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RESUME

Cette thése est consacrée & I’étude des symétries ainsi que de l'intégrabilité
des équations aux variables discrétes indépendantes.

Dans les trois premiers chapitres nous introduisons une nouvelle méthode
permettant de calculer les symétries de Lie ponctuelles des systémes d’équations
sur un réseau. Les transformations de Lie agissent 4 la fois sur ’équation discréte
et sur le réseau lui-méme. Ces transformations ameénent les solutions du systéme
en d’autres solutions. Le cas des équations & une seule variable discréte est d’abord
traité, par la suite nous considérons le cas multidimensionnel.

Au chapitre 4, nous effectuons une classification par symétries des interactions
possibles d’une chaine moléculaire diatomique unidimensionnelle. Pour les inter-
actions non-linéaires le groupe de Lie des transformations ponctuelles, amenant
une solution en une autre solution et laissant le réseau invariant, est au plus de
dimension 5. La classification des équations est faite en classes d’équivalence sous
Paction de transformations permises.

La deuxiéme partie de la thése concerne la question de Pintégrabilité. Au
chapitre 5, nous étudions cette propriété pour les équations aux variables dis-
crétes partielles bidimensionnelles. Pour ce faire, nous utilisons la méthode de la
croissance de degré des itérations. Nous montrons que pour les équations non-
intégrables, la croissance de degré est exponentielle alors que pour les équations
intégrables, elle est polynémiale. Nous utilisons également cette méthode pour
obtenir des équations non-autonomes & partir des équations autonomes étudiées.
Finalement, nous montrons que la méthode de croissance de degré nous donne,

en plus, Pinformation permettant de connaitre la méthode d’intégration précise

A utiliser.
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Au chapitre 6, nous examinons dans quelle mesure la propriété de Painlevé
est une condition nécessaire a l'intégrabilité des équations différentielles ordinaires
non-linéaires. Des exemples, pour plusieurs systémes linéarisables, nous montrent
que ce n’est pas le cas. Dans le domaine discret, une étude tout & fait analogue
est faite dans laquelle la propriété de Painlevé est substituée par la propriété du
confinement des singularités. Des résultats similaires sont obtenus, c’est-a-dire
que nous trouvons des systémes discrets linéarisables dont les singularités ne sont
pas confinées.

Finalement, en annexe, nous obtenons le nombre ainsi que la forme des inva-
riants (opérateurs de Casimir généralisés) pour les algébres de Lie triangulaires

nilpotentes et résolubles.

MOTS CLEF : Equations aux différences, symétrie, intégrabilité,
groupes de Lie, systémes non-linéaires, Painlevé, entropie algébrique,

algébres de Lie triangulaires, opérateurs de Casimir.



ABSTRACT

This thesis is devoted to the study of symmetries and of the integrability of
equations with discrete independent variables.

In the first three chapters, we introduce a new method which allows us to
calculate Lie point symmetries for systems of equations on a lattice. The Lie
transformations act simultaneously on the discrete equation and on the lattice
itself. The transformations take solutions of the system into other solutions. The
case of equations with only one discrete variable is treated first, then we consider
the multidimensional case.

In Chapter 4, a symmetry classification of possible interactions in a unidi-
mensional diatomic molecular chain is provided. For non-linear interactions, the
group of Lie point transformations, leaving the lattice invariant and taking so-
lutions into solutions, is at most 5-dimensional. The equations are classified into
equivalence classes under the action of a group of “allowed” transformations.

The second part of the thesis is devoted to the question of integrability. In
Chapter 5, we investigate this property for partial difference equations with two
independent variables. We use newly developed techniques for studying the degree
of the iterates. We show that for nonintegrable equations, the degree grows ex-
ponentially fast, for integrable lattice equations the degree growth is polynomial.
The growth criterion is used in order to obtain integrable deautonomisations of
the equations examined. Finally, we show that degree growth contains information
that can be an indication as to the precise integration method to be used.

In the last Chapter, we examine whether the Painlevé property is a necessary
condition for the integrability of nonlinear ordinary differential equations. We

show that for a large class of linearisable systems this is not the case. In the
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discrete domain, we investigate wheter the singularity confinement property is
satisfied for the discrete analogues of the non-Painlevé continuous systems.
Finally, in the Appendix, we find the number and the form of the invariants

(generalized Casimir operators) for nilpotent and solvable triangular Lie algebras.

KEY WORDS : Difference equations, symmetry, integrability, Lie
groups, nonlinear systems, Painlevé, algebraic entropy, triangular Lie

algebras, Casimir operators.
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INTRODUCTION

Une des hypoteéses fondamentales qui se trouve a la base de la description ma-
thématique de la réalité physique est que I’espace-temps est continu. Les équations
de mouvement physique sont alors modélisées par des équations différentielles. Ce
que nos sens et ’extension de ceux-ci, par les instruments de mesure, nous disent,
c’est que le monde physique semble continu et que nous n’avons aucune raison de
croire que cette hypothése de continuité a des chances de disparaitre par 'amé-
lioration de la précision des instruments de mesure. Tout ce que les instruments
peuvent nous donner, c’est une limite supérieure de la «longueur» du réseau de
I’espace-temps possiblement discret. Il existe en effet des spéculations sérieuses
pour lesquelles I’espace-temps serait discret, & des longueurs au-dela de nos possi-
bilités expérimentales [1, 2, 3]. Typiquement, ces longueurs sont de l’ordre de la
longueur de Planck (10732 c¢m). Si cela s’avérait vrai, cela voudrait dire que nous
devrions utiliser les équations aux variables discrétes pour la description de mou-
vement de la physique. Les équations continues, celles qui nous sont familiéres,
apparaitraient alors comme des approximations ou des cas limites (en faisant
tendre certains parameétres vers zéro) des équations fondamentales discrétes.

L’aspect spéculatif d’un espace-temps discret n’est cependant pas une condi-
tion sine qua non pour que les équations aux variables discrétes deviennent in-
téressantes. La motivation premiére provient du fait que les équations discrétes
apparaissent de facon naturelle dans plusieurs domaines de la physique. On les
retrouve, entre autres, dans la description des réseaux de spins en mécanique sta-
tistique, dans les réseaux cristallins, dans les chaines moléculaires, dans la théorie
des groupes quantiques, etc [4, 5, 6]. Une seconde motivation provient du fait

que ce sont des objets intrinséquement intéressant a étudier d’un point de vue



purement mathématique. De 1a toute ’attention que I'on a portée aux systémes
discrets, particuliérement au cours de la derniére décennie, en ce qui concerne les
symétries ainsi que l'intégrabilité de ces systémes. Il existe toutefois un domaine
ol les systémes discrets sont inévitables : I’analyse numérique. En effet, avec I’ave-
nement des ordinateurs de plus en plus puissants, la simulation numérique des
phénomeénes en science est devenue chose courante dans le monde scientifique. Or,
la simulation numérique est basée exclusivement sur des équations aux variables
discrétes. D’ailleurs, les méthodes d’intégration numérique des équations diffé-
rentielles sont sans doute les plus populaires; suivant la capacité de la machine,
elles permettent d’obtenir ’évolution d’un systéme physique avec plus ou moins
de précision.

Mentionnons cependant que cette thése se situe plutét dans le cadre des mé-
thodes analytiques pour les équations aux variables discrétes. Les méthodes ana-
lytiques, lorsqu’elles peuvent nous fournir des solutions exactes, présentent des
avantages certains du point de vue de I'information qu’elles nous donnent : so-
lutions compactes valides pour toutes conditions initiales, comportements solito-
niques, comportements chaotiques, comportements asymptotiques, etc. Le pro-
bléme qui se pose alors est de trouver les solutions d’un systéme d’équations (dif-
férentielles ou discrétes). Cette tache peut s’avérer trés ardue, particuliérement
lorsque les systémes sont non-linéraires.

En ce qui concerne les équations différentielles, la théorie des groupes de Lie
est une méthode analytique puissante permettant la résolution d’équations dif-
férentielles. En fait, la théorie des groupes apparait dés le début du 19° siécle
avec les travaux de Ruffini, Cauchy et surtout Galois sur la résolution des équa-
tions algébriques. Plus tard, le mathématicien norvégien Sophus Lie (1842-1899)
cherche & réaliser pour les équations différentielles ce que Galois avait fait pour
les équations algébriques. Ainsi, la théorie générale des groupes continus, que 1’on

appelle maintenant plus communément groupes de Lie, a fait son apparition.



Essentiellement, ’idée de cette méthode est d’obtenir le plus grand groupe
de transformations locales agissant sur I’espace des variables indépendantes et
dépendantes de notre équation différentielle et qui a la propriété de transformer
une solution de notre équation en une autre solution. Ainsi, pour une équation

différentielle (scalaire) de la forme

E(z,u,u® u? . u™) =0,

T = (71,%s,...,2,) ERP, ue€R, p,neZ°,
ot u® dénote toutes les dérivées partielles d’ordre k de wu(z), on considére la
variété M des (p + 1)-tuples (z,u) ot les z; sont les variables indépendante et u

est la variable dépendante de notre équation

McXxU  X~RP, U~R.

On cherche un groupe continu G agissant sur 1’espace M, dont I’action est donnée

par

G: M —M
(z,u) — (Z(z,u),0(z,u))
ou Z(z,u) et 4(x,u) sont des fonctions localement lisses. On dit que G est un
groupe de symétrie de I’équation différentielle E = 0 s’il transforme des solutions
de cette équation en d’autres solutions. Précisément, si u = f(z) est une solution

de ’équation différentielle, alors
E(E,a,aW,a@, ... a) =0,

C'est-a-dire @& = g - f(z) = f(Z) est aussi une solution de I'équation (ou f(Z) est
la transformée de f(z) sous I’action de g € G).

Ce qu’il faut noter, c’est que 1’algeébre de Lie, associée au groupe de symétrie de
notre équation différentielle, peut étre obtenue de fagon purement algorithmique

[7, 8, 9]. Ainsi, une fois 'agébre de Lie obtenue, souvent appelée algebre de



symétrie, on peut intégrer les champs de vecteurs de cette algébre afin d’obtenir
le groupe de symétrie.
Les motivations pour lesquelles on cherche le groupe de symétrie d’une équa-

tion différentielle sont multiples :

(1) Le groupe de symétrie, qui laisse ’ensemble des solutions de notre systéme
invariant, peut étre appliqué sur une solution connue pour générer de
nouvelles solutions. Il est ainsi parfois possible d’obtenir une solution non-

triviale & partir d’une solution triviale.

(2) Le groupe de symétrie peut étre utilisé pour faire de la «réduction par
symétrie». Ainsi, pour les équations aux dérivées ordinaires (EDO), cela
nous permet de réduire ’ordre de ’équation. Pour les équations aux dé-
rivées partielles (EDP), la réduction par symétrie réduit le nombre de

variables indépendantes.

(3) Si deux équations sont équivalentes alors elles ont un groupe de symé-
trie isomorphe. Ainsi, I'isomorphisme des deux groupes peut étre utilisé
comme condition nécessaire pour que deux équations puissent étre trans-
formées 'une dans 'autre par une transformation ponctuelle. En particu-
lier, on peut déterminer si une équation non-linéaire est linéarisable par

son groupe de symétrie [9].

Etant donné la puissance de 'utilisation des groupes de Lie pour les équations
différentielles, il est légitime de se demander si une telle méthode peut aussi s’ap-
pliquer pour les équations aux variables discrétes. Dans ce sens, Levi et Winternitz
(et leurs collaborateurs) ont développé deux méthodes pour obtenir les groupes
de symétrie des équations aux variables discrétes. La premiére méthode, appelée
la méthode intrinséque [10], nous donne les symétries de Lie ponctuelles pour
les équations aux variables discrétes sur un réseau fixe et uniforme. Par la suite,
la méthode des équations différentielles a été introduite [11]. Celle-ci constitue

en quelque sorte le complément de la méthode intrinséque puisqu’elle donne une



classe de symétries généralisées en plus des symétries de Lie ponctuelles. Comme
la méthode intrinséque, la méthode des équations différentielles s’applique sur un
réseau fixe et uniforme. Dans les deux cas, la méthode pour obtenir les symétries
des équations aux variables discrétes est algorithmique et similaire au cas des
équations différentielles, donc relativement simple. Par contre, quand on passe
du cas continu au cas discret par une de ces deux méthodes, certaines symétries
peuvent disparaitre. Il est en effet difficile d’envisager une dilatation, par exemple,
sur un réseau fixe et uniforme.

Pour les équations aux variables discrétes linéaires sur un réseau fixe et uni-
forme, une approche supplémentaire a été proposée [12, 13]. Dans cette approche,
I'équation discréte est formulée en termes d’opérateurs linéaires qui formeront
les éléments de ’algébre obtenue. Ici, I’algébre de symétrie de 1’équation dis-
créte et sa limite continue sont isomorphes. Cette méthode a été étendue pour
certaines équations aux variables discrétes dites linéarisables [14] ou intégrables
[15, 16, 17, 18]. Dans le cas linéaire comme dans le cas non-linéaire, la méthode
donne des symétries généralisées puisqu’elles agissent sur plusieurs points dans le
réseau.

Dans les méthodes présentées ci-dessus, permettant d’obtenir le groupe de
symétries pour les équations aux variables discrétes, on considérait les équations
ainsi que le réseau comme des objets donnés a priori afin de les étudier. Le but
étant de résoudre les équations, les classifier et d’identifier les équations linéari-
sables ou intégrables. Cependant, une autre approche introduite par Dorodnitsyn
et des collaborateurs [19, 20, 21, 22, 23, 24] considére I’équation discréte ainsi
que le réseau sur laquelle elle est définit comme des objets auxiliaires. Le point
de départ étant le groupe de symétrie associé & une équation différentielle (ou &
une classe d’équations différentielles) plutot que ’équation discréte elle-méme et
son réseau. Par la suite, on cherche & discrétiser I’équation différentielle originale
de fagon a préserver ses symétries. Cette approche est donc intéressante du point

de vue de ’analyse numérique, lorsque ’on veut faire une discrétisation qui soit



fidéle aux symétries du cas continu. Mentionnons également que c’est dans cette
approche qu’a été introduite la notion de ’action du groupe de symétrie, agissant
a la fois sur I’équation ainsi que sur le réseau lui-méme.

Telle que mentionné ci-dessus, une des motivations pour laquelle nous cher-
chons le groupe de symétrie d’une équation différentielle concernait la réduction
par symétrie [7, 8, 9]. En effet, la méthode de réduction par symétrie s’avére
souvent le seul outil permettant d’obtenir des solutions analytiques explicites. Du
point de vue physique, ceci correspond & imposer une symétrie au modéle. Cette
symétrie ne doit cependant pas &tre quelconque mais se trouver au niveau des
équations, c’est-a-dire dans le groupe de symétrie. Ainsi, mathématiquement, la
méthode est une construction qui consiste & déterminer les solutions d’un systéme
d’équations différentielles caractérisées par leur invariance sous un sous-groupe
du groupe de symétrie du systéme. Pour une EDP, la méthode permet de ré-
duire le nombre de variables impliquées dans ’équation originale. Par exemple, si
on cherche les solutions invariantes sous les rotations pour I’équation de Laplace
Au = 0, ceci correspond a introduire la nouvelle variable r = /22 + y2 + 22 qui
réduit notre équation de Laplace originale a u,, + g}-ff- = 0 dont la solution est
u=4 +c.

Le groupe de symétrie nous permet donc de ramener une EDP non-linéaire,
par des réductions par symétrie, & une EDO non-linéaire. Cependant, méme si on
a réussi a réduire le nombre de variables impliquées dans notre équation, la tache
qui consiste a déterminer les solutions de telles équations est souvent difficile
puisqu’aucune méthode systématique d’intégration n’existe. Toutefois, une classe
importante d’EDO, pour laquelle les solutions sont connues, a pu étre déterminée
par les mathématiciens dés la fin du 19° siécle. On appelle cette classe équations
de type Painlevé. Cette classification est faite en fonction du type de singularités

pouvant apparaitre dans les solutions des EDO dans le plan complexe.



Pour les EDO Ulinéaires, il est connu que les seules singularités possibles sur-
viennent uniquement lorsque les coefficients de ’équation sont eux-méme singu-
liers. Ces singularités sont dites fizes puisqu’elles sont indépendantes des constantes
d’intégration. Toutefois, les EDO non-linéaires peuvent, en plus des singularités
fixes, avoir des singularités dépendantes des constantes d’intégration. Ces singu-
larités sont dites mobiles. Par exemple, si on considére I’équation w, + w? = 0
dont la solution est w = (z — 2p) ™!, on voit que la solution est singuliére en z = z,
(20 étant la constante d’intégration) méme si aucune singularité ne se trouve dans
Péquation.

Les mathématiciens se sont alors apergus que les EDO ne possédant que des
poles comme singularités mobiles s’avéraient beaucoup plus intéressantes que les
équations avec des points de branchement ou des singularités essentielles (on ap-
pelle ces singularités, autres qu’un péle, points critiques). En effet, on a remarqué
que les solutions explicites des EDO sans points critiques mobiles pouvaient étre
déterminer. Ainsi Fuchs montra, en 1884, que pour les équations du premier ordre
de la forme w, = F(w, z), ou F est rationnelle en w et analytique en z, que la
seule équation sans point critique est celle de Riccati w, = a(z) + b(2)w + ¢(2)w?
[25]. Mentionnons d’ailleurs que cette équation peut étre transformée en une
équation linéaire homogéne du deuxiéme ordre en posant w = c—é%ﬁ De fagon
plus générale, les EDO du type w? = F(w, z), sans point critique mobile, sont
transformables en 1'’équation de Riccati ou intégrables en termes des fonctions
elliptiques de Jacobi. Par la suite, Painlevé et Gambier firent un travail remar-
quable dans lequel ils montrérent qu’il existe 50 types d’équations de la forme
w,, = F(w,,w,z), rationnelles pour w,, w et analytiques pour z, sans point
critique mobile [26, 27]. Parmis ces 50 équations, 6 définissent de nouvelles fonc-
tions que I'on nomme transcendants de Painlevé. Les 44 autres équations sont
intégrables en termes de ces 6 transcendants de Painlevé ou en termes de fonc-
tions elliptiques, fonctions élémentaires ou réduites & des équations linéaires. Mais

ce qui est important a savoir, c’est que dans tous les cas les solutions sont connues.



On appelle maintenant les équations ne possédant que des pdles comme singulari-
tés mobiles équations a la propriété de Painlevé. On considére, de fagon générale,
qu’une équation possédant la propriété de Painlevé est intégrable.

D’autres classifications d’EDO furent entreprises par la suite. Cosgrove et
Scoufis ont, par exemple, traité les équations de la forme w?, = F(w,,w, 2) [28].
Bureau avait précédemment considéré le cas plus général w?, = G(w,, w, 2)w,, +
F(w,,w, z), mais est arrivé a une classification partielle [29]. Enfin, les EDO du
troisiéme ordre de la forme w,,, = F(w,,,w,,w, z) furent également classifiées,
mais encore une fois la classifation est incompléte [30].

Les classifications précédentes des équations possédant la propriété de Painlevé
ont toutes été faites en des classes d’équivalence sous 'action des transformations

de Mé6bius données par

(Z)w(z) + B(2)

D) oz P Pr=1L Z=94(), ¢#0

W(Z) = ‘f‘y

La propriété de Painlevé est en effet invariante sous ces transformations. Donc, si
une équation pour w(z) posséde la propriété de Painlevé, la nouvelle équation en
W (Z), générée par la transformation de Mébius, aura aussi la propriété. Ainsi,
toute équation du second ordre de la forme w,, = F(w,,w, z), possédant la pro-
priété de Painlevé, peut étre transformée par les transformations de Mobius en
une des 50 formes canoniques.

Un algorithme, appelé test de Painlevé, permet de savoir si notre EDO posséde
certaines conditions nécessaires 4 la propriété de Painlevé. L’idée du test consiste &
écrire la solution générale de notre EDO en termes de série formelle de Laurent et
de vérifier certaines conditions sur les coefficients et les exposants de la série [31].
L’algorithme n’est cependant pas suffisant puisque celui-ci détecte si 'EDO est
libre de certains points critiques seulement (points de branchement algébriques

ou logarithmiques) mais des singularités essentielles peuvent encore subsister.



Toutefois, en pratique, trés peu d’équations passent le test sans avoir la propriété
de Painlevé.

Tout comme il fut naturel de se demander si on pouvait utiliser la théorie
des groupes de Lie pour les équations aux variables discrétes, étant donné la
puissance de la méthode pour les équations différentielles, on peut également se
poser la question a savoir s’il existe un critére d’intégrabilité lié aux singularités
pour les équations aux variables discrétes. Nous allons ici nous attarder a deux
extensions de I'analyse de Painlevé pour les équations discrétes.

Un de ces critéres d’intégrabilité, introduit par Ramani, Grammaticos et Pa-
pageorgiou, appelé le confinement des singularités, a I'avantage d’étre a la fois
simple et efficace [32]. Ce critére a permis de trouver plusieurs équivalents discrets
d’équations intégrables. La méthode est basée sur 'observation que les singulari-
tés qui apparaissent spontanément lors de 'itération d’un systéme discret ne se
propagent pas indéfiniment lorsque le systéme est intégrable, mais disparaissent

aprés quelques itérations. Illustrons la procédure pour ’équation suivante

a 1
Upt1 + Up—1 = — + '&‘2") (1)

Un
ol a est une constante. On voit que la seule singularité possible apparait si u, = 0
pour un certain n. La conséquence de cette singularité se réfléte alors dans le com-
portement des itérations subséquentes. Ainsi u,; devient infini, u, o devient nul
et u,,3 posséde une indétermination de la forme oo — oco. Afin de lever cette
indétermination, on introduit une perturbation autour de 0, c’est-a-dire que I’on
pose u, = €, et on calcule les itérations suivantes de u en analysant leurs com-

portements quand € — 0. On obtient alors

l _,a
Unt+1 = EZ'*‘E-UTL——I’

Uppz = —€+ae?+O(e),

Upyz = Up-1 + 2(aun—1 + 1)5 + 0(52).
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Ainsi, lorsque € tend vers 0, on retrouve u,.; — 00 €t U, o — 0 mais I'indé-
termination sur u,,3 est levée et donne une valeur finie. En fait, on retrouve
I'information initiale contenue dans u,_;, avant 'apparition de la singularité en
u, = 0. Ainsi, la singularité ne se propage pas indéfiniment et est confinée selon
la séquence {0, oo, 0}. Le critére d’intégrabilité est donc respecté. Si on étudie

maintenant le confinement des singularités pour 1’équation

(1 - au,)?

Uu. Up—o1l = ———
n-+1Un—1 ’Ll,n(un“‘a)?)’

alors on peut voir qu’en introduisant une perturbation autour de a, c’est-a-dire

U, = a + €, on obtient alors la séquence

{0, 0, f1, 00, 0, fs,...}

qui se répéte indéfiniment, ot f; représente une valeur finie. La singularité n’est
donc jamais confinée et le critére d’intégrabilité n’est pas vérifié.

Hietarinta et Viallet ont cependant démontré que le confinement des singula-
rité n’est pas un caractére suffisant & l'intégrabilité des équations aux variables

discrétes [35]. En effet, ceux-ci ont vérifié que ’équation

(2)

est confinée, la séquence des singularités étant {0, oo, oo, 0}, mais que cette

Unt1 + Up-1 = Up + Eg,
équation est pourvue d’'un comportement chaotique. Cet exemple n’étant pas
un cas isolé, un critére plus rigoureux fut alors requis. Hietarinta et Viallet ont
alors proposé un nouveau critére basé sur les idées d’Arnold et Veselov (voir
[33, 34]) sur la complexité d’une application [35, 36]. En effet, comme Veselov
le mentionnais : «The integrability has an essential correlation with the weak

growth of certain characteristics» . Ainsi, les auteurs de [35] ont proposé de tester

Y intégrabilité a une corrélation essentielle avec la croissance lente de certaines

caractéristiques



11

directement le degré des itérations successives et d’introduire la notion d’entropie

algébrique. L’entropie algébrique E étant définie comme

E = lim °8),

n—00 n

ot d, est le degré de la n®™* itération de certaines données initiales sous I’action
de l'application. Une équation non-intégrable présentera une croissance de degré
exponentielle : une entropie algébrique différente de zéro indiquera donc la non-
intégrabilité. Les applications dites intégrables auront, quant a elles, une entropie
algébrique nulle associée & une croissance de degré plus lente qu’exponentielle
(typiquement, la croissance est polynomiale).

Afin de mettre les idées au clair, considérons la méthode proposée par Gram-
maticos et Ramani pour ’étude de la croissance de degré. Cette méthode présente
quelques différences a celle donnée dans [35], mais rend l'utilisation de la crois-
sance de degré plus simple. On commence par introduire des variables homogénes
par lintermédiaire d’un choix approprié de données initiales. Par exemple, pour
une application & 3-points, on introduit typiquement ug = r, u; = p/q, ol on choi-
sit le poids de 7 comme 0 et les poids de p et ¢ comme 1. On calcule alors le degré
homogéne dans p et ¢ pour le numérateur et le dénominateur de w,, pour chaque
itération. Afin de comprendre le mécanisme de la croissance de degré, considérons

quelques unes des premiéres itérations pour 1’équation (1). On obtient

2 2
q"+apg—rTp _ PPy
Uy = y uz = )
2 v’ 57 (¢ + apg — p°)°
(¢* + apqg — p*) Ps P,P
Uy = y Us = 2‘ y
P42 qF;

ou les P sont des polynémes homogénes de degré k. Si on calcule le degré des
itérations successives pour le numérateur (ou le dénominateur, puisque le degré
est le méme), on trouve : 0, 1, 2, 5, 8, 13, 18, 25, 32, 41,... Ici, on voit

que la croissance de degré est polynémiale : on obtient da, = 2m? et dypi =
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2m? 4+ 2m + 1. Donc, I’entropie algébrique de cette application est nulle, ce qui
est en accord avec son caractére intégrable [37].

L’étude de I’équation (2) a ’aide de la croissance de degré nous donne, quant &
elle, une croissance exponentielle, ce qui est en accord avec le caractére chaotique
de cette équation. Dans ce cas, la séquence des degrés des itérations est donnée
par 0, 1, 3, 8, 23, 61, 160, 421,... avec le ratio asymptotique (3 + v/5)/2.

Aux chapitres 1 a 3 de cette thése, on introduit une nouvelle méthode pour ob-
tenir les transformations de Lie ponctuelles des équations aux variables discrétes.
Dans cette méthode, on se place du point de vue o I’équation ainsi que le réseau
sont connus a priori. Ici, le réseau n’est pas nécessairement fixe et uniforme et
Paction du groupe de symétrie peut agir a la fois sur I’équation et sur le réseau
qui restent invariants sur ’ensemble solution. Au chapitre 1, on introduit le for-
malisme pour les équations & une seule variable discréte. On considére également
les équations différentielles aux différences (une variable continue et une variable
discréte). Plusieurs exemples sont traités en détail et on considére quelques cas
de réduction par symétrie. Au chapitre 2, on revise quelque peu le formalisme
présenté au chapitre 1 et on considére la méthode pour 1’équation de la chaleur
discréte, c’est-a-dire pour deux variables discrétes?. Au chapitre 3, on généralise
la méthode pour les équations discrétes & plusieurs dimensions. On verra que,
contrairement a ce que l’on pourrait croire, il s’agit d’'une généralisation non-
triviale. Le cas des équations différentielles aux différences (avec au moins deux
variables discrétes) est aussi considéré. Plusieurs exemples sont présentés en dé-
tail. Au chapitre 4, on présente une classification des interactions possibles pour
une chaine moléculaire diatomique unidimensionnelle. Le formalisme utilisé dans
ce chapitre, pour classifier les interactions selon leurs groupes de symétrie, est
la méthode intrinséque présentée ci-dessus. Par la suite, au chapitre 5, on étudie

Pintégrabilité pour les équations & deux variables discrétes. Pour ce faire on utilise

2Article dans le cadre de Patelier DI-CRM sur la physique mathématique, Prague, Répu-
blique Tchéque, 18-21 Juin, 2000.
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la méthode de la croissance de degré, jusque-1a utilisée uniquement pour les équa-
tions & une seule variable discréte. Finalement, au chapitre 6, nous examinons si
la propriété de Painlevé est une condition nécessaire pour 'intégrabilité des EDO
non-linéaires et montrons que ce n’est pas le cas pour une large classe de systémes
linéarisables. De la méme fagon, dans le domaine discret, nous étudions si la pro-
priété du confinement des singularités est satisfaite pour les analogues discrets
des systémes linéarisables ne satisfaisant pas Painlevé. Enfin, mentionnons que
I'annexe A de cette thése traite des invariants (ou opérateurs de Casimir géné-
ralisés) pour les algébres de Lie triangulaires nilpotentes et résolubles. La forme

ainsi que le nombre des invariants sont obtenus et des cas spéciaux sont traités

en détail.



Chapitre 1

SYMETRIES DE LIE PONCTUELLES POUR
LES EQUATIONS AUX DIFFERENCES ET
LEURS RESEAUX
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Lie Point Symmetries
of Difference Equations and Lattices

D. Levi* S. Tremblay! P. Winternitz?

Abstract

A method is presented for finding the Lie point symmetry trans-
formations acting simultaneously on difference equations and lattices,
while leaving the solution set of the corresponding difference scheme
invariant. The method is applied to several examples. The found
symmetry groups are used to obtain particular solutions of differential-
difference equations.

1 Introduction

Lie groups have long been used to study differential equations. As a matter
of fact, they originated in that context [1, 2]. They have been put to good use
to solve differential equations, to classify them, and to establish properties
of their solution spaces [3, ..., 8].

Applications of Lie group theory to discrete equations, like difference
equations, differential-difference equations, or g-difference equations are much
more recent [9, ..., 37].

Several different approaches are being pursued. One philosophy is to
consider a given system of discrete equations on a given fixed lattice and to
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della Vasca Navale 84, 00146 Rome, Italy

tCentre de Recherches Mathématiques and Département de physique, Université de
Montréal, C.P. 6128, succ. Centre-ville, Montréal (QC), H3C 3J7, Canada

Centre de Recherches Mathématiques and Département de mathématiques et de statis-
tique, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal (QC), H3C 3J7,
Canada
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search for a group of transformations, taking solutions into solutions, while
leaving the lattice invariant. Within this philosophy different approaches
differ by the restrictions imposed on the transformations and by the methods
used to find the symmetries. One thing that is clear is that within this
philosophy it is necessary to generalize the concept of point symmetries for
difference equations, if we wish to recover all point symmetries of a differential
equation in the continuous limit [9, ..., 26].

A different philosophy is to consider a difference equation and a lattice as
two relations involving a fixed number of points, in which we give the values of
the independent and dependent variables say z_,z,z, and u_,u,u; respec-
tively. The group transformations act on the equation and on the lattice.
This philosophy was mainly developped by Dorodnitsyn and collaborators
[27, ..., 33]. In this approach, the given object was a Lie group and its Lie
algebra. Invariants of this Lie group, depending on z and wu, calculated at
a predetermined number of points were obtained. They were used to obtain
invariant equations and lattices. The emphasis was on discretizing differen-
tial equations while preserving all of their point symmetries, or at least most
of them.

The purpose of this article is to combine the two philosophies. More
specifically, we will consider given equations on given lattices, but the lattice
will also be given by some equation. We will then look for Lie point trans-
formations, acting on both equations, and leaving the common solution sets
of both equations invariant.

In Section 2 we develop the formalism necessary for calculating simultane-
ous symmetries of difference or differential-difference equations and lattices.
Section 3 is devoted to examples of symmetries of purely difference equations,
both linear and nonlinear ones. In Section 4 we also consider examples, this
time of differential-difference equations. Some conclusions are drawn in the
final Section 5.

2 Symmetries of differential-difference equa-
tions

2.1 The differential-difference scheme

In this article we shall only consider a restricted class of problems, for reasons
of simplicity and clarity. However, the formalism involved can easily be
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extended to quite general systems of equations.

Thus we shall consider one scalar function u(z,t) of two variables only.
The variable ¢ is continuous and varies in some interval I C R. The variable
z is also continuous and varies in some interval I C R. However, x will be
‘sampled’ in a set of discrete points {...,Zn-2, Tn-1, Zn, Tnt1,...}. The
points z;, are not necessarily equally spaced.

We shall study the symmetries of a pair of equations which we postulate
to have the form

E=E (t{z:}72,  {w Z:Zim,un‘t,un,tt) =0 (1)

k=n—mn1’

Q=0 (t, {xk}"+"4 {uk nina ) = 0 n; > 0. (2)

k=n—ng’ k=n—n3

We have k,n,n; € Z, all n; are finite. Equations (1) is a differential
equation in ¢ and a difference equation in z, since we define:

Tn = T Tpno1 = Tp— h_(Tn,1)
Tpel = Tp + h+ (.’L’n, t) Tny2 = Ty -+ h+($n, t) -+ h+ ($n+1’ t) Ce
Up = u(Ty,t) Untk = U(Tnik,t).

(3)
At this stage we are not imposing any boundary conditions, so we assume
that equations (1) and (2) can be shifted arbitrarily to the left and to the
right. Thus, eq.(1) and (2) involve any n; +ns+1 or n3+ny4+ 1 neighbouring
points, respectively.

The fact that (1) involves only first and second derivatives and that there
are no derivatives in (2) is also for simplicity only. The same goes for the
fact that derivatives are evaluated at the reference point n only (i.e. we do
not consider terms like u(xnp1,t)/0t).

In order to be able to consider eq.(1) and (2) as a difference scheme, we
must be able to obtain z,4 , tn+n and also T, s, Up—y (N = max(ng, ng), M
max(ny,n3)). In other words, we impose two conditions:

det(a( O(E, Q) )),zéo det( (£, Q) ),.i_o. 4)

Tn+4N;Un+N 8(xn—M’ un—-M)

If necessary, when calculating (4) we shift one of the equations, (1) or (2),
to the left or right, so that the same values n + N and n — M figure in both
equations.
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In general, we do not require that a continuous limit should exist. If it
does, then eq.(1) should go into a differential equation in z and ¢ and eq.(2)
should go into the identity 0 = 0. When taking the continuous limit it is
convenient to introduce ‘discrete derivatives’, e.g.

_ Un+1 — Un Up — Up-—1 U,z '—uyg

= U,z = Uyzz = 2
Tnt+1 — Tn Tpn — Tp-1 Tnti — Tn—-1

Uz (5)
etc. In the continuous limit we have hy(zg,t) — 0, h_(zx,t) — 0, Tpyr —
z , ur, — u(x) and the discrete derivatives go to the continuous ones.

A solution of the system (1), (2) will have the form z,, = ®(n,cy,...,cx),
Up = f(Zp,c1,...,cr) where ¢y, ..., cr are constants needed to satisfy initial
conditions and the functions ® and f are such that (1) and (2) become
identities.

As a clarifying example of egs.(1) and (2), let us consider a three point
purely difference scheme, namely

Unpt1 — 2un + Up—1
(xn-}—l " -'En)z

E —Up, =0 (6)

Q = Tpt+1 — 2(Bn + Tp1 = 0. (7)

The equation (2 = 0 determining the lattice has constant coefficients and its
solution is x, = hn + zo, where h = h, = h_ and zy are constants. The
equation £ = 0 on this lattice also has constant coefficients (since we have
Znt+1 — T, = h) and its general solution is

h
2+h2ih\/4+h2)1/ @)

w(z,) = il K" + oK% Ky = ( 5

In the continuous limit we obtain £ =0 - v" —u =0, =0 — 0 =
0, u(z) = c16® + cee™®. Eq. (7) happens to determine a regular (equally
spaced) lattice. Below we shall see examples of other lattices.

2.2 Symmetries of differential-difference schemes

Let us consider a one-parameter group of local point transformations of the
form
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T =E\(z,t,u) t=T\(t) a(z,{) = ®x(z,t,u). (9)

We shall require that they leave the system of equations (1), (2) invariant
on the solution set of this system. Since we are interested in continuous
transformations (of discrete systems), we use an infinitesimal approach and
write the transformations up to order A as

T = x4+ NE(z,t,u(z,t)) (10)
t = t+A7(t) (11)
a(zZ,t) = u(z,t) +Ad(z,t,ulz,t)) | <1 (12)

This assumption is quite restrictive. Not only do we consider only point
transformations, but we require that both ¢ and ¢ are continuous. No depen-
dence, explicit or implicit, on the discretely sampled variable z is allowed.
Indeed, once the lattice equation is solved, we get a discrete set of points
{z,}and this would introduce discrete values = %,, which we do not al-
low. Moreover, the z-dependence of t, if allowed, remains unspecified, since
the considered equations involve only time derivatives. This would lead to
wrong results, i.e. infinite dimensional transformation groups that do not
take solutions into solutions.

We must now prolong the action of the transformation (10) to the pro-
longed space. This space includes the derivatives u;(z, t), ug(z, t), the shifted
points T4 = ZTna1,... and the function at shifted points uy = u(z,t),...

It is convenient to express the invariance condition for the system (1), (2)
in terms of a formalism involving vector fields and their prolongations. The
vector field itself has the form

X = €(z,t,u) 8y + 7(t) 8 + d(z, t,u) 8, (13)

with £, 7 and ¢ the same as in eq.(10)—(12). The prolongation of the vector
field (13) acting on the system (1), (2) is

n+N n+N
pI‘(M+N) X=X + Z §($k7 t, Uk)axk + Z ¢(k)6uk + ¢taut +¢ttau“ (14)
k=n—M k=n—-M

with
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" = p(k,t,ux) (15)

¢t = Dip — (Di) us — (Dy7) ug (16)

¢tt = Dt¢t e (Dté‘) Upt — (DtT) Ut - (17)

Thus the prolongation coefficients ¢*, ¢* are the same as for differential equa-
tions, the coefficients ¢ are as in [10, ..., 27).

The requirement that the system (1), (2) be invariant under the consid-
ered one-parameter group translates into the requirement

er FE IE=0 =0 =0 erQ lE:O,Q:O =0. (18)

In eq.(18), once the equations (1), (2) are taken into account, all involved
variables are to be considered as independent. Eq.(18) are thus the deter-
mining equations for the infinitesimal coefficients &, 7 and ¢.

For purely difference equations (u; and uy absent in (1)) the procedure
is the following

1. Extract %,y and Zp4n (Or Uy and z,,—ps) from the equations (1) and
(2) and substitute into eq.(18). This provides us with two functional
equations for &, 7 and ¢.

2. Assuming an analytical dependence of £, 7 and ¢ on their own variables,
we convert these two equations into differential equations by differenti-
ating them with respect to appropriately chosen variables t, x, Zpik-
Use the fact that the coefficients £, 7 and ¢ depend on x and u evaluated
at one point only to simplify the equations. Differentiate sufficiently
many times to obtain differential equations that we can integrate.

3. Solve the differential equations, substitute back into the two original
functional equations and solve them.

For differential-difference equations, we solve for the highest derivative (in
our case uy) and for either ,n, or un4n (Or Zp_ps or u,_pr) and substitute
into eq.(18). In this case, the determining equation will be a polynomial
expression in the derivatives of u with respect to ¢ (in our case u; only) and
all their coefficients must vanish. For the remaining terms, which depend on
shifted variables, we proceed as in the case of purely difference equations.
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3 Examples of symmetries of difference equa-
tions

We shall give several examples of the calculation of symmetries acting on
difference schemes. They will involve either three or four points on a lattice.
Equations (1) and (2) simplify to

E(x,x_.,$+,.’IJ++,U,U-,U+,U++) =0 (19)
Q(x,x_,x+,x++,u, ’U,_,’LL+,’U,++) =0 (20)

for a four point scheme. A three point scheme is obtained if £ and () are
independent of z,, and u,,. Here x = z, is the reference point and z_ =
Tp—1, T4 = Tntl, T4+ = Tnyo and similarly for u.

The prolongation (14) of the vector field simplifies to

prX = &(z,u)d; + é(x,u)d, + E(z_,u_)B,_ + E(xy, U4 )0z, + Pz, u_)0,_

FE(@t U4 ) Oy, + BTy U4 ) Oy + BTty Ut ) Doy, -
(21)
(for three point schemes we drop the z,, u,, terms).
A symmetry classification of three point schemes was provided in a recent
article [35]. Here we solve a different problem. The equations and lattices
are given and we determine their symmetries.

3.1 Polynomial nonlinearity on a uniform lattice
Let us consider the nonlinear ordinary differential equation

Uy —uN =0 N 0,1 (22)

A straightforward calculation shows that for N # —3 eq.(22) is invariant
under a two-dimensional Lie group, the Lie algebra of which is spanned by

P=08, D=(N-1)zd,—2ud,. (23)
For N = —3 the symmetry algebra is sl(2,R) with a basis
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A

P=09, D=210,+ud, C= 220, + Tud,. (24)

A natural way to discretize eq.(22) is to use a uniform lattice and put

U+—‘2U+U_.

E = B e N= 5
@ = 1) u 0 (25)
Q = z,-2x+z_=0. (26)

Let us now apply the symmetry algorithm (18). The condition prX Q = 0
for £ =0, Q0 = 0 implies

£z -2, (z—z_)2uN +2u—u_) - 26(z,u) +&(z_,u_) =0.  (27)
Differentiating first by d,_, then by 0, we obtain
~u, 2z —z_,(z—2 )WV +2u—u )+ & _(z_,u_)=0 (28)
[Nz —z_)2u""1+2] &upu,(Cx— 2, (z— 2 )2 +2u—u_) =0. (29)
Eq.(29) implies that £ is linear in u
§(z,u) = a(z)u + b(z). (30)
Eq.(28) reduces to a(z;) = a(z), i.e. a is a constant. Substituing these
results into eq.(27) we obtain
afuy —2u+u_]+b(zy) —2b(z) + b(z_) =0. (31)

This implies @ = 0 and

b(z;) — 2b(z) + b(z-) =0. (32)

Differentiating successively with respect to x and z_ we find b,,,, (z4) =0,
ie.

b(z) = bz +bo. (33)

Thus, the invariance of eq.(26) implies £ = byz + by with by, by constants.
The function ¢(z,u) is restricted by the requirement prX £ = 0 for E =
0, © = 0. This invariance condition is given by
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¢z —z_,(z — z_)2uN +2u —u_) — 2¢(z,u) + ¢p(z_,u_) &4
—(z — z_)*[Né(z, u)u¥"! + 26,uN] = 0.

We successively differentiate this equation with respect to u_ and v and we
obtain

_¢u+(w+au+)+¢U-($~vu~) = 0 (35)

¢u+u+(a7+;u+) = 0. (36)

These two equations require that ¢ = ¢ u + ¢o(z) with ¢, a constant. Sub-
stituing back into eq.(34) we obtain the remaining determining equation

Po(2x — x_) — 2¢0(2) + ¢o(z-) — (z — z_)[(N — 1)¢p; + 2b;]ulY
—N(z —z_)?¢pul¥"1 =0

Since we have N # 0,1 eq.(37) implies ¢o(z) = 0 and ¢ (1 — N) = 2b;.
Finally, we obtain the symmetry algebra of the difference system (25), (26).
It is 2-dimensional and coincides with the algebra (23) of the differential
equation (22), the continuous limit of eq.(25).

Notice that the case NV = —3 is not distinguished from the generic case.
As a matter of fact, no difference equation on a uniform lattice can be in-
variant under the SL(2,R) group corresponding to the algebra (24). A basis
for the difference invariants of this algebra in the space {z,z_,z,,u,u_,u}
is

(37)

h_uy hiu_ hyh_
P=F—— m= g M=
(hy +h_)u (hy + h_)u (hy +h)u
where h, and h_ are defined as hy =z, —z, h_ =z — z_, and no function
of z, z, and z_ alone can be set equal to a constant. An SL(2,R) invari-
ant scheme must be constructed out of these invariants. For instance, an
invariant scheme approximating eq.(22) for N = -3 is

(38)

h._ (’U;.{. — ’U,) - h+ (U - u_) _ 2h+h_ l
hih_(hy +h_) — (hy+ho)2ul

h_U+ = h+u_. (39)
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3.2 Discrete versions of linear second order equations
3.2.1 Discretization of u,, = u

Consider the ordinary differential equation

Ugy = U. (40)

Like every second order linear ODE, it is invariant under SL(3,R) with the
Lie algebra realized in this case by the vector fields

X1=08,, Xo =10, X3=¢€%0, Xy=e%9, X5= e?*(9, + ud,)

3 . A (41)
Xeo = ue®(0; + udy,) X7=e"2(0, —ud,) Xs=ue (0, —ud,).
A very straightford discretization of eq.(40) on a uniform lattice is
Uy — 2u+u_
B e 42
(x4 —2)? ¢ (42)
Ty—2x4+z- = 0. (43)

Applying the same procedure to the system (42), (43) that was applied
to the system (25), (26) (with N # 0,1), we again obtain a 2-dimensional
symmetry algebra

P=08, D=ud, (44)

At first glance the absence of symmetries of the form ¢(x)d,, representing
the linear superposition principle, seems surprising. However, viewed as a
system of two equations, the system (42), (43) is really nonlinear. Eq.(43)
defines a uniform lattice with an arbitrary step h =z, — z = x — z_, where
the step h can be scaled by a dilatation of z.

An alternative approach to the system (42), (43) is to first integrate eq.
(43) once, thus fixing the step on the z-axis. The system (42), (43) is then
replaced by the equation

U+—2U+U/_

7 =u (45)
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where h =z, —2z = x —z_ is a fixed (non-scalable) constant. The symmetry
algorithm described in Section 2 and applied in Section 3.1 yields a four-
dimensional symmetry algebra

P=0, D=uwd, S =K29, S=K29, (46)

with K as in eq.(8). The symmetries 5’1, S, represent the linear superposi-
tion formula for the linear system (45).

We mention that eq.(40) (and any linear ODE) can be discretized in a
manner that exactly preserves all of its solutions. To do this we must preserve
a subalgebra of the symmetry algebra of the ODE, containing the elements
corresponding to the linear superposition formula. In our case these are X3
and X, of eq.(41). Let us consider the subalgebra {X Lye-- ,Xs}. Its second
order discrete prolongation allows no invariants. It does however allow an
invariant manifold, namely

I =ue (e —e ™ ) fuie ™ (e —e ™)ty e " (e —e ) = 0.

(47)
The expression
6—21 . e——2a:_
= e “
is an invariant on the manifold (47).
Indeed, we have
(X1 +3X)I=0 XsI=X;I=Xs1=XsI=0 XyI=1I
, . . (49)
Xi S = (7; = 1, e ,5) X6 S = (8—214'2——[6_23:)2
so that we have
Xillj=0=0 XiS|j=o=0 i=1,...,6. (50)

A uniform lattice, to first order in h and an equation with (40) as its contin-
uous limit, is obtained by putting
el

§=1 —==0 (51)
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Eq.(51), or I = 0, has u = ¢ and u = e™® as solutions and the general
solution is

u = c1e” + cpe™ " (52)

just as in the continuous case (40).

To check this, let us solve the system S = 1, I = 0 directly, with I and S
given in eq. (47) and (48), respectively. We linearize S = 1 by a change of
variables and obtain:

z=e % 2, —2242z_=0. (53)
The solution is:
1
Zn=Cn+cy T,= —3 In(csn + ¢4) (54)

so that the lattice in x is logarithmic ( ¢z and ¢4 are integration constants).
On this lattice eq.(47) reduces to

2uy/esn + ¢4 —ugp/es(n+ 1) + s —u_/es(n — 1) + ¢4 = 0. (55)

To solve this linear equation we put u(z) = e*f(z) or, on the lattice

W) = e f (1) (56)
so that f(z) satisfies
flzy) —2f(z) + f(z-) = 0. (57)
We write the general solution of eq.(57) as
fl@n) = fox(n)=An+B. (58)

By rewriting A and B in terms of the new integration constants ¢; and ¢y,
i.e. by putting A = ¢y c3 and B = ¢y ¢4 + ¢1, we obtain the general solution
of the system (51) as

€1 T —z
U= ———— + g3/ cy =ce” +c 99
e Te 2V C3TL -+ C4 1 2€ (59)

in full agreement with eq.(52).
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3.2.2 Discrete version of u,, =1

Let us consider the simplest 3 point difference scheme for the ODE u,, = 1

Uy —2u+u_
(z+ — 2)?
Applying the prolonged vector field to these equations and eliminating z
and u,, we obtain two equations

=1 z,—-2zx+z_=0. (60)

£z —z_,(z—2_)° +2u—u_) — 26(z,u) + &(z_,u_) =0, (61)
¢z —z_,(x —2_)2 +2u—u_) — 28(z,u) + p(z_,u_) =

2c—z_) [(Rr—z_,(z —2_)* 4+ 2u—u_) — £(z,u)] . (62)

We first concentrate on eq.(61). Taking the second derivative with respect
to u and u_ we find that £ is linear in u. Substituing back into (61) and
differentiating with respect to z and z_ we find

2
§(x,u) = a(u— ) + Bz + o (63)

where o, 81 and [y are constants. Substituing £ into eq.(62) and solving for
¢ in a similar manner, we obtain:

3 2
d(z,u) = a(zu — %—) + c(u — %) + B1z* + Box + fs. (64)
Finally, a basis for the symmetry algebra of the system (60) is
Xl = 0, XQ = 0, Xg = z0, X,; = x0, -|-£L‘28u
. e . , , (65)
Xs=(u—%)0, Xo=(u—%)0;+ (u— %)z,
It is easy to check that this Lie algebra is isomorphic to the general affine
Lie algebra gaff(2,R). This is the symmetry algebra of the scheme [35]

Indeed the system (60) is transformed into (66) by putting
t2
u=w+— zx=¢t (67)

2
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3.3 Discrete versions of the equation u,,, = 0

The symmetry algebra of the ODE wug,, = 0 is 7-dimensional. A basis for
this algebra is

Xl = [*)m XQ = 314 Xg = IE&, X4 = u@u Xs = a:@u
. . (68)
Xe = 220, , X7 = 220, + 22u0,.

The generators Xs, X, Xe correspond to the linear superposition principle.
We can add u = cyx? + ¢, + ¢o to any solution and indeed, this itself is the

general solution.
Let us now consider discretizations of this ODE.

3.3.1 Discretization on a uniform lattice

We consider the system

E = uyy —3up+3u—u_=0 (69)
Ql = IB+""2CE+.’L'_:O. (70)

The lattice is uniform, since the general solution of (70) is z,, = hn + zo with
h and zo constants. Eq.(70) must be shifted once to the right to obtain .

The prolonged vector fields have the form (21). We apply the same
method as in Section 3.2. to obtain the symmetry algebra of the sys-
tem (69), (70). The result is a 6-dimensional Lie algebra generated by
{Xy, Xo, X5, X4, X5, X} of eq.(68). The system hence has exactly the
same solutions as the ODE u.,, = 0, however the lattice is not invariant
under the projective transformations generated by X.

3.3.2 Discretization on a four point lattice

We take the equation (69) on the lattice

Qg=$++‘—3$++3$""$._=0. (71)

The lattice given by equation (71) is not uniform but satisfies z,, = Lyn? +
Lin 4+ Ly, where L; are constants. We assume Ly # 0, otherwise the lattice
is the same as for 2; = 0.
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The symmetry algebra in this case is given by

{X17X27X37X4>X57quam} (72)
with X1,..., X5 as in eq.(68). Thus Xg of (68) is absent. This reflects the
fact that u = z2 is not an exact solution on the lattice Qs = 0. Indeed, if we
take Ly =1 and L; = Ly = 0 in eq.(68) we have u = n* which would solve a
fourth order equation, not however equation (69).

3.3.3 Discretization preserving the entire symmetry group

The third prolongation of the algebra (68) acts on an 8-dimensional space
with coordinates (z, x4, T4y, -, u, uy, uyy,u_). If the 7 prolonged
fields are linearly independent, they will allow only one invariant. This invari-
ant can be calculated directly. It lies entirely in the subspace {z, ., 4+, z_}
and is given by the anharmonic ratio of four points, namely

(.’II++ - 33')(.’13+ — iB_) =K. (73)
(€ —z-)(T44+ — z4)
This is the invariant of the projective action of s/(2,R) on the real line R,
given by the 8, part of the subalgebra {X; , X3, X;} of the algebra (68).
Eq.(73) provides us with a lattice. The invariant equation is obtained by
requiring that the third prolongation of (X 1y.-- ,X'r;) be linearly connected
on some manifold. This manifold is given by the condition

I'= — (up —u)(@4y —2)(T — 2_)(T4y — z)
+ (U —u)(zs —2)(z —2-)(24 — 1) (74)
+ (w—u)(zs — 2) (244 — 2) (244 —24) = 0.
It is easy to check that I is indeed invariant, i.e.

pr®X;Ijo=0 i=1,...,7. (75)

Finally, a difference scheme, invariant under the group generated by the
algebra (68), having .., = 0 as a continuous limit is given by

61

(s — 2 ) @rr — D)@ —29) @ —2)(@r — D)@ —2)

(76)

Uygzz =
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and eq.(71).
We define discrete derivatives as

ui—u uii—-ui U —u_—
Uy = - U,z = J— Uy = —
Ty T Tyt Ty = r -
Uz — U Ur — Ug
I z T _ Z
u):t:l: - 2m++ — T u):lJ_ZE_ - 21'_*_ —T_ (77)
. 3ua::i — Uy
u’gsc:i - x++ —T_"

Any four solutions of a Riccati equation satisfy eq.(73) and we use this
fact to solve this equation. Indeed, consider e.g. the Riccati equation
t=Az*+Bx+C B?-4AC >0 (78)
where A, B and C are real constants and A # 0. The general solution of
eq.(78) is
T+ Tw eAlz1—z2)t _ —=B++vB?-4AC
T T W eAmmm 1.2 = 24 '

Let us take w = n, 7; = @, 75 = B and e*(@1772)t = 4 A solution of eq.(79)
is

(79)

_an+p
 yn+4
Substituting into eq.(73) we find K = 4. The value K = 4 is also required to

obtain the correct continuous limit. Indeed, putting z, —z = €0y, z—2_ =
€09, T4y — T4 = €03, 0; € R and € — 0 we have

z = z(n) a, B, 7, 6 =const., ad — By =1. (80)

2
e’(01 + 03)(01 + 02)

5 =K (81)

€“0903

and for 0y = 0y = 03 we have K = 4 and also u,; — ¢/, u,; = ¥, U,z —

U, Uyzz = U, Uyge = U, Uyzez — U, where the primes denote (continuous)

derivatives.

Plots of z(n) for lattices (70), (71) and (80) are shown on Figure 1,2 and
3, respectively. The expression (80) is singular for v = §/n, so such values of
~ are to be avoided.
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Figure 1: Variable z as a function of n for the lattice (70) z, = hn + o

(h=1,$0=5>
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30+

25t

201

101

Figure 2: Variable z as a function of n for the lattice (71) z,, = Lon?+Lin+ Ly
(L2 = 1/\/1—6, L1 = -7, LO = 1)
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Figure 3: Variable z as a function of n for the lattice (80) z,, = (an+8)(yn+

O (a=v2, B=—V3v=3,8=—3n)
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4 Examples for differential-difference equa-
tions

In this section we shall need the complete formalism of Section 2, in particular
the vector field prolongation (14),...,(17).

4.1 Symmetries of the discrete Volterra equation

The discrete Volterra equation [17] on a uniform lattice is represented by the
two equations

Uy — U

E = ww+u—"==0 (82)
Ty — T
Q =z, -2z+z2_=0 (83)

where t is a continuous variable, u = u(z,t) and u; = du/dt. The Volterra
equation is integrable [17] but we make no use of that here.
The invariance condition for the lattice (83) is

£z —z_,t,uy) — 26(z, t,u) + E(z_, t,u_) = 0. (84)

Contrary to the cases in Section 3, the values u,, u and u_ in eq.(84) are
independent, since the equation £ = 0 involves u; (in addition to uy, u
and u_). Differentiating eq.(84) with respect to e.g. u we obtain £, = 0.
Differentiating with respect to x_ and then z, we obtain & ., (z4,t) = 0.
The function &(z,t,u) hence reduces to

€ =a(t)z + b(t) (85)

with a(t) and b(t) so far arbitrary functions of .
Invariance of the equation (82) implies:

O e TS S N (St ) JON TR S _
¢+¢$+—$ +x+—x(¢+ ¢ (a:+-—a:_)2(€+ £'7) |p=q=0 = 0.
(86)

The coefficients in the prolongation satisfy
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¢ = e+ (u — T)ur — Gug — Euuruy — Tuug (87)

o) = ¢ (zs,t,u(zs,t)). (88)

We substitute (85), (87) and (88) into eq.(86) and eliminate u,(z,t) and z
using the equations (82) and (83). The only term involving u, is in ¢*. Its
coefficient & must vanish and we find @ = b = 0 in the expression (85).

The remaining determining equation is

{0+ 16— uldu — 7 — aw) 2=
(89)
+ —j—_;__%-,-i'—: [¢'($+7 t’ U($+, t)) - ¢($”’ t’ u(a:_., t))]}a:+=21~x_ =0

We differentiate twice with respect to uy and obtain ¢y, ., = 0, so that we
have ¢(z,t,u) = ¢1(x, t)u+ ¢o(z,t). Substituing back into eq.(89) we obtain
the final result, namely

E=ar+b T=ct+c ¢=(a—c)u (90)
Thus, the difference scheme (82), (83) which is the usual Volterra equation,

is invariant under a 4-dimensional group of Lie point transformations. The
symmetry algebra is spanned by

Po=8 P =08, Dy=tot—ud, D,=z0z+ud, (91)
(two translations and two dilatations).

The continuous limit of the system (82), (83) is the Euler equation in
1+ 1 dimensions

u +ut, =0. (92)

Its symmetry group is infinite-dimensional and can be obtained by standard
techniques [3, ...,8] (though we have not found it given explicitely in the
literature). Its symmetry algebra is spanned by

X(ﬁ) = &(z,u)0; T(T) = 7(z,t,u) (0 + udy)
(93)

F(¢) = ¢(z,u) (40, +8,) z=1x—ut
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where £, 7 and ¢ are arbitrary functions of their arguments.

The Volterra equation (82) is certainly not a ‘symmetry preserving’ dis-
cretization of the Euler equation (92) on a uniform lattice. It only preserves
the four-dimensional subalgebra (91) of the infinite-dimensional symmetry
algebra (93). Let us mention here that eq.(82) is well known to be a bad
numerical scheme for eq.(92).

4.2 A general nearest neighbour interaction equation

Let us consider the difference scheme

E = w—Fl,zp,z,2_,up,u,u_)=0 (94)
Q= z,-2z+z_=0 (95)
where F' is an arbitrary smooth function satisfying

(Fuy, Fu_) #(0,0). (96)

A symmetry analysis of a similar class of equations was recently performed
for a fixed (non transformable) regular lattice [12]. More specifically, the
assumption was x, =n, n € Z.

The prolongation formula for the vector field (13) is (14),...,(17). Apply-
ing it to eq.(95) we obtain that ¢ has the form (85), just as for the Volterra
equation. Applying the prolongation to the eq.(94) we obtain

¢" — TF, — (ax + b)F, — (az4 + b)F,, — (az_ + b)F,_ — ¢F, o)
~¢WF,, = ¢F,_|p-a-0 =0.

We substitute the expression for ¢, ¢t and ¢(~) and set the coefficients
of ul, u2, U2y, Usla, Ugt, Us equal to zero, after eliminating uy and z.,
using equations (94), (95). The result is that for any interaction F satisfying
condition (96), we have

T

3 + a(m)} u+ B(z,1). (98)

r=7() €=ar+b ¢=[
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The as yet unspecified functions 7(¢), a(x), B(z,t) and constants a, b satisfy
a remaining determining equation, namely

{37wu+ By — 31— &)F + 7F, — (az + b)F, — (az4 + b)Fy,
—(az_ +b)F,_ — [(37 + a(z))u + B] F, — [(37 + a(z)))us + B(zy, t)] F,
~ [+ a(z_))u_ + B(z_,t)] F,_} =0

Ty=2r—2_
(99)
The results (98), (99) agree with those of Ref.[12], but are more general.
The reason for the increase in generality is that here the lattice is not fixed
a priori and hence the vector field (13) contains a term proportional to d,.

To proceed further, we restrict the interaction F' to have a specific form.

4.3 Equation with F = (z, — 2)%u; —2u+u_)"3

Let us consider a special case of the system (94), (95), namely

_ (z4 — 2)°
et = (ug —2u+wu_)3 (100)
2y — 20+ =0. (101)

We substitute F' of eq.(100) into the determining equation (99) and clear the
denominator. The dependence on u, u, and u_ is explicit and we obtain

Tt = 0 Btt =0 B($+,t) - QB(.’L',t) + B(.’l:_, t) =0
(102)

a(z)(zy — z) + 6(az +b) — 6(azs + b) + 3a(zy)(zy — ) = 0.

Analysing the system (102) in the usual manner, we obtain a 9-dimensional
Lie algebra with basis

Po = 0, 151 = 0, Dl = 2t0; + u0, jjg = 220, + 3ud,
(103)

C =120, + tud, , Wy = 8, Wo =18, Wi =120, W, =tzd,.

A related system was studied earlier [12], namely
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un(t) = [(77& - ’Yn——-l)un-{-l + (7n+1 - Vn—l)un + (’Yn—l - 'Yn)’lf('n-f-l]«3 (104)

where v, is any function of n, satisfying v,.1 # 7. If we take v, = n in
eq.(104) and z = n in (100), (101) the two systems coincide. The symmetry
algebra found in Ref.[12] is the subalgebra {P(), Dy, C, Wy, Wy, Wy, Wy}
of the algebra (1{)3) The elements P, and D, are absent, since the lattice is
fixed. Shifts n’ = n + N are allowed, but are not infinitesimal.

The system (100), (101) has a continuous limit

3
TT

The symmetry algebra of eq.(105) coincides with (103), i.e. the system (100),
(101) is a symmetry preserving discretization of eq.(105). We emphasize that
eq.(100) was obtained as part of a classification of difference equations [12],
not in any connection with the PDE (105).

4.4 Equation without a continuous limit
Let us now consider another special case of the system (94), (95), namely
1

utt=( +~2u+u—)3 flf+'"2$+$...=0. (106)

Substituing for F' into eq.(99) and proceeding as in Section 4.3. we
again obtain a 9-dimensional symmetry algebra. It differs from that given in
eq.(103) only in that D, is replaced by Dy = zdz. For h = z, — z satisfying
h — 0 we find uy finite, but (uy —2u+u_)"3 — oo, so the limit A — 0 does
not exist.

5 Conclusions

The main questions to be addressed in a program aiming at using Lie group
theory to solve difference equations are: (i) How does one define the symme-
tries? (ii) How does one calculate the symmetries? (iii) What does one do
with the symmetries?
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In this article we define the symmetries as in eq.(9), that is we consider
only Lie point transformations that act simultaneously in a difference equa-
tion (1) and lattice equation (2). The fact that the lattice also transforms is
in the spirit of Dorodnitsyn’s approach to discretizing differential equations.
In most symmetry studies of difference equations [9, ..., 26] the lattice is
fixed and nontransformable, e.g. given by the equation z = n, n € Z. For
nontransforming lattices we need to go beyond point symmetries to catch
transformations of interest[17].

Once the class of symmetries that we wish to consider is defined, the mat-
ter of calculating them becomes purely technical. We proposed an algorithm
for calculating symmetries in Section 2 (see eq.(13),...,(18)) and applied it
in Section 3 and 4. Symmetry algorithms for fixed lattices were presented
elsewhere [10, ..., 14].

Equations (100) and (104) provide good examples of different approaches.
The symmetry algebra (103) of the system (100), (101) happens to coincide
with the symmetry algebra of the continuous limit (105). The symmetry
algebra of the related equation (104) was calculated elsewhere [12]. It is a
7-dimensional subalgebra of the algebra (103), obtained by dropping Py and
Ds. Tt was obtained by the ‘intrinsic method’ [11]. The symmetry algebra of
eq.(104) can also be obtained from that of the system (100), (101) by taking
a specific solution z = n of eq.(101) and reducing the algebra (103) to the
one that preserves this solution.

As far as applications of symmetries are concerned, they are the same for
differential equations and difference ones, in particular, symmetry reduction.

First, consider translationally invariant solutions, i.e. solutions invariant
under the subgroup generated by X = Py — vP, with v constant and B, P
as in eq.(103). We find that the solution, the differential-difference equations
(DAE) (100), (101) and the PDE (106) reduce to

u(z,t)=G(n) n=z+vt (107)
v’ Gy[G(n + h) = 2G(n) + G(n — B)] = A (108)
VG =1 (109)

respectively. Surprisingly, the difference equation (108) and the ODE (109)
have exactly the same solution for all values of the spacing h, namely
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Gziﬁf—!—An—i—B v#0 (110)
where A and B are integration constants. Thus, the system (100), (101) is not
only a symmetry preserving discretization. It also preserves translationally
invariant solutions.

As a second example, consider solutions invariant under dilations gener-
ated by D; of eq.(103).The reduction formula, reduced DAE and reduced
PDE are

u(z,t) = tY2G(x) (111)
G(z) [G(z + h) — 2G(x) + G(z — h)]® = —4hS (112)
GG, =4 (113)

respectively. A particular solution of eq.(113) is G(z) = 4(—3)~3/4(x — )2,
This is not an exact solution of eq.(112), but the solution of (112) and (113)
coincide to order A2, rather than just h.

As a final example of symmetry reduction, consider the subgroup corre-
sponding to Dy — 3D of eq.(103). The reduction formulas are

u(z,t) =G(n) n=z% (114)

Gy = (2" — )" n? =P =0 (115
M Gny) —2G() + Gn)PP B

2T° Gy [3nGoy +2G, P =1 (116)

While we are not able to solve the ODE (116), nor the difference scheme
(115), we see that in both cases we get a reduction of the number of indepen-
dent variables. We mention that this last reduction would not be obtained
on a fixed lattice.

Let us sum up the situation with this particular approach to symmetries
of difference equations.

1. Lie point symmetries acting simultaneously on given equations and lat-
tices can be calculated using the reasonably simple algorithm presented
in this article.



J. Phys. A: Math. Gen. 33 No 47 (2000) 8507-8523 41

2. Symmetries can be used to perform symmetry reduction for DAE.

Work is in progress on other applications of symmetries of discrete equa-
tions, in particular solving ordinary difference equations.
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Continuous Symmetries of Equations
on Lattices

D. Levi* S. Tremblay! P. Winternitz ¥

Abstract

A method is presented for calculating the Lie point symmetries of
difference equations with one, or several, independent variables. The
equations are given on a priori specified lattices. The Lie transfor-
mations act on the lattice, as well as on the equation. The trans-
formations take solutions into solutions and can be used to perform
symmetry reduction.

1 Introduction

The theory of Lie groups and Lie algebras started out as a theory of trans-
formations of solutions of differential equations [1, 2]. They are used to
solve differential equations, to classify equations and solutions, to establish
properties of their solution spces [3].

Applications of Lie groups, and of the fundamentally continuous trans-
formations that they represent, to discrete equations, are much more recent.
A concerted effort is presently being made to adapt Lie theory to difference
equations, differential-difference equations and g¢-difference ones.

Two different philosophies are being pursued. In one, the discrete equa-
tion is a priori given; as is the lattice on which it is realized. The aim is to
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find the group of transformations, taking solutions into solutions and then
to apply the group to solve, or at least to simplify the equation. Typically,
in this approach the group acts on the equation, but not on lattice [4, ...,
9].

A different philosophy is to start from a differential equation and its
known symmetry group. The aim is to discretize the equation while pre-
serving its point symmetries. Thus, the symmetries are a priori given, one
looks for a lattice and a difference equation on this lattice. The group acts
on the equation and on the lattice (also given by an equation, or system of
equations) 10, 11, 12].

The purpose of this article is to combine the two approaches (see also
Ref.[13, 14]). We will consider given difference equations on given lattices.
However, the lattice will also be given by an equation, or a system of equa-
tions. We will then construct Lie point transformations, acting on the differ-
ence equations and the lattice and leaving the solution set of this difference
scheme invariant.

2 Symmetries of difference schemes in
one dimension

2.1 General formalism

Let us consider a scheme involving one scalar function u(z) of one scalar
variable z. A difference scheme will consist of two equations

Eo ({@ni}i2-ny, {tnsihi2_y,) = 0
Nl,NQEZZO, a=1,2

involving N;+ N3+ 1 points. The equations must be such that given N; + N,
neighbouring values of {z,us}, we can calculate the values of {z,u} at one
further point, to the left or right of the given set. We assume that the lattice
is infinite in both directions and that eq.(1) can be shifted arbitrarily to the
right and to the left.

A solution of the difference scheme is a pair of expressions

(1)

z, = PY(n,c,...,cn) )
U, = \Il(n,cl,...,cN) R NEZ(N1+N2),
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where ¢y, .. ., cy are integration constants. The points {. .., Zn_1, Zn, Tny1,- -}
are not necessarily evenly spaced and the value of z,.; may depend not only
on the previous values of z; but also on the solutions of u; at the previous
points.

We choose some point {z,u} = {z,,u,} as the origin in the space X xU C
R? of independent and dependent variables and consider a group G of local
point tranformations, acting in a neighbourhood of the point {z,u}. The
transformations will be generated by a Lie algebra of vector fields of the
form X

X =&(z,u) 0: + ¢(z,u) O,. (3)

When dealing with differential equations, we must prolong these vector fields
to identify their action on derivatives u,,tg,,... (up to the order of the
equation under study). When dealing with the difference scheme (1) we must
prolong the action of the vector field to all points figuring in eq.(1). The finite
group transformations act on the entire {z, u} space simultaneously (at least
locally). The prolongation of the vector field (3) can hence be given as

N3
er = Z [§($n+k, un+k)azn+k + ¢(wn+k)un+k)aun+k] ) (4)
=Ny

where the summation is over all points figuring in eq.(1). We now require that
the scheme (1) be invariant, under the group G, on the solutions of eq.(1).
In infinitesimal terms that means that the vector field (3) must satisfy

prX E, |g—0 =0, Va,i. (5)

Equation (5) provides the determining equations for the coefficients &(z,u)
and @(x,u). The actual algorithm for calculating the symmetry algebra is as
follows.

1. Use eq.(1) to express zj, and uy for some value of k (usually the highest
or the lowest one) in terms of the other ones, e.g.

TntNy = R(Tk, k),  Uniny = S(Th, up) -

n—N <k<n+ Ny-—1.
Substitute (6) into (5). We obtain two functional relations for &(z, u)
and ¢(z,u). Since eq.(1) has already been used, these equations must
hold for any N; + N, given neighbouring points. These equations are
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Ny—1
OFE, OFE, 0FE,
ntkm—— + @n +&n 2 R B —
k;_;h [5 +h 8xn+k Ptk 8un+ J €ntNo (R, S) . ™

where we use the notation

§n+k = f(xn-}—k; un—Hc)y ¢n+k = ¢($n+ka un+k)7

and R, S are functions of (zy,ux), k =n— Ny,...,n+ Ny — 1, defined
in eq.(6).

2. Assume that the dependence of £ and ¢ on their arguments is analytic.
Convert eq.(7) into a system of differential equations for £ and ¢ by
differentiating with respect to the variables z; and wu; with n — NV; <
k < n+ Ny — 1. The obtained equations will be first order linear
differential equations, involving fewer terms (since e.g. a given z; can
figure only in &, @k, EniNy , PninN,, via R and S and explicitly via E;
and F»). Further differentiations may produce one term equations that
we can solve.

3. Substitute the general solutions back into eq.(7) and solve for £ and ¢.

If a continuous limit exists, then the pair of equations (1) goes into one single
differential equations, generally speaking of order N; + N,. In other words,
in the continuous limit, the two functions £; and E, are no longer linearly
independent.

Let us mention that instead of considering the variables {zx,us} in dif-
ferent points, we can use a different basis, in which we introduce discrete
derivatives and spacings between points. Thus, for instance for 3 points we
can put

{Q’;__,.’JL',.’L'_{.,U_,’LL,U.(,}(———*

_ _ o up—u -—2u+u-
{xah+—x+~1"1h~-x—x~auyum'—i:;auzz (2+—x) }

having defined x = z,, , x4+ = 4. The continuous limit is particularly clear
in the second basis.



Cze. J. Phys. 51 No 4 (2001) 349-356 50

2.2 Example
Let us consider the nonlinear ordinary differential equation
N _
Ups —uN =0, N£0,L1. (9)

A straightforward calculation shows that for N # —3 eq.(9) is invariant
under a two-dimensional Lie group, the Lie algebra of which is spanned by

P=08, D=(N-1)zd, —2ud,. (10)
For N = —3 the symmetry algebra is sl(2,R) with a basis

P=8, D=2z0,+ uBy, C = 228, + zud,. (11)

A natural way to discretize eq.(9) is to use a uniform lattice and put

Uy — 22U + U_

N
= 4= " = N = 12
By = z,—2x+z_=0. (13)

Let us now apply the symmetry condition (5). First, the condition prX F,
for £y = E5 = 0 implies

2z —z_,(z -z )N 4+ 2u—u_) — 2(z,u) + £(z_,u_) =0. (14)
Differentiating first by d,_, then by 0, we obtain
&, 2~z ,(z—2 YN +2u—u)+ & (z_,u_) =0, (15)

[Nz —z_)2u"+2] &0, r—2_ (z—2_ )0 +2u—u_)=0. (16)
Eq.(16) implies that & is linear in u

§(z,u) = a(z)u +b(z). (17)

Eq.(15) reduces to a(z;) = a(z), i.e. a is a constant. Substituing these
results into eq.(14) we obtain

aluy —2u+u_]+b(zy) — 2b(z) + b(z_) = 0. (18)
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This implies @ = 0 and

b(zy) —2b(z) +b(z-) =0. (19)

Differentiating successively with respect to  and z_ we find b, ., (z4+) =0,
ie.

b(z) =biz + by . (20)

Thus, the invariance of eq.(13) implies & = bz + by Wi’gh b1, by constants.
The function ¢(z,u) is restricted by the requirement prX E; = 0 for E;, =
0, E5 = 0. This invariance condition is given by

d2z —z_,(z —z_)ul +2u —u_) — 2¢(x,u) + Pp(z_,u_)
21
—(z — z_)’[N(z, u)u¥"1 + 2b,uN] = 0. =)

We successively differentiate this equation with respect to u_ and u and
obtain

—¢U+ (217+, U+) + ¢u_ (CC_, u—) = O, (22)
¢u+u+ (.’IJ+, ’LL+) = 0. (23)

These two equations require that ¢ = ¢1u + ¢o(z) with ¢; a constant. Sub-
stituing back into eq.(21) we obtain the remaining determining equation

$o(22 — 2_) — 2¢0(z) + po(x-) — (x — z_)*[(N — 1)y + 2b1JuY

~N(z —z_)*pou™ "1 = 0.

(24)

Since we have N # 0,1 eq.(24) implies ¢o(z) = 0 and ¢1(1 — N) = 2b;.
Finally, we obtain the symmetry algebra of the difference system (12), (13).
It is 2-dimensional and coincides with the algebra (10) of the differential
equation (9), the continuous limit of eq.(12).

Notice that the case N = —3 is not distinguished from the generic case.
As a matter of fact, no difference equation on a uniform lattice can be in-
variant under the SL(2,R) group corresponding to the algebra (11). A basis
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for the difference invariants of this algebra in the space {z,z_,z,u,u_,u;}
is

h_U+ h+'U,_ h+h_
S = = 25
A= +hw T vy PT v hoe (25)
where hy and h_ are defined as hy = z, — x, h. = z — z_. Hence, no

function of z, z, and z_ alone can be set equal to a constant. An SL(2,R)
invariant scheme must be constructed out of these invariants. For instance,

an invariant scheme approximating eq.(9) for N = —3 is
ho(uy —u)—hi(u—u_) 2hy h_ 1
= ———, h.uy=hu. (2
hoh (hy +h) i’ uy = hyu (26)

3 Symmetries of multidimensional
difference schemes

3.1 General formalism

For simplicity we restrict here to the case of two independent variables. The
generalization to n variables is immediate.

As in the case of one variable, we consider a difference scheme to be a
system of relations between N points in the space {z,¢,u} enabling us to
calculate z,? and v in an N — th point, if they are given in N — 1 points.
In general a lattice in two dimensions is given by a system of 4 equations,
allowing us to calculate both x and y in new points and to move in two
linearly independent directions in the plane, from which we can calculate z
and t at any point of the lattice.

We find it convenient to label points on the lattice by two subscripts:
(Zm,nstmn) With (in principle) —co < m < oo, —00 < n < 0o. We put
UW(Zm,ns tmn) = Um,n. The difference scheme has the form

Eo (Tmakntts tmtkntl, Untkntt; =M1 Sk < My, =Ny <1< Ny) =0

a=1,...,5.
(27)
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We look for a Lie algebra of vector fields of the form
X = Xm,n = ém,n aa:m,,. + Tm,n 6tm,n + ¢m,n au,m,,n (28)

(with e.g. &nn = E(Zmn, tmn, Umn)) that will generate Lie point symmetry
transformations, i.e. transformations taking solutions into solutions. The
symmetry condition is again given by eq.(5). The prolongation of X is again
calculated by shifting £, 7 and ¢ to all points of the lattice involved in eq.(27)

prX=> Xnn (29)

Equation (5) provides a system of functional equations for just three

functions {(z, ¢, u), 7(z, t,u) and ¢(z,t,u). As in the case of one independent

variable, we convert them into differential equations and solve them to obtain
the symmetry algebra and ultimately the symmetry group.

3.2 Example. The discrete heat equation

The continuous heat equation
U = Ugy (30)

is invariant under an infinite dimensional pseudogroup. Factoring out the
infinite dimensional pseudogroup corresponding to the linear superposition
principle, we are left with a 6 dimensional group. A basis for its Lie algebra
is

Py=98, P =08, D=uz8,+2t8, W=ud,
X A (31)
B =0, — j2ud,, K =128, + zt0, — }(z® + 2t)ud,,
corresponding to time and space translations, dilation, multiplication of the

solution by a constant, Galilei boosts and expansions, respectively.
Let us now consider a discrete heat equation and lattice:

Umn+1 — Umn . Um+1n — 2um,n + Um+1,n 32
- ) ( )

tm,n-{—l - tm,n ($m+1,n - xm,n)z

Tm+in — 233m,n + Tm—1n = 07 (33)
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Tmnt+l — T = 07 (34)
tm—}-l,n - tm,n = 07 (35)
tm,n-{-l - tm,n - c(mm,n - xm-—l,n)2 = 07 c # 0. (36)

The lattice equations (33),...,(36) can be solved to give

T =AM +To, tpp = cA%n + to. (37)

Thus the lattice is regular (equally spaced), orthogonal and the lattice spacing
in the z and ¢ directions are related (by the constant c).
Using the lattice equation (36) we simplify eq.(32) to

Umnmn+1l — Umpn = C(um+1,n - zum,n + um——l,n)' (38)

Applying pr X of eq.(29) to eq.(34) and (35), using the original equations
and differentiating with respect to umy1, we find & = &(z,t), 7 = 7(z,1).
Differentiating the same relations with respect to z,,-1, we find that actually
we have £ = £(x), 7 = 7(t). Acting on (33) and (36) we finally obtain

E=Az+B, 7T=2A4t+C, (39)

where A, B and C are constants.
Finally, let us apply pr X to eq.(38). Using eq.(33),...,(38) we obtain

¢ (mm,n; tm,n + c(xm,n - wm—l,n)Qy um,n + c(um+1,n - 2um,n + um—l,n))
+(2C - 1)¢(xm,ny tm,'m um,n) =cC [¢(2$m,n - :Em——l,na tm,ny um—l—l,n)

+¢(xm—1,n: tm,n, um-—l,n)] .
(40)
Taking the second derivative with respect t0 %p—1, and Um41, of eq.(40) we
obtain ¢ = R(z,t)u+ S(z,t). Substituing back into eq.(40) and equating co-
efficients of Uy, n, Um+1,n, Um—1,» and 1, we obtain 3 equations for R, , and one
for Sy, . The function S,,, must satisfy eq.(38) and is an expression of the
linear superposition principle. The three equations for R,,, = R(Zmmn,tmn)
imply R = const.
Finally, the symmetry algebra of the discrete heat equation (32) on the
lattice (33),...,36) is given by
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By=06, P, =208, D=1,+2td, W = ud,,
. (41)
S = S(x,t)0y,

where S(z,t) is any solution of the system (32),...,(36).

In other words, this particular discretization of the heat equation (30)
has preserved a four dimensional subalgebra of the algebra (31). The entire
symmetry group could also be preserved, but the discretization would be
much more complicated [12].

4 Conclusion

We have presented a reasonably simple algorithm for calculating the Lie
point symmetries of arbitrary difference schemes. The determining equations
are linear functional equations for the coefficients of the vector fields that
realize the symmetry algebra. They can be converted into systems of linear
differential equations and solved. The transformations considered are point
ones; the finite transformations are obtained by integrating the vector fields.

Applications of the symmetries to obtain solutions and perform symmetry
reduction will be presented elsewhere, both for linear and nonlinear difference
equations.
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Lie Symmetries of Multidimensional
Difference Equations

D. Levi* S. Tremblay' P. Winternitz?
August, 2001

Abstract

A method is presented for calculating the Lie point symmetries of
a scalar difference equation on a two-dimensional lattice. The sym-
metry transformations act on the equations and on the lattice. They
take solutions into solutions and can be used to perform symmetry
reduction. The method generalizes one presented in a recent publica-
tion for the case of ordinary difference equations. In turn, it can easily
be generalized to difference systems involving an arbitrary number of
dependent and independent variables.

1 Introduction

A recent article [1] was devoted to Lie point symmetries, acting on ordinary
difference equations and lattices, while leaving their set of solutions invariant.
The purpose of this article is to extend the previously obtained methods and
results to the case of partial difference equations, i.e. equations involving
more than one independent variable.
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Algebraic techniques, making use of Lie groups and Lie algebras, have
proved themselves to be extremely useful in the theory of differential equa-
tions [2].

When applying similar algebraic methods to difference equations, several
decisions have to be made.

The first decision is a conceptual one. One can consider difference equa-
tions and lattices as given objects to be studied. The aim then is to pro-
vide tools for solving these equations, simplifying the equations, classifying
equations and their solutions, and identifying integrable, or linearizable dif-
ference equations [1, 3, ..., 26]. Alternatively, one can consider difference
equations and the lattices on which they are defined, to be auxiliary objects.
They are introduced in order to study solutions of differential equations, nu-
merically or otherwise. The question to be asked in this is: how does one
discretize a differential equation, while preserving its symmetry properties
[27, 29, 30, 28, 31].

In this article we take the first point of view: the equation and the lattice
are a priori given. The next decision to be made is a technical one: which
aspect of symmetry to pursue. For differential equations one can look for
point symmetries, or generalized ones. When restricting to point symmetries,
and constructing the Lie algebra of the symmetry group, one can use vector
fields acting on dependent and independent variables. Alternatively and
equivalently, one can use evolutionary vector fields, acting only on dependent
variables. For difference equations, these two approaches are in general not
equivalent and may lead to different results, both of them correct and useful.

Several aspects of symmetry for discrete equations were pursued in earlier
articles by two of the present authors (D.L. and P.W.) and collaborators. The
”intrinsic method” which provides, in an algorithmic way, all purely point
symmetries of a given differential - difference equation on a given uniform
fixed lattice was introduced in [4]. This was complemented by the “differen-
tial equations method” in [5]. In addition to point symmetries the differential
equation method provides a class of generalized symmetries. It was pointed
out that in many cases the two methods provide the same result, i.e. all sym-
metries are point ones. The two methods were successfully applied to many
specific problems [5, 7, 12, 13, 16]. The advantage of these two approaches
are their simplicity, their algorithmic character, and their close analogy to
symmetries of differential equations. Their disadvantage is that many inter-
esting symmetries, like rotations among discrete variables, are lost in this
approach.
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A complementary approach was first developed for linear difference equa-
tions [19, 8], again given on fixed uniform lattices. It was formulated in terms
of linear difference operators, commuting with the linear operator defining
the original difference equation. This approach provides a large number of
symmetries and the symmetry algebras of the discrete equations and their
continuous limits are actually isomorphic. The symmetries of the difference
equations are not point ones: they act at many points of the lattice. They do
however provide flows that commute with the flow determined by the original
equation and can thus be used to obtain solutions.

This aspect of commuting flows has been adapted to nonlinear difference
and differential-difference equations [9, 10, 11, 15, 17]. The equations are
defined on a fixed and uniform lattice. Generalized symmetries are considered
together with point ones and some of the generalized symmetries reduce to
point ones in the continuous limit. The methods for finding these generalized
symmetries rely on either linearizability, as in the case of the discrete Burgers
equation [9], or on integrability (the existence of a Lax pair) as in the case of
the Toda hierarchy [10, 11, 15], or the discrete nonlinear Schrédinger equation
[17, 18].

This symmetry approach is powerful whenever it is applicable. Together
with point and generalized symmetries it provides Backlund transformations
as a composition of infinitely many higher symmetry transformations. This
aspect has been explored in detail for the Toda lattice [15]. We emphasize
that Backlund transformations for difference equations, just as for differential
ones, are not obtained directly as Lie symmetries (not even as generalized
ones).

Each of the above methods has its own merits and will be further devel-
oped in the future.

In this article we take the same point of view as in our recent article [1].
We consider point symmetries only and use the formalism of vector fields
acting on all variables, dependent and independent ones. In [1] we considered
only one discretely changing variable. The lattice was not fixed. Instead it
was given by a further difference equation. Point symmetries act on the entire
difference system: the equation and the lattice. The lattice is not necessarily
uniform and we explored the effect of choosing different types of lattices.
The idea of using transforming lattices is due to Dorodnitsyn and coworkers
[27, 29, 30, 28, 31]. We differ from them in one crucial aspect. They start
from a given symmetry group and construct invariant difference schemes
for a given group. We, on the other hand, start from a given difference
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scheme and find its Lie point symmetry group. Previously this was done
for the case of one independent variable. In this article we generalize to
the multidimensional case. The generalization is by no means trivial. The
lattice is given by N? equations, where N is the number of independent
variables, all of them varying discretely. Transformations of continuously
varying independent variables, if present, are also taken into account.

We stress that the approach of this article complements those of previous
ones. The results of [4] and [5] are obtained if we chose a special form of
the lattice (e.g. Zm+1 — Zm = h in the case of one independent variable,
where h is a fixed, nontransforming constant). We purpusely avoid any use
of integrability. Like Lie theory for differential equations, this approach is
applicable to arbitrary differential systems, integrable or not.

A general formalism for determining the symmetry algebra is presented
in Section 2. It generalizes the algorithm presented earlier [1] for ordinary
difference equations to the case of several independent variables. In Section 3
we apply the algorithm to a discrete linear heat equation which we consider
on several different lattices, each providing its own symmetries. Section 4 is
devoted to difference equations on lattices that are invariant under Lorentz
transformations. In Section 5 we discuss two different discrete Burgers equa-
tions, one linearizable, the other not. The lattices are the same in both cases,
the symmetry algebras turn out to be different. Section 6 treats symmetries
of differential-difference equations, i.e. equations involving both discrete and
continuous variables. Some conclusions are drawn in the final Section 7.

2 General symmetry formalism

2.1 The difference scheme

For clarity and brevity, let us consider one scalar equation for a continuous
function of two (continuous) variables: u = u(z,t). A lattice will be a
set of points P;, lying in the plane R? and stretching in all directions with
no boundaries. The points P; in R? will be labeled by two discrete labels
P n. The Cartesian coordinates of the point P, ,, will be (Zmn, tmn) With
—00o<m< oo, —00<n < oo (weare of course not obliged to use Cartesian
coordinates). The value of the dependent variable in the point P, , will be
denoted U, n, = U(Tmn, tmn)-

A difference scheme will be a set of equations relating the values of
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{z,t,u} in a finite number of points. We start with one ‘reference point’
P, . and define a finite number of points P, ;,+; in the neighborhood of
P, ». They must lie on two different curves, intersecting in P, ,. Thus, the
difference scheme will have the form

E, ( {Tm+ints, tm+i,n+j;um+i,n+j}) =0 1<a<)

—i1 <1<t —5<J3<Jo i1, 0,J2 € Z>".

(1)

The situation is illustrated on Figure 1. It corresponds to a lattice deter-
mined by 6 points. Our convention is that z increases as m grows, t increases
asn grows (i.e. Tmi1,n—Tmn =M1 > 0, tnpnt1—tmn = he > 0). The scheme
on Figure 1 could be used e.g. to approximate a differential equation of third
order in z, second in ¢.

T
Figure 1: Points on a lattice

Of the above five equations in (1), four determine the lattice, one the
difference equation. If a continuous limit exists, it is a partial differential
equation in two variables. The four equations determining the lattice will
reduce to identities (like 0 = 0).

The system (1) must satisfy certain independence criteria. Starting from
the reference point P, , and a given number of neighboring points, it must
be possible to calculate the values of {z,¢,u} in all points. This requires a
minimum of five equations: to be able to calculate the (z,t) in two directions
and u in all points. For instance, to be able to move upward and to the right
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along the curves passing through P,,,, (with either m, or n fixed) we impose
a condition on the Jacobian

a(Ela E2) E3) E4) ES)

8(33m-i—122,ny tm+‘iz,’n3 zm,‘n+j2: tm,n+j2) u’m+i2,n+j2)

|J| = # 0. (2)

As an example of difference scheme, let us consider the simplest and
most standard lattice, namely a uniformly spaced orthogonal lattice and a
difference equation approximating the linear heat equation on this lattice.
Equations (1) in this case are:

Imtin =~ Tmn = hl tm—{-l,n - tm,n =0 (3)

Tmn+1l — Tmpn = 0 tm,n+1 - tm,n = h2 (4)

Um,n+1 — Umn - Um+1,n — 2'u'm,n + Um—1,n (5)
he (h1)?

where h, and h, are constants.
The example is simple and the lattice and the lattice equations can be

solved explicitly to give
Tmn = h1m+Zo  tmn = hon + to. (6)

The usual choice is xp = 9 = 0, hy = hy = 1 and then z is simply
identified with m, t with n. We need the more complicated two index notation
to describe arbitrary lattices and to formulate the symmetry algorithm (see

below).
The example suffices to bring out several points:

1. Four equations are needed to describe the lattice.

2. Four points are needed for equations of second order in z, first in ¢t. Only
three figure in the lattice equation, namely P, 11 5, Pnn and P, ny1. To
get the fourth point, B,,—1,, we shift m down by one unit in equations

(3-5).

3. The independence condition (2) is needed to be able to solve for £, 11 5,

tm—l—l,n; Tm,n+1, tm,n-l—l and Um,n+1-
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2.2 Symmetries of the difference scheme

We are interested in point transformations of the type
= F\(z,t,u) t=Gi(z,t,u) 4= Hy(z,t,u) (7)

where A is a group parameter, such that when (z,t, u) satisfy the system (1)
then (Z,t,4) satisfy the same system. The transformation acts on the entire
space (z, t, u), at least locally, i.e. in some neighborhood of the reference point
P n, including all points Pp,4; n4; figuring in equation (1). That means that
the same functions F,G and H determine the transformation of all points.
The transformations (7) are generated by the vector field

X = &(z,t,u)8, + 7(z, t,u)0; + ¢(z, t,u)d,. (8)

We wish to find the symmetry algebra of the system (1), that is the Lie
algebra of the local symmetry group of local point transformations. To do
this we must prolong the action of the vector field X from the reference
point (T, tmn, Umn) to all points figuring in the system (1). Since the
transformations are given by the same functions F,G and H at all points,
the prolongation of the vector field (8) is obtained simply by evaluating the
functions &, 7 and ¢ at the corresponding points.

In order words, we can write

prX=3 [é (ZTmns tmns Umn ) Oz + T (T, tmins Umin) Ot
9)

+¢(wm,n; tm,n) um,n)aum,n] )

where the summation is over all points figuring in the system (1). The
invariance requirement is formulated in terms of the prolonged vector field
as

prX E, g0 1<a,b<5. (10)

Just as in the case of ordinary difference equations, we can turn equation
(10) into an algorithm for determining the symmetries, i.e. the coefficients
in vector field (8).

The procedure is as follows:
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1. Use the original equations (1) and the Jacobian condition (2) to express
five independent quantities in terms of the other ones, e.g.

V1 = Tmtign V2 =Ulmiisn U3 = Tmatjs (1)
11

Vg = tbpntjy  Us = Umtig,n+jo

Vo = Uq (xm—i—i,n—}—jy tm+i,n+j7 um+i,n+j) ( )
12
11 <i<ipa—1 -5 <j<j—-L

2. Write the five equations (10) explicitly and replace the quantities v, us-
ing equation (12). We obtain five functional equations for the functions
&, 7 and ¢, evaluated at different point of the lattice. Once the func-
tions v, are substituted into these equations, each value of z; x, t; x and
u; 1 is independent. Moreover, it can only figure via the corresponding
ik, Tix and ¢; i (with the same values of 7 and k), via the functions v,
or explicitly via the functions E,.

3. Assume that the dependence of £, 7 and ¢ on their variables is analytic.
Convert the obtained functional equations into a system of differential
equations by differentiating with respect to the variables x;,t;x and
u; k. This provides an overdetermined system of linear partial differen-
tial equations which we must solve.

4. The solutions of the differential equations must be substituted back
into the functional ones and these in turn must be solved.

The above algorithm provides us with the function &(z, ¢, u), 7(z, t,u) and
¢(z,t,u) figuring in equation (8). The finite transformations of the (local)
Lie symmetry group are obtained in the usual manner, by integrating the
vector field (8):

& _¢zfa) d=r@ia U=¢@i0

3 Discrete heat equation

The heat equation in one-dimension
Ut = Ugy (14)
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is invariant under a six-dimensional Lie group, corresponding to translations
in z and ¢, dilations, Galilei transformations, multiplication of u by a constant
and expansions. It is also invariant under an infinite dimensional pseudo-
group, corresponding to the linear superposition principle.

Symmetries of the discrete heat equation have been studied, using differ-
ent methods and imposing different restrictions on the symmetries [8, 19, 27,
28].

Here we will use the discrete heat equation to illustrate the methods of
Section 2 and to show the influence of the choice of the lattice.

3.1 Fixed rectangular lattice

The discrete heat equation and a fixed lattice were given in equation (5) and
(3), (4), respectively. Applying the operator (9) to the lattice, we obtain

é(xmri-l,n’ tm—l—l,na um—i—l,n) = f(xm,na tm,ny um,n) (15)

é'(xm,n-f—l) tm,n+1, um,n+1) = g(xm,na tm,n; um,n)- (16)

The values Um1,n, Umn+1, Umn are not related by equation (5) (since it
also contains u,—1,,). Hence if we differentiate equations (15), (16), e.g. with
respect t0 U, we find that £ is independent of u. We have tyi1, = tmn
so equation (15) implies that £ does not depend on z. Similarly, equation
(16) implies that £ does not depend on ¢. Hence £ is constant. Similarly,
we obtain that 7(z,t,u) is also constant. Applying the prolongation prX to
equation (5) we obtain the functional equation

h
¢m,n+1 - ¢m,n = '("’;12_)2(¢m+1,n - 2¢m,n + ¢m~l,n) (]-7)

with €.g. ¢m,n = ¢(xm,n, tm,nyum,n)~
In ¢y pny1 we replace up, ,41, using equation (5). We then differentiate
with respect to U1, and again with respect to um,—1.,. We obtain

¢m,n = A(xm,m tm,n)um,n + B(xm,m tm,n)- (18)

Substituting (18) into equation (17), using (5) again and setting the coef-
ficient of Um41,n, Um—1,n,Umn and 1 equal to zero separately we find that
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A must be constant and B must be a solution of equation (5). Thus, the
symmetry algebra of the heat equation on the lattice (3), (4) is given by
Ph=08 P =08, W=ud, S5=S5(z,t)d, (19)
with S a solution of the equation itself. Thus, the only symmetries are those

due to the fact that the equation is linear and autonomous.

3.2 Lattices invariant under dilations

There are at least two ways of making the discrete heat equation invariant
under dilations.

A) Five point lattice
We replace the system of equations (3), (4) and (5) by

Tmt1,m — 2xm,n + Tm—1n = 0 Tmn+l — T = 0 (20)
tm+1,n - tm,n =0 tm,n+1 - th,n + tm,n~—1 =0 (21)
Ummn+1 — Um,n — Um+tin — 2um,n + Um—1,n (22)

tm,n+1 - tm,n (xm-H,n - xm,n)2

Applying prX of equation (8) to (20) and substituting for Tm+1,m tmtin bt
and Z,, ,+1 from the equations (20), (21) we obtain

E(me,n - mm——l,n) tm,nv um+1,n) - 2§(xm,n’ tm,ny um,n)

(23)
+§(95m-—1,m tm—l,m Um—l,n) =0

é(zm,na th,n - tm,n-—ly um,n+1) - é(xm,m tm,na um,n)~ (24)

Since Umnt1 and U, , are independent a differentiation of (24) with re-
spects to say Um—1,, (contained on the left hand side via w, n41) implies that
€ does not depend on u. Differentiating (24) with respect to t¢,, ,—1 we find
that { cannot depend on ¢ either. Putting £ = £(z) into equation (23) and
taking the second derivative with respect to ,,—1, and ,, ., we obtain that
€ is linear in z. Similarly, invariance of equation (21) restricts the form of
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7(z,t,u). Finally the lattice (20), (21) is invariant under the transformation
generated by X with

E=azx+pB T=7t+4. (25)
Now let us apply prX to equation (22). We obtain

¢m,n+l - (ﬁm,n — ¢m+1,n - 2¢m,n + ¢m-—1,n —-(2&-— )um+1,n - 2um,n + Um—1n
tm,n—l—l - tm,n (xm+1,n - xm,n)z 7 (xm-}-l,n - xm,n)2
(26)
Taking the second derivative O,,,., ,0u,_.. Of equation (26) after us-
ing the equation (22) to eliminate Umn+1, We find @mpn = Amn(T, )tmn +
B n(z,t). Substituting back into equation (26) we obtain A,,, = A =
const., and see that By, ,(x,t) must satisfy the original difference system.
Moreover, we obtain the restriction v = 2a.
Finally, on the lattice (20), (21) the heat equation (22) has a symmetry
algebra generated by the operators (19) and the additional dilation operator

A

We mention that the lattice equations (20), (21) can be solved to give
z=am+b, t=cn+d At first glance this seems to coincide with the
lattice (6). The difference is that in equation (6) h; and h; are fixed constants.
Here a, b, c and d are integration constants that can be chosen arbitrarily. In
particular, they can be dilated. Hence the additional dilational symmetry.

B) A four point lattice

We only need four points to write the discrete heat equation, so it makes
sense to write a four point lattice. Let us define the lattice by the equations

Tmtin — 2Zmp + Tme1n = 0 Tmnt1l — Tmp = 0 (28)
tmtin — tmn =0 tmntl — tmn — (Tmp1n — scm,n)2 = 0. (29)

On this lattice the discrete heat equation (22) simplifies to
Umntl = Umn = C(Umsin = 2Ump + Um—1,0)- (30)

Applying the same method as above, we find that invariance of the lattice
implies £ = Az + B, 7 = 2At + C. Invariance of equation (30) then implies
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¢ = Du+ S(z,t) where A, B,C and D are constants and S(z,t) solves the
discrete heat equation. Thus, the discrete heat equation on the four point
lattice (28), (29) is invariant under the same group as on the five point lattice
(20), (21).

3.3 Exponential lattice

Let us now consider a lattice that is neither equally spaced, nor orthogonal,
given by the equations

Tm+4ln — 2xm,n + Tmn—-1= 0 Tmntl = (]- + C) Tm,n (31)
tm,n-}—l - tm,n =h tm+1,n - tm,n =0 (32)

with ¢ # 0, —1. These equations can be solved and explicitly the lattice is
t=hn+ty z=0+¢c)"(am+pP) (33)

where %y, « and [ are integration constants. Thus while ¢ grows by constant
increments, x grows with increments which vary exponentially with time (see
Figure 2). Numerically this type of lattice may be useful if we can solve the
equation asymptotically for large values of ¢ and are interested in the small
t behavior.

The heat equation on lattice (31), (31) can be written as

Umn+1 — Um,n — um+1,n - 2um,n + um—-l,'n. (34)
h (xm+1,n - ‘Tm,n)2

Applying the symmetry algorithm to the lattice equations (31), (32) we find
that the symmetry algebra is restricted to

X =laz+b1+)""] 8+ 700, + ¢(z,t,u) d,, (35)

where a,b and 7y are arbitrary constants (whereas ¢ and h are constants
determining the lattice). Invariance of the equation (34) implies a = 0 in
(35) and restricts ¢(z,t,u) to reflect linearity of the equation and nothing
more. The resulting symmetry algebra has a basis consisting of

P=Q1+0"0, B=8 W=ud, S§=5(@t)d, (36)

where S(z,t) satisfies the heat equation. We see that the system is no longer
invariant under space translations, or rather, that these ‘translations’ become
time dependent and thus simulate a transformation to a moving frame.
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n=-1

=12 m=-9 m¥—6 m=-3

71

m=1

=-1

Figure 2: Variables (z,t) as functions of m and n for the lattice equations
(31), (32). The parameters and the integration constants are, respectively,

c=v2,h=1landa=m,08=01t =0.
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3.4 Galilei invariant lattice

Let us now consider the following difference scheme

Um,n+1T 2“ Uman _ 722 Umtln — 212r;,n + Un—1,n (37)
bngin —tmn =71 tntl — b = T2 (38)
Tmtin — 2Zmmn + Tm-1, =0 (39)
(Zmt1n = Tmn)T2 = (Tmnt1 = Tmn)T1 = ¢ (40)

where 71,75 and ( are fixed constants.
The lattice equations can be solved and we obtain

oTiTs — ¢

) n + Zg (41)

g =T1M + Ton + 1o xm,"zgﬁm+( T
1
where o,y and z, are integration constants. The corresponding lattice is
equally spaced and in general, nonorthogonal (see Figure 3). Indeed, the
coordinate curves, corresponding to m = const and n = const, respectively,
are ¢
r—Tyg = O'(t—to)—-,rln

TiT2

(42)

These are two families of straight lines, orthogonal only in the special case
(02 + 1)7y79 = 0. If we choose

oy —( =0 (43)

then the second family of coordinate lines in equation (42) is parallel to the
Z axis.

Invariance of equation (38) implies that in the vector field we have 7(z, t,u) =
a = const. From the invariance of equation (39) we obtain & = A(¢) z + B(#)
with

Altmsrn) = Altmn)  B(tmirn) — 2B(tmn) + B(tmo1n) = 0.  (44)

Finally, invariance of equation (40) implies A(t) = 0 and B(t) = Bt + 7y
where 3 and + are constants. Now let us apply the prolonged vector field to
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t

Figure 3: Variables (z,t) as functions of m and n for the lattice equations
(38), (39), (40). The parameters and the integration constants are, respec-
tively, m=1,=2,(=2and 0 = 1,20 = 0,ty = 0.
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equation (37). We obtain ¢ = Ru+ S(z,t) where S(z,t) satisfies the system
(37),...,(40). The symmetry algebra is given by

Ph=08, P=8, B=td, W=ud, S=05(z1)0, (45)
Thus, the system is Galilei invariant with Galilei transformation generated
by the operator B.

Let us now consider the continuous limit of the system (37),...,(40). We
use the solution (41) of the lattice equations (38), (39), (40) and for simplicity
restrict the constants by imposing equation (43). We have, from equation
(41), (43)

tm,n+1 = tm,n + 7o Tmn+l = Tmn
(46)
Tmtln = Tmn + aTy tmil,n = tm,n + T1.
The continuous limit is obtained by pushing 7 <« 1, 7, < 1, ( € 1 and
expanding both sides of equation (37) into a Taylor series, keeping only the
lowest order terms. The LHS of equation (37) gives

Umn+l — Umn ___ u(xm,n, tm,n + 7-2) — U(.’L'm,n, tm,n)
To - To

= u+ O(m)

and the RHS is given by

2
(ICZ) (um+1,n - 2um,n + um—-l,n)

2
= (%) [U(Zmn + 01, tmn + T1) — 2U(Zimn, tmyn) + U(Tmn — OT1, tmn — T1)]
= Ugsz + 2uzy + Huy + O(11).

The continuous limit of the system (37),..., (40) is
2 1
Ut = Ugpy + —Ug,t + —Eutt g # 0. (47)
o o

The symmetry algebra of this equation, for any value of o, is isomorphic to
that of the heat equation. In addition to the pseudo-group of the superposi-
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tion principle, we have
]50=8t ﬁ=$3m+2t8t~—%u3u——cm3t
K=tzd, +t26, — 3@+ 32*)ud, — (2?9, + xt 9, — 37ub,)

. ) (48)
P1:8x+cé‘t quau

E’=t6x-%xu8u—c(3:8m—2tc9t)——c2z8t c=1/o.

The fact that the commutation relations do not depend on ¢ suggest that
equation (47) could be transformed into the heat equation. This is indeed
the case and it suffices to put
c| 2+02 z+ct
u(x,t) =e +5° ylq,
(2,8) = " 05 u(a, 9) )
a=z+ct B=(1+c*)(t—cx)
to obtain
wﬂ = Waea- (50)

Notice that while the difference equation (37) on the lattice (38), (39), (40)
is Galilei invariant, this invariance is realized in a different manner, than for
the continuous limit (47). To see this, compare the operator B of equation
(45) with that of equation (48).

4 Lorentz invariant equations

The partial differential equation
Uy = f(u) (51)

is invariant under the inhomogeneous Lorentz group, with its Lie algebra
realized as

X1=0, X,=0, L=uyd,— 10, (52)
(for any function f(u)). In equation (51) z and y are ‘light cone’ coordinates.
In the continuous case we can return to the usual space-time coordinates
z=2x+Yy,t=u1z—y,in which we have

Uzz — Uy = f(U) (53)
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instead of equation (51) and the Lorentz group is generated by
Po=08, P =08, L=t0,+ 20, (54)
Let us now consider a discrete system, namely

Um+1,n+1 — Umn+1 — Um+t1n + Um,n
: : : — = f(u 55
(xm—{»l,n - xm,n)(ym,n-}—l - ym,n) f( m,n) ( )

Tmtin — 2xm,n + Tm—1n = 0 Tmn+1 — Tmpn = 0 (56)
Ymn4+1 — 2ym,n + Ymmn-1 = 0 Ym+in = Yman = 0. (57)

Applying the operator prX (with ¢ replaced by y) of equation (9) to equations
(56), (57) we obtain

E=Axz+C n=By+D. (58)
Requesting the invariance of equation (55) we find that ¢ must be linear
¢ = a(z, y)u + f(z,y). (59)
The remaining determining equations yield a = ay = const. and

of
OUm,n

2
+ (aotmn + Bz, ) 2L =0, (60)

(A+ B) B,

Thus, for any function f = f(u) we obtain the symmetries (52), just as
in the continuous case (they correspond to B = —A, ap = f = 0). As in
the continuous case, the symmetry algebra can be larger for special choices
of the function f(u). Let us analyze these cases.

a) Nonlinear interaction

We have f” # 0, hence 3 = By = const. The function must then satisfy
(A+B—ao)f + (wu+8)f =0. (61)

For ap # 0 we take
f=v p#01 (62)
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(we have dropped some inessential constants). The system (55), (56), (57)
is, in this case, invariant under a four-dimensional group generated by the
algebra (52), complemented by dilation

D = 20, + yd, + n _2_pu6u. (63)

For ag = 0, B # 0 we have
f=e" (64)
The algebra is again four-dimensional with the additional dilation

D = 20, + yd, — 20,. (65)

b) Linear interaction f(u) =u

The only elements of the Lie algebra additional to (52) are
D=ud, 8(B)=p0, (66)

where 3 satisfies the system(55), (56), (57) with f(u) = u. The presence of
D and S(f) is just a consequence of linearity.

c) Constant interaction f(u) =1

The additional elements of the Lie algebra are again a consequence of linear-
ity, namely

L =28, +yd, + 2ud, 8 =[Si(z)+ Sa(y)]0. (67)

where S1(z) and Sa(y) are arbitrary (because S;(z) + S2(y) is the general
solution of equation (55) with f(u) = 0 on the lattice (56), (57)).

To find a discretization of equation (53), invariant under the group cor-
responding to (54) is more difficult and we will not go into that here.

As stressed in the Introduction, the methods of this article can be applied
to any difference system, but they provide only point symmetries. We could
treat the integrable discrete Liouville and Sine-Gordon equations of Faddeev
[32], or Hirota [33], but would not otain the generalized symmetries that are
of interest. The correct formalism to use for these equations is that of Ref.
[11].
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5 Discrete Burgers equation

The continuous Burgers equation is written as
Ut = Ugg + 2Uly, (68)
or in potential form as
Vi = Upp + V2 U=V, (69)

We shall determine the symmetry groups of two different discrete Burgers
equations, both on the same lattice. The lattice is one of those used above
for the heat equation, namely the four point lattice (28), (29). Each of the
four lattice equations involves at most three points. Hence, for any difference
equation on this lattice, involving all four points, the symmetry algebra will
be realized by vector fields of the form (8) with

E=Az+B T1=2At+D (70)

where A, B and D are constants (see section 3.2B).

5.1 Nonintegrable discrete potential Burgers equation

An absolutely straightforward discretization of equation (69) on the lattice
(28), (29) is

2
Umn+1 — Um,n _ Um+1n — 2um,n + Um—1,n (um—{—l,n - um,n) (71)
tm,n-H. - tm,n (xm-{-l,n - xm,n)z Tm+in — Tmn

Applying the usual symmetry algorithm, we find a four-dimensional sym-
metry algebra

P=8, P=08, D=z0,+2t8, W=2,. (72)

5.2 A linearizable discrete Burgers equation

A different discrete Burgers equation was proposed recently [9]. It is lin-
earizable by a discrete version of the Cole-Hopf transformation. Using the
notation of this article, we write the linearizable equation as

(1 + hxum,n)[um-{—?,n - 2um+1,n + Um,n + hzzum+1,n(um+2,n - um,n)
1 + Cha:[um+1,n - um,n + hzum,num+l,n]

Umn+1 = Umn +c

(73)
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— — — 2
hcc = Tm+ln — Tm,n ht = tm,n—}-l - tm,n - Ch'g;

tm+1,n - tm,n =0 Tmn+l — Tman = 0.

In equation (73) c is a constant, but h, is a variable, subject to dilations.
The determining equation is obtained in the usual manner. It involves the
function ¢,,, at all points figuring in equation (73), and also the constant
A of equation (70). The equation is too long to be included here, but is
straightforward to obtain. The variable that we choose to eliminate using
equation (73) iS Um n41. Differentiating twice with respect to U2, we obtain

2 2
a ¢m,n+1 aum,n-f‘l 6 ¢m+2,n

ouz,, .. 0 T 0, (74)
Umnt+l OUm+2n Um+2,n

We differentiate (74) with respect to w,,, and then, separately, with respect
t0 Upm-1,,- We obtain two equations that are compatible for c¢(1 + ¢)?h,(1 +
hotm) = 0. Otherwise they imply that ¢ is linear in u: ¢ = a(z,t)u +
B(z,t). We have ¢ # 0, h, # 0, but the case ¢ = —1 must be considered
separately. We first introduce the expression for ¢ into the determining
equation and obtain, after a lengthy computation (using MAPLE): a = —A,
B = 0. For ¢ = —1 we proceed differently, but got the same result. Finally,
the Lie point symmetry algebra of the system (73), (28), (29) has the basis

Po=8 P=08, D=z8,+2t8,—ud, (75)

This result should be compared with the symmetry algebra of equation
(73) on a fixed constant lattice, found earlier [9]. The symmetry algebra
found there was five-dimensional. It was inherited from the heat equation,
via the discrete Cole-Hopf transformation. It was realized in a ‘discrete
evolutionary formalism’ by flows, commuting with the flow given by the
Burgers equation. The symmetries found there were higher symmetries, and
cannot be realized in terms of the vector fields of the form considered in this

article.
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6 Symmetries of differential-difference equa-
tions

6.1 General comments

Symmetries of differential-difference equations were discussed in our previous
article [1]. Here we shall put them into the context of partial difference
equations and consider a further example. As in the case of multiple discrete
variables, we will consistently consider the action of vector fields at points in
the space of independent and dependent variables. To do this we introduce a
discrete independent variable n (or several such variables) and a continuous
independent variable « (or a vector variable &). A point in the space of
independent variables will be P, o, its coordinates {z, q, zn«} Where both z
and z can be vectors. The form of the lattice is specified by some relations
between Z, o, Zna and Up o = U(Tna) Zn,a)-

We shall not present the general formalism here, but restrict to the case
of one discretely varying variable z = z,, —00 < n < oo and either one
continuous (time) variable (¢), or two continuous variables (z,y).

For instance, a uniform lattice that is time independent can be given by
the relations

Zn+l,a zzn,a + Zn—-l,a — 0 (76)
Zna — Rpat T 0 (77)
tn+1,a - tn,a = 0. (78)

where o' is a different value of the continuous variable «.

Conditions (77), (78) are rather natural. They state that time is the same
at each point of the lattice and that the lattice does not evolve in time. They
are however not obligatory. Similarly, equation (76) is not obligatory. The
solution of equations (76), ..., (78) is of course trivial, namely

Zn=hn+z t=t(a) (79)

and we can identify ¢t and o (t = @, h and 2o are constants).
The prolongation of a vector field acting on a differential-difference scheme
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on the lattice (76),..., (78) will have the form

pr X = Zn [T(zn,om tn,a» un,a) atn,a + C(zn,a, tn,m un,a) 67,,,,&
(80)

+¢(Zn,a7 tn,av un,a) 8“7;,0:] + e

where the dots signify terms acting on time derivatives of u. Since un a, Un o
and un41, are all independent, equations (77) and (78) imply

(=((z) T=7(t) (81)

On any lattice satisfying equation (77), (78) we can simplify notation and
write X
X =((2)0,+71(t) 0 + ¢(z2,t,u) d,. (82)
Similarly for an equation with one discretely varying independent variable
z and two continuous ones (z,y) one can impose

Zntlanae ~ 2Zn01,00 T Zn—l,a1,0 = 0 (83)
Znaa,]ﬁaz - Zn’a]9a2 = O (84)
Zn,al,a’z — Zn,a1,0p 0

Tntlaies ~ Tnaae = 0 (85)
Yn+lar,00 — Unjon,00 = 0.

Invariance of the conditions (84) and (85) then implies that the vector fields
realizing the symmetry algebra have the form

X =((2) 8. +&(z,y) 0 +1(z,Y) 8y + $(2, 7,4, 1) By (86)
We can again simplify notation identifying z = a3, ¥ = a3 and solving

(83) to give z, = hn + 2z (h and 2o constant).

6.2 Examples

We shall consider here just one example that brings out the role of the lat-
tice equations very clearly. The example is Toda field theory, or the two-
dimensional Toda lattice [34, 35, 13]. It is given by the equation

l gy = €717 — gnnss (87)
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with u, = u(zn, z,y).
On the lattice (83),..., (85) we start with equation (86) and have

1 1
prX =&(,y) 0 +n(,9) O+ Y Guk(2) Bepit D, btk Oups + 02 u

k=—1 k=—1
(88)
where ¢7Y is calculated in the same way as for differential equations [2].
Applying (88) to equations (83) and (87) we find

§=&(z) n=n(y) G=Az.+B ¢n=P0u(z,y, ) (89)

and we still have two equation to solve, namely

)8n+1 - IBn + 53: + ny = 0 (90)
ﬂn,zy = (. (91)
On the lattice (83),..., (85) 2,41 and 2, are independent. Hence we can

differentiate (90) with respect to 2,43 and find that 3,,; is independent of
Zn+1 and hence of n. We thus find a symmetry algebra generated by

~

P=08, P=98, L=28,-y8, S§=08, D=z20,
) ) (92)
Uk) =k(z)d, V(h)=h(y)d,

where k(z) and h(y) are arbitrary smooth functions. Notice that S and D
act only on the lattice and U(k) and V/(h) generate gauge transformations,
acting only on the dependent variables.

If we change the lattice to a fixed, nontransforming one, i.e. replace (83)

by

Zntlar,ar — Znanag = 1 (93)
h = const, the situation changes dramatically. We loose the dilation D of
equation (92), however z,,; and z, are now related by equation (93). The
solution of equation (90), (91) in this case is

B = 7 (6 + ) + k(2) + h(y). (94)

On this fixed lattice the Toda field equations are conformally invariant and
the invariance algebra is spanned by

X(f)=f() 0+ 2f(2) 0 Y(9) = g(y) 9y + 29 () B

. 5 . (95)
Uk) =k(z)0, V(h)=h(y)d, 5=0.
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We see that giving more freedom to the lattice (three points 2,41, 2n, 2n—1
instead of two) may lead to a reduction of the symmetry group, rather than
to an enhancement. For the Toda field theory the reduction is a drastic one:
the two arbitrary functions f(z) and g(y) reduce to f = az+b, g = —ay+d,
respectively (and only the element D is added to the symmetry algebra).

7 Conclusions and future outlook

The main conclusion is that we have presented an algorithm for determining
the Lie point symmetry group of a difference system, i.e. a difference equa-
tion and the lattice it is defined on. The algorithm provides us with all Lie
point symmetries of the system. In Ref. [1] we considered only one discretely
varying independent variable. In this article we concentrated on the case of
two such variables. The case of an arbitrary number of dependent and inde-
pendent variables is completely analogous though it obviously involves more
cumbersome notations and lengthier calculations. The problem of finding
the symmetry group is reduced to solving linear functional equations. In
turn, these are converted into an overdetermined system of linear partial dif-
ference equations, just as in the case of differential equations. The fact that
the determining equations are linear, even if the the studied equations are
nonlinear, is due to the infinitesimal approach.

The symmetry algorithm can be computerized, just as it has been for
differential equations.

In previous articles (other than Ref. [1]) we considered only one discretely
varying variable and a fixed (nontransforming) lattice [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18]. The coefficients in the vector fields, realizing the
symmetry algebra, depended on variables evaluated at more than one point
of the lattice, possibly infinitely many ones. Thus, one obtained generalized
symmetries together with point ones. For integrable equations, including
linear and linearizable ones, the symmetry structure can be quite rich [8, 9,
10, 11, 15, 17, 18]. In the continuous limit some of the generalized symmetries
reduce to point ones [11, 17, 18] and the structure of the symmetry algebra
changes.

A detailed comparison of various symmetry methods is postponed to a
future article. Applications of Lie point symmetries, as well as generalized
symmetries, to the solution of difference equations, will be given elsewhere.
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Symmetry Classification of Diatomic
Molecular Chains

S. Lafortune* S. Tremblay! P. Winternitz}

Abstract

A symmetry classification of possible interactions in a diatomic
molecular chain is provided. For nonlinear interactions the group of
Lie point transformations, leaving the lattice invariant and taking so-
lutions into solutions, is at most five-dimensional. An example is
considered in which subgroups of the symmetry group are used to
reduce the dynamical differential-difference equations to purely differ-
ence ones.

1 Introduction

The purpose of this article is to analyze possible interactions in a long one-
dimensional molecule consisting of two types of atoms. The model we con-
sider is a very general one, described by the equations

El = in - Fn(fnat) - G’n(nn—lat) = 0)
E2 = yn - Kn(&nyt) - Pn(nnvt) = 0>

(1.1)
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where the overdots denote time derivatives and z,, ¥, can be interpreted as
the displacement of the n-th atom of type X or Y, respectively, from their
equilibrium positions. We define

g'n = Yn — Tn, Tn = Zp+1 — Yn (12)

and t is time. The functions F,,, G,, K, and P, are as yet unspecified
smooth functions. Indeed, our aim is to classify such systems according to
the Lie point symmetries that they allow, that is, to classify these functions
FE,., Gn, K,, and F,.

The assumptions built into the model are:

1. The atoms of type X and Y alternate along a fixed uniform one-
dimensional chain with positions labeled by the integers n
(see Figure 1).

2. Only nearest neighbor interactions are considered, i.e. the atom X,
interacts only with Y, _; and Y, and Y, interacts only with X, and
Xn+1 (see Figure 1).

3. The system is invariant under a uniform translation of all atoms in the
molecule and also under a Galilei transformations of the chain.

4. The systems is strongly coupled, i.e. we assume

8Fn 8Gn aKn 613"‘1,
0, 0, — #0, — #0. 1.3
% 7% % 3 70 a7 (1.3)

5. In the bulk of the article we assume that the interactions are nonlin-
ear, i.e. at least one of the four functions F,,, G,, K, or P, depends
nonlinearly on the argument & or 7, respectively. The linear case will
be treated separately.

6. A discrete symmetry is built into the model. Indeed, the two equations
(1.1) are permuted by the transformation

Tn — Yn, Yn — Tny1,
(1.4)
Fn'——)Pn’ Gn_)Kna Kn-—l""""Gn’ Pn—l""—”Fn-
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Yn-1 Tn Yn Tn+1

.............. o o &
@ L g

Figure 1. Interactions between atoms of type X and Y along a molecular
chain.

Models of this type have many applications in classical mechanics, in
molecular physics, or mathematical biology [1, 2, 3]. In applications, the
form of the functions in eq.(1.1) are usually a prior: fixed.

The formalism used in this article is the one called “intrinsic method” in
earlier articles [4, 5]. It has already been applied to monoatomic molecular
chains [6] and to a model with two species, or two types of atoms, distributed
along a double chain [7].

In this approach the dependent variables x and y depend on one discrete
variable 7 and one continuous variable . Symmetry transformations, taking
solutions into solutions, act on the variables z,y and ¢, not however on the
lattice variable n. The Lie algebra of the symmetry group is realized by
vector fields of the form

X = 7(Zn, Yy £)0s + B (Tns Yoy )0z, + U (T Yoy 1), (1.5)

The functions 7, ¢, and v, are determined from the requirement that the
second prolongation of the vector field X should annihilate equations (1.1)
on their solution surface. Explicitly we have [4, 5, 6, 7]

) n+1
pr(z)X - T(t7 Tn, y'n.)at + Z ¢k(t’ Lks yk)axk
k=n—1
n-41 <16>

k=n-1
with
Pt = D¢, — (D7) 2 — 2(DyT) i,
W = D~ (DI7) i — 2Der) i

(D is the total time derivative). In eq.(1.6) we have spelled out only those
terms which act on eq.(1.1).

(1.7)
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The use of this formalism is not obligatory. Indeed, the group transfor-
mations can also act on the lattice [8, 9, 10, 11] and generalized symmetries
can be very useful [12]. In this article we restrict ourselves to the intrinsic
formalism, described above.

The present article is organized as follows. In Section 2 we establish the
general form of the vector fields (1.5) that realize the symmetry algebra of
eq.(1.1). We also derive the determining equations for the symmetries and in-
troduce a “group of allowed transformations”. Allowed transformations take
equations of the type (1.1) into other equations of the same type. They can
change the functions F,,, G,, K,, and P, into other functions of the same ar-
guments. As in previous articles, we classify equations into symmetry classes
under the action of allowed transformations [6, 7, 13, 14]. We also establish
that equations (1.1) are invariant under a two-dimensional Abelian group for
any functions F,,..., P,. Section 3 is devoted to Abelian symmetry alge-
bras. We denote them A;; where A means Abelian, j denotes the dimension
and k£ = 1,2,3,... enumerates algebras of the same dimension. For each
interaction we list only the maximal symmetry algebra. Section 4 is devoted
to nilpotent symmetry algebras, denoted by N, with the same conventions
as in Section 3. In Section 5 we find all solvable symmetry algebras with
non-Abelian nilradicals (SN;x). In Section 6 those with Abelian nilradicals
(SA;k). All nonsolvable symmetry algebras are listed in Section 7 (N.S;x).
In Sections 3 to 7 we consider only nonlinear interactions. Symmetries of the
linear case are discussed in Section 8. Conclusions and some applications of
the symmetries are summed up in the final Section 9.

2 Determining equations and allowed
transformations

The algorithm for finding the symmetry algebra of eq.(1.1) is

prX E, |g,—o = 0, a=1,2 b=12 (2.1)

The coefficients of all terms of the type 22 g2 must vanish independently and
we find that the vector field (1.5) must actually have the form
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- r(t (2t
X =71()0; + {(a + Z—(2—)—> ZTn + )\n(t)} O, + [(a + 7—12—)-) Yn + un(t)J Oy
(2.2)
where a is a constant and A\, (t), u,(t) and 7(¢) are functions of the indicated
variables. This form (2.2) is valid for any interactions F,,, G,, K, and P, in
eq.(1.1). Moreover, we have

T=To+7’1t+’l’2t2, (23)

where 79, 71 and 7, are constants.

The constants a, 7; and the functions A, (t) and u,(t) are subject to two
further determining equations that involve the interaction functions explic-
itly. They are

xn"' (CL—' 'g‘T) (Fn+Gn)+ [/\n'—p'n" (a‘l"%)gn] Fn,gn
+ [;U'n—l - )\n - (CL + '72:) 777:.——1] Gn,nn_l - T(Fn,t + Gn,t) = 0,

(2.4)

fin+ (a=57) (Ko + Pa) + An = tn = (a+ 5) ] K,

+ [/in — Any1 — (a + ';‘) "In] P — T(Kng + Pat) = 0.

Our task is to perform a complete analysis of eq.(2.4) and (2.5). Concep-
tually, this is very similar to the problem considered in Ref. 7. However, the
functions figuring in eq.(1.1) are less general than those of Ref. 7, hence the
computations are simpler.

We shall classify the equations of type (1.1) into equivalence classes under
the action of a group of “allowed transformations”. These are transforma-
tions of the form

(2.5)

mn = (I)n(-%na 37717 E)) yn = lI’T’l«(ina gﬂ’ {)7 t = T({) (26)

that transform equations (1.1) into equations of the same form, but do not
preserve the functions on the right hand side of eq.(1.1). The requirement
that no first derivatives should appear and that the transformed functions
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F, and K,, should depend only on fn and ¢, G, and P, only on t and fj,_;
or ,, respectively, implies that the transformations actually have the form

T, (t) ) 2~1/2 ( Z.(t) ) ( an(t) )
=gt phipe + , 2.7
(o0 ) =" (50 )+ (569 @7)
~ ct+cy
it aa—as=l ¢#0 (2.8)
where ¢, ¢y, ...,cq4 are constants and «, and 3, are arbitrary functions of n

and .
The transformed system is

jn(i) = Fn(én,g)+én(ﬁn—lyf)7

gn(f) = kn(gn,{) + Pn(ﬁmi)a

(2.9)

(516 ) (A0 ) - (9], o
1/2

é‘n = Y — Tpn = qz— (-’in - gn) + an(t) - 'Bn(t)’ (211)

1

—1/2 -
M = Znt1— Yn=qt (xn-i-l — Gn) + an+1(t) — Bal(t), (2.12)

f o= Gtzo (2.13)
—c3t+ Cy

The vector field X of eq.(2.2) is transformed into a similar field with

@ = r¢t@)t, a=a, (2.14)

(20 < e (5) - (5)+ ()] e



JOURNAL OF MATHEMATICAL PHYSICS, VOL. 42, NUMBER 10, 2001 95

The transformed functions and constants must satisfy the same deter-
mining equations (2.4) and (2.5).

As mentioned in the Introduction, translational and Galilei invariance are
built into the model. That is easy to check. Indeed A\, = u, =1, a = 0,
7(t) = 0and A\, = p, =t, a = 0, 7(¢) = 0 are solutions of eq.(2.4) and (2.5)
for F,,, G,, K, and P, arbitrary. No other symmetries exist, unless some
constraints on the interactions are imposed.

We shall use the allowed transformations to simplify the vector fields
that occur. In particular the coefficient 7(¢) of a given vector field can be
transformed into one of the following expressions: 0, 1, ¢ or 2 + 1.

Our strategy will be to first find all Abelian symmetry algebras, then all
nilpotent (non-Abelian) ones. Once these are known, we can determine all
solvable ones, having the corresponding Abelian, or nilpotent ones as nil-
radicals [15]. Finally, all nonsolvable symmetry algebras will be determined,
making use of their Levi decomposition [15].

Any symmetry algebra will contain the algebra

Apy: X1=8,,+0,, Xo=t(8,, +0,), (2.16)

as a subalgebra. Allowed transformations leave the algebra (2.16) invariant.
Any further element of the symmetry algebra can be transformed into one
of the following ones

Vi = 8 +a(@n0s, +ynd,,), a=0,1, (2.17)
Y = t0,+(at %)(mn O +1n By ), (2.18)
Vi = (2+1)0,+ (a+1)(Tn0s, + ¥ 0,.), (2.19)
Yi = M(t)(0z, +0y,), An # 0, Ang1 # An, (2.20)
Vs = Ma(t) e, + Ayi(t) 9y, A #0, A1 # M. (2.21)

The interactions that allow these additional terms can easily be determined
from equations (2.4) and (2.5). Once this is done, we determine whether the
considered interactions allows further symmetries. For each interaction, we
shall only list the maximal symmetry algebra allowed, not lower-dimensional

subalgebras.
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3 Abelian symmetry algebras

The lowest dimensional maximal symmetry algebra is As ; of eq.(2.16), present
for any interactions in eq.(1.1). This algebra can be enlarged into a higher
dimensional Abelian algebra by adding elements of the type (2.20) or (2.21).
The determining equations for a nonlinear system allow at most four com-
muting symmetry generators. Moreover, the three-dimensional symmetry
algebras are never maximal.

Finally, we obtain two different four-dimensional Abelian symmetry alge-
bras together with the interactions that allow them. They are

A X1 = M) (B, +0,.),  Xo = don(t)(Bs, +,.),

X3 = 6.’1271 + ayn) X4 = t(axn + 8yn)?

F, = F,(&, 1), G, = mﬂn-L

Kn = Kn(&nyt)a Pn = MUm
Mn#0,  Xn#0,  Ains1 # Ain,

)\Q,n _ /\Z,n — )\2,n——1 — )‘Z,n—{—l —_ )\2,11
)\1,n )‘l,n - )\1,n—1 /\1,n+1 - )\1,n

Asy X1 =2Ma()0s, + A1)y, X2 = Aan(t)0a, + Aaynt1(t)Dy,

X3 - al‘n + ayna X4 = t(awn + ayn)7

_ Mia _

Fn - Sl,n-i-l - )\Lnﬁm G’n - Gn(n‘n——la t)7
— xl,n—{—l _

Kn - Al,n+1 — 1,n§n7 Pn. - Pn('r]nat)7

5\1,n # 0, ;\‘2,n #0,  Aint1 # A,

Aon  Aon—Aopn1  Aopg1 — Ao,

The algebras A4 and As» are actually related by the discrete symmetry
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(1.4). Algebra A4, is transformed into A, 2 by the substitutions

Fn(gn) B Pn(nn)a Gn(Mn-1) — Kn(fn)a
Kn—l(&n——l) —* Gn("}n-—l); Pn——l(nn——l) — Fn(‘sn)y (31)
On(t) Oz, — Ong1(t) Oyny  0n(t) By, — On(t) O,

The functions A;,(t) and Ay, (¢) in algebras Ay, Ago satisfy the equations

5\ n )\ n )\ n— )\ n - A n
”2, —_ 2, 2n—1 - 2,n+1 2, ) (32)
/\1,71, )\l,n - /\1,n~1 )\1,n+1 - /\l,n

These equations can be solved and we obtain

_ Y 1 £ §(s)
Mn = fOan +90), - den = 757 = 5FAT | TP (33)

ft) #0, Yt 7 Yoo

where f(t), g(t) are arbitrary smooth functions of ¢ and +, is an arbitrary
function of n.

Notice that the quantities A1 ,(¢) and Ao, (t) (or f(t), g(¢) and ~,) figure
explicitly in the interaction functions G, and P, of A4, or respectively in
F, and K, of Ay3. The two algebras are thus indeed four-dimensional and
completely specified.

4 Nilpotent non-Abelian symmetry algebras

Nilpotent Lie algebras exist for all dimensions dim L > 3. For dim L = 3
only one type exists, namely the Heisenberg algebra. It has a two-dimensional
Abelian ideal. Maximality requires that this ideal be the algebra Ag; of
eq.(2.16). The Heisenberg algebra is obtained by adding the operator T' = 8.
We then calculate the interaction allowing this symmetry algebra, and obtain

Nyy X1=08,, +0,, X,=t0,,+8,), T=2a,
Fn - fn(&n)a Gn = gn('r]n——l)a
Kn = kn(&n): Pn = pn(n")

We mention that this algebra is invariant under the substitution (3.1).
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Every nilpotent non-Abelian Lie algebra contains the Heisenberg algebra
as a subalgebra. We can hence proceed by adding further operators to Ns ;.
Moreover, they can only be added to the Abelian ideal. The determining
equations (2.4), (2.5) allow us to add at most two operators. Maximality
requires that we add precisely two. We thus obtain two mutually isomorphic
five-dimensional nilpotent Lie algebras with four-dimensional Abelian ideals,
namely

N5,1 X] - an + 3yn, XQ = t(@xn + ayn), T == 8,;,
X3 = (0n+t2)(8$n +an)’ X4= (Jnt—*—z;)(axn +ayn)’
— — 2
Fo=folén),  Gn= =571,

Kn=Fku(&), P.= 5‘;‘_:1‘2:77‘;777:7 O'n+i # On,

where o, is an arbitrary function of n.

The second algebra Ns, is obtained from N ; by the substitution (3.1).
We mention that the interactions allowing the symmetry algebra N5, are
special cases of those allowing the Abelian algebra A,;. Similarly for Njo
and A4,2.

5 Solvable nonnilpotent symmetry algebras
with non-Abelian nilradicals

A solvable Lie algebra L always has a uniquely defined maximal nilpotent
ideal, the nilradical NR(L) [15]. If a solvable symmetry algebra of the system
(1.1) has a non-Abelian nilradical, it must be N3 1, N5 or Njg of Section 4,
or a four-dimensional subalgebra of N5 or Nj .

The determining equations (2.4) and (2.5) do not allow any extension of
the four and five-dimensional nilpotent symmetry algebras to solvable ones.

The Heisenberg algebra N3 1, on the other hand, leads to three different
four-dimensional solvable symmetry algebras. The Lie algebras are given
by four basis elements, X1, X, and 7' of N3 and an additional operator
Y. Below we list these elements ¥ together with the invariant interactions
that allow the corresponding symmetry groups. In each case we present a
matrix A defining the action of ¥ on the nilradical N3 (ie. [X}, )7] =

A,;,le -+ Ai,QT + Ai,3X2).
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SN4,1 =t0; + (CL + %)(-’Enamn + ynayn)7

2a—-3

2a-3 2a-3
n = (5")2‘:“ fm Gn = (77n—1)2““9m

o<

2a—

= ('Sn)m“’? kn, Pn= (nn)zﬁpm

&

SNya YV =18, + 2z, + 120y, + (2un +12)9,,,
F, = fn + %ln(én)a Gn = %ln(nn—-l)a
Kn=kn+3In(&), Po=1ln(n),

A=

OO N
O O
- N O

SN4‘3 )A/ =t0;, + al,nﬁxn -+ Ug,nayn,

F, = fnexp (___ggﬂ__) , Gn=gnexp (—jﬂ-"—ﬂ——) :

O1,n — O2n O1n — 02n—1

K, =k,exp (——2—§1‘————) , P,=ppexp (————:—&L) ,

Oin— 02 O1ln+1 — 02
A = dlag (0, 1 N -—1), Ul,n 7& O'Q’n, 01,n+1 ?é O2n.
The quantities f,, gn,Pn, kn, 01, and o2, depend on n alone.
The transformation (3.1) does not lead to any new algebras or interac-
tions. In the case of the algebra SNs3 we may have 09,41 = 02,. Then

oy can be transformed into o3, = o = 0. Similarly, for 09,41 # 02,, but
Olntl = 010 = 0, We can transform o, into o7 = o = 0.

6 Solvable nonnilpotent symmetry algebras
with Abelian nilradicals

A large number of symmetry algebras of the system (1.1) is of this type. To
identify and classify them, we use several known results on the structure of
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solvable Lie algebras [15].

1. The nilradical NR(L) is unique and its dimension satisfies

dim NR(L) > = dim L. (6.1)

DN =

2. Any solvable Lie algebra L can be written as the algebraic sum of
the nilradical NR(L) and a complementary linear space F, i.e. L =
F+NR(L).

3. The derived algebra is contained in its nilradical: [L, L] C NR(L).

4. For an Abelian nilradical {X’ Iy--vs X,,}, the commutation relations can
be written as

(X Vi) = (An)yX;,  [Ar Ad =0, [Vi,%i]=chX,, [Xi,Xi] =0,

(6.2)
where the elements Y are the nonnilpotent elements (outside the nil-
radical). The matrices A, commute and are linearly nilindependent
(i.e. no nontrivial linear combination of them is a nilpotent matrix).
If only one element Y outside the nilradical exists, the nonnilpotent
matrix A can be taken in Jordan canonical form.

In our case we can add that the Abelian nilradical must be one of the algebras
found in Section 3. In principle, the nilradical could be a three-dimensional
subalgebra of A4, or Ay, containing Ap; as a subalgebra. However, it
turns out that all choices of this type lead to symmetry algebras that are not
maximal for the interactions that they allow.

The following solvable symmetry algebras occur.

6.1 dim NR(L) =2

The only two-dimensional nilradical that leads to solvable Lie algebras that
are maximal for the obtained interaction is Ag;. The solvable Lie algebras
are always three dimensional. A basis for them consists of X 1 and X, of
eq.(2.16) and an additional element Y. In each case we give the element ¥’
and the matrix A representing the action of ¥ on the nilradical.
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SAsy X1=0,,+08,,, Xo=t(0, +8,), Y =0 +2u8s, +ynd,,
Fn = gnfn(wn)a Gn = nn—lgn(gn——l)a
K, = gnkn(wn)a P, = %Pn(Cn),

1 -1
— —t — -t —
wn—ﬁne ) Cn—nne ’ A'_(O 1 )

SAsy X1=0,, 40y, Xo=1t(0s, +0,), Y =10+ (a+L)(za0s, +yab,),
o=t fa(Wn),  Gn = t"*Nn_19n(Ca1),
Kn=t"%60kn(wn),  Po=t"0.0n(Gn),
Wy =t~ @+ (=t~ A= diag (a—3%,a+1)
SAss Xi1=0s,+0,, Xo=1t(0 +98,), ¥ =(+1)0+ (@+1)(@:ds, +9ndy,),
Fo=(#+1)%nfa(wn),  Gn=(2+1)Mn-19n(Cr-1),
Kp = (#+ 1) akn(wn),  Po= (24 1)7°0pa(G),
wy = &, (t2 + 1)V 2 exp[—aarctan(t)], {, = 7. (t? + 1)"Y/2 exp[—a arctan(t)]
a=(173)
These three algebras are nonisomorphic (since the corresponding matrices A
are not mutually conjugate). Each of these three cases is self conjugate under

the substitution (3.1).

6.2 dim NR(L) =4

The nilradical could be three-dimensional, however the obtained solvable
Lie algebra is never maximal. We only need to deal with four-dimensional
Abelian ideals of the form A,; and Ass. An extension to a solvable Lie
algebra is only possible for special cases of the functions Ay, (t) and A, (%)
figuring in the vector fields and interactions. Below we list all inequivalent
extensions of A4;. There are precisely nine of them. The corresponding
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extensions of A4 are obtained by the substitution (3.1). The action of ¥ on
{Xi,..., X4} is represented by the matrix A.

SAsy X1=0,,+0,,, Xa2=1t(0s,+9,,),

X3 = 0,8 (0, +0,.), Xi=0ne" (s, +8,.),

Y/ - (9; + af(xnamn + ynayn)v

Fn = gnfn(wn)a Gn = '&"__g%——'nn—la
Ky = &nkn(wn), Pn= 5‘7;:1’0‘?:*5;%,
a-1 0 0 O
0 a+1 0 O
—_ —at —
Wp = gne ) Un-{-l 7é Tn, A - 0 0 a O
0 0 -1 a

SA5’2 Xl = 3% + 8yn; X? = t(aa:n + 8yn)5
X3 = 0,c08(t) (B, +8,.), X4 = 0nsin(t)(ds, +9,,),
Y = (91, + a(xnaxn + yna!h:)’

Fn = §nfn(wn), G = b-—'——g'ﬂ""—nn-—la

K, =&ko(w,), Pn= ﬂf‘ﬁ%ﬁm

a 1 0 0
-1 a 0 O

— —at —
Wp = gne ) On+1 '7"é On, A - O O a O
0 0 -1 a
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SA5,3 Xl :aln +8yn) Xzzt(axn_i_an)’
XB = (o-n + t2)(amn + 3:971)’ X4 = (Unt + %?:)(axn + 8?/7;)?
5} - at + a(xnamn + ynayn)a

Fn = 5nfn(wn); Gn = _QLn—__l___,

Op = Op—1
K, =&ko(wn), Po= ;‘;{77‘:‘5—,
a 0 0 =2
-1 a 0 O
—_— —at —
Wp = fne ) an-{-l # On, A - 0 0 a O
0 0 -1 a

SAs 4 Xl = Oy, + 0y, X'z = t(Or, + Oy, ),

3

~

X3 = 0nt*(0s, + Oy,), Xi= 0t =0z, + 0y,),
Y =18, + (a + 3)(%20z, + Yndy.),
— 4—2 — -2 g,
Fn =t gnfn(wn)a Gn - a(oz - l)t '(')-——'.':%-'_nn~1>
— 42 —
Kn =1 fnkn(wn), Pn = O!(CY _ l)t F#nn,
Wy = §nt"(“+'§'), Ons1 F# 0p, a#0,1,
A=diag(a—a+3,a+a—3,a+3,a—1).

SAss X1 =0,, +0,,, Xo=1t(d +8,),
Xy = 0t 210(8) (s, + 8y,)s  Kn = outV2(Ds, +0,.),
t0; + (a + 3)(@n0s, + Ynby,),

Y=
Fro =t fn(wn), Gn= “it—zﬁgﬂ':ﬂn_h
K,

On — Op_1
t 2% nkn(wn), Po= ‘“i‘t_zﬁ”_ﬁﬂm
a -1 O 0
=6 D, oo, A=| g 0,0 ! 0
00 0 a-}

103
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SA5'6 Xl = 8% + Byn, Xg = t(c?zn + 8yn),
X3 = 0t 2 cos[In(t)](Bz, + 8y.),  Xi = 0at*/?sin[In(t)](8s, + 8,,),

? = t@t + (a + %)(xnaa:n + ynayn)’
F

— 4 — 5,2 .
n — t 2§nfn(wn)a Gn - —Zt En—__%n—:Inn—la
— 42 — 542 .
Kn =7 60kn(wn),  Po= =3t G—"2Tn,
a 1 0 0
_ ——(a—{—l) _ -1 a 0 0
Wn E’nt 2 3 Un-{-l ?4 On, A O O a + % 0
0 0 0 a-—3

SAsy X1=04, +0,,, Xo=1(0 +0,),
X3 = [0, — In(8)](8,, + 8y.),  Xu=tlon +In(t)](8s, + 8,,),
Y = td, + (a + %)(xn&tn + Yn0Oy,.),
F,

n = t_zgnfn(wn)a Gn = ‘_t—20- n-1

n— Opn-1’
K, = t-2§nkn(wn)a P, = —t~25':_:1ﬂlj——5';7
a+-§- 0 1 0
1
— ¢ 1—(at+d) _ 0 a—3 0 -1
Wy =&t 2, Opr1 F On, A 0 0 a+% 0
0 0 0 a— %
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SAsg X1 =0, +0,, X»=1t(0s,+0,,),
X3 = Ma(t)(Os, +8,.),  Ain = 0n(t? +1)/2exp|a arctan(t)],
Xy =Xon(t)(Bzn +8y.),  Aan = 0n(t? + 1)/2 exp[—a arctan(t)],
Y = (24 1)8; + (a + t)(2n0s, + Ynd,,),
Fo= @+ 1) %ufalwn), Gu=(?+ 1)+ 1) 52—,

Kn= (84 1) ka(wn),  Pa=(a® +1)(£2 +1) 25—,

wp = &, (82 + 1)V 2exp[—aarctan(t)], ony1# 0ny, a#0,

a— o 0 0 0
0 a+a 0 O
A= 0 0 a 1
0 0 -1 a

SAsy X1 =0,, +8,, Xo=t(8, +8,),

X3 = 0,2+ D)Y2(0,, +0,,), Xa=0n.(t +1)/2arctan(t) (s, + 9,,),

~

Y = +1)8; + (a +t)(zn0z, + yn0y, ),

Fn = (tg + 1)~2§nfn(wn)a G = (tz + 1)_ '5—':'%-——'777».—1)

K, = (t2 4+ 1)"2%,kn(wn), = +1)" 25—:1—3;—5—77"7

wp = &, (t2 + 1)"V2exp[—aarctan(t)], Op41 # O, @ #0,

a 0 0 O
-1 a 0 O
A= 0 0 a 1
0 0 -1 a

In all cases the interaction terms G, and P, are specified, whereas F,
and K, each involve an arbitrary function of one variable w,. The time
dependence of the variable w, and the functions F,, and K,, depends on the
form of the generator Y.

After the substitution (3.1) we have altogether 18 five-dimensional Lie
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algebras. No further symmetry generators can be added, at least in the
nonlinear case studied so far.

7 Nonsolvable symmetry algebras

Any finite dimensional Lie algebra L that is not solvable is either semisimple,
or has a nontrivial and unique Levi decomposition

L=S>R, (7.1)

where S is semisimple and R is the radical, i.e. the maximal solvable ideal.
The only semisimple Lie algebra that can be realized in terms of the vector
fields (2.2) is actually simple, namely si(2,R). Up to allowed transforma-
tions the realization is unique (and given below by the operators Y, Ys and
Y3). The determining equations (2.4) and (2.5) can be used to obtain the
interaction invariant under the corresponding group SL(2,R). Equations
(1.1) will then be invariant under a five-dimensional group that contains the
subalgebra Ay ;. We have:

NSS,I Y/l = aty 1;'2 - tat + %(-’Ena:cn + ynayn), if3 = t28t + t(xnazn + ynayn),
Xl = amn + ayn? XZ — t(amn + ayn)’
Fo=8&%fn,  Gn=1"0n,

Kn=€;3km Pn=77;327n-

The Lie algebra NSs is isomorphic to the special affine algebra saff (2, R).
This is the only maximal nonsolvable symmetry algebra that occurs.

This completes our analysis of possible symmetries of the system (1.1)
with nonlinear interactions.

8 Symmetries of linear interactions

In Sections 3—7 we have excluded the case of linear interactions. Let us turn
to this case now. We specify equations (1.1) to be

I, = An(t) ‘Sn + Bn(t) Mn—1 + Un(t)7
Un = Cn(t)&n + Dn(t)m. + Va(?) .

(8.1)
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The system is still strongly coupled, i.e. the functions A,, B,, C,, D,, are all
nonzero. The determining equations reduce to

S — (it — M) An — Oon — pin1)Bo + (@ — g’-T-)Un U, =0,  (82)

. 3. .
o — (/J’n - An)C’n - ()\n+l - lun)Dn + (a - “T)Vn - TVn = 0, (83)

2

27 A + TA, =0, (8.4)
2B, + 7B, = 0, (8.5)
27Cp + 7Cy, = 0, (8.6)
27D, 4+ 1D, =0, (8.7)
T="To+ T+ Tt (8.8)

since the coefficients of &,, 7., 7,—1 and 1 vanish separately.

For A,(t),...,Dn(t) generic, we obtain 7 = 0 and then only equations
(8.2) and (8.3) (with 7 = 0) survive. These equations can be solved in the
generic case and we obtain two types of symmetries, both just a consequence
of linearity.

1. We take a = 0 and denote (Appn, ftnn) the general solution of the ho-
mogeneous equations, i.e. eq.(8.1) with U, = V,, = 0. The vector field
is

Xn = Mun(t) O, + thn(t) By, (8.9)

2. For a # 0 we choose a = —1 and denote some chosen particular solution
of the inhomogeneous system (8.1) (Apn, ttpn)- The vector field is

~

Xp = [.'Bn - )\p,n(t)]awn + [yn - F‘p,n(t)]ayn . (8.10)

In particular, if we have U, = V,, = 0, then we take A\, , = p,, = 0in
eq.(8.10).
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The symmetry (8.9) only means that we can add any solution of the homo-
geneous equations to a solution of eq.(8.1). The symmetry (8.10) corresponds
to the fact that a solution of the homogeneous system can be multiplied by
a constant.

Let us now assume that a further symmetry generator exists. It is of the
form (2.2) with 7(¢) as in eq.(8.8). Allowed transformations can be used to
transform 7 into one of four cases. Let us consider them separately.

a)7=0

No symmetries beyond the generic ones are obtained.

b) r=1
Using allowed transformations we simplify the additional vector field into

T = 8, + a(, Oy, + Yn Iy,.)- (8.11)

The determining equations restrict the time dependence of the coefficients in
eq.(8.1) and the system reduces to

fén = fn gn + Gn Mn—1 + uneat’

(8.12)
'«i/." = kn gn + Dn nn + Uneat-
c)T=t
The additional vector field and invariant equations are reduced to
- 1
D=t8t+(a+-2—)(a:n81n + Y5 Oy, ), (8.13)
Z, = {?_5" + % Nn—1 + unta—%’
(8.14)

Un = %fn—s—%m—{»—vﬂta“%.
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d) r=t2+1

The additional vector field and invariant equations are

Tn

Un

C = (t*+1)8; + (a+t)(TnBs, + ¥nby,), (8.15)

[n Gn U,
G 1)2§n + @+ 1) Mn—1 + W expla arctan(t)],

K Pr Un
F+1? €n + GESA + CEEYEE expla arctan(t)] .

(8.16)

In all cases f., gn, kn, Pn, Un and v, are independent of ¢. No further
symmetries exist for any of the interactions (8.12), (8.14) or (8.16).

9

Conclusions

Let us sum up the results obtained above.
For nonlinear interactions the symmetry algebra is at most five-dimensional.
The following cases occur.

1.

The nonsolvable algebra NSs; of Section 7. The dependence of the
right hand side of eq.(1.1) on &, and 7, is completely specified by
an inverse cube relation. The dependence on the discrete variable n
remains arbitrary. The interactions are time independent.

The solvable Lie algebras with Abelian nilradicals SAs 1, ..., SAs9 (and
SAs 10, --.,5A45,18 by the substitution (3.1)) of Section 6.2. The inter-
actions are all “semilinear”. By this we mean that the dependence on
one variable 7, is specified to be linear, whereas the dependence on
&, remains arbitrary (and vice versa for SAs 10, ..., SAs15). The time
dependence of the nonlinear terms in the interaction depends crucially
on the form of the nonnilpotent element Y.

Any attempt to enlarge the symmetry algebra by further elements leads
to linear interactions.

The nilpotent five-dimensional Lie algebras Ns; and the related alge-
bra Nsg of Section 4. For Ns; the interaction is again semilinear with
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G, and P, linear in 7,_; and n,, respectively, and F, and K, arbi-
trary functions of &, (and vice versa for Ns52). The interaction is time
independent.

4. Four-dimensional maximal symmetry algebras are either Abelian, or
solvable with the Heisenberg algebra as a nilradical. For A4; and A4
the interaction is semilinear with an arbitrary time dependence in the
nonlinear terms. For SNy 1, SNy2 and SNy 3 the dependence on &, and
7N, is completely specified as being monomial, logarithmic or exponen-
tial, respectively. There is no time dependence.

5. A three-dimensional maximal symmetry algebra is either nilpotent, or
solvable with an Abelian nilradical. For N3 ;, the Heisenberg algebra,
the interaction is time independent, otherwise arbitrary. The model,
studied by Campa et al [1], namely

Fn(én) = ﬁ;(k1§n+€ﬁ1§2) ) Kn(gn) = _%Fn(gn)a
Gn(Mm-1) = —Tulf(k2nn—l+5ﬂ27712z-—l) , Pa(ne) = “%%Gn+l(77n+1)a

is of this type. For SAs1, SAs2 and SA; 3 the interactions involve four
arbitrary functiqns of one variable. The interaction is entirely specified
by the element Y.

6. As mentioned above, the general interaction in eq.(1.1) is invariant un-
der the group of global translations and Galilei transformations, corre-
sponding to the algebra As; of eq.(2.16).

The symmetries found in this article can be used to perform symmetry
reduction on one hand, and to obtain new solutions from known ones, on the
other.

Let us look at the example of algebra N.Ss;. The system (1.1) in this
case reduces to

fo=l2y g‘jn—k—3+&. (9.1)
no Thet 1
The algebra si(2,R) has three inequivalent one-dimensional subalgebras,
namely Yl, Y, and Y3 + V1. Each of them can be used to reduce the Sys-
tem (9.1) to a system of two difference equations. Let us look at the three
individual cases separately.
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Subalgebra Y;

This algebra leads to stationary solutions. We have

Tn = Tn,o, Yn = Yno (92)
and hence
£\ B\ /3
fn,O = (_‘—7}‘) Mh—-1,0 = (——7}') Tin,0- (93)
gn Dn

Subalgebra Y5

The reduction formulas in this case are

Ty = xn,O\/ia Yn = yn,()\/z (94)
and the recursion relations are
ZTno f n In Yn.0 kn Dn
el e 2 — o + . 9.5
4 73{,0 7773{—1,0’ 4 ffi,o 77?;,0 (9:5)

Subalgebra }Afg -+ ?1

We put
Tn = TpoViE2+1, Yn = YnoVE2 +1 (9.6)
and obtain the recursion relations
k
n,0 nn—l,O n,0 T,n,O

In all three cases we can express &, in terms of 7, and obtain a two term
recursion relation for n,. These can be solved, but we will not go into the
details here.
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Chapitre 5

LA CROISSANCE DE DEGRE POUR LES
EQUATIONS DISCRETES INTEGRABLES
BIDIMENSIONNELLES
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Integrable Lattice Equations and
their Growth Properties

S. Tremblay*  B. Grammaticos’ = A. Ramani?

Abstract

In this paper we investigate the integrability of two-dimensional
partial difference equations using the newly developed techniques of
study of the degree of the iterates. We show that while for generic,
nonintegrable equations, the degree grows exponentially fast, for inte-
grable lattice equations the degree growth is polynomial. The growth
criterion is used in order to obtain the integrable deautonomisations
of the equations examined. In the case of linearisable lattice equations
we show that the degree growth is slower than in the case of equations
integrable through Inverse Scattering Transform techniques.

The study of integrability of nonlinear evolution equations has spurred
the development of efficient tools for its detection. The ARS [1] conjecture
was formulated originally for partial differential equations and related in-
tegrability to the Painlevé property. In the discrete domain the singularity
confinement [2] property was discovered while studying the lattice KAV equa-
tion and the singularities that can appear spontaneously during the evolution.
The singularity confinement has been a most useful discrete integrability cri-
terion in the sense that it is a necessary condition for lattice equations to be
integrable by Inverse Scattering Transform (IST) methods. However, it has
turned out [3] that singularity confinement is not sufficient for integrability
and thus its use as an integrability detector must be subject to particular
caution.
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Another property of integrable discrete systems, namely the growth of
the degree of the iterates [4], has, in the long run, proven to be a reliable
integrability detector. The main idea goes back to Arnold [5] and Veselov
[6]. As Veselov summarized it: “integrability has an essential correlation
with the weak growth of certain characteristics”. The characteristic quan-
tity which can be easily obtained and computed for a rational mapping is
the degree of the numerators or denominators of (the irreducible forms of)
the iterates of some initial condition. (In order to obtain the degree one
must introduce homogeneous coordinates and compute the homogeneity de-
gree). Those ideas were refined by Viallet and collaborators [7, 8], leading to
the introduction of the notion of algebraic entropy. The latter is defined as
E =lim,_, log(d,)/n where d, is the degree of the n-th iterate. A generic,
nonintegrable, mapping leads to exponential growth of the degrees of the
iterates and thus has a nonzero algebraic entropy, while an integrable map-
ping has zero algebraic entropy. As we have shown in a previous work [9],
this is too crude an estimate. The degree growth contains information that
can be an indication as to the precise integration method to be used and
thus should be studied in detail. (At this point, we must stress that, as was
already pointed out in [8], the degrees of the iterates are not invariant under
transformation of the variables. However the degree growth is invariant and
characterises the system at hand).

In previous works of ours we have applied the techniques of degree growth
to the study of one-dimensional mappings [9, 10]. A first important conclu-
sion of these studies was the confirmation of the singularity confinement
results [11] on the derivation of discrete Painlevé equations. We have shown
that, when singularity confinement is used for the deautonomisation of an
integrable autonomous mapping, the condition obtained is identical to the
one found by requiring nonexponential growth of the degrees of the iterates.
(The terms “degrees of the iterates” in the above sentence and in the rest of
the paper must be understood as the common homogeneity degree of the nu-
merators and denominators of their irreducible forms, obtained through the
introduction of the homogeneous coordinates). This not only confirms the
results previously obtained for discrete Painlevé equations, but also suggests
a dual strategy for the study of discrete integrability based on the combined
use of singularity confinement and study of degree growth. The second re-
sult [9] was that mappings which are linearisable are associated to a degree
growth slower than the ones integrable through IST techniques. Thus, the
detailed study of the degree is not only an indication of integrability but also
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of the integration method.

In this paper, we apply the techniques of degree growth to two-dimensional
partial difference equations. We shall show that the main conclusions from
the study of one-dimensional mappings carry over to the two-dimensional
case in a rather straightforward way.

Let us start with the examination of the equation that serves as a paradigm
in all integrability studies, namely KdV, the discrete form of which is [12, 13]:

m " 1 1
Xn:l1 =X+ m 4 X mtL (1)
n-+ n

(Incidentally, this is precisely the equation we have studied in [2], while
investigating the singularity confinement property.) The study of the degree
growth of the iterates in the case of a 2-dimensional lattice is substantially
more difficult than that of the 1-dimensional case. It is thus very important
to make the right choices from the outset. Here are the initial conditions we
choose: on the line m = 0 we take X? of the form X? = p,/q while on the
line n = 0 we choose X§* = 7, /q (with r¢ = pp). We assign to ¢ and the
p’s, r’s the same degree of homogeneity. Then we compute the iterates of X
using (1) and calculate the degree of homogeneity in p, ¢, r at the various
points of the lattice. Here is what we find:

Tm 1 1 1 1 1 1

—n

At this point we must indicate how the analytical expression for the degree
can be obtained. First we compute several points on the lattice which allow
us to have a good guess at how the degree behaves. In the particular case of a
2-dimensional discrete equation relating four points on an elementary square
like (1), and with the present choice of initial conditions (and given our expe-
rience on 1-dimensional mappings) we can reasonably surmise that the domi-
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nant behaviour of the degree will be of the form d]* o« mn. Moreover the sub-
dominant terms must be symmetric in m, n and at most linear. With those
indications it is possible to “guess” the expression d* = 4mn—2 max(m,n)+1
(for mn # 0) and subsequently calculate some more points in order to check
its validity. This procedure will be used throughout this paper.

So the lattice KAV equation leads, quite expectedly, to a polynomial
growth in the degrees of the iterates. Let us now turn to the more interesting
question of deautonomisation. The form (1) of KdV is not very convenient
and thus we shall study its potential form [14]:

m+l __ ,.m z;n 2

Tpt1 = Tp + LET'H _ x;n+1' ( )

(The name ‘potential’ is given here in analogy to the continuous case: the

dependent variable z of equation (2) is related to the dependent variable

X of equation (1) through "™ — z7 ;, = X and (1) is recovered exactly

if 2*=1). The deautonomisation we are referring to consists in finding an

explicit m,n dependence of z)* which is compatible with integrability. Let
us first compute the degrees of the iterates for constant z:

Tm 1 1 1 1 1 1

.—-)n

The degree d}* is given simply by d = mn + 1. Assuming a generic (m,n)
dependence for z we obtain the following successive degrees:
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[y
ja—y
—
—
—t

Tm 1

—n

We remark readily that the degrees form a Pascal triangle i.e. they are
identical to the binomial coefficients, leading to an exponential growth at
least on a strip along the diagonal. The way to obtain an integrable deau-
tonomisation is to require that the degrees obtained in the autonomous and
nonautonomous cases be identical. The first constraint can be obtained by
reducing the degree of z3 from 6 to 5. As a matter of fact, starting from
the initial conditions z° = p,/q , T = T../q (With ¢ = py) we obtain
21 = (p1po — por1 — 23¢%)/(a(pr — 1)), =} = Q3/(qQ2) where Qy is a poly-
nomial of degree k, and a similar expression for z3. Computing z2 we find
T3 = Q¢/(q(p1 — 1)Q4). It is impossible for ¢ to divide Qg for generic initial
conditions. However, requiring (p; — r1) to be a factor of Qs we find the
constraint z} — 23 — 22+ 20 = 0. The relation of this result to singularity con-
finement is quite easy to perceive. The singularity corresponding to ¢ = 0
is indeed a fixed singularity: it exists for all (n,m)’s where either n or m
are equal to zero. On the other hand the singularity related to p; —r, = 0
appears only at a certain iteration and is thus movable. The fact that with
the proper choice of z]* the denominator factors out, is precisely what one
expects for the singularity to be confined.
Requiring that z satisfy

g =t =l 4 =0 (3)
suffices to reduce the degrees of all higher z’s to those of the autonomous
case. The solution of (3) is 2I* = f(n) + g(m) where f, g are two arbitrary
functions. This form of 2] is precisely the one obtained in the analysis of
convergence acceleration algorithms [15] using singularity confinement. The
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integrability of the nonautonomous form of (2) (and its relation to cylindrical
KdV) has been discussed by Nagai and Satsuma [16] in the framework of the
bilinear formalism.

We must point out here that the kind of initial conditions we choose, while
influencing the specific degrees obtained, do not modify the conclusions on
the type of growth. Let us illustrate this by choosing for (2) a staircase type of
initial conditions where z;™ = p,/q, . " = r,/q with the same convention
as to the degrees of ¢ and the p’s, r’s (but without the now unnecessary

constraint pg = 7). We find the degrees:

Tm 1 1 2

—n

where the underlined 1 corresponds to the origin. The growth is again
quadratic and depends only on the sum N = n + m of the coordinates:
d" =1+ N(N -1)/2.

Two more well-known discrete equations can be treated along the same
lines. In the case of the lattice mKdV [14]:

$m+1

m+1l __ ,.m “n

™m,.m
n+l T Yn mom4l _ m
Zn xn mn-}-l

(4)

we obtain for constant z the same degree growth, d* = mn + 1, as for the
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potential lattice KdV. If we assume now a generic z we find the degrees:

Tm 1 1 1 1 1 1

— N

The degrees obey the recursion d}{ = d7+! + d™,; + d7* — 1 leading to an
exponential growth with asymptotic ration (14+/2). Requiring the degree of
72 to be 5 instead of 7 we find the condition

m+1,m m+l,m __
Zptl ®n T Rn Rngl T (5)

with solution 2* = f(n)g(m). This condition is sufficient for the degrees of
the nonautonomous case to coincide with those of the autonomous one. It
is also precisely the one obtained in [15] using the singularity confinement
condition. We believe that the Nagai-Satsuma approach [16] for the con-
struction of double Casorati determinant solutions can be extended to the
case of the nonautonomous lattice modified-KdV.

The discrete sine-Gordon equation [17, 18]:

m,.m+1,..m
mtl m_l-}—zn:vn Tl

xn-&—l ‘Tn -

(6)

in the autonomous case where z is a constant leads to the degree pattern:

1,m m
$7T+ z‘n-{-l +Zn
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It can be represented by d* = mn + min(m,n) + 1. In the nonautonomous
case of generic z we obtain the sequence of degrees:

tm 1 1 1 1 1 1

__)n

obeying the relation d} = dm*! + d7, + d7 — (1 — &7) leading again
to exponential growth. The condition for a growth identical to that of
the autonomous case is the same as (5). Thus equation (6) introduces a
nonautonomous extension of the lattice sine-Gordon equation. (We intend
to return to a study of its properties in some future work). We must point
out that in the continuous limit, this nonautonomous form goes over to
wyr = f(z)g(t)sinw. This explicit  and ¢ dependence can be absorbed
through a redefinition of the independent variables leading to the standard,
autonomous, sine-Gordon, but no such gauge exists in the discrete case.

We now turn to two discrete equations which are particular in the sense
that they are not integrable through IST techniques but rather through direct
linearisation. The first is the discrete Liouville equation [19]:

m+1,.m __ ..m+l._m m
xn+1 Ty, =Ty $n+1 + Zp (7)

If we assume that z is a constant we obtain the following degree pattern:
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By inspection we find d* = m + n. This result is not at all astonishing. As
we have shown in [9], the degree growth of linearisable mappings is slower
than that of the IST integrable ones. The same feature appears again here.
The deautonomisation of (7) can proceed along the same lines as previously.
For generic 2], the degrees are organised in a Pascal triangle and thus the
growth is exponential. The condition for the growth to be identical to that
of the autonomous case is again (5) and thus z* = f(n)g(m). However, this
nonautonomous extension is trivial: it can be obsorbed through a simple
gauge transformation. Indeed, putting z = ¢X where ¢ = a(n)B(m) with
f(n) = a(n)a(n + 1), g(m) = B(m)B(m + 1) we can reduce equation (7) to
one where z = 1.
Finally, we analyse the discrete Burgers equation [19]:

T 1T
.’I,‘m+1 — pm 1+ Zn Tni1 (8)
n n °
1+ zmam

When z is a constant we find d* = m + 1. (Notice that contrary to all the
previous examples, in the case of Burgers equation m and n do not play the
same role and thus a d that is not symmetric in m, n is not surprising).
For a generic z;*, we find d' = 2™, a manifestly exponential growth. The
condition for the degree to grow like m + 1 is just

Zp— 2y =0 (9)

ie. 2® = g(m). This leads to a nonautonomous extension of the lattice
Burgers equation. Moreover this extension cannot be removed by a gauge.
On the other hand, this extension is perfectly compatible with linearisability.

Indeed, putting ] = X7, /X we can reduce it to the linear equation:
X7t = f(m)(X7 + g(m) X7 (10)

where f is arbitrary and can be taken equal to unity. This nonautonomous
extension is just a special case of the more general discrete Burgers:

mt1 _  mOn + Bn T
n *n

which can be linearised through 2 = ¢7"X™, /X to X7t = y(X™ +
ymen X ) provided B = oy, and «, ¢ and 1 are related through
apyprer = ¢ ¢mtl. We must point out here that the continuous Burgers
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equation also does possess a nonautonomous extension. It is straightforward
to show that if ¢ is a solution of the equation ¢; = ¢?@,, then the nonau-
tonomous Burgers u; = ¢*u,, +2¢uu, can be linearised to v, = ¢?v,, through
the Cole-Hopf transformation u = ¢v, /v.

In this paper, we have applied the method of the slow degree growth
to the study of the integrability of partial difference equations. Our study
has focused on well-known integrable lattice equations for which we have
tried to provide nonautonomous forms. We have shown that using degree-
growth methods it is possible to obtain integrable nonautonomous forms for
most of the equations studied, and confirmed results previously obtained
through the singularity confinement method. In the case of linearisable lat-
tice equations, our results are the logical generalisation of the ones obtained
for 1-dimensional mappings: the linearisable mappings have a degree growth
that is slower than the one of the IST-integrable discrete equations. Our
estimate of the degree growth was based on the direct computation of the
degree for successive iterations and obtaining a fit of some analytical expres-
sion confirmed by subsequent iterations. It would be interesting, of course,
to provide a rigorous proof of the degree growth following, for instance, the
methods of [20]. However, this has not yet been carried through even for one-
dimensional, nonautonomous mappings that are integrable through spectral
methods. On the other hand, the proof of the degree growth for the cases
where the equations are linearisable looks more tractable and we intend to
address this question for both the one-and two-dimensional cases in some
future work.

The fact that we were able, through the adequate choice of initial data,
to perform these calculations without being overwhelmed by their size is an
indication of the usefulness of our approach. The study of degree growth, per-
haps coupled with singularity confinement in the dual strategy we sketched
in [10], can be a precious tool for the detection of integrability of multidi-
mensional discrete systems. The interest of this method is not only that it
can be used as a detector of new integrable lattice systems but also that it
can furnish an indication as to the precise method of their integration.
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Chapitre 6

SYSTEMES INTEGRABLES CONTINUS
(DISCRETS) SANS LA PROPRIETE DE
PAINLEVE (LE CONFINEMENT DES
SINGULARITES)
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Integrable Systems without
the Painlevé Property

B. Grammaticos* A. Ramani' S. Tremblay!

Abstract

We examine whether the Painlevé property is a necessary condi-
tion for the integrability of nonlinear ordinary differential equations.
We show that for a large class of linearisable systems this is not the
case. In the discrete domain, we investigate whether the singular-
ity confinement property is satisfied for the discrete analogues of the
non-Painlevé continuous linearisable systems. We find that while these
discrete systems are themselves linearisable, they possess nonconfined
singularities.

1 Introduction

For over a century, the Painlevé property [1] has been the cornerstone of
integrability. The reason Painlevé introduced this property, which later was
called after him, was a question that was open at the time, and of partic-
ular interest: ‘Is it possible to define (new) functions from the solutions of
nonlinear differential equations?’

In some sense, this amounted to introducing the analogue of special func-
tions into the nonlinear domain. The study of linear equations had shown
where the difficulties lied [2]. In particular, one had to deal with the mul-
tivaluedness that could appear as a consequence of the singularities of the
coefficients of the equation which, for linear equations, are the only possible
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singularities of the solutions. The extension of these ideas to the nonlinear
domain appeared hopeless since the location of bad singularities could now
depend on the initial conditions. Then Painlevé made a leap of faith by
requesting that all critical (i.e. multivalued) movable (i.e. initial condition
dependent) singularities be absent.

The ordinary differential equations (ODE’s) without critical movable sin-
gularities are said to possess the Painlevé property. Their solutions define
functions which in some cases (the Painlevé transcendents) cannot be ex-
pressed in terms of known functions. The precise way to integrate (i.e. to
construct the solutions of) the ODE’s with the Painlevé property can be very
complicated [3] but the important fact is that this can in principle be done.
Thus, the property came to be synonymous to integrability. At this point
it must be made clear that the integrability we are talking about, related to
the Painlevé property, is of a special kind often referred to as ‘algebraic in-
tegrability’ [4]. It is, for instance, the kind of integrability that characterises
systems integrable in terms of Inverse Scattering Transform (IST') techniques
[6]. However, in common practice, many other ‘brands’ of integrability do
exist [6]. Integrability through quadratures, like that encountered in the
case of finite-dimensional Hamiltonian systems, is of (relatively) frequent oc-
curence, and is not identical to algebraic integrability. Linearisability, i.e.
the reduction of the system to a system of linear equations through local
transformation, is a further, different, type.

In this paper, we shall examine the relation of these kinds of integrability
to the Painlevé property, focusing on linearisable systems. In the second part
of the paper, we shall examine the discrete analogues of these notions. In this
case, the role of the Painlevé property is played by singularity confinement [7].
The latter is believed to be a necessary condition for integrability (but unlike
the Painlevé property it has turned out not to be sufficient as well [8]). We
shall show that in both continuous and discrete settings, linearisable systems
integrable through linearisation can exist without the Painlevé property.
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2 Integrable continuous systems and the Painlevé
property.

A first instance of integrability without the Painlevé property was the deriva-
tion of the integrable system described by the Hamiltonian [9]:

1 1 3
H=—p2 4 —p2 5 3,2, 9 4 21
5P+ 5Py Ty YT+ ey (2.1)

which has the second (besides the energy) constant of motion

C = —yp; +zp.p, + -1~y4:r:2 + §y2x4 b1 (2.2)
2 8 32
There are movable singularities where near some singular point %3, one has
y =~ alt—1t0)"%3 z =~ B(t — to)~'/3 with o® = —2/9, B arbitrary. Taking the
cube of the variables is not sufficient to regularise them, however. Indeed,
a detailed analysis of complex-time singularities shows that their expansions
contain all powers of (t — tg)'/3. The fact that some multivaluedness was
compatible with integrability led to the introduction of the notion of “weak
Painlevé” property. However, it was soon realised [10] that (2.1) was a mem-
ber of a vaster family of integrable Hamiltonian systems associated to the
potential V = (F(p+ y) + G(p — y))/p where p = y/z2 + y2. Since the two
functions F' and G are free, one can easily show that the singularities of the
solutions of the equations of motion can be arbitrary. The Hamiltonians of
this family are integrable through quadratures and, in fact, the associated
Hamilton-Jacobi equations are separable. This leads to the conclusion that
this type of integrability is not necessarily related to the Painlevé property.
(As a matter of fact, the same conclusion could have been reached if we had
simply considered one-dimensional Hamiltonian systems). One may justifi-
ably argue that in the case of Hamiltonian systems the term integrability is
to be understood as Liouville integrability which is not the one we refer to
in relation to the Painlevé property. Still, Liouville integrability, and the dy-
namical symmetries to which it is associated, may be of utmost importance
for physical applications and a systematic method for the detection would
have been most welcome.
We turn now to a second case of integrability where the necessary charac-
ter of the Painlevé property can be critically examined: that of linearisable
systems. The term linearisable is used here to denote systems that can be
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reduced to linear equations through a local variable transformation. The first
family of such systems are the projective ones [11]. Starting from the linear
system for (N+1) variables:

N
X,=> AuX, p=0,1,... N (2.3)

v=0

and introducing the quantities z, = X,/ X, we obtain the projective Riccati
system:

N N

x;=a“+2b“,,x,,+:c“2cm,x,, p=1,...,N (2.4)
v=1 v=1

where a,, b, and c,, are given in terms of A,,. As we have shown in [12]

this system can be rewritten as a single N-th order differential equation. For

N=1, this is just the Riccati equation for z;:

T) = a; + byx +cnz? (2.5)

For N=2, the system can be reduced to the equation VI of the Painlevé/Gambier
classification [2]
2

%ﬁ-’ - -3w%’ — q(z)(% +u?) (2.6)
for z some function of the independent variable of (2.4) and w a homographic
function of x; with some specific functions of z as coefficients. Because of the
underlying linearisation, the projective Riccati systems possess the Painlevé
property by construction. Indeed, the X, have no movable singularities at
all, and the only movable singularities of the z, are poles coming from the
zeros of Xj.

However, there exists another kind of linearisability for which the Painlevé
property need not be satisfied. Let us discuss the best-known second order
case. One of the equations of the Painlevé/Gambier classification, bearing
the number XXVII, is the equation proposed by Gambier [13]:

//__77“"1*'1'512 n—2 / nf2 3 n(fl"'f¢) 2 1
R —;——k(fx%—qb—— n ):C—(n-%-2)2m+ n+2 :v-H/m:—qb——;E

2.7)
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where f, ¢ and 1 are definite rational functions of two arbitrary analytic
functions and of their derivatives [2]. As Gambier has shown, equation (2.7)
can be written as a system of two Riccati equations in cascade:

2f Y

.2 ey e

y=-y +¢y+n(n+2)+n (2.8a)
I nf 2
T = +nyz + 1. (2.8b)

Gambier has shown that unless the parameter n appearing in (2.7) and (2.8)
is integer, the equation does not possess the Painlevé property. (We must
point out that this is a first necessary condition and, in general, not a suf-
ficient one: further constraints on the coefficients are needed in order to
ensure the Painlevé property). On the other hand, the integration of the two
Riccati equations in cascade can always be performed, through reduction to
linear second order equations. Thus, although the solution of (2.8) does not
in general lead to a well-defined function as solution of (2.7), it can still be
obtained in cascade.

Once the Painlevé property is deemed unnecessary for the linearisation
of the Gambier system, it is straightforward to extend the latter to the form:

Y =ay®+ By -+ (2.90)

7' = a(y, t)z® + by, t)z + c(y, 1) (2.9b)

where o, 3 and +y are arbitrary functions of ¢ while a, b and ¢ are arbitrary
functions of y and t. The integration in cascade of (2.9) can be obtained as
previously. As a matter of fact, an extension like (2.9) gives the handle to
the (N+1)-variables generalisation of the Gambier system:

Ty = ao(t)z + bo(t)zo + co(t) (2.10)
J:L = a,(Zo, ..., Tu1, t)xi +bu (2o, - - . s Tu—1, )T, + culzo, - . ., Tp1, 1)
p=1...,N

where a,, b, and c, are arbitrary functions of their arguments. Again, system
(2.10) does not possess, generically, the Painlevé property while it can be
linearised and integrated in cascade.

Untill now, we have presented rather straightforward generalisations of
integrable systems which violate the Painlevé property while preserving their
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linearisability. We shall close this section by introducing a new (at least to our
knowledge) method of linearisation which again leads to integrable systems
not possessing the Painlevé property. Let us describe our general approach.
The idea is the following: we start from a linear second order equation in the
form:

I / 5
az” + Bz’ +yx + _ (2.11)
ex” + (x' +nx + 6
where a, 3, . .., 8 are functions of ¢t with K a constant, and a nonlinear second
order equation of the form:
flz", 2,y =M (2.12)

where f is a (possibly inhomogeneous) polynomial of degree two in z to-
gether with its derivatives, but linear in z”, and with M a constant. We
then ask that the derivatives of both equations with respect to the indepen-
dent variable, i.e. the resulting third order equations, be identical up to an
overall factor. This is a novel linearisation approach. The explicit integration
procedure is the following. We start from equation (2.12) with given M and
initial conditions z¢, zj, for some value ¢y of the independent variable t. We
use (2.12) to compute zj at to. Having these values, we can use (2.11) to
compute the value of K. Since the latter is assumed to be a constant, we can
integrate the linear equation (2.11) for all values of ¢. Since this solution will
satisfy the third order equation mentioned above, it will also be a solution
of (2.12).

In order to illustrate this approach, we derive one equation that can be
integrated through this linearisation. Our starting assumption is that (2.12)
contains a term z”z’. The more general term z”(z’ + cx + d) can always be
reduced to this form, i.e. ¢=d=0 through a rescaling and translation of z.
It is then straightforward to obtain the full expression in the homogeneous
subcase § = § = 0. We thus find:

tz” + (at — 1/2)z' 4+ btz

K 2.13
" 4+ ax’ + bx ( )

for the linear equation, and
2"z’ + 2ax" + 3br'z + (2ab — V)2? = M (2.14)
for the nonlinear one, with b = a% — a//2 and a satisfying the equation

a" = 6a"a + 7a” — 16a’a® + 4a* (2.15)
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which is equation XII in the Chazy classification [14]. Its general solution
can be obtained by putting a = —u’/2u. Equation (2.15) reduces to

u Ty — "y +u?/2=0 (2.16)

which implies u(V)=0, so u is a quartic polynomial in the independent variable
t with one constraint on its coefficients, because of (2.16). Given a and the
corresponding b, equation (2.14) is integrable by linearisation through (2.13).
On the other hand, (2.14) violates the Painlevé property. Solving it for z”,
we find a term proportional to z2/z’ (or, for that matter, to 1/2') which is
incompatible with it.

More cases like the one above could have been derived but this is not
necessary in order to prove our point. Integrability through linearisation
does not require the Painlevé property. On the other hand we do not know
of any systematic way to detect linearisability for a given differential system.

3 Discrete integrable systems

In the case of discrete systems, a difficulty appears from the outset in the
sense that the discrete analogue of the Painlevé property is not well estab-
lished. One of the properties that characterises discrete integrable systems
is that of singularity confinement [7]. While analysing a host of integrable
mappings it was observed that whenever a singularity appeared at some it-
eration, due to the particular initial conditions, it disappeared after some
further iterations. Thus, confinement would have been an excellent candi-
date for the role of the discrete analogue of the Painlevé property were it
not for the fact that it is not sufficient. There exist mappings which have
only confined singularities and which are not integrable [8]. Another prop-
erty which has been proposed as an indicator of integrability in (rational)
mappings is that of the degree growth of the iterates [15].

Let us illustrate what we mean by degree in a specific example. We con-
sider a three-point mapping of the form T = f(z,z;n) where f is rational
in z,z. (The ‘bar’ notation, which will be used throughout this section, is
a shorthand for the up- and down-shifts in n i.e. T = z(n + 1), z = z(n),
z = z(n — 1)). Starting from some initial conditions x¢, z; we introduce ho-
mogeneous variables through z¢ = p, 1 = ¢/r and compute the homogeneity
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degree of the iterates of the mapping in ¢,r, to which we assign the same
degree 1, while p is assigned the degree 0. Other choices do exist but the re-
sult does not depend on the particular choice. While the degrees obtained do
depend on it, the growth of the degree does not. Thus for a generic, noninte-
grable, mapping the degree growth of the iterates is exponential [16,17]. On
the contrary, for integrable mappings, the growth is just polynomial. More-
over, a detailed analysis of discrete Painlevé equations [18] and linearisable
mappings [19] has shown that the latter have even slower growth properties
(which can be used not only as a detector of integrability but as an indicator
of the integration method). In what follows, we shall examine the results of
the application of the two methods to integrable discrete systems.

The first case we shall analyse are projective mappings [11]. In perfect
analogy to the continuous case one can introduce the discrete projective
Riccati equations. The starting point is a linear system for (N+1) variables:

N
Xu=)> AwX, p4=01,.. N (3.1)

v=0
Introducing again z,, = X,,/X,, we obtain:

= _ Aw+ 211/21 ATy

- —1,....N 3.2
P Ao + Zﬁ;l Aoy (32)

In fact we have shown [12] that this system can always be rewritten as a
N+1-point mapping in terms of a single object. Clearly the case N=1 is just
a homographic (discrete Riccati) mapping for ;. For N=2 we finally find
[20,21]:
goa+li L (3.3)
v ww
for a quantity w which is obtained from z;, say, through some homography
and o, 3 are given in tems of the A,,. Because of the underlying linearisation,
any singularity appearing in the projective Riccati system is confined in one
step. Moreover, the study of the degree of the iterates [19] shows that there
is no growth at all: the degree is constant. Thus both criteria are satisfied
in this case.
We turn now to the more interesting case of the Gambier mapping [22].
The latter is, in perfect analogy to the continuous case, a system of two
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(discrete) Riccati equations in cascade:

__ay+p
= 3.4
e (3.4a)
. ayr+br+cy+d
T = 3.4b
fyr+gx+hy+k (346)
where «, ..., 6 and a, ..., k are all functions of the independent discrete

variable n. In [22] it was shown that system (3.4) is not confining unless the
coefficients entering in the equation satisfy certain conditions. On the other
hand the same argument presented in the continuous case can be transposed
here: the integration of the two Riccati equations in cascade can always be
performed, through reduction to linear second order mappings. The study
of the degree growth of the iterates of (3.4) was performed in [19] where it
was found that the growth is always linear, independently of the condition
we referred to above.

This result leads naturally to the following generalisation of the discrete
Gambier system, the singularities of which are, in general, not confined:

__ay+p
= 3.5
TR (3.5a)
—_ ay)z +b(y)
T = ——77)= 3.5b
c(y)z + d(y) (3:50)
where a, ..., d are polynomials in y the coefficients of which may depend on

the independent variable n. The study of the degree growth of the iterates of
(3.5) is straightforward. We find that the degree growth of z is linear. Again,
system (3.5) can be integrated in cascade. On the other hand, (3.5) cannot be
written as a three-point mapping for z. Indeed, if we eliminate y, ¥ between
(3.5a) (3.5b) and the upshift of the latter, we obtain an equation relating z,
Z and T which is polynomial in all three variables, generically not linear in Z.
This does not define a mapping but rather a correspondence which in general
leads to exponential proliferation of the number of images and preimages.
This correspondence is not integrable but this is not in contradiction with
the integrability of (3.5). The two systems are not equivalent.

An (N + 1)-variables extension of the Gambier system can be easily pro-

duced. We have:
. _argt+p
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_ au(Zo, - -y Tp1)Zp + bu(zo, - - -, Tpe1)
o cu(moy ey Tp1) Ty + du(To, -, Tpt)

Again, the degree growth of (3.6) can be computed leading to a linear growth
and, once more, the singularities of (3.6) do not confine in general.

Thus, several linearisable systems can be found for which the singularity
confinement gives more restricted predictions than the degree growth. We
shall comment on this point in the conclusion.

A last point concerns the discrete analogues of the linearisable systems we
have presented at the end of section 2. The procedure can be transposed to
a discrete setting in a pretty straightforward way. We have a linear equation

p=1...,N.

aT+f+yz+6
e+ (+nz+96

(3.7)

where «,...,0 are all functions of n with K a constant, and a nonlinear
mapping
flz,z,ZTn) =M (3.8)
where f is globally polynomial of degree two in all the z’s but not more
than linear separately in each of z and Z. Writing that the Lh.s. of (3.7)
is the same as that of its upshift we get an equation relating z, z, Z and 7.
For appropriate choices of a,...,d this four point equation can be identical
(up to unimportant factors) to the four-point equation obtained from (3.8)
by writing f(z,z,T;n) = f(z,Z,T;n+1). The integration method is quite
similar to that described in the continuous case. Given M, and starting with
z, x at some n, one gets T from (3.8). Implementing (3.7) this fixes the value
of K. From then on, one integrates the linear equation (3.7) for all n. Since
the four-point equation is always satisfied, this means that f computed at
any n has a constant value, which is just M, so (3.8) is satisfied.
Several mappings derived in [23] as special limits of discrete Painlevé
equations can be linearised in this way. For instance the nonlinear equation:

o E D) e oo

with a a constant, where z and ( are defined from a single arbitrary function
g of n through z = g+g, { = g+g, can be solved through the linear equation:

AZ + B(z — a) + Az

T+ (Z+2)(z—a) +zz (3.10)
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where A = ¢*(g+ g) and B = —(g + ¢)gg — (3 + g)gg9. Mapping (3.9) is
generically non-confining unless ¢ is a constant.

4 Conclusion

In this paper we have adressed the question of integrability which does not
necessitate the Painlevé property. We have found that for a large class of
integrable, linearisable systems, the Painlevé property is not a prerequisite
for integrability. The second-order Gambier system is the prototype of such
a linearisable equation. Once we find that it can be linearised in the absence
of the Painlevé property, it is straightforward to generalise the Gambier sys-
tem and to extend it to N variables (violating the Painlevé property but
preserving integrability through linearisability).

Having dispensed of the Painlevé property, it is possible to propose a new
method of linearisation where the derivative of a nonlinear system coincides
with that of a linear one. The usefulness of this method has been illustrated
through the derivation of a linearisable system which does not satisfy the
Painlevé criterion.

At this point, we must stress that the Painlevé property can still be
considered as a necessary condition for integrability provided we qualify the
latter. The integrability with which the Painlevé property is associated, often
referred to as algebraic integrability, corresponds to the integration through
IST methods. This is for instance the case of the transcendental Painlevé
equations (or most of the integrable partial differential equations). For these
cases, the Painlevé property is necessary and we believe, sufficient. What
this paper shows is that for the simpler case of linearisability, the Painlevé
property is superfluous.

In the case of discrete systems the situation is more complicated. It would
appear that what would play the role of the Painlevé property is singularity
confinement. (The caveat is that the latter was shown not to be a sufficient
condition). Again, it turned out that singularity confinement is necessary for
integrability through IST methods, as for instance in the integration of the
discrete Painlevé equations through isomonodromy techniques. However for
integrability through linearisation, singularity confinement is too restrictive
just like the Painlevé property. The study of the degree growth, on the other
hand, shows that this criterion is more suitable for the detection of inte-
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grability in a larger sense: it identifies all linearisable systems as integrable
with no restrictions whatsoever. This is at variance with the continuous case
where no linearisability criterion seems to exist (at least none has been found
to date). Moreover, the detailed information on the degree growth is a most
useful indication of the precise integration procedure. Thus, although it is
not clear whether the degree growth is the discrete equivalent to the Painlevé
property it can be a most reliable integrability detector.
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CONCLUSION

Les premiers chapitres de cette thése concernaient la symétrie des équations
aux variables discrétes. D’une part, aux chapitres 1 & 3, nous avons présenté une
nouvelle méthode permettant d’obtenir les transformations de Lie ponctuelles,
agissant de fagon simultanée sur I’équation aux variables discrétes ainsi que sur le
réseau. La méthode est purement algorithmique, tout comme celle pour obtenir
le groupe de symétrie des équations différentielles [7, 8, 9]. La transformation du
réseau sous ces transformations est empruntée i 1'idée de Dorodnitsyn. Cepen-
dant, son approche concerne la discrétisation d’équations différentielles qui permet
de conserver certaines symétries alors que, dans notre approche, on considére les
équations aux variables discrétes comme des objets 4 étudier en eux-mémes. Men-
tionnons que dans la plupart des méthodes proposées pour étudier les symétries
des équations aux variables discrétes, le réseau est fixe et non transformable, c’est-
a-dire donné habituellement par ’équation x = n, n € Z. 1l pourrait donc étre
intéressant d’exploiter, dans un travail futur, I’aspect «transformation du réseau»
et de regarder comment certaines symétries sont présentes pour un réseau donné,
et si de nouvelles symétries supplémentaires apparaissent (ou disparaissent) pour
un second réseau. D’autre part, la réduction par symétrie est un aspect qui a
déja été considéré tres partiellement dans le chapitre 1 et pour lequel il serait
intéressant de pousser 'investigation un peu plus loin.

Au chapitre 4, nous avons classifié un systéme d’équations différentielles aux
différences représentant une chaine unidimensionnelle 4 deux atomes. La classi-
fication a été faite en classes d’équivalence (sous des transformations permises)
selon les interactions possibles admettant un groupe de transformations de Lie

ponctuelles. Pour ce faire, on a utilisé la méthode intrinséque [10]. On a ainsi
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obtenu une classification compléte pour les interactions non-linéaires et linéaires.
Pour les interactions non-linéaires, le groupe de symétrie des transformations de
Lie ponctuelles, laissant le réseau invariant et amenant une solution en une autre
solution, est au plus 5-dimensionnelle. Une investigation future serait de faire
(possiblement) le méme type de classification, mais avec la méthode présentée
aux chapitres 1 & 3, plutot qu’en utilisant la méthode intrinséque.

La méthode de la croissance de degré lente est appliquée au chapitre 5 pour
I’étude de I'intégrabilité des équations discrétes partielles. Notre étude s’est concen-
trée sur des équations discrétes intégrables pour lesquelles nous avons cherché des
formes non-autonomes. Nous avons montré qu’en utilisant la croissance de degré,
il est possible d’obtenir des systémes intégrables non-autonomes. De plus, la crois-
sance de degré nous donne plus d’informations que simplement nous dire qu’une
équation non-intégrable aura une croissance de degré exponentielle et donc une
entropie algébrique différente de zéro ou qu’une équation intégrable a une entropie
algébrique nulle. En effet, tel que montré dans [38], la croissance de degré peut
nous donner une indication de la méthode a employer pour intégrer ’équation. En
effet, dans le cas des équations aux variables discrétes linéarisables, la croissance
de degré est plus lente que pour les équations intégrables par la méthode de dif-
fusion inverse. Ce résultat est la généralisation naturelle de celui obtenu pour les
équations & une seule variable discréte [38, 39]. La combinaison de 1'utilisation
de la croissance de degré avec le confinement des singularités semble donc étre
un duo trés intéressant pour la détection de l'intégrabilité de systémes discrets
multidimensionnels [39].

Enfin, au chapitre 6, nous avons posé la question : «Quels sont les systémes
intégrables continus qui ne possédent pas la propriété de Painlevé 7». Nous avons
trouvé que pour une large classe de systémes linéarisables la propriété de Pain-
levé n’est pas un prérequis a l'intégrabilité. En effet, le systéme de Gambier de
deuxiéme ordre [40] est un exemple d’un tel systéme. Nous nous sommes par la

suite posé la méme question, mais cette fois-ci pour le domaine discret : «Quels
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sont les systémes intégrables discrets qui ne possédent pas la propriété du confi-
nement des singularités 7». Ici, nous avons substitué le role joué précédemment
(dans le cas continu) par la propriété de Painlevé, par le confinement des singu-
larités. De facon analogue au cas continu, nous trouvons que certains systémes
linéarisables existent sans que les singularités soient confinées (par exemple, le

cas Gambier discret [41]).
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Invariants of the Nilpotent and Solvable
Triangular Lie Algebras

S. Tremblay™* P. Winternitz'
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Abstract

Invariants of the coadjoint representation of two classes of Lie al-
gebras are calculated. The first class consists of the nilpotent Lie al-
gebras T'(M), isomorphic to the algebras of upper triangular M x M
matrices. The Lie algebra T'(M) is shown to have [M/2] functionally
independent invariants. They can all be chosen to be polynomials and
they are presented explicitly. The second class consists of the solvable
Lie algebras L(M, f) with T(M) as their nilradical and f additional
linearly nilindependent elements. Some general results on the invari-
ants of L(M, f) are given and the cases M =4 for all f and f =1, or
f =M —1 for all M are treated in detail.

1 Introduction

The purpose of this paper is to present some results on the invariants of two
classes of Lie algebras, over the field of complex or real numbers (K = C or
R). The first class are the finite triangular nilpotent Lie algebras T'(M) of
dimension M (M — 1)/2. By triangular nilpotent Lie algebra, we mean the
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nilpotent Lie algebra isomorphic to the Lie algebra of strictly upper triangular
M x M matrices. The second class of algebras studied below are the finite
solvable triangular Lie algebras L(M, f) that have T (M) as their nilradicals
(maximal nilpotent ideals) and contain f further nonnilpotent elements. For
the algebras L(M, f), use will be made of a recent article [1] in which we
obtained a classification of such Lie algebras and presented the general form
of the commutation relations.

In physics, invariant operators of the symmetry group of a physical sys-
tem and its subgroups provide quantum numbers. Indeed, the eigenvalues
of the invariant operators of the entire symmetry group will be the quantum
numbers, characterizing the system as such (e.g., the particle mass and spin
in the case of the Poincaré group). The invariant operators of subgroups will
then characterize states of the system (its energy, linear or angular momen-
tum, etc.) [2].

In other applications, invariant operators of dynamical groups provide
mass formulas [3, 4], energy spectra [5, 6] and in general characterize specific
properties of physical systems.

Let us stress here that in this context the concept of an invariant need not
mean a Casimir operator. Indeed, the problem of finding invariants will be
reduced to that of solving a certain set of linear first order partial differential
equations [7, 8]. These may have polynomial solutions, giving rise to Casimir
operators. They may also have rational solutions, giving rise to rational
invariants. Finally, the equations may have more general solutions, including
transcendental functions of various types, leading to general invariants.

Casimir operators are polynomials in the enveloping algebra of a Lie al-
gebra that commute with all elements of the Lie algebra. In other words, a
Casimir operator of a Lie algebra is an element of the centre of the envelop-
ing algebra. For a Lie algebra L, the Casimir operators can be calculated
directly. Namely, we impose that a general polynomial in the enveloping
algebra commutes with all basis elements X; of L. However, more efficiently,
they can be calculated as invariants of the coadjoint representation of the
corresponding Lie algebra [9, 10].

The Casimir operators of semisimple Lie algebras are well known. Their
number p is equal to the rank of the considered Lie algebra [11, ...,17]. More-
over, for semisimple Lie algebra, all invariants of the coadjoint representation
can be expressed as functions of p homogeneous polynomials.

For solvable Lie algebras, the situation is less clear. Neither the specific
type of functions, nor the number of functionally independent invariants is
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known.

One method, for calculating the polynomial and other invariants for ar-
bitrary Lie algebras, is an infinitesimal one. This method has been presented
in [7] and applied to low dimensional Lie algebras [18, 19], to subalgebras of
the Poincaré Lie algebra [20] and to solvable Lie algebras with Heisenberg or
Abelian nilradicals [21, 22].

From a mathematical point of view, in the representation theory of solv-
able Lie algebras, polynomial and non-polynomial invariants in the coadjoint
representation appear on the same footing: they characterize irreducible rep-
resentations. Casimir operators in the enveloping algebra correspond to poly-
nomial invariants. The functions of the infinitesimal operators, corresponding
to the non-polynomial invariants, will be called ‘generalized Casimir oper-
ators’. In the study of the integrability of classical Hamiltonian systems,
integrals of motion do not have to be polynomials in the dynamical variables
(23, 24].

In Section 2 we formulate the problem of calculating the invariants of
the coadjoint representation. Section 3 is devoted to the nilpotent algebras
T(M). We calculate the invariants explicitly. There are [M/2] functionally
independent invariants, all of them polynomials. In Section 4 we calculate
the invariants of the solvable Lie algebras L(M, f). We first treat the case
M = 4 in detail, then present results and conjectures for L(M, M — 1) and
L(M,1).

2 General results and formulation of the prob-
lem

Let us consider a N-dimensional Lie algebra given by the basis {Y7,...,Yy}
and the commutation relations

N
Y, Y;]=> CkYi 1<ij,k<N. (2.1)
k=1

In order to calculate the invariants of the Lie algebra L, we shall work on
the dual of L. We consider smooth functions F' : (yy,...,yn) — K where the
variables y; are ordinary (commuting) variables on the space L*, dual of L,
and K is the field of complex or real numbers (K = C or R). The generators
Y; are given in the coadjoint representation by the differential operators
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~ 0
ik J

We can verify easily that the differential operators Y; satisfy the commutation

relations (2.1).
The function F' will be an invariant of the coadjoint representation of L

if it satisfies the linear first order partial differential equations
YV;-F=0 i=1,...,N (2.3)

which, one hopes, can be solved by standard methods.

Our aim is to find a complete set of functionally independent solutions to
equation (2.3), for nilpotent and solvable triangular Lie algebras. If the solu-
tions are polynomials, we obtain Casimir operators by replacing the variables
y; by the generators Y; and symmetrizing, whenever necessary. The number
of independent solutions nj, i.e. the number of functionally independent
invariants, is equal to

ny = N — rank(M) (2.4)

where M is the antisymmetric matrix with elements

N
M;; = Z Cikj Yk (2.5)
k=1

(see Ref.[7]).

3 Invariants of nilpotent triangular Lie alge-
bras

3.1 Structure of the nilpotent Lie algebra T'(M) and its
realization by differential operators

Let us consider the finite triangular Lie algebra T (M) over the field K of
complex or real numbers. A basis for this algebra is
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(3.1)
(Nik)ab = (5,',0 5k,b dlm T(M) = %M(M - 1) =T
with M > 3. The Lie algebra T'(2) is trivial and T'(3) is isomorphic to the
Heisenberg Lie algebra H(1). The dimension M = 3 is the only case for
which there is an isomorphism between the triangular and the Heisenberg
Lie algebras.
The commutation relations of T'(M) are given by

[Niky Nap| = Ok,aNit — 05, Nak.- (3.2)

This basis can be represented by the standard basis of the strictly upper

triangular M x M matrices.
The differential operators N;; realizing the coadjoint representation of

T(M), are

Nik = Z nib% - ;nak 8771(“;’ (33)

Note that Ny = 0 in (3.3), since Nyip commutes with all the elements of
T(M).

We shall realize the coadjoint representation of T'(M) in a space of dif-
ferentiable functions of r variables, i.e.

F= F(n121 23, - - TM-1)M, 013,124, - - - , TH(M—-2)M5 - - -5 nlM)' (3'4)

The function F' will be an invariant of the coadjoint representation of T'(M),
if it satisfies the linear first order partial differential equations

Ni-F=0 1<i<k<M. (3.5)
3.2 Definitions and results

Let us consider the set of strictly upper triangular M x M matrices Q = Q(M)
over the field K i.e.
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ng for k—i>1
Qir = (3.6)

0 otherwise.

We define the determinant Z, = Z,(M) constructed from the p x p right
upper corner sub-matrix of the matrix @, i.e.

M(M—-p+1) T(M—p+2) - TuM
No(M— No(M— tee Moy M

Z, = 2 : pt1)  To2( : #+2) 2 1<u< [-2—] (3.7)
Nu(M-p+1) Mp(M—-p+2) 7 MuM

where we shall use the standard notation [z] for the entire part of a positive
number. In particular,

- [4]- T Jor M=o 68)

2 Mol for M=2p+1.

Theorem 1 The triangular Lie algebra T(M) defined by equations (3.1) and
(3.2) has ezactly [M/2] functionally independent invariants. A basis of in-

variants is given by
M

I,=2, ,u.—_1,...,[—2-] (3.9)

where Z, is the determinant function given by eq.(3.7).

Proof. Let us first consider the cases M odd, ie. M = 2p + 1 for
p=2,3,...

We begin by applying the set of p(p+ 2) differential operators of eq.(3.3),
given by

~

]Sfl(p+1) ]\:fl(p+2) T ]YlM
Nogt1y  Nogray -+ Noy

: : : (3.10)
No(p+1) ANp(p+2) T ANpM

0 Netyep+r - Nepsym

on the functions (3.4). The action of all these operators eliminates the de-
pendence on the p(p + 1) variables n; for
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1<i<p i+1<k<p+1 (3.11)

and
p+1<i<M-1 i+1<k< M. (3.12)

The p? remaining variables are

Mp+2) Mip+3) -~ MM
Nap+2) TN2(p+3) -~ TaMm ( 31 3)
Np(p+2) Mp(p+3) *"* TpM

and the p(p — 1) remaining differential operators Ny; of eq.(3.3) are given by

M

. 0 _ .

Ni =b2nib~a-n—kb 1<i<p—-1 i+1<Ek<p (3.14)
. d )

Nk =—a§;nak5@ p+2<i<M-1 i+1<k< M (3.15)

These differential operators are linearly independent. Therefore, the number
of invariants for T'(2p + 1) is p, i.e. the difference between the number of
remaining variables and the number of remaining independent differential
operators.

At this stage of the proof it is sufficient to verify that the remaining
differential operators (3.14) and (3.15) annihilate determinants Zi,..., Z,,
ie. N,—k-ZazOfora:l,...,p.

Let us first consider the set of differential operators (3.14). A given dif-
ferential operator Ny, (i and k fixed) of (3.14) annihilates the determinant
21, ..., Zr—1, since the variables ng, (p+2 < b < M) do not figure in these
determinants. It is therefore sufficient to look how N acts on Ziy .- L.

The determinant Zz § € {k,k+1,...,p} can be expanded in terms of its

kth row
M

Zg= Y nuwCy (3.16)
b=2p+2—-0
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where C’,gf) is the cofactor of the # x 3 square matrix associated with the

determinant Zz. Hence, the differential operator Nix. applied on these deter-
minants gives

M
Nik . Zﬂ = Z Tip C,if) (3.17)
b=2p+2-

The right hand side of eq.(3.17) vanishes, since it corresponds to the expan-
sion of determinant in terms of the cofactors of a different row. This gives
the determinant of a matrix with two identical rows, hence zero.

The procedure is very similar for the set of differential operators (3.15).
An operator ]V,k of this set annihilates the determinants Z1,..., Zy_; since
the operator acts only on variables not figuring in the determinants. Let
us consider the action of Ny in (3.15) for the determinants Z,, where v €
{M—-i+1),(M—-i+2),...,p}

We can write the determinants Z, as

X
Zy=Y n,CY (3.18)
a=1

and the action of the differential operators Ny on these determinants is given
by

-
Ny Zy== naC. (3.19)
a=1
Hence, we obtain a determinant with two identical columns. More precisely,
the action of differential operator Ni in (3.15) on determinants (3.18) is
the following: the column n,; in determinants Z, is replaced by the column
—Ngk, for 1 < a < . Therefore, by the property of determinants, this action
annihilates Z,.
The proof for the even case is very similar to the odd case and we omit
it. O
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4 Invariants of the solvable triangular Lie al-
gebras

4.1 Structure of the solvable triangular Lie algebra
L(M, f)

In this section we sum up the main results of Ref.[1] to make this article

self-contained.

Let us extend the algebra T'(M) to an indecomposable solvable Lie algebra
L(M, f) of dimension d = {M(M — 1) + f having T(M) as its nilradical.
In other words, we add f further linearly nilindependent elements to T'(M).
Let us denote them {X*,..., X/}

Definition 1 e A set of elements {X*} of a Lie algebra L is linearly nilin-
dependent if no nontrivial linear combination of them is a nilpotent element.

o A set of matrices {A®}a=1,...n s linearly nilindependent if no nontrivial
linear combination of them is a nilpotent matriz, i.e. if

n k
(Z ¢ A’) =0 (4.1)
=1 .
for some k € Z*, implies ¢; = 0 Vi.

The results on the structure of the Lie algebras L(M, f) that we have
obtained in [1] can be summed up as follows.

Each Lie algebra L(M, f) can be transformed to a canonical basis {X*, Ny}, a =
1,...,f, 1<i< k<M with commutation relations (3.2) and

(X%, Nu] = ) A% Nog (4.2)
r<q
(X, X7 = 0Ny (4.3)

1<a,B<f % 0 € K.
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The commutation relations (4.2) can be rewritten as
[X*, N] = A>N
N = (M2 Nos...Nor-vym Nis- .. Nov—gymr - - - M) ¥ (4.4)
A® e K" N e K™

where the superscript 7" indicates transposition. We mention that the vector
N introduces an order in lines (columns) of the matrices A%, where each line
(column) is represented by two numbers. The matrices A* = {Ag, .} have
the following canonical form.

(i) They are upper triangular.

(ii) The only off-diagonal matrix elements that do not vanish identically and
cannot be annulled by a redefinition of the elements X are:

Al o Afgry,im C<J<M=-2) Alv_nym,im-1)-  (45)

(iii) The diagonal elements af; ;) , 1 < 4 < M — 1 are free. The other
diagonal elements satisfy

k-1
af = al,y k>i+l (4.6)
p=i

where we have introduced the compact notation Aj ;. = af.
The canonical forms of the characteristic matrices A* and the constants

0% satisfy the following conditions:

1. The set of matrices A* have the form specified above and are linearly
nilindependent. For f > 2 they all commute, i.e.

[A*, AP] = 0. (4.7)

2. All constants 0*? vanish unless we have a),; =0 for y=1,..., f simul-
taneously for all .

3. The remaining off-diagonal elements Aj , also vanish, unless the diag-
onal elements satisfy a5, = a®, for 8 =1,..., f simultaneously for all

8.
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4. The maximal number of non-nilpotent elements is f.. = M — 1 and in
this case the non-nilpotent elements always commute, i.e.

[X*, XP] =0. (4.8)

Furthermore, the characteristic matrices A® are explicitly given by the
diagonal matrices

ko

-1
aj, = 0op 1<i<k<M 1<alM-1 (4.9)

3

p

5. For f = 1 the matrix A has at most M — 2 off-diagonal elements that can
be normalized to +1 for K = C and to +1, or —1 for K = R.

4.2 Differential operators and the system of equations

Using the preceding results, we can construct (as in Section 2) the differential
operators realizing a basis for the coadjoint representation of the Lie algebras
L(M, f):

R M P i—1 9 ! ) 0
Ny, = b‘—‘;—l nib%;; - ; 'nak'a“;;; - ; (afnie +T5) 9z (4.10)
. . N 5
Xe = 2(; (afimax +T5) 5,— + ; (0%n1n) 55- (4.11)

We have introduced the notation

I'Yy = Afyomnom
Fiory = Ajgenumn =23, M =2 (4.12)
Ilvi-ym = Alu—nym,1(m-1) "1(M-1)
=0 m-=10>2.
In the generic case the differential operators (4.11) will not contain the
second summation since 0®® = 0 unless a],, =0 fory=1,..., f.

Equation (2.3) determining the invariants in our case amounts to the
system of equations
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Nik'F(Tlm,’ngg,...,’nlM,LIZI,...,SL‘f) = 0 ].S?/<k§M (413)

X""F(nlg,mg,...,nlM,:vl,...,acf) = 0 Oé=1,...,f. (414)

It is useful to construct linear combinations of these operators that involve
only z derivatives. These linear combinations are not elements of the Lie
algebra L(M, f), since they have variable coefficients. This is permitted
since we are now treating equations (4.13) and (4.14) simply as a system of
linear partial differential equations.

Let us associate a differential operator Zu with each invariant Z,, of the
nilpotent Lie algebra T'(M) (see eq.(3.7)). For each Z, we take a sum of p
determinants of the form (3.7) and in each of them we replace one column
of scalars by a column of operators Mk. For examples, we have

Zi=Niy Zy= ]YI(M"I) M l +

N1(M—1) 1\:71M l (4.15)
Nom-1y mam

nom—-1) Nom

and in general, we have the formula

M(M—p+1) MY(M—p+2) " le(M—-y+j) SRR 2V Vs
~ n _ _ oo Notnferaiy ooo
Z, = Z 2(M. p+1) TL2(M- p+2) 2(M. ) ng‘M I <u< [ M
j=1 : : : 2
NyM—p+1) Tp(M-p+2) - Nu(M-,u+j) e MM
(4.16)
It is a straightforward calculation to prove that we have
~ f a
Zu= ;fa(nik)% (4.17)

i.e. that all the n;, derivatives drop out. For example, when the stucture
matrices A* are diagonal we obtain the formula

foi
R . 9
Zj=—1; (Z Zau(M—uH)E;;;) : (4.18)

a=1 pu=1
Remark: For non-diagonal matrices A%, this formula is generic for odd M.
However, for even M, off-diagonal terms will appear.

|
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We can construct [M/2] such operators; at most f of them are linearly
independent.

4.3 Examples: Invariants of L(4, f)

Let us now illustrate the procedure to obtain the functionally independent
invariants for the solvable Lie algebras L(4, f), f = 1,2 or 3. For each
algebra L(4, f) we will state results concerning the form and the number of
invariants. For each Lemma, the strategy that we will adopt to prove it is
the following.

We will separate the proof in two parts:

(A) We find the invariants depending only on the variables ng, , 1 < a <
b<4.

(B) We find the invariants which are dependent on variables n;, and z* , a =

1,...,f.

In each of these cases, we will apply the differential operators Ny and X
of the coadjoint representation of L(4, f), on the functions F' = F({nw}, {z*}).
However in the case (A), since we postulate that the functions F' only depend
on the variables n,,, the differential operators Mk will be the same as the
operators of the nilpotent Lie algebra 7'(4) (the = derivatives do not act on
F). Therefore, by using the results of Theorem 1, we will only have to apply
the differential operators X* on functions of the type

F = F(Z,,25) (4.19)
where Zl = T4 and Zg = Ti13 Mo4 — N23 M 14.
In the case (B), we will begin by imposing
Z;-F(ng,z*) =0 j=1,2 (4.20)

such that the dependence on the z“ variables is preserved in F. Then we
will apply all the differential operators (4.10) and (4.11) of the coadjoint
representation of L(4, f).
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4.3.1 The Lie algebras L(4,1)
The characteristic matrix A of these Lie algebras L(4,1) has the form [1]

Q192 0 0 0 )\1 0
Q93 0 0 0 /\2
A3 00

. a34
A= a5 0 0 (4.21)
24 0
Q14

where we have at most 2 non-zero off-diagonal elements A; and by eq.(4.6)
a13, a94 and a4 are determined in terms of ai9, ass and asy.

Lemma 1 A solvable triangular Lie algebra of the type L(4,1) has either 3
mwvariants, or 1 invariant.

1) Three invariants exist iff the conditions

ai14 = Q93 = /\2 =0 (422)
are satisfied. In this case the algebra can be characterized by a1p =
—azs =1, a3 =0, Ay = Ay = A3 = 0 in characteristic matriz (4.21).
A basis for the invariants is:

L = Z (4.23)
L = Z (4.24)
I; = (?112 Ng4 + N13 n34) + Ny T. (425)

Otherwise there exists precisely one tnvariant. Two types of Lie alge-
bras occur.

2) (a2 + asq, ag3) # (0,0) and Mg = 0 in matriz (4.21). The invariant is:
7= (Z2)al4
- (Zl )al4+a23 ’

3) a;p+azs =0, Ao =1, as3 is a free parameter in matriz (4.21) and the
mvartant 1s:

(4.26)

Z
I= 0523-(7;-2)3 —InZ,. (4.27)
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Proof.
(A) We impose that the differential operator X of eq.(4.11) should anni-
hilates the functions of type F' = F(Z1, Z), i.e.

. g
X-F = [(012 ni2 + A1 n24)%—1; + (a23 a3 + A2 m14)

Ongs
0
+(aga n3s + Agni3) + aizni3 + ag4 Moy
8 577,34 87113 (977@4 (428)
+014 M4 ] F
Oniy
oF oF
= Q14 Z1 E—Z‘l‘ + [(044 + CL23) Zg - )\2 (21)2] 8_22 = (.

We first note that if we have a14 = a3 = A9 = 0, i.e. conditions (4.22)
which implies aj2+asz4 = 0 from eq.(4.6), then both Z; and Z, are invariants.
Also, the matrix A can, with no loss of generality [1], be diagonalized and
set equal to

A=diag(l1 0 -1 1 -1 0). (4.29)
In all other cases eq.(4.28) implies that just one invariant of this type exists.
We obtain it using the method of characteristics.
Two cases arise:

(i) A2 =0 : The invariant is then given by (4.26), with (ai2 + as4,ass) #
(0,0).

(ii) A2 Z0 : From our previous article [1], we know that in this case we
can normalize As to 1 and we necessarily have ass = a4, which implies
a2+ azq = 0. Hence, we obtain the invariant (4.27), where a3 is a free
parameter.

(B) In this case we impose Z; - F = 0 (j = 1,2) for functions of the
type F' = F(nya, ngs, N34, M3, Nag, N14, =) and the differential operators Z; are
given by

- 0
Zl = N14 = —Qai4 Zl—a-—a-?- (430)

Zy = ni3 Nog — no3 Nig + nog Nig — nyg Nos

= [—-((114 + CL23) Z2 + Ag (21)2] 8 (431)

a_x'.
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Hence the required dependence on z will survive only if we have a;4 =
ass = Ag = 0. This coincides with eq.(4.22), the condition for Z; and Z; to
be invariant. Furthermore, we can normalize a;2 to 1 and cancel A\; and A3
by transformations [1].

We now apply all the differential operators of the coadjoint representation
of L(4,1) and the final result is that we obtain two invariants (4.23) and (4.24)
independent, of z and one invariant (4.25) depending on z. O

4.3.2 The Lie algebras L(4,2)
The Lie algebras L(4,2) have the following characteristic matrices [1]:

aiz blz 0 0 0 )\1 0

as3 b23 0 0 0 /\2

1_ a3q 2 _ bss A3 0 O
A= a3 A= b13 0 0
a4 beg O

ai4 b14

(4.32)

where we have at most one off-diagonal element in A? and a;x, by satisfy
the eq.(4.6). Furthermore, the coefficient ¢'? in eq.(4.3) is in the generic
case zero (i.e. the two non-nilpotent elements commute). However, for the
particular case a4 = 0 = b4, we can have 02 # 0 in eq.(4.3).

Lemma 2 A solvable triangular Lie algebra of the type L(4,2) has either 2
inwvariants or none. Two invariants exist iff the conditions

boz (@12 + azq) — az3 (bia +b34) = 0 (4.33)
a14 )\2 = 0 (434)

are satisfied simultaneously. They lead to the following algebras and invari-
ants.

1) ap=—-ag=bp=dg=1anday =bp=by =M\ =X=02=01n
matrices (4.32) and a basis for the invariants is:
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Zy
I, = InZ 4.
! (Z,)? A )
L = Mem tMsfae | o1 (4.36)
T4
za) a12=-—a34=‘—623=1 , a23=b12=)\1=)\2=)\3=0‘12=0 andbg4 a

free parameter in matrices (4.32),
2b) a12=1)34=1 (mda23=a34=b12=b23:/\1=/\2=/\3=012=0in
matrices (4.32)

In both cases we have the invariants:

(Z2)a14

(Zl)al4+a23 (4.37)

I

T12M24 + M13M34

) + 614562 - b1411,'1(438)
14

I = (azabiz — bssa13) (

3) 0,12=“a34=623=—b34= 1 anda23=b12=)\1 =/\2=)\3=0m
matrices (4.32) and the invariants are:

L = 7 (4.39)

12 = TNy Nagg + N13N3q + Zl 1'1 + O’12 (21)2 In Z2 . (440)

Otherwise, there is no invariant.

Proof.
(A) We first apply differential operators X; and X, on functions of type
F = F(Z1, Z;). We obtain a system of two linear partial differential equations

given by
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R oF
Xt.F =(a1421 (a14 + as3) 23 ) YA =0
X2.F bia Z1  (bra + bos) Zo — Ag (Z7)? oF
07,
(4.41)

The rank of the 2 x 2 matrix in eq.(4.41) cannot be zero, since then
matrices A' and A? would not be linearly nilindependent. Also, if the rank
is 2 there is no invariant that depends only on Z; and Z,. However, solution
exist if the rank of the matrix is 1 for all values of Z; and Z,. This gives
conditions (4.33) and (4.34).

Let us now assume that the condition (4.33) is respected. We consider
the diagonal and the non-diagonal cases separately.

(i) A2 =0 : In this case, we obtain the invariant (4.26) for (a12 + a4, ag3) #
(0,0).

(ii) A2 # 0, a14 =0 : Since X, is non-zero in A%, we necessarily have by3 =
b1s, i.e. bia + b3g = 0 which gives the condition agg bes = 0 by (4.33).
Two cases are possible under these condition.

One case gives the invariant (4.35) for a12 = —a3s = bes = A2 = 1 and
ags = big = bzg = A\ = A3 = 0.

In the other case, we simply obtain the invariant I = Z; for the Lie
algebra characterized by agg = bjg = —bgygy = Ao =1, b3 = A1 = A3 =0
and asqy = —(a1p + 1) (with ajo a free parameter).

Remark. The case ags = 0 = bys gives two nildependent matrices A, A?
and is therefore not considered.

(B) In this case, we begin by applying the differential operators 21, Zs
on functions of type F' = F(ny2, N3, Naq, N13, Nog, N4, T, T2), €.

R oF
Z-F _ ( —a14 £y —buu Zy ) 9zt _o
7y F (ags + a14) Zo (b + bra) Za — A (Z1)? _8_1_1;

T
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The dependence on z! and z? can exist only if the determinant of the 2 x 2
matrix in (4.42) is zero. This again imposes the conditions (4.33) and (4.34).

Let us again assume that the condition (4.33) is satisfied. We separate
the problem into three distinct cases.

(i) (a14,b14) Z(0,0), A2 £ 0 : The condition Ay # 0 implies two conse-
quences. First we have from (4.34) that a14 = 0 and therefore b4 # 0.
Second, we necessarily have bes = by4 which implies from (4.34) that
bys a3 = 0
In this case, the invariants are (4.35) and (4.36) and the Lie algebra
L(4, 2) satisfies Q12 = —AQA34 = b23 = )\2 =1 , Qo3 = b12 = b34 = Al =
Ag =0 12 = 0.

(ii) (a14,b14) Z(0,0), A2 =0 : In this case, two triangular solvable Lie
algebras are associated with the invariants (4.37) and (4.38). One
Lie algebra is characterized by the parameters a9 = —azy = by =
1, ags = big = A\ = Xy = A3 = 012 = 0 and b3y a free param-
eter. The other Lie algebra is characterized by a;s = b3y = 1 and
ap =03 =ba=byy =N\ ==X =02=0.

(iii) (a14,b14) = (0,0) : In this case, we see that conditions (4.33) and (4.34)

are automatically respected. Also, we can have a non-zero o'? in
eq.(4.11).
Since a14 = 0 = by4, we can substitute aszq by —(ai2 + ag3) and bzy by
—(b12+bes) in the characteristic matrices (4.32). However, by imposing
the commutativity (4.7) and the nilindependence of the matrices A' and
Az, we obtain Aj9 = —QA34 = b23 = —b34 =1 and Qg3 = b12 = )\1 = /\2 =
A3 = 0. Hence, we obtain the two invariants (4.39) and (4.40). O

4.3.3 The Lie algebra L(4,3)

For the Lie algebra L(4,3), we have diagonal characteristic matrices given
by

Al = diag(1 00 10 1) A’=diag(0 1011 1)
(4.43)
A® = diag(0 0 101 1).

Furthermore, the non-nilpotent elements commute, i.e. %% =0, a, 8 =
1,2, 3 (see equations (4.3) and (4.8))
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Lemma 3 The triangular solvable Lie algebra L(4,3) has precisely 1 invari-
ant given by

7o ™2 n24n+ M3 nag (z! — 2°) . (4.44)
14

Proof.
(A) In this case, it is easy to demonstrate that after we have applied the
differential operator X! on functions of type F = F(Z, Z,), we obtain the

A

quotient of Z; over Z;. However, when we apply operator X 2 on functions
F = F(I) with I = Z,/Z;, we obtain

i~ 0 0 0 1o} ~
0 = XQ.F:(n23__+n13____+n24 + N4 )F
Ongs Onis Onag Onia (4' 45)
_ I——Q—IE’
or

Therefore, there is no invariant in this case. X X
(B) We first impose that the differential operators Z; and Z, annihilate
the functions of type F = F(nja, ngs, nag, N13, Nog, n14, 4, 22, %), where

R 0 o 0

5 o= -2 ( ot gt &83) (4.46)
. 0 0 0 :

o = —2y (a.’lll + anz + 6:133) . (447)

Since the Lie algebra L(4,3) has no parameters, these conditions are not
on the parameters of the algebra (as before) but on the z dependence of the
invariant. Hence, the new functions on which we will apply all the differential
operators of the coadjoint representation of L(4,3) are of the type F =
F (n12, M23, N34, M3, M2y, N1g, T8 — 23). We then obtain the invariant (4.44)
by imposing that the operators of the coadjoint representation of L(4,3)
annihilate F. O
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4.4 General results

Proposition 1 The triangular solvable Lie algebra L(M,M — 1) has pre-
cisely [ ] functionally independent invariants. A basis is given by

)u+1 M-2u
I, = (Z W‘“)) ot — gMH (4.48)

forpu=1,..., [—M—zﬂ] The function Z, is the determinant given by eq.(3.7)

and W,S" ) is also a determinant function given by the determinant of the
(e +1) x (u+ 1) matriz:

Nip+p)  N(M—p+1) NUM-pt2)  *°°  TaM
N2(p41) No(M—p+1) No(M—p+2) v Nom
(1) — . . ) )
Wpu - : : : : . (449)
Np(ptp)  Tp(M—p+1) Nu(M—p+2)  °°  MuM
0 Nptp)(M—p+1)  Mp+p)(M—p+2) “° " T p+p)M

Proposition 2 A diagonal solvable Lie algebra of the type L(M, 1) has [%’I—] +
1 functionally independent invariants.

1) [¥] + 1 invariants ezist iff the conditions

. M
Qi(i+1) + aM-i)(M-i+1) =0 i=1,..., [—2—} (4.50)
are satisfied. A basis is given by [M/2] invariants independent of x and

one invariant depending on x:

M
I, = Z, ,u,=1,...,{—§-] (4.51)
(M-1)/2] M—2p
(_1)#4-1
T = 3 X g e W e (452)

pu=1 p=1

where the function Z, and Wé" ) are determinant functions given by the
equations (3.7) and (4.49), respectively.
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2) Otherwise there exist precisely [_I;i] — 1 invariants, all independent of x.
A basis is given by

(Z#H)a M
I, = =1,...,|—]| -1 4.53
with o i

Z Qr(M+1—k)
k=1

where the function Z,, is the determinant function given by eq.(3.7).

By diagonal solvable Lie algebra of the type L(M,1) in Proposition 2, we
mean that the characteristic matrix A of (4.2) is diagonal.

Propositions 1 and 2 each contains two types of information on the in-
variants: They give the form of the invariant functions and the number
of functionally independent invariants. It is an easy calculation to prove
that the functions I, of Proposition 1 and Proposition 2 are annihilated by
the coadjoint representation (4.10), (4.11) of the Lie algebras L(M, M — 1)
and L(M, 1), respectively. However, it is much more difficult to establish
the number of functionally independent invariants for Proposition 1 and
Proposition 2. The difficulty is to prove that no further invariants exists.
One way of doing that is to calculate the rank of the antisymmetric matrix
S =S(L(M,M —1)) and S = S(L(M,1)) of the commutation relations for
the corresponding Lie algebra. The number of invariants is then given by the
difference between the dimension of the solvable Lie algebra and the rank of
the matrix S (see eq.(2.4)).

For the Lie algebra L(M, M — 1) of dimension (M —1)(M +2), S is the
antisymmetric matrix given by the elements

S = {[Nik, Nap] [Nir, X°]}
(4.55)
1<i<k<M 1<a<b<M a=1,....M-1

and for the Lie algebra L(M, 1) of dimension 1(M? — M + 2), the matrix S
is given by the elements
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S = {[Nik, Nap] [Nir, X]}
(4.56)
1<i<k<M 1<a<b<M.

For example, the antisymmetric matrix S of the 7-dimensional Lie algebra
L(4,1) is given by

/ 0 Nis 0 0 Ny 0 —a12N1o \
—Ni3 0 Noy 0 0 0 —a23Ny3
0 —Noy 0 —Niy 0 0 —a34N34
S = 0 0 N14 0 0 0 ——a13N13
-—-N14 0 0 0 0 0 ———a24N24
0 0 0 0 0 0 —'(114N14
a1aN12 @23N23 a34N3g @13N13 agaNog a14N1y 0
(4.57)

where the parameters a3, agq and ay4 are given in terms of a;2, asz and ass
by the relation (4.6). Hence, it is easy to calculate that

4 forayy=ap=0
rank(S) = { (4.58)

6 otherwise

giving, respectively, three and one invariants (in accordance with Proposi-
tion 2 and Lemma 1).

We have calculated the ranks of the matrices S(L(M, M—1)) and S(L(M, 1))
for M <13 and M < 8, respectively, using the symbolic package MAPLE.
We conjecture that Proposition 1 and 2 hold for all M.

5 Conclusions

The problem of finding all invariants of the coadjoint representation of the
triangular nilpotent algebras T'(M) is solved completely by Theorem 1. A ba-
sis for the invariants consists of polynomials and provides Casimir operators
in the enveloping algebra of T'(M).

The situation with the solvable triangular Lie algebras L(M, f) is more
complicated. We have provided guidelines for calculating the invariants for
all values of M, but presented comprehensive results only for M = 4. We
have also presented conjectures concerning the invariants of L(M, M —1) and
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L(M,1) for all values of M (and verified them for a large range of values of
M).

The results for M = 4 show that all invariants are polynomial only in
special cases. In general, rational, irrational and logarithmic type invariants
must be allowed in any basis of invariants.
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