics are considered to have an equal value and

the order of presentation is not related their importance.

An H.323 protocol stack is a definite asset. When making your selection, make

sure that you have sufficient knowledge and that the source code is available.

RTP/RTCP protocols are mandatory in the actual design of streaming

applications. Therefore, an API capable of packaging information according to

the standard is needed.

The base operating system definitively needs to be enhanced with real-time

characteristics; this is not a strong asset in window-based products.

The design of media codec is required for media compression. Several are freely

available, but modifications must be made to have them work with other stack

modules.

If working with more than one network, packet synchronization issues must be

addressed to reconstmct media flows once received at the other end of the

channel.

Other protocols such as SIP and SDP should be envisioned to replace the

expensive H.323 stack.

u
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n Appendix 1 - Part 1 :

/* allHeader.h */

#ifndef allHeader_h
ttdefine allHeader_h

#include <stdio.h>
ttinclude <process.h>
#include <stdlib.h>
#incluâe <string.h>
#include <time.h>
#include <iostream.h>
#include <math.h>

#include "stdafx.h"

#include "rtp/rtp.h"
#include "globalHeaâer.h"

#include <exception>
using namespace std;

ttendif

u
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0 Appendix 1 - Part 2:

/* glogalHeader.h */

ftifndef _globalHeader_h
ttdefine _globalHeaâer_h
#include "winsock.h"

//DO NOT MODIFY. THESE ARE USED BY THE MESSAGEQUEUE.

#define USER_MESSAGE_ID (WM_USER + 1000)
#define MQ_INTERNAL_ID (WM_USER + 100)

#define CM_MSG (WM_USER + l;
connectionManager.
#define QoS_MSG (WM_USER + 2;

//Message coming from

//Message coming from QoSManager.
#define QU_MSG
#define ST_MSG
#âefine PG_MSG

(WM_USER + 3) //Message coming from QueuModule.
(WM_USER + 4) //Message coming from streamer/monitor.
(WM_USER + 5) //Message coming from pinger.

//////Global Mutex guarding the LookUpTable structure 11111
static HANDLE LookUpMutex = CreateMutex(NULL,FALSE,"LookUpMutex");
11111111111111111111

(J

y********************^******-*-**-***^***********-

Message identifiers used by messages queues
to differentiate message senders.

A*********************-*-**^*********^********* /

enum{

// Message sent from connecfcionManager
CM_MEDIA_RQ, //to QoS and ST l
CM_RQ, //to streamer
CM_CONFIRM, //to QoS 2
CM_DENIAL, //to QoS

// Message sent from streamer.
ST_ANSWER, //to CM 3
ST_DENIAL, //to CM
ST_CALL_CLOSED,

// Messages sent from QoSManager
QoS_ANSWER, //to CM 4
QoS_GET_TH, //to PG 5

// Message sent from Monitor
MO_UPDATE, //to QoS 6

// Message sent from Finger.
PG_ASW_TH, //to QoS 7

// For UI.
UPDATE,
QoS_CHANGE,
QoS_CHANGE_ST,
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};

MO_UPDATE_Q,

// group management related.
GROUP_COMMAND, // from streamer to GManager
GROUP_LIST // GManager to streamer.

// QoS parameter structure
typedef struct{

int QoS_VD;
int QoS_VT;
int QoS_AD;
int QoS_AT;
int QoS_P;

}QoS;

/***************-)>i--A-*A'-ilr**-A-**-*****-A-*************-A-

Messge structure tailored with the
above identifiers

********-**-**-A-**-A-***********-A-****-A-*****-A-***-A-*^ /

typedef struct{
int connectionID;
int throughput;
int réseau;

}ChangeStrucfc;

//Structure is exchanged between streamer and queueModule
typedef struct{

int connectionID;
int packetLength;
char buffer[2000];

}PipePacket;

//Parameters sent from CM to QoS_M prior to call establishment
typeâef struct{

int localID;
char name [9];
char ipAddr[256];
int video;
unsigned short rtpPort;
unsigned short tcpPorfc;

QoSViolation.
QoS qos;
int groupID;

}CMmediaRQ;

//only for internal message reference.
//name of the client.
//IP address of the client.
// 0 = not video.
//rtp port to be used by Queue.
//tcp port that should listen for

0

typedef struct{
int connectionID;
char name [8];
int Media;
QoS qos;
char clientlP[256];
int Network;

92



n
unsigned short tcpPort;
unsigned short udpPort;
SOCKET socket;
int throughput;

}LookUpNode;

//Requesfc response sent to QoS_M to CM.
typedef sfcruct{

int localID;
int response;
QoS qos;
char rea3on[256];

the case.
}QoSAnswer;

//only for internal message reference.
// 0 = denied, 1 = accepted.
// the agreed QoS parameters.
// why the connection was denied, if this is

typedef struct{
int throught;
int de l ay ;
int jitter;

time
int Loss_Rate;

}QoSFeedback;

typedef struct{
int localID;
char ipAddr[256];

}QoSGetTH;

typeâef struct{
char ipAddr[256];
int localID;
char us ername[8];
int throughput;
int delay;

}PgAsw;

typeâef struct{
int localID;
int throughput;

}PgAswTH;

typedef struct{
int connectionID;
int video; //
char name [9]; //

}CMconfirm;

//Average packet transmission time
//Average difference between each packet transmission

// From the time of last report till now

0 = not video.
name of the client.

0

typedef struct{
int video;
char name [9];

}CMdenial;
typedef struct{
int connectionID;
QoSFeedback feedback;

}MOpdate;

typedef struct{
int connectionID;
int command;

}STR_GROUP_COMMAND;
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typedef struct{
int command;
int *groupList;

}STR_GROUP_LIST;

0

// DO NOT EDIT.
typedef struct{

int message;
infc wParam;
int IParam;

}USER_MESSAGE;

***************************************************

Varibles for queue management
*******************•*•*•*****•*•*****-*•*****•*•-*•*****

const int NumPackets = l; //Number of tested packets
const int NumQueuesIP = 3; //Number of Queues
const int NumQueuesATM = 3 ;
const int NumThreads = 3;

ftendif
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n Appendix 1 - Part 3:

/* myNetworkLib.h */

#ifndef myNetworkLib_h
#define myNetworkLib_h

ttinclude "allHeader.h"

/********************************************
Internal monitor message identifiers

*********************************************/

#define UI_MSG (WM_USER + 10)
#define MM_MSG (WM_USER + 11)
#define TH_MSG (WM_USER + 12)

#âefine RESUME_MESSAGE (WM_USER + 13)
#define START_MESSAGE (WM_USER + 14)
ftdefine STOP_MESSAGE (WM_USER + 15)
#define SUSPEND_MESSAGE (WM_USER + 16)

ttdefine GET_LIST_ITEM
ttdefine REFRESH

(WM_USER + 17)
(WM_USER +18)

enum{

};

//Messages sent from UI
UI_PLACE_CALL,
UI_DROP_CALL,
UI_START_STREAM,
UI_SUSPEND_STREAM,
UI_RESUME_STREAM,
UI_LIST_CALLS,

//Messages sent from MMSession
MM_ALL_CALL,
MM_SINGLE_CALL,
MM_CLOSED,

//Message sent from RTP_RTCPLisfcener
RTP_UPDATE,

//Message connection establishment
TH_ANSWER,
CM_ACK,
CM_DN

typedef struct{
char ip[256];
char name[256];

}UIPlaceCall;

0
/*********************************************

Constant definitions for
various utilities
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n
/

#define MAX_PACKET_SIZE 4096
#define MAX_PAYLOAD_SIZE 1024
#âefine MAX_PAYLOAD_SIZE 3

ttdefine STRD_SERVER_PORT 14001
ttdefine STRD_CLIENT_PORT 14000

#define SERVER_ADDR "127.0.0.1"
ttdefine CLIENT_ADDR "127.0.0.1"

#âefine DUMMY_INFO "DUMMY_INFO"
#define DUM "000" //this is 96 bits = char[3].

//DEBUGGING
ftdefine QUEUE
#âefine LOCAL //enables loop back.
#define VERBAL //enables printing of status messages.
#define VERBAL_STATS //enables printing of rtcp stats.
#define VERBAL_ERROR //enables printing in socket_error.
ttdefine INTERVAL 60 //infceval between sending two rtcp packets.

// END DEBUGGING

//Identify the state of a MMSession.
typedef enum{CREATED,STREAMING,SUSPENDED,CLOSED} STATUS;

y*********************************************
Command packet specification.
Used in the ConnectionManager class

***********•)(•***************-*-*••*•****•*•**********

typeâef enum{_RQ,_ACK,_DN} PACKET_TYPE;

typedef struct{
char clientAdd[256];
unsigned short tcpPort;
unsigned short rtpPort;
unsigned short QoSPort;

}IP_PARAM;

typedef struct{
char sessionName[8];
int mediaType;
int sampling;

}MEDIA;

i

typedef struct{
int ID;
IP_PARAM ip_param;
QoS qos ;
MEDIA media;
int groupID;
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int

}RQ;
Network;

typedef struct{
int ID;
IP_PARAM ip_param;
QoS qos;

ÎACK;

typedef struct{
int ID ;
char message[256] ;

}DN;

typedef struct{
PACKET_TYPE type;

union{
RQ request;

ACK ack;
DN denial;

}CONTENT;

}PACKET;
// End command packet specification.

.-'. ..

typedef struct{
int ID;
STATUS status;

char *ip_aâd;
unsigned short tcpl;
unsigned short tcpd;
char *sessionName;

}SessionInfo;

typedef struct{
int localID;
RQ rq;

}LocalRQ;

typedef struct{
char ip[256];
unsigned short port;
RQ rq;

}LocalClnRQ;

<J

typedef struct{
int localID;
int connectionID;
ACK ack;

}LocalACK;

typedef struct{
int localID;
DN denial;
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}LocalDN;

typeâef struct{
int ID;
RTCPSenderInfo senderlnfo;
RTPEnâpointStats res;
RTCPReceptionReport rr;
float rtt;
float jitter;
float KbitSec;
char realName[40];
char email[40];
char location[20];
char tool [20];

}STR_UPDATE;

// Utility functions.
// Used throughout the code.

int recvN (SOCKET s,char *buf,int len,int flag = 0) ,-
int sendN (SOCKET s,char *buf,int len,int flag = 0);
void setLinger (SOCKET s,short time);
void getClientInfo(struct sockaddr_in add);
void show_message(char *message);
void show_error(char *message);
void socket_error(SOCKET s, char *message);

float getRTT(unsigned int ntp_sec,unsigned int ntp_frac,
unsigned int delay, unsigned int sent);

float getNTP64tiine (unsigned int sec,unsigned int frac);
float getNTP32time(unsigned int time);

// End utility functions.

// Timer intervals.
#define WAIT 1 // Amount of time stream sockets

// are allowed to linger before closing.
#define WAIT_COMMAND l // Amount of time a client is willing to

// wait after connection request.
// End timer intervals.

#define MAX_CALL_NUMBER 12

#âefine MASK_SEC OxffffOOOO
#define MASK_FRAC OxOOOOffff

u

* ********************************************

QoS specific values
*********************-A-***-*'****-A-***-illr*-A-********

//video related
ftâefine TC_V1 25
ftdefine TC_V1S "96 kb/s"
ttâefine TQV1 96
#define SLEEPV1 l

#defi ne TC_V2 24
#define TC_V2S "48 kb/s"

/
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ftdefine TQV2 48
ttdefine SLEEPV2 2

ttdefine TC_V3 23
#define TC_V3S "32 kb/s"
#define TQV3 32
ttdefine SLEEPV3 3

#define TC_V4 22
ttâefine TC_V4S "24 kb/s"
ftdefine TQV4 24
#define SLEEPV4 4

#define TC_V5 21
ttdefine TC_V5S "19.2 kb/s"
#define TQV5 19
#define SLEEPV5 5

//audio related
#âefine TC_A1 12
#define TC_A1S "96 kb/s"
#âefine TQA1 96

#de fine TC_A2 11
#define TC_A2S "5 kb/s"
#define TQA2 5
#define SLEEPA2 19

lllll l l l-Eïmi 111 II llll II llll/ll ill ll/l l

// Global functions to control
// LookUpTable's mutex opérations.

void getLookUpMutex();
void releaseLookUpMutex();

#endif

0
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