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SOMMAIRE

Les modèles du risque généralisés, qui permettent de faire plus d'hypothèses sur la

distribution du temps d'attente que le modèle du risque classique, sont considérés

par des approches probabiliste et analytique. En utilisant respectivement les

variables de record dans le modèle probabiliste et la transformation de Laplace

dans le modèle analytique, des expressions alternatives de probabilité de la ruine

sont tirées dans chaque modèle et ses liens avec le modèle classique sont étudiés.

Mot clé: probabilité de la ruine
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ABSTRACT

Generalized risk models, which permit much more assumptions on the distribu-

tion of the waiting times than the classical risk model, are considered through

probabilistic and analytic approaches. Employing respectively the ladder vari-

ables in probabilistic models and Laplace transforms as well as complex variables

in analytic models, alternative expressions of ruin probability are derived in each

model and studied in connection with the classical model.

Key word: ruin probability
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Chapter 1

INTRODUCTION

J

A mathematically convenient definition of insurer's surplus is the excess of the

initial fund plus premiums collected over claims paid. Since the amount of surplus

changes through time, let us consider the surplus at time t, namely, U(t), in the

period of interest and define the surplus process as {U(t),t > 0}. To model the

amount of surplus, we study how this surplus process fluctuates in the period

of interest. We are concerned especially with the probability that this surplus

process becomes strictly negative at some point in time, which is called the ruin

probability. In the classical risk theory, the surplus process, especially based upon

the compound Poisson process, is used to derive an explicit formula for the ruin

probability.

However, when we want to calculate the ruin probability in diverse cases,

use of the classical model becomes limited owing to the assumption that the

distribution of waiting times between claims is exponential. This problem may

be solved by building a more general model which has a wider assumption on the

distribution of waiting times. As a matter of fact, this kind of work has already

been done by some authors. For example, Sparre Andersen (1957) proposed the

model in which the distribution of waiting times is arbitrary. Dickson (1998)

derived some explicit results when claims occur as an Erlang process. Borovkov

(1976) also worked on similar cases, but by the use of queueing theory and so on.

The present study will look at the case when the distribution of waiting times

is other than exponential via two approaches. One is probabilistic and the other

is analytic. In both approaches, the random walk whose summands consist of
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the difference between the waiting time and the claim, will be used to solve the

problem with help of random walk theory. Thus, in these approaches, we consider

that ruin is the event when a random walk crosses a barrier. With this new

concept of ruin, some formulations of ruin probability and their interpretations

in connection with the classical model will be carried out.

In Chapter 2 we deal with the classical risk theory: relevant definitions and

assumptions, as well as fundamental theorems in the compound Poisson process

case are introduced. In the next two chapters, the random walk is used to con-

struct more general models than the classical one.

In Chapter 3 we use a probabilistic approach to study random walks, especially

by means of ladder variables. Ladder variables will be defined and their properties

described in Section l. In Section 2 the duality lemma is introduced and used for

proving the relevant theorems therein. Derivations of the formulas for the ladder

variable distributions are given in Section 3, which relate them to Wiener-Hopf

type factorization and the distribution of maxima. Section 4 is for the applications

to the risk theory. An alternative expression to the ruin probability in the classical

model is presented. In Section 5 the ruin probability of the classical model case is

calculated, using the probabilistic model, and compared with the ruin probability

calculated in the classical model.

In Chapter 4 we look at the problem associated with the random walk from

an analytical point of view, by means of the Laplace transform. The Laplace

transform and, in particular, its features for the survival probability are given in

some detail in Section 1. Section 2 defines the class affinité rational distribution

7?.^_ and explains some associated properties by making use of a few examples.
An explicit expression is derived in Section 3 for the survival probability in the

case of the distribution of waiting times being in 7?.^, whereas Section 4 is for
the derivation in the case of the distribution of claims being in 7?.^. In Section 5
the ruin probability of the classical model case is calculated, using the analytic

model, and compared with the ruin probability calculated in the classical model.
l
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Concluding remarks are made in Chapter 5.
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Chapter 2

THE CLASSICAL RISK MODEL

J

2.1. COLLECTIVE RISK MODEL FOR A SINGLE PERIOD

2.1.1. Notion of Aggregate Claims

As explained in Bowers et al. (1997), the collective risk model concentrates on

the total claim amount for a portfolio rather than on an individual claim amount.

According to this approach, we consider a random process that represents a port-

folio as a whole. For that purpose, we need to consider two factors. One is the

random variable that counts the number of claims, which is denoted by N. The

other is the random variable that represents the ith claim amount. We denote the

latter by Xi. The total claim amount S is given by 5 = Xi+^2+- • •+ XN. We

call it the aggregate claims generated by the portfolio for the period of interest. In

this model, the two assumptions are usually made to make this model tractable,

namely,

(l) ^i,X2, . . . are independent and identically distributed (i.i.d.) random vari-

ables.

(2) A^,Xi,^2; • • • are mutually independent.

2.1.2. Distribution of aggregate claims

By simple calculations, we can find out the following:

(l)E(5)=E[E(5|7V)]=E(Xi)E(7V),

(2) Var(5) = E [Var (5' | N)} + Var [E(5 | A^)] = E(A^)Var(Xi) + [E(Xi)]2Var(A^),
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(3) The moment generating function (m.g.f.) of S is

Ms(t)=E{ets)=MN[logM^(t)}. (2.1.1)

One of the most useful assumptions may be that the distribution of N may be

described by the Poisson distribution given by

P(7V=n)=A^-, n=0,l,2,...
In this case, the distribution of S is called compound Poisson. An advantage of

the compound Poisson distribution lies in its mathematical properties that make

the calculations involved easier than for other types of distributions.

By applying the law of total probability, the distribution function of S can be

written as

00

Fs(x) = PCS <x)=J^P{S <x\N=n)P(N==n)
n=0

00

= ^P(X,+X^+---+Xn<x)P(N=n)
n=0

00

= ^P-(^)P(N=n).
n=0

2.2. COLLECTIVE RISK MODEL OVER AN EXTENDED PERIOD

2.2.1. Surplus Process

Let a deterministic process c(t) denote the premiums collected over the time

period [0,*], and S (t) denote the aggregate claims paid over t. If u is an initial

surplus at t = 0, then the surplus at t, U(f) can be expressed as

U{t)=u+c{t)-S{t), t>0. (2.2.1)

We will consider the distribution of U(t) for t > 0, which is difi'erent from the

previous section where we are concerned with the case for a single value of t. Let
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N{t) be the number of claims up to time t. Then we can express S(t) as follows:

S{t)=X,+X,+---+X^, (2.2.2)

where {N {t), t > 0} is called the claim number process. If {N(t),t > 0} is a

Poisson process which is defined as

P [N(t +h~)- N{t~) = k \ N{s) for all s^t}=
e-\hwk

k\

k= 0,1,2,... for all 0 0 and h > 0,

and independent, identically distributed random variables Xi,Xï,... are also

independent of {N(t),t > 0}, then S(t) is called a compound Poisson process.

2.2.2. Ruin Probability

Definition 2.2.1. Ruin is the event "the surplus becomes strictly negative at

some point in time. "

Definition 2.2.2. The time of ruin T is defined as

mm{t:t^0 andUÇt) < 0} ,
T= {

oo if U(t) > 0, for all t > 0.

Definition 2.2.3. The probability of ruin with initial surplus u is

^(u) = P(T< oo).

Let us assume that premiums are received continuously at a constant rate c >

0. Then the previously mentioned process c(t) becomes ct. Consider a compound

Poisson process with parameter A. We usually assume that the premium collection

rate c exceeds the expected claim payments per time unit, which is AE(Xi).

Therefore we express the premium c by

c=(l+0)AE(Xi),
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where 0 is a positive number called the relative security loading.

Definition 2.2.4. The Adjustment coefficient R is the smallest positive root r of

the equation

E(e-rt7(f)) = e-ru, (2.2.3)

if it exists.

Based on this definition, we can derive an equivalent relation in the case of

compound Poisson process. Since

^ç-rU(t)^ ^ ^-r(u+ct-S(t)^

= e-Tue~rctE(ersw)

= e-rue-rctM^)[logM^(r)]

^_^^_^^Àt[E(e'-xl)-l]

J

= e-TU exp [-ret + Xt {E{erxl ) - l)] ,

Eq. (2.2.3) becomes

e-ru exp [-ret + AA (E(erxl) - l)] = e

-ret + Xt {E(erxl) - l) =0

-rc+A(E(erxl)-l) =0

—ru

re^^l+^=E(erxl).
A
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By substituting (1 + 0)AE(Xi) for c in the above equation, we obtain

l+(l+0)E(Xi)r=E(er^). (2.2.4)

The reason that the adjustment coefficient R is important is that it is very closely

related to the ruin probability. This can be demonstrated in the following theo-

rem.

Theorem 2.2.1. Suppose that U(t) is the surplus process based upon a compound

Poisson aggregate claims process S(t) with positive relative security loading and

the adjustment coefficient R> 0 if it exists. Then, for u >0,

exp(-Ru)^(u)=
E[exp(-RU{T)) |T<oo]'

(2.2.5)

Since

U{T) <0 if T< oo and E[exp(-^[/(T)) |T< oo] > 1,

we get Lundberg's inequality:

-0(-u) < e-Ru

The following theorem is proved in Bowers et al. (1997, p.427), by means of

an integral equation.

Theorem 2.2.2. For a compound Poisson process, the probability that the sur-

plus will ever fall below its initial level u and will be between u—y and u—y—dy

when it happens for the first time is given by

^ [l - F^{y}} dy = -^^dy, for y > o, (2.2.6)
where 6 is the relative security loading.

According to Theorem 2.2.2, the probability that the surplus will ever fall

below its original level is

I^EW/^l-FXWdv=ÏL»- <2'2'7)
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(2.2.8)

which is the same as

^(0)=^.
2.2.3. Maximal Aggregate Loss

Definition 2.2.5. The maximal aggregate loss is defined by

L = max {5(^) -et}.
t>0

Using this definition, for u > 0, the distribution function of the random vari-

able L may be expressed as

l-^{u) = P [U(f) > 0 for all t]

= P[u+ct- S(t} > 0 for all t]

= P [S{t) -ct<u for all t]

J

= P[L<u]. (2.2.9)

Let TI be the first instant t such that U{t) < u, provided that it ever happens.

We define a random variable Li denoting the amount by which the surplus falls

below the initial level for the first time, granted that this ever happens, as

L-i = u— U.n-

Again, let r^ be the first instant t after TI such that U(t) < Ur^ given that this

ever happens. We define a random variable I/g in the same manner as for Li,

namely,

L,=U^-U^.
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Repeating in the same way, we can express L in terms of L,. That is,

L = Z/i +I/2+- • •+ LN, where N is the number of new record lows.

Here Li, 1/2,... , I'AT are i.i.d. and independent of N which has a geometric dis-

tribution, that is,

l \"+1
P(^=n)=[l-^(0)][^(0)]7l=^—^J , for n=0,l,...,

and the m.g.f. of N is

M^(r) =
e

l+0-er'

Thus Eq. (2.2.9) becomes

l - i/,(u) = P(Li +L^+---+LN <u). (2.2.10)

Equation (2.2.6) is not a probability density function (p.d.f.), because it does

not integrate to l. But, by setting a condition that the ruin ever happens, we

can make it a p.d.f. of random variable which is identical to Z/i. Since

l
P(TI < oo) =^(0) =

1+0'

the p.d.f. for Z-i is

/L.(y) =
E^à^[l-FX(y)]

l
i+e

l

E )
[l-^x(2/)].

J

Hence the m.g.f. of Z/i is

M^(r)=
l 00

ery[l-Fx{y)}dy.
E ) Yo

By performing the integration by parts, the (2.2.11) becomes

(2.2.11)

l

i
l



^

11

Ml-<r' = È(i) [?(1 - ^<»)']^ + ^) r^wy
l

rE(Xi)[M^(r)-l]. (2.2.12)

According to (2.1.1), the m.g.f. of L is

M^(r) =
e

Therefore by (2.2.12), we have

M^(r) =

l+ô-M^r)'

0E(Xi)r
(2.2.13)

l+(l+0)E(Xi)r-Mx(r)'

By taking (2.2.9) into consideration, since L > 0, we can say that L has a point

mass of l — -^(0) at the origin and is distributed continuously for the strictly

positive L. Thus we obtain

M^(r) = 1-^(0)+/ eur[-^/(u)]riu
'0

•00

^+/ eur[-^\u}}du. (2.2.14)

J

Hence from (2.2.13) and (2.2.14), we have

r-'-^=^^,:K)l]M.,). —>
Let us suppose that the distribution of claims is a mixture of exponentials,

that is,

n n

fx{x) = ^Ai^e-f)tx, for re > 0, where ^A, = l, A, > 0, A > 0.
1=1 î=l
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Then the m.g.f. of X is

n

^(r)-EA.^-
î=l

A
A-y'

(2.2.16)

By replacing M^-(r) in (2.2.15) with (2.2.16) and applying the method of partial

fractions, we have

•00

y»
n

CiTi
eur[—i{}'{u)}du = ^ , where Ci and ri are some constants,

which implies that

n

^(^)=^Qe—TiU

t=l

Hence we can conclude that when the distribution of claims is a mixture of expo-

nential distributions, the probability of ruin is a series of exponential functions

multiplied by some constant.

Example 2.2.1. Let

,-23: i ^ ^ /1^-42: 3
f^x)=^-2e-2x+^-4e-ix and 0 =-.

Then we have

J

^ - H-H=â.

Mx(r} = 7
1234

+T
4 2-r'4 4-r
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Thus
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l
^iM = 7E(^)[MX(r)-l]

—(1---^+3--4--1
5r/16 Y4 2-r'4 4-r

16 fl 1,3 l
T li" 2-7- +4" 4-r

4 l 12 l
+^

5 2-r ' 5 4-r

22.34
+^

5 2-r ' 5 4-r'

Since ^(Q) = 1/(1 + 0) =5/8,

M^(r) = M^(logM^(r))

3/8
l- ^ fj. ^+^. _JL^

8 V5 2-r ' 5 4-r-Y

j(2-r)(4-r)5

j(2-r)(4-r)-[|(4-r)+f(Y--r)J

24 - 18r + 3r2
24 - 32r + 8r2

11 33 . 9
8+Î6"l-r+Î6' 3-r'

Thus

^)=^P(L^)=^-^e-



Hence

14

^(u) = P(L>u)

•00

'u

d
dx

P(L < x)dx

9-e-u + ie-3".
16e ~+16e '"•



Chapter 3

PROBABILISTIC APPROACH

In the previous chapter, we looked at the problem of ruin probability in the clas-

sical model. In this chapter, on the contrary, we would like to take a general

modeling approach, especially by means of the combinatorial methods and lad-

der variables. As for the method used in the present study, one is referred to

Feller (1971, Chapter 12). Some properties mentioned without proofs are proved

here, and detailed explanations are added to the existing proofs, summarizing the

content of Chapter 12 of Feller(1971). In the general model to be studied in this

work, we look at the ruin probability problem from the perspective of random

walks crossing a barrier.

J

3.1. DEFINITIONS AND PROPERTIES OF LADDER VARIABLES

Suppose that mutually independent random variables X-^^X-i,... have com-

mon distribution -F. Let 5<o = 0 and Sn = Xi+X^+- • •+ Xn, Then the sequence

{Sn,} constitutes the random walk generated by F. We say that Sn is the position,

at epoch n, of the random walk.

Consider the sequence of point (n, Sn) for n = 1,2,.... By observing the

graph of the sequence, one may notice that Sn reaches record values at some

epochs. We call these record values ladder points. These epochs and the record

values have very useful features for the calculation of ruin probabilities. For

example, they have the property that the sections of the random walk between

the ladder points are independent and identically distributed (i.i.d.). This is one

of the reasons that study of the first ladder point is so important.
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Definition 3.1.1. The first strict ascending ladder point (7Ï, ?^i) is the first term

in the sequence of points {{n, Sn)}n=i for which Sn > 0. That is, 7i is the epoch

of the first entry into the strictly positive half-axis defined by

{Ti =" }={5i < 0,... , ^_i < 0,^ > 0}, (3.1.1)

or 7i = oo if Sn <0 for all n. We denote

^1 = ^Ti • l{Ti<oo} + 00 • l{ri=oo}-

We call 7i the first ladder epoch and H-i the first ladder height. Furthermore, we

write

H(x) = PÇ-Hi < x).

Following the first ladder point, the first point which satisfies

)n > >-50ï- •• ; '-37z > <-)n-lî

is called the second ladder point and denoted by (7Ï + 72,'Hi + ^2)- In general,

the rth ladder point is of the form (7Ï+---+7^, ?Zi+---+^). The pairs (7^,^)

are clearly i.i.d.

Definition 3.1.2. The renewal measure for the strict ascending ladder height

process is defined as

00

'0 (3.1.2)^=J"Hn\ H°*=^o
n=0

and its improper distribution function is given by

^(a;) =-4}{{-oo,x}},

where ipo is the atomic distribution with unit mass at the origin. That is, for any

interval I

t^o(I) =1 if OG I, ^o{I) =0 otherwise.
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Proposition 3.1.1. Let N<^^ be the number of the strict ascending ladder points

in (0, a;]. Then

^(x) = l + E(TV(O,,]).

PROOF. For a; > 0,

E(^V(O,.]) = / P(N(^>y)dy=^P{N^]^k)
/0 ^î

00 00

= ^P(^l+...+^<2;)=^^(2;)
À:=l

00

k=l

^Hk^x)-^Çx)=^x)-l.
fc=0

Proposition 3.1.2. The following relation holds:

^(CX))=^^(00)=^
n=0

H(oo)'

PROOF. If 'HI , ^2 are proper,

P(^l +^2 < OO) = [P(^i < OO)]2 == l.

If not, let

Jf(oo) - Urn H{x) and H{x) =
2;—>-00

H(x)
H{oo)'

D

Since H{x) -^ l asx —>• co, H{x) is proper. Using this notation, we prove this

proposition as follows.

By the definition of convolution,

•y

^2*(oo) = lim / H{y-z)dH(z).
y-^COJo
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Dividing two sides of the equation by -H-2(oo), we obtain

^^ = \\mfvH{y-z}dH{z}
[oo) V-^^JQ

Hence

and more generally

lim P(^i+^2<2/)=l.
y-foo

^(oo)=[ff(oo)]2,

HW(oo)=[H{oo)}n.

Therefore,

00 00

^(cx))=^^(cx))=^[^(oo)r=^-
n=0 n=0

-H'(oo)'
D

Definition 3.1.3. The first weak ascending ladder point (7ï, ?^i) is the first term

in the sequence of points {{n, >S'n)}^_^ for which Sn>0. That is, 7i is defined by

{T, =n}={S,<0,..., ^_i < 0, ^ ^0},

or TI = oo if Sn < 0 for all n. And we define

^1 = 5-^ • l^<o,} + 00 . Ï^^Y

We denote H{x) = P(^i < x).

Proposition 3.1.3. Let

C - P i==o)

J
00

= ^P(5i<0,...,^_i<0,^=0).
n=l
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Then

H=^+{1- (:)H.

PROOF. We suppose that 71 < oo. Then for a; > 0,

H(x} = P(^i < re)

= P(^i<2;,^i=0)+P(7Zi^a;,^i>0)

= C + P(^i <.x\n^> o)P(?Zi > o)

However,

= C+P(^i<^l^i>o)(i-C).

P(^1<2;,^1=0)

=P(7Ï < 00,^1 ^x,Ui =0)

= P(ST, = 0, Ti < oo, ST, < x)

= S p(7ï = n' 57i = 0,7Ï < oo, 5r, ^ a;)
n==l

00 00

=^^P{Ti=n,Sr,=0,T,=n+k,Sr, < x)
n=l k=l

00 00

19

(3.1.3)

=Y^^P(Ti=n+k,Sr^x\r,=n, 5^ = 0)P{T, = n, S^ = 0).
n==l k=l

By the properties of Markov Chain, (3.1.4) becomes

(3.1.4)

00 00

y.y.
z—/ z—/
n=l fc=l

P(7Ï=À,5r, <^)P(7Ï=n,5^=0)
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00

= ^P(7i < oo^r, < ^)P(7Ï = n,^ = 0)
n=l

= P(Ti < oo, ST, ^ 2;)P(7Ï < 00, Sr, = 0)

= P(^i ^ a;)P(^i = 0).

Hence we can say that {'H^ <: x} is independent from ^Tîi = 0} . This also im-
plies that {'H^ <, x} is independent from [1î^ > O}. Therefore for a; > 0, (3.1.3)
becomes

H{x} = C+P(^i<a;)(l-C)

= C^(^)+(l-C)^). D

J

We shall denote by '0 the renewal measure for the weak ascending ladder

height process and define it in the same way as for •0, namely,

00
\~^ T-1,/,=> \Hn\ where H^ = ^o.z^
71=0

The weak and strict descending ladder variables are defined by reversing the

inequality in the definitions (3.1.3) and (3.1.1). They are denoted by adding a

superscript minus, for example, H~ and H~ respectively.

Proposition 3.1.4. There holds

^=
l

i-c
^.

PROOF. Suppose that there are No weak ladder points whose values are equal to

0 in interval [0,'%i) and there are N-^ weak ladder points whose record values are

equal to T^i in interval [Hi,'H^) and so on. Then we notice that Ni are i.i.d. and

have a geometric distribution with parameter l — C- Thus E(A^) = ^. Let -/V[o,2;]
be the number of weak ascending ladder points in [0,x], A^(o,a;] be the number of
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strict ascending ladder points in (0, x] and 7n be the last epoch where S-j-^ < x.

Then fora; > 0, we have

Thus

^[0,.] = A^o+ (l +M) + (1+^2) +••• + (1+ ^) .

E(JVto,.]) = E(A^o) + [l + E(M)] E (^V(o,.])

Hence

e l

i-c 'i-c
[^(.r) - l]

= ec-Tlc+^)

î—'^(x) - l.
i-c

l
l+E(7V[o,.])=^)=^^(^). D

J

3.2. DUALITY AND TYPES OF RANDOM WALKS

In this section we present a duality lemma. It is essential to prove the associ-

ated theorems that follow.

Lemma 3.2.1. (Duality) For every finite interval I C (0, Go) , '4){I) is equal to

(a) the expected number of ladder points in I.

(b) the expected number of visits Sn ^ I such that Sk > 0 for k = 1,2,... ,n.

PROOF. For a fixed n, let

^1 = -^n, • • • ; ^n = ^l;

sk= xl + " •+ xk-
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Since the joint distribution of(6'o,... , Sn) and that of (5'^,... , S^) are the same,

the event A in (S'o,... , Sn) is mapped to the event A* in ÇS^,... , S^) with the

same probability by a correspondence Xk —> X^. Hence the event

'n > '-ÎQ) • • • ; '~5n -> *-5n-l;

can be mapped with equal probability to the event

S:>S^,...,S^>S:_,. (3.2.1)

But the event S^ > S^_^ implies that Sk > 0, because

1k ~ tjn ~ IJn-k-

Thus the event (3.2.1) can be rewritten as

S^>0,... ,Sn>Q.

Hence, for every finite interval I C. (0, oo),

P(^ > S,,j =0,...,n-l,SneI)= P(5, > 0,j =l,...,n,SnCl). (3.2.2)

Summed over n, the left side is the expected number of ladder points in I and

the right side the expected number of visits 5'n £ J such that Sk > 0, where

A; = 1,2,... , n. D

Theorem 3.2.1. There exist only two types of random walks.

(t) The oscillating type: Sn oscillates with probability 1 between —oo and oo , and

E(Ti) = œ, E(7^-) = oo.
(ii) Drifts to —oo or oo.

PROOF. When > is replaced by ^, Eq.(3.2.2) still holds. Then, for / = [0,oo),

P{Sn >Sk, 0<k<n)= P{Sk > 0, 0< À; < n). (3.2.3)

The left side of Eq. (3.2.3) is equal to

P {(n, Sn) is a weak ascending ladder point with ordinate m [0, oo)} .



")

23

Summing over n, we obtain
00

l + ^ P {{n, Sn) is a weak ascending ladder point with ordinate in [0, oo)}
n=l

= l + the expected number of weak ascending ladder points in [0, oo)

J

= ^(oo) = ^-^:^ (oo)

l

(l-C)(l-lY(œ))-
On the other hand, the right side of Eq. (3.2.3) is equal to

P(Tf > n).

If T{~ is proper, summing over n, we obtain

^P(T,->n)=E(7ï-).
71=0

Therefore, from two Eqs. (3.2.4) and (3.2.5), we can write

l
E(rr) =(l-C)(l-^(oo))-

Thus

E(7i-) < oo <==> H{oo) <1 ^^ 7Ï is defective.

If 71 is proper, for the same reason, we can also write

l
E(7Ï) = r (œ) =

l-H-Çoo)'

Thus

E(7i) < œ -^=> H~ (oo) < l <=^ 7i- is defective.

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

We divide the cases depending on whether E(7i-) < oo or E(7Ï) < oo, or both

E(7i-) = oo and E(7i) = oo. In the first case, let us suppose that E(7i~) < oo,



24

J

Then, by Eq.(3.2.7), 7i is defective, which implies P(the number of pair (7k,/Hk)

is finite) = 1. Therefore the random walk drifts to —ex). Similarly if we suppose

that E(7i) < oo, then T{~ is defective and the random walk drifts to oo. The

second case is obviously the case where Sn oscillates with probability 1 between

—oo and oo. D

Theorem 3.2.2. (i) If E(Xi) = 0, then T-i-^ and 7i are proper and E(7i) = oo.

(ii) If E(Xi) is finite and positive, then 'Hi and 7i are proper, have finite expec-

tations, and

E(^i)=E(7I)E(^i).

The random walk drifts to oo.

(iii) If E(Xi) = oo, then E (?^i) = oo and the random walk drifts to oo.

(iv) Otherwise either the random walk drifts to —oo (in case either 7-Li is defective,

or Ti-i is proper and E(T^i) < oo) or else E (?^i) = oo.

PROOF, (i) In view of Theorem 3.2.1, let us suppose that there exists only two

types of random walks and let

nfc = Ti +72+- • -+7fc.

Then n^ —>• oo as Â;^- 00. By the strong law of large numbers,

s,
"fc (^i+...+^)A

—>• 0, as k -^ oc.
nk (Ti +72 + • • -+7fc)/^

Since ('Hi +• • • + 'Hk)/k converges to a positive number,

(7i+?2+-• •+7fc)/A;—> oo, as k-> oo.

Again, according to the strong law of large numbers, this implies 7^ is proper and

E(7Ï) = oo. Thus /H]_ is also proper.

(ii) If 0 < E(Xi) < oo, then the random walk drifts to oo. (As a reference,

see Loève(1977, vol.l, p.384).) This implies that 7i- is defective. Therefore, by
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Eq.(3.2.9), E(7ï) < oo, 7Ï is proper, and so is T^i. By the strong law of large

numbers, we have

5,
"A

nk

And we know that as A; —> oo,

E(Xi), as nk —)• oo.

Sn, , E(^0
nk ' E(7Ï) •

Therefore we obtain

E(^)=E(Ti)E(Xi).

(iii) In this case, the same argument as in proof (ii) can be done. Hence we

have E(^i) = oo since E(Xi) = oo.

(iv) On one hand, if 'H\ is improper, then the number of Tfc is finite and

P(7Ï = oo) > 0. From Eq.(3.2.6),

E(r^=(l-î)P(7;=co)<00'
Thus, the first case of Theorem 3.2.1 is impossible, namely, the random walk

does not oscillate between —oo and oo. Therefore the random walk drifts to oo

or —oo. If we assume that it drifts to co, the number of Tk is infinite. However,

this contradicts the fact that the number of TA; is finite. Hence the random walk

drifts to —oo.

On the other hand, if ^i is proper, we can say that for a; > 0,

P(^i >x)> P(Xi > re). (3.2.10)

By integrating this with respect to x from 0 to ex), we obtain

E(^i) > E(Xi).

If E ("Hi) < oo, then E(Xi) < oo. In the case 0 <, E(Xi) < oo, one is referred to

the proof of (i) and (ii). Therefore, if E(Xi) < 0, the random walk drifts to —oo.

This can also be confirmed by Loeve(1977, vol.1, p.384). D
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Corollary 3.2.1. // both T-L-^ and T-i^ are proper and have finite expectations,

then E(Xi) = 0.

PROOF. From Eq. (3.2.10), we can derive an analogous inequality for a; < 0.

Thus if "Hi and Ti^ are proper and have finite expectations, then P( |Xi| > x)

is integrable and consequently E(Xi) exists. However, if E(A'i) > 0, then the

random walk drifts to oo and 7i]~ is improper. If E(Xi) < 0, then the random

walk drifts to —oo and 'Hi is improper. Therefore both cases contradict the fact

that both Hi and '%f are proper. Hence E(Xi) =0. D

3.3. DISTRIBUTION OF LADDER HEIGHTS

3.3.1. Derivation of formula

Consider a modified random walk which terminates at the first entry into

(—oo, 0]. For an arbitrary interval I and n = 1,2,..., we denote by -0n {1} the

defective probability that the position of this modified random walk at epoch n

is within I, namely,

^{I}==P{S,>0,...,Sn>0,S^I~),

where

^{(-oo,0]}=0.

From Eq. (3.2.2), we can write

^ {1} = PÇSn >Sj foTJ=0,...,n-l and 6', € J).

In other words, ipn {1} represents the probability that (n, Sn) be a strict ascending

ladder point with Sn 6 I. Summed over n, it becomes

00

^^{J}=^{/}, (3.3.1)
n=0
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where '0 {1} is the expected number of strict ascending ladder points with the

ordinate I. As proved in Feller(1971, p.185), ^{x} = ip {(—00,2;]} < oo for all x.

Therefore the series in Eq. (3.3.1) converges for every bounded interval I.

Consider the distribution of the weak descending ladder process denoted by

-fff. For typographical convenience, we denote it by p from now on. Also we

denote by pn {1} the probability that the first entry to (—00, 0] takes place at

epoch n and within the interval J, namely,

Pn{I} = P(5l > 0,... ,5,_l > 0,^ < 0,5, e J),

where

^{(0,œ)}=0.

By summing over n, we obtain

00

^Pn[I}=P{I}, (3.3.2)
n=l

which represents the possibly defective distribution of the point of the first entry.

Let

A^ = (5i > 0,... ,^_i > 0,^ < 0,5^ e /).

Then

J

An n Ap = 0, where n^ p.

Therefore

00

E^(A") ^ L
n=l
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Hence the series in Eq. (3.3.2) converges. With the notations introduced so far,

we can derive recurrence relations for t^n and pn. For J C R- = (—00, 0],

p^+i {7} = P(S,>0,...,Sn> 0, ^+i < 0,5,+i G J)

P(5i > 0,... ,^ > O,^ e dy, Sn^ ^ 0, Sn+i e J).
ro-

Since Sn and Sn+i are independent,

p^+1 {J} = / P(51 > o,.., ,^ >o,5, e ri?/)P(^+i - ?/ G J-T/)
'0-

P(5i >0,...,Sn>0,SnÇ dy)F(I - y)
ro-

00

^n{dy}F{I-y}.
0-

For I CR+= (0, oo),

^n+r{I} = P(5i>0,...,5I^i>0,^+iGJ)

•00

P(S,>0,...,Sn>0,Snedy,Sn+^I).
'0-

Since Sn and Sn+i are independent,

•00

^+i{J} = / P(S,>0,...,Sn>0,Snedy)P{Sn+,-y^I-y)
'0-

00

^n{dy}F{I-yY
0-
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By summing over n, we obtain

•co

p[I} = l ^{dy}F{I-y), ifJc(-oo,0], (3.3.3)
Fo-

•00

^{1} = l ^{dy}F{I-y\ ifJ C (0,œ).
'0-

(3.3.4)

Let p{x} = p{{-oo,x}} and ^ (a;) ='0 {(-oo, a;]} , then Eqs. (3.3.3) and (3.3.4)

are

J

•00

p(rc) = / -^{dy}FÇx-y),
'0-

^(a;) = l+V'{(0,a;)},

•00

= 1+ / ^{dy}[F[x-y}-F{-y}}
'0-

x<0 (3.3.5)

x>0

•00

= l-p(0)+l ^{dy}F {x - y) , x>0.
'0-

Proposition 3.3.1.

p+-0 = '0o+'0*^

00

^0+^^n*^.
n=0

PROOF. For a; < 0, the left side of Eq. (3.3.7) becomes

p {(-oo, x}}+^ {(-oo, a;]} = p(a;) + 0.

Furthermore, the right side of Eq. (3.3.7) can be written as

^o {(-oo, x]}+if;* F{x} =0+1 ^ {dy} F{x - y).
Fo-

(3.3.6)

(3.3.7)
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Then, by Eq. (3.3.5), it is possible to show that the proposition is true.

For x ^0, the left side of Eq. (3.3.7) becomes

p{(-oo,2;]}+^{(-oo,2;]}=p{(-oo,0]}+^{(-cx),3;]}=p(0)+^(a;).

Furthermore, the right side of Eq. (3.3.7) may be expressed by

V^o {(-oo, x}}+^* F[x~} =1+1 tp {dy} F(x
'0-

Then, by Eq. (3.3.6), this proposition is also shown to be true. D

3.3.2. Wiener-Hopf Type Factorization

From Eq. (3.1.2), we write

^*H=
00

Y^Hn*) * H.
,n=0

Since all the terms are positive,

00

^*H = Y^{Hn^H)
n=0

00

= E^-

Therefore

n=l

00 00

tpo+^*H = ^+^HW=H^+J"HW
n=l 71=1

00

= ^Hw=^.
n=0

By convolving Eq. (3.3.7) with H, we obtain

/

p*H+tp*H=tFo*H+ip*H*F.

(3.3.8)
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ByEq.(3.3.8),

^==» p*H+^-^o=H+(^-^o)*F

p*H+^-^o=H+tp*F-F. (3.3.9)

On subtracting Eq. (3.3.9) from Eq. (3.3.7), we obtain

p-p*H = F-H

<S=^ F=H+p-H*p. (3.3.10)

Since an analogue to Proposition 3.1.3 is

p=C^o+(i-C)^-,

where C is defined as in Proposition 3.1.3 with the inequalities reversed, Equation

(3.3.10) can be expressed as

F = ^+^o+(l-C)^--^*[C^o+(l-C)^-]

= ^o +^- (l -O^o + (l - C)-^~ -C^*^o - (l -C)^*^~

= V,o+(i-C)^-(i-c)^+(i-0-9r--(i-C)^:*:^-

J

= ^^{1-^[H-^-}-H--H*H-

= ^0 - (l -C) [(^0 - ^) * (^0 - ^-)] .
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3.3.3. Distribution of IVEaxima

Let us assume that the distribution F has a density / and a negative expec-

tation. Thus the random walk drifts to —oo and we can define a finite valued

random variable M as

M=max[0,^i,6'2,...]. (3.3.11)

Then fora; > 0, by conditioning on X-^, the probability distribution function of

M, that is, M{x) is given by

M(x) = P(M<x)

= /:
—00

M{x-y}f[y}dy. (3.3.12)

With s=x-y, Eq.(3.3.12) becomes

M{x} = l M(s)f(x - s)ds. (3.3.13)
'0

On the other hand, given that the nth ladder point occurred, the probability

for being the last one equals l — H(oo). And we know that

HW{x)=P^+---+Hn^x).

Thus we can derive another equation as follows:

M(rr) = [l-^(cx))]^^n*(^) (3.3.14)
n=0

= [l-H(oo)}^(x), (3.3.15)

where tp(x') satisfies Eq.(3.3.6) with p{0) = 1, because

p{0) = p {(-oo,0]}

= probability that the first entry to (—00, 0] takes place within (—00, 0]

l.



33

^

Therefore, for x ^0, by replacing t^(x), Eq.(3.3.15) becomes

M(x) = [l-^(cx))] / ^{dy}F(x-y)
'0-

•00

F{x-y)d{[\-H{^}}^{y}}

•00

F{x-y}dM{y}

= [F(x- y) M(y)^_ + / M{y)dyF {x - y)
Fo-

J

lim [F (x - y) M(y)} - FÇx - O-)M(O-) + / M(y)f(x - y)dy.
2/->oo - - JQ-

Since limy^oo F(x - y) = 0 and M(0-) = 0,

M(x) = f M{y)f{x - y)dy, for x^O.
ro

Hence we can conclude that the two equations (3.3.13) and (3.3.15) are identical.

Eq.(3.3.13) is said to be a standard form of the Wiener-Hopf integral equation.

3.3.4. Example

Suppose that F has an expectation /J. ^ 0 and that there exists a number

K 7^ 0 such that

eKyF{dy}=l.
—00

For an arbitrary measure r, we define a new modified measure by

a^{dy}=eKyr{dy}.

The measure aF is said to be associated with F, and "Fis a proper probability

distribution. Then we say that the random walks generated by aF and Fare

associated with each other.
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Let

(f) {t} = l eytF {dy} , for 0 «< K.
—00

Since 41"(t} > 0; <?'> is a convex function. Thus çi>(0) = ç!)(/î) implies that (f) (0) and

ç!> (/<) have opposite signs. Because (f) (0) = E(Y) if F is the distribution function

of y, and çi> (/î) = E(ay) if aF is the distribution function of "V, the random

walks induced by aF and F have drifts in opposite directions from each other.

Hence it is useful when we want to translate the facts about a random walk with

/j, < 0 into results for a random walk with p, > 0 and vice versa.

J

3.4. APPLICATION

3.4.1. Khintchine-Pollaczek formula

When we mention the distribution M shown in Section 3.3.3 in connection

with the ruin problems in compound Poisson process, the underlying distribution

is of the form

F=A*B, (3.4.1)

where A is the probability distribution function of waiting time Aj, concentrated

on (0,oo) and -Bis that of claim Bj, concentrated on (—oo,0). This means that

the summands of the random walk can be expressed as

X,=A,+B,, for j =1,2,...

Assume that the right tail of F is exponential, that is,

F(x)=l-pe~ax, for a; >0,

where p is constant. If -F is of the form of (3.4.1) with

A(x) = l - e-ax, for a; > 0,

(3.4.2)

(3.4.3)
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then

A[x-y}B{dy} = / [l - e-a^x-^} B
-00 •/ —00

{dy}

B{dy}-e-ax / eQl/B {riy}
—00 •/ —00

r-o
l - e-ax j eayB {dy}

—00

J

Thus

l-pe-ax.

p= l eavB{dy}.
-00

That is, the condition of the expression (3.4.2) holds.

As we noted in the previous chapter, we generally assume that, in the risk

model, a premium collection c exceeds the expected claim payments per unit

time. This assumption corresponds to the random walk with /^ > 0. Thus, the

classical model in the previous chapter corresponds to the model in the general

framework that we have seen so far in this chapter, with the condition that F in

(3.4.2) has a positive expectation. Let us suppose that F is of the form expressed

by Eq.(3.4.1) with A given by Eq.(3.4.3), B having a finite expectation —b and

/^= ^ —&> 0. We also suppose that F is continuous. As shown in Feller(1971,
p.405), the ladder height distribution H has a density proportional to e~ax (This

is a consequence of our Eq. (3.3.5) with the two half-axes interchanged). Since p,

> 0, H is proper and the random walk drifts to oo. Hence for a; > 0,

H{x) = l - e-ax.

Considering the analogue to Eq.(3.3.14) (again interchanging the roles of the two

half-axes), H in the expression (3.3.14) should be replaced by p in (3.3.5) which
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0

According to (ii) in Theorem 3.2.2 and Eq. (3.2.8),

E(^)E(7i) = E(^i)

l 1/a
l-H-{oo) ^

Since Fis continuous, H~{oo) = p(oo). Thus Eq.(3.4.6) implies

p(oo) = l — a^i.

Since p,= L — b,

p (00} = Otb.

36

is equivalent to

^
p(x) = F{x) + a f F{s)ds, for x < 0,

—00

and also M in (3.3.14) by m = min [0, 5'i, 52,...]. That is, for a; < 0,

00

P(m ^x) = [l- p{oo)}^pn*{x), where m = min[0,>5i,52,...].

(3.4.4)

(3.4.5)

(3.4.6)

Because /?{(0,oo)} = 0, we note that p(oo) = p(0). Hence Eq.(3.4.5) becomes

P(m^x)=[l-ab]^pn*(x), for re < 0. (3.4.7)
0

This is the probability that the minimum position of the random walk is less

than or equal to a certain level. Since ruin means that a random walk crossing

a barrier, the above equation is another expression of ruin probability. Thus we

can say that calculating ruin probability is the same as finding the distribution

of m = min [0, 5'i, 5'2,...]. Using the notations introduced earlier in Chapter 2,

we can rewrite (3.4.7) as follows:

•0(u) = P (m ^ —-u),
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or

00

^(-x)=C^pn*(x), for a; <0, (3.4.8)
0

where C is positive constant. Here we can actually notice that Eq. (3.4.8) has the

similar pattern as Eq.(2.2.10) except that p is defective for p(0) = ab < \. But

I/i is proper since it has a conditional distribution, given that TI < oo. And the

defective part of p, l — ab can be compared to the point mass, l — -0(0) of L at

the origin. Therefore Eq. (3.4.8) can be regarded as an alternative expression to

Eq.(2.2.10) by means of ladder variables.

3.4.2. Asymptotic Estimate

To find out the tail behavior of the distribution of M in (3.3.15), let us get

the estimates for the tail of the distribution of M. As we mentioned in Section

3.3.4., by means of the associated measure, °"^ {dx} = eKX^ {dx}, Eq.(3.3.15) can

be rewritten as follows:

M {dx} = [l - H{oo)\ e-KX • a^ {dx} ,

which is equivalent to

dM{x) = [l - H(oo)} e-Kxda^(x).

Integrating from t to oo, the left side of (3.4.9)is

•00

dMÇx) = l-M{t).
4

(3.4.9)

Suppose that f3 < oo, then by the Renewal Theorem(see Feller(1971, p.360)),

ai^{dx) ~ T;, as a; ^ oo.
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Therefore integrating from t to oo, the right side of (3.4.9) becomes as t -)• oo
•00 yoo

[l-7:f(00)] / e-KX-da^x) ~ [l-H(oo)}l e-lîx • ^dx
't Jt

= [l-^(oo)]
e-Kt

/3/î '

where

•00

/?= / xeKXH{dx}.
'0

(3.4.10)

(3.4.11)

3.4.3. Cramér's estimate for probabilities of ruin

Let us apply the preceding results to the ruin problem. Suppose that ^ > 0.

To get the asymptotic estimate about the distribution of m in (3.4.5), we first

integrate p in (3.4.4) by parts. This gives us

p(x) = a f B(y)dy.
—00

(3.4.12)

Then this p is substituted for H in (3.4.11), and the negative K for positive /t

since p. > 0. Thus /3 in (3.4.11) becomes

I3=a
0

e-l"l2/ V\BÇy)dy.
—00

Hence the analogue of (3.4.10) is of the form

P(m < x)
1-ab

N^
-e\K\X

; as x -^ —oo. (3.4.13)

The above formula is called Cramer's estimate for the probability of ruin. Cramer's

original derivation used Wiener-Hopf techniques. As a reference, see 0ramer(1954).

3.5. INTERPRETATION OF THE CLASSICAL MODEL IN THE PROB-

ABILISTIC APPROACH

Let us consider the classical model case, where the distribution of waiting

times is exponential with parameter a, and then calculate the ruin probability of
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this case using probabilistic model with an assumption that the distribution of

claims is exponential with parameter /3. In the notation of Section 3.4.1 in this

chapter, it is the case where

f^ = ae~ax, ÎOT x>0, a> 0,

and

fs, = Pel3x, ÎOT x<0, P> 0,

A(x) = l - e~ax, for 2; > 0, a > 0,

J

Thus we have

B(x) = e^, for a; < 0, /? > 0.

/.=E(A,+B,)=^-^. (3.5.1)

Since ^ > 0, let us suppose that f3 — a> 0. Since we have Eq.(3.4.12), for x < 0,

we obtain

x

p(x) = a e^ydy =
-00

Moreover

^x.
^

p'(2;)=^./3e/3ï, for a:<0.

Since this is an exponential density function of p, with parameter /?, multiplied

by constant a/fS and concentrated on (—cx),0), let us first consider the same

exponential density function g(x), but concentrated on (0, os), namely,

a

g(x)=j-f3e-px-l{^}.
Then its Laplace transform (see the next chapter) is

a /3
M = if3 s+f3'
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Furthermore Laplace transform of the nth convolution of g(x~) is

^(5)=(^
a

n /? Y
^] \s^^

This implies that for a; > 0, the density function of the n convolution of g{x) is

' a\n ^nxn-le-^x^ = (j} (n-l)!

anxn~le~ftx

(n-l)! •
Thus the density function of the nth convolution of p{x) is

(^^))'=a"(^_)7), K-oo-o)(2;)'
and for y < O-,

È^^) = t.[ (n IV l(-oo^dx
n=0 n=ÏJ-co

y ^0
,l3xae'

—00

^(-ax)n-\
\n-\)\ l(-TO.°)^d'

ae^e-axl(_^)(x)dx
—00

_^_p(/3-«)!/
= ^—ae" ~^- (3.5.2)

Since we have (3.5.1), by replacing b and E^o=o/?"*(2;) in (3-4.7) with 1//? and

(3.5.2) respectively, we obtain

P(m<x) = (1-^
ce

. l
a

13} fS-a
e(/3-a)i;

Ct= ^-a)x, for 2;<0. (3.5.3)

Let us check if this result is equal to the result calculated in the classical model

with the same assumption about the claim distribution. As written in Bowers et
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a^(1997, p.414), when the claim distribution is exponential with parameter /? > 0,

for u ^ 0, the ruin probability is

W=^exp(^).
Since

,_E(A,+B,)_/3
~E(B,T-a~^

Eq. (3.5.4) is rewritten as

^) = .Lexpf^â^
/?/a E

a

u

(3.5.4)

= ^e-(/3-a)u, for u>0,

which gives us the same result as (3.5.3).

(3.5.5)
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Chapter 4

ANALYTIC APPROACH

In the previous chapters, the ruin problems in the classical model have been

introduced and explained from the view point of the random walk, which provides

us with an idea about how the ruin problems can be understood from their general

perspectives. Another general approach will be presented in this chapter on the

risk model with waiting times (or claims) of which Laplace transform is a rational

function. Using Laplace transform techniques and complex variables, we will

seek explicit expressions for non-ruin probability. For more details on the present

method, the reader is referred to the monograph by Dufresne (2001).

J

4.1. LAPLACE TRANSFORMS

4.1.1. Definitions and Properties

It often happens that the transform of a certain quantity may be found rela-

tively easily, where perhaps the original problem can be solved only with difficulty,

if at all, in the original coordinate. Then, the inverse transform returns the so-

lution of interest from the transform coordinates to the original system. Laplace

transform is one such method for various problems.

Definition 4.1.1. If f (x) is a p.d.f. of X concentrated on [0, oo), then its Laplace

transform f(r} is defined by

•00

f{r) = /_ '
'0

e~rxf(x}dx, for r > 0.
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The interval of integration may be extended to (—00, oo) . The Laplace trans-

form of a random variable X means the Laplace transforms of the distributions

of X. With the usual notation for expectation, we may write

f(r) = E(e-rx).

Notice that the Laplace transform of f(x) is the moment-generating function of

X with r being replaced by —r. Therefore it also has the associated properties

of a moment-generating function, as shown in Feller(1971). Here we would like

to introduce some of them as examples.

Theorem 4.1.1. The Laplace transform of a convolution of two distributions is

the multiplication of each Laplace transform.

PROOF. Let X, Y, Z be the random variables such that Z = X+Y, where X and

Y are independent. If we denote gCx), fCx) and u{x) by the corresponding p.d.f.

functions of X, Y and Z, respectively, then we can write

•00

u{x)= l g(x-y)f{y)dy=g*f(x).
'0

Since X and Y are independent,

E(e-rz) = E(e-r(x+y)) = E(e-rx)E(e-ry),

which gives rise to

uÇr) =gÇr)f(r). D

Theorem 4.1.2. The following identity holds

/(")(r) = r"/(r) - r"-l/(0) - r"-2/(0) -. . . - r/("-2)(0) - /("-1)(0).
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PROOF. Since

•00

/'(r) = / e-rxî\x~)dx
'0

le

•00

^/(^C+^/ e-Txf(x)dx
'0

44

= -/(0)+r/(r),

similarly for the second derivative, it can be expressible by

(4.1.1)

7'M=-/(0)+r/'M.

By Eq.(4.1.1), therefore, we obtain

7'(r) = -/(0)+r{-/(0)+r/(r)}
= r27(r)-r/(0)-/(0).

By repeating the same way for the higher orders, we can conclude, in general,

;(")(^) = rnf(r) - rn-1 f(0) - r"-2/(0) -. . . - r/("-2)(0) - /("-1)(0). D

Theorem 4.1.3. Distinct probability distributions have distinct Laplace trans-

forms.

The following two theorems are proved by Doet3ch(1974).

Theorem 4.1.4. (Initial Value Theorem) If the indicated limits exist, then

lim f fa;) = lim rffr).
^0' v~/ r-^oo

Theorem 4.1.5. (Final Value Theorem) If the indicated limits exist, then

lim fÇx) = limr/(r).
X-KX1 ~ ~ ' T-fO
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Example 4.1.1. If

then

fW = eax,

•00

/(r) = f e-rxeaxdx
<0

l
)

r — a
for r > a.

Example 4.1.2. When

f{x)=xn, n =0,1,2,...

its transform is given by
•00

/(r) = / e-rxxndx
'0
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n!

J

rn+1? for r > 0.

The reader is referred to Spiegel (1965) for some more exemplary properties

associated with the Laplace transforms such as introduced above. As to how to

invert the transformed functions, see the literature, for example, Doet8ch(1974),

and Panjer and Doray (1988).

4.1.2. Laplace Transform of Survival Function and Its Property

The probability of ruin with an initial surplus u, as introduced in the previous

chapter, is denoted by i{){u). We define y{u) as

(^(u) = l —-0(u), where y(u') = 0, for •u < 0.

and call it the probability of survival or the probability of non-ruin with the initial

surplus u. For a complex number s, the Laplace transform of (p(u) is given by
•00

y (s) = / due~suip(u).
'0

(4.1.2)
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From the equations (2.2.1) and (2.2.2) in Chapter 2, by assuming the rate at

which the premiums are received per time unit to be 1, the classical risk process

is written by

N(t)

U(t)=u+t-^X,,

where N (t) is the counting process such that

max {n\W^+ • • • +Wn<t} , where {Wi} are waiting times,

0, if the above set is empty.

We assume that the sequences {XJ and {Wi} are independent of each other and

that all those variables are i.i.d., non-negative. If the occurrence time of the nth

claim is denoted by Tn, by using the waiting times {Wz}, it can be written as

în =Wi + • ••+Wn, where To = 0.

Since there are n claims until Tn, we express UT^ by

UT^ = U+Tn-Y^X,i
1=1

n

= u+^{W,-X,).

With the definition of V, given by

(4.1.3)
t=l

Y,=W,-X,,ii

it is possible to express equation (4.1.3) in the following fashion:
n

UT^U+^Y,.
î=l

By making use of {Yi} , we define a random walk in the same form as given in

the previous chapter, namely,

n

So =0, Sn=J^Y,, n^l.
1=1
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Hence, in order for ruin not to occur, this random walk should be always positive

, namely,

tp(u) = P(M ^ -u), where M = ^ mf Sn.
0<n<oo

Moreover, by conditioning on Vi, we also get

^(u) = ^ o?^y(2/)^(u + y) = Ey(u + Y). (4.1.4)
Since {Wi} and {-X'i} are i.i.d. and independent, {Yi} is i.i.d. Let Y^,YÎ,...

have common distribution Y and define similarly W and X for {Wi} and {X^} ,

respectively. Since Y =W — X, equation (4.1.4) becomes

E[y(u +W-X)]= f dFw{t) l dFxÇvMu +t-v). (4.1.5)

For a complex number s, we use the following notations:

w(s)=Ee-sw, x(s}=Ee-sx and y(s) = Es-SY.

Definition 4.1.2. The abscissa of holomorphy hy of a random variable V is

defined as

/iv==inf{seR[ E(e-sv) < 00} .

Definition 4.1.3. The positive part of a is denoted by a+ = max(a, 0). Also, the

positive real number and the positive integer are denoted by R+ and Z+, respec-

tively.

Theorem 4.1.6. Suppose hw < 0. Then, for 0 < 9:te(s) < —hwi we obtain

^(s)=n(s)
^y' (4.1.6)
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where

•oo rY+

(s) = E/ dvesvy{Y-v)=E f dvesvy{Y+-v) (4.1.7)
'o Jo

.w

= E / dves(w-v^{v - X}
ro

d(s) = y(-s)-l.

(4.1.8)

(4.1.9)

PROOF. Since

•00

^(s) = / due~su(p(u),
ro

—suin order to obtain the Laplace transform of y(u), we multiply Eq. (4.1.4) by e"

and integrate with respect to u from 0 to ex), which yields, for 0 < (He(s) < —hw,

^(s) = E l du e-suy(u + Y)
'0

= Eesr / due-s(u+Y)y{u+Y).
'0

Let v = u+Y. Since ip(u) = 0, for all u < 0, we obtain

y{s) == EesY l dve-svy(v)
'Y+

Eesy
•oo rY+

dve-sv^p(v}- f dve-svy(v)
o Jo

rY+
= ^(-s)^(s) - E / dves(Y-v)y{v)

fo

ry+
= y(-s)^(s)-E/ duesuy(Y+-u). (4.1.10)

'0
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Let

n(s)=E/ duesuy(Y+-u).
ro

Then ^(s) can be written in the following form:

W =y(-s)y(s) -n(s). (4.1.11)

Since

rY+
dvesvy(Y+ - v)

Fo

< Y+^(s)Y+^ (4.1.12)

the function n(s) is finite for 0 < ?He(s) < —hw Hence, from Eq.(4.1.11), it is

possible to write

n(s)
^(s)=

Letting ri(s) = y{—s) — 1, we obtain

y{-s)-i

^(s) =n(s)
^'

which proves (4.1.6), (4.1.7) and (4.1.9). Now, similarly for 0 < (He(s) < -hw,

we will get another expression of the Laplace transform of y(u) from Eq.(4.1.5).

That is,

•00

^(s) = E/ due-suy(W-X+u)
'0

•00

= Eesw l due-s(u+w)y(W-X+u}.
'0

With v = u+W, we get

•00

^(s) = Eesw / ^e-s^(^-^)
'w

Eesw
•oo />W

dve-sv^>{v-X}- f dve-svy{v-X)
'0 JO
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Since W and X are independent, we can write

Eesw l dve-svy{v-X) = w(-s) / dve~SVEy(v - X)
'0 JO

•oo pv

= w(-s) / dve~sv l dFxÇx)y(v-x).
'0 JO

By Theorem 4.1.1, the above equation may be expressed as

Eesw f dv e-svy{v - X) = w(-s)î(s)^(s).
'0

Hence

•w

^(s) = w(-s)î(s)^(s) - E / ^es(w/-l;)^(u-X)
'0

.w

= y{-s)y{s) -Ff dv es(w-v)<p(v - X),
ro

which proves (4.1.8). D

4.2. RATIONAL LAPLACE TRANSFORMS

4.2.1. Definitions and Examples

Formulating the ruin probability in a general framework is rather difficult.

However, it becomes easier once we specify the area where we will construct the

model. It may appear to make the applications of the model rather limited in

its extent. Nevertheless, this model can be applicable to a much wider class of

distributions in comparison with the case for the classical model. Thus, first of

all, we consider a class of distributions called 7?./, and then we try to formulate

an explicit formula on the Laplace transforms of ruin probability in Tî,!.

Definition 4.2.1. A rational function is a ratio of two polynomials.
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Definition 4.2.2. A probability distribution p, on~R is said to belong to 7if if its

Laplace transform is a rational function. If p, is concentrated on ffi+, then it is

said to belong to Ti-^. In either case the distribution will be said to be rational.

The class T!,! includes all finite combinations of Erlang densities and also

contains phase-type distributions. Even if the distributions may have a mass at

origin, it is possible to bring them in 7if by transforming the given distribu-

tions into the non-zero claims or waiting-times distributions by means of the zero

removal techniques.

Example 4.2.1. Suppose that X has an Erlang (3,1) distribution, where the

density function is given by

fw=
xîe~x .

2 -!{^>o}.

Then its Laplace transform can be written as

l

2

00

f{r) = ^ l e-Txx2e-xdx

l
2

00

e-^r^xx2dx
0

l

(r+1)3'

Since fCx) is non-negative and its Laplace transform /(r), is the ratio of two

polynomials, this distribution belongs to 7?.^.

Example 4.2.2. Let

,8
/(a;) = e-M(j + smrc)l^>o},
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where sin 2; is a complex trigonometric function. Since

•00

^e-2x+e-2xsmx}dx
0 \û /

00
00

i'(à)[e-2^+re-îx

0

gtï _ ^-ix

2i
dx

= ^ + e r (e-(2-î)ï -e-(2+î)ï) dx
!o

41/1 l

5 ' 2t V2-î 2 + t

l,

the function f(x) is a density function. Furthermore, its Laplace transform is

given by

•00

/(r) = / e-rx ( ^e~2x + e-2x sin re ) dx
5'

•oo f-g ^_(2+r)a;
\^r+2)x+e—{elx-e-ïx)\dx

^o [5 2z

81 l
+

5 r+2 ' [(r+2)2+l]

8r2 + 37r + 50
2 , il '5 (r + 2) [(r + 2)2 + l]

which shows that 7?.^ contains the cases where the density has damped sine or

cosine functions.
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As can already be noticed, all the measures in 7?.^ are in the form of/

dp,(t) = aoô{dt) +
n ^ ^k^-l^t
s sa^
j=l k=l

'J

(^ - l)! -l(0,oo)(^) dt, (4.2.1)

where

ao+^^ajk = l,
3,k

{by} € R+ or {complex number with positive real part} ,

{cjk} e z+.

4.2.2. Waiting Times in 7Z^

Let us prove that it is possible to find the Laplace transform of the ruin

probability in an explicit form in 7?.^_. First, we consider the case where the
distribution of waiting times belongs to 7tj^ while the distribution of claims is

arbitrary. To get the Laplace transform of <p{u), y(s') in this case, it is enough to

show that n(s) is a rational function. But this does not always provide us with

the probability of ruin because the inversion of <p{s) is not always easy in the

cases where the distribution of claims is arbitrary.

Theorem 4.2.1. Suppose that the distribution of W is in 'Rf^, that is, in the
form of (4-2.1). Let {bj} be complex numbers with positive real part, and {cjk, dj}

G Z+ Wî^/t Cjm ^ Cjdj for all m <, dj^ ajdj ^ 0. Then for s £ C — {&i,&2;--- , &n},

n dj Cjk-~i
v^v^ \~^

n(s)=2^2^2^
j=l k=l m=0

^ç's(-l)m(^)(m)(^)
m!(^- - s)cjk—m î (4.2.2)

where

t(m) f^\ -(x^m> Çs) = {dm/dsm) [x{s)y{s)} .
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PROOF. Since the distribution of W is in the form of (4.2.1), for {Re{s) < —hw

and -u > 0,

•00

=xEeswl^>v} - / dt

Letting u = (by — s)t, we obtain

^,^_ ^^,-ie-(b,-,)t
è;èali' fe-»'

7i d,

^•w^ =EE^_^_^/^/" "—' (-.3)
With the use of the incomplete gamma function, equation (4.2.3) can be

expressed in another way. According to Abramowitz fe Stegun(1972), the incom-

pieté gamma function is defined by

•00

r (a, x} = l ta-le-t
x

e~tdt, x^O.

Furthermore, for c= 1,2,... , we have

c-1

FÇc,x) =r(c)e(c—l,x)e~x, where e{c—l,x)=
x.m

m=:0
m!

(4.2.4)

Thus, making use of the relation(4.2.4), the integral in Eq. (4.2.3) can be rewritten

as

•00

duuc^k~le~u = TÇcjk,v{bj-s))
V{t)i-,

= r(c,^(c,, - 1^(6, - 5))e-^-s)

= (c,,-l)!£(c,,-l,7;(&,-s))e-"^-s).
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Therefore, the equation (4.2.3) becomes

Eeswl,
_n__dj_

{W>y} = S^S fh ^^£^ - l'v(&J - s))e-"
^T ^ ^°j ~s^

-v(b,-s)

^^c^^r -)]"^.-
^é-^o (^-^-!
V"V^ Y^

r-

-e (bj-s) (4.2.5)

From Eq. (4.1.8), we can express n(s) as

'w

n(s) = E / dî;es(w'-t')^(y - X)
'0

•00

= E/ dve-svy(v-X)eswl{w>v}-
'0

Since W and X are independent, we obtain

n(s) = / rive-SUE(^(î; - X)Eeswl{w>.}.
'0

By replacing Eeswl{w>v] in the above expression with (4.2.5), we write

d j Cjk-ï'00 " a3 C3lc-i ^,..fc3k r-./'t. ^M"i
.-svc.^.. ^\V^V^V^ a3ku3 [v[r)]~s)nW = ^ ^-"E^-X)g^^^^^^-.

j=ï. k=î. m=0

-v(bj -s)

n dj Cjfc-1
\~^ \~^ \~^:E E ^L^. - ')" /„" i^w^ - x)

1^. ^om'- W ~ s) J" ~ Jo
= 2^2^2^

^ À c^x a^&CJfc f00
V^ u'jkuj

j'-
^-^ m.1 fh_. - .';'lc-''fc^ S 7^0 m: W ~ s^

—m

•oo pv

dve-vb^vm l dFx(x)y{v-x)
'o Jo

n dj Cjfc-1 \m ^m \- roo pv -]
\~^V^ V^ u'3kL13 ^~'L^ a"~ l l" ^.^-vrSSS"^-)--^^ ^-°r^^w^-)j
Y.^^ ^^(-l)m dm ,„

r=bj

v^ \~^

z^z^ z^
r- ^^^^•^-^k-mdrm [î(r)^(r)]^, •



56

^

Here d(s) = w(—s)î(s) — 1 is analytic, except for poles, in {9ste(s) > 0} , and so

is n{s) = (p(s)d{s). D

Theorem 4.2.2. (Rouché's Theorem) Suppose f(z) and g{z) are analytic on

and within a closed contour F in C. Suppose f(z) does not vanish on F, and

\g(z)\ < \f{z)\ on F. Then f{z) and f(z) + g{z) have the same number of zeros

within F.

Theorem 4.2.3. If hw < 0, then

.y+

n(0) = E / (p(Y+-u)du=E(Y).
Fo

PROOF. We know that

l = ipÇoo). (4.2.6)

In view of (4.1.2), y(s) is analytic in {s eC | ?He(s) > 0}. Thus, by the Final

Value Theorem for Laplace transforms, we obtain

n(0) n(0)
y(oo)-^^(,)=^^=^.

s

Hence from (4.2.6) and (4.2.7), we conclude that

n(0) = E (Y).

(4.2.7)

D

Theorem 4.2.4. Suppose hx < 0 and that W has the rational distribution of

Theorem 4.2.1. Let
n

^ = n (&, - sr^.

Then the polynomial

N{s) = 7r(s)n(s),

has degree f = c-idi + • • •+ Cn^ — 1, and the function

D{s) =7î{s)d{s),
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is analytic in {(He(s) > 0}. Moreover, there is R > maxj \bj\ such that

|w(-s)| < l Vs with \s\ = R, (He(s) > 0.

Let CR be the closed path consisting of the half-circle {s | |s| = -R,(He(s) > 0} and

the line segment going from —Ri to +Ri. Then N(s) and -D(s) have exactly v

zeros inside CR. Moreover,

i/ n

N(s) = ^PjSj with po = E (Y) JJ 6^' anrf ^ = ^(0)(-l)y. (4.2.8)
3=0 j=l

PROOF. From Theorem 4.2.1, we know that n(s) is in the form of (4.2.2) when

the distribution of W is given by (4.2.1). Thus

N{s) = 7r(s)n(s)

n

= îl(b,-sY^n(s),

has degree v = c^i +• • • + c^^ - 1.

From the assumption made in this theorem, we have

D{s) = 7r(s)d(s)

n

= îl{b,-s)c^[wÇ-s)x(s)-l].

Since the distribution of W is in (4.2.1), w(—s) has the factors (bj — s) •?d-' , where 1 <

j < n, in denominator. Thus they are canceled by the factors (by — s)cjd-' , where 1 <,

j < n, in 7r(s). In addition, x{s) is obviously analytic in {s eC | 9(îe(s) > 0}.

Consequently, -D(s) is analytic in{s G C | yie(s) > 0}. Let us express the Laplace

transform of W as follows:

p^}
w(fi) = (3o +P^Y
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where the degree of PI (s) is strictly smaller than that of P^Cs) and ao < 1- Then

we have

p^)
p^)—> 0, as \s\ —> oo.

Thus

w(—s) —>• QO < l; as s ^ oo.

Hence there exists some constant R < oo such that

R > max[&j| and |w(-s)| < l Vs with |s| = R, (He(s) > 0.

Since E (Y) > 0, it is possible to choose some ç > 0 such that hx < —q <0

and y(-q) < 1. Now using R and q, let us construct a closed path C'^,g which is

composed of the half circle {s [ |s| = -R, ?He(s) > 0}, the line segment from Ri to

—q, and the other line segment from —q to —Ri. Since we have s = u+iv,u <

0, r e R, for all s on the line segment, we obtain

\y{u+iv)\ = |Ee-(u+w)r|<E|e-(u+It;)y|

E e
-uY = Ee-UY = y(u) < l.

Furthermore |y(±t-R)| < l, since Y does not have an arithmetic distribution as

shown in Feller(1971, p.501). Therefore it leads to

\y{-s)\<l VseC^.

Moreover, because R > maxj |6j|, 7r(s) 7^ 0 on C'^g. Thus we can conclude that

for s € CR^,

|7r(s)y(-s)| < |7r(s)|. (4.2.9)

By applying Rouché's Theorem to (4.2.9), it is noticeable that 7T(s)^(—s) — 7r(s)

and 7r(s) have the same number of zeros inside C^q. Since 7T(s) has Ci^ + • •• +

Cndn = v + l zeros, so does 7T(s)^(—s) — 7T(s) = 7r(s)rf(s) = DCs). Let us move q
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to the origin. Then we have a closed path CR which is composed of the half circle

{s l |s| = J?,SR:e(s) > 0} and the line segment from —Ri to Rz instead of C^g.

At this closed path CR, d[s} has a zero with multiplicity one at s = 0, because

ri'(O) = ?//(0) = E(V) i- 0. Hence £>(s) and N{s} have ^ zeros inside CR.

Since N{s) is the polynomial with degree v, it can be expressed as

N(s') = po +pis + • • • +pvSl/, where po, • • • ,Pi/ are constants. (4.2.10)

Thus by Theorem 4.2.3, we have

n

po = ^V(O) = 7T(0)n(0) = TT(O)E (Y) == E (Y) {J ^dj .
J=l

Moreover (4.2.10) can be rewritten as

7v(s)=^+^+...+i~7~=Ï+Ï^+'"+PV-

Hence

Pv = lim
N(s)

s-i-oo S1'

^{s)[y{-s)-l]
= ^ms^(s)-^^F

S—> 00 st

By the Final Value Theorem, (4.2.11) becomes

7T( S

p^ = (p{0) ^ ^- ^ [w(-s)î(s) - l]

(4.2.11)

^T/6, Ac^= -^°)llmnf^-11
s-^oo-^-*- \ s

J:=l

J
= -^(0)(-1)I/+1

D
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4.2.3. Claims in 71^

Now, we look at the problem where the distribution of claims is in 7?-^.. Con-
trary to the case where the distribution of waiting times is in 7?.^, a more explicit
result can be obtained in a closed-form when the distribution of claims is in 7?.^..

Theorem 4.2.5. If the function f is analytic in C except for a finite number of

poles, then f is a ratio of two polynomials, that is,

p{z)f^}=
9^)'

where p(z) and q(z) are polynomials.

In this case, the degree of q(z) equals the number of poles of f {z).

Theorem 4.2.6. Ifhw < 0 and X has the rational distribution as W of Theorem

4-2.1 then ^(s) is a rational function. Moreover, if no zero of w{—s) is a pole

ofx{s), then the non-zero roots of d{s) are all in {?He(s) < 0} , and their number

is equal to the number of poles ofx(s). Especially, if the distribution of X is a

combination of Erlang (mj,/3) distributions (possibly with a mass at the origin),

then no zero of w{—s) can be a pole ofx(s).

PROOF. We know that ^(s) is analytic in{s e C | ÎHe(s) > 0} and w(s) and î(s)

are also analytic in this area when W,X ^ 0. Furthermore, according to the

function n(s) of Theorem 4.1.6, n(s) is analytic in {sG C | (He(s) < —hw}, and

d(s) = w{-s)x{s) - l is analytic in {s eC | 9:îe(s) < -/i^} except for a finite

number of poles in {sç C | ?He(s) < 0}, because the distribution of X is in the

form of (4.2.1). Thus <^(s) is analytic in C except for a finite number of poles.

Hence by Theorem 4.2.5, ^(s) is the ratio of the two polynomials, that is, rational

function.

If the distribution of X is a combination of Erlang (m,, /3) distributions with

a mass at the origin, all the poles of its Laplace transform are real. And any zero

of w(—s) in {s GC I (He(s) < 0} is complex, because the distribution of X has a

non-negative and real measure. Thus no zero of w(—s) can be a pole ofî(s).
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The rest of the theorem can be proved by constructing a closed contour in the

left-half plane. First of all, notice that d(s) has a root at s = 0, but there are

no other zeros of d(s) on the imaginary axis, since Y cannot have an arithmetic

distribution (see Fellers(1971, p.501)). Now, let us make a closed contour which

include all the poles of x(s) and all the zeros of d(s) in {s GC | fRs.(s) < 0}. For

X > 0, there exists 60 > 0 such that

|3;((s) l = \Ee-sx\ ^ EesRe^x < Eeôox < oo, for (He(s) £ (-^, 0).

Since EY > 0, there exists S-^ > 0 such that

\y{-s)\ = \EesY\ < Ee-51Y < l, for ^e(s) € (-5i,0),

because [^Ee-r2/]^Q = -EV < 0. Let S = min(5o,5i). Thus, for ?He(s) 6 (-5,0) ,
x(s') has no poles and |^(—s)| < l. On the other hand, for ?He(s) < 0, |w(—s)| < 1,

and for s larger than some number RQ, î(s) < 1. That is,

l
|w(—s)| < , for 9cte(s) < 0 and \s\ larger than some number -Ro;

\x{s}

(4.2.12)

which implies that d{s) does not vanish in this area. Now we define the half circle

in the left-half plane as

CR=^s=-^+îy,-R^y<R;s=-^+R-ele,^<0<^,
where R is chosen to let all the poles of î(s) and all the zeros of d[s) be in this

half circle and to make Eq.(4.2.12) satisfy on this half circle. Since X G -R^l, x[s}
can be expressed as a ratio of two polynomials, that is,

î(s) =
Pl(5)
p^v
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where Pi(s), P^Çs) are polynomials and Pi(s)/P2(s) is irreducible. Since l/î(s)

is not analytic in CR, let

g{s) = Pi(s)w(-s),

w - -tr=-^w.
Now we can apply Rouche's Theorem here. Therefore

h(s) = f (s) + p(s) = Pi(s)w(-s) - ?2(s) = ?2(s)d(s), (4.2.13)

and f (s) = —PïÇs) have the same number of zeros in CR. Since every zero of

d(s) is also a zero of /i(s), now let us check if every zero of /i(s) is a zero of d(s).

If s is a zero of hÇs), but not a zero of Pî{s), then it is a zero of d(s). If s is

a zero of both h(s) and PïÇs), then s becomes one of the poles of x(s). Since

no zero of w(—s) is a pole of î(s) and P^s^/P^s} is irreducible, this leads to

Pi(s)w(-s) / 0. It contradicts (4.2.13). Therefore every zero of h(s) is a zero of

ri(s) and vice versa. Hence the number of zeros of c?(s) is equal to the number of

poles of x{s). D

Corollary 4.2.1. If hw < 0 and X € 7Z^, then
m,

y(u) =\-^fk{u)e-rfcU
ï

k=l

where each fk(u) is a polynomial, and {—rfc; A; = l,... ,m} are the zeros of d{s)

m {?He(s) < 0} .

Using the notation we have seen so far in this chapter, the adjustment coeffi-

cient is expressible as the smallest ri > 0 such that

oi(-ri) = {u(ri)ï(-ri) -1=0, (4.2.14)

if it exists. Let us check if (4.2.14) gives us the same equation as (2.2.4) in

the classical model based on a compound Poisson process with the parameter A.
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w(ri) ==
A

A + n'
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x(-n) = Eerlx,

the equation (4.2.14) becomes

A

A+7-1
Eerlx = l

l+!l=Eerlx. (4.2.15)

On the assumption that the rate at which the premiums are received is 1, we

obtain

1=À(1+0)E(X).

Hence, by replacing 1/A in (4.2.15) with (1 + 0)E{X), Eq. (4.2.15) yields

l+ri(l+0)E(X)=Eenx,

which is identical to (2.2.4).

Taking the fact that ri is the smallest root of d(—s) and Corollary 4.2.1 into

consideration, it is possible to say that

'0(u) ~ Ce~rlu, as u —>• oo, where C' is a constant. (4.2.16)

Eq.(4.2.16) is also feasible from Eq.(2.2.5) in Theorem 2.2.1 of Chapter 2, because

the denominator of (2.2.5) becomes some constant as u —> oo. And it is actually

the same pattern with (3.4.13) in Section 3.4.3.



64

^

4.3. INTERPRETATION OF THE CLASSICAL MODEL IN THE ANA-

LYTIC APPROACH

In the previous sections, we have considered the analytic model in which the

Laplace transform of waiting times (or claims) is a rational function. Here we will

see how the classical model can be expressed in the frame of the analytic model.

Let us suppose that waiting times has the exponential density function with

parameter o; > 0. Then its Laplace transform is

•00

w(s) = l ,
'0

e~sxae~axdx =
a

Q;+ S

Needless to say, it is a rational function. Thus it belongs to 7?.^. Hence the
classical model cases can be expressed as particular cases with waiting times

being in T?.^. in the analytic model by means of Theorem 4.2.4. That is, by
looking at the form of (4.2.1), the exponential density is the case where &i = a,

n=l d^ = 1 and Cii = l. Therefore

7r(s) = (a - s) and A^(s) = po = o'E(y).

Since

d(s) = y(-s)-l

= w(—s)î(s) — l

Q;

a — s
x{s) - l

ax(s) — (a — s)
a — s

)

D{s) = 7r(s)d(s) == Q'î(s) — (cr— s).
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Hence

yÇs) =
N(s) aE(V) (4.3.1)
-D(s) ax(s) — Ça — s)

Therefore the inversion of (4.3.1) totally depends on what kind of claim distribu-

tion we have. With luck, the inversion can be performed easily for certain families

of claim distributions, for example, in the case of exponential distribution or a

mixture of exponential distributions.

Let us suppose that the distribution of claims is exponential with parameter

(3>0. Then

/3
x{s) =P+s'

E(V) = EÇW) - E(X) = ^ - ^.
Thus (4.3.1) becomes

M =
a ^-i'1

^-^

a(A)-(a-s)
^-a

~J~
a^-(a-s)(/3+s)

P+s

(/3-a)(/?+s)
/?[a/3-(a-s)(/3+s)]

(/5-a)(/3+5) (4.3.2)Ps[s+{P-a)}'
Since the degree of numerator is 1 and that of denominator is 2, by applying the

method of partial fractions to (4.3.2), it becomes

M ' ^+^w^\
l a

^
s [s+ÇP-a-)}'

(4.3.3)
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By inverting (4.3.3), for a; > 0, we have

ce^x) = l - i-e-^x.
Hence for a; > 0,

which is identical to (3.5.5).

a

^} = y-^xî



Chapter 5

CONCLUSION

J

In this thesis, we have shown two generalized models in which the extent of the

distribution of waiting times is wider than the classical model. Both models

use a random walk whose summands are expressed as the difference between the

waiting time and the claim contrary to the classical model in which the surplus

process based upon the compound Poisson process is employed.

The model presented in Chapter 3 has formulated the distribution of the

maximum position M, including 0, of the random walk using ladder variables

and their properties. By taking the analogue to the formula presented in this

model for the case of minimum position, we have derived the expression for the

probability that this minimum position falls below a certain level, which is equal

to the ruin probability of interest. An explicit formula for the ruin probability

is obtained under the assumption about the common distribution of X,, F that

the right tail of F is exponential. Since there is no condition imposed on the

distribution of waiting times, it is a more general and flexible model than the

classical one. However, it is usually difficult to get the explicit expressions for the

distributions of ladder variables when F is arbitrary.

In the model presented in Chapter 4, a general class, which permits much

more assumption about waiting times than the case in the classical model, called

Tî.-\_, is defined. By expressing the Laplace transforms of non-ruin probability

in integral function, we have obtained them in closed forms for two cases. The

first case is when the distribution of waiting times is in %^ and that of claims
is arbitrary. The second case is when the distribution of claims is in 7?.^ and
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that of waiting times is arbitrary. It is found that the second case gives rise to a

simpler yet more explicit result than the first case. This is due to the fact that

the Laplace transform itself of non-ruin probability in the second case is rational.

Consequently, the inversion of this Laplace transform gets easier than the first

case.

From the formulas of ruin probability derived, it is possible to say that these

two general models include the classical model cases as shown in Sections 3.5 and

4.3. Hence if the present models are observed from the view point of the classical

model, it leads to the same results as those calculated in the classical model. But

those models presented in this work may be applicable to much more cases than

the classical model, since they are not only another way of writing known results

in the classical model, but also are obtained from more generalized approaches.

J



~)

BIBLIOGRAPHY

Abramowitz, M. and Stegun, A (1972). Handbook of Mathematical Functions.

Dover, New York

Bower, N. L., Gerber, H. U., Hickman, J. G., Jones, D. A., and Nesbitt, G. J. (1997).

Actuarial Mathematics (Second Edition). Society of Actuaries, Itasca, Illinois.

Cramer, H. (1954). On some questions connected with mathematical risk. Univer-

sity of California. Publications in Statistics, 2:99-125.

Dickson, D.C.M. (1998). On a class of renewal risk processes. North American

Actuarial Journal 1:60-68.

Doet8ch(1974). Introduction to the Theory and Application of the Laplace Trans-

formation. Springer-Verlag, New York.

Dufresne, D.(2001). A General Class of Risk Models, Submitted for publication.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol.

2, 2nd éd., Wiley, New York.

Loève, M, (1977). Probability Theory 1, Vol.l, 4th edition, Springer-Verlag, New

York.

Panjer, H.H., and Doray, L.G.(1988). Further Results on the Probability of Ruin

with an Absorbing Upper Barrier. Transactions of the XXIII International Con-

gress of Actuaries, S57-67.

J



70

/

Sparre Andersen, E. (1957). On the collective theory of risk in the case of contagion

between the claims. Transactions of the XV International Congress of Actuaries,

Vol. 2, 219-227.

Spiegel, Murray R. (1965). Theory and Problems of Laplace Transforms. Schaum

Publishing, New York.

J


