
Université de Montréal 
Faculté des Arts et des Sciences - Département de Physique 

Solitons in Wave Propagation and Spin Systems 

Présenté par: 
Igor Loutsenko 

Thèse présentée à la faculté des études supérieures 
en vue de l'obtention du grade de 

PhilosophiœDoctor (Ph.D.) 
en physique 

Directeur de Recherche: Professeur Luc Vinet 

Juillet 1998 

°Igor Loutsenko, 1998 





Université de Montréal 

Faculté des études supérieures 

Cette thèse intitulée: 

" Solitons in Wave Propagation and Spin Systems " 

présenté par: 
Igor Loutsenko 

a été évalué par un jury composé des personnes suivantes: 

Pavel Winternitz 
(président rapporteur) 

Luc Vinet 
(directeur de recherche) 

Manu Paranjape 
(membre du jury) 

Guy Lapalme 
(membre du jury) 

Hubert Saleur 
(examinateur externe) 

Thése acceptée le 25 septembre 1998 



I*1 	National Library 
of Canada 

Acquisitions and 
Bibliographic Services 
395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

Bibliothèque nationale 
du Canada 

Acquisitions et 
services bibliographiques 
395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

Your Ne Votre référence 

Our Ne Notre référence 

The author has granted a non-
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distribute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author 's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/film, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation. 

0-612-42468-5 

Canadâ 



Table of contents 

Abstract 	 iii 

Résumé 	 iv 

Introduction 	 1 

Huygens principle, integrability and solitons 	15 
Huygens' Principle in Minkowski Spaces and 
Soliton Solutions of the Korteweg-de Vries Equation 	16 

Ising models, random matrices and solitons 	46 
Self similar potentials and Ising models 	 47 
Spectral self-similarity, 
one-dimensional Ising models and random matrices 	58 

Solitons and exciton superfluidity 	 98 
Critical velocities in exciton superfluidity 	 99 

Conclusion 	 108 

Acknowledgements 	 110 

References 	 111 



Abstract 

This thesis consists of three parts 
1) In the first part, a solution of the restricted Hadamard problem is presented. 

The classical Hadamard problem consists in determining (up to equivalence) all 
the second order differential operators which satisfy Huygens Principle in the 
narrow sense. Physically, such operators describe systems where the diffusion of 
waves is absent and where signals propagate with maximal velocity. Unlike the 
original principle of superposition of secondary waves, which holds for all wave 
propagation phenomena, Huygens' principle in the narrow sense of Hadamard 
applies only to a very restricted range of wave processes, with sharp signals. We 
present a new class of Huygens' operators on Minkowski space-time and establish 
a new link between Huygens' principle and the solitons of the Korteveg-de Vries 
equation. 

2) In the second part, a new class of exactly solvable models in statistical 
mechanics is presented. We study the connections between the soliton solutions 
of certain integrable nonlinear equations (hierarchies of equations) and the ther-
modynamic quantities of one-dimensional Ising models with different types of 
interactions between spins.The exact solvability of these models can be traced 
back to this connection. We consider a model linked to soliton solutions of the 
Korteveg de Vries and of the B-type Kadomtsev-Petiashvili hierarchies. A con-
nection between these Ising chains and random matrix models is considered as 
well. 

3) In the third part, we study solitonic mechanisms of exciton superfluidity. 
We provide a theoretical explanation of recent experiments on the propagation of 
excitons in semiconductors. In these experiments, the excitonic transport under 
the action of a laser pulse has been studied. It turned out that under certain 
conditions this transport becomes anomalous and the excitons propagate through 
the crystal in a wave packet without diffusion. We propose a model for this 
phenomenon which relies on the presence of an exciton-phonon interaction. In this 
model the exciton propagation is described by soliton solutions of the nonlinear 
Schrodinger equation. The theory predicts two critical velocities for propagation 
of the packet which is in agreement with the experimental data. 
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Résumé 

Cette thèse comprend trois parties: 
1. Dans la première partie, une étude du principe de Huygens et de ses liens 

avec des solutions de l'équation de Korteveg-de Vries est effectuée. 
Proposé par Christian Huygens en 1690, le principe qui porte son nom offre 

une explication unifiée d'effets optiques. Plus spécifiquement, l'existence de sig- 
naux de haute résolution peut être dérivée du principe de Huygens, comme une 
conséquence de l'annulation parfaite des ondes secondaires qui suivent le premier 
front d'ondes. 

L'interprétation exacte du principe de Huygens n'a seulement été donnée qu'en 
1922 par le mathématicien français J.Hadamard. Selon Hadamard, le principe de 
Huygens doit être considéré comme un syllogisme qui est basé sur deux prémisses 
principales. La première prémisse appelée "majeure" est essentiellement un pos-
tulat de causalité qui reflète l'hyperbolicité de l'équation. 

Au contraire, la prémisse "mineure" fait l'hypothèse d'une propriété spécifique 
quant à l'absence de diffusion. La prémisse mineure du principe de Huygens a 
une signification mathématique claire. Elle affirme que la fonction de Green de 
l'équation de D'Alembert a son support sur la génératrice du cône caractéristique 
si la dimension de l'espace est impaire, et que la situation est différente pour les 
dimensions paires. 

En général, le principe de Huygens est une propriété analytique rare de l'équation 
différentielle. Une question naturelle à se poser est alors: "Quelles sont les 
équations du second ordre pour lesquelles le principe de Huygens est vrai dans 
son sens mineur". Cette question a été posée par Hadamard. Le problème de 
la détermination explicite (à équivalence triviale près) de tous les opérateurs 
possédant la propriété de Huygens est connue sous le nom de problème de Hadamard. 
Ce problème est difficile à résoudre. 

Les premiers exemples non-triviaux d'opérateurs de Huygens ont été trouvés 
en 1953-1955 par K.L. Stellmacher. Une décennie plus tard, J.E.Lagnese et 
K.L.Stellmacher ont résolu le problème de Hadamard pour une classe restreinte 
d'opérateurs dans l'espace de Minkovski avec des coefficients dépendant d'une 
variable seulement. 

La percée suivante dans le contexte de ce problème s'est produite en 1993 



quand A.P.Veselov et Yu.Yu.Berest ont donné une généralisation des exemples 
de Stellmacher. Ils ont lié de nouvelles hiérarchies d'équations de Huygens aux 
groupes finis de Coxeter. 

Plus tard O. Chalych, M. Feigin et A. Veselov ont découvert des configurations 
"non-Coxetérienne" qui étaient compatibles avec le principe de Huygens. 

Dans le premier chapitre de cette thèse, on présente une généralisation de ces 
exemples quand l'opérateur est la somme d'un D'Alembertien et d'un potentiel à 
deux variables. 

On trouve que chacun de ces potentiels est déterminé par une suite arbitraire 
et strictement croissante de nombres entiers positifs. C'est le résultat principal 
du premier chapitre. 

2. Dans la deuxième partie de la thèse, on considère quelques types de modèles 
de la mécanique statistique possédant des solutions exactes. 

Les modèles d'Ising sont bien connus en mécanique statistique. Les modèles 
avec des interactions entre les spins voisins et sans champ magnétique possèdent 
des solutions exactes en deux dimensions, et en une dimension lorsq'en presénce d' 
un champ magnétique arbitraire. Ils admettent quelques phénomènes intéressant 
dont on peut rendre compte à l'aide d'expressions analytiques simples pour la 
fonction de partition. 

D'autre part, les modèles unidimensionels sont intéressants du point de vue de 
la résolution exacte. 

Une nouvelle classe de modèles d'Ising, liées à la fonction T de certaines 
hiérarchies intégrables, est introduite dans le deuxième chapitre de la thèse. 

On a trouvé que ces modèles correspondent à des solutions self-similaires 
d'équations nonlinéaires. Leurs spectres sont composés d'un nombre fini de séries 
géométriques. Cette construction conduit à des chaînes (anti)ferromagnétiques 
dans un champ magnétique arbitraire. Les interactions d'échange décroissent ex-
ponentiellement avec la distance entre les spins. Dans une limite spéciale, on 
obtient l'interaction rationelle de type Calogero-Moser, qui est reliée au modèle 
de Kondo. 

On présente aussi des modèles de matrices aléatoires liés aux modèles d'Ising 
et aux solutions solitoniques de hiérarchies intégrables. Ces modèles sont des 
généralisations discrètes de modèles continus de matrices aléatoires. On obtient 
des modèles classiques dans la double limite thermodynamique et rationnelle. 
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Dans cette limite, le nombre de solitons devient infini et le spectre des impulsions 
continu. 

3. Dans la troisième partie, on considère des phénomènes solitoniques dans la 
propagation d'excitons. 

Les excitons sont des excitations bosoniques dans les cristaux et peuvent être 
engendrés sous l'action de radiations électromagnétiques (e.g. rayons laser). 

On donne une explication théorique à des expériences sur la propagation des 
excitons dans certains semiconducteurs qui ont révélé un transport anormal. En 
effet, sous des conditions spéciales les excitons forment un soliton qui se propage 
sans diffusion dans le cristal. 

On propose un modèle pour décrire ce phénomène, où la présence d'interactions 
entre excitons et phonons est importante. Dans ce modèle, la propagation de 
excitons est décrite par des solutions solitoniques d'un système d'équations non-
linéaires. Ce modèle prédit deux vitesses critiques qui sont effectivement observées 
expérimentalement. 



1 

Introduction 

The generality of the title of this work reflects diversity of its topics. Although 

these are quite different and range from the theory of partial differential operators 
to some condensed matter problems, they still can be collected under a common 
roof: the theory of solitons. 

Four articles form this thesis. The first is devoted to new integrable systems 

possessing exceptional Huygens and bispectral properties. In the second and third 
papers, we introduce a new class of exactly solvable models of statistical physics 

as well as new random matrix models. The soliton superfluidity of excitons in 
crystals is studied in the fourth article. 

The texts are rather technical and some additional explanations (as well as 
historical introductions) will be of help. 

We start from the study devoted to Huygens' principle and its relation to 
solutions of the Korteveg-de Vries hierarchy. 

Problem of the wave propagation is in the heart of the classical mathematical 
physics. 

The progress in understanding wave phenomena has come with the famous 
Huygens' principle. Proposed by Christiaan Huygens as early as in 1690, this 

principle was surprisingly successful in providing a unified explanation for basic 

optical effects, such as a straight-line propagation, interference and diffraction of 

light. More specifically, the existence of 'clean-cut' wave signals could also be 

derived from Huygens' principle, namely, as a result of perfect cancellations of 
secondary waves which occur behind the leading wave front. 

Eventually, Maxwells electrodynamics brought the physical picture of wave 

propagation into relation with the theory of linear partial hyperbolic differential 
equations. 

Historically, the first hyperbolic equations studied in detail were the classical 

wave equations. The one-dimensional equation, which describes small transverse 
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vibrations of an elastic string, was solved by d'Alembert. Later, Poisson and 

Kirchhoff found the solution to the initial value problem for the wave equation 

in two and three dimensions. The different mathematical and physical aspects of 

Huygens principle arose in their work. However, a precise mathematical interpre-

tation of Huygens' principle was lacking. It was proposed by french mathematican 

J. Hadamard in his remarkable lectures on Cauchy's problem given at Yale Uni-
versity in 1922. According to Hadamard, Huygens' principle should be treated 

as a syllogism based on two main premises. The 'major' premise is essentially a 

causality postulate as applied to any wave phenomena; mathematically, it reflects 

the hyperbolicity of the wave-governing' differential system. 

By contrast, the minor' premise states a more specific property referred to 

as the absence of wave diffusion. In a medium, where it holds, the wave carry-
ing an initially localized perturbation does not leave a "trace" behind its fastest 

front. Clearly, the propagation of waves without diffusion ensures the possibility 

of transmitting sharp light and sound signals in our world. 

Huygens' principle in its minor' premise has a clear mathematical meaning. 

Namely, it amounts to the fact that the Green function of the wave equation 

= 
 (

a2 
— — An) (I)(x, t) = 0, X E Tzn at2 

with the initial conditions 

x)I t=0  = 0, 	cli t (t,x)l t,0  = (x) 

have have the following form 

1 
0(t2Ix12) , 	2 (I)(t,x) = 271.  ,vt2 	ixi2  

'1'(t, X) = —217S(t2  — ¡x12), n = 3, 

where 5 denotes Dirac and 0 Heavyside generalised functions correspondingly. 

In other words, the Green function of the wave equation in n = 3 is supported 

on the light cone lx1 = ±t, i.e. vanishes in the complement to this surface. The 

(1) 
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same is also true in any odd dimension n > 3, while for even n = 2, 4, 6,... the 
situation is different. 

In general, Huygens principle is a rare analytic property of a given differen-
tial equation inherently related to (the parity of) the space dimension and to the 
structure of its symmetry group. A natural question: "For which [second or- 
der normal hyperbolic] eguations is Huygens' principle true in its special [`minor] 
sense?" was originally posed by J. Hadamard. The problem of explicit determina- 

tion (up to a trivial equivalence) of all Huygens operators is known as Hadamard 

problem. It has turned out to be very hard, and at present, in spite of a good 
deal of attention, it is still far from being completely solved. 

As mentioned above the simplest (sometimes called trivial) examples of Huy-

gens' operators are the ordinary d'Alembertians (1), as well as the operators 
reducible to (1) by means of elementary transformations, namely, by nonsingu- 
lar changes of coordinates x 1-> f (x) , and conformal-gauge transformations 
L 1-> µ(x) o L o O(x) -1  with some smooth non-vanishing functions t(x) and 0(x). 

It has been thought for a long time that these are the only second order 
normal hyperbolic equations enjoying Huygens' principle in its minor' sense. In 

his classical monograph on mathematical physics R. Courant has attributed this 
tempting hypothesis to Hadamard. 

Strictly speaking, Hadamard's conjecture is valid only for real hyperbolic op-
erators with a constant principal symbol in four independent variables, i.e. for 
wave-type operators in the (3 +1)-dimensional Minkowski space M3+1  (which was 
justified by M.Mathisson and L.Asgeirsson around 1930), while in higher dimen-
sions it fails to be true. 

The first counterexamples that disproved Hadamard's conjecture in higher 

dimensions n > 5 were presented by K.L.Stellmacher in 1953-55. More precisely, 
he proved that if the wave type operator L on Minkovskii space Mn+1  has the 
form 

(A0  L := Dn+1 + — — 
t2  
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then it satisfies Huygens principle, if and only if ri is odd and k  = —771k  (Trik  + 1) 
with mk  E Z+  and Ekn=o  Mk < (n — 3)/2 . 

In fact, Stellmacher constructed an explicit formula for the Green function of 
such operators from which validity of Huygens' principle was immediate. 

A decade later, J.E.Lagnese took up the Hadamard problem in 7-dimensional 
Minkovski space. More precisely, he studied the question of Huygens' principle 
for the wave type operators L of the simplest nontrivial form: 

L = Dn+i + u(t) 	 (2) 

with a real locally analytic potential depending on a single variable only, say 
u = u(t). He managed to get a remarkable result that such operators satisfy the 
Huygens principle if and only if the function u(t) has the following form: 

u(t) = 0 , 

u(t) = 	, 

u(t) 6t(t3  —  27) = 
(t3  + -y)2  

where y is an arbitrary constant. 

Later, in attempting to understand the origin' of these examples, Lagnese 
and Stellmacher proposed a systematic approach for generating Huygens poten- 

tials depending on a single variable. Essentially, they rediscovered the classical 
factorizaction method known in the theory of one-dimensional Sturm-Liouville 
(Schrödinger) operators since the work of Darboux and Crum. 

They introduced an infinite family (hierarchy) of Huygens' potentials u = 
uk  (t), k = 0, 1,..., each uk  depending upon a finite number of (complex) param- 
eters, such that 

a2 
Uk(t) := 2—

at2 log Pk 

where the functions Pk 	Pk  (t 	, 72, • • • 'yk) are defined as solutions of the 
following recurrence system of differential equations 

Pic,,Pk_i-Pi,ipk+1= (2k +1)2n  with Po  := 1 , 	t 

(3) 
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Determined uniquely (up to a normalization) by the last equation, all Pk's turn 
out to be polynomials, so that the corresponding potentials uk  are, in fact, rational 
functions. 

Shortly afterwards Lagnese and Stellmacher show that it is necessary and 
sufficient for the potentials to have the form (3) in order for the operators (2) be 
Huygens type. 

In this way, the Hadamard problem, within the restricted class of second order 

hyperbolic operators (1), had been completely settled. It remains to note that the 
polynomials Pk and the corresponding potentials uk  (t) were found by J. Burchnall 
and T. Chaundy as early as in 1929, in connection with the problem of classifying 

commutative rings of ordinary differential operators. They became widely known 

much later, due to the work of M. Adler and J. Moser, who established their 

relation to the KdV equation. The coincidence between the Lagnese-Stellmacher 
and the Adler-Moser potentials has been noticed by R. Schimming who has also 

unearthed the earlier paper by Burchnall and Chaundy. Finally, the very same 

potentials have emerged in the context of the bispectral problem in the work of 
A. Grünbaum et al. 

The next development in the Hadamard problem happened in 1993, when 

A. P. Veselov and Yu. Yu. Berest gave a sweeping generalization of the original 

Stellmacher examples by relating new hierarchies of Huygens equations to finite 
Coxeter groups. 

The corresponding wave-type operators may be regarded as a 'hyperbolic' 

version of the quantum Calogero-Moser Hamiltonians extended to arbitrary root 

systems. The proof of Huygens' property in that case rests heavily on the machin-

ery of Dunkl operators as well as on preceding studies of algebraic Schrödinger 

operators (by O. A. Chalykh and A. P. Veselov) associated with Coxeter systems. 

To explain the main construction, we note that a Coxeter root system := {a} 

can be defined as a finite set of nonzero pairwise distinct vectors in Rn invariant 

under all inner' reflections, i.e. the real orthogonal reflections with respect to 
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hyperplanes (a, x) = 0 with a G 	These inner reflections generate a finite 
subgroup W in 0(n) called the Coxeter group. 

Given a Coxeter root system R, we associate with each aeRa non-negative 
integer number, the multiplicity ma, so that m„(,)  = ma  for all w E W. 

Yu. Yu. Berest and A. P. Veselov have shown that if 
ma  (m, + 1)(a, a) um (x) := x)2 

then the differential operator 

L = Dn+i Urn  (X) 

satisfies Huygens' property when dimension of the Minkowski space is big enough: 

E 	5_ (n — 3)/2. 
aEet+  

According to this the original examples of Stellmacher correspond precisely to the 

simplest Coxeter groups, i.e those of (splited) rank 1, W Z2 X . . . X Z2. 

Yu. Yu. Berest and A. P. Veselov have conjectured that the Stellmacher-

Lagnese and the Calogero-Moser potentials associated with Coxeter systems com-

pletely settle the Hadamard problem in Minkowski spaces. It turned out that this 

conjecture fails to be true. A new surprising class of examples has been found 

recently by O. Chalykh, M. Feigin and A. Veselov. The corresponding configura-

tions can be regarded as a one-orbit' deformation of the root system An  in the 
case of higher multiplicities m > 1. 

They found that The wave-type hyperbolic operator 

2m(m + 1) ‘-n—, 	2(m  + 1) L :=- CI N+1 + 
N/mxn+1 )2  i=i 

in the Minkowski space MN+1  satisfles Huygens' principle if N is odd and N > 

3 + 2n + mn(n — 1). Deformations of other root systems were also found. 

The existence of non-Coxeter' configurations compatible with Huygens' prin-

ciple motivated further study of Hadamard's problem on Minkowski spaces. Part 
of these studies have led to the article presented in this work. 

clER+ 
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Since the Hadamard problem has been completely solved for operators (2) with 

the potentials u depending on a single variable, the next step was to consider the 

case of potentials depending on two variables, say u = u(xi , x2). A few examples of 

this form were already known (from the above). However, this appeared to be just 

the tip of the iceberg. Indeed, the analysis carried out in the work presented here 

revealed a new large class of Huygens operators associated with soliton solutions 

of the Korteweg-de Vries equation 

193u 8u 8u 
ax3  — 6u-à--x- — 	= 0 (4) 

Again, Huygens property of the potential u is preserved under flows of the KdV 

equation (4) (hierarchy) and the link to integrable systems is surprisingly straight-

forward. 

If we introduce the polar coordinates (r, y) in a fixed 2-dimensional space-like 

plane E in the Minkowski space Mn+1  and consider an arbitrary strictly increasing 

	

sequence (k)y 1  of nonnegative integers: 0 < k1  < k2 < 	< km_i < km , with 

associated to it a set {xi(go)} of elementary 27-periodic functions on Ri: 

Xz(ga) := COs(kz ± gaz) 	E R 

then the Wronskian of this set 

( 

	

xi (y) 	x2(ço) 	• • • 	xm (y) \ 

	

(v)) 	x12(4 	• 

• • 

W [X11 X2 • • • Xrn] 	det 

 

   

\ Xim-l) (40) Xr1) (V) • • • X7717.2-1) (W) 

does not vanish indentically since X  (ço) are linearly independent. 

We define u(x) in terms of cylindrical coordinates in Mn+1  with polar compo-

nents in E: 

u = uk (x) := — 72-2  (Z) 2  10g TV [Xi (49), X2 (V)), • • XN(S°)] • 	(5) 
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It is easy to see that in standard Minkowskian coordinates u(x) is a real rational 

function on Mn+1  with singularities at the zero set of W, and, in particular, it is 

analytic outside of this set. 
Our main result consists in the fact that the wave-type second order hyperbolic 

operator 

L(k) := 	Uk(X) 	 (6) 

with the potential (5) associated to an arbitrary strictly monotonic partition (ki ) 

of length m satisfies Huygens principle, proyided n is odd, and n > 2 km  + 3 . 

In attempting to give a unified explanation for the examples discussed, Yu. Yu. Be-
rest and myself found the multidimensional generalization of the recurrent differ-
ential equations of the Adler-Moser (Burchnal-Chaundy) type 

Pk+1 ( 3'72Pk) - 2 (VPk, VPk+i) + Pk (&li jk-Fi) = û 
	

(7) 

It turns out that equation (7) is a necessary condition for operators of the form 

(6) to possess Huygens' property. Namely, an operator possesses this property in 
the Minkovskii space of certain dimensions if 

uk  (x) = —2Ari  log Pk 

Equation (7) resembles the Hirota bilinear equations for the functions of inte-

grable hierarchies. 

Working on generalization of the Hirota bilinear relations to higher dimensions, 

we encountered an observation that lies at the basis of the next topic of this thesis. 

Before going into details, let us recall some basic notions from statistical me-
chanics. 

Statistical mechanies describes complex physical systems whose exact states 

cannot be specified. Instead, macroscopic properties alone may be specified, and 

the role of the theory is to infer these properties from the microscopic Hamilto-

nian. Thus, statistical mechanics distinguishes microscopie states from macro-

scopic ones. A microscopic state is specified by the quantum numbers of all the 
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particles in the system. A macroscopic state is specified by a finite number of 

macroscopic parameters, which characterize the system from the point of view of 
observation, such as temperature, magnetization, etc. 

The basic idea behind the statistical study of a complex system is that any 
physical property may be regarded as a statistical average, calculated over a suit-

able ensemble of microscopic states. The probability that a specific microscopic 
state is the actual state of the system depends only on its energy and is given by 
the Boltzman distribution 

= 	 R _T-1 
Z 

where T is the absolute temperature and Z is the normalization of the distribution 
called the partition function 

z = 	 (8) 

The partition function is of central importance in the statistical mechanics since 
macroscopic quantities are related to derivatives of Z. 

In practice, the number of systems for which the partition function can be 
evaluated exactly is very small. Confronted with the extreme complexity of most 

realistic systems one relies on simplified models to investigate finite temperature 

properties. Some of these models are defined in terms of discrete classical variables 
which live on a lattice of cites. 

The best-known and simplest of these discrete models is the Ising model. It 

consists of a discrete lattice with spin dynamical variables ai  taking the value 
+1 or —1 at each site. For a lattice with N sites the number of different spin 
configurations is 2' and the energy of a spin configuration is 

E = — EJcruj  ___ h E 0-, 	 (9) 

The first term in the energy represents the interaction of spins through a ferro- 
magnetic 	> 0) or antiferromagnetic 	< 0) coupling. The second term 
represents the interaction with an external magnetic field. 
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Ising models are very popular in statistical mechanics. The nearest-neighbor 
Ising model 	J6, +1  in one dimension and 	-2 ,,2 = 	dzi 	+ 
J2c5i1 ji8i2 J2+1  in two dimensions etc.) in arbitrary dimensions were a starting 

point for the mean field theory of magnetism. The one dimensional Ising model 
in homogeneous magnetic field is the simplest exactly solvable model of interacting 

spins. The two-dimensional Ising model with the nearest neighbor interaction is 
also exactly solvable for zero magnetic field. The latter is particulary well known 

in statistical physics because its solution deviates in an essential way from the 
predictions of mean field theory. It provided one of the basic motivations for 

the scaling hypothesis and for adopting the renormalization group techniques in 
statistical physics. It shows a number of interesting phenomena reflected in many 

cases through simple analytical expressions of the partition function and various 
thermodynamic quantities. 

However, one-dimensional models with fast decaying interactions admit as a 

critical point only the zero temperature. Such models are therefore are primarily 

interesting from the exact solvability viewpoint as exact derivation of the partition 
function can be useful for other calculations as well. It is worth mentioning that 

there are also one-dimensional long-range interaction models with nontrivial phase 

transitions which are of interest (Kac model). As examples of spin chains with 

non-nearest neighbor interactions which are solvable we may mention the Haldane-
Shastry model and the Inozemtsev model. 

A new class of exactly solvable Ising models is introduced in the second chapter 

of the present thesis. They were discovered while looking for bilinear equations 
for the T function of the Huygens operators. It turns out that this particular set 

of one dimensional Ising models is related to some soliton solutions of integrable 
nonlinear partial differential equations. 

Let us take, for instance, the N soliton solution of the KdV equation (4). It 
describes propagation of N solitary waves with the moments kl , 	, kN . If we 
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represent the solution of this equation in the Hirota form 
a2 

= x2 ln T, TN = E exp( j jj Oipi) 

then the analogy between the last formula and (8), (9) is immediate. 
The Hamiltonian of the spin chain (9) contains many degrees of freedom. 

However, if one imposes the natural constraint of translational invariance (which 
follows from the fact that all the atoms in the chain are identical and at equal 
spacing), the exchange interaction loses its arbitrariness. 

We found that such models correspond to the self-similar infinite soliton so-

lutions of the Korteweg-de Vries (KCIV) equation generated by the Schrödinger 
equation potentials. Their discrete spectra are composed of a finite number of 

geometric series. This construction describes antiferromagnetic spin chains in 

magnetic field. In this case, the interaction is decaying exponentially fast with 

the distance between spins. The partition function can be calculated exactly for 
the homogeneous magnetic field and some fixed values of the temperature. 

Looking for generalizations of such models we considered different integrable 
hierarchies and found that the B-type Kadomtsev-Petviashvily (BKP) hierarchy 

of integrable equations can be related to a wider range of spin phenomena. It 

turns out that in the BKP case not only antiferromagnetic but also ferromagnetic 

interaction are permitted. Moreover, in some special limit, one gets the rational 
Calogero-type interactions a 1/(i — j)2. Such interactions are related to the well-
known Kondo model, which describes the thermodynamical properties of electron 

scattering on magnetic impurities. The Kondo problem was among the first mod-

els solved with the renormalization group techniques. It is also popular since it 
can be studied in the framework of conformal field theory. 

The solvability of our models implies the existence of a rich group of symme-

try. Although renormalization group transformations in this case are not straight-

forward real or momentum space transformations, this group can be calculated 
exactly. 

µ=0,1 	1<i<j<N 	 1<i<N 
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It is known on the other hand, that the Ising model can be also viewed as a 
lattice gas model. The Coulomb gas formalism is used to describe random matrix 

models. Motivated by this idea, we found that our chains are also related to the 
random matrix models. 

Let us recall that the random matrix method was employed first in the study of 

complex systems with unknown Hamiltonians. Such systems have a large number 

of degrees of freedom. As a consequence, the density of levels is high enough and 

can be described statistically. To describe such systems it is sufficient to consider 
only the discrete part of the spectrum of the Hamiltonian, so that the Hamilto-

nian can be approximately reduced to a matrix form. As the interactions in such 
systems are complex, the matrix elements are unknown. The basic hypothesis 

of Dyson and Wigner is that the statistical features of such systems can be well 
described by averaging over ensembles of random matrices, provided the probabil-

ity distributions are invariant under basic symmetry transformations (e.g. parity, 
rotation and time-reversal transformations). This approach to the study complex 

systems was a new kind of statistical physics, in which not only the exact states 
of a system but also the nature of interactions is unknown. 

This approach turns out to be very successful in nuclear physics, as well as in 

the theory of disordered metals and spin glasses. It is conjectured that the distri-
bution of the zeros of the Riemann function is also described by random matrix 

models. Furthermore, random matrix models are of great interest in topology and 
in two dimensional quantum gravity. 

In this work we present several new matrix models and show that they are 

related to the Ising models and the soliton solutions of integrable hierarchies. 

They are discrete counterparts of the continuous matrix ensembles. In particular, 

we introduce ensembles of unitary matrices on a circle with probability distri-
butions depending on the classes of matrices. Note that the continuous matrix 

models correspond to a double thermodynamical and rational limit. In this limit 

the number of solitons of the corresponding hierarchy goes to infinity while the 
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differences between their momenta vanish. 

Our approach turns out to be fruitful since it provides not only a new interpre-

tation but also allows to calculate the partition functions of such systems using 

the machinery of soliton theory. In concluding the overview of the second chap-

ter, we would lik-e to mention that we have not included results of the studies on 

the relations between the Ising models and the Huygens operators. These results 

indicate that such links exist, but they are still obscure. 

It is worth mentioning that the T functions were objects of intensive studies 

in the context of the theory of correlation functions of two dimensional models 

at critical temperatures. The question of the relation between these theories and 

our results is interesting, since they both can be obtained in the framework of the 

free fermion formalism. 

The topic of the last part of this thesis differs from the first two. However, 

since it involves the theory of solitons, it lies within realm of the present work. 

Indeed the last part is devoted to the study of the soliton propagation of exciton 

wave packets in crystals. 

We remind the reader that the excitons are boson-like excitations in crystals. 

The excitons can be created by the electromagnetic radiation (e.g. laser light). 

Modern experimental techniques allow to extend the lifetime of excitons to such 

a scale that they can pass macroscopic distances through the crystals. 

In recent experiments on excitons an interesting phenomenon has been ob-

served: the excitons created under the action of a laser pulse form a soliton-like 

wave packet and propagate without diffusion through a crystal when the intensity 

of the pulse is high enough. 

In the third chapter we provide the theoretical explanation of this phenomenon. 

Our model is different from other theories presented before. It relies on the 

fact that the exciton-phonon interaction is crucial in this phenomenon. We show 

how the Bose-Einstein condensation of excitons occurs due to exciton-phonon 

interaction in the system. 



14 

The phenomenon can be then described by the nonlinear Scriidinger equation 
coupled to the wave equation. These two components of the model have different 
covariances: the first one is Galilean invariant while the second one describes the 
wave propagation and is Lorentz invariant. That is why the exciton-exciton inter-

action depends on velocity of the packet: it becomes attractive in the propagation 

direction if the velocity exceeds a critical one. Then the packet propagation is de-
scribed by the soliton solution of the nonlinear Scrodinger equation. We predict a 

second critical velocity which is equal to the sound velocity. This is in agreement 
with the experimental data. 

To sum up, the first part of this thesis is devoted to the new integrable systems 
of partial differential operators possessing Huygens and bispectral properties; the 

second part presents new exactly solvable spin models, nd, finally, the third part 
deals with the soliton propagation of excitons in crystals. 
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Abstract 

A new class of linear second order hyperbolic partial differential oper-

ators satisfying Huygens' principle in Minkowski spaces is presented. 
The construction reveals a direct connection between Huygens' princi-

ple and the theory of solitary wave solutions of the Korteweg-de Vries 
equation. 
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I. Introduction 

The present paper deals with the problem of describing all linear second order 

partial differential operators for which Huygens principle is valid in the sense of 
"Hadamard's minor premise". Originally posed by J.Hadamard in his Yale lec-

tures on hyperbolic equations [26], this problem is still far from being completely 
solvedl. 

The simplest examples of Huygens' operators are the ordinary wave operators 
- 2 	- 	 a 

m+1 =  (e,) ( 2  e) 	2  (1) 

in an odd number n > 3 of space dimensions and those ones reduced to (1) 

by means of elementary transformations, i.e. by local nondegenerate changes of 
coordinates x 1—> f (x) ; gauge and conformal transformations of a given operator 
£1—> 0(x) o o 0(x)' , 	,u(x)r with some locally smooth nonzero functions 
O(x) and p(x). These operators are usually called trivial Huygens' operators, 
and the famous "Hadamard's conjecture claims that all Huygens' operators are 
trivial. 

Such a strong assertion turns out to be valid only for (real) Huygens' operators 
with a constant principal symbol in n = 3 [33]. Stellmacher [40] found the 

first non-trivial examples of hyperbolic wave-type operators satisfying Huygens' 

principle, and thereby disproved Hadamard's conjecture in higher dimensional 

Minkowski spaces. Later Lagnese & Stellmacher [31] extended these examples and 

even solved [32] Hadamard's problem for a restricted class of hyperbolic operators, 
namely 

r = Eln+i + u(x°) 	 (2) 

where u (2) is an analytic function (in its domain of definition) depending on 
a single variable only. It turns out that the potentials u(z) entering into (2) are 

1Hadamard's problem, or the problem of diffusion of waves, has received a good deal of 
attention and the literature is extensive (see, e.g., [8], [12], [15], [21], [22], [24], [27], [28], [35], 
and references therein). For a historical account we refer the reader to the articles [19], [25]. 
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rational functions which can be expressed explicitly in terms of some polynomials2  

Pk (z): 

u(z) = 2 (—
d )2 

log Pk  (z) , k = 0, 1, 2, ..., 
dz 
	 (3) 

the latter being defined via the following differential-recurrence relation: 

	

Pik+1Pk-i Ptk-i•Pk+i = (2k + 1)n , P0  = 1 , P1  = z . 	(4) 

Since the works of Moser et al. [2], [3] the potentials (3) are known as rational 
solutions of the Korteweg-de Vries equation decreasing at infinity3. 

A wide class of Huygens operators in Minkowski spaces has been discovered 

recently by Veselov and one of the authors [9], [10] (see also the review article [8]). 

These operators can also be presented in a self-adjoint form 

Eln+1 U(X) 
	

(5) 

with a locally analytic potential u (x) depending on several variables. More pre-
cisely, u (x) belongs to the class of so-called Calogero-Moser potentials associated 
with finite reflection groups (Coxeter groups): 

rna(m,+1)(a,a) u(x) = E  	(6) 
aER4- 

In formula (6) R+  R+(g) stands for a properly chosen and oriented subset of 
normals to reflection hyperplanes of a Coxeter group g. The group g acts on 
Mn+1  in such a way that the time direction is preserved. The set {ma} is a 

	

collection of non-negative integer labels attached to the normals a E 	so that 
m„,( ,)  = ma  for all w E Ç. Huygens' principle holds for (5), (6), provided n is 
odd, and 

n > 3 + 2 E Ma • 
	

(7) 
aER+ 

'This remarkable class of polynomials seems to have been found for the first time by Burchnall 
and Chaundy [11]. 

'The coincidence of such rational solutions of the KdV-hierarchy with the Lagnese-
Stellmacher potentials has been observed by Schimming [38], [39]. 
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In the present work we construct a new class of self-adjoint wave-type operators 

(5) satisfying Huygens principle in Minkowski spaces. As we will see, this class 

provides a natural extension of the hierarchy of Huygens' operators associated to 

Coxeter groups. On the other hand, it turns out to be related in a surprisingly 

simple and fundamental way to the theory of solitons. 

To present the construction we consider a (n+1)-dimensional Minkowski space 
mn+1 R1,n with the metric signature (+, 	, —) and fixed time direction 

0 E Mn+1. We write Grl(n + 1, 2) c Gr(n + 1, 2) for a set of all 2-dimensional 

space-like linear subspaces in Mn+1  orthogonal to O. Every 2-plane E E Gri(n + 

1, 2) is equipped with the usual Euclidean structure induced from Mn+1. To define 

the potential u(x) we fix such a plane E and introduce polar coordinates (r, ço) 

therein. 

Let (k,),N_ i  be a strictly increasing sequence of integer positive numbers4: 0 < 

k1  < k2  < 	< kN _i < kN , and let {Wi (v)} be a set of 27-periodic functions on 

(pi  E R , (8)  

associated to (ki). The Wronskian of this set 

f 	1111(4 1112 (V) • TN(V) 

VV[I1,W2, 	, WN] := det (V) V2 (4 • VN@P) 
(9)  

(IN —1) .11, r —1) w (.: —1) 

does not vanish indentically since Wi (cp) are linearly independent. 

Let 

E := { x E M9'1  1 rik i 1/12 [1111 , W2 , ... , WN] = O, lk I := E ki  

be an algebraic hypersurface of zeros of the Wronskian (9) in the Minkowski space 

Mn+1, and let S-2 C Mn+1  \ E be an open connected part in its complement. 

N 

4Using the terminology adopted in the group representation theory we will call such integer 

monotonie sequences partitions. 
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We define u(x) in terms of cylindrical coordinates in Mn+1  with polar compo-

nents in E: 

2 ( 0 2 
U = U k  (X) := 	. , ‘11 N ()1 . 	(10) 

It is easy to see that in a standard Minkowskian coordinate chart u(x) is a real 

rational function on Mn+1  having its singularities on E. In particular, it is locally 

analytic in SI 

Our main result reads as follows. 

Theorem. Let Mn+1  R be a Minkowski space, and let 

(k) := Dn-1-1 	Uk  (X) 	 (11) 

be a wave-type second order hyperbolic operator with the potential (1O) associated 

to an arbitrary strictly monotonie partition (ki ) of height N : 

0 < 	< k2  < 	< k N  , 4 Z , i 1,2, 	, N . 

Then operator £(k)  satisfies Huygens principle at every point E 	provided n 

is odd, and 

n> 2kN +3 	 (12) 

Remark I. A similar result is also valid if one takes an arbitrary Lorentzian 

2-plane H E 	(n + 1,2) in the Minkowski space Mn+1  containing the time- 

like vector O. More precisely, in this case the potential uk  (x) associated to the 

partition (4) is introduced in terms of pseudo-polar coordinates (p09) in H: 

uk(x) := --
2 ( a ) 2 
p2 	(919 	1°g IV [015 171)2 • • • 'ON] 

where x°  = Q sinht9, and, say, x1  = p cosh /9. The functions lj involved in (13) 

are given by 

(13) 

Ipi  = cos*, ,o +19,) , ei  E R 	 (14) 

The theorem formulated above holds when the potential (10) is replaced by (13). 
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Remark II. The potentials (10) considerably extend the class of Calogero-

Moser potentials (6) related to Coxeter groups of rank 2. Indeed, in R2  any 

Coxeter group Ç is a dihedral group I2(q), i.e. the group of symmetries of a 

regular 2q-polygon. It has one or two conjugacy classes of reflections according 

as q is odd or even. The corresponding potential (6) can be rewritten in terms of 

polar coordinates as follows (see [36]): 

m(m + 1)q2  
when q odd, u(r, (P) = 

T2  sin
2 
(q (p) 

and 

m(m + 1) (q/2)2  mi(mi  + 1) (q/2)2  
u(r, yo) = 2 

sin
2
(q/2) r2  cos2(q/2) 	

, when q even . 
ço 	 yo 

It is easy to verify that formula (10) boils down to these forms if we fix N := 

m; ç := (-1YR - , i = 1,2, ... , N, and choose 

k := (q, 2q, 3q, . . , mq) , 

when q is odd, and 

q 	3q 	 q' 	, 	\g' 	, 	\ q 	, 	,q , k := (— q, 	(m—mi ) , q+Vn — m1)-2' 2q+ un — m0-2' • • • , Un+mi)-21 , 2' 	2 ' ... ' 

when q is even and m> m1 , respectively. 

Remark III. Let us set yot  = 44!t-Hp0i  and /9, = —4ki3t+190, , z = 1,2, ... , N ; voz , '61 0i  e 

R. The angular parts of potentials (10), (13), i.e. 

v(yo) = —2 (e 2  p) 	log -w 	((p), 11'2 Wb • • • , TN(ço)] , (15) 

v(t9) = —2 (Fda  )2  log 11.) [el  (19), ,b2(,9), 	, '11),(79)] , 	(16) 

are known (see, e.g., [18], [34]) to be respectively singular periodic and proper 

N-soliton solutions of the Korteweg-de Vries equation 

vt  = —vepw  + 6vvw  . 	 (17) 
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It is also well-known that N-soliton potentials (16) constitute the whole class of so-

called reflectionless real potentials for the one-dimensional Schrödinger operator 

L = -02/0/92  + v(19) (see, e.g., [1]). 

In conclusion of this section we put forward the following conjecture'. 

Conjecture. The wave-type operators (11) with potentials of the form (10) 

give a complete solution of Hadamard's problem in Minkowski spaces Mn+1  within 

a restricted class of linear second order hyperbolic operators 
( a  ) 	

].
2_  ( a  ) 	_ ..._2_ ( a )2 	( a )2  1 

ax0 	az 	 az2 	ax. 	u(x, x2 
£=

) 

with real locally analytic potentials u = u(x l , x2) depending on two spatial vari-

ables and homogeneous of degree (-2): u(axl, 
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II. Huygens principle and Hadamard-Riesz ex- 

pansions 

The proof of the theorem stated above rests heavily on the Hadamard theory of 

Cauchy's problem for linear second order hyperbolic partial differential equations. 

ax2) 	a-2u(x1, x2) , a> 0. 

5Note added in the proof. This conjecture has been proved recently by one of the authors 
in [6]. 
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Here, we summarize briefly some necessary results from this theory following 

essentially M. Riesz's approach [37] (see also [21], [24]). 

Let Mn+1  R1'n be a Minkowski space, and let Q be an open connected part 

in Mn+1. We consider a (formally) self-adjoint scalar wave-type operator 

r = D.+1 + u(x) , 	 (18) 

defined in Q, the scalar field (potential) u(x) being assumed to be in C°°(Q). For 

any e E Q, we define a cone of isotropie (null) vectors in Mn+1  with its vertex at 

C: 
7(x, e) 	(x. —C°)2 _ (x 	C1)2 e1)2 _ 	_ 	en )2 = , 	(19) 

and single out the following sets : 

C±(e) := 1x EMn+1  -y(x,e)= O, e° 5 x°1 , 
(20) 

J±(e) := {x E mn+1  I 7(x, e) > 0 , e° 5 2} • 

Definition. A (forward) Riesz kernel of operator r is a holomorphic (entire 

analytic) mapping A 1—> e(x, e) , A E C, with values in the space of distributions' 

TY(S2), such that for any e E Q: 

(i) supp (Dçx-z (x, e) C 4(e) , 

(ii) r [(x, 	= (x, e) , 
	 (21) 

(iii) irq (x, e) = (5(x — e) . 

The value of the Riesz kernel 	V(x, e) := (1,+(x, e) at A = 1 is called a 

(forward) fundamental solution of the operator .C: 

= 8(x — e) , suPP 41+(x,e) g J+(e) • 
	(22) 

6By a distribution f E D(f) we mean, as usual, a linear continuous form on the space D(Q) 

of C°°-functions with supports compactly imbedded in SZ (cf., e.g., [23]). 
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Such a solution is known to exist for any u(x) E C"(5)), and it is uniquely 
determined. 

Definition. The operator L defined by (18) satisfies Huygens principle in a 
domain 520  C (2 in Mn+1  if 

supp 	e) C C+(e) = 04(e) . 	 (23) 

for every point e E 

The analytic description of singularities of Riesz kernel distributions (and, 
in particular, fundamental solutions) for second order hyperbolic differential op-
erators is given in terms of their asymptotic expansions in the vicinity of the 

characteristic cone by a graded scale of distributions with weaker and weaker 
singularities. Such "asymptotics in smoothness", usually called Hadamard-Riesz 

expansions, turn out to be very important for testing Huygens' principle for the 
operators under consideration. 

In order to construct an appropriate scale of distributions (Riesz convolution 

algebra) in Minkowski space 1\471+1  we consider (for a fixed C E Mn+1) a holomor- 

	

phic D'-valued mapping C 	D(M) , A 1--> RÀ (x, e), such that RÀ(x, e) is an 
analytic continuation (in )) of the following (regular) distribution: 

	

(RÀ  (x, e), g(x» = 	7(x e)A-n±  g(x) dx , Re A > n — 1 
(A) 	 2 

J+ (e) 

where dx = dx°  A dx1  A . . . A dxn is a volume form in Mn+1, g(x) E D(Mn+1), and 
H +1  (.À) is a constant given by 

H 1(A) = 2R-Y4A-1F(A)11  pt  — (n — 1)/2) . 	 (25) 

The following properties of this family of distributions are deduced directly 
from their definition. 

For all A e C and e E Mn+1  we have 

(24) 

supp R,,(x,e) Ç  4(e) 	 (26) 



RA = RA-1 

R), * 	= RA+11 	 LEC, 

- 	ax )1?), = (2A n + 1)RA , 

-yvRA  = (A), (A - (n- 1)/2), RA+v  , V E Z>0  

where (K), := F(K + v)/r(K) is Pochhammer's symbol, and 7 = ry(x,e) is a square 
of the geodesic distance between x and C in mn+1.  

In addition, when n is odd, one can prove that 

RA(x ' e) 	27r n  4A-1(A - 1)! 
1 	8(±n 2 1 A)  (y) 	

for A = 1,2, ... , (n - 1)/2 , 	(31) 

where en)  (7) stands for the m-th derivative of Dirac's delta-measure concentrated 

on the surface of the future-directed characteristic half-cone C1+(). 
Another important property of Riesz distributions is that 

Ro(x, = 6(x - 0 • 	 (32) 

Formulas (26), (27), (32) show that RA  ( x, e)  is a Riesz kernel for the ordinary 
wave operator 0n+1. The property (31) means precisely that in even-dimensional 
Minkowski spaces Mn+1  (n is odd) Huygens principle holds for sufficiently low 
powers of the wave operator 0d,  d < (n - 1)/2. 

Now we are able to construct the Hadamard-Riesz expansion for the Riesz 

kernel of a general self-adjoint wave-type operator (18) on M. 

First, we have to find a sequence of two-point smooth functions U,, := 
U(x,e) E C"(5-2 X Q) 	-= 0, 1, 2..., as a solution of the following transport 
equations: 

(x - e,ax)Uu(x,e) + vU(x,e) 	.C[Iv-i(x,e)] , v> 1. 	(33) 

It is well-known (essentially due to [26]) that the differential-recurrence system 
(33) has a unique solution provided each 	is required to be bounded in the vicin- 
ity of the vertex of the characteristic cone and U0  (x, e) is fixed for a normalization, 

25 

(27)  

(28)  

(29)  

(30)  
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i.e. 

Uo  (x, e) 	1 , 	Uv (e,e) ,--, 0(1) , 	V v = 1, 2,3, ... 

These functions U, are called Hadamard's coefficients of the operator 

In terms of U the required asymptotic expansion can be presented as follows: 
CO 

rs.i 	 4v (A)if Uv(X 1  e) RA±v(X, 	• 	 (34) 

One can prove that for a hyperbolic differential operator G with locally analytic 
coefficients the Hadamard-Riesz expansion is locally uniformly convergent. From 

now on we will restrict our consideration to this case. 

For A = 1 formula (34) provides an expansion of the fundamental solution of 
the operator G in a neighborhood of the vertex x = e of the characteristic cone: 

00 

44(x, e) 
	Ll u v! U,(x, e) 	e) • 	 (35) 

v=0 

When n is even, we have supp 	e) = J±(e) for all v = 0, 1, 2,..., and 
therefore Huygens principle never occurs in odd-dimensional Minkowski spaces 
m2/±1.  

On the other hand, in the case of an odd number of space dimensions n > 3, 
we know due to (31) that for v = 0, 1, 2, ... , (n — 3)/2, supp R +1  (x, e) = c+(e) . 
Hence, using (30), we can rewrite the series (35) in following form: 

(x, f) = —271p  (V(x, e) el)(7) + W(x, e) 77+( -y)) , 	(36) 

where p := (n — 1)/2 , ri+  (-y) is a regular distribution characteristic for the region 

J-F(e): 

(7)± (7), g(x)) = 	g(x) dx , g(x) e  
J+(e) 

and V(x, , W(x, are analytic functions in a neighborhood of the vertex x = e 
which admit the following expansions therein: 

p-1 
1 

V (X, e) E 	'yv , 	 (37) 
v=0  (1- 	/9 ) • 	/9) 
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00 	1 	 n — 1 
W(x,e) = 	(u 	_ e Uv(x,e) 71)-" , P = 2 v=p 

The function W(x, e) is usually called a logarithmic term of the fundamental 

solution7. 
It follows directly from the representation formula (36) that operator satisfies 

Huygens principle in a neighborhood of the point e, if and only if, the logarithmic 

term W(x, e) of its fundamental solution vanishes in this neighborhood identically 

in x: W (x,) --a-  . 

The function W(x, e) is known to be a regular solution of the characteristic 

Goursat problem for the operator : 

[W(x, e)] = 0 	 (39) 

with a boundary value given on the cone surface C+  (e) . Such a boundary problem 

has a unique solution, and hence, the necessary and sufficient condition for .0 to 
be Huygens' operator becomes 

W(x, e) 	0 , 	 (40) 

where the symbol -4 implies that the equation in hand is satisfied only on C+ (e) . 

By definition (38), the latter condition is equivalent to the following one 

Up(x, 21. 0 	P 
n — 1 

= 	2  (41) 

In this way, we arrive at the important criterion for the validity of Huygens' 

principle in terms of coefficients of the Hadamard-Riesz expansion (34). Equation 
(41) is essentially due to Hadamard [26]. It will play a central role in the proof of 

our main theorem. 
7Such a terminology goes back to Hadamard's book [26], where the function W(x, e) is 

introduced as a coefficient under the logarithmic singularity of an elementary solution (see for 
details [15], pp. 740-743). 

(38) 
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III. Proof of the main theorem 

We start with some remarks concerning the properties of the one-dimensional 

Schrödinger operator 

L(k) := — (-)
2  

+vk((p) aço 
with a general periodic soliton potential 

a  
V k ( := —2 (

) 2
— log W [Wi, W2, • • • , WN] • D(p 

Here, as already discussed in the Introduction, W [Wi, W2, • • • , WN] 

Wronskian of the set of periodic functions on 11.1: 

(43) 

stands for a 

Wi (c,o) := cos(ki  ± (pi ) , çoi  ER , 	 (44) 

associated to an arbitrary strictly monotonic sequence of real positive numbers 

("soliton amplitudes"): 0 < k1  < • • • < kN-1. < kN • 
It is well-known (see, e.g., [34]) that any such operator L(k) (as well as its 

proper solitonic counterpart (16)) can be constructed by a successive application 

of Darboux-Crum factorization transformations ([17], [16]) to the Schrödinger op-

erator with the identically zero potential: 

Lo  := — Wpa  ) . 	 (45) 

To be precise, let L be a second order ordinary differential operator with a 

sufficiently smooth potential: 

(46) 

We ask for formal factorizations of the operator 

L— 	= A* A , 	 (47) 

where I is an identity operator, A is a (real) constant, and A, A* are the first 

order operators adjoint to each other in a formal sense. 

(42) 
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According to Frobenius theorem (see, e.g., [29]), the most general factorization 
(47) is obtained if we take x(y) as a generic element in Ker(L — ). I) \ {0} and 

set 
-1 ( A := X ° (Fp) X , A 	

x 	_.) 0 x  a 	 a 

Indeed, A*0A is obviously self-adjoint second order operator with the principal 

part —02 /0go2  Hence, it is of the form (46). Moreover, since A[x] = 0, we have 

x E Ker A* 0 A, so that (47) becomes evident. 
Note that for every E R we actually get a one-parameter family of factor-

izations of L—À I. This follows from the fact that dim Ker(L —À I) = 2, whereas 

x(y) and C x((p) give rise to the same factorization pair (A, A*) . 

By definition, the Darboux-Crum transformation maps an operator L = À I + 

A* 0 A into the operator 
L 	À/ -F A 0 A* , 	 (49) 

in which A and A* are interchanged. The operator L is also a (formally) self-

adjoint second-order differential operator 

:= — (—a  ) 2  ± 2-3(g0) 	 (50) 

where f)(c,o) is given explicitly by 
a  2 

ij(go) = v(v) — 2 (
) 

Fp 	log x(v) . 	 (51) 

The initial operator L and its Darboux-Crum transform L are obviously related 

to each other via the following intertwining indentities: 

LoA=AoL , LoA*=A* 	 (52) 

The Darboux-Crum transformation has a lot of important applications in the 

spectral theory of Sturm-Liouville operators and related problems of quantum 

mechanics [30]. In particular, it is used to insert or remove one eigenvalue without 

changing the rest of the spectrum of a Schrödinger operator (for details see the 
monograph [34] and references therein). 

(48) 
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The explicit construction of the family of operators (42) with periodic soliton 

potentials (43) is based on the following Crum's lemma: 

Lemma ([161). Let L be a given second order Sturm-Liouville operator (46) 

with a sufficiently smooth potential, and let {IP], 11'2, • • • , IN} be its eigenfunc-

tions corresponding to arbitrarily fixed pairwise different eigenvalues {A1, A2, • • • 4r} 
i.e. Ti  E Ker(L — I) , i = 1, 2, ... ,N N. Then, for arbitrary W E Ker(L — 

À I) , À E R, the function 

W [Wi 1112  • • • Ill N W]  
X N ( (2°) : = 

3/4)  [W1111[21 • • • 

satisfies the differential equation 

( 3 )2 
— 	VN()1 XN(V) = XN(P) açO 

with the potential 

a  ) 2 
vN ( Ç° ) := v( v ) — 2 

Given a sequence of real positive numbers 	0 < k1  < k2  < • • • < kN 
the Darboux-Crum factorization scheme: 

---> Li+i := Ai 0 	+ ki2+1  / , (56) 

L 0 	— ( —Fp- 0 0  — A* 0 A + k2  , I 

produces the required operator L (k) LN with the general periodic potential (43). 

Now we proceed to the proof of our main theorem formulated in the Introduc-

tion. 

When N = 0, the statement of the theorem is evident, since the operator £o 

is just the ordinary wave operator in an odd number n of spatial variables. 

(53)  

(54)  

(55)  

starting from the Schrödinger operator (45) with a zero potential 

a  )2 
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Using the Darboux-Crum scheme as outlined above we will carry out the proof 

by induction in N. 

Suppose that the statement of the theorem is valid for all m = 0,1,2, ... , N. 

Consider an arbitrary integer monotonic partition (ki) of height N : 0 < ki < 
k2  < 	< k N  , ki  E Z. 

By our assumption, the wave-type operator 

1N := £(k) = Dn-or Uk(X) , 	 (57) 

associated to this partition, satisfies Huygens principle in the (n+ 1)-dimensional 

Minkowski space Mn+1  with n odd, and n > 2 k N  + 3. We fix the minimal 

admissible number of space variables, i.e. n = 2 kN  + 3, and denote 

n — 1 
P:= 	2 

= k N +1 . (58) 

By construction, the operator LN can be written explicitly in terms of suitably 

chosen cylindrical coordinates in Mn+1: 

1N — pn-1 
ria \ 2  1 a 	( , a \ 2 

± 	772-  WO) Visi(P)) 	(") 

where (r, (p) are the polar coordinates in some Euclidean 2-plane E orthogonal to 
the time direction in Mn+1, i.e. E E 	(n + 1,2) ; Dri_ i  is a wave operator in 

the orthogonal complement E 	mn-i  of E in M'El ; and vN (y) is a 27r-periodic 

potential given by (43). 

Let k 	kN+1  be an arbitrary positive integer such that 

k > kN 	 (60) 

We apply the Darboux-Crum transformation (56) with the spectral parameter 

k to the angular part of the Laplacian in E. For this we rewrite 1N in the form 

1N =  Dn-1 — [ a  ) 2  1 	1  (4  
Or 	± 	\" *N o  AN ± k2 ) (61) 



and set 
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a 2  l a (-à-7) + 	— 	(AN  0 A*N  k 2 )1 	(62) 

 

£N+1:= 

  

where AN  := AN (V) and A*N  := A((p) are the first order ordinary differential 

operators of the form (48). 

According to (52), we have 

•CN+1° AN = AN ° •CN 	° A*N A*N ° •C N+1 • 	(63) 

Let 	(x, e) and 4.),N+1(x, e) be the Riesz kernels of hyperbolic operators LN  

and LN+1  respectively. Then, by virtue of (63) we must have the relation 

A*N (c,o) {(1),1):T+1 ] — AN (0) [e] = 0 for all À E C , 	(64) 

where AN (0) is the differential operator AN  written in terms of the variable 

çb conjugated to ça . Indeed, if identity (64) were not valid, one could define a 

holomorphic mapping N : C D' , À —> ier(x, e) , such that 

kr  (XI e) 	(11XV  (x)e) + a (A*N(cP) [e+1] AN(0) [e]) 
	

(65) 

The distribution e(x, e) , depending on an arbitrary complex parameter a e C, 

would also satisfy all the axioms (21) in the definition of a Riesz kernel for the 

operator LN . In this way, we would arrive at the contradiction with the uniqueness 

of such a kernel. 

In particular, when À = 1, the identity (64) gives the relation between the 

fundamental solutions (1(x, e) 	e) and 	(x, C) 	.1.1-1.\r±1(x, e) of 

operators LN  and £N+1. In accordance with (36), we have 

	

(vN(x,e)e-1)(7) + wN(x,e) 71±(7)) 
	

(66) 

= 	(17N+1(x, e) 
8(p_1)(7) 

 + WN+1(x, e) ?7+ (7)) , 
	(67) 

and 
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where y is a square of the geodesic distance between the points x and in  mn+1.  

Substituting (66), (67) into (64), we get the relation between the logarithmic 

terms WN (x, e) and WN±i(X, e) of operators LN  and £N+1 

A*N (ço) [147N+1(x, e)] — AN (0) [wN(x, 	0 	 (68) 

By our assumption, LN  is a Huygens operator in Mn+1 , so that WN (x, e) 0. 
Hence, equation (68) implies A*N (cp) [WN+1  (x, e)] = 0. On the other hand, as 
discussed in Sect. II, the logarithmic term WN I-1(x, e) is a regular solution of the 
characteristic Goursat problem for .CNI-1  i.e. in particular, 

cN+1 	(x, e)] 
	

(69) 

Taking into account definition (62) of the operator N+1  we arrive at the following 
equation for WN+1(X, : 

Eln-1WN+1 (XI e) = 	+— 	WN+1 (X e) Or 	r Dr r2   (70) 

According to (38), the logarithmic term WN +1  admits the following expansion 

wN+1(x, e) = 7" 	Tb — 1 
P = 	 ( , 	

(v 19)! 	 2 
(71) 

 

1/=p 

 

where U, (x, e) are the Hadamard coefficients of the operator £N+1. Since the 

potential of the wave-type operator LN+1  depends only on the variables r, (,o , 
its Hadamard coefficients Uz, must depend on the same variables r, cp and their 
conjugates p, only: 

U,, = U„(r, 	p, 0) 	for all v = 0,1,2, .. . 	 (72) 

This follows immediately from the uniqueness of solution of Hadamard's transport 
equations (33). 

On the other hand, since 

s2  — r2  — p2  + 2r p cos((P — 0) , 
	 (73) 



Hence, equation (70) becomes 

(CM 2  (1)2  

n - 2 0 18 
s 	Os r Or 

Now we substitute the expansion (71) 

7v-P  U (  r, cp, p, 0) 	
-19)! 

k2  

r2  

P = 

T77  

N+1 - 0 

n - 1 

(74)  

(75)  
2 

cc 
WN+1 

=
E 
te -=p 
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where s is a geodesic distance in the space Ei 	Mn-1  orthogonally comple- 

mentary to the 2-plane E, we conclude that WN+1  is actually a function of five 

variables: WN+1  = WN+1 (s, r, p, 4°, ç5). On the space of such functions the wave 

operator 1n-1  in .E±  acts in the same way as its "radial part", i.e. 

Dn-iWN-Fi - ((— 
a 2  + n - 2 a 

WN+1 • ¿9s1 	s Os 

into the left-hand side of the latter equation and develop the result into the similar 

power series in y, taking into account formula (73). After simple calculations we 

obtain 
k2  

cÊ KU"' + -
1 

- 	- 4 (r - p cos( cp - 0)) 1/ 1- 	(76) 
v=p 

-2 (2 (v + 1) - 	- 0)) Uv+1  - 4 p2  sin2(cp - U,+21 	= 0 , 
(v P)! 

where the prime means differentiation with respect to r. 

Since the functions Uv  do not depend explicitly on y, equation (76) can be 

satisfied only if each coefficient under the powers of 7 vanishes separately. In this 

way we arrive at the following differential-recurrence relation for the Hadamard 

coefficients of the operator £N+1 

4 p2  sin2(cp - 0) Uv+2  = 	 Uv) 

2p 
+ —r 

cos(cp - 0) (2 r Uv'±i  + Uv+i ) -4 (r U +1  

where v runs from p: v = p, p 1, p ± 2,... 

(77) + (1,  + 1) tiv+1) 
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To get a further simplification of equation (77) we notice that all the Hada-
mard coefficients of the operators under consideration (11), (10) are homogeneous 

functions of appropriate degrees. More precisely, they have the following specific 
form 

1 
Uu(r,40 , P,45) =

() 	
çb) , 	v = 0,1,2, ... , 	(78) 

r P u  
where o-,(cp, 0) = (0 , y) are symmetric 27r-periodic functions depending on the 

angular variables only. 

In order to prove Ansatz (78) we have to go back to the relation (64) between 
the Riesz kernels of operators 1N and £N-E]. 

AN( go) [e+1(x,e)] -AN(o) [e(x,e)] = o, ÂGC, 	(79) 

If we substitute the Hadamard-Riesz expansions (34) of the kernels 	(x, e) and 
tN+1(x, 	into (79) directly and take into account that AN and its adjoint A*N 
are the first order ordinary differential operators of the following form (cf. (48)): 

8 AN (go) = — — f N(V) 	A*N(go) = 	— f N(40 ) , 	(80) 
y 

where f N  (y) = (0 I y) log xN ((p) , we obtain 
00 E 4' (À), [2rp sin(cp — 0) (U4+11  — 	— 

V=0 

- 
 (

a 	 a — + f N ( g,0)) u' - (-00 - f N(0)) re]R„ = o , 	(81) 

where U (r, go, p, 0) and U/1+1(r, y, p, 0) are the Hadamard coefficients of opera-
tors 1N and 1N+1 respectively; RA  := RA(x,e) is the family of Riesz distributions 
in Mn+1  . 

The same argument as above (see the remark before formula (77)) shows that 

all the coefficients of the series (81) under the Riesz distributions of different 

weights must vanish separately. So we arrive at the recurrence relation between 
the sequences of Hadamard's coefficients of operators LN and £N-H. 

1 	 0 UN+1  = U N  +1  + 2rp sin(ço 	— 0) [(
—ay + f N (c,o)) U,N+1  + (— — f N (0)) U,I1] v 00 

(82) 
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where U +1  = te ..7,. 1 and v = 0, 1, 2,... Now it is easy to conclude from (82) 

by induction in N that the Ansatz (78) really holds for Hadamard's coefficients 

of all wave-type operators (11) with potentials (10). 

Returning to equation (77) and substituting (78) therein, we obtain the fol-

lowing three-term recurrence relation for the angular functions o-,(cp, 0): 

4 sin2(ço — 0) o-u+2  = (v2  — k2 ) a, — 2(2v + 1) cos( v — 0) civ+i , 	(83) 

where v = p, p + 1, p + 2, .... 

In order to analyze equation (83) it is convenient to introduce a formal gener-

ating function for the quantities { au } : 

tv  —13  
F (t) := E 0-,,( , 0) (v  0  . 

v=p 

The recurrence relation (83) turns out to be equivalent to the classical hyper-

geometric differential equation for the function F (t) 

dF 
(4 (1 — w2 ) + 4wt — t2 ) d:tF2  + (2p + 1) (2w — t) w  + (k2  — p2 ) F -= 0, (85) 

where w := cos( y — 0) . The general solution to (85) is given in terms of Gauss' 

hypergeometric series: 

F(t) = C 2 Fi(p—k;p+k;p+11214+Ci z—P+112  2 Fi(1/2 — k;112+k;312 — 19 1 z) , 
(86) 

where z := (t — 2w + 2)/4 and 2 F1 is defined by 
00 pi , ii 

2 Fi  (a; b; c 	
(a)(b)  z 

l z) := E 	 (87) 
(c)iL 	/-1! 4=0 

As discussed in Sect.II, the Hadamard coefficients U(x,e) must be regular in 

a neighborhood of the vertex of the characteristic cone x = . When x —> , we 

have w —> 1 and Up(e, e) oc ap(o, o) = F(0)11 is not bounded unless C1  = 0. 

In this way, setting C1  = 0 in (86), we obtain 

00 
(84) 

cc 
t v—I)  

E 	o) 	= C 2F, (p — k; p + k; p + 1121 (t — 2w + 2)/4) . (88) 
(v — p)! v=p 
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Now it remains to recall that by our assumption (60) k e Z and k > k N  Since 

p = (n — 1)/2 = k N  + 1, we have k > p. So the hypergeometric series in the 

right-hand side of equation (88) is truncated. In fact, the generating function (84) 

is expressed in terms of the classical Jacobi polynomial 17)(P- p1/2,p+1/2)(w t/2) of  

degree k — p. Hence, o-k+i (cp, 0) 0, and the (k+ 1)-th Hadamard coefficient of 

the operator £ N+1  vanishes identically: 

Uk+1(X, 	a.  0 . 	 (89) 

According to Hadamard's criterion (41), it means that the operator ,G N+1  satisfies 

Huygens principle in Minkowski space Mn+1  , if n is odd and 

n> 2k+3, 

Thus, the proof of the theorem is completed. 

IV. Concluding remarks and examples 

In the present paper we have constructed a new hierarchy of Huygens' opera-

tors in higher dimensional Minkowski spaces Mn+1, n > 3. However, the prob-

lem of complete description of the whole class of such operators for arbitrary n 

still remains open. As mentioned in the Introduction, the famous Hadamard's 

conjecture claiming that any Huygens' operator r can be reduced to the ordi-

nary d'Alembertian Dn+i  with the help of trivial transformations is valid only in 

1\43+1  . Recently, in the work [4] one of the authors put forward the relevant mod-

ification of Hadamard's conjecture for Minkowski spaces of arbitrary dimensions. 

Here we recall and discuss briefiy this statement. 

Let S-2 be an open set in Minkowski space Mn+1  Rn+1  , and let F( -2) be a 

ring of partial differential operators defined over the function space C"(S.2) . For 
a fixed pair of operators ro , G e .F(e) we introduce the map 

adr,A, : F(Q) --> .7(Q) , A 1—> adc,,c0[A] , 	 (90) 
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such that 

	

adc,ro[A] := GoA—Ao £o • 	 (91) 

Then, given M E z>0 , the iterated ad£,Lemap is determined by 

nd 
aef,r0  [A] := adc,c0  [ade,,e0  [. . . adr,,e0[A]] . . .] = E(-1)k M 

ri t  / I —le  0 A o L. 
k k=0 

(92) 

Definition. The operator ,C G .7-(S2) is called M-gauge related to the operator 
Go  E F(Q) , if there exists a smooth function 0(x) E C"(Q) non-vanishing in Q, 
and an integer positive number M E Z>0, such that 

	

ac1 c0  [0(x)] _= 0 identically in .F(Q) . 	 (93) 

In particular, when M =1, the operators G and Go  are connected just by the 
trivial gauge transformation G = 0(x) o Go  o 0(x)-1  . 

The modified Hadamard's conjecture claims: 

Any Huygens operator £ of the general form 

•C = 111,-/-1-1 + (a(x), a) + u(x) , 	 (94) 

in a Minkowski space Mn+1  (n is odd, 71 > 3) is M-gauge related to 
the ordinary wave operator Eln+1 in Mn+1 . 

For Huygens' operators associated to the rational solutions of the KdV-equation 

(2), (3) and to Coxeter groups (5), (6) this conjecture has been proved in [4] and 
[7]. In these cases the required identities (93) are the following 

aeck:g [Pk (x°)] = O, Mk := 
k(k  ± 1) 	

(95) 

	

2 	' 

where .ek  is given by (2) with the potential (3) for k = 0, 1, 2,... and 

	

adirvfmniIoi[7,,,(x)] = O, m-n, := E mc, , 	 (96) 
Ot e Ri- 
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where 	is defined by (5), (6) and 7r,(x) := FLE,,_ (a, x)m- . 
It is remarkable that for the operators constructed in the present work the 

modified Hadamard's conjecture is also verified. More precisely, for a given wave-
type operator 

2 ( a ) 2
log W [Wi((p), 1F2 (V) £(k) 	 I I Ar ()] à7,  

associated to a positive integer partition (ki) : 0 < k1  < k2  < 	< k N  , we have 
the identity 

ade(0  [e(k)  (x)] = 0 , 	 (98) 

where 8(k)(x) := rlkl W 	1112, 	, N ] and lk := 	ki  is a weight of the 
partition (k). 

We are not going to prove (98) in the present paper. A more detailed discussion 

of this identity and associated algebraic structures will be the subject of our 

subsequent work. Here, we only mention that such type identities naturally appear 

[4]—[5] in connection with a classification of overcomplete commutative rings of 

partial differential operators [13], [14], [41], and with the bispectral problem [20]. 
We conclude the paper with several concrete examples illustrating our main 

theorem. 

1. As a first example we consider the dihedral group 12(q), q E Z>0, acting 
on the Euclidean plane E 112  c Gri(n + 1, 2) and fix the simplest partition 
k = (q) and the phase cp = 1t/2. According to Remark II, in this case our theorem 

gives the wave-type operator with the Calogero-Moser potential related to the 
Coxeter group 12(q) with n2 = 1: 

2 2  
£(k) = n-1-1 	r2 	sin2(q (p)  • 

This operator satisfies Huygens principle in IVIn+1  if n is odd and n > 2 q + 3. 
The Hadamard coefficients of r(k)  can be presented in a simple closed form in 
terms of polar coordinates on E: 

(97) 

U0  -= 1 , 
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1 	e) (cos(ço — 0))  = 

	

	 v > 1 , 
(2rie sin(q ço) sin(q 0) 

where Tg(z) := cos(q arccos(z)), z E [-1, 11, is the q-th Chebyshev polynomial, 
and e) (z) is its derivative of order u with respect to z. These formulas are easily 
obtained with the help of recurrence relation (82). 

2. Now we fix N = 2, k1  =2, k2  = 3 and go'  = 7r/2, c,o2  = 0 . The correspond-
ing wave-type operator 

10 (4 + 	(15 4 — xi) 
.c(k) = D n+1 

(54 ± 4)2  4 

satisfies Huygens principle for odd n > 9. The nonzero Hadamard coefficients of 
this operator are given explicitly by the formulas: 

U° =1, 

40 x2e16xi + 15 62x22 + e22x22 + 15 e22x12 _ 5 62.112 
= 

2 	j.x j.  (5 x22 + xi2) (5 e22 + 62) 

120 x2ei6xi + 15 e22xi2  — 5 62x12 + 15 62x22 + 75 e22x22 
U2  = 4  -1. 2x1.2 (5 x22 	x12) (5 e22 ei2) 

U-3   = 15 x26 
-1. 2x1.2 (5 x22 + x12) (5 e22 ei2) 

3. Now we take N = 3, the partition k = (1, 3, 4) , and the phases 
ÇO3 = 7r/2 . The corresponding operator 

12 (494 ± 2844 — 4)  
£(k) = Dn+1 

4 (74 + 4)2  

is a Huygens operator in Mn+1  when n is odd and n > 11. The nonzero 
Hadamard's coefficients are 

U° =1, 
_21e22x12 — 42 x2ei6x1 — 21 62x22  + 3 62x22  — 147 ei2x1.2  

6x2 (7x12  ± x22) (7 12  e22) 

735 fi2x12  ± 504 	+ 105 ei2x22  — 21 62x22  + 105 Ù2X12  U2 = 4 e22x22 (7  x12 +x22)  (7 	+C22) 

(Pl = (P2 = 
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U4 = 4  63x23 (7 x12 + x22) (7 ei2 C22)  • 

4. The last example illustrates Remark I following the theorem (see Introduc-

tion). In this case we consider the operator (11) with the potential (13) associated 
with the proper N-soliton solution of the KdV equation. We take N = 2 and fix 

/cl  = 1, k2  = 2. The real phases are chosen as follows /91  = arctanh (1/2), 192 = 
arctanh (1/4) . The corresponding operator G(k)  reads 

2 (2x0  — 3x1) (34.  — 6x04 + 4x14  + 
•e(k) = 

xî  (44 — 2X 0 X 1  — xj)2  
According to the theorem, it is huygensian provided n is odd and n > 7. The 
nonzero Hadamard coefficients are given by the following formulas: 

Uo  = 1, 

= 
4a4 + 9e12.4.  — 16a4)  + 8axoxi  

2x1  (44 — 2xoxi  — 4) (4eê, _ 2e0e, _ e )
+ 

8eoelzî, _ 12axax, 4e4)  — 12eki4 + 166fixoxi  
2x1  (44)  — 2x0x1  — 4) ei (4a _ 2eoel _ a)  

5  (2  eo — 	(2 xo — xi)  U2 = 

	

4 xi  (4 x02  — 2 xoxi  — x12) ei  (4 () 2  — 	(3ei — '12) • 
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The one-dimensional Schrödinger equation 

Lb(x) 	(x) + u(x)b(x) = AlP(.x) 	 (1) 

lies in the foundations of quantum mechanics and theory of solitons. The class 
of potentials u(x), for which the spectrum and eigenfunctions of the operator 
L are known in the closed form, is of a particular interest. It includes simple 
potentials tied to the Gauss hypergeometric function (for a review, see [1]), finite-

gap potentials, and the potentials whose discrete spectra consist of a number of 

arithmetic or geometric progressions (see [2, 3] and references therein). The latter 

potentials appear after a self-similar reduction of the factorization chain or the 
chain of Darboux transformations. In this note we discuss relation of the self-
similar potentials to one-dimensional Ising type spin chain models. Below we use 

the language of the soliton theory described, e.g., in [4, 5]. 
It is well known that if the potential u(x, t) and the wave function 	t) in 

(1) depend on 'Lime t in such a way that 

1,bt(x,t) = Be(x, t), 	B 	+ 6u(x, t)Ox  + 3ux (x, t), 	(2) 

	

then the compatibility condition of (1) and (2), Lt  = [B, 	is equivalent to the 
Korteweg — de Vries (KdV) equation ut  + uxzx  — 6uux  = O. The N-soliton solution 

	

of this equation can be represented in the form u(x, t) = 	ln TN (x,t), where 
TN = det C is the determinant of the matrix 

Ci  • = 
2 y/kiki  (et ,

1- n 
 

"1.7 + ki + 	" 	
Ot  = kz x — kt + 	 (3) 

Here ki  are the amplitudes of solitons related to the bound state energies of (1), 
À j  = —q/4, and OP ) /kt  are the zero time phases. The ordering 0 < kN  < • • • < ki 
is assumed. Equivalently, this T-function can be rewritten in the form [4, 5]: 

TN = E exp( E 	+ E ezpi), 	 (4) 
1.4=0,1 	1<i<3<N 	1<i<N 

where the phase shifts Ati  are determined by the formula 

A 	(ki - 1_i)2  
e 	= 	 

(ki  + ki )2.  (5) 
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There are generalizations of the expressions (3)-(5) such that the correspond-
ing u(x, t, . . .) satisfy higher order members of the KdV-hierarchy, sin-Gordon, 
Kadomtsev — Petviashvili (KP), Toda, and some other integrable equations [4]. 

We start from the observation that the expression (4) has nice interpretation 

within the statistical mechanics. Namely, for 0, = 0(°) = const it defines the grand 
partition function of the lattice gas model [6]. In this case pi  play the role of 
filling factors of the lattice sites by repulsing molecules, o(°) is proportional to the 
chemical potential, and Aii  are proportional to the interaction energy between the 
i-th and j-th molecules. 

Simultaneously, (4) is closely related to the partition function of the one-
dimensional Ising model [6]: 

zN  E e 	, 	E = E 	_  
cr i=±1 	 i<j 	1<i<N _ _ 

(6) 

where N is the number of spins ai  = ±1, J = Jjj  is the coupling between i-th and 
j-th spins, Hi  is the external magnetic field, [3 = 1/kT is the inverse temperature. 
Indeed, let us introduce into (4) the spin variables via the substitution pi  = 
(ai  + 1)/2. After some simple calculations one finds 

4)  7N = eZ N1 
1<j<N 

(7 ) 

provided 

= 	 O. = 2)3(Hi  + E ,). 	(8) 
1<.Wi<N 

As a result, one arrives at an interesting fact: from a given N-soliton r-function 

of the KdV equation (4), one recovers the partition function of the N-spin Ising 

model (7). The r-function is defined only up to a gauge factor exp(ax + b), and 
(7) fits this freedom. Therefore one may identify the N-soliton r-function itself 

with (6) for the specific exchange interaction (5). This fact alone does not help 
much in the evaluation of ZN. However, the recursive way of building N-soliton 
potentials with the help of Darboux transformations or the factorization method 
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appears to be quite useful. Let us provide the representation of ZN following from 
the Wronskian form of TN  [7, 8] 

2N( N+1)/2  WN  

	

ZN = 	
- k 1/2 	 dxi-1  

WN = det  	 (9) Ili<3 (1q 	32)  

where 	= ch 3H --N-2j+2, 1112j = Sh PHN_2i±i. Dependence of Hi  on the soliton 
parameters is read from (8). 

The factorization method transforms a given potential u (  x) = fl?(x)- fix(x)+ 

Ai  with some discrete spectrum to the potential u34_1(x) = u(x)+2f(x) contain- 
ing an additional (the lowest) bound state with the prescribed energy 	Within 
the Ising models context, this corresponds to the extension of the lattice by one 
more site. Then the infinite-soliton potentials correspond to the thermodynamic 
limit N -+ œ. Characterization of general N  at N --> œ is a challenging problem, 
but for the specific choice of parameters k, O0) this function can be analyzed to 
some extent through the basic infinite chain of equations [1] 

(f.i(x)+ fi+I(x))x  e(x) - f 1(x) = p==:- Ai+i - Ai, iE Z. 	(10) 

In general both •TN  and ZN diverge in the limit N -› cc. If the corresponding 
solutions of (10) are finite, then the divergences gather into the gauge factor. 

A key observation of the present work is that the simplest physical constraints 

imposed upon the form of spin interactions Jii  of the infinite Ising chain select 
the potentials with the discrete spectrum composed from a number of geometric 

progressions. First, let us demand that all the spins are situated on equal distance 

from each other and that they are identical, i.e. that there is a translational 
invariance, Ai+1,i+i = 	This means that the intensities of interaction Ai3  

depend only on the distance between the sites i - j , Aii = 	- j1). Such a 
natural constraint has the unique solution 

= 21n1th oz(i - j)I, 	(11) 

where a > 0 is an arbitrary constant. For finite N this spectrum corresponds to 
reflectionless potentials with the eigenvalues condensing near = 0. For q > 1, 
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one should write k i 	k1q-i+1  for correct ordering of ki. (The exponentially 
growing spectrum is formally obtained for purely imaginary k1  and q> 1, but the 
corresponding potential contains singularities.) In the N —> 00 limit, one gets an 
infinite soliton potential with the discrete spectrum 	= —k7q2(i-1)/4 describing 
a specific semi-infinite spin chain (j takes only positive values). As qi —> 0 for 
j —> oo, the magnetic field is decaying exponentially from the edge of the lattice. 
The limit x --> oo corresponds to the growing depth of penetration of the magnetic 
field inside the bulk. Note that one can analyze boundary effects by working with 
a difference of the free energy at two fixed values of the magnetic field. 

Since 0 < th a(i — j)i < 1, one has Ji;  > 0, i.e. an antiferromagnetic in-
teraction (the spins are not aligned in the ground state). It has nice physical 
characteristics — its intensity falls exponentially fast with the distance between 

the sites. It is well known that the one-dimensional systems with finite range 

interactions do not have phase transitions at non-zero temperature. There is a 
model with the exponential interaction J = 	 solved in the limit 
7 —> 0 by M. Kac [9]. This limit corresponds to the very weak but long-range 

interaction and shows a phase transition with the Van der Waals equation of state. 

There should be some relation of our model to the Kac one, but it is not clear 
whether there exists a direct connection. A similar molecular approximation limit 
is reached in our case if a —> O. Formally A,i  a Jii  I kT diverge in this limit. 
If we renormalize interaction constants Jir = Ji3  (q-1  - q) and the temperature 

Tren = T(q-1  — q), then the maximal interaction energy of a single i-th spin 
(determined by the summation of Jri" over j) will be finite for a —> 0 (or q —› 1). 
Therefore the limit q —› 1 corresponds to the long range interaction model at 
low temperature. Note that one should rescale simultaneously the magnetic field 
H = hl (q-1  — q) to imitate the change of the temperature. 

The particular form of the renormalization factor q-1  — q was chosen in order 
in the limit q —› 0 to recover the interaction Jiroc 6i41,i. If one takes h as 
a real magnetic field then one gets the nearest neighbor interaction Ising model 
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at high temperature. If the magnetic field is not rescaled then the q 	0 limit 
corresponds to the completely non-interacting spins. Thus our formalism allows to 

analyze partition function upon two dimensional planes in the space of variables 
(T, H, q). Unfortunately, for fixed q the temperature is fixed as well and we may 
normalize the "KdV temperature" to kT = 1. 

The discrete spectrum does not characterize completely even the reflectionless 

potentials — one has to fix the phases Oi. Only for the special choice of these 

parameters one arrives at the self-similar potentials. E.g., the simplest case is 
determined by the condition that the scaling of x and t by q and q3  respectively is 
equivalent to removing of one soliton. Formally this corresponds to the constraint 
Oi(qx, q't) = Oi±i(x,t) assuming the choice e)  = 0(°)  = const. However, TN, ZN 
and (1,  in (7) are diverging for N ---> oo and a more careful analysis is thus called for. 
Note that the shift of Hi  in (8) remains finite and it becomes a fixed constant for 

i —> oo. This means that in the thermodynamic limit the zero chemical potential 
in the lattice gas partition function corresponds to a fixed nonzero magnetic field 

in the Ising model, and, vice versa, zero magnetic field matches with a prescribed 
value of the chemical potential. 

Let us consider now the "M-color" Ising model for which the chain is formed 
by the embedded sublattices when the blocks of M spins with different distances 

between them are periodically repeated. Within each of this block the distances 

between spins are not equal, so that the interaction constants between the first M 
sites are given by arbitrary (random) numbers. Equivalently, one may think that 

in the equal distance lattice points one has different magnetic moment particles, 

i.e. some kind of ferrimagnetic interaction. Such physical constraints are bound 
to the condition Ai+m,i+m = 	which leads to the constraint upon the soliton 
energies of the form ki+m  = qki , generalizing the previous case. For a specific 
choice of the phases 02L())/vi  = e)  one arrives at the general self-similar potentials for 
which one has Oi (qx, et) = Oi±m(x,t). The rigorous definition of these potentials 
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for fixed time is given by the constraints [2] 

	

fi+m(x) = q 	Pi+m = q2 
Pi 
	 (12) 

imposed upon the chain (10). The system of mixed differential and q-difference 
equations arising after this reduction describes q-deformations of the Painlevé 
transcendents and their higher order analogs. For M = 1 one has a q-harmonic 
oscillator model, for M = 2 a system with the suq(1, 1) symmetry algebra, etc. 

Using the Wronskian representation (9), we calculated exactly the free energy 
per site fi  in the thermodynamic limit ZN  ---> e-'3N- , N -› oc, for a homogeneous 
magnetic field and arbitrary M. In the simplest M = 1 case one has 

.\cc  ch ßH 1 
--ßf 1(H)R) = ln 

2(n4
' 
 ,4)  /2 

1 	
dv ln 4(012  — q th2  ßH), 2 0 	 (13) 

(q2; q2)00 	 7F  

where (a; q)co  = 	aqi) and 

(22i,v;  (1  4\200 q e  (2-2iv 4 )200  
I 	 (v )  12 = 	

q e  

4 sin2  v (q4e2iv; 0)002 (q4e-2iv; 0)002 = 	(
(1)

i)), qq22)) 
  

" 	
(14) 

The Jacobi O-functions are defined in the standard way [10]. The density function 
p(v) has integrable singularities near the v = 0,7F points. Note that it satisfies a 
curious identity such that the second term in (13) vanishes for H -= 0. 

Dependence of the magnetization m(H) = --01/ f / (H) on H looks as follows 

m(H) = (1 - 0j.  (y, q2 )dv  
) th ,31/. 	(15) 

7 fo 0,î (v , q2 ) ch2  ßH - 0?.(v, q2 ) sh2  ßH 

We substitute into this expression f3H = hl (q-1  - q) and plot m(h) in Figure by 
the dashed lines for q = 0.1 (the lower curve) and q = 0.8. We would like to note 
that it is not clear how to solve the considered Ising model with the help of the 
traditional Bethe anzats and transfer matrix methods [6]. 

As was mentioned, a drawback of the given construction is that the KdV-

generated partition function has a fixed temperature for fixed a. In order to 

obtain the full thermodynamical description it is necessary to extend the formal- 

	

ism and replace Aii  (11) at least by 	where n is a positive integer. The KdV 
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temperature is thus normalized to p = n =- 1 (for n > 1 one has to renormalize 
the magnetic field H, —> nH, in order to imitate the effect of the temperature 
lowering). This means that we need to look for an integrable model with the 
phase shifts given by the powers of (5). Then one may hope to recover the par-
tition function with arbitrary values of the temperature oc 1/n by an analytic 
continuation. 

The phase shifts Aii  for a given Hirota polynomial P(xi , x3 ,.. .), determining 
a particular integrable evolution equation, can be represented in the form [5] 

P(k1  — k2 , 	— 	,(-1) .e( e+1 _ k el-1))  
eA,, = (16) P(ki  + k2, 	- 	. , (-1 

where î is the number of variables in P. We have looked for integrable systems 
with the prescribed phase shifts, substituting homogeneous (with the account of 

weights of the variables) polynomials with undefined coefficients into (16). Then, 
we applied an additional test to select the polynomials admitting N-soliton so-

lutions. It turns out that the taken conditions are very restrictive, and the only 
solution we were able to find is the hierarchy which starts from 

P(xi , x3 , x5 ) = 16x 6i  + 20x31x3  + 9x1x5  — 54 	 (17) 

corresponding to n = 2, i.e. to the temperature kT = 1/2 normalized to the KdV 
case. The polynomial (17) corresponds to the B-type KP (BKP) equation [11]: its 
original form is 4-54x3 -54+9x1 x5  which is obtained from (17) up to a common 
numerical factor 16 after the substitutions x1  —> xl , x3  —> —4x3 , x5  —> 16x5 . 

Using the Pfaffian representation of the N-soliton solutions of the BKP equa-
tion [11], we calculated exactly the partition function in the thermodynamical 
limit N —› Do for a homogeneous magnetic field and arbitrary M. For M = 1 one 
has 

)t(e.1+1 	kt)) 5 

 

( q; q)200 ch 40H + Mi q1/2 )  
( — g; e. 	02 (v, q112) 

 

-0.fign 	 dm ln 2 27r (18) 

  

   

where a, means the derivative with respect to the variable v and 02 (v, q1/2) is 
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another Jacobi O-function [10]. The dependence of magnetization on H is 

m(H) = (1 — le  dm (1+ 
7 	0 	 — q; n0,611( 1,, q1/2) 	th 4/3H. 	(19) (q; 0 20,02(v, q112 ) ch 4)3H)  ) 1  

For q—> 0 one gets the simple answer m(H) = th 20H. 
We substitute into (19) 3H -= hl (q — q) and plot m(h) in the Figure by the 

solid lines for q = 0.1 (the lower curve) and q = 0.8. From the comparison of the 

magnetization curves one can see that with the lowering of temperature, which 

corresponds both to the transition from n = 1 to n = 2 and to the growing of 

q, m(h) becomes more steep. This may be interpreted as a trend towards forma-
tion of a staircase-like fractal function that should take place at zero temperature 
according to the arguments of [12]. Formation of the platos for m(h) at low tem-

peratures can be easily checked analytically for the nearest neighbor interaction 
Ising antiferromagnet. 

The attempts to find integrable systems with n > 2 have failed for Hirota poly- 

nomials of up to 20-th degree. Probably one has to pass from the scalar Lax pairs 

to the matrix ones in order to imitate other values of the discrete temperature. 

The lattice of temperatures itself resembles a discrete variable unifying different 

hierarchies of integrable systems into one class. 

A relation between the two-dimensional nearest neighbor interaction Ising 

model and the sinh-Gordon hierarchy was discussed in [13]. In particular, the 

corresponding N-soliton solution 7-function, N —> oo, was shown to be the gener-

ating function of correlation functions. It should be noted that our identification 

of the one-dimensional Ising model partition function with T-functions of some 

integrable equations is different from the constructions considered in [13] and ear-

lier related works. However, it is expected that the self-similar potentials (or 

q-analogs of the Painlevé transcendents) are related to some correlation functions 

in the corresponding setting as well. A hint on this comes from the fact that the 

supersymmetric quantum mechanical representation of the factorization method 

is related to the Lax pair of the sinh-Gordon equation. 
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Figure 1: Dependence of the magnetization m(h) for the renormalized magnetic 
field 13H = h I (g-1  — g) for the KdV case n = 1 (dashed lines) and for the BKP 
case n = 2 (solid lines). The lower curves correspond to g = 0.1 and the upper 
ones to g = 0.8. 
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Abstract 

Partition functions of the one-dimensional Ising chains with specific 

long distance interaction between N spins are connected to N-soliton tau-

functions of the Korteweg-de Vries (KdV) and B-type Kadomtsev-Petviashvili 

(BKP) integrable equations. The condition of translational invariance of 

the spin lattice selects infinite soliton solutions with soliton amplitudes 

forming a number of geometric series. The KdV equation generates a spin 

chain with the exponentially decaying antiferromagnetic interaction. The 

BKP case is more rich. It comprises both ferromagnets and antiferromag-

nets and, as a limiting case, includes an asymptotic interaction oc 1/(i — j)2 . 
The corresponding partition functions are calculated exactly for a homoge-

neous magnetic field and some fixed values of the temperature. A connec-

tion between these Ising chains and random matrix models is considered as 
well. 
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1 Introduction 

Ising chains are very popular in statistical mechanics [1]. They show a number of 

interesting phenomena detected in many cases on the basis of simple analytical 

expressions for partition function and various thermodynamic quantities. It is 

well known that the 2D Ising model with the nearest-neighbor interaction between 

spins is solvable for zero magnetic field and there is a phase transition at non-zero 

temperature. Its 1D partner is solvable for arbitrary homogeneous magnetic field. 

However, 1D models with fast decreasing interactions admit as a critical point only 

the zero temperature. Therefore such models are primarily interesting from the 

exact solvability viewpoint. Any exact derivation of the partition function can be 

useful for other calculations as well. It is worth to mention that there are also one-

dimensional long-range interaction models with nontrivial phase transitions which 

are interesting on their own [2]. As some particular examples of spin chains with 

the non-nearest neighbor exchange which are solvable, we mention the Haldane-

Shastry model [3, 4] and the Inozemtsev model [5]. 

Recently we have described [6] an interesting relation between the particu-

lar set of 1D Ising chains and integrable nonlinear partial differential equations. 

Namely, it was shown that self-similar infinite soliton solutions of the Korteweg-de 

Vries (KdV) equation describe an antiferromagnetic spin chain in a magnetic field. 

The corresponding soliton solutions are generated by the Schrödinger equation po-

tentials whose discrete spectra are composed from a finite number of geometric 

series [7]. A characteristic property of the arising Ising chains is that the interac-

tion is decaying exponentially fast with the distance between spins. The partition 

function was calculated exactly for a homogeneous magnetic field and two fixed 

values of the temperature. Quantization of the temperature, induced by the con-

dition of solvability of the model, is a curious point of this scheme. In a sense, 

this is a price one has to pay in order to have solvable model with complicated 

form of the exchange interaction. 

In this paper we give a detailed account of the results of [6] and extend the 
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approach to more general integrable equations and Ising chains. We discuss also 
a relation of the emerging Ising chains to the random matrix theory. The paper is 

organized as follows. In the next section, we present the details of calculations for 
the simplest translationally invariant Ising chain generated by the KdV equation. 

In section 3, the chains with translational invariance with respect to the shifts by 
arbitrary number of sites M are discussed. The corresponding results allow us to 
estimate magnetizations of various spin sublattices for the homogeneous magnetic 

field. In section 4, a more complicated set of Ising chains based upon the B-
type Kadomtsev-Petviashvili (BKP) equation is analyzed. In this case, not only 

the antiferromagnetic but the ferromagnetic exchange is permitted as well. In 
some special limit one gets an exchange which becomes rational (of the Calogero-
type) at large distances oc 1/(i — j)2. In section 5 we consider the possibilities 
of changing the discrete temperature with the help of particular reductions of 
M-periodic systems to the M = 1 case. In section 6 we describe a connection of 
our Ising chains to the random matrix models. In particular, we show that the 

old Gaudin model [8] is related to the tau-function of the KP equation. The last 

section contains a brief discussion of open problems and possibilities for further 

extension of the derived results. Throughout the paper we use the language of the 
soliton theory, some basic notions to be employed can be found, e.g., in [9, 10, 11]. 

2 Integrable equations and 1D Ising chains 

The most popular eigenvalue problem in physics is determined by the 1D Schrödinger 
equation 

41)(x) 	—0xx(x) u(x)b(x) = )e(x), 	 (1) 

where the subscript x denotes the derivative with respect to the space coordi-
nate x. Physical system is determined completely after providing some boundary 
conditions fixing the Hilbert space structures. It is convenient to assume that 
x E R and e(x) E L2(R). In general, one can consider (1) without any boundary 
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conditions and take x, A as complex variables x, A E C. 
The Schrödinger operators L, whose discrete spectra are parametrized in terms 

of simple, say, elementary functions, are of particular interest. The correspond-

ing eigenfunctions 0(x) may be quite complicated, especially in the presence of 

the continuous spectrum. Sometimes they are expressed as quadratures of the 
functions entering the potential u(x), but more often they define some transcen-
dental special functions. In the latter case, it is supposed that the key properties 

of these functions, like the asymptotics, are derivable (at least in principle) by 
known means. This class of "exactly solvable potentials is wide enough and, 

actually, does not have sharp bounds. It includes elementary functions potentials 
related in a simple way to the Gauss hypergeometric function 2F1  which were con-
sidered at the early stages of development of quantum mechanics. Development 

of the theory of solitons and integrable systems brought to light new classes of 

such potentials. The most complete theory is built for the finite-gap potentials 
associated with the finite-genus Riemann surfaces formed by the spectral param-

eter. As other examples we mention the potentials whose discrete spectra consist 
of a number of arithmetic or geometric progressions. The latter cases appear from 

q-periodic (self-similar) reductions of the chain of Darboux transformations. A 
partial review of the properties of these systems and relevant literature can be 

found in [7, 12]. One of their characteristic features is that quantum algebras play 

the role of spectrum generating algebras for the corresponding Schrödinger oper-

ators. In the present paper we exploit a relation of these self-simliar potentials to 
the infinite soliton systems and specific 1D Ising spin chains. 

The connection between the Schrödinger equation and the KdV equation is 
well known. Let the potential u = u(x, t) and the wave functions = 0(x, t) in (1) 
depend on some continuous parameter t and let the evolution in t be determined 
by the equation 

q,l)t (x , = B 	, t) , 	B 	—4(9 + 6u(x, t)ax  + 3ux (x, t) , 	(2) 

where the subscript t denotes the partial derivative with respect to t. The com- 
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patibility condition of (1) and (2) has the following operator form 

Lt  = [B, L]. 

For the particular choice of the operators L and B we have taken, it yields the 
KdV equation 

Ut  + uxxs  — 6uu5  = O. 

The single traveling wave (soliton) solution of this equation was known for a long 

time. The inverse scattering method has revealed interesting properties of the 
general N-soliton solution which can be represented in the form 

u(x, t) = 	ln rN  (x,t), 	 (3) 

where rN is the determinant of aNxN matrix C, 

TAT = det C, 
2 \/ki k, 

= 	+ ki + k; e(ui±ui)12, (4) 

Ot  = kt x — kt + 	, 	i,j = 1, 2, ... , N. 

This expression contains a number of free variables k, O0) parametrizing prop-
erties of individual solitons. So, k describes the amplitude of i-th soliton. It is 
related to i-th bound state energy of (1) in a simple way, 	= -q/4. From the 
scattering kinematics it is seen that f9 °)  lk, are the zero time phases of solitons 
and k are their velocities. It is convenient to fix the ordering 0 < k N  < . . . < k1  
for later technical considerations. 

The potentials obtained after a number of Darboux transformations or their 

discrete analogs have the determinant representations [14, 15, 16, 17, 18]. The first 

two references concern the three term recurrence relation for orthogonal polyno-

mials which can be considered as a finite-difference analog of (1). The potentials 
obtained in this way comprise reflectionless potentials with N bound states de-
termining N-soliton systems. 
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The following representation of rig  (4) was widely discussed in the literature 
(see, e.g., [9, 10, 11] and references therein): 

N = E exP  
14=0,1 	1<i<j<N 	i=1 

where the phase shifts Aii  are expressed via ki  in the following way 

A 	(ki  — ki )2 e 	 2.7 -=- 	 
(ki  + ki )2•  (6)  

As observed in [6] the expression (5) defines the grand partition function of 
the lattice gas model for Oi  = 0(0 ) = const. Indeed, a simple comparison with 
[1] shows that pi  are the filling factors of the lattice sites by molecules and 00 ) 
is proportional to the chemical potential. The phase shifts Aii  are interpreted as 
the constants proportional to the interaction energies of i-th and j-th molecules. 

It is not difficult to see that /-N  (5) is related to the partition function of a 1D 
Ising chain: 

zN  = E 
cri=±1 

(7)  

E = E J ao _ E 
1<i<j<N 

where N is the number of spins ui  = +1 and Jii  are the exchange constants 
between i-th and j-th spins. The variables Hi  describe an external magnetic field. 
The notations for the temperature T, the Boltzmann's constant k and the inverse 

temperature ß are standard. In order to see this connection one can introduce 
into (5) spin variables via the substitution pi  = (o-i  + 1)/2. Simple calculations 
yield 

TN = e Z N, = 
 i<j 	j=1 

(8) 

with the following identifications 

fi ji.  = 1 Au 	f3Hi  = 	± 1 \—% 	. 

3 	4 	 2 	4 j  Ld1,i0 j  (9) 
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So, the N-soliton r-function of the KdV equation (5) determines partition function 
of a 1D N-spin Ising chain (8). Since the r-function is defined only up to a 

multiplicative factor exp(ax + b), one may identify TN  with the partition function 

itself (for fixed exchange constants), but we shall not do it. 
A similar relation with Ising chains is valid for the whole Kadomtsev-Petviashvili 

(KP) hierarchy and many other differential and difference nonlinear integrable 

equations. For passing to the corresponding tau-functions it is necessary to change 

simply the phase shifts Aii  and the phases Oi  [9, 10]. In particular, for the KP 

hierarchy one has 
(ai  — a) (b  —  bi ) = ln 	, „ 

- 	o + iRoi  + ai) 3  
00 

O = Or+ E(ar — 
n=1 

where a , bi  are the soliton parameters and xn  are the hierarchy "times" with x1  = 

x, x2  = y, x3  = —4t being the standard (2+1)-coordinates of the KP equation. 
The choice a = b = ki /2 reduces KP to the KdV equation. For the B-type KP 

(BKP) equation the phase shifts and soliton phases are (see, e.g., [13]) 

A 	
(a i  — ai)(bi  —  bi )(a, —  bi )(bi  — ai) 	

(11) ii = ln  

00 

0,= 0?) + E 	bi2n-1\ 

n=1 

i.e. the even "times" are absent. We limit our consideration to the KdV and BKP 

equations only. 

3 The simplest Ising chain induced by the KdV 

equation 

Whether the correspondence established in the previous section helps in the eval-

uation of the partition functions ZN? The answer is positive and in [6] we have 
presented the results of the calculation of ZN at N ---> œ for the KdV and BKP 

(10) 



ZN - 
- kWI2'  

WN det 
2N(N+1)/2 wN  

(12) 
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N-soliton solutions with the specific choice of the soliton parameters. In the KdV 

case we used the Darboux transformations techniques for the Schrödinger equation 
providing the following Wronskian representation of ZN [16]: 

where 

'W2j-1 = cosh BH , --N-2j+2,2j = sinh 

Soliton parameters enter the definition of the magnetic field H3  as it is prescribed 
in (9). 

Before going into the technical details of calculations let us mention that the 

Darboux transformations allow one to make simple spectral surgeries upon a given 
potential — to remove or to add one bound state, or to build another potential 

with the same spectrum. In the context of the theory of solitons this corresponds 
to the addition or removal of a soliton. Within the context of the Ising chains, 

this results in the extension or shortening of the lattice by one site. The thermo-
dynamic limit N —> oo is of the prime interest in statistical mechanics. In order 
to find it one has to be able to work with the infinite-soliton potentials, but the 
description of general TN at N —> oo is a hard problem. Below we are calculating 
only the diverging factor of roo  for a special choice of ki  and 0 °)  which is sufficient 
for the determination of the free energy per site of a large class of Ising chains. 

In this approach, one represents first a given potential ui (x) in the form 

u (  x) = f(x) — f (  x) + A3, 

where 	is a free parameter. Then, under a particular choice of Ai  and fi  (x), the 
Schrödinger operator with the potential 

u3+  (x) = u (  x) + 2 fix  (x) = f 2(x) + f (  x) + 

contains an additional bound state with the eigenvalue Ai  as the lowest discrete 
spectrum point. The problem of searching for solvable potentials is thus equivalent 
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to the search of the simplest possible solutions of the infinite chain of equations 

	

Cf] (x) + f3+1(x))s + f12 (x) f + (  x) = Pj Aj+1 — 	 j e Z, 	(13) 

where both functions fi (x) and Ai are considered as unknown objects. Evidently 
this is an underdetermined problem and there is too much freedom. The con-

straints imposed upon the solutions of (13), namely, the requirement of the pres-

ence of additional symmetries provides a guide in the solution of this problem. A 
wide class of potentials pretending to the title "exactly solvable" is defined by the 

following self-similarity reduction [7] 

f3-4-m(x) = efi(qMx), 	Pj+m = 4
2M 

P 
	

(14) 

imposed upon (13). This anzats is based upon two symmetries of (13) mapping 

the space of its solutions onto itself — the discrete translation j --> j + N and the 
scaling x ----> qx, fi (x) —› q fi (qx), 	---> q2ki . As a result of (14), one arrives at a 
system of N coupled nonlinear differential-q-difference equations whose solutions 

include infinite soliton potentials with discrete spectra composed from a number 

of geometric series. It is convenient to work with the factor qm in (14), then the 
M =1 system satisfies the anzats for arbitrary M without renormalization of q. 

Algebraically, symmetries of these potentials are described by some q-deformed 

algebras, which for M = 1 correspond to a q-harmonic oscillator, for M = 2 one 
gets a system with the suq (1, 1) symmetry algebra, etc. Analytically, one arrives 

at complicated transcendents which include q-analogs of some of the Painlevé 

functions. Let q be a primitive root of unity, qK = 1. Then for odd K and 
some cases of even K one finds the finite-gap potentials with additional (quasi-) 
crystallographic symmetries [12]. 

Consider now the partition function Z N for arbitrary k, and homogeneous 
magnetic field H = H = const. The latter condition corresponds to the rather 

trivial limit of the KdV solutions when all KdV hierarchy "times", including x 

and t, are equal to zero and the constants 61 2°)  take some prescribed values. 
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It is convenient to work with even number of solitons N = 2p. Then the 

Wronskian WN looks as follows 

1 
W2P = 2p(2p-1) 

cosh P H 	sinh PH 	. . . 	cosh OH 	sinh ßH 

k2p  sinh PH k2p_1  cosh pH ... k2  sinh OH 	k1  cosh PH 

g p  cosh PH g p_1  sinh PH . . . 4 cosh PH 	g sinh f3H 

  

k2P-1  sinh ßH k2P- 2p 	 2p-1 COS 1 	h pH . . . k22P-1  sinh PH k21P-1  cosh ßH 

After a simple permutation of rows and columns this determinant can be brought 

to the form 
cosh2P PH az b 

c dz 

where z = tanh ßH and 

WN = 1  ) P 2p(2p-1) (15) 

a= 

/ 1 	1 

g g 

1 	1 
1.2 

p-2 IU2p  

c = 

k  1 

k2p-2 2  

k3  

(U3 

k2  2p-1 

2p-3 k2 

'2p-3 

k2p_3  
1.3 

2p-3 

k  2p-1 
2p-3 

k2  2p-1 

Op-2 / 
'2p-1 / 

k2p-1 

2p-1 

b,2p-1 
'2p-1 / 

,b= 

, d = 

k22p-2 k4 2p— 2 L2p-2 /.2p-2 
'2p-2 '2p 

tU2 (U4 	2p-2 k3 2p 

k2 k4 	k2p-2 k2p 

k22p— 1 k42p-1 	t,2p-1 	, 
'2p-2 	/ 

Expanding the determinant into series over z one derives a compact polynomial 

expression for the partition function ZN. Introducing the products 

F(ti,... ,tic)=1-1(t — tD, 	G(ti,... ,tK) = (Lit s ) 	— tD, 
iíj 	 8=1 	i<; 

one can write 

COSh N 
 PH [N/2] 	[(N+1)/2] 	[NI2] 

W N (z) = 	E(-zy E • ' E 	 (16) 2N(N-1)/2 
t=i3 	<•••<it 
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= F(k1lk3, • • • , k2i, -31  k2i,,k2i1+1, • • • I k2 _, k2j/1 k2i1+15 • • • k2[(N+1)/2]-1), 

= G(k2 , k4 , . . . , k2 ,_2 ,k2 ,_1,k2i1  +21 • • • ) k2i1-2/ k2it  -11  k2ie  +21 • • • k2[A72] ) • 

This representation is actually valid for both even and odd N. The fact that WN 

should depend only on the powers of z2  follows from the obvious parity symmetry 

ZN ( —H) = ZN (H). The polynomial representation is not satisfactory since it is 

difficult to analyze the N —› œ limit. A more effective would be the representation 

of Z N in the product form Z2p  cc Ir i (z2  — 	where zi  are zeros of the partition 

function (evidently they should be complex). 

In order to understand the structure of zi  one should diagonalize matrices a and 

d in (15) by simple multiplication of rows by appropriate factors and subsequent 

subtraction of them from each other in a 'triangulation manner. After some work 

one can derive the following formula 

( -1)P  COSh2P  PH P  
W2p = 	

Hk2a H  (k2
2 
i-1 k22 .1-1) (k22i  _ k22 j)  

2p(2p-1) 
s=1 1<i<j<p 

z/ 
, (17) 

   

where / is the unit matrix and two other p x p matrices a and p have the following 

form 

= ft (k22m _i  _ k2 H (k2
1 
 _ k2 ) 

22 	2 	22 
m.1 	 1=1 
mÉi 

1 

 

(I m  — 2  k 2  j-1 ) 11 (41-1 — k2 	) —1  2j-1 	• (18) 

 

m=1 
mÉi 

 

1=1 
1É.i 

  

Consider the eigenvalue problem for the matrix 

z/ 
D= 

z/ 

where the matrices a and e are not degenerate. The eigenvectors of D, Dili = 

AW, are 

= 
(0e ) , (zol za 1. ) ( 
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It follows from the last equation that 

ce/30 = 	420, Pae (A — z)2 . 	 (19) 

Denote as z? and 0,, i = 1, 	,p, eigenvalues and eigenvectors of the matrix 

Now it is obvious that the vectors (0,, ±(00),/z,)T are eigenvectors of D with the 

eigenvalues z ± z,. Therefore 

det D = 
z/ a 

zI 
= )qA2 • • • A2p = 11(Z2  Z32'). 

j=1 

   

Calculation of the eigenvalues of the matrix aß (18) for arbitrary choice of 

parameters k is a difficult task. In the models considered in [6] and below the 

situation is tremendously simplified in the thermodynamic limit N —› œ due to 

the self-similarity restrictions imposed upon k. 

The crucial observation of our previous work [6] has related the condition of 

translational invariance of the phase shifts Aii  for the KdV equation (or of the 
spin exchange constants 4 of the corresponding infinite Ising chain) to self-similar 

potentials mentioned above. The simplest translational symmetry consists in the 

invariance of system with respect to the shift by the shortest distance between 

the spins j --> j +1 which means that 41,i+i = J. Thus the intensities 4 and, 

so, Aii  depend only on the distance between the sites li — jI, A,i  = A(ii — ji). 

This natural physical condition fixes all k, in terms of k1  and a parameter q in a 
unique way: 

= 	1 , -a = e 2 , Aii  = 21n I tanh a(i — j)1. 	(20) 

The models with bigger periods of translational invariance M> 1, when ./,+m,i+m  = 
will be considered in the next section. 

From the ordering of ks we have chosen, it follows that a > 0. Strictly 

speaking there is no translational invariance due to the boundary effects since 
1 < j < N. An infinite chain emerges in the thermodynamic limit N —› oc. 
In this case one gets an infinite soliton potential with the discrete spectrum 
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= —1qq2)/ 4. All other variables of the solutions of hierarchies of integrable 

equations (the coordinate x and higher "times" x7i ) are interpreted as parameters 

of the magnetic field H. Since q  ---> 0 for j 	co, the x, t,. . . dependent part of H, 

is decaying exponentially fast from the j = 1 edge of the lattice. Therefore their 

influence upon the partition function is negligible in the thermodynamic limit, 

i.e. only the constants e)  are relevant. Below we are considering the partition 

function for the homogeneous or M-periodic magnetic fields, Hi±m  =H. 

The KdV equation generates only an antiferromagnetic Ising chain. Indeed, 

one has 0 < tanh a(i — j)I < 1 and Jii  = —A/4 > 0. Physically, the exchange 

between spins we have obtained is more natural than the nearest-neighbor one 

— it has the long distance character but the intensity falls off exponentially fast. 

The phase transition takes place in such systems only at the zero temperature. 

In the interesting limit 	0 or q --> 1 the constants A,i  oc Jii  I kT are 

diverging. In order to have finite energy of interaction of a single spin with other 

ones, it is necessary to renormalize the constants Jri" = 	— q) and the 

temperature kT„,„ = kT(q-1  — q). Then the summation of 4" over j is finite for 

q —> 1. As a result, in the limit q —> 1 one actually gets the long range nonlocal 

interaction model with low effective temperature. Let us remark that in order to 

imitate the change of the temperature one should renormalize simultaneously the 

magnetic field H = Hren I (q-1  — q). 

Due to the specific choice of the renormalization factor q-1  — q, the limit q —> 0 

gives Jir a 52:+1  Evidently, for finite Hr" one gets the high temperature nearest 

neighbor interaction model. If H is kept finite then the q —> 0 limit describes the 

non-interacting spins. Thus our formalism does not provide full description of 

the partition function. It captures only the behavior of the system in a two-
dimensional subspace of the variables (T, H, q). Since for fixed q the temperature 

is fixed as well, we normalize the "KdV temperature" to 0-1= kT = 1. 

Tt is not possible to recover potentials uniquely from their spectrum. For 

example, in order to fix the reflectionless potential it is necessary to specify the 
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variables ki and the phases OP). Self-similar potentials defined by the reduction 

(14) correspond to the case when the scaling of x and t by qm and em respectively 

deletes M solitons. This means that Oi(qm  x, 	t) = Oi+m(x,t), which in turn 

imposes the constraints ki±m = qm 	G,L°)  m  = O0). The same constraints are 

derived from the spin chain periodicity condition Ji+m,i+m  = J. For M = 1 one 

has homogeneous phases e)  = O(0 ) const. 
Substituting (20) into (17) we get the following expression for the partition 

function, 
221 JiÎ (q4 ; q4 )î cosh2P ßH 

g) 
z/ 	a 

z/ 
Z2p  = Hi2=p71(q2; q2)i1/2 	( 

where 
kiq-1 	 (42; ei (q2; q4)p-i 	i,j = 1, 2,...,p, ai3  = 1  _ q4j-4i+2 (q4;  q4)i_ i  (q4; q4)p_i  

k-1 	(q2; 	 (q2; 

A = 	1  
.7 	1 	.2.4i-4j+2 (q4; q4)i_ I  (q4 ; q4)p_ i  

and the standard notation for the q-shifted factorial (a; q)„ is 

(a; q)0  = 1, 	(a; q)„ = (1 — a)(1 — aq) • • • (1 — aqn-1 ). 

Let us fix another numeration of the indices of the matrices. Assuming that p 
is even (for simplicity), we can shift j —› j + p/2 and write 

k q-i 	( 172 ; 4)p/2+i  (q. 2; q4 )p/2  i  
	 , 	 + 1 = 	 2, 1  _ q4i-4i+2 (q4; q4)p/2+i-1  (q4 q4)p/2_i 	= —p/2 	, ... ,p/ 

with a similar change of indices for 	Now we take the thermodynamic limit 
p —› oo and get 

(21)  

(22)  

(23)  

j E Z, = _ q4j-4i+2 = 1 	q4i-4j+2 
-ykiq-1  

where 
(q, 2; (14)200  

= (0; 	q4M0  

The indices i and j keep finite values in this limiting procedure, i.e. we consider 

"the middle part" of the infinite spin chain. Note that the magnetic field cor-
responding to the 0, 0)  = const choice is not homogeneous for x = t = 0, since 
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the shifts in (9) depend on i. However, in the thermodynamic limit N —> œ the 

difference is negligible and the magnetic field differs from O(') /2 only by a finite 

constant 
ßH i  = —1  9(3 ) +ln  (q;q)c° (24) 

2 	 q)c,c' 
where the index i is assumed to lie in "the middle part" of the chain. 

As a consequence of the spectral self-similarity hidden in the problem, the 

matrix elements aii, ßjj  depend only on the differences i — j, i.e. we get the 

Toeplitz matrices: aii  = a(i — j), ßjj = 0(i — j). It is known that such matrices 

are digonalized by the discrete Fourier transformation [19]. 

For a given K x K matrix 0„,, the discrete Fourier transformation is defined 

as follows 
1 
	—1 

1 9 	—K m,n=0 

ei ( grz-v m) onm,  

27rv' 
K 	K 	p', = 0, 1, . , K —1. 

 
For the Toeplitz matrix one has 

, K-1 	 K-1 	K 
P fiv = E ei(Pn--),* — m) =— 

K m,n=0 	 K nr=0 
E  eß(s)  P(P)) K —>co 

where õ, = 1 ifp = v and zero otherwise. The density function p(v) is determined 

by the following bilateral series 

CO 

p(v) 	eisvo(8).  

The matrix 0(n — m) becomes thus diagonal in the K —> 	limit after a simple 

Fourier transformation. Because of this property the equations (19) are diagonal-
ized too and yield z2(v) = q-11p(v)I 2, where ip(v)12  is the diagonal part of the 
Fourier transform of the p x p (i.e. K = p) matrix qa0 and z(v) are continu-
ous analogs of the partition function zeros z. We write Ip12  because the density 
functions of the matrices qalki  and k1 ß are conjugated to one another. 



ln Z2p 1n(z,2 - z2). 
i=1 

CO zn 
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Before taking the limit p -› oo , the logarithm of the partition function is 

represented as a finite sum over eigenvalues zi , 

In the limit p ----> oo the step A -= 27r/p of the variable v characterizing the 

"distance" between eigenvalues goes to zero. Therefore the sum over the index i 

should be replaced by an integral over the varibale v = 27ri/p, 

i=1 

27r 
ln 	- z2) 	—P 	ln (q-1-1p(v)I2  - Z2) cly. 

p->00 27r j0  

As a result, after tracing the normalization factors, we obtain 

(-q)P 
zi 

zI 

n 	27r 
= exp 	dvin(ip(v)12  - q tanh2  OH)] 

1,->co 	27r Jo 

    

where the density function p(v) is 

e ek 	we;q4).( q2 e-iv+E ;  q 4)00  
P(V) = E  	 (25) _ q4k+2 	(e; 	0)00  (q4e-iv±e; q4)00  

Here the dumping factor depending on a small parameter e > 0 was introduced 

in order to guarantee the absolute convergency of the infinite sum. 

The formula (25) was obtained with the help of the b1  Ramanujan's bilateral 

basic hypergeometric series sum [22]: 

(a;  q)„ 	_ (q, b I a, az, q I az;  q)„, 
L-w 	(h; q) ,, z 	(b,q1a, z, b/ az; q)„ 

where the compact notations 

(ai , a2 , 	, an; q)03 = (ai; 4)00(a2; q)c,c • • • (a.; 000 

are used. Setting b = qa, one finds the formula 

k=-oo 

(q, q, az, q I az;  q),„ 
(a, q/ a, z, q I z;q)„,' 
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which is repeatedly used in our considerations. 
Now we can remove the regularization, i.e. take the limit E 	0 in (25). It is 

seen that in this limit p(v) becomes singular only near the points v = 0, 27. But 
these singularities are integrable and, so, harmless. 

Gathering all together we get Z2p  --> exp(-2p0 f where the free energy per 

site jei  has the form 

2(q4; 0)00  cosh OH 	1 	2' - f (q, H) = ln 	 + -1 du ln( ip(012  - q tanh2  PH), (26) (q2; q2)1,1.- 	47r 0  

Ip(012 	(q2eiv; q4)200  (q2e—iv;  q4)200 	1 	(v/2,  q2)  
(q4eiv; 	q4)L(q4e-iv;  q4);39 4 sin2(v/2) 	(v/2, q2) • 

Here 01,4 (y, q) are the standard Jacobi theta-functions of the argument y and base 

q (our base is q2) 

00 

04(v, q2) = 1 ± 2 E(-1)ne2 cos(2nv) 

= (q4; q 4)00  (q2e2iv;  q4)00(q2e-2iv; q4)00 , 

and 
00 

01(P, q2 ) = 	)n 2(n+1/2)2 sin((2n + 1)v) 
n=0 

= 2q1/2 sin v (q4; q4).(q4e2iv; q4).(q4e-2iv; q4)00. 

The relations between the series and product representations of elliptic functions 

are called the triple product Jacobi identities [22]. 

From the polynomial representation (16) it is easy to find the partition function 
ZN at zero magnetic field: 

2p 	 p-1 
Z2p±1 = 22 (q4; q4) p  ll(q2; (12)11/2  H(q4 ;  q4)î ,  (27)  

j=1 E-=-1 

2p-1 P-1 
Z2p  .= 22P n 

	

2 	2 \) —1/2 TT 	4 

	

; 	3. 	11(q 
4 \ 2 
)j• (28)  

j=-1 	 t=1 



27r 

J .o 
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Therefore for N oo one has 

(qr 2; q2 )1/02  • 

Comparing with the H O derivation we see that the following identity should 

take place 

dv lnlp(v)I2  = 0, 	 (29) 

which can be easily proved. First, one has to split the interval of integration into 

half. Then, shift the variable v —› v + 7r in the integral over the interval [71-, 27]. 

This will change sin(v/2) into cos(v/2) and é into 	Adding two integrals 

together one gets the integral equal to 1/2 of the initial one with q replaced by q2. 

One may iterate this procedure to infinity and see that the limit is equal to zero. 

Taking the derivative of fi(H) with respect to the magnetic field we find the 

total magnetization of the lattice: 
2p 

M(H) = — pH = liM — 
p -*oc 2p i=1  

0?(v,q2 )clu 
7r fo

ir 

 Oî(v, q2) cosh2  ,81-1 — 0?(v, q2) sinh2  fiH) • 

	

= tanh )6' H (1 — 	 (30) 

In order to imitate the change of the temperature, we substitute PH = (q-1  —q) 

into this formula and plot m(h) in Fig. 1 by the dashed lines for q = 0.1 (the 

lower curve) and q = 0.8 (the upper one). The curves have a simple shape whose 

qualitative properties are predicted by the general considerations of 1D systems 

with the fast decaying interaction. 

One can check that the magnetic susceptibility for H -= 0 derived with the help 

of two different formulae (16) and (26) coincide with each other. For instance, 

one can differentiate (30) with respect to H and set H = 0: 

	

X(II = 0) = 	 = 0) = i — 	 f' 9î(v, q2 )  du  
jo  024 (v, q2) 

Converting the ratio of 0-functions into the series form via the Ramanujan 

2(q4 ; q4 )00  
f = ln 

series, taking its square and calculating the integral over the emerging double 



p-1 	 p—l—k 	M-1 
= 	eim(p-ok E e 	E  i,m, 	a  mms+1,1,  Mp k=0 	 .9=—k 	1,1=O 

= e5pvP(P) p—> oc 
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series termwise, we get 
(q2; 	

cc 
q4)4 	 4n  

X(H = 0) = 1 2q  (0; q4)L 71_0 (1 q4n+2)2 • 

This series can be expressed in terms of the Jacobi elliptic functions. 

4 The M-periodic Ising chains 

Let us consider now the M-periodic Ising chains which have the translational 

invariance with respect to the shifts by M sites. Such a chain consists of M 

embedded sublattices, or, in other words, of the periodic blocks of M spins with 

different distances between them. Another interpretation refers to ferrimagnetics, 

when the distances between the lattice points are equal but one has different mag-

netic moments at sites. For any interpretation the exchange constants between the 

neighboring M spins are given by arbitrary numbers decreasing with the distance 

between sites. These physical conditions generate the constraints Ji+m,i+m = Jzi, 

which, in turn, demand that the soliton parameters satisfy the simple condition 

ki±m  = qmki  (here we take M-th power of q just for convenience). As was men-

tioned already, for «+())/i,/  = (e)  one arrives at the general self-similar infinite soliton 

potentials (14). In the thermodynamic limit this condition is equivalent to the 

periodicity of the magnetic field Hi+m  = H which we assume from now on. 

Calculation of Z N for the M > 1 self-similar potentials is simplified after 

setting N = 2Mp and taking the p —› oc limit. Indeed, the Fourier transformation 
of a given K x K,K = Mp, matrix /3i+m,i+m  = 3jj is diagonal again in the limit 

p —› co. In order to see this it is necessary to split the matrix indices n = 
Mk +l,k = 0, 	,p — 1, l = 0, 	, M —1 in the calculation of the transformation: 

—1 	 p-1 M-1 
e pve)i( ±pl-vii) p„ = 1 —K 	ei n-em) /37,m, = —1— 	 iM(k- 	

PM(k—ki)+1,1' Mp n,rn=0 	 ,W=0 1,11=0 



where 
1 " E s=_.. 

M-1 

mms+1,1,  • (31) 
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As an example, for M = 2 one gets 

" p(,), = _ E  e2i,k V( 2k,0 	02k,1 	+ 02k+1,0eiv 	02k+1,1) • 
I 	2 

It is not easy to apply the formula (31) to calculation of the partition func-
tion of M-periodic Ising chains in the Wronskian representation. The condition 

Hi+3,f  = H calls for a complicated split of the determinant into aMx M block 

structure responsible for the M-periodicity of the system. In this respect, the 

gramian form of the KdV r-function is much more convenient. 

After some heuristic analysis of the gramian representation of the p-soliton 

solution of the KP equation we have obtained the following compact form of WN 
for even number of solitons, N = 2p: 

W2p (cosh ßH1,. , sinh OH-2p) = 
(_ i)p(p-1)/2 	P 

22P2 	
_ k

)
22i  \ det D, 

i=l 	j=1. 
(33) 

where the p x p matrix D has the form 

= 
cosh ra(L-{2i_ i  + H2i) cosh  )3(H2i_i —  H2) 

D y.7 	 1 ± k2j/k2i_ i 	1 — h23/ k2i_ i  

Indeed, the KP p-soliton 7-function has the following determinant representation 

[23, 13] 

= det D, Di j  = Cii 	95i (xn)ej  (xn)dxi 	i,j= 1,2...,p, 

where 0i, (b are functions of x1  = x, x2  = y,...satisfying the following auxiliary 
differential equations 

açbi 	an çbi  
axn  ax- 

açb,  = 	ir-i ari 95  
axn 	 axn I 

(32) 
k= —co 
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and Cii  are some constants. The space of permitted functions 	is quite large. 

The following non-trivial choice 

= sinh ,8H2 _,, 	= cosh ßH2 , 	Cii = 0, 

where ,61/i  = (92(°) + (ai  +bi)x)/2+.. . with the subsequent reduction ai  = b = ki/2 

appears to determine the 2p-soliton solution of the KdV equation. So, T;CP  CX 

WedV  with the proportionality constant determined from the analysis of the lead-

ing H = H oc terms in (33). 

In the thermodynamical limit one can apply the formula (31) to (33) di-

rectly (without the auxiliary block diagonalizations) after imposing the constraints 

ki+m = qmki, Hi+m- = H. Actually, for M = 2 one gets the determinant of a 

Toeplitz matrix without the use of the formula (32). This is easily seen after the 

substitution of the relations 

k2i-1= klq 	k2i k2q2(i-1) , H2i-1= H1, H2i = H2, 

which gives 

Z2p  = 22P det 	(2q4, q4)i_i 	
Z-1 

i=1 

cosh 01/1  cosh 	rq2(i-i) sinh ßH1  sinh ßH2  11) = 	 5 1 - T'YU 
where we have denoted 

r = k2/k1, 	q2 < r <1. 

The Fourier transformation diagonalizes the matrix D-  in the limit p 	oc and 

allows us to find its determinant. Using the regularization procedure described 

earlier and applying the 101  summation formula, we find the free energy per site 

= ln 	
2(q 4;  q4 W02 	

1 f 27T 
&Jin ip(v)1, (7,2 ,  0/7,2; q4)10/2 ±  47r jo  

where 

P 	(r2  q4 112  (q4 /7.2 (1,4) 1/2  

(34) 

(r2z, q4r-2z-1, q2z,  q2z-1; q4)œ 
P(1)) =; 614 )00  cosh ßH1  cosh 0112  (r2q2z, 	 z ,  q4z-1 
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—r sinh ßH1  sinh [3-F12, 	z = e 11. 	 (35) 

In the derivation of this formula some identities similar to (29) have been used. 

It can be seen that for k2  = qk i , Hl  = H2 = H the derived result coincides 

with the one for M = 1 system (26). We get thus one more independent test of 

the expression for the free energy per site for the KdV equation case. 

Let us put k2  = k i q, take the derivative of ln Z2p  with respect to HI , and set 

= H2 = H. This gives the odd index sublattice magnetization 

1 I)  
77/ (H) = — 23H, fi (Hi, H2)1,i_H _ = Lim - 2 p_>00 

i=1 
in the simplest M = 1 model. From the derived form of the free energy per site 

it is clearly seen that mi  (H) = m(H), i.e. there is no sublattice magnetization 

for H —› 0. This means that the system is above the critical temperature and 

there is no long-range ordering for sublattices. Actually, for ki  = k1qi-1  the 

density function p(v) of arbitrary M-periodic system is analytic in H1, 	, H M  

and invariant with respect to the permutation of these variables. This means that 

the magnetization of any periodic spin sublattice of the M = 1 chain is equivalent 

to the total magnetization. 

5 Ising chains induced by the BKP tau-function 

A drawback of the construction described in the previous sections is that the 

partition function associated with the KdV-equation has a fixed temperature for 
fixed q. For a more complete description of thermodynamical quantities one may 

try to replace (20) by Aii  = 2n lnItanh a(i — j)1, where n is a positive integer 
playing the role of the inverse temperature, ß = n. The KdV case is normalized 

to n = 1, for n > 1 it is necessary to renormalize the magnetic field Hi  —> rtH 
for imitation of the temperature lowering. If there are integrable models with the 

phase shifts of the following form 
A 	(ki  — k i )2n 

e '-1 =  	 (36) (ki  + ki)2n 
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for some infinite sequence of integers n, then one may hope to recover the parti-
tion function for arbitrary variations of the inverse temperature e by an analytic 

continuation. 

Our attempts to find integrable equations with such phase shifts succeeded 
only partially. Namely, one example was found [6] for n = 2 corresponding to the 
reduced form of the N-soliton solution of the BKP equation. The canonical form 
of the BKP equation is [13] 

Ox 
0 ( Ou 9 

ox5 	
5 

Ox3Ozî. 
03  U 85u 

— 	+ au-- + ou (— —a— = 
Ou au 
5x3  3x1 	

OU 03  U „ 021 ) 3) r, a2u 
axl m 	az, 	a4 0. 

(37)  
The unconstrained tau-function of this integrable equation (or of the whole BKP 

hierarchy) is related to the partition function of the essentially more general Ising 
chain than we have considered in the previous sections. The general exchange 
constants have now the following form 

Jii  = —
A 

 1 i. 	eAu  = ( ai — a.) (b  —  b) (a  — bi )(bi  — ai) 
4 	3 ' 	(ai  + a) (b + bi ) (a, + bi )(bi  + ai) 

with the energy and the partition function given by (7). For a, = bi  = ki /2 these 
are reduced to (36) for Tb = 2. 

It is known that the N-soliton tau-function of the BKP hierarchy can be 

expresed through the pfaffian of 2N x 2N antisymmetric matrix D, with the 
matrix elements [13] 

f 	al;  = Cii  + 	f 
Oxi 3  0x1 , ) 

where Cii  are some constants and the functions f depend only on odd hierarchy 
"times" x2ni_1  and satisfy the following auxiliary linear equations 

a2m_ifi  

ax2m_1 ax2m_l 

One particular choice of fi  was taken in [13], and a simple example of building 

2-soliton solution was described via the pfaffian of a 4 x 4 matrix. 

(38)  
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However, for an even number of solitons N = 2p it is possible to simplify 

the situation and get a "folded" determinant representation when the 2p soliton 

solution of the BKP equation comes from the pfaffian of a 2p x 2p matrix. Indeed, 

if we take Cii  = 0 and set 

= gi exp (hi  + bixi  + qx3 	.) + gi  1  exp (-hi  - aixi  - a,x3  - .) 

then the auxiliary linear equations are satisfied. Integrating over x1  and setting 

all Xm  equal to zero, we get the needed determinant formula for the tau-function. 

As a result, after establishing the correspondence between 2p-soliton tau-

function and the partition function of the Ising chain of 2p spins with the exchange 

constants given by (38) and the magnetic field ßH 	hi , one finds 

(ai  - ai)(bi  - bi)(ai + bi )(bi + ai ) 	114 	 
Z2p  = 

	

	 Vldet G, 	(39) 
(ai  + ai ) (bi  + bi ) (ai  - bi )(bi  - ai ) 

1<i<j<2p 

where 
+ po(Hz-113) bi  - bi  „au-12+113) gigi 	 = 	bi- 

-  e0(-11-113), + bi  e0(-11 +11-') 	ai  + ai 
_1  

+gi g3 - 	 +  

1/4 
(2P 

-1-r (ai - ai )(bi  + bi )(bi  - ai ) (ai  +  bi ) 
(ai  + ai )(bi  - bi )(bi  + ai ) (ai  - bi)) 	

(40) gi =  

j), yields the following spectral self-similarity constraints 

= 	bi  = 	q = e-2a, 	 (41) 

where for simplicity we normalize a1  = 1 and assume that a > 0. This gives the 

following form of the exchange constants 

1 	tanh2  a(i - j)  - (b- 1)2  / (b +  1)2  
= 	4 	coth2  ce(i - j) - (b- 1)2  / (b + 1)2. 

and 

J=1 
ii 

The condition of simple translational invariance of the spin lattice, J = J(i - 
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Because of the b —> 	symmetry we restrict complex values of b to the unit disk 

< 1. Now it is seen that for 

—1 < b < —q 

one has the ferromagnetic interaction, J < 0, which was not possible in the KdV 
case. For two other regions 

q < b < 1 	and 	b = , 	7r, 

one has the antiferromagnetic interaction, Ji.;  > O. For other choices of b 	—1 

one gets unphysical complex exchange constants J which we are not interested 
in. 

	

For physical values of b, the thermodynamic limit p 	leads to the simpli- 

fication, gi  ---> 1, so that 

(—q, —q bq q I b• q) p12 	 
Z2 p  = 	" 	c°  \Met G, 	 (42) 

(q, q, —bq, — q b; 012 

where the matrix G has the following form 

Gii = 2 	cosh ,3(H, + H) + b + 	 )3(H_H ) 1 
± 	 e11 + bq-,-EHi ) .  (43) 

Taking the Fourier transformation and applying the Ramanujan “b1  sum, one 
finds the free energy per site for the homogeneous magnetic field Hi  = H in the 
following form 

1 	q,bq, q lb; q),,, 
— f (H) = 4 ln 

 (—q, —q, —bq, —q/b; q)00
+ —

4
17r  f 21r o  d/I111 p(v)1, 

where 

g;  q) 	((b-  é  v , qbe-w ; q)00 	(beiv 	e-21' ; 
p (v) = cosh 22 ßH+ . 	2 + 	  _qe;  000 	(b-1 , qb; q). 	(b, qb-1 ; q)co 	y 

(44)  

Taking the derivative with respect to H we find the magnetization 

m(H) = tanh 21311 (1 — —1  17 	dv  
0  1 + d(v) cosh 2, @H) 

(45)  



where 
d(v) = 

(—q; q),02Im 	— (i/2) ln b, q112 ) 

for q < b < 1, 

d(v) 
(qb, q b; q),,„(1b12 	2)02 ( v q112) 

= 
(—q; q)L2Re 02 (y — (i/2) ln b , q112 ) 

for —1 < b < —q, and 

d(v) (qei0  , qe-10 ; q),02 sin(q5/2) 02  (Y, q1/2) = 
(--q; q)«, [01(v + 0/2, q i/2 )  _ 01(, _ 0/2, q1/2)] 

for b = ei ç b  . In these formulae another Jacobi 0-function 02(y, q1/2 ) is appearing 
00 

02 (v, q1/2) = 2 Eq(n+1,2)2,2 cos (2n + 1)y 
n=0 

= 2q118  cos y (q; q)00(—qe2iv; q)00( _qe-2iv ;  000.  

In the limit b —> 1 we find partition function of the M = 1 Ising chain inspired 
by the KdV-equation for another value of the discrete temperature )3 = n = 2 (it 
is necessary to renormalize magnetic field H —> 2H for this interpretation) 
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(qb, q lb; q)00(b-112 	b112)02(v, q112) 

-ßf 1(H) =
0 
 dv ln 2 

27  
(4; 0200 	 0,01(y, q1/2 ) 

cosh 4[3H + 	 
( — g; ec, 	 02(v, q112 ) 

(46) 

   

where a, is the derivative with respect to v. This gives the magnetization formula 

(—q; q)LavOi(v, 0/2) 

) (q; q)L02 (v,  q1/2) cosh 4,3H  -1) 
m(H) = tanh 4i3H 	— f ir  dv + 	 , (47) 

7r 0  

which was derived in [6] with the help of a slightly different procedure. For q —> 0 
one has m(H) = tanh 2H I kT 

We substitute into (47) PH = hl (q — q) and plot m(h) in Fig. 1 by the 
solid lines for q = 0.1 (the lower curve) and q = 0.8 (the upper one). From 
the comparison of curves one can see that for lower temperatures (i.e. for the 
higher values of n or q) the magnetization m(h) becomes steeper. According the 
arguments of [21] a staircase-like fractal function may emerge in the q —> 1 limit. 



84 

Some steps towards its formation can be traced for Ising antiferromagnets with 

nonzero interactions between few neighboring spins. 

Let us illustrate the influence of the parameter b upon the magnetization shape 

for the general BKP case. For this we substitute 	= 2h1(q-1 -q) into (45) and 

plot in Fig. 2 dependence of ri-7(h) on h for q = 0.5 and the following three choices 

of the parameter h: 1) b = 0.8 (the solid curve), 2) b = -0.8 (the dashed curve), 

3) b = i (the dash-dotted curve). The only qualitative difference between them 

is that for the ferromagnetic interaction the magnetization values are higher than 

in the antiferromagnetic cases, other differences being inessential at the taken 

temperature. 

In the parametrization B = -e-2'n the exchange constants have the form 

)3J(j) = 	ln tanh aji+ ln tanh a(j +71)1+ ln tanh a(j - 

Real values of 77 correspond to the ferromagnetic interaction, for the purely imag-

inary choice r, = ii771 we get the antiferromagnetic chain. For 77 -› 0 and fixed a, 

one finds an Ising model with the interaction 
2 2 

0J(i) = a:  i 	
1 

cosh2  oéj sinh2  aj 

with high values of the effective temperature a 17/12. Let us remark that in a 

similar limit of the Ising model associated with the KP equation one has J(j) a 

1/ sinh2  aj. 
An interesting model emerges in the limit a -› 0, 77 finite, since the exchange 

constants acquire the Calogero type behavior J(j) cc 1/j2  as j 	oo. Indeed, in 

this limit one has 

1 
= -4

1n (1 - ( 71)
2
) 

n2  
— 	< 0 

j—>oo 432 (48) 

for real 7), and 

0J(j) = ln + (12) 	— 17/12 > 0 4 	 i.400 
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for imaginary q. The rational limit of our chain describes thus the Kondo model 

for the effective temperature T cc 1/17/12  since the Ising chains with the asymp-

totic inverse square interaction correspond to this system [20]. The range of the 

parameter 772  is restricted in the ferromagnetic case to 772  < 1 (this corresponds to 

—1 < b < —q), then the argument of the logarithm in (48) is positive. However, 

the a --> 0 limit in (44) is delicate since the original bilateral series form of the 

density function p(v) diverges which interferes with our regularization procedure. 

Considering the spin chain as consisting of two sublattices (we suppose that 

in the ground state of the antiferromagnetic phase spins are aligned in the Neel 

order), one can choose the sublattice magnetization as the order parameter. This 

definition of the order parameter also fits the ferromagnetic case, since the mean 

magnetization of sublattice coincides with the total one. Using the pfaffian rep-

resentation (39) one can find the partition function for arbitrary M-periodic 

chains determined by the conditions Ji+m j+m  = J or, equivalently, ai±m  = 

qmai, bi+m  = qmbi . However, the arguments similar to the ones presented in the 

previous section show that for q < 1 the system is above the critical temperature 

and all sublattice magnetizations do not differ (in the proper normalizations) from 

the total one. 

6 On the discrete temperature ren.ormalization. 

In this section we discuss possibilities to connect the M-periodic chains for fixed 

temperature T to the M = 1 chain at the lower temperature Th12 , where 0 < 

< M. 

Consider an Ising chain with Mp spins. Let the exchange constants satisfy the 

constraints Ji+m,i+m  = J and the magnetic field be homogeneous, H = H = 
const. Then the energy function can be split into three parts 

Mp 	 Mp 	p-1 1 E==—E Jijo-io-i  _ HEcii ,EEk  2 i,j=i 	 j=1 	k=0 



p-1 M 1 
+-2 E E 	 - H 

kek,  

where Ek is the energy of interaction of spins in the k-th block 

Ek = -
2 1,11 =1 

J1110.Mk-FlaMk+I' 

and the second term describes the interblock interations. In the representation of 

Ek we used the translational invariance of Jii. 

Suppose now that the interaction within the blocks is much stronger than 

between the blocks 

l Jijl -> 00, 	 j = 1, „ k O. 

For instance, in the BKP case such a situation is achieved if the parameters 

al  g-,a1 ,b1 	b j  for 1,1 = 1,. . , M and qm  is not close to 1. Then, the exchange 

constants for spins of two different blocks are approximately equal to each other 

JIVIk+1,Mle+1' 	J-Mk,Mki • Moreover, the internal interaction energies of blocks 

diverge so that the dominant contribution into the partition function is given by 

the ground states of the blocks. Clearly the ground states of different blocks may 

differ from each other only by the inversion of all spins in these blocks, which 

means that the block energies Ek coincide, Ek = E0. As a result, the following 

approximate representation of the partition function takes place 

Zivip  = e-n3E0 
	

CSÉ  
ground states 

of blocks 

where 
p-1 

	

É = —2 E JMk,Mk'E 0-Mk+1 E 	_ H 
k,k,=1 	 1=1 	1 ,=1 
k#ki 

Let us denote 

p-1 M 

k-=0 1=1 
aMk+1. 

E aMk+1 =  Pakeff 	aeff  = ±1. 
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p-1 M 

E aMk+1, 
	(49) 

k=0 1=1 

1=1 



87 

In the ground state of ferromagnets all spins are aligned so that p = M. For 

antiferromagnets the situation is more complicated. For weak magnetic fields the 

second term in Eeff  does not influence the structure of ground state and one can 

expect that p = 0 for even M and p = 1 for odd M due to the Neel ordering 

of spins. For large magnetic fields, when H is of the order of magnitute of the 

exchange constants for spins inside the blocks, the ground states become nontrivial 

[21]. Therefore, varions choices 0 < p < M are possible for antiferromagnets. 

Thus, the heuristic considerations given above suggest that 

ff ,  Zmp = 	E e e 
alff —±i 

P-1  

Ee f f E J ( g( k _ ki ))0-keffakeff _ Li E  kef f 

k<k' 	 P 1c=-0 

where J (M (k — le)) = J.Ailk,Mki are the exchange constants of the simplest M = 1 

translationally invariant spin chain. In the thermodynamic limit this relation 

connects the free energy per site of the M-periodic chains, M > 1, to the one 

of the M = 1 case for renormalized discrete temperature T/p2  and renormalized 

magnetic field H/p,: 

(qm  ,T, H) — E0  —› f;1)  (qm  ,T , H I p), 

where we assume that p e O. 

Unfortunately, this trick with the renormalization of the discrete temperature 

does not work for our Ising chains in its simplest realizations. The first problem 

appears from the fact that if for some fixed i and j one takes the limit k --> ki  

in the KdV case or ai  --> ai  (or bi  —> bi ) for the BKP equation, then Ji3  —> +oo, 

i.e. at short distances the interactions are repulsive (antiferromagnetic). This 

orders the neighboring spins in the opposite directions so that p is small. If 
one puts 	 in the BKP case and keeps ai  as free parameters, then 

—> —oo and the spins are parallel. However, in this situation the condition 

Jltilk+1,Mki +1 	JIVIk,Mk ,  for k k' is not satisfied and the effective renormalization 

of the interaction constants by the M2  factor does not take place. 
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7 Connections with the random matrix theory 

Let us recall briefly some basic notions from the theory of random matrices. The 

random matrix method was first employed in the study of complex systems with 

a large number of degrees of freedom. As a consequence of complexity, the den-

sity of levels is high enough for sufficiently high excitation energies and can be 

described statistically. Since one is interested in the discrete part of the spec-

trum, the hamiltonian may be approximately reduced to a matrix form. Because 

interactions in such systems are complicated, entries of the hamiltonian matrix 

are unknown. The basic hyphothesis by Wigner and Dyson was that statistical 

characteristics of such systems can be described by averaging over ensembles of 

random matrices, provided the probability distributions are invariant under basic 

symmetry transformations such as parity, rotation and time-reversal transforma-

tions. 

Historically, the Gaussian (or linear) ensembles were considered first [24]. It 

was found that if H is a real symmetric, Hermitian or self-dual Hermitian ran-

dom matrix with the statistically independent elements Hik, then the probability 

density P(H) of the matrix elements to lie in a unit volume is proportional to 

exp (—a tr H2  b tr H + , 

and the measure is invariant under orthogonal, unitary or symplectic transfor-

mations. The statistical independence of hamiltonian entries is a rather artificial 

hyphotesis. If one abandons this requirement restricting the freedom too strongly, 

then the invariant probability density of linear ensembles is 

eQ (tr H) 	 (50) 

where Q is a polynomial of degree higher than 2. 

In order to overcome some drawbacks of the noncompact Gaussian ensembles, 

Dyson suggested (circular) ensembles of unitary random matrices with the eigen-

values 61j,  such that the local distribution of the phases gbi  is isomorphic to the 
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distribution of eigenvalues of the hamiltonian. The condition of invariance of the 

measure under all unitary authomorphisms defines uniquely the probability den-

sity. For example, let S be anxn unitary matrix with the eigenvalues ei  = e i , 

j = 1,. . . , n. Then there exists a unique (up to a normalization factor) measure 

which is invariant under the transformations 

S —> USW, 	 (51) 

where U, W are arbitrary unitary matrices [24]. 

An arbitrary unitary matrix S can be represented in the following form 

S = U-1EU, 	 (52) 

where the matrix E is diagonal with the diagonal elements equal to ei  and U is 

a unitary matrix. In this representation, the probability measure invariant under 

the transformation (51) is 

SZ (dS) = H j - í2 dOi  dO„w(dU). 	 (53) 

Since U does not depend on ej, the part of the measure related to U, w(dU) can 

be integrated out and the eigenvalue distribution becomes 

Pc/Oi 	dOn, oc 11 — ei  12d0i 	dçbn . 

The hypothesis of equal probability for transformed matrices (51) reflects to-

tal ignorance of all details of interactions, except of the symmetries of S. This 

is not completely justified and can be weakened to the condition of equal proba-

bility under general unitary transformations, but not under arbitrary left or right 

translations which are allowed in (51). In this case, the invariant measure is not 

uniquely defined 

,u,(dS) = F(S)52(dS), 	 (54) 

where the weight function F(S) is invariant with respect to (52), i.e. it depends 

only on the eigenvalues of S. After integrating out of the w(dU) part of the 



(56) -27 Z = e . 

90 

measure, the eigenvalue distribution becomes 

clOn  = f (01 , 	, On ) H ei  — ei l 2d01  
ij 

where the function f is symmetric under permutation of its arguments. 

One of such ensembles has been considered by Gaudin long time ago [8]. In 

his model 

F(S) = det i — zA(S)1-1  = H(1 — zeiek-1)-1, 

where A(S) is a n2  x n2  matrix of ajoint representation of the Lie algebra Gn  

generating the group of unitary matrices Un. For a fixed S E Un  one has 

A(S) : x S x S-1  , 	x G G, 

and the eigenvalues of A(S) are cif k-1, j, k = i,. . . , n. As a result, one gets the 

following probability law for the eigenvalues 

  

2 
dçbi dOn, 

 

Pdq5i 	oc H  E.  — Ei 
ci — ZEi 

(55) 

   

which interpolates between the distribution of the Dyson unitary ensemble (z = 0) 

and the uniform distribution (z = 1). This model can be considered also as a 

circular Coulomb gas with the partition function 

Zn  CX fo 271- 	jo[27r dOi 	dOri exP (— 
1,<,7 

where ß  is the inverse temperature and the interaction energy is 

smh2  -y 
•	 

sin2 ((0, — 

Note that the value of 0 is fixed. 

Let us show that the grand partition function of the model (55), (56) can be 

recovered in the specific infinite soliton (thermodynamic) limit of the T-function 

of the KP hierarchy. The corresponding finite soliton solutions provide thus a 
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particular discretization of the model. In the Coulomb gas interpretation this 

discretization describes a lattice gas on the circle with equal spacing between 

the sites. Such a model is equivalent to the Ising spin chain on the circle in 

homogeneous magnetic field, the exchange constants being given by (56). One 

can recover also the generalized Gaussian unitary ensembles with the probability 

density (50) in a rational limit of the KP or BKP equations, so that the coefficients 

of the polynomial Q(tr H) in (50) are defined by linear combinations of the 

hierarchy "times". The latter case corresponds to the Coulomb gas on the line in 

a charged background. 

The BKP equation soliton phase shifts suggest a unitary matrix model with 

the following probability law 

Ei  
PdOi ... d 	H Ei- 	

2 	2 zEi 
c/01  472 , 	 (57) 

ij E2  — zei  ei 
which corresponds to the weight function 

1 +  zA(S)  
F(S) = det 

	

	 (58) (1 — zA(S))(1 + A(S)) • 
However, because ei  + j = 0 for (Ai = qj + 7r, which creates singularities, one has 

to restrict the region of variables çbj  to [0, 7]. 

Consider a space of unitary n x n matrices with the eigenvalues equal to N-th 

roots of unity. The angles Oi  take now the discrete values Oi  = 27rmilN,mi  

1, .. , N. This space is preserved under the unitary transformations (52). The 

measure becomes semidiscrete: it is continuous in the "dummy" variables w(dU) 

and one takes the sums over Oi  instead of the integrals. The "classical" continuous 

model is recovered for N —› oo, Ç5  fixed: 
„ 

-Ar) E... E N—>oo 
m1=1 mn=1 

27r 
dOi 	fo 27r d'On. (59) 

Consider the distribution (55). For matrices of dimension n the partition function 

is 
27  N N 

Zn(N, z) = (—
N 	• • • E 

mn=1 1<i<j<n 

   

2 

 

fi — Ei 

 

 

fil Nti — \f"-Zei 

  

   



92 

2i7rmj -2 = exp 	7. 
N 	

z = e 

The grand canonical ensemble partition function corresponding to this distribution 

can be written in the following form 

Zn,(N, ,Z)een  

	

Z (Z, 0) = E 	 E exp 	E Amaimiik + (0 + 71) E Pm) , n! 

	

n=0 	 itm=0,1 	1<m<k<N 	 m=1 
(60) 

where = 1n(271-/N), 0 denotes the chemical potential and (cf. with (56)) 

A 	=I 	
sin2(r (m - k)/N) 	

_1 (a
m  - ak )(bm  - bk) 

mk nn 
sin2(7r(m - k)IN) + sinh2  -y 	(am  + bk)(bm  + ak)' 

is the KP phase shift with the following identification of parameters 

am  = e2irm/N 	bm  = -zam , m = 1,2, . , N. 	(61) 

From the comparison of (5), (10) with (60) it follows, that the grand partition 

function of this matrix model is nothing else than the N-soliton r-function at zero 

KP hierarchy "times" . In the thermodynamical limit N 	Do the relation (59) 

takes place and we get the Gaudin matrix model. 

The grand partition function of the matrix model (57) inspired by the BKP 

equation is also given by (60) with 

(am  —  ak )(bm  - bk )(am  - bk )(bm  - ak) Amk  = ln 
(am  + ak )(bm  + bk)(am  + bk)(bm  + ak)" 

In order to escape singularities the parameters am, bm  have to be restricted now. 

The choice (61) is permissible only for odd N, which makes the N -> oo limit ill 

defined. One can replace also mIN in (61) by m/2N, i.e. to consider only the 

half-circle. 

As was discussed in the Section 2, these lattice gas models are equivalent to 

the Ising model after the replacement /Lm  = (o-m  + 1)/2 and the identification 

of the phase shifts and the exchange constants Pmk  = -Amk/4. The relation 

between the magnetic field and the chemical potential is 

13Hm  = 	+ 77) + -
1 E Amk . 

2 	4 
k-=1,kOm 



93 

Evidently, the exchange constants are rotationally invariant, Jnik = J (Tri — k): 

1 	1 ± sinh2  7/ cos2(7m/N) 
eJ(m) = 4  ln 

1 + sinh2  -y1 sin2(71-m/N) « 

In order to calculate the partition function one can employ the determinant (pfaf-

fian) representation (39) from the section 5. 

In a conclusion of this section, let us make few remarks on the hermitian 

random matrices. The linear unitary ensembles are ensembles of such matrices 

with the distribution function invariant under any unitary transformation. If 

we abandon again the hyphotesis of the statistical independence of the matrix 

elements, we arrive at the distributions with the measure of the form (54) and the 

degree of the polynomial Q in the exponent (50) may be arbitrarily large. Now, 

if we choose soliton amplitudes as in (41) with real q = exp(r/N), r = const, and 

take the KP or BKP hierarchy "times" to be different from zero we get discrete 

models with nontrivial Q(tr H) in (50). 

After taking the thermodynamical limits N --> oo, or q —> 1, we get the 

distributions of the form (50). The partition function can be represented in the 

determinant form, but the fourier transformed matrices seem to be not diagonal 

because of the nonzero hierarchy "times" and calculation of the partition function 

becomes more complicated. We postpone the detailed analysis of the Gaudin 

and BKP versions of the circular ensembles as well as other ensembles of random 

matrices and their relations to the Ising chains to a later publication. 

8 Conclusions 

In this work we were considering only the 1D Ising chains with some non-nearest 

neighbor exchange between spins. We were able to calculate partition functions 

exactly for translationally invariant spin chains with an arbitrary period M in a 

periodic magnetic field of the same period M. An interesting problem which we 

did not address is the calculation of the correlation functions for spin operators. 
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It would be appropriate to try to extend our considerations to other nonlinear 
integrable equations admitting N-soliton solutions. It is worth to consider the 
possibilities to build higher dimensional solvable lattice models on the basis of the 

results of this work. Vice versa, it would be appropriate to analyze what kind 
of nonlinear partial differential equations could be associated to known exactly 

solvable lattice models [1]. 
A curious point concerning the quantization of the temperature requires a 

deeper understanding. It is well known [24] that orthogonal, unitary and sym-
plectic ensembles of random matrices correspond to particular quantized values 
of the inverse temperature ß  within the Coulomb gas model interpretation. How-
ever, the corresponding partition function is calculable exactly for arbitrary 

being determined by the Selberg integral. A similar result for the considered Ising 
chains would be of great interest. 

As further extenstions of the results of this work, one can consider the M-

periodic Ising chains emerging from the KP and BKP equations and analyze 

the corresponding matrix models. Purely discrete nonlinear integrable equations 
like the discrete-time and space Toda, KP and other equations worth of analysis 
from the Ising chains viewpoint as well. However, the corresponding spectral 
self-similarity [25] does not lead to the translationally invariant spin lattices. As 

a result, the partition functions are not related to the determinats of Toeplitz 
matrices and our methods seem not to apply in this cases in a direct fashion. 
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Figure 1: Dependence of the magnetization m(h) on the renormalized mag-
netic field )311 = h1(q' — q) for the KdV equation inspired Ising model. The 
dashed lines correspond to the discrete temperature ,3 = 1 and the solid lines 
to second value = 2 appearing from the BKP equation at a = bi. The 
lower curves correspond to the q = 0.1 values of the basic parameter and the 
upper ones to q -= 0.8. 
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Figure 2: Magnetization m(h) for the general Ising model generated by the 
BKP equation. In order to match with the KdV case the magnetic field is 
renormalized to ßH = 2h/(q  — q). For all three curves q = 0.5. The solid 
line corresponds to the antiferromagnet with b = 0.8, the dashed line — to 
the ferromagnet with b = —0.8, and the dashed-dotted line is for the curious 
antiferromagnetic case b = i. 
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Abstract 

The presence of exciton phonon interactions is shown to play a key role 

in the exciton superfluidity. It turns out that there are essentially two 

critical velocities in the theory. Within the range of these velocities the 

condensate can exist only as a bright soliton. The excitation spectrum and 

differential equations for the wave function of this condensate are derived. 
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The problem of critical velocities in the theory of superfluidity arose a long time 

ago when the experiments with the liquid He showed a substantial discrepancy 

with quantum-mechanical predictions. Later, the effect was analyzed and its 

phenomenological description was given (e.g. see [1]). The fact that the liquid He 

could not be treated as a weakly non-ideal Bose gas was believed to be the main 

reason for inconsistency of microscopie theory with experimental data. 

For a long time He has been the only substance where the superfluidity can be 

observed. The recent experiments with the dilute gas of excitons [2], [3] provide 

new possibilities for studying different types of superfluidity. 

In this series of experiments the Cu20 crystall was irradiated with laser light 

pulses of several ns duration. At low intensities of the laser beam (low concen-

tration of excitons) the system revealed a typical diffusive behavior of exciton 

gas. Once the intensity of the beam exceeds some value, the majority of particles 

move together in the packet. Their common propagation velocity is close to the 

longitudinal sound velocity, and the packet evolves as a bright soliton. 

Some alternative explanations of the phenomena are known. One of them [2] 

implies that the bright soliton is a one-dimensional traveling wave which satisfies 

the Gross-Pitaevsky (nonlinear Schrödinger) equation [4] for the Bose-condensate 

wave function W(x, t) 

ih-
0111 

= — h±Allf oli*W2 	 (1) 
at 	2m 

with attractive potential of exciton-exciton interaction v < 0. 

A quantitative treatement given in [5] provides an iterative solution for the 

Heisenberg equation with the use of perturbational methods. In this picture the 

second order interactions, neglected in the Bogoliubov approximation, contribute 

to the negative value of v. However, the influence of exciton-phonon interactions 

on the dynamics of the condensed excitons is not treated [5]. 

Another interpretation is based on a classical model [6] where the normal exci-

ton gas is pushed towards the interior of a sample by the phonon wind emanating 

from the surface. Such an explanation seems to be in discrepancy with the ex- 
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periment, because the signal observed is one order of magnitude longer than the 
excitation pulse duration [3]. 

In this study we give an alternative and, in our opinion, more intrinsic inter-
pretation of these phenomena. We argue that it is a propagation of a superfluid 
exciton-phonon condensate which is observed experimentally. The presence of 
exciton-phonon interactions is crucial for a "soliton-like superfluidity". This inter-
action plays a key role when the propagation velocity approaches the longitudional 
sound velocity. 

We start with the Hamiltonian of the exciton-phonon system 

H = Hex  + Hh + Hint 

He), = — 	41*(x)AlIf (x)dx + f 41*(X)41*(y) v(x y) 4f (x)(y)dxdy, 

= 	{ ler (x)2  + 	(V û(x))2} dx, 

Hint  = 	o-(x — y):  (x) (x) (V û(y)) dxdy, 	 (2) 

where 41 and û are the operators of the exciton and phonon fields correspondingly, 
c is the longitudional sound velocity and p denotes the mass density of the crystal. 
The field variables obey the following commutation relations 

41*(y)] = h6(x — y), riri  (x), ûi  (y)] = —ihdii(5(x — y), i, j = 1,2,3. 

In (2) we omit the terms with the transverse sound velocity, since the interaction of 
excitons with transverse sound waves is much weaker than with the longitudional 
ones. 

It is convenient to change the reference system when we consider a uniform 
motion of the Bose gas. The transition to the reference system moving uniformly 

with the velocity v = (v, 0,0) is immediate. In new coordinates the classical field 
equations become: ( a 	h2 	rriv  2 

ih—
Ot 

+ —
2m

A + 
2 f v(x — y) e (y, t)12dy3) q,b(x,t) 



, 0(x, t) f 0-(x - y) (Vu(y, t)) dy 

(a2 	02 	a2 

	

2v
ata 
	 + v2 - _ c2 ) u(x, t) = —

1 V f cr(x — y)10(y, t)I 2dy, (4) 
8t2 	xi 	axî 	 P 

where 1,b(x, t) = III (xi  + vt, x2, x3, t) exp (—imvxi  /h). 

The 1.h.s. of Equation (3) is Galileian invariant, while the 1.h.s. of (4) is 
Lorentz invariant. As a result, the system (3), (4) is neither Galileian nor Lorentz 

invariant. As we will see later, it is due to this noninvariance that the effective 
potential of exciton-exciton interactions depends on velocity. 

Let us consider slowly varying solutions of the system (3), (4). In this (long 
wavelength) limit one can replace v(x) and a(x) by v08(x) and o-08(x), where 

vo  (> 0) and a-0  denote the zero-mode Fourier components of the corresponding 

potentials. 
Solving (4), one can express the bounded at infinity time-independent solution 

u(x) in terms of e(x). The effective potential of the exciton-exciton interaction 
is obtained after substituting this expression into (3). The phonon field makes 

this potential long-range, anisotropic and v-dependent. The potential becomes 
asymptotically attractive along the v-direction and asymptotically repulsive in 
directions perpendicular to v. It follows that stability of the corresponding solu-

tions e = g5(x1 )exp(—iwot), ui = 5 1q(xi ) is preserved under the one-dimensional 

reduction of the system (3), (4). The functions 0(x1 ), q(xi ) obey the following 

equations 
f h2 82 	 a2 MV2 

A) 0(xi) = (vo (c2 _°v2)p) 	A = hwo 	+Co-0, (5) 2m 04 	 2 

aq(xi)  
= 	

cro0(xi)2 
C 	 (6) ax i 	(c2 —,)p 

where the integration constant C is fixed by the condition q —> const as lx11 —› oo. 

In the last equations 0 assumed to be real. This choice does not change the result 

but simplifies our calculations. 
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It follows from (5) that the effective potential becomes attractive when v ex-
ceeds the critical velocity 

vo  = •Vc2  — (o-Vvo p). 	 (7) 

But if v exceeds the sound velocity c, the potential becomes repulsive again. As 
for the solution varying in the direction n = (ni, n2, n3), ç5 = f (nx) exp(—icoot), 
u = nq(n x), the critical velocity is vo  (n) = vo / cos(0), cos(9) > vo/c, where 0 is 
the angle between n and v. 

When v is less than the critical velocity (7), equations (5),(5) have the following 
stable stationary solutions 

(i) çS = çbo = -VN/V = const, u = const, and 

(ii) (I) = 	tanh (000 (xl  — a)) , aq(X1)  a 	
2 

(e2Cr(4v°2)p COSI1-2  (000(Xi — a)) , 

- v21 	 0-0«,  O
2 

= 	h2 	_ v21 ,  = ( ,2 _ v2 )p  vo 'Po= 	
V

2 
 — V  

vowo 2 	2 c = (2 v2)p  C — V 

In (8,i) N and V stand for the number of particles in the condensate and the 
volume of the system. 

When v exceeds vo, we have only one stable stationary solution 

= ç50  cosh (,300(xi  — a)) , 0q(xi ) 	cioçbô  
(2 	v2)p cosh-2  ([300(xi  — a)) , -1   

axi  

(8) 

0_2 
A=  

2 ( 	(c2 _ v2)p Vo) =  
voq v2  — vî)  
2 c2  — v2  C = 0. (9) 

To find the excitation spectrum of the system we expand the field operators near 
the proper classical solutions: 

t) = («Xi) 	(DC, t)) 	Ûi(X, t) = Jimxi) + 	t). 

The Hamiltonian of the system can be written as follows 

H = Ho  + hH2 + • • • , 	 (10) 
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where Ho  = H( e-)0t ,q) stands for the classical part of H. It is important that 

H2 is bilinear in 5(x, t), 7)(x, t), whereas the linear terms are absent in (10) (since 

the classical fields satisfy the stationary equations (5),(6)). From now on we are 

working in quasiclassical approximation and neglecting the terms of power greater 

than one (in h). 

The quasiclassical Hamiltonian (10) is reduced to the normal form 

H2 — 	 const, 	-6;] — 81,3, 	'61 — 0. 

Indeed, since H2 is a bilinear function of k‘, fi, the equations of motion are lin-

ear in field operators. They coincide with the corresponding classical equations 

(i.e. equations (3),(4) linearized around qi)(x, t) = 0(x1) exp(—iwot), u,(x, t) = 

6iig(xi)): 
a h2 

 	2vol 0 (ih—ot + —2m A — + Cao + (c2
2
v2)p 	(42) x 

—P00(x)2x* — 0-00(x)(v ti) = 0, 	 (12) 

(c23, _ v2 aax2 	2v3 	-87822  )ij + n'y (0(x)( + x*)) = o. 	(13) 

The quantities wi  in (11) are characteristic frequencies of the system (12), (13). 

Let us consider the homogeneous Bose gas moving uniformly with velocity 

v < vo. The condensate wave function is given by (8,i). The differential equations 

(12),(13) have constant coefficients so that the characteristic frequencies w(k) are 

determined as roots of the following characteristic polynomial 

(72 

2m 2m 
e2k2) [h2(Q vki)2 h2k2 h2k2 	{2vo 	(c2 	°v2)p } 

h2  k 2  o-îçqk2  
(14) 2m p  

where 	= w(k) — vki  are the excitation frequencies in the crystal reference 

frame. In the limit cro  —> 0 one gets the Bogoliubov [7] spectrum hiJ(k) 
in2k2 

2m 	 27n + IA4) for the exciton gas as well as the free phonon spectrum 
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= ck. When we switch on an exciton-phonon interaction, the spectrum w(k) 
becomes v-dependent. 

The quantization near the translationally noninvariant classical solution (8,ii) 
in the region v < vo  yields the same continuous spectrum w(k). The only new fea-
ture is that there appears a bounded state at w = 0 in the v-direction. This fact 
has a simple explanation: the family of the solutions (8,ii) contains an arbitrary 
translation parameter a, which, in fact, is a collective coordinate. Differentia-

tion of (8,ii) with respect to a gives then necessary time independent solution of 
(12),(13). This bounded state does not affect the quasiclassical excitation spec-
trum and contributes only to highest approximations (e.g. see [8]). 

If the velocity v exceeds (7), the characteristic polynomial (14) has complex 
roots and there is no stable constant solutions. The condensate (i.e. classical) 
wave function turns into the (bright) soliton (9) of the one-dimensional nonlinear 

Schrödinger equation (5). This solution decreases exponentially. This allows us 
to obtain the continuons spectrum from asymptotics of (12), (13). We have 

ri,w(k) = + 
h2 k2 
2m 

for the exciton branch of the model, and 

w(k) = ck + vki 

for the phonon branch. As in the previous case we get a bounded state at zero 

energy. We skip the question of existence of other bound states, since it is not 
essential for our purposes. 

The spectrum now has a gap in the exciton branch which is equal to A. In 
a sense, the situation is similar to the BCS theory: the exciton-phonon interac-
tion makes the effective exciton-exciton potential attractive, and the excitation 
spectrum acquires a gap. 

The transition to the ballistic regime is accompanied by the symmetry break-

down: a new condensate wave function (9) is no more translationally invariant. 
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However, it contains a free translation parameter. We can interprete this as a 
phase transition of the second order. 

The value 00  is readily computed from the normalization condition f 0(x)2  dx = 
N, and A is then obtained from (9) 

A
mv2N2 (v2 _ ,2 ) 2  

.  ° 	-o  
8h2S2  

In (15) S denotes the packet cross-section in x2x3-plane. When v approaches the 
longitudional sound velocity c, the gap magnitude increases and soliton becomes 
more stable. The soliton energy can be estimated from (2) 

E -= N {mq, N2 (v2 — v2) o 	( v4 4_ 3v2c2 ± 4c2 54v2) ± m'y 
24h2s2 (2 _ v2)3 k 	 2 

It follows from the last formula that E —› co as v ---> c. Roughly speaking, the 
soliton effective mass tends to infinity when its speed approaches the longitudional 
sound velocity. Then its motion is less subjected to the external forces. 

The onset of ballistical regime is determined by the condition v > vo. It is 
easy to see that the solution (9) is the most stable in the class of one-dimensional 
traveling waves moving uniformly with given v(> vo) and N. We argue that (9) 
is also the most stable solution in the class of all solutions with given v(> vo) and 
N, because the effective exciton-exciton potential is attractive in v-direction and 

repulsive in the perpendecular directions. We would like to stress that effective 
one-dimensional solutions of three-dimensional nonlinear Schrödinger equations 
(1) with attractive potentials do not have the similar properties. In particular, 
the stability of such solutions is doubtful [9]. 

In the present work we have discussed the properties of the system at zero 

temperature. The extension of our results to finite temperatures seems to be a 
more difficult problem. 

We hope that the similar approach (involving solitonic mechanisms) can be 
applied to the solution of the general problem of critical velocities in the super-
fluidity of liquid helium. 

(15) 

2 } 
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Conclusion 

I would like to mention some questions which have not been discussed in the 

thesis as well as some open problems. 
We discussed the relation between soliton solutions of the KdV equation and 

Huygens principle in the first part of the work. It is worth mentioning that there 
are relations between Huygens' principle and integrability. According to A.P. 

Veselov, the Schrödinger counterparts of Huygens' operators (i.e. Laplacian plus 

a Huygens' potential) possess the property of algebraic integrability. Recall, that 

a Schrödinger operator in an n dimensional space is integrable, if there exist a 
ring generated by n pairwise commuting differential operators with algebraically 

independent constant highest symbols. 
On the one hand, the Schrödinger operator is called algebraically integrable, 

if there exists at least one more operator, which commutes with all the ring, such 
that its highest symbol takes different values at the intersection of the zeros of 

the highest symbols of other ring generators. Thus the Huygens systems describe 

the overcomplete rings of commuting differential operators. 

On the other hand, according to J.L. Burchnall and T.W. Chaundy, the prob-

lem of the classification of the rings of commuting differential operators is related 

to the bispectral problem. The bispectral problem in one dimension has been con-

sidered by J.J. Duistermat and F.A. Grünbaum The Huygens operators provide 

examples of bispectral systems in higher dimensions. 

The problem of describing all bispectral operators in arbitrary dimensions 

is very hard. Howevwr, it is beleived that this problem can be solved in two 

dimensions. This is for future studies. 
Another open question is the problem of the generalization of the examples of 

O.A. Chalych and A.P. Veselov in dimensions higher than two. In this respect, 

the multidimensional generalizations of the Burchnall-Chaundy equations could 

be of help. 
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In the investigations that led to the second part of the thesis, we faced the 

question about links between the Huygens systems and the Ising models related 

to the integrable hierarchies. Performing computer experiments, we observed that 

the partition functions of the Ising systems at particular values of the homogeneous 

magnetic field are also the T functions of the Huygens operators. Although such 

examples exist for all types of regular Weyl root systems, we neither found their 

generalizations to higher multiplicities nor explained the existing examples. 

Note that in the present work we considered only the Ising models in one 

dimension with some special interaction between spins. It would be appropriate 

to consider the correspondent models in higher dimensions. 

It would be interesting to extend our considerations to other integrable equa-

tions admitting soliton solutions.It would be worthy analyzing what kind of equa-

tions could be associated with other known solvable models. 

The study of relations between the random matrix models and the Ising would 

also diserve a deeper analysis. 
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