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Résumé

Cette thèse se compose de deux projets. Le premier concerne la structure des fonctions
multiplicatives dont les moyennes sont petites. En particulier, dans ce projet, nous établis-
sons le comportement moyen des valeurs f(p) de f aux nombres premiers pour des fonctions
f multiplicatives appropriées lorsque leurs sommes partielles ∑n6x f(n) sont plus petites que
leur borne supérieure triviale par un facteur d’une puissance de log x. Ce résultat poursuit
un travail antérieur de Koukoulopoulos et Soundararajan [12] et il est construit sur des idées
provenant du traitement plus soigné de Koukoulopoulos [9] sur le cas special des fonctions
multiplicatives bornées.

Le deuxième projet de la thèse est inspiré par un analogue d’une estimation que Linnik
a déduit dans sa tentative de prouver son célèbre théorème concernant la taille du plus pe-
tit nombre premier d’une progression arithmétique. Cette estimation fournit une formule
asymptotique fortement uniforme pour les sommes de la fonction de von Mangoldt Λ sur les
progressions arithmétiques. Dans la littérature, ses preuves existantes utilisent des informa-
tions non triviales sur les zéros des fonctions L de Dirichlet L(·,χ) et le but du deuxième
projet est de présenter une approche différente, plus élémentaire qui récupère cette estima-
tion en évitant la “langue” de ces zéros. Pour le développement de cette méthode alternative,
nous utilisons des idées qui apparaissent dans le grand crible prétentieux (pretentious large
sieve) de Granville, Harper et Soundararajan [6]. De plus, comme dans le cas du premier pro-
jet, nous empruntons également des idées du travail de Koukoulopoulos [9] sur la structure
des fonctions multiplicatives bornées à petites moyennes.

Mots clés: Théorie analytique des nombres, théorie prétentieuse des nombres, fonction mul-
tiplicative, sommes partielles, sommes partielles sur nombres premiers, méthode de Landau-
Selberg-Delange, théorème inverse, théorème de Linnik, zéro de Siegel, caractère exceptionnel
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Abstract

This thesis consists of two projects. The first one is concerned with the structure of
multiplicative functions whose averages are small. In particular, in this project, we establish
the average behaviour of the prime values f(p) for suitable multiplicative functions f when
their partial sums ∑n6x f(n) admit logarithmic cancellations over their trivial upper bound.
This result extends previous related work of Koukoulopoulos and Soundararajan [12] and it
is built upon ideas coming from the more careful treatment of Koukoulopoulos [9] on the
special case of bounded multiplicative functions.

The second project of the dissertation is inspired by an analogue of an estimate that
Linnik deduced in his attempt to prove his celebrated theorem regarding the size of the
smallest prime number of an arithmetic progression. This estimate provides a strongly
uniform asymptotic formula for the sums of the von Mangoldt function Λ on arithmetic
progressions. In the literature, its existing proofs involve non-trivial information about the
zeroes of Dirichlet L-functions L(·,χ) and the purpose of the second project is to present a
different, more elementary approach which recovers this estimate by avoiding the “language”
of those zeroes. For the development of this alternative method, we make use of ideas that
appear in the pretentious large sieve of Granville, Harper and Soundararajan [6]. Moreover,
as in the case of the first project, we also borrow insights from the work of Koukoulopoulos
[9] on the structure of bounded multiplicative functions with small averages.

Keywords: Analytic number theory, pretentious number theory, multiplicative function,
partial sums, partial sums over primes, Landau-Selberg-Delange method, converse theorem,
Linnik’s theorem, Siegel zero, exceptional character
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Notation and definitions

I General standard notation and definitions

First we provide a list of some standard notation and definitions that will be used throughout
the dissertation.

• For a set S, the symbol #S denotes its cardinality.
• In this thesis, the number 0 is not included in the set N, that is N = {1,2,3, . . .}.
• Following a classical notational convention of analytic number theory, the symbol log
will be denoting the natural logarithm ln.
• Following another notational convention of analytic number theory, the letter s always
denotes a complex number and we write s = σ + it, where σ = Re(s) and t = Im(s).
• We denote the set of non-positive integers by Z60.
• Throughout the text, the letter p always denotes a prime number.
• If a, b ∈ N, we denote their greatest common divisor by (a,b).
• For (m,n) = 1, we set n to denote the inverse of n modulo m, that is nn ≡ 1 (modm).
• In this thesis, (Z/qZ)∗ = {1 6 n 6 q : (n,q) = 1}.
• The notation pν‖n means that pν | n but pν+1 - n.
• We denote the smallest prime factor of an integer n > 1 by P−(n). For n = 1, we
define P−(1) = +∞.
• A function f : N→ C is called arithmetic.
• An arithmetic function f for which f(1) = 1 and f(mn)=f(m)f(n) whenever (m,n)=1
is called multiplicative.
• For any two arithmetic functions f and g, we write f ∗g for their Dirichlet convolution
which is defined as (f ∗ g)(n) := ∑

ab=n f(a)g(b) for all n ∈ N.
• For an arithmetic function f with f(1) 6= 0, the function f−1 will denote the Dirichlet
inverse of f and it is the unique arithmetic function such that (f ∗ f−1)(n) = (f−1 ∗
f)(n) = 1 for all n ∈ N.
• For m ∈ N, the symbol τm denotes the m-fold divisor function defined as τm(n) =∑

d1···dm=n 1 for all n ∈ N. When m = 2, we write τ2 = τ and this function, called the
divisor function, counts the number of divisors of a positive integer.
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• In our text, the arithmetic functions µ,Λ, φ, ω and Ω also appear. TheMöbius function
µ is defined as

µ(n) =

(−1)ω(n) if n is square-free and
0 otherwise.

The von Mangoldt function Λ is defined as

Λ(n) =

log p if n = pm for a prime p and m ∈ N and
0 otherwise.

The Euler totient function φ is given as φ(n) = #(Z/nZ)∗. Lastly, the functions ω
and Ω are defined through the relations ω(n) = ∑

p|n 1 and Ω(n) = ∑
pa‖n a.

• The Greek letter χ always denotes a Dirichlet character (see Definition 1.3.1) modulo
some positive integer. The symbol χ0 will alway denote a principal character (see
Definition 1.3.2).
• An arithmetic function that is bounded by a divisor function τm is called divisor-
bounded.
• Let X ⊆ R. For x ∈ X, the three expressions f(x) � g(x), f(x) = O(g(x)) and
g(x)�f(x) mean that there exists some constant C > 0 such that |f(x)|6Cg(x) for
all x ∈ X. If the constant C is not absolute and depends on several parameters, then
these parameters are sometimes included as subscripts at the symbols � ,� and O.
• The notation f(x) � g(x) indicates that f(x)� g(x)� f(x).
• We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.
• The Riemann ζ function will appear some times in the text. For s ∈ C with Re(s) > 1,
it is defined as ζ(s) = ∑

n>1 n
−s.

• We will denote the Dirichlet series of an arithmetic function f at s ∈ C by L(s,f) =∑
n>1 f(n)n−s, provided that the series of the right-hand side converges.

• For m ∈ N and a ∈ C, we write
(
a

m

)
= 1
m!

j=1∏
m

(a− j + 1).

I Special notation

For easy reference, we collect here some non-standard notation which appears in the text.

• Given a multiplicative function f , the symbol Λf denotes the unique arithmetic func-
tion defined through the relation f · log = Λf ∗ f.

14



• Let D be a positive integer and let A > 0 be a real number. The following two classes
of multiplicative functions occur in many places of the text.

F(D) := {f : N→ C, f multiplicative, |Λf | 6 D · Λ}

F(D,A) :=
{
f ∈ F(D),

∑
n6x

f(n)� x

(log x)A for all x > 2
}

• For t ∈ R, we set Vt := exp{100(log(3 + |t|))2/3(log log(3 + |t|))1/3}.
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Introduction

0.1. Multiplicative functions with small partial sums
In analytic number theory there are several results concerning the mean values of mul-

tiplicative functions. One of them is the Landau-Selberg-Delange method [3, 14, 15, 22],
a powerful tool which provides asymptotics for the partial sums of arithmetic functions f
whose Dirichlet series can be written as ζv · G, where v ∈ C, ζ is the Riemann zeta func-
tion and G satisfies suitable regularity conditions. In the case where f is multiplicative and
bounded by the D-fold divisor function τD for some fixed positive integer D, Granville and
Koukoulopoulos [7] weakened the assumptions of the Landau-Selberg-Delange method and
showed that if f(p) ≈ v on average, in the sense that

∑
p6x

f(p) log p = vx+O

(
x

(log x)D+1−Re(v)

)
(0.1.1)

for all x > 2, then

∑
n6x

f(n) = c(f,v)
Γ(v) x(log x)v−1 +OD,v

(
x(log x)Re(v)−2(log log x)1v=D

)
, (0.1.2)

where Γ is the Gamma function and

c(f,v) =
∏
p

(
1 + f(p)

p
+ f(p2)

p2 + · · ·
)(

1− 1
p

)v
.

Typically, the Euler product c(f,v) is non-zero unless f exhibits a specific behaviour on
small primes and their powers. For instance, if f(2k) = −1 for all k ∈ N, then

∑
k>1

f(2k)
2k = −1,

which implies that c(f,v) = 0. We put such special examples of functions f aside and assume
that c(f,v) 6= 0. In this case, notice that if v /∈ Z60, then the “main term” of (0.1.2) does
not vanish and it thus determines the asymptotic behaviour of the partial sums of f . More



precisely, it is then true that∣∣∣∣∣ ∑
n6x

f(n)
∣∣∣∣∣ ∼

∣∣∣∣∣c(f,v)
Γ(v)

∣∣∣∣∣ x

(log x)1−Re(v) as x→∞. (0.1.3)

Since |f(p)| 6 τD(p) = D, the prime number theorem (Theorem 1.2.3) and condition (0.1.1)
imply |v| 6 D, and so (0.1.3) yields∣∣∣∣∣ ∑

n6x

f(n)
∣∣∣∣∣� x

(log x)D+1 .

Hence, if c(f,v) 6= 0, then by further assuming that there exists a real number A > D+ 1
such that

∑
n6x

f(n)� x

(log x)A for all x > 2, (0.1.4)

we force v to lie in {0, − 1, . . . , − D}. We thus see that if f(p) ≈ v on average, then the
only way that f can satisfy (0.1.4) is when v ∈ {0, − 1, . . . , − D}. Now, one might start
wondering whether it is possible to draw conclusions about the average size of f(p) when
only (0.1.4) holds, that is without (0.1.1).

In 2013, Koukoulopoulos [9] initially addressed this question for D = 1 and A > 2. Seven
years later, in 2020, in joint work with Soundararajan [12], they worked on the case where
D is any fixed positive integer and A > D+ 2. Specifically, they proved the following result.

Theorem K-S. Fix D ∈ N and a real number A > D + 2. Let also f be a multiplicative
function such that |Λf | 6 D · Λ, where Λf is the unique arithmetic function defined through
the relation f · log = Λf ∗ f and Λ is the von Mangoldt function. Assume further that

∑
n6w

f(n)� w

(logw)A for all w > 2.

Then there exists a multiset Γ of m real numbers with m 6 D and such that∣∣∣∣∑
p6x

(
f(p) +

∑
γ∈Γ

piγ
)

log p
∣∣∣∣ 6 C1 ·

x√
log x

+ C2 ·
x√
T

for all x, T > 2, where C1 is a constant depending only on f and T , and C2 is an absolute
constant.

In this theorem, the stronger condition A > D + 2 is considered, but Koukoulopoulos
and Soundararajan also dealt with the full range A > D + 1 in the special case where the
continuous extension of the Dirichlet series of f has a single root of multiplicity D on the
line Re(s) = 1 [12, p. 12-13].
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Theorem K-S II. Fix a natural number D and a real number A > D + 1. Let also f

be a multiplicative function as the one appearing in the statement of Theorem K-S. If the
Dirichlet series L(·,f) of f has a zero 1 + iγ of multiplicity D, then

∑
p6x

|f(p) +Dpiγ| log p �f
x

(log x)(A−1−D)/2 .

In [21], we extended Theorem K-S in the full range A > D + 1 without making any
assumptions about the zeroes of the Dirichlet series of f , as was done in Theorem K-S II.
The extension of Theorem K-S is the main object of study for the first project of the present
dissertation. In particular, we will prove the following.

Theorem 1. Fix a positive integer D and a real number A > D+ 1. If f is a multiplicative
function satisfying the conditions of Theorem K-S, then there exists a multiset Γ of m real
numbers with m 6 D and such that∣∣∣∣∑

p6x

(
f(p) +

∑
γ∈Γ

piγ
)

log p
∣∣∣∣ 6 Of,T

(
x(log log x)D+m

(log x)min{1,A−D−1}/2

)
+OΓ

(
x(log T )D+m
√
T

)
, (0.1.5)

for all x > 3 and any T > 2. The implied constants depend also on D and A.

It turns out that, in both Theorems K-S and 1, the multiset Γ consists of the ordinates of
the zeroes of the Dirichlet series of f on Re(s) = 1 and this generalizes what Koukoulopoulos
[9] also proved in the case D = 1. Moreover, the implied constant in the first big-Oh term
at the right-hand side of (0.1.5) could be explicitly given as the maximum of the logarithmic
derivative of a Dirichlet series related to f . For the sake of a simpler statement, we chose
not to make this dependence explicit here, but it can be easily deduced from the proof of
Theorem 1 in Section 3.3.

Now, we can divide both sides of (0.1.5) by x, take the lim sup as x tends to infinity and
then let T →∞. This way, we see clearly that f(p) ≈ −∑γ∈Γ p

iγ on average.

Corollary 1. Under the assumptions of Theorem 1, there exists a multiset Γ of at most D
real numbers such that

lim
x→+∞

1
x

∑
p6x

(
f(p) +

∑
γ∈Γ

piγ
)

log p = 0.

Classical results in the study of the mean values of multiplicative functions, like Wirsing’s
theorem [27, 28] and the Landau-Selberg-Delange method [3, 14, 15, 22], require informa-
tion about the prime values of a multiplicative function and they give us back information
about its averages. Theorem 1 does the converse, as does Koukoulopoulos’ converse theorem
[9] from 2013. It uses the fact that the averages of an appropriate multiplicative function
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are small and it returns information about its structure on primes. Thus, it may be seen as
a partial converse to these results.

Remark 1. If the hypothesis A > D + 1 is replaced by the inequality A < D + 1, then the
prediction of Theorem 1 is false and we can verify this with a counterexample.

Let κ ∈ R \ Q be such that A − 1 < κ < D and consider the arithmetic function τ−κ

whose values are given by the coefficients of the Dirichlet series of ζ−κ, namely

ζ(s)−κ =
∑
n>1

τ−κ(n)
ns

for Re(s) > 1.

As usual, ζ is the Riemann zeta function.
By writting ζ(s) = ∏

p(1−p−s)−1 (this is the Euler product of ζ, see [1, p. 231]) and mul-
tiplying the Taylor expansions of the terms (1− p−s)−κ, we deduce that τ−κ is multiplicative
and that its values on prime powers pm are

τ−κ(pm) =
(
m− κ− 1

m

)
.

For the D-fold divisor function τD, it is known that (see 1.4.1)

τD(pm) =
(
m+D − 1

m

)
,

and so a simple application of the triangle inequality implies that |τ−κ| 6 τD. Moreover,
τ−κ(p) = −κ and the prime number theorem (Theorem 1.2.3) guarantees that τ−κ satisfies
(0.1.1) with v = −κ. Therefore, the Koukoulopoulos and Granville variant of the Landau-
Selberg-Delange method [7, Theorem 1] leads to the estimate

∑
n6x

τ−κ(n)�κ x/(log x)κ+1 6 x/(log x)A for all x > 2. (0.1.6)

For a multiplicative function f , it is easy to verify that the function Λf defined through the
relation f · log = Λf ∗ f is given by the coefficients of the Dirichlet series of −(L′/L)(·,f),
where L(·,f) is the Dirichlet series of f . Hence, Λτ−κ = −κ·Λ, as −(ζ ′/ζ)(s) = ∑

n>1 Λ(n)n−s

for Re(s) > 1. Therefore, apart from (0.1.6), we also have that |Λτ−κ| = κ · Λ 6 D · Λ, and
this means that τ−κ would meet the conditions of Theorem 1 with A < D + 1. Then, there
would exist diestinct real numbers γ1, . . . ,γk and positive integers m1, . . . ,mk such that

∑
p6x

(m1p
iγ1 + · · ·+mkp

iγk − κ) log p = o(x).

The existence of the numbers γ1, . . . ,γk is guaranteed by the prime number theorem (The-
orem 1.2.3). Indeed, if no such real numbers existed, then we would have −κx + o(x) =
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−κ∑p6x log p = o(x), which is absurd, since κ 6= 0, as it is an irrational number. Now, for
t ∈ R, the prime number theorem and partial summation (Lemma 1.1.1) give

∑
p6x

pit log p = x1+it

1 + it
+O

(
x

log x

)
. (0.1.7)

Consequently, with the change of variables x = eu, we have that

k∑
j=1

cje
(
u
γj
2π
)

= κ+ o(1), (0.1.8)

where cj = mj/(1 + iγj) and e(w) := e2πiw for w ∈ R.
We now show that (0.1.8) leads to a contradiction. Let us first consider the case where all

the γj’s are non-zero. Without loss of generality, we suppose that γ1, . . . ,γ` form a maximal
linearly independent subset of {γ1, . . . ,γk} over Q. Then γj is a Q-linear combination of
γ1, . . . ,γ` for j > `. Of course, we can assume that these linear combinations are Z-linear.
Indeed, if m is the least common multiple of the denominators from all the Q-linear combi-
nations, then we can switch from the set of γj’s to that of the γj/m’s without affecting our
arguments.

Now, let ε ∈ (0,1) and θ1, . . . ,θ` be arbitrary real numbers. If ‖ · ‖ denotes the distance
from the closest integer, then by Dirichlet’s simultaneous approximation theorem there exist
integers qn > 1 such that ‖qn γj2π‖ < ε/2n+1 for all n ∈ N and for all j ∈ {1, . . . ,`}. So,
letting an = ∑n

i=1 qi, we conclude that ‖an γj2π‖ 6
∑n
i=1 ‖qi

γj
2π‖ <

∑
i>1 ε/2i+1 = ε/2 , for

all n ∈ N and for all j ∈ {1, . . . ,`}. Moreover, since γ1, . . . ,γ` are linearly independent
over Q, Kronecker’s approximation theorem implies that there exists a real number y > 0
such that ‖y γj2π − θj‖ < ε/2 for all j ∈ {1, . . . ,`}. We consider the sequence {αn}n∈N with
αn = an + y for all n ∈ N. This sequence diverges to infinity, because an is a sum of
positive integers. Furthemore, for any n ∈ N and j ∈ {1, . . . ,`}, we have that ‖αn γj2π − θj‖ 6
‖y γj2π − θj‖ + ‖an γj2π‖ < ε/2 + ε/2 = ε, and so e(αn γj2π ) = e(θj) + O(ε) by Taylor’s theorem.
We now take u = αn in (0.1.8), let n → ∞ first and ε → 0 after. This way we deduce that
there exist distinct linear functions Lj : R` → R with integer coefficients such that

∑̀
j=1

cje(θj) +
k∑

j=`+1
cje(Lj(θ1, . . . ,θ`)) = κ,

for arbitrary real numbers θ1, . . . ,θ`. But, {e(n1x1 + . . .+ n`x`) : n1, . . . ,n` ∈ Z, x1, . . . ,xn ∈
[0,1]} is an orthononormal basis of L2([0,1]`), and so κ = 0, which is a contradiction.

Now, if one of the γj’s was zero, say γ1, we can follow the above argument with the rest
of the γj’s and with κ∗ = κ−m1 in place of κ. In this case we reach a contradiction, because
we show that κ∗ = 0. This implies that κ = m1 ∈ N, also a contradiction, as κ is irrational.
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Remark 2. Note that, like in Theorem K-S, in Theorem 1 one can restrict the sum∑
γ∈Γ p

iγ

to the ordinates |γ| 6 T . Indeed, for |γ| > T , by the formula (0.1.7), we have that

∑
p6x

piγ log p = x1+iγ

1 + iγ
+O

(
x

log x

)
� x

T
+ x

log x.

We prove Theorem 1 in Chapter 3. In the first section of this chapter, Section 3.1, we
explain why the condition A > D + 2 of Theorem K-S is essential for the proof of Kouk-
oulopoulos and Soundararajan to work. Then we describe the different method that we will
use to avoid the technical details which lead to the requirement of the stronger assumption
A > D + 2. We basically develop an approach which involves lower derivatives of L(·,f),
as the presence of higher derivatives in the work of Koukoulopoulos and Soundararajan is
responsible for the range A > D + 2. The approach is based on ideas and techniques from
the work of Koukoulopoulos [9] in the case D = 1 and A > 2.

0.2. Primes in arithmetic progressions: An estimate of
Linnik revisited

Prime numbers have been fascinating the human mind for thousands of years. A careful
glance at the list of the first primes gives the impression that there is some irregularity, some
randomness in the way they spawn among the other positive integers. As we go through the
list of the primes, it becomes apparent that it is not very easy to predict where the next
prime is going to land, if it does at all. At this point, one might ask if prime numbers will
keep appearing forever. The answer to this question is known since the time of Euclid who
proved that there are infinitely many primes. Now, let us take this question one step further.
What can be said about the number of primes in other sets of integers? For example, we
could ask if there exist infinitely many primes in an arithmetic progression or if there are
infinitely many primes of the form n2 + 1. Some of these questions remain unanswered
till to this day. For example, it is still unknown whether there are infinitely many primes
of the form n2 + 1. In fact, this is a famous open problem which was first introduced
at the 1912 International Mathematics Conference by Landau and it is usually referred to
as Landau’s fourth problem. As for the number of primes in a given arithmetic progression
{qn+a, n ∈ N} with a,q coprime, almost 2 millenia after Euclid, in 1837, Dirichlet [4] proved
that the number of primes in the arithmetic progression a (mod q) is infinite. Consequently,
if a and q are two coprime positive integers, then there is a prime which occurs first in the
arithmetic progression a (mod q). Let us denote this prime by p(q,a).

An interesting problem regarding p(q,a) asks how far it will make its appearance in the
arithmetic progression a (mod q) and the goal is to look for bounds on p(q,a) which depend
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on the modulus q. Such bounds can be obtained by examining when the sums

θ(x; q,a) :=
∑
p6x

p≡a (mod q)

log p

become positive. Indeed, since log p > 0 for all primes p, these sums are positive when they
contain at least one term which will correspond to a prime p ≡ a (mod q). Consequently, if
θ(x; q,a) > 0 for x = h(q), where h is some function of q, then p(q,a) 6 h(q).

If q 6 (log x)A for some A > 0, the Siegel-Walfisz theorem [19, Corollary 11.21, p. 382]
states that there is an absolute constant c > 0 such that

θ(x; q,a) = x

φ(q) +O
(
x exp

{
− c

√
log x

})
,

where φ is the Euler totient function and the implied constant is ineffective. In this case, for
ε > 0, it follows that θ(x; q,a) > 0 for x � exp(qε), and so the above method implies that

p(q,a)�ε exp(qε).

However, under the Grand Riemann Hypothesis (GRH), it can be shown that [26]

p(q,a)� (φ(q) log q)2.

Moreover, the implied constant can be taken to be 1, as was shown in 2015 by Lamzouri, Li
and Soundararajan [13].

The unconditional bound provided by the Siegel-Walfisz theorem is exponential in q and
this is far from that of GRH or even a large power of q. So, in 1944, it came as a big surprise
when Linnik [16, 17] unconditionally proved that there exist positive universal constants C
and L such that

p(q,a) 6 CqL

for any choice of coprime positive integers a and q. Furthermore, the constants C and L

are effectively computable. One can be led to this breakthrough of Linnik, now known as
Linnik’s theorem, by the following estimates [8, Proposition 18.5, p. 441].

Assume that x > q2. It is known that at most one of the functions L(·,χ) has a real zero
β in its classical zero-free region. This zero is called a Siegel zero, and if it does not exist,
then

∑
n6x

n≡a (mod q)

Λ(n) = x

φ(q) +O

(
x1−c0/ log(2q)

φ(q) + x log q
qφ(q)

)
,
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where Λ is the von Mangoldt function. However, if the Siegel zero β exists, then

∑
n6x

n≡a (mod q)

Λ(n) = x

φ(q) −
χ1(a)xβ
φ(q)β +O

(
x1−c′0|log(2(1−β) log(2q))|/ log(2q)

φ(q) + x log q
qφ(q)

)
,

where χ1 is the exceptional character mod q for which L(β,χ1) = 0. In these two estimates,
the positive absolute constants c0 and c′0 are effectively computable.

If
√

log x� log q, then at the cost of slightly weakening the error term in the case where
a Siegel zero exists, we can compactly rewrite the aforementioned estimates as

∑
n6x

n≡a (mod q)

Λ(n) = x

φ(q) + χ∗(a)
φ(q)

∑
n6x

Λ(n)χ∗(n) +O

(
x1−c1/ log(2q)

φ(q) + xe−c2
√

log x

φ(q)

)
, (0.2.1)

where c1, c2 are two positive absolute constants and χ∗ is the potential exceptional character.
Indeed, by adjusting the classical estimation of ∑n6x Λ(n)χ∗(n) [19, Theorem 11.16, p. 378]
to the range

√
log x� log q, we deduce that there is a constant C > 0 such that [19, Exercise

2, p. 382]
∑
n6x

Λ(n)χ∗(n)� x1−C/ log(2q)

if L(·,χ∗) does not have a Siegel zero, and

∑
n6x

Λ(n)χ∗(n) = −x
β

β
+O

(
x1−C/ log(2q)

)

when β is the Siegel zero of L(·,χ∗). Throughout the text, we will be frequently referring to
(0.2.1) as Linnik’s estimate (since it is related to his celebrated theorem).

Linnik’s work on the bound of p(q,a) was later simplified, as was done by Bombieri in
[2], but the new proofs, including Linnik’s original proof, relied in one form or another on
the following three ingredients [8, Principles 1,2 and 3, p. 428]:

• The classical zero-free regions of L(·,χ) for the characters χ(mod q);
• A log-free zero-density estimate which is a strong bound on the total number of zeroes
of all L(·,χ) in the rectangles {s ∈ C : α 6 σ 6 1, |t| 6 T} for α ∈ [1/2,1] and T > 1;
• The exceptional zero repulsion, also known as the Deuring-Heilbronn phenomenon,
stating that it is possible to enlarge the classical zero-free region when it contains a
Siegel zero.

Proofs that make use of these three principles can be found in modern treatments, like the
one which is presented by Iwaniec and Kowalski in their book [8, Chapter 18].
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In the last years, some more elementary proofs that avoid these tools have appeared. For
example, in 2002, such a proof was developed by Elliot in [5]. Later, in 2016, Granville,
Harper and Soundararajan [6] studied the distribution of multiplicative functions on arith-
metic progressions using the so called pretentious methods and as a consequence of their
general results, they were able to show a weaker form of (0.2.1) [6, Corollary 1.12]. In
turn, this estimate served as the stepping stone for another proof of Linnik’s theorem which
circumvented the combination of the three aforementioned principles. Another largely el-
ementary proof of Linnik’s theorem is presented in [11, Chapter 27] and a basic element
of the proof is a flexible variant of (0.2.1) [11, Theorem 27.2, p. 289] where every prime is
weighted with 1/p instead of log p. Even though the recent alternative approaches recover
Linnik’s theorem by more elementary means, they do not provide a simpler proof of Linnik’s
estimate (0.2.1).

This motivated the second project of this thesis, where we infer Linnik’s estimate (0.2.1)
by adopting a rather elementary approach that we developed in [20]. In particular, we will
show the following theorem which is the main result of the currently described project. Note
that it slightly improves Linnik’s estimate with a Korobov-Vinogradov-type term in place of
x exp{−c2 log x}.

Theorem 2. Let q > 1 be an integer and consider a real number x > q2. For any character
χ mod q, we set

Lq(1,χ) =
∏
p>q

(1− χ(p)/p)−1.

We also define Rq as the set of real, non-principal characters mod q and we take a character
ψ such that Lq(1,ψ) = minχ∈Rq Lq(1,χ). Then, for any a ∈ (Z/qZ)∗, we have that

∑
n6x

n≡a (mod q)

Λ(n) = x

φ(q) + ψ(a)
φ(q)

∑
n6x

ψ(n)Λ(n) +O

(
x1−C1/ log(2q)

φ(q) + xe−C2(log x)3/5(log log x)−3/5

φ(q)

)
,

where C1 and C2 are two positive absolute constants.

We may bound the sum ∑
n6x ψ(n)Λ(n) in Theorem 2 by referring to Theorem 1.6(a) of

[9]. Doing so, it follows that there exist positive constants c′ and c′′ such that
∑
n6x

ψ(n)Λ(n)� x1−c′Lq(1,ψ)/ log(2q) + xe−c
′′√log x, (0.2.2)

for all x > q2. The same theorem also provides information about the size of the quantity
Lq(1,ψ) that is involved in the bound above. It is known that there exists a constant δ ∈ (0,1)
such that L(·,ψ) has at most one zero β in [1− δ/ log q,1). If such a zero does not exist, we
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set β = 1− δ/ log q. In either case, Theorem 1.6(a) of [9] shows that Lq(1,ψ) � (1−β) log q.
Therefore, we arrive at the following consequence of Theorem 2.

Corollary 2. Under the considerations and assumptions of Theorem 2, we have that

∑
n6x

n≡a (mod q)

Λ(n) = x

φ(q) +O

(
x1−α2Lq(1,ψ)/ log(2q)

φ(q) + xe−α3
√

log x

φ(q)

)
,

for some positive constants α1, α2 and α3. Moreover, there exists a constant δ ∈ (0,1) such
that L(·,ψ) has at most one zero β in [1 − δ/ log q,1). If such a zero does not exist, we put
β = 1− δ/ log q and in any case, Lq(1,ψ) � (1− β) log q.

Remark. Note that the term φ(q)−1x1−C1/ log(2q) is absorbed by the first fraction in the
big-Oh term of Corollary 2, because Lq(1,ψ) � (1− β) log q 6 δ.

Remark. The term x1−c′Lq(1,ψ)/ log(2q) in estimate (0.2.2) leads to the first fraction of the
big-Oh term in Corollary 2. The size of this fraction might be comparable in size to x/φ(q).
Indeed, there might exist a sequence {qj}j∈N of moduli q that correspond to zeroes

βj > 1− δj
log qj

,

where {δj}j∈N is a sequence of real numbers converging to 0. This means that upon using
the fact that Lqj(1,ψ) � (1− βj) log qj < δj, for x = qj

A, no matter how large the exponent
A is, the aforementioned fraction is always of size qjA/φ(qj) up to some factors which are
positive absolute constants.

Remark. Even though Theorem 2 provides a refinement of Linnik’s estimate, our result in
not the best to date. In fact, the best error term to date is due to Thorner and Zaman. Their
recent work [25, Corollary 1.4] includes a slightly stronger error term where (log log x)−3/5 is
replaced by (log log x)−1/5. One difference between our work and theirs is the set of methods
that are used. Their arguments fall in the realm of the classical approaches, as they are
based on non-trivial information about the zeroes of the functions L(·,χ). Our techniques
are more elementary and avoid a “heavy” involvement of those zeroes. Besides that, they
achieve an error term which is almost as strong as that of Thorner and Zaman, and in
future work we hope to modify our methods to match their error term completely. Another
difference between our work and that of Thorner and Zaman lies in the term ∑

n6x ψ(n)Λ(n)
when ψ is the exceptional character. In order to stay in the lines of the pretentious methods,
we only bounded this sum by using Theorem 1.6(a) of [9]. Thorner and Zaman used the
explicit formula for it and showed that in the range x > q12, the sums ∑n6x,n≡a (mod q) Λ(n)
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are asymptotic to λx/φ(q), where λ = 1 − χ1(a)xβ−1/β and β is the corresponding Siegel
zero.

We prove Theorem 2 in Chapter 4. Its proof borrows ideas from the pretentious large sieve
that Granville, Harper and Soundararjan developed in [6]. It is also inspired by techniques of
Koukoulopoulos from his work on bounded multiplicative functions with small partial sums
[9]. These are techniques that we use in a similar fashion for the first project.

0.3. Organization of the thesis
Chapters 1 and 2 include all the preliminary results required for the proofs of Theorems

1 and 2. The objective of Chapters 3 and 4 are the proofs of the main theorems of this
dissertation. Chapter 3 has three sections. In the first one, we ouline the proof of Theorem
1. The second one is centered around the proof of a single result, that of Proposition 3.2.6.
The reason for this is that the estimate of Proposition 3.2.6 will be the main input in the
first step of the proof of Theorem 1. In the last section of Chapter 3, Section 3.3, we finally
give the proof of Theorem 1. Chapter 4 is basically the proof of Theorem 2 which is broken
down into Lemmas 4.2.1, 4.2.2 and 4.2.4. In the beginning of the chapter we also included a
short section where we explain the main ideas that lead to the proof of Theorem 2 through
these lemmas.
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Chapter 1

Background material

In this chapter, we have categorized standard number theory knowledge that is used
throughout the text.

1.1. Summation formulas
Partial summation [1, Theorem 4.2, p. 77] is one of the most basic and widely used tools

of analytic number theory. Its power lies on the fact that it can provide useful, non-trivial
information for sums of the form ∑

n6x anf(n) when f is smooth and the partial sums of the
complex numbers an are well undertood.

Lemma 1.1.1 (Partial summation). Let x > y be two positive real numbers. Let {an}n∈N
be a sequence of complex numbers and define its summatory function as A(u) = ∑

n6u an for
u > 0. If the complex valued function f is continuously differentiable on an open interval
containing (y,x], then

∑
y<n6x

anf(n) = A(x)f(x)− A(y)f(y)−
∫ x

y
A(t)f ′(t)dt.

Partial summation can be easily proven using the Riemann-Stieltjes integral. As a matter
of fact, sometimes, instead of using partial summation right away, it is more convenient to
turn our sum of interest into a Riemann-Stieltjes integral, because we can then estimate the
sums by deploying properties of the Riemann-Stieltjes integral, like integration by parts. We
will do this in the proof of Lemma 2.1.3.

Apart from partial summation, another useful summation formula is the so called hyper-
bola method [1, Theorem 3.17, p. 69]. It originates from a lattice-counting idea that Dirichlet
used in order to estimate the sums ∑n6x τ(n) of the divisor function τ up to an error term
O(
√
x). In fact, Dirichlet arrived at his estimate by symmetricaly counting the lattice points

under the hyperbola ab = x of the (a,b) cartesian plane. This also explains the name of the



method. The hyperbola method allows us to estimate sums of Dirichlet convolutions f ∗ g
when there is information about the partial sums of f and g.

Lemma 1.1.2 (Dirichlet’s hyperbola method). Let f and g be two arithmetic functions. If
F (u) = ∑

n6u f(n) and G(u) = ∑
n6u g(n) for u > 0, then, for x, y > 0, we have

∑
n6x

(f ∗ g)(n) =
∑
n6y

f(n)G
(
x

n

)
+

∑
n6x/y

g(n)F
(
x

n

)
− F (y)G

(
x

y

)
.

1.2. Prime number results
In this section, we record some classical theorems about prime numbers. We begin with

four estimates of Mertens [11, Theorem 3.4, p. 40]. The first two are pretty much the same,
but written in a different form.

Theorem 1.2.1. If γ = 1−
∫∞

1 {t}t−2dt is the Euler-Mascheroni constant, then, for x > 2,
we have
(a)

∑
n6x

Λ(n)
n

= log x+O(1);

(b)
∑
p6x

log p
p

= log x+O(1);

(c)
∑
p6x

1
p

= log log x+ c+O(1/ log x), where c is a constant;

(d)
∏
p6x

(
1− 1

p

)
= e−γ

log x(1 +O(1/ log x)).

We now define the prime counting function π and Chebyshev’s functions θ and ψ. For
x > 1, they are given as π(x) = #{p 6 x}, θ(x) = ∑

p6x log p and ψ(x) = ∑
n6x Λ(n).

Theorem 1.2.2. For x > 2, we have that
(a) π(x) � x/ log x;
(b) ψ(x) � x;
(c) ψ(x) = θ(x) +O(

√
x).

Proof. For part (a), see [19, Corollary 2.6, p. 49], and for part (b), see [19, Theorem 2.4,
p. 46]. Finally, for part (c), the reader is advised to see [19, Corollary 2.5, p. 49]. �

The first two parts of Theorem 1.2.2 are known as Chebyshev’s estimates. However,
the Prime Number Theorem (PNT) provides strongest distributional information about the
primes than these estimates. We state PNT with the best error term to date which is due
to Korobov and Vinogradov [8, Corollary 8.30, p. 227].

34



Theorem 1.2.3 (Prime number theorem). If x > 2, then there exists an absolute constant
c > 0 such that

ψ(x) = x+O(x exp{−c(log x)3/5(log log x)−1/5}).

This form of PNT was also proved by Koukoulopoulos [10] by more elementary means. So,
it may be viewed as a number-theoretic result that can be deduced by simpler methods, the
so called pretentious methods.

We close the current section with a variant of the Brun-Titchmarsch inequality [11,
Theorem 20.1, p. 206] about prime numbers in short arithmetic progressions.

Lemma 1.2.4. Let q > 1 be an integer. For a ∈ (Z/qZ)∗ and x > y > 2q
√
x, we have that

∑
x−y<n6x
n≡a (mod q)

Λ(n)� y

φ(q) .

Proof. Note that Λ(n) 6 log x for n 6 x. Hence,
∑

x−y<n6x
n≡a (mod q)

Λ(n) 6 log x
∑

x−y<p6x
p≡a (mod q)

1 +
∑
pk6x
k>2

log p. (1.2.1)

In virtue of Theorem 1.2.2(c), we have that
∑
pk6x
k>2

log p = ψ(x)− θ(x)�
√
x� y

φ(q) . (1.2.2)

Now, since x > 2q
√
x, it follows that x > 4q2, and so we have that y > 2q

√
x > max{4q2,2

√
x}.

Thus, log(y/q) > (log y)/2 and log y � log x. Consequently, the Brun-Titchmarsh inequality
[11, Theorem 20.1, p. 206] yields

∑
x−y<p6x
p≡a (mod q)

1� y

φ(q) log(y/q) �
y

φ(q) log x. (1.2.3)

We insert (1.2.2) and (1.2.3) in (1.2.1) and this finishes the proof. �

1.3. Dirichlet characters
This section is a brief discussion on the notion of Dirichlet characters. First we see their

definition and then we state one of their basic properties as well as a useful lemma.

Definition 1.3.1. Let q > 1 be an integer. We call a function χ : Z→ {z ∈ C : |z| 6 1} a
Dirichlet character modulo q if
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(a) χ is q-periodic, that is, χ(n+ q) = χ(n) for all n ∈ Z;
(b) χ(n) = 0 if and only if (n,q) = 1;
(c) χ is completely multiplicative, meaning that χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

There are φ(q) characters modulo q [1, Theorem 6.15, p. 138] and one of them is called
principal:

Definition 1.3.2. Let q > 1 be an integer. The Dirichlet character χ0 for which χ0(n) = 1
for all (n,q) = 1 is called the principal character modulo q.

An important property of the Dirichlet characters which detects integers in arithmetic
progressions is the following orthogonality relation [1, Theorem 6.16, p. 140].

Theorem 1.3.1 (Orthogonality relation). Let q ∈ N. For a ∈ (Z/qZ)∗ and n ∈ Z, we have

1
φ(q)

∑
χ (mod q)

χ(n)χ(a) = 1n≡a (mod q).

We now prove a lemma which will be needed multiple times in the proof of Theorem 2.

Lemma 1.3.2 (Parseval’s identity). Let {αn}n∈N be a sequence of complex numbers. If the
series ∑n>1 αnχ(n) converges for all χ (mod q), then

∑
χ (mod q)

∣∣∣∣∣∑
n>1

αnχ(n)
∣∣∣∣∣
2

= φ(q)
∑

a∈(Z/qZ)∗

∣∣∣∣∣ ∑
n≡a (mod q)

αn

∣∣∣∣∣
2

.

Proof. Let N be a positive integer. For any a ∈ (Z/qZ)∗, Theorem 1.3.1 implies that

∑
n6N

n≡a (mod q)

αn = χ(a)
φ(q)

∑
n6N

αnχ(n).

Consequently, since the series ∑n>1 αnχ(n) converges for all χ (mod q), it follows that the
series ∑n≡a (mod q) αn converges too.

Now, applying Theorem 1.3.1, we conclude that

∑
χ (mod q)

∣∣∣∣∣ ∑
n6N

αnχ(n)
∣∣∣∣∣
2

=
∑

n1,n26N

αn1αn2

∑
χ (mod q)

χ(n1)χ(n2)

= φ(q)
∑

n1,n26N
n1≡n2 (mod q)

αn1αn2

= φ(q)
∑

a∈(Z/qZ)∗

( ∑
n16N

n1≡a (mod q)

αn1

)( ∑
n26N

n2≡a (mod q)

αn2

)
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= φ(q)
∑

a∈(Z/qZ)∗

∣∣∣∣∣ ∑
n6N

n≡a (mod q)

αn

∣∣∣∣∣
2

.

We let N →∞ at the first and last line and this finishes the proof of the lemma. �

1.4. Multiplicative functions
A characteristic example of a multiplicative function is the m-fold divisor function τm,

where m ∈ N. It is defined as τm(n) = ∑
d1···dm=n 1 for all n ∈ N, For n = 2, we write τ2 = τ

and this is the divisor function which counts the number of divisors of a positive integer. For
s ∈ C with Re(s) > 1, the Dirichlet series of τm is ζm, where ζ is the Riemann zeta function.
The values of τm on prime powers are (by a reasoning similar to the one that we developed
in Remark 1)

τm(pk) =
(
m+ k − 1

k

)
. (1.4.1)

Lemma 1.4.1. If m ∈ N, then for all n ∈ N, we have
(a) mω(n) 6 τm(n) 6 mΩ(n);
(b) τm(n)�ε,m nε for any ε > 0

Proof. (a) Since the functions mω,mΩ and τm are positive and multiplicative, it suffices to
show that m 6 τm(pk) 6 mk for any prime p and every integer k > 1. Since τm(p) = m from
(1.4.1), the inequalities are trivially true when k = 1. Now, let us assume that k > 2. Then,
note that m+ k− j > 1 + k− j for j ∈ {1, · · · , k− 1}. Hence, using (1.4.1), we deduce that

τm(pk) = m
∏

16j6k−1

m+ k − j
1 + k − j

> m.

It now remains to show that τm(pk) 6 mk. Since

m+ k − j
1 + k − j

= 1 + m− 1
1 + k − j

,

the fractions of the left-hand side are increasing in j, and so, for j 6 k, the largest fraction
corresponds to j = k. Therefore, we obtain that (m+k− j)/(1+k− j) 6 m, and combining
this with (1.4.1) gives

τm(pk) =
∏

16j6k

m+ k − j
1 + k − j

6 mk.

This completes the proof for the first part of the lemma.
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(b) Let ε > 0. We prove this part by induction on m. The base case is [24, Cororllary
1.1, p. 81] and we will use it with ε/2. Now, assume that τm−1(n) �ε,m nε/2. Upon noting
that τm = τm−1 ∗ 1, we deduce that τm(n) 6 τ(n) maxd|n(τm−1(d)) for all n ∈ N. So,

τm(n)�ε,m τ(n) max
d|n

d ε/2 �ε,m nε/2 · nε/2 = nε,

and this concludes the proof of part (b) too. �

For m = 2, a stronger inequality than that of Lemma 1.4.1(b) follows from the maximal
order of log τ [24, Theorem 2, p. 82] which implies that maxn6x log τ(n) � log x/ log log x
for x > 2. If we put this bound together with the inequality 2ω 6 τ (from Lemma 1.4.1(a)),
then we infer the following lemma.

Lemma 1.4.2. For x > 2, we have ω(n)� log x/ log log x for all positive integers n 6 x.

Asymptotics for the partial sums of τm are also known [11, Theorem 7.4, p. 76].

Theorem 1.4.3. Let x > 1 and let m ∈ N. There exists a real number η = η(m) ∈ (0,1)
such that

∑
n6x

τm(n) = x
m−1∑
i=0

αi,m(log x)i +O(x1−η),

where αi,m are real numbers that depend at most on i and m for i ∈ {0, · · · ,m − 1}, and
am−1,m = 1/(m− 1)! .

Apart from all the above results about the divisors functions, let us also recall a classical
estimate regarding the Euler totient function φ [24, Theorem 4, p. 84].

Lemma 1.4.4. For a positive integer n > 2, it is true that φ(n)� n/ log log n.

In the case of the divisor functions, we have asymptotic formulas for their partial sums.
In general, asymptotic formulas constitute a very precise piece of information and some-
times weaker information, such as that of an upper bound, is sufficient. The next theorem
[11, Theorem 14.2] allows us to bound the partial sums of a non-negative, divisor bounded
multiplicative function f rather easily, by using only its prime values f(p).

Theorem 1.4.5. If f is a multiplicative function such that 0 6 f 6 τk for some positive
integer k, then

∑
n6x

f(n)�k x exp
{∑
p6x

f(p)− 1
p

}
.
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Example 1.4.1. For y > 1, if we take f = 1P−(·)>y in Theorem 1.4.5, then by referring to
Theorem 1.2.1(c), we obtain the estimate

Φ(x,y) := #{n 6 x : P−(n) > y} � x

log y . (1.4.2)

A stronger version of Theorem 1.4.5, where the partial sums are shorter and are taken
over an arithmetic progression, was proven by Shiu [23].

Theorem 1.4.6. Fix m ∈ N and ε > 0. Given any choice of q ∈ N, a ∈ (Z/qZ)∗, real
numbers x > y > 1 with y/q > xε and a multiplicative function f such that 0 6 f 6 τm, we
have that

∑
x−y<n6x
n≡a (mod q)

f(n)�m,ε
y

q
exp

{∑
p6x
p-q

f(p)− 1
p

}
.

1.5. Sieve theory: Two fundamental lemmas
Sieve theory is a field of number theory that deals with the size of sets of integers whose

prime factors avoid a prescribed set of primes. One of the most important results in this
field is the next theorem which is also known as the fundamental lemma of sieve theory. A
proof of this theorem [11, Theorem 18.11, p. 190] may be found in [11, p. 196].

Theorem 1.5.1 (The Fundamental Lemma of Sieve Theory). Let A = {an}n∈N be a se-
quence of non-negative real numbers with ∑n>1 an < ∞ and let P be a set of primes. Let
also y > 1 be a real number and set P (y) := ∏

p6y, p∈P p. We define

S(A,P ,y) :=
∑

(n,P (y))=1
an,

and for d | P (y), we put

Ad :=
∑
d|n
an.

If there exists a non-negative multiplicative function v, some real number X, remainder terms
rd and positive constants κ and C such that v(p) < p for all p | P (y),

Ad = X · v(d)
d

+ rd for all d | P (y) and

∏
p∈P

w1<p6w2

(
1− v(p)

p

)−1

6

(
logw2

logw1

)κ (
1 + C

logw1

)
for 2 6 w1 6 w2 < y,
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then, for every real real number u > 1, we have that

S(A,P ,y) = X
∏

p|P (y)

(
1− v(p)

p

)
(1 +Oκ,C(u−u/2)) +O

 ∑
d|P (y)
d6yu

|rd|

.
The last result [11, Exercise 19.4(b), p. 204] of the section may be seen as a variant of

another classical form of the fundamental lemma of sieve theory [11, Theorem 19.1, p. 195].
It is a variant that contains logarithmic weights.

Lemma 1.5.2. Let k, κ and C be positive constants and let also z > 2,P ⊆ {p 6 z}, P (y) =∏
p∈P,p6y p for all y 6 z and u > uκ := 1 + 2/(e0.53/κ − 1). Suppose further that ν is a

multiplicative function such that 0 6 ν(p) < min{k,p} for all p ∈ P and

∏
p∈P,

w1<p6w2

(
1− ν(p)

p

)−1

6

(
logw2

logw1

)κ (
1 + C

logw1

)
for 2 6 w1 6 w2.

There exist two arithmetic functions λ− and λ+ such that
• λ±(1) = 1, |λ±| 6 1,
• supp(λ±) ⊆ {d | ∏p∈P p : d 6 zu},
• (1 ∗ λ−)(n) 6 1(·,P (z))=1(n) 6 (1 ∗ λ+)(n) for all n ∈ N and

∑
d|
∏
p∈P p

λ±(d)ν(d)(log d)r
d

=
∑

d|
∏
p∈P p

µ(d)ν(d)(log d)r
d

+Or,k

(
(log z)ru−u/2

∏
p∈P

(
1− ν(p)

p

))
,

for every r ∈ N.

Proof. First we show the following claim and then we use it to prove Lemma 1.5.2.

Claim 1. Let ν∗ be a multiplicative function such that ν∗(p) = 1 for p |P (2ke) and ν∗(p) =
ν(p)p1/ log z when p ∈ P ∩ (2ke,+∞). Then∣∣∣∣∣ ∑

d|P (y)

µ(d)ν(md)(log(md))r
d

∣∣∣∣∣�r,k (log z)rν∗(m)
∏

p|P (y)

(
1− ν∗(p)

p

)
, (1.5.1)

for all y ∈ [2,z] and for all m | ∏p∈P,p>y p.

Proof of Claim 1. Let y ∈ [2,z]. For any s ∈ C with |s| 6 1/ log z, we may use Theorem
1.2.1(b) to easily show that∣∣∣∣∣ ∏

p∈P∩(2ke,y)

(
1− ν(p)

p1−s

)∣∣∣∣∣ �k ∏
p|P (y)

(
1− ν(p)

p

)
, (1.5.2)
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upon noticing that ps = 1 +O(log p/ log z) and that |ν(p)/p1−s| 6 1/2 for p ∈ [2ke,z] ∩ P .
We now consider the function g : C→ C with

g(s) = ms
∏

p|P (y)

(
1− ν(p)

p1−s

)
=
∑
d|P (y)

µ(d)ν(d)(md)s
d

, s ∈ C.

For r ∈ N and m | ∏p∈P,p>y p, Cauchy’s residue theorem implies that∣∣∣∣∣ ∑
d|P (y)

µ(d)ν(md)(log(md))r
d

∣∣∣∣∣ = ν(m)|g(r)(0)| = r!·ν(m)
2π ·

∣∣∣∣∣
∫
|s|= 1

log z

g(s)
sr+1 ds

∣∣∣∣∣
�r (log z)rν(m)m

1
log z max

|s|=1/ log z

∣∣∣∣∣ ∏
p|P (y)

(
1− ν(p)

p1−s

)∣∣∣∣∣
�r,k (log z)rν(m)m

1
log z

∏
p|P (y)

(
1− ν(p)

p

)
. (1.5.3)

For the last estimate we first noted that |∏p|P (2ke)(1−ν(p)ps−1)| 6 ∏p|P (2ke)(1+kpRe(s)−1) 6∏
p|P (2ke)(1 + kp1/ log z−1) 6 ∏p62ke(1 + kp1/ log 2−1) =: c3(k) and then we used (1.5.2).
Applying (1.5.2) with s = 1/ log z, it follows that

∏
p|P (y)

(
1− ν∗(p)

p

)
=

∏
p|P (2ke)

(
1− 1

p

) ∏
p∈P∩(2ke,y)

(
1− ν∗(p)

p

)
�k

∏
p|P (y)

(
1− ν(p)

p

)
. (1.5.4)

The term∏
p|P (2ke)(1−1/p) was absorbed in the implied constants, because c4(k) := ∏

p62ke(1−
1/p) 6 ∏p|P (2ke)(1− 1/p) < 1. We make use of (1.5.4), and so (1.5.3) becomes∣∣∣∣∣ ∑

d|P (y)

µ(d)ν(md)(log(md))r
d

∣∣∣∣∣�r,k (log z)rν(m)m
1

log z
∏

p|P (y)

(
1− ν∗(p)

p

)
. (1.5.5)

At this point, we write m = m1m2, where m1 = ∏
p|m,p62ke p and m2 = ∏

p|m,p>2ke p. For the
positive integer m1 we have

0 6 ν(m1) 6
∏

p|m,p62ke
ν(p) 6 k2ke and m

1
log z
1 6 m

1
log 2
1 6 (2ke)

2ke
log 2 .

Thus, ν(m)m1/ log z �k ν(m2)m1/ log z
2 = ν∗(m), and combining this inequality with (1.5.5),

we arrive at the estimate (1.5.1). So, the claim has now been proven.

Since p 6 z for any prime p ∈ P , if p ∈ P ∩ (2ke,+∞), then ν∗(p) 6 ke < p/2. On the
other hand, if p ∈ P and p 6 2ke, then ν∗(p) = 1 < p/2 as well. So, 0 6 ν∗(p) < p/2 and ν∗

is bounded on the primes p ∈ P . Now we use the inequalities 0 6 ν∗(p) < p/2 for all p ∈ P

41



and Claim 1 to prove that

∑
d|
∏
p∈P p

λ±(d)ν(d)(log d)r
d

=
∑

d|
∏
p∈P p

µ(d)ν(d)(log d)r
d

+Or,k

(
(log z)ru−u/2

∏
p∈P

(
1− ν∗(p)

p

))
,

where λ± are arithmetic functions satisfying the conditions mentioned in the statement of
the lemma. The proof of the lemma will then be complete, since one may replace ν∗ by ν in
the big-Oh term by using (1.5.4) with y = z.

First, let us put f = ν · logr for simplicity. The construction of the functions λ± is
described in [11, Chapter 19]. The proof of the last aforementioned equality is along the
same lines as the proof of Theorem 19.1 in [11]. One only has to make minor notational
changes and rename the yj’s to zj’s and redefine V (y) as

Vf (y) =
∑
d|P (y)

µ(d)f(d)
d

.

They also have to redefine Vn as

Vn,f =
∑

zn<pn<...<p16z
p1,...,pn∈P

pi6zi (i<n,i≡n(mod 2))

1
p1 · · · pn

∑
d|P (pn)

µ(d)f(p1 · · · pmd)
d

.

Then, in an analogous way as in [11, Theorem 19.1], we have that

Vf (z)−
∑

d|
∏
p∈P p

λ+(d)f(d)
d

= −
∑
j>J

V2j−1,f , (1.5.6)

for the integer J which is defined in [11, Chapter 19, p. 195, 197]. Furthermore, since
zn < pn, using (4.2.3), we deduce that

|Vn| �r,k (log z)r
∑

zn<pn<...<p16z
p1,...,pn∈P

ν∗(p1) · · · ν∗(pn)
p1 · · · pn

∏
p|P (pn)

(
1− ν∗(p)

p

)

�r,k (log z)r
∏

p|P (zn)

(
1− ν∗(p)

p

) ∑
zn<pn<...<p16z

p1,...,pn∈P

ν∗(p1) · · · ν∗(pn)
p1 · · · pn

�r,k
(log z)r
n! ·

∏
p|P (zn)

(
1− ν∗(p)

p

)
·
( ∑
p∈P∩(zn,z]

ν∗(p)
p

)n
. (1.5.7)

In the last step we applied the Erdős trick to drop the ordering condition from the sum of
the second line. Now we can simply use (1.5.6) and (1.5.7) and follow the proof of Theorem
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19.1 of [11] to show that

∑
d|
∏
p∈P p

λ±(d)ν(d)(log d)r
d

=
∑

d|
∏
p∈P p

µ(d)ν(d)(log d)r
d

+Or,k

(
(log z)ru−u/2

∏
p∈P

(
1− ν∗(p)

p

))
.

The proof for the function λ− is similar. Its only difference is the use of the identity

Vf (z)−
∑

d|
∏
p∈P p

λ+(d)f(d)
d

=
∑
j>J

V2j,f

in place of (1.5.6). �
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Chapter 2

Auxiliary results

In this chapter, we state and prove some results which will be essential for the proofs of
Theorems 1 and 2.

2.1. Asymptotics of sifted sums
This section includes estimates on sifted sums of several arithmetic functions. The first

two are useful for the first project of the thesis.

Lemma 2.1.1. Let D ∈ N and set kD = ∏
p6D3 p. There exists a real number c = c(D) ∈

(0,1) such that

∑
n6x

(n,kD)=1

DΩ(n) = x
D−1∑
i=0

ai,D(log x)i +O(x1−c) (2.1.1)

for some constants ai,D that depend at most on i and D.

Proof. We write 1(·,kD)=1 ·DΩ = τD ∗ h, where h = τ−D ∗ (1(·,kD)=1 ·DΩ) and τ−D is given
by the coefficients of the Dirichlet series of ζ(s)−D when Re(s) > 1. The values of τ−D can
be easily computed by the argument that we saw in the beginning of Remark 1. Now, if
p 6 D3, then h(pν) = τ−D(pν). Hence, by (1.4.1),

∏
p6D3

(∑
j>0

h(pj)
pjs

)
=

∏
p6D3

(∑
j>0

(
j −D − 1

j

)
1
pjs

)
=

∏
p6D3

(1− p−s)D. (2.1.2)

The product of the leftmost side is an entire function of s as a finite product of entire
functions. Furthermore, each of the series in the product is absolutely convergent for σ > 0,
because |p−s| = p−σ < 1 and the radius of convergence of the power series of x 7→ (1− x)D

equals 1. Therefore, the finite product of the leftmost side of (2.1.2) is absolutely convergent



for σ > 0. If p > D3, then note that h(p) = 0 and

h(pν) = Dν
ν∑
κ=0

D−κ
(
κ−D − 1

κ

)
= Dν

(
1− 1

D

)D
+O(1)� Dν for ν > 2.

The second equality may be justified by using the Taylor expansion of order ν for the
function x 7→ (1 − x)D when |x| < 1. Consequently, for p > D3 and σ > 5/6, we have
that ∑j>1 |h(pj)p−js| � ∑

j>2(D/pσ)j 6 ∑j>2 p
−j(σ−1/3) � p−2(σ−1/3). Since 2(σ − 1/3) > 1,

when σ > 5/6, we conclude that the product

∏
p>D3

(∑
j>0

h(pj)
pjs

)

is absolutely convergent in the half-plane Re(s) > 5/6 and it thus defines an analytic function
of s in this region. Combining all the above conclusions, we infer that the Euler product

H(s) :=
∏
p

(∑
j>0

h(pj)
pjs

)

is absolutely convergent and an analytic function of s when σ > 5/6. So, the same hold for
its Dirichlet series H(s) = ∑

n>1 h(n)n−s.
Now,

∑
n6x

(n,kD)=1

DΩ(n) =
∑
a6
√
x

τD(a)
∑

√
x<b6x/a

h(b) +
∑
b6
√
x

h(b)
∑
a6x/b

τD(a), (2.1.3)

and let S1 and S2 be the left and right sums of the right-hand side, respectively. Let also
G(s) = ∑

n>1 |h(n)|n−s for σ > 5/6.
For S1, we apply Rankin’s trick twice and obtain

|S1| 6
∑
a6
√
x

τD(a)
∑

√
x<b6x/a

(
x

ab

)7/8
|h(b)| 6 x7/8G

(7
8

) ∑
a6
√
x

τD(a)
a7/8

6 x7/8G
(7

8

) ∑
a6
√
x

(√
x

a

)1/6 τD(a)
a7/8 6 G

(7
8

)
ζ
(25

24

)D
x23/24, (2.1.4)

where at the end we used the Dirichlet series of τD which is ζD.
We continue by bounding S2. In this case, we make use of the asymptotic formula of

Theorem 1.4.3 and get that

S2 = x
D−1∑
i=0

αi,D
i∑

`=0

(
i

`

)
(log x)`

∑
b6
√
x

h(b)(− log b)i−`
b

+O

(
x1−η ∑

b6
√
x

|h(b)|
b1−η

)
. (2.1.5)
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We have that ∣∣∣∣ ∑
b>
√
x

h(b)(− log b)i−`
b

∣∣∣∣ 6 ∑
b>
√
x

|h(b)|(log b)D−1

b
�D

∑
b>
√
x

|h(b)|
b23/24

6
∑
b>
√
x

(
b√
x

)1/24 |h(b)|
b23/24 6 G

(11
12

)
x−1/48,

and so

∑
b6
√
x

h(b)(− log b)i−`
b

= H(i−`)(1) +O(x−1/48). (2.1.6)

If we define ϑ := 1− 11/(12η) < 1, then one last suitable application of Rankin’s trick gives

x1−η ∑
b6
√
x

|h(b)|
b1−η 6 x1−η ∑

b6
√
x

(√
x

b

)η·ϑ |h(b)|
b1−η = x1−η(1−ϑ/2) ∑

b6
√
x

|h(b)|
b11/12 6 G

(11
12

)
x1−η/2.

We insert (2.1.6) and (2.1.7) into (2.1.5) and we combine the result with (2.1.3) and
(2.1.4). This completes the proof of the lemma. �

Lemma 2.1.2. Let t ∈ R and set Vt := exp{100(log(3 + |t|))2/3(log log(3 + |t|))1/3}. For
x > z > Vt, we have that

∑
n6x

P−(n)>z

nit = x1+it

1 + it

∏
p6z

(
1− 1

p

)
+O

(
x1−1/(30 log z)

log z

)
.

Proof. See [9, Lemma 3.1]. �

Lemma 2.1.3. Given a q ∈ N, let χ be a Dirichlet character modulo q. For j ∈ N ∪ {0}
and any real numbers x > y > (10q)100, we have

∑
n6x

P−(n)>y

χ(n)(log n)j = 1χ=χ0 ·
(∫ x

y
(log t)jdt

) ∏
p6y

(
1− 1

p

)
+O

(
(log x)jx1−κ/ log y

log y

)
,

where χ0 is the principal character modulo q and κ > 0 is an absolute constant.

Proof. For any w > y, application of [11, Lemma 22.2, p. 224] with t = 0 gives

∑
n6w

P−(n)>y

χ(n) = 1χ=χ0 · w
∏
p6y

(
1− 1

p

)
+Ry(w), (2.1.7)
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where Ry(w) � (log y)−1w1−κ/ log y for some constant κ > 0. Using the Riemann-Stieltjes
integral, we have

∑
n6x

P−(n)>y

χ(n)(log n)j =
∫ x

y
(log t)jd

( ∑
n6t

P−(n)>y

χ(n)
)

(2.1.8)

= 1χ=χ0 ·
(∫ x

y
(log t)jdt

) ∏
p6y

(
1− 1

p

)
+
∫ x

y
(log t)jdRy(t).

Now, if x > yA for some large A > 0, so that y 6 x1−κ/ log 2 6 x1−κ/ log y, then a simple
integration by parts implies that

∫ x

y
(log t)jdRy(t)�

(log x)jx1−κ/ log y

log y + j

log y

∫ x

y
(log t)j−1t−κ/ log ydt.

But, since

j
∫ x

y
(log t)j−1t−κ/ log ydt 6 jx1−κ/ log y

∫ x

1

(log t)j−1

t
dt = (log x)jx1−κ/ log y,

we deduce that ∫ x

y
(log t)jdRy(t)�

(log x)jx1−κ/ log y

log y . (2.1.9)

We insert (2.1.9) in (2.1.8) and complete the proof of the lemma when x > yA. It only
remains to establish the lemma in the case y 6 x < yA. In this case, log x/ log y � 1, and so
applying Example 1.4.1, we have that∣∣∣∣∣ ∑

n6x
P−(n)>y

χ(n)(log n)j
∣∣∣∣∣ 6 (log x)j

∑
n6x

P−(n)>y

1� x(log x)j
log y � (log x)jx1−κ/ log y

log y .

This means that the lemma does hold in the range y 6 x < yA as well and this finishes the
proof. �

We close the section by establishing an asymptotic for the sifted partial sums of (log n)j

on arithmetic progressions. The following lemma, as well as Lemma 2.1.3, are only required
for the proof of Theorem 2.

Lemma 2.1.4. Let j be a non-negative integer. For any q ∈ N, a ∈ (Z/qZ)∗ and real
numbers x > y > 2q, there exists a constant λ > 0 such that

∑
n6x,P−(n)>y
n≡a (mod q)

(log n)j = 1
φ(q)

(∫ x

y
(log t)jdt

) ∏
p6y

(
1− 1

p

)
+O

(
(log x)jx1−λ/ log y

φ(q) log y

)
. (2.1.10)
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Proof. Let A > 0 be a sufficiently large real number. We are going to prove the lemma
separately in the ranges x > yA and y 6 x < yA.

First, we start with the case x > yA. In this case, we will apply Theorem 1.5.1 with
P = {p 6 y, p - q} and A = {an}n∈N, where

an =

(log n)j, when n 6 x and n ≡ a (mod q)
0, otherwise.

Observe that

S(A,P ,y) =
∑

n6x,P−(n)>y
n≡a (mod q)

(log n)j.

Consequently, with the chosen sets A and P , an application of Theorem 1.5.1 will provide
an asymptotic formula for the sums of interest at the right-hand side.

Now, let d be a positive integer dividing ∏p6y, p-q p. Because of the chinese remainder
theorem, the system of linear congruences n ≡ a (mod q), n ≡ 0 (mod d) is equivalent to
n ≡ a∗ (mod qd) for some a∗ ∈ (Z/(qd)Z). Since ∑n6x,n≡a∗ (mod qd) 1 = x/(qd) +O(1), partial
summation implies that

Ad =
∑

n6x,d|n
n≡a (mod q)

(log n)j =
∑
n6x

n≡a∗ (mod qd)

(log n)j = 1
qd

{
x(log x)j − j

∫ x

1
(log t)j−1dt

}
+O((log x)j)

= 1
qd

∫ x

1
(log t)jdt+O((log x)j). (2.1.11)

Therefore, following the notation of Theorem 1.5.1, we have X = xq−1 ∫ x
1 (log t)jdt, v(d) = 1

and rd = (log x)j for all d | ∏p6y, p-q p. Then Theorem 1.2.1(d) implies that we may choose
κ = 1 and some large C > 0 in Theorem 1.5.1.

For u = e log x/(A log y) > e, note that

X
∏

p6y p-q

(
1− v(p)

p

)
u−u/2 <

x(log x)j
q

∏
p6y

(
1− 1

p

)∏
p|q

(
1− 1

p

)−1

exp
{
− e log x

2A log y

}

6
(log x)jx1−λ/ log y

φ(q)
∏
p6y

(
1− 1

p

)

� (log x)jx1−λ/ log y

φ(q) log y (2.1.12)

for some λ ∈ (0,e(2A)−1]. At the last step we applied one of Mertens’ estimates (Theorem
1.2.1(d)). Furthermore, with P (y) = ∏

p6y, p-q p and the choice of u that we made, we have
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that
∑
d|P (y)
d6yu

|rd| 6
∑
d6yu

rd 6 xe/A(log x)j � x2e/A(log x)j−1

<
(log x)jx(2e+1)/A

φ(q) log y 6
(log x)jx1−λ/ log y

φ(q) log y , (2.1.13)

where we passed from the first line to the second by using the inequality x1/A > y > 2q >
φ(q). The last step follows from the fact that A is sufficiently large.

Combination of (2.1.12) and (2.1.13) with Theorem 1.5.1 yields

∑
n6x,P−(n)>y
n≡a (mod q)

(log n)j = 1
φ(q)

(∫ x

1
(log t)jdt

) ∏
p6y

(
1− 1

p

)
+O

(
(log x)jx1−λ/ log y

φ(q) log y

)
. (2.1.14)

But, ∏p6y(1− 1/p)� (log y)−1 by Theorem 1.2.1(d), and∫ y

1
(log t)jdt < y(log x)j � (log x)jx1−λ/ log y,

since x > yA with A sufficiently large. Hence, relation (2.1.14) implies (2.1.10) in the range
x > yA.

When y 6 x < yA, a similar argument as the one that we developed at the end of the
proof of Lemma 2.1.3 shows that

∑
n6x,P−(n)>y
n≡a (mod q)

(log n)j � (log x)jx1−λ/ log y

φ(q) log y

and the proof of the lemma is complete. �

2.2. Bounds for sifted L –Dirichlet series
Let us consider a real number y > 1 and a positive integer q. For s ∈ C with Re(s) > 1,

we define the y-rough Dirichlet series of a Dirichlet character χ modulo q as

Ly(s,χ) :=
∑
n>1

P−(n)>y

χ(n)
ns

= L(s,χ)
∏
p6y

(1− χ(p)/ps). (2.2.1)

In (2.2.1), the series is absolutely convergent and its rightmost side implies the meromorphical
continuation of Ly(·,χ) on the whole complex plane (with one pole at 1 only in the case of
the principal character χ0).
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The present section constitutes a collection of some existing upper and lower bounds for
the values of a y-rough Dirichlet series. We will use all these bounds in the proof of Theorem
2. The theorems listed below are stated without their proofs, as they are already part of the
literature. We only provide a reference for each one of them. To simplify their statements,
we will use the notation

Vt := exp{100(log(3 + |t|))2/3(log log(3 + |t|))1/3}, (t ∈ R)

which was introduced in Lemma 2.1.2.
We start with the following theorem [10, Lemma 4.1] concerning an upper bound for the

derivatives of L(·,χ).

Theorem 2.2.1. Let q be a positive integer and χ be a non-principal character modulo q.
Let also j ∈ N and s = σ + it with σ > 1 and t ∈ R. For y > qVt, we have that

|L(j)
y (s,χ)| � j!(C log y)j,

where C > 0 is an absolute constant.

The next result [10, Lemma 4.2] equips us with lower bounds for Ly(s,χ).

Theorem 2.2.2. Fix a positive integer q and let χ be a character modulo q. Let s = σ + it

with σ > 1 and t ∈ R and consider the real number y > qVt.
(a) If χ is not real, then |Ly(s,χ)| � 1.
(b) If χ is real and non-principal, then |Ly(s,χ)| � Ly(1,χ).

The last result of this section is a theorem [11, Lemma 27.5, p. 291] that deals with the
size of Lq(σ,χ) for σ > 1 when χ 6= ψ, where ψ is defined as in the statement of Theorem 2.

Theorem 2.2.3. Let q be a positive integer and let Rq be the set of real, non-principal
characters modulo q. If we take a character ψ such that Lq(1,ψ) = minχ∈Rq Lq(1,χ) and
Cq := {χ (mod q) : χ 6= χ0, ψ}, then |Ly(σ,χ)| � 1 for all χ ∈ Cq, y > q and σ > 1.

2.3. Mean value theorems
We open this section with a mean value theorem of Montgomery [18, Thoerem 3, p. 131].

Lemma 2.3.1. Let A(s) = ∑
n>1 ann

−s and B(s) = ∑
n>1 bnn

−s be two Dirichlet series
which converge for Re(s) > 1. If |an| 6 bn for all n ∈ N, then

∫ T

−T
|A(σ + it)|2dt 6 3

∫ T

−T
|B(σ + it)|2dt,
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for any σ > 1 and any T > 0.

Now, we prove a mean value theorem for the derivatives of the Dirichlet series

∑
n≡a (mod q)
P−(n)>y

Λ(n)
ns

.

Lemma 2.3.2. Consider an integer q > 1 and a real number y > 16q2. For j ∈ N∪{0}, T >
1, σ ∈ (1,2) and a ∈ (Z/qZ)∗, we have

∫
|t|>T

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2 dt
t2
� (log 4)j(2j)!

φ(q)2(σ − 1)2j+1T
.

Proof. First, for k ∈ N ∪ {0}, because of Lemma 2.3.1, we observe that

∫ k+1/2

k−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt =
∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)jn−ik
nσ+it

∣∣∣∣∣
2

dt

6 3
∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt.

Consequently,

∫
|t|>T

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2 dt
t2
6

∑
|k|>T−1/2

∫ k+1/2

k−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2 dt
t2

6 4
∑
|k|>T/2

1
k2

∫ k+1/2

k−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt

�
( ∑
k>T/2

1
k2

)
·
∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt

� 1
T

∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt. (2.3.1)

Now, we focus on estimating the integral at the last line of (2.3.1). We will do this by
adopting the rather standard technique which is used for proving similar mean value theo-
rems. We consider the function Φ : R → R given by the formula Φ(x) = (2π sin(x/4))2x−2

for all x ∈ R∗ and Φ(0) = π2/4. Notice that Φ(x) > 1 on [−1/2,1/2]. So, if Φ̂ is the Fourier
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transform of Φ, then

∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt 6
∫
R

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

Φ(t)dt (2.3.2)

=
∑

m≡a (mod q)
n≡a (mod q)

P−(m),P−(n)>y

Λ(n)Λ(n)(logm)j(log n)j
mσnσ

Φ̂(log(m/n)),

where we arrived at the last line by expanding the square and by interchanging the order of
summation and integration. The Fourier transform Φ̂ is an even function, because Φ is also
even. Therefore, we may bound the last line of (2.3.2) by twice the sum

∑
m≡a (mod q)

n6m,n≡a (mod q)
P−(m),P−(n)>y

Λ(n)Λ(n)(logm)j(log n)j
mσnσ

Φ̂(log(m/n)). (2.3.3)

The Fourier transform Φ̂ is continuous and compactly supported on [−1/2,1/2]. Moreover,
for n 6 m, we have that |n−m| 6 m log(m/n). Therefore, the sum (2.3.3) is smaller than
or equal to

∑
m≡a (mod q)
P−(m)>y

Λ(m)(logm)j
mσ

∑
n6m,|n−m|6m/2
n≡a (mod q)

Λ(n)(log n)j
nσ

�
∑

m≡a (mod q)
P−(m)>y

Λ(m)(logm)2j

m2σ

∑
m/26n6m
n≡a (mod q)

Λ(n)

� 1
φ(q)

∑
m≡a (mod q)
P−(m)>y

Λ(m)(logm)2j

m2σ−1 .

For the last estimate we made use of Lemma 1.2.4. Its application was allowed, because
Λ(1) = 0, which means that the condition P−(m) > y implies m > y > 16q2, which in turn
gives that m/2 > 2q

√
m. According to all the above, relation (2.3.2) becomes

∫ 1/2

−1/2

∣∣∣∣∣ ∑
n≡a (mod q)
P−(n)>y

Λ(n)(log n)j
nσ+it

∣∣∣∣∣
2

dt� 1
φ(q)

∑
m≡a (mod q)
P−(m)>y

Λ(m)(logm)2j

m2σ−1 . (2.3.4)

53



We continue by bounding the sum of the right-hand side of (2.3.4). By decomposing this
sum in dyadic intervals, we get that

∑
m≡a (mod q)
P−(m)>y

Λ(m)(logm)2j

m2σ−1 6 (log 4)j
∑

r>log y/ log 2

r2j

2r(2σ−1)

∑
2r6m<2r+1

m≡a (mod q)

Λ(m)

� (log 4)j
φ(q)

∑
r>0

r2j

4r(σ−1) ,

where we applied Lemma 1.2.4 for the last step, because 2r > y > 16q2, which implies that
2r > 2q

√
2r+1. Using the 2j-th derivative of the geometric series, it follows that

∑
r>0

r2j

4r(σ−1) 6
∑
r>0

(r + 2j)!
4r(σ−1)r! = (2j)!

(1− 41−σ)2j+1 �
(2j)!

(σ − 1)2j+1 ,

as 1− 41−σ � σ − 1 for σ ∈ (1,2) by the mean value theorem. Thus,

∑
m≡a (mod q)
P−(m)>y

Λ(m)(logm)2j

m2σ−1 � (log 4)j(2j)!
φ(q)(σ − 1)2j+1 . (2.3.5)

We now combine (2.3.1), (2.3.4) and (2.3.5) and conclude the proof of the lemma. �
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Chapter 3

Prime values of multiplicative functions with
small averages

In this chapter, we prove Theorem 1. First, we give an overview of its proof in Section
3.1. This overview makes the chapter easier to follow, as it illuminates the important parts of
the proof as well as the ideas behind them. In Section 3.2, we establish a set of preparatory
results which lead to Proposition 3.2.6, a proposition which is necessary in the beginning of
the proof of Theorem 1. Finally, we reach our end goal by concluding the proof of Theorem
1 in Section 3.3.

3.1. Outline of the proof
In this section we sketch and motivate the proof of Theorem 1. But, before doing so, we

give some necessary notation.
First, as in the statement of Theorem 1, for a multiplicative function g, we will be using

the notation Λg for the unique arithmetic function defined through the relation

g · log = Λg ∗ g.

The function Λg is supported on prime powers and in particular, Λg(p) = g(p) log p on the
primes. It is also true that Λg∗h = Λg + Λh for any two multiplicative functions g and h.
These classical properties can be proved by looking at the formal Dirichlet series of Λg and
Λh.

We now introduce two classes of multiplicative functions and make a few comments about
the first one. Given an integer D ∈ N and a real number A > 0, we define the sets

F(D) := {f : N→ C, f multiplicative, |Λf | 6 D · Λ},

F(D,A) :=

f ∈ F(D),
∑
n6x

f(n)� x

(log x)A for all x > 2

.



Note that for a function f ∈ F(D), we have that

−L
′

L
(s,f) =

∑
n>1

Λf (n)
ns

for Re(s) > 1

and that the series convergences absolutely when Re(s) > 1. Indeed, if g(n) are the coef-
ficients of the Dirichlet series of −(L′/L)(·,f), then, since L′(·,f) = (L′/L)(·,f) · L(·,f), we
conclude that f · log = g ∗ f , by comparing coefficients. However, f(1) = 1 6= 0, because f
is multiplicative, and so by applying its Dirichlet inverse on both sides of f · log = g ∗ f , it
follows that g = (f · log) ∗ f−1. From the definition of Λf , the same reasoning shows that
Λf = (f · log) ∗ f−1. Hence, Λf = g and the claim is proven.

The class F(D) includes many important number-theoretic functions, like the Möbius
function µ and the generalized divisor functions τk for k 6 D. There are technical reasons
that make the class F(D) very convenient to work with. For example, if f ∈ F(D), then
f−1 ∈ F(D), where f−1 is the Dirichlet inverse of f , namely, the inverse of f with respect
to the Dirichlet convolution. Furthermore, if f ∈ F(D), then both f and f−1 satisfy the
inequalities

|f | 6 τD, |f−1| 6 τD.

These two last results are proved in [12, Lemma 2.2].
Having now defined the classes F(D) and F(D,A), we continue by describing the ideas

behind the proof of Theorem 1. For a multiset Γ = {γ1, . . . ,γm}, we let

τΓ(n) =
∑

d1···dm=n
diγ1

1 · · · diγmm for n ∈ N.

Then, for a function f ∈ F(D,A), we consider the multiplicative function fΓ = f ∗ τΓ. On
the primes p, the values of the function fΓ are

fΓ(p) = f(p) +
∑
γ∈Γ

piγ.

From now on, we focus on establishing a bound for the sums∑p6x fΓ(p) log p for some suitable
multiset Γ. For γ ∈ Γ and Re(s) > 1 we have that [1, p. 236]

−ζ
′

ζ
(s− iγ) =

∑
n>1

Λ(n)niγ
ns

,

which implies that

ΛfΓ(n) = Λf (n) +
∑
γ∈Γ

Λ(n)niγ. (3.1.1)
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Therefore, |ΛfΓ | 6 (D + m) · Λ, as f ∈ F(D). Moreover, since ΛfΓ is supported on prime
powers, Theorem 1.2.2(c) implies∣∣∣∣∣ ∑

pk6x
k>2

Λf (pk)
∣∣∣∣∣ 6 (D +m)

∑
pk6x
k>2

Λ(n) = (D +m)(ψ(x)− θ(x))�m,D

√
x,

and so
∑
p6x

fΓ(p) log p =
∑
n6x

ΛfΓ(n) +Om,D(
√
x). (3.1.2)

Now our goal now is to estimate the sums of the right-hand side.
In [12], Koukoulopoulos and Soundararajan bounded the sums ∑n6x ΛfΓ(n) by applying

a smoothed version of Perron’s formula [12, relation (6.1), p. 14] to the Dirichlet series of
−(L′/L)′(·,fΓ). This approach works when the logarithmic derivative (L′/L)(·,fΓ) does not
attain very large values near the vertical line Re(s) = 1, that is when L(·,fΓ) does not vanish.
For this reason, Koukoulopoulos and Soundararajan chose Γ to be the multiset of all those
real numbers γ for which 1 + iγ is a zero of the potential continuous extension of L(·,f) on
Re(s) > 1. Then, since fΓ = f ∗ τΓ, we see that

L(s,fΓ) = L(s,f)
∏
γ∈Γ

ζ(s− iγ), (3.1.3)

and so L(s,fΓ) 6= 0 for Re(s) > 1, because the zeroes of L(·,f) are cancelled by the poles of the
ζ factors of (3.1.3). Now that the choice of Γ is determined, the method of Koukoulopoulos
and Soundararajan requires upper and lower bounds for L(·,fΓ) and its two first derivatives.
In this direction, they proved the following proposition [12, Proposition 2.4] which also
provides information about the size of the multiset Γ.

Proposition 3.1.1. Let f be a function of the class F(D,A) with A > D + 1.
(a) The series L(j)(s,f) with 0 6 j < A− 1 all converge uniformly in compact subsets of

the region Re(s) > 1.
(b) Counted with multiplicity, L(s,f) has at most D zeroes on the line Re(s) = 1.
(c) Let Γ denote the (possibly empty) multiset of ordinates γ of zeroes 1 + iγ of L(s,f).

Let Γ̃ denote a (multi-)subset of Γ and let mΓ̃ denote the largest multiplicity of an
element in Γ̃. The Dirichlet series

L(s,fΓ̃) = L(s,f)
∏
γ∈Γ̃

ζ(s− iγ)

and the series of derivatives L(j)(s,fΓ̃) for 1 6 j < A−mΓ̃ − 1 all converge uniformly
in compact subsets of the region Re(s) > 1.
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If A−mΓ−1 > 2, then Proposition 3.1.1(c) implies the continuity of L(·,fΓ) as well as the
continuity of its two first derivatives. So, we have that the functions L(j)(·,fΓ) for j ∈ {0,1,2}
are bounded in the compact subsets of the half-plane Re(s) > 1 when A−mΓ−1 > 2. Now,
since Theorem K-S II is in the spirit of Theorem 1 in the case where there exists a single zero
of multiplicity D, we can assume that mΓ 6 D−1. However, with this extra assumption, the
quantity A−mΓ−1 might be as small as A−D. Hence, in order to guarantee the continuity
of L(j)(·,fΓ) for j = 0,1,2, Koukoulopoulos and Soundararajan assumed that A − D > 2.
On the other hand, if they had used a variant of Perron’s formula for (L′/L)(·,fΓ), so that
they avoided the presence of the second derivative L′′(·,fΓ), the resulting bound at the end
of their arguments would have been off by one factor of log x, making it trivial. All this
explains why Koukoulopoulos and Soundararajan needed the stricter condition A > D + 2.

In the present chapter, we circumvent the use of higher derivatives which are responsible
for the condition A > D + 2. We do so when mΓ 6 D − 1 by resorting to the recursiveness
of the mean values of multiplicative functions. By this, we mean the identity

∑
n6x

fΓ(n) log n =
∑
n6x

ΛfΓ(n)
∑
d6x/n

fΓ(d). (3.1.4)

The idea that is about to be described is inspired by the work of Koukoulopoulos [9]. By
establishing an estimate for the sums ∑n6x fΓ(n), we can apply partial summation (Lemma
1.1.1) to bound the sums of the left-hand side in (3.1.4). One might then make use of
Dirichlet’s hyperbola method (Lemma 1.1.2) to obtain an estimate for

∑
n6
√
x

fΓ(n)
∑
d6x/n

ΛfΓ(d).

The summand corresponding to n = 1 is ∑d6x Λf (d), which is the sum that we are trying to
bound. The problem is that the next term equals f(2)∑d6x/2 Λf (d) and this term is expected
to have roughly the same size as the “main term” ∑d6x Λf (d). In order for this obstacle to
be overcome, sieve methods come into play. By combining sieves with the hyperbola method
(Lemma 1.1.2) and the “recursiveness” of averages for the function fΓ · 1P−(·)>z, we aim to
estimate

∑
n6
√
x

P−(n)>z

fΓ(n)
∑
d6x/n

ΛfΓ(d).

The summand for n = 1 is again the sum ∑
d6x Λf (d), but this time all the summands for

n ∈ (1,z] vanish. So, the problem that occurred before is now resolved. In addition, the
summands with n > z are supported on a set of density � 1/ log z.
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With this approach we will bound ∑d6x ΛfΓ(d) in terms of its integrals
∫ x

1

|∑d6t ΛfΓ(d)|
t2

dt,

much like in the case of a multiplicative function. This is the same idea which is used in
the original proof of Halász’s theorem [24, Section 4.3, p. 335-347]. Then, arguing along
the lines of the latter allows us to complete the proof of Theorem 1. More precisely, we
estimate the above integrals in the following way. After an application of the Cauchy-
Schwarz inequality, we apply Parseval’s theorem to bound them by an integral involving the
logarithmic derivative of L(·,fΓ). We continue by splitting this integral in the ranges |t| 6 T

and |t| > T . In the first range we bound trivially by using the continuity of L(·,fΓ) and
L′(·,fΓ), provided by Proposition 3.1.1(c), and in the second one we apply Lemma 2.3.1.

3.2. Estimates of sifted partial sums
Let D be a positive integer and consider a real number A > D+ 1. Let also f ∈ F(D,A)

be a multiplicative function. The ultimate goal of this section is to establish a good bound
for the sifted sums ∑n6x,P−(n)>z fΓ(n), where Γ is the multiset of the ordinates γ of the
zeroes 1 + iγ of L(·,f). Such bounds are necessary, because they will serve as the first
basic ingredient going into the proof of Theorem 1. To estimate the aforementioned sums of
interest, we first estimate the simpler sums ∑n6x,P−(n)>z f(n). But, in order to bound these,
we need to understand the size of sums of the form ∑

n6x,(n,d)=1 f(n) for all d 6 x. Lemma
3.2.3 provides a bound for these last sums. For its proof, we will make use of the next two
lemmas. The first one may be found in [1, Theorem 2.22].

Lemma 3.2.1. Let F : (0,+∞)→ C and G : (0,+∞)→ C be two complex-valued functions
such that F (x) = G(x) = 0 for x ∈ (0,1). Let h be an arithmetic function which has an
inverse h−1 under Dirichlet. If

G(x) =
∑
n6x

h(n)F (x/n),

then

F (x) =
∑
n6x

h−1(n)G(x/n).

Proposition 3.2.2. Let {an}n∈N be a sequence of positive real numbers and let k be a positive
integer. For y > 0, we have that

#
{

(ν1, . . . ,νk) ∈ Nk :
k∑
j=1

ajνj 6 y
}
6

(
y +∑k

j=1 aj
)k

k!∏k
j=1 aj

.
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Proof. See [24, Theorem 3, p. 363]. �

For the sake of notational simplicity, in the proof of the following lemma, as well as for the
rest of the chapter, any dependence of the implied constants on D and A will be suppressed.

Lemma 3.2.3. Fix a natural number D and a real number A > 0. If x > 3 and f ∈ F(D,A),
then

∑
n6x

(n,d)=1

f(n)� x

(log x)A

(
d

φ(d)

)D
for d 6 x. (3.2.1)

Proof. For any n, there is a unique way to write it as n = am, where all prime divisors of
a divide d and (m,d) = 1. Consequently, we find that

S(x) :=
∑
n6x

f(n) =
∑
n6x

h(n)
∑

m6x/n
(m,d)=1

f(m),

where h is the multiplicative function with h(pν) = f(pν)1p|d for ν ∈ N. By applying Lemma
3.2.1, we get that

∑
n6x

(n,d)=1

f(n) =
∑
n6x

h−1(n)S(x/n), (3.2.2)

where h−1 denotes the Dirichlet inverse of h. Note that h ∈ F(D). Therefore, h−1 ∈ F(D)
too. Furthermore, one observes that h−1(pν) = f−1(pν)1p|d for any ν ∈ N.

We now split the sum of the right-hand side of (3.2.2) into the two parts

T1 =
∑
n6
√
x

h−1(n)S(x/n) and T2 =
∑

√
x<n6x

h−1(n)S(x/n).

We begin with the estimation of T1. Since h−1 ∈ F(D), it is true that |h−1| 6 τD, and so

|T1| 6
∑
n6
√
x

p|n⇒p|d

τD(n)|S(x/n)| � x

(log x)A
∑
n6
√
x

p|n⇒p|d

τD(n)
n

(3.2.3)

6
x

(log x)A
∏
p|d

(
1 + τD(p)

p
+ τD(p2)

p2 + . . .

)

= x

(log x)A
∏
p|d

∑
j>0

(
D + j − 1

j

)
1
p j

= x

(log x)A

(
d

φ(d)

)D
.

For the passage from the second to the third line we used (1.4.1) and then, at the last step,
we calculated the series by applying the Maclaurin expansion of x 7→ (1−x)−D for x ∈ (0,1)
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We continue by bounding the sum T2. Since τD(n) � n1/4 6 x1/4 for n 6 x by Lemma
1.4.1(b), we have

|T2| 6
∑

√
x<n6x
p|n⇒p|d

τD(n)|S(x/n)| � x
∑

√
x<n6x
p|n⇒p|d

τD(n)
n

<
√
x
∑

√
x<n6x
p|n⇒p|d

τD(n)� x3/4 ∑
n6x

p|n⇒p|d

1.

Proposition 3.2.2 implies that

∑
n6x

p|n⇒p|d

1 6 ω(d) · (log x+ log d)ω(d)

ω(d)!
(∏

p|d log p
) < 4ω(d) (log x)ω(d)

log 2 · ω(d)! � 32ω(d)x1/8,

and so T2 � 32ω(d)x7/8. Because of Lemma 1.4.2, we have that ω(d) � log x/ log log x for
d 6 x. Therefore, there exists a constant C > 0 such that

T2 � x
7
8 + C

log log x � x

(log x)A

(
d

φ(d)

)D
. (3.2.4)

Combination of (3.2.2), (3.2.3) and (3.2.4) completes the proof of the lemma. �

Now that Lemma 3.2.3 is proven, we combine it with Lemma 1.5.2 to establish an upper
bound for the sifted partial sums ∑n6x,P−(n)>z f(n) of a function f ∈ F(D,A), where D ∈ N
and A > 0.

Proposition 3.2.4. Fix a natural number D and a positive real number A. If x > 3 and
f ∈ F(D,A), then there exists a constant α = α(D) ∈ (0,1) such that

∑
n6x

P−(n)>z

f(n)� x(log z)D
(log x)A + x1−α/ log z

log z

for all z ∈ [2,x].

Proof. Let C = min{1/16, c/2}, where c is the constant appearing in Lemma 2.1.1. First we
show that the estimate holds trivially when z > xC/(4D+1). Indeed, in this case log x/ log z �
1, and so using Theorem 1.2.1(c) and Theorem 1.4.5 with the divisor-bounded, multiplicative
function τD · 1P−(·)>z, we conclude that∣∣∣∣∣∣

∑
n6x

P−(n)>z

f(n)

∣∣∣∣∣∣ 6
∑
n6x

P−(n)>z

τD(n)� x

log x

(
log x
log z

)D
� x1−C/(2 log z)

log z .

Now it remains to prove the proposition when z 6 xC/(4D+1). Assuming that x is large
enough in terms of D, when z 6 D3, we can use Lemma 3.2.3. For z > D3, the condition
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P−(n) > z implies that (n,kD) = 1, where kD = ∏
p6D3 p. So, using the arithmetic functions

λ− and λ+ of Lemma 1.5.2 with u = C log x/ log z, we write

∑
n6x

P−(n)>z

f(n) =
∑
n6x

(n,kD)=1

(λ+ ∗ 1)(n)f(n) +O
( ∑

n6x
(n,kD)=1

(λ+ ∗ 1− λ− ∗ 1)(n)|f(n)|
)
. (3.2.5)

According to Lemma 1.4.1(a), we have |f(n)| 6 τD(n) 6 DΩ(n) for all n ∈ N, and it then
follows that

∑
n6x

(n,kD)=1

(λ+ ∗ 1− λ− ∗ 1)(n)|f(n)| 6
∑

(d,kD)=1
(λ+(d)− λ−(d))DΩ(d) ∑

m6x/d
(m,kD)=1

DΩ(m). (3.2.6)

We insert the formula of Lemma 2.1.1 in the right-hand side of (3.2.6) and use the binomial
theorem to expand the resulting powers (log(x/d))ν = (log x− log d)ν with ν 6 D− 1. Since
|λ±| 6 1, the contribution coming from the error term of (2.1.1) is

� x1−c ∑
d6xC

DΩ(d) � x1−c+C(log x)D−1 6 x1−c/2(log x)D−1 � x(log z)D
(log x)A ,

where we bounded the sums∑d6xC D
Ω(n) with an application of Theorems 1.4.5 and 1.2.1(c).

The summands coming from the main term of (2.1.1) contain expressions of the form

∑
d

(λ+(d)− λ−(d))DΩ(d)1(d,kD)=1(log d)j
d

for j ∈ {0, . . . ,D − 1}. Each one of these expressions is multiplied by a logarithmic factor
(log x)` with `+ j 6 D − 1. Since Lemma 1.5.2 implies that

∑
(d,kD)=1

(λ+(d)− λ−(d))DΩ(d)(log d)j
d

� x−
C

log z

(log z)D−j for j ∈ {0, . . . ,D − 1},

we finally infer that

∑
n6x

(λ+ ∗ 1− λ− ∗ 1)(n)|f(n)| � x1− C
log z (log x)D−1

(log z)D � x1− C
2 log z

log z .

So, if we define α := C/2, relation (3.2.5) becomes

∑
n6x

P−(n)>z

f(n) =
∑
n6x

(n,kD)=1

(λ+ ∗ 1)(n)f(n) +O

(
x(log z)D
(log x)A + x1−α/ log z

log z

)
. (3.2.7)
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We now turn to the estimation of the “main term” of (3.2.7). For every two natural
numbers m,d, there is a unique way to write md = m′d′ where (m′,d′) = 1, d | d′ and all the
prime factors of d′ divide d. Then

∑
n6x

(n,kD)=1

(λ+ ∗ 1)(n)f(n) =
∑
md6x

(md,kD)=1

λ+(d)f(md) =
∑

(d,kD)=1
λ+(d)

∑
d′6x,d|d′
p|d⇔p|d′

(kD,d′)=1

f(d′)
∑

m′6x/d′

(dkD,m′)=1

f(m′).

We divide the inner sum on d′ into two sums S1 and S2. In S1 we are summing over the
range d′ 6

√
x. In the sum S2 we have

√
x < d′ 6 x. We apply Lemma 3.2.3 with x large

enough to the sums
∑

m′6x/d′

(m′,dkD)=1

f(m′).

Then, the sum on d, coming from S1, is

� x

(log x)A
∑
d

(
d

φ(d)

)D ∑
d′, d|d′
p|d⇔p|d′

τD(d′)
d′

(3.2.8)

and the sum on d, coming from S2, is

�
√
x
∑
d

(
d

φ(d)

)D ∑
d′6x

p|d⇔p|d′

τD(d′). (3.2.9)

So, in order for the proof to be completed, we need to show that the quantities of (3.2.8)
and (3.2.9) are � x(log z)D/(log x)A.

First, by replicating the passage from the second to the third line of (3.2.3), we have that

∑
d′, d|d′
p|d⇔p|d′

τD(d′)
d′

6
∏
p|d

∑
j>1

τD(pj)
pj

 =
∏
p|d

(1− 1
p

)−D
− 1

 6 Dω(d)

d

(
d

φ(d)

)D+1

,

where the last estimate follows from the inequality (1 − 1/p)−D − 1 6 Dp−1(1 − 1/p)−D−1,
which may be obtained by applying the Mean Value Theorem to the function t 7→ t−D.
Therefore, upon using Mertens’ third estimate (Theorem 1.2.1(c)), the expression of (3.2.8)
is bounded by

x

(log x)A
∑

d|
∏
p6z

p

Dω(d)

d

(
d

φ(d)

)2D+1

6
x

(log x)A
∏
p6z

1 + D

p

(
1 + 1

p− 1

)2D+1

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= x

(log x)A
∏
p6z

(
1 + D

p
+O

(
1
p2

))

� x

(log x)A exp
D∑

p6z

1
p


� x(log z)D

(log x)A .

We now continue with the estimation of the expression of (3.2.9). As in the proof of
Lemma 3.2.3, Proposition 3.2.2 implies that

∑
d′

p|d⇔p|d′

1 < 4ω(d) (log x)ω(d)

log 2 · ω(d)! � 16ω(d)x1/4.

We also have the inequalities d/φ(d) � log log d 6 log log x (Lemma 1.4.4) and τD(d) �
d1/8 6 x1/8 for d 6 x (Lemma 1.4.1(b)). Consequently, the expression of (3.2.9) is

� x7/8(log log x)D
∑
d6xC

16ω(d) � x15/16(log x)15(log log x)D � x(log z)D
(log x)A

and the proposition is finally proved. �

The next lemma is a rather technical result and is useful for the proof of Proposition 3.2.6.
It concerns a bound for the tails of a Dirichlet series and its proof is an easy application of
partial summation.

Lemma 3.2.5. Fix a natural number D and two real numbers ε > 0 and z > 2. Let Γ be a
mutliset of m elements, counting the multiplicities. Let also f be an arithmetic function and
suppose that there exist some δ ∈ (0,1) and some A > m+ 1 + ε such that

∑
n6x

P−(n)>z

fΓ(n)� x(log z)D−m
(log x)A−m + x1−δ/ log z

log z whenever x > z, (3.2.10)

where fΓ = f ∗ τΓ. For N > max{3,z} and s = σ + it with σ ∈ [1,2] and t ∈ R, we have

∑
n>N

P−(n)>z

fΓ(n)
ns

�ε,δ (1 + |t|)N1−σ
(

(log z)D−m
(logN)A−m−1 +N−

δ
log z

)
.

Proof. Let M > N . Then, partial summation implies that

∑
N<n6M
P−(n)>z

fΓ(n)
ns

=
( ∑

n6x
P−(n)>z

fΓ(n)
)
x−s

∣∣∣∣M
x=N

+ s
∫ M

N

( ∑
n6y

P−(n)>z

fΓ(n)
) dy
ys+1 . (3.2.11)
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Using the hypothesis (3.2.10) twice, once with x = N and once with x = M , we conclude
that

( ∑
n6x

P−(n)>z

fΓ(n)
)
x−s

∣∣∣∣M
x=N
� (log z)D−m

(logN)A−mNσ−1 + N−
δ

log z

Nσ−1(log z) . (3.2.12)

We now focus on the integral of the right-hand side of (3.2.11). The hypothesis (3.2.10)
yields

∫ M

N

( ∑
n6y

P−(n)>z

fΓ(n)
) dy
ys+1 � (1 + |t|)

( ∫ M

N

(log z)D−m
(log y)A−myσ dy + 1

log z

∫ M

N

dy
y

δ
log z+σ

)
.

We also have that∫ M

N

(log z)D−m
(log y)A−myσ dy 6 (log z)D−m

Nσ−1

∫ ∞
N

dy
(log y)A−my �ε

(log z)D−m
(logN)A−m−1Nσ−1 .

Furthermore,

∫ M

N

dy
y

δ
log z+σ

6
∫ ∞
N

dy
y

δ
log z+σ

= N−
δ

log z

Nσ−1(σ + δ/ log z − 1) 6 δ−1(log z)N1−σ− δ
log z .

Therefore, we infer that
∫ M

N

( ∑
n6y

P−(n)>z

fΓ(n)
) dy
ys+1 �ε,δ (1 + |t|)N1−σ

(
(log z)D−m

(logN)A−m−1 +N−
δ

log z

)
. (3.2.13)

We insert (3.2.12) and (3.2.13) in (3.2.11) and obtain the desired inequality. �

We now close Section 3.2 by reaching its final goal, namely an estimate for the sums∑
n6x,P−(n)>z fΓ(n), where Γ is the multiset that we have defined in the beginning of the

section.

Proposition 3.2.6. Suppose that D ∈ N and that A > D + 1. Let also f ∈ F(D,A) and Γ̃
be a (multi-)subset of the multiset Γ of the ordinates of the zeroes of L(·,f) on Re(s) = 1.
Using the definition of Vt for t ∈ R before Lemma 2.1.2, if x > z > VΓ̃ := max

γ∈Γ̃ Vγ, then
there exists a real number κ = κ(D) ∈ (0,1) such that

∑
n6x

P−(n)>z

fΓ̃(n)�Γ̃
x(log z)D−m
(log x)A−m + x1−κ/ log z

log z ,

where m is the number of elements of Γ̃ with the multiplicities being counted.
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Proof. We perform induction on the number of elements m of a multisubset of Γ. The
proposition holds when m = 0 because of Proposition 3.2.4. For m > 1, we assume that
the proposition is true for any multisubset of Γ with m − 1 elements. We will show that it
remains true for a multisubset Γ̃ of m elements.

When
√
x < z, then log x � log z and we may argue as in the beginning of the proof of

Proposition 3.2.4 to show that

∑
n6x

P−(n)>z

fΓ̃(n)� Γ̃,ε
x1−ε/ log z

log z ,

for any ε > 0.
If
√
x > z, let γ be an element of Γ̃ and write Γ̃ = Γ′∪{γ}. We have that the cardinality

of Γ′ is m− 1 and that fΓ̃(n) = ∑
ab=n fΓ′(a)biγ for all n ∈ N. So,

∑
n6x

P−(n)>z

fΓ̃(n) =
∑
a6
√
x

P−(a)>z

fΓ′(a)
∑
b6x/a
P−(b)>z

biγ +
∑
b6
√
x

P−(b)>z

biγ
∑

√
x<a6x/b
P−(a)>z

fΓ′(a) := S1 + S2, (3.2.14)

say. Since
√
x > z, Lemma 2.1.2 gives that

S1 = x1+iγ

1 + iγ

∏
p6z

(
1− 1

p

) ∑
a6
√
x

P−(a)>z

fΓ′(a)
a1+iγ +O

(
x1− 1

30 log z

log z
∑
a6
√
x

P−(a)>z

τD+m−1(a)
a1− 1

30 log z

)
. (3.2.15)

First we bound the sum in the big-Oh term. From Theorem 1.2.1(d), it follows that

∑
a6
√
x

P−(a)>z

τD+m−1(a)
a1− 1

30 log z
6 x

1
60 log z

∑
a6
√
x

P−(a)>z

τD+m−1(a)
a

6 x
1

60 log z
∏

z<p6
√
x

∑
j>0

τD+m−1(p j)
p j

 (3.2.16)

= x
1

60 log z
∏

z<p6
√
x

(
1− 1

p

)−(D+m−1)

� x
1

60 log z

(
log x
log z

)D+m−1

�Γ̃ x
1

40 log z .

We continue by bounding the sum outside the big-Oh term on the right-hand side of (3.2.15).
Since we have that VΓ′ 6 VΓ̃ 6 z and that Γ′ containsm−1 elements, the inductive hypothesis
implies that for all w > z it is true that

∑
a6w

P−(a)>z

fΓ′(a)�Γ′
w (log z)D−m+1

(logw)A−m+1 + w1−κ0/ log z

log z , (3.2.17)

where κ0 = κ0(D) is some real number of (0,1). We have that m 6 D because of part (b)
of Proposition 3.1.1. So, A > (m− 1) + 2. Therefore, we can use (3.2.17) to apply Lemma
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3.2.5 with ε = 1, δ = κ0, N =
√
x and σ = 1 and deduce that

∑
a>
√
x

P−(a)>z

fΓ′(a)
a1+iγ �Γ̃

(log z)D−m+1

(log x)A−m + x−κ0/(2 log z).

Since γ is an element of Γ̃, the complex number 1 + iγ is a zero of L(·,f). In addition, the
multiplicity of γ in Γ′ is smaller than its multiplicity in Γ, because Γ̃ = Γ′ ∪ {γ} and Γ̃ is a
multisubset of Γ. Therefore, L(1 + iγ,fΓ′) = 0, and so

∑
a6
√
x

P−(a)>z

fΓ′(a)
a1+iγ = L(1 + iγ,fΓ′) ·

∏
p6z

(∑
j>0

fΓ′(p j)
p j(1+iγ)

)−1

−
∑
a>
√
x

P−(a)>z

fΓ′(a)
a1+iγ

= −
∑
a>
√
x

P−(a)>z

fΓ′(a)
a1+iγ �Γ̃

(log z)D−m+1

(log x)A−m + x−κ0/(2 log z). (3.2.18)

Now, combination of (3.2.15) with Theorem 1.2.1(d) and the estimates (3.2.16), (3.2.18),
gives

S1 �Γ̃
x(log z)D−m
(log x)A−m + x1−κ1/ log z

log z ,

for some κ1 = κ1(D) ∈ (0,1).
It only remains to estimate

S2 =
∑
b6
√
x

P−(b)>z

biγ
∑

√
x<a6x/b
P−(a)>z

fΓ′(a).

In fact, we are going to show that S2 satisfies the same bound as S1 and then the proof of
the proposition will be complete. In the innermost sum of S2, we have that x/b >

√
x > z.

So, using the inductive hypothesis once for
√
x and once for x/b, we get that

S2 �Γ′
x(log z)D−m+1

(log x)A−m+1

∑
b6
√
x

P−(b)>z

1
b

+ x1−κ0/ log z

log z
∑
b6
√
x

P−(b)>z

1
b1− κ0

log z
. (3.2.19)

For u > z, from Emample 1.4.2, it is known that #{n 6 u : P−(n) > z}� u/ log z. This
estimate and partial summation (Lemma 1.1.1) imply that ∑b6

√
x,P−(b)>z 1/b� log x/ log z.

Then,

∑
b6
√
x

P−(b)>z

1
b1− κ0

log z
6 xκ0/(2 log z) ∑

b6
√
x

P−(b)>z

1
b
� xκ0/(2 log z) log x

log z � x 2κ0/(3 log z).

67



So, finally, the estimate (3.2.19) becomes

S2 �Γ̃
x(log z)D−m
(log x)A−m + x1−κ0/(3 log z)

log z

and the proof is finished with κ := min{κ0/3,κ1}. �

3.3. Proof of Theorem 1
We now move on to the proof of Theorem 1. First, we introduce some auxiliary notation.

If g is an arithmetic function and x > 2 is a real number, we define

S(x,g) =
∑
n6x

g(n).

Moreover, for z > 1, we set gz(n) = g(n) when P−(n) > z and gz(n) = 0 otherwise.

The multiset Γ in the statement of the Theorem 1 consists of the ordinates of the zeroes
of L(·,f) on the vertical line σ = 1. If L(·,f) has a single root 1 + iγ of multiplicity D,
then Theorem 1 follows directly from Theorem K-S II. So, according to Proposition 3.1.1(b),
for the rest of this proof we assume that the largest multiplicity of the roots of L(·,f) on
Re(s) = 1 is at most D − 1. Let m be the number of elements of Γ, with the multiplicities
being counted. In Proposition 3.2.6 we take Γ̃ = Γ and

z = x1/(L log u) with L = 8(min{κ, log log 3 · (A−D − 1)})−1 and

u = min{(log x)A−D−1,
√
T}.

We further assume that x is large enough in terms of Γ. Indeed, for bounded x, Theorem 1
holds trivially by adjusting the implied constant in its statement. Then, for w ∈ [x1/4,x] ⊆
[z1/4,x], we have

∑
n6w

P−(n)>z

fΓ(n)�Γ
w

u log x. (3.3.1)

Consequently,
∑
n6x

P−(n)>z

fΓ(n) log n = O(x1/3) +
∑

x1/4<n6x
P−(n)>z

fΓ(n) log n�Γ
x

u
,

where we used the inequality |fΓ| 6 τD+m to control the summands with n 6 x1/4, whereas
we used partial summation and (3.3.1) for the summands with n > x1/4. Now, combining
this bound with Dirichlet’s hyperbola method (Lemma 1.1.2) applied to the convolution
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(fΓ)z ∗ Λ(fΓ)z , we get
∑

n6x1/4

P−(n)>z

fΓ(n)S(x/n,Λ(fΓ)z) = S(x1/4,(fΓ)z)S(x3/4,Λ(fΓ)z)

−
∑

n6x3/4

Λ(fΓ)z(n)S(x/n,(fΓ)z) +OΓ

(
x

u

)
. (3.3.2)

Note that Λ(fΓ)z = (ΛfΓ)z. So, since |ΛfΓ| 6 (D + m) · Λ, we deduce that |S(x3/4,Λ(fΓ)z)| 6∑
n6x3/4 |ΛfΓ(n)|1P−(n)>z 6

∑
n6x3/4 |ΛfΓ(n)| 6 (D + m)∑n6x3/4 Λ(n) � x3/4, where the last

inequality follows from Theorem 1.2.2(b). Hence, from (3.3.1) and (3.3.2), we conclude that

∑
n6x1/4

P−(n)>z

fΓ(n)S(x/n,Λ(fΓ)z)�Γ
x

u
+ x

u log x
∑

n6x3/4

P−(n)>z

|ΛfΓ(n)|
n

.

Making use of Theorem 1.2.1(a), we get that the sum of the right-hand side is smaller than
or equal to ∑n6x3/4 |ΛfΓ(n)|/n 6 (D +m)∑n6x3/4 Λ(n)/n� log x. So,

∑
n6x1/4

P−(n)>z

fΓ(n)S(x/n,Λ(fΓ)z)�Γ
x

u
.

In addition, for v > 1 we have that

|S(v,Λ(fΓ)z)− S(v,ΛfΓ)| 6
∑
p6z
pν6v

|ΛfΓ(pν)| 6 (D +m)
∑
p6z
pν6v

Λ(pν)� log v
∑
p6z

1� z log v.

Consequently, since |fΓ| 6 τD+m and ∑n6y τD+m(n)/n� (log y)D+m for any y > 1 (this can
be proved with partial summation and Theorem 1.4.3), it follows that

S(x,ΛfΓ) +
∑

1<n6x1/4

P−(n)>z

fΓ(n)S(x/n,ΛfΓ) =
∑

n6x1/4

P−(n)>z

fΓ(n)S(x/n,ΛfΓ)

=
∑

n6x1/4

P−(n)>z

fΓ(n)S(x/n,Λ(fΓ)z) +O(zx1/4(log x)D+m)�Γ
x

u
. (3.3.3)

For the last estimate we used the fact that z 6 x1/8, an inequality which follows from the
choice of z that we made. Lemma 1.2.4 guarantees that

S(x/n,ΛfΓ)− S(t/n,ΛfΓ)� x

nu
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for t ∈ [x− x/u,x] and n 6 x1/4. Using again the inequality |fΓ| 6 τD+m, we have

∑
n6x1/4

P−(n)>z

|fz(n)|
n

6
∑

n6x1/4

P−(n)>z

τD+m(n)
n

6
∏

z<p6x1/4

(
1 + τD+m(p)

p
+ τD+m(p2)

p2 + . . .

)

=
∏

z<p6x1/4

(
1− 1

p

)−(D+m)

� (log u)D+m.

We used (1.4.1) and the Taylor expansion of x 7→ (1− x)−D to go from the first line to the
second, whereas the last estimate follows from an application of Theorem 1.2.1(d). Thus, if
we set ∆ = x/u, relation (3.3.3) becomes

S(x,ΛfΓ) = − 1
∆

∑
1<n6x1/4

P−(n)>z

fΓ(n)
∫ x

x−∆
S(t/n,ΛfΓ)dt+OΓ

(
x(log u)D+m

u

)

= − 1
∆

∑
1<n6x1/4

P−(n)>z

fΓ(n)n
∫ x

n

x−∆
n

S(t,ΛfΓ)dt+OΓ

(
x(log u)D+m

u

)

= − 1
∆

∫ x
z

x−∆
x1/4

S(t,ΛfΓ)
 ∑

(x−∆)/t<n6x/t
P−(n)>z

fΓ(n)n
dt+OΓ

(
x(log u)D+m

u

)
.

Using Theorem 1.2.1(c) and Theorem 1.4.6 applied to the non-negative, divisor-bounded,
multiplicative function τD+m · 1P−(·)>z, we obtain∣∣∣∣∣∣

∑
(x−∆)/t<n6x/t

P−(n)>z

fΓ(n)n

∣∣∣∣∣∣ 6 x

t

∑
(x−∆)/t<n6x/t

P−(n)>z

τD+m(n)� x∆(log u)D+m

t2 log x ,

for t 6 x/z and ∆ = x/u. Thus, we arrive at the estimate

S(x,ΛfΓ)� x(log u)D+m

log x

∫ x

1

|S(t,ΛfΓ)|
t2

dt+OΓ

(
x(log u)D+m

u

)
. (3.3.4)

We continue by bounding the integral of the right-hand side and we start with the
Cauchy-Schwarz inequality which implies that

∫ x

1

|S(t,ΛfΓ)|
t2

dt 6
(

log x
∫ x

1

|S(t,ΛfΓ)|2
t3

dt
)1/2

�
(

log x
∫ +∞

1

|S(t,ΛfΓ)|2
t3+2/ log x dt

)1/2

. (3.3.5)
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Partial summation and a suitable change of variables give

s
∫ +∞

0
S(eu,ΛfΓ)e−uσe−iutdu = −L

′

L
(s,fΓ) when σ > 1.

So, for c = 1 + 1/ log x, Parseval’s theorem allows us to write

∫ +∞

1

|S(t,ΛfΓ)|2
t3+2/ log x dt =

∫ +∞

0
|S(eu,ΛfΓ)|2e−2(1+1/ log x)udu = 1

2π

∫
R

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

and (3.3.5) implies that

∫ x

1

|S(t,ΛfΓ)|
t2

dt�
√

log x
∫

R

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

1/2

. (3.3.6)

As was explained in Section 2, we proceed to splitting the integral into two parts. In the first
part we integrate over the interval [−T,T ], whereas the range of integration of the second
integral consists of the large values |t| > T . In the beginning of the proof we assumed that
the largest multiplicity of the zeros of L(·,f) is at most D − 1. So, using Proposition 3.1.1
(c) and the non-vanishing of L(s,fΓ) on the vertical line σ = 1, we conclude that

∫
|t|6T

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

� max
|t|6T, σ∈[1,2]

∣∣∣∣∣L′L (σ + it,fΓ)
∣∣∣∣∣
2

=: Cf (T ). (3.3.7)

The first part has been estimated and it remains to bound the second one. Since |ΛfΓ(n)n−ik| 6
(D + m)Λ(n) for any two positive integers n and k and ζ(s) � (s − 1)−1 in a fixed region
around 1 for the Riemann ζ function, Lemma 2.3.2 yields that

∫
|t|>T

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

6
∑

|k|>T−1/2

∫ k+1/2

k−1/2

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

6 4
∑
|k|>T/2

1
k2

∫ 1
2

− 1
2

∣∣∣∣∣L′L (c+ i(t+ k),fΓ)
∣∣∣∣∣
2

dt

�

 ∑
k>T/2

1
k2

·∫ 1
2

− 1
2

∣∣∣∣∣ζ ′ζ (c+ it)
∣∣∣∣∣
2

dt

� 1
T

∫ 1
2

− 1
2

dt
1

(log x)2 + t2
6

log x
T

∫
R

dα
1 + α2 �

log x
T

. (3.3.8)

The logarithmic derivative of the Riemann ζ function appeared at the passage from the
second to the third line, because it is the Dirichlet series of the von Mangoldt function Λ for
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Re(s) > 1 (see [1, p. 236]). Combining (3.3.7) and (3.3.8), we get that

∫
R

∣∣∣∣∣L′L (c+ it,fΓ)
∣∣∣∣∣
2 dt
c2 + t2

� Cf (T ) + log x
T

.

We now insert this estimate into (3.3.6) to find that
∫ x

1

|S(t,ΛfΓ)|
t2

dt�
√
Cf (T ) log x+ log x√

T
.

Together with (3.3.4), this implies that

S(x,ΛfΓ) 6 Of,T

(
x(log u)D+m
√

log x

)
+OΓ

(
x(log u)D+m

min{u,
√
T}

)
.

Recalling the estimate (3.1.2) and the fact that we chose u = min{(log x)A−D−1,
√
T}, the

proof of Theorem 1 readily follows.
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Chapter 4

Linnik’s estimate - An alternative proof

4.1. Plan of the proof
In this chapter we establish the refined form of Linnik’s estimate (0.2.1) stated in Theorem

2. Here we present an overview of the main steps that we are going to develop.

• Step 1: The sifting condition. For q ∈ N, x > q2 and a ∈ (Z/qZ)∗, the principal
goal is to estimate the quantity

∑
n6x

n≡a (mod q)

Λ(n)− x

φ(q) −
ψ(a)
φ(q)

∑
n6x

ψ(n)Λ(n),

where ψ is a Dirichlet character modulo q defined as in the statement of Theorem 2.
Since Λ is supported on prime powers, we note that imposing the condition P−(n) > y

on the sums above is not very wasteful when y is appropriately smaller than x. Indeed,
using Theorem 1.2.2(a), we have∣∣∣∣ ∑

n6x
n≡a (mod q)

Λ(n)−
∑
n6x

n≡a (mod q)
P−(n)>y

Λ(n)
∣∣∣∣ 6 ∑

pν6x
p6y

Λ(pν) 6 π(y) log x� y log x
log y (4.1.1)

and the same estimate holds for the differences of the analogous sums of ψ ·Λ. Conse-
quently, the sifting condition P−(n) > y is harmless, as it excludes sums of negligible
contribution. However, it can also be beneficial, because in later steps it can save a
log y from the obtained bounds. For this reason, in Lemma 4.2.1, we turn our focus
to the estimation of the expressions

∑
n6x

n≡a (mod q)
P−(n)>y

Λ(n)− x

φ(q) −
ψ(a)
φ(q)

∑
n6x

P−(n)>y

ψ(n)Λ(n). (4.1.2)



• Step 2: Inspiration from Halász’s theorem. As in the proof of Theorem 1,
inspired by the classical proof of Halász’s theorem [24, Section 4.3, p. 335-347], we use
the recursiveness of the mean values of multiplicative functions (that is, the identity
(3.1.4)) with sieve estimates in order to bound the quantities (4.1.2) by averages of
themselves. Then, after a few more technical steps, this leads to an estimate involving
the sums of integrals

∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3
. (4.1.3)

• Step 3: Logarithmic weights. At the analogous point in the proof of Theorem 1,
we applied Parseval’s identity to convert the integrals of the summatory functions into
L2 norms of Dirichlet series. Here we delay the application of Parseval’s theorem and
choose to switch from the sums of integrals (4.1.3) to

∑
χ (mod q)
χ 6=χ0,ψ

∫ x

4√x
2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 dt
t3+2/ log x .

We basically do this with partial summation (Lemma 1.1.1) and the motivating factor
for this change is that we can now apply Parseval’s theorem to the new integrals and
then optimize k to obtain a better, non-trivial bound.

• Step 4: Parseval’s theorem. We apply Parseval’s theorem and bound the last sums
of integrals by

∑
χ (mod q)
χ 6=χ0,ψ

∫
R

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

, (4.1.4)

where c = 1 + 1/(log x). For some T , suitably chosen in terms of x, we treat these
integrals separately in the ranges |t| > T and |t| 6 T .

• Step 5: Large values of t. To assess the contribution of the integrals over the
interval |t| > T , we apply Lemmas 1.3.2 and 2.3.2.

• Step 6: Small values of t. For the range |t| 6 T of the smaller values of t, we
use Lemma 4.2.3 and the bounds of Section 2.2 on Ly(·,χ). This handles the presence
of the peculiar derivatives of (L′/L)(·,χ) and it eventually reduces the estimation of
(4.1.4) to that of

∑
χ (mod q)
χ 6=χ0,ψ

∫
R
|L(j)

y (c+ it,χ)|2 dt
c2 + t2

.
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We then apply Parseval’s theorem again and complete the estimation by applying
sieves to the resulting sums.

• Step 7. Optimization. For the last part of the proof we collect all our bounds and
choose k appropriately in terms of x and y in order to optimize our estimation. This
will basically complete the proof of Theorem 2.

4.2. The proof of Theorem 2
The objective of this section is to prove Theorem 2. In this direction, we prove Lemmas

4.2.1, 4.2.2 and 4.2.4. Then, the proof of Theorem 2 follows by putting these lemmas together.

Lemma 4.2.1. Assume that q is a positive integer and let x and y be two real numbers such
that

√
x > y > (10q)100. If κ and λ are the constants from the statements of Lemmas 2.1.3

and 2.1.4, respectively, then for δ ∈ (0,min{(log 2)/8, κ/6, λ/6}), we put D = x1−δ/(log y).
Moreover, if ψ is the Dirichlet character from the statement of Theorem 2, we define

∆(u,z; r,b) :=
∑
`6u

`≡b (mod r)
P−(`)>z

Λ(`)− 1
φ(r)

∑
`6u

P−(`)>z

Λ(`)χ0(`)− ψ(b)
φ(r)

∑
`6u

P−(`)>z

Λ(`)ψ(`),

for u > z > 1, r ∈ N and b ∈ (Z/rZ)∗. Then, for any k ∈ N, we have

∆(x,y; q,a) = − 1
D

∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt+Oδ

(
x1−δ/(2 log y)

φ(q)

)
.

Proof. Since log = Λ∗ 1, by taking the logarithm of the unique prime factorization of n, we
have that

∑
n6x

n≡a (mod q)
P−(n)>y

log n =
∑

m6
√
x

P−(m)>y

∑
`6 x

m
`≡am (mod q)
P−(`)>y

Λ(`) +
∑
`6
√
x

P−(n)>y

Λ(`)
∑

√
x<m6x

`

m≡a` (mod q)
P−(m)>y

1. (4.2.1)

For χ ∈ {χ0,ψ}, it is true that log ·χ = (Λ · χ) ∗ χ, which directly follows from the previous
convolution identity and the complete multiplicativity of χ. Therefore, we similarly have

∑
n6x

P−(n)>y

χ(n) log n =
∑

m6
√
x

P−(m)>y

χ(m)
∑
`6 x

m

P−(`)>y

Λ(`)χ(`) +
∑
`6
√
x

P−(n)>y

Λ(`)χ(`)
∑

√
x<m6x

`

P−(m)>y

χ(m). (4.2.2)

We now use Lemma 2.1.3 for the sums ∑n6x, P−(n)>y χ0(n) log n and ∑n6x, P−(n)>y ψ(n) log n.
We also use Lemma 2.1.4 for the sum ∑

n6x, P−(n)>y
n≡a (mod q)

log n. Combination of the obtained
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formulas yields

∑
n6x

n≡a (mod q)
P−(n)>y

log n− 1
φ(q)

∑
n6x

P−(n)>y

χ0(n) log n− ψ(a)
φ(q)

∑
n6x

P−(n)>y

ψ(n) log n� x1−c1/ log y

φ(q) , (4.2.3)

where c1 = min{κ,λ}/2. Now, for simplicity, we put

∆∗(u,y; q,b) :=
∑
m6u

m≡b (mod q)
P−(m)>y

1− 1
φ(q)

∑
m6u

P−(m)>y

χ0(m)− ψ(b)
φ(q)

∑
m6u

P−(m)>y

ψ(m).

We take (4.2.2) once with χ = χ0 and once with χ = ψ and then we add the two relations
term by term. Then we subtract the resulting relation from (4.2.1). This leads to

∑
m6
√
x

P−(m)>y

∆
(
x

m
,y; q,am

)
= −

∑
`6
√
x

P−(`)>y

Λ(`)∆∗
(
x

`
,y; q,a`

)

+
∑
`6
√
x

P−(`)>y

Λ(`)∆∗(
√
x,y; q,a`) +O

(
x1−c1/ log y

φ(q)

)
,

where the big-Oh term comes from the contribution of the left-hand side of (4.2.3). Since
x/` >

√
x > y for ` 6

√
x, we can apply Lemmas 2.1.3 and 2.1.4 with j = 0 to bound the

three sums in the definitions of ∆∗(x/`,y; q,a`) and ∆∗(
√
x,y; q,a`). Doing so yields

∑
`6
√
x

P−(`)>y

Λ(`)
{

∆∗
(
x

`
,y; q,a`

)
−∆∗(

√
x,y; q,a`)

}
� x1−c1/ log y

φ(q) log y
∑
`6
√
x

P−(`)>y

Λ(`)
`1−c1/ log y

� x1−c1/(2 log y)

φ(q) log y
∑
`6
√
x

Λ(`)
`

� x1−c1/(2 log y) log x
φ(q) log y � x1−c1/(3 log y)

φ(q) ,

where we applied Theorem 1.2.1(a) to bound the sums ∑`6
√
x Λ(`)/`. Hence,

∆(x,y; q,a) = −
∑

1<m6
√
x

P−(m)>y

∆
(
x

m
,y; q,am

)
+O

(
x1−c2/ log y

φ(q)

)
, (4.2.4)

where c2 = c1/3.
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Since x > (10q)200 > (2q)8, we have that D/m > 2q
√
x/m when m 6

√
x. Thus, for

t ∈ [x−D,x], an application of Lemma 1.2.4 gives

∑
t
m
<`6 x

m
`≡am (mod q)
P−(`)>y

Λ(`) 6
∑

x−D
m

<`6 x
m

`≡am (mod q)

Λ(`)� D

mφ(q) .

Similarly,

∑
t
m
<`6 x

m

P−(`)>y

Λ(`)χ0(`)� D

m
and

∑
t
m
<`6 x

m

P−(`)>y

Λ(`)ψ(`)� D

m
,

by bounding the characters trivially before making use of Lemma 1.2.4. With these estimates,
we deduce that

∑
1<m6

√
x

P−(m)>y

∆
(
x

m
,y; q,am

)
= 1
D

∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt

+O

(
D

φ(q)
∑

m6
√
x

P−(m)>y

1
m

)
. (4.2.5)

But according to Theorem 1.2.1(d),

∑
m6
√
x

P−(m)>y

1
m
6

∏
y<p6

√
x

(
1− 1

p

)−1

� log x
log y ,

and so (4.2.4) and (4.2.5) lead to the desired result since xδ/(2 log y) �δ log x/(log y). �

Lemma 4.2.2. Consider a positive integer q and a real number δ > 0. Moreover, let x
and y be two real numbers such that xδ > y > 4q2. If ψ is defined as in Theorem 2 and
Ly(s,χ) = ∑

P−(n)>y χ(n)n−s for the character χ mod q when Re(s) > 1, then, for k ∈ N, we
have

1
D

∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt� x1/2+δ/(log y)

log y

√
log x
φ(q)

+ Mkx1+δ/(log y)(log x)1/2−k

φ(q) log y

( ∑
χ (mod q)
χ 6=χ0,ψ

∫
R

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

)1/2

,

where D = x1−δ/(log y), c = 1 + 1/(log x) and M > 0 is some sufficiently large constant.
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Proof. By referring to the orthogonality of the characters modulo q (Theorem 1.3.1), it
follows that

∆
(
t

m
,y; q,am

)
= 1
φ(q)

∑
χ (mod q)
χ 6=χ0,ψ

χ(a)χ(m)
∑
`6 t

m

P−(`)>y

Λ(`)χ(`).

Therefore,

1
D

∣∣∣∣∣ ∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt
∣∣∣∣∣

6
1

Dφ(q)
∑

χ (mod q)
χ 6=χ0,ψ

∣∣∣∣∣ ∑
1<m6

√
x

P−(m)>y

χ(m)
∫ x

x−D

( ∑
`6 t

m

P−(`)>y

Λ(`)χ(`)
)

dt
∣∣∣∣∣

= 1
Dφ(q)

∑
χ (mod q)
χ 6=χ0,ψ

∣∣∣∣∣ ∑
1<m6

√
x

P−(m)>y

χ(m)m
∫ x

m

x−D
m

( ∑
`6t

P−(`)>y

Λ(`)χ(`)
)

dt
∣∣∣∣∣

= 1
Dφ(q)

∑
χ (mod q)
χ 6=χ0,ψ

∣∣∣∣∣ ∑
1<m6

√
x

P−(m)>y

χ(m)m
∫ x

y

x−D√
x

1(
x−D
m

, x
m

](t) · ( ∑
`6t

P−(`)>y

Λ(`)χ(`)
)

dt
∣∣∣∣∣

= 1
Dφ(q)

∑
χ (mod q)
χ 6=χ0,ψ

∣∣∣∣∣
∫ x

y

x−D√
x

( ∑
`6t

P−(`)>y

Λ(`)χ(`)
)( ∑

x−D
t
<m6x

t

P−(m)>y

χ(m)m
)

dt
∣∣∣∣∣.

We move the absolute value inside the integral and then use the Cauchy-Schwarz inequality
twice to obtain

1
D

∣∣∣∣∣ ∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt
∣∣∣∣∣

6
1

Dφ(q)

∫ x
y

x−D√
x

( ∑
χ (mod q)
χ 6=χ0,ψ

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2
)1/2( ∑

χ (mod q)
χ 6=χ0,ψ

∣∣∣∣ ∑
x−D
t
<m6x

t

P−(m)>y

χ(m)m
∣∣∣∣2
)1/2

dt

6
1

Dφ(q)

( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x
y

x−D√
x

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3

)1/2

×
(∫ x

y

x−D√
x

∑
χ (mod q)

∣∣∣∣ ∑
x−D
t
<m6x

t

P−(m)>y

χ(m)m
∣∣∣∣2t3dt

)1/2

. (4.2.6)

78



However, due to Lemma 1.3.2, we have that

∑
χ (mod q)

∣∣∣∣ ∑
x−D
t
<m6x

t

P−(m)>y

χ(m)m
∣∣∣∣2 = φ(q)

∑
b∈(Z/qZ)∗

( ∑
x−D
t
<m6x

t
m≡b (mod q)
P−(m)>y

m

)2

6
φ(q)x2

t2
∑

b∈(Z/qZ)∗

( ∑
x
2t<m6

x
t

m≡b (mod q)
P−(m)>y

1
)2

� x4

t4(log y)2 .

Note that we enlarged the range of summation over m because xδ > y. At the final step, we
applied Theorem 1.4.6 to each sum of the last line under the condition y > 4q2. So,

∫ x
y

x−D√
x

∑
χ (mod q)

∣∣∣∣ ∑
x−D
t
<m6x

t

P−(m)>y

χ(m)m
∣∣∣∣2t3dt� x4

(log y)2

∫ x

1

dt
t

= x4 log x
(log y)2 .

This means that (4.2.6) leads to the estimate

1
D

∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt� x1+δ/(log y)√log x

φ(q) log y

×
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3

)1/2

. (4.2.7)

Now, we continue by bounding the sum of integrals at the second line of (4.2.7). For
t ∈ [
√
x/2,x], by Theorem 1.2.2(b), we have that

∑
`6t

P−(`)>y

Λ(`)χ(`) = O(
√
t) +

∫ t

√
t
(log u)−kd

( ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
)

= O(
√
t) + (log t)−k

∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k

+
∫ t

√
t

∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k du
u(log u)k+1

�
√
t+Mk(log x)−k

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣

+Mk(log x)−(k+1)
∫ t

√
t

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣duu ,
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where M is some sufficiently large positive constant. Because of the basic inequality 3(α2 +
β2 + γ2) > (α + β + γ)2 for all α, β, γ ∈ R, we deduce that∣∣∣∣ ∑

`6t
P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 � t+M2k(log x)−2k

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2

+M2k(log x)−2(k+1)
(∫ t

√
t

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣duu

)2

.

But, upon noticing that(∫ t

√
t

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣duu

)2

6
log t

2

∫ t

√
t

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 du
u
,

by the Cauchy-Schwarz inequality, we conclude that
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3

)1/2

�
√
φ(q)
x

+Mk(log x)−k
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 dt
t3

)1/2

+Mk(log x)−k
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

(∫ t

√
t

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 du
u

)
dt
t3

)1/2

.

We use Fubini’s theorem to interchange the order of integration, and so the double integral
above equals

∫ x

4√x√
2

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2
(∫ u2

u

dt
t3

)
du
u
6
∫ x

4√x
2

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 du
u3 .

Hence,
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3

)1/2

�
√
φ(q)
x

+Mk(log x)−k
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

4√x
2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 dt
t3

)1/2
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�
√
φ(q)
x

+Mk(log x)−k
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

4√x
2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 dt
t3+2/ log x

)1/2

.

Since Parseval’s theorem for Dirichlet series, as was applied in the proof of Theorem 1,
guarantees that

∫ ∞
1

∣∣∣∣ ∑
`6u

P−(`)>y

Λ(`)χ(`)(log `)k
∣∣∣∣2 du
u3+2/ log x = 1

2π

∫
R

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

,

with c = 1 + 1/(log x), we arrive at
( ∑
χ (mod q)
χ 6=χ0,ψ

∫ x

√
x

2

∣∣∣∣ ∑
`6t

P−(`)>y

Λ(`)χ(`)
∣∣∣∣2 dt
t3

)1/2

�
√
φ(q)
x

+Mk(log x)−k
( ∑
χ (mod q)
χ 6=χ0,ψ

∫
R

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

)1/2

. (4.2.8)

We finish the proof of the lemma by combining (4.2.8) with (4.2.7). �

The following result is used in the proof of Lemma 4.2.4. A proof of it may be found in
[9, Lemma 9.1].

Lemma 4.2.3. Let k ∈ N, S be an open set of C, s ∈ S and F : S → C be a function which
is differentiable k times at s. We further assume that F (s) 6= 0 and we set

K = max
16j6k

{
1
j!

∣∣∣∣∣F (j)

F
(s)
∣∣∣∣∣
}1/j

and L = max
16j6k

{
1
j!

∣∣∣∣∣
(
F
′

F

)(j−1)
(s)
∣∣∣∣∣
}1/j

.

Then K/2 6 L 6 2K.

Lemma 4.2.4. Let q be a positive integer and consider the three real numbers x, T > 1 and
y > (10q)100VT (recall the definition of Vt for t ∈ R from Lemma 2.1.2 or from p. 15). If ψ
is as in the statement of Theorem 2 and Ly(s,χ) = ∑

P−(n)>y χ(n)n−s is the y-rough Dirichet
series of the character χ mod q for Re(s) > 1, then, for k ∈ N, we have

∑
χ (mod q)
χ 6=χ0,ψ

∫
R

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

� (4C)2k((k + 1)!)2(log y)2k+1

+ (c1k)2k(log x)2k+1

T
,

where c1 > 0 is a constant, C > 0 is the constant from Theorem 2.2.1 and c = 1 + 1/(log x).
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Proof. We are going to estimate the integrals by splitting them into two parts. In the first
parts, we will be integrating over |t| 6 T . We will bound these parts by mainly using the
results of Section 2.2. For the remaining parts, where we integrate over the range |t| > T ,
we will use Lemma 2.3.2. We start with the integrals over |t| > T first.

By referring to Lemma 1.3.2, it is true that

∑
χ (mod q)

∣∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣∣
2

= φ(q)
∑

b∈(Z/qZ)∗

∣∣∣∣∣ ∑
n≡b (mod q)
P−(n)>y

Λ(n)(log n)k
nc+it

∣∣∣∣∣
2

.

So, now one can use Lemma 2.3.2 to infer that

∑
χ (mod q)
χ 6=χ0,ψ

∫
|t|>T

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

6 φ(q)
∑

b∈(Z/qZ)∗

∫
|t|>T

∣∣∣∣∣ ∑
n≡b (mod q)
P−(n)>y

Λ(n)(log n)k
nc+it

∣∣∣∣∣
2 dt
t2
� (c1k)2k(log x)2k+1

T
, (4.2.9)

where c1 = 2
√

log 4. Our treatment for the integrals corresponding to the large values of t
is complete and we turn our focus to the integrals whose range of integration is |t| 6 T . For
a character χ /∈ {χ0,ψ}, using Lemma 4.2.3, it follows that

∫
|t|6T

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

6 4k((k + 1)!)2
k+1∑
j=1

(j!)−
2(k+1)
j

∫
|t|6T

∣∣∣∣L(j)
y

Ly
(c+ it,χ)

∣∣∣∣
2(k+1)
j dt

c2 + t2
. (4.2.10)

Since χ /∈ {χ0,ψ} and y > (10q)100VT > qVt when |t| 6 T , a proper combination of Theorems
2.2.2 and 2.2.3 implies that |L−1

y (c+ it,χ)| � 1. Moreover, |L(j)
y (c+ it,χ)| � j!(C log y)j for

all j ∈ {1, . . . ,k + 1}, as can be seen from Theorem 2.2.1. Hence, (4.2.10) gives

∑
χ (mod q)
χ 6=χ0,ψ

∫
|t|6T

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

� (2C)2k((k + 1)!)2
k+1∑
j=1

(log y)2(k+1−j)

(j!)2

∑
χ (mod q)
χ 6=χ0,ψ

∫
R
|L(j)

y (c+ it,χ)|2 dt
c2 + t2

. (4.2.11)
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From an application of Parseval’s theorem, it follows that

∑
χ (mod q)
χ 6=χ0,ψ

∫
R
|L(j)

y (c+ it,χ)|2 dt
c2 + t2

6
∫ ∞
y

∑
χ (mod q)
χ 6=χ0

∣∣∣∣ ∑
n6u

P−(n)>y

χ(n)(log n)j
∣∣∣∣2 du
u3 . (4.2.12)

For b ∈ (Z/qZ)∗ and u > y, Lemmas 2.1.3 and 2.1.4 yield that

∑
n6u

n≡b (mod q)
P−(n)>y

(log n)j − 1
φ(q)

∑
n6u

P−(n)>y

χ0(n)(log n)j � (log u)ju1−c2/ log y

φ(q) log y ,. (4.2.13)

where c2 = min{κ,λ}. Since
∫ v
y (log t)jdt 6 v(log v)j for v > y, these lemmas also imply that

∑
n6u

n≡b (mod q)
P−(n)>y

(log n)j + 1
φ(q)

∑
n6u

P−(n)>y

χ0(n)(log n)j � u(log u)j
φ(q) log y . (4.2.14)

We combine (4.2.13) and (4.2.14) with the elementary identity w2− z2 = (w− z)(w+ z) and
infer that

∑
χ (mod q)
χ 6=χ0

∣∣∣∣ ∑
n6u

P−(n)>y

χ(n)(log n)j
∣∣∣∣2

= φ(q)
∑

b∈(Z/qZ)∗

{( ∑
n6u

n≡b (mod q)
P−(n)>y

(log n)j
)2
−
( 1
φ(q)

∑
n6u

P−(n)>y

χ0(n)(log n)j
)2
}

� (log u)2ju2−c2/ log y

(log y)2 ,

for all j ∈ {1, . . . ,k + 1}. The first step is justified with an application of Lemma 1.3.2. We
now plug this estimate into (4.2.12) and obtain

∑
χ (mod q)
χ 6=χ0,ψ

∫
R
|L(j)

y (c+ it,χ)|2 dt
c2 + t2

� 1
(log y)2

∫ ∞
y

(log u)2ju−1−c2/ log ydu

= c−2j−1
2 (log y)2j−1Γ(2j + 1) 6 c−3

2 (2j)!(log y)2j−1,

for j ∈ {1, . . . ,k + 1} and Γ being the Gamma funtion. With this last bound, (4.2.11) turns
into

∑
χ (mod q)
χ 6=χ0,ψ

∫
|t|6T

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

� (2C)2k((k + 1)!)2(log y)2k+1
k+1∑
j=1

(
2j
j

)
.
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But,
(

2j
j

)
6
∑j
`=0

(
2j
`

)
= 4j, and so

k+1∑
j=1

(
2j
j

)
6 4k+1

k∑
j=0

4−j < 4k+!∑
j>0

4−j � 4k.

Therefore, we complete the estimation of the integrals over |t| 6 T by arriving at the bound

∑
χ (mod q)
χ 6=χ0,ψ

∫
|t|6T

∣∣∣∣
(
L
′
y

Ly

)(k)

(c+ it,χ)
∣∣∣∣2 dt
c2 + t2

� (4C)2k((k + 1)!)2(log y)2k+1. (4.2.15)

Putting (4.2.9) and (4.2.15) together, we conclude the proof of the lemma. �

• Endgame - Proof of Theorem 2: Now that the proofs of Lemmas 4.2.1, 4.2.2 and 4.2.4
are complete, we are combining them to prove Theorem 2.

First, we may assume that x > qA for some sufficiently large real number A > 0. Indeed,
if q2 6 x < qA, then log x/ log q � 1 and the theorem follows from a trivial application of
Lemma 1.2.4. Now, let k be a positive integer that we will choose later and set

y = (10q)100VT with T = exp{2B(log x)3/5(log log x)2/5},

where VT = exp{100(log(T + 3))2/3(log log(T + 3))1/3} and B > 0 is some large constant.
With these choices of y and T , applications of Lemmas 4.2.2 and 4.2.4 give

1
D

∑
1<m6

√
x

P−(m)>y

∫ x

x−D
∆
(
t

m
,y; q,am

)
dt�δ

x1+2δ/(log y)

φ(q)

{(
M ′` log y

log x

)̀
+ (c1M`)`√

T

}
, (4.2.16)

where δ > 0 is sufficiently small, ` = k + 1 and M ′ = 4MC. Note that we omitted the term

x1/2+δ/(log y)

log y

√
log x
φ(q) ,

since we are working with a sufficiently small δ > 0 and a x > qA for some sufficiently large
A. Now, we insert the estimate (4.2.16) into Lemma 4.2.1 and obtain that

∆(x,y; q,a)�δ
x1+2δ/(log y)

φ(q)

{(
M ′` log y

log x

)̀
+ (c1M`)`√

T

}
+ x1−δ/(2 log y)

φ(q) . (4.2.17)

Since M can be sufficiently large, we can choose δ sufficiently small as δ = 1/(5eM ′).
Then, for

` =
⌊

log x
eM ′ log y

⌋
,
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it follows that (
M ′` log y

log x

)̀
6

log x
M ′ log yx

−1/(eM ′ log y) � x−1/(2eM ′ log y),

and so, with the above choice of δ, we deduce that

x1+2δ/(log y)

φ(q)

(
M ′` log y

log x

)̀
� x1−δ/(2 log y)

φ(q) . (4.2.18)

We now observe that log VT � (log x)2/5(log log x)3/5, which implies that ` < log x/(log y) <
log x/(log VT ) � (log x)3/5(log log x)−3/5. Moreover, log ` < log log x. Consequently, there
exist some positive constants c2 and c3 such that

x
2δ

log y
(c3M0`)`√

T
= exp

{
2δ log x

log y + ` log `+ log(c3M0)`−B(log x)3/5(log log x)2/5
}

6 exp{c2(log x)3/5(log log x)1−3/5 −B(log x)3/5(log log x)2/5}

6 exp{−c3(log x)3/5(log log x)2/5}, (4.2.19)

because the constant B in the definition of T is sufficiently large.
With the selection of ` that we made, we have the estimates (4.2.18) and (4.2.19) and

then (4.2.17) becomes

∆(x,y; q,a)� x1−δ/(2 log y)

φ(q) + xe−c3(log x)3/5(log log x)2/5

φ(q) (4.2.20)

� x1−c4/(log(2q))

φ(q) + xe−c4(log x)3/5(log log x)−3/5

φ(q) , (4.2.21)

for some c4 > 0. The first term of the second line is for the range where log(10q) > log VT ,
whereas the second term covers the range log(10q) 6 log VT . The proof of the theorem is
almost complete. It only remains to observe that ∆(x,y; q,a) does not differ much from

∑
n6x

n≡a (mod q)

Λ(n)− x

φ(q) −
ψ(a)
φ(q)

∑
n6x

Λ(n)ψ(n).

First, we have the estimate (4.1.1) which can be rewritten as

∑
n6x

n≡a (mod q)
P−(n)>y

Λ(n) =
∑
n6x

n≡a (mod q)

Λ(n) +O

(
y log x
log y

)
.
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Similarly,

∑
n6x

P−(n)>y

Λ(n)χ(n) =
∑
n6x

Λ(n)χ(n) +O

(
y log x
log y

)

for χ ∈ {χ0,ψ}. Now, all the prime factors of q in its prime factorization are greater than or
equal to 2, which implies that 2ω(q) 6 q. Using this inequality, we deduce that

∑
n6x

(n,q)>1

Λ(n) 6
∑
pk6x
p|q

log p 6
∑
p|q

log p
∑

k6log x/ log p
1 6 ω(q) log x� (log x)(log q),

and so an application of Theorem 1.2.3 (the prime number theorem) yields
∑
n6x

Λ(n)χ0(n) = x+O(x exp{−c5(log x)3/5(log log x)−1/5}),

for some absolute constant c5 > 0. So, finally, when x > qA for a large A > 0, with the y
that we have chosen, we conclude that

∑
n6x

n≡a (mod q)

Λ(n)− x

φ(q) −
ψ(a)
φ(q)

∑
n6x

Λ(n)ψ(n)−∆(x,y; q,a)� xe−c5(log x)3/5(log log x)−1/5

φ(q) .

In virtue of (4.2.20), the theorem has now been proven.
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