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Sommaire

Dans cette these on consideére le probléeme de cyclicité finie des graphiques les plus
génériques passant par un point singulier de codimension 3 de type elliptique ou
selle. On donne des théorémes de cyclicité finie pour plusieurs tels graphiques
dans des familles C'*° de champs de vecteurs. Dans plusieurs cas nos résultats
sont indépendants de la codimension exacte du point et dépendent seulement du
fait que le point nilpotent est de multiplicité 3. En utilisant des formes normales
adéquates et un éclatement de la famile de champs de vecteurs on établit la liste
de tous les ensembles limites périodiques dans la famille éclatée. On calcule les
deux types d’applications de Dulac pour la famille éclatée et on développe une
méthode générale pour montrer que certaines transitions réguliéres ont une dérivée
d’ordre supérieur non nulle en un point. En analysant le nombre de solutions d’un
systeme d’équations par un algorithme de dérivation-division généralisé on montre

les théorémes suivants:

Théoréme | Type de graphique Condition Codimension | Cyclicité
Pl
Th. 5.5 Sxhh convexe (O) 71 4 finie
le point de cod 3
R™(0) #0
Th. 6.3 E +1
PP (n>2) n n
Th. 6.6 Ehp une conjecture 3 finie
Pl
Th. 6.10 Ehh _ (OF 1 4 finie
le point de cod 3

On applique ces théorémes pour montrer la cyclicité finie de certains graphiques

passant par un point singulier nilpotent triple dans les systémes quadratiques.
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Summary

In this thesis we consider the problem of finite cyclicity of the most generic graphics
through a nilpotent point of saddle or elliptic type of codimension 3. We give
theorems of finite cyclicity for several such graphics inside C'° families of vector
fields. In some case our results are independent of the exact codimension of the
point and dependent only on the fact that the nilpotent point has multiplicity 3.
Using adequate normal forms and blow-up of a family of vector fields, we list all
the limit periodic sets of the blown-up family. We calculate two different types of
Dulac maps in the blown-up family and develop a general method to prove that
some regular transition maps have a nonzero higher derivative at a point. By

the analysis of the number of solutions of systems of equations via a generalized

derivation-division method, we prove the following theorems:

Theorem | Type of graphic Condition Codimension | Cyclicity
!
Th. 5.5 Sxhh convex P_(O) i, 4 finite
the point of cod 3
(n)
Th. 6.3 Epp E™(0) #0 n+1 7
(n>2)
Th. 6.6 Ehp A conjecture 3 finite
Pl
Th. 6.10 Ehh (O) = 4 finite
the point of cod 3

We apply these theorems to prove some graphics with a nilpotent saddle or

elliptic point in quadratic systems have finite cyclicity.

iv




Acknowledgements

First of all, I would like to express my sincere thanks to
my supervisor Professor Christiane Rousseau. With great
patience, she was always willing to give valuable advice. I
consider it a great pleasure to study and work under her
supervision. Four years of studying and working under her
instructions will greatly influence my future career in math-

ematics.

I would like to thank Professor Robert Roussarie and Pro-
fessor Freddy Dumortier for their valuable suggestions and
comments. This thesis also benefited from the lectures given
by Prof. Dana Schlomiuk and her encouragement.

I also thank the L’Institut des Sciences Mathématiques for
the financial support from Sept. 1996 to Aug. 1999.

Last but not least I am greatful to all my friends at the
department. Their support was essential to the realization

of this work.



Contents

Sommaire iii
Summary iv
Acknowledgements v
List of Figures viii
List of Tables x
1 Introduction 1

2 Normal Forms Unfolding the Nilpotent Singularity of Saddle or

Elliptic type 9
2.1 Normal forms unfolding the nilpotent singularity of saddle or elliptic
tyPe . % ex o5 O n 65 OS85 PR O RN R R s WA 9
2.2 Normal forms unfolding the nilpotent singularity of saddle or elliptic
type for quadratic systems . . . . .. . ... ... 18
3 Generalities on the blow-up of the family 22
3.1 Blow-upof thefamily . o o0 28 © 000 ve % v 000 3 8% o3 & 64 o) 22
3.2 Bifurcation diagrams for the family rescaling, limit periodic sets . . 27
4 Dulac maps 36

vi



4.1 Transition mapsin theplane . . . . . . . ... ... ...
4.2 Mormal Forms . , . -5 . om ®as o o 5 6 S G 5 3
43 Preliminaries .. .5 we v - wo v 5o m wre = =4 poe g a
4.4 FirsttypeDulacmap . . . ... .. .. ... ... ...
4.5 Second type Dulacmap ... ... ............

vil

5 Finite cyclicity of convex graphics with a nilpotent singularity of

saddle type

5.1 Preliminaries on derivatives of regular transition maps .
5.2 Generic property of the hh-graphic . . ... ..... ..
5.3 Main Theorem on the convex graphic of saddle type . . .
5.4 The upper boundary graphic . . . . ... ... ... ...

5.5 Intermediate and lower boundary graphics . . . . .. ..

6 Finite cyclicity of graphics with a nilpotent singularity of elliptic

type

6.1 Finite cyclicity of pp-graphics of elliptic type . . . . . . .

6.2 Finite cyclicity of hp-graphics of elliptic type . . . . . . .

6.3 Finite cyclicity of hh-graphic of elliptic type . . . . . ..
6.3.1 Main Theorem on the hh-graphics of elliptic type
6.3.2 Generalized Rolle’s Theorem and a transition map
6.3.3 Lower boundary hh-graphics of elliptic type . . .
6.3.4 Intermediate graphics of the Ehh families . . . . .

7 Application of the main theorems to quadratic systems

8 Conclusion

95

95
104
118
119
119
128
157

168

177



List of Figures

L.d
1.2
1.3
14
1.5

21
2.2

3.1
3.2
3.3
3.4

3.5

4.1
4.2

5.1
9.2
5.3

Cuspidal 100D . .5 & i« woe 855 & o« 08 8 woe B SIS GO ANEHE S
Graphics through a nilpotent elliptic point . . . . . ... ... ...
Graphics through a nilpotent saddle . . . . . . ... .. ... . ...
Pp, hp and hh-graphics of elliptictype . . . .. .. ... ... ...

Convex and concave graphics of saddle type . . ... ... ... ..

The different topological types . . . . . . . . . . .. ...
Two C*®—equivalent types for the nilpotent elliptic singularity . . .

The stratified set {rp =0} in the blow-up . . . .. ... ... ...
Common blow-up of the nilpotent singularity . . . . . . . .. .. ..
The phase portraits of Xp, . . . -« v vi 5w e sas o b 0
The bifurcation diagram of the rescaled family: the elliptic case

A{0J A2 5 o oo s v AR BB W M wic BT c Moo tE ko

The bifurcation diagram of the rescaled family: the saddle case

Dulac map near a hyperbolicsaddle . . . . .. ... ... ......

Two typesof Dulacmap . . . . . . ... ... . ... ...

The Poincaré first return map for the hh-graphic of saddle type
The Poincaré first return map for the hh-graphic of elliptic type . .
Upper boundary graphics of saddle and elliptic type . . . . . . . ..

viil



5.4 Transition map for the intermediate hh-graphics of saddle type . . .
5.5 Transition map T for the family Sxhhl and Sxhh2 . . . . . . .. ..
5.6 Transition maps for the family Sxhh4 . . . . . .. . ... ... ...
5.7 Transition map T for the family Sxhh5 . . . . .. .. ... ... ..
5.8 Transition map T for families Sxhh7 and Sxhh8 . . . . ... .. ..
5.9 Transition map T for the families Sxhh9 and Sxhh10 . . . . .. ..

6.1 Displacement maps for pp-graphics . . . ... ... ... .. ....
6.2 Displacement maps for graphics Ehpl, Ehp2c and Ehp3 . . . . . . .
6.3 Displacement maps for graphics Ehp2a and Ehp2b. . . . . . . . ..
6.4 The regular transition map 7T in the Conjecture 6.8 . . . . . .. ..
6.5 Displacement maps for graphic Ehp4 . . . . . .. .. ... ... ..
6.6 Displacement maps for graphics Ehp6 and Ehp7 . . . . . . ... ..
6.7 The transition map U : 77 — T4 -« « o v o v o i v oo e
6.8 The displacement maps definedon 7y and» . . . . . ... ... ..
6.9 Lower boundary graphics Ehh9c and Ehh10e: Displacement maps .
6.10 Lower boundary graphics Ehh5c and Ehh6c: Displacement maps . .
6.11 Transition map 7 for the intermediate graphic of family Ehh1

6.12 Transition map 7 for the intermediate graphics of Ehh2 and Ehh3 .
6.13 Transition map 7 for the families Ehh9 and Ehh10 . . . . . .. ..
6.14 Transition map 7" for the families Ehhb5 and Ehh6 . . . . . . . . ..

X

73

7.1 Some graphics with triple nilpotent singularity for quadratic systems 169

7.2 The hemicyele (H}Y) . . . . . sass 55 wme i% a5 94 &% S 4



List of Tables

15|

3.1
3.2
3.3
3.4
3.5
3.6

Main results concerning the finite cyclicity . . . ... ... ... .. 6
The eigenvalues at P; (1 =1,2,3,4) . . . ... ... ... ...... 26
Limit periodic sets of pp type for the Ellipticcase . . . . . . . ... 32
Limit periodic sets of hp-type for the ellipticcase . . . ... .. .. 32
Limit periodic sets of hh-type for the ellipticcase . . . ... .. .. 33
Convex limit periodic sets of hh-type for the saddle case . . . . . . 34
Concave limit periodic sets of hh-type for the saddle case . . . . . . 35



Chapter 1

Introduction

A graphic (singular cycle, limit periodic set, polycycle) of a planar vector field is
an invariant set of the vector field involving regular orbits and singular points. We
are interested in the graphics of generic families of vector fields depending on a
small number of parameters and their cyclicity, i.e., the maximum number of limit
cycles that may appear by perturbation inside the family. A simpler problem than
the problem of finding the cyclicity of a graphic is to prove that the graphic has
finite cyclicity. The question of finding the number of limit cycles which appear
by perturbation of a graphic in a generic family and the problem of finite cyclicity

is closely related to Hilbert-Arnold Problem ([AI88], [IY95]):

Hilbert-Arnold Problem. Prove that for any n, the bifurcation number B(n) is
finite, where B(n) is the mazimum cyclicity of nontrivial polycycles occurring in

generic n—parameter families.

A graphic of planar vector field can be elementary or non-elementary in the
sense that its singular points are elementary (hyperbolic or semi-hyperbolic, i.e.
at least one nonzero eigenvalue) or non-elementary. Some essential steps have
been made towards the understanding of the bifurcation of elementary graph-

ics through the works of Roussarie [R86], Mourtada [Mou90], [Mou94], [Mou97],



II’yashenko- Yakovenko [[Y95], Dumortier, Roussarie and Rousseau [DRR94}, Ko-
tova and Stanzo [KS95], Dumortier, E1 Morsalani and Rousseau [DER96], etc.
As for the non-elementary graphics of a planar analytic vector, the study cannot
be fully reduced to the analysis of singularities and zeroes of algebraic equations,

particularly when the number of parameters is larger than or equal to three.

Figure 1.1: Cuspidal loop

For the graphics with a nilpotent singular point of multiplicity 2 or 3, they

can be one of the following types:

e cuspidal loop: Fig 1.1
e graphic through a nilpotent elliptic point: Fig 1.2
e graphic through a nilpotent saddle: Fig 1.3

In [DRS97], by an analytic and geometric method based on the blowing up for
the unfoldings, the authors studied the simplest case, the bifurcation diagram of a
cuspidal loop of codimension 3. They give a complete answer for the cyclicity and
bifurcation diagram up to a conjecture. The study of the unfolding of codimension
3 nilpotent singular point is still not finished. As for the problem concerning the
graphics through a nilpotent singular point of codimension 3, in [KS95], when the

authors tried to list the set of all these graphics, they have the following comments:



(a) Epp graphic (b) Ehp graphic (c) Ehh graphic

Figure 1.2: Graphics through a nilpotent elliptic point

(3) A is the degenerate cusp, cod(Ag) = 3: this case is the most difficult one. Two

possible subcases can be distinguished:
(3a) The polycycle consists of a singular point.

(3b) If the singularity is of an elliptic type in the terminology
of [D93], then the singularity point has two parabolic sectors of
opposite attractivity. Hence a pp-loop can occur without increasing

the codimension of the polycycle.
Even the first subcase is not yet completely investigated, to say nothing about the

much more difficult loop subcase. We simply label subcase (3.8), without going deeply

into the subject.

Convex Concave

Figure 1.3: Graphics through a nilpotent saddle

From this and the complexity of the bifurcation diagram in the case of the



cuspidal loop, it seems hopeless to find a complete solution to solve the similar
question with triple nilpotent points. Fortunately we will show that the question
of proving the finite cyclicity of a graphic is much simpler and that indeed we
can give a complete answer to this question for several graphics of codimension 3
and 4. This means in particular that we do not consider the birth of small limit
cycles from the singularities but only the large limit cycles which coalesce with the
graphic when the parameters vanish.

In this thesis, we study the finite cyclicity of graphics with a nilpotent sin-
gularity of saddle or elliptic type, i.e., the existence of a bound for the number of
limit cycles which can bifurcate from such graphics. In some of the finite cyclicity
theorems, we will only use the multiplicity of the nilpotent point and not its codi-
mension, the finite cyclicity following from a global genericity assumption. The

precise definition of cyclicity for a limit periodic set was given by Roussarie ([R86]).

Definition 1.1. A limit periodic set T' of a vector field X,, inside a family X,
has finite cyclicity in X, if there exist N € N and €,6 > 0, such that any X,
with | — po| < 6 has at most N limit cycles v; such that disty(U,v) < e. The
minimum of such N when € and & tend to zero is called the cyclicity of I' in X,

which we denote by Cycl(I').

Let X be a smooth vector field on R2. A singular point p (ie. X(p) =0) is
said to be a triple nilpotent point of saddle or elliptic type if there is a local chart

(33, y) : (R21p) — (R270)
in which the vector field has the form ([T74])

0 0
X =yz+ (e10° + dx* + bry + az’y + ea;?’y)a—y + O([(x, y)|5) (1.1)

where, for the saddle case, e; = 1; for the elliptic case e; = —1, b > 21/2. Denoting
the graphic with a nilpotent singularity by (X,p,I'), we are going to study the

cyclicity of I' by considering a codimension 3 unfolding X, of X.



(e

(a) Epp upper (b) Epp lower
(c) Ehp upper (d) Ehh upper

Figure 1.4: Pp, hp and hh-graphics of elliptic type

Following the convention in [KS95], we use pp to denote a graphic going out
of a parabolic sector to a parabolic sector, hp to denote a graphic going out of a
hyperbolic sector to a parabolic sector, and hh to denote the graphic going out
of a hyperbolic sector to a hyperbolic sector. Then, after the global blow up, a
graphic through a elliptic point can happen in three cases (Fig. 1.4):

e pp graphic: Epp,
e hp graphic: Ehp, this cod 3 type of graphic was not mentioned in [KS95],
e hh graphic: Ehh.

Each graphic can occur in two versions: upper and lower (see one example in
Fig. 1.4(b)). Although the upper and lower graphics may have different bifurcation

diagrams, the proofs of their finite cyclicity are the same.



(a) Sxhh (b) Sahh

Figure 1.5: Convex and concave graphics of saddle type

A graphic through a nilpotent saddle can happen in two cases (Fig. 1.5):
e hh graphic convex: Sxhh,
e hh graphic concave: Sahh.

Due to the technical difficulties, we do not consider the concave graphic of
saddle type. For other graphics listed in Fig. 1.4 and Fig. 1.5, we have proved

three main theorems which we list in Tab. 1.

Theorem | Type of graphic Condition Codimension | Cyclicity
/
Th. 5.5 Sxhh convex P,(O) 7 4 finite
the point of cod 3
(n)
Th. 6.3 Epp R™(0) #0 n+1 n
(n=>2)
Th. 6.6 Ehp A conjecture 3 finite
!
Th. 6.10 Ehh P_(O) g 4 finite
the point of cod 3

Table 1.1: Main results concerning the finite cyclicity

To prove the finite cyclicity theorems listed above, one basic ingredient is the



blow-up of families developed in [DRr96] and [DRS97]. Around that we set up a
machinery which can be used for other similar graphics. Some of these tools have

been introduced for the study of the cuspidal loop [DRS97]. These tools include:

1. Normal form for a family with a nilpotent singularity: we develop a special

normal form different from the classical one and allowing:

e to use the special properties of quadratic systems:

— some transitions occur along straight lines,
— convexity of some trajectories,

— knowledge of the center conditions;

e to be easily applicable to graphics inside quadratic systems.

2. Blow-up of the family to allow the calculations of the passage maps near the

nilpotent singularity.

3. The list of limit periodic sets appearing in the blown-up family of vector

fields and which must be proved to have finite cyclicity.

4, The calculations of the different types of Dulac maps in the neighborhood of

the singular points of the blown-up sphere.

5. To derive finite cyclicity property, we consider systems whose number of
solutions bounds the number of fixed points of the return map in the neigh-
borhood of a limit periodic set under a small perturbation of the blown-up
vector field. We derive bounds for the number of solutions of these systems

by a generalized derivation-division method.

6. We introduce a general method to prove that some regular transitions have

a nonzero higher derivative at a given point.

For Hilbert’s 16th problem for quadratic systems which consists in “finding

the mazimum number H(2) and relative positions of limit cycles of a quadratic



vector field’, till now we only know that H(2) > 4 ([Sh80]). In [DRR94], the
authors launched a program aiming at solving the finiteness part of Hilbert’s 16th
problem for quadratic vector fields (i.e., H(2) < co). The paper listed all the 121
limit periodic sets surrounding the origin in a family of quadratic vector fields and
reduced the finiteness problem for quadratic systems to the proof that all of these
graphics have finite cyclicity. Up to now, about 50 elementary graphics have been
proved to have finite cyclicity. By the results of this work, we will be able to prove
that more than 20 non-elementary graphics have finite cyclicity.

The thesis is organized as follows: In Ch.2, we develop a new general normal
form unfolding the nilpotent singularity of saddle or elliptic type of codimension 3.
For further application to quadratic systems, we also discuss the normal form for
unfolding the nilpotent singularity of saddle or elliptic type for quadratic systems.
In Ch.3, we make the global blow-up for the family. By using the properties of
quadratic systems we give the bifurcation diagrams for the rescaled family and
list all the possible limit periodic sets. In order to prove the cyclicity of the limit
periodic sets, in Ch.4, we study two types of Dulac maps. We prove the main finite
cyclicity theorems for saddle and elliptic cases respectively in Ch.5 and Ch.6. As
applications of the main theorems, in Ch.7 we prove that the graphics (H3), (Fy,)
listed in [DRR94] have finite cyclicity and that the graphics (Iis), (Ils), (Ig;), (I115)

have finite cyclicity when the nilpotent point has codimension 3.



Chapter 2

Normal Forms Unfolding the
Nilpotent Singularity of Saddle or
Elliptic type

In this chapter, we will first develop a new normal form unfolding the codimension 3
nilpotent singularity of saddle or elliptic type different from the standard unfolding
used in [DRS91]. Then we discuss the corresponding normal forms unfolding the

nilpotent singularity of saddle or elliptic type for the quadratic systems.

2.1 Normal forms unfolding the nilpotent singu-
larity of saddle or elliptic type

We know by [T73] that the germs of C* vector fields at 0 € R? whose 1-jet is
nilpotent and 2-jet is C*°—conjugate to a vector field with a 2-jet y% -+ ﬁxy(%, is

C*—conjugate to a vector field with 4-jet

y% + (e12% + dz* + bry + az’y + e:rsy)aa—m (2.1)
where £; = 0,+£1 and a,b,¢c,d € R

It was shown in [D77] and [D78] that the topological type of such a germ is
determined by its 3-jet, if €; # 0.

The codimension of the point is determined by looking at b and the quantity

Q = 5¢1a — 3bd (2.2)
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associated with the 4-jet (2.1).
By [DRS91], the vector field is C*™-equivalent to a vector field with a 4-jet

J 0
U + (e12° + bay + eaz’y + f$3y)a—z (2.3)

where £; = £1 and &3 is a multiple of Q.

(b) Saddle case (c) Elliptic case

Figure 2.1: The different topological types

The topological type falls into one of the following categories (Fig. 2.1):

1). The saddle case: €; = 1, any £, and b (a topological saddle).

2). The focus case: £, = —1 and 0 < b < 2v/2 (a topological focus).

3). The elliptic case: £, = —1 and b > 2/2 ( an elliptic point).
For saddle (resp. elliptic) cases, for ¢ = 1 and g, = —1, they have the same
topological type.

For £; = —1, the nilpotent singularity is of codimension 3 if 3 # 0, b # 0
and b # 24/2; it is of codimension > 4 if e = 0, 0r b= 0, or b = /2.

We are interested only in the vector fields with a triple nilpotent singularity of

saddle or elliptic type with e; = £1 and b > 2v/2 if &; = —1. A family containing



11

this singularity can be brought to ([DRS91])

E =49
(2.4)
7 = e12® + Mz + AL+ y(s + bz + £22% + 2h(z, ) + ¥2Q(z, ¥, A)
where for the saddle case e, = 1; for the elliptic case e; = —1,b > 12, X =

(A1, A2, Az, A) are the parameters, Q(z,y,A) is C* in (z,y,A) and of arbitrarily
high order in (z,y, A). For any value of ¢5, they have the same topological type.

Remark 2.1. Some of the work done here will also be useful for higher codimen-

sion nilpotent saddle or elliptic singularities in the case e2 = 0 and/or b= 0.

In this normal form (2.4), the “principal” part (the remaining part on the
blown-up sphere) will be cubic. We develop a new normal form for the unfolding
of the nilpotent singularity of the saddle and elliptic type, so that the principal

part becomes quadratic.
Theorem 2.2. The family (2.4) is C™-equivalent to

X =Y+ py+aX?
Y =m+Y(us+X +5X2+ X3 (X, p) + X*ha(X, p) + Y2Q(X,Y, 1)

(2.5)
where £y = —agq1€2, and
e for the saddle case: a(0) € (—3,0);
if a(0) = —3, the unfolding is of codimension 4 which corresponds to the case

b=0.

e for the elliptic case: a(0) € (0,3);

if a(0) = 1, the unfolding is of codimension 4, type 1, which corresponds to

the case b= 2v/2 (the two characteristic trajectories coalesce into one).

Bw= (:u’lv H2, K3, /:l') is the pammeter, hl(Xs l‘l’)J h2(X7 .u’) = E2a + O(,LL) et O(X) and
Q(X,Y, ) are C® and Q(X,Y, u) is of arbitrary high order in (X,Y, p).
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Proof. In the family (2.4), we make the transformation

{ r =my + X (26)

y =mp+Y +aX?
Then we have

(X =Y +my +aX?
Y =X +mdg+meds + O(|(my, mo)|?)
+[A2 + (b — 2az)mg + O(|(my1, m2)|?)] X
+asAs + (azd 4 3e1)my + eama + O(|(ma, my) [*)] X2
+[e1 + agb — 242 + O(|(my, my)|)] X3
+Y [)\3 + bmy + O(m?) + (b — 2a + O(my)) X
+(e2 + O(m) X2 + Xhuy (X, my)|
+(agez + O(my) + O(X)) X* + Y2Q1(X, Y, my, mg, A)

\
where hi1(X,mq) and Q1(X,Y, my, ma, A) are C*°. Also @) is of arbitrarily high
order in its variables. To eliminate the terms X, X2, X3 in the second equation of

(2.7), let

)\2 -+ (b — 2&2)777;2 + dl (ml, m2)
F(mh ma, az, )‘) = agA3 + (agb + 351)m1 + Eamg + dz(ml, mz) =0 (28)

€1 + agb — 202 + dz(my, my)
where for ¢ = 1,2, d;(my, m2) = o(|(m1, m2)|) and ds(my, mse) = O(|(my, m2)|).

For A = 0 and m; = my = 0, by (2.8) we have a equation for a(0)
2a2(0) — b(0)az(0) — &1 = 0. (2.9)
To solve the equation (2.9), we have the following subcases

e In the elliptic case e; = —1, since 5(0) > 2v/2, then

—  af(0) = 1[6(0) + /8%(0) — 8] € (2, c0)
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— 4z (0) = 1[b(0) — /52(0) — 8] € (0, %2

In this case, we choose a(0) = a; (0).
e In the saddle case

— if b(0) > 0, then
® ay ( 0) i V b2 i) )
x a; (0) = \m ]e (—2,0).

— if 5(0) < 0, then
+ af (0) = §[b(0) + /B2(0) + 8] € (0, %)
x a3 (0) = 1[6(0) — \/%(0) + 8] € (—o00, —2).

Consider F(my, ma, az, A) = 0. Note that for the saddle case and the elliptic
case with a(0) € (0, ‘/75), we have

F(0,0, a3(0),0) = 0,

8F (miy,mz,a2,)\) 251(‘12(0)"'51)(2‘12 (0)+e1)
det ( 6(m1,m2,a2) (0,0,&2(0),0)) az(O) # 0

So by the Implicit function theorem, in the neighborhood of (0,0, a2(0),0), the

solution of (2.8) can be written as

ag = a2(0) + 0(|/\|)
my = — T;%Z%g%—)[EQAZ + 61A3] . O(|)\I2)
my = az(0)e1ds + O(|A?).

The family has the form

r

X =Y +my+aX?

Y = A+ midg + mods + O(|(my, my)|?)
+Y A3 + by + O(|(my, m2)[?) + b1 (M) X + bo(A) X2 + X3h1 (X, N)]
+X*h;p(X,N) + Y2Q, (X, Y, A)

(2.10)
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where
b1 (A) = b(0) — 2a2(0) + O(|A) = —; 55 + O(|A])

ba(N) =g+ O(|A])
hlg(X, )\) = E909 + O()\) + O(X)

Rescaling in (2.10) by (X,Y) = (bz\)’ bIA)), then we get a new normal form

Y =Y + M2 + a72
V =4V s+ X +5X + X (X, 0] + X ha(X,u)+ YV QX, 7, 1)
(2.11)

where
a = —103 + O())

2 = g2a3 + O())
ho(X,2) = —6162(1% +0(\) + O(X).

Moreover we have:

e For the saddle case €; = 1, a(0) = —a2(0), also

— if 5(0) < 0, then a(0) € (~3,0);
— if b(0) = 0, then a(0) = —3, the unfolding is of codimension 4;
— if 5(0) > 0, then a(0) € (—o0, —3).
e For the elliptic case &; = —1, a(0) = a3(0), ho(X, A) = E2a + O(A) + O(X).
and also

— if 5(0) > 2v/2, then a(0) € (0, 3);
— if 5(0) = 2/2, then a(0) = %, the unfolding is of codimension 4, type 1.

Also p = (w1, p2, 43, f) is the new parameter with

i = g+ O(AP)

po ==X+ O(|A]?)

i =~ SRS ey + 83] + O(AP)



15

with det (%’;—;’;—3) \,\=o #= 0.

By using the original coordinates (z,y) and using € as a parameter, we get
the new normal form (2.5) unfolding the nilpotent singularity of saddle or elliptic
type.

For the saddle case, family (2.5) with a € (—oo,—1) and a(0) € (-3,0)
are C®-equivalent. But for the elliptic case, family (2.5) with a(0) € (0,3) and
a(0) € (%, 00) are C*-equivalent except for a(0) = ; ( The reason for the difference

at a(0) = 1 can be explained by the existence of a Jordan block for two equal

eigenvalues. Accordingly, this is reflected in (2.17) and (2.19) below). Fig. 2.2
gives the two equivalent types of nilpotent elliptic singularity (The saddle case has

the same kind of equivalence).

K D
I— —
(a) a€(0,3) (b) a € (3,00)

Figure 2.2: Two C®—equivalent types for the nilpotent elliptic singularity

Indeed, for the saddle case, let a(0) € (—3,0) and consider the family (2.5).

Under the transformation
—~ o~ ]_ -~
X=X P=¥3 (E—G)Xz (2.12)
the family (2.5) becomes
= lg + ? + %552
= —(1- 2a),u2)? +(3- a)pg)?2 + ?(/113 +2aX + e, X2+ Xshu)
+X4h22 + ?2622()?, ?, ,u)

WD B

(2.13)
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To eliminate the terms X, X2 in the second equation of (2.13), we make the fol-

lowing transformation

(2.14)

o~

X =)’Z+,61
Y =Y+ + 06X+ 0.X?

then we have
i 5(; ’—“}7-*'/1'24‘%512+/82+(ﬁl+ﬁ3)2+(%+ﬂ4))?2
V' = m+O(u, B2) + ((—1+ 20)p2 + 208, + O(|, B2) X
+((3 - Dps — €262 +2(a — 3)Bs + O(|u, B|2)) X2

q +(d1fBz — €285 — (1 — 2a)Bs + 4da By + O(|8]2)) X? (2.15)
+7 [ +2aBy — By + O, B%) + (2a+ O(Iu, )X

ez + 3By + O(|u, B X? + Xohua (X, 1, )]
+X4h23()?:#,ﬁ) + 372@3(55, Y, u, B).

Let

Bi+Bs=0

— 2y —

; (—1 4 2a) s + 248 + O (|, B2 = 0 -
(A —1)ps — 2B +2(a—1)Bs + O(|p, B12) =0

| dif — 203 — (1 — 2a)Bs + 4day + O(|B]*) = 0.

Since a(0) < 0, we can solve (2.16) for §;(i = 1,2, 3, 4):

B = iy (E2p2 + aps) + O(|uP?)
=L240
Jete o () (2.17)
By = — iy (€22 + aps) + O(|uf)

,64 == m [(4& = 1)d1 = 28% + 862(12)/_112 —+ 2@(4(1262)#3] =+ O(|/1,|2)

\

So family (2.15) becomes
X =¥+ +aX?
Y =/~11+}7[ﬂ3+1~71)?+525§:2+5(:3h14()?all)] (2.18)
+X4h'24(5(:7 ,U:) = ?2Q4(}’Z, }75 iu')
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where

(@ =31+p=1+0(u)
by =2(a+eB — Ba) +O(ul?)

) & =eat2fit O(lul?) (2.19)

fr = +O(|pP)
fo = 5=tz + O(|ul?)

~ —4a?)e —
fis = Srialey, 4 20oa s 4 O(luf?).

\

Rescaling in (2.18) by

X = i, }7 = z
b1 by
we get a family
= ~ - =2
X =Y+ja+dX
= A = =2 =3 i
Y =ju+ Y[ﬁ3 +X+6X +X h14(X,;1)] (2.20)

where o' = & + O(|f2]) and @'(0) = ;57 € (—00, —3), also for the new parameter
(i, o, f15) we have
O(fi, fia; fis 4a(0)(1 — a(0))
det (At tols) - 0. 2.21
(8(;1,1, Ha, ﬂg)) 1#=0 (4a(0) = 1) ;é ( )

Hence for the saddle case, family (2.5) with a(0) € (—3,0) and a(0) € (—o0, —3)
are C'*°-equivalent.

By the above process and (2.21), we can see that for the elliptic case, family
(2.5) with a(0) € (,0) is C**-equivalent to family (2.5) with a(0) € (3,00) except

for a(0) = %. For the family (2.5) with a(0) = 1, it is C*°-equivalent to the family

= [z + Y 4 X?

=+ M X2+ ¥ [fis + X+ 6%+ Xohia(X, ) (2.22)
+ X *hoa (X, 1) + Y2Qu(X,Y, 1)

e
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where

fin = gp1+ 3hops

Ba = o

fg = .
So except for a(0) = } and a(0) = 1 for the elliptic case, we will use the equivalent
unfoldings depending on the context. One passes from one unfolding to the other
by means of the changes (2.12), (2.14) and the rescaling.

If 5 = 0, i.e., if the associated quantity Q in (2.2) vanishes, the 3-parameter

unfolding (2.5) is not universal. In this case, the codimension of the nilpotent

singularity is at least 4. Theorem 2.3 in the quadratic systems gives examples. [

2.2 Normal forms unfolding the nilpotent singu-
larity of saddle or elliptic type for quadratic
systems

In view of application to Hilbert’s 16th problem for quadratic systems, we discuss
the normal form of nilpotent singularities of quadratic systems. In [DF91], there
is a detailed classification of the nilpotent singularity of saddle or elliptic type for
quadratic systems. To have a better understanding of the meaning of the quantity

Q defined in (2.2), we make a little modification of the classification.

By Jordan normal form theorem, we can write the quadratic system with a

triple nilpotent singular point of saddle or elliptic type at the origin in the form

&1 =y 4 a2? + bz + ayd (2.23)
1 =eziy + fiyd

where aje; # 0.
By a linear transformation
_ 1
Ty = oT2— %3&

o=l



19

system (2.23) is equivalent to

T2 = ys + a2 + boZoys + Cay3

(2.24)
Y2 = T2Y2
where
— a1

g = E
P biey+(e1—2a1)f1
2 e

e bhifh a1 fE
6n =5 g 42

1 el 61

8(az,b2,c2)\ _ 1
also det(——a(af’bf’cf)) = = [,
Adding an additional singular point on the y-axis, we should have c; # 0.

This singular point is an anti-saddle if c; < 0. By rescaling

I = /—CaT2

y = —C¥Y2
_ t
T ==
then we can take c; = —1. So a quadratic system with a nilpotent singular point

at the origin and an anti-saddle is linearly equivalent to

i =y+ax?+cry —y?
v B (2.25)
B = Ay,
where ¢ # 0 and c € R.
Using the Takens normal form theory [T74] and by a near-identity transfor-

mations we obtain a C'*-equivalent system

U =v
: 3 L o 3 1l 4 .2 3 (2.26)
U = —au +v[(1+2a)u—|— SCU + O(u )} — Sacu + v*°O(|u, v|?).

For system (2.26), the associated quantity Q becomes
Q = ac(3a - 1).

Hence we have the following theorem.
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Theorem 2.3. If Q #0 anda # —%, then the nilpotent singularity is of codimen-

sion 8, and system (2.26) is C*®-equivalent to

U =

. 3 2 3 2 3 &)
v = —au +’U[(1+2a)u— 242 + O(u )] + 020 (|u, v|?).

Furthermore, for quadratic system (2.25), we have the classification:

e a < 0: nilpotent saddle

—c#0
* a#—2 nilpotent saddle of codimension 8
* a=—1 nilpotent saddle of codimension /

(corresponds to b= 0 in (2.4))

— ¢ = 0 nilpotent saddle of codimension co

(corresponds to g2 = 0)

e a > 0: nilpotent elliptic point

—c#0
* QF# 53 elliptic singularity of codimension 3
W= % elliptic singularity of codimension 4, type 1
(corresponds to b= 2+/2)
* 0= % elliptic singularity of codimension 4, type 2

(corresponds to g9 = 0)
— ¢ = 0 elliptic singularity of codimension oo
(corresponds to e, = 0 in (2.4)).
Remark 2.4. If Q@ =0, i.e., e5 = 0, then for the nilpotent saddle, the singularity

can only be of codimension oo; for the elliptic case, the singularity is either of

codimension 4, type 2, or infinity.
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Proposition 2.5. For further application to quadratic systems, let us remark that
a general 5-parameter quadratic family unfolding a nilpotent singularity of codi-
mension 8 of the saddle or elliptic type at the origin and with an anti-saddle in

the upper half plane can be written as

& = g +y+az?+ cry — v
Ha Y vy a#1 (2.28)
g =+ (s + )y

or

& =po+y+ 1+ pa)z® +cxy — 3 (2.29)

y =+ (s + z)y + 347’

Hence they have the same blow-up as family (2.5).



Chapter 3

Generalities on the blow-up of the
family

3.1 Blow-up of the family

Consider the normal form unfolding the nilpotent singularity of saddle or elliptic
type
X { T =y+ U+ az?
g =+ y(ps+ 2z + e0x? + 23k (z, 1)) + the(z, 1) + ¥?Q(z, Y, 1)
(3.1)

where a € [—3,0) saddle case; a € (0,3] elliptic case, u = (p1, 2, pi3) is the
parameter, and hy(z, p), hao(z, u) = 1620 + O(z) and Q(z,y, p) are C* and also
Q(z,y, 1) has arbitrarily high order in (z,y, 1).

From now on, we denote A = (0, 1) for the elliptic case, A = (—3,0) for the
saddle case.

We are interested in this family for @ € A and (z,y, 1) € U x A, a neighbor-
hood of (0,0) in R? x R®. A can be identified to S x [0, 1) through the change of

parameters. Making the change of the parameters

=0
=1 (32)
H3 = Vi3

22
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where (fi1, iz, fis) € S? and v € (0,1,), we have a 3-parameter family of vector
fields in (z,y, v) space with parameters (a, i) € A x S%
i =y + v2[iy + az?
g =vm +y [Vﬁ3 + 2+ 2% + 230y (2, uﬂ)]
+athy(z, vi) + v*Q(z, y, vii)

v =0.

(3.3)

)

\

We then make the (weighted) blow-up of the singular point of (3.3) at the

origin by
r =TI
y =r% (3.4)
vy =Tp

where r > 0 and (Z, 7, p) € S

By the blow up (3.4), we have a C®—family X = %)? For each (a,f1) €
A x S?, X induces a 3-dimensional vector field Y(G,ﬁ) defined in the neighborhood
of S% x {0} with parameters (a, ) € A x S% In other words, the blow-up (3.4)
changes the 4-parameter 2-dimensional family into a 3-dimensional family Y(a,ﬁ)
with parameters (a, i) € A x S%

Putting together (3.2) and (3.4), as in [DRS97], for (3.1), at (z,y, p1, ti2, i3)
= (0,0,0,0,0), we make the global blow-up

d: xRt xS2— RS

((E:gap),ra (EhﬁmﬁS)) = (.’IJ, Y, /1’13/~L27.LL3)
p

r =TI

y =1 (3.5)
o =70m

po =r12p*fy
| 13 =Tphs
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where 72 + 72 + p2 = 1.

(a) The elliptic case (b) The saddle case

Figure 3.1: The stratified set {rp = 0} in the blow-up

Because of the symmetry, as in Fig. 3.1, we only need to study X on {p > 0}
to get a complete information for ((Z, 7, p), 7, (f1, [i2, i) near 0 € 8% x [0,7¢) x S2.
Note that for each [, the foliation given by {v = rp = const} is preserved by
X (a.0)"

e For {rp= v} with v > 0, the leaf is a regular manifold of dimension 2.

e For {rp = 0}, we get a stratified set in the critical locus. As shown in Fig. 3.1,
there are two strata of 2-dimensional manifolds:
~ F; 28" x Rt the blow-up of the fiber p = 0,
- Dp={P+P+F=1, p20}.
On F; = {p =0}, (3.5) is just the common blow-up of the nilpotent point:

r=rZ
(3.6)

y=rj
and by the blow-up (3.6), we get a vector field with four singular points P; (i =
1,2,3,4). P; and P, are hyperbolic saddles, P; and P, are nodes (resp. saddles)

in the elliptic (resp. saddle) case (Fig. 3.2).



25

(a) The elliptic case (b) The saddle case

Figure 3.2: Common blow-up of the nilpotent singularity

To study the objects on and near f?’ﬂ, we use the “phase directional rescaling”.

We use charts
PR.1 Z=-1,(r,p1, %)

PR2 z= 17 (TZ) P2, :9_,2)
which cover the boundary of the half 2-sphere.
In the chart P.R. 1 and P.R. 2, by transformation (: = 1, 2)

T = Fr;
y =ril; (3.7)
i = (rep)* 7y (=1,2,3)

and after division by 7;, we get a vector field near P; (i = 1,2)

)

i (a+ Fi + f2p?)7i

=5
L pi = £(a+ J; + f207)pi
yi =+

(1 — 2a)y; & 292 + Gileari + fspi £ 20207 F reha(Fri, ripis )]

i p? + riha (T, i, B) 4 Ui Qo (T, iy Ui )

(3.8)
where hq and hy = aey + O(r) are C* in (ry, pi, ), Q(Ti, pis¥i 2) is C* in
(74, pi> Ui, &) and of arbitrarily high order in (74, p;, %) -

Easily, we see that X p, has two singular points P;(0,0,0) and P4(0,0, 522),

X p, has two singular points P5(0,0,0) and P;(0,0,152%). Each singularity has
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three real eigenvalues listed in Tab. 3.1. In Fig. 3.3, we draw the phase portraits
in the charts P.R.1,P.R.2 for the elliptic and saddle case respectively. The chart
P.R.3 (§ = 1) gives no additional singular points other than those found in the
charts P.R.1 and P.R.2.

r p y
5 —a a —(1 — 2a)
P, a —a (1 - 2a)
Py 172 ~1/2 —(1 - 2a)
P, ~1/2 1/2 (1-2a)
Table 3.1: The eigenvalues at P; (i = 1,2,3,4)

(c) Xp,, the saddle case (d) X p,, the saddle case

Figure 3.3: The phase portraits of X p,

To complete the phase portrait on the blown-up sphere Dz, we use the family
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rescaling and use the chart

FR. p=01,(0%77)

yielding
T =[ip+ 7+ ax?
g =+ (Z+ i)y +rh(z,5,7, ) (3.9)
Fo=0
where h(Z,7,, i) is C* in (Z,,r, i). Especially, on {r = 0}, we have
= [iz + § + aZ*
=Ry (3.10)
=i+ (f3 + 7)Y

In order to list all the possible limit periodic sets for the family, we have to
study the bifurcation diagram of (3.10) for i € S2. Since we use charts, here we

give the coordinates changes between the charts P.R. 1, P.R. 2, and F.R.:

_ 1
T =F—
_Pi
¢o:PRi—FR {5 =4 (i=1,2). (3.11)
Pi
v =rTip;

3.2 Bifurcation diagrams for the family rescal-
ing, limit periodic sets

In [KS95], the authors investigate generic 2- and 3-parameter smooth families of
vector fields on the 2-dimensional sphere and gives the list of all polycycles of
codimension less than 3 (also called “Kotova Zoo”) and of their cyclicity, but with
the nilpotent elliptic and saddle cases of codimension 3 left unknown. Following
the convention of [KS95], we use pp to denote a graphic connecting two parabolic
sectors, hp to denote the graphic coming out of a hyperbolic sector and connecting
to a parabolic sector, and hh to denote the graphic connecting two hyperbolic
sectors. Then to find out all the limit periodic sets after the blow-up, we have to

answer the following two questions:
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1. In the elliptic case, when does a pp, or hp or hh-graphic exist? i.e., when

does a passage from P; to P, or P; to Ps, or Py to P3 exist?

2. In the saddle case, we have two types of hh-graphic, one is a graphic which
passes through P; and P, (or P, and P,), the other type is a graphic which
passes through P, and P, (or P, and P;). For each of the graphics, there is
always at least one family of limit periodic sets and there can be two. What

are the bordering limit periodic sets for these families?

To answer the above two questions, we need to give the complete bifurcation
diagrams of system (3.10). They correspond via §+fis+aZ® = Y to the bifurcation
diagrams for the principal rescalings studied in [DRS91] and [DRc90]. Complete
bifurcation diagrams have been given there except for the position of the separatries

at infinity which are better studied in the quadratic model given here.

Proposition 3.1. For system (3.10), there holds
(1) System (3.10) has an invariant line § = 0 if and only if g1 = 0.

e In the elliptic case, the curve iy = 0 is a bifurcation curve except when there

are two nodes on the line § = 0.

e In the saddle case, the curve ji; = 0 is a bifurcation curve precisely when

there are two finite saddles on it.

(2) If a # §, system (3.10) has an invariant parabola
1-2a 1 (1 —2a)(2ap2% + (1 — 4a)?j

1 9 _
W= (5 =B ST a(l — 4a)? 2]
iof and only if
_ 2a(1—2a) 5 2(1—2a)_ _
b1 = (1 = 40,)3 [,Lg + 1-4g Ha 3. (313)
(3) If a = %, system (3.10) has an invariant parabola if and only if fi = 0. For
fiz = 0, system (3.10) has 1, 2 or 8 invariant parabolas
_1. . 2
y=-z"+ Bz + iz + 2B (3.14)

4
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if 2702 + 1613 > 0, = 0 or < 0, and B is the solution of the algebraic equation
2B% + 2, B — [i; = 0.
Proof. Direct calculations. O O

Now we turn to the bifurcation of system (3.10) for elliptic and saddle cases
for i € S2
Theorem 3.2. The bifurcation diagram of (3.10) for the elliptic case (0 < a < %)
is in Fig. 3.4, the bifurcation diagram for the saddle case (——% <a<0)isin
Fig. 3.5, in both diagrams, we use the following nomenclature: BT - Bogdanov-
Takens bifurcation, DH - Degenerate Hopf bifurcation, H - Hopf bifurcation, IL
- Invariant line, SL - Saddle loop, SC - Saddle Connection, SN - Saddle Node

bifurcation, SNC - Saddle Node Connection.
All the limit periodic sets are listed in Tables 3.2-5.6.

Proof. The proof comes from the bifurcation diagram in [DRc90], from the exis-
tence of the invariant line § = 0 for i; = 0 and from the fact that this line becomes
without contact for fi; # 0.

Indeed, the phase portraits in Fig. 3.4 and Fig. 3.5 can be completely recov-
ered from the bifurcation diagram in [DRc90] and the phase portraits on f; = 0.
It is known for quadratic systems that any saddle connection between a finite and
an infinite saddle must occur along an invariant line.

The bifurcation diagram of Fig. 3.5 is exactly the bifurcation diagram of
[DRc90] with the additional information that the upper saddle connection occurs
for iy = 0 on the invariant line § = 0 and the lower saddle connection occurs on

the invariant parabola (3.11). O

Note that when we study X,—; at infinity, we use the quasi-homogeneous

compactification:

(3.15)

S
Il
H-
IS
<2
Il
|
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Figure 3.4: The bifurcation diagram of the rescaled family: the elliptic case a(0) #

=

These transformations are just the transformations we used in charts P.R.1 and
P.R.2. So at infinity, we add what we obtained from these two charts and draw
the bifurcation diagrams for the elliptic and saddle cases in Fig. 3.4 and Fig. 3.5.

For the elliptic case, there are 22 limit periodic sets which fall into three types:
Epp, Ehp and Ehh. We list all the 22 graphics of the elliptic type in Tab. 3.2, 3.3
and 3.4.
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Figure 3.5: The bifurcation diagram of the rescaled family: the saddle case a(0) #

1

2

For the saddle case, there are two types of limit periodic sets: convex graphic
Sxhh and concave graphic Sahh. We list all the possible graphics of saddle type
in Tab. 3.5 and Tab. 3.6.

For all the families of graphics listed in the following tables, we use a to denote
the upper boundary graphic, b or d to denote the intermediate graphics, c or e to

denote the lower boundary graphic.
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o

graphic Eppl

family of graphics Epp2

graphic Epp3

Table 3.2: Limit periodic sets of pp type for the Elliptic case

32

&

@%,

8

graphic Ehpl

graphic Ehp2a, b, ¢

graphic Ehp3

| K‘__

graphic Ehp4

graphic Ehp5

3
f

graphic Ehp6

graphic Ehp7

Table 3.3: Limit periodic sets of hp-type for the elliptic case
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=

S

30

family Ehhl

family Ehh2

family Ehh3

= | :

(F)-

©
\_

family Ehh4

family Ehh5

family Ehh6

&

family Ehh7

family Ehh8

family Ehh9

N

N4

family Ehh10

family Ehh11

family Ehh12

Table 3.4: Limit periodic sets of hh-type for the elliptic case
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Sxhhl Sxhh2 Sxhh3

Sxhh4

Sxhh7 Sxhh8

Sxhh9 Sxhh10

Table 3.5: Convex limit periodic sets of hh-type for the saddle case



Sahhl Sahh?2

Sahh4 Sahh5 Sahh6
tfe

Sahh7 Sahh8 Sahh9

Sahhl0 Sahhl1l Sahh12

Sahh13 Sahh14 Sahhlb

Table 3.6: Concave limit periodic sets of hh-type for the saddle case

35



Chapter 4

Dulac maps at the entrance
points of the blown-up sphere

To study the cyclicity of the graphics after the global blow-up, we will need some
basic properties of the transition maps in the neighborhood of an elementary sin-
gular point. First we give some definitions and some results about the transition
maps near an elementary singular point. Since we use three dimensional charts to
study the object, in §4.2 and §4.3 we will establish two types of Dulac maps in the

neighborhood of a three dimensional hyperbolic singular point.

4.1 Transition maps near the elementary singu-
lar points in the plane

Definition 4.1. (1) A singular point is elementary if it has at least one nonzero
eigenvalue. It is hyperbolic (resp. semi-hyperbolic) if the two eigenvalues are not
on the imaginary azis (resp. ezactly one eigenvalue is zero).

(2) The hyperbolicity ratio at a hyperbolic saddle is the ratio r = —%, where

A1 < 0 < A\ are the two eigenvalues.

Let Xy, A € A, be a C* family of vector fields defined in the neighborhood
of a hyperbolic saddle at the origin. We also assume that the coordinates axes are

the invariant manifolds near the saddle point.

36
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By normal form theory, for any fixed k € N, up to C*-equivalence, we can
write the vector field X into some explicit expressions of the normal form (cf.

[St58], [TY91]). Let r) be the hyperbolicity ratio of X at the origin, then
e If rp is irrational, then , Vk € N, the vector field X is C*-equialent to
P =%
gy =-r(Ny
for X in some neighborhood W of the origin in parameter space.

o Ifro€Q let mo=2, (p,q) = 1. Then Vk € N, X, is C*-equivalent to

T =2
N(k)
§ =y[—ro+ Y e @yy].
i=0
for A in some neighborhood W of the origin in parameter space. In particular,

a; =719 —1(A).

MR

D,

2 o

Figure 4.1: Dulac map near a hyperbolic saddle

Let &1 = {y = yo} and 83 = {& = z,} be two sections transverse to the

vector field X, (Fig. 4.1), where z¢,y0 > 0 constant. The flow of X induces a
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transition map D, (., A), also called a Dulac map:
D, : il — ig

forall A e W.
The Dulac map is C*® for z > 0. The following theorem of Mourtada

([Mou90]) describes its behavior near z = 0.

Proposition 4.2. (Mourtada) The Dulac map Dy can be written as
D(z) = 2"™[e(A) + (=, )] (4.1)

where c(A) = s, ¥(z, ) is C® for (z,X) € (0,z¢] x W. Furthermore, ¢ satisfies
Zo
the following property (I$°):

1

(75" :: Vn € N, lﬂx”g—xg(a:, A =0 uniformly for \e W. (4.2)

(1) If ro € Q, then ¢ = 0;

(2) If ro = 1, then the ezpression (4.1) is in general not fine enough for proving
the cyclicity.

Definition 4.3. The FEcalle-Roussarie compensator of the vector field X, is de-
fined as

r—%1—1 -
Gy e (43)

—Inzx if g = 0.

By the definition of w, we can easily check w(z, ;) has the following property:
Proposition 4.4.
w(ab, o1) = w(a, 1) (1 + aqw(b, aq)) + w(b, ay). (4.4)

Since the Dulac map in Prop. 4.2 is not fine enough to prove the cyclicity for
the case 7o = 1, in [R86], by using the compensator, Roussarie has an additional

refinement:
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Proposition 4.5. Ifrg = 1, then the Dulac map Dy has a well-ordered asymptotic

ETPansion:

Di(z) =a(N[zw+---1+fN)[z+--]

(4.5)
+ag(N)[2?w + -] + ar(N)[zFw + -] + vz, A)

where ay(A) = r(A) — 1, and Y% 1s a C* function, k—flat with respect to x = 0.

4.2 Normal forms at the entrance points

To study the Dulac maps in the neighborhood of the entrance points, the vector

fields should be in the normal form.

For saddle and elliptic case, the family of vector fields at each point P; ( i
=1, 2, 3, 4) has the same form as (3.8), the three eigenvalues not all having
the same sign. Due to the special form of the family (3.8), after dividing by a
C* positive function, system (3.8) is linear in r and p. If necessary we change
the time (¢t — —t), so that we have two negative eigenvalues while the third is

positive (Tab. 3.1). So for the three eigenvalues at each point, there are only two

possibilities
-1, 1, —ofa)
or
]-7 _1: —O'(CZ)
. @ |2=2¢| at P, and P
where o(a) =

2(1—2a) at P;and Py

By exchanging the roles of r and p, we only need to consider one case of
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system (3.8) which we rewrite as

O —
Xam)y p =p (4.6)
'.ij = —a(a)gj = f(a,ﬁ) (TJ P, g)

where

fam) (T, 0,9)

= o‘(a)g N —(1—2a)ﬂ+2?72+§[527'+ﬂ30+2ﬁ2p2—r2h1(r,rp,ﬁ)]-|—ﬁ1p3+Tﬁz(r,rp,ﬁ)+g2§2(r’p,g,ﬁ)

a+g+fz2p*

and the parameters (a, ) € A x S?, where for the saddle case A = (—3,0) and for

the elliptic case A = (0, 3).

Proposition 4.6. Consider the family X (o5 in the form of (4.6) with parameters
(a,7) € A x S%. Then V(ao, i) € A x S* and Vk € N, there ezists Ay C A, a
neighborhood of ag, N(k) € N and a C*—transformation

Uiopm : (1o y) — (150, Y (75 2 Y)

where

Y (T 0,¥) =y +o(|(r, p,9)]) (4.7)

such that ¥(a, i) € Ag x S?, the map Y transforms X,z into one of the

following normal forms:

® ’ifO'(ao) ¢ Q

r =Fr
X@p | p ==p (4.8)
y :_6(0'7[]'71/):‘/
o Ifo(a) =% €Q
)
Fo=—r
Xapg P = ° (4.9)

1 N(k)
§ =Rt 4 a[ il Z aiv1(a, &, V)(Ppyq)z]y

\ =0
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where v =rp > 0 and

6-((11 i, V) = O'(CL) = aO(a‘a H V)
N(k)

aO(a’: /_1'1 I/) = Z ’YiVi (410)
=1
al(a: H, V) =DP- 5’(0,, 72 V)q
where vy;(a, i), o; and k are smooth functions defined for (a, i) € Ao x S% Espe-

cially if g > 2, Kk = 0.

Proof. The proof is a straightforward application of normal from theory (see for
instance [GH83], [IY91]). Depending on the value of ay, we have two cases:
Case 1: o(ag) ¢ Q, X(o,5 has only resonant terms (rp)'y =v'y, > 1.
Case 2: X(, ) has eigenvalues —1,1, —0(ao) with o(aq) = B, paeN, (p,q) =1.

Then the resonant term r'p’y' will satisfy

g B —’5’, 04,020, i+j+l>2. (4.11)

{=
q
 o(a) =2€Q\N, ¢ >2. By (4.11), we have

j=i+np, Il=14+ng n>0, i+n>1.
Then the resonant terms will be
(ro)'(PPy)"y, i+n>1.
e o(ag) = p € N, then by (4.11)
—i+j—pl=-—p ,50>0, i+j+12>2.
Then the resonant terms will be
= 72(rp)* i+p>1,

— (rp)'(p"y)'y i+1>1.
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Remark 4.7. It seems a priori that the resonant terms cannot be written directly
in the case o(ag) = 1 since the linear part can have a Jordan normal form. Indeed
when applying a polynomial transition Y = y+Crip’y* to get rid of a non-resonant
term in ripiy® (i+k—j # 1), one creates another non-resonant term in ri=1piyF+1,
Iterating the process we realize that we get exactly the terms which appear in (4.9).

Moreover a transformation of the same form when i+k—j =1 allows to get rid of

certain resonant monomials but this refinement is not necessary for our purpose.

(a) The first type (b) The second type

Figure 4.2: Two types of Dulac map

In order to study the cyclicity of the graphics with a nilpotent singularity of
elliptic or saddle type, we only need to consider X (a.5) With eigenvalues —1,1, —o(a)
in the normal forms (4.8) and (4.9) and consider the following two types of Dulac
maps (Fig. 4.2):

DAepn =(d,D): Z—1TI

Gy =AEB): T 20O
where ¥ = {r =}, I = {p = po} and 7 = {y = yo} are sections in the normal
form coordinates, rg, pp and yp are positive constants.

To simplify the notation, for all the maps and vector fields, we will drop the

index (a, fi). For example, the Dulac map A(v, 1) means Az (v, 1)
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In the next section, we give some preparation propositions for the proof of

the two main theorems about the Dulac maps.

4.3 Preliminaries

Before studying the Dulac maps, we give two propositions as preparation. First

we define a notation I(i1,1g,- - ,%;; m,n):
Definition 4.8. Let m,n,j € NU {0}, we define

tig+-+ij=m
I(ivig- - ij;myn) = { iz, b2, -+ ,4; € NU {0} ety

Proposition 4.9. Let f(t,z) be a smooth function and consider the initial value

problem
dz

dt

Denote the unique solution as z = 2z(t,z). Then Vn € N, the nth derivative

f(t, 20,2), 2(0)= 2.

&z o "2 (t, 20) satisfies the linear initial value problem

. af o2 8z 2z oz
48"z i T R
dt(Bz{)") 8 aZO + f’n (t 20y % ’BZ(), azga aazg,—l)

220) =0,

where
8z 0%z ol
fn(t 20, 2, 3207 3z§7 e azo—i)
n—1 .
B"f 8’ 0z \u
Z > Iz
|t 0z
=2 I(zm An—1;,0) =1

—-1n—j aH—Jf =
Xl:zl 025021 Z e H(azo)
I(itig-in-1;dn—j)  1=1

fn as well as all the partial derivatives are all evaluated at (t,z,2(t, 29)) and *

denotes a positive integer.

Proof. By induction. O
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Proposition 4.10. Let us consider the initial value problem

Z_; = f(ta Z)
2(0) =0

with t € [0,7T]. If there ezist two continuous functions A(t), B(t) with
£t 2)| < [A@)lzl +|B()], (£ 2) € [0,T] x [0, Zo],
then for t € [0,T], the solution of the initial value problem satisfies
|2(8)] < elo 1A(T)ldr /t |B(s)|e Jo 1AMIdr g,
0

Furthermore, if there ezist constants My, My > 0 such that

|A®)| < M,
|B(t)] < M,

then there ezists a constant K > 0 such that for t € [0,T)], there holds
|2(t)] £ KMst.

Proof. By

% < 1A@®)|l2] + |B@)]

then
(e BN 1)) < | B(e)Je 14 gy

Integrating the above inequality from 0 to ¢ with the initial condition 2(0) = 0,

then for ¢ € [0, T, we have
() < B0 [ Bl AW
0
If |A(t)] < M, |B(t)| < M,, immediately we have
|2(t)| < KMt

where K = T, O
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4.4 First type of Dulac map

We now study the first type Dulac map A = (d, D). If we parametrize the sections
% and II by (v, y) with the obvious relation p = % on ¥ and r = = on II, then we

have

Theorem 4.11. For any ag € A and i € S?, consider the family X = X'(a,ﬂ) with
eigenvalues —1,1,0(ag) in normal form (4.8) or (4.9). Then VY, € R, there exist
Ay C A, a neighborhood of ag, and v, > 0 such that Vv € (0,11) and (a,3,y) €
Ag x S2x [0,Yy], the Dulac map A(v,y) = (d(v,y), D(v,y)) has the form

{ dvy) =v i s (4.12)

DY) =, -a) + (=) [+, —e),9)]

where vy = ropo > 0 a constant and

If o(ag) ¢ Q
n=¢=0;
If o(ag) € Q\N
n=_0;
If o(ag) =p€N
o, —on) = wrb(, —an) ()

If o(ag)=2€Q p,geN and (p,q) =1, then d(v,w(s, —an),y) is C* and

¢ =O0Pwt (L, —a)ln L)
%f = O(VPui(s, —an) In &)
j S(1414=21) g i=2, V v )
gf_y;qg | O(Vp(1+[ 7 ) a-i+1+alig ](I/_O’—al) In _V_(;) -
(4.13)
where
ola, >0
=y BN (4.14)
D ap < 0.

Also all the partial derivatives with respect to the parameters (a, i) are of order

O(prq(_’/_’ —a;)In 1).

14 4]
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Proof. Since we consider the Dulac map A(v,y) in the invariant leaf v = rp > 0,

let vy = T9pp. Then the transition time from ¥ to II is

t:lnﬁz—lni.
£o 14

The first component d(v, y) is easily obtained:

v

d(v,y) = poroe”t = poro— = v.
A

Now let us consider the second component D(v,y).

(1) Case o(ag) ¢ Q:
By the normal form (4.8), we directly have

D(v,y)=e "y = (V%)&y-

(2) Case o(ag) =2 € Q p,g €N,(p,q) = 1. Note that r(t) = ree™, p(t) = %e,

so by the third equation of (4.9), we can write the solution of y as

y(t) = e~ [yo + wrfS(—on,1) + U (1) (4.15)
where
ex1t_1 0
Q(al,t) — a 831 7é
t ) = 0.
Let
W(t) = yo + kriQ(—a1,t) + U(2). (4.16)

Then by (4.15), we have
y(t) = e T (2).

Note that if ¢ > 2, then x = 0.
A straightforward calculation shows that U(t) satisfies

Ut) =gt W) (4.17)
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N
where g(v,t, W (t)) = Z C)[i—;:.l1/1""6"‘1”W‘JiJrl(t). First we are going to prove that
i=1 0
U(t) is bounded for ¢ € [0, |In Z|].
By the definition of W (¢) in (4.16), there exist constants Kj, K; > 0 such

that
14 1
|W(t)| S K]_ + sz(%, —al) + |U(t)|1 tE [0, | In Z/_OH (418)

where Ky = 0 as long as g > 2.

We want to show that U(t) is bounded, so we only need to consider the region
where |U(t)] > 1. In such a region, by the definition of p in (4.14), there exists
K3 > 0 such that for ¢ € [0, [In 2[] with v sufficiently small

lg(v,t, W)| < K3yﬁwq+l(ylo, —a)|U| Ve, (4.19)

Indeed, for v sufficiently small and for ¢ € [0, |In %H,

N
|g(V, t, W)l S Z |al+1| Vpieal’itlw(t) |qz+1

o

. ali = -
< 3 Lol ey (L, —an) + I
i=1 0 ’
< Koot (£, —a) U ()Y,

Hence U(t) stays bounded by the solution of the initial value problem

2 = Kgyﬁw”l(’—}%, —an) Z(t)NeH

Z({0) =1
so for ¢ € [0, |In ;Z|], there exist constants K4, K5 > 0 such that

U@ < 2(t) = — :
(1 — NgK3vPwitl (£, —aq)t) ™

2 K4yﬁwq+1(yi, —ay)In -VK]
0 0

< K.
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Since |U(¢)| is bounded, by (4.17) and (4.19), there exists a constant Kg > 0
such that for ¢ € [0, |In |]

U(8)] < Ksyﬁwqﬂ(ul, —a).
0

So, V(a, i) € Ay x S? Vv € (0,1) and for ¢ € [0, |In 2], we have

In 2|, (4.20)

U] < Kovw™ (=, —am)| In
0

4]

Substituting the transition time ¢ = —In ;= into (4.15) and letting

v
U(t)ltz— In % = ¢(V7 Cd(—, _al)a y)7
W
then for the second component of the map A, we get

Div,y): = (%)a [y + wrow(&, —aa) + ¢(a, v, w(, —al)ay)]

= v, w(L) + (2) [v+ola,v,w(Z,—a1),1)]

where ¢ is C* in (q, fi, u,w(uio, —a;),y) and uniformly bounded, i.e., for (a,fz) €

Ay x 82, v € (0,1) and y € [0, Y5], we have

(v, w(i, —ay),y) =0 (Vﬁwq"'l(l, —a)In 1).

g ) Yo
Now we consider the derivatives —— for i > 1.
For 3¢, since 2V =1+ &7, s0 4 satisfies
dfaw) _ oW
W) =1 |
dy

i (q’l, + 1)C¥i+1 ; : ;
where g1(v,t, W(t)) = E T—V’"ea”tqu(t).
o

i=1
For ¢t € [0, |In Z[], by (4.18), and (4.20), and similar to the proof of (4.19),

there exists a K; > 0 such that

joa (v, W (1)) | < B2, —en) (4.22)
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By (4.21) and (4.22), then for ¢ € [0, |In 2|] we have
¢ Kt —aningg] o OW ow < K —an)|n |
By

hence
o EPol (& —a)lln ] _ g o ou < Ktut(E o)l ) _ |
So there exists K; > 0 such that for (a,i) € Ag x S? and v € (0,1p), for 0 < ¢t <

| In 5
0

(4.23)

lni

| ’ < Kll/”wq(i —ay) 7
0

14

Thus for ¢(v,w(Z, —au),y), we have

9 _ (e Y _ o
By —O(z/ w (Vu’ a;p)ln Vo)'

It is clear that the above properties on ¢ also hold for all the partial derivatives

with respect to the parameters (a, 1) € Ag x S2.

For 66 —(i > 2), we will use induction on i. First show that for 2 <14 < ¢+1,
y'L
there holds
b o) " i W v
0, ) L),
oy (VPw (1/0 a;)In -
Assume that for 2 < i < g, we have
oW\ s B v
| < Rppwrti-i( 2 - '1 —‘. 4.24
o7 | = Pw (Vo’ ay) ny0 (4.24)

Now we turn to W By Prop. 4.9, 2 ay"H W satisfies the following initial value

problem
i+1 1+1 2 7
L5 = a0t WG + g (vt W, B, 5K - G ) i
al+1W ° )
o (0 =0
where

gi+1(Vtm%Ws£§;/""’a;¥)Zgiaa;?j Z H(aw) '

J= I(j1j2--jisgit+1l) k=1
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We claim that there exists a constant K;,; > 0 such that for ¢t € [0,|Iln £
vo
ow *wW o'W
1 )tam_v—a“'v—'—-'
Fit1 (V Oy’ Oy? oy*
Indeed, for 2 < j < i+ 1, similar to the proof of (4.19), there exist constants
Fjl >0(j=2,3,--+,i+ 1) such that
N(k) .
= 'Z 4! (qz + 1) %iH Pl a1 ()
P i )W) (4.27)

S ——Kjll/ﬁwq_i_l_j(ulo, —a’l).

) ‘ = f,-+11/ﬁwq+1_<i+1)(£—, —ay). (4.26)
0

dig
Wi

Note that by (4.23), we have |%| < Ky, so by (4.27) and by the induction

assumption (4.24), there exists a constant K;; > 0 such that

W 82w o'W
Jgser (mt. W), 9L, 5, 5 |
i+1 i o %
< E K j/Pwit= E *H(v”wq‘(’_l)ﬂny—l)
=2 I(ajzrdigi+l) =2 )
+1

= = - - v \Jetgstetis L . L Lo
= E K1/t~ E * (prq|ln—|) wd2 Az = (=1
7 Y
J:

I(j152++3333,i41)
+1

R L _ v \I-n . .
= E Kji/Pwtt=d E *(upwq|ln—|) wI=(+D)
— Yo
J:

I(j1j2-Js35,i+1)
T B al=el .
< K PwtH-0H (2 —qy)

where in the final sum the dominant term is the term with j = 5; = ¢+ 1.

By (4.22), (4.26) and Prop. 4.10, for the solution of (4.25), there exists a
constant K;.; such that for ¢ € [0, |In Sl
al-l-].W
Fyitt
Therefore, for 2 < ¢ < ¢+ 1, it follows from (4.24), (4.28) and by induction that

’ < I?Hluﬁwq"'l_(i"'l)(ylo, —al)l lnyi0 , 2<1<q. (4.28)

we have

o) . 7 v
- = O(Pw (=, —ay)|In —|).
28 = 00 L el in 2

Generally, Vj > 2, we can decompose jasj— 2 =1q+iwith0 <71 < ¢g-1,1 >
0. Then in the same way as for the case [ = 0, we can prove that

¥ _ 5 (Vﬁ(1+[fj—2]wq—j+1+q[%3](l/_, —ay)In K)_

ay(]) 41 Vo
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Remark 4.12. In Theorem 4.11, if g = 1, then Vj > 2, we have

J ot s
2 - oW 1n 2,

Y] Y
Remark 4.13. By Theorem 4.11, the properties of the Dulac map A are valid

on a compact set Ky of 3. When we want to analyse a graphic intersecting ¥ at

(ro,y*), we will of course choose Ky so that (ro,y*) € K.

4.5 Dulac map of the second type

Now we consider the second type Dulac map © = (£,E) (Fig. 4.2(b) ). If we
parameterize 7 by (r, p), II by (v,y) with the relation rp = v and r = = on the

two sections respectively, then we have

Theorem 4.14. For any ag € A, consider X’,\ with eigenvalues —1,1, —o(ag) in
the normal form (4.8) and (4.9). Then for r,p > 0 sufficiently small, there exist
Ay C A, a neighborhood of ag, and v, > 0 such that V(a,i) € Ay x S? and

v € (0,11), the Dulac map O(r, p) has the form
(r,p) =v
= P\ P (4.29)
E(r,p) =n(ww(k, o))+ (=) lyo+0(r, p,w(-—, —0n))]
Po Po

where
e ifo(ag) ¢ N, thenn=0; if o(ag) =p €N, then

= Zyru(2 o'
n(v,w(p, al)) = pg (P07 )7

e ifo(ao) ¢ Q then 6 =0; if o(ao) =2 € Q, then 0(r, p,w(5, —0a1)) 1s C* in
(a, 8) and (r, p,w(£, —au)), and also satisfies
7 6] (ppw(fa, o) [1 + nr”wz(pﬂo, —al)D
P =0 (pPu(L,a) 1+ mrwt(L,—a)]), §21

which are uniformly valid for (a, i) € Ay x S* and 7, p > 0 sufficiently small.

(4.30)
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Proof. &(r, p) = v follows from the invariance of rp = v.

For the second component Z(r, p), the transition time from 7 to I is

t=s |1n£|.
Po

So for the case o(ag) ¢ Q by (4.8), we directly have

—ot

2

= yo(=
O(Po

2l
t=|In Pol

E(T: p) = Y€

Now we consider the case o(ag) = £ € Q. Note that r(t) = re~* and p(t) =
pet. Hence, by the third equation of (4.9), we have a first order differential equation

about y

N(k)
: _ —pk i, qi
4§ = —&y + krPe P + - E 01 (pet)Piy et (4.31)

=1

Let the solution of (4.31) with the initial value y(0) = yo be
y(t) = e [yo + /rPQ(t, —an) + V (t)] . (4.32)
Then V(t) satisfies the initial value problem

V() =h(vtpE() (4.33)

where
E(t) = yo + rPQ(t, —oq) + V (1),

] - . 4.34
h(v,t,p, E(t)) = Z 41 PP B8, it
=1

So for Z(r, p), substituting the transition time ¢ = |In ;%| into (4.32), and

letting

0(r, p, w(g, ~0)) = V(%) (4.35)

t=]lnL[’
]
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then we have

=) = (£) [0+ w2, o) + 0 (-, ~au)]

A Po
= (w2 @)+ (2) [so+ 0 0, —a))

where 0(r, p,w(£, —a4)) is C* and

nv,w(L,a1)) =wr?(L)w(f, —o)
= et (L) [(£) (L, —an)]
0
= LPw(L, o).
(1). Bound for 6(r, p,w(£, —ay)).
First we prove that V(t) is bounded for ¢ € [0, [In £|].
By the definition of E(t) in the first equation of (4.34), if we denote My = |yl

then, for ¢t € [0, |In £|], we have
PO
|E(t)| < My + |k|rPQ(t, —aq) + [V (2)]. (4.36)

Note that for ¢ € [0,|ln5%|], Qt,—aq) < w(%,—al), so, if we restrict to
the region where V(¢) > 1, for ¢ € [0,|In £|], by (4.34) and (4.36), there exists a
constant M; > 0 such that

(v, p, E(2))]

N
< Z|ai+1|Pp tel et B (1))
i=1

N
= PpealtZ|az‘+1!Pp(i_l)eal(i_l)t[Mo + m"pw(ﬁ, —ap) + |V (@)[]#H

i=1 Po

= et [|aul[My + KrPw( £, —an) + V(O

+ag|pPe ! [ My + krPw(L, —ar) + [V (£)[]**]
e
+lang| PN Ve WD M, + krPw(£, 1) + |V () |]Nq+1]
< e[t (E, —a) VO 4 VA + VO]
< MypPe 't (£, —aq )|V (2)|V9HE.
(4.37)
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Hence by (4.33) and (4.37), V(¢) stays bounded by the solution of the initial

value problem
Z(t) = MypPerrtwTt (L —q;)ZNet

Z(0) =1

So there exists a constant M, > 0 such that for ¢ € [0, [In 2],

V) <Z()
1
= [1— qNMlprq“(;%, —ay) QU al)]NLq (4.38)
< M.

Again by (4.36) and (4.38), there exists a constant Mz > 0 such that for
t € [0,]|In£|], there holds
£o

|E(t)] < M3 + skrfw(t, —oq). (4.39)
We will prove that there exist constants My, M5 > 0 such that

h(v,t, p, E(t))| < pPet [M4 + Msmpw2(pﬁ, —al)] : (4.40)
0

Indeed, we have two cases: ¢ =1 and ¢ > 2.

For the case ¢ = 1, there exist My3, Ms, M5; > 0 (i = 3,4,--- N +1) such that

|h(v,t, p, E(2))]
N
< S ol | B 1)
i=1
< et Jaul[Ma + w17 (£, —on)]
+|as|pPe [ My + krPw( L, —ai)]?]
+ e
+Han [P e N My + krfw(£, —al)]N+1]
< pPert [|a2|(M§ + 26MarPw (£, —an) + K2r%PW (£, —on))
+|o| Msz + -+ - + |C¥N+1|M5(N+1)]
< pPe® My + er”w%%, —ay)].
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For the case ¢ > 2, k = 0, so by (4.39) there exists a constant My > 0 (
i=1,2,---,N+1) such that
|h(v,t, p, E(2))]
N -
< o | BE ()|
i=1
< ppeout |:|C¥2|Mg+1 + |a3|ppea1tM32(I+1 TEE k. |aN+1|ppNea1NtM31'Vq+lj|
< PPttt []a2|M42 + og| Mgz + -+ - + |aN+1|M4(N+1)]
< My pPe®
Combining the two cases ¢ = 1 and ¢ > 2 together, letting My = max(Mjy;, My3),
yields (4.40) for ¢ € [0, |In £].

So for the solution of the equation (4.33), for ¢ € [0, | In £}, by (4.40) we have

VOl < [ [enB6)]ds

¢
:/ ppe“”[M4—|—M5mpw2(—p—,—a1)]ds
0 Po

= pP[M4 + EMSprz(pﬁ, _al)]/ %15 dg (441)
0

0
= pr(t, O[l)[M4 + nMsri”w2([-,%, —041)]

< pPw(L, on)[My + £MsrPw?( £, —ay)].

Hence for 6(r, p,w(%, —a)) given in (4.35), for (a, 1) € Ag x S? and r,p >

0,rp = v sufficiently small, we have

o(r, p,w(pﬁ, —0)) =0 <ppw([—fg,a1) [1 + m”wz(ﬁ, —al)]) :

0
@

We will use induction on ¢ (¢ > 1) to study 55
pZ
00
(2). Bound for 3.

By the first equation of (4.34), we have ‘Z—‘; = %, S0 %% satisfies the following

linear equation

1(%E) = ho(t, p, E)2E + ha(t, p, E) (4.42)
20) =0



96

where
hO(ts P E) = g_g(t7 P E)
N(k)
= > (gi + Do pPre™ P E% (1),
i=1
hi(t,p, B) = §:(t, 0, E)
N(k)
— Zp'l:ai_l_lppi_lealitEqi-l-l(t).
i=1
By (4.39) and similar to the proof of (4.40), we can prove that there exist

constants My; > 0 (i = 1,2, 3,4) such that

|ho(t, p, B)| < pPer? [7\711 + ﬂﬂlzr”w(%, —ozl)]
[ha(t,p B)| < gl [Fg -+ wMurtw' (L —an))-
0

(4.43)

Then by (4.43) and Prop. 4.10, there exist constants ]\//.711, My > 0 such that
for ¢t € [0, |In£]], there holds
PO

‘ —_—— S pp 1) []/\4\11 =t H]/\Z'I2pr2(_e_, ——O!]_)] & (444)
po Po

Indeed, let

Z(T, p) =p [—Mn ¥ ﬂMlszw(pﬁa _al)]

0
E(Ta p) = Pp_l [Mm T lﬂﬁmrpwz(pﬁ; _al)]
0

and let

A(t,r,p) = A(r, p)e™?
B(t,r,p) = B(r,p)e™.
Then by (4.43), for (a, i) € Ay x S? and for r, p > 0, 7p = v sufficiently small,

we have

So by Prop. 4.10, for ¢ € [0, |;%|], there exist constants M, My, M3 > 0 such
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that

t
‘%_fj’ S efot A(s,r,p)ds / B('LL, T, p)e_ fo A(S,T,p)dsdu

0

= efot Z(r,p)ealtdt _E(T, p)ealue— f: Z(T,P)eal"dsdu
0
n t
— elo Alrp)erods [ _ B(r,p) / d(e‘ f;z(r,p)ealsds)]
A(Ta p) 0

(o Alrp)e1tds _ 1)

~ A(r,p)
< E(T, p) -BZ(r,p) f(;' e*15ds = 1:|
= (4.45)
- E(Ta P) 'ez(r,p)en(t:al)_l]

A(r, p) L
< E(T’ P) K(r,p)w(;%,al) B 1]

%ET, pg L

"P) [ &7 p

= — e 1A ’r, w(—,

T p) L& AP )]

£o

< Hlpp‘lw(f’—, a1) [ng + £M 1477w (L2, —al)]
pPlw(L, o) [1\//.711 +HJ\//.712rpw2(;,”;,—a1)]

where & € (0, A;(r, p
MMy

w(}%;%)), M, = Al(r’p)w(”ﬂ’al) and My = M Mys, My =

—

So for (a, i) € Ag x S? and r, p > 0 sufficiently small, we have uniformly

69 _ P », 2 P _
pgﬁ = O(p”w(g, a1)(1 + sxrfw (%, al)).
(3). Bound for g—pei, (z>2).

Assume that there exist constants M]1, M, 42 > 0 such that for 2 < 5 < 4, there
holds

OE

] < p”—]w(% 1)L (r, w(;p(; —ay)) (4.46)

where

Zj(’r?w(ﬁ? _al)) = J/\/-le + KIM\jQT'pCU2(£, —al).
Po Po
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Now let us consider £ 5 p,+1 By Prop. 4.9, it satisfies

i+ it 2 i
dt (%pi+?) = ho(t, p, E) %p{+ET + hita (ta p, E 88 Z 8 .-, 2 E)

B W)
i1
63;4_}1; (0) =0
where
oK 3 E 8K
hi-l—l(t p1E7 3p’ "'aapz) .
aH-lh L 1 OFEN
SV (t5)
Hoitl 7 T
8p BE I(J‘u’z ~Jisditl) k=l op (4.48)
i z+1 l

Db prLA i S iy

ook
=1 j=1 I(lllz"'li;l,i+1"j) P

Lemma 4.15. There exist constants _M-i+1,1,Mi+]_’2 > 0 such that for ¥(a, Q)
Ag x S? and for r, p > 0 sufficiently small, there holds

hiv1(t, p, E)i < Pp—(iH)emtw(ﬁ, ar) [MHI,I + KM 11 90( =

—,—aq)]|. 4.49

- o) @)

Proof. Let us denote the first and the second sum in (4.48) by h; and hyy, i.e
O*th

hi.|_1 8pﬁ+1 + hr + hrr. (4.50)

For 2% by (4.39) and the definition of h in (4.34), there exist constants
opt
Mii11, Mit12 > 0 such that

OV _ p-vgau [y, My pr?w?( L 4.51
8pi+1 = pp € i+1,1 + K i+1,27" W (;(;7 Odl) i ( 2 )
Similarly, there exist constants ]\A/_fjl, Azz, J\Zn and Afojl? > 0 such that
8]h a1l P
357 | = < pPeLy(r,w (po,—al)) (4.52)
6j+lh‘ —j aitT 14
S| S e Luln (£, —a) (4.5

where

jnw(t, —a)) = = Mj; + kM; jarfw(L, —au)

(T Ld( —051)) — ]\Aiju + I‘&Mjm’f‘pw("%, —051).

il s
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So for Ay, by (4.52), (4.45) and assumption (4.46), for ¢ € [0, |In £] we have

oF 6%E & E
lhl t paEa Bp’ apz"" ’B_p")
Z ‘ 67h ‘ OF |1 BQE J2 BZE J
= Ei 8o 2 "1 A5
d (.71.72"'.7i§.7"l+ ) Bp 6’? 9p
e & Y 7
< prealtLj(T,w) Z * H ‘p”_’“ka(r,w) *
=2 I(jija--di;dsitl) k=1 .
NI SRSV UMY ; YA
=2 I(j1ga-Ji;d,i41) . k=1

< Z PP L (r, w) Z s pPI (1) 7 H E.Z;k (r,w
i=2 I(j1ga--gisd,i+1) k=1

i 7
<SPt ) Y ! [] I w)

j=2 . I(j1g2--Ji;fi+1) k=1
<P et S P w) Y, +[[TErw)
i=2 I(jriz-jisdi+l) k=1

< 0(p2p—1)pp—(i+1)ea1t'

(4.54)
Similarly, for hy7, by (4.53) and (4.45) and (4.46), we have
2 i

‘hII(tapaEa ?957%,5’ v 7%)

i i1l i

oItth OF |l

<), BpiOE! ‘ Z *11|3,

=1 j=1 I{lilg-s5l,i4+1-7) k=1

i -l i R .
<3N e ey Y+ [P" “FwLi(r, w)] k

=1 j=1 I(llalisli+1—5) k=1

i -l N
<D e La(rw) ) wpP D [T L (rw)  (4.55)

=1 j=1 I(l1lg-+lssli+1—7) k=1

i i1l N i
<N gDty Tynw) Y ][ LRw)

=1 j=1 I{lyly - lisli+1-5) k=1

i+1-1 i R
< P ) alth”l ¢ Z Lj(r,w) Z *HLfgk(r,w)
1=1 j=1 I(hleAili+1—7) k=1

yid —(i+1) ot
< O(PulZ, o) GrDemt
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Then by (4.50), (4.51), (4.54) and (4.55), there exist positive constants M1,
and _M—i+1,2 such that

hisa| < |52 |+ |hal + |t

< pp (Dot pf,, ) +I€Mi+1,2rpw2(p%,0é1)] + o p?~1) =i+ D) gont
+O(ppw(_‘%, al))pp—(iﬂ)emt

< ey (£, 00)[Miy1y + £Mig1 0w (2, —aa)].

End of proof of Theorem 4.14

Then for the initial value problem (4.47) with the estimations (4.43) and
(4.49), similar to the proof (4.45), again by Prop. 4.10, for ¢ € [0, | £]], there exist
constants ]\/l\iﬂ,l, ]\/ZH_]_,Q > 0 such that for ¢t € [0, |[{’;|] we have

OHE
dpit

‘ < Pp_(iﬂ)w(pﬁ, 011)[1\//—71'4-1,1 o ’i]\//—ri+1,27‘pw2(pﬁ, —a1)). (4.56)
0 0

Hence for (a, i) € Ay X S? and r, p > 0 sufficiently small, we have

Y, Y p P
HlY Y = Ll p 2/ F
p 95 O(p"w(po,al)(l + krfw (Po’ al)).



Chapter 5

Finite cyclicity of convex graphics
with a nilpotent singularity of
saddle type

In this chapter, we study the finite cyclicity of convex graphics with a nilpotent
singularity of saddle type. In §5.2, we discuss the generic properity of the graphics.
We claim the main theorem in §5.3. The finite cycilcity theorem is proved in §5.4
and §5.5. In proving the finite cyclicity theorems on graphics of saddle as well as
elliptic type, we will have to calculate the derivatives of regular transition maps,

so we begin with the preliminaries on derivatives of regular transition maps.

5.1 Preliminaries on derivatives of regular tran-
sition maps

First we recall briefly the formula of [ALGM].
Proposition 5.1 (ALGM). Consider the vector field
0 0
X = — — .

Let £ = {(z,9) = (fi(s),01(5))} and & = {(z,9) = (fa(s), 92(s))} be two arcs

transverse to the same orbit. Let R(s) be the transition map from ¥ to &. Then

! ——A(S) ex o 0
R(6) = 3 p( /0 di X(ry(t))dt) (5.2)

61
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where T(s) is the transition time from (f1(s), g1(s)) to (f2(R(s)), g2(R(s))) along
the orbit y(t) starting at (fi(s), g1(s)) fort =0 and

Ay — | PUEha(s) £
Q(f1(s), 51(s)) g1(s)
Z(g) _ P(f?(‘i)ag2('%)) fé(f)
Q(f1(3), 92(3))  92(5)

It is not easy to use Prop. 5.1 to calculate the higher order derivatives of a

regular transition map. The following proposition will be very useful.

Proposition 5.2. We consider the transition map R(z) of the vector field (5.1)
between two arcs without contact: £ = {(z,y) = (z, f1(z))} and T = {(z,y) =
(z, fa(z))}, in a region where Q(z,y) # 0. Let © = x(xo, Yo,y) be the solution with
initial condition (%o, Yo, Yo) = To. Then

dR /fz(R(mo)) PQ— PQ;) d
—(x9) = ex - 2
( 0) p P ( Q? z=z(zo,f1(z0),v) 4

de‘o 1(p)

1- (5) (20, f1(w0)) i (o)
1— (&) (20, fo(R(@o))) f3(R(ao))
Formulas for the first and second derivatives are given in the particular case where

2o =0 and P(0,y) = 0. Let y; = f;(0).

RO =e ([ E0,0d) (5.4)
y1
1 J / / PE ! PID
#0 =rO |2 (£0RO (Z) 0w- 10 (Z) 0m) -
Y2 P” Pl / Y PI 5.5
+/y1 (5(0,.@/) —2 Zg% (O,y)) exp (/yl 02 dz) dy]-
Proof. We transform (5.1) into the equivalent differential equation
s (5.6)

dy  Q
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The solution is £ = z(zo, fi(70), y) with initial condition z(zo, f1(z0), f1(T0)) = Zo.
We have that R(zq) = z(zo, f1(20), f2(R(z0))). Moreover
0 Ox 0 0z

% 3_930 = 0z B_y
0 P(x(mﬂafl(mﬂ)vy)ay)

= 5.7
0z Q(x(a?o’ fl(m()),y)sy) ( )
_PQ-PQ, 0z
- Q2 8:1:0’
from which

oz /y P'Q — PQ )

Sl e = 5.8

O eXP( f1(zo) Q? : o

follows. Hence we can rewrite

dR f2(R(zo)) P'Q - PQ
= e [ () g
To f1(zo) z=x(zo,/1(z0),¥)

1- (5) (@0, Fi(z0)) fia0) (5.9)
1- (g) ($0af2(R($0)))fé(R($0)) '

The second derivative of R is most easily calculated from this formula. However

the general formula is very long. In the particular case 2o = 0 we get (5.4) and

(5.5) for R'(0) and R"(0). O

5.2 Generic property of the hh-graphic

Graphics through a nilpotent saddle point can be of two types: convex or concave.
We only consider the convex graphics. Let I' be the convex hh-graphic of saddle
type (see Fig. 5.1(a) ). Let &' be a section transverse to the connection I' and
parametrized by a regular C*° coordinate. We consider the Poincaré first return
map

P:¥x—Y

where ¥ C ¥, a neighborhood of I' N ¥'.
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(a) Return map (b) Blow-up of the graphic

Figure 5.1: The Poincaré first return map for the hh-graphic of saddle type

Proposition 5.3. For the convez graphic of saddle type and Va € A, the Poincaré
first return map P(z) is at least C* for z > 0 and

P/(0) = 4* = exp ( / " divX(F(t))dt) | (5.10)

—00

Proof. We start with the system

i =y+ az’
4 (5.11)

g =y(z+e2” +2°h(z)) + ¥*Q(z, y)
where h(z) and Q(z,y) are C*° and Q(z,y) = O(|(x,y)|") for N sufficiently large.
To study the dynamics near the singularity at (0,0), we make the blow-up (3.6).

Let 7 =1 in (3.6), we have

(5.12)

— (3 = @)2” +r0(|(r, 7)|) := Q(r, 7).

System (5.12) has two singular points Ps and P, and both are hyperbolic saddles
(see Fig. 5.1(b)). The eigenvalues at P; are ( 2(21(122;’), V/2(1 — 2a)); the eigenvalues
at Py are (— 2(21(1 ZZ;’), v/2(1 —2a)). Hence the hyperbolicity ratio at Py (resp. Pj)
is o3(a) = 2(1 — 2a) (resp. Ja(a)).

Take sections ©; = {r; = 1o} (i = 3,4), T3 = {3 = —xo} and T4 = {Z4 = w0}

in the normal form coordinates in the neighborhood of Ps and P; respectively. For
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the Dulac maps near P; and Py, we have

1
B 7@ .
+0
Du@) =57 [ea +04(a0)] -
Dsy(r3) = r3°[es + 03(F3)]
o N
where c3 and ¢4 are positive constants and csc5® = 1, and 65,04 € (I§°).
Then we can decompose the Poincaré first return map P as
P=ROE3070_D4 (514)

where T : 74 —3 73 and R : £3 — ¥4 are two regular transition maps in the
normal form coordinates.

Now we use the formula (5.2) of [ALGM] in Prop. 5.1 to calculate the first
derivatives of the regular transition maps in (5.14). For the transition map T along
r = 0 for the family (5.12), in the original coordinates (r,Z), the two sections

become
= {(r,- \/— + 2o + O(|(r, 20)[)}

{(r, 755 — 7o + O(|(r, 20) ")}
Note that for the system (5.12), along r = 0, divX|,—o = —(1—2a)z, and P(0,Z) =

0, so for zo > 0 sufficiently small, by Prop. 5.2, we have T’(O) = 1. Thus we have
T(ry) =14 + O(rd) (5.15)

Therefore, by (5.13) and (5.15), if letting 4 = D3 o T o Dy(&3), then
G4 = B3 + o(%3). (5.16)

To calculate the map R, as in [DER96], [SP87] and [DRS97], we introduce
two auxiliary sections &; = {r; = roo} (i = 3,4) in the normal form coordinates.

Then the map R can be calculated by the decomposition

= R40 o R o R30 (517)
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where Rap : 53 — 23 and Ryg : 4 —» 3, are regular transition maps. Similar

to T (0), for Ry and Ry we have

10(0) = (m2) -

For the transition map R : 53 — 54, note that in this case, in the original

coordinates (r, %),

3 = {(roo, T T 2+ 0(2%) + 10 O(|(r, o))}
S1 = {(roo, — 725 — &+ O(8%) + oo O(|(r, w0) )}

So again by the formula in Prop. 5.1, we have
R (0) = exp ( divX(F(t))dt) .
=T

Note that R is independent of 7g, so

R(0) = lim Riy(0) T2 (0) Ri(0)

roo—0

< liy. e ( f B divX(F(t))dt) (5.19)

roo—0 -7

=t ( /_ " divX(I‘(t))dt).

o0

Thus, by (5.17), (5.18) and (5.19), we have

R(%4) = exp ( / N dz’vX(F(t))dt) F4+ O(E3). (5.20)

— 50

It follows from (5.14), (5.16) and (5.20) that there holds

P8} = exp ( /_ " dz’vX(F(t))dt) 7 b 65)

o0

thus we proved (5.10). O
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Remark 5.4. Prop. 5.3 is true for the hh-graphic of elliptic type(Fig. 5.2).

)3

(a) Return map (b) Blow-up of the hh-graphic
of elliptic type

Figure 5.2: The Poincaré first return map for the hh-graphic of elliptic type

5.3 Main Theorem on the convex graphic of sad-
dle type

For the convex graphic of saddle type, we have
Theorem 5.5. A convex hh-graphic through a triple nilpotent saddle of codimen-
sion 8 has finite cyclicity if the generic hypothesis P'(0) # 1 is satisfied.
For the proof, by changing the vector field X to —X if necessary, we impose
Hypothesis 5.6. The convex hh-graphic with a nilpotent saddle is attracting:
H]: P0)=v"<1. (5.21)

After the global blow-up in §3.1, for the convex graphic through a triple
nilpotent saddle, we get a total of 10 families of convex graphics: Sxhhl, Sxhh2,
.-+, Sxhh10 (see Tab. 3.5). For each family Sxhhi (i = 1,2,---,10), the graphics

fall into three groups:
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e the upper boundary graphic:

Sxhhia (i = 1,2, -+, 10);

e the intermediate graphics:

Sxhhib (z =1,2,---,10) Sxhh9d and Sxhh10d;

e the lower boundary graphies:

Sxhhic (¢ = 1,2, -+ ,10), Sxhh9e and Sxhh10e.

To prove the finite cyclicity of the convex graphic with a nilpotent saddle, we have

to prove that all the graphics listed above have finite cyclicity.

Notation 5.7. For convenience in the notation, in the following sections and next

chapter, let ro, po and yo be positive constants, we will always use

Zz’ ={7‘i=r0}, ’i=1,2,3,4

Hz' =i = ’ i = 17 27 374
{oi=po} (5.22)

Ti = {g‘z = yo}; i = 152

T3 = {g‘t = _yﬁ}a i = 3,4

to denote the sections in normal form coordinates (r;, pi, §i) in the neighborhood of

the four singular points P, (i =1,2,3,4).

We begin with the upper boundary graphics.

5.4 The upper boundary graphic

Proposition 5.8.  For the conver hh-graphics of saddle type, under Hypothe-

sis 5.6, all the upper boundary graphics have cyclicity one.

Proof. As shown in Fig. 5.3, we study the Poincaré first return map defined on the

section Yy4:

P:Yy— ¥4
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(a) Saddle case (b) Elliptic Case

Figure 5.3: Upper boundary graphics of saddle and elliptic type

We can factorize it as
P=Ro @3 o) T43 o @Zl (523)

where ©4 and O3 are the second type of Dulac maps in the neighborhood of P

and Py respectively, T43 and R are the regular transition maps.

At P, the eigenvalues are (1,—1,03(a)), where for a € (—00,0), o3(a) =
2(1 — 2a) > 0. By the normal form discussion in Prop. 4.6, depending on ag ¢ Q
or ag € Q, the vector field near P; has the normal form of (4.8) or (4.9) with
o = o3. Correspondingly, we use 3; (¢ = 1,2,---,N(k)) instead of using «; to

make the distinction, especially 8; = ps — d3(a)gs.

By Theorem 4.14, the second type Dulac map O3 = (&, E3) : 73 — X3 has

the expression

3(rs, p3) =v

_ 5.24
Bs(rs, ps) = ?73(1/,0)(%, p1)) + (:—z)"[yo + 05(rs, P3;w(:—z, —p1))] e
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where 73 (v, w(2, f1)) = SrvPw(E, Bi) and b5(rs, ps, w (72, — 1)) satisfies the prop-
0

erty (4.30). Due to the symmetry, the Dulac map ©4 : 74 — ¥4 has the same

form as of O3 in (5.24).

We calculate the transition T3 : 74 — 73 using the polar coordinates (Z, 7) =

(r cos @, 72sin §) in the chart F.R.. Then we have

(1+sin?8)7 = rcosf(acos?d + sin® 0 + sin§) + O(r?)
(1+sin?6)0 = sinO((1 — 2a) cos?  — 2sind) + O(r)
or

dr _ cos6(acos® + sin® 0 4 sin6) 4
20~ sin 6((1 — 2a) cos? f — 2sin6) 24

Making the translation # = @ + %, then

dr  sinf(asin® @ + cos®d + cosf) 2 7 2
0~ ' cosd 7 ~ +0(r) = f(0 : 5.25
dé rcosf)((l—2a) sin® @ — 2 cos 6) +0(r) = f(O)r + O(r) (5.25)

Note that f(—8) = —f(#), the two symmetric sections 73 and 74 correspond to the
two symmetric positions # = f, and § = —fy. So integrating (5.25) from fy to —,

gives that for v =0

T3 = 74 €xp( f( 0)df) 4+ O(r2) = ry + O(r3). (5.26)

Let
T =030T4500;% (5.27)

Easily we have ﬁ(u, 7s) = v . Now we calculate the first derivative of T}. Note

that by (5.24), we have

0 _ r3\ 7" K
87:3(7‘3,P3) = (‘E) [yo + %3 31Pp3 + 85(r3, p3,w (—3, _ﬂl)):l - (5.28)
3 To To To
For 2, (v, §i4), we have
1

(:_;a) 7 [yo + —T%E%p”:" + 04(rs, pa, (2 —ﬂl))]

51 (v, ) = (5.29)

074
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Hence by (5.27), (5.28), (5.26) and (5.29) we have that T} is at least C* and
T:(0,0) = 1. (5.30)
We calculate the transition map R in the chart P.R.3. For its first component,

we have R;(v,93) = v. For the second component R;, as in Prop. 5.3, by using

the auxiliary sections and formula of [ALGM] in Prop. 5.2, we obtain
R;(0,0) = ~*. (5.31)
It follows from (5.23), (5.30) and (5.31) that we have
det P(0,0) = ~*.

By Hypothesis 5.6, v* < 1. Hence the first return map P has at most 1 fixed point,
i.e., Cycl(Shhia) <1,i=1,2,---,10. O

Remark 5.9. In the proof we only use the fact 1 —2a > 0. So for the elliptic case
with a € (0, 3), under the assumption in Remark 5.4, the same proof gives that the

upper boundary hh-graphic of elliptic type has finite cyclicity 1.

5.5 Intermediate and lower boundary graphics

Let I' be any intermediate or lower boundary graphic of the 10 families. To study
its cyclicity, as shown in Fig. 5.4, take sections II3 and II, (as defined in (5.22))
in the normal form coordinates (r;, p;, %) (¢ = 3,4). We are going to study the

displacement map

L: Iy — 13 (5 32)
L=R'-T '
or the displacement map
L H3 —_ H4
(5.33)
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where R : [I3 — Il is the transition map along the regular orbit in the nor-
mal form coordinates, and T : I, — II3 is the transition map passing through
the blown-up singularity. Then by the derivation-division method introduced by
Roussarie in [R86], we study the number of small roots of L = 0 or £ = 0. The
maximum number of roots bounds the cyclicity.

We begin with the transition map R. Obviously R; (v, §3) = v. For the second
component Ry(v, 73), it is “almost affine” (the two passages near P; and P, have a

“funneling effect” [R98]).

Proposition 5.10. For any k € N and Vag € A = (—3,0), there ezist Ay C A,
a neighborhood of ay and vy > 0 such that ¥(a, i) € Ap X S? and Vv € (0,11),
Ry(v,71) is C* and

(1) Ifan ¢ Q
Ry (v, §13) = mano(v)(£) ™% + (v* + O(v 3+Zo @ OF + O gEHY
j=2
(2) Ifap €Q

k
Ry (v, 33) = a0 (v, w(,—B1)) + D 1ai(, w(—— —B1))is + O(35™)
i=1
(5.34)

where

14

Va0 = maa(v) (;;) - + k3o (7" — Lw (;a ,—B1) + k30 ( P2, —ﬁl))

4
. = v v
Yas1 =7+ O(WPPwB(—, 1) In—)
y Vg

ry = O(FUHEDeH IS Z _gym 2} 22
g0 Y

Also Ry (v, §is) is C* and has precisely the same form as Ry.

Proof. We limit ourselves to the second case: ay € Q. Decompose the transition

map R as

R = Azl OR34 OA3
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Figure 5.4: Transition map for the intermediate hh-graphics of saddle type

where A; : I1; — X, (j = 3,4) are the two Dulac maps of the first type in the
normal form coordinates near P; and P, respectively and R4 : 33 —> X4 is the
regular transition map.
(1). The Dulac map A; and Ag:

The systems near P; and P have the form (4.8) or (4.9) with 0 = o3(a). By
Theorem 4.11, we have (i = 3,4)

di(V, g’l,) =W

a3 (5.35)
Di(v,5) = mv (%, B)) + (&) i+ (s G0 w(5, A1)

where 7; and ); have the same property in (4.13).
(2). The transition map Rss: it is the composition of the regular transition map
and two normal form coordinate changes on the section o3 and o4, so we can write

it as
Ran(v,33) =v

k
R3ia(v,§3) = mau(v) + Z mau(v)G5 + O(75 )

=1

(5.36)

where m340(0) = 0 and ma41(0) = v* + O(v).
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Let

v

9s= () [Ds = mro(Z. )] (5.37)
then by (5.35) and (5.37), we have
Ja = Ga + ¢4(V,w(5"0, —p1), Ja)- (5.38)

Let
. P - v L
Ya =Yg + ¢4(V’w(u_0’ —01), §a)
be the inverse of (5.38). Then ¢, has the same property as of 1. So if we let

Oy = (7';)—53374, then for the y—component of A;?, we have
= . N i v =
‘D41(V7y4) :y4+¢4(7/,w(y_0,—,81),y4)- (539)

where ¢,(v, w(;’—o, —01), Ua) has the same property as of ;.
Hence, for the second component of transition map R, by (5.35), (5.36) and
(5.39), a straightforward calculation gives the result. a

The following proposition will serve to treat the intermediate graphics while

the lower boundary graphics will require ad hoc methods in each case.

Proposition 5.11. Assume that we have a convex hh-graphic T' of saddle or el-

liptic type shown in Fig. 5.4. Let
T:1I, — 13

be the transition map along the connection in the chart F.R.. Then if T satisfies

one of the following conditions:
e T is the identity while the graphic is generic (i.e., v* < 1);
o 75(0,0) is sufficiently small or T5(0,0) is sufficiently large;
o T5(0,74) is nonlinear of order n,

then I' has finite cyclicity.
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Proof. We consider the displacement map L or its inverse defined in (5.32). By
Prop. 5.10, the second component Ry(v,§3) of R is almost affine, yielding the
results. I has cyclicity < 1 in the first two cases and cyclicity < n in the third. [J

It seems a priori difficult to show that a transition map is nonlinear. For
all the cases, we will deal with families of graphics. This allows an interesting

observation which we state in the following proposition.
Proposition 5.12. It is possible to choose normalizing coordinates near Py and

Py such that §;(0, p;,y;) (i = 3,4) is analytic.

Proof. We modify the normalization process. For both the saddle or elliptic cases,

the vector field near P; can be written as
o=
y = —03 (a’)y -+ h(a'a p’) T P y)
where h(a, i, 7, p,y) = o(|r, p, y|) and for both the saddle A = (—3,0) or the elliptic
A= (0,%) case, we have o3(a) = 2(1 — 2a) > 0.
Let us consider (5.40) for 7 = 0. Then we get
p =-p
:.t-/ = _03(a)y + h(aa iy 0, Ps y)

(5.41)

For the subfamily (5.41), the tuple of eigenvalues (—1, —o3(a)) is in the Poincaré
domain, the subfamily has no (resp. one) resonant monomial when o3(ao) ¢ N

(resp. o3(ap) € N). Hence there exists an analytic map

Y =y+4(p) (5.42)

which brings family (5.41) into the normal form

=P

g (5.43)
Y = —03(a)Y + k3p™



76

where p3 = o3(ag), and, if o3(ag) ¢ N, then k3 = 0.
Applying the map (5.42) to the original family (5.40) brings the system to
the form
r =¥
Y =—03(a)Y + k3p” +rH(a, 5,7, 0,Y).

For system (5.44), by Prop. 4.6, ¥(a, 1) € A x V, there exists a C¥ map of the

form
g =Y + Ta("‘a 2, Y) (545)

which brings system (5.44) into the normal form (4.8) or (4.9).
Combining the transformations (5.41) and (5.45) together, we conclude that
V(a, ) € AxV and for v > 0 sufficiently small, a map bringing the original system

(5.40) to normal form has the form

J=y+o(r,py)

with ¢(r, p,y) of class C* and ¢(0, p, y) analytic. O

Corollary 5.13. Assume that Vag € A and jig € V(V C S?), we have a family
of graphics of the saddle (convex) or elliptic type which only differ by a segment
joining two nodes (Fig. 5.4). Let I be any intermediate graphic in the family.
Then V(a, i) € A x V, the normal form coordinates s, §s can be taken so that
7:(0, p,y;) is analytic. Take sections I3 and Il in the normal form coordinates
in the neighborhood of P; and P, respectively. Let I' N1y = (0,7}). Consider the

transition map associated with the graphic I

T: I — 115
(v, 4a) ¥ (v, Ta(v, Ja)).
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IfV(a, ) € AxV, T3(0,4) is nonlinear in the neighborhood of §;, then its analytic
extension in its extension domain I in R is nonlinear at any particular value of

Us €T for (a, ) € AX V.

Proof of Theorem 5.5

There are 10 families of convex graphics of saddle type (Table. 3.5). We have
proved in Prop. 5.8 that all the upper boundary graphics have finite cyclicity, so we
need to prove that in each family all the intermediate and lower boundary graphics
have finite cyclicity.

For each family, let I' be any intermediate graphic and let 7' : II;, — II3
be the transition map associated with the graphic I" in the chart F.R.. Then by
Prop. 5.11, to prove the finite cyclicity of I', we only need to verify that for v = 0,
the map T or its inverse satisfies one of the three conditions of Prop. 5.11. For the
lower boundary graphic, a small adaptation is necessary since 7 may not be C*.
Thus for each lower boundary graphic, we will study the number of roots for the
corresponding displacement map L = R~ — T or £ : R — T~ ! defined in (5.32)
or (5.33). Usually if the criterion that T is nonlinear is used, the starting point is
chosen near the lower boundary graphic.

The map R satisfies Prop. 5.10 and R, is almost affine. For the transition
map T, since r = 0 is invariant in the chart F.R., so 71(0, §3) = 0. We will go over
all the 10 families of graphics by considering the second component T5(0, §i3) or its
inverse.

For each family of the graphic Sxhhi (i = 1,2,---,10), we use V; C S? to
denote the set of i in which the family Sxhhi exists.

(1). Family Sxhhil

Family Sxhhl has a lower boundary graphic Sxhhlc which passes through a
hyperbolic saddle point in the chart F.R.(Fig. 5.5(a)). Let A¢(Zio) be the hyper-
bolicity ratio at this point. Since in the chart F.R., r = 0 is invariant, by a linear

transformation and C* normal change of coordinates, we can bring the system in
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the neighborhood of the saddle point into a normal form.

Take sections 31 = {§ = 1} and X3 = {# = z} in the normal form coordi-
nates, let A = (d, D) : &; — X, be the transition map. Then d(0,.) = 0, and
for r = v = 0, D is the Dulac map in the neighborhood of the saddle point. By
Prop. 4.2 and Prop. 4.5, for v = 0, there exists Vjy C Vi, a neighborhood of [,
such that V(a, i) € A x Vi, D can be written as

_ TMNB) By + ¢o(v, if g # 1
D0, 7) = TN (Bo + ¢o(v, z)) if Ao # (5.46)
BorZ + apiF0[1 + -+ ]+ ep®w[l + -]+ -+ if X =1

where 3, > 0 constant, ag; = A1) — Ao and @ = w(Z, ag1 ().

(a) Family Sxhhl (b) Family Sxhh2

Figure 5.5: Transition map T for the family Sxhhl and Sxhh2

Let Ty : IIy — 4, To3 : B9 —> II3. They are the compositions of normal

form coordinate changes and regular transition maps, so V(a, 1) € A x V}y, we have

Tioo (v, Ga) = Maoo(¥) + maor (v)Js + O(%)

(5.47)
Tos2(v,§) = moso (V) + mos1 (v)§ + O(F?).

where mygo(vp) = 0, mg30(vo) = 0, and mag; (0)mg31(0) 7# 0. Then for T', we have

T = T3 o D o Ty, (5.48)
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We deal with three cases:

(1.1). If A(fo) # 1.
By (5.48), (5.46) and (5.47), a straightforward calculation gives

Ty(0,50) = E4(9) + (w) Ea(v) + 5) P [1 + Go(os 7]

where £;(0) = 0 (i = 1,2), m(v) = mjymos1- So for the displacement map L
defined in (5.32), its second component becomes
Ly 1) = rso(nw(, —0)) + [ + 0P (%, —B1) In 2)] s + O(F)
~[61) + M) E) + 5@ (1 + o, 7)) |

Then
Ly di) =% +0(vmun(Z,—f)n %) +O0(@)

=i (v) (€2 (v) + Ga)* ! [1 + 1 (v, ?34)]
So, for (a, i) € Ay x Vio and for v > 0 sufficiently small, in both cases Ag > 1 or
Ao < 1, L (v, §a) # 0. By Rolle’s theorem, L(v,§4) = 0 has at most one small root
in the neighborhood of §, = 0, i.e., Cycl(Szhhlc) < 1.

Note that for v = 0 and V(a, 1) € Ay X Vo, we have
T3(0,§s) = m(v)fs® + o(F°)

So in both cases Mg > 1 or Ay < 1, T5(v, §4) is nonlinear in the neighborhood of
74 = 0, by Prop. 5.11, Cycl(Schhlbd) is finite.
(1.2). If A(fip) =1 and a # —1.

By (5.48), (5.46) and (5.47), for T3(0, §4), we have

TZ(O’ ?’;M) = M410Mp31001 [54&) -+ .- ] + m401m031ﬁ01 l:g4 gl :| (5 49)

+mM3 1 Mo31 Qo2 [ﬂgw S ] + O(42).

In this case, we have to calculate the first saddle quantity of the saddle point.
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Lemma 5.14. For the system (3.10), if a # —3 and the saddle point has hyper-

bolicity ratio equals to 1, then the first saddle quantity equals to
2a(a — 1)(1 + 2a)?

CHig a(da — a2, — (1+ 2a)2ﬁ20'u30. ol
Proof. Assume that we have system
T = z+ f(z,
flz,y) (5.51)

y =-y+9(z,y)
which has a saddle point with hyperbolicity ratio 1, then by the formula in [JR89],
then the first saddle quantity equals to
Qg2 = fz:z:y = gzyy e fmzfa:y ik ga:ygyy- (552)
Let the saddle point be (Zo, 7). After translating the singular point to the
origin, the system can be written as

& =2aZof + § + 2ad?

. (5.53)
g = Gof + (Zo + fiz0)§ + 29
Since A(fip) = 1, which is true if
_ ;o " 2t s
lu’l - 1 + 20’,”’2/“’3 (1 + 20’)3/“‘ ?

then by (1 + 2a)Z + fizo = 0, we have

= =2
R | A .. . |
i 1+ 20’ 4 s (1+2a)?

After a linear transformation we bring the system at the saddle point to

u = u+ f(u,v)
v =—v+g(u,v)
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and Ay = a(4a — 1)22, — (1 + 2a)*fiz0 > 0. So by (5.52) we get the first saddle
quantity gy in (5.50). O

End of proof for Sxhhl.

If fizp = 0, since a # —3, so iy = 0. Then system (3.10) is symmetric with
respect to the y—axis, T5(0, §i4) is the identity. By Prop. 5.11, Cycl(Szhh1b) < 1.
If figo # 0, by (5.50), the first saddle quantity ag # 0, so Ty (0,%4) # 0, thus 75 is
nonlinear in 4. By Prop. 5.11, we have Cycl(Szhh1b) is finite.

Now we deal with the lower boundary graphic Sxhhlc. By (5.48), (5.46) and
(5.47), we have

Ly(v, 1) = &1(v) + b [u + - -] + Borfja + boa[Faw + <+ -] + O(%3) (5.54)

where 51(0) = O(Z = 1, 2) and 6!02 = %2 75 0.

Similar to the proof in [R86] for the 3—codimension case, by the standard
derivation-division method, we can prove that V(a,i) € A x Vijp and v > 0

sufficiently small, L, = 0 has at most 3 roots. Thus we get Cycl(Szhhlc) < 3.

For the case fisp = 0, system (5.53) is symmetric with respect to the y—axis,

0 m401(0)mMo31(0) = and [y = 1. Thus (5.54) can be further simplified to
Ly(v, a) = E1(v) + Gon[§a@ + - -] + Porfis + O(§30)

where By (0) = (v*—1) # 0. The derivation-division method ensures that V(a, i) €
Ag x Vap, and for v > 0 sufficiently small, L = 0 has at most two roots which gives

Cycl(Szhhlc) < 2.
(2). Families Sxhh2 and Sxhh3

For the family Sxhh2, system (3.10) has a semi-hyperbolic saddle on Sxhh2c
(Fig. 5.5(b)). Consider the map A = (d, D) : £; —» ¥,. In this case for v =0, D
is the stable center transition near the semi-hyperbolic saddle, then by [DRR94],
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Viy,ip € N, Y(a, i) € Ag x Vo and v > 0 sufficiently small, we have

9D
oih

(v, #) = O(z%). (5.55)
So for T3, by (5.48) and (5.55)we have
T2I (Oa g4) —0

which gives Cycl(Szhh2c) < 1 and the nonlinearity of T3, hence the finite cyclicity
of Cycl(Szhh2b).

By changing (z,t) — (—z, —t), similar to family Sxhh2, the result hold for
the family Sxhh3.

(3). Families Sxhh4 and Sxhh6

For the family Sxhh4, Sxhh5 and Sxhh6, the corresponding lower boundary
graphic has a saddle connection &S, (Fig. 5.6). At S; and S, the hyperbolicity

H3 — \/—P—z —2a4/—E2
[ a
Sli)\lz'—_—-; 822)\22—_.
2“\/_%2 fis + ¢/ —E2

Note that if A\;As = 1, then fi3 = 0, this is just the case of family Sxhh5. So we

ratios are

first consider the case A;\y # 1 when we have families Sxhh4 and Sxhh6. Easy
calculations show that the family Sxhh4 exists if and only if

Vi={f € S? =0,/13 > 0, i > ala — 1)jz3}.
Since system (3.10) in invariant under the transformation
(—z, —t,—[3) — (z, t, [3) (5.56)

so we only need to study the family Sxhh4 as long as we do not use v* < 1. For
it € Vi, we have A\j Ay < 1 and Ap < 1. Let iy € V4, for the family Sxhh4, we have

to consider two cases:

(3.1). Ao < i A1 75 1 and Ag < 1.
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We first consider the lower boundary grahic Sxhh4c. In the chart F.R., in the
neighborhood of 8; and Ss, take sections &; = {y; = 1} (i = 1,2), T10 = {z1 = 1}
and ¥y = {z; = —1}, and for : = 1, 2, let

be the transition map in the neighborhood of the saddle S;. Then, d;(0,.) = 0 and
for v = 0, D; and D, are two Dulac maps in the neighborhood of S; and S, on

r=0.

(a) Family Sxhh4 (b) Transition maps

Figure 5.6: Transition maps for the family Sxhh4

Instead of considering the displacement map L, we consider the displacement

map

where T, is a regular transition map and T4s = T3 0 Ro Ty, is the composition

of two regular transition maps and a C* “almost affine” map R. By [R86] and
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[Mou90], there exist Vjo, a neighborhood of figp such that V(a, i) € A X Vi, there
exist C* changes of parameters on each section such that for the components of L,

we have

T /) (5.58)
Dl(V, i’]) = féi\l (ml E ¢1(V5'%1))7

D, (v,&2) = 8" (ma + (v, 52))
where Ay = £ > 1 for i € Vj, and &(0) = 0, m; > 0, ¢; € (I§°) (i = 1,2). Let
T = %1, X = #; + &. Then for the map L, we have
La(v, ) = £ (my + §1(v, ) + E1(v) — X2 (ma + 6 (v, X)).
So
Ly(v,2) = Mz Y (my + d1(v, 7)) — XX (my + $1 (v, X))
where ¢1, 62 € (Ig°).

=
Zeroes of L,(v,z) are the same as zeroes of:

Tl a) =l Dt )= (ij) ST RS g+ DX

where 7y, 7he > 0 and ¥y, 1y € (I).

Then

—n R A3 ,\1 1 )\3 Az=M

Ty(v,2) = i + (1) — | (52) 2L B g+ a0, X))| . (5.59)
Al Ar—1

Since A\;Ag < 1, hence \; < A3 thus for (a,) € Ag x i € Vi, and for v > 0
sufficiently samll, fg(u, z) # 0, yielding a maximum of two zeroes of L, hence

Cycl(Szhhdc) < 2.

For the intermediate graphics Sxhh4b near Sxhh4c, as shown in Fig. 5.6,
the transition map 7' defined in Prop. 5.11 associated with the graphic Sxhh4c is
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the composition of three regular transitions and two Dulac maps. By (5.58), a

straightforward calculation gives
T3(0,4) = m(0)73"* + 0(73*)

where m(0) # 0. So for v = 0 and V(a, i) € Ag X Vi, T2 is nonlinear. Thus by
Prop. 5.11 the graphic Sxhh4b has finite cyclicity.

(3.2). M=1, <1

Let fizp € Vi, then by Ai(fo) = 1 we have jigo = —qy5ay7Hi30; Fiso > O
Therefore the hyperbolic ratio at S, is A2(fie) = —75; € (0,1) (this case can

happen only when a € (—3%,0)).

This case is in fact similar to the degenerate and non-trivial hyperbolic poly-
cycle with two vertices considered in [Mou94]. As shown in Fig. 5.6, we have to
consider the cases & > 0, & < 0 and & < 0, & > 0 separately. For the other
two cases, Cycl(Szhhdc) < 1. Here we only give a brief proof for the case &; > 0,
£y < 0, details see [Mou94].

Consider the displacement map

Z : ilo — Y)z
E=Tuh; -~ BT
By using the asymptotic expansion of [R86] for the composition of the Dulac map

near S; and a regular transition map, for zg(v, 1), we have
Ly(v,y) =& +onlyw+ -]+ +any@ + ]+ = Y2 (my + 6,(1, Y))

where y = 7, and Y = §j; + &1; ap2(0) > 0.
Let y = t&;. The study for y small corresponds to t € (0,%,). We will prove
that there exists t such that for i € Vg and v > 0 sufficiently small, Lo(v,y) has

at most 2 zeroes t € (0,1y). Indeed, as a function of ¢, Eg(u, y) = 0 is equivalent to

0= 5251_)‘2 — Mg + amé{_“"l_htw(t)[l “+ - ]

+(a028~}—/\2 -— )\zmg + améé_’“w(él))t[l + - ] -+ O(tz)



86

which has the same form as the expressions considered in [R86]. Note that maAs >

0, so we have the non-degeneracy condition
1% A—Ag—x
Qg2g] " — Aoy + agify 2W(E1) #0

for i € Vi and v > 0 sufficiently small.

For the larger zeroes, note that

Ly(9) = 97| = X1+ 29 (ma + (1)) + O()]

does not vanish for ¢t > ¢y and for i € Vi, v > 0 sufficiently small. Hence f,z(y, v)
has at most one zero for ¢ > t;. Therefore we have Cycl(Szhhdc) < 3.

For the intermediate graphic Sxhh4b, the corresponding transition map 1" is
the composition of the above two Dulac maps and three regular transition maps,
by (5.58), we have that for v = 0, T5(0, Z4) is nonlinear hence by Prop. 5.11 we
have Cycl(Szhhd4bd) is finite.

(4). Family Sxhh5

First note that, family Sxhhb exists if and only if 7 = (0,1,0). Then system
(3.10) in the chart F.R. is symmetric with a center (Fig. 5.7). For the intermediate
graphics, easily we see that for » = 0, the transition map T is the identity, by
Prop. 5.11, graphic Sxhh5b has finite cyclicity.

Now we consider the graphic Sxhh5c. The hyperbolicity ratio A; and A,
satisfy A\; = -—% >1,=—-2a<1and A\; Ay =1.

By Prop. 4.2, the Dulac maps defined in the neighborhood of the two saddles

can be written as

(5.60)

where ¢;(v,z;) (i = 1,2) satisfies (I$°) for (a, i) € Ay x Vi1, v € (0,14) and z;

sufficiently small.



Figure 5.7: Transition map 7T for the family Sxhh&

Consider the displacement map

L _21—)520

L=Tpol —Zg_l oT3 0 R 0Ty,
where

° T12 iilo = i20,

Tiaa(v, 1) = Mo (v) + (1 + O))n + O(33).

5] T14Z§1 —'-)H4,

Tia(v, 1) = muso (V) + mua (v)z + O(a3).

e R71:II; — I3, R satisfies Prop. 5.10, and

By (4, §a) = man(¥) + (% +OW))iis + O@)

87

(5.61)
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L 732 I3 — EQ,
T22(v, §i3) = mazo(v) + maz (¥)Fs + O(F3)-
where 1321 (0)m141(0) = 1 because of the symmetry of the system (3.10).

Then a straightforward calculation gives

Ly(v,z1) =&1(v) + 23 (14 ¢11 (v, 71))

5 _ (5.62)
—[E2(v) + 7 (V)21 + O(@)]*2 (1 + 631 (v, 21))
where
51(1/) = mlzo(l/)
£2(v) = mag(v) + mawn(v) + —*m140(1/)
7*(1/) 2 m321(V)m141(V) mp: O( )
with ¢11, ¢21 (Ig°)- Also 5 *(0) =
By (5.62),
L’2(1/,.’.E1) = )‘lxi\l_l(l ] 512(1/5 ml))
[0 +7 @)1+ 0D 7 0) + Bl )
where ¢y, ¢gy € (I§°).
L% (v, z1) has the same number of small roots z; > 0 as
(A] 1)A2
L1 (v, z1) (>\1>\2)1 2z 72 (14 dia(v, 11)) (5.63)

~[£:) ~ 7 @) + 0D (7 T (v) + Basl, ).

(A1—1)Ag
Let ;= ——L For the term z, '~ , we make the following development

(A—1)x o
1—Xg

z 2 =2 =xi(1+ Bw)
where @ = w(zy, 51).
By (5.63), we then have

Lya) =) TR (1= By + Bl — B)@)(1 + Bua(v, 7))

e _ (5.64)
—[77% + O(@)](1 + ¢4 (v, 21))
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which has the same number of zeroes as

Lyg(v,z1) =(1- P+ Bi(1— 1))

—[7*T% + O(z1)] (:2‘_¢ 4(¥, 1))
(M) ™% (1 + bya(v, 21)) B
=1 =B+ 51— B)@) = [y(¥) + O@) + Oz)](1 + b15(v; 21))

=1-B -4 (@) +0W) + (1 - B)@+O(z1)
(5.65)

Let L23 —3-2-, then

1- 06 —'AY*_(V) +0(v) +B-11-F) - O(il'l).

w

L23 =

Derivating Los and letting Loy = @’z +ﬂ ' Ly, then
Loy = [=1+4 B +4*(v) + O(¥)] + O(=1).

Since 7*(0) = ¥* # 1, then V(a, 1) € Ay x Vs and for v > 0 sufficiently small,
we have that L4 does not vanish. So L = 0 has at most 3 roots which gives

Cycl(Sxhh5¢)< 3.
(5). Families Sxhh7 and Sxhh8

As shown in Fig. 5.8(a), there is a saddle point and an attracting saddle node

on the lower boundary graphic Sxhh7c. In this case

={peS? |l =0,1= \/—%,ﬂ3>0}.

The hyperbolicity ratio at S becomes Ay(fi) = —a < 1.
We first consider the lower boundary graphic Sxhh7c, as shown in Fig. 5.8(a).
We study the displacement map

L: Yo — Ez
_2 OTu = Tm

|

where
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(a) Family Sxhh7 (b) Family Sxhh8

Figure 5.8: Transition map T for families Sxhh7 and Sxhh8

T : L0 — 2o is regular transition map,
Ti22(vy 1) = &1 + mays + O(yl) (5.66)
where m; # 0.

Ay ¢ 99 —> %o, the Dulac map in the neighborhood of S; which can be
written in the form of (5.46) with A = Ay < 1.

ﬁg is the transition map which can be decomposed as
Ti;=Ts0R1oTyy oA,

where A; : ¥ — X is the transition map with inverse time near the
saddle node in the normal form coordinates and it is flat; Tq4 : £ — T4
and T, : II; — ¥, are regular transition maps and R is almost affine which

satisfies Prop. 5.10. All together we have

Tia2(v,11) = &2(v) + 6(v, 11) (5.67)

with ¢(v, ¢) is C* and flat in y;.



) |

By (5.66), (5.46) and (5.67), for the second component of the displacement
map L, if we let Y = &; + myy; + O(y?), then we have

Lo(v, 1) = &2(v) + d(v,y1) — P (Bo +$0(V: ¥))

where (3 # 0 and ¢ € (I$°).
A first derivation of Ly(v,y1) gives

Lo(v,11) = ¢' (v, 1) — dama Y271 (8o + 6, (1, Y))

which has the same number of small roots y; > 0 as

Loa(v, 1) = ¢' (v, 1) Y™ = Aamy (Bo + 6, (v, ).

Since Aam1fy # 0 and ¢(v,y1) is flat, so Loy (v,y1) # 0 for (a, ) € Ag x Vs and
for v > 0 sufficiently small. Therefore Cycl(SzhhTc) < 1.
For the intermediate graphic Sxhh7b, we consider the inverse of T, T :

IT1; — I14, and decompose it as
T_l = 714 OEl OTZI OEZ 0732

It follows from (5.66), (5.46), (5.67) that we have B—%Tfl(g]g,O) — 0. Again by
Prop. 5.11, Cycl(Szhh7b) is finite.
The finite cyclicity of family Sxhh8 follows from the invariance of system

(3.10) under the transformation (5.56) and the finite cyclicity of family Sxhh7.
(6). Families Sxhh9 and Sxhh10

As shown in Fig. 5.9(a), the family Sxhh9 has two subfamilies of graphics:
intermediate graphics Sxhh9b and Sxhh9d; two boundary graphics Sxhh9c and
Sxhh9e.

First note that the graphic Sxhh9c that passes by an attracting saddle node
has the same structure as of the graphic Sxhh2c, so we only need to consider the
lower boundary graphic Sxhh9e. As in Fig. 5.9(a), let the hyperbolicity ratio of

the saddle point be A;. Then for graphic Sxhh9e, we consider two cases:
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N

(a) Family Sxhh9 (b) Family Sxhh10

Figure 5.9: Transition map T for the families Sxhh9 and Sxhh10

(6.1). \; #1

For graphic Sxhh9e, the corresponding transition map can be factorized as
T = ng o Zz O le ®) Zl o) T41. (568)

where A; : ¥; — X is the transition map in the neighborhood of the saddle
point, its second component has the form given in (5.46) with A = A;. The map
Ay 1 Y99 — Yo is the central transition map in normal form coordinates in
the neighborhood of the attracting saddle node, its second component satisfies
Ds(v,1y5) = moys with mg — 0. Ty and To3 and Ty, are regular transition maps.

A straightforward calculation gives that
To(v, §s) = &1(v) + meY M [1 + 6, (v, Y)] (5.69)

where Y = &;(v) + mafs + O(42) with ms # 0, my sufficiently small and £;(0) =
£(0) =0, ¢, € (If).
Then for the displacement map L defined in (5.32), we have

Ly (v, §a) = &1(v) + moY ™ [1 + 6, (v, V)] = [10(v) + m1(v)3a + O (1))
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where ~,(0) # 0.

A first derivation gives
Ly, §a) = MmoY M1+ 6, (1, Y)] = [ (v) + O(d)].

If \y > 1, Ly(v,44) # 0 which gives Cycl(Szhh9e) < 1. For the case A; < 1,

L4(v, §s) has the same number of small roots gy > 0 as

[n(v) + O(g) Y™
1+¢,(v,Y)

Loi(v, §s) = Mymg —

Since

_ [B@) + men () + O@I(L + 6 (1Y) — (n + O@) Y 3
Yh(1+ ¢y, (v, Y))? .

Lf?l(% @74) =

where all,Y%L € (Ig°), so with 41(0) # 0 we have Ly (v,9s) # 0 which gives
Cycl(Szhhe) < 2.
For the intermediate graphics Sxhh9d, note that T, can be written as

Ty(0, §a) = *mo@y* + o(f2")

which is nonlinear, hence by Prop. 5.11, Cycl(Szhh9d) is finite.
(6.2). ;=1
In this case, we consider the displacement map
T3 —S ¥
L=A;0TpoA —TyoR 10T

Note that the hyperbolicity ratio A; = 1, so by using the asymptotic expansion in
[R86] for the map Ay 0 T3 0 Ay, we have

Ly(v,31) = moéa(v) + mo [0101[3315‘1‘ s ] opafr 4]+ ]
—[E2(v) + maz1 + O(2?)]

= mogl(l/) - 52(1/) +m00101[.’171(_/.7+ & ] +m1[.’1’,‘+ s ] + .-
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where ag; = A (V) — 1, @ = w(z1, ao1) and my, age(0) # 0. Since ™M (0) = my —

moage # 0, the derivation-division method gives that Cycl(Szhh9e) < 2.

For the intermediate graphics Sxhh9d, the transition map T" along the graphic
can be factorized as two regular transition maps and a central transition map,
obviously, T3(v,%s) has a first derivation which can be sufficiently small, thus
Cycl(Szhh9d) is finite.

Therefore, the family Sxhh9 has finite cyclicity.

The finite cyclicity of the family Sxhh10 is similar to that of the family Sxhh9
by reversing time.

Altogether, we obtain that all the generic convex graphics with a nilpotent
saddle point of codimension 3 have finite cyclicity, thus completing the proof of

Theorem 5.5. O



Chapter 6

Finite cyclicity of graphics with a
nilpotent singularity of elliptic
type

In this chapter, we study the cyclicity of a graphic through a triple nilpotent elliptic
point. There are three types of graphics with a nilpotent elliptic singularity: Epp,
Ehp and Ehh. For the pp or hh-graphic, we assume that the graphics are generic.
For the hh-graphic, we assume that the nilpotent elliptic point is of codimension

3. Each graphic can be concave or convex, but both cases share identical proofs.

6.1 Finite cyclicity of pp-graphics of elliptic type

In Table. 3.2, we have three families of pp-graphics of elliptic type: Eppl, Epp2
and Epp3. For all the pp-graphics, they do not have a return map.

For the passage near the blown-up shpere, on 7 = 0 in the chart F.R., the

|

Vi={ic 82];11 =0, > 0},

system has the form

SIS

= fis + § + aT?
fo ¥ (3.10)

= i1 + (713 + T)7.

<

So, if denote

then by the result in §3.2, the pp-graphics exist if and only if i € V;. Note that

95
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if fi; = ji; = 0, an attracting or repelling saddle-node exists on the passage § =0

depending on the sign of fi3, so we divide V; into subsets
Vi ={ﬂ€VIl—€0Sﬂ3§€o}
={peVi| $<m<1} (6.1)
—{MEVI’—1<M3 =5
where €y € (0,1) and such that V;, UV;, UV;, = V;. We will determine ¢, later.

The following proposition will be important in proving the finite cyclicity of

pp and hh graphics of elliptic type.

Proposition 6.1. Let Sy be the second component of the transition map S :
II, — Iy in the normal form coordinates. Then ¥(a,f) € A XV, andv > 0

sufficiently small, we have

25, T3
o 0 0)=ex —I—O
ol ( ) p (@—2—) ’ (pO) ] (6 2)
925 _mig mig .
0.0~ gy 1] 0
Proof. The transition map S can be factorized as
S = \112 e} @02 e} g o @10 o} \Ilfl (63)
2 2 II; I,

where
(1) ¥, and ¥, are the C*-coordinate changes normalizing the vector fields (3.8)
at P; and P, respectively, and

- X

-1 . 1 Po
L m = = =2 -3
! g1 = bun + biafy + O(F7)

Ty =&
¥z I : ~2 - —o 3
2 Ga = bofa + bao¥s + O(93)

where by; and bo;(i = 1,2) are functions of r;, p; respectively. On the sections II;
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and Il,, we have p; = py = pg, so on r = 0, we have

bu =1+ Efpo + 0(p3)
b = —a(Tiz‘aT + O(po)
by =1+ Epy+O(p})
by = a(_li_Z-z_zj + O(pg).

(2) @10 and Pg; are coordinate changes between charts P.R. 1 and F.R, F.R. and

P.R. 2 respectively. On the corresponding sections, they are linear:

= 1 v

z =-—-1 rg =%

. po 0

@4 - H = E Do I e :
7 =5 v B =aw

(3) The transition map
§:{a‘::—x0}—>{a—::xo}

in the original coordinates (Z,7) in the chart F.R., where 7o = -

In the chart F.R. with the coordinates (Z, §,r), we have system (3.9). Since v
is invariant, so Si(v,§) = v. On r = 0, we have system (3.10). For i € V},, system
(3.10) has no singular points on the invariant line § = 0, so S, is a C* regular

transition map and we can write it as
Sy(v,7) = mo(v) + M1 (v)F + ma (V)7 + O(F°) (6.4)

where mg(0) = 0. For the coefficients m; (v) and my(v), by Prop. 5.2, we have

Zo = - 2 =
my(0) =exp %da‘c = exp arctan —20 ,
—zo QT2+ [iz

H3
Zo \ /Al v/ Qjia
To 2 == — T — —
ma(0) = ma(0) / _Mexp( / mdf)df

_z, (0Z% 4 [fip)? 20 OZ% + [lg
= my(0)I12(Zo)
where
N ORI Lk I i
(aZf + fiz)2e /-2 (022 + f1z)*" %
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By L’Hospital’s rule,

_hm Ilg(ffo)(a,il—:'g == ﬂs)
Zo—ro0

Iz al e i af
L e [ e )il o A
= lim ~ — - - - Z.
20> (aZ + fig)2e * J-zo (aZ2 + fig)* 2«
TE3 X A3 aF
i eWein /wo (% + fig)evam O Ve s
= lim — =7 — - ¥ T
e @R A s @R mP R
_ _ y ——23_ arctan 220 . _ —£3_ arctan 920
. . 9 (g;o = Hs)e Vamy Vakz — (xo +N3)eﬁﬁi m@]
=ez\/"'_ﬁ§ llm =
Fo—00 (1 —2a)Z
2 _mh3
— (1 — eVveh ) .
1—2a
So
2 mag \ 1 1
_[12 .’TJO :—(1—6@5)——{-0—
(%) a(l — 2a) z3 (333)

Therefore, for Zy = plo and po > 0 small, we have

mi(0) = Ve + O(po)
2 i T
ma(0) = MG% (1 == 6%)03 +0(p5)-

Then by (1), (2), (3) and (6.3), we have

0%9,
a—g%“((): O)

1
= mabiaby + —5b21barma + b3 baam? -+ O(po)

Y SRS (N SR ) T
T[T g1 —2a) " a(l - 2a) a(l - 2q) £
o %[1_ %]+o( )
_a(1—2a)e ? e

]

Let T’ be any pp-graphic in the family. To prove its finite cyclicity, as shown
in Fig. 6.1, we take sections ¥; and ¥, in normal form coordinates in the neigh-

borhood of P; and P, respectively. We study the displacement maps

L=R'-T, o L=R-T! (6.5)
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(a) Eppl (b) Epp2 (c) Epp3

Figure 6.1: Displacement maps for pp-graphics

where R : ¥y — 3, is the regular transition map along the regular orbit, and
T : ¥; — ¥, is the transition passing through the blown-up nilpotent elliptic
singularity.

For the transition map 7, similar to Prop. 5.10, the passage from P; to P,

has the same “funneling effect”, i.e., its second component 75 is almost affine too.

Proposition 6.2. There ezists €9 > 0 such that for any k € N, ag € (0, 3), there
ezist Ay C (0,1), a neighborhood of ag such that for ¥(a, i) € Ao X Vi, 15(0,0)
is sufficiently small; while for (a, ) € A x Vi, Ty 1(0,0) is sufficiently small. For
any (a, i) € Ap x Vi, and v > 0 sufficiently small, the second component Ty(v, )
of T is C*, and

k
" v i
Ty, 1) =nav, W(,f—oa —ap)) + Z’Ym(’/a w(—, —a0))f
=1 Yo (6.6)
+O(Vp1(1+ [A= 2]) q+l-k-q[E=2 ])(1 —ag)In __V__gk-f-l)
1/07 Uy 1

where
Y20 = mlzo(V)(L)_al + kg (1= mm(”))w(uL

0
Y21 =M (V) + O(( )plw‘“(— —ap)In Vl)
Nz = O(Vm(H[lﬂz) atl-i-alEE 2])(— —ay) ln—y—) i>2

a1) + O((£)1w2(Z, —o0)

and mi21(0) = exp(722).
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Proof. As shown in Fig. 6.1, we decompose the map 1" as
T=A;"'080A; (6.7)

where S : II; —» II, is the regular transition map defined in Prop. 6.1, A; and A,
are the first type Dulac maps in the neighborhood of P, and . They have the
same expression given in (4.12).

For [i € Vy,, the transition map S is studied in Prop. 6.1 using (6.3).

For fip = (0,0,—1), system (3.10) has an attracting saddle-node on the in-

variant line. Hence we decompose S as
g = Toz o Too o T10 (68)
where

o Tio(v,7) : {Z = —z0} — {Z = —z00} and Toe(1,7) : {Z = zoo} — {7 =

zo} are regular transitions;

o Too(v,7) : {Z = —zo0} — {Z = zqo} is the center transition near the saddle
node. For its second component Tpp2(v, 7), in the plane r = 0, by the C*

normal coordinates near the saddle node we have

Tooz (v, §) = moo(v)7, lim meo(v) = 0.
fi2—0t

Therefore there exists g1 > 0 such that for & € Vi (epm), Tgo(0,0) can be
sufficiently small.
Similarly, for fig = (0,0, 1), we consider the inverse map Tl_zl by which there

exists £gp > 0 such that for i € V4, (02), Too (0,0) can be sufficiently small.

Let €9 = min{go1, g2 }. We use &g to divide V7 into three subcones in (6.1).

So for £y chosen above, for i € V7,, S; has the same expression as (6.4), but
952(0,0) = my9(0) sufficiently small.

Then the same way as in Prop. 5.10, by (4.12), (6.3) and (6.7) a straightfor-

ward calculation gives the results. O
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Theorem 6.3. We consider a pp-graphic with a triple nilpotent elliptic point of
any codimension. If the second component Ry of the regular transition map R has

its n—th derivative nonvanishing, then Cycl(Epp) < n.

Proof. There are three types of pp limit periodic sets through a nilpotent elliptic
point. To study the cyclicity, we consider the displacement map L or £ defined
n (6.5). The transition T satisfies Prop. 6.2. For the regular transition map R,
easily, we have R; (v, §;) = v; its second component R, is C¥, we write it as

k

Ro(v, 1) = ) %)@ + o(@F). (6.9)

i=0
where 4,(0) = 0 and #,(0) # 0. By assumption, V(a, z) € A x S% and Vv € (0, 1)
with 14 > 0 sufficiently small, we have

an
oyf
So for the displacement map L, we have Li(v, §;) = 0, and

Lo, ) = Y [yav (- —a0)) = 5%() | + O (6.11)

=0
For the graphic Epp3, note that V(a,f) € Ag x Vi, %1(0) # 0. Also by
Prop. 6.2, 7101 (v, w) sufficiently small, so we have

oL . v - o
5:'2‘(”, §1) = naw(—, —a)) — %1 (v) + O(;) # 0.
hn Vo
which gives Cycl(Epp3) < 1.
For the graphic Eppl, if we choose k& > n, then by (6.6) and (6.10) and (6.11),

V(a, i) € Ay X Vi, and Vv € (0,v1), there holds

aan_gL;»a(V, 91)
= —nla(v) + O (P HERI Pl (a0 in £ +O(Gy)
# 0.
So by Rolle’s theorem, for any (a, i) € Ag x V7, and Vv € (0,11), La(v,%1) = 0 has
at most n small roots in the neighborhood of §; = 0, i.e., Cycl(Eppl) < n.

For Epp2, we consider the map £, similarly we get Cycl(Epp2) < 1. O
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Proposition 6.4. In the Theorem. 6.3, for the transition map R we assumed that

Rg") (0,0) # 0. This assumption is intrinsic.

Proof. In [GR99], there is a detailed discussion on the intrinsic properties of a
transition map. By saying that the assumption Rg") (0,0) # 0 is intrinsic we mean
that this property does not depend neither on the choices of coordinate changes
which bring the system near P; and P, to normal forms nor on the choice of the
sections parallel to the coordinate axes in the normal form coordinates.

Indeed, in the coordinates (ri, p1, 1), system near P; has the normal form
(4.8) or (4.9). The Dulac map A, : ¥; — II; has the form (4.12). Assume that
by an another “nearly-identity” change of coordinates, we bring the system near
P; into the same normal form with coordinates (r1, p1,%,). Let 5 = {r1 = rio}
and I, = {p1 = p1o} be two sections parametrized by the new normal form
coordinates ; and Zl = (c?, 51) be the Dulac map ¥y — II; in the new normal

—~

form coordinates. Then 51 has the same form as A; in (4.12), and we should have

Ay §y) =BrioAroBu(v,§y) or A o®(v,i) =BuoAi(n,G)  (6.12)
where

o5 (v, 1) = (néi7) : T1— 5y

(i) = (v, du1): M — 10

are the compositions of coordinate changes and C* regular transitions respectively. Let

k
() =i+ mu(@)H + 0@
7=2
k

i) =i+ Y ()7 +0F).
i=2

(6.13)

We only consider the most difficult case ap € QN A. Substituting (6.13) and the
expressions for A, A; into the second equation of (6.12), we have
m (v w(, —a1) + (£)7 [F1 0 1) + 1 (v, (), 67 (v, 1)
= m(nw(L, —a1) + (5)% [fn + 1, w(, —en), 1) (6.14)

k d Vo (s v _ J :
j; |:771(V,w(y_07 —on)) + (;c—.) (yl + <;51(1/,w(1-/3 = 011),y1))] + 0.
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Equating the coefficient of monomial g{ in both sides of (6.14), we get a series of

equations about 7711; and myy1;. Then for j = 2,3,--- , k, we have
R (L) [Fan®) + 0((2)Pw (L —a)n )]
= 12 (V) (55)*

+0 (( )THPLwa (., —on) In ) + O(( Pt (L, —al)) (6.15)
Hi (27 [fni@) +o((2)7)]
= () (£)7% +o((£)0D7).
Then by (6.15), for 2 < j < k, we have
. Vsm o v -
mllj(l/) = (U__O)Ulmllj(V) + O((U_O)Ul).
Therefore we get
":ﬁllj(o) =0, J=23, - k. (616)
Let
Boa(v, §2) = (v, d22) : Bz — Do
be the corresponding composition of coordinate change and a C* regular transition map.

If we denote

k
¢2z (v,82) = G2 + Zmzzg yz + 0@+,
j=2
then similarly to (6.16), we get
fiig2;(0) = 0, TR S I (6.17)

Let E : 31 — Y5 be the transition map in the new normal form coordinates, then
we have
R=8;] o Ro®r]. (6.18)
Therefore, by (6.16), (6.17) and (6.18), we have
70,0 =00

which is intrinsic. O

Remark 6.5. In the new normal form coordinates (r;, p;,%,) (i = 1,2 ), the

second component of the transition map T is still almost affine.
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6.2 Finite cyclicity of hp-graphics of elliptic type

Hp-graphic of elliptic type was not mentioned in [KS95] when the authors studied
the 3-degenerate polycycles and their “ensembles”. For the hp-graphic of elliptic
type, we have Ehpl, 3, 4, --- , 7 and one family Ehp2(a, b, c) in Table. 3.3.

Theorem 6.6. A hp-graphic with a nilpotent elliptic singularity of any codimen-

sion has finite cyclicity provided Conjecture 6.8 given below is true.

Proof. We consider the concave hp-graphic. By the results in Chap. 3, hp-graphics
of elliptic type exist if and only if i € V7 U Vi; U Vi where

Vie = {pe S =0,/ >/}

Vi ={i € Sz‘ﬁl > 0,023 — 9afiafis + /a(—3fiz + afi3)® < TEY,

We will study the cyclicity of all the graphics listed in Table. 3.3.
(1). Graphics Ehpl, Ehp2c and Ehp3

(a) Ehpl (b) Ehp2c (c) Ehp3

Figure 6.2: Displacement maps for graphics Ehpl, Ehp2c and Ehp3

First we consider graphics Ehpl and Ehp3. As shown in Fig. 6.2, take sections
75 and Il (Notation 5.7). We study the displacement map defined on 7,:

LZTQ—-)HQ (6 19)

o~

L=T_-T
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where T is the transition map along the graphic, T = O, is the second type of
Dulac map near P;.

Since the displacement map is defined on section 75, so we begin with the
parametrization of the section 75. On 73, the coordinates are (r3, p2) with ropy =

v,v > 0 small and invariant. We want to cover a domain |ry| < €, |pa| < €, where

e > 0 small. Then v < €2 So Vu € (0,1), on the curve v = ue?, we have
rops = ue?, therefore 79, py € (ug, ). Let
re = 174, po =11, (6.20)

We then parametrize the section 7, using the coordinates (v,d) € (0,e%) x T,,

where 7, = (e, lnue) — (0, 1).

Iny? Inv

To prove the finite cyclicity of the graphics, we are going to prove that the
two functions T(v, d) and Ty(v, d) have different convexity, i.e., T¢(v,d) < 0 and
Ty(v,d) > 0.

We calculate 7% (v, d) first. Using coordinates (v,d) on section 7, for T =

0, = (&, Z2), by Theorem 4.14, we have

52 (l/, d) =V

) (6.21)
Ea(v,d) = m(v,w(, 1)) + vl + O3(v, v, w5, —))]

where {; = ;%91— > 0; ng(l/,w(;—z,al)) = pﬁp?'l—vpl w(%g,al) and 05 (v, Vd,w(Z—z, —oy)) is

1]

C*. Also Y(a,1) € Ag x S for d € (0,1) and v > 0 sufficiently small, we have

uniformly

Or(, v, (2, —an)) = O (7 (25, on))

a4, d ve pd, (Ve i . (622)
e (v ,w(;g, —)) = O(l/ w(ss, a;)(lnv) ), F-2
By
3 v — K p1y—cad ] — &1 pi—ad]
ganz(u,w(p—o,al) = — 8 yPy ny = —3kv ny
i i : i (6.23)
= —i—:“;ll—u"ldz/pl'(“””l)d Inv = —;’%V"ldvpl(l"d) Inv,
o (1]
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also note that Vd € (e, lnuey yi=d ¢ (yg,g) and 1779 € (0,e7), so if we

derivate Tz(y, d) with respect to d twice, then we have

= d
T(v, d) = v714(In v)? [5§l1 + o =P 09 By (1,0, w(:_, ——al))] . (6.24)
Po 0

So Y(v,d) € (0,e%) x I, with ¢ > 0 sufficiently small, there holds T!(v,d) > 0

which means that T5(v, d) is convex.
Next we calculate T3(v, d) and prove that T! (v,d) < 0.

For the transition map T, we make the decomposition
T=S0A;0R00Qz0V (6.25)

where

e A, is the first type Dulac map near P;. It satisfies Theorem 4.11 with

o = o1(a),

e Oj is the second type of Dulac map near Ps, it satisfies Theorem 4.14 with
o = o3(a): Using coordinates (v,73) on section 73 defined in normal form

coordinates by {73 = —yo}, we have

&(v,r3) =v

, (6.26)
Es(v,m3) = ﬂs(V:w(%, B)) + 13’ [ — I3 + 63(v, 73, W(ffj, —51))]

where I3 = ;%“; > 0 a constant, and 65(v, r3,w($§, —B1)) satisfies a similar
0

property as 6 in (6.22).
e S :II; — I, is the transition map defined in Prop. 6.1 with S; in (6.4),
e R:X5 — ¥, a C* regular transition map

Rl(”aﬂl’») =V

(6.27)
Ro(v,§3) = mao(v) + mau(v)7s + O(F3),

where m310(0) = 0 and m3;1(0) > 0,
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e V: 7, — 73, a C* regular transition map which can be written as

Vi(re, p2) = ra[mas1 + O(|(72, p2)|)]

(6.28)
Va(ra, p2) = paligsr + O(|(r2, p2)])]
where m231(0), 'ﬁ'?,231 (0) > ( constants.
Let
ro = v~ masy + 0| (%, v~ (6.29)

Then for the transition map T', by (6.25) and using coordinates (v, d) on the section

T, a straightforward calculation gives
Ty d) = bulv) + o) Pl =8) (1406 wlra—0)
+6u ()7 rge [1 + 031 (v, 73, w(r3, _161))]

where
Soo () = mo(0) + ma1o(¥) (55)” + 0((;%)51w(f;, —a ))
bor(¥) = (V) () (631
Oy (v) = —lmpean () 'Lﬁ?m(") < 0.

Note that if ds = 1, Ps — ,61 = 03 and
pl—dypay—(1-d)(1+41)
— a1+ +(1—d) — yps—Fr(1—0)

— yp3dtpa(l-d)=p1(1-d)) — ypsd+(pa—F1)(1-d) — ppad}0a(1-d)

a first derivative of Ty (v, d) gives

Ty(v, d)
= —maz "¢ In (1l + O, v17%))
(s 4205 (14 0P (s, ~2)) )
+53511(V)V&17"g3_1(1 + 031 (v, 73, (13, 1)) + 3573 52 (v, 73, w(rs, —,31)))]
= —p70-dy71 Iny(1 + 04, v—9))
[53511(1/)mg§1 + O(Vpsd) + 933(1/, I/d, w(m231 VIT;i, —ﬁl))] g
(6.32)



108

where 033 has the same property as of fs;.

Therefore for T7 (v, d), we have

TY(v,d) = v +50-9(Iny)*(1 + 0%, v*~9))
[63511(’/)7”;31 + O(17%) + O34 (v, v?, w (Mg o —51))]

ro

(6.33)

where 8;1(v) < 0. So VY(v,d) € (0,&%) x Z, with ¢ > 0 sufficiently small, Tt od) =
0, i.e., ’1~“2(1/, d) is concave.
By (6.19), note that fg(y, d) is convex but ffg(u, d) is concave, so L(v,d) =0

has at most two small roots for (v,d) € (0,€%) x Z, with € > 0 sufficiently small,

i.e., Cycl(Ehpl, Ehp3) < 2.

Now we consider the graphic Ehp2c. There exists a repelling saddle node on

the graphic. As shown in Fig. 6.2(b), consider the displacement map

L:m—1II

L=T-T
T=A0RoO30V
T:S_loez

Similar to the graphic Ehpl and Ehp3, using coordinates (v,d) on the section
75, then we can prove that TQ(V, d) is convex while Tg(u, d) is concave, therefore

L(v,d) = 0 has at most 2 roots which gives Cycl(Ehp2c) < 2.

Remark 6.7. For the hp graphics Ehpl, Ehp3 and Ehp2c considered above, we
studied the displacement maps defined on the section T which is transverse to the
passage from Py to P3 along the equator. Since v = rypy 45 invariant, on Ty, we
have ps = % So it is the passage from P, to P3 along the equator that forces the
two functions f1~“2 and fg to have different convexity. Similar phenomenon happens
on the passage from P, to Py. Therefore, if a graphic contains one of these two

passages and has a structure similar to that of Ehpl, then it has finite cyclicity 2.

(2). Cyclicity of graphic Ehp2a
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Ehp2a is a hp-graphic through a repelling saddle node. As shown in Fig. 6.3(a),
let B3 = {§ = v}, X1 = {§ = —zo} be the two sections in the normal form
coordinates near the saddle node in the chart F.R.. We consider the displacement

map

L: 2—3—-)51

. (6.34)
Le= Ao — T31

where Ag(v,%) = (do, Do) : ¥3 — ¥ is the stable-centre transition near the
saddle-node in the normal form coordinates (z, %), Ta; is the transition along the

flow of the graphic.
For the transition Ay, obviously dy(v, Z) = v; for Do(v, %), by [DER96], the

graph ¥ = Dgy(Z, V) is a solution of the following differential equation
Q=F(z,a,p,v)dj — §dZ =0 (6.35)

where in this case F(%,a, fi, v) = iz + aZ? + O(z?) + O(v).

(a) Ehp2a (b) Ehp2b

Figure 6.3: Displacement maps for graphics Ehp2a and Ehp2b
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For the transition map Ts;, we calculate it by making the following decom-

position
Tgl s §3 — El
(v, 3) —+ (v, 7312) (6.36)
TBI =710°A1°R°A3°To3
where

e To; : &3 —> II3, the regular transition map which is the composition of two
C* normal form coordinate changes and a regular transition map from the

saddle node to P;, Altogether, it is C*, we denote it as

Toz:q _ i (6.37)
T032 = m030(1/) + mogl(y)i' —+ m032(y)5:2 + 0(1‘53)

where mg30(0) = 0 and mg3;(0) # 0.

o A;: I3 — X3, is the first type Dulac map near P, it satisfies Theorem 4.11

with o = gs3.
e The regular transition map R : ¥3 — ¥ is defined in (6.27).

e A, : ¥; — II; is in the first type Dulac map near P, and it satisfies

Theorem. 4.11 with ¢ = o;.
e Ty : II; — 34, the regular transition map, analogue to Tos, it is C* and

_ Tin = =
Tw:y _ (6.38)
T2 = Mmoo (¥) + mior(¥)§ + mie2 (V)7 + O(5°)
where mloo(O) = 0, mMio1 (O) ?é 0.

Then a straightforward calculation from (6.37), (6.27) and (6.38), yielding
that for any k € N, ag € (0, 1), there exist Ay C (0, 1), a neighborhood of ay and
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v1 > 0 such that V(a, i) € Ay x S? and v € (0,11), Ta12(v, §3) is also C* and

r Tau(v, &) =v
) Ta2(v, ) = ’)’310(’/;1*1(6,2_0:_“1)’”(:_0’ —b1)) (6.39)
_*_(%) [7311(1/,{,0(:—0, —011),(-0(:_07 —0))E
L +’Y312(Vaw(yi07—a1)7w(ulo’ —181))3‘? +O(i3)]

where

Y310 = Moo (¥) + mao (V) [ka78" (5) 7w (5, —on) + O(5)™))]
Ya11 = o1 (¥)man (v)mea1 (v )+0(( LYw(L, —ou), (5) w5, —ﬁ1)> # 0
Y12 = Myo1 (V)Man (¥ )Moza(v)

+O((£)7 (. —e), () (&, 1), (57w (£, ~B) In ).

Now let us study the displacement map L. Easily we see L;(v,%) = 0. By
(6.34), (6.35) and (6.36), the equation Lo(v,Z) = 0 is equivalent to the following

|

Since § = Dqg(%, v) is a connected graph, the generalized Rolle’s lemma (Khovanskii

system

S ﬁo(i, l/)
= Tglz(l/, .’i‘)

<

(6.40)

<

procedure) in [K84] shows that the number of solutions of (6.40) is at most 1 plus

the number of solutions of the following system
§=Ta2(v, Z)
Q AN dTglg(l/, .'i) =0

The above system is equivalent to

Y= 7312(1/7 f)
T3 =1 6.41
det | %2 =0. ( )
'—g F(j) a, /-_1'7 U)

Eliminating § from the equations (6.41), we have an equivalent equation

= - . . . 4OT y
Loi(%,v) = Ta15(v, %) — F(%,a, [, v) a;” (v, E). (6.42)
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By (6.42), derivating with respect to Z yields
£ 3|l 37312(7/, ) 827312(1/7 )
Lgl(xay) = (ly— F:;(:E’ a, [, V)) % — ———_8532

- (U—O)&ﬁ&a[(l — 2a% + O(#%)) (1311 + 27312% + O(3%))

— (fia + a&® + O(3%)) (27312 + O(&))]

which has the same number of small roots as of

a F('%a a, i, V))

—(a1+53) , - i :
) Ly (v, %) = 311 — 2731212 + O(2).

L= (%
Hence V(a, ) € A; X V;, and Vv € (0,14), and for fi; > 0 sufficiently small, the
equation L, = 0 has at most 2 small zeroes, i.e., Cycl(Ehp2a) < 2.
(3). Cyeclicity of graphic Ehp2b
As in Fig. 6.3(b), let &; = {# = —z4} and ¥ = {Z = z,} be two sections
transversal to the graphic Ehp2b, and consider the displacement map
L: %, —_}fl B (6.43)
L:=Ay—T3
where Ag(v,Z) = (do, Dy) : T3 — 2 is the centre transition near the saddle-node
in the normal form coordinates (Z, §), and
do(v,5) =v
Do(§) =m(i)i  limmlia) =0,

f12—0

(6.44)

T3, is the transition along the flow of the graphic which can be factorized as
T ¥ 20 — 35
(v, ) — (v,Ta12) (6.45)
Tyy=TpoAjoRoA;0T Ty
where except for T3, the other four components are the same as in (6.36). For
Tos : By — I3, it is a regular transition map in normal form coordinates which

can be written as

T031(Va ?3) e

~
o
o
o
~~
X
1
N
il
E
w
—
N
=
L
N~
+
E
w
(&)
~
=
p
R=d]
(3]
+
Q<
o~
)
[~
Y/

Y
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Conjecture 6.8. We consider the vector field

& =1y+ az?

(6.46)
7 =ylz+1)

with a saddle node at the origin and a singular point at P at infinity given by

(u, 2) = (3522,0), where (u, z) = (%, ;) (Fig. 6.4). Let (Z,7) be normal coordinates

2’

near the origin and (4, Z) be normal coordinates near P. Then the transition map
T:{Z=x0} — {Z= 2}
is nonlinear at any point §o of {T = zo}, i.e., Yo, there exists n > 2 such that

TL i) 20 (6.47)

dij

Figure 6.4: The regular transition map 7" in the Conjecture 6.8

Remark 6.9. The system (6.46) is very simple. To prove the above conjecture,

we see two directions:

e the first one is an explicit calculation of ‘%f.
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o the second one is a general argument similar to that in Prop. 5.12. In this
case there ezists no analytic normalizing change of coordinates, but we are

in the special case where the system has an analytic center manifold.

The conjecture implies that there exists n > 2 such that Q’%"—"’-(O, 0) = M3y #

0. Then for the transition map 151, we have
Ts12(v, 9) :’)’310(1/,01(:—0,—al),w(;—o,—ﬁl))
- g1+03 2 . v - l/_ - - "
+<uo) [;7311(1/"0(1/0, al)aw(yoa ﬂl))y I O(y )
(6.48)

where for v > 0 sufficiently small, v31,(0) = M3, # O.
Now consider the displacement map L := Ts; — Ag. Obviously Ly (v, §) = 0;
for Lo, it follows from (6.43), (6.44) and (6.45) that we have

Ly(v,§) = —m(fia)§ + 7310(1/,&0(;"5, —al),w(:—o, —f1)
" g1-+03 L v v ) oo
#(3)™7 [ty —an) (i~ + O

Derivating Ly with respect to § n times, we have
- _ 1% —(51+5'3) (n) - —~ F
Law§) = (=) L (v, §) = #i032(0) + O(v) + O(F) #£0.  (6.49)

Vo

So L = 0 has at most n small roots, i.e., Cycl(Ehp2b) < n.
(4). Cyclicity of Ehp4 , Ehp5

For the graphic Ehp4, as shown in Fig. 6.5(a), there is a saddle point on the
connection from P; to P;. In the normal form coordinates (Z,%) on r = 0 in the
chart F.R., take sections ¥; = {%# = —o} and X3 = {§ = yo} and consider the
transition map

ZQ = (ao,ﬁo) Zig - —2—1.

Since r = 0 is invariant, so do(v, £) = v. Let Ag = A(y5,) be the hyperbolicity ratio

at the saddle point. Then Dy(v, %) can be written in the form of (5.46).
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Figure 6.5: Displacement maps for graphic Ehp4

Using the normal formal coordinates on the sections 33 and X, we consider

the displacement map

L: §3 — §1
(Tv g) == (LlaLZ)
L= ZO"‘Tgl

where T’3; is the transition map the same as in (6.39). Easily we see Ly (v, Z) = 0.
We will prove the finite cyclicity for Ehp4 by considering the displacement map

Ly(v,Z) in three cases.
Case (4.1). X >1:
By (6.39) and (5.46) we have
Ly(v,5) = Llzxt [ﬂo + o (3, v) + 223, y)]

SfE e [’)’311(% w(v, —ou)) + 27312 (v, w(v, —y))Z + O(iz)]-
(6.50)



116

So by (6.51), L = 0 has at most 1 small positive root.

Case (4.2). Ay < 1:

By (6.50) and let
. L &)
Ly{v,z) = 2 =
2(,%) 311 + 273122 + O(22)
Y i p :
%:EA 1[ﬂ0+¢0($77/)+$%g($7’/)] (y)31+c'ra
Y311 + 27312& + O(%2)

4

Then for small Z,

Li(v, %)
_ 0Ly(v, %)
oz
(A= DE2(By + do)(ys1 + O(&)) — 3857 (6o + o) (27312 + O(7))
B A (7s11 + O(%))?
Fx—2 R
N A2(y311 + O(7))? [(1 ~ Vo + Ysndo + O(E)]

Therefore Ly (v, ) = 0 has at most 1 small root and L, has at most 2 small positive
roots.
Case 3. Ay =1:

In this case, by (6.39) and (5.46), L, = 0 is equivalent to

4

:,6057+a01.’fW[1+"']+O:02.'E2w[1+...]+...

7

§ =l —a)w(s, b)) -

4 o1+03 6.52
H(2)" P el )
a0, —on)u (5, ~B))E" +O()].

where for the first saddle quantity g2, we have g = 2a(2a — 1) — 1 # 0.
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Indeed, for the vector field at the saddle point, after a translation and a linear
transformation, we can bring system in the neighborhood of the saddle into the

following form

@ = —u+au?+ (2a — )uv + (a — 1)v?

= v+ uv+ vl

By Lemma. 5.14, we obtain the first saddle quantity aga(a, i) = 2a(2a—1)—1 and
for a € (0,1), a2 # 0. Then from (6.52) and by the standard derivation division

method in [R86], we conclude that L = 0 has at most 2 small zeroes.
Therefore, for the graphic Ehp4, we have Cycl(Ehp4) < 2.

For the l.p.s. Ehpb, since the return map can be written as a composition
of regular transition maps and maps with derivatives sufficiently small, we get

Cycl(Ehp5) < 1.
(5). Cyclicity of Ehp6 and Ehp7

For the graphic Ehp6, the passage from P; to Ps is just a regular orbit. Similar
to the graphics Ehpl and Ehp3, as shown in Fig. 6.6, we consider the displacement

map
L: ¥ — 33

L= R_l == T13
Ty3:=Ago TIB oAy

where A; : ¥; — II; and Az : II3 — X3 are the first Dulac maps in the
neighborhood of P; and Pj, they satisfy Theorem 4.11 with ¢ = o) and o = o3

respectively; T3 : II; — II3 is the regular C* transition map. So, for T3, we
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(a) graphic Ehp6 (b) graphic Ehp7

Figure 6.6: Displacement maps for graphics Ehp6 and Ehp7

have

_ v v
Tisz(v, 1) = Y130(vs UJ(V—O, —a), w(;g, —B1))
v \o1+03 v v N -9
HE) " [l e o =)+ O(3t)
(6.53)
Then by (6.27) and (6.53), it is not difficult to see that L(#,v) = 0 has at most

one small zero. Hence Cycl(Ehp6) < 1.

For the graphic Ehp?7, the return map can be written as a composition of reg-
ular transition maps and maps with derivatives sufficiently small, so Cycl(Ehp7) <

1.

Each limit periodic limit has finite cyclicity under extended conjecture, yield-

ing finite cyclicity of the hp graphic. O

6.3 Finite cyclicity of hh-graphics of elliptic type

In this section, we study the 12 families of hh-graphics listed in Table 3.4. We

state the main result in §6.3.1 and give a generalized Rolle’s Theorem in §6.3.2.



119

The main theorem is proved in §6.3.3 and §6.3.4.

6.3.1 Main Theorem on the hh-graphics of elliptic type

For the hh-graphic of elliptic type, we have

Theorem 6.10. An hh-graphic through a triple nilpotent elliptic point of codimen-
sion 3 has finite cyclicity if the generic hypothesis P'(0) # 1 is satisfied.

For the proof, by changing the family X to —X if necessary, we impose

Hypothesis 6.11. The hh-graphic with a nilpotent elliptic point is attracting:

[H] : P0)=~"< 1. (6.54)

In Table 3.4, there are 12 families of hh-graphics of elliptic type: Ehhi (i =
1,2,---,12 ). By Remark 5.9, all the upper boundary graphics in the 12 families
have finite cyclicity 1. So to prove Theorem 6.10, we need to prove that all the
lower boundary graphics and intermediate graphics of the 12 families have finite
cyclicity. We will finish the proof in two separate sections: in §6.3.3, we prove that
all the lower boundary graphic have finite cyclicity, in §6.3.4, we prove that all the
intermediate graphics have finite cyclicity.

Before going into the proof of the main theorem, we do some preparations.

6.3.2 Generalized Rolle’s Theorem and a transition map

We have Rolle’s Theorem to deal with functions of one variable. In proving the
finite cyclicity of hh-graphics of elliptic type, we will have to study the number
of intersections of two planar curves, hence the following generalization of Rolle’s

Theorem is useful.

Theorem 6.12. (Generalized Rolle’s Theorem) Let D = (z1,23) X (y1,%2). Let

F(z,y),G(z,y) be two functions continuous on D and smooth in D. Assume that
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in D, Fi(x,y), F,(z,y) # 0. Consider the system of equations

Denote the number of intersections of F(z,y) = 0 and G(z,y) = 0 in the region
D by #(F,G) and let

JIF,Gl(z,y) = Fy(z,y)Gy(z,y) — Fi(3,9)Gy(z,9)-

Then
#(F,G) < 1+ #(F, J[F,G)).

Proof. First note that if V(z,y) € D, F(z,y) # 0, then #(F,G) = 0, and the
conclusion holds.

Assume that there exists a point (zg, o) € D such that F(zg,yo) = 0. Since
F(z,y) is smooth and Fy(z,y) # 0, by Implicit Function Theorem, there exists
€y > 0 such that F(z,y) = 0 defines a unique smooth curve: y = f(z), in (x5 —
€0, 20 + £0). As Fj(z,y) # 0, the function y = f (z) can be extended both ways
to the boundaries of the region. Let [z3,z4] be the maximum interval in which
y = f(z) is defined. Then z; < z3 < 24 < 5.

The curve y = f(z),z € [z3,%4] is the unique branch defined by F(z,y) =
0 in the region D. Indeed, if z4 < =z, since Fy(z,y), Fy(z,y) # 0, so either
Fl(z,y)Fy(z,y) > 0 or Fy(z,y)Fy(z,y) <0. In the first case, then for z € (%3, 4],
flz) = —% < 0, yielding f(z4) = y;. Therefore, V(z,y) € (x4, 2] X [y1, Yo]
there holds

F(z,y) =F(z,y)— F(z4,11)
= [F(z,y) — F(z,y1)] + [F (@, 1) — F(z4,51)]
= Fy(z, 9)(y —v1) + F5(Z,51)(z — 74)
#0
where Z and § are between z, z4 and y, y; respectively. The case Fy(z,y)Fy(z,y) <

0 is similar. So V(z,y) € (24, 2] X [y1, 2], F(z,y) #O0.
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If z; < x3, similarly, we can prove that V(z,y) € [z1,%3) X [y1,¥2], F(z,y) # 0.
So y = f(z),z € [z3,74] is the unique curve defined by F'(z,y) = 0 in the region
(2,9) € [z1, 73] X [11,%]-

Let g(z) = G(z, f(z)). Then we turn to study the number of roots of g(z) =0

for z € [z3,x4]. Since

' . J[F(:L‘,y),G(x,y)]
gle) = Fi(z,y) y=f(z)’

by Rolle’s Theorem,

#(F,G) <1++#(d(z),0)
= 1+ #(J[F, Gl(z,y), F(z,y))
= 1+ #(F, J[F,G)]).

O

We will use Theorem. 6.12 for a pair of functions F, G in a region depending

on v.
To study the cyclicity of the family Ehhl1, except for the nonlinear transition

map S defined in Prop. 6.1, we need the following transition map U to be nonlinear

too.

Pr

Pi

Figure 6.7: The transition map U : 7 — 74



122

Proposition 6.13. Let U = (U, U;) : 1 — 74 be the transition map in the

normal form coordinates (see Fig. 6.7). If a # %, %, then

U(ri, ;) =m1 [m141 + My4aT1 + Miazp1 + O([(Tl,P1)|2)]

(6.55)
Us(ri,00) = [m141 + My4ery + Miazpr + O (|(7‘1, P1)|2)]
Also V(a, 1) € A x S?
2
%(0, O) = 2m142 = *xE&9 (656)

2 ~ -
BT[%Z(O) 0) = 2m43 = *[li3
where * is a positive constant. Furthermore, if mis2 # 0, then My # 0; if

Thias # 0, then myg3 # 0.

Proof. The map U is a regular transition map along an invariant line {r; = 0} N
{p1 = 0}. Since r; = 0 and p; = 0 are invariant, so we can write U = (U1,Us) in
the form of (6.55) and calculate the derivatives ‘?,%(0,0), %(0,0) in the plane

p1 = 0, calculate the derivatives g—gf(ﬂ, 0), %2(0, 0) in the plane r; = 0.

We begin with the derivatives with respect to r;. In the plane p; = 0, the

system (4.6) becomes

dT1 N —(CL -+ @1)7"1

dri _ _ _ _Blwm) gy
dij —(1—2a)y1 + 292 — ir1(ea +1iha) + by Qi(ri,Th)

where h; and hy are C® functions and hy = €90 + O(ry).

We are going to do the calculations using system (4.6) in the original coordi-
nates (r1, p1, 1)

In the neighborhood of Py, system has the form (4.6). By the normal form
change (4.7), system (4.6) is in the normal form (4.9) or (4.8). In the plane p; = 0,

if a # 1,1, the section 7y = {#1 = %o} becomes

71 1= gn(r1) = dio(yo) + dui(wo)r1 + O(r}) (6.58)
where
dio(yo) = 4o+ O(¥3)
di1(yo) = &2 [1_'13(] + O(yo)] .
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Similarly, in the coordinates (71, p1, 71), the section 74 = {§s = —yo} becomes
Th: = gua(r1) = dao(yo) + dar (yo)r1 + O(r7) (6.59)

where

dao(yo) =522 — 5o+ O(%})
du(yo) =€z [% 23 O(yo)]-

Then, for ‘:’3—5’}(0, 0), by Prop. 5.2, we have

oUy
——(0,0
87'1( ’ _)_
1— ()0, 91(0))g1 (0) /mm 5 (?) i)
= — exp _— U1
1= (2)0,0u@gis@ oo 0 \G) Ineo
914(0) a_|_y1
=ex - —dy 6.60
p( 911(0) y1(10—2a—2y1) 1) ( )
yll_:ﬁ dao(yo)
=exp | In T
_‘2-2 — yl)m——m dio(yo)
(ﬂ)zlljzttz)
= z 211i_22a) (1 + O(yo))

Now we calculate %{}(0, 0). By Prop. 5.2, since we are in the case P1(0,7;) =
1

0, so we have

8°U U
52 (0,0) = 6711(0, 0) [PL + PI, + PI] (6.61)
1

where
= . 3U1 _p_lrl
PI, = 2g1,(0) o (0,0) ( 2, )GE(_);QM(O))
_ 4esa(l + 4a) (1 - 2a) 21-2) 1+ O(yo)

3—2a
3—da 2 TS (6.62)

PL = -2¢,(0) Jirl)(o,gu(o»

el +0@) e
T T =3l —2a)% % [1+0(w)
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and
914(0)
PI; = /
911(0)

1
914(0) = \f= 1-2a -22) /- \ T
- / — yll—)gzll a)zz (1—2«;2 ) (y—1> (1+ O(yo))dy1
g

?3’1 P_ar @IIT b F;Tj =
Lin (0, 51) — 22283170, 54) | exp / 1 (0, w)du | dgis
Q1 Q% o (0) @1

11(0) ZQ%( o 71) 5= Yo
- *€2(1 + O(y0)) /d"“(yo) (a+71)(F1 — a) iy
v d10(vo) 55%(1_—22_'1 _ )T
(6.63)
Since
dao(yo) (a i gl)(gl - a) .
= T R
e d1o(yo) g, ( = {1 yl)ma_)
yo—0 3144
2{1—2a)
Yo
~ 2(1—2a) %5 | 2a(l+4a) a?
- y"li’no 40 -3 7 R = RS ==
(T Yo 2 Yo
2 1:33 ] 1 _22
:_Sa(1+4a)( )1 * lim [1+O(yo)—|—0(y§(_l—‘-75)]
3—4a 1—2a , | 00
_ 8a(l+4a) (1 - 20) 1-%a
3 —4da 2
So,

2—ba 5—8a 1= 3—4a

10(yo) gll‘ﬁa (ﬂ gl)zu—_za_) y2(1——2a)

* [1 + O(yo) + O(yg%‘j)]
/dw(yO) (a+71)(7h — a) d (650
d
0

e =

Hence, by (6.63) and (6.64), we have

1+2a
*Eo {1 + O(y) + O (y§(1‘2“5 )]
PI3 = 3—2a (6.65)

2(1-2a}
0
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Therefore, it follows from (6.61), (6.62) and (6.65) that we have
o*Uy

ar? 52 (0,0) -

ol 4a(l +4a) {1 —2a osa) 1 + O(yp)
=&2 8 71 (01 0) 3 N 40, ( 2 ) 2(31—_2;,1)

Yo
1 O 142a
+*( * (yO)) + :mz [1+O(y0)+0( Al 2“))]
%o ggo T
S 14 0(y gﬁ%) £l (1 o

_ o (0,0) deqsa(l + 4a) [1—2a) 702
N 37‘1 ’ 3—4a 2 2(31_22.2)

(6.66)

So, if we take yo > 0 small, then by (6.66), —}(0 0) = *eq.

Now we prove that %27%2(0,0) # 0. In the plane r; = 0, the system (4.6)

becomes

@ _ (a@+ 71 + [i2p?) 1 Pl(Pl, ) (6.67)
djn ~ —(1—2a)71 + 292 + Bapr¥s + 2020301 + Bapi O1(pr, 1)

We still use system (4.6) in the original coordinates (rq,p1,%:) to do the
calculations.

In the plane 1y =0, if @ # 1 4 3, the section 71 = {§i = yo} becomes

fi: o G= guln) = dio(yo) + du(w)pr + 0(p}) (6.68)
where
dio(%) = %o +O(¥p)
du(ye) = B+ O(y).
Similarly, in the coordinates (71, p1, %1), on 71 = 0 the section 74 = {gs = —yo}
becomes
7ot 1= G1a(pr) = dao(yo) + dar(yo)p1 + O(}) (6.69)
where

dio(yo) = 132 (v5)
du(p) =- =225 + O(y).
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Then, for %(0, 0), by Prop. 5.2, we have

U, §14(0) a+ 4
0,0) =exp ( / - — — dy )
801 ( ) 511(0) y1(1 — 2a — 2y1) L
- = yll ~ da0(yo)
(1—22a — yl) 2(11211) d10(yo) (670)

yo - (1+O(y))

(120) 5
2
Now we calculate a U2 (0, 0). By Prop. 5.2, note that ﬁl(O, 7) = 0, so we have

82 U2 oUs

3y, 00 [PIl + Pl + Pfg] (6.71)

(0 0) =

where

PI, =2§,(0)5 2 = (0,0) (Pl‘”) (0, 314(0)) s i (1 +O(y0))

o Ql (1-4a) () (o)
o~ — P1 2/1,3(]. + O(yo))
PI, =-24,(0 0, =
2 11(0) ( 3. ) (0,12(0)) = (1= 2a),
and
- §14(0) P" P u ﬁ/
o= [ (0,5 - 200 %e 21 (0,) | exp [ Ze0ud)
§11(0) Q §11(0) lQl
B = TR e A
§11(0) 2y1(1 =28 — 371)2 L= 220 U '
" i (1+0(u0)) dio(v0) a+ g i
2—3a *
2(%) 2(1-2a) d1o(yo) ?jl 2 (1 —2a i )2(31 82‘2)
(6.73)
Since
/340(1/0) a+ 7 i
= 2-3a 3—8a hn
d1o(yo) gll—“(l_za — )2(1 2a)
lim 2
yo—0 1
11—_201:1
Yo
B 2—].';0. 3—8a = 3—asq, 2—3a
D e R -2
o0 Tih R (1 - o) (i)

Yo



So,

dao(yo) a+
[ 2—3a 3—8a dﬂl
dm(yo) g]_l —2a (1 220. P y )Z_U—T..)
14-2a
2a[1 +0( - 2”)]
l—a

(1 - a)(12e) Tty

By (6.73) and (6.74), we have

Pl = [+ 0w o).

It follows from (6.71), (6.72) and (6.75) that we have

02U,

e

_ 0l Wa 4 gy | s Y24 (1 + O(wo)) 2fi3(1 + O(yo))
~ Opy (1 — 4a) (120 2a)% (1 —2a)yo

1+2q

2afis[1 + O(yo) + O(yp" ™)
(1 - 2a)yo

- 8:“32))’;3 [1+O(yo)+0( ﬂ%ﬁ“)]

So, if we take yo > 0 small, then by (6.76), ——52(0 0) = *[is.

By the invariance of v = r;p; = r9p, and (6.55), we have

Top2 = T1p1[maar + miaary + maaspr + O(|(r1, p)|?)]
[M1a1 + Miraers + gz pr + O(| (1, p1) 7))
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(6.74)

(6.75)

(6.76)

(6.77)

Equating the coefficients of terms of r; and p; respectively on both sides of

(6.77), we have

M141M142 + M141Mig2 =0

Mi41M143 + M141M143 = 0.

(6.78)

Since myq7ia1 = 1, so by (6.78) we have that if mys # 0, then 74 # 0; if

1143 # 0, then myq3 # 0.

O
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Corollary 6.14. For the transition map V : 7o — 73 in the normal form coordi-

nates, if a # %, %, then

a2 _ 9%

50,00 =55(0,0) 6.19)
a2 U

5.2(0,0) = 372(0,0)

20(0,0) = 5(0,0)

Proof. Just note that in the plane py = 0, the system is the same as system (6.57)
except the term r5hy will have different sign which does not influence the first and

second derivatives. O

6.3.3 Lower boundary hh-graphics of elliptic type

In this section, we will first prove that for a generic hh-graphic through a triple
nilpotent elliptic point of codimension 3, all the corresponding 12 lower boundary
hh-graphics have finite cyclicity.

Among the 12 lower boundary graphics, Ehhlc, Ehh2e and Ehh3e pass through
both passages P, P; and Py P; along the equator (Remark 6.7), and require a special
treatment. Indeed in general an explicit formula does not exist for the inverse of
the second type Dulac map. We will replace the study of zeroes of the displacement
map by the study of the zeroes of a system of two variables using generalized Rolle’s

Theorem.

To prove the finite cyclicity of the graphic Ehhl, we give the following lemma.
Lemma 6.15. For the system in the neighborhood of Ps, if 03 = %, n € N, then
the first saddle quantity is nonzero for the 2-dimenstonal system on p = 0.

Proof. By (3.8) with ¢ = 2, after a translation y = y, — 152%, system on p = 0 in
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the neighborhood of P, can be written as

T =7
2 (6.80)

fiag + gor + O(r?)

A T

where o3 = 2(1 — 2a). In the case 03 = 1, n € N, we have a = 22-2.

By the linear transformation y = z + 5%4—r, system (6.80) becomes

1 8az? Z22(1 + 2) 5 (6.81)
g . d o
¢ =0t Tra T avae T O

where €2 = i—i‘%. For convenience, we still keep a in the higher order terms.
By normal from theory (see for instance [GH83], [IY91]), we will obtain the

normal form of (6.80):

T =T

: x ; (6.82)

Z =-174> B (rZ") Z.

i=1

where f,, the coefficient of the term rZ™*!, is the first saddle quantity.

In order to obtain the normal form (6.82) from system (6.81), we rewrite

system (6.81) as

= y & el ) g 6.83
: =-1z- 807,.2(—2)’,2er2 + & [z - Z(—2)z(z’ + 3)zz+2] r+0(r?) (6:83)

To prove 3, # 0, we are going to apply the normal form theory to sys-
tem (6.83). The proof goes in two steps. For any n € N, we will first kill the

terms rz,7r2%,-+-,r2". In the second step, we get rid of the nonresonant part
oo

8a) (—2)z".
i=0

(1). Kill the terms rz,72%,-- -, 72" successively

(1.1). Kill the term rz first



Let z = 2z, + rbyz;. Then by (6.83), we obtain the equation of z;:
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1
2-3 == ——Zl -+ (52 = bl)rzl — 8&2 ‘7 '7+2 = TZ 61]Z{+2 o O(’I‘z)

j=0
where c1; = 8aby(j + 1) +&2(5 + 3).

Let b; = Z5. So we have
o0

= ——z1 - Saz 27 2? — Z( 2)e1;20% + O(r?)

j=0

where for ¢;; with j € N, we have ¢;; = €;[8a(j +1) + (§ + 3)] # 0 and all the

coeflicients ¢;; have the same sign as of &s.

Note that if n = 1, the coefficient of the resonant term rz? satisfies cio # 0.

Then the first step stops here.

(1.2). Let n > 2. Assume that by n — 2 steps of near-identity transfor-

mation of the form zx_; = 2z + bgr2f, k = 2,--- ,n — 1, we get rid of the terms
rz2,rz3, .-+, 72}, and obtain the equations of z,
T =
By = —Lz, — SaZ (=2)720t2 — Z (—2)7 ¢zt + O(r?). BE
j=n—2

where for j > n — 2, ¢, ;é 0 and they have the same sign as of &s.
(1.3). Kill the nonresonant term 7z in (6.84)

Let 2z, = w + b,rw™, then the equation of w becomes
(1 4+ nbyrw™ )b + byrw™

= —i(w+ byruw® —BaZ (w4 byruw™) 2

j=0
00

Z 2 cpi(w + bprw™)? 2 4 O(r?)

or
(1+ nbyrw™ ) + byrw™

—L(w+ byru™) — SaZ Y [wi*? + (5 + 2)bprw ]

j=0
00

— > (=2 et + 0(r?).

j=n—-2
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Hence w satisfies
W= —gw+ [~ — (=2)"PeppoJru”

= 1% 6.85
—SaZ(—Q)Jw”Q — Caprarw™ 4+ rO(W™?) + O(r?) (6.85)
=0

where ¢p410 = —[16ab, + (—2)" Lenno1].
Let b, = —ncpn_2(—2)""2, then we get rid of the term rw" in (6.85) and

obtain
F =7
i o 6.86
W o=—w-—8a) (-2)w? - cp1pruw™tt +r0w™?) + O(r?) 50
=0
where
Cntin = _[16abn + (_2)n—1cn,n—1]
= —[—16ancy n—o(—2)""2 + (=2)" e n-1]
= (—’2)"_2[160,7’},0“’”_2 + 2cn,n—l]
# 0.
Therefore, we bring system (6.83) into the form
o=
2 (6.87)
W= —gw— £ — ey arw™ +rO(Ww™?) + O(r?).
(2). Remove the nonresonant part —l—i%
By
dw dz
w Baw? . _Z
n 142w n
or equivalently
n(l+2w)dw  ndZ
(1+4nw)w —  Z

we can solve for Z:

Z=w(l+ 4nw)%. (6.88)
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By (6.88), obviously we have the relation
w=Z+ 0(Z%. (6.89)

So if we make the change of coordinate (6.88), by (6.89), we bring system (6.87)

into

p =y
i 1 (6.90)
4; = _EZ — Cap1,aTZ"T 4+ 1O(Z72) 4+ O(r).

Note that in removing the higher order nonresonant terms in (6.90), the

term —cpy1,7Z"! will be invariant. Hence we get that the first saddle quantity

Pr = —cni1a 7# 0. L

Theorem 6.16. The generic graphic Ehhlc through a nilpotent elliptic point of
codimension 3 has finite cyclicity. For the generic graphics Ehh2e and Ehh3e, we
have Cycl(Ehh2e, Ehh3e) < 2.

Figure 6.8: The displacement maps defined on 7, and 7,
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Proof. For any (ag, fig) € A x V7, we have three families of hh graphics with lower
boundary graphics Ehhlc, Ehh2e and Ehh3e respectively. As shown in Fig. 6.8,
take transversal sections II;, &40 (1 = 1,2) and 75 (j = 1,2, 3,4) in the charts P.R.
1, 2, 3 and P.R.4 respectively (sections were defined in 5.7). On the section 7, the
coordinates are (rg, po) with r9ps = v,v > 0 small. We want to cover a domain
Ire| < €, |p2| < €, where € > 0 small. Similar to what we have done in Theorem 6.6

for graphic Ehpl in (6.20), on 73, let

1-d = 70
o=V y P2 =V,

We then parametrize the section 7, using the coordinates (v,d) € (0,e%) x I,

where 7, = (e Inue) - (0,1) and u € (0,1). Similarly, on the section 71, let

Iny? Inv

_ ,1-c R
rn=v_° pL ="

We use coordinates (v, ¢) € (0,e%) X Z,.

To study the cyclicity of the lower boundary graphics, we are going to study
the displacement maps defined on the sections 7, and 7» respectively with images
in II; and ¥4, namely, by using Theorem 6.12 in a region depending on v with

v > 0 sufficiently small, we will study the number of roots of the system

T1(v,c) = To(v,d)
Ty(v, ¢) = T3(v, d).

(6.91)

for (a,2) € Ag x V3, (i = 1,2,3) with (¢,d) € Z, x Z, and v,e¢ > 0 sufficiently
small.

The proof will go in several steps.
(1). Developing the transition maps 7; (i =1,2,3,4).

(1.1). The transition map 73. The map 7} : 7 — II; is the second type Dulac

map near P,. By Theorem 4.14, for r = v and p = v!™¢, it has an expression
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similar to (6.21) with 3 = ;. Hence

Tulne) =v e ] (6.92)

Ve :
TlZ(V: C) = 771(1/,‘0("“7 011)) S [ll s 01(”7 Vc7w(_7 —051))
Po Po

ve

50 —051)) is

where [; = ;%OT > 0; nl(u,w(Z—:,al)) = ?'211—1/7’1 w(:—;,al) and 6, (v, v°, w(

C* and satisfies the same properties as of 6, in (6.22).

(1.2). Transition map Ts. The transition map

T4 DU =¥ 24
(v,c) — (Ts1, Taz)

can be factorized as

T4 = @4 olU
where

e U : 1 —> 74 is the regular transition map defined in Prop. 6.13. In the

coordinate ¢ on 7y, the first component U; of the map U can be written as

ry = U (¢, 0°)

(6.93)
=yl [m141 + My (V)¢ 4+ mygs (V) + O (219, 1/20)]
where by PI'Op. 613, miq (0) ;é 0, m142(0) = *%E&9 and m143(0) = *[i3g.

e O4 : 74 — X4, the second type Dulac map near P, which satisfies Theo-

rem 4.14 with ¢ = 3. By (6.93), we have
T4 = V(g + OV, v179)). (6.94)
Let my = "1t Using (6.94) we have

w(, B) = w(”:—;‘*ul-cu + O, V%), A1)

6.95
= w(m4yl-c, ﬁl) AE O(VC_(I—C)}GI, V(l—c)(l—ﬁl))_ ( )
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So by (6.93), (4.29) and (6.95), for the second component of the transition

map Ty, we have
Tia(v,¢) = ma(v,w(rs, B1))
+173(1-¢) [m41 (v) + mgv'™¢ + myav® + O (V319 %)
+041 (v, V17, w(mar' e, —,31))]

where
My = ;%% (mya1(¥))7®

maz(0) = *my42(0) = Kia962

my3(0) = *my43(0) = Kiasfiso

(6.96)

where K149, K143 are nonzero constants; in n4(v, w(7%, 51)) we still keep 4 as func-

tion of ¢ in (6.93); also By (v, v'¢, w(mav!~¢, —fB1)) is C* and satisfies
=it )
6—;@?‘ O(Z/m(l_c)w(my/l“’, 61)(In V)l) 7> 1.

(1.3). Transition map 7> The transition map

T2 DTy —> Hl
(v,d) — (To1,Toa)
which can be factored as

Ty = S7' 0 Oy(ra, p2)

where

(6.97)

e O, : 75 — II,, the second type of Dulac map near P2, using the coordinates

(v,d) on the section 72, is given in (6.21). ny(v, w( o)) = i z/plw(

Ofl)

Also 0y(v,d w( 1)) is C* and satisfies the same properties as of 6, in

(6.22).

e S71:II, — II; is a C* regular transition map defined in Prop. 6.1. We can

write its second component as

S5 (v, a) = Ma1o(v) + man (V)2 + mar2(v)F° + O(F3)

(6.98)
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where m419(0) = 0, mg1(0) # 0 and by Prop. 6.1, for Ehhlc, mg3(0) =
#[igo, while for Ehh2e(resp. Ehh3e) mg1(0) can be sufficiently small (resp.
sufficiently large) .

By (6.98), for the transition map T3, we have

i Tn(v,d) =v
Tos(v,d) = mao(v, w(”—d al))

6.99
ﬁ +Va1d [m21(’/ UJ( ( )

20’ 1))+m22(yaw(:_37al))y6ld

+0211 (v, v, W(p_oa —0‘1))]
where
mzo(Vaw(— 1)) = maio(v) +/€1[ﬂ;j—(y—)1/plw( o)) + 0w (%, o))
mgl(u,w( )) —= m211( )ll + Kllo(llplw( 041))
)

(v, w(%, 01)) = Moy (V)8 + O w (4, o)),
and 651, is C* and has the same properties as of 6; in (6.22).

(1.4). The transition map T3 For the transition map 73 : 72 — Xy, it can

be factorized as

T3 Ro @3 oV
where

e V : 75, —> 73, the regular transition map defined in Coro. 6.14. Using the

coordinates (v, d) on the section 73, we have

r3 = .Vl(yl_da ’/d)

6.100
vi= d[m141+m142( W 4 g (V)8 +O( ), 2 )] ( )

where by Coro. 6.14 we have T14;(0) = m4(0) (i = 1,2, 3).

e O3 : 4 — 03, the second type Dulac map near P; which satisfies Theo-
rem 4.14 with o3(ag) = 2(1 — 2aq).
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e The regular transition map R : ©3 — %4 is C* and can be written as

Rl(yv 53) =V
-~ 6.101
Ry(v,§3) =maa(v) + Z maa; (v V) + O( Nz+1) ( )

where by Hypothesis 6.11, we have mz4; (0) < 1.

So it follows from (6.100), (4.29) and (6.101) that the transition map T3

satisfies
[ Ty, =v
Tsp(v,d) = mao(v,w(rs,fr)) + 7204 [m31('/ w(mav' ™%, B1))
. +maa (V)% + maavt + O~ %)
+§1:m34jya3(1-d)j n O(V(N1+1)&3(1—d)) + 01 (v, V', w(mar' ™, ﬁl))]
| =1

(6.102)

where 63; is C* and satisfies the properties of 64 in (6.97), also

ms3o = m340( ) + K3 [MV”W( :31) + O( 2p3w2(£g',ﬂl))]

msr = M + ngO(ypaw(m4V1 d,ﬂl))a m31(0) # 0
(]
map = ZPHAEI0 4 g, 0P wime' ™, B1)),  max(0) = +Kines

To 141

)
mas = SHAER 1 s O(Pw(may' ™, Br),  mas(0) = +Kasafiao
)

141

T34 = -lﬁ”%?;nﬂ + k3O(WPw(mar'=4, 1)),  Taa1(0) = *mn3q2(0)
and in mao (v, w(72, B1)) we still keep 73 as the function of d in the expression (6.100).

To get the cyclicity of Ehhlc and Ehh3e, we are going to apply Theorem 6.12 to
study #(F,G) of the following system

{ Fy(e,d) :=Tiz(v,c) — Toa(v,d) =0 (6.103)

Gulc,d) = Tua(v,c) — Tsa(v,d) =0

for (a, i) € Ag x S? and (c,d) € D,, where D, is a square whose size depends on v. With
v =ue? and u € (0,1), then D, =7, x Z,.
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(2). Functions F,(c,d) and G,(c,d) satisfy the conditions of Theorem 5.3.2.

For 0 < v < €2, F,(c,d) and G, (c, d) are continuous on D, and smooth in D,. Note

that Ve € (12, I0¥) " we have v17¢ € (ue, €), hence 71179 € (0,eP!). So for 0 < v < &2

Iny? Inv

and V(c,d) € D, with £ > 0 sufficiently small, by (6.23), a first derivation gives

%Fv(c’ d) = T1,2c

;—Lualcupl(l —Iny + 7 Inval; + 01 (v, v° w(po, —a1))
0

ik 261 (v, 0%, (e, —an))] (6.104)
= v Inv]gy ) + L0219 + 61 (v, 05, w(%%,al))]
#0
where [1; = —;;T, 011 (v, v° w( ,01)) is and satisfies the properties (6.22). Since for
z > 0 sufficiently small, (zP'w(z, 1)) = 2P~ o w(w,01) — 1] > 0, for 611 with c € Z,,
we have the estimation: 61 (v, v© w(g— o)) = (E”lw(s, al)).
Similarly, for 0 < v < €2 and Y(c,d) € D, with £ > 0 sufficiently small, we have
%F,,(c, d) =-T5y
=—1714ny [Ellz + 1910P1 (=9 L Lo (1)271% 4 B3 (v, 17, w(’;—z, -al))]
£0
(6.105)
where 13(0) = lym211(0) # 0, loy = —ip&%‘%u, and Iy = 26112ma12. Also for Ehhlc,

122(0) = %mg12(0) = *figp. For Oa3(v, yd,w(ﬂ, —ay)), it is C* and satisfies the properties

po
(6.22).
By (6.104) and (6.105), for 0 < v < £% and V(c,d) € D, with ¢ > 0 sufficiently
small, F,(c,d) and G, (c,d) satisfy the conditions of Theorem 6.12. So we have

#(F,G) < 1+ #(F, J[F,G]). (6.106)

(3). Calculation of #(F, J[F,G]).
To calculate #(F, J[F,G]), we have to calculate J[F,G] = %—f%ﬁ %5 %f.
Note that for the case g3 =1, d3+ 01 =p3s =1, so

pp=P1(l=¢) — Y1=Fi(1—¢) — [,(1-B1)(1—¢)}1-(1-¢) — ;c;T3(1—c)
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Therefore, for 74(v,w(5%, B1)), by (6.93) and similar to (6.23) we have

%CE( v,w(it, B1))
=8y dy (;§ p1)
= By (2) 75y
= K3my uu(l —e)(1-1-61) In p (6.107)
[1+ M)~ + Frrsg ()0 + 02079, %)) A
[1 + s (V) + et + 0219, u2°)]
= ;”f;y‘_m(l_c)uc Inv [1 + 142 (V) ¢ + Myas(V)r° + O(VQ(I_C)v Vzc)] .
So by (6.96), (6.102) and (6.107) and direct derivation, we have
#Gu(c,d) =Ti(v,c)
=731 |np [&314 + 1411073 + Lyog (V)1 ¢ + Laoa (v)v©
O 120 4 040 (v, 1 ~C, w(mar? e, ﬁ1))]
Gu(c,d) = —Tapy(v,d)
=730y [5353 + 13110738 + Tagp ()01~ + I3 (v)rd + O(2(1—9), 24)

N1
+2233J‘U53(1_d)j +0 (V(Nl +1)c‘73(1—d))
j=1

+932 (Va Vl—da w(m41/1_d7 _ﬁl))]

S

(6.108)

where 045 (v, V1€, w(mar' ¢, —6)) and Osa(v, v ~% w(maw' =%, —B1)) are C* and satisfy

the properties (6.97); lg = —y——m141, I3 = mgq1l4, and 13(0)I4(0) # 0. Also

1311(0) = *k3
7411(0) = %K3
I331(0) = *m342(0)
422(0) = *my42(0) = xKj42e2
l423(0) = %m143(0) = *K143/230
I322(0) = %m341(0)la22(0) = *m3s1 Ki42€n
I323(0) = %mn341(0)l423(0) = *m3q1 K143fiz0.

Let

a3’ J[F, G](v,c, d).

aG 8G
bc ad

Gi(v,¢,d) == 7
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It follows from (6.104), (6.105) and (6.108) that

m211(”)

G1 (Va ¢, d) = V(61+53)c[1 + 77:1 (l/, C)] - U(61+E3)d [m (V)
341

+ ha(v, d)] .

Then for 0 < v < €2 and V(c,d) € D, with € > 0 sufficiently small, the equation

G1(v,c,d) = 0 is equivalent to equation Ga(v,c,d) = 0, where
Ga(v,c,d) == v°[1 + by (v, )] — Vi (v) + ha(v, d)] (6.109)

_—1__‘
where 71 (v) = (—J_mm U)) 71773 and

maa1(v)

hi(v,c) = ’71111/1’1(1“0) + 31, 0P34
F14201 7 + F1430° + O(2(1-9), %)
+H; (v, 0% 0% w(%, —a1), w(mar' ¢, —B1))
ho(v,d) = o101 0= 4 5,,0P3d
+F2390 ¢ + Fagard + O (1219, 1 24)
Ny
+ > a7 4 O NHVA=DT) 4oy ()71
j=1
d

+H2(V7 de Vl_d) w(_l/_

o _al)v w(m‘lyl_da _ﬂl))

where
F111(0) = *k1, Yo11(0) = *K1
¥311(0) = *k3, Y411(0) = *x3
Y22(0) = #mi12(0)
¥341(0) = *m342(0)
Y232(0) = #7142(0) = *K14262
Y233(0) = *¥143(0) = *K143f430,
also H; and H, are C* and

H, =0 (zﬂ’lcw(%:-, o), P31 w(mypl—e, ﬂl))

Hy =0 (Upldw(z—z, 0!1), UpB(l_d)UJ(m/-lVl_da ﬁl)) .

Similar to what we did in (2) with the functions F,(c,d) and G,(c,d), one can
check that for 0 < v < €2 and V(c,d) € D, with &€ > 0 sufficiently small, G»(v, c,d) and
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F,(c,d) satisfy the conditions of Theorem 6.12. Hence we have

#(F,G) <#(F,J[F,G])+1

=#(F,G1) +1
#(E G (6.110)
= #(F,Gq) +1
< #(GQ, '][Fa Gz]) +2.
(4). Calculation of #(G3, J[F,G2)).
Let
G3(I/, c, d) = —5’111 J[F7 G;Z](II/, ] d) .
2c~ 2d
Then a straightforward calculation gives
Gs(v,c,d) = v V1 + hgy (v, ¢)] — v "Dy (1) + haa (v, d))]. (6.111)

=i _
where 2 (v) = mg11(v) (zzﬁ ig) 71455

By (6.109), if for 0 < v < €2 and VY(c,d) € D, with ¢ > 0 sufficiently small,
G2 (v,¢,d) # 0, then #(Ga, J[F,G3]) = 0 and we already finish the proof. Otherwise,
similar to the proof in the Theorem 6.12, G2(v, ¢,d) = 0 defines a unique connected curve

which satisfies

c d71(y)+h2(y7d)
= 112
Vi=p 1w elie) (6.112)
By iterating the relation (6.112), the unique curve defined by Ga(v,c,d) = 0 can

be written as
v = v (V) + ho(v, d)] (6.113)

where

ho(v,d) = oo (=9 + FggavP3?

+70120* % + For3v% + O(pH1~9) 24)

Ny

3 0 1 031045
i=1

02 (V)17 + Ho (v, 14, 019, w(

Z_OJ —al)’w(mflul_da _ﬁl))
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where
F001(0) = *s1, Yo03(0) = *K3

Y02(0) = *ma12(0)

Yo31(0) = *m342(0)

Y012(0) = *¥m142(0)(m211(0) — Mm341(0)) = * K262
Y013(0) = *m143(0)(m211(0) — m341(0)) = *K143fizo,

also Hy is C* and

d
Hy=0 (Vpldw(:—o, 1), P30 Dy (mgt 4, ﬁl)) . (6.114)

Substitute (6.113) into G3(v,c,d) and let

_ -1, 1-a1
g(V’ d) =1y v G3(V1 ¢, d)‘(6.113).

Then a straightforward calculation gives

g, d) =v(v) + s1vPr (9 + GoguPed
+0,0174 4 G0t + O (A L2
Ny
+Z 54jV5'3(1—d)j e O(V(N3+1)(1—-d)5'3)

J=1

= d
+6(V)p71 4+ H(p, vt v~ (%, —an), w(mar' %, 1))

(6.115)

where

1

Yv) =1 - (ms, ()miy (v)) T, (6.116)
and

001(0) = %K1, 303(0) = *k3
61(0) = *m212(0) = *fiso
62(0) = *m142(0)(ma11(0) — m341(0)) = *K142€2 (6.117)
63(0) = *¥m143(0)(m211(0) — m341(0)) = *K143/iz0
641(0) = *m342(0),
also H is C* and satisfies (6.114).

In order to get the cyclicity of Ehh2e, Ehh3e and Ehhle, we will study the number
of roots of the equation g(v,d) = 0 for d € (0,1) and v > 0 sufficiently small.
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(5). Cyeclicity of Ehh2e and Ehh3e: Cycl(Ehh2e, Ehh3e)< 2.

For the graphic Ehh2e (resp. Ehh3e), since mg;1(0) can be sufficiently small (resp.
large), so v(0) — 1 (resp. sufficiently large), hence for (a, i) € Ay x Vi, (resp. (a,z) €
Ay x Vi, ), and Vv € (0,14) and d € (0,1), by (6.115), in both cases we have g(v,d) # 0.
Therefore, #(G2, J[F,G2]) = 0 and by (6.110), we have #(F,G) < 2, i.e., Cycl(EhhZ2e,
Ehh3e)< 2.

(6). Cyeclicity of Ehhlc when mg;1(0) < 1. (This contains the case jizo = 0)

For the graphic Ehhlc, by (6.116), we have

1

7(0) =1 - (m3 (O)m} () " (6.118)

By Hypothesis 6.11 we have ms41(0) < 1, so if mg11(0) < 1, then by (6.118) we have
v(0) # 0, hence Cycl(Ehhlc)< 2.

For the graphic Ehhlc with mg;1(0) > 1, we will study the equation g(v,d) = 0
with 0 < v < 2 and d € Z, for ap € (0,1) \ Q and ag € (0,3) NQ in (7) and (8)
respectively.

Note that if ji3g = 0, then mg11(0) = 1 which is the case when fizo = 0, it is already
included in (6); also note that the nilpotent elliptic point is of codimension 3, so &2 # 0.

So in the following two cases, we have

62(0) = *m142(0)[m211(0) — m341(0)] = *K14062 # 0
83(0) = *m143(0)[ma11(0) — m341(0)] = *K143/230 # 0.

(6.119)

(7). Cyclicity of Ehhlc when ma;1(0) > 1 (fizp > 0): Case ap € (0,3)\Q

For ag € (0, $)\Q, let N, = [?i—a%a_oﬂ’ then function g(v,d) in (6.115) can be simplified

to

grd) =) + 5 + o)
+85 ()14 + 83 (V) + O(p ¥~ 2)
[3] _ -~
+Z(54jyc‘ra(1—d)] X O(V([a]+1)cra(1—d)>

=1

(6.120)
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Let
a
op. ] #@d = R55s0d) (6.121)
: _ yP3-di g —a3(1-d)j ] = L .
gj(l/,d) — " Inv B_d(gj_l(lj,d)ll ’ jg=1- ’[3_3]'

Then after [515] + 1 steps of successive derivation and division in (6.121), we get
g, (vyd) = 81 ()™ + o(v™1) + S (W)~ + By () + 0P, (6.122)
73

where 31(0) = *m212(0) = *¥[i30 75 0, and by (6119), 32(0) = *52(0) 7é 0.

‘We introduce a Lemma.

Lemma 6.17. Consider the equation
L{v,d) = I; ()v"1% + o(v71%) + L)'~ + o}~ + I3 (1) + o(v?)

for v € (0,62) and d € (BE, &) with u € (0,1) and € > 0 sufficiently small. If 51 > 1

Iny? Inv

and 13(0)I3(0) # 0 or &1 < 1 and I1(0)I2(0) # 0, then L(v,d) = 0 has at most 1 solution.
Proof. For the case 1 > 1, L(v, d) can be simplified to
L(v,d) = )™ 4 o' %) + L(v)vt + o(v%)
Note that I5(0)I3(0) # 0, so we have two possibilities:
e if [3(0)I3(0) > 0, then L(v,d) # 0;
e if I5(0)I3(0) < 0, then L} (v, d) # 0, thus L(v,d) = 0 has at most one solution.

Altogether, L(v,d) = 0 has at most 1 solution.

The case 1 < 1 is similar. I

End of proof of Theorem. 6.16

In this case, note that we have 8;(0)d2(0)63(0) # 0 and &1 # 1, so applying
Lemma 6.17 to the function in (6.122), we conclude that g; a ](1/, d) has at most 1 root.
So g(v,d) = 0 has at most [5_—13] + 4 roots. Hence Cycl(Ehhlc) < [71] + [%] + 4. Thus
for ag € (0, %)/Q, the graphic Ehhlc has finite cyclicity.

(8). Cyclicity of Ehhle when mo11(0) > 1 (30 > 0): Case g € (0, %) nNQ
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For the graphic Ehhle, if ag € (0, 3) N Q, then o1(ag),03(ap) € Q. For i = 1,3, let

oi(ag) = g—?’,pi,qi € N and (p;, ;) = 1, thus we have three subcases:

(8.1). Case qq € (0, %) nQ\ {n—_lm, 21}4;—1,71 € N}
In this case, we have q; > 2, 01 < p1 and p3 > 2. Then for v > 0 sufficiently small,
we have 61 < p; and [&la] < q3. Note that in this case oy, a% ¢ N, therefore the equation

(6.115) can be reduced to
9w, d) =) + 8 (V)r7 +o(v™) + G3(v)v? + o(v?)

q3
+Zc54j1/53(1'd)j + 52(1/)1/1_d + o(ul_d)
i=1

(6.123)

Applying the DD process (6.121) [;13-] steps to the function g(v,d) in (6.123), we

get
b ()78 4 o171 + b () + oY) ifor <1
Ip1,0 (v, @) =

b3 + o(v?) + b2 (V)14 + o(v! %) ifo;>1

where 8;(0) # 0, (i = 1,2,3).
Then by Lemma 6.17 we obtain that gy, 4,(v,d) = 0 has at most 1 solution, then
g(v,d) = 0 has at most [5%] + 4 solutions, i.e., Ehhlc has finite cyclicity.

(8.2). Case gy = n%_z,n eNn#1,2

This is a particular case of (8.1). In this case, we have o1(ap) =p1 =n > 1 and
o3(ag) = ;L% € (1,2). Thus for o3(ap) = % with p3,¢3 € N and (ps3,q3) = 1, we have
g3 > 2. Then g(v,d) can be reduced to

g9(v,d) = () + S (W) + o(v'7?) + & (W)r? + 0(v?).

Similar to the proof of the Lemma 6.17, we obtain that (v, d) has at most 1 solution

which gives that Cycl(Ehhlc) < 3.

(8.3). Case ap =

In this case, we have 01(3) =2, p1 =2, ¢t =1 and o3(ag) = 1, p3 = g3 = 1.

For the second type of Dulac map near P3, by Theorem 4.14, we have

94(1”4,;04,‘0(%, —p1) = ﬂzK?,Taw(:-z-, Bi) + O(sz(:—‘;, —51)w(:—§,131))- (6.124)
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By Lemma 6.15, we have the first saddle quantity at P3 (2 # 0.
Then the function in (6.115) has the form

g(w,d) =) + @)’ + d1a(v)r*
d d d

+81 () w (5, ar) + O(V2w2(%3, o= al)) (6.125)
+0g101 74 + 8 (V) w(mar' 4, 1)
+0 (v (mav'~4, ) (mav' =4, 61) )

where 11 (v) can vanish, d1(0) = xag(}) = *jis0 # 0, and 82(0) = *32 # 0.

By applying the standard division-derivation method to to the function g(v,d) in
(6.125), we can kill the terms y(v) and v9. Then the number of roots of g(v,d) = 0 is at

most 6 plus the number of roots of
g, d) = 8120 + 81 (1) (L, )
20,2(X2 — vt
+O(Ij 4 (Po’ alzw(po’al)) (6.126)
+o21 (V)17 + Sy (V) w(mar! ™4, 1)

+0 (Vw2 (mar' =%, —B1)w(mar' 4, ﬁl))
where 6;(0) = #§;(0) # 0 (¢ = 1,2).

Let go(v,d) = ﬁz—z%(v“wgl(u, d)), then

e v Ve
g2(v,d) = ——pg‘lélu”ld + O(V2w2(——, —ay)w(—, al))
Po Po

—[(3 + Br)w(mi4v*~4, 81) + 1)85(v)p* ¢
+0 (I/(,u2 (m4yl—d, —ﬁl)w(m4ul_d, :81)) .

Let g3(v,d) = ”I;d%(u_(l—d)gg(u, d)), then

d d
v,d) =8r7% 4+ 0(1W? y—,—oz w L,a
ga(d) =& (A e =)

+3(v)0° + O (v (mav' 2, — B )w(mar %, B1) )
51(0) = —p§*51(0) # 0, 52(0) = (3 + B1)m;"185(0) # 0.
Again applying Lemma 6.17 to the function g3(v,d) we conclude that g3(v,d) =0

has at most 1 root, so for ag = %, Cycl(Ehhlc) < 9.

(8.4). Case ap = 2’;;1, neN, n#1
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In this case, we have o1(ag) = 2712—_1 <1, p1 =2 ¢ =2n -1 and o3(ag) = %,
D3 = 17 g3 = n.
Since o1 < 1, so this is a case similar to the case (8.3), but simplier. The function
in (6.115) has the form
g(v,d) =)+ 6 (v + o(v71)
n—1

+Z52jya'3(1_d)j 4 (522(y)y1_d (6127)
Jj=1

+5, () uw(may' 4, Br) + O (o (mav' 4, —fr)w(ma =4, 61))
where 01(0) = *mg12(0) = *ji30 # 0, and by Lemma 6.15, 62(0) = *3; # 0.
After killing the terms yTs(1-d)j (j = 1,2,--- ,n — 1) by the DD process, then
similar to the process in (8.3), we obtain that Cycl(Fhhlc) < n + 4.

(8.5). Case ag = 1
Note that in this case, 01(3) = p1 = 1, o3() = 2. Then the function in (6.115)
has the form

gvd) =) + o1 + B @)L, o) + O (mod(%, —ar)u(%, 1)

(6.128)
+621V5'3(1—d) + O(Uﬁg(l—d))

where 4, (0) = *az(3) and 62(0) = %02 # 0.
In this case we need to calculate the saddle quantity «y for the 2-dimensional system

near P; on r = 0. In this case, system near P; on 7 = 0 becomes

p = 5p(1+ 3y + 302062)
§ = ~35+29° + fspy + 20207y + fnp®.
Then by the formula (5.52) introduced in Lemma 5.14, we have the saddle quantity

1
02 (5, o) = —64iizg # 0. (6.129)

Then similar to the case (8.3), we obtain the finite cyclicity of Ehhlc.

Altogether we have proved Ehhlc has finite cyclicity. O
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Next we study the rest of the lower boundary graphics of Ehh families. First
note that for the family Ehh4, it is the same as the family Sxhhl for the saddle
case, so by Theorem 5.5, family Ehh4 has finite cyclicity.

Before finishing the proof for both the lower boundary graphics and interme-

diate graphics, we make the following remark:

Remark 6.18. System (3.10) is invariant under the transformation
(_t) =T, —p1, _ﬂ3) — (t7 z, ,E'la ﬂ3) (6130)

so the families ERh7 and Ehh8 can be obtained from the families Ehh5 and Ehh6,
families Ehh11 and Ehh12 can be obtained from the families Ehh9 and Ehh10, we
will only need to deal with families Ehh5, Ehh6, Ehh9 and Ehh10 as long as we do
not use Hypothesis 6.11: v* < 1.

Now we prove that

Theorem 6.19. For the families EhhS, - - -, Ehh12, all the lower boundary graph-

ics have finite cyclicity.

Proof. By Remark 6.18, we only need to prove that the lower boundary graphics
Ehhb5c, Ehh6c, Ehh9c Ehh10e have finite cyclicity. For all these graphics, take sec-
tions 7, and Y5 as defined in Notation 5.7, we are going to study the displacement

map defined on the section 7y:

LITl—-—>23

e (6.131)
L=T-T

where T is the transition map through the blown-up singularity, T is the transition
map along the regular orbit. Similar to the graphic Ehple, on the section 7, we

will use coordinates (v, ¢) with ¢ € Z,.

We begin with the graphics Ehh9c and Ehh10e first.
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(a) Graphic Ehh9c (b) Graphic Ehh10e

Figure 6.9: Lower boundary graphics Ehh9c and Ehh10e: Displacement maps

(1). Lower boundar graphics Ehh9c and Ehh10e

Taking sections 74, ¥4, X3 in the normal form coordinates (as defined in

Notation 5.7), the transition map T can be calculated by the decomposition

T=R'lo8,0U

where

e U : 7 —> 74 is the regular transition map defined in Prop. 6.13, it has the

expression (6.55),
o O4: 74 —> X, is the second type Dulac map near Fy,
e R7!:3, —> 33 is the inverse of the transition map R defined in (6.101).

Then a straightforward calculation gives

fz(V, C) = 777/130(1/) S 771131(’/)774(1/: W(T4, :61)) + O(Vm(l—c)wz(mu/l_c; ﬂl))
—my3(v)roed=9) [1 + 04 (v, v, W (mar' e, ,51)]

(6.132)
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where ry = 17 [myy + OV, v'79)], my = 244 and my3(0) > 0.

For the graphic Ehh10e, as shown in Fig. 6.9(b), take sections ¥; and 538
in the normal form coordinates in the neighborhood of the saddle-node, then the
second component Dy(v, ) of the transition map Ay : ¥; — X3 can be written
as

E0(1/, 7) = moo(v)§
where mgo(0) is sufficiently small.

Take sections II; and II3 as defined in Notation 5.7, then the transition map

T can be factorized as

ZT1—)23

= Az OTosozo 0T 06

=3 )

where

e O : ; — II; is the second type Dulac map near P, which satisfies Theo-

rem 4.14 with ¢ = o7,

e Ty :II; — T, and T3 : &3 — II3 are C* regular transition maps, they

have the forms of (6.38) and (6.37) respectively,

o A; : II; — 5 is the first type Dulac map near P; which satisfies Theo-

rem 4.11 with ¢ = 03.

Then a straightforward calculation gives

Ty = fago(v) + fnse(V)r7 P w(v°, —ay) (1 + O(vPsw (s, —al)))

o (6.133)
+mys(v)etore [1 + O13(v, V¢, w(r", —al))]
where 7130(0) = 0 and m13(0) = *mge(0) > 0.

Similar to the case of Ehplc, it is not difficult to verify that Ve € 7, and v > 0
sufficiently small, there holds (v, ¢) < 0 and T¥ (v, c) > 0. Hence the displace-
ment map defined in (6.131) has at most two roots, which gives Cycl(Ehh10e) < 2.
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For the graphic Ehh9c, as shown in Fig. 6.9(a), the map T has a similar
expression as in the case of Ehh10e which can be obtained by letting mgo(v) = 1.

So it has cyclicity at most 2.

(a) Graphic Ehh5c (b) Graphic Ehh6c

Figure 6.10: Lower boundary graphics Ehh5c and Ehh6c: Displacement maps

(2). Lower boundary graphics Ehh5c and Ehhéc

Since the graphics Ehh5c and Ehh6c pass through a saddle and a saddle node
respectively, the transition map F may not be C?, and the graphics need a special
treatment.

Let us see Ehh5c first. As shown in Fig 6.10, in the normal form coordinates

in the neighborhood of the saddle point, take sections ¥; = {¥ = -z} and
Y3 = {§ = v}, let A(fio) be the hyperbolicity ratio of the saddle point. Then for

the transition map

Z() = (80,30) : fl — X3
its second component Dy(v,§) can be written in the form of 5.46.

Take sections II; and II; as defined in Notation 5.7 in the normal form coor-
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dinates, then the transition map T has the following decomposition:
'f = Ag % To3 o Zo o Tlg o} 61 (6134)

where

e O, : ; — II; is the second type Dulac map near P, which satisfies Theo-

rem 4.14 with o = oy,

e Ty :II; — 5, and T3 : X3 — I3 are C* regular transition maps they

have the same expression as in (6.38) and (6.37) respectively,

o Az : II3 — Y3 is the first type Dulac map near P; which satisfies Theo-

rem 4.11 with o = o3.

Since the hyperbolicity ratio A can be > 1, =1 and < 1, so for graphic Ehh5c
we have to deal with three subcases:
(2.1). Case A(fip) > 1

Let

g1 = /—:‘gll—uplw(;—:, o) + V‘_Tlc[ll + 01 (v, Vc,w(i;-g, —al))]

(6.135)
§3 = mozo(v) + Moz 77 [,50 + ¢o(v, @1)]

where ll = ;%OT > 0, m030(0) = O, m031(0) 7é 0 and ¢0(V, ﬂl) € (Igo) Then the
0
second component T5(v, c) can be written as
7 RS A LR L Sl o At P s b =
Ty(v, c) = Kkapp w(yoa ﬁ3)(l/o) = (Vo) [ys +q53(1/,y3,w(y0, ﬁa))}
(6.136)
where 7g31(0) > 0 and ¢gs; is C* and satisfies the property (6.22).

Consider the displacement defined in (6.131). By (6.132) and (6.136), a first



153

derivation of Ly(v, c¢) gives

Lyw,¢) =Ty, ~ Ty d)
= ()" [+ 8 (oot -0)]
[771031( )AZ” 1(1 + o1 (v, ?71))]
”1“1n1/[01l1 + O (1=9) + 0y, (v Ve w(p , al))]
—73(0=9 ny [m13(1/)53 + O(vP3°) + 0y (1/, v w(mgrt™e, 63))]

(6.137)
where ¢, € (I$°), and 6y, 041 satisfy the property (6. 22), also
9¢3 — p3, a3( Y o
B 0(1/ w (Vo’ B3) In Vo).
L4 (v, ¢) has the same number of small roots as of
y—ﬁ'g(l—c) ,
L21 (I/, C) T L2 (V, C)
= —ma3(¥)a3 + O(V7°) + 0n (V, V1= w(mav' e, 53)) +0 ("ji‘_l) .
(6.138)

Since mi3(0) # 0, so Ly (v,¢) # 0, thus Ly(v,c) = 0 has at most one small root,

i.e., Cycl(Ehhbc) < 1.

(2.2). Case A(fio) <1

In this case, Ly (v, c) has the same number of small roots as of

Lgl(ll, C)
OE S [1 288 (3, Gy (2, _53))]

[(0111)1 % + 0219 4 G5 (v, v° w(p , al))]

— §1(1 + dor (v, 1)) [(m1353)ﬁ + O(¥P2°) + 041 (v, V', w(mgv' =, ﬂs))]
(6.139)
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Then
Ly, (v, w Inv [1 + O(zﬂ’?’wqa L —fB;3)In )

[(aﬁcm)(mll)i—x + O(pP1(1=9) + 0,3 (y e w("— —041))]

“1clnv[llal + O WP 1=9)) + O14(v, v° W(p_ _al))] (1 + dos (v, ﬂ1))
(1 ()3) 75 + O(75) + B (v, v, w(mav =, Go))|
(6.140)

which has the same number of small roots as of
Vﬁ‘lc

Laa(v,0) = - Inv

L,21(V7 C)-

Yet

Ly (v,c) = 0oy (mls(V)C_T3) 53 [1 + poa(v, .731)]
[1 + 0w (-9) + 64y (1/, 7 w(:—:, —afl))]
[1 + O(vP3¢) + +043 (1/, vi= w(myr'=e, ,83))] + O(y I-x
# 0.

Hence, Ly(v, c) = 0 has at most two small roots, therefore Cycl(Ehhbc) < 2.

(2.3). Case A(fip) =1

In this case, for the second component Ty of T defined in (6.134), letting

[+ C

B v . v
7 = mg(v) + mmly’”w(—p—, ay)) + my(v)v 1‘:[1 + 611 (v, Vc,w(p—, al))] (6.142)
0 0

and using the refinement of Roussarie([R86]) for T3 o Ay, then a straightforward

calculation gives

To(v,c) = ano(v) + O(W™w(z, —0s))

4198 [an(l/)ﬂw(ﬂ, ay1) + (V)i + O (V&ngw(g, au))] (6.143)
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where agp(0) = 0, as2(0) # 0.

Then the first derivation of Lq(v, c) gives

Ly(v,c) =vo [511(’/)‘”(?7 o) + Gaa(v) + O(Vaa’gw(ﬂ, Oéu))]
[mu(v)y‘m lnu(l + O (=9)) + 611 (v, 15, w(:—;, —al)))]
—330-)Iny [m13(1/)53 + O(1P2) + Oy (v, v 7%, w(mar' ¢, ,83))]

(6.144)

where @1, (v) = a11(1 — 1) and Qe = age — g1 with @ (0) # 0.

Denote

Loj(c) =1+ 0(um0-9, yme)
Uc 1_ 1—, b j Z 1'
+601,(v, I/C,w(p—, —a1)) + 04 (v, v' ¢, w(mar =%, —3))
0

where the 6, and 6,4; will have the similar properties as the 01, and 04, respectively.

Then the equation Lj(v,c) = 0 has the same number of small roots as of

Los(v,c)
p e (3 o)

w(@ 1) Inw (1 + 0(P0=9) + 13 (v, 7, (2, —en))) (6.145)
_ T —-(51+5'3)CL v,c
= mu(u)au (I/) + mq1 (V) w?!;2$)1) _ 13( )Vw(g all) 01( )

The number of roots of the equation Los(v,c) = 0 is at most one plus the
number of roots of

V(&1+&s)cg1+a11w2(17, 1) Ly (v, )

L =
(%) (61 + &3)mas(v) Loa(v, ¢) Inv (6.146)
=y (§,a11) — V" Lea(v,c) + O (1/(2‘71+53)C).
Let
L. (v, c
L24 (1/, C) — 23( )

viclny [1 + O =9) + O (v, ve, (%, —al))]
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Then
Loa(v,¢) = —mn(v) [1 + (14 @) w(g, an)]
—&1 Loz (v, ¢) + O (,,(2&1 +&s)c) (6.147)
£0.

where the term §%'w (g, a11) is positive and sufficiently large.

Therefore, Ly(v, ¢) = 0 has at most 3 small roots which gives Cycl(Ehhbc) <

Now let us study the graphic Ehh6c. In the decomposition of f, the second
component of the transition map 6y = (EO,EO) satisfies
ailﬁo = ~7 B "
_8—571_(1/, y) = O(y 2), V’Ll,’l,z €N (6148)
Still letting ¢ be defined as in (6.142), also letting

s = mo3o(v) + O(?jiz), ig > 2

then for Th(v, c), we have (6.134) gives

o~

Tu(r,) = () (s =B) + (7 B + ol B oo, ~B))]  (6149)

Then a first derivation of Ly(v, ) gives
Ly(,e) =Tj(v,¢) - (v d)
- (%)Gao(giz_l) [1 + %%S—:(V: #s,w(i5, “53))]
volny [61l1 + O¥Pr(=9)) + 0y (v, v°, w(:—:, —al))]
—v730= In v [my3(v)F3 + O(VP2°) + 041 (v, 1%, w(mar =, Bs))]
(6.150)

which has the same number of small roots as

L, (v, c)p73(e—1)
In(we) = : 11)11/

= — my3(v)73 + O(v™°) + Ou (V, vl w(mar' ﬁs)) T O(ﬂi:’_l)
#0
Therefore, L(v, ¢) = 0 has at most one small root, i.e., Cycl(Ehh6c) < 1. O
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6.3.4 Intermediate graphics of the Ehh families
Now we study the cyclicity of intermediate graphics of the Ehh families.

Theorem 6.20. Under the generic assumption, all the intermediate hh-graphics

of elliptic type of the 12 families Ehh1, Ehh2, -- -, Ehh12 have finite cyclicity.

Proof. Let T be any of the intermediate hh-graphics of elliptic type of the 12
families. Similar to the intermediate concave graphics of saddle type, take sections
I13 and II4 as defined in (5.22) in the normal form coordinates in the neighborhood

of P; and P, respectively. Let

T: Il — 114
(v,53) = (v, T2 (v, §is))
be the transition map similar to the map defined in Prop. 5.11. Then by Prop. 5.11,
for each of the intermediate graphic in the 12 families, to prove their finite cyclicity,
we only need to verify that for v = 0, the corresponding transition map 7' with

second component T3(0, 73) satisfies one of the conditions listed in Prop. 5.11.

We are going to discuss the transition map 75(0,¢;) in the chart F.R. on
r = 0. Recall that in §3.1, we use the quasi-homogeneous compactification (3.15),

or
1 _
=k, u=l
to study the singularities at infinity on 7 = 0 in the chart F.R.. So by (3.11) we
have (z,u) = (p2,¥2), which is precisely the same coordinates we use in the chart
P.R.2. Hence in the neighborhood of P; and P, in chart F.R. on r = 0, we still
use the coordinates (p2,ys). By taking r3 = 0 and r4 = 0 in the normal forms in
the neighborhood of P; and P, in Prop. 4.6, we obtain the normal forms in the

neighborhoods of P3 and FPj in the chart F.R. on r = 0. Near P,

L (6.151)

Y3 = —0o3(a)fs + K3ph’
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and in the neighborhood of P;, we have

(6.152)

where if a # i then k3 = 0.

Since we are only calculating the map 7 for v = 0 and in the chart F.R,,
r = v is invariant, so let m; = {p; = po} (¢ = 3,4) be the two line sections in the
chart F.R. on r = 0 parametrized by 7;. Then we are reduced to study the one
dimension transition map
T5(0,94) : 74 —> 73
or its inverse. We will verify that for each family, the corresponding map 75(0, 74)

or its inverse satisfies one of the sufficient conditions listed in Prop. 5.11.
(1). Families Ehhl, Ehh2 and Ehh3

We begin with the family Ehhl. Let I’ be any intermediate graphic of the
family Ehhl. Since the systems (6.151) and (6.152) exist globally, so the map 15
exists globally on 74 and not only in the neighborhood of 4 NI'. We are going
to prove that T5(0,§s) is either the identity or nonlinear. By Prop. 5.12, to prove
the nonlinearity of T3, it suffices to prove that it is nonlinear at certain point on
7. To do this, as shown in Fig. 6.11, we take line sections 4 = {§4 = —yo} and
73 = {3 = —yo} in the normal form coordinates and the sections 73 and 74 are
chosen such that any intermediate graphic of the family intersects 7; or ; inside
the neighborhood of P; (i = 3,4) respectively. Then over some subinterval of 74

the map T, can be factorized as
Ty =8 0 o> (6.153)

where as shown in Fig. 6.11(a), S; : ; — m; (i = 3,4) are the regular transition
maps in the normal form coordinates in the neighborhood of P; and P respectively,
and j:'z : 74 — T3 18 the transition map which is in particular defined near the

lower boundary graphic Ehhlc.
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We first calculate S3 and S;'. Due to the easy form of system (6.151), the

transition S3 can be directly calculated by integration, and

1
53(0, p3) = pTa[_Cl -+ CQKJ3 In pg] (6154)
3
where C; and Cy are positive constants. Let vz = gls, if we parametrize section 73

by w3, then by (6.154), for the map S3, we have

5’
S3:v3 = - 6.155
3:0s —01 -+ Cglig 111 P3 ( )

Note that if we reverse the time in system (6.151) we get system (6.152), so if let

vy = yL‘; and parametrize 74 by v4, then we have

2
1y = . 6.15
54 s —01 + Czlﬂg In P4 ( 6)

By (6.156), the transition map Ss sends the points on section 74 in the positive

neighborhood of 0 to the points on the section 74 at infinity.

Remark 6.21. Although the normal form is only valid in the neighborhood of Ps
and Py, the systems (6.151) and (6.152) ezist globally.

Note that if fizo = 0, then fz is the identity since the system is symmetric. In
the case fizp # 0 we now turn to the calculation of T,. As shown in Fig. 6.11(b),
there are two saddles P, and P, at infinity in the chart F.R. on r = 0, so fQ can

be calculated by the following decomposition
Ty=VaoDy08,0D; 0Uy . (6.157)

Note that fg is not necessarily valid in the neighborhood of I'N 7y, but we consider
it near the end point of the interval of definition of 75. For the components of Tg

in (6.157), we have
e U, and V, are regular transition maps defined in Prop. 6.13 and Corol-
lary. 6.14. By (6.55) and (6.79), we have

Us (0, p4) = ma1ps + mazpj + O(p})
Va(0,p2) =7 [pz — 0+ 0(/)%)]-
Also by Prop. 6.13 and Corollary. 6.14, we have myy # 0 since figo # 0.

(6.158)
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(a) Regular transition (b) T

Figure 6.11: Transition map 7" for the intermediate graphic of family Ehh1

e D; and D, are Dulac maps in the neighborhood of the infinite singular points

P1 andP2
ﬁll’]’l —r mM

ﬁg:ﬂ'z—)TQ

and
-~ 7 (Bro + 611(0, p1)) ifo, #1
Dl(oapl) = ' g i
,Bmpl +a1p1w1[1+---]+a2p1w1[1+---]+--- 1f01 =l
1 _
_ o ! -+ 0,7 if 1
Biogy - | Ferauom) i
Biofia + c1fowa[l + - -] + apfawe[l + -]+ ifoy =1
(6.159)

where w; = w(py, o1) and wy = w(fa, a1), P11, ¢11 satisfy (I°).

e S, is the second component of the transition map S defined in Prop. 6.1 and

satisfies (6.2).

It follows from (6.157), (6.158), (6.159) and (6.2) that we have
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e Case oy # 1:
@(0, pa) = Mi1ps + s + 7’712/01”1 == 951(/04, w(pa, 01)) (6.160)

where rhy = x55(0) = *[i30 # 0, and 7hye = *myge # 0, also b1 (pa, w(pa, 1))
is C*° and satisfies Ig°.

e Case g; = 1:

TQ(O, ps) = mipg + ayepsw(ps, 1)l + -] (6.161)

o s, )14+

where 77 # 0. For the case o1 = 1 (a = §), by (6.129), we have ap = *fi3 # 0.

So for both the cases 01 # 1 and o; = 1, by (6.160) and (6.161), if iz # 0,
@(O, p4) is nonlinear in py.

Now we show that the map 75(0,%4) is nonlinear if fizo # 0. Indeed, by
(6.153), we have

Si=T; 08507, (6.162)

If T5(0, §4) is linear in f, i.e., T5(0, %) = bfs (b # 0), then by (6.162) and (6.155),

we should have

o (’fz((), ,04)>03
a\U, 1) = l‘;[ = <k Cakis 1nf2(07p4)]

which is a contradiction to (6.156) for all the cases of o3 and 3.

Therefore, T5(0,4) is either the identity or nonlinear for §, € R. Thus for
both cases, the intermediate graphics of the family Ehh1 have finite cyclicity.

Now we consider family Ehh3. As in Fig. 6.12(a), we have a family of in-
termediate graphics Ehh3b, Ehh3c and Ehh3d. Note that Ehh3c is similar to the
graphic Ehh6c while Ehh2d is similar to the graphic Ehh10e. In Theorem 6.19,
we have proved Ehh6c and Ehh10e have finite cyclicity. Here instead of starting
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from section 71, we consider the displacement map defined on section 7 with image
on 7y, we conclude that Cycl(Ehh3c) < 1 and Cycl(Ehh3d) < 2. To study the
cyclicity of the graphic Ehh3b, we study the transition map 7% defined on 74 in
the neighborhood of the graphic Ehh3c.

(a) Family Ehh3 (b) Family Ehh2

Figure 6.12: Transition map T for the intermediate graphics of Ehh2 and Ehh3

For Ehh3c, it pass through a attracting saddle node. As shown in Fig. 6.12(a),
let 74 = {§ = yo} and 7 = {Z = zo} be two sections in the neighborhood of the

saddle node. Then the corresponding transition map 75 can be factorized as

T5: 74— 73

3 3 (6.163)
To =S30V50D50W50D50W;

where
o Wy :my — 74,2 C¥ regular transition map

e Dy : {j =y} — {& = z0} is the transition in the neighborhood of the
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saddle node in the normal form coordinates. Then Vn;,ns € N, we have
oM D,
ox™

0,) =0 (5;“2) (6.164)
e W, : 7 — my a C* regular transition map

e D, is the Dulac map in the neighborhood of P, and has the form of the
(6.159)

e S5 and V, are regular transition maps given in (6.155) and (6.158) respec-

tively.

Note that o = Wy 0 Dy o W;(0,§s) as the function of @, it satisfies (6.164)
too, then by (6.163), for T, we have gjgoTQ(O, §4) = —oo. Hence T; maps (0, 00)
to (—o0, 00). Since T5(0, 74) is analytic and bijective, it has to be nonlinear in gy,
therefore it is nonlinear for 94 € Rt, thus any intermediate graphic Ehh3b has

finite cyclicity.

The finite cyclicity of family Ehh2 follows from Remark 6.18.
(2). Family Ehh4.

For the family Ehh4, the lower boundary graphic passes through a hyperbolic
saddle, it has the same structure as the family Sxhhl of saddle type. The only
difference is that the value of ay has a different sign, which does not influence the

proof. So, the family Ehh4 has finite cyclicity.
(3). Families Ehh9, Ehh10, Ehhl1l and Ehh12

As remarked in Remark 6.18, we only need to consider the intermediate graph-
ics for the family Ehh9 and Ehh10. We first consider the family Ehh10 with a
attracting saddle-node on its lower boundary(Fig. 6.13(b)). In Theorem 6.19(1),
we have proved that Ehh10e has finite cyclicity at most 2. Now we study the tran-
sition map T5(0,§4) associated with Ehh10d and prove that it is nonlinear. We
could have proved directly that Ehh10d has cyclicity < 1, but the proof given here

will work with a very small modification for the intermediate graphics of Ehh9.
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For the system in the neighborhood of the attracting saddle node, by a C*
normal form coordinate change, we bring the system into normal form. In the
normal form coordinates (%, ), take sections 71 = {Z = —zo} and 7» = {Z = 2o}

Then the central-transition map Dy : 71 — 7» satisfies
Do(0,7) = mo ()7 (6.165)

where ﬁ211_r)r[}_ mo(f) = 0.

As shown in Fig. 6.13(b), the corresponding transition map 75 can be factor-
ized as
9 = Si_l _ (6.166)
T, =WyoDgoW,0D;0U,
where Uy, S, are regular transition maps along the lower boundary graphics which
are given in (6.156) and (6.158) respectively, Wi : 1y — 71 and Wy : 7, —> 73
are regular transition maps, and D, : 7; — 7 is the Dulac in the neighborhood

of Py in the form of (6.159).

(a) Ehh9b (b) Ehh10d

Figure 6.13: Transition map T for the families Ehh9 and Ehh10

Then a straightforward calculation gives
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e Case 01 # 1:

o~

T5(0, pa) = mo(R)p5" + 0(pF') (6.167)

=

where 1y = *my.
e Case 0y =1 (a = 3):

750, p4) = T0(f) [’71P4 + a1 paw(pg; o)1 + - -]

(6.168)
+agpdo(ps, o)L+ -]+ ]

where by (6.129), we have the saddle quantity ay = *[izp # 0 since fizg # 0.

Let vy = 514—, we parametrize section 74 by v4 and denote TQ(O, vg) = T5(0, Fa).
We claim that the map T (0, v4) is nonlinear in v, in the neighborhood of v4 = 0.
Indeed, if not, then it is linear, i.e., T;(O, v4) = bug (b # 0), then by (6.166) we

have T o Sy = 15 or depending on o, we have two cases

e Case 01 # 1:

a3
POy

b
—01 + Cg In P4

= mo(B)m(v)ps* + o(p7').

e Case o = 1:

o3
bt = Yo(v) +Mo(R) [’Yl(’/)m + a1paw(ps, 0 )[1 + - -]
s (pr, )L+ ]+

Since 01 = =22, o3 = 2(1 — 2a) and Va € (0, 3), 01 # 03, the above equations are

impossible.

Therefore @(O, v4) is nonlinear in v, for v, sufficiently small, i.e., T5(0, 74)
is nonlinear in g, for ¢, sufficiently large. T5(0,%s) is analytic, thus T2(0,34) is
nonlinear for ¢4 € R. Hence, all the intermediate graphics in the family Ehh10

have finite cyclicity.
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Now we turn to the family Ehh9. By Fig. 6.13(b), we see that this family of
intermediate graphics can be treated as the graphics of family Ehh10. It suffices

to take the central transition map S as identity (i.e., My = 1)

(4). Families Ehh5, Ehh6, Ehh7 and Ehh8

(a) Ehh5b (b) Ehh6b

Figure 6.14: Transition map 7" for the families Ehh5 and Ehh6

By Remark 6.18, we only need to study families Ehh5 and Ehh6. We first
consider family Ehh5. As shown in Fig. 6.14, the lower boundary graphic Ehhb5c
passes through two saddle points. One is at the infinity P, the other lies on the
invariant line § = 0. We have a saddle connection.

In the normal form coordinates (Z,7) near the finite saddle, take sections
71 = {% = —z0} and 7 = {§ = wo}, let Ag : {§ = —zo} — {J = vo} be the
Dulac map, then similar to the family Ehh10, the corresponding transition map 75
can be factorized as (6.166). Then similar to the case of Ehh 2 we can prove that
i l_i+n_1oo T5(0,4) = 0 which means the map 7> maps (—oo, 00) to (0,00). Since T3 is
%ijective and analytic, it has to be nonlinear. Hence all the intermediate graphics
Ehh5b have finite cyclicity.

For the family Ehh6, it has a attracting saddle node on the lower boundary

graphic. This is similar to the family Ehh2.
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Altogether, we have proved that all the intermediate graphics of the Ehh type
have finite cyclicity. O



Chapter 7

Application of the main theorems
to quadratic systems

Hilbert’s 16th Problem ([H]) Finding the mazimum number H(2) and relative

positions of limit cycles of quadratic vector fields.

For Hilbert’s 16th problem, till now we only know that H(2) > 4. In [DRR94],
Dumortier, Roussarie and Rousseau launched a program aiming at solving the
finiteness part of the Hilbert’s 16th problem for quadratic vector fields. The pa-
per listed all the 121 limit periodic sets surrounding the origin in a family of
quadratic vector fields and reduced the finiteness problem for quadratic systems to
the proof that all of these graphics have finite cyclicity. Up to now, about 50 ele-
mentary graphics have been proved to have finite cyclicity. To finish the program,
it is absolutely essential to be able to prove the finite cyclicity of non-elementary
graphics. By the results of this work, we will be able to prove that more than 20
non-elementary graphics have finite cyclicity.

As an application of the main theorems to quadratic systems, in this thesis, we
only prove that some of the graphics through a triple nilpotent singular point (listed

in Fig. 7.1) have finite cyclicity. More will appear in a forthcoming publication.

Theorem 7.1. For quadratic systems, the graphics (Iiy), (Iis), (1%) and (I1,)
have finite cyclicity if the nilpotent singular point is of codimension 8 (In the proof

this condition is calculated explicitly).

168
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& &

(a) (I3 (b) (Iis)

SRR

() (Ig) (@) (F) (e) (Hg), (Fga)

Figure 7.1: Some graphics with triple nilpotent singularity for quadratic systems

Proof. By [DRR94], the graphics (I,) and (I3,) occur in the family

{ T =Mt —y+e1x? (7.1)

¥ =1+ Ay + 6z?+ Sy
where 0 < 83 < €; for (I},) (resp. €1 < 82 < 2¢; for (I3) ), 61 = A(3e1 —63) > 0
and 4e:7% — (1 + A?)§; < 0. By rescaling we can assume that &; = 1. Then (7.1)

becomes

(7.2)

z =X —y+z2:=P(z,y)
7 =z + Ay + A8 —8)5? + Sy := Q(z,y)

with Ag = (14 A?)d; —4A? > 0 and A # 0. System (7.2) has an invariant parabola

y=(1—%) 2—Am—%(1+/\2). (7.3)
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To prove that the graphic (I1,) (resp. (I},) ) has finite cyclicity, by Theo-
rem 5.5 and Prop. 5.3 (resp. Theorem 6.10 and Remark 5.4), we only need to
prove that, for the quantity +* defined in (5.10), there holds v* # 1.

Indeed, along the graphic (the invariant parabola (7.3)), we have

7" =exp (/_: div X(7(2) ’(7-3)dt)

To
= lim exp (/ el Gl da;)

Tp—+00 i Oo2 +4Xz + 1+ AR

= lim 02xd + dAzo 4+ 14 N2 ) " ex .. arctan Pea 724 2/\>
= aotoa | \ Gomd — Ay + 1+ A2 8 s

B (_ 4 T )
Bt W
#1

(7.4
where Ag = (1 + A%)d, — 422 > 0 and A # 0.

So, the graphics (I;) and ([3,) have finite cyclicity if the nilpotent point
has codimension 3. We now calculate the codimension of the nilpotent singularity

point.

To study the triple nilpotent singular point on the graphic (at infinity), we

introduce the coordinates (v, z) = (£, %) Then we have

v = —z+ (1 — 52)’02 == )\(3 = 52)'1)3 == 1)22 (7 5)
2 = =8z — A2® — A8 — 8o)v?z — v2? .

Similar to what we did in Theorem 2.3 for quadratic systems, by a near-

identity transformation and rescaling, we bring system (7.5) into a “standard form”

v o=w
(7.6)
W =103 + w[bv + £9v%) + O(v®) + w2O(|(v, w)|?)
where &7 = sgn(d2(d2 — 1)) and
_ B-3%

BV CICEDE
25364

|02(d2 — 1)/3
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Note that b = 2v/2 <= §; = 2. So for A # 0 and 8, € (1,2), if 6, # 3, the
nilpotent elliptic point is of codimension 3, and for A # 0 and 6, € (0,1), if &, %,
the nilpotent saddle point is of codimension 3. Then (I3,) has finite cyclicity if
82 # 2, (I3,) has finite cyclicity if §; # 3.

For the graphics (I;) and (I7,,), since Ag = 0 and there exists an attracting
saddle node on the invariant parabola, then & (0) is very small. Thus (I) has

finite cyclicity if 6, # 2; (I{y,) has finite cyclicity if 6, # 3.

Theorem 7.2. Cycl(H}) < 2, The graphic (F,) has finite cyclicity.

Proof. By Theorem 2.3, the family unfolding the triple nilpotent singularity for
quadratic systems can be written in the form of (2.28) or (2.29). For 0 < ¢ <
24/1 — a, we have hemicycle (H}) and a family of graphics (Fj,). After the blow-
up of the family, take sections 3; and ¥, as defined in Notation 5.7 in the normal
form coordinates. To prove that (H}) and (F.,) have finite cyclicity, first we study

the transition map
R:Y — 3% (7.7)

along the equator. We are going to prove that the second component Ry(0,72) is
nonlinear in %s.
(1). Normal forms and Dulac maps at infinity

As shown in Fig. 7.2, let P, be the saddle point at infinity in the direction of

the positive z — azis. Using coordinates (z,,u,) = (%, £), we have

iy = u (1l —a—cup + vl —u,z) (78)

= —z(a+cu, — U+ up2,)

Hence P, is a saddle point of hyperbolicity ratio o, = 1. For a € (0, 3), we have

0 < 0, < 1. Dividing system (7.8) by 1 — a — cu, + u2 — u,2, (positive in the



1)

3 21\/’22

Figure 7.2: The hemicycle (H})

neighborhood of P,) and using a coordinate change of the form

U’T - uT
{ zr =V (Up, Zp) i= dp1(Ur) Zyr + dpo(ur) Z2 + u,0(Z3)
where
rl(ur) =1- - a2u1‘+0( ))
ro(ur) = —mur +O(u}),

then system (7.8) is C* equivalent to the normalized system

d
d

Upw =
N(k)
4, =27,]- a,+27” urZ2)|

where if a € (0,1/2)\ @, 7 =0;if a € (0,1/2) N Q, 0r = &, (p,q) =

172

(7.9)

(7.10)

1,p,g € N.

Take two sections X, = {Z, = Z} and II, = {u, = up} in the normal form

coordinates. By [Mou90], for the Dulac map D,, we have

D, . ¥, —1I,
D, (u,) = uZ (Ar + ¥r(ur))

where A, > 0 constant, also ¥, € (I§°).

(7.11)
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Similarly, at P, the singular point at infinity in the direction of the negative

x-axis, if we use coordinates (2, ;) = (—%, —¥), then we have

’iLl = ul(a —1- cu; — ’UIZZ + ulzl) (7 12)

Zl = Z[(CL — CU; — ’U,lz + ulzl)

After dividing by 1 — a + bu; + u? — u;2;, and by a coordinate change of the form

U =u
A (7.13)
Zl = \Ifl(ul, Zl) = dn(ul)zl + dlz(ul)ZZZ + UZO(Z?)
where
dll(Ul) =1- '(‘#Ul -+ 0(’11-[2))
dlg(ul) = -(T—a)(ll——Za,)ul + O(U?),
system (7.12) is C* equivalent to the normalized system
U =y
| v | (7.14)
4 =Zoc+ Y w2

=1
where if a € (0,1/2) \ @, vi; = 0.
Take two sections II; = {w; = wo}, & = {Z; = Zy} in the normal form

coordinates. We have the Dulac map

D11, — %5
Di(Z) = Z}' (A1 + ¥u(Z))

(7.15)

where 0, = alT > 1, A; > 0 constant, also ¥, € (I3°).
(2). Decomposition of the map R,
For the transition map R defined in (7.7), the second component Ry can be

calculated by the decomposition

Rngg———)El
Ry=TioDjoRyoD,oT,

(7.16)

where
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o Ry : I, — II; is the transition map in the normal form coordinates along

the equator and we can write

Ry(Z,) = B Zr + P2 Z} + O(Z}) (717

o T, :3%, — ¥, and T; : ¥; — 2; are regular transition maps along the

invariant line, they have the forms

() =mg+ O(gz)

(7.18)
T(3) =mugi+ O(G})

Then a straightforward calculation from (7.11), (7.15), (7.16), (7.17) and (7.18)

gives

Ry() = B + Bof* T + o(5*7) (7.19)

= L1 1+1
where 81 = mym, (A, Bn) 7 A; > 0 constant, [ = Uirmlm,‘_”alﬁg{ Boa AjAr °'. So,

in order to prove that R(#) is nonlinear, it suffice to prove that Goy # 0.
(3). Calculation of Rj(0)
(3.1). Decomposition of the map R;. Now we prove that [y # 0. To do this,

we introduce the coordinates (v, w) = (£, 1) and make the following decomposition

¥’y
RO = \Ifl o @m o] ROO o @12 o \I,T‘ (720)

where

\Ifr(u(], ZT) = drl (’U,())ZT —+ drg(uo)Zf + UOO(ZE)

(7.21)
U, (uo, 21) = diy(wo) 21 + dia(wo) 2?2 + upO(2})
are the coordinate changes on u, = ug and u; = ug respectively and
1 1
V== u=—=
3, : wo gy e (7.22)
w=2z 7 =-—%
Ur v

are the coordinate changes between the charts. The map Ry : I, — II; is the
regular transition map in the coordinates (v, w), and sections become II, = {v =

ctand I = {v=—L}.
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(3.2). Calculation of the transition map Ry Using coordinates (v, w), we have

system

v =(a—-1Dv*+cv—14+w
=i (7.23)

W = —vw.

Note that the w—axis is invariant, also with 0 < ¢ < 24/1 — a, there holds ¢ |,—0=

(a —1)v? 4+ cv — 1 < 0. Hence Ry is a C*° map which can be written as

Roo (w) = ,300121) + ,3002’(1)2 + O(’LU3). (724)

By Prop. 5.3, a straightforward calculation gives

A

Boor (1) =eXp(/%uo (1—a):))2dqicv+1 )

k2
2(1—a)—cug —2(l—a)—cup (1—a)+cug+ul
= exp ( [arctan = arctan 60 [ e ial

= exp(—cam) + O(up)

(7.25)
and
2vex (/U vdy )
" P L= —aw+1
D e
Booz(ug) = ﬁom(m)/_i - g g i) dv
uo
Boo1 exp (—Cz arctan ?(—l—w 1 2'0 exp 62 arctan( 251—:;!11—0)
— 1 ,CZ l_a’UZ—C'U-l—l)kl dv
2" ((1 —a) —cup + Uo -
2k & 2vexp (¢ arctan(w)
_ 2ug 2[1+0(uo)] exp{— i*521) Pl ] 0
= (1—a)*2 (1—a)?—cv+ 1)k
(7.26)
where
— 3—4 3
k= —ig— €(1,3)

ke = —gg— € (3,1)

a=+/41—-a)—c?

c
(1—a)y/4(1-a)—c?
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Note that k; € (1,3), so 2k; — 2 € (0,1). Also

L 2vexp (cz arctan(w)

up c1

v
. i (1 —a)v2 —cv+ 1)k _exp(5cam) — exp(—3cam)
uos0 —— (ki -2)(1-a)
Yo
Therefore
a5 2vVexp (02 &I‘C’Gan(z(l%l)v_c) [exp(5c2m) — exp(—5¢2m)](1 + O(uy))
1 = -
& (1—a)v?—cv+ 1)k (2k; — 2)(1 — )k k12

Thus, by (7.26), we have

) = ~— R TIPON L gomedpy y o)), (720

(3.3). Ry is nonlinear: fy2 = Rj(0) #0
It follows from (7.20), (7.21), (7.22) and (7.24) that

Ry(Zy) = Bo1 Zr + Bo2Z2 + O(Z2)

where

Boi(uo) = dr1(uo)din(uo)Boor
= (1- w0+ 0(d) (1 - yruo + 0(ud))
(1—a)+cup+u? k2
[ e (- enED - D))

= e~ G2 + O(UO)

Boz(uo) = Boordi1 (uo)dra(uo) + diz(uo)d7y (u0) Bo1 + o i1 (uo)din (wo)Booa
= Boo1 ( Toayrto + 0(“0)) ( ~ Es i S O(Ug))
2

((1——0)('1——207% + O(uo)) ( — ﬁ;uo + O(uo)) B

2 —_— —_—
-5 (1 ~ Tartet 0('&3)) el Samea(en U1 + O(uo)]

&= <23,§f”)25‘?’i"(2§3’ kB[4 4 Ofug)] + O(uo).

Since 2(ky — k1) +1 = 3“ € (—1,1), so Byz # 0. i.e., the second component Ry
of R has the form in (7.19) with ﬂg # 0. Note that all steps of the proof of Theorem 6.3
work with this form of the transition in (7.19), yielding Cycl(H}) < 2. Furthermore, by
Prop. 5.12, the graphic (Fg,) has finite cyclicity. O



Chapter 8

Conclusion

This thesis solves some important problems of finite cyclicity of graphics through
a nilpotent singularity of saddle or elliptic type. The methods developed here also
allow to prove that the cuspidal loop has finite cyclicity. We also set up some tools

which allow to expect to get solutions to several more problems in the near future:

1. Prove Conjecture 6.8 for the hp graphic
Solving this conjecture by a “general method” would allow to solve several
similar conjectures arising in the concave case of the saddle type.

2. Prove that the concave graphic of saddle type has finite cyclicity.

3. Study the finite cyclicity of the convex graphic through a nilpotent of codi-
mension 4 (the case a = —1, which corresponds to b =0 in (2.4) ).
The case when the saddle connection is fixed is nearly done.

4. Prove that for quadratic systems, many graphics with a triple nilpotent sin-
gular point of saddle or elliptic type listed in the paper [DRR94] have finite
cyclicity.

In Ch.7, we have proved several such graphics have finite cyclicity. More can

be done by similar calculations.
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