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SOMMAIRE 

La présente thèse est consacrée à la théorie de la condensation binaire. 

Premièrement, nous considérons la thermodynamique de la nucléation binaire, 

en nous concentrant sur l'énergie libre de formation d'une goutte et la distribution 

d'équilibre des gouttes, qui est essentielle pour la vitesse théorique de nucléation 

et dont le choix n'est toutefois pas unique. Une nouvelle distribution d'équilibre 

est proposée. Elle permet d'améliorer l'accord des prédictions théoriques avec les 

données expérimentales pour la vitesse de nucléation. 

Deuxièmement, nous développons la théorie cinétique de la nucléation binaire 

non-isotherme. Cette théorie traite de l'influence des effets thermiques sur la 

condensation binaire qui sont causés par la chaleur de condensation. Les molécules 

du mélange de vapeurs absorbées par une goutte de solution binaire lui transmettent 

de la chaleur de condensation, tandis que les molécules émises par la goutte lui 

enlèvent une telle chaleur. La température moyenne de la goutte s'accroît au fur 

et à mesure qu'elle grandit. Cet échauffement des gouttes croissantes diminue la 

vitesse de nucléation et influence d'autres caractéristiques du processus. 

La théorie de la nucléation binaire non-isotherme est développée à partir de 

l'équation discrète du bilan décrivant l'échange de substance et d'énergie entre le 

mélange de vapeurs et les gouttes binaires. En réduisant cette équation à la forme 

différentielle, on obtient l'équation cinétique tridimensionnelle. Nous considérons 

le cas des chaleurs de condensation arbitraires où l'équation cinétique dépasse les 

bornes de l'approximation de Fokker et Planck. Dans le cas où les chaleurs de 

condensation sont très petites par rapport à la fluctuation efficace de l'énergie 

d'une goutte l'équation cinétique peut être réduite à celle de Fokker et Planck. 
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L'analyse de l'équation cinétique permet de déterminer la hiérarchie des échelles 

de temps de la nucléation binaire non-isotherme. Cela rend possible de séparer 

et décrire analytiquement l'étape de relaxation thermique pendant laquelle la 

distribution des gouttes selon la température s'approche d'une gaussienne, alors 

que leur distribution selon les nombres de molécules ne change guère. 

À l'étape suivant la relaxation thermique, l'équation cinétique tridimensionnelle 

peut être résolue en utilisant successivement la méthode de Chapman et Enskog 

et la méthode de séparation complète des variables. Ces méthodes permettent de 

réduire notre équation cinétique à l'équation monodimensionnelle de Fokker et 

Planck dont les coefficients contiennent l'information sur les effets thermiques. 

Finalement, nous étudions la condensation binaire isotherme aux conditions 

dynamiques. Dans ce cas la formation et la croissance des gouttes se passent en 

même temps que la métastabilité du mélange de vapeurs croît graduellement, 

atteint son maximum et décroît. C'est ainsi que la condensation binaire se passe 

le plus souvent dans la nature. 

Nous développons la théorie cinétique de ces processus pour les systèmes ouverts 

ainsi que pour les systèmes fermés (du point de vue de l'échange de matière 

entre le système où la condensation se passe et son environnement). Les deux 

sursaturations idéales que les vapeurs du mélange auraient eues en absence d'ab-

sorption de la substance par les gouttes sont déterminées par les conditions 

extérieures: la dépendance temporelle des sursaturations idéales est considérée 

comme donnée. Le système d'équations intégrales est obtenu pour les processus 

considérés. La méthode itérative permet de trouver le spectre des dimensions 

linéaires des gouttes et la distribution des gouttes selon leurs deux variables 

d'état indépendantes, la précision relative étant assez élevée dès la première 

itération. De même, cette méthode permet de trouver la dépendance temporelle 

des sursaturations réelles des deux vapeurs et le nombre total de gouttes. 

Tous les résultats théoriques de la thèse sont illustrés avec des calculs numériques. 
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INTRODUCTION 

La condensation binaire c'est la germination et la croissance subséquente 

des particules d'une solution liquide binaire au sein d'un mélange métastable de 

deux vapeurs. C'est un processus très répandu dans la nature et dans l'industrie 

chimique. 

La condensation binaire est une transition de phase du premier ordre. Par 

conséquent, la théorie de la condensation binaire fait partie intégrante de la 

théorie fondamentale des transitions de phase du premier ordre. En même temps, 

cette théorie est indispensable pour résoudre différents problèmes appliqués con-

cernant surtout l'industrie chimique et la formation des nuages atmosphériques. 

Considérons un mélange de vapeurs de deux espèces chimiques. Supposons 

que d'une façon ou d'une autre ce mélange devienne métastable. Si une substance 

se trouve dans un état métastable, elle retournera irrémédiablement dans un état 

stable. Par example, une vapeur sous-refroidie se condense et se transforme en 

liquide; un liquide surchauffé finit par s'évaporer. Lorsqu'on considère une vapeur 

pure son degré de métastabilité est caractérisé par son degré de saturation: la 

vapeur pure est métastable si elle est sursaturée. La vapeur est dite sursaturée si 

la pression de cette vapeur est plus élevée que la pression de la vapeur saturée 

au dessus de la surface plane de sa phase liquide. Quant à un mélange de deux 

vapeurs, il peut être métastable même si les deux vapeurs sont sous-saturées 

séparément l'une de l'autre. 

La transition de phase du premier ordre peut être soit homogène soit hétérogène. 

La transition de phase est dite hétérogène si elle se passe au sein de la phase 
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initiale métastable qui contient différentes inhomogénéités (grains de poussière, 

grains de sel, ions, etc.) qui servent de centres de formation de la nouvelle phase. 

La transition de phase est dite homogène si la phase initiale métastable ne 

comporte aucun agent nucléant. Les transitions homogènes exigent des degrés 

de métastabilité beaucoup plus élevés qu'il est nécessaire pour les transitions 

hétérogènes. 

Normalement la transition de phase homogène du premier ordre a un caractère 

fluctuationnel. C'est grâce aux fluctuations que le travail nécessaire pour la formation 

de la surface de séparation entre la nouvelle phase et la phase initiale peut être 

effectué. Par suite des fluctuations, de petites gouttes d'une solution binaire se 

forment au sein d'un mélange de vapeurs. Si le mélange de vapeurs est stable, 

ces petits amas restent instables et se désagrègent au cours du temps. Mais si 

le mélange de vapeurs est métastable, il y a des gouttes qui atteignent certaines 

dimensions critiques et se retrouvent ainsi en état d'équilibre instable avec le 

mélange. Dès qu'une telle goutte absorbe (grâce aux fluctuations) une molécule de 

plus, elle devient stable et continue à croître irréversiblement au cours du temps, 

en servant de centre de condensation. Une goutte ayant des dimensions critiques 

et se trouvant ainsi en état d'équilibre instable avec le mélange de vapeurs est 

désignée sous le terme de "germe". Les dimensions du germe ("dimensions critiques") 

dépendent du degré de métastabilité de la phase initiale: plus grand le degré de 

métastabilité est plus petites les dimensions du germe sont. 

Le mécanisme hétérogène des transitions de phase du premier ordre est 

quelque peu différent de celui homogène. La présence des agents nucléants dans la 

phase métastable cause une grande diminution du degré de métastabilité nécessaire 

pour déclencher la transition de phase. Qui plus est, à la différence de la transition 

homogène, la transition hétérogène peut se passer sans barrière (par conséquent, 

avec une énorme intensité) à métastabilité si basse de la phase maternelle que la 

transition homogène ne se passe pas du tout. Cela est causé par différents effets, 
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en fonction de la nature de la transition hétérogène. Par exemple, la condensation 

binaire sur un centre nucléant insoluble peut être considérée comme une formation 

d'une couche mouillante d'épaisseur arbitraire sur un centre nucléant. Dans ce 

cas on peut établir que la condensation sans barrière est la conséquence de 

la concurrence entre la pression capillaire et la pression disjoignante dans les 

couches minces. Cette concurrence baisse la hauteur de la barrière d'activation 

de la condensation binaire hétérogène et peut même causer la disparition de cette 

barrière à très basse métastabilité du mélange de vapeurs. En d'autres termes, 

les contributions aux potentiels chimiques de deux composantes dans une couche 

provenant de la pression disjoignante diminuent considérablement ces potentiels 

en comparaison avec les potentiels chimiques dans une goutte binaire homogène 

avec les mêmes caractéristiques (rayon et composition) que celles de la couche; 

cela à son tour baisse considérablement la barrière d'activation de la condensation. 

Dans la présente thèse nous ne considérons que les transitions de phase 

homogènes, mais la théorie sera facile à généraliser pour le cas des transitions de 

phase hétérogènes. 

Habituellement on distingue trois étapes dans une transition de phase du 

premier ordre. 

Pendant la première étape il se forme des embryons de la nouvelle phase 

(souvent cette étape est appelée "nucléation" ou germination)." 	Durant cette 

étape des embryons ont de petites dimensions: ils ne contiennent que quelques 

dizaines de molécules chacun. C'est pourquoi, même si le système est fermé, on 

peut négliger la diminution de la métastabilité de la phase initiale causée par 

l'absorption de ses molécules par les embryons. Après leur formation ces embryons 

servent de centres de condensation. 

C'est pendant la deuxième étape que la transition de phase proprement 

dite se passe, car c'est pendant cette étape que la partie bien dominante de la 
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phase métastable se transforme en nouvelle phase stable. Durant cette étape, des 

particules de la nouvelle phase deviennent si grandes (contenant des milliers de 

molécules chacune) qu'il est nécessaire de tenir compte de la diminution de la 

métastabilité de la phase initiale. 

Pendant la troisième étape de grandes particules de la nouvelle phase continuent 

à s'agrandir aux dépens des petites. Cela est causé par la diminution constante de 

la métastabilité. Cette diminution cause l'augmentation constante des dimensions 

critiques (du germe). À un moment donné les dimensions du germe s'avèrent 

plus grandes que celles de certaines gouttes. Ces dernières commencent alors à 

s'évaporer, ce qui favorise la croissance des gouttes dont les dimensions sont plus 

grandes que celles du germe. 

À présent, il existe une description théorique assez complète et assez adéquate 

des trois étapes de la condensation monocomposante. Quant à la théorie de la 

condensation binaire, elle n'a été développée que pour le cas le plus simple où 

la métastabilité du mélange de vapeurs est créée instantanément et les effets 

thermiques de la condensation sont négligeables. Et même pour ce cas on ne 

considère presque pas les deuxième ni troisième étapes de la condensation en se 

bornant habituellement à développer la thermodynamique et la cinétique de la 

nucléation. 

L'objet de la présente thèse est d'éliminer certaines lacunes de la théorie de 

la condensation binaire homogène. 

Premièrement, nous considérons la thermodynamique de la nucléation binaire. 

En particulier, nous nous concentrons sur l'énergie libre de formation d'une 

goutte, le choix de ses variables d'état indépendantes et la distribution d'équilibre 

des gouttes. Bien que cette dernière joue un rôle essentiel dans la théorie de la 

nucléation binaire (surtout pour la vitesse de nucléation), son choix n'est pas 

unique. Ici nous proposons une nouvelle distribution d'équilibre satisfaisant toutes 
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les conditions nécessaires et permettant, dans certains cas, d'améliorer l'accord 

des prédictions théoriques avec les données expérimentales pour la vitesse de 

nucléation. Les résultats théoriques sont illustrés avec des calculs numériques. 

Deuxièmement, nous développons la théorie cinétique de la nucléation binaire 

non-isotherme. Cette théorie permet de tenir compte de l'influence des effets 

thermiques sur le processus de la condensation binaire. Les effets thermiques 

de la condensation sont causés par la chaleur de condensation. Les molécules 

du mélange de vapeurs absorbées par une particule de la nouvelle phase (i.e., 

par une goutte de la solution binaire liquide) lui transmettent de la chaleur 

de condensation, tandis que les molécules émises par la particule de la solution 

liquide lui enlèvent de la chaleur de condensation. Car la particule croissante de 

la solution liquide absorbe plus de molécules qu'elle n'en émet, sa température 

moyenne augmente au fur et à mesure de sa croissance, la température du mélange 

de vapeurs étant constante. Cet échauffement de la particule liquide augmente 

sa faculté d'émettre des molécules. Par conséquent, il cause la diminution de la 

vitesse de nucléation et l'augmentation de la durée de nucléation. De même, il 

influence la composition des particules liquides et d'autres caractéristiques du 

processus. 

Nous développons la théorie de la nucléation binaire non-isotherme à partir 

de l'équation discrète du bilan décrivant l'échange de substance et d'énergie entre 

le mélange de vapeurs et les particules de solution liquide. Cette équation tridi-

mensionnelle décrit l'évolution temporelle de la distribution de ces particules selon 

trois variables indépendantes: les nombres de molécules des deux composantes 

dans une particule liquide et la température de cette particule. En réduisant 

l'équation discrète du bilan à la forme différentielle, on obtient l'équation cinétique 

tridimensionnelle de la nucléation binaire non-isotherme. Dans le cas des chaleurs 

de condensation arbitraires, cette équation cinétique dépasse les bornes de l'approxi-

mation de Fokker et Planck. Seulement dans le cas où les chaleurs de condensation 
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sont très petites par rapport à la fluctuation efficace de l'énergie d'une particule 

liquide, l'équation cinétique peut être réduite à celle de Fokker et Planck. Dans 

la présente thèse, pourtant, aucune restriction n'est imposée sur les chaleurs 

de condensation et, par conséquent, l'équation cinétique à résoudre dépasse les 

bornes de l'approximation de Fokker et Planck. 

L'analyse de l'équation cinétique permet de déterminer la hiérarchie des 

échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de 

séparer et de décrire analytiquement l'étape de relaxation thermique pendant 

laquelle la distribution des gouttes selon la température s'approche d'une gaussienne 

alors que leur distribution selon les nombres de molécules ne change guère. 

À l'étape suivant la relaxation thermique, l'équation cinétique tridimen-

sionnelle peut être résolue en utilisant successivement la méthode de Chapman 

et Enskog et la méthode de séparation complète des variables. L'application 

successive de ces deux méthodes permet de réduire notre équation cinétique à 

l'équation monodimensionnelle de Fokker et Planck dont les coefficients contiennent 

toute l'information sur les effets thermiques. L'analyse d'une telle équation est 

bien connue et ainsi toutes les caractéristiques de la nucléation binaire non-

isotherme peuvent être déterminées. Dans cette thèse, nous présentons les caracté-

ristiques stationnaires: la distribution tridimensionnelle des gouttes, la vitesse de 

nucléation, la composition et la température moyennes des gouttes. Les résultats 

théoriques sont illustrés avec des calculs numériques pour les systèmes "éthanol-

eau" et "éthanol-hexanol". 

La dernière partie de la thèse est consacrée à la condensation binaire isotherme 

aux conditions dynamiques. Dans ce cas la formation et la croissance des gouttes 

se passent en même temps que la métastabilité du mélange de vapeurs croît 

graduellement, atteint son maximum et décroît. C'est ainsi que la condensation 

binaire se passe le plus souvent dans la nature. 
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Nous développons la théorie cinétique de ces processus pour les systèmes 

ouverts ainsi que pour les systèmes fermés (du point de vue de l'échange de 

matière entre le système où la condensation se passe et son environnement). Les 

deux sursaturations idéales que les vapeurs du mélange auraient eues s'il n'y 

avait pas eu de consommation de la substance par les gouttes sont déterminées 

par les conditions extérieures. Par conséquent, la dépendance temporelle des 

sursaturations idéales est considérée comme donnée. 

Nous considérons le cas où les sursaturations réelles des deux vapeurs atteignent 

leurs maximums simultanément au moment du maximum de la métastabilité 

du mélange de vapeurs. Le système d'équations intégrales est obtenu pour les 

processus considérés. Il est démontré que la méthode itérative permet de construire 

le spectre des dimensions linéaires des gouttes et la distribution des gouttes 

selon leurs deux variables d'état indépendantes, la précision relative étant assez 

élevée dès la première itération. De même, cette méthode permet de trouver 

la dépendance temporelle des sursaturations réelles de deux composantes du 

mélange de vapeurs ainsi que le nombre total de gouttes par unité de volume. Les 

résultats théoriques sont illustrés avec des calculs numériques pour un système 

ouvert "éthanol - hexanol". 



CHAPITRE 1 

Thermodynamique de la condensation binaire 

Comme nous l'avons déjà noté, pendant la condensation binaire le rôle de 

la phase métastable est joué par un mélange binaire de vapeurs. Au sein de ce 

melange il se forme des particules de la phase stable (gouttes de la solution liquide 

binaire). 

Comme ces gouttes représentent la phase condensée, les temps de leurs 

processus intérieurs de relaxation sont très petits. Toute goutte se trouve donc en 

état d'équilibre thermodynamique intérieure en possédant la température unique 

et les potentiels chimiques uniques de ses composantes. 

Normalement dans le mélange de vapeurs il y a aussi un gaz qui est passif 

dans l'échange de matière avec les gouttes mais capable d'un échange thermique 

avec elles. La concentration assez élevée du gaz passif peut assurer l'égalité entre 

la température T des gouttes et celle de leur environnement. C'est là que l'on 

peut négliger les effets thermiques de la condensation qui est dite isothermique 

dans ce cas. 

Habituellement on suppose que le mélange binaire de vapeurs est idéal et 

qu'il n'y a pas de réactions chimiques. 
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1.1 L'énergie de formation d'une goutte 

Avant de passer à la condensation binaire, rappelons une image simplifiée de 

la thermodynamique de la condensation monocomposante. La figure 1.1 représente 

la forme typique de l'énergie libre F de formation d'une goutte monocompo-

sante en fonction du nombre de molécules v dans la goutte; F représente le 

travail minimal qu'il faut effectuer pour former une goutte. L'indice "c" marque 

les valeurs se rapportant au germe. La grandeur vc  est la dimension du germe. 

Pour une goutte avec v < vc  il est énergétiquement plus avantageux de diminuer 

sa dimension. Mais grâce aux fluctuations certaines gouttes augmentent leurs 

dimensions jusqu'à ce qu'elles atteignent la dimension vc, en devenant germes. 

Des fluctuations peuvent causer soit le passage du germe dans le domaine v > vc  

soit son retour dans le domaine v < vc. Une fois passée dans le domaine v > vc, 

la goutte commence à grandir irréversiblement. 

L'intervalle y, — Av, < v < y, Av, est appelé "voisinage du point critique" 

ou "voisinage critique". En exprimant l'énergie F en unité kBT (kB  étant la 

constante de Boltzmann), la largeur du voisinage critique Av, est définie selon 

On assume que dans le domaine sub-critique v < y, —Lv la distribution des 

gouttes est celle d'équilibre. 

Ainsi l'énergie libre F de formation d'une goutte détermine la barrière 

d'activation de la nucléation. Toutes les gouttes doivent franchir cette barrière 

pendant leur formation et leur croissance. Si la vapeur n'est pas sursaturée , F 

augmente de façon monotone lorsque v augmente, et F tend à l'infini quand v 

tend à l'infini. 



V -v c  ve-Ave  vc-FAve  
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Figure 1.1: La barrière d'activation de la nucléation monocomposante homogène 

déterminée par l'énergie de formation d'une goutte F = F (v). Les cercles représentent 

la croissance d'une goutte durant son franchissement de la barrière. 
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Les questions concernant l'énergie de formation d'une goutte binaire ont été 

étudiées en detail par plusieurs auteurs [1-14]. 

Soient v1  et v2  les nombres de molécules des première et deuxième composantes 

dans une goutte. Dénotons par x la fraction molaire de la première composante 

dans une solution à l'intérieur de la goutte. À certaines conditions assez faibles, 

la valeur de x est donnée par l'égalité 

X = 1/1/(111 	v2)• 	 (1.1) 

Cette variable caractérise la composition d'une goutte. 

Introduisons les sursaturations (i  et (2  des composantes 1 et 2 selon les 

relations 

	

(i  = ni/ni, (i = 1,2), 	 (1.2) 

où ni est la densité partielle du nombre de molécules de la composante i dans 

le mélange de vapeurs; ni, est la densité partielle du nombre de molécules de la 

vapeur de la composante i qui serait saturée au-dessus de la surface plane de sa 

propre phase liquide. 

En exprimant ultérieurement toutes les valeurs énergétiques en unité kBT, 

on peut écrire l'énergie de formation d'une goutte F = F(vi, v2 ) sous la forme 

F = 	— v2b2 + S'Y 
	 (1.3) 

avec 

= lnKi/Xfi(X)1, b2 = 114(2/(1 	X)f2(X)i, 
	 (1.4) 

où fi(x) (i = 1, 2) est le coefficient d'activité de la composante i dans la solution 

de composition x; S est l'aire de la surface d'une goutte; -y représente la tension 

intérfaciale "goutte - mélange de vapeurs" (en unité kBT). La figure 1.2 montre la 

forme typique de la surface énergétique déterminée par la fonction F = F(vi , v2) 

dans le cas du mélange de vapeurs métastable. 

La formule (1.3) a été obtenue à condition que les gouttes soient macroscopiques 



F 
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Figure 1.2: La surface énergétique de la nucléation binaire homogène déterminée 

par l'énergie de formation d'une goutte F = F(vi, 1ì2 ) dans le cas du mélange de 

vapeurs métastable. 
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et décrites par la thermodynamique ordinaire d'équilibre. En utilisant la relation 

généralisée de Gibbs et Duhem 

	

vi dbi + v2 db2  — Sd-y = 0 
	

(1.5) 

on peut démontrer que 

dF = —bi dvi  — b2dv2  + rydS, 	 (1.6) 

kjial , _bi+  ._-)_, (0/11. 	( _al = _b2+  _2-y (Op2  

V2 	 r OP ) x ' 4,2 	r ap) x , 	(1.7) 
1/1  

où yi (i = 1, 2) est le potentiel chimique de la composante i dans une goutte; P 

est la pression à l'intérieur d'une goutte de rayon r. 

1.2 	La condition de métastabilité du mélange de vapeurs 

Introduisons la fonction b(x) selon 

	

b(x) = xbi  + (1 — x)b2 . 	 (1.8) 

Dénotant v = v1  + v2  et tenant compte de (1.8), réduisons (1.3) à 

F = —vb(x)+ S-y. 	 (1.9) 

Selon (1.9) la fonction b(x) représente l'énergie de volume d'une goutte par 

molécule prise avec le signe opposé. Pour que le mélange de vapeurs initial soit 

métastable il est nécessaire que dans l'intervalle 0 < x < 1 il existe les valeurs de x 

pour lesquelles l'énergie de volume d'une goutte est negative et, par conséquent, la 

fonction b(x) est positive. La condition nécessaire et suffisante en est évidemment 

b(x,i ) > 0, 	 (1.10) 

où xn, est la coordonnée du maximum maximal de la fonction b(x) dans l'intervalle 

0 < x < 1. À partir de (1.2),(1.4),(1.8) et tenant compte des propriétés des 
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coefficients d'activité ainsi que de la relation de Gibbs et Duhem on peut obtenir 

que 
db(x) 	db(x) 

= co' d 	
= —oo, 	 (1.11) 

dx 	 x x=0 	 x=1 
Ces relations signifient que la fonction b(x) n'atteint pas ses maximums aux 

extrémités de l'intervalle 0 < x < 1. Par conséquent, x, est la racine de l'équation 

db(x)  
dx X=Xm 

= o, 	 (1.12) 

  

d'où 

b(Xm) = b'lx=x. = b21x=x. • 	 (1.13) 

La racine nécessaire pour la formulation de la condition de métastabilité est celle 

qui assure le maximum maximal de b(x). 

Si la solution dont les gouttes se forment pendant la condensation binaire 

est idéale avec fi(x) = 1 et f2 (x) = 1, l'équation (1.12) a une seule racine et 

à ce point la fonction b(x) atteint son maximum. Dans ce cas la condition de 

métastabilité s'exprime par l'inégalité 

ndnis + n2/n23  > 1. 	 (1.14) 

Il en résulte que la condensation binaire peut se passer même si les vapeurs 

composant le mélange sont non-saturées séparément l'une de l'autre. 

Introduisons la variable 1£ selon 

(s)3/2 = 671.1/2(vi 	y2),73/2v(x). 	 (1.15) 

où v(x) 	V/(vi  + v2 ) 	V/v, et V est le volume d'une goutte. La variable 1£ 

représente l'énergie de surface d'une goutte à la puissance 3/2. 

En utilisant (1.15), réduisons (1.9) à la forme 

F = —KB(x)-F K2/3, 	 (1.16) 
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où 

B(x) --- b(x)/[671/273/2v(x)], 	 (1.17) 

L'égalité (1.16) exprime l'énergie de formation comme une fonction des variables 

d'état K et x d'une goutte. La variable K est extensive (0 < K < oo), tandis que 

la variable x est intensive. 

Considérons un des maximums positifs de la fonction B(x) en dénotant sa 

coordonnée par xc. 

En termes de la fonction B(x) la condition de métastabilité s'exprime par 

les relations 
B(x)dB(X)

c > 0, dx 
X = X c 

, ' 
dB(x)  

0 
dx 2  X = X c 

< o. 	(1.18) 

   

1.3 La barrière d'activation de la nucléation 

À l'aide de l'expression (1.16) il est facile d'étudier le comportement de 

l'énergie de formation F en fonction de K, la variable x étant fixée. 

Soit x telle que B(x) > 0. Dans ce cas lorsque K varie de 0 à oo, l'énergie 

F croît d'abord de façon monotone à partir de 0. Après avoir atteint et traversé 

son maximum, F commence à diminuer en tendant à —oo. La coordonnée Km(x) 

du point de col où F atteint son maximum Fm(x) est donnée par 

 

I  m (X) = [ 2  1 3  B (X)] 3  • (1.19) 

Par conséquent, 
1 

Fm(X) = (1.20) 

Maintenant soit x telle que B(x) < 0. Dans ce cas l'énergie F croît de façon 

monotone à partir de 0 en tendant vers oc lorsque K varie de 0 à oo . 

Les propriétés démontrées de l'énergie de formation d'une goutte permettent 

de bien comprendre son comportement (i.e., le comportement de la barrière 
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d'activation de la nucléation) dans tout le domaine 0 < K < co, 0 < x < 1 

des valeurs possibles des variables d'état d'une goutte, ic et x. 

Il est évident que la croissance irréversible d'une goutte (i.e., la croissance 

irréversible de sa variable K) n'est possible que pour les valeurs de x qui satisfont à 

l'inégalité B(x) > O. Cette croissance se passe chaque fois qu'une goutte traverse 

le point de col de la barrière d'activation. 

La ligne de partage des eaux et celle de descente d'eau de la barrière d'activation 

sont déterminées par les égalités 

ic = km(X), 
	 (1.21) 

X = Xc• 	 (1.22) 

Ainsi la ligne de descente d'eau est une droite perpendiculaire à l'axe n = O. La 

hauteur de la barrière d'activation (i.e., la valeur Fm (x) de l'énergie F) sur la 

ligne de partage des eaux est déterminée par l'égalité (1.20). Si l'équation (1.18) 

a plusieurs racines x, satisfaisant aux inégalités (1.18), à chacune de ces racines 

correspond son propre maximum de la fonction B(x) et, donc, sa propre ligne de 

descente d'eau. 

Les valeurs minimales des fonctions Km(x) et Fm(x) sont atteintes au point 

d'intersection de la ligne de partage des eaux et celle de descente d'eau; à ce point 

la fonction B(x) atteint son maximum positif B(x,). En dénotant ces valeurs par 

et F nous avons selon (1.19),(1.20): 

[2/3B(Xc)]3, 

1 F, = 
3 

(1.23) 

(1.24) 

Le point d'intersection de la ligne de partage des eaux et celle de descente 

d'eau est le point de selle de la barrière d'activation. C'est à ce point que la 

hauteur de la barrière est minimale et la ligne de partage des eaux s'approche 
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le plus de l'axe rz = 0 et devient évidemment parallèle à cet axe, devenant 

perpendiculaire à la ligne de descente d'eau. Sur le plan des variables K, x le 

point de selle est déterminé par les coodonnées t , x,. Dans le voisinage de ce 

point la barrière d'activation a la forme d'une selle. 

Comme la hauteur de la barrière d'activation est minimale au point de selle, 

le voisinage de ce point est le plus avantageux du point de vue énergétique pour 

le franchissement de la barrière d'activation par les gouttes. La goutte qui est 

caractérisée par les coordonnées kc, x, du point de selle joue le rôle de la goutte 

critique qui sera désignée sous le terme de germe. 

Si l'équation (1.18) a plusieurs racines x, satisfaisant aux inégalités (1.18), 

à chacune de ces racines correspond sa propre ligne de descente d'eau, à laquelle 

correspond son propre point de selle ainsi que son chemin de franchissement de 

la barrière d'activation. 

Ainsi il peut exister plusieurs canaux de nucléation. Dans tout canal il 

n'existe qu'un seul point de col de la barrière d'activation. Après avoir franchi ce 

point, les gouttes grandissent irréversiblement. 

Il va sans dire que le canal de nuçléation pour lequel la hauteur de la 

barrière d'activation au point de selle est la plus petite sera le plus avantageux 

énergétiquement. 

1.4 Le voisinage du point de selle de la barrière d'activation 

Dans le voisinage du point de selle de la barrière d'activation l'énergie de 

formation d'une goutte F en fonction des variables v1, v2  peut être écrite sous la 

forme bilinéaire 
32F 	 , 1 (02F , 

F = Fc+1  (82F  
2 	ag), 	 (OviOvic

(v1—vic)(v2—v20+ 	
„ \ 2 — 	..1/2—v2c) , (111 111c)2+ 	 2 ay2 2 c  

(1.25) 



— cn(vi — vic) c22(v2 — 1 2c) }

C11(1/1  — 111c) + C12(112 — 112c) x = 
(1.26) 

1 (5211 
2 	aK2  ) c\ 

1 ( a2p1  73/2  

2 	aX2  ) 	v2c vc.  
(1.29) 
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où l'indice inférieur "e dénote des valeurs au point de selle. 

Introduisons les variables x, y au lieu des variables v1 , v2  à l'aide de la 

transformation linéaire 

avec 

cll = 

 

1 (82F 	an'\ 
\,an2  c \evi 

1 (02F) (a 
= C12 = 	9 	c  0,2 ) a ,  

Ii ( 82 F\  ( ax 
c2 	c  2) ,Uv2) c  • 

(1.27) 

    

c21 = 
\ ( 	(8x 

\,ax2 	c ,  

  

Par rapport aux variables x et y l'approximation bilinéaire de F acquiert la forme 

diagonale 

(1.28) 

Le jacobien de la transformation (1.26),(1.27) n'est pas nul (il est négatif): 

a(x,y)  _ 
a(vi,v2) 	- 

La simplicité de l'expression (1.28) par rapport à (1.25) signifie que les 

variables x, y sont plus convenables que les variable 1i,v2 (ou même K, X) pour 

décrire l'énergie de formation d'une goutte et la barrière d'activation de la nucléation 

dans le voisinage du point de selle. Le fait que les carrés des variables dans (1.28) 

ont des signes opposés est typique de la théorie des transformations de phase du 

premier ordre; et cela résulte du caractère de selle de la barrière d'activation. Les 

signes "-" et "+" dans (1.28) montrent que les variables x et y sont respectivement 

instable et stable. Et c'est la réduction de l'énergie de formation à la forme 

diagonale qui a permis de trouver ces variables. Naturellement ces variables 

égalent zero pour le germe. Leurs valeurs caractéristiques se trouvent évidemment 

dans l'intervalle de —1 à 1. 
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1.5 Le facteur de normalisation de la distribution d'équilibre des 

gouttes 

On suppose toujours que la distribution des gouttes dans la région précritique 

des variables d'état a la forme de la distribution de Gibbs. Cependant le problème 

de la détermination de son facteur de normalisation est aussi complexe qu'important. 

En effet, la vitesse de nucléation binaire (c.-à-d., le nombre de gouttes formées 

en unité de volume par unité de temps) est proportionnelle à la distribution 

d'équilibre. Toutefois, le facteur de normalisation de cette distribution ne peut 

pas être déterminé de façon unique. Il existe quelques approches de ce problème 

dont aucune ne peut être retenue comme la meilleure. Ici nous discutons de ce 

problème et présentons un nouveau facteur de normalisation qui pourrait assurer, 

dans certains cas, un meilleur accord entre les prédictions théoriques et les données 

expérimentales concernant la vitesse de nucléation binaire. 

1.5.1 Article 1: On the equilibrium distribution in the binary nucleation theory 

Article publié dans la Journal of Aerosol Science (1998), Vol.30. No.5, 

pp .587-596. 



On the equilibrium distribution in the 

binary nucleation theory 

Y.S.Djikaev* and J.Teichmann 

Physics Department, University of Montreal, 

Montreal, Quebec, H3C 3J7, Canada 

Abstract 

In considering a binary nucleation theory, it is shown that the unified 

approach to the homogeneous and heterogeneous nucleation theories makes 

it possible to obtain the equilibrium binary distribution satisfying both the 

mass action law and type II limiting consistency. Theoretical rates of binary 

nucleation are calculated by using the new equilibrium distribution, the 

distribution of Reiss, and that of Wilemski and Wyslouzil for the ethanol - 

hexanol system. Possible causes of the irregularity of discrepancies between 

theoretical predictions and experimental data are discussed. 
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1 Introduction 

Lately, a significant progress has been attained in developing different aspects 

of kinetic theory of binary nucleation and condensation. As there exist some 

different approaches to this theory in the frameworks of capillarity approximation 

there appears the need to assess the accuracy of competing approaches as well 

as to compare their predictions with experimental data. The latter is not always 

possible because of absence of appropriate experimental results, but for a wide 

range of situations high quality experimental data are available. 

Recently, Wilemski and Wyslouzil (1995) and Wyslouzil and Wilemski (1995, 

1996) have obtained a series of very interesting and important results concerning 

both kinetic and equilibrium aspects of the theory. In particular, they resolved 

several inconsistencies involving the binary equilibrium distribution. They proposed 

(Wilemski and Wyslouzi1,1995) a new form of the binary equilibrium distribution 

which obeys the mass action law, reduces to appropriate forms for the unary 

distributions and yields unique and physically well-behaved evaporation rate 

coefficients satisfying the new product rule. In this paper we will treat the binary 

equilibrium distribution proposed by Kuni et al. (1990) and Melikhov et al. (1990) 

who generalized ideas developed by Rusanov et al. (1987) to the two-component 

theory. We will show that the distribution of Kuni et al. satisfies all principal 

conditions formulated by Wilemski and Wyslouzil (1995). Then we will calculate 

the binary nucleation rate using this equilibrium distribution in the kinetic theory 

of Kuni et al. (1990) and Melikhov et al. (1990,1991) (yielding the same nucleation 

rate as Stauffer's theory (1976)) at various values of sticking coefficients. The 

results of calculations will be compared with each other as well as with the 

experimental data of Strey and Viisanen (1993) for the ethanol-hexanol system. 
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2 	Binary equilibrium distribution 

Let us denote by f 	v2 ) the equilibrium distribution of binary nuclei with 

respect to the variables vi  and v2  representing numbers of molecules of first and 

second components, respectively, in a nucleus. In the capillarity approximation the 

distribution f 	v2) can be presented (Reiss,1950; Wilemski and Wyslouzi1,1995) 

as 
V2 (  ni 	(  n2  

f (vi, v2) = N 	 exp [—F3(vi, v2)], 	(1) 
ni.(X) 	n2,,(x)

) 

 

where N is a normalization factor; ni  (i = 1, 2) is the number density of molecules 

of component i in a vapor mixture; nio0(x) (i = 1,2) is the equilibrium number 

density of molecules of component i in a vapor saturated over a bulk solution of 

composition x, which is defined as x = 	+ v2); Fs(vi, v2) is the contribution 

to a free energy of formation of a nucleus having variables v1 , v2  due to the 

nucleus surface (hereinafter, we express all energy quantities in units of thermal 

energy of the medium kBT, where kB  is Boltzmann's constant, T is the absolute 

temperature of the medium). 

Wilemski (1995) introduced the term "limiting consistency" in discussing 

the limiting behaviour of unary distribution. Wilemski and Wyslouzil (1995) 

discussed two types of limiting consistency. Type I limiting consistency concerns 

the unary distribution and requires that that distribution equals the number 

density of molecules in a vapor, when evaluated for "clusters" of single molecules. 

According to type II limiting consistency, a binary distribution must reduce to 

an appropriate unary distribution if we let either vi  or v2  tend to O. 

Besides the two types of limiting consistency, the equilibrium distribution 

function must satisfy the law of mass action according to which the equilibrium 

binary distribution must be presentable in the form 

f (vi, v2) = ni" n2z' K(vi, v2), 	 (2) 

where K(vi , v2) is the equilibrium constant. If a vapor mixture is considered as 
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ideal, K(vi , v2 ) can depend on v1, v2, and T, but never on ni  nor on n2. Unlike 

the limiting consistency conditions, which are imposed for the mathematical 

convenience, the law of mass action is a fundamental law of statistical physics as 

it has been shown by Wilemski and Wyslouzil (1995). 

So far, the most commonly used form of normalization factor N is that of 

Reiss (1950): 

= i + n2. 	 (3) 

This normalization factor, however, violates the mass action law, as it was pointed 

out by Wilemski (1975). Besides, there is another issue (first pointed out by Katz, 

according to Wilemski and Wyslouzil (1995)) related with this normalization 

factor. Actually, according to eqs.(1),(3), the unary distribution of pure nuclei of 

first component depends linearly on the number density of second component in 

a vapor mixture if we let v2  equal to 0 and vice versa. 

Wilemski and Wyslouzil supposed (1995) that the normalization factor N 

and the normalization factors Ni  and N2 of unary equilibrium distributions of 

first and second components are related as 

N = NNX, 	 (4) 

(5) 

where ei = o-i s i l kT (i = 1,2); o-i  and si  are the surface tension of pure i-

component liquid and surface area, respectively, of i-component molecule. This 

form satisfies both the law of mass action and both types of limiting consistency. 

Moreover, using this distribution in the relations of detailed balance allows one 

to obtain fully self-consistent and physically well-behaved expressions for the 

evaporation coefficients. 

and they proposed the following form for the binary equilibrium distribution: 

(  n2  
f(vi , v2) nl'oonLx  exp[x011-(1—x)02] ( 	ni  

nioc(x))L,1 

	u2 

722.(X) 	
exp[—Fs(vi, y2 )], 
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3 	Unified approach to the homogeneous and heterogeneous nucleation 

theories 

Now, let us consider the method of determination of the normalization 

factor of the equilibrium binary distribution proposed by Kuni et al. (1990) and 

Melikhov et al. (1990). This method extends ideas developed earlier by Rusanov 

et al. (1987) for treating the homogeneous unary nucleation as a heterogeneous 

one occurring not on foreign heterogeneous centers but on molecules themselves 

of condensing vapor to the two-component theory . The reasoning of interest is 

as follows. 

Taking into account that each of n1  molecules of the first component of 

vapor mixture and each of n2  molecules of its second component can serve as a 

heterogeneous center of formation for a nucleus, we have, according to principles 

of equilibrium statistical thermodynamics: 

f 	v2) = 	n2e-F2 
	

(6) 

where F1  is the work necessary that v1  — 1 molecules of the first component of 

vapor mixture and v2  molecules of its second component join a single molecule 

of first component; F2 is the work necessary that v2  — 1 molecules of second 

component of vapor mixture and v1  molecules of its first component join a single 

molecule of second component. Though identical nuclei with the variables v1  and 

v2 are formed as a result of both works F1  and F2 these works in general are 

not equal to each other. It is because corresponding nuclei are formed on single 

molecules of different species. 

The works Fi. and F2 do not coincide with the thermodynamic work F 

F(vi , v2 ) either, which, according to its meaning, is required for simultaneous 

unification of v1  molecules of first component of vapor mixture and of v2  molecules 

of its second component in a nucleus situated in a fixed point of condensing 

system. Of course, the differences between F1, F2, and F have only a statistico- 
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thermodynamical character, but not a mechanical one. 

It has been shown by Kuni et al. (1987) that 

F — in[nis/ni], F2 = F —1n[n2817-12], 	 (7) 

where ni, and n23  are the number densities of molecules of first and second 

components, respectively, in a liquid solution of composition x. 

Substituting eq.(7) in eq.(6), we have 

1 	F f (V1, V2) = 	e 	 (8) V (XY 

where v(x) = 1/[n13(x) n2s (x)] is the nucleus volume per molecule. Denoting by 

vi  and v2  the partial molecular volume of first and second component, respectively, 

in their pure liquids, and taking into account that F can be expressed through 

F, a> F,(vi , v2 ) as 

nl  
FF, — 

nioo(X) 
v2 ln 

n2.(X) 
ln 	 

one can rewrite eq.(8) as 

vivi  + v2v2  nico(x)r (n2œn2(X)) 

V2  
lil + 1)2 	

( 

ni.  

Since here the normalization factor (vi  + v2)/(vivi  + v2v2) does not depend on ni  

nor n2 , this equilibrium distribution automatically satisfies the mass action law. 

As for the limiting consistency, equilibrium distribution (10) evidently satisfies 

that of type II (1/vi  and 1/v2  being the normalization factors of respective unary 

distributions) but does not satisfy that of type I. It also gives well-behaved 

evaporation coefficients in the framework of Kelvin model. 

Comparing eq.(8) with eqs.(1),(3), we see that the normalization factor of 

Kuni et al. is qKR = v-1(x)(ni n2) times as large as that of Reiss (q-j  is of the 

order of 104 ). Comparing eq.(10) with eq.(5), we see that the normalization factor 

of Kuni et al. differs by a factor qi,-w  = v-1(x)ni-„,,xn2-001+x exp[—xei  — (1 — x)02] 

f(v1, v2) 

n2  
(9) 

exp[— F5 ]. 	(10) 
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from that of Wilemski and Wyslouzil. This factor (qKw) is rather a complex 

function of many parameters of condensing system. 

It should be noted that in the unary nucleation theory, Reiss et al. (1968) 

and Kikuchi (1969) obtained the corrections to the nucleation free energy like 

that of Rusanov et al. (1987), but they did it by more artificial means. These 

corrections give the ratio of molecule num.ber density of condensed phase to that 

of vapor phase as a pre-exponential factor in the classical unary nucleation rate. 

As shown by Schmitt et al. (1983), this factor allows one to obtain a good fit of 

theoretical predictions and experimental data for the nucleation rate of toluene 

at physically realistic values of the surface tension and the sticking coefficient. 

4 	Procedure of numerical calculations 

Numerical calculations have been carried out by following the formalism 

of Kuni's-Melikhov's theory of the binary nucleation. We only remind that the 

kinetic part of that theory is based on the well-known method of complete 

separation of variables allowing one to obtain a binary nucleation rate in the 

most general case like the Stauffer theory. 

Briefly, the procedure of our numerical calculations is as follows. 

Let us introduce the value as 

= 	2  = 671/2(vi v2)73/2v, 

where v 	v(x); va 7,(x) is the surface tension of a nucleus of composition x 

expressed in units of kBT. 

Considering the variables i and x as a couple of independent variables 

describing the state of a nucleus, we can write the free energy F in the form 



27 

(Kuni et a/.,1990; Melikhov et a/.,1990,1991) 

	

F(K, x) = /£2/3  - KB(x), 	 (12) 

where 

B(X) = [Xbi + (1 — x)b2]/[6r1/2/3/2v], 	 (13) 

(1. 	 C2  b1 = ln 
Xii(X)' 

 b2 = ln 
(1  X)f2(X)' 	

(14) 

= ni/ni,, ( i = 1,2), 	 (15) 

fi(x) (i = 1, 2) is the activity coefficient of component i in a solution with 

composition x; would represent the supersaturation of i-component vapor of 

over the plane surface of its own liquid phase. A typical behaviour of function 

B(x) is shown in Fig.l. 

The variables IQ and xc  of a critical nucleus are determined as coordinates 

of the saddle point of the free energy surface given by F(x, x): 

aF( iç X)  0  
°X 

= 	 (16) 

   

(the subscript "c" marks values at the saddle point, that is, for the critical 

nucleus). The right-most part of eq.(16) results in the equation dB(x)Idxi c  = 0 

determining the composition xc  of the critical nucleus. To reduce this equation to 

the correct equation for x, (given, e.g., by Wilemski (1984,1987) or by Debenedetti 

and Reiss (1998)), we have to neglect the derivative 	dx, assuming the surface 

tension of nuclei constant (-y 	-y,) in the near-critical region. For nuclei in this 

region (which is the most important one for nucleation kinetics), variations of 

nucleus composition are small enough in order for the assumption -y -y, to be 

acceptable for most binary systems. 

Let us denote by F and F;x  the second derivatives of the function F(K, x) 

with respect to Ft and x, respectively, at the saddle point and denote by tç and 

the first derivatives of the variables ic and x with respect to v, (i = 1, 2), at 

the saddle point. 



c11 = 
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where W (i = 1,2) is the number of i-component molecules that the critical 

nucleus absorbs per unit time, the binary nucleation rate J can, finally, be 

presented as 

J = ACe-Fe. 	 (21) 

It is evident that, through W1  and W2, the condensation coefficients ai  and 

a2  strongly influence theoretical predictions for the nucleation rate J , which is 

proportional to a linear combination of these coefficients. At the same time there 

exist no reliable theoretical nor experimental data for them. 

5 	Numerical calculations and Conclusions 

Numerical calculations have been carried out with the help of Mathematica 

for the ethanol (1) - hexanol (2) system at the same external conditions as the 

experiments of Strey and Viisanen (1993). Results of calculations are presented 

by Figure 2a and b in the form of the dependence of ln J on the mean activity z = 

a)1/2. The lines represent theoretical rates corresponding to the fixed values 

of activity fraction y = (2/(C1 + (2 ), indicated on Figure 2 over the series. The 

corresponding experimental data are shown by circles.The theoretical rates were 

calculated by using the normalization factors of Reiss (eqs.(1),(3): dashed lines 

in Fig.2), Wilemski and Wyslouzil (eq.(5): dot-dashed lines in Fig.2), and Kuni 
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et al. (eq.(8): solid lines in Fig.2). Thermodynamic parameters of the ethanol-

hexanol system were taken from Strey and Viisanen (1993). We have presented 

only a part of results to avoid confusion. 

The numerical results shown in Fig.2a correspond to the case of ai  = 1 

and a2  = 1. As we can see, the greater y is, the better is the fit of theoretical 

predictions to experimental data (theoretical rates are greater than experimental 

ones by a factor of some orders of magnitude), and it is fairly good when y tends 

to 1. Quite a similar behaviour of predictions for the nucleation rate is observed 

when Wilemski's - Wyslouzil's equilibrium distribution (5) is used in Stauffer's 

rate formula (Wilemski and Wyslouzil, 1995). But theoretical rates of Wilemski 

and Wyslouzil better agree with experimental data than ours (obtained using 

equilibrium distribution (10) of Kuni et al., i.e. formula (21) for J), since for the 

considered system the normalization factor of Kuni et al. is approximately ten 

times as large as that of Wilemski and Wyslouzil, that is qKw  is of the order of 

10. At the same time, qKR  is of the order of 104  when y is small and tends to the 

value 105  when y --> 1 (e. g., qKR  8 x 104  at y = 0.98). 

Since there exist no theoretical nor experimental data on the sticking coefficients 

ai and a2  for this system, we could, in principle, try to obtain a fine fit of 

theoretical rates to experimental data by choosing appropriate values for al  

and a2. Magnitudes of al  and a2  must not depend, however, on metastability 

of a system, though they could be weak functions of temperature. Therefore, 

within the framework of adequate theory we could obtain a good fit of theoretical 

predictions to experimental data by means of unique choice of al  and a2  (independent 

of vapor mixture metastability) for a given system. But for the considered system 

this does not work. Actually, the theoretical rates of nucleation in the case of 

al  = 0.2 and a2  = 0.2 are shown by Fig.2b. Such a choice of al  and a2  allows 

one to obtain a better fit of theoretical predictions to experimental data, than 

the couple al  = 1 and a2  = 1. However, the less is y, the worse the fit remains: 



30 

the ratio of the theoretical nucleation rate to the experimental one increases with 

decreasing y. 

Such an irregularity of the discrepancies between the theoretical predictions 

and the experimental data (but not the discrepancies themselves) can be explained 

(at least, in part) by the existence of thermal effects of nucleation, which are not 

taken into account in the classical theory of the binary nucleation, but which can 

strongly influence nucleation processes under some circumstances. 

It is necessary to note that, as pointed out by many authors (Mirabel and 

Katz, 1977; Wilemski, 1984, 1987; Flageollet-Daniel et al., 1983; Laaksonen, 

1992), the most probable explanation for such large discrepancies themselves 

between the theory and the experiments as observed is the inadequacy of the 

capillarity approximation in evaluating the free energy of binary nucleation. That 

approximation uses a bulk surface tension for calculating the nucleus free energy 

of formation and hence does not take account of the effect of surface enrich.ment 

which can considerably change the nucleus surface tension. 

Thermal effects cause an increase in the mean temperature of growing nucleus 

and, consequently, a decrease in the nucleation rate. As well known (Feder et al., 

1966; Grinin and Kuni, 1989;Barrett and Clement, 1990; Barrett, 1994), thermal 

effects can decrease the unary nucleation rate by a factor of up to some thousands. 

Of course, thermal effects have a significant influence on the nucleation rate only 

in the case where the number density of carrier gas molecules is not sufficient 

to ensure the constancy of the nucleus temperature. The carrier gas plays the 

role of a thermal reservoir and is an effective energy transfer medium. Usually, 

in experiments on the binary nucleation the carrier gas pressure is as large as 

possible to weaken the influence of thermal effects on the nucleation as much as 

possible. Nevertheless, such an influence is always out there, however weak it may 

be. 
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On the other hand (Feder et al., 1966; Grinin and Kuni, 1989; Barrett, 

1994), the influence of thermal effects on the nucleation rate depends on the 

ratio of the carrier (passive) gas pressure to the pressure of condensable vapor: 

the influence increases with decreasing this ratio. In the system considered, the 

less is the value y, the denser is the vapor mixture (ni  + n2  5 x 1017cm' for 

y = 0.393 and n1 + n2  2 x 1017crn" for y = 0.980) and hence the stronger is the 

influence of thermal effects on the nucleation rate. Therefore, the fact, that the 

discrepancies between the theoretical predictions and experimental data increase 

with decreasing y, can be explained (at least, in part) by the fact that the theory 

does not allow for thermal effects of nucleation which cause the decrease in the 

nucleation rate: the smaller is y, the more significant is this decrease. 

As clear from Fig.2, the normalization factor of Kuni et al. predicts the 

highest theoretical nucleation rates for the ethanol-hexanol system and Reiss' 

normalization factor (3) provides the lowest ones, the theoretical rates corresponding 

to the factor of Wilemski and Wyslouzil being intermediate (but very close 

to those of Kuni et al.). In the case of unary nucleation, according to Figure 

3, theoretical predictions for the nucleation rate obtained by using the one-

component analogues of these three normalization factors have quite a similar 

character. Figure 3 shows the logarithm of the nucleation rate J of pure hexanol 

vs its supersaturation (activity) C = (2. The ellipses represent the experimental 

nucleation rates measured in a two-piston expansion chamber by Strey et al. 

(1986). Different series correspond to different initial (chamber) temperature To. 

Note that the actual nucleation temperature of nucleation is lower than To  and 

decreases slightly along each lnJ-C curve. The corresponding nucleation rates 

calculated by Strey et al. (1986) from the classical nucleation theory (i.e., using 

the one-component analogue of Reiss normalization factor (3)) are given by the 

dashed lines. For a comparison, we calculated the theoretical rates using the one-

component analogues ofequilibrium distributions (5) and (8) (data of Gallant 

(1967) were taken for thermodynamic parameters of pure hexanol). The solid lines 
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correspond to the theoretical rates obtained by using the one-component analogue 

of the normalization factor of Kuni et al.. The theoretical predictions obtained 

by using the Wilemski normalization factor (Wilemski, 1995) are represented by 

the dot-dashed lines. The initial temperatures are indicated below each series. 

Evidently, one can conclude that none of these three normalization factors can be 

given an undeniable priority from the standpoint of the agreement between the 

theoretical and experimental rates for the considered systems. However, for the 

homogeneous nucleation of toluene Schmitt et al. (1983) showed that the use of 

the one-component analogue of the normalization factor of Kuni et al. brings the 

theoretical rates into considerably better agreement with the experimental data, 

the values of the surface tension and the sticking coefficient being physically 

realistic. 
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Figure 1. Typical behaviour of function B() for a metastable binary system, 

Presented by B(x) for the ethanol (1) - hexanol (2) system of (1 = 2.02, 2 = 7.77, 

and T = 260K. We have x, = 0.54, B(x) = 0.0619, B"(x,) = —0 .1239 . 
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Figure 2a. Logarithm of nucleation rate „I in the ethanol (1) - hexanol (2) 

system plotted vs a mean activity z = ((? C 2 )112 , at T = 260K. The dimension 

of J is cm-3 s-1. The circles are the experimental data of Strey and Viisanen 

(1993). The lines represent the nucleation rates calculated at the indicated activity 

fraction y = (2/((1  + (2 ) by using the normalization factors of Kuni et al. (solid 

lines), of Wilemski and Wyslouzil (dot-dashed lines), and of Reiss (dashed lines), 

the sticking coefficients being ai  = 1.0, a2  = 1.0. 
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Figure 2b. Logarithm of nucleation rate J in the ethanol (1) - hexanol (2) 

system plotted vs a mean activity z = ( (12 + (22 )1 / 2 , at T = 260E. The dimension 

of J is cm-38-1. The circles are the experimental data of Strey and Viisanen 

(1993). The lines represent the nucleation rates calculated at the indicated activity 

fraction y = (2 /((1  + (2 ) by using the normalization factors of Kuni et al. (solid 

Hues), of Wilemski and Wyslouzil (dot-dashed lines), and of Reiss (dashed lines), 

the sticking coefficients being a = 0.2, a2  = 0.2. 
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Figure 3. Logarithm of nucleation rate J for pure hexanol vapor plotted 

vs a supersaturation (activity) ( = (2. The dimension of J is em-3  s-1. The 

ellipses are the experimental data of Strey et al. (1986). The lines represent 

the nucleation rates calculated by using the classical nucleation rate expression 

(dashed lines, calculated by Strey et al. (1986)), the one-component analogue 

of the normalization factor of Kuni et al. (solid lines), and the normalization 

factor of Wilemski (dot-dashed lines). The initial (chamber) temperatures T0  are 

indicated below the series. The corresponding nucleation temperatures are: about 

258 K for T0=288 K, about 276 K for T0=308 K, and about 293 K for T0=328 K. 



CHAPITRE 2 

Cinétique de la nucléation binaire non-isotherme 

La cinétique de la nucléation binaire non-isotherme tient compte de l'influence 

des effets thermiques sur le processus de la condensation binaire. Ces effets sont 

causés par la chaleur de condensation. Les molécules du mélange de vapeurs 

absorbées par une particule de la nouvelle phase (i.e., par une goutte de la 

solution binaire liquide) lui transmettent de la chaleur de condensation, tandis 

que les molécules émises par la particule de la solution liquide lui enlèvent de 

la chaleur de condensation. Comme la particule croissante de la solution liquide 

absorbe plus de molécules qu'elle n'en émet, sa température moyenne augmente 

au fur et à mesure de sa croissance, la température du mélange de vapeurs étant 

constante. Cet échauffement de la particule liquide augmente sa faculté d'émettre 

des molécules. Par conséquent, il cause la diminution de la vitesse de nucléation et 

l'augmentation de la durée de la nucléation. De même, il influence la composition 

des particules liquides et d'autres caractéristiques du processus. 

2.1 L'étape de la relaxation termique 

La cinétique de la nucléation binaire non-isotherme est développée à partir de 

l'équation discrète du bilan décrivant l'échange de substance et d'énergie entre le 

mélange de vapeurs et les particules de solution liquide. Cette équation tridimen-

sionnelle décrit l'évolution temporelle de la distribution de ces particules selon 

trois variables indépendantes: les nombres de molécules des deux composantes 
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dans une particule liquide et sa température. En réduisant l'équation discrète du 

bilan à la forme différentielle, on obtient l'équation cinétique tridimensionnelle 

de la nucléation binaire non-isotherme. Dans le cas des chaleurs de condensation 

arbitraires, cette équation cinétique dépasse les bornes de l'approximation de 

Fokker et Planck. Seulement dans le cas où les chaleurs de condensation sont très 

petites par rapport à la fluctuation efficace de l'énergie d'une particule liquide, 

l'équation cinétique peut être réduite à celle de Fokker et Planck. Nous n'imposons 

pourtant aucune restriction sur les chaleurs de condensation et, par conséquent, 

l'équation cinétique à résoudre dépasse les bornes de l'approximation de Fokker 

et Planck. 

L'analyse de l'équation cinétique permet de déterminer la hiérarchie des 

échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de 

séparer et de décrire analytiquement l'étape de relaxation thermique pendant 

laquelle la distribution des gouttes selon la température s'approche d'une gaussienne, 

alors que leur distribution selon les nombres de molécules ne change guère. 

2.1.1 Article 2: Kinetic theory of nonisothermal binary nucleation: the stage 

of thermal relaxation 

Article publié dans la Journal of Aerosol Science (1999), Vol.30, No.3, 

pp.265-277. 
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Kinetic theory of nonisothermal binary 

nucleation: the stage of thermal relaxation 

Y.S.Djikaev * 
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Montreal, Quebec, H3C 3J7, Canada 

F.M.Kuni, A.P.Grinin 

Department of Statistical Physics, St-Petersburg State University, 

St-Petersburg, 198904, Russia 

Abstract 

A generalization of the method used in the kinetics of nonisothermal unary 

nucleation is proposed to construct the kinetic theory of nonisothermal binary 

nucleation allowing one to take account of the release of the latent heat of con-

densation. The three-dimensional balance equation describing the material 

and heat exchange of liquid solution particles with the surrounding vapor-gas 

medium is obtained. Independent variables in this equation are the numbers 

of molecules of each component in a liquid solution nucleus and its temper-

ature. Going beyond the framework of the Fokker-Planck approximation is 

proposed for the corresponding kinetic equation. A hierarchy of time scales of 

nonisothermal binary nucleation is established and an analytical description of 

the thermal relaxation of the nuclei is given. Theoretical results are illustrated 

by numerical calculations for the nucleation in a water-ethanol system. 

*Author to whom correspondence should be addressed. 
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1 Introduction 

Binary condensation is a very widespread first-order phase transition and 

hence is of great interest in many fields. They usually distinguish three stages of 

any first-order phase transition. During the first of them nuclei of a new phase 

are formed (this stage is also called the stage of nucleation) which play the role 

of condensation centers afterwards. It is during the second stage that the phase 

transition takes place properly - the bulk of a metastable phase passes to a liquid 

phase. During the third stage the growth of large drops occurs to the detriment 

of small ones. 

It is well known that nonisothermal effects can strongly influence a process of 

first-order phase transition, particularly a vapor-to-liquid transition. There exist 

different kinds of nonisothermal effects in the condensation. 

First, the heating of the growing nuclei by the latent heat of condensation. 

This causes a reduction of the nucleation rate in two ways: I) increasing the 

ability of the nuclei to emit molecules; 2) decreasing the metastability of vapor 

phase (owing to the increase in the temperature of condensing system). 

Second, temperature fluctuations of nuclei exist even in the absence of matter 

exchange between the nuclei and the medium. They also influence the emissivity 

of nuclei. 

Third, the nuclei as particles of condensed matter are thermally quasi-

isolate from one another being surrounded by the rarefied vapor-gas medium. 

Consequently, the temperature of a nucleus decreases gradually during each event 

of emission of a molecule, while the molecule passes from the nucleus through 

its surface layer to the vapor. Therefore, the emissivity of the nucleus must be 

determined by some intermediate value of its temperature but neither by the 

initial one (before the emission event) nor by the final one (after the emission 
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event). 

At present, there exists a complete enough and adequate theoretical description 

of nonisothermal unary nucleation and condensation. Taking account of the release 

of latent heat, Kantrowitz (1951) obtained the differences between isothermal and 

nonisothermal nucleation rates, delay times and mean temperatures of nuclei, 

in terms of a one-dimensional model. Considering the size of a nucleus and its 

thermal energy as two independent continuous variables determining the state of 

the nucleus and taking into account the effect of release of latent heat, Feder et al. 

(1966) were the first to develop a two-dimensional kinetic theory of nonisothermal 

unary nucleation. 

A nucleation cutoff being allowed for both by vapor depletion and by rise 

in temperature from the release of latent heat, Barrett and Clement (1991) 

derived and solved the coupled equations which give the changes in the aerosol 

size distribution and vapor saturation during the nucleation of aerosols from a 

supersaturated vapor. Barrett et al. (1993) presented a model of the influence 

of carrier gas on the nucleation process, based on the changes to the energy 

distribution of nuclei induced by collisions with carrier gas molecules. Possible 

differences in nucleus energy distributions between equilibrium and steady state 

were taken into account by Barrett (1994) in deriving a Fokker-Planck equation 

for the nucleus distribution in size and energy and presenting an analytical 

approach to obtaining the steady nucleation rate. 

Taking account both of a latent heat release and of temperature fluctuations, 

Grinin and Kuni (1989) constructed a two-dimensional kinetic theory of noniso-

thermal nucleation on the basis of a two-dimensional balance equation (number of 

molecules in a nucleus and its thermal energy being there independent variables) 

obtained by them earlier in the paper published later (Grinin and Kuni, 1990). 

They proposed (Grinin and Kuni, 1989) a generalization of the Fokker - Planck 

approximation in the corresponding kinetic equation which allowed them to take 
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into account large values of latent heat of condensation. They gave (Grinin and 

Kuni, 1989) the analytical description of the thermal relaxation of nuclei, their 

subsequent evolution and the final steady state itself. It should be noted that 

they also showed that the contributions to the nucleus emissivity arisen from the 

fluctuation and quasi-isolationship effects compensate one another. 

Thermal effects in the kinetics of homogeneous condensation under dynamic 

conditions were taken into account by Kuni (1984,1988). In the kinetics of hete-

rogeneous condensation under dynamic conditions, thermal effects were studied 

by Grinin et al. (1990). The influence of thermal and fluctuation effects on 

the condensation processes in the supercritical region of the nucleus sizes was 

investigated by Grinin et al. (1992). 

Unlikely to the situation in the kinetic theory of the unary nucleation, the 

kinetic theory of the binary nucleation has been developed almost exclusively 

(except the recent work of Lazaridis and Drossinos (1997)) for the simplest case 

where one can neglect the nonisothermal effects of condensation, i.e. the deviation 

of the temperature of nuclei of liquid phase from the temperature of vapor-gas 

medium (Reiss, 1950; Stauffer, 1976; Shi and Seinfeld, 1990; Kuni et al., 1990; 

Melikhov et al., 1990,1991; Wilemski and Wyslouzil, 1995). However, the nucleus 

temperature has a strong influence on its ability to emit molecules of vapor 

mixture and, hence, on the whole nucleation process. Of course, the release of 

condensation heat can substantially increase the nucleus temperature only in the 

case where the quantity of carrier (passive) gas in the system is so small that 

its molecules have not sufficient time to take the released heat away from the 

nucleus. Carrier gas effects in the unary nucleation theory were well investigated 

by Ford (1992), Barrett et al. (1993), and Barrett (1994). It is also evident that the 

significance of thermal effects for the nucleation kinetics increases with increasing 

both the condensation heats and the vapor activities of condensable substances 

(as shown for the unary nucleation by Feder et al. (1966), Grinin and Kuni (1989), 
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and Barrett (1994)). 

In this work, we intend to develop a kinetic theory of binary nucleation 

taking into account the effect of latent heat release. 

The deviation of the mean temperature of the nuclei from the temperature of 

the vapor-gas medium is due to the condensation process itself. The condensation 

heat transferred to a nucleus or extracted from it in individual events of absorption 

or emission of a vapor mixture molecule by a nucleus is not small in comparison 

with the rms fluctuation of the nucleus energy. Therefore, for the kinetic theory 

of the nonisothermal binary nucleation it will not be possible to use the Fokker-

Planck approximation. 

2 Balance equation 

First, let us construct a three-dimensional balance equation of nonisothermal 

binary nucleation. Let us assume that the metastability of the vapor mixture is 

created instantaneously and does not change during the whole nucleation process. 

The temperature To  of the vapor mixture and the number density of passive gas 

molecules are also fixed. We also assume that there are not chemical reactions 

nor heterogeneous nucleating centers in the condensing system. 

It is evident that there are three types of elementary interactions of a nucleus 

with the vapor-gas medium: 1) absorption of a molecule of lst or 2nd components 

of the vapor mixture; 2) emission of a molecule of 1st or 2nd components of the 

vapor mixture; 3) reflection of a molecule of the vapor-gas medium. 

The nuclei formed have so small sizes that the time of their internal relaxation 

processes are very small in comparison with the time between successive interactions 

of a nucleus with the vapor-gas medium, and the interactions themselves take 

place under a free-molecular regime. This allows us to assume that the nucleus 



47 

attains its internal thermodynamical equilibrium before each successive interaction 

with the vapor-gas medium. 

Let us choose the numbers vi  and v2  of molecules of lst and 2nd component 

in a nucleus and its thermal energy E as its independent characteristics. The 

thermal energy E of a nucleus is linear in the temperature and will be measured 

from its value at the temperature To  of the vapor-gas medium. Expressing all the 

quantities which have the dimensions of energy in units of kBT0  (kB  is Boltzmann's 

constant), we have 

E = (civi  c2v2 )[T 	— 11, 	 (1) 

where cj (i = 1, 2) is the molecular specific heat of i-component in a nucleus (all 

the specific heats are expressed in units of kB ). 

Let e be the thermal energy of molecules striking a nucleus and let e be the 

thermal energy of molecules reflected or emitted by a nucleus. Since the times 

of internal relaxation processes of nucleus are small, the number Wi-  (i = 1, 2) 

of molecules of component i which a nucleus emits in unit time as well as the 

distribution w' of the emitted or reflected molecules with respect to their energy e' 

are determined (in consideration of the thermal adaptation of reflected molecules) 

by the energy of nucleus: 

(1) 	v2, E) (i = 1,2),w' 	u/(vi, 	4E'). 	(2) 

Here the variables v1 , v2 , and E correspond to the state of the nucleus before the 

interaction and we have taken account that the temperature fluctuation effect 

and the effect of nucleus thermal quasi-isolationship compensate each other. Of 

course, the distribution w(e) of the molecules striking a nucleus with respect to 

their energy E is determined by the temperature /10  of the vapor-gas medium. For 

the distributions w(s) and w'(vi , v2 , Els') (which we assume being Maxwellian) 

we shall use the normalization relations 

00 

/3«cc  d EW(E) = 1, fo  d EV(Vi, U2, ElE i ) = 1. (3) 
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Let us denote by g(vi, v2, E) the distribution of nuclei with respect to the 

variables v1, v2, and E at the time t (we shall not indicate the time dependence 

of values). 

Denoting by 	v2) and [3i  (i = 1,2) the number of molecules of 

component i being absorbed by a nucleus per unit time and, respectively, the 

molecular heat of condensation of component i, let us write the discrete balance 

equation governing the evolution of the distribution g(vi, v2, E): 

ag(vi, v2, E) - _ D+ +D: + D-2E + 	+ D91 + Dg2, at 	1 	1 
	 (4) 

where 

D-1F 
=j°0 

 cle[Wi (vi  - 1, v2)w(E)g(vi - 1, v2, E - 	- e) 

	

v2)w(E)g(vi, v2, E)1, 	(5) 

Di-  = 	def [147.1 	+ 1, v2, E 	+ 	+ 	E 	4E') x 
0 

g(vi + 1,1)2, E 	+ et) - 	v2, E>tvi(v1, v2, ElEi)g(vi., v2, 4], 	(6) 

Dt = f de[W2(vi, v2 - 1)w(e)g(vi , v2 - 1, E - 132 - e) - 
o 

	

v2)w(E)g(vi, v2, E)], 	(7 ) 

= j°0
de [W2-  (vi, v2 + 1,E /32 + E')Id (vi, v2 + 1, E 02 + els') x 

g(vi, v2 + 1, E 132 el ) - W2-  (vi, v2, E)til (vi, v2, 449(14, v2,.E)1, 	(8) 

Dgi 	de' dewie 	v2)[w(E)wi(vi, v2, E - + lEt ) X 
JO JO 

g(V1, V2, E - E 	Et ) - W(E)21/ (111, 1)2, Ele)g(1)11 1)2, E)1, 	(9) 

1 - ceci 	 1 
Wie j =  

	

	v2) H- -iag liVg(vi, v2) (i = 1,2), 	(10) 
aci 

aci  and ati  (i = 1,2) are the condensation (sticking) coefficient and coefficient of 

thermal adaptation, respectively, in a reflection event of i-component molecules; 
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ag  is the coefficient of thermal adaptation in a reflection event of passive gas 

molecules; Wg(vi , v2) is the number of molecules of the passive gas striking a 

nucleus per unit time. It is evident that the sum Wief  W2ef  would determine the 

total number of molecules reflected by a nucleus per unit time if at1, ati , and ag  

were equal to 1.  

Expanding eqs.(5)-(9) in Taylor series in the deviations of nucleus ch.aracteristics 

before the interaction from v1, v2  and E, effecting some simple transformations 

and then carrying out partial summing of series obtained, we can reduce eq.(4) 

to the form 

where 

= Wi(vi  

+W (vi + 1, v2, E 

D2 = W2(vi, 

+W2-  (vi, v2 + 1, E 

IE 	— 

1 

ki 

.9(vi, v2, E) 	 a (11)  

(12)  

(13)  

(14)  

(15)  

(16)  

at 

— 1, v2 )g(vi  — 1, 

+ 	(vi + 1, 

v2 — 1)g(vi, v2 

+ /32)g(vi, v2 + 

plwi+ew21( 
k2  

D2+ = 	+ 	—M IE' 

v2, E — pl) - 	v2 )g(vi , v2, E) 

v2, E 	01) 	v2, E)g(vi , v2 , E), 

— 1, E — /32) — W2(vi, v2)g(vi, v2, E) + 

1, E + 	 v2, E)9(vi, v2, E), 

E  
c2v2 	aE 

(I — ceci) + agpi] 	(i = 1,2), 

c  n 
g  g 	1,2), 

m.)1/2 

_ [a ci 	ati 

pi = 	 (i = 
rng 	2n[ei 

éi, mi, and ni (i = 1,2) are the effective (in the sense of energy transfer to the 

nucleus) specific heat, mass, and number density of molecules , respectively, of 

component i of the vapor mixture; c9 , m9 , and ng  are the analogous values of the 

passive gas. 

The terms D1  and D2 in eq.(11) describe the simultaneous transfer of both 

the substance and the condensation heat to the nuclei by the molecules of lst 

and 2nd components, respectively. 
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The term —aiElaE in eq.(11) describes the transfer of the kinetic and 

internal energies to the nuclei by all the molecules of the vapor-gas medium. 

Its form corresponds to the fulfillment of the condition 

1/(civi + c2v2)1/2  < 1 
	

(17) 

which means a smallness of the energy transfer by the molecules of the vapor-

gas medium in comparison with the rms fluctuation of the nucleus energy, since 

the value (ci  iii  c2v2)1/2  represents, according to the thermodynamic theory of 

fluctuations, the rms fluctuation of a nucleus energy in the absence of substance 

exchange between the nucleus and the vapor mixture. 

3 	Kinetic equation of nonisothermal binary nucleation 

Let us introduce the variable 4 instead of variable E as 

= 	c 2 v2  ) p / 2 [2( ci  vi  
(18) 

and present the distribution g(vi , v2, E) in the form 

g(vi , v2, E) = [271-(ci vi 	c2u2)]-1/2e-e2P(vi,,2, e), 	(19) 

where P(vi , v2,4) is some function of vi , v2, e (and of t, too). 

Since usually ei » 1 (i = 1, 2) , the parameter 

ei  = 	 (i = 1,2) 	 (20) 
[2(ci vi  c2v2)]1/2  

will not be small despite inequality (17). The parameter rj represents the relative 

condensation heat of component i per molecule, i.e. the condensation heat of 

component i per molecule expressed in units of rms fluctuation of the nucleus 

energy and divided by 	Although rj  is always less than 1, in order of magnitude 

1. 



Let us introduce the operator 

Li 	— 	— —„a (i = 1,2), 
oui 

acting on vi-dependent functions (here F1 	0F /5v, and F is the free energy 

of formation of the nucleus with the characteristics 111, v2, and E = 0: F 

F(vi , v2 , E = 0)). Let us define the values vic, A/Ji, (i = 1,2) by the relations 

FI = 0, Avic  = 12/F1,11 1=1c,2=„2e  (i = 1,2). 	(22) 

The values vic, 112,  would determine the coordinates of the saddle point of the 

surface of free energy of nucleation in the isothermal theory. In the capillarity 

approximation 

Avicivic  < 1, 1 /Avic  < 1 (i = 1,2). 	 (23) 

Hereafter, we will be interested only in the neighborhood of the critical 

("saddle" ) point 	— //ici C LVl , I 1 2 - 2cAZ/2c. This "near-critical region" 

is the most important one for the nucleation kinetics. In the near-critical region, 

Avic  represents a characteristic scale of change of vi-dependent functions and, 

consequently, we have the operator estimate 0/Ovi  1/Au.. On the other hand, 

11Avie  (i = 1,2) in this region, according to eq.(22). Therefore, in the 

near-critical region, the second term on the RHS of eq.(21) is dominant and we 

have the following operator estimates: 

1,81 
• 

W1: ayi  Avic  
(i = 1,2). 	 (24) 

Let us transform eq.(11) into a differential equation for the distribution 

P(vi, ,2, e )  in the standard way, by expanding the terms D1  and D2 in Taylor 

series in the deviations of vi  +1 from vz  and E E Pi from E (i =1, 2) and retaining 

only the leading terms in the small parameters 1/Avi, and 1/Av2c: 
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(21) 



a 	 (Li wi °É° 	av2  Tim 	P a  (1;2 W2 °É 	49m P  avt 	 m! aen 	 m=1 m! aem 
00 (-1)m + 	(Tm Li 	f,2) (e_ 2e) P E 	 m! ..1 

a 	am 
E (_1)l m+i 	, 	2) aen P u!   (7, 	v,

„, 
 i 	2 	/ 	 + 

ni/=1 
m 

 
+ [(kik+ 	k2k+2  17 .14/.2) 	2 )77an,_ 

(-1)m  2mw 72mW2) (Z 2) 	P* — 	tTi 	2 m.I m.i  m=2 

For simplicity, the independent arguments v1, v2  and 4.  are omitted and T1  and 

T2  are assumed to be constant and equal to their magnitudes for the critical 

nucleus. The terms aLiPlOvi (i =1,2) in the RHS of eq.(25) have the second 

order of smallness in 1/Au, but they will be important afterwards. According 

to eq.(19),characteristic values of e lie in the interval j í 1 where we have the 

estimates 

	

a 1« 	l. 	 (26) 

Therefore, Ti  and 7-2  are the expansion parameters in the series in m and l. 

Retaining all the terms of the series means that we extend the theory to values 

rs,  1 (i .= 1, 2) and go beyond the framework of the Fokker-Planck approximation. 

Let us establish a relative importance of the terms on the RHS of eq.(25), 

taking into account the estimates (24),(26), and F 	1/Au ic  (i -,, 1,2). 

Since the 1st, 2nd and 3rd terms contain the operators L1,3/Ô/i1, L2, and 

a/3v2, we conclude that their ratios to the last, fifth, term do not exceed 1/Av1c 

or 1/Aii2, (which are much less than 1) in order of magnitudes. 

Comparing the first member of the last term on the RHS of eq.(25) with 

the second member, we conclude that the first member is the main one in this 

term, because of the inequalities (ki  +1)1ki  > 1 (i = 1,2) and factorial factors 
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(25) 

a p 
at 
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m!m!. One can also see that the ratio of the fourth term to the last term does 

not exceed the parameter 

1le2  ( 	'1W2)  
o 	

2 (k1  1)k2q1/171  k1(k2 1)71W2.  

assumed to be much less than unity: 0 < 1. Th.us, we conclude that on the RHS 

of eq.(25) the last term is the main one. 

Equation (25) governs the time evolution of the three-dimensional distribution 

P. The hierarchy of terms established above corresponds to the hierarchy of time 

scales in the development of the distribution P. 

The eigenfunctions of the principal operator of the governing equation, i.e. 

of the operator of the dominant term on the RHS of eq.(25), are the Hermite 

polynoMials IIj 	H()(H0  = 1,H1  = 2,H2 = 4e — 2,...), satisfying the 

recursion relations 

—a 	(—a — 2") H = 
	 (27) 

Hence, 

[fkl +1 72wi+  k 	a 2 1 2w2  
ki 	1 	k2 7-2 	) (a4 

\ a ( œ _1)- 	
Trw2) _ E mim!  

m=2 

where j = 0,1,2, ... and 

a 2e) 

m  :emm 	 (28) 

= 2 
k1  + 1 	k2  + 1 	 2711 	qm W2)  

712Wi  + 2 k2  rM72  (j 1)! E 	 (29) 
rn=2 

We can conclude that —jAi  (j = 0,1,2, ...) are the eigenvalues of the principal 

operator. They all are negative except that for j 	0 which is equal to O. For 

j = 0 and j = 1 the sum over m in (29) is absent. Obviously, 	< A2 < •••• 

The Hermite polynomials form a complete system of eigenfunctions satisfying 

the orthogonality and normalization relations 

Hk ) = 6ik 23 j! (j,k = 0,1,2, ...), 	 (30) 
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where bi k  is the Kronecker delta and the scalar product (0, T) of function .1) and 

1P of is defined as 
(4, , w)  _ 7_1/2 f d 

_2 
, 

From eqs.(19),(31) and Ho  = 1 it follows that the two-dimensional distribution 

f 	 f(vi , v2 ) of the nuclei with respect to variables v1  and v2  is given by the 

equation f = (H0 , P), i.e. the two-dimensional distribution f is the projection of 

the three-dimensional one P on Ho. 

Let us take the projection of governing equation (25) on Ho. According to 

eqs.(27) and (30), only the first and second terms (which are the smallest ones, 

of order of 1/(Av1c )2  or 1/(Av2,)2 ) make contributions to this projection. Since 

f = (Ho , P), we obtain 
a f 	8,11 8J2  
at 8v1 31)2' 

where 

(Ho, (Li — E P) m! aem m=1 
is the flux (averaged over e)  of nuclei along the vi-axis. 

(i 	1,2) 	(33) 

4 	Stage of thermal relaxation 

Retaining in the RHS of\governing equation (25) only the leading term, we 

obtain 

(31)  

(32)  



a aP 	[ kl + 1   i_Mji 	- + 1  2 T2  W2) ("" — 	- at R 	k2 
a 	 -  am p.  00  (-1)m  _E 

rn!rn! 
, 	vv 
, 2mwi 

I 7-22mW2)
( 	e'S 	Oen] ae 

„) 
m.2 

The solution of eq.(34) is given, according to relations (28),(29), by 

00 
P = f s  

j=1 

where f and fi do not depend on e  nor t and can be presented, by virtue of 

definition (31), as 

	

f = (Ho, P) = (Ho, Pit=0), = ( 23  i!)-1(Hi Plt=o) 
	

(36) 

(Po is the three dimensional distribution P at t = 0). It follows from eq.(36) 

that f still represents the two-dimensional distribution with respect to v1, v2  and 

it does not change as long as P is governed by eq.(34). Therefore, eq.(34) describes 

the thermal relaxation of nuclei. The relaxation is described by the spectrum of 

times 1/j)i  (j =1,2, ...), which decrease with increasing j. 

It is evident from eqs.(19) and (31) that if (I) is some function of the variable 

e, its average value .1) with respect to the variable 4 is determined as = 	P)/f.  . 

Therefore, mean values with respect to will also change together with P in the 

process of thermal relaxation. 

At the end of the thermal relaxation, as follows from eq.(35), we have 

P f (t 	te ), 	 (37) 

1k2  
1/ 1-  — 2 k2(lei  1)1-Ni  ki(k2 1)71W2' 

where te  is the principal thermal relaxation time. Since f does not depend on 

and taking eqs.(19),(37) into account, we can conclude that the distribution of 

nuclei with respect to the temperature approaches a quasiequilibrium Gaussian 
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(34)  

(35)  

(38) 
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distribution by the end of the thermal relaxation stage, the duration of which is 

given by the time te . 

Let us denote by t„ the characteristic time of change of two-dimensional 

distribution f. In order to obtain an estimate for t, at the end of the stage of 

thermal relaxation, let us replace P by f in eq. (33) (it is correct enough by virtue 

of eq.(37)) and then substitute J1  and J2 in eq.(32). Using estimates (24), one 

can obtain for t v : 
(v)2 (2 ti, es 

W1 (A112c)2  + W2 (Aallc)2  

Accordingly, we have: 

t 	1 ki k,  [W1/(Av1c)2  W2/(3•v2c)2]  e  e   
tu 	2 (ki  1)k2TM/Vi  + (k2 1)71W2 

This inequality expresses the hierarchy of time scales which has allowed us to 

separate the thermal relaxation stage. During this stage the distribution of nuclei 

with respect to the variable e  approaches the quasiequilibrium distribution, while 

the distribution with respect to v1  and v2  practically does not change. 

The quasiequilibrium distribution is an eigenfunction of the principal operator 

of governing equation (25) with zero eigenvalue. Therefore, as follows from eq.(37), 

the operators of the first four terms on the RHS of eq.(25) also become important 

at the end of the stage of thermal relaxation. 

5 	Numerical calculations 

To illustrate our theoretical results by numerical calculations we considered 

the binary nucleation in the vapor mixture of water (1st component) and ethanol 

(2nd component) at To  = 293.15 K. Air at the normal atmospheric pressure was 

chosen as carrier gas. All the physical properties of both components required 

for calculations are well determined for both liquid and vapor phases. Besides, 

accurate fits of several thermodynamic properties vs. composition are required 

(39)  

(40)  
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Table 1. 

Main theoretical characteristics of the nonisothermal nucleation on the stage of 

thermal relaxation for the water(1)-ethanol(2) system at To  =- 293.15 K (air at 

the normal atmospheric pressure being a carrier gas); aci and ati are the 

sticking and thermal accommodation coefficients of component i; Œ g  is the 

thermal accommodation coefficient of carrier gas; Ci and T are the vapor 

activity and the molecular relative condensation heat of component i; te and t v  

are the time of thermal relaxation and the characteristic time of change of the 

distribution of nuclei with respect to numbers of molecules. 

ati - 1, at2 = 1 
Œ g  -= 1 g 

aci - 1, Œc2  - 1 aci ---= 0.5, Œc2  = 0.5 
(i. 14 15 14 1.5 
(2 1.0 1.25 1.0 1.25 1.0 1.25 1.0 1.25 
ri 0.34 0.39 0.39 0.44 0.34 0.39 0.39 0.44 
72 0.33 0.38 0.37 0.42 0.33 0.38 0.37 0.42 

te , ns 0.93 0.74 0.84 0.68 1.68 1.33 1.51 1.23 
t u , ,us 0.04 0.06 0.03 0.04 0.08 0.11 0.06 0.07 

aci = 0.5, Œc2 = 0.5 
Oen_ -- 0.51  Cea -- 0.5 

a = 0 5 Œ g 	• a = 0 1 g 	• 
Ci. 1.4 1.5 1.4 1 5 
(2 1.0 1.25 1.0 1.25 1.0 1.25 1.0 1.25 

te , ns 1.85 1.46 1.66 1.34 2.00 1.57 1.79 1.43 

= 0.5, Œc2 = 0.5 
ati = 0.1, Œt2  = 0.1 

as  -- 0.5 ce = 0 1 g 	• 
Ci 1 4 15 1.4 1.5 
(2  1.0 1.25 1.0 1.25 1.0 1.25 1.0 1.25 

te, ns 1.86 1.47 1.67 1.35 2.02 1.58 1.81 1.44 
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for water (1) - ethanol (2) liquid solution and they are fortunately also available. 

The specific heats of pure water and ethanol in liquid and vapor phases 

were determined with the help of formulas given in Thermophysical Properties 

of Matter (1970). The latent heat of pure water was calculated from the formula 

given by Feder et al. (1966) and that of pure ethanol was obtained by linearly 

extrapolating data in CRC Handbook of Chemistry and Physics (1992-1993). 

The equilibrium vapor pressure of pure water was taken from CRC Handbook of 

Chemistry and Physics (1992-1993), and that of pure ethanol was calculated from 

the formula given by Mirabel and Katz (1977). The partial molar volumes v1  and 

v2  of pure liquid water and ethanol, respectively, were computed from the density 

values given by CRC Handbook of Chemistry and Physics (1992-1993) and the the 

volume V of the nucleus was related to v1  and v2  as V = vivi  v2v2. As for the 

surface tension o- of water-ethanol liquid solution, we, following Wilemski (1987), 

fitted ln o- with a third-order polynomial in the variable 4(1 — x)/(4 — 3x), using 

data in Timmermans (1960). Following Mirabel and Katz (1977) and Wilemski 

(1987), the liquid phase activity coefficients were determined from the three-

parameter Redlich-Kister equation of d'Avila and Silva (1970). 

Since there exist no theoretical nor experimental data on the thermal accom-

modation and sticking coefficients, calculations were carried out at various values 

of ceci, a j  (i = 1, 2), and ag  in order to illustrate the influence of these parameters 

on theoretical predictions. To illustrate the dependence of theoretical predictions 

on the degree of vapor mixture metastability, calculations were performed for four 

couples of water and ethanol activities (1 , 2 at each set of coefficients ceci, ati (i = 

1, 2), and ag  (activity (i =- 1, 2) is defined as Ci = ni/nsi, where ni  is the number 

density of i-component molecules in the vapor mixture, and nsi  is the equilibrium 

number density of i-component molecules in a vapor saturated over the pure bulk 

liquid of this component). Results of calculations are presented in Table 1. 

Since the values Ti (i = 1, 2) do not depend on aci , aii  (i = 1, 2), and a, and 
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the time tv  does not depend on an , an, as, we presented r (i = 1, 2), and t, only 

in the first part of Table 1. 

Figure 1 shows the time dependence of the first mode of the deviation P — f 
of the distribution of nuclei with respect to the temperature from a Gaussian 

equilibrium distribution at the stage of thermal relaxation not only for the binary 

nucleation in the water-ethanol system (using equation (35)) but also for the 

unary nucleation of pure water vapor (according to Grinin and Kuni (1989)). 

According to eq.(35) and to the analogous equation of the one-component theory 

(Grinin and Kuni, 1989), the first mode of the deviation P — f corresponds to 

the greatest relaxation time (t) and, therefore, is the slowest (the most "long-

lived") mode of P — f. The second mode decreases with time about three times 

as fast as the first one. Air at the normal atmospheric pressure was a carrier gas 

in both system and the thermal accommodation coefficients of both water and 

ethanol were equal to 1. Figure la corresponds to the binary system and Figure 

lb represents the nucleation of pure water. The curves of series A were obtained 

for the case where the sticking coefficients aci  and ac2  of water and ethanol were 

both equal to 0.5; series B corresponds to the case where ad. and ac2  were both 

equal to 0.1. In each series, the values of the thermal accommodation coefficient 

of air were taken as follows: a, = 1 for the boldest (lower) curve; a9  = 0.5 for 

the dashed (medium) curve; ag  = 1 for the thinnest (upper) curve. According to 

Fig.1, the supersaturation (activity) of pure water vapor has to be equal to about 

3.5 so that the time of thermal relaxation of the unary nucleation should be the 

same as (or close to) the time of thermal relaxation of the binary nucleation of 

water and ethanol at the activities 	= 1.5 and (2  = 1.0. 

As shown in Section 3, the strong inequalities r< 1 and 7-2  < 1 are 

necessary for the validity of the Fokker-Planck approximation in kinetic equation 

(25). Since under the considered external conditions the molecular relative con-

densation heats ri  and T2 of water and ethanol are not much less than 1, going 
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beyond the Fokker-Planck approximation is quite founded. 

Numerical calculations show that e is less than 0.2, that is, the strong 

inequality 9 < 1 is well satisfied. Therefore, the transition from eq.(25) to eq.(34) 

is quite founded. Table 1 clearly confirms the strong inequality (40) reflecting the 

established hierarchy of time scales of the development of the distribution P. 

Table 1 also shows a strong dependence of the duration te  of thermal relaxation 

stage on the sticking coefficients an  and ac2 ; this is due both to the linear 

dependence of Wi (i = 1, 2) on aci  and to the dependence of ki  (i = 1, 2) on 

aci  in eq.(38). The dependence of t e  on a g  is significantly weaker and te  is almost 

unsensitive to the thermal accommodation coefficients an  and ai2  of reflected 

vapor molecules (at least, when pl  and p2  are greater than or of the order of some 

units). 

Note that, according to eqs.(15),(16), the dependence of the theory on the 

quantity of carrier gas in the system is implemented through the product a gn g . 

This means that the time te  of thermal relaxation identically depend on ag  and 

n g . Therefore, Table 1 and Figure 1 allow us to conclude that the greater is the 

number density of carrier gas molecules, the faster is the thermal relaxation of 

nuclei and hence the weaker is the influence of the release of condensation heat 

on the nucleation. Such a dependence is in accordance with the results of Barrett 

(1994) and Barrett et al. (1993) for the one-component nucleation. According to 

Table 1, there exists also a very weak dependence of the time of thermal relaxation 

on the activities of condensable components: te  clecreases slightly with increasing 

and (2  (of course, this does not mean at all any decrease of the influence of 

thermal effects on the nucleation). 
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6 Conclusions 

Taking account of the increase in the nucleus temperature due to the latent 

heat of condensation, we have considered the homogeneous binary nucleation in 

the case of instantaneous creation of a metastable vapor mixture. 

First, we have constructed the discrete balance equation (4) for the time 

evolution of the three-dimensional distribution of nuclei with respect to the 

numbers of molecules of both species in the nucleus and its temperature. That 

balance equation takes into account all the possible types of elementary interactions 

of the nucleus with the vapor-gas medium: both the absorption and emission of 

a molecule of 1st or 2nd components of the vapor mixture and the reflection of a 

molecule of the vapor-gas medium. 

Next, reducing balance equation (4) to a continual form, we have obtained 

three-dimensional kinetic equation (25) of the nonisothermal binary nucleation 

reaching beyond the framework of the Fokker-Planck approximation. Our kinetic 

equation (25) governs the time evolution of the three-dimensional distribution 

not only in the case where the latent heats per molecule for both components 

are much less than the rms equilibrium fluctuation of the nucleus energy, but 

also in the case where these latent heats are of the same order of magnitude as 

the rms fluctuation of the nucleus energy. The kinetic equation of Lazaridis and 

Drossinos (1997) describes only the first of these situations: the Fokker-Planck 

approximation in the case of small latent heats of both components becomes 

acceptable and our kinetic equation (25) can then be reduced to theirs. 

Conditions (23) of the capillarity approximation being fulfilled, we have• 

established the hierarchy of the terms on the RHS of eq.(25). Such a hierarchy 

corresponds to the hierarchy of time scales in the development of the three-

dimensional distribution of nuclei (expressed by strong inequality (40)). This 

is what has allowed us to separate the stage of thermal relaxation of nuclei. At 
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that stage the distribution of nuclei with respect to the temperature approaches a 

quasiequilibrium Gaussian distribution, while the distribution with respect to the 

numbers of molecules vi  and v2  practically does not change. The three dimensional 

distribution at the stage of thermal relaxation is given by eq.(35) obtained by 

solving the kinetic equation (34) to which is reduced eq.(25) at this stage. 

The theoretical results have been illustrated by numerical calculations for the 

nucleation in the water-ethanol system with air as a carrier gas for vario-us values 

of sticking and thermal adaptation coefficients. Numerical results are presented by 

Table 1 and Figure 1. Calculations have shown that, as expected, condition (40) of 

hierarchy of time scales is well fuffilled. This means that, as known from the one-

component theory of Grinin and Kuni (1989), the thermal relaxation of the nuclei 

occurs much faster than the evolution with respect to numbers of molecules in the 

nucleus. The influence of the quantity of carrier gas on the importance of thermal 

effects is also predicted to be similar to that of the one-component theory (Barrett, 

1994; Barrett et al., 1993): the greater is the carrier gas pressure, the slighter is 

the influence of the release of condensation heat on the nucleation. At present, 

it is not possible to make a comparison between our theoretical predictions and 

experimental data because even the most modern experimental methods (Strey 

and Viisanen, 1993; Viisanen et al., 1994; Viisanen et al., 1997)can not provide 

any data about the time dependence of the distribution of binary nuclei with 

respect to the temperature. Evidently, such a comparison will be necessary to do 

when appropriate experimental data become available. Besides, it would be very 

interesting to compare the predictions (concerning the time of thermal relaxation 

te) of the theory developed with results that can be obtained with the help of 

the method of numerical solution of birth-death equations proposed by Wyslouzil 

and Wilemski (1995). 

In order to describe the evolution of the system after the stage of thermal 

relaxation (that is, for t 	te ) and to obtain an exact expression for the rate of 
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binary nonisothermal nucleation with the help of relation (33), we have to solve 

the eq.(25) taking account of all the terms on its RHS. These problems will be 

objects of our further research. Of course, as long as there are no experimentalnor 

theoretical data about sticking and thermal accommodation coefficients aci, ati  (i = 

1, 2), ag , theoretical predictions will remain uncertain enough. Nevertheless, we 

will be able to get approximative magnitudes of these coefficients by making a 

comparison between theoretical predictions and experimental data on nucleation 

rates. 
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Figure la. Thermal relaxation stage of the binary nucleation in the water(1)- 

ethanol(2) system the activities being 	= 1.5 and (2  -= 1.0 at To  = 293.15 K 

with air as a carrier gas. The curves show the time dependence of the slowest 

(first) mode of the deviation P — f of the distribution of nuclei with respect 

to temperature from a quasiequilibrium Gaussian distribution (equation (38)). 

Series A corresponds to the sticking coefficients ad. = 0.5 and ac2-= 0.5; series 

B corresponds to aci  = 0.1 and a c2 = 0.1. In each series, the values of the 

thermal accommodation coefficient of air are: ag  = 1 for the boldest (lower) 

curve; ag  = 0.5 for the dashed (medium) curve; ag  = 0.1 for the thinnest (upper) 

curve. 
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Figure lb. Thermal relaxation stage of the unary nucleation of pure water 

at 	= 3.5, To  = 293.15 K with air as a carrier gas. The curves show the time 

dependence of the slowest (first) mode of the deviation P — f of the distribution of 

nuclei with respect to temperature from a quasiequilibrium Gaussian distribution 

(equation (38)). Series A corresponds to the sticking coefficient aci  = 0.5; series B 

corresponds to aci  = 0.1. In each series, the values of the thermal accommodation 

coefficient of air are: ag  = 1 for the boldest (lower) curve; ag  = 0.5 for the dashed 

(medium) curve; ag  = 0.1 for the thinnest (upper) curve. 
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2.2 L'étape suivant la relaxation thermique 

À l'étape suivant la relaxation thermique, l'équation cinétique tridimension-

nelle peut être résolue en utilisant successivement la méthode de Chapman et 

Enskog et celle de séparation complète des variables. L'application successive 

de ces deux méthodes permet de réduire notre équation cinétique à l'équation 

monodimensionnelle de Fokker et Planck dont les coefficients contiennent toute 

l'information sur les effets thermiques. L'analyse d'une telle équation est bien 

connue. Ainsi toutes les caractéristiques de la nucléation binaire non-isotherme 

peuvent être déterminées. Ici nous présentons les caractéristiques stationnaires: la 

distribution tridimensionnelle des gouttes, la vitesse de nucléation, la composition 

et la température moyennes des gouttes. 

2.2.1 Article 3: Kinetic theory of nonisothermal binary nucleation: the stage 

following thermal relaxation 

Article publié dans la Physica A (1999), Vol.267, pp.322-342. 
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Abstract 

A kinetic theory is constructed for a nonisothermal binary nucleation at the stage 

following the thermal relaxation of nuclei. The three-dimensional kinetic equation 

to be solved reaches beyond the framework of the Fokker-Planck approximation even 

if one of two components has a large value of condensation heat. It is shown that, 

by successively applying the method of Enskog-Chapman and the method of com-

plete separation of variables to that kinetic equation, one can reduce the problem of 

constructing the three-dimensional kinetic theory to the well investigated problem 

of solving an one-dimensional kinetic equation of first-order phase transition, in the 

non-stationary case as well as in the stationary one. For the steady state, the main 

characteristics of nucleation, including the nucleation rate, are found. Theoretical 

results are numerically evaluated for the nucleation in ethanol-hexanol system and 

compared with predictions of classical (isothermal) theory and experimental data. 
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1 Introduction 

Binary nucleation is the first stage of any first order phase transition in 

two-component systems, in particular, of the binary condensation consisting of 

the formation and growth of drops of a liquid solution of two substances in 

a metastable mixture of vapors of these substances. During the nucleation the 

nuclei of a liquid phase are formed. They play the role of condensation centers 

afterwards. 

At present, there exists an adequate theoretical description of main aspects 

of one-component nucleation. At the same time the kinetic theory of binary 

nucleation has been developed almost exclusively for the case where the metastability 

of two-component vapor mixture is created instantaneously and both thermal 

effects of condensation and presence of heterogeneous nucleation centers are 

neglected (Reiss [1]; Stauffer [2]; Shi and Seinfeld [3]; Wilemski and Wyslouzil 

[4]). However, it is well known, that heterogeneous nucleation can occur at much 

lower degrees of metasfability than the homogeneous one. Besides, as follows from 

the nonisothermal one-component nucleation theory (Kantrowitz [5]; Feder et al. 

[6]; Grinin and Kuni [7]; Barrett and Clement [8]; Barrett [9]), nonisothermal 

effects can have a substantial influence on the kinetics of the process. 

As discussed earlier (Djikaev et al. [10]) there exist several kinds of nonisothermal 

effects, but the most important of them is the effect due to the condensation heat 

transferred to a nucleus or extracted from it in all individual events of absorption 

or emission of a vapor molecule by a nucleus. As first pointed out by Feder 

et al. [6], in the case of one-component nucleation that effect can diminish the 

nucleation rate as many as hundreds of times relatively to the nucleation rate in 

the isothermal theory. Such a decrease is physically easy explained. Firstly, the 

temperature of a growing nucleus gradually increases with the growth of its size 

because of the release of the condensation heat. The increase in the temperature 
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of nucleus causes an increase in its ability to emit molecules what naturally 

slows down its growth. Secondly, the increase in the temperature of nuclei causes 

an increase in the average temperature of vapor-gas medium and this is what 

decreases the metastability (supersaturation) of the condensing system. 

Obviously, in the case of binary nucleation the thermal effect influences the 

nucleation rate in the same ways as mentioned above. Therefore, the nonisothermal 

nucleation rate should be less than the isothermal (classical) one. That is why 

it is not easy to explain the result of Lazaridis and Drossinos [11]: following the 

approach developed earlier by Langer [12] and extending the Barrett's [9] analysis 

of the one-component nucleation to the binary nucleation, they obtained an 

explicit analytical expression for the total rate of steady-state binary nonisothermal 

nucleation, but when applied to the water-ethanol system, their model predicts 

a nucleation rate that is higher than the classical (isothermal) nucleation rate. 

As pointed out by many authors (Wyslouzil et al., [13]; Wilemski and Wyslouzil, 

[4]), the classical (isothermal) theory of binary nucleation predicts nucleation rates 

much higher than experimental results (including the water-alcohol systems, in 

the cluster models of Flageollet-Daniel et al. [14] and Laaksonen [15]). Although 

most of those authors agree that those discrepancies are the most probably 

accounted for by the effect of surface enrichment (Mirabel and Katz [16]; Wilemski 

[17,18]; Flageollet-Daniel et al. [14]; Laaksonen [15] ), taking account of thermal 

effects, nevertheless, can improve an agreement between theoretical predictions 

and experimental data on the nucleation rate. Evidently, such an improvement 

will be noticeable only if the quantity of the carrier gas in the system during 

experiments is not sufficient to ensure the constancy of nucleus mean temperature 

(an extensive treatment of carrier-gas effects is given by Ford [19] and Barrett et 

al. [20]). 

In this paper we continue to develop the approach to the kinetic theory of 

nonisothermal binary nucleation proposed by Djikaev et al. [10] 011 the basis of 
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the method developed by Grinin and Kuni [7] in constructing a kinetic theory of 

nonisothermal one-component nucleation. As shown by Djikaev et al. [10], that 

approach allows one to analytically describe the stage of thermal relaxation of 

nuclei at which their distribution with respect to the temperature approaches a 

quasiequilibrium Gaussian distribution while their distribution with respect to 

numbers of both components practically does not change. In this paper we will 

analytically describe both the subsequent evolution (after the stage of thermal 

relaxation) of nuclei and the final steady state of system. Theoretical results will 

be numerically evaluated and compared with experimental data and predictions 

of isothermal theory. 

2 	Kinetic equation of nonisothermal bin.ary nucleation 

Let vi (i = 1, 2) be the number of i-component molecules in a nucleus, and 

let E be the thermal energy of such a nucleus. The thermal energy is linear in 

the temperature T of a nucleus and is measured from its value at T = To, where 

To  is the temperature of the vapor-gas medium. Expressing all values having the 

dimensions of energy in units of kBT0  (kB  is Boltzmann's constant), we have 

E = (civi + c2v2)[T I To — 11, 	 (1) 

where c (i = 1, 2) is the molecular specific heat of component i in the nucleus 

(all specific heats are expressed in units of kB ). 

Choosing the values v1, v2, and E as independent characteristics of the 

nucleus, let us denote by g(vi , v2 , E, t) the distribution of the nuclei with respect 

to the variables v1, v2, and E at the time t. Introducing the variable 4 as 

= E/[2(civi 	c2v2)]1/2, 	 (2) 

let us present the distribution g(vi , 1/2 , E , t) in the form 

g(vi , v2 , E ,t) = [27r(ci vi 	c2v2)] 1/2e-e2p(vi, v2,4), 	(3) 
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where P(vi, v2, t) is a function of 	v2, 4, and t. 

Following the approach of Feder et al. [6] and that of Grinin and Kuni 

[7] to the construction of the kinetic equation of nonisothermal one-component 

nucleation, Djikaev et al. [10] obtained the equation governing the time evolution 

of the function P(vi, u2, e, t): 

OP 00  T8\ 
3  = 	 (fi Wi 

00
7171 	) P 	a  ( L'2 W2 	 P  Ot 	out 	m=i  m! e9en 	av2 m 
	

rn! 3 'n4 

V 	(-1)m (Tmfl rri;2) (-8% 	)  P 1 
m=1 

	

(-1)/  (r 
	

Tw2)  (s i:e  2e) aaemm  P 	 (4) 

[(

rr4/=1  Le m!/! 1  

k +1 	k2 1  2  ) (a 2e) 2_ 

	

"r wl 	k, T2 W2 -ai — 
0° 	(-1)m i_2mW_ 	( — 2) 

rn 

—] _  	
P. 

_aae  e aem 
E 
m=2 	il" il"  
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Here Wi and ß,  (i = 1, 2) are the number of i-component molecules being 

absorbed by a nucleus per unit time and the condensation heat of component i 

per molecule, respectively; aci  and ati  (i = 1, 2) are the condensation (sticking) 

coefficient and the coefficient of thermal adaptation in a reflection event of i-

component molecules, respectively; c g  is the coefficient of thermal adaptation in a 

reflection event of passive gas molecules; 	mi, and ni (i = 1, 2) are the effective 

(in the sense of energy transfer to the nucleus) specific heat, mass and number 

density of molecules of component i of the vapor mixture, respectively;cg, mg , and 

ng  are the analogous quantities for the passive gas; Ë 	0F/3v, F being the free 

1,2), 	 (6) 
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energy of formation of a nucleus in the thermal equilibrium with the medium, i.e. 

with the characteristic E = O. 

Retaining all terms of the series in the RHS of eq.(4) means extending the 

theory to values Ti 1 (i = 1,2) and thus going beyond the framework of the 

Fokker-Planck approximation. If both 71  and 72  are much smaller than 1, the 

Fokker-Planck approximation becomes acceptable and eq.(4) can be reduced to 

the kinetic equation of Lazaridis and Drossinos [11]. 

In the case of one-component nucleation where either L2  = 0, T2 = 0 or L1  = 

0, T1  = 0 (i.e. only one component is present in the system), eq.(4) transforms 

itself into the kinetic equation of nonisothermal one-component nucleation of 

Kuni and Grinin [7]. 

In the variables v1  and v2, we are interested only in the near-critical region 

lvi — v j1 	rs  Avic  (i = 1, 2), which is the most important one for the nucleation 

kinetics; the parameters vic  and Avic  are defined as 

Fil  ,„,„,2=„2c = 0, 	= 12/Fiçn 	(i = 1,2). (8) 

The values vu, v2, would determine the coordinates of the saddle point of the 

surface of free energy of nucleation in the isothermal theory. Within the framework 

of the capillarity approximation 

Avicivic  < 1, 1/Aui, < 1 (i 
	

1,2). 	 (9) 

	

As in the near-critical region 	1/Av,, (i = 1,2), the following operator 

estimates can be obtained for that region: 

	

1 - 	a 	1 
—Li   (i=1,2). 	 (10) 
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3 	Stage of thermal relaxation of nuclei 

Taking into account that characteristic values of lie, according to eq.(3), 

in the interval 11 	1 where a/ae 	1 and using conditions (9) and operator 

estimates (10), one can establish the relative importance of the terms on the RHS 

of eq.(4). The ratios of the first, second, and third terms to the last (fifth) term 

do not exceed 1/Avic  and 1/Av2, (much less than 1) in the order of magnitude. 

The ratio of the fourth term to the last one does not exceed the parameter 

1 	kik2(7P471.  +111472)  (11) 
2 (ki  1)k2rNi  ki(k2  1)TP47.2  

assumed to be much less than 1 (in the last term itself, the first two members 

are evidently the main ones). Such a hierarchy of terms on the RHS of eq.(4) 

corresponds to the hierarchy of time scales in the evolution of the distribution 

P. It allowed Djikaev et al. [10] to separate the stage of thermal relaxation of 

nuclei and, retaining in the RHS of eq.(4) only the leading (fifth) term, to find 

the distribution P for that stage as 

P = f 
	

(t 	te ), 	 (12) 

where H 	1-4() (j = 0,1,2, ...) are the Hermite polynomials (Ho  =- 1, H1 

2e, H2 = 4e - 2,•••), 

ki 	1
7-21471  + 2 

k2 + 1 	 2' (TrWiTrW2)  
= 2 	 I-DY'2 (j 1)! E 3 	k1 	1 	 k2 	 m=2 	ni!M!(i - nt)! 

, 	 kik2 te 	1/A1  = 2 k2(ki MW]. ki(k2 1)TZW2' 

f = (Ho, P) = (Ho, Po), f = (2j  !)(H, 

with the scalar product (4),T) of the functions 0 and III of defined as 

= 7-1/21 	c/4 e-2q)111 	 (16) 

(for j = 0 and j = 1 the sum over m is absent from eq.(13)). 

(13)  

(14)  

(15)  
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The Hermite polynomials H (j = 0,1,2, ...) are eigenfunctions of the 

principal operator in the governing equation, i.e. of the operator in the leading 

(fifth) term on the RHS of eq.(4). They satisfy the recursion relations 

a . 2j H_1, (—(9  — 2) H., = 	 (17) 

and form a complete system of eigenfunctions satisfying also the orthogonality 

and normalization conditions 

(Hi , 	= Sik2i  j! 	k =- 0, 1, 2, •••), 	 (18) 

	

where Sik  is Kronecker's delta. Obviously, 	(j = 0,1,2, ...) represents the 

eigenvalue corresponding to H. All the eigenvalues are negative except that for 

j = 0 which is equal to O. 

The function f f (v i  , v2 , t) in eq. (12) represents the two-dimension al distri-

bution of nuclei with respect to v1 , v2. Its time evolution is given by the equation 

a f 	0,11 	0.12  
at 5v1  51)2' 

where 
T:rn  arn  

= (H0 , (Li — 	E 	P 	(i = 1,2) 	(20) 
m! 

is the flux (averaged on e)  of nuclei along the vi-axis. As can be seen (Djikaev et 

al. [10], during the stage of thermal relaxation t 	te  the distribution of nuclei 

with respect to v1  and 112 does not change while the distribution with respect to 

the variable 4 approaches a quasiequilibrium Gaussian distribution by the end of 

that stage, and 

P f (t 	te ) 	 (21) 

as follows from eq.(12) (t represents the principal relaxation time). 

(19) 

4 	Evolution of nuclei after the stage of thermal relaxation 

The quasiequilibrium distribution is an eigenfunction of the main operator of 

the governing equation (4), the corresponding eigenvalue being zero. Therefore, as 
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follows from eq.(21), the operators of the first four terms on the RHS of eq.(4) also 

become important at the end of thermal relaxation stage. However, the operator 

of the last term is still the main one when acting on the deviation of P from f: 

according to eq.(15), this deviation is orthogonal to the eigenfunction 110  with 

the zero eigenvalue. This makes it possible to construct a solution of governing 

eq.(4) for t 	te  with the help of the Enskog - Chapman method. 

4.1 	Method of Enskog and Chapman 

Following Grinin and Kuni [7], let us choose the quasiequilibrium distribution 

as a zeroth approximation and present the distribution P as 

P = f 
	

(271)-' z(f )11i, 	 (22) 
j=1 

z3 (f) 	cÊ°  z.;1)(f), 	 (23) 

where the correction terms depend on the time only through the time dependence 

of the two-dimensional distribution f; the superscript indicates the number of 

the approximation and the subscript indicates the number of the mode. The 

components of the binary system are supposed to be numbered so that 1-1  > 72- 

Taking eqs.(17),(18) into account, let us substitute expression (22) in eq.(20): 

CO 

(i=1,2) 	 (24) 

(7-21 	72 /7.1).0bViOUSly, in order that the substitution of eq.(24) in eq.(20) bring 

us to an explicit equation governing the time evolution of the two-dimensional 

distribution f, we have to explicitly find the correction terms z( f). 

Estimates (10) and eqs.(19) and (24) allow us to conclude that when finding 

the correction term in /-th approximation 41)  from eq.(4) in the main order in 

1/3.vie  and 1/Av2c, one can neglect both the LHS and the first term on the RHS 

of eq.(4) already from the first approximation. Besides, already from the second 
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approximation one can neglect also the second term on the RHS of eq.(4). Thus, 

as the operator of the fifth term on the RHS of eq.(4) is more important than the 

operators of its third and forth terms when applied to the deviation P — f, one 

can obtain the following expression for the correction terms: 

oo 

41)(f) — (2T)i 	1[Li +TLL2].f, 41) (f) 	E rimz 1)(f) ( 1  > 2), 	(25) 
i!jAi 

where 

rira = — 
m! 	m (27 2 )i  -771+k-1 	W 1  

272j-m-I-2k1  
2-d 

k=rj, 	k!(m — k)!(j — m k)! 
(26) 

> m), 
Tj m = 

j — m 1 (j < m), 

Aj Ay(27-n 

(the prime in the sum over m in eq.(25) eliminates the term with j 

11 	

= 

means ,„, = 0 for any m). 

(27)  

m what 

(28)  

Rewriting eqs.(25) in the form 

41)  (f) = aLi f 	L2  f , 
00 , 
E rima(7:,-1) (l > 2), 	 (29) 
m=i 

= E „el) 	2), 	(30) 
m=1 

and substituting 41)  in eq.(23), we have 

z.i(f ) = aî if + biL2f 

00 

a • = E a( l)  b 3  , 3 
1=1 	1=1 

Eqs.(31),(24), and (19) result in the equation governing the time evolution of 

two-dimensional distribution f: 

f 	 (33) 

a(1)  = 

b(1) = (27?)i-1 	,(1) 
i!.Ptj 	

Ui 3 

o.) 	(21_)i_1 
a = 	 

(31)  

(32)  
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with 
00 	 00 	 00 	 00 

0 1 = 1 - 1471 	0 2 = 1 - 1472 	byrgi , si = j2b, 82 = 	aj r 1. 	(34) 
j=1 	 j=1 	j=1 	j=1 

Thus, according to eqs.(3),(22),(31), and (33), the problem of finding the 

three-dimensional distribution g(vi , v2, E, t) in the nonisothermal theory is reduced 

to the well investigated problem of finding the two-dimensional distribution 

f 	v2 , t). However, equation (33) for f significantly differs from the Reiss' 

kinetic equation of isothermal binary nucleation: both the difference of el  and 02 

from 1 and the presence of the third and forth terms on the RHS of eq.(33) are 

exclusively due to thermal effects. Nevertheless, eq.(33) is still an equation of the 

Fokker-Planck type. Therefore, to solve this equation, one can apply the method 

of complete separation of variables used earlier in a kinetic theory of isoth.ermal 

binary nucleation by Kuni et al. [21] and by Melikhov et al. [22]. The following 

section is based on d'ose two works. (The most general form of that method for 

a two-dimensional kinetic theory of first-order phase transition is given by Kuni 

and Melikhov [23], and its covariant formulation for a multidimensional theory is 

provided by Kuni et al. [24].) 

4.2 	Method of complete separation of variables 

4.2.1 Reduction of the two-dimensional problem to the one-dimensional 

one 

Let us introduce the variables x and t as 

X = 1111 ( 111 + v2), K = 67r1  / 2  (Vi 	v2 )-y3/2v 	 (35) 

where -y is the surface tension of a nucleus in units of the thermal energy of 

medium kBTo ; v is the volume of the nucleus per molecule. Choosing the variables 

x and i as independent characteristics of a nucleus (in the framework of two-

dimensional theory, of course), the free energy F of formation of the nucleus will 



1 ( 82 F \  
2 	3X2 ) c  OUI ) C22  — 

1 (02F  
2 8x2 	8v2) 
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take the form 

F = K 213  — KB(x), 	 (36) 

where 

B(x) = [xbi + (1 — x)b211[67r112-y3I 2v], 	 (37) 

b1  = ln 	, b2  = ln 	 (38) 
xfi(x) 	(1— x)f2(x)' 

= ni/nico  (i = 1,2), 	 (39) 

ri is the number density of i-component molecules in a vapor mixture; nis  is the 

number density of molecules of i-component pure vapor saturated over a plane 

surface of its own pure liquid phase; fi  (x) and f2(x) are the activity coefficients 

of the first and second components in a solution with concentration x. 

The variables x and K representing respectively the concentration of solution 

in the nucleus and its surface energy in power 3/2 are very good for the description 

of a global behaviour of free energy surface (Kuni et al. [21]; Melikhov et al. [25]). 

However, when considering the vicinity of the saddle point (near-critical region) 

which is most important for the nucleation kinetics, it is more convenient to 

introduce the variables x and y as 

x = 	— vic) c12(v2  — v2c), y = c21(v1 — vu) C22(V2 1/2c), 	(40) 

where 

     

en = 
1 (82F )  (aK  

ayi ) c, C12 = 2 
(02F\ (8K\  
\ 8k2 ) c av,) 

(41) (41) C21 = 

(subscript "c" marks magnitudes corresponding to the saddle point). In the near-

critical region, the variables x and y represent the deviations of the variables K 

and x, respectively, from their values K c  and x, at the saddle point, linearized in 

—u 	and v2  — v2, and normalized by their rms fluctuations. 
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In the near-critical region the free energy F can be approximated by the 

bilinear form which in the variables x and y becomes a quadratic one: 

F = 	— x2  + y2  . 	 (42) 

Let us denote by n(x , y ,t) the distribution of nuclei with respect to the 

variables x and y at the moment t and turn to the variables x and y in eq.(33). 

Replacing v by vc  in the vicinity of the saddle point and taking eq.(42) into 

account, we obtain 

n(x , y ,t) = vcC f (Yi, v2, t), 	 (43) 

C = [67r112.\  

 

2 (8X2 )c Vlc+V2c-c 

(.92F 	'73/2   7,2] 
(44) 

atn(x , y ,t) = a {0,(0, — 2x) — ço-10x(8y + 2y) 

02(0, — 2x) + ()_i(1  + p)May 2y)} n(x , y, t) (45) 

where 

a = wieic121+ w2e2c212 — w1w2(61+ 82)clici2 	 (46) 

wieich + w20242 - W1W2(61+62)C11C12 

Wle1C11C21 +W2e2C12C22 — W11V2(61C11C22 82C12C21) 
(47) 

wieich + w202cî2 - W1W2(81+82)C11C12 
Wle1C11C21 +W202C12C22 W1W2(81C12C21+b2C11C22) 

p = W1W2(0102 — W1W26162)(clic22 — ci2c21) 2(pe I a 2 	(48) 

and abbreviated notations Ot  0/0t, ... have been introduced for differentiation 

operators. 

As the two-dimensional equilibrium distribution of nuclei fe(vi, v2) with 

respect to the variables vi  and v2  is (Kuni et al. [21]; Melikhov et al. [25]) 

fe(V1,v2) = v e-F(vi ,v2) 	 (49) 

-= 

E = 
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the two-dimensional equilibrium distribution n,(x, y) with respect to x and y 

takes the form 

ne(x , y) = C e-FeeT
2 e

_y2 	
(50) 

(we again replaced v by vc ). Thus, the variables x and y have been separated in 

the equilibrium distribution. This allows one to conclude that the variable x is 

unstable and the variable y is stable. Therefore, the ordinary boundary conditions 

are applied to eq.(45): 

{

n(x, y ,t)I n,(x, y) = 
1 	(x 	— oo), 

0 (x oo). 
(51) 

(for arbitrary y). 

To ensure the complete separation of variables both in the equilibrium 

distribution and in the kinetic equation, let us introduce the new variables u 

and 7/ with the help of the Lorentz transformation 

u  = (1  _ a2 )-1/2(s  ay), ij  = (1  _ a2 )-172(y  ax), 	(52) 

the transformation parameter a satisfying the restriction —1 < a < 1. The 

Jacobian of transformation (52) is equal to unity. 

Passing from the variables x and y to the variables u and 77 and choosing 

the parameter a as 

1 
= —

2E 
{(,os + 1 r [(cps + 1 r)2  — 4çoE]1/2} , (53) 

we obtain 

atn(u,ri, t) 

	

n(u07) = n(x , y), 	 (54)  

	

2, 	 (55) 

n e(u , ri) = Ce-Fceu2 e-712 , 	 (56) 

= A {
E (,0 a

Mau — 2u) + 1 	au(4977  + 20+ 

ço  (1 — sa)2  ,7077  + 20} n( u , t), 	 (57) 2 	ej  E 	a r 
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where 

A = a(1 — 2) = a  {(ps — 1 — r [((ps + 1 + r)2  — 4pe]1/21 	(58) 
2(ps 

The expression under the square root sign in eq.(53) must not be negative so 

that a should be real; this imposes the restriction (ços 1 + r)2  > —4p on the 

parameters p, e, and r. The sign of the square root in eq.(53) is chosen so that 

the conditions aJ < 1 and A> 0 be also fulfilled. For example, in the case where 

r > 0 and ço = e, all these three conditions are automatically satisfied by choosing 

the minus sign for the square root in eq.(53). According to eq.(47), the equality 

(,o = s is equivalent to the equality 8i = 82  which is verified, for example, in any 

of the following particular situations: 1) ri  = 72 ; 2) the first approximation is 

	

satisfactory in calculating ai  and bj; 3) a12 	ce .2  and the small terms of order 

... are neglected in finding ai and bi. 

According to eqs.(55),(52), the variable u is unstable and the variable g is 

stable. This allows one to apply to eq.(57) the usual (in the nucleation kinetics) 

boundary conditions: 

	

n(u, g, t)ine(u, g) = { 1 
	(u ----> —oo), 

0 	(u --> oo) 

for arbitrary 

As shown by Kuni and Melikhov [7], the solution of eq.(57) with boundary 

conditions (59) is given by 

n(u, ij, t) =7-112 p(u,t)e-e 	 (60) 

where the time evolution of the function p(u,t) is governed by the one-dimensional 

equation 

at p(u,t) = AD„(au  — 2u)p(u, t) 

with the boundary conditions 

1 	(u --+ —oo), 
p(u,t)I pe(u) = 

0 	(u ---> oo), 

(59) 

(61)  

(62)  
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the function pe  being defined as 

pe  (u) = 	/ 2 e— Fe e  u 2 	 (63) 

According to eq.(60), 

p(u , t) = f 	n(u , , t) 	 (64) 

This shows that p(u,t) represents the one-dimensional distribution of nuclei with 

respect to the unstable variable u. 

Eq.(57) can be presented in the form of two-dimensional continuity equation 

'902( 11 	t) = —auju — a„i„, 	 (65) 

where ju  and jn  are the flux densities of nuclei along the u- and 77-axes. Evidently, 

distribution (60) makes the flow jn  vanish, what means that in the variables u, 

the two-dimensional flow of nuclei is parallel to the u-axis. 

Let us present equation (61) in the form 

atP(u, t) = 3uJu Ju = —A(au — 2u)p(u, t), 	 (66) 

where J  (function of u and t) is the one-dimensional flow of nuclei along u-axis 

integrated over the stable variable. 

In the near-critical region lu 	1 we have the estimates 3/au 	u 	1 

(without paying attention to signs) which, with the help of eq.(60),(61), allow us 

to conclude that the characteristic time tu  of the change of the distribution of 

nuclei with respect to unstable variable in that region can be estimated as 

tu  A. 	 (67) 

Obviously, tu  will also represent the time in which the steady state is established 

in the entire near-critical region 	1. 
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In the steady state ju, is independent of u and t. Therefore, according 

to eqs.(66),(62), for the one-dimensional steady-state nucleation flux (45  and 

distribution p3(u) we have: 

(L), = 7r -112 A p e(u)1 	, p s (u) = 7r -112  p e(u) f du 	 (68) ' Cui2  
u=o 

(subscript "s" marks steady-state values). 

4.2.2 Invariance with respect to the choice of the unstable variable 

Let us show the invariance of the theory with respect to the choice of the 

unstable characteristic of a nucleus. 

By virtue of eqs.(52),(54), and (57), the distribution 

ay 

	

n(x , y ,t) = 7I--1/2p( x  + 	, t) exp [ (
Y+  	)2] 

	

cr 	 cr 
(69) 

in which o-  = (1  _42)1/2, is the solution of eq. (45) with boundary conditions (51). 

Defining the one-dimensional distribution of nuclei p(x ,t) with respect to x as 

p(x , t) = i c: dy n(x , y , t) (70)  

and substituting eq.(69) in eq.(70), we obtain 

x 
du 

) 
p(u , (71)  exp p(x , t) = 71/21a

1 
 f 0.  [ 

According to eqs.(70),(50), and (51), this function satisfies the boundary conditions 

with 

P(x,t)/Pe(x)= 

pe  ( x  

1 	(x —› —oo), 

0 	(x —› oo). 

c71/26-Fc es2  

(72)  

(73)  

Let us differentiate eq.(71) with respect to t. Making several simple transformations 

in the RHS of obtained equation with the help of eqs.(66) and (71), one can rewrite 
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it in the form 

at p(x,t) = —49„.13 , J = —A(a, — 2x)p(x,t), 	 (74) 

where J (function of x and t) is the one-dimensional flux density of nuclei along 

the x-axis integrated over the stable variable. 

The variables x,y defined as 

x = 	— 	 y = cr-1(y — au) 	 (75) 

can be assigned to an arbitrary value of a satisfying the restriction a< 1. It is 

the most general definition of the unstable (x) and stable (y) characteristics of a 

nucleus ensuring the quadratic form for F. Eqs.(72)-(74) confirm the invariance 

of the theory with respect to the choice of the unstable variable of a nucleus as 

they transform themselves into eqs.(62),(63), and (66) if a = O. 

For the steady state, eqs.(56),(63),(68),(69),(50), and (73) allow one to find: 

ns(x,y) = _1/2 ne(x, y) fr.fay  
u— du ' e 

co 	 12 
(76) 

p5(x) = 7-1/21),(x)  
Lcc' 	

_ _12 
dx 6 	. (77) 

Comparing eqs.(63) and (73), we conclude that the dependence of the one-

dimensional equilibrium distributions pe (x) and pe(u) on the unstable variable 

is identical. In addition, the comparison of eqs.(68) and (77) shows that the 

one-dimensional steady-state distributions p3 (x) and p3(u) also have an identical 

dependence on the unstable variable. Besides, as follows from eqs.(66) and (74), 

(48- 
	 (78) 

Therefore, the one-dimensional flux density (48  given by eq.(68), determines the 

steady-state rate of binary nonisothermal nucleation J, which can be presented 

as 

ACe-Fc. 	 (79) 
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Using results of the one-dimensional theory and taking account of eq.(66), 

one can obtain the estimate 

au — 2u —2u (u >— 1), 	 (80) 

and the relation 

ùp(u, t), ü 2Au (u ›— 1). 	 (81) 

The value it represents the rate of regular growth in time of the unstable variable 

u. Obviously, for the unstable variable x one could write the identical estimate 

and relation, as follows from (74). Equation (81) allows one to conclude that the 

fluctuation-induced nucleation is completed in the region 	1 of the variables 

u,77 (in the variables x, y it is completed in the region xI 	1). To the left of 

the region ul<,  1 (or lx' 	1) the nuclei are still in equilibrium, while to the 

right of it they already grow irreversibly. 

5 	Mean values of composition and temperature of the nucleus 

Equation (66) with boundary conditions (62) (or eq.(74) with boundary 

conditions (72)) is well known and investigated in the one-dimensional theory of 

first-order phase transitions. Accordingly, we can use the results of one-dimensional 

theory for the one-dimensional distribution p(u,t) (or p(x,t)) and the nucleation 

rate Ju  (or Jx). Thus, eqs.(69),(43),(22), and (3) determine the three-dimensional 

distribution of nuclei with respect to the variables v1, v2, and E in the nonisothermal 

binary nucleation. The rate of nucleation is given by eq.(66) (or (74)). In the 

particular case of steady-state nucleation the one-dimensional distribution ps (u) 

is given by the second of eq.(68) and the expression for n(x,y,t) is reduced to 

eq.(76); the nucleation rate is then determined by eq.(79). 

The average value F(x) of the stable variable y (which is a linearized and 

normalized concentration of solution in the nucleus) at a given value of the 
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unstable variable x is defined as 

ff(x) = p(xl, t) 	dy yn(x, y, t). 	 (82) 

Taking eqs.(69),(70),(74) into account and making several simple transformations, 

one can obtain 

F(x) = 	 
2Ap(x,t)

Jx.  

As follows from eqs.(79),(77), and (73), in the steady state we have 

1
-x2 / 

00 	12 
Fs (X) -iceeL dx' 

 

The average value -e ( v1, ,„) of the temperature of nuclei with given v1, v2  is 

defined as 

(4, P)I f. 	 (85) 

Taking eqs.(16),(22) and (31) into account, one can obtain 

= 
1 	1 
	(ai  'in 	biL2)f (vi., v2 , t) 	(86) 

27-1  f(vi, v2, t) 

Evidently, the steady-state value can be obtained with the help of eqs.(43), (76), 

(50), (40), and (5). 

6 	Correction terrils 

As it can be readily seen, the influence of thermal effects on the results 

of the theory developed is implemented through the correction terms ai  and bj 

defined by eqs.(32). Since rjk  does not depend on the number of approximation, 

eqs.(29),(30), and (32) allow one to obtain two infinite sets of simultaneous 

equations for ai  and bj respectively: 

00 I 
ai --=2 Fim  am  

m=1 

bi  =2 Fj mbm  
m-1 

(2T12)j-1 
. 	. (j = 1,2,3,...), 

. (j =1, 2,3, ...). 

(87)  

(88)  
( 27.2)i-1 

•l• 
.754 

(83)  

(84)  
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They are very convenient for finding a3  and b3  in the form of asymptotics in ri2. 

For example, using eq.(26), neglecting the terms of order rr ,  r , ... and solving 

equations (87) and (88), one can find: 

1 2 Te- 	4 	„ 	„_2 v al  = 	-r 	il l. 	, 	= 	i r14Q2, a3  = '1 `‘G 3, 
Al 

1 	1 	1 	1 TT  
	U3 + 	n K2  = 2A2  n)1 i 	

2 (-13, 
2)11 A2 	2AP2  

1  2 	1 
	, 	

2 
+ 	, U3 (U3 + U4) + 9Apt3 	4),Îm  

9A1A3 	oniA2A3 
2 	u2 TT 	77.3 	1 	u4 	774  

3M.  A2  À3  3 u 4  2A1M A3 U3  2M.  M A3  "À1ÀÀ" 
1 	1 	1 	1 

Q2 	= 	3 A2A3 	't 
U3  + A \

,1 
 ‘2 , 

c)A1A2A 
\ 	U3  U4  + 	 

1 	 3 	GA§ A3  
1 	1 
	U2 	U2  
4AN 3  MP3 3  ' 

2 	2 	1 	1 
Q3 -   	(14 	U3 + 	U 2  

9A3 	9)1) 3 	3A2 3 	3À1 A2 A3 3  ' 

721 	4 0 	2 pp 	4 c 	4 c  2 D 

	

-14 1- 71 011 U2 = 7-1 	-r 	,)2, v3 = 	L,3, 

2)11)12 

	

ni A2 	24 ni  A2  

	

21 	 2721  2 7 2 , 21  u3 
n1 + 

T2

<mi A2A3 
U3(T21U3 + U4) + 

9MA3 U4  4APq 3  

(21 

(89)  

(90)  

R1  

51 

7
2
2
1 

2 
721  u 	7  21 	2 	 721  3  U 2 	3  , R2  — 	 U3, 

2 

52  

2721  UU4 	
T21  u3 

3AD2  A3 	Di  MA3  3  
3 	2 721 1-21  u3  + 	21  u.2 

LIAiM 3  n1 
721  Tr2 	7-21  U2 

4A2 \ 2 U3 	Ai  M A3  3  

7-21 U4 	
T21  U4  

2MMA3  3  AiAN 3  
2 

	U3 U4  + T21  u2 
A3 3  2)122 )13 

S3  
2 

=242721 	T21  u 	r21 

  

	

\ U2U4 	
4

3+ 
9A3 MiA3 3À2 	n1)2A3 3  

(Urn  -- W1  + 72W2  with arbitrary m). As follows from eqs.(29), (30), and (26), 

the values a4,a5,... and b4, b5,... are of order 1,'/,... and hence they are not 

taken into account in solving equations (87) and (88). 
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7 Comparison with results of isothermal theory and experimental 

data 

To illustrate the theory developed we have carried out numerical calculations 

for the condensation in the system "ethanol (first component) - hexanol (second 

component)" at the same external conditions as the experiments of Strey and 

Viisanen [26]. All the physical properties of both components required for calculations 

are well determined for both liquid and vapor phases. Besides, accurate fits of 

several thermodynamic properties vs. composition are required for ethanol (1) - 

hexanol (2) liquid solution and they are fortunately also available. 

The equilibrium vapor pressures of pure ethanol and hexanol as well as the 

dependence of surface tension -y and mean molecular volume v on the concentration 

x were taken following Strey and Viisanen [26].The liquid phase activity coefficients 

fi. and f2  were assumed to be equal to unity. The condensation heat of pure 

ethanol was obtained by linearly extrapolating data in CRC Handbook of Chemistry 

and Physics [27]. The condensation heat of pure hexanol and its specific heat in 

a vapor phase were taken in the work of Gallant [28]. The specific heats of pure 

ethanol in liquid and vapor phases, as well as those of liquid hexanol and gaseous 

argon (passive gas) were determined with the help of Thermophysical Properties 

of Matter [29]. The sticking coefficients ceci  and cx,2  were assumed to be equal 

to unity. At such a choice of sticking coefficients the theory does not depend on 

magnitudes of the thermal accommodation coefficients ati  and at2  of condensing 

components. As for the thermal accommodation coefficient of argon it was set 

equal to 0.1 and 0.01. 

Results of numerical calculations are presented by Figure la and b (for 

a9  -= 0.1 and a9  = 0.01 respectively) in the form of the dependence of ln J, on 

the mean activity z = ((12.  -I- a )1/2. The solid lines represent nucleation rates in 

our nonisothermal theory obtained with the help of eq.(79) and corresponding to 
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the fixed values of activity fraction q = (2 1(C1  + (2), indicated on the Figure over 

the lines; the dashed lines represent nucleation rates according to the isothermal 

nucleation kinetics. The corresponding experimental data are shown by series of 

circles. To avoid possible confusion, we have presented only a part of results. 

As was expected, Figure 1 shows that thermal effects diminish the nucleation 

rates up to tens of times in comparison with the predictions of isothermal theory; 

the smaller is the value q, the stronger is the decrease in the nucleation rate. This 

is readily accounted for by the fact that, in the considered system, the smaller 

is the value q, the denser is the vapor mixture (since the equilibrium pressure 

of ethanol vapor is by far greater than that of hexanol vapor), and also the 

stronger is the influence of thermal effects on the nucleation rate. Figure also 

shows that taking account of thermal effects approaches theoretical nucleation 

rates to experimental data though there still remains a large discrepancy between 

them that may be explained by the effect of surface enrichment. Evidently, by 

virtue of the structure of the parameters k1  and k2 , the smaller n.g  and/or ag  are, 

the more significant are the influence of thermal effects on the nucleation and, 

consequently, the improvement of the fit of theoretical predictions to experimental 

data. This is confirmed by comparing Fig.la with Fig.1b showing the numerical 

calculations for two different values of ag  (0.1 and 0.01, respectively). 

8 Conclusions 

We have considered the kinetics of nonisothermal binary nucleation at the 

stage following the stage of thermal relaxation of nuclei. The kinetic equation 

(4) governing the time evolution of three-dimensional distribution of nuclei was 

obtained earlier (Djikaev et al. [10]) by extending the approach developed by 

Feder et al. [6] and by Grinin and Kuni [7] for the nonisothermal one-component 

nucleation to the binary nucleation. That kinetic equation (4) reaches beyond the 

framework of the Fokker-Planck approximation in the variable corresponding to 



93 

the temperature of nucleus and this is what allows the theory to be valid not 

only in the case of small condensation heats (both T1 < 1 and r2  < 1) but 

also in the case of large values of condensation heat of any component where at 

least one of r1  or T2 is not much less than 1. Such a case is not described by the 

kinetic equation obtained for the nonisothermal binary nucleation by Lazaridis 

and Drossinos [11] and solved by them for the steady-state nucleation. 

By the end of the stage of thermal relaxation of nuclei theoretically described 

earlier (Djikaev et al. [10]), the three-dimensional distribution of nuclei with 

respect to e approaches a quasiequilibrium Gaussian distribution while the distri-

bution with respect to v1  and v2  has not sufficient time to change. On the other 

band, there exists the hierarchy of the operators in the RHS of eq.(4) when they 

act on the deviation P — f. This is what allows one to construct the solution 

of eq.(4) at the stage following that of thermal relaxation with the help of the 

Enskog-Chapman method according to eq.(22). The dependence of correction 

terms zi (f) on the time in eq.(22) is implemented through the two-dimensional 

distribution f(vi , v2, t) with respect to v1  and v2  according to eq.(31). The time 

evolution of the function f(vi , v2 , t) itself is governed by eq.(33) with the thermal-

effect-dependent coefficients 01, 02, 6, and 62. Equation (33) transforms itself 

into the well known equation of Reiss [1] in the case where the thermal effects 

are neglected: 01  —> 1, 02 -÷ 1 	0, and 62  —> 0 if r1  —> 0 and T2 -> 0. 

Since eq.(33) is of the Fokker-Planck type, the method of complete separation 

of variables allows one to reduce the probiem of finding the function f to the well 

investigated problem of constructing the one-dimensional kinetic theory of first 

order phase transitions. Consequently, by using the results of one-dimensional 

theory for the distribution p governed by eq. (61) with boundary conditions (63), 

one can determine the three-dimensional distribution g with respect to the variables 

v2, and E with the help of eqs. (69),(43),(22), and (3). The rate of nonisothermal 

binary nucleation can be found by means of either eq.(66) or eq.(74). 
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Thus, a successive application of the Enskog-Chapman method and the 

method of complete separation of variables to the kinetic equation (4) allows 

one to construct the kinetic theory of nonisothermal binary nucleation in the 

non-stationary case as well as in the stationary one (Lazaridis and Drossinos 

[1] investigated only the steady-state nucleation). In particular, the steady-state 

nucleation rate is given by eq.(79), and the steady-state three-dimensional distri-

bution with respect to v1, v2 , and E is given by eqs.(76),(43),(22), and (3). The 

average values of the temperature of the nucleus and solution concentration in it 

are given by eqs.(86) and (83). 

Finally, numerical calculations were carried out for the nucleation rate in 

the system "ethanol-hexanol" to illustrate the theory developed. The results were 

compared with the predictions of the isothermal nucleation theory (Kuni et al. 

[21]; Melikhov et al. [22]) and experimental data (Strey and Viisanen [26]). As 

expected, rates predicted by the nonisothermal theory are substantially lower than 

rates in the isothermal theory. Consequently, the nonisothermal theory improves 

the fit of theoretical results and experimental data. The model of Lazaridis and 

Drossinos [11] predicts nucleation rates that are slightly higher than classical 

nucleation rates and this is not easy to explain from the physical standpoint. 
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Figure la. Natural logarithm of nucleation rate J in the ethanol (1) - hexanol 

(2) system plotted vs a mean activity z = ((i 	(Z)1/2, at To  = 260K. The 

dimension of J is cm' s-  . The circles are the experimental data of Strey and 

Viisanen (1993). The solid lines are the nonisothermal nucleation rates (equation 

(79)) calculated at the indicated activity fraction q = ( 2  n+ ( 2 ); the dashed lines 

represent the isothermal nucleation rates. The thermal accommodation coefficient 

of carrier gas (argon) is g  = 0.1. 
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(2) system plotted vs a mean activity z 	(( 1_ ()1/2, at To  = 260K. The 

dimension of J is cm-33-1. The circles are the experimental data of Strey and 

Viisanen (1993). The solid lines are the nonisothermal nucleation rates (equation 

(79)) calculated at the indicated activity fraction q = ( 2 / ((1 + ( 2 ); the dashed lines 

represent the isothermal nucleation rates. The thermal accommodation coefficient 

of carrier gas (argon) is a9  = 0.01. 



CHAPITRE 3 

Cinétique de la condensation binaire homogène aux 

conditions dynamiques 

Très souvent (et presque toujours dans la nature) la condensation binaire 

se passe aux conditions dynamiques, c.-à-d., la formation et la croissance des 

gouttes se passent en même temps que la métastabilité du mélange de vapeurs 

croît graduellement, atteint son maximum et décroît. 

Nous développons la théorie cinétique de ces processus pour les systèmes 

ouverts ainsi que pour les systèmes fermés (du point de vue de l'échange de 

matière entre le système où la condensation se passe et son environnement). 

Les deux sursaturations idéales que les vapeurs du mélange auraient eues en 

absence de consommation de la substance par les gouttes sont déterminées par les 

conditions extérieures. Par conséquent, la dépendance temporelle des sursaturations 

idéales est considérée comme donnée. 

Nous considérons le cas où les sursaturations réelles des deux vapeurs atteignent 

leurs maximums simultanément au moment du maximum de la métastabilité 

du mélange de vapeurs. Le système d'équations intégrales est obtenu pour les 

processus considérés. Il est démontré que la méthode itérative permet de construire 

le spectre des dimensions linéaires des gouttes et la distribution des gouttes 

selon leurs deux variables d'état indépendantes, la précision relative étant assez 

élevée dès la première itération. De même, cette méthode permet de trouver 

la dépendance temporelle des sursaturations réelles des deux composantes du 

mélange de vapeurs ainsi que le nombre total de gouttes par unité de volume. 
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3.1 	Article 4: Kinetics of two-component condensation under dynamic regime 

with "synchronous" attainment of the metastability maximum 

Article publié dans la Journal of Aerosol Science (1998), Vol.29, No.1/2, 

pp.1-30. . 
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Kinetics of two-component condensation 

under dynamic regime with "synchronous" 

attainment of the metastability maximum 

F.M.Kuni, A.P.Grinin 

Department of Statistical Physics, St-Petersburg State University, 

St-Petersburg, 198904, Russia 

Y.S.Djikaev * 

Physics Department, University of Montreal, 

Montreal, Quebec, H3C 3J7, Canada 

Abstract 

A kinetic theory is presented for isothermal homogeneous two-component con-

densation under dynamic regime with synchronous attainment of the metasta-

bility maximum. It is shown that extending the iteration method of treating 

of one-component condensation under dynamic conditions to the case of two-

component theory makes it possible to construct the spectrum of linear sizes and 

two-dimensional distribution of two-component droplets, a relative degree of ac-

curacy being high enough even at the first iteration step. This method also allows 

one to find the time dependence of both real supersaturations as well as the total 

number of droplets formed per unit volume during two-component condensation. 

*Author to whom correspondence should be addressed. 
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1 Introduction 

Two-component condensation, i.e. formation and growth of drops of a liquid 

solution of two substances in a metastable vapor mixture of these substances, is 

a process widespread in the nature and important for technical applications (we 

shall use the term "metastable" instead of less general terms "supersaturated", 

"supercooled", etc...). The theory of two-component condensation is an important 

part of the theory of first-order phase transitions. At the same time a development 

of two-component condensation theory is extremely important for various applica-

tions, for example, in order to construct the quantitative methodology of forecasting 

of acid rains. 

We usually distinguish three stages of first-order phase transition. During 

the first of them the embryos of a new phase are formed (this stage is also called 

the stage of nucleation) which are condensation centers afterwards. It is during 

the second stage that the phase transition properly takes place - the bulk of a 

metastable phase passes to a liquid phase. During the third stage the growth of 

large drops occurs to the detriment of small ones. 

At present there exists the complete and adequate theoretical description of 

all three stages of the one-component condensation. At the same time the kinetic 

theory of two-component condensation has been developed almost exclusively for 

the simplest case where the metastability of two-component vapor mixture is 

created instantaneously (in neglecting both the thermal effects of condensation 

and presence of heterogeneous nucleation centers). The bases of such binary 

nucleation theory have been founded by Reiss (1950) who based his argument 

on the results of Flood (1934) and on the classical one-component nucleation 

theory of Becker and D5ring (1935), Volmer (1939), Kramers (1940), Zeldovitch 

(1942) and Frenkel (1946). The very important contribution to the theory of 

binary nucleation has been made by Stauffer (1976), that has corrected the rate 
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of binary nucleation obtained earlier by Reiss (1950). The consistent kinetic 

theory of binary nucleation has been constructed with the help of the method 

of complete separation of variables by Kuni et a/.(1990) and Melikhov et al. 

(1990,1991) who have also found the new normalization factor of equilibrium 

distribution. Important contributions to the development of stationary theory 

of binary nucleation have been made by Mirabel and Katz (1974), Hirschfelder 

(1974), Shugard and Reiss (1976), Wilemsky (1984,1987), Ray et al. (1986), 

Okuyama et al. (1988), Shi and Seinfeld (1990) and Grinin et al. (1992). 

Recently, many very interesting and important results have been obtained 

by Wilemski and Wyslouzil (1995), and by Wyslouzil and Wilemski (1995, 1996). 

Particularly, they proposed (Wilemski and Wyslouzil, 1995) a new self-consistent 

classical size distribution for binary droplets which satisfies the law of mass action 

and reduces to an one-dimensional distribution for one-component droplets. Studying 

the transition from binary to unary nucleation Wyslouzil and Wilemski (1995) 

proposed a modified expression for nucleation rate, prescription of which remains 

within 10% -20% of the exact numerical rate, when other authors expressions fail 

under such a transition. They also investigated (Wyslouzil and Wilemski,1996) 

the transient behaviour of binary nucleation kinetics by numerically solving the 

birth-death equations for vapor-to-liquid phase transitions. 

Kinetic theory of the second stage of two-component condensation under 

above mentioned conditions has been constructed by Djikaev (1992) with the 

help of the iteration method developed by Kuni and Grinin (1984). 

The existing theory presented in the above cited papers describes isothermal 

two-component condensation fairly well in the case where the formation of droplets 

and their growth take place after the interruption of an external influence on 

the vapor mixture metastability, that is, in the case of "instantaneous" creation 

of metastability. Such situations usually occur in most laboratory experiments 

using piston cloud camera, diffusion cloud camera, supersonic nozzle, particle 
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size magnifier, etc... . 

However, there exist many situations (both in the nature and in the industry) 

in which two-component nucleation begins before the attainment of metastability 

maximum while the metastability of vapor mixture increases yet. This is, for 

instance, the case of formation of acid rains where the nucleation of droplets of 

acid-water solution and their growth take place either under very slow increase 

in number densities of water and/or acid molecules in atmosphere, or under very 

slow decrease in atmospheric temperature, or under all these conditions together. 

Moreover, that problem is well known even to experimenters investigating the 

condensation under instantaneous creation of metastability. Actually, it is technically 

very difficult (if not impossible) to "instantaneously" create the metastability, 

though this is necessary to make a correct comparison between experimental data 

and data yielded by existing theory of two-component condensation. Therefore, 

it is very important to know to describe the condensation phenomena under 

dynamical conditions. 

It should be noted that we do not intend to revise the existing theory of 

binary condensation. The present paper is an attempt to construct the theory of 

two-component condensation under a new statement of problem. This statement 

is as follows. We intend to construct the kinetic theory of isothermal two-component 

condensation for dynamical conditions, when the metastability of two-component 

vapor mixture increases gradually. Unlike the existing theory in the present 

statement of problem it is not required that the formation of droplets and their 

growth take place after the interruption of the external influence on the vapor 

mixture metastability, and we shall take into account both changes of metastability 

caused by an external influence and the consumption of vapor mixture by droplets. 

This problem will be solved by extending the method of treating of one-

component condensation under dynamic conditions developed by Kuni (1984,1988) 

to the case of two-component theory, and we shall also need main results of the 
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classical theory of binary condensation. Since it is a new statement of problem, 

no theoretical results are available with which we could compare the results of 

our approach (except results of Kurasov (1990), using the same method). There 

are no experimental data on binary condensation under dynamical conditions 

either; such experiments have never been carried out because the appropriate 

theory had not existed yet. Certainly, it would be very interesting to make a 

comparison between our results and results of other approaches to the problem. 

Besides, experimental data on the time dependence of real supersaturations and 

average concentration of solution in a droplet as well as on the total quantity of 

droplets formed during the condensation would be the best verification of present 

theory. 

The applicability of the theory is limited only by the conditions of validity 

of the classical capillarity approximation. It means that the droplets must be 

large enough, they hold at least some tens of molecules. The formation of droplets 

demands their passage through a high activation barrier, i.e. has a pure fluctuation 

character. 

It is supposed that the condensing system and its environment do not 

exchange droplets. At the same time we shall consider materially open systems, in 

which the condensing substances sources exist being homogeneously distributed 

within system, as well as materially closed systems. The absolute temperature 

T and volume V of materially open system are assumed fixed. In a materially 

closed system a vapor mixture metastability changes as a result of the changes 

of T and V, which we shall naturally take into account. It is also supposed that 

there are no heterogeneous nucleation centers in the vapor mixture, and that no 

chemical reaction occurs in considered system. 
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2 	Complete set of equations of the kinetics of two-component con- 

densation 

Let us denote by (i = 1,2) the supersaturation of the vapor of i-component 

over the plane surface of its own liquid phase: 

= ni/ni, 	(i = 1,2), 	 (1) 

where ni is the number density of molecules of i-component in a vapor mixture; 

ni, is the number density of molecules of i-component vapor saturated over a 

plane surface of its own liquid phase (obviously, ni, depends on temperature T). 

Let us introduce the value 

= nitot/nis 	(i = 1,2), 	 (2) 

where nitot  is the total quantity (in the vapor mixture as in the droplets) of 

molecules of i-component in the system volume unit. Obviously, 0i  represents the 

"ideal supersaturation" of i-component which could be observed in the system 

at the same external conditions if there was no consumption of this component 

by the droplets. In materially open system T, V, ni, and n25  are constant, and 

01  and 02  change only as a result of injections of corresponding component by 

external sources. In materially closed system the total quantities of molecules of 

both components remain constant, i.e. vnitot  = C onst 	= 1,2). Therefore, in 

materially closed system the following equations are observed: 

= 	 ii*(i = 1,2), 	 (3) 

where the subscript "*" marks the values at some moment t* , when a nucleation 

rate is maximal. For the theory that is intended to be developed this moment 

coincides with the moment when a vapor mixture metastability is maximal, i.e. 

a critical embryo formation free energy is minimal. 

Usually in addition to the droplets and binary vapor mixture participating 

in a material exchange with the droplets, in a condensing system there is some 
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passive gas the molecules of which do not participate in a material exchange with 

the droplets. Let us suppose the passive gas concentration is high enough. Then 

non-isothermal effects of condensation will not be important, and the equation of 

state of the passive gas and character of thermal contact of the system with the 

environment will determine the unambiguous relationship between nis  (i = 1, 2) 

and V. Taking eq.(3) into account, let us present this relationship as a parametric 

one: 

	

= 	(i = 1,2), 	 (4) 

	

V>,/V = 	 (i = 1,2), 	 (5) 

where 	is some function (we do not indicate its dependence on (1)i,,). With 

the help of Clapeyron's-Clausius formula one can rewrite eq.(4) as 

Tilt*  .[Si(Oi)]11'3i* 	(i= 1, 2), 	 (6) 

where [3i is the partial molecule heat of condensation of i-component taken in 

units of kBT (kB  is Boltzmann's constant). Ordinarily, [3i is of the order of some 

tens. 

The functions 	(i = 1, 2), which are determined by the character of 

thermal contact of a system with an environment, are assumed to be known. In the 

cases of isothermal compression, of isochoric cooling and of adiabatic expansion 

these functions are given, respectively, by expressions: 

S2(e.,) = 1, 

	

= 
	 (i = 1,2), 	 (7) 

	

= 
	+1 

where 

	

ki =11[(K — 	- 1] 	(i = 1,2), 

and i is the adiabatic constant of passive gas. The condition 

[ki (ki + 1)2  /20i,,] 1n2  (4/14,i.) < 1, 
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is that of validity of the third of expressions (7). Obviously, k > û and ki < 1 for 

is a value of the order of 10. The inequalities Oi*  >> 1 and ki < 1 guarantee 

the inequality (9) even if the difference between (Di  and 	is great. 

In accordance with eqs.(7), the function Si(0i) increases monotonically or 

remains constant with increasing (Di; at 	= 	it is equal to 1. Let us suppose 

that S(j)  has the same properties also in general case of any materially closed 

system. 

Contrary to the supersaturations j, the supersaturations Oi  are completely 

determined by the external conditions in which the condensing system is, and can 

be controlled from outside. 

During the period of intensive nucleation which is very short the time de-

pendence of .1,i  can be well approximated by the expressions 

(0,),-- 
'boz 	(to,/ti )nz. 

(t < 
= 1,2), 

(t ?_ t0i) 
(10) 

with the independent positive parameters mi , ti  and toi. The time is counted off 

from the moment when the ideal supersaturations were equal to zero. The moment 

toi  corresponds to a stabilization of (Di on its maximal magnitude 4,0i (obviously, 

for the materially closed system toi  = 42). In fact, the approximations (10) will 

be necessary only during the intensive formation of embryos. 

The approximations (10) together with eqs.(4)-(6) determine the time de-

pendences of nis, n23, V, and T in materially closed system. 

The supersaturations of both components determine the metastability of 

system. Since a nucleation rate is very sensitive to the metastability, the accuracy 

of the approximations (10) must be very high during the intensive formation of 

embryos. 

Supposing t. < min(tin, to2) (that means the attainment of metastability 
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maximum before the stabilization of any of ideal supersaturations) and assuming 

t., (Di. and (c/01)i/dt)It=1, to be known (at t. = min(toi,to2) the derivative corresponds 

to the approach to t = t,, from left side), we have for the optimum values of 

parameters mi , ti in eq.(10): 

mi = (t,,1.1)i,,)(d.bildt)It=i*,t,,14.1ilemi 	= 1 , 2) . 	(11) 

Let us name the supercritical embryo of liquid phase (growing irreversibly) 

for "the droplet". Only such droplets participate perceptibly in the consumption 

of the vapor mixture. The regime of molecule exchange between the droplets and 

the vapor mixture is assumed to preserve the free molecular character even for 

the largest droplets considered in theory. 

Let us denote by v1  and v2  the numbers of molecules of the first and 

second components, respectively, in the droplet. Let us choose the values p and 

x determined according to 

P = (v1 + v2)113  X = 	(vi + v2) 	 (12) 

as the droplet state variables. The variable p represents the linear size of droplet, 

and variable x represents the composition of the solution in a droplet. Let us 

denote by n(p, x, t) the distribution (corresponding to unit volume and expressed 

in units of nu) of droplets with respect to the variables p and x at moment t. It has 

been shown (Kuni et a/.,1990; Melikhov et a/.,1990; Melikhov et a/.,1991) that the 

variable x is the stable one in near-critical region. According to Dzhikaev(1992), 

during the second stage of two-component condensation at the instantaneous 

creation of metastability the distribution of droplets bas a Gaussian dependence 

on the variable x in supercritical region, and an average magnitude xo  of variable 

x is determined by means of quasistationary condition on x. Therefore, it is 

natural to assume that in the present theory the distribution of droplets with 

respect to the stable variable x in the supercritical region also has a form of 

Gaussian distribution, and that an average magnitude xo  of variable x in this 



110 

region is determined by means of quasi-stationary condition 	= dx I dt = 0 

leading to the transcendental equation 

ac1VTlni8(1  — xo)[Ci — xofi(x0)] = ac2vT2n28xo[C2 — (1 — xo)f2(x0)], 	(13) 

where aci and vTi  (i = 1,2) are respectively the condensation coefficient and 

average thermal velocity of molecule of i-component in vapor mixture; fi(x) and 

f2(x) are the activity coefficients of the first and second components in a liquid 

solution with composition x. Therefore, the distribution n(p,x,t) has the form 

= p(p,t)[27(AX)2]1/2 eXp [ (X X0)21 

2(AX)2  

(14) 

where Ax is an equilibrium value of the rms fluctuation of solution concentration 

in a droplet. The function p(p, t) represents obviously the one-dimensional distri-

bution (corresponding to unit volume and expressed in units of nis) of droplets 

with respect to variable p at moment t. 

It has been shown (Dzhikaev, 1992) that a linear size of droplet, practically 

immediately after its formation, increases with time with the rate independent of 

linear size: 

. 	dp 	nis aci 	 r125 ac2 
P = 	= 	— Xofi(Xo)] 	[(2 — (1  — Xo)f2(Xo)1, 	(15) 

dt • nis. 	 n2s* 1-2* 

= [vTinis(rv2/48)1/3]-1  (i = 1,2). 	 (16) 

Here v v(x) is the droplet volume per molecule (it is supposed that it depends 

only on x). In eqs.(15),(16) the temperature dependence of aci, vTi and v is much 

slighter than that of nis, and one can neglect it. 

Under the conditions of validity of macroscopic theory of condensation the 

characteristic size of droplets is much greater than their sizes at moment of 

formation. Therefore, the solution of equation (15) has to satisfy the initial 

condition 

Pfflit=0 = O. 	 (17) 
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Taking into account that for all the droplets A does not depend on p and 

there is no droplet exch ange between the system and environment, one can (Kuni, 

1984; Kuni, 1988) present the distribution p(p, t) in the form 

nis*V*  
P(P,t) = 	6j (P)f (z 	P). 

nisV 
(18) 

Here 

0(u) = 	(u  °)' 
0 (u < 0). 

is theta-function; f is some function which depends on p and t by means of the 

argument z — p; z is the coordinate moving along the p-axis with the rate A 

of increasing of linear size of droplet. The correctness of the expression (18) is 

evident as it ensures the conservation of the total quantity of droplets of the 

system nis lip(p,t)dp in the element dp during the movement of that element 

along the p-axis with the rate of coordinate z movement. 

In order to remove an arbitrariness in the definition of coordinate z let us 

assume that the equation 

dz 	n13 ad. 
[t 

 
Xcifi(Xo)] dt 	nis* •i* 

n2, aa  
[(2 — (1 — xo)f2(x0)] (19) 

n2s* 72* 

satisfies the initial condition 

z(t)it,t*  = 0, 	 (20) 

with z < 0 for t < t*  and z > 0 for t > t* . 

Instead of the variable p let us introduce the variable 

x = z — p 	(x < z). 	 (21) 

The variables x < 0 correspond to the droplets formed at time moments t < t*, 

and the variables x > 0 correspond to the droplets formed at time moments t > t*. 

Since z and p increase with the same rate, every droplet has its own magnitude 

of variable x during whole its growth after its formation. Let us denote by t(x) 

the moment of formation of the droplet characterized by value x.The more x is 
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the later the droplet was formed and the more t(x) is. A11 the time dependent 

values together with t will be x-dependent functions. At x = 0 those functions 

are equal to their magnitudes at time moment t (which are marked by subscript 

"*") and at x = z they are equal to their current magnitudes. 

In view of eq.(21) one can rewrite the expression (18) in the form 

p(p,t) = 	O(z — x) f (x). 	 (22) 
ni, V 

The function f(x) characterizes the spectrum of linear sizes of droplets. Figure 

1 shows the dependence of spectrum f on variable p and illustrates what is 

f(x). As it has been shown by Dzhikaev (1992), under the condition of validity 

of the classical capillarity approximation one can assume that during the two-

component nucleation the state of embryos having the linear sizes in the region 

0 < p <rs-,  (2 3)p, is quasistationary, pc  being the linear size of critical embryo. 

At any current magnitudes of CI  and (2  this state is described by stationary one-

dimensional distribution fs (Ci, (2) independent of p. Thus, one can use f,(Ci, (2) 

as a boundary condition to p(p,t). Taking into account that during the first stage 

nisV 	we obtain from eq.(22) 

f(x) = fs“i(x), (2(x)), 	 (23) 

where Ci(x) (i = 1,2) is the magnitude of the supersaturation Ci at time t(x) when 

the droplets with given x were formed. 

According to Kuni et al. (1990), Melikhov et al. (1991), Dzhikaev (1992), 

the distribution f, expressed in units of n15  has the form 

fs(Ci, (2) = K((i (2) exP[— F(Ci, (2)], 
	 (24) 

where the dependence of the pre-exponential factor K(Ci , (2 ) on Ci , (2  is a power 

one; F((1, (2) is the height of activation barrier of two-component nucleation at 

saddle point, i.e. critical embryo formation free energy, expressed in units of kBT,,, 
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at the current magnitudes of supersaturations (1, (2. For F((i , (2 ), in accordance 

with Kuni et al. (1990), Melikhov et al. (1990) one can obtain the expression 

F((1, (2) = 1671--yv2(X.)/3[Xc in (I. H- (1 — Xc) ln — G(x,)? , 	(25) 

where 

— x,) ln[(1 — xc)f2(x.)], G(x) = x, ln[xch(x,)] -I- (1 	 (26) 

xc  is the composition of solution in a critical embryo; -y*  is the surface tension of 

embryo in units of kBT*  (assumed independent of the composition of solution in 

an embryo). 

The expressions (14),(13),(19),(22)-(24) represent the solution of the kinetic 

equation of two-component condensation (obtained first by Reiss (1950)) for the 

considered supercritical droplets. In order that this set of equations comprising 

the unknown functions Ci(x) and (2(x) becomes consistent it is necessary to add 

to them the material balance equations for both components: 

(i = 1,2), 	 (27) 

where gi, according to eqs.(1),(2), represents the total quantity (corresponding to 

unit volume and expressed in units of nis) of molecules of i-component condensed 

in all the droplets. Taking into account the facts that p3  is the total number of 

molecules in a droplet of linear size p and that xo  does not depend 011 p, we obtain 

in view of relations (14),(21) and (22): 

ni 5V 

1 — xo nis 
g2 = ig • 	 (29) 

Xo 	n 2s 

The relations (14),(13),(22)-(24) together with (10),(27)-(29) compose the consistent 

set of equations of the two-component condensation.The unknowns in this set are 

the spectrum f(x), coordinate z and composition xo• 

Let prni,i (t) be the coordinate of the left bound of the region in which the 

values of the distribution p(p,t) are relatively important at time t. Obviously, 

gi = xo dx (z — x)3  f (x), 	 (28) 
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during a nucleation stage prnin(t) = 0. However, after its end the coordinate 

prnin(t) begins moving along the p-axis with the rate A of the increase of linear 

size of droplet. The decrease of the supersaturations Ci  and (2  (on account of 

the consumption of vapor mixture substances by the ensemble of supercritical 

droplets) slows the velocity of movement of the coordinate p,„in(t) down, according 

to eq.(15). The decrease of the supersaturations Ci  and (2 (causing the decrease 

of the metastability of condensing vapor mixture) induces simultaneously the 

increase of the critical droplet size p((,  (2) at the current magnitudes of super-

saturations. The size pc(Ci(t), (2(t)) begins coming up to the coordinate prain(t) on 

the p-axis. The quasistationary distribution of the near-critical droplets is broken 

and the equation (23) ceases to be observed (in view of the very small intensity 

of formation of embryos after a nucleation stage end, it's no longer necessary 

for the developed theory). However, the formula (18) and the set of equations 

of two-component condensation kinetics remains correct as long as the following 

constraint is observed: 

pc(Ci(t), (2(t)) 	Prnin(t) 
	

(30) 

i.e. as long as the droplets formed during nucleation stage remain supercritical. 

The breakdown of the constraint (30) causes that the droplets formed during 

a nucleation stage gradually become subcritical (evaporating), and the two-com-

ponent condensation changes into the two-component coalescence which we shall 

not consider here. 

3 	Iteration procedure in the case of continuous increase of both ideal 

supersaturations 

Let us define the parameters 	and F2 as 

aF 
F1= 

 
, F2 — 

=4)1*,(2.--(1)2* 

0F 

(1=4.1*,(2="(12* 
(31) 
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where F F(( 1 , (2 ). Using eqs.(25),(26) one can show that under the condition 

of validity of the macroscopic description of condensation (when F has the order 

of some tens) usually 

	

F » 1 	(i = 1,2). 	 (32) 

Later on the correctness of the following estimates will be proved 

Ki* — 	1 	(i = 1,2). 	 (33) 

Taking eqs.(23),(24),(31)-(33) into account, one can obtain for the spectrum that 

f (x) 	 fs(e.i*, (I) 2*) exp [ 	 g -1(x) — 4.1.) +((2(x) — 2*)] , 	(34) 

	

4.1* 	 (D2* 

where 

(2.) = K(G., (2.) exP[—F(Ci., (2.)] 	 (35) 

(the relative error in (34) has the order of 1/F1  + 1/F2  < 1). 

Let us define the important parameter F according to 

1 — xo 01* nis 
r = 	+ r2 	 

Xo 	e,2* n28 

Introducing the notation 

P = 1 — Xo nuot 
Xo n2tot 

and supposing the condition P 1 is observed we conclude that the parameter 

F always satisfies the condition 

r»1. 	 (38) 

Let us define the parameters c1  and c2  by relations 

(36)  

(37)  

z=0 

(i = 1,2), 	 (39) 

  

where the .Di(x) is the ideal supersaturation (Di  at time t(x) when the droplets 

with given x were formed. According to eq.(39), the value 1/ci  represents the 

length on the x-axis on which the relative change of supersaturation cI is 1/F*. 
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Linearizing 4,i(x) in x near x = 0 and using eq.(39), we have 

ci x 	(i = 1,2), 	 (40) 
I * 

and the expression (21) takes the form 

(i(x) — 	= —
r*

cix — gi(x) (i = 1,2). 

Inserting eq.(41) in (34) and taking eqs.(29),(36) into account, we obtain 

11 
f (x) = fs(Di*, ee2*) exp [cx 	gi (x)] , 

where 
ri 	, 112 

= 	-r —c2- 	 (43) r* 	F*  

During the nucleation stage on account of its relative shortness one can assume 

= ni,*  (i = 1,2), V = V*  and xo  = xo*. Taking eq.(42) into account, we 

rewrite eq.(28) as 

gi(z) — xo*Is(i*,(1.2*) f dx (z — x)3  exp [cx 	gi (x)] . 	(44) 
Yi* 

According to the definition of t*  as a time moment of attainment of the 

metastability maximum, we have 

= 0, 	 (45) 

>0. 	 (46) 
t=t* 

Using eqs.(25),(26), from (45) and (46) we obtain, respectively, the equation 

Xc 	1 — x, d(2 
Ci dt t=t. + 	( 2 	dt t=t*  

= 0 	 (47) 

 

(41)  

(42)  

dF 
dt t=t* 

d 2 F 
dt2  

and the inequality 

Xc 	1  (c*. 2  Xc d2  Ci 	1 — x, d2(21 

1 — Xc 	dt ) 	 C 	dt 2  
>0 	(48) 

t=t *  
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(it is assumed that the condition of metastability of two-component vapor mixture 

(Kuni et a/.,1990; Melikhov et a/.,1990) is observed). From equation (47) it 

follows that the alternative possibilities exist for the behaviour of supersaturations 

G. and (2  at the 

else 

moment t*  - either 

d(i  d(2  

t=t* 

cl(2 

= 0 

t=t* 
0. 

(49)  

(50)  

dt 

t=t* 

t=t* 	dt 

1 — xcç 
dt Xc 	C2dt 

The fulfillment of the equalities (49) corresponds to a synchronous attainment 

of metastability maximum when the supersaturations (1  and (2  attain their 

maximums simultaneously at the moment t*. The fulfillment of (50) corresponds 

to a non-synchronous attainment of metastability maximum when at the moment 

t*  one of the supersaturations 	else (2) already passed its maximum and 

decreases, another ((2  else (1) did not attain its maximum yet and increases. 

What kind of attainment occurs depends on both external influences and physical 

properties of condensing system. In this paper we shall consider almost the case of 

synch.ronous attainment of metastability maximum because it is easier to extend 

to this case the iteration method developed by Kuni (1984,1988) for description 

of unary condensation under dynamic conditions. 

Let the equalities (49) be observed. Differentiating eq.(41) with respect to x 

and taking into account that ("(x) = 0 (i =1,2) at x = 0, we obtain 

	

(1)1* 	 (D2*  

	

gl 0)) = F* 	, 9'2(0) = r*  C2 	 (51) 

(the prime indicates the first derivative). The equations (51) compose the set of 

linearly independent equations with respect to the variables (Di*  and 4e2*• 

With the help of eqs.(29),(36) and (43) from eq.(51) we obtain the useful 

equation 
4:el* 

g(0) = -c.  (52) 
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The relations (44),(52) compose the consistent set of equations with respect 

to gi (z) and f,(01,„ 4,2*) (the composition xo*  figuring in this set as a parameter 

obeys the equation (13)). This set can be solved with the help of the iteration 

method which has been developed by Kuni (1984,1988) for the construction of 

kinetic theory of one-component condensation under dynamic conditions. 

Let us construct the first approximation corresponding to the insertion of the 

equality gi (x) = 0 in the RHS of eq.(44). In this approximation the accumulation 

of substance by the droplets occurs more rapidly than it occurs in reality. 

We have 
tz 

gi(z) = Xo.f 	2*) 	(z — 
-00 

g(0) = 	02*)-
6 
c3  

and also 
4el*  4 

	

fs(e)1*, i31) 2*) = 	C • 
1.101 *X0* 

Taking into account (54) and equality 

fX 	 6 cz  
dx (z — 	ecx = --e , J_. 	e4 

it follows from eq.(53) that 
.1.  

gi(z) = 1* 6„. r*  

By using eq.(27) at x = 0 and the equalities (56) and (29), one can obtain 

the relations 

(1* = 	1/11*), (2* = (1)2* — P*M 	 (57) 

which, in view of eqs.(32),(36)-(38), justify the estimates (33) at the first step of 

iteration procedure. 

Let us construct the second approximation corresponding to the insertion 

of eq.(56) in the RHS of eq.(44). In this approximation the accumulation of 

substance by the droplets occurs more slowly than it occurs in reality. 

(53)  

(54)  

(55)  

(56)  
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(z) = xo*fs(4'i*, 4'2*) f 	dx (z — x)3  exp [cx — ecxI, 

3b2  

(58)  

and also 

(59)  4'2*) gi(0) = Xo*fs(4)1*, 
c3 , 

(Dl* 	4 

where 

fs( tel*, 4e2*) (60)  — 
3b2r*X0* 

bq  = 10 	exp — 	(q = 0,1,2,.. (61)  

Numeric calculations show that 

1)0  = 1 — 1/e = 0.632, b1  = 0.797, b2  = 1.78, b3  = 5.66. (62)  

Denoting by symbol (5 the difference between the magnitudes of value in the 

first and second approximations, one can, with the use of eq.(10), establisb 

84.1* 	2 
= 	— 1)/ [r1  —m21 r2] = 0.12/ [r1  —m:r2] 

seD,* - 1)/ [nri + 	= 0.12/ {n±-r1 + r2] 
412* 	-2 	M2 	 M2 

Inserting eq.(60) in (58) and using eq.(61), we obtain 

	

(z) = 	
ebl* 	z 

C 
4 	dx (z — x)3  exp[cx — ecs] , 

3b2F*  _00 

b3 e.1*  
gi(°)  = 3b2 F. • 	

(65) 

With the help of eq.(27) at x = 0 and eqs.(65),(29) one can obtain the 

relations 

(1* = 	[1 	1-1 , (2* = (D2* [i — P* 1 )211 	(66) 

which, in virtue of eqs.(32),(36)-(38) and (62), justify the estimates (33) of the 

second step of iteration procedure. 

1:1e1.* 

(63)  

(64)  
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Marking with superscripts 0,1,2,... the values at the corresponding iteration 

step, let us compare the first approximation with the second one. 

From eqs.(10) and (63) it follows that 

St* 	 0.12 
t. 

= ( —
2 

— 1) / (miri m2r2) = 	  
rn \,b2 	 ik m M2-1- 2 5  

i.e. the moment t,l<2)  bas become a little more than the moment tii)  (we exclude 

from considering theory very small m1  and m2, assuming miFi  m2F2  » 1) 

owing to the more slow accumulation of substance by the droplets in second 

approximation. The increase of the duration of droplet growth clears the result 
g 2)(0)  > g(0) following from eqs.(56),(65) and (62). 

Inserting eqs.(54),(56) and then the eqs.(60),(64) in (42), we find the spectrum 

f (x) in the first and second approximations, respectively: 

f  (1) (x 	4:»1*  c4 exp [cx — e"], 	 (68) 
611*xo*  

f (2)(x)   	exp 	— —
c4 	

dx (x — 2)3  exp (cx' — 	(69) 
3b2F*xo„ 	3b2  

(in view of eqs.(63),(32),(38) we suppose (Di*, 02,„Il,„ and c are the same in first 

and second approximations). 

From eqs.(19),(20),(67) and (10) it follows that in second approximation the 

beginning of z-axis shifts by 

2 
6z = (--L  — 1) I c = 0.12/C 

U2 
(70) 

compared with that of first approximation. 

Substituting in eqs.(56),(68) the variables z and x corresponding to the 

second approximation and taking eq.(55) into account, we obtain 

(67) 

g1  (z) = 
	 4  
3b2F

c f 
. 	dx (z — x)3e", (71) 

f x 

f(x) = 	4°1* 	exp [cx — 
3
C4 

 

b2 1-03
dx' (x — 43e"/ 	(72) 

3b2F*xo* 
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Comparing eqs.(64) and (69) respectively with eqs.(71) and (72), we conclude 

that g? )  (z) < 	(z) and f( 2)(x) > f(1 )(x). These inequalities would remain true 

under the use of other variables z, x corresponding to an arbitrary but common 

choice of the zero point of z-axis. Under common choice of zero point of z-axis 

the following estimates are also true 

g1 
(2) 	< gi ( z ) < gV)(z ) , 	 (73) 

f (2)(x) > f (x) > f (1)(x), 	 (74) 

where gi (z) and f(x) correspond to the strict solution of the set of equations 

(44),(52). 

Since the value 1/c characterizes the scale determining the width of the most 

important part of spectrum, one may, in virtue of eq.(70), neglect the breakdown 

of estimates (73),(74) owing to the shift of t*  by St in condition (20), and one 

may, in the same way, assume that the estimate (74) is true even if the functions 

f (1 ) (x) and f( 2 )(x) are given by eqs.(68),(69). In such a sense we shall un.derstand 

these functions from now on. 

Let us dame the left and right spectrum half-widths A_x and A+x as 

f(-3,_x) = f(0)/e, f(A+x) = f(0)/e. 	 (75) 

Within the interval 	< x < Al _x the relatively important part of spectrum 

is situated. In first approximation, according to eq. (68), we have 

A_x = 1.84/c, A+x = 1.15/c. 	 (76) 

With the help of eqs.(68),(69) and (76) one can obtain the relations 

f (2)(s)— f (1)(x) 2 

	

= 	— 1 = 0.12 (—cx 	1), f(l)( x ) U2 

f (2)(0) - f(1)(0) 	2 	( 	b3  
3b2 ) 	0.059, f(1)(0)  	= b2  exp 1 	1 =  (77) 
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f(2)(A+x) _ f(i)(p+x ) 	0.50  
	f(i)(A+x) 

and the estimate 

f ( 2 ) (x) 143 
f(2)(0) 	exp 	

3 31 

	

- -C 	(X > 0), 	 (78) 
b2 	3b2  

the analysis of which allows to conclude that already first approximation of 

spectrum given by eq.(68) is fairly accurate. By this approximation we shall be 

satisfied afterwards. 

4 	Simultaneous and non-simultaneous stabilizations of ideal super- 

saturations after the attainment of the metastability maximum 

Above, in the developed iteration procedure it was supposed that the sta-

bilization of ideal supersaturations 4,1  and 4.2  occurs after the end of formation 

of the most important part of spectrum. In the cases where the stabilization of 

either 4,1  or 4,2  and that the stabilization of both 4,1  and 4,2  occurs before the end 

of the stage of formation of the most important part of spectrum, the presented 

iteration procedure will change a little. 

Let us consider at first the case where 

41)1* < 41)01 	I:1:41*(1 	1.15C1/CF*), 41 02 > 44 2*(1 + 1.15C2/Cr*), 	(79) 

i.e. where one of the ideal supersaturations (4.1) is stabilized before the end of 

the stage of formation of the spectrum, and other ideal supersaturation (4.2 ) is 

stabilized after the end of that stage. 

The relations (40) will take the form 

(Di* 

	

= 	
, 

(1)1(x) 

	

-1* -I- 	r* 	< z0 ), 

(Di*  

	

(Di* + 	eizo (x > zo ), 	 (80) 

	

, 	 
41)2(x) 	4'2* -t 	C2X, 

I* 



where 
F*  

zo =- —(4)011*- 1). ci 

Respectively instead of eq.(41) we have 

01* 
(i(x) - 4,1*= r*  clx - gi (x) (x < zo), 

-=
r

cizo - gi(s) (x > zo), 	 (82) 
* 

(D2*  
(-2(X) — (1'2* = 	C2X — g2(x). 

F*  

The expressions (42),(53) change only in the regions x > zo  and z > zo. In these 

regions now 

f (x) = 	11' 2.) exp {czo  - 	gi(x) 	
F2 

C2(X 	2.0)] (X > zo), 	(83) 
Yi* 	F* 

Zo 

gl (Z) = X0*.fS(e'i*) ei2*) {I dx (z - x)3  d' + 
-00 

+  fz 

	

	 r2 dx (z - xr exp Eczo  + —, c2(x - zo )] } (z > zo ). 	(84) 

Zo 	 1. * 

Taking eq.(54) into account and carrying out integration in eq.(84), we obtain 

gi(z) 1)1* 	 1 	 1 
ecz° [1 + c(z - zo) -c2(z - zo )2  -c 3(z - zo )3+ 

P* 	 2 	 6 
1 

+-
1

c
4
(Z — .Z0)4  —C4 A(Z — Z0)5] ( z > zo), 

24 	 120 
(85) 

where = c2F2/F*. Inserting eq.(85) in (83) and taking eq.(54) into account, we 

obtain 

tD1* 	c4  exp [cx — e"] (x < zo ), 
61-1*xo*  

4'1* 4 
 	exp {cx — e"° [1 + c(x — zo ) + —

1 
c2  (x — z0 )2+ 	(86) 

6F*  xo*  c 	 2 
1 3 	, 	1 4 , 	 1 

1--C
, 
 — Zo)

3 
 + —C ÇX — z0)4  + 

120
C4A(X — Zo)5] + 

6 	 24  
-1-A(x - zo )} 	(x > zo ) 

123 

(81) 

(obviously, the eq.(68) for f (x) remains true as long as x < 20). 
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In the case where both ideal supersaturations, (Di  and 41.2 , are stabilized 

simultaneously before the end of the stage of formation of the spectrum, we have 

<4140i <,--, 41.i.(1 	1.15ci/c11.) (i = 1,2). 	 (87) 

In this case the changes in the iteration procedure do not lead to eqs.(80)-(86), 

but to the equations 

41i  (x) = 
{

411 i, +Î--"cix 

'1'i* + -* CiZo 
(i = 1,2), 	(88) 

F. 	 r* 
zo 	—(4.01/01. — 1) 	--(4.02/1)2. —1), 	 (89) 

ci 	 c2 

1,.** cix — g(x) 	(x < zo), 
Ci(x) — 	{ 	 (i = 1,2), 	(90) tc-izo — g(x) 	(x zo) 

	

f (x) = f3(4,1., .1)2.) exp [z— 	]—gilx) 	(x :  zo ), 	(91)  
(Di* 

	

Zo 	 çz 

	

gl (Z) = X0*.f8( 4ei*) 02 ) [f dx (z — x)3e' 	dx (z — 	ecz 1̀ ] ( x > 	z o), 

	

—CO 	 zo 

(92)  

91(z ) 

(Di* ecz° 	c(z — zo) 	—
1 

(z — zo )2  
F* 	 2 

1 
—
1
c

3
(Z — Z0)3  — C

4(Z — 44] ( z > zo ), 
6 	 24 

(93)  

c4  exp [cx — 	(x < zo ) 
6F.xo. 

(1)1* 	c4  exp {cx — ecz° [1 c(x — zo ) + —
1 
c2 (x — 42+ 	(94) 

6F* xo. 	 2 
_ zor 1c4(x  _ 	(x > zo ). 1 0 

6 	 24 

Let us denote by N the total quantity of droplets per volume unit formed 

during the first stage of two-component condensation. This quantity, according 

to eqs.(14),(21) and (22), linearly depends on the spectrum by means of integral 

value 

= f:dx f (x). 	 (95) 
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Therefore, the accuracy of determination of the value I has particular significance. 

To estimate the accuracy of determination of the value /, let us change a 

little the above described iteration procedure by supposing that xo., sfei.,(1)2*  and 

4'24 (and with them F. and c too) are the same in all the iteration steps 

and determined by insertion of the last of used approximations in eqs.(51),(52). 

Having chosen in this common way xo*, (Di*, ele2* and f s(4'1., 4'2.) one can guarantee 

that the less the function gi(x) in the RHS of eq.(44) is the more the RHS of 

eq.(44) is. This property makes it possible to construct, by means of an iteration 

procedure, the approximations g 3) (x) (j = 0, 1,2, ...) which monotonically 

approach the strict solution of eq.(44) with chosen xo*, (bi*, 4.2* and fs(4)1*, 02*)• 

This property guarantees the uniqueness of strict solution. 

Let us choose the g4°)  = 0 as the initial approximation in the iteration 

procedure. Such a choice ensures the inequality g > e) , where g is the strict 

solution of eq.(44). Every next approximation is determined by inserting the 

precedent one in the RHS of eq.(44): 

(i+i) (  
t.z) =Xo*f 	 2*) I dx (z — x)3  exp [cx 	À3)(x)] (j = 0, 1,2, ...). 

-00 
(96) 

Using the indicated property of the RHS of eq.(44) and taking into account the 

obvious inequalities g > e) , g? )  > g .°)  and the fact that the calculation of the 

RHS with the help of strict solution gi  leads to the same solution gi , we conclude: 

(1) 	( 2 ) 	(3 ) < g1 , 	> 	,gl< 	, 

(3) 	(1) 	(4) 	(2) 	(5) 	(3) 
<g1 , 91 > g1, g 	91 5 ••• • 

According to eqs.(97),(98) the approximations g V-)  , g V )  , . . . of odd order mono- 
( 	( 

tonically approach gi  from superior, and the approximations g 2)i  , 4) , ... of even 

order monotonically approach gi  from inferior. 

(97)  

(98)  

The approximations of the spectrum f(k ) (k = 1, 2, 3, ...) are found by 



substituting 	(x) for gi (x) in the RHS of eq.(42): 
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f (k)(x) 	 fs(c1.1.,(1.2*) exp 
F*  

)(x)] (k = 1, 2, 3...) (99)  [cx — 

In accordance with eqs.(97),(98) we have 

f > f (1) , f < f (2) , f> f (3) , (100)  

f(3) > f(1), f (4) < f(2),  f(5) > f (3), ....  (101)  

The analogous inequalities take place for the iterations of the integral spectrum 

characteristic /(k) (k = 1, 2,3, ..) which are determined by substituting f( k ) for 

f (x) in the RHS of eq.(95): 

I > 

i(3) > 1(1), 

< 

< 

i > i(3), 	, 

1(2), 1(5) > 	.... 

(102)  

(103)  

Let us construct the iterations by described means. Introducing the value 

h = 6F * xo* I 

and denoting fa(tDi*, 02*) by fs*, we have in first approximation 

4'1* h 	CZ ,  

exp 

, 

1 
h •  

— —h  f,ecx] 

[cx' — —h  f 

(104)  

(105)  

(106)  

(107)  

(108) 

ec]} , 	(109) 

(110) 

91 	(z)= F. 

f (1)(x) =- f s* exp 

/(1)  = —h1  1°0 d 	exp 
00 

In second approximation we obtain 

(2), 
z) = Xo*fs* 	dx (z 

(2) 	 h  6c3  fs* f :c dx 

c f, 

[cx — 1c  Lel 

— ee) 

— x)3  exp [cx 

(x — x , )3  

1P/h, 

f 	(x) = f s* exp {cx — 

./(2)  = 
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where 

= cx ln (—h  

co 1 „ 
= 	de exp f — — dC (e  _ e )3 	/ 

exp 	- 	= 1.15. 	(112) 
6 

At the first step of iteration procedure (interrupted at first iteration) f  is 

found from eq.(52) with the help of eq.(105). That leads to the anterior formulas 

(54),(56),(68). At the second step of iteration procedure (interrupted at second 

iteration) f3 ,, is found from eq.(52) with the help of eq.(108). In this case both 

in first and in second iterations a small difference is observed with regard to the 

anterior results. 

In accordance with eqs.(107),(110) and (112) it is true that 

/(2) — /(1) 
= 	— 1 = 0.15. 	 (113) 

Taking eq.(102) into account one can write 

(114) 

where I corresponds to the strict solution of eq.(44) (with the same xo., 

and h.). The relations (113),(114) guarantee the inequality 

/ — /(1) 
/(1) 
	 < 111 — 1 =0.15 

which allows to conclude that the expression (107) approximates the integral 

characteristic I with the relative error less than 0.15. 

Taking eqs.(25),(26) into account, it follows from eqs.(104),(31),(36),(39) 

and (43) that the value 1/h in the RHS of eq.(107) is a relatively "slow" function 

of xo., (1)1,„ e,2*. A fairly accurate calculation of 1/h is attained in first iteration 

step. Therefore, in the same step we also find the integral characteristic I and 

total quantity of droplets N with the relative error less than 0.15. 

(115) 
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5 	Initial and final periods of two-component condensation 

Omitting in the following the approximation superscript, for the spectrum 

in accordance with eq.(68) we have 

f(x) = 	c ì  exp [cx — 	. 
ui *xo*  

Inserting eq.(116) in eq.(28) we obtain 

= 
Xonls*Ve (Di* c4 z dx (z — 	exp [cx — 	. 
Xo*nisV 6F* 	_c„ 

The expressions (117),(29) are already true not only during the stage of 

formation of spectrum (when xo 	xo*, V 	V*  and ni, 	ni s*  (i = 1,2)) 

but also during whole condensation process. The time dependence of the factor 

nis*V*ini,V (i =1,2) is assumed to be known, and the value xo  satisfies eq.(13). 

The relations (27),(10),(13),(117),(29),(19),(20) form the consistent set of 

equations. Resolving this set we can obtain the function z(t) of one independent 

variable t. Together with z(t), the time dependences of Ci (i = 1,2) are also 

determined. 

For the total quantity of droplets formed per volume unit we have according 

to eq.(22): 
V* N 	co dx f (x). 

Inserting eq.(116) in (118) and integrating, we obtain 

V* 4'i*c3  N = nis* 
V 6r*xo* •  

(118) 

Let A_(Di  (i = 1,2) and A_t be the changes of gDi  and t corresponding to 

the change of z from —3,_x to 0, and let Ai.(Di  (i = 1,2) and At be the changes 

of 1, and t corresponding to the change of z from 0 to A+x. The values (Di and t 

have the magnitudes (Di* — A_(Di  and t*  — A_t at moment of beginning of intensive 

(116)  

(117)  
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nucleation and the magnitudes 4.i. + A1 and t. A_Ft at moment of end of 

intensive nucleation. 

From eqs.(40),(76),(39) and (43) we have 

1.84ci 	4.(1) i  
	 =  	

1.15ci 
	 y, (i = 1,2) 	(120) 

cil
r, 	

3. 
i + C2r2 1 4ii* 	C1111 + C21  2 

and, in view of eq.(10), also 

	

At 	1.84 	A+t1.15 
	 =   	 =  	(121) 
t, 	miri + in2F2' t. 	mir]. + m2r2 .  

Supposing that the condition 

miri  7n2F2 >> 1 	 (122) 

is observed (this condition excludes from theory only very small m1  and m2 ), 

the smallness of the RHS of eqs.(120),(121) will be guaranteed what justifies the 

linearization of the upper of eqs.(10) in t and x during the first stage which has 

been used in eq.(40). 

The full width_ of spectrum Ax and the full duration of first stage At are 

determined as follows 

Ax = Ax Ax, At = At At. 	 (123) 

From eqs.(76),(121) we have 

Ax = 3/c, At = 3t./(miri m2r2) 
	

(124) 

The condition (122) leads to the smallness of intensive nucleation duration in 

comparison with the time of the beginning of nucleation. 

In order to complete the description of the kinetics of two-component con-

densation under dynamic conditions, it is necessary to determine the time de-

pendences of z, Ci  and (2. The rate of increase of linear size of droplet is not so 

sensitive to 
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supersaturations and (2 as the nucleation intensity, hence the high accuracy of 

determination of the supersaturations (i  and (2 1S no longer demanded. 

Since, according to eq.(116), the spectrum is relatively symmetrical about 

the point x = 0, from eqs.(27),(117) and (29) one can obtain the approximations 

= (D 	Xo nis*V* i 	4.1* 
Xo* niy 6r* 

(125)  

0 	1  — Xo nis*V* (Di*  3 3  2   (126)  
Xo* n2,91/.  6F. z  

corresponding to the approach of monodisperse droplets. The relative error of the 

second terms of sums in eqs.(125) and (126) becomes important if z 	Ax = 

3/c. However, in this case these terms become small in comparison with the first 

terms attaining values near 4)1*  and 42*  as early as the beginning of first stage. 

Therefore, the RHS have a high relative accuracy from the first stage. 

At first, let us consider the period when 

- 	1 	(2: = 1,2). 	 (127) 

With allowance for eqs.(13),(127) we obtain from eqs.(125),(126) and (19): 

Ci 	
1 

= 	[1. 	"*c3z3] 	
(128) 

= (D2* [1 	P. 61,1 	* c3 	 (129) 

dz 	aci. a3 	 C3 	 3 	 (130) 
11*a3Z  —dt = —7.1*—Xo*eil*[1 6 

 

Xo*h(Xo*)  a3  = 1 	 (131) 

Obviously, a 	1. 

Solving eq.(130) with initial condition (20), we obtain 

t — t* 	(1 + z/zr + z2/zh1/2 
	 = ln 	 arctan 

2z/z, + 1 (132) 
t r 	1 — z/zr 



where 
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1 	 1 
t r  = —

9 
(6F* )1/3aAt = 

3 

zr   
1 

= -§(611* )1/3aAx 

(6F )1/3a  

m2112 t" 
1 

(6F* )1/3a. 

(133)  

(134)  

In virtue of eqs.(32),(38) it follows from eqs.(122),(133),(134) that Zr  

2Ax, 	2At and tr  < t*. 

The relations (128),(129) and (132) determine the dependence of Ci , (2  and 

t on z. To find the dependence of Ci , (2  and z on t it is necessary to solve eq.(132) 

with respect to z. Particularly, we have 

Ax 
z = 	(t — t* ) (—A_t <— t — t * 	34/2) 

Z = 	[1 — 13-J/215  exp 	trt* )] (t — t*  > 34) 

The expression (135) describes an initial period of condensation which, 

according to 34/2 > At > At, ends a little later than the first stage. During 

this period C 	Í i (Di*  (i = 1,2). 

The expression (136) describes a final period of condensation. During this 

period the exponential term in the RHS of eq.(136) is already small so that z 

almost coincides with Zr . Then from eqs.(128),(129),(134) and (136) it follows 

that 

= q)].* [1 — a3  3-1L3e712V3-  exp 	—trt* )](í — t* > 34), 	(137) 

= 4e  2* [i P*a3  3P*a3e712 /̀-  exp
r
t* )] (t — t > 34.). (138) 

According to th.ese relations, t r  represents a relaxation time. 

The region of validity of eqs.(135),(136) is also limited by inequalities (127) 

which can be broken when the ideal supersaturations continue to increase. According 

to eqs. (10),(122) and (133), the inequalities (127) are still observed at t—t* 	3tr, 

(135)  

(136)  
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but they are broken as the time increases. Thus, under the conditions when the 

ideal supersaturations increase the asymptotic relations (136)-(138) are valid only 

at t — t* 	3tr. Then the eqs.(137),(138),(127) and (27) lead to the relations 

Ci/ gDi < 1, gi/Oi 	1 (i 	1,2) which mean that the droplets have absorbed 

practically all the condensing substance (provided earlier the metastability of 

vapor mixture). 

As long as t—t* 	(i.e. before the final period) the value gi/41.i  increases. 

According to eqs.(56),(29),(124) at t*  and at t* 	we have, respectively: 

gi 
(Di 

vr,,, A 
t=tg, 	 ee  2 

(139)  

 

 

gi 	= p*e1.15 
t=i 	

e1.15/r*  _g2 (140)  
*I-à+t 	5  '1)2 t=t*-1-A+ t 

From eqs.(139),(140) it follows that the values gi/(1.1  and g2/1)2  increase the most 

rapidly after the end of final period of condensation, and in time 34/2 	t — 

t 	3tr  they attain the magnitudes near 1, i.e. practically whole two-component 

vapor mixture is absorbed by droplets. During this period the evolution of Ci , (2  

and z is described by relations (132),(128),(129). 

If the ideal supersaturations are stabilized then the relations (136)-(138) 

remain true during a final period as long as t — t* 	Their validity will be 

limited only by restriction (30). From eqs.(22) and (128) it follows that during 

whole final period the distribution p(p,t) practically does not change. The relative 

width of spectrum is characterized by value Lx/2z,. which is equal to (9/16F*a3 )1/3  

as it follows from eq.(134). 

If the ideal supersaturations continue to increase, then the relations gi/(1., 

1 	(i = 1, 2) attained by t — t* 	34 can be assumed as initial conditions for 

following evolution. 

First, let us consider the condensation in materially open system. 

Since in this case ni, = ni, (i = 1, 2) and V = V*, from eqs.(19), (13), (125), 



(142)  

(143)  — (1  — xo)f2(xo) = 

Ti dz 

aci X°  dt' 

72* 	dz 
(1 — X0). 

Cec2 

Ci - x0fi(x0) = 

(126) it follows that 

(61P*)1/3  (X1/3 	— (1)1/3  

(n2tot*)1/3  (6F)1/3 	XO* 	1"  02 — 	1/3  
nitot* 	 1 — XO 	02* 

Taking into account the initial conditions gi/4.i 	1 at t — t* 	34, let us 

assume that Oi — 	(i = 1,2) in eq.(141) and find z in first approximation: 

(6F*)113  (xo*V3 411 )1/3  
C 	X0 	01* ) 

(n,tot* )1/3 (6r*)113 x0*  1/3 ei2 1/3  

\nitot* 	c 	1 — xo 	02* 

Inserting eq.(144) in (142),(143) and making allowance for eqs.(43), (10), 

(13), (19), we have in first approximation: 

2/3 	(3-mi ) 

(1. X0f1(X0)  1  (61-1* )1/3 	X0 	01* 
01* — X0*.f1(X0*) = 3r1 + r2rrb2/mi x0* 	) 

- (1 - x0)f2(x0) 	(6r*)i3e3 	- x0  )2/3  ( 02* (3-m2 )/rn2  

02* — (1 — X04f2(X0*) 	3 rimi/rn2 + F2 1 — X0*) 	\ 02 .1 

0 < mi < 3 	(i = 1,2). 	 (147) 

Taking eqs.(32),(38) into account, it follows from eqs.(145),(146) that 

(1. 	Xo.fi(X0) 	C2 — (1 Xo)f2(Xo)  1 	(148) 
01* — Xo*.fiXo*) 	W2* — 	X0*),f2X0*) 

X0 01w 

z = 

(144)  

(145)  

(146)  

In order that the supersaturations Ci  and (2  do not increase with time, the values 

mi  and m2  are to satisfy the restrictions 

133 

(141) 
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These estimates together with usually observed conditions of slight dependence 

of activities on solution composition 

xofi(x0) 	xo.fi (xo.), (1 — Xc)f2(X0) rs' (1  — Xo.)f2(Xo*), 	(149) 

mean that the vapor mixture metastability (decreasing with time) at this stage 

is much less than its maximal magnitude, therefore a new intensive formation of 

embryos will no more occur. 

From eqs.(148),(149) it also follows that Ci/(Di  < 1 (i = 1,2) and all the 

more Ci 	< 1 (i = 1,2). That confirms the approximate equalities eDi  — 

Ci L-2 (Di (i = 1,2) used for final period and provides a high relative accuracy 

of expressions (144)-(146). According to eq.(144), the droplets grow so that they 

have time to accumulate in themselves practically all the condensing substance 

of both components. 

Let us note that the time of validity of the expressions (144)-(146) can be 

limited not only by condition (141) but also by other causes such as breakdown 

of free molecular regime of material exchange between a droplet and a vapor 

mixture, non-isothermal effects of condensation, coagulation, stabilization of ideal 

supersaturations, etc. 

According to eqs.(22),(144), the graph of one-dimension distribution of droplets 

p(p, t) moves as a whole along the p-axis. The relative width of the spectrum is 

characterized by value D = Ax12z decreasing with time: 

D 	
( 	9  \ 1/3 ( xo  1/3  ( (DIA  1/3 

.16F* ) 	Xo*) 	4)]. ) 

(nitot*)1/3  (  9  "\ i/3  (1 	Xo  )1/3  ( 2* 1/3  (150) 
n2tot* 	16F* ) 	Xo* 	'1)2 ) 

In the case of materially closed system from eqs.(19), (13), (125), (126) with 

consideration of 

nisOiV = nis*Oi* V*  (i = 1,2) 	 (151) 



— (1  — X0).f2(X0) = 72*  (1  — X0)512(4°2) — 
dz 
dt .  
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we have 
113(6F) 3 	4)1 + (D2 — Ci — C2  

1/3 

Z = XO* + (1 — xo)<D2n1tot*In2tot* 
Ti* 	dz 

XoSi(01)—dt' ci 
Xo.fi(X0) 

Assuming —C 	(i = 1,2), from eq.(152) we obtain in first approximation 

1/3 (6r* )1/3 [ + 4e2 	
11/3 

Z = XO* (155) 
C 	I X04'1 + (1  — X0)4)2n1tot*in2totj 

The expression (155) leads to the equality 

dzldt = 0 	 (156) 

not only in virtue of evident equality for a materially closed system 

m1 = M2 	 (157) 

but also because of relation observed in this approximation for such a system 

nitot* 
nitot* n2tot* 

Thus, in first approximation we have 

z 	(Xo.)1/3  (6E)1/3 ,  

Xo 	
(159) 

X0f1(X0) — 0, 	— (1  — X0)f2(X0) = 0. 	 (160) 

In view of estimates (149) the equalities (160) justify the approximate relations 

(Di — _rd (Di (i = 1,2) used in eq.(159) at final period and provide a high relative 

accuracy of eqs.(159),(160). 

According to eqs.(22) and (159), the one-dimensional distribution of droplets 

p(p,t) practically does not change during a final period. The relative width of 

spectrum is characterized by value D =- Ax/2z which is equal to 

D = 
l y 9 \ i/3 ( xo  )1/3  

(161) 
16F* ) 	xo*  

and practically does not change with time. 

The validity time of eqs.(159),(160) is still limited by condition (30). 

Xo (158) 



. 	(166) 

It is evident that the fulfillment of relation (163) is provided by condition e < 1. 

_ 
F * 	2 	6 	24 

c4z4 1 z ( > 0) elel* 	1 	1 
gl 	= e— [1 cz —c2 Z2  —C3Z3 1 — 
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6 	Attainment of the metastability maximum in consequence of sta- 

bilization of both ideal supersaturations 

Now, let us consider the case where an attainment of metastability maximum 

is due to the simultaneous stabilization of both ideal supersaturations. For the 

moment t*  of attainment of metastability maximum and for the magnitudes (Di. 

and e.2*  of ideal supersaturations of both components we have: 

t. = t0 ; 	= (I)0i  = (t0/ti)mi 	(i = 1,2). 	 (162) 

Approaching to the point z = 0 the real supersaturation (i  continues to 

increase and the rate of consumption of i-component of vapor mixture by the 

droplets still remains less than the rate of increasing of the corresponding ideal 

supersaturation. In view of eqs.(41) we obtain (instead of eq.(52)): 

g( 0 ) < r-c. * 

At the moment when the ideal supersaturation 	is stabilized the real super- 

saturation (i  begins to decrease. 

Taking eqs.(53),.(163) into account, let us introduce the parameter c by 

E= 
6r *Xo* ( 

suA' 1*, sk• 2*), 
/11*C4  

(164) 

where f3(4.1., 02.) is given by relation (35) in which (Di. and .b 2*  are determined 

by external conditions. 

Considering eq.(164), instead of eqs.(56),(93) we shall have in first approxi- 

mation 

(z < 0), 	 (165) 

(163) 



137 

From eqs.(27),(29),(165),(166) it also follows that 

(1(0) = 4,1*  (1 — 	, 	 (167) 

(168) 

Instead of eq.(94) for the spectrum in first approximation we have 

6r*xo* 
f(x) = e (1)1*  c4 exp [cx — eees] 	(x < 0), 

f (x)= e 21*  c4 exp [—e (1 cx 	c2 x2 	c3x3  + c4x4)] (x > 0). (169) 
oit. *xo*  

The stabilization of ebi  and 2,  according to eqs.(4),(5), also means the 

stabilization of n18 , n28  and V. The equalities nia  = ni, (i = 1,2) and V = V. 

are now observed with a high relative accuracy in a materially open system as 

well as in a materially closed one. Therefore, eq.(28) takes the form 

Xo. 	dx (z — 	f (x). 	 (170) 

Inserting eq.(169) in (170), one could obtain the second approximation of 

gi  correct during whole condensation process. This approximation together with 

eqs.(19),(27) and Oi = 	(i = 1,2) would allow to obtain a consistent differential 

equation of the first order in unknown function z of one independent variable t. 

Supposing that 

<— 1/e8 , 

one can replace (169) by 

4)1* 
f(x) = f 	C4e (x 

[— —
24

C
4 X4] 

< 0), 

(X > 0). 

(17-1) 

(172) 

6f *xo*  

-=" C 
 4 

f(x) 	r, 	exp 
61 *X0*  

Figure 2 shows the behaviour of spectrum f(x) in different cases of stabilization 

of ideal supersaturations, the parameters ml, m2, t i , and t2  being fixed. Curve A 
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corresponds to f(x) given by eq.(68) (stabilization of both (Di  and 4,2  after the 

formation of spectrum, 2.0  > 1.15/c). Spectrum B is given by eq.(94) at zo  = 0 

(simultaneous stabilization of (Di  and (1)2  at moment of attainment of metastability 

maximum). Both spectra C and D correspond to the case of simultaneous stabilization 

of 4)1  and (1,2  before the attainment of metastability maximum and are given, 

respectively, by eq.(169) with c < 1 and by eq.(172) with e <rs,  1/e8. 

According to eqs.(172), for the left and right half-widths of the spectrum we 

obtain 

A_x 
4 1/4 

= 1/c, A_F x =
)

-
1

. 
c 

Inserting eqs.(172) in (118), taking into account eqs.(170), V = V*  and 

neglecting the small contribution from x < 0, we obtain 

3 )1/4 e, 
N = Anis. ( -4 	r.xl*o.c3' 

(174) 

where 

A --= 	de e-e4  = 0.91, 	 (175) 

According to eqs.(173),(40),(170),(43), instead of eqs.(120),(121) we have 

Ci  

O ' c2F2  

A_t 	1 	At (24 1- /4 	1 
t*  rniri 722r2 t. 	 rniri. 7n2112 .  

As it follows from eqs.(177) and (171), the condition (122) guarantees the smallness 

(in comparison with t * ) only of time interval A_t but not of time interval At. 

From eqs.(173),(177) and (171) the strong inequalities 

	

A_x < A+x, A_t < 	 (178) 

also follow which allow to obtain the expressions 

t *  

	

Ax = (-
24)1/4 

-
1
, At = (-

24)1/4 	  (179) 
\ e 	c 	e 	rniri rn2F2' 

(173) 

(176)  

(177)  
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Therefore, by neglecting the very inessential part of spectrum for x < 0, one can 

present eqs.(172) as 

X 4 
f(x)

4b1*  (Ax)4  exp [ (Ax) ] 0(x). 

Obviously, the condition (171) corresponds to the case of instantaneous 

creation of metastability. 

= 	
4A01*  1  (

z 
Ax 3  

F*  (Ax)3 	2 ) 	
(181) 

n  LIMel*  1 ( 	Ax 3  
(2 = 02* —  	 (182) 

	

F*  (Ax)3 	2 ) 

corresponding to an approach of monodisperse droplets (relatively to the average 

size z — Ax/2). For z 	33,x/2 a relative error of second terms in the RHS 

of eqs.(181),(182) becomes important. However, the second terms themselves 

become negligible in comparison with the first ones. Thus, the RHS of eqs.(181),(182) 

have a high relative accuracy beginning from the first stage which in view of 

equation (178) begins as a matter of fact at moment t*  when z = O. 

Taking into account eqs.(13), xo  = xo*, ni, = rij  (i = 1,2) and inserting 

equations (181),(182) in (19), we obtain 

4'1* 1 	 
dz 	ac1  a3 	4A 1 	( 	Ax [ 
dt 	Ti* Xo* 	r* a3  (Ax)3 	2 ) 

Replacing the initial condition (20) for the eq.(183) by practically equivalent 

condition z = Ax/2 at t = t*  At/2 and solving eq.(183), we have 

[(z  —  Ax/2)2 /z, 	(z — Ax 12) / 	111/2  } 

tr 
	  -= ln { 

1 — (z — Ax/2)/z, 
t — t*  — At/2 

.Narctan 
[2(z — Ax  /2)/ zr  1] 7r  (184) 

(180) 

In accordance with eq.(180) the spectrum has a relatively symmetrical (about 

the point x = Ax/2) form resembling regular polygon with the width Ax. Hence 

with the help of eqs.(27),(170),(180),(175) and (Di = gbi*  one can obtain the 

approximations 

(183) 
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where 

Zr  (
r*  1/3 	 r* 1/3 
-4A) aAx, t ,. = —

3 
(-
4A) 

 aAt 	(185) 

(taken into account the equality Ax/At = cecia3e'1*/7-1*x — 0* following from 

eq.(19)). The estimates Zr  > 2Ax, 3tr  > 2At are fulfilled in virtue of a 

1, F » 1 and A 0.9 

The expressions (181),(182) and (184) determine the dependence of (1, (2  

and t on z. In order to find the time dependence of Ci , (2  and z it is necessary to 

solve the equation (184) for z. In particular, 

	

Ax 	 3 At 
z = 	— t* ) 	(0 <— t — t *  .c:- tr  + —2  ), 	(186) 

At ) exn 	t — t* )1 Ax  (I 	 At 
z = 	[1 — Nf-3 exp 	 

	

2 	
+ 
	t, 	2 "—* >— 34  + 2 ). 

(187) 

The expression (186) describes an initial period of condensation and expression 

(187) describes a final one. During a final period of condensation the exponential 

term in the RHS of eq.(187) is already negligible so that z practically does not 

change with time and has a magnitude near z,. Ax/2. 

Inserting eq.(187) in (181),(182) and taking eq.(184) into account we obtain 

= 4)1* [1 — + 3 Nfja3  exp 	 + At ) exp 	t —
tr

t* )] (t—t* 	34.-1- 
At ), 
2 20 24. 

(188)  

= 	2*  [1 - /3,,a3  + 3 \f§13,,a3  exp 
(  7r  + At) ex 	t — t *  

2t, P 	ir  ) 

 

 

(t — t* >-3t,. + Lt ). 2 

 

(189)  

The validity of relations (188), is still limited by restriction (30). 

With allowance for P 	1,a — 1 andA 	0.9 from eqs.(188),(189) it 

follows that during a final period of condensation (ibbi*  << 1 (i = 1, 2). From 

eqs.(22),(187) it also follows that the one-dimensional distribution of droplets 



141 

p(p,t) changes with time very feebly. The relative width of the spectrum of 

linear sizes is characterized by value Ax/2z, which is approximately equal to 

(A/2F*a3)'/3. 

7 Conclusions 

By means of classical approach to the binary condensation we have derived 

the consistent set of equations of binary condensation under dynamical conditions. 

Supposin.g that both real supersaturations attain their maximums simultaneously 

(synchronousli) at the moment of attainment of metastability maximum, we 

have considered four different cases. 

First, we studied the case where both ideal supersaturations are stabilized 

after the formation of the spectrum of linear sizes of droplets. With the help 

of iteration procedure we have obtained the spectrum of linear sizes of droplets 

f(x) in first and second approximations. According to eq.(77), the first approxi-

mation of spectrum given by eq.(68) is fairly accurate. The spectrum f(x) does 

not depend on time by definition (22), and the time dependence of the two-

dimensional distribution of droplets n(p,x, t) given by (14),(22) is determined by 

the time dependence of values xo  and z provided in this case by eqs.(13),(125), 

(126), (132). The equations (125),(126),(132) provide also the time dependence 

of both real supersaturations and (2. The total quantity of droplets N formed 

per volume unit is given by eq.(119). 

Then we considered the cases of stabilization of both ideal supersaturations 

'Dl and 02  after the attainment of metastability maximum: either, a) both 01  and 

are stabilized simultaneously before the end of stage of formation of spectrum, 

or, h) 01  is stabilized before the end of this stage and 02  is stabilized after the 

end of this stage. For both cases with the help of iteration procedure we have 

found the spectrum and shown that the first approximation allows us to find the 
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total quantity of droplets N with the relative error less than 0.15. 

We considered also the case where the attainment of metastability maximum 

is due to the simultaneous stabilization of both ideal supersaturations. In this 

case for the spectrum we have attained the general expression (169) which can 

be rewritten as (172) if e 	e-8. The equations (187)-(189) represent the 

asymptotic behaviour of z, Ci , and (2  with time. 

In section 5 we have defined the terms "initial period" and "final period" 

because only for these periods we can obtain explicit expressions for the time 

dependence of z. The time dependence of z is very important for our theory 

because z is con.tained in the expression (22) for the one-dimensional distribution 

p(p,t) and, therefore, in the two-dimensional distribution n(p,x,t). The value z 

represents the coordinate of the maximum of spectrum which moves as a whole 

along the p-axis with the velocity equal to the rate of increase of linear size of 

droplet. As it follows from eqs.(135) and (186), the time dependence of z is linear 

during initial period. During a final period the time dependence of z is very slight 

and given by eqs. (136) and (187) if the ideal supersaturations are stabilized. If 

both ideal supersaturations 01  and 02  continue to in crease, then time dependence 

of z is given by eq.(144) for the materially open system and by eq.(159) for the 

materially closed system (in the la,st case z doesn't depend on t if we assume 

Xo nitot.1(72 itot* nztot*))• 

The relative width of spectrum can be characterized by value D = Axlz 

which generally slowly decreases with time or remains constant during final 

period. 

To illustrate the developed theory we have carried out the numerical calculations 

for the condensation in the materially open system "ethanol (first component) - 

hexanol (second component)" at T = 260 K in the case of stabilization of ideal 

supersaturations after the formation of spectrum of linear sizes of droplets, the 
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Table 1. 

Main values of theory for the condensation in the ethanol (1) - hexanol (2) open 

system at mi = 1, ti  =- 0.05 s, m2  = 1, t2  = 0.05s, and T = 260 K 

aci = 0.625, 	ac2  = 0.5 

Xc. Xo. 4'1. 4'2* t*, S ri F2 11*  Ci C2 

0.765 0.996 2.146 2.146 0.1073 65.2 20.0 85.3 2.3x10' 2.3x10' 

zr  Ax tr , s At, s c 

28372 13098 0.0027 0.0038 2.3x10-4  

acl = 0.0042, 	ac2  = 0.004 

X.c. Xo. 4)1. 41 2* t*, S Fi r2 r* el e2 

0.801 0.996 2.712 2.712 0.1356 41.8 10.4 52.2 0.011 0.011 

Zr  3..x 4, s At, s c 

532 274 0.0050 0.0078 0.011 

parameters in eq.(10) being as follows: m1 = 1, t1  = 0.05 s, m2  = 1, t2  = 0.05 s. 

Without describing the procedure of numerical calculations, let us note that, 

unlike the theory of one-component condensation, a correctness of data about 

the sticking coefficients aci , ac2  influences not only a correctness of theoretical 

predictions but also their accuracy since we have to solve the system of four 

equations for x,,,, 	.1)1* , (D2,, with the supplementary condition t101,, = t2 ¿f1/m2 

following from (11). Our calculations were carried out for two couples 

of sticking coefficients: ad. = 0.625, ac2 = 0.5 and an  = 0.0042, ac2  = 0.004, 

thermodynamic parameters for the ethanol-hexanol system being taken following 

Strey and Viisanen (1993). The results of calculations for main values of theory 

are summarized in Table 1. 

The total quantity N of droplets formed per volume unit strongly depends 

on sticking coefficients: N = 8.5x103  cm-3  for aci  =- 0.625, ac2  = 0.5; and 
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N 	1.91x109  cm-3  for an  = 0.0042, ac2  = 0.004. Figures 3a and 3b show 

the corresponding spectra f(s) of linear sizes of droplets (eq.(116)). The time 

dependences of the real supersaturations Ci  and (2  for the time interval 0 < 

t — t*  < 3.5 tr  are shown by Figures 4a and 4b (eqs.(128),(129), (132)). In both 

cases the difference between and (2  is very small because 	= (2*  and that 

is nearly equal to 1 (P. = 0.99996 at an  = 0.625, ac2  = 0.5 and P. -= 0.9998 at 

aci = 0.0042, ac2 = 0.004), but it increases with time and attains a value of the 

order of 10-5  (an = 0.625, ac2  = 0.5) or of 10-4  (a i  = 0.0042, aa  = 0.004) at 

t 	t*  + 34/2. 

It should be noted that we cannot obtain any analytical expression for the 

duration of all condensation process which is determined by the time t -cond at 

which the constraint (30) is broken and the binary condensation changes into the 

binary coalescence. Besides, we cannot obtain any explicit expression for the time 

dependence of Ci, (2, z for the interval of time 34/2 < t < 3tr . It's evident that 

numeric methods like the methods applied by Wilemski and Wyslouzil (1995) 

and by Wyslouzil and Wilemski (1995,1996) would make it possible to obtain the 

time dependence of Ci, (2  and z for this interval as well as to estimate tcon., --- .4 for 

any condensing system. This is an advantage of numeric methods. On the other 

hand, it will be necessary to draw a comparison between the results of presented 

theory and experimental data as soon as appropriate experiments are carried out. 

Particularly, it would be very interesting to compare our theoretical predictions 

with experimental data for the time dependences of real supersaturations Ci,  (2  

and average concentration xo  of solution in droplets as well as for the total 

quantity N of nucleated droplets. 
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Figure 1. Spectrum of linear sizes of droplets f as a function of p. 
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Figure 2. Spectrum of linear sizes of droplets f as a function of x for different 

cases of stabilization of ideal supersaturations at fixed mi , m2 , t i , t 2. The curves 

correspond to the following cases: (A) to zo  > 1.15/c [equation (68)]; (B) to 

zo  = 0 [equation (94)]; (C) to E < 1 [equation (172)]; (D) to E 	1/e8  [equation 

(175)]. 
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Figure 3a. Spectrum of linear sizes of droplets f(x) (equation (116)) for 

the ethanol(1)-hexanol(2) open system at T = 260 K, m1  = 1,ti = 0.05 s, 

rn2 = 1,t2  = 0.05 s in the case of stabilization of ideal supersaturations after the 

formation of spectrum, the sticking coefficients being ci ---- 0.625, cf c2 	0.5. 
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Figure 3b. Spectrum of linear sizes of droplets f(x) (equation (116)) for 

the ethanol(1)-hexanol(2) open system at T = 260 K, m1  --- 1, t i  = 0.05 s, 

m2  = 1, t2  = 0.05 s in the case of stabilization of ideal supersaturations after the 

formation of spectrum, the sticking coefficients being a 1 = 0.0042, ce,2  = 0.004. 



t ( s ) 

2 

152 

Figure 4a. Time dependence of real supersaturations Ci (solid line) and (2  

(points) in the binary ethanol(1)-hexanol(2) open system at T = 260 K, mi -= 

1,ti  = 0.05 s, m2  = 1,t2  = 0.05 s in the case of stabilization of .1)1 , (D2 after 

the formation of spectrum f(x) plotted according to equations (128), (129) and 

(132), the sticking coefficients being ad. = 0.625,a2 = 0.5. 
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Figure 4b. Time dependence of real supersaturations 	(solid line) and (2 

(points) in the binary ethanol(1)-hexanol(2) open system at T = 260 K, mi  = 

1, ti  = 0.05 s, m2  = 1, t2  = 0.05 s in the case of stabilization of (D1,4)2 after 

the formation of spectrum f(x) plotted according to equations (128), (129) and 

(132), the sticking coefficients being ci = 0.0042,a2 = 0.004. 



CONCLUSION 

Dans cette thèse nous avons étudié certains problèmes de la théorie de la 

condensation binaire homogène. 

Premièrement, nous avons considéré la thermodynamique de la nucléation 

binaire, en nous concentrant en particulier sur l'énergie libre de formation d'une 

goutte, le choix de ses variables d'état indépendantes et la distribution d'équilibre 

des gouttes. Cette dernière joue un rôle essentiel dans la théorie de la nucléation 

binaire, car la vitesse de nucléation binaire (la plus importante caractéristique du 

processus) est proportionnelle à la distribution d'équilibre. Cela est une conséquence 

du fait que l'on suppose toujours que la distribution des gouttes dans la région 

précritique des variables d'état est celle d'équilibre et qu'elle a la forme de la 

distribution de Gibbs. Cependant, le problème de la détermination de son facteur 

de normalisation est aussi complexe qu'important: le facteur de normalisation de 

cette distribution d'équilibre ne peut pas être déterminé de façon unique. Il existe 

quelques approches de ce problèmes dont aucune ne peut être retenue comme 

la meilleure. Ici nous avons discuté de ce problème et nous avons présenté un 

nouveau facteur de normalisation qui a été obtenu à l'aide d'une approche unifiée 

de la condensation binaire homogène et de la condensation binaire hétérogène. Les 

résultats théoriques ont été illustrés avec des calculs numériques pour un système 

binaire "éthanol - hexanol" et un système monocomposante "eau". Ces calculs 

montrent que le nouveau facteur pourrait assurer, dans certains cas, un meilleur 

accord entre les prédictions théoriques et les données expérimentales concernant 

la vitesse de nucléation binaire. 

Deuxièmement, nous avons développé la théorie cinétique de la nucléation 
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binaire non-isotherme. Cette théorie permet de tenir compte de l'influence des 

effets thermiques sur le processus de la condensation binaire. Les effets thermiques 

de la condensation sont causés par la chaleur de condensation. Les molécules du 

mélange de vapeurs absorbées par une goutte de la solution binaire liquide lui 

transmettent de la chaleur de condensation, tandis que les molécules émises par 

la goutte de la solution liquide lui enlèvent de la chaleur de condensation. Comme 

la goutte croissante de la solution liquide absorbe plus de molécules qu'elle n'en 

émet, sa température moyenne augmente au fur et à mesure de sa croissance, 

la température du mélange de vapeurs étant constante. Cet échauffement de la 

goutte liquide augmente sa faculté d'émettre des molécules. Par conséquent, il 

cause la diminution de la vitesse de nucléation et l'augmentation de la durée de 

nucléation. En outre, cela influence la composition des gouttes liquides et d'autres 

caractéristiques du processus. 

La théorie de la nucléation binaire non-isotherme a été développée à partir 

de l'équation discrète du bilan décrivant l'échange de substance et d'énergie entre 

le mélange de vapeurs et les gouttes de solution liquide. Cette équation tridi-

mensionnelle décrit l'évolution temporelle de la distribution de ces gouttes selon 

trois variables indépendantes: les nombres de molécules des deux composantes 

dans une goutte liquide et sa température. En réduisant l'équation discrète du 

bilan à la forme différentielle, on obtient l'équation cinétique tridimensionnelle 

de la nucléation binaire non-isotherme. Dans le cas des chaleurs de condensation 

arbitraires, cette équation cinétique dépasse les bornes de l'approximation de 

Fokker et Planck. Seulement dans le cas où les chaleurs de condensation sont 

très petites par rapport à la fluctuation efficace de l'énergie d'une goutte liquide, 

l'équation cinétique peut être réduite à celle de Fokker et Planck. Dans la présente 

thèse, pourtant, aucune restriction n'est imposée sur les chaleurs de condensation 

et, par conséquent, l'équation cinétique à résoudre dépasse les bornes de l'approxi-

mation de Fokker et Planck. 
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L'analyse de l'équation cinétique permet de déterminer la hiérarchie des 

échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de 

séparer et de décrire analytiquement l'étape de relaxation thermique pendant 

laquelle la distribution des gouttes selon la température s'approche d'une gaussienne, 

alors que leur distribution selon les nombres de molécules ne change guère. 

À l'étape suivant la relaxation thermique, l'équation cinétique tridimension-

nelle peut être résolue en utilisant successivement la méthode de Chapman et 

Enskog et celle de séparation complète des variables. L'application successive de 

ces deux méthodes permet (dans le cas non-stationnaire aussi bien que dans le cas 

stationnaire) de réduire notre équation cinétique à l'équation monodimensionnelle 

de Fokker et Planck dont les coefficients contiennent toute l'information sur les 

effets thermiques. L'analyse d'une telle équation est bien connue. Ainsi, toutes les 

caractéristiques de la nucléation binaire non-isotherme peuvent être déterminées. 

Dans cette thèse, nous avons présenté les caractéristiques stationnaires: la distri-

bution tridimensionnelle des gouttes, la vitesse de nucléation, la composition et la 

température moyennes des gouttes. Les résultats théoriques ont été illustrés avec 

des calculs numériques pour les systèmes "éthanol-eau" et "éthanol-hexanol". Ces 

calculs montrent que la théorie développée assure un meilleur accord, par rapport 

à la théorie classique, entre les prédictions théoriques et les données expérimen-

tales pour la vitesse de nucléation. 

Finalement, nous avons étudié la condensation binaire isotherme aux conditions 

dynamiques. Dans ce cas, la formation et la croissance des gouttes se passent en 

même temps que la métastabilité d'un mélange de vapeurs croît graduellement, 

atteint son maximum et décroît. C'est ainsi que la condensation binaire se passe 

le plus souvent dans la nature. 

Nous avons développé la théorie cinétique de ces processus pour les systèmes 

ouverts ainsi que pour les systèmes fermés (du point de vue de l'échange de 

matière entre le système où la condensation se passe et son environnement). Les 
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deux sursaturations idéales que les vapeurs du mélange auraient eues en absence 

d'absorption des molécules par les gouttes sont déterminées par les conditions 

extérieures. Par conséquent, la dépendance temporelle des sursaturations idéales 

est considérée comme donnée. 

Nous avons considéré le cas où les sursaturations réelles des deux vapeurs 

atteignent leurs maximums simultanément au moment du maximum de la méta-

stabilité du mélange de vapeurs. Nous avons obtenu le système d'équations intégrales 

pour les processus considérés. Il est démontré que la méthode itérative permet 

de construire le spectre des dimensions linéaires des gouttes et la distribution 

des gouttes selon leurs deux variables d'état indépendantes, la précision relative 

étant assez élevée dès la première itération. De même, cette méthode permet de 

trouver la dépendance temporelle des sursaturations réelles des deux composantes 

du mélange de vapeurs aussi bien que le nombre total de gouttes par unité de 

volume. Les résultats théoriques ont été illustrés avec des calculs numériques pour 

un système ouvert "éthanol - hexanol". 
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Abstract—A generalization of the method used in the kinetics of nonisothermal unary nucleation is 
proposed to construct the kinetic theory of nonisothermal binary nucleation allowing one to take 
account of the release of the latent heat of condensation. The three-dimensional balance equation 
describing the material and heat exchange of liquid solution particles with the surrounding 
vapor—gas medium is obtained. Independent variables in this equation are the numbers of molecules 
of each component in a liquid solution nucleus and its temperature. Going beyond the framework of 
the Fokker—Planck approximation is proposed for the corresponding kinetic equation. A hierarchy 
of time scales of nonisothermal binary nucleation is established and an analytical description of the 
thermal relaxation of the nuclei is given. Theoretical results are illustrated by numerical calculations 
for the nucleation in a water—ethanol system. © 1999 Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

;inary condensation is a very widespread first-order phase transition and hence is of great 
rterest in many fields. They usually distinguish three stages of any first-order phase 
-ansition. During the first of them nuclei of a new phase are formed (this stage is also called 
le stage of nucleation) which play the role of condensation centers afterwards. It is during 
le second stage that the phase transition takes place properly—the bulk of a metastable 
hase passes to a liquid phase. During the third stage the growth of large drops occurs to 
ie detriment of small ones. 
It is well known that nonisothermal effects can strongly influence a process of first-order 

hase transition, particularly a vapor-to-liquid transition. There exist different kinds of 
onisothermal effects in the condensation. 
First, the heating of the growing nuclei by the latent heat of condensation. This causes 
reduction of the nucleation rate in two ways: (1) increasing the ability of the nuclei to emit 
rolecules; (2) decreasing the metastability of vapor phase (owing to the increase in the 
cmperature of condensing system). 
Second, temperature fluctuations of nuclei exist even in the absence of matter exchange 

etween the nuclei and the medium. They also influence the emissivity of nuclei. 
Third, the nuclei as particles of condensed matter are thermally quasi-isolate from one 

nother being surrounded by the rarefied vapor—gas medium. Consequently, the tempera-
are of a nucleus decreases gradually during each event of emission of a molecule, while the 
rolecule passes from the nucleus through its surface layer to the vapor. Therefore, the 
missivity of the nucleus must be determined by some intermediate value of its temperature 
, ut neither by the initial one (before the emission event) nor by the final one (after the 
mission event). 
At present, there exists a complete enough and adequate theoretical description of 

onisothermal unary nucleation and condensation. Taking account of the release of latent 
eat, Kantrowitz (1951) obtained the differences between isothermal and nonisothermal 

Author to whom correspondence should be addressed. 

265 



Kinetic theory of nonisothermal binary nucleation 	 267 

2. BALANCE EQUATION 

First, let us construct a three-dimensional balance equation of nonisothermal binary 
ucleation. Let us assume that the metastability of the vapor mixture is created instan-
tneously and does not change during the whole nucleation process. The temperature To  of 
ie vapor mixture and the number density of passive gas molecules are also fixed. We also 
ssume that there are not chemical reactions nor heterogeneous nucleating centers in the 
Dndensing system. 
It is evident that there are three types of elementary interactions of a nucleus with the 

apor-gas medium: (1) absorption of a molecule of lst or 2nd components of the vapor 
fixture; (2) emission of a molecule of lst or 2nd components of the vapor mixture; (3) 
flection of a molecule of the vapor-gas medium. 
The nuclei formed have so small sizes that the times of their internal relaxation processes 

re very small in comparison with the time between successive interactions of a nucleus with 
ie vapor-gas medium, and the interactions themselves take place under a free-molecular 
gime. This allows us to assume that the nucleus attains its internal thermodynamical 
quilibrium before each successive interaction with the vapor-gas medium. 
Let us choose the numbers v1  and v2  of molecules of lst and 2nd component in a nucleus 

nd its thermal energy E as its independent characteristics.• The thermal energy E of a 
ucleus is linear in the temperature and will be measured from its value at the temperature 
'0  of the vapor-gas medium. Expressing all the quantities which have the dimensions of 
nergy in units of k, To  (kB  is Boltzmann's constant), we have 

E = (civi  + c2v2 )[T/T0  -1], 	 (1) 

'here ci  (i = 1, 2) is the molecular specific heat of i-component in a nucleus (all the specific 
eats are expressed in units of kB). 
Let a be the thermal energy of molecules striking a nucleus and let e be the thermal energy 

f molecules reflected or emitted by a nucleus. Since the times of internal relaxation 
rocesses of nucleus are small, the number Wi-  (i = 1, 2) of molecules of component i which 
nucleus emits in unit time as well as the distribution w of the emitted or reflected 

iolecules with respect to their energy d are determined (in consideration of the thermal 
daptation of reflected molecules) by the energy of nucleus: 

W 	W 	(v 1, v2, E) (i = 1, 2), 	w' 	w(v 1, v2, E I c'). 	 (2) 

fere the variables v1, v2, and E correspond to the state of the nucleus before the interaction 
nd we have taken account that the temperature fluctuation effect and the effect of nucleus 
termal quasi-isolationship compensate each other. Of course, the distribution w(e) of the 
iolecules striking a nucleus with respect to their energy e is determined by the temperature 
'0  of the vapor-gas medium. For the distributions w(e) and w' (v 1, v2 , E 1 6') (which we 
ssume being Maxwellian) we shall use the normalization relations 

rcJ 

(e) = 1, 	de'w(v 1, v2, El d) = 1. 
Jo 	

F  

Let us denote by g (v 1, v2, E) the distribution of nuclei with respect to the variables v1, v2, 
nd E at the time t (we shall not indicate the time dependence of values). 
Denoting by Wi(v 1, v2) and ß.  (i = 1, 2) the number of molecules of component i being 

bsorbed by a nucleus per unit time and, respectively, the molecular heat of condensation of 
)mponent i, let us write the discrete balance equation governing the evolution of the 
istribution g (v 1, v2 , E): 

ag(v 1, v2, E) 
	 - 	+ 	+ 	+D2-  + Dgi + Dg2, êt 

(4) 

(3) 
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, fiZ 
= - 	 rr 2 ,I p•g(V1, v2, E), 	 (14) 

[kl 	it2 	(Ci Vi 	.2 	)  

1 	E. 
+ ati(1 — otci) + g pi ] (i = 1, 2), 	 (15) 

ki 	acifi? 

miy /2 nc  
pi  = ( rn— 	(i = 1, 2), 	 (16) 

g 

mi, and ni  (i = 1, 2) are the effective (in the sense of energy transfer to the nucleus) specific 
eat, mass, and number density of molecules, respectively, of component i of the vapor 
lixture; cg , mg , and ng  are the analogous values of the passive gas. 
The terms D1  and D2  in equation (11) describe the simultaneous transfer of both the 

abstance and the condensation heat to the nuclei by the molecules of lst and 2nd 
omponents, respectively. 
The term — D./ E ME in equation (11) describes the transfer of the kinetic and internal 

nergies to the nuclei by all the molecules of the vapor-gas medium. Its form corresponds to 
ie fulfillment of the condition 

1/(civ1 	c2v2)1/2 4 1 	 (17) 

Thich means a smallness of the energy transfer by the molecules of the vapor-gas medium 
comparison with the rms fluctuation of the nucleus energy, since the value (civi  +C2V2)1/2  

cpresents, according to the thermodynamic theory of fluctuations, the rms fluctuation of 
nucleus energy in the absence of substance exchange between the nucleus and the vapor 

iixture. 

3. KINETIC EQUATION OF NONISOTHERMAL BINARY NUCLEATION 

.et us introduce the variable instead of variable E as 

= 	  [2(c1v + C2V2)]1/2 
	 (18) 

nd present the distribution g(v 1, v2, E) in the form 

g(v i, v2, E) = [27r(c1v1  + c2v2)]-1/2e-e P(vi, v2, 	 (19) 

ihere P(v1, v2, is some function of v1, v2, (and of t, too). 
Since usually ß » 1 = 1, 2), the parameter 

	

= (i 	1, 2) 	 (20) 
[2(c1v1  + C2V2U1/2 

.411 not be small despite inequality (17). The parameter Ti  represents the relative condensa-
ion heat of component i per molecule, i.e. the condensation heat of component i per 

expressed in units of rms fluctuation of the nucleus energy and divided by 
Llthough Ti  is always less than 1, in order of magnitude Ti ^ 1. 

Let us introduce the operator 

—Wi Fi' — Wi
a (i= 1,2), 

ovi 
	 (21) 

cting on v.-dependent functions (here Fi' a DF/Dvi , and F is the free energy of formation of 
he nucleus with the characteristics v l, v2, and E = 0: F -= F(vi , v2, E = 0)). Let us define the 
•alues vie, Avie  (i = 1, 2) by the relations 

ViC, V2 = V2C = 0, 	Avie  = 	 (i = 1, 2). 	(22) 
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Lssumed to be much less than unity: 0 4 1. Thus, we conclude that on the RHS of 
quation (25) the last term is the main one. 

Equation (25) governs the time evolution of the three-dimensional distribution P. The 
tierarchy of terms established above corresponds to the hierarchy of time scales in the 
ievelopment of the distribution P. 

The eigenfunctions of the principal operator of the governing equation, i.e. of the 
)perator of the dominant term on the RHS of equation (25), are the Hermite polynomials 

Hig) (Ho  = 1, H1  = 2, H2  = 4e — 2, ... ), satisfying the recursion relations 

—
a 

Hi  = 2j 	1, (
a —u)11.1 = — Hi  + 1 . 

lence, 

	

[C1k+ 1  z. î 	k2k+2  1  ,r22 vv.2 ) 	— 

(-1)m , 
— 	 ecimWt + W2)

m 

m2 M I M • 	
11/;  —j2;11;, 

= 	• 	 anz 

vhere j = 0, 1, 2, ... and 

k + 1 	k2  + 1 2 	 2m 	2mW) rier,  T471+ T2 	2  /li  = 2 	 • 

	

k 	
T2 W + 2 	T2 W2 + (i I)! k2 	E 

m=2 	112!M! 	le 

We can conclude that — 	(j = 0, 1, 2, ... ) are the eigenvalues of the principal operator. 
Chey all are negative except that for j = 0 which is equal to 0. For j = 0 and j = 1 the sum 
)ver m in equation (29) is absent. Obviously, 2 < 22  < • • • . 

The Hermite polynomials form a complete system of eigenfunctions satisfying the 
)rthogonality and normalization relations 

H k ) = Sik 2J.  j! (j, k = 0, 1, 2, ... ), 	 (30) 

vhere k  is the Kronecker delta and the scalar product ((1), Y) of function (I) and ,11  of is 
lefined as 

= x-1/2  F de-e 41)1F. 	 (31) 
- 00 

From equations (19), (31) and Ho  = 1 it follows that the two-dimensional distribution 
" -f(vi, v2) of the nuclei with respect to variables v1  and v2  is given by the equation 
"= (Ho, P), i.e. the two-dimensional distribution f is the projection of the three-dimensional 
me P on Ho. 

Let us take the projection of governing equation (25) on H0. According to equations (27) 
ind (30), only the first and second terms (which are the smallest ones, of order of 1/(Avic)2  or 
i/(Av2e)2) make contributions to this projection. Since f=  (H o , P), we obtain 

Of 3J 1  3.12  
Dt 	31,1 	31'2 ' 

vhere 

vœ)  tin  ji  = (Ho, (Li "i 	m! êez
)p) (i= 1, 2) 

.=1 

(27)  

(28)  

(29)  

(32)  

(33)  

s the flux (averaged over 	of nuclei along the vraxis. 
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5. NUMERICAL CALCULATIONS 

To illustrate our theoretical results by numerical calculations we considered the binary 
Lucleation in the vapor mixture of water (1 st component) and ethanol (2nd component) at 
ro = 293.15 K. Air at the normal atmospheric pressure was chosen as carrier gas. All the 
hysical properties of both components required for calculations are well determined for 
loth liquid and vapor phases. Besides, accurate fits of several thermodynamic properties vs 
omposition are required for water (1)— ethanol (2) liquid solution and they are fortunately 
lso available. 
The specific heats of pure water and ethanol in liquid and vapor phases were determined 

vith the help of formulas given in Thermophysical Properties of Motter (1970). The latent 
teat of pure water was calculated from the formula given by Feder et al. (1966) and that of 
)ure ethanol was obtained by linearly extrapolating data in CRC Handbook of Chemistry 
rnd Physics (1992-1993). The equilibrium vapor pressure of pure water was taken from 
7RC Handbook of Chemistry and Physics (1992-1993), and that of pure ethanol was 
alculated from the formula given by Mirabel and Katz (1977). The partial molar volumes 

and v2  of pure liquid water and ethanol, respectively, were computed from the density 
ralues given by CRC Handbook of Chemistry and Physics (1992-1993) and the the volume 
1  of the nucleus was related to v1  and v2  as V = v iv + v2v2 . As for the surface tension a of 
vater—ethanol liquid solution, we, following Wilemski (1987), fitted ln a with a third-order 
)olynomial in the variable 4(1 — x)/(4 — 3x), using data in Timmermans (1960). Following 
dirabel and Katz (1977) and Wilemski (1987), the liquid-phase activity coefficients were 
letermined from the three-parameter Redlich—Kister equation of d'Avila and Silva (1970). 

Since there exist no theoretical nor experimental data on the thermal accommodation 
Lnd sticking coefficients, calculations were carried out at various values of ad , oc1  (i = 1, 2), 
Lnd a, in order to illustrate the influence of these parameters on theoretical predictions. 
Fo illustrate the dependence of theoretical predictions on the degree of vapor mixture 
netastability, calculations were performed for four couples of water and ethanol activities 
1, 42  at each set of coefficients aci, oc1  (i = 1, 2), and a, (activity 4  (i = 1, 2) is defined as 

= ni /nsi, where ni  is the number density of i-component molecules in the vapor mixture, 
is the equilibrium number density of i-component molecules in a vapor saturated 

)ver the pure bulk liquid of this component). Results of calculations are presented in 
Fable 1. 

Since the values zi  (i = 1, 2) do not depend on aci, ati  (i = 1, 2), and a, and the time tv  does 
lot depend on ad., a12, oc, we presented Ti (i = 1, 2), and tv  only in the first part of Table 1. 

Figure 1 shows the time dependence of the first mode of the deviation P —f  of the 
listribution of nuclei with respect to the temperature from a Gaussian equilibrium distribu-
ion at the stage of thermal relaxation not only for the binary nucleation in the water—
thanol system (using equation (35)) but also for the unary nucleation of pure water vapor 
according to Grinin and Kuni (1989)). According to equation (35) and to the analogous 
:quation of the one-component theory (Grinin and Kuni, 1989), the first mode of the 
leviation P — f corresponds to the greatest relaxation time (Q and, therefore, is the slowest 
the most "long-lived") mode of P —1 The second mode decreases with time about three 
imes as fast as the first one. Air at the normal atmospheric pressure was a carrier gas in 
)oth system and the thermal accommodation coefficients of both water and ethanol were 
:quai to 1. Figure la corresponds to the binary system and Fig. lb represents the nucleation 
)f pure water. The curves of series A were obtained for the case where the sticking 
ipefficients aci  and ac2  of water and ethanol were both equal to 0.5; series B corresponds to 
he case where aei  and ac2  were both equal to 0.1. In each series, the values of the thermal 
tccommodation coefficient of air were taken as follows: a, = 1 for the boldest (lower) curve; 
tg  = 0.5 for the dashed (medium) curve; a, = 1 for the thinnest (upper) curve. According to 
ig. 1, the supersaturation (activity) of pure water vapor has to be equal to about 3.5 so that 

he time of thermal relaxation of the unary nucleation should be the same as (or close to) the 
ime of thermal relaxation of the binary nucleation of water and ethanol of the activities 

= 1.5 and 42 =  1.0. 
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exp[-t/k 

Fig. 1. Thermal relaxation stage of (a) the binary nucleation in the water(1)—ethanol(2) system (the 
activities being 	= 1.5 and (2  = 1.0) and (b) the unary nucleation of pure water (at ( i  = 3.5), at 
To  = 293.15 K with air as a carrier gas. The curves show the time dependence of the slowest (first) 
mode of the deviation P —f of the distribution of nuclei with respect to temperature from 
a quasiequilibrium Gaussian distribution (equation (38)). Series A corresponds to the sticking 
coefficients e 1  = 0.5 and C42 = 0.5; series B corresponds to ao = 0.1 and e2 = 0.1. In each series, 
the values of the thermal accomodation coefficient of air are: a, = 1 for the boldest (lower) curve; 

a, = 0.5 for the dashed (medium) curve; a, = 0.1 for the thinnest (upper) curve. 
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ucleation with the help of relation (33), we have to solve the equation (25) taking account of 
11 the terms on its RHS. These problems will be objects of our further research. Of course, 
s long as there are no experimental nor theoretical data about sticking and thermal 
ccommodation coefficients °c oi , c (i = 1, 2), ag  , theoretical predictions will remain un-
ntain enough. Nevertheless, we will be able fo get approximative magnitudes of these 
°efficients by making a comparison between theoretical predictions and experimental data 
n nucleation rates. 
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Abstract—A kinetic theory is presented for isothermal homogeneous two-component condensation 
under dynamic regime with synchronous attainment of the metastability maximum. It is shown that 
extending the iteration method of treating of one-component condensation under dynamic condi-
tions to the case of two-component theory makes it possible to construct the spectrum of linear sizes 
and two-dimensional distribution of two-component droplets, a relative degree of accuracy being 
high enough even at the first iteration step. This method also allows one to find the time dependence 
of both real supersaturations as well as the total number of droplets formed per unit volume during 
two-component condensation. CD 1998 Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

Two-component condensation, i.e. formation and growth of drops of a liquid solution of 
two substances in a metastable vapor mixture of these substances, is a process widespread in 
the nature and important for technical applications (we shall use the term "metastable" 
instead of less general terms "supersaturated", "supercooled", etc.). The theory of two-
component condensation is an important part of the theory of first-order phase transitions. 
At the same time a development of two-component condensation theory is extremely 
important for varions applications, for example, in order to construct the quantitative 
methodology of forecasting of acid rains. 

We usually distinguish three stages of first-order phase transition. During the first of 
them the embryos of a new phase are formed (this stage is also called the stage of nucleation) 
which are condensation centers afterwards. It is during the second stage that the phase 
transition properly takes place—the bulk of a metastable phase passes to a liquid phase. 
During the third stage, the growth of large drops occurs to the detriment of small ones. 

At present there exists the complete and adequate theoretical description of all three 
stages of the one-component condensation. At the same time, the kinetic theory of two-
component condensation has been developed almost exclusively for the simplest case where 
the metastability of two-component vapor mixture is created instantaneously (in neglecting 
both the thermal effects of condensation and presence of heterogeneous nucleation centers). 
The bases of such binary nucleation theory have been founded by Reiss (1950) who based 
his argument on the results of Flood (1934) and on the classical one-component nucleation 
theory of Becker and Dôring (1935), Volmer (1939), Kramers (1940), Zeldovitch (1942) and 
Frenkel (1946). Very important contribution to the theory of binary nucleation has been 
made by Stauffer (1976), and that work has corrected the rate of binary nucleation obtained 
earlier by Reiss (1950). The consistent kinetic theory of binary nucleation has been 
constructed with the help of the method of complete separation of variables by Kuni et al. 
(1990) and Melikhov et al. (1990, 1991) who have also found the new normalization factor of 
equilibrium distribution. Important contributions to the development of stationary theory 
of binary nucleation have been made by Mirabel and Katz (1974), Hirschfelder (1974), 
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The applicability of the theory is limited only by the conditions of validity of the classical 
apillarity approximations. It means that the droplets must be large enough, they hold at 

.east some tens of molecules. The formation of droplets demands their passage through 
high activation barrier, i.e. has a pure fluctuation character. 
It is supposed that the condensing system and its environment do not exchange droplets. 

bit the same time, we shall consider both materially open systems, in which the condensing 
;ubstances sources exist homogeneously distributed, as well as materially closed systems. 
The absolute temperature T and volume V of materially open system are assumed fixed. In 

materially closed system a vapor mixture metastability changes as a result of the changes 
T and V, which we shall naturally take into account. It is also supposed that there are no 

heterogeneous nucleation centers in the vapor mixture, and that no chemical reaction 
Dccurs in considered system. 

2. COMPLETE SET OF EQUATIONS OF THE KINETICS 
OF TWO-COMPONENT CONDENSATION 

Let us denote by (i  (i =1, 2) the supersaturation of the vapor of i-component over the 
plane surface of its own liquid phase: 

= ni/ni, (i =1, 2), 	 (1) 

where ni  is the number density of molecules of i-component in a vapor mixture; ni, is the 
number density of molecules of i-component vapor saturated over a plane surface of its own 
iiquid phase (obviously, ni, depends on temperature T). 

Let us introduce the value 

= nitodni, (i = 1, 2), 	 (2) 

where nit.t  is the total quantity (in the vapor mixture as in the droplets) of molecules of 
i-component in the system volume unit. Obviously, (Di  represents the "ideal supersatura-
tion " of i-component which could be observed in the system at the same external conditions 
if there was no consumption of this component by the droplets. In materially open system 
T, V, n1, and n2, are constant, and (Di  and 02 change only as a result of injections of 
zorresponding component by external sources. In materially closed system, the total 
quantifies of molecules of both components remain constant, i.e. Vn 0  = Const (i =1, 2). 
Therefore, in materially closed system the following equations are observed: 

	

'kick*  ( i =1, 2), 	 (3) 
where the subscript "*" marks the values at some moment t* , when a nucleation rate is 
maximal. For the theory that is intended to be developed this moment coincides with the 
moment when a vapor mixture metastability is maximal, i.e. a critical embryo formation 
Free energy is minimal. 

Usually in addition to the droplets and binary vapor mixture participating in a material 
exchange with the droplets, in a condensing system there is some passive gas the molecules 
of which do not participate in a material exchange with the droplets. Let us suppose the 
passive gas concentration is high enough. Then non-isothermal effects of condensation will 
not be important, and the equation of state of the passive gas and character of thermal 
eontact of the system with the environment will determine the unabmiguous relationship 
between ni, (i =1, 2) and V. Taking equation (3) into account, let us present this relationship 
as a parametric one: 

nis*Inis = S(I) (i =1, 2), 	 (4) 

	

17/ V = (Di/(Di*Si  ((Di) (i = 1, 2), 	 ( 5 ) 

where Si(I) is some function (we do not indicate its dependence on Ii*). With the help of 
Clapeyron—Clausius formula one can rewrite equation (4) as 

	

T/T*  = [Si(I1 )]11134  (i =1, 2), 	 (6) 

Kinetics of two-component condensation 	 3 
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Let us denote by v l  and v2  the numbers of molecules of the first and second components, 
respectively, in the droplet. Let us choose the values p and x determined according to 

P = (v1 + v2)" 3, 	X = 	+ v2) 
	

(12) 

as the droplet state variables. The variable p represents the linear size of droplet, and 
variable x represents the composition of the solution in a droplet. Let us denote by n(p, x, t) 
the distribution (corresponding to unit volume and expressed in units of n1s) of droplets 
with respect to the variables p and x at moment t. It has been shown (Kuni et al., 1990; 
Melikhov et al., 1990, 1991) that the variable x is the stable one in near-critical region. 
According to Dzhikaev (1992), during the second stage of two-component condensation at 
the instantaneous creation of metastability, the distribution of droplets has a Gaussian 
lependence on the variable x in supercritical region, and an average magnitude xo  of 
variable x is determined by means of quasistationary condition on x. Therefore, it is natural 
to assume that in the present theory the distribution of droplets with respect to the stable 
variable x in the supercritical region also has a form of Gaussian distribution, and that an 
average magnitude xo  of variable x in this region is determined by means of quasistationary 
Dondition ;" = dx/dt = 0 leading to the transcendental equation 

ŒctvT n lis (1  — Xo)[i — Xoft (Xo)] = ac2VT2n2sZOU2 — (1  — X0) f2(Zo)], 	(13) 

yhere aci  and vTi  (i = 1, 2) are, respectively, the condensation coefficient and average thermal 
velocity of molecule of i-component in vapor mixture; fi (x) and f2 (x) are the activity 
:,oefficients of the first and second components in a liquid solution with composition x. 
Therefore, the distribution n(p, x, t) has the form 

X — Xo)21 

	

n(p, x, t) = p(p, t)[2n(Ax)2 ] — 1/2  exp [ ( 	 (14) 
2 (3,x)2  

yhere Ax is an equilibrium value of the r.m.s. fluctuation of solution concentration in 
droplet. The function p(p, t) represents obviously the one-dimensional distribution 

corresponding to unit volume and expressed in units of ni„) of droplets with respect to 
iariable p at moment t. 

It has been shown (Dzhikaev, 1992) that a linear size of droplet, practically immediately 
tfter its formation, increases with time with the rate independent of linear size: 

dp 	ni, a n2s (Xc2 r  
P = — = — — 	(Xon  	[(2 — (1  — Xo)f2,(Xo)] , 	(15) 

dt 	ni„ t1, 	 n2s* 12* 

Ti = [vTi  ni, (nv2/48)1/3] -1 (i =1, 2). 	 (16) 

-1ere v v(x)is the droplet volume per molecule (it is supposed that it depends only on x). 
n equations (15) and (16) the temperature dependence of aci , vTi  and v is much slighter than 
hat of nis , and one can neglect it. 

Under the conditions of validity of macroscopic theory of condensation, the character-
stic size of droplets is much greater than their sizes at moment of formation. Therefore, the 
olution of equation (15) has to satisfy the initial condition 

p(t)1,-0 =o. 	 (17) 

Taking into account that for all the droplets A does not depend on p and there is no 
iroplet exchange between the system and environment, one can (Kuni, 1984, 1988) present 
he distribution p(p, t) in the form 

p(p, = 	 0(P)f (z — )9). lits  V 
	 (18) 

iere 
9  (to 	Ç1 (u 	0), 

(u < 0), 
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one-dimensional distribution fs((i  , 2) independent of p. Thus, one can use f,((i.  , (2) as 
a boundary condition to p(p, t). Taking into account that during the first stage 
ni,V nis,V,,, we obtain from equation (22) 

f (x) = f s(( i(x), ( 2(x)), 	 (23) 

where (1(x) (i =1, 2) is the magnitude of the supersaturation (i  at time t(x) when the droplets 
with given x were formed. 

According to Kuni et al. (1990), Melikhov et al. (1991) and Dzhikaev (1992), the 
distribution f, expressed in units of n15  has the form 

	

2) = K(], 2) exP [— F(1, (2)] 	 (24) 

	

where the dependence of the pre-exponential factor m(i., (2) on (1, 	is a power one; 
F( 1,(2)is the height of activation barrier of two-component nucleation at saddle point, i.e. 
critical embryo formation free energy, expressed in units of kBT,, at the current magnitudes 
of supersaturations (i  , (2. For F((1, (2), in accordance with Kuni et al. (1990) and Melikhov 
et al. (1990), one can obtain the expression 

F(1, C2) = 1674 v2(x)/3  [xe  ln + (1 — xç) ln (2  — G(xc)] 2, 	(25) 

where 

	

G(x) = x. ln Ex.fi (x.)1 + (1 — x.) ln(1 — z.)f2(x.)1, 	 (26) 

xe  is the composition of solution in a critical embryo; y,,, is the surface tension of embryo in 
units of kBT, (assumed independent of the composition of solution in an embryo). 

The expressions (14), (13), (19), (22)—(24) represent the solution of the kinetic equation of 
two-component condensation (obtained first by Reiss, 1950) for the considered supercritical 
droplets. In order that this set of equations comprising the unknown functions (1(x) and 
(2(x) becomes consistent it is necessary to add to them the material balance equations for 
both components: 

(Di 	(i  + gi  (i =1,2), 	 (27) 

where ai , according to equations (1) and (2), represents the total quantity (corresponding to 
unit volume and expressed in units of n1s) of molecules of i-component condensed in all the 
droplets. Taking into account the facts that p3  is the total number of molecules in a droplet 
of linear size p and that Xo  does not depend on p, we obtain in view of relations (14), (21) 
and (22) 

ni„V, Cz 
91 = Xo 	dx (z — x)3f (x), 

nisV j . 

1  — X0 nls g2 = 	91 • 
Xo n2s 

The relations (14), (13), (22)—(24) together with (10) and (27)—(29) compose the consistent set 
of equations of the two-component condensation. The unknowns in this set are the 
spectrum f (x), coordinate z and composition xo  . 

Let prnin(t) be the coordinate of the left bound of the region in which the values of the 
distribution p(p, t) are relatively important at time t. Obviously, during a nucleation stage 
pinin(t) =0. However, after its end the coordinate piiiin(t) begins moving along the p-axis 
with the rate f3 of the increase of linear size of droplet. The decrease of the supersaturations 
(1  and t2  (on account of the consumption of vapor mixture substances by the ensemble of 
supercritical droplets) slows the velocity of movement of the coordinate prnin(t) down, 
according to equation (15). The decrease of the supersaturations (1  and t2  (causing the 
decrease of the metastability of condensing vapor mixture) induces simultaneously the 
increase of the critical droplet size p((1  , (2) at the current magnitudes of supersaturations. 

(28)  

(29)  
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where the O(x) is the ideal supersaturation (Di  at time t(x) when the droplets with given 
x were formed. According to equation (39), the value lici  represents the length on the x-axis 
on which the relative change of supersaturation (Di  is 1/F*. 

Linearizing (D(x) in x near x =0 and using equation (39), we have 

(lai(x) = (Di*  + 	ci x (i =1,2), 
r*  

and expression (21) takes the form 

sie• 
(i(x) — 01*  = 	cix — g(x) (i =1, 2), 	 (41) 

Inserting equation (41) in equation (34) and taking equations (29) and (36) into account, we 
obtain 

f(x)—fsei*,02*) exp [cx — 	gi(x)1, cI i  
where 

F2 C — 	Cy. 	 (43) 
F* 	F* 

During the nucleation stage on account of its relative shortness one can assume 
ni, = ni,*  (i =1, 2), V = V*  and xo  = xo*. Taking equation (42) into account, we rewrite 
equation (28) as 

gi  (z) = xo*  MOI*, (I)2*) 	dx(z — )3  exp cx — 	g (x) . 
wi* 	

(44) 

According to the definition of t*  as a time moment of attainment of the metastability 
maximum, we have 

dF 
dt 

d 2F 

1=t*  

t=t*  

= 0, 

>0. 

(45)  

(46)  
dt2  

Using equations (25) and (26), from equations (45) and (46) we obtain, respectively, 
equation 

and the inequality 

(1(1 1 — Xc  d(2. =0 
t=t*  

Xc d2(21 

(47)  

>0 	 (48) 
t=t*  

dt 

r 	ze 	1 (d 1 \ 2 Xc  

± t=t*  	(2 	dt 

	

d2(1 	1  
Ll — 	(1  dt2 	dt2  

(it is assumed that the condition of metastability of two-component vapor mixture (Kuni 
et al., 1990; Melikhov et al., 1990) is observed). From equation (47) it follows that the 
alternative possibilities exist for the behavior of supersaturations (1  and (2  at the moment 
t* : either 

d(1 d(2  =0 
t=t*  

(49)  
dt t=t* 	dt 

or 
d(i  1 — Xc 	j  d(2, *0. (50)  
dt Xc 	(2  dt t=t*  t=t*  

(40) 

(42) 
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Let us construct the second approximation corresponding to the insertion of equation 
(56) in the RHS of equation (44). In this approximation, the accumulation of substance by 
the droplets occurs more slowly than it occurs in reality. 

We have 

91 (z) = xo,f,(0,,,12*) 	dx(z - x)3  exp [cx - e"], 	 (58) 
-00 

	

9'1(0) = Zo*.f;(01*, 02*) 3b2/c3 	 (59) 
and also 

	

.01)1*, 12*) = 	eel* 
	c4

, 	 (60) 
3b2r*Zo*  

where 

bg = 	exp [ - - 	(g 	0, 1, 2, ...). 	 (61) 

Numeric calculations show that 

bc, =1 - 1/e = 0.632, bi  = 0.797, b2  = 1.78, b3 = 5.66. 	(62) 

Denoting by symbol (5 the difference between the magnitudes of value in the first and 
second approximations, one can, with the use of equation (10), establish 

ti)1*  = (—! — 1) / 	+ r21 = 0.12 / [Fi  + F21, 
W1* 	02 	 en1 	 M1 

 	( 2 1)/ 	+ r2] = 0.12 / Hm  + r2] . 
(1)2* 	\,b2 	 in2 

Inserting equation (60) in equation (58) and using equation (61), we obtain 

4)1* 	z  g i(z) 
3b2F* 

c4  f _op dx(z - x)3  exp [cx - 

b3  01* 
gi"  = 	F*  

With the help of equation (27) at x = 0 and equations (65) and (29), one can obtain the 

relations 

r 	b3 1 1  
=4:11*L1 

.,u21*]21* 

b3  1 1  
= 1)2* [1 P* 3b2 

(66) 

which, by virtue of equations (32), (36)-(38) and (62), justify the estimates (33) at the second 
step of iteration procedure. 

Marking with superscripts 0, 1, 2,. . . the values at the corresponding iteration step, let us 
compare the first approximation with the second one. 

From equations (10) and (63) it follows that 

öt 	( 2 1) /(min rn2n)  
t* 	b2 	 min + M2F2 

0.12 

i.e. the moment t(:)  has become a little more than the moment t(*1-)  (we exclude from 
consideration very small m1 and m2, assuming m1F1  + m2F2  1) owing to the more slow 
accumulation of substance by the droplets in second approximation. The increase of the 
duration of droplet growth clears the result di2)(0) > dil)(0) following from equations (56), 
(65) and (62). 

(63)  

(64)  

(65)  

(67) 
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and the estimate 

f(2)(0) < exp [-
1 C2 X2 —b0 C3 X31 (X > 0), 

f  (2)(x) 

the analysis of which allows to conclude that already first approximation of spectrum given 
by equation (68) is fairly accurate. By this approximation we shall be satisfied afterwards. 

4. SIMULTANEOUS AND NON-SIMULTANEOUS STABILIZATIONS 
OF IDEAL SUPERSATURATIONS AFTER THE ATTAINMENT OF 

THE METASTABILITY MAXIMUM 

Above, in the developed iteration procedure, it was supposed that the stabilization of 
ideal supersaturations 01  and 02 occurs after the end of formation of the most important 
part of spectrum. In the cases where the stabilization of either (Di  or 02 or the stabilization 
of both(Di  and 02 occurs before the end of the stage of formation of the most important 
part of the spectrum, the presented iteration procedure will change a little. 

Let us consider at first the case where 

01* < 001, 01*(1 1-  1.15Clier*), 	102 > 02*(1 	1.15C2/CF*), 	(79) 

i.e. where one of the ideal supersaturations (l i) is stabilized before the end of the stage of 
formation of the spectrum, and other ideal supersaturation (12) is stabilized after the end of 
that stage. 

Relations (40) will take the form 

where 

11(x) = (pi* 

— 01* 

02* = 02* 

01* CiX 	(X < Zo), 
1*  

, 01* 1- 	CiZo (.Z Zo), 	 (80) 
1. *  

02* 	C2X, 1*  

zo 	(.:1)01/(1)1* —1). cl  
(81) 

Respectively instead of equation (41) we have 

ctei*  
— (Di* 	r 	ci  x — g1(x) (x < .z0 ), *  

(Di*  clzo  — g1(x) (x 	z0 ), 	 (82) 
r*  

°2* 2.(X) — 02*  = — C2X — g2 (x). 

Expressions (42) and (53) change only in the regions x zo  and z zo . In these regions now 

	

f(x)—fs(1i* , 02*) exp [czo  — 
	

g1(x) —
F* 

c2(x — 	(x z0 ), 	(83) 
u-'1* 

zo  
g1(z) = Xo*fs(01*, 02*) tf dx(z — x)3e" 

+ fdx(z — x)3  exp 	+ C2 (X — Z0)1} (Z Z0). 
F* 	

(84) 
zo 

b2 	3b2  
(78) 
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f (x) =
1 

c2(x - z0)2  01*  c4 exp cx - eczo 1 + c(x - z0) + -2 61"„x0, 

1 
+ -6 c3(x - z0)3  + —1 c4(x - 4)11 (x Z0). 	 (94) 

24 

Let us denote by N the total quantity of droplets per volume unit formed during the first 
stage of two-component condensation. This quantity, according to equations (14), (21) and 

linearly depends on the spectrum by means of integral value 
cc• 

/ 	dxf (x). 
- 

(95) 

Therefore, the accuracy of determination of the value I has particular significance. 
To estimate the accuracy of determination of the value I, let us change a little the 

above-described iteration procedure by supposing that x0,, 0, 02, andfs(01„, 02.) (and 
with them r„ and c too) are the same in all the iteration steps and are determined by 
insertion of the last of used approximations in equations (51) and (52). Having chosen in this 
zommon way x0,, 01,, 02, and fs(0,,, 02 ) one can guarantee that the less the function 
71(x) in the RHS of equation (44) is, the more the RHS of equation (44) is. This property 
makes it possible to construct, by means of an iteration procedure, the approximations 
7Y)(x) (j -= 0, 1, 2,. . .) which monotonically approach the strict solution of equation (44) 
with chosen x0,, 0,,, 02, and fs(01,, 02,). This property guarantees the uniqueness of 
strict solution. 

Let us choose the gr -0 as the initial approximation in the iteration procedure. Such 
choice ensures the inequality g, > gr, where g, is the strict solution of equation (44). 

Every next approximation is determined by inserting the preceding one in the RHS of 
cquation (44): 

g, 	(z) — xo.f.(01., 	) fdx(z - x)3  exp [cx ,F* 	 dil)(x)1 

(j -0, 1, 2,. . .). 	 (96) 

Using the indicated property of the RHS of equation (44) and taking into account the 
Dbvious inequalities g, > d(1ci )  , g(i2)  > di' )  and the fact that the calculation of the RHS with 
the help of strict solution g, leads to the same solution g1, we conclude: 

g, < g(11), 

g(13) < g (11 

g1 

g  (11.) 

> 

> 

g(12), 

g(12) ,  

g, < g(13), • 

g(15) < 0(13),  

• (97)  

(98)  

According to equations (97) and (98) the approximations g(11), g(1,.  . of odd order 
monotonically approach g1  from above, and the approximations g), g(14)  , . . . of even order 
monotonically approach g, from below. 

The approximations of the spectrum f (k =1, 2, 3,. . .) are found by substituting 0,(1 )(x) 
For g, (x) in the RHS of equation (42): 

f (k)(x) = Mit 1 ,, 02 ,0 exp [cx 	*  dik)(x)] 
CD1* 

(k =1, 2, 3, . (99) 

[n accordance with equations (97) and (98), we have 

f >fa), 	<1(2), 	> f (3), 	 (100) 

1(3) >1(1),  /(4) < /(2),  /(5) > /(3) 	 (101) 
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Taking equations (25) and (26) into account, it follows from equations (104), (31), (36), (39) 
and (43) that the value 1/h in the RHS of equation (107) is a relatively "slow function of 
zo*, 01,,„ 02,. A fairly accurate calculation of 1/h is attained in first iteration step. 
Therefore, in the same step we also find the integral characteristic / and total quantity of 
droplets N with the relative error less than 0.15. 

5. INITIAL AND FINAL PERIODS OF TWO-COMPONENT 
CONDENSATION 

Omitting in the following the approximation superscript, for the spectrum in accordance 
with equation (68) we have 

f (x) = (1) 1*  e4 exp [cx — e"]. 	 (116) 
6r* Xo* 

Inserting equation (116) in equation (28) we obtain 

Zonts* V • 	 3  *  01*  e4  z  91 = 

	

	 dx(z — x) exp [cx — ecx]. 	 (117) 
Xo*nts V 6F*  

The expressions (117) and (29) are already true not only during the stage of formation of 
;pectrum (when zo  zo*, V V*  and nis  nis*  (i =1, 2)) but also during whole condensa-
ion process. The time dependence of the factor nis*V*/ni,V (i =1, 2) is assumed to be 
Known, and the value zo  satisfies equation (13). 

Relations (27), (10), (13), (117), (29), (19) and (20) form the consistent set of equations. 
Resolving this set we can obtain the function z(t) of one independent variable t. Together 
Nith z(t), the time dependences of (i =1, 2) are also determined. 

For the total quantity of droplets formed per volume unit we have according to equa-
.ion (22): 

N = ni,* 	dxf(x). 	 (118) 
V - 

[nserting equation (116) in equation (118) and integrating, we obtain 

V*  0i*c3  N = n„*
. 	

(119) 
V 6F* xo*  

Let A 	(i =1, 2) and A_ t be the changes of (Di  and t corresponding to the change of 
from — A _x to 0, let A +0i  (i =1, 2) and A t be the changes of 0i  and t corresponding to 

he change of z from 0 to A.,x. The values 0i  and t have the magnitudes 01*  — A_, and 
* — A_ t at moment of beginning of intensive nucleation and the magnitudes (Di*  + A+0i  
ind t*  + A± t at moment of end of intensive nucleation. 

From equations (40), (76), (39) and (43) we have 

1.84ci  A +0 1.15ci  
(120)  0i* 	c 	+ c21-2 

tnd, in view of equation (10), also 

2) (i =1, 
Oi*  = r 	4- e2r -1-1 	. 	--2 

A _ t 	1.84 A t 1.15 
(121)  

t* 	+ m2  r2 t* • M1r1 + M212 

Supposing that the condition 

+ m2T2 > 1 (122)  

s observed (this condition excludes from theory only very small m1  and m2), the smallness of 
he RHS of equations (120) and (121) will be guaranteed and this is what justifies the 
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where 
1 

tr  = -
9 

(6F*)1/3  a At = 1"
3 
 	  t 
mil + m212 *' 

1 
z = - (6r )1/ 3a Ax =  r 3  * 

In virtue of equations (32) and (38) it follows from equations (122), (133) and (134) that 
3t, > 2At and 4 < t* . 

Relations (128), (129) and (132) determine the dependence of (1, (2 and t on z. To find the 
lependence of (1, (2  and z on t it is necessary to solve equation (132) with respect to z. 
Particularly, we have 

Ax 
Z =--K-

t 
(t - t

*
) (- A_ t - t*  

z = 	- \/ienia,5  exp 	t - t* 	(t  
tr  

Expression (135) describes an initial period of condensation which, according to 
34/2 At > A+  t, ends a little later than the first stage. During this period (I  (Di  (Di*  
i =1, 2). 

Expression (136) describes a final period of condensation. During this period the ex-
)onential term in the RHS of equation (136) is already small so that z almost coincides with 

Then from equations (128), (129), (134) and (136) it follows that 

(133)  

(134)  

(135)  

(136)  

4:1) [1 - a3  + 3 3 
t t*  

n/2.1. 	( 	
— 
	(t — t* > 34.), 	(137) 

t r  

(2 = 12* [1. — P*a3  + 3 3P*a3en/ 2  exp 	t -
4
4)1 (t t*  3tr). 	(138) 

ccording to these relations, 4 represents a relaxation time. 
The region of validity of equations (135) and (136) is also limited by inequalities (127) 

vhich can be broken when the ideal supersaturations continue to increase. According to 
:quations (10), (122) and (133), inequalities (127) are still observed at t - t*  3t„ but they 
Ire broken as the time increases. Thus, under the conditions when the ideal supersatura-
ions increase, the asymptotic relations (136)-(138) are valid only at t - t*  34. Then 
:quations (137), (138), (127) and (27) lead to the relations (el  < 1, gi /(1)1 ,-,  1(i =1, 2), which 
nean that the droplets have absorbed practically all the condensing substance (provided 
;ailier the metastability of vapor mixture). 

As long as t -t 	3tr  (i.e. before the final period) the value gi /(1)i  increases. According to 
;quations (56), (29) and (124) at t*  and at t*  + A + t, we have, respectively: 

=1/F*, 9-2 
t=t* 	02 

91 
(1)1 t = t. 

P* /1-* (139) 

  

91 92 =e1.15/1-
12  

*, 
t=t.+A+ t 

=p*e1.15/f*.  (140) 

    

7rom equations (139) and (140), it follows that the values g i /(Di  and 92/12 increase the most 
.apidly after the end of final period of condensation, and in time 3t,/2 t -t, 3tr  they 
Lttain the magnitudes near 1, i.e. practically whole two-component vapor mixture is 
Lbsorbed by droplets. During this period the evolution of (1, (2  and z is described by 
•elations (132), (128) and (129). 

If the ideal supersaturations are stabilized then relations (136)-(138) remain true during 
L final period as long as t - t*  34. Their validity will be limited only by restriction (30). 
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From equations (148) and (149) it also follows that (1/0i  1 (i = 1, 2) and all the more 
:dei,*  4 1 (i =1, 2). That confirms the approximate equalities Oi  — (i 	(i = 1, 2) used for 
ìnal period and provides a high relative accuracy of expressions (144)—(146). According to 
quation (144), the droplets grow so that they have time to accumulate in themselves 
mactically all the condensing substance of both components. 

Let us note that the time of validity of the expressions (144)—(146) can be limited not only 
)3T condition (141) but also by other causes such as breakdown of free molecular regime of 
naterial exchange between a droplet and a vapor mixture, non-isothermal effects of 
;ondensation, coagulation, stabilization of ideal supersaturations, etc. 

According to equations (22) and (144), the graph of one-dimension distribution of 
froplets p(p, t) moves as a whole along the p-axis. The relative width of the spectrurn is 
;haracterized by value D Ax/2z decreasing with time: 

D  = ( 9  y/3 ( xo  "\ 1/3 (01*y/3 

161"*) X0*) J1) 

(nnot*)"3  (150)  

(126) with 

(151)  

(152)  

(153)  

(154)  

n2tot* 

In the case of materially closed 
:onsideration of 

nis g5DiV 

ve have 

(6F*)113  

9 	— Xo)"3  )"3  (1 	(1)21/3.  16F* 	XO* 	02 
( 

system, from equations (19), (13), 

= ni,*(lei*V* 	(i = 1, 2) 

01 ± 02 — (1 — 

(125) and 

1/3 
Z = XO* 	C 

( — Xo 

	

— (1  — X0)f2(X0) 	 

X001 ± (1  — X0)02n1tot*/n2tot* 

	

, 	dz 

	

(Xo) = — Xo 	((1)1.) —dt ae1 

dz 

	

= 12*  (1 	X0)S2(°2)—dt • ac2 

Assuming cicei  — 	(i = 1, 2), from equation (152) we obtain in first approximation 

1/3 (6F 1/3 
°1 °2 	11/3 

Z = X0* 	 
C 	X0CD1 + (1 — Xo)02nitot*/n2totj 

7,xpression (155) leads to the equality 

dz/dt =0 

Lot only in virtue of evident equality for a materially closed system 

m = m2 

,ut also because of relation observed in this approximation for such a system 

nitot*  xo  = 	 (158) 
nitot*  + n2tot*  

'hus, in first approximation we have 

z = 
c 	' Xo 

(155)  

(156)  

(157)  

(x0*)1/3 (6r*)1/3 
(159) 

(1 — xofi (x0) = 0, 	(2 — (1 — Xo)f2 (X0) =0. 	 (160) 
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Instead of equation (94) for the spectrum in first approximation we have 

f (x) — e  1)1*c4  exp[cx — ce] (x <0), 
61"*Xo* 

f (x) = e
6 

41:11*  c4 exp [— (1 + cx + —
2 
ex- + 

6
c3x 4_ 24c4x4 	(x 0). (169) 

1 „  

The stabilization of 01  and 02, according to equations (4) and (5), also means the 
tabilization of n1s , n25  and V. The equalities ni , = ni ,*  ( i =1, 2) and V = V*  are now 
bserved with a high relative accuracy in a materially open system as well as in a materially 
losed one. Therefore, equation (28) takes the form 

f œ  

Inserting equation (169) in equation (170), one could obtain the second approximation of 
correct during whole condensation process. This approximation together with equations 

.9), (27) and (Di  = Oi*  (i =1, 2) would allow to obtain a consistent differential equation of 
le first order in unknown function z of one independent variable t. 
Supposing that 

(171) 

ne can replace equation (169) by 

01*  

	

f (x) 6 	C4ec 	(X <z O), 61,0(0,/, 

f (x) = e 	 * c4 exp [— —e c4  X41 (X 	0). 	 (172) 

	

6Fx0* 	24 

Figure 2 shows the behavior of spectrum f (x) in different cases of stabilization of ideal 
ipersaturations, the parameters m l , m2, t 1  , and t2  being fixed. Curve A corresponds tof (x) 
[yen by equation (68) (stabilization of both 01  and 02  after the formation of spectrum, 

> 1.15/c). Spectrum B is given by equation (94) at zo  = 0 (simultaneous stabilization of 
and 02 at moment of attainment of metastability maximum). Both spectra C and 

f (x) 

Fig. 2. Spectrum of linear sizes of droplets f as a function of x for different cases of stabilization of 
ideal supersaturations at fixed m1 , m2,  t1, r2. The curves correspond to the following cases: (A) to 
zo  > 1.15/c [equation (68)]; (B) to zo  = 0 [equation (94)]; (C) to o < 1 [equation (172)]; (D) to e;.5, 1/e8  

[equation (175)]. 

91 -= Zo* dx(z — x)3f (x). 	 (170) 
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omparison with the first ones. Thus, the RHS of equations (181) and (182) have a high 
elative accuracy beginning from the first stage which in view of equation (178) begins as 
matter of fact at moment t*  when z = 0. 
Taking into account equations (13), xo  = xo*, ni, = nis*  (i =1, 2) and inserting equations 

181) and (182) in equation (19), we obtain 

acdzi a3 r i  4A 1  ( z  Axyl.  
dt 	Ti *  Xo* 	Fe' (Ax)3 	2 ) 

teplacing the initial condition (20) for equation (183) by practically equivalent condition 
Ax/2 at t = t*  + At/2 and solving equation (183), we have 

t — t*  — At/2 
= ln { 

 [(z  — Ax)/2)2/z? + (z — Ax/2)/z, + 1]112  
t, 	 1 — (z — Ax12)1z,- 

[2(z — Ax/2)/z, +11 	lt 
+ ,/iarctan 

2.\/3-  

(r* '\1/3  

4A) 	a Ax, 	
t 1 () r* 1/3  

r 	3 	a At 

aking into account the equality Ax/At =cxc a3 C1)1*/T1*X0* following from equation (19)). 
'he estimates Zr 2AX, 3t, > 2At are fulfilled in virtue of a — 1, F 1 and A 0.9. 
Expressions (181), (182) and (184) determine the dependence of 1, 2  and t on z. In order 

) find the time 
articular, 

z = 

	

dependence of 	2  and z it is necessary 

Z 	
At 

= —
AX 

(t _ t*) 	< t — * <2  
— 2 

At 	t — t*  3 

	

exp ( t 	
+ 

to solve equation (184) for z. In 

tr +
t 	

(186) 
2 

AX (t 	t  > 3t 	_At 	(187)  
2 	* 	2 2 .\/j 	2t, 

exp 
 tr  

Expression (186) describes an initial period of condensation and expression (187) de-
zibes a final one. During a final period of condensation, the exponential term in the RHS 
f equation (187) is already negligible so that z practically does not change with time and 
as a magnitude near Zr  + Ax/2. 
Inserting equation (187) in equations (181) and (182) and taking equation (184) into 

:.1count we obtain 

( 1  = 01*  [1 — a3  + 3ci3  exp  7r + At 
2.\/3 2t, 

At t —trt*)] (
t — t*  > 3t, + —

2 )' 

( 2  = 02* [1 — P*a3  +3.,/iP* a 3  exp 	+ At  
2t, 

x exp 
t —t)1 	 At 

t — t* 	+ —
2 ). 

tr 

he validity of relations (188), (189) is still limited by restriction (30). 

(183) 

There 

Zr  = 

(184)  

(185)  

X exp (188)  

(189)  
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Fig. 3. Spectrum of linear sizes of dropletsf (x) (equation (116)) for the ethanol (1)-hexanol (2) open 
system at T = 260 K, in1  =1, t 1  = 0.05 s, 1n2  = 1, t2  = 0.05 s in the case of stabilization of ideal 
supersaturations after the formation of spectrum, the sticking coefficients being: (a) r4 i  = 0.625, 

= 0.5; (b) aci = 0.0042, c2 = 0.004. 
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s a whole along the p-axis with the velocity equal to the rate of increase of linear size of 
roplet. As it follows from equations (135) and (186), the time dependence of z is linear 
uring initial period. During a final period the time dependence of z is very slight and is 
iven by equations (136) and (187) if the ideal supersaturations are stabilized. If both ideal 
ipersaturations 43Di  and 02  continue to increase, then time dependence of z is given by 
quation (144) for the materially open system and by equation (159) for the materially closed 
istem (in the last case z does not depend on t if we assume xo n itot*I(nttot* n2t05*)). 
The relative width of spectrum can be characterized by value D = Ax/z which generally 

owly decreases with time or remains constant during final period. 
To illustrate the developed theory we have carried out the numerical calculations for the 

Dndensation in the materially open system "ethanol (first component)-hexanol (second 
Dmponent)" at T = 260 K in the case of stabilization of ideal supersaturations after the 
nmation of spectrum of linear sizes of droplets, the parameters in equation (10) being as 
fflows: m1  =1, t1  = 0.05 s, m2  = 1, t2  = 0.05 s. 
Without describing the procedure of numerical calculations, let us note that, unlike the 

aeory of one-component condensation, a correctness of data about the sticking coefficients 
cee2 influences not only a correctness of theoretical predictions but also their accuracy 

nce we have to solve the system of four equations for x 	12*  with the 
ipplementary condition tiep = t2(DY:2 following from equation (11). Our calculations 
•ere carried out for two couples of sticking coefficients: ac1  =- 0.625, a 2c  = 0.5 and 

0.0042, ac2  = 0.004, thermodynamic parameters for the ethanol-hexanol system being 
iken following Strey and Viisanen (1993). The results of calculations for main values of 
ieory are summarized in Table 1. 
The total quantity N of droplets formed per volume unit strongly depends on sticking 

)efficients: N =8.5 x 103  cm' for occ1  =0.625, acz  =0.5; and N =- 1.91 x 109  cm' for 
,1  = 0.0042, ac2  = 0.004. Figure 3a and b shows the corresponding spectra f(x) of linear 
zes of droplets (equation (116)). The time dependences of the real supersaturations Ci  and 
; for the time interval 0 t — t, 3.5t, are shown by Fig. 4a and b (equations (128), (129) 
Id (132)). In both cases the difference between Ci  and (2  is very small because 	(24, 
rid P„ is nearly equal to 1 (P, = 0.99996 at ac1  = 0.625, ac2  =0.5 and P„ =0.9998 at 

= 0.0042, °Ca  = 0.004), but it increases with time and attains a value of the order of 10 -5  
= 0.625, ac2  = 0.5) or of 10-4  (ae1  = 0.0042, ac2  = 0.004) at t t„ + 3t,/2. 

It should be noted that we cannot obtain any analytical expression for the duration of all 
mdensation process which is determined by the time tcond  at which constraint (30) is 
roken and the binary condensation changes into the binary coalescence. Besides, we 
annot obtain any explicit expression for the time dependence of Ci  , (2 , z for the interval of 
me 3t,/2 < t < 3t,. It is evident that numeric methods like the methods applied by 
Tilemski and Wyslouzil (1995) and by Wyslouzil and Wilemski (1995, 1996) would make it 
Dssible to obtain the time dependence of Ci  , (2  and z for this interval as well as to estimate 
ond  for any condensing system. This is an advantage of numerical methods. On the other 
and, it will be necessary to draw a comparison between the results of presented theory and 
:perimental data as soon as appropriate experiments are carried out. Particularly, it would 
D very interesting to compare our theoretical predictions with experimental data for the 
me dependences of real supersaturations (1, (2  and average concentration xo  of solution in 
i:)plets as well as for the total quantity N of nucleated droplets. 
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Abstract—In considering a binary nucleation theory, it is shown that the unified approach to the 
homogeneous and heterogeneous nucleation theories makes it possible to obtain the equilibrium 
binary distribution satisfying both the mass action law and type II limiting consistency. Theoretical 
rates of binary nucleation are calculated by using the new equilibrium distribution, the distribution 
of Reiss, and that of Wilemski and Wyslouzil for the ethanol—hexanol system. Possible causes of the 
irregularity of discrepancies between theoretical predictions and experimental data are discussed. 
C) 1999 Elsevier Science Ltd. All rights reserved 

1. INTRODUCTION 

,ately, a significant progress has been attained in developing different aspects of kinetic 
leory of binary nucleation and condensation. As there exist some different approaches to this 
leory in the frameworks of capillarity approximation there appears the need to assess the 
ccuracy of competing approaches as well as to compare their predictions with experimental 
ata. The latter is not always possible because of absence of appropriate experimental results, 
ut for a wide range of situations high-quality experimental data are available. 
Recently, Wilemski and Wyslouzil (1995) and Wyslouzil and Wilemski (1995, 1996) have 

btained a series of very interesting and important results concerning both kinetic and 
quilibrium aspects of the theory. In particular, they resolved several inconsistencies involving 
ie binary equilibrium distribution. They proposed (Wilemski and Wyslouzil, 1995) a new 
)rm of the binary equilibrium distribution which obeys the mass action law, reduces to 
ppropriate forms for the unary distributions and yields unique and physically well-behaved 
vaporation rate coeffiçients satisfying the new product rule. In this paper we will treat the 
inary equilibrium distribution proposed by Kuni et al. (1990) and Melikhov et al. (1990), who 
eneralized ideas developed by Rusanov et al. (1987) to the two-component theory. We will 
low that the distribution of Kuni et al. satisfies all principal conditions formulated by 
Vilemski and Wyslouzil (1995). Then we will calculate the binary nucleation rate using this 
quilibrium distribution in the kinetic theory of Kuni et al. (1990) and Melikhov et al. (1990, 
991) (yielding the same nucleation rate as Stauffer's theory (1976)) at avarious values of 
icking coefficients. The results of calculations will be compared with each other as well as 
rith the experimental data of Strey and Viisanen (1993) for the ethanol—hexanol system. 

2. BINARY EQUILIBRIUM DISTRIBUTION 

Let us denote by f (v 1, v2 ) the equilibrium distribution of binary nuclei with respect to the 
ariables v1  and v2  representing numbers of molecules of first and second components, 
spectively, in a nucleus. In the capillarity approximation the distribution f (v 1 , v2) can be 
resented (Reiss, 1950; Wilemski and Wyslouzil, 1995) as 

nl   yi(  n2  )v2  
f (v 1, v 2 ) N 	 exp[ — 	v2)], 

ni,o(Z) ) 	fl2.3(X) 
(1) 

uthor to whom correspondence should be addressed. 
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[eterogeneous centers but on molecules themselves of condensing vapor to the two-
omponent theory. The reasoning of interest is as follows. 
Taking into account that each of n1  molecules of the first component of vapor mixture 

nd each of n2  molecules of its second component can serve as a heterogeneous center of 
Drmation for a nucleus, we have, according to principles of equilibrium statistical thermo- 
Lynamics 	

f (v 1, v2) = n 1e 	+ n2e-F2, 	 (6) 

ihere F1  is the work necessary that v1  — 1 molecules of the first component of vapor 
aixture and v2  molecules of its second component join a single molecule of first component; 

is the work necessary that v2  — 1 molecules of second component of vapor mixture and 
molecules of its first component join a single molecule of second component. Though 

lentical nuclei with the variables v1  and v2  are formed as a result of both works F1  and F2, 
hese works in general are not equal to each other. It is because corresponding nuclei are 
Drmed on single molecules of different species. 

The works F1  and F2 do not coincide with the thermodynamic work F F (v 1, v2) either, 
ihich, according to its meaning, is required for simultaneous unification of v1  molecules of 
[rst component of vapor mixture and of v2  molecules of its second component in a nucleus 
ituated in a fixed point of condensing system. Of course, the differences between F1, F2, 
nd F have only a statistico-thermodynamical character, but not a mechanical one. 
It has been shown by Kuni et al. (1987) that 

F1  = F — ln[n is/nd, 	F2 = F —ln[n2,1n2], 	 (7 ) 
ihere n15  and n2, are the number densities of molecules of first and second components, 
espectively, in a liquid solution of composition x. 

Substituting equation (7) in equation (6), we have 

	e 
-F f (v 1, v2) = (8)  

v(x) 

ihere v(x) = 1/[n i5(x) + n2,(x)] is the nucleus volume per molecule. Denoting by v1  and 
2 the partial molecular volume of first and second component, respectively, in their pure 
quids, and taking into account that F can be expressed through F 	F s(v 1, v2) as 

ni 	n2 , F 	Fs— v ln 	 v2  ln 	 
n i  .(Z) 	n2.(X) 

(9)  

,ne can rewrite equation (8) as 

V1 + V2  (  ni  f 1(  n2  f 2exp[ — Fs]. f (v 1, v2) = 	 (10) 
v i vi  + v2v2  n i  ,o(x) 	n2,0(x) 

ince here the normalization factor (v1  + v2)/(v iv + v2v2) does not depend on n1  nor n2, 
his equilibrium distribution automatically satisfies the mass action law. As for the limiting 
onsistency, equilibrium distribution (10) evidently satisfies that of type II (1/vi  and 1/v2  
,eing the normalization factors of respective unary distributions) but does not satisfy that of 
ype I. It also gives well-behaved evaporation coefficients in the framework of Kelvin model. 
Comparing equation (8) with equations (1), (3), we see that the normalization factor 

f Kuni et al. is qKR = V - 1(x) (n1 + n2)-1  times as large as that of Reiss (qicR  is of the order 
f 104). Comparing equation (10) with equation (5), we see that the normalization factor of 
:uni et al. differs by a factor qKw = V - 1(x) n i n2-l+xexp[— x01  — (1 — x)02] from that of 
Vilemski and Wyslouzil. This factor (uw) is rather a complex function of many parameters 
f condensing system. 
It should be noted that in the unary nucleation theory, Reiss et al. (1968) and Kikuchi 

[969) obtained the corrections to the nucleation free energy like that of Rusanov et al. 
[987), but they did it by more artificial means. These corrections give the ratio of molecule 
umber density of condensed phase to that of vapor phase as a pre-exponential factor in the 
lassical unary nucleation rate. As shown by Schmitt et al. (1983), this factor allows one to 
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B(x) 

Fig. 1. Typical behavior of function B(x) for a metastable binary system, presented by B(x) for 
the ethanol (1)—hexanol (2) system at 	= 2.02, C2 = 7.77, and T = 260K. We have xc  = 0.54, 

B(xc )= 0.0619, B(x) = — 0.1239. 

a 
A = 

2e2 
{e2  - 1 - p + [(E2  ± 1 ± p)2  - 4811121, 

1 

[ 

-1 1,3/2 
C -= 6.r.\/ - 	Il 	'  c  

vie  + V2c 

vhere W (i = 1, 2) is the number of i-component molecules that the critical nucleus absorbs 
)er unit time, the binary nucleation rate J can, finally, be presented as 

J = ACe-4. 	 (21) 

It is evident that, through W1  and W2, the condensation coefficients a l  and ot2  strongly 
nfluence theoretical predictions for the nucleation rate J, which is proportional to a linear 
;ombination of these coefficients. At the same time there exist no reliable theoretical nor 
;xperimental data for them. 

5. NUMERICAL CALCULATIONS AND CONCLUSIONS 

Numerical calculations have been carried out with the help of Mathematica for the 
;thanol (1)-hexanol (2) system at the same external conditions as the experiments of Strey 
tnd Viisanen (1993). Results of calculations are presented by Fig. 2a and b in the form of the 
lependence of lnJ on the mean activity z =- 	+ ()1/2. The lines represent theoretical rates 
;orresponding to the fixed values of activity fraction y = (2/(1 + (2), indicated on Fig. 2 
wer the series. The corresponding experimental data are shown by circles. The theoretical 

(19)  

(20)  
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Fig. 2. Continued. 

ised in Stauffer's rate formula (Wilemski and Wyslouzil, 1995). But theoretical rates of 
Wilemski and Wyslouzil better agree with experimental data than ours (obtained using 
:quilibrium distribution (10) of Kuni et al., i.e. formula (21) for J), since for the considered 
;ystem the normalization factor of Kuni et al., is approximately ten times as large as that of 
Wilemski and Wyslouzil, that is qKw  is of the order of 10. At the same time, qKR  is of the 
)rder of 104  when y is small and tends to the value 105  when y -+ 1 (e.g., qKR.  8 x 104  at 

0.98). 
Since there exist no theoretical nor experimental data on the sticking coefficients ai  and 
for this system, we could, in principle, try to obtain a fine fit of theoretical rates to 

:xperimental data by choosing appropriate values for al  and a2. Magnitudes of ai  and 
must not depend, however, on metastability of a system, though they could be weak 

unctions of temperature. Therefore, within the framework of adequate theory we could 
)btain a good fit of theoretical predictions to experimental data by means of unique choice 
)f a i  and a2  (independent of vapor mixture metastability) for a given system. But for the 
(3nsidered system this does not work. Actually, the theoretical rates of nucleation in the 
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Fig. 3. Logarithm of nucleation rate J for pure hexanol vapor plotted vs a supersaturation (activity) 
= 2. The dimension of J is cm -3 s -1. The ellipses are the experimental data of Strey et al. (1986). 

The lines represent the nucleation rates calculated by using the classical nucleation rate expression 
(dashed lines, calculated by Strey et al. (1986)), The one-component analogue of the normalization 
factor of Kuni et al. (solid lines), and the normalization factor of Wilemski (dot-dashed lines). The 
initial (chamber) temperatures To  are indicated below the series. The corresponding nucleation 
temperatures are: about 258 K for To  = 288 K, about 276 K for To  = 308 K, and about 293 K for 

To  = 328 K. 

emperatures are indicated below each series. Evidently, one can conclude that none of these 
hree normalization factors can be given an undeniable priority from the standpoint of the 
igreement between the theoretical and experimental rates for the considered systems. 
-Iowever, for the homogeneous nucleation of toluene Schmitt et al. (1983) showed that the 
Ise of the one-component analogue of the normalization factor of Kuni et al., brings the 
heoretical rates into considerably better agreement with the experimental data, the values 
)f the surface tension and the sticking coefficient being physically realistic. 
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tract 

kinetic theory is constructed for a nonisothermal binary nucleation at the stage following the 
mal relaxation of nuclei. The three-dimensional kinetic equation to be solved reaches beyond 
framework of the Fokker—Planck approximation even if one of two components has a large 
se of condensation heat. It is shown that, by successively applying the method of Enskog—
ipman and the method of complete separation of variables to that kinetic equation, one can 
tee the problem of constructing the three-dimensional kinetic theory to the well-investigated 
Dlem of solving an one-dimensional kinetic equation of first-order phase transition, in the 
stationary case as well as in the stationary one. For the steady state, the main characteristics 
iucleation, including the nucleation rate, are found. Theoretical results are numerically eval-
xl for the nucleation in ethanol—hexanol system and compared with predictions of classical 
,thermal) theory and experimental data. © 1999 Elsevier Science B.V. All rights reserved. 

CS: 64.60.Qb; 68.10.Jy; 82.60.Nh 

1,vords: Binary nucleation; Thermal effects; Latent heat; Binary aerosol 

Introduction 

3inary nucleation is the first stage of any first-order phase transition in two-component 
tems, in particular, of the binary condensation consisting of the formation and growth 
drops of a liquid solution of two substances in a metastable mixture of vapors of 
se substances. During the nucleation the nuclei of a liquid phase are formed. They 
y the role of condensation centers afterwards. 
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At present, there exists an adequate theoretical description of main aspects of one-
component nucleation. At the same time the kinetic theory of binary nucleation has been 
developed almost exclusively for the case where the metastability of two-component 
vapor mixture is created instantaneously and both thermal effects of condensation and 
presence of heterogeneous nucleation centers are neglected [1-4]. However, it is well 
known, that heterogeneous nucleation can occur at much lower degrees of metastability 
than the homogeneous one. Besides, as follows from the nonisothermal one-component 
nucleation theory [5-9], nonisothermal effects can have a substantial influence on the 
kinetics of the process. 

As discussed earlier [10] there exist several kinds of nonisothermal effects, but the 
most important of them is the effect due to the condensation heat transferred to a 
nucleus or extracted from it in all individual events of absorption or emission of a 
vapor molecule by a nucleus. As first pointed out by Feder et al. [6], in the case of 
one-component nucleation that )effect can diminish the nucleation rate as many as hun-
dreds of times relatively to the nucleation rate in the isothermal theory. Such a decrease 
is physically easily explained. Firstly, the temperature of a growing nucleus gradually 
increases with the growth of its size because of the release of the condensation heat. 
The increase in the temperature of nucleus causes an increase in its ability to emit 
molecules what naturally slows down its growth. Secondly, the increase in the tem-
perature of nuclei causes an increase in the average temperature of vapor—gas medium 
and this is what decreases the metastability (supersaturation) of the condensing system. 

Obviously, in the case of binary nucleation the thermal effect influences the nucle-
ation rate in the same way as mentioned above. Therefore, the nonisothermal nucleation 
rate should be less than the isothermal (classical) one. Hence, it is not easy to explain 
the result of Lazaridis and Drossinos [11]: following the approach developed earlier 
by Langer [12] and extending the Barrett's [9] analysis of the one-component nu-
cleation to the binary nucleation, they obtained an explicit analytical expression for 
the total rate of steady-state binary nonisothermal nucleation, but when applied to the 
water-ethanol system, their model predicts a nucleation rate that is higher than the 
classical (isothermal) nucleation rate. 

As pointed out by many authors [13,4], the classical (isothermal) theory of binary 
nucleation predicts nucleation rates much higher than experimental results (including 
the water—alcohol systems, in the cluster models of Flageollet-Daniel et al. [14] and 
Laaksonen [15]). Although most of those authors agree that those discrepancies are 
the most probably accounted for by the effect of surface enrichment [14-18], taking 
account of thermal effects, nevertheless, can improve an agreement between theoretical 
predictions and experimental data on the nucleation rate. Evidently, such an improve-
ment will be noticeable only if the quantity of the carrier gas in the system during 
experiments is not sufficient to ensure the constancy of nucleus mean temperature (an 
extensive treatment of carrier-gas effects is given by Ford [19] and Barrett et al. [20]). 

In this paper we continue to develop the approach to the kinetic theory of non-
isothermal binary nucleation proposed by Djikaev et al. [10] on the basis of the method 
developed by Grinin and Kuni [7] in constructing a kinetic theory of nonisothermal 
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where, for simplicity of the notation, the independent arguments v1, v2, and t are 
omitted and 
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Here Ff7i  and ß.  (i =1,2) are the number of i-component molecules being absorbed 
by a nucleus per unit time and the condensation heat of component i per molecule, 
respectively; agi  and ad  (i = 1,2) are the condensation (sticking) coefficient and the 
coefficient of thermal adaptation in a reflection event of i-component molecules, re-
spectively; ocg  is the coefficient of thermal adaptation in a reflection event of passive 
gas molecules; Ei , mi, and ni  (i= 1,2) are the effective (in the sense of energy transfer 
to the nucleus) specific heat, mass and number density of molecules of component i 
of the vapor mixture, respectively; C g , mg , and ng  are the analogous quantifies for the 
passive gas; F 	DFlavi , F being the free energy of formation of a nucleus in the 
thermal equilibrium with the medium, i.e. with the characteristic E = O. 

Retaining all terms of the series in the RHS of Eq. (4) means extending the theory 
to values Ti 	1 (i = 1,2) and thus going beyond the framework of the Fokker— 
Planck approximation. If both ri  and T2 are much smaller than 1, the Fokker—Planck 
approximation becomes acceptable and Eq. (4) can be reduced to the lcinetic equation 
of Lazaridis and Drossinos [1 1]. 

In the case of one-component nucleation where either L2=0, r2  =0 or LI  =0, Ti =0 
(i.e. only the component is present in the system), Eq. (4) transforms itself into the 
kinetic equation of nonisothermal one-component nucleation of Kuni and Grinin [7]. 

In the variables vl  and v2, we are interested only in the near-critical region v1  — Vicl 
AVic  (i = 1,2), which is the most important one for the nucleation kinetics; the 

parameters vi, and Avi, are defined as 

= 0, Avic = 	 ci — 1, 2  ) • 	 (8) 

The values vic, v2, would determine the coordinates of the saddle point of the surface 
of free energy of nucleation in the isothermal theory. Within the framework of the 
capillarity approximation 

Avidvic 4 1, 1/Avic  -< 1 (i = 1,2) . 	 (9) 
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The Hermite polynomials H.,• (j = 0,1, 2,...) are eigenfunctions of the principal op-
erator in the goveming equation, i.e. of the operator in the leading (fifth) term on the 
RHS of Eq. (4). They satisfy the recursion relations 

a(a 
=2jH3_1 , 	— — U)11., = 	 (17) 

and form a complete system of eigenfunctions satisfying also the orthogonality and 
normalization conditions 

	

(H.1,110= Ôik2j  j! (j,k =0,1,2,—) , 	 (18) 

where Sik is Kronecker's delta. Obviously, 	(j = 0,1,2,...) represents the eigen- 
value corresponding to Hi. All the eigenvalues are negative except that for j= 0 which 
is equal to O. 

The function f m  f(vi,v2,t) in Eq. (12) represents the two-dimensional distribution 
of nuclei with respect to v1, v2. Its time evolution is given by the equation 

Sf 5J1  5J2  

at aVi 5v2 

where 
co 'en (i = 1,2) 

m=1 

is the flux (averaged on 	of nuclei along the vi-axis. As can be seen during the 
stage of thermal relaxation t < k the distribution of nuclei with respect to v1  and v2 
does not change while the distribution with respect to the variable approaches a 
quasiequilibrium Gaussian distribution by the end of that stage, and 

P f (t 	 (21) 

as follows from Eq. (12) (t represents the principal relaxation time). 

4. Evolution of nuclei after the stage of thermal relaxation 

The quasiequilibrium distribution is an eigenfunction of the main operator of the 
goveming equation (4), the corresponding eigenvalue being zero. Therefore, as follows 
from Eq. (21), the operators of the first four terms on the RHS of Eq. (4) also become 
important of the end of thermal relaxation stage. However, the operator of the last 
term is still the main one when acting on the deviation of P from f: according to 
Eq. (15), this deviation is orthogonal to the eigenfunction 1/0  with the zero eigenvalue. 
This makes it possible to construct a solution of governing Eq. (4) for t k with the 
help of the Enskog—Chapman method. 

(19)  

(20)  
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(the prime in the sum over m in Eq. (25) eliminates the term with j=m which means 
Fm „i = 0 for any m). 

Rewriting Eqs. (25) in the form 

z(•1)(f) = ci(j1) 1,  f + bY ) .L2 f ,  , 	 (28) 
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and substituting z.11)  in Eq. (23), we have 

zi(f)= aiLif +biL2f 
	 (31) 

00 
a J• = 	a(! )  

1=1 

(32) 

Eqs. (31), (24) and (19) result in the equation governing the time evolution of two-
dimensional distribution f: 

Of 	ê 	 , 	 ê 
= 	Lij — e/2 L2 J 01 	L2J ± 02 at 	OV I 	OV2 	01;1 	O'V2 

with 

ei  = 1 — E ai, 62 = 1 — W2 	 (51 — 	— 

(34) 

Thus, according to Eqs. (3), (22), (31), and(33), the problem of finding the three-
dimensional distribution g(vi, v2 ,E,t) in the nonisothermal theory is reduced to the 
well-investigated problem of finding the two-dimensional distribution f(vi,v2 ,t). How-
ever, Eq. (33) for f significantly differs from the Reiss kinetic equation of isothermal 
binary nucleation: bath the difference of 01  and 02  from 1 and the presence of the 
third and fourth terms on the RHS of Eq. (33) are exclusively due to thermal effects. 
Nevertheless, Eq. (33) is still an equation of the Fokker—Planck type. Therefore, to 
solve this equation, one can apply the method of complete separation of variables used 
earlier in a kinetic theory of isothermal binary nucleation by Kuni et al. [21] and by 
Melikhov et al. [22]. The following section is based on those two works. (The most 
general form of that method for a two-dimensional kinetic theory of first-order phase 
transition is given by Kuni and Melikhov [23], and its covariant formulation for a 
multidimensional theory is provided by Kuni et al. [24].) 
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In the near-critical region the free energy F can be approximated by the bilinear 
form which in the variables x and y becomes a quadratic one: 

F =Fc — x2  + y2 . 	 (42) 

Let us denote by n(x, y, t) the distribution of nuclei with respect to the variables x 
and y at the moment t and turn to the variables x and y in Eq. (33). Replacing v by 
vc  in the vicinity of the saddle point and taking Eq. (42) into account, we obtain 

where 

n(x, y, 

arn(x, 

= 

8= 

t) = vcCf(V1,V2,1"), (43)  

(44)  

+2y)ln(x,y,t), 	(45) 
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p= 	iv2(0162— w1w25152)(clic22—eue202w/a2 , 	 (48) 

and abbreviated notations Dt  5154... have been introduced for differentiation opera-
tors. 

As the two-dimensional equilibrium distribution of nuclei fe(vi, v2 ) with respect to 
the variables v1  and v2  is [21,25] 

fe(vi,v2)= tr i  e—F('',v2)  , 	 (49) 

the two-dimensional equilibrium distribution ne(x, y) with respect to x and y takes the 
form 

ne(X, y)= Ce— 'ex
2 
 e — Y

2 
	 (50) 

(we again replaced v by vc). Thus, the variables x and y have been separated in the 
equilibrium distribution. This allows one to conclude that the variable x is unstable 
and the variable y is stable. Therefore, the ordinary boundary conditions are applied 
to Eq. (45): 

n(x, y, t)/ne(x, y) = 
1 (x —> —oo) , 	

(51) 
0 (x —> oo) 

(for arbitrary y). 
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As shown by Kuni and Melikhov [7], the solution of Eq. (57) with boundary con-
ditions (59) is given by 

n(u,q,t)= 7c-1/2p(u, t)e-2  , 	 (60) 

where the time evolution of the function p(u,t) is govemed by the one-dimensional 
equation 

ÔtP(u,t)= Aa„(Ôu  —2u)p(u,t) 	 (61) 
with the boundary conditions 

{ 1 	(u —> —oo) , 
p(u,t)Ipe(u)= 

	

	 (62) 
0 (u —> oo) 

the function pe  being defined as 
)0,(u)  = cn1/2e—F,eu2 	 (63) 

According to Eq. (60), 

p(u,t)= 	dtin(u,ri,t). 	 (64) 
-00 

This shows that p(u,t) represents the one-dimensional distribution of nuclei with respect 
to the unstable variable u. Eq. (57) can be presented in the form of two-dimensional 
continuity equation 

atn(u,tht)= — aulu — 	 (65) 
where ju  and jn  are the flux densities of nuclei along the u- and 1-axis. Evidently, 
distribution (60) makes the flow jn  vanish, what means that in the variables u, ri the 
two-dimensional flow of nuclei is parallel to the u-axis. 

Let us present Eq. (61) in the form 
at p(u,t)= —ÔuJu, Ju= — A(8. —  2u)P(u,t), 	 (66) 

where J (function of u and t) is the one-dimensional flow of nuclei along the u-axis 
integrated over the stable variable. 

	

In the near-critical region lui < 1, we have the estimates Ô/Ôu 	u 	1 (without 
paying attention to signs) which, with the help of Eqs. (60) and (61), allow us to 
conclude that the characteristic time tu  of the change of the distribution of nuclei with 
respect to unstable variable in that region can be estimated as 

tu  — A-1  . 	 (67) 
Obviously, t will also represent the time in which the steady state is established in 
the entire near-critical region u< 1. 

In the steady state J is independent of u and t. Therefore, according to Eqs. (66) 
and (62), for the one-dimensional steady-state nucleation flux (4)5  and distribution 
ps(u) we have 

(Ju), = n—iRApe(u)lu=0, 	ps(o_ n-112 pe(u)  f du e— u'2 
	

(68) 

(subscript "e marks steady-state values). 
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ps(x) = 7r-1/2p(x) 	dx, 	 (77) 

Comparing Eqs. (63) and (73), we conclude that the dependence of the one-
dimensional equilibrium distributions pe(x) and pe(u) on the unstable variable is identi-
cal. In addition, the comparison of Eqs. (68) and (77) shows that the one-dimensional 
steady-state distributions p5(x) and ps(u) also have an identical dependence on the 
unstable variable. Besides, as follows from Eqs. (66) and (74), 

= (Ju), • 	 (78) 

Therefore, the one-dimensional flux density (Ju )s  given by Eq. (68), determines the 
steady-state rate of binary nonisothermal nucleation Js  which can be presented as 

J, = ACe—F' . 	 (79) 

Using results of the one-dimensional theory and taking account of Eq. (66), one can 
obtain the estimate 

Ô, — 	—2u (u 	1), 	 (80) 

and the relation 

Ji, 	tip(u,t), 	= 2Au (u 	1) . 	 (81) 

The value it represents the rate of regular growth in time of the unstable variable u. 
Obviously, for the unstable variable x one could write the identical estimate and rela-
tion, as follows from (74). Eq. (81) allows one to conclude that the fluctuation-induced 
nucleation is completed in the region u 	1 of the variables u, ri (in the variables x, y 
it is completed in the region x 	1). To the left of the region ul 	1 (or 1.x 	1) the 
nuclei are still in equilibrium, while to the right of it they already grow irreversibly. 

5. Mean values of composition and temperature of the nucleus 

Eq. (66) with boundary conditions (62) (or Eq. (74) with boundary conditions (72)) 
is well known and investigated in the one-dimensional theory of first-order phase 
transitions. Accordingly, we can use the results of one-dimensional theory for the 
one-dimensional distribution p(u,t) (or p(x, t)) and the nucleation rate «7, (or ./x ). 
Thus, Eqs. (69), (43), (22), and (3) determine the three-dimensional distribution of 
nuclei with respect to the variables v1, v2  and E in the nonisothermal binary nucle-
ation. The rate of nucleation is given by Eq. (66) (or (74)). In the particular case of 
steady-state nucleation the one-dimensional distribution p5(u) is given by the second 
of Eq. (68) and the expression for n(x, y, t) is reduced to Eq. (76); the nucleation rate 
is then determined by Eq. (79). 
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For example, using Eq. (26), neglecting the terms of order t, t,... and solving 
Eqs. (87) and (88), one can find 

1 	 4n 

	

al  = — TÎKI TiQi, az — 	+ tlQ2, a3 -= Ti v3 5 	 (89) 

1 	 1 	 1 	1 

	

= 	 12  
2212U3 

±
2 	2412U 

	K2= 
222 

 22 U3, 
 

Qi 	
2 	1 	 2 	1 

	

= 	U-4 ± 2 	U3(U3 ± U4) + 	U2
4  
	U3

3  7A1 	--,A1A2A3 	 92223 	42222  

	

1 - 	1 2 

2 	 1 	 1 	 1  
	Uî U4 u4  
34A2 A3 	221413 

u33 
24)43 

 

1 	 1 	 1 	 1 

	

Q2 = 	U3 	U12  
32223 	42143

2 + 	U3  U4  ± 
3212223 	2423  - 

1 	1 	U2 	 
444.. 3  21423 

u32 

2
Q  

2 
 U4 	 1  0 	,  

743 	JA1 	3,1,21t3 	JA1 it2 /1,3 3  

T21 , 	2 D 	 2 n 	4 	4 c  = — 	Tral 	
4 	b2 = Tinz t02, b3 = Tio3 e 

21 (90) 

2 T., i 	T21 	2 R1 -=- 	.....  u3  _L 	u  
2)1,112 	' 2222 	3  ' i  2 

2 
R2  T21 7. 7. 

	U3 , 
222  2À1 ).2  

2T21 3 	r2 	 r2 

	

21 	r3 u4+  21  U3(T21 U3 ± U4) m 0 )2 	
1'

"2 2T21  
9/1113 	3111/t2A3 	 I 3 	 4).2  112 

3 

1 2 
2 2T21 	2UU4 	 T21 	 T21  2 	T21  

3/12,1, 	u, 1122 
u3 	

2/12À22, u34 	2, )2À2 2 3 	1 2 3 	1 2 3 	1 23 
3 	r2 	 2 

S2 = T 	U3  +  21  u2 	T21 	 T21  u3 , U3  U4  + 
322 23 	4214 3  3212223 	2,12.13  3  2  

T21  "2 	T21  2 
422 22  " 	21222 	

, 
1 2 	2 3 

2T21 	t 1 	t21  

	

2
2
1  u3 	 S3  = — 	U4 U2  

9A3  9.423 	3/1,223 	3À1).2).3  3  

( Un 2 	W1  H- T 12ni  W2  with arbitrary in). As follows from Eqs. (29), (30), and (26), the 
values a4 , a5 ,... and b4 , b5 ,... are of order t?, 	. and hence they are not taken into 
account in solving Eqs. (87) and (88). 
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Fig. 1. Natural logarithm of nucleation rate J in the ethanol (1) — hexanol (2) system plotted vs. a mean 
activity z = 	q )1/2, at To -I- 260 K. The dimension of J is cm-3  s-1. The circles are the experimental 
data of Strey and Viisanen [26]. The solid lines are the nonisothermal nucleation rates (Eq. (79)) calculated 
at the indicated activity fraction q = (21((1 + (2 ); the dashed lines represent the isothermal nucleation rates. 
The thermal accommodation coefficient of carrier gas (argon) is: (a) ag = 0.1; (b) Œg  =- 0.01. 
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nucleation). In particular, the steady-state nucleation rate is given by Eq. (79), and 
the steady-state three-dimensional distribution with respect to v1, v2, and E is given by 
Eqs. (76), (43), (22), and (3). The average values of the temperature of the nucleus 
and solution concentration in it are given by Eqs. (86) and (83). Finally, numerical 
calculations were carried out for the nucleation rate in the system "ethanol—hexanol" 
to illustrate the theory developed. The results were compared with the predictions 
of the isothermal nucleation theory [21,22] and experimental data [26]. As expected, 
rates predicted by the nonisothermal theory are substantially lower than rates in the 
isothermal theory. Consequently, the nonisothermal theory improves the fit of theoretical 
results and experimental data. The model of Lazaridis and Drossinos [11] predicts 
nucleation rates that are slightly higher than classical nucleation rates and this is not 
easy to explain from the physical standpoint. 
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