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Résumé 

Les preuves de plus en plus nombreuses de la traduction des protéines non canonique ont 

suscité l'intérêt pour leur identification et leur caractérisation en vue de leur utilisation dans les 

immunothérapies. En outre, des études récentes sur le répertoire des peptides associés au 

complexe majeur d'histocompatibilité de classe I (CMH-I, connus sous le nom de MAPs ou 

immunopeptidome), ont suggéré que les MAPs dérivés de ces traductions sont des cibles 

potentielles pour l'immunothérapie du cancer. L'objectif de cette étude était donc d'évaluer 

l'impact de ces MAP dans le cancer en développant des méthodes pour faciliter leur identification 

et leur validation en tant que cibles potentielles pour l'immunothérapie. 

Afin de faciliter l'identification des protéines non canoniques, nous avons développé Ribo-

db, une approche protéogénomique qui combine le séquençage de l'ARN, le profilage ribosomal 

et la spectrométrie de masse. Cette approche permet de générer des bases de données 

spécifiques visant à inclure la diversité des protéines. Notre analyse avec Ribo-db d'échantillons 

de lymphome diffus à grandes cellules B (DLBCL) a révélé qu'environ 10% des MAP étaient dérivés 

de protéines non canoniques. Ces protéines avaient des propriétés distinctes par rapport à celles 

dérivées de protéines canoniques. Elles étaient plus courtes et avaient une stabilité plus faible, 

mais une plus grande efficacité dans la génération de MAPs. Fait important, nous avons constaté 

un chevauchement limité entre les protéines non canoniques détectées dans 

l'immunopeptidome et celles détectées dans le proteome entier, ce qui suggère l'existence de 

deux répertoires distincts de protéines non canoniques. 

Sachant que les MAP non canoniques peuvent être des cibles efficaces pour 

l'immunothérapie du cancer, nous avons développé BamQuery, un outil permettant d'évaluer 

leur expression dans les tissus afin de déterminer s'ils peuvent être utilisés dans un vaccin. 

BamQuery vise à prédire la probabilité de présentation au CMH-I de chaque MAP dans différents 

tissus sur la base de son expression ARN. En utilisant BamQuery, nous avons découvert que des 

antigènes tumoraux (TA) précédemment identifiés seraient fortement exprimés dans les tissus 

sains, ce qui en fait de mauvais candidats pour l'immunothérapie. En outre, nous avons également 
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identifié des cibles immunothérapeutiques très potentielles dans DLBCL qui étaient dérivées de 

traductions non canoniques. Ces cibles se sont révélées prometteuses car elles étaient peu 

exprimées dans les tissus normaux mais fortement exprimées et partagées dans les échantillons 

tumoraux. Ainsi, BamQuery s'est avéré être un outil utile pour identifier et hiérarchiser les cibles 

immunothérapeutiques potentielles. 

Dans l'ensemble, nos recherches ont indiqué que les régions non canonique du génome 

augmentent la diversité des MAPs qui peuvent être reconnues par les cellules T. De plus, 

l'expression des MAPs dans les tissus peut être utilisée comme un prédicteur de leur présentation 

au CMH I afin d'identifier des cibles fiables pour l'immunothérapie, ce pour quoi BamQuery est 

un outil efficace.  

 

Keywords: protéines non canonique, antigènes tumoraux, immunopeptidome, complexe majeur 

d'histocompatibilité de classe I, protéogénomique, séquençage du profilage ribosomique, 

spectrométrie de masse, lymphocytes T.
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Abstract 

Increasing evidence of non-canonical protein translation has sparked interest in their 

identification and characterization for use in immunotherapy. In addition, recent studies on the 

repertoire of major histocompatibility complex class I (MHC-I) associated peptides (MAPs or 

immunopeptidome), have suggested that MAPs derived from these translations are potential 

targets for cancer immunotherapy. Therefore, the aim of this study was to assess the impact of 

these MAPs in cancer by developing methods to facilitate their identification and their validation 

as potential targets for immunotherapy. 

To facilitate the identification of non-canonical proteins, we developed Ribo-db, a 

proteogenomic approach that combines RNA sequencing, ribosome profiling and mass 

spectrometry. This approach enables the generation of specific databases aimed at including 

protein diversity. The use of Ribo-db to analyze diffuse large B-cell lymphoma (DLBCL) samples 

revealed that approximately 10% of MAPs were derived from non-canonical proteins. These 

proteins had distinct properties compared to those derived from canonical proteins. They had 

shorter lengths and lower stability, but greater efficiency in generating MAPs. Importantly, we 

found limited overlap between the non-canonical proteins detected in the immunopeptidome 

and those detected in the whole proteome suggesting the existence of two distinct non-canonical 

protein repertoires. 

Knowing that non-canonical MAPs can be effective targets for cancer immunotherapy, we 

developed BamQuery, a tool to assess their expression in tissues to determine whether they can 

be used in a vaccine. BamQuery aims to predict the probability of MHC-I presentation of each 

peptide in different tissues based on its RNA expression. Using BamQuery, we found that 

previously identified tumor antigens (TA) would be highly expressed in healthy tissues, making 

them poor candidates for immunotherapy. In addition, we also identified highly potential 

immunotherapeutic targets in DLBCL that were derived from non-canonical translations. These 

targets showed promising as they were poorly expressed in normal tissues but highly expressed 
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and shared in tumor samples. Thus, BamQuery proved to be a useful tool for identifying and 

prioritizing potential immunotherapeutic targets. 

Overall, our research indicated that non-canonical regions of the genome increase the 

diversity of MAPs that can be recognized by T cells. Furthermore, the expression of MAPs in 

tissues can be used as a predictor of their presentation to MHC I to identify reliable targets for 

immunotherapy, for which BamQuery is an effective tool. 

 

Keywords: non-canonical proteins, tumor-antigens, immunopeptidome, Major histocompatibility 

complex class I, proteogenomics, ribosome profiling sequencing, mass spectrometry, T cells.
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1 Inconceivable: word that has stuck with me since I saw the movie The Princes Bride 
2 Last Dance documentary on Netflix 
3 Michael Jordan, the greatest basketball player of all times.. Sorry LeBron 
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9 Snoop Doog: cool rapper who loves to smoke weed 
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Overview 

Cancer immunotherapy is part of the cancer treatment’s arsenal, which involves 

stimulating the immune system to better fight cancer. Cancer can occur and prevail despite the 

ability of the immune system to detect and destroy it. As we age, the accumulation of mutations 

can impede our natural ability to defend ourselves against the onset of cancer. Once established, 

cancer cells can develop various mechanisms to evade the immune system. They can manipulate 

the normal cells surrounding tumors, turning them into barriers to counteract immune responses. 

Alternatively, cancer cells may remain undetected by altering genes responsible for antigen 

processing and presentation or by modifying cell surface-anchored proteins that impede immune 

recognition. 

Currently, there are several types of cancer immunotherapy that, depending on the type 

of cancer, can be combined with other types of treatment, including conventional approaches 

such as surgery, chemotherapy, and radiotherapy. Among cancer immunotherapy strategies, 

cancer vaccines for patients already suffering the disease aim to boost the immune system by 

educating it to recognize and react against cancer cells carrying specific antigens. These antigens 

must have critical characteristics to ensure the success of the vaccine: they must be highly specific 

for cancer cells, and they must be able to stimulate immune cells sufficiently to promote their 

destruction.  

However, the design of cancer vaccines is not trivial. The nature of cancer-specific antigens 

still needs to be elucidated to identify the best therapy-actionable antigenic targets. In recent 

years, immunotherapy has benefited from advances in next-generation sequencing, high-

throughput mass spectrometry and bioinformatics to manage and analyze vast amounts of data. 

Taking advantage of these breakthroughs, several studies have helped to elucidate the presence 

of a hidden proteome in cancer cells. This non-canonical proteome was shown to be a rich source 

of cancer-specific antigens.  

Therefore, the work presented in this thesis addresses the design of bioinformatics 

approaches to analyze genomic and proteomic data intending to understand the non-canonical 
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proteome that may be at the source of suitable antigenic targets. In addition, it presents a tool 

for in-silico validation of antigen specificity and immunogenicity to allow prioritization of antigens 

for subsequent vaccine development.  

This doctoral thesis is presented in 4 chapters. Chapter 1 introduces the mechanism used 

by cells to communicate to the immune system their internal health status and how this 

mechanism can be used for the development of immunotherapies. Chapter 2 presents an article 

published in the journal Cell reports in which the presence of a non-canonical proteome in 

lymphoma cell lines is highlighted. Chapter 3 presents an article being reviewed by Genome 

Biology in which a software tool for the prioritization of antigens based on their RNA expression 

in normal and cancerous tissues is presented. Chapter 4 presents the conclusions and discusses 

the work presented in this thesis as well as perspectives for future work. 
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Chapter 1 – Introduction 

The immune system protects our body from external aggressions through two lines of defense 

that work together to prevent the threat: the innate and the adaptive immune system. When the 

body encounters an invader, the innate immune system is activated as the first line of defense. 

This system involves a range of defenses, including anatomical barriers like the skin and mucous 

membranes, as well as physiological mechanisms that regulate temperature, maintain low pH 

levels, and produce chemical mediators. In addition to these barriers, phagocytic and endocytic 

mechanisms are employed to contain the pathogens, while inflammatory responses are also 

triggered to help fight off the infection1. Within the range of cellular mechanisms used to contain 

pathogens, neutrophils and macrophages are particularly effective at eliminating threats. They 

secrete highly destructive substances, such as enzymes that break down pathogen proteins and 

reactive chemicals that kill to then engulf and digest the damaged pathogens (phagocytosis)2. 

When this initial attack is insufficient to eradicate the infection, lymphocytes are activated to 

initiate a specific response against the pathogen. This activation marks the beginning of the 

second line of defense: the adaptive immune system. The adaptive immune system relies on the 

coordinated efforts of B and T lymphocytes, each armed with unique receptors designed to detect 

and respond to antigens3. These receptors are designed to recognize antigens bound to major 

histocompatibility complex molecules (MHCs), which are found on the surface of cells infected by 

pathogens4. By binding to these antigens, B and T lymphocytes initiate a targeted immune 

response to eliminate the infected cells and combat the pathogens. The pathogen-specific 

response provides long-lasting protection through the generation of immune memory cells 

conferred by the T lymphocytes. Although both B and T lymphocytes are essential for the proper 

functioning of the adaptive immune system, here we will focus on how T lymphocytes explore 

and recognize the set of peptides presented on the surface of cells, which together constitute 

what is known as the immunopeptidome. 
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1.1 The immunopeptidome 

The immunopeptidome refers to the repertoire of peptides displayed on the surface of nucleated 

cells through their association with major histocompatibility complex class I (MHC-I) molecules, 

hereafter referred to as MHC-I-associated peptides (MAPs). MAPs are short peptides (8 to 11 

amino acids in length) generated through the process of antigen processing and presentation5. 

During this process, proteins undergo degradation, yielding a diverse array of short peptides. 

Some of these peptides are then loaded onto MHC molecules and transported to the cell surface, 

where they are presented for recognition by immune cells. Human MHC-I molecules, also known 

as human leukocyte antigens (HLA), are transmembrane glycoproteins encoded from the most 

polymorphic genes (HLA-A, HLA-B and HLA-C) of the genome. Such polymorphisms mainly occur 

at the binding site of the MHC-I molecule (groove) and the peptide, resulting in allelic variations6. 

This enables each molecule to harbor a large diversity of peptides in its groove and thus allow the 

cell to have a broad representation of its proteome on the cell surface. However, the number of 

peptides that can be presented is limited by two factors. Firstly, the number of MHC-I molecules 

available which varies between ~1x104 to ~5x105 depending on the cell type7. For instance, on 

average only about ~2x105 MHC-I molecules are expressed at the cell surface of normal B and T 

cells8, and ∼5x104 to ~1.5 x105 on ovarian cancer epithelial cells9. Secondly, only peptides with 

the required sequence motifs for HLA binding are presented, leading to a selective sampling of 

available peptides10. While it has been hypothesized that each cell expressing approximately 

~2x105 MHC molecules can present around ~1x104 different MAPs11, the specific criteria for their 

selection remains uncertain. Pearson et al12. showed that a restricted number of genes (~58%) 

contribute to the production of MAPs in normal cells. This finding indicates that the selection of 

genes for MAP presentation is not random, with abundance being an important factor, albeit not 

the sole determinant. Thus, the authors proposed a model suggesting that MAP presentation is 

regulated by a shared group of proteins that can generate MAPs with motifs compatible with 

most of MHC-I allotypes. Such proteins might possess specific characteristics (protein abundance, 

translation efficiency, protein length, degradation rate, protein structure), enabling their selective 

entry into the antigen presentation pathway.  
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The immunopeptidome is therefore a dynamic repertoire. It has been observed that 

changes in the cell, such as those induced by treatments13, diseases14 or infections15 can alter the 

composition of the immunopeptidome and lead to the rapid presentation of these changes on 

the cell surface16. Under such conditions, increased synthesis of the affected proteins results in a 

modified set of peptides that are selected for presentation by MHC-I molecules. The flexibility of 

MHC-I molecules to associate a broad but selected set of peptides favors the communication of 

such changes between the cell and the immune system through its immune surveillance process. 

As a result, T lymphocytes can recognize and distinguish normal from abnormal cells. 

T lymphocytes such as CD8+ T cells mediate antigen recognition through their surface T 

cell receptors (TCRs) that are able to recognize more than a million distinct MAPs17. When the 

TCR of a CD8+ T cell encounters a foreign MAP, the TCR binds to the MAP derived from pathogen 

or infected cells and mount an immune response. Upon detection, the CD8+ T cell either directly 

kills the abnormal cells or secrets small proteins called cytokines to attract inflammatory cells that 

attack the abnormal cells18, 19. Once the abnormal cells are controlled, the repertoire of antigen-

specific T lymphocytes, which expanded during the immune response, is stabilized by the process 

of apoptosis. As a result, most of these T cells are eliminated, while a small number are retained 

to ensure immunological memory20. Immune memory ensures long-term protection against the 

same antigen, i.e., in case of re-exposure, the memory conferred by the preserved T-lymphocytes 

can eliminate the threat. This is the principle of vaccination, in which selected antigens are 

introduced into the body to induce an immune response that protects against a pathogen on 

subsequent exposure21. 

Taken together, the interactions of CD8+ T cells with MHC-I molecules are key to defining 

the health of an organism. After their training in the thymus, CD8+ T cells act as patrols that scan 

MHC-I molecules for abnormal MAPs, thereby eliminating potential threats. Vaccines aim to take 

advantage of this defense mechanism by mounting immune response to preserve a long-lasting 

immune memory for future exposure. Thus, it is paramount to prioritize the safest, highly 

immunogenic antigens that preserve the health of normal cells, eliminating only the abnormality. 

The use of incorrect or not specific antigens can have detrimental effects on tissues, posing a 

significant risk to the patient's life. In the context of cancer therapies, there is a focused effort to 
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identify tumor-specific MAPs for the development of antitumor immunotherapy, particularly in 

the form of vaccination. Further details on this topic will be explored in Section 1.2.1. 

1.1.1 Generation of the immunopeptidome  

The immunopeptidome is the set of short peptides that are generally produced through the 

degradation of ubiquitinated proteins within cells. This process occurs through the action of the 

ubiquitin-proteasome system responsible for breaking down proteins into their constituent 

peptides. Selected peptides resulting from the degradation process are transported to the 

endoplasmic reticulum (ER), where they are filtered according to their size and affinity for 

available MHC-I molecules and then loaded onto them. Peptide-loaded MHC-I molecules are 

transported through the Golgi to the cell surface, where they are anchored to communicate with 

the immunosurveillance system22 (Figure 1). 

 

Figure 1. –  Antigen processing and presentation by MHC class I molecules.  
Peptides are generated from the degradation of ubiquitin-tagged, mistranslated proteins or end-
of-life proteins. The peptides are further processed (trimming) by peptidases and delivered to the 
endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). In the 
ER, peptides are loaded onto available MHC class I molecules, to which they have a strong binding 
affinity. Finally, the loaded MHC class I molecules migrate through the Golgi to the cell surface.  
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Adapted with permission from Springer Nature: Nature Reviews Clinical Oncology (Haen, S.P., 
Löffler, M.W., Rammensee, HG. et al.)23 © 2020. 

  

1.1.1.1 MAPs source proteins: Self vs non-Self 

Under normal conditions, the set of MAPs presented on the cell surface is derived from normal 

constitutive proteins or “self” proteins. CD8+ T lymphocytes are destined not to react to self-

MAPs as they were selected after passing the autoreactivity test in the thymus. Indeed, the 

thymus plays a key role in the development of the immune system by establishing central 

tolerance, process by which the immune system becomes tolerant to self-proteins. Medullary 

thymic epithelial cells (mTECs) and dendritic cells mediate this process by generating a diverse 

repertoire of self-MAPs from genes expressed in normal tissues24, 25. Self-MAPs are then 

presented to naive CD8+ T cells to test their reactivity. CD8+ T cells that recognize and react 

against self-MAPs are eliminated. Those that show little or no reaction to the large number of 

self-MAPs to which they were exposed become functional or mature CD8+ T cells26-28. Thus, while 

the establishment of central tolerance explicitly aims to eliminate CD8+ T cells susceptible to react 

against normal proteins, it implicitly trains CD8+ T cells to react exclusively against abnormal 

protein peptides. By establishing central tolerance, the thymus helps to ensure that the immune 

system can effectively protect the body from foreign invaders, while at the same time preventing 

it from attacking the body's own cells and tissues. 

In pathological conditions, alongside self-MAPs, it is also possible to observe on the cell 

surface MAPs derived from abnormal or “non-self” proteins. The immune system is designed to 

recognize and attack substances that it has not developed tolerance for, such as infections. Cells 

infected by intracellular bacteria, parasites, or viruses may exhibit on their surface foreign or 

“non-self” MAPs that can be recognized by CD8+ T cells. When CD8+ T cells encounter infected 

cells that express foreign peptides, they are activated and launch an immune response to 

eliminate the infected cells and prevent the spread of the infection. In the context of cancer, the 

occurrence of epigenetic alterations and somatic mutations can lead to defects in DNA, which in 

turn translate into abnormal proteins that generate abnormal MAPs. The immune system is 

designed to identify “non-self” MAPs, but antigenic changes in cancer cells caused by individual 

mutations can be subtle. This presents a challenge for the immune system to distinguish these 
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altered MAPs from self-MAPs29. Furthermore, cancer cells can become invisible to the immune 

system due to alterations that result in the loss of antigen processing function or major 

histocompatibility complex (MHC) class I proteins to present antigens, thereby acquiring the 

ability to grow progressively30. Also, cancer cells can evade the immune system by promoting the 

establishment of an immunosuppressive environment that favors their growth and survival31. 

They achieve this by producing cytokines that not only promote their own growth, but also attract 

immune regulatory cells that function as effectors of immunosuppression32. An example of such 

cytokines secreted by tumors are vascular endothelial growth factor (VEGF) and transforming 

growth factor-β (TGF-β). VEGF is a potent cytokine that stimulates the formation of new blood 

vessels, which provides tumors with the necessary nutrients and oxygen to support their growth, 

while TGF-β has the ability to suppress the activity of immune cells, such as natural killer (NK) cells 

and CD8+ T lymphocytes33. Finally, the immune system may be compromised or weakened by 

chronic inflammation, aging, or the presence of other diseases, reducing its ability to recognize 

and attack cancer cells34. 

1.1.1.1.1 Nature of MAP source proteins 

It was long thought that the immunopeptidome was generated solely from the degradation of 

normal proteins that reached their natural lifespan (retirees). Recent research has suggested that 

the immunopeptidome may also be derived from rapidly degraded proteins (RDPs)35. This idea is 

supported by the fact that CD8+ T cells can eliminate virus-infected cells within a relatively short 

period of time post-infection (45 minutes)16. This suggests that, although the half-life of a typical 

protein can range from 9h36 to 48h37, 38, depending on various regulatory mechanisms, viral 

proteins can be rapidly translated and degraded to generate MAPs. Further studies have also 

shown that MAPs tend to originate from efficiently translated proteins that are prone to 

degradation, such as disordered proteins or proteins with a high number of ubiquitination sites12. 

Therefore, in addition to the natural lifespan of proteins, their structural conformation may also 

influence the immunopeptidome. 

MAPs are therefore derived from the protein pool of retirees and RDPs39. Quantification 

analysis of synthesized RDPs have shown that they represent between 2535, 40- 30%41 of cell 

proteins and are distinguished into two groups: short-lived proteins (SLiPs)4 and defective 
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ribosomal products (DRiPs)42. SLiPs are proteins naturally having a high turnover and undergoing 

degradation with an average half-life on the order of 8 minutes38. DRiPs are defined as proteins 

that, due to premature termination of translation or misfolding, do not reach a functional 

conformation and are subject to degradation by the proteasome43. Although no DRiPs have yet 

been isolated in vivo, MS characterization of vaccinia-infected cells demonstrated that MAPs 

were detected half an hour post-infection44, probably as result of rapid translation and 

degradation of viral proteins. Similarly, lymphocytic choriomeningitis virus nucleoprotein-derived 

NP118 peptide was rapidly detected before its parent protein reached its functional lifetime  after 

infection (>3 days)45. Thus, the substantial contribution of DRiPs to the immunopeptidome46 

appears to be critically necessary, as they may be the main source of viral peptides to alert the 

immune system and rapidly prevent the spread of infection. 

1.1.1.1.2 Canonical and non-canonical proteome 

The MAPs sources protein (retirees, DRiPS and SLiPs)47 are encoded by genes located on all 

chromosomes48. It had been assumed that MAPs were derived from conventional genes, i.e., 

genes for which a specific region in the genome and its function is known. Conventional genes 

are translated into canonical proteins, which according to the Universal Protein Resource 

(UniProt)49, are functional, conserved, widely expressed, long and human-verified proteins.  

To date, there are more than 20,000 human canonical proteins reviewed in the UniProt 

database representing only ~2% of our genome. However, the cumulative coverage of transcribed 

regions assessed with RNA sequencing (RNA-Seq) showed that 74.7% of the human genome can 

be transcribed50. Further studies have revealed that our understanding of transcription and 

translation is incomplete, as evidenced by the observation of translation occurring beyond the 

boundaries of annotated protein-coding regions51. Thousands of open reading frames (ORFs) 

have been identified in putative non-coding regions of eukaryotic genomes, such as intergenic 

regions52, 53. In humans, transcriptomics54-57 (complete set of RNA transcripts produced in the cell) 

and translatomics51, 58-60 (complete set of translated transcripts), studies have confirmed 

widespread expression of proteins deriving from non-coding regions. Some of these proteins have 

been verified by proteomics (identification of proteins at a point in time)57, 61-66. The 

overwhelming evidence of non-canonical translation events often referred to as cryptic proteins, 
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rules out the idea that such observations are the result of purely random events or experimental 

artifacts.  

The non-canonical proteome is translated from: out-of-frame translation of coding exons 

(frameshift)63-66 and alternative ORFs located in allegedly non-coding regions. The alternative 

ORFs are located in UTRs57, 59, 62, 63, 65, 66, non-coding RNAs as pseudogenes61, long non-coding 

RNAs (lncRNAs)51, 60, 62, 66, 67 and from intergenic regions63. These non-canonical proteins have 

distinctive properties compared to their canonical counterparts. They tend to be shorter proteins 

(median size ~57 aa versus ~400 aa for canonical proteins)57, 63, 65, have lower transcriptional and 

translational rate60 and initiate translation on near-cognate codons (differing from AUG by a 

single nucleotide)63, 66. Also, they are predicted to be short-lived as they have a less stable 

conformation in-vivo60. These properties are significantly divergent from those of canonical 

proteins, leading to misclassification of these novel alternative coding RNAs into non-coding RNA 

categories57. 

The extent to which non-canonical proteins contribute to the proteome and their 

functional roles are not yet well defined. Recent studies have suggested that non-canonical 

proteins may have essential roles in metabolism and cellular regulation66. For example, non-

canonical proteins orchestrate mucosal immunity during infection68, enhance muscle activity69, 

70, act in heart function62 and as regulators of transcription and translation57, and be essential for 

cancer cell survival71. In addition, studies have confirmed the presence of non-canonical proteins 

as sources of MAPs, meaning that the non-canonical proteome undergoes the same antigen 

processing and presentation pathway as canonical proteins. Thus, the cell surface is populated by 

MAPs derived from both canonical proteins and non-canonical proteins, the latter contributing 

approximately ∼5-10% of the total MAPs 72-76.  

The non-canonical proteome has gained a lot of attention lately as it may be instrumental 

in treating cancer. A recent study has suggested that MAPs derived from non-canonical proteins 

may be promising targets for cancer immunotherapy77. In this study, researchers identified 

cancer-specific non-canonical MAPs in leukemic cells and immunized mice with these MAPs. This 

led to strong anti-leukemic responses and reduced leukemic cell growth in the vaccinated mice. 
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When the researchers examined primary human leukemia and lung carcinoma samples, they also 

found non-canonical MAPs that were potentially conserved between individuals and could 

potentially be used as targets for immunotherapy. These findings suggest that non-canonical 

MAPs may be a promising avenue for developing effective cancer vaccine treatments. 

Overall, understanding the origin and regulation of non-canonical proteins, derived from 

putative non-coding regions of the genome, is important for characterizing immunopeptidome. 

By elucidating the properties and functions of non-canonical proteins, researchers can better 

understand not only the role of non-canonical proteins in various biological processes but also 

their contribution to the immunopeptidome, therefore, their practicality in immunotherapy. 

1.1.2 Identification of the immunopeptidome with proteogenomics  

Recent advances in high-throughput sequencing and mass spectrometry (MS) have facilitated the 

efficient characterization of the immunopeptidome (reviewed78, 79). Researchers have harnessed 

genomic and proteomic information for the identification of MAPs, leading to the emergence of 

a new field called proteogenomics80. Briefly, upon sample preparation, immunopeptidome 

identification follows three major steps: MAPs isolation, MS, and MAPs identification (Figure 2).  
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Figure 2. –  Immunopeptidome identification steps.  
Top panel: sample preparation. MHC I complex purification from whole organs, cultured cells, or 
biopsies, followed by a homogenization process. Middle panel: purification of MAPs. 
Immunoprecipitation (using antibodies for MHC molecules) followed by liquid chromatography 
(LC) for the separation of peptides and MHC molecules. Bottom panel: LC-MS/MS acquisition and 
data analysis. After LC, the peptides are injected into the mass spectrometer. Peptide sequence 
identification is performed using database search engines. Finally, the number of peptides is 
reduced after FDR calculation to control false positive identifications. Adapted with permission 
from Springer Nature: Nature Protocols (Purcell, A.W., Ramarathinam, S.H. & Ternette, N)78© 
2019. 
 

1.1.2.1 MAPs Isolation  

MHC-I molecules are purified from whole organs, cultured cells, or biopsies, followed by a 

homogenization process to break down the tissue structure and create a suspension of cell 

fragments (Figure 2, top panel). Isolation of the processed natural MAPs from the cell lysate is 

typically performed by a process called MHC-I immunoprecipitation, which provides large 
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numbers of isolated MAPs81, 82. Antibodies specific for MHC-I molecules are used for isolation, 

followed by several washing steps to remove the unbound mixture, and then acid elution is 

applied to dissociate the MAPs from the MHC-I molecules. High-performance liquid 

chromatography (HPLC) is applied to separate the MAPs from the MHC components: α-chain and 

β2-microglobulin (β2m) (Figure 2, middle panel). 

1.1.2.2 Mass spectrometry (MS/MS) 

After being prepared, the MAPs are injected into a liquid chromatography (LC) column, where 

they undergo a separation process that is influenced by the chemical interaction between the 

MAPs and the stationary and mobile phase of the column. Over time, this interaction affects the 

migration of the MAPs through the column, leading to a separation of the mixture (Figure 2, 

bottom panel). The effluent from the LC column is directed into a mass spectrometer (MS), which 

is used to analyze the mixture of peptides. The MS measures the intensity and mass-to-charge 

ratio (m/z) of ions present in the effluent to retrieve information about their abundance and 

peptide sequence.  

While there are several types of mass spectrometers available for peptide analysis, LC-MS/MS 

methods typically perform the following tasks83, 84: 

a) Ionization: the mass spectrometer has an ionization source where the LC column 

effluent is nebulized, desolvated and ionized creating charged particles.  

b) MS1 scan: ionized peptides, hereafter referred to as precursor ions, are selected one 

by one to pass through an electromagnetic field to measure their intensity and m/z. 

As result, an MS1 scan of each peptide is generated, which is a plot depicting the 

intensity (y-axis) versus m/z (x-axis). From MS1 scan, all that is known about the 

peptide is its mass and charge.  

c) MS2 scan: each precursor ion is fragmented in a collision cell with an inert gas to obtain 

ion fragments, i.e., the molecule is broken down into ions to identify its amino acid 

composition. Ions fragments of each precursor ion are then passed through a mass 

analyzer to measure their intensity and m/z resulting in a MS2 scan. In the MS2 scan, 

the fragment ions are represented as pairs of b and y ions. The y ions represent the 
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fragment charge retained at the C-terminus and the b ions the charge retained at the 

N-terminus. The MS2 scan is then used to identify the amino acid sequence of the 

peptide. 

1.1.2.2.1 MS data acquisition 

Depending on the needs of the study there are three main modes to acquire data on a mass 

spectrometer: data-dependent acquisition (DDA), targeted and data-independent acquisition 

(DIA) mode. The selection of a data acquisition mode has a direct impact on the quality of 

peptide/protein identification and quantification, owing to the distinctive characteristics 

associated with each mode. 

The DDA mode is commonly used for peptide/protein discovery (shotgun) in a sample, 

with the aim of achieving comprehensive coverage. This mode works by first conducting an MS1 

scan to identify the most abundant precursors (10-20), which are then individually isolated and 

fragmented in sequential MS2 scans that are analyzed to determine the peptide sequence84. This 

strategy allows the identification of thousands of peptides/proteins, which provides a broad 

proteomic overview of the sample, however, it is worthy to mention that this approach also has 

several drawbacks. First, it has low reproducibility, several peptides can co-elute and appear in a 

single MS1 scan and DDA stochastically samples only the most abundant peptides. Second, due 

to the wide dynamic range in protein abundance, low abundant peptides are not identified. Lastly, 

DDA deliberately samples each peptide only once or twice to enhance peptide discovery within a 

reasonable timeframe, resulting in relative instead of absolute peptide quantification84. Yet, 

shotgun proteomics is frequently used for comparisons of peptide abundances between samples 

of interest. This strategy known as label-free shotgun proteomics, involves measuring the relative 

abundances (MS1 scan intensity) of peptides independently in each sample after injection into 

the mass spectrometer. Although batch effects may be introduced due to variations in run 

conditions such as temperature, column conditions, or experimenter during MS runs85, 86, the 

intensities of MS1 scans of the same peptide in the samples are compared to identify differences 

in abundance. In contrast to label-free shotgun, label-based shotgun proteomics are advanced 

techniques that enable the isobaric or isotope labeling of proteins in each sample. The labeling 

technique enables a single MS injection of all samples, facilitating the measurement of their 
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relative quantification. This approach helps minimize the introduction of batch effects, enhancing 

the accuracy and consistency of the analysis. Isobaric labels refer to chemical groups with 

identical mass, but different distribution of heavy isotopes in their structure85. On the other hand, 

isotopic labels refer to chemical groups with the same structure, but different masses. Some 

common examples of label-based approaches include SILAC87, which uses metabolically isotopic 

labeling, and TMT88 or iTRAQ89, which use chemically isobaric tagging to compare up to 10 

different samples simultaneously.  

In targeted mode, selected/multiple reaction monitoring (S/MRM)-MS and parallel 

reaction monitoring (PRM)-MS are two techniques that enable the relative and absolute 

quantification of pre-defined set of peptides. These peptides must have been previously 

identified with MS to determine their peptide sequences, their elution time and their m/z value 

of the precursor ion, which is necessary information in the targeted strategy90. Indeed, the mass 

spectrometer selectively detects only those precursor ions and fragments that correspond to the 

m/z and elution time of the pre-defined peptides. These techniques allow quantification of low 

abundance targets and circumvent the imprecision and reproducibility limitations of DDA 

peptide/protein discovery proteomics86. In MRM, peptides are analyzed on a triple quadrupole 

mass spectrometer to separate ions based on their mass-to-charge ratio. The first quadrupole is 

responsible for selecting the precursor ions which are then fragmented in the second quadrupole. 

From the resulting ions, predefined ions are selected for acquisition of the partial MS2 scan by 

the detector91. Unlike MRM, which only measures selected fragment ions, Parallel Reaction 

Monitoring (PRM) measures all the resulting fragment ions92. PRM is typically performed using 

mass spectrometers such as Orbitrap or Time of Flight (ToF), which can measure all fragmented 

ions. Both MRM and PRM involve selecting and fragmenting the same precursor ions multiple 

times to obtain more accurate quantification of a smaller number of peptides, as compared to 

DDA.  

Finally, the DIA mode aims to integrate the strengths of the two previous modes to achieve 

accurate and reproducible quantification. Contrary to DDA which stochastically fragments only 

the most abundant peptides to generate MS2 scans, DIA acquires and fragments all precursor 

ions, thus being able to detect and identify even peptides at lower concentrations93. In DIA mode, 
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in each time cycle the mass spectrometer focuses on all precursors in a wider m/z window and 

acquires a single MS2 scan of all precursors in that window. The resulting MS2 scan is considered 

a multiplexed scan, as it contains all fragment ions of the peptide mixture in the respective 

window. Once a mass window has been analyzed, the mass spectrometer slides to the next 

window to collect the MS2 scan in that window93. Thus, DIA is a powerful method for sampling all 

peptides, including less abundant ones within selected mass windows, and can offer superior 

accuracy and reproducibility compared to DDA. However, the massive amount of data generated 

and the multiplexed nature of the MS2 scan make data analysis in DIA challenging. Compared to 

DDA, DIA requires more elaborate and sophisticated algorithms to deconvolute the complex MS2 

scan generated for subsequent peptide identification and quantification94. Currently, the most 

common method for generating DIA data is Sequential Windowed Acquisition of All Theoretical 

Fragment Ions (SWATH), in which the mass spectrometer divides the mass range into small m/z 

windows of 20 or 25 Daltons (Da) and slides with 2-4 seconds cycle time by precursor acquisition 

window95. 

1.1.2.3 MAPs identification 

To identify the immunopeptidome with MS, the final step involves determining the corresponding 

MAPs sequences. There are three primary methods used for analyzing and interpreting MS2 

scans: de novo sequencing, database searching, and a hybrid approach that combines de novo 

sequencing with database searching.  

The de novo sequencing method allows discovering the peptide amino acid sequence by 

calculating the mass differences between the intensity of neighboring peaks (b and y ions) in the 

spectra. Each mass difference is compared with a table of the molecular mass of the known amino 

acid to deduce the amino acid that best fits each of the given positions until the peptide sequence 

is identified. In recent years, several de novo peptide sequencing algorithms have emerged, which 

enable the direct identification of peptide sequences from MS2 scans. These algorithms utilize a 

diverse range of algorithmic techniques, including probabilistic graphical models, as seen in 

pepNovo96; hidden Markov models (HMMs), as utilized by pepHMM97, dynamic programming, as 

used by PEAKS98; and neural networks, as implemented in DeepNovo99. Regardless of the 

potential of de novo sequencing methods, they are not yet widely used in the proteomics 
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community as their effectiveness is often hindered by various challenges100. These include 

incomplete fragmentation of peptides in the MS2 scan, the presence of ions other than b and y 

ions, the inability to differentiate between b and y ions, the presence of isomeric amino acids 

(such as leucine and isoleucine), and the similarity in mass between certain amino acids (such as 

lysine and glutamine)83, 100, 101. Accordingly, it is reasonable to state that the success of these 

approaches for peptide sequence determination is highly dependent on the quality of 

fragmentation in the MS2 scan.  

The second approach is database searching, in which peptides are identified using an 

integrated set of algorithms known as database search engines. Tools such as Mascot102, Peaks103 

or MaxQuant104 query known protein sequence databases which may come from public 

repositories such as UniProt. The search consists of selecting peptide sequences from the 

database whose theoretical mass matches to a precursor ion mass obtained by MS. From the 

selected peptides, theoretical MS2 scans are generated and compared with the MS2 scan 

obtained from the precursor ion using a similarity function. This comparison allows for the 

calculation of a similarity score, which provides a measure of how closely the theoretical MS2 

scan matches the experimental MS2 scan. Thus, the highest score defines the peptide-scan-match 

(PSM) i.e., the peptide sequence to be assigned to each precursor ion. Finally, as a check for 

correct identifications, the acquired MS2 scan is also searched against the inverted sequence 

database (decoy database) to determine the peptide false discovery rate (FDR)105, 106. The FDR is 

calculated from the percentage of misidentifications (PSM in the decoy database) at user-

specified thresholds and is used to control the number of false positive identifications, resulting 

in fewer PSM being accepted107. The FDR is computed as the ratio of the number of identifications 

made in the decoy database and the number of identifications made in the target database: FDR 

= !"#$%&
'()*"'&

 . While the target-decoy search strategy is commonly used for estimating correct peptide 

sequencing, it's important to note that the size of the database directly affects FDR calculation. 

This is because the larger the database (target and decoy), the greater the probability that the 

best match to the MS2 scan is incorrect106. The use of a larger database significantly expands the 

pool of potential candidate peptides, increasing the likelihood of encountering peptides with 

similar or overlapping mass-to-charge ratios and fragmentation patterns. This higher degree of 
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similarity among candidates raises the risk of finally select the incorrect peptide sequences. 

Consequently, the result is a low number of peptide identifications that have a high probability of 

being false. 

Finally, a hybrid approach for the identification of peptide sequences in proteomics has 

been proposed, which aims to integrate the best of the other two other approaches: de novo 

sequencing and database search methods108. The hybrid approach is a tag-based approach as it 

uses de novo sequencing to identify and label well-resolved short sequence fragments as short as 

one amino acid109. The tagged short sequences are matched against the database to identify and 

consider only those peptide sequences containing the tag along with the correct flanking masses 

to identify the best candidate100. A current widely used hybrid approach is PEAKS DB103 which 

proposes the use of de novo sequencing as the initial step in peptide identification. The goal of 

this strategy is to identify a short list of proteins (up to 7000) that encompasses most peptide 

tags. As a result, the short list decreases the search space and is used for scoring and validation 

involving the target-decoy approach. However, a slight change has been introduced to the target-

target strategy, termed decoy fusion. This approach consists of generating a decoy protein for 

each target protein and combining them into a single entry. In this way, the resulting short list of 

proteins is free of any bias toward the target or decoy entries. In addition, peptide identifications 

from scans with high confidence de novo sequencing tags but no matches in the target database, 

are obtained from novel or modified peptides complementing the database searching. Yet, the 

de novo search lacks FDR control; therefore, additional validations will need to be applied to 

ensure the quality of the resulting peptide identification. 

In summary, the quality of the MS2 scan is a crucial factor in all three approaches to MAPs 

identification. De novo sequencing is particularly dependent on scan quality, while the 

completeness of the sequence database is critical for peptide identification through database 

search. Regardless of the method used, such limitations can significantly impact the accuracy and 

number of identifications that can be made. The completeness of the database depends on the 

presence of splice variants, single amino acid variations (SAAVs) and post-translational 

modifications (PTMs) inherent to the sample studied and which therefore may not be included in 

standard reference databases such as UniProt100. PTMs are chemical modifications that occur in 
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proteins capable of altering their structure, function, and interaction with other proteins in the 

cell. There are several types of PTMs, including phosphorylation, acetylation, methylation, 

glycosylation, and ubiquitination, among many others. The database search can be parameterized 

to be tolerant to mass errors to consider PTMs as variable modifications. However, database 

searches only include a restricted set of common PTMs preventing the identifications of less 

prevalent modifications challenging110. In turn, the process of identifying the sequence of 

modified peptides becomes much slower when many PTMs are involved. This is because fragment 

ion mass shifts caused by each specific PTM must be considered, which can make the search space 

larger. Furthermore, peptides carrying PTMs may not follow the same rules for breaking bonds 

between amino acids, thus presenting an additional challenge for their sequence identification. 

As a result, identification of the specific PTM sites can be more difficult than identifying 

unmodified peptide sequence based on the mass and intensity111. To sum up, PTMs greatly 

augment the complexity of the peptide identification process, which could be addressed with the 

recent advancements in deep learning for de novo sequencing, ultimately leading to more precise 

detection of these modifications103, 112.  

In immunopeptidomics analysis, MAPs have previously been identified bearing PTMs113, 

114. Some of these PTM-bearing MAPs can influence immunogenicity as their presence or absence 

informs the immune system of inner cell changes. For instance,  changes in the phosphorylation 

status can be caused by inflammation, infection or oncogenesis115-120. However, the detection of 

MAPs carrying PTMs might be restricted by the limited detection capability of mass spectrometry 

instruments. For example, detection of phosphorylated MAPs is challenging due to the dynamic 

range of mass spectrometers, as these MAPs represent only ~1% of the immunopeptidome and 

are therefore less abundant than their unmodified counterparts110, 114. Thus, enriching modified 

MAPs before injection to the mass spectrometer could significantly enhance both the sensitivity 

and throughput of their identification121.  

1.1.2.3.1 The non-canonical proteome and the emergence of proteogenomics  

To date, immunopeptidomics identification thought MS is mainly based on database searching. 

However, protein databases such as UniProt only contain canonical proteins that have been 

comprehensively collected and reviewed49. Gene annotation evaluates the transcripts and 
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proteins detected by using various assumptions that rule out or misclassify non-canonical 

proteins (often annotated as non-coding RNAs). Homology and conservation evaluation of 

observed ORFs are needed for their classification, along with other properties such as (1) the 

presence of the ATG initiation codon thought to be the unique codon recognized by the ribosome; 

(2) several exons in the structure; and (3) have a minimum ORF length (e.g., length requirement 

of at least 100 amino acids—aa)122. In general, gene annotations remain a difficult task to 

unambiguously annotate RNA as protein-coding or non-coding due to its confounding 

properties123. As result, the inclusion in standard databases of novel proteins from the non-

canonical proteome that mostly translates from short ORFs derived from canonical genes in 

different frames and non-coding regions is being prevented78.  

Proteogenomics aims to bridge the gap between transcription and translation for protein 

identification by generating customized protein sequence databases from genomic and 

transcriptomic information. With this approach, robust identification of canonical and non-

canonical peptides from MS proteomic data can be used to provide evidence for translation at 

the protein level helping to refine gene models80. Conventional databases such as UniProt 

(commonly used for peptide identification) are replaced by customized databases that aim to 

integrate the whole transcriptome landscape in the sample. Identification of novel peptides is 

performed from MS searches of databases containing both the canonical and non-canonical 

proteome predicted from high-throughput RNA sequencing80. Thus, proteogenomics has led 

many studies to identify proteins that were previously overlooked. 

1.1.2.3.2 Database Generation from Sequencing Data 

Although the inclusion of non-canonical proteins in the database is mandatory to facilitate the 

identification of previously unnoticed proteins, this process should be carried out with caution. 

To identify non-canonical translations, previous studies have used RNA sequencing data to 

generate custom databases that included translation of 6 frames of each RNA seq read72. The 

decision to translate 6 frames in the case of unstranded RNA seq reads is explained by the fact 

that RNA sequencing lacks information on the start and termination of ORFs and the translation 

frame. Therefore, the custom databases ended up oversized (~1 GB or 55x106 sequences 

compared to the size of the known human proteome reference ~25 Mb or 1x105 sequences), as 



19 

many sequences, at least 5 of the 6 translation frames, could be false translations124. Inflated 

databases hinder the accuracy of MS peptide identification as the risk of false discoveries 

increases with the size of the database125. Indeed, the more theoretical MS/MS spectrum scores 

for experimental MS/MS the higher the probability that the best match would be incorrect106. 

Aware of this limitation, researchers have developed strategies to generate the 

customized databases in a manageable size for database search engines. Some strategies involve 

the use of transcriptome assembly tools such as StringTie126, Cufflinks127 or Trinity128 to 

reconstruct the transcriptome taking into account alternative transcripts and splicing from RNA 

sequencing. The transcriptome reconstruction aims to reduce the space of sequences to be 

translated into 3 or 6 frames, depending on the type of RNA-seq library, to be included in the 

database. This strategy has been used, for example, to detect the adenovirus proteome in 

infected human cells129. The authors reconstructed first the transcriptome of infected human cells 

that was further filtered by transcript abundance and length. The transcripts that passed the 

filters were then translated in 6 frames translations to finally composed the customized database. 

Although the size of the resulting custom database should be smaller than if each of the RNA 

reads were translated at 6 frames; it is still populated with irrelevant sequences from the reserved 

transcripts translated into 6 frames. 

In the context of cancer immunopeptidome, attempts have been made to reduce the size 

of the database to include non-canonical sequences and thus discover suitable antigenic targets. 

The identification of virtually suitable antigens was carried out for example from the definition of 

the cancer cell-specific immunopeptidome. In these studies, the databases included only 

canonical and non-canonical sequences translated in 3 or 6 translation frames, depending on the 

event from which the transcript was identified130-132. Other studies, for example, identified first 

cancer-specific RNA-seq reads from subtraction of RNA-seq reads from normal cells (mTEC)77, 133-

135. Small custom databases were generated from 3-frame translations of cancer-specific RNA-seq 

reads concatenated into contigs. These approaches have identified true potential targets that 

significantly improved survival in mice77 and had good predicted survival in humans133, 134. 
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Although proteogenomics has proven useful for the direct identification of immunogenic 

antigens, personalized databases continue to be populated with irrelevant sequences from 3- or 

6-frame translations. Thus, it is still necessary to develop other strategies to warrant the accuracy 

of the identified peptides. 

1.1.2.3.3 The advent of ribosome profiling 

Ribosome profiling (Ribo-seq) is a deep sequencing technique for ribosome-protected mRNA 

fragments that elucidates the actual transcriptome being synthesized into proteins136. The 

ribosome-protected fragments enclose a short portion of RNA (~30 nucleotides) which 

corresponds to the ribosome messenger RNA (mRNA) template. Using different translation 

inhibitors, ribosomes can be stalled at initiation (Harringtonine) or elongation (Cycloheximide) 

sites to elucidate the initiation codons or the body of the proteins being translated, 

respectively137, 138. Thus, Ribo-seq provides quantitative information about mRNA transcripts 

concerning whether they are highly or poorly translated, their reading frames, their start and stop 

codons and their translation rate139. Ribo-seq leads to identify the precise regions of the human 

and mouse genomes being translated, exposing the pervasiveness of translation outside of the 

annotated protein-coding genes66, 140. Therefore, the integration of Ribo-seq for the generation 

of customized databases facilitates the inclusion of the canonical and non-canonical proteome 

actually translated by restricting the size of the search space. The resulting customized databases 

would therefore have desirable sizes to be manageable by the database search engines (Peaks, 

Mascot, MaxQuant); thus, improving the number and quality of peptides identified. 

Different strategies have already been developed to help identify the set of translated 

sequences from Ribo-seq to generate customized databases76, 141, 142. As lately the 

immunopeptidomics studies are performed in immunotherapeutic contexts, the use of 

proteogenomic approaches requires robust and accurate identifications. Customized databases 

generated from Ribo-seq enabled the identification of high-confidence MAPs derived from non-

canonical proteins. In fact, Ribo-seq itself provides an additional layer of translational evidence 

for peptides identified in MS experiments73-76. Proteogenomic approaches that leverage Ribo-

Seq, RNA-seq, and MS of matched normal and tumor samples hold great promise for the 

discovery of safe antigens for cancer immunotherapy. When no matching ribosomal profiling is 



21 

available, immunopeptidomics can now benefit from recent efforts to standardize ORF 

annotations from Ribo-seq data. This new catalog includes more than seven thousand human 

Ribo-seq ORFs in reference databases143. These Ribo-seq annotations within existing reference 

gene annotations, including Ensembl/GENCODE, HUGO Gene Nomenclature Committee (HGNC), 

UniProtKB, HUPO/HPP, and PeptideAtlas, would facilitate searches in a more comprehensive 

protein database. Ribo-seq has been used in cancer research, including our own studies, to 

generate protein databases that enable peptide identification73, 74, 144. Therefore, it would be 

beneficial to employ this Ribo-seq data to normalize ORF annotations encompassing aberrant 

cancer-specific ORFs that would ultimately facilitate the discovery of useful antigens for 

immunotherapy.  

In general, despite the relative low throughput in MS-based approaches, they allow 

physical confirmation of the MAP presentation at the molecular level. However, the use of MS for 

immunopeptidome identification must consider some main precautions23, 145. Firstly, to improve 

the coverage of identifications it is necessary to use a significant amount of material (cells, tissue). 

Second, some peptides may need additional validations, as there may be confounding factors for 

peptide sequence identification, such as post-translational modifications or isobaric amino acids 

(leucine and isoleucine amino acids cannot be differentiated). Third, the search database must 

meet two important conditions: it must be complete and of manageable size to avoid false 

positive identifications80. Accordingly, in Chapter 2, a proteogenomic approach using Ribo-Seq, 

RNA-seq and MS aiming to unravel the proteome of cancer cells presented on the cell surface 

through MHC I molecules is presented. In this study, we conclude that cancer cells present MAPs 

derived from non-canonical proteins that are only accessible at the level of the 

immunopeptidome and not at the level of the proteome. 
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1.2 Immunotherapy 

The immunopeptidome is the repertoire of MAPs produced through the degradation of proteins 

to reflect the intracellular state. Therefore, each MAP is a direct representation of intracellular 

events occurring in healthy or malignant cells. Recognition of MAPs reflecting intracellular 

infection, mutations, and disease by CD8+ T cells ensure a specific immune response to eliminate 

the threat. In cancer, cells present abnormal MAPs (hereafter referred to as Tumor Antigens - TA) 

derived from protein alterations caused by mutations, normal transcripts overexpression or 

unconventional transcripts expression. Therefore, cancer immunotherapy aims to harness the 

power of the immune system to enhance antitumor responses through vaccines targeting cancer-

specific MAPs. 

1.2.1 Cancer vaccines 

Cancer vaccines treat cancer by educating the body’s natural defenses by stimulating T cells to 

recognize and destroy cancer cells. Thus, the main challenge for this type of immunotherapy lies 

in identifying specific and highly immunogenic antigens. Antigen specificity in cancer is crucial, as 

CD8+ T cells are unable by themselves to differentiate between benign and malignant tissues if 

both tissues express the antigen. When antigen specificity for cancer cells is lacking, CD8+ T cells 

may cause unwanted toxicity in benign tissues presenting the same antigens, which is why the 

uptake of this type of therapy remains limited146.  

To maximize the clinical benefits of vaccines for cancer treatment, several challenges must 

be addressed, in addition to the fact that cancer cells must express sufficient levels of antigens 

capable of stimulating an immune response147. Cancer cells undermine the potential of 

immunotherapy to induce long-lasting protection by altering the expression of the antigen 

processing machinery, establishing immune escape mechanisms, and utilizing the 

immunosuppressive tumor microenvironment (TME). In fact, cancer cells often reduce or 

eliminate the Major Histocompatibility Complex Class I (MHC I) antigen presentation machinery, 

since MHC I molecules are not essential and can actually be harmful to their survival30. Cancer 

cells may also produce cell surface-anchored proteins called checkpoint proteins. Binding of 

proteins such as PD-L1 or B7-1/B7-2 to cell surface-anchored T-cell proteins, such as PD-1 and 
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CTLA-4, respectively, slows down T cells, thus impeding the immune response. Finally, the TME, 

which surrounds and supports the growth of the tumor, can also hinder the effectiveness of 

immunotherapy by causing activated T cells to become exhausted or dysfunctional rendering 

them incapable of reaching and effectively attacking the tumor31.  

Therefore, the success of vaccines for cancer treatment depends on the identification of 

tumor antigens capable of eliciting a strong immune response, as well as the use of strategies that 

facilitate their delivery148. In recent years, cancer vaccines have shown great promise when used 

in combination with immune checkpoint blockade therapies such as anti-CTLA-4 and anti-PD-1149. 

These therapies work by targeting and blocking proteins that help to regulate the immune 

system's response to infections and abnormal cells, thereby boosting the immune system's ability 

to recognize and attack cancer cells. A recently completed study (November 2021), patients with 

human papillomavirus-induced tumors treated with nivolumab, an antibody directed against the 

immune checkpoint PD-1, and tumor-specific antigen vaccines. As result, patients had a 33% 

overall response rate and a median overall survival of 17.5 months (clinical trial NCT02426892)150 

compared to treatment with PD-1 inhibition alone in similar patients. More targeted efforts 

against various cancers are currently underway to evaluate the combination therapy efficacy of 

various checkpoint blockade modulators with specific vaccines151, 152. In melanoma, randomized 

clinical trials such as NCT04526899 and NCT03897881, aim to evaluate the efficacy, tolerability, 

and safety of tumor-associated antigens in combination with the anti-PD-1 antibodies cemiplimab 

or pembrolizumab. Recently, Moderna and Merck (last December 20, clinical trial NCT03897881), 

announced that stage III/IV melanoma patients treated with specific antigens and pembrolizumab 

had a statistically and clinically significant improvement in reducing the risk of recurrence or death 

by 44% versus control patients treated with pembrolizumab alone. Hence, these recent and 

promising results demonstrate the desirability of personalized therapies in conjugation with 

checkpoint inhibitors. 

1.2.2 Antigenic targets presented on the surface of cancer cells. 

The main actors of cancer vaccines are tumor antigens that should be capable of stimulating a 

rigorous immune response. Tumor antigens or TAs can be further classified into two categories 
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according to their genetic mechanism of expression and recognition by T cells: Tumor-Specific 

Antigens (TSAs) and Tumor-Associated Antigens (TAAs). 

1.2.2.1 Tumor-Specific Antigens – TSAs 

TSAs are MAPs that derive from the following types of translations: ORFs with nonsynonymous 

mutations in cancer (hereafter referred to as mutated TSAs or mTSAs); ORFs aberrantly expressed 

in cancer but normally silent in normal cells or from genes restrictedly expressed in immune-

privileged cells (hereafter referred to as aberrantly expressed TSAs or aeTSAs) (Figure 3.a). 

1.2.2.1.1 Mutated TSAs or neoantigens – mTSAs 

mTSAs are very interesting targets as they can provoke tumor regression153. In many tumors, 

nonsynonymous somatic mutations resulting from genomic instability of cancer cells are 

introduced into proteins. MAPs encoded by these mutated sequences unique to malignant cells 

are called mTSAs. Research groups have primarily focused their attention on mTSAs as highly non-

synonymous mutation burden in tumors has been associated with response to immune 

checkpoint inhibitors and CD8+ tumor infiltration; thereby suggesting that mTSAs are important 

targets of CD8+ T cells154. Although mTSAs have potential as CD8+ T cell targets, they suffer from 

two major drawbacks. Firstly, their identification is scarce155, and many mTSAs may not be 

sufficiently translated to generate effective CD8+ T cell targets. For example, in melanoma cancer, 

despite having a high mutational load156, very few mTSAs have been described that can be 

recognized by T cells157. Secondly, mutations arising from tumor-specific DNA alterations, such as 

single-nucleotide variants, insertions, deletions, or fusions, are often associated with certain 

genes expressed in cancers but are transient mutations that produce patient-specific antigens23. 

Furthermore, due to tumor heterogeneity, the quality of the antitumor response is influenced by 

mTSAs present in clonal cells rather than those present only in subclonal cells158, which adds 

complexity to the mTSA selection method. Consequently, successful cancer immunotherapy 

involving mTSAs would most likely require the development of personalized cancer vaccines, as 

they may offer greater specificity and immunogenicity as long as these strategies include the 

enhancement of T-cell reactivity to mTSAs158-160. In this regard, in 2020, Ott et al.161 presented a 

clinical trial of personalized vaccines (a cocktail of mTSAs) combined with an immune checkpoint 
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inhibitor (nivolumab, to correct PD-1 immunosuppressive barriers). mTSA-specific T cell 

responses were observed post-vaccination in all the patients, meaning that T cells were able to 

enter the tumor and mediate cell killing with no severe adverse reactions. These results favor the 

development of personalized vaccines as they demonstrate that mTSAs are safe and 

immunogenic targets, even though mTSAs may be difficult or impossible to find in tumors with 

low mutational load162. 

1.2.2.1.2 Aberrantly expressed TSAs – aeTSAs  

aeTSAs are MAPs derived from cancer-specific translations resulting from genetic or epigenetic 

alterations absent or lowly expressed in normal cells. Alterations in transcription and translation 

factors, signaling pathways and ribosomal proteins can impair the translation process and lead to 

changes in the entire proteome163, 164.  

aeTSAs can be coded by any region of the genome, including non-canonical regions, which 

appears to be the main source of targetable TSAs77. Therapies targeting these aeTSAs, which are 

expected to be non-immunotolerant and to elicit high affinity and avidity in T lymphocytes, 

emerge to be highly effective. Unlike mTSAs which are likely to be a personalized immunotherapy, 

aeTSAs are more numerous and can be shared between tumors77. Therefore, aeTSAs appear to 

be a desirable target for a single vaccine that could target various types of cancer, including those 

with a low mutational burden. Further classification of aeTSAs includes some MAPs referred to as 

cancer-testis antigens (CTAs) or cancer-germline antigens (CGAs). 

1.2.2.1.3 Cancer Testis Antigens – CTAs  

CTAs are non-mutated aeTSAs resulting from germline genes specifically expressed in tumors and 

germline cells due to DNA demethylation147. In cancer, these antigens can be recognized by T cells 

and be safe targets since their source germline genes are not expressed in normal tissues. In 

germline cells, the expression of germline genes is of no consequence due to their lacking 

expression of HLA genes which renders these cells unable to present antigens to T cells. Such is 

the case of the melanoma antigen family A1 gene (MAGE-A1) which was the first gene identified 

in the human genome encoding an antigen able to be recognized by the T cells165. This gene is 
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expressed in a variety of tumors but is not expressed in normal tissues other than male germ line 

and trophoblast cells.  

Owing to their aberrant expression in up to 40% of cancers166 and thus their potential use 

as biomarkers and immunotherapeutic targets, cancer testis (CT) genes have been getting more 

attention. CT genes have been further classified according to their heterogeneous gene 

expression to identify the CT genes most suitable for cancer vaccines167. In general, CTAs 

represent promising targets, as they can be shared between different tumors without affecting 

normal tissues. In this regard, great caution must be exercised when validating these antigens or 

any other type of antigen to ensure that they are not present in healthy tissues, as a substantial 

risk of adverse side effects may be incurred168.  

1.2.2.2 Tumor-associated Antigens – TAAs 

TAAs are MAPs that are mainly characterized by being derived from i) genes expressed only in 

tumor cells and in the normal tissue of origin, referred to as differentiation antigens; or from ii) 

genes overexpressed in cancer cells compared to normal cells (Figure 3b). Therefore, they are 

“self” MAPs as they are presented in normal tissues but are expected to be presented at higher 

levels in tumors. TAAs are the product of transcription or translation changes in cancer induced 

by neoplastic transformation, and visibly are less attractive targets due to their lack of tumor 

specificity23. Expression comparisons between normal and malignant cells for the identification 

of TAAs are often based on transcriptome data and MS confirmation of peptide presentation in 

the samples. T lymphocytes are thought to recognize more rapidly and efficiently the more 

abundant antigens presented on the cell surface169. Hence, tumor cells are expected to present 

many more of these antigens than normal cells, providing an opportunity for T cells to attack only 

tumor cells. Sor far, most of the differentiation antigens documented have been found on 

melanoma cells, where T cells recognize and attack tumor cells and normal melanocytes170. 

Consequently, patients with melanoma may develop vitiligo due to spontaneous T-cell response 

to differentiation antigens, often with a non-severe effect and associated with a good 

prognosis171, 172. While some immunotherapies targeting TAA have shown clinical response with 

no serious side effects173, others have exhibited target toxicity caused by low target expression in 

normal tissues174. 
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Figure 3. –  Tumor Antigens classification.  
a) TAs can be Tumor-Specific Antigens (TSAs) that derived from the following translations: 
mutated DNA sequences not or poorly expressed in normal cells (mTSAs); from the aberrant 
expression of transcripts normally silent in normal cells (aeTSAs).  
b) TAs can also be Tumor-Associated Antigens (TAAs). These antigens are derived from 
differential expression between tumors and normal tissue of origin. Also, they can derive from 
genes overexpressed in tumors compared to normal tissues.  
Adapted with permission from Springer Nature: Nature Protocols Reviews Cancer (Coulie PG, Van 
den Eynde BJ, van der Bruggen P and Boon T)147 © 2014 
 

1.2.3 Identification of Tumor-Specific Antigens using proteogenomics 

Proteogenomics has revolutionized cancer immunotherapy research by leveraging 

transcriptomes (RNA-seq), translatomics (Ribo-seq) and proteomics (MS) in the search for tumor 

antigens (Figure 4). These approaches are even considered for use in the clinical laboratory to 

assist with the characterization of cancer biology and facilitate clinical proteogenomics to match 

effective treatment175.  

Furthermore, recent studies have carried out proteogenomics-based immunopeptidomics 

analysis to discover selectable antigens in melanoma74, 157, 176, ovarian cancer134, leukemia77, 133, 

176, lung cancer77, B cell lymphoma176, among others. Even though most efforts to find TSAs 
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initially focused on MAPs encoded by mutated exons, few mTSAs have been validated by mass 

spectrometry. Indeed, most DNA mutations are not shared across tumors134, 157 suggesting that 

mTSAs are the ideal targets for the development of personalized treatments. In contrast, recent 

studies have identified aeTSAs derived from non-canonical non-mutated proteins that present 

themselves as attractive targets as they are highly shared and overexpressed in the tumor, leading 

to encouraging preliminary results in preclinical models77, 133. Thus, aeTSA emerge as worthy to 

concentrate efforts for the development of vaccines against cancer. 

Although these studies have in common the use of proteogenomics, each group follows 

its heuristic methods and arbitrary assumptions for the detection, selection, and prioritization of 

the most suitable targets. Hence, validation of a MAP as a real TSA in the discovery process should 

be a widely available and accepted consensus that may require several lines of evidence for 

specificity and immunogenicity.  
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Figure 4. –  Proteogenomic approach for the identification of canonical and non-canonical 
immunotherapeutic targets.  

Tumor tissue (and, if available, healthy tissue) from the patient is collected to be processed for 
MAP extraction after MAP isolation, immunoprecipitation, LC and MS processes. In parallel, 
tumor and healthy tissue are sequenced (WES, WGS, RNA-seq/Ribo-seq). These data are used to 
build a customized database that will include canonical and non-canonical sequences in cancer, 
also including tumor-specific non-synonymous mutations. The database is used to identify the 
peptide sequence of MAPs in the cancer sample, but additional validation is necessary to detect 
tumor-specific peptides. To gather further evidence supporting the presentation of MAPs, 
confidence in their accurate sequencing must be assessed using targeted MS approaches. Finally, 
MAPs that pass all filters should be exposed to immunogenicity assays for the design of effective 
vaccines. Adapted with permission from Springer Nature: Nature Biotechnology (Chong, C., 
Coukos, G. & Bassani-Sternberg, M.)177© 2021 
 

1.2.3.1 Tumor-Specific Antigen Validation  

The identification and prioritization of TSAs for clinical applications should follow thorough 

validations. In clinical studies involving the adoptive transfer of antitumor T cells, another type of 

immunotherapy, some examples illustrate why antigen selection and validation require great 

caution. Nine patients (7 with metastatic melanoma, 1 with synovial sarcoma, and 1 with 

oesophageal cancer) were treated with T cells engineered to react against a peptide (CTA) from 

the MAGE-A3 gene; three patients presented severe brain toxicity and two of them died168. Three 

important conclusions emerged from this study. First, engineered T cells in the mouse were 

harmful in humans as they were able to react against a peptide from another human gene (MAGE-

A12) that differs in one amino acid. Second, the homology of the MAGEA family in the mouse 

model differs from that in humans, which precludes observing the same reaction in the mouse 

and thus alerting to the possible outcome in humans. Third, it revealed the unrecognized 

expression of MAGE-A12 in the human brain causing the TCR-mediated inflammatory response 

that killed patient’s neuronal cells and led to lethal toxicity. In another study, two patients (with 

myeloma and melanoma) treated with T cells engineered against a peptide from the MAGE-A3 

gene developed cardiogenic shock and died. In this case, the T cells recognized an unrelated 

peptide derived from the striated muscle-specific protein titin178. These two examples highlight 

first the importance of including rigorous validation steps to ensure on-target specificity, and 

second the need to improve methods for defining TCR specificity. 
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Thus, for therapeutic vaccination the ideal TA should possess the following characteristics: 

(1) a high level of tumor specificity, (2) high levels of presentation in the tumor, (3) high affinity 

for a particular MHC I molecule, (4) high affinity for T cell receptors (TCRs) to demonstrate 

immunogenicity, and (5) be shared among patients. Antigens that meet all these criteria have the 

potential to yield the best therapeutic outcomes.  

Although most of these characteristics can be easily assessed by prediction algorithms, 

they must be rigorously verified in the subsequent in vivo or in vitro validation phases. For 

instance, the high affinity to MHC I molecules is currently easily and widely assessed by using 

algorithms, such as NetMHCpan179. This algorithm predicts from the amino acid sequence the 

affinity of the binding between the peptide and the MHC I molecules grooves. Similarly, using 

neural network algorithms, such as Repitope180, immunogenicity can be predicted by giving an 

immunogenicity score. The higher the score the higher the predicted immunogenicity for the 

peptide is.  

Conversely, the assessment of tumor specificity and intra- and interindividual 

presentation levels remains a major challenge, as all kinds of confounding factors undermine the 

accuracy in this validation step181. A first and simplistic approach to address tumor specificity 

might consider assessing whether the candidate TSA sequence has not previously been reported 

as a "normal" MAP in public immunopeptidomics studies of normal tissues. Indeed, a currently 

available public immunopeptidomics atlas of healthy tissues can be used to determine the tumor 

specificity of a particular peptide182. However, the use of this atlas only provides the certainty to 

stop considering a TSA as a candidate when its sequence has already been detected in some 

normal tissue, but not otherwise. This means that the absence of the peptide in normal tissues 

does not imply a direct confirmation that the TSA candidate is a true TSA. In fact, the atlas is 

expected to remain incomplete due to the limitations of mass spectrometry-based approaches, 

so other lines of evidence need to be added to assess specificity. 

Tumor specificity can also be assessed by evaluating and comparing the expression of 

antigens in normal, normal adjacent and cancerous tissues. This can be done at the 

immunopeptidome level by MS peptide quantification assays following immunoprecipitation of 
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MHC-I complexes82. Although this may be feasible, it is unlikely to be applied in a TSA validation 

setting due to logistical issues: MS requires large amounts of material, is costly, time-consuming 

and has low throughput. Concerning the expression assessment in adjacent tumor tissues, it 

would be necessary to first differentiate between normal and pre-neoplastic adjacent tissues to 

obtain an accurate estimation of the TSA expression183. Accordingly, a recent study examined the 

immunopeptidome from matched healthy and tumor lung tissues and performed a direct 

comparison of the peptides identified. Only 10 non-canonical peptides were identified exclusively 

in tumor lung tissue; however, based on RNA level assessment, only one peptide was found not 

to be expressed in GTEx74. This shows that the comparison between the tumor and adjacent 

healthy tissue immunopeptidomics is not sufficient and therefore further validation lines 

(expression in normal tissues) should be added. 

Therefore, analysis of transcript abundance and immunopeptidome properties provides 

crucial information on the internal state of healthy and unhealthy cells, allowing the 

determination of responsiveness to treatments184. Typically, proteogenomic approaches defined 

a unique MAP origin, most of the time selecting the genomic location with the highest RNA 

expression in cancer. Consequently, the biotype (classification based on the annotation of 

genomic regions in the reference database) assigned to a given MAP is based on that genomic 

location. The selected locations are then used to quantify the MAPs RNA expression in large RNA 

sequencing databases (normal GTEx185 and cancerous https://www.cancer.gov/tcga), thus 

allowing to predict MAP presence in normal and cancer cells73, 74, 77, 133, 134. Yet, a peptide can be 

produced by multiple RNA sequences since 75% of the genome can be transcribed and thus 

potentially translated50. This suggests that the expression of MAPs based on a single RNA 

sequence may underestimate the actual expression and thus lead to misclassification. 

Accordingly, in Chapter 3, we present BamQuery, a tool that aims to assign a comprehensive RNA-

seq expression to any MAP to use this information as a predictor of MAP presentation in any 

tissue. To facilitate the validation of antigens as potential targets for immunotherapy, BamQuery 

is utilized to assess the RNA-seq expression of all genomic regions capable of generating a specific 

MAP.  
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Altogether, the immune system can be modulated to attack cancer cells from a variety of 

angles. Vaccines for cancer treatment are a type of immunotherapy that stimulates T cells in vivo 

to recognize and destroy cancer cells. Treatment with such vaccines should consider the inclusion 

of other therapies, such as immune checkpoint blockade, to enhance the efficacy of 

immunotherapy and provide lasting and safe benefits. To date, mass spectrometry-based 

proteogenomic approaches offer the most plausible and accurate way to discover the best 

candidates present in tumor cells. Many types of tumor antigens (aeTSAs, mTSAs, CTAs, TAAs) 

that mostly derived from atypical translations (non-canonical proteins) remain to be discovered. 

However, aeTSAs appear to be the most interesting targets for designing cancer vaccines due to 

their specificity and their share ability among patients. After identification of TSAs by 

proteogenomics, several steps need to be addressed to achieve successful therapy. First, the 

validation and prioritization step to evaluate the extent to which TSA targets provide a potent 

and specific immune response. Second, affinity and avidity testing of T cells in vitro and in vivo. 

Third, the definition of the optimal form for the administration of tumor antigens: vectorized or 

biochemically defined antigen formulations186. Finally, combination of the cancer vaccine with 

other methods to improve efficacy such as radiotherapy, chemotherapy, immune checkpoint 

inhibitors or other vaccine adjuvants187. 
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1.3 Objectives of the thesis 

Recently, several studies have demonstrated the presence of a hidden proteome translated from 

the putative non-coding fraction of the human genome, from “untranslatable” regions within 

protein-coding genes and from different reading frames in known proteins. For a long time, these 

proteins, collectively coined as non-canonical proteins, went unnoticed because they have 

physical and chemical properties very different from those of known or canonical proteins. For 

instance, they are shorter, initiate from codons other than the AUG, are predicted to be less 

stable, and have lower rates of transcription and translation. However, advances in genomics and 

proteomics have facilitated their detection with high resolution and reliability. Notably, Ribo-seq 

has enabled to demonstrate at the codon level the pervasiveness of translation throughout the 

genome, resulting in non-canonical proteins. 

In cancer, the non-canonical proteins appear to be up-regulated due to the strong 

inherent deregulation of cancer cells, making them the main source of actionable antigens for the 

design of cancer vaccine treatments. In this regard, proteogenomics, which combines sequencing 

data (RNA-seq, Ribo-seq) and proteomics (mass spectrometry), has been key to the recent 

revolution in the field of immunopeptidomics. Indeed, proteogenomics allows screening the 

immunopeptidome at the molecular level facilitating the search of non-canonical antigens 

capable of activate T lymphocytes. Consequently, candidate antigens for vaccine treatment need 

further validation by evaluating their expression in healthy tissues to ensure their exclusive 

expression in cancer and thus give them priority in clinical trials. 

1.3.1 General Objective 

The main objective of this thesis was to investigate to what extent the non-canonical proteome 

contributes to the immunopeptidome of cancer cells. 

1.3.2 Specific aims 

The main objective of my thesis was addressed through the following 3 specific aims: 

1. To identify MAPs translated from non-canonical proteome in cancer cells using a 

proteogenomic approach leveraging paired RNA and Ribo-seq data. (Chapter 2) 
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2. To compare the properties of detected non-canonical proteins with canonical proteins in 

cancer cells. (Chapters 2 and 3) 

3. To develop a tool to facilitate the validation of non-canonical MAPs as tumor antigens. 

(Chapter 3) 

 

1.3.3 Model cell lines 

To study the contribution of non-canonical proteins to the immunopeptidome we used 

three human diffuse large B-cell lymphoma (DLBCL), HBL-1, DoHH2 and SUDHL-4. Diffuse large B-

cell lymphoma (DLBCL) is the most common type of non-Hodgkin's lymphoma (NHL), accounting 

for approximately 30-40% of new cases each year. Although approximately 60% of patients with 

DLBCL are cured with chemotherapy, 30-40% of them will develop relapse or other refractory 

disease that cannot be cured with standard procedures, highlighting the need for other, more 

effective therapies188. DLBCL is expected to frequently lose the ability to present MAPs, which is 

related to defects in β2-microglobulin, an essential subunit of the MHC I molecules189. This 

mechanism of immunoediting observed in DLBCL, however, does not preclude the value of CD8+ 

T-cell-based immunotherapies, as these can be highly sensitive and require few MAPs to trigger 

immune responses190. Thus, DLBCL may potentially be an effective target for vaccine treatments 

considering its predisposition to increase somatic mutations. This predisposition can result in 

mutated peptides capable of eliciting CD8+ T-cell recognition. In addition, DLBCL is associated 

with chromosomal alterations that significantly affect gene expression, leading to a likely increase 

in non-canonical translation191. 
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1.5 Context 

The immunopeptidome is the MHC-I-associated peptides (MAPs) repertoire presented on the 

surface of cells. MAPs play a key role in the immune system's recognition and response to 

abnormal substances, such as those derived from viruses or cancer cells. MAPs have previously 

been reported to be derived from a variety of genomic regions, including both protein-coding and 

non-protein-coding sequences, such as endogenous retroelements (EREs). Indeed, ribosome 

profiling (Ribo-seq) experiments have revealed that translation occurs largely outside of 

annotated protein-coding genes, resulting in non-canonical proteins. With this in mind, we sought 

to combine RNA-seq with Ribo-seq to facilitate peptide identification using MS. The goal was to 

assess the contribution of such non-canonical translations in the DLBCL cell lines 

immunopeptidome and proteome. 

 In this article, we present Ribo-db, a proteogenomic tool developed to create custom 

databases for MS peptide identification. Using Ribo-db, the immunopeptidome of DLBCL was 

analyzed finding that non-canonical proteins made up a significant proportion (10%) of the MAP 

repertoire. Non-canonical proteins were also found to have lower transcription and translation 

rates and were predicted to be less stable in vivo compared to canonical proteins. Upon further 

analysis of the whole proteome, low overlap between the non-canonical MAPs source proteome 

and that identified in the whole proteome was observed, suggesting the presence of two distinct 

non-canonical proteomes. 

As anticipated, our analysis also found that genomic abnormalities related to the 

oncogenic program of DLBCL may be responsible for its non-canonical translation landscape. 

Based on these findings and fueled by previous reports showing the potential of non-canonical 

MAPs to serve as actionable targets, we launched the project described hereunder Chapter 3. In 

this project the goal was of systematically evaluate MAPs as potential targets for safe 

immunotherapy. 
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1.7 Abstract 

Combining RNA sequencing, ribosome profiling, and mass spectrometry, we elucidate the 

contribution of non-canonical translation to the proteome and major histocompatibility complex 

(MHC) class I immunopeptidome. Remarkably, of 14,498 proteins identified in three human B cell 

lymphomas, 2,503 are non-canonical proteins. Of these, 28% are novel isoforms and 72% are 

cryptic proteins encoded by ostensibly non-coding regions (60%) or frameshifted canonical genes 

(12%). Cryptic proteins are translated as efficiently as canonical proteins, have more predicted 

disordered residues and lower stability, and critically generate MHC-I peptides 5-fold more 

efficiently per translation event. Translating 5’ ‘‘untranslated’’ regions hinders downstream 

translation of genes involved in transcription, translation, and antiviral responses. Novel protein 

isoforms show strong enrichment for signaling pathways deregulated in cancer. Only a small 

fraction of cryptic proteins detected in the proteome contribute to the MHC-I immunopeptidome, 

demonstrating the high preferential access of cryptic defective ribosomal products to the class I 

pathway. 
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1.8 Introduction 

Ribosome profiling (Ribo-seq) and mass spectrometry (MS) analyses reveal that many proteins 

are encoded by non-canonical open reading frames (ORFs)1-4. Non-canonical proteins are 

encoded by both ostensibly noncoding ORFs and canonical ORFs in +1 or +2 reading frames. 

Accumulating evidence suggests that, far from representing translational noise, non-canonical 

proteins often exhibit critical and diverse cellular functions5, 6. Notably, when compared to classic 

ORFs, non-canonical ORFs present several distinctive features: they are shorter, have lower 

transcription and translation rates, commonly initiate translation on near-cognate codons (i.e., 

differ from AUG by a single nucleotide) and are predicted to be less stable in-vivo3, 6-11. 

Due to their short length and low abundance, non-canonical proteins are challenging to 

detect in whole-cell extracts by shotgun MS analyses. However, in the cells of jawed vertebrates, 

major histocompatibility complex class I molecules (MHC-I) have the remarkable ability to non-

covalently bind and protect peptides, many of which derive from defective ribosomal products 

(DRiPs) and short-lived proteins (SLiPs)12. DRiPs are translation products that do not achieve 

functional integration to the proteome and are degraded with an average half-life on the order 

of 8 minutes13-17. MHC-I-peptide complexes are transported to the cell surface to enable T cell 

immunosurveillance of infected and neoplastic cells. Cell surface MHC-I-associated peptides 

(MAPs) exhibit half-lives on the order of 12 hours18, 19, far longer than their source polypeptides 

in the case of SLiPs and DRiPs20. Thus, MHC-I serves as a sink for peptides whose source protein 

translation would otherwise be invisible to MS due to their rapid degradation.  

Indeed, accumulating evidence indicates that a sizeable fraction of MAPs is encoded by 

non-canonical ORFs21-24, which provide most tumor-specific antigens22, 25. Due to its tight linkage 

to translation, the class I immunopeptidome is highly dynamic and sensitive to metabolic 

perturbation, infection, and neoplastic transformation22, 26, 27. By contrast, the MHC class II 

immunopeptidome largely derives from large and stable proteins, with a trace contribution of 

non-canonical ORFs23, due to the predominant loading of class II molecules in the 

lysosomal/endosomal compartment. 
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MS analysis provides concrete evidence for the translation of a given polypeptide. Large-scale MS 

analyses of proteins and MAPs have been considerably refined over the last few years, with 

considerable increases in sensitivity and accuracy23, 24, 28-31. However, shotgun MS still requires 

creating a reference database to identify peptides present in a given sample. This becomes 

limiting when searching for non-canonical peptides that potentially originate from any genomic 

sequence. All-frame in-silico translation of entire transcriptomes creates enormous databases, 

and searching MS data against such inflated reference databases generates false positives at an 

unacceptable rate32-34. Various approaches have been employed to optimize the reference 

database size based on the in-silico translation of transcriptomic data.  

One reductionist approach to identify unique tumor-specific MAPs rests on purging the 

reference database of sequences present in non-tumor cells22, 25. More recently, two proof-of-

principle studies established that cancer MAPs can be identified using reference databases built 

from Ribo-seq23, 24. Here, we describe a proteogenomic approach to identify non-canonical 

translation products present in whole-cell extracts and the immunopeptidome. Our findings 

demonstrate distinct features of the non-canonical translatome and their critical contribution to 

tumor immunosurveillance. 
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1.9 Results 

1.9.1 A Proteogenomic Strategy for Identification of Non-canonical Translation 

Products 

To identify non-canonical proteins, we developed an approach that combines Ribo-Seq and RNA 

sequencing (RNA-seq) data to create non-redundant sample-specific protein databases (Ribo-db) 

containing only actively translated sequences. Indeed, after retrieving and sequencing ribosome-

protected RNA fragments, Ribo-seq produces a detailed map of active cell translation events35. 

Here, we collected Ribo-seq translation initiation sites (TISs), elongation, and RNA-seq data from 

three human diffuse large B cell lymphomas (DLBCLs), HBL-1, DoHH2, and SU-DHL-4. We 

intersected genomic positions of the start codons to the genomic positions of the assembled 

transcripts (Ribo-seq elongation and RNA-seq) to generate the set of ORFs (coupled start codon 

with an assembled transcript) for in-silico translation (see Methods and Figure 1A). From this set 

of ORFs, we define canonical proteins as those translated from an annotated start codon coupled 

to the corresponding transcript according to genome version GRCh38.p10 (GENCODE version 26). 

We define non-canonical translation products as those originating from a non-annotated 

initiation site, a new transcript, or both. We combined translation products into a sample-specific 

database for MS analysis (Figure 1A).  

We first analyzed the general features of Ribo-db predicted canonical and non-canonical 

translation products. As reported7, non-canonical proteins were more numerous but shorter than 

canonical proteins (Figure 1B). Indeed, ~70% of non-canonical proteins in the three cell lines were 

≤100 amino acids (Figure 1B and Supplementary Figure 7A-7B). Next, we assessed the sensitivity 

and specificity of Ribo-db by comparison to PRICE as a benchmark8. PRICE was developed to 

identify non-canonical translation events that generate MAPs. Because the calculation of the 

False Discovery Rate (FDR) is directly related to the size of the database under target-decoy 

approaches32, 33, 36, it is difficult to make a valid comparison between databases in which their size 

differs significantly (Table 1). To mitigate this, for each DLBCL, we generated a composite 

database combining Ribo-db and PRICE sequences to identify MAPs detected by tandem MS. We 

based MAP identification on three criteria: a peptide length between 8 and 11 amino acids, a 
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predicted MHC binding affinity in the top 2% for the corresponding HLA class I molecules 

expressed by each tumor, and a sample-specific FDR (see Methods and Supplementary Figure 7E). 

We recognize that peptides with lower predicted MHC binding affinity can represent genuine 

MAPs37. However, given the very high number of predicted non-canonical proteins (Figure 1B), 

we deemed it preferable, at this stage, to employ stringent selection criteria that may 

underestimate the number of non-canonical MAPs. Our Ribo-db approach identified 99.7% of 

MAPs identified with PRICE and 5% to 6% of MAPs missed by PRICE (Figure 1C). The number of 

MAPs identified per cell line positively correlated with the total class I cell surface expression 

determined by the binding of the W6/32 pan HLA class I monoclonal antibody (mAb) 

(Supplementary Figure 7C and 7D). We conclude that Ribo-db is well suited to discovering non-

canonical translation products, outperforming PRICE, the previous best-in-class method for 

probing peptides arising from non-canonical translation. 
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Figure 1. –  Ribo-seq-based proteogenomic approach for MS identification of non-canonical 
translation products. 

(A) General overview of the workflow used to generate sample-specific databases containing 
active canonical and non-canonical translations based on Ribo-Seq data.  
(B) Length distribution of canonical vs. non-canonical proteins from HBL-1 cells. ****p<0.0001, 
Kolmogorov-Smirnov Test. Proteins with a length >800 amino acids are not displayed.  
(C) Venn diagram and table showing MAPs identified with the Ribo-db approach and the PRICE 
method. 

 

1.9.2 The Global Landscape of Non-canonical MAPs  

To optimize MAP identification and evaluate the contribution of non-canonical translation 

products, we performed MS searches using the Ribo-db customized databases. Because this 

database is smaller than the composite (Ribo-db+PRICE) database (Table 1), we discarded fewer 

identified MAPs because of the FDR. Despite the smaller size of the Ribo-db database, we 

identified 166 more MAPs than if we had used the composite database (7,045 versus 6,879 total 

MAPs, respectively) (Supplementary Figure 7C). To identify MAP source proteins, we considered 

that any MAP sequence might be redundant in the database. Therefore, we used a strategy to 
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assign the most likely origin for individuals MAPs, based on 1) the start codon score issued from 

the TIS-calling method, 2) the presence of an optimal or strong Kozak motif embedding the start 

codon38, and 3) the expression level of the source transcript as determined by read numbers 

(Supplementary Figure 7E).  

Out of the 7,045 identified MAPs, 6,520 source ORFs were canonical and 525 were non-

canonical (Figure 2A). Key features of canonical and non-canonical MAPs were highly similar: 

length distribution (mostly nonamers), PEAKS peptide confidence score (20.92 canonical versus 

20.15 non-canonical median scores), NetMHC-pan predicted MHC binding affinity in the top 2% 

for the corresponding HLA allotype (median binding rank % of 0.16 for canonical and 0.15 for non-

canonical MAPs).  

We then assessed the accuracy of non-canonical identifications using three validation 

methods. First, we compared the observed retention times of liquid chromatography-tandem 

mass spectrometry (LC-MS/MS)-sequenced peptides39 to the DeepLC algorithm predicted-

retention times40. Both canonical and non-canonical peptides showed an excellent correlation 

between experimental and predicted retention times (Figure 2B). Second, we evaluated the 

relative mass error between the measured experimental values and the expected mass for all 

peptides. No significant difference was found in the distribution of mass errors of canonical versus 

non-canonical peptides (Figure 2C). Lastly, we repeated all peptide searches using Comet41. The 

average percentage of PEAKs to Comet peptides re-identification was similar for canonical and 

non-canonical peptides (85% for canonical and 83% for non-canonical peptides) (Figure 2D). 

Together, these validations further reinforce the authenticity of our non-canonical identifications.  

The 6,520 canonical MAPs derive from 4,493 canonical proteins (91%) and the 525 non-

canonical MAPs from 451 non-canonical proteins (9%) (Supplementary Figure 8A). Consistent 

with the differential length of canonical and non-canonical proteins (Figure 1B, Supplementary 

Figure 7A, and 7B), non-canonical MAPs derived from shorter proteins than canonical MAPs 

(Figure 2E). Non-canonical MAP source proteins were classified according to their gene biotype 

(transcript classification) using GENCODE annotation42. The majority (79%) derive from sequences 

within protein-coding transcripts (including novel isoforms, UTRs, and frameshifts); 12% from 
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transcripts assumed to be non-coding, such as pseudogenes, non-coding RNAs, or processed 

transcripts; 7% from intergenic regions; and 2% from introns (Figure 2F). This is consistent with 

evidence for peptides generated from these ostensibly non-coding regions of the genome3, 5, 21, 

43, 44, though it does not support a major role for introns in generating the immunopeptidome in 

these cells.  

As previously shown6, among the non-canonical proteins derived from protein-coding 

transcripts, MAP source ORFs attributed to 5’UTR were 4-fold more frequent than 3’UTR (13% 

versus 3% of total non-canonical proteins) (Figure 2F and Supplementary Figure 8B). MAPs 

resulting from canonical gene frameshifting (13%) confirmed the proteome’s malleability since a 

canonical protein may not be the transcript’s sole translation product. Such translation can occur 

from ribosomes bypassing a start codon or shifting frames during translation due to mRNA 

structure45.  

Half (50%; n = 225) of the non-canonical proteins originated from novel isoforms (Figure 

6F and Supplementary Figure 8B). This group corresponds to proteins in frame with a canonical 

protein for which we either found few initiation events at the annotated start codon or the 

absence of an annotated start codon. Because their sequence overlaps with canonical proteins 

and their large size, these proteins were considered hereafter as novel isoforms. Consequently, 

for subsequent analyses, we analyzed novel isoforms separately from the rest of the non-

canonical proteins. The remaining non-canonical proteins were further qualified as cryptic 

proteins. 
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Figure 2. –  Features of MAPs derived from canonical and non-canonical proteins. 
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(A-C) Displayed data refer to all canonical (n=6,520) and non-canonical (n=525) MAPs (total from 
3 cell lines, 2 replicates each).  
(A) Length, spectrum score (*p<0.05, T-test), MHC binding (p>0.05, Kolmogorov-Smirnov Test).  
(B) Pearson correlations between observed and DeepLC-predicted retention times of MAPs 
derived from canonical and non-canonical proteins.  
(C) Relative mass error of MAPs derived from canonical and non-canonical proteins. p> 0.05, two-
sided Mann-Whitney U Test.  
(D) Percentage of successful MAPs re-identification with Comet. p>0.05, two-sided Mann-
Whitney U Test. Bar plot shows the median with error bars: 95% CI (n=3 cell lines).  
(E) Length distribution of canonical (n=4,493) and non-canonical (n=451) MAPs source proteins. 
****p<0.0001, Kolmogorov-Smirnov Test. Proteins with a length >800 amino acids are not 
displayed.  
(F) Non-canonical MAPs source proteins derive from coding and noncoding transcripts. Pie chart 
showing the percentages of non-canonical proteins for each biotype and diagram illustrating how 
various types of transcripts were designated as a function of their genomic location. 
 

1.9.3 Divergent Properties of Cryptic and Canonical MAP Source Proteins  

Next, we elucidated the features of cryptic proteins, novel isoforms, and canonical MAP source 

proteins. By definition, canonical (annotated) proteins initiated almost exclusively (99.9%) on an 

AUG codon. Importantly, Ribo-seq TIS revealed that, first, 40% of newly identified proteins 

initiated on unannotated AUG initiation sites and, second, more than half of the cryptic and novel 

isoform MAP source proteins (53% and 67%, respectively) initiated from a non-AUG near-cognate 

codon (Figure 3A and Supplementary Figure 8C). As previously reported10, 46-48, CUG was the most 

efficient codon at initiating unannotated proteins, though AAG was also frequently used, and 

others near-cognate codons were well represented.  

In line with previous reports49, 50, canonical MAPs derive from transcripts with higher 

expression than transcripts that do not generate MAPs (non-source transcripts; Figure 3B). 

Similarly, for cryptic MAPs and MAPs from novel isoforms, transcripts that generate MAPs are 

more abundant than non-source transcripts. Hence, for any genomic region, transcript levels 

positively correlated with MAP generation. Among MAP source transcripts, we found small but 

significant differences in abundance according to the following hierarchy: canonical proteins > 

novel isoforms > cryptic protein (median = 4.51 transcripts per million [TPM], 3.24 TPM, and 2.15 

TPM, respectively; note that each cell has 500,000 mRNAs) (Figure 3B). Cryptic transcripts 
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contained significantly fewer exons, with a median of 2 exons compared to a median of 11 exons 

for transcripts coding for canonical proteins and novel isoforms (Figure 3C). Indeed, 73% of cryptic 

MAP source proteins contained only one or two exons.  

Next, using Ribo-seq and RNA-seq data, we compared the translation efficiency of each 

MAP source transcript (translation events per mRNA) (Figure 3D). We observed that the 

translation efficiency of novel isoforms was only marginally inferior to that of canonical proteins, 

which in turn was similar to cryptic MAP source proteins. Among MAP source cryptic proteins, 

those deriving from an intergenic region showed the highest translation efficiency 

(Supplementary Figure 8D). We further examined how the subcellular localization of MAP source 

proteins influences translation efficiency (see STAR methods). We compared the translation 

efficiency of MAP source proteins from 6 subcellular localizations: cytosol, membrane, nucleus, 

extracellular, mitochondrion and secretory pathway. As a negative control, we computed the 

translation efficiency of the canonical proteins non-source of MAPs (background), independently 

of their localization. Two points can be made from these analyses. First, the translation efficiency 

of canonical proteins generating no MAPs was lower than that of MAP source proteins from any 

localization, except for proteins located in the nucleus (Supplementary Figure 8E and 8F). Second, 

proteins targeted to membranes or mitochondria were the most efficiently translated, followed 

by the secretory pathway and extracellular proteins.  

Cryptic MAP source proteins had a mean length of only 49 amino acids compared to 504 

and 582 residues for canonical proteins and novel isoforms, respectively (Figure 3E). For canonical 

proteins, the number of MAPs presented is related to protein length50. If this applies to all 

translation products, the short size of cryptic proteins should significantly decrease their chance 

of generating MAPs. In accordance with this, we validated that the number of identified MAPs 

increased linearly with source protein length (Supplementary Figure 9A). Then, for each protein, 

we calculated the number of amino acids detected in the immunopeptidome versus the number 

of amino acids in the source protein. This ratio was much higher for cryptic proteins versus 

canonical proteins (~5-fold) and novel isoforms (~7-fold) (Figure 3F). We conclude that, relative 

to canonical transcripts, cryptic transcripts are shorter, less abundant, and translated at similar 

efficiency but are ~5-fold more efficient at generating MAPs. 
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Figure 3. –  Properties of MAP source proteins. 
(A) More than a half of the non-canonical MAPs source proteins (60%) initiated at a near-cognate 
codon. Stacked bar-plot showing the percentage of proteins deriving from AUG and near-cognate 
codons for canonical proteins and various sub-group of non-canonical MAP source proteins.  
(B) Transcript expression level distribution of canonical (n=4,493), novel isoforms (n=225) and 
cryptic (n=226) MAPs source transcripts vs. non-source proteins (n=647,686). ****p<0.0001, 
Kolmogorov-Smirnov test.  
(C) Dot charts displaying the exons count for each category of MAP source proteins; each dot 
corresponds to the number of proteins bearing a given number of exons. Cryptic proteins have 
lower number of exons compared to novel isoform and canonical proteins (median = 2 exons for 
cryptic, 11 exons for novel isoform and canonical proteins).  
(D) Translation efficiency of MAP source proteins. Boxplots show the translation efficiency 
distribution for each category of MAP source proteins. *p<0.05, two-sided Mann-Whitney U Test.  
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(E) Boxplots indicate the length distribution of MAPs source proteins for each category: cryptic, 
novel isoform and canonical. Median length in cryptic (49 amino acids), canonical (504 amino 
acids) and novel isoform (582 amino acids) is shown. **p<0.01, ****p<0.0001, two-sided Mann-
Whitney U test.  
(F) Cryptic proteins are proficient to generate MAPs. Boxplots show the ratio of the length 
covered by MAPs to the protein’s length in number of amino acids. ****p<0.0001, two-sided 
Mann-Whitney U tests. 
 

1.9.4 The Global Landscape of Cryptic Proteins in the Whole Cell Proteome  

MS protein detection is proportional to protein abundance and length51. To enhance cryptic 

protein detection in whole-cell extracts of the three DLBCL lines, we performed tandem analyses 

on fractions separated by molecular weight before trypsin digestion. Low-molecular-weight 

fractions (≤10 kDa) contained proteins bearing less than ~100 amino acids, whereas high 

molecular weight (>10 kDa) contained longer proteins. We used PEAKs software to identify tryptic 

peptides of 7 and 25 amino acids and used the same strategy to assign the most likely source 

protein as for MAPs (FDR < 1%) (Figure 4A).  

We identified 1,505 low- and 10,463 high-molecular-weight proteins. The vast majority of 

low-molecular-weight proteins were cryptic (81%), with canonical proteins (91%) dominating the 

high-molecular-weight fraction (Figure 4B). Interestingly, intergenic regions are the principal 

source of high-molecular-weight cryptic proteins (33%), although most (55%) low-weight cryptic 

proteins derive from protein-coding transcripts, with significant enrichment for 5’ UTR-encoded 

proteins (34%; Figure 4C). Similar to MAP source proteins (Figure 3E), cryptic proteins identified 

in whole-proteome analyses were significantly shorter than canonical proteins and novel isoforms 

(median size of 387 amino acids for canonical proteins; 372 for novel isoforms versus 67 for 

cryptic proteins) (Figure 4D).  

Cryptic proteins from whole-proteome extracts initiated less frequently at an AUG codon 

(23%; Figure 4E) than cryptic proteins detected in the immunopeptidome (40%; Figure 3A). 

Indeed, CUG (21%) was nearly as likely as AUG (23%) to initiate translation of cryptic proteome 

proteins. As with the immunopeptidome, transcripts coding MS-identified proteins were more 

abundant than transcripts coding for undetected proteins (Figure 4F). And, as with MAP source 
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proteins, the translation efficiency of cryptic proteins detected in the whole proteome was similar 

to that of canonical proteins and slightly superior to that of novel isoforms (Figure 4G). 

 



68 

Figure 4. –  Features of canonical and cryptic proteins detected in tryptic digests of whole cell 
extracts.  

(A) Schematic overview of the method used for whole-proteome analyses. Proteins were filtered 
according to their molecular weight to maximize the detection of short proteins, which are a rich 
source of cryptic proteins.  
(B-D) Displayed data refer to 3 cell lines, 1 replicate each. 
(B) Proportion of each protein category detected in low- versus high-molecular-weight fractions. 
Low-weight fraction is enriched in cryptic proteins, whereas high-weight fraction is enriched in 
canonical proteins.  
(C) Genomic origin of cryptic proteins identified in the whole-proteome extracts.  
(D) Boxplots indicating the length distribution of proteins for each category: cryptic, novel 
isoform, and canonical. Median length of cryptic (67 amino acids), canonical (387 amino acids), 
and novel isoform (372 amino acids) proteins is shown. *p<0.05, ****p<0.0001, two-sided Mann–
Whitney U test.  
(E) Stacked bar plot showing the percentage of proteins deriving from AUG and near-cognate 
codons for canonical proteins along with each subgroup of the unannotated proteins from whole-
proteome extracts.  
(F) RNA expression level of transcripts coding for detected (n=11,968) proteins compared to 
transcripts coding for undetected proteins (n=640,662). ****p<0.0001, Kolmogorov-Smirnov 
test.  
(G) Boxplots showing the translation efficiency of various categories of proteins identified from 
whole proteome extracts. *p<0.05, **p<0.01, two-sided Mann-Whitney U Test. 

 
 

1.9.5 Disorder and Instability of Cryptic MAP Source Proteins  

Even for conventional proteins, the whole-cell proteome only partially overlaps with the 

immunopeptidome50, 52-54. Thus, we detected only 52% (2,351 out of 4,493) of conventional MAP 

source proteins in whole proteomes (Figure 5A). Notably, this ratio decreased to 6% (14/226) in 

the case of cryptic MAP source proteins: why such a dramatic discrepancy? 

First, consistent with the idea that MS favors detecting abundant proteins, the low 

expression of cryptic MAPs source transcripts (relative to canonical MAP source transcripts) 

hampers their detection in the whole proteome (Figure 3B). Accordingly, transcript expression 

correlates with detecting MAP source proteins in the whole-cell proteome (Figures 5B and 5C, 

left panels). Leveraging our Ribo-seq data, we determined that translation level (ribosome 

occupancy) was higher in proteome-detected vs. non-detected MAP source proteins, confirming 

that protein abundance impacts MS detection (Figures 5B and 5C, right panels). Second, detecting 
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cryptic proteins in whole proteomes is hampered by their brevity, which alone results in zero to 

few (median=3) predicted tryptic peptides per protein compared to 23 for conventional proteins 

(Figure 5D). Third, we considered the contribution of rapid degradation. Proteasomal digestion is 

the main route for protein degradation and MAP generation55. Proteasomes initiate degradation 

at disordered substrate regions; most, but not all, substrates need to be ubiquitylated, 

particularly for MAP generation56. We found a lower density of degradation signals 

(ubiquitination sites, D box, and KEN box motifs)57-59 in cryptic relative to canonical proteins 

(Figure 5E). However, protein disorder analysis revealed that disordered regions occurred at twice 

the frequency in cryptic (31% of amino acids) versus conventional MAP source proteins (15% of 

amino acids) (Figure 5F). The instability index60 also predicts the decreased stability of cryptic 

proteins (Figure 5G).  

Finally, we analyzed the correlation between ribosome stalling in up-, mid-, and 

downstream coding regions of MAP-source transcripts and their detection in the proteome 

(Supplementary Figure 9B). We found a small but significant decrease in ribosome coverage in 

the upstream coding region of proteome-detected proteins, consistent with diminished stalling 

relative to non-detected proteins. These data collectively indicate that MAP source cryptic 

proteins contain zero to very few tryptic peptides, are low-abundance proteins generated with 

fewer stalling events, and are highly disordered and unstable. These factors likely account for 

their over-representation in the immunopeptidome and under-representation in the proteome. 



70 

 

 



71 

Figure 5. –  Cryptic proteins are disordered and unstable. 
(A) MAP source proteins are underrepresented in the whole-proteome analysis. Bar plot 
depicting the total number of proteins identified in the immunopeptidome (pink bars) and the 
overlap with proteins detected in the whole proteome (blue bars) is shown. Cryptic proteins 
showed a low overlap (6%) compared to novel isoforms (21%) and canonical proteins (52%). 
(B) Transcription- and translation-level abundance of canonical MAP source proteins. Left panel: 
box plots show the transcription expression level of transcripts at the origin of canonical MAP 
source proteins detected and non-detected in the whole-proteome analysis. Right panel: box 
plots show the translation level of transcripts at the origin of canonical MAP source proteins 
detected and non-detected in the whole-cell proteome analysis. Statistical difference was 
assessed by Mann-Whitney U test. 
(C) Transcription- and translation-level abundance of cryptic MAP source proteins. Left panel: box 
plots show the transcription expression level of transcripts at the origin of cryptic MAP source 
proteins detected and non-detected in the whole-proteome analysis. Right panel: box plots show 
the translation level of transcripts at the origin of cryptic MAP source proteins detected and non-
detected in the whole-cell proteome analysis. Statistical difference was assessed by Mann-
Whitney U test. 
(D) Distribution of the number of predicted tryptic peptides per MAP source protein (median = 3 
peptides for cryptic proteins and 23 peptides for canonical proteins). Statistical significance was 
assessed by Kolmogorov-Smirnov test. 
(E) Cryptic proteins present fewer degradation signals compared to canonical proteins. Histogram 
plots in the top and bottom panels depict the number of predicted degradation signal (canonical 
ubiquitination sites, D box, and KEN box motifs) relative to the protein size for cryptic and 
canonical proteins, respectively. Statistical significance was assessed by Kolmogorov-Smirnov 
test. 
(F) Cryptic proteins contain significantly more disordered residues than canonical proteins. 
Boxplots depicting the number of disordered residues predicted per protein relative to the 
protein’s length for cryptic and canonical proteins source of MAPs are shown. ****p < 0.0001; 
two-sided Wilcoxon rank-sum test. 
(G) Cryptic proteins are less stable in vivo. Histogram plot showing the distribution of the 
instability index predicted for cryptic and canonical proteins. Statistical significance was assessed 
by Kolmogorov-Smirnov test. 

 

1.9.6 Features of Non-canonical Proteins 

We next evaluated several features of non-canonical proteins identified in the immunopeptidome 

and/or the whole proteome of the DLBCL lines (Supplementary Figure 10A). Non-canonical 

proteins demonstrate little bias in chromosomal origin (Figure 6A). However, chromosome 16 

derived proteins exhibited an increased proportion of novel isoforms. This may result from 

cytogenetic abnormalities involving chromosome 16 in DLBCL61. Notably, an unexpectedly high 
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proportion of MAP source proteins derived from chromosome 12 (Supplementary Figure 10B), 

consistent with the shared DLBCL abnormalities (e.g., polysomy) involving chromosome 1262, 63.  

Overall, these findings indicate that, although all chromosomes generate numerous non-

canonical proteins, their expression can be enhanced by cancer-associated genetic alterations.  

Novel isoforms constitute a major fraction of unconventional proteins (28%) (Figure 6B 

and Supplementary Figure 10C). Alternative start codon initiation resulting in alternative protein 

isoforms translation is a common event in cancer64. It affects the balance between multiple forms 

of a protein, which can have distinct and even opposite functions. We interrogated our dataset 

to identify signaling pathways enriched among the canonical genes generating these novel 

isoforms (n = 403) (Figure 6C). Interestingly, these genes were mostly involved in signaling 

pathways often deregulated in cancer, including AXIN, mitogen-activated protein kinase 4 

(MAPK4), MAPK6, NOTCH1, NOTCH4, PTEN, RUNX3, and transforming growth factor b (TGF-b). 

NOTCH signaling, which is commonly perturbed in DLBCL and other cancers65, 66, was the most 

overrepresented in our analysis.  

5’ UTRs represented the second most important cryptic protein source (21%;) (Figure 6B 

and Supplementary Figure 10C). Because upstream ORFs can modulate translation of main-

ORFs67, we examined how canonical protein translation is altered by upstream 5’ UTR translation 

of a cryptic protein. We found that the canonical ORF of transcripts encoding 5’ UTR cryptic 

proteins had significantly lower ribosome occupancy than those encoding 3’ UTR and frameshift 

proteins (Figure 6D). This observation suggests that translating cryptic 5’ UTR proteins hijacks 

ribosomes to hamper translation of the corresponding main ORF.  

Finally, to evaluate the potential impact of 5’ UTR cryptic proteins on cell function, we 

used the reactome pathways annotation to analyse pathways associated with the genes encoding 

these proteins (n = 501). We found a conspicuous enrichment in genes involved in transcription, 

translation, and antiviral responses (Figure 6E), consistent with a functional role for 5’ UTR cryptic 

proteins in regulating various cellular processes. 
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Figure 6. –  Chromosomal origin and function of non-canonical proteins. 
(A) Non-canonical identified proteins derive from all chromosomes. Bar graph shows the 
chromosomal origin of each category of proteins. *p<0.05, two-sided Fisher’s exact test. 
(B) Genomic origins of the whole set of non-canonical identified proteins. Pie chart shows the 
percentages of unannotated proteins derived from different genomic regions.  
(C) Novel isoforms derive from genes that regulate pathways commonly perturbed in DLBCL and 
other cancers. Reactome pathways enriched in the list of genes corresponding to proteins for 
which a novel isoform was identified (n=403 unique genes). Panther over-representation test; 
numbers in the bar graph correspond to fold enrichment of each pathway. Fisher’s exact test with 
FDR correction, adj. p-value<0.05, fold enrichment >4.  
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(D) 5’UTR cryptic proteins hinder translation of main-ORFs. Ribosome occupancy of the canonical 
coding sequence (CDS) of genes producing a cryptic protein via frameshift, 5’UTR or 3’UTR 
translation. *p<0.05, **p<0.01, ***p<0.001, two-sided Mann-Whitney U test.  
(E) 5’UTR cryptic proteins regulate the translation of canonical proteins involved in transcription, 
translation and antiviral responses (n=501 unique genes). Panther over-representation test; 
numbers on the bar graph correspond to fold enrichment of each pathway. Fisher’s exact test 
with FDR correction, adj. p-value<0.05, fold enrichment >3. 
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1.10 Discussion  

We have developed a proteogenomic method to identify unannotated proteins whose peptides 

are detected in the whole-cell proteome and immunopeptidome. Our approach, which integrates 

RNA-seq, Ribo-seq, and MS data, identified 2,503 new non-canonical human proteins expressed 

from all chromosomes: 1,842 cryptic proteins (72%) and 661 novel isoforms (28%) (Figure 6B). As 

expected, a majority (85%) of translation events detected by Ribo-seq was not identified by MS 

(Tables 2 and 3). This was remarkably conspicuous for non-canonical proteins, as only 0.44% could 

be found by MS. Two facts can explain this. First, Ribo-seq-built databases must, to some extent, 

overestimate real translation products, especially non-canonical ones, due to imperfect sequence 

matching with genomic information. Second, and more importantly, MS captures only a small 

fraction of what is translated. Despite these caveats, our findings clearly demonstrate that 

ribosome profiling is a powerful tool to detect the translation of non-canonical transcripts, which 

are generally absent from MS databases because of their unannotated status.  

Cryptic proteins are particularly interesting: 83% derived from ostensibly non-coding ORFs 

and 17% from alternative frame translation of canonical ORFs. Cryptic transcripts were slightly 

less abundant than canonical transcripts. Integrating Ribo-seq and RNA-seq data reveals that 

cryptic and canonical proteins are, surprisingly, translated with similar efficiency. Extending 

previous findings21-24, cryptic proteins are coded by relatively short ORFs and frequently initiate 

with non-AUG near-cognate codons (which except for CUG10, are typically decoded as Met68). 

Cryptic proteins were far more likely than canonical proteins to be only detected in the 

immunopeptidome.  

Critically, cryptic transcripts generated MAPs ~5-fold more efficiently than canonical 

transcripts (Figure 3F). The most plausible explanation is that cryptic proteins are rapidly 

degraded because they are disordered and unstable (Figures 5F and 5G), rendering them 

prototypical DRiPs. As a corollary, the global proteome, mainly consisting of stable proteins, has 

limited overlap with the immunopeptidome. Remarkably, only 6% of cryptic MAP source proteins 

were detected in tryptic digests of whole cell extracts (Figure 5A). Such selective antigenicity is a 

critical feature of class I antigen presentation, which cannot function as a mirror of the proteome, 
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which is dominated by a relatively small number of gene products (just 250 housekeeping 

proteins comprising ~50% of the proteome). This could also be explained by the few predicted 

tryptic sites in cryptic proteins (Figure 5D), consistent with a negative bias in detecting short 

proteins due to the standard enzyme used in proteomic analysis.  

Stable isotope labeling with amino acids in cell culture (SILAC) mass spectrometry kinetic 

studies in tumor cell lines also point to a limited correlation between the proteome and 

immunopeptidome and suggest a substantial contribution of DRiPs/SLiPs as a source of MAPs16, 

17. Most short-lived MAP source proteins identified by SILAC MS kinetic analyses are subunits of 

multiprotein complexes. These likely become SLiPs due to stoichiometric subunits imbalances or 

other difficulties in becoming incorporated into their intended complex. A large fraction of MAPs 

identified in the present study would be missed entirely in such SILAC MS kinetic analyses due to 

the method-inherent shortcomings (e.g., search database limited by annotated proteins; failure 

to detect [tryptic] peptide in multiple time points and samples in SILAC MS analysis to determine 

MAP source;16, 17). This would bias the identification of DRiP-derived MAPs to longer and more-

abundant source proteins.  

Cryptic proteins detected in the cell proteome were longer (median of 67 amino acids) 

than those found in the immunopeptidome (median of 49 amino acids) (Figures 3E and 4D), likely 

a reflection of the likelihood that longer peptides can achieve a more-stable structure. Cryptic 

proteins detected in the immunopeptidome were initiated more frequently at an AUG codon than 

those found in the whole proteome (Figures 3A and 4E). This suggests that a subset of proteins 

initiated in AUG codons may have preferred access to the MHC-I presentation pathway, extending 

findings that CUG and other near-cognate-based initiation favor peptide generation under stress 

conditions69.  

Whereas intergenic regions are the primary source of longer cryptic proteins found in the 

whole proteome, translation of 5’ UTRs was particularly common for shorter cryptic proteins 

found both in the immunopeptidome and the whole-cell proteome. Notably, translation of 5’ UTR 

cryptic proteins correlated with decreased ribosome occupancy of the main ORF, which was not 

seen with cryptic proteins derived from other regions in protein- coding transcripts (3’ UTR and 
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frameshift) (Figure 6D). The main ORFs whose translation was hindered by 5’ UTR cryptic proteins 

mainly regulate transcription, translation, and antiviral responses (Figure 6E). Translation of 5’ 

UTRs is known to negatively regulate translation of downstream ORF in cell stress67, 70, 71. Our 

findings suggest that this extends to cryptic proteins. Additional studies are needed to generalize 

these findings from DLBCLs to other cancer cells and normal cells.  

The 661 novel isoforms reported herein further illustrate the polycistronic nature of 

human genes2. Arguably, their most intriguing feature was that they showed a strong enrichment 

for signaling pathways deregulated in cancer, NOTCH being the most striking example (Figure 6C). 

Chromosome 16 was a particularly rich source of novel isoforms (Figure 6A). Accordingly, in 

DLBCLs, this chromosome commonly presents aberrations (e.g., duplications and trisomies), 

whose frequency increases with patient age61. We also observed that chromosome 12, which is 

also commonly rearranged in DLBCLs, was a particularly rich source of cryptic MAPs. Together, 

these data suggest that underlying genomic aberrations may impact the non-canonical 

translation landscape by increasing the production of novel isoforms or cryptic proteins. How this 

affects the presentation of tumor-specific antigens that can be targeted for immunotherapy will 

be explored in further studies.  

We detected only a small number of peptides from introns (135/7,045) (Supplementary 

Figure 10A). Based on studies that peptides are efficiently derived from introns via translation of 

pre-spliced mRNA in the nucleus43, 72, this is surprising, particularly given the fact that introns 

encode up to 10-fold more amino acids than exons 73. However, we note that, by performing Ribo-

seq on cytoplasmic RNA, we may have missed a large pool of intron-encoded peptides translated 

in the nucleus.  

Finally, it is worth considering the biological relevance of non-canonical translation of 

unstable proteins. This might result from the high entropy of cancer cells, which evolve to 

maximally proliferate at the organism’s cost, with little or no selection for the economical use of 

available resources. It is likely, however, that at least some of the gene products have functions, 

particularly if their degradation is conditionally regulated, for example, by the cell cycle or stress. 
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A more-general function of this class of proteins would be to enhance tumor immunosurveillance. 

The cancer-specific nature of such translation is an obvious starting point for future studies. 
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1.14  STAR☆Methods 

1.14.1.1 Key Resources Table 

 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

InVivoMAb anti-human MHC Class I 
(W6/32) 

BioXcell Cat# BE0079; RRID: AB_1107730 

Anti-human HLA-ABC (W6/32) Biolegend Cat# 311402; RRID: AB_314871 

Mouse IgG2a, κ Isotype Ctrl Antibody Biolegend Cat# 400201 

Chemicals, peptides, and recombinant proteins 

Advanced RPMI 1640 Medium Thermo Fisher Cat# 12633012 

Fetal Bovine Serum Seradigm Cat# 1500-500 

AIM V medium Thermo Fisher Cat# 12055091 

Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Cat# 15140122 

GlutaMAX Supplement Thermo Fisher Cat# 35050061 

Gentamycin Thermo Fisher Cat# 15750060 

Harringtonine LKT 
Laboratories 

Cat# H0169 

DPBS, calcium, magnesium GIBCO Cat# 14040141 

UltraPure Sucrose Invitrogen Cat# 15503022 

TRI Reagent Solution Invitrogen Cat# AM9738 

Cycloheximide, High Purity - CAS 66-81-9 
- Calbiochem 

Sigma-Aldrich Cat# 239764 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

RNase I, E. coli Lucigen Cat# N6901K 

DNase I Zymo Research Cat# E1009-A 

Nuclease-Free Water (not DEPC-Treated) Invitrogen Cat# AM9932 

SDS, 20% Solution, RNase-free Invitrogen Cat# AM9820 

Formic acid Sigma-Aldrich Cat#FX0440-7 

C18 Jupiter Phenomenex Phenomenex Cat# 04A-4263 

Acetonitrile Thermo Fisher Cat# A996SK-4 

Ammonium bicarbonate Sigma-Aldrich Cat# A6141 

TCEP [Tris(2-carboxyethyl) phosphine 
hydrochloride 

Thermo Fisher Cat# 20490 

Chloroacetamide Sigma-Aldrich Cat# C0267 

Trypsin Promega Cat# V511A 

Critical commercial assays 

Universal Mycoplasma Detection Kit ATCC Cat# 30-1012K 

Qubit RNA BR Assay Kit Invitrogen Cat# Q10211 

Ribo-Zero Gold rRNA Removal Kit 
(Human, Mouse, Rat) 

Illumina Cat# MRZG12324 

RNA Clean & Concentrator-5 Zymo Research Cat# R1013 

TruSeq Stranded mRNA Library Prep kit Illumina Cat# 20020594 

PureProteome protein A magnetic beads Millipore Cat# LSKMAGA10 

QIFIKIT Agilent Cat# K0078 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

DLBCL cell line samples: RNaseq data This study NCBI SRA: PRJNA647736 

DLBCL cell line samples: Ribo-seq data This study NCBI SRA: PRJNA647736 

DLBCL samples immunopeptidomic and 
whole proteome tryptic data 

This study PRIDE: PXD020620 

Experimental models: cell lines 

HBL-1 cell line Lab of Martin 
Dyer 

RRID: CVCL_4213 

SU-DHL-4 cell line Lab of Mark 
Raffeld 

RRID: CVCL_0539 

DoHH2 cell line DSMZ Cat# ACC-47; RRID: CVCL_1179 

Software and algorithms 

Ribo-db Pipeline This study https://github.com/lemieux-
lab/Ribo-db 

STAR (Dobin et al., 2013) https://github.com/alexdobin/
STAR 

SAMtools (Li et al., 2009) http://www.htslib.org/doc/ 

StringTie (Pertea et al., 2015) https://ccb.jhu.edu/software/s
tringtie/ 

PEAKS X Bioinformatics 
Solutions 

https://www.bioinfor.com/ 

Comet (Eng et al., 2015) http://comet-
ms.sourceforge.net/ 

NetMHCpan 4.0 (Jurtz et al., 2017) http://www.cbs.dtu.dk/service
s/NetMHCpan-4.0/ 
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REAGENT or RESOURCE SOURCE IDENTIFIER 

Freebayes (Garrison and 
Marth, 2012) 

https://github.com/freebayes/f
reebayes 

Proteowizard Proteowizard 
Software 

http://proteowizard.sourceforg
e.net 

BEDtools (Quinlan and Hall, 
2010) 

https://bedtools.readthedocs.i
o/en/latest/ 

MAPDP (Courcelles et al., 
2020) 

https://gitlab.com/iric-
proteo/mapdp 

DeepLC 0.1.14 (Bouwmeester 
et al., 2020) 

https://github.com/compomics
/DeepLC 

PRICE v.1.0.3 (Erhard et al., 2018) https://github.com/erhard-
lab/gedi/wiki/Price 

GPS-ARM version 1.0 (Liu et al., 2012) http://arm.biocuckoo.org/ 

UbPred (Radivojac et al., 
2010) 

http://www.ubpred.org/ 

IUPred2 (Mészáros et al., 
2018) 

https://iupred2a.elte.hu/ 

Biopython module SeqUtils Biopython module https://biopython.org/docs/1.7
5/api/Bio.SeqUtils.html 

Panther classification system Panther algorithm http://www.pantherdb.org/ 

riboWaltz (Lauria et al., 2018) https://github.com/LabTranslat
ionalArchitectomics/riboWaltz 
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1.15   Resource availability 

1.15.1   Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Claude Perreault (claude.perreault@umontreal.ca). 

1.15.2   Materials Availability 

This study did not generate new unique reagents. 

1.15.3   Data and Code Availability 

The Python, bash scripts and Jupyter notebooks generated during this study are available at 

GitHub, https://github.com/lemieux-lab/Ribo-db. 

The accession number for MS raw data and associated databases reported in this paper is 

PRIDE: PXD020620. 

The accession number for RNA-seq and ribosomal profiling raw sequencing data reported 

in this paper is NCBI SRA: PRJNA647736. 

1.16   Experimental model and subject details 

1.16.1   Cell lines 

DLBCL lines HBL-1, DoHH2, and SU-DHL-4 bearing HLA A02:06, B51:01, C14:02; A01:01, B08:01, 

B44:02, C07:01, C07:04 and A02:01, A31:01, B15:01, C03:04, respectively, were cultured in 

complete medium consisting of Advanced RPMI medium (Gibco) supplemented with 5% heat-

inactivated fetal bovine serum (Seradigm), 1% Penicillin/Streptomycin (Gibco), and Glutamax 

(Gibco). Cells were grown in humidified atmosphere at 37°C with 5% CO2 and routinely tested for 

mycoplasma contamination using Universal Mycoplasma Detection Kit (ATCC). Cell line identity 

was confirmed by copy number variant fingerprinting of 16 loci of each cell line genomic DNA 

(Jonathan Keats, personal communication). Sex of cells used: Male, HBL-1, DoHH2, SU-DHL-4. 
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1.17   Method details  

1.17.1   Ribosomal profiling, RNA-seq sample preparation and sequencing 

Ribosomal profiling was performed as previously described74 with modifications as follows: DLBCL 

cell cultures were seeded at 2x105 cells/ml in 50 mL of complete medium in duplicates for each 

cell line and condition. Enrichment for initiating ribosomes was done by treating the cell cultures 

with harringtonine (LKT Laboratories) at 5 µg/ml for 30 minutes at 37°C before harvesting. Thirty-

six hours after seeding the cells were pelleted by centrifugation (300g, 5 min., RT), cell pellets 

were immediately put on ice and washed with ice-cold DPBS (GIBCO), centrifuged (300g, 5 min., 

4°C) and cell pellets flash-frozen in liquid nitrogen. Samples processing proceeded without delay 

until sucrose cushion purified ribosomes were resuspended in TRI. Reagent Solution (Ambion) 

and stored at -80°C. Cycloheximide was included only in lysis buffer at 100 mg/ml. RNA 

concentration in cell lysates was quantitated by Qubit RNA BR Assay Kit (Invitrogen) using Qubit 

4 fluorometer. The lysates containing 30 µg of RNA were diluted to the final volume of 200 µl with 

polysome buffer and treated with 15 U of RNase I (10 U/µl, Lucigen) at room temperature (24°C) 

for 45 min on tube rotator. The ribosomal RNA depletion was done in two steps: First, size-

selected ribosome protected fragments were depleted by Ribo-Zero Gold rRNA Removal Kit 

(Human, Mouse, Rat) (Illumina). Second, circularized cDNA was depleted using biotinylated 

complementary oligonucleotides as previously described75. Ribosomal profiling libraries were 

sequenced on Illumina HiSeq 4000 to achieve 350-400 million raw reads per sample (~100 million 

for harringtonine treated samples). Ribosome profiling footprint library quality was assessed 

using riboWaltz76 via trinucleotide codon periodicity plotting against annotated protein-coding 

ORFs. Ribosome profiling samples exhibiting clear trinucleotide periodicity were retained for 

subsequence ORF detection. RNAseq libraries were prepared from the same cell lysates as the 

ribosome profiling sequencing libraries. Five micrograms of RNA per sample lysate was diluted 

with nuclease-free water to the final volume of 40 µl, treated with DNase I (Zymo Research) at RT 

for 15 min, and diluted with sodium dodecyl sulfate solution to the final concentration of 1%. 

Total RNA was purified using RNA Clean & Concentrator-5 (Zymo Research). RNAseq libraries 
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were prepared using TruSeq Stranded mRNA Library Prep kit (Illumina) and sequenced as PE 75 

cycles on Illumina NextSeq 550 to high depth.  

1.17.2   Quantification MHC-I molecules per cell 

MHC-I’s absolute membrane density was evaluated on 3 DLBCL cell lines by indirect labeling with 

a purified anti-human HLA-ABC (clone W6/32) or a mouse IgG2a isotype control, using 

commercially available QIFIKIT (Dako) according to the manufacturer’s instructions. 

1.17.3   Ribosome Profiling data pre-processing 

Illumina adapters from the 3’ end of the Ribosome Profiling TIS and Elongation Sequencing 

Fragments (RPSF) were removed using fastx_clipper (http://hannonlab.cshl.edu/fastx_toolkit/). 

UMI detection and extraction were performed using UMI_tools77. Next, only relevant RPSFs (i.e., 

reads with a length between 26 and 34 nucleotides) were retained for further human genomic 

coordinate mapping (reference genome version GRCh38.p10/hg38) using STAR v.2.6.1.d78. We 

ran STAR with default settings except for the following modified parameters: --outSAMtype BAM 

SortedByCoordinate, --alignEndsType EndToEnd, --seedSearchStartLmax 15, --

outFilterMismatchNoverLmax 0.05, --outFilterMatchNmin 25. Finally, the BAM files were 

deduplicated using UMI_Tools. 

1.17.4   RNA-sequencing data pre-processing 

Illumina adapters from the 3’ end of the RNA-sequencing reads were removed using Trimmomatic 

version 0.35 and then mapped to the reference genome version GRCh38.p10/hg38 using STAR 

v.2.6.1.d78.We ran STAR with default settings except for the following modified parameters: --

outSAMtype BAM SortedByCoordinate, --outFilterMismatchNoverLmax 0.05, -- 

outFilterMatchNmin 40.  

1.17.5   Ribo-db approach: detection of active translation sequences  

To generate a complete and noiseless sample-specific database suitable for MS searches, we 

translated in-silico the actively translated sequences (canonical and non-canonical ORF) assessed 

by combining Ribo and RNA-seq data as follows: 
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A) TIS calling: to detect sample-specific Translation Initiation Sites (TIS) from the aligned Ribo-seq 

TIS reads, we developed a probabilistic approach to estimate a confidence score used to identify 

the genomic positions of putative start codons that differentiates start codon positions from 

background, considering all near-cognate start codons.  

To achieve this, we assumed that all annotated start codons aligning with Ribo-TIS reads were 

true start codons, from this we propose to estimate the probability of each position (𝑝𝑜𝑠) into 

each read length 𝑙 = (26, . . . ,34),	to act as the first nt of the ribosomal p-site therefore being the 

first nt of a start codon (𝑠𝑐), as follows: 

Let 𝑟 = 	 {reads being at the first nt of a start codon| 𝑙𝑒𝑛 = 𝑙, 𝑡ℎ𝑒𝑛	𝑝𝑜𝑠 = 𝑝}  

Let 𝑅 = 	 {total reads being at the first nt of a start codon|𝑙𝑒𝑛 = 𝑙}; 

𝑃(𝑠𝑐 | 𝑙𝑒𝑛 =  𝑙,  𝑝𝑜𝑠 = 𝑝 )  =  
|𝑟|
|𝑅| 

where	𝑃(𝑠𝑐 | 𝑙𝑒𝑛 =  𝑙,  𝑝𝑜𝑠 = 𝑝 )	is the probability of a 𝑠𝑐 at the read position 𝑝𝑜𝑠 in the read of 

length 𝑙 = (26, . . . ,34). 

Then, we computed two heuristics to evaluate the certainty of the ribosomal P-site location into 

each read length 𝑙, and the relevance of the read-alignment regarding its multimapping.  

The first heuristic 𝐻+(𝑙) assigned a normalized weight to each read length (26-34 nt), computed 

through the standard deviation of the read positions acting as start codons, as follows: 

Let 𝜎  =  {𝜎,| 𝑠𝑡𝑑𝑒𝑣 𝑜𝑓 𝑟𝑒𝑎𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑐𝑡𝑖𝑛𝑔 𝑎𝑠 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑑𝑜𝑛𝑠 𝑓𝑜𝑟 𝑙 = (26,… ,34)}; 

𝐻+(l) = 1 − I
σ, −min(σ)

max(σ) − min(σ) ∗ 0.99S 

The second heuristic 𝐻-(𝑅)) assigned a weight to each Ribo-Tis read according to its rank (𝑅)) in 

which STAR has reported such alignments, as follows: 

𝐻-(𝑅)) = 1 − T
𝑅) − 1

𝑚𝑎𝑥. − 1
∗ 0.99W 
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where 𝑚𝑎𝑥.  is the max number of hits reported by STAR (default = 10). Thus, a fragment that 

has been mapped several times will have decreasing weight per alignment. For instance, a Ribo-

Tis read that has 3 alignments in the genomes would have for R1 a weight equal to 1, R2 a weight 

equal to 0.89 and for R3 a weight equal to 0.78. 

The combination of these three criteria allowed us to weight reads mapped to the genome for 

the identification of the start codons, using the following probability model: 

P(𝑐| 𝑅𝑖𝑏𝑜 − 𝑇𝑖𝑠 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑥) =
∑ 𝑃(𝑠𝑐 | 𝑙𝑒𝑛	 =  𝑙,  𝑝𝑜𝑠	 = 	𝑝 )./0$12/&
) )"(! ⋅ 𝐻+(𝑙) ⋅ 𝐻-(𝑅))

∑ 𝐻+(𝑙) ⋅ 𝐻-(𝑅))./0$12/&
)	)"(!

 

where 𝑥 is the genomic position of the first nucleotide of a candidate start codon and 𝑐 is the 

event that indicates that the position x is a start codon 𝑠𝑐.  

Finally, to establish a threshold on 𝑃(𝑝𝑜𝑠|𝑐) to retain only the start codons candidates with high 

confidence, we ranked the computed confidence results to plot a receiver operating characteristic 

curve (ROC curve). This curve was plotted using the known start codons as positives and any other 

start codon candidates as negatives. For each point on the curve, we computed the Euclidean 

distance to a perfect classifier (0,1) and then reported the threshold corresponding to the shortest 

distance to that point. Thus, any start codon candidate whose computed confidence was above 

the threshold was considered as a positive start codon position and was retained for further 

analysis. 

B) Assembly of reads into transcripts: to capture the complete transcriptome including both 

annotated and unannotated transcripts, we generated sample-specific transcriptomes 

assemblies from Ribo-seq elongation data collected from actively translating cells and RNA-Seq 

data. To this end, we used StringTie v1.3.679 guided by a reference annotation (Ensembl release 

88) in RNA-seq and Ribosome Profiling Elongation BAM files.  

C) Intersect: to detect the set of actively translated ORFs, we use the intersection function of the 

BEDTools80 suite in the BED file with the genomic positions of the positives start codons as well 

as each of the gtf files reported by StringTie either transcriptome assemblies based on Ribosome 

profiling Elongation and RNA-seq. Therefore, start codons intersecting assembled transcripts (i.e., 
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pairs (starts codons, transcripts)) were collected as they represent the active ORFs that will be 

translated in-silico. From this set of ORFs, we define canonical proteins as those translated from 

an annotated start codon coupled to the corresponding transcript (known couplings) according 

to genome version GRCh38.p10 (GENCODE version 26). We define non-canonical translation 

products as those originating from unknown couplings.  

D) SNPs integration: to generate sample-specific transcription information, we integrated high-

quality single-nucleotide polymorphisms (SNPs) identified from RNA-seq data to the assembled 

transcripts. Single-nucleotide variants were identified using freeBayes version 1.0.2-16-gd466dde 

(arXiv:1207.3907) and exported in a VCF, which was converted to an agnostic single-nucleotide 

polymorphism file format. The high-quality sample-specific SNPs identified (freeBayes quality > 

20), were then inserted at their correct position into the intersected transcripts. When there was 

ambiguity for a given position, the integration was done through the corresponded IUPAC symbol. 

E) In-silico translation: to generate a sample-specific database, each transcript (from RNA-seq or 

Ribosome Profile Elongation) was translated from the frame dictated by the coupled start codon 

until the first in-frame stop codon. Any protein sequence longer or equal to 8 AA was retained. 

Any protein sequence nested in a larger sequence was not added to the database. However, we 

keep track of all information about proteins (i.e., which proteins were added to the database and 

which were not), as we use it to assign the most likely origin of each peptide. To avoid 

combinatorial explosion, we translated the transcripts containing the IUPAC symbols, the 

complete protein sequence once, and translated small sequences around the locations of the 

IUPAC symbols (20 ntd in the flanking regions of the SNPs). 

We used Ribo-seq data from translation initiation site (TIS), elongation and RNA-seq data from 

three human diffuse large B-cell lymphomas (DLBCL), HBL-1, DoHH2 and SU-DHL-4 to generate 

sample-specific databases using the Ribo-db approach. These databases were used to perform 

mass spectrometry analysis of the immunopeptidome and the whole proteome. The number of 

proteins identified in these analyses is shown in Table S2. The percentage of proteins detected by 

MS among the proteins identified by Ribo-seq is shown in Table S3. 
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1.17.6   Immunopeptidome sample preparation 

Cells for immunopeptidome analysis were grown and harvested the same way and in parallel with 

ribosome profiling cell cultures. The cells were counted during the washing step with ice-cold 

DPBS and aliquots of 200 million cells were centrifuged and pellets flash-frozen in liquid nitrogen, 

stored at -80°C. 

1.17.7   Mass spectrometry analysis: immunoprecipitation and sequencing by 

LC-MS/MS 

For MHC-I peptides isolation, we performed immunoprecipitation on 2 replicates per cell line 

using W6/32 antibody (BioXCell, 1mg per 108 cells) as previously described81. Replicates were 

composed of 2x108 cells for HBL-1 and 4x108 cells for SU-DHL-4 and DoHH2. Dried peptide extracts 

were resuspended in 4% formic acid and loaded on a homemade C18 analytical column (15 cm x 

150 µm i.d. packed with C18 Jupiter Phenomenex of particle size 5 µmn and pore size 300 Å) with 

a 56-min gradient (DoHH2 and SU-DHL-4) or 106-minute gradient (HBL-1) from 0% to 30% ACN 

(0.2% formic acid) and a 600 nL/min flow rate on an nEasyLC II system. Samples were analyzed 

with a Q-Exactive HF mass spectrometer (Thermo Fisher Scientific) in positive ion mode with 

Nanospray 2 source at 1.6 kV. Each full MS spectrum, acquired with a 60,000 resolution was 

followed by 20 MS/MS spectra, where the most abundant multiply charged ions were selected 

for MS/MS sequencing with a resolution of 30,000, an automatic gain control target of 2x104, an 

injection time of 800 ms and collisional energy of 25%.  

1.17.8   MAP identification  

MAPs were eluted from three DLBCL cell lines and analyzed by liquid chromatography-MS/MS 

(LC-MS/MS). MS/MS spectra were searched against sample-specific customized databases using 

Peaks X (Bioinformatics Solution Inc.). For peptide identification, tolerance was set at 10 ppm and 

0.01 Da for precursor and fragment ions, respectively. Occurrence of oxidation (M) and 

deamidation (NQ) were considered as variable post-translational modifications.  

Following peptide identification, a list of unique peptides was obtained for each sample. Binding 

affinities to the sample’s HLA alleles were predicted with NetMHCpan 4.082 and only peptides 
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with length between 8 and 11 amino-acid and with a NetMHC percentile rank ≤ 2% were retained 

for further annotation. Finally, a false discovery rate (FDR) of 1% was applied on the remaining 

peptide scores, corresponding to sample-specific FDRs in the range of 1.4 to 2,9% if applied on 

total PSMs (DoHH2=1.6%, SU-DHL-4=2.9%, HBL-1=1.4%). These filtering steps were made with 

the use of MAPDP30. For each identified peptide, we interrogated all protein sequences to identify 

those that could be at the source of the peptide. We sequentially applied the following rules to 

assign to the peptide the most likely source protein based on (i) the highest starting codon 

confidence score, (ii) the presence of an optimal (GCC[R]CCstartG[V]) or strong ([R]NNstartG[V]) 

kozak motif38 around the start codon, (iii) the level of expression of the source transcript through 

the StringTie computed TPM measurements. 

Comet v2019.01.5, a different MS search engine, was used to perform PEAKs re-identification. 

The raw files were converted to mzXML format with the MsConvert tool of ProteoWizard and 

searched against the relevant sample-specific customized databases. Comet was used with the 

same parameters as for PEAKS. Following peptide identification, a list of unique peptides was 

obtained for each sample and a false discovery rate (FDR) of 1% was applied on the peptide 

scores. All canonical and non-canonical MAPs identified by PEAKS for each sample were queried 

in such peptide list and only perfect matches were considered as successful re-identifications. 

To ensure that our cryptic peptides did not correspond to improperly assigned post-

translationally modified canonical peptides, PEAKS searches were performed using the standard 

reference protein database (Ensembl GRCh38.88 annotations), including six most frequent PTMs 

reported for HLA class-I associated peptides83, 84. In addition to oxidation (M) and deamidation 

(NQ), we searched for peptides bearing either phosphorylation, cysteinylation, N-cyclisation 

(pyroQ) or N-terminal acetylation. Out of the 243 spectrum IDs assigned to cryptic peptides in our 

study, only 4 were re-assigned to a canonical sequence harboring a PTM, indicating that post-

translational modifications might be a confounding factor for at most 1.6% of cryptic peptides. 

1.17.9   Retention time prediction and relative mass error 

As validation criteria of the MAPs identification robustness, we assessed the Pearson’s correlation 

between the retention time observed and the predicted retention time for each MAPs category 
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(canonical and non-canonical). Peptide retention times were predicted using DeepLC 0.1.1440, 

with default parameters. The model was calibrated using retention time of 250 peptides (top 10 

PEAKS scoring peptides from 25 equal-sized retention time bins). In addition, we evaluated the 

relative mass error for each MAP and compared the distributions for the two MAPs category 

(canonical and non-canonical). Peptide relative mass error is presented in parts per million mass 

errors (ppm) unit and was assessed through the MAPDP platform30.  

1.17.10 Composite DB: Ribo-db + PRICE 

To validate the relevance of the Ribo-db approach, we ran the PRICE v.1.0.3 method8  on the BAM 

files containing mapped reads of ribosome Profiling TIS and Elongation of each cell line with 

default parameters besides the -novelTranscripts parameter. The predicted ORFs were translated 

following the same rules as for Ribo-db (i.e., SNP integration and in-silico translation) and were 

added to the sample-specific Ribo-db database. Next, for each cell line, MS/MS spectra were 

searched against each sample composite database. The lists of unique identifications obtained 

from PEAKS were filtered based on 1) length between 8 and 11 amino acids, 2) percentile rank ≤ 

2% for at least one on the relevant MHC-I molecules as predicted by NetMHCpan 4.0, 3) FDR ≤ 1% 

estimation. Each sample-specific database (i.e., Ribo-db and PRICE-db) was independently 

queried for each peptide identified to count the number of unique and shared peptides found in 

the databases. 

1.17.11 Biotype screening  

Non-canonical proteins were desginated as a function of their transcript genomic location: 5’ or 

3’UTR proteins are in 5’/3’UTR or overlapping CDS and 5’/3’UTR; frameshift proteins are in coding 

transcripts but out-of-frame of canonical translations; intronic proteins are in intronic regions or 

in exon-intron junction; annotated noncoding transcripts proteins are in transcripts annotated as 

pseudogenes, noncoding RNA and processed transcripts; intergenic proteins are in novel 

transcripts. We set out to determine the category associated to each non-canonical protein 

through two validation steps. First, as we used StringTie in the reference-guided manner, we used 

the reference_transcript (field returned by StringTie) of the transcript from which the protein 

originated. Therefore, if the non-canonical protein was derived from a protein-coding transcript, 
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depending on the location of the protein within the transcript relative to the canonical protein, 

the non-canonical protein was assigned to the categories: ‘5'UTR’ and ‘3'UTR’, ‘Novel Isoform’ 

(proteins that share the same reading frame of the canonical protein but originate from an 

alternative starting codon), ‘Frameshift’ (proteins in a different reading frame than the canonical 

one), or ‘Intronic’ (proteins derived from transcripts containing intronic regions of a canonical 

protein). If the non-canonical protein derived from an annotated noncoding transcript, then it 

was directly assigned to the category of ‘annotated noncoding transcript’. Finally, if the non-

canonical protein whose genomic location was not part of any annotated transcript was assigned 

to the Intergenic category. The second step was designed to find a consensus category for each 

protein. Since we knew that some assembled transcripts were not associated with a 

reference_transcript, we chose to interrogate the annotations (Ensembl gtf file) to find all 

possible categories associated with the location of the protein. Therefore, for each protein we 

had the possible categories that could be associated with the protein, and we assigned to the 

protein the category that was most represented. 

1.17.12 Translation efficiency and ribosome occupancy 

Translational efficiency of each MAPs source protein was calculated as the ratio between 

translation (derived from counts of ribosome profiling reads) over transcription (derived from 

RNA-Seq reads). These measurements were computed as described by Ingolia46. First, the 

ribosome occupancy (translation level) was computed as the number of Ribosome Profiling 

Elongation fragments aligned to the coding protein sequence divided by the length of the protein 

sequence. Second, such measurements were normalized by dividing by the total number of 

Ribosome Profiling Elongation fragments that aligned to any coding transcript sequence. Finally, 

as the same measurements were computed for RNA-seq reads, the translation efficiency of a 

gene was computed as the ratio of the normalized Ribosome Profiling Elongation to the 

normalized RNA-seq. 

1.17.13 Translation efficiency analysis of canonical protein location  

We extracted the information of the canonical protein subcellular compartments from ComPPI 

db85 which provides confidence scores (0-1) for protein subcellular localizations. For each 
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canonical MAP source protein, we took into account all its major locations, i.e., those having 

confidence scores above 0.8. For proteins without a localization score above this threshold, we 

used the subcellular compartment with the highest score. Moreover, for the few proteins 

underrepresented in the database, we assessed manually their more likely localization in Uniprot. 

Therefore, we compared the translation efficiency of MAP source proteins from 6 subcellular 

localizations: cytosol, membrane, nucleus, extracellular, mitochondrion, secretory pathway, and 

we used as a negative control, the translation efficiency of the canonical proteins non-source of 

MAPs (background).  

1.17.14 Stalling ribosomes 

We examined the ribosome profiling elongation coverage of each transcript source of MAPs 

proteins and compared it to the coverage of transcripts non-source of MAPs (we chose proteins 

uniquely detected in the whole proteome as non-source of MAPs). We defined the upstream and 

downstream of a transcript as the first and last 33% of the length of the transcript (33% up and 

the last 33% down). The 34% of the length of the transcript at the middle was defined as 

Midstream. We assessed for each nucleotide of the transcript the number of ribosome profiling 

elongation reads and then computed for each whole transcript its median coverage. Next, we 

computed the median at the Upstream, Midstream and Downstream sections of the transcript in 

order to compute the fold change relative to the median coverage of the whole transcript. 

1.17.15 Whole proteome analysis 

Protein pellets were resuspended in 50 mM ammonium bicarbonate and separated with an 

Amicon Ultra-15 10K centrifugal filter device. Proteins staying on the filter were resuspended in 

50mM ammonium bicarbonate. 10 mM TCEP [Tris(2-carboxyethyl) phosphine hydrochloride 

Thermo Fisher Scientific] was added to the samples and samples were vortexed for 1 h at 37°C. 

Chloroacetamide (Sigma-Aldrich) was added for alkylation to a final concentration of 55 mM. 

Samples were vortexed for another hour at 37°C. One microgram of trypsin was added, and 

digestion was performed for 8 h at 37°C. Samples were dried and solubilized in 5% ACN-0.2% 

formic acid (FA). Peptides were separated on a home-made reversed-phase column (150-μm i.d. 

by 200 mm) with a 216-min gradient from 10 to 30% ACN-0.2% FA and a 600-nl/min flow rate on 
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an Easy nLC-1000 connected to an Orbitrap Fusion (Thermo Fisher Scientific, San Jose, CA). Each 

full MS spectrum acquired at a resolution of 120,000 was followed by tandem-MS (MS-MS) 

spectra acquisition on the most abundant multiply charged precursor ions for a maximum of 3s. 

Tandem-MS experiments were performed using collision-induced dissociation (CID) at a collision 

energy of 30%. The data were processed using PEAKS X (Bioinformatics Solutions, Waterloo, ON) 

and the sample-specific databases and a false discovery rate (FDR) of 1% was applied on the 

peptide scores. Mass tolerances on precursor and fragment ions were 10 ppm and 0.3 Da, 

respectively. Fixed modification was carbamidomethyl (C). Selected variable posttranslational 

modifications were oxidation (M), deamidation (NQ), phosphorylation (STY), acetylation (N-ter). 

To assign protein origin of tryptic peptides we used the same rules as for immunopeptidomics 

experience. For each identified peptide, we interrogated all protein sequences to identify those 

that could be at the source of the tryptic peptide. We sequentially applied the following rules to 

assign to the peptide the most likely protein origin based on (i) the highest starting codon 

confidence score, (ii) the presence of an optimal (GCC[R]CCstartG[V]) or strong ([R]NNstartG[V]) 

kozak motif38 around the start codon, (iii) the level of expression of the source transcript through 

the StringTie computed TPM measurements. 

1.17.16 Theoretical trypsin digestion, UB sites, disordered regions and 

instability index prediction 

For each cryptic and canonical protein, we counted the theoretical number of tryptic peptides 

generated after in-silico digestion and preserved those with a length ranging between 7 and 

25 aa. Degradation signals were predicted based on i) GPS-ARM version 1.057 to predict D -box 

and KEN -box motifs with high confidence (target sequence of anaphase-promoting complex), ii) 

UbPred58 to predict canonical ubiquitination sites with high confidence (≥0.84). To identify 

Intrinsically Disordered Protein Regions (IDPRs), we used the biophysics-based approach 

IUPred259, with a disorder value cut-off set at 0.5. The instability index of each protein, which 

predicts protein stability based on the order and frequency of certain dipeptides, was computed 

using the function ProteinAnalysis from the module ProtParam of the Biopython module SeqUtils. 

This function implements the method described by Guruprasad et al.60. Proteins with instability 

indexes over 40 are predicted to be less stable. 



103 

1.17.17 Reactome pathway overrepresentation test 

Genes corresponding to annotated canonical proteins encoded within novel isoforms sequences 

or downstream of 5’UTR-initiated cryptic proteins were submitted to Panther’s “Statistical 

overrepresentation test” (http://www.pantherdb.org/) using reactome pathways as the 

annotation set. The whole list of homo sapiens genes was used as a reference. Statistical 

significance of the enrichment of each pathway was assessed using Fisher’s exact test, with the 

Benjamini–Hochberg false discovery rate (FDR) correction for multiple comparisons (adjusted p-

value< 0.05). To limit the number of pathways displayed in graphs, we applied, in addition to p< 

0.05, a threshold on the level of enrichment of each pathway. Therefore, for novel isoforms, 

statistically overrepresented pathways with enrichment > 4 were displayed. For 5’UTR cryptic 

proteins, statistically overrepresented pathways with enrichment > 3 were displayed. 

1.17.18 Quantification and Statistical Analysis 

Analyses and figures were performed using Python v2.7.6 or R v3.5.1. Correlation test was done 

using the python function scipy.stats.linregress. All statistical tests used are mentioned in the 

respective figure legends. Significant level (*p< 0.05, **p< 0.01, ***p< 0.001 and ****p< 0.0001) 

are reported in the figures. Kolmogorov-Smirnov, Fisher’s exact, Mann-Whitney U, T-Test, 

Wilcoxon rank-sum tests were performed using ks_2samp, fisher_exact, mannwhitneyu, 

ttest_ind, wilcoxon functions from scipy.stats python module, respectively. Unless mentioned 

otherwise, all boxes in box plots show the third (75th) and first quartiles (25th) and the box band 

show the median (second quartile) of the distribution; whiskers extend to 1.5 times the 

interquartile distance from the box. 
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1.18  Supplemental Information 

 

Figure 7. –  Related to Figure 5. Sample-specific database composition. 
(A) Length distribution of canonical and non-canonical proteins from DoHH2 database showed 
significant differences. P< 0.0001, Kolmogorov-Smirnov Test. Total proteins for both categories 
are indicated on the legend, besides their median, minimum (Min) and maximum (Max) observed 
lengths. Proteins with a length >800 AA are not displayed on the graph.  
(B) Length distribution of canonical and non-canonical proteins from SU-DHL-4 database showed 
significant differences. P< 0.0001, Kolmogorov-Smirnov Test. Total proteins for both categories 
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are indicated on the table legend, besides their median, minimum (Min) and maximum (Max) 
observed lengths. Proteins with a length >800 AA are not displayed on the graph.  
(C) MAPs identified through composite databases Ribo-db + PRICE method vs MAPs identified 
solely on Ribo-db-derived databases. MS-Peaks database searches performed solely on Ribo-db 
allowed to gain (2%) more MAPs dentifications.  
(D) Absolute number of MHC-I molecules per cell, in 3 cell lines, measured by flow cytometry 
using QIFIKIT (see Methods).  
(E) MAPs identification process. Diagram that details, from the intersect step of the general 
workflow overview (Figure 1A), the strategy used for database generation and the filtering for the 
MAPs identification. The size (Mb) and the total number of amino acids (AA) of each database are 
shown at the bottom of the figure, along with the FDR used and the number of expected 
erroneous identifications (False Positive, FP). 
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Figure 8. –  Related to Figures 6,7. Properties of the novel proteins identified in the 
immunopeptidome analysis. 

(A) At least 10% of the MAPs source proteins derived from non-canonical proteins. Bar plot 
depicting the percentage of proteins source of MAPs. The purple bar shows the percentage of 
cryptic and novel isoform proteins (10%), the blue bar shows the percentage of canonical proteins 
(90%).  
(B) Protein count of the MAPs cryptic and novel isoform proteins. The bar plot depicts the total 
number for each category of the Cryptic along with the total number of Novel Isoform proteins.  
(C) Most of the new proteins initiated at near cognate codons. Bar plots showing the fraction of 
cryptic, novel isoform and canonical proteins initiated through each initiation codon.  
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(D) Translation efficiency of the MAPs source cryptic proteins. Boxplots showing the translation 
efficiency distribution for each one of the categories into the MAPs source cryptic proteins. 
Translational efficiency of each MAPs source protein was calculated as the ratio of translation 
(derived from counts of ribosome profiling reads) to transcription (derived from RNA-seq reads). 
*P< 0.05, **P< 0.01, ***P< 0.001, ****P< 0.0001, two-side Mann-Whitney U Test corrected with 
Bonferroni correction.  
(E) Translation efficiency distributions of MAPs source proteins according to their subcellular 
localization. Background proteins are canonical proteins non-source of MAPs. Number of proteins 
and number of peptides are presented for each localization. Statistical difference was assessed 
by Kruskal-Wallis.  
(F) Heatmap presenting the adjusted p-values according to the post-hoc comparison for the 
translation efficiency of the canonical MAPs source proteins. Statistical differences were assessed 
by Mann–Whitney U tests with Bonferroni correction. 
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Figure 9. –  Related to Figures 7 and 9. Properties of the novel proteins identified in the 
immunopeptidome analysis. 

(A) Boxplot graphs for canonical proteins, novel isoforms and cryptic proteins, showing the 
number of identified MAPs vs. length of the source protein. The median length of the proteins is 
shown into each boxplot. The number of proteins that have the number of peptides specified on 
the X-axis is shown at the bottom of the box chart (blue numbers).  
(B) Boxplots showing the fold change of the median coverage for Up-Mid-Downstream relative to 
the median coverage of the whole transcript, for the MAPs source proteins vs the non-source 
proteins detected in the whole proteome analysis. The resulting distributions are plotted in log10 
of the fold change. Statistical difference was assessed by Wilcoxon signed-rank test. 
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Figure 10. –  Related to Figure 10. Features of the newly elucidated proteins. 
(A) Cryptic proteins are significantly shorter than novel isoform proteins. Boxplots indicating the 
length distribution of the newly identified proteins for each category: cryptic proteins (5’UTR, 
3’UTR, frameshift, annotated noncoding transcripts, intergenic, intronic) and novel isoforms. 
Median length in novel isoform (448 aa) and cryptic proteins (65 aa) differed significantly 
according to two-side Mann-Whitney U test, ****P< 0.0001.  
(B) MAPs source newly identified proteins derive from all chromosomes. Bar graph showing, in 
proportion, the chromosomal origin of each category of proteins, compared to canonical protein 
coding genes. Chromosome 12 appeared to be rich in cryptic proteins, *P< 0.05, two-side Fisher’s 
exact test.  
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(C) MAPs source novel proteins derived preferentially from protein-coding transcripts (79% 
protein-coding vs 21% noncoding transcripts) compared to the percentages on the whole non-
canonical proteome (whole proteome analysis-derived proteins). Stacked bar plot showing the 
percentage of novel identified proteins deriving either noncoding (red bars) and protein-coding 
transcripts (blue bars) for MAPs non-canonical source proteins vs whole non-canonical proteome. 
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  Database size (Mb) 

  PRICE Ribo-db Composite db  
Ribo-db +PRICE 

DoHH2 10.4 31.5 41.9 
 

SUD-HL-4 10.5 35.2 45.7 
 

 

HBL-1 11.8 31.4 43.2 
 

 
Table 1. –  Related to Figure 6C. Size of protein databases used in this study. 

      MS-Identified Proteins 

    DB Immunopeptidome Whole Proteome* Total 

DoHH2 
Canonical 26964 1366 2478 

4612 
Non-canonical 174468 141 627 

SUD-HL-4 
Canonical 28504 1017 2798 

4712 
Non-canonical 214156 95 802 

HBL-1 
Canonical 26726 2110 2226 

5174 
Non-canonical 181811 215 623 

    Total 4944 9554 14498 
            

*(without overlapped proteins in Immunopeptidome) 
 

Table 2. –  Related to Methods: Ribo-db approach: detection of active translation sequences.  
Number of MS identified proteins in the 3 cell lines.  
 

  % (MS / total db) 

  Immunopeptidome  Proteome  

Canonical  5.51 9.11 

Non-canonical 0.08 0.36 
 

Table 3. –  Related to Methods: Ribo-db approach: detection of active translation sequences. 
Percentages of MS-detected proteins among Ribo-seq identified proteins. 
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1.19 Context 

MHC-I-associated peptides (MAPs) are small molecules that are presented on the surface of cells. 

MAPs play a key role in the immune system's recognition and response to abnormal substances, 

such as those derived from viruses or cancer cells. MAPs can come from a variety of genomic 

regions, including both protein-coding and non-protein-coding sequences, such as endogenous 

retroelements (EREs). Identifying and quantifying the expression of MAPs in both healthy and 

cancerous cells is important for understanding the immune response to tumors and for 

identifying potential tumor antigens (TAs) that could be targeted by immune therapies. However, 

this can be a challenge for immunologists. 

To address this challenge, we have developed a computational tool called BamQuery that 

allows for the comprehensive mapping of MAPs to trace their expression in healthy and cancer 

tissues. BamQuery can analyze bulk and single-cell RNA-sequencing data to attribute expression 

to MAPs of any origin, including exons, introns, untranslated regions, and intergenic regions. We 

show that non-canonical MAPs, including TAs, can come from multiple different genomic regions, 

and that they can be abundant in normal tissues. Also, we demonstrate that supposedly tumor-

specific mutated MAPs, viral MAPs, and MAPs derived from proteasomal splicing can arise from 

different unmutated non-canonical genomic regions.  

Overall, the genome-wide approach of BamQuery allows for a more complete 

understanding of MAP expression in both healthy and cancerous tissues and help to predict MAP 

immunogenicity and identify potential TAs for immune therapies. 
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1.21 Abstract 

MHC-I-associated peptides (MAPs) derive from selective yet highly diverse genomic regions, 

including allegedly non-protein-coding sequences, such as endogenous retroelements (EREs). 

Quantifying canonical (exonic) and non-canonical MAPs-encoding RNA expression in malignant 

and benign cells is critical for identifying tumor antigens (TAs) but represents a challenge for 

immunologists. We present BamQuery, a computational tool attributing an exhaustive RNA 

expression to MAPs of any origin (exon, intron, UTR, intergenic) from bulk and single-cell RNA-

sequencing data. We show that non-canonical MAPs (including TAs) can derive from multiple 

different genomic regions (up to 35,343 for EREs), abundantly expressed in normal tissues. We 

also show that supposedly tumor-specific mutated MAPs, viral MAPs, and MAPs derived from 

proteasomal splicing can arise from different unmutated non-canonical genomic regions. The 

genome-wide approach of BamQuery allows comprehensive mapping of all MAPs in healthy and 

cancer tissues. BamQuery can also help predict MAP immunogenicity and identify safe and 

actionable TAs.  

KEYWORDS: immunopeptidome; computational biology; major histocompatibility complex; 

tumor antigens 

Abbreviations: MAP: MHC-I associated peptide; TA: Tumor antigen; ncMAP: non-canonical MAP; 

ncRNA: non-coding RNA; ERE: Endogenous retroelement; MCS: MAP coding sequence; ncMCS: 

non-canonical MCS; RPHM: Read-per-hundred-million; mTEC: Medullary thymic epithelial cell; 

DC: Dendritic cell; TSA: Tumor-specific antigen; CTA: Cancer-testis antigen; DLBCL: Diffuse large 

B-cell lymphoma. 
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1.22 Introduction 

The immunopeptidome is the repertoire of MHC-I-associated peptides (MAPs) that represents in 

real-time the landscape of the intracellular proteome as it is molded by protein translation and 

degradation1. In recent years, immunopeptidomic data has been harvested to identify relevant 

and targetable tumor antigens. Indeed, MAPs deriving from mutations characterizing the 

neoplastic transformation (mutated tumor antigens (TA), also known as neoantigens) can be 

recognized by cytotoxic T cells and used as anti-cancer therapeutic targets2.  

The immunopeptidome is typically assumed to result from the degradation of canonical 

proteins, coded by exons and translated from known open-reading frames. However, recent 

proteogenomics (proteomic informed by genomics such as RNA sequencing (RNA-seq)) findings 

evidenced that ~5-10% MAPs can also derive from non-canonical (nc) regions of the genome, such 

as introns, non-coding RNAs (ncRNA) or endogenous retroelements (EREs), as well as from out-

of-frame translation of exons3-6. While 99% of somatic mutations are located in non-coding 

regions7, the vast majority of the discovered ncMAPs are non-mutated4, 8-11. Many ncMAPs are 

found exclusively in cancer cells and attract attention as (1) they can be immunogenic in vitro as 

well as in vivo; (2) they are more numerous in the immunopeptidome of malignant cells than 

mutated TAs and (3) several non-coding TAs are widely-shared between cancer patients whereas 

mutations mainly generate private antigens12, 13. In the context of proteogenomics usage, ncMAPs 

discovery and actionable TAs identification have raised three challenges that are often addressed 

inconsistently by immunologists.  

First, the attribution of an exact RNA expression to MAPs. Typically, proteogenomic 

pipelines quantify MAPs RNA expression through the estimation of their parental transcript 

expression by using conventional transcript abundance quantification tools. However, such tools 

cannot be used reliably for ncMAPs which often derive from unannotated genomic regions. 

Furthermore, such approaches do not consider that MAPs (8-11 residues) could derive from 

multiple regions of the genome due to the degeneracy of the genetic code. Therefore, studies 

failing to consider all genomic regions susceptible to generating a given MAP would 

underestimate its RNA expression.  
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Second, the attribution of a biotype to MAPs. Due to the multiplicity of genomic regions 

able to generate the same MAP, and possibly having different biotypes, a MAP could be 

mislabeled for example as ERE-derived while a canonical region could also generate it through 

out-of-frame translation.  

The third challenge is to prioritize TAs. Ideally, TAs should be immunogenic and specifically 

expressed (or overexpressed) by malignant cells14. Because RNA expression is a reliable proxy of 

the MAP presentation probability9, 15, RNA-seq data of tumor and normal samples are powerful 

tools to perform TA prioritization. While tumor specificity can be evaluated by comparing MAP 

RNA expression between tumor and normal samples, evaluating MAPs RNA expression in 

medullary thymic epithelial cells (mTECs) should be a good predictor of immunogenicity because 

mTEC MAPs induce central immune tolerance16. However, for the reasons mentioned above, 

comparing reliably MAPs RNA expression between tumors, their paired normal samples, and 

mTECs requires considering all their possible genomic regions of origin. 

To address these challenges, we developed BamQuery, an annotation-independent tool 

that enables the attribution of an exhaustive RNA expression profile to any MAP of interest in any 

RNA-seq dataset of interest. 

1.23 Results 

1.23.1 Exhaustive capture of MAPs RNA expression 

Because genomic annotations cover vast regions that are unlikely to represent accurately the 

local RNA expression of an 8-11 residues peptide (especially for ncMAPs deriving from introns, 

Extended Data Fig. 1a) and because no annotations are available for MAPs deriving from 

intergenic regions, we designed BamQuery to evaluate MAPs RNA expression independently of 

annotations. Due to the small size of MAP-coding sequences (MCS, 24-33 nucleotides), counting 

the RNA-seq reads containing each MCS able to code for a given peptide is the most thorough 

and less error-prone method to evaluate MAPs RNA expression. To make BamQuery readily 

available, it had to work on a broadly used data format. Given that querying MCS in fastq files is 

time-consuming (> 1 minute / MCS), we designed BamQuery to work on bam files in five steps 
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(Fig. 1a, and Methods): (1) reverse-translation of each MAP into all possible MCS; (2) mapping of 

MCS to the genome using STAR17 to identify those having perfect matches with the reference and 

attribute them a genomic location. At this step, we also include to the reference genome the 

mutations from the dbSNP annotations18 to enable the mapping of mutated sequences; (3) 

counting of the primary RNA-seq reads encompassing exactly the MCS at their respective location 

(~0.0005 minute / MCS / location) and sum read counts of each MAP across locations; (4) 

normalization of the read count of each MAP by the total primary alignment read count of the 

sample and multiplication by 1×108 to yield read-per-hundred-million (RPHM) numbers and (5) 

attribution of biotypes to MAPs based on the reference annotations overlapping the various 

expressed (RPHM>0) regions.  

To test BamQuery, we collected robustly validated benign MAPs from the HLA Ligand 

Atlas19 (1,702 canonical MAPs shared across at least 20 tissues, Extended Data Fig. 1b,c) and 

queried them in the transcriptome of eight mTEC samples sequenced previously10, 20. As a control, 

we used the primary reads contained in the mTEC bam files previously aligned with STAR to 

generate a database of 27-nucleotide-long k-mers (reads chunked into shorter sequences) using 

Jellyfish21, a tool that counts k-mer occurrences in the primary read sequences (Methods). 

Importantly, we preferred designing BamQuery to work on bam files instead of Jellyfish k-mer 

files of original fastq files because of the elevated disk space that k-mer databases require (4 

databases would be needed per sample to query MAPs of 8 to 11 amino acid length) and because 

such databases would not provide information about the genomic region of the queried MCS.  

We queried this 27-nucleotide-long k-mer database for all possible 27-mer-MCSs encoding 

9-amino acid-long MAPs (1,211/1,702). The comparison of total read counts between BamQuery 

and total k-mer occurrences for each MAP showed a correlation equal to 1, demonstrating the 

exhaustivity of BamQuery (Fig. 1b). Importantly, the main outlier in this correlation was the 

RVHPQVTVY peptide, deriving from the HLA-DRB3 gene. Previously, the STAR aligner was shown 

to have poor performance in hypervariable genomic regions such as HLA genes22. Consequently, 

this outlier results from the limited capacity of STAR to map MCS to the HLA-DRB3 gene when 

performing the BamQuery analysis. A more detailed comparison between MCS counts given by 

BamQuery and k-mer counts in the database also showed an excellent correlation, except for the 
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MCS coding for the RVHPQVTVY peptide (94% mean accuracy) (Extended Data Fig. 1d-e). Next, 

we compared BamQuery to Kallisto23, a transcript abundance quantification tool (reference MAPs 

RNA quantification method) that was chosen because it provides results similar to other tools 

while having the fastest computing speed24. A poor correlation between Kallisto and BamQuery 

was found (Fig. 1c) as most Kallisto measurements were skewed toward lower values than 

BamQuery’s. Specifically, Kallisto did not detect expression for 32 MAPs while BamQuery 

reported considerable RPHM values. In fact, BamQuery revealed that these MAPs are the result 

of multiple genomic locations (mean = 11) and are completely lost when only a single MAP source 

transcript is quantified (Extended Data Fig. 1f,g), as is typically done with transcript abundance 

quantification tools. Overall, these results evidence the accuracy and superiority of BamQuery 

over conventional approaches. 



121 

 

Figure 1. –  Exhaustive capture of MAPs RNA expression.  
a, Overview of the BamQuery approach to measuring MAPs RNA expression levels.  
b, Pearson's correlation between BamQuery-acquired read counts and Jellyfish's K-mer counts 
for canonical nonamer MAPs (n=1,211) from the HLA Ligand Atlas (present in at least 20 different 
tissues) in eight mTEC samples.  
c, Pearson’s correlation between BamQuery RPHM quantification and Kallisto TPM quantification 
for canonical MAPs (n=1,702) from the HLA Ligand Atlas (present in at least 20 different tissues) 
and 8 mTEC samples. Red lines in (b) and (c) are linear regressions.  
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1.23.2 New insights into the immunopeptidome biology 

Next, we explored the biological features of the immunopeptidome by evaluating the expression 

of the 1,702 canonical MAPs from the HLA ligand atlas along with 724 MAPs previously reported 

as non-canonical (EREs, intronic, and ncRNAs-derived, Supplementary Table 1) in normal tissues, 

including mTEC samples25, and tissues from GTEx26 (Supplementary Table 2). BamQuery 

attributed a genomic location to 100% MAPs: among canonical MAPs, all originally annotated 

genes were attributed to their respective MAP by BamQuery and among a large list of well-

annotated ncMAPs9, the originally annotated genomic location was re-located by BamQuery with 

an accuracy of 100%.  

Comparing all 9-mers together (to prevent biases due to differences of length 

proportions), a higher number of possible MCS (total number of MCS after reverse-translation) 

was found for non-canonical vs canonical MAPs, especially for those mapping to introns and EREs 

(Fig. 2a). To better understand this bias, we investigated whether this could be linked to the 

degeneracy of codons. We found that residues encoded by six synonymous codons (R/L/S) were 

enriched in intron- and ERE-derived MAPs, with leucine being the most enriched (Fig. 2b-c). 

Previously, we observed that MAP source transcripts use rare codons more frequently than 

transcripts that do not generate MAPs4. Therefore, we hypothesized that ncMAPs would use rare 

codons more frequently than canonical ones. Indeed, we found that the genomic codon 

frequency of residues encoded by 6 synonymous codons (R/L/S) was on average lower than those 

encoded by lower numbers of synonymous codons (Extended Data Fig. 2a) and that the codons 

of ncMCS presented a lower genomic frequency than canonical ones (Fig. 2d). As rare codons are 

rate limiting for protein synthesis27-29 and as MAPs derive frequently from defective ribosomal 

products (DRiPs) generated by alterations of protein synthesis rate30, our data suggest that DRiPs 

contribute more to the generation of ncMAPs than to canonical ones.  

Next, we analyzed the relation between the number of possible MCS per MAP (i.e., 

diversity of synonymous codons) and the number of genomic regions able to code for a given 

MAP. Canonical MAPs essentially derived from a single genomic location (60%), while non-

canonical MAPs could derive from multiple regions (Fig. 2e). ERE MAPs presented the greatest 

numbers of possible regions, in agreement with their repeated nature (between 1.536 and 
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2.9×106 possible regions). However, their number of possible MCS did not correlate with the 

number of possible locations, showing that amino acid residue composition cannot be used to 

predict the number of possible regions of origin (Fig. 2f).  

Finally, given the multiplicity of possible regions of origin, we computed the most likely 

biotype of each MAP. For this, we used machine learning (expectation-maximization algorithm) 

to rank the biotypes (in-frame, intron, ERE, etc.) as a function of their likelihood of generating the 

reads covering them across the whole set of GTEx tissues. In general, canonical in-frame 

transcripts are more likely translated than non-canonical ones. For this reason, BamQuery's best 

guess automatically ranks as “in-frame” any MAP having at least one in-frame canonical origin, 

which was the case for all canonical MAPs from our dataset (Extended Data Fig. 2b). BamQuery 

can also attribute biotypes based only on the likelihood ranks (considering the number of reads 

overlapping each transcript). In this case, ~26% of canonical MAPs were assigned with a greater 

probability to ncRNAs (Fig. 2g). Furthermore, while ncRNA and intron MAPs were predicted to 

belong mainly from their identified biotype (73 and 81%) (Extended Data Fig. 2c), only 56% of 

ERE-derived MAPs were estimated to derive from EREs, and 6% of them could derive from 

canonical regions (5% in-frame) (Fig. 2h). Altogether, these data show that many published MAPs 

could be mislabeled, either as canonical or non-canonical. 
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Figure 2. –  New insights into the immunopeptidome biology.  
a-h Published MAPs reported as canonical (n=1,702) and non-canonical (ncRNA (n=378), intronic 
(n=114) and EREs (n=232)) were searched with BamQuery in GTEx tissues and mTEC bam files in 
unstranded mode (GTEx data being unstranded) with genome version GRCh38.p13, gene set 
annotations release v38_104 and dbSNP release 151. Figures a,e,f,g were generated with the 
comparison of 9-mers only (n=1,211 canonical, n=207 ncRNA, n=68 intronic, n=157 EREs) to 
prevent possible biases introduced by variable frequencies of 8/10/11-mers among the compared 
groups. Figures b,c,h were generated with the complete MAP dataset (n=1,702 canonical, n=378 
ncRNA, n=114 intronic, n=232 EREs). Mann-Whitney U test was used for indicated comparisons 
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).  
a, Number of possible MCS after reverse-translation of indicated MAP groups.  
b, Average frequency (%) of amino acids encoded by the indicated number of synonymous codons 
in indicated MAP groups.  
c, Heat map of amino acid frequency in indicated MAP groups.  
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d, Mean of the MCS average usage frequency of codons (among 1000 codons located in human 
reference protein-coding sequences) encoding each of the 20 amino acids of indicated MAP 
groups.  
e, Number of MCS genomic locations able to code for the indicated MAP groups.  
f, Pearson’s correlation between the number of possible MCS after reverse translation vs the 
number of MCS genomic locations able to code for the assessed ERE MAPs. The red line is a linear 
regression.  
g, Percentage of MAPs attributed to indicated biotypes by BamQuery based on the EM-
established biotype ranks and on the genomic regions expressed in GTEx tissues and mTECs. The 
X-axis indicates the biotype reported in the original study (groups). For clarity, BamQuery biotypes 
were summarized into five general categories: protein-coding regions, non-coding RNAs, EREs, 
intronic and intergenic.  
h, Percentage of the most likely biotype attributed by BamQuery to EREs MAPs. 
 

1.23.3 Single-cell proteogenomic analyses 

High-throughput single-cell RNA sequencing (scRNA-seq) enables the examination of individual 

cells’ transcriptome31, 32. Therefore, we sought to perform single-cell analyses using BamQuery. 

Given the end-bias of the Chromium library design typically used in scRNA-seq, we evaluated 

whether read coverage would allow BamQuery analyses of canonical and non-canonical MAPs in 

cancerous33 and normal34 lung tissues scRNA-seq data. As expected, reads showed a bias toward 

the 3’ end of the canonical genes (Extended Data Fig. 3a). However, the coverage extended far 

from the 3’ end, in agreement with a report detecting mutations in various regions of the gene 

body35. We also found a surprisingly high (~50% of reads) and homogeneous read coverage in 

introns and ERE regions, in agreement with previous reports36, 37, and suggesting that BamQuery 

would be able to detect expression for ncMAPs in scRNA-seq. 

BamQuery detected expression for 50-60% of the canonical and non-canonical MAPs 

(Supplementary Table 1) in scRNA-seq, while 86% were found in bulk RNA-seq of GTEx lung 

samples (Fig. 3a). This lower number of MAPs expressed on single-cell data resulting from lower 

read coverage did not hamper the feasibility of scRNA-seq analyses. Indeed, canonical MAPs were 

uniformly expressed at the 5' and 3' ends of their transcripts (Fig. 3b). Also, the expressed rate of 

intronic and ERE MAPs in scRNA-seq data was more comparable to bulk RNA-seq data than 

canonical MAPs (Fig. 3c). This likely results from the more homogeneous read coverage observed 

in non-coding than in coding regions (Extended Data Fig. 3a).  
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Therefore, we explored the patterns of MAPs expression in normal and malignant lungs. 

Differential expression analysis showed that 12.86% (186/1446) and 16.46% (248/1506) of MAPs 

presented cell type-specific expression profiles in normal and malignant samples, respectively 

(Fig. 3d and Supplementary Tables 3-4). Several differentially expressed MAPs derived from genes 

having cell type-specific functions such as YTAVVPLVY in B cells (immunoglobulin J polypeptide), 

STFQQMWISK in muscle cells (Beta-actin-like protein 2), and FLLFPDMEA in macrophages 

(complement C1q B chain) (Extended Data Fig. 3b). To further assess the reliability of MAP 

expression, we re-clustered the normal lung dataset based uniquely on MAPs expression. This 

provided a clear separation of the hematopoietic and stromal compartments (Fig. 3e, Extended 

Data Fig. 3c) and allowed the clustering of specific cell populations such as alveolar cells or the 

monocytes and macrophages (Extended Data Fig. 3d,e). Strikingly, most MAPs identified as 

differentially expressed in the normal lung dataset had an expression restricted to either the 

hematopoietic or stromal lineages, showing a clear dichotomy between these two compartments 

in terms of MAP expression (Extended Data Fig. 3f). 

Finally, given the growing interest in TAs shared between tumor cells, we assessed the 

clonality of 45 MAPs whose coding sequences were overexpressed by cancer cells through co-

expression analyses. This highlighted two clusters of MAPs co-expressed in lung cancer cells (Fig. 

3f) for which a distinct expression profile was observed in the lung (Fig. 3g). Indeed, MAPs of 

cluster 1 were expressed by a limited number of cancer cells, whereas MAPs of cluster 2 were 

ubiquitously expressed, making them more desirable immunotherapeutic targets. These data 

demonstrate the capacity of BamQuery to perform scRNA-seq analyses and evidence its potential 

to assess TAs intra-tumoral heterogeneity.  
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Figure 3. –  Single cell proteogenomic analyses.  
a-g Canonical (n=1,702) and non-canonical MAPs (ncRNA (378), intronic (114) and EREs (232)) 
were searched with BamQuery in bam files of scRNA-seq of normal and cancerous lung samples 
in single-cell in stranded mode with genome version GRCh38.p13, gene set annotations release 
v38_104 and dbSNP release 151.  
a, Median percentage of MAPs detected in normal and cancerous lung scRNA-seq, as well as in 
bulk RNA-seq samples of normal lungs from GTEx (n=150).  
b, Number of canonical MAPs located in the 5’ (first half of the transcript) or 3’ (second half of 
the transcript) region of the transcript detected in indicated scRNA-seq datasets. 
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c, Median percentage of indicated MAP groups detected in normal and cancerous lung scRNA-
seq, as well as in bulk RNA-seq samples of normal lungs from GTEx.  
d, Number of MAPs identified as differentially expressed by the different populations of cells in 
the normal lung (left panel) or cancerous lung (right panel). The originally reported biotype of the 
MAPs is indicated by the color code.  
e, TSNE analysis of the hematopoietic (blue) and stromal (orange) cells from the normal lung 
based on their MAP expression.  
f, Heatmap showing the co-expression (spearman rho, color bar) of MAPs overexpressed by lung 
cancer cells (rows vs columns). Two clusters of MAPs are highlighted on the left side of the 
heatmap (cluster 1 and cluster 2).  
g, TSNE showing the expression of MAPs (color bar) from cluster 1 (higher panel) or from cluster 
2 (lower panel). Grey color indicates the null expression of a MAP in a cell. 
 

1.23.4 MAP expression is underestimated in healthy tissues 

Givn the ability of BamQuery to capture MAPs RNA expression exhaustively, we evaluated 

the genomic origin of previously reported MAPs. First, we examined 1,062 colorectal cancer (CRC) 

TAs identified by their presence and absence from the immunopeptidome of malignant and 

paired benign cells, respectively38. To evaluate their probability of being presented by normal 

cells, we queried them in 3 datasets: GTEx, mTECs, and sorted dendritic cells (DCs)39, 40 

(Supplementary Table 2). Four percent of TAs presented an expression <8.55 RPHM (minimum 

expression required to result in a probability >5% of generating a MAP9) in all normal tissues, 

except for testis, as these antigens would be classified as cancer-testis antigens (CTAs) (Fig. 4a). 

Strikingly, among the 7 TAs reported previously as being lowly expressed at RNA level in normal 

matched tissues, BamQuery revealed that only one (KYLEKYYNL) presented a low expression 

across all peripheral tissues. Finally, no expression was found for the RYLAVAAVF peptide (the 

only mutated TA reported in this study), while its wild-type counterpart was highly expressed, 

making it a promising target for CRC immunotherapies (Fig. 4b). 

Second, we wondered whether mutated TAs would be as tumor-specific as expected. We 

analyzed 45 8-11 amino acid long mutated peptides (7 from gene fusions, 28 from aberrant splice 

junctions, and 10 from single nucleotide variations, SNV) reported as tumor-specific in 

medulloblastoma (no RNA expression in GTEx)41. BamQuery could attribute a genomic location 

to 39 of them and mapped 7/10 SNV peptides to their reported genes (Extended Data Fig. 4a). 
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Unexpectedly, BamQuery attributed non-discontinued ("unspliced") expressed genomic locations 

to 82% of fusion and spliced peptides, evidencing that non-mutated (and mostly non-canonical, 

Fig. 4c) genomic regions could also code for those peptides. Overall, only 26 of 45 TAs presented 

low expression in normal tissues (Extended Data Fig. 4b) including all detected SNV-derived 

peptides. Therefore, we wondered whether mutated MAPs reported as cancer-specific in 

previous publications and public databases11, 42, 43 would be verified as such by BamQuery. From 

323 mutated TAs (Supplementary Table 5), 23 (7%) were highly expressed in normal tissues where 

25% of the peptides have more than 5 non-mutated genomic locations perfectly matching their 

MCS (Fig. 4d).  

Third, we examined 6 ERE-derived MAPs reported as TAs (lowly expressed in normal 

tissues, including mTECs, and highly expressed in multiple cancer specimens) in triple-negative 

breast cancer44. While the original study identified an average of 8 locations for these peptides, 

BamQuery identified ~66 locations per MAP (Fig. 4e). Moreover, these MAPs showed higher 

expression in normal breast samples compared to cancer samples (Fig. 4f). These results highlight 

the importance of considering all genomic locations able to generate a given MAP when 

measuring RNA expression.  

Fourth, we evaluated whether BamQuery would detect non-discontinued genomic 

locations and RNA expression for MAPs supposedly impossible to be expressed by the human 

genome. We first examined 99 MAPs deriving from proteasomal splicing (generated from post-

translational recombination of protein fragments)45. Fifteen could be generated by expressed 

regions (Fig. 4g), suggesting a possible misclassification of these peptides. Finally, considering the 

tight link between Epstein–Barr virus (EBV) infection and autoimmune disorders such as multiple 

sclerosis46, we examined the expression of 511 EBV-derived MAPs in the IEDB database. Four of 

them could be coded by the human genome and were expressed at high levels by normal tissues 

(Fig. 4h). Interestingly, one of them, CPLSKILL, can be presented by HLA-B8 molecules, an allele 

frequently associated with autoimmune disorders47.  

Altogether, these results demonstrate that BamQuery is crucial to attribute an exhaustive 

RNA expression to MAPs and suggest that it could help select safe-to-target MAPs.  
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Figure 4. –  Underestimated MAP expression in healthy tissues. 
a-h Published human colorectal cancer (CRC) TAAs, mutated TAs, ERE-derived TSAs, proteasomal 
splicing peptides, and Epstein-Barr virus (EBV) MAPs were searched with BamQuery in the GTEx 
tissues (n=12–50 / tissue), mTECs (n=11) and/or DCs (n=19) bam files in unstranded mode with 
genome version GRCh38.p13, gene set annotations release v38_104 and dbSNP release 155 
(except for the search for mutated TAs (d) where dbSNP was not considered, dbSNP=0).  
a, Heatmap of average RNA expression of published CRC TAAs in indicated tissues. Boxes in which 
a peptide has an average rphm>8.55 are highlighted in black.  
b, Heatmap of average RNA expression of the CRC mutated TA RYLAVAAVF and its wild type 
RYLTVAAVF in indicated tissues.  
c, Percentage of the most likely biotype attributed by BamQuery to published fusions, junctions, 
and SNVs-derived TAs.  
d, Heatmap of average RNA expression of published mutated TAs (n=23) in indicated tissues. The 
number of genomic locations expressed is presented on the left.  
e, Number of genomic locations at which the expression of the EREs TSAs was assessed by 
BamQuery vs by the original study. Light blue dots represent each assessed MAP and the orange 
triangle represents the average.  
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f, Heatmap of average RNA expression of the EREs-derived TSAs in mTECs, normal breast tissues 
from GTEx (n=50), and triple-negative breast cancer samples from TCGA (n=158).  
g, Heatmap of average RNA expression of published proteasomal splicing MAPs (n=99) in 
indicated tissues. The number of genomic locations expressed is presented on the left.  
h, Heatmap of average RNA expression of EBV MAPs in indicated tissues.  
 

1.23.5 Discovery of tumor-specific antigens in diffuse large B-cell lymphoma 

Given the capacity of BamQuery to prioritize TAs, we wondered whether it could help identify 

tumor-specific antigens (TSAs) from raw immunopeptidomic data. By using a proteogenomic 

approach enabling the identification of TSAs10, we identified 6,869 MAPs from 3 published 

datasets of diffuse large B-cell lymphoma samples (DLBCL)5.  

We first quantified the expression of the 6,869 MAPs in mTECs with BamQuery. A genomic 

location was found for 6,833 of them and most of them (~86%) were highly expressed in mTECs 

(≥8.55 RPHM). To discriminate MAPs at risk of causing off-target toxicity when targeted, the 

remaining MAPs (14%) were queried in GTEx as well as in sorted benign B cells39, 48, and 5% of 

them were retained as being lowly expressed (<8.55 RPHM). Finally, the retained MAPs being 

upregulated (fold change ≥5) by the DLBCL samples in TCGA vs benign B cells and having evidence 

of translation based on the presence of ribosomal profiling elongation reads (queried with 

BamQuery in matched RIBO-seq data5, Extended Data Fig. 5a,b) were flagged as TSAs (67 MAPs, 

~1%, Fig. 5a, Supplementary Tables 6-7). Among them, 11 were promising as they were highly 

shared between DLBCL patients (Fig. 5b).  

BamQuery biotype classification showed that most TSAs derived from protein-coding 

regions of the genome, as only ~25% of them derived from non-coding RNA (20%), EREs (1%), and 

intronic (4%) regions (Fig. 5c). Furthermore, based on their high expression in testis, 29 TSAs were 

flagged as CTAs49 (Supplementary Table 8) where most of them were known cancer biomarkers, 

supporting their relevance as immunotherapeutic targets. Additionally, upregulated TSAs in 

DLBCL samples compared to normal tissues (GTEx blood and benign B cells) had higher 

immunogenicity scores predicted by Repitope50 compared to previously published non-

immunogenic controls51 (Fig. 5d). The expression of these TSAs correlated also with a greater 

expression of cytotoxic T cell markers (CD8A+CD8B), as well as with TCR signaling and other pro-
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inflammatory responses in DLBCL patients (Fig. 5e-f, Supplementary Table 9), supporting the 

biological value of TSAs discovered with BamQuery.  

 

Figure 5. –  Discrimination of potential immunotherapeutic targets in DLBCL. 
a-c DLBCL MAPs, identified through a TSA-discovery proteogenomic approach, were searched 
with BamQuery in GTEx tissues (n=12–50 / tissue), mTECs (n=11), sorted blood B-cells (n=14), our 
DLBCL specimens (n=3) and/or TCGA DLBCL (n=48) bam files in unstranded mode with genome 
version GRCh38.104 and dbSNP version 155.  
a, Heatmap of average RNA expression of 67 TSA candidates in indicated tissues. Boxes in which 
a peptide has an rphm>8.55 are highlighted in black.  
b, Heatmap of average RNA expression of the highest shared and expressed TSA candidates (11) 
in cancer samples DLBCL from TCGA (n=48). Boxes in which MAPs expression (rphm) is >8.55 are 
highlighted in black.  
c, Percentage of the most likely biotype attributed by BamQuery for TSA candidates (n=67).  
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d, Repitope immunogenic scores calculated for negative control thymic MAPs (n=158), highly 
expressed DLBCL TSAs (n=18, 25% of TSAs most upregulated by DLBCL TCGA versus normal blood 
in GTEx and sorted B cells), and positive control HIV MAPs (n=450). Mann-Whitney U test was 
used for comparisons (*p<0.05, ****p<0.0001).  
e, Pearson’s correlation in TCGA DLBCL patients (n=48) between the count of highly expressed 
(HE) TSAs expressed by each patient and the expression of cytotoxic T cells markers (CD8A+CD8B, 
in counts per million (cpm)). The red line is a linear regression.  
f, Network analysis of GO term enrichment among genes overexpressed by patients expressing 
an above-median number of HE-TSAs. Line color reflects the similarity coefficient between 
connected nodes. Node color reflects the false discovery rate (FDR) of the enrichment. Node size 
is proportional to gene set size. 
 

1.23.6 BamQuery: an online tool to facilitate TA prioritization 

We implemented an online portal to perform analyses on user-defined lists of MAPs. As we could 

not enable searches on GTEx (due to restricted use of these data), we included queries of MAPs 

in mTECs and DCs39, 40 (Supplementary Table 2) as a proxy of tumor-specificity and 

immunogenicity. While expression in mTECs is considered a good proxy for normal cell 

expression52, 53, we showed previously that mTECs share more transcriptomic features with 

epithelial than hematopoietic cells9. Prioritizing TAs based only on mTECs would therefore not be 

sufficient and we included DCs as they exert a non-redundant role in central tolerance 

establishment with mTECs54.  

To validate this choice, we randomly selected 10% of hematopoietic-specific (2,429) and 

10% of epithelium-specific (3,237) MAPs from the HLA ligand atlas (Extended Data Fig. 6a, b). We 

queried their expression in mTECs, DCs, GTEx epithelial tissues, and a set of hematopoietic cells 

(Supplementary Table 2). At the RNA level, DCs and mTECs presented the highest hematopoietic 

and epithelial MAPs expression levels, respectively (Extended Data Fig. 6c, d).  We refined our 

analysis by focusing on hematopoietic and epithelial MAPs being lowly (<8.55 RPHM) expressed 

in mTECs and DCs, respectively. This revealed dramatically higher expression of hematopoietic 

and epithelial MAPs in hematopoietic (highest in DCs) and epithelial tissues (highest in mTECs), 

respectively (Fig. 6a, b). We conclude that MAPs lowly expressed in mTECs are highly expressed 

in DCs, and vice-versa.  
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Next, we tested whether MAPs expression in mTECs and DCs would predict their 

immunogenicity. We queried in mTECs and DCs 1,180 and 4,917 non-mutated human MAPs 

verified experimentally as immunogenic and non-immunogenic, respectively, and curated in 

Ogishi et al.50. Immunogenic MAPs presented a lower expression than non-immunogenic MAPs 

in both types of samples (Fig. 6c). On this dataset, we trained a logistic regression model to classify 

immunogenic and non-immunogenic MAPs using the RPHM values of mTECs and DCs as features. 

Measurements of model performance and robustness using the cross-validation method (area 

under the ROC curve (AUC) = ~0.75, Extended Data Fig. 6e) showed that the RPHM values of MAPs 

in mTECs and DCs are predictors of MAP immunogenicity.  

 Finally, we evaluated whether MAP expression in both mTECs and DCs reflects the 

probability of presentation in benign tissues. Using 10% of random MAPs from the HLA Ligand 

Atlas (8,694), we found that MAPs lowly expressed in both mTECs and DCs were less presented 

(Fig. 6d) and expressed (Fig. 6e) in tissues of the HLA Ligand Atlas and GTEx, respectively. Upon 

examination of these MAPs features, we found that the probability of being highly expressed in 

mTECs and DCs increased exponentially with the number of possible genomic regions (Fig. 6f). 

Altogether, these results show that concomitant expression in mTECs and DCs expression is a 

reliable proxy of the presentation/expression in benign tissues and that MAPs having fewer 

possible regions of origin have a greater probability of being safe-to-target TAs.  

The BamQuery public interface is accessible through http://bamquery.iric.ca/ and 

incorporates the logistic regression predictor model to report the conferred probability that a 

MAP is immunogenic. BamQuery is also available as a standalone version that can be configured 

to work with proprietary bam files. We believe that BamQuery will greatly help researchers in 

their attempts to identify specific and immunogenic TAs. 
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Figure 6. –  BamQuery: an online tool to facilitate TAs prioritization. 
a-b, Average RNA expression of hematopoietic-specific (a) and epithelial-specific (b) MAPs in 
mTECs (n = 11), non-hematolymphoid GTEx tissues (n = 2,389), DCs (n =19) and hematolymphoid 
GTEx tissues (n=196). Wilcoxon rank-sum test two-sided was used for comparisons 
(****p<0.0001).  
c, Average RNA expression of non-mutated human immunogenic (n=1180) and non-immunogenic 
(n=4917) MAPs in mTECs (n = 11) and DCs (n =19). Mann-Whitney U test was used for comparisons 
(****p<0.0001).  
d-e, Average mTECs+DCs RNA expression of a random selection of MAPs from the HLA Ligand 
Atlas (n=8621, 10% of the Atlas) as a function of the number of the HLA Ligand Atlas tissues 
presenting them (d) or as a function of the number of GTEx tissues in which the MAPs are 
expressed above an average of 8.55 RPHM (e). The average expression was correlated (Spearman) 
with the number of tissues. Error bar, SEM.  
f, Spearman’s correlation between the number of expressed genomic locations and the average 
expression in mTECs and DCs of the same MAPs used in (d). The red line is a linear regression 
(distorted by the log transformation of the x-axis).  
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1.24 Discussion 

Fuelled by studies focused on TAs, the immunopeptidomics field is expanding rapidly3, 55, 56. This 

expansion comes with an impressive diversity of homemade methodological approaches 

addressing the challenges raised by the characterization of non-canonical and mutated MAPs. 

Specifically, the fact that ~75% of the human genome can be transcribed57 (and therefore possibly 

translated) evidenced the necessity of examining the expression of each region able to code for 

a presumed TA. BamQuery was designed not only to enable such examination but also to enable 

a uniformization of TA validation approaches across laboratories.  

The recent discovery that a significant fraction of the immunopeptidome derives from 

non-coding regions has brought the contribution of the “dark genome” into the spotlight2. Since 

then, multiple studies have attempted to characterize cryptic MAPs, most often by using mass 

spectrometry informed by databases dedicated to the identification of specific classes of ncMAPs 

(intron-derived, ERE-derived, etc.)8, 20, 58. However, these approaches suffer from their dedication 

as the identified MAPs could also derive from other transcripts, absent from these databases. 

Accordingly, based on evidence showing that greater RNA expression confers a greater 

probability of MAPs generation7, 13, we implemented a biotype annotation tool in BamQuery and 

showed that many presumed ncMAPs could be coded with greater probability by regions 

annotated with different biotypes. Strikingly, an important fraction of the canonical MAPs (~30%) 

could also be translated, with a greater probability, from non-canonical regions. While this result 

requires more in-depth analyses to elucidate the true origin of these MAPs, this possible dramatic 

contribution of the non-coding genome to the immunopeptidome is a sobering thought given 

that cryptic proteins are translated as efficiently as canonical proteins and generate MAPs 5-fold 

more efficiently per translation event5.   

Therapies targeting truly tumor-specific antigens can be highly effective59, while those 

targeting antigens unsuspectedly expressed by normal cells can be lethal for patients60. Notably, 

BamQuery evidenced a high expression of many TAs, including mutated and ERE MAPs, in normal 

tissues, resulting from previously unreported coding regions and suggesting that targeting them 

would be unsafe. Here, we acknowledge that our approach can be considered very cautious. 
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While it is true that evaluating the RNA expression from all possible regions in the genome of a 

given MAP can be very stringent; we believe that the quality of the TAs is more important than 

the quantity when it comes to developing cancer treatments. Careful selection of TAs should 

prioritize those with a single genomic location and cancer-specific expression, to avoid 

undesirable effects. By using BamQuery in a rigorous manner, we can help to ensure that the TAs 

selected for immunotherapy development are of high quality and have the potential to be 

effective and safe treatments. Eventually, the availability of RIBO-seq data (which can be analyzed 

with BamQuery as well) could help to address this question. Meanwhile, in the absence of tools 

robustly predicting the translational origin of MAPs, the approach reported herein is the most 

circumspect for TA selection. Ideally, we recommend prioritizing TAs with a single possible region 

of origin (with cancer-specific expression) because other regions cannot code for such TAs in 

normal tissues.  

Thanks to its exhaustivity, speed, ease of use, and versatility (bulk & single-cell RNA-seq + 

RIBO-seq, usable with mouse or human genome, on any kind of wild-type or mutated MAPs), 

BamQuery enables for the first time a uniformization of proteogenomic analyses in MHC-I 

immunopeptidomics.  
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1.25 Methods 

1.25.1 Data and Code Availability 

The Python and R scripts generated during this study are available on GitHub, 

https://github.com/lemieux-lab/BamQuery. The standalone version of BamQuery can be 

downloaded at http://bamquery.iric.ca/installation.html. Details regarding all samples used in 

this study are listed in Supplementary Table 2. 

1.25.2 Datasets 

The eight human mTEC samples have been prepared and sequenced for previous studies of our 

team (GEO:GSE127825 and GEO:GSE127826) (Larouche et al., 202020; Laumont et al., 201810). 

Three additional mTEC samples were published (ArrayExpress:E-MTAB-7383) by Fergurson et 

al.25.  

1.25.3 BamQuery 

BamQuery is designed to analyze MAPs ranging in length from 8 to 11 amino acids (aa). As peptide 

input, BamQuery supports three different formats that can be pulled into a single input file. 

A) Peptide mode: only the amino acid sequence of the MAP is provided, hence BamQuery 

performs a comprehensive search for its RNA-seq expression. All results reported in the present 

article were obtained with this mode.  

B) MAP coding sequence (MCS) mode: the amino acid sequence of the MAP is provided, hence 

BamQuery performs the search for the expression of the given MCS only. 

C) Manual mode: the amino acid sequence of the MAP is provided followed by an MCS, the 

corresponding location in the genome of the given MCS, and the strand (+ forward or - reverse), 

whereby BamQuery performs the expression search at the given location for the given MCS at 

the given genomic location and strand (useful to evaluate the expression of mutated MAPs whose 

genomic location is known but which cannot be located by BamQuery due to unavailable 

annotations in dbSNP or STAR failure). 
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BamQuery performs five important steps for each peptide queried.  

1. Reverse translation of MAPs. 

Each input MAP in peptide mode is reverse-translated into all possible MCS. The MCS are 

compiled into a fastq file.  

2. Identification of genomic locations.  

MCS are then mapped to the reference genome (user-defined, meaning that several genome 

versions are supported (GENCODE 26, 33 or 38)) using STAR v2.7.9.a17 running with default 

parameters except for –seedSearchStartLmax, --winAnchorMultimapNmax, --

outFilterMultimapNmax, --limitOutSJcollapsed, --limitOutSAMoneReadBytes, --

alignTranscriptsPerWindowNmax, --seedNoneLociPerWindow, --seedPerWindowNmax, --

alignTranscriptsPerReadNmax that were replaced by 20, 10.000, 10.000, 5.000.000 , 2.660.000, 

1.000, 1.000, 1.000, 20.000, respectively. MCS genomic locations (perfect alignments) are 

selected from the output STAR file Aligned.out.sam. Perfect alignments are defined as MCS 

matching exactly the reference genomic sequence or as MCS bearing mismatches annotated as 

known polymorphisms in the dbSNP database (user-selected dbSNP 149, 151, or 155 releases). 

Therefore, each alignment included in Aligned.out.sam is exanimated to compare the read 

sequence nucleotide by nucleotide against the reference genomic sequence at that position 

(assessed using the samtools fetch command within python via the pysam 

(https://github.com/pysam-developers/pysam) library at the genomic location of the given 

alignment). If a difference is detected between a nucleotide of the aligned read sequence and the 

nucleotide of the reference genomic sequence at a given position, the position is queried in the 

python dictionary containing the SNVs of the dbSNP database selected by the user. If all 

discrepancies in the current alignment are known (supported by the SNVs in the dbSNP database) 

the alignment is retained as it is considered perfect, otherwise, the alignment is discarded. To 

reduce the complexity of tracing perfect STAR alignments, only single nucleotide variants (SNVs) 

of dbSNP annotations were considered to define perfect alignments. 
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3. MAP RNA-seq reads counting.  

Next, the expression of each MCS is queried in each BAM file (CRAM files are also supported) 

using the samtools view61 command within python via the pysam library (only primary alignment 

reads (pysam option -F0X100), originally present in fastq files, are queried) at their respective 

genomic location. BamQuery supports RNA-seq unstrandedness / strandedness libraries (user-

defined parameter, default: strandedness). To collect reads in unstranded libraries, the -F0X100 

option is used in the pysam view command. In stranded libraries, depending on the sequencing 

reads type (single-end, paired-end), library preparation (forward or backward) and sense of the 

MCS genomic location (forward or backward), the options in the pysam view command are: -

F0X100 & -f0X50 for R1 mate and -F0X100 & -f0XA0 for R2 mate in paired-end, forward library 

and reverse genomic location; -F0X100 & -f0X60 for R1 mate and -F0X100 & -f0X90 for R2 mate 

in paired-end, forward library and forward genomic location; -F0X110 for R1 mate  in single-end, 

forward library and forward genomic location; -F0X100 & -f10 for R1 mate in single-end, forward 

library and reverse genomic location; -F0X100 & -f0X60 for R1 mate and -F0X100 & -f0X90 for R2 

mate in paired-end, reverse library and reverse genomic location; -F0X100 & -f0X50 for R1 mate 

and -F0X100 & -f0XA0 for R2 mate in paired-end, reverse library and forward genomic location; -

F0X110 for R1 mate in single-end, reverse library and reverse genomic location; -F0X100 & -f10 

for R1 mate in single-end, reverse library and forward genomic location. The retrieved reads are 

examined one by one and counted if they exactly span the queried MCS at the genomic location. 

Therefore, each retrieved read is transformed into a list in Python and its alignment location is 

transformed into an array containing the location of each amino acid in the read. The indices of 

the array locations corresponding to the first and last amino acid locations in the MCS at a given 

genomic location are used to extract from the read list the subsequence that is compared to the 

MCS. If both the MCS and the subsequence of a retrieved read are the same, the read count for 

the current MCS increases by one. Finally, the total read count (tr567 ) for a given MAP is 

computed by summing all RNA-seq reads from all MCS genomic locations. 

4. Normalization 

The tr567 count is transformed into “reads per hundred million” values (RPHM) by normalizing 

them with the total number of primary reads sequenced (corresponding to the total read number 
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present in fastq files) according to the formula: RPHM =	 89!"#
:$

∗ 	10; where R8 represents the 

total number of primary RNA-seq reads of the sample. These final values are log-transformed 

log+<(RPHM + 1) to allow comparison and averaging between samples, thus removing the bias 

of large values. 

5. Biotype classification  

All genomic locations identified for each MAP are compiled into a bed file and their biotypes are 

obtained using BEDtools62 intersect with the following options -a (annotation file), -b (genomic 

locations), -wao (writes the original annotation and genomic location entries along with the 

number of base pairs of overlap between the two features), and the following annotations: 

RepeatMasker (GRCh38/hg38 assembly, to annotate the EREs) and GENCODE (for all other 

biotypes, gene set annotations releases v26_88, v33_99, v38_104 ). The complete list of biotypes 

annotated by BamQuery based on RepeatMasker and GENCODE can be consulted at 

http://bamquery.iric.ca/biotype_classification.html.  

Given that MAPs may have alignments in regions where several different biotypes overlap (such 

as protein-coding transcripts overlapping with non-coding RNAs, see the example shown in 

Extended Data Fig. 7a), we used the expectation-maximization (EM) statistical model to estimate, 

for each biotype, the read distribution coefficient. In this model, reads at each genomic location 

are weighted for each biotype at the given location according to their coefficients and 

consequently, the biotype of each MAP is scored according to the percentage of reads 

corresponding to each biotype (in-frame, introns, ncRNA, ERE, etc.). The EM algorithm iterates 

between the expectation (E) and maximization (M) step until the parameter set of the last 

iteration is unchanged, therefore finding the parameter set that maximizes the posterior 

probability of the observed data, in our case the reads that overlap with one or more biotypes. 

To train the EM algorithm, we first collected canonical and ncMAPs (Supplementary Table 1) and 

ran BamQuery on normal and cancer datasets (normal: GTEx and mTECs, cancer: TCGA) to obtain 

the total reads covering each MAP at each MCS genome location. We then computed the 

probability of each biotype as follows: 
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Let ∅ = (∅6, ∅=, ∅>…	) , be the set of parameters to estimate, where ∅6, ∅=, ∅> … are the 

probabilities that the read belongs to the In_frame (A), non_coding_exon (B), intron (C), etc. 

biotypes. EM starts with an arbitrary initial estimation of 0.1 for each biotype’s probability. In the 

E-step, the distribution of the total number of reads for each MAP is computed using the current 

biotype’s parameters, as follows:  

Let R? = 	total reads of MAP? 

Zh∅@8, L?j = 	
∑ IrA ∗ 	

∅@8

∑ ∅BA=
BC+

SD
AC+

R?
 

Where ∅@8  is the current probability for biotype j in MAP? . L?  is the MCS genome locations for 

MAP?. rA is the number of reads overlapping location k and B is the set of biotypes overlapping 

the location k. 

In the M-step, the new set of parameters is determined using the current computations, as 

follows: 

∅@8E+ = 	
∑ ∅@8567F
?C+

total	MAPs 

Where ∅@8E+  is the new probability for biotype j obtained after summing all the probabilities 

distributions of all MAPs computed in the last E step and normalizing by the total number of 

MAPs. The iterative process concludes if the following condition is met for all biotypes: ∅@8 = ∅@8E+ 

and the last set of estimated parameters is used to assign the proportion of reads assigned to 

each biotype at any genomic location. 

Therefore, BamQuery scores for each MAP the biotype as the percentage of reads assigned to 

each biotype class (in-frame, introns, ncRNA, ERE, etc.). For example, a canonical MAP with 

alignments in non-canonical regions could be indicated as follows In_frame: 84.09% - Intronic: 

15.91%, meaning that ~84% of the total reads overlap with a known transcript and that the MAP 

is within the known protein frame, while ~16% of the reads overlap with transcripts in an intronic 

region. 
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BamQuery informs the biotype of each MAP in three different settings, as follows: 

1. Biotype computed for each MCS genome location: BamQuery reports the percentage 

contribution of the biotypes overlapping the given location.  The percentage of each 

biotype is calculated as the coefficient of each biotype normalized by the sum of the 

coefficients of all biotypes in the location, as follows: 

∅?,@A =
∅?,@A

∑ ∅BA=
BC+

 

Where ∅?,@A  is the coefficient assigned to the biotype j for the  MAP? at the location k. 

2. Biotype computed from all MCS genome locations found in the set of queried samples: 

the biotype of each MAP is assigned based on the total read count in the sample set. 

This calculation follows three steps: 

a) The total number of reads in each MCS genome location is distributed according 

to the biotype percentages assigned to the location in the previous step.  

b) Normalization of the distributed count of reads by the total number of reads in 

the entire set of samples. 

c) The final biotype of each MAP is obtained by summing all normalized reads 

distributions across its MCS genomic location. 

3. Biotype for each subset of samples (e.g., GTEx, TCGA, mTEC samples): the biotype of 

each peptide is assigned following the same steps as before but according to the total 

count of reads in each subset of samples.  

4. Best guess biotype: BamQuery also reports the most likely biotype for each MAP (Best 

Guess) following the rules below: 

a) Since a MAP is most likely to be generated from a known canonical protein 

if the MAP ever appears in-frame of a protein the best guess assigned is In-

frame with the certainty given in the biotype classification. 

b) Otherwise, the best guess biotype is assigned according to the biotype with 

the highest percentage of the biotype ranking. 
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Full documentation of supported options, examples of use, and descriptions of BamQuery reports 

can be found at http://bamquery.iric.ca/ 

1.25.4 K-mer databases 

K-mer databases were generated by retrieving the primary mapped reads from the bam files of 

each mTEC sample with samtools view61 (-F260 option) followed by SamToFastq from Picard tools 

to recover R1 and R2 fastq files (https://broadinstitute.github.io/picard/index.html). Next, R1 

reads were reverse complemented using the fastx_reverse_complement function of the FASTX-

Toolkit v0.0.14. and fastq files of all mTEC samples were concatenated. Finally, Jellyfish count 

(v2.2.3, options -m = 27 and -s =1G)21  was used to generate the database from the fastq file, and 

jellyfish query was used to query the MCS in the database.  

1.25.5 Kallisto quantification 

Transcript expression quantifications of mTEC samples were performed with kallisto23 v0.43.0 

quant with default parameters except for --rf-stranded. The expression of each HLA atlas peptide 

was obtained from the mean TPM expression value of all transcripts associated with the peptide 

source genes. 

1.25.6 BamQuery Accuracy 

For each MCS of the canonical nine-mer MAPs, we defined the BamQuery accuracy, as follows: 

Accurracy = 	100% − error	rate 

error	rate	 = 	
|BamQuery	read	count − Jellyfish	read	count|

Jellyfish	read	count ∗ 100 

 

Therefore, the accuracy is the difference in the error rate with respect to 100%, the error rate 

being the percentage value of the difference in the observed MCS read count in BamQuery and 

the actual MCS read count in Jellyfish. 
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1.25.7 Single cell RNA-seq analyses 

Previously published single-cell RNA-seq data from the healthy and cancerous lungs were 

downloaded from the NCBI BIOPROJECT (accession number PRJEB31843) and Array Express 

(accession number E-MTAB-6653), respectively. Reads were aligned on the human reference 

genome (GRCh38) using STAR version 2.7.9a17. Cell population annotations were performed using 

gene lists from Madissoon et al.34 and Lambrechts et al.33 for the healthy and cancerous lung 

datasets, respectively. For the subsequent profiling of MAP expression with BamQuery, the 

HCATisStab7509734 and the BT1375 samples were subsampled from the healthy and cancerous 

lung datasets, respectively. For the subsequent profiling of MAP expression with BamQuery, the 

HCATisStab7509734, and the BT1375 samples were subsampled from the healthy and cancerous 

lung datasets, respectively. For both genes and MAPs expression, read counts were normalized 

based on the total number of reads detected in each cell (size factor) with the 

computeSumFactors function of the scran v1.18.7 R package. Normalized read counts were log-

transformed with the logNormCounts function of the scuttle package (v1.8.4), and dimensionality 

reduction was performed with scran (v1.18.7). The differential expression analyses of MAPs 

between the cell populations of the healthy and cancerous lungs were performed with the 

FindAllMarkers function of Seurat with the MAST model. Cells of the healthy lungs were also re-

clustered based on their MAP expression using the runUMAP and runTSNE functions of the scater 

package (v1.18.6), and cell lineages and populations previously annotated based on gene 

expression were represented on the resulting UMAP and TSNE graphs. Co-expression of MAPs in 

the tumor cells of the lung was also assessed. To do so, we selected the MAPs identified as 

overexpressed in lung cancer cells by the differential expression analysis and computed spearman 

correlations between the expression of each possible pair of MAPs. Finally, MAP expression in the 

cell populations of the healthy lung was visualized with violin plots using the VlnPlot function of 

the Seurat package (v.4.1.0)63. 

1.25.8 Immunogenicity predictions 

Immunogenicity predictions of HE-TSAs were performed with Repitope50. Feature computation 

was performed with the predefined MHCI_Human_MinimumFeatureSet variable and updated 

(July 12, 2019) FeatureDF_MHCI and FragmentLibrary files provided on the Mendeley repository 
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of the package (https://data.mendeley.com/datasets/sydw5xnxpt/1). HIV MAPs (positive 

control) were obtained from 

https://www.hiv.lanl.gov/content/immunology/tables/ctl_summary.html . 

1.25.9 Differential gene expression analysis 

Transcript expression quantifications were performed on TCGA DLBCL bulk RNA-seq samples with 

kallisto v0.43.0 with default parameters. Then, with BamQuery, we attributed to each patient a 

count of highly expressed TSA transcripts (HE-TSA), i.e., the number of TSAs whose expression 

was above their median RNA expression across all patients having a non-null expression of the 

given TSAs. Patients having an above-median number of HE-TSAs (n=26) were compared to those 

below-median (n=22) through a differential gene expression analysis. This analysis was conducted 

in R3.6.1 as reported previously64. In brief, raw read counts were converted to counts per million 

(cpm), normalized relative to the library size, and lowly expressed genes were filtered out by 

keeping genes with cpm >1 in at least 2 samples using edgeR 3.26.8 and limma 3.40.6. This was 

followed by voom transformations and linear modeling using limma’s lmfit. Finally, moderated t-

statistics were computed with eBayes. Genes with p-values < 0.05 and -1≥log2(FC)≥1 were 

considered significantly differentially expressed (386 genes upregulated and 1304 

downregulated).  

1.25.10  GO term and enrichment map analyses 

Biological-process gene-ontology (GO) term over-representation was performed with DAVID 

(https://david.ncifcrf.gov) on genes upregulated by DLBCL patients expressing high levels of HE-

TSAs. Functional annotations with p-value < 0.05 were considered significant. The GO-term list 

was then imported in Cytoscape v3.7.2 and used to cluster redundant GO terms and visualize the 

results with EnrichmentMap v3.2.1 and default parameters. The network was visualized using the 

default “Prefuse Force-Directed Layout” in Cytoscape. Groups of similar GO terms were manually 

circled.  



147 

1.25.11 Other bioinformatic analyses 

Amino acid compositions were assessed with the ProtParam module of Biopython. Read coverage 

in scRNA-seq data was evaluated with the geneBody_coverage module of RSeQC on the bam file 

generated by CellRanger. Codon frequencies were obtained from the codon usage database 

(http://www.kazusa.or.jp/codon/).  

1.25.12 Logistic regression model 

The cross-validation procedure was employed to divide the training dataset into training and 

validation subsets. This was done using the StratifiedShuffleSplit function from the sklearn Python 

library, with 10 splits and a test size of 0.2. Subsequently, the logistic regression model from the 

sklearn Python library was utilized to classify MAPs as either immunogenic (1,180) or non-

immunogenic (4,917). The model was trained using two highly correlated features, 

mTEC_expression and DC_expression, with a Pearson's correlation coefficient of 0.84 (p < 

0.0001). The target variable was binary, indicating immunogenic (1) or non-immunogenic (0). The 

model was trained using default parameters, except for the solver, which was set to "liblinear", 

and the inclusion of sample_weights to account for class imbalance. The weights were calculated 

as the ratio of positive to negative samples in each split.  

1.25.13 Construction of MS database for TSA identification 

We used RNA-seq data from 3 published datasets of diffuse large B-cell lymphoma samples 

(DLBCL)5. Cancer-specific proteomes were built using k-mer profiling as described previously10. 

RNA-Seq reads were chopped into 33-nucleotide k-mers and only those present <2 in mTECs were 

kept. Overlapping k-mers were assembled into contigs, which were then three-frame translated 

and linked using “JJ” as separators. This database was concatenated with each sample’s canonical 

proteome for MAP identification.  

1.25.14 Quantification and Statistical Analysis 

All statistical tests used are mentioned in the respective figure legends. For all statistical tests, *, 

**, ***, *** and **** refers to p< 0.05, p< 0.01, p< 0.001 and p< 0.0001, respectively, and are 

reported in the figures. Correlations were assessed with the Pearson or Spearman correlation 
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coefficient, a red line in the correlation plots represents the linear regression. Plots and statistical 

tests were performed using scipy.stats and seaborn packages of Python v3.6.8. Unless mentioned 

otherwise, all boxes in box plots show the third (75th) and first quartiles (25th) and the box band 

shows the median (second quartile) of the distribution; whiskers extend to 1.5 times the 

interquartile distance from the box. Unless mentioned otherwise, all bar plots show the average 

with error bars: 95% confidence interval (CI). 
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Figure 7. –  Origin canonical MAPs and BamQuery’s quality control 
d-f, Published MAPs reported as canonical (n=1,702) were searched with BamQuery in mTEC bam 
files in stranded with genome version GRCh38.p13, gene set annotations release v38_104, dbSNP 
release 151, keeping variants alignments, and allowing higher levels of MCS alignments by STAR. 
a, Genome browser (IGV) illustration for the gene LINC02718 (chr11:23,166,352-23,183,625) in a 
sample of acute myeloid leukemia (GSM4432540 on GEO) of the heterogeneity of read coverage 
observed in a typical intronic region (between exon 4 and 5). This would make the usage of 
genomic annotations irrelevant to quantify the expression of the small region putatively coding 
for MAPs as most of the annotated intron is not or lowly covered by reads (depth of coverage 
represented in grey).  
b, Number of tissues at the origin of the canonical MAPs from the HLA ligand atlas shared in at 
least 20 tissues (n=1,702). Orange triangle represents the average (23). 
c, Percentage of MAPs (n=1,702) presented by the indicated tissues. 
d, Percentage accuracy measured between BamQuery-acquired read counts and Jellyfish’s K-mer 
counts for nine-mer MAPs (n=1,211). Orange triangle represents the average percentage 
accuracy (82%). 
e, Pearson’s correlation between BamQuery-acquired read counts and Jellyfish’s K-mer counts 
for MCS of canonical nine-mer MAPs (n=1,211) from the HLA Ligand Atlas (present in at least 20 
different tissues) and 8 mTEC samples 
f, Number of genomic locations detected by BamQuery for the 32 MAPs undetected in Kallisto’s 
TPM quantification. Orange line represents the average number of genomic locations (11). 
 g, BamQuery-acquired RPHM expression for the 32 MAPs undetected in Kallisto’s TPM 
quantification. Orange line represents RPHM expression average (1.1). Inside panel: total RNA-
seq BamQuery-acquired reads for the 32 MAPs undetected by Kallisto. Orange triangle represents 
the average total RNA-seq BamQuery-acquired reads (n=6,474). 
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Figure 8. –  Immunopeptidome properties of canonical and noncanonical MAPs. 
a, Average frequency of codons (among 1000 codons located in human reference protein coding 
sequences) encoding each of the 20 amino acids. Codons of amino acids encoded by the same 
number of different synonymous codons were grouped together (x axis).   
b, Percentage of MAPs attributed to indicated biotypes by BamQuery based on the best guess 
biotype origin and on the genomic regions expressed in GTEx tissues and mTECs. X-axis indicates 
the biotype reported in the original study (groups). For clarity, BamQuery biotypes were 
summarized into five general categories: protein coding regions, non-coding RNAs, EREs, intronic 
and intergenic. 
c, Percentage of the most likely biotype attributed by BamQuery to canonical, intronic and ncRNA 
MAPs. 
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Figure 9. –  BamQuery analysis of normal and cancer lung single cell datasets. 
a, Number of lung scRNA-seq reads covering canonical genes, Intronic regions and EREs. 
b, Expression of canonical, ERE, ncRNA, or intronic MAPs identified as differentially expressed in 
the normal lung dataset.  
c, UMAP depicting the clustering of the hematopoietic and stromal cells from the normal lung 
based on their MAP expression.  
d, UMAP showing the clustering of the cell populations from the normal lung based on their MAP 
expression.  
e, TSNE showing the clustering of the cell populations from the normal lung based on their MAP 
expression.  
f, Number of canonical, ncRNA, or ERE MAPs identified by the differential expression analysis as 
restricted to the hematopoietic or stromal compartments or shared by cells of both lineages. 
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Figure 10. –  BamQuery elucidates safer immunotherapeutic targets. 
a, Heatmap of number of genomic locations at which the expression of the SNVs-derived TAs was 
assessed by BamQuery vs by the original study. 
b, Heatmap of average RNA expression of published fusions, junctions, and SNVs-derived TAs in 
indicated tissues. Boxes in which a peptide has an average rphm>8.55 are highlighted in black. 
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Figure 11. –  Discrimination of potential immunotherapeutic targets in DLBCL. 
a, Decision tree to discriminate TSAs from DLBCL.  
b, Heatmap of average BamQuery-acquired read count of the 67 TSA candidates in indicated 
samples. Boxes in which a peptide has a rphm>8.55 are highlighted in black. 
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Figure 12. –  mTECs and Blood_DC for TAs proritization. 
a-b, Percentage of hematopoietic-specific MAPs (n=2,429) (a) and epithelial-specific (n=3,237) (d) 
presented by the indicated tissues. 
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c-d, Average RNA expression of hematopoietic-specific (c) and epithelial-specific (d) MAPs in 
mTECs (n = 11), non-hematolymphoid GTEx tissues (n = 2,389), DCs (n =19) and hematolymphoid 
GTEx tissues (n=196). Wilcoxon rank-sum test two-sided was used for comparisons 
(****p<0.0001).  
e, Receiver operating characteristic curve (ROC) for prediction of immunogenic based on RNA 
expression (RPHM) of mTEC and DC samples. AUC== ~0.75 with a 95% confidence interval (CI):  
0.7588 - 0.7591. 
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Figure 13. –  Different biotypes overlap at the same genomic location. 
a, The AEFIKFTVI peptide (HLA ligand atlas) at the indicated genomic location overlaps with 
protein-coding and non-coding RNAs transcripts. 
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1.29  Supplementary tables 

All Supplementary Tables are available online in ‘.xlsx’ format: 

(https://www.biorxiv.org/content/10.1101/2022.10.07.510944v1.supplementary-material) 

The full list is provided below: 

• Supplementary Table 1[supplements/510944_file04.xlsx] 

• Supplementary Table 2[supplements/510944_file05.csv] 

• Supplementary Table 3[supplements/510944_file06.txt] 

• Supplementary Table 4[supplements/510944_file07.txt] 

• Supplementary Table 5[supplements/510944_file08.txt] 

• Supplementary Table 6[supplements/510944_file09.xlsx] 

• Supplementary Table 7[supplements/510944_file10.csv] 

• Supplementary Table 8[supplements/510944_file11.xlsx] 

• Supplementary Table 9[supplements/510944_file12.xlsx] 
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Chapter 4 – Discussion 

The purpose of this thesis was to investigate the extent to which non-canonical proteins 

contribute to the repertoire of MAPs, and to determine the potential usefulness of the non-

canonical MAPs as targets in cancer vaccines. In Chapter 2, a proteogenomic approach was 

developed and used to examine the contribution of non-canonical proteins to the 

immunopeptidome and proteome in diffuse large B-cell lymphoma (DLBCL). The main results of 

this study showed that most non-canonical MAP source proteins were found only in the 

immunopeptidome and not in the proteome, indicating their preferential access to the MHC class 

I pathway. In Chapter 3, we introduced BamQuery, a computational tool that attributes 

comprehensive RNA expression to each MAP candidate and allows comparing their expression in 

healthy and cancerous tissues to define potential tumor antigen (TA). Using BamQuery, we 

discovered that some MAPs previously reported as TAs might have been misclassified as such and 

thus pose a threat to healthy tissues. In addition, facilitated by BamQuery we found promising 

highly shared TAs among DLBCL patients. 

Overall, our work has contributed to broadening our understanding of the biogenesis of 

non-canonical proteins and their involvement in the immunopeptidome and the entire proteome. 

We provided the research community with an easy-to-use tool that facilitates the identification 

of safe and actionable TAs for cancer vaccine design. In the next sections, we will highlight the 

strengths and weaknesses of our two approaches and discuss improvements that could be made 

to both strategies. 

1.29.1 Ribo-db approach to identify non-canonical translation products 

In Chapter 2, we presented a novel proteogenomic approach called Ribo-db to analyze the 

immunopeptidome of diffuse large B-cell lymphoma (DLBCL). Considering that MS relies on 

searching for the best theoretical spectra matching the experimental spectra of the sequenced 

peptides in protein reference database; we set out to build comprehensive databases containing 

canonical and non-canonical translations. Our approach used a combination of ribosome profiling 

(Ribo-seq), RNA sequencing (RNA-seq) and mass spectrometry (MS) to identify and characterize 
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proteins. We use Ribo-seq data to provide an accurate view of the active translation events and 

to give context to the transcription observed through RNA-seq. Briefly, for each cell line, we 

collected Ribo-seq translation initiation sites (TIS) and elongation sites. The latter, refers to the 

ribosome process of adding new amino acids to a growing polypeptide chain during protein 

synthesis. Using the TIS data, we identified the positions in the genome that were most likely to 

be true start codons. Using StringTie1 in the BAM files of the aligned Ribo-seq and RNA-seq 

elongation reads, we generated the full-transcriptome assembly that allows the identification of 

known and novel transcripts. Next, we intersected the positive start codons with the full-

transcriptome assembly to detect those transcripts that have active translations. Assembled 

transcripts representing annotated transcripts that crossed with positive start codons 

representing annotated start codons were considered canonical, otherwise non-canonical. 

Finally, high-quality single nucleotide polymorphisms (SNPs) identified from the RNA-seq data 

were integrated into the retained assembled transcripts that were then translated in silico to build 

the custom protein databases. Thus, Ribo-db approach was designed to circumvent the risk of 

false identifications produced by the limitation associated with the size of the database when MS 

identification is performed2. Ribo-db databases should contain only transcripts susceptible to be 

truly translated which avoids the population of irrelevant sequences as in databases built from 3 

or 6-frame translations of RNA-seq data3.  

By combining Ribo-seq elongation and RNA-seq reads to capture the complete 

transcriptome allowed the inclusion of annotated and unannotated transcripts that may have 

otherwise been missed. This is because Ribo-seq elongation fragments are not restricted to 

polyadenylated transcripts, as poly(A) RNA-seq sequencing is. Instead, Ribo-seq elongation allows 

the non-polyadenylated transcripts detection that can be the source of putative non-coding 

RNAs4 and therefore non-canonical MAPs5, 6. By including these transcripts, our approach 

provided a more comprehensive inclusion of the actual translations than using only RNA-seq data 

to build the custom protein database. 

Processing of Ribo-seq fragments present some challenges that may prevent the correct 

identification of an open reading frame (ORF). These challenges include the short length  of the 

ribosome-protected fragments which leads to multiple mapping positions in the genome; the 
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difficulty in differentiating ORFs when they overlap; and the absence of ribosome protected 

fragments along the entire transcript. A previously published method called PRICE7 addresses 

some of these issues, but it also excludes ORFs that may be affected by these limitations resulting 

in incomplete databases. In contrast, our approach applied a more conservative strategy for start 

codon identification by considering multimap reads and by considering ORFs assembled from 

both Ribo-seq elongation and RNA-seq data. The latter, for instance, allowed to include full-length 

transcripts that may otherwise go undetected if only Ribo-seq elongation was used, as Price does. 

Thus, Ribo-db, not only identified 99.7% of the MAPs identified with PRICE, but also identified an 

additional 5-6% of MAPs that would have been missed using PRICE alone (Figure 1C, Chapter 2). 

Although Ribo-db has several advantages for the identification of non-canonical proteins, 

it relies on several external tools such as: STAR8, StringTie1, freeBayes (arXiv:1207.3907), 

BedTools9, which can impact the speed and simplicity of the approach. The main drawback of our 

approach, which should be addressed as a priority, is that Ribo-db does not currently accurately 

capture complex rearrangements, including chromosomal and transcriptional fusions. Current 

mappers present difficulty in mapping RNA-seq reads bearing such variations as they use 

reference genomes to guide the mapping process which are devoid of the tumoral somatic 

changes. Thus, such RNA-seq reads may remain unaligned to the genome10. To include these 

rearrangements, an effective strategy would be to first predict the rearrangements using 

appropriate tools based on RNA-seq and Ribo-seq11 properties, and then add their translations 

into the custom databases. 

Overall, from the combination of Ribo-seq and RNA-seq we prepared customized 

databases that included only translated sequences from the 3 DLBCL cell lines. The use of these 

databases facilitated the identification by MS of canonical and non-canonical proteins in the 

whole proteome and immunopeptidome. 

1.29.2 Identification of non-canonical proteins in DLBCL cell lines 

Using Ribo-db, we primarily analyzed the immunopeptidome of DLBCL cell lines and identified 

4,944 protein sources of MAPs. Of these, 451 (9%) were classified as non-canonical proteins, while 

the remaining were considered canonical proteins. Among the non-canonical proteins, half were 
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further classified as cryptic proteins, while the other half was considered novel isoforms. The 

novel isoforms resulted from ORFs translated in the same frame as a canonical protein annotated 

in the GENCODE database12 (Figure 2B, Chapter 2). However, these ORFs mostly initiated from 

non-AUG codons up or downstream of the annotated start site of the parental canonical protein 

(Figure 3A, Chapter 2), extending previous observations that under stress conditions initiation 

favor non-AUG start codons13. Furthermore, the translation of these novel isoforms demonstrates 

the ability of the translation process to generate new proteins from a transcript, highlighting the 

polycistronic nature of human protein-coding genes14. 

Regarding cryptic proteins, these were derived from annotated non-coding transcripts, 

5'UTRs, 3'UTRs, intergenic regions, introns, and frameshifts of canonical genes. These were found 

to have distinctive properties compared to canonical proteins, extending previous findings15-18 

(Figure 2F, Chapter 2). For instance, cryptic MAPs source proteins derived mostly from non-AUG 

codons, which is associated with response to stressful conditions (Figure 3A, Chapter 2)13. They 

were also much shorter, as most were composed of two exons compared to the average number 

of 11 exons of canonical MAP source proteins (Figure 3C, Chapter 2); and had slightly but 

significantly lower expression compared to canonical MAP source proteins. However, consistent 

with previous reports19, 20, the transcriptional expression of such proteins was higher than that of 

the non-MAP-generating transcripts. 

To further investigate the biogenesis of cryptic proteins and aware of their short size, we 

used our Ribo-db approach to identify proteins in the whole proteome extracts of the three DLBCL 

lines. Aware that MS favors the detection of the most abundant proteins21, we separated the 

short and larger proteins based on their molecular weight (low-molecular-weight proteins £ 10 

kDa > high-molecular-weight). A salient observation from this analysis was that the cryptic 

proteome identified in whole proteome extracts was distinct from the cryptic proteome identified 

as a source of MAPs. Only 6% of the cryptic MAPs source proteome was also identified in the 

whole proteome. This unexpected finding suggested the existence of two distinct cryptic protein 

repertoires: one populating the whole proteome and another populating the immunopeptidome 

(Figure 5A, Chapter 2). The detection of two different cryptic proteomes was possible since MAPs 

have long lifetime (12 h)22, 23 so their identification was possible even after their parent protein 
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had possibly undergone rapid degradation. To confirm this hypothesis of such MAPs deriving from 

rapidly degraded proteins (RDPs), we evaluated whether their source proteins were short-lived 

in the cytoplasm preventing their identification in the whole proteome.  

The stable conformation assessment of cryptic MAP source proteins predicted that these 

proteins were short-lived in the cytoplasm. Indeed, they turned out to be less stable in vivo and 

highly disordered, meaning that they may not reach a stable conformation (Figure 5F, G, Chapter 

2). Additionally, despite their small size, their rapid turnover predicted that cryptic proteins were 

~5-fold more efficient compared to canonical proteins in generating MAPs (Figure 3F, Chapter 2). 

Their rapid degradation and ability to generate MAPs, supported the hypothesis that these MAPs 

may have originated from RDPs. Therefore, they could be considered as a prototype of DRiPs, 

explaining why most of them were not seen in whole proteome extracts. These results further 

demonstrate that immunopeptidome studies can be used as a sink for peptide identification and, 

consequently, proteins that would otherwise be invisible in conventional whole proteome MS 

studies.  

While our approach has demonstrated the existence of two distinct non-canonical protein 

repertoires, there is still potential venues to further explore the immunopeptidome and 

proteome using diverse MS approaches. First, to improve the detection of non-canonical proteins, 

a more efficient approach could involve data independent acquisition (DIA) to acquire MS data. 

This strategy would provide a broader view of the immunopeptidome and the entire proteome, 

although analysis of the data may be more complex. However, recent de novo sequencing 

algorithms can be leveraged for the deconvolution of MS2 data to identify peptides24. 

Furthermore, ribosomal profiling data could then be investigated to validate the translation of 

such peptide identifications. Second, as cryptic MAPs source proteins were expected to have few 

tryptic sites (Figure 5D, Chapter 2), the use of trypsin led to the collection of fewer fragments per 

protein while the MS whole proteome analysis was performed. A significant improvement to 

improve the identification of smaller proteins in whole proteome MS analysis could be to explore 

the use of alternative proteases to complement trypsin digestion. Proteases such as Glu-C, LysN, 

Lys-C, Asp-N or chymotrypsin target different specific sites on proteins25, so the frequency of such 

amino acids in non-canonical proteins could be evaluated first to identify the most suitable 
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alternative. Third, employing diverse techniques for ionization and separation, alongside 

adjusting gradient time for separation, could be beneficial to maximize peptide identification. 

Indeed, different settings would facilitate the identification and analysis of distinct subsets of 

peptides based on their physical and chemical properties, thereby revealing a more 

comprehensive view of the proteome and immunopeptidome. For instance, performing polarity 

switching during the ionization process in MS can improve the signal intensity by considering both 

positive and negative ions, which may result in a higher yield of charged molecules26. Also, 

considering the use of different separation ions as gas chromatography (GC), or capillary 

electrophoresis (CE) and use of longer gradients for the separation process could improve the 

resolution and sensitivity of the analysis, allowing for the detection and identification of a greater 

number of peptides. In this regard, high field asymmetric waveform ion mobility spectrometry 

(FAIMS) for gas phase separation has already demonstrated to increase peptide and protein 

identifications27, 28. For instance, FAIMS has demonstrated the ability to identify 50% more MAPs 

when used as a front-end separation technique in MS29. Fourth, it should be noted that 

fragmentation methods have been optimized for tryptic peptides. However, due to the 

endogenous nature of MAPs, fragmentation can result in noisy scans with internal ion series and 

neutral losses30. In our study, we used higher energy collisional dissociation (HCD) to fragment 

MAPs, which yields good fragmentation quality for MAPs30. Yet, a dual fragmentation approach 

using both electron transfer dissociation (ETD) (c/z) and higher-energy collisional dissociation 

(HCD) (b/y) in a single scan has been shown to produce more informative scans for MAPs31. This 

approach is expected to allow a highly reliable identification of the peptide sequence, thus 

facilitating the localization of PTMs. Therefore, a comparative analysis between fragmentation 

methods would be beneficial to identify the one that maximizes MAPs identification. Fifth, in our 

analysis we missed the identification of PTM-bearing MAPs as we considered very few post-

translational modifications (oxidation (M) and deamidation (NQ)). However, cancer cells are 

characterized by the deregulation of cellular processes that can induce modifications in proteins 

such as phosphorylation. As a result, the degradation of these proteins can generate highly 

immunogenic MAPs32. Indeed, Zarling et al. employed an MS-based approach to identify several 

phosphopeptides associated with cytoplasmic signaling and cellular transformation pathways, 
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indicating a potential association between cellular function and their display on tumor cells32. To 

expand the identification of PTMs, current software can be parametrized to detect them through 

database searches but also through scan analysis using de novo sequencing (PEAKS PTM)33. 

However, because PTM-bearing MAPs, such as phosphorylated peptides, only constitute a small 

fraction of the immunopeptidome (~1%)34, the use of enrichment strategies could greatly 

facilitate their isolation and identification35. This, in turn, can provide a broader view of both 

canonical and non-canonical modified proteins in the samples. Lastly, the recently published 

Multi-Omic Native Tissue Enrichment (MONTE) workflow could be employed to facilitate serial 

multiomics analysis of tissue samples to provide a more complete understanding of the non-

canonical proteome36. As a proof of concept, MONTE enabled the identification of non-canonical 

proteins by analyzing the immunopeptidome (MHC-I and MHC-II), ubiquitylome, proteome, 

phosphoproteome, and acetylome from the same tissue sample of primary patient lung 

adenocarcinoma (LUAD) tumors. Thus, this innovative approach offers a significant improvement 

in the detection of non-canonical proteins from various angles, providing new insights into 

disease pathology and potential treatment strategies. Overall, the application of any of these 

approaches, whether used individually or in combination, has great potential to significantly 

improve the sensitivity of immunopeptidome and proteome identification. Particularly 

concerning the immunopeptidome, these methods offer a promising solution to address the 

limited number of peptides identified in our analysis. Specifically, in the case of the HBL1 cell line, 

the number of identified MAPs(3.2x103 MAPs, Figure 6D,E, Chapter 2) was found to be below the 

expected count of distinct MAPs which is estimated to be around ~1x104 for cells containing 

approximately ~2x105 MHC I molecules37. Consequently, the identification of a significantly larger 

number of MAPs would complement and enrich our current findings. 

Together, cryptic proteins make up a significant portion of the immunopeptidome and 

cytoplasmic proteome in DLBCL cell lines, at approximately 5% and 13%, respectively. Our 

findings, as well as those of others, suggest that these proteins are not simply the result of 

translational noise38, 39. Instead, non-canonical proteins may constitute a specialized repertoire 

for communicating cellular state to the immune system in addition to acting in metabolism and 

cellular regulation functions previously observed38. Until now, most proteogenomic studies on 
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the non-canonical proteome have been conducted in cancer cells17, 40-42 to perform identification 

of actionable targets for immunotherapy rather than to investigate their characterization. 

Therefore, it would be valuable to extend the results observed here in cancer cells to normal cell 

lines. The Ribo-db approach could be used to perform the same analysis that was carried out in 

this study of cancer cells, but this time with normal human B-lymphoblastoid cell lines (B-LCLs) 

for example. This would allow to answer questions such as: What is the overlap between the 

cryptic proteome identified in normal and that of cancer cells? Is the translation of cancer-specific 

cryptic proteins the result of the neoplastic transformation? Is the observation of two repertoires 

of non-canonical proteins unique to cancer cells? Does the contribution of canonical proteins 

depend on the cell type of origin? A previous study has already analyzed the cryptic MAP 

repertoire of B-LCLs15 and reported that cryptic proteins make up approximately 10% of the 

immunopeptidome. However, the database used in this study for MAP identification was flooded 

with irrelevant sequences that may have affected the accuracy of the identifications. In fact, the 

database was built from 6-frame translations of the samples RNA-seq reads and a very high false 

discovery rate (FDR) threshold of 5% was used, which is normally advised to be kept at 1%43. 

Therefore, it may be necessary to revisit the identifications and observations made in normal cells 

using Ribo-db to properly compare them to the non-canonical proteome detected in cancer.  

1.29.3 Non-canonical proteins result and origin of the DLBCL oncogenic program 

The large number of non-canonical proteins detected in the immunopeptidome and whole 

proteome in DLBCL cells (2,503 proteins), suggests that the oncogenic program inherent to DLBCL 

may alter gene expression thereby increasing non-canonical translations. Our results showed that 

non-canonical proteins were translated from all chromosomes, but chromosomes 12 and 16 

appeared to be particularly rich sources of novel isoform and cryptic proteins, respectively (Figure 

6A, Figure 10B, Chapter 2). Both of these chromosomes have been documented to be involved in 

cytogenetic abnormalities in DLBCL44, 45. In addition to potentially being the result of genetic 

alterations, non-canonical proteins may also contribute to perturbations in important signaling 

pathways causing further genetic alterations. Specifically, novel isoforms may alter the translation 

balance of canonical proteins from the genes that produce them. Some of these genes being 

involved in signaling pathways such as NOTCH (Figure 6C, Chapter 2), which is often deregulated 
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in cancer46 and known to regulate cell proliferation, fate, differentiation and death47. Similarly, 

cryptic 5'UTR proteins may inhibit the translation of canonical proteins from genes involved in 

transcription, translation, and antiviral response signaling pathways (Figure 6E, Chapter 2), 

extending previous reports48. These findings indicate that the non-canonical proteome in DLBCL 

appeared to be involved in cell growth and stress response, potentially contributing to impaired 

DNA repair and cancer progression. Given these important findings, an important next step would 

be to determine the precise function of cryptic proteins in cancer cells and their impact in the 

mentioned signaling pathways. One approach to address these questions would be to consider 

the ORFs of the detected cryptic proteins to design RNA guides for CRISPR/Cas9 knockout 

libraries, thereby assessing the impact on the phenotype of DLBCL cell lines. To assess the 

phenotype in a CRISPR/Cas9 knockout library, it would be necessary to perform a variety of 

experiments to measure how the loss of the specific cryptic protein gene affects the function or 

behavior of the cells. For example, it could be desirable to measure changes in gene expression, 

protein levels, cell growth or survival, or the ability of the cells to respond to stimuli. By comparing 

the phenotype of the specific cryptic protein gene knocked out cells to those with an intact copy 

of the gene; it would be possible to determine the function of the gene and its role in the 

biological processes previously described. 

Given that non-canonical proteins appeared to be the result of the DLBCL oncogenic 

program and that most of the cryptic MAP source proteins were observed exclusively in the 

immunopeptidome, it was next important to consider whether such MAPs could be suitable 

targets for the development of vaccines. Previous research have shown that non-canonical MAPs 

are a major source of targetable TSA42 and that RNA expression could be an indicator of the MAP 

presentation likelihood49. With this in mind, we decided to delve deeper into how to facilitate the 

validation and prioritization of candidate MAPs for TAs by estimating the probability of MAP 

presentation using RNA-seq data. Thus, we developed BamQuery, a tool presented in Chapter 3, 

with the objective of standardizing the prioritization of MAPs based on their expression in healthy 

versus cancerous tissues.  
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1.29.4 BamQuery : Exhaustive capture of MAPs RNA expression 

BamQuery is a tool that helps to assess whether a MAP is highly expressed in cancer compared 

to healthy tissues, using its RNA expression to validate it as a therapeutic target (TA) and predict 

its immunogenicity. BamQuery operates on previously identified MAPs and BAM files 

corresponding to samples, both of which must be provided in form of lists. The MAP list provides 

the amino acid sequence of candidate TAs for evaluation of their RNA expression in the BAM files 

listed. These BAM files could include normal and cancer samples from different sources, such as 

GTEx for normal tissues, TCGA for cancer tissues and own sources.  

BamQuery works in five main steps to facilitate the assessment of MAP expression. First, 

it collects the potential MAP coding sequences (MCS) of each MAP by performing reverse 

translation of the amino acid sequence. Second, it maps the MCS to the genome using the STAR 

aligner8 and collects all MCS locations mapped to the genome for each MAP. Third, it counts the 

total RNA-seq reads for each MAP by examining the overlapping reads at each MCS location in 

the BAM files provided by the user. Fourth, the sum of the total RNA-seq reads overlapping the 

MCS location is normalized by the total RNA-seq sample read count (primary read alignment of 

the BAM file reads). Finally, the biotype of each MAP is calculated as a function of all expressed 

locations and the number of reads at each location. As a result, BamQuery provides the RNA 

expression of each MAP for each BAM file and a MAP biotype classification based on the MAP's 

genomic locations in relation to reference annotations. 

One key feature of BamQuery is the assignment of exhaustive RNA expression to any MAP. 

Given the degeneracy of the genetic code, BamQuery was designed to assess the exhaustive RNA 

expression of any MAP by examining the local expression of all potential genomic locations of 

MAP coding sequences (MCS). Thus, RNA expression could be used as an indicator of MAP 

presentation, rather than relying on MS quantification of the normal tissues immunopeptidome 

after immunoprecipitation of MHC-I complex50. To evaluate the accuracy of BamQuery’s 

quantification, we compared the RNA-seq expression of 1,211 canonical MAPs from the HLA 

Ligand Atlas51 in 8 mTECs, as these cells express most of the canonical genes for inducing central 

tolerance52. Using the Jellyfish53 tool, we compared the exact occurrence of each MCS encoding 

any canonical MAP in mTECs’ RNA-seq data. We observed a strong correlation between 
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BamQuery’s total read count and Jellyfish occurrences, indicating the high accuracy of BamQuery 

(94% mean accuracy, Figure 1B and Figure 7D, Chapter 3). However, BamQuery assigned a read 

count of 0 to 4,194 MCS for which Jellyfish reported a mean number of occurrences equal to 1 

(data not shown). These discrepancies were attributed to possible sequencing errors and 

limitations of the STAR aligner to find all possible MCS locations in the genome. Although, 

BamQuery is very efficient at counting RNA-seq reads in a BAM file (step 3) with a speed of 

approximately 0.0005 minutes/MCS/location compared to the grep command (~1 

minute/MCS/location); its speed and accuracy are limited by the STAR aligner. First, STAR may 

take quite some time to align the MCS, depending on the number of MAPs queried and their 

amino acid sequences, and second it may not align MCS to all possible genomic locations.  

We have previously shown that MAPs derived from ERE sequences were enriched in amino 

acids encoded by 6 synonymous codons (Figure 2B-C, Chapter 3). The high number of synonymous 

codons in ERE-derived MAPs can lead to the generation of many MCS upon reverse translation, 

up to 6x107, which can negatively impact the performance of aligner. To address this issue, we 

compared the performance of STAR to two other aligners (GSNAP and BBMap) in finding 

alignments for a set of both canonical and non-canonical MAPs, including ERE-derived MAPs. We 

found that STAR significantly outperformed the other two aligners in alignment time and the 

number of locations found per MAP, except for one ERE-derived MAP (data not shown). It has 

been previously reported that STAR can have performance issues when aligning sequences in 

complex areas of the genome54, which may prevent the collection of the MAPs locations full set. 

To improve speed, we limited the length of each peptide sequence to 11 amino acids, which is 

the maximum length usually considered for MAPs, and recommend filtering uninteresting MAPs, 

such as those derived from canonical proteins. To improve EREs MCS alignment, one strategy that 

could be used, advised by the author of STAR, is to mask all but one copy of the exact repeats 

from the genome index used for mapping. This allows the MCS to be aligned with a single copy of 

each repeat, and from there the reconstruction of all MCS alignments can be done, since it is 

known which masked loci correspond to each unmasked repeat. Implementation of this strategy 

would be helpful to capture all possible MCSs in ERE regions. 
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However, we could completely avoid the limitations of the STAR aligner by using an 

aligner-free method to map all MCS locations in the genome. A potential solution is to implement 

the Aho-Corasick algorithm, a string search algorithm that can locate strings within an input text 

and output all possible matching locations. In our case, the strings would be the list of candidates 

MAPs (amino acid sequences) for which a keyword trie would be built. A trie is a data structure 

that stores the sequences and enables parallel searching in a text through the Aho-Corasick 

algorithm. The Aho-Corasick algorithm would be used to scan the 3-frame translations of the 

genome annotation, ERE sequences, and standardized ORFs from Ribo-seq data55 in the search 

for the keyword trie. After collection of all possible locations for each MAP, MCS could be 

backtracked from such locations in the genome as they are key to detect and count only the RNA-

seq reads from BAM files that fully span a given MCS at a given location. The use of this strategy 

would bring several benefits to our approach. First, the complexity of the Aho-Corasick algorithm 

is linear which makes it a fast solution. The linear search time is defined by O(n + m + z), where n 

is the input text length (n = sum of the length of the three 3-frame translations), m is the string 

lengths (m = sum of the MAPs amino acid sequence lengths) and z is the total MAPs occurrences 

in the text. Therefore, the current first and second steps in BamQuery that performs reverse 

translation and mapping with STAR, will be omitted because with this strategy we would be 

looking for pseudoalignments of the amino acid sequence directly. Second, it will allow the 

collection of all possible MAP locations, including those of ERE-derived MAPs, as the 3-frame 

translation of those regions would be considered in the input text. Third, it would be possible for 

BamQuery to query longer peptides, up to 25 amino acids, for which RNA-seq reads could overlap 

their entire MCS (RNA-seq reads are typically 75 base pairs long). For example, MHC class II 

molecules associated peptides usually present longer peptides (13-17 amino acids in length) than 

MHC class I molecules (8-11 amino acids in length). Or, tryptic peptides that can be up to 25 amino 

acids long. In fact, BamQuery was recently tuned and used to confirm the presence of specific 

mutations in tryptic peptides by evaluating them in colorectal cancer RNA-seq Bam files56. 

However, this analysis with BamQuery required preprocessing of the tryptic peptides by trimming 

them (up to 16 amino acids) taking care that the observed mutation was included in the final 

sequence.  
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Overall, BamQuery is a useful tool for collecting RNA expression data for short peptides in 

contexts other than the immunopeptidome. However, in the context of immunotherapy, 

BamQuery is particularly useful for carefully selecting TAs. While it is true that evaluating the RNA 

expression from all possible regions in the genome of a given MAP can be very stringent; we 

believe that the quality of the TAs is more important than the quantity when it comes to 

developing cancer treatments. Careful selection of TAs should prioritize those with a single 

genomic location and cancer-specific expression, to avoid undesirable effects. By using BamQuery 

in a rigorous manner, we can help to ensure that the TAs selected for immunotherapy 

development are of high quality and have the potential to be effective and safe treatments. 

1.29.5 Assessment of the RNA expression of canonical and non-canonical MAPs 

In Chapter 2, we demonstrated the flexibility of the translation process, as proteins can be 

translated from non-coding regions of the genome and from frameshift variations of canonical 

proteins. To account for this, BamQuery aims to collect the RNA expression of each MAP by 

considering the multiple regions of the genome that could potentially translate the MAP. 

Therefore, the biotype classification of each MAP should also reflect the regions expressed in the 

samples according with their expression in RNA-seq reads terms for each location. With this in 

mind, we implemented the expectation maximization (EM) algorithm, which aims to estimate the 

parameters θ that maximize the log likelihood logP(x;θ) of the observed data57. By using EM, we 

could estimate the RNA-seq reads likelihood to be associated with each biotype (In frame, 3'UTR, 

5'UTR, frameshift, etc.) from observations of both canonical and non-canonical MAP locations. 

This is especially useful for distributing the RNA-seq reads in a location where several biotypes 

overlap, as multiple ORFs may be annotated at the same location. The final biotype classification 

of a given MAP should reflect all biotypes that overlap with the MCS locations expressed in the 

samples. An example of this can be seen in Figure 13, chapter 3, where an MCS of the canonical 

peptide AEFIKFTVI from the HLA ligand atlas, is located on chromosome 7, position that overlaps 

protein-coding and non-coding RNA transcripts. The AEFIKFTVI biotype classification then was 

computed independently for the queried samples (GTEx and mTEC), but the biotype was also 

aggregated for all the samples and presented in the Total reads count RNA column (Figure 1). 
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Figure 1. –  AEFIKFTFTVI biotype as shown in the BamQuery biotype classification output  

The final BamQuery biotype classification for AEFIKFTVI reports the transcript distribution in the 
queried samples (GTEx and mTEC) considering all locations and the number of overlapping reads 
at those locations. 
 

The final AEFIKFTVI biotype classification showed that 77.57% of RNA-seq reads contributed 

to Non-coding exons while the 22.43% to In-frame biotype. This classification was consistent if 

we observed in detail the numerous RNA-seq reads found in certain genomic locations 

(chr7:73200604-73200630, chr7:73249892-73249918, chr7:75192049-75192075), where the 

biotype of the underlying transcripts is Non-coding exons. It was also in line with remaining 

regions where Non-coding exons and In-frame transcripts overlap in which the distribution of 

reads for such biotypes was affected by the parameters estimated with EM (Figure 2). This 

example illustrates the importance of considering all genomic locations when assigning MAP 

expression, rather than individual locations, to accurately assess the transcriptional capacity of a 

MAP. Therefore, by using BamQuery to classify both canonical and non-canonical MAPs 

(Supplementary Table 1[supplements/510944_file04.xlsx]), we observed that some of these 

MAPs can be encoded by a variety of genomic regions. Some of these locations presented 

elevated expression in normal samples, which may result in a different biotype classification than 

the one previously reported (Figure 2G, Chapter 3). For example, some canonical MAPs (26%) 

could be translated from putative non-coding transcripts, and in the case of ERE-derived MAPs, 

only 56% were estimated to be derived from ERE regions. Interestingly, for remaining ERE-derived 

MAPs they could be derived from canonical regions in particular from In-Frame translations 

(Figure 2H, Chapter 3). Thus, considering these observations, we concluded that MAPs can be 

encoded by numerous genomic regions which can present elevated expression leading to a 

different classification than those previously reported. 
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Figure 2. –  Detailed RNA-seq reads count for all genomic locations of the AEFIKFTVI peptide 

Breakdown of the RNA-seq reads total count underlying AEFIKFTVI MCS localizations. Biotype 
classification shows the biotype in the gene, the transcript and the position in the transcript level 
overlapping with the localization. 

 

However, it is important to note that the EM algorithm was trained using a limited set of 

canonical and non-canonical MAPs, and their expression evaluation was based on RNA-seq data 

rather than direct translation assessment. Therefore, the attribution of biotypes to MAPs coded 

by overlapping regions should be considered as predictions. Achieving an unambiguous 

attribution of biotypes while considering all the genomic regions presents a significant challenge 

and would require a dedicated study to obtain more accurate results. To improve the accuracy of 

biotype attribution, potential avenues include retraining the EM algorithm using MAPs that have 

been evaluated based on Ribosome profiling data or exploring advanced methods such as neural 

networks. These advanced approaches can incorporate additional features such as codon usage 

of the aligned MCS region, expression on Ribosome profiling, codon periodicity, and RNA-seq 

expression. By considering a broader range of features, we could enhance the predictive 

capabilities and refine the biotype attribution process.  

It is crucial to carefully evaluate the actual expression of the candidate antigen transcript to 

select the safest immunotherapeutic targets. Therefore, we examined the RNA expression of 

previously reported TAs in triple-negative breast cancer58, medulloblastoma59 and colorectal 

cancer (CRC)60 to evaluate their probability of being presented by normal cells: GTEx, mTECs, and 
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sorted dendritic cells (DCs)61, 62. We found that some of these TAs could be encoded by a variety 

of genomic sources highly expressed in such healthy tissues, in addition to the sources initially 

reported. This suggests that such TAs highly expressed in healthy tissues are likely to be poor safe 

targets for immunotherapy. Thus, special caution should be exercised when considering them as 

they could be presented by MHC I molecules from healthy tissues. 

To make it easier for researchers to use BamQuery, we have created an online portal 

(https://bamquery.iric.ca/search ) allowing users to analyze MAPs in mTECs and Blood DCs61, 62; 

as these normal samples are often used as proxies for tumor specificity and immunogenicity. The 

portal can be used as a first step to filter out MAPs that are not of interest for immunotherapy as 

those that are highly expressed in mTECs or DCs, are probably also expressed in other normal 

tissues. Furthermore, users can also download and install BamQuery 

(https://bamquery.iric.ca/documentation/installation.html) for use a standalone version 

allowing them to investigate the MAPs expression in GTEx, TCGA, or their own RNA-seq samples. 

Overall, BamQuery is a powerful tool that provides extensive information about the 

transcriptional landscape of TA candidates, enabling users to make informed decisions. This may 

include conducting immunogenicity assays or systematic screening in tumor-organoid models. In 

recent years, three-dimensional (3D) in vitro cell culture models that recapitulate some of the 

characteristics of the original tumor tissue emerged as a promising tool for testing novel potential 

therapeutic applications63. Tumor organoids offer a remarkable representation of the complex 

diversity and physical architecture found in actual tumor tissues. This feature is crucial for the 

assessment of potential drug efficacy and renders them as promising alternative models for the 

screening of immunotherapeutic drugs64. Hence, the more realistic mimicry of the tumor 

microenvironment makes tumor organoids a more relevant and reliable model for studying 

human diseases compared to traditional animal models or cell lines. Because human model 

systems can provide accurate predictions of how patients will respond to a given treatment, large 

pharmaceutical companies such as Roche have begun to embrace and invest in these 

technologies. In fact, very recently (May 2023), Roche announced the creation of an organoid 

research institute called the Institute for Human Biology (IHB) in Basel, Switzerland. With 

interesting TA candidates identified using BamQuery, researchers can then use 3D in vitro models 
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to confirm their specificity and evaluate the viability of T cells in targeting such antigens65. By 

using tumor organoids, researchers can better assess the potential efficacy and safety of 

immunotherapeutic targets in a controlled and representative microenvironment. 

1.29.6 Further characterization of canonical and non-canonical MAPs 

Using BamQuery, we analyzed previously reported 9-mers canonical and non-canonical MAPs and 

compared the number of possible MCS that could be at their origin. Notably, upon reverse 

translation, non-canonical MAPs presented a higher number of MCS compared to canonical MAPs 

(Figure 2A, Chapter 3). This was attributed to their amino acid composition, as they were richer 

in amino acids encoded by numerous codons (Figure 2B, Chapter 3). Notably, intronic and ERE 

MAPs were enriched in arginine (R), serine (S) and leucine (L), being amino acids encoded by 6 

synonymous codons (Figure 2C, Chapter 3). These amino acids appear to be less frequent on 

average in the protein-coding sequences than those encoded by a smaller number of synonymous 

codons (Figure 8A, Chapter 3); suggesting that non-canonical MAPs would use more rare codons 

than canonical MAPs. In fact, we observed that the codons used in the MCS of non-canonical 

MAPs had a significantly lower genomic frequency than the MCS corresponding to canonical 

MAPs (Figure 2D, Chapter 3). This observation was consistent with previous observations where 

MAP source transcripts, whether canonical or non-canonical, appeared to use rare codons more 

frequently than non-MAP source transcripts15. However, our data suggest an inadvertent codon 

bias in non-canonical versus canonical MAP source transcripts. Although codon usage was not 

analyzed in our first study (Chapter 1) these findings suggest that rare codons may also have 

regulated the generation of the non-canonical MAP source proteins in DLBCL predicted to 

degrade rapidly.  

Thus, these results lead us to hypothesize that use of rare codons for non-canonical 

proteins could lead to perturbations in their synthesis and thus to the generation of rapidly 

degradable proteins such as DRiPs66. For this reason, non-canonical proteins would have a 

preferential entry to proteasomal degradation and consequently a preferential access to the class 

I pathway. To confirm this hypothesis, it would be desirable to perform an in-depth study on 

codon composition of the canonical and non-canonical proteome detected in DLBCL cell lines. 
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This could be carried out to, firstly, consolidate the difference observed here with respect to 

amino acid enrichment between canonical and non-canonical proteins; but also, to assess the 

implication of codon usage in the biogenesis of non-canonical proteins and thus in the formation 

of DRiPs. 

1.29.7 Identification and Validation of Tumor Specific Antigens in DLBCL 

Our ultimately goal was to identify and prioritize potential targets for immunotherapy in DLBCL 

samples. To do this, we used a series of searches with BamQuery to filter out MAPs that were not 

specific to tumors. First, we removed MAPs that were highly expressed in mTEC samples. Then, 

on the remaining MAPs, we searched for their expression in GTEx and eliminated those that were 

highly expressed in at least one normal tissue (excluding the testis). From the remaining MAPs, 

we retained only those that had at least a 5-fold change in expression between cancer (DLBCL 

samples from TCGA) and normal blood. Finally, we kept only those MAPs that overlapped with 

Ribo-seq elongation reads and labeled them as tumor-specific antigens. We applied this process 

to the 525 non-canonical MAPs identified in Chapter 2 and labeled 61 of them as TSAs (data not 

shown). As expected, these 61 TSA candidates showed overlap with Ribo-seq elongation reads in 

their corresponding samples, as these peptides were identified using the Ribo-db approach, which 

utilizes Ribo-seq information to build customized databases.  

While our Ribo-db approach was intended to identify non-canonical MAPs, it was not 

specifically designed to find tumor-specific antigens (TSAs) in samples. In fact, different 

approaches to create custom databases may not necessarily result in the identification of the 

same MAPs. Thus, to identify and prioritize potential targets for immunotherapy in DLBCL 

samples, we used a well-established method that leverages RNA-seq data to build customized, 

cancer-specific databases to identify TSAs42. This approach initially identified 6,869 MAPs in the 

three DLBCL samples, of which 67 were categorized as tumor-specific antigen candidates after 

applying BamQuery searches to filter out MAPs that were highly expressed in normal tissues 

(Figure 12A, Chapter 3). Our analysis showed that the BamQuery search on the DLBCL Ribo-seq 

elongation data was useful in identifying MAPs (6) that did not have any evidence of translation 

(as indicated by a Ribo-seq read count of 0). Therefore, the use of Ribo-seq data should be 
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pursued to provide additional evidence for the translation and presentation of such targets by 

the MHC I molecules. It is important to note that ribosome-protected fragments often result in 

short reads (typically 28-33 nucleotides in length) that may not fully overlap with the MCS. To 

account for this, we designed BamQuery to count partially overlapping reads that have a 

minimum overlap of 60% with the MCS at a given location. To accurately assess the total read 

count for a given location, we count reads according to the fraction of overlap with the MCS. 

However, it is important to note that the presence of Ribo-seq reads alone does not necessarily 

indicate the translation of a peptide. To improve the accuracy of BamQuery analyzing Ribo-seq 

data, we could consider evaluating the 3-nucleotide (3-nt) periodicity of overlapping MAP reads. 

The 3-nt periodicity in Ribo-seq data depicts the ORF of translation. The periodicity therefore 

refers to the repeating pattern in the reads that occurs every three nucleotides, as ribosomes 

move along the mRNA molecule at a rate of one codon (a sequence of three nucleotides) per time 

unit67. Thus, by determining the ORF of the Ribo-seq reads, only those that match with the MAP’s 

ORF should count. To obtain this information, we could use methods such as RibORF68 or 

PROTEOFORMER69 to analyze the Ribo-seq data and reveal the 3-nt periodicity for each length of 

the Ribo-seq reads . We could then evaluate the Ribo-seq reads overlapping the MCS and count 

only those that their periodicity coincides with the MAP. 

Altogether, BamQuery is a versatile tool that can be used to identify potential candidates 

for cancer vaccine treatment from various sequencing data sources, including bulk, single-cell, 

and Ribo-seq data from both human and mouse genomes. To the best of our knowledge, 

BamQuery is the first tool to be particularly useful for analyzing MAPs expression in RNA-seq data. 

Analysis of single-cell RNA data with BamQuery provides information on tumor heterogeneity and 

microenvironment that could affect MAP expression. By implementing improvements to the tool, 

such as evaluating the 3-nt periodicity of overlapping MAP reads from Ribo-seq, we can increase 

the confidence in the identification of valid targets for vaccine treatment with BamQuery. Overall, 

BamQuery represents a valuable resource for researchers and clinicians working on the 

development of cancer vaccines. 
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1.29.8 Conclusions 

Through this thesis, we aimed to investigate the extent to which non-canonical proteins 

contribute to the proteome in cancer cells, and to develop a method for identifying and 

prioritizing non-canonical MAPs as potential targets for cancer immunotherapy. Our results 

showed that non-canonical proteins contribute independently to the immunopeptidome or 

overall proteome, and have distinct characteristics compared to canonical proteins. Therefore, 

non-canonical MAPs may be promising targets for immunotherapy, but their expression in normal 

tissues should be carefully validated before they can be prioritized for cancer vaccine design. 

 In our immunopeptidome study of DLBCL samples, we found that about 10% of the MAPs 

were derived from non-canonical proteins. Half of these non-canonical MAP-source proteins 

were labeled as novel isoforms of canonical proteins, while the other half was labeled as cryptic 

proteins. Our analysis showed that cryptic MAP-source proteins tended to be less abundant and 

shorter but were about 5 times more efficient at generating MAPs compared to canonical 

proteins. These cryptic MAP-source proteins appeared to be highly disordered and unstable, 

which makes them prototypical DRiPs and gives them preferential access to the MHC I pathway. 

We also observed low overlap between the non-canonical proteins detected in the 

immunopeptidome and those detected in the whole proteome, suggesting the existence of two 

distinct protein repertoires. Additionally, we found that the expression of non-canonical proteins 

might be favored by DLBCL neoplastic transformation process, which is characterized by 

cytogenetic abnormalities. At the same time, we found that the expression of these non-canonical 

proteins may serve as a regulatory mechanism that prevents the correct translation of canonical 

proteins. This dual role of non-canonical protein expression may contribute to the oncogenic 

program in DLBCL cells. 

 To further evaluate non-canonical MAPs as potential targets for vaccine design, we 

developed a tool called BamQuery to assess their RNA-seq expression in various tissues. 

BamQuery was designed to comprehensively collect RNA-seq expression for any MAP by 

considering all possible genomic regions that could be the source of the MAP, using this 

information as a proxy for MAP presentation. Using BamQuery, we found that non-canonical 

MAPs can be translated from rarer codons than canonical ones, suggesting that their source 
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proteins may have a deficient 3D conformation that gives them DRiPs appearance. We also 

discovered that previously published TAs were highly expressed in healthy tissues, which would 

make them poor targets for immunotherapy. Finally, we demonstrated the utility of BamQuery 

in identifying potential safe immunotherapeutic targets in DLBCL that are derived from non-

canonical translations. 

 Overall, our findings suggest that non-canonical regions of the genome broaden the range 

of MHC I peptides that can be presented to T cells. However, it is important to carefully evaluate 

the expression of these non-canonical MHC I peptides in healthy tissues to determine their 

suitability as targets for immunotherapies. We have developed BamQuery to facilitate this 

process by quantifying the RNA expression of non-canonical MHC I peptides and using it as a proxy 

for their MHC I presentation. Thus, BamQuery can be used as the first step in evaluating the safety 

of targets for immunotherapy. 
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