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Résumé

Les auto-encodeurs sont des réseaux de neurones artificiels qui apprennent des représentations.
Dans un auto-encodeur, l’encodeur transforme une entrée en une représentation, et le décodeur
essaie de prédire l’entrée à partir de la représentation. Cette thèse compile trois applications de
ces modèles au traitement automatique des langues : pour l’apprentissage de représentations
de mots et de phrases, ainsi que pour mieux comprendre la compositionnalité.

Dans le premier article, nous montrons que nous pouvons auto-encoder des définitions
de dictionnaire et ainsi apprendre des vecteurs de définition. Nous proposons une nouvelle
pénalité qui nous permet d’utiliser ces vecteurs comme entrées à l’encodeur lui-même, mais
aussi de les mélanger des vecteurs distributionnels pré-entraînés. Ces vecteurs de définition
capturent mieux la similarité sémantique que les méthodes distributionnelles telles que
word2vec. De plus, l’encodeur généralise à un certain degré à des définitions qu’il n’a pas
vues pendant l’entraînement.

Dans le deuxième article, nous analysons les représentations apprises par les auto-encodeurs
variationnels séquence-à-séquence. Nous constatons que les encodeurs ont tendance à mémo-
riser les premiers mots et la longueur de la phrase d’entrée. Cela limite considérablement
leur utilité en tant que modèles génératifs contrôlables. Nous analysons aussi des variantes
architecturales plus simples qui ne tiennent pas compte de l’ordre des mots, ainsi que des mé-
thodes basées sur le pré-entraînement. Les représentations qu’elles apprennent ont tendance
à encoder plus nettement des caractéristiques globales telles que le sujet et le sentiment, et
cela se voit dans les reconstructions qu’ils produisent.

Dans le troisième article, nous utilisons des simulations d’émergence du langage pour
étudier la compositionnalité. Un locuteur – l’encodeur – observe une entrée et produit un
message. Un auditeur – le décodeur – tente de reconstituer ce dont le locuteur a parlé dans
son message. Nous émettons l’hypothèse que faire des phrases impliquant plusieurs entités,
telles que « Jean aime Marie », nécessite fondamentalement de percevoir chaque entité comme
un tout. Nous dotons certains agents de cette capacité grâce à un mechanisme d’attention,
alors que d’autres en sont privés. Nous proposons différentes métriques qui mesurent à quel
point les langues des agents sont naturelles en termes de structure d’argument, et si elles sont
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davantage analytiques ou synthétiques. Les agents percevant les entités comme des touts
échangent des messages plus naturels que les autres agents.

Mots-clés: Traitement Automatique des Langues, Apprentissage Automatique, Intelli-
gence Artificielle, Sémantique, Autoencodeur, Apprentissage Profond, Réseaux de Neurones
Artificiels
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Abstract

Autoencoders are artificial neural networks that learn representations. In an autoencoder, the
encoder transforms an input into a representation, and the decoder tries to recover the input
from the representation. This thesis compiles three different applications of these models to
natural language processing: for learning word and sentence representations, as well as to
better understand compositionality.

In the first paper, we show that we can autoencode dictionary definitions to learn word
vectors, called definition embeddings. We propose a new penalty that allows us to use these
definition embeddings as inputs to the encoder itself, but also to blend them with pretrained
distributional vectors. The definition embeddings capture semantic similarity better than
distributional methods such as word2vec. Moreover, the encoder somewhat generalizes to
definitions unseen during training.

In the second paper, we analyze the representations learned by sequence-to-sequence
variational autoencoders. We find that the encoders tend to memorize the first few words
and the length of the input sentence. This limits drastically their usefulness as controllable
generative models. We also analyze simpler architectural variants that are agnostic to word
order, as well as pretraining-based methods. The representations that they learn tend to
encode global features such as topic and sentiment more markedly, and this shows in the
reconstructions they produce.

In the third paper, we use language emergence simulations to study compositionality. A
speaker – the encoder – observes an input and produces a message about it. A listener – the
decoder – tries to reconstruct what the speaker talked about in its message. We hypothesize
that producing sentences involving several entities, such as “John loves Mary”, fundamentally
requires to perceive each entity, John and Mary, as distinct wholes. We endow some agents
with this ability via an attention mechanism, and deprive others of it. We propose various
metrics to measure whether the languages are natural in terms of their argument structure,
and whether the languages are more analytic or synthetic. Agents perceiving entities as
distinct wholes exchange more natural messages than other agents.

Keywords: Natural Language Processing, Machine Learning, Artificial Intelligence,
Semantics, Autoencoder, Deep Learning, Artificial Neural Networks
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Chapter 1

Introduction

The field of natural language processing (NLP) is concerned with programs and machines that
understand and produce natural language. The NLP community tries to automate various
tasks such as answering questions, translating documents from one language to another,
summarizing a large set of documents or paraphrasing, etc. NLP is usually restricted to
written language, leaving aside speech recognition and speech synthesis.

Nowadays, NLP tasks are mostly framed as machine learning (ML) tasks, in particular,
as supervised learning tasks. The behavior of the desired program is determined by a dataset
containing inputs and outputs. ML algorithms produce models that predicts the outputs
given the inputs. For example, a model trained to perform machine translation observes as
an input a sentence in language A and tries to predict as an output a translation in language
B [Brown et al., 1990]. Among ML methods, deep learning [LeCun et al., 2015, Schmidhuber,
2015] have come to dominate. Deep learning models are artificial neural networks, functions of
millions or billions of parameters. During learning, these parameters are iteratively modified
to reduce the prediction error, i.e. the discrepancy between the ground-truth output given in
the dataset, and the prediction of the model.

Unfortunately, learning is inherently difficult. Supervised learning with parametric models
amounts to inductive inference [Shalev-Shwartz and Ben-David, 2014]: we want to find a
model that is consistent with our data and predicts the correct outputs, but there are usually
infinitely many such predictors. In fact, the optimal predictor might not even be considered
by our search procedure. Furthermore, there is generally not enough data to reach optimal
performance. Labelled data is relatively scarce since the outputs that we want to predict
usually require human labor, and are thus expensive to produce.

Unsupervised learning is an attractive solution to the lack of labelled data. This form
of learning does not require outputs to be labelled. To understand how this works, take
the example of word representations. In deep learning, it is common to represent words as
continuous vectors. These vectors are optimised end-to-end to minimize the prediction error,



just like any other parameter of the model [Bengio et al., 2003]. Indeed, the ability of deep
neural networks to extract features is one of their biggest strengths [Bengio et al., 2013].
However, due to the general fact that datasets are too small, most words will be missing
from our training data, and simply not represented (out-of-vocabulary). Thus, the algorithms
will underperform when exposed to new words. Worse, words that appear only a handful of
times or only in a single sense can create spurious correlations. To deal with these issues, we
can learn generic word vectors that can be used with any downstream task [Schütze, 1992,
Mikolov et al., 2013a]. These vectors are distributional, in the sense that the representation
of a word w reflects the distribution of words in its surroundings [Harris, 1954]. They are
trained efficiently, on corpora that are so large that the rare words of our labelled data appear
frequently there. As a result, they can then be used as inputs to solve downstream tasks with
great accuracy [Collobert and Weston, 2008, Turian et al., 2010].

Autoencoders are a popular class of unsupervised learning algorithms [Rumelhart et al.,
1986, Hinton et al., 1995, Vincent et al., 2008, Rifai et al., 2011, Kingma and Welling, 2013,
Devlin et al., 2018]. An autoencoder is made of two smaller models: an encoder, which
transforms a datapoint x into some vector h, and a decoder, which tries to invert this mapping
and reconstruct x from h. There is a variety of different autoencoders. Some can be used for
learning representations, others for generating new data, some of them for both purposes.

In this thesis, we use autoencoders for various purposes that are related to semantics.
Semantics is used in a broad sense here as being related to questions of meaning, in contrast
with grammar. Thus, we are not only, or not directly, concerned by NLP tasks such as
morphological analysis (determining the components making up words), part-of-speech tagging
(determine whether a word is a noun, verb, adjective, etc.), syntactic parsing (computing
syntactic trees of sentences), etc. [Jurafsky and Martin, 2009].

In Chapter 5, we present an autoencoder that reads dictionary definitions x and produces
word vectors h. This encoder has interesting properties compared to distributional methods.
First, it is data efficient. A single definition is enough to compute a representation, in contrast
to distributional methods which require seeing a word in different contexts. Second, the
information captured by the vectors has a slightly different nature than what distributional
vectors encode. Arguably, the definitions that are used as inputs are themselves representations
of the things that are denoted by the words, not representations of these words. Hence we
see that the vectors produced are better at capturing the similarity relation – the relation
that holds between “tea” and “coffee”, which are both beverages – rather than the association
relation – for example, between “tea” and “cup”, words which frequently co-occur. Thirdly,
we introduce a penalty that encourages the representations produced by the encoder to be
reused as inputs. This can be leveraged to simply improve performance, or to incorporate
information from pretrained distributional word embeddings. Moreover, it could potentially
enable the network to self-improve by using the weights it predicts.
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In Chapter 7, we show how to improve controllable text generation with sequence-to-
sequence variational autoencoders (seq2seq-VAEs) [Kingma and Welling, 2013, Bowman et al.,
2016]. These VAEs use Long Short-Term Memories [Hochreiter and Schmidhuber, 1997]
(LSTMs) as encoders and decoders. They are notoriously hard to train, and many researchers
have blamed optimisation. However, the loss function is underspecified: there are many
different solutions to the optimisation problem. We propose a simple method to look at
what information is stored in its hidden representation h. We find that it mostly encodes
information about the first few words and the number of words in the text. As a consequence,
it is hard or impossible to use this model to produce texts with a global attribute; it merely
allows one to control the first few words and the length of the text. We show how to mitigate
this undesirable effect by using simpler encoders and decoders, as well as pretraining schemes.
These simpler variants learn to encode global features, such as topic and sentiment, in the
latent representation more clearly. Moreover, these global aspects are more often reflected in
the reconstructions that they produce.

In Chapter 9, we use autoencoders for studying language emergence. When artificial
neural networks make mistakes, it is often said that they do not generalise compositionally
(for example, in Lake and Baroni [2018]’s work). This term comes from formal semantics,
where the meaning of a constituent is propagated upwards, following the syntactic tree
[Montague, 1970, Szabó, 2020]. Formal semantics can correctly tell that the expression “blue
car” denotes something that is both blue and a car. However, it cannot explain why we say
“blue car” instead of alternatives such as “that”, “a four-wheeled vehicle”, or “a Honda Civic”,
alternatives that could also fit in a particular context. Language emergence simulations can
help us answer such questions, questions involving language and psychology.

In language emergence simulations, language is the result of an optimisation process.
In our case, the autoencoder represents two interlocutors. The encoder plays the role of
a speaker. It observes some input and produces a message – a sequence of symbols. The
decoder plays the role of a listener. It tries to reconstruct the input that the speaker has
observed and talked about in its message. In our task, agents are asked to communicate about
one or several entities. We analyze how they refer to several entities in a single sentence.
Firstly, do they cleanly separate the information using one phrase per entity, as natural
languages do? Secondly, when they talk about Mary and John, how do they differentiate
between the meanings of “John loves Mary” and “Mary loves John”? We propose new metrics
to answer these two questions in a fine-grained way. Moreover, we hypothesize that humans
can separately refer to entities via different phrases thanks to their ability to conceive of these
different entities as separate wholes. We implement this ability as an inductive bias. We find
that indeed, agents that attend to objects wholistically talk more naturally, compared to
agents which only observe a set of unrelated features belonging to different objects.
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Before the articles, we present a brief primer on ML and deep learning in Chapter 2,
followed by a review of modern NLP techniques in Chapter 3. After the articles, in Chapter
10, we summarize our results and discuss them in light of bigger questions and trends such as
large language models and grounding.
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Chapter 2

Deep learning

Machine learning (ML) algorithms adapt to the data that they are exposed to, in a process
called learning. Current research in ML focuses on a growing number of tasks: autonomous
driving, speech recognition and synthesis, medical diagnosis from images, sounds or blood
samples, music recommendation, translating or summarizing documents, etc. These tasks are
very diverse and involve different modalities such as texts, images, sounds, etc. Yet they can
all be framed as learning tasks and solved using relatively similar ML techniques.

ML is based on statistics, with a heavy focus on predictive models. Moreover, ML is
about learning algorithms. Algorithmic complexity is generally an important concern, since
both the size of the dataset and the dimension of each example in a dataset can be very large.

Deep learning methods are particularly useful with such large datasets of high-dimensional
data. Deep learning consists in training artificial neural networks with gradient-based methods.
Given a dataset, deep learning practitioners proceed as follows: They specify a parametric
model, a loss function, and then find the parameters of the model that minimize the loss
function. In this chapter, we will describe in broad strokes how this is usually done.

2.1. A first introductive example
Let X be a random vector drawn from a fixed but unknown probability distribu-

tion p, defined over some space X . Let Y be another space and f a function from X
to Y. Let (x(1), . . . , x(n)) be a sample drawn i.i.d. from p and denote the dataset by
D = {(x(1), f(x(1))), . . . , (x(n), f(x(n)))}.

In a supervised learning task, our goal is to predict the output or target Y = f(X) given
the input X. X and Y can be very different, so many real-world tasks can be cast in this
framework. For example, we may want to determine if a fruit is healthy or unhealthy (Y )
given a picture of the fruit (X); we may want to translate a text in English (X) to Chinese
(Y ); we may want to synthesize the waveform of a voice (Y ) given information about a
person’s gender and age and a text to pronounce (X); etc.



A parametric supervised learning model (or model for short), denoted by fθ, is a function
from X ×Θ to Y . θ ∈ Θ is a parameter vector. To start with, let us consider the regression
case, where X = Rd and Y = Rm.

The loss function or objective quantifies the prediction errors made by a given model.
Given a datapoint (x,y) ∈ D, it compares the prediction ŷ = fθ(x) to the ground-truth label
y. It is typically a non-negative function l : Y × Y → R≥0. When it reaches its minimum 0,
the model is perfectly accurate. A popular loss function for regression is the mean squared
error (MSE) loss:

lMSE(ŷ, y) = ||ŷ − y||2

The classification setting corresponds to Y = {y1, . . . , yk}. The 0-1 loss is often used in
this setting:

l0−1(ŷ, y) = 1(ŷ 6= y),

where 1(c) is 1 if the condition c is true, else it is 0.
When we talk about a task to solve, it can be defined as the combination of a function f

to approximate, some distribution over X and a loss function.
The simplest kind of model is linear, i.e. fully determined by a matrix W of size m× d

and a bias vector b ∈ Rm, defined by ŷ = fθ(x) = Wx+ b.
We want to find the parameter θ∗ ∈ Θ that minimizes the true error or true risk

Rtrue(fθ) = EX∼p l(fθ(X), f(X)).

Indeed, if we find the parameter θ∗ such that the true error is 0, we are able to predict Y
given X perfectly for any X drawn from P . Models that achieve a low true risk are said to
generalise, since they work well in the general case, on expectation.

However, the generalisation error is not known because the true distribution P is not
known. Instead, we typically minimize the empirical error or empirical risk

Remp(fθ) =
∑

(x,y)∈D

l(fθ(x), y).

This approach is known as empirical risk minimisation (ERM). When we use parametric
models, we call training, learning or optimisation the process of iteratively modifying the
parameter vector to find the one that minimizes some empirical risk.

If our model space {fθ|θ ∈ Θ} contains f , statistical learning theory tells us that given
a large enough dataset D, we can bound the true risk by an arbitrary scalar ε with some
probability [Shalev-Shwartz and Ben-David, 2014, §2.3.1]. The number of datapoints necessary
to achieve this risk ε at this level of certainty is called the sample complexity. While this
theory does not seem applicable to the large model spaces of deep neural networks, the term
is often used informally when comparing models trained with different amounts of data.
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For a given parameter θ, the empirical risk is an unbiased estimate of the true risk.
However, when θ is a random vector that depends on the sample D through the training
process, then the empirical risk is not an unbiased estimate of the true risk anymore. That is
why it is common practice to partition the sample D into a train set Dtrain and a test set
Dtest. The train set is used only for training and the test set only to evaluate the performance
of the model.

2.2. Probabilistic models

2.2.1. Dealing with uncertainty

In the previous section, we assumed that the labels Y were related to the inputs through
a function f . However, in most tasks, there is uncertainty as to what the true label Y is.
This uncertainty can have several causes.

Consider for example the case of machine translation. Usually, the labels in a dataset
are collected by one or several human annotators. Sometimes, there are several possible
labels for a given input. For example, a single annotator might consider that several possible
translations y correspond to a given document x. Moreover, even if each annotator has a
strong opinion about a target y, y might differ from one annotator to the other. There can
also be annotation mistakes due to a lack of knowledge from the annotator. Thus, for each x,
there are often several corresponding labels y that are more or less appropriate.

This uncertainty is modeled by using a joint distribution over X × Y, defined by a
probability density function (regression case) or probability mass function (classification case)
p. The deterministic case is still handled correctly in this formalism. Moreover, the statistical
dependency between X and Y can be arbitrarily weak, as long as they are not independent.

In the remainder, we now think of the real data-generating process as non-deterministic.
To capture this increased complexity, we switch to non-deterministic or probabilistic models
(for a general reference, see Murphy [2012]). Such models do not predict a single value ŷ ∈ Y
but instead produce a conditional density or probability pθ over Y given x ∈ X . The learning
problem is now split into two problems:

• given the true conditional pY |X , what is the optimal prediction to minimize the
empirical risk?
• given a parametric probabilistic model pθ, how do we find θ such that pθ approximates
the conditional pY |X well?

We answer these two questions in turn.
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2.2.2. Bayes decision rule

Suppose that we are in the classification setting and care about minimizing the 0-1 loss.
Given an input x, what is the optimal decision δ(x) that minimizes the 0-1 loss, on expectation
with respect to the true distribution? This is called the Bayes decision rule:

δ(x) = arg min
y∗∈Y

EpY |X [1(y∗ 6= Y )|X = x]

= arg min
y∗∈Y

∑
y∈Y

p(y|x)1(y∗ 6= y)

= arg min
y∗∈Y

(1− p(y∗|x))

= arg max
y∗∈Y

p(y∗|x).

It is optimal to choose the class y that has maximum conditional probability. Similar
calculations show that in the regression case, given the true conditional probability, the
optimal decision according to the MSE loss is the posterior mean δ(x) = EpY |X [Y |X = x].

We can also answer questions which were impossible to answer without modelling the joint
distribution. For example, in the regression setting, we can compute the probability that Y
lies in an interval of Y . In the discrete setting, we can find the top-N classes, or measure the
uncertainty over our predictions using the conditional entropy H[Y |X = x] = −∑

y∈Y p(y|x).
For NLP problems involving text generation, Y is very large and we often resort to

approximate search algorithms such as beam search.

2.2.3. Maximum likelihood estimation

We now turn to the second question: how do we find a parameter vector θ such that pθ
approximates pY |X well? Maximum likelihood estimation (MLE) is one of the main methods
to train probabilistic models (see for example Shalev-Shwartz and Ben-David [2014, Chap.
24]). The likelihood is defined as L(θ|x) = pθ(x). As the name indicates, MLE consists in
choosing the parameters that maximize the likelihood of the model.

In general, we maximize the log of the likelihood instead. This has two main benefits.
Firstly, the probability of the entire dataset is a product of probabilities, since we assume
that each datapoint is sampled independently from the true distribution. The log turns
this product into a sum. Secondly, the most common probability distributions are in the
exponential family and have a log-linear pmf or pdf.
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MLE is ERM with the negative log likelihood (NLL) used as a loss:

θ∗ = arg max
θ

log
∏

(x,y)∈D

pθ(y|x)

= arg max
θ

∑
(x,y)∈D

log pθ(y|x)

= arg min
θ

∑
(x,y)∈D

− log pθ(y|x).

This loss is no longer a function on Y ×Y , but rather a function defined on Y ×∆k−1, where
K = |Y| is the number of classes in our problem, and ∆K−1 = {x ∈ [0, 1]K |∑xi = 1}.
For each x, our model defines a random variable distributed categorically by outputting a
probability vector from ∆K−1. The NLL − log pθ(y|x) is minimized (0) when the probability
of the target y is maximal (1). This loss is often called the cross-entropy loss.

In the regression case, we can choose to model the conditional distribution as a Gauss-
ian with mean parameter depending on x and constant variance σ2 for all x, pθ(y|x) =

N (y|µ(x), σ2). In this case, we can show that MLE is equivalent to ERM with the MSE loss.

2.3. Layers and activation functions
In deep learning jargon, a layer is a function of inputs and learnable parameters, while

activation functions are functions of inputs without learnable parameters. Layers and
activation functions are composed to create artificial neural networks.

2.3.1. Multi-layer perceptron

A multi-layer perceptron (MLP) layer is made of several layers: linear transformations
interlaced with non-linear activation functions. The simplest example is the 1-hidden-layer
MLP. The 1-hidden-layer MLP has a preeminent theoretical role: roughly speaking, any
mathematical function can be represented with an MLP [Hornik et al., 1989].

For a continuous input x ∈ Rn1 , it produces a hidden representation h ∈ Rn2 and finally
outputs y ∈ Rn3 . Typical activation functions include tanh, the sigmoid function σ(x) = 1

1+e−x

and rectified linear units (ReLUs) defined by g(x) = max(0, x). When applied to vectors, an
activation function such as σ or g is applied component by component. We denote one of
these activation functions by g.

Given W1 a n2 × n1 real matrix, W2 a real n3 × n2 matrix, b1 ∈ Rn2 and b2 ∈ Rn3 :

h = g(W1x+ b1)

y = W2h+ b2
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A layer is said to be fully-connected when all its outputs depend on all its inputs. For
example, here, in the first layer, we have that ∀i, ∀j, hi depends on xj.

2.3.2. Softmax activation

The softmax activation is typically used to normalize an input vector, so that the outputs
sum to 1. This is very useful to produce distributions over finite sets of elements. Therefore,
unlike the tanh or ReLU activation, it is not applied component-wise. It is defined as a
function Rd → Rd where the i-th component is equal to

softmaxi(x) =
exp(xi)∑d
j=1 exp(xj)

.

2.3.3. Attention mechanism

Machine translation models usually align each word in the translation yi with a subset
of words in the source text x [Brown et al., 1993]. In the context of machine translation,
Bahdanau et al. [2014] introduced the attention mechanism to learn to align in a differentiable
manner. An attention mechanism can be understood as a differentiable key-value database. A
memory is a set of key-value vectors M = {(k1, v1), . . . , (kn, vn)} where ki ∈ Rn1 and vi ∈ Rn2 .
In practice, it is frequent to use identical vectors for both keys and values. For example, in
machine translation, this memory can be a set of vectors representing the words in the source
sentence x.

Given a query vector q ∈ Rn1 , the relevance of the query to each memory slot α̃i is
measured by comparing each key to the query. This comparison can be implemented using
the inner product α̃i = q>ki, or using an MLP f with learned parameters, α̃i = f([q; ki]) where
[·; ·] denotes vector concatenation. These weights are usually normalized as α = softmax(α̃).
A different query is produced at different step of the production of the output vector y, so
that the different parts of the source are translated.

Once these attention weights αi are computed, the convex combination of values is output:

y =
n∑
i=1

αivi.

2.4. Architectures for sequence modelling
An architecture is made of layers and activation functions that are composed. In this

section we present architectures that are used to handle sequential data such as text. These
models have in common that for a given input x = (x1, . . . , xnx) an input sequence of
continuous vectors of Rd, they produce a sequence of hidden states h = (h1, . . . , hnx) where
each hi ∈ H = Rd

′ .
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A Recurrent Neural Network (RNN) [Jordan, 1997, Elman, 1990] is a neural network
f : H×X ×Θ→ H defined by

ht = fθ(ht−1, xt).

ht ∈ H is the t-th hidden state and θ is the set of parameters of the RNN. t is often called a
timestep, a legacy of the use of such models for time series. The initial hidden state h0 is
included in θ.

At each timestep t, a new hidden state is computed based on the previous timestep hidden
state ht−1 and the current input xt. Thus, the RNN subsumes information from the inputs
seen so far (x1, ..., xt) into the vector ht. The content of ht is determined during training and
depends on the task, the architectural details of fθ, the optimisation procedure, etc. RNNs
have many use cases which will be discussed in the next chapter in the context of NLP.

In practice, RNNs are hard to train because of vanishing/exploding gradients. The Long
Short-Term Memory (LSTM) architecture alleviates this problem to some degree [Hochreiter
and Schmidhuber, 1997, Gers et al., 2000]. It became an essential part of the NLP toolkit,
before being displaced by more powerful models. Greff et al. [2016] provides a useful empirical
investigation into the importance of the many design choices of the LSTM.

Sutskever et al. [2014] proposed the sequence-to-sequence (seq2seq) architecture, where
two RNNs are chained. The goal is to map an input x = (x1, . . . , xnx) to an output
y = (y1, . . . , yny), say when we map one text to another as in machine translation or
summarisation. The first LSTM (the encoder) plays the role of a feature extractor, which
processes an input sequence x and from which we keep the last hidden state hnx . The second
LSTM (the decoder) is fed the vector hnx to decode the first element y1. The information in
this vector can of course be carried forward by the decoder if it is relevant. This way, the
decoder is conditioned on information from the encoder.

This architecture creates a strong bottleneck: the entire input x should be summarized in
a single vector hnx . The attention mechanism [Bahdanau et al., 2014] presented above can be
integrated in the decoder LSTM to avoid this potentially problematic constraint. To do this,
let the decoder produce an attention query qt as a function of its hidden states h′t at each
timestep. Then, the attention mechanism computes a convex combination of (h1, . . . , hnx)

as a function of the query qt (using hi as both keys and values). This allows the decoder to
access different parts of the input sequence x at different places in the output sequence.

Various models were proposed based on attention mechanisms, among which the Trans-
former is by far the most successful [Vaswani et al., 2017] (see also Rush [2018] for the
implementation). Transformers have almost entirely replaced LSTMs in NLP.

While LSTMs and Transformers can look rather cryptic, Levy et al. [2018] provide a very
insightful comparison of these models. They strip the LSTM to its bare minimum while trying
to keep a similar performance. What they find is that this stripped-down LSTM performs a

35



weighted sum of its (transformed) input vectors. In particular, the weights of past inputs can
only decrease while the sequence is being processed, biasing the LSTM towards attending to
nearby inputs. There is a similar bias in Transformers (due to the use of positional embeddings
which are added to the input vectors), but it seems that it can be compensated. This partly
explains why Transformers can deal with dependencies between elements in the inputs that
are further away, compared to LSTMs.

2.5. Generalisation and regularisation
Sometimes, machine learning algorithms do not generalise as much as we want, i.e. when

their true risk is too high for application of the model in the real world. There are two
possible cases.

In the first case, the empirical risk is high as well. This is commonly referred to as
underfitting. We often say that the model is not expressive or powerful enough, or it does not
have enough capacity. Formally, this means that the mathematical function that we want to
approximate (the true conditional pmf or pdf pY |X) cannot be approximated to a sufficient
degree with models in the family fθ|θ ∈ Θ. Another possible explanation is that there is a
problem with the optimisation procedure. Perhaps the parameters are not initialized properly,
or the optimisation algorithm is not up to the task, resulting in suboptimal parameters.

In the second case, the empirical risk is low while the true risk is high, and we say that
the model overfits. The model is too specific to the training data and does not extrapolate to
datapoints outside of the dataset. Various cures exist against overfitting. They are usually
called regularizers.

Some regularizers are additional terms in the loss function that is minimized. L1-
regularization [Tibshirani, 1996] and L2-regularization [Hoerl and Kennard, 1970] are well-
studied regularizers in the context of linear models. They consist in adding the term ||θ||1 to
our loss function (L1) or ||θ||22 (L2). This encourages most θi to be close to 0, ensuring that
only a few inputs explain the output.

Besides adding terms to the loss, we can also add noise at various points of the compu-
tations. Dropout [Hinton et al., 2012] is an operation that zeros out the components of a
vector randomly with some small probability.

Early stopping [Sjöberg and Ljung, 1995] is a frequently used regularizer, which consists in
stopping the optimisation before the minimum of the empirical loss is reached. It is common
to put aside a subset of the training set, the validation set, on which we can estimate the
true risk periodically. We can stop when it starts to increase.
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2.6. Optimisation
When we perform linear regression, we can find the optimum θ∗ analytically [Murphy,

2012, §7.3]. Deep learning models are complex functions for which this is not possible.
However, they are designed to be differentiable so that we can perform gradient descent to
optimize them. Starting from a random parameter vector θ, gradient descent iteratively
updates θ by moving slightly down the direction of the gradient. More precisely, if we denote
by θ(t) the estimate of the parameter vector at timestep t, gradient descent computes the
update

θ(t+1) ← θ(t) + α∇θRemp,

where α is the learning rate, a parameter that should be sufficiently small for theoretical
guarantees to hold, and where ∇θRemp is the gradient of Remp with respect to θ evaluated in
θ(t). This guarantees convergence towards a local minimum.

In practice, we do not optimise Remp directly because it is costly to evaluate the loss on all
the datapoints. It is more common to use Stochastic Gradient Descent (SGD) and compute
the loss on a randomly selected example of Dtrain, or to compute the loss on a minibatch, a
small subset of Dtrain.

The gradients are computed efficiently using a dynamic programming algorithm called
backpropagation or reverse-mode automatic differentiation [Rumelhart et al., 1986, Goodfellow
et al., 2016]. The backpropagation algorithm is composed of a forward pass and a backward
pass. During the forward pass, the input is propagated, that is, the loss is computed and all
the intermediate results ai saved. During the backward pass, the gradients of the loss with
respect to each parameter are computed using the chain rule.

2.7. Unsupervised learning
At its core, supervised learning is about learning a mapping between some input space X

and some output space Y given some example pairs (x, y) ∈ X × Y . Learning is said to be
supervised, in the sense that the labels y ∈ Y are usually produced by human annotators,
who teach the machine a desired behavior.

In the unsupervised learning setting, there are no labels. X is usually a high-dimensional
space of images, texts, videos, sounds, etc. Generally speaking, unsupervised learning models
try to represent the correlations between the components of X. They are used for two
purposes, very often both.

Firstly, they can be used for representation learning. In this case, such models transform
elements x ∈ X into x′ ∈ X ′, where x′ can be used downstream as input to supervised learning
models. For example, dimensionality reduction methods such as Principal Component Analysis
(PCA) (e.g., Murphy [2012]) lowers the dimensionality of the data. Working with x′ can be
an advantage in terms of statistical efficiency as well as computational and memory efficiency.
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Secondly, they can be used as generative models, to produce new datapoints that look
like those that are in the sample. Unconditional generation has limited use, but many such
models can then be used for conditional generation. In conditional generation, we want to
control aspects of the generated datapoints.

Autoencoders and autoregressive models are popular classes of models. They are both
used for representation learning and generative modelling. Goodfellow et al. [2016, Chapter
20] describe many more models, while more recent innovations in contrastive learning and
flow-based models are surveyed by Jaiswal et al. [2020] and Weng [2018] respectively.

2.7.1. Autoregressive models

The goal of probabilistic generative modelling is to approximate the distribution p of a
random vector or sequence X over a space X . Probabilistic generative models are usually
trained like supervised probabilistic models with MLE, except that the unconditional log
likelihood log pθ(x) is maximized on datapoints of D = (x1, . . . , xn).

We first decide on an order on the components of X. Let us assume that there is some
natural order, due to temporal or spatial proximity 1, 2, . . . , d. This is often the case in
time-series, images, texts, sound waves, amino-acids and base pairs in biology, etc. An
autoregressive model is defined as pθ(x) = pθ(x1)pθ(x2|x1) . . . pθ(xd|x1, . . . , xd−1).

This order is first and foremost guided by what we want to do with the model. If we
are modelling time-series to make predictions about the future, it is natural to use time to
index this autoregressive model. Then, given (discrete) time t, we can make a prediction by
using the conditional p(xt+1|x1, . . . , xt−1). But the choice of spatial or temporal order is also
a good choice (if possible), since it is very often the case that the correlations are stronger
locally than between further away components. RNNs, LSTMs and Transformers are often
used as auto-regressive models.

2.7.2. Autoencoders

Autoencoders (also called auto associators in the connectionist literature [Rumelhart et al.,
1986]) are made of two neural networks, an encoder, and a decoder. The encoder f transforms
some datapoint x into a representation f(x) = h ∈ H. The decoder maps that representation
back into the input space, producing a reconstruction x′ = g(h) of the input. All encoders are
trained to minimize a term d(x, x′), where d quantifies the discrepancy between the original
datapoint x and its reconstruction x′.

We say that h is a representation of x, in the sense that the random variable f(X)

is predictive of X. Formally, we mean that the mutual information between X and the
representation f(X) is positive. Mutual information can be written as

I[X; f(X)] = E[− log p(X)− (− log p(X|f(X)))].
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It is the expected difference between two log losses: the loss incurred by the best model that
predicts X unconditionally, i.e. without any information about X; and the loss incurred
by the best possible model that predicts f(X) given X.1 Mutual information is graded: it
quantifies how much information about x can be recovered from h.

There is a variety of models and different objectives. Many autoencoders reduce dimen-
sionality by using a representation space that is smaller than X . This is usually done for
computational and statistical reasons: it makes downstream models faster and less prone to
overfitting. Moreover, one concern is that if H is larger than X , the autoencoder can learn
the identity mapping. Contractive autoencoders [Rifai et al., 2011] do not suffer from this
problem. They encourage the partial derivatives of hi with respect to xj to be close to 0,
for all i and j. When this is the case, hi does not change when xh changes. The idea is to
balance a code h that allows for a good reconstruction with a code h that does not vary
wildly as a function of x.

The denoising autoencoder (DAE) [Vincent et al., 2008] is an autoencoder that is fed
inputs that are artificially corrupted by noise, but which targets are the non-noisy, uncorrupted
inputs. This encourages the learned representations to be invariant with respect to small
perturbations of the input.

The variational autoencoder (VAE) [Kingma and Welling, 2013] is a Bayesian model
made from three components. A prior probability distribution p(h) is fixed over H, with the
parametric distribution of our choice. The encoder produces the parameters of an approximate
posterior distribution, qφ(h|x), while the decoder models the probability pθ(x|h). Once the
model is trained, we can sample from p(h)pθ(x|h) to generate datapoints. The VAE is trained
to minimize the sum of the reconstruction loss and the Kullback-Leibler divergence

DKL(qφ||p) =
∑
h∈H

log qφ(h|x)
log qφ(h|x)

log p(h)
.

This term encourages the approximate posterior distributions to be close to the prior. To
minimize the KL term, reparametrisations are employed, see for example Kingma and Welling
[2013], Rezende et al. [2014]’s works for the Gaussian case and Jang et al. [2017], Maddison
et al. [2016]’s papers for the categorical case.

Various methods were proposed to train autoencoders, such as recirculation [Hinton et al.,
2012] and wake-sleep [Hinton et al., 1995], but backpropagation is still the most commonly
used.

1It also has information-theoretic interpretations [Cover, 1999].
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Chapter 3

Deep learning for natural language processing

Natural language processing (NLP) programs are learned – they are the result of applying deep
learning techniques to text datasets. In this chapter, we go through some of the specificities
of working with language. We start with a brief example of how deep learning techniques
can be applied directly in the supervised learning setting. After that, we review the most
important unsupervised learning techniques in NLP: segmentation algorithms, word and
sentence embedding methods, and language models for directly solving downstream tasks.

3.1. Supervised learning tasks
Suppose that we have a document, represented as a sequence of n words. Each word

is drawn from a finite vocabulary V = (w1, . . . , w|V|). To simplify notation, we represent
the document as a sequence of indices in the vocabulary, i.e. x = (x1, . . . , xnx) where
∀i ∈ {1, . . . , n}, xi ∈ {1, . . . , |V|}.

Various NLP tasks can be roughly classified into the following categories:
• Regression or classification tasks: the output is a single scalar or class, for example, a
rating (regression) or the topic of a document (classification).
• Sequence labelling tasks: for each word xi in the sequence, there is a target yi, for
example, a part of speech tag (determiner, verb, noun, etc.).
• Text generation tasks: the output is another document y = (y1, . . . , yny), as in
summarization, machine translation, etc. This is different than sequence labelling,
since in general, nx 6= ny, and each output word yi is correlated with all the words in
the input x.

How do we use the sequence of words as inputs to deep learning models? The one-hot
encoding of word wi, ooh(wi), is the vector of dimension |V| containing only zeroes, except for
a one at position i. An embedding matrix W is a |V| × d continuous matrix, where each row
Wi is a dense vector representing the word wi. It can be randomly initialized, or initialized
via representations learned using unsupervised learning, as we will see below. By doing the



matrix-vector product of the embedding matrix by a one-hot encoding vector, we obtain the
corresponding dense vector Wooh(wi) = Wi. The word embedding matrix W is a learnable
set of parameters that can be jointly optimized with the rest of the model.

Thus, once inputs are embedded, we can directly feed the sequence of vectors
(Wx1 , . . . ,Wxnx ) to sequence models such as RNNs, LSTMs or nowadays, preferably
Transformer encoders. These models produce representations H = (h1, . . . , hnx).

These representations are used differently, depending on the type of task. For regression
or classification tasks, this sequence of vectors can be aggregated by averaging or max-pooling.
Then a MLP can predict a probability distribution from this vector. For sequence labelling
tasks, we can directly use hi as input to a predictor which will learn to map to yi. Finally, for
text generation, it is popular to use an attention-based autoregressive model like an LSTM
or a Transformer decoder. Such a model predicts attention weights after the generation of
every word, thus selecting variable information from the input x.

3.2. Segmentation
NLP deals with written languages. There are different types of writing systems across

languages, and sometimes within a language (Japanese, for example). Alphabets, such as the
Latin alphabet and Korean Hangul, denote consonants and vowels separately. Syllabaries and
abugidas denote entire syllables, for example, the Ethiopic script and Devanagari. Abjads
only mark the consonants, for example, the Arabic script. All these systems operate at some
level of sound (phonemic). By contrast, in logographic systems such as Chinese Hanzi and
the Japanese kanjis, a logogram usually denotes a morpheme rather than a sound.

In all these cases, written language can be represented as a sequence of discrete elements
s = (s1, . . . , sm), si ∈ S that we can call letters for simplicity.

In the previous section, we assumed that we had access to words and that ML models used
words as inputs, not letters. While this is a reasonable first choice when it is possible, it is not
always optimal. In general, a segmentation algorithm is used to transform the sequence of
letters s = (s1, . . . , sm) to a shorter sequence of elements x = (x1, . . . , xn) where xi are taken
from a vocabulary V . There is a sweet spot between fine-grained (large n) and coarse-grained
(small n) segmentations.

Let us first look at it from the point of view of statistical efficiency. Bag-of-word models
are simple models which are invariant to the order of the elements x in the input sequence.
Such simple models only work when the segmentation is at an appropriate granularity level.
Consider a Naive Bayes classifier for topic classification. If the elements are too fine-grained,
say, each letter is an element, then the classifier will have poor performance. Indeed, the
distribution over letters is not very different from one topic to another topic. If we choose
elements to be words, the classifier could work, since we expect the distribution over words
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to be significantly different from one topic to another. If the elements are too coarse-grained,
for instance, spanning entire sentences, we run into a problem of statistical estimation. In
reasonably-sized datasets, most sentences are never sampled. Thus, if the counts are all
zero for new examples (and the classifier smoothes counts, by adding ε to every count), the
classifier will also do very poorly. Such elements that appear in the test set but not in the
train set are called out-of-vocabulary. Equally problematic, some elements are observed only
a handful of times, and this can yield spurious correlations.

A very fine-grained segmentation can be turned into an advantage given enough com-
putational resources and enough data. Naive Bayes classifiers assume that each element is
generated i.i.d. conditionnally on the topic (bag-of-word assumption). By contrast, more
complex models like LSTMs and Transformers can take into account interactions between
elements, and thus can operate at a finer-grained segmentation level. There are two potential
downsides. Firstly, these models have more parameters, and thus may require more data to
work as well as a simpler model operating at the word level. Secondly, using such models
is more computationally intensive. Indeed, many models have linear or worse time and/or
memory complexity in the number of elements in the sequence. For example, Transformers
have quadratic memory complexity, and RNNs have linear time complexity. In summary,
depending on our dataset size and our computational requirements, we can empirically
experiment with different segmentations and find the best one.

There are several ways to perform segmentation. In many languages such as English,
word and sentence markers are indicated by spaces and punctuation signs, so we can simply
split the sequence into words. In some other languages like Chinese or Thai, however, word
boundaries are not indicated so this solution requires more work – sometimes the use of
preprocessing via another machine learning algorithm. Moreover, synthetic languages have a
very large number of different words due to a very productive morphology, so a word-based
segmentation would lead to many out-of-vocabulary words and other sparsity problems.

There are many data-driven algorithms. Perhaps one of the simplest was hinted by
Harris [1954]. One could formalize it as a greedy algorithm, where the boundaries of the
segments should be placed after a letter st if the uncertainty about st+1 given s1, . . . , st is
locally maximal. Creutz and Lagus [2002] proposed two influential methods for unsupervised
morpheme discovery. Nowadays, byte pair encoding (BPE) [Gage, 1994, Sennrich et al., 2016]
is the most popular method. BPE operates bottom-up, building a vocabulary by aggregating
longer and longer words, while the recursive splitting method proposed by Creutz and Lagus
[2002] is top-down.

GPT2 [Radford et al., 2019] uses BPE in interesting ways. First, segments can cross word
boundaries. Linguistically, such long segments can be justified. A collocation or multi-word
expression is a sequence of words which meaning is not transparent, but somewhat arbitrary
and non-compositional, perhaps due to metaphorical use (“grey matter”, “kick the bucket”). It

43



could be beneficial to treat these as single elements. Furthermore, GPT2 operates directly at
the byte-level, on UTF-8-encoded unicode characters. This greatly reduces their vocabulary
size. Indeed, if one applies BPE naively, every element in S will be in the final vocabulary,
resulting in very large vocabularies when there are hanzis or kanjis in the training data.

3.3. Unsupervised word representations
After segmentation, each element x in the vocabulary V is seen as an atomic symbol:

an element in a set that has no obvious structure. Data-driven segmentation algorithms
like Morfessor and BPE usually encourage such elements to be non-compositional, hopefully
recovering linguistic morphemes which grammarians use as well as multi-word expressions.
Each element is represented by a vector Wx ∈ Rd, which can be learned along with the other
model parameters via backpropagation. This vector will be tailored to solve a particular task.

There is, however, another way to learn vector representations without supervision. A
representation of an element xi is said to be distributional when it encodes information about
the words that occur in its neighborhood or context [Harris, 1954]. For instance, since “eye-
doctor” and “oculist” occur in almost similar contexts, they will have similar representations.
Thus, these representations do reflect meaning to some extent.1

The first distributional word vectors were computed using document retrieval algorithms
such as latent semantic analysis (LSA) in an unintended way. LSA starts by creating a count
matrix of tokens (rows) appearing in a set of documents (columns) [Deerwester et al., 1990].
This matrix is then factorized using singular vector decomposition (SVD), yielding small
vectors representing the documents in terms of the words that they contain. However, it was
soon discovered [Schütze, 1992, Lund and Burgess, 1996] that these models are also useful
to represent words as well. Instead of counting term-document, they counted term-term
co-occurrences within a small moving window. The representations of interest became the
word vector representations instead of the context representations, thus creating distributional
word vectors. There is a rich literature about these methods, called count-based methods,
based on counting co-occurrences in a matrix and then factorizing this matrix.

With the increasing popularity of neural models, prediction-based methods became more
popular.2 Notably, Mikolov et al. [2013a] introduced two extremely influential algorithms: the
skip-gram algorithm and the Continuous Bag-Of-Words (CBOW ) algorithm. For simplicity,
we only present the more popular skip-gram algorithm. The skip-gram model predicts all the
elements within a window of size c ∈ N around a target element xt. The corresponding loss
1This type of representation was first proposed by Harris [1954]. The goal was to provide a method of
description of the structure of natural languages, distributional analysis, that would be as rigorous and
objective as possible. In particular, it did not require an understanding of the language by the analyst, or
at least strived to evacuate questions of meaning. As a result, the method described by Harris [1954] is
procedural in nature and resembles some modern NLP algorithms.
2Apparently, skip-gram became more popular due to a bug in a popular implementation [İrsoy et al., 2021].
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is derived by approximating the loss

l≈sg =
1

n

n∑
t=1

∑
−c≤j≤c,j 6=0

log p(xt+j|xt).

Here, the probability of the element xj being in a window around xi, p(xj|xi), is proportional
to exp(vxi

>v′xj), where a word x is represented by two vectors: vx, its input vector, and v′x,
its output vector.3 We can then use vx as the main representation of the word.

Due to the high computational cost of the computation of the gradients of the log
probability (linear in the number of words in the vocabulary k), the preferred loss uses a
technique called negative sampling [Mikolov et al., 2013b].

The methods which came to dominate are based on language modelling. Lan-
guage modelling is the task of probabilistic modelling of text, or some approximation
thereof. For example, auto-regressive language models factorize the distribution as
p(x) = p(x1)

∏n
i=2 p(xi|x1, . . . , xi−1). Bengio et al. [2003] introduced the first neural language

model and proposed to learn word vectors via backpropagation. They could be used
successfully as inputs to other neural networks, as shown by Collobert and Weston [2008]
and Turian et al. [2010].

Word2vec and related methods such as GloVe [Pennington et al., 2014] were much more
popular than language modelling approaches as they were much faster – they can be trained
on CPU, using order of magnitudes more data. They were entirely displaced by language
modelling approaches when such methods became relatively affordable, as we will discuss.

3.3.1. Intrinsic evaluation

Let us pause and discuss methods to analyze these vectors. It is well known that
downstream tasks benefit from pretraining [Collobert and Weston, 2008, Turian et al., 2010].
But it is not clear what kind of information is necessary to solve a given downstream task.
Performance differences also do not tell us about qualitative differences between two different
embedding methods. Moreover, the classical lexical relations such as synonymy and antonymy,
hypernymy and hyponymy (the is a relation), etc. were used by non-neural NLP algorithms.
Do word embeddings somehow encode these relations as well? Intrinsic evaluation methods
are designed to probe these embeddings in a task-agnostic fashion, in order to uncover their
content.

Word2vec was initially evaluated on a set of analogy tasks [Mikolov et al., 2013c,a]. In a
nutshell, simple arithmetic operations can be used to retrieve powerful syntactic and semantic
relations. The authors famously found that the vector vking − vman + vwoman is close to vqueen.

3With log-bilinear models like word2vec algorithms, we cannot use a single set of vectors to compute this
probability, say with p(xj |xi) = exp(vxi

>vxj ), since the probability of a word w appearing in its own context
should be low. I cannot find where I have read that.
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However, Linzen [2016], Rogers et al. [2017] recommend not using analogy tasks for comparing
different embeddings methods, as they suffer from many problems.

Another popular form of benchmark consists of a pair of words scored according to how
strongly they are related in a particular way. Hill et al. [2014b] distinguish between association
or relatedness, and similarity. The words in the pairs “coffee, cup” and “coffee, tea” are both
highly associated or related. However, only “coffee” and “tea” are highly similar, in virtue of
being hot beverages.

As noted by McRae et al. [2012], both association and similarity scores are composite
metrics. That is, two pairs of words can be similar, but for different reasons. For instance,
“coffee” and “beverage” are similar because coffee is kind of a beverage (hypernymy-hyponymy);
“coffee” and “tea” are similar in that they share a hypernym, “beverage”; and “coffee” and “hot
water” are similar because hot water is a necessary part of a coffee (meronymy-holonymy).
But not all semantic relations increase similarity. While synonyms are very similar, antonyms
are very dissimilar. SimLex-999 [Hill et al., 2014b] and SimVerb-3500 [Gerz et al., 2016] are
designed to measure similarity. Benchmarks that measure association strength such as MEN
[Bruni et al., 2012] and WS353 [Finkelstein et al., 2001b] were gathered using minimal and/or
ambiguous annotation guidelines, so it is hard to define precisely what they measure and
what is association.

The performance of various embeddings on association and similarity benchmarks relies
on cosine similarity. It measures the similarity between two non-0 vectors v and w as

cossim(v, w) =
< v,w >

||v||||w|| .

It is 1 if and only if v is a linear combination of w.
To evaluate the embeddings on these benchmarks, the cosine similarity between all pairs is

computed. Then, the Spearman correlation between this score and the ground-truth ratings
is computed. A high correlation means that the notion (association or similarity) is well
captured by the word vectors.

Yaghoobzadeh and Schütze [2016] argue convincingly that these benchmarks are limited.
To paraphrase (or give a similar argument), it is mathematically impossible for cosine
similarity to correlate with different lexical relations strengths. Yet it is possible to have
different projections into smaller subspaces where cosine similarity correctly models each
different lexical relation. This is also coherent with the view that similarity and relatedness
are composite relations. They advocate for the use of classifiers to extract information from
these vectors.
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3.3.2. Contextualized word embeddings

Levy et al. [2015] argued that count-based methods do not perform so differently from
prediction-based methods such as word2vec when their hyperparameters are tuned similarly
(for example, by choosing similar context sizes, ignoring or downsampling certain words,
etc.). It might not be entirely surprising since the algorithms are somewhat similar [Levy
and Goldberg, 2014b]. In particular, these methods do not prioritize or differentiate between
words in the context4, nor do they model quantities involving the probabilities of three words
(or more) co-occurring.

However, we can obtain significantly different vectors by using the skip-gram algorithm,
but using a different definition of the context and the quantities to predict. Instead of
considering the context to be the surrounding words, Levy and Goldberg [2014a] use words
that are within a certain distance in the dependency tree of the sentence. Moreover, they also
predict not only each word, but each dependency relation between the two words, which are
given by the parser. The vectors thus produced better capture similarity [Hill et al., 2014b].

Neural language models [Bengio et al., 2003, Collobert and Weston, 2008] go beyond
the simple objective of capturing pairwise statistical dependencies between nearby words.
Thus, it was likely that they would encode finer distinctions in word vectors. However, the
major realization was that the hidden representations of sequential models could be used
directly as contextualized or contextual word embeddings. The first contextual embeddings
employed the source sentence encoder of a neural machine translation model as a task-agnostic
feature extractor [McCann et al., 2017]. Peters et al. [2018]’s ELMo made several crucial
steps forward. First, they used a language model objective, allowing them to leverage large
unlabelled corpora. Second, they used deep models (stacked BiLSTM) and found that the
representations at different depths were useful for different tasks. For instance, part of
speech tagging performance is better using the outputs of the first BiLSTM, while word sense
disambiguation is more efficient using the second BiLSTM outputs.

BERT [Devlin et al., 2018], unlike ELMo, is based on a powerful Transformer architecture
instead of stacked BiLSTMs. It uses an objective called masked language modelling. The
Transformer is given a sequence where a fraction of the elements is replaced by a special, mask
token. The objective is to reconstruct these masked elements. Thus, BERT is a denoising
autoencoder with a specific reconstruction objective that penalizes only the corrupted parts
of the inputs (the masked tokens).

4Lund and Burgess [1996]’s method is an exception: it assigns more importance to words that are closed to
the target.
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3.4. Unsupervised sentence representations
Word2vec reinforced the idea that pretraining on large corpora was very helpful. This led

the community to look for equivalent methods to represent sentences. Unlike elements of
the vocabulary, sentences need to be represented compositionally [Szabó, 2020], that is, as a
function of the elements that they contain.

We can divide these methods on two axis. Firstly, on the computational axis, there
are some very cheap methods, inspired by word2vec, which are very efficient log-bilinear
models: paragraph vectors [Le and Mikolov, 2014], sent2vec [Pagliardini et al., 2018], FastSent
[Hill et al., 2016a]. By contrast, other methods employed computationally-intensive LSTM
encoders and decoders, such as sequential autoencoders [Dai and Le, 2015, Hill et al., 2016a,
Bowman et al., 2016] and skip-thought vectors [Kiros et al., 2015].

Secondly, as Hill et al. [2016a] notes, while all these models compute sentence represen-
tations compositionally, only some of these models rely on the distributional hypothesis
at the sentence level: skip-thought and FastSent create sentence representations that are
predictive of the the words in the nearby sentences. By contrast, other models only represent
the internal content of the sentences (the words), but not their context (nearby sentences).

3.5. Large language models as multi-task learners and few-
shot learners

The need to represent sentences as single vectors has since been reconsidered. We can
train sequential models directly on contextualized embeddings to solve downstream tasks.
The language models can be further trained with backpropagation (fine-tuning), or have
constant parameters (frozen).

While previous works used large language models as feature extractors, Radford et al.
[2019]’s groundbreaking work showed that the GPT2 model can be used directly, without
additional training. In order to produce the summary of a text “X ”, they sample from the
autoregressive language model conditioned on the string “X TL;DR ”. “TL;DR” is popular
internet slang for “Too Long; Didn’t Read”, and is typically used to announce that one is going
to summarize (just like “In summary”). They show that this approach works surprisingly well
for summarization. Other patterns can be used to perform machine translation, question
answering, etc. Thus, Radford et al. [2019] demonstrated that long-range correlations can be
captured by very large, powerful models; and that this offers a powerful way to solve many
tasks without supervision.

GPT3 [Brown et al., 2020] is a larger model, trained on more data. The authors claim that
it is able to generalize to new tasks via conditioning in the few-shot, one-shot and zero-shot
setting. Thus, not only can we use frequent patterns such as “TL;DR” to denote a particular
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task, but we can also induce the network to learn new tasks. For example, suppose that we
want to solve a supervised learning text generation task by training on a single pair (x, y)

and we want to obtain a prediction for x′. We can condition on “x → y; x’ → ” and let the
model generate the rest.

These very powerful abilities seem to be possible because natural language is reflexive
enough to describe NLP tasks. On the one hand, the expression “TL;DR ” can be seen as
a simple, idiomatic discourse connective. But on the other hand, it denotes a very strong
and particular type of correlation between the text that precedes and the text that follows
it. We can complexify this expression and turn it into a whole sentence (such as “Let me
try to rephrase this without the jargon, sticking to the most elementary constructions, in
two short sentences: ”). Such expressions do occur in corpora, and, as a result, language
models which are powerful enough to model long-range dependencies such as Transformers,
can able to perform such multi-task learning, meta-learning and probably continual learning,
via conditioning.
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Chapter 4

Prologue to first article:
Auto-Encoding Dictionary Definitions into

Consistent Word Embeddings

Abstract: Monolingual dictionaries are widespread and semantically rich resources. This
paper presents a simple model that learns to compute word embeddings by processing
dictionary definitions and trying to reconstruct them. It exploits the inherent recursivity of
dictionaries by encouraging consistency between the representations it uses as inputs and
the representations it produces as outputs. The resulting embeddings are shown to capture
semantic similarity better than regular distributional methods and other dictionary-based
methods. In addition, the method shows strong performance when trained exclusively on
dictionary data and generalizes in one shot.

Bibliographical entry: Tom Bosc and Pascal Vincent. Auto-Encoding Dictionary
Definitions into Consistent Word Embeddings. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 1522–1532, Brussels, Belgium,
October 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1181

4.1. Context
This paper builds on our previous work [Bahdanau et al., 2017]. We had shown that

we can produce word embeddings tailored for a downstream task on the fly using external
information (dictionary definitions and spelling). This was useful for rare words or even
out-of-vocabulary words, for which the spelling information was an untapped resource, and
for which a dictionary definition was sometimes also available.

As detailed in the paper, this algorithm has several interesting characteristics. It is a
postprocessing method that can be run once and then be used by downstream models without
additional computations. Compared to the previous paper, we focus on the different kinds of
information encoded in distributional representations versus dictionary definitions.



I was particularly interested in the one-shot learning abilities of the model. Whereas
distributional methods require seeing a few occurrences of each word in context to produce
a representation, a single definition suffices here. This advantage should not be overstated,
since few-shot learning is also possible to some extent with properly-tuned distributional
algorithms [Herbelot and Baroni, 2017]. Moreover, this ability opened the door to continual
learning. The representations that were produced could be integrated to the embedding
matrix of the encoder. Indeed, the penalty encourages the representations produced by the
encoder to be usable as inputs.

Finally, distributional representations are inherently circular: they encode information
about a token that is predictive of the presence of other nearby tokens. Dictionary definitions
also have this circular quality. Despite this, the definition embeddings are not distributional.
Rather, the consistency penalty is based on the idea of substitutability in linguistics. It was
satisfying to compare these methods which both learn from data (the dictionary autoencoder,
however, on slightly structured data structured as pairs).

4.1.1. Modifications to the published article

Following Tim O’Donnell’s comments, the article presented here slightly differs from
the published version. Some unclear abbreviations are now defined, model selection and
hyperparameter search is presented more clearly, and a note was added to discuss weight
tying with output embeddings.

4.2. Personal contributions
I designed the model, ran the experiments, and did most of the writing. I only did a

small amount of programming, since most of the code was reused from Bahdanau et al.
[2017]’s work and written by Dima. Pascal helped writing the paper and the rebuttals, and
he provided high-level guidance throughout the project.

4.3. Contributions
• Introduction of an autoencoder variant, the consistency penalized autoencoder (CPAE)
and a corresponding auxiliary loss.
• Empirical validation of the model.
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Chapter 5

Auto-Encoding Dictionary Definitions into
Consistent Word Embeddings

5.1. Introduction
Dense, low-dimensional, real-valued vector representations of words known as word

embeddings have proven very useful for NLP tasks [Turian et al., 2010]. They can be learned
as a by-product of solving a particular task [Collobert et al., 2011]. Alternatively, one can
pretrain generic embeddings based on co-occurrence counts or using an unsupervised criterion
such as predicting nearby words [Bengio et al., 2003, Mikolov et al., 2013b]. These methods
implicitly rely on the distributional hypothesis [Harris, 1954, Sahlgren, 2008], which states
that words that occur in similar contexts tend to have similar meanings.

It is common to study the relationships captured by word representations in terms of
either similarity or relatedness [Hill et al., 2016c]. “Coffee” is related to “cup” as coffee is a
beverage often drunk in a cup, but “coffee” is not similar to “cup” in that coffee is a beverage
and cup is a container. Methods relying on the distributional hypothesis often capture
relatedness very well, reaching human performance, but fare worse in capturing similarity
and especially in distinguishing it from relatedness [Hill et al., 2016c].

It is useful to specialize word embeddings to focus on either relation in order to improve
performance on specific downstream tasks. For instance, Kiela et al. [2015] report that
improvements on relatedness benchmarks also yield improvements on document classification.
In the other direction, embeddings learned by neural machine translation models capture
similarity better than distributional unsupervised objectives [Hill et al., 2014a].

There is a wealth of methods that postprocess embeddings to improve or specialize
them, such as retrofitting [Faruqui et al., 2014]. On similarity benchmarks, they are able to
reach correlation coefficients close to inter-annotator agreements. But these methods rely on
additional resources such as paraphrase databases [Wieting et al., 2016] or graphs of lexical
relations such as synonymy, hypernymy, and their converse [Mrkšić et al., 2017].



Rather than relying on such curated lexical resources that are not readily available for the
majority of languages, we propose a method capable of improving embeddings by leveraging
the more common resource of monolingual dictionaries.1 Lexical databases such as WordNet
[Fellbaum, 1998] are often built from dictionary definitions, as was proposed earlier by Amsler
[1980]. We propose to bypass the process of explicitly building a lexical database – during
which information is structured but information is also lost – and instead directly use its
detailed source: dictionary definitions. The goal is to obtain better representations for more
languages with less effort.

The ability to process new definitions is also desirable for future natural language under-
standing systems. In a dialogue, a human might want to explain a new term by explaining
it in his own words, and the chatbot should understand it. Similarly, question-answering
systems should also be able to grasp definitions of technical terms that often occur in scientific
writing.

We expect the embedding of a word to represent its meaning compactly. For interpretability
purposes, it would be desirable to be able to generate a definition from that embedding, as
a way to verify what information it captured. Case in point: to analyse word embeddings,
Noraset et al. [2017] used RNNs to produce definitions from pretrained embeddings, manually
annotated the errors in the generated definitions, and found out that more than half of the
wrong definitions fit either the antonyms of the defined words, their hypernyms, or related
but different words. This points in the same direction as the results of intrinsic evaluations of
word embeddings: lexical relationships such as lexical entailment, similarity and relatedness
are conflated in these embeddings. It also suggests a new criterion for evaluating word
representations, or even learning them: they should contain the necessary information to
reproduce their definition (to some degree). In this work, we propose a simple model that
exploits this criterion. The model consists of a definition autoencoder: an LSTM processes
the definition of a word to yield its corresponding word embedding. Given this embedding, the
decoder attempts to reconstruct the bag-of-words representation of the definition. Importantly,
to address and leverage the recursive nature of dictionaries – the fact that words that are
used inside a definition have their own associated definition – we train this model with a
consistency penalty that ensures proximity of the embeddings produced by the LSTM and
those that are used by the LSTM.

Our approach is self-contained: it yields good representations when trained on nothing
but dictionary data. Alternatively, it can also leverage existing word embeddings and is then
especially apt at specializing them for the similarity relation. Finally, it is also extremely
data-efficient, as it permits to create representations of new words in one shot from a short
definition.

1See Appendix A.1 for a list of online monolingual dictionaries.
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5.2. Model

min consistency 
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Figure 1. Overview of the CPAE model.

5.2.1. Setting and motivation

We suppose that we have access to a dictionary that maps words to one or several
definitions. Definitions themselves are sequences of words. Our training criterion is built on
the following principle: we want the model to be able to recover the definition from which the
representation was built. This objective should produce similar embeddings for words which
have similar definitions. Our hypothesis is that this will help capture semantic similarity, as
opposed to relatedness. Reusing the previous example, “coffee” and “cup” should get different
representations in virtue of having very different definitions, while “coffee” and “tea” should
get similar representations as they are both defined as beverages and plants.

We chose to compute a single embedding per word in order to avoid having to disambiguate
word senses. Indeed, word sense disambiguation remains a challenging open problem with
mixed success on downstream task applications [Navigli, 2009]. Also, recent papers have
shown that a single word vector can capture polysemy and that having several vectors per
word is not strictly necessary [Li and Jurafsky, 2015, Yaghoobzadeh and Schütze, 2016]. Thus,
when a word has several definitions, we concatenate them to produce a single embedding.

5.2.2. Autoencoder model

Let VD be the set of all words that are used in definitions and VK the set of all words that
are defined. We let w ∈ VK be a word and Dw = (Dw,1, . . . ,Dw,T ) be its definition, where
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Dw,t is the index of a word in vocabulary VD. We encode such a definition Dw by processing
it with an LSTM [Hochreiter and Schmidhuber, 1997].

The LSTM is parameterized by Ω and a matrix E of size |VD| ×m, whose ith row Ei

contains an m-dimensional input embedding for the ith word of VD. These input embeddings
can either be learned by the model or be fixed to a pretrained embedding. The last hidden
state computed by this LSTM is then transformed linearly to yield an m-dimensional
definition embedding h. Thus the encoder whose parameters are θ = {E,Ω,W,b} computes
this embedding h as

h = fθ(Dw) = W LSTME,Ω(Dw) + b.

The subsequent decoder can be seen as a conditional language model trained by maximum
likelihood to regenerate definition Dw given definition embedding h = fθ(Dw). We use a
simple conditional unigram model with a linear parametrization θ′ = {E ′, b′} where E ′ is a
|VD| ×m matrix and b′ is a bias vector.2

We maximize the log-probability of definition Dw under that model:

log pθ′(Dw|h) =
∑
t

log pθ′(Dw,t|h)

=
∑
t

log
e

〈
E′Dw,t

,h
〉

+b′Dw,t∑
k e
〈E′k,h〉+b′k

(5.2.1)

where 〈,〉 denotes an ordinary dot product. We call E ′ the output embedding matrix. The
basic autoencoder training objective to minimize over the dictionary can then be formulated
as

Jr(θ
′, θ) = −

∑
w∈VK

log pθ′(Dw|fθ(Dw)).

5.2.3. Consistency penalty

We introduced 3 different embeddings: a) definition embeddings h, produced by the
definition encoder, are the embeddings we are ultimately interested in computing; b) input
embeddings E are used by the encoder as inputs; c) output embeddings E ′ are compared to
definition embeddings to yield a probability distribution over the words in the definition. We
propose a soft weight-tying scheme that brings the input embeddings closer to the definition
embeddings. We call this term a consistency penalty because its goal is to to ensure that the
embeddings used by the encoder (input embeddings) and the embeddings produced by the
encoder (definition embeddings) are consistent with each other. It is implemented as

2We have tried using a LSTM decoder but it didn’t yield good representations. It might overfit because the
set of dictionary definitions is small. Also, using teacher forcing, we condition on ground-truth words, making
it easier to predict the next words. More work is needed to address these issues.
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Jp(θ) =
∑

w∈VD∩VK
d(Ew, fθ(Dw))

where d is a distance. In our experiments, we choose d to be the Euclidian distance. The
penalty is only applied to some words because VD 6= VK. Indeed, some words are defined
but are not used in definitions and some words are used in definitions but not defined. In
particular, inflected words are not defined. To balance the two terms, we introduce two
hyperparameters λ, α ≥ 0 and the complete objective is

J(θ′, θ) = αJr(θ
′,θ) + λJp(θ).

We call the model CPAE, for Consistency Penalized AutoEncoder when α > 0 and λ > 0

(see Figure 1).3

The consistency penalty is a cheap proxy for dealing with the circularity found in dictionary
definitions. We want the embeddings of the words in definitions to be compositionally built
from their definition as well. The recursive process of fetching definitions of words in definitions
does not terminate, because all words are defined using other words. To counter that, our
model uses input embeddings that are brought closer to definition embeddings and vice versa
in an asynchronous manner.

Moreover, if λ is chosen large enough, then Ew ≈ fθ(Dw) after optimisation. This means
that the definition embedding for w is close enough to the corresponding input embedding to
be used by the encoder for producing other definition embeddings for other words. In that
case, the model could enrich its vocabulary by computing embeddings for new words and
consistently reusing them as inputs for defining other words.

Finally, the consistency penalty can be used to leverage pretrained embeddings and
bootstrap the learning process. For that purpose, the encoder’s input embeddings E can
be fixed to pretrained embeddings. These provide targets to the encoder but also helps the
encoder to produce better definition embeddings in virtue of using input embeddings that
already contain meaningful information.

To summarize, the consistency penalty has several motivations. Firstly, it deals with the
fact that the recursive process of building representation of words out of definitions does
not terminate. Secondly, it is a way to enrich the vocabulary with new words dynamically.
Finally, it is a way to integrate prior knowledge in the form of pretrained embeddings.

In general, we might also want to further tie output embeddings with input and definition
embeddings. However, this is impractical due to the simple decoder used here, for a similar
reason as given by Goldberg and Levy [2014, footnote 2]. The log probabilities of words
in a definition are given by the dot product of the definition embedding and the output
embeddings. If they were tied, the log probability that any defined word appears in its own
3Our implementation is available at https://github.com/tombosc/cpae
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definition would be high. However, defined words are mostly or always absent from their own
definitions.

In order to study the two terms of the objective in isolation, we introduce two special
cases. When λ = 0 and α > 0, the model reduces to AE for Autoencoder. When α = 0 and
λ > 0, we retrieve Hill’s model, as presented by Hill et al. [2016b].4 Hill’s model is simply a
recurrent encoder that uses pretrained embeddings as targets so it only makes sense in the
case we use fixed pretrained embeddings.

5.3. Related work

5.3.1. Extracting lexical knowledge from dictionaries

There is a long history of attempts to extract and structure the knowledge contained
in dictionaries. Amsler [1980] studies the possibility of automatically building taxonomies
out of dictionaries, relying on the syntactic and lexical regularities that definitions display.
One relation is particularly straightforward to identify: it is the is a relation that translates
to hypernymy. Dictionary definitions often contain a genus which is the hypernym of the
defined word, as well as a differentia which differentiates the hypernym from the defined
word. For example, the word “hostage” is defined as “a prisoner who is held by one party to
insure that another party will meet specified terms”, where “prisoner” is the genus and the
rest is the differentia.

To extract such relations, early works by Chodorow et al. [1985] and Calzolari [1984] use
string matching heuristics. Binot and Jensen [1987] operate at the syntactic parse level to
detect these relations. Whether based on the string representation or the parse tree of a
definition, these rule-based systems have helped to create large lexical databases. We aim to
reduce the manual labor involved in designing the rules and directly obtaining representations
from raw definitions.

5.3.2. Improving word embeddings using lexical resources

Postprocessing methods for word embeddings use lexical resources to improve already
trained word embeddings irrespective of how they were obtained. When it is used with fixed
pretrained embeddings, our method can be seen as a postprocessing method.

Postprocessing methods typically have two terms for trading off conservation of distribu-
tional information that is brought by the original vectors with the new information from lexical

4It is not exactly their model as we use Euclidian distance instead of the cosine distance or the ranking loss.
They also explore several variants where the input embeddings are learned, which we didn’t find to produce
any improvement. We haven’t experimented with the ranking loss, but the cosine distance does not seem to
improve over Euclidian. Finally, they also use a simple encoder that averages word vectors, which we found
to be inferior.
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resources. There are two main ways to preserve distributional information: Attract-Repel
[Vulić and Mrkšić, 2017], retrofitting [Mrkšić et al., 2017] and our method control the distance
between the original vector and the postprocessed vector so that the new vector does not
drift too far away from the original vector. Counter-Fitting [Mrkšić et al., 2016] and dict2vec
[Tissier et al., 2017] ensure that the neighbourhood of a vector in the original space is roughly
the same as the neighbourhood in the new space.

Finally, methods differ by the nature of the lexical resources they use. To our knowledge,
dict2vec is the only technique that uses dictionaries. Other postprocessing methods use
various data from WordNet: sets of synonyms and sometimes antonyms, hypernyms, and
hyponyms. For instance, Lexical Entailment Attract-Repel (LEAR) uses all of these [Vulić
and Mrkšić, 2017]. Other methods rely on paraphrase databases [Wieting et al., 2016].

5.3.3. Dictionaries and word embeddings

We now turn to the most relevant works that involve dictionaries and word embeddings.
Dict2vec [Tissier et al., 2017] combines the word2vec skip-gram objective (predicting all

the words that appear in the context of a target word) with a cost for predicting related
words. These related words either form strong pairs or weak pairs with the target word.
Strong pairs have a greater influence in the cost. They are pairs of words that are in the
neighbourhood of the target word in the original embedding, as well as pairs of words for
which the definitions make reference to each other. Weak pairs are pairs of words where only
one word appears in the definition of the other. Unlike dict2vec, our method can be used as
either a standalone or a postprocessing method (when used with pretrained embeddings). It
also focuses on handling and leveraging the recursivity found in dictionary definitions with
the consistency penalty whereas dict2vec ignores this aspect of the structure of dictionaries.

Besides dict2vec, Hill et al. [2016b] train neural language models to predict a pretrained
word embedding given a definition. Their goal was to learn a general-purpose sentence
encoder useful for downstream tasks. Noraset et al. [2017] propose the task of generating
definitions based on word embeddings for interpretability purposes. Our model unifies these
two approaches into an autoencoder. However, we have a different goal: that of creating
or improving word representations. Their methods assume that pretrained embeddings are
available to provide either targets or inputs, whereas our model is unsupervised, and the use
of pretrained embeddings is optional.

Bahdanau et al. [2017] present a related model that produces embeddings from definitions
such that it improves performance on a downstream task. By contrast our approach is used
either stand-alone or as as a postprocessing step, to produce general-purpose embeddings at
a lesser computational cost. The core novelty is the way we leverage the recursive structure
of dictionaries.
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Finally, Herbelot and Baroni [2017] also aim at learning representations for word embed-
dings in a few shots. The method consists of fine-tuning word2vec hyperparameters and
can learn in one or several passes, but it is not specifically designed to handle dictionary
definitions.

5.4. Experiments

5.4.1. Setup

We experiment on English to benefit from the many evaluation benchmarks available.
The dictionary we use is that of WordNet Fellbaum [1998]. WordNet contains graphs of
linguistic relations such as synonymy, antonymy, hyponymy, etc. but also definitions. We
emphasize that our method trains exclusively on the definitions and is thus applicable to any
electronic dictionary.

However, in order to evaluate the quality of embeddings on unseen definitions, WordNet
relations comes in handy: we use the sets of synonyms to split the dictionary into a train
set and a test set, as explained in Section 5.7. Moreover, WordNet has a wide coverage and
high quality, so we do not need to aggregate several dictionaries as done by Tissier et al.
[2017]. Finally, WordNet is explicitly made available for research purposes, therefore we avoid
technical and legal difficulties associated with crawling proprietary online dictionaries.

We do not include part of speech tags that go with definitions. WordNet does not contain
function words but contains homonyms of function words. We filter these out.

5.4.2. Similarity and relatedness benchmarks

Evaluating the learned representations is a complex issue [Faruqui et al., 2016]. Indeed,
different evaluation methods yield different rankings of embeddings: there is no single
embedding that outperforms others on all tasks [Schnabel et al., 2015] and thus no single
best evaluation method.

We leave aside analogy prediction benchmarks as they suffer from many problems [Linzen,
2016, Rogers et al., 2017]. We focus on intrinsic evaluation methods. In particular, we study
how different models trade off similarity and relatedness. The benchmarks consist of pairs
of words scored according to some criteria by human annotators. We score each pair by
computing the cosine similarity between the corresponding word vectors. Then the predicted
scores and the ground truth are ranked and the correlation between the ranks is measured by
Spearman’s ρ. The benchmarks vary in terms of annotation guidelines, number of annotators,
selection of the words, etc.

As proposed by Faruqui et al. [2016], we use separate datasets for model selection. All
algorithms have hyperparameters. For each algorithm, we perform a grid search to choose
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the hyperparameters that perform best on the development sets of SimVerb3500 [Gerz
et al., 2016] and MEN [Bruni et al., 2014], which are the only benchmarks with a standard
development/test split. The space of hyperparameters searched is described in Appendix A.3.
We justified our emphasis on the similarity relation in Section 5.1: capturing this relation
remains a challenge, and we hypothesize that dictionary data should improve representations
in that respect. The model selection procedure reflects that we want embeddings specialized
in similarity: the validation score is a weighted mean where SimVerb weighs twice as much as
MEN.

5.4.3. Baselines

The objective function presented in section 5.2 gives us 3 different models: CPAE, AE, and
Hill’s model. The objective of CPAE comprises the sum of the objective of Hill’s model and
of AE. We compare the CPAE model to both of these to evaluate the individual contribution
of the two terms to the performance. In addition, when we use external corpora to pretrain
embeddings, we compare these models to dict2vec and retrofitting.

The test benchmarks for the similarity relation includes SimLex999 [Hill et al., 2016c] and
more particularly SimLex333, a challenging subset of SimLex999 which contains only highly
related pairs but in which similarity scores vary a lot. For relatedness, we use MEN [Bruni
et al., 2014], RG [Rubenstein and Goodenough, 1965], WS353 [Finkelstein et al., 2001a],
SCWS [Huang et al., 2012], and MTurk [Radinsky et al., 2011, Halawi et al., 2012]. The
evaluation is carried out by a modified version of the Word Embeddings Benchmarks project.5

Conveniently, all these benchmarks contain mostly lemmas, so we do not suffer too much
from the problem of missing words.6

5.5. Results in the dictionary-only setting
In the first evaluation round, we train models only using a single monolingual dictionary.

This allows us to check our hypothesis that dictionaries contain information for capturing
the similarity relation between words.

Our baselines are regular distributional models: GloVe [Pennington et al., 2014] and
word2vec [Mikolov et al., 2013b]. They are trained on the concatenation of defined words
with their definitions.

Such a formatting introduces spurious co-occurrences that do not otherwise appear in
free text. But these baselines are not designed for dictionaries and cannot deal with their
particular structure.

5Original project available at https://github.com/kudkudak/word-embeddings-benchmarks, modified
version distributed with our code.
6Missing words are not removed from the dataset, but they are assigned a null vector.
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We compare these models to the autoencoder model without (AE) and with (CPAE) the
consistency penalty. In this setting, we cannot use Hill’s model as it requires pretrained
embeddings as targets. We also trained an additional CPAE model with pretrained word2vec
embeddings trained on the concatenated definitions. The results are presented in Table 1.

Development Similarity Relatedness
SV-d MEN-d SL999 SL333 SV-t RG SCWS MEN-t MT 353

GloVe 12.0 54.8 19.8 -9.1 7.8 57.5 46.8 57.0 49.4 44.4
word2vec 35.2 62.3 34.5 16.0 36.4 65.7 54.5 59.9 56.1 61.9
AE 34.9 42.7 35.6 26.8 32.5 64.8 50.2 42.2 38.6 41.4
CPAE (λ = 8) 42.8 48.5 39.5 29.1 34.8 67.1 54.3 49.2 42.6 48.7
CPAE-P (λ = 64) 44.1 65.1 45.8 30.9 42.3 72.0 60.4 63.8 61.5 61.3

Table 1. Positive effect of the consistency penalty and word2vec pretraining.
Spearman’s correlation coefficient ρ× 100 on benchmarks. Without pretraining, autoencoders
(AE and CPAE) improve on similarity benchmarks while capturing less relatedness than
distributional methods. The consistency penalty (CPAE) helps even without pretrained
targets. Our method, combined with pretrained embeddings on the same dictionary data
(CPAE-P), significantly improves on every benchmark. Abbreviations: SV: SimVerb, SL:
SimLex, 353: WS353, -d: development set, -t: test set.

GloVe is outperformed by word2vec by a large margin so we ignore this model in later
experiments. Word2vec captures more relatedness than CPAE (+10.7 on MEN-test, +13.5
on MTurk, +13.2 on WS353) but less similarity than CPAE. The difference in the nature of
the relations captured is exemplified by the scores on SimLex333. This subset of SimLex999
focuses on pairs of words that are very related but that can be either similar or dissimilar.
On this subset, CPAE fares better than word2vec (+13.1).

The consistency penalty improves performance on every dataset. This penalty provides
targets to the encoder, but these targets are themselves learned and change during the
learning process. The exact dynamics of the system are unknown. It can be seen as a
regularizer because it puts strong weight-sharing constraints on both types of embeddings. It
also resembles bootstrapping in reinforcement learning, which consists of building estimates of
values functions on top of over estimates [Sutton and Barto, 1998].

The last model is the CPAE model that uses the word2vec embeddings pretrained on
the dictionary data. This combination not only equals other models on some benchmarks
but outperforms them, sometimes by a large margin (+6.3 on SimLex999 and +7.5 on
SimVerb3500 compared to CPAE, +6.1 on SCWS, +5.4 on MTurk compared to word2vec).
Thus, the two kinds of algorithms are complementary through the different relationships
that they capture best. The pretraining helps in two different ways, by providing quality
input embeddings and targets to the encoder. The pretrained word2vec targets are already
remarkably good. That is why the chosen consistency penalty coefficient selected is very high
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(λ = 64). The model can pay a small cost and deviate from the targets in order to encode
information about the definitions.

To sum up, dictionary data contains a lot of data relevant to modeling the similarity
relationship. Autoencoder based models learn different relationships than regular distribu-
tional methods. The consistency penalty is a very helpful prior and regularizer for dictionary
data, as it always helps, regardless of what relationship we focus on. Finally, our model
can drastically improve embeddings that were trained on the same data but with a different
algorithm.

5.6. Improving pretrained embeddings
We have seen that CPAE with pretraining is very efficient. But does this result generalizes

to other kind of pretraining data? To answer this question, we experiment using embeddings
pretrained on the first 50 million tokens of a Wikipedia dump, as well as the entire Wikipedia
dump. We compare our method to existing postprocessing methods such as dict2vec and
retrofitting, which also aims at improving embeddings with external lexical resources.

Retrofitting, which operates on graphs, is not tailored for dictionary data, which consists
in pairs of words along with their definitions. We build a graph where nodes are words and
edges between nodes correspond to the presence of one of the words into the definition of
another. Obviously, we lose word order in the process.

Development Similarity Relatedness
SV-d MEN-d SL999 SL333 SV-t RG SCWS MEN-t MT 353

word2vec 21.7 71.1 33.2 6.9 21.2 68.5 65.8 71.5 61.1 65.3
retrofitting 28.5 71.6 36.9 14.1 26.1 78.9 65.7 74.4 62.8 60.7
dict2vec 26.3 63.5 36.2 15.5 22.0 69.2 63.8 63.9 54.9 60.8
Hill 26.9 63.3 27.7 12.9 21.7 72.9 58.4 64.1 54.0 52.3
AE 33.5 47.0 33.1 20.4 32.5 66.0 52.0 46.4 40.2 43.7
CPAE (λ = 4) 39.5 60.8 39.9 26.6 37.8 69.7 59.2 60.8 48.4 55.6

Table 2. Improving pretrained embeddings computed on a small corpus. Spear-
man’s correlation coefficient ρ× 100 on benchmarks. All methods use pretrained embeddings.
All methods (except maybe Hill) manage to improve the embeddings. Retrofitting outper-
forms dict2vec and efficiently specializes for relatedness. CPAE outperforms AE and allows
to trade off relatedness for similarity. Abbreviations: SV: SimVerb, SL: SimLex, 353: WS353,
-d: development set, -t: test set.

The results for the small corpus are presented in Table 2. By comparing Table 2 with
Table 1, we see that word2vec does worse on similarity than when trained on dictionary data,
but better on relatedness. Both dict2vec and retrofitting improve with regards to word2vec
on similarity benchmarks and seem roughly on par. However, dict2vec fails to improve on
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Similarity Relatedness
SimLex999 SimLex333 SimVerb-test WS353 MEN-test SCWS MTurk

All 36.5 27.7 36.9 43.7 48.8 53.2 41.5
Train 40.0 28.5 36.7 46.9 53.4 57.1 42.9
Test 27.5 25.4 38.5 42.5 44.1 40.3 39.1

Table 3. One pass generalisation. Spearman’s correlation coefficient ρ× 100 on bench-
marks. The model is CPAE (without pretrained embeddings). All: all pairs in the benchmarks.
Train: pairs for which both words are in the training or validation set. Test: pairs which
contain at least one word in the test set. Correlation is lower for test pairs but remains strong
(ρ > 0.3): the model has good generalisation abilities.

relatedness benchmarks, whereas retrofitting sometimes improves (as in RG, MEN, and
MTurk), sometimes equals (SCWS) and does worse (353).

We do an ablation study by comparing Hill’s model and AE with CPAE. Recall that
Hill’s model lacks the reconstruction cost while AE lacks the consistency penalty. Firstly,
CPAE always improves over AE. Thus, we confirm the results of the previous section on
the importance of the consistency penalty. In that setting, it is more obvious why this
penalty helps, as it now provides pretrained targets to the encoder. Secondly, CPAE improves
over Hill on all similarity benchmarks by a large margin (+12.2 on SimLex999, +13.7 on
SimLex333, +16.1 on SimVerb3500). It is sometimes slightly worse on relatedness benchmarks
(−3.3 on MEN-test, −5.6 on MTurk), other times better or equal. We conclude that both
terms of the CPAE objective matter.

We see identical trends when using the full Wikipedia dump. As expected, CPAE can
still improve over even higher quality embeddings by roughly the same margins. The results
are presented in Appendix A.4.

Remarkably, the best model among all our experiments is CPAE in Table 1 and uses only
the dictionary data. This supports our hypothesis that dictionaries contain similarity-specific
information.

5.7. Generalisation on unseen definitions
A model that uses definitions to produce word representations is appealing because it could

be extremely data-efficient. Unlike regular distributional methods which iteratively refine
their representation as occurrences accumulate, such a model could output a representation
in one shot. We now evaluate CPAE in a setting where some definitions are not seen during
training.

The dictionary is split into train, validation (for early stopping) and test splits. The
algorithm for splitting the dictionary puts words in batches. It ensures two things: firstly,
that words which share at least one definition are in the same batch, and secondly, that each
word in a batch is associated with all its definitions. We can then group batches to build the
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training and the test sets such that the test set does not contain synonyms of words from the
other sets. We sort the batches by the number of distinct definitions they contain. We use the
largest batch returned by the algorithm as the training set: it contains mostly frequent and
polysemous words. The validation and the test sets, on the contrary, contain many multiword
expressions, proper nouns, and rarer words. More details are given in Appendix A.2.1.

We train CPAE only on the train split of the dictionary, with randomly initialized input
embeddings. Table 3 presents the same correlation coefficients as in the previous tables but
also distinguishes between two subsets of the pairs: the pairs for which all the definitions were
seen during training (train) and the pairs for which at least one word was defined in the test
set (test). Unfortunately, there are not enough pairs of words which both appear in the test
set to be able to compute significant correlations. On small-sized benchmarks, correlation
coefficients are sometimes not significant so we do not report them (when p-value > 0.01).

The scores of CPAE on the test pairs are quite correlated with the ground truth: except
on SimLex999 and SCWS, there is no drop in correlation coefficients between the two sets.
The scores of Hill’s model follow similar trends, but are lower on every benchmark so we
do not report them. This shows that recurrent encoders are able to generalize and produce
coherent embeddings as a function of other embeddings in one pass.

5.8. Conclusion and future work
We have focused on capturing the similarity relation. It is a challenging task which we

have proposed to solve using dictionaries, as definitions seem to encode the relevant kind of
information.

We have presented an alternative for learning word embeddings that uses dictionary
definitions. As a definition autoencoder, our approach is self-contained, but it can alternatively
be used to improve pretrained embeddings, and includes Hill’s model [Hill et al., 2016b] as a
special case.

In addition, our model leverages the inherent recursivity of dictionaries via a consistency
penalty, which yields significant improvements over the vanilla autoencoder.

Our method outperforms dict2vec and retrofitting on similarity benchmarks by a quite
large margin. Unlike dict2vec, our method can be used as a postprocessing method which
does not require going through the original pretraining corpus, it has fewer hyperparameters,
and it generalises to new words.

We see several directions for future work.
Firstly, more work is needed to evaluate the representations on other languages and tasks.
Secondly, solving downstream tasks requires representations for the inflected words as

well. We have set aside this issue by focusing on benchmarks involving lemmas. To address it
in future work, we might want to split word representations into a lexical and a morphological
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part. With such a split representation, we could postprocess only the lexical component,
and all the words, whether inflected or not, would benefit from this. This seems desirable
for postprocessing methods in general and would make them more suitable for synthetic
languages.

Thirdly, dictionary defines every sense of words, so we could produce one embedding
per sense [Chen et al., 2014, Iacobacci et al., 2015]. This requires potentially complicated
modifications to our model as we would need to disambiguate senses inside each definition.
However, some class of words might benefit a lot from such representations, for example
words that can be used as different parts of speech.

Lastly, a more speculative direction could be to study iterative constructions of the set of
embeddings. As our algorithm can generalize in one shot, we could start the training with a
small set of words and their definitions and iteratively broaden the vocabulary and refine the
representations without retraining the model. This could be useful in discovering a set of
semantic primes from which one can define all the other words [Wierzbicka, 1996].
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Chapter 6

Prologue to second article:
Do sequence-to-sequence VAEs learn global

features of sentences?

Abstract:
Autoregressive language models are powerful and relatively easy to train. However, these

models are usually trained without explicit conditioning labels and do not offer easy ways to
control global aspects such as sentiment or topic during generation. Bowman et al. [2016]
adapted the Variational Autoencoder (VAE ) for natural language with the sequence-to-
sequence architecture and claimed that the latent vector was able to capture such global
features in an unsupervised manner. We question this claim. We measure which words benefit
most from the latent information by decomposing the reconstruction loss per position in the
sentence. Using this method, we find that VAEs are prone to memorizing the first words
and the sentence length, producing local features of limited usefulness. To alleviate this, we
investigate alternative architectures based on bag-of-words assumptions and language model
pretraining. These variants learn latent variables that are more global, i.e., more predictive
of topic or sentiment labels. Moreover, using reconstructions, we observe that they decrease
memorization: the first word and the sentence length are not recovered as accurately than
with the baselines, consequently yielding more diverse reconstructions.

Bibliographical entry: Tom Bosc and Pascal Vincent. Do sequence-to-sequence VAEs
learn global features of sentences? In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 4296–4318, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.350

6.1. Context
At the time this work was in preparation, Transformer-based auto-regressive models such

as GPT2 [Radford et al., 2019] produced the best text quality. The main method to control



text generation was to condition them on a prompt – the beginning of the text that it would
complete. But it was not clear how to control these models via global attributes, for example,
to produce texts about a certain topic, using a positive or a negative tone.

I had worked on a VQVAE-based model [van den Oord et al., 2017] to explicitly model
various correlations in texts: global correlations between words which indicate sentiment
and topic, but also correlations between words denoting the same entity. It was significantly
more complicated than the seq2seq VAE [Bowman et al., 2016] and did not work. In order to
understand why, I tried to analyze the seq2seq-VAE [Bowman et al., 2016] in more detail. It
did not work as well as I thought either, which led to this paper.

6.1.1. Modifications to the published article

Following Tim O’Donnell’s comments, we have added a paragraph in B.2.2 discussing
why it is less clear that the last tokens (as opposed to sentence length) are memorized.

6.2. Personal contributions
I designed the baselines, ran the experiments, and did most of the writing. Most of the

code was taken from the work of Li et al. [2019], except for the baselines and the metrics.
Pascal helped with the writing, the rebuttals, and provided high-level guidance throughout
the project.

6.3. Contributions
• Visualization of memorization of first words in seq2seq-VAEs.
• Introduction of an automated metric, agreement, for evaluating controllable generation.
• Clarification of the evaluation process: the use of z vs µ, important difference between
datasets.
• Introduction of simple baselines that suffer less from memorization.
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Chapter 7

Do sequence-to-sequence VAEs learn global
features of sentences?

7.1. Introduction
The problem of generating natural language underlies many classical NLP tasks such as

translation, summarization, paraphrasing, etc. The problem is often formulated as learning
a probabilistic model of sentences, then searching for probable sentences under this model.
Expressive language models are typically built using neural networks [Bengio et al., 2003,
Mikolov et al., 2010].

Whether based on LSTMs [Hochreiter and Schmidhuber, 1997, Sundermeyer et al., 2012]
or Transformers [Vaswani et al., 2017, Radford et al., 2019], language models are mostly
autoregressive: the probability of a sentence is the product of the probability of each word
given the previous words. By contrast, Bowman et al. [2016] built a Variational Autoencoder
(VAE ) [Kingma and Welling, 2013, Rezende et al., 2014] out of a sequence-to-sequence
architecture (seq2seq) [Sutskever et al., 2014]. It generates text in a two-step process: first,
a latent vector is sampled from a prior distribution; then, words are sampled from the
probability distribution produced by the autoregressive decoder, conditionally on the latent
vector. The goal was to encourage a useful information decomposition, where latent vectors
would “explicitly model holistic properties of sentences such as style, topic, and high-level
syntactic features” [Bowman et al., 2016], while the more local correlations would be handled
by the recurrent decoder.

In principle, such a decomposition can be the basis for many applications. For example,
using a single, unannotated corpus, it could enable paraphrasing [Roy and Grangier, 2019] or
style transfer [Xu et al., 2019]. For tasks requiring conditional generation such as machine
translation or dialogue modeling, we could enforce a level of formality or impose a certain tone
by clamping the latent vector. Moreover, latent-variable models can represent multimodal
distributions. Thus, for these conditional tasks, the latent variable can be used as a source



of stochasticity to ensure more diverse translations [Pagnoni et al., 2018] or answers in a
dialogue [Serban et al., 2017].

Despite its conceptual appeal, Bowman et al. [2016]’s VAE suffers from the posterior
collapse problem: early on during training, the KL term in the VAE optimization objective
goes to 0, such that the approximate posterior becomes the prior and no information is
encoded in the latent variable. Free bits are a popular workaround [Kingma et al., 2016] to
ensure that the KL term is above a certain level, thereby enforcing that some information
about the input is encoded. But this information is not necessarily global. After all, posterior
collapse can be solved trivially, without any learning, using encoders that copy parts of the
inputs in the latent variable, yielding very local and useless features.

In Section 7.3, we show that encoders learn to partially memorize the first few words and
the document lengths, as was first discovered by Kim et al. [2018]. To do so, we compare
the average values of the reconstruction loss at different positions in the sentence to that
of an unconditional language model. We elaborate on the negative consequences of this
finding for generative models of texts. In Section 7.4, we propose three simple variants of
the model and the training procedure, in order to alleviate memorization and to yield more
useful global features. In Section 7.5, we empirically confirm that our variants produce more
global features, i.e., features more predictive of global aspects of documents such as topic and
sentiment. They do so while memorizing the first word and the sentence length less often, as
shown in Section 7.6.

7.2. Model and datasets
Firstly, we describe the VAE based on the seq2seq architecture of Bowman et al. [2016].

A document, sentence or paragraph, of L words x = (x1, . . . ,xL) is embedded in L vectors
(e1, . . . ,eL). An LSTM encoder processes these embeddings to produce hidden states:

h1, . . . ,hL = LSTM(e1, . . . ,eL)

In general, the encoder produces a vector r that represents the entire document. In the
original model, this vector is the hidden state of the last word r = hL, but we introduce
variants later on. This representation is transformed by linear functions L1 and L2, yielding
the variational parameters that are specific to each input document:

µ = L1r

σ2 = exp(L2r)

These two vectors of dimension d fully determine the approximate posterior, a multivariate
normal with a diagonal covariance matrix, qφ(z|x) = N (z|µ, diag(σ2)), where φ is the set of
all encoder parameters (the parameters of the LSTM, L1 and L2). Then, a sample z is drawn
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from the approximate posterior, and the decoder, another LSTM, produces a sequence of
hidden states:

h′1, . . . ,h
′
L = LSTM([eBOS; z],[e1; z], . . . ,eL; z])

where BOS is a special token indicating the beginning of the sentence and [·; ·] denotes the
concatenation of vectors. Finally, each hidden state at position i is transformed to produce a
probability distribution of the word at position i+ 1:

pθ(xi+1|x1,...,i,z) = softmax(Wh′i + b)

where softmax(vi) = evi/
∑

j e
vj and θ is the set of parameters of the decoder (the parameters

of the LSTM decoder, W and b). An EOS token indicating the end of the sentence is
appended to every document.

For each document x, the lower-bound on the marginal log-likelihood (ELBo) is:

ELBo(x, φ, θ) = −DKL(qφ(z|x)||p(z))+

Eqφ [log pθ(x|z)]

≤ log p(x)

On the entire training set {x(1),.,x(N)}, the objective is:

arg max
φ,θ

N∑
j=1

ELBo(x(j), φ, θ)

7.2.1. Dealing with posterior collapse

Following Alemi et al. [2018], we call the average value of the KL term the rate. It measures
how much information is encoded on average about the datapoint x by the approximate
posterior qφ(z|x). When the rate goes to 0, the posterior is said to collapse, meaning that
qφ(z|x) ≈ p(z) and that the latent variable z sampled to train the decoder does not contain
any information about the input x.

To prevent this, we can modify the KL term to make sure it is above a target rate using a
variety of techniques (see Appendix B.1.1 for a small survey). We use the free bits formulation
of the δ-VAE [Razavi et al., 2019]. For a desired rate λ, the modified negative ELBo is:

max(DKL(qφ(z|x)||p(z)), λ)− Eqφ [log pθ(x|z)]

Seq2seq VAEs are prone to posterior collapse, so in practice, the rates obtained are very
close to the target rates λ.

As observed by Alemi et al. [2018], different models or sets of hyperparameters for a given
model can yield very similar values of ELBos despite reaching very different rates. Thus,
for our purposes, the free bits modification is also useful to compare models with similar
capacity.

71



7.2.2. Variants

Throughout the paper, we use variants of the original architecture and training procedure.
In general, these variants use free bits objectives, but reach lower perplexities than what free
bits alone allow.

Li et al. [2019]’s method is the following: pretrain an AE, reinitialize the weights of the
decoder, train the entire model again end-to-end with the VAE objective. The sentence
representation r is also the last hidden state of the LSTM encoder, so we call this method
last-PreAE.

In the second variant, proposed by Long et al. [2019], the representation of the document r
is the component-wise maximum over hidden states hi, i.e., rj = maxi h

j
i . We call this model

max. In later experiments, we also consider a hybrid of the two techniques, max-PreAE.
We chose these two baselines because they are relatively recent and outperform or perform

on par with other recent methods such that cyclical learning rates [Fu et al., 2019] or aggressive
training [He et al., 2019]. Moreover, the pooling encoder of Long et al. [2019] is particularly
interesting: since pooling operators aggregate information over sets of vectors, they might
prevent the copying of local information in the latent variable.

We make slight, beneficial modifications to these two methods. We remove KL annealing,
which is not only redundant with the free bits technique but also increases the rate erratically
[Pelsmaeker and Aziz, 2019]. Moreover, for Li et al. [2019]’s method, we use δ-VAE-style free
bits instead of the original free bits to get rid of the unnecessary constraint that the free bits
be balanced across components. For more details, see Appendix B.1. In summary, all of our
experiments use δ-VAE-style free bits without KL annealing.

Finally, AE denotes the deterministic autoencoder trained only with the reconstruction
loss.

7.2.3. Datasets

We train VAEs on four small versions of the AGNews, Amazon, Yahoo, and Yelp datasets
created by Zhang et al. [2015]. Each document is written in English and consists of one or
several sentences. Each document is labeled manually according to its main topic or the
sentiment it expresses, and the labels are close to uniformly balanced over all the datasets.
For faster training, we use smaller datasets. The characteristics of these datasets are detailed
in Table 3 in the Appendix.
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7.3. Encoders partially memorize the first words and sen-
tence length

The ELBo objective trades off the KL term against the reconstruction term. To minimize
the objective, it is worth increasing the KL term only if the reconstruction term is decreased
by the same amount or more. With free bits, the encoder is allowed to store a fixed amount
of information for free. The objective becomes to minimize the reconstruction cost using the
“free storage” as efficiently as possible.

There are many solutions to this objective that are undesirable. For instance, we could
program an encoder that would encode the words into the latent variable losslessly, until
all the free bits are used. However, this model would not be more useful than a standard,
left-to-right autoregressive models. Therefore, it is necessary to check that such useless,
purely local features are not learned.

In order to visualize what information is stored in the latents, our method is to look at
where gains are seen in the reconstruction loss. Since the loss is a sum over documents and
positions in these documents, these gains could be concentrated: i) on certain documents, for
example, on large documents or documents containing rarer words; ii) at certain positions in
the sentence, for example, in the beginning or in the middle of the sentence. We investigate
the latter possibility.1

7.3.1. Visualizing the reconstruction loss

Concretely, we compare the reconstruction loss of different models at different positions in
the sentence. The baseline is a LSTM trained with a language model objective (LSTM-LM ).
It has the same size as the decoders of the autoencoder models.2 Since the posterior collapse
makes VAEs behave exactly like the LSTM-LM, the reconstruction losses between the VAEs
and the LSTM-LM are directly comparable. Additionally, the deterministic AE gives us the
reconstruction error that is reachable with a latent space constrained only by its dimension d,
but not by any target rate λ (equivalent to an infinite target rate).

In Figure 1, the left-hand side plot shows the reconstruction losses of different models
and different target rates λ on the Yahoo dataset. As expected, for all models, raising the
target rate lowers the reconstruction cost. Remarkably, these gains are very focused around
the beginning and the end of documents. For a clearer picture of the gains at the end of the
sentence, we plot the relative improvement in reconstruction with respect to the baseline
(right-hand side of Figure 1) using:

1PyTorch [Paszke et al., 2019] implementation available at https://github.com/tombosc/exps-s2svae.
2Only the input dimensions slightly change because in VAEs, the inputs of the decoder also include the latent
vector.
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Figure 1. Left : Reconstruction loss on Yahoo dataset per each position in the sentence,
averaged over sentences of 15 words (error bars: min, max on 3 runs); Right : Relative
improvement compared to baseline LSTM. Seq2seq autoencoders consistently store information
about the first couple of words as well as the sentence length in priority.

r̃(i) =
max(rLSTM(i)− r(i), 0)

rLSTM(i)

where rLSTM(i) is the loss of the LSTM.
All the models reconstruct the first couple of words and the penultimate token better than

the LSTM-LM. On the three other datasets, there are similar peaks on relative improvements
in the beginning and the end of sentences (Appendix B.2.1).

It is not obvious that a lower reconstruction at a given position corresponds to information
stored about the word in that position in the latent vector. Indeed, words are not independently
modeled. However, we argue that it is roughly the case because the decoder is factorised
from left-to-right and because correlations between words decrease with their distance in the
sentence. The argument is detailed in the Appendix B.2.2.

How much do these gains on the reconstruction loss translate to decoding the first words
and the document lengths more accurately? To find out, we compare regular VAEs to
fixed-encoder, ideal VAEs that encode the true label perfectly and exclusively (in other
words, VAEs whose latent variable is the ground-truth label). On sentence reconstruction, we
found that regular VAEs decoded the first word 2 to 5 times more often than the baselines,
indicating memorization of the first word. We also found similar but less dramatic results for
sentence length (see Appendix B.2.3 for details).

This phenomenon was already noticed by Kim et al. [2018], using a different method
(saliency measures, see Appendix B.4.2 for details).

To sum up, compared to an unconditional LSTM-LM, the seq2seq VAEs incur a much
lower reconstruction loss on the first tokens and towards the end of the sentence (around 50%
less with λ = 8). Moreover, if the latent variable of the VAEs did encode the label perfectly
and exclusively, they would reconstruct the first words or recover sentence length with much
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lower accuracy than what is observed. Therefore, we conclude that seq2seq VAEs are biased
towards memorizing the first few words and the sentence length.

7.3.2. The problem with memorization

One could argue that this is a superficial problem, as we can always give the model more
free bits and decrease the loss in intermediary positions. However, this is not so simple because
increasing capacity leads to a worse model fit, as was noted by Alemi et al. [2018]. More
specifically, on text data, Prokhorov et al. [2019] noted that the coherence of samples decreases
as the target rate increases. Pelsmaeker and Aziz [2019] reported similar findings, and also,
that more complex priors or posteriors do not help. Therefore, given current techniques,
higher rates come at the cost of worse modeling of the data and therefore, we should strive
for latent-variable models that store less information, but more global information.

Secondly, for controllable generation, conditioning on memorized information is useless.
When the first words are encoded in the latent variable, the factorization of the VAE becomes
the same as that of the usual autoregressive models, which are naturally able to continue a
given beginning of the sentence (a “prompt”). Similarly, document length is easily controlled
by stopping the sampling after producing the desired number of words.3 Finally, even for
semi-supervised learning, a classifier that would only use the first few words and the sentence
length would be suboptimal.

If these arguments are correct, it is doubtful that common seq2seq VAE architectures
and training procedures in the low-capacity regime would learn useful representations. This
is precisely the third problem: most of the KL values reported in the literature are low.4

Therefore, it is not clear whether the reported gains in performance (however measured) are
significant, and if they are, what exactly cause these gains.

7.4. Improving existing models
What architectures could avoid learning to memorize? We investigate simple variants and

for a more thorough comparison with existing models, we refer to Appendix B.4.1.
Our first variant uses a simple bag-of-words (BoW ) encoder in place of the LSTM encoder.

The sentence representation is rj = maxi e
j
i , where the exponents denote components, and

the indices denote positions in the sentence. We call it BoW-max-LSTM. It is similar to the
max-pooling model of Long et al. [2019] except that the maximum is taken over embeddings

3Or by explicitly conditioning on the sentence length. It can be useful for unsupervised summarization
[Schumann, 2018], in flow-based approaches [Ziegler and Rush, 2019], or more broadly for the decoder to plan
sentence construction.
4Most papers do not report the log base (1 bit is ln(2) ≈ 0.693 nats). Here are some reported rates of the
best models: Bowman et al. [2015]: 2.0 (PTB) ; Long et al. [2019]: 3.7 (Yahoo), 3.1 (Yelp); Li et al. [2019]:
15.02 (Yahoo), 8.15 (PTB); He et al. [2019]: 5.6 (Yahoo), 3.4 (Yelp); Fu et al. [2019]: 1.955 (PTB), ...
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rather than LSTM hidden states. As Long et al. [2019] reported, the max-pooling operator
is better than the average operator, both when the encoder is a LSTM and BoW (possibly
because the maximum introduces a non-linearity). Therefore, we use the maximum operator.
A priori, we think that since word order is not provided to the encoder, the encoder should
be unable to memorize the first words.

For our second variant we use a unigram decoder (Uni) in place of an LSTM decoder. It
produces a single output probability distribution for all positions in the sentence i, conditioned
only on the latent variable z. This distribution is obtained by applying a one-hidden layer
MLP followed by softmax to the latent vector: pθ(xi|z) = softmax(W2ReLU(W1z) + b),
where ReLU(x) = max(x,0) [Nair and Hinton, 2010a]. We hope that the encoder will learn
representations that do not focus on the first words, because the decoder should not need
this particular information. We can use any encoder in combination of this decoder and if we
use a BoW encoder, we obtain the NVDM model of Miao et al. [2016].

Both the BoW encoders and Uni decoders variants might benefit from the PreAE
pretraining technique, but we leave this for future work.

Lastly, the pretrained LM (PreLM ) variant is obtained in two training steps. First, we
pretrain a LSTM-LM. Then, it is used as an encoder with fixed weights. We use average
pooling over the hidden states to get a sentence representation, i.e., r = 1

L

∑L
i=1 hi, and learn

the transformations L1 and L2 that compute the variational parameters. Initially, we tried to
use max-pooling but the training was extremely unstable. The LM objective requires the
hidden state to capture both close correlations between words but also more global information
to predict long-distance correlations. The hope is that this global information can be retrieved
via pooling and encoded in the variational parameters. The PreLM variant is nothing more
than the use of a pretrained LM as a feature extractor [Peters et al., 2018]. While Yang et al.
[2017] and Kim et al. [2018] both consider the use of pretrained LMs as encoders, the weights
are not frozen such that it is hard to disentangle the impact of pretraining from subsequent
training. In contrast, we freeze the weights so that the effect of pretraining can not be
overridden. To isolate the effect of this training procedure independently of the architecture,
we keep the same LSTM instead of using more powerful architectures such as Transformers.

7.5. Semi-supervised learning evaluation
We turn to the semi-supervised learning (SSL) setting to compare the learned representa-

tions of our variants. For the purpose of controllable text generation, we assume that the
global information that is desirable to capture is the topic or sentiment. There are two training
phases: first, an unsupervised pretraining phase where VAEs are trained; second, a supervised
learning phase where classifiers are trained to predict ground-truth labels given the latent
vectors encoded with the encoders of the VAEs. This is essentially the same setup as M1 from
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Kingma et al. [2014].5 The small and large data-regimes give us complementary information:
with many labels and complex classifiers, we quantify how much of the information pertaining
to the labels is encoded; with few labels and simple classifiers, how accessible the information
is.

For each dataset, we subsample g = 5 balanced labeled datasets for each different data-
regimes, containing 5, 50, 500, and 5000 examples per class. These labeled datasets are used
for training and validating during the supervised learning phase.6 Each model is trained with
s = 3 seeds. The performance of the classifiers are measured by the macro F1-score on the
entire test sets.

To select hyperparameters on each subsample, we use repeated stratified K-fold cross-
validation [Moss et al., 2018] as detailed in the Appendix B.5.1. We obtain the test set
F1-scores Fij, where i is the subsample seed and j is the parameter initialisation seed, and
report F̄··, the average F1-score over i and j. We note F̄·j the empirical average F1-score for
a given parameter initialisation j and decompose the variance into:

• σinit = ( 1
s−1

∑s
j=1 g(F̄·j−F̄··)2)

1
2 , which quantifies the variability due to the initialisation

of the model,
• σ = (1

g

∑g
i=1

1
s−1

∑s
j=1(Fij − F̄·j)2)

1
2 , which quantifies the remaining variability.

In the context of ANOVA with a linear model and a single factor, these quantities are the
square roots of MST and MSE (see Appendix B.5.2).

Finally, we also add a data-regime where the entire labeled training set is used in the
supervised learning phase. In this setting, we use more expressive one-hidden-layer MLP
classifiers, with early stopping on the validation set. Thus, we can check that our conclusions
in the large data-regime do not depend on the model selection procedure and the choice of
the classifier.

For each class of model, we perform a grid search over target rates and latent vector sizes.
We search for target rates λ in {2,8}: large enough to capture label information but small
enough to avoid underfitting, as explained above. The size of latent vectors d are chosen in
{4,16}. They should be small enough for extremely low-data regimes. For instance, on Yelp,
the smallest data regime (5 per class) uses only 8 examples to train the classifier and 2 to do
cross-validation. A thorough explanation is presented in Appendix B.3, along with the values
of hyperparameters held constant.

What representation should be used as inputs to the classifiers? Kingma et al. [2016]
use samples from the approximate posterior qφ(z|x) = N (z|µ, diag(σ2)), but in the NLP

5We could integrate the labels into the generative model as a random variable that is either observed or
missing to obtain better results [Kingma et al., 2014]. Still, our goal is to study the inductive bias of the
seq2seq VAE as an unsupervised learning method, so we do not train the encoder using the labels.
6It is especially important to use several subsamples in the low data-regimes where subsamples containing
unrepresentative texts or noisy labels are not unlikely.
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5 All
Enc. r Dec. Pre. F1 σ

σinit

A
G

N
ew

s

LSTM last LSTM AE 65.8 3.3
3.3 83.4 −0.3

LSTM max LSTM AE 55.7 4.5
18.7 83.3 −0.4

BoW max LSTM - 72.7 2.0
5.9 83.1 −0.3

LSTM max Uni - 71.6 5.5
0.1 83.9 −0.3

LSTM last Uni - 54.8 5.2
57.1 59.3 −40.9

BoW max Uni - 71.8 4.5
1.8 83.1 −0.5

LSTM avg LSTM LM 70.8 4.8
4.3 83.5 −0.1

A
m

az
on

LSTM last LSTM AE 20.0 2.2
0.9 28.1 −1.0

LSTM max LSTM AE 22.3 2.6
0.7 34.0 −1.6

BoW max LSTM - 21.0 2.6
1.1 38.9 −0.7

LSTM max Uni - 21.8 3.1
1.6 38.2 −0.5

LSTM last Uni - 24.0 3.0
1.0 36.8 −0.9

BoW max Uni - 25.4 3.2
0.2 37.9 −0.2

LSTM avg LSTM LM 21.8 3.8
0.6 40.0 −0.4

Y
ah

oo

LSTM last LSTM AE 20.7 0.7
0.5 37.2 −0.7

LSTM max LSTM AE 20.8 1.3
2.3 36.6 −0.7

BoW max LSTM - 23.4 2.1
2.9 42.6 −0.2

LSTM max Uni - 24.9 1.3
2.2 38.9 −1.7

LSTM last Uni - 24.5 3.8
1.7 37.1 −2.3

BoW max Uni - 24.1 2.9
2.7 40.1 −0.7

LSTM avg LSTM LM 21.9 2.3
1.3 41.7 −0.3

Y
el

p

LSTM last LSTM AE 59.3 5.4
2.9 67.9 −0.1

LSTM max LSTM AE 59.9 10.4
7.9 84.1 −0.7

BoW max LSTM - 67.1 10.1
15.7 85.0 −0.2

LSTM max Uni - 62.3 4.6
3.8 83.1 −0.5

LSTM last Uni - 65.0 8.0
4.4 81.6 −0.5

BoW max Uni - 59.9 7.2
3.7 83.3 −0.4

LSTM avg LSTM LM 63.6 7.4
5.4 84.4 −0.5

Table 1. Using BoW encoders, Uni decoders or PreLM pretraining, the learned representa-
tions are more predictive of the labels (sentiment or topic).

literature, most evaluations focus on µ without mention or justification. To evaluate the VAE
as a generative model, we claim that only noisy samples z should be used. In fact, using a
model with a rate close to 0 on Yelp, we can recover the label with a high F1-score of 81.5%

by using µ, whereas, as expected, noisy samples z do not do better than random (50%). The
information contained in µ is misleading because it is not transmitted to the decoder and not
used directly during generation. Therefore, we use samples z (cf. Appendix B.5.3 for details).
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7.5.1. Results

Table 1 contains the results of the SSL experiments in the smallest and largest data-regimes.
The results for intermediary data-regimes as well as for baseline models without pretraining,
which underperform, are presented in the Appendix, Table 6. The proposed variants are either
on par or improve significantly over the baselines. In the large data-regime, BoW-max-LSTM
and LSTM-avg-LSTM-PreLM perform best on average while LSTM-last-Uni performs the
worst and suffers from unstable training on AGNews. In the small data-regime, the picture is
less clear because there is more variance.

On AGNews and Yelp, in the large data-regime, our variants do not seem to improve over
the baselines. However, on Amazon and Yahoo, in the large data-regime, the variants seem
to improve by 5 in F1-score. Why do the gains vary so widely depending on the datasets?
We posit that, on some datasets, the first words are enough to predict the labels correctly.
We train bag-of-words classifiers 7 using either i) only the first three words or ii) all the words
as features on the entire datasets. If the three-words classifiers are as good as the all-words
classifiers, we expect that the original VAE variants will perform well: in that case, encoding
information about the first words is not harmful, it could be a rather useful inductive bias.
Conversely, if the first three words are not predictive of the label, the original VAEs will
perform badly.

As reported in the Appendix, Table 7, on AGNews and Yelp, classifiers trained on the
first three words have a performance somewhat close to the classifier trained on all the words,
reaching 80.8% and 85.4% of its scores respectively. For instance, on AGNews, the first
words are often nouns that directly gives the topic of the news item: country names for
the politics category, firm names for the technology category, athlete or team names for the
sports category, etc. On the two other datasets, the performance decays a lot if we only
use the first three words: three-words F1-scores make up for 60.7% and 30.3% of all-words
F1-scores on Amazon and Yahoo. This explains why the original VAE can perform on par
or slightly better than our variants on certain datasets for which the first words are very
predictive of the labels. This also proves that using several datasets is necessary to draw
robust conclusions.

Despite similar asymptotic performance on AGNews and Yelp, our variants clearly improve
over the baselines in the small data-regime, which suggests that the encoded information is
quantitatively different. This is confirmed in the next section.

It might be surprising that LSTM-max-LSTM models are inferior to BoW-max-LSTM
models. In Appendix B.5.4, we show that with recurrent encoders, some components of the
hidden states are consistently maximized at certain early positions in the sentence. This

7fastText classifiers [Joulin et al., 2017] with embedding dimension of 200 and the default parameters.
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Enc. r Pre. Agree. 1st (%) Len (%) ≈PPL
LSTM last AE 80.2±1.0 29.6±1.1 3.6±0.1 34.8±0.4

LSTM max AE 79.5±0.9 31.7±1.1 3.7±0.5 34.7±0.4

BoW max - 78.0±1.3 18.9±1.2 2.7±0.3 36.1±0.6
BoW max Uni 81.3±0.1 13.9±0.3 3.1±0.1 36.3±0.7
LSTM max Uni 82.0±0.4 13.9±0.2 3.3±0.4 36.0±0.4
LSTM avg LM 79.2±0.4 22.2±0.8 3.2±0.2 35.0±0.3

LSTM last AE 24.5±0.4 42.4±2.3 13.0±1.6 44.5±0.2

LSTM max AE 30.8±1.1 41.7±0.8 11.5±1.0 44.4±0.3

BoW max - 34.2±0.5 33.3±0.7 9.9±0.7 45.3±0.5
BoW max Uni 33.3±0.4 21.5±0.3 11.8±0.5 45.3±0.4
LSTM max Uni 34.1±0.5 22.1±0.1 11.7±0.6 45.4±0.6
LSTM avg LM 35.8±0.4 38.3±0.9 11.5±1.0 44.2±0.4

LSTM last AE 23.8±0.2 56.6±1.0 17.1±1.1 48.8±0.2

LSTM max AE 22.9±0.8 58.7±1.7 18.4±0.8 48.6±0.1

BoW max - 26.9±0.5 49.3±1.2 11.8±0.3 49.7±0.4
BoW max Uni 26.8±0.6 37.6±0.9 10.6±0.4 49.8±0.1
LSTM max Uni 27.1±1.0 37.7±1.6 11.0±0.3 50.0±0.4
LSTM avg LM 26.7±0.2 51.9±0.5 16.7±1.8 48.5±0.1

LSTM last AE 81.7±1.3 53.0±0.5 33.7±1.7 31.7±0.3

LSTM max AE 81.3±0.7 52.4±0.5 29.5±2.5 31.8±0.1

BoW max - 82.2±0.5 36.4±0.3 22.4±0.5 32.3±0.4
BoW max Uni 80.4±0.4 30.6±0.5 15.4±0.4 32.8±0.1
LSTM max Uni 80.9±0.4 32.0±0.4 17.2±0.7 33.1±0.3
LSTM avg LM 82.3±0.7 47.7±0.4 24.1±0.4 31.9±0.2

Table 2. Our variants reconstruct inputs with higher agreement, less memorization of the
1st words and lengths and a negligible loss in likelihood. Best score and scores within one
standard deviation are bolded.

explains why the power of LSTMs can be undesirable, and why the simpler BoW encoders
perform better.

7.6. Text generation evaluation
How do these different variants perform during generation? We expect that the SSL

classification performances would correlate with the abilities of the decoders to reconstruct
documents that exhibit a similar global aspect than the encoded documents.

To measure the agreement in label between the source document and its reconstruction,
we adapt the evaluation procedure used by Ficler and Goldberg [2017] so that no human
annotators or heuristics are required (see Appendix B.4.2). First, a classifier is trained to
predict the label on the source dataset. Then, for each model, we encode the documents,
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reconstruct them, and classify these reconstructions using the classifier. The agreement is the
F1-scores between the original labels and the labels given by the classifiers on the generated
samples.

To quantify memorization, we measure the reconstruction accuracy of the first word and
the ratio of identical sentence length between sources and reconstructions. Finally, to verify
that our bag-of-words assumptions do not hurt the overall fit to the data, we estimate the
negative log-likelihood via the importance-weighted lower bound [Burda et al., 2015] (500
samples) to compute an approximate perplexity per word (≈PPL).

We use two decoding schemes: beam search with a beam of size 5 and greedy decoding.
We fix λ = 8, d = 16 on all models, with three seeds. For the Uni decoder, we drop
LSTM-last-Uni which underperformed by a large margin in the SSL setting, and for the other
Uni models, we freeze the encoder, L1 and L2 and train a new recurrent decoder using the
reconstruction loss only. Essentially, the Uni decoder is an auxiliary decoder, as described
by De Fauw et al. [2019] (see Appendix B.4.1 for details) and we denote this technique by
PreUni.

Table 2 show the results for beam search decoding.8 There is a close correspondence
between agreement and performance on the SSL tasks in the large data-regime. Our variants
have a higher agreement than the baselines, especially on Amazon and Yahoo datasets for
which the memorization of the first words is especially harmful.

The baselines reconstruct the first words with very high accuracy (more than 50% of the
time on Yahoo and Yelp) while our variants mitigate this memorization. For instance, PreUni
models recover the first word around 2 or 1.5 times less often.

Let us focus on AGNews and Yelp, where the first words are very predictive of the labels.
Both baselines and variants have roughly similarly high agreement. However, our variants
produce more diverse beginnings, while still managing to reproduce the topic or sentiment of
the original document. On the other hand, the reconstructions of the baselines exhibit the
same labels as the sources mostly as a side-effect of starting with the same words. This also
explains that in the SSL setting, despite similar performances asymptotically, our variants
were much more efficient using five examples per class. Memorization of the first words does
not abstract away from the particular words and therefore, the amount of data required
to learn a good classifier will be high, compared to a model which truly infer unobserved
characteristics of documents.

Both BoW encoders and Uni decoders lower memorization, so bag-of-words assumptions
are efficient for dealing with the memorization problem. Still, BoW-Max and LSTM-Max
with PreUni pretraining yield very close performance despite having a different encoder,
showing that the decoder has a far greater influence than the encoder. This is consistent with
McCoy et al. [2019]’s findings (see Section B.4.2 in Appendix for details).
8Similar results were obtained using greedy decoding, albeit sometimes consistently shifted.
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Finally, there seems to be a trade-off between the global character of the latent information
and the fit of the model to the data. BoW and Uni variants have perplexity roughly one
unit above the baselines, a significant but small difference.

In Appendix B.6, we perform a qualitative analysis of reconstruction samples to illustrate
these conclusions. It also sheds light on the inherent difficulty of the Yahoo dataset.

To recapitulate, the bag-of-words assumptions decrease the memorization of the first word
and of the sentence length in the latent variable while increasing the agreement between the
labels of the source and of the reconstruction. This is achieved at the cost of a small increase
in perplexity.

7.7. Conclusion
Eliminating posterior collapse is necessary to get useful VAE models, but not sufficient.

Although recent incarnations of the seq2seq VAE fix the posterior collapse, they partially
memorize the first few words and the document lengths. Depending on the data, these
local features are sometimes not very correlated with global aspects like topic or sentiment.
Therefore, they are of limited use for controllable and diverse text generation.

To learn to infer more global features, we explored alternative architectures based on
bag-of-word assumptions on the encoder or decoder side, as well as a pretraining procedure.
These variants are all effective, in particular, the unigram decoder used as an auxiliary
decoder [De Fauw et al., 2019]. The latent variable is more predictive of global features and
memorisation of the first words and sentence length is decreased. Thus, these models are
more suitable for diverse and controllable generation.

Methodologically, we introduced a simple way to examine the content of latent variables
by looking at the reconstruction loss per position. We also presented a reliable way to perform
semi-supervised learning experiments to analyze the content of the variable, free of the
problems that one can find in past work (incorrect model selection for small data-regimes, use
of samples instead of variational parameters as inputs). We showed that there are particularly
difficult datasets for which the first words are not very predictive of their labels, and therefore,
these datasets should be systematically used in evaluations. Moreover, the agreement metric
is another complementary evaluation that is automatic and focused on generation. We hope
that these methods will see widespread adoption for measuring progress more reliably.

A promising research direction is to investigate the root cause behind memorization. A
simple reason for the memorization of the first few words could be that, in the beginning of
training, the reconstruction loss is higher on these words (see LSTM-LM in Figures 1, 1, 2,
3). These early errors should therefore account for a proportionally large part of the gradients
and pressure the encoder to store information about the first words. If that is correct, the
left-to-right factorization of the decoder could be at fault, which would explain the successes
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of the unigram decoders. More powerful decoders with alternative factorizations could avoid
this issue, for example, non-autoregressive Transformers [Gu et al., 2017] or Transformers
with flexible word orders [Gu et al., 2019].

VAEs operate on uncorrupted inputs and learn a corruption process in the latent space.
In contrast, models in the BERT family [Devlin et al., 2018] are given corrupted inputs
and are penalized only on these corrupted inputs, thereby avoid memorization altogether.
Therefore, another research avenue would be to blend the two frameworks [Im et al., 2017].
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Chapter 8

Prologue to third article:
The Emergence of Argument Structure in

Artificial Languages

Abstract: Computational approaches to the study of language emergence can help us
understand how natural languages are shaped by cognitive and sociocultural factors. Previous
works focused on tasks where agents refer to a single entity. In contrast, we study how agents
predicate, that is, how they express that some relation holds between several entities. We
introduce a setup where agents talk about a variable number of entities that can be partially
observed by the listener. In the presence of a least-effort pressure, they tend to discuss only
entities that are not observed by the listener. Thus we can obtain artificial phrases that
denote a single entity, as well as artificial sentences that denote several entities. In natural
languages, if we ignore the verb, phrases are usually concatenated, either in a specific order,
or by adding case markers to form sentences. Our setup allows us to quantify how much
this holds in emergent languages using a metric we call concatenability. We also measure
transitivity, which quantifies the importance of word order. We demonstrate the usefulness
of this new setup and metrics for studying factors that influence argument structure. We
compare agents having access to input representations structured into pre-segmented objects
with properties, versus unstructured representations. Our results indicate that the awareness
of object structure yields a more natural sentence organisation.

8.1. Context
This work grew out of interrogations about disentanglement, compositionality and lan-

guage emergence. In the generative modelling literature, some researchers focus on learning
disentangled representations. In the works of Bengio et al. [2013] and Locatello et al. [2019],
the true generating process consists in Z being sampled, then X given Z. A latent-variable
model such as a VAE or a β-VAE [Higgins et al., 2016] is trained to model X, and produces a



latent vector Z ′. The vector Z ′ is disentangled when it is essentially Z, up to a permutation
and a rescaling of each component. In this sense, disentanglement is a similar concept to
identifiability in statistics.1 Using a dataset of colored shapes, Locatello et al. [2019] study
the conditions under which a component Z ′i encodes the color and only the color, where
another component Z ′j encodes the shape and only the shape, etc.

In parallel, in the language emergence community, autoencoders are used as models of
human communication [Lazaridou and Baroni, 2020]. The encoder is seen as a speaker,
observing an input and producing a message. The decoder plays the role of a listener,
observing the message and trying to reconstruct the input of the speaker. Researchers also
often work with colored shapes. They study conditions under which agents communicated
about these shapes by using a word only for color, and a word only for the shape, which they
define as a compositional language [Kottur et al., 2017, Lazaridou et al., 2018].

The tasks are formally almost identical, except that the learned representations are
slightly different: continuous vectors or sequences of discrete symbols. It seems like a strange
duplication of efforts. However, language emerged in the human species long after vision had
developed in their ancestors [Tomasello, 2010]. Thus, we propose that language emergence
research should assume access to the high-level representations that are prelinguistic, and
focus on how these representations are communicated via sequences of symbols.

Yet, using disentangled representations as inputs is not enough to obtain compositional
languages [Kottur et al., 2017]. A first problem might be that once these representations are
collapsed into a single vector, the agents can perceive the object as a whole again. A second
problem is that compositionality has a function, and for it to emerge, it needs to improve
task performance.

Instead of thinking of reference problems and how the adjectives come to be, we focus
on predication – how agents communicate about several entities that are in a relationship.
In this case, the least-effort pressure is a very simple explanation for the emergence of
compositionality. A proposal for the reference case was made in a follow-up workshop paper
[Bosc, 2022].

8.2. Personal contributions
I came up with the new task and the metrics. I wrote some code, heavily relying on what

is already provided in the EGG framework [Kharitonov et al., 2021] and ran the experiments.
I did most of the writing. Pascal helped with the clarity of the writing of the paper and of
the rebuttals. He provided high-level guidance throughout the project.

1There is no consensus about disentanglement. Higgins et al. [2018] provide a definition in terms of group
theory, where probability and statistics are absent.
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8.3. Contributions
• We introduced the new task of predication under partial observability and least-effort
pressure. We argued that it is a realistic task that could explain argument structure
of most natural languages.
• We introduced and motivated various metrics to quantify how “natural” the emergent
languages are (concatenability and transitivity metrics).
• We identified the problem of segmentation, pervasive in language emergence papers,
and showed how we can sidestep it.
• We provided evidence that appropriate representations and mechanisms help emergent
languages look more “natural”.
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Chapter 9

The Emergence of Argument Structure in
Artificial Languages

How do languages emerge and evolve? Zipf [1949] viewed language as the result of an optimi-
sation procedure balancing information transmission maximisation and effort minimisation.
This view is amenable to formalisation and simulation. An early example is Hurford [1989]’s
comparison of language acquisition strategies, assuming that communication success gives an
evolutionary advantage. More generally, subsequent research uses optimisation procedures
and evolutionary mechanisms to create and study artificial languages [Steels, 1997, Lazaridou
and Baroni, 2020].

Such approaches are mainly used with two objectives in mind: firstly, to improve natural
language processing methods; secondly, to help us understand the roles of cognitive and
sociocultural factors on the shape of languages, such as our drive to cooperate, pragmatic
reasoning and imitation [Tomasello, 2010].

In the deep learning era, language emergence researchers have focused on the referential
function of language, i.e. how agents communicate about single objects, using artificial noun
phrases equivalent to “blue triangle” or “red circle” [Lazaridou et al., 2017, Kottur et al., 2017].
In contrast, we propose to study the predication function of language, i.e. the expression of
relations between entities (events). How do artificial agents express events such as “the blue
triangle is above the red circle”?

We introduce an experimental setup for studying predication. The speaker communicates
about an event involving a variable number of entities that are in a certain relation. Then,
the listener tries to reconstruct this event. To simplify, the relation is observed by both
agents.

Crucially, the listener is given a partial observation of the event, ranging from nothing
to all but one entity. In the presence of shared context, it is unnecessary for the speaker to
communicate the whole event, and a least-effort penalty encourages parsimony. Thus we



obtain utterances that refer to single entities in isolation, like phrases, and utterances about
several entities, like sentences.

Using these artificial phrases and sentences, we can compute various metrics to quantify
compositionality [Szabó, 2020] at the sentence level. A simple sentence typically contains a
few phrases which refer to entities. These phrases can generally be understood in isolation, a
property sometimes called context-independence Bogin et al. [2019]. Moreover, the sentence
is the concatenation of these phrases along with the verb. Correspondingly, we introduce
concatenability metrics that should be large for natural languages. Furthermore, we propose
transitivity metrics to quantify the importance of word order. A high-level overview of our
setup is shown in Figure 1.

This setup enables us to analyze artificial languages without segmenting messages into
constituents. Segmentation introduces another layer of complexity, to the extent that in
practice, it is not done at all: it is implicitly assumed that each symbol is independently
meaningful. However, this assumption is flawed, because if letters or phonemes are assumed
to bear meaning, no natural language is compositional.

Previous works have highlighted the influence of input representations and architectures
for language emergence. Inappropriate representations completely hinder evolution of a
non-trivial language with more than 2 words [Lazaridou et al., 2017] or prevents agents from
solving the task altogether [Guo et al., 2019]. This suggests that specific inductive biases are
still lacking for artificial agents to develop languages like ours.

We posit that the perception of objects as wholes with properties is an important inductive
bias. To be able to produce sentences containing referential phrases, it seems that agents
need to be able to attend to the referents of these phrases reliably, to conceive of them as
bounded objects with intrinsic properties in the first place.

We demonstrate the usefulness of our setup and our metrics for testing this hypothesis.
We implement an object-centric inductive bias using attention [Bahdanau et al., 2014] over
representations of objects. We compare it to an architecture which disregards the structure
of the input, considering it merely a large unstructured feature vector. The object-centric
architecture yields more natural languages – they are more concatenable. Furthermore, word
order matters more with this architecture than for the baseline. These results are corroborated
by our quantitative analysis and measures of generalisation outside of the training data.

Our contributions are two-fold. Firstly, on the methodological front, we propose and
motivate a novel task and two new metrics. This task not only explains the emergence of
compositionality from a functional perspective, but also enables us to easily analyze the
learned language, avoiding the problem of segmentation.

Secondly, we provide evidence that when representations reflect the perception of objects
as wholes with properties, emergent languages are more natural than when they do not. With
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Arguments Feat. ∈ {NA, 1, 2, 3}18 Role
the company v1 = (3,NA, 2, . . .) agent
a portion ... v2 = (NA,NA, 3, . . .) patient

Annotations
“The company sold a portion of secured notes but ...”
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Figure 1. Overview of experimental setup. (From left to right) Proto-role dataset contains
annotations (18 features and a role) for each argument and a relation (SELL.01 and WAKE.02
respectively, observed by both speaker S & and listener L). Preprocessing: From the 1st
annotation, 3 datapoints are created, where the number of entities observed by L varies (see
L’s mask and Partial F.&R. columns). The 2nd annotation contains a single object so a single
datapoint is created. Training: S produces a message. L reads it, and the pair of agents
S, L is jointly trained to minimize the reconstruction error and the length of the message.
As a result of the objective, S only talks about the entities not observed by L. Analysis:
Informally, concatenability measures how concatenation of messages m12 = m1 ⊕m2 and/or
m21 = m2 ⊕m1 are interchangeable with the actually sent message m∗; transitivity measures
how much one order is preferred compared to the other across the dataset (cf. Sections 9.5,
9.6).

this finding we hope to foster the use of more cognitively plausible input representations for
explaining language emergence.

9.1. Task
We design a task for studying how artificial agents predicate. It is an instance of a

reconstruction task [Lazaridou et al., 2017], where one agent, the speaker, observes an input
and produces a message – a sequence of symbols. The message is then read by another agent,
the listener, who tries to reconstruct the input observed by the speaker.

We train several pairs of agents and study the messages produced by the speakers.
This training procedure models language evolution and language acquisition at once, unlike
frameworks like iterated learning [Kirby and Hurford, 2002].

The main novelty of our task is that agents are trained to communicate about a variable
number of entities. In this section, we explain how the inputs of the agents are obtained by
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preprocessing the proto-role dataset [Reisinger et al., 2015]. Then, we argue that our task is
realistic, yet simple enough to permit an easy analysis of the messages.

9.1.1. The proto-role dataset

The data that are fed to agents are based on the proto-role dataset built by Reisinger
et al. [2015]. This dataset was created to evaluate Dowty [1991]’s linking theory, a theory
which predicts how verb-specific roles are mapped to grammatical relations in English.

To illustrate the annotation scheme, we use the example from Figure 1, “the company
sold a portion of secured notes”.

Firstly, a relation is extracted. Here, the verb “sold” corresponds to the PropBank
[Kingsbury and Palmer, 2002] label sell.01, which identifies the verb and its particular
sense.

There are nobj = 2 arguments of the verb, “the company” and “a portion of secured notes”.
Each of these argument is annotated with nfeat = 18 features indicating various properties of
the referred entity. For instance, the first feature indicates whether the entity caused the
event to happen, the second feature whether the entity chose to be involved in the event,
etc. [Reisinger et al., 2015]. In this work, the meaning of these features is irrelevant. These
features are encoded on a Likert scale from 1 and 5 or take a non-applicable (NA) value.
Since the description of each entity is a small feature vector, many different noun phrases
correspond to the same feature vector. Thus “Technology stocks” and “a portion of secured
notes” in Figure 1 denote the same entity.

Moreover, each argument is also assigned one of six mutually exclusive classical θ-roles.
In the example, the arguments respectively have the θ-roles Agent and Patient.

We define an event as i) a relation and ii) a set of pairs of feature vectors and θ-roles.

9.1.2. Task description

For each event in the proto-role dataset, we gather the relation, and for each entity, their
18 features and their role. The features are rescaled from {1, 2,3,4, 5} to {1, 2, 3}, and we only
retain the arguments in the 3 most frequent θ-roles (Agent, Patient and a Misc category
containing instruments, benefactives, attributes).

The speaker observes the following quantities:
The tensors IS, rS and α are indexed by an integer between 1 and nobj , so they represent

a set ES of nobj triplets where each triplet (ISi , r
S
i , αi) characterizes the i-th entity.

The i-th entity is said to be hidden iff αi = 1. Hidden entities are not observed by the
listener, and the mask α indicates this to the speaker. Since the listener tries to reconstruct
the inputs of the speaker, the mask essentially flags the entities that the speaker should
communicate about. Thus, the listener observes:
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Here, u[v] denotes the tensor obtained by restricting u to the rows i such that vi = 1.
The message spaceM is defined as follows. Let V = {1, . . . , nV , eos} be the vocabulary

containing nV symbols, plus an end-of-sentence (eos) token. Let nL be the maximum message
length (here, set to nL = 8). M contains all the sequences of elements of V with at most
length nL and ending with eos.

A datapoint is valid if
∑nobj

i=1 αi ≥ 1, i.e. at least one object is hidden and some information
needs to be conveyed. From each event, we add as many valid datapoints as possible to our
dataset. In our example, as there are 2 entities, either one or both can be hidden, yielding 3
datapoints.

Given its inputs and the sender’s message, the listener tries to reconstruct the sender’s
inputs. The agents are jointly trained to minimize a reconstruction loss while minimizing the
number of symbols exchanged, as formalized in Section 9.2.2.

9.1.3. Motivations

All the aspects of the task can have a major influence on the learned languages. In this
section, we argue that our task is realistic in important aspects.

Our task is to convey semantic annotations of sentences, not words or sentences directly,
because using linguistic data as input could be a methodological mistake. Indeed, language-
specific typological properties might leak into the artificial languages.1 We follow this
principle, except for our use of θ-roles. They are linguistic abstractions over relation-specific
(participant) roles. This limitation is discussed in Section 9.8.2.

In our task, agents have to communicate about a realistic, variable number of entities.
We posit that this is a crucial characteristic for argument structure to be natural. Indeed,
if humans only ever talked about two entities at once, grammar would be simpler since a
transitive construction could be used everywhere. In our dataset, the distribution of the
number of entities talked about is directly derived from an English corpus, and, to our
knowledge, the distribution of the number of arguments does not vary much across languages.
Thus we hope we do not expect a bias towards English typology. In Mordatch and Abbeel
[2018]’s and Bogin et al. [2019]’s works, agents also need to predicate. However, the event
structure is unrealistic as it is identical across datapoints: the number of arguments is constant
and each argument has the same “type” (a landmark, an agent, a color, etc.).

The relation β is observed by both agents. As a consequence, we do not expect artificial
sentences to contain the equivalent of a verb. The main reason is that it greatly simplifies
the analysis of the artificial languages. Another reason is that in our dataset, relations
are coded as categories. Thus, there is no notion of distance between relations which would

1For example, if the task was to transmit basic color terms instead of, say, color represented as RGB triplets,
the choice of a language with only 3 basic color terms vs 11 color terms (as in English) would yield different
artificial languages. For one thing, transmitting English color terms would require agents to use more symbols.
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enable agents to make interesting generalizations, for instance, that relations similar in some
specific aspect share similar argument structures.

We define the context as everything that is observed by both agents: the relation and the
non-hidden entities. We now justify why agents share context, and why the loss function
includes a penalty to minimize the number of symbols sent (cf Section 9.2.2).

First, let us argue that this is realistic. The context is a coarse approximation of the
notion of common ground. According to Clark [1996], common ground encompasses the
cultural background of the interlocutors, their sensory perceptions, and their conversational
history. In theory, the speaker only needs to communicate the information that is not part
of the common ground, but transferring more information than needed is not ruled out.
However, in practice, humans try to be concise (cf. Grice [1975]’s maxim of quantity). The
penalty that we use encourages parsimony. It could be seen as the result from a more general
principle governing cooperative social activities [Grice, 1975] or even the whole of human
behavior [Zipf, 1949].

To illustrate, consider the following situation. Upon seeing a broken window, one would
ask “who/what broke the window?”. A knowledgeable interlocutor would answer “John” or
“John did”. In our setup, the speaker is this knowledgeable person, answering such questions
about unobserved entities. The context contains the broken window, and the speaker does
not need to refer to it since i) the listener observes it, and since ii) the speaker knows that
the listener observes it (via the mask α). While the speaker could still refer to the window,
the least-effort penalty makes it costly to do so, so the speaker avoids it. Even if the agents
do not engage in dialogues but in one-time interactions, the mask α can be interpreted as
simulating an inference made by the speaker about the listener’s knowledge.

This setup is not only realistic, it is also especially useful for the purpose of analysing the
emergent languages. By masking all but one entity, we obtain an artificial phrase that denotes
a single entity. By masking all but two entities, we obtain an artificial sentence relating
two entities. The metrics that we introduce rely on our abilities to obtain such phrases and
sentences. The concatenability metrics can be seen as measures of systematicity, i.e. how the
meaning of phrases is related to meaning of sentences [Szabó, 2020].

Without this setup, one would need to somehow segment sentences into phrases. To our
knowledge, the problem has not been addressed in the language emergence literature, but is
identified by Baroni [2020]. For instance, applied to English corpora, metrics for quantifying
compositionality like Chaabouni et al. [2020]’s disentanglement metrics would tell us that
English is not compositional, since single letters are not meaningful.
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9.2. Model and objective
We present two Transformer-based [Vaswani et al., 2017] variants of the model of the

agents: one that encodes an object-centric bias and one that does not. Before delving into
their differences, let us describe their common features.

9.2.1. General architecture

Both the speaker S and the listener L are implemented as Transformers, each of them
built out of an encoder Tfme and a decoder Tfmd.

The inputs of the speaker are encoded into a real-valued matrix V S which differs in
the two variants of the model. For now, assume that V S encodes the speaker’s inputs and
similarly, that V L encodes the listener’s inputs.

The speaker produces a message m by first encoding its input into

H = TfmS
e (V S), (9.2.1)

then auto-regressively decodes the message

mt+1 ∼ q(mt+1|m1:t, I
S, α, β) = TfmS

d (M1:t, H)t

with M1:t the sum of positional and value embeddings of the previously decoded symbols
m1:t.

At train time, the symbol is randomly sampled according to q, whereas at test time, the
most likely symbol is picked greedily. If the maximum length nL is reached, eos is appended to
the message and generation stops. Else, the generation process stops when eos is produced. In
order to backpropagate through the discrete sampling, we use the Straight-Through Gumbel
estimator [Jang et al., 2017, Maddison et al., 2016].

L also embeds the message m into a matrix M ′, and its decoder produces a matrix OL:

H ′ = TfmL
e (M ′),

OL = TfmL
d (V L, H ′). (9.2.2)

OL is then used to predict the presence of the objects as well as all the features of the
objects. This computation is slightly different depending on the variant of the models and is
detailed below.

Note that TfmS
d is invariant with respect to the order of the objects in V S, since we do

not use positional embeddings to create V S, but rather use the role information directly, as
will be explained for each model separately.2 On the other hand, the message m is embedded

2When used without positional embeddings, the encoder of the Transformer is permutation-equivariant, i.e.
for any permutation matrix P , Tfme(PX) = PTfme(X); similarly, the decoder is permutation-invariant in
its second argument (the encoded matrix H), i.e. Tfmd(PX) = Tfmd(X). Permutations are applied to the
input matrices, the masks, and the role vectors.
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using both token and positional embeddings in M and M ′, so TfmS
d and TfmL

e are sensitive
to word order.

9.2.2. Loss

The loss function is a sum of two terms, a reconstruction loss and a length penalty.
Reconstruction loss: The input to reconstruct is a set, the set of pairs of 18 features

and a θ-roles. For each θ-role, we predict the corresponding features as well as whether an
object i in this role is present or not, denoted by γi.

For a given data point indexed by j, the reconstruction loss is the sum over all objects i

lj =
∑
i

−[log p(ISi |IL,m, β) + log p(γi|IL,m, β)].

Length penalty: As done by Chaabouni et al. [2019], we penalize long messages. This
can be seen as an implementation of Zipf [1949]’s least-effort principle. In its simplest form,
the penalty is a term pj = λ|mj| where λ is a hyperparameter, and |mj| is the number of
symbols in the message.

However, we noticed that messages collapse to empty messages early on during training.
This is similar to the well-known posterior collapse, where the approximate posteriors of
latents of sequence-to-sequence VAEs collapse to their priors [Bowman et al., 2016]. We fix
the issue by adapting two well-known tricks: Pelsmaeker and Aziz [2019]’s minimum desired
rate and Kingma et al. [2016]’s free bits. The penalty term becomes

pj = 111lj<τ111|mj |>nmin(λ|mj|),

where 111 is the indicator function.
For this term to be non-zero, two conditions need to be fulfilled. Firstly, the reconstruction

error must be below τ , which is analogous to a minimum desired rate. This threshold can be
set without difficulty to a fraction of the reconstruction error incurred by the listener seeing
empty messages. In our case, this average error is 18.6. We randomly choose the threshold in
{5,+∞} across runs, where +∞ essentially disables the trick.

Secondly, the penalty is above 0 only if the message contains more than nmin symbols.
This gives models nmin “free” symbols for each datapoint. Without this factor, we found that
speakers often utter empty messages (in particular, when a single entity is hidden).

For a given data point indexed by j, the total loss to minimize is the sum lj + pj . During
training, the average is taken over a mini-batch (n = 128), while during evaluation, it is taken
over the entire test split.
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Figure 2. Comparison of flat-attention (FA) and object-centric (OC) variants. The discrete-
valued matrices IL and IS (upper-left) encode the features of entities. FA turns each datapoint
into (nobj · nfeat)× d continuous-valued matrix (with nobj · nfeat attention weights), while OC
produces a nobj × d continuous-valued matrix (with nobj attention weights). Numbers index
embedding matrices and show weight-sharing. The role information is encoded afterwards
and similarly for masking (not shown here).

9.2.3. On the perception of objects

We demonstrate our setup and metrics by comparing a model which is object-centric
(OC), that is, aware of objects as wholes with properties, to a baseline model (flat attention,
or FA) which ignores the structure of the inputs.

We follow Gentner [1982], who argued that perception of objects must be a strong,
prelinguistic cognitive bias. She gives the example of a bottle floating into a cave. She
imagines an imaginary language in which the bottle and the mouth of the cave are construed
as a single entity, and argues that this language would be very implausible. Across languages,
the two entities seem to always be referred to by separate phrases, hinting at universals in
the perception of objects.

More evidence is provided by Xu and Carey [1996]. They showed that infants use spatio-
temporal cues to individuate objects, i.e. to “establish the boundaries of objects”. Only
around the start of language acquisition do children start to rely on the properties or kinds
of objects to individuate. But could it be exposure to language that drives infant to perceive
the properties and kinds of objects? Mendes et al. [2008]’s experiments on apes suggest it is
the other way around, i.e. that linguistic input is not necessary to learn to individuate based
on property differences. Thus our hypothesis is that the perception of objects as wholes is a
prerequisite for natural language to develop.

To implement the OC bias and the FA baseline, we process the inputs in two ways and
obtain different V L and V S to plug in Equations 9.2.1 and 9.2.2. Embedding the matrices
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IL and IS gives us real-valued 3-dimensional tensors. But since Transformers consume
matrices, we need to reduce the dimensionality of IS and IL by one dimension. It is this
dimensionality-reduction step that encodes the inductive biases of OC and FA. We tried
to minimize the differences between the two models. Figure 2 shows an overview of their
differences.

9.2.3.1. Object-centric variant. Let I be either IS or IL, where each row Ii represents an
object. Each Ii is embedded using a learned embedding matrix Valj for each feature j, and
the result is concatenated, yielding

Ei = [Val1(Ii,1)T ; . . . ; Valnfeat(Ii,nfeat)
T ].

Then, this vector is transformed using a linear function, followed by a ReLU [Nair and Hinton,
2010b] and layer normalisation [Ba et al., 2016]. We obtain V (0), a real-valued nobj × d matrix
with

V
(0)
i = LN(max(WEi + b, 0)). (9.2.3)

As for hidden objects and padding objects, they are represented using a single embedding
V

(0)
i = vh directly. A role embedding is added to this representation to obtain

V
(1)
i = V

(0)
i + Role(rSi ).

Finally, V is a (nobj + 1)× d matrix, where d is the size of embedding vectors. V is V (1)

with an additional row vector, the β relation embedding.
The listener cannot distinguish between hidden and padding objects, so the message

should encode the roles along with the entities’ features.
In order to reconstruct the speaker’s inputs, the listener linearly transforms each row

vector OL
i (except the one corresponding to the relation) to produce p(ISi |IL,m, β), the joint

pmf over the discrete features of object i as well as p(γi|IL,m, β).

9.2.3.2. Flat attention variant. In FA, the structure of the input – composed of different
objects with aligned features – is disregarded. Firstly, the input matrices IS and IL, where
each row corresponds to a single object, are “flattened”. Secondly, there is one attention
weight per feature and object pair, instead of a single weight per object as in the OC variant.
Finally, each embedding matrix is specific to a role and feature pair, instead of being specific
to a feature.

Formally, let k be the index of a pair of object indexed by i and feature indexed by j.
Using a k-specific embedding matrix, we obtain

V
(0)
k = Valk(Ii,j),

with V (0) a real-valued (nobj · nfeat) × d matrix. Again, hidden and padding objects are
represented by a special vector V (0)

k = vh. An index embedding is added, similar to the role
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embedding:

V
(1)
k = V

(0)
k + Idx(k).

As in the OC variant, we obtain V by adding an embedding of the relation β as a row to
V (1).

To reconstruct the speaker’s inputs, OL is linearly transformed and to each output vector
corresponds a specific feature of a specific object. To predict γi, all the output vectors in OL

corresponding to the i-th object are mean- and average-pooled, concatenated and linearly
transformed.

9.3. General experimental setup
In the next sections, we review various properties of natural languages, and introduce

metrics to quantify these in artificial languages and compare the effect of using OC versus
FA on these metrics.

The training set contains 60% of the data, the validation set 10% and the test set the
rest. We denote the entire data set by D and denote by Dk the subsets of D composed of
examples for which

∑
i αi = k, that is, the examples where k objects are hidden.

All the experiments use the EGG framework [Kharitonov et al., 2021] based on the
PyTorch library [Paszke et al., 2019].3 The neural agents are trained using Adam [Kingma
and Ba, 2014].

There is a large number of hyperparameters so we resort to random search [Bergstra and
Bengio, 2012].4 Our hyperparameter search is deliberately broad since we do not know a priori
which hyperparameter choices are realistic. We expect to obtain results with high-variance,
but a major advantage is that we get more robust conclusions by averaging over unknowns.

We perform linear regressions to predict the value of each metric given a binary variable
indicating whether OC is used. When the coefficient for this variable is significantly different
from 0 according to a t-test, then OC has a significant effect.5 Additionally, we consider that
the entropy of the messages is a mediator that we control for. For instance, the reconstruction
error is indirectly influenced by the vocabulary size and the sampling temperature via the
entropy. However, if we observe that OC improves the generalization error, we want to
exclude the possibility that this is because OC agents send messages with higher entropy
3The proto-role dataset is available here: http://decomp.io/projects/semantic-proto-roles/. The code (includ-
ing on-the-fly preprocessing of the dataset) is available at
https://github.com/tombosc/EGG_f/tree/r1/egg/zoo/vd_reco.
4Hyperparameters (uniformly sampled): # Transformer layers ∈ {1,2,3}, and dimensions ∈ {200, 400},
dropout ∈ {0.1, 0.2, 0.3}, Gumbel-Softmax temperature ∈ {0.9, 1.0, 1.5}, λ ∈ {0.1, 0.3, 1, 3, 10}, nmin ∈ {1, 2},
τ ∈ {5,+∞}. Adam’s parameters: β1 = 0.9, β2 ∈ {0.9, 0.99, 0.999}.
5We manipulate data using the pandas package [pandas development team, 2021, McKinney, 2010], and
perform linear regression with the statsmodel package [Seabold and Perktold, 2010]. We use HC3 covariance
estimation to deal with heteroskedasticity [MacKinnon and White, 1985, Long and Ervin, 2000].
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than FA agents, since it should be trivial to also increase the entropy of the FA models by
modifying hyperparameters.

We discard models with messages of average length below 1 and above 6. Indeed, when
the average length is too small, many messages are empty, and when it is too long, artificial
sentences are barely or not longer than artificial phrases. These cases are considered a priori
unnatural. This leaves us with 100 out of 136 runs.

Note that the length penalty works as expected. Without the penalty, the messages all
contain the maximum number of symbols. With the penalty, the average message length
grows as the speaker needs to send more and more information (on D1: 4.19, D2: 5.24, D3:
5.89).

9.4. Generalization performance
Natural languages are often said to be productive and systematic: there is an infinity of

utterances which we can understand without having encountered them before (productivity),
in particular when we understand constituents of the novel sentence in other contexts
(systematicity) [Szabó, 2020]. Do emergent languages exhibit these characteristics? In
this section, we study such generalization abilities. We measure how well the listener can
reconstruct the inputs when the sender communicates about datapoints unseen at train time.

Firstly, we test our models in distribution. Secondly, we test our models out of distribution
(OoD), following Lazaridou et al. [2018]. We compute the empirical marginal distributions
over the number of hidden entities, the entities, the roles, and the relations. Then, the OoD
test set is sampled from these marginals independently.

We measure the reconstruction losses on subsets where 1, 2 and 3 entities are hidden for
a finer-grained analysis.

Results: Table 1 contains the results. As expect, performance degrades when we evaluate
out of distribution. More interestingly, OC models perform better than FA models both in
distribution and out of distribution.

However, the performance difference between OC and FA does not tell us much: both
OC and FA agents could exchange messages that are structured in very unnatural manners.
In the next two sections, we introduce metrics to shed light on how the information about
different entities is packaged into a single message.

9.5. Concatenability
In natural languages, the verb encodes the relation while arguments refer to entities, but

roles do not have direct equivalents in all languages. They are encoded using three strategies,
typically using a mix of strategies within a single language.
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Arch. 1 hidden 2 hidden 3 hidden

iD FA 6.5± 1.6 16± 3.6 28± 5.4
OC 6.2± 1.9 14± 3.7∗∗∗ 25± 5.6∗∗

OoD FA 8.9± 2.1 24± 3.9 41± 5.5
OC 8.3± 2.4 21± 4.6∗∗ 39± 5.9

Table 1. Mean and stdev of test reconstruction loss, in distribution and out of distribution.
rows: models; columns: # of hidden entities. OC agents generalize better than FA agents.
(*: p-value < 0.05, **: p-value < 0.01)

In analytic languages like English or Chinese, roles are encoded in word order and possibly
using adpositions or clitics, but the role does not change the form of the arguments. For
example, in sentences (1a) and (1b), the arguments are identical but are placed in a reverse
order, so that their roles are inverted too:

(1) a. The old lady walks the dog.

b. The dog walks the old lady.

In more synthetic languages like Russian or Turkish, case markings code for the roles. In
Russian, these markings are suffixes on nouns, adjectives, etc., as can be seen in (2a) and
(2b):

(2) a. бабушка выгуливает собаку.

b. бабушку выгуливает собакa.

Finally, in polysynthetic languages (Caucasian languages, Samoan languages, etc.), arguments
typically look like those in analytic languages, but the roles are encoded using markers on
the verb.6 Since, in this work, relations are not communicated by agents, there is no artificial
equivalent of the verb. Therefore, this strategy cannot emerge and we consider it no further.

Crucially, simple sentences are obtained by concatenating a verb and one or several noun
phrases that refer to entities, whether word order matters or word order does not matter and
cases are marked.

For a single event, by varying what information is available to the listener through the
mask α, we get messages describing two entities in isolation (phrases) as well as messages
describing two entities at once (sentences). For example, consider (IS, (1,1,0), rS, β) drawn
from D2, the subset of the data with two hidden objects. Let g be the function that transforms
this speaker’s inputs into a message via greedily decoding, and define

m∗ = g(IS, (1, 1, 0), rS, β).

6This presentation is extremely simplified, cf for example Bakker and Siewierska [2009]’s paper for why and
how these three strategies generally coexist within a single language.
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We obtain the messages sent when L observes the first or the second object in isolation as

m1 = g(IS, (1, 0, 0), rS, β),

m2 = g(IS, (0, 1, 0), rS, β).

We define concatenated messages to be m12 = m1 ⊕m2 and m21 = m2 ⊕m1, where ⊕
is the concatenation operator. This is shown in Figure 1. We define P2 as the empirical
distribution on the subset of D2 such that neither m1 or m2 are empty messages, implying
that m12 6= m21.

As argued above, in natural languages, m12 or m21 (or both, if word order is irrelevant)
should convey information at least as well as m∗. Denote by l(m) the reconstruction loss
incurred by L if L had received the message m, i.e. l(m) = − log p(IS|IL,m, β). Then,
concatenability from the listener’s point of view is defined as

CL = EP2 [l(m
∗)−min(l(m12), l(m21))].

When close to 0, on average, one of the two concatenated messages (or both) is as informative
as the message actually uttered by the speaker for reconstructing the inputs.

L can correctly reconstruct S’s inputs from a concatenated message that S is unlikely
to utter. Inversely, a concatenated utterance can be highly likely for S even if L might fail
to reconstruct S’s input from it. Therefore, there are actually two symmetrical measures of
concatenability, one from the point of view of S and the other from the point of view of L. A
similar proposition was made by Lowe et al. [2019] in the context of interactive games. They
have shown the usefulness of distinguishing these two points of view.

The metric is defined similarly on the speaker’s side with a slight subtlety. Since sampled
messages have a maximum message length of nL, the probability of a sequence longer than
nL is 0. However, concatenated messages are sometimes longer than nL. We define q∞ as
the distribution generated by S without the constraint that probable sequences have length
below nL. We denote the conditional log-probability of a message given a certain input by
u(m) = log q∞(m|IS,α, β). Then, concatenability from the speaker’s point of view is defined
as

CS = EP2 [max(u(m12), u(m21))− u(m∗)].

It is close to 0 when, on average, one concatenation of the two messages (or both) has
roughly the same probability as the actual message.

To give an intuition, let us go back to our examples. Take the speaker of an hypothetical
language, English without verbs. Suppose that this speaker, when exposed to a given input
xS = (IS, (1, 1, 0), rS, β), produces a sentence m∗ corresponding to (1a), “the old lady the
dog”. By exposing the speaker to the same input, but by changing the mask to (1, 0, 0),
they produce m1 = “the lady”, while using the mask (0, 1, 0), they produce m2 = “a golden
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CL ↑ CS ↑
FA −6.1± 3.8 −29± 13
OC −3.2± 2.4∗∗∗ −26± 15

Table 2. Mean and stdev of concatenability metrics on OC and FA runs. i) OC improves
concatenability. Arrows indicate optimal direction. (p-values: *: < 0.05, **: < 0.01, ***:
< 0.001)

retriever”. CS compares the log probability of m∗ with that of m12 = “the lady a golden
retriever” and m21 = “a golden retriever the lady”, whichever is more probable. Since English
without verbs is rather concatenable, the speaker judges that m12 is roughly as likely as m∗

given the inputs. Thus, the value inside the expectation of CS will be high, close to 0.
Now, take an identical speaker, except that they assign a very high probability to m′1 = “a

shoebox”, while the new m′12 and m′21 are unlikely conditioned on xS. Then CS will be
low and negative. Perhaps i) “a shoebox” has different semantics when it is used alone in a
sentence, as compared to when it is used with a second referent; or perhaps ii) “a shoebox” is
never used with another referent in a sentence, and the speaker would use “a lady” instead.
In any case, concatenability for this speaker would be low, which corresponds to the intuition
that their language is unnatural and unsystematic.7

The same illustration holds for CL, and it can be adapted to show why CS and CL should
also be high for more synthetic languages.

Results: We measure these metrics on the test set. In our experiments, they always take
negative values: the concatenated messages are on average worse than the actual messages.
Some models yield values close to 0, but this depends on the choice of hyperparameters.

Table 2 shows that OC largely improves over FA in terms of both CL and CS. For
instance, the reconstruction losses of OC models go up by 3.1 nats on average when the best
concatenated messages are used instead of the actually sent messages. In contrast, FA models
incur a loss that is higher by 6.1 nats. Thus, languages obtained using the OC architecture
are more natural than those emerging from FA in the sense of concatenability.

9.6. Word order

9.6.1. Importance of word order

Concatenability metrics do not distinguish between the use of word order or some sort
of case marking strategy. Since both strategies are found in natural languages, we claim

7This example only illustrates the intuition. In reality, it is not straightforward to apply these metrics on
natural language, because they require probability distributions for the agents. We could learn models that
map back and forth between the semantics and the ground-truth utterances, but the models would add
some bias. Moreover, we only have ground-truth utterances for English and any attempts to use machine
translation would add some more bias.
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TL ↑ T S ↑ RPE ↓
FA 3.4± 3.2 10± 9 0.48± 0.18
OC 11± 10∗ 15± 12 0.52± 0.12∗∗∗

Table 3. Mean and stdev of transitivity metrics and RPE for OC and FA. TL (T S) statistics
and significance computed on runs scoring CL (CS) above median. Arrows indicate optimal
direction. OC uses word order more than FA. Controls are discussed in the main text.
(p-values: *: < 0.05, **: < 0.01, ***: < 0.001)

that for all natural languages, this metric should be high. But we also want to know what
particularly strategy is used, in particular when concatenability is high.

First, note that it is difficult to detect the presence of case markings directly. Even for the
simplest forms of morphology, we are hindered by the segmentation problem of identifying
the root and the affix, as mentioned in Section 9.1.3.8

Yet we can quantify on average how much referential phrases (messages about a single
hidden object) encode roles. We train a bigram classifier on the training set and measure its
test error, the Role Prediction Error (RPE ). If there are case markings, this error will be low
(but the opposite is not true).

Moreover, we introduce two transitivity metrics, to directly measure the importance of
word order. T S is defined as:

T S = EP2|u(m12)− u(m21)|

This metric is 0 if the two concatenated messages are equally probable for S; and it is large if
one word order is much more likely than the other for S. Similarly, TL is defined as

TL = EP2|l(m12)− l(m21)|

and has similar interpretations.
These metrics are only interpretable when concatenability metrics are high enough, so we

measured T S only for runs where CS is above the median and similarly for TL.
Results: As can be seen on Figure 3, when transitivity is low and RPE is high, the

reconstruction loss is poor (top-left corner), because there is no efficient strategy to encode
roles. There is a lot of variance both for OC and FA, but OC models tend to have higher
transitivity, both on average and in terms of maximal values. Thus word order is more
important for OC runs than for FA runs. This is also confirmed by Table 3.

Table 3 also shows that OC and FA agents have very similar RPE. This means that
both encode roles in referential phrases quantitatively similarly. More work is needed to

8It is generally even more complicated for several reasons: a lexeme can have several roots, each morpheme can
simultaneously encode several semantic properties, and the modification of the root can be non-concatenative
[Stump, 2017].
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Figure 3. Role prediction error (RPE) as a function of transitivity TL. Color indicates
reconstruction loss. i) (upper-left quadrant) Low TL and high RPE implies a high recon-
struction error, since roles are not encoded properly. ii) OC has higher average transitivity
than FA, but similar RPE.

determine how roles are encoded (when they are), that is, if there are traces of morphology
or if messages denoting a single entity in different roles are unrelated.

Entities α A B

−, 8, 1
0, 1, 0 24, 79, 25 105,47

0, 0, 1 105, 16, 105 34,34

0, 1, 1 105 , 79, 24 34 , 47

−, 8, 5
0, 1, 0 24, 79, 25 105,47

0, 0, 1 19, 24 18,18

0, 1, 1 47, 79,24,25 18 ,24

−, 8, 190
0, 1, 0 24, 79, 25 105,47

0, 0, 1 16, 19 19

0, 1, 1 16 , 79 ,39, 79 105 ,24

−, 8, 39
0, 1, 0 24, 79, 25 105,47

0, 0, 1 16,44,16,72,2 16,19

0, 1, 1 44,16 ,59, 72 105 , 16

Entities α A B

8, 4,−
1,0,0 79,24,24,79,24 18,1,18

0,1,0 34,34,15 15,34,15

1,1,0 34 , 24,79,24,79,24 34,34,34 , 1,18

8, 61,−
1,0,0 79,24,79,24,24 18,18,19

0,1,0 94,54,25,94,72 16,16,25

1,1,0 94 ,121, 25 , 79,24,79,24 16 , 19 ,24, 19,18

−, 132, 8
0,1,0 19,24,19 19,59

0,0,1 79,24,72 47,71,105

0,1,1 24, 19 ,123, 19 18,24, 59

−, 287, 8
0,1,0 35,19 19,59,16

0,0,1 79,24,72 47,71,105

0,1,1 16, 79 , 19,35 24, 19,59,16

Table 4. A sample of messages exchanged about the same entity u8. Entities: list of entities
(“-”: no entity; number indicate rank of entity in the dataset; position in the list indicate role:
Agent, Patient, Misc). α: mask. A, B: Messages produced by speakers of models A and
B. Symbols are manually colored to identify phrases (first 2 rows in every block of 3 rows)
in artificial sentences (third row in every block). Relations are omitted but are different for
each block.
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9.6.2. Consistency of word order

To go further, we can study which word orders are favored across different contexts. For
every pair of roles such as Agent and Patient, is it the message with the Agent uttered
first that is more likely, or the opposite?

To answer the question, instead of looking at the magnitude of the gap as does T S, we
can count which word orders maximize the gap. By finding the most frequent order, we find
for each model the preference of the speaker P S, a binary relation on R2. For example,

{(Agent,Patient),(Patient,Misc), (Misc,Agent)} (9.6.1)

is such a relation. This is very crude, as it does not distinguish the case where Agent
always precedes Patient from the case where Agent precedes Patient 51% of the time,
but we leave more involved analyses for future work. We define analogously PL using the
reconstruction loss l instead of message probability u.

Results: We compute preferences P S and PL for each run. Out of 100 runs, 29 runs have
both CS and CL higher than their median values, and 23 of these have equal P S and PL.

Among all possible relations, some are not transitive, such as equation 9.6.1. However,
all the preferences we found are transitive, which is extremely unlikely due to chance. A
simple explanation is that transitive relations allows agents to discuss three entities with
word order only. However, it does not seem to be universally required by natural languages
to have well-defined orders in the presence of many roles. For instance, in English, the use
of different prepositions allow for different word order, such as the dative alternation which
offers two different orders to talk about three entities.

9.7. Qualitative analysis
One can gain intuition about the metrics by looking at messages exchanged by agents. In

particular, we compare two models A and B which both have relatively high concatenability,
but A has high transitivity scores whereas those of B are low. The chosen models also have
relatively close reconstruction loss, so that the messages convey roughly as much information
about their inputs.

To simplify, we focus on one entity vector and see how it is transmitted when it is in
different roles and in different contexts. Since feature vectors are slightly sparse (with many
NA values), vectors which have many NAs are sometimes not conveyed at all (the penalty
makes it costly to do so). We search for an entity that appears in many different roles and
that is sufficiently not sparse. The 8th most frequent vector (u8) is the most frequent vector
that fits these criteria.

First, let us examine the left-hand side of Table 4, which shows how u8 is talked about in
its most frequent role, the Patient role. In both models, u8 is denoted by the same phrase
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very consistently (first rows of each block). Thus the context of u8 (entities and relation) does
not seem to influence the message. This property is sometimes called context-independence
[Bogin et al., 2019].

Despite using a large vocabulary of 128 symbols, only a few symbols are used. This is due
to the difficulty of discrete optimisation. We were puzzled to find so many common symbols
in the two models, but it turns out that the selected models have the same hyperparameters
except for the length-penalty coefficient (A: λ = 1, B: λ = 10).

Each last row of each block of three lines shows an artificial sentence, where two entities
are hidden. We can see that most symbols in these sentences also frequently appear in phrases
that denote individual entities (identified by their colors). Some symbols from phrases are
omitted or in a different order in the sentence, but the precise structure of these phrases is
out of scope for our work.

A is more consistent in its use of word order than B: A almost always refers to Misc
before Patient, whereas the order varies for B. This is evidence that the transitivity metrics
correctly measure the importance of word order, at least when concatenability is high enough.

On the right-hand side of Table 4, u8 appears in less frequent roles, and we see much
more irregularities. Firstly, the phrases denoting u8 in isolation are less consistent across
different contexts (more context-dependence), even though we find a large overlap of symbols.
Secondly, we also found more empty phrases (not shown here). Thirdly, we did not find
evidence for a lower transitivity of B in these roles, but the sample size was smaller.

9.8. Discussion and limitations

9.8.1. Partial observability and reference

Thanks to our experimental setup and metrics, we avoid the problem of segmentation.
However, concatenability and transitivity rely on a crucial aspect of the task, partial observ-
ability, which allows us to obtain messages about a single “thing” in isolation. In our case,
this “thing” is an entity and role pair, but instead, could it be a single attribute like shape or
color, as in simpler referential games used in past research?

Such a setup would be similar to our setup (cf 9.1.2). However, i) there would be no
relation β; ii) IS, IL and α would be vectors of size nfeat; iii) in terms of models, we would
use a simple attention mechanism to select a subset of the features to communicate about.

However, we do not think that this setup realistically models real-life communicative
situations. Visual properties like shape and color are often perceived simultaneously. If,
sometimes, we fail to perceive colors (for example, at night) or shapes (perhaps due to an
occlusion), we rarely need to inquire about these attributes. In general, the missing attributes
do not particularly matter, but are useful to identify the kind of the entity. For example, the
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white color and the circular shape of an object tells us that it is a plate, which is useful; but
its particular appearance generally does not often matter once it has been categorized. Thus,
we generally infer the kind from the observed attributes if possible, or else directly ask for
the kind.

By contrast, events are often partially observed, which creates many interrogations. When
one observes the consequences of a past action, one often wonders who was the agent that
caused it. Similarly, since future events are indeterminate, they are frequently discussed and
negotiated. Thus it is frequent to describe events partially.

In sum, the semantics of events are often conveyed partially whereas the semantics of
entities are more frequently packaged into the word for a kind. Thus directly transposing
this setup to the referential case seems unrealistic. However, perhaps it could be adapted to
a discriminative setup [Lazaridou et al., 2017], where the need to convey partial features of
objects is clearer.

9.8.2. On θ-roles

As inputs to our models, θ-roles are much more salient than any of the 18 features
associated with entities: each θ-role is associated with an entire vector added to the keys and
values used by the attention mechanisms (cf. Role and Idx in Sections 9.2.3.1 and 9.2.3.2).
Moreover, there are only three of them and they are mutually exclusive. For these reasons, it
is easy to attend over each of them, which explains why many artificial agents rely on θ-roles
to structure their messages.

These θ-roles are groups of verb-specific roles (sometimes called participant roles). For
example, the lover, the eater, and the builder verb-specific roles are clustered into the
verb-general agent θ-role, while the lovee, the eatee and the buildee roles fall under the
patient θ-role. Dowty [1991]’s shows that some θ-roles can be predicted from a small set of
features that are mostly related to physical notions of movement and to causality.9 However,
since humans perceive many more features (for example, shapes, colors, textures, etc.), it is
not clear why these particular features are preferred to structure the grammars of natural
languages.

To answer this question, we might be able to use pretrained unsupervised learning
models as feature extractors [Santoro et al., 2017, van Steenkiste et al., 2018, Kipf et al.,
2018]. An object-centric model like R-NEM [van Steenkiste et al., 2018] can extract object
representations from videos of physically interacting objects. An interaction model like
NRI [Kipf et al., 2018] can infer the relations between objects given object representations
over time, such that these relations are predictive of how the objects change over time. By
combining such models, it may be possible to learn object, relation and role representations
9These features are precisely the features that are used in this paper to represent the semantics of the entities,
but their meaning is irrelevant in this work.
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from videos. We could then use such learned representations as inputs in our communication
games to study whether verb-general roles emerge.

9.9. Conclusion
We have presented an experimental setup for studying how probabilistic artificial agents

predicate, that is, how they convey that a relation holds between entities. In our daily lives,
events are partially observed and predication is used to share information about what is not
observed, often in a parsimonious manner. Our task and loss realistically reflect this function
of language.

At the same time, this setup allows us to directly study argument structure while ignoring
the internal structure of phrases. Indeed, we can easily obtain artificial phrases, i.e. utterances
that refer to single entities, as well as artificial sentences, utterances which express the relation
holding between different entities. Then, we can study whether and how artificial phrases are
systematically composed to form artificial sentences, via our concatenability and transitivity
metrics. Thus we completely sidestep the need to segment artificial sentences into phrases, a
complicated problem that is unfortunately ignored in previous works.

More precisely, we have argued that all natural languages should have high concatenability,
while transitivity is not necessarily high and merely quantifies the importance of word order.

Equipped with this setup and these metrics, we have compared a cognitively plausible
architecture that leverages the structure of the inputs into objects with properties (OC)
against an implausible baseline that ignores this structure (FA). Object-centric models yield
more natural languages in terms of concatenability, while also relying more on word order.
Moreover, they generalize better than their implausible counterparts, both in distribution
and out of distribution.

These results confirm the importance of the input representations and of the architectures
leading to the discretization bottleneck, also reported by Lazaridou et al. [2017] and Guo et al.
[2019]. In our experiments, discrete low-dimensional inputs were processed by task-specific
architectures. However, we believe that one can use high-dimensional representations obtained
from pretrained models, as long as these representations are prelinguistic, as object-centric
representations seem to be.

Our methods could be extended to investigate other aspects of sentences. For instance,
how would agents convey relations? To answer this question, we could use the representations
learned via relational unsupervised learning algorithms as inputs. We could study how
different relations are discretized into one or several symbols, perhaps the equivalent of verbs
and adverbs. We could also analyze how relation-specific roles cluster in abstract roles (like
θ-roles) and structure grammar.
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Chapter 10

Conclusion

In this thesis, we showed three very different applications of autoencoders.
In the first paper, we experimented with an autoencoder of dictionary definitions that

learn word vectors. It can be used to modify existing distributional vectors or to learn
to produce embeddings from scratch, only using a dictionary. It has remarkable one-shot
learning abilities. Moreover, the learned word vectors are qualitatively different from those
learned via distributional methods. They reflect semantic similarity more, while being less
organized in terms of association and relatedness.

In the second paper, we showed how to analyze the representations learned by the sequence-
to-sequence VAE. The learned representations are generally not capturing global aspects of
texts, such as their topic or their sentiment. This limits drastically the usefulness of models
for controllable text generation. After correcting some misconceptions about the evaluation
of the models, we showed that using simpler architectures with bag-of-word assumptions, or
using pretraining, we can learn more global representations.

The third paper deals with language emergence simulations, where an agent, the speaker,
has to convey some meaning to another agent, the listener, by transmitting a sequence of
symbols. We proposed a new task in which agents need to predicate, i.e. talk about several
entities instead of a single one. As a consequence, the speaker needs to form a sentence made
of several phrases, instead of a single phrase that refers to a single entity as in reference
tasks. We provided metrics to analyze the learned languages that cover two of the three
main strategies used by humans to communicate the roles of the entities. We showed that
when agents perceive entities as wholes over which they can attend, they communicate more
naturally, leveraging word order or indicating the roles directly on phrases.

In the remainder of this chapter, we discuss the relevance of these results to broader
problems and questions such as data efficiency, distribution shifts and grounding. We also
take a step back to discuss assumptions under the language emergence paper and future work.



10.1. Data efficiency and distribution shifts
In NLP tasks, labelled data is always too few. The set of possible sentences is so large that

it is hard to improve supervised learning algorithms without overfitting. Unsupervised and
semi-supervised learning methods, such as word embeddings and language models, tackle this
problem by leveraging large volumes of unlabelled data. Moreover, statistical NLP methods
can be vulnerable to distribution shifts. Language use adapts to a changing world: new words
and constructions are introduced, new topics are discussed, new opinions and arguments are
voiced. Therefore, NLP models need to be updated and continually learn from new data. To
deal with this, meta-learning methods make use of the hierarchical structure of the training
data into distinct, related datasets to learn quickly from a few examples. Continual learning
algorithms focus on learning continuously while minimizing forgetting.

The dictionary paper blend these different learning paradigms into a single model. The
method is supervised, in the sense that each word is associated with a definition, and the
penalty matches the word representation to the definition representation. At the same time,
it is also unsupervised, since it learns to represent definitions by autoencoding. The encoder is
also a one-shot learner, predicting word vectors which are parameters of NLP models. Finally,
it is theoretically able to perform continual learning and improve. Indeed, the definition of a
new word w can be encoded into a vector added to the embedding matrix of the encoder.
The model has improved, since it is now able to better encode definitions that contain w.

In natural language processing as a whole, the distinction between these paradigms is
getting blurrier over time. Nowadays, a few pretrained large language models are massively
reused by the community. When fine-tuned or prompted, they solve downstream tasks with
relatively little labeled data and impressive performance [Devlin et al., 2018, Radford et al.,
2019, Brown et al., 2020]. Powerful models such as GPT3 [Brown et al., 2020] can learn
to solve new tasks without supervision, simply by being conditioned on the right prompt.
In a way, they also continually learn by conditioning as well. They completely subsume
and make obsolete the dictionary autoencoder. For instance, they can use a made-up word
appropriately, given an invented definition.

10.2. Grounding
While we now know from large language models such as GPT3 that learning purely from

text data goes a long way, the issue of grounding remains. Grounding an expression usually
means associating this expression to stimuli in another modality, such as images, actions in a
reinforcement learning setting, etc. [Harnad, 1990]. Cognitive scientists have shown that our
experience of the physical world [Lakoff, 1987] and our social interactions [Tomasello, 2010]
have tremendous importance for our linguistics skills. Thus, part of the NLP community
argues that language understanding requires grounding [Bisk et al., 2020]. There is still
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uncertainty regarding this claim. Indeed, the level of understanding required to solve a given
NLP task depends on the task, and whether grounding helps or not is an empirical matter
for now. Yet, grounding language in other modalities is already incredibly useful, if not to
solve purely textual NLP applications, at least to control RL agents [Luketina et al., 2019],
to generate images based on text descriptions [Ramesh et al., 2021, Rombach et al., 2022,
Ramesh et al., 2022], and many more applications will come. Thus, we can safely assume
that it is desirable and research is already firmly oriented towards this goal.

Some words and expressions are particularly abstract and do not seem strongly associated
with any sensory perception or motor output. For instance, how are terms like “rights”,
“jurisprudence” and “settlement” felt and experienced in the body? Using definitions is
a possible solution to learn to process these words. This seems to be done implicitly by
large language models, and all the more because such abstract words are also frequently
defined (within pedagogical documents, for example). It would be interesting to compare the
acquisition of such concepts in artificial models using definitions, versus other mechanisms
such as analogies and metaphors which might be cognitively more plausible [Lakoff, 1987].

Regardless of how the understanding of such legal terms take place, it must rely on
underlying on the understanding of lower-level concepts such as good and bad, rights and
duties, rewards and punishments, etc. In turn, it is hard to imagine agents that can understand
these simpler terms outside of a social environment [Fillmore, 1976, Lakoff, 1987, Tomasello,
2010]. Similarly, our bodily experience seems to be at the heart of our understanding of
language as well [Lakoff, 1987]. Language emergence simulations could be another helpful
tool to study how to efficiently ground language in the social and physical world. A strand of
language emergence research examines how artificial agents learn to cooperate with other
agents, whether artificial or human, using natural language [Lazaridou and Baroni, 2020,
Section 4]. The third paper is a study of language emergence with a different objective:
to learn more about why natural languages are the way they are. But we hope that the
techniques introduced are general enough to also help ground artificial agents and improve
their speaking and understanding abilities.

10.3. Language emergence
The method of the third paper can be generalized and summarized as the following

recipe: i) find some linguistic phenomenon to study (here, the way the arguments of the
verb are positioned around the verb and/or marked by case); ii) create metrics to measure
this phenomenon in artificial languages in a way that captures the cross-linguistic diversity
of natural languages (concatenability, transitivity); iii) posit the influence of some factor
(perception of objects as distinct wholes) on i). Finally, iv) vary the factor iii) and measure
how relatively more or less natural according to i) and ii) the emergent languages are. This
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approach is interesting to test counterfactuals, that is, to simulate experiments that are
impossible to realize. As we did in the paper, we can make comparisons between different
possible cognitive mechanisms, but we could also test the influence of the input distribution,
the objective function, the patterns of interactions between agents, etc.

In the third paper, we implicitly assumed that there are different forms of compositionality.
This is also the case in formal semantics to some extent: the functions that encode the
semantics of verbs, nouns and adjectives have different types [Winter, 2016]. Similarly, some
cognitive linguists argue that the different parts of speech typically stand for different kinds
of things in the world, for example, that the prototypical noun phrase correspond to an
entity (one of Lakoff [1987]’s central principles). Based on this assumption, we can then
posit different causes for these different forms. By contrast, most other works suffer from
not clearly defining the linguistic phenomenon of interest in the first place, and talking
about compositionality as a general phenomenon. For instance, when agents talk about
geometric shapes [Kottur et al., 2017], the expectation is that that they should use referential
phrases like “red triangle”. To our knowledge, however, the fact that such phrases consist of
two different parts of speech (nouns and adjectives) is not discussed. There is no mention
of cross-linguistic variations of this two-words pattern either (for example, there could be
significant variations in languages with closed class of adjectives [Dixon, 1977]); no metrics
that would correspond to these different variations and would be maximized on different
natural languages; and no realistic explanation is proposed as to how these classes arise either,
and why one attribute is conveyed with a noun (the shape) while the other is conveyed with
an adjective (the color). If one follows our recipe, all these points should be addressed.

In a subsequent work-in-progress [Bosc, 2022], we argued that costly communication
and partial observability could explain compositionality between adjectives as well. But
the two forms of compositionality considered in these two works arise because of different
objective functions (reconstruction versus discrimination objectives) and require different
perceptual skills (perceive objects as wholes versus perceive objects as having properties or
scalar dimensions that are aligned).

One important difficulty remains: costly communication and partial observability are at
the same time explanations for the emergence of compositionality as well as crucial tools to
analyze the messages. In other words, it is difficult to verify that agents communicate less
naturally without the communication costs and the partially observed inputs since it is also
much harder to interpret their messages when the task does not possess these characteristics.

Another issue is the quality and nature of the inputs that the agents communicate about.
In the third article, these inputs consist of sets of objects, and each object is described by
a vector. As discussed in Section 9.8.2, this data is produced using annotations of English
texts. This might introduce a bias toward English grammar in the emergent languages. One
way to tackle this might be to use unsupervised models. Object-centric and relational models
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could be used to extract entity and relation representations from videos without supervision;
and such representations could be used as inputs. For the study of compositionality between
adjectives and nouns, there is a similar need for unbiased data. We think that disentangled
representations of entities soon will be obtained without supervision and used as inputs
in language emergence simulations. As Zheltonozhskii et al. [2020] show, by clustering
unsupervised learning representations of images, without even using linear classifiers, we can
recover the labels of images with relatively high accuracy. Such unsupervised class labels
could be further exploited by Khemakhem et al. [2020]’s disentanglement method. Their
VAE can learn disentangled latent variables when they are conditioned on some (possibly
noisy) class label and under some assumptions on the true data distribution. Thus, we might
be able to encode videos as sets of segmented entities whose properties are disentangled,
and relations between these entities are characterized as well by vectors or categories. Such
representations could then be used as inputs to agents in language emergence simulations.

Instead of studying language emergence from scratch, we could also study language
evolution. We could design an initial language by hand, and distill it into neural agents. Then,
we could optimize various objectives and observe changes in the languages. For instance,
we could study grammaticalization, that is, how lexical items change and become parts of
grammatical rules [Bybee, 2015].

There is also significant overlap between language emergence research in NLP and the
Rational Speech Act model [Goodman and Frank, 2016] in cognitive science: both strands
of research study language from a functional perspective, highlighting i) the importance of
communication costs and ii) the different roles of the speaker and the listener. The respective
strengths and limitations of the two approaches should be better understood, perhaps to
combine them (cf. for example White et al. [2020]’s work).
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Chapter A

Appendix of the first article

A.1. Lists of electronic dictionaries
Electronic monolingual dictionaries are rather widespread compared to machine-readable

lexical databases. Wiktionary1 is a collaborative online dictionary, where 79 languages have
more than 10,000 entries and 42 languages have more than 100,000 entries. BabelNet [Navigli
and Ponzetto, 2012] aligns Wikipedia and WordNet to automatically obtain definitions
(“glosses” in BabelNet terminology).

Alternatively, Wikipedia provides a list of monolingual dictionaries.2 One can also
translate “dictionary” into the desired language and look up this term. For example, there
are dictionaries for Friulian and Frisian, which are minority languages spoken by less than a
million speakers.3

Development Similarity Relatedness
SV-d MENd SL999 SL333 SV-t RG SCWS MENt MT 353

word2vec 28.2 73.5 36.5 14.2 23.0 76.4 64.2 74.6 64.0 68.5
retrofitting 32.8 74.4 40.2 20.7 28.2 84.0 65.3 77.7 65.6 62.9
dict2vec 36.5 67.9 41.0 24.2 32.0 74.1 61.7 68.1 57.9 64.8
Hill 29.4 62.4 31.9 17.2 20.0 67.1 53.6 62.9 52.6 50.7
AE 33.0 45.6 34.7 24.1 30.3 71.5 49.3 45.5 38.4 42.5
CPAE-P (λ = 16) 39.3 63.1 45.2 31.5 37.4 69.6 59.3 60.7 50.2 58.5

Table 1. Improving pretrained embeddings computed on a large corpus. Spearman’s
correlation coefficient ρ × 100 on benchmarks. Same as Table 2 but word2vec is trained
on the entire Wikipedia dump. Dict2vec fails to improve. Retrofitting especially improves
relatedness, while CPAE improves similarity.

1https://www.wiktionary.org/
2https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words
3https://taalweb.frl/wurdboekportaal
http://www.arlef.it/grant-dizionari-talian-furlan/htdocs/gdbtf.pl

https://www.wiktionary.org/
https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words
https://taalweb.frl/wurdboekportaal
http://www.arlef.it/grant-dizionari-talian-furlan/htdocs/gdbtf.pl


A.2. Data
The dump of Wikipedia that we have mentioned in Section 5.6 is the dump from the 14th

June 2014. Although this dump is not available anymore online, results should be replicable
with newer dumps.

A.2.1. Split dictionary setting

We briefly describe the algorithm used to split the dictionary. If we had used a regular
dictionary instead of WordNet, we could have randomly distributed words into a train,
validation and test split. However, by doing so, we would have put synonyms in two different
splits, which could be a weak form of a test-set leak. On the other hand, WordNet has
sets of synonyms, called synsets, where two words in a synset necessarily share at least one
definition.

We create batches of words which definitions do not overlap across batches with the
following algorithm: First, we create maps from words to their definitions and their converse.
We will create batches indexed by i, and we now describe how to build the batch i. We create
a set of definitions that is initialized as a singleton containing a random definition, Ci = {d}.
We instantiate another set Si = ∅ that will contain all the words which definitions overlap
with at least one other word of the set. We iterate over the set Ci and pop a definition. Then,
we go through all the words that possess that definition and add them to Si, while we also
add all the other definitions of these words to Ci. We keep iterating over Ci until it is empty.
Then we start again the process on a new batch with a new Ci+1 = {d′} where d′ has never
been added to a Ci before.

Then, we order the batches Si by the number of words they contain. We choose the
largest batch to be the training set. It can be seen as a large subset of the vocabulary that is
“central”, in a way. By construction, it contains highly polysemous words and frequent words,
as shown in Table 2.

Although our construction method is very different, it is slightly similar in spirit to the
grounding kernel presented by [Picard et al., 2009]. They report that words in the grounding
kernel are more frequent, as we do for the training set. It is also related to the concept of
semantic primes, a subset of the lexicon from which all other words can be defined [Wierzbicka,
1996].

A.3. Hyperparameter search
All embeddings are of size 300 for the small Wikipedia dump experiments and 400 for the

large Wikipedia dump experiments.
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# defs # defs / # words Avg. counts
Train 36,722 2.87 11.40
Valid 2,109 1.81 4.07
Test 128,223 1.13 1.92

Table 2. Statistics of the split dictionary. By construction, the train set contains much
more frequent and polysemous words than the train set. The average counts are geometric
averages of the smoothed counts of words, computed on the first 50M tokens of the Wikipedia
dump.

A.3.1. GloVe

GloVe is run only on the definition corpus because we found word2vec to be superior. We
have fixed the number of epochs to be 50. The window size varies between {5,7,9,11,15,20}
and xmax in {0,5,20,100}, where the selected hyperparameters are in bold.

A.3.2. Word2vec

We have used gensim implementation.4

On definitions, we do a hyperparameter search on the window size in {5,15} and on the
downsampling threshold in {0, 0.1, 0.01, 0.001, 0.0001}, and we also choose from the skip-gram
or CBOW variant, where the skip-gram variant is selected.

On the small training corpus, we only use the skip-gram model and choose the number
of iterations in {5,30}, the window size in {3,5,7,10}, and the downsampling threshold in
{0, 0.1, 0.01,0.001, 0.0001}, where the selected hyperparameters are boldened.

On the full training corpus, we have used the same hyperparameters except that the
number of iteration is reduced to 5, and we have filtered out words that appear less than 50

times.

A.3.3. AE, CPAE, Hill’s model

We train the AE and CPAE models with Adam [Kingma and Ba, 2014] with β1 = 0.9,
β2 = 0.999, a learning rate of 3 · 10−4, a batch size of 32. In the settings where we use part of
the dictionary, we use early stopping: every 2,000 batches, we compute the mean cost on
the validation set and stop after 20000 batches without improvement. On the full dictionary,
where we do not have a validation set, we train for 50 epochs.

CPAE and AE models always use a reconstruction cost, so α = 1. The λ parameter that
weights the cost of the consistency penalty varies in {1,2,4,8,16,32,64}, and the values chosen
during model selection on the development sets is indicated in the tables.

4https://radimrehurek.com/gensim/
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A.3.4. Retrofitting

We have used the original implementation.5 We have tuned the hyperparameter α
that controls the proximity of the retrofitted vector to the original vector by grid-search:
α ∈ {0.25, 0.5, 1, 2, 4}. The selected value is α = 0.5 for both the small and the large corpora.

A.3.5. Dict2vec

We have used the original implementation.6 Dict2vec has many hyperparameters. We
fixed K = 5, where the K closest neighbours to each word in the original embeddings are
promoted to form a strong pair, as well as ns = 4 and nw = 5, the number of pairs to
sample. We run a grid-search over the hyperparameters, the coefficients that weight the
strong and weak pairs importance in the auxiliary cost: βs ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and
βw ∈ {0.0, 0.2, 0.4, 0.6}. In the smaller data regime (small dump), βs = 1.2 and βw = 0, and
in the larger data regime (the entire Wikipedia dump), the model selection procedure picks
βs = 0.8 and βw = 0.2. When focusing on the similarity relation, it seems better not to use
weak pairs, or at least to weight them very low.

A.4. Improving pretrained embeddings on the full
Wikipedia dump

The scores of word2vec are not really improved by using the much larger full Wikipedia
dump, so we increase the size of the embeddings from 300 to 400. The results are given in
Table 1.

The trends are similar to what we have observed on the first 50 million tokens of Wikipedia.
However, dict2vec seems a bit better and improves over retrofitting in similarity.

5https://github.com/mfaruqui/retrofitting
6https://github.com/tca19/dict2vec
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Chapter B

Appendix of the second article

B.1. On the use of KL annealing, the choice of the free
bits flavor and resetting the decoder

Li et al. [2019] evaluated their models in the SSL setting (Section 3.3 of their paper).
However, their experimental setting is not very rigorous. In the case of the 100 labeled
examples, hyperparameter selection is done on a very large validation set of 10000 examples.
However, the validation set here should be seen as nothing more than a split of the training
data dedicated to optimising hyperparameters. In the words of Cawley and Talbot [2010],
“model selection should be viewed as an integral part of the model fitting procedure”. Besides
methodological issues, we run our own hyperparameter search on the Yelp dataset to properly
disentangle the effects of KL annealing, the free bits method and verify the importance of
resetting the decoder. We use the semi-supervised learning setting presented in Section 7.5
to evaluate the learned encoders.

B.1.1. The free bits technique and variants

The original free bits objective [Kingma et al., 2016] is the following modification to the
KL term:

K∑
j

max(
λ

K
,KL(qj(zj|x)||pj(zj)))

where indices denote components. In this formulation, each component of the multivariate
normal is allowed to deviate from the prior by a small amount. Instead, in the δ-VAE
formulation, one component can use of all the λ free bits and the rest of the components can
collapse to the prior. This is the variant called δ, used throughout the paper:

max(λ,KL(q(z|x)||p(z))).



FB λ Ann. F1(5) F1(50) F1(500) F1(5000) F1(all) KL

O 2 10 53.3±5.5
3.3 69.8±1.8

1.3 73.6±0.2
1.7 74.0±0.1

1.8 73.6±1.1 5.27±0.47

O 2 0 51.8±4.8
6.7 62.7±2.5

3.8 67.0±0.4
5.6 67.5±0.1

5.8 66.9±2.7 2.58±0.46

δ 2 10 51.7±4.6
4.7 64.5±1.9

6.7 68.3±0.4
7.3 69.1±0.2

6.7 68.4±3.3 2.5±0.24

δ 2 0 58.7±5.5
3.2 74.0±2.7

4.4 78.1±0.3
4.1 78.6±0.1

4.3 78.6±1.9 2.27±0.02

O 8 10 60.0±6.0
8.7 77.5±1.2

2.2 80.8±0.3
4.1 81.2±0.1

4.2 81.2±2.1 10.67±0.44

O 8 0 60.2±7.3
4.7 77.7±2.0

2.6 81.4±0.3
2.2 81.7±0.1

2.2 81.5±0.9 9.48±0.08

δ 8 10 57.6±7.6
4.2 76.3±1.4

1.1 80.3±0.3
3.0 80.8±0.1

2.9 80.3±1.0 8.21±0.07

δ 8 0 60.4±4.1
3.6 80.0±1.3

3.0 82.7±1.0
0.9 83.3±0.1

2.3 83.5±0.8 8.12±0.02

Table 1. δ-VAE-style free bits with no KL annealing delivers the best SSL performance and
the KL value closest to the desired rate. Ann.: 0: no annealing, 10: anneal for 10 epochs;
FB : free bits type; F1(n): F1-score in the n data-regime; KL: rate obtained after training.

Other modifications of the free bits technique include the use of a variable coefficient in front
of the KL term [Chen et al., 2016], the target rate objective in Alemi et al. [2018], minimum
desired rate [Pelsmaeker and Aziz, 2019], etc. A comparison of all these methods is out of
the scope of this paper and the δ variant satisfies our only requirement: the rate should be
close to the desired rate.

B.1.2. KL annealing and the original free bits method higher the
rate

Our hypotheses are:
• KL annealing aims at fixing the posterior collapse and is therefore redundant with
the free bits,
• KL annealing performs this role by increasing capacity inconsistently across models,
making them harder to compare,
• the original free bits formulation impose the unnecessary constraint that the free bits
should be balanced over all components.

To study the influence of the free bits variant as well as of KL annealing, we use the same
experimental protocol as described in Section 7.5. To save computations, we fix d = 16. We
do not perform model selection on the desired rate λ in order to see which methods yield
the rates that are closest to the desired rate. Table 1 shows these hypotheses are correct.
Therefore, all the experiments in the paper use the δ variant without annealing.

In Li et al. [2019]’s work, the original, per-component variant of the free bits might have
been chosen because it trivially maximizes a metric called active units (AU). However, to our
knowledge, there is no evidence that this metric should be maximized, neither theoretical nor
empirical.
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Reset. λ F1(5) F1(50) F1(500) F1(5000) F1(all) KL

N 2 51.0±4.2
5.6 61.3±2.0

9.2 65.6±0.5
9.2 66.2±0.1

9.5 65.2±4.9 2.36±0.15

Y 2 58.7±5.5
3.2 74.0±2.7

4.4 78.1±0.3
4.1 78.6±0.1

4.3 78.6±1.9 2.27±0.02

N 8 57.4±5.6
2.4 73.4±1.5

7.3 77.2±0.3
6.6 77.5±0.1

6.7 77.4±2.6 8.23±0.08

Y 8 60.4±4.1
3.6 80.0±1.3

3.0 82.7±1.0
0.9 83.3±0.1

2.3 83.5±0.8 8.12±0.02

Table 2. Resetting the decoder brings very noticeable gains on all data-regimes and with
different rates. Yelp dataset, δ-VAE free bits, no KL annealing. For columns interpretations,
see Table 1.

Dataset Splits size Label |Y| H[Y ] NLL

AGNews 110/10/10 Topic 4 1.39 128.77±0.21
Amazon 100/10/10 Sent. 5 1.61 82.90±0.10
Yahoo 100/10/10 Topic 10 2.30 81.91±0.36
Yelp 100/10/10 Sent. 2 0.67 34.60±0.28

Table 3. Datasets characteristics. |Y|: number of different labels. H[Y ]: entropy of labels.
NLL: mean negative log-likelihood of LSTM baseline models (std. over 3 runs). Splits size:
train/valid/test sizes in thousands.
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Figure 1. Reconstruction loss as a function of word position on the AGNews dataset. See
Figure 1.

B.1.3. On the importance of resetting the decoder after pretraining

Li et al. [2019] proposed to pretrain an AE with a reconstruction loss only. Then, the
parameters of the decoder are re-initialised and the (modified) KL term is added to the
objective. Since it is not very clear why it would be useful, we studied the impact of this
choice. Table 2 shows that it is is crucial.
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Figure 2. Reconstruction loss as a function of word position on the Amazon dataset. See
Figure 1.
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Figure 3. Reconstruction loss as a function of word position on the Yelp dataset. See Figure
1.

B.2. Further evidence for memorization

B.2.1. Plots on other datasets

Figures 1, 2, and 3 show the reconstruction loss and the relative improvement on other
datasets.

On the Yelp dataset, the penultimate token is a punctuation mark which is always followed
by the end-of-sentence token, so predicting its position is equivalent to predicting the sentence
length. That is why the peak at the end occurs before the last token. Moreover, on Yelp, the
situation is worse with λ = 2: between positions 6 and 13, not only is there no improvement,
but the reconstruction is higher than that of the baseline.
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B.2.2. Tracing back reconstruction gains to words

If words in a document were independently modeled, any improvement in reconstruction
at a certain position would indicate that information about the word in that position were
encoded in the latent variable. However, words are far from being independently predicted,
so how can we trace back the information to the encoder?

First, any latent information related to the first word should not yield any improvements on
the prediction of the second word, because the decoder is recurrent and trained using teacher
forcing, i.e., conditioned on the true first word, so that information would be redundant.
However, information related to the second word in the latent variable can help the decoder
predict the first word. Therefore, gains in position i can only be attributed to information
pertaining to the words in positions ≥ i.

Second, the correlation between words in two positions decreases as the distance between
these words grow. In effect, information pertaining to the second word yields more gains on
the second word than on the first word. From these two facts, we conclude that gains for a
position i mostly comes from information about the word in position i itself.

It is harder to draw conclusions about the reconstruction gains at the end of the sentences.
Encoding the identity of the last token is only useful if the position of this token (i.e., sentence
length) is also encoded. So if the stronger claim that the identity of the last tokens is encoded
is correct, sentence length is probably encoded as well. Moreover, this last token is often a
punctuation sign that is generally easy to predict given the sentence length. So even if it
is memorized, it probably does not matter much with regards to generation as discussed in
Section 7.3.2.

B.2.3. Reconstruction and memorization

To study the concrete impact of this observation for generation, we encode and decode
test documents using the last-PreAE variant.1 Then, we compute the ratio of documents for
which the first word in the sources and in the reconstructions match and similarly, how often
the sources and their reconstructions have the same number of words.

We compare these with scores obtained by a baseline model that outputs the most frequent
first word given the label and the most common document length given the label. This
baseline mimicks the behavior of a hypothetical VAE which would encode the labels of the
documents (topic or sentiment) perfectly and nothing more.

Results in Table 4 show that with the last-PreAE the first words are reconstructed with
much higher accuracy than if the latent vector only encoded the label. On the last two
datasets, it recovers the first words on more than half of the documents whereas the baseline
only recovers the first words between 11.3 and 14.1% of the time. Accurate encoding of the
1λ = 8, d = 16, beam search with beam size of 5.
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last-PreAE Clf. given label
Dataset 1st (%) Len. (%) 1st (%) Len. (%)

AGNews 29.6±1.1 3.6±0.1 12.9 4.8
Amazon 42.4±2.3 13.0±1.6 14.0 0
Yahoo 56.6±1.0 17.1±1.1 11.3 4.9
Yelp 53.0±0.5 33.7±1.7 14.1 9.7

Table 4. The latent variables encode more information than the label alone, in particular,
information that allows to retrieve the first word and the document length with high accuracy.

number of words seems less systematic than the encoding of the first few words. For example,
on AGNews, the sentence length is recovered less often than our baselines. The encoding of
the sentence length is more pronounced on datasets with small documents like Yahoo and
Yelp.

B.3. Training procedure

B.3.1. Grid search

The target rates λ are chosen to be higher than the entropy of the labels of the documents
(Table 3) as we assume that the latent variable should at least capture the annotated label.
Indeed, λ = 2 nats is enough to store the labels of all datasets without any loss, except Yahoo
which has an entropy of 2.3 whereas λ = 8 nats suffices to capture much more information
than needed to store the labels on all datasets. Moreover, these rates are chosen to be much
smaller than the reconstruction loss of the baselines because of the technical difficulty of
increasing the rate without degrading the log-likelihood explained above.

The latent vector dimension d is either 4 or 16. Recall that our representations are
evaluated on downstream tasks with very limited data in some cases (as little as 5 examples
per class), so we need a small enough dimension of latent vector to be able to learn. We
suppose that d = 4 will be favored for the 5 or 50 examples per class regime while d = 16

could be more efficient above this, but we leave this choice to the model selection procedure.

B.3.2. Constant hyperparameters

All the runs are trained using SGD with a learning rate of 0.5 and gradients are clipped
when their norms are higher than 5. We use the following early stopping scheme: at every
epoch, if there has not been improvements on the validation error for two epochs in a row,
the learning rate is halved. Once it has been halved four times, the training stops.

All the LSTMs have hidden state size of 512 and use a batch size of 64. No dropout is
applied to the encoders. The LSTM decoders use dropout (p = 0.5) both on embeddings and
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on the hidden states (before the linear transformation that gives logits). Similarly, dropout is
applied to the representation before the linear transformation that gives the logits for the
Unigram decoder. Word embeddings are initialized randomly and learned.

B.3.3. Computing infrastructure and average runtime

We performed training and evaluations of the models on a cluster containing a hundred
of GPUs with various specifications (NVIDIA Tesla k80, Titan X, Titan Xp, etc.). Given
that all the datasets have roughly 100000 training examples (cf. Table 3) and that neural
networks are trained with BPTT [Werbos, 1990], the training time mostly depends on the
average sentence length and the vocabulary size. Pretraining schemes (PreAE, PreUni and
PreLM ) require the training of two models. Roughly, the training time of a single model
(pretraining or final) varied between 1 hour and 6 hours.

To be more specific, the best baselines and our best variants use pretraining phases (PreAE
from Li et al. [2019] and PreUni, respectively). PreUni is faster because the first training
phase uses a non-recurrent decoder, and the second training phase does not backpropagate
and does not update the encoder. However, PreAE does not require pretraining for each
desired target rate λ, unlike our approach. Overall, the approaches have comparable runtimes.

Some of our models offer an interesting compromise: BoW-max-LSTM with no pretraining
and a simpler architecture is probably the fastest, yet outperform the PreAE baselines.

B.4. Related work

B.4.1. Related models

The models that we use are similar to already proposed models.
The NVDM model of Miao et al. [2016] is precisely BoW-max-Uni.
Zhao et al. [2017] proposed to use two reconstruction losses: the regular reconstruction

loss given by the recurrent decoder and an auxiliary loss computed from a unigram decoder.
In comparison, our Uni models are trained in two steps: the encoder is trained jointly with
the unigram decoder, then the decoder is thrown away and we train a recurrent decoder using
the fixed encoder. This way, one decoder cannot dominate the other and we do not have to
deal with an additional hyperparameter to weight the two losses.

Instead of using an auxiliary loss, we have an auxiliary decoder that is only used for the
purpose of training the encoder. This method was presented by De Fauw et al. [2019] for
training generative models of image. There is a slight difference: they use a feedforward
auxiliary decoder to produce different probability distributions for all the pixels, whereas our
unigram probability distribution is the same for all words of a document. This modification
allows us to deal with varying lengths of documents.
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Finally, the PreLM training procedure is related to large LM pretraining in the spirit
of contextualized embeddings [Peters et al., 2018] and its successors. Note, however, two
differences. Firstly, we do not use external data and stick to each individual training set,
because the goal is not to evaluate transfer learning abilities. Secondly, we do not fine-tune
the entire encoder, but only learn the linear transformations L1 and L2 that produce the
variational parameters, to make sure that the VAE objective will have no impact on the
extraction of features.

B.4.2. Methods and evaluations

In their analysis of the semi-amortized VAE, Kim et al. [2018] use several saliency measures
(defined as expectations of gradients) to determine which words influence the latent variable,
or are influenced by it. Using these measures, they noticed that the beginning of the sentence
and the end-of-sentence token have a large influence on the variable. Our method is very
similar, but slightly simpler and directly interpretable in terms of quantity of information (in
nats).

Ficler and Goldberg [2017] learn LSTM-LMs conditioned on labels that describe high-level
properties of texts. Among others, they want to verify that generated texts exhibit the same
properties as the conditioning labels. For instance, when the LSTM-LM is conditioned on
positive sentiment value, the generated texts should also exhibit a positive sentiment. To
check that the conditioning variables and the generated texts are consistent, they use the
following procedure. First, they extract information about the various documents using
heuristics or with the help of annotators. Then, they learn LSTM-LM s conditioned on these
labels. Finally, they quantify the ratio of generated samples which have the same labels than
the conditioning labels, either by applying the same heuristics again to the generated samples
or by asking human annotators once more. Our evaluation in Section 7.6 is similar; we simply
replace the heuristics and the human annotators with classifiers learned on ground-truth
data.

McCoy et al. [2019] trained autoencoders with different combinations of encoders and
decoders (unidirectional, bidirectional or tree-structured) and decomposed the representations
learned by the encoders using tensor product representations [Smolensky, 1990]. They find
that decoders “largely dictate” the way information is encoded. This is in line with our own
conclusions. An important difference between our works is that they study how information
is encoded in sequence-to-sequence models without capacity limitations, whereas in our study,
the VAE objective puts severe constraints on the capacity.
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B.5. Semi-supervised learning experiments

B.5.1. Model selection

For a given dataset in a given data-regime, we want a measure of the performance of our
models that abstracts away from i) hyperparameters for the VAEs, ii) hyperparameters for the
downstream task classifiers, iii) subsampling of the dataset and iv) parameter initialisation
of the VAEs. As is usually done by practitioners, we optimize over the hyperparameters of
the VAEs and the classifiers, eliminating i) and ii) as sources of variance. We can study the
robustness of the models by looking at the variance induced by the choice of the subsample
and the initialisation of the parameters.

On a given dataset and in a given data-regime, for a given model, we note FHM ,HC
ij the

F1-score obtained on the test set on the subsample using seed i, the parameter initialisation
using seed j, VAE hyperparameters HM and classifier hyperparameters HC . We use repeated
stratified K-fold cross-validation [Moss et al., 2018] to compute a validation error F̂HM ,HC

ij .
For all training folds, we train logistic regression classifiers with L2 regularisation and a
grid-search on HC ∈ {0.01, 0.1, 1, 10, 100}. We select the best classifier hyperparameter:

H∗C = arg max
HC

F̂HM ,HC
ij

Then, the best VAE hyperparameter is chosen by averaging over the s = 3 random seeds
and picking the best classifier hyperparameter,

H∗M = arg max
HM

1

s

s∑
i=1

F̂
HM ,H

∗
C

ij

Having optimised the hyperparameters, we compute the test set F1-score:

Fij = F
H∗M ,H

∗
C

ij

B.5.2. Decomposing the variances of the scores

For a given model, dataset and data-regime, after optimisation of the hyperparameters of
the VAE and the classifier, we collect several F1-scores Fij which depend on the seed used to
subsample the dataset i and the seed used to initialise the model parameters j. We posit a
linear model with one random-effect factor, the initialisation seed, and where replicates are
obtained by varying the subsampling seed:

Fij = µ+ αj + εij
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Assuming that αj and εij are independent random variables with null expectations, we can
decompose the variance as

Var(Fij) = E[(Fij − µ)2]

= E[(αi + εij)
2]

= E[α2
i ] + E[ε2ij]

= Var(αi) + Var(εij)

This is the basis of the method of analysis of variance (ANOVA) and is often used to test
hypotheses (for instance, that the effect E[αi] is significant) [Oehlert, 2010]. The two estimates
of σ2

init and σ2 are usually denoted MST and MSE.
In our case, we are only interested in estimating roughly what variability is due to the

model initialisation and what is due to the subsampling of the dataset.
Note that we could treat the two sources of variance i and j symmetrically by adding add

a term βi, but we would need to report 3 standard deviations (that of αj, βi and εij) to get
the full picture. The most important estimate is σinit. It quantifies the inherent robustness of
the model to different initialisations. The effect of the subsampling is specific to the dataset,
therefore, it is less relevant to our analysis.

B.5.3. What is the representation of a document?

VAEs are mostly used for generating samples but are also sometimes used as feature
extractors for SSL. In the latter case, it is not clear what the representation of a datapoint
is: the mean of the approximate posterior µ or the noisy samples Z ∼ N (µ, Iσ2)? Kingma
et al. [2014] feed noisy samples z in the classifiers but in the literature of VAEs applied to
language modeling, it is more common to use µ without explanation or even mention.2

If we are interested purely in downstream task performance, the mean should perform
best, as the samples are just noisy versions of the mean vector (it is still not completely
straightforward as the noise could play a regularizing role). However, in order to evaluate
what information is effectively transmitted to the decoder, we should use the samples. The
performance of downstream task classifiers using the mean does not tell us at all whether the
latent variable is used by the decoder to reconstruct the input. The following experiment
illustrates this fact.

We train the original VAE architecture on the Yelp dataset, both with and without the
PreAE, using the original ELBo objective (λ = 0). As expected, the KL term collapses to
0. Then, we train a classifier using the procedure explained above using 5000 examples per
class. We expect that its performance will be close to random chance, regardless of whether

2For instance, Li et al. [2019] and Fu et al. [2019] do not mention what representation they use but their code
uses the mean; Long et al. [2019] report using a concatenation of the mean and the variance vectors.
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PreAE F1 KL
z µ

No 49.5 64.7 1e−4

Yes 49.6 81.5 2e−4

Table 5. When the KL collapses, the performances of classifiers trained on the mean µ vs
on samples z ∼ N (µ, Iσ2) are very different, especially for pretrained models. z does not
contain any information while µ is very predictive of the label.

samples or the mean parameter are used as inputs. However, Table 5 shows that this is not
the case. Using samples, we do get random chance predictions from the classifiers, whereas
using means, the performance is remarkably high (as high as 81.5 of F1 using pretraining).
The reason is that the KL term never completely collapses to 0. Therefore, µ can be almost
zero while still encoding a lot of information about its inputs. However, when the KL term is
close to 0, the variance of the samples is close to 1, so no information is transmitted to the
decoder. This tendency is exacerbated with the PreAE runs, for which the means encode
remnants of the pretraining phase.

This experiment shows that it is crucial to report what representation (z or µ) is analyzed
and to cautiously interpret the results. Therefore, for the purpose of analysing representations
for text generation, we feed z as inputs to the classifiers.

B.5.4. Recurrent and BoW encoders work around max-pooling

It is counter-intuitive that BoW-max-LSTM improves over LSTM-max-LSTM (with or
without PreAE ). Indeed, taking into account word order should allow the LSTM encoder to
do better inference than the BoW encoder, for example, by handling negation or parsing
more complicated discourse structure [Pang et al., 2002].

LSTM encoders are more powerful, but it can lead them to learn undesirable behaviors. We
noticed that some components of the hidden states consistently reach their maximum values
at fixed positions, regardless of the inputs (i.e., for some components j∗, arg maxi h

j∗

i ≈ K).
These positions K are often early positions in the sentence. For instance, with λ = 8, d = 16,
LSTM-max-LSTM-PreAE has 70 components out of 512 that are selected on 80% of the
documents on the same position on Yelp (68 on the first word, 2 on the second) and 78 on
Amazon (57 on the first word, 21 on the second). In other words, some components of r
act like memory slots assigned to fixed positions in the sentence. This is probably achieved
through counting mechanisms [Shi et al., 2016, Suzgun et al., 2019]. The decoder is also an
LSTM and can count, so it can also extract the relevant components at each position to
retrieve the corresponding words.
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5 50 500 5000 All
r Dec. Pre. F1±σσinit

A
G
N
ew

s
last LSTM - 59.6±5.1

11.9 71.7±1.0
12.1 73.6±0.1

11.8 73.7±0.1
11.9 73.6±−5.4

last LSTM AE 65.8±3.3
3.3 81.0±0.7

1.1 82.8±0.3
0.6 83.1±0.1

0.7 83.4±−0.3
max LSTM - 27.3±2.4

1.2 30.8±3.4
5.4 33.1±0.9

10.5 33.8±0.4
8.6 34.6±−2.4

max LSTM AE 55.7±4.5
18.7 75.1±1.3

2.6 81.9±0.3
0.0 82.5±0.1

0.4 83.3±−0.4
max LSTM - 72.7±2.0

5.9 81.2±0.6
0.8 82.2±0.2

0.8 82.3±0.1
1.0 83.1±−0.3

max Uni - 71.6±5.5
0.1 80.4±0.8

0.7 81.8±0.5
0.5 82.4±0.1

0.4 83.9±−0.3
last Uni - 54.8±5.2

57.1 61.7±0.8
71.4 62.9±0.4

71.0 63.0±0.3
71.1 59.3±−40.9

max Uni - 71.8±4.5
1.8 81.4±0.5

0.6 82.5±0.1
0.5 82.5±0.1

0.6 83.1±−0.5
avg LSTM LM 70.8±4.8

4.3 81.2±0.9
1.2 82.6±0.2

1.3 82.8±0.1
0.9 83.5±−0.1

A
m
az
on

last LSTM - 18.9±1.7
0.5 20.9±1.2

0.9 22.5±0.7
0.7 23.3±0.4

1.1 22.9±−1.5
last LSTM AE 20.0±2.2

0.9 24.7±0.7
2.8 27.2±0.4

3.1 27.7±0.3
3.8 28.1±−1.0

max LSTM - 19.8±0.7
0.5 20.4±1.1

0.9 22.2±0.6
2.1 23.0±0.3

1.9 23.7±−0.5
max LSTM AE 22.3±2.6

0.7 30.5±0.9
3.0 33.4±0.4

4.1 34.1±0.3
4.8 34.0±−1.6

max LSTM - 21.0±2.6
1.1 34.6±0.7

1.1 38.3±0.4
1.0 39.0±0.1

0.6 38.9±−0.7
max Uni - 21.8±3.1

1.6 32.8±0.8
1.7 36.9±0.4

0.9 38.0±0.2
0.6 38.2±−0.5

last Uni - 24.0±3.0
1.0 31.2±0.6

1.4 35.1±0.4
2.2 36.1±0.2

2.4 36.8±−0.9
max Uni - 25.4±3.2

0.2 32.8±1.0
1.3 36.1±0.4

0.7 36.9±0.2
0.8 37.9±−0.2

avg LSTM LM 21.8±3.8
0.6 35.3±0.8

0.4 40.2±0.4
0.4 41.1±0.2

0.4 40.0±−0.4

Y
ah

oo

last LSTM - 10.9±0.9
0.5 12.1±0.6

0.6 13.9±0.4
2.1 14.1±0.2

2.8 14.9±−1.0
last LSTM AE 20.7±0.7

0.5 32.2±0.8
0.6 36.1±0.2

0.1 36.7±0.1
0.5 37.2±−0.7

max LSTM - 9.9±1.0
1.3 13.0±0.6

2.1 14.6±0.3
2.8 14.9±0.1

3.1 15.7±−0.5
max LSTM AE 20.8±1.3

2.3 31.3±0.7
1.4 35.6±0.3

1.2 36.3±0.1
1.1 36.6±−0.7

max LSTM - 23.4±2.1
2.9 36.7±1.1

0.5 41.1±0.2
0.8 41.6±0.1

0.9 42.6±−0.2
max Uni - 24.9±1.3

2.2 33.2±0.7
3.6 37.3±0.1

3.1 37.9±0.1
3.1 38.9±−1.7

last Uni - 24.5±3.8
1.7 30.8±1.7

0.6 34.4±0.3
5.0 35.1±0.1

4.7 37.1±−2.3
max Uni - 24.1±2.9

2.7 35.0±0.9
1.2 39.1±0.1

1.8 39.5±0.1
1.7 40.1±−0.7

avg LSTM LM 21.9±2.3
1.3 36.1±0.8

0.7 39.9±0.2
0.6 40.4±0.1

0.4 41.7±−0.3

Y
el
p

last LSTM - 49.9±4.5
2.7 55.6±2.3

2.9 57.9±1.1
2.5 59.5±0.2

2.7 61.9±−2.5
last LSTM AE 59.3±5.4

2.9 80.0±1.3
3.0 82.7±1.0

0.9 83.3±0.1
2.3 67.9±−0.1

max LSTM - 61.6±8.2
8.8 71.4±2.3

6.3 76.0±0.2
2.3 76.5±0.1

2.0 78.0±−1.7
max LSTM AE 59.9±10.4

7.9 78.7±2.4
1.5 82.9±0.3

2.7 83.3±0.1
2.7 84.1±−0.7

max LSTM - 67.1±10.1
15.7 79.3±2.8

4.5 83.4±0.3
0.9 83.9±0.1

0.9 85.0±−0.2
max Uni - 62.3±4.6

3.8 76.7±1.7
3.6 80.4±0.2

3.2 80.9±0.1
3.1 83.1±−0.5

last Uni - 65.0±8.0
4.4 74.1±2.0

1.4 78.5±0.3
3.0 79.1±0.1

3.1 81.6±−0.5
max Uni - 59.9±7.2

3.7 77.3±1.2
0.9 81.1±0.3

0.5 81.5±0.1
0.5 83.3±−0.4

avg LSTM LM 63.6±7.4
5.4 81.0±1.6

2.3 83.2±0.7
0.8 83.8±0.1

0.8 84.4±−0.5

Table 6. Using BoW encoders, Uni decoders or PreLM pretraining, the learned representa-
tions are more predictive of the labels (sentiment or topic) of the documents.

For BoW encoders, it is less clear. It is possible that on some datasets, capitalized words
could take especially high values on some components, in order to be consistently represented
after max pooling. However, we have not explored the issue further.
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Dataset F1(All) F1(3) Ratio

AGNews 89.0 71.9 0.808
Amazon 48.9 29.7 0.607
Yahoo 63.0 19.1 0.303
Yelp 96.5 82.4 0.854

Table 7. Performance of bag-of-word classifiers when using all words as features versus only
the first three words. Ratios of performance vary a lot across datasets.

B.6. Qualitative analysis
For our qualitative analysis, we take a look at the reconstruction samples (which were

also used in Section 7.6). We focus on the PreUni models which lower memorization the most
with the LSTM-max and BoW-max encoders, and compare them to the two best baselines.
We use only one seed and one z sample per model and per source sentence, but use two
decoding strategies (beam search and greedy decoding).

In general, and for the reasons explained above, the rate λ = 8 is chosen too small to
recover exactly the source. Indeed, this rate is an order of magnitude less than the negative
log-likelihood of LSTM-LM baselines: above 80 for all datasets except on Yelp where it is
around 34.60 nats (cf. Table 3). Since the NLL is an upper-bound on the entropy of the data,
it gives a crude over estimate of the information content of the average document. On Yelp,
where the NLL is much smaller (around 34.60 nats), we hope to obtain good paraphrases
for simple and frequent sentences. On the other datasets, we can not hope to reconstruct
the sentences correctly but merely to control the generation by producing sentences which
have the same labels as the source sentences. For this reason, we cherry-pick source sentences
that look quite generic, because they are more probable and therefore, should be easy to
reconstruct correctly.

Results are presented in Tables 8, 9, 10 and 11. Overall, we do observe less memorization
of the first words and more correct sentiment or topic. Between our two models, on Amazon
and Yelp (sentiment labels), it seems that LSTM-max-LSTM-PreUni might perform better
than BoW-max-LSTM-PreUni because of its ability to handle negation, probably thanks
to the recurrent encoder. It also seem more on topic on AGNews. On Yelp, it is able to
paraphrase generic, small sentences. Therefore, we recommend this model as a future baseline.

We have already seen that it is very hard to classify sentences based on their first
three words on the Amazon and Yahoo dataset, and that the baseline methods will learn
representations that are not predictive of labels. However, the Yahoo dataset is especially
challenging and our methods also struggle on it. We hypothesize that it is because only a few
words per sentences are correlated with the labels. Indeed, there are many sentences of the
form “what do you think about X ?” or “what is the difference between X and Y ?” where
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only X and Y are correlated with the label and moreover often out-of-vocabulary. There
might be no benefits for the model to diminish the reconstruction loss in priority on these
words. By comparison, the other “hard” dataset (Amazon) is “easier”, because the sentiment
is often indicated by frequent adjectives like “horrible” or “good” and other frequent verbs.
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Model/“source" Dec. Sample

source Michael Owen heads England ’s winner in the World Cup qualifier against Azerbaijan .

L-last-L-PreAE beam Michael Owen will be sidelined for the rest of the season with a knee injury .
L-last-L-PreAE greedy Michael Owen has been charged with a rib injury and a new team for the first time in

the last two weeks .
L-max-L-PreAE beam American Bode Miller won the World Cup super @-@ G with a 6 @-@ 3 victory over the

United States in the World Cup of Hockey .
L-max-L-PreAE greedy American Bode Miller won the World Cup of Hockey on Sunday , beating the United

States by a record @-@ setting victory over the United States .
B-max-L-PreUni beam England coach Sven @-@ Goran Eriksson says he will not be able to win the World Cup

qualifier against Wales .
B-max-L-PreUni greedy England captain David Beckham has been named the England captain for the 2006 World

Cup qualifiers against Wales .
L-max-L-PreUni beam England coach Sven @-@ Goran Eriksson says he will be fit for the World Cup qualifier

against Wales next month .
L-max-L-PreUni greedy England captain David Beckham has been named the first World Cup qualifier in the

World Cup qualifier against Wales .

source New Athlon 64 processors will compete with Intel ’s Pentium 4 Extreme Edition .

L-last-L-PreAE beam IBM ’ s dual @-@ core Opteron processor will be available in the next three years .
L-last-L-PreAE greedy A new chipset for mobile phones will be available in the next three years .
L-max-L-PreAE beam New version of Windows Server 2003 .
L-max-L-PreAE greedy New version of the Linux operating system is designed to integrate Linux and Linux .
B-max-L-PreUni beam Hewlett @-@ Packard Co . , the world ’s largest computer maker , has unveiled a new

version of its iPod digital music player , the company said .
B-max-L-PreUni greedy Hewlett @-@ Packard Co . , the world ’s largest maker of digital music player , on

Tuesday unveiled a new version of its popular PlayStation 2 game console , which will be
available in the next few years .

L-max-L-PreUni beam Intel has unveiled a new version of its Pentium 4 Extreme Edition processor , which will
be available for the first time .

L-max-L-PreUni greedy Intel has unveiled a new version of its Pentium M processor , which is designed to help
the company ’s new processor @-@ based processors .

source Nortel said it expects revenue for the third quarter to fall short of expectations .

L-last-L-PreAE beam Coca @-@ Cola Co .
L-last-L-PreAE greedy research ) is expected to announce a new deal with the company to buy the company .
L-max-L-PreAE beam Nortel Networks Corp.
L-max-L-PreAE greedy General Electric Co. said on Thursday it will buy the company for $ 500 million in cash

and stock .
B-max-L-PreUni beam Ford Motor Co . , the world ’s largest maker of photographic film , said on Thursday it

expects to cut its full @-@ year earnings forecast , citing strong demand for its flagship
database products .

B-max-L-PreUni greedy Coca @-@ Cola Co. on Thursday said third @-@ quarter earnings rose 29 percent , helped
by strong sales of its soft drinks and business software .

L-max-L-PreUni beam Nortel Networks Corp. , the world ’s largest maker of equipment , said on Thursday that
its third @-@ quarter profit rose 12 percent , helped by a rebound in the value of its
assets .

L-max-L-PreUni greedy Shares of Nortel Networks Corp. fell nearly 8 percent on Thursday after the company
said it expects its earnings for the third quarter , citing a decline in its third @-@ quarter
earnings .

Table 8. Cherry-picked AGNews samples. L=LSTM; B=BoW. Baselines are the first two
models, our models are the two last. In the first example, the first baseline copies “Michael
Owen” and complete with generic suffixes; the second baseline is about Hockey instead of
soccer. Our baselines do not copy the beginning while correctly identifying the topic of
England and the World Cup’s qualifier. Similar comments can be made on the two other
examples.

153



Model/“source" Dec. Sample

source I loved the book , but was a little bit UNK with the ending .

L-last-L-PreAE beam I enjoyed the book , but the story line was not as good as the first one .
L-last-L-PreAE greedy I enjoyed the book and the story line . I was very disappointed in the book .
L-max-L-PreAE beam I was very disappointed in the quality of the book , and the content of the book is very

poor .
L-max-L-PreAE greedy I was disappointed in the quality of the book , but the book is not as good as the original

.
B-max-L-PreUni beam I liked the story and the story line . It was a little slow at times but overall a good read .
B-max-L-PreUni greedy I liked the story and the story line . It was a little slow but the ending was a little

predictable .
L-max-L-PreUni beam The book was a little slow , but the story line was good . I enjoyed it .
L-max-L-PreUni greedy The book was a little slow and the story line was very good . I was very disappointed .

source This movie wasn ’t as good as the original but I still enjoy watching it .

L-last-L-PreAE beam This movie was a little slow at times , but it was a good movie .
L-last-L-PreAE greedy This movie was a little slow and the plot was not good . I would not recommend it to

anyone .
L-max-L-PreAE beam This movie was not as good as I thought it would be . I was very disappointed .
L-max-L-PreAE greedy The movie was not as good as the first one . I was disappointed in the quality of the

movie .
B-max-L-PreUni beam Not as good as I thought it would be . I wouldn ’t watch it again .
B-max-L-PreUni greedy I didn ’t like this movie . I thought it was going to be a good movie but I wouldn ’t

watch it again .
L-max-L-PreUni beam I was expecting a little more from this movie . It was a little slow and boring .
L-max-L-PreUni greedy The movie was good , but the acting was not very good . I was expecting a little more

from the movie .

source This movie is horrible . The story , the acting , the directing . Just horrible .

L-last-L-PreAE beam This is a great movie . I love it . It is a great family movie .
L-last-L-PreAE greedy This movie is great . It is a great movie and I love it .
L-max-L-PreAE beam This is the worst movie I have ever seen . It was not worth the time to watch .
L-max-L-PreAE greedy This was a good movie . The acting was good , but the story line was not very good .
B-max-L-PreUni beam This movie is not worth the money . The acting is poor and the acting is poor .
B-max-L-PreUni greedy The movie is very poor , the acting is poor . The acting is poor .
L-max-L-PreUni beam This movie is a waste of time and money . It was a waste of time and money .
L-max-L-PreUni greedy This movie is a waste of time . It was a waste of time and money .

source This book is very bad and does not give a real idea of the sport of UNK

L-last-L-PreAE beam this is a great book for those who want to learn a little more about the history of the
history of the history

L-last-L-PreAE greedy this book is a great book for the price , but the book is a little too short for my taste
L-max-L-PreAE beam This book is a must have for anyone who is interested in the history of the Catholic

Church
L-max-L-PreAE greedy This book is a must have for anyone who is interested in the field of the world of the New

Testament
B-max-L-PreUni beam This is a good book , but it does not have a lot of information in it .
B-max-L-PreUni greedy This book is a good book for the beginner , but it does not have a lot of information in it

.
L-max-L-PreUni beam This is a good book , but it does not have enough information on how to build your own .
L-max-L-PreUni greedy This is a good book , but the book is not a good book for the money .

Table 9. Cherry-picked Amazon samples. L=LSTM; B=BoW. The first two examples
are moderately positive reviews. L-max-L-PreUNI recreate roughly the same sentiment
overall with different beginnings of sentences. On the third example, our models do copy the
beginning of the source sentence but do not make mistakes on the sentiment as the baselines
do. On the last, all models fail to capture the very negative sentiment, but our models at
least moderate the positivity.

154



Model/“source" Dec. Sample

source What is your favorite book ?

LSTM-last-LSTM-PreAE beam what is a good name for a girl ?
LSTM-last-LSTM-PreAE greedy what is a good name for a girl ?
LSTM-max-LSTM-PreAE beam What is your favorite book ?
LSTM-max-LSTM-PreAE greedy What is your favorite book ?
BoW-max-LSTM-PreUni beam What is your favorite sport ?
BoW-max-LSTM-PreUni greedy What is your favorite movie ?
LSTM-max-LSTM-PreUni beam What is your favorite book ?
LSTM-max-LSTM-PreUni greedy What is your favorite Christmas movie ?

source how can i get money ?

LSTM-last-LSTM-PreAE beam i want to know ?
LSTM-last-LSTM-PreAE greedy i want to know ?
LSTM-max-LSTM-PreAE beam how do i get money ?
LSTM-max-LSTM-PreAE greedy do you have any money ?
BoW-max-LSTM-PreUni beam where can i go to watch free online ?
BoW-max-LSTM-PreUni greedy where can i get free online games ?
LSTM-max-LSTM-PreUni beam where can i get a job ?
LSTM-max-LSTM-PreUni greedy how do i get a job in USA ?

source What countries have nuclear weapons ?

LSTM-last-LSTM-PreAE beam What are the pros and cons ?
LSTM-last-LSTM-PreAE greedy What are the pros and cons of smoking ?
LSTM-max-LSTM-PreAE beam which countries in the world ?
LSTM-max-LSTM-PreAE greedy which country has the highest world cup ?
BoW-max-LSTM-PreUni beam how many countries are there in the world ?
BoW-max-LSTM-PreUni greedy what are the countries that will be able to be the most

effective government in the world ?
LSTM-max-LSTM-PreUni beam Why are the colors of the Earth ?
LSTM-max-LSTM-PreUni greedy what are the three different countries in the U.S. ?

source how to print all webpage content ?

LSTM-last-LSTM-PreAE beam how to create a website ?
LSTM-last-LSTM-PreAE greedy how to find a website ?
LSTM-max-LSTM-PreAE beam how can i learn english language ?
LSTM-max-LSTM-PreAE greedy how can i watch free online online ?
BoW-max-LSTM-PreUni beam how do you get a free copy of the internet ?
BoW-max-LSTM-PreUni greedy how to get the free internet explorer ?
LSTM-max-LSTM-PreUni beam how do i get a copy of my computer in the internet ?
LSTM-max-LSTM-PreUni greedy how do i get the power to open a computer in the

internet ?

Table 10. Cherry-picked Yahoo samples. There isn’t a model that clearly stands out, but
we can rule out LSTM-last-LSTM-PreAE. This dataset is more difficult (see main text).
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Model/“source" Dec. Sample

source amazing place .

LSTM-last-LSTM-PreAE beam amazing customer service .
LSTM-last-LSTM-PreAE greedy amazing customer service .
LSTM-max-LSTM-PreAE beam amazing food .
LSTM-max-LSTM-PreAE greedy amazing food .
BoW-max-LSTM-PreUni beam this place is amazing .
BoW-max-LSTM-PreUni greedy this place is amazing .
LSTM-max-LSTM-PreUni beam this place is amazing .
LSTM-max-LSTM-PreUni greedy this place is amazing .

source definitely going back soon !

LSTM-last-LSTM-PreAE beam definitely coming back !
LSTM-last-LSTM-PreAE greedy definitely recommend to anyone !
LSTM-max-LSTM-PreAE beam definitely coming back again !
LSTM-max-LSTM-PreAE greedy highly recommend them to anyone !
BoW-max-LSTM-PreUni beam i will definitely be back !
BoW-max-LSTM-PreUni greedy i will definitely be back !
LSTM-max-LSTM-PreUni beam i will be back !
LSTM-max-LSTM-PreUni greedy i will be back !

source not worth the risk .

LSTM-last-LSTM-PreAE beam not the best .
LSTM-last-LSTM-PreAE greedy not the best .
LSTM-max-LSTM-PreAE beam not worth the money .
LSTM-max-LSTM-PreAE greedy not worth the money .
BoW-max-LSTM-PreUni beam worth the wait .
BoW-max-LSTM-PreUni greedy it was worth the wait .
LSTM-max-LSTM-PreUni beam not worth the hassle .
LSTM-max-LSTM-PreUni greedy it ’s not worth the money .

source overall , a huge disappointment .

LSTM-last-LSTM-PreAE beam pizza was good too .
LSTM-last-LSTM-PreAE greedy pizza was good too .
LSTM-max-LSTM-PreAE beam ok , nothing special .
LSTM-max-LSTM-PreAE greedy nothing special , but the food was bland .
BoW-max-LSTM-PreUni beam wow .
BoW-max-LSTM-PreUni greedy great experience .
LSTM-max-LSTM-PreUni beam what a disappointment .
LSTM-max-LSTM-PreUni greedy what a disappointment .

Table 11. Cherry-picked Yelp samples. On small and typical sentences, our last variant
LSTM-max-LSTM-PreUni can produce paraphrases. On the other hand, BoW-max-LSTM-
PreUni fails on the two negative examples, probably because it lacks the ability to deal with
negation. The baseline models also fail to capture the sentiment on the last example, and
copy the beginning on the first three examples.
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