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SOMMAIRE 

La présente thèse porte sur l'étude des symétries et des propriétés d'intégra-

bilité des équations aux différences finies. 

Dans le chapitre 1, le groupe de symétrie ponctuelle d'un système couplé 

à deux équations différentielles aux différences est étudié. On montre que dans 

certains cas, la dimension du groupe peut être infinie. Les équations peuvent dé-

crire l'interaction de deux longues chaînes moléculaires, chacune étant composée 

d'atomes d'un même type. 

Dans le chapitre 2, une classe de théories de champs avec interaction expo-

nentielle est introduite. L'interaction dépend de deux matrices de "couplage et 

est suffisamment générale pour inclure toutes les théories de champs de Toda 

existant dans la littérature. Les symétries de Lie ponctuelles sont obtenues pour 

les cas où l'on a un nombre fini, infini ou semi-infini de champs. Une attention 

spéciale est accordée à la présence de l'invariance conforme. 

Dans le chapitre 3, nous procédons à la classification et à l'étude d'équations 

linéarisables. Nous examinons tout d'abord l'équation de Gambier continue qui 

contient, comme réductions, toutes les équations de deuxième ordre intégrables 

par linéarisation. Nous introduisons par la suite la forme discrète de cette équation 

et obtenons les conditions d'intégrabilité à l'aide du confinement des singulari-

tés. Nous étudions aussi les différentes réductions du cas discret. De plus, nous 

obtenons des transformations de Schlesinger pour les équations de Gambier dis-

crète et continue. Dans la dernière partie du chapitre, nous étudions une famille 



d'équations discrètes du deuxième ordre incluant des équations résolubles par li-

néarisation. Plusieurs cas intégrables sont obtenus. Dans le cas discret, l'étude de 

l'intégrabilité est faite à l'aide du confinement des singularités. 

Dans le chapitre 4, nous étudions un autre critère d'intégrabilité: l'entro-

pie algébrique. Nous montrons que les résultats obtenus avec ce critère pour les 

équations linéarisables sont les mêmes que ceux obtenus avec le confinement des 

singularités. Nous obtenons de plus une méthode algorithmique pour la détection 

de la linéarisabilité. 

Le chapitre 5 est consacré à l'étude d'équations du troisième ordre. Nous 

obtenons des équations intégrables par des couplages d'équations du premier et 

du deuxième ordre. Les équations continues sont étudiées à l'aide de l'analyse de 

Painlevé et le confinement des singularités est utilisé dans le cas discret. 
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INTRODUCTION 

Pour un système Hamiltonien de dimension finie n, la notion d'intégrabilité 

a une définition précise depuis le dix-neuvième siècle. En effet, au sens de Liou-

ville, un tel système est dit intégrable s'il possède n constantes du mouvement en 

involution et fonctionnellement indépendantes. Pour les systèmes de dimension 

infinie (correspondant à des équations aux dérivées partielles (EDP)), la notion 

d'intégrabilité a été introduite et étudiée durant les 30 dernières années princi-

palement par Kruskal qui en a été l'instigateur et par beaucoup d'autres qui ont 

suivi. 

C'est en 1844 que J. Scott Russell rapporte la première observation de ce que 

l'on appelle aujourd'hui un soliton [1]. Le phénomène qu'il observe dans le canal 

d'Edimbourg-Glasgow est caractérisé par le fait qu'il s'agit d'une onde solitaire 

possédant une grande stabilité. Il lui donne le nom de "grande onde de translation" 

("great wave of translation"). Par la suite, Russell consacrecra la majeure partie 

de sa vie professionnelle à l'étude expérimentale des propriétés des solitons. 

Ce n'est cependant qu'en 1895 que Korteweg et de Vries découvrent l'équation 

qui porte désormais leur nom [2]. On sait aujourd'hui que l'équation de Korteweg-

de Vries (KdV) possède une infinité de solutions solitoniques et elle est considérée 

aujourd'hui comme le prototype d'une EDP intégrable. Elle possède toutes les 

propriétés que l'on attribue généralement à l'intégrabilité pour les systèmes de 

dimension infinie. 
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En 1955, Fermi, Pasta et Ulam travaillaient à Los Alamos sur un modèle 

numérique de phonons anharmoniques [3]. Il se trouve que ce système est étroite-

ment lié à une approximation discrète de l'équation de KdV. Ils observèrent avec 

surprise qu'il n'y avait pas équipartition de l'énergie entre les différents modes. 

Voyant les résultats des travaux de Fermi, Pasta et Ulam, Zabusky et Kruskal 

décidèrent, en 1965, de considérer le problème suivant 

Ut + uus  + 62u555  = 0 	 (1) 

avec une condition frontière périodique 

u(x, 0) = coszx, 0 < x < 2 

et u, us, uss  périodiques sur [0,2] pour tout t [4]. L'équation (1) est l'équation 

de KdV. Leurs études numériques de ce problème les amenèrent à la découverte 

des solitons qui sont la conséquence d'un équilibre fragile entre la dispersion et 

la non linéarité. Ils découvrirent aussi que deux de ces ondes solitaires préservent 

leur forme à travers une interaction non linéaire. Ce sont eux qui inventèrent le 

terme de soliton. 

Cette découverte a mené, dans les 30 dernières années, à une intense étude 

des systèmes de dimension infinie possédant des propriétés analogues à celles de 

l'équation de KdV et que l'on désigne par le nom de systèmes intégrables. Ce-

pendant, le terme d'intégrabilité pour les EDP doit cependant encore aujourd'hui 

être précisé. Chacun donne sa définition ou apporte ses nuances à cette notion. 

Par ce terme, on veut généralement désigner, parmi les systèmes aux dérivées 

partielles, ceux qui possèdent une "classe riche" de solutions "suffisamment glo-

bales. On admet habituellement qu'une EDP non linéaire est intégrable si elle 

possède des solutions à n solitons pour n'importe quel n. Les équations linéaires 
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ou linéarisables (i.e. qui peuvent être amenées à une équation linéaire par une 

transformation) sont considérées comme intégrables a priori. 

La définition précise d'un soliton implique les valeurs propres discrètes d'un 

problème de diffusion. Cependant, dans le cas où l'on a une seule variable d'es-

pace et une variable de temps, on peut donner une définition plus simple et plus 

intuitive d'un soliton: il s'agit d'une solution d'une équation (ou d'un système) 

aux dérivées partielles qui (i) représente une onde de forme permanente dans le 

temps; (ii) est localisée, i.e. qui décroît vers zéro ou approche une constante à 

l'infini; (iii) peut interagir avec d'autres solitons et garder son identité. 

Dans le cas des équations différentielles ordinaires, on considère comme in-

tégrables les équations dont la solution générale s'écrit en terme d'un nombre 

fini de fonctions "acceptables. Ici encore, le terme d'intégrabilité est flou puisque 

l'ensemble des fonctions acceptables n'est pas bien défini. On considère cepen-

dant de façon générale qu'une équation possédant la propriété de Painlevé est 

intégrable. On dit qu'une équation possède la propriété de Painlevé si les singu-

larités "mobiles" de sa solution générale dans le plan complexe ne sont pas des 

points de branchement [5]. Une singularité est dite mobile si sa position dans le 

plan complexe dépend des conditions initiales choisies. 

Par exemple, considérons 

(2) 

dont la solution est 
1 

= t — to  
Donc, l'équation (2) possède la propriété de Painlevé puisque la seule singula-

rité mobile de sa solution générale n'est qu'un pôle d'ordre 1 à t = to. Prenons 

maintenant l'équation 
1 4  

=O 
	

(3) 



dont la solution générale est donnée par: 

y = (t — to)-1/3  

qui a un point de branchement mobile à t = to. Donc, l'équation (3) n'a pas la 

propriété de Painlevé. Mais notons ici que par la transformation z = y3, l'équation 

(3) devient l'équation (2) qui possède la propriété de Painlevé. 

L'analyse de Painlevé consiste en l'application d'un algorithme appelé test 

de Painlevé [6]. Ce test nous permet de trouver la solution générale de l'équation 

donnée sous forme de série formelle de Laurent si elle peut s'exprimer ainsi. Ce 

test ne nous donne cependant qu'une condition nécessaire à la présence de la 

propriété de Painlevé puisque, par exemple, elle ne permet pas de détecter la 

présence d'une singularité essentielle multiforme. En pratique cependant, il y a 

très peu d'équation qui passent le test sans avoir la propriété de Painlevé. 

Un sujet intimement lié à l'intégrabilité est l'étude des symétries des équations 

différentielles. Par exemple, il a été remarqué [7] que la présence d'une algèbre 

de symétrie possédant une structure de Kac-Moody-Virasoro est typique pour les 

EDP intégrables à trois variables (une de temps et deux d'espace). 

L'origine de l'étude des symétries des systèmes d'équations différentielles nous 

fait retourner à la fin du dernier siècle. C'est en effet à cette époque que Sofus Lie 

introduit la notion de groupe continu (connue aujourd'hui sous le nom de groupe 

de Lie) et étudie ses applications aux équations différentielles 181. 

Définissons brièvement ce qu'on entend par groupe de symétrie d'une EDP. 

Soit une EDP générale de la forme suivante 

,u) = o, 
(4) 

4 

x IR,uEIR, p,n E N, 
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où u( k ) dénote toutes les dérivées partielles d'ordre k de u. Il s'agit simplement 

d'une équation aux dérivées partielles pour la fonction u de x. Un groupe de symé-

trie est un groupe continu agissant sur l'espace formé de la variable dépendante u 

et la variable indépendante x et qui transforme une solution de l'équation (4) en 

une autre solution. Il laisse donc invariant l'ensemble des solutions de l'équation 

(4). 

La théorie des groupes de Lie, utilisée avec l'analyse de Painlevé, nous donne 

une méthode très efficace pour trouver les solutions exactes d'EDP [9, 101. En 

effet, le groupe de symétrie d'une EDP nous permet de la ramener, par des réduc-

tions par symétrie, à des équations différentielles ordinaires. L'analyse de Painlevé 

nous permet ensuite de détecter, parmi ces dernières, des candidats à l'intégrabi-

lité. La dernière étape consiste en l'intégration des équations ainsi sélectionnées. 

De plus, le groupe de symétrie nous permet de générer de nouvelles solutions 

à partir de celles déjà connues. Les symétries peuvent aussi être utilisées pour 

établir des isomorphismes entre différentes équations. 

Tout comme les EDP, les équations aux différences finies (EDF) sont très 

importantes en physique. Elles apparaissent naturellement lorsque des systèmes 

physiques discrets sont étudiés. Par exemple, dans les réseaux de spins en méca-

nique statistique, les réseaux cristallins, les chaînes moléculaires, etc... Les EDF 

sont aussi utiles pour l'étude numérique de phénomènes continus. Ainsi, ces der-

nières années, beaucoup de travaux ont porté sur l'étude des symétries et de 

l'intégrabilité des équations aux différences finies [11, 12, 13]. 

Pour ce qui est de l'intégrabilité, plusieurs travaux proposent des extensions 

de l'analyse de Painlevé aux EDF. Nous allons nous intéresser ici au "confinement 

des singularités [14, 15] qui est un critère d'intégrabilité qui a l'avantage d'être à 
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la fois simple et efficace. En effet, depuis la découverte du confinement des singu-

larités en 1991, plusieurs équivalents discrets d'équations intégrables importantes 

ont été trouvées grâce à ce critère (voir par exemple [18]). 

On dit qu'une équation possède cette propriété si les singularités de ses solu-

tions ne se propagent pas indéfiniment. Illustrons ceci par deux exemples. Consi-

dérons l'équation 
b 

Xn+1 ± Xn ± Xn-1 = a + —, x., 

où a et b sont des constantes non nulles. On voit ici que la seule singularité possible 

se produit si xr, = 0 pour un certain n. Ensuite, xn±i  est infini et xn+2  est de la 

forme indéterminée oc - oc. La méthode utilisée pour lever cette indétermination 

est la suivante. On introduit une perturbation autour de 0: acri  = e (x,i _ i  est 

considéré non-nul). On calcule les valeurs subséquentes de x et on regarde leur 

comportement lorsque e tend vers O. Ainsi, pour xn+i , on a 

b 
xn+i = - + a - xn_i  + 0(€), 

E 

et donc xn+i --+ oc lorsque e -› O. C'est notre singularité. Par la suite, on a 

b 
Xn+2 = -- ± Xn--1 + 0(€), 

e 
Xn+3 = — E + 0(E2). 

On trouve ensuite que xri+4  -› xn _i  lorsque E —) Ci. Donc, la singularité a disparu 

et elle ne se propage pas. Notre critère d'intégrabilité est respecté. Voyons main-

tenant un exemple où la singularité n'est pas confinée. Considérons l'équation 

(1 - ax,2 )3  
xril-ixn.-1 = xri (x7., - a)3«  

Si xo  = a + e, on trouve ensuite x1  ,---, 1/e3, x2  --, E3  et x3, quant à elle, possède 

la valeur finie 1/a5. Plus loin cependant, on trouve x4  ,--, 1/e3, x5  ,--, E3  et x6  a 



7 

encore une valeur finie, 1/a11. La séquence (oo, 0, finie) se répète indéfiniment et 

donc la singularité n'est pas confinée. 

Tout récemment, un nouveau critère d'intégrabilité a été introduit: l'entropie 

algébrique [21, 22]. Ce critère est basé sur les idées d'Arnold et de Veselov sur 

la complexité d'une application [23, 24]. Plusieurs exemples présentant un com- 

portement chaotique sont maintenant connus où l'entropie algébrique détecte la 

non intégrabilité mais où le critère de confinement des singularités échoue [21]. 

En effet, le test du confinement est satisfait malgré le comportement chaotique. 

Ceci démontre que le confinement ne peut pas être considéré comme un critère 

suffisant à l'intégrabilité. De plus, puisque l'entropie algébrique est plus précise, 

toute étude de l'intégrabilité devra désormais être confirmée par une analyse de 

l'entropie. 

Pour ce qui est des symétries, plusieurs approches, dont le but est d'appliquer 

la théorie des groupes aux équations aux différences finies, ont fait leur apparition 

dans les dernières années [16, 17, 19, 201. Entre autres, en 1991, Winternitz et 

Levi ont introduit la méthode dite approche "équation différentielle" [16]. Cette 

méthode a deux grands avantages qui la distinguent d'autres méthodes: elle s'ap- 

plique de façon complètement algorithmique et, de plus, on peut l'utiliser dans 

tous les cas d'équations linéaires ou non. Son désavantage est qu'elle ne concerne 

que les transformations laissant la variable discrète invariante. 

Ma thèse se place dans le contexte d'une classification des systèmes inté-

grables discrets à une variable de deuxième ordre. Pour ce qui est des symétries, 

une étude systématique du lien entre le groupe de symétrie et l'intégrabilité n'a 

toujours pas été faite. De plus, il n'est pas encore possible d'utiliser les symétries 

pour l'étude des EDF de façon aussi efficace que pour les EDP. 
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La présente thèse est divisée en deux grandes parties. Premièrement, nous 

étudions et classifions des équations discrètes à l'aide de la théorie des groupes. 

Le but d'une telle classification est de pouvoir éventuellement établir un lien entre 

les symétries et la propriété d'intégrabilité. Deuxièment, nous classifions certaines 

familles d'équations intégrables discrètes. 

Ces deux grandes parties sont incluses dans le programme de recherche dont 

le but est de pouvoir utiliser la théorie des groupes de Lie et l'analyse de l'inté-

grabilité pour les EDF de façon aussi efficace que pour les EDP. Ainsi, le chapitre 

1 est consacré à la classification par symétries d'un système différentiel et aux dif-

férences. Ce système se retrouve dans les domaines de la biophysique, la physique 

moléculaire et la mécanique classique [25]. Dans le chapitre 2, nous étudions des 

généralisations de l'équation de Toda sous le point de vue des groupes de Lie 

1261. Dans le chapitre 3, nous procédons à la classification et à l'étude d'équa-

tions discrètes intégrables par linéarisation [27, 28, 291. Dans le chapitre 4, nous 

étudions les mêmes équations à l'aide de l'entropie algébrique 1301. À l'aide de 

couplages d'équations intégrables du premier et du deuxième ordre, nous obte-

nons une classe d'équations intégrables du troisième ordre dans le chapitre 5 [31]. 

Finalement, nous discutons des résultats obtenus dans l'ensemble de la thèse et 

tirons des conclusions générales. 



Chapitre 1 

CLASSIFICATION PAR SYMÉTRIES D'UN 

SYSTÈME DYNAMIQUE DISCRET 

IMPLIQUANT DEUX ESPÈCES 
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two species 
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(Received 24 December 1998; accepted for publication 4 March 1999) 

The Lie point symmetries of a coupled system of two nonlinear differential-
difference equations are investigated. It is shown that in special cases the synametry 
group can be infinite dimensional, in other cases up to ten dimensional. The equa-
tions can describe the interaction of two long molecular chains, each involving one 
type of atoms. (D 1999 American Institute of Physics. [SO022-2488(99)03206-5] 

I. INTRODUCTION 

Our purpose in this article is to perform a symmetry analysis of a system of two coupled 
differential-difference equations of the form 

E 	 F yg(r n 1 ,U,, ,U,,+1 ,Z) n-111 yi 	n- -1) =  

E2= 	Gn(t,Un-1 lun ,un+1,1)n-1,Vn ,U n i.1)= O. 

The overdots denote time derivatives. The discrete variable n plays the role of a space variable; it 
labels positions along a one-dimensional lattice. The fonctions F,„ and G„ represent interactions, 
e.g., between rlifFerent atoms along a double chain of molecules (see Fig. 1). The fonctions Fn  and 
Gn  are a priori unspecified; our aim is to classify equations of the type (1.1) accorcling to the Lie 
point symmetries that they allow. The interactions in such a model depend on up to six neighbor-
ing particles. For instance, we can interpret u n  and v„ as deviations from equilibrium positions of 
two different types of atoms, say type U and type V. The accelerations an  and il depend on the 
deviations u and v of both types of atoms at the neighboring sites n — 1, n, and n+ 1. We do not 
restrict to two-body forces, nor do we impose translational invariance for the chair. We do, 
however, assume there is no dissipation, i.e., system (1.1) does not involve first derivatives with 
respect to time. 

Such differential-difference equations typically arise when modeling phenomena in molecular 
physics, biophysics, or simply coupled oscillations in classical mechanics.1-3  

A recent article4  was devoted to a similar problem, but was concerned with a single species, 
i.e., one dependent variable un(t). The approach adopted here is sirnilar to that of Ref. 4. Thus, we 
shall consider only symmetries acting on the continuous variables t, un , and v „ . Transformations 
of the discrete variable n must then be studied separately. 

Several different treatments of Lie syinmetries of difference and differential-difference equa-
tions exist in the literature.4-13  The one adopted in this article is that of Refs. 4-6. It has been 

eElectronic mail: dgoecucmos.sim.ucm.es  
b)Electronic mail: laforrus  @crm.umontreal.ca  
eElectronic 	winm@crm.umantreal.ca  
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Vn -1 	Vn 	Vn+1 

FIG. 1. Double molecular chain with two types of atoms. 

called the "intrinsic method," malces use of a Lie algebraic approach, and is entirely algorithmic. 
The Lie algebra of the symmetry group, the "symmetry algebra" for short, is realized by vector 
fields of the form 

I= r(t ,un ,v.)(9t+ On(t,un,vn)aun+ tfrn(t ,un ,v Odun• 
	 (1.2) 

The algorithm for finding the functions r, On , and t'in  in (1.2) is to construct the appropriate 

	

prolongation pr I of Î (see Refs. 4-6 and Sec. 	and to impose that it should annihilate the 
studied system of equations on their solution set, 

Pr-kEilEI =E,=o=0, prIE21 E1=E2=0 =0. 	 (1.3) 

Our first step is to find and classify all interactions (F„,G„) for which the system (1.1) allows 
at least a one-dimensional symmetry algebra. The next step is to specify the interactions further 
and to find all Mose that aLlow a higher-dimensional, possibly infinite-dimensional, symmetry 
algebra. 

As in previous articles,4'I4  our classification will be up to conjugacy under a group of "al-
lowed transformations." These are liber preserving locally invertible point transformations, 

un= 0,(171„,f ,i), v n=I (z7„,f ,i), t= t(), 	 (1.4) 

which preserve the form of Eqs. (1.1), but not necessarily the functions F „ and Gn  (they go into 
new functions Fn  and -6.„ of the new arguments). 

Throughout the article we assume that both F„ and G n  depend on at least one of the quantities 
Un —ltlin+1 ,Vn —1,Vn+1, so that nearest neighbors are genuinely involved. In the bulk of the article 
the interaction is assumed to be nonlinear. 

In Sec. Il we formulate the problem, establish the general form of the elements of the sym-
metry algebra, and present the determining equations for the symmetries. We also derive the 
"allowed transformations" under which we classify the interactions and their symmetries. Section 
111 is devoted to a classification of interactions F„, Ga , allowing at least a one-dimensional 
symmetry algebra. Ten classes of such interactions exist, each involving two arbitrary functions of 
six variables. In Sec. IV we study higher-dimensional symmetry algebras and introduce an im-
portant restriction. We first prove that four equivalence classes of symmetry algebras isomorphic 
to sl(2,R) exist. Then we restrict to just one of them, sl(2,R)1  generating a gauge group acting only 
on the fields u„ and v n  (in a global, coordinate-independent manner). We describe all symmeery 
algebras, containing the chosen sl(2,R) as a subalgebra. In Sec. V we obtain the invariant inter-
actions for all algebras containing sl(2,R)1  . The results are summed up and discussed in Sec. VI, 
where we also outline future work to be done. 

II. FORMULATION OF THE PROBLEM 

To find the Lie point symmetries of the system (1.1), we write the second prolongation of the 
vector field (1.2) in the form4-6 
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n+1 	 n+1 
(2) 7 	11.=  "r(t,U"Vn)at+ 	 Ckit(t , Lin ,Vn)au ±  E ifrk(t,un,v,i)av k  + 	dii 	, 

	

n n 	n un k 	
, =n-1 	 k=n-1 

(2.1) 

with 

-=D z?cf,„—(Dr)iin -2(D,r)ii n , 

(D/-)0„- 2(Dr)ü, 

where D, is the total time derivative. The determining equations for the symmetries are obtained 
by requiring that Eq. (1.3) be satisfied. The obtained equations will involve terms like 	k, and 
li k01. The coefficients of each linearly independent term must vanish and this provides 16 linear 
differential equations that are easy to solve and do not involve the interaction fonctions Fn ,G. 
The result is that an element of the symmetry algebra must have the form 

1= r(t)49,+{(; +an )un+bnv n+ X n(t)ann+{c„un+(; +d n )v n+ ,an(t)15,n , 	(2.3) 

where the overdots denote time derivatives. The functions r(t), kn(t), ,a„(t), an , bn , c n , and cl n  
satisfy the two remaining determining equations, namely, 

n+1 
—U 	X ± a — — 'r)F +h G —TF 	Fn u {(--i-ak )u k+bkv k -i -X k(t)1 2 n n n 2  n nn n.t 

3 

n+1 

—2  v n i-fin+(d n — r - )G,t+cnFn -"Gn,t — nk[( -2
+ak)Uk±bktIk+Xk(t)1 

k=n-1  

n+1 
— Gn ,v k 	±d k )v k±c kuk+ iLk(t)1= O. 

le=n-1 	L 

In Eqs. (2.3), (2.4), and (2.5) the quantities an , b, c n , and dn  are independent of t. To 
proceed further, one could specify the interaction functions F,, and G. Instead, we shall assume 
that at least one symmetry generator (2.3) exists and make use of allowed transformations to 
simplify this vector. The second step is to find interactions Fr , and G,z  compatible with such a 
symmetry. 

Substituting (1.4) into Eq. (1.1) and requiring that the form of these two equations be pre-
served, we find that the allowed transformations are quite restricted, namely, 

\
=( 

un(t) 	Q. Rn
) 7-1r2( 

• 	(7) 	cen(t) 
Tn 	1

/7
7:63 ) ( sn( t)) 	7=7(0, d-lit • *0. 	(2.6) 

) 	s.  

The entries Q.  Rn , Sn , and T„ are independent of r, -i(t) is an arbitrary locally invertible 
fonction of r, a,, ,pn  are arbitrary fonctions of n and t, and the matrix 

Q,, Rn \ 
M,, 	,.,n " (Sn  Tn) 	

d, 	et Mn  0, (2.7) 

(2.2) 

It=n-1 	k  2 
n+1 " 

- ±d k )U k+C ka k+ 1..l.k(t)1=0, 
k=n-1 

•I (2.4) 

(2.5) 

is nonsingular. 
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It will be convenient to use a shorthand notation for the vector field X„ of Eq. (2.3), namely, 

{r(t),A, 12  ( X:() 	a  b  (:))}, An=( c: d:). 

If we perform an allowed transformation (2.6), then Eq. (1.1) goes into an equation of the 
same form, witla Fn  and Gn  replaced by 

(2.8) 

(2.9) 

where F„ and 6„ are functions of the new variables. 
The vector field eharacterized by the triplet (2.3) goes into a new one of the same form, 

Y(7),An, — 
T4(0)1' 

with 

7(7)=7(t(i))i,  

= M,7 1A,M„ , 

( 	 ) —Mnt -1'1/2{(An+ 7,• 1") ( an) — T ( à») + (n X 
Tin(7) 	 en 	n) I . 

We shall use the allowed transformations to simplify the vector field, rather than the equation 
itself. 

III. SYSTEMS WITH ONE-DIMENSIONAL SYMMETRY GROUPS 

Let us now assume that the system (1.1) has at least a one-climensional symmetry group, 
generated by a vector field of the type (2.3). Using allowed transformations (2.6), we take î into 
one of ten inequivalent classes. 

Indeed, for r-40 we can choose the function -t-(t) so as to transform r(t) into r-----1, the 
functions an(t) and Ph(t) so as to annul Xn(t), and p,„(t) and the matrix Mn  so as to take A ,, into 
its canonical Jordan form. 

For 7.--0 the standardized form of î depends on the rank of the matrix A„ . For rank An  
=2, we can again transform X.„ and p„„ into X.„= p,„= 0 and take An  into one of three canonical 
forms. For rani(  An= 1, only one of the functions X„ or ,u,„ can be annulled. We choose it to be 
X.„(t)= 0. Then A n  can be taken into one of the two standard matrices of rank 1 in R2)(2. For rank 
A,,=0 both X.,,(t) and p,„(t) survive. 

We thus obtain ten mutually inequivalent one-dimensional symmetry algebras, listed below. 
The statement now is that any single vector field î of the form (2.3) can be transformed by an 
allowed transformation into precisely one of these vector fields. 

The next step is to determine the interactions for which a one-dimensional symmetr»group 
exists. To do this, we run through the canonical vector fields just obtained, substitute the cone-
sponding r (= 1 or 0), A n  , X„(t), and /..c„(t) into Eqs. (2.4) and (2.5), and solve these equations for 
F„ and G,,. 

Following this procedure, we arrive at the following list of interactions and their one-
dimensional symmetry algebras: 

(2.10) 
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A1,1 
	SC= Or+ anun t:9„ ,+ 

Fn= e an5en(ek , 770, 
Gn= ednr g n(ek 770, 
ek= u ke —akt , 77k=  v ke —dirt , 
k=n-1,n,n+1; 

A1,2 	X=  
Fn=eant[f,i(ek, 97k)+ntg.(xk,77:)], 
Gn= eant g n(gk , 71k), 
ek= (uk —  tv k)e 	71k=  vke—akt, 
k=n-1,n,n+1; 

A1,3 • 	 at+(anun+ ben )c7un+ (— b ri u n+ anv,)aon, b n>0, 

(

F,).eant  cos bnt sin bnt )( fn(ek ,77k ) 

	

G„ 	(—sin bnt cos bnt gn(ek ,rh,))' 
ek=rke-akt, 77k=  Ok+b kt, 
Uk= k COS 0k, uk--:-.-- rk sin Ok , 
k=n-1,n,n+1; 

	

A1,4 	X = anuna. + dnv n , 
F n= un f na a ,77k,t), 
Gn=v ngn(ea,77k,t), 
en= L4.2:ça«, 77k= vru:ak, 
k=n-1,n,n+1, a=n-1,n+1; 

an= 0, 

	

A1,5 	

Fn= v ri( 	ek + v .11* ,Dgn(77«,e.  k 

Uk 
ek=ak--112(17 k) ,  7?a=1)› :aa ) 

Uk 

k=-n-1,n,n+1, a= n —1,n+1; 

	

A1,6 	k=v naun ,  
Fn=fn(vk,ea,t)+ung„(v k,e„,t), 
Gh=vng.(vk,ea,t), 
ga---v au,i+v nu a , 
k=n-1,n,n+1, a=n-1,n+1; 

	

A1,7 	Î =(anun+bnv n )d„.+(—bn un+anv,i )(3,,n , b>0, 

	

(

Fn 	 CIDS 971 •SJ.fl  9/1 i.fn(ek,17ce,t) 

Gn) —' 	( sin On 	cos On  j\gn(eic,77a,t)) 

ek=rbkneaon, 77a= bnea —bagn 
uk= r k  cos Ok , ve--,rk  sin 0k, 
k=n-1,n,n+1, a=n— 1,n+ 1; 

	

A1,8 	I=C17,Unêzin+ Il n(t)aun, ,a* O, 

F n=  Unfn( 77a ,ek ,t) ,  

An G=—vn+gn( 77a,4,t), 

71a=  »nle 	ll'aV 	ek= uke-akv g., 
k=n-1,n,n+1, a=n-1,n+1; 
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A1,9 	j= vnaun+11,n(t)avn ,  gr,-* 0, 
1 	2  

Un+ Vngn( r7a,77,ea,t)+f.(?7«,77n,L ,t),  2 gn  

/271 
Gn=—  Vn+/Ingn( ìa 7n ,e. 

27a 	A2u 	.02n- 	a, Ca= gavn— gni) a, 
77.= »nu.— iv 

A1,10 	Î=X n(t)(9,,n+p,71(0, 	/In= O> 

Fn=-..-  Un+ f n( 77k 

G71=—u71+g71(7-,k,ea ,t), 

rik= 1.t kun —k nt; k., 
k= n — 1,n,n+ 1, a= n-1,n + 1. 

We mention that the variables ek  and th are to be taken exactly as above. For instance, en+  
is not an upshift of eh  . 

The above results are summed up quite simply. Namely, the existence of a one-dimensional 
symmetry algebra restricts the interaction terms Fn  and Gn  to two arbitrary functions of six 
variables, radier than the original seven variables. The algebras A1,1 , A1,2  and A1,3  involve time 
translations. Hence, the time dependence in these cases is restricted: Fn  and Gn  depend on time 
explicitly and via invariant variables k and nk  that, in turn, depend explicitly on t. The algebras 
A1,4 ,...,A1,10  correspond to gauge transformations: the group transformations act on dependent 
variables only. The time variable figures in the arbitrary functions, as does the discrete indepen-
dent variable n. 

IV. HIGHER-DIMENSIONAL SYMMETRY ALGEBRAS 

A. General strategy 

The commutator of two symmetry operators (2.3) is an operator X3  = [Xi  ,X2] of the same 
form, satisfying 

73= T11-2 — 721.1 	A71,3= — [An,1,An,2],  
(4.1) 

. 
( 

n _ 
T2 

 n 1 _ A  .+ X 	2 	( 	 I' 
2 	gn,2 	2 

it• ) ( 	_L ) ( X n,2) ± ( An 2+  '. a ) ( 

	

gn,3) 1-1  iln,2 	 n,1 	n'i 	) \ ' 	Ihna 
Xn,1 

— 
	. 

To obtain a finite-dimensional Lie algebra of symmetry operators, we see that the "differen-
tial components" ri(t)à, must form a Lie algebra La, the "matrix components" A„,i  must also 
form a Lie algebra Lm , homomorphic to La. Moreover, Eq. (4.1) shows that the "functional 
components" 0%.71 ,i(t),4U71 ,i(t)) must satisfy certain cohomology conditions. 

The algebra of diffeomorphisms of RI , {r(r)ô} has only three mutually nondiffeomorphic 
finite-dimensional subalgebras, namely sl(2,R) and its subalgebeas, realized, e.g., as 

td,,ta,,t2a,l, {a,,taj, and {8/ }, 	 (4.2) 

respectively. 
For n fixed, the matrices An  generate the Lie algebra of gl(2,R). However, since the depen-

dence on n is arbitrary, an unlimited number of copies of gl(2,R) and its subalgebras is available. 

a=n — 1,n +1; 
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We shall not perform a complete classification of possible symmetry algebras here. Instead, 
we shall first concentrate on sl(2,R) symmetry algebras and show that, up to allowed transforma-
tions, four different sl(2,R) symmetry algebras can be constructed. We then consider just one of 
these four and study its extensions to higher-dimensional Lie algebras. 

B. Equivalence classes of sl(2,R) symmetry algebras 

Since sl(2,R) is a simple Lie algebra, it has no ideals. Hence, a homomorphism between 
sl(2,R) algebras is either an isomorphism, or one of the algebras is mapped onto zero. Correspond-
ingly, we have three possibilities to explore: we shall call them sl(2,R)d , s1(2,R)„,, and s1(2,R)c  
(where d stands for "differential," m for "matrix," and c for "combined"). 

1. The algebra sl(2,R) d 
We have a priori 

x1 = a,+ x n(t)a un+ 

X 2= ta r+ (1-un+ pn(t))(9..+ (v,+ cr„(t))8,h, 	 (4.3) 

X3  = t2 9r + (tu,2 + wn(t))aun+ (tv„ + tc(t))ayn. 

	

Using allowed transformations we transform 	 The commutation relation [X1  ,X2] 
=X1  then requires on= ern= O. A f-urther allowed transformation (2.6) with 7(t)--= t, M „= 1, and 
(a„„6„) constant will not change X1 , but take p„--> 0, o-„--+ 0 (while leaving k n = ii.„= 0). The 
commutation relations [X2  ,X3] =X3  and [X1  >X3] = 2X2  then imply Œin = K„-=--  O. 

2. The algebra sl(2,R)„, 

A priori we have 

x1 =--bnv un-Fx„(t) aun+ gn(t)av„, 

X 2  = an(una..— v naur,)+ P.(t)a un+ 0-.(t)a0n , 	 (4.4) 

X3= cnunavn+ ton(t)azin+ ic„(t)(9. 

The structure constants cannot depend on n, so the commutation relations imply 

a=a, ben=bc. 	 (4.5) 

Given that the product b„c„ does not depend on n, we can use an allowed transformation to 
take b 	b, c„--> c. A further allowed transformation will take p„--+0, cr„---> O. The commutation 
relations then imply Xn = p,„= 0 and 

3. The combined algebra sl(2,R), 

In view of the above results, we can write a "combined" algebra as 

X i = c?,+ av na„.+ end un+ nndvn,  a*O,  

X2= t a t+[(1+ 	n+ 	 rt+ ihnieu 
	 (4.6) 

X3= t2t9,+(tun+ pn )(3„,i+(yun+tv n+ 	n. 
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We use allowed transformations to set a=1, en= 77n= 0. The commutation relations then deter-
mine fi= y=-1. The functions kn(t), Atn(t), pn(t), and a-n(t) are greatly restricted by the 
commutation relations. As a matter of fact, we either have Xn  = 	pic= o,,=0, or we can use 
allowed transformations to obtain 	t, 	p,,= 2t2, 

We arrive at the following result 
Theorem 1: Precisely four classes of sl(2,R) algebras can be realized by vector fields of the 

form (2.3). Any such sl(2,R) algebra can be taken by an allowed transformation (2.6) into pre-
cisely one of the following algebras: 

sl(2,11)1: X i  -= 

X2="" (Unau.—  n8v,z ) , 
	 (4.7) 

X3 = li n avn, 

si(2,R) 2: x1= 
x2=t9,+Yun8un+vnav n), 	 (4.8) 
x3= t219,+ t(u naun+ v „av.), 

si.(2,11) 3: xl = a t+v naun, 
X2 = tôt+ U n c?un, 	 (4.9) 
X3 = t219,+tu naun+(tv,— un)arn, 

si(2,R)4 : X1= at+v na.„ 
x2= ta t+ (un+ t)aun+ aun 	 (4.10) 
x3= 12  dr+ (tu n+2t 2 )aun+ (tv n — u n+2t)a„.. 

C. Indecomposable Lie algebras containing sl(2,R).1  

A Lie algebra L is called indecomposable if it cannot be vvritten as a direct sum, L= L1  
eL2. A Lie algebra over R cont2ining sl(2,R) is either simple or it allows a nontrivial Levi 
decomposition,15  

L=SDR, 	 (4.11) 

where S is a semisimple Lie algebra and R is the radical, that is, the maximal solvable ideal of L. 
It follows from the results of Sec. IV A that the only simple Lie algebras that can be con-

structed from operators of the form (2.3) are the four sl(2,R) algebras obtained in Sec. IVB. We 
can hence concentrate on Lie algebras of the form (4.11). 

The algebra S is either sl(2,R)i itself, or the direct sum of sl(2,R)i  with one or more other 
sl(2,R) algebras. 

Requiring that a symmetry operator Y should commute with ail elements of sl(2,R)1  , we fmd 
that Y must have the form 

Y o=r9,+(irr+a„)(unaun+v„dun ). 	 (4.12) 

It is hence possible to construct precisely one semisimple Lie algebra properly containing 
sl(2,R)1 , namely, the direct sum sl(2,R)1  sl(2,R), with sl(2,R)2  defined in Eq. (4.8). 

Let us introduce some notations for vector fields, to be used below. We put 

V(ar,)=an(unaun+v,dvn), 	 (4.13) 
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T(12,2 )= 191+ a n(unau n+ v nav n), 
	 (4.14) 

D(an)=ta,+(l+an)(una+vnèv„) , 
	 (4.15) 

P(a„)=t2a,+(t+a„)(unauri+v nat,), 
	 (4.16) 

R(42)=(t 2+1)a,+(t+an )(u naun+v,,av.), 
	 (4.17) 

Yu(Xn)= Xn(t)eun ,  Yv(Xn)=.-  Xn(t)avn• 
	 (4.18) 

In all cases we have â n= 0, but X n(t) can be a f-unction of t. Both a„ and X.„(t) can be functions 
of n. 

Let us consider S= sl(2,R)i and S= sl(2,R) i  sl(2,R)2  in Eq. (4.11) separately. 

1. S= sl(2,R)1  
The considered Lie algebras will have a basis {X1 ,X2 ,X3, Yi ,...,Y,} with X i  given in Eq. 

(4.7). The basis elements {Y1 , ..., Y} span the radical R. The algebra S acts on R according to 
some linear, not necessarily irreducible, ftnite-dimensional representation. 

We start with the Cartan subalgebra {X2} of sl(2,R). It can be represented by a diagonal 
matix in any fmite-dimensional representation. Consider Y E R. We have 

[X2 , Y]=p Y, 	 (4.19) 

with Y as in Eq. (2.3). Equation (4.19) implies 

pr= 0, 

(4.20) 

For p= 0 we obtain an operator that commutes not only with X2, but with all of sl(2,R)1  , namely, 
Yo  of Eq. (4.12). This is a singlet representation of sl(2,R). 

For p =1, or p=— 1, Eq. (4.19) forces Y to be an element of sl(2,R)1  , in other words, no such 
Y ER exists. 

For p=± we obtain Yi = X.,,(t) au.  and Y2 = Al..„(t)êvn, respectively. Acting with Xi  and X3  
on these operators, we fmd that the only representation of sl(2,R)1  that can be realized is a doublet 
one, namely {Y.(X,i), Yv(k„)} of Eq. (4.18), with Xn(t) an arbitrary function of n and t. The 
indecomposable Lie algebra {X1  ,X2 	, Yu(k7,), yv(x7,)} is isomorphic to the special affine Lie 
algebra saff(2,R). 

All father indecomposable symmetry algebras containing sl(2,R)1  must be extensions of 
saff(2,R). The objects that we can add to saff(2,R) are either s1(2,R) doublets or singlets. Let us 
run through all possibilities. 

(1) We can add an arbitrary number k of doublets of the forrn (4.18), where the k functions 
{X„I  (t), X'`„I(t),..., X nk  (I)} must be linearly independent. However, we shall see in Sec. V that 
the presence of three such pairs forces the functions F„ and G„ in Eq. (1.1) to be linear. 
Moreover, even two such pairs are compatible with a nonlinear interaction only if they are of 
the form (or transformable into) 

klaw= 	)4(t)=t. 	 (4.21) 
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(2) We can add a singlet of the form (4.12). If we have 7=--0, then the commutation relations 
[Yo  . Yu] and [ Yo  , Yi] imply a= a +1  and we can set a„= 1. We obtain an affine Lie algebra 
gaff(2,R)1  consisting of saff(2,R) and V(1) of Eq. (4.13). 
If we have 7-*0 in Eq. (4.12) and only one operator of this type, then we can use allowed 
transformations to take r(t) into r(t) = 1. The commutation relations [170, Yu] and [1'0,Y] 
then imply 

i= o. 

For k= 0, the algebra is decomposable. For k* O we can use allowed transformations to put 
k= -1 and R= 1. We obtain a second algebra isomorphic to gaff(2,R), but not conjugate to 
the previous one. We have 

gaff(2,R)2- {Xi ,X2,X3, Y .(e( a.-1):),1"„(e( a.-1)̀ ),T(a„)}. 	(4.22) 

In the special case of an= an+i  in Eq. (4.22), a further extension is possible. We transform 
X =et  into X=1; then T(an ) goes into D(b) with bn =b„+1..--- b* - since for b 
= - the algebra is decomposable. 

(3) We can add two singlets of the form (4.12). If they commute, they must be {V(1), T(0)}. The 
obtained algebra is decomposable. If they do not commute, they must form a two-dimensional 
Lie algebra, namely, {T(0),D(a),a„=- 	This implies ).(t)-1, i.e., the entire radi- 
cal is {Yu(1),Y,(1), T(0),D(a)} with a* (the case a= corresponds to a decomposable 
algebra). 

(4) If we add three singlets, the only case corresponds to the radical 
{Y,,(1), l',(1), V(1), T(0),D (0)} . There will then be no invariant interaction (see below). 

(5) Let us consider the special case of two doublets of the form (4.18), namely, 

Y(1)= a, 1(v(t)— taune 11.11(t):=  tatln  • 
	 (4.23) 

This algebra can be extended by a further element, namely, 
Z=(r0+T1t+P42)at+q.71+721.±a)(unaun+vnavn), 

(4.24) 
an'an+1=--a, 

where ro , r, and r2  are constants. By allowed transformations we can take Z into one of the 
four operators V(1), T(a), D (a), or R(a) of (4.13), (4.14), (4.15), and (4.17), respectively. 

(6) We can add a two-dimensional algebra to (4.23), namely, 

IT(0),D(a)}, {T(0),V(1)}, {V(1),D(0)}, or {V(1),R(0)}. 

(7) We can add only one three-dimensional algebra to (4.23), namely, 

{T(0), D(0), V(1)1. 

This completes the list of indecomposable synametry algebras of the form (4.11) with S 
= sl(2,R)i • 

2. S= sl(2,R), «2,11)2 
The algebra S is itse1f decomposable. It gives rise to precisely two indecomposable symmetry 

algebras. First, we have the one obtained by adding the Abelian ideal (4.23) to sl(2,R)1  
e sl(2,R)2 . Second, we get an 11-dimensional algebra by adding V(1) to the first case. 

D. Decomposable Lie algebras containing sl(2,R)1  
All decomposable Lie algebras LD can be obtained from the indecomposable L1  ones, by 

adding their centralizers, 
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LD=Lie C, [C,L.1]=0. 	 (4.25) 

The centralizer C must commute with all elements of sl(2,R)i  and hence all of its elements 
will have the form of Yo  of Eq. (4.12). 

Let us consider the individual indecomposable algebras LI . 

1. Li= sl(2,R)i 
The centralizer C can be Abelian. Then we have the following possibilities: C= {V(ai,„),i 

=1 ,...,k} or C=IV(ai ),T(b„),i =1,...,k}. The quantities 	 must fo rm a set of k lin- 
early independent functions of n. If the centralizer is non-Abelian, then we have either C 

sl(2,R)2  or C=IT(0),D(a)}. Both of these centralizers can be further extended by adding 
V(at ,n ), i=1,....k, (with al,n,••• ,ak,n linearly independent). 

2. Li= saff(2,R) 
We must require Yo  of Eq. (4.12) to commute with Y.(Xn) and Yv(Xn) of Eq. (4.18). We 

obtain 

Xn(i'i+ an) —1",= O. 	 (4.26) 

For r=0, Eq. (4.26) impfies Xnan =0, and this is not allowed. For r*0 we take T--> 1 by an 
allowed transformation, and Eq. (4.26) then implies X.n(t)= Ivan'. A further allowed transforma- 
tion will take 	We obtain the decomposable Lie algebra saff(2,R)eT(a n). In the special 
case an = a n+ i  we transform Xn(t)--->1 and obtain a larger centralizer, namely, {T(0), D (— 4)} 

3. Li=gaff(2,R)1  
A nontrivial centralizer exists only if we have X.„(t)= ent  in saff(2,R). In the case a, e 0, the 

centralizer is C={T(an )}. If an=0 the centralizer is C=IT(0),D( —  +.)}. 

4. LI= gail(2,R)2  
The centralizer is C={ T(a„)— V(1)}. This algebra corresponds to the first one obtained in 

the case Li= gaff(2,R) i  above. 

E. Summary of possible symmetry algebras containing sl(2,R)1  
The classification of possible symmetry algebras can now be summed up rather simply. In 

addition to sl(2,R)1  of Eq. (4.7), we have a further algebra Lc  (the "complementary" algebra). 
The structure of each symmetry algebra is 

L=s1(2,R) i+Lc, [s1(2,R)I ,Lc]CLc, [Lc ,Lc]g_Lc . 	 (4.27) 

The symbol denotes a direct sum of vector spaces. Moreover, Eq. (4.27) shows that L is either 
a direct sum or a semidirect one. The algebra Lc  is also a representation space for sl(2,R)1 . 
Irreducible representations in this case can be of dimension 1 or 2. All higher-dimensional repre-
sentations are completely reducible into surns of one- and two-dimensional representations. 

For further use it is convenient to split the symmetry algebras into four series, according to the 
structure of the Lie algebra Lc . In all cases L contains sl(2,R)1 . We shall just specify Lc . 

1. Serles A 
Lc  is solvable and each element is a sl(2,R)i singlet. There exist three different infmite-

dimensional Lie algebras of this type: 

{V(ak,„)}, 	 (4.28) 

A2. {T(b„),V(ak ,„)}, 	 (4.29) 
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A3. {T(0),D(b„),V(ak )}. 	 (4.30) 

In each case we have k= 1,2, ... , and the expressions ak  must be linearly independent functions 
of n. Taking 1e-k---5-N for some finite N, we obtain finite-dimensional subalgebras. 

2. Series B 
L c  is solvable and contains precisely one sl(2,R)i doublet, 

Bi={17u(kn),Yv(Xn)}. 	 (4.31) 

This is the indecomposable algebra saff(2,R) [B1  together with sl(2,R)1]. We have dim L= 5, 

B2=1Yu(Xn),Irv()n),V(1)}- 	 (4.32) 

B2  corresponds to the indecomposable algebra gaff(2,R)1  with dimL= 6, 

	

B3=tyu(e(a n-1)5,yv(e(a) - 1)̀ ),T(an )}. 	 (4.33) 

B3  corresponds to the Lie algebra gaff(2,R)2 , isomorphic but not conjugate to B2 , 

B4=1Yu(eant),Y0(eant),T(an)}. 	 (4.34) 

This algebra is saff(2,R) e T(a), 

B5=0 7 ,(1),Y,(1),T(0),D(a)}. 	 (4.35) 

The algebra B5  is indecomposable (except if a= —I), 

B6={1'(e( a.-1)5,Y,(e (a.),T(an ), V(1)1. 	 (4.36) 

The algebra B6  is decomposable, 

	

B7 ={Y(1),Y,(1),T(0),D(0),V(1)}. 	 (4.37) 

The algebra B7  is indecomposable. 

3. Series C 

L c  contains two sl(2,R) doublets. The doublets could be characterized by any two functions 
X1m(t) and X.2 (t). However, we shall only be interested in the case X =1, X2 = t. The others do 
not lead to invariant interactions. Similarly, we do not need algebras containing three or more 
doublets. In all cases the algebra L c  contains the elements (4.23). For dimLc->-5 it contains 
further elements. We have 

C1 ={1'.(1),Y,(1),Yu(t),Y,(t)}. (4.38) 

Further, we just list the additional elements, 

C2. {T(a)}, a=0 or 1, (4.39) 

C3. {D(a)}, (4.40) 

C4, 	{R(a)}, (4.41) 

C5 . 	{v(1)}, 

C6 , 	IT(0),D(a)}. 

(4.42) 

(4.43) 
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In all cases above, a does not depend on n(an+1= an), 

C7. {V(1),T(0)}, 	 (4.44) 

C8. {V(1),D(0)}, 	 (4.45) 

C9. IV(1),R(0)}, 	 (4.46) 

C10. {T(0),D(0),P(0)}—s1(2,R)2 , 	 (4.47) 

C11. {T(0),D(0),V(1)}, 	 (4.48) 

C12. {T(0),D(0),P(0),V(1)}. 	 (4.49) 

4. Series D 

Lc  contains sl(2,R)2  and (possibly) further elements, namely, 

D1. None, 	 (4.50) 

D2. {V(a)}, 	 (4.51) 

D3. {V(a1e ),V(a2,71)}, 
	 (4.52) 

D4. {Yu(1),Yv(1),Yu(t),Yv(t)}, 	 (4.53) 

D5  {Y(1),Y0(1),Y„(t),Y,(t),V(1)} 
	

(4.54) 

(D4  coincides with C10  and D5  with C12). 

V. THE INVARIANT INTERACTIONS 

A. General procedure and interactions invariant under SL(2,R)1  

In this section we shall find all interaction functions, invariant under symmetry groups, con-
taining SL(2,R)1  . We make use of the subalgebra classification provided in Sec. IV. 

We first establish the form of the interaction, invariant under SL(2,R)1  itself. To do this we 
set r(t)=Xn(t)= Ihn( 1)= 0 in the determining equations (2.4) and (2.5) and consider the equations 
obtained for a=—d=1, bn=cn=0, then bn =1, an= — cl„= cn=0, and, fmally, c„=-1, 
an= —dn= bn= O. The general solution of the obtained system of six equations can be written in 
the following form: 

	

Fn=Un+lfn+ungn, Gn=on-Flfn+vngn, 
	 (5.1) 

where f n  and g n  are functions of four variables each, namely, 

	

t, en=un+ltin—l — un—Ivn+1, ecr=uav n —unv 	an  ±1. 	(5.2) 

Note that en , en+i , and en  _ I  are as given in Eq. (5.2). They are not upshifts or downshifts of 
each other. 

We shall proceed further by dimension of the symmetry algebra and by its structure. Thus, we 
can successively add sl(2,R) singlets of the form (4.12) or doublets of the form (4.18). We 
continue adding symmetry elements until the interaction is completely specified, i.e., it involves 
no further arbitrary functions. We then solve the "inverse problem." That is, we substitute the 
functions Fn  and Gn  back into the determining equations and solve for the symrnetries. This 
provides a verification of previous calculations. More important, this procedure will find the 
largest symmetry algebra allowed by any given interaction. 
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Obviously, all invariant interactions will have the form (5.1). It is the functions f n  and g n  that 
will be further refined, and their dependence on the variables ek  and t will be restricted. 

For future convenience we write down two further forms of the SL(2,R)1  invariant interaction 
functions, equivalent to (5.1). The first is 

en-1 L  
Fn r--U n+i—t  

e 
Gn= v n+ 

n-1 hn + v nk,, , (5.3) 

where h n  and kn  are arbitrary functions of the variables (5.2). The second convenient form is 

	

Fn=(Xn-llin+1.--Xn+114n-1)On±(Xn+1Un—X-nlin+1)1frnm--), 	Un+1, 
'`n+1 

(5.4) 
Kfl  

Gn =(Xn —lVn+1 — Xn+IVn-1)Cten+(Xn+IVn — XnVn+1)511n -r )4+1  

where K(t) is some arbitrary function of n and t and On  and tfrn  depend in an unspecified manner 
on the variables (5.2). 

B. Interactions invariant under four-dimensional symmetry groups 

As was shown in Sec. IV, two types of four-dimensional symmetry algebras containing 
sl(2,R)1  can exist. Both are decomposable according to the pattern 4=3+1. Here and below we 
shall always list the operators that we can add to s1(2,R)1 

/. V(an)=a,,(unOun+va,n ) 

The invariant interactions will have the form (5.3), but hn  and kn  will depend on three 
variables only. 

(i) a n _ i+ an+i* O. The variables are 

	

t , 77« .(ea )an-i+an+1(en )-an-aa, a=n -±1. 	 (5.5) 

a n _ i+ an+i= O. The variables are 

t, en, 7/=(en+i)0n+1-0n(en_i)01+14-01. 
	 (5.6) 

2. T(14)= t+ bn(unaun+tr,c7,n) 

The invariant interaction will again have the form (5.3), however, in this case h„ and kn  are 
arbitrary functions of the three variables, 

cm. ene  -(bn-l+bn+l)r, 	eae —(bn+ba)t 	a=n -±1. 	 (5.7) 

We see that adding further singlets of the type V(a n ) will restrict the variables in the functions 
hn  and kn , not, however, the general form of Eq. (5.3). 

C. Five-dimensional symmetry groups 

From the results of Sec. IV, we know that three decomposable and one indecomposable 
symmetry algebras of dimension 5 can exist Let us run through all four possibifities. 

1. Decomposition 5=3+1+1 
a. V(a,,„)=a i ,,,(u na„n+v 	i=1,2, azn*Xa 1,n  . The interaction is of the form (5.3). 

The functions hn  and k„ depend on two variables each, namely, time t and 

n=(e.-1)A(en+i)B(e C  n), 
	 (5.8) 
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A= al,h(a2,n+i±a2,n-1)±ai,n+i(az,n-i-a2,n)-ai,n-i(a2,.+1+a2,,2),  

B = - ai,(a2,+1+.22,„_1)+ aim+i(a2,_1+ a2,„)-al,n-1(a2,n+1-a2,n), 	(5.9) 

C=ai,„(a2,n+i-a2,n_i)-al,n+I(a2,n_i+a)-1-ai,„_1(a2,+1+a2„). 

Note that the variable 77always exists since the condition A = B= C=0 (and hence 77=const) 
only occurs for a i,n _ ialn  ai ,„a2e-i =" 0, which implies azn=kal,n,  k=const, and this is not 
allowed. 

b. V(a,,)=.27,(undun+v,,a,,n ), T(b) = (9,-F b(ua+ v „dun ). The invariant interaction is as 
in Eq. (5.3) with h„ and k„ functions of two variables each. Namely, the following. 

(i) an+1±an-1*0: 

	

pa=(Ca)an+1+an— 1(Cnyan—an, a=n -±1, 	 (5.10) 

with ‘,„ en  as in Eq. (5.7). 
an+1±an--1=0: 

	

Pfl=cn, crn=un_i)a,z÷i+an(ch+i)an+i—an. 	 (5.11) 

2. Decomposition 5=3+2 

no invariant interaction. We must distinguist; two subcases here. 

	

a. T(0)= ê, , D(bn )= têt+ (I+ bn )(unau  + v 	We impose bne — i;  otherwise we have 

(1) bn+i  b n _ i + 1 *O. The interaction as in Eq. (5.3), with 

	

hn=(en)-20„+1-i-bn _1+1)pn, 	 (5.12) 

where pn  and qn  depend on two variables, namely, 
xa=ga)b„+1+12n_i+1(en)-bn-ba-1, a=n-211. 	 (5.13) 

bn±1+bn-1+1=0, b 1+bn+1*0: (2)  

12,1=(en+i)-2/(bn + '+bn +1)Pn, kn=cen+1)-21(b.+1÷b.+1)qn, 

where pa  and qn  depend on 
+bh+1(en+1 )—bn_ i —bn-1,  en.  xn=cen-l)bn+1  

Note that for bn+i + bn _ i +1= 0, bn+i + bn+1= 0, we have b=-, and there is no invari-
ant interaction. 

3. Indecomposable Lie algebra 

Yu(Xn)=Xn(t)a.,„ Y0(xn)= 
	 (5.16) 

The invariant interaction is as in Eq. (5.4), but the functions On  and tfrn  depend on only two 
variables, namely, 

(0=Xn—len+l — Inen — Xn+len—l• 
	 (5.17) 

D. Six-dimensional symmetry groups 

1. Decomposition 6=3+1+1+1 
a. V(ai,„)=a,,„(unêun+v„a„n ), i= 1,2,3. The invariant interaction is as in Eq. (5.3), but hn  

and kn  are functions of t only. We see that the coefficients ai ,„ do not figure in the interaction. 

(5.14) 

(5.15) 
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Hence, we can add an arbitrary number of vector fields V(a i ,.), i e Z to the symmetry algebra. In 
other words, the symmetry algebra for the interaction (5.3) with h,, and k. depending on t alone is 

infinite dimensional. 
b. V(ai,n)=ai,n(unaun+v navn ), i= 1,2, T(b.)= ar+ b .(u.a.n+ na„n ). The invariant inter- 

action is as in Eq. (5.3), but h. and k,, depend on one variable only, namely, 

 

bn _ i  bn  

atm-1 atm 
a2,n _1  azn  

 

o 	 M= iv=  (5.18) 

  

with as in Eq. (5.8). 

2. Decomposition 6=3+2+1 
a. V(a.)=an(unaun+u,zav.), T(0)=(9,, D(a.)= ta r i - (4+ c.)(unc3un±v rzê,n ). We start 

from Eq. (5.3). The presence of T(0)= a implies that h. and k. do not depend on t. We first 

notice that if we have 

or yn=cn+1--=Xan, 	 (5.19) 

then we must have h.= k.= 0 (no invariant interaction). In all other cases, invariance under V(a n ) 

and D(c.) implies 

h n = cen)itcen+i)Pcen—OPPn(w), kn=(en)11(en+t)v(en-l)Pqn(w), 

w=cen—i)A(e„,i)BceC n), 

with A, B, and C as in Eq. (5.9), with the substitutions 

a2,n —>a n . 

The constants p„, v, and p in Eq. (5.20) satisfy 

(an+t -i-an_1),,t+(a.+1+an)v+(an_i+an)p=0, 

(7n+1+  Yn-1)1L-E (Yn+1+  Yn)7)± (Yn-1+  Yn)a.=  

Thus, for C*0 we can put 

an+an-1 , p—  2 an+an+1  
µ=0, v-2 	 C 

For C=0, A*0, 

a,,i-an+ i 	an+i +an _i 
— 2 	A  

For C=A=o, Beo, 

an--t+an 	 an+i+an_i 
p= 2 	B  , v=0, p=2 	 

The case A=B = C= 0 corresponds to Eq. (5.19) and hence to the absence of an invariant inter-
action. 

(5.20) 

(5.21) 

A p=0. 
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3. Decomposition 6=3+3 
a. sl(2,R)i  sl(2,R)2 . The algebra sl(2,R)2  is as 

1 	en-1 f  F =---2-  Un+l—PnlXn+1 ,xn— n  (en) 	en 

1 
Gn=-1 Vn+l—Pn(Xn+1 , Xn—

(en) 

in Eq. (4.8) and the invariant interaction is 

1)+ u nqn(Xn+1  

1) + V nq n(Xn+1 ,Xn-1)1 , 
	 (5.22) 

en +1 
	

en-1 
x„,i= , xn_i= • en 	en 

4. Decomposition 6=5+1 

a. saff(2) EID A . We have 

Y is(eanr )=ea.tdi,n, Y v(eaar )= ean% 	T(a n ) = dt+ an(u nô un+ v flan ). 

The invariant interaction will be as in Eq. (5.4) with Xii =enr. The functions On  and tfr,, will 
satisfy 

= e (an 	- i - 	otKn 	(i,=t 	e 	+1,4 (ù) ) , 

co= e —(an+an+  1)t  en + I e-(an+1+an-l)f en-e-(an -1+an)f en-i • 
	(5.23) 

5. lndecomposable symmetry algebras 
It was shown in Sec. IV that two inequivalent gaff(2) symmetry algebras exist. 
a. gaff( 2,R)i • 

Yu(Xn)=Xn(t)aun, Yv(Xn)=Xn(t).9„, 17(1)=- unaun +vnavn. 

The interaction is as in Eq. (5.4), however, On  and ein  depend Only on t. This means that the 
equations are linear and, moreover, the equations (1.1) for un  and v are decoupled. 

b. gaff(2,R)2  . The algebra is as in Eq. (4.22) [or (4.33)], the interaction as in Eq. (5.4) with 
X 

 
n( t )__ e(0 )t. The functions On  and ifrn  satisfy 

on=  e  — (ann +an —1—  an  

with ci) as in Eq. (5.23). 

E. Seven-dimensional symmetry groups 

1. Decomposition 7=3+1+1+1+1 

We exclude the case 

V(ai ,„)=ai ,„(un dun+vnavn ), i=1,...,4, 

since the only invariant interaction is (5.3) with hn  and lcn  functions of t. We already know that the 
symmetry algebra is infinite dimensional. 

a. li(ai ,„)=ai,„(u,z aan+v„êvn ), j 1,2,3, T(bn)=. 	b n(unann+ v flan ). The interaction is 
as in Eq. (5.3) with hn  and Icn  constants (depending on n). The algebra is actually infinite dimen-

we can take any number of operators V(a,,n). 

4/Jn,e(-01 ,1-1-i»Ln(e)), 	(5.24) 
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2. Decomposition 7=3+2+1+1 
a. 	V(ai,n)=ai,n(anau +vnavn),  i= 1,2, T(0)=.9,, D(c„)=ta,+(i+ c n )(una nn+ v navn )• 

We put yn = cn + f. An invariant interaction exists if and only if we have 

Yn 	Yn + 1 	Yn - 1 \ 

à= det a 1,n 	a1n+1 a1,-1 eo. (5.25) 

\ a,,, 	a2_n+1  

The invariant interaction is that of Eq. (5.3), with 

2 
hn= nkP n 	kn= 77k  qn k= (5.26) 

The variable 77 is as in Eq. (5.8); pn  and qn  are constants. 

3. Decomposition 7=3+3-1-1 

a. s1(2,R)1  sl(2,R)2 EDA I  . We have A = {V(a n)}. The invariant interaction can be obtained 
from Eq. (5.22). The additional invariance implied by the presence of V(a) restricts p,, and q„to 

Pn= 
 (

r„(w), 
Srt 

sn(w), 

„=(4+,),,,,—an(en _ i)a„—.._1(en)an_I—an+1, 

and we must impose a* a_ (otherwise we have F n= G„--= 0). 

4. Decomposition 7=6+1 
The algebra gaff(2,R)1  does not allow any nonlinear interactions. Let us consider gaff(2,R)2  

of Eq. (4.22). 
a, gaff(2,R)2EDIU= anauh+ vnavnl. The interaction is as in.Eq. (5.4), with 0, and t/in  as in 

Eq. (5.24). Invariance under the dilations corresponding to U implies that On  and gin  do not 
depend on co. Hence, the interaction is linear and decoupled. 

5. indecomposable Lie algebras 

	

a. Y ,(X n )= n(t)e un, Y v(Xn)=)4(t)avn, 	 (I-4)7= gn(t)a un , Y v(i-en)= An(t)avn• We start 

from Eq. (5.4) with 0, and Iiin  functions of t and co as in Eq. (5.17). If On  and t/rn  do not depend 
on co, the interaction is already linear and decoupled. Hence, co must be invariant under the 
transformations corresponding to l'u(ihn) and Y, (p.,,). This implies that X, and 	are indepen- 
dent of n. Further, invariance implies 

— 

	

7.7  = 	= k, 

with E= const. Equation (5.28) allows solutions, 

	

(
Xn 	( sin kt 	( sinh kt 

	

ih„ 	cos kt ' 	coshkt ' 

en+i)  2(an+ i+an _i)/(an-a n-i) 
q  (5.27) 

(5.28) 

( 1t 
	 (5.29) 

These solutions are all equivalent under allowed transformations. We choose Xn = 1, gn=t, i.e., 
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Yu(1)= aun, Yn(1)=8, Y.(t)=taun, Yv(t)=tavn. 	 (5.30) 

The invariant interaction is 

F„=(un÷i -un-1)(kn(w,t)+(un-un+i) 4 frn(à),t) ,  
(5.31) 

-vn-i)On(w,t)+(vn-vn+i)On(co,t), 

with 

(4)  = en+i-  en- -en • 	 (5.32) 

b. 	Yv(1)=övn, 17,(1)=.3, , T(0)= a, D(b)=18,+(i+ b)(unau.+v nav.), be 	b 
=const The invariant interaction is as in Eq. (5.31), with 

on=  kna) 	 2b+ 1), 	tait,: 	(.0  - 2/(26+ 1), 	 (5.33) 

with ku  and p„ constants, co as in Eq. (5.32). For b= - -127 there is no invariant interaction. For b 
* - 	the symmetry algebra is actually larger and includes Y u(t)=--  tau.  and Y u(t)=ta„n . 

F. Symmetry groups of dimensions 8, 9, and 10 

By now, all invariant interactions have been specified up to arbitrary constants (depending on 
n), except those involving symmetry algebras containing the subalgebra sl(2,R) e sl(2,R) 2 , or the 
subalgebra {11,,(1),Yv(1),Yv(t),1,(t)} of Eq. (5.30). Let us consider the remaining nonlinear 
interactions. 
1. sl(2,R)1  e sl(2,R)2e{ V(a1,n)}9{ V(a2,n)} 

The invariant interaction is obtained from Eq. (5.27) by specifying r(w) and s(w) to be 
specific powers of (o. The result is 

F u= C; 2[un-i-i -eti Pn+uneln (en-0-2AID(en+i )-2BID( en )2[(A+B)11)],  

 

(5.34) 
Gn ,_. - 2{ - +i  en- P  t 	1 f n C -2AID 

S 	
(en+i)-2BID(en)2[(A+B)11)] 

n 	un 	7/ M  'dein  
Sn 

Here pn  and q n  are constants, A and B are as in Eq. (5.9), and 

D=a1,,,,(a 2,,,+i -a2,v _ i )+a Ln.+.1(a2e_i-a2„)+al,,,_1(a2,,--az„4.1). 	(5.35) 

We assume 	0; otherwise there is no invariant interaction. In particular, we have a1,, 
Oa1,„.1_ 1 , a2vea2,±1. 

2. Algebras containing Yu(1), Yv(1), Yu(t),Yv(0) of (5.30) plus one additional 
operator Z 

The interaction is as in Eq. (5.31) with a restriction on On  and On • 

(i) Z=T(a)=0,+a(u nann+v nau.), aeean=an+i, 

On= On( 77), 	frn (Az( 77),  17= Ét)e-2at• 	 (5.36) 

(ii) Z= D(a)= t a (1+ a)(u nau.-Ev &av.), ae---a n=an+i , 

1 	 1 
On=  rn(77), ifrn=7sn(77), 77=,,,t. 	 (5.37) 
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(iii) Z=R(b)=(t2+1)Ût+(t+ Munaun -i- v navn ), 	bn+i 

1 
(15n  (12+1)2 rn(77)' tfrn =(t2+1)2 Sn( 77)'  

(5.38) 
arcta —2b n 

77=  i 	e  

with to as in Eq. (5.32) in all cases. 
(iv) Z-= V(1). Then On  and er,z  depend only on t and the interaction is linear. 

We can add two operators to those of Eq. (5.30) 

T(0)= a„  

The invariant interaction coincides with that of Eq. (5.33). 
Finally, the interaction (5.31) is invariant under a ten-dimensional symmetry algebra of the 

form 

(s1(2,R) i  G sl(2,R)2)>IYu(1), 17,(1),Y.(0,Yu(t)}, 

for 

	

On= knizr 2  efn=P nW -2, 
	 (5.39) 

i.e., b= 0 in Eq. (5.33). 

VI. SUMMARY AND CONCLUSIONS 

Let us first sum up the results on invariant interactions and the corresponding symmetry 
algebras. We shall follow the summary of possible symmetry algebras outlined in Sec. IVE. The 
results are presented in the following tables. 

Table I. The Series A of symmetry algebras. The algebra Lc  of Eq. (4.27) consists entirely of 
sl(2,R)1  singlets. In the first column of Table I we list the symmetry algebras. The number in 
brackets [e.g., A1(3)] denotes the dimension of the symmetry algebra. The notation for basis 
elements in column 2 are as in Eqs. (4.13)—(4.18). Note that if the functions h„ and k„ in the 
interaction (5.3) depend only on t or are constants, then the symmetry algebra is inftnite dimen-
sional, although the interaction is nonlinear. 

The case A3(7) corresponds to an algebra L with dimL= 7 and the interaction is completely 
specified [see (5.3), (5.25)—(5.26)]. In other cases the functions h„ and kr, depend on one, two, or 
three variables involving u k  and uk • 

Table H. The Series B of symmetry algebras. The symmetry algebras are either five or six 
dimensional. The interactions are as in Eq. (5.4) and involve two arbitrary functions, q5„ and 
A B-type symmetry allows On  and el/ to depend on just one variable involving u k  and v k . Any 
extension of the B-type algebras will restrict Xn(t) to be Xn  -= 1 and will involve a further pair with 

= t. This takes us into the series C of symmetry algebras. 
The algebras B2 , B6 , and B7  of Eqs. (4.32), (4.36), and (4.37) lead to linear interactions. Any 

interaction invariant with respect to B5  will be invariant under a larger group, corresponding to a 
Lie algebra in the series C. We do not include linear interactions in the tables and we list 
interactions together with their maximal symmetry algebras. 

Table Dl The Series C of symmetry algebras. The interaction will be as in Eq. (5.31), 
involving 	a 	variable 	co 	as 	in 	Eq. 	(5.32). 	The 	algebras 
C5(8), C7(9), C8(9), C9(9),CH(10),C12(11), absent in the table, lead to a linear interaction. 
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TABLE L Series A of syminetry algebras. The interaction hes the form (5.3). 

Restrictions on 	 Variables and 
No. 	 Lc 	 h„ and k„ 	 comnients 

A3(3) 	 t , en. , , en _ , , en (5.2) 
A3(4) 	 V(an) 	 1477.+1,77.--1 (5-5) 

t, e. , ii (5.6) 
A1(5) 	 V(a1,,,),V(a2,„) 	 t, i (5.8) 
A l (co) 	 V(cti ,„),i er 	 t 

A2(4) 	 T(b.) 	 C.+1,C.-1,C. (53) 

A2(5) 	 T(b„),V(an ) 	 fPn—i,A:+1 (5.10) 
1 p„,cr„ (5.11) 

A2(6) 	 T(b„),V(a1,„),V(a2,,) 	 ? (5.18) 
A2(no) 	 T(b„),V(ak,„),kEZ> 	 hn  ,k„ constants 	 None 

A3(5) 	 T(0),D(b.) 	 (5.12) or (5.14) 	 (5.13) or (5.15) 
A3(6) 	 T(0),D(c„),V(an ) 	 (5.20) 	 w (5.20) 
A3(7) 	 T(0),D(c„),V(ab,)V(a2,n ) 	 (5.26) 	 None 

For C6(9) and C10(10) the interactions are specified up to constants (that can depend on n). 
In ail other cases, the arbitrary functions depend on one variable, involving uk  and vk  

Table IV. The Series D of symmetry algebras. There are three such algebras of dimension 6, 
7, and 8, respectively. They all lead to nontrivial invariant interactions of the form (5.22). For 
D3(8), the interaction is completely specified. We do not list D4(10) in Table IV since it coin-
cides with C10(10) of Table Tl The algebra D5(11) corresponds to a linear interaction. 

For each interaction we have verified that the given symmetry algebra is the maximal one. 
A few words about the interpretation of the invariant interactions. From Eq. (5.1) and the 

variables (5.2) we see that invariance under sl(2,R)1  imposes very strong restrictions. 
(1) In particular, if the interaction is linear and sl(2,R)1  invariant, we must have 

n+1 	 n+1 
Fn= E Ak(t)uk , Gn= E Ak(t)i) , 	 (6.1) 

Ic=n-1 	 k=n-1 

i.e., the equations (1.1) for uk  and v k  decouple (into identical equations for un  and v sepa-
rately). 

(2) If the interaction terras .F„ and G n  in Eq. (5.1) are nonlinear, they always involve many-body 
forces. That is, they cannot be written as si-1ms  of terms of the type hn(un  ,v,,) or 
hn(un  ,v n+  1), etc. Indeed, each invariant variable Ê .n ,  .n+1,en-1 itself involves four of the 
original variables ut ,v simultaneously. This many-body character becomes more pronounced 
when the invariance algebra is larger. 

(3) The operators V(an ) correspond to site-depending dilations, 

TABLE II. Series B of symmetry algebras. The algebra includes one pair Yu(X.„), 	The interaction has the form 
(5.4). 

Restrictions on X„ , additional 
No. 	 Elements of Lc 	 Restrictions on 0, and +,e, 	Variables and comments 

B1(5) 
B4(6) 
B3(6) 

• •• 

e can —nr,r(an)  
(5.23) 
(5.24) 

t, w as in (5.17) 
w (5.23) 
w (5.23) 
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TABLE 111 Series C symmetry algebras. The algebras contain sl(2,11)1 ,Y„(1), Y„(1), Y„(t), Y„(t), and possibly addi-

douai elements. The interaction is as in Eq. (5.31). 

No. Additional elements Conditions on 0„ and f,b„ Variables 

C1(7) 
C2(8) 
C3(8) 
C4(8) 

C6(9) 

C10(10) 

- 
T(a) 
D(a) 

T(0),D(a) 

T(0),D(0),P(0) 

R(b)  
On= t-2 r6( 71), qi,,--= t-2s.( 77) 

on ,_. knto  —21(2a + 1),  efrn =p. w —2(20+1) 

k,, , p„ constants, 2a +1*0 
0.=k,i(0 —21 	frn'''PrI t')-2  

«), t (5.32) 
77= a,e  —2at 
v=  

9= cd( t2 + 1)-1  
e  —2b arc= t 

None 

None 

un= e'nun  , Un= eeanv „ 	 (6.2) 

Invariance under two such one-dimensional symmetry groups, generated by 
IV (a i ,„), V(a2,)}, where a l ,„ and azn  are two linearly independent functions of n, introduces 
the symmetry variable 

(6.3) 

as in Eq. (5.8). Here all six variables are coupled together. 
(4) The pair of operators Yu(k,,),170().,i) induces site-dependent (and time-dependent) shifts of 

the dependent variables, 
iïn= un+ eX n(t), in=v n+ ekn(t). 	 (6.4) 

The corresponding invariant variable again involves all six variables [see Eq. (5.17)], 

(°7-- Xn—len+1—)'‘nen—X n+len— l• 

A special case of the variable car  is obtained setting •••)' n=Xn-1=Xn+1=1. This is the case of Eq. 

(5.32), where 

w= ws=en+i—en— en-1 

is invariant with respect to two such translations: 

zin =un +€1 +€2t, i3n =v,2 + el + €2t 	 (6.7) 

(ei  and €2  are goup parameters and hence constants). 
A continuation of this study is in progess. It involves several aspects. 
The first is a study of the integrability properties of the equations that are completely specified 

by their symmetries. 'These are, first of all, those with infinite-dimensional symmetry groups, 
namely 

en-1 	 en-1 
Ü n=1.1„+1 	 unk „, 	n= v n+ 	h n- v nk „, 

e n 	 en 
(6.8) 

TABLE IV. Series D of symmetry algebras. The algebra contains sl(2,R),EDs1(2,R)2. The interaction has the form (5.22). 

No. 	Additional elements in Lc 	Conditions on p„ and q„ 	 Variables 

D1(6) 	 Xn+ 	as in (5.22) 

D2(7) 	 V(a„) 	 (5.27) 	 n as in (5.27) 

D3(8) 	 V(a 	V(a1„) 	 (5.34) 	 • • • 

(6.5) 

(6.6) 
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with h„ and kn  functions of t or constants [see A i(œ) and A 2(00) in Table I]. 
Completely specified equations with finite-dimensional symmetry algebras L are the following 

ones. 

(i) 
n—i 

..n=(un+i—C Pn+unqn)c°D-21A  tin.= (V n+l ene—n 1  Pn+ v nqn)a).D-2-i  (6.9) 

with wp as in Eq. (6.3), à as in Eq. (5.25). This is case A3(7) of Table I. 

en=[(Un+1—Un-1)Pn+(Un—Un+1)qn]W,ST
21(2a + 1) , 

if n=1( 1,  n+1 —  V n-1)Pn+ (I n—  V n+1)9n]£0-S72/(2a+1) 	 (6.10) 

with os  as in Eq. (6.6), pn ,q„,a5k — const This is case C6(9) of Table M. 
For a =0, Eq. (6.10) is invariant under a ten-dimensional symmetry algebra, namely 
C10(10) of Table M. 

(iv) 

fin=(en-1)-2Alk(en+i )-2131D(en)[2(A +B—D)ID] 	en-1 
Un+iT: Pn+unq,z1, 

en-1 	, iin=(en—i)-241D(en+1)-2BID(en)[2(A+B—D)ID] 

with pn  and qn  depending only on n. The constants A and B are given in Eq. (5.9), D in Eq. 
(5.35). 

A further task is to complete the classification, that is, to treat the cases of other sl(2,R) 
algebras and also of solvable symmetry algebras. 
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1 Introduction 

The purpose of this article is to investigate the Lie point symmetries of a 
large class of "generalized Toda field theories". The class is characterized by 
the equation 

where K and H are some real constant matrices and ni, , n.4  are some 
finite non-negative integers. The range of n may be infinite, semi-infinite 
or finite, hence the matrices K and H may also be infinite, semi-infinite, or 
finite. 

If the range of n is finite, K and H may be rectangular, not necessarily 
square. We assume that all the rows in H are different, that H contains no 
zero rows and K no zero columns. In all the cases we assume that the range 
of the interaction on the right hand side of eq. (1.1) is finite, hence the finite 
summation limits in both sums. "Generalized Toda lattices" are obtained 
from eq. (1.1) by symmetry reduction, using translational invariance, i.e. 
restricting to solutions of the form un(x, y) = w(t) where t = x+ Ay. 

Toda lattices and their generalisations, Toda field theories, represent one 
of the most interesting, rich and fruitful developments in the realm of com-
pletely integrable systems. The original Toda lattice was introduced by M. 
Toda [1, 2] who found analytical solitons and periodic solutions in a discrete 
lattice with an exponential potential involving nearest neighbour interactions. 
It was also found that the Toda lattice admits a Lax representation and all 
the usual attributes of integrability [3, 4]. The Toda lattice was generalized 
to integrable lattices related to the root systems of simple Lie algebras [5] - 
[8]. The considered lattices can be finite, infinite, semi-infinite, or periodic. 

The attractive features of Toda lattices have been generalized to two space 
dimensions in several different ways [9] - [19]. 

All of them can be recovered from eq. (1.1) by specifying the matrices 
K and H. Thus, the Mikhailov-Fordy-Gibbons field theories [9, 10] (for 
infinitely many fields) 

Un,ry 
	 (1.2) 
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are obtained by putting --nn-1 — Hnn = 1, Knn = Knn+1 :="-- 1 and all other 
components to zero. A class of Toda field theories 

n±n2 

Un,xy — 	nmeum , 
	 (1.3) 

m=n—ni 

studied by Leznov and Saveliev [12, 13], Olive, Turok and others [14] - [17] 
(usually for a finite number of fields un ) are obtained by setting H = I and 
taking K to be the Cartan matrix of a semisimple Lie algebra (or an affine 
one). 

A further class of Toda field theories, also studied by Leznov and Saveliev 
[13, 14], by Bilal and Gervais [17], and Babelon and Bonora [18] (for a finite 
number of fields) can be written as 

rn+n4 

Un,xy  = exp E Hnini 
i=m-rt3 

(1.4) 

and is obtained by taking K = I and H as a Cartan matrix. 
In this article we will be interested in point symmetries of the system (1.1), 

rather than in questions of integrability, or explicit solutions. The symmetries 
we are interested in will include conformal invariance, whenever it is present, 
and gauge invariance, not however higher, or generalized symmetries, be they 
local, or not. 

In Section 2 we consider infinite Toda field theories, i.e. take —oo < n < 
oo. In this case eq. (1.1) can be viewed as a differential-difference equation. 
Continuous Lie symmetries of such equations have been studied using several 
different approaches [20] - [29]. We shall follow that of Ref. [20] - [24], using 
both the "intrinsic method" and the "differential equation method" [21]. 

In Section 3 we turn to finite Toda field theories, when we have 1 < 
n < N < oc in eq. (1.1). Eq. (1.1) in this case represents a system of N 
differential equations and its point symmetries can be obtained in a standard 
manner [30, 31]. We first obtain general results, then specify the matrices H 
and K in several different ways. 

Section 4 is devoted to semi-infinite Toda field theories, i.e. 0 < n < oo. 
Again we first obtain general results, then specify the matrices H and K, 
inforcing the cut-off at n 0 in several different ways. 

Some conclusions are drawn in Section 5. 
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2 	Symmetries of Generalized oo—Toda Field 
Theories 

2.1 	General Results 

Let us consider eq. (1.1) with n in the range —oo < n < oo. We follow the 
"differential equation method" described in Ref.[21] and look for transforma-
tions of the form 

= Ag (î, {uk}), fin = S2g (Y,n, {uk }), ñ = n, 	(2.1) 

where we have used the notation 	(x, y), É -a-  g 	taking solutions of 
eq. (1.1) into solutions. The notation {uk } indicates that the new variables 
can depend on all the fields {uk}kez. 

The Lie group transformation (2.1) is generated by a Lie algebra of vector 
fields of the form 

DO 

= 	(x, y, tuk nas  + r1(x , y, tuk Hay + > çbi(x , y, fukna., • 	(2.2) 

The prolongation of this vector field is constructed in the same manner as 
for differential equations [30, 31] (albeit an infinite system of them). For a 
general equation of the form 

= Un ,x y — Fn(X y, fukl) = 0, 	 (2.3) 

we require 
pr(2)i En  E n=0= 0 • 	 (2.4) 

It was shown quite generally [21] that for eq (2.3) with Fn  any sufficiently 
smooth function depending on at least one function uk , k 	n, the vector 
field (2.2) satisfying eq. (2.4) will have the form 

00 

= e(x), 	= 	On = E Arikuk+Bri(x,y), 	(2.5) 
k=—oo 
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where A = {Ana} is a constant (infinite) matrix. The functions in eq. (2.5) 
must satisfy a remaining determining equation, namely 

00 

Bn,xy 	71y)Fn 	E AnaFa eFn,x 71Fn,y 
a=—cx, 

(Éc  
a co 	cc )

Aoup ± Ba  Fn,„,,  = 0, 

(2.6) 

where Frime,  is the derivative of Fn  with respect to the variable ua . 
Let us now specify the function Fn  to be a sum of exponentials as in eq. 

(1.1). There are three types of terms in eq. (2.6): those independent of un, 
linear in un  times exponentials and pure exponentials. Each type of term 
must vanish separately. Since H has no zero rows we get the determining 
equations 

Bn,xy 0 , 	 (2.7) 

E AarnFn,ua  — 0 , 	 (2.8) 
— oc 

—(s+Tly)Fn + — 
CC 

= 0n,u,„ 	• (2.9) 
a= — 	 a=—co 

Eq. (2.8) can be rewritten as 

EKn,HA„ exp 
aI3 	 -y 

0 ,7 u-r ) = 0. 	(2.10) 

All exponentials in eq. (2.10) are linearly independent (since all rows in 
H are different), so the equation must hold for each ß separately and the 
exponentials can be dropped. Moreover, the factor Kno  can be dropped 
(since K has no zero column). We find that eq. (2.8) in this case implies an 
equation for the matrix A, namely 

E H„Aam = 0, 	 (2.11) 
a=— cc 

or in matrix form HA = 0 (however, the matrices are infinite). 
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Let us now turn to eq. (2.9) and make use of the finite range of the 
interaction Fu  in eq. (1.1). We have 

 

= 0, n + nu  < k or k < n — nd (2.12) 
auk 

for some non-negative integers nu  and nd . In eq. (2.9) all exponentials, 
obtained after substituing for Fri  from eq. (1.1), are linearly independent. 
This anows us to split eq. (2.9) into two types of equations. These are 
obtained as coefficients of exp (E/  Hm/ u/ ), with m G [n — ni, n + n2] and with 
m outside this interval, respectively. Thus we have: 

Tn+na 

[(x 11Y) E 
a=m—n 3 

m±n2 

p=m—ni 
AupK pm  = 0, 

(2.13) 

m G [n — ni , n + n21, 

rn+n2 

	

m 	[n — ni, n 
	 (2.14) 

p=m—ni 

We -Shan show that eq. (2.14) actually holds for all values of m so that 
eq. (2.13) can be simplified. To do this, we view eq. (2.11) as a difference 
equatien for Aam. To make this explicit we restrict H and K to be band 
matricŒ, with finite bands of constant width 

	

 	H+0.n+cr  = 

f h,(n) c E P1,P21 
P111)21 7 

h 
Pi

(n) 	0, h 2 (n) 	O. 	(2.15) 

Sirñilaiy 

Km+cr'm  = 1 Knni 	
r 	

[qi,q21 
kr (m) 	q2] k (m) 0, k g.,(m) O. (2.16) 

=  

InAhescnotations we see that eq. (2.11) is a linear difference equation for 
— p2  + 1 terms 

P2 

E h,(n)Ad+n,,,, O. 	 (2.17) 
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Equation (2.17) determines the dependence of An, on n. Indeed the linear 
difference equation 

P2 

E ho(n) 	= 0 	 (2.18) 
fr,=Pi 

has p2  — pl  linearly independent solutions, a basis of which we denote by 
j = 1,2, ... ,P2 — p1}. Thus, we have 

P2 —P1 

Anm  = E 
J=1 

where Cjm  are constants to be determined by the remaining determining 
equations (2.13) and (2.14). In order to analyze them, let us define the 
quantities 

rn+n2 

Q nrn 	 _Ana- K CT M • 

cr=m—ni 

From eq. (2.14) we have Qn, = 0 for m "sufficiently far away" from n. But, 
by using the expansion (2.19), we get 

1,2-1J1 

Qnrn = E 
j=1 	cr=rn — ni 

which, because of the linear independency of the 	implies 
m±n2 

Karri — 0 
	

(2.20) 
cr=m—n1 

for all values of m, since this relation does not depend on n and the index m 
is no longer tied to n. In other words, if Qn, = 0 holds for certain values of 
n and m, as in eq. (2.14), then that equation must hold for all values. As in 
the case of eq. (2.17), we introduce a solution basis {q5L, / = 1, 	, q2  — qi} 
for the equation q2 

Ekcr(m) soo-±m = o. 

The general solution of eq. (2.20) now is 
42 — V 

Cjm = E qii  ym , 
1-1 

(2.21) 

(2.19) 



= 

(nt:—  00 

= 1, • • ,P2 -pi; 1 = 1, . - - q2 — qi) • 

(2.27) 

00 
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where qii  are arbitrary constants. The expression (2.19) for Anm  is replaced 
by 

Anm qii 'Oil-,.07n1  • (2.22) 
J=1 1=1 

A further consequence is that the last term in eq. (2.13) can be dropped. 
Then, using the general solution for eq. (2.7) 

(x, y) --= ßn (x) + 7n (y) 

we separate the x from the y dependence in eq. (2.13) and reduce it to 
two inhomogeneous difference equations for On  (x) and -y?, (y). The general 
solutions of which are 

P2 -P1 	 P2 —P1 

ß (x)= 	 (x)= (x)0i7, — 	 (x)= 	sa (Y) 	bn77y(Y), 

(2.23) 
where bn  is an arbitrarily chosen solution of the inhomogeneous difference 
equation 

P2 

E h(n) bo.+, =1. 	 (2.24) 
cr=pi 

Furthermore, in eq. (2.23) the functions ri  (x) and si  (y) are arbitrarily 
chosen. Finally, we obtain the following theorem. 

Theorem 1 Consider all the generalized Toda theories of the form (1.1) 
for infinitely many fields un  (x, y), where the coupling matrices H and K 
satisfy eqs. (2.15) and (2.16). Their Lie point symmetry algebra is infinite-
dimensional and a basis for it is given by the following vector fields: 

DO 
	 00 

= -(x)3. — 	(x) 	bnau„, Ÿ(77) = 17(y)ay — T'y (y) 
	

bnaun  
n = - 00 

DO 	 00 

n=-co 
(2.25) 

Ûi  (ri ) = ri  ( 
	 Ç (  s )  = 	(y) E 	(j= 1, .. • ,p2 —p1) , 

n-= - ce 	 n= - oc 
(2.26) 
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The functions e(x),77(y), ri  (x) and si  (y) are arbitrary, all the other quan-
tities are determined by solving the linear difference eqs. (2.18), (2.21) and 
(2.24). 

As far as interpretation is concerned, we see that the generalized Do— Toda 
lattice (1.1) is always conformally invariant, since the vector fields (2.25) gen-
erate arbitrary reparametrizations of x and y, accompanied by appropriate 
transformations of the fields un . More specifically, the conformal transfor-
mations leaving eq. (1.1) invariant are 

/1)(x, 	 x(Y, 

fin ( -±, 	= un (x, y) — b7 , ln (
cl'° dx 
'dx de 

where //)(x, ).) and x(y, )) are arbitrary functions of x and y, related to (x) 
and 77(y) by the relations 

= 1/)(x, A) = T-1(A T(x)), 

= X(Y, À) = S-1(A + S(Y)), 

(2.28) 

(2.29) 

with 
ds 	 Y  dt 

T(x) = fo  (8) , 	S (y)f = 	. 
o 71(t) 

(2.30) 

The vector fields Ûi  (r) and 1/..2  (s) generate gauge transformations: certain 
functions obtained by integrating the vector fields can be added to any so-
lution. Formally, the operators Z 1  generate linear transformations among 
components of solutions. However, the sums are over infinite range, so con-
vergence problems may arise. Moreover, we have 

asy 
 (

E Oimum) = 0 	 (2.31) 
rn 

as a consequence of eq. (2.21). In other words, if the equation (2.21) admits 
non trivial solutions, than one can always perform a linear transformation 
among the un s, in such a way q2  — q1  new fields v1  = 	g577 ,1  am , satifying 
the wave equation asayvi  = 0, are replaced in the Toda system. 

As stated in Theorem 1, the problem of finding all symmetries of eq. 
(1.1) reduces to solving the recursion relations (2.18), (2.21) and (2.24). In 
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general, this may not be possible analytically in closed form. Well developed 
techniques exist for solving homogeneous and inhomogeneous difference equa-
tions with constant coefficients [32, 33]. This is the case that occurs for all 
generalized Toda field theories that we found in the literature: h, (n) and 
k, (m) do not depend on n and ni, respectively. The nonzero commutation 
relations for the symmetry algebra of the generalized co—Toda theory (1.1) 
are: 

[(Ci) , f((ù)] = 	 e2), L1), 	 2)] = 1> (771 7/2,y — 771,y 772)/ 

[5((), Ûi  (r)] = Ûi  (Cr), 
L
1'7(77), f7j ( 8 )] = 	(77 sy) 

[f((), 2] = —"Ûj (4's 	nOin) 	[-r7(n), 	(77Y E bnoin) 

[Û„ (r) , 	= 	(r 

 

017„07̀71',) 

  

(8 

 

(s) 	3  
T12 

 

(IcTinOcM) cb— e„On) ad 

(2.32) 
The algebra of vector fields Z 1  is finite dimensional (its dimension is d = 
(p2  — pi ) x (q2  — q1 )). However, its isomorphism class cannot be determined 
without specifying the functions Oml  and 	i.e. the matrices H and K in 
(1.1). In all examples in the literature, we have either d = 1, or d = O. It 
is however easy to invent examples in which {23i } is simple, semisimple, 
solvable, or whatever we postulate a priori. 

The overall structure of the obtained Lie algebra is 

({).} 9  {1-1) B  ({2} 3P  (û  e 
	

(2.33) 

If {Z.  is solvable, then (2.33) amounts to a Levi decomposition, since 

both {.k} and {Ÿ} are centerless Virasoro algebras and hence simple. We 
recall that the Levi theorem does not hold for infinite-dimensional Lie alge-
bras and a Levi decomposition does not necessarily exist. 

ab) 
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Let us sum up the general results obtained so far for the symmetries of 
the generalized ao—Toda field theories (1.1) under the constraints imposed 
in Theorem 1. 

1. The theory is always conformally invariant, since the inhomogeneous 
equation (2.24) always has a solution. 

2. The theory allows gauge transformations Û and 17.  if p2  — pl  > 1. 

3. The transformations of type Z.  exist if (pz  — pi) (q2 — qi) 	1. 

2.2 Special cases 

1. The Mikhailov-Fordy-Gibbons two dimensional oo-Toda system 
(1.2) 

We have 

	

h_1  (n) = —ho  (n) = 1, and k_1  (n) = —ko  (n) = —1, 	(2.34) 

so /32  — Pi = q2 — q1  =1. From eqs. (2.18) and (2.21) we have 

Om=Çrn=1  

Equations (2.23) and (2.24) in this case imply 

	

= 0(x) + 	y = 7(y) + nny. 

From Theorem 1 we now obtain all symmetries of eq (1.2), namely 

5(() = e(x)a. + 	n 	Ý(7)) = 71(Y)Oy + 77y  
n=— DO 
	 n=—co 

00 
	 00 

Û = 0(x) 
	

177  = 7(y) E aun, 	(2.35) 

n j ( 01 m :— n  

The generators 	Ý, Û and 17..  were obtained in ref. [21] using the so called 
"intrinsic method". The generator Z was not obtained there and cannot be 
obtained by the intrinsic method. 

= 



"c) 
Ý(n) = 77(y)ay + —7/y E n2aun, 2 n=  

00 

2auro  
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2. The Toda field theory (1.3) 
We take H = I. Then equations (2.18), (2.21) and (2.24) in this case 

imply 
- 	, 7m = 
	An, = O. 

The theory is only conformally invariant 

(e)=e(x)ax—exE aun, Ý(77) = 77(y)ay — 
	 (2.36) 

and no further symmetries are obtained. 
3. The Toda field theories (1.4) 

We take K = I and relation (2.21) implies 

Anm 	0 • 

The remaining equations (2.24) cannot be solved explicitely for general h, (m), 
but as said above, we can easily deal with in the constant coefficients case. 
As an example, let us restrict to the case when H is the A00  Cartan matrix 
(This is the AN Cartan matrix for N -› oo, where the limit is taken symmet-
rically from a fixed, but not extremal, vertex in the corresponding Dynkin 
diagram). Thus we have 

h_1  = h+1  = -1, ho  = 2, 	 (2.37) 

the solutions (2.23) become 

	

n2 	 722 

	

On = —2 	
+ n r2(x) + (s), -yn = —2 7/y Th 82(Y) + (y)• 

The symmetry algebra is 

.k() = e(x)ax  + -21ex  
n=—o0 

oo 

(ri ) = ri  (x) 	u 	12.'1 (81) = si (y) 

(2.38) 

(2.39) 
n= - oo 	 - oo 

co 	 oo 
Û2 (r2) = r2  (x) 12,  n5,, 	«17.2 (52) = 82 (y) 

	
nau„, 

n=—oo 

where (x), ri(y), (x), si  (y), r2(x) and s2(y) are arbitrary smooth functions. 



1 
= -

2 	
nrnnaxUmayUn — Cm  eXp (E 

1=1 m=-1 m,n=1 

(c, 	0) , (3.2) 
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3 Symmetries of Finite Generalized Toda 
Field Theories 

3.1 	General Results 

In this case we have a system of N partial differential equations in N fields 
un  (x, y), namely 

 

= EK,,,exp 
m=1 	 1=1 

 

Un,xy — F, (1 < n < /V) . 	(3.1) 

  

The "coupling constant" matrices H and K satisfy H E IR"'N  and K E 
lex m . The system (3.1) could arise in a quite general field theory -with 
Lagrangian 

with 

K = L-1HT C, 	L= 

 

C 	diag (ci,. • • cN) • (3.3) 

 

2 

Some general considerations concerning the system (3.1) are in order. 
First, if either K, or H (or both) allow an inverse, or at least a left 

inverse, then this system can be simplified. Indeed, let K-1  exist. We put 
un  = Ern  &Tem  and obtain 

Pm,sy = exp (E (HK)mi  pi ) 
1-1 	

1 < m < M. 	(3.4) 

Conversely, let H-1  exist and put wi  = Ei  H3/u/ , we obtain 

W771,Xy 
	 (HK)mj ewi , 1<m < M. 	 (3.5) 

j=1 

In other words, one of the matrices H, or K can be normalized to /Ad , if it 
is left invertible. 
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The second comment is that the system (3.1) with K = I admits Lie-
Bâcklund transformations, and in this sense is completely integrable, if the 
matrix H is a Cartan, or a generalized Cartan matrix [19]. 

We mention that in the case of the infinite Toda field theories the matrices 
H and K in general have nontrivial kernels, are hence not invertible and we 
cannot normalize them. 

Let us now turn to the Lie point symmetries of the system (3.1). We 
write a general element of the symmetry algebra in the form (2.2) (with the 
sum in the range 1 < n < N), apply its prolongation to eq. (3.1) as in 
eq. (2.4). From the determining equations we find that for any Fr, in eq. 
(3.1), in complete analogy with the oo-Toda theory, a general element of the 
symmetry algebra will have the form (2.5), the summation being from 1 to 
N. 

Two determining equations remain and they depend on the specific form 
of Fn  in eq. (3.1). Making use of the fact that all the exponentials are 
linearly independent (no two rows in H coincide) and that the matrix K 
has no zero column, we reduce the remaining determining equations to two 
matrix relations 

HA = 0, 	 (3.6) 

[(A — ( x  + ny ) /) K]nni  = K„ (HB)77_, (1 < n < N, 1 < m < M). (3.7) 

We multiply eq. (3.7) by H from the left and use (3.6) to obtain 

— ( s  + 77 y ) (H K)km = (H K)km  (IIB), Vk, m. 	(3.8) 

If the matrix HK has no zero column, then we obtain 

B = 	(es + 77y) m 	 (3.9) 

where 1M = (1, 	, 1)T  E Rm  , and from eq. (3.7) 

AK O. 	 (3.10) 

Thus, matrix A must satisfy the same two homogeneous equations (3.6) and 
(3.10) as in the infinite case. Furthermore, if 11u  is in the image of H, then 
we define bN  G RN  to be an arbitrarily chosen (but specified) solution of the 
inhomogeneous equation 

HbN  = Tm. 	 (3.11) 

The results of these considerations can be summed up as follows 
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Theorem 2 Consider the generalized Toda field theories (3.1) with a finite 
number of fields N. Assume that all rows in H are different and that the 
matrix H K has no zero column. Then 3 types of symmetries can occur and 
they depend on the properties of the fundamental spaces of the matrices H 
and K. The symmetries are of the same form as in Theorem 1, except that 
all summations range from 1 to N However, if 1M G Im(H), then and 
are arbitrary functions of x and y, respectively, and the theory is conformally 
invariant. The quantities bn  are the components of the vector bN , itself an 
arbitrary solution of eq. (3.11). Otherwise, if M e Im(H), the theory is 
invariant only under the Poincaré group, generated by 

=P15s, A = ay, 	= 	— yay. 	 (3.12) 

Gauge transformations exist only if H is not invertible. Analogously to the 
formulas (2.26), r i  and si  are arbitrary functions and the vectors 11)i span 
Ker (H). Finally, the vectors 01  span the left kernel of K. If this space is not 
zero, then dim (Ker (KT )) x dim (Ker (H)) symmetries of the form (2.27) 
are admitted. 

From Theorem 2, contrary to the case of infinitely many fields, conformal 
invariance is not a priori guaranteed, but it imposes restrictions on the image 
of H. Gauge symmetries exist only if the matrix H has a nonzero kernel. 

3.2 	Special cases 

1. The Mikhailov-Fordy-Gibbons Toda theory and generalizations 
Consider the field equation 

Uzy  = — 	exp ((3cti  • U) , 	 (3.13) 
i=1 ai 

where U = (u1 , 	, U N ) is an N-ple of real fields and (a1, 	,a) denote the 
simple roots of a classical simple finite Lie algebra. Equations (3.13) above 
take the form (1.2) for all n satisfying No  < n < N— 1. For n = N we obtain 

uN,zy  = exp (uN_ i  — uN ) . 	 (3.14) 

The equations for 1 < n < No  are different for each Cartan series. The 
number No  is equal to 2 for AN , BN ,CN , and 3 for DN. 
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For the AN algebra we have 

	

ui,xy = — exp (ui —112) • 	 (3.15) 

Conformal and gauge transformations are exactly the same as given in eq. 
(2.35) (except that the summations are from 1 to N). 

For the B N algebra we have 

ui ,xy  = exp (—u1) — exp (u i  — u2 ) . 	 (3.16) 

Conformal transformations are as in eq. (2.35) (with the same comment 
about the summations) and there is no gauge invariance. 

For the C N algebra we have 

ui,xy  = — exp (ui  — u2) + 2 exp (-2u1 ) . 	 (3.17) 

The only symmetry is conformal invariance, generated by 

5 ( =  
n=1 

( 71) = n(Y)ay + Tly 	(n — 
n=1 

Finally, for the D N algebra we have 

ui ,xy  = exp (—ui  — u2 ) — exp (u1  — u2 ) , 
u2,xy  = exp(—ui  — u2) exp (ul  — u2 ) — exp (u2  — u3 ) . 	(3.19) 

Again, the only symmetry is conformal invariance, in this case generated by 

= 
n=1 

«f7(77) = 7/(Y)ay + 71y 	(n 	1) ann. 	 (3.20) 
n=1 

We mention that the infinite system (1.2) can also be reduced to the finite 
one by imposing periodicity uN+1  = ui . In this case IN  is not contained in 
/m(H) and there is no conformal invariance. Thus, the symmetry is given 

aur, 	 (3.18) 



50 

by the two dimensional Poincaré algebra (3.12) and by the gauge generators 
given in (2.35). 
2. The Toda field theory (1.3) 

The symmetries are the same in the finite case as in the infinite one, 
namely the conformal transformations generated by (2.36) (for any finite 
matrix k). 
3. The finite Toda theories (1.4) 

Since the Cartan matrix H is invertible, this theory is equivalent to that 
described by eq. (1.3) in the sense of eqs. (3.4) and (3.5). Hence this theory 
is always and only conformally invariant. However, the generators of the 
vector fields take a slightly different form, which we report for a subsequent 
discussion. 

For the AN algebra the generators are given by 

ri (ri — N — 1) Jan . 	(3.21) 
n=1 

For the BN algebra, the symmetry generator is given by 

.CV = (x)a. + 77(Y)ay — 	+ 77y) 
	

(3.22) 

{N(N+1)0,„ +2 
n=2 

[N (N 1) — n (n — 1)] Ou?, . 	(3.23) 

For the CN algebra, the symmetry generator is given by 

= e(x)a. + 77May + (e. + ) 
	

[n (n — 2) — N2  + 1] 0„,,. (3.24) 
n=1 

Finally, for the DN algebra (N > 4), one has 

= «x)ax + 77(Y)ay 	(e. + 77y) x 
	 (3.25) 

{N (N — 1) (0,2 , + 0,22 ) + 2 	[N (N — 1) — (n — 2) (n — 1)] a„n  }(3.26) 
n=3 
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4 Symmetries of Generalized Semi-Infinite 
Toda Field Theories 

4.1 	General Results 

Let us now restrict the range of the discrete variable n to be 1 < n < Do. 

Both the equations (1.1) of the generalized Toda field theories, and their 
symmetries will be modified. The matrices H and K will no longer be pure 
band matrices but will have the form 

/ 

H — 	H AI-I-1,M+1±pi 	• 	• • • 	• • • 	 HM-1-1,/t1+1-Fp2 

	

HM÷2,M+2+pi 	 HM-1-2,M+2-1-P2 

(4.1) 
where M +pi  < N < M+p2  and the void entries are equal to zero. Similarly, 
the matrix K takes the form 

1 K1,1 	• • • K1,N' 

K N1+1-hqi,N'+1 
K114 • • • KM',N' • • • 

K 

K 

(4.2) 
KN'+1-1-q2,N'+1 • • • 

K N'+2+q2,N1 -1-2 

1 

where N + q1  < M' < N' + q2 . Although one could easily construct non 
trivial models, which do not fit in the given scheme, they seem quite artificial 
and, moreover, all the cases which we found in the literature satisfy the above 
restrictions. 

We denote by -11/.  and K respectively, the M x N and M` x N' matrices, 
which can be extracted by taking the first M rows and the first N columns 
from H and, in turn, the first M' rows and the first N' columns from K. 

The symmetry algebra of the semi-infinite Toda field theory equation can 
either be obtained directly, ab initio, or we can obtain it from the infinite 
case of Section 2, by adding appropriate boundary conditions and requiring 
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that they be invariant. As above, the functions e (.), 7/  (y), Amr, and B„ (x, y) 
must satisfy the remaining determining equations (2.7) - (2.9). Following the 
same reasoning as in the finite case (see Section 3), we obtain the analogs 
of all the relations (3.6) - (3.10), where now all the labels and summations 
range from 1 to oo (i.e. we take N —> oo in all formulas). The key equation 
of the discussion is eq. (3.9) and its associated homogeneous system. Here, 
we separate the problem into the finite subsystems 

= o, 	 (4.3) 

= --(e.+7/yr1m, 	 (4.4) 

where fà = (B1, 	, BN ), and a difference linear equation, which we can put 
again in the form (2.18), or (2.24) respectively, for n > M + 1. The eq. 
(4.3) has Ker (fi) as its solution space. On the other hand, the difference 
equation (2.18) has a (p2  — pi)-dimensional solution space, the elements of 
which have the form 

p2 -pi 

B, = E 
j=1 

n > M + 1 + 	 (4.5) 

in terms of the basis 1j. Moreover, the difference eq. (2.18) has only the 
zero solution in the case pi  =232. But, because of the imposed restrictions on 
the form of H, in such a case the components of the vector É are decoupled 
from the remaining (BN+1, ...). This means that the semi-infinite homoge-
neous linear system H B = 0 has zero-dimensional kernel only if both the 
finite system (4.3) and the homogeneous difference eq. (2.18) do. 

Assuming now that pi  < p2  and, moreover, that M + pi  + 1 < N, the 
components (Bm+i+p, , 	, BN ) have to satisfy both the finite linear eq. (4.3) 
and the difference eq. (2.18). Substituting the representation (4.5) into (4.3), 
we get N — dim (Ker (fi)) constraints on the La— i=., •••,P2 -P1 Thus, if it 
results that 	

M N ± P2 + dim (Ker 	= no  > 0, 	(4.6) 

then the semi-infinite homogeneous system HB = 0 admits a no-dimensional 
kernel, spanned by the set of linearly independent functions 	. 

The above result implies that, if the constraint (4.6) holds, then the semi-
infinite Toda model defined (4.1) and (4.2) possesses a symmetry group of 
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gauge transformations, generated by the 2 x no  vector fields 

00 	 00 

Ûi  (ri) = ri  ( 
	

(s3) = s, (y) E 	(j =1, ... ,P, —P1) . 
n=1 	 n=1 

(4.7) 
As in the finite case, a semi-infinite theory is conformally invariant if the 
inhomogeneous eq. (3.9) ( for semi-infinite matrices) has a solution. Thus, 
now we must require that the vector i = (1, 1,...) be contained in /m (H). 
But, as outlined above, the problem is reduced to finding a solution of the 
eq. (4.4) and of the difference eq. (2.24). The former equation is solved if 

lm  e /m (1-/) 
	

(4.8) 

For the difference eq. (2.24) a solution always exists as seen in Sec. 2. Hence 
the structure of the matrix H shown in (4.1) garantees that a solution of the 
total inhomogeneous system always exists, once eq. (4.8) is satisfied ici. In 
conclusion, the condition (4.8) is not only necessary, but also sufficient to 
ensure the conformal invariance of the given Toda theories. 

Finally, an analysis similar to the study of the gauge invariance can be 
performed for the Z'-type transformations, which exist if a common solution 
of the two semi-infinite homogeneous systems 

HA= 0, 	AK = 	0 	 (4.9) 

can be found. Thus, we are lead to the following theorem 

Theorem 3 Consider the semi-infinite Toda field theory (1.1), with H and 
K given by (4.1) and (4.2), respectively, and with all rows of H different. 
Moreover, let H K have no zero columns. Then, the symmetry algebra de-
pends on the fundamental spaces of the finite dimensional submatrices .-T-11 and 
K, on the solutions of the difference eqs. (2.18) and (2.24) for n > M +1 
and, finally, on the solutions of the difference eq. (2.21) for m > N + 1. 

The theory is conformally invariant if the condition (4.8) holds. The 
corresponding genera,tors take the form (2.25). Otherwise, if (4.8) does not 
hold, the symmetry reduces to the Poincaré group generated by (3.12). 

A gauge transformation group, involving 2n0  arbitrary functions of one 
variable, exists if the relation (4.6) holds. The algebra generators take the 
form (4.7). Finally, Z.. -type gauge transformations exist if not only (4.6) 
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holds, but also the supplementary condition 

— M + q2  + dim (K er (11) = mo  > 0 	(4.10) 

is satisfied. In such a case they form a Lie algebra of dimension mo  x no. 

4.2 	Special cases 

Now let us consider the same three examples as in the previous Sections. 
1. Mikhailov-Fordy-Gibbons field theories 

All examples of Section 3.2 can be generalized to the semi-infinite case, 
simply allowing N to go to oo for each classical Lie algebra. The equations 
labeled by 1 < n < No  are explicitly given by (3.15), (3.16), (3.17) and 
(3.19), respectively. Moreover, for i > No  the equations are the same as in 
the infinite case, i.e. eq. (1.2). 

For the A.,,±  algebra (We use this notation in order to distinguish this 
semi-infinite model from the previously introduced AD°  infinite one) we have 
M = N = M = N' = 0 and hence the symmetries are exactly the same as 
in the infinite and in the finite cases (see eq. (2.35)), where the summations 
are over the appropriate range. 

For the Boo  algebra one has 1:1 = 	= (-1), then also M = N = M' = 
N' = 1, as one can see from (3.16). Theorem 3 allows to establish that there 
are no gauge transformations of any kind and the generators of the conformal 
transformations are the same as given in (2.35). 

From eq. (3.17) one sees that fi = —k = (-2) for the Cc, algebra, 
then M = N = M' = N = 1. Thus, Theorem 3 establishes that only the 
conformal invariance is admitted. Its generators have the same form as in 
eq. (3.18), where the summation is over the positive integers. 

Finally, for the Do°  algebra one has 

= 	11 ) = —kT. 1 	1 

Theorem 3 implies that only conformal transformations leave the system 
invariant and their generators are obtained by taking the limit N —> oo in 
the formulas (3.20). 
2. The semi-infinite Toda field theory (1.3) 
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The discussion is very simple. Indeed, since H is the indentity matrix, 
there are no gauge transformations. Moreover, the generators of the confor-
mal transformations in the infinite, semi-infinite and finite cases take always 
the same form (2.36), where the summations are over the appropriate range. 
3. The semi-infinite Toda field theories (1.4) 

As opposed to the finite case, the matrix H is no longer invertible, so now 
these theories are not equivalent to the ones given by (1.3). 

First, we observe that, since K is the identity matrix, there are no 2-
type transformations. For any classical Lie algebra, extended to N ---> Do, the 
recursive part of the systems, i.e. the equations labeled by n > No  as defined 
in Sec. 3.2, are always the same as in the infinite case discussed in Sec. 2.2.3. 
The solution of the corresponding difference equations for Br , (n > No ) , that 
is (2.18) and (2.24), are the same as in (2.38) and the generators are as in 
(2.39). However, for 1 < n < No  the equations provide constraints of the 
form (4.3) and (4.4). The application of the Theorem 3 implies 

1) All the semi-infinite systems (1.4) are conformally invariant. 

2) All the semi-infinite systems (1.4) have no  = 1, as defined in (4.6), 
hence a gauge transformation algebra of the form (4.7) exists, with 
j = 1. 

In the Aco+  case the 	and 'if conformal symmetries survive as in eq. 
(2.39), and so do Û2 and .17.2 do. However the symmetries Û1  and f71  are no 
longer present. 

In the B„c  case the generators 	and Û2, f72 combine together to give 
the new conformal symmetry generators 

.k‘ = e ( x) as+ies E n — 1) 8„, 
n=1 

77 (Y) ay + 
00 

n=1 
— 

(4.11) 
The remaining gauge invariance is generated by 

[ Û (r) = r (x) a., + 2 cÉ9  0,,„ , 	is7 (s) = s (y) 0„, + 2 cÉ°  0„„ . (4.12) 

n=2 	 n=2 
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For the Coo  algebra the symmetry algebra is 

(x)3x  + 1- ex 	n(n — 
n=1 

7] ()a ry E n (n — 2) 8, 
n=1 

00 	 00 

(4.13) 

Û (r) = r (x) 	au„, Ý (s) -= 5  (Y) 
n=1 	 n=1 

Finally, for the Doo  algebra one has 

n=1 

00 

— 1) (n — 2) 
n=1 

(4.14) 

Û (r) = r (x) [O„, + D 2  + 2 
n=3 

 

Ý (s) = s (y) 	+ au, + 2 
00 

n=3 

The formulas for the semi-infinite models (1.4) are consistent with those 
obtained in the finite case in Sec. 3.2.3. The generators of the conformal 
invariance, in each case, are simply obtainable by dropping all terms involving 
N. Conversely, the terms proportional to a power of N provide us with the 
gauge invariance generators in the semi-infinite extensions. In this limit, the 
functions r = and s = ny  must be considered as new linearly independent 
functions. 

5 Conclusions 
We have introduced the generalized Toda system (1.1) and investigated its Lie 
point symmetry group. It turned out that in the infinite case (—oo < n < œ) 
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these systems are always invariant under an infinite dimensional group of 
conformal transformations. It is also gauge invariant, if a certain homoge-
neous linear difference equation (i.e. eq. (2.18)) has non trivial solutions. 
Further gauge transformations exist if another linear homogeneous difference 
equation (i.e. eq. (2.21)) also has nontrivial solutions. 

If we restrict the range of n to 1 < n < oo, in some cases the symmetry 
group remains the same, or is reduced to a subgroup of the original symmetry 
group. However, in other cases (see (4.12) and (4.14)) the symmetry group 
does not coincide with a Lie subgroup. 

In the finite case, with 1 < n < N, the symmetry group remains the same 
as in the semi-infinite case, or it is reduced further. 

In some situations (see Theorem 2 and 3) the infinite dimensional con-
formal symmetry group is reduced to the Poincaré group in two dimensions 
(see eq. (3.12)). 

These results were obtained directly, that is by analyzing the determining 
equations for the symmetries for all types of systems: infinite, semi-infinite 
and finite. The question to which we plan to devote a separate article is the 
application of the infinite generalized Toda systems. In particular we will 
establish the degree to which the symmetries of the semi-infinite and finite 
Toda systems are "inherited" from those of the infinite systems. In other 
words we plan to discuss symmetry breaking by boundary or periodicity 
conditions of the infinite chains. 

One of the surprising results obtained in the present work is that the 
class of the conformally invariant Toda field theories is much larger than the 
class of the completely integrable models. Indeed, the existence of a Lax 
pair imposes severe algebraic restrictions on the matrices H and K (see for 
instance [19]). 
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Abstract 

We examine critically the Gambier equation and show that it is the generic linearisable equa-
tion containin2, as reductions, all the second-order equations which are integrable through lin-
earisation. We then introduce the general discrete form of this equation, the Gambier mapping, 
and present conditions for its integrability. Finally, we obtain the reductions of the Gambier 
mapping, identify their integrable forms and compute their continuous limits. () 1998 Elsevier 
Science B.V. All rights reserved 

Keywords: Integrability; Linearizability; Discrete systems 

1. Introduction 

The classification of the integrable second-order differential equations, based on their 
singularity properties, resulted to four classes [1]: 
• equations that are simple derivatives of integrable first-order equations, 
• equations that are autonomous (i.e. they do not have any explicit dependence on the 

independent variable) and which are integrable in terms of elliptic functions, 
• equations which are nonautonomous but in which the independent variable appears 

in some simple form (linearly or at most quadratically) and which defme the P 
transcendents, 

and finally, 
• equations which are nonautonomous and in which the independent variable enters 

through some free functions. These equations are solved by linearisation, i.e. they 
can be converted to a linear differential system. 
Prominent among this last class is the Gambier equation [2]. This equation is, in 

fact, the generic equation of the linearisable class, in the sense that all the others 
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can be obtained as its special limits. The essential feature of the Gambier equation 
is that it describes the coupling of two Riccati equations in cascade (i.e. the solution 
of the first Riccati equation appears in the coefficients of the second one). Thus, the 
Gambier equation is best written as 

by  

x =ax2 + nyx + cr,  , 

where a, b and c are functions of the independent variable, a is a constant which can 
be scaled to 1 unless it happens to be 0 and n is an integer. The precise form of the 
coupling is indicated by the singularity analysis which, moreover gives constraints on 
the coefficients a, b and c. In fact, out of these three functions only two (in general) 
are free. Eliminating y between Eqs. (1.1a) and (1.1b) one can write the Gambier 
equation as a second-order ODE: 

—n 	x12 	 n 2 + a 	 xi, = 	 xx + bx' 
n — 2 x' 	a- 
 	o-  —x3 + (al 	2 — ab)x  

n x 	n 	 n x 

2a 
+ (o- cn — —) 	

a2 
x — 	— —. 

nx 

An important remark is in order at this point. The equations of the Painlevé/Gambier 
classification are usually given in canonical form, which means that all possible trans-
formations of the dependent and the independent variables have been used in order 
to simplify their form. This does not seem to be done in the case of the Gambier 
equation. Indeed, as we will show in the next section, a suitable transformation of the 
dependent and the independent variables allows us to put b= O. Thus, the Gambier 
equation contains only two functions, which, moreover, are constrained by the integra-
bility requirement. 

The discretisation of the Gambier system leads naturally to what we have called the 
Gambier mapping. In Ref. [3] we have proposed such a discretisation which we have 
studied using the discrete analog of the singularity analysis, namely the property of 
singularity confinement. In this paper we propose to reexamine the discrete form of 
the Gambier equation and determine its most general expression. Once this form is 
established we can proceed to the study of its particular, limiting, forms and propose 
expressions for the remaining linearisable discrete equations. For the sake of complete-
ness we calculate, in the next section, the various limits of the Gambier equation in 
the continuous case. 

2. The Gambier equation and its varions limits 

The canonical list of second-order equations with the Painlevé property is still an 
unsettled question. The simplest way out of the clilemma is to adopt the attitude of 
Gambier [2], who has presented a minimal list of 24 equations which contain, in 

(1.2) 
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principle all the basic equations. The remaining ones can be obtained through what in 
modern parlance would be called Miura transformations. Among the equations of the 
Gambier list some belong to the linearisable family. Here they are 

(G5) x" = —3xxi  — x3  + g(xt  +x2), 

(G13) x" -=- )2 	— + rxx' + r' x2  , 
x x 

(G14) x/i = (1  _ 1) x_'2  ± exx, 	nq2 	mg' 
2 

x2 
n 	x 	

x3  + 
(n+2)2 	n 	' 

(G15) x'' = ( 	11 _ _) x12  + fn(q,r)XX I  ± C10 n(q , r )x' n  — 2  x' 	nie, 	3  

	

n 	x 	(n + 2)2x  n x 

, n(frç — fnei)n)  x2 + 4(g,r)x — On  — —
n
l
x 

. , 
n + 2 	

(2.1) 

To this list one must, in principle, add the equation 

(G6) xu = —2xx' + gx' + x 

which is nothing but the derivative of the Riccati equation. It is easy to show that 
the Gambier equation (G15) contains all the previous ones: it is in some sense the 
general linearisable equation. 1nstead of using 	which corresponds to a =1 in 
Eq. (1.2), we will work with Eq. (1.2) itself where one can directly see the relation 
to the coupled Riccati's. 

First, we start with Eq. (1.2) for o-  = 1, and reduce it to its canonical form. For 
this we introduce the following transformation of the independent variable t to a new 
variable T through dTldt = g where g is defined by (118)(dgldt)=bnl(n — 2) and 
simultaneously X = gx. This leads to an equation of the form (1.2) with b = 0, which 
must be considered its canonical form (similarly (G15) is canonical for 0=0). More-
over the Painlevé property requirement introduces one further relation between a and 
c (or, equivalently, between f and t//). 

Eq. (G14) is the easiest to obtain: it suffices to take o- = O. The canonical form 
corresponds to b =- c = 0. Indeed, in addition to the independent variable transformation 
which allows to put b = 0, when a =- 0 we have an additional gauge freedom which 
allows us to put c = 0. 

2  2 
X"  =—+ a 	

 + 2 
xx

, —X3  ± dx2 	 (2.3) 
n x 

(with b = c = 0 Eq. (1.1a) leads to y =1/(z — zo ) and Eq. (1.1b) for a =0 is reduced 
to a linear ODE for 1/x). 

Eq. (013) requires that we take the limit n cc on Eq. (1.2). The result is (where 
d = 	cn): 

X12  
xll = -x + axx' + bx` — —

x 
a+ (a — ab)x2 + dx — bo-  . (2.4) 
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Eq. (2.4) is (G13) in non-canonical form. In order to reduce it to the standard ex- 
pression we take b =- 0 and introduce a gauge 	px such that d = p" I p— p2/p2.  The 
equation reduces then to 

x12 	xt 
x" = — + g—x 

— g' + rx' x + x2  

which is just (G13). What does the limit n—+co really means in the level of the 
coupled Riccati's? Since n goes to infinity y must go to zero for the equation to 
remain meaningful and thus the quadratic term in Eq. (1.1a) disappears. The canonical 
fo= corresponds to b = 0 and a new function is introduced through d nc. Finally, 
if we divide Eq. (1.1b) by x and take the derivative a term ny appears, which from 
Eq. (1.1a) is equal to d. Thus, Eq. (G13) is, in fact, nothing but a derivative of a 
Riccati after we have divided by the dependent variable. 

Finally, in order to obtain (G5) we start by taking n=1 which makes the x12 /x term 
vanish. Integrability implies a =-- 0 and we choose a = —1, c= O. This leads to equation 

x"= —3xx/  —x3  + b(x' +x2 ) 	 (2.6) 

which is (G5) in canonical form. Finally, it seems that (G6) is not in any sense related 
to the Gambier equation (G15). 

3. The discrete analog of the Gambier equation, revisited 

The discretisation of the Gambier equation is based on the idea of two Riccati 
equations in cascade. The discrete form of the first is simply 

y_ 	a + b y 	 
y + 1 	

(3.1) 

where y m y, and jj--==-: yn+1. The denominator of Eq. (3.1) can be generically brought 
to this form through a scaling of y and a division by an overall factor. The second 
equation which contains the coupling can be discretised in several, not necessarily 
equivalent, ways. In Ref. [3] we have proposed the discretisation 

= fxy + 
.7c 	 

1 — gx 

A different approach could be based on the direct discretisation of Eq. (1.1b) in the 
form 

Ic—x=—fx:i+(gx+hi)y+k. 	 (3.3) 

In what follows we shall not choose a priori a particular form. We shall rather start 
(in the spirit of Ref. [4]) from a generic coupling of the form 

(2.5) 

(3.2) 

(3.4) 
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Implementing a homographic transformation on x and y we can generically bring 
Eq. (3.4) under the form 

x.+ y.y-6xy—O=O 	 (3.5) 

(the sign changes were introduced for future convenience). A choice of different trans-
formations can bring Eq. (3.4) to the form Eq. (3.3) while Eq. (3.2) can be obtained 
through a special choice of the parameters of Eq. (3.4). Note that Eq. (3.4) contains an 
'additive type coupling x + 6.7c + (x + îy + & = 0 for special values of its parameters, 
but the generic form of Eq. (3.5) is that of a 'multiplicative' coupling where y,8 do not 
vanish. Solving Eq. (3.5) for we obtain the second equation of the discrete Gambier 
system in the form 

x = 	 (3.6) 
x 	y y 

Clearly, a scaling freedom remains in Eq. (3.6). We can use it in order to bring it to 
the final form 

xyld + c2  
1c= 

	

	 (3.7) 
x + dy 

Eliminating y and .13 from Eq. (3.1) and Eq. (3.7) and its upshift, we can obtain a 
three-point mapping for x alone but the analysis is clearer if we deal vvith both y 
and x. 

The main tool for the investigation of the integrability of the Gambier mapping 
will be the singularity confinement criterion [5]. A first remark before implementing 
the singularity confinement algorithm is that the singularities of a Riccati mapping 
are automatically confmed. Indeed, if we start from 	P')I(yx + Ô) and assume 
that at some step x =- 	we find that diverges but and all subsequent x's are 
finite. Thus, the intrinsic singularities of Eq. (3.6) do not play any role. However, the 
singularities due to y (obtained from Eq. (3.1)) may cause problems at the level of 
Eq. (3.6). Whenever y takes a value that corresponds to either of the two roots ±c of 

the equation 

y2 - c2 =0, 
	 (3.8) 

we obtain ".£= ±cld irrespective of the value of x and thus the variable x loses a degree 
of freedom. On the other hand, once we enter a singularity there is no way to exit it 
unless y assumes again a special value after a certain number of steps. Thus, if we 
enter the singularity through, say y = c we can exit it through y= —c after N steps. 
However, if y were to take the value c again some steps after taking it for the first 
time, then it would take it periodically and the singularity would be periodic. This is 
contrary to the requirement that the singularity be movable: a periodic singularity (with 
fixed period) is 'fixed' in our tenninology. 

The first singularity condition can thus be obtained in the following way. We assume 
that at some step y assumes the value c solution of the condition (3.8). This value of 



N = 1: 

N=2: 

+E=0, c+ 1 
à(ac + b) + -6(c +1)  

+ c =0 ac+b+c+1 

ac + b 

(3.10) 
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yo  = co  evolves under the action of the Riccati and we obtain after N steps, yN • We 
require that 

YN = —CN 	 (3.9) 

i.e. the second root of Eq. (3.8). It is thus straightforward to write the first confinement 
conditions for the first few values of N. We have, for instance, 

and so on. The equivalent of this requirement in the continuous case is that the res-
onance be integer. We see here that the discrete condition is much more complicated 
and while one can easily compute the first few instances no general expression can be 
given. Once y passes through the second special value —c, there is a possibility for x 
to recover its lost degree of freedom through an indeterminate forrn 0/0. This is the 
confinement condition. In full generality (and somewhat abstract form) it reads 

XN + dN yN = 0 	 (3.11) 

or, using Eq. (3.9), 

Xiy = dN CN 	 (3.12) 

where xN  is the Nth iterate of x through Eq. (3.6). We have, for example, 

c - N=1: —d 
1 (ac + b)c + dcié2(c + 1)  N = 2: 	 (3.13) d c(c + 1) + dil(ac + b) 

The two confinement conditions put constraints on the coefficients a, b, c and d just 
as the Painlevé requirement restricts the parameters in the continuous case. The better 
approach is to start with given a, c and use Eq. (3.10) to solve for b. The second 
condition becomes then an equation for d. For N =1 we find explicitly dc-1=cle. For 
N=2 the equation for b is linear and the one for dél is just a homographic mapping 
with coefficients depending on a, b, c. 

One important question that remains to be addressed is that of the continuons limit 
of the Gambier mapping. We start from the system 

ay + b  
9= 	 (3.18a) y + 1 

x
_ 	xyld + c2 

(3.18b) x + dy 
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and introduce the following expansions for the parameters: 

y' 2h 
a =1 + (a + —

y 
— —

n ) B, 

(3.19) 

and for the dependent variables 
ny 

Y = nY + h
s , 

x 	
ny(fX — 1) 

ê , 
2(fX + 1) 

(3.20a) 

(3.20b) 

where f =- + y7(2y) and h= f ilf. We obtain at the limit e—> 0 the two Riccati's: 

X' = — f 2  X 2  + nXY +1 , 	 (3.21a) 

y, = —172 cxy  + y  ah + 	h + ' , 

where the coefficient of the coupling term n=2c1b is a priori a function but with hind-
sight we have ignored its derivatives. White the continuous limit takes quite expectedly 
the forrn of two Riccati's in cascade we have still to show that they are indeed of the 
Gambier form and, in particular, that the coefficient of the coupling term n is in fact 
an integer and equal to N. 

The key to this proof is the first confinement condition. Let us start with yo -= c. 
Given the dependence of c on e (3.19), we have 

ny 
Yo= —2 E

2 
 • 	 (3.22) 

In order to do away with the e2  factor we introduce the auxiliary quantity through 
y =e2 t and rewrite Eq. (3.22) as 

ny 
2 

The confinement condition is 
ny 

= 	• 	 (3.24) 

Let us now compute t/iN  using the discrete Riccati (3.18) at lowest order in e. Substi-
tuting the expressions (3.19) of a,b we have at lowest order: 

= 	+ Y • 	 (3.25) 

Thus, 	+Ny and substituting the values of th and ;&N we find n= — N. Thus, 
the coupling coefficient does indeed go over to the integer N which is the number of 

(3.21b) 

(3.23) 
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steps required for confinement. (Had we started from yo = —c we would have obtained 

n=N. The fact that -±c play different roles is due to the fact that the discrete Riccati 
(3.18) is not symmetric with respect to the upward—downward evolution). 

We must remark here that the above continuons limit is incompatible with N =1. 

Indeed, for N =1 condition (3.13) implies 2-/5+yi  =- 0 which would make Eqs. (3.20a) 
and (3.20b) meaningless. This is related to the fact that in the continuons case n=1 
is never integrable for o-  -= 1 while the n = —1 case is never integrable when the x 

equation is nonlinear. 

4. Nongeneric forms of the Gambier mapping 

An exhaustive study of all the nongeneric cases of the Gambier mapping is a task 
that lies beyond the scope of this work. In principle one has to go back to the system 
in Eqs. (3.1)—(3.4) and, following the steps of the derivation of Eq. (3.5), identify 
all instances where some transformation cannot be applied. The bulk of the resulting 
calculations makes this problem hardly tractable and we prefer, in what follows, to 
limit somewhat our scope. 

We start thus with the Gambier mapping in its reduced form [Eqs. (3.1)—(3.7)] and 
consider the cases where the coefficients that have been assumed to be nonvanishing, 
do vanish. We are thus led to the systems given below. The equation for x assumes 
one of the following forms: 

x
_ 

= 
xyld +  c2 	 (4.1) 

x + dy 

xy + c2 
=  	 (4.2) 

xy + c2 
=  	 (4.3) 

y 

.55  = y+1 

ay +1 
= 	

(4.5) 
Y 

.55 = y + b; 	 (4.6) 

all the other cases obtained from Eqs. (3.1)—(3.7) can be brought to one of the above 
using homog-raphic transformations on x and y. Next, we shall investigate the singu-
larity confinement property of the system consisting of one of the Eqs. (4.1)—(4.3) 
coupled to one of the Eqs. (4.4)—(4.6). There exist, in principle, 9 possible couplings, 
the one of Eqs. (4.1) and (4.4) being the full discrete Gambier system studied in the 
previous section. 

while that for y is given by 

ay + b (4.4) 
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Ln order to investigate the coupling Eqs. (4.1)—(4.5) we apply the singularity con-
finement method. The principle is the same as for the full Gambier case: we enter a 
singularity when y passes through the value c. In order to confine this singularity we 
require that, after N steps, y pass through —c and, moreover, x assume an indetermi-
nate form 0/0. The condition for y to be equal to —c can be worked out for the first 
few values of N: 

ac +1 	_ N=1: 	=—c, 

N=2:  à(ac +1)±  c 
ac +1 

The corresponding conditions for the denominator of x to vanish (which, in view of 
Eq. (4.7), entails the vanishing of the numerator) read: 

c 	- 
N=1: ci =ed, 

1 c(ac +1)  + delE2c N = 2: 	 (4.8) 
d c 2  +Mac + 1) 

In order to obtain the continuous limit of this system we start with the equation for 
y. The only continuous limit of Eq. (4.5) is obtained for y= i + eY . However, this 
is incompatible with the integrability condition where y assumes the values c and —c 
(after N steps). Thus, the system of Eqs. (4.1)—(4.5) although integrable as a discrete 
system does not possess an integrable continuous limit. 

Next we consider the coupling Eqs. (4.1)—(4.6) which can be treated just as the 
previous case. The first few conditions for the singularity to be confmed are 

N=1: c+b=—E, 

N=2: c+b+15=—C, 	 (4.9) 

combined with 
- 

N = 1: 
c  
—
d

=Ec , 

1 c(c + b) + e2  
c 	dji(c + b) 	• 

In this case the continuous limit is obtained through: x=eX, c=ey, d=1 	eS 
and y = Y. From the constraint (4.9) on b,c we find that at lowest order we have 
b=-2cIN. The continuous limit is then straightforward, but one must also verify the 
second integrability condition (4.10). It tums out that the resulting form is noncanon-
ical. In order to bring it under canonical form a further transformation is needed on 
X: X = y(1 — t5 W)/(1 	W) and, moreover, we must take y =- 0. In the case N =1 
(where we have from Eq. (4.10): 2(5 + Y/y =0), the canonical form can be recov-
ered through a simpler transformation, X = —y + 1/W, leading to the linear equation: 
W" 	Tey' ly + W(y//y) -= 0 which for y' =0 reduces to just W" =- 0. 

N=2: (4.10) 
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We turn now to the case of the mapping (4.2) coupled to any of the three ho-
mographic for y (4.4)—(4.6). A general remark is in order here. The mapping (4.2) 
has as only singularity y = Do, i.e. is defined independently of the value of x only 
when y = oo. Once y in mappings (4.4) or (4.5) hits this special value, Eq. (4.2) loses 
one degree of freedom and cannot recover it because y cannot become infinite again 
(unless the mapping for y is periodic which we have excluded from the outset). Thus 
the combination of Eq. (4.2) with either of Eq. (4.4) or Eq. (4.5) is never integrable. 
On the contrary Eq. (4.2) coupled to Eq. (4.6) is always integrable because the latter, 
being linear, can never lead to y -= oo. In this case we find of the continuous limit 
equation (G6). Indeed, putting x= 1 +EX, y=2 + E2 Y and b= $83 , c2 =-1+ye2 , we 
obtain X = —X 2  +Y +y, Y' =13. Eliminating Y leads to X" =-2XX' +f3+y' which 
can be brought to the canonical form (G6) through a simple translation. 

Analogous arguments do apply to the case of the mapping (4.3). The singularity of 
this mapping occurs only if y = O. Again, the argument of y taking twice the value 
being possible only if Eqs. (4.4)—(4.6) are periodic, precludes the integrability of 
Eq. (4.3) coupled to any of these three. However, there exists a case where y cannot 
vanish. This is the case of Eq. (4.4) for b= O. This is the only integrable case of 
mapping (4.3) coupled to Eq. (4.4). However it is a trivial one. By transforming 
y —> 1/y both mappings become linear. 

5. Conclusions 

In this paper we have examined the Gambier equation in both its continuous and 
discrete forms. For the continuous Gambier system we have shown that it is the generic 
second-order differential linearizable system: the other second-order linearizable ODEs 
can be obtained as special limits of the Gambier equation. In the discrete case we 
have obtained the Gambier mapping starting from the most general discrete Riccati 
in cascade system (instead of introducing an ad hoc parametrisation as we did in 
Ref. [3]). This most general form has made possible the interpretation of the number 
of steps necessary for confinement. In the particular case of the Gambier mapping this 
integer coincides with the one appearing in the coupling term of the ODEs obtained 
in the continuous limit and which is equal to the resonance of the Painlevé expansion. 

This remark raises two important issues. The first is whether there exists a systematic 
relation between the Painlevé resonance and the number of steps for confinement, i.e. 
the length of the singularity pattern. We believe that the answer is, in general, negative, 
despite some tempting results like the Gambier system. The second remark is even more 
crucial. Since the Gambier system confines for any number of steps N, the limit N —> co 
does in principle exist. We can thus wonder what is the meaning of confmement that 
requires an infinite number of steps. How can one distinguish the N=oe confming 
case from a nonconfining one? Although we cannot offer a rigorous statement, we can 
present some elements of an answer based on our experience with integrable discrete 
systems. In a nonconfining system the analysis of the singularity shows that there is no 
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possibility for confinement ever. In many cases one can even formulate this in rigorous 
terms and prove the impossibility of confinement. In the case of a confining mapping 
the analysis indicates that the possibility of confinement does exist but is simply delayed 
(and pushed to infinity at the limit). More complicated situations may exist, those, 
among others, involving the discrete derivatives of homographic mappings. Clearly, at 
this level the refinement, the notion of confinement itself becomes quite delicate. 

The reduced cases of the discrete Gambier system have been only cursorily studied 
in this work. The particular case where the Gambier mapping reduces, for N =- 1, to 
the two-dimensional projective system was not contained in the forms studied here. 
In order to obtain it one must go back to the initial complete form of the discrete 
Gambier system and perform the appropriate reductions there. This question is under 
active investigation [6]. 
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Abstract. We introduce the Schlesinger transformations of the Gambier equation. The latter can be 
written, in both the continuous and discrete cases, as a system of two coupled Riccati equations in 
cascade involving an integer parameter n. In the continuous case, the parameter appears explicitly 
in the equation, while in the discrete case it corresponds to the number of steps for singularity 
confinement. Two Schlesinger transformations are obtained relating the solutions for some value 
n to that corresponding to either n 1 or n + 2. 

Mathematics Subject Classifications (1991): 39A10, 58F07. 

Key words: discrete systems, linearizable systems, Riccati equation, Schlesinger transformation. 

1. Introduction 

The existence of Schlesinger transformations is one of the very special properties 
of Painlevé equations [1]. These transformations are a particular kind of auto-
B âcklund transformations [2]. The latter relate a solution of a given equation to 
a solution of the same equation but corresponding to a different set of parameters. 
Schlesinger transformations do just that but the changes of parameters correspond 
to integer or hatf-integer shifts in the monodromy exponents. Both continuous and 
discrete (whether difference or multiplicative) Painlevé equations have been shown 
to possess Schlesinger transformations [3]. For the discrete case (and in particular 
for q-Painlevés) the relation of Schlesinger transformations to monodromy expo-
nents is not quite clear and.their derivation requires both experience and intuition, 
in particular in the choice of the proper parameters. With this minor caveat we 
hasten to say that we do possess a systematic approach to the construction of 
Schlesinger transformations. It is based on the bilinear formalism [4] which can 
be used to construct Miura transformations [5], the iteration of which can lead to 
auto-Bâcldunds 

The logical conclusion of the above introduction is that Schlesinger transforma-
tions should exist only for Painlevé equations. This is almost true with one excep- 
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tion. As we shall report in this Letter, one equation exists which, without being a 
Painlevé, does possess Schlesinger transformations. This equation is known under 
the name of Gambier (who first derived it): it is the most general second-order 
ODE of linearisable type [6]. What makes possible the existence of Schlesinger 
transformations for this equation is the fact that its general expression involves an 
arbitrary integer n. It turns out that we can relate the solution of the equation for 
some value of n to that corresponding to n 2. These transformations are, for the 
linearizable case, the analogues of the Schlesinger transformations. Moreover, as 
we shall show, the same procedure can be followed in the discrete case, i.e. for the 
Gambier mapping [7, 8]. 

In Section 2, we shall review some basic facts about the Gambier equation. The 
Schlesinger transformations will be given in Section 3, while Section 4 is devoted 
to the study of the discrete case. 

2. The Gambier Equation 

The Gambier equation is given as a system of two Riccati equations in cascade. 
This means that we start with a first Riccati for some variable y 

y = 	 by 
	 (2.1) 

and then couple its solution to a second Riccati by making the coefficients of the 
latter depend explicitly on y: 

= ax2 4- nxy + a. 	 (2.2) 

The precise form of the coupling introduced in (2.2) is due to integrability re-
quirements. In fact, the application of singularity analysis shows that the Gambier 
system cannot be integrable unless the coefficient of the xy term in (2.2) is an 
integer n. This is not the only integrability requirement. Depending on the value of 
n one can find constraints on the a, b, c, a (where the latter is traditionally taken 
to be constant 1 or 0) which are necessary for integrability. 

The cornmon lore [9] is that two of the functions a, b, c are free. This turns 
out not to be the case. The reason for this is that system (2.1)—(2.2) is not exactly 
canonical, i.e. we have not used all possible transformations in order to reduce its 
form. We introduce a change of independent variable from t to T through dt = 
g dT, where g is given by 

1 dg 
— 	

n 
g 

—dt = b 
2 — n 

, 

a gauge through x = gX and also 

1 dg 
= " 



75 
SCHLESINGER TRANSFORMATIONS FOR LINEARIZABLE EQUATIONS 

	 133 

The net result is that system (2.1)—(2.2) reduces to one where b = 0, while a 
remains equal to 0 or 1. It is clear from the equations above that n must be different 
from 2. On the other hand, when n = 2 the integrability condition, if a = 1, is 
precisely b = O. So we can always take b = O. (As a matter of fact, in the case 

= 0 an additional gauge freedom allows us to take both b and c to zero for all n, 
even for n = 2.) Thus, the Gambier system can be written in full generality 

y' = —y2 c, 	 (2.3a) 

x = ax2 + nxy o-. 	 (2.3b) 

One further remark is in order here. The system (2.3) retains its form under the 
transformation x 	1/x. In this case, n —> —n and a and —a are exchanged. 
Thus, in some cases it will be interesting to consider a Gambier system where 
is not constant but rather a fonction of t. Still, it is possible to show that we can 
always reduce this case to one where o = 1, while preserving the form of (2.3a), 
i.e. b = O. To this end, we introduce the change of variables 

dt -= h dT, 
1 dh x 	g X and Y=hy---- 
2 dt 

with h = 0.2./(n-2),  g = uni (n-2) With these transformations, system (2.3) reduces 
to one with a = 1 and b = O. (In the special case n = 2, with b = 0 integrability 
implies = constant, whereupon its value can always be reduced to 1.) 

3. Schlesinger Transformations for the Gambier Equations 

The theory of auto-Bâcldund transformations of Painlevé equations is well estab-
lished. As was shown in [2], the general form of auto-Bâcklund transformations 
for most Painlevé equations is of the form 

ax' ßx2  yx 8 
x 	  

Kx' 	x2  4- rix + • 
(3.1) 

In the case of the Gambier equation considered as a coupled system of two Riccatis, 
it is more convenient to look for an auto-Bâcklund of the form: 

axy+,8x+yy+8 
= 	  

+ 17)(ex 

with a factorized denominator, with hindsight from the discrete case. We require 
that the equation satisfied by 5e does not comprise terms that are nonlinear in y. We 
examine first the case 	0 and easily reach the conclusion that no solution exists. 
So we take = 0, 77  1 which implies that a and y do not both vanish (otherwise 

(3.2) 
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(3.2) would have been independent of y). We find in this case a = 0 and, thus, the 
general form of the auto-Bâcklund can be written as 

ßx + yy+tS  = 	 (3.3) 
Ox + K 

From (3.3), we can obtain the two possible forms of the Gambier system auto-
B âcklund: 

= Px + yy +8, 
Px + yy + & (3.5) 

x + K 

As we shall see in what follows, both forms lead to Schlesinger transformations. 
Let us first work form (3.4). Our approach is straightforward. We assume (3.4) 

and require that satisfies an equation of the form (2.3b), while y is always the 
same solution of (2.3a). The calculation is easily performed leading to 

ay 	, 
= YY + n + 1 	n 	x 	 (3.6) 

where y satisfies 

n a, 

y 	n + 2 a • 

Here we have assumed a 0, otherwise )7 does not depend on x and (3.6) does 
not define a Schlesinger. The parameters of the equation satisfied by are given 
(in obvious notations) by 

•ri+n+ 2 = 0, 
	 (3.8a) 

= n+1 	 (3.8b) 
Y 

and 

	

acr 	1 a" 	n + 3  ar2 ) 
y (c + — + — 	 (3.8c) 

n + 1 n + 2 a (n +2)2  a2  

Thus, (3.6) is indeed a Schlesinger transformation, since it takes us from a Gambier 
system with parameter n to one with parameter ñ= —n-2. It suffices now to invert 

in order to obtain an equation with parameter N = n + 2. Expressions (3.6) and 
(3.8) can be written in a more symmetric way: 

à — ax = (n + 1) (y — .,-C
l ) 

na 
a 	 (3.9) 

76 

(3.4) 

(3.7) 
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and 

h 	1 = —(n + 1), 
_à 	a' 
n— = n—, 

a 
(3.10) 

— au = (n +1)(c — —1 a'  
h a 	na2  

The inverse transformation can be easily obtained if we introduce i7 such that 
= —(n +1) = —ày. We thus find that 

à1.7  - x = y"); + 	+ (3.11) 

and the relations (3.10) are still valid. 
Iterating the Schlesinger transformations, one can construct integrable Gambier 

systems for higher n's and obtain by construction the functions which appear in 
them. However, it may happen that when we implement the Schlesinger, we find 
à-  = 0. If we invert x, we get a system with N = 	= n + 2 but A = 0 for which 
one cannot iterate the Schlesinger further. 

Let us give an example of the application of this Schlesinger transformation. 
Let us start from n = 0, in which case we find ñ = —2 and, after inversion, N = 2. 
For n = 0 we start from a = —1 and o-  = 0 or 1 (always possible through the 
appropriate changes of variable). This leads to ã = —1, & = —c + a and the 
Schlesinger reads = —y ± x. Next, we invert and have X = 11(x — y). We 
thus find that the Schlesinger takes us from 

= —3)2 	XI  = -X2  + a 	 (3.12) 

to the system 

yl = _y2 ± 	X' = AX2  2Xy E, 	 (3.13) 

with A = c — cr, E = 1. In the particular case n = 2, a change of variable exists 
which allows us to put A = —1 (unless A = 0), without introducing b in the 
equation for y, while keeping E = 1 and changing only the value of c. Thus, the 
generic case of the Gambier equation for n = 2 can be written with A = —1. 
Eliminating y between the two equations, we find 

X
II = — —2xx' — — — — (2c +1)x. 

2x 	2 2x (3.14) 

This is the generic form of the n = 2 Gambier equation and it contains just one 
free function. The nongeneric cases corresponding to A = 0 and o-  = 0 or 1 can 
be constructed in an analogous way. 
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We now turn to the second Schlesinger transformation corresponding to the 
form (3.5). As we shall show, a Schlesinger transformation of this form does indeed 
exist and corresponds to changes in n with An = 1. Let us start from the basic 
equations (2.3). Next we ask that defined by (3.5) satisfies a system like (2.3). 
We thus find that K = —X0 and y must be given by 

Y 	2axo — = yo 	 
Y 	n 1 (3.15) 

where yo  is a solution of the Riccati (2.3a) and xo  a solution of (2.3b), obtained 
with y replaced by yo. We introduce the quantities 

ay 
xo == 	 

n+1 
à = — 

nxo  
y 

In this case, (3.15) becomes 

y 	2ã. 0 	2x00  = Yo + 	 Yo + 	 n+1 	Y 

where 

(3.16) 

+ n + 1 = O. 	 (3.17) 

Thus, we have starting from a generic solution x, y of (2.3) for some n, the 
Schlesinger 

Y (Y — Yo)  = 	 (3.18) 
X — xci 

where is indeed a solution of (2.3) for ñ = —n — 1 for the same y 

ã 2  + ñy + , 	 (3.19) 

where à has been defined as —(nxo/y) and 

= 	a' + a2  xo—n  2  ayo(n + 2)). 	 (3.20) 
n+1 	n+1 

Note that is a solution of the same equation with y replaced by yo. As in the 
previous case, if we invert i, we obtain an equation corresponding to N = n 1. 

As an application of the An = 1 Schlesinger, we are going to construct the 
n = 1 equation starting from the n = 0 case, i.e. system (2.3) with n = 0. From 
(3.18), the Schlesinger reads 

=y  ( ia + Y 	— Y° ) 
x Xo 

(3.21) 
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where y satisfies the differential equation 

Y' — = Yo + 2ax0, 
Y 

(3.22) 

where yo  is a particular of (2.3b) and xo is a solution of (2.3a) with n = O. Then 
satisfies a Gambier equation in which n = 1, & = y (a ± 2a2x0  + 2ayo) and 

â = O. To obtain the n = 1 Gambier equation, we define X = 1/:i and we arrive 
at the following system: 

y' = —y2 c, 	X' = AX 2  Xy, 	 (3.23) 

where A = —Er. The system (3.23) is the generic n = 1 case silice, in this case, the 
condition for (2.3) to be integrable is a = O. 

It is worth pointing out here that the Schlesinger transformation corresponding 
to An = 2 was known to Gambier himself. As a matter of fact, when faced with 
the problem of determining the functions appearing in his equation so as to satisfy 
the integrability requirement, Gambier proposed a recursive method which is es-
sentially the Schlesinger An = 2. On the other hand, the Schlesinger An = 1 is 
quite new and we have first discovered it in the discrete case, whereupon we looked 
for (and found) its continuous analogue. 

4. The Gambier Mapping 

The Gambier equation has been already examined in [7, 811  and its discrete equiv-
alent has been proposed there. These constructions of the Gambier mapping were 
ad hoc ones in the sense that we assumed a form and implemented the singular-
ity confinement discrete integrability criterion in order to obtain the integrability 
conditions. In what follows, we shall use a slightly different approach based on the 
singularity structure. 

Our starting point is the discrete equivalent of the system (2.3). We have thus 
one equation which is the discrete analogue of the Riccati, i.e. a homographie 
mapping for y and another homographic mapping for x, the coefficients of which 
depend linearly on y. Our derivation will be based on the study of singularities of 
the system. The general homographic equation for y involves three free parameters, 
but since we have the freedom of choice of a homographic transformation on y, we 
can always reduce it to y = constant (i.e. j = y). However, in the system under 
study, our aim is to study the singularities of x induced by special values of y. 
One could choose the singularity to enter at point no  if the value of y has some 
special value depending on no, say, f (no). This would introduce one function in 
the homographie mapping, However, what is even more convenient is to decide 
what the special value of y is, say y = 0 for all n, at the price of the loss of 
part of the homographie freedom. Then the special value 0 will occur for some n 
depending on the particular solution. Of course, if we allow the full homographie 
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freedom, we are back to the starting point, i.e. with three free functions. However, 
we have decided to have only one free function and thus we simplify the mapping 
by choosing its form so that it presents the pattern {-1, oc, 1}. This fixes two of 
the funcfions and the result is 

y + c 

	

=  	 (4.1) 
y + 1 

where c is a funcfion of n and we use the notations y = y(n), ý = y(n 1). 
Next, we turn to the equation for x. This equation is homographic in x. How-

ever, we require that when y takes the value 0, the resulting value of x is oc. Thus, 
the denominator must be proportional to y, and since we can freely translate x, 
we can reduce its form to just xy. The remaining overall gauge factor is chosen so 
as to put the coefficient of xy of the numerator to unity resulting in the following 
mapping: 

(_ 	x y — r) q(y —s) 

	

x =  	 (4.2) 
xy 

The system (4.1)—(4.2) is a discrete form of the Gambier system. In order to study 
the confinement of the singularity induced by y = 0, we introduce the auxiliary 
quantity 1kN which is the value of y if the Nth downshift of y had been zero. Thus 

C + C 
fro  = 0, 	fr1  = C, 	%/f2 =c + 1 	

etc. 

The confinement requirement is that after N steps x becomes 0 in such a way as to 
lead to 0/0 at the next step. Thus, the mapping (4.2) has in fact the form 

x (Y — r) q (Y — ihr)  

	

= 	 (4.3) 
xy 

Thus, when at some step N, we have y = IfiN  and x = 0. In view of (4.3), .7c 
will then be indeterminate of the form 0/0. However, it turns out that, in fact, this 
value is well-determined and finite. Let us take a closer look at the conditions for 
confinement. The generic patterns for x and y are 

x: I free 	oc 0 	finite 

 

   

At N = 1, it is clearly impossible to confine ourselves to a form of (4.3) since we 
do not have enough steps. In this case, the only integrable form of the x-equation 
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is a linear one. The first genuinely confining case of the form (4.3) is N = 2. 
From the requirement = 0, we have r = fr1  and q free: this is indeed the only 
integrability condition. For higher N's, we can similarly obtain the confinement 
condition which takes the form of an equation for r in terms of q. 

At this point it is natural to ask whether the mapping (4.1)—(4.3) does indeed 
correspond to the Gambier equation (2.3). In order to do this, we construct its 
continuous limit. We first introduce 

c = E2D, 
eD 

Y = 	 (4.4) 

with H 	D' 1(2D), and obtain the continuous limit of (4.1) for E 	O. As 
expected, we find 

Y = 	+ C, 

i.e. Equation (2.3a), where 

D'' 	3 D'2  
C = D — —

2D
+ —

4 D2 
. 

Using (4.4) and (4.1), we can also compute 1friv and we find, at lowest order, 

11‘7  = 62W N with WN N (D E N +1  
2 	D ) + s2c1)N ' 

where CDN is an explicit function of D depending on N. 
Next, we turn to the equation for x and introduce 

(4.5) 

(4.6) 

r = s2 R, -
1 

+ 
E 	

E
RD'

, 	q 	s2  Q 
2 2X 4D2  

(4.7) 

and for the continuous limit of the form (2.3b) to exist in canonical form (i.e. 
b = 0, a = 1), we find that we must have 

R 	
_2_ND 

(N + 2) e
ND'

, 
8 

(4.8) 

This leads to the equation for x: 

X' = AX 2  + NXY + 1, 	 (4.9) 

with 

A  = N/  N  )D'2  ND" 
4 	+ 1 D2  4D 4Q. 
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Moreover, the confinement constraint implies a differential relation between D and 
Q which depends on N. We can verify explicitly in the first few cases that this is 
indeed the integrability constraint obtained in the continuous case. For instance, 
for N = 2, just imposing (4.8) in order to have the canonical forrn b = 0, a = 1, 
is suf-ficient for integrability. 

Once the singularity pattern of the Gambier mapping is established, we can 
use it in order to construct the Schlesinger transformation. Let us first look for a 
transformation that corresponds to AN = 2. The idea is that, given the N-steps 
singularity pattern of the equation for x, we introduce a variable w with N ± 2 
singularity steps where we enter the singularity one step before x and exit it one 
step later. The general form of the Schlesinger transformation, which defines w, is 

W = „ Y 
	

(4.10) 
Y 

where X is homographic in x. The presence of the y 
they ensure that w becomes infinite one step before 
x• Next we turn to the determination of X. Since X 

and y — ViN+1 terms is clear: 
x and vanishes one step after 
is homographic in x, we can 

rewrite (4.10) as 

w= ax 	Y — IkN+1  

y yx 5 
	 (4.11) 

Our requirment is that w becomes infinite when y = 0 for every value of x. This 
statement must be qualified. The numerator ax+ p win vanish for some x (namely 
x = —131a) so this value of x must be the only one which should not occur in the 
confined singularity. Indeed, there is a unique value of x where, instead of being 
confined, the singularity extends to infinity in both directions of the independent 
variable n, while the only nonsingular values of the dependent variable occur in a 
finite range. The value of x such that is finite and free even though y is zero, is 
such that the numerator —xr — qifiN  of vanishes. For this value of x, the values 
of the dependent variable are fixed for n 0 and n 	N 1 and the value can 
be considered as forbidden' Thus, ax p = xr qViN up to a multiplicative 
constant. Similarly, when y = N+1, w must vanish. Thus, yx 	must not be 
zero except for the unique value of x that does not occur in the confined singularity. 
Note that y = lifN+1 means Y 	N  and the only value of x that comes from a 
nonzero x in that case is x =-(711. —r)/ N. 

In that case the values of the dependent 
variable are fixed for n 0 ancl n 	— 1. This value of x being forbidden', 
yx 	3 must be proportional to Arx — (tif — 	We now have the first form of —IY 	••1 V 

the Schlesinger: 

xr ± glifN Y — lifAr+i  v.) = , 	 (4.12) 
Y 	—%If N X + N 

where the proportionality constant has been taken as being equal to 1 (but any other 
value would have been equally acceptable). Here w effectively depends on x unless 



_ 	w(5,  — c) +  q(1 +£)(5? —  
71 ) 

w= (4.17) 
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r(L.- — 	= q'tlf „7 1,1r N . But, in this case, the mapping (4.3) is in fact linear in the 
Y 

variable e 	— 1 + Tiiirpi )'. This case is the analog of the case a = 0 in the 
continuous case where the Schlesinger does not exist. 

Let us give an application of the Schlesinger transformation by obtaining the 
N = 2 equation starting from N = O. We have always the equation for y winch 
reads 

_ 	y + c 
= y + 1 

and Itio = 0, 	= c. For N = 0 the equation for x reads 

x(Y-r)+qy x+q  •i = 
xy 

(4.13) 

(4.14) 

since, for integrability, r = 0 and indeed N = 0 means that the x equation does 
not depend on y. We introduce the Schlesinger 

— w = x 	— 
Y 

(4.15) 

(where we fu-st write (4.12) for arbitrary r and since r factors, we take the limit 
r —> 0 afterwards). Using (4.14) and (4.15) to eliminate x, we obtain the equation 
for w: 

= (1 c)
yu)  q(y — L.) 

(y + c)a_v 
(4.16) 

This equation is of the form (4.3) but not quite canonical. We can transform it to 
canonical form simply by introducing instead of y because, indeed, w is infinite 
one step before x, so w = oc means = oc, i.e. = O. We thus obtain 

with tif2  = (c c JI (1 + which, coupled to (4.13), is indeed a N = 2 Gambier 
mapping. 

As we pointed out above, the N = 1 case is not included in the parametrization 
(4.1)—(4.3): the x-mapping must be linear in order to ensure integrability. Thus, 
we are led to study the linear case separately. For an arbitrary N, the general form 
of the linear x-mapping can be obtained using confinement arguments in a way 
similar to what we did for the generic, nonlinear case. We obtain 

(4.18) 
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where g is free. The Schlesinger transformation is again given by 

Y — 1PW+1  (4.19) 
Y 

and arguments similar to those of the nonlinear case allow us to determine the form 
of the homographic object X leading to 

x'tfrN — g 	lfrN+1  = 	 (4.20) 
y 	XV! N  - 

Thus, we can perform a Schlesinger in the linear case. This is not in disagreement 
with the continuous case. It is, in fact, the analog of the case where a = 0 but 
a 	0 (which is linear in 1/x) for which the Schlesinger can be performed. The 
analog of the case a = 0 and a = 0 is the situation when g = Ic». N  with constant 

k in which case the mapping rewrites «e = t (y — lfr AT)ly with e= x — k. Then 
does not depend on (or x) and (4.20) does not define a Schlesinger in analogy to 
the case r — 	= qiff ,I,frN  in the nonlinear case. 

Using this form of th—eSchlesinger transformation we can, for example, con-
struct the N = 3 case starting from the N = 1 case. In the case N = 1, the mapping 
for x is given by 

(y — cjx ± g 
= 	 

	

Y 	• 
Using Equation (4.20), we introduce the Schlesinger 

xc — g (L. -1- 1 )Y 
w - 	 

Y 	— 

In order to simplify the final expression, we define p with g = ç_p 
the following equation for ID: 

c(c — 1) bv ((5 — p)Y +  ç_( p_ - P)) _c:(P i5)(y(Q+ 1) - 
= (p — p_)cc:_tv (y + c) 

To give this equation in the same parametrization as (4.3), we first write it in ternis 
of y and then use a multiplicative gauge (t) = 4w to put to unity the coefficient of 
wy in the numerator of (7). We than have 

- 	— r) + (55  —  co = 
coY 

where 
(p — ii)(p — p)(2c c 1) 

(4.24) 

(4.21) 

(4.22) 

. We then have 

+ .Ç.))) (4.23) 

= 
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£.(P — p) + c(f, — p) r= 	  (4.25) 

CC +C±C ±C 
1T3 — 	  

2c c 1 

Finally, we examine the possibility of the existence of a AN = 1 Schlesinger. 
In this case, the structure of the transformation will be obtained by asking that the 
N 	1 case enter the singularity one step before the N case but exit at the same 
point. The general structure is thus 

rx +.vIriv y — 77 
= 	 LU  

y 
(4.26) 

where 77 and e must be determined. We do this by requiring that the equation for 
w contains no coefficients nonlinear in y. As a result, we find that 77 must satisfy 
Equation (4.1) for y: 

+_ r c 1 = + 1 

and e Equation (4.3) for x with ri instead of y: 

e 	q(r1 lkN)  

e ij 

(4.27) 

(4.28) 

We remark here on the perfect parallel to the continuous case (and as we pointed 
out, the discrete case led the investigation back to the continuous one). Let us point 
our here that the w obtained through (4.26) does not lead to w = 0 at the exit of 
the singularity (i.e. when x = 0, y = 11.1.N ) and a translation is needed. In principle, 
one has to define a new variable 

c.17 = w — w(x = 0, y = N) w + i(1,147 — 77)• 

We are now going to study the particular case where we construct N = 1 starting 
from N = O. As in the continuous case, our starting point is the N = 0 nonlinear 
equation. Thus, we are starting with the decoupled Equation (4.14) for x. We write 
the Schlesinger as 

y — 77 x 
w= 	 

y x — e (4.29) 

Once more, we find that ?I must satisfy (4.27) while e satisfies 	= 1 + q/e, 
i.e. the satne equation as x. Using (4.27), we can easily obtain the equation for w 



86 

144 
	 A. RAMANT ET AL. 

corresponding to N = 1. We write this equation in terms of in order to enter the 
singularity with j = 0. The expression of Cv is indeed linear in w and reads 

(q + e)w(c —  «5')  q(5,(77 + 1) c — 77 ) 
= 

	

	 (4.30) 
S'q(71 q( + l) 

In order to cast it in the parametrization of (4.21), we introduce a shift in the w: 

LO = 1.1) 	COo 
	 (4.31) 

We require that in the numerator of the equation for co, ý appears only as a product 
with co. We find that coo must satisfy 

_ 	wo(q e) + q(77 + 1)  
CO0 = 	 (4.32) 

(4.33) 
5,q (77 + 1) 

which is in the form of (4.21) up to a multiplicative factor in co. We note that coo  
plays the role of"io in Equation (3.18) in the continuous case. Indeed, (vo satisfy 
(4.33) for y = zj. 

Finally, we derive the AN = 1 Schlesinger for the case of a linear mapping 
(4.18). We start from 

rthv — gY — r1 w = 	 (4.34) 
y 	x — e 

and again require for w an equation with coefficients linear in y. We find that 77 must 
again be a solution of the equation for y, i.e. it must satisfy (4.27) and, moreover, 
e is a solution of (4.18) with y = 

(4.35) 
71 

Thus, the list of the Schlesinger transformations of the Gambier mapping is 
complete. 

5. Conclusion 
In this letter, we have shown that the Gambier system possesses Schlesinger trans-
formations just like Painlevé equations. This is a most interesting result given that 
the Gambier system is C-integrable (in the terminology of Calogero [10]), i.e. 
integrable through linearization, and not S-integrable. 

q(77 + 1) 

and we obtain the following equation for co: 

_ 	(q + e)(0(c— J3) — ccoo(q + e) — q(c + 77) 
= 
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We discovered that both the continuons and the discrete systems possess two 
kinds of Schlesinger transformations: one that allows changes of N by two units 
and one where the changes of N are by one unit. In the discrete case, our approach 
was based entirely on the singularity confinement approach. We have shown that a 
study of the singularities allows us to determine the form of the Gambier mapping 
and, at the same time, its Schlesinger transformations. This is one more argument 
in favour of the singularity analysis approach to the study of discrete systems. 
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Abstract 

We examine a family of three-point mappings that include mappings solvable through lin-
earization. The different origins of mappings of this type are examined: projective equations and 
Gambier systems. The integrable cases are obtained through the application of the singularity 
confinement criterion and are explicitly integrated. © 1998 Published by Elsevier Science B.V. 
All rights reserved. 

1. Introduction 

Integrability is a term far too general. Although the idea is simple and related to the 
integration of a differential system, integrability assumes various forms. Here we shall 
attempt neither a rigorous definition nor an exhaustive description of all the disguises 
of integrability. In order to fix the ideas we shall just present three most common 
types of integrability, which suffice in order to explain the properties of the majority 
of integrable systems [1]. These three types are: 
— Reduction to quadrature through the existence of the adequate number of integrals 

of motion. 
— Reduction to linear differential systems through a set of local transformations. 
— Integration through IST techniques. This last case is mediated by the existence of 

a Lax pair (a linear system the compatibility of which is the nonlinear equation 
under integration) which allows the reduction of the nonlinear equation to a linear 
integrodifferential one. The above notions can be extended mutadis mutandis to the 
domain of discrete systems. 

*Corresponding author. Permanent address: CRM, Université de Montréal, Montréal, Canada H3C 3J7. 

0378-4371/98/$19.00 Copyright (D 1998 Published by Elsevier Science B.V. All rights reserved 
P11 S0378-4371(97)00614-6 

88 



89 

A. Ramani et al. 1 Plzysica A 252 (1998) 138-150 	 139 

This paper will focus on the second type of integrability, usually referred to as 
linearizability. The prototype of the linearizable equations is the Riccati. In differential 
form this equation writes 

w' = aw2  jew + y 	 (1.1) 

and the transformation w =PIQ (Cole—Hopf) reduces it to the linear system: 

= fiP +YQ, 	= —OEP • 	 (1.2) 

Similarly, the discrete Riccati equation, which assumes the form of a homographic 
mapping 

+_ oOE 13 
x  	 (1.3) yx 

where x stands for xn , Tc for xr ,_,i (and, of course, x for x„_1 ), can be linearized 
through a Cole—Hopf transformation. Putting x = PIQ we obtain readily 

T' =aP + flQ, 	Q=YP ÔQ • 	 (1.4) 

The extension of the Riccati to higher orders can be and has been obtained [2]. The 
simplest linearizable system at N dimensions is the projective Riccati which assumes 
the form 

w' a + il 	1,  v wv wp cpw, with ,u = 1, . . . ,N . 	 (1.5) 

In two dimensions the projective Riccati system can be cast into a second-order equa-
tion without loss of generality, 

w” = — 3ww — w3  + q(t)(w' + w2 ) . 	 (1.6) 

The discrete analog of the projective Riccati does exist and is studied in detail in 
Ref. [3]. The corresponding form is 

_ xi/  Ev  x,  
 ' 	 (1.7) 1  

Again in two dimensions (and only in this case) the discrete projective Riccati can be 
written as a second-order mapping for a variable without any simplifying assumptions. 
One is thus led to a mapping of the form 

a.lxx + 	+ yxx + biX + ex + + qx + 0 = 0 	 (1.8) 

which was first introduced in Ref. [4]. The coefficients a, 	,O are not totally free. 
Although the linearizability constraints have been obtained in Ref. [4], the study of 
mappings of the form (1.8) was not complete. In the present work we intend to present 
its exhaustive study from the point of view of integrability in general. 

Another point must be brought to attention here. In the continuous case the study 
of second-order equations has revealed the relation of the linearizable Eq. (1.6) to the 
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Gambier equation [5]. The latter is obtained as a system of two coupled Riccati in 
cascade 

y' = —y2  + qy+ 	w' = aw2  + nyw+ a , 	 (1.9) 

where n is an integer. The linearizable equation (1.6) is obtained from Eq. (1.9) for 
n= 1 and a= —1, c= 0 and a = O. The discrete analog of the Gambier mapping was 
introduced in Ref. [6] and in full generality in Ref. [7]. However, the relation of 
the linearizable mapping to the discrete Gambier system has not been studied in full 
detail. In what follows we shall fill this gap by presenting the reduction of the Gambier 
mapping to the linearizable one. 

In the next section we shall analyse Eq. (1.8) and all its reduced forms and isolate the 
integrable ones through the use of the singularity confinement criterion. The integration 
of all integrable cases will be given in detail and, in particular, the linearization through 
a projective system. Section 3 is devoted to the study of the reduction of a Gambier-
type (coupled Riccati) system to a linearizable one together with the investigation of 
the integrable cases and their integration. 

2. Linearizable mappings as projective systems 

In Ref. [4] we have introduced a projective system as a way to linearize a second-
order mapping. (The general theory of discrete projective systems has been recently 
presented in Ref. [3]). In this previous work we have focused on a three-point mapping 
that can be obtained from a 3 x 3 projective system. As a matter of fact, this is the 
only case where the projective equation can be converted to a single, one-component 
mapping without any simplifying assumptions. The main idea was to consider the 
system 

P11 P12 P13 U 

-15  = P21 P22 P23 

	

1T, 	P31 P32 P33 

and conversely 

	

(11 	mll M12 m13 	u 
= M21 M2.2 M23 

m31 M32 m33 

where the matrix M is obviously related to the matrix P through M =P-1. Introducing 

the variable x = u/v and the auxiliary y = w/v we can rewrite Eqs. (2.1) and (2.2) as 

+ P12 + P13Y  = 
P2ix + P22 + P23 y 

m nx + 	+ rn 13 Y  X = 
M21X ± M22 ± M23 Y 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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(Since m3i, p3, do not appear in Eqs. (2.3) and (2.4) and we can simplify M,P by 
taking m33  = p33  = 1 and m31  = p31  =-- m32  -= p32  =0.) Finally, eliminating y between 
Eqs. (2.3) and (2.4) we obtain the mapping 

(2.5) 

where a, 	0 are related to m,p's. 
Eq. (2.5) will be the starting point of the present study. Our question will be when is 

an equation of this form integrable? (Clearly, the relation to the projective system works 
only for a particular choice of the parameters.) In order to investigate the integrability 
of Eq. (2.5) we shall use the singularity confinement approach that was introduced in 
Ref. [8]. The first question is what are the singularities of Eq. (2.5)? Given the form 
of Eq. (2.5) it is clear that a diverging x does not lead to any difficulty. However, 
another (subtler) difficulty arises whenever xn+1  is defined independently of xn _i. In 
this case the mapping "loses one degree of freedom". Thus, the singularity condition is 

aXn+1  
ax„_1  

which leads to 

(ocx + (5)(ex + 0) = (f3x+)(yx+ 	 (2.6) 

Eq. (2.6) is the condition for the appearance of a singularity. Given the invariance 
of Eq. (2.5) under homographic transformations it is clear that one can use them in 
order to simplify Eq. (2.6). Several choices exist, but the one we shall make here is to 
choose the roots of Eq. (2.6) so as to be equal to 0 and po, unless of course Eq. (2.6) 
has two equal roots, in which case we bring them both to O. Let us examine first the 
distinct root case. For the roots of Eq. (2.6) to be 0 and œ we must have 

'1C 	fi)), 	50= (r1 • 	 (2.7) 

The generic mapping of the form (2.5) has cO 0 and we can take a = O = 1 (by the 
appropriate scaling of x and a division). We have thus 

(2.8) 

Nongeneric cases do exist as well and we shall examine them in detail. Thus, let us 
first assume that a =0 in which case ßy =0 and we can decide that fi = O without loss 
of generality (fl and y are interchanged if one reverses the direction of the evolution). 
The mapping then becomes: (yx + e)x + (.7 + 1)(n x + 1) = 0 and we must have 	0, 
lest the mapping become a two-point one, in which case a scaling of x can bring its 
value to 1. We have thus the general form 

x(m +E)+(i+ 1)(lix + 0=0 
	

(2.9) 

Clearly, we cannot take both i =0, y = 0, neither e = 0, y = O. So, in order to obtain 
the reduced forms of Eq. (2.9) we assume first ri =0 leading to 

i+ 1 +x(yx+e)=0 	 (2.10) 



92 

142 	 A. Ramani et al. I Physica A 252 (1998) 138-150 

and then i 0 with two possible combinations either y = 0 

1)(1 x + 1) + ex = 0 
	 (2.11) 

or e -= 0 

(Tc + 1)(nx + 1) + yxx 0 . 	 (2.12) 

Going back to mapping (2.5) we can obtain a further reduced form by assuming 
Œ = 0= 0, in which case ßy = 0 and (n = O. As previously, we can assume that ß = 0, 
but this fixes the direction of evolution so the two choices ç = 0 and ri= 0 are distinct. 
We have thus two reduced mappings 

7XX + (51X ± EX - - = 0 
	

(2.13) 

and 

yxx 	+ ex rix = 0 . 	 (2.14) 

A further reduction can be obtained if we assume that [3= y =0, in which case we can 
freely choose = 0 and find 

+ ex 	= 0 . 	 (2.15) 

Mappings (2.8)—(2.15) are all that can be obtained from Eq. (2.5) with the assumptions 
of the distinct roots for Eq. (2.6) up to homographic transformations. 

Next, we turn to the case where Eq. (2.6) possesses a double root equal to O. The 
constraints in this case read 

(50= 
a0+ Se =f3n-Fy. 

(2.16) 

The generic case corresponds to O = e =1, leading to 

(2.17) 

with a = 	— S. Nongeneric cases also exist and we start by considering O = O. 
This leads to 	= 0 and we choose = O. One further constraint must be satisfied in 
this case Ôe= ß.  Assuming E = 1, we have ö = fln and obtain 

a1xx + 	+ yxx + 	+x + nx = 0 . 	 (2.18) 

If we take e =0 then two choices exist: 17=0 or fl= O. The first leads to 

a.7xx fi-XX yxx .5.7cx = 0 , 	 (2.19) 

while the second gives 

a-fcxx+ yxx 	rix = 0 . 	 (2.20) 

We can immediately point out that mappings (2.19) and (2.20) are trivial. The first 
reduces to an affine one under the transformations x —> 1/x, while in the second the 



93 

A. Ramani et al. I Physica A 252 ( 1998 ) 138-150 	 143 

term x is a common factor and the mapping is, in fact, a two-point one. Mappings 
(2.17)—(2.20) complete the reductions of Eq. (2.5) in the case of a double root of 
Eq. (2.6). 

In order to investigate the integrability of the mappings obtained above we shall 
apply the singularity confinement criterion as previously explained. We start with the 
generic mapping (2.8). Here the singularities are by construction 0 and oo. Following 
the results of Ref. [4] we require confinement in just one step. This leads to the 
condition fi = = 0. We obtain thus the mapping: 

".xx +yxx + rix + 1 = 0 	 (2.21) 

or, solving for.77: 

nx + 1 
—XX , (2.22) 

where y and ri are free. We expect Eq. (2.22) to be integrable. This is indeed the case: 
we can show that Eq. (2.22) can be obtained from the projective system (2.1) and 
(2.2) provided we take 

(- (14  + 1 ) q71 1 ) 
P = 	 0 0 

0 	0 1 
(2.23) 

and M = P-1  provided q is some solution of the equation qqq + qqn + q y + 1 = O. 
Then we can use the projective system (2.1) and (2.2) in order to—construct the general 
solutions of Eq. (2.21). (Let us point out here that the equation for q is really different 
from Eq. (2.21) due to the presence of y rather than y.) 

We tum now to the remaining mappings starting with Eq. (2.9). For the application 
of the singularity confinement criterion we must find the values of x for which the 
mapping loses one degree of freedom. For mapping (2.9) this happens (by construc- 
tion) when x is 0 or oo, but another source of singularity exists, when yx 	= O. 
The investigation of the singularity x = 0 leads to the confinement condition c = = 1. 
Proceeding now to the examination of the singularity starting from yx + 1 = 0 we find 
that there is no way to confine it: the sequence is {-1/y,x, —1, f,00,00, ...} where f 
is some finite value. We conclude that Eq. (2.9) is not integrable. 

Next, we examine mapping (2.10): 

=-1 — x(yx E) . 	 (2.24) 

If x =0 we find Y. = —1 and all the subsequent values are independent of the initial 
data: there is no way for mapping (2.24) to recover the lost degree of freedom and 
thus, we conclude that this mapping is not integrable. Next, we turn to Eq. (2.11): 

EX 
= 1  	 (2.25) 

rix + 1 
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and again start with x = 0. We obtain Y= —1, Y—,  —1 	and then may become 
indeterminate, in the form 0/0, provided 8=11=1. A careful analysis of this case 
shows that the singularity is periodic. Translatin2 x we find a mapping of the form 

	

+ x — 1 =0 , 	 (2.26) 

which must be integrable. It turns out that Eq. (2.26) is indeed integrable. Its integral 
can be readily obtained: 

x x 1 
(2.27) 

	

x x xx 	 x x 

and Eq. (2.27) can be integrated in terms of the elliptic functions. Mapping (2.26) is a 
member of the QRT family of integrable mappings [9] and can be easily shown to be 
the only member of this family included in the parametrization (2.5). Mapping (2.12): 

yxx = 1  	 (2.28) rix +1 

has two kinds of singularities induced either by x = 0 or rix + 1=0. The latter leads 
to an unconfined sequence Y= oo, = cc, etc. and thus we conclude that Eq. (2.28) 
is not integrable. We tum now to mapping Eq. (2.13): 

yxx + 
- -= x 	 (2.29) + 

A singularity starting with Sx+ ç =0 leads to an unconfined sequence Y= oc, = oc,... 
unless y = 0. However, even if y = 0 we obtain a sequence oc, oc, finite, 0,0,... again 
without recovering the lost degree of freedom. Thus, this mapping too is not integrable. 
Next, we consider mapping (2.14). If c5-$ 0 we can put å =1 by division (if c5 =0 the 
mapping becomes a two-point one) 

7  . 	 (2.30) 

The singularity of Eq. (2.30) occurs when x =0 and we obtain successively =—I/ 
and :f = oo. The condition for the subsequent x's to be finite is just U=7,ri or E=0. 
The latter is trivial because the mapping becomes a two-point one and we consider 
only the first condition. We take ì1  0, in which case a scaling can bring its value to 

= 1, resulting to e = y. Thus, based on singularity confinement the mapping 

Y(yx + x + 1) + yx 0 	 (2.31) 

should be integrable. This is indeed the case. Its integration can be obtained in a 
straightforward way. We find as the integral of Eq. (2.31) the quantity 

(Y + I )(x + 1 )  K 	
(2.32) 

where a is related to y through y = — ala. Thus, Eq. (2.31) is the discrete derivative 
of a homographic mapping. Once Eq. (2.32) is obtained the complete integration of 
Eq. (2.31) is elementary. 
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Finally, to make a long story short, we can just give without detailed proof the result 
that none of the mappings (2.15), (2.17) and (2.18) satisfies the singularity confinement 
criterion. Thus, we expect all of them to be nonintegrable. 

Before closing this section let us present the continuous limits of the two linear-izable 
equations we have identified above. For Eq. (2.21) we put x= —1 + vw, y =3 ± v2p, 

= y + v3 q and we obtain at the limit 	0 the equation 

wil  = 3ww' — w3  pw q 	 (2.33) 

This is Eq. (6) in the Painlevé/Gambier classification [10] (in noncanonical form) and 
precisely the one that can be obtained from a N =2 projective Riccati system. For 
Eq. (2.31) we put x=1+ vw, y= —1 — v3 q and obtain, at the limit v 	0 

w// = ww 2q. 	 (2.34) 

This is Eq. (5) of the Painlevé/Gambier list [10] and the one resulting from the deriva-
tive of a Riccati equation. Its canonical form can be obtained by a translation and 
scaling of w. 

3. Linearizable mappings from the Gambier systems 

The Gambier equation is obtained as a system of two Riccati equations in cascade. 
(Cascade in this context means that the first equation contains only one variable, while 
the second one contains both. To solve the system one is thus led to integrate the two 
equations in that order, substituting the solution of the first one into the second one.) 
In a discrete context the Gambier system was studied in detail (first in Ref. [6] and 
in full detail in Ref. [7]). The approach is the same as in the continuous case. One 
introduces two discrete Riccati equations in cascade: 

by + c 
y= 	 , 	 (3.1) ay + d 

x= 	 (3.2) orxy + fix + yy + 

with the obvious assumption that ac — db 0. Eliminating y between Eqs. (3.1) and 
(3.2) one obtains a single 3-point mapping for x. In this section we shall investigate the 
cases of the Gambier mapping that contain the linearizable mapping. To this end we 
shall first reduce the Gambier equation to the form Eq. (2.5). In practice, this means 
that the terms quadratic in x must be absent. The conditions for the mapping to be 
linear in all x, 	x read: 

cLe(ca + d )3)= )3(43 + ba), 
	 (3.3) 

y(ca + d fi),  Ô(ajg + bac). 
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The solution of system (3.3) is long and tedious. We shall not enter into all the de-
tails but work out only the generic case and for the remaining cases give just the 
results. The generic case is based on the assumption that none of the terms appearing 
in Eq. (3.3) vanishes. By dividing the first two (or the last two) equations we obtain 

= ßy. We then form the product of the second and third equation, use the previ- 
ously derived relation and expanding we find a( = fie. It suffices then to substitute into 
any of the four equations in order to get a final relation. The nongeneric cases are 
obtained by assuming that specific terms do vanish. Five cases can be distinguished, 
finally: 

	

eß 	ab 	abb + Ny — dby 
( 1 )C= —, 	P=—, 	c= 	 , 

	

- a 	 y 	 YY 

y(ce + c1) 
(2) a = fi = 0, —

Ô = 	a( + be ' 

(3) =I= Y = 	a( + be = 0 , 

(4) a=y=e=a=0, 

fi(a j0 + ba)— d 162, 
(5) 5=y =O, 	—

e)0
, 	c = 	  

cz ccoc 

Once these basic conditions are obtained we still have full homographie freedom 
which will allow us to reduce further Eqs. (3.1) and (3.2). Let us work out in detail 
the case corresponding to constraint (1) above. First, we can translate y so as to bring 

to zero. The direct consequence of Ô= O is = ß = c = O. We can further translate x 

so as to get y = 0 and by division put b =1, oc-= 1. Finally, by scaling x we can take 
8 = 1, unless e= 0 and by scaling y we can put 8 = 1. In the case 8 = O we can use 
the scaling of x to put ri = 1 (unless, of course, ri= 0) and then put 0 =- 1. As a result 
of these transformations case (1) can be reduced to three cases: 

Y 
Y= ay—+ d , 

combined with one of the three equation for x below: 

x 	
y_ 

=
x ny + 1 

xy 

Or 

(3.4) 

(3.5) 

(3.6) 

1 
x =— .  

xy 

or 

(3.7) 
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Concerning the remaining cases we just give the final results. Case (2) leads to the 
following mapping: 

by — 1 (3.8) 

xy + x + (3.9) 
y 

which is the main type and also to three simpler cases 

by 	 (3.10) 
= ay —+ 1 

_ xy +1 
x.. 

	

	 (3.11) 
Y 

and also 
by + c 

y= Y 

coupled to either 

_ x + y 
x= 	 

Y 
or 

.7c= — . 	 (3.14) 
Y 

Case (3) leads to cases identical to some of the ones identified in case (2) plus one 
trivial case corresponding to a purely linear mapping y = by + c, =x + y. 

Case (4) yields the mapping: 

y= by + c , 	 (3.15) 

+ y  (3.16) 

Finally, case (5) is identical to case (1). We can readily remark that the nongeneric 
mapping (3.4) or (3.10) is, in fact, linear for 1/y. Thus, system (3.10) and (3.11) can 
be readily discarded as being linear. Moreover, Eqs. (3.15) and (3.16) are a subcase 
of Eqs. (3.4) and (3.5) (once y is inverted). We can thus summarize the cases to 
be studied in detail in the following list (where we have inverted y in Eq. (3.4)). 
We obtain just three cases, where (7=0 or 1. 
(I) 

(3.12) 

(3.13) 

y -= a + dy, 	x7x" =- + y 	 (3.17) 

(obtained from case (1) up to a translation of y). 
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y=b+—
c

,
x

+G- 
Y 	Y 

((ebtained from the simplified case (2)) and 

(3.18) 

by —1 
v= 	, 

ay + 1 
_ xy+x+a-0 
x= 	  

Y 
(3.19) 

((ebtained from the main type of case (2)). The cases with a =- 0 are trivially 
inegrable: once y is given the integration for x is obtained through a multiplicative 
fflation of the form Yx=F(n) or 7/x =F(n), which can be linearized by just 
feing the logarithm of both sides. 

In ,otder to investigate the integrability of the a =1 cases we shall apply the singu-
larity confinement criterion. In the case of mapping (3.17) a singularity appears when 
y =-0 in which case 7 does not depend on the value of x. No way exists for the map-
ping to retrieve this lost degree of freedom through some indeterminate form. Thus, 
Eq. (117) for a= l is not integrable. We consider now mapping (3.18) for a =1: 

(3.20a) 

(3.20b) 
Y 

The sequence of singular values of (3.20a) is y =- 0, _T= Do and finite values for -T7 

and beyond. The fact that y =0 induces a divergence on -7, and at leading order we 

have 3c" cc xly. At the next step we must take into account that y a Uly and thus 

the computation of leads to =1 + xré that is a finite value depending on the 
initial condition x. Thus, the singularity is confined and mapping (3.20) is expected 
to be integrable. Finally, we examine mapping (3.19) for a =1. The only singularity 
sequence is y =1/b, y = 0, 7=-1, etc. Starting with a regular x we find a finite 

value for x, w—hile 7 diverges. However, a close examination of the singularity shows 
that is finite and the singularity is confined without any constraint. (Moreover, the 
special value a.= 1, which leads to a more complicated singularity pattern for y, also 
has confined singularities for x.) Thus, mapping (3.19) is expected to be integrable in 
general. Before proceeding further let us transform Eq. (3.19) to a form close to that of 
Eq. (3.20). It is possible to show that by translating x, x 	x— 0, and a homographic 

transformation on y, y —> y/(1— y), we can bring Eq. (3.19) to the form 

y =A+ — , 	 (3.21a) 
Y 

—x 
+ p, 
	 (3.21b) 

Y 

where A -,(b +1)I(a+b), B= —1/(a + b) and p=- O. 
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We turn now to the integration of mappings (3.20) and (3.21). Instead of restricting 
ourselves to the particular forms of Eqs. (3.20) and (3.21), we shall generalize our 
setting a little since this will lead to interesting results. Let us start with the more 
general Gambier system: 

y= a —b 
, 	 (3.22a) Y 

x 	py + q  + 	 (3.22b) y 	ry +s 

The application of singularity confinement follows exactly the same steps as for 
Eqs. (3.20) and (3.21) and shows that Eq. (3.22) satisfies this integrability requirement. 
Thus Eq. (3.22) is expected to be integrable. Next, we can ask for which values of 
p, q, r, s is the 3-point mapping for x of the linearizable form (2.5). It turns out that 
this is possible only if the equation for x is of the form 

(3.23) Y 	Y 

If 0=0 then it is possible to bring them both to zero (by translation of x), and the 
mapping becomes trivial. Otherwise it is possible, through a translation, to bring either 
0 or O to zero and scale the remaining one to unity. Thus, the only interesting forms 
of Eq. (3.23) are 

x+1 
(3.24) 

(3.25) 

One 	introduces the transformation x = —(1 + coX)—  I  (or equivalently 	= 
toX(1 coX)— I) where ?3w co = — b and reduces the 3-point mapping resulting from 
the elimination of y between Eq. (3.22a) and (3.24) to 

(3.26) — 

We remark that Eq. (3.26) is the generic linearizable mapping presented in its fully 
reduced form in Eq. (2.21). Thus, the Gambier mapping leads again to the linearizable 
one obtained from the projective discrete Riccati system is perfect analogy to the 
continuous case. 

4. Conclusions 

In the previous sections we have investigated three-point mappings that are integrable 
through linearization. Our analysis was guided by the analogy with the continuous 
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situation and results of ours on N =- 3 projective systems and the Gambier equation. 
We have presented an exhaustive analysis of the linearizable mapping and identified 
all its integrable forms. We thus have shown that the discrete equation 

.Y.XX + °XX + fil( + 1 = 0 	 (4.1) 

can be reduced to a linear 3 x 3 system. The same equation, with the transformation 
X = c(1 + 1/x) can be reduced to the Gambier system: 

y = a + —b  , 
Y 

x + 1 = 	 
Y 

(where a, b, c are related to the a, /3), which provides a different method for its 
solution. Nongeneric cases of the general linearizable mapping were also identified 
and, in particular, the equation: 

i(yx + x + 1) + yx =0 , 	 (4.3) 

that is the discrete derivative of a homographic mapping and constitute thus the dis-
cretization of Eq. (5) on the Painlevé/Gambier classification. The extension of the 
present results to higher-order (third and beyond) systems could be most interesting. 
We intend to return to this question in some future work. 
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Abstract 

We examine a family of discrete second-order systems which are integrable through re-
duction to a linear system. These systems were previously identified using the singularity 
confinement criterion. Here we analyse them using the more stringent criterion of nonex-
ponential growth of the degrees of the iterates. We show that the linearisable mappings 
are characterised by a very special degree growth. The ones linearisable by reduction to 
projective systems exhibit zero growth, i.e. they behave like linear systems, while the re-
maining ones (derivatives of Riccati, Gambier mapping) lead to linear growth. This feature 
may well serve as a detector of integrability through linearisation. 
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Integrability of discrete systems is a concept that can be understood on the basis of our 
experience on integrable continuons systems. The progress accomplished in the domain of 
discrete systems this last decade has made possible the identification of the possible types 
of integrability. The parallel with continuous systems is almost perfect. Three main types 
of integrable discrete systems seem to exist [1]: 

a) Systems which possess a sufficient number of constants of motion. The QRT family of 
mappings [2] is a nice example of such a system. 

b) Systems which can be reduced to linear mappings. They will be examined in detail in 
this paper. 

c) Systems which can be obtained as the compatibility condition for some linear system i.e. 
systems that possess a Lax pair. Nice examples of such systems are the discrete Painlevé 
equations [3]. Given the Lax pair one can reduce the integration of the nonlinear mapping 
to the solution of an isomonodromy problem. 

It is clear that the integration of a given integrable discrete system may proceed along any 
of the lines sketched above. One can, for example, perform one first integration using a 
constant of motion whereupon the system becomes linearisable and so on. 

The very existence of integrable mappings (and their relative rarity) made their detection 
particularly interesting. Integrability detectors must, of course, be based on the properties 
which are characteristic of integrability. In this spirit we have proposed the singularity con-
finement property [4] based on the observation that a singularity spontaneously appearing 
in an integrable mapping disappears after some iterations: it is "confined" in the sense that 
it does not propagate ad infinitum. The singularity confinement criterion is a necessary 
one for integrability but, as we have already remarked in [1], it is not sufficient. This was 
explained in ample details by Hietarinta and Viallet [5] who have proposed the notion of 
algebraic entropy as a stronger criterion which could well be sufficient. This criterion is 
based on the ideas of Arnold [6] and Veselov [7] on the growth of the degrees of the iterates 
of some initial data under the action of the mapping. The main argument is that a generic, 
nonintegrable mapping has an exponential degree growth, while integrability is associated 
with low growth, typically polynomial. Although the degree itself is not invariant under 
coordinate changes, the type of growth, as pointed out by Bellon and Viallet [8], is invari-
ant. The authors of [5] and [8] have introduced the notion of algebraic entropy defined as 
E = 	(log d)/n, where c17, is the degree of the nth iterate. Generic, nonintegrable 
mappings have nonzero algebraic entropy. The conjecture is that integrability, associated 
to polynomial growth, leads to zero algebraic entropy. In [9] we have examined the re-
sults on discrete Painlevé equations based on the singularity confinement criterion in the 
light of the low-growth approach. Our main finding was that singularity confinement is 
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sufficient in order to deautonomize a given integrable autonomous mapping. This result 
led to the proposal of a dual approach for the study of discrete integrability based on the 
successive applications on the singularity confinement and low-growth criteria, the latter 
being implemented only after the first is used to simplify the problem down to tractable 
proportions. 

The aim of this paper is to examine this particular class of mappings which are linearisable 
and study their growth properties. Most of these systems were obtained using the singu-
larity confinement criterion and thus a study of the growth of the degree of the iterates 
would be an interesting complementary information. Moreover, as we will show, the lin-
earisable systems do possess particular growth properties which set them apart from the 
other integrable discrete systems. 

The first mapping we are going to treat is a two-point mapping of the form xn+1 = f(, n) 
where f is rational in xr, and analytical in n. In [1] we have shown that for all f's of the 
form - the singularity confinement requirement is satisfied. Ho-wever all those 

Ei 
mappings cannot be integrable: the discrete Riccati, xn+1  = a+ sr,A+0  , is the only expected 
integrable one. Our argument in [1], for the rejection of these confining but nonintegrable 
cases, was based on the proliferation of the preimages of a given point. If we solve the 
mapping for xn  in terms of xn+1  we do not find a uniquely defined xi, and, iterating, 
the number of xn _k  grows exponentially. In what follows we shall analyse this two-point 
mapping in the light of the algebraic entropy approach. We start from the simplest case 
which we expect to be nonintegrable, 

À 	Li 
xn-pi = a+  x+3 	+ 

(1) 

The initial condition we are going to iterate is xo  =- p/q and the degree we calculate is the 
homogeneous degree in p and q of the numerator (or the denominator) of the iterate. We 
obtain readily the following degree sequence di, = 1,2,4,8,16, ... i.e. dn  = 2n. Thus the 
algebraic entropy of the mapping is log(2) > 0, an indication that the mapping cannot be 
integrable. In the present case it was quite easy to guess an analytical expression for the 
degree. What we do in general in order to obtain a closed-form expression for the degrees 
of the iterates, is to compute a sufficient number of them. Then we establish heuristically 
an expression of the degree, compute the next few ones and check that they agree with 
the analytical expression prediction. Now we ask how can one curb the growth and make 
it nonexponential. It turns out that the only possibilities are 	= 0 or e = -y. In either 
case mapping (1) becomes a homography. The degree in this case is simply dn  = 1 for all 
n. This is an interesting result, clearly due to the fact that the homographic mapping is 
linearisable through a simple Cole-Hopf transformation. 
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The second mapping we shall examine is one due to Bellon and collaborators [10] 

xn  + yn  - 2xnyn2  
Xn+1 = 

Yn(xn - Yn) ' 
xn  + yn  - 2xn2 yn  

Yn+1 = 
xn,(yn - xn) • 

The degree growth in this case is studied starting from xo  = r, yo  = plq and again we 
calculate the homogeneous degree of the iterate in p and q, i.e. we set the degree of r to 
zero. (Other choices could have been possible but the conclusion would not depend on 
these details.) We obtain the degrees dxn  .= 0, 2, 2, 4, 4, 6, 6, . . . and dyr, -= 1, 1, 3, 3, 5, 5, . . . 
i.e. a linear degree-growth. This is in perfect agreement with the integrable character of 
the mapping. As was shown in [11] it does satisfy the unique preimage requirement and 
possesses a constant of motion k = ly-:?n  , the use of which reduces it to a homographie 
mapping for x7, or yn. 

The third mapping we are going to study is the one proposed in [1] 

Xn(Xn - Yn - a) 
, Xn+1 -= 	2 Xn - Yn 

(Xn - Yn)(Xn - Yn -  a) 
Yn+i - 	2 Xn  - yn  

(3) 

where a was taken constant. We start by assuming that a is an arbitrary function of n 
and compute the growth of the degree. We find dxn  .= 0, 1, 2, 3, 4, 5, 6, 7, 8, ... and dyn  = 
1, 2, 3, 4, 5, 6, 7, 8, 9, . . . i.e. again a linear growth. This is an indication that (3) is integrable 
for arbitrary an  and indeed it is. Dividing the two equations we obtain yn±i/x,±1  = 
1 - yn/xn  i.e. yn/xn  = 1/2 + k(-1)72" whereupon (3) is reduced to a homographic mapping 
for x. Thus in this case the degree-growth has succesfully predicted integrability. 

A picture starts emerging at this point. While in our study of discrete Painlevé equations 
and the QRT mapping we found quadratic growth of the degree of the iterate, linearisable 
second-order mappings seem to lead to slower growth. In order to investigate this property 
in detail we shall analyse the three-point mapping we have studied in [12,13] from the point 
of view of integrability in general and linearisability in particular. The generic mapping 
studied in [13] was one trilinear in xn , x72+1 , xn_ i . Several cases were considered. Our 
starting point is the mapping, 

Xn±iXnXn-1 ± )3Xn Xn+1 ± (77Xn-F1Xn-1 + 'YXnXn-1 +/3xn + rgn-1 -I- -X71H-1 ± 1 -= 0. (4) 

(2) 

We start with the initial conditions xo  -= r, x1  = plq and compute the homogeneous degree 
in p, q at every n. We find dn  = 0, 1, 1, 2, 3, 5, 8, 13,... i.e. a Fibonacci sequence dn+i .= 
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d, + dn _1  leading to exponential growth of d„ with asymptotic ratio 1+2 . Thus mapping 
(4) is not expected to be integrable in general. However, as shown in [13] integrable 
subcases do exist. We start by requiring that the degree growth be less rapid and as a 
drastic decrease in the degree we demand that d3  = 1 instead of 2. We find that this is 
possible when either ß = = 0 in which case the mapping reduces to: 

1 
Xn+1 	7 	 (5) 

Xn XnXn-1 

or y = = o, giving a mapping identical to (5) after x ---> 1/x. In this case the degree is 
= 1 for n> 0. Equation (5) is the generic linearisable three-point mapping, written in 

canonical form. Its linearisation can be obtained in terms of a projective system [13] i.e. 
a system of three linear equations, a fact which explains the constancy of the degree. 

The trilinear three-point mapping possesses also many nongeneric subcases, some of which 
are integrable. The first nongeneric case writes: 

xn(-yx.-1 + E) + (xn+1 + 1)(77x7,--1 + 1) = O. 	 (6) 

The degrees of the iterates of mapping (6) form again a Fibonacci sequence even in the 
case c = 0 or ri = O. The only case that presents a slightly different behaviour is the case 
7 = 0: 

(xn+1  + 1)(77xn-i + 1) + exn  = 0. 	 (7) 

In the generic case the degree of the iterate behaves like dn  =0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 
9, 12, 16, 21, 28, 37, 49,... satisfying the recursion relation dn±i = dn_i + dri _2 lead- 

	

1/3   1/3 
ing to an exponential growth with asymptotic ratio 
Although the mapping is generically nonintegrable it does possess integrable subcases. 
Requiring for example that d4  = 1 we obtain the constraint e = = 1 and the mapping 
becomes periodic with period 5. If we require d5  = 1, we obtain e = -71n±i(77n  - 1) 

and 7772+177n777,1 - 7/n+177n ± 7772+1 - 1 = 0, leading again to a periodic mapping with 
period 8. In these cases, the degree of the iterates exhibits, of course, a periodic be-
haviour. A more interesting result is obtained if we require d9  < 7. We find that the 
condition n = 1 and c an arbitrary constant leads to a nonexponential degree growth dn  = 
0,1,1,1,2, 2,3,4,5,6,7,9,10,12,14,15,18,20,22, 25,27,30,33,36,39,42,46,49, 	Although 
the detailed behaviour of dn  is pretty complicated one can see that the growth is quadratic: 
we have, for example, dirn±i  = m(m + 1) for m> 0. Thus this mapping is expected to be 
integrable and indeed, it is a member of the QRT family. Its constant of motion is given 

Yn+1 	Yn  

K Yn+i + Yn 	
e f 1)  ( 1 +  1 	62 

- 	- 
Yn 	 Yn+i 	 Yn Yn+1 YnYn+1 

120  ) 38 	+ (2.  _ 	12038 	. 

by 



where yk  = xk  + 1. The second nongeneric case is: 

7Xn Xn -1+ (5Xn-FiXn-1 ± EXn + (x+1 

A study of the degree-growth leads always to exponential growth with asymptotic ratio 
1-1--I  2 	, except when -y = 0 in which case the degrees obey the recurrence dn±i = d.-i+dn-2. 
No integrable subcases are expected for mapping (8). The last nongeneric case we shall 
examine is 

')/XnXn_i ± Xn+1Xn-1 + EX  n ± 7 IXn-1 = 0. 	 (9) 

Again the degree sequence is a Fibonacci one except when 7 = 0 or 77 = 0, in which case 
we have the recursion dn+1  = dn_1 + dn_2, or when en  = -yn rin_2. In the latter case 
the degree-growth follo-ws the pattern dn  =- 0, 1,1, 2, 2, 3, 3,... i.e. a linear growth. Thus 
we expect this case to be integrable. This is precisely what we found in [13]. Assuming 
77 	0 we can scale it to ri = 1, and thus E -= 7. The mapping can then be integrated 
to the homography (xn _ i  + 1)(xn  + 1) = kaxn _i  where k is an integration constant and 
a is related to -y through 'yn  = -an±l/an. Thus in this case mapping (9) is a discrete 
derivative of a homographic mapping. 

This leads us naturally to the consideration of the generic three-point mapping that can 
be considered as the discrete derivative of a (discrete) Riccati equation. Let us start from 
the general homographic mapping which we can write as 

	

Axn xn± i + Bxn  ± Cxn±i  ± D = 0. 	 (10) 

where A, B, C, D are linear in some constant quantity K. In order to take the discrete 
derivative we extract the constant k and rewrite (10) as: 

axn xn+1  + exn + 7xn-1-1 + Ô  k = 

	

	 . 	 (11) 
cxnxn+i + (x, +77xn up + t9 

Using the fact that K is a constant, it is now easy to obtain the discrete derivative by down-
shifting (11) and subtracting it form (11) above. Instead of examining this most general 
case we concentrate on the forms proposed in [14]. They correspond to the reduction of 
(11) to the two cases: 

xn±i (xn  + a) ,=  	 (13) 
xn  + b 

Next we compute the discrete derivatives of (12) and (13). We find: 

I), 	1)7,1 
Xri+1 = Xn + an-1 - an - — ± Xn  X n _i 

=0. 
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(8) 

b (12) 
Xn 

(14) 



Xn+i = Xri 
Xn  + an  Xn-1 bn-1 

Xn _ 1 ± an-1 Xn  bn  
(15) 

and 

108 

The study of the degree of growth of (14) and (15) can be performed in a straightforward 
way. For both mappings we find the sequence dn  = 0, 1, 2, 3, 4, 5, 6,... i.e. a linear growth 
just as in the cases of mappings (2), (3) and the integrable subcases of (9). If we substitute 
bn_1 by cn_1  in the last term of the rhs of (14) or the denominator of (15) we find 
dn  = 0, 1, 2, 4, 8, 16,... i.e. dn  = 2n  for n > 0 unless c = b. Investigating all the possible 
ways to curb the growth we find for both (14) and (15) that c = 0 is also a possibility to 
bring d3  down to 3. However a detailed analysis of this case shows that for c -= 0 we have 

=- 0, 1, 2, 3, 5, 8, 13, 21,... i.e. a Fibonacci sequence with slower, but still exponential, 
growth (i.e. ratio 1+2̀ /75  instead of 2). 

One more family of linearisable discrete systems has been studied in detail in [15] and [16]. 
They are what we called the Gambier mappings which constitute the discretisation of the 
continuous Gambier equation [17]. The latter is a system of two Riccati's in cascade. In 
the discrete case the Gambier system is written as two homographic mappings which we 
write in canonical form as: 

an yn  bn  
Yn+i — 	yn  ± 	 (16a) 1 

xnyn /dn  crt2  
Xn+1 =  

	

	 (16b) 
Xn  dflYri 

Eliminating y we can also write the discrete Gambier system as a single three-point map-
ping for x. The study of the degree growth of (16) is straightforward. We start from 
xo  = r, yo  = plq and compute the homogeneous in p,q degree of (16a) and (16b). Since 
(16a) is a Riccati its degree does not grow i.e. we have dy, = 1. Given the structure of 
(16b) we have dxn+, = c4n  dyn  and thus dxn  = n. What is interesting here is that the 
Gambier mapping exhibits a linear degree-growth independently of the precise values of 
a, b, c, d. The fact that it can be reduced to Riccati's in cascade is enough to guarantee its 
integrability. On the other hand, if we had asked, (as we have done in [15]) for the pos-
sibility to express the solution as an infinite product of matrices,even across singularities, 
this would have led to constraints on the parameters (which were given in detail in [16]). 

In this work we have examined a class of integrable discrete systems (mainly three-point 
mappings) from the point of view of the degree-growth of the iterates of some initial data. 
Our study was motivated from the recent works connecting slow-growth and integrability. 
Our present analysis confirms our previous findings based on the singularity confinement 
necessary discrete integrability criterion. But what is more important is that a relation 
between the details of integrability and the degree-growth seems to emerge. In this work 
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we have found two main types of degree-growth: zero and linear growth. Zero growth is 
associated to systems which are linearisable through a reduction to a projective system. 
Linear growth is characteristic of systems which can be reduced to linear ones although at 
the price of some more complicated transformations, usually through the existence of some 
constant of motion or, as in the case of the Gambier mapping, through the solutions of 
linear equations in cascade. On the other hand, in our study on discrete Painlevé equations 
and the QRT mapping we found that quadratic growth was the rule. These results are, 
of course, characteristic of three-point (second-order) mappings and we do not expect the 
details concerning the precise exponents to carry over to higher-order mappings. Still, we 
expect the pattern detected here, namely that linearisable mappings lead to slower growth 
than the nonlinearisable integrable ones, to persist. It could be used for the classification 
of integrable discrete systems and be a valuable indication as to the precise method of 
their integration. We intend to return to this point in some future work. 
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Abstract. We present a systematic construction of integrable third-order systems based on 
the coupling of an integrable second-order equation and a Riccati equation. This approach is 
an extension of the Gambier method that led to the equation that beurs his name. Our study 
is carried through for both continuous and discrete systems. In both cases the investigation is 
based on the study of the singularities of the system (the Painlevé method for ordinary differential 
equations and the singularity confinement method for mappings). 

1. Introduction 

The investigation of the integrability of second-order differential equations has bcen one of 
the most important enterprises in the history of integrable systems. Initiated by Painlevé 
[1] and completed by Gambier [2], it established the importance of singularity analysis as 
an integrability criterion. Following the spirit of Painlevé, the property that bears his name 
(absence of movable critical singularities) is synonymous with integrability, since it allows 
the definition of a function from the solution of an ordinary differential equation (ODE). 
(In contrast, an equation, the solution of which is explicitly given through quadratures but 
presents multivaluedness, is not integrable in Painlevé's point of view.) 

The results of the Painlevé-Gambier investigations are of capital importance since 
they showed the existence of new transcendents, known since then under the name of 
Painlevé. Overshadowed by this momentous discovery, the work of Gambier on linearizable 
systems did not receive the attention it deserved. The recent discovery of integrable discrete 
systems hos led naturally to a critical examination of the work of the 19th century masters. 
In particular, we have shown that it is possible to find discrete forms not only for the 
Painlevé equations, but, in fact, for every single equation in the Painlevé-Gambier list. The 
equation #XXVII of the list of 50 canonical equations [3], which we decided to call the 
Gambier equation, was of course among them. Its discretization necessitated a thorough 
understanding of the Gambier approach. 

The main idea of Gambier (we are aware that the historical truth may be different) 
was to construct an integrable second-order equation by suitably coupling two integrable 
first-order ones. The latter were well known: at first order the only integrable (in the sense 
of having the Painlevé property) ODEs are either linear or of Riccati type. The Gambier 
equation is precisely the coupling of two Riccati in cascade (and it contains as a subcase the 

11 Permanent address: CRM. Université de Montréal, Montréal, H3C 3J7 Canada. 
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coupling invoIving one or even two linear equations). From the point of view of singularity 
analysis this coupling of two integrable equations is not harmless. Each of the equations 
has singlevalued movable singularities. However, the singularities induced on the second 
equation by the singularities of the solution of the first one (and which would thus look 
superficially as fixed) may lead to multivaluedness. This feature makes the application of 
singularity analysis mandatory. Its implementation leads to the (algebraically) integrable 
forms of the Gambier equation. 

In perfect analogy to the continuous case, we have introduced in [4] the Gambier 
mapping. The latter is a system of two coupled homographic mappings (which play the 
role of the discrete Riccati) in cascade. The integrable forms were obtained through the 
application of the discrete integrability criterion that we have proposed under the name of 
singularity confinement. 

In this work we shall address the question of the construction of integrable third-order 
systems in the spirit of Gambier. Namely we shall start with a second-order integrable 
equation and couple it with a Riccati (or a linear) first-order (also integrable) equation. 
This enterprise may easily assume staggering proportions. While at second order one had 
only two first-order building blocks at one's disposai, at third order there are minimally 
24 equations (the Gambier list) to be coupled to the two first-order integrable ones. The 
situation is even more overwhelming in the discrete case since it is well known that each 
continuous equation of the Gambier list may possess several discrete avatars. In order to 
limit the scope of our investigation we shall consider coupled systems where the dependent 
variable enters only in a polynomial way. This leads naturally to the coupling of a Painlevé 
(P) I or 11 to a Riccati. 

Historically the coupling of a P equation with a Riccati was first considered by Chazy 
[5]. He examined an additive coupling of Painlevé I (P1) with a Riccati. Starting with PI 
in the form 

w'' = 6w2  + z 
he introduced a Riccati: 

y = aY 2 ßy  Xtv + Y 
where a, e, x, y are functions of z. This coupling is additive as opposed to that introduced 
by Gambier which is multiplicative and assumes the form 

y' = aY2  + (6  + X/D)Y + Y. 
(In the case of the Gambier coupling w is the solution of a Riccati equation.) Since the 
singularities of Pi  are double poles (6/(z — zo)2), the only coupling that is compatible with 
integrability is the additive one. Assuming that a 0 0, we can put A = 0 by a simple 
translation of y and Chazy found that the only cases where the leading singularity does not 
induce multivaluedness were when equation (1.1) assumed the form 

= 
1 —

4 
k2 

Y
2 

+ te)  ± Y 	 (1.2) 

where k is an integer not multiple of 6. Thus five cases had to be examined as k = 6m +n 
with n = 1, 	, 5. Chazy found the following necessary integrability constraints: 

n = 2 	y = 0 
n r= 3 	y' = 0 
n = 4 	y" = gy2  + vz 
n = 5 	y"' = 	v 
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where p. and v are specific numerical constants. It turns out that for k = n they are also 

sufficient. For k = 6m + 1 the first condition appears at k = 7. In this case the constraint 

reads: 

y (5)  = 48yyw  + 120/y" — 13f} -4 y / y2  — 24zy` — 48y. 

This equation has the IP property and is thus expected to be integrable. Still it is interesting 
to point out that this equation is more difficult to solve than the one we started with, which 
is of third order. 

Chazy offers only a rapid comment conceming the case k 8. In fact, the constraints 
obtained are necessary, but not sufficient for higher k's. We have examined the first few 
cases beyond k = 7 using the same method as Chazy, namely singularity analysis (but 
unlike Chazy our approach has profited from the existence of computer algebra tools). It 
turned out that none of the cases we examined satisfied the P criterion. So, although this is 
not a proof in a strict sense, we can suppose that no integrable cases exist beyond the five 
identified by Chazy. 

2. Coupling of integrable second-order ODEs with a Riccati 

As we have explained in the introduction we shall not attempt an exhaustive treatment of 
all 24 [2] (or 50 [3], or more [6]) second-order equations of the Painlevé/Gambier list with 
a Riccati. Instead we shall limit ourselves to the simplest case, namely equations where the 
dependent variable enters in a polynomial way (instead of rational). This limits the research 
to just three generic equations: P (already examined by Chazy), Painlevé II (PE) and the 

linearizable G5 (number 5 of the Gambier list) equation. Both PE  and 05 have dominant 

singularities that are single poles i.e. w 	1/(z— zo), Thus the adequate coupling is through 
a multiplicative Riccati. An additive coupling would lead to logarithmic singularities in the 
Riccati and thus to multivaluedness incompatible with integrability. 

2.1. Coupling PH  with a Riccati 

We start with the canonical form of PE, namely, 

w" 	2w3  + ztv + 	
(2.1) 

where j.L. is a constant, and consider the following multiplicative coupling: 

ceY2  (nlp +)Y+Y- 	
(2.2) 

where a, p, y and, a priori n, are functions of z. A gauge transformation on y can be used 

in order to put p to zero. Next, we proceed to determine a, y through the application of 
singularity analysis so as to ensure the P property for the system. Equation (2.1) has of 
course the IP property and the expansion of its solution around a singularity is 

O.  
= 	+ • • • + a4(Z ZO)

4 +... 
Z — ZO 

where a2  = 1 and a4 is a free parameter (the second one besides zo). The coupling of w 
with y must not lead to multivaluedness. Thus the coefficient n of the coupling must be 
an integer. This is only the first condition and, by far, not sufficient. In order to proceed 
further we expand y around the singularity zo  and assume that y either has a pole at the 

same location or is regular. Substituting the expansion form (2.3) we can compute the terms 

(2.3) 



a 	(2y" +  yz 
Y 	y3  

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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of the series of y and obtain the compatibility conditions for the absence of logarithmic 
terms in the expansion of y. We find thus, the following condition for n =1: 

y = a = O. 	 (2.4) 

Let us point out that a = y = 0 works for every value of n: w is simply related to the 
logarithmic derivative of y. We have furthermore, for n = 2, 

= o.  

For n = 3 we obtain 

— a) a3  
Y 	Ca" + az 	

and 

Eliminating y and integrating once, we find 

aa"' — 3a'a" — a'az — ka2  = 0 

and putting = we find 

q5" = 203  ± 	k. 

Thus the logarithmic derivative of a satisfies precisely PH  (with a free constant k). For 
n = 4 we find a more complicated condition: 

+dy2  + 3Œ(1 	3Y'zi-9/" = 0 	 (2.9a) 

3yaa + y'a2  + 3y(1 — 11)4- 3a`z + 9a"' = 0. 	 (2.9b) 

Putting a2  = 0' we can integrate (2.9b) (multiplied by a) for the quantity a3 y and thus 
obtain y. Then (2.9a) gives a sixth-order homogeneous equation for 0 and putting u = 
leads to a fifth-order equation. This equation passes the II" test and is thus presumably 
integrable but its integration is a more complicated task than the equation we started with, 
which is only of third order. 

For n = 5 we obtain again as a first condition a = y = 0 which as we explained is 
sufficient. For n = 6 a first condition (as in the n = 2 case) is a' = y' = 0. However, 
a second condition appears. In fact, for n > 4 the free parameter of the expression (2.3) 

starts appearing in the compatibility condition which must be identically satisfied. Thus 
for n = 6 we find the second condition either a = 0 and p. = — 26. or y = 0 and g = 
Thus this coupling works only for some particular case of PH  with a specific p.. For n 7 
we have not been able to find any integrable case, besides the trivial a = y = 0 one. In 
some cases it is even possible to prove the incompatibility of the constraints. We surmise 
that the multiplicative coupling of PH  with a Riccati does not possess any integrable case 
besides those listed above. 

2.2. Coupling the linearizable G5 with a Riccati 

The canonical form of the linearizable equation, 05 in the Gambier list is, 

w" = —3w'w — w3  + q(z)(7.1.1 +1112 ). 	 (2.10) 

The Cole—Hopf transformation w = u'/u reduces (2.10) to a linear equation u"' = q(z)u". 
The function q (z) is completely free. Given this fact one can make two different couplings. 
The -first is the 'standard' one where the solution of (2.10) for given q(z) is injected into a 
Riccati: 

= ay2  nwy ± y. 	 (2.11) 
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The condition for the IP property for n < 0 turns out to be a = 0, while for n > 0 it is 
y = 0. In both cases (2.10) becomes a linear equation (either for y or for 1/y) and the 
remaining free function (y or a) does not produce multivaluedness. 

The second case of coupling is when q(z) is itself proportional to the solution of a 
Riccati. Thus the coupled system now becomes 

= au? + Pu; + y 	 (2.12a) 

Y" = —3YY — Y3  + nu)(31/  + y2). 	 (2.126) 

Only the case a 	0 needs to be considered: when a = 0 equation (2.12a) is linear and 
thus its solutions do not have any movable singularities. Since a e 0 we can take a = 1. 
As previously the coupling enters through nu) with integer n since the singularity of (2.12a) 
is a simple pole. For n < 0 the system has always the P property and thus e and y are 
free. In contrast, for n > 0 we have stringent integrability conditions. For n = 1, 2 there 
is no solution for p, y leading to the P property for the system. For n = 3 we find as the 
only solution p = y = 0. For n = 4 we obtain the condition, 

y = 	 fi2 + fi, 

and 

e uppi - 16fi3. 	 (2.13b) 

Putting A = —01 /40, (2.13b) reduces to çb " ' = 0 and we thus have elementary expressions 
for p and y. 

For n 5 we can obtain the two compatibility conditions in the form of a higher order 
nonlinear system for e, y. It tums out that for the first few cases studied this system has 
the weak P property [7]. We have not tried to integrate these systems since their integration 
is more difficult than the problem we started with. 

3. Coupling of a second-order mapping with a discrete Riccati equation 

Constructing integrable discrete systems in the same spirit as Gambier is quite 
straightforward once the basic ingredients are available. What is needed is a detailed 
knowledge of the forms of the equations to be coupled and a reliable integrability detector. 
The second-order mappings which play the role of the P equations in the discrete domain 
have been the object of numerous detailed studies and we are now in possession of discrete 
forms of all the equations of the Painlevé/Gambier classification. The discrete integrability 
detector is based on the singularity confinement that we discovered in [8] and which has 
turned out to be of the upmost reliability. 

The coupling we are going to consider is a homographie mapping (discrete Riccati) for 
the variable y: 

(ax + 13)y + (qx + 8) 	 (3.1) y= 
(ex + 	+ (yx + S) 

(where y stands for yn+i , y for y, and a, p,...,6 depend in general on n) the coefficients 
of which depend linearly on x, the solution of the discrete PI  or P11. (We shall not present 
here the coupling of the discrete analogue of the linearizable equation to a Riccati. As a 
matter of fact this equation is the simplest non-trivial member of the hierarchy of projective 
Riccati systems, the discretization of which was presented in full generality in [9].) The 

(2.13a) 
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mapping (3.1) can be simplified and brought under canonical form through the application 
of homographie transformations on y. The generic form of the result is, 

(ax + f3)y + (3.2) 
y 	(yx + 8) 

Non-generic cases do exist as well, and foremost among those is the linear relation, 
y(yx + 8) — y(cex + e )  — 1 = 0. 	 (3.3) 

In what follows we shall examine in detail the coupling of (3.2) and (3.3) with either discrete 
Painlevé I (d-P1) or discrete Painlevé II (d-PH) (under various forms). 

How does one apply the singularity confinement criterion to a mapping such as (3.2) 
when x is given by some discrete equation like d-P1  or d-P11? The first step consists of 
determining the singularities of (3.2). As we have explained in [10] the singularity manifests 
itself by the fact that y is independent of y. (We say in this case that y forgets the initial 
condition or loses one degree of freedom'.) The condition for y to be independent of y 
is just 

(y x + 8)(ax + 13) = 1. 	 (3.4) 

This quadratic equation has two roots which we will denote by X1, X2: they can be easily 
related to a, p, y, 8. The confinement condition is for y to recover the lost degree of 
freedom. This can be done if y assumes an indeterminate form 0/0. This means that 
x at this stage must again satisfy (3.4) and moreover be such that the denominator (or, 
equivalently, the numerator) vanishes. 

Let us assume now that for some n we have x„ = X1 . The confinement requirement 
is that k steps later Xn+k = X2. (We must point out here that we require that xri+k be 
equal to X, and not to X1  again. The latter would mean that X1  is a singularity occurring 
periodically. Such singularities are not really movable, i.e. their position cannot be freely 
adjusted by choosing the appropriate initial conditions. Our conjecture is that they do not 
play any role in integrability, just as the fixed singularities in the continuous case.) Starting 
from x,, = X 1  and some initial datum x„_1 , we can iterate the mapping for x and obtain 
Xn+k  as a complicated function of xn _i and X1 . Since Xn+k  depends on the free parameter 
x„_, there is no hope for xn+k  to be equal to X2 if X1  is a generic point for the mapping of 
x. The only possibility is that both X1  and X2 be special values. What the special values 
of this equation are depends on its details, but clearly in the case of the discrete P's we 
shall examine here, these values can only be those related to the singularities. To be more 
specific, let us examine d-P11: 

(3.5) 
— 	1 —X 

The only special values of x are those related to the singularity xy, = ±1, xn+i  = co, 
x„.+.2 = 	1 while 	xn _i and x,7+3, xfl+4, ... are finite. This means that the two 
roots of (3.4) must be two of {+1, oc, —1} and moreover that confinement must occur in two 
steps. The precise implementation of singularity confinement requires that the denominator 
of (3.2) at n + 2 vanishes (and because of (3.4) this ensures that the numerator vanishes as 
well). Moreover, we must make sure that the lost degree of freedom (i.e. the dependence 
on y) is indeed recovered through the indeterminate form. 

3./. Coupling various d-P1's with a discrete Riccati 

In this section we are going to analyse the coupling of four different forms of d-P/  to the 
homographic mapping (3.2) and to a linear equation (3.3). The d-Pi's we are going to 
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consider are the following (presented below together with their singularity pattern): 

10, co, 01 	 (3.6) 

10, oc, cc, 01 	 (3.7) 

	

x = —
zn 

 + 1 	{0, oc, 1, cc, 0} 	 (3.8) 

qn 	1 
{ci , 0 , cc , 0, g} 	 (3.9) 

x x 
with zn  = an + b and qn  = qoX' (a, 6, q0, X are constants). (More forms of the discrete 
PI  [11] are lcnown but we shall restrict our analysis of the possible couplings to just these 
simplest forms.) 

All the singularity patterns above have as a common characteristic that one can enter 
the singularity through 0 and exit it again through 0. This means that the condition (3.4) 
can have 0 as a double pole. This results in the following conditions: 

fis = 1 	 (3.10) 
a5 + ßy = 0 

and since neither a nor y can vanish (lest the x2  term disappear) we have .5 = 1/A and 
y = —a/ß 2 . One can, of course, consider the case where one (or two) of the roots of (3.4) 
are equal to cc: after all co is part of the special values of the singularity pattem. It has 
tumed out that except for the case (3.8) the consideration of these cases does not lead to any 
interesting result. (Let us point out that the value 1 appearing in the singularity pattern of 
(3.8) should not be considered as a special value: it may well occur outside any singularity 
pattern). Thus the first discrete Riccati we are going to consider is of the form: 

y(cex + p)+1 

oe27-3 =1.  

Implementing this constraint leads to a second confinement condition that reads: alp = 
This means that a = c/3 where c is a constant with an even—odd dependence. The 

solution of the constraint (3.12) is straightforward. Taking the logarithm of both members 
and calling b = log e we find the linear equation 

b +2b + = 0 	 (3.13) 

with solution b = (p+qn)(-1r. Simple solutions to (3.12) can be obtained from this last 
solution. On the other hand just by inspection we can obtain solutions to (3.12) where p is 

constant: e = ±1, ±i. 
The case of the standard d-Pi (3.7) can be treated along similar lines. The first 

confinement condition reads 
2-2=  = -1 

Zn 
+ x = — , — 

x x 2  

7 = 
— (cex — e)1,52  • 

In all the cases considered, the first confinement condition, namely that y (at a suitable 
n) assumes the form 0/0 does not suffice in order to reintroduce the dependence in the 
initial conditions. It is thus necessary to proceed to the next order and introduce one further 
constraint (which turns out to be sufficient). Let us work out in detail the case of the d-Pi 
(3.6). Starting with x = 0 we obtain y = p i.e. independent of the value of y. For x = co 

we obtain ÿ = -ßß2 and finally at the next step, Tc = 0, we ask that the numerator and 
denominator of 7anish. This leads to the first condition 

(3.11) 

(3.12) 

(3.14) 
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while the second becomes too complicated to be exactly solved. We prefer to proceed using 
one particular solution of (3.14) corresponding to constant /3's, for example ß = i. This 
leads to a second confinement condition a/z = 	Thus a =- cz where c is a constant 
with ternary freedom (ri; = £.). If we implement ß = e±in16  and define x = —az, we obtain, 
as a second confinement condition, the equation 

+ X + X 

where c is a constant of integration. Thus, after considering the coupling with a d-P1  we 
obtain a d-P1  of the same type as one of the confinement conditions. This is in perfect 
parallel to the continuous case of Chazy (coupling (1.2) with n = 4) where we find another 
Pi as the integrability condition for a coupling between a Riccati and a P1. 

The case (3.8) leads to still more complicated equations. One way to simplify them is 
to choose /3 satisfying: 

(3.16) 

which is sufficient (but not necessary) to satisfy the first confinement condition. We can 
then implement the solutions /3 = i and /3 = 1. If f3 = i, the second confinement condition 
is a = c/z (where c is a constant with quaternary freedom = -É). If /3 = 1, we define 
x = —oz and we obtain, as the second confinement condition—, the following equation: 

4z (3.17) 
X 

where c is a constant with binary freedom. So, again here, we find a d-P1  of the same type 
as the one we started with as a confinement condition. 

For the case (3.8), it is also possible to consider a coupling where the condition (3.4) 
has 0 and cc as roots. This means that a = 0 (we could also choose y = 0 but these two 
cases are equivalent under the homographic transformation w —> 1/w) and 8 = 1/p. The 
first confinement condition then is y = —8. We define x = T3/3 and the second integrability 
condition reads, 

z + c 
+ x — X 

+ 1 

where c is a constant of integration. 
we started with. Finally we can also 
a double root. We then must have a 
and we obtain the following relation 

(3.18) 

Thus again we get a d-P1  of the same type as the one 
consider the case where the condition (3.4) has oc as 
= 13 = O. The first confinement condition is ò = —y 
for y: 

7y y = — + k 
1 	 (3.19) 

(where k is a constant of integration) which can be solved in an elementary way for y. 
In the case of q-Pi  (3.9) the full singularity pattern is one where we enter the singularity 

at q and exit it at q after four steps. However the complete study of this singularity pattern 
turns out to be intractable. Thus we shall limit ourselves here to the case where we enter the 
singularity through 0 and exit it through 0 after two steps. In this case the first confinement 
condition is just (3.12). Once this is implemented the second condition reads ß = 
which means a = c/3An where c is a constant with binary freedom and /22  = X. 

Let us now turn to the case of the coupling of d-P1  with a linear equation (3.3). For the 
special values of d-Pi 0 and oc, only three couplings have to be considered: 

1 (3.20a) 

(3.15) 
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1 y --- cexy + —s 	 (3.206) 
py  + 1 

- yx 
It turns out that in every case examined the second (3.20b) and third (3.20c) are always 
incompatible with confinement. The only remaining candidate is thus the coupling of the 
form (3.20a). By the appropriate gauge of y we can bring it to the form, 

- Y = — • yx 
Let us work out in detail the case of (3.6). A detailed analysis of the singularity pattern 
shows that if x vanishes as does e then x diverges like 1/E2  and 7 vanishes like —E. We 
compute the corresponding y's and find, at leading order, y — 1/y E, 	1/yE and the 
condition for .23)---  to be finite is 1/y—. 1/.57 = 0, i.e. y must be a constant with binary freedom 
(i.e. even—odd dependence). The analysis of the remaining cases proceeds along similar 
lines. For (3.7) we have the pattern {E, z/é, —z/E, —e/z}  and the condition for to be 
finite is PZ:  = yz, i.e. y = klz where k is a constant with temary freedom. The case 
(3.8) is related to the pattern {e,z1e,1,—zje,-fé/z} leading to the confinement condition 

== y z = y z, i.e. y = klz where k is a constant with quaternary freedom. Finally the case 
(3.9) is related to the pattern fg +e,ae, —X/(a2E2), —ealÀ,=d1 (where a is a free constant). 
Again we concentrate on the singularity induced by x = 0 and which confines when x = 0 
again. This results in the condition 7 = Xy which means y =k .i where k is a constant 
with binary freedom and iti,2  = À. 

3.2. Coupling discrete 	's with a discrete Riccati 

In this section we shall examine the coupling of two different discrete forms of PH  with a 
Riccati: a difference one (which is the 'standard d-PH) 

zx /2 
(3.22) 1 —x 

where z is linear in the discrete variable n and .i is a constant, and one of q-type: 
_p(x — q) 
xx —  	 (3.23) x(x — 1) 

where q = *2.n and p = poÀn. 
Let us start with d-PH  (3.22). The singularity pattern of this equation is {±1, cc, 

This means that the singularity condition (3.4) must have ±1 as roots (the case when 
one root is oc does not lead to anything interesting). As a result we have that 3 and y 
are given by 8 = —ß/(a 2  — p2 ), y = ce/(Œ2  — ,62 ). The pattern {1, co, —1) leads to a 
confinement condition: y = (Le + fi)ce(Fe — 	while the second pattern {-1, co, 1} leads to 
y = 	— e)ce(Ei + 73-) . Equating the two expressions for y we find 	=ß i.e. ß = ka 
where k is a constant with binary freedom which we will ignore from now on. Expressing 
y in two possible ways we obtain finally for a the equation 

2— Cla = 	 
(1 — k2)2 	 (3.24)  

This equation can be solved by linearization simply by taking the logarithm of both sides. 

(3.20c) 

(3.21) 
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The q-PH  has also two singularity patterns (q, 0, oz, 1} and {1, oo, 0, q}. Requiring 0 and 
1 to be roots of (3.4) gives the following expressions for y, Ô: 8 = 1/ß and y — 	 
Next we obtain the confinement conditions for the two patterns of singularities: 

_cice,81 + aPPÏ3  + Le/8 2-5 + e P 2T3 — 1 — 0 
	

(3.25a) 

ceEpp+spe 2 +app7+ p)52-4 -1=0. 
	 (3.25b) 

Subtracting these two equations we obtain 'd ß --- 03-  i.e. p — ka where k is a constant 
with binary freedom which we again ignore. g-ubstituting back to (3.25) we obtain the final 
condition: 

2— Ce Ce a —  	 (3.26) 
k 2 (k ± 1)2  

which can be integrated through linearization as explained above. The case where (3.3) has 
oo and q as roots is equivalent to the one treated above by a homographie transformation. 

We now consider the case where (3.4) has 0 and q as roots which imposes the relations 
S = 11p and y = )3(q7+fl) . As a first condition we then find that p is a constant with binary 
freedom. We ignore this freedom and consider p as a constant and we obtain the following 
relation for a: a — le 1)  Finally, the case where (3.4) has q and 1 as roots has been 

Ps • 
studied but the resulting equations are far too complicated to be of any use. There is no 
other possible coupling of the form (3.2) with the q-P11  (3.23). 

Let us now turn to the case of a linear coupling given by equation (3.3). In the case of 
d-PH (322) we require that the only singularities of the coupling terms (ax + 13)I(yx +8) 
be the two singularities ±1. This leads to a coupling of the form: 

_ a(x ± 1)y ± 1 
Y = 

	

	 (3.27) 
x 1 

where one of the parameters (e.g. y) has been put to 1 through the appropriate gauge of y. 
Computing the successive y's we find that the condition for having a finite -y-, depending 
on the initial condition y, is just Ea = 1. This means that all even as are constant while 
all odd ones are equal to the inverse of this constant. 

For q-Pn (3.23), in the case where (3.4) has 0 and 1 as roots, we have two possible 
couplings: 

and 

_ 	cexy +1 
Y — x-1 

(3.28a) 

a(x —1)y ± 1 
7 =  	 (3.28b) 

x 
It tums out that in both cases the confinement condition is the same as in the case of d-Pn 
namely rea = 1. When the roots are 0 and q, the possible couplings are: 

and 

_ 	axy +1 
Y — x — q 

(3.29a) 

a(x — q)y  +1  
Y - 	 . 	 (3.29b) 

x 
The condition for integrability in the two cases is a = 1/X. Two other couplings are possible 
when the roots of (3.4) are q and cc: 

1 

_ 	ay + 1 	 (3.30a) 
x — q 
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and 
57 = a(x — q)y ± 1. 	 (3.30b) 

The integrability condition for (3.30a) is a = q and for (3.30b), it is a = 1/q. Finally if 
(3.4) has 1 and q as roots, the possible couplinis are 

_ 	a(x — 1)y + 1 
Y =  	 (3.31a) 

x — q 

and 
a(x — q)y +1 

=  	 (3.31b) 
x — 1 

In the case of (3.31a), the integrability condition is 

71-aa(-7+ 1) +Fi( q ++— 1) + q2  —= 0 	 (3.32) 

and in the case of (3.31b), the condition reads 
= O. 	 (3.33) 

Equations (3.32) and (3.33) are integrable and they belong to the family of linearizable 
equations [10]. 

One last remark is necessary at this point since we have seen that almost all the equations 
we obtained contain terms with binary, ternary or quaternary freedom. The presence of these 
terms indicates that our systems must be augmented by adding more components. This will 
not alter the order of the resulting equation: it just increases the number of its parameters. 
The continuous limit is, of course, affected by this choice. 

4. Conclusion 

In this work we have presented a systematic approach for the construction of integrable 
third-order systems through the coupling of a second-order equation to a Riccati or a 
linear first-order equation. Thus we have extended the Gambier approach (first used in 
his derivation of the second-order ODE that bears his name) to higher order systems. We 
have applied this coupling method to both continuous and discrete systems (given that we 
have already presented in [4] the discrete equivalent of the Gambier equation). 

One point remains to be discussed. It is often argued that, since the Riccati is a 
linearizable equation, the coupling of the Riccati to another of the same kind or to an 
integrable second order is always integrable. The (naive) argument is the following: first 
solve the first equation, substitute the solution into the second and solve it by linearizing 
it. The argument about singularities is usually swept aside by the statement that one is 
interested only in solutions on the real-time axis. However the situation is not that simple. 
What integrability consists of is a global description of the solutions of the equations. The 
argument about solutions on the real-time axis is not acceptable since it offers just a local 
description of the solution of the equation. A global representation of the solution of a linear 
equation (and, thus, also of a Riccati) involves path integrals winding over the complex-time 
plane. Thus the study of movable singularities is crucial and the P property a necessary 
condition for integrability of the systems. 

How do these arguments carry over to the discrete setting? One must go back to the 
way difference equations are formally solved. Given a linear difference (or q—) equation, 
we can express the solution as an infinite product of matrices, the elements of which depend 
on the coefficients of the equation. A singularity appears whenever one of the matrices is 



123 

298 	S Lafortune et al 

singular. In this case the solution of the linear difference equation cannot be defined for 
every n. However it is in general possible to choose the coefficients of the equation so 
as to avoid these singularities. In the case of a coupling the coefficients depend on the 
solutions of some other equation. Thus there is no way to control the singularities (which 
depend on the initial conditions of the first equation). As a consequence the solution of the 
second equation cannot be defined everywhere unless the confinement property is satisfied. 
Thus, again, despite the linearizability of the discrete Riccati, whenever we talk about a 
global description of the solution of the coupled system, the application of the adequate 
intembility criterion is mandatory. 
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CONCLUSION 

Dans cette thèse, nous avons tout d'abord utilisé la théorie des groupes de 

Lie afin de classifier un système différentiel aux différences. Ce système peut 

décrire des phénomènes en biophysique, en physique moléculaire et en mécanique 

classique. Un des résultats les plus intéressants de ce travail est l'identification 

des cas où l'algèbre de symétrie est de dimension infinie. Une suite logique à ce 

travail est l'étude dese liens entre la présence d'une algèbre de dimension infinie 

et l'intégrabilité. 

Dans le deuxième chapitre, nous avons étudié, à l'aide de la théorie des 

groupes de Lie, des généralisations de l'équation de Toda. À notre grande sur-

prise, nous avons pu identifier plusieurs cas présentant une algèbre de symétrie 

conforme de dimension infinie qui ne sont pas complètement intégrables. 

Dans le troisième chapitre, nous avons classifié et étudié une famille impor-

tante d'équations discrètes linéarisables. Ce travail s'inscrit dans le cadre du pro-

jet général de classifier les équations discrètes à une variable de deuxième ordre. 

Une telle classification donnera atpc physiciens un puissant outil pour l'étude des 

phénomènes discrets. 

Par la suite, nous avons étudié les équations linéarisables du point de vue de 

l'entropie algébrique. Nous avons montré que les résultats obtenus avec cette ap-

proche sont les mêmes que ceux obtenus à l'aide du confinement des singularités. 

Finalement, nous avons obtenu de grandes classes de systèmes intégrables du 

troisième ordre, autant dans le cas continu que dans le cas discret. L'étude des 
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systèmes intégrables du troisième ordre est loin d'être terminée, pourtant une 

classification complète de ces systèmes sera un outil très utile aux physiciens. 
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RÉSUMÉ 



Symétries et intégrabilité des équations aux différences finies 

par Stéphane Lafortune 

Résumé 

La théorie des groupes de Lie joue un rôle très important dans l'étude des équations dif-
férentielles. Par exemple, le groupe de symétrie d'un système d'équations différentielles nous 
permet de construire une famille de solutions exactes à partir d'une solution déjà connue. On 
peut aussi classifier les équations selon leurs symétries et ainsi établir des liens entre des équa-
tions qui, a priori, n'en ont pas. De plus, l'analyse de Painlevé est une technique mathématique 
nous permettant d'étudier l'intégrabilité des équations différentielles. 

Utilisées ensemble, l'étude du groupe de symétrie et l'analyse de Painlevé nous donnent un 
outil puissant pour trouver des solutions exactes de différents systèmes d'équations différentielles 
apparaissant en physique. Ces solutions sont déterminées à l'aide du processus de réduction par 
symétrie. 

Tout comme les équations différentielles, les équations aux différences finies (EDF) sont 
souvent utilisées en physique. Elles peuvent décrire des phénomènes apparaissant dans des 
chaînes moléculaires unidimensionelles (A.D.N.) ou dans des réseaux cristallins. De même, elles 
apparaissent dans la théorie des groupes quantiques. Il est donc nécessaire de développer un for-
malisme nous permettant d'étudier les symétries et l'intégrabilité des équations aux différences 
finies tout comme on le fait présentement pour le cas continu. 

Dans ma thèse, les symétries sont utilisées dans un premier temps pour la classification d'un 
système d'équations différentielles aux différences finies. Ce système se retrouve entre autres 
dans les domaines de la physique moléculaire, de la biophysique et de la mécanique classique. 
Un des résultats les plus intéressants obtenus dans cette thèse concerne l'existence de certains 
systèmes possédant un groupe de symétrie de dimension infinie. Mes travaux sur ce sujet sont 
la base d'un projet entamé récemment sur les liens entre les symétries et l'intégrabilité d'une 
équation aux différences finies. Nous étudions aussi des systèmes de Toda généralisés du point 
de vue de ses symétries. Les systèmes de Toda font partie des équations les plus importantes 
et les plus étudiées en physique mathématique moderne. Un des résultats intéressants que nous 
avons obtenu est l'identification de cas n'étant pas complètement intégrables mais possédant 
un groupe de symétrie conforme. 

Pour ce qui est de l'intégrabilité, la présente thèse porte principalement sur des équations 
dites linéarisables, i.e. des équations qui sont équivalentes à un système linéaire. La principale 
méthode utilisée est le "confinement des singularités. Ce travail s'insère dans le vaste projet 
de recherche dont le but est de classifier toutes les équations discrètes intégrables à une va-
riable. Nous classifions de grandes familles de systèmes linéarisables. Finalement, nous utilisons 
l'équation de Riccati afin d'obtenir des équations du troisième ordre intégrables. 
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LPTMC - Université de Paris VII - Paris 
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