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Sommaire 

Dans cette thèse on considère le problème de cyclicité finie des graphiques les plus 

génériques passant par un point singulier de codimension 3 de type elliptique ou 

selle. On donne des théorèmes de cyclicité finie pour plusieurs tels graphiques 

dans des familles C" de champs de vecteurs. Dans plusieurs cas nos résultats 

sont indépendants de la codimension exacte du point et dépendent seulement du 

fait que le point nilpotent est de multiplicité 3. En utilisant des formes normales 

adéquates et un éclatement de la famile de champs de vecteurs on établit la liste 

de tous les ensembles limites périodiques dans la famille éclatée. On calcule les 

deux types d'applications de Dulac pour la famille éclatée et on développe une 

méthode générale pour montrer que certaines transitions régulières ont une dérivée 

d'ordre supérieur non nulle en un point. En analysant le nombre de solutions d'un 

système d'équations par un algorithme de dérivation-division généralisé on montre 

les théorèmes suivants: 

Théorème Type de graphique Condition Codimension Cyclicité 

Th. 5.5 Sxhh convexe P'(0) 	1 
le point de cod 3 

4 finie 

Th. 6.3 Epp R() (0) 	0 
(n ? 2) 

n + 1 n 

Th. 6.6 Ehp une conjecture 3 finie 

Th. 6.10 Ehh P'(0) 	1 
le point de cod 3 

4 finie 

On applique ces théorèmes pour montrer la cyclicité finie de certains graphiques 

passant par un point singulier nilpotent triple dans les systèmes quadratiques. 
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S ummary 

In this thesis we consider the problem of finite cyclicity of the most generic graphics 

through a nilpotent point of saddle or elliptic type of codimension 3. We give 

theorems of finite cyclicity for several such graphies inside C" families of vector 

fields. In some case our results are independent of the exact codimension of the 

point and dependent only on the fact that the nilpotent point has multiplicity 3. 

Using adequate normal forms and blow-up of a family of vector fields, we list all 

the limit periodic sets of the blown-up family. We calculate two different types of 

Dulac maps in the blown-up family and develop a general method to prove that 

some regular transition maps have a nonzero higher derivative at a point. By 

the analysis of the number of solutions of systems of equations via a generalized 

derivation-division method, we prove the following theorems: 

Theorem Type of graphic Condition Codimension Cyclicity 

Th. 5.5 Sxhh convex P(0) 5L1 
the point of cod 3 

4 finite 

Th. 6.3 Epp R()(0) 5L  0 
(n _. 2) 

n + 1 n 

Th. 6.6 Ehp A conjecture 3 finite 

Th. 6.10 Ehh P'(0) 	1 
the point of cod 3 

4 finite 

We apply these theorems to prove some graphies with a nilpotent saddle or 

elliptic point in quadratic systems have finite cyclicity. 
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Chapter 1 

Introduction 

A graphic (singular cycle, limit periodic set, polycycle) of a planar vector field is 

an invariant set of the vector field involving regular orbits and singular points. We 

are interested in the graphics of generic families of vector fields depending on a 

small number of parameters and their cyclicity, i.e., the maximum number of limit 

cycles that may appear by perturbation inside the family. A simpler problem than 

the problem of finding the cyclicity of a graphic is to prove that the graphie has 

finite cyclicity. The question of finding the number of limit cycles which appear 

by perturbation of a graphic in a generic family and the problem of finite cyclicity 

is closely related to Hilbert-Arnold Problem ([AI88], [IY95]): 

Hilbert-Arnold Problem. Prove that for any n, the bifurcation number B(n) is 

finite, where B(n) is the maximum cyclicity of nontrivial polycycles occurring in 

generic n—parameter farnilies. 

A graphic of planar vector field can be elementary or non-elementary in the 

sense that its singular points are elementary (hyperbolic or semi-hyperbolic, i.e. 

at least one nonzero eigenvalue) or non-elementary. Some essential steps have 

been made towards the understanding of the bifurcation of elementary graph-

ics through the works of Roussarie [R86], Mourtada [Mou90], [Mou94], [Mou97], 

1 
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Il'yashenko-Yakovenko [IY95], Dumortier, Roussarie and Rousseau [DRR94], Ko-

tova and Stanzo [KS95], Dumortier, El Morsalani and Rousseau [DER96], etc. 

As for the non-elementary graphies of a planar analytic vector, the study cannot 

be fully reduced to the analysis of singularities and zeroes of algebraic equations, 

particularly when the number of parameters is larger than or equal to three. 

Figure 1.1: Cuspidal loop 

For the graphics with a nilpotent singular point of multiplicity 2 or 3, they 

can be one of the following types: 

• cuspidal loop: Fig 1.1 

• graphic through a nilpotent elliptic point: Fig 1.2 

• graphic through a nilpotent saddle: Fig 1.3 

In [DRS97], by an analytic and geometric method based on the blowing up for 

the unfoldings, the authors studied the simplest case, the bifurcation diagram of a 

cuspidal loop of codimension 3. They give a complete answer for the cyclicity and 

bifurcation diagram up to a conjecture. The study of the unfolding of codimension 

3 nilpotent singular point is still not finished. As for the problem concerning the 

graphics through a nilpotent singular point of codimension 3, in [KS95], when the 

authors tried to list the set of all these graphies, they have the following comments: 



3 

(a) Epp graphic 	(b) Ehp graphic 	(c) Ehh graphic 

Figure 1.2: Graphics through a nilpotent elliptic point 

(3) A0  is the degenerate cusp, cod(A0 ) = 3: this case is the most decult one. Two 

possible subcases can be distinguished: 
(3a) The polycycle consists of a singular point. 

(3b) If the singularity is of an elliptic type in the terminology 

of [D931, then the singularity point has two parabolic sectors of 

opposite attractivity. Hence a pp-loop can occur without increasing 

the codimension of the polycycle. 
Even the first subcase is not yet completely investigated, to say nothing about the 

much more decult loop subcase. We simply label subcase (3.3), without going deeply 

into the subject. 

Convex Concave 

Figure 1.3: Graphics through a nilpotent saddle 

From this and the complexity of the bifurcation diagram in the case of the 
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cuspidal loop, it seems hopeless to find a complete solution to solve the similar 

question with triple nilpotent points. Fortunately we will show that the question 

of proving the finite cyclicity of a graphic is much simpler and that indeed we 

can give a complete answer to this question for several graphics of codimension 3 

and 4. This means in particular that we do not consider the birth of small limit 

cycles from the singularities but only the large limit cycles which coalesce with the 

graphie when the parameters vanish. 

In this thesis, we study the finite cyclicity of graphics with a nilpotent sin-

gularity of saddle or elliptic type, i.e., the existence of a bound for the number of 

limit cycles which can bifurcate from such graphics. In some of the finite cyclicity 

theorems, we will only use the multiplicity of the nilpotent point and not its codi-

mension, the finite cyclicity following from a global genericity assumption. The 

precise definition of cyclicity for a limit periodic set was given by Roussarie ([R86]). 

Definition 1.1. A limit periodic set F of a vector field X po  inside a family Xi, 

has finite cyclicity in X p  if there exist N E N and E,S > 0, such that any Xi, 

with t — 1.10 1 <S has at most N lirait cycles yi  such that distH (F,-yi) < E. The 

minimum of such N when e and ö tend to zero is called the cyclicity of F in X p, 

which we denote by Cycl(n. 

Let X be a smooth vector field on le A singular point p (i.e. X(p) = 0) is 

said to be a triple nilpotent point of saddle or elliptic type if there is a local chart 

(x, y) : (R2 , p) —› (R2 , 0) 

in which the vector field has the form ([T741) 

aa x = y— + (s1x3  + dx4  + bxy + ax2  y + y)— + 0 (I(x , y)15 ) 	(1.1) 
Ox 	 ay 

where, for the saddle case, El  = 1; for the elliptic case El  = —1, b > 	Denoting 

the graphie with a nilpotent singularity by (X, p, P), we are going to study the 

cyclicity of P by considering a codimension 3 unfolding Xi, of X. 
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(a) Epp upper 
	 (b) Epp lower 

(c) Ehp upper 	 (d) Ehh upper 

Figure 1.4: Pp, hp and hh-graphics of elliptic type 

Following the convention in [KS95], we use pp to denote a graphie going out 

of a parabolic sector to a parabolic sector, hp to denote a graphic going out of a 

hyperbolic sector to a parabolic sector, and hh to denote the graphic going out 

of a hyperbolic sector to a hyperbolic sector. Then, after the global blow up, a 

graphic through a elliptic point can happen in three cases (Fig. 1.4): 

• pp graphic: Epp, 

• hp graphie: Ehp, this cod 3 type of graphie was not mentioned in [KS95], 

• hh graphic: Ehh. 

Each graphic can occur in two versions: upper and lower (see one example in 

Fig. 1.4(b)). Although the upper and lower graphics may have different bifurcation 

diagrams, the proofs of their finite cyclicity are the same. 
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(a) Sxhh 
	

(b) Sahh 

Figure 1.5: Convex and concave graphics of saddle type 

A graphic through a nilpotent saddle can happen in two cases (Fig. 1.5): 

• hh graphic convex: Sxhh, 

• hh graphic concave: Sahh. 

Due to the technical difficulties, we do not consider the concave graphic of 

saddle type. For other graphics listed in Fig. 1.4 and Fig. 1.5, we have proved 

three main theorems which we list in Tab. 1. 

Theorem Type of graphie Condition Codimension Cyclicity 

Th. 5.5 Sxhh convex 
P(0) 	1 

the point of cod 3 
4 finite 

Th. 6.3 Epp 
Mn)  (0) 	0 

(n > 2) 
n + 1 n 

Th. 6.6 Ehp A conjecture 3 finite 

Th. 6.10 Ehh 
P1(0) 	1 

the point of cod 3 
4 finite 

Table 1.1: Main results concerning the finite cyclicity 

To prove the finite cyclicity theorems listed above, one basic ingredient is the 
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blow-up of families developed in [DRr96] and [DRS97]. Around that we set up a 

machinery which can be used for other similar graphics. Some of these tools have 

been introduced for the study of the cuspidal loop [DRS97]. These tools include: 

1. Normal form for a family with a nilpotent singularity: we develop a special 

normal form different from the classical one and allowing: 

• to use the special properties of quadratic systems: 

— some transitions occur along straight lines, 

— convexity of some trajectories, 

— knowledge of the center conditions; 

• to be easily applicable to graphics inside quadratic systems. 

2. Blow-up of the family to allow the calculations of the passage maps near the 

nilpotent singularity. 

3. The list of limit periodic sets appearing in the blown-up family of vector 

fields and which must be proved to have finite cyclicity. 

4. The calculations of the different types of Dulac maps in the neighborhood of 

the singular points of the blown-up sphere. 

5. To derive finite cyclicity property, we consider systems whose number of 

solutions bounds the number of fixed points of the return map in the neigh-

borhood of a limit periodic set under a small perturbation of the blown-up 

vector field. We derive bounds for the number of solutions of these systems 

by a generalized derivation-division method. 

6. We introduce a general method to prove that some regular transitions have 

a nonzero higher derivative at a given point. 

For Hilbert's 16th problem for quadratic systems which consists in "finding 

the maximum number H(2) and relative positions of limit cycles of a quadratic 
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vector field", till now we only know that H(2) > 4 ([Sh80]). In [DRR94], the 

authors launched a program aiming at solving the finiteness part of Hilbert's 16th 

problem for quadratic vector fields (i.e., H(2) < oo). The paper listed all the 121 

limit periodic sets surrounding the origin in a family of quadratic vector fields and 

reduced the finiteness problem for quadratic systems to the proof that all of these 

graphics have finite cyclicity. Up to now, about 50 elementary graphics have been 

proved to have finite cyclicity. By the results of this work, we will be able to prove 

that more than 20 non-elementary graphies have finite cyclicity. 

The thesis is organized as follows: In Ch.2, we develop a new general normal 

form unfolding the nilpotent singularity of saddle or elliptic type of codimension 3. 

For further application to quadratic systems, we also discuss the normal form for 

unfolding the nilpotent singularity of saddle or elliptic type for quadratic systems. 

In Ch.3, we make the global blow-up for the family. By using the properties of 

quadratic systems we give the bifurcation diagrams for the rescaled family and 

list all the possible limit periodic sets. In order to prove the cyclicity of the limit 

periodic sets, in Ch.4, we study two types of Dulac maps. We prove the main finite 

cyclicity theorems for saddle and elliptic cases respectively in Ch.5 and Ch.6. As 

applications of the main theorems, in Ch.7 we prove that the graphics (Hk), (na) 

listed in [DRR94] have finite cyclicity and that the graphics (I 3), (I12), (4,), (/,lb ) 

have finite cyclicity when the nilpotent point has codimension 3. 



Chapter 2 

Normal Forms Unfolding the 
Nilpotent Singularity of Saddle or 
Elliptic type 

In this chapter, we will first develop a new normal form unfolding the codimension 3 

nilpotent singularity of saddle or elliptic type different from the standard unfolding 

used in [DRS91]. Then we discuss the corresponding normal forms unfolding the 

nilpotent singularity of saddle or elliptic type for the quadratic systems. 

2.1 Normal forms unfolding the nilpotent singu-
larity of saddle or elliptic type 

We know by [T73] that the germs of G' vector fields at 0 G Fe whose 1-jet is 

nilpotent and 2-jet is C'—conjugate to a vector field with a 2-jet y& + On-g, is 

C'—conjugate to a vector field with 4-jet 
0 	 , 0 

y— + (E 1x3  + dx4  + bxy + ax2y + ex3Y ) F 	(2.1) 
ax 	 x 

where el  = 0, ±1 and a, b, c, d E R 

It was shown in [D77] and [D78] that the topological type of such a germ is 

determined by its 3-jet, if el  O. 

The codimension of the point is determined by looking at b and the quantity 

Q := 5e1a — 3bd 	 (2.2) 

9 
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associated with the 4-jet (2.1). 

By [DRS91], the vector field is C"-equivalent to a vector field with a 4-jet 

a 

	

+ (E1 x3  + bxy + E2x2Y + fx-Y)— 	 (2.3) 
8x 	 a X 

where el  = ±1 and 62  is a multiple of Q. 

62=1 

(a) Focus cases 

(b) Saddle case 
	 (c) Elliptic case 

Figure 2.1: The different topological types 

The topological type falls into one of the following categories (Fig. 2.1): 

1). The saddle case: si  = 1, any e2  and b (a topological saddle). 

2). The focus case: si = —1 and 0 < b < 2n (a topological focus). 

3). The elliptic case: si = —1 and b > 2-\/i ( an elliptic point). 

For saddle (resp. elliptic) cases, for E 2 = 1 and E 2 = —1, they have the same 

topological type. 

For El = —1, the nilpotent singularity is of codimension 3 if E 2 	b 	0 

and b 2-n it is of codimension > 4 if E 2 = 0, or b = 0, or b = 

We are interested only in the vector fields with a triple nilpotent singularity of 

saddle or elliptic type with si  = ±1 and b > 2-V2 if El = —1. A family containing 
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this singularity can be brought to ([DRS91]) 

= y 
(2.4) 

= Eix3  + Azx + + y()\3 + bx + E2x2  + x3h(x, )\)) + y2Q(x, )) 

where for the saddle case e-  = 1; for the elliptic case el  = —1, b > 2-1-2-, A = 

(Ai, A2, A3 , -À) are the parameters, Q(x , y , )\) is C" in (x, y, )\) and of arbitrarily 

high order in (x, y , )\). For any value of E2 , they have the same topological type. 

Remark 2.1. Some of the work done here will also be useful for higher codimen-

sion nilpotent saddle or elliptic singularities in the case E2  = 0 and/or b = O. 

In this normal form (2.4), the "principal" part (the remaining part on the 

blown-up sphere) will be cubic. We develop a new normal form for the unfolding 

of the nilpotent singularity of the saddle and elliptic type, so that the principal 

part becomes quadratic. 

Theorem 2.2. The family (2.4) is C"-equivalent to 

= Y + p2  + aX2  

= i + Y( 3  + X + 2 X 2  + X 3h1(X, p)) + X 4h2(X, p) + Y 2Q(X,Y, 

(2.5) 

where E2 = —aE1E2, and 

• for the saddle case: a(0) E (— , 0); 

if a(0) = 	the unfolding is of codimension which corresponds to the case 

b = O. 

• for the elliptic case: a(0) e (0, 

if a(0) = 	the unfolding is of codimension .4, type 1, which corresponds to 

the case b = 	(the two characteristic trajectories coalesce into one). 

= (,115 112, p3 )  ft) is the parameter, hi(X, Pt), h2(X, 	= .Ê2a + 0(L)+ 0(X) and 

Q(X,Y, p) are C" and Q(X,Y, p) is of arbitrary high order in (X, Y, p). 



Proof. In the family (2.4), we make the transformation 

=m1  + X 

= m2  + Y ± a2X2  

Then we have 

=Y+m2 +a2X2  

= Ài + miA2  + m2A3 + 0(1(mi, m2)12 ) 

+[A2 + (b— 2a2 )m2  + 0(1(mi, m2 )12 )1X 

±[a2 A3  + (a2b + 3Ei)mi + E2m2 + 0(1(mi , m2 ) 12 )]X2  

+[E]. + a2b — 24 + 0(1(mi,m2)1)]X3  

+Y [A3  + bmi  + O(m) 	— 2a2  + 0(mi))X 

+(E2 + 0 (mi))X 2  + X 31711(X, mi)] 

+(a2e2  + 0(mi) + 0(X))X 4  + Y2Q1(X, Y, m1,  m2, À) 

where hii(X, mi) and Qi(X, Y, ml , m2 , A) are C". Also Qi  is of arbitrarily high 

order in its variables. To eliminate the terms X, X 2 , X 3  in the second equation of 

(2.7), let 

(

F(mi, m2, a2, A) := 

A2 ± (1) — 2a2)m2 + 	m2) 

a2 A3  + (a2b + 3s1 )mi + E2m2  + d2  (mi, m2 ) 

si 	a2b — 24 + d3  (mi , m2 ) 

 

0 (2.8) 

 

where for i = 1,2, di (mi, m2) = 0(1(mi, ra2)1) and d3  (mi m2) = 0(1 (mi, m2)1) • 

For A = 0 and m1  = m2  = 0, by (2.8) we have a equation for a2(0) 

24(0) — b(0)a2(0) — Ei  = O. 	 (2.9) 

To solve the equation (2.9), we have the following subcases 

• In the elliptic case el  = —1, since b(0) > 2v, then 

— 	a(0) = [b(0) + -/b2(0) 	— 8] e 	oo) 

12 

(2.6) 

(2.7) 
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cc' (0) = 1 [b(0) — -/b2(0) — 8] E (0, 1/ 4 7 ). 

In this case, we choose a(0) = c/(0). 

• In the saddle case 

— if b(0) > 0, then 

* a-21- (0) = l[b(0) + N/b2(0) ± 8] G ('`., co) 

* a,.  (0) = 1 [b(0) — -Vb2(0) +8] E (— , 0). 

— if b(0) < 0, then 

* 4-(0) = l[b(0)± -Vb2(0)± 8] E (0, li-.) 

* a(0) = l[b(0) — -/b2(0) 	+8] E (-00, —1-21). 

Consider F(mi , m2 , a2 , 	= O. Note that for the saddle case and the elliptic 

case with a(0) G (0,), we have 

F(0, 0, a2(0), 0) = 0, 

det 
 (

8Fn  i(m 1  'r n2  ' a 2  jÀ) 	
) , 2s1 (a2 (0)+E1 )(2a2 (0)+E1 ) 	o.  

,..,rni,m2,a2, 	(0,0,a2(0),0)/ 	 a2  (0) 

So by the Implicit function theorem, in the neighborhood of (0, 0, a2(0), 0), the 

solution of (2.8) can be written as 

{ 

a2  = a2(0)+0(1A1) 
_ 	a2(0)Ei  mi. 	— 	2(4(o)+Ei.) [E2A2+61A3]+ 0(1)1 2 ) 

M2 = a2(0)61A2 ± 0(IA12 )* 

The family has the form 

X = Y + m2  + a2X2  

Y = Al  + m1)+2 + m2A3 + 0(1(mi, m2)12) 

+Y[A3 + bmi + 0(1(m1, m2)12 ) + bi  (A)X ± b2(A)X2  + X3h1.1 (X, ,\)] 

+X4h12(X, À) + Y2Q1 (X, Y, À) 

(2.10) 
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where 
b1  (À) 	= b(0) — 2a2(0) + OPD= —e03-y-Fopi) 
b2(A) 	= E2 0(lA1) 

h12(X, À) = e2a2  + 	+ 0(X). 

Rescaling in (2.10) by (X, Y) = (bi) , b+),) ), then we get a new normal form 

Y-Fp2 +ar 

= 	+ Y[P3 + 	-62X2  + X3h1(X, /-01 + X 4h2(X, 1.1) + Y 2C2(X, 

(2.11) 

where 

Moreover we have: 

—E14 + 0(A) 

= e24 +0(A) 

= —61E24 ± 0(A) + 0(X). 

• For the saddle case El  = 1, a(0) = 	also 

— if b(0) < 0, then a(0) E 	0); 

— if b(0) = 0, then a(0) = 	the unfolding is of codimension 4; 

— if b(0) > 0, then a(0) E (—oo, —). 

• For the elliptic case El  = —1, a(0) = 4(0), h2(X, A) = 2a + 0(A) + 0(X). 

and also 

— if b(0) > 	then a(0) E (0, 

— if b(0) = 2N then a(0) = the unfolding is of codimension 4, type 1. 

Also p, = (p,i ,,u2 ,// 3 „û) is the new parameter with 

112 

P3 

= —E-A1+0(1)t12) 

E,A2  O( À2 )2(a2(0)+61) 3A3] 

a2(0) 

= — A2 ± 0(IA12) 

Ei(2a2(0)—c1)[ 
L 
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with det ( a(,11,14̀, 24̀,3), 	O. À=0  
By using the original coordinates (x, y) and using 62  as a parameter, we get 

the new normal form (2.5) unfolding the nilpotent singularity of saddle or elliptic 

type. 

For the saddle case, family (2.5) with a G (-00,—) and a(0) 	0) 

are C"-equivalent. But for the elliptic case, family (2.5) with a(0) e (0,-1-i ) and 

a(0) 	oo) are C"-equivalent except for a(0) = ( The reason for the difference 

at a(0) = can be explained by the existence of a Jordan block for two equal 

eigenvalues. Accordingly, this is reflected in (2.17) and (2.19) below). Fig. 2.2 

gives the two equivalent types of nilpotent elliptic singularity (The saddle case has 

the same kind of equivalence). 

(a) a E (0, ) 
	 (b) a e 

Figure 2.2: Two C"—equivalent types for the nilpotent elliptic singularity 

Indeed, for the saddle case, let a(0) E (— , 0) and consider the family (2.5). 

Under the transformation 

x.î, 	=P+(— a)5-(2 
	

(2.12) 

the family (2.5) becomes 

-;7 	/12 

= 	(1  — 2a)122 k'  ( 1  a)/13-5i2  + (iL3 + 2aî + 625i-2  -Vh12) 

+.5i4h22  P2Q2(,9-, il) 
(2.13) 
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To eliminate the terms 	5?2  in the second equation of (2.13), we make the fol- 

lowing transformation 

5-( =5-(1-pi 
P = +02 	+ 

then we have 

+ 1-12+ 012H- 02+ (01  + 03)5i 	0.4)52  

= p + O(lP, 012) ± ((-1  + 2a)I/2 + 202  ± 	m2)))? 

▪ — 1)/23 — E2/32 + 2(a — 1)03  ± O(, ßj2)) 2  

+(d102 — E203 — — 2a),34 + 4d201± 0(101 1 2)) 3  

± [it3 ± 201  — /33  + 0(1/012) + (2a + 0 (1/1, Pie 

+(E2 + 3d1ß1  + 0(1/1, 012))-5i2  5i3h13 	/-/7 0)] 

+ h23(,p,± -/22Q3 	1—f-, pl ' 

Let 

01+ 03 = 

(-1 + 2a)//2+ 202 ± 0 (ju, ßj2 ) = 0 

(1Z — 43 — E2)32 ± 2(a —1),83 	op) = 

c/1,32  — 6203 — (1 — 2a)04± 4d2,01 0(l012) = O. 

Since a(0) < 0, we can solve (2.16) for ß(i = 1,2,3,4): 

1-2a  
a(4a-1) (S2/12 + aii3) 	O(j-11 2) 

02 = 1*. a  0(1/1,1) 

/33 	— a(14a2—a1) (E2P2  ± al/3) ± 0(1M12) 

04 =2a(4a-1) 1 	 [(4a — 1)c/1  — 2e 	8e2d2)112  2a(4d2E2)//31 + 0(1fL12). 

So family (2.15) becomes 

= Ý+it2  ét 2  

	

"f7'  [it3 	 )7-3h14 (i, 

+h24 p) -.9-2(24 it-511) 

ßi 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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= 	+ )64 = - ±(9(1/11) 

Th 	= 2(a+ 6131 — 04) °(bt1 2) 

62 	— 62 + 2d101+ 0(1/11 2) 

= 	+ 0(1/112) 

/12 	O(1P12) 

r/3 	
(1-4a2)E2_L  4a(1—a) 	± 00/112) .  

	

a(4a-1) 112  ' 	4a-1 

Rescaling in (2.18) by 

	

"; = i 	ý= 

	

61' 	b1 

we get a family 

= 	+ 	± af X 

= 	 1 	 -62 	h14 (j-C, 
— 4 

h24(i)  p) + Y Q4 (X, Y, it) 

(2.19) 

(2.20) 

where a = Lit + OUI) and a/(0) = 1; 	( 4a(0) c 	also for the new parameter 

(iti , th, iL3 ) we have 

det /121  /713 	
4a(0) (1 — a(0))  

0(/-11,1-12, 113) m=0 	(4a(0) — 1) 	7- 
(2.21) 

Hence for the saddle case, family (2.5) with a(0) 	0) and a(0) E 

are C"-equivalent. 

By the above process and (2.21), we can see that for the elliptic case, family 

(2.5) with a(0) 	0) is C"-equivalent to family (2.5) with a(0) 	oo) except 

for a(0) = 1. For the family (2.5) with a(0) = it is C"-equivalent to the family 

=2 ý2 

= 	it3i2 	± 	Es2i2 	 h12(,i3 	 (2.22) 

+)?4h22(5i, ri) + 	/-7-, 
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where 

{

ill = lill ± - /-121.13 

ii2 = [t2 

/7/3  — /13. 

So except for a(0) = 1 and a(0) = 1 for the elliptic case, we will use the equivalent 

unfoldings depending on the context. One passes from one unfolding to the other 

by means of the changes (2.12), (2.14) and the rescaling. 

If e2  = 0, i.e., if the associated quantity Q in (2.2) vanishes, the 3-parameter 

unfolding (2.5) is not universal. In this case, the codimension of the nilpotent 

singularity is at least 4. Theorem 2.3 in the quadratic systems gives examples. III 

2.2 Normal forms unfolding the nilpotent singu-
larity of saddle or elliptic type for quadratic 
systems 

In view of application to Hilbert's 16th problem for quadratic systems, we discuss 

the normal form of nilpotent singularities of quadratic systems. In [DF91], there 

is a detailed classification of the nilpotent singularity of saddle or elliptic type for 

quadratic systems. To have a better understanding of the meaning of the quantity 

Q defined in (2.2), we make a little modification of the classification. 

By Jordan normal form theorem, we can write the quadratic system with a 

triple nilpotent singular point of saddle or elliptic type at the origin in the form 

= 	+ aixi + bixiYi + 

t 1i = eixiYi + fie 

where aie]. 	O. 

By a linear transformation 

17 { 	= 1 Xi 	2 — 112-  y2 el  
=. 1 Y1 

(2.23) 



system (2.23) is equivalent to 

{

i.2 = Y2 ± a24 + b2x2Y2+ C2A 

Y2 = X2Y2 

where 
ai 
el 
LI el ±(ei —2ai)fi  

2 el 
bi 1 ± ad? 
e 	el 
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a2  = 

b2  = 

C2 = a  — ei 

(2.24) 

	

also clet( a(''b,,2'2 ) — 23- 	0 

	

acal,,,i,c" — -1 	• 

Adding an additional 	singular point on the y-axis, we should have c2 	O. 

This singular point is an anti-saddle if c2  < O. By rescaling 

1 

   

x = \/—C2X2 

Y 

= —C2 Y2 

T = A  2  

 

then we can take c2  = —1. So a quadratic system with a nilpotent singular point 

at the origin and an anti-saddle is linearly equivalent to 

where a 0 and c e R. 

{

X = y + ax2  + cxy — y2  

Y = xy. 
(2.25) 

Using the Takens normal form theory [T74] and by a near-identity transfor-

mations we obtain a C'-equivalent system 

Y 	= —au3  + v [(1 + 2a)u + —
2 

cu2  + 0(u3 )] — —
1 

acu4  + v20( lu, 43). 
2 

1 

For system (2.26), the associated quantity Q becomes 

Q = ac(3a — 1). 

Hence we have the following theorem. 

(2.26) 
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Theorem 2.3. If Q 0 and a --, then the nilpotent singularity is of codimen-

sion 3, and system (2.26) is C"-equivalent to 

{ V = —au + v[(1 + 2a)u — fu2  + 0(u3)1 + v20(1u, 43). 
	(2.27) 

Furtherm,ore, for quadratic system (2.25), we have the classification: 

• a < 0: nilpotent saddle 

— c $ 0 

* a 	-- 	nilpotent saddle of codimension 3 

* a = -- 	nilpotent saddle of codimension .4 

(corresponds to b = 0 in (2.4)) 

— c = 0 nilpotent saddle of codimension oo 

(corresponds to E2 = 0) 

• a> 0: nilpotent elliptic point 

— c 0 

* a 	- ,1 	elliptic singularity of codimension 

1 * a = i 	elliptic singularity of codimension 

(corresponds to b = 2e 

1 * a = 	elliptic singularity of codimension 

(corresponds to 62  = 0) 

— c = 0 elliptic singularity of codimension oo 

(corresponds to E2 = 0 in (2.4)). 

3 

4, type 1 

4, type 2 

Remark 2.4. If Q -- 0, i.e., 62  = 0, then for the nilpotent saddle, the singularity 

can only be of codimension oo; for the elliptic case, the singularity is either of 

codimension 4, type 2, or infinity. 
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Proposition 2.5. For further application to quadratic systems, let us remark that 

a general 5-parameter quadratic family unfolding a nilpotent singularity of codi-

rnension 3 of the saddle or elliptic type at the origin and with an anti-saddle in 

the upper half plane can be written as 

{ 

= 1,12 + y + ax2  + cxy — y2  

= Pi + (P3 ± x)Y 
a /  1 	(2.28) 

Or 

{ 

x = /22 + y + (1 + p4)x2  + cxy — y2  

2171,x2. ý = pi + (13 + x)y + - 
(2.29) 

Hence they have the same blow-up as family (2.5). 



Chapter 3 

Generalities on the blow-up of the 
family 

3.1 	Blow-up of the family 

Consider the normal form unfolding the nilpotent singularity of saddle or elliptic 

type 

 

+ P2 + ax2  

= 	+ Y(P3 + x + e2x2  + x3111  (x, P)) + x4h2(x, + Y2Q(x, 

(3.1) 

where a E [—, 0) saddle case; a E (0, 1 elliptic case, p = (pl, p2, p3) is the 

parameter, and hi(x,P), h2(x, P) = EiEza + 0(x) and Q(x, y, p) are C' and also 

Q(x, y, p) has arbitrarily high order in (x, y, p). 

From now on, we denote A = (0, ) for the elliptic case, A = (--1, 0) for the 

saddle case. 

We are interested in this family for a E A and (x, y, p) e U x A, a neighbor-

hood of (0, 0) in R2  x le A can be identified to S2  X [O, vo ) through the change of 

parameters. Making the change of the parameters 

{ Pi = v3iti 
2- 	 (3.2) P2 = v2 	 (32)  

P3 = vrt3 

22 
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where 	P2, 113) G S2  and v E (0, v0), we have a 3-parameter family of vector 

fields in (x, y, v) space with parameters (a, rt) G A x 52: 

= y + v2rt2  + ax2  

: = v3F-11 + y [vrt3 	x 	E2x2 	x3hi (x, vrt)] 
(3.3) 

±x4h2(x, vrt) 	Y2Q(x, y, vrt) 
=O• 

We then make the (weighted) blow-up of the singular point of (3.3) at the 

origin by 

x =r 
- y 	= r2  y 

= rp 

(3.4) 

where r> 0 and (f, p) G S2. 

By the blow up (3.4), we have a C"—family X = 	 . For each (a, A) E 

A x 52, X induces a 3-dimensional vector field X(a,p)  defined in the neighborhood 

of 52  X {0} with parameters (a, /.-/,) E A x S2. In other words, the blow-up (3.4) 

changes the 4-parameter 2-dimensional family into a 3-dimensional family X(a,p)  

with parameters (a, A) E A x 52. 

Putting together (3.2) and (3.4), as in [DRS97], for (3.1), at (x, y, i,  /22, //3) 

= (0, 0, 0, 0, 0), we make the global blow-up 

s2 x11 -Fxs2 —›Re 
Ti25 T13)) 

X 	= r .± 
- y 	= r2  y 

iti 	= r3 P3 - 

2 2 - /-t2 = r P 

it3 = ro:13  

(x, y, mi, /12, 

(3.5) 
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where ±2y+ 2 ± p2 = 1. 

(a) The elliptic case 
	 (b) The saddle case 

Figure 3.1: The stratified set {rp = 0} in the blow-up 

Because of the symmetry, as in Fig. 3.1, we only need to study X on {p > 0} 

to get a complete information for ((-±, y, p) , r, ()b 	it3)) near 0 E S2  X [0, ro) x 52. 

Note that for each 	the foliation given by {v = rp = const} is preserved by 

X( a,p): 

• For {rp = v} with v> 0, the leaf is a regular manifold of dimension 2. 

• For {rp = 01, we get a stratified set in the critical locus. As shown in Fig. 3.1, 

there are two strata of 2-dimensional manifolds: 

1.--, S1  x R+ 	the blow-up of the fiber p = 0, 

= { 	g2  + p2  =1, p > 0}. 

On Ê = fp = 01, (3.5) is just the common blow-up of the nilpotent point: 

 

(3.6) 

 

y = r2 y 

  

and by the blow-up (3.6), we get a vector field with four singular points Pi  (i = 

1, 2, 3, 4). P3 and P4 are hyperbolic saddles, P1  and P2 are nodes (resp. saddles) 

in the elliptic (resp. saddle) case (Fig. 3.2). 
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(a) The elliptic case 	 (b) The saddle case 

Figure 3.2: Common blow-up of the nilpotent singularity 

To study the objects on and near F , we use the "phase directional rescaling". 

We use charts 
P.R.1 	= —1, (ri, M'Yi) 

P.R.2 x= 1, (r2,p2 , 2 ) 
which cover the boundary of the half 2-sphere. 

In the chart P.R. 1 and P.R. 2, by transformation (i = 1, 2) 

= Tri 

= ri  yi  

	

2 - 	 (3.7) 

= 	 (j = 1, 2, 3) 

and after division by ri , we get a vector field near P (i = 1, 2) 

= T(a + + ft2PDri 

= ±(a + 	it2PDPi 

= ±(1 — 2a)0i  + 2e H-Di[62,± Ti3pi ± 2/j2pi2  

+ftipi3  + rih2(±ri, rjpj, /-1) + et-22 (ri,pi,Yi, P) 

(3.8) 

where h1  and h2  = CLE2 ± 0(r) are C" in (ri , pi , ft), Q(ri, pi, i, 	is C" in 

(ri , pi , yj, p,) and of arbitrarily high order in (ri , pi , gi) . 

Easily, we see that p1  has two singular points P1(0, 0, 0) and P4(0, 0, I--22a ), 

1-22a \ X ID, has two singular points P2(0, Cl, 0) and P3(0, 0, _ ) Each singularity has 

xPi  

• 
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three real eigenvalues listed in Tab. 3.1. In Fig. 3.3, we draw the phase portraits 

in the charts P.R.1, P.R.2 for the elliptic and saddle case respectively. The chart 

P.R.3 (y = ±1) gives no additional singular points other than those found in the 

charts P.R.1 and P.R.2. 

r fi' y 
Pi —a a —(1 — 2a) 
P2 a —a (1 — 2a) 
P3  1/2 —1/2 —(1 — 2a) 
P4 —1/2 1/2 (1 — 2a) 

Table 3.1: The eigenvalues at Pi  (i = 1, 2,3, 4) 

Li,"\j/"LII  

(a) --)—(p„ the elliptic case 	 (b) X p2 , the elliptic case 

(c) Xp„ the saddle case 	 (d) .7( p2 , the saddle case 

Figure 3.3: The phase portraits of Xpi  

To complete the phase portrait on the blown-up sphere D, we use the family 



27 

rescaling and use the chart 

F.R. 	 p = 1, (±, g, r) 

yielding 

= P2 +D-1-a±2  

=i +(+j3)+r,,r,jij  (3.9) 

= 0 

where 	D, r, 	is C' in (f, y, r, 	Especially, on Ir = 01, we have 

=p2+y+ae 
p=1 (3.10) 

Y 	= 	+ (I.L3  + 
In order to list all the possible limit periodic sets for the family, we have to 

study the bifurcation diagram of (3.10) for p, e S2. Since we use charts, here we 

give the coordinates changes between the charts P.R. 1, P.R. 2, and F.R.: 

  

d)io  : P.R.i ---> F.R (i = 1, 2). 	(3.11) 

   

3.2 Bifurcation diagrams for the family rescal-
ing, limit periodic sets 

In [KS95], the authors investigate generic 2- and 3-parameter smooth families of 

vector fields on the 2-dimensional sphere and gives the list of all polycycles of 

codimension less than 3 (also called "Kotova Zoo") and of their cyclicity, but with 

the nilpotent elliptic and saddle cases of codimension 3 left unknown. Following 

the convention of [KS95], we use pp to denote a graphic connecting two parabolic 

sectors, hp to denote the graphic coming out of a hyperbolic sector and connecting 

to a parabolic sector, and hh to denote the graphic connecting two hyperbolic 

sectors. Then to find out all the limit periodic sets after the blow-up, we have to 

answer the following two questions: 
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1. In the elliptic case, when does a pp, or hp or hh-graphic exist? i.e., when 

does a passage from P1  to P2  or P1  to P3  or P4  to P3  exist? 

2. In the saddle case, we have two types of hh-graphic, one is a graphic which 

passes through P3  and P4  (or P1  and P2 ), the other type is a graphic which 

passes through P4  and P1  (or P2  and P3 ). For each of the graphics, there is 

always at least one family of limit periodic sets and there can be two. What 

are the bordering limit periodic sets for these families? 

To answer the above two questions, we need to give the complete bifurcation 

diagrams of system (3.10). They correspond via y+ rt 2  +a±2  = Y to the bifurcation 

diagrams for the principal rescalings studied in [DRS91] and [DRc90]. Complete 

bifurcation diagrams have been given there except for the position of the separatries 

at infinity which are better studied in the quadratic model given here. 

Proposition 3.1. For system (3.10), there holds 

(1) System (3.10) has an invariant line y = o if and only if ji = O. 

• In the elliptic case, the curve 	= 0 is a bifurcation curve except when there 

are two nodes on the line y = O. 

• In the saddle case, the curve 	= 0 is a bifurcation curve precisely when 

there are two finite saddles on it. 

(2) If a 1, system (3.10) has an invariant parabola 

y= 	— a)x2  + p,3
1 — 2a 

x 
 (1 — 2a)(2aM + (1 — 4a)2TL2 

2 	1 — 4a 	 a(1 — 4a)2  

if and only if 

(3.12) 

_ 	2a(1 — 2a) _3  2(1  —  2a) 
= Ji 	(1 — 4a)3 113  ± 1 — 4a 112113. 	

(3.13) 
 

(3) If a = 1, system (3.10) has an invariant parabola if and only if r.t 3  = 0. For 

rt 3  = 0, system (3.10) has 1, 2 or 3 invariant parabolas 

1 „ 
y = 7-4xe + Bx + P2  + 2B2 	 (3.14) 
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if 27pî + 16/A > 0, = 0 or < 0, and B is the solution of the algebraic equation 

2B3  + 2p2B —Ïìi  = O. 

Proof. Direct calculations. 	 D 
	 D 

Now we turn to the bifurcation of system (3.10) for elliptic and saddle cases 

for p, E S2. 

Theorem 3.2. The bifurcation diagram of (3.10) for the elliptic case (0 < a < 

is in Fig. 3.4, the bifurcation diagram for the saddle case 	< a < 0) is in 

Fig. 3.5, in both diagrams, we use the following nomenclature: BT - Bogdanov-

Takens bifurcation, DH - Degenerate Hopf bifurcation, H - Hopf bifurcation, IL 

- Invariant line, SL - Saddle loop, SC - Saddle Connection, SN - Saddle Node 

bifurcation, SNC - Saddle Node Connection. 

All the limit periodic sets are listed in Tables 3.2-3.6. 

Proof. The proof comes from the bifurcation diagram in [DRc90], from the exis-

tence of the invariant line y = 0 for = 0 and from the fact that this line becomes 

without contact for p,i  0. 

Indeed, the phase portraits in Fig. 3.4 and Fig. 3.5 can be completely recov-

ered from the bifurcation diagram in [DRc90] and the phase portraits on jii = 0. 

It is known for quadratic systems that any saddle connection between a finite and 

an infinite saddle must occur along an invariant line. 

The bifurcation diagram of Fig. 3.5 is exactly the bifurcation diagram of 

[DRc90] with the additional information that the upper saddle connection occurs 

for tii  = 0 on the invariant line p = 0 and the lower saddle connection occurs on 

the invariant parabola (3.11). 	 IiJ 

Note that when we study xp=1  at infinity, we use the quasi-homogeneous 

compactification: 

1 _ u 
= ±—

z 	Y = p• (3.15) 
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Figure 3.4: The bifurcation diagram of the rescaled family: the elliptic case a(0) 
1 
i 

These transformations are just the transformations we used in charts P.R.1 and 

P.R.2. So at infinity, we add what we obtained from these two charts and draw 

the bifurcation diagrams for the elliptic and saddle cases in Fig. 3.4 and Fig. 3.5. 

For the elliptic case, there are 22 limit periodic sets which fall into three types: 

Epp, Ehp and Ehh. We list all the 22 graphics of the elliptic type in Tab. 3.2, 3.3 

and 3.4. 
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Figure 3.5: The bifurcation diagram of the rescaled family: the saddle case a(0) e 
1 

For the saddle case, there are two types of limit periodic sets: convex graphie 

Sxhh and concave graphic Sahh. We list all the possible graphics of saddle type 

in Tab. 3.5 and Tab. 3.6. 

For all the families of graphics listed in the following tables, we use a to denote 

the upper boundary graphic, b or d to denote the intermediate graphies, c or e to 

denote the lower boundary graphie. 



graphic Eppl family of graphics Epp2 graphie Epp3 

Table 3.2: Limit periodic sets of pp type for the Elliptic case 

em, lai, 
graphie Ehpl graphic Ehp2a, b, c graphic Ehp3 

eak, • 

MI 
<rie 

graphic Ehp4 graphic Ehp5 

dP4iiie 
411Ie  

graphie Ehp6 graphie Ehp7 
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Table 3.3: Limit periodic sets of hp-type for the elliptic case 



41. 

_--2/  

family Ehh1 family Ehh2 family Ehh3 • 4ter, .b, Ilete 
family Ehh4 family Ehh5 family Ehh6 

de itp, 41. 

dabi-->1/4 
alb 0 

family Ehh7 family Ehh8 family Ehh9 

411 411, e  de 0  0  
family Ehh10 family Ehh11 family Ehh12 
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Table 3.4: Limit periodic sets of hh-type for the elliptic case 



41,  , i. ià  , ,.. 41, eu  
nippe m • IN % • a pf 

Sxhhl Sxhh2 Sxhh3 a 41, &MI 	 ailik 
Sxhh4 Sxhh5 Sxhh6 

d. de 

eleabi &là 

Sxhh7 Sxhh8 

elP di 
'%%,•1  'gril 

Sxhh9 Sxhh10 
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Table 3.5: Convex limit periodic sets of hh-type for the saddle case 



iii, • g-0 
Sahh1 Sahh2 Sahh3 

"114' 
fe 	0 fe. CAO 

Sahh4 Sahh5 Sahh6 

ree • AG 40111  o. 

Sahh7 Sahh8 Sahh9 ro. )mED L•e-de 
Sahh10 Sahh11 Sahh12 

,,,z.,-14, e4  ,)11. CD 

Sahh13 Sahh14 Sahh15 
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Table 3.6: Concave limit periodic sets of hh-type for the saddle case 



Chapter 4 

Dulac maps at the entrance 
points of the blown-up sphere 

To study the cyclicity of the graphics after the global blow-up, we will need some 

basic properties of the transition maps in the neighborhood of an elementary sin-

gular point. First we give some definitions and some results about the transition 

maps near an elementary singular point. Since we use three dimensional charts to 

study the object, in §4.2 and §4.3 we will establish two types of Dulac maps in the 

neighborhood of a three dimensional hyperbolic singular point. 

4.1 Transition maps near the elementary singu- 
lar points in the plane 

Definition 4.1. (1) A singular point is elementary if it has at least one nonzero 

eigenvalue. It is hyperbolic (resp. semi-hyperbolic) if the two eigenvalues are not 

on the imaginary axis (resp. exactly one eigenvalue is zero). 

(2) The hyperbolicity ratio at a hyperbolic saddle is the ratio r = — 1,- '  where 
A2 

Ai < 0 < )12 are the two eigenvalues. 

Let Xx, A E A, be a C family of vector fields defined in the neighborhood 

of a hyperbolic saddle at the origin. We also assume that the coordinates axes are 

the invariant manifolds near the saddle point. 

36 
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By normal form theory, for any fixed k E N, up to Ck-equivalence, we can 

write the vector field X), into some explicit expressions of the normal form (cf. 

[St58], [IY91]). Let r), be the hyperbolicity ratio of X ), at the origin, then 

• If ro  is irrational, then , Vie E N, the vector field X ), is Ck-equialent to 

{ X =x 

for A in some neighborhood W of the origin in parameter space. 

• If ro  G Q, let ro  = Eq , (p, q) = 1. Then Vk EN, X A  is Ck-equivalent to 

X = X 

N(k) 

Y [ 	ro + 	cei+i (A) (eYq)i] • 
i=o 

for A in some neighborhood W of the origin in parameter space. In particular, 

= ro — r(À). 

Figure 4.1: Dulac map near a hyperbolic saddle 

Let El = {y = yo} and E2  = 	= xol be two sections transverse to the 

vector field X ), (Fig. 4.1), where xo , yo  > 0 constant. The flow of X ), induces a 
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transition map ÐÀ(., A), also called a Dulac map: 

ÐÀ: -É1 --> --É- 2 

for all A E W. 

The Dulac map is Ce' for x > O. The following theorem of Mourtada 

([Mou90]) describes its behavior near x = O. 

Proposition 4.2. (Mourtada) The Dulac map DA can be written as 

ÐÀ(x) = xr(A) [c(A) + 0(x, A)] 	 (4.1) 

where c(A) = —,v7(  7 , e(x, )) is C" for (x, A) E (0, xo ] x W. Furthermore, 0 satisfies xo  
the following property (Ii",°): 

an,0 

(4)° ) : 	Vn E N, 	lime 	 (x A) = 0 	uniformly for A E W. (4.2) 
x—>o axn ' 

(1) If ro  E Q, then V) 0; 

(4 If ro  = 1, then the expression (4.1) is in general not fine enough for proving 

the cyclicity. 

Definition 4.3. The Ecalle-Roussarie compensator of the vector field XA is de-

fi nedas 

w(x, ai) = 
if ai  0  

if ai = O. 
(4.3) 

By the definition of w, we can easily check cp(x, ai ) has the following property: 

Proposition 4.4. 

w (ab, ai ) = w (a, 4(1 + aiw (b, ai)) + w(b, ai). 	 (4.4) 

Since the Dulac map in Prop. 4.2 is not fine enough to prove the cyclicity for 

the case ro  = 1, in [R86], by using the compensator, Roussarie has an additional 

refinement: 
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Proposition 4.5. If ro  = 1, then the Dulac map D ), has a well-ordered asymptotic 

expansion: 

DA (x) = cei(A)[xw + • • •] + Pi(A)[x + • • ] 

+ce2  (A) [x2w + • • • + ak(A)[z iew + • • •]+ tpk (x, A) 
(4.5) 

where ai (A) = r(A) — 1, and ek  is a Ck function, k— flat with respect to x = O. 

4.2 Normal forms at the entrance points 

To study the Dulac maps in the neighborhood of the entrance points, the vector 

fields should be in the normal form. 

For saddle and elliptic case, the family of vector fields at each point /1), ( i 

= 1, 2, 3, 4 ) has the same form as (3.8), the three eigenvalues not all having 

the same sign. Due to the special form of the family (3.8), after dividing by a 

C" positive function, system (3.8) is linear in r and p. If necessary we change 

the time (t 1—> —t), so that we have two negative eigenvalues while the third is 

positive (Tab. 3.1). So for the three eigenvalues at each point, there are only two 

possibilities 

—1, 	1, — o-  (a) 

2(1 — 2a) 

or 

where o- 
 (a) ={1-2a  1 i 

I 	a 	I  

1, 	—1, — o-  (a) 

at P1  and P2 

at P3 and P4 

By exchanging the roles of r and p, we only need to consider one case of 



system (3.8) which we rewrite as 

X (a,p) {i' = 

—r 

b =_- p 

:J = —0-(a) + f(a,p)(r, I), y) 

where 

f(a,p) (r, p, Y) 
= a(a), 	- (1 -2a (r,TP,P)14-FliP31-rh2(r,rP4-rer22 (r,Pert) )9.1-292+9[E2T-F-P3P+242p2 -r2hi  

and the parameters (a, E A x S2, where for the saddle case A = (— 0) and for 

the elliptic case A = 

Proposition 4.6. Consider the family X(a ,r,)  in the form of (4.6) with parameters 

(a, Tt) e A x S2. Then e(ao , R) G A x S2  and Vk E N, there exists Ao  c A, a 

neighborhood of ao, N(k) e N and a C—  transformation 

lif(a,P) (r, p, y) 	(r, p,0( a,p ) (r, p, y)) 

where 

e(a,rt)(r,  P, y) = y + 0(l(r, p,Y)l) 
	

(4.7) 

such that V(a, 	E A0  x 52, the map '0(a,A) transforms X (a ,p )  into one of the 

following normal forms: 

• if o-(ao ) 

• If o-(ao) = 	E 

i(a,p) 

r 

k-(a,p) 

= —r 

P  

{  

1 

i. 	= 

= +P 

= 

N (k) 

(4.8) 

(4.9) 
r 

— 	E cei+i (a, Ti, v)(pPyq)ily 
i=0 

40 

(4.6) 



where v = rp > 0 and 

ô-  (a, 	= o-  (a) — Œo (a, p, v) 
N(k) 

no (a, il, v) = 
	 (4.10) 

Œ1(a, ft, 	= p — • (a, v)q 

41 

where (a, p,), ai and K are smooth functions defined for (a, ft) E 11.0 X S 2. Espe-

cially if q > 2, K = 0. 

Proof. The proof is a straightforward application of normal from theory (see for 

instance [GH83], [IY91]). Depending on the value of ach  we have two cases: 

	

Case 1: u(a0) Q, X(a, j,- )  has only resonant terms (rey = viy, 	i > 1. 

Case 2: X(„,) has eigenvalues —1,1, —a-(ao) with o-(ao ) = p, q E N, (p, q) = 1. 

Then the resonant term ri piyi  will satisfy 

—i+j- 121=-12 , 	i, j,l>0, i+j+1> 2. 	(4.11) 

• a(a0) 	E Q N, q > 2. By (4.11), we have 

j=i+np, 1=1+nq 	n>0, i+n> 1. 

Then the resonant terms will be 

(rAi (PPOnY, i + n > 1. 

• or(a0) =- p e N, then by (4.11) 

—i+j—p1=—p 	i,j,1>0, i+j+1> 2. 

Then the resonant terms will be 

— rP(rp)i 
	

i + p> 1, 

- (re(PPY)1Y 
	i +I > 1. 

D 
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Remark 4.7. It seems a priori that the resonant terms cannot be written directly 

in the case a(a0 ) =1 since the linear part can have a Jordan normal form. Indeed 

when applying a polynomial transition Y = y+Cri pi yk to get rid of a non-resonant 

term in ri  pi yk  (i+ k — j 5É  1), one creates another non-resonant term in r lejyk+1. i- 

Iterating the process we realize that we get exactly the terras which appear in (4.9). 

Moreover a transformation of the same form when i+ k — j = 1 allows to get rid of 

certain resonant monomials but this refinement is not necessary for our purpose. 

(a) The first type 
	

(b) The second type 

Figure 4.2: Two types of Dulac map 

In order to study the cyclicity of the graphics with a nilpotent singularity of 

elliptic or saddle type, we only need to consider i(a.p)  with eigenvalues —1, 1, —a(a) 

in the normal forms (4.8) and (4.9) and consider the following two types of Dulac 

maps (Fig. 4.2): 

	

= (d, D) : 	H 

0(ad7) 	E) : 	H 

where E = Ir = ro}, = {p = po} and 7 = {y = yo } are sections in the normal 

form coordinates, ro, po  and yo  are positive constants. 

To simplify the notation, for all the maps and vector fields, we will drop the 

index (a, p,). For example, the Dulac map 3,(v, Di) means  
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In the next section, we give some preparation propositions for the proof of 

the two main theorems about the Dulac maps. 

4.3 Preliminaries 

Before studying the Dulac maps, we give two propositions as preparation. First 

we define a notation /(ii, i2, • • • , ii; m, n): 

Definition 4.8. Let m,n, j E NU {O}, we define 

{
/(ii i2  • • • ii; m, n) = 	ii, i2, • • • , ii E N U {0} 

 

+ i2 + • • • + = Tri 

+ 2i2 + • • • + 	= n 

Proposition 4.9. Let f(t,z) be a smooth function and consider the initial value 

problem 
dz 

= f (t, zo , z), z(0) = zo. 

Denote the unique solution as z = z(t,z0 ). Then Vn E N, the nth derivative 

(t, zo ) satisfies the linear initial value problem azg 

an-lz\  
1 ( aai÷,, ) = 	az 52z { 	

a f an z 

where 
, 

ffl(t, zo,z 
Oz « 	an-i z  42 	

r 
) 

— 0 az°   0 n-1 az ,ii 

	

an f n ai f 	 H, = 	 . 

	

azn 	azi 	E 	\ azo ) 

	

° 	i=2 	1.(ili2 -in-1;i,n) 	1=1 
n-1 n-2 

E 
ai _Ei f 	 n-1 

+ 	az „ , 
azni az,  

	

J=1 i=, 	_ 	/(iii....in_iLi,n-i) 	1=1 

fn  as well as all the partial derivatives are all evaluated at (t,z0 ,z(t,z0 )) and * 

denotes a positive integer. 

anz (0 	= 

azg ) 

Proof. By induction. 
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Proposition 4.10. Let us consider the initial value problem 

dz = f (t , z) 

z(0) =O 

with t C [0, T]. If there exist two continuous functions A(t),B(t) with 

(t, z)1 < IA(t)11z1 + IB(t)l, (t, z) e [0,T] x [0, Zo ], 

then for t E [0, T], the solution of the initial value problem satisfies 

lz(t)1 < d'et,  IA(T) I dT 	t  1B(s) le fi;9 1A(T) I dTds. 

Furthermore, if there exist constants M1 , M2  > 0 such that 

1A(t)1 

IB(t)i 	M2 

then there exists a constant K > 0 such that for t E [0, 11 ], there holds 

z(t)i < KM2t. 

Proof. By 
dlz1 

< libl(t)11.4 +1/3(t)1 
dt 

then 

(e-  fcti I A(T ) I dr kW') < 113 (t)le-  I A(T ) I dT dt 

Integrating the above inequality from 0 to t with the initial condition z(0) = 0, 

then for t E [0, 7], we have 

lz(t) l < efct,  1A(T)Idr f t  IB(s) 1e fo< IAMIeds. 

If 1,4(t)1 < M1, 1/3(t)1 < M2, immediately we have 

lz(t)l Km2t 

where K = e31112' 
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4.4 First type of Dulac map 

We now study the first type Dulac map A = (d, D). If we parametrize the sections 

E and II by (v, y) with the obvious relation p = on E and r = on then we 
ro 	 PO 

have 

Theorem 4.11. For any ao  E A and Tt E S2, consider the family .5i = 5i(a,p) with 

eigenvalues 	a(a0 ) in normal form (4.8) or (4.9). ThenVY0  e iR, there exist 

Ao  c A, a neighborhood of ao, and vi > O such that Vv E (0, v1 ) and (a, /17y) G 

Ao  x S2  x [0, Yo], the Dulac map 3.(v, y) = (d(v, y), D(v, y)) has the form 

{d(v, y) =v 

D (v, y) = 71(v, cx)( 1  —cei)) + 	[y + 0(v, (,)(, —cti), Y)] Vo 	

(4.12) 

Vo 

where vo  = ropo  > 0 a constant and 

If a(a0 ) « Q 

= 0 = 0; 

If o- (a0 ) E Q \N 

= 0; 

If cr(a0 ) = p EN 

= 	—ai) 	; 

	

If u(a0 ) = E Q, p,q G N and (p, g) = 1, then 	—ai ), y) is C" and 

= 0(vewq+1(, —a i ) ln )L-) Vo 	 Vo 

= 	—a i ) ln Vo 

	

e = 0(,(1+,,,),q_i±l±q,,,(±, _ai) ln  v 	, j > 2 
Vo 	Vo 

(4.13) 

where 

_ 	{e(a,v) 	ai > 0 
p= 	 (4.14) 

P 	ai < 0. 

Also all the partial derivatives with respect to the parameters (a, TL) are of order 

0 (vPwq(—
v

,—oLi ) ln —v ). 
Vo 	Vo 
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Proof. Since we consider the Dulac map A(v, y) in the invariant leaf v = r p > 0, 

let vo  = ropo. Then the transition time from E to II is 

t = ln —
p = — ln 12-. 

Po 	vo 

The first component d(v, y) is easily obtained: 

d(v, y) = poroe-t  = poro—v  = v. vo  

Now let us consider the second component D(v, y). 

(1) Case o-(ao) e Q: 
By the normal form (4.8), we directly have 

Ð(v, y) = e'ty = 

(2) Case a(a0) = U, E Q, p, q G N, (p, q) = 1. Note that r(t) = roe-i, p(t) = 

so by the third equation of (4.9), we can write the solution of y as 

_v_et 
ro ' 

Y(t) = 

where 

S2(ai,t) 

Let 

W(t) 

Then by (4.15), we have 

Note that if q > 2, then k = 

A straightforward calculation 

Ce  

= yo 

O. 

{

Ù(t)  

U(0) 

y(t) 

(t) 

[yo 

= 

± 

+ kr(—al, t) + U(t)] 

el—i. al  740 

(4.15) 

(4.16) 

(4.17) 

shows 

ai 

t 	al  = O. 

{ 

Krg2(—ai  , t) + U(t). 

= e'tW(t). 

that U(t) satisfies 

= g (v, t , W (t)) 

= 0 



Z(0) =i 

so for t E [0, ln 7,in, there exist constants K4, K5  > 0 such that 

Hence U(t) stays bounded by the solution of the initial value problem 

Z(t) = K3vewq+1(-1)—, —a1)Z(t)Nq+1  { vo  
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where g(v,t,W(t)) = E aitivPiealitWqi+1(t). First we are going to prove that ,vz 
0 

U(t) is bounded for t E 

By the definition of W(t) in (4.16), there exist constants K1 , K2  > 0 such 

that 

1W(t) < 	+ K2Cil 	—cei) +1U(t)1, 	t 	[0,11n 113 1] 	(4.18) 

where K2 = 0 as long as q > 2. 

We want to show that U(t) is bounded, so we only need to consider the region 

where 1U(t)I > 1. In such a region, by the definition of .73 in (4.14), there exists 

K3 > 0 such that for t E 	1] with v sufficiently small 

Ig(v,t,W)1< K3vewq+1( 1±, vo  

Indeed, for v sufficiently small and for t e [0,11n 

(4.19) 

Ig(v,t,W)1 
N 

E pi v  
i=1 ro 
V.̀   ai+11  

Pi ro  

I ai+1I"  
P2: 	

P 	1 	2(.1-)ei  [K 	K ( — 1 —ai) 1U(t) 
i=1 	0 Tvo  

< K3/À3Wq+1( ii,ii  —a1)1U(t)1Nq+1 

1 lu(t)1 < z(t) = 
(1 — NqK3vPwq+1-(, 

< [1 — Keewq+1(—v  , 	ln —1 uO 	Vo  
< K5 . 
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Since 1U(t)1 is bounded, by (4.17) and (4.19), there exists a constant K6 > 0 

such that for t E [0,11n 

li/(t) I <K6vewq+1( , 
vo  

So, V(a,p) E Ao  x S2, Vv e (0, vo ) and for t E [0,11n 	we have 

< K6uPwq+1( 1±, —ai ) ln 1± 
vo 

(4.20) 

Substituting the transition time t = — ln into (4.15) and letting 

	

U(t)l_ 	= g5(v, 	—ai), y), po 	vo 

then for the second component of the map 	we get 

D(v, y) = () [y + 	—ai) +95(a, 	—al) Y)] 

= 	, w 	+ 	[y + 	—ai), y)] 

where ç5 is C' in (a, 	—a1), y) and uniformly bounded, i.e., for (a, ¡t) E vo 
Ao  x S2, v E (0, vi ) and y E [0, Yo], we have 

, 	 , y) = 0 (vcv 	— eq-1-1(
1, 

—ai ) ln —). 
vo 	 /10 	vo 

ai 0 
Now we consider the derivatives 	for i> 1• 

ayi 
ao 	aw _ , au- 	aw since w — i• + -é-, so -u— satisfies 

	

Y 	Y 

 

d (aw = gi(v,t,W(tnaw  ay 

Z(0) =1 

 

 

(4.21) 

 

 

  

N 	. + 1) ,\ ai+1  • 	• 
where (v, t, W(t)) = 	vpzealz•t wv(t).  

rpoi  i=i 
For t E [0, l ln 	by (4.18), and (4.20), and similar to the proof of (4.19), 

there exists a Ki > 0 such that 

For 

(4.22) (v, t, W(t)) 
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By (4.21) and (4.22), then for t e [0,11n;fil] we have 

—a1)1 lnt I < aW < eKizewq( '=,—cei)1 ln '= I vo ' 	 .0 
ay 

hence 

— < —au  < 	 — 1. 
Oy 

So there exists 	> 0 such that for (a, p,) E Ao  x S2  and v e (0, vo ), for 0 < t < 

1 1 1/0  

OU „v 
< klvew' 	l—, vo  

ln —
v 
vo 

(4.23) 
Oy 

Thus for 0(v, w ( —ai ), y), we have 

	

v 	, = 	 —) . 
ay 	Vo 	Vo 

It is clear that the above properties on g5 also hold for all the partial derivatives 

with respect to the parameters (a, p) e A0 x S2. 
aiW 

For 	. (i > 2), we will use induction on i. First show that for 2 < i < q+1, 
ayi  — 

there holds 
Oi0 	 v 	v = 0 (vPwq+--- (—, 	m —) • 
ayi 	 Vo 	Vo 

Assume that for 2 < i < q, we have 

	

p 4+1—i 	ln —
v < n _ iv 	—al) ayi 	 Vo 	VO 

Now we turn to 	. By Prop. 4.9, 	y+, satisfies the following initial value 4-1W 

problem 

  

d ( ei+1147  — n 	+ Un °i+1W 	w aw 82w 	aiw) dt‘ a yi+i ; 	vv ) ayi±i 	gi+i (v, t, 	, ay  , ay2 7 	7 agi 

 

  

(4.25) 

  

  

ai+iw (0) = ayi+1 

where 

 

i+1 Oi g 	
w ) ik  gi+i(v,t,W,

OW , 82W  „ 8z  
ay2 	(9y

W .2 ay 	 aWi 	E 	*II (aayo   ° 
j=-2 	 k=1 

(4.24) 
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We claim that there exists a constant Ki+1  > 0 such that for t E [0, I ln 1] 

aw 82W 
9,14(

aiW)  
1'1,4 "5 ay  7 	ay2 	 7 ayi 

  

< Ei+impwq( 
vo  (4.26) 

 

Indeed, for 2 < j < i 1, similar to the proof of (4.19), there exist constants 

>0 (j = 2, 3, • • • , i + 1) such that 
N(k) 	. 	, 

ai g  
aw3 	

,l (qz + 	cti+1 .vpieaiitwqi+i— j(t)  
(ier109)i 	 (4.27) 

< Ki1veceq+1-3Gi, 

Note that by (4.23), we have ryy-v1 < Ko, so by (4.27) and by the induction 

assumption (4.24), there exists a constant Ki+1  > 0 such that 

(v, t, W(t) °W  82W 	0' W gi+i ay  5 ay2 5 	 5 ayi 

j=2 
i+1 

321-33+•••+3i 

=- 	 ,,75,„q1ln 
Vo 

j=2 
i+1 

= E 	 j11)15  W q+1—i  
j=2 

where in the final sum the dominant term is the term with j = j1  -=- q ± 1. 

By (4.22), (4.26) and Prop. 4.10, for the solution of (4.25), there exists a 

constant «Ri+i  such that for t E [0, 1ln vo 

ai+iw  
ayi+-1  < ki-rivew 1  —ai) ln —1)  

Therefore, for 2 < i < q + 1, it follows from (4.24), (4.28) and by induction that 

we have 
& = 0(vP21±1-i(—v  , -ai)! ln —1/  
DM; 	 Vo 	vo  

Generally, Vj > 2, we can decompose j as j — 2 = lq + i with 0 < i < q-1, l > 

0. Then in the same way as for the case l = 0, we can prove that 

0-10 = (ve.(1+[  

	

21wq_i+1+q[ 	11 	et  , 
— 
V ) 

• Vo 	Vo 

i=1 

i+1 
ri  VeCtel—i v 1)  il 

Vo  
4+1) 1=2 

* (ve-cv ql ln —1 
v 	. . 1--(244) 

VO 

Vo 	Vo  
2 < i < q. 	(4.28) 
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Remark 4.12. In Theorem 4.11, if q =1, then V j > 2, we have 

ai çb 
= 0(v(i -l)e1n —v  ). 

Vo  

Remark 4.13. By Theorem 4.11, the properties of the Dulac map A are valid 

on a compact set Ki.  of E. When we want to analyse a graphic intersecting E at 

(r0, y*),  we will of course choose K1  so that (ro, y*) E 

4.5 Dulac map of the second type 

Now we consider the second type Dulac map 8 = (e, E) (Fig. 4.2(b) ). If we 

parameterize r by (r, p), 	by (v, y) with the relation rp = v and r 	on the po 
two sections respectively, then we have 

Theorem 4.14. For any ao  E A, consider .5ÎÀ with eigenvalues —1,1, —o-(ao ) in 

the normal form (4.8) and (4.9). Then for r, p > 0 sufficiently small, there exist 

Ao  c A, a neighborhood of a0 , and v1  > 0 such that V(a, 	e Ao  x s2  and 

v e (0, vi ), the Dulac map e(r, 	has the form 

{ e(r, p) 	=v 
(4.29) 

E (r, 	= 	w(, ai)) + (— )° [y0 ± 0(r, p, w(—, —ai))] 
Po 	 Po 

where 

• if o-(ao ) N, then ii = 0; if o-(a0 ) =p e N, then 

77(u,w(P, ai)) = livvw([70 ,a1.), 

• if o-(ao ) Q, then 0 = 0; if o-(ao ) = E Q, then 0(r, p,w(-pa, —ai )) is C' in 

(a, Ti) and (r, p, 	—ai.)), and also satisfies 

0 	= 0 (pPw( p-e-o , ai.) [1 + re-Pc4)2(- —al)]) Po 

oi = 0 (pP w (-1  , ai))  [i + KrPw2(,—ai)]) , 
(4.30) 

j > 1. 

which are uniformly valid for (a, Tt) E A0 x 52  and r, p> 0 sufficiently small. 
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Proof. 4-(r, p) = v follows from the invariance of r p = v. 

For the second component E(r, p), the transition time from T tO 11 iS 

t == I ln 
Po 

So for the case o-(ao ) e  Q by (4.8), we directly have 

E(r, p) = yoe't  
t=i ln «H

p = Y0( ,(7o )OE  
Po 

 

Now we consider the case o-(ao ) = 2 e Q. Note that r(t) = re-t  and p(t) = 

pet . Hence, by the third equation of (4.9), we have a first order differential equation 

about y 

= -Ery 	KrPe-Pt  
, N (k) 

+1• 	 (4.31) + -
1 E cei+i(pet 	yq 

i=1 

Let the solution of (4.31) with the initial value y(0) = yo  be 

y(t) = et [yo  + KrPS-2(t, -ai ) + V(t)] . 	 (4.32) 

Then V(t) satisfies the initial value problem 

{

V (t) 	= h(v,t, p, E(t)) 
(4.33) 

where 

V(0) 	= o 

E(t) 	yo  + krPQ(t, -ai ) + V(t), 
(4.34) 

h(v,t, p, E(t)) = E 
So for E(r, p), substituting the transition time t = ln 	into (4.32), and po 

letting 

(4.35) 0(r, 	 11/70 	= V(t) 
t=l1n-lu l 5  
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then we have 

E(r, p) = ( il
)

.  [yo + KrPw(- fi, —ai ) + 0(r, p,w( 2  -, —ai))] 
Po 	 Po 	 Po 

= r/(v, w ( 11, a1)) + ( f4r  PO + e(r, P, w( il , —ai))] 
Po 	Po 	 Po 

where 0(r, p, w(-, —ai )) is C' and 
Po • 

1/(/), w( - ) , ai)) = KTP 	z.) 	—ai) 
Po 	Po 5  

= srP(--e-) [( 2-)--1w(, —ai)] 
Po 	Po 	Po 

Po 	Po 

(1). Bound for  

First we prove that V(t) is bounded for t E [0,11n 

By the definition of E(t) in the first equation of (4.34), if we denote Mo  = 

then, for t e [0, I ln 	we have 

1E(t)1 < Mo + 1rPQ(t, 	+ 1V(t)1. 
	 (4.36) 

Note that for t e [0,11n e, (t, 	< ce(-peo-, 	so, if we restrict to 

the region where V(t) > 1, for t E [0, ln e, by (4.34) and (4.36), there exists a 

constant M1  > O such that 

Ih(v, t, p, E(t))1 

< Elai+ilppieiait lEqi+1(t)I  

i=1 

p p 	 p p(i-1) eal(i—l)t[mo sr p w  ( P 	± (t)Ci+1  
i=1 	 Po 

= pl) eal t  [1a21[Mo  + KrPco (-2-P0 , 	+ IV(t)11q+1  

H a3 i ppealt[m0 srpw(1,0,  _ai ) ± 1 v(t)112q+11 

+ ... 

e„i(N _i )t [mo 	,r „,,, 	cui 	(t)li Ng+ii +1c k N+1 	 ) + \ Po 

< p p eceit [* 	 iv(t)lq-Ei ± v(t)112q+1 ± • • • ± *Y(t)liNg+1 

< ppectitwq+1(_e_po _ct1)1V(t)1Ng+1  

(4.37) 



Z(0) =1 

So there exists a constant M2  > 0 such that for t E [0, 1ln -q] Po 

{ (t) , mippeai twq+i(L _a  zNql-1 
\ po  1 	1/ 
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Hence by (4.33) and (4.37), V(t) stays bounded by the solution of the initial 

value problem 

Iv(t)1 	z(t) 
1 

	 1 	 (4.38) = 

[1 ql\TM1PPWq+1(to —cei)Q(t,c/i)] 

< /12 • 

Again by (4.36) and (4.38), there exists a constant M3  > O such that for 

t E [0, 1ln l], there holds 

IE(t)I < M3  ± KrPw(t, 	 (4.39) 

We will prove that there exist constants M4, M5  > 0 such that 

h(v, t, p, E(t))1 < pP e t  [M4  + M5 KrP 	—alq• 	(4.40) 
Po 

Indeed, we have two cases: q = 1 and q > 2. 

For the case q = 1, there exist M43  M5  M5  > 0 (i = 3,4, • • • N + 1) such that 

Ih(v,t, p, E(t))1 

5_ El„i+ilppieiait i ,i+1(t)1  
i=i 
ppealtpce2 i[m3 mrpw(Lpo,  _ai )]2 

+1a3 IpPe'1t[M3  + KrPw(-k, —ai )]3] 

+111V
I p pN ectiNt[m3 mrw( 	cti r+1 -E1 	 p 

 Po' 
_ 

 
p 	_e < pPeal L  [1a2 1 	+ 2KM3rPc.v(-e- , 	2 + r2 w2 ( _ , —a1)) po 

+1Œ3IM53 + " + aN+11M5(N+1)1 
< opealt[m43  m5nrpw2(to,  
— 
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For the case q > 2, tç = 0, so by (4.39) there exists a constant M4, > 0 ( 

i = 1, 2, • • • , N +1) such that 

h(v, t, p,E(t))1 

Eqi+1 ( t )1 

i=1 
< ppe.it pct2Imr l 1,31ppet,32q+1 ± • • • ± laN-FilppNea1Ntm3Ng+1 

< PPealt  [ 	M42 + I ce31M43 + • • • + laN+1.1M4(N-1-1)] 

< M4iPPealt  

Combining the two cases q = 1 and q > 2 together, letting M4 = MaX(M 411 M43), 

yields (4.40) for t e [0, l ln el]. 

So for the solution of the equation (4.33), for t E [0, 1ln l], by (4.40) we have 

ç t 
1V(t)1 < 	h(s, p,E(s)) ds 

I3 t  

	

— f 	e pP al' [M4  + M5 KrPw 2  , —ai )]ds 

	

o 	 Po 	
(4.41) 

= PP [M4 + KM5rPw 2(, —ai )] fo  elsds 
Po 

= pPe(t, ai )[M4  + KM5rPw 2( -po , —ai)] 

)97%)(to , cei.)[M4 + M5r1)  ( 	—ai)]. 

Hence for Kr, p, w(-, —ai )) given in (4.35), for (a, 	G A0 x s2  and 

0, r p = v sufficiently small, we have 

0(r, p, w( L) , —ai)) = 0 (pPw( 2-, ai ) [i + KT P  ( 1 —ai)]) 
Po 	 Po 	 Po 

ai 
We will use induction on i (i > 1) to study 

apz 
(2). Bound for ap 

By the first equation of (4.34), we have 	= O  so a p 	p 

linear equation 

8E satisfies the following 

{

d 	 naE ( .9.E ) = ho(t, p, r r  -, ) 	+ hi (t, p, E)  
OE ( 0) = 0 

(4.42) 

> 
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where 
ho(t, p, E) = iL1t, p,E) 

N( k )  
= E (qi + 

i=1 
hi (t, p,E) = e(t, p,E) 

N(k) 
= E 	 (.0 

i=1 

By (4.39) and similar to the proof of (4.40), we can prove that there exist 

constants Mu  > 0 (i = 1, 2, 3, 4) such 

	

Iho(t, p, E)1 	< pPelt  

	

p,E) I 	5_ pP-leit  

[Mn  

that 

+ KMurPw(2-, —ai)] 
Po 

[M13  + 	IldpirPw2( 11, —ai))] 
Po 

(4.43) 
• 

Then by (4.43) and Prop. 4.10, there exist constants Mll , M12 > 0 such that 

for t E 	-p3 1], there holds 

OE 
PP-1w( 11, al) [Mn + lajurPw2(±1- , —ai)] • (4.44) 

Op Po Po 

Indeed, let 

Acr,  , 	= pP [Mn + kMurPw( f±, —ai)] 
Po 

B(r, p) = PP-1  [M13 + KM1.4rPw2(., —ai)] 
Po 

and let 
A (t , r, p) = 71-(r , p) eŒl t  

B (t , r, p) = (r, p ) 	. 

Then by (4.43), for (a, il) G A1 X S2  and for r, p> 0, r p = v sufficiently small, 

we have 
ho(t, p, E) 

hi (t, p, E) 

< A(t, r , p) 

< B(t, r, p). 

  

So by Prop. 4.10, for t E [0, lel], there exist constants MI, Mn, M12 > 0 such 
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that 

OE 
ep 

< A(s,r,p)ds 

0 

= efo A(r,p)el t dt 

= efot A(r , p )eaisd s [ 

B  

je 
13 

(u, r,  me- fou A(s,r,p)ds du  

( r, p)ealue- 	A(r,p)e*lsds du  

t 
B(r, r) f d  (e- g A(r,p)eŒ13 ds)1 

À(r, p) 	o 
B(r, p)  (ef,t,  A(r,p)enisds 	1) 
A (r, p) 

< B(r, P)  [ eA(r,p) fct, eŒlsds 

À(r, P) 	 (4.45) 

= 	
r 

A(r, 

e(r,Bp

(r, 	A(r,p)en(t,ai) 

)  [ Afr,p)w(k,a].) _ 
P) 

T31rr  PP))  eeiÀ( r,  p)w , ai)] 
Àfr, 	 Po 

< MiPP-1w(, al) [M13 + KM14rPw2( -ep-i, -a1)] 

= PP-1w(k, al) 	+ KiV/12rPw2(, 

where 	e (0, 71-1(r, P)ct'(, al)), 	= eAl(r'19)4Q( e'c'1), and Mn = M1M131 M-12 = 

M1M14. 

So for (a, rt) e Ao  x S2  and r, p> 0 sufficiently small, we have uniformly 

(eue, cei)(1 Kr Pcd 2 ( ii, -al)). 
ap 	\ 	 po 

0i9 
(3). Bound for 	(i > 2). 

aidi 	- 

Assume that there exist constants 	i, M  j2 > 0 such that for 2 < j < i, there 

holds 

ai E 

api 

  

ce
^  

i)Li(r, (.4.(—, -ai)) 
Po 	Po 

(4.46) 

 

where 
P 	 A = Mil  ± td/i2r-p  w2 ( -a1). 
Po 	 Po 
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Now let us consider eaipi++1E, By Prop. 4.9, it satisfies 

dt 	a p,+1  
d (8"+1  E)  = ho(t, p, E) a 	i+, 	14+4(4 p, r, 	ap, , aE a2 E 

in 	= 0  
api+i 1,u) 

where 

aiE)
, api 

(4.47) 

(4.48) 

	

E 	aiE) p,E, e g, , -à7 

E 

	

ail-ih  i ai h 	 i 
= 	+ E opi+, 	0E, 	

-i-r f akE\ik 

	

j=2 	I(jij2. • •ii;i ,i+1) 	k=1 	r  
i i+1-1 8 i+1h 	 * Hi  ( aokpEk  )c, 

+E E aae pi 	E 

	

i=1 j=1 	i(1i12...ii;1,i+1-j) k=1 

Lemma 4.15. There exist constants Mi+1,11 —2+1,2 > 0 such that for V(a, 	E 

Ao  x s2  and for r, p> 0 sufficiently mail, there holds 

 

P 
„p-(i-1-1) ait 	P e 	lai) 	i+1,1 + KMi-F1,2w 	—ai)] • 	(4.49) 

Po 	 Po 
hi+1(t, p, E) 

 

Proof. Let us denote the first and the second sum in (4.48) by hl and hn, i.e. 

h 
141 = 	pi+1 + h1  + 

For ai+lh  by (4.39) and the definition of h in (4.34), there exist 

M+1,1, i+1,2 > 0 such that 

< pp-(i+i)eait [1,4- + KM-1-1,2r%)  (—, ai)] • 2 P 
Po 

Similarly, there exist constants /17ii, M j12 , M—in and Mi12 > 0 such that 

8.1  h 	p pealtl-  i ( r, w (_Pi..0,  _ai)) 	 (4.52) 

  

e-rih 

   

   

< 	
eacLii(r,w(—, 

Po 
(4.53) 

  

api 0E1  

 

where 

   

L.(r (4)( -2- / —ai)) = Mil + K2rPc4)( -  po  	 PO 

Li/ (r, (-apo  , —ai)) = Min + i jI2rP  (to , —ai ) • 

ai+i h  
apti+1 

(4.50) 

constants 

(4.51) 



8i E 
, 	/ ítJIbp E 5 	5 ap ap2 

ii 

EpPe-irEi(r, w) 
j=2 	 1.(j1./2-ii;i4+1) 

ai h 
ÔEi 

E 
j=2 

(92E j2  

a p2 

k=1 
pP-kak cr, 

Di  E 
pi  

ij 
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So for hr, by (4.52), (4.45) and assumption (4.46), for t E [0, I in 	we have 

ik 

*pPELiik-Eik=i kik w El=i ik HL  (r, w) 

= j=2 	 /(j1j2--ii 	 k1  

< E 	w ) 	E 	*ppi,i+i)wi ll -Likk (r, w ) 

j=2 	 k=1 

< E pp(1+i ),i+1,ea1tLi(r, w ) 
*wj  H _Likk  (r, 

j=2 	 k=1 
2 

< pP-(2±1) ealt E ppiwizi(r, w ) 	E 	* 11-Likk (r, w ) 

	

j=2 	 k=1 
< o( p2P-1) pP-(2+1) eCeit 

(4.54) 

Similarly, for hrr, by (4.53) and (4.45) and (4.46), we have 

	

p7 8E 82 E 	ai E\ 

	

Op  ap2 	a pi J 

i+1-1 ah  
E * 

OE 
api 0E1 	 Op 

1=1 j=1 	 k=1 

< E E 	 E 	* H [pP-k  ct:Lk(r , w)] 
i 	 ik 

1=1 j=1 	 4/1/2•••/i;/,i+1-j) k=1 
i i+1- 

< E E
/ 

	

pP_ieaitZ ji(r,w) 	i2 	
*ppi,i+1_,(.2 H  -44 w)  , (4.55) 

i(tic2-0,i+1- j) 1=1 j=1 	 k=1 
i 2+1- 	 2 

< E E
1 „) * H Vkk ( r , ) 

/=1 j=1 	 k=1 

< pp_(i+,)„,t E ppi 	L (r, c4.)) 
	 * H 	(r, cp) 

/=1 	j=1 	4/1/2•••ii;/,i1-1-j) 	k=1 

0 (pP  w(—' ai)) 
Po 

l k  
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Then by (4.50), (4.51), (4.54) and (4.55), there exist positive constants Mi+1,1 

and Mi+1,2 such that 

+ hi  I + Ihii l  
< pp-(i+i),ai triur +K-Mi+1,2rPw2(, 41+ o(p2p-i)pp_(i+i)eai t 

po 
+0 (pP 	cei )) pP-(i+1) eait 

< pp—(i+l)ectitw(_L, ai\ [mi  . 1,1  i+1 21-4, 	,-4  — 1)J11  
• Po 	/ 	 Po 

End of proof of Theorem 4.14 

Then for the initial value problem (4.47) with the estimations (4.43) and 

(4.49), similar to the proof (4.45), again by Prop. 4.10, for t E [0,11], there exist 

constants Mi+i,i, i+1,2 > 0 such that for t e [0,1-k I] we have 

 

ai+iE  

 

< 01)[Mi+1,1 + kMi+1,2rPcz)2(, —ai )]. 
Po 	 Po 

 

  

(4.56) 

 

api+1 

 

   

Hence for (a, ft) E 240 X 82  and r, p > 0 sufficiently small, we have 

. 	 = 0 (pP 	, ai )(1 + KrPw2  (-e , —ai)). apt+i 	po 	 po 

D 

ai-ki h 
a pi+i 



Chapter 5 

Finite cyclicity of convex graphics 
with a nilpotent singularity of 
saddle type 

In this chapter, we study the finite cyclicity of convex graphics with a nilpotent 

singularity of saddle type. In §5.2, we discuss the generic properity of the graphics. 

We claim the main theorem in §5.3. The finite cycilcity theorem is proved in §5.4 

and §5.5. In proving the finite cyclicity theorems on graphics of saddle as well as 

elliptic type, we will have to calculate the derivatives of regular transition maps, 

so we begin with the preliminaries on derivatives of regular transition maps. 

5.1 Preliminaries on derivatives of regular tran-
sition maps 

First we recall briefly the formula of [ALGIV1]. 

Proposition 5.1 (ALGM). Consider the vector field 

a 	a X = P (x , y) 	+ Q (x , y) — . 	 (5.1) 

Let E = -{(x, y) = (fi(s),gi(s))1 and È= {(x,y) = (f 2(s),g2(s))1 be two arcs 

transverse to the same orbit. Let R(s) be the transition map from E fo 	Then 

(s) = (R(s))  exp 
A (s) 	(s)  

.10T 	
div X(ry(t))dt) (5.2) 
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where T(s) is the transition time from (Ms), gi(s)) to (f 2(R(s)),g2(R(s))) along 

the orbit -y(t) starting at (f i (s), gi(s)) for t = 0 and 

A(s) = 

 

P(fi(s), gi(s)) fi(s) 
Q(Ms), gi(s)) g(s) 

   

Mf2M, 92M) f(š) 
(g) = 

Q(fi(š),92(š)) .9(š) 

It is not easy to use Prop. 5.1 to calculate the higher order derivatives of a 

regular transition map. The following proposition will be very useful. 

Proposition 5.2. We consider the transition map R(x) of the vector field (5.1) 

between two arcs without contact: E = {(x, y) = (x, fi(x))1 and -É = {(x,y) = 

(x, f 2(x))}, in a region where Q(x, y) O. Let x = x(zo, Yo, y) be the solution with 

initial condition x(xo , yo , yo ) = xo . Then 

dR 
dx0 (x0) = 

 

f
f2(R(x0))1D;(2 — Pqx) 

li(x0) 	
Q2 

 

dy) exp 
x=x(xo,fi(x0),Y) 

 

(5.3) 
1— 	(x0,1.1(xo))fi(x0) 

1 — 	(xo, .12(R(x0)))MR(xo)) .  

Formulas for the first and second derivatives are given in the particular case where 

xo  = 0 and P(0, y) 	O. Let yi  f i(0). 
pl 

R1(0) = exp (1
Y2  
	 y)dy). 

R(0) = R(0) [2 (f. (0)R1(0) () (01 Y2) - MO) (1 ) (°1 Y1)) 

Y2 	pli 	 P' Q' 	 Y pl 

Y 
(0:), y) 2 	" (0, y)) exp (1 	(0, z) dz) dy] . r) 	Q2 	 yi  Q 

i 	le 
Proof. We transform (5.1) into the equivalent differential equation 

dx _ P 

(5.4) 

(5.5) 

(5.6) 
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The solution is x = x(xo, fi(xo), y) with initial condition x(xo , fi  (x0 ), fi  (xo )) = xo. 

We have that R(x0 ) = x(x0 , fi (xo), f2 (R(x0))). Moreover 

  

O ax 

aâ° °Y  p(x(xo, f1(x0),y),y) (5.7) 

from which 

 

— 04 	Q(x(xo, h(xo), Y), Y) 
4Q  — Pqr  ax 

Q2 	Oxo ' 

OX y  ( 
, 	= exp ffi(xo) 	Q2  
0 	

x 
1'0 

follows. Hence we can rewrite 

dy) 	 (5.8) 

dR  
dx0 (x0) = exp 

(f f fic2:°»  ( 4'c2 (2— 2PQix  ) 
1— M (xo, fi(xci))fi(x0) 

x=x(xo,h(x0),Y) 
dy) 

(5.9) 

1 — ( li) (xo, .f2(R(xo)))MR(xo)) 

The second derivative of R is most easily calculated from this formula. However 

the general formula is very long. In the particular case xo  = 0 we get (5.4) and 

(5.5) for R'(0) and R"(0). 	 D 

5.2 	Generic property of the hh-graphic 

Graphics through a nilpotent saddle point can be of two types: convex or concave. 

We only consider the convex graphics. Let F be the convex hh-graphic of saddle 

type (see Fig. 5.1(a) ). Let E' be a section transverse to the connection F and 

parametrized by a regular C" coordinate. We consider the Poincaré first return 

map 

P :E -->E' 

where E c E', a neighborhood of F n E'. 
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(a) Return map 
	 (b) Blow-up of the graphic 

Figure 5.1: The Poincaré first return map for the hh-graphic of saddle type 

Proposition 5.3. For the convex graphie of saddle type and Va E A, the Poincaré 

first return rnap P(z) is at least C1  for z > 0 and 

P(0) = = exp (I divX(P(t))dt) . 	 (5.10) 

Proof. We start with the system 

{ & = y + ax2  
(5.11) 

Ù = Y(x + s2x2  + x3h(z)) + Y2Q(x, Y) 

where h(x) and Q(x, y) are C' and Q (x , y) = 0 (1(x , y) I N) for N sufficiently large. 

To study the dynamics near the singularity at (0, 0), we make the blow-up (3.6). 

Let y = 1 in (3.6), we have 

= 	+ rO(1(r,n)) := P(r,±) 
(5.12) 

jrc 	= 1 —( — a) -±2  + r 0 (Kr , 	:= Q (r, x). 

System (5.12) has two singular points P3 and P4 and both are hyperbolic saddles 
(.\/ 2(21(1-2a)  , 2a)  (see Fig. 5.1(b)). The eigenvalues at P3 are 	 -V2(1 — 2a)); the eigenvalues 

at P4 are (.V2(2](.1-2a2)a),  	 -V2(1 — 2a)). Hence the hyperbolicity ratio at P3 (resp. P4) 

is o-3(a) = 2(1 — 2a) (resp. os ( a ) 
1 

Take sections Ei  = {r = ro}( i = 3, 4), T-3 = 	= —x0} and 74  = { -x), = x0} 

in the normal form coordinates in the neighborhood of P3 and P4 respectively. For 



the Dulac maps near P3  and P4, we have 
1 

D4  (±-4)- as (a) = x4 	[C4 ± 04 (LI)] 

D3(r3 ) ,  = r3 	-r v3‘,/ 3ii  
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(5.13) 

where c3  and c4  are positive constants and c4c3" = 1, and 193 , 04 G (4°)• 

Then we can decompose the Poincaré first return map P as 

P = R o D3  o T 0 71154 	 (5.14) 

where T : T-4  ---> T-3  and R : E3 	ni  are two regular transition maps in the 

normal form coordinates. 

Now we use the formula (5.2) of [ALGM] in Prop. 5.1 to calculate the first 

derivatives of the regular transition maps in (5.14). For the transition map T along 

r = 0 for the family (5.12), in the original coordinates (r,±), the two sections 

become 
= {(r, \/12 	2a 	 ± X0  ± 0(1(r,x0 )12 )} 

"73 	= {(r, \/12_2a 	xo  + 0(1(r, xo )12 )} 

Note that for the system (5.12), along r = 0, divX1r=0  = —(1-2a), and P(0, ±) = 

0, so for xo  > 0 sufficiently small, by Prop. 5.2, we have r(0) = 1. Thus we have 

T(r4 ) = r4  + O(r) 
	

(5.15) 

Therefore, by (5.13) and (5.15), if letting "d4  = D3  0 T o 7/34( -±3 ), then 

±-4 = ±-3 	0(&3 ). 	 (5.16) 

To calculate the map R, as in [DER96], [SP87] and [DRS97], we introduce 

two auxiliary sections Ei  = {ri  = roo} (i = 3, 4) in the normal form coordinates. 

Then the map R can be calculated by the decomposition 

R =- R40  0 7R 0 R30 	 (5.17) 
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_ 
where Rso  : E3  —> Es  and Re : -É4  --> E4  are regular transition maps. Similar 

—1 to T (0), for Rso  and R40  we have 

R30 
(0) 	= ( 70  ) 1-a -3(a) 

Rte (0)  = ( rroo  ) 1-as  (a) 	 (5.18) 

For the transition map R : Ès  --> È4  , note that in this case, in the original 

coordinates (r, -±), 

--É3 = {(r°13, 	/1-2a 	 + ± ± 0(e) ± 1'0000(7.'4N 
--É4 -= {(r00, 2 	+O( 2) ± 7-N0((r, x0)1) 1 . N/1-2a 

So again by the formula in Prop. 5.1, we have 

T, 
= exp (f divX(F(t))dt) . 

-Ti 

Note that R is independent of r00, so 

R'(0) = lim R'40(0) Fe(0) R'30(0) roo-}0 
T2 

= lim exp (f div X (F(t))d-t) 
no-KI -Tl CO 

= exp (f div X (I' (t))dt) . 
-00 

Thus, by (5.17), (5.18) and (5.19), we have 

00 
= exp (f div X (F (t))dt) '.4  ± 0 (4) • 

-oo 

It follows from (5.14), (5.16) and (5.20) that there holds 

co 
P(13) = exp (f div X (F (t))dt) 13  + 

(5.19) 

(5.20) 

thus we proved (5.10). 	 D 
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Remark 5.4. Prop. 5.3 is true for the hh-graphic of elliptic typeig. 5.2). 

(a) Return map 	 (b) Blmv-up of the hh-graphic 

of elliptic type 

Figure 5.2: The Poincaré first return map for the hh-graphic of elliptic type 

5.3 	Main Theorem on the convex graphic of sad- 
dle type 

For the convex graphic of saddle type, we have 

Theorem 5.5. A convex hh-graphic through a triple nilpotent saddle of codimen-

sion 3 has finite cyclicity if the generic hypothesis P1 (0) = 1 is satisfied. 

For the proof, by changing the vector field X to —X if necessary, we impose 

Hypothesis 5.6. The convex hh-graphic with a nilpotent saddle is attracting: 

[H] : 	P(0) = -y* < 1. 	 (5.21) 

After the global blow-up in §3.1, for the convex graphic through a triple 

nilpotent saddle, we get a total of 10 families of convex graphies: Sxhhl, Sxhh2, 

• • • , Sxhh10 (see Tab. 3.5). For each family Sxhhi (i = 1, 2, • • • , 10), the graphies 

fall into three groups: 
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• the upper boundary graphic: 

Sxhhia (i = 1, 2, • • • , 10); 

• the intermediate graphies: 

Sxhhib (i = 1, 2, • • • , 10) Sxhh9d and Sxhh10d; 

• the lower boundary graphies: 

Sxhhic (i = 1, 2, • • • ,1O), Sxhh9e and Sxhh10e. 

To prove the finite cyclicity of the convex graphic with a nilpotent saddle, we have 

to prove that all the graphics listed above have finite cyclicity. 

Notation 5.7. For convenience in the notation, in the following sections and next 

chapter, let ro, po  and yo  be positive constants, we will always use 

Ei  {ri  = ro}, i = 1, 2, 3, 4 

= {pi = po}, i 	1, 2, 3, 4 
(5.22) 

= 	= Yol, = 1, 2  

= 	= -Y011 = 3, 4  

to denote the sections in normal form coordinates (ri, pi, "Yi) in the neighborhood of 

the four singular points Pi  (i = 1, 2, 3, 4). 

We begin with the upper boundary graphics. 

5.4 The upper boundary graphic 

Proposition 5.8. For the convex hh-graphics of saddle type, under Hypothe-

sis 5.6, all the upper boundary graphies have cyclicity one. 

Proof. As shown in Fig. 5.3, we study the Poincaré first return map defined on the 

section E4: 

P E4 	E4. 
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(a) Saddle case 	 (b) Elliptic Case 

Figure 5.3: Upper boundary graphics of saddle and elliptic type 

We can factorize it as 

P = Ro e, 0 T43  o ê1 
	

(5.23) 

where 84  and 83  are the second type of Dulac maps in the neighborhood of P4  

and P3  respectively, T43  and R are the regular transition maps. 

At P3, the eigenvalues are (1, —1, u3(a)), where for a E (—oo, 0), o-3(a) = 

2(1 — 2a) > O. By the normal form discussion in Prop. 4.6, depending on a() e  Q 

or ao  e Q, the vector field near P3  has the normal form of (4.8) or (4.9) with 

cr = 03. Correspondingly, we use pi  (i = 1, 2, • • • , N(k)) instead of using ai  to 

make the distinction, especially ßi = p3  — ã3(a)q3. 

By Theorem 4.14, the second type Dulac map 83  = (6, E3) : 	E3  has 

the expression 

 

6(r3, P3) 
E3(r3, p3) 

= 11 

= 7/3(v w (n  )31)) + 	+ 03 (r3, 	
1 

n3, -0i))] 
r3  = 

ro  
(5.24) 

 

 

    



For E4-1(v, û.4 ), we have 

a --1 
aj4 '4 (v' 

. 	(5.29) 
[Yo + 	PP43  + b4(r4, P4, w(Z, —PM] r0 (go 

 
1 
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where 773(v, w(Lan  01)) = 1VivP3c2.4 1-laro  , pi ) and 03  (r3 , p3 , w(nro  , —pi )) satisfies the prop-
ro 

erty (4.30). Due to the symmetry, the Dulac map 64 : 74 	E4 has the same 

form as of e3  in (5.24). 

We calculate the transition T43 : r4 —› r3 using the polar coordinates (±, 9- ) = 

(r cos O, r2  sin B) in the chart F.R.. Then we have 

{

(1 + sin2  0)i• = r cos 0(a cos2  0 + sin2  0 + sin 0) + 0 (r2 ) 

(1 + sin2  0)0 = sin 0((1 — 2a) cos2  0 — 2 sin 0) +O(r) 

or 
dr 	cos 0(a c0s2  B + sin2  B + sin  8) — = r 	 + O(r 2 ) 
dr9 	sin 0((1 — 2a) cos2  0 — 2 sin 0) 

Making the translation 9 = 0 + then 

dr 	sin 0(a sin2  0 + c0s2  0 + cos 0) 
= r 	- 	 + (r 2 ) = f (0)r + 0 (r 2 ). 	(5.25) 

dO 	cos OP — 2a) sin2  — 2 cos 0) 

Note that f(—Õ) = — f (0), the two symmetric sections 73  and 7-4  correspond to the 

two symmetric positions 0 = 60  and 0 = —00. So integrating (5.25) from 00  to —00  

gives that for v = 

Let 

oo  
r3  = r4  exp(f f(Õ)d0) + O(r) = r4 ± 0 (r) 

-00 
(5.26) 

îl  = 03 0T43 o e-4-1. 	 (5.27) 

Easily we have f1(v, D4 ) = v . Now we calculate the first derivative of 	Note 

that by (5.24), we have 

O 	 r3  
3 (r3 P3) = (— ur3 	 ro  

Oln3  _193  , 	r3 
[Yo 1-  5-3 _1 	 iv3 	um,r3, P3, (-e( —, —[3].))1 • 	(5.28) 

ro 	 ro  
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Hence by (5.27), (5.28), (5.26) and (5.29) we have that -7;2  is at least C1  and 

(0, 0) = 1. 	 (5.30) 

We calculate the transition map R in the chart P.R.3. For its first component, 

we have Ri  (v, D3) = v. For the second component R2, as in Prop. 5.3, by using 

the auxiliary sections and formula of [ALGM] in Prop. 5.2, we obtain 

R(0,0) = y. 	 (5.31) 

It follows from (5.23), (5.30) and (5.31) that we have 

det P(0, 0) = 7 . 

By Hypothesis 5.6, -y* < 1. Hence the first return map P has at most 1 fixed point, 

i.e., Cycl(Shhia) < 1, i = 1, 2, • • • , 10. 	 El 

Remark 5.9. In the proof we only use the fact 1 — 2a > O. So for the elliptic case 

with a E (0, ), under the assumption in Remark 5.4, the same proof gives that the 

upper boundary hh-graphic of elliptic type has finite cyclicity 1. 

5.5 Intermediate and lower boundary graphics 

Let F be any intermediate or lower boundary graphie of the 10 families. To study 

its cyclicity, as shown in Fig. 5.4, take sections 113  and 114  (as defined in (5.22)) 

in the normal form coordinates (ri , pi , Di ) (i = 3, 4). We are going to study the 

displacement map 

or the displacement map 

: r14  ---* II, 
L = R-1  — T 

(5.32) 

[I3 — H4 

L= R — 21-1  
(5.33) 
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where R : 113 	114  is the transition map along the regular orbit in the nor- 

mal form coordinates, and T : 114 	H3  is the transition map passing through 

the blown-up singularity. Then by the derivation-division method introduced by 

Roussarie in [R86], we study the number of small roots of L = 0 or .0 = O. The 

maximum number of roots bounds the cyclicity. 

We begin with the transition map R. Obviously R1(v, 93) = v. For the second 

component R2(v, 	it is "almost affine" (the two passages near P3  and P4  have a 

"funneling effect" [R98]). 

Proposition 5.10. For any k G N and Vao  E A = (- 0), there exist Ao  c A, 

a neighborhood of a() and v1 > 0 such that V(a, ft) E A0 x S2  and Vv E (0, Pl); 

R2  (V, Di) is Ck  and 

(1) If ao « Q 

R2  (V, D3) - 

(2) If ao  E Q 

M340 (11) 	± (-y* + 0(v))ý3 + E0(vi-1)-.1_0(vIce-1-1) 
vo 

j=2 

R2  (V, 	7340(V, -  uo, 01)) ±E734i(v,w(—,—)31» -pl±o(pri) =  vo  

(5.34) 

where 

-es  
7340 = M340 (V) ( —

v 
) 	± ii3r0(-y* — 1)w(—

v
, —,31) + k30 (v5-3 w2(—

v
, -01)) 

Vo 	 Po 	 /10  
V 

-y341 = -y* + 0 (vP3wq3  ( —, —ßl)  ln —
v

) 
Vo 	Vo  

= 0 (vP3(1-+PeDwq3+1-j-q3[i=2], V 	V ) 
'- Y34j 	 " —, -01) ln — 	 j > 2. 

Vo 	Vo  

Also R2-1(v,D4) is Ck  and has precisely the same form as R2. 

Proof. We limit ourselves to the second case: ao  E Q. Decompose the transition 

map R as 

R 	1  0 R34  0 A3 

i=1 



„ .15-3 	 (5.35) 
= 	(/), w( i.t, fil)) + (  

=v 

73 

Figure 5.4: Transition map for the intermediate hh-graphics of saddle type 

where L j  : 	Ei, (j = 3,4) are the two Dulac maps of the first type in the 

normal form coordinates near Ps  and P4  respectively and R34  : E3  ---> E4  is the 

regular transition map. 

(1). The Dulac map As  and A4: 

The systems near Ps  and P4  have the form (4.8) or (4.9) with a = o-3(a). By 

Theorem 4.11, we have (i = 3, 4) 

where 77i  and ei  have the same property in (4.13). 

(2). The transition map R34  it is the composition of the regular transition map 

and two normal form coordinate changes on the section os and o-4 , so we can write 

it as 

{

R341 (1/5  y3) 

R342 (VI Y3) 

= v 

= M 3 41 (V) E ?nui (/)»..3i  + O(y) 
i=1 

(5.36) 

where m340(0) = 0 and m344(0) = -y* + 0(v). 
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Let 

= 
 ( -IL ) 53  [D4 — 7/4(v, co( 	01))] vo 	 Vo  

then by (5.35) and (5.37), we have 

V 
Y.1 = Y4 ± 04(11, 4—, —P1), sY4)• Vo  

Let 

(5.37) 

(5.38) 

	

-Y4 -="- 	± '/L4 (V, 4 — , —01), Y4) Vo  

be the inverse of (5.38). Then 	has the same property as of ,b4. So if we let 

"Y4  = 	then for the y—component of Ail , we have 

	

-1  D4 / ^ 	 - / 	 „ 
V), Y4) = 4 + (P4 V), 	—P1), Y-4) • Vo 
	 (5.39) 

where 04(u, (.4.)( 

	

	—/31), Y4) has the same property as of e4. ,0 
Hence, for the second component of transition map R, by (5.35), (5.36) and 

(5.39), a straightforward calculation gives the result. 

The following proposition will serve to treat the intermediate graphies while 

the lower boundary graphics will require ad hoc methods in each case. 

Proposition 5.11. Assume that we have a convex hh-graphic r of saddle or el-

liptic type shown in Fig. 5.4. Let 

T : H4  —› H3  

be the transition map along the connection in the chart F.R.. Then if T satisfies 

one of the following conditions: 

• T is the identity while the graphic is generic (i.e., 7* <1); 

• 11 (0,0) is szeciently small or T(0,0) is sufficiently large; 

• T2 (0, -Y4) is nonlinear of order n, 

then F has finite cyclicity. 



i• ,-. r  

{ 

A =—p 

Ù 	= —03(a)Y + h(a, ii,r, f), Y) 

(5.40) 
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Proof. We consider the displacement map L or its inverse defined in (5.32). By 

Prop. 5.10, the second component R2(v, -j3 ) of R is almost affine, yielding the 

results. I-' has cyclicity < 1 in the first two cases and cyclicity < n in the third. El 

It seems a priori difficult to show that a transition map is nonlinear. For 

all the cases, we will deal with families of graphies. This allows an interesting 

observation which we state in the following proposition. 

Proposition 5.12. /t is possible to choose normalizing coordinates near P3 and 

P4  such that y(0, A, yi) (i = 3, 4) is analytic. 

Proof. We modify the normalization process. For both the saddle or elliptic cases, 

the vector field near P3 can be written as 

where h(a, fi, r, p, y) = o(lr, p, yl) and for both the saddle A = (— , 0) or the elliptic 

A = (0, ) case, we have a-3(a) = 2(1 — 2a) > 0. 

Let us consider (5.40) for r = 0. Then we get 

	

{

ii 	= — fi 

	

b' 	= —a3(a)Y + h(a, )t, 0, P, Y) 

For the subfamily (5.41), the tuple of eigenvalues (-1, —a-3(a)) is in the Poincaré 

domain, the subfamily has no (resp. one) resonant monomial when 0-3(ao) 	N 

(resp. as (a0 ) G N). Hence there exists an analytic map 

Y = Y + (P, Y) 
	

(5.42) 

which brings family (5.41) into the normal form 

(5.41) 

{

i'' = — go 

Ý = —o-3(a)Y + N3pP3  
(5.43) 
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where p3  = o-3(a0 ), and, if ci-3 (ao) e N, then K3  = 0. 

Applying the map (5.42) to the original family (5.40) brings the system to 

the form 

= r 

A = —P 	 (5.44) 

1Y 	= 	(a)Y + 3P 3  + rH (a, r, p, Y). 

For system (5.44), by Prop. 4.6, V(a, ft) E A x V, there exists a Ck  map of the 

form 

= Y + 	 p, Y) 	 (5.45) 

which brings system (5.44) into the normal form (4.8) or (4.9). 

Combining the transformations (5.41) and (5.45) together, we conclude that 

V(a, ,tri) e AxV and for v > 0 sufficiently small, a map bringing the original system 

(5.40) to normal form has the form 

= Y + 0(r, P, 

with 0(r, p, y) of class Ck  and 0(0, p, y) analytic. 

Corollary 5.13. Assume that Vao  e A and rio  e V(17 c s 2), we have a family 

of graphies of the saddle (conve4 or elliptic type which only differ by a segment 

joining two nodes (Fig. 5.4). Let F be any intermediate graphie in the family. 

Then V(a, ft) E A x V, the normal form coordinates Ds, y4 can be taken so that 

ýi (0, p, yi) is analytic. Take sections f13 and 114  in the normal form coordinates 

in the neighborhood of P3 and P4  respectively. Let F n TL = (o, ûfl. Consider the 

transition map associated with the graphie F 

T 	114  —› 113  

(v, Y-4) 1-4 (1), T2(1), D4)). 
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If V(a, 1-1) E Ax V , T2  (0, Ù4) is nonlinear in the neighborhood of y, then its analytic 

extension in its extension domain I in R is nonlinear at any particular value of 

E I for (a, p,) E Ax V. 

Proof of Theorem 5.5 

There are 10 families of convex graphies of saddle type (Table. 3.5). We have 

proved in Prop. 5.8 that all the upper boundary graphies have finite cyclicity, so we 

need to prove that in each family all the intermediate and lower boundary graphics 

have finite cyclicity. 

For each family, let r be any intermediate graphie and let T : I-14 	II3  

be the transition map associated with the graphic r in the chart F.R.. Then by 

Prop. 5.11, to prove the finite cyclicity of F, we only need to verify that for i) = 0, 

the map T or its inverse satisfies one of the three conditions of Prop. 5.11. For the 

lower boundary graphic, a small adaptation is necessary since T may not be C. 

Thus for each lower boundary graphie, we will study the number of roots for the 

corresponding displacement map L = R-1  — T or r : R — T-1  defined in (5.32) 

or (5.33). Usually if the criterion that T is nonlinear is used, the starting point is 

chosen near the lower boundary graphic. 

The map R satisfies Prop. 5.10 and R2  is almost affine. For the transition 

map T, since r = 0 is invariant in the chart F.R., so (3, D3) = 0. We will go over 

all the 10 families of graphics by considering the second component T2  (0, D3) or its 

inverse. 

For each family of the graphic Sxhhi (i = 1, 2, • • • , 10), we use V c S2  to 

denote the set of p, in which the family Sxhhi exists. 

(1). Family Sxhh1 

Family Sxhhl has a lower boundary graphic Sxhh1c which passes through a 

hyperbolic saddle point in the chart F.R.(Fig. 5.5(a)). Let Ao(Tio) be the hyper-

bolicity ratio at this point. Since in the chart F.R., r = 0 is invariant, by a linear 

transformation and Ck  normal change of coordinates, we can bring the system in 
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the neighborhood of the saddle point into a normal form. 

Take sections El  = = yol and E2  = 	= x0} in the normal form coordi- 

nates, let A = (d, 7D) : 	be the transition map. Then (O, .)i/ 	= 0, and 

for r = v = 0, D is the Dulac map in the neighborhood of the saddle point. By 

Prop. 4.2 and Prop. 4.5, for v = 0, there exists V10  c 1/1, a neighborhood of p0, 

such that V(a,p,) E A x V10 , D can be written as 

D(0, = 	
e(e) 	+ (30 (v, x)) 	 if À0  1 

(5.46) 
/301 -  + ce01 [l + • • •]+ ce02eFo[1 	• • •]-1- • • • 	if Ao  = 1 

where ßo > 0 constant, ace. = 	— Ao and = w(, aoi(ir1))• 

(a) Family Sxhhl 
	

(b) Family Sxhh2 

Figure 5.5: Transition map T for the family Sxhhl and Sxhh2 

Let T40 : [14  -› 	T03 : 2 --> II3 . They are the compositions of normal 

form coordinate changes and regular transition maps, so V(a, ri) e A x V10 , we have 

77402(v/ -el) 

To32 (V, -0 

= M400 (//) ± M401 (1)»4 ± 0(e) 

= M030 (11) m031 	+ (e) • 
(5.47) 

where m400(vo) = 0, M030 (Vo) = 0, and m401(0)m031(0) O. Then for T, we have 

T =T03 ° ° T40. 	 (5.48) 
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We deal with three cases.: 

(1.1). If A(jTto) 	1. 

By (5.48), (5.46) and (5.47), a straightforward calculation gives 

T2(u,û4 	š1(v) 	rh(v)  (š2 (V) ± Ù11)À(17')  [1 ± îb0(/), D4)] 

where ši(0) = 0 (i = 1, 2), 7n(v) = m 01m031. So for the displacement map L 

defined in (5.32), its second component becomes 

L2  (V, Ù.4) = 1'340 (V, CO( 	—731)) ± 	00)P3wq3 ( 13  —1,31 ) 111 

Then 

(V) ± rh(V) (É-2 (V) ± D4)4.1) 	+ (75o(v, 

L'2(v, D4) 	= 	+ 0 (vP3  wq3 	—,31) ln 	+ 0(D4) 

---)e.h(v)(è2(v) + y4) x--"1  [1  + Ŝb1(v, Ý-4)] • 

So, for (a, E Ao x V10  and for v> 0 sufficiently small, in both cases Ao > 1 or 

Ao < 1, L'2(v, "j4 ) O. By Rolle's theorem, L(v, "j4 ) = 0 has at most one small root 

in the neighborhood of 'ùzi  = 0, i.e., C ycl(S xhhlc) < 1. 

Note that for v = 0 and V(a, e A0 x V10, we have 

T2(0, -j4) = rh(v)e°  + 

So in both cases À0  > 1 or A0  G 1, T2(P, D4) is nonlinear in the neighborhood of 

= 0, by Prop. 5.11, C ycl(S chhlb) is finite. 

(1.2). If A(j20 ) = 1 and a — 

By (5.48), (5.46) and (5.47), for T2(0, D4), we have 

T2(01  -e1) M410M031a01 P4(4)  " ' 	M401M031001 [D4 " ' 

+740177/031Ce02 rea) ± • • • 	G1(0)• 
(5.49) 

 

In this case, we have to calculate the first saddle quantity of the saddle point. 
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Lemma 5.14. For the system (3.10), if a 	and the saddle point has hyper- 

bolicity ratio equals to .1, then the first saddle quantity equals to 

2a(a — 1)(1 + 2a)2 	_ 
a02 a(4a — 1)P1 — (1  + 2a)2  P 30« 	

(5.50) 
20 IL   

Proof. Assume that we have system 

= x+ f(x,y) 
(5.51) 

= 	+ g(x, y) 

which has a saddle point with hyperbolicity ratio 1, then by the formula in [JR89], 

then the first saddle quantity equals to 

— fsxy + gxYY fxxfxY gxYgn• 
	 (5.52) 

Let the saddle point be ("io, Do ). After translating the singular point to the 

origin, the system can be written as 

{ = 2aIe + + 2dX2  

= 	+(o+ Ti3o)9 +•is 
Since A(p0) = 1, which is true if 

	-3 
jZ1 = 	 1 -I- 2a/1.2P3 ± (1 + 2a)312 

then by (1 + 2a) -±.0  + 	= 0, we have 

P30  = 
1 + 2a' 

-2 
4130  

DO = ft20 (1 +2a)2•  

After a linear transformation we bring the system at the saddle point to 

ù 	= 	u + f (u, 

= —v + g(u,v) 

where 

f(u,v) 

g (u, v) 

= 12+2: [(2a(1 — a)P30 + (1+ a).‘t,o )u2 

+2a((1 — a)ii30 + .\/..o)uv + (2a(1 — a)P30 + (a — 1))v2] 

=e[0.-a)(2ai-L30±,,)u2 

+2a((a-1),,i30±.„)uv+ (2a(a — 1)P30  + -V,,o)v2] 

(5.53) 

2a 	2a2  
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and Ao  = a(4a — 1)111 — (1  + 2a)2ri2o > 0. So by (5.52) we get the first saddle 

quantity ce02  in (5.50). 	 D 

End of proof for Sxhhl. 

If /40  = o, since a 	so tio = 0. Then system (3.10) is symmetric with 

respect to the y—axis, T2(0, D4) is the identity. By Prop. 5.11, Cycl(Sxhh1b) <1. 

If p30  o, by (5.50), the first saddle quantity ace  0, so n(0, D4) $ 0, thus T2  is 

nonlinear in D.I. By Prop. 5.11, we have Cycl(Sxhh1b) is finite. 

Now we deal with the lower boundary graphic Sxhh1c. By (5.48), (5.46) and 

(5.47), we have 

L2  (V, y4) — (v) + âoi [Y4w + • • •] + Soi + "d02 relw ± • • • 	O(W) 
	

(5.54) 

where ši(0) = 0(i = 1, 2) and "à02  = *ce02  0. 

Similar to the proof in [R86] for the 3—codimension case, by the standard 

derivation-division method, we can prove that V(a, Ti) E Ao  x V10  and v > 0 

sufficiently small, L2  = 0 has at most 3 roots. Thus we get Cycl(Sxhh1c) < 3. 

For the case /-230  = 0, system (5.53) is symmetric with respect to the y—axis, 

so m401(0)m031(0) = and [Io  1. Thus (5.54) can be further simplified to 

L2  (V, P'4)  

where bol  (0) = (7*-1) 0. The derivation-division method ensures that V(a, Ft) E 

Ao  x Vio, and for v> 0 sufficiently small, L = 0 has at most two roots which gives 

Cycl(Sxhh1c) < 2. 

(2). Familles Sxhh2 and Sxhh3 

For the family Sxhh2, system (3.10) has a semi-hyperbolic saddle on Sxhh2c 

(Fig. 5.5(b)). Consider the map L = (d,D) : Ei --> E2. In this case for v = 0, D 

is the stable center transition near the semi-hyperbolic saddle, then by [DRR94], 
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Vil, i2 E N, V(a, E A0 X V20  and v > 0 sufficiently small, we have 

aii D  ow2). 

So for T2, by (5.48) and (5.55)we have 

7-1 ' (0, 	—> 

(5.55) 

which gives Cycl(Sxhh2c) < 1 and the nonlinearity of T2 , hence the finite cyclicity 

of Cycl(Sxhh2b). 

By changing (x, t) 	(—x, —t), similar to family Sxhh2, the result hold for 

the family Sxhh3. 

(3). Families Sxhh4 and Sxhh6 

For the family Sxhh4, Sxhh5 and Sxhh6, the corresponding lower boundary 

graphic has a saddle connection 8182  (Fig. 5.6). At Si and S2 , the hyperbolicity 

ratios are 
P3 — a 

S1 	= 

a 

a 
82  A2 =  	

TL3 a 

Note that if )%1A2  = 1, then Tt3  = 0, this is just the case of family Sxhh5. So we 

first consider the case A1A2 	1 when we have families Sxhh4 and Sxhh6. Easy 

calculations show that the family Sxhh4 exists if and only if 

= 	E s2  rtl = 01 P3 > 0,)2 > a(a — 1)PD- . 

  

Since system (3.10) in invariant under the transformation 

(x, t, p3 ) 	 (5.56) 

so we only need to study the family Sxhh4 as long as we do not use -y* < 1. For 

ii e 174, we have A1A2  < 1 and A2  < 1. Let po e V4, for the family Sxhh4, we have 

to consider two cases: 

(3.1).  
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We first consider the lower boundary grahic Sxhh4c. In the chart F.R., in the 

neighborhood of Si  and 82, take sections Ei = {y = 1} (i = 1, 2), Eio  = {xi  = 1} 

and r2i3  = {x2  = —1}, and for i = 1, 2, let 

-= (di, Di) : j --> Eio . 	 (5.57) 

be the transition map in the neighborhood of the saddle Si. Then, d(0, .) = 0 and 

for /Y = 0, Di  and D2  are two Dulac maps in the neighborhood of Si  and 82  011 

r = O. 

	

(a) Family Sxhh4 
	

(b) Transition maps 

Figure 5.6: Transition maps for the family Sxhh4 

Instead of considering the displacement map L, we consider the displacement 

map 

	

L 	1-20 

where T12  is a regular transition map and T43  = T32 ° R 0 T14  is the composition 

of two regular transition maps and a Ck  "almost affine" map R. By [R86] and 
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[Mou90], there exist V40, a neighborhood of rio  such that V(a„à) e A X V40, there 

exist Ck  changes of parameters on each section such that for the components of L, 

we have 

T122 (V, Dl) = + (y) 

-1432 (1), 	š2(v) , 	
(5.58) 

= 	(mi + 

= ±')2'3 (7n2 + .711(v, 12)) 

where A3  = 	> 1 for rt G V4, and ši (0) = 0, m > 0, 	G (Ie) (i = 1,2). Let 

x = 1,X = 1 +š2. Then for the map L, we have 

-7:2 (V, X) = 21(m + (v, x)) +š1(v) — XA3 (7712 + çbi (v, X))- 

So 

L2  (V, x) = Ai x À1-1  (mi  + 01(v, x)) — A3 X A3-1  (m2  + 01(v, X)) 

where iji ,  ç̂b2  E (4°). 

Zeroes of r2(v, x) are the same as zeroes of: 

/A3 \ A1 -11 	--3—À (v, x) = 	+ 	x)) - — x 	(Th2 + 	X)) 

where 7i , Th2  > 0 and el, 02 C (In• 

Then 

L, (V, X) = 	+o(i) — [) fr 	À11-1  A3  — 1  À3-À1 	( X))} 	(5.59) 
— 1 X )‘1-1 (rn3  e3 VI 	• 

Since A1A2  < 1, hence A1  < A3  thus for (a, 	E 110 X ri E V40, and for v > 0 

sufficiently samll, r3i(v, x) 	0, yielding a maximum of two zeroes of L, hence 

Cycl(Sxhh4c) < 2. 

For the intermediate graphics Sxhh4b near Sxhh4c, as shown in Fig. 5.6, 

the transition map T defined in Prop. 5.11 associated with the graphic Sxhh4c is 
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the composition of three regular transitions and two Dulac maps. By (5.58), a 

straightforward calculation gives 

T2  (0, D.4) = m(0)12 le1A2 ) 

where m(0) O. So for v = 0 and (a, j) G Ao X v40, T2  is nonlinear. Thus by 

Prop. 5.11 the graphic Sxhh4b has finite cyclicity. 

(3.2). Ai  = 1, 	< 1. 

Let Tin  e V4, then by À,(/ o) = 1 we have P20 	(11-a2a)2 40' P3° > 
Therefore the hyperbolic ratio at 82  is À2  (i. 0) = — i±aa  e (0, 1) (this case can 

happen only when a e 	0)). 

This case is in fact similar to the degenerate and non-trivial hyperbolic poly-

cycle with two vertices considered in [Mou94]. As shown in Fig. 5.6, we have to 

consider the cases El  > 0, E*2  < 0 and ""ei  < 0, E2  > 0 separately. For the other 

two cases, Cycl(Sxhh4c) < 1. Here we only give a brief proof for the case É.--1  > 0, 

62 < 0, details see [Mou94]. 

Consider the displacement map 

Eio 

A2/112 

By using the asymptotic expansion of [R86] for the composition of the Dulac map 

near 81  and a regular transition map, for L2 (v, 	we have 

Z2  (v, y) = E2 a01  [y + • • •1+ +ao2[y2L7  + • • •] ± • • • — YA2 (m2 + 02 (1)) Y)) 

where y = Di and Y = + El; a02 (0) > O. 

Let y = tEi. The study for y small corresponds to t e (0, to). We will prove 

that there exists to  such that for e V40  and v > 0 sufficiently small, Z2  (v, y) has 

at most 2 zeroes t E (0, to ). Indeed, as a function of t, i2 (v, y) = 0 is equivalent to 

o = 	E26TÄ2  — m2 + ce01E1-a°1-)°20(t) [1 + • • • ] 

+(a02e -1--x2—  
i 	2  - )2m2 + a01 E2 	C1) (El ))t[l ± • • •] ± 0(0) 
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which has the same form as the expressions considered in [R86]. Note that m2À2 > 

0, so we have the non-degeneracy condition 

~ 	 ••• \ _L - A2m2 + am i-À2E2 ct)-/Ei) f u 

for TtE V40  and v > 0 sufficiently small. 

For the larger zeroes, note that 

D2(v, y) = yA2-1  [ - A2(1 ± •;-)À2-1(m2  + o(1)) + 0(y)] 

does not vanish for t > to  and for it G V40, v> 0 sufficiently small. Hence L-2(v, y) 

has at most one zero for t > to. Therefore we have Cycl(Sxhh4c) < 3. 

For the intermediate graphic Sxhh4b, the corresponding transition map T is 

the composition of the above two Dulac maps and three regular transition maps, 

by (5.58), we have that for v = 0, T2(0, -±4 ) is nonlinear hence by Prop. 5.11 we 

have Cycl(Sxhh4b) is finite. 

(4). Family Sxhh5 

First note that, family Sxhh5 exists if and only if jt = (o, 1, 0). Then system 

(3.10) in the chart F.R. is symmetric with a center (Fig. 5.7). For the intermediate 

graphics, easily we see that for v = 0, the transition map T is the identity, by 

Prop. 5.11, graphic Sxhh5b has finite cyclicity. 

Now we consider the graphic Sxhh5c. The hyperbolicity ratio Al  and A2 

satisfy 	= 	> 1, A2  = -2a < 1 and A1, 2  = 1. 

By Prop. 4.2, the Dulac maps defined in the neighborhood of the two saddles 

can be written as 

= 	(1 + (/), X1)) 

r;1(1))  x2) = x2A2  (1- + /2(v, x2)) 
(5.60) 

where 	xi) (i 	1, 2) satisfies (4°) for (a, ri) G A0 X V51, v E (0, v1) and xi  

sufficiently small. 
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Figure 5.7: Transition map T for the family Sxhh5 

Consider the displacement map 

L: r i. —> r20 

L = T12  0 -Il  — 12  1  o T32 CI R 1  0 T14. 

where 

• T12 : 10 —4  n'20 , 

Ti22(v, Yi) — mizo(v) + (1 + 0(v))yi + 0(y). 

le  T14 : El --> 114, 

T14 (/), X1) = M140 (P) ± Mizu (U)Xi ± 0(21). 

• R-1  :114  -->F13 , R satisfies Prop. 5.10, and 

R2-1(v, -ù4 ) = mmo (v) + (7.1y.. + 0 (v) )y-4  + 0(e) 

(5.61) 
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• T32 

T322 (V1 D3) = M320 (V) ± M321 (V) -j3 	() • 

where m321  (0)miin (0) = 1 because of the symmetry of the system (3.10). 

Then a straightforward calculation gives 

L2  (/), X i ) = 	(1 ± 011 (v, x1)) 
	

(5.62) 
—[2(v) 7*(v)xi + 0(x)]?(I. + 2l(0V, x1)) 

where 
(V) 	= M120 (V) 

1 
= M320 (V) ± 77/34o (v) + —17114o (v) 

= M321 (V)M141 (V)  (y) 	 ± 0(0 
eY* 

with do r 11 , 71521 G Un • Also y(o) = 

By (5.62), 

L'2 (v,x1 ) = 	+ 7/512(v, xi)) 

—- [ 2(V) '7* (7))X1 	0(4.1 A2  ('7*(v) 022(V1 X1))• 
A2  

where 7b12 , -e22  E (Iooc) ). 

V2(v, xi ) has the same number of small roots x1  > 0 as 

(À1-1)X2  

L21( 111 x1) = P1)2) 1À2 x1 1-À2  (1  ± 7b13(1)1 xi)) 

(V) — (v)xi + 0 (x)] (57* 1-  (v) + i523 (v, xl )) 

(À1-1)À2  
Let Si  = 	For the term x1 1 

-2 	we make the following development 

(À1-1)À2  
1--A2 

x1 	— x1  = xi  (1 + 

where i = (xi, 01)• 

By (5.63), we then have 

L'21(v, xi) = (A1A2)1 (1  — 	+ )31(1  — ei)Cz))(1 ± 014(u, xi)) 	
(5.64) 

+o(x1)1(1+ 024(v,xi)) 
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which has the same number of zeroes as 

L22 (VI  X1) — (1 )31 ± pi(i—,61)w) 
(1 + 024(11) X1))  

--[7* 	 /9(X1)] 	 À2  

(A1)12)1=  (1  + 014(V, x1)) 

= (1 	+ -ei(1 — -ei)cD) — [*(v)+ 0(0+0(xl)ici + 015(v, xi)) 

(5.65) 

-* where 27*(v) = 	 and -};*(0) = y*. HTÀ  0,1A2) 1-  2  
Let L23  = —22-L07  then 

1 — 	--5,*(v) + o(v) 	 O(xi)  + a 	1(1 el) 	• L23  — 
(.7 

472s11-e, L2, Derivating L23  and letting L24 = 	3, then 

L24  -= [-1 )31  7y*(P)+ 0(v)] + 0(x1). 

Since 17*(0) = 7* 	1, then V(a, rt) G A0 X V51  and for v > 0 sufficiently small, 

we have that L24  does not vanish. So L = 0 has at most 3 roots which gives 

Cycl(Sxhh5c)< 3. 

(5). Familles Sxhh7 and Sxhh8 

As shown in Fig. 5.8(a), there is a saddle point and an attracting saddle node 

on the lower boundary graphic Sxhh7c. In this case 

175 = 	e s2  = 0, /23 = 

  

The hyperbolicity ratio at 82  becomes A2(ft) = —a < 1. 

We first consider the lower boundary graphic Sxhh7c, as shown in Fig. 5.8(a). 

We study the displacement map 

L : Eio 	E2 

L = A2  0 T12 

where 
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(a) Family Sxhh7 
	

(b) Family Sxhh8 

Figure 5.8: Transition map T for families Sxhh7 and Sxhh8 

• T112 : 10 —> E20  is regular transition map, 

T1122 (VI Y1) = El ± M1 Y1 + O(y) 
	

(5.66) 

where m1  0. 

• 1-2 : E2o —› 1-2, the Dulac map in the neighborhood of 82  which can be 

written in the form of (5.46) with A = A2  < 1. 

• /112  is the transition map which can be decomposed as 

112 = T32 0 R-1  0 T121 ° 3k1 

where Ai  : Eio —› ri  is the transition map with inverse time near the 

saddle node in the normal form coordinates and it is flat; T14  : Ei  --+ 114  

and T32  : 113  —} E2  are regular transition maps and R is almost affine which 

satisfies Prop. 5.10. All together we have 

T122 (VI yi) = i2(v) + 0(111 Y1) 
	

(5.67) 

with 0(/), 0) is Ck  and flat in yi. 



91 

By (5.66), (5.46) and (5.67), for the second component of the displacement 

map L, if we let Y = ši  + m1y1  + 0(e), then we have 

L2(v, yi ) = è2(v) + 45(v, Yi) — y2(ß0 ± (1)1 Y)). 

where 	0 and 0 E (4°). 

A first derivation of L2(v, 	gives 

r12(v, Yi) = e(v, Yi) — A2m1YA2-1(Po + (v, Y)) 

which has the same number of small roots Yi > 0 as 

L21(), Yi) — çbi(v, yi)171 	— A271-11 PO ± -f:2(11, Y). 

Since A2m1e0 	0 and 0(v, yi) is flat, so //Wu' Yi) 	0 for (a' IL) e Ao  X V50 and 

for v > 0 sufficiently small. Therefore Cycl(Sxhh7c) < 1. 

For the intermediate graphic Sxhh7b, we consider the inverse of T, T-1  : 

113 -› 114, and decompose it as 

T-1  = T14 ° Dl ° T21 0 D2 0 T32 

It follows from (5.66), (5.46), (5.67) that we have 	 J _1(3,4 	0) _› 0. Again by 

Prop. 5.11, Cycl(Sxhh7b) is finite. 

The finite cyclicity of family Sxhh8 follows from the invariance of system 

(3.10) under the transformation (5.56) and the finite cyclicity of family Sxhh7. 

(6). Families Sxhh9 and Sxhh10 

As shown in Fig. 5.9(a), the family Sxhh9 has two subfamilies of graphics: 

intermediate graphies Sxhh9b and Sxhh9d; two boundary graphics Sxhh9c and 

Sxhh9e. 

First note that the graphic Sxhh9c that passes by an attracting saddle node 

has the same structure as of the graphic Sxhh2c, so we only need to consider the 

lower boundary graphie Sxhh9e. As in Fig. 5.9(a), let the hyperbolicity ratio of 

the saddle point be Al . Then for graphie Sxhh9e, we consider two cases: 



92 

(a) Family Sxhh9 
	

(b) Family Sxhh10 

Figure 5.9: Transition map T for the families Sxhh9 and Sxhh10 

(6 .1) . 	1 

For graphie Sxhh9e, the corresponding transition map can be factorized as 

= -11-«  23 ° Tà2 ° T12 ° 	° T41- 	 (5.68) 

where 	: El  —> EH)  is the transition map in the neighborhood of the saddle 

point, its second component has the form given in (5.46) with A = Ai. The map 

32 	E20 ---> E2  is the central transition map in normal form coordinates in 

the neighborhood of the attracting saddle node, its second component satisfies 

D2(v, y2) = m0y2  with mû 	O. T12  and T23  and T141  are regular transition maps. 

A straightforward calculation gives that 

T2(7), D4 ) = é."1  (v) MoYA1  [1 + 	(V, Y)] 
	

(5.69) 

where Y = 2(v) + m3 -ý4  + 0(e) with m3  0, mo  sufficiently small and E1(0) = 

Ê-2(0) = 0, 01 E (4°). 

Then for the displacement map L defined in (5.32), we have 

L2  (v, D4 ) = (v) + 777,017Â1  [1 + (/), Y)] — [7o (v) + (v)ý4 + 0 (-YI)] 
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where -MO) 0 O. 

A first derivation gives 

L'2(v, D4) = AlMO 17À1-1[1- + 011(v, Y)] — [71 (1)) ± O(ÿ4)]. 

If Ai  > 1, L'2 (ii, D4) 0 0 which gives Cycl(Sxhh9e) < 1. For the case i  < 1, 

L2  (v, D4 ) has the same number of small roots "j4  > 0 as 

[-Yi(v) + o(ÿ4)1Y1-'1  
I + On  (v, Y) 

Since 

41(v, -j4) = 	[š2(v) + n/371 (0) + O(ÿ4)](1 + On (v,  Y)) — (111 + 0( )Y -1,-  
"1 (1  + 011(v, Y))2  

whereiS11, Y*-1,- E (In, so with 71(0) 0 0 we have L'21(v, -j4) e 0 which gives 

Cycl(Sxh,h9e) < 2. 

For the intermediate graphics Sxhh9d, note that T2  can be written as 

T2(0, D4) = *rnoel  + o(e1 ) 

which is nonlinear, hence by Prop. 5.11, Cycl(Sxhh9d) is finite. 

(6.2). Al  =- 1 

In this case, we consider the displacement map 

L :El --> E2 

L — 32 ° T12 °ILÏ,1 — T32 ° R 1 0  T14. 

Note that the hyperbolicity ratio Al  = 1, so by using the asymptotic expansion in 

[R86] for the map 3.2  0 T12 ° Ai, we have 

1,21(v, D4) = Airno 

L2(1), x1) = moEi  (v) + mû  [aoi  [x17) + • • • ] ± au[x + • • • ] + • • • 1 

—[š2 (v) + mixi + 0(4)] 

= mei (v) — Ê-2 (V) ± Tripaoi[X1c7 + • • • ] + mi [x + • • • ] + 
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where ceoi  = 1(v) — 1, ZÏ = w(xi , ceoi ) and m1, c£02(0) 	O. SinceTrid  (0) = m1  - 

Tri0a02 	the derivation-division method gives that Cycl(Sxhh9e) < 2. 

For the intermediate graphies Sxhh9d, the transition map T along the graphic 

can be factorized as two regular transition maps and a central transition map, 

obviously, T2(v,) has a first derivation which can be sufficiently small, thus 

Cycl(Sxhh9d) is finite. 

Therefore, the family Sxhh9 has finite cyclicity. 

The finite cyclicity of the family Sxhh10 is similar to that of the family Sxhh9 

by reversing time. 

Altogether, we obtain that all the generic convex graphies with a nilpotent 

saddle point of codimension 3 have finite cyclicity, thus completing the proof of 

Theorem 5.5. 	 D 



Chapter 6 

Finite cyclicity of graphics with a 
nilpotent singularity of elliptic 
type 

In this chapter, we study the cyclicity of a graphic through a triple nilpotent elliptic 

point. There are three types of graphics with a nilpotent elliptic singularity: Epp, 

Ehp and Ehh. For the pp or hh-graphic, we assume that the graphies are generic. 

For the hh-graphic, we assume that the nilpotent elliptic point is of codimension 

3. Each graphic can be concave or convex, but both cases share identical proofs. 

6.1 	Finite cyclicity of pp-graphics of elliptic type 

In Table. 3.2, we have three families of pp-graphics of elliptic type: Eppl, Epp2 

and Epp3. For all the pp-graphics, they do not have a return map. 

For the passage near the blown-up shpere, on r = 0 in the chart F.R., the 

system has the form 

{ : = /12 +y+ CL -2  

= iil + (F3 ± ±)g. 
(3.10) 

So, if denote 

  

 

vi = lit E s2  /:ii  = O,/:2 > 01, 

   

then by the result in §3.2, the pp-graphics exist if and only if ft E VI . Note that 
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if pi  =- ii2  = 0, an attracting or repelling saddle-node exists on the passage y = o 

depending on the sign of "ft3 , so we divide V1  into subsets 

- E0 < P3 < E0 

( p,3 	} 

— 1 5_ 

(6.1) 

   

where so  E (0, 1) and such that Vh  U VI, U V13  = VI . We will determine E0  later. 

The following proposition will be important in proving the finite cyclicity of 

pp and hh graphics of elliptic type. 

Proposition 6.1. Let 82 be the second component of the transition map S : 

1-12 in the normal form coordinates. Then V(a,/-2) E A x 1711  and v > 0 

sufficiently small, we have 

1  
eat(O, o)  = exp 7r,a1-1

a
,3 	

Vj2  
+ 0(p0 ) 

 r 02s  „22  (0,0) = 	e 	[1 — e(JA—h2e. 	+ 0(P0 ). 
a(1 — 2a) 

(6.2) 

Proof. The transition map S can be factorized as 

S = 412 0 (D02 
112 112 

79-i 0  d% 
111 

(6.3) 

   

where 

(1) W1  and 1112 are the Ck-coordinate changes normalizing the vector fields (3.8) 

at P1  and P2 respectively, and 

= - 
PO 

= b11Y-1  + b12 g.? + (g) 
_ 
— po 
= b21y2 b22YZ + O(A) 

	

where bl i and b2i(i = 1, 2) are funetions of ri, Pi respectively. On the sections 

  

  

  

112 



2  ( (te + )-JLa 	-- 0 	 cp 

_ 2 	ri3)e 	arctan 	ax 

(a 2  + 
/12 (±0) = 

31' - arctan ar);__=. 	-„ evEr-i2 vap2 x- f 

and 1-12, we have pl  = p2  = po, so on r = 0, we have 
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b11 

b12 

b21 

b22 

(2) gbio  and <Du  are coordinate changes between charts P.R. 1 and F.R, F.R. and 

P.R. 2 respectively. On the corresponding sections, they are linear: 

 

= 

P0 

 

r2  -- P0 
2 - «-j2 = PoY • 

(Dio 

 

 

   

(3) The transition map 

in the original coordinates 	y) in the chart F.R., where xo  = po 

	

In the chart F.R. with the coordinates 	y, r), we have system (3.9). Since v 

is invariant, so Si(v, y) = v. On r = 0, we have system (3.10). For fi G vI1 , system 

(3.10) has no singular points on the invariant line y = o, so 752  is a Ck  regular 

transition map and we can write it as 

-Si  2(v, g) = mo(v) + 	(v)y + m2(v)y2  + O(y3 ) 	 (6.4) 

where mo(0) = 0. For the coefficients mi(v) and m2(v), by Prop. 5.2, we have 

a = exp 
xo  - F ,u3 	 1 

mi(0) = exp (i, 	x 	d 	 1..) 	( 
213  

_ 	ctan 	 L 	 al°  ), 
a±2  ± ti2 	 \  

xo 	2(± + it3) X + /13  
m2(0) = mi(0) 	(a2 + 17,2)2 exp ( _4 a -±2 ± 	42e) e 

if:- .20 
= mi(0)112()) 

where 



ae. 
1 1,2  1, 	 2 , 

O( Po) 
\ = mibubm. + atiliu2irn2 + q1b22rni m ,--' kpO) 

= T n  i[

Po 	
( + 	  

1 	2  
ec,/7.2) 

a(1 - 2a) a(1 - 2a) 1 
	+ 

1 	in3.1_iri_b_ 

= a(1 - 2a)
e-viz-,--=2 [1 -  e] +0(p0 ). 

Then by (1), (2), (3) and (6.3), we have 

aS2 
 (o,o) 

By L'Hospital's rule, 
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n  liM /12 (±0) 	-r- 1_4,3  
:o -+00 

- arctan 
= lim 

±.0—)Do 

= lim 
±0-4co 

=- e 2‘/"---42lim 
f0->CO 

= 

1-113;:-.. ar(ctaa±n241-1-12)2 	' (-: 
v 	— 	43)e 3 arctan 

(1 - 2a)±0  

— /t2) 2 1  

e  2 “n-r-4. 2  

(a±-(1 + 
2 [( 0  - 

ro (1/  /713)e 	arctan £:*7  

tfc, 	(a±2  ± /12  )2 - 
- ± 	 arctan0 -2(± 

d±" 

So 
71 3_1 	1 	 1 

112(X0) = 	
2 	

(1 - e . c/Tr-2
) 

=.2- + o(). 
a(1 - 2a) 	x0 	x0  

Therefore, for š o  = 1  and po  > 0 small, we have po 

mi(0) = e,/77-L2 + 0(po) 
2 	2 

m2(0) = a(1 -
2 

2a) 
e•2 (1 - e cv77-2 po  + o(p). 

1 
e.F.TH + 0(po ) 

Let r be any pp-graphic in the family. To prove its finite cyclicity, as shown 

in Fig. 6.1, we take sections El  and E2 in normal form coordinates in the neigh-

borhood of P1  and P2 respectively. We study the displacement maps 

ct(1 - 2a) 

or 	= R - T -1  L = R-1  - T, (6.5) 
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(a) Eppl 
	

(b) Epp2 
	

(c) Epp3 

Figure 6.1: Displacement maps for pp-graphics 

where R : E2 	El  is the regular transition map along the regular orbit, and 

T : El 	E2  is the transition passing through the blown-up nilpotent elliptic 

singularity. 

For the transition map T, similar to Prop. 5.10, the passage from P1  to P2  

has the same "funneling effect", i.e., its second component T2  is almost affine too. 

Proposition 6.2. There exists en  > 0 such that for any k E N, ao  E (0, 	there 

exist Ao  c (0, 	a neighborhood of ao  such that for V(a, Tt) E A0 X V13 , nO, 0) 

is sufficiently small; while for (a, 	E A x V12 , 1Ï-1(0, 0) is sufficiently small. For 

any (a, ri,) G A0  X Vil  and v > 0 sufficiently small, the second component T2  (/), y) 

of T is Ck , and 

	

T2  (1), Dl) = 7120 (v, (/)( , —ceo)) + 	'Yi2z(v, w(  vo 
i=1 

+0 (vP 	 qi (—, —a0 ) ln —
v

Diri) L D 	e-2 P vuo  -1  , 	41+1—k—qi  rk-2 

where 

7120 	muo(v)( 1 ) 1  vo 	+ sirgl  (1 — mi2i(v))w(, ai) + 0 ((-12-) 1  w2(, — ao)) 

7121 = M121 (V) tio 	Vo 	- 	Vo 

= 	(vP1(1-E[
i-2

Dwq1+1—i—qi 	]) 	_cto) ln  

712i 	
> 2  

	

Vo 	Vo  

and m121(0) = exp( 

vo 	 (6.6) 
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Proof. As shown in Fig. 6.1, we decompose the map T as 

T = LS‘ l  0 S 0 Ai 	 (6.7) 

where S :H i  ---+ 112  is the regular transition map defined in Prop. 6.1, Ai  and A2  

are the first type Dulac maps in the neighborhood of P1  and P2. They have the 

same expression given in (4.12). 

For it E Vh, the transition map S is studied in Prop. 6.1 using (6.3). 

For Ti0  = (0,0, —1), system (3.10) has an attracting saddle-node on the in-

variant line. Hence we decompose S as 

7571  = T02 o TOO o T10 
	 (6.8) 

where 

• Tio  ( il,  V) : {± = —x0} —> If = —x001 and To2(v, y) : {± = x00} ---> {± = 

xo} are regular transitions; 

• Too(v, D) : { = —x00} --> { = x00} is the center transition near the saddle 

node. For its second component T002  (/), y), in the plane r = 0, by the Ck  

normal coordinates near the saddle node we have 

T002 (v, g) = m00 MY, 	lim Moo  (V) = 0. 
P2—>0+ 

Therefore there exists 601  > 0 such that for it E V/3 (601), T 0(0, 0)  can be 

sufficiently small. 

Similarly, for ft0  = (0, 0, 1), we consider the inverse map T1-21  by which there 

exists 602  > 0 such that for ft E V/2(e02)5 /ô-01'(0, 0) can be sufficiently small. 

Let 60  = minleoi, eo21. We use 60  to divide V1  into three subcones in (6.1). 

So for 60  chosen above, for p, E vh , 372  has the same expression as (6.4), but 

= mi21(0) sufficiently small. 

Then the same way as in Prop. 5.10, by (4.12), (6.3) and (6.7) a straightfor- 

ward calculation gives the results. 	 E 
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Theorem 6.3. We consider a pp-graphic with a triple nilpotent elliptic point of 

any codimension. If the second component R2  of the regular transition map R has 

its n—th derivative nonvanishing, then Cycl(Epp) < n. 

Proof. There are three types of pp limit periodic sets through a nilpotent elliptic 

point. To study the cyclicity, we consider the displacement map L or defined 

in (6.5). The transition T satisfies Prop. 6.2. For the regular transition map R, 

easily, we have Ri(v, D.1) = v; its second component R2  iS Ck  we write it as 

R2(111  -j1) = E,-yi(v)D1 + o(e). 	 (6.9) 
i=o 

where ;y-0(0) = 0 and ;y1(0) 0. By assumption, V(a, 	E A x S2, and Vu e (0, vi) 

with v1  > 0 sufficiently small, we have 
an 

R2 (0, 0) = 	0. 	 (6.10) 
0D1/ 

So for the displacement map L, we have Li (v, Di) = 0, and 

L2(v, Di) = E ryni(v, 	—ao)) 7Yi(v)] + °(y). 	(6.11) 
vo  i=0 

For the graphie Epp3, note that V(a„ ri) E Ao x 	 0. Also by 

Prop. 6.2, 7121(v, 	sufficiently small, so we have 

OL2  
	(v, y1) = 7121(v, w(, —ao)) 5'1(v) + O(y1) 	0. 
uyi 	Vo  

which gives Cycl(Epp3) < 1. 

For the graphic Eppl, if we choose k > n, then by (6.6) and (6.10) and (6.11), 

V(a, 	c A0  x 1711  and Vv E (0,7)1), there holds 

, 

= —nVyn(v) + 	 —ao) ln 1-cj + 0(Ý1) 

11  

So by Rolle's theorem, for any (a, TL) e Ao x vI1  and Vu e (0, vi), L2(1), «ý1) = 0 has 

at most n small roots in the neighborhood of pi  = 0, i.e., Cycl(Epp1) < n. 

For Epp2, we consider the map 	similarly we get Cycl(Epp2) <1. 	Lil 
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Proposition 6.4. In the Theorem. 6.3, for the transition map R we assumed that 

le (0, 0) 0. This assumption is intrinsic. 

Proof. In [GR99], there is a detailed discussion on the intrinsic properties of a 

transition map. By saying that the assumption 	(0, 0) 0 is intrinsic we mean 

that this property does not depend neither on the choices of coordinate changes 

which bring the system near P1  and P2 to normal forms nor on the choice of the 

sections parallel to the coordinate axes in the normal form coordinates. 

Indeed, in the coordinates (ri, Pi, ýi), system near Pi  has the normal form 

(4.8) or (4.9). The Dulac map L : Ei  —> ÍI1  has the form (4.12). Assume that 

by an another "nearly-identity" change of coordinates, we bring the system near 

	

into the same normal form with coordinates (ri, Pi, 	Let É-1  = {r1 = rio} 

and ni  = {pi  = pio} be two sections parametrized by the new normal form 

coordinates -j and Ai  = (d, D1) be the Dulac map El  —> rIi in the new normal 

form coordinates. Then i  has the same form as Ai  in (4.12), and we should have 

, 	
= Yu_ 0 Ai 0 "Iii(v, Di) or -À-1 ° '1111(v, 	= ii 0 Ai (/), -ji) 	(6.12) 

where 
41-111(v, 	= (v, 	 El 

= (v,):HI 	fli 

are the compositions of coordinate changes and Ck regular transitions respectively. Let 

	

= ýi + 	(v)e + o el) 
3=2 	 (6.13) 

'ql1(11  Ù1.) 	ýi ± 	(Vre? C Ne+1) 
j=2 

We only consider the most difficult case ao E Q n A. Substituting (6.13) and the 

expressions for Ai, 	into the second equation of (6.12), we have 

ni(v,co(j, —cei)) + 	Wil(v,D1)+951(v,w( ii,i),01711(v,D1))] 

= 171(/), w(, —al)) + 	+ oi (y, co( 	-JO] 

E [Th (v, w(175v —ai)) + (17,73v  )eri  (Di + 951(v,w( --v—  — ai), -ji))] + Vo 
j=2 

(6.14) 
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Equating the coefficient of monomial e in both sides of (6.14), we get a series of 

equations about eitni 

~2 . Y1 • 	( 

. 
Y1 ° 	(e,)-1  

Then by (6.15), 

Therefore we 

Let 

and fi/11 j. Then 

ih112(v) + 0 vo 

=1.2 (v) ( 	)2e1  Vo 

+0((iiirl+Plwql 

[ffini (v) +o ((y1 
vo 	

)] 

= eini(v)(,,i)jel  +  

for 2 < j < k, we 

v 

get 

ihni(0) = 0, 

22(v, Û'2) = 

ihni(v) = (— 
 

for j = 2, 3, • • • , k, 

( 	-ai) ln 

-ai) ln 	+ Vo 

Vo 

have 

vo 

j -= 2, 3, • • • 

we have 

(( 	)25-1(.01( --v-, -ai)) 	(6.15) 
Vo 	 Vo • 

, k. 	 (6.16) 

E2 E2 (1), 022) 

be the corresponding composition of coordinate change and a Ck regular transition map. 

If we denote 

eqs-5 21  (V -j2) = 	Eii./22i(v)-+ocy,c+i), 
j=2 

then similarly to (6.16), we get 

r7/22i (0) = 0, 	 j = 2, 3, • • • , k. 	 (6.17) 

Let R :Ei 	E2 be the transition map in the new normal form coordinates, then 

we have 

R = 	R (11-11• 22 

Therefore, by (6.16), (6.17) and (6.18), we have 
z(n) 
R2  (0,0) = ei)  (0, 0) 

which is intrinsic. 

(6.18) 

Remark 6.5. In the new normal form coordinates (ri , pi , yi ) ( i = 1, 2 ), the 

second comportent of the transition map T is still almost affine. 
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6.2 	Finite cyclicity of hp-graphics of elliptic type 

Hp-graphic of elliptic type was not mentioned in [KS95] when the authors studied 

the 3-degenerate polycycles and their "ensembles". For the hp-graphic of elliptic 

type, we have Ehpl, 3, 4, • • • , 7 and one family Ehp2(a, b, c) in Table. 3.3. 

Theorem 6.6. A hp-graphic with a nilpotent elliptic singularity of any codimen-

sion has finite cyclicity provided Conjecture 6.8 given below is true. 

Proof. We consider the concave hp-graphic. By the results in Chap. 3, hp-graphics 

of elliptic type exist if and only if Tt E 171  U vII  U Vrir where 

vII = e S2  
vIII = {TL E S2  

= 0, > 

> 0, a2pî — 9a/12µ3 + -N/a(-3/22  + ari)3  < 

 

 

We will study the cyclicity of all the graphics listed in Table. 3.3. 

(1). Graphics Ehpl, Ehp2c and Ehp3 

(a) Ehpl 
	

(b) Ehp2c 
	

(c) Ehp3 

Figure 6.2: Displacement maps for graphies Ehpl, Ehp2c and Ehp3 

First we consider graphies Ehpl and Ehp3. As shown in Fig. 6.2, take sections 

T2 and II2 (Notation 5.7). We study the displacement map defined on r2: 

L T2 -+ r12  
= 1-4  - 

(6.19) 



(6.21) { 6(v, d) =v 
E2 (v, d) = 772(v, ch)(1 -d  ai)) + vrdi d [ii +02(P,Pd,w(-e-pdo , CY1 ))1 PO 
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where is the transition map along the graphic, 	= 02 is the second type of 

Dulac map near P2. 

Since the displacement map is defined on section 72, so we begin with the 

parametrization of the section 72. On 72, the coordinates are (r2 , P2)  with rez = 

v, v> 0 small and invariant. We want to cover a domain 17.21 < E, 1p21 < E, where 

> 0 small. Then v < g2. So Vu e (0,1), on the curve v = uE2, we have 

r2)92 	uE2, therefore r2, p2  E (ue ,). Let 

r2 = 1—d 	
P2 =1/1  • 
	 (6.20) 

We then parametrize the section 72  using the coordinates (v, d) G (0, E2) X 

where 1 = ( 	) c  , 1) 

To prove the finite cyclicity of the graphics, we are going to prove that the 

two functions T-2 (v, d) and f2 (v, d) have different convexity, i.e., 	(v , d) < 0 and 

/12  (v, d) > 0. 

We calculate -7-1 '(v, d) first. Using coordinates (v, d) on section 72, for 	= 

ez = (6, E2), by Theorem 4.14, we have 

d 
where 11  = 	 al) and 02 (v, vd ,w(P- -ai)) is 

Po 
> 0; 7/2(v,w( d ,cti)) = 43ivPi cj(IL.d 

po 	Po 	po' 	 po' 
Also V(a,p) E A0 X S2, for d E (0,1) and v > 0 sufficiently small, we have 

uniformly 

By 

02(v, vd , w( v—pod ,-a1)) = 0(PPldw(>0d ,a1)) 
ae(v,  vd w(vpod  ai)) = 0  ( v pi dw(vpod 	(in v)i) i > 2. 

(6 . 2 2) 

a 	 f Vd 	) 
7971172‘,( 1)3 (1) 7ap ai _ 	 in 	_ 4L„pi-aid v p1-.1 po 	 poi 

= _ 1.4,L„eidvpi-(0,1+5-od ln v  = 	 ln v,  
po]. - 	 Pol 

(6 . 23) 



= 

R2  (V, -j3) = m310  (v) + m311  (v)ý3  O(A), 
(6.27) 
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( nn , 1 innuve ) v  1 - d also note that V d E 	 G (uE, E) and vP1(1- 0̀  e (0, 	so if we 

derivate 112  (/), d) with respect to d twice, then we have 

-15'1 

	

	
vd 

(v d) = v(ln v)2  kr12/1  + 2 	, 	ald v P1(1-(1)  ± 61;21  (V, Vd , Ci) ( 	±a1))] • 	(6.24) 
Po 	 Po 

So V (v , d) E (0,62 ) X 1, with e > 0 sufficiently small, there holds 	(i ), d) > 0 

which means that /12  (v, d) is convex. 

Next we calculate T-2  (V, d) and prove that iT(v, d) < 0. 

For the transition map we make the decomposition 

= S 0 0 R e3  0 V 	 (6.25) 

where 

• Ai  is the first type Dulac map near P1. It satisfies Theorem 4.11 with 

= (a), 

• 83  is the second type of Dulac map near P3, it satisfies Theorem 4.14 with 

= o-3(a): Using coordinates (a-, r3 ) on section T3  defined in normal form 

coordinates by 	= -yol, we have 

 

e3(v, r3 ) 

 

(6.26) 

  

= 7/3(v,w( 7L1  el)) + r3e3 [ /3+ 03(v,r3,w(n -0 ))] 7.0 	1 

  

   

where /3  = 	> 0 a constant, and 03(v, r3, w(nro  , _el)) satisfies a similar 
ro  

property as 02  in (6.22). 

• S: 1-11  —} 112  is the transition map defined in Prop. 6.1 with S2  in (6.4), 

• R: E3 	Ei  , a Ck  regular transition map 

where m310(0) = 0 and m311(0) > 0, 
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Let 

• V: 1-2  --> 7-3 , a Ck  regular transition map which can be written as 

{

Vi (r2 , P2) - r2[Tn231 + 0(1(7'2, P2)1)] 

V2 (r2, P2) = P2P/231 + 0(1 (r2, )92) Di 

where m231(0), e/231 (0) > 0 constants. 

r3  = vl-d [7n231  ± 0 (1 (vd, vl-d)1)1 . 

(6.28) 

(6.29) 

Then for the transition map i, by (6.25) and using coordinates (v, d) on the section 

72 , a straightforward calculation gives 

2(v, d) = 800(v) + Soi (v)v51+P3w (r3, -01) (1 + 0(vP3 w(r3, -,31))) 

+8ii(v)ve17-53-3  [1 + On  (V, r3, w(r3, -,31))] 

where 

800(v) -= mo (0) ± mno (v)( 11)i)el ± 0 (V-vo  flw(-Livo-, -cei)) 

801(v) = Mi (v)M3ii (V) 

611  (v ) ,_. 	/3mi(v)rn311(v)  < o.  cri v 0 

Note that if q3  = 1, 253  - ßl = d-3  and 

vi-d v p3v-(1-d)(1+01) 

= vp3-(i-d)(i+Pi)+(1-d) „ vv3-Mi-d) 

„ v p3d+p3(i-d)-01(i-d)) , vp3d+(p3-01)(1-d) „ v p3d 7/3(1-d) ,  

(6.31) 

a first derivative of T-2  (v, d) gives 

11-  (v, d) 

= -m231/11-d ln v(1 + 0(vd, vi-d)) 

[6o1//r1+P3r 1  (1- + 0(vP3w(r3, -0i))) 

+ô-36.11 (v)vel  713-1  (1 ± 031(v, r3, w (r3, -Pi)) +27-3  r3e: (v, r3, w(r3, -)31)))] 
, _vd-3(1— d)ve1  111141 + 0 (11d 7  V i—d)) 

33  ( v,  vd, 	 1-d 

[Ô-3811(074k 
± 0 (vp3d) ± 0 	

W (M231 Un  1 —01 ) )] . 

(6.30) 

(6.32) 



where 033 has the same property as of 031. 

Therefore for 	(y, d), we have 

	

( v, 	= 	+Fr3 (1-d) on  02(1  ± 0  ( vd ,  v i-d)) 

kr3611( 11 )Mn1 	(vP3d ) 034( 111V e I  (Tn231 vir: d  -,61))] 

where 811(v) < 0. So V (v , d) e (0, E2 ) x iv  with s > 0 sufficiently small, i'(v, d) < 

0, i.e., n(v, d) is concave. 

By (6.19), note that -112(v, d) is convex but 112 (/), d) is concave, so L(v,  , d) = 0 

has at most two small roots for (v, d) E (0, e2 ) X I, with E > 0 sufficiently small, 

i.e., C yel(Ehpl, Ehp3) < 2. 

Now we consider the graphie Ehp2c. There exists a repelling saddle node on 

the graphie. As shown in Fig. 6.2(b), consider the displacement map 

L: 7-2 	111 

L=- 
=z 1 oR oe3oV 

Similar to the graphic Ehpl and Ehp3, using coordinates (v, d) on the section 

r2 , then we can prove that îl2 (/), d) is convex while 11-2(1l, d) is concave, therefore 

L(v, d) = 0 has at most 2 roots which gives Cycl(Ehp2e) < 2. 

Remark 6.7. For the hp graphies Ehpl, Ehp3 and Ehp2c considered above, we 

studied the displacement maps defined on the section T2 which is transverse to the 

passage from P2  to P3  along the equator. Since v = r2p2  is invariant, on T2, we 

	

have p2  = 	So it is the passage from P2  to P3  along the equator that forces the 

two functions T2  and f2 to have different convexity. Similar phenomenon happens 

on the passage from P1  to P4. Therefore, if a graphie contains one of these two 

passages and has a structure similar to that of Ehpl, then it has finite cyclicity 2. 
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(6.33) 

(2). Cyclicity of graphic Ehp2a 
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Ehp2a is a hp-graphic through a repelling saddle node. As shown in Fig. 6.3(a), 

let Es  = Iù = yol, Ei  = 	—xo l be the two sections in the normal form 

coordinates near the saddle node in the chart F.R.. We consider the displacement 

map 

L: 	
(6.34) 

L := Ao — T31 

where Ao(v,i) = (do , Do ) : Es  --> El  is the stable-centre transition near the 

saddle-node in the normal form coordinates (-±., D), T31 is the transition along the 

flow of the graphie. 

For the transition Ao, obviously do(v, "i) = v; for D o(v, -±'), by [DER96], the 

graph D = Do ( -±", v) is a solution of the following differential equation 

Si = F(1, a, Tt, v)dj — jd±" = 0 	 (6.35) 

where in this case F ( ± , a, ri, v) = ii2  + ari2  + 0(2) + OH . 

(a) Ehp2a 
	 (b) Ehp2b 

Figure 6.3: Displacement maps for graphics Ehp2a and Ehp2b 



T10 
 : {Tioi = _ po 

v 
(6.38) 

T102 = M100 (V) ± M101 (1,)? + rn102 (0 -j2  + Q(3) 
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For the transition map T31, we calculate it by making the following decom-

position 

T31 : E3 —+ i  

(/), ±-) --4 (V) T312) 
	

(6.36) 

T31  = T10 ° Ai 0 R 0 A3  0 T03 

where 

• T03  : Es  ---> 113, the regular transition map which is the composition of two 

Ck normal form coordinate changes and a regular transition map from the 

saddle node to P3, Altogether, it is Ck , we denote it as 

{ T031 T03 : 
71032 

L,  => - 
PO 

= Moso  (V) ± Mon (V)'d + M032  (V) 2  ± O() 
(6.37) 

where m030(0) = 0 and mo31(0) 0. 

• As  : 113  ---> Es, is the first type Dulac map near P1, it satisfies Theorem 4.11 

with a = os. 

• The regular transition map R: E3  —} El  is defined in (6.27). 

• Ai : Ei —› 111  is in the first type Dulac map near Pi  and it satisfies 

Theorem. 4.11 with u = ai . 

• no  : 111  —> El , the regular transition map, analogue to T03, it is Ck  and 

where mioo(0) = 0, mioi (0) 0. 

Then a straightforward calculation from (6.37), (6.27) and (6.38), yielding 

that for any k E N, ao  e (0, 1), there exist Ao  c (0, .2-- ), a neighborhood of cto  and 



> 0 such that V(a, )ij E Ao  x S2  and v E (0, vi), Taiz(v, D3) is also Ck and 

111 

Y310(1", Ch) 	 —,(31)) vo  

v  )e l±e3[311v,co7(( 	, w ', —a ) 	( vo 	 vo  

+'Y312(v, wGi, 	w ( 1' vo , ,81))e + 0(2)] 

(6.39) 

where 

7310 = mloo (v) + min (v) [Ki ()w ( 	) + O(-vo )))] 

7311 = mioi(v)mni(v)mon(v) + 0(()ã1w( ifo , —al), ( iew(, —Pi)) 

7312 = 	(v)7n311(v)M032 (V) 

	

+0 (()5-1441( 2-- 	(1)e3W( 	v àr3 q3-1 v —ßi) vo 	(v W 	 v  Vo 	Vo 	Vo 	 0 	Vo 	Vo ) 

Now let us study the displacement map L. Easily we see L1 (v,"±. ) = 0. By 

(6.34), (6.35) and (6.36), the equation L2(v, 	= 0 is equivalent to the following 

system 

{ = v) 
(6.40) 

D = Tsi2(v,lc)• 

Since = 	v) is a connected graph, the generalized Rolle's lemma (Khovanskii 

procedure) in [K84] shows that the number of solutions of (6.40) is at most 1 plus 

the number of solutions of the following system 

= T312(1), 

Q A aT312  (v,) =0 

The above system is equivalent to 

D = T3123(v, a7,12  
—1 

det 
F(i, a, it, v)) = 

Eliminating D.  from the equations (6.41), we have an equivalent equation 

(971312  
L21 (-±', V) := T312(/), 	— FCd, a, fi, v) 	(v, x). 

(6.41) 

(6.42) 
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By (6.42), derivating with respect to yields 

a2T312 (v,  L 1  (,v) = (1 _ Fx/(±- ,  a, Tt, 	e312(v,  

„\v  ,1+,3 

	

vo  ) 	
[(1 — 2a + O(2))(7311.  + 27312 + O( 2 )) 

(ft2 + a 2  + 0 (2)) (27312 + O( ))] 

which has the same number of small roots as of 

-(d.1+a-3) 
L22 = 

	

Vo 	 1121 (1)7 ±.) = 7311 — 27312TL2 ± 0(). 

Hence V(a, 	E A1  x VI, and Vv G (0, vi ), and for ,û2  > 0 sufficiently small, the 

equation L2 = 0 has at most 2 small zeroes, i.e., Cycl(Ehp2a) < 2. 

(3). Cyclicity of graphie Ehp2b 

As in Fig. 6.3(b), let Ei  = 	= —xo l and E2  = 	= xo l be two sections 

transversal to the graphic Ehp2b, and consider the displacement map 

L: E2 	El 
(6.43) 

L := — T31 

where Ao(v,"±) = (do , D 0 ) : E2 ---> Ei  is the centre transition near the saddle-node 

in the normal form coordinates 	j), and 

= 

= m(f-12)D lim m( 2  ) = 0, 
/22-K) 

(6.44) 

T31 is the transition along the flow of the graphie which can be factorized as 

T31: 

(v, 

El 

(y, 	(1), T312) 	 (6.45) 

T31 = T10 0 Alo R O 3.3 O T03 

where except for T03, the other four components are the same as in (6.36). For 

T03 : E2 ---> 113 , it is a regular transition map in normal form coordinates which 

can be written as 

{ T031 (115D) 

T032 (V, D) 

= — Po 
= M031 ( f \ -2 n 

1))D + M032 Vi/Y 	) • 



Conjecture 6.8. We consider the vector field 

{ 

X = y + ax2  

Y = y(x +1) 

113 

(6.46) 

with a saddle node at the origin and a singular point at P at infinity given by 

(u, z) .= (1-22a, I).'"  
), where (u, z) = (-e- fx  , 1) (Fig. 6.4). Let ( -X, D) be normal coordinates 

near the origin and (it,i) be normal coordinates near P. Then the transition map 

T:{-X = x01 ---> li = zo l 

is nonlinear at any point Yo  of {-X = xo}, i.e., VY-0 , there exists 71 > 2 such that 

dnT 
- Wo) O. dyn 

(6.47) 

Figure 6.4: The regular transition map T in the Conjecture 6.8 

Remark 6.9. The system (6.46) is very simple. To prove the above conjecture, 

we see two directions: 

• the first one is an explicit calculation of g. 
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• the second one is a general argument similar to that in Prop. 5.12. In this 

case there exists no analytic normalizing change of coordinates, but we are 

in the special case where the system has an analytic center manifold. 

The conjecture implies that there exists n > 2 such that anT032  (n n) \-, 

O. Then for the transition map T31, we have 

T312 (VI --P) = 7310(v, w( —ai), w( —v —PO) O 

vo)e-i-Fôs n 
731i (v, w( —

v —
ai), w(--, —01.)) Di  + 0(Dn+1) . 

Vo 	Vo  i=1 
(6.48) 

where for v > 0 sufficiently small, 731n (0) = *fr-to3„ O. 

Now consider the displacement map L T31  — Ao. Obviously Li(v, = 0; 

for L2, it follows from (6.43), (6.44) and (6.45) that we have 

L2  (P, 	= —M(rt2)D + 7310 (v, w(}L, —a1) vo• 	5 	vo  3 

+5-3 
(—vvo 	2_d  731i (v, w( 	-ai) , w(—, —,31))ýi  + 0(e+1) . 

Vo 	Vo  

Derivating L2  with respect to ý n times, we have 

v 

Ln(v,ý) = 	 L(1), y) = *777,03n (0) + 0(v) + 0(0 	O. 	(6.49) 
Vo  

SO L = 0 has at most n small roots, i.e., Cycl(Ehp2b) < n. 

(4). Cyclicity of Ehp4 , Ehp5 

For the graphic Ehp4, as shown in Fig. 6.5(a), there is a saddle point on the 

connection from P1  to P3. In the normal form coordinates 	D) on r = 0 in the 

chart F.R., take sections El  = 	= --xo l and E3  = 	= yol and consider the 

transition map 

Ao  = (do, Do) : E.3  --> El. 

Since r = 0 is invariant, so do(v, 	= v. Let Ao = A(a,p()) be the hyperbolicity ratio 

of the saddle point. ThenDo (v, -4 can be written in the form of (5.46). 
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Figure 6.5: Displacement maps for graphie Ehp4 

Using the normal formal coordinates on the sections E3  and Ei , we consider 

the displacement map 

L: 	—› El 

(r,"j) —4 (Li, L2) 

L :=- Ao — T31 

where T31  is the transition map the same as in (6.39). Easily we see Li(v, = 0. 

We will prove the finite cyclicity for Ehp4 by considering the displacement map 

L2  (V,) in three cases. 

Case (4.1). Ao  > 1 : 

By (6.39) and (5.46) we have 

L'2(v,  , --1 = 1 -xÀ 	[Po + 	(-±., v) + -±.0-1-3 ("±" v)] 

—(,î- ) 1"3  [Y311(/), w (v, —ai)) + 27312(v, w(P, 	+ O(2)]. 

(6.50) 

Hence 

= 	(V, ) 
1 	1 / 	8950 \ 	v  ) 5-1+5-3 [ 	1 	 1 

- 	 - 	 - 731111- X  + 0 "2-  
A A  

 

(6.51) 

 

0 
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So by (6.51), L = O has at most 1 small positive root. 

Case (4.2). Ao  < 1: 

By (6.50) and let 

   

L2(11, -±') 

 

L12 (v,""i) 

 

7311 ± 2 3i2 + 0( 2 ) 
- Àx , 	v (3-1+u3 1~1-1 

7311 ± 27312±-  ± ( -±.2 ) 	Vo 

 

Then for small 

Li2 (v,±- ) 

_aL2( v,- )  

,_1(-1-1)(00+ Ç30)(7311+ O()) -.  pl -100+ -0)(27312+ oc±j) 

(7311+O())2  

XÀ -2 
	 [(1 - 4307311+ 7311îbo + 
)̀2(7311 + O())2  

Therefore L2 (/),-±) = 0 has of most 1 small root and L2 has at most 2 small positive 

roots. 

Case 3. Ao  = 1: 

In this case, by (6.39) and (5.46), L2 = 0 is equivalent to 

= Po±' + 	+ • • 1+ ao2&'2 w[l + • • • ] + • • • 
v 	v 

= 7310 (v, wt — , 
vo 	vo  

v 	 „ v ±( 	[ 
7311(v, uq—, Vo 	 vo 

+7312(v, w( 1±, -ozi)w( —
v

, -01)W + 0("±.3 )]. 
vo 	vo 

where for the first saddle quantity a02 , we have am  = 2a(2a - 1) - 1 0. 

(6.52) 
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Indeed, for the vector field at the saddle point, after a translation and a linear 

transformation, we can bring system in the neighborhood of the saddle into the 

following form 

{

ù = —u + au2  + (2a — 1)uv + (a — 1)v2  

V = v + uv + v2. 

By Lemma. 5.14, we obtain the first saddle quantity au  (a, gri) = 2a(2a — 1) — 1 and 

for a E (0, 1), ce02  O. Then from (6.52) and by the standard derivation division 

method in [R86], we conclude that L = 0 has at most 2 small zeroes. 

Therefore, for the graphie Ehp4, we have Cycl(Ehp4) < 2. 

For the 1.p.s. Ehp5, since the return map can be written as a composition 

of regular transition maps and maps with derivatives sufficiently small, we get 

Cycl(Ehp5) <1. 

(5). Cyclicity of Ehp6 and Ehp7 

For the graphie Ehp6, the passage from P1  to P3  iS just a regular orbit. Similar 

to the graphies Ehp1 and Ehp3, as shown in Fig. 6.6, we consider the displacement 

map 
L: El  ---> E3  

L := R 1  — T13 

T13  :— 3,3  0 7513  0 Ai  

where Ai  : Ei  —› Hi  and ,33  : H 3 - - ---> E3  are the first Dulac maps in the 

neighborhood of P1  and P3, they satisfy Theorem 4.11 with a = o-1  and a = os 

respectively; T13  : fl i  —} T13  is the regular Ck  transition map. So, for T13 , we 



have 

(a) graphic Ehp6 
	

(b) graphic Ehp7 

Figure 6.6: Displacement maps for graphics Ehp6 and Ehp7 
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= v 

v 	v 
= 71.30(/), w( — , —a1), w(--, —01)) 

Vo 	Vo 

7131(v, w( — , —ai), w ( —, —ßi)) Ýi + o(Ý)] 
v 	v 
vo 	vo  ( 

v ) 
± — 

Vo 

(6.53) 

Then by (6.27) and (6.53), it is not difficult to see that L(Ýi, v) = 0 has at most 

one small zero. Hence Cycl(Ehp6) < 1. 

For the graphie Ehp7, the return map can be written as a composition of reg-

ular transition maps and maps with derivatives sufficiently small, so Cycl(Ehp7) < 

1. 

Each limit periodic limit has finite cyclicity under extended conjecture, yield- 

ing finite cyclicity of the hp graphic. 	 III 

6.3 	Finite cyclicity of hh-graphics of elliptic type 

In this section, we study the 12 families of hh-graphics listed in Table 3.4. We 

state the main result in §6.3.1 and give a generalized Rolle's Theorem in §6.3.2. 
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The main theorem is proved in §6.3.3 and §6.3.4. 

6.3.1 Main Theorem on the hh-graphics of elliptic type 

For the hh-graphic of elliptic type, we have 

Theorem 6.10. An hh-graphic through a triple nilpotent elliptic point of codimen- 

sion 3 has finite cyclicity if the generic hypothesis P1(0) 	1 is satisfied. 

For the proof, by changing the family X to —X if necessary, we impose 

Hypothesis 6.11. The hh-graphic with a nilpotent elliptic point is attracting: 

[1-1] : 	P' (0) = 7* < 1. 	 (6.54) 

In Table 3.4, there are 12 families of hh-graphics of elliptic type: Ehhi (i = 

1, 2, • • • , 12). By Remark 5.9, all the upper boundary graphies in the 12 families 

have finite cyclicity 1. So to prove Theorem 6.10, we need to prove that all the 

lower boundary graphics and intermediate graphics of the 12 families have finite 

cyclicity. We will finish the proof in two separate sections: in §6.3.3, we prove that 

all the lower boundary graphic have finite cyclicity, in §6.3.4, we prove that all the 

intermediate graphies have finite cyclicity. 

Before going into the proof of the main theorem, we do some preparations. 

6.3.2 Generalized Rolle's Theorem and a transition map 

We have Rolle's Theorem to deal with functions of one variable. In proving the 

finite cyclicity of hh-graphics of elliptic type, we will have to study the number 

of intersections of two planar curves, hence the following generalization of Rolle's 

Theorem is useful. 

Theorem 6.12. (Generalized Rolle's Theorem) Let D = (xi , x2 ) x (yi, y2). Let 

F(x, y), G(x, y) be two functions continuous on D and smooth in D. Assume that 
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in D, F(x, y), Fyi (x,y) 0. Consider the system of equations 

{ 
Denote the number of intersections 

D by #(F, G) and let 

F (x , y) = 0 

G (x , y) = 0. 

of F(x, y) = 0 and G(x, y) = 0 in the region 

J[F, G](x, y) = n(x, y)G1x(x, y) — P-1 (x, y)Cy(x, y). 

Then 

#(F,G) <1+ #(F, J[F,G]). 

Proof. First note that if V(x, y) e D, F(x, y) 	0, then #(F, G) = 0, and the 

conclusion holds. 

Assume that there exists a point (xo, yo) e D such that F(xo , yo) = 0. Since 

F(x, y) is smooth and F(x, y) 	0, by Implicit Function Theorem, there exists 

êo  > 0 such that F (x, y) = 0 defines a unique smooth curve: y = f (x), in (x0  — 

ê0 , x0  ± êo). As F(x, y) 	0, the function y = f(x) can be extended both ways 

to the boundaries of the region. Let [x3, x4] be the maximum interval in which 

y = f (x) is defined. Then x1  G x3 < x4 < x2. 

The curve y = f(x),x E [x3, x4] is the unique branch defined by F (x , y) = 

0 in the region D. Indeed, if x4  < x2, since 4(x, y), Fy'(x, Y) 	0, so either 

F(x, y)Fy' (x, y) > 0 or F(x, y)Fy/(x, y) < 0. In the first case, then for x E [x3, x4], 
f  , ( x  ) = FF ,ixx,z  < 0, yielding f (x4) = yi. Therefore, V(x, y) e (x4,x21 x [Yi, Y2] 

there holds 

F(x, y) = F(x, y) — F(x4, Yi) 
= [F(x, y) — F(x, yi)] + [F(x, yi) — F(x4, Y1)] 
= F(x, y)(y — yi) -1-11 , yi)(x — x4) 

0  

where f and y are between x, x4  and y, yi  respectively. The case F(x, y)Fy' (x, y) < 

0 is similar. So V(x, y) e (x4, x2] x [y1, Y2], F(x, y) 	0. 
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If xi  < x3, similarly, we can prove that V(x, y) E [x1, x3) X [Yi, y2], F(x, y) 	O. 

So y = f(x), x E [x3, x4] is the unique curve defined by F(x, y) = 0 in the region 

(x, y) c [xi, x2] x [y1, y2]. 
Let g (x) = G (x , f (x)). Then we turn to study the number of roots of g (x) = 0 

for x E [x3, x4]. Since 

 

J[F(x, y), G(x , y)] 
g('  x \ ) 	n(x, y) 

 

 

y=f(x)' 

by Rolle's Theorem, 

#(F, G) < 1 + #(9' (x), 0) 

= 1 + e(J[F, G](x , Y), F (x , Y)) 

= 1 + #(F, J[F, G]). 

D 

We will use Theorem. 6.12 for a pair of functions F, G in a region depending 

on v. 

To study the cyclicity of the family Ehh1, except for the nonlinear transition 

map S defined in Prop. 6.1, we need the following transition map U to be nonlinear 

too. 

Figure 6.7: The transition map U : TI  ---> 7-4 
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Proposition 6.13. Let U = (U1 , U2 ) : r —› r be the transition map in the 

normal form coordinates 

Ui  (ri , pi ) 	= r1  

U2  (ri, pl) 	= P1 

Also V(a, ft) E A x 82, 

(see Fig. 6.7). If a 	13-, 	then 

[mi4i  + Tri142r1 	r12143P1 + 0 (1(ri, p )2)]  

[fhpn + Yi/142n + Yi/143M + 0 (1(r 	131)1 2 )] 

eUl  

(6.55) 

(6.56) 
0) 	277/142 = *E2 = (0 

r97f 	5  

82E).  0) 	= 2fh143 = *TI3 (0 Opî 

where * is a positive constant. Furthermore, if mi42 	0, then 7h142 	0; if 

rhi43 
	then m143  O. 

Proof. The map U is a regular transition map along an invariant line 	= 01 n 

{pi = 0}. Since r1  = 0 and pi  = 0 are invariant, so we can write U = (U1 , U2 ) in 

the form of (6.55) and calculate the derivatives t(0, 0),e2.1Ji  -(0,0) in the plane 

Pi = 0, calculate the derivatives ta(0, 0), ao,  (0, 0)  in the plane r1  = O. 

We begin with the derivatives with respect to r1. In the plane pl  = 0, the 

system (4.6) becomes 

dr ]. 	 —(a + gi)ri (7-  1, Y i)  (6.57) - = 
dy1 	—(1 — 2a)gi + 2Yi Y1ri(s2 + rilk) + rih2 	Q (ri, Yi) 

where hi  and h2  are C" functions and h2  = E2a 0(ri)• 

We are going to do the calculations using system (4.6) in the original coordi- 

nates (ri, 	Yi)• 

In the neighborhood of P1, system has the form (4.6). By the normal form 

change (4.7), system (4.6) is in the normal form (4.9) or (4.8). In the plane pi  = 0, 

if a 	the section Ti = 	= yol becomes 

: 	:= .91.1 (ri) = dia (Yo) + 	(Yo)ri + O(r) 	(6.58) 

where 
dio (Y0) = Yo %ô) 
dii (yo) = E2 [1š ± 0(Y0)] • 
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Similarly, in the coordinates (ri, P1, 	the section r4 = CY4  = —yo l becomes 

91.4(n) = 	(Yo) + du. (Yo)ri. + 0 (71) 

where 

cin(Yo) = 222[ a
8 a3(-1 +

4Y

4

:

4

± m  °°( (:)° 

d40 (Y0) 

= — 

Then, for V. (0, 0), by Prop. 5.2, we have 

OU'  
(0, 0) 

ari „ 

—(t)  (0, .9ii (0))9ii (0) 	gi4(0) 
exp 	

a 

	 d(  fg;(0)  
914(0) 	a + 

= „ 
(0, .914(0))9114(0) 

= exp 
fgn (0) Y1(1  — 2a — 2) --Y1/ 

yi  
—2a 	

d40 (Y0 

( 1-22a 	p-i ) 2(1-
1 
2a) d10(Y0) 

1+2a 

(1-2a) 2(1-2a) 
2  

= 	 (1 ± 0(y)) 1+2a  
2(1-2a) 

Yo 

(6.59) 

(Pi 
V2]. 

   

ri=0 
dy1 ) 

 

 

(6.60) 

Now we calculate4-(0 0). By Prop. 5.2, since we are in the case Pi (0, yi) = ar 	5  1 

0, so we have 

a2  tri  (o, 13) = —(0, o) 	+ P12  + P13 ] 
Or? 	Or ]. 

where 

Ph_ = 2gi4(0)u1 
	(Pirl  (0, 0) 	— ) (0 914(0)) 

a  
ar1 	Qi 	

, 
 

6a-1  
= 4E2a(1 ±  4a) (1 — 2a) 

3 — 4a 	2 3-2a  
2(1-2a) 

2(1-2a) 	1 ±  0(yo )  

Yo 
= —2g'n(0)62(ci2—

Q
(11

lr
1)0(0(y, .901); 	

= 

(°)) 
P  

(1. — 3a) (1 — 2a)yo 	
*
:0

2 [1 + O(yo)] = 	   

P12  

(6.61) 

(6.62) 



a 
( 91 ) 1-2a 

YO 
(1 + 0(y0))dyi 

914(0) 	(a + Yi)(Yi — a)521-
22a 	2(1-2a) 

= n —2 1-2a 	\ 
2 	YI/ 2 _

1-2a — Yi 	 2 	e  f 

1 

fd4o (e) 

'Lm (Y0) 

*E2(1 + 0(y0 )) 
y 2a 

(a + y1)(y1 — a) 
2-5a 	 5-8a —1-2a / 1-2a 	— 20,,j• 

Y1 	2 	Y1  

11M 
yo—>0 

(a + yi) (yi — a) 
2-5a  

—1-2a /1-2a 
Y1 	

2(51---82aa) 
2 

3-4a 

(6.65) P13 = 

1+2a  

*e2  [1 + 0(yo) + 0(yr-2a) ) 

3-2a  
2(1-2a) 

YO 

f 914(0) [p" lri 	
pf 

(o, 	) 2 	_2 ri  (0, Yi)] exp (f
u  

lr1  (O,u)du) dYi 
Qi 	 (0) Qi 

(6.63) 

Since 

2-5a 5-8a 	 5-8a  2-5a 	I 

YO 	 2 	

} 
( i-2a ) 

2 	
1-2a 2(1-2a) 	(1-2a  ) 	

Y O 
2(1-2a) 1-2a 

2 a(1 + 4a) a2 

8a(1 + 4a) (  2 \ 	 
3 — 4a 1-2a) 

8a(1 +4a) (1 — 2a\ 
3 — 4a s 2 ) 

1+2a  )] 

liM [1 + 0(yo) + 0 (yo  2(1-2a) 

yo-->o 

Hence, by (6.63) and (6.64), we have 
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Yo 
2(1-2a) 

and 

P13  

2(1 — 2a) 5-8a  2(1-2a) 

	

= lim 	Yo 

	

yo—>0 	4a — 3 

* [1 + 0 (yo ) + 0 (ell+-221̀ )  
( d4oyo) 	(a + yi)(yi — a) 

3-4a  
2(1-2a) 

Yo 
41= (6.64) 

fdio (Y0) vil-2a (1-22a  
2-5a 	 5-8a  

So, 



6a-1  

= E2-
8 

(0, 0) 
[4a(1 + 4a)  (1  — 2a) 

2(1-2a) 3 — 4a 	2 	
2(1-2a) 1 ±  O(Yo) 

3-2a  

Yo 

Therefore, it follows from (6.61), (6.62) and (6.65) that we have 

02  
arî (") 

OUI 	4E2a(1 + 4a) 
ari 	3 — 4a 

+ 2(1  0(y0))  
3-2a  

Yo 	 2(1-2a) 
	 [1  ± 0  (Y0) ± 0 (

yc2i (1-2a) )1 
1+2a 	1 

Yo 
6a-1  

(1  — 2a) 2(1-2a) 

2) 

/ 	+ 0 (y02(1-2a) + 0 (y020,y 

y02(1-2a) 

 2a 

3-2a 
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(6.66) 

So, if we take yo  > 0 small, then by (6.66), el-(0, 0) = *6-2. ri  

Now we prove that '122  (0, 0) 	0. In the plane r1  = 0, the system (4.6) 

becomes 

l  dpi 	(a + y 1 + )2p0 pi 	Pi (Pi , Yi)  . 
dy 

(6.67) 
i 	—(1 — 2a)yi  + 2y? ± r3P191 ± 211  -2P2Y1 2 - ± alp  - 3 = „ i 	 i 	1 	Qi(pi, Yi) 

We still use system (4.6) in the original coordinates (ri, PIAO fo do the 

calculations. 

In the plane r1  = 0, if a 1, , the section Ti  = l  = Yo} becomes 

fi: 	ii := 	(ri) = cisio(Yo) + 	(Yo)Pi + O(p) 	(6.68) 

where 
cîlo(Yo) = Yo + 0(Y(1) 
di1(y0) 	+ 0(yo). 

Similarly, in the coordinates (ri, Pi, Yi), on r1  = 0 the section T4  = 4= — Yo} 

becomes 

— :914(Pi) — 	+ ciii(Yo)Pi + O(p) 	(6.69) 

where 
40 (Y0) = 1-22a  — Yo + 0 (W) 

ii41(Yo) = — 1174`,1 	+ (Y0). 



where 

P-71 

P-12 

and 
b14 (0) Pi 

1P1 	- \ 	n i 1P1. "̀elPi  
r y 

u  k'113  (0,u)du dP-1 
jii(o) -..Q:u,Y1) h (2-1 	exP  jn(0) 

) 5172
(0 0) ( 	'Pl) (0 j14(0)) 	

Pep-24(1 
1-49

(YI))) 
6a-1  = 	

' 	(1 - 4a) (1) 2(1-2a) 	 (6.72) 

= 	 (0) ( 	 (°, gll  (°)) 	 ( 1 — 2a)YO 
C21 

^ 	
—  2T/3 (1 ± 0(y0))  

6a-1 

3-8a  2-3a 

1-a 
1-2a , Yo 

a 
3-8a 

( 1-2a 2(1-2a) y 1=27,  
2 

	)-î=2--3c,i, yo2(1-2a) 
\ 2 

1-a 	1 
1-2a 2-3a 

Yo 

a(1 — 2a) 
3-8a  " 

(1 — a)( )2(1-2a) 
= lim 

Y0-40  

Then, for Peo, 0), by Prop. 5.2, we have 
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au2 (0,0) 
api 

*j'AM 	a + 
= exp Li(o)  — 2a — 2y,) 	 dy1) 

a  

Yi  CLIO (Y0))  

= exp 	ln 	
1-2a 

(1-2a 	yi ) 2(1-2a) 
2 

1+2a yr-2a) (1  ± o(y0))  

(6.70) 

( 1-2a ) 2(1-2a) 
2 

Now we calculate Ve(0, 0). By Prop. 5.2, note that A (0, Pi) = 0, so we have 

,32,2  
u 	(0, 0) = °U2  (0, 0) [/-5/1  + i;:r2 F73 ] 	 (6.71) 
api 	upi 

1 	 a  
D14(0) 	

3(a + gi)(1+ 0(Y0)) 	---1-22a _ gi  2(1-2a) (
Yo 

1-2a 

d-g 1  = 
L(0) 	

2e(1-22a _ g1) 2 	1-2a 
y1 2 i  

Cie (Y0) a  a +  Yi  = 	rtayj--2a (1+0(YD))  
1 	 2-3a 	 3-8a 	

dY1 • 
2( 1_2a)  2(1-2a) 

(ÎlO (Y0) 	r, ,- 1-2a ( 1-2a 	- 
.91 l 2 — Yi)  2

(
1-2a

) 

(6.73) 

Since 

 

a + dyi  

lim 

2-3a 	 3-8a  
- 1-2a i i-2a
Yi  	

2 	
yi ) 2(1-2a) 

 

1 

 



It follows from (6.71), (6.72) and (6.75) that we have 

D2  U2 

6a-1 
ft3y02(1-24 (1 1_ ()(y0)) 

( 1-2a 207-2a) 6 1 	 ± 
(1 — 4a) \ 2 1 

+2dc 

a fi, 
2p3(1 + 0(yo )) 

(1 — 2a)yo  

2ap3[1 + 0(yo ) + 0(yr-2a ) )] 
(1 — 2a)yo  

(1+ 243  
(1 — 2a)yo  

1+2a  

[1 + 0(Y0) ± 0 (Y1:21 "-2a)  ) • 

So, 

f C140 (Y0) 	 a ± 
dy1 

—1-2a Yi 
2a 

hio(yo)
2-3a 	 3-8a 

f 1-2a 	2(1-2 a) 
2 	

p-1) 
1+2a 

[1 + o (y02(1-2a) )] 

(1 _ a) ( 1-22a ) 2 (1 ,.a) yi:;  1_72a.  
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(6.74) 

By (6.73) and (6.74), we have 

= 	24-13  
3 	(1 — 2a)yo  

1+2a  

[1  ± 0(YO) + 0  (Yr-211 • (6.75) 

So, if we take yo  > 0 small, then by (6.76) 8ap2u2  (0 0) = î 

By the invariance of v = r1p1  = r2p2  and (6.55), we have 

(6.76) 

r2p2 = riPi [Tri141 + rn142r1 + rn143P1 + 0(1 (ri, P1)12 )] 
(6.77) 

[ffivii + rh142r1 + fil143Pi + 	(ri, Pi) 12 )1• 

Equating the coefficients of terms of r1  and pi  respectively on both sides of 

(6.77), we have 

M1417h142 rh141m142 = 0 

m141e2143 + ih1417n143 = O. 
(6.78) 

  

Since 	—141 = 1, so by (6.78) we have that if rr/142 
	0, then ih142 

	0; if 

7-h143 0, then m143  0. 	 D 
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Corollary 6.14. For the transition map V : r2  --> T3 in the normal form coordi- 

nates, if a 	then 

=.au, (0 0.\  

241-  (0, 0) 
= 	(0,0) aPi 
==  

aPi 	) 

(6.79) 

Proof. Just note that in the plane p2  = 0, the system is the same as system (6.57) 

except the term r2h1  will have different sign which does not influence the first and 

second derivatives. 	 D 

6.3.3 Lower boundary hh-graphics of elliptic type 

In this section, we will first prove that for a generic hh-graphic through a triple 

nilpotent elliptic point of codimension 3, all the corresponding 12 lower boundary 

hh-graphics have finite cyclicity. 

Among the 12 lower boundary graphics, Ehhlc, Ehh2e and Ehh3e pass through 

both passages P2P3  and PI PI  along the equator (Remark 6.7), and require a special 

treatment. Indeed in general an explicit formula does not exist for the inverse of 

the second type Dulac map. We will replace the study of zeroes of the displacement 

map by the study of the zeroes of a system of two variables using generalized Rolle's 

Theorem. 

To prove the finite cyclicity of the graphic Ehh1, we give the following lemma. 

Lemma 6.15. For the system in the neighborhood of P3 if o-3  = n G N, then 

the first saddle quantity is nonzero for the 2-dimensional system on p = O. 

Proof. By (3.8) with i = 2, after a translation y = y2  — 1.-22a , system on p = 0 in 



the neighborhood of P4 can be written as 
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4n • 

(6.80) 
r  

 

8ay2  

 

—asy + E2r + 0(r2 ) 
1 + 2y 

  

where 03  = 2(1 — 2a). In the case u3  = n G N, we have a = 2n-1 

By the linear transformation y = z + . 2.47r, system (6.80) becomes 

 

= r 
1 z = 

8az 2 	± 	r 0(r2) 
(1 + 2z)2  1 + 2z 

(6.81) 

 

 

   

where 2 = 	For convenience, we still keep a in the higher order terms. 

By normal from theory (see for instance [GH83], [IY91]), we will obtain the 

normal form of (6.80): 

= r  

= 	+ 	(rZn)i  Z. 
	 (6.82) 

where 02, the coefficient of the term rZn+1, is the first saddle quantity. 

In order to obtain the normal form (6.82) from system (6.81), we rewrite 

system (6.81) as 

= r  
(6.83) 00 	 00 

= — 	— 8aE(-2)izi+2  + 2 [z — E(-2)i(i+ 3)zi+21r + 0(r2 ) 
i=o 

To prove 	0, we are going to apply the normal form theory to sys- 

tem (6.83). The proof goes in two steps. For any n E N, we will first kill the 

terms rz,rz2 ,• • • ,rzn. In the second step, we get rid of the nonresonant part 
CC 

8aE(-2)izi+2. 
i=o 

(1). Kill the terms 	,rzn successively 

(1.1). Kill the term rz first 



00 	 00 
=

1 	— 8a(-2)-izi+2 — rj 
i=c) 

(-2)iCliZ1+2  0(r 2 ) 
i=0 

Let z = z1  + rb1z1. Then by (6.83), we obtain the equation of z1: 

1 
= --zi + 	— bi )rzi — 8a(-2)z +2  — r(-2)icur 2  + 0(r2 ) 

i=o 

where cli = 8abi(j +1) +2(j + 3). 

Let b1  = E2 . So we have 
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00 	 00 

where for c1  with j e N, we have cii  = E2[8a(j + 1) + (j + 3)] 	0 and all the 

coefficients ci  have the same sign as of -6-2. 

Note that if n = 1, the coefficient of the resonant term rz?.  satisfies c10 	O. 

Then the first step stops here. 

(1.2). Let n > 2. Assume that by n — 2 steps of near-identity transfor- 

mation of the form zk _ i 	zk  + bkrzikc , k = 2, • • • ,n — 1, we get rid of the terms 

rz?,rz13_, • • • ,rzr l , and obtain the equations of zn  

=r 
(6.84) 

	

00 	 00 

= 	zn  — 8aE(-2)izni+2  — r E (-2)icnizni+2 + 0(r2 ). 

	

i=0 	 j=n-2 

where for j > n — 2, cni  0 and they have the same sign as of E2. 

(1.3). Kill the nonresonant term rznn in (6.84) 

Let zn = w + bnrwn, then the equation of w becomes 

(1+ nbn  rwn—i)lb  bnrwn 
cc 

= 
n (U) bnrwn) — 8a(-2)(w bnrwn)j±2 

(-2)iCnj(W bnrwn)j+2 o(r2) 

j=n-2 
or 

(1+ nbewn-1)zb+bnrwn 
00 

= 	+bnrwn) — 8a (-2)i[wi+2  + (j + 2)bnrwi+71+1] 
.i=o 00 

—r E (-2)icniwi+2 + 0(r 2 ). 
j=n-2 
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Hence w satisfies 

	

ij = 	r_ka  _ (-2\n-2 ) en,n-21rwn  n 	n 
oo 	 (6.85) rwn+1 ± ro (wn+2) 0 (r2) -8aE(-2)iwi+2  - c n+1,n-  

.1=0  

where cn+i,n = -[16abn  + (-2)7-lcn,n-1]. 

	

Let bn  = 	( 	then we get rid of the term rwn in (6.85) and 

obtain 

{ 	

= r  

= --w  — n 	

oo 
8aE(-2).1  

	

i=0 	
wi+2  - cn+1,nrwn+1 + r0(wn+2) + 0(r2 ) 

where 
= —[16abn  (-2)n—len,n-1] 

= — [-16aTiCn,n-2( —2)n-2  ± (-2)n—lCn,n-11 

= ( —2)n-2  [16a7/Cn,n-2 2Cn,n-1] 

0. 

Therefore, we bring system (6.83) into the form 

{i-  =r 

w= -. - 8w2  __ w  8w2 
n 1+2/1/ Cn+1,nrWn+1 + TO(Wn+2) ± 0 (r2 ). 

(2). Remove the nonresonant part 8"2  1+2w 

(6.86) 

(6.87) 

By 

or equivalently 

we can solve for Z: 

  

dw 	 dZ 
Saw2 	  == 	 

  

   

1+2w 

   

 

n(1 ± 2w)dw 	ndZ 

 

(1 + 4nw)w 

   

Z = w(1 4nw)1 2n2n • 	 (6.88) 
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By (6.88), obviously we have the relation 

w=z+o(22 ). 	 (6.89) 

So if we make the change of coordinate (6.88), by (6.89), we bring system (6.87) 

into 

{ r = r 

2 = —1 
n 

2 — en+i ,nrzn-H- +ro(zn+2 )+ 0(r2). 
	(6.90) 

Note that in removing the higher order nonresonant terms in (6.90), the 

term —c,-,+1,rZn+1  will be invariant. Hence we get that the first saddle quantity 

02 — —Cn-I-1,n 	0. 
	 D 

Theorem 6.16. The generic graphie Ehhic through a nilpotent elliptic point of 

codimension 3 has finite cyclieity. For the generic graphies Ehh2e and Ehh3e, we 

have Cycl(Ehh2e, Ehh3e) < 2. 

Figure 6.8: The displacement maps defined on Ti  and r2 
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Proof. For any (ao, Ji 0) E A x V1, we have three families of hh graphics with lower 

boundary graphics Ehh1c, Ehh2e and Ehh3e respectively. As shown in Fig. 6.8, 

take transversal sections rli,Ei+2  (i = 1, 2) and ri  (j = 1, 2, 3, 4) in the charts P.R. 

1, 2, 3 and P.R.4 respectively (sections were defined in 5.7). On the section T2, the 

coordinates are (r2, P2) with r2p2  = v, v > 0 small. We want to cover a domain 

17.21 < e, P21 í e, where E > 0 small. Similar to what we have done in Theorem 6.6 

for graphic Ehpl in (6.20), on 72, let 

1-d r2  = v , P2 = va. 

We then parametrize the section T2 using the coordinates (v, d) E (0, E2) X 

(1nE lnus \ where = c (0, 1) and u e (0, 1). Similarly, on the section ri , let 

Pi = ve• 

We use coordinates (v, c) e (0, e2) x 

To study the cyclicity of the lower boundary graphics, we are going to study 

the displacement maps defined on the sections 7-1  and 72  respectively with images 

in Hi  and E4, namely, by using Theorem 6.12 in a region depending on v with 

v > 0 sufficiently small, we will study the number of roots of the system 

(11 	= T2(v, d) 

T4(V, C) = T3(V, d). 
(6.91) 

for (a, 	E A0 x V1  (i = 1, 2, 3) with (c, cl) E I x I, and v, E > 0 sufficiently 

small. 

The proof will go in several steps. 

(1). Developing the transition maps T (i = 1, 2, 3, 4). 

(1.1). The transition map Ti . The map T1  : rl  —› 1-11  is the second type Dulac 

map near P1. By Theorem 4.14, for r = y' and p = ul', it has an expression 



similar to (6.21) with 03  = Er-i . Hence 

{ T11(1), C) =v 

Tu (1), C) -= 771 (V, CO( -V-- , ai )) + V" [/1  + Oi (v, if, c,)( 1 , —cti))] 
Po 	 Po 
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(6.92) 

where li  = -9j-v,4 > 0; Th(11, co(I 
' 	 1  ai)) = 4-LvP1  (,)(' 	1 • 1 a ) and  po  1 	 PO 	 po 	po  

 

C" and satisfies the same properties as of 02  in (6.22). 

is 

(1.2). Transition map 714. The transition map 

T4: T1 —4  4 

(V, C) —> (T41, T42) 

can be factorized as 

714 — e4 0 u 

where 

• U : 'Ti ---> 74 iS the regular transition map defined in Prop. 6.13. In the 

coordinate c on Ti, the first component U1  of the map U can be written as 

r4 	= ui  ( vi-c, vc) 

—  
— - 

7,1--o[
771141 + Mi42 (v)vl—c , m m143 (V)Ve 

± 0(v2(1--c) , m2e)1  

where by Prop. 6.13, mi4i (0) 0, mi42(0) = *E2  and mi43(0) = *fi30• 

(6.93) 

• e4 : T4 ---> E 4 , the second type Dulac map near P4 which satisfies Theo-

rem 4.14 with a = 03. By (6.93), we have 

cr r4 = vi-  Onizn. + 0(vc, vl-c)). (6.94) 

Let m4  = 7n14i  . Using (6.94) we have ro  

w(z,  ßi) = w( ,,,l_c(i  ± 0(ve, vi_c)), 01)  
ro  

= w(m4v1-c, pi ) ± o( vc-(1--c),31 ,  v 01)).  
(6.95) 
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So by (6.93), (4.29) and (6.95), for the second component of the transition 

map T4, we have 

= 774(v, w(r4A)) 
[-m44 (v) ± M42 v l—c m43vc 0(7)2(1—c) , v2c) 

+041 (v, vl-c,  (.4)(m4v1-c, —ßi))] 

(6.96) 

where 

 

M41 = 	(M141 (0)5.3  
ro 

m42(0) =- *m442(0) = Ki42E2 

m43(0) = *m443(0) = K1431130 

where K1421 K143 are nonzero constants; in 774(v, w(nn , 	we still keep r4 

tion of c in (6.93); also 941 (V, Vi-c, W(M4V1-el  —ßi)) is Ck  and satisfies 

as func- 

041 	° (1)P3(1-c)W(rnel-c5  '61)) 
aien  _ 0 ( v p3(1-c) w  (771,01-c, p'11) (ln v)i ) aci 

(1.3). Transition map T2 The transition map 

T2: 7.2  --> 

(v, 	---> (Tm, T22) 

which can be factored as 

T2 = S-1  o e2(r2, P2) 

where 

(6.97) 

• e2 	—› 1-12 , the second type of Dulac map near P2, using the coordinates 

(v, d) on the section 7-2 , is given in (6.21). 7)2(v,w(i d , ai )) = 4LivP'c.te-d  , cei ). po 	Po 	po 
Also 02(v, d, w(12  -oz i )) is C' and satisfies the same properties as of 01  in Po 

(6.22). 

• S-1  : 1-12  ---> 1-11  is a Ck regular transition map defined in Prop. 6.1. We can 

write its second component as 

S2-1  (V, D2) = M210 (V) ± M211 (U)Ù2 + M212 He 0() 	(6.98) 
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where m210(0) = 0, m211(0) 	0 and by Prop. 6.1, for Ehhlc, m212(0) = 

*p,30 , while for Ehh2e(resp. Ehh3e) m211(0) can be sufficiently small (resp. 

sufficiently large) . 

By (6.98), for the transition map T2  we have 

T21 (V, 	=v 

where 

T22 (V, d) = M20(1  ) W (To  ) al)) 

+Veld  [M21 (P) C.1)( 1,,,C10  , ai)) +177,22 ( v, col po  , al)) 
v.5.1d 

+0211(v, vd , (.4-) ( puod  , —4)] 

(6.99) 

	

d 	\\ 	 vpi w 	ct  )) ± 0  (u2pi w2 	ai))} + [rn,212.1(V)  
M20(111 Ci) 	ai)) = mm0(0 

	

po 	 Po 	Po 	I) 	 \ po 

d 
n121(1  C • ) ( p..d  ai)) = mni (v)/1 +0 (vP ico (1:70  , ai)) 

m22 (v,co(L̀---d , ai)) = m212(v)/î + iiii9(vP'co( d ,a1)) 

	

Po 	 Po 

and 0211  is CC  and has the same properties as of Oi  in (6.22). 

(1.4). The transition map T3  For the transition map T3  : 72 	E 4  it can 

be factorized as 

T3— R003 0V 

where 

• V : 7-2 	73, the regular transition map defined in Coro. 6.14. Using the 

coordinates (v, d) on the section 73, we have 

r3 	= 	(vi-d,  va) 

=[
—„ _L  „ 1(141 	11 ,1.42 (1))111-d -Tri143 (01)d ± 0 ( v2(1— d) 1,21 

where by Coro. 6.14 we have iii14i(0) = mi4i(0) (i = 1, 2, 3). 

• e3  : 73 	o-3 , the second type Dulac map near P3  which satisfies Theo- 

rem 4.14 with o-3(a0 ) = 2(1 — 24). 

(6.100) 



=v 

= m340(,)+E M34j(v)1ji  -3 	3 o (0'21 
j-1 

N. (6.101) 

• The regular transition map R E3  --> E4  is Ck  and can be written as 
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where by Hypothesis 6.11, we have m341(0) < 1. 

So it follows from (6.100), (4.29) and (6.101) that the transition map T3  

satisfies 

T31  (V, 	= 

T32  (V, d) = m30  (v, w(r3, 131)) + ve3(l-d)  [m31  (v, co(m4 	Pi)) 

+rn32(v )vi-d m33vd o(v2(i-d), v2d) 

+ 0 (v(Ni +1)53(1-1 + 031 ( v v l—d w (m4v1— d , 01 ))] 
LiM34 
j=1 

(6.102) 

where 031  is Ck and satisfies the properties of 041  in (6.97), also 

= M340(0 ± [m341(v)  VP3C<J(L3- ,e, ) + o(v2P3w2 (D-, Pm] 7-10'3 	ro 	 ro  
__os 
mi4im  M31 = 	miyo  + k3o(vP3 w(m4 V1-d, pi)), ð3 	 77131(0) 0  ro  
03m142(v)yo  + K3o(vP3c4)(m4v1-d,  pi )),  M32 = 53_1-53 	 M32(0) = *K142E2 
ro 771141 
e  M33 = 

 
3ï143(v)Y0 	 *K143P30 53_1-53 + K3 0(VP3W(Mel-d, pi )), 	M33 (0) = 
ro M141 _25 2  M  m  

M341 = 1413 y 0 342 	n3  ± 	0(vp3w(mol-d,  pi )),  
253 	 M341 (0) = *M342(0) ro  

and in m30(v,w(g-, 131)) we still keep r3  as the function of d in the expression (6.100). 

To get the cyclicity of Ehhlc and Ehh3e, we are going to apply Theorem 6.12 to 

study #(F, G) of the following system 

{F, (c, d) := 7112  (V, C) - T22  (V, d) = 0 
(6.103) 

Gu(c, d) := T42  (V, - T32  (v, d) - 0 

for (a, p) E Ao  x S2  and (c, d) E D,, where D, is a square whose size depends on v. With 

v = ue2  and u e (0, 1), then D, = 1, x I. 
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(2). Functions F,(c, d) and G ,(c, d) satisfy the conditions of Theorem 5.3.2. 

For 0 < v < e2, Fv (c, d) and G , (c, d) are continuous on D, and smooth in D,,. Note 

that Ve ilnE lnuE‘  
ln vl ln v )1 we have v 	E (ue, e), hence vP'(1-c) E (0, eP1 ). So for 0 < v < e2  

and \/(c, d) E D,, with E > 0 sufficiently small, by (6.23), a first derivation gives 

eF„ (c, cl) =T12 
= - 1--D-ve1evP1(1-e) ln v + valc ln vP-1/1 + 01(v, ve, co( po  -al)) pori  

+11.±..e6j1(v,vc'w(›co' -a1))1  
= 	ln v[5-1/1 + iiivP1(1-c) + 011(v, vc  w(1)2- ai))] Po 

(6.104) 

0  

where /11  =fr4
1
L Oii(v, 	co('L, ai)) is Ck and satisfies the properties (6.22). Since for 

po   

x > 0 sufficiently small, (xPlco(x, ai)) = xP1-1 [(5-1w(x, ai) - 1] > 0, for Ou with c G I,,, 

we have the estimation: Oii  (v, vc, w(12-c-'  ai)) = 0 (ePlw(e, ai)) • po  
Similarly, for 0 < v < e2  and V(c, d) E D,, with e> 0 sufficiently small, we have 

F,(c d) = —r-r1  d 	 22d 

= —Veld In V kfii2  ± /21  VP1  (1—(1) + /22 (V)Vel d  + .23 (11, 	(.;.)(11 ' —a1))] Po  

0 

(6.105) 

where /2(0) = /1m211(0) 

	

	0, /21 = 'IT,P1 , and /22  = 2i5-1/îm212. Also for Ehh1c, Po  
122(0) = *m212(0) = *P30. For 023(v, vd, w(e, 	it is Ck  and satisfies the properties 

(6.22). 

By (6.104) and (6.105), for 0 < v < e2  and V(c, d) E Di, with e > 0 sufficiently 

small, F,(c, d) and Gv (c, d) satisfy the conditions of Theorem 6.12. So we have 

#(F, G) < 1 + #(F, J[F, • 

(3). Calculation of #(F, J[F, G]). 

OF OG To calculate #(F, J[F, G]), we have to calculate J[F, G] = 	_ 

Note that for the case q3  = 1, (5-3  + 	p3  = 1, so 

vv ,81(1-c) 	v1-01(l-c) 	v(1-00(l---c) vi-(1-c) = vev a-3 (i-c) 

(6.106) 
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Therefore, for 774(v, w(77,4-0 	by (6.93) and similar to (6.23) we have 

8a77,4  (v,e, (, fil)) 
_ 	7:4_ \ 

ro 	ro  , I-111 

= 	1,H_ (g)-1—,611P:r:i 
ro 	 ac 

= K3m21  vv( 1—c )(1-1—'81 ) in V 

142(01/1—c  + 143 
( v )vc + 0 ( v2(1—c) v2c)] '81  7.71 	 M 

[1 + 7T1,442 (V)V i—c + 752'  143Ve ± 
0 (v2(1—c) v2c)] 

= %,ivEr3(1—c) vc 111V [1 +177/142 (V)/11—c  ± 71143 ( v)vc 0(v2(1-0 , v2c)] 
m4 

So by (6.96), (6.102) and (6.107) and direct derivation, we have 

= T2c(v, c) 

= v 3(1-c) ln v [ô-314 +1411/Ive  + 1422 (V)V1—c  ± 1423 (V)Vc  

1-0(/)2(1—c), v2c)  + 042 (v, 	W(711,4V1—e, /31))] 

eiG u(c, d) = -7132ci(v ,  d) 
= -v5-3 (1-d) ln v kr3/3  +l311  

-1-E/33i ve3(1—d)i + 0 (v(Ni.+1)5.3(1—d)) 

j=1 

+032(v, v1—d  ( 7714111—d— ßi))] 

e  G (c, d) 

(6.107) 

vP3d  + 1322 (v )v l—d 4._ /323  (v )vd o(v2(1—d), v2d) 

(6.108) 

where 042(V, 	W (M4 V i—e , )) and 032 (V, v l—d, w(m4v1—d,  _01  \ )) are Cie and satisfy 

the properties (6.97); /4 = *môrd1, /3 = m34114, and /3(0)/4(0) 0. Also 
ro  

/311(0) = *k3  

/411(0) = *ti3  

/331(0) = *m342(0) 

1422(0) = *m142(0) = *K142e2 

1423(0) = *M143(0) = *K143P30 

1322(0) = *M34].  (0)1422 (0) = *77/341K142e2 

1323(0) = *M341(0)1423 (0) = *7%41-K143i/30. 

Let 

G i(v , c, d) :=  31'3  '1[F ,  Gj(v, c,  d) 

0-1 	ac ac 	• 
ac ad 
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It follows from (6.104), (6.105) and (6.108) that 

vi  
G (v, c, d) = v( a1+'3)c [1 + hi (v, c)] 	(1+3)d m211 (1)) 	h2  (v,  d)].  

771341 (v) 

Then for 0 < v < E2  and V(c, d) E D, with E > 0 sufficiently small, the equation 

Gl (v, c, d) = 0 is equivalent to equation G2(v, c, d) = 0, where 

G2 (v, c, 	:= 	± hi (/), c)] 	vel[71 (v) 	h2 (v, d)] 

1  

where 71(0 = rnm (v)  Fr1H-d3 
, and Trta41(v)) 

hi(v, c) = vPi(1-c) 

-1-'51.43vc  0(v2(1-c),v2e) 

+Hi(v,vc,v1-c,co( , -al ), w(m4 v1-c, -pi )) po 

h2 (v, d) ± -;2:43 1vid v + P3od  = i'211vP1(1—d)  

± i 
(u2(1—d) , p2d) 2321)1—d  

±E,5,34ivadxi +0(,(N1+1)(1—er3 
± 

j=1 
+//2  (1), vd,  v l—d,  w(E± 	(rn4v1—d,  

po 	1,, w \ 

	-Y22 (v)veld 

where 
= 	, 	7211(0) = *K1 

	

'Y311(0) = *K3, 	 41l(0)7Y 	= *S3 

'i'22 (0) = *M212(0) 

i'341 (0) = *m342(0) 

7232(0) = *-/142 (0) = *K142E2 

7233 (0) = *143 (0) =*-K143it3o, 

also Hi and H2 are Ck  and 

= 0  (v pi c,.,f 	„p3(1—e)w(rn4v1—c,  pi )) 
L'.1 ‘.  po / 

H2  .= 0 (vpld,,( Vd  /„, „p3(1—d)w(rn4v1-61 01 )) .  
po   

(6.109) 

Similar to what we did in (2) with the functions F,(c, d) and G,(c, d), one can 

check that for 0 < v < E2  and V(c, d) G D, with e > 0 sufficiently small, G2(v, c, d) and 
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Fv (c, d) satisfy the conditions of Theorem 6.12. Hence we have 

#(F, G) < #(F, J[F, G]) + 1 

= #(F, Gi) + 1 	
(6.110) 

= #(F, G2 ) + 1 

< # (G2, J[F, G2]) + 2. 

(4). Calculation of #(G2, J[F, G2]). 

Let 
J[F,G2 ](v, c, d) 

G3 (v, c, d) := 	ry, 	• 
'2c"- 2d 

Then a straightforward calculation gives 

G3  (V, c, d) = v( °"1-1)c[1 + h31(v, c)] — v(e1-1)d [72(v) + h32(v, (1 )] • 

where '72  (y) = M211 (11) (m341 	+Fi3 • M211 11) 

By (6.109), if for 0 < v < e2  and 91(c, d) E Di, with E > 0 sufficiently small, 

G2(v, c, d) 0 0, then #(G2, J[F, G2]) = 0 and we already finish the proof. Otherwise, 

similar to the proof in the Theorem 6.12, G2(v, c, d) = 0 defines a unique connected curve 

which satisfies 

v = c 	dlel(V) 	h2(V, d) 
v 

1 + hi(v, c) 
(6.112) 

By iterating the relation (6.112), the unique curve defined by G2(v, c, d) = 0 can 

be written as 

vd [m(v) + ho (u, d)] 	 (6.113) 

where 

ho (v, d) vpi. (1 —d) + Fy003 vp3d 

+i,013 vd + 0(v2(1—d),  u2d) 

±E'5'03,3(1—e0i 0(v(N1 +1)(1—er3 
j=1 

+Fru 	± Ho  ( v, vd v l—d w  (le 0 —al), w  (m4 v l—d, 	)) 



and 

801(0) = *K11 	åo3(0) = *S3 

81 (0) = *m212(0) = *T130 

å2(0) = *M142 (0) (M211 (0) — m341(0)) = *K142E2 

å3(0) = *M143 (0) (77t2ll  (0) — M341  (0)) = *K1431230 

(6.117) 

142 

where 

1001 (0) = *K11 	7003(0) = *K3 

102(0) = *M212 (0) 

7031 (0) = *M342 (0) 

1012 (0) = *mi42(0)(711211(0) — m341(0)) = *K142E2 

7013(0) = *M143 (0) (M211 (0) — M341 (0)) = *K143P30, 

also Ho is Ck and 

V el  Ho  = 0 ( vp co(_ ai), vp3(1—d)w(m4vi—d,01)).  
Po 

(6.114) 

Substitute (6.113) into G3  (V, C, d) and let 

g(v,d) = G3  (V, C, d) 
(6.113) 

Then a straightforward calculation gives 

 

g(v,d) = 7(v) +801vP'(l—d) + 803vp3d 

 

where 

 

+82 v l—d 	ud 0(v2(1—d), v2d)  

+E 	0(,(N3+1)(i_d3) 

./=-1 
+61  ( v )/Aid H( v, vd ,  v l—d 	Vd  

w(7, —al)) 41-1(M4111—d, —Pi)) 

(6.115) 

ry(v) = 1 — ( rn2i (ornni (o)a1 +53 	 (6.116) 

å41(0) = *M342 (0)) 

also H is CC and satisfies (6.114). 

In order to get the cyclicity of Ehh2e, Ehh3e and Ehh1c, we will study the number 

of roots of the equation g(v,d) = 0 for d E (0,1) and v > 0 sufficiently small. 
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(5). Cyclicity of Ehh2e and Ehh3e: Cycl(Ehh2e, Ehh3e) < 2. 

For the graphic Ehh2e (resp. Ehh3e), since m211(0) can be sufficiently small (resp. 

large), so -y(0) —› 1 (resp. sufficiently large), hence for (a, p) G Ao x VI, (resp. (a,/) c 

A0  x V13  ) , and Vv E (0, vo) and d E (0,1), by (6.115), in both cases we have g (v, d) O. 

Therefore, #(G2, J[F, G2]) = 0 and by (6.110), we have # (F, G) < 2, i.e., Cycl(Ehh2e, 

Ehh3e)( 2. 

(6). Cyclicity of Ehhlc when m211 (0) < 1. (This contains the case p30  = ci) 

For the graphic Ehhlc, by (6.116), we have 

-y(0) = 1  — (rne2.1( 3)mili (0)) el  +" • 	 (6.118) 

By Hypothesis 6.11 we have m341(0) < 1, so if m211(0) < 1, then by (6.118) we have 

-y(0) 0, hence Cycl(Ehh1c)< 2. 

For the graphic Ehhlc with m211(0) > 1, we will study the equation g (v, d) = 0 

with 0 < v < E2  and d e I,, for ao E (0, ) \ Q and ao E (0, n Q in (7) and (8) 

resp ectively. 

Note that if /230 = 0, then m211(0) = 1 which is the case when P30 =--> 0, it is already 

included in (6); also note that the nilpotent elliptic point is of codimension 3, so e2  0. 
So in the following two cases, we have 

82(0) = *M142 (0) [M211 (0) — M341 (0)1 = *K14262 0 	
(6.119) 

63(0) = *mi43 (0) [7n2ii (0) — M341 (0)1 = *K143/7/30 O. 

(7). Cyclicity of Ehhlc when m211(0) > 1 (/2,0 > cp): Case ao E (0, \ Q 

For a0  G (0, ) \Q, let Ni. = [(7.3ta0)1, then function g (v , d) in (6.115) can be simplified 

to 

g (v, d) = -y (v) +81(v)v 1d  ± 0(ve1d) 

82 (01,1- d ± 3  (v )vd + 0  (v2(i-d) v2d) 

g] 
+E (5 4ivEr30.- ± 0  (va *1+1)&3(1- d)) 

(6.120) 



Let 

gi(v, d)  = 	a  
v D7i (v,d)v- (73 (i—d)i) j = 1,- , [*]. 

Then after [-j--3 ]+ 1 steps of successive derivation and division in (6.121), we get 

82(v)vi-d 83(v)vd 0(1,2(i-d), v2d)  g[0.13]  (v, d) = 61(v) Veld 	 (6.122) 

where 61(0) = *7fl212(0) 

We introduce a Lemma. 

Lemma 6.17. Consider the equation 

L(v, d) = 	o( vcrid) i2(v)v1-d 0(vi-d )  _Fi-3(0yd o(v) 

(lne ne for v E (0, e2 ) and d E 

	

	lu) with u E (0,1) and E > 0 sufficiently small. If Eri > 1 ‘lnvl inv 

and 12(0)13(0) 	0 or à ]. <1 and 11(0)12(0) 	0, then L(v, d) = 0 has at most 1 solution. 

Proof. For the case Fri > 1, L(v, d) can be simplified to 

L(v, d) = 12(v)vl-d  

Note that /2(0)/3(0) 	0, so we have two possibilities: 

• if /2(0)/3(0) > 0, then L(v, d) L  0; 

• if /2(0)/3(0) < 0, then L'd(v, d) L  0, thus L(v, d) = 0 has at most one solution. 

Altogether, L(v, d) = 0 has at most 1 solution. 

The case 5-1 < 1 is similar. 	 D 

End of proof of Theorem. 6.16 

In this case, note that we have 51(0)52(0)53(0) 	0 and -6-1 	1, so applying 

Lemma 6.17 to the function in (6.122), we conclude that g[ i (v, d) has at most 1 root. 

So g(v, d) = 0 has at most [2-3 ] + 4 roots. Hence Cycl(Ehh1c) < [5-1] + [k] + 4. Thus 

for ao e (0, - )/Q, the graphie Ehhle has finite cyclicity. 

(8). Cyclicity of Ehh1c when m211(0) > 1 (P3o > 0): Case ao E (0, n 

144 

(6.121) DD : {YI:1(v, 	ii+Jetg( v, d ) 

= */7/30 	0, and by (6.119), 82(0) = *52(0) 	O. 

+0(v1—() 	vd o(u) 
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For the graphie Ehhlc, if a0  E (0, nQ, then ai(a0),a-3(ao) E Q. For i = 1,3, let 

ai(a0) = 	q E N and (pi, qi) = 1, thus we have three subcases: 

(8.1). Case ao e (0,) n 	In+12,  2,42,7„  E  

In this case, we have qi > 2, al  < pi and p3  > 2. Then for v > 0 sufficiently small, 

we have ô-1  < pi and [51-7-3 ] < q3. Note that in this case al,,17-3  e N, therefore the equation 

(6.115) can be reduced to 

g(v, d) = -y (v) + 81 (v)veld + o(v-") + 63  (V)Vd 0(1)(1) 
q3 

+E(54iviis(1—d)i + 82(,),1_d 4_ 0( ,1-d )  
j=1 

Applying the DD process (6.121) [] steps to the function g (v , d) in (6.123), we 

get 

gpi ,q3 (v, d) = 

where ci(0) 	0, (i = 1,2,3). 

Then by Lemma 6.17 we obtain that gpia,(v, d) = 0 has at most 1 solution, then 

g(v, d) = 0 has at most [1-1- 4 solutions, i.e., Ehhlc has finite cyclicity. 

(8.2). Case ao = 	 ,n+ E N,n 1,2 

This is a particular case of (8.1). In this case, we have ai(a0) = pl  = n> 1 and 
0.3(4 jr2  

{

âi  ( id  v) vE r  + 0( v6-1  d) + 82  ( v) v  1 — d ± 0 ( v l— d ) 

q3  > 2. Then g(v, d) can be reduced to 

g(v, d) = -y(v) + 62(,),1_d  0(//1-d) ± 83(,),d + o(vd ). 

Similar to the proof of the Lemma 6.17, we obtain that ry(v, d) has at most 1 solution 

which gives that Cycl(Ehh1c) < 3. 

(8.3). Case ao = 

In this case, we have ai(1) = 2, P1 = 2, ql = 1 and o-3(a0) = 1, p3 = q3  = 1. 

For the second type of Dulac map near P3, by Theorem 4.14, we have 

(6.123) 

â 3 v ) ( vd 	0 (vd) 62  (ov l-d o(vi-d)  
if al  < 1 

if ai > 1 

E (1,2). Thus for a-3(a°) = 	with p3, q3  C N and (p3, q3) = 1, we have 

	

f r4 	 r3 	 r4 04  (ni, P4, L'il —1 	= 	 + 0(//c02(1-r -Po‘, w —,P0)• 

	

ro 	 ro 	 ro 	ro (6.124) 



By Lemma 6.15, we have the first saddle quantity at P3 /32 O. 

Then the function in (6.115) has the form 

= 7(V) 611 (V) Vel  + 612 (v) v2d 

+81( v )v2dwH )  a 	0  (v2 w2 
k 1  vd _a 1  ( 5 ail vd 	\) 

po   

+821V1-d ± 6 2  (ovl-dw(m4v1-d,  pi ) 

+0  (v(.4)2(m4v1-d,  _01)47nel-d,  pi )) 

where bli(v) can vanish, 61(0) = *a2(1) = *T130 0, and å2(0) = *02 O. 

By applying the standard division-derivation method to to the function g (v, d) in 

(6.125), we can kill the terms (v) and vd. Then the number of roots of g (v, d) = 0 is at 

most 6 plus the number of roots of 
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(6.125) 

g (v, d) 

= 612V"i5'±  ( v )v 2c/t4 (Ed_ a  
po  I 1) 

+0 (V2W2 	-ai)w( u—pod ,a1)) 

+621(141/1-d  ± 62 (V) V1-61W (M4V1-d, 01) 

+0 (vw2(m4v1-d,  _,31 )(4,(m4v1-d, 00) 

where î5i(0) = *6i(0) 	0 (i = 1,2). 

Let g2(v, d) = 	ed(v_2dgi(1,,d)), then 

(v, d) 

(6.126) 

,d 	„d 
g2  (/), 	_ poai -à1v -  e + 0  (. 	

Fo 
2 	 f 

v L4' " -auct) —
Po

,a1)) 

-R3  ± /31)(4(mi4vi-d, 01) + 	(v)vl-d  
+0  (vw2 (m4vi-d,  _mw(m4vi-d, 0)) 

Let g3(v, d) = 
vl-ci a

( _ v 	
(1- d)

g2
f „ 

'cl)) , then \' 

vd 	vd 
g3 (v, 	= iv 1d + 0 (v2  ci? (— -al)co( —

Po lai)) 
Po 

+62(v)ve3d  + 0 (vu? (m4v1-d, 	)w(m4v1-d, 01)) 

61(0) = 	à]. (0) 	0, .52(0) = (3  ± 01)7n4-)31& (0) 	O. 

Again applying Lemma 6.17 to the function g3(v, d) we conclude that g3  (v , d) = 0 

has at most 1 root, so for ao = Cycl(Ehh1c) < 9. 

(8.4). Case ao = 2'42, n E N, n 1 
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2 In this case, we have o-i(ao) = 	< 1, pl  = 2, g]. = 2n — 1 and o-3(a0 ) = 1  

	

2n-1 	 n 
p3  = 1, q3  = n. 

Since ai < 1, so this is a case similar to the case (8.3), but simplier. The function 

in (6.115) has the form 

g (v, 	= ,),( v ) 	61( v )vEr1d o(veid) 
n-1 

+E82,
v,i3(1-d)j 

	

J=1 	
622(v)vl—d 	 (6.127)  

+62  (y ) vl-dw(rnol-d,  pi ) ± 0 (vw2(7n4v1-d,  _01  )w(rn4v1-d,  el )) 

where 61(0) = *m212(0) = *T.L30 L 0, and by Lemma 6.15, 62(0) = *162 o. 

After killing the terms vcr3(1—d)i (j = 1,2, • • • ,n — 1) by the DD process, then 

similar to the process in (8.3), we obtain that Cycl(Ehh1c) < n + 4. 

(8.5). Case ai)  = 

Note that in this case, o-1(i) = pl  = 1, 

has the form 

(11 	 * (73 	— 2  Then the function in (6.115)  — 3 

g( 1), 	 = 'K if ) + 811 	 po 	 ‘12-  ai)) (v)vd 61(v)vdw( 	al )  +0(v(4)2( 	—cei)w(  po 	po 	(6.128) 

where 61(0) = *a2(i) and 62(0) = *02 0. 

In this case we need to calculate the saddle quantity a2  for the 2-dimensional system 

near Pi on r = O. In this case, system near Pi on r = 0 becomes 

{ A = .17)(1 + 3y + 3p2p62) 

Ù = -q-  + 2Y2  + ii3PY + 2/7/2P2Y +1711P3. 

Then by the formula (5.52) introduced in Lemma 5.14, we have the saddle quantity 

1 
a2  ( p,o) = —64p30  O. 

Then similar to the case (8.3), we obtain the finite cyclicity of Ehhlc. 

Altogether we have proved Ehhlc has finite cyclicity. 

(6.129) 

+6210-3(1—d)   
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Next we study the rest of the lower boundary graphies of Ehh families. First 

note that for the family Ehh4, it is the same as the family Sxhhl for the saddle 

case, so by Theorem 5.5, family Ehh4 has finite cyclicity. 

Before finishing the proof for both the lower boundary graphies and interme-

diate graphics, we make the following remark: 

Remark 6.18. System (3.10) is invariant under the transformation 

( —t, —x, —/-4, —113) 1—>• (t, x, P11113) 
	

(6.130) 

so the families Ehh7 and Ehh8 can be obtained from the families Ehh5 and Ehh6, 

families Ehh11 and Ehh12 can be obtained from the families Ehh9 and Ehh10, we 

will only need to deal with families Ehh5, Ehh6, Ehh9 and Ehh10 as long as we do 

not use Hypothesis 6.11: 7* < 1. 

Now we prove that 

Theorem 6.19. For the families Ehh5, • • • , Ehh12, all the lower boundary graph-

ies have finite cyclicity. 

Proof. By Remark 6.18, we only need to prove that the lower boundary graphics 

Ehh5c, Ehh6c, Ehh9c Ehh10e have finite cyclicity. For all these graphics, take sec-

tions ri  and E3 as defined in Notation 5.7, we are going to study the displacement 

map defined on the section Ti.: 

L : Ti  ---> E3  

L=Î —I 
(6.131) 

where î' is the transition map through the blown-up singularity, i is the transition 

map along the regular orbit. Similar to the graphic Ehplc, on the section Ti , we 

will use coordinates (v, c) with c E I,. 

We begin with the graphies Ehh9c and Ehh10e first. 
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(a) Graphic Ehh9c 
	

(b) Graphic Ehh10e 

Figure 6.9: Lower boundary graphics Ehh9c and Ehh10e: Displacement maps 

(1). Lower boundar graphics Ehh9c and Ehh10e 

Taking sections 74, E4, E3 in the normal form coordinates (as defined in 

Notation 5.7), the transition map I can be calculated by the decomposition 

__. 
T = R-1  0 04 0 t/ 

where 

• U.  : ri  —› 74  is the regular transition map defined in Prop. 6.13, it has the 

expression (6.55), 

• e4 : 7-4 —› E.4 is the second type Dulac map near P47 

• R-1  : E4 --> E3 is the inverse of the transition map R defined in (6.101). 

Then a straightforward calculation gives 

T-2 (V, C) = 972130 (V) ± 'if/131(07M (1), CO (r4, 01)) + 0 (v2P3(1-c)w2(m4v1-e, 01)) 

—71113(1))Ve3(1-c)[1-1- 04(v, vi-e, w2(rnoi-c,  pi )] 

(6.132) 
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where r4 = vi-c r imi41 + 0(vc, v i-c)1, m4 = ni141  
ro  and mi3(0) > O. 

For the graphic Ehh10e, as shown in Fig. 6.9(b), take sections El  and E3  

in the normal form coordinates in the neighborhood of the saddle-node, then the 

second component Do(v, D) of the transition map Ao  : El  --> E3  can be written 

as 

Do  (v, D) = moo  (v)D 

where moc,(0) is sufficiently small. 

Take sections 111  and f13  as defined in Notation 5.7, then the transition map 

-1 can be factorized as 

T: Ti  

îl = A3  0 T03  0 LX0  0 no 0 el 

where 

• el : 71 —› Hi is the second type Dulac map near Pi  which satisfies Theo-

rem 4.14 with a = al , 

• no : 111 ---> Ei  and Tm  : E3  —} II3  are CC  regular transition maps, they 

have the forms of (6.38) and (6.37) respectively, 

• A3  : 113  —> E3  is the first type Dulac map near P3  which satisfies Theo-

rem 4.11 with a = a-3. 

Then a straightforward calculation gives 

1"2 = 7T2130(v) + 77-430(v)ve3+ 1W(vc, -ai ) (1 + 0(vP3 w(vc, -ai))) 

+n-i i3  (r))//r3±'ric [1 + 013(v, vc, w(vc, -a].))] 

where fiz130(0) = 0 and mi3(0) = *m00(0) > 0. 

Similar to the case of Ehplc, it is not difficult to verify that Vc E //, and v > 0 

sufficiently small, there holds /11(v, c) < 0 and f(v, c) > 0. Hence the displace-

ment map defined in (6.131) has at most two roots, which gives Cycl(Ehh10e) < 2. 

(6.133) 
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For the graphie Ehh9c, as shown in Fig. 6.9(a), the map I' has a similar 

expression as in the case of Ehh10e which can be obtained by letting moo (v) = 1. 

So it has cyclicity at most 2. 

(a) Graphic Ehh5c 
	 (b) Graphic Ehh6c 

Figure 6.10: Lower boundary graphies Ehh5c and Ehh6c: Displacement maps 

(2). Lower boundary graphics Ehh5c and Ehh6c 

Since the graphics Ehh5c and Ehh6c pass through a saddle and a saddle node 

respectively, the transition map i'l may not be C2, and the graphics need a special 

treatment. 

Let us see Ehh5c first. As shown in Fig 6.10, in the normal form coordinates 

in the neighborhood of the saddle point, take sections El  = 	= —x0} and 

-r3 = ID = yo}, let A(Tio ) be the hyperbolicity ratio of the saddle point. Then for 

the transition map 

0 = (d07 DO) : Ei ---+ E3 

its second component Do  (v, D) can be written in the form of 5.46. 

Take sections 1111  and 113  as defined in Notation 5.7 in the normal form coor- 
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dinates, then the transition map /1-  has the following decomposition: 

— 3,3 ° TO3 o 3,0 o T10 ° el 
	 (6.134) 

where 

• el : r1  —› li is the second type Dulac map near P1  which satisfies Theo-

rem 4.14 with a = 

• io Hi 	Ei  and T03 : E3 	113 are Ck  regular transition maps they 

have the same expression as in (6.38) and (6.37) respectively, 

• A3 : 113 	E3 is the first type Dulac map near P3 which satisfies Theo- 

rem 4.11 with a = 

Since the hyperbolicity ratio A can be > 1, = 1 and < 1, so for graphic Ehh5c 

we have to deal with three subcases: 

(2.1). Case A( -4) > 1 

Let 

= 29f. 	cei) + 
Po 	po 

D3 	= M030 (11) ± M031 e 

where /1  = -v-frPT  > 0, mo30(0) = 0, Po  

Vele  

± 

mm1(0) 

[/1 ± 01(V, 

00 (1), Di)] 

0 

1)c, CO 	—ai))] 
(6.135) 

and 00(v, Di ) E (1e). 	Then the 

second component (v, c) can be written as 

e" 	 \ 
1-12 c) = 1 3/910-W — 3 —03) 	 EY3  + 03 (v, 	w 	— )83)) ] 

3  (V 3 
 vo 	\v01 	vo 

(6.136) 

where iii031(0) > 0 and -g-5031  is Ck  and satisfies the property (6.22). 

Consider the displacement defined in (6.131). By (6.132) and (6.136), a first 
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derivation of L2  (V, gives 

L'2(v, c) = 	c) — 11 (v, d) 

e3  [1 4- t (1), D3, w(, —03)) 

[mon (v) Ael -1  (1 +  

velc ln v P-1/1  + 0(vP1 (1-') ) + 011  (v, vc, 	, —ai))] 

—ve3(1-c)  ln v [m13(v)õ3  + 0(vP3c) + 041 ( 

where 001  e (P), and 011,041  satisfy the property (6.22), also 

a03 = 
t9 y3 	 Vo 	Vo  

L2  (v, c) has the same number of small roots as of 

L21 (V, C) 
v- 3  (1-c) 
	L (  v, C) 

ln v 
= —mi3(v)Ei3 + 0(0'1 + 041  (v, 	w(m4v1-c, 03)) + 0 (e 1) • 

(6.138) 

Since mi3(0) 	0, so L2i(v, 	0, thus L2(v,c) = 0 has at most one small root, 

i.e., C y cl (Ehh5c) < 1. 

(2.2). Case A(/-20 ) < 1 

In this case, Li2(v,c) has the same number of small roots as of 

L21 (V, C) 
(6.1+53)c  = v 	[1+ 0  (v oùa 	Y3) w(, —133))] 

0 (VP'(1-c)) 	012(V, vc  LL) ( 1 	))] , 	 po 	1 

v, v l-c, w(m4vi_c, e3))] 

(6.137) 

— 	 (1+ 0i  (V, -j1)) [(77213à3)-17- 	0(VP3c) + 041(V, vl-c, 	03))] 

(6.139) 
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Then 

(  
Lin  (v, c) = v 

_ 5  ln 
 v [1 + 0 (vP3coq3 ( 	-(33 ) ln -;-,t )] 01,+,,)c  

+ c_/ [(Cri-l-cis)(à.1/1)1- 	r ( Jv-P1(1-c)) 	013  (v, vc, w( 1;7:, -ai ))] 1-A 

-Vcric ln v 	± 0 (1)P1(1-c) ) 4- 014 (VI  lie, w(, -ai))] 	+ 003(v, Ý1)) 

[(rni3(v)o-3)1  + 0(vP3c) ± 943( v, vl-c, w(m4v1-c, [33 ))] 
± À  

(6.140) 

which has the same number of small roots as of 

L22 (V) = L'21(v, c). 
ln v 
V°1  

Yet 

L22  (V, 	= 110-1 (M13(00-3) 1 	± 003(V, .Ý1)] 

± O(11111(1-C)) ± 014 (1), Ve ) (À-)(e, -ai))] 
0  ( v  (Eri. jx. -P;3).) 

[1 + 0(vP3c) + +043  (y, 	 w ( Tnel-e,  /33))] 

(6.141) 

Hence, L2  (//, = 0 has at most two small roots, therefore Cycl(Ehh5c) < 2. 

(2.3). Case A(rto ) = 1 

In this case, for the second component /12  of Î'defined in (6.134), letting 

Vc 	 Ve 
= rnioo (v) + 	 ai)) + m11  (v)Vic  [1 + On (v, vc, w(—, ai))] (6.142) 

Po 	 Po 

and using the refinement of Roussarie([R86]) for 103  0 Ao , then a straightforward 

calculation gives 

1;2 (1), c) = aoo(v) + 0(//r3w(,i, -/33)) 

+0-3  [ceii (v)Ùw (Ý,  an) + ce22(v)Ý + 0 (Ve3  D2W (D all))] 
(6.143) 
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L24 (1), C) = 
L123  (V, C) 

uffic ln v [1 + 0(vP1(1-0) On (y, yc, 	-ai))] 
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where aoo (0) = 0, a22  (0) O. 

Then the first derivation of L2(v, gives 

L'2(v, c) = v [ii(v)w(, an) (7g22(u) + 0 (1/73  ( -j1 ail)) 

[77211 (Ovule ln y (1 + 0(vP1(1-c) ) + 011(v, ve, w(ie,  , -ai)))] 

— Pe3  (1-c)  ln y [mi3(v)(773  + 0(vP3c) + 041  (V, 	w  (rnel-c, 03))] 

(6.144) 

and rk22 = a22 	W where rk11(v) = an (1 - an) 	 _11  ith Fy22(0) O. 

Denote 

Loi  (v, c) = 1 ± 0(vP1(1-c), vP3c) 
ve 	 , j > 1. 

+01i(v, vc, w(—, -ai )) + 04i  (V, /11-c, W(M4/11-c, -03 )) 
Po 

where the Oi  and 04j  will have the similar properties as the 011  and 041  respectively. 

Then the equation /12(v, = 0 has the same number of small roots as of 

L22 (V, C) 
v—a3e1cL12  ( v,  

w (D, an) ln v(1 + 0(vPi(i-c» ) + On(v, vc, 	-ai))) 
a22(y) 	71113())11-(el±e3)cLoi(v,  c) 

= mn (v)an (u) + 	
cell) 	w(Ù, an) 

(6.145) 

The number of roots of the equation L22  (/), = O is at most one plus the 

number of roots of 

L23  (V, 	= 
v(51.1-5-3)cD1-Pailw2(J, an.)L122 (VI c) 

(éri + ô3)mi3(v)L02(v, c) ln v 
= 	

(Y an) - ve1cL02(v, c) + O (v(2'.1±ar3)c) . 
(6.146) 
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Then 

L24 (V, C) = —mii(v)[1 + (1 + 	an)] 

— 	Lo3(v, + o (v(26-14.53)c) 	 (6.147) 

0- 

where the termp-(7,11a, (g an ) is positive and sufficiently large. 

Therefore, L2(v, = 0 has at most 3 small roots which gives Cycl(Ehh5c) < 

3. 

Now let us study the graphie Ehh6c. In the decomposition of T , the second 

component of the transition map o = (do, Do ) satisfies 
ail Do  
	(v, y) = 

o(i2) , 	vil , i2 G N. 	 (6.148) 

Still letting D be defined as in (6.142), also letting 

D3 = m030 (v) + o(2), 	i2 > 2 

then for 1-12  (V, c), we have (6.134) gives 

(1), 	)cr3 W(-1'  —,31)+(-1) )cr3 [Ù3 	03(v,j3 ,w(—v  , —,(31))] 	(6.149) 
vo 	vo 	Vo 	 PO 

Then a first derivation of L2  (V, c) gives 

L'2(v, c) = 	— 	d) 

= (vv  0) 5-3  ° ( e2-1) [ 11-  e(v, D3, w( ,-,33))] 
va1elnv[ii_1/1 +0(vp,(1-0 ) + 011(v, v, 	Po 
—V5.3(1-c) ln v [77/13(v)ô3  + 0(vP3c) + 041 (1), 

(6.150) 

which has the same number of small roots as 
v (v c)v0-3(c-1) 

2 \  L21 (V, C) 
ln v 

= — m13(v)Er3 + 0(vP3e) + 041  (V, Vi-c, LJ (M4  Vi-c, [33 )) + 0 (Di2-1 ) 

0  

Therefore, L(v, = 0 has at most one small root, i.e., Cycl(Ehh6c) < 1. 	111 

w (mel-c, 03))] 
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6.3.4 Intermediate graphics of the Ehh families 

Now we study the cyclicity of intermediate graphics of the Ehh families. 

Theorem 6.20. Under the generic assumption, all the intermediate hh-graphics 

of elliptic type of the 12 families Ehhl, Ehh2, • • • , Ehh12 have finite cyclicity. 

Proof. Let F be any of the intermediate hh-graphics of elliptic type of the 12 

families. Similar to the intermediate concave graphics of saddle type, take sections 

I-13  and 114  as defined in (5.22) in the normal form coordinates in the neighborhood 

of P3 and P4 respectively. Let 

T: n3 —> H4 

(v, -Y3) 1—> (il, T2(v, Ù3)) 

be the transition map similar to the map defined in Prop. 5.11. Then by Prop. 5.11, 

for each of the intermediate graphic in the 12 families, to prove their finite cyclicity, 

we only need to verify that for v = 0, the corresponding transition map T with 

second component T2(0, D3) satisfies one of the conditions listed in Prop. 5.11. 

We are going to discuss the transition map T2 (0, D3) in the chart F.R. on 

r = O. Recall that in §3.1, we use the quasi-homogeneous compactification (3.15), 

Or 
1 

z = —, y u = =x2  

to study the singularities at infinity on r = 0 in the chart F.R.. So by (3.11) we 

have (z, u) = (P2, Y2), which is precisely the same coordinates we use in the chart 

P.R.2. Hence in the neighborhood of P3 and P4 in chart F.R. on r = 0, we still 

use the coordinates (p2 , y2). By taking r3  = 0 and r4  = 0 in the normal forms in 

the neighborhood of P3 and P4 in Prop. 4.6, we obtain the normal forms in the 

neighborhoods of P3 and P4 in the chart F.R. on r = O. Near P3, 

{ P3 

:Ù'3 = - a3 (43 + k3pr 
(6.151) 
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and in the neighborhood of P4  we have 

	

4 	Pei { 	

:j 4 	0.3 ( — K3PP43  
(6.152) 

where if a 	then k3  = O. 

Since we are only ealculating the map T for u = 0 and in the chart F.R., 

r = v is invariant, so let zi  = {pi  = po} (i = 3, 4) be the two line sections in the 

chart F.R. on r = 0 parametrized by ûi. Then we are reduced to study the one 

dimension transition map 

T2(0, D4) 1T4  —› 1T3  

or its inverse. We will verify that for each family, the corresponding map T2(0, 9.4) 

or its inverse satisfies one of the sufficient conditions listed in Prop. 5.11. 

(1). Families Ehhl, Ehh2 and Ehh3 

We begin with the family Ehhl. Let F be any intermediate graphic of the 

family Ehhl. Since the systems (6.151) and (6.152) exist globally, so the map T2  

exists globally on 71-4  and not only in the neighborhood of 74  n F. We are going 

to prove that T2(0, D4 ) is either the identity or nonlinear. By Prop. 5.12, to prove 

the nonlinearity of T2  it suffices to prove that it is nonlinear at certain point on 

73. To do this, as shown in Fig. 6.11, we take line sections T4  = 	= —yo l and 

{Ù3 = — Yo} in the normal form coordinates and the sections T3  and T4  are 

chosen such that any intermediate graphic of the family intersects Ti  or zi  inside 

the neighborhood of Pi  (i = 3, 4) respectively. Then over some subinterval of 71-4  

the map T2  can be factorized as 

T2  = S3  0 /12  0 Si 1 
	

(6.153) 

where as shown in Fig. 6.11(a), S : 'Ti -} ir (i = 3, 4) are the regular transition 

maps in the normal form coordinates in the neighborhood of P3  and P4  respectively, 

and f2  74  --> 73  is the transition map which is in partieular defined near the 

lower boundary graphie Ehh1c. 
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We first calculate 83  and S. Due to the easy form of system (6.151), the 

transition S3  can be directly calculated by integration, and 
1 

S3(0, p3 ) 	+ C2K3  ln p31 	 (6.154) 
P3 

where Cl  and C2  are positive constants. Let v3  = 	• we parametrize section 7r3  

by v3, then by (6.154), for the map 83, we have 

S3  : V3  = 	 . 
- u2K3  p3  

(6.155) 

Note that if we reverse the time in system (6.151) we get system (6.152), so if let 

= 1  and parametrize 7r4  by v4 , then we have "e•4 

84  : V4 =  	 (6.156) 
—C1  ± C2K3 ln P4 

By (6.156), the transition map 84  sends the points on section T4  in the positive 

neighborhood of 0 to the points on the section R-4  at infinity. 

Remark 6.21. Although the normal form is only valid in the neighborhood of P3  

and P4 , the systems (6.151) and (6.152) exist globally. 

Note that if P30  = 0, then 112  is the identity since the system is symmetric. In 

the case j 	0 we now turn to the calculation of T2. As shown in Fig. 6.11(b), 

there are two saddles P1  and P2  at infinity in the chart F.R. on r = 0, so î2  can 

be calculated by the following decomposition 

= V2 0 D2  0 82  0 D 0 U2  1. 	 (6.157) 

Note that il is not necessarily valid in the neighborhood of F n r4, but we consider 

it near the end point of the interval of definition of T2. For the components of .112  

in (6.157), we have 

• U2  and V2  are regular transition maps defined in Prop. 6.13 and Corol-

lary. 6.14. By (6.55) and (6.79), we have 

U2  1(03P4) = M41P4 M42PÎ C)(4) (6.158) 
V2(()' P2 ) 	e47 [P2  :12  )9 	° (A)] .  41 

Also by Prop. 6.13 and Corollary. 6.14, we have m42  0 since p,30 O. 
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(a) Regular transition 
	 (b) T2 

Figure 6.11: Transition map T for the intermediate graphie of family Ehhl 

• 	Di  and D2 are Dulac maps in the neighborhood of the infinite singular points 

Pl.  and P2 

D1  : Ti.  —> 7r1  

D2 : 71-2  --->- 72 

Pi l  (13io + 011( 0 , Pi)) 

PloPi. + ctiPiwi[l + • • 1 
-e (Pio + 011(0, D2)) 

PioD2 + a1ù2w2[1 + • • 

• ] + a2Pîwd1 + • 

'1+ ce2DP2[1  + • 

. .] + • 

..] + . 

if ai 	1 

if a1  = 1 

if o-j. 	1 

if o-1  = 1 

(6.159) 

where w1  = w(pi, Œi) and w2  = w( 2, a1), On, 0-11 satisfy (Ir). 

• 82 is the second component of the transition map S defined in Prop. 6.1 and 

satisfies (6.2). 

It follows from (6.157), (6.158), (6.159) and (6.2) that we have 
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• Case ai  1: 

12(0, p4) mip4 + ert42p24 + el2Wi+el 
 
+ 	w(P4, al)) 	(6.160) 

where Yi7,2  = *S(0) = *p,30 	0, and fii42  = *M42 	0, also(P4, w (P4, ai)) 

is Cœ and satisfies 

• Case al  = 1: 

12(01 P4) = m1 p4  + a1r-n2P4(À)(P4, cei) [1 + • • • 	
(6.161) 

+a2Th1P24w(P4, ai) [1 + • • •] +... 

where ñi 	0. For the case al  = 1 (a =), by (6.129), we have a2  =- *P3  0. 

So for both the cases oi 	1 and al  = 1, by (6.160) and (6.161), if TL, 	0, 

1'12(0, p4) is nonlinear in p4 . 

Now we show that the map T2(0, D4) is nonlinear if Tin 	0. Indeed, by 

(6.153), we have 

S4 = 111-  53 o 112 	 (6.162) 

If T2(0, D4 ) is linear in D4, i.e., T2(0, p4) = by4  (6 	0), then by (6.162) and (6.155), 

we should have 

S4(0, p4) = „ 
b[— C1  + C2K31nf2(0, 104)] 

which is a contradiction to (6.156) for all the cases of os and k3. 

Therefore, T2(0, D4) is either the identity or nonlinear for D4  E R Thus for 

both cases, the intermediate graphics of the family Ehh1 have finite cyclicity. 

Now we consider family Ehh3. As in Fig. 6.12(a), we have a family of in-

termediate graphics Ehh3b, Ehh3c and Ehh3d. Note that Ehh3c is similar to the 

graphic Ehh6c while Ehh2d is similar to the graphic Ehh10e. In Theorem 6.19, 

we have proved Ehh6c and Ehh10e have finite cyclicity. Here instead of starting 

(1;2(0, p4)) e3  
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from section TI , we consider the displacement map defined on section T2 with image 

on 72, we conclude that Cycl(Ehh3c) G 1 and Cycl(Ehh3d) G 2. To study the 

cyclicity of the graphic Ehh3b, we study the transition map T2 defined on 7r4 in 

the neighborhood of the graphie Ehh3c. 

(a) Family Ehh3 
	

(b) Family Ehh2 

Figure 6.12: Transition map T for the intermediate graphics of Ehh2 and Ehh3 

For Ehh3c, it pass through a attracting saddle node. As shown in Fig. 6.12(a), 

let f-4 = ID = yo l and ;7'2  = {-± = x0} be two sections in the neighborhood of the 

saddle node. Then the corresponding transition map T2 can be factorized as 

T2: 	71-4 ---> 71-3 	
(6.163) 

T2 = S3 0  V2 ° D2 ° W2 ° DO ° W1 

where 

• Wi : 74 ---> r4, a Ck  regular transition map 

• Do  : Iù = yo l --> rd = zo l is the transition in the neighborhood of the 
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saddle node in the normal form coordinates. Then Vni, n2  E N, we have 
aniDo  
5.±-ni 	(05  x~) . o (±-2) 	 (6 .164 ) 

• 	W2 : ;f2 —> 7r2 a Ck  regular transition map 

• D2 is the Dulac map in the neighborhood of P2 and has the form of the 

(6.159) 

• S3 and V2 are regular transition maps given in (6.155) and (6.158) respec-

tively. 

Note that D2 = 1472 0 Do 0 W1(0, -Ý4) as the function of 'ùzi , it satisfies (6.164) 

too, then by (6.163), for T2, we have lim T2(0, j4) = —oo. Hence T2 maps (0, oo) 
g4->0 

to (—oo, oo). Since T2(0, ý4) is analytic and bijective, it has to be nonlinear in Ûzi l  

therefore it is nonlinear for "el G e, thus any intermediate graphic Ehh3b has 

finite cyclicity. 

The finite cyclicity of family Ehh2 follows from Remark 6.18. 

(2). Family Ehh4. 

For the family Ehh4, the lower boundary graphie passes through a hyperbolic 

saddle, it has the same structure as the family Sxhh1 of saddle type. The only 

difference is that the value of ao  has a different sign, which does not influence the 

proof. So, the family Ehh4 has finite cyclicity. 

(3). Families Ehh9, Ehh10, Ehh11 and Ehh12 

As remarked in Remark 6.18, we only need to consider the intermediate graph-

ies for the family Ehh9 and Ehh10. We first consider the family Ehh10 with a 

attracting saddle-node on its lower boundary(Fig. 6.13(b)). In Theorem 6.19(1), 

we have proved that Ehh10e has finite cyclicity at most 2. Now we study the tran-

sition map T2(0, -Ý4) associated with Ehh1Od and prove that it is nonlinear. We 

could have proved directly that EhhlOd has cyclicity < 1, but the proof given here 

will work with a very small modification for the intermediate graphics of Ehh9. 
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For the system in the neighborhood of the attracting saddle node, by a Ck 

normal form coordinate change, we bring the system into normal form. In the 

normal form coordinates 	D), take sections f1  ={ = —x0} and i2  ={ = xo}. 

Then the central-transition map Do  : 	satisfies 

Do (0, D) = TT/o(F-1)D 
	

(6.165) 

where lim 7—no(it) = O. 

As shown in Fig. 6.13(b), the corresponding transition map T2  can be factor-

ized as 

T2 — .1;-2 0 S4  1  

1.-12 	W2 ° D 0 ° W1 ° D 1 ° U2 
(6.166) 

where U2, S4  are regular transition maps along the lower boundary graphics which 

are given in (6.156) and (6.158) respectively, T3/4. 7r1 	fi. and W2  : t2 	7r3  

are regular transition maps, and Di  : —› 7ri  is the Dulac in the neighborhood 

of Pi  in the form of (6.159). 

(a) Ehh9b 
	

(b) EhhlOd 

Figure 6.13: Transition map T for the families Ehh9 and Ehh10 

Then a straightforward calculation gives 
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• Case o-1 	1: 

f2(0, p4) =Tho (Ti)pr + o(pZ1 ) 	 (6.167) 

where ih0  = 

• Case o-1  = 1 (a = 

f2(0, P4) = mo() [71,94 + ctiP4w (P4, ai) [1 + • • • 

+ce2P1w(P4, cei) [1 + • • • ] + • • • 
(6.168) 

where by (6.129), we have the saddle quantity a2  = *f.t30  0 since 	O. 

Let v4  = 	we parametrize section 71-4  by v4  and denote (0, v4) = T2 (01 -j4). 

We claim that the map T2 (0, v4) is nonlinear in v4  in the neighborhood of v4  = O. 

Indeed, if not, then it is linear, i.e., 	 (0,V4 )i2 	= 	0), then by (6.166) we 

have T-2 0 84 = îl2 or depending on o-1, we have two cases 

• Case cr1 	1: 

b 
—C1  + C2 ln p4 = Tr-10()ri (v)pr + oce. 

• Case al  = 1: 

b 	Pe:13  — Cl ±C2 ln p4 = 	'Yo(v) + 	[')/1 (v)P4 + abo4w(P4, cti) [1 + • • • ] 

+ce2Pîw (P4, cei) [1 + • • • ] ± • • • 

_1—a2a Since 	= 	os = 2(1 — 2a) and Va E (0, 	o-3 , the above equations are 

impossible. 

Therefore T-2 (0, v4) is nonlinear in v4  for v4  sufficiently small, i.e., T2(0, "j4 ) 

is nonlinear in Ù4 for"û4  sufficiently large. T2(0, 	is analytic, thus T2(0, D4) is 

nonlinear for D4 E R Hence, all the intermediate graphics in the family Ehh10 

have finite cyclicity. 
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Now we turn to the family Ehh9. By Fig. 6.13(b), we see that this family of 

intermediate graphics can be treated as the graphics of family Ehh10. It suffices 

to take the central transition map S as identity (i.e., 77io 	1) 

(4). Families Ehh5, Ehh6, Ehh7 and Ehh8 

(a) Ehh5b 
	

(b) Ehh6b 

Figure 6.14: Transition map T for the families Ehh5 and Ehh6 

By Remark 6.18, we only need to study families Ehh5 and Ehh6. We first 

consider family Ehh5. As shown in Fig. 6.14, the lower boundary graphic Ehh5c 

passes through two saddle points. One is at the infinity P1 , the other lies on the 

invariant line y = O. We have a saddle connection. 

In the normal form coordinates (,.j) near the finite saddle, take sections 

= {±- = —x0} and i3  = Iù = yo}, let 7A.13  : {-± = —x0} —> tj = yol be the 

Dulac map, then similar to the family Ehh10, the corresponding transition map T2  

can be factorized as (6.166). Then similar to the case of Ehh 2 we can prove that 

lim T2(0, ÛTÉI) = 0 which means the map T2  maps (—Do, oo) to (0, oo). Since T2  is 
D4-4-00 
bijective and analytic, it has to be nonlinear. Hence all the intermediate graphics 

Ehh5b have finite cyclicity. 

For the family Ehh6, it has a attracting saddle node on the lower boundary 

graphic. This is similar to the family Ehh2. 
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Altogether, we have proved that all the intermediate graphics of the Ehh type 

have finite cyclicity. 	 El 



Chapter 7 

Application of the main theorems 
to quadratic systems 

Hilbert's 16th Problem ([1-1]) Finding the maximum number H(2) and relative 

positions of limit cycles of quadratic vector fields. 

For Hilbert's 16th problem, till now we only know that H(2) > 4. In [DRR94], 

Dumortier, Roussarie and Rousseau launched a program aiming at solving the 

finiteness part of the Hilbert's 16th problem for quadratic vector fields. The pa-

per listed all the 121 limit periodic sets surrounding the origin in a family of 

quadratic vector fields and reduced the finiteness problem for quadratic systems to 

the proof that all of these graphics have finite cyclicity. Up to now, about 50 ele-

mentary graphics have been proved to have finite cyclicity. To finish the program, 

it is absolutely essential to be able to prove the finite cyclicity of non-elementary 

graphics. By the results of this work, we will be able to prove that more than 20 

non-elementary graphics have finite cyclicity. 

As an application of the main theorems to quadratic systems, in this thesis, we 

only prove that some of the graphics through a triple nilpotent singular point (listed 

in Fig. 7.1) have finite cyclicity. More will appear in a forthcoming publication. 

Theorem 7.1. For quadratic systems, the graphies (IL), (IL), (19b)  and (ILb ) 

have finite cyclicity if the nilpotent singular point is of codimension 3 (In the proof 

this condition is calculated 
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(a) (-T12) 

(c) (11) 
	

(d) (-ria) 
	

(e) (14), (na) 

Figure 7.1: Some graphics with triple nilpotent singularity for quadratic systems 

Proof. By [DRR94], the graphics (112 ) and (4) occur in the family 

{ : 

= Ax — y + E1x2  

= x + Ay + dix2  + (52xy 
(7.1) 

where 0 < 82  < El  for (112 ) (resp. El  < 82  < 2E1  for (19b ) ), di  = A(3E1  — (52 ) > 0 

and 4E1A2  — (1 + )t2 )(52  < 0 . By rescaling we can assume that El  = 1. Then (7.1) 

becomes 

{ 

& = Ax — y + x2  := P(x,y) 

y = x + Ay + A(3 — 82)x2  + 82xY := Q(x, Y) 

with Ao  = (1+ A2 )52  — 4A2  > 0 and A O. System (7.2) has an invariant parabola 

(52 	1 
y = (1 — —

2
)x2  - Ax — —

2
(1 + A2 ). 

(7.2) 

(7.3) 
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To prove that the graphie (./12 ) (resp. ( 2 ) ) has finite cyclicity, by Theo-

rem 5.5 and Prop. 5.3 (resp. Theorem 6.10 and Remark 5.4), we only need to 

prove that, for the quantity 7* defined in (5.10), there holds y 	1. 

Indeed, along the graphic (the invariant parabola (7.3)), we have 

7* = exp (f
oc 

 div X(7(t)) 	dt) 
—co 	 (7.3) 

= lim exp (l
x° 	2A + (2 + 62)x 

xo->co 	62x2  + 4Ax + 1 + A2 
dx) 

-xo  

	

[(  624)  + 4Ax0  + 1 + 	 8A 	62x + n  
6 	

) 
24 - 4Axo  + 1 + A2 	

exp  
 )

1 
62.VLVo 

arctan 
-\/Ao 

exp  
62\to ) 

1 

(7.4) 

where Ao  = (1 + A2)62  - 4A2  > 0 and A 0. 

So, the graphics (I12 ) and (4) have finite cyclicity if the nilpotent point 

has codimension 3. We now calculate the codimension of the nilpotent singularity 

point. 

To study the triple nilpotent singular point on the graphie (at infinity), we 

introduce the coordinates (v, z) = (1'  1)
. 

Then we have 
Y Y  

{

i., = —z + (1 — 62)212  — A(3 - 62 )v3  - v2z 

i = -62vz - Az2  - A(3 - 62 )v2z - vz2  

Similar to what we did in Theorem 2.3 for quadratic systems, by a near-

identity transformation and rescaling, we bring system (7.5) into a "standard form" 

i) = w { 

'//) = el & + w[bv + e2v2] + 0(v5) + w20(1(v, w)12) 

where El  = sgn(82(82  - 1)) and 
2 - 362  

N/1(52(82 - 1)1 
2A(262 - 3)(62 - 4) 

1/162(62 - 1)13  

= lim 
xo—>co 

(7.5) 

(7.6) 

E2 
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Note that b = 2•e < 	> 82  = 2. So for A 0 and 6.2  E (1, 2), if 82 	the 

nilpotent elliptic point is of codimension 3, and for A 0 and 82  E (0, 1), if 82 

the nilpotent saddle point is of codimension 3. Then (112) has finite cyclicity if 

82 	(4) has finite cyclicity if 82 

For the graphics (IL) and (/Lb), since Ao  = 0 and there exists an attracting 

saddle node on the invariant parabola, then ii(0) is very small. Thus (113) has 

finite cyclicity if 82 	has finite cyclicity if 82 

Theorem 7.2. Cycl(Hk) < 2, The graphie (11) has finite cyclicity. 

Proof. By Theorem 2.3, the family unfolding the triple nilpotent singularity for 

quadratic systems can be written in the form of (2.28) or (2.29). For 0 < c < 

2\/1 — a, we have hemicycle (In) and a family of graphics (na). After the blow-

up of the family, take sections El  and E2  as defined in Notation 5.7 in the normal 

form coordinates. To prove that (M- ) and (na)  have finite cyclicity, first we study 

the transition map 

R: E2 	 (7.7) 

along the equator. We are going to prove that the second component R2 (0, j2) is 

nonlinear in j2. 

(1). Normal forms and Dulac maps at infinity 

As shown in Fig. 7.2, let Pr  be the saddle point at infinity in the direction of 

the positive x — axis. Using coordinates (Zr , Ur) = , 	we have 

	

{

U r 	= ur  (1 — a — eu, + ur2  — urzr) 

	

Zr 	= —zr  (a + cur  — g/T.2  + urzr ) 
(7.8) 

Hence r  is a saddle point of hyperbolicity ratio Gr, = l a a . For a E (0, 	we have 

0 <0r  < 1. Dividing system (7.8) by 1 — a — cur  + ur2  — urzr  (positive in the 



{ Ur  = Ur  

Zr = Tr(ur, Zr) := dri(ur)Z, + dr2(ur)Z72  +140(4) 

Figure 7.2: The hemicycle (H) 

neighborhood of Pr ) and using a coordinate change of the form 
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(7.9) 

where 
dri (Ur) = 1 	(1_Ca)2 	 Ur -I-  O(u)) 

dr2 (Ur) = 	 (1-a)I(-1-2a) Ur ± O(u), 

then system (7.8) is CC  equivalent to the normalized system 

{ 

it, = Ur 
N(k) 

= Zr  [ — ar  ± E-yrimzni] 
i=1 

(7.10) 

where if a E (0, 1/2) \ Q, liri  = 0; if a E (0,1/2) n Q, Ur  = U,(p,q) = 1, p, q E N. 

Take two sections Er  = {Zr  = Zo} and Ilr  = fur  = 741 in the normal form 

coordinates. By [Mou90], for the Dulac map Dr , we have 

Dr  : Er  —> Er 	
(7.11) 

Dr(ur) = U(  Ar  ± Or(ur)) 

where A.T. > 0 constant, also qPr E (4°). 
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Similarly, at P/ , the singular point at infinity in the direction of the negative 

x-axis, if we use coordinates (zi, /4) = 	then we have 

 

= ui (a — 1 — cui  — u? + ui zi ) 

à = zi (a — cul  — u + ui zi ) 
(7.12) 

 

 

   

After dividing by 1 — a + bu/  + u? — u izi , and by a coordinate change of the form 

where 

system (7.12) is 

{ ut 	= u1  

Z1  = 

Ck  equivalent 

z1 ) = 

d/1 (//1) 	= 

d/2 (Ut) 	= 

to the 

Ù j 	= —U1  

= z1 

+ cli2 (ui)z? 

1 	 0 

(7.13) 
+u10(z) 

(7.14) 

(1—c  a)2 	± 	(q)) 

0(u?), (1—a)(11-2a) 24 ± 

normalized system 

N(k) 

[o?. 
i=1 

where if a E (0, 1/2) Q, -yu  -= O. 

Take two sections II/  = lu/  = 7201, E/  = {Z/ 	Zo} in the normal form 

coordinates. We have the Dulac map 

---+ 

(zi) = 	(Ai  + Ipi (zi )) 
	 (7.15) 

where o-/  = > 1, A1  > 0 constant, also E (In• 

(2). Decomposition of the map R2 
For the transition map R defined in (7.7), the second component R2 can be 

calculated by the decomposition 

R2 : E2 	
(7.16) 

R2=T1OD/OR0ODrOTr 

where 
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• Ro  : H, —> H/  is the transition map in the normal form coordinates along 

the equator and we can write 

Ro(Zr ) = 001Zr ± ,802Z7? ± Gqe 
	

(7.17) 

• T r  : E2  —> ET  and T1  : Ei  —> Ei  are regular transition maps along the 

invariant line, they have the forms 

Tr () == mr D -1- ()Ce 

11/(D1 ) = mà + 0(e) 
(7.18) 

Then a straightforward calculation from (7.11), (7.15), (7.16), (7.17) and (7.18) 

gives 

R2(0 = /131D ± e2D1+er ± «Dl-Eue ) 
	

(7.19) 

1 	 -1 
where pi = nienr (Ar/301) el A/  > 0 constant, )32 = -mima  iß 	002A/Ar el  . So, 

in order to prove that R2(ù) is nonlinear, it suffice to prove that /302  O. 

(3). Calculation of R (  O) 

(3.1). Decomposition of the map Ro. Now we prove that Pu  O. To do this, 

we introduce the coordinates (v, w) = (-x 
3  -

1 ) and make the following decomposition Y Y 

Ro  := Wi 0 (D/2 ° ROO ° (Dr2 ° lirr 

where 

Wr  (uo , Zr ) = dri (uo  ) Zr  + dr  2  ( u 0  ) Zr2  + u 0  0 ( Zr' ) 
Wi  (uo  , z1 ) = di i  (uo )zi + di2(uo)z? + /100(zi) 

are the coordinate changes on Ur  = uo  and u1  = uo  respectively and 

(7.20) 

(7.21) 

1 V  

Ur { 

(7.22) 

are the coordinate changes between the charts. The map Roo  : Hr  ---> Ili  is the 

regular transition map in the coordinates (v, w), and sections become II, -= {v = 

—1  } and 111  = 1v = — 1-  1. 
Uo 	 Uo 



{í 	= (a — 1)v2  + cv — 1 + w 

= —vw. 
(7.23) 

21k2[11-0(u0)]exp(— 	ulo  2v exp (c2  arctan 4 	 22-F) 
(1—a)k2 	_ 

u0  

2(1—a)v—c  
cl 	) 

 dv 
((1 — a)v2  — cv + 1)ki 
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(3.2). Calculation of the transition map R00  Using coordinates (v, w), we have 

system 

Note that the w—axis is invariant, also with 0 < c < 2.\/1 — a, there holds lw=0= 

(a — 1)v2  + cv — 1 < O. Hence R00  is a Cœ map which can be written as 

ROO (W) =  18001W + ,(3002W2  0(W3). 

By Prop. 5.3, a straightforward calculation gives 

(7.24) 

1 
Pool (no) = exp (f

uo 
 u0  

= exp (—c2  [ arctan 2(1—a)—cuo 	—2(1—a)—cuo 	r(1—a)±cuo-Fui,  k2  
cru() 	arctan ciuo j (1—a)—cuo+4 

= exp(—crr) + o(uo) 
(7.25) 

and 

vdv 
(1 — a)v2  — cv + 1 	 ) 

0002(10 = —P001(vo)f 

xuo 	e p (c2  arctan( 2(1—a)v—c) P020:2exp@t2 	2(171,a)ro  

1 	cuo u02 k2 	( (1 — a)v2  — cv + ic;ki 
uo  
	 dv 

uo 

up 

2v exp 
uo  

((1 — a)v2  — cv ± 1)2 

vdv 
(1 — a)v2  — cv + 1 ) 

dv 

(7.26) 

where 
= 3-4a  E (1, 2(1—a) 

k2 — 	 E 2(1—a) 

= \/4(1 — a) — c2  

C2 = 	(1—a)-V4(1—a)—c2 



1 
uo  2k1 -2 
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Note that k1  G (1, 	so 2k1  — 2 G (0,1). Also 

i2-0  2v exp (c2  arctan( 2(1—a)v—c ) f 	 a)v2  — cv + 1)ki 	 exp(c27r) — exp(—c27r) 
dv 

(2k1  — 2)(1 — a)ki 

Therefore 

2v exp (c2  arctan( 2(1 	—a)v—c  uo  

((1 — a)v2  — cv + 1)1ei 
	 dv = 

uo  

[exp(c27r) — exp(- 27)1(1+ 0(4) 

(2k, — 2)(1 _ a)ki uo2k i  —2 • 

Thus, by (7.26), we have 

exp(-3c2z)[exP(c2z) — 1] 
P002 (U0) = (2k1  — 2)(1 — a)2  

(3.3). Ro is nonlinear: ßo2 = R(  O) 0 

It follows from (7.20), (7.21), (7.22) and (7.24) that 

Ro(Zr ) = Pol + /3024 + 0(e) 

where 

Ooduo) = dri(uo)citi(uo)eoai 

= (1 —(1)2  2/,0  + 0(24)) (1 -2 -cr_c72-2/,0  + 0(4)) 

E  0---a)±-04-uQ2 ]k2  (1—a)—cuo+4 	exp (— c2  [hi ( ) — L  
= e—c2" + 0(uo ) 

002 (U0) = 13001 d/1 (UD)dr2 (2L0) + di 2  (2/0)(421  (2L0)/3(101  +—ulo  dr2i  (UO) d/1 (UO )/3002 

= P001 (1 — (1023 + 0(24) 1—a) j(-1-2a) U0 	O(u)) 
2 

(1—a)(1-2a) U0  + CNUD) (1 	-uo 0(u0)) 41 

uo  (1 	(1- 4-12/0  + 0(4)) 
2 exp(-3c2z)[exp(c2r)-1] 2(k2—ki+1) 

+ o(uo)] (2ki —2)(1—a)2 	UO 
1 

exp(-3c2e)[exp(c270-11_ 2(k2 	r 
)+1  [1 + 0(101 + 0(20. (2ki —2)(1—ap 	tbo 

Since 2(k2  — 	+ 1 = 31a—a1  G (- 
of R has the form in (7.19) with 02  O. Note that all steps of the proof of Theorem 6.3 

work with this form of the transition in (7.19), yielding Cycl(I-4) < 2. Furthermore, by 

Prop. 5.12, the graphic (na)  has finite cyclicity. 	 Tl 

lim 

uo  
2(k2-1c1+1) [1 ± 0(u 0 ) ] . (7.27) 

1, 1), SO (302 	O. i.e., the second component R2 



Chapter 8 

Conclusion 

This thesis solves some important problems of finite cyclicity of graphics through 

a nilpotent singularity of saddle or elliptic type. The methods developed here also 

allow to prove that the cuspidal loop has finite cyclicity. We also set up some tools 

which allow to expect to get solutions to several more problems in the near future: 

1. Prove Conjecture 6.8 for the hp graphie 

Solving this conjecture by a "general method" would allow to solve several 

similar conjectures arising in the concave case of the saddle type. 

2. Prove that the concave graphic of saddle type has finite cyclicity. 

3. Study the finite cyclicity of the convex graphic through a nilpotent of codi-

mension 4 (the case a = --I2-, which corresponds to b = 0 in (2.4) ). 

The case when the saddle connection is fixed is nearly done. 

4. Prove that for quadratic systems, many graphics with a triple nilpotent sin-

gular point of saddle or elliptic type listed in the paper [DRR94] have finite 

cyclicity. 

In Ch.7, we have proved several such graphics have finite cyclicity. More can 

be done by similar calculations. 

177 



Bibliography 

[AI88] V. I. Arnold and Yu. S. Il'yashenko, Ordinary differential equations 

[Current problems in mathematics: Fundamental directions, Vol. 

1, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., 

Moscow, 1985]; Encyclopedia Math. Sci., 1, Dynamical systems, I, 

1-148, Springer-Verlag, Heidelberg, 1988. 

[ALGM] 	A. Andronov, E. Leontovich, I. Gordon and A. Maier, Theory of 

Bifurcations of Dynamical Systems on a Plane. Israel Program for 

Scientific Translations, Jerusalem, 1971. 

[D77]  

[D78]  

[D93] 

F. Dumortier, Singularities of vector fields on the plane. J. Differen-

tial Equations 23 (1977), no. 1, 53-106. 

F. Dumortier, Singularities of Vector Fields. Monografias de Matem-

atica [Mathematical Monographs], 32. Instituto de Matematica Pura 

e Aplicada, Rio de Janeiro, 1978. 

F. Dumortier, Techniques in the theory of local bifurcations: blow-up, 

normal forms, nilpotent bifurcations, singular perturbations. Bifur-

cations and periodic orbits of vector fields (Montreal, 1992). 19-73, 

NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Edited by Dana 

Schlomiuk. Kluwer Acad. Publ., Dordrecht, 1993. 

178 



179 

[DER96] 	F. Dumortier, M. El. Morsalani and C. Rousseau, Hilbert's 16th 

problem for quadratic systems and cyclicity of elementary graphies. 

Nonlinearity 9 (1996), no. 5, 1209-1261. 

[DF91] 
	

F. Dumortier and P. Fiddelaers, Quadratic models for generic lo- 

cal 3-parameter bifurcations on the plane. Trans. Amer. Math. Soc. 

326(1991), 110. 1, 101-126. 

[DRc90] 	F. Dumortier and C. Rousseau, Cubic Liénard equations with linear 

damping. Nonlinearity, 3 (1990), no. 4, 1015-1039. 

[DRr96] 	F. Dumortier and R. Roussarie, Canard Cycles and Center Mani- 

folds. With an appendix by Chengzhi Li. Mem. Amer. Math. Soc. 

121 (1996), no. 577. x+100 pp. 

[DRR94] 	F. Dumortier, R. Roussarie and C. Rousseau, 

Hilbert's 16th problem for quadratic vector fields. J. Differential 

Equations 110 (1994), no. 1, 86-133. 

Elementary graphies of cyclicity 1 and 2. Nonlinearity 7 (1994), no. 

3, 1001-1043. 

[DRS87] 	F. Dumortier, R. Roussarie and S. Sotomayor, Generic 3-parameter 

families of vector fields in the plane, unfolding a singularity with 

nilpotent linear part. The cusp case. Ergod. Theory Dynam. Sys. 7, 

375-413 (1987). 

[DRS91] 	F. Dumortier, R. Roussarie and S. Sotomayor, Generic 3-parameter 

families of vector fields in the plane, unfoldings of saddle, fonts 

and elliptic singularities with nilpotent linear parts. Springer Lec-

ture Notes in Mathematics 1480 1-164 (1991). 

[DR597] 	F. Dumortier, R. Roussarie and S. Sotomayor, Bifurcations of Cus- 

pidal Loops. Nonlinearity 10 (1997), no. 6, 1369-1408. 



180 

[E90] 
	

J. Ecalle, Finitude des cycles limites et accéléro-sommation de 

l'application de retour. Lecture Notes in Mathematics 1455 (1990), 

74-159. 

[GH83] 	J. Guckenheimer and P. Holmes, Non-linear Oscillations, Dynam- 

ical Systems and Bifurcation of Vector fields. Appl. Math. Sci. 42, 

Springer-Verlag, 1983. 

[GR99] 	A. Guzmán and C. Rousseau, Genericity conditions for finite cyclic- 

ity of elementary graphics. J. Differential Equations 155 (1999), no. 

1, 44-72. 

[H] 
	

D. Hilbert, Mathematische Problem (lecture): The Second Interna- 

tional Congress of Mathematicians, Paris 1900. Nachr. Ges. Wiss. 

Gottingen Math.-Phys. Kl. (1900), 253-297; Mathematical develop-

ments arising from Hilbert's problems. "Proceedings of Symposium 

in Pure Mathematics" F. Brower Ed., 28, pp.50-51. Amer. Math. 

Soc. Providence, RI, 1976. 

Y. Il'yashenko, Finiteness theorems for limit cycles. Russian Math. 

Surveys 45 (1990), no.2, 129-203. 

Y. Il'yashenko and S. Yakovenko, Finite-smooth normal forms of 

local families of diffeomorphisms and vector fields. Russian Math. 

Surveys 46, (1991), 1-43. 

[IY95] 	Y. Il'yashenko and S. Yakovenko, 

Concerning the Hilbert sixteenth problem. Concerning the Hilbert 

16th problem. 1-19, Amer. Math. Soc. Transi. Ser. 2, 165, Amer. 

Math. Soc., Providence, RI, 1995. 



181 

Finite cyclicity of elementary polycycles in generic families. Con-

cerning the Hilbert 16th problem. 21-95, Amer. Math. Soc. Transl. 

Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995. 

[JR89] 	P. Joyal and C. Rousseau, Saddle quantities and applications. J. 

Differential Equations, Eqns 78, 374-389, 1989. 

[K84] 	A. G. Khovanskii, Cycles of dynamic systems on a plane and Rolle 's 

theorem. (Russian) Sibirsk. Mat. Zh. 25 (1984), no. 3, 198-203. 

[KS95] 	A. Kotova and V. Stanzo, On few-parameter generic families of 

vector fields on the two-dimensional sphere. Concerning the Hilbert 

16th problem. 155-201, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. 

Math. Soc., Providence, RI, 1995. 

[Mou90] 	A. Mourtada, Cyclicité finie des polycycles hyperboliques de champs 

de vecteurs du plan: mise sous forme normale. Bifurcations of planar 

vector fields (Luminy, 1989), 272-314, Lecture Notes in Math., 1455, 

Springer, Berlin, 1990. 

[Mou94] 	A. Mourtada, Degenerate and non-trivial hyperbolic polycycles with 

two vertices. J. Differential Equations 113 (1994), no. 1, 68-83. 

[Mou97] 	A. Mourdata, Projection de sous-ensembles quasi-réguliers de 

Dulac-Hilbert. Un cas noethérien, Prépublication ou Rapport de 

Recherche, n°124 (1997), Laboratoire de Topologie. 

[R86] 
	

R. Roussarie, A note on finite cyclicity property and Hilbert's 16th 

problem. Dynamical systems, Valparaiso 1986, 161-168, Lecture 

Notes in Math., 1331, Springer, Berlin-New York, 1988. 

[R98] 
	

R. Roussarie, Bifurcations of Planar Vector Fields and Hilbert's 

Sixteenth Problern. Progress in Mathematics, 164. Birkhâuser Ver-

lag,Basel, 1998. 



182 

[Sh80] 

[SP87] 

Songling Shi, A concrete example of the existence of four limit 

cycles for plane quadratic system. Scientia Sinica 23(1980), 154-

158.[English edition] 

J. Sotomayor and R. Paterlini, Bifurcations of polynomial vector 

fields in the plane. Oscillations, bifurcation and chaos (Toronto, 

Ont., 1986). 665-685, CMS Conf. Proc., 8, Amer. Math: Soc., Prov-

idence, RI, 1987. 

[5t58] 	S. Sternberg, On the structure of local homeomorphisms of euclidean 

n-space. II. Amer. J. Math. 80, 1958, 623-631. 

[T73] F. Takens, Unfoldings of certain singularities of vector fields: gen-

eralized Hopf bifurcations. J. Differential Equations 14 (1973), 476-

493. 

[T74] F. Takens, Singularties of vector fields. Publ. Math. de l'IHES 43, 

47-100, 1974. 

[Ye86] 	Yanqian Ye; Suilin Cai; Lansun Chen; Kecheng Huang; Dingjun 

Luo; Zhien Ma; Ernian Wang, Mingshu Wang and Xin Yang, Theory 

of Limit Cycles. Translated from the Chinese by Chi Y. Lo. Second 

edition. Translations of Mathematical Monographs, 66. American 

Mathematical Society, Providence, R.I., 1986. xi+435 pp. 

[ZDHD92] 	Zhifen Zhang; Tongren Ding; Wenzao Huang and Zhenxi Dong, 

Qualitative Theory of Differential Equations. Translated from the 

Chinese by Anthony Wing Kwok Leung. Translations of Mathemat-

ical Monographs, 101. American Mathematical Society, Providence, 

RI, 1992. xiv+461 pp. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194

