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SOMMAIRE

La présente thése est consacrée a la théorie de la condensation binaire.

Premiérement, nous considérons la thermodynamique de la nucléation binaire,
en nous concentrant sur énergie libre de formation d’une goutte et la distribution
d’équilibre des gouttes, qui est essentielle pour la vitesse théorique de nucléation
et dont le choix n’est toutefois pas unique. Une nouvelle distribution d’équilibre
est proposée. Elle permet d’améliorer 1’accord des prédictions théoriques avec les

données expérimentales pour la vitesse de nucléation.

Deuxiémement, nous développons la théorie cinétique de la nucléation binaire
non-isotherme. Cette théorie traite de l'influence des effets thermiques sur la
condensation binaire qui sont causés par la chaleur de condensation. Les molécules
du mélange de vapeurs absorbées par une goutte de solution binaire lui transmettent
de 1a chaleur de condensation, tandis que les molécules émises par la goutte lui
enlévent une telle chaleur. La température moyenne de la goutte s’accroit au fur
et 3 mesure qu’elle grandit. Cet échauffement des gouttes croissantes diminue la
vitesse de nucléation et influence d’autres caractéristiques du processus.

La théorie de la nucléation binaire non-isotherme est développée a partir de
I’équation discréte du bilan décrivant I’échange de substance et d’énergie entre le
mélange de vapeurs et les gouttes binaires. En réduisant cette équation a la forme
différentielle, on obtient ’équation cinétique tridimensionnelle. Nous considérons
le cas des chaleurs de condensation arbitraires ot I’équation cinétique dépasse les
bornes de P’approximation de Fokker et Planck. Dans le cas ol les chaleurs de
condensation sont trés petites par rapport a la fluctuation efficace de ’énergie

d’une goutte I’équation cinétique peut étre réduite a celle de Fokker et Planck.
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L’analyse de Péquation cinétique permet de déterminer la hiérarchie des échelles
de temps de la nucléation binaire non-isotherme. Cela rend possible de séparer
et décrire analytiquement 1’étape de relaxation thermique pendant laquelle la
distribution des gouttes selon la température s’approche d'une gaussienne, alors
que leur distribution selon les nombres de molécules ne change guére.

A DPétape suivant la relaxation thermique, ’équation cinétique tridimensionnelle
peut é&tre résolue en utilisant successivement la méthode de Chapman et Enskog
et la méthode de séparation compléte des variables. Ces méthodes permettent de
réduire notre équation cinétique & 1’équation monodimensionnelle de Fokker et

Planck dont les coefficients contiennent I'information sur les effets thermiques.

Finalement, nous étudions la condensation binaire isotherme aux conditions
dynamiques. Dans ce cas la formation et la croissance des gouttes se passent en
méme temps que la métastabilité du mélange de vapeurs croit graduellement,
atteint son maximum et décroit. C’est ainsi que la condensation binaire se passe
le plus souvent dans la nature.

Nous développons la théorie cinétique de ces processus pour les systemes ouverts
ainsi que pour les systémes fermés (du point de vue de I’échange de matiere
entre le systéme ol la condensation se passe et son environnement). Les deux
sursaturations idéales que les vapeurs du mélange auraient eues en absence d’ab-
sorption de la substance par les gouttes sont déterminées par les conditions
extérieures: la dépendance temporelle des sursaturations idéales est considérée
comme donnée. Le systéme d’équations intégrales est obtenu pour les processus
considérés. La méthode itérative permet de trouver le spectre des dimensions
linéaires des gouttes et la distribution des gouttes selon leurs deux variables
d’état indépendantes, la précision relative étant assez élevée des la premiere
itération. De méme, cette méthode permet de trouver la dépendance temporelle

des sursaturations réelles des deux vapeurs et le nombre total de gouttes.

Tous les résultats théoriques de la these sont illustrés avec des calculs numériques.
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INTRODUCTION

La condensation binaire c’est la germination et la croissance subséquente
des particules d’une solution liquide binaire au sein d’un mélange métastable de
deux vapeurs. C’est un processus trés répandu dans la nature et dans l'industrie

chimique.

La condensation binaire est une transition de phase du premier ordre. Par
conséquent, la théorie de la condensation binaire fait partie intégrante de la
théorie fondamentale des transitions de phase du premier ordre. En méme temps,
cette théorie est indispensable pour résoudre différents problémes appliqués con-

cernant surtout l’industrie chimique et la formation des nuages atmosphériques.

Considérons un mélange de vapeurs de deux especes chimiques. Supposons
que d’une facon ou d’une autre ce mélange devienne métastable. Si une substance
_se trouve dans un état métastable, elle retournera irrémédiablement dans un état
stable. Par example, une vapeur sous-refroidie se condense et se transforme en
liquide; un liquide surchauffé finit par s’évaporer. Lorsqu’on considére une vapeur
pure son degré de métastabilité est caractérisé par son degré de saturation: la
vapeur pure est métastable si elle est sursaturée. La vapeur est dite sursaturée si
la pression de cette vapeur est plus élevée que la pression de la vapeur saturée
au dessus de la surface plane de sa phase liquide. Quant & un mélange de deux
vapeurs, il peut étre métastable méme si les deux vapeurs sont sous-saturées

séparément 'une de ’autre.
La transition de phase du premier ordre peut étre soit homogene soit hétérogene.

La transition de phase est dite hétérogeéne si elle se passe au sein de la phase



initiale métastable qui contient différentes inhomogénéités (grains de poussiere,

grains de sel, ions, etc.) qui servent de centres de formation de la nouvelle phase.

La transition de phase est dite homogéne si la phase initiale métastable ne
comporte aucun agent nucléant. Les transitions homogenes exigent des degrés
de métastabilité beaucoup plus élevés qu’il est nécessaire pour les transitions

hétérogenes.

Normalement la transition de phase homogeéne du premier ordre a un caractere
fluctuationnel. Cest grace aux fluctuations que le travail nécessaire pour la formation
de la surface de séparation entre la nouvelle phase et la phase initiale peut étre
effectué. Par suite des fluctuations, de petites gouttes d’une solution binaire se
forment au sein d'un mélange de vapeurs. Si le mélange de vapeurs est stable,
ces petits amas restent instables et se désagréegent au cours du temps. Mais si
le mélange de vapeurs est métastable, il y a des gouttes qui atteignent certaines
dimensions critiques et se retrouvent ainsi en état d’équilibre instable avec le
mélange. Dés qu’une telle goutte absorbe (grace aux fluctuations) une molécule de
plus, elle devient stable et continue & croitre irréversiblement au cours du temps,
en servant de centre de condensation. Une goutte ayant des dimensions critiques
et se trouvant ainsi en état d’équilibre instable avec le mélange de vapeurs est
désignée sous le terme de “germe”. Les dimensions du germe (“dimensions critiques”)
dépendent du degré de métastabilité de la phase initiale: plus grand le degré de

métastabilité est plus petites les dimensions du germe sont.

Le mécanisme hétérogene des transitions de phase du premier ordre est
quelque peu différent de celui homogéne. La présence des agents nucléants dans la
phase métastable cause une grande diminution du degré de métastabilité nécessaire
pour déclencher la transition de phase. Qui plus est, & la différence de la transition
homogene, la transition hétérogéne peut se passer sans barriére (par conséquent,
avec une énorme intensité) & métastabilité si basse de la phase maternelle que la

transition homogéne ne se passe pas du tout. Cela est causé par différents effets,



en fonction de la nature de la transition hétérogene. Par exemple, la condensation
binaire sur un centre nucléant insoluble peut étre considérée comme une formation
d’une couche mouillante d’épaisseur arbitraire sur un centre nucléant. Dans ce
cas on peut établir que la condensation sans barriere est la conséquence de
la concurrence entre la pression capillaire et la pression disjoignante dans les
couches minces. Cette concurrence baisse la hauteur de la barriere d’activation
de la condensation binaire hétérogene et peut méme causer la disparition de cette
barriére & tres basse métastabilité du mélange de vapeurs. En d’autres termes,
les contributions aux potentiels chimiques de deux composantes dans une couche
provenant de la pression disjoignante diminuent considérablement ces potentiels
en comparaison avec les potentiels chimiques dans une goutte binaire homogene
avec les mémes caractéristiques (rayon et composition) que celles de la couche;

cela & son tour baisse considérablement la barriere d’activation de la condensation.

Dans la présente thése nous ne considérons que les transitions de phase
homogeénes, mais la théorie sera facile & généraliser pour le cas des transitions de

phase hétérogenes.

Habituellement on distingue trois étapes dans une transition de phase du

premier ordre.

Pendant la premiere étape il se forme des embryons de la nouvelle phase
(souvent cette étape est appelée “nucléation” ou “sermination” ). Durant cette
étape des embryons ont de petites dimensions: ils ne contiennent que quelques
dizaines de molécules chacun. C’est pourquoi, méme si le systeme est fermé, on
peut négliger la diminution de la métastabilité de la phase initiale causée par
’absorption de ses molécules par les embryons. Apres leur formation ces embryons

servent de centres de condensation.

C’est pendant la deuxiéme étape que la transition de phase proprement

dite se passe, car c’est pendant cette étape que la partie bien dominante de la



phase métastable se transforme en nouvelle phase stable. Durant cette étape, des
particules de la nouvelle phase deviennent si grandes (contenant des milliers de
molécules chacune) qu’il est nécessaire de tenir compte de la diminution de la

métastabilité de la phase initiale.

Pendant la troisiéme étape de grandes particules de la nouvelle phase continuent
4 s’agrandir aux dépens des petites. Cela est causé par la diminution constante de
la métastabilité. Cette diminution cause ’augmentation constante des dimensions
critiques (du germe). A un moment donné les dimensions du germe s’averent
plus grandes que celles de certaines gouttes. Ces dernieres commencent alors a
o . : . ' .
s’évaporer, ce qui favorise la croissance des gouttes dont les dimensions sont plus

grandes que celles du germe.

A présent, il existe une description théorique assez complete et assez adéquate
des trois étapes de la condensation monocomposante. Quant & la théorie de la
condensation binaire, elle n’a été développée que pour le cas le plus simple ou
la métastabilité du mélange de vapeurs est créée instantanément et les effets
thermiques de la condensation sont négligeables. Et méme pour ce cas on ne
considére presque pas les deuxiéme ni troisieme étapes de la condensation en se
bornant habituellement & développer la thermodynamique et la cinétique de la

nucléation.

I’objet de la présente these est d’éliminer certaines lacunes de la théorie de

la condensation binaire homogene.

Premiérement, nous considérons la thermodynamique de la nucléation binaire.
En particulier, nous nous concentrons sur 1’énergie libre de formation d’une
goutte, le choix de ses variables d’état indépendantes et la distribution d’équilibre
des gouttes. Bien que cette derniére joue un rdle essentiel dans la théorie de la
nucléation binaire (surtout pour la vitesse de nucléation), son choix n’est pas

unique. Ici nous proposons une nouvelle distribution d’équilibre satisfaisant toutes



les conditions nécessaires et permettant, dans certains cas, d’améliorer I'accord
des prédictions théoriques avec les données expérimentales pour la vitesse de

nucléation. Les résultats théoriques sont illustrés avec des calculs numériques.

Deuxieémement, nous développons la théorie cinétique de la nucléation binaire
non-isotherme. Cette théorie permet de tenir compte de l'influence des effets
thermiques sur le processus de la condensation binaire. Les effets thermiques
de la condensation sont causés par la chaleur de condensation. Les molécules
du mélange de vapeurs absorbées par une particule de la nouvelle phase (i.e.,
par une goutte de la solution binaire liquide) lui transmettent de la chaleur
de condensation, tandis que les molécules émises par la particule de la solution
liquide lui enlévent de la chaleur de condensation. Car la particule croissante de
la solution liquide absorbe plus de molécules qu’elle n’en émet, sa température
moyenne augmente au fur et & mesure de sa croissance, la température du mélange
de vapeurs étant constante. Cet échauffement de la particule liquide augmente
sa faculté d’émettre des molécules. Par conséquent, il cause la diminution de la
vitesse de nucléation et I’augmentation de la durée de nucléation. De méme, il
influence la composition des particules liquides et d’autres caractéristiques du

processus.

Nous développons la théorie de la nucléation binaire non-isotherme a partir
de I’équation discréte du bilan décrivant ’échange de substance et d’énergie entre
le mélange de vapeurs et les particules de solution liquide. Cette équation tridi-
mensionnelle décrit I’évolution temporelle de la distribution de ces particules selon
trois variables indépendantes: les nombres de molécules des deux composantes
dans une particule liquide et la température de cette particule. En réduisant
’équation discréte du bilan & la forme différentielle, on obtient I’équation cinétique
tridimensionnelle de la nucléation binaire non-isotherme. Dans le cas des chaleurs
de condensation arbitraires, cette équation cinétique dépasse les bornes de I’approxi-

mation de Fokker et Planck. Seulement dans le cas ot les chaleurs de condensation



sont trés petites par rapport a la fluctuation efficace de I’énergie d’une particule
liquide, I’équation cinétique peut étre réduite & celle de Fokker et Planck. Dans
la présente these, pourtant, aucune restriction n’est imposée sur les chaleurs
de condensation et, par conséquent, 1’équation cinétique a résoudre dépasse les

bornes de 1’approximation de Fokker et Planck.

L’analyse de I’équation cinétique permet de déterminer la hiérarchie des
échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de
séparer et de décrire analytiquement ’étape de relaxation thermique pendant
laquelle la distribution des gouttes selon la température s’approche d’une gaussienne

alors que leur distribution selon les nombres de molécules ne change guére.

A Détape suivant la relaxation thermique, ’équation cinétique tridimen-
sionnelle peut étre résolue en utilisant successivement la méthode de Chapman
et Enskog et la méthode de séparation complete des variables. L’application
successive de ces deux méthodes permet de réduire notre équation cinétique a
’équation monodimensionnelle de Fokker et Planck dont les coeflicients contiennent
toute I’information sur les effets thermiques. L’analyse d’une telle équation est
bien connue et ainsi toutes les caractéristiques de la nucléation binaire non-
isotherme peuvent étre déterminées. Dans cette thése, nous présentons les caracté-
ristiques stationnaires: la distribution tridimensionnelle des gouttes, la vitesse de
nucléation, la composition et la température moyennes des gouttes. Les résultats
théoriques sont illustrés avec des calculs numériques pour les systémes “éthanol-

eau” et “éthanol-hexanol”.

La derniére partie de la thése est consacrée & la condensation binaire isotherme
aux conditions dynamiques. Dans ce cas la formation et la croissance des gouttes
se passent en méme temps que la métastabilité du mélange de vapeurs croit

y . AT & 5 o .
graduellement, atteint son maximum et décroit. C’est ainsi que la condensation

binaire se passe le plus souvent dans la nature.



Nous développons la théorie cinétique de ces processus pour les systemes
ouverts ainsi que pour les systémes fermés (du point de vue de ’échange de
matiere entre le systéme ot la condensation se passe et son environnement). Les
deux sursaturations idéales que les vapeurs du mélange auraient eues s’il n'y
avait pas eu de consommation de la substance par les gouttes sont déterminées
par les conditions extérieures. Par conséquent, la dépendance temporelle des

sursaturations idéales est considérée comme donnée.

Nous considérons le cas oli les sursaturations réelles des deux vapeurs atteignent
leurs maximums simultanément au moment du maximum de la métastabilité
du mélange de vapeurs. Le systéme d’équations intégrales est obtenu pour les
processus considérés. Il est démontré que la méthode itérative permet de construire
le spectre des dimensions linéaires des gouttes et la distribution des gouttes
selon leurs deux variables d’état indépendantes, la précision relative étant assez
élevée des la premiere itération. De méme, cette méthode permet de trouver
la dépendance temporelle des sursaturations réelles de deux composantes du
mélange de vapeurs ainsi que le nombre total de gouttes par unité de volume. Les
résultats théoriques sont illustrés avec des calculs numériques pour un systeme

ouvert “éthanol - hexanol”.



CHAPITRE 1

Thermodynamique de la condensation binaire

Comme nous ’avons déja noté, pendant la condensation binaire le role de
la phase métastable est joué par un mélange binaire de vapeurs. Au sein de ce
melange il se forme des particules de la phase stable (gouttes de la solution liquide

binaire).

Comme ces gouttes représentent la phase condensée, les temps de leurs
processus intérieurs de relaxation sont trés petits. Toute goutte se trouve donc en
état d’équilibre thermodynamique intérieure en possédant la température unique

et les potentiels chimiques uniques de ses composantes.

Normalement dans le mélange de vapeurs il y a aussi un gaz qui est passif
dans I’échange de matiére avec les gouttes mais capable d’un échange thermique
avec elles. La concentration assez élevée du gaz passif peut assurer I’égalité entre
la température T' des gouttes et celle de leur environnement. C’est la que ’on
peut négliger les effets thermiques de la condensation qui est dite isothermique

dans ce cas.

Habituellement on suppose que le mélange binaire de vapeurs est idéal et

qu’il n’y a pas de réactions chimiques.



1.1 L’énergie de formation d’une goutte

Avant de passer a la condensation binaire, rappelons une image simplifiée de
la thermodynamique de la condensation monocomposante. La figure 1.1 représente
la forme typique de 1’énergie libre F' de formation d’une goutte monocompo-
sante en fonction du nombre de molécules v dans la goutte; F' représente le
travail minimal qu’il faut effectuer pour former une goutte. L’indice “c” marque
les valeurs se rapportant au germe. La grandeur v, est la dimension du germe.
Pour une goutte avec v < v, il est énergétiquement plus avantageux de diminuer
sa dimension. Mais grace aux fluctuations certaines gouttes augmentent leurs
dimensions jusqu’d ce qu’elles atteignent la dimension ., en devenant germes.
Des fluctuations peuvent causer soit le passage du germe dans le domaine v > v,

soit son retour dans le domaine v < v.. Une fois passée dans le domaine v > v,

la goutte commence & grandir irréversiblement.

L’intervalle v, — Av, < v < v+ Av, est appelé “voisinage du point critique”
ou “voisinage critique”. En exprimant ’énergie F' en unité kg1 (kp étant la

constante de Boltzmann), la largeur du voisinage critique Av, est définie selon
Flve—Av)) 2~ Flv. + Av,) ~ Fo —1.

On assume que dans le domaine sub-critique v < v, — Av, la distribution des

gouttes est celle d’équilibre.

Ainsi Iénergie libre F' de formation d’une goutte détermine la barriere
d’activation de la nucléation. Toutes les gouttes doivent franchir cette barriere
pendant leur formation et leur croissance. Si la vapeur n’est pas sursaturée , F
augmente de fagon monotone lorsque v augmente, et F' tend a I'infini quand v

tend a D’infini.
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Figure 1.1: La barriére d’activation de la nucléation monocomposante homogene
déterminée par 'énergie de formation d’une goutte F' = F'(v). Les cercles représentent

la croissance d’une goutte durant son franchissement de la barriere.
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Les questions concernant ’énergie de formation d’une goutte binaire ont été

étudiées en detail par plusieurs auteurs [1-14].

Soient vy et v, les nombres de molécules des premiere et deuxieme composantes
dans une goutte. Dénotons par x la fraction molaire de la premiere composante
dans une solution & l’intérieur de la goutte. A certaines conditions assez faibles,

la valeur de x est donnée par 1’égalité

X =v1/(v1 + va). (1.1)

Cette variable caractérise la composition d’une goutte.

Introduisons les sursaturations (; et (; des composantes 1 et 2 selon les

relations

G =nifni, (1=1,2), (1.2)
ou n; est la densité partielle du nombre de molécules de la composante ¢ dans
le mélange de vapeurs; n;; est la densité partielle du nombre de molécules de la
vapeur de la composante 7 qui serait saturée au-dessus de la surface plane de sa

propre phase liquide.

En exprimant ultérieurement toutes les valeurs énergétiques en unité kgT',

on peut écrire 1’énergie de formation d'une goutte F' = F(vy,v,) sous la forme
F = —lllbl = I/gbg + S’)’ ) (13)

by =In[Gi/xfi(x)], b2 =In[C/(1 - x)fa(x)], (1.4)

ot fi(x) (2 =1,2) est le coeflicient d’activité de la composante ¢ dans la solution
de composition y; S est 'aire de la surface d’une goutte; v représente la tension
intérfaciale “goutte - mélange de vapeurs” (en unité kgT'). La figure 1.2 montre la
forme typique de la surface énergétique déterminée par la fonction F' = F(vq, v2)

dans le cas du mélange de vapeurs métastable.

La formule (1.3) a été obtenue & condition que les gouttes soient macroscopiques
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Figure 1.2: La surface énergétique de la nucléation binaire homogene déterminée
par I’énergie de formation d’une goutte F' = F'(1q, ) dans le cas du mélange de

vapeurs métastable.
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et décrites par la thermodynamique ordinaire d’équilibre. En utilisant la relation

généralisée de Gibbs et Duhem

v1dby 4 vodby — Sdy =0 (1.5)
on peut démontrer que
dF = —bldlll = bdeg + ’)/dS, (16)
oF 2y (0p oF 27y [ Ous
— =- — | == — | ==bo+— == 3
<8V1)W b+ — <9P)x’ (51]2)”1 2+ — | 3p i (1.7)

ot y; (1 = 1,2) est le potentiel chimique de la composante ¢ dans une goutte; P

est la pression & ’intérieur d’une goutte de rayon r.

1.2 La condition de métastabilité du mélange de vapeurs

Introduisons la fonction b(x) selon
b(x) = xb1 + (1 — X)b2. (1.8)
Dénotant ¥ = 14 + 1, et tenant compte de (1.8), réduisons (1.3) a
F=—vb(x)+Sy. (1.9)

Selon (1.9) la fonction b(x) représente 1’énergie de volume d’une goutte par
molécule prise avec le signe opposé. Pour que le mélange de vapeurs initial soit
métastable il est nécessaire que dans I'intervalle 0 < y < 11il existe les valeurs de x
pour lesquelles I’énergie de volume d’une goutte est negative et, par conséquent, la

fonction b(x) est positive. La condition nécessaire et suffisante en est évidemment
b(xm) >0, (1.10)

oll Xm est la coordonnée du maximum maximal de la fonction b(y) dans I'intervalle

0 < y < 1. A partir de (1.2),(1.4),(1.8) et tenant compte des propriétés des
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coefficients d’activité ainsi que de la relation de Gibbs et Duhem on peut obtenir

que

db(x)

_db(x)
dy =

= —o0, (1.11)
el dx

x=1

Ces relations signifient que la fonction b(x) n’atteint pas ses maximums aux

extrémités de 'intervalle 0 < y < 1. Par conséquent, x, est la racine de I’équation

) =0, (1.12)
dX X=Xm
d’o
b(xm) = biley,, = b2lioy, - (1.13)

La racine nécessaire pour la formulation de la condition de métastabilité est celle

qui assure le maximum maximal de b(x).

Si la solution dont les gouttes se forment pendant la condensation binaire
est idéale avec fi(x) = 1 et fo(x) = 1, ’équation (1.12) a une seule racine et
4 ce point la fonction b(x) atteint son maximum. Dans ce cas la condition de

métastabilité s’exprime par 'inégalité
nl/n1s+n2/ngs > 1. (1].4:)

Il en résulte que la condensation binaire peut se passer méme si les vapeurs

composant le mélange sont non-saturées séparément 1'une de I'autre.
Introduisons la variable & selon
k= (57)%% = 672 (1 + 1r2)y* M0 (x). (1.15)

ot v(x) = V/(r1 + 12) = V/v, et V est le volume d’une goutte. La variable

représente ’énergie de surface d’une goutte & la puissance 3/2.
En utilisant (1.15), réduisons (1.9) a la forme

F = —kB(x) + &3, (1.16)
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ou

B(x) = b(x)/[67/*7*/*u(x)], (1.17)
L’égalité (1.16) exprime I’énergie de formation comme une fonction des variables
d’état & et y d’une goutte. La variable x est extensive (0 < £ < 00), tandis que

la variable y est intensive.

Considérons un des maximums positifs de la fonction B(x) en dénotant sa

coordonnée par X..

En termes de la fonction B(x) la condition de métastabilité s’exprime par

les relations

dB(x)
dx

4*B(x)
dx?

B(x.) >0, =0,

X=Xc

<0. (1.18)

X=Xc

1.8 La barriére d’activation de la nucléation

A Daide de l'expression (1.16) il est facile d’étudier le comportement de

’énergie de formation F en fonction de &, la variable x étant fixée.

Soit x telle que B(x) > 0. Dans ce cas lorsque % varie de 0 a oo, Iénergie
F croit d’abord de facon monotone & partir de 0. Aprés avoir atteint et traversé
son maximum, F' commence & diminuer en tendant & —co. La coordonnée £m(x)

du point de col ot F' atteint son maximum F,(x) est donnée par

km(X) = [2/3B(X)P. (1.19)
Par conséquent,
Fal0) = 38400 (1.20)

Maintenant soit x telle que B(x) < 0. Dans ce cas 1’énergie F' croit de fagon

monotone a partir de 0 en tendant vers oo lorsque « varie de 0 a oo .

Les propriétés démontrées de I’énergie de formation d’une goutte permettent

de bien comprendre son comportement (i.e., le comportement de la barricre
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d’activation de la nucléation) dans tout le domaine 0 < & < 00,0 < x <1

des valeurs possibles des variables d’état d’une goutte, x et x.

Il est évident que la croissance irréversible d’une goutte (i.e., la croissance
irréversible de sa variable &) n’est possible que pour les valeurs de x qui satisfont &
I'inégalité B(x) > 0. Cette croissance se passe chaque fois qu’une goutte traverse

le point de col de la barriere d’activation.

La ligne de partage des eaux et celle de descente d’eau de la barriere d’activation

sont déterminées par les égalités

&= Byl (1.21)

X = Xe- (122)

Ainsi la ligne de descente d’eau est une droite perpendiculaire a I’axe k£ = 0. La
hauteur de la barriere d’activation (i.e., la valeur Fi,(x) de ’énergie F') sur la
ligne de partage des eaux est déterminée par 1’égalité (1.20). Si I’équation (1.18)
a plusieurs racines x. satisfaisant aux inégalités (1.18), & chacune de ces racines
correspond son propre maximum de la fonction B(x) et, donc, sa propre ligne de

descente d’eau.

Les valeurs minimales des fonctions «,,(x) et Fn(x) sont atteintes au point
d’intersection de la ligne de partage des eaux et celle de descente d’eau; a ce point
la fonction B() atteint son maximum positif B(x.). En dénotant ces valeurs par

k. et F, nous avons selon (1.19),(1.20):

o = [2/3B(XC)]35 (1.23)
1 2/3
F.= gnc/ : (1.24)

Le point d’intersection de la ligne de partage des eaux et celle de descente
d’eau est le point de selle de la barriere d’activation. C’est a ce point que la

hauteur de la barriére est minimale et la ligne de partage des eaux s’approche
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le plus de 'axe k = 0 et devient évidemment parallele a cet axe, devenant
perpendiculaire & la ligne de descente d’eau. Sur le plan des variables &, x le
point de selle est déterminé par les coodonnées k., x.. Dans le voisinage de ce

point la barriere d’activation a la forme d’une selle.

Comme la hauteur de la barriere d’activation est minimale au point de selle,
le voisinage de ce point est le plus avantageux du point de vue énergétique pour
le franchissement de la barriere d’activation par les gouttes. La goutte qui est
caractérisée par les coordonnées k., . du point de selle joue le role de la goutte

critique qui sera désignée sous le terme de germe.

Si ’équation (1.18) a plusieurs racines . satisfaisant aux inégalités (1.18),
A chacune de ces racines correspond sa propre ligne de descente d’eau, a laquelle
correspond son propre point de selle ainsi que son chemin de franchissement de

la barriere d’activation.

Ainsi il peut exister plusieurs canaux de nucléation. Dans tout canal il
n’existe qu’un seul point de col de la barriére d’activation. Apres avoir franchi ce

point, les gouttes grandissent irréversiblement.

Il va sans dire que le canal de nucléation pour lequel la hauteur de la
barriere d’activation au point de selle est la plus petite sera le plus avantageux

énergétiquement.

1.4 Le voisinage du point de selle de la barriere d’activation

Dans le voisinage du point de selle de la barriere d’activation ’énergie de
formation d’une goutte F' en fonction des variables vy, v, peut étre écrite sous la

forme bilinéaire

_ 1 [0*F 3 0*F 1 P F y
F= Fc+§ (—aﬁ)c (r1—r1e)"+ (31/181/2) C (Vl_Vlc)(V2—V2c)+§ (Eg) ; (v2—rac),
(1.25)
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ot I’indice inférieur “c” dénote des valeurs au point de selle.

Introduisons les variables z,y au lieu des variables vy,v, a l'aide de la

transformation linéaire

z= cn{v — vie) + cra(va — vac) (1.26)
y = cu(v1 — vic) + caa(ve — vac)
avec
a Ll (2@:) Ok " i (a&) _n)
1= 2\8r% ) \Bui /.0 “127 2 \8x% ) \Bw2 /0 (1.27)
=} (55),(%),, en=\3(55).(3%) |
21 2 \ 8x? A v/ 22 2 \3x2 vs /e "

Par rapport aux variables = et y approximation bilinéaire de F* acquiert la forme
diagonale

F=F, -2+ (1.28)

Le jacobien de la transformation (1.26),(1.27) n’est pas nul (il est négatif):
(z,y) 1/2 0*F 1 (02F 4312
e — — e 1.2
) ) \2\3d) mrms B

La simplicité de ’expression (1.28) par rapport & (1.25) signifie que les

variables z,y sont plus convenables que les variable v1,v; (ou méme &, x) pour
décrire I’énergie de formation d’une goutte et la barriére d’activation de la nucléation
dans le voisinage du point de selle. Le fait que les carrés des variables dans (1.28)
ont des signes opposés est typique de la théorie des transformations de phase du
premier ordre; et cela résulte du caracteére de selle de la barriére d’activation. Les
signes “-” et “+” dans (1.28) montrent que les variables z et y sont respectivement
instable et stable. Et c’est la réduction de ’énergie de formation a la forme
diagonale qui a permis de trouver ces variables. Naturellement ces variables
égalent zero pour le germe. Leurs valeurs caractéristiques se trouvent évidemment

dans l'intervalle de —1 a 1.
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1.5 Le facteur de normalisation de la distribution d’équilibre des

gouttes

On suppose toujours que la distribution des gouttes dans la région précritique
des variables d’état a la forme de la distribution de Gibbs. Cependant le probleme
de la détermination de son facteur de normalisation est aussi complexe qu’important.
En effet, la vitesse de nucléation binaire (c.-a-d., le nombre de gouttes formées
en unité de volume par unité de temps) est proportionnelle & la distribution
d’équilibre. Toutefois, le facteur de normalisation de cette distribution ne peut
pas étre déterminé de facon unique. Il existe quelques approches de ce probleme
dont aucune ne peut étre retenue comme la meilleure. Ici nous discutons de ce
probléme et présentons un nouveau facteur de normalisation qui pourrait assurer,
dans certains cas, un meilleur accord entre les prédictions théoriques et les données

expérimentales concernant la vitesse de nucléation binaire.

1.5.1 Article 1: On the equilibrium distribution in the binary nucleation theory

Article publié dans la Journal of Aerosol Science (1998), Vol.30. No.5,
pp.-587-596.
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On the equilibrium distribution in the

binary nucleation theory

Y.S.Djikaev* and J.Teichmann
Physics Department, University of Montreal,
Montreal, Quebec, H3C 3J7, Canada

Abstract

In considering a binary nucleation theory, it is shown that the unified
approach to the homogeneous and heterogeneous nucleation theories makes
it possible to obtain the equilibrium binary distribution satisfying both the
mass action law and type IT limiting consistency. Theoretical rates of binary
nucleation are calculated by using the new equilibrium distribution, the
distribution of Reiss, and that of Wilemski and Wyslouzil for the ethanol -
hexanol system. Possible causes of the irregularity of discrepancies between

theoretical predictions and experimental data are discussed.

* Author to whom correspondence should be addressed.
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1 Introduction

Lately, a significant progress has been attained in developing different aspects
of kinetic theory of binary nucleation and condensation. As there exist some
different approaches to this theory in the frameworks of capillarity approximation
there appears the need to assess the accuracy of competing approaches as well
as to compare their predictions with experimental data. The latter is not always
possible because of absence of appropriate experimental results, but for a wide

range of situations high quality experimental data are available.

Recently, Wilemski and Wyslouzil (1995) and Wyslouzil and Wilemski (1995,
1996) have obtained a series of very interesting and important results concerning
both kinetic and equilibrium aspects of the theory. In particular, they resolved
several inconsistencies involving the binary equilibrium distribution. They proposed
(Wilemski and Wyslouzil,1995) a new form of the binary equilibrium distribution
which obeys the mass action law, reduces to appropriate forms for the unary
distributions and yields unique and physically well-behaved evaporation rate
coefficients satisfying the new product rule. In this paper we will treat the binary
equilibrium distribution proposed by Kuni et al. (1990) and Melikhov et al. (1990)
who generalized ideas developed by Rusanov et al. (1987) to the two-component
theory. We will show that the distribution of Kuni et al. satisfies all principal
conditions formulated by Wilemski and Wyslouzil (1995). Then we will calculate
the binary nucleation rate using this equilibrium distribution in the kinetic theory
of Kuni et al. (1990) and Melikhov et al. (1990,1991) (yielding the same nucleation
rate as Stauffer’s theory (1976)) at various values of sticking coefficients. The
results of calculations will be compared with each other as well as with the

experimental data of Strey and Viisanen (1993) for the ethanol-hexanol system.
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2  Binary equilibrium distribution

Let us denote by f(v1,vs) the equilibrium distribution of binary nuclei with
respect to the variables vy and v, representing numbers of molecules of first and
second components, respectively, in a nucleus. In the capillarity approximation the
distribution f(v1,v;) can be presented (Reiss,1950; Wilemski and Wyslouzil,1995)

as

f(ul,uz)zN( m )( e ))"zexp[-ﬂm,w)], 1)

n1co(X)/  \Maco(X
where N is a normalization factor; n; (¢ = 1,2) is the number density of molecules

of component ¢ in a vapor mixture; ni.(x) (2 = 1,2) is the equilibrium number
density of molecules of component ¢ in a vapor saturated over a bulk solution of
composition x, which is defined as x = v1/(v1 + v2); Fs(v1,v2) is the contribution
to a free energy of formation of a nucleus having variables vq,v, due to the
nucleus surface (hereinafter, we express all energy quantities in units of thermal
energy of the medium kpT', where kg is Boltzmann’s constant, 7" is the absolute

temperature of the medium).

Wilemski (1995) introduced the term ”limiting consistency” in discussing
the limiting behaviour of unary distribution. Wilemski and Wyslouzil (1995)
discussed two types of limiting consistency. Type I limiting consistency concerns
the unary distribution and requires that that distribution equals the number
density of molecules in a vapor, when evaluated for ”clusters” of single molecules.
According to type II limiting consistency, a binary distribution must reduce to

an appropriate unary distribution if we let either vy or v; tend to 0.

Besides the two types of limiting consistency, the equilibrium distribution
function must satisfy the law of mass action according to which the equilibrium

binary distribution must be presentable in the form
f(’/17’/2) ='I’L;1’I’L;2[{(V1,l/2), (2)

where K (v, v;) is the equilibrium constant. If a vapor mixture is considered as
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ideal, K (v,v;) can depend on vy,v, and T, but never on n; nor on n,. Unlike
the limiting consistency conditions, which are imposed for the mathematical
convenience, the law of mass action is a fundamental law of statistical physics as

it has been shown by Wilemski and Wyslouzil (1995).

So far, the most commonly used form of normalization factor IV is that of
Reiss (1950):
N =ny 4+ na. (3)

This normalization factor, however, violates the mass action law, as it was pointed
out by Wilemski (1975). Besides, there is another issue (first pointed out by Katz,
according to Wilemski and Wyslouzil (1995)) related with this normalization
factor. Actually, according to egs.(1),(3), the unary distribution of pure nuclei of
first component depends linearly on the number density of second component in

a vapor mixture if we let v, equal to 0 and vice versa.

Wilemski and Wyslouzil supposed (1995) that the normalization factor IV
and the normalization factors Ny and N of unary equilibrium distributions of

first and second components are related as
N = NYN;™%, (4)

and they proposed the following form for the binary equilibrium distribution:

) n n . v
$lons1a) = el exlx@rt (12003 (- ) ( 2 ) expl—Fy(n, 1),
nloo(X) n2oo(X)

(5)
where ©; = o0ys;/kT (1 = 1,2); o; and s; are the surface tension of pure -
component liquid and surface area, respectively, of i-component molecule. This
form satisfies both the law of mass action and both types of limiting consistency.
Moreover, using this distribution in the relations of detailed balance allows one
to obtain fully self-consistent and physically well-behaved expressions for the

evaporation coeflicients.



3  Unified approach to the homogeneous and heterogeneous nucleation

theories

Now, let us consider the method of determination of the normalization
factor of the equilibrium binary distribution proposed by Kuni et al. (1990) and
Melikhov et al. (1990). This method extends ideas developed earlier by Rusanov
et al. (1987) for treating the homogeneous unary nucleation as a heterogeneous
one occurring not on foreign heterogeneous centers but on molecules themselves
of condensing vapor to the two-component theory . The reasoning of interest is

as follows.

Taking into account that each of ny molecules of the first component of
vapor mixture and each of n, molecules of its second component can serve as a
heterogeneous center of formation for a nucleus, we have, according to principles

of equilibrium statistical thermodynamics:
F(v,va) = nie™™ 4 nge™ ™ (6)

where Fj is the work necessary that »; — 1 molecules of the first component of
vapor mixture and », molecules of its second component join a single molecule
of first component; Fy is the work necessary that v, — 1 molecules of second
component of vapor mixture and v; molecules of its first component join a single
molecule of second component. Though identical nuclei with the variables v, and
v, are formed as a result of both works Fy and F3, these works in general are
not equal to each other. It is because corresponding nuclei are formed on single

molecules of different species.

The works F; and F, do not coincide with the thermodynamic work F =
F(v1,v,) either, which, according to its meaning, is required for simultaneous
unification of ; molecules of first component of vapor mixture and of v, molecules
of its second component in a nucleus situated in a fixed point of condensing

system. Of course, the differences between Fi, F3, and F have only a statistico-
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thermodynamical character, but not a mechanical one.
It has been shown by Kuni et al. (1987) that
Fy = F — In[nis/n1], F2 = F — In[na,; /no], (7

where n1s and ny, are the number densities of molecules of first and second

components, respectively, in a liquid solution of composition x.
Substituting eq.(7) in eq.(6), we have

1 g
flv,ve) = U(X)e ) (8)

where v(x) = 1/[n15(x)+n2:(x)] is the nucleus volume per molecule. Denoting by
v; and v, the partial molecular volume of first and second component, respectively,

in their pure liquids, and taking into account that F' can be expressed through

Fy = Fy(1n,v2) as

F=F,—unlnh——c—
nloo(X)

T (9)

one can rewrite eq.(8) as

it n \” ny \° B
f(Vb’/Z) = e (nloo(X)> (nzm(x)) exp[ Fs]- (10)

Since here the normalization factor (¥4 + v2)/(¥1v1 + v2v2) does not depend on ny

nor ny, this equilibrium distribution automatically satisfies the mass action law.
As for the limiting consistency, equilibrium distribution (10) evidently satisfies
that of type II (1/v; and 1/v, being the normalization factors of respective unary
distributions) but does not satisfy that of type I. It also gives well-behaved

evaporation coefficients in the framework of Kelvin model.

Comparing eq.(8) with egs.(1),(3), we see that the normalization factor of
Kuni et al. is ggr = v (x)(n1+n2) 7! times as large as that of Reiss (gxr is of the
order of 10*). Comparing eq.(10) with eq.(5), we see that the normalization factor
of Kuni et al. differs by a factor grw = v (x)n1Xnamt X exp[—xO1 — (1 — x)O]

200
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from that of Wilemski and Wyslouzil. This factor (gxw) is rather a complex

function of many parameters of condensing system.

It should be noted that in the unary nucleation theory, Reiss et al. (1968)
and Kikuchi (1969) obtained the corrections to the nucleation free energy like
that of Rusanov et al. (1987), but they did it by more artificial means. These
corrections give the ratio of molecule number density of condensed phase to that
of vapor phase as a pre-exponential factor in the classical unary nucleation rate.
As shown by Schmitt et al. (1983), this factor allows one to obtain a good fit of
theoretical predictions and experimental data for the nucleation rate of toluene

at physically realistic values of the surface tension and the sticking coefficient.

4 Procedure of numerical calculations

Numerical calculations have been carried out by following the formalism
of Kuni’s-Melikhov’s theory of the binary nucleation. We only remind that the
kinetic part of that theory is based on the well-known method of complete
separation of variables allowing one to obtain a binary nucleation rate in the

most general case like the Stauffer theory.
Briefly, the procedure of our numerical calculations is as follows.
Let us introduce the value  as
k= F¥2 = 6x'/%(v, + )7, (11)

where v = v(x); 7 = v(x) is the surface tension of a nucleus of composition x

expressed in units of kg7

Considering the variables & and y as a couple of independent variables

describing the state of a nucleus, we can write the free energy F' in the form



(Kuni et al.,1990; Melikhov et al.,1990,1991)

F(r,x) = £** — &B(x), (12)
where
B(x) = [xb1 + (1 = x)bs]/[671/27°/ 0], (13)
G (2
b :ln————,b :1n_—" 9 14
=g T M TR ¢
Cz’ = ni/nioo (Z = 172)7 (15)
fi(x) (G = 1,2) is the activity coefficient of component ¢ in a solution with

composition x; ¢; would represent the supersaturation of i-component vapor of
over the plane surface of its own liquid phase. A typical behaviour of function

B(x) is shown in Fig.1.

The variables k. and x. of a critical nucleus are determined as coordinates

of the saddle point of the free energy surface given by F(k, x):

F(,k,x)
Ok

OF(,k,x)| _

=10
7 BX

0 (16)

(the subscript ”¢” marks values at the saddle point, that is, for the critical
nucleus). The right-most part of eq.(16) results in the equation dB(x)/dx|, =0
determining the composition x, of the critical nucleus. To reduce this equation to
the correct equation for x. (given, e.g., by Wilemski (1984,1987) or by Debenedetti
and Reiss (1998)), we have to neglect the derivative dvy/dy, assuming the surface
tension of nuclei constant (y =~ +.) in the near-critical region. For nuclei in this
region (which is the most important one for nucleation kinetics), variations of
nucleus composition are small enough in order for the assumption v ~ 7. to be

acceptable for most binary systems.

Let us denote by F, and F) the second derivatives of the function F (k,Xx)
with respect to & and y, respectively, at the saddle point and denote by ! and
x| the first derivatives of the variables x and x with respect to »; (i = 1,2), at
the saddle point.
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Introducing the notations

fia = /_§FM '"‘717 c1p = ‘/_._—Fé’ﬂ/{,z, Co1 = ” 2F>,<,x Xl’ Ca2 = H§F>,<,X 29 17

Wict, + Wae? WiWa(crica2 — C12621)
a = Wi C + W- y i = 12 9 3
1611 2612 Wiecnieo + Waei2622 = (W1011€21 + W2012022)
(18)
N Zzg?{e"’ —1-p+[(e®+1+p) -4}, (19)

1

3/2 =
z[aﬁ,/__w\/; n } , (20)

where W; (s = 1,2) is the number of i-component molecules that the critical

nucleus absorbs per unit time, the binary nucleation rate J can, finally, be
presented as

J = ACe ™, (21)

It is evident that, through W, and W3, the condensation coefficients oy and
as strongly influence theoretical predictions for the nucleation rate J , which is
proportional to a linear combination of these coeflicients. At the same time there

exist no reliable theoretical nor experimental data for them.

5 Numerical calculations and Conclusions

Numerical calculations have been carried out with the help of Mathematica
for the ethanol (1) - hexanol (2) system at the same external conditions as the
experiments of Strey and Viisanen (1993). Results of calculations are presented
by Figure 2a and b in the form of the dependence of In J on the mean activity z =
(¢24(¢2)1/2. The lines represent theoretical rates corresponding to the fixed values
of activity fraction y = (3/({1 + (2), indicated on Figure 2 over the series. The
corresponding experimental data are shown by circles.The theoretical rates were
calculated by using the normalization factors of Reiss (egs.(1),(3): dashed lines

in Fig.2), Wilemski and Wyslouzil (eq.(5): dot-dashed lines in Fig.2), and Kuni
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et al. (eq.(8): solid lines in Fig.2). Thermodynamic parameters of the ethanol-
hexanol system were taken from Strey and Viisanen (1993). We have presented

only a part of results to avoid confusion.

The numerical results shown in Fig.2a correspond to the case of a3 = 1
and oy = 1. As we can see, the greater y is, the better is the fit of theoretical
predictions to experimental data (theoretical rates are greater than experimental
ones by a factor of some orders of magnitude), and it is fairly good when y tends
to 1. Quite a similar behaviour of predictions for the nucleation rate is observed
when Wilemski’s - Wyslouzil’s equilibrium distribution (5) is used in Stauffer’s
rate formula (Wilemski and Wyslouzil, 1995). But theoretical rates of Wilemski
and Wyslouzil better agree with experimental data than ours (obtained using
equilibrium distribution (10) of Kuni et al., i.e. formula (21) for J), since for the
considered system the normalization factor of Kuni et al. is approximately ten
times as large as that of Wilemski and Wyslouzil, that is ggw is of the order of
10. At the same time, gxr is of the order of 10* when y is small and tends to the

value 10° when y — 1 (e.g., gxr ~ 8 X 10* at y = 0.98).

Since there exist no theoretical nor experimental data on the sticking coefficients
oy and a, for this system, we could, in principle, try to obtain a fine fit of
theoretical rates to experimental data by choosing appropriate values for oy
and oy. Magnitudes of a; and oy must not depend, however, on metastability
of a system, though they could be weak functions of temperature. Therefore,
within the framework of adequate theory we could obtain a good fit of theoretical '
predictions to experimental data by means of unique choice of a; and a3 (independent
of vapor mixture metastability) for a given system. But for the considered system
this does not work. Actually, the theoretical rates of nucleation in the case of
a; = 0.2 and ay = 0.2 are shown by Fig.2b. Such a choice of a; and «; allows
one to obtain a better fit of theoretical predictions to experimental data, than

the couple oy = 1 and oy = 1. However, the less is y, the worse the fit remains:



30

the ratio of the theoretical nucleation rate to the experimental one increases with

decreasing y.

Such an irregularity of the discrepancies between the theoretical predictions
and the experimental data (but not the disgrepancies themselves) can be explained
(at least, in part) by the existence of thermal effects of nucleation, which are not
taken into account in the classical theory of the binary nucleation, but which can

strongly influence nucleation processes under some circumstances.

It is necessary to note that, as pointed out by many authors (Mirabel and
Katz, 1977; Wilemski, 1984, 1987; Flageollet-Daniel et al., 1983; Laaksonen,
1992), the most probable explanation for such large discrepancies themselves
between the theory and the experiments as observed is the inadequacy of the
capillarity approximation in evaluating the free energy of binary nucleation. That
approximation uses a bulk surface tension for calculating the nucleus free energy
of formation and hence does not take account of the effect of surface enrichment

which can considerably change the nucleus surface tension.

Thermal effects cause an increase in the mean temperature of growing nucleus
and, consequently, a decrease in the nucleation rate. As well known (Feder et al.,
1966; Grinin and Kuni, 1989;Barrett and Clement, 1990; Barrett, 1994), thermal
effects can decrease the unary nucleation rate by a factor of up to some thousands.
Of course, thermal effects have a significant influence on the nucleation rate only
in the case where the number density of carrier gas molecules is not sufficient
to ensure the constancy of the nucleus temperature. The carrier gas plays the
role of a thermal reservoir and is an effective energy transfer medium. Usually,
in experiments on the binary nucleation the carrier gas pressure is as large as
possible to weaken the influence of thermal effects on the nucleation as much as

possible. Nevertheless, such an influence is always out there, however weak it may

be.
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On the other hand (Feder et al, 1966; Grinin and Kuni, 1989; Barrett,
1994), the influence of thermal effects on the nucleation rate depends on the
ratio of the carrier (passive) gas pressure to the pressure of condensable vapor:
the influence increases with decreasing this ratio. In the system considered, the
less is the value y, the denser is the vapor mixture (ny + ny &~ 5 x 10'7em™3 for
y = 0.393 and ny +ny = 2x107em 3 for y = 0.980) and hence the stronger is the
influence of thermal effects on the nucleation rate. Therefore, the fact, that the
discrepancies between the theoretical predictions and experimental data increase
with decreasing y, can be explained (at least, in part) by the fact that the theory
does not allow for thermal effects of nucleation which cause the decrease in the

nucleation rate: the smaller is y, the more significant is this decrease.

As clear from Fig.2, the normalization factor of Kuni et al. predicts the
highest theoretical nucleation rates for the ethanol-hexanol system and Reiss’
normalization factor (3) provides the lowest ones, the theoretical rates corresponding
to the factor of Wilemski and Wyslouzil being intermediate (but very close
to those of Kuni et al.). In the case of unary nucleation, according to Figure
3, theoretical predictions for the nucleation rate obtained by using the one-
component analogues of these three normalization factors have quite a similar
character. Figure 3 shows the logarithm of the nucleation rate J of pure hexanol
vs its supersaturation (activity) ¢ = (z. The ellipses represent the experimental
nucleation rates measured in a two-piston expansion chamber by Strey et al.
(1986). Different series correspond to different initial (chamber) temperature To.
Note that the actual nucleation temperature of nucleation is lower than T and
decreases slightly along each InJ-( curve. The corresponding nucleation rates
calculated by Strey et al. (1986) from the classical nucleation theory (i.e., using
the one-component analogue of Reiss’ normalization factor (3)) are given by the
dashed lines. For a comparison, we calculated the theoretical rates using the one-
component analogues ofequilibrium distributions (5) and (8) (data of Gallant

(1967) were taken for thermodynamic parameters of pure hexanol). The solid lines
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correspond to the theoretical rates obtained by using the one-component analogue
of the normalization factor of Kuni et al.. The theoretical predictions obtained
by using the Wilemski normalization factor (Wilemski, 1995) are represented by
the dot-dashed lines. The initial temperatures are indicated below each series.
Evidently, one can conclude that none of these three normalization factors can be
given an undeniable priority from the standpoint of the agreement between the
theoretical and experimental rates for the considered systems. However, for the
homogeneous nucleation of toluene Schmitt et al. (1983) showed that the use of
the one-component analogue of the normalization factor of Kuni et al. brings the
theoretical rates into considerably better agreement with the experimental data,
the values of the surface tension and the sticking coefficient being physically

realistic.
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B(x)

ETHANOL - HEXANOL

tﬂ =202, {;-2 =7.77
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Figure 1. Typical behaviour of function B(x) for a metastable binary system,
presented by B(y) for the ethanol (1) - hexanol (2) system at (; = 2.02,(; = 7.7%,
and T = 260K . We have y. = 0.54, B(x.) = 0.0619, B"(x.) = —0.1239.
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Figure 2a. Logarithm of nucleation rate J in the ethanol (1) - hexanol (2)

system plotted vs a mean activity z = ({7 + ¢2)1/2, at T = 260K . The dimension

of Jis em=3s~!. The circles are the experimental data of Strey and Viisanen
(1993). The lines represent the nucleation rates calculated at the indicated activity
fraction y = (2/(C1 + (2) by using the normalization factors of Kuni et al. (solid

lines), of Wilemski and Wyslouzil (dot-dashed lines), and of Reiss (dashed lines),

the sticking coefficients being oy = 1.0, az = 1.0.
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Figure 2b. Logarithm of nucleation rate J in the ethanol (1) - hexanol (2)

system plotted vs a mean activity z = (¢? 4+ ¢2)/?, at T = 260K . The dimension

of J is em™3s71. The circles are the experimental data of Strey and Viisanen
(1993). The lines represent the nucleation rates calculated at the indicated activity
fraction y = (3/(¢1 + (3) by using the normalization factors of Kuni et al. (solid

lines), of Wilemski and Wyslouzil (dot-dashed lines), and of Reiss (dashed lines),

the sticking coeflicients being oy = 0.2, oy = 0.2.
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Figure 3. Logarithm of nucleation rate J for pure hexanol vapor plotted
vs a supersaturation (activity) ¢ = (2. The dimension of J is em™s™'. The
ellipses are the experimental data of Strey et al. (1986). The lines represent
the nucleation rates calculated by using the classical nucleation rate expression
(dashed lines, calculated by Strey et al. (1986)), the one-component analogue
of the normalization factor of Kuni et al. (solid lines), and the normalization
factor of Wilemski (dot-dashed lines). The initial (chamber) temperatures Ty are
indicated below the series. The corresponding nucleation temperatures are: about

258 K for Tp=288 K, about 276 K for Tp=308 K, and about 293 K for 7p=328 K.



CHAPITRE 2

Cinétique de la nucléation binaire non-isotherme

La cinétique de la nucléation binaire non-isotherme tient compte de I'influence
des effets thermiques sur le processus de la condensation binaire. Ces effets sont
causés par la chaleur de condensation. Les molécules du mélange de vapeurs
absorbées par une particule de la nouvelle phase (i.e., par une goutte de la
solution binaire liquide) lui transmettent de la chaleur de condensation, tandis
que les molécules émises par la particule de la solution liquide lui enlevent de
la chaleur de condensation. Comme la particule croissante de la solution liquide
absorbe plus de molécules qu’elle n’en émet, sa température moyenne augmente
au fur et & mesure de sa croissance, la température du mélange de vapeurs étant
constante. Cet échauffement de la particule liquide augmente sa faculté d’émettre
des molécules. Par conséquent, il cause la diminution de la vitesse de nucléation et
’augmentation de la durée de la nucléation. De méme, il influence la composition

des particules liquides et d’autres caractéristiques du processus.

2.1 L’étape de la relaxation termique

La cinétique de la nucléation binaire non-isotherme est développée a partir de
’équation discréte du bilan décrivant ’échange de substance et d’énergie entre le
mélange de vapeurs et les particules de solution liquide. Cette équation tridimen-
sionnelle décrit 1’évolution temporelle de la distribution de ces particules selon

trois variables indépendantes: les nombres de molécules des deux composantes
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dans une particule liquide et sa température. En réduisant '’équation discréte du
bilan & la forme différentielle, on obtient 1’équation cinétique tridimensionnelle
de la nucléation binaire non-isotherme. Dans le cas des chaleurs de condensation
arbitraires, cette équation cinétique dépasse les bornes de I’approximation de
Fokker et Planck. Seulement dans le cas ou les chaleurs de condensation sont tres
petites par rapport a la fluctuation efficace de I’énergie d’une particule liquide,
I’équation cinétique peut &tre réduite & celle de Fokker et Planck. Nous n’imposons
pourtant aucune restriction sur les chaleurs de condensation et, par conséquent,
’équation cinétique & résoudre dépasse les bornes de I'approximation de Fokker

et Planck.

L’analyse de 1’équation cinétique permet de déterminer la hiérarchie des
échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de
séparer et de décrire analytiquement 1’étape de relaxation thermique pendant
laquelle la distribution des gouttes selon la température s’approche d’une gaussienne,

alors que leur distribution selon les nombres de molécules ne change guere.

2.1.1 Article 2: Kinetic theory of nonisothermal binary nucleation: the stage

of thermal relazation

Article publié dans la Journal of Aerosol Science (1999), Vol.30, No.3,
pp.265-277.



42

Kinetic theory of nonisothermal binary

nucleation: the stage of thermal relaxation

Y.S.Djikaev *
Physics Department, University of Montreal,
Montreal, Quebec, H3C 3J7, Canada

F.M.Kuni, A.P.Grinin
Department of Statistical Physics, St-Petersburg State University,
St-Petersburg, 198904, Russia

Abstract

A generalization of the method used in the kinetics of nonisothermal unary
nucleation is proposed to construct the kinetic theory of nonisothermal binary
nucleation allowing one to take account of the release of the latent heat of con-
densation. The three-dimensional balance equation describing the material
and heat exchange of liquid solution particles with the surrounding vapor-gas
medium is obtained. Independent variables in this equation are the numbers
of molecules of each component in a liquid solution nucleus and its temper-
ature. Going beyond the framework of the Fokker-Planck approximation is
proposed for the corresponding kinetic equation. A hierarchy of time scales of
nonisothermal binary nucleation is established and an analytical description of
the thermal relaxation of the nuclei is given. Theoretical results are illustrated

by numerical calculations for the nucleation in a water-ethanol system.

*Author to whom correspondence should be addressed.
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1 Introduction

Binary condensation is a very widespread first-order phase transition and
hence is of great interest in many fields. They usually distinguish three stages of
any first-order phase transition. During the first of them nuclei of a new phase
are formed (this stage is also called the stage of nucleation) which play the role
of condensation centers afterwards. It is during the second stage that the phase
transition takes place properly - the bulk of a metastable phase passes to a liquid
phase. During the third stage the growth of large drops occurs to the detriment

of small ones.

It is well known that nonisothermal effects can strongly influence a process of
first-order phase transition, particularly a vapor-to-liquid transition. There exist

different kinds of nonisothermal effects in the condensation.

First, the heating of the growing nuclei by the latent heat of condensation.
This causes a reduction of the nucleation rate in two ways: 1) increasing the
ability of the nuclei to emit molecules; 2) decreasing the metastability of vapor

phase (owing to the increase in the temperature of condensing system).

Second, temperature fluctuations of nuclei exist even in the absence of matter
exchange between the nuclei and the medium. They also influence the emissivity

of nuclei.

Third, the nuclei as particles of condensed matter are thermally quasi-
isolate from one another being surrounded by the rarefied vapor-gas medium.
Consequently, the temperature of a nucleus decreases gradually during each event
of emission of a molecule, while the molecule passes from the nucleus through
its surface layer to the vapor. Therefore, the emissivity of the nucleus must be
determined by some intermediate value of its temperature but neither by the

initial one (before the emission event) nor by the final one (after the emission
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event).

At present, there exists a complete enough and adequate theoretical description
of nonisothermal unary nucleation and condensation. Taking account of the release
of latent heat, Kantrowitz (1951) obtained the differences between isothermal and
nonisothermal nucleation rates, delay times and mean temperatures of nuclei,
in terms of a one-dimensional model. Considering the size of a nucleus and its
thermal energy as two independent continuous variables determining the state of
the nucleus and taking into account the effect of release of latent heat, Feder et al.
(1966) were the first to develop a two-dimensional kinetic theory of nonisothermal

unary nucleation.

A nucleation cutoff being allowed for both by vapor depletion and by rise
in temperature from the release of latent heat, Barrett and Clement (1991)
derived and solved the coupled equations which give the changes in the aerosol
size distribution and vapor saturation during the nucleation of aerosols from a
supersaturated vapor. Barrett et al. (1993) presented a model of the influence
of carrier gas on the nucleation process, based on the changes to the energy
distribution of nuclei induced by collisions with carrier gas molecules. Possible
differences in nucleus energy distributions between equilibrium and steady state
were taken into account by Barrett (1994) in deriving a Fokker-Planck equation
for the nucleus distribution in size and energy and presenting an analytical

approach to obtaining the steady nucleation rate.

Taking account both of a latent heat release and of temperature fluctuations,
Grinin and Kuni (1989) constructed a two-dimensional kinetic theory of noniso-
thermal nucleation on the basis of a two-dimensional balance equation (number of
molecules in a nucleus and its thermal energy being there independent variables)
obtained by them earlier in the paper published later (Grinin and Kuni, 1990).
They proposed (Grinin and Kuni, 1989) a generalization of the Fokker - Planck

approximation in the corresponding kinetic equation which allowed them to take
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into account large values of latent heat of condensation. They gave (Grinin and
Kuni, 1989) the analytical description of the thermal relaxation of nuclei, their
subsequent evolution and the final steady state itself. It should be noted that
they also showed that the contributions to the nucleus emissivity arisen from the

fluctuation and quasi-isolationship effects compensate one another.

Thermal effects in the kinetics of homogeneous condensation under dynamic
conditions were taken into account by Kuni (1984,1988). In the kinetics of hete-
rogeneous condensation under dynamic conditions, thermal effects were studied
by Grinin et al. (1990). The influence of thermal and fluctuation effects on
the condensation processes in the supercritical region of the nucleus sizes was

investigated by Grinin et al. (1992).

Unlikely to the situation in the kinetic theory of the unary nucleation, the
kinetic theory of the binary nucleation has been developed almost exclusively
(except the recent work of Lazaridis and Drossinos (1997)) for the simplest case
where one can neglect the nonisothermal effects of condensation, i.e. the deviation
of the temperature of nuclei of liquid phase from the temperature of vapor-gas
medium (Reiss, 1950; Stauffer, 1976; Shi and Seinfeld, 1990; Kuni et al., 1990;
Melikhov et al., 1990,1991; Wilemski and Wyslouzil, 1995). However, the nucleus
temperature has a strong influence on its ability to emit molecules of vapor
mixture and, hence, on the whole nucleation process. Of course, the release of
condensation heat can substantially increase the nucleus temperature only in the
case where the quantity of carrier (passive) gas in the system is so small that
its molecules have not sufficient time to take the released heat away from the
nucleus. Carrier gas effects in the unary nucleation theory were well investigated
by Ford (1992), Barrett et al. (1993), and Barrett (1994). It is also evident that the
significance of thermal effects for the nucleation kinetics increases with increasing
both the condensation heats and the vapor activities of condensable substances

(as shown for the unary nucleation by Feder et al. (1966), Grinin and Kuni (1989),



46

and Barrett (1994)).

In this work, we intend to develop a kinetic theory of binary nucleation

taking into account the effect of latent heat release.

The deviation of the mean temperature of the nuclei from the temperature of
the vapor-gas medium is due to the condensation process itself. The condensation
heat transferred to a nucleus or extracted from it in individual events of absorption
or emission of a vapor mixture molecule by a nucleus is not small in comparison
with the rms fluctuation of the nucleus energy. Therefore, for the kinetic theory
of the nonisothermal binary nucleation it will not be possible to use the Fokker-

Planck approximation.

2 Balance equation

First, let us construct a three-dimensional balance equation of nonisothermal
binary nucleation. Let us assume that the metastability of the vapor mixture is
created instantaneously and does not change during the whole nucleation process.
The temperature Tp of the vapor mixture and the number density of passive gas
molecules are also fixed. We also assume that there are not chemical reactions

nor heterogeneous nucleating centers in the condensing system.

It is evident that there are three types of elementary interactions of a nucleus
with the vapor-gas medium: 1) absorption of a molecule of 1st or 2nd components
of the vapor mixture; 2) emission of a molecule of 1st or 2nd components of the

vapor mixture; 3) reflection of a molecule of the vapor-gas medium.

The nuclei formed have so small sizes that the time of their internal relaxation
processes are very small in comparison with the time between successive interactions
of a nucleus with the vapor-gas medium, and the interactions themselves take

place under a free-molecular regime. This allows us to assume that the nucleus
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attains its internal thermodynamical equilibrium before each successive interaction

with the vapor-gas medium.

Let us choose the numbers vy and v, of molecules of 1st and 2nd component
in a nucleus and its thermal energy F as its independent characteristics. The
thermal energy E of a nucleus is linear in the temperature and will be measured
from its value at the temperature Tp of the vapor-gas medium. Expressing all the
quantities which have the dimensions of energy in units of kT (kp is Boltzmann’s

constant), we have

E = (611/1 + 621/2)[T/T0 = 1], (1)

where ¢; (i = 1,2) is the molecular specific heat of i-component in a nucleus (all

the specific heats are expressed in units of kg).

Let € be the thermal energy of molecules striking a nucleus and let &’ be the
thermal energy of molecules reflected or emitted by a nucleus. Since the times
of internal relaxation processes of nucleus are small, the number W~ (i = 1,2)
of molecules of component ¢ which a nucleus emits in unit time as well as the
distribution w’ of the emitted or reflected molecules with respect to their energy &’
are determined (in consideration of the thermal adaptation of reflected molecules)

by the energy of nucleus:

3 1

W =W (v, E) (1=1,2),w = w'(v1,vs, El¢’). (2)

Here the variables v, v,, and E correspond to the state of the nucleus before the
inferaction and we have taken account that the temperature fluctuation effect
and the effect of nucleus thermal quasi-isolationship compensate each other. Of
course, the distribution w(e) of the molecules striking a nucleus with respect to
their energy ¢ is determined by the temperature Ty of the vapor-gas medium. For
the distributions w(e) and w'(q,v2, E|e’) (which we assume being Maxwellian)

we shall use the normalization relations

/oodew(a) =Ih /oo de'w' (v1,vs, E|e") = 1. (3)
0 0
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Let us denote by g(v1,vs, E) the distribution of nuclei with respect to the
variables vy, v;, and E at the time ¢ (we shall not indicate the time dependence

of values).

Denoting by W;(v1,v2) and B; (¢ = 1,2) the number of molecules of
component ¢ being absorbed by a nucleus per unit time and, respectively, the
molecular heat of condensation of component 7, let us write the discrete balance

equation governing the evolution of the distribution g(i1,vs, E):

ag(yhy%E)

1 1
47— =D + D7 + Df + D} + 5Dg1 + 5D, (4)

where

D = [ delWi( — L v)w(e)gls — Lva, B — i =€) -

~Wi(v1, va)w(e)g(va, va, )], (5)

Dl_ - /0 dE,[Wl_(lll -I- 1,1/2, E + ﬂl + EI)w/(Vl + 17 vy, E + ﬂl + E‘Jlg/) X
9+ 1,0, E+ fr + ) — W (v1,v2, E)w' (11, v2, E|e')g(11, 12, B, (6)

D= /000 de[Wa(vi,v2 — Dw(e)g(vi,va — 1, E — 2 —€) —
"'WZ(V17V2)w(€)g(V17 V%E)]a (7)

D; = ./o de'[Wy (vi,va + 1, E+ Bo + Nw'(v1,v2 + 1, E + B2 +€'[€) %
g(v1,ve + 1, E + Bo + €') — Wy (v1, va, B (11, v, Ele')g(v1,v2,E)],  (8)

Dyi = /°° /°° de'deW! (n, va)[w(e)w' (11, v, E — € + €'le’) x
0 0

9(1/1, Va, E — &+ 5,) - w(g)'w’(yh V2,E|5,)9(V1, v, E)]7 (9)
ef 1 — U 1 .
I/I/i = P atim<”17V2)+§agWg(V17V2) (7’: 172)’ (10)

aq and oy (1= 1,2) are the condensation (sticking) coeflicient and coefficient of

thermal adaptation, respectively, in a reflection event of ¢:-component molecules;



49

, is the coefficient of thermal adaptation in a reflection event of passive gas
molecules; W,(v1,v5) is the number of molecules of the passive gas striking a
nucleus per unit time. It is evident that the sum Wy ! + Wg would determine the
total number of molecules reflected by a nucleus per unit time if o4y, 041, and o

were equal to 1.

Expanding egs.(5)-(9) in Taylor series in the deviations of nucleus characteristics
before the interaction from vy, v, and E, effecting some simple transformations
and then carrying out partial summing of series obtained, we can reduce eq.(4)

to the form
8g(V1aV2)E)

0
a1 =D+ Dy + —=1E, (11)

OF

where

Dy = Wi(n — 1,v2)g(1h — 1,19, — B1) — Wa(v, v2)g(v1, v, E) +
+W (v + 1, va, E+ B)g(vs + 1, v, E + Br) — W (v1,v2, E)g(v1, 12, E), (12)

Dy = Wa(vi,va — L)g(v1,1a — 1, E — B) — Wa(vy,v2)g(v1, 12, E) +
+W2_(V17V2 Fa 11E =} ﬂ2)g(l/lal/2 EE 1JE 2t ﬂ2) - WZ—(V17V2)E)9(V17V2’E)1 (13)

Ig=— [_ﬁin + —'B‘g—Wz] <—E— ) ) 9(v1,v2, E), (14)

kl kz c1q + cave N O_E
1 C; ;
== ;—B—z—[aci + os(l — ag) + agpi] (1=1,2), (15)
mi \? ngc
= (2] X% (i=1,9), 16
pe(Z) g2 =12 (16

&,m;, and n; (4 = 1,2) are the effective (in the sense of energy transfer to the
nucleus) specific heat, mass, and number density of molecules , respectively, of
component ¢ of the vapor mixture; ¢,,m,, and n, are the analogous values of the

passive gas.

The terms D; and D, in eq.(11) describe the simultaneous transfer of both
the substance and the condensation heat to the nuclei by the molecules of 1st

and 2nd components, respectively.
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The term —8Ig/JE in eq.(11) describes the transfer of the kinetic and
internal energies to the nuclei by all the molecules of the vapor-gas medium.

Its form corresponds to the fulfillment of the condition
1/(611/1 + C2V2)1/2 < 1 (17)

which means a smallness of the energy transfer by the molecules of the vapor-
gas medium in comparison with the rms fluctuation of the nucleus energy, since
the value (c;vq + cav2)'/? represents, according to the thermodynamic theory of
fluctuations, the rms fluctuation of a nucleus energy in the absence of substance

exchange between the nucleus and the vapor mixture.

3 Kinetic equation of nonisothermal binary nucleation

Let us introduce the variable £ instead of variable E as

E
= [2(c1v1 + cavp)]Y/? )

and present the distribution g(v1, v, F) in the form
g(v1,v2, E) = [27(cavn + cavg)] 2™ P11, 10, 6), (19)
where P(v1,vs,£) is some function of vy, v9,¢ (and of ¢, too).
Since usually §; > 1 (¢ = 1,2), the parameter
Bi

”:P@w+QMWZU:Lm (20)

will not be small despite inequality (17). The parameter 7; represents the relative
condensation heat of component ¢ per molecule, i.e. the condensation heat of
component ¢ per molecule expressed in units of rms fluctuation of the nucleus
energy and divided by v/2. Although 7; is always less than 1, in order of magnitude

T ~ 1.
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Let us introduce the operator

0

(i =1,2), (21)

~acting on v;-dependent functions (here F} = 0F/0v;, and F is the free energy
of formation of the nucleus with the characteristics v1,v2, and E = 0: F =

F(v1,vq, E = 0)). Let us define the values v;c, Av;, (¢ = 1,2) by the relations

= 0, Al/ic = |2/Fz”

4 | |V1=V1¢:|V2=V2c (

i=1,2). (22)

F|
i1 =Vie2=Vee

The values vy, 5. would determine the coordinates of the saddle point of the
surface of free energy of nucleation in the isothermal theory. In the capillarity
approximation

Aviefvie € 1, 1/Avi, 1 (:=1,2). (23)

Hereafter, we will be interested only in the neighborhood of the critical
(“saddle”™) point |v; —v1e| <~ Awie, |V2—Vge| <~ Avy.. This “near-critical region”
is the most important one for the nucleation kinetics. In the near-critical region,
Av;. represents a characteristic scale of change of v;-dependent functions and,
consequently, we have the operator estimate 0/0v; ~ 1/Av;.. On the other hand,
|F!| <~ 1/Av; (1 = 1,2) in this region, according to eq.(22). Therefore, in the
near-critical region, the second term on the RHS of eq.(21) is dominant and we

have the following operator estimates:

1 . 0 1
VV,‘ 81/i Ayz'c

(i =1,2). (24)

Let us transform eq.(11) into a differential equation for the distribution
P(v1,v4,€) in the standard way, by expanding the terms D; and D, in Taylor
series in the deviations of v; £1 from v; and E+ 3; from F (¢ = 1,2) and retaining

only the leading terms in the small parameters 1/Awy. and 1/Awvy,:
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P (ST, 0 N
ot O (Ll L mz_l m! agm) Oy (L2 Wzmz_l m! agm) 5k
= (-1 s ol O i
-|-mz= ( m’) (Tl L1 -|-7'5TLL2) ("a'zj = 2{) P —
@ =1 0 am
_ Z (m'l)' ( m+lW1 -+ 7'2"""‘1W2) (aé_ 2{) af—;n—P + (25)
m#l=1 e

Bl k]
2
( il S W2)(€ ’5) 5~

( Wy + 12 Ws) (a% - 25) aag_";] P

For simplicity, the independent arguments vy, 2 and ¢ are omitted and 7 and

Im
=9 m:m

T, are assumed to be constant and equal to their magnitudes for the critical
nucleus. The terms L;P/dv; (: = 1,2) in the RHS of eq.(25) have the second
order of smallness in 1/Auv;., but they will be important afterwards. According
to eq.(19),characteristic values of ¢ lie in the interval |£| <~ 1 where we have the

estimates

B/0¢ ~ € ~ 1. (26)

Therefore, 7, and 7, are the expansion parameters in the series in m and [
Retaining all the terms of the series means that we extend the theory to values

7; ~1 (i =1,2) and go beyond the framework of the Fokker-Planck approximation.

Let us establish a relative importance of the terms on the RHS of eq.(25),
taking into account the estimates (24),(26), and |F!| <~ 1/Aw; (1 = 1,2).

Since the 1st, 2nd and 3rd terms contain the operators L;,d/dvy, Le, and
0/0v,, we conclude that their ratios to the last, fifth, term do not exceed 1/Auw.

or 1/Awvy, (which are much less than 1) in order of magnitudes.

Comparing the first member of the last term on the RHS of eq.(25) with
the second member, we conclude that the first member is the main one in this

term, because of the inequalities (k; + 1)/k; > 1 (¢ = 1,2) and factorial factors



53

m!m!. One can also see that the ratio of the fourth term to the last term does
not exceed the parameter

l klkz(Ti?'W1 +TL:,3W2)
2 (kl + 1)](727'12W1 + kl(kz + ].)7'22W2

assumed to be much less than unity: ® <« 1. Thus, we conclude that on the RHS

e =

of eq.(25) the last term is the main one.

Equation (25) governs the time evolution of the three-dimensional distribution
P. The hierarchy of terms established above corresponds to the hierarchy of time

scales in the development of the distribution P.

The eigenfunctions of the principal operator of the governing equation, i.e.
of the operator of the dominant term on the RHS of eq.(25), are the Hermite
polynomials H; = H;(¢)(Hy = 1,H, = 2¢,Hy = 46 — 2,...), satisfying the
recursion relations

9, ) 0
ge i = 2l (52 - 25) Hj=—Hja. (27)

Hence,
bitl, katl, )( )
Wi+ ——7W. -2
(Bt s 2w (5 - %) 5 -

o) 1\ am
- (m!n)zl ("W + 5 Wa) (8% - 25) ag—m} H; = —jAjH;,  (28)

where 7 =0,1,2,... and

k. 1 k J 'rn m 2m
Y, - Wy 42 541 W, + ]_1'2 2 Wi+ 75 Wz).

Ag='8
k1 ko

m!m!(j —m)! (29)

m=2
We can conclude that —jA; (j =0,1,2,...) are the eigenvalues of the principal
operator. They all are negative except that for j = 0 which is equal to 0. For

7 =0 and j =1 the sum over m in (29) is absent. Obviously, Ay < Ay < ....

The Hermite polynomials form a complete system of eigenfunctions satisfying

the orthogonality and normalization relations

(H;, Hy) = 632750 (5,k=0,1,2,..), (30)
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where &, is the Kronecker delta and the scalar product (@, ¥) of function ® and
¥ of £ is defined as
(®,0) = x1/2 /m dé e 0V (31)

—

From eqs.(19),(31) and Hp = 1 it follows that the two-dimensional distribution
f = f(v1,v2) of the nuclei with respect to variables v; and v, is given by the
equation f = (Hp, P), i.e. the two-dimensional distribution f is the projection of

the three-dimensional one P on Hp.

Let us take the projection of governing equation (25) on Hg. According to
eqs.(27) and (30), only the first and second terms (which are the smallest ones,
of order of 1/(Av;.)? or 1/(Awvs.)?) make contributions to this projection. Since

f = (Ho, P), we obtain
of  0h 0Jy

E——a—yl—gy—z, (32)

where Ji:(ﬂo,( WZ |agm>) (i=1,2) (33)

is the flux (averaged over ¢) of nuclei along the v;-axis.

4 Stage of thermal relaxation

Retaining in the RHS of governing equation (25) only the leading term, we

obtain



hY)

2 (B ) (2 2) & -

at kl k2 86
00 —1)y™ a m am
— (m'rzz,' (lemwl —+— TzszQ) (6_6 == 25) @n—} P (34:)
m=2 TR

The solution of eq.(34) is given, according to relations (28),(29), by
P=f+ Z e MUfH,;, (35)
j=1

where f and f; do not depend on ¢ nor t and can be presented, by virtue of

definition (31), as
£ = (Ho, P) = (Ho, Pli=o), fi = (217 (Hj, Pli=o) (36)

(P|i=o is the three dimensional distribution P at ¢ = 0). It follows from eq.(36)
that f still represents the two-dimensional distribution with respect to 14, v, and
it does not change as long as P is governed by eq.(34). Therefore, eq.(34) describes
the thermal relaxation of nuclei. The relaxation is described by the spectrum of

times 1/jA; (j =1,2,...), which decrease with increasing j.

It is evident from eqgs.(19) and (31) that if ® is some function of the variable
¢, its average value ® with respect to the variable ¢ is determined as & = (@, P)/f.
Therefore, mean values with respect to £ will also change together with P in the

process of thermal relaxation.
At the end of the thermal relaxation, as follows from eq.(35), we have

Porf (8>~ 1), (37)

_1_ klk‘g
2 k‘z(kl + 1)’7’12W1 + k‘1(k2 + 1)T22W2’

where t; is the principal thermal relaxation time. Since f does not depend on ¢

and taking eqgs.(19),(37) into account, we can conclude that the distribution of

nuclei with respect to the temperature approaches a quasiequilibrium Gaussian
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distribution by the end of the thermal relaxation stage, the duration of which is

given by the time ..

Let us denote by t, the characteristic time of change of two-dimensional
distribution f. In order to obtain an estimate for ¢, at the end of the stage of
thermal relaxation, let us replace P by f in eq.(33) (it is correct enough by virtue
of eq.(37)) and then substitute J; and J; in eq.(32). Using estimates (24), one

can obtain for £,:

2 2
- (Av1)*(Avy) . (39)
Wi(Avg)? + Wa(Avye)?
Accordingly, we have:
2 2
te 1 kiky W1/ (Avie)? + Wa/(Avs)?] <1 (40)

t,  2(ky + VkamiWh + ki (ko + 1) 73 W, '
This inequality expresses the hierarchy of time scales which has allowed us to
separate the thermal relaxation stage. During this stage the distribution of nuclei
with respect to the variable £ approaches the quasiequilibrium distribution, while

the distribution with respect to v; and vy practically does not change.

The quasiequilibrium distribution is an eigenfunction of the principal operator
of governing equation (25) with zero eigenvalue. Therefore, as follows from eq.(37),
the operators of the first four terms on the RHS of eq.(25) also become important

at the end of the stage of thermal relaxation.

5 Numerical calculations

To illustrate our theoretical results by numerical calculations we considered
the binary nucleation in the vapor mixture of water (1st component) and ethanol
(2nd component) at Ty = 293.15 K. Air at the normal atmospheric pressure was
chosen as carrier gas. All the physical properties of both components required
for calculations are well determined for both liquid and vapor phases. Besides,

accurate fits of several thermodynamic properties vs. composition are required
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Table 1.

Main theoretical characteristics of the nonisothermal nucleation on the stage of
thermal relaxation for the water(1)-ethanol(2) system at Ty = 293.15 K (air at
the normal atmospheric pressure being a carrier gas); a. and oy are the
sticking and thermal accommodation coefficients of component ¢; oy is the
thermal accommodation coefficient of carrier gas; (; and 7; are the vapor
activity and the molecular relative condensation heat of component ¢; ¢ and ¢,
are the time of thermal relaxation and the characteristic time of change of the

distribution of nuclei with respect to numbers of molecules.

Oy = 1, Qg = 1
ag =1
Oy =1, Gz =1 g = 0.5, aen =0.5
G 1.4 15 14 1.5
(2 1.0 |1.25] 1.0 |1.25]| 1.0 | 1.25| 1.0 | 1.25
T1 0.34 {1 0.39 {039 | 0.44 | 0.34 | 0.39 | 0.39 | 0.44
T2 0.3310.380.37|0.42|0.33 |0.38|037|0.42
te,ns [ 093 10.74 | 0.84 | 0.68 | 1.68 | 1.33 | 1.51 | 1.23
ty, us | 0.04 | 0.06 | 0.03 { 0.04 | 0.08 | 0.11 | 0.06 | 0.07
Qep — 05, Qg — 0.5
4 — 05, Qg = 0.5
a, =05 a, = 0.1
G 1.4 15 1.4 1.5
2 1.0 1125 1.0 [ 1.25| 1.0 | 1.25 | 1.0 | 1.25
te,ns | 1.85 | 1.46 | 1.66 | 1.34 | 2.00 | 1.57 | 1.79 | 1.43
Qe = 05, Gy — 0.5
Q¢ — 01, Qg = 0.1
ag = 0.5 a, =0.1
C1 1.4 1.5 1.4 1.5
o 1.0 |1.25] 1.0 {125 1.0 |1.25| 1.0 [1.25
te,ns | 1.86 | 1.47 | 1.67 | 1.35 | 2.02 | 1.58 | 1.81 | 1.44
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for water (1) - ethanol (2) liquid solution and they are fortunately also available.

The specific heats of pure water and ethanol in liquid and vapor phases
were determined with the help of formulas given in Thermophysical Properties
of Matter (1970). The latent heat of pure water was calculated from the formula
given by Feder et al. (1966) and that of pure ethanol was obtained by linearly
extrapolating data in CRC Handbook of Chemistry and Physics (1992-1993).
The equilibrium vapor pressure of pure water was taken from CRC Handbook of
Chemistry and Physics (1992-1993), and that of pure ethanol was calculated from
the formula given by Mirabel and Katz (1977). The partial molar volumes v; and
v, of pure liquid water and ethanol, respectively, were computed from the density
values given by CRC Handbook of Chemistry and Physics (1992-1993) and the the
volume V of the nucleus was related to vy and vy as V = vyv; + vave. As for the
surface tension o of water-ethanol liquid solution, we, following Wilemski (1987),
fitted In o with a third-order polynomial in the variable 4(1 — x)/(4 — 3x), using
data in Timmermans (1960). Following Mirabel and Katz (1977) and Wilemski
(1987), the liquid phase activity coefficients were determined from the three-
parameter Redlich-Kister equation of d’Avila and Silva (1970).

Since there exist no theoretical nor experimental data on the thermal accom-
modation and sticking coefficients, calculations were carried out at various values
of agi, i (i = 1,2), and @ in order to illustrate the influence of these parameters
on theoretical predictions. To illustrate the dependence of theoretical predictions
on the degree of vapor mixture metastability, calculations were performed for four
couples of water and ethanol activities (i, (s at each set of coefficients ag;, ay; (1 =
1,2), and q, (activity {; (i = 1,2) is defined as {; = n;/ns, where n; is the number
density of i-component molecules in the vapor mixture, and n,; is the equilibrium
number density of i-component molecules in a vapor saturated over the pure bulk

liquid of this component). Results of calculations are presented in Table 1.

Since the values 7; (1 = 1,2) do not depend on e, ay (¢ = 1,2), and ay and
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the time ¢, does not depend on auy, ays, vy, we presented 7; (2 = 1,2), and ¢, only

in the first part of Table 1.

Figure 1 shows the time dependence of the first mode of the deviation P — f
of the distribution of nuclei with respect to the temperature from a Gaussian
equilibrium distribution at the stage of thermal relaxation not only for the binary
nucleation in the water-ethanol system (using equation (35)) but also for the
unary nucleation of pure water vapor (according to Grinin and Kuni (1989)).
According to eq.(35) and to the analogous equation of the one-component theory
(Grinin and Kuni, 1989), the first mode of the deviation P — f corresponds to
the greatest relaxation time (#¢) and, therefore, is the slowest (the most ”long-
lived”) mode of P — f. The second mode decreases with time about three times
as fast as the first one. Air at the normal atmospheric pressure was a carrier gas
in both system and the thermal accommodation coefficients of both water and
ethanol were equal to 1. Figure la corresponds to the binary system and Figure
1b represents the nucleation of pure water. The curves of series A were obtained
for the case where the sticking coefficients a; and a, of water and ethanol were
both equal to 0.5; series B corresponds to the case where a.; and a, were both
equal to 0.1. In each series, the values of the thermal accommodation coefficient
of air were taken as follows: a, = 1 for the boldest (lower) curve; o, = 0.5 for
the dashed (medium) curve; o, = 1 for the thinnest (upper) curve. According to
Fig.1, the supersaturation (activity) of pure water vapor has to be equal to about
3.5 so that the time of thermal relaxation of the unary nucleation should be the
same as (or close to) the time of thermal relaxation of the binary nucleation of

water and ethanol at the activities (; = 1.5 and (; = 1.0.

As shown in Section 3, the strong inequalities 7y < 1 and ™, <€ 1 are
necessary for the validity of the Fokker-Planck approximation in kinetic equation
(25). Since under the considered external conditions the molecular relative con-

densation heats 7, and 7, of water and ethanol are not much less than 1, going
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beyond the Fokker-Planck approximation is quite founded.

Numerical calculations show that © is less than 0.2, that is, the strong
inequality © < 1 is well satisfied. Therefore, the transition from eq.(25) to eq.(34)
is quite founded. Table 1 clearly confirms the strong inequality (40) reflecting the
established hierarchy of time scales of the development of the distribution P.
Table 1 also shows a strong dependence of the duration ¢ of thermal relaxation
stage on the sticking coefficients a. and acg; this is due both to the linear
dependence of Wj(¢ = 1,2) on ay and to the dependence of £; (z = 1,2) on
e in eq.(38). The dependence of ¢; on a4 is significantly weaker and ¢, is almost
unsensitive to the thermal accommodation coefficients oy and asg of reflected
vapor molecules (at least, when p; and p, are greater than or of the order of some

units).

Note that, according to eqs.(15),(16), the dependence of the theory on the
quantity of carrier gas in the system is implemented through the product oyn,.
This means that the time ¢; of thermal relaxation identically depend on «, and
ng. Therefore, Table 1 and Figure 1 allow us to conclude that the greater is the
number density of carrier gas molecules, the faster is the thermal relaxation of
nuclei and hence the weaker is the influence of the release of condensation heat
on the nucleation. Such a dependence is in accordance with the results of Barrett
(1994) and Barrett et al. (1993) for the one-component nucleation. According to
Table 1, there exists also a very weak dependence of the time of thermal relaxation
on the activities of condensable components: t¢ decreases slightly with increasing
¢ and (p (of course, this does not mean at all any decrease of the influence of

thermal effects on the nucleation).
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6 Conclusions

Taking account of the increase in the nucleus temperature due to the latent
heat of condensation, we have considered the homogeneous binary nucleation in

the case of instantaneous creation of a metastable vapor mixture.

First, we have constructed the discrete balance equation (4) for the time
evolution of the three-dimensional distribution of nuclei with respect to the
numbers of molecules of both species in the nucleus and its temperature. That
balance equation takes into account all the possible types of elementary interactions
of the nucleus with the vapor-gas medium: both the absorption and emission of
a molecule of 1st or 2nd components of the vapor mixture and the reflection of a

molecule of the vapor-gas medium.

Next, reducing balance equation (4) to a continual form, we have obtained
three-dimensional kinetic equation (25) of the nonisothermal binary nucleation
reaching beyond the framework of the Fokker-Planck approximation. Our kinetic
equation (25) governs the time evolution of the three-dimensional distribution
not only in the case where the latent heats per molecule for both components
are much less than the rms equilibrium fluctuation of the nucleus energy, but
also in the case where these latent heats are of the same order of magnitude as
the rms fluctuation of the nucleus energy. The kinetic equation of Lazaridis and
Drossinos (1997) describes only the first of these situations: the Fokker-Planck
approximation in the case of small latent heats of both ;;omponents becomes

acceptable and our kinetic equation (25) can then be reduced to theirs.

Conditions (23) of the capillarity approximation being fulfilled, we have -
established the hierarchy of the terms on the RHS of eq.(25). Such a hierarchy
corresponds to the hierarchy of time scales in the development of the three-
dimensional distribution of nuclei (expressed by strong inequality (40)). This

is what has allowed us to separate the stage of thermal relaxation of nuclei. At
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that stage the distribution of nuclei with respect to the temperature approaches a
quasiequilibrium Gaussian distribution, while the distribution with respect to the
numbers of molecules vy and v, practically does not change. The three dimensional
distribution at the stage of thermal relaxation is given by eq.(35) obtained by
solving the kinetic equation (34) to which is reduced eq.(25) at this stage.

The theoretical results have been illustrated by numerical calculations for the
nucleation in the water-ethanol system with air as a carrier gas for various values
of sticking and thermal adaptation coeflicients. Numerical results are presented by
Table 1 and Figure 1. Calculations have shown that, as expected, condition (40) of
hierarchy of time scales is well fulfilled. This means that, as known from the one-
component theory of Grinin and Kuni (1989), the thermal relaxation of the nuclei
occurs much faster than the evolution with respect to numbers of molecules in the
nucleus. The influence of the quantity of carrier gas on the importance of thermal
effects is also predicted to be similar to that of the one-component theory (Barrett,
1994; Barrett et al., 1993): the greater is the carrier gas pressure, the slighter is
the influence of the release of condensation heat on the nucleation. At present,
it is not possible to make a comparison between our theoretical predictions and
experimental data because even the most modern experimental methods (Strey
and Viisanen, 1993; Viisanen et al., 1994; Viisanen et al., 1997)can not provide
any data about the time dependence of the distribution of binary nuclei with
respect to the temperature. Evidently, such a comparison will be necessary to do
when appropriate experimental data become available. Besides, it would be very
interesting to compare the predictions (concerning the time of thermal relaxation
t¢) of the theory developed with results that can be obtained with the help of
the method of numerical solution of birth-death equations proposed by Wyslouzil
and Wilemski (1995).

In order to describe the evolution of the system after the stage of thermal

relaxation (that is, for ¢ >~ ;) and to obtain an exact expression for the rate of
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binary nonisothermal nucleation with the help of relation (33), we have to solve
the eq.(25) taking account of all the terms on its RHS. These problems will be
objects of our further research. Of course, as long as there are no experimental nor
theoretical data about sticking and thermal accommodation coefficients a.;, o (1 =
1,2), oy, theoretical predictions will remain uncertain enough. Nevertheless, we
will be able to get approximative magnitudes of these coefficients by making a
comparison between theoretical predictions and experimental data on nucleation

rates.
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Figure la. Thermal relaxation stage of the binary nucleation in the water(1)-
ethanol(2) system the activities being (1 = 1.5 and ¢, = 1.0 at To = 293.15 K
with air as a carrier gas. The curves show the time dependence of the slowest
(first) mode of the deviation P — f of the distribution of nuclei with respect
to temperature from a quasiequilibrium Gaussian distribution (equation (38)).
Series A corresponds to the sticking coefficients ey = 0.5 and a. = 0.5; series
B corresponds to a, = 0.1 and an = 0.1 In each series, the values of the
thermal accommodation coefficient of air are: a, = 1 for the boldest (lower)
curve; o, = 0.5 for the dashed (medium) curve; ay = 0.1 for the thinnest (upper)

curve.
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Figure 1b. Thermal relaxation stage of the unary nucleation of pure water
at (1 = 3.5, To = 293.15 K with air as a carrier gas. The curves show the time
dependence of the slowest (first) mode of the deviation P — f of the distribution of
nuclei with respect to temperature from a quasiequilibrium Gaussian distribution
(equation (38)). Series A corresponds to the sticking coefficient ay = 0.5; series B
corresponds to aq = 0.1. In each series, the values of the thermal accommodation
coefficient of air are: oy = 1 for the boldest (lower) curve; g = 0.5 for the dashed

(medium) curve; oy = 0.1 for the thinnest (upper) curve.
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2.2 L’étape suivant la relaxation thermique

A Détape suivant la relaxation thermique, I’équation cinétique tridimension-
nelle peut é&tre résolue en utilisant successivement la méthode de Chapman et
Enskog et celle de séparation compléte des variables. L’application successive
de ces deux méthodes permet de réduire notre équation cinétique a I’équation
monodimensionnelle de Fokker et Planck dont les coeflicients contiennent toute
’information sur les effets thermiques. L’analyse d’une telle équation est bien
connue. Ainsi toutes les caractéristiques de la nucléation binaire non-isotherme
peuvent étre déterminées. Ici nous présentons les caractéristiques stationnaires: la
distribution tridimensionnelle des gouttes, la vitesse de nucléation, la composition

et la température moyennes des gouttes.

2.2.1 Article 3: Kinetic theory of nonisothermal binary nucleation: the stage

following thermal relazation

Article publié dans la Physica A (1999), Vol.267, pp.322-342.
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Abstract

A kinetic theory is constructed for a nonisothermal binary nucleation at the stage
following the thermal relaxation of nuclei. The three-dimensional kinetic equation
to be solved reaches beyond the framework of the Fokker-Planck approximation even
if one of two components has a large value of condensation heat. It is shown that,
by successively applying the method of Enskog-Chapman and the method of com-
plete separation of variables to that kinetic equation, one can reduce the problem of
constructing the three-dimensional kinetic theory to the well investigated problem
of solving an one-dimensional kinetic equation of first-order phase transition, in the
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results are numerically evaluated for the nucleation in ethanol-hexanol system and

compared with predictions of classical (isothermal) theory and experimental data.
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1 Introduction

Binary nucleation is the first stage of any first order phase transition in
two-component systems, in particular, of the binary condensation consisting of
the formation and growth of drops of a liquid solution of two substances in
a metastable mixture of vapors of these substances. During the nucleation the
nuclei of a liquid phase are formed. They play the role of condensation centers

afterwards.

At present, there exists an adequate theoretical description of main aspects
of one-component nucleation. At the same time the kinetic theory of binary
nucleation has been developed almost exclusively for the case where the metastability
of two-component vapor mixture is created instantaneously and both thermal
effects of condensation and presence of heterogeneous nucleation centers are
neglected (Reiss [1]; Stauffer [2]; Shi and Seinfeld [3]; Wilemski and Wyslouzil
[4]). However, it is well known, that heterogeneous nucleation can occur at much
lower degrees of metastability than the homogeneous one. Besides, as follows from
the nonisothermal one-component nucleation theory (Kantrowitz [5]; Feder et al.
[6]; Grinin and Kuni [7]; Barrett and Clement [8]; Barrett [9]), nonisothermal

effects can have a substantial influence on the kinetics of the process.

As discussed earlier (Djikaev et al. [10]) there exist several kinds of nonisothermal
effects, but the most important of them is the effect due to the condensation heat
transferred to a nucleus or extracted from it in all individual events of absorption
or emission of a vapor molecule by a nucleus. As first pointed out by Feder
et al. [6], in the case of one-component nucleation that effect can diminish the
nucleation rate as many as hundreds of times relatively to the nucleation rate in
the isothermal theory. Such a decrease is physically easy explained. Firstly, the
temperature of a growing nucleus gradually increases with the growth of its size

because of the release of the condensation heat. The increase in the temperature
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of nucleus causes an increase in its ability to emit molecules what naturally
slows down its growth. Secondly, the increase in the temperature of nuclei causes
an increase in the average temperature of vapor-gas medium and this is what

decreases the metastability (supersaturation) of the condensing system.

Obviously, in the case of binary nucleation the thermal effect influences the
nucleation rate in the same ways as mentioned above. Therefore, the nonisothermal
nucleation rate should be less than the isothermal (classical) one. That is why
it is not easy to explain the result of Lazaridis and Drossinos [11]: following the
approach developed earlier by Langer [12] and extending the Barrett’s [9] analysis
of the one-component nucleation to the binary nucleation, they obtained an
explicit analytical expression for the total rate of steady-state binary nonisothermal
nucleation, but when applied to the water-ethanol system, their model predicts

a nucleation rate that is higher than the classical (isothermal) nucleation rate.

As pointed out by many authors (Wyslouzil et al., [13]; Wilemski and Wyslouzil,
[4]), the classical (isothermal) theory of binary nucleation predicts nucleation rates
much higher than experimental results (including the water-alcohol systems, in
the cluster models of Flageollet-Daniel et al. [14] and Laaksonen [15]). Although
most of those authors agree that those discrepancies are the most probably
accounted for by the effect of surface enrichment (Mirabel and Katz [16]; Wilemski
[17,18]; Flageollet-Daniel et al. [14]; Laaksonen [15]), taking account of thermal
effects, nevertheless, can improve an agreement between theoretical predictions
and experimental data on the nucleation rate. Evidently, such an improvement
will be noticeable only if the quantity of the carrier gas in the system during
experiments is not sufficient to ensure the constancy of nucleus mean temperature

(an extensive treatment of carrier-gas effects is given by Ford [19] and Barrett et

al. [20]).

In this paper we continue to develop the approach to the kinetic theory of

nonisothermal binary nucleation proposed by Djikaev et al. [10] on the basis of
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the method developed by Grinin and Kuni [7] in constructing a kinetic theory of
nonisothermal one-component nucleation. As shown by Djikaev et al. [10], that
approach allows one to analytically describe the stage of thermal relaxation of
nuclei at which their distribution with respect to the temperature approaches a
quasiequilibrium Gaussian distribution while their distribution with respect to
numbers of both components practically does not change. In this paper we will
analytically describe both the subsequent evolution (after the stage of thermal
relaxation) of nuclei and the final steady state of system. Theoretical results will
be numerically evaluated and compared with experimental data and predictions

of isothermal theory.

2 Kinetic equation of nonisothermal binary nucleation

Let v; (z = 1,2) be the number of :-component molecules in a nucleus, and
let £ be the thermal energy of such a nucleus. The thermal energy is linear in
the temperature T' of a nucleus and is measured from its value at T' = Tg, where
To is the temperature of the vapor-gas medium. Expressing all values having the

dimensions of energy in units of kgTp (kg is Boltzmann’s constant), we have
E = (Cll/l + CQUQ)[T/TQ — 1], (1)

where ¢; (¢ = 1,2) is the molecular specific heat of component ¢ in the nucleus

(all specific heats are expressed in units of kg).

Choosing the values vi,v3, and E as independent characteristics of the
nucleus, let us denote by g(v1, vz, F,t) the distribution of the nuclei with respect

to the variables vy, v, and E at the time t. Introducing the variable ¢ as
6 = E/[Q(C]_U]_ + Cgl/z)]l/z, (2)
let us present the distribution g(vy, vq, £,t) in the form

g(vi, v, ELt) = 2m(c1vn + czr/g)]_l/28_£2p(l/1, vy, &), (3)
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where P(vy,v3,&,1) is a function of vy, v,¢, and t.

Following the approach of Feder et al. [6] and that of Grinin and Kuni
[7] to the construction of the kinetic equation of nonisothermal one-component

nucleation, Djikaev et al. [10] obtained the equation governing the time evolution

of the function P(vy,v,&,1):

o _ 0 (p s T Np O o il G
g —  on (Ll Wlﬂ; m! agm)P s (L2 W2,§1 m! agm>P+
s (—=1) o [ @ T
+2 (m1) (TFL1+T§1L2)(52—2€) 2=
m=1
B ) T R (P
m;ezl:1 ml (Tl W +T2 WZ) a{ 26 aé.m + (4)
ki1, katl,
#|(Barme 2 m) () -
oo (—l)m 2m 2m "o
-= . m'm' (Tl W1+T2 Wz) .f 2€ aé_—m P.

where, for simplicity of the notation, the independent arguments vy, v2,£, and ¢

are omitted and

Li=-WiF! - Wiaau fi=1,2), (5)
P .
= = 3
k [2(c1vr + corn)|/? (i 2), (6)
< 1— a4 gl e 1/2”909 =1,2 7
B = el ea) el = ()5 (=12 O

Here W; and 3; (¢ = 1,2) are the number of i-component molecules being
absorbed by a nucleus per unit time and the condensation heat of component ¢
per molecule, respectively; a.; and a; (i = 1,2) are the condensation (sticking)
coefficient and the coefficient of thermal adaptation in a reflection event of i-
component molecules, respectively; , is the coefficient of thermal adaptation in a
reflection event of passive gas molecules ; &, m;, and n; (i = 1,2) are the effective
(in the sense of energy transfer to the nucleus) specific heat, mass and number
density of molecules of component ¢ of the vapor mixture, respectively;c,, mg, and

n, are the analogous quantities for the passive gas; F} = 0F/0v;, F being the free
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energy of formation of a nucleus in the thermal equilibrium with the medium, i.e.

with the characteristic £ = 0.

Retaining all terms of the series in the RHS of eq.(4) means extending the
theory to values 7; ~ 1 (1 = 1,2) and thus going beyond the framework of the
Fokker-Planck approximation. If both 7; and 7, are much smaller than 1, the
Fokker-Planck approximation becomes acceptable and eq.(4) can be reduced to

the kinetic equation of Lazaridis and Drossinos [11].

In the case of one-component nucleation where either I:z =0, 7g=10 08 L=
0, 73 = 0 (i.e. only one component is present in the system), eq.(4) transforms
itself into the kinetic equation of nonisothermal one-component nucleation of

Kuni and Grinin [7].

In the variables 4 and v, we are interested only in the near-critical region
|vi — vie| <~ Av;. (i = 1,2), which is the most important one for the nucleation

kinetics; the parameters v;. and Av;. are defined as

Elll/l:l’lc#z:uzc = 0’ AV{C = |2/‘F'i,i,|ly1=y1c,1/2=y2c (?’ = 172) (8)

The values vy, v, would determine the coordinates of the saddle point of the
surface of free energy of nucleation in the isothermal theory. Within the framework

of the capillarity approximation
Avievie < 1, 1[/Ave 1 (i=1,2). (9)

As in the near-critical region |F!| <~ 1/Av;. (¢ = 1,2), the following operator

estimates can be obtained for that region:

J 0 1
AR v

(i=1,2). (10)



76

3 Stage of thermal relaxation of nuclei

Taking into account that characteristic values of ¢ lie, according to eq.(3),
in the interval || <~ 1 where 3/9¢ ~ 1 and using conditions (9) and operator
estimates (10), one can establish the relative importance of the terms on the RHS
of eq.(4). The ratios of the first, second, and third terms to the last (fifth) term
do not exceed 1/Av;, and 1/Av,. (much less than 1) in the order of magnitude.
The ratio of the fourth term to the last one does not exceed the parameter

.1_ klkz( 3W1 +T23W2) (11)
2 (kl + 1)k2T W1 + kl(kg + 1)7’

assumed to be much less than 1 (in the last term itself, the first two members
are evidently the main ones). Such a hierarchy of terms on the RHS of eq.(4)
corresponds to the hierarchy of time scales in the evolution of the distribution
P. It allowed Djikaev et al. [10] to separate the stage of thermal relaxation of
nuclei and, retaining in the RHS of eq.(4) only the leading (fifth) term, to find
the distribution P for that stage as
P=f+ e MNH (t<mte), (12
1=1
where H; = H;(£) (j =0,1,2,...) are the Hermite polynomials (Ho = 1, Hy =
26, Hy = 4£2 —2,...),

S+l ko +1 . L 2m(rimWh + T W)
I T2 i - 1) 13
/\J kl W1 +2 A2 W2 + (.7 1) T]-LZ:Z m'm'(] - )' ’ ( )
! kyko
=1/)N = , 14
/ 2 kg(k’l -I— 1) W1 + kl(kz + 1)T22W2 ( )
f=(Ho,P) = (Ho, Pli=o), f; = (2J " (HJv-PIt 0) (15)
with the scalar product (@, ¥) of the functions ¢ and ¥ of { defined as
(@, 0) = 7~ 1/2 /°° dé e € QU (16)

(for j = 0 and j = 1 the sum over m is absent from eq.(13)).
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The Hermite polynomials H; (5 = 0,1,2,...) are eigenfunctions of the
principal operator in the governing equation, i.e. of the operator in the leading

(fifth) term on the RHS of eq.(4). They satisfy the recursion relations

0 . 0
O_EHj = 2jHj, ((’92 - 25) Hy = —Hj. (17)

and form a complete system of eigenfunctions satisfying also the orthogonality

and normalization conditions
(H;, Hy) = 632750 (5, k=0,1,2,...), (18)

where §;; is Kronecker’s delta. Obviously, —jA: (5 = 0,1,2,...) represents the
eigenvalue corresponding to H;. All the eigenvalues are negative except that for

7 = 0 which is equal to 0.

The function f = f(v1,v2,t) in eq.(12) represents the two-dimensional distri-

bution of nuclei with respect to vy, v3. Its time evolution is given by the equation

of 8L

% o ow e

where

J.,-:(HO,( WZ ,;’;)) (i =1,2) (20)

is the flux (averaged on ) of nuclei along the v;-axis. As can be seen (Djikaev et
al. [10], during the stage of thermal relaxation ¢t <~ ¢ the distribution of nuclei
with respect to v; and v, does not change while the distribution with respect to
the variable ¢ approaches a quasiequilibrium Gaussian distribution by the end of
that stage, and

P f o (t>~te) (21)

as follows from eq.(12) (t¢ represents the principal relaxation time).

4  Evolution of nuclei after the stage of thermal relaxation

The quasiequilibrium distribution is an eigenfunction of the main operator of

the governing equation (4), the corresponding eigenvalue being zero. Therefore, as
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follows from eq.(21), the operators of the first four terms on the RHS of eq.(4) also
become important at the end of thermal relaxation stage. However, the operator
of the last term is still the main one when acting on the deviation of P from f:
according to eq.(15), this deviation is orthogonal to the eigenfunction Hy with
the zero eigenvalue. This makes it possible to construct a solution of governing

eq.(4) for ¢t >~ t¢ with the help of the Enskog - Chapman method.

4.1 Method of Enskog and Chapman

Following Grinin and Kuni [7], let us choose the quasiequilibrium distribution
as a zeroth approximation and present the distribution P as

P f430m) 5N, (22)

i=1

5() =250, (23)
where the correction terms depend on the time only through the time dependence
of the two-dimensional distribution f; the superscript indicates the number of
the approximation and the subscript indicates the number of the mode. The

components of the binary system are supposed to be numbered so that 71 > .

Taking eqs.(17),(18) into account, let us substitute expression (22) in eq.(20):
Ji=Lif Wi Y rhz(f) (i=1,2) (24)

J=1
(121 = m3/71).Obviously, in order that the substitution of eq.(24) in eq.(20) bring
us to an explicit equation governing the time evolution of the two-dimensional

distribution f, we have to explicitly find the correction terms z;( f).

Estimates (10) and eqs.(19) and (24) allow us to conclude that when finding
the correction term in /-th approximation zj(-l) from eq.(4) in the main order in
1/Avy, and 1/Awv,,, one can neglect both the LHS and the first term on the RHS

of eq.(4) already from the first approximation. Besides, already from the second
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approximation one can neglect also the second term on the RHS of eq.(4). Thus,
as the operator of the fifth term on the RHS of eq.(4) is more important than the
operators of its third and forth terms when applied to the deviation P — f, one

can obtain the following expression for the correction terms:

00 = L h s, 00 = 3 sl (22, 29
where e -2k
o ml & (2727 Wy 4 Worg, ™
bm =, M RG-m R .
o (J > m),
i j—m+1  (j<m),
A = M/ (27) (27)

(the prime in the sum over m in eq.(25) eliminates the term with j = m what

means [y, = 0 for any m).

Rewriting egs.(25) in the form

0) = L + 800 25
272)it 2, -
ag'l) = (jllj))\j ) ag'l) - Z_ Timali™ (12 2), (29)
) D)
(1 _ (2T2)‘7 i {
8 = S W) = X Tt (122) (30)

MU

and substituting z;” in eq.(23), we have

2(f) = a;Lrf + biLaf, (31)

=3 al, b =360 (32)
=1

=1

Egs.(31),(24), and (19) result in the equation governing the time evolution of

two-dimensional distribution f:

of _ a . 0 J 0

B 618 L1f eza 2L2f+51-a—l/:L2f+528—V2L1fa (33)
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with

O,=1-W; ia]-, 0, =1- Wzibszjl, & = ibj, b3 = iaﬂ‘gl. (34)
j=1 =1 =1 =1

Thus, according to eqs.(3),(22),(31), and (33), the problem of finding the
three-dimensional distribution g(v1, va, F, t) in the nonisothermal theory is reduced
to the well investigated problem of finding the two-dimensional distribution
f(vi,va,t). However, equation (33) for f significantly differs from the Reiss’
kinetic equation of isothermal binary nucleation: both the difference of ®; and ©,
from 1 and the presence of the third and forth terms on the RHS of eq.(33) are
exclusively due to thermal effects. Nevertheless, eq.(33) is still an equation of the
Fokker-Planck type. Therefore, to solve this equation, one can apply the method
of complete separation of variables used earlier in a kinetic theory of isothermal
binary nucleation by Kuni et al. [21] and by Melikhov et al. [22]. The following
section is based on those two works. (The most general form of that method for
a two-dimensional kinetic theory of first-order phase transition is given by Kuni

and Melikhov [23], and its covariant formulation for a multidimensional theory is

provided by Kuni et al. [24])

4.2 Method of complete separation of variables

4.2.1 Reduction of the two-dimensional problem to the one-dimensional

one

Let us introduce the variables y and « as
x=wn/lnn+wn), k= 671'1/2(1/1 + 1/2)73/21) (35)

where « is the surface tension of a nucleus in units of the thermal energy of
medium kgTg; v is the volume of the nucleus per molecule. Choosing the variables
x and £ as independent characteristics of a nucleus (in the framework of two-

dimensional theory, of course), the free energy F' of formation of the nucleus will
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take the form

F = «*? - kB(x), (36)
where
B(x) = [xbi + (1 — x)ba]/[67/24% %], (37)
e G . (2
b=l e T TS0 A (38)
G =nifnie (1 = 1,2}, (39)

n; is the number density of 7-component molecules in a vapor mixture; n;; is the
number density of molecules of i-component pure vapor saturated over a plane
surface of its own pure liquid phase; fi(x) and f2(x) are the activity coefficients

of the first and second components in a solution with concentration y.

The variables ¥ and  representing respectively the concentration of solution
in the nucleus and its surface energy in power 3/2 are very good for the description
of a global behaviour of free energy surface (Kuni et al. [21]; Melikhov et al. [25]).
However, when considering the vicinity of the saddle point (near-critical region)
which is most important for the nucleation kinetics, it is more convenient to

introduce the variables z and y as

T = cy(vi — vie) + e12(v2 — vae), ¥ = ca(1 — vic) + caz(v2 — vao), (40)

o\ (o) . [L(FE) (0
ar? | 1/1'0’612_ 2\ 0k? ) \Ov, C’

_|L{2F) (ox | E(EE) (o
w s (o), ) = e (ae). (), @

(subscript ”c” marks magnitudes corresponding to the saddle point}). In the near-

where

critical region, the variables x and y represent the deviations of the variables
and y, respectively, from their values k. and y. at the saddle point, linearized in

1y — v1. and vy — vy, and normalized by their rms fluctuations.
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In the near-critical region the free energy F' can be approximated by the

bilinear form which in the variables z and y becomes a quadratic one:

F=F —z*+y% (42)

Let us denote by n(z,y,t) the distribution of nuclei with respect to the
variables z and y at the moment ¢ and turn to the variables z and y in eq.(33).
Replacing v by v, in the vicinity of the saddle point and taking eq.(42) into
account, we obtain

n(z,y,t) = v.C f(v1,72,1), (43)

1 (02F\ |1 [062F B ]
_ 12 | A peL S 2
¢ {67? J 2<352>C\IQ(3><"’)C Vie+ V2o ¢

On(z,y,t) = a{B:(0: —2z) — ¢ 0u(, + 2y)
—£718,(85 — 22) + (106) (1 + p)8y(Dy + 29) } (e, 1) (45)

(44)

where

a=Wi01c%, + WaOyel, — WiWo(61 + 62)cr1c12 (46)

W10,c2, + Wy0qc}, — WiWa (61 + 62)c11c12

L W10ic11¢01 + WaBaci2602 — W1W2(51C11622 o 52612621)
(47)
c - W101c2, + We0sc}, — WiWa (61 + d2)c1ic12
Wi01ce1121 + Wa0Ozc19¢22 — W1W2(51012021 + 52011622)
D= W1W2(®1®2 = W1W26152)(C]_1622 = 612621)2Q06/a2, (48)

and abbreviated notations 9; = 8/t ... have been introduced for differentiation

operators.

As the two-dimensional equilibrium distribution of nuclei fo(v1,v2) with

respect to the variables vy and v, is (Kuni et al. [21]; Melikhov et al. [25])

fe(Vlg 1/2) = U—le_F(Ul’V2), (49)
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the two-dimensional equilibrium distribution n.(z,y) with respect to = and y

takes the form

2

ne(z,y) = Ce Fee™ eV (50)

(we again replaced v by v.). Thus, the variables z and y have been separated in
the equilibrium distribution. This allows one to conclude that the variable z is

unstable and the variable y is stable. Therefore, the ordinary boundary conditions

are applied to eq.(45):
n(z,y,1)/n.(z,y) = { S (51)

0 (z— o0).
(for arbitrary y).
To ensure the complete separation of variables both in the equilibrium

distribution and in the kinetic equation, let us introduce the new variables u

and n with the help of the Lorentz transformation
u=(1—a®) "z +ay), n=(1 - )2y + az), (52)

the transformation parameter o satisfying the restriction —1 < a < 1. The

Jacobian of transformation (52) is equal to unity.

Passing from the variables z and y to the variables v and n and choosing

the parameter « as

a:2%{905‘*‘1+Tq:[(995+1+7’)2_4905]1/2}’ (53)
we obtain
n(u,n) = n(z,y), (54)
F=F. —u+7, (55)
ne(u,n) = Ce‘F°e”26_”2, (56)

lw—&
Sl B = A{au(au—zuwr;;—;—a 8y + 20)+

el—ca)’y 3,4 2n)} n(uyn,2), (57)

e a’r
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where

A=a(l - %) = 2;—5 {pe—1—r((pe+1+7)? —dpe]/?}.  (58)
The expression under the square root sign in eq.(53) must not be negative so
that o should be real; this imposes the restriction (pe + 1 +r)* > —4p on the
parameters @, e, and 7. The sign of the square root in eq.(53) is chosen so that
the conditions || < 1 and A > 0 be also fulfilled. For example, in the case where
r > 0 and ¢ = ¢, all these three conditions are automatically satisfied by choosing
the minus sign for the square root in eq.(53). According to eq.(47), the equality
@ = ¢ is equivalent to the equality 6; = 6§, which is verified, for example, in any
of the following particular situations: 1) 7, = 7; 2) the first approximation is
satisfactory in calculating a; and b;; 3) aug =~ o3, and the small terms of order

7g, 77, ... are neglected in finding a; and b;.

According to egs.(55),(52), the variable u is unstable and the variable 7 is
stable. This allows one to apply to eq.(57) the usual (in the nucleation kinetics)

boundary conditions:
I (u— —x),
n(u,7,t)/ne(u,n) = - (59)

(u — o)

for arbitrary 5.

As shown by Kuni and Melikhov [7], the solution of eq.(57) with boundary
conditions (59) is given by
n(u,n,t) = 7r'1/2p(u,t)e_52, (60)
where the time evolution of the function p(u,t) is governed by the one-dimensional
equation
Oup(u,t) = ADu(8u — 2u)p(u, 1) (61)
with the boundary conditions

o, 1)/ pel(us) = { L e o) (62)

O (’U, — OO)v



the function p. being defined as

pe(u) = Cr'/2e~Tee’, (63)

According to eq.(60),

plu,t) = /_o:o dnn(u,n,t). (64)

This shows that p(u,t) represents the one-dimensional distribution of nuclei with

respect to the unstable variable u.
Eq.(57) can be presented in the form of two-dimensional continuity equation
On(u,n,t) = —uju — Onjn, (65)

where j, and j, are the flux densities of nuclei along the u- and n-axes. Evidently,
distribution (60) makes the flow j, vanish, what means that in the variables u, 7

the two-dimensional flow of nuclei is parallel to the u-axis.
Let us present equation (61) in the form
Oip(u,t) = —0uJu, Ju = —A(0s — 2u)p(u, t), (66)

where J, (function of u and t) is the one-dimensional flow of nuclei along u-axis

integrated over the stable variable.

In the near-critical region |u| <~ 1 we have the estimates 0/0u ~ u ~ 1
(without paying attention to signs) which, with the help of eq.(60),(61), allow us
to conclude that the characteristic time ¢, of the change of the distribution of

nuclei with respect to unstable variable in that region can be estimated as
ty ~ AL, (67)

Obviously, ¢, will also represent the time in which the steady state is established

in the entire near-critical region |u| <~ 1.
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In the steady state J, is independent of w and t. Therefore, according
to eqs.(66),(62), for the one-dimensional steady-state nucleation flux (J,)s and

distribution p,(u) we have:

2

(F)s = 72 Ape(w)]_, o polw) = 7 V2pe(u) [ du'e™ (68)

9 M
8

(subscript marks steady-state values).

4.2.2 Invariance with respect to the choice of the unstable variable

Let us show the invariance of the theory with respect to the choice of the

unstable characteristic of a nucleus.
By virtue of egs.(52),(54), and (57), the distribution
n(z,y,8) = 72T exp [ -(E 2y (69)
o o
in which o = (1 —a?)'/%, is the solution of eq.(45) with boundary conditions (51).

Defining the one-dimensional distribution of nuclei p(z,t) with respect to z as

gl i) = /;o:o dyn(z,y,1) (70)

and substituting eq.(69) in eq.(70), we obtain

ple.t] = ;UZW /_O:o du exp [—- (u — a:c)Q] p(u,t) (71)

(8

According to eqs.(70),(50), and (51), this function satisfies the boundary conditions

p(z,t)/pe(z) = { P R (72)
0 (z— o0).
with
pE(#) = Crl/2eFee? (73)

Let us differentiate eq.(71) with respect to ¢. Making several simple transformations

in the RHS of obtained equation with the help of eqs.(66) and (71), one can rewrite
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it in the form
Btp(:c,t) = —asz, Jx = _A(az' = 2£E)p($,t), (74)

where J,, (function of = and t) is the one-dimensional flux density of nuclei along

the z-axis integrated over the stable variable.

The variables z,y defined as
z=0"u—ay), y=oc"1(n— au) (75)

can be assigned to an arbitrary value of o satisfying the restriction |a| < 1. It is
the most general definition of the unstable (z) and stable (y) characteristics of a
nucleus ensuring the quadratic form for F. Eqs.(72)-(74) confirm the invariance
of the theory with respect to the choice of the unstable variable of a nucleus as

they transform themselves into eqs.(62),(63), and (66) if o = 0.

For the steady state, eqs.(56),(63),(68),(69),(50), and (73) allow one to find:

no(ey) = 7 V(o) [ e, (76)
ps(z) = W"l/zpe(:c) /oo de’ e~ {77)

Comparing eqs.(63) and (73), we conclude that the dependence of the one-
dimensional equilibrium distributions p.(z) and p.(u) on the unstable variable
is identical. In addition, the comparison of egs.(68) and (77) shows that the
one-dimensional steady-state distributions ps(z) and p,(u) also have an identical

dependence on the unstable variable. Besides, as follows from eqs.(66) and (74),

(Jz)s = (Ju)s- (78)

Therefore, the one-dimensional flux density (J,)s given by eq.(68), determines the
steady-state rate of binary nonisothermal nucleation J, which can be presented

as

J, = ACe™Fe. (79)
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Using results of the one-dimensional theory and taking account of eq.(66),

one can obtain the estimate
Oy —2u~ —2u (u>~1), (80)

and the relation

Ty = ip(u,t), & =24u (u>~1). (81)

The value % represents the rate of regular growth in time of the unstable variable
u. Obviously, for the unstable variable z one could write the identical estimate
and relation, as follows from (74). Equation (81) allows one to conclude that the
fluctuation-induced nucleation is completed in the region |u| <~ 1 of the variables
u,n (in the variables z,y it is completed in the region |z| <~ 1). To the left of
the region |u| <~ 1 (or |z| <~ 1) the nuclei are still in equilibrium, while to the

right of it they already grow irreversibly.

5 Mean values of composition and temperature of the nucleus

Equation (66) with boundary conditions (62) (or eq.(74) with boundary
conditions (72)) is well known and investigated in the one-dimensional theory of
first-order phase transitions. Accordingly, we can use the results of one-dimensional
theory for the one-dimensional distribution p(u,t) (or p(z,t)) and the nucleation
rate J,, (or J;). Thus, eqs.(69),(43),(22), and (3) determine the three-dimensional
distribution of nuclei with respect to the variables v1, v, and E in the nonisothermal
binary nucleation. The rate of nucleation is given by eq.(66) (or (74)). In the
particular case of steady-state nucleation the one-dimensional distribution p,(u)
is given by the second of eq.(68) and the expression for n(z,y,t) is reduced to
eq.(76); the nucleation rate is then determined by eq.(79).

The average value 7(z) of the stable variable y (which is a linearized and

normalized concentration of solution in the nucleus) at a given value of the
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unstable variable z is defined as

_ 1! e
y(z) = m[_w dy yn(z,y,t). (82)

Taking eqgs.(69),(70),(74) into account and making several simple transformations,

one can obtain
(84

As follows from eqs.(79),(77), and (73), in the steady state we have

()= —gee [ [T at e (84)

(83)

The average value (1, 1,) of the temperature of nuclei with given vy, v, is

defined as
{(n,m) = (& P)/f. (85)

Taking eqgs.(16),(22) and (31) into account, one can obtain

En,00) = 5 (ks + b1 1, 2,) (56)

1
T1 f(Vl,V%t)
Evidently, the steady-state value can be obtained with the help of egs.(43), (76),
(50), (40), and (5).

6 Correction terms

As it can be readily seen, the influence of thermal effects on the results
of the theory developed is implemented through the correction terms a; and b;
defined by eqs.(32). Since I';, does not depend on the number of approximation,
eqs.(29),(30), and (32) allow one to obtain two infinite sets of simultaneous

equations for a; and b; respectively:

& @y .
a; =Y Timam+ e i 1,8,8,...) (87)
=1 J-J )
i @t
= Dimbm + ——151 (1 =1,2,3,...). 88
poRY vl ) (88)



90

They are very convenient for finding a; and b; in the form of asymptotics in 77.
For example, using eq.(26), neglecting the terms of order 77,77, ... and solving

equations (87) and (88), one can find:

ay =

1
o + 7-12]{1 + 7 404, a3 = T 2K y ‘Q2, az = T el (89)
1

1 D T

Kl N 2A1)\2U3+ /\2)\ US, I 2)\2 2)‘1/\2 :

2 1 9

@ = ol oo Ut U+ g Ui s
1 ! 1

2 2 3 4 4
3,\§A2A3U3U4 2/\1/\2)\3U3 2,\§A§,\3U AlszP”

— 1 2 1 1 2

@2 = 3A2A3U3+4A1A2U 3/\1A2)\3U3U4+ 2,\3A3U3

1 2
_4/\%)\3(] Almg WAL
2 2 1 1

-, S T /P U T
Ws Oy Thds . Sheia 3+3,\1A2A3 )

1
U= U3

b1 )\ —|—7'12R1 —l—TlSl, bg = T1R2 +7'152, b3 = 7'153, (90)
1

2

-
R W p— 21
= 21 )g Us + )\2,\2

2

2
T T
21 21
——U2, Ry = — Us,

2 2
2

271 0 721 473
ot T B, Ll + U + 555 Us — g Us
2

2t 2 721 3 721 4 ™ 4
3AIANg ° Us = lemaU 2A2AZN; 2 A AZAZ Us
3

T 7' T 7'
Bl = 21 U 21 Uz 21 U.U 21 Uz
e W RLILIW VAR W WL R VP

T91 2 T21 2
4-)\2)\2 Us = A1AZ )3 o, Vs

23
Sy o= - a1 Us +

273 2T T2 T
g, = 2 _ 21 ' 21 2
e TV W WL i s W WLCRE SWS W WL

(U, = Wy + 72 W, with arbitrary m). As follows from eqgs.(29), (30), and (26),
the values ay, as, ... and by, bs, ... are of order 70,72, ... and hence they are not

taken into account in solving equations (87) and (88).
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7  Comparison with results of isothermal theory and experimental

data

To illustrate the theory developed we have carried out numerical calculations
for the condensation in the system “ethanol (first component) - hexanol (second
component)” at the same external conditions as the experiments of Strey and
Viisanen [26]. All the physical properties of both components required for calculations
are well determined for both liquid and vapor phases. Besides, accurate fits of
several thermodynamic properties vs. composition are required for ethanol (1) -

hexanol (2) liquid solution and they are fortunately also available.

The equilibrium vapor pressures of pure ethanol and hexanol as well as the
dependence of surface tension v and mean molecular volume v on the concentration
x were taken following Strey and Viisanen [26].The liquid phase activity coefficients
fi and f; were assumed to be equal to unity. The condensation heat of pure
ethanol was obtained by linearly extrapolating data in CRC Handbook of Chemistry
and Physics [27]. The condensation heat of pure hexanol and its specific heat in
a vapor phase were taken in the work of Gallant [28]. The specific heats of pure
ethanol in liquid and vapor phases, as well as those of liquid hexanol and gaseous
argon (passive gas) were determined with the help of Thermophysical Properties
of Matter [29]. The sticking coefficients sy and ., were assumed to be equal
to unity. At such a choice of sticking coefficients the theory does not depend on
magnitudes of the thermal accommodation coefficients oy and oy, of condensing

components. As for the thermal accommodation coefficient of argon it was set

equal to 0.1 and 0.01.

Results of numerical calculations are presented by Figure la and b (for
a, = 0.1 and a, = 0.01 respectively) in the form of the dependence of In J, on
the mean activity z = (¢2 + ¢2)!/2. The solid lines represent nucleation rates in

our nonisothermal theory obtained with the help of eq.(79) and corresponding to
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the fixed values of activity fraction ¢ = (3/((1 + (2), indicated on the Figure over
the lines; the dashed lines represent nucleation rates according to the isothermal
nucleation kinetics. The corresponding experimental data are shown by series of

circles. To avoid possible confusion, we have presented only a part of results.

As was expected, Figure 1 shows that thermal effects diminish the nucleation
rates up to tens of times in comparison with the predictions of isothermal theory;
the smaller is the value g, the stronger is the decrease in the nucleation rate. This
is readily accounted for by the fact that, in the considered system, the smaller
is the value g, the denser is the vapor mixture (since the equilibrium pressure
of ethanol vapor is by far greater than that of hexanol vapor), and also the
stronger is the influence of thermal effects on the nucleation rate. Figure also
shows that taking account of thermal effects approaches theoretical nucleation
rates to experimental data though there still remains a large discrepancy between
them that may be explained by the effect of surface enrichment. Evidently, by
virtue of the structure of the parameters k; and k,, the smaller n, and/or o are,
the more significant are the influence of thermal effects on the nucleation and,
consequently, the improvement of the fit of theoretical predictions to experimental
data. This is confirmed by comparing Fig.la with Fig.1b showing the numerical

calculations for two different values of o, (0.1 and 0.01, respectively).

8 Conclusions

We have considered the kinetics of nonisothermal binary nucleation at the
stage following the stage of thermal relaxation of nuclei. The kinetic equation
(4) governing the time evolution of three-dimensional distribution of nuclei was
obtained earlier (Djikaev et al. [10]) by extending the approach developed by
Feder et al. [6] and by Grinin and Kuni [7] for the nonisothermal one-component
nucleation to the binary nucleation. That kinetic equation (4) reaches beyond the

framework of the Fokker-Planck approximation in the variable corresponding to
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the temperature of nucleus and this is what allows the theory to be valid not
only in the case of small condensation heats (both 1 <« 1 and 7 < 1) but
also in the case of large values of condensation heat of any component where at
least one of 71 or 7, is not much less than 1. Such a case is not described by the
kinetic equation obtained for the nonisothermal binary nucleation by Lazaridis

and Drossinos [11] and solved by them for the steady-state nucleation.

By the end of the stage of thermal relaxation of nuclei theoretically described
earlier (Djikaev et al. [10]), the three-dimensional distribution of nuclei with
respect to £ approaches a quasiequilibrium Gaussian distribution while the distri-
bution with respect to v, and v; has not sufficient time to change. On the other
hand, there exists the hierarchy of the operators in the RHS of eq.(4) when they
act on the deviation P — f. This is what allows one to construct the solution
of eq.(4) at the stage following that of thermal relaxation with the help of the
Enskog-Chapman method according to eq.(22). The dependence of correction
terms z;(f) on the time in eq.(22) is implemented through the two-dimensional
distribution f(v1,vs,t) with respect to vy and v, according to eq.(31). The time
evolution of the function f(vy, vy, 1) itself is governed by eq.(33) with the thermal-
effect-dependent coefficients ©1, @, 61, and &. Equation (33) transforms itself
into the well known equation of Reiss [1] in the case where the thermal effects

are neglected: ©; — 1,05 — 1,6; — 0, and 6 —» 0if 4 — 0 and 7, — 0.

Since eq.(33) is of the Fokker-Planck type, the method of complete separation
of variables allows one to reduce the problem of finding the function f to the well
investigated problem of constructing the one-dimensional kinetic theory of first
order phase transitions. Consequently, by using the results of one-dimensional
theory for the distribution p governed by eq.(61) with boundary conditions (63),
one can determine the three-dimensional distribution g with respect to the variables
v1, vz, and E with the help of egs. (69),(43),(22), and (3). The rate of nonisothermal

binary nucleation can be found by means of either eq.(66) or eq.(74).
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Thus, a successive application of the Enskog-Chapman method and the
method of complete separation of variables to the kinetic equation (4) allows
one to construct the kinetic theory of nonisothermal binary nucleation in the
non-stationary case as well as in the stationary one (Lazaridis and Drossinos
[1] investigated only the steady-state nucleation). In particular, the steady-state
nucleation rate is given by eq.(79), and the steady-state three-dimensional distri-
bution with respect to vy,v,, and E is given by eqs.(76),(43),(22), and (3). The
average values of the temperature of the nucleus and solution concentration in it

are given by eqs.(86) and (83).

Finally, numerical calculations were carried out for the nucleation rate in
the system ”ethanol-hexanol” to illustrate the theory developed. The results were
compared with the predictions of the isothermal nucleation theory (Kuni et al.
[21]; Melikhov et al. [22]) and experimental data (Strey and Viisanen [26]). As
expected, rates predicted by the nonisothermal theory are substantially lower than
rates in the isothermal theory. Consequently, the nonisothermal theory improves
the fit of theoretical results and experimental data. The model of Lazaridis and
Drossinos {11] predicts nucleation rates that are slightly higher than classical

nucleation rates and this is not easy to explain from the physical standpoint.
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Figure la. Natural logarithm of nucleation rate J in the ethanol (1) - hexanol
12 at Ty = 260K. The

(2) system plotted vs a mean activity z = ((F + (3)'/?,
dimension of J is em3s1. The circles are the experimental data of Strey and
Viisanen (1993). The solid lines are the nonisothermal nucleation rates (equation
(79)) calculated at the indicated activity fraction ¢ = (2/({1+(z); the dashed lines

represent the isothermal nucleation rates. The thermal accommodation coefficient

of carrier gas (argon) is oy = 0.1.
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Figure 1b. Natural logarithm of nucleation rate J in the ethanol (1) - hexanol
(2 + ¢H)V?, at To = 260K. The

(2) system plotted vs a mean activity z
dimension of J is em™3s™'. The circles are the experimental data of Strey and

Viisanen (1993). The solid lines are the nonisothermal nucleation rates (equation
(79)) calculated at the indicated activity fraction ¢ = (3/(¢1+(z); the dashed lines

represent the isothermal nucleation rates. The thermal accommodation coefficient

of carrier gas (argon) is a, = 0.01.



CHAPITRE 3

Cinétique de la condensation binaire homogéne aux

conditions dynamiques

Tres souvent (et presque toujours dans la nature) la condensation binaire
se passe aux conditions dynamiques, c.-a-d., la formation et la croissance des
gouttes se passent en méme temps que la métastabilité du mélange de vapeurs

croit graduellement, atteint son maximum et décroit.

Nous développons la théorie cinétique de ces processus pour les systemes
ouverts ainsi que pour les systémes fermés (du point de vue de ’échange de
matiere entre le systéme ol la condensation se passe et son environnement).
Les deux sursaturations idéales que les vapeurs du mélange auraient eues en
absence de consommation de la substance par les gouttes sont déterminées par les
conditions extérieures. Par conséquent, la dépendance temporelle des sursaturations

1déales est considérée comme donnée.

Nous considérons le cas ol les sursaturations réelles des deux vapeurs atteignent
leurs maximums simultanément au moment du maximum de la métastabilité
du mélange de vapeurs. Le systéme d’équations intégrales est obtenu pour les
processus considérés. Il est démontré que la méthode itérative permet de construire
le spectre des dimensions linéaires des gouttes et la distribution des gouttes
selon leurs deux variables d’état indépendantes, la précision relative étant assez
élevée dés la premiére itération. De méme, cette méthode permet de trouver
la dépendance temporelle des sursaturations réelles des deux composantes du

mélange de vapeurs ainsi que le nombre total de gouttes par unité de volume.
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3.1 Article 4: Kinetics of two-component condensation under dynamic regime

with “synchronous” attainment of the metastability mazimum

Article publié dans la Journal of Aerosol Science (1998), Vol.29, No.1/2,
pp-1-30.
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Kinetics of two-component condensation
under dynamic regime with ”synchronous”

attainment of the metastability maximum

F.M.Kuni, A.P.Grinin
Department of Statistical Physics, St-Petersburg State University,
St-Petersburg, 198904, Russia

Y.S.Djikaev *
Physics Department, University of Montreal,
Montreal, Quebec, H3C 3J7, Canada

Abstract

A kinetic theory is presented for isothermal homogeneous two-component con-
densation under dynamic regime with synchronous attainment of the metasta-
bility maximum. It is shown that extending the iteration method of treating
of one-component condensation under dynamic conditions to the case of two-
component theory makes it possible to construct the spectrum of linear sizes and
two-dimensional distribution of two-component droplets, a relative degree of ac-
curacy being high enough even at the first iteration step. This method also allows
one to find the time dependence of both real supersaturations as well as the total

number of droplets formed per unit volume during two-component condensation.

* Author to whom correspondence should be addressed.
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1 Introduction

Two-component condensation, i.e. formation and growth of drops of a liquid
solution of two substances in a metastable vapor mixture of these substances, is
a process widespread in the nature and important for technical applications (we
shall use the term "metastable” instead of less general terms ”supersaturated”,
"supercooled”, etc...). The theory of two-component condensation is an important
part of the theory of first-order phase transitions . At the same time a development
of two-component condensation theory is extremely important for various applica-
tions, for example, in order to construct the quantitative methodology of forecasting

of acid rains.

We usually distinguish three stages of first-order phase transition. During
the first of them the embryos of a new phase are formed (this stage is also called
the stage of nucleation) which are condensation centers afterwards. It is during
the second stage that the phase transition properly takes place - the bulk of a
metastable phase passes to a liquid phase. During the third stage the growth of

large drops occurs to the detriment of small ones.

At present there exists the complete and adequate theoretical description of
all three stages of the one-component condensation. At the same time the kinetic
theory of two-component condensation has been developed almost exclusively for
the simplest case where the metastability of two-component vapor mixture is
created instantaneously (in neglecting both the thermal effects of condensation
and presence of heterogeneous nucleation centers). The bases of such binary
nucleation theory have been founded by Reiss (1950) who based his argument
on the results of Flood (1934) and on the classical one-component nucleation
theory of Becker and Doéring (1935), Volmer (1939), Kramers (1940), Zeldovitch
(1942) and Frenkel (1946). The very important contribution to the theory of
binary nucleation has been made by Stauffer (1976), that has corrected the rate
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of binary nucleation obtained earlier by Reiss (1950). The consistent kinetic
theory of binary nucleation has been constructed with the help of the method
of complete separation of variables by Kuni et al.(1990) and Melikhov et al.
(1990,1991) who have also found the new normalization factor of equilibrium
distribution. Important contributions to the development of stationary theory
of binary nucleation have been made by Mirabel and Katz (1974), Hirschfelder
(1974), Shugard and Reiss (1976), Wilemsky (1984,1987), Ray et al. (1986),
Okuyama et al. (1988), Shi and Seinfeld (1990) and Grinin et al. (1992).

Recently, many very interesting and important results have been obtained
by Wilemski and Wyslouzil (1995), and by Wyslouzil and Wilemski (1995, 1996).
Particularly, they proposed (Wilemski and Wyslouzil, 1995) a new self-consistent
classical size distribution for binary droplets which satisfies the law of mass action
and reduces to an one-dimensional distribution for one-component droplets. Studying
the transition from binary to unary nucleation Wyslouzil and Wilemski (1995)
proposed a modified expression for nucleation rate, prescription of which remains
within 10% -20% of the exact numerical rate, when other authors’ expressions fail
under such a transition. They also investigated (Wyslouzil and Wilemski,1996)
the transient behaviour of binary nucleation kinetics by numerically solving the

birth-death equations for vapor-to-liquid phase transitions.

Kinetic theory of the second stage of two-component condensation under
above mentioned conditions has been constructed by Djikaev (1992) with the

help of the iteration method developed by Kuni and Grinin (1984).

The existing theory presented in the above cited papers describes isothermal
two-component condensation fairly well in the case where the formation of droplets
and their growth take place after the interruption of an external influence on
the vapor mixture metastability, that is, in the case of "instantaneous” creation
of metastability. Such situations usually occur in most laboratory experiments

using piston cloud camera, diffusion cloud camera, supersonic nozzle, particle
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size magnifier, etc... .

However, there exist many situations (both in the nature and in the industry)
in which two-component nucleation begins before the attainment of metastability
maximum while the metastability of vapor mixture increases yet. This is, for
instance, the case of formation of acid rains where the nucleation of droplets of
acid-water solution and their growth take place either under very slow increase
in number densities of water and/or acid molecules in atmosphere, or under very
slow decrease in atmospheric temperature, or under all these conditions together.
Moreover, that problem is well known even to experimenters investigating the
condensation under instantaneous creation of metastability. Actually, it is technically
very difficult (if not impossible) to ”instantaneously” create the metastability,
though this is necessary to make a correct comparison between experimental data
and data yielded by existing theory of two-component condensation. Therefore,
it is very important to know to describe the condensation phenomena under

dynamical conditions.

It should be noted that we do not intend to revise the existing theory of
binary condensation. The present paper is an attempt to construct the theory of
two-component condensation under a new statement of problem. This statement
is as follows. We intend to construct the kinetic theory of isothermal two-component
condensation for dynamical conditions, when the metastability of two-component
vapor mixture increases gradually. Unlike the existing theory in the present
statement of problem it is not required that the formation of droplets and their
growth take place after the interruption of the external influence on the vapor
mixture metastability, and we shall take into account both changes of metastability

caused by an external influence and the consumption of vapor mixture by droplets.

This problem will be solved by extending the method of treating of one-
component condensation under dynamic conditions developed by Kuni (1984,1988)

to the case of two-component theory, and we shall also need main results of the
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classical theory of binary condensation. Since it is a new statement of problem,
no theoretical results are available with which we could compare the results of
our approach (except results of Kurasov (1990), using the same method). There
are no experimental data on binary condensation under dynamical conditions
either; such experiments have never been carried out because the appropriate
theory had not existed yet. Certainly, it would be very interesting to make a
comparison between our results and results of other approaches to the problem.
Besides, experimental data on the time dependence of real supersaturations and
average concentration of solution in a droplet as well as on the total quantity of
droplets formed during the condensation would be the best verification of present

theory.

The applicability of the theory is limited only by the conditions of validity
of the classical capillarity approximation. It means that the droplets must be
large enough, they hold at least some tens of molecules. The formation of droplets
demands their passage through a high activation barrier, i.e. has a pure fluctuation

character.

It is supposed that the condensing system and its environment do not
exchange droplets. At the same time we shall consider materially open systems, in
which the condensing substances sources exist being homogeneously distributed
within system, as well as materially closed systems. The absolute temperature
T and volume V of materially open system are assumed fixed. In a materially
closed system a vapor mixture metastability changes as a result of the changes
of T' and V, which we shall naturally take into account. It is also supposed that
there are no heterogeneous nucleation centers in the vapor mixture, and that no

chemical reaction occurs in considered system.
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2  Complete set of equations of the kinetics of two-component con-

densation

Let us denote by ¢; (¢ = 1,2) the supersaturation of the vapor of z-component

over the plane surface of its own liquid phase:

Ci = ni/n'is (7’ = 152)) (1)
where n; is the number density of molecules of :-component in a vapor mixture;

n;s 1s the number density of molecules of :-component vapor saturated over a

plane surface of its own liquid phase (obviously, n;s depends on temperature T').

Let us introduce the value
Qi — nitot/nis (Z — ]-7 2)7 (2)

where n;,: is the total quantity (in the vapor mixture as in the droplets) of
molecules of z-component in the system volume unit. Obviously, ®; represents the
”ideal supersaturation” of i:-component which could be observed in the system
at the same external conditions if there was no consumption of this component
by the droplets. In materially open system 7, V,ny, and no, are constant, and
®, and ®, change only as a result of injections of corresponding component by
external sources. In materially closed system the total quantities of molecules of
both components remain constant, i.e. Vni,: = Const (¢ = 1,2). Therefore, in

materially closed system the following equations are observed:

Ryss Vi M W =05 (Ocp (o= 1,20 (3)

where the subscript ”*”

marks the values at some moment t,, when a nucleation
rate is maximal. For the theory that is intended to be developed this moment
coincides with the moment when a vapor mixture metastability is maximal, i.e.

a critical embryo formation free energy is minimal.

Usually in addition to the droplets and binary vapor mixture participating

in a material exchange with the droplets, in a condensing system there is some
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passive gas the molecules of which do not participate in a material exchange with
the droplets. Let us suppose the passive gas concentration is high enough. Then
non-isothermal effects of condensation will not be important, and the equation of
state of the passive gas and character of thermal contact of the system with the
environment will determine the unambiguous relationship between ng (i = 1,2)
and V. Taking eq.(3) into account, let us present this relationship as a parametric
one:
Nise[Nis = Si(®s) (=120 (4)
Vo]V = ®;/0;.5:(®;) {1=1,2), (5)

where S;(®;) is some function (we do not indicate its dependence on ®;.). With

the help of Clapeyron’s-Clausius’ formula one can rewrite eq.(4) as
T/T. = [S(@)"%  (i=1,2), (6)

where §; is the partial molecule heat of condensation of :-component taken in
units of kgT (kg is Boltzmann’s constant). Ordinarily, f; is of the order of some

tens.

The functions Si(®;) (¢ = 1,2), which are determined by the character of
thermal contact of a system with an environment, are assumed to be known. In the
cases of isothermal compression, of isochoric cooling and of adiabatic expansion

these functions are given, respectively, by expressions:

Si(®:;) = L,
2 (Di/q)i*’ (’L == 172)7 (7)
= [@;/ @)%
where
k=1/ls— D=1  (i=1,2), (8)

and « is the adiabatic constant of passive gas. The condition

[ki(ki 4+ 1)%/2B:) In?(®/ @) < 1, (9)
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is that of validity of the third of expressions (7). Obviously, k; > 0 and k; < 1 for
Bix is a value of the order of 10. The inequalities ;. > 1 and k; < 1 guarantee
the inequality (9) even if the difference between ®; and @;, is great.

In accordance with egs.(7), the function S;(®;) increases monotonically or
remains constant with increasing ®;; at ®; = ®,. it is equal to 1. Let us suppose
that S;(®;) has the same properties also in general case of any materially closed

system.

Contrary to the supersaturations (;, the supersaturations ®; are completely
determined by the external conditions in which the condensing system is, and can

be controlled from outside.

During the period of intensive nucleation which is very short the time de-

pendence of ®; can be well approximated by the expressions

5= " AN EE) (10

o; = (toi/t:)™  (t > toi)
with the independent positive parameters m;,t; and to;. The time is counted off
from the moment when the ideal supersaturations were equal to zero. The moment
to: corresponds to a stabilization of ®; on its maximal magnitude ®o; (obviously,
for the materially closed system to; = tg2). In fact, the approximations (10) will

be necessary only during the intensive formation of embryos.

The approximations (10) together with egs.(4)-(6) determine the time de-

pendences of ny,,ngs, V, and 7' in materially closed system.

The supersaturations of both components determine the metastability of
system. Since a nucleation rate is very sensitive to the metastability, the accuracy
of the approximations (10) must be very high during the intensive formation of

embryos.

Supposing t. < min(te,toz) (that means the attainment of metastability
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maximum before the stabilization of any of ideal supersaturations) and assuming
t,, @y and (d®;/dt)|s=s, to be known (at t. = min(to1,tes) the derivative corresponds
to the approach to ¢t = i, from left side), we have for the optimum values of

parameters m;, t; in eq.(10):

M = (be/ 3 (dB;/dt) |z, i = £/BH™ (i =1,2). (11)

Let us name the supercritical embryo of liquid phase (growing irreversibly)

for ”the droplet”. Only such droplets participate perceptibly in the consumption
of the vapor mixture. The regime of molecule exchange between the droplets and
the vapor mixture is assumed to preserve the free molecular character even for

the largest droplets considered in theory.

Let us denote by 1, and v, the numbers of molecules of the first and
second components, respectively, in the droplet. Let us choose the values p and

x determined according to

p=(+m)? x=wn/ln+r) (12)

as the droplet state variables. The variable p represents the linear size of droplet,
and variable y represents the composition of the solution in a droplet. Let us
denote by n(p, x,t) the distribution (corresponding to unit volume and expressed
in units of n1,) of droplets with respect to the variables p and x at moment ¢. It has
been shown (Kuni et al.,1990; Melikhov et al.,1990; Melikhov et al.,1991) that the
variable  is the stable one in near-critical region. According to Dzhikaev(1992),
during the second stage of two-component condensation at the instantaneous
creation of metastability the distribution of droplets has a Gaussian dependence
on the variable x in supercritical region, and an average magnitude xq of variable
y is determined by means of quasistationary condition on x. Therefore, it is
natural to assume that in the present theory the distribution of droplets with
respect to the stable variable y in the supercritical region also has a form of

Gaussian distribution, and that an average magnitude xo of variable x in this
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region is determined by means of quasi-stationary condition x = dx/dt = 0

leading to the transcendental equation

aavrings(l — x0)[G — xof1(x0)] = @evranasxolla — (1 — xo) fo(x0)],  (13)

where a.; and vr; (¢ = 1,2) are respectively the condensation coefficient and
average thermal velocity of molecule of :-component in vapor mixture; fi(x) and
fa(x) are the activity coefficients of the first and second components in a liquid
solution with composition x. Therefore, the distribution n(p, x,t) has the form
nlpy300) = los Do () emp | -2 I8, (19
2(Ax)?
where Ay is an equilibrium value of the rms fluctuation of solution concentration
in a droplet. The function p(p,t) represents obviously the one-dimensional distri-
bution (corresponding to unit volume and expressed in units of ny,) of droplets

with respect to variable p at moment ¢.

It has been shown (Dzhikaev, 1992) that a linear size of droplet, practically
immediately after its formation, increases with time with the rate independent of

linear size:

. d 1s Q1 Ngs Qe2
p= d_i = :1 A (&1 — xofi(x0)] + —i [¢2 — (1 — x0) f2(x0)], (15)
7 = [opina (0 /48) 17 (1 =1,2). (16)

Here v = v(¥) is the droplet volume per molecule (it is supposed that it depends
only on y). In eqs.(15),(16) the temperature dependence of i, vr; and v is much

slighter than that of n;s, and one can neglect it.

Under the conditions of validity of macroscopic theory of condensation the
characteristic size of droplets is much greater than their sizes at moment of
formation. Therefore, the solution of equation (15) has to satisfy the initial

condition

p(t)|s=0 = 0. (17)
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Taking into account that for all the droplets p does not depend on p and
there is no droplet exchange between the system and environment, one can (Kuni,

1984; Kuni, 1988) present the distribution p(p,t) in the form

p(pr0) = 200 (2 - ). (18)
Here

() = 1 (u>0),

0 (u<0).
is theta-function; f is some function which depends on p and ¢ by means of the
argument z — p; z is the coordinate moving along the p-axis with the rate p
of increasing of linear size of droplet. The correctness of the expression (18) is
evident as it ensures the conservation of the total quantity of droplets of the

system n1,Vp(p,t)dp in the element dp during the movement of that element

along the p-axis with the rate of coordinate z movement.

In order to remove an arbitrariness in the definition of coordinate z let us

assume that the equation

dz N1s Ccl

L S [Gre= xof1(xo0)] +

Nisx T1x Nasx T2x

Tigs Qg2

[(2 (1 = Xo)fz(Xo)] (19)
satisfies the initial condition
2(t)|e=t. = 0, (20)

with z < 0 for t < t, and z > 0 for £ > {,.

Instead of the variable p let us introduce the variable
t=z—p (z<2). (21)

The variables z < 0 correspond to the droplets formed at time moments ¢ < %,
and the variables z > 0 correspond to the droplets formed at time moments? > ..
Since z and p increase with the same rate, every droplet has its own magnitude
of variable z during whole its growth after its formation. Let us denote by t(z)

the moment of formation of the droplet characterized by value z.The more z is
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the later the droplet was formed and the more t(z) is. All the time dependent
values together with ¢ will be z-dependent functions. At z =0 those functions
are equal to their magnitudes at time moment ¢ (which are marked by subscript

»*7) and at z = z they are equal to their current magnitudes.

In view of eq.(21) one can rewrite the expression (18) in the form

nls*v;c

nlsV

p(p;t) = 0(z — z) (). (22)

The function f(z) characterizes the spectrum of linear sizes of droplets. Figure
1 shows the dependence of spectrum f on variable p and illustrates what is
f(z). As it has been shown by Dzhikaev (1992), under the condition of validity
of the classical capillarity approximation one can assume that during the two-
component nucleation the state of embryos having the linear sizes in the region
0 < p <~ (2+3)p. is quasistationary, p. being the linear size of critical embryo.
At any current magnitudes of (; and (; this state is described by stationary one-
dimensional distribution f,((i,() independent of p. Thus, one can use fs(61,¢2)
as a boundary condition to p(p,t). Taking into account that during the first stage
nisV & nis. Vi, we obtain from eq.(22)

flz) = fS(Cl(m)a (a(2)), (23)

where (;(z) (i = 1,2) is the magnitude of the supersaturation (; at time ¢(z) when

the droplets with given = were formed.

According to Kuni et al. (1990), Melikhov et al. (1991), Dzhikaev (1992),

the distribution f, expressed in units of nq; has the form

fs(cla CZ) = I{(Ch C2) exp[—F(Cl, §2)]7 (24)

where the dependence of the pre-exponential factor K((y,(2) on (1, (2 is a power
one; F((1,(;) is the height of activation barrier of two-component nucleation at

saddle point, i.e. critical embryo formation free energy, expressed in units of kT,
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at the current magnitudes of supersaturations (1, (2. For F' ((1,¢2), in accordance

with Kuni et al. (1990), Melikhov et al. (1990) one can obtain the expression

F(CI,CZ) S 167"'731’2(XC)/3[XG Iny = (1~ XC) Ing; — G(XC)]Za (25)

where
G(xe) = XxeIn[xcfi(xe)] + (1 = xo) In[(1 = xe) f2(xe)l, (26)

Y. is the composition of solution in a critical embryo; 7. is the surface tension of
embryo in units of kT, (assumed independent of the composition of solution in

an embryo).

The expressions (14),(13),(19),(22)-(24) represent the solution of the kinetic
equation of two-component condensation (obtained first by Reiss (1950)) for the
considered supercritical droplets. In order that this set of equations comprising
the unknown functions (;(z) and (2(z) becomes consistent it is necessary to add

to them the material balance equations for both components:

& =G+g  (=1,2), (27)

where g;, according to eqgs.(1),(2), represents the total quantity (corresponding to
unit volume and expressed in units of n,) of molecules of :-component condensed
in all the droplets. Taking into account the facts that p® is the total number of
molecules in a droplet of linear size p and that xo does not depend on p, we obtain

in view of relations (14),(21) and (22):

. nls*v; = _ 3
g= 0 [ de(z—2Pf(e), (28)
1 — ¥onis
92 = X0 g1 (29)
X0 T2s

The relations (14),(13),(22)-(24) together with (10),(27)-(29) compose the consistent
set of equations of the two-component condensation.The unknowns in this set are

the spectrum f(z), coordinate z and composition xo.

Let pmin(t) be the coordinate of the left bound of the region in which the

values of the distribution p(p,t) are relatively important at time ¢. Obviously,
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during a nucleation stage pnin(t) = 0. However, after its end the coordinate
pmin(t) begins moving along the p-axis with the rate p of the increase of linear
size of droplet. The decrease of the supersaturations {; and (; (on account of
the consumption of vapor mixture substances by the ensemble of supercritical
droplets) slows the velocity of movement of the coordinate ppi, (¢) down, according
to eq.(15). The decrease of the supersaturations (; and (; (causing the decrease
of the metastability of condensing vapor mixture) induces simultaneously the
increase of the critical droplet size p.((1, (2) at the current magnitudes of super-
saturations. The size p.((1(t), (2(t)) begins coming up to the coordinate ppin(t) on
the p-axis. The quasistationary distribution of the near-critical droplets is broken
and the equation (23) ceases to be observed (in view of the very small intensity
of formation of embryos after a nucleation stage end, it’s no longer necessary
for the developed theory). However, the formula (18) and the set of equations
of two-component condensation kinetics remains correct as long as the following

constraint is observed:
pe(G1(2), C2()) < pmin(t) (30)

i.e. as long as the droplets formed during nucleation stage remain supercritical.

The breakdown of the constraint (30) causes that the droplets formed during
a nucleation stage gradually become subcritical (evaporating), and the two-com-
ponent condensation changes into the two-component coalescence which we shall

not consider here.

3 Tteration procedure in the case of continuous increase of both ideal

supersaturations

Let us define the parameters I'y and I'; as

oF oF
F]_ = —(Dl* 9 ].—‘2 = —q)z* , (31)

8(:1 C1=P14,(2=D2. 8C2 €1=P14,{2=02.
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where F' = F({1,(;). Using egs.(25),(26) one can show that under the condition
of validity of the macroscopic description of condensation (when I has the order
of some tens) usually

Ii>1  (i=1,2). (32)

Later on the correctness of the following estimates will be proved
ICiv — Pil/Pi <1 (1=1,2). (33)

Taking eqs.(23),(24),(31)-(33) into account, one can obtain for the spectrum that

1 Iy
F(0) = L@, Ba)exp [3(Gl) ~ 1) + 5o (Gle) = 00)] . (39)
where
fs(Cl*a C2*) — I((Cl*a CZ*) eXp[—F(C1*, CZ*)] (35)

(the relative error in (34) has the order of 1/Ty +1/T"; < 1).

Let us define the important parameter I' according to

05 X0 Ql* Nis
=T 4L —_— 36
= 2 Xo DPax s ( )
Introducing the notation
L= 0
P X0 N0t (37)

Xo  TN2tot

and supposing the condition P ~ 1 is observed we conclude that the parameter
I’ always satisfies the condition

r> 1, (38)

Let us define the parameters ¢; and c¢; by relations

. F* d(I)z(.T) vy
= (I)z'* dCE ('L — 172)7 (39)

z=0

&

where the ®;(z) is the ideal supersaturation ®; at time ¢(z) when the droplets
with given = were formed. According to eq.(39), the value 1/¢; represents the

length on the z-axis on which the relative change of supersaturation ®; is 1/T..
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Linearizing ®;(z) in z near z = 0 and using eq.(39), we have

Qi* .
Q;(z) = Qi + T G® (3 = 1,2}, (40)

and the expression (21) takes the form

Gila) ~ s = Fam—gla)  (i=1,2) (1)

Inserting eq.(41) in (34) and taking egs.(29),(36) into account, we obtain

G
F(z) = fo(®1x, Dai) exp |cz — 3 g1(z)], (42)
1%
where
r r
6= P_i61 + F_jCQ. (43)

During the nucleation stage on account of its relative shortness one can assume
Nis = Nise (1 = 1,2),V = V. and xo = Xox Taking eq.(42) into account, we
rewrite eq.(28) as

* r
gi(2) = Xo*fs(q)u,q)z*)/ dz (z — z)°exp |cz — (I)l*gl(a:) . (44)

— o0

According to the definition of ¢. as a time moment of attainment of the

metastability maximum, we have

dr

21 =o, (45)
dt t=tt

d*F

— =0 (46)
dt2 t=ta

Using eqgs.(25),(26), from (45) and (46) we obtain, respectively, the equation

X dGi 1 — xcdGa

Xe 961 : = 47
Gdt |, | G d . )

t=tx

and the inequality

Xe 1 (da\’ xe@G  1-x.dG
1 - Xe Clz dt (1 dtZ Cg dtZ

>0 (48)

t=tx
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(it is assumed that the condition of metastability of two-component vapor mixture

(Kuni et al.,1990; Melikhov et al.,1990) is observed). From equation (47) it
follows that the alternative possibilities exist for the behaviour of supersaturations

¢, and (; at the moment t, - either

d( g B
dt t=tw B dt t=t« - 0 (49)
else
d(l 1 —xc Cl d(s
=2 = 2 2 0. 50
di t=t, Xe G2 dt t=ty # ( )

The fulfillment of the equalities (49) corresponds to a synchronous attainment
of metastability maximum when the supersaturations (; and (; attain their
maximums simultaneously at the moment t,. The fulfillment of (50) corresponds
to a non-synchronous attainment of metastability maximum when at the moment
t, one of the supersaturations ((; else (;) already passed its maximum and
decreases, another ({, else (;) did not attain its maximum yet and increases.
What kind of attainment occurs depends on both external influences and physical
properties of condensing system. In this paper we shall consider almost the case of
synchronous attainment of metastability maximum because it is easier to extend
to this case the iteration method developed by Kuni (1984,1988) for description

of unary condensation under dynamic conditions.

Let the equalities (49) be observed. Differentiating eq.(41) with respect to =

and taking into account that (/(z) =0 (¢ =1,2) at z = 0, we obtain
@ * @2*
a1(0) = 2, 40 = 3

(the prime indicates the first derivative). The equations (51) compose the set of

ez (51)

linearly independent equations with respect to the variables @, and ®,..

With the help of eqs.(29),(36) and (43) from eq.(51) we obtain the useful

equation
(Dl*
= c.

!

(52)
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The relations (44),(52) compose the consistent set of equations with respect
to g1(z) and f,(®P1., P2.) (the composition xo. figuring in this set as a parameter
obeys the equation (13)). This set can be solved with the help of the iteration
method which has been developed by Kuni (1984,1988) for the construction of

kinetic theory of one-component condensation under dynamic conditions.

Let us construct the first approximation corresponding to the insertion of the
equality g;(z) = 0 in the RHS of eq.(44). In this approximation the accumulation

of substance by the droplets occurs more rapidly than it occurs in reality.

We have
91(2) = Xoufs(P1x, Pau) /_ dz (z — z)%e*", (53)
, 6
gl(o) = XO*fs(Ql*a ®2*)§7
and also
(Dl* 4
s () *,(I) *) = . 54
Fo(P1s, Pax) 6T (54)
Taking into account (54) and equality
m 3. b 6 cz
/_Oodx(z—w)eazzc—‘}e ) (55)
it follows from eq.(53) that
@ * ez
qi(z) = = (56)

By using eq.(27) at z = 0 and the equalities (56) and (29), one can obtain

the relations

o = @01 - 1T, G =5 [1- P (57)

which, in view of eqs.(32),(36)-(38), justify the estimates (33) at the first step of

iteration procedure.

Let us construct the second approximation corresponding to the insertion
of eq.(56) in the RHS of eq.(44). In this approximation the accumulation of

substance by the droplets occurs more slowly than it occurs in reality.
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We have
0(2) = x0-So(B10,02) [ de(z—aPexples—e7,  (59)
3b
g:,[(o) = XO*fs((I)l*, (1)2*) 6_32, (59)
and also
Fo(@10B30) = it (60)
s 19 ¥ 2% 3b2F*X0*
where
b, = /°° degrexp[~¢ -] (¢=0,1,2,..). (61)
0
Numeric calculations show that
bo=1-—1/e =0.632, by = 0.797, by = 1.78, by = 5.66. (62)

Denoting by symbol § the difference between the magnitudes of value in the

first and second approximations, one can, with the use of eq.(10), establish

00w, (3 _ 1)/ [rl + @rg] —0.12/ [rl + @-m] ,
4. by m ma

6. _ (3 _ 1)/ [Tirl + Pz] = 0.12/ [Tirl + 1“2] . (63)
. bs ma m2

Inserting eq.(60) in (58) and using eq.(61), we obtain

@ ok d cT
91() = e [ da(z — ) explen — e, (64)
by By,
51(0) = 3—; Fl : (65)

With the help of eq.(27) at 2 = 0 and egs.(65),(29) one can obtain the

relations

Cl*:q)l*li]- b3 1]7(2*:®2*|:1_P*b3 1} (66)

~ 3b,T. 3b, T,
which, in virtue of eqs.(32),(36)-(38) and (62), justify the estimates (33) at the

second step of iteration procedure.
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Marking with superscripts 0,1,2,... the values at the corresponding iteration

step, let us compare the first approximation with the second one.

From eqs.(10) and (63) it follows that

Obs 0.12
Z = (-— = 1)/(77’1,11-‘1 + mzrz) = 1F1 + m2F2, (67)

i.e. the moment ¥ has become a little more than the moment ¢t ) (we exclude
from considering theory very small m; and my, assuming m;I'y + mal'y > 1)
owing to the more slow accumulation of substance by the droplets in second

approximation. The increase of the duration of droplet growth clears the result

g&z)(O) > g )(0) following from eqs.(56),(65) and (62).

Inserting eqs.(54),(56) and then the eqs.(60),(64) in (42), we find the spectrum

f(z) in the first and second approximations, respectively:

®
(1) 1x 4 —
(=) = 6F*X0*C exp [cx — €], (68)

4

f(Z)( )___ mc eXp [033"56—2/ dm'(:c—:l:l)anp (Cw’_ecw’)jl (69)

(in view of egs.(63),(32),(38) we suppose @1, P2.,I's, and c are the same in first

and second approximations).

From egs.(19),(20),(67) and (10) it follows that in second approximation the
beginning of z-axis shifts by

- (%—1)/C:0.12/c (70)

compared with that of first approximation.

Substituting in eqs.(56),(68) the variables z and z corresponding to the

second approximation and taking eq.(55) into account, we obtain

q) * i cx
o) = gt [ da (= 2)e, (1)

4

ctexp [c:v = 3cb_2 [—foo dz' (z — x’)BeCz/ . (72)

D1

(1) =
f ( ) 3b2F*XO*
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Comparing eqs.(64) and (69) respectively with eqgs.(71) and (72), we conclude
that ¢{%(z) < ¢V(z) and f@(z) > f1)(z). These inequalities would remain true
under the use of other variables z,z corresponding to an arbitrary but common
choice of the zero point of z-axis. Under common choice of zero point of z-axis

the following estimates are also true
97(z) <mr(2) < 67(2), (73)

(=) > f(z) > fD(e), (74)
where g1(2) and f(z) correspond to the strict solution of the set of equations

(44),(52).

Since the value 1/c characterizes the scale determining the width of the most
important part of spectrum, one may, in virtue of eq.(70), neglect the breakdown
of estimates (73),(74) owing to the shift of , by 6t, in condition (20), and one
may, in the same way, assume that the estimate (74) is true even if the functions
f®(z) and f@(z) are given by eqs.(68),(69). In such a sense we shall understand

these functions from now on.

Let us define the left and right spectrum half-widths A_z and A,z as

f(=A_z) = f(0)/e, f(Arz)= [f(0)/e. (75)

Within the interval A_z < = < A,z the relatively important part of spectrum

is situated. In first approximation, according to eq.(68), we have

Az =184/, Apz=115/c (76)

With the help of eqs.(68),(69) and (76) one can obtain the relations

f(z)(ijc)(l)—(f)(l)(“’) = .62_ ~1=012 (—cz> 1),

F2(0) — £9(0) 26@(Lﬂﬁj_1:0%& (77)

FM(0) by 36y
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FA(ALz) - fU(Ayz)

= (.50
fO(Az)
and the estimate
f(z)(m) b 5 5 bo 3 3
F@(0) < exp _E;C T — —SEC % (z > 0), (78)

the analysis of which allows to conclude that already first approximation of
spectrum given by eq.(68) is fairly accurate. By this approximation we shall be

satisfied afterwards.

4  Simultaneous and non-simultaneous stabilizations of ideal super-

saturations after the attainment of the metastability maximum

Above, in the developed iteration procedure it was supposed that the sta-
bilization of ideal supersaturations ®; and ®, occurs after the end of formation
of the most important part of spectrum. In the cases where the stabilization of
either ®; or ®, and that the stabilization of both ®; and ®, occurs before the end
of the stage of formation of the most important part of spectrum, the presented

iteration procedure will change a little.

Let us consider at first the case where
@1* < (I)Ql <~ (I)l*(l -+ 1.1561/CF*), @02 > (Dg*(]. -+ 1.1502/CF*), (79)

i.e. where one of the ideal supersaturations (®1) is stabilized before the end of
the stage of formation of the spectrum, and other ideal supersaturation (@) is

stabilized after the end of that stage.

The relations (40) will take the form
@1*

®i(z) = Oun+ T, a® (z < 20),

BES

L,

Do
Oy(z) = Do+ I‘2 e,

= ., + cze (x> zp), (80)
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where

L.
20 — Z—((D()l/q)l* — l) (81)
1

Respectively instead of eq.(41) we have

Dy,
G(2) =0 = waz—g(z) (z <)

L.
= F1* C120 — 91(17) ((B > 20)7 (82)
D,
(a(z) — P2 = Fz 2 — go(T).

The expressions (42),(53) change only in the regions = > zp and z > 2o. In these

regions now

| I r

@1*91(56) + —I%@(x — ZO)] (z > z), (83)

f(CC) = fs(@l*a (1)2*)GXP [CZO =

2

91(2) = Xoxfs(P1e, Pox) {/ ’ dz (z — :E)Sec‘”+

-0

z r
+/‘ dz (z — z)° exp [czo + F—2c2(3: — zo)]} (z > z). (84)
Z0 *
Taking eq.(54) into account and carrying out integration in eq.(84), we obtain

D4, 1 1
a(z) = T}—e“" [1 + ¢(z — z0) + §c2(z — 20)* + gc?’(z — 20)°+

1, 4 Ly 5]
_ — S — >
+24c (z — z0)* + 12Oc Az 20) (2 > 2o), (85)

where A = ¢;I'y/T.. Inserting eq.(85) in (83) and taking eq.(54) into account, we

obtain
q)l* 4 o'
Jla) = ctexpler — €] (z < 20),
6F*X0*
@ * 1
fiwy = 6F*1Xo* c*exp {cx — e [1 + ¢(z — 20) + 562(50 —z0)’+  (86)
1 1 il
+gc‘°’($ — 20)° + 2j4‘:04(w —z0)* + 1‘2‘6‘34)‘(95 — )| ¥

+Mz —2)} (22 %)

(obviously, the eq.(68) for f(z) remains true as long as z < zp).
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In the case where both ideal supersaturations, ®; and ®,, are stabilized

simultaneously before the end of the stage of formation of the spectrum, we have
D, < By; <~ (I),'*(l + 1.15c.,-/cI‘*) (Z = 1,2). (87)

In this case the changes in the iteration procedure do not lead to eqgs.(80)-(86),

but to the equations

- Qix T < 2g), i
0i(z) = { -y e (1=1,2), (88)
O + Prcizo (22> 20)
z0 = &(‘I’m/@l* -1)= E(%Z/‘I’% — 1), (89)
(&1 Ca
Dis o — gi(z) (z < zp), ]
(i(z) — @ =< L (:=1,2), (90)
{ %}c,-zo —gi(z) (z 2 20)
L.
£(2) = Fo(@1e, Bar) exp [cz0 = 3 (@)] (&2 ), (91)
91(2) = Xoxfs(P1a, Pau) [/_Z:O dz (z — z)%e* + + /Z: dz (z — :1:)3e°z"] (2= =),
(92)

Dy, 1
a(z) = F—lecz" [1 + c(z — z0) + Ecz(z — z0)+

*

1 1
ECB(Z - 20)3 4 ‘2_464(2 - 20)4] (Z Z ZO), (93)
(I)l* 4 cT
Jlg) = Toxo ctexpler — ] (z < 2o)
- (bl* 4 czo [ l 2 = 2
He) = GF*XO*C exp {c:c e |1+ e(z — 2z0) + 5¢ (z — z0)"+ (94)

(e w0 4 grete— )]} (02 20)

Let us denote by N the total quantity of droplets per volume unit formed
during the first stage of two-component condensation. This quantity, according

to eqs.(14),(21) and (22), linearly depends on the spectrum by means of integral

value

I= /_ C:O dz f(z). (95)
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Therefore, the accuracy of determination of the value I has particular significance.

To estimate the accuracy of determination of the value I, let us change a
little the above described iteration procedure by supposing that xox, @1, P2« and
f+(®1., ®2.) (and with them I', and ¢ too) are the same in all the iteration steps
and determined by insertion of the last of used approximations in egs.(51),(52).
Having chosen in this common way Xox, @1x, P2« and f;( P14, ®2.) one can guarantee
that the less the function g;(z) in the RHS of eq.(44) is the more the RHS of
eq.(44) is. This property makes it possible to construct, by means of an iteration
procedure, the approximations g(J )( ) ( = 0,1,2,...) which monotonically
approach the strict solution of eq.(44) with chosen Xo«, ®1x, P2« and fo(P1, Pax)-

This property guarantees the uniqueness of strict solution.

Let us choose the g{o) = 0 as the initial approximation in the iteration
(0

procedure. Such a choice ensures the inequality g1 > g; ', where g; is the strict

solution of eq.(44). Every next approximation is determined by inserting the

precedent one in the RHS of eq.(44):

z I‘*

§*(=) = x0u o @10 B2) [ da(z =P exp e — gog

() =
oo 5.1 (w)] (7 =0,1,2,..).

(96)
Using the indicated property of the RHS of eq.(44) and taking into account the
obvious inequalities g; > gg ), g§2) > g%o) and the fact that the calculation of the

RHS with the help of strict solution g; leads to the same solution g;, we conclude:

6 23, a5 dP q.< s (97)
g < g, ¢ > ¢ ¢ < g . (98)

According to eqs.(97),(98) the approximations gg ) g% ). ... of odd order mono-

tonically approach g; from superior, and the approximations g{ ), g§ ), of even

order monotonically approach g; from inferior.

The approximations of the spectrum f® (k= 1,2,3,...) are found by
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substituting ¢\" (z) for g;(z) in the RHS of eq.(42):

| B
f(k)(m) = f5(D1x, P2u) €xp |cT — % ggk)(w) (k=1,%8..) (99)
1%

In accordance with eqs.(97),(98) we have

£ fOh £ o W Fe P (100)

@ > O @) £ 7@ 6 5 & (101)

The analogous inequalities take place for the iterations of the integral spectrum
characteristic I*!) (k = 1,2,3,..) which are determined by substituting f*) for
f(z) in the RHS of eq.(95):

T 70T FOS ' B0 i (102)

JEIS O 02 {2 s ) ., (103)

Let us construct the iterations by described means. Introducing the value
h = 6T, xo0s/P1uc® (104)

and denoting fs(®1., P2.) by fox, we have in first approximation

® * h cz
61(2) = - fone™, (105)
M he

T (z) = fscexp |cx — —c—fs*e , (106)
O / T deexp (- o) = tn (107)

hJ-oo h

In second approximation we obtain
2,y — : RY: by e

91 (2) = XoxSsx dz (z — ) exp |cx cfs*e , (108)

hc? i h ,
FO(z) = fonexp {cw - Tfs* / _ dz' (z — z')° exp [c:c' - —c—fs*ecz } } ,  (109)

1@ = w/h, (110)
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where

E=cz+In (%fs*) , (111)
U= /_Z d€ exp [ — % /io de' (¢ — 6/)3 exp (5/ . e&’)} =715 (112)

At the first step of iteration procedure (interrupted at first iteration) f is
found from eq.(52) with the help of eq.(105). That leads to the anterior formulas
(54),(56),(68). At the second step of iteration procedure (interrupted at second
iteration) f.. is found from eq.(52) with the help of eq.(108). In this case both
in first and in second iterations a small difference is observed with regard to the

anterior results.

In accordance with eqs.(107),(110) and (112) it is true that

72— 1Q0)

T =¥-1=015 (113)

Taking eq.(102) into account one can write
s 7710, (114)

where I corresponds to the strict solution of eq.(44) (with the same Xox, @14, P2«
and fs). The relations (113),(114) guarantee the inequality

[— W

——— < U -1=0.15 115
@)

which allows to conclude that the expression (107) approximates the integral

characteristic I with the relative error less than 0.15.

Taking egs.(25),(26) into account, it follows from eqs.(104),(31),(36),(39)
and (43) that the value 1/h in the RHS of eq.(107) is a relatively "slow” function
of Xox, P1x, P2.. A fairly accurate calculation of 1/h is attained in first iteration
step. Therefore, in the same step we also find the integral characteristic / and

total quantity of droplets N with the relative error less than 0.15.
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5 Initial and final periods of two-component condensation

Omitting in the following the approximation superscript, for the spectrum

in accordance with eq.(68) we have

q)l*
1) = e

¢t exp [ex — ]. (116)

Inserting eq.(116) in eq.(28) we obtain

Xonls*v* (I)l* 4 /z dzx (Z —= 3;)3 exp [c:c — Gcm] . (117)

= ———C
. XD*nlsV GF*

—C0

The expressions (117),(29) are already true not only during the stage of
formation of spectrum (when xo ~ Xox,V =~ Vi and nis = nie (2. = 1,2))
but also during whole condensation process. The time dependence of the factor

nisVa/misV (1 = 1,2) is assumed to be known, and the value xo satisfies eq.(13).

The relations (27),(10),(13),(117),(29),(19),(20) form the consistent set of
equations. Resolving this set we can obtain the function z(t) of one independent
variable t. Together with z(t), the time dependences of {; (¢ = 1,2) are also

determined.

For the total quantity of droplets formed per volume unit we have according
to eq.(22):
V; oo
N = 0> / dz (). (118)
Inserting eq.(116) in (118) and integrating, we obtain

V* @1*63

N = nie (119)

Let A_®; (i = 1,2) and A_t be the changes of ®; and ¢ corresponding to
the change of z from —A_z to 0, and let A;®; (i = 1,2) and A4t be the changes
of ®; and ¢ corresponding to the change of z from 0 to Ayz. The values ®; and ¢

have the magnitudes ®;, — A_®; and t,— A_t at moment of beginning of intensive
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nucleation and the magnitudes @ + Ay®; and t, + ALt at moment of end of

intensive nucleation.

From eqs.(40),(76),(39) and (43) we have

A_Qi 1.8461' A+CI)Z' 1.15Ci .
_ = 1,2 12
;. all+ el @ cl'y + el G ) (120)
and, in view of eq.(10), also
A_t 1.84 ALt 1.15
= 8 = (121)

te  mly+mely’ — maly 4+ mely

Supposing that the condition
mlI‘l + 7722F2 > 1 (122)

is observed (this condition excludes from theory only very small m; and ma),
the smallness of the RHS of eqs.(120),(121) will be guaranteed what justifies the
linearization of the upper of eqs.(10) in ¢ and z during the first stage which has
been used in eq.(40).

The full width of spectrum Az and the full duration of first stage At are

determined as follows

Az=A_z+Arz, At =A_t+ At (123)
From eqs.(76),(121) we have

Az = 3/c, At = 3t./(mil'1 + mal's) (124)

The condition (122) leads to the smallness of intensive nucleation duration in

comparison with the time of the beginning of nucleation.

In order to complete the description of the kinetics of two-component con-
densation under dynamic conditions, it is necessary to determine the time de-
pendences of z,(; and (. The rate of increase of linear size of droplet is not so

sensitive to
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supersaturations (; and (; as the nucleation intensity, hence the high accuracy of

determination of the supersaturations {; and (; is no longer demanded.

Since, according to eq.(116), the spectrum is relatively symmetrical about
the point z = 0, from eqs.(27),(117) and (29) one can obtain the approximations

0 n1 Vi D1
Xo s 0323

=% Xox nlsv 61,

(125)

IFee Xo nls*V Ql* 3 3
X0x n2sV 6F

corresponding to the approach of monodisperse droplets. The relative error of the

(o= 0z — (126)

second terms of sums in eqs.(125) and (126) becomes important if z <~ Az =
3/c. However, in this case these terms become small in comparison with the first
terms attaining values near ®,,. and ®,, as early as the beginning of first stage.

Therefore, the RHS have a high relative accuracy from the first stage.
At first, let us consider the period when

B; — Biul /B < 1 (1 =1,2). (127)

With allowance for eqs.(13),(127) we obtain from egs.(125),(126) and (19):

i
(1 = By, [1 — T c323] , (128)
CQ @2* l: = P* 6]1_1 CSZB:I 5 (129)
dz g e
== =2—g; (1= , 130
dt - T xor [1 6T, a3 (130)
=1— X"—J;l(ﬁ—)- (131)

Obviously, a <~ 1.
Solving eq.(130) with initial condition (20), we obtain

t —t. (1+z/z,+z2/zz)1/2 /3 2z[z, +1 s
u 3arct - :
5 n 1 —z/zr + arctan \/§ 2\/§

(132)
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where
1 1 (6T.)%
t, = —(6T.)PalAt = - ——"—t, 133
LR TV e (133)
1 1
P g(ﬁI‘*)l/‘gaAm = Z(GI‘*)I/Ba. (134)

In virtue of eqs.(32),(38) it follows from egs.(122),(133),(134) that z, >~
2Az, 3t, >~ 2At and t, < i..

The relations (128),(129) and (132) determine the dependence of (1, ¢, and
t on 2. To find the dependence of (1, (; and z on ¢ it is necessary to solve eq.(132)
with respect to z. Particularly, we have
s
At

t— *
¥ = By [1 — V3¢ exp (— 3 i )] (t —t. >~ 3t,) (136)

T

z

t—t) (At <~t—t, <~ 3t./2) (135)

The expression (135) describes an initial period of condensation which,
according to 3t,/2 > At > A,t, ends a little later than the first stage. During
this period ; ~ ®; ~ ®;. (i = 1,2).

The expression (136) describes a final period of condensation. During this
period the exponential term in the RHS of eq.(136) is already small so that 2
almost coincides with z.. Then from eqs.(128),(129),(134) and (136) it follows
that

= 1a

o=, [1 — 6@ + 3v3a3e" B exp (— )] (f—t, >~ 3),  (187)

-

t=—1,

(o = By [1 ~ P.a®+ 3v/3P.a%™ ™3 exp (— )] (t—t, >~ 3t.). (138)

T

According to these relations, ¢, represents a relaxation time.

The region of validity of eqs.(135),(136) is also limited by inequalities (127)
which can be broken when the ideal supersaturations continue to increase. According

to egs.(10),(122) and (133), the inequalities (127) are still observed at ¢ —t, ~ 3t,,
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but they are broken as the time increases. Thus, under the conditions when the
ideal supersaturations increase the asymptotic relations (136)-(138) are valid only
at t — t, ~ 3t,. Then the eqs.(137),(138),(127) and (27) lead to the relations
(i/® < 1,¢;/® ~1 (i =1,2) which mean that the droplets have absorbed
practically all the condensing substance (provided earlier the metastability of

vapor mixture).

As long as t—t, <~ 3t, (i.e. before the final period) the value g;/®; increases.
According to eqs.(56),(29),(124) at ¢. and at t, + A4t, we have, respectively:

g1 g2

== =1/T,, = =P /W s 139

®1 t=t, / q)2 tanty / ( )
s =157, 2 — BT (140)
@1 t=ty+ Ayt @2 t=te+A4t

From eqs.(139),(140) it follows that the values g1 /®; and g»/®; increase the most
rapidly after the end of final period of condensation, and in time 3t,/2 <~ ¢ —
t. <~ 3t, they attain the magnitudes near 1, i.e. practically whole two-component

vapor mixture is absorbed by droplets. During this period the evolution of (i, (2

and z is described by relations (132),(128),(129).

If the ideal supersaturations are stabilized then the relations (136)-(138)
remain true during a final period as long as t — t, >~ 3t,. Their validity will be
limited only by restriction (30). From egs.(22) and (128) it follows that during
whole final period the distribution p(p, t) practically does not change. The relative
width of spectrum is characterized by value Az /22, which is equal to (9/16T.a®)*/?
as it follows fr(;m eq.(134).

If the ideal supersaturations continue to increase, then the relations g; Jilly e
1 (i = 1,2) attained by ¢ — ¢, =~ 3¢, can be assumed as initial conditions for

following evolution.
First, let us consider the condensation in materially open system.

Since in this case ni, = niss (i = 1,2) and V = V;, from egs.(19), (13), (125),
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(126) it follows that
. (GF*)l/?’ (XO*)l/S (‘I’l _Cl>1/3:
c Xo (1)1*

. (nztot*)1/3 (6F*)1/3 ( X0x )1/3 (‘I)z — C2>1/3 (141)
Nitots 1—Xo 0P 1

1% d
(1 — xofi(xo0) = ; 1Xo:§—, (142)
F d
(2 — (1 — x0) f2(x0) = ;22(1 - Xo)d—j- (143)

Taking into account the initial conditions g; /®; ~ 1 att—1t, ~ 3, let us
assume that ®; — (; ~ ®; (i = 1,2) in eq.(141) and find z in first approximation:

L (GF*)I/B (XO*)I/B (‘1’1 )1/3 _
c Xo q:)1»:

= <n2tot*)1/3 (61‘*)1/3 ( o >1/3<®2)1/3. (144)

N 1tot* c 1—xo Dy,

Inserting eq.(144) in (142),(143) and making allowance for egs.(43), (10),
(13), (19), we have in first approximation:

3—m

ol 1O (o) ()T
®1, — Xoufi1(xox)  3T1 4 Tama/my \ Xox o, :

G — (1 —xo)falxo) _ 1 (GF*)I/SP,.}/B ( 1 —Xxo )2/3 (%)(3—mz)/mz
P — (1 — xou) f2(x0x)  3Timy/ma + T2 \1 — xox o, '

(146)
In order that the supersaturations ¢; and (, do not increase with time, the values

my and m, are to satisfy the restrictions
0<m; <3 (e = 1y2) (147)

Taking egs.(32),(38) into account, it follows from eqs.(145),(146) that

(1 — xofi(xo) (2 — (1 = x0)f2(X0)
Q. — XO*fl(XO*) Dy, — (1 - XO*)f2(X0*)

<1, <1 (148)
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These estimates together with usually observed conditions of slight dependence

of activities on solution composition

Xof1(Xo) a Xo*f1(Xo*), (1 = Xo)f2(Xo) ~ (1 — XO*)f2(X0*), (149)

mean that the vapor mixture metastability (decreasing with time) at this stage
is much less than its maximal magnitude, therefore a new intensive formation of

embryos will no more occur.

From eqs.(148),(149) it also follows that (;/®; < 1 (¢ = 1,2) and all the
more (;/®x < 1 (i = 1,2). That confirms the approximate equalities ®; —
(; =~ ® (i = 1,2) used for final period and provides a high relative accuracy
of expressions (144)-(146). According to eq.(144), the droplets grow so that they
have time to accumulate in themselves practically all the condensing substance

of both components.

Let us note that the time of validity of the expressions (144)-(146) can be
limited not only by condition (141) but also by other causes such as breakdown
of free molecular regime of material exchange between a droplet and a vapor
mixture, non-isothermal effects of condensation, coagulation, stabilization of ideal

supersaturations, etc.

According to egs.(22),(144), the graph of one-dimension distribution of droplets
p(p,t) moves as a whole along the p-axis. The relative width of the spectrum is

characterized by value D = Az/2z decreasing with time:
o ( 9 )1/3 Xo 1/3(%>1/3:
16F* X0x q)1
- (nuot*>1/3 ( 9 )”3 T (%)”3, (150)
T atots 161, X0x o,

In the case of materially closed system from egs.(19), (13), (125), (126) with

consideration of

n,~3<I>iV = nis*@i*V* (’L = 1,2) (151)



we have i
1/3 (6F*)1/3 O+ P, -G — (2
Z = Xox 3 (152)
c x0®1 + (1 = x0)Pan1tot/ Natots
o x0fi(x0) = ToxoS(81) 5 (153)
1 — XoJ1{Xo —adXo W)
Tox dz
G — (1= x0)falxo) = —(1 — x0)52(®2) - (154)
(8 %) 1
Assuming ®; — (; ~ ®; (z = 1,2), from eq.(152) we obtain in first approximation
1/3(6T,)Y/3 ®; + @, HE
Z = Xo : (155)
¢ xo®1 + (1 — Xo0) ®27110tx/Tat0t
The expression (155) leads to the equality
dz/dt =0 (156)
not only in virtue of evident equality for a materially closed system
my = My (157)

but also because of relation observed in this approximation for such a system

N1tots
= otx 158
xo N1totx T N2tots (158)
Thus, in first approximation we have
1/3 1/3
« 1.
. (XO ) ()™ (159)
Xo c
G — xofilxo) =0, & — (1 —xo0)f2(x0) =0. (160)

In view of estimates (149) the equalities (160) justify the approximate relations
®; —(; ~ ®; (1 =1,2) used in eq.(159) at final period and provide a high relative
accuracy of eqs.(159),(160).

According to egs.(22) and (159), the one-dimensional distribution of droplets
p(p,t) practically does not change during a final period. The relative width of

spectrum is characterized by value D = Axz/2z which is equal to

1/3 1/3
D :( 4 ) Xo (161)
16P* XD*

and practically does not change with time.

The validity time of egs.(159),(160) is still limited by condition (30).
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6 Attainment of the metastability maximum in consequence of sta-

bilization of both ideal supersaturations

Now, let us consider the case where an attainment of metastability maximum
is due to the simultaneous stabilization of both ideal supersaturations. For the
moment ¢, of attainment of metastability maximum and for the magnitudes @,

and ®,, of ideal supersaturations of both components we have:

t = to; Biy = Bo; = (to/t:)™  (i=1,2). (162)

Approaching to the point z = 0 the real supersaturation (; continues to
increase and the rate of consumption of i-component of vapor mixture by the
droplets still remains less than the rate of increasing of the corresponding ideal
supersa,turation. In view of eqs.(41) we obtain (instead of eq.(52)):

(I)l*
s

% (0) < =c (163)

At the moment when the ideal supersaturation ®; is stabilized the real super-

saturation (; begins to decrease.

Taking eqs.(53),(163) into account, let us introduce the parameter ¢ by

g 6I‘*XO*

Wfs((Dlh@Z*)a (164)

where f,(®1., ®2.) is given by relation (35) in which ®;. and ®;, are determined

by external conditions.

Considering eq.(164), instead of eqs.(56),(93) we shall have in first approxi-

mation
Ql*
g1(z) = e—f—ecz (z <0), (165)
D, 1 1
qa(z)=¢€ Fl,.‘ 1+cz+ §c222 + éc3z3 + ﬂc‘lz“} (z 2 0). (166)

It is evident that the fulfillment of relation (163) is provided by condition € < 1.
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From eqs.(27),(29),(165),(166) it also follows that

€
(1(0) = @y, (1 = F_) , (167)
(2(0) = s (1 - Rif—) . (168)
Instead of eq.(94) for the spectrum in first approximation we have
flz) =€ D1 ctexp ez —ee”®] (2 <0),
6F*XO*
D4, 1 1 1

flz)= EGF*IXO* c*exp {——e (1 +cz + 5c2$2 + 6631173 + ﬂc‘lmq)] (z > 0). (169)

The stabilization of ®; and ®,, according to egs.(4),(5), also means the
stabilization of nys,ngs and V. The equalities n;; = niw (2 = 1,2) and V =V,
are now observed with a high relative accuracy in a materially open system as
well as in a materially closed one. Therefore, eq.(28) takes the form

g1=x0. [ _do(z—2)°f(e). (170)

Inserting eq.(169) in (170), one could obtain the second approximation of
g1 correct during whole condensation process. This approximation together with
eqs.(19),(27) and ®; = ®;. (i =1,2) would allow to obtain a consistent differential

equation of the first order in unknown function z of one independent variable .

Supposing that

€<~ 1/€®, (@7L)
one can replace (169) by
_ q)l* 4 cx
o) = cricte (e <0),
f(z)=¢ i c*exp [—ic‘*m‘i} (z > 0). (172)
6F*X0* 24 -

Figure 2 shows the behaviour of spectrum f(z) in different cases of stabilization

of ideal supersaturations, the parameters m;,ma,t1, and ¢» being fixed. Curve A
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corresponds to f(z) given by eq.(68) (stabilization of both ®; and @, after the
formation of spectrum, zy > 1.15/¢). Spectrum B is given by eq.(94) at 2o = 0
(simultaneous stabilization of ®; and ®; at moment of attainment of metastability
maximum). Both spectra C and D correspond to the case of simultaneous stabilization
of ®;, and ®, before the attainment of metastability maximum and are given,

respectively, by eq.(169) with e < 1 and by eq.(172) with € <~ 1/¢®.

According to eqs.(172), for the left and right half-widths of the spectrum we
obtain
24\ 1
Ag=1fe Bud= (—> e (173)

€ &

Inserting eqs.(172) in (118), taking into account egs.(170), V' = Vi and

neglecting the small contribution from = < 0, we obtain

63 1/4 @1* "
= o | — N 174
N A’I’Ll (54) F*XO*C ( )
where
A /Oo dé e = 0.91, (175)
0

According to eqs.(173),(40),(170),(43), instead of eqgs.(120),(121) we have

A_D; i AL D,
.. N PN Q. ’ (176)
L ¢ 24\ 1/4 1
At = 1 , By — (—) —_—, (177)
i mily 4+ mol's [ € mil'y + maol'y

As it follows from eqs.(177) and (171), the condition (122) guarantees the smallness
(in comparison with t.) only of time interval A_t but not of time interval A t.

From eqs.(173),(177) and (171) the strong inequalities
A_z € Az, ALK ALL (178)

also follow which allow to obtain the expressions

1/4 1/4 ¢
Am=<%> l, At:(%> — (179)

€ c € mlI‘l + m2F2 '
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Therefore, by neglecting the very inessential part of spectrum for z < 0, one can
present eqs.(172) as

(Dl*
F*XO*

4
flz) = 4=—2(Az)* exp [_ (&) ] o(z). (180)
Obviously, the condition (171) corresponds to the case of instantaneous

creation of metastability.

In accordance with eq.(180) the spectrum has a relatively symmetrical (about
the point £ = Az/2) form resembling regular polygon with the width Az. Hence
with the help of eqs.(27),(170),(180),(175) and ®; = ®;. one can obtain the

approximations
4A9,, 1 AN A
C]. = @1* ol 1-\* (Am)S (Z — _2_> b (181)
1A%, 1 Az\®
(2 = (1)2*_P*_I‘*—(_A:B—)3 (2— 7) , (182)

corresponding to an approach of monodisperse droplets (relatively to the average
size z — Az/2). For z <~ 3Az/2 a relative error of second terms in the RHS
of eqs.(181),(182) becomes important. However, the second terms themselves
become negligible in comparison with the first ones. Thus, the RHS of eqgs.(181),(182)
have a high relative accuracy beginning from the first stage which in view of

equation (178) begins as a matter of fact at moment ¢, when z = 0.

Taking into account eqs.(13), xo = Xos, Ris = Nis« (¢ = 1,2) and inserting

equations (181),(182) in (19), we obtain

dz oy a® 4A 1 Az\?
—_— = — 0|l -z —— i 183
dt  Tix Xox 1 [ e (Az)? (Z 2 ) ] (188)

Replacing the initial condition (20) for the eq.(183) by practically equivalent
condition z = Az /2 at t = ¢, + At/2 and solving eq.(183), we have

t—t,— A2 _ (2 — Az/2)2/22 + (2 — Az/2)/ 2 +1]'* .
L, -7 1—(z — Az /2)/2

v/3 arctan [Q(Z — Aa\:;;)/zr Ls 1] - 2%, (184)
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where
4A ~3\44
(taken into account the equality Az/At = 0102 ®@14 /71X — 0% following from

1/3 1 /T3
zr:(r*> afsey = (*) alAt (185)

eq.(19)). The estimates z, >~ 2Az,3t, >~ 2At are fulfilled in virtue of a ~
1,I'>1and A ~0.9

The expressions (181),(182) and (184) determine the dependence of (1, (;
and t on z. In order to find the time dependence of (3, (> and z it is necessary to

solve the equation (184) for z. In particular,

A 3 At
= (t—t. ~t—ty <~ St + =),
2= So(t-t) 0 < <~ Sto+ ) (186)
T At t — t. Az At
=) 24 = o = — i — 1y >~ 3t 3
2= [ ﬂexp(2ﬁ+2tr)exp( . )]—I— 5 ( >~ 3, + 2)

(187)

The expression (186) describes an initial period of condensation and expression
(187) describes a final one. During a final period of condensation the exponential
term in the RHS of eq.(187) is already negligible so that z practically does not

change with time and has a magnitude near z, + Az/2.

Inserting eq.(187) in (181),(182) and taking eq.(184) into account we obtain

— 3 3 T _Zﬁ (_t - t*) _ 25 él
¢ = P4, [1 a® + 3v/3a® exp (——2\/§ + 2tr) exp 7 (t—t, >~ 3t,+ 5 ),
(188)
_ - 3 3 T _A_t (_t = t*)
G = 0, [1 P.a® + 3V3P.a® exp (——2\/§ + 2tr) exp A
At
(t —t, >~ 3t + 7). (189)

The validity of relations (188), is still limited by restriction (30).

With allowance for P ~ 1,a ~ 1 andA ~ 0.9 from egs.(188),(189) it
follows that during a final period of condensation (;/®; < 1 (1 = 1,2). From
eqs.(22),(187) it also follows that the one-dimensional distribution of droplets
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p(p,t) changes with time very feebly. The relative width of the spectrum of

linear sizes is characterized by value Az/2z, which is approximately equal to

(A/2T,.a®)'/3.

7 Conclusions

By means of classical approach to the binary condensation we have derived
the consistent set of equations of binary condensation under dynamical conditions.
Supposing that both real supersaturations attain their maximums simultaneously
(’synchronously’) at the moment of attainment of metastability maximum, we

have considered four different cases.

First, we studied the case where both ideal supersaturations are stabilized
after the formation of the spectrum of linear sizes of droplets. With the help
of iteration procedure we have obtained the spectrum of linear sizes of droplets
f(z) in first and second approximations. According to eq.(77), the first approxi-
mation of spectrum given by eq.(68) is fairly accurate. The spectrum f(z) does
not depend on time by definition (22), and the time dependence of the two-
dimensional distribution of droplets n(p, x,t) given by (14),(22) is determined by
the time dependence of values yo and z provided in this case by eqs.(13),(125),
(126), (132). The equations (125),(126),(132) provide also the time dependence
of both real supersaturations ¢; and (. The total quantity of droplets N formed

per volume unit is given by eq.(119).

Then we considered the cases of stabilization of both ideal supersaturations
®, and P, after the attainment of metastability maximum: either, a) both ®; and
®, are stabilized simultaneously before the end of stage of formation of spectrum,
or, b) @, is stabilized before the end of this stage and @, is stabilized after the
end of this stage. For both cases with the help of iteration procedure we have

found the spectrum and shown that the first approximation allows us to find the
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total quantity of droplets N with the relative error less than 0.15.

We considered also the case where the attainment of metastability maximum
is due to the simultaneous stabilization of both ideal supersaturations. In this
case for the spectrum we have attained the general expression (169) which can
be rewritten as (172) if ¢ <~ e® The equations (187)-(189) represent the

asymptotic behaviour of z, (i, and {; with time.

In section 5 we have defined the terms ”initial period” and "final period”
because only for these periods we can obtain explicit expressions for the time
dependence of z. The time dependence of z is very important for our theory
because z is contained in the expression (22) for the one-dimensional distribution
p(p,t) and, therefore, in the two-dimensional distribution n(p, x,t). The value 2
represents the coordinate of the maximum of spectrum which moves as a whole
along the p-axis with the velocity equal to the rate of increase of linear size of
droplet. As it follows from egs.(135) and (186), the time dependence of z is linear
during initial period. During a final period the time dependence of z is very slight
and given by eqs. (136) and (187) if the ideal supersaturations are stabilized. If
both ideal supersaturations ®; and ®, continue to increase, then time dependence
of z is given by eq.(144) for the materially open system and by eq.(159) for the

materially closed system (in the last case z doesn’t depend on t if we assume

Xo = nltot*/(nltot* + n2tot*))-

The relative width of spectrum can be characterized by value D = Az/z
which generally slowly decreases with time or remains constant during final

period.

To illustrate the developed theory we have carried out the numerical calculations
for the condensation in the materially open system ”ethanol (first component) -
hexanol (second component)” at 7' = 260 K in the case of stabilization of ideal

supersaturations after the formation of spectrum of linear sizes of droplets, the
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Main values of theory for the condensation in the ethanol (1) - hexanol (2) open

system at my = 1, ¢, = 0.05 s, mg = 1, t; = 0.05s, and 7' = 260 K

e =0.625, an =05
Xex Xox . D, [ RRE. I I' I a C2
0.765 | 0.996 | 2.146 | 2.146 | 0.1073 | 65.2 | 20.0 | 85.3 | 2.3x107* | 2.3x107*
Zy Az by At,s C
28372 13098 0.0027 0.0038 2.3x10*
ag = 0.0042, ag = 0.004
Xer | Xox | P | @2 | tu,s | T | T2 | Ik a 2
0.801 | 0.996 | 2.712 | 2.712 | 0.1356 | 41.8 | 10.4 | 52.2 0.011 0.011
z Az tr, s At,'s c
532 274 0.0050 0.0078 0.011

parameters in eq.(10) being as follows: my =1, t; = 0.05 5,mg = 1, 1, = 0.05 s.

Without describing the procedure of numerical calculations, let us note that,
unlike the theory of one-component condensation, a correctness of data about
the sticking coefficients s, o influences not only a correctness of theoretical
predictions but also their accuracy since we have to solve the system of four
equations for X e, Xox, P1+, P2« with the supplementary condition ¢y @iiml = tﬂ%im?

following from (11). Our calculations were carried out for two couples

of sticking coefficients: oy = 0.625, s = 0.5 and oy = 0.0042, o = 0.004,
thermodynamic parameters for the ethanol-hexanol system being taken following
Strey and Viisanen (1993). The results of calculations for main values of theory

are summarized in Table 1.

The total quantity N of droplets formed per volume unit strongly depends

on sticking coefficients: N = 8.5x10° cm™ for agq = 0.625, aez = 0.5; and
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N = 1.91x10° cm™3 for oy = 0.0042, o, = 0.004. Figures 3a and 3b show
the corresponding spectra f(z) of linear sizes of droplets (eq.(116)). The time
dependences of the real supersaturations (; and (; for the time interval 0 <
t —t, < 3.5, are shown by Figures 4a and 4b (eqgs.(128),(129), (132)). In both
cases the difference between (; and (; is very small because (i« = (3. and that P,
is nearly equal to 1 (P. = 0.99996 at o = 0.625, aez = 0.5 and P, = 0.9998 at
ae = 0.0042, oz = 0.004), but it increases with time and attains a value of the
order of 107° (an = 0.625, ae = 0.5) or of 107% (o = 0.0042, oo = 0.004) at
t~t, + 3t /2.

It should be noted that we cannot obtain any analytical expression for the
duration of all condensation process which is determined by the time Z.ng at
which the constraint (30) is broken and the binary condensation changes into the
binary coalescence. Besides, we cannot obtain any explicit expression for the time
dependence of (1, (s, z for the interval of time 3¢,/2 < t < 3t,. It’s evident that
numeric methods like the methods applied by Wilemski and Wyslouzil (1995)
and by Wyslouzil and Wilemski (1995,1996) would make it possible to obtain the
time dependence of (i, and z for this interval as well as to estimate Zcong for
any condensing system. This is an advantage of numeric methods. On the other
hand, it will be necessary to draw a comparison between the results of presented
theory and experimental data as soon as appropriate experiments are carried out.
Particularly, it would be very interesting to compare our theoretical predictions
with experimental data for the time dependences of real supersaturations (1, (>
and average concentration xo of solution in droplets as well as for the total

quantity N of nucleated droplets.
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f({x)

Figure 1. Spectrum of linear sizes of droplets f as a function of p.
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f(x)

Figure 2. Spectrum of linear sizes of droplets f as a function of z for different
cases of stabilization of ideal supersaturations at fixed mq,ma, 11, 22. The curves
correspond to the following cases: (A) to zg > 1.15/c [equation (68)]; (B) to
20 = 0 equation (94)]; (C) to e < 1 [equation (172)}; (D) to £ <~ 1/e® [equation
(175)].
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Figure 3a. Spectrum of linear sizes of droplets f(z) (equation (116)) for
the ethanol(1)-hexanol(2) open system at T = 260 K, my = 1,¢; = 0.05 s,
mq = 1,1, = 0.05 s in the case of stabilization of ideal supersaturations after the

formation of spectrum, the sticking coefficients being an = 0.625, a2 = 0.5.
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Figure 3b. Spectrum of linear sizes of droplets f(z) (equation (116)) for
the ethanol(1)-hexanol(2) open system at 7' = 260 K, m1 = 1,11 = 0.05 s,
ms = 1,1, = 0.05 s in the case of stabilization of ideal supersaturations after the

formation of spectrum, the sticking coefficients being o, = 0.0042, aep = 0.004.
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Figure 4a. Time dependence of real supersaturations (; (solid line) and (2
(points) in the binary ethanol(1)-hexanol(2) open system at 1" = 260 K, my =
1,t; = 0.05s, mg = 1,1, = 0.05 5 1n the case of stabilization of @y, ®, after
the formation of spectrum f(z) plotted according to equations (128), (129) and
(132), the sticking coefficients being aq = 0.625, ey = 0.5.
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Figure 4b. Time dependence of real supersaturations (; (solid line) and (s,
(points) in the binary ethanol(1)-hexanol(2) open system at 7' = 260 K, mq =
1,t; = 0.05 s, my = 1,1, = 0.05 s in the case of stabilization of ®,,®, after
the formation of spectrum f(z) plotted according to equations (128), (129) and
(132), the sticking coeflicients being a.; = 0.0042, oz = 0.004.



CONCLUSION

Dans cette thése nous avons étudié certains problemes de la théorie de la

condensation binaire homogene.

Premiérement, nous avons considéré la thermodynamique de la nucléation
binaire, en nous concentrant en particulier sur I’énergie libre de formation d’une
goutte, le choix de ses variables d’état indépendantes et la distribution d’équilibre
des gouttes. Cette derniére joue un réle essentiel dans la théorie de la nucléation
binaire, car la vitesse de nucléation binaire (la plus importante caractéristique du
processus) est proportionnelle 4 la distribution d’équilibre. Cela est une conséquence
du fait que ’on suppose toujours que la distribution des gouttes dans la région
précritique des variables d’état est celle d’équilibre et qu’elle a la forme de la
distribution de Gibbs. Cependant, le probléme de la détermination de son facteur
de normalisation est aussi complexe qu’important: le facteur de normalisation de
cette distribution d’équilibre ne peut pas étre déterminé de fagon unique. Il existe
quelques approches de ce problémes dont aucune ne peut étre retenue comme
la meilleure. Ici nous avons discuté de ce probléme et nous avons présenté un
nouveau facteur de normalisation qui a été obtenu & I’aide d’une approche unifiée
de la condensation binaire homogene et de la condensation binaire hétérogene. Les
résultats théoriques ont été illustrés avec des calculs numériques pour un systeme
binaire “éthanol - hexanol” et un systéme monocomposante “eau”. Ces calculs
montrent que le nouveau facteur pourrait assurer, dans certains cas, un meilleur
accord entre les prédictions théoriques et les données expérimentales concernant

la vitesse de nucléation binaire.

Deuxiémement, nous avons développé la théorie cinétique de la nucléation
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binaire non-isotherme. Cette théorie permet de tenir compte de 'influence des
effets thermiques sur le processus de la condensation binaire. Les effets thermiques
de la condensation sont causés par la chaleur de condensation. Les molécules du
mélange de vapeurs absorbées par une goutte de la solution binaire liquide lui
transmettent de la chaleur de condensation, tandis que les molécules émises par
la goutte de la solution liquide lui enlévent de la chaleur de condensation. Comme
la goutte croissante de la solution liquide absorbe plus de molécules qu’elle n’en
émet, sa température moyenne augmente au fur et a mesure de sa croissance,
la température du mélange de vapeurs étant constante. Cet échauffement de la
goutte liquide augmente sa faculté d’émettre des molécules. Par conséquent, il
cause la diminution de la vitesse de nucléation et I’augmentation de la durée de
nucléation. En outre, cela influence la composition des gouttes liquides et d’autres

caractéristiques du processus.

La théorie de la nucléation binaire non-isotherme a été développée & partir
de I’équation discréte du bilan décrivant I'échange de substance et d’énergie entre
le mélange de vapeurs et les gouttes de solution liquide. Cette équation tridi-
mensionnelle décrit I’évolution temporelle de la distribution de ces gouttes selon
trois variables indépendantes: les nombres de molécules des deux composantes
dans une goutte liquide et sa température. En réduisant I’équation discrete du
bilan & la forme différentielle, on obtient 1’équation cinétique tridimensionnelle
de la nucléation binaire non-isotherme. Dans le cas des chaleurs de condensation
arbitraires, cette équation cinétique dépasse les bornes de ’approximation de
Fokker et Planck. Seulement dans le cas ol les chaleurs de condensation sont
tres petites par rapport a la fluctuation efficace de I’énergie d’une goutte liquide,
I’équation cinétique peut étre réduite & celle de Fokker et Planck. Dans la presente
these, pourtant, aucune restriction n’est imposée sur les chaleurs de condensation
et, par conséquent, I’équation cinétique & résoudre dépasse les bornes de ’approxi-

mation de Fokker et Planck.
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L’analyse de I’équation cinétique permet de déterminer la hiérarchie des
échelles de temps de la nucléation binaire non-isotherme. Cela rend possible de
séparer et de décrire analytiquement I’étape de relaxation thermique pendant
laquelle la distribution des gouttes selon la température s’approche d’une gaussienne,

alors que leur distribution selon les nombres de molécules ne change guere.

A Détape suivant la relaxation thermique, '’équation cinétique tridimension-
nelle peut étre résolue en utilisant successivement la méthode de Chapman et
Enskog et celle de séparation compléte des variables. L’application successive de
ces deux méthodes permet (dans le cas non-stationnaire aussi bien que dans le cas
stationnaire) de réduire notre équation cinétique a I’équation monodimensionnelle
de Fokker et Planck dont les coefficients contiennent toute I'information sur les
effets thermiques. L’analyse d’une telle équation est bien connue. Ainsi, toutes les
caractéristiques de la nucléation binaire non-isotherme peuvent étre déterminées.
Dans cette these, nous avons présenté les caractéristiques stationnaires: la distri-
bution tridimensionnelle des gouttes, la vitesse de nucléation, la composition et la
température moyennes des gouttes. Les résultats théoriques ont été illustrés avec
des calculs numériques pour les systémes “éthanol-eau” et “éthanol-hexanol”. Ces
calculs montrent que la théorie développée assure un meilleur accord, par rapport
3 la théorie classique, entre les prédictions théoriques et les données expérimen-

tales pour la vitesse de nucléation.

Finalement, nous avons étudié la condensation binaire isotherme aux conditions
dynamiques. Dans ce cas, la formation et la croissance des gouttes se passent en
méme temps que la métastabilité d'un mélange de vapeurs croit graduellement,
atteint son maximum et décroit. C’est ainsi que la condensation binaire se passe

le plus souvent dans la nature.

Nous avons développé la théorie cinétique de ces processus pour les systemes
ouverts ainsi que pour les systémes fermés (du point de vue de I’échange de

matiere entre le systéme ot la condensation se passe et son environnement). Les
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deux sursaturations idéales que les vapeurs du mélange auraient eues en absence
d’absorption des molécules par les gouttes sont déterminées par les conditions
extérieures. Par conséquent, la dépendance temporelle des sursaturations idéales

est considérée comme donnée.

Nous avons considéré le cas on les sursaturations réelles des deux vapeurs
atteignent leurs maximums simultanément au moment du maximum de la méta-
stabilité du mélange de vapeurs. Nous avons obtenu le systéme d’équations intégrales
pour les processus considérés. Il est démontré que la méthode itérative permet
de construire le spectre des dimensions linéaires des gouttes et la distribution
des gouttes selon leurs deux variables d’état indépendantes, la précision relative
étant assez élevée dés la premiére itération. De méme, cette méthode permet de
trouver la dépendance temporelle des sursaturations réelles des deux composantes
du mélange de vapeurs aussi bien que le nombre total de gouttes par unité de
volume. Les résultats théoriques ont été illustrés avec des calculs numériques pour

un systéme ouvert “éthanol - hexanol”.



BIBLIOGRAPHIE

[1] REIss, H. J. Chem. Phys. 18, 840-848 (1950).

[2] NAIR, P.V.N. et Voura, K.J. J. Aerosol Sci. 6, 265-272 (1975).
[3] STAUFFER, D. J. Aerosol Sci. 7, 319-333 (1976).

[4] MIRABEL, P. et Katz, J.L. J. Chem. Phys. 67, 1697-1704 (1977).

[5] FLAGEOLLET-DANIEL, C., GARNIER, J.P. et MIRABEL, P. J. Chem. Phys.

78, 2600-2606 (1983).
[6] WiLEMSKI, G. J. Chem. Phys. 80, 1370-1372 (1984).

[7] RaY, A.K., CHALAM, M. et PETERS, L.K. J. Chem. Phys. 85, 2161-2168
(1986).

[8] WILEMSKI, G. J. Phys. Chem. 91, 2492-2498 (1987).
[9] SHI, G. et SEINFELD, J.H. J. Chem. Phys. 93, 9033-9041 (1990).

[10] MELIKHOV, A.A., KURASOV, V.B., DZHIKAEV, YU.SH. et KUNI, F.M.
Khim. Fiz Traduc. angl., 9, 1713-1725 (1990).

[11] MELIKHOV, A.A., KUrAsov, V.B., DZHIKAEV, YU.SH. et Kuni, F.M.
Soviet Phys. Techn. Phys. 36, 14-19 (1991).

[12] LAAKSONEN, A. J. Chem. Phys. 97, 1983-1989 (1992).
[13] WILEMSKI G. et WYSLOUZIL, B. J. Chem. Phys. 103, 1127-1136 (1995).

[14] DEBENEDETTI, P.G. et REIss, H. J. Chem. Phys. 108, 5498-5505 (1998).



Pergamon J. Aerosol Sci. Vol. 30, No. 3, pp. 265-277, 1999
@© 1999 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

PIIL: S0021-8502(98)00044-5 0021-8502/99 $19.00 + 0.00

KINETIC THEORY OF NONISOTHERMAL BINARY
NUCLEATION: THE STAGE OF THERMAL RELAXATION

Y. S. Djikaev,*' F. M. Kuni* and A. P. Grinin*

* Physics Department, University of Montreal, Montreal, Quebec, H3C 317, Canada
! Department of Statistical Physics, St-Petersburg State University, St-Petersburg, 198904, Russia

(First received 10 October 1997; and in final form 27 February 1998)

Abstract—A generalization of the method used in the kinetics of nonisothermal unary nucleation is
proposed to construct the kinetic theory of nonisothermal binary nucleation allowing one to take
account of the release of the latent heat of condensation. The three-dimensional balance equation
describing the material and heat exchange of liquid solution particles with the surrounding
vapor—gas medium is obtained. Independent variables in this equation are the numbers of molecules
of each component in a liquid solution nucleus and its temperature. Going beyond the framework of
the Fokker—Planck approximation is proposed for the corresponding kinetic equation. A hierarchy
of time scales of nonisothermal binary nucleation is established and an analytical description of the
thermal relaxation of the nuclei is given. Theoretical results are illustrated by numerical calculations
for the nucleation in a water-ethanol system. © 1999 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

inary condensation is a very widespread first-order phase transition and hence is of great
iterest in many fields. They usually distinguish three stages of any first-order phase
-ansition. During the first of them nuclei of a new phase are formed (this stage is also called
1e stage of nucleation) which play the role of condensation centers afterwards. It is during
1e second stage that the phase transition takes place properly—the bulk of a metastable
hase passes to a liquid phase. During the third stage the growth of large drops occurs to
1e detriment of small ones.

It is well known that nonisothermal effects can strongly influence a process of first-order
hase transition, particularly a vapor-to-liquid transition. There exist different kinds of
onisothermal effects in the condensation.

First, the heating of the growing nuclei by the latent heat of condensation. This causes
reduction of the nucleation rate in two ways: (1) increasing the ability of the nuclei to emit
10lecules; (2) decreasing the metastability of vapor phase (owing to the increase in the
:mperature of condensing system).

Second, temperature fluctuations of nuclei exist even in the absence of matter exchange
etween the nuclei and the medium. They also influence the emissivity of nuclei.

Third, the nuclei as particles of condensed matter are thermally quasi-isolate from one
nother being surrounded by the rarefied vapor—gas medium. Consequently, the tempera-
ure of a nucleus decreases gradually during each event of emission of a molecule, while the
10lecule passes from the nucleus through its surface layer to the vapor. Therefore, the
missivity of the nucleus must be determined by some intermediate value of its temperature
ut neither by the initial one (before the emission event) nor by the final one (after the
mission event).

At present, there exists a complete enough and adequate theoretical description of
onisothermal unary nucleation and condensation. Taking account of the release of latent
eat, Kantrowitz (1951) obtained the differences between isothermal and nonisothermal
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2. BALANCE EQUATION

First, let us construct a three-dimensional balance equation of nonisothermal binary
ucleation. Let us assume that the metastability of the vapor mixture is created instan-
ineously and does not change during the whole nucleation process. The temperature T of
1€ vapor mixture and the number density of passive gas molecules are also fixed. We also
ssume that there are not chemical reactions nor heterogeneous nucleating centers in the
ondensing system.

It is evident that there are three types of elementary interactions of a nucleus with the
apor—gas medium: (1) absorption of a molecule of Ist or 2nd components of the vapor
nxture; (2) emission of a molecule of 1st or 2nd components of the vapor mixture; (3)
:flection of a molecule of the vapor—gas medium.

The nuclei formed have so small sizes that the times of their internal relaxation processes
re very small in comparison with the time between successive interactions of a nucleus with
1¢ vapor—gas medium, and the interactions themselves take place under a free-molecular
:gime. This allows us to assume that the nucleus attains its internal thermodynamical
juilibrium before each successive interaction with the vapor—gas medium.

Let us choose the numbers v, and v, of molecules of 1st and 2nd component in a nucleus
nd its thermal energy E as its independent characteristics. The thermal energy E of a
ucleus is linear in the temperature and will be measured from its value at the temperature
"o of the vapor—gas medium. Expressing all the quantities which have the dimensions of
nergy in units of kg T (kg is Boltzmann’s constant), we have

E =(cyvy + c2v)) [T/To — 1], (1)

‘here ¢; (i = 1, 2) is the molecular specific heat of i-component in a nucleus (all the specific
eats are expressed in units of kg).

Let ¢ be the thermal energy of molecules striking a nucleus and let ¢’ be the thermal energy
f molecules reflected or emitted by a nucleus. Since the times of internal relaxation
rocesses of nucleus are small, the number W, (i = 1, 2) of molecules of component i which
nucleus emits in unit time as well as the distribution w' of the emitted or reflected
10lecules with respect to their energy ¢ are determined (in consideration of the thermal
daptation of reflected molecules) by the energy of nucleus:

Wi =W, B =12, W =w(,vs,Ele) @)

lere the variables v4, v,, and E correspond to the state of the nucleus before the interaction
nd we have taken account that the temperature fluctuation effect and the effect of nucleus
1ermal quasi-isolationship compensate each other. Of course, the distribution w(e) of the
10lecules striking a nucleus with respect to their energy ¢ is determined by the temperature
"o of the vapor—gas medium. For the distributions w(e) and w'(vy, vo, E|€') (which we
ssume being Maxwellian) we shall use the normalization relations

f dew(e) =1, f de'w'(vy, vo, E|&) = 1. (3)
0

0

Let us denote by g(v4, v,, E) the distribution of nuclei with respect to the variables vy, v,,
nd E at the time t (we shall not indicate the time dependence of values).

Denoting by W,(v,, v,) and B; (i = 1, 2) the number of molecules of component i being
bsorbed by a nucleus per unit time and, respectively, the molecular heat of condensation of
»mponent i, let us write the discrete balance equation governing the evolution of the
istribution g(vy, v,, E):

0g(vy, v2, E)

E =D{ +Dy +D3 +D; +4D,; +3D,,, 4)
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Jift B3 E 0
Ig=— |22 L2 = = E 14
E |:k1 W, + k, W, S TE s + 3E g(vy, v, E), (14)
1 ¢; .
E = o 2 [“ci + OC“'(]. - o‘(:i) + OCgpi] (l e 17 2)7 (15)
m\'? ng,
pi D) SR (G 1), 16
pl (mg> 2nic~i (l ) ( )

., m;, and n; (i = 1, 2) are the effective (in the sense of energy transfer to the nucleus) specific
eat, mass, and number density of molecules, respectively, of component i of the vapor
ixture; ¢,, m,, and n, are the analogous values of the passive gas.

The terms D; and D, in equation (11) describe the simultaneous transfer of both the
ubstance and the condensation heat to the nuclei by the molecules of Ist and 2nd
omponents, respectively.

The term — dI;/0F in equation (11) describes the transfer of the kinetic and internal
nergies to the nuclei by all the molecules of the vapor—gas medium. Its form corresponds to
ae fulfillment of the condition

vy + cavl)'? < 1 17

thich means a smaliness of the energy transfer by the molecules of the vapor—gas medium
1 comparison with the rms fluctuation of the nucleus energy, since the value (¢, v, +c,v,)'/?
spresents, according to the thermodynamic theory of fluctuations, the rms fluctuation of
nucleus energy in the absence of substance exchange between the nucleus and the vapor
uxture.

3. KINETIC EQUATION OF NONISOTHERMAL BINARY NUCLEATION

.t us introduce the variable ¢ instead of variable E as

E
¢ = B, + vl 5

nd present the distribution g(v,, v,, E) in the form
g(v1, va, E) = [2m(cyv; + c2v2)] " 2e " P(vy, v, 8), (19)

/here P(vq, v, €) is some function of vy, v,, ¢ (and of ¢, too).
Since usually 5; > 1 (i = 1, 2), the parameter

B B
5T ey + cav]

(i=1,2) (20)

/ill not be small despite inequality (17). The parameter t; represents the relative condensa-
ion heat of component i per molecule, ie. the condensation heat of component i per
10lecule expressed in units of rms fluctuation of the nucleus energy and divided by \/E
Jthough t; is always less than 1, in order of magnitude 7; ~ 1.

Let us introduce the operator

. 0
Li'E = WiFi' — Wi 6_\) (i . 19 2)9 (21)

cting on v-dependent functions (here F; = dF/dv;, and F is the free energy of formation of
he nucleus with the characteristics v, v, and E = 0: F = F(vy, v,, E = 0)). Let us define the
alues v, Av,. (i = 1, 2) by the relations

F:’|v1=vlc,v2=vzc = 0: Avic = |2/F:‘:'”v1=vlc,v2=vzc (l = la 2) (22)
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issumed to be much less than unity: @ < 1. Thus, we conclude that on the RHS of
:quation (25) the last term is the main one.

Equation (25) governs the time evolution of the three-dimensional distribution P. The
sierarchy of terms established above corresponds to the hierarchy of time scales in the
levelopment of the distribution P.

The eigenfunctions of the principal operator of the governing equation, ie. of the
yperator of the dominant term on the RHS of equation (25), are the Hermite polynomials
1, = H() (Ho =1, Hy, = 2¢, H, = 487 — 2, ...), satisfying the recursion relations

0 . 0
6—€‘Hj=2]Hj._1, <a—(§'—"2£)Hj=—H1+1 (27)

© (_
*mg‘z mlim!

a m am
(W + W) (a—é _ zc) g] H = —j3,H, (8)

vhere j=0,1,2, ... and

k, + 1
ks

ky +1
’4 k1

T%Wl -+ 2

j o 2mW + 2mW
AW, (- Y TR E ) )

,  mlm!l(j—m)!

We can conclude that — ji; (j =0, 1,2, ...) are the eigenvalues of the principal operator.
[hey all are negative except that for j = 0 which is equal to 0. For j = 0 and j = 1 the sum
yver m in equation (29) is absent. Obviously, 4; < 4, < ---.

The Hermite polynomials form a complete system of eigenfunctions satisfying the
srthogonality and normalization relations

(Hja Hk) = 5jk21:j! (]: k= 0’ 13 29 )9 (30)

vhere 3, is the Kronecker delta and the scalar product (®, ‘P) of function ® and ¥ of £ is
lefined as

(©,¥)=n"11 r dée SOV (31)

—w

From equations (19), (31) and H, = 1 it follows that the two-dimensional distribution
"= f(vy, v,) of the nuclei with respect to variables v; and v, is given by the equation
"= (Ho, P), ie. the two-dimensional distribution f is the projection of the three-dimensional
ne P on Hy.

Let us take the projection of governing equation (25) on H,. According to equations (27)
ind (30), only the first and second terms (which are the smallest ones, of order of 1 /(Avy)* or
[ /(Av,.)*) make contributions to this projection. Since f= (Ho, P), we obtain

of o,

m e s 32
ot 5v1 0\12’ ( )
wvhere
J;=|H I:—Wwfi"i—aip (i=12) (33)
i [1}) i 1m=1m!a€m — A

s the flux (averaged over ¢) of nuclei along the v;-axis.
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5. NUMERICAL CALCULATIONS

To illustrate our theoretical results by numerical calculations we considered the binary
wcleation in the vapor mixture of water (1st component) and ethanol (2nd component) at
"o = 293.15 K. Air at the normal atmospheric pressure was chosen as carrier gas. All the
thysical properties of both components required for calculations are well determined for
ioth liquid and vapor phases. Besides, accurate fits of several thermodynamic properties vs
omposition are required for water (1) ethanol (2) liquid solution and they are fortunately
Iso available.

The specific heats of pure water and ethanol in liquid and vapor phases were determined
vith the help of formulas given in Thermophysical Properties of Matter (1970). The latent
ieat of pure water was calculated from the formula given by Feder et al. (1966) and that of
sure ethanol was obtained by linearly extrapolating data in CRC Handbook of Chemistry
md Physics (1992-1993). The equilibrium vapor pressure of pure water was taken from
’RC Handbook of Chemistry and Physics (1992-1993), and that of pure ethanol was
alculated from the formula given by Mirabel and Katz (1977). The partial molar volumes
1 and v, of pure liquid water and ethanol, respectively, were computed from the density
-alues given by CRC Handbook of Chemistry and Physics (1992-1993) and the the volume
7 of the nucleus was related to v, and v, as V = v,v; + v,v,. As for the surface tension ¢ of
vater—ethanol liquid solution, we, following Wilemski (1987), fitted In ¢ with a third-order
solynomial in the variable 4(1 — y)/(4 — 3y), using data in Timmermans (1960). Following
Vlirabel and Katz (1977) and Wilemski (1987), the liquid-phase activity coefficients were
letermined from the three-parameter Redlich-Kister equation of d’Avila and Silva (1970).

Since there exist no theoretical nor experimental data on the thermal accommodation
nd sticking coefficients, calculations were carried out at various values of o, o (i = 1, 2),
:nd o, in order to illustrate the influence of these parameters on theoretical predictions.
lo illustrate the dependence of theoretical predictions on the degree of vapor mixture
netastability, calculations were performed for four couples of water and ethanol activities
1, {» at each set of coefficients o, a; (i = 1, 2), and «, (activity {; (i = 1, 2) is defined as
' = m;/ng;, where n; is the number density of i-component molecules in the vapor mixture,
ind ng; is the equilibrium number density of i-component molecules in a vapor saturated
swver the pure bulk liquid of this component). Results of calculations are presented in
lable 1.

Since the values 7; (i = 1, 2) do not depend on o, #; (i = 1, 2), and o, and the time ¢, does
10t depend on oy, &, o, We presented 7; (i = 1,2), and ¢, only in the first part of Table 1.

Figure 1 shows the time dependence of the first mode of the deviation P —f of the
listribution of nuclei with respect to the temperature from a Gaussian equilibrium distribu-
ion at the stage of thermal relaxation not only for the binary nucleation in the water-
sthanol system (using equation (35)) but also for the unary nucleation of pure water vapor
according to Grinin and Kuni (1989)). According to equation (35) and to the analogous
:quation of the one-component theory (Grinin and Kuni, 1989), the first mode of the
leviation P — f'corresponds to the greatest relaxation time (¢,) and, therefore, is the slowest
the most “long-lived”) mode of P — f. The second mode decreases with time about three
imes as fast as the first one. Air at the normal atmospheric pressure was a carrier gas in
yoth system and the thermal accommodation coefficients of both water and ethanol were
:qual to 1. Figure 1a corresponds to the binary system and Fig. 1b represents the nucleation
f pure water. The curves of series A were obtained for the case where the sticking
:oefficients o, and a,, of water and ethanol were both equal to 0.5; series B corresponds to
he case where o, and o,, were both equal to 0.1. In each series, the values of the thermal
iccommodation coefficient of air were taken as follows: a, = 1 for the boldest (lower) curve;
tg = 0.5 for the dashed (medium) curve; o, = 1 for the thinnest (upper) curve. According to
“ig. 1, the supersaturation (activity) of pure water vapor has to be equal to about 3.5 so that
he time of thermal relaxation of the unary nucleation should be the same as (or close to) the
ime of thermal relaxation of the binary nucleation of water and ethanol at the activities
w=15and {, =10
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Fig. 1. Thermal relaxation stage of (a) the binary nucleation in the water(1)-ethanol(2) system (the
activities being ¢, = 1.5 and {, = 1.0) and (b) the unary nucleation of pure water (at {; = 3.5), at
Ty = 293.15 K with air as a carrier gas. The curves show the time dependence of the slowest (first)
mode of the deviation P —f of the distribution of nuclei with respect to temperature from
a quasiequilibrium Gaussian distribution (equation (38)). Series A corresponds to the sticking
coefficients o,y = 0.5 and o, = 0.5; series B corresponds to ¢ = 0.1 and a,; = 0.1. In each series,
the values of the thermal accomodation coefficient of air are: «, = 1 for the boldest (lower) curve;
o, = 0.5 for the dashed (medium) curve; «, = 0.1 for the thinnest (upper) curve.
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ucleation with the help of relation (33), we have to solve the equation (25) taking account of
I the terms on its RHS. These problems will be objects of our further research. Of course,
s long as there are no experimental nor theoretical data about sticking and thermal
ccommodation coefficients a;, o, (i = 1, 2), «,, theoretical predictions will remain un-
srtain enough. Nevertheless, we will be able to get approximative magnitudes of these
oefficients by making a comparison between theoretical predictions and experimental data
n nucleation rates.
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Abstract—A kinetic theory is presented for isothermal homogeneous two-component condensation
under dynamic regime with synchronous attainment of the metastability maximum. It is shown that
extending the iteration method of treating of one-component condensation under dynamic condi-
tions to the case of two-component theory makes it possible to construct the spectrum of linear sizes
and two-dimensional distribution of two-component droplets, a relative degree of accuracy being
high enough even at the first iteration step. This method also allows one to find the time dependence
of both real supersaturations as well as the total number of droplets formed per unit volume during
two-component condensation. © 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Two-component condensation, i.e. formation and growth of drops of a liquid solution of
two substances in a metastable vapor mixture of these substances, is a process widespread in
the nature and important for technical applications (we shall use the term “metastable”
instead of less general terms “supersaturated”, “supercooled”, etc.). The theory of two-
component condensation is an important part of the theory of first-order phase transitions.
At the same time a development of two-component condensation theory is extremely
important for various applications, for example, in order to construct the quantitative
methodology of forecasting of acid rains.

We usually distinguish three stages of first-order phase transition. During the first of
them the embryos of a new phase are formed (this stage is also called the stage of nucleation)
which are condensation centers afterwards. It is during the second stage that the phase
transition properly takes place—the bulk of a metastable phase passes to a liquid phase.
During the third stage, the growth of large drops occurs to the detriment of small ones.

At present there exists the complete and adequate theoretical description of all three
stages of the one-component condensation. At the same time, the kinetic theory of two-
component condensation has been developed almost exclusively for the simplest case where
the metastability of two-component vapor mixture is created instantaneously (in neglecting
both the thermal effects of condensation and presence of heterogeneous nucleation centers).
The bases of such binary nucleation theory have been founded by Reiss (1950) who based
his argument on the results of Flood (1934) and on the classical one-component nucleation
theory of Becker and Déring (1935), Volmer (1939), Kramers (1940), Zeldovitch (1942) and
Frenkel (1946). Very important contribution to the theory of binary nucleation has been
made by Stauffer (1976), and that work has corrected the rate of binary nucleation obtained
carlier by Reiss (1950). The consistent kinetic theory of binary nucleation has been
constructed with the help of the method of complete separation of variables by Kuni et al.
(1990) and Melikhov et al. (1990, 1991) who have also found the new normalization factor of
equilibrium distribution. Important contributions to the development of stationary theory
of binary nucleation have been made by Mirabel and Katz (1974), Hirschfelder (1974),

*Author to whom correspondence should be addressed.
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The applicability of the theory is limited only by the conditions of validity of the classical
;apillarity approximations. It means that the droplets must be large enough, they hold at
east some tens of molecules. The formation of droplets demands their passage through
1 high activation barrier, ie. has a pure fluctuation character.

It is supposed that the condensing system and its environment do not exchange droplets.
At the same time, we shall consider both materially open systems, in which the condensing
substances sources exist homogeneously distributed, as well as materially closed systems.
The absolute temperature T and volume V of materially open system are assumed fixed. In
1 materially closed system a vapor mixture metastability changes as a result of the changes
of T and V, which we shall naturally take into account. It is also supposed that there are no
neterogeneous nucleation centers in the vapor mixture, and that no chemical reaction
sccurs in considered system.

2. COMPLETE SET OF EQUATIONS OF THE KINETICS
OF TWO-COMPONENT CONDENSATION

Let us denote by {; (i =1, 2) the supersaturation of the vapor of i-component over the
plane surface of its own liquid phase:

G=mn/ms (i=1,2), (1)

where n; is the number density of molecules of i-component in a vapor mixture; n is the
number density of molecules of i-component vapor saturated over a plane surface of its own
liquid phase (obviously, n;, depends on temperature T').

Let us introduce the value

D; = nio/mis (0 =1,2), 2)

where ny,, is the total quantity (in the vapor mixture as in the droplets) of molecules of
i-component in the system volume unit. Obviously, ®; represents the “ideal supersatura-
tion” of i-component which could be observed in the system at the same external conditions
if there was no consumption of this component by the droplets. In materially open system
T, V, n,, and n,, are constant, and ®, and ®, change only as a result of injections of
corresponding component by external sources. In materially closed system, the total
quantities of molecules of both components remain constant, i.e. ¥Vny, = Const (i =1, 2).
Therefore, in materially closed system the following equations are observed:

Risg V*/nis V= ¢)i/d)i* (l = 12 2)9 (3)

where the subscript “*” marks the values at some moment t,, when a nucleation rate is
maximal. For the theory that is intended to be developed this moment coincides with the
moment when a vapor mixture metastability is maximal, i.e. a critical embryo formation
free energy is minimal.

Usually in addition to the droplets and binary vapor mixture participating in a material
sxchange with the droplets, in a condensing system there is some passive gas the molecules
of which do not participate in a material exchange with the droplets. Let us suppose the
passive gas concentration is high enough. Then non-isothermal effects of condensation will
not be important, and the equation of state of the passive gas and character of thermal
contact of the system with the environment will determine the unabmiguous relationship
between n;, (i =1, 2) and V. Taking equation (3) into account, let us present this relationship
as a parametric one:

nis*/nis =8,(®) (i=1,2), 4)
Vil V =0/, 5:(®) (i=12), ()

where §;(®;) is some function (we do not indicate its dependence on @;,). With the help of
Clapeyron—Clausius’ formula one can rewrite equation (4) as

T/Ty = [S(@)1" (i=12), (6)
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Let us denote by v; and v, the numbers of molecules of the first and second components,
respectively, in the droplet. Let us choose the values p and y determined according to

p =i+ )3, x=vi/{(vi +v3) (12)

as the droplet state variables. The variable p represents the linear size of droplet, and
variable y represents the composition of the solution in a droplet. Let us denote by r(p, y, 1)
the distribution (corresponding to unit volume and expressed in units of n,) of droplets
with respect to the variables p and y at moment ¢. It has been shown (Kuni et al.,, 1990;
Melikhov et al., 1990, 1991) that the variable y is the stable one in near-critical region.
According to Dzhikaev (1992), during the second stage of two-component condensation at
the instantaneous creation of metastability, the distribution of droplets has a Gaussian
dependence on the variable y in supercritical region, and an average magnitude y, of
variable y is determined by means of quasistationary condition on y. Therefore, it is natural
to assume that in the present theory the distribution of droplets with respect to the stable
variable y in the supercritical region also has a form of Gaussian distribution, and that an
average magnitude y, of variable y in this region is determined by means of quasistationary
condition y = dy/dt =0 leading to the transcendental equation

devr1M1is(1 — %0) [E1 — Xo0/f1(X0)] = Geavranaso[{2 — (1 — x0) f2(x0)], (13)

where «; and vy; (i = 1, 2) are, respectively, the condensation coefficient and average thermal
velocity of molecule of i-component in vapor mixture; f;(x) and f,(y) are the activity
>oefficients of the first and second components in a liquid solution with composition y.
Therefore, the distribution n(p, y, t) has the form

= 27-1/2 _(X _XO)Z
n(p, 1, 1) = p(p, ) [2m(Ay)“] exp[ 287 | (14)
where Ay is an equilibrium value of the r.m.s. fluctuation of solution concentration in
1 droplet. The function p(p, t) represents obviously the one-dimensional distribution
corresponding to unit volume and expressed in units of n,,) of droplets with respect to
variable p at moment ¢.
It has been shown (Dzhikaev, 1992) that a linear size of droplet, practically immediately
ifter its formation, increases with time with the rate independent of linear size:

d 1s & 2s Yc2
p=g = : T = ool + n” j == ht], (15
7y = [onn(nv®/48)"° 171 (i=1,2). (16)

dere v = v(y) is the droplet volume per molecule (it is supposed that it depends only on y).
n equations (15) and (16) the temperature dependence of o;, vr; and v is much slighter than
hat of n;, and one can neglect it.

Under the conditions of validity of macroscopic theory of condensation, the character-
stic size of droplets is much greater than their sizes at moment of formation. Therefore, the
jolution of equation (15) has to satisfy the initial condition

p()]=0 =0. (17)

Taking into account that for all the droplets § does not depend on p and there is no
Iroplet exchange between the system and environment, one can (Kuni, 1984, 1988) present
he distribution p(p, t) in the form

oo, ) =" 2 0(0) c — p). (19

1s

L w=0),
= {0 (u <0),

Jere
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one-dimensional distribution £,(¢,, {,) independent of p. Thus, one can use f,({;, () as
a boundary condition to p(p,t). Taking into account that during the first stage
ni V & ng, V., we obtain from equation (22)

Jx) =f(l1(x), {2(x)), (23)

where {;(x) (i =1, 2) is the magnitude of the supersaturation {; at time (x) when the droplets
with given x were formed.

According to Kuni et al. (1990), Melikhov et al. (1991) and Dzhikaev (1992), the
distribution f, expressed in units of n,, has the form

£y, 82) = K(Ca, (o) exp[— F({y, £2) ] (24)

where the dependence of the pre-exponential factor K({y,{;) on {3,{, is a power ong;
F((y, ¢,)is the height of activation barrier of two-component nucleation at saddle point, i.e.
critical embryo formation free energy, expressed in units of kg T, at the current magnitudes
of supersaturations {, {,. For F({;, {,), in accordance with Kuni et al. (1990) and Melikhov
et al. (1990), one can obtain the expression

F(l1, L) = 167302 (1)/3 [ In &y + (1 = %) In {3 — G(xo)17, (25)
where

G(xe) = 2e InDte fi(x) ] + (1 — o) In(l = %0) f2(x)]; (26)

¥ is the composition of solution in a critical embryo; y, is the surface tension of embryo in
units of kT, (assumed independent of the composition of solution in an embryo).

The expressions (14), (13), (19), (22)~(24) represent the solution of the kinetic equation of
two-component condensation (obtained first by Reiss, 1950) for the considered supercritical
droplets. In order that this set of equations comprising the unknown functions { 1(x) and
¢,(x) becomes consistent it is necessary to add to them the material balance equations for
both components:

o, =(+g; (=12, (27)

where g;, according to equations (1) and (2), represents the total quantity (corresponding to
unit volume and expressed in units of ny) of molecules of i-component condensed in all the
droplets. Taking into account the facts that p? is the total number of molecules in a droplet
of linear size p and that y, does not depend on p, we obtain in view of relations (14), (21)
and (22)

V z
o= L dx(z — 9 £ (), 8)
1-— His
gp=——20 Mg (29)
Xo Rag

The relations (14), (13), (22)—(24) together with (10) and (27)—(29) compose the consistent set
of equations of the two-component condensation. The unknowns in this set are the
spectrum f(x), coordinate z and composition .

Let poq(f) be the coordinate of the left bound of the region in which the values of the
distribution p(p, t) are relatively important at time t. Obviously, during a nucleation stage
Pmia(t) =0. However, after its end the coordinate p,,(f) begins moving along the p-axis
with the rate p of the increase of linear size of droplet. The decrease of the supersaturations
¢, and ¢, (on account of the consumption of vapor mixture substances by the ensemble of
supercritical droplets) slows the velocity of movement of the coordinate pmw(t) down,
according to equation (15). The decrease of the supersaturations {; and {, (causing the
decrease of the metastability of condensing vapor mixture) induces simultaneously the
increase of the critical droplet size p.({;, {,) at the current magnitudes of supersaturations.
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where the ®@,(x) is the ideal supersaturation ®@; at time ¢(x) when the droplets with given
x were formed. According to equation (39), the value 1/c; represents the length on the x-axis
on which the relative change of supersaturation ®; is 1/T,.

Linearizing @;(x) in x near x =0 and using equation (39), we have

@,
@(x) = Oy + =" cix (i =1,2), (40)
r*

and expression (21) takes the form

) — Oy = T ex — i) (=1, @41)

Inserting equation (41) in equation (34) and taking equations (29) and (36) into account, we
obtain

r
S(x) = (@1, Ozy) €XP [cx == 91(x)], (42)
1
where
l—‘1 FZ
=— == ;. 43
c T, ¢y + T, (e 43)

During the nucleation stage on account of its relative shortness one can assume
Ny = My (i =1,2), V =V, and yo = y04. Taking equation (42) into account, we rewrite
equation (28) as

z

dx(z — x)® exp I:cx il gl(x)]. (44)

016) = 100 @i @20) | E
1%

= oo

According to the definition of z, as a time moment of attainment of the metastability
maximum, we have

dF
—- = 45
|2, 0 (45)
d?F
it ) 46
2.0 (46)

Using equations (25) and (26), from equations (45) and (46) we obtain, respectively,
equation

Xe dCl

2 s 1— %45
¢y dt

+ =0 47
t=t, {, dt i

t=t,

and the inequality

Xe _1_ % z_ﬁdzgl _ 1 —y.d%

1—go i\ de. ¢y de? [, di?
(it is assumed that the condition of metastability of two-component vapor mixture (Kuni
et al., 1990; Melikhov et al., 1990) is observed). From equation (47) it follows that the

alternative possibilities exist for the behavior of supersaturations {; and {, at the moment
ty: either

>0 (48)

t=t,

dgy df,
—_— = e— = 4
dt r=t, dt t=t, 0 (49)
or
df, 1 —y. £ dl,
— = — — " #0. 50
dt |i=s, Xe $C2 dt o=, G0)
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Let us construct the second approximation corresponding to the insertion of equation
(56) in the RHS of equation (44). In this approximation, the accumulation of substance by
the droplets occurs more slowly than it occurs in reality.

We have
91(0) = Kou i1 @) | dile =) explex — e, (58)
91(0) = Yoy Jo(@14, D2y) 31’2/03 » (59)
and also
Si@y Br) = ot (60)
3b3T xox
where
b= [ aterepl-¢—c @-0.12..0) 61)
4]
Numeric calculations show that
by =1—1/e =0.632, by =0.797, b, =178, b3 =35.66. (62)

Denoting by symbol & the difference between the magnitudes of value in the first and
second approximations, one can, with the use of equation (10), establish

o 2
5 1*=<__1)/l:r1+‘n2r2}=0.12/[r1+ﬁ1_‘2:|’
Dy b, n my
[}
g 2*=<3_1>/[ﬂr1+r2}=0.12/[ﬂ11+r2} (63)
CI)Z* b2 my My

Inserting equation (60) in equation (58) and using equation (61), we obtain

(I)l* 4 : 3
= . — e 4
g1(2) 3b2F*C J‘_wdx(z x)? exp[ex — €], (64)
by @y,
= _—% 65
91(0) 3b, T, (63)

With the help of equation (27) at x = 0 and equations (65) and (29), one can obtain the
relations

u b3 1 b3 1
T~ 1L L W = — P 66
Clx (Dh,: |:1 3b2 I-,*:|= CZ* (I)Z* [1 * 3b2 F*:| ( )

which, by virtue of equations (32), (36)—(38) and (62), justify the estimates (33) at the second
step of iteration procedure.

Marking with superscripts 0, 1, 2, . . . the values at the corresponding iteration step, let us
compare the first approximation with the second one.

From equations (10) and (63) it follows that

st, (2 0.12
O R I PR TS R . SE 67
t* (bz )/(ml i +m 2) mlrl + mzrz K ( )

ie. the moment ¢’ has become a little more than the moment 1 (we exclude from
consideration very small m; and m,, assuming m,I; + m,I, > 1) owing to the more slow
accumulation of substance by the droplets in second approximation. The increase of the
duration of droplet growth clears the result g¢(0) > ¢{"(0) following from equations (56),
(65) and (62).
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and the estimate

0] by 3b,

the analysis of which allows to conclude that already first approximation of spectrum given
by equation (68) is fairly accurate. By this approximation we shall be satisfied afterwards.

O (x) L e [_ by . bo csx3] (x >0), (78)

4. SIMULTANEOUS AND NON-SIMULTANEOUS STABILIZATIONS
OF IDEAL SUPERSATURATIONS AFTER THE ATTAINMENT OF
THE METASTABILITY MAXIMUM

Above, in the developed iteration procedure, it was supposed that the stabilization of
ideal supersaturations @, and ®, occurs after the end of formation of the most important
part of spectrum. In the cases where the stabilization of either @, or @, or the stabilization
of both ®, and @, occurs before the end of the stage of formation of the most important
part of the spectrum, the presented iteration procedure will change a little.

Let us consider at first the case where

D), <Dy SO, (1 + 1.15¢,/cL), Dgy > 0y, (1 + L15¢,/cLy), (79)

i.e. where one of the ideal supersaturations (®,) is stabilized before the end of the stage of
formation of the spectrum, and other ideal supersaturation (®,) is stabilized after the end of
that stage.

Relations (40) will take the form

(1]
Dy (x) = Dy +=Fex (x <zg),
L

o
=@y, +=2c120 (2 > 2o), (80)
L

(]
(DZ* = (I)z* + el CaX,
r*
where

I,
20 =C—*(‘Do1/‘b1* -1} (81)
1

Respectively instead of equation (41) we have

(0]
{1(x) — Dy, =-I:1—* c1x —g1(x) (x < zo),
&

()]
= ?1‘*‘ c1Zo — 91(%) (x = zg), (82)
*

@
{a(x) — @y = % C2X — ga(X).
*
Expressions (42) and (53) change only in the regions x > zg and z > z,. In these regions now

[0 =Ai@ua Oaesp 20— g )+ este =0 | (e @

Zo
dx(z — x)3e™
fe o]

01 = Yo fi @1y, B2y) { f

+ r dx(z — x)® exp |:czo + % cy(x — zo)]} (z = zo). (84)
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@ 1
Sflx)= le*o* c*exp {Cx - e“‘)[l +c(x — zo) + 5 c2(x — zp)?

1 1
+ i Alx —zo)? + i ctx — 20)4}} (x = zo). 94)

Let us denote by N the total quantity of droplets per volume unit formed during the first
stage of two-component condensation. This quantity, according to equations (14), (21) and
'22), linearly depends on the spectrum by means of integral value

I= ch dx f'(x). 95)

— 00

Therefore, the accuracy of determination of the value I has particular significance.

To estimate the accuracy of determination of the value I, let us change a little the
above-described iteration procedure by supposing that yo,, ®1,, @2, and £, (P, D,,) (and
with them T, and c too) are the same in all the iteration steps and are determined by
insertion of the last of used approximations in equations (51) and (52). Having chosen in this
common Way Yo, P14, P2y and fo(®@y,,, ©,,) one can guarantee that the less the function
71(x) in the RHS of equation (44) is, the more the RHS of equation (44) is. This property
makes it possible to construct, by means of an iteration procedure, the approximations
7%(x) (j =0, 1,2,. . .) which monotonically approach the strict solution of equation (44)
with chosen yq,, @1, @5, and f(®,,, D,,). This property guarantees the uniqueness of
strict solution. .

Let us choose the g{” =0 as the initial approximation in the iteration procedure. Such
a choice ensures the inequality g, > ¢'*, where g, is the strict solution of equation (44).
Every next approximation is determined by inserting the preceding one in the RHS of
zquation (44):

z

I, .
dx(z —x)3 exp [cx — q)—* g‘l”(x)]

1x

9" D(2) = 20w fs( @19, D2) j

(j=0,1,2,...) (96)

Using the indicated property of the RHS of equation (44) and taking into account the
obvious inequalities g, > g'%, g > ¢{*’ and the fact that the calculation of the RHS with
the help of strict solution g, leads to the same solution g, we conclude:

g1 <g®, g91>g?, g1<gP.. .., 97)
gt <g™ 9P > 9P <gP, 0. (98)

According to equations (97) and (98) the approximations ¢!, g%, ... of odd order
monotonically approach g, from above, and the approximations ¢g{¥, g{¥, . . . of even order
monotonically approach g, from below.

The approximations of the spectrum f™® (k =1, 2, 3, . . .) are found by substituting g{(x)
for g,(x) in the RHS of equation (42):

T,
FPx) = fi( @y, Day) eXP [Cx - —_@* gﬁ"’(X)] (k=1,2,3,..) 99)
ik
[n accordance with equations (97) and (98), we have
JE S, [<HC, Nt (100)

f(3) >f<1), f(4) <f(2), f(S) >f(3),. i o (101)
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Taking equations (25) and (26) into account, it follows from equations (104), (31), (36). (39)
and (43) that the value 1/h in the RHS of equation (107) is a relatively “slow” function of
Yo Pis, Py A fairly accurate calculation of 1/h is attained in first iteration step.
Therefore, in the same step we also find the integral characteristic I and total quantity of
droplets N with the relative error less than 0.15.

5. INITIAL AND FINAL PERIODS OF TWO-COMPONENT
CONDENSATION

Omitting in the following the approximation superscript, for the spectrum in accordance
with equation (68) we have

Q4
x) = —"—c* expfex — e*]. 116
f09) = gt explex — ] (116)

Inserting equation (116) in equation (28) we obtain

_ Koiss Va Pu f (117)

B d g 3 — CX i
' XosxH1sV 61 x(z — x)” exp[cx — e¥]

The expressions (117) and (29) are already true not only during the stage of formation of
spectrum (when yo =~ xo4, V =~ V, and n;, =~ ny, (i =1, 2)) but also during whole condensa-
tion process. The time dependence of the factor n, V,./ni V (i =1,2) is assumed to be
<nown, and the value y, satisfies equation (13).

Relations (27), (10), (13), (117), (29), (19) and (20) form the consistent set of equations.
Resolving this set we can obtain the function z(¢) of one independent variable ¢. Together
with z(t), the time dependences of {; (i =1, 2) are also determined.

For the total quantity of droplets formed per volume unit we have according to equa-
ion (22):

oo

N = ny, % J‘_w dx f(x). (118)

[nserting equation (116) in equation (118) and integrating, we obtain

V* (131*63

N= issk T .
" 8T Xon

(119)

Let A_®; (i =1, 2) and A_t be the changes of @; and t corresponding to the change of
ifrom —A_xto0,let A,®; (i =1, 2) and A ;¢ be the changes of ®; and ¢ corresponding to
he change of z from 0 to A, x. The values ®; and ¢ have the magnitudes ®;,, — A_®; and
"« — A_t at moment of beginning of intensive nucleation and the magnitudes @;, + A, ®;
ind £, + At at moment of end of intensive nucleation.

From equations (40), (76), (39) and (43) we have

_ @, 1.84¢; A,D, 15¢;
A (Dl — Cz , +q)1 — 1 15Ct (l — 1, 2) (120)
(Di* Clrl + Czrz q)i* 61F1 -+ Czrz
ind, in view of equation (10), also
_ ; At 1.1
o= Colmw iiie WD n (121)
t* mll_‘l -+ mzrz t* mlrl + mzrz
Supposing that the condition
m1F1 -+ mzrz > 1 (122)

s observed (this condition excludes from theory only very small m; and m,), the smallness of
he RHS of equations (120) and (121) will be guaranteed and this is what justifies the
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wvhere
1 T 1 (6T)a
T At =—— %~ ¢ 133
ke 9(61"*) GOLST m [+ m, U
1 1
z =5 (61, Ax = —(6T,)%a. (134)

In virtue of equations (32) and (38) it follows from equations (122), (133) and (134) that
2 2Ax, 3t,22At and t, < t,.

Relations (128), (129) and (132) determine the dependence of {;, {; and t on z. To find the
lependence of {,, {, and z on ¢ it is necessary to solve equation (132) with respect to z.
Particularly, we have

A
2 :Zf(t_t*) (— A_tSt—1t,$3t/2), (53]

=5l [1 — 323 exp (_ ! - t*ﬂ (t — 1,2 38). (136)

T

Expression (135) describes an initial period of condensation which, according to
3t,/2 = At > A t, ends a little later than the first stage. During this period {; ~ @; ~ ®;,,
i=1,2)

Expression (136) describes a final period of condensation. During this period the ex-
sonential term in the RHS of equation (136) is already small so that z almost coincides with
%t Then from equations (128), (129), (134) and (136) it follows that

L=y, |1-a® +33%e > P exp( 22 | (t—r,23t), (137
* R t *

T

t—t,

(o=@, |:1 —Pa®+ 3\;’?3P*cz:"e"’2\/5 exp (— >:| (t =, 232) (138)

According to these relations, t, represents a relaxation time.

The region of validity of equations (135) and (136) is also limited by inequalities (127)
vhich can be broken when the ideal supersaturations continue to increase. According to
squations (10), (122) and (133), inequalities (127) are still observed at t — ¢, ~ 3t,, but they
wre broken as the time increases. Thus, under the conditions when the ideal supersatura-
ions increase, the asymptotic relations (136)—(138) are valid only at ¢ — t, ~ 3t,. Then
squations (137), (138), (127) and (27) lead to the relations {;/®; < 1, g,/®; ~ 1 (i =1, 2), which
nean that the droplets have absorbed practically all the condensing substance (provided
:arlier the metastability of vapor mixture).

As long as t — t,, <3¢, (i.e. before the final period) the value g;/®; increases. According to
:quations (56), (29) and (124) at t,, and at ¢, + A, t, we have, respectively:

g1 g2
91l =yr,, Z|. =PI, (139)
q:)1 t=t, / : (I)Z t=t */ i
g1 i.15 g2 1.15
91 _etis,, 92 —Pe" 5T, (140)
D, 1=t,+ Ayt / * @, t=t,+ALt * *

“rom equations (139) and (140), it follows that the values g, /@, and g,/®, increase the most
-apidly after the end of final period of condensation, and in time 3¢,/2 <t — ¢, <3t, they
ittain the magnitudes near 1, ie. practically whole two-component vapor mixture is
tbsorbed by droplets. During this period the evolution of {y,{, and z is described by
elations (132), (128) and (129).

If the ideal supersaturations are stabilized then relations (136)—(138) remain true during
\ final period as long as t — £, 3t,. Their validity will be limited only by restriction (30).
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From equations (148) and (149) it also follows that {;/®; < 1 (i =1, 2) and all the more
2/ @iy €1 (i =1, 2). That confirms the approximate equalities ®; — {; ~ @, (i =1, 2) used for
inal period and provides a high relative accuracy of expressions (144)—(146). According to
:quation (144), the droplets grow so that they have time to accumulate in themselves
sractically all the condensing substance of both components.

Let us note that the time of validity of the expressions (144)—(146) can be limited not only
sy condition (141) but also by other causes such as breakdown of free molecular regime of
naterial exchange between a droplet and a vapor mixture, non-isothermal effects of
:ondensation, coagulation, stabilization of ideal supersaturations, etc.

According to equations (22) and (144), the graph of one-dimension distribution of
Iroplets p(p, t) moves as a whole along the p-axis. The relative width of the spectrum is
‘haracterized by value D = Ax/2z decreasing with time:

D =( 9 )1/3 (X_O)lls (%)1/3
16T, X0x% @,
N R N
N2to14 Lérl, Xox @,

In the case of materially closed system, from equations (19), (13), (125) and (126) with
:onsideration of

19V = i, iV, (i=1,2) (151)
ve have
1/3 ll il 1/3
s = X(l)f (6T%) |: D +0, - -, :| ’ (152)
¢ %0P1 + (1 — x0) P2 1104/ M2tots
T1g dz
{1 — x0fi(o) = — %05:1(@1) —, (153)
ooy dr
Tog dz
{2 — (1 = xo) fa(xo) = —— (1 — %0)52(®2) . (154)
Oco dt

Assuming @; — {; ~ ®; (i =1, 2), from equation (152) we obtain in first approximation

2= g2 G [ LR ]”3. (155)
% ¢ Xo®1 + (1 — %0) @21 014/ M2tors
ixpression (155) leads to the equality
dz/dt =0 (156)
ot only in virtue of evident equality for a materially closed system
my; = m; (157)
ut also because of relation observed in this approximation for such a system
fo = —tmt (158)
Nitots T Batots
‘hus, in first approximation we have
1/3 1/3
z= <&> (6L (159)
Xo ¢

{1 — 20 f1(x0) =0, {2 — (1 = x0) fa(x0) =0. (160)
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Instead of equation (94) for the spectrum in first approximation we have

@
f(x) =6—*c*explex —ee™]  (x <0),
6T Yox

d 1 1 1
f(x)=¢ 61"*1;;* c*exp I:— g (1 +ex + 5 c2x? + g c3xd 4+ = c“x“)il (x = 0). (169)

The stabilization of ®; and ®@,, according to equations (4) and (5), also means the
tabilization of ny,, ny, and V. The equalities n; = ny, (i =1,2) and V =V, are now
bserved with a high relative accuracy in a materially open system as well as in a materially
losed one. Therefore, equation (28) takes the form

1= 1w | dxtz = P13, (170)
— w0
Inserting equation (169) in equation (170), one could obtain the second approximation of
1 correct during whole condensation process. This approximation together with equations
9), (27) and @; = @, (i =1, 2) would allow to obtain a consistent differential equation of
1e first order in unknown function z of one independent variable .
Supposing that

es1/e8, (171)

ne can replace equation (169) by

Qiy 4
xX)=e—""—c"e” (x<0),
fo) = e grcter (x<0)

o D € 4.4
f(x) —86F*XO* ¢ exp[ 74 C X :| (x = 0). (172)
Figure 2 shows the behavior of spectrum f(x) in different cases of stabilization of ideal
1persaturations, the parameters m, , m,, t,, and t, being fixed. Curve A corresponds to f'(x)
wen by equation (68) (stabilization of both ®; and ®, after the formation of spectrum,
y > 1.15/c). Spectrum B is given by equation (94) at z, = 0 (simultaneous stabilization of
1 and @, at moment of attainment of metastability maximum). Both spectra C and

£{x)

0

Fig. 2. Spectrum of linear sizes of droplets f as a function of x for different cases of stabilization of

ideal supersaturations at fixed my, m,, t, t,. The curves correspond to the following cases: (A) to

2o > 1.15/c [equation (68)]; (B) to zo = 0 [equation (94)]; (C) to & < 1 [equation (172)]; (D) to e < 1/e®
[equation (175)].
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omparison with the first ones. Thus, the RHS of equations (181) and (182) have a high
elative accuracy beginning from the first stage which in view of equation (178) begins as
. matter of fact at moment ¢, when z = 0.

Taking into account equations (13), yo = Yos» Mis = Nisy (i =1, 2) and inserting equations
181) and (182) in equation (19), we obtain

dz o, a® 44 1 Ax\?

—=——2a ——————lz—== | 183

At Tigros ¥ [1 T,a® (Ax)® (Z 2 > (e
leplacing the initial condition (20) for equation (183) by practically equivalent condition
= Ax/2 at t = t,, + At/2 and solving equation (183), we have

t—ty = A2 ([ — A2/ + (2 — Axf2)/z, + 1142
L, B R 1—(z— Ax2)z,

+ \/garctan [2(2 N A\x/%z)/z' L I:I - 2\n7§, (184)

here

1-** 1/3 1 r* 1/3
Zr_(ﬂ) a Ax, t,—§ A alAt (185)

aking into account the equality Ax/At = a.;a*®; /71 )0, following from equation (19)).
‘he estimates z, 2 2Ax, 3f, 2 2At are fulfilled in virtue of a ~ 1, ’'> 1 and A ~0.9.

Expressions (181), (182) and (184) determine the dependence of {1, {, and ¢ on z. In order
> find the time dependence of {;, {, and z it is necessary to solve equation (184) for z. In
articular,

Ax
Z=E(t—t*) (Osz‘—t*s—

3
2
At
5= z,lil - \/gexp <ﬁ + 5) exp <_

Expression (186) describes an initial period of condensation and expression (187) de-
;ribes a final one. During a final period of condensation, the exponential term in the RHS
f equation (187) is already negligible so that z practically does not change with time and
as a magnitude near z, + Ax/2.

Inserting equation (187) in equations (181) and (182) and taking equation (184) into
ccount we obtain

At
t+ 3>, (186)

t—t, Ax At
= (=12 —]. (187
- >]+ 5 (t — 1,236 + 2) (187)

At
=0, |1-dd 343 L=
& 1*[ a +3fa exp<2ﬁ+2tr)

t—t At
Xexp<_ . *)] (t—t*23t,+7), (188)

At
Cz = (1)2* l:l — P*a3 + 3\/§P*a3 exp (L + 5{)
2./3 r

. A
xexp(—t tt*ﬂ (t—t*23t, +—2—t> (189)

he validity of relations (188), (189) is still limited by restriction (30).
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Fig. 3. Spectrum of linear sizes of droplets f(x) (equation (116)) for the ethanol {1)~hexanol (2) open
system at T =260K, m; =1, t; =0.05s, m, = 1, t, = 0,055 in the case of stabilization of ideal
supersaturations after the formation of spectrum, the sticking coefficients being: (a) a.; = 0.625,
%z = 0.5; (b) 2, = 0.0042, ., =0.004.
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s a whole along the p-axis with the velocity equal to the rate of increase of linear size of
roplet. As it follows from equations (135) and (186), the time dependence of z is linear
uring initial period. During a final period the time dependence of z is very slight and is
iven by equations (136) and (187) if the ideal supersaturations are stabilized. If both ideal
Ipersaturations ®; and @, continue to increase, then time dependence of z is given by
quation (144) for the materially open system and by equation (159) for the materially closed
ystem (in the last case z does not depend on ¢ if we assume o = H1115/ (P10t + Matotse))-

The relative width of spectrum can be characterized by value D = Ax/z which generally
owly decreases with time or remains constant during final period.

To illustrate the developed theory we have carried out the numerical calculations for the
ondensation in the materially open system “ethanol (first component)-hexanol (second
omponent)” at T =260 K in the case of stabilization of ideal supersaturations after the
yrmation of spectrum of linear sizes of droplets, the parameters in equation (10) being as
Mlows: my =1, t; =0.05s, my, =1, r, =0.05s.

Without describing the procedure of numerical calculations, let us note that, unlike the
1eory of one-component condensation, a correctness of data about the sticking coefficients
.1, %z influences not only a correctness of theoretical predictions but also their accuracy
nce we have to solve the system of four equations for ¥.., %osw> P14, Pay With the
ipplementary condition t;®1™ = t,®}3/™ following from equation (11). Our calculations
ere carried out for two couples of sticking coefficients: &, = 0.625, o, =0.5 and
.1 = 0.0042, o, = 0.004, thermodynamic parameters for the ethanol-hexanol system being
tken following Strey and Viisanen (1993). The results of calculations for main values of
1eory are summarized in Table 1.

The total quantity N of droplets formed per volume unit strongly depends on sticking
sefficients: N =8.5x10°cm™3 for a; =0.625, a,; =0.5; and N =1.91x10° cm ™3 for
;1 =0.0042, a5 = 0.004. Figure 3a and b shows the corresponding spectra f(x) of linear
zes of droplets (equation (116)). The time dependences of the real supersaturations {, and
, for the time interval 0 <t — ¢, < 3.5, are shown by Fig. 4a and b (equations (128), (129)
nd (132)). In both cases the difference between {; and {, is very small because {, = {2y
ad P, is nearly equal to 1 (P, =0.99996 at o,y = 0.625, o, =0.5 and P, =0.9998 at
.1 =0.0042, or,, = 0.004), but it increases with time and attains a value of the order of 1073
o1 =0.625, ., =0.5) or of 107* (0r; =0.0042, &, = 0.004) at ¢ ~ ¢, + 3t,/2.

It should be noted that we cannot obtain any analytical expression for the duration of all
ndensation process which is determined by the time t ,,4 at which constraint (30) is
roken and the binary condensation changes into the binary coalescence. Besides, we
innot obtain any explicit expression for the time dependence of {1, {5, z for the interval of
me 3t,/2 <t < 3t,. It is evident that numeric methods like the methods applied by
/ilemski and Wyslouzil (1995) and by Wyslouzil and Wilemski (1995, 1996) would make it
ossible to obtain the time dependence of {4, {, and z for this interval as well as to estimate
ona fOT any condensing system. This is an advantage of numerical methods. On the other
and, it will be necessary to draw a comparison between the results of presented theory and
iperimental data as soon as appropriate experiments are carried out. Particularly, it would
3 very interesting to compare our theoretical predictions with experimental data for the
me dependences of real supersaturations {;, {, and average concentration y, of solution in
roplets as well as for the total quantity N of nucleated droplets.
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Abstract—In considering a binary nucleation theory, it is shown that the unified approach to the
homogeneous and heterogeneous nucleation theories makes it possible to obtain the equilibrium
binary distribution satisfying both the mass action law and type II limiting consistency. Theoretical
rates of binary nucleation are calculated by using the new equilibrium distribution, the distribution
of Reiss, and that of Wilemski and Wyslouzil for the ethanol-hexanol system. Possible causes of the
irregularity of discrepancies between theoretical predictions and experimental data are discussed.
© 1999 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

ately, a significant progress has been attained in developing different aspects of kinetic
1eory of binary nucleation and condensation. As there exist some different approaches to this
1cory in the frameworks of capillarity approximation there appears the need to assess the
ccuracy of competing approaches as well as to compare their predictions with experimental
ata. The latter is not always possible because of absence of appropriate experimental results,
ut for a wide range of situations high-quality experimental data are available.

Recently, Wilemski and Wyslouzil (1995) and Wyslouzil and Wilemski (1995, 1996) have
btained a series of very interesting and important results concerning both kinetic and
jquilibrium aspects of the theory. In particular, they resolved several inconsistencies involving
1e binary equilibrium distribution. They proposed (Wilemski and Wyslouzil, 1995) a new
yrm of the binary equilibrium distribution which obeys the mass action law, reduces to
ppropriate forms for the unary distributions and yields unique and physically well-behaved
vaporation rate coefficients satisfying the new product rule. In this paper we will treat the
inary equilibrium distribution proposed by Kuni et al. (1990) and Melikhov et al. (1990), who
eneralized ideas developed by Rusanov et al. (1987) to the two-component theory. We will
10w that the distribution of Kuni et al. satisfies all principal conditions formulated by
Vilemski and Wyslouzil (1995). Then we will calculate the binary nucleation rate using this
quilibrium distribution in the kinetic theory of Kuni et al. (1990) and Melikhov et al. (1990,
991) (yielding the same nucleation rate as Stauffer’s theory (1976)) at avarious values of
icking coefficients. The results of calculations will be compared with each other as well as
ith the experimental data of Strey and Viisanen (1993) for the ethanol-hexanol system.

2. BINARY EQUILIBRIUM DISTRIBUTION

Let us denote by f(vy, v,) the equilibrium distribution of binary nuclei with respect to the
ariables v, and v, representing numbers of molecules of first and second components,
sspectively, in a nucleus. In the capillarity approximation the distribution f(vy, v,) can be
resented (Reiss, 1950; Wilemski and Wyslouzil, 1995) as

f(vl,v2)=N< & )( g )vzexpst(vl,vz)], (1)
N1s0() N20(X)

Author to whom correspondence should be addressed.
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ieterogeneous centers but on molecules themselves of condensing vapor to the two-
omponent theory . The reasoning of interest is as follows.

Taking into account that each of n; molecules of the first component of vapor mixture
nd each of n, molecules of its second component can serve as a heterogeneous center of
srmation for a nucleus, we have, according to principles of equilibrium statistical thermo-
lynamics

fnva) =ne ™ 4 ne™ (6)

vhere F, is the work necessary that v; — 1 molecules of the first component of vapor
nixture and v, molecules of its second component join a single molecule of first component;
", is the work necessary that v, — 1 molecules of second component of vapor mixture and
. molecules of its first component join a single molecule of second component. Though
dentical nuclei with the variables v; and v, are formed as a result of both works F; and F,,
hese works in general are not equal to each other. It is because corresponding nuclei are
ormed on single molecules of different species.

The works F, and F, do not coincide with the thermodynamic work F = F(v,, v,) either,
vhich, according to its meaning, is required for simultaneous unification of v; molecules of
irst component of vapor mixture and of v, molecules of its second component in a nucleus
ituated in a fixed point of condensing system. Of course, the differences between Fy, F,
nd F have only a statistico-thermodynamical character, but not a mechanical one.

It has been shown by Kuni et al. (1987) that

Fy=F —lIn[nyy/n,], Fy = F —In[nyy/n,], (7

vhere ny; and n,, are the number densities of molecules of first and second components,
espectively, in a liquid solution of composition y.
Substituting equation (7) in equation (6), we have

f(V,V)=—C_F, (8)
BT
/here v(y) = 1/[nyy) + nag(x)] is the nucleus volume per molecule. Denoting by »; and
» the partial molecular volume of first and second component, respectively, in their pure
quids, and taking into account that F can be expressed through Fg = F (v, v,) as

F=F,—vln—"2 _y,ln"2_| 9)
H1(%) Nn2.5(X)
me can rewrite equation (8) as
Vi + Vv, ng \"f na \?
Vi, V2) = exp[— F,] (10)
duic wm+hwgmm><%dﬂ> p

ince here the normalization factor (vy + v,)/(viv; + v4v,) does not depend on n; nor n,,
his equilibrium distribution automatically satisfies the mass action law. As for the limiting
onsistency, equilibrium distribution (10) evidently satisfies that of type IT (1/v; and 1/v,
eing the normalization factors of respective unary distributions) but does not satisfy that of
ype L. It also gives well-behaved evaporation coefficients in the framework of Kelvin model.

Comparing equation (8) with equations (1), (3), we see that the normalization factor
fKuni et al. is geg = v~ '(y) (n; + n,)~ " times as large as that of Reiss (gkg is of the order
f 10%). Comparing equation (10) with equation (5), we see that the normalization factor of
Luni et al. differs by a factor gxw = v~ 1) nyZn5 L T Pexp[— x©, — (1 — 4)®,] from that of
Vilemski and Wyslouzil. This factor (gxw) is rather a complex function of many parameters
f condensing system.

It should be noted that in the unary nucleation theory, Reiss et al. (1968) and Kikuchi
[969) obtained the corrections to the nucleation free energy like that of Rusanov et al.
1987), but they did it by more artificial means. These corrections give the ratio of molecule
umber density of condensed phase to that of vapor phase as a pre-exponential factor in the
lassical unary nucleation rate. As shown by Schmitt et al. (1983), this factor allows one to
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Fig. 1. Typical behavior of function B(y) for a metastable binary system, presented by B(y) for
the ethanol (1)-hexanol (2) system at {; =202, {, =7.77, and T =260K. We have y, = 0.54,
B(y.) = 0.0619, B”(x.) = —0.1239.

4= *2% {6 —1—p+ [ +1+pQ— 421", (19)
ys/z -1
c= [6ﬁ = SN T Uz} , 20)
1c 2¢

vhere W; (i = 1, 2) is the number of i-component molecules that the critical nucleus absorbs
Jer unit time, the binary nucleation rate J can, finally, be presented as

J=_ACET", (21)

It is evident that, through W, and W,, the condensation coefficients o, and «, strongly
nfluence theoretical predictions for the nucleation rate J, which is proportional to a linear
:ombination of these coefficients. At the same time there exist no reliable theoretical nor
:xperimental data for them.

5. NUMERICAL CALCULATIONS AND CONCLUSIONS

Numerical calculations have been carried out with the help of Mathematica for the
ithanol (1)-hexanol (2) system at the same external conditions as the experiments of Strey
ind Viisanen (1993). Results of calculations are presented by Fig. 2a and b in the form of the
lependence of InJ on the mean activity z = ({3 + (3)"/% The lines represent theoretical rates
:orresponding to the fixed values of activity fraction y = (,/({; + {,), indicated on Fig. 2
yver the series. The corresponding experimental data are shown by circles. The theoretical
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Fig. 2. Continued.

1sed in Stauffer’s rate formula (Wilemski and Wyslouzil, 1995). But theoretical rates of
Wilemski and Wyslouzil better agree with experimental data than ours (obtained using
:quilibrium distribution (10) of Kuni ez al, i.e. formula (21) for J), since for the considered
iystem the normalization factor of Kuni et al., is approximately ten times as large as that of
Wilemski and Wyslouzil, that is gxw is of the order of 10. At the same time, ggy is of the
»rder of 10* when y is small and tends to the value 10° when y — 1 (e.g., gxr =~ 8 x 10* at
»=0.98).

Since there exist no theoretical nor experimental data on the sticking coefficients «, and
¢, for this system, we could, in principle, try to obtain a fine fit of theoretical rates to
:xperimental data by choosing appropriate values for «; and «,. Magnitudes of «; and
¢, must not depend, however, on metastability of a system, though they could be weak
unctions of temperature. Therefore, within the framework of adequate theory we could
»btain a good fit of theoretical predictions to experimental data by means of unique choice
f ; and o, (independent of vapor mixture metastability) for a given system. But for the
:onsidered system this does not work. Actually, the theoretical rates of nucleation in the
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Fig 3. Logarithm of nucleation rate J for pure hexanol vapor plotted vs a supersaturation (activity)
{ = {, The dimension of J is cm ~*s~ ', The ellipses are the experimental data of Strey et al. (1986).
The lines represent the nucleation rates calculated by using the classical nucleation rate expression
(dashed lines, calculated by Strey et al. (1986)), The one-component analogue of the normalization
factor of Kuni er al. (solid lines), and the normalization factor of Wilemski (dot-dashed lines). The
initial (chamber) temperatures T', are indicated below the series. The corresponding nucleation
temperatures are: about 258 K for T, = 288 K, about 276 K for T, = 308 K, and about 293 K for
Ty =328K.

emperatures are indicated below each series. Evidently, one can conclude that none of these
hree normalization factors can be given an undeniable priority from the standpoint of the
\greement between the theoretical and experimental rates for the considered systems.
Jowever, for the homogeneous nucleation of toluene Schmitt et al. (1983) showed that the
1se of the one-component analogue of the normalization factor of Kuni et al., brings the
heoretical rates into considerably better agreement with the experimental data, the values
»f the surface tension and the sticking coefficient being physically realistic.
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. kinetic theory is constructed for a nonisothermal binary nucleation at the stage following the
mal relaxation of nuclei. The three-dimensional kinetic equation to be solved reaches beyond
framework of the Fokker—Planck approximation even if one of two components has a large
1e of condensation heat. It is shown that, by successively applying the method of Enskog-
jpman and the method of complete separation of variables to that kinetic equation, one can
1ce the problem of constructing the three-dimensional kinetic theory to the well-investigated
slem of solving an one-dimensional kinetic equation of first-order phase transition, in the
stationary case as well as in the stationary one. For the steady state, the main characteristics
wcleation, including the nucleation rate, are found. Theoretical results are numerically eval-
sd for the nucleation in ethanol-hexanol system and compared with predictions of classical
ithermal) theory and experimental data. © 1999 Elsevier Science B.V. All rights reserved.

CS: 64.60.Qb; 68.10.Jy; 82.60.Nh

rwords: Binary nucleation; Thermal effects; Latent heat; Binary aerosol

Introduction

3inary nucleation is the first stage of any first-order phase transition in two-component
tems, in particular, of the binary condensation consisting of the formation and growth
drops of a liquid solution of two substances in a metastable mixture of vapors of
se substances. During the nucleation the nuclei of a liquid phase are formed. They
y the role of condensation centers afterwards.
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At present, there exists an adequate theoretical description of main aspects of one-
component nucleation. At the same time the kinetic theory of binary nucleation has been
developed almost exclusively for the case where the metastability of two-component
vapor mixture is created instantaneously and both thermal effects of condensation and
presence of heterogeneous nucleation centers are neglected [1-4]. However, it is well
known, that heterogeneous nucleation can occur at much lower degrees of metastability
than the homogeneous one. Besides, as follows from the nonisothermal one-component
nucleation theory [5-9], nonisothermal effects can have a substantial influence on the
kinetics of the process.

As discussed earlier [10] there exist several kinds of nonisothermal effects, but the
most important of them is the effect due to the condensation heat transferred to a
nucleus or extracted from it in all individual events of absorption or emission of a
vapor molecule by a nucleus. As first pointed out by Feder et al. [6], in the case of
one-component nucleation that effect can diminish the nucleation rate as many as hun-
dreds of times relatively to the nucleation rate in the isothermal theory. Such a decrease
is physically easily explained. Firstly, the temperature of a growing nucleus gradually
increases with the growth of its size because of the release of the condensation heat.
The increase in the temperature of nucleus causes an increase in its ability to emit
molecules what naturally slows down its growth, Secondly, the increase in the tem-
perature of nuclei causes an increase in the average temperature of vapor-gas medium
and this is what decreases the metastability (supersaturation) of the condensing system.

Obviously, in the case of binary nucleation the thermal effect influences the nucle-
ation rate in the same way as mentioned above. Therefore, the nonisothermal nucleation
rate should be less than the isothermal (classical) one. Hence, it is not easy to explain
the result of Lazaridis and Drossinos [11]: following the approach developed earlier
by Langer [12] and extending the Barrett’s [9] analysis of the one-component nu-
cleation to the binary nucleation, they obtained an explicit analytical expression for
the total rate of steady-state binary nonisothermal nucleation, but when applied to the
water-ethanol system, their model predicts a nucleation rate that is higher than the
classical (isothermal) nucleation rate.

As pointed out by many authors [13,4], the classical (isothermal) theory of binary
nucleation predicts nucleation rates much higher than experimental results (including
the water—alcohol systems, in the cluster models of Flageollet-Daniel et al. [14] and
Laaksonen [15]). Although most of those authors agree that those discrepancies are
the most probably accounted for by the effect of surface enrichment [14-18], taking
account of thermal effects, nevertheless, can improve an agreement between theoretical
predictions and experimental data on the nucleation rate. Evidently, such an improve-
ment will be noticeable only if the quantity of the carrier gas in the system during
experiments is not sufficient to ensure the constancy of nucleus mean temperature (an
extensive treatment of carrier-gas effects is given by Ford [19] and Barrett et al. [20]).

In this paper we continue to develop the approach to the kinetic theory of non-
isothermal binary nucleation proposed by Djikaev et al. [10] on the basis of the method
developed by Grinin and Kuni [7] in constructing a kinetic theory of nonisothermal
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Here W; and f; (i = 1,2) are the number of i-component molecules being absorbed
by a nucleus per unit time and the condensation heat of component { per molecule,
respectively; o and oy (i = 1,2) are the condensation (sticking) coefficient and the
coefficient of thermal adaptation in a reflection event of i-component molecules, re-
spectively; o, is the coefficient of thermal adaptation in a reflection event of passive
gas molecules; ¢;,m;, and n; (i=1,2) are the effective (in the sense of energy transfer
to the nucleus) specific heat, mass and number density of molecules of component i
of the vapor mixture, respectively; c¢,,m,, and n, are the analogous quantities for the
passive gas; F/ = 0F/0v;, F being the free energy of formation of a nucleus in the
thermal equilibrium with the medium, i.e. with the characteristic £ = 0.

Retaining all terms of the series in the RHS of Eq. (4) means extending the theory
to values 7; ~ 1 (i = 1,2) and thus going beyond the framework of the Fokker—
Planck approximation. If both 7; and 7, are much smaller than 1, the Fokker—Planck
approximation becomes acceptable and Eq. (4) can be reduced to the kinetic equation
of Lazaridis and Drossinos [11].

In the case of one-component nucleation where either [,=0, 1,=0 or Ly =0, 1,=0
(i.e. only the component is present in the system), Eq. (4) transforms itself into the
kinetic equation of nonisothermal one-component nucleation of Kuni and Grinin [7].

In the variables v; and v, we are interested only in the near-critical region |v; — v|
< Avg (i = 1,2), which is the most important one for the nucleation kinetics; the
parameters v;, and Av;, are defined as

Fz/ |V|=V15,Vz=vz: = 0’ Avlc |2/F”| |V1=V1:, Vo=V (i = 132) g (8)

The values vi., vo. would determine the coordinates of the saddle point of the surface
of free energy of nucleation in the isothermal theory. Within the framework of the
capillarity approximation

Avie/vie <1, 1/Avie<l (i=1,2). )
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The Hermite polynomials H; (j =0,1,2,...) are eigenfunctions of the principal op-
erator in the governing equation, i.e. of the operator in the leading (fifth) term on the
RHS of Eq. (4). They satisfy the recursion relations

%, , 0

5—51@':2]156‘—1, (6—5 —25) H;=—H;, (17)
and form a complete system of eigenfunctions satisfying also the orthogonality and
normalization conditions

(H,Hy) =620 (j,k=0,1,2,...), (18)

where 6 is Kronecker’s delta. Obviously, — ji} (j=0,1,2,...) represents the eigen-
value corresponding to H;. All the eigenvalues are negative except that for j=0 which
is equal to 0.
The function f = f(v1,vs,¢) in Eq. (12) represents the two-dimensional distribution
of nuclei with respect to v1,v,. Its time evolution is given by the equation
of o)y ah

& e, S0 19
ot vy 0vy ’ ( )

where

7 =, gm
Ji=\Ho, | Li—W; — — 1P (i=1,2) (20)
(oo (-5 ) )

is the flux (averaged on &) of muclei along the v-axis. As can be seen during the
stage of thermal relaxation ¢ < #; the distribution of nuclei with respect to v; and v»
does not change while the distribution with respect to the variable & approaches a
quasiequilibrium Gaussian distribution by the end of that stage, and

P f (=zt) (21)

as follows from Eq. (12) (¢ represents the principal relaxation time).

4. Evolution of nuclei after the stage of thermal relaxation

The quasiequilibrium distribution is an eigenfunction of the main operator of the
governing equation (4), the corresponding eigenvalue being zero. Therefore, as follows
from Eq. (21), the operators of the first four terms on the RHS of Eq. (4) also become
important at the end of thermal relaxation stage. However, the operator of the last
term is still the main one when acting on the deviation of P from f: according to
Eq. (15), this deviation is orthogonal to the eigenfunction Hy with the zero eigenvalue.
This makes it possible to construct a solution of governing Eq. (4) for ¢ = t; with the
help of the Enskog—Chapman method.
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(the prime in the sum over m in Eq. (25) eliminates the term with j=m which means
Iy = 0 for any m).
Rewriting Eqs. (25) in the form

() =aPLif + 6 Laf e
272}/~1 o2
Kt m=1
2y e =
=T B0 =Y T (2), (30)
S m=1

and substituting zj(-l) in Eq. (23), we have

(N =alif + ;L1 , 31)

Z s bf=ib§”- (32)
=1

Egs. (31), (24) and (19) result in the equation governing the time evolution of two-
dimensional distribution f:

0 I3} 0 5}
6{ @1 Llf @z sz &y 51 sz + 52—L1f (33)
with
@1=1—W12aj, @2=1—W22bj17£1, 512217]', 5222{1]'1{1.
J=1 i=1 i=1 j=1

(34)

Thus, according to Egs. (3), (22), (31), and(33), the problem of finding the three-
dimensional distribution g(vi,vs,E,¢) in the nonisothermal theory is reduced to the
well-investigated problem of finding the two-dimensional distribution (v, vs,¢). How-
ever, Eq. (33) for f significantly differs from the Reiss’ kinetic equation of isothermal
binary nucleation: both the difference of @, and ®, from 1 and the presence of the
third and fourth terms on the RHS of Eq. (33) are exclusively due to thermal effects.
Nevertheless, Eq. (33) is still an equation of the Fokker—Planck type. Therefore, to
solve this equation, one can apply the method of complete separation of variables used
earlier in a kinetic theory of isothermal binary nucleation by Kuni et al. [21] and by
Melikhov et al. [22]. The following section is based on those two works. (The most
general form of that method for a two-dimensional kinetic theory of first-order phase
transition is given by Kuni and Melikhov [23], and its covariant formulation for a
multidimensional theory is provided by Kuni et al. [24].)
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In the near-critical region the free energy F can be approximated by the bilinear
form which in the variables x and y becomes a quadratic one:

F=F,—x 4. (42)

Let us denote by n(x, y,t) the distribution of nuclei with respect to the variables x
and y at the moment ¢ and turn to the variables x and y in Eq. (33). Replacing v by
v, in the vicinity of the saddle point and taking Eq. (42) into account, we obtain

”l(an’af)=Uch(V1,V2:t): (43)

—1
1 [32F 1 /2F 32
C=|lex'?,|—= Z— ) 2
o (50 3 ()i (o

din(x, y,t) = a{0,(6x — 2x) — ¢~ '8:(8y + 2¥)

—£710,(0x — 2x) + (@) N(1 + p)ay(d, +2))}n(x, y,1), (45)

where
a=W0\c}, + W20:c}, — WiWy(8) + d2)cric12 s (46)
0=— W 01ct) + WaOacty — WilWa(S1 + d2)enicn
W10c11001 + Wa@sc1202 — W Wa(S1c1102 + Sac1aca1) s
P— W10.c2 + W10y, — Wi Wa(81 + 82)ciicn
W1 @iciicar + W20sciacy — WilWa(81ciaea + S2c11022)
pP= Wi Wz(@l@z - m W25152)(611022 — 012021)2(/)8/02 R (48)

and abbreviated notations d; = d/ét,... have been introduced for differentiation opera-
tors.

As the two-dimensional equilibrium distribution of nuclei f,(v;,v;) with respect to
the variables v; and v, is [21,25]

fe(v1,v2) = v le™Fnm) (49)

the two-dimensional equilibrium distribution r.(x, y) with respect to x and y takes the
form

ne(x, y) = Ce Feg® e’ (50)

(we again replaced v by v.). Thus, the variables x and y have been separated in the
equilibrium distribution. This allows one to conclude that the variable x is unstable
and the variable y is stable. Therefore, the ordinary boundary conditions are applied
to Eq. (45):

(x = —00),

1
n(x, y, t)/ne(x, y) = { 0 (51)

(x — 00)

(for arbitrary y).
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As shown by Kuni and Melikhov [7], the solution of Eq. (57) with boundary con-
ditions (59) is given by
n(u,n,0) =7 p(u,0)e™" (60)

where the time evolution of the function p(u,7) is governed by the one-dimensional
equation

0rp(u, 1) = A0,(0y — 2u)p(u, 1) (61)

with the boundary conditions

1 (u— —o0),
p(u, 1)/ pe(u) = (62)
0 (u— x)
the function p, being defined as
pe(u) = Crn'PeFeel . (63)
According to Eq. (60),
pun)= [ anntuno). (64)

This shows that p(u,t) represents the one-dimensional distribution of nuclei with respect
to the unstable variable u. Eq. (57) can be presented in the form of two-dimensional
continuity equation

Omu, 1, 1) = — Oy fu — anjn s (65)
where j, and j, are the flux densities of nuclei along the #- and #-axis. Evidently,
distribution (60) makes the flow j, vanish, what means that in the variables «, n the
two-dimensional flow of nuclei is parallel to the u-axis.

Let us present Eq. (61) in the form

6tp(u’ t) = _6uJu: Ju L od _A(au - 2u)p(u,t) 9 (66)

where J,, (function of u and ¢) is the one-dimensional flow of nuclei along the u-axis
integrated over the stable variable.

In the near-critical region |u| < 1, we have the estimates d/du ~ u ~ | (without
paying attention to signs) which, with the help of Egs. (60) and (61), allow us to
conclude that the characteristic time #, of the change of the distribution of nuclei with
respect to unstable variable in that region can be estimated as

ty~ A" (67)

Obviously, #, will also represent the time in which the steady state is established in
the entire near-critical region |u| < 1.

In the steady state J, is independent of u and ¢. Therefore, according to Egs. (66)
and (62), for the one-dimensional steady-state nucleation flux (J,)s and distribution
ps(u) we have

o0
Vs = 5 VeApolmss o) = = V2p(u0) / di e (68)

(subscript “s” marks steady-state values).
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ps(x) =712 p,(x) /oo dx' e~ . 77

Comparing Egs. (63) and (73), we conclude that the dependence of the one-
dimensional equilibrium distributions p.(x) and p.(u) on the unstable variable is identi-
cal. In addition, the comparison of Eqs. (68) and (77) shows that the one-dimensional
steady-state distributions ps(x) and ps(z) also have an identical dependence on the
unstable variable. Besides, as follows from Eqs. (66) and (74),

(Jx)s = (Ju)s . (78)

Therefore, the one-dimensional flux density (J,)s; given by Eq. (68), determines the
steady-state rate of binary nonisothermal nucleation J; which can be presented as

J,=ACe e . (79)

Using results of the one-dimensional theory and taking account of Eq. (66), one can
obtain the estimate

Oy —2u~-2u (uzl), (80)
and the relation
Ju =~ up(u,t), u=24u(uz1). (81)

The value 1 represents the rate of regular growth in time of the unstable variable u.
Obviously, for the unstable variable x one could write the identical estimate and rela-
tion, as follows from (74). Eq. (81) allows one to conclude that the fluctuation-induced
nucleation is completed in the region |u| < 1 of the variables u,# (in the variables x, y
it is completed in the region |x| < 1). To the left of the region |u| < 1 (or |x| < 1) the
nuclei are still in equilibrium, while to the right of it they already grow irreversibly.

5. Mean values of composition and temperature of the nucleus

Eq. (66) with boundary conditions (62) (or Eq. (74) with boundary conditions (72))
is well known and investigated in the one-dimensional theory of first-order phase
transitions. Accordingly, we can use the results of one-dimensional theory for the
one-dimensional distribution p(u,¢) (or p(x,t)) and the nucleation rate .J, (or Jy).
Thus, Egs. (69), (43), (22), and (3) determine the three-dimensional distribution of
nuclei with respect to the variables vy,v; and E in the nonisothermal binary nucle-
ation. The rate of nucleation is given by Eq. (66) (or (74)). In the particular case of
steady-state nucleation the one-dimensional distribution ps(u) is given by the second
of Eq. (68) and the expression for n(x, y,t) is reduced to Eq. (76); the nucleation rate
is then determined by Eq. (79).
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For example, using Eq. (26), neglecting the terms of order %,7%,... and solving
Egs. (87) and (88), one can find

1
m =7 + 2K +1101, a=U?K+10, aa=110s, (89)
1 1 1 1
K = — U U2, K= — — Uhs
== 3+212,12 2= ok 2
Q—-2U+ SR Sy 4 (52 4 W LNy L s
YT oons 3/1,1,1 S Y P Y VA
2 1 1 1
U2U, — U3 — (o s
30204 2t 20020 0 28Rk, 0 MAER P
1 1 1
=—— U+ —U24+ —— KU Uz
%=Lt 3,11“ Wet oz, 3
1 2 1
P U ,
422273 M2 ?
2 2 1 1
==~ Uy — U 0,
&= e s T s
b = 2R+ S, By =R, + 118y, by =1iS
1= }1 +T1 1+ 701, b=tk + 708, 03=153, (90)
2 a1 3 721
R =-=2LU Ui, R=-2-_—“~—
U= Toh Y o, 2= 5% 2idg
2’C3 2 ‘7:21 1.'2
S =-—>Lu ~Us(mUs + U Ui — =3=U3
1 oA 4+ /11/1 Wt Us + Us) + oLVt T apE s
2121 5 (TR S T2 4
- Ui, — U3 Us — U
3200 2t 2ARhy T 2002 0 WA2ETY
o B Uy DLy ™ g T U2
S 4,11/12 3 3k T 222,
T21 7 721 7
- = U2,
421277 LA ?
S; = _ﬁ ) Us— o Us + 21 U2

913 94143 3243 314243

(Un = W + T W, with arbitrary m). As follows from Egs. (29), (30), and (26), the
values ay,as,... and bg,bs, ... are of order 7$,15,... and hence they are not taken into
account in solving Egs. (87) and (88).
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Fig. 1. Natural logarithm of nucleation rate J in the ethanol (1) — hexanol (2) system plotted vs. a mean
activity z = (C% + C%)l/ 2 at Ty + 260 K. The dimension of J is cm~>s~!. The circles are the experimental
data of Strey and Viisanen [26]. The solid lines are the nonisothermal nucleation rates (Eq. (79)) calculated
at the indicated activity fraction g = {2/({; + {»); the dashed lines represent the isothermal nucleation rates.

The thermal accommodation coefficient of carrier gas (argon) is: (a) oy = 0.1; (b) oy, = 0.01.
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nucleation). In particular, the steady-state nucleation rate is given by Eq. (79), and
the steady-state three-dimensional distribution with respect to v;, v, and E is given by
Egs. (76), (43), (22), and (3). The average values of the temperature of the nucleus
and solution concentration in it are given by Eqs. (86) and (83). Finally, numerical
calculations were carried out for the nucleation rate in the system “ethanol-hexanol”
to illustrate the theory developed. The results were compared with the predictions
of the isothermal nucleation theory [21,22] and experimental data [26]. As expected,
rates predicted by the nonisothermal theory are substantially lower than rates in the
isothermal theory. Consequently, the nonisothermal theory improves the fit of theoretical
results and experimental data. The model of Lazaridis and Drossinos [11] predicts
nucleation rates that are slightly higher than classical nucleation rates and this is not
easy to explain from the physical standpoint.
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