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R É S U M É

La dynamique structurelle des biomolécules est intimement liée à leur fonction,
mais très coûteuse à étudier expériementalement. Pour cette raison, de nom-
breuses méthodologies computationnelles ont été développées afin de simuler
la dynamique structurelle biomoléculaire. Toutefois, lorsque l’on s’intéresse à la
modélisation des effects de milliers de mutations, les méthodes de simulations
classiques comme la dynamique moléculaire, que ce soit à l’échelle atomique ou
gros-grain, sont trop coûteuses pour la majorité des applications. D’autre part,
les méthodes d’analyse de modes normaux de modèles de réseaux élastiques
gros-grain (ENM pour "elastic network model") sont très rapides et procurent
des solutions analytiques comprenant toutes les échelles de temps. Par contre, la
majorité des ENMs considèrent seulement la géométrie du squelette biomolécu-
laire, ce qui en fait de mauvais choix pour étudier les effets de mutations qui ne
changeraient pas cette géométrie. Le "Elastic Network Contact Model" (ENCoM)
est le premier ENM sensible à la séquence de la biomolécule à l’étude, ce qui
rend possible son utilisation pour l’exploration efficace d’espaces conformationnels
complets de variants de séquence. La présente thèse introduit le pipeline computa-
tionel ENCoM-DynaSig-ML, qui réduit les espaces conformationnels prédits par
ENCoM à des Signatures Dynamiques qui sont ensuite utilisées pour entraîner
des modèles d’apprentissage machine simples. ENCoM-DynaSig-ML est capable
de prédire la fonction de variants de séquence avec une précision significative, est
complémentaire à toutes les méthodes existantes, et peut générer de nouvelles
hypothèses à propos des éléments importants de dynamique structurelle pour
une fonction moléculaire donnée. Nous présentons trois exemples d’étude de
relations séquence-dynamique-fonction: la maturation des microARN, le potentiel
d’activation de ligands du récepteur mu-opioïde et l’efficacité enzymatique de
l’enzyme VIM-2 lactamase. Cette application novatrice de l’analyse des modes
normaux est rapide, demandant seulement quelques secondes de temps de calcul
par variant de séquence, et est généralisable à toute biomolécule pour laquelle des
données expérimentale de mutagénèse sont disponibles.

Mots-clés: Dynamique structurelle · Analyse des modes normaux · Effet des mu-
tations · Dynamique de l’ARN · Dynamique ligand-récepteur · Dynamique des
protéines · Prédiction à haut débit de l’effet des variants
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A B S T R A C T

The dynamics of biomolecules are intimately tied to their functions but experi-
mentally elusive, making their computational study attractive. When modelling
the effects of thousands of mutations, time-stepping methods such as classical or
enhanced sampling molecular dynamics are too costly for most applications. On
the other hand, normal mode analysis of coarse-grained elastic network models
(ENMs) provides fast analytical dynamics spanning all timescales. However, the
vast majority of ENMs consider backbone geometry alone, making them a poor
choice to study point mutations which do not affect the equilibrium structure.
The Elastic Network Contact Model (ENCoM) is the first sequence-sensitive ENM,
enabling its use for the efficient exploration of full conformational spaces from
sequence variants. The present work introduces the ENCoM-DynaSig-ML com-
putational pipeline, in which the ENCoM conformational spaces are reduced to
Dynamical Signatures and coupled to simple machine learning algorithms. ENCoM-
DynaSig-ML predicts the function of sequence variants with significant accuracy, is
complementary to all existing methods, and can generate new hypotheses about
which dynamical features are important for the studied biomolecule’s function.
Examples given are the maturation efficiency of microRNA variants, the activation
potential of mu-opioid receptor ligands and the effect of point mutations on VIM-2
lactamase’s enzymatic efficiency. This novel application of normal mode analysis is
very fast, taking a few seconds CPU time per variant, and is generalizable to any
biomolecule on which experimental mutagenesis data exist.

Key words: Structural dynamics · Normal mode analysis · Effect of mutations ·
RNA dynamics · Ligand-receptor dynamics · Protein dynamics · High-throughput
variant effect prediction
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B A C K G R O U N D A N D M E T H O D S



1
I N T R O D U C T I O N

1

1.1 sequence , structure , dynamics , function

Biomolecules are the fundamental building blocks of all living organisms. Like all
matter subjected to high enough temperature, they are in constant motion. However,
biomolecular motion is unique with regards to the large scale at which it happens
and its importance for biological function. Thus, one necessary step in order to fully
understand biomolecular function will be to completely characterize biomolecular
motion, or structural dynamics. For now, that crucial step lies in the distant
future. Structural dynamics are experimentally elusive, computationally expensive,
and even the storage needed to represent the full conformational dynamics of a
relatively large molecule is vaster than what is currently accessible. Furthermore,
a given biomolecule may have tremendous numbers of theoretical mutations
which do not affect its structure but change its structural dynamics. Predicting how
mutations affect dynamics-function relationships is of interest to biomolecular
engineering, molecular biology, virology, drug design, as well as many other life
science disciplines. How can we predict the effect of vast numbers of theoretical
mutations on biomolecular function through their influence on structural dynamics?
To answer this question, the present work introduces the novel ENCoM-DynaSig-
ML computational pipeline, composed of a sequence-sensitive coarse-grained
elastic network model coupled to simple machine learning algorithms.

ENCoM-DynaSig-ML captures dynamics-function relationships, a capacity which
we will illustrate in three diverse case studies: microRNA maturation, G protein-
coupled receptor activation, and enzymatic activity of the VIM-2 lactamase. ENCoM-
DynaSig-ML is fast enough to be trained on datasets of tens of thousands sequence
variants and has been applied to predict theoretical maturation efficiencies of 30

million microRNA sequence variants. All parts of the pipeline are open-source
and distributed as part of the user-friendly and extensively documented NRGTEN

1 This version of the thesis has had some PDF figures converted to bitmaps in order to respect
Université de Montréal’s guidelines. You can find an unpixelated version here: https://github.com/
gregorpatof/omailhot_phd_thesis
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and DynaSig-ML Python packages, thus lowering the barriers for the scientific
community to use ENCoM-DynaSig-ML to study dynamics-function relationships.

1.1.1 The central dogma

The central dogma of molecular biology describes the transfer of information
from a gene to its intended function in an organism: a DNA gene is transcribed
to messenger RNA (mRNA); the mRNA is in turn translated to a protein; most
proteins fold in distinct three-dimensional shapes determined by their sequence;
the structure of a protein dictates its biological function based on its molecular
interactions [1]. Thus, according to the dogma, there is a direct correspondence
between the DNA sequence of a gene and its function. In addition to proteins,
non-coding RNA (ncRNA) also functions in a manner that is dependent on its
structure. Figure 1.1 shows this central dogma, with the inclusion of ncRNA.

Figure 1.1: Central dogma of molecular biology. DNA is transcribed to RNA, which can
be mRNA destined for translation into protein or non-coding RNA (ncRNA)
exerting its own functions. The transcription is carried on by proteins (RNA
polymerases) while ribosomes (of which ribosomal RNA is the catalytic element)
are responsible for translation. Full arrows represent the transfer of information
(transcription and translation) and dashed arrows represent the execution of a
biomolecular function.

1.1.2 Structure

A biomolecule’s structure is the three-dimensional (3D) configuration of its con-
stituent atoms. The Thermodynamic Hypothesis in molecular biology, also called
Anfinsen’s dogma in honor of Nobel Prize laureate Christian Anfinsen, states that
a protein’s equilibrium structure in its physiological environment is simply the
conformation minimizing the total Gibbs free energy of the system [2]. While this
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statement may seem somewhat evident, when one considers the fact that even a
modestly-sized protein has uncountable numbers of conformations, it becomes
puzzling how a newly synthesized or denatured protein can "find" the proper
conformation which minimizes Gibbs energy in the short timescales that are rele-
vant to living cells. However, when considering the cellular environment (which
contains chaperones that help the folding of some biomolecules), the Thermo-
dynamic Hypothesis holds for most functional proteins, as they evolved to have
defined structures in order to accomplish their functions, and thus also evolved
funnel-shaped energy landscapes in order to guide their folding to the minimum
energy conformation [3]. Figure 1.2 illustrates idealized and rugged protein folding
funnels. The funnel-shaped energy landscape extends to structured RNA molecules,
however the energy barrier required to break a base pair means that the landscape
is more rugged and has deeper kinetic traps [4]. Some biomolecules, whether
proteins or nucleic acids, do not possess this funnel-shaped energy landscape and
thus the very concept of a defined structure does not apply to them. Around 30%
of the human proteome is believed to be composed of intrinsically disordered
proteins, which are defined as having more than 30% of their residues without
defined structure [5]. Similarly, numerous functional RNA molecules exert their
functions as result of their sequences and do not adopt defined 3D structures,
for instance the coding regions of messenger RNA [6]. Since the present thesis is
concerned with the computational study of structural dynamics happening around
an equilibrium structure, disordered biomolecules will not be further discussed.

Figure 1.2: Funnel-shaped energy landscapes explain protein folding. A) An idealized
funnel-shaped folding landscape. The three points represent suboptimal con-
formations in terms of Gibbs free energy, and the funnel shape guides them to
the native conformation (N). B) A more realistic, slightly rugged folding funnel,
with kinetic traps and energy barriers. The adoption of a single conformation
of minimum free energy is still favored by this rugged funnel. The two images
are authored by Ken A. Dill [3] and licensed under CC BY 4.0. They were not
modified.

Biomolecular structure can be determined experimentally by techniques such as
X-ray crystallography, nuclear magnetic resonance (NMR) or cryo-electron mi-
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croscopy (cryo-EM). Molecules with similar structures often have similar functions;
structure can be used to classify protein and RNA families [7, 8]. For enzymes, the
precise positioning of catalytic residues is crucial in determining what the activated
state will be. The electronic surface of a receptor’s binding site determines what
ligands can interact with it. The primary transcripts of microRNAs have to form
hairpin loops of approximately 35 base pairs to be recognized and processed
by the Microprocessor complex. These are a few examples of how structure can
relate to function and the list obviously goes on to include almost any functional
biomolecule. In fact, structure also relates with function at the macroscopic scale:
the shape of the human hand is ideal for tool use, the wings of an eagle for flight,
etc. However, it is hard to properly describe function, both at macroscopic and
molecular scales, if one ignores the contribution of dynamics.

1.1.3 Structural dynamics

In many cases, structure alone is not sufficient to understand function. Most
molecular functions necessitate motion to be fully understood: the transformation
of a substrate [9], the change of a conformation [10], the elongation of a polymer [11],
etc. The whole landscape of possible conformations that a biomolecule occupies,
along with their probabilities of occurring and the relationships between the
different conformations, is referred to as structural dynamics. Structural dynamics
arise from the combination of sequence, structure and context (pH, ionic strength,
interaction partners, etc.). Since the equilibrium structure is described by structural
dynamics, we can say that structure is encompassed by structural dynamics. A
broader way of describing the sequence-function relationship is thus: sequence
dictates structure; context and structure dictate structural dynamics; structural
dynamics determine function.

Figure 1.3 gives two simplified examples of molecular functions that need dynamics
to be explained. The first one is an enzyme of which the active site is not in the
proper conformation to support substrate binding in the equilibrium structure. This
activated conformation only exists as a tiny fraction of the ensemble population,
but is favored upon substrate binding [12], a typical instance of conformational
selection. The second example illustrates the processing of primary transcripts of
microRNAs (pri-miRs). A specific position at the eighth base pair from the start
of the hairpin has been identified as more flexible in pri-miRs that are efficiently
recognized and cleaved by the Microprocessor. However, flexibility in that region
does not affect the equilibrium structure of the pri-miR, but rather makes the
opening of that specific base pair more probable [13, 14]. The Microprocessor
recognizes the flexibility at the eighth base pair, which enhances the cleavage
rate of the pri-miR. The cleavage happens about three base pairs higher, after the
eleventh base pair from the 3’-end (2 nucleotides higher from the 5’-end) [15].
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Figure 1.3: Dynamics-function relationships in biomolecules. A) At equilibrium, an
enzyme (colored in teal) has its active site in a conformation incompatible
with substrate binding The necessary conformational change happens with
low probability but leads to substrate binding in the presence of the substrate
(colored in purple). B) A microRNA primary transcript forms an equilibrium
stem-loop structure of 35 base pairs. The Microprocessor enzyme (colored in
orange) recognizes the flexibility at position 8, which is part of the signal that
triggers the cleavage of the primary transcript 11 base pairs from its basal end.

Biomolecular functions are incredibly diverse, and novel functions are constantly
being discovered as our understanding of biology grows. Since any measurable
function of a biomolecule can be used as input to the ENCoM-DynaSig-ML pipeline,
we do not define additional properties of function beyond its measurability.

1.1.4 Biomolecular engineering

Biomolecular engineering is the process of designing biomolecules with specific
properties, from enhanced enzymatic activity to novel material properties. The first
applications of biomolecular engineering used directed evolution to optimize the
function of proteins, and it is still one of the most successful tools to design new
biomolecular functions. In addition to directed evolution, rational and semi-rational
design philosophies are now routinely employed to design DNA, RNA, as well as
protein molecules with a wide range of applications [16]. Machine learning-aided
protein design is also becoming very popular due to great successes in enzyme
engineering. Usually, the machine learning (ML) algorithms are trained on either
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sequence or structure data in relation to protein stability, solubility or catalytic
efficiency [17].

1.1.5 The problem

In the last decades, sequence data has been generated at an exponentially growing
rate thanks to next-generation sequencing technologies. Our capacity to solve
experimental structures has also hugely grown, but at a much slower pace. The
advent of high precision tools for the computational prediction of protein stuctures
such as AlphaFold holds the promise to fill the gap between sequence and stucture.
How about structural dynamics? From an experimental point of view, they require
more work to capture than structure alone and are often impossible to study under
physiological conditions. Most importantly, there are no actual or foreseeable
experimental techniques capable of studying the structural dynamics from vast
numbers of sequence variants of a given biomolecule. Thus, if the solution to
this problem exists, it must be computational in nature. However, the best 3D
structure prediction tools do not consider dynamics, instead outputting one or a
few high-confidence equilibrium structure(s). Computational tools to simulate 3D
structural dynamics can be split in three broad categories:

1. Time-stepping methods, whether all-atom or coarse-grained, commonly called
molecular dynamics (MD) simulations [18].

2. Sampling techniques such as Monte Carlo (MC) methods [19].

3. Normal mode analysis (NMA) methods, which give analytical solutions span-
ning all timescales but make strong assumptions about the energy landscape
[20].

MD simulations represent powerful tools for the study of detailed structural
dynamics. However, even the most simple of these methods require computational
time proportional to the desired timescale at which structural dynamics are studied
[21]. This linear dependency on time makes all time-stepping methods, whether
all-atom or coarse-grained, too costly for the study of slow-timescales dynamics
happening in vast numbers of sequence variants.

Monte Carlo (MC) methods are based on randomly perturbing a biomolecule’s
conformation to obtain new conformations, assigning energies to them, keeping
conformations with low enough energy as probable conformations and repeating
the procedure [22]. MC methods do not explicitly consider time as MD methods
do, hence they are more likely to sample conformational changes that need to cross
large energy barriers to happen. One issue with both MC and MD methods is
that they are ill-conditioned, meaning that different runs on the same input may
give rise to vastly different solutions. It is thus commonplace to perform replicate
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simulations in order to ensure convergence has been reached, further increasing
the computational cost of both techniques.

NMA methods, on the other hand, provide information on biomolecular dynamics
spanning all timescales at a fixed computational cost. This decoupling between
computational cost and simulation timescale is made possible by assuming a
harmonic energy well for the energy landscape of the biomolecule, with the input
conformation at the bottom (Figure 1.4). With NMA, the molecule’s conformational
space is described with a set of normal modes, each one representing a harmonic,
oscillatory motion around the equilibrium structure. The normal modes are ordered
according to their associated frequency, from lowest to highest. The slowest modes
correspond to the largest deformations of the molecule, which are also the most
collective motions and have been shown to capture known biomolecular motions
surprisingly well, for example the opening and closing of the citrate synthase
active site [23]. Moreover, the computational cost can be further reduced by coarse-
graining the studied molecule, for example with the usage of a single bead per
amino acid, and such coarse-grained NMA models still capture well the slow
biologically relevant motions [24]. Coarse-grained NMA thus presents an appealing
alternative to time-stepping and Monte Carlo methods for the study of structural
dynamics. However, popular coarse-grained NMA models consider backbone
geometry alone in their potential function and are consequently insensitive to
the effect of mutations which do not alter the backbone geometry [25, 26]. To
overcome this, the Elastic Network Contact Model (ENCoM) has been introduced
by Frappier and Najmanovich in 2014 as the first sequence-sensitive coarse-grained
NMA model [27].

From the set of normal modes and their associated frequencies, thermodynamical
properties such as vibrational entropy can be efficiently obtained. The difference
in vibrational entropy upon mutation (∆Svib) computed with ENCoM was shown
to correlate with experimentally measured ∆∆G of folding. Moreover, it can be
used to classify homologous proteins from thermophile and mesophile organisms
[28]. However, ∆Svib is a single value measuring the molecule’s overall rigidity
and mutations can affect structural dynamics locally without changing this global
property. We hypothesize that considering the flexibility change at every position
in the molecule has the potential to capture finer dynamics-function relationships.
Our study of these flexibility changes in the context of mutations on the Spike
protein from SARS-CoV-2 can be seen as the first step towards validating that
hypothesis [29].

1.1.6 The solution

This thesis proposes to bridge the knowledge gap at the interface between sequence,
structure and structural dynamics with the introduction of the ENCoM-DynaSig-
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Figure 1.4: The NMA energy landscape. The energy of a fictional biomolecule is plotted
against a varying arbitrary conformational coordinate. The real energy land-
scape is rugged, with many local minima, while the normal mode analysis
(NMA) approximation has the input conformation at the bottom of a quadratic
energy well.

ML computational pipeline. The pipeline starts with the sequence-sensitive elastic
network ENCoM, which is used to compute the whole conformational space of
the studied sequence variants. These conformational spaces are then reduced
to Dynamical Signatures, which are vectors of flexibility at every position. The
Dynamical Signatures are used to train simple machine learning algorithms with
experimentally measured functional data. Our answer to the problem has the
following characteristics:

1. It is fast enough to predict structural dynamics for sequence variants in an
ultra-high-throughput manner in reasonable computational time.

2. It gives dynamical information about all timescales in a single analytical
solution.

3. It is applicable to RNA, protein, DNA, small molecules and their complexes.

4. The model learns fine dynamical characteristics necessary for biomolecular
function from experimental data. These can be mapped back to the sequence
and structure, enabling both the generation of new hypotheses about the
biology of the studied molecules and the prediction of novel sequences with
desired properties.
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1.2 the encom-dynasig-ml pipeline

1.2.1 Coarse-grained elastic network models

The study of protein dynamics using normal mode analysis (NMA) of coarse-
grained elastic network models (ENMs) dates back to the publication of Monique
Tirion’s seminal 1996 article [24]. Tirion showed that slow vibrational modes of
globular proteins can be captured with normal mode analysis of a simplified,
single-parameter potential as opposed to the complex semi-empirical potentials
that were previously the norm. Coarse-grained ENMs allow the fast analytical
study of biomolecular dynamics spanning all timescales and even very simple
models such as ANM and GNM show good correlations with experimental data
[25, 26]. The perhaps surprising performance of these simple models is explained
by the fact that geometry has a large role to play in dynamics [30].

1.2.2 The Elastic Network Contact Model

Coarse-grained elastic network models (ENMs) capture large-scale dynamics well
at low computational cost, however they are based on the studied biomolecule’s
backbone geometry alone. This property prevents their use to predict the effect
of point mutations on dynamics if such mutations do not change the backbone
geometry and consequently the position of the beads in the system. In order to
capture the effects of such backbone geometry preserving mutations within a
coarse-grained ENM, Frappier and Najmanovich introduced the Elastic Network
Contact Model (ENCoM) in 2014 [27]. ENCoM is the first and only coarse-grained
ENM that is sensitive to the sequence of biomolecules through the inclusion of
non-bonded interaction terms between all atoms in its potential function. This
inclusion still allows for coarse-graining, so the computational cost of ENCoM is
comparable to that of the simplest coarse-grained ENMs, enabling high-throughput
in silico prediction of the effect of mutations on structural dynamics. For example,
computing the entire set of normal modes for a 250 amino acid protein takes around
3 seconds on a single modern CPU (single core from AMD Rome 7532 @ 2.40 GHz).
The whole set of normal modes in turn allows the generation of any conformation
as a linear combination of the modes. As part of the present work, ENCoM
has been extended to RNA, has had new metrics added including the Entropic
Signature described below, has been re-parameterized on a diverse benchmark of
experimentally measured biomolecular dynamics and is now distributed through
the user-friendly NRGTEN Python package [31].
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1.2.3 Dynamics-function relationships with DynaSig-ML

ENMs provide fast computational access to structural dynamics, however the
predicted conformational space represents a huge linear space. For example, the
entire solution for a 250 amino acid protein comprises 744 normal modes, each
a vector of length 750, for a total of 558 000 scalar values. In order to perform
statistical analyses and/or machine learning using ENM-predicted dynamics, these
huge linear spaces need to be reduced. One concept which is explored extensively
in this thesis is the Dynamical Signature (DS). Simply put, a DS is a vector of the
same length as the number of beads in the ENM which describes the flexibility of
each bead (Figure 1.5). The standard way to obtain such flexibility at every residue
in the molecule is to compute the mean-square fluctuations (MSF), which are a
vector of the same length as the number of residues in the studied molecule. MSF
arise directly from the normal modes and their associated frequencies and have
been shown to correlate well with experimental temperature factors (B-factors)
from X-ray crystallography experiments as will be defined in Section 2.1.1 [26].
Temperature has no impact on the relative MSF as it only rescales them linearly.
However, the relative contribution of each normal mode to the total vibrational
entropy of the molecule does vary with temperature. Moreover ENCoM, like all
coarse-grained ENMs, is a pseudo-physical model in which physical quantities
such as temperature have no definite units. To model the impact of varying the
pseudo-temperature on the contribution of each normal mode to the Dynamical
Signature, we introduced the Entropic Signature (EntroSig). As its name implies,
the EntroSig captures the entropy at every residue by scaling the square fluctuations
by the vibrational entropy of the normal mode, which depends on the temperature
as mentioned earlier (see Section 4.3.3).

Dynamical Signatures computed with ENCoM, whether MSF or EntroSig, capture
the impact of a point mutation on the whole flexibility profile of the biomolecule.
Figure 1.6 illustrates how a mutation can have both localized, as well as global ef-
fects. These predicted effects arise from the change in local surface complementarity
of the atoms and their respective atom types [27], without change in the backbone
positions of the beads in the system. Thus, the observed changes are a case of
pure dynamical effects, without any impact on the structure. The most important
flexibility change apparent in Figure 1.6B is at the mutated position, however
significant differences in flexibility are present far from that position, for instance
in the loop region around positions 40-45. This phenomenon is made clearer in
Figure 1.6C, where we can see a white region (representing a zero difference in
Dynamical Signature) between the mutated position and the distal loop. Thus, the
changes in flexibility upon mutation happen as the result of both local and global
perturbations to predicted structural dynamics.
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Figure 1.5: Dynamical Signature from NMA. A) An input structure is needed (pri-miR-
125a is used as example). B) Coarse-graining represents groups of atoms with
individual beads. C) The analytical solution gives 765 nontrivial normal modes,
of which the first two are shown with red and blue arrows respectively. D) The
whole set of normal modes can be reduced to a Dynamical Signature repre-
senting the flexibility of every bead in the system. Notice that if more than one
bead is used per sequence unit (a nucleotide in this case), the contribution of
different parts, here phosphate, sugar and base, can be individually analyzed.

When mutagenesis data are available, one can use the ENCoM Dynamical Sig-
natures to train machine learning (ML) models. This combination of methods is
the main contribution of the present thesis, which we call DynaSig-ML. We used
two different ML back-ends: LASSO regression, which is a type of regularized
multivariate linear regression, and multilayer perceptrons (MLPs), a type of arti-
ficial neural network. The idea behind the use of LASSO regression is to enable
mapping the learned coefficients on the studied biomolecule, driving hypotheses
about important features. This mapping is possible since all input variables are
independent in such a model, hence the coefficient associated with every position
in the DS can be interpreted at that position in the biomolecule. MLPs, on the other
hand, are very powerful models which can capture complex relationships within
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Figure 1.6: Dynamical Signatures capture the effect of mutations. A) The Dynamical
Signatures from WT pri-miR-125a and the G22U mutation. B) The G22U - WT
Dynamical Signature difference illustrates the localized and global effects the
mutation has on structural dynamics. C) The Dynamical Signature difference
of the backbone beads is mapped to the 3D structure of miR-125a, with a
color gradient from white to red. No differences are lower than zero, so white
represents zero and red represents the maximal value observed (0.26). The G22

mutated position is shown as spheres.

the input variables. Their improved performance comes at the cost of being hard to
interpret once trained, thus having limited power to generate new hypotheses.

In order to investigate dynamics-function relationships with ENCoM, one starts
with a dataset of experimental measures of a given function (e.g. pri-miR catal-
ysis by the Microprocessor) for a number of sequence variants. The equilibrium
3D structure of the biomolecule has to be known, or modeled with acceptable
confidence. The complete set of normal modes from every sequence variant are
computed and reduced to an Entropic Signature (EntroSig), which represents the
flexibility at each residue. By feeding these signatures in either a linear regression
model or a simple neural network, the model learns which dynamical features
correlate with function. It is then possible to predict in an ultra-high-throughput
fashion the function from theoretical sequence variants.
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ENCoM has been used in the past to predict the effect of mutations on thermal
stability via the differences in vibrational entropy, but neither the whole Dynamical
Signature nor prediction of function were considered. In this respect, the explicit
use of the ENCoM Dynamical Signature coupled to supervised machine learning
makes the methodology presented here novel. Indeed, we believe ENCoM-DynaSig-
ML is the first entropy-based tool considering flexibility changes at every position
and allowing ultra-high-throughput computational predictions. It has obvious
applications in protein engineering and through the all-atom sensitivity of the
ENCoM potential, it can predict allosteric effects from the binding of different
ligands to the same receptor. In addition to the NRGTEN package [31], the DynaSig-
ML package [32] contains all the necessary tools to perform the analyses presented
here in a streamlined fashion and both packages are extensively documented online
with simple examples and tutorials.

Our work opens up new avenues for biomolecular engineering, bringing together
sequence, structure and structural dynamics in order to better understand and
predict the function of biomolecular systems. The next section will introduce the
topics of microRNA maturation, GPCR activation and VIM-2 lactamase catalytic
efficiency, which are the object of the case studies presented in Chapter 6, Chapter 7

and Chapter 8. Chapter 2 reviews existing experimental and computational tech-
niques to study structural dynamics and tools to predict the effects of mutations.
Chapter 3 outlines the theory of normal mode analysis and the ENCoM model,
LASSO regression and multilayer perceptrons. Chapter 4 covers the global method-
ology of the present work, from the modifications made to the ENCoM model
to the diverse benchmarks assembled for its re-parameterization. Chapter 5 will
give the detailed results from this extensive parameter search. Chapters 6 to 8, as
mentioned, are dedicated to dynamics-function case studies of human microRNA
miR-125a, the µ-opioid receptor and VIM-2 lactamase.

The three application chapters will outline the methodology specific to their respec-
tive experimental datasets, while the biological background of each biomolecular
system will be covered here, in the next section. This division enables better ap-
preciation of both the biological diversity behind these three applications and
the similar methodology in the application of the ENCoM-DynaSig-ML pipeline,
highlighting the ENCoM-DynaSig-ML pipeline as a general tool applicable to any
biomolecule for which dynamics-function relationships are suspected.

Of the three application chapters, Chapter 6 is the first and also the longest. There
are four reasons for this added length:

1. The dataset of miR-125a maturation efficiency contains a great deal of se-
quence redundancy, so care has to be taken in ensuring the machine learning
models are not merely learning sequence.
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2. Because of this opportunity to distinguish sequence and dynamics, we use
Chapter 6 to compare both LASSO regression and multilayer perceptrons,
the two machine learning backends explored in the thesis. Our findings lead
us to use LASSO regression exclusively in the subsequent chapters.

3. The 3D structure of miR-125a has to be modeled as no experimental structure
is available. There is thus the added step of 3D model selection.

4. Although outside the scope of the present thesis, we have the experimental
setup to test theoretical miR-125a variants. Ultra-high-throughput predictions
are thus presented exclusively in that chapter.

The four results chapters, namely the parameter search chapter and the three
application chapters, will each have a dedicated discussion section which will focus
exclusively on findings from that chapter. The general findings from these four
results chapters will be discussed together in Chapter 9 along with our ideas for
future work and Chapter 10 will list our conclusions.

1.3 case studies of dynamics-function relationships

The present thesis introduces the ENCoM-DynaSig-ML computational pipeline for
the study of dynamics-function relationships in biomolecules. In order to illustrate
the wide applicability of the pipeline, we have performed dynamics-function case
studies for three diverse biomolecules:

1. The cleavage efficiency of human microRNA miR-125a by the Microprocessor,
with mutagenesis data about pri-miR-125a sequence variants.

2. µ-opioid receptor activation, where different ligands act as pseudo-sequence
variants.

3. VIM-2 lactamase catalytic efficiency, using deep mutational scan data.

The following subsections will introduce the biological background for these three
case studies.

1.3.1 microRNA maturation: miR-125a mutagenesis

Mature microRNAs (miRs) are small non-coding single-stranded RNAs of approxi-
mately 22 nucleotides. Their main function in the cell is to regulate gene expression
by guiding RNA-Induced Silencing Complexes (RISCs) to complementary regions
within messenger RNA (mRNA) molecules, triggering silencing of these targets
[33]. There are upwards of 2000 miRs in the human genome [34], which collec-
tively can target more than 60% of human genes at the mRNA level [35]. miRs

15



play important roles in cell differentiation as they enable the fine-tuning of gene
expression [36]. They have recognized roles in numerous physiological processes
and diseases, including cardiovascular disease [37], neurodegenerative diseases
[38] and cancer [39].

miR biogenesis can happen through the so-called canonical pathway, illustrated
in Figure 1.7, as well as through various noncanonical pathways which include
the production of miRs from introns in mRNA transcripts (mirtrons) [40]. Our
case study focuses on the first step of canonical miR biogenesis, hence we will not
further discuss the noncanonical miR biogenesis pathways.

Canonical miR production starts with a DNA miR gene, transcribed to RNA by
the enzyme RNA polymerase II. The generated transcript is called a primary miR
transcript (pri-miR) and adopts a stem-loop structure comprising approximately
35 base pairs, single-stranded basal segments and an apical loop [41]. One miR
gene can give rise to a single pri-miR stem-loop, or include several pri-miRs linked
together in what is referred to as a polycistronic miR cluster [42].

After transcription, the first step in miR biogenesis is the cleavage of the pri-miR
by the Drosha/DGCR8 heterotrimer, also called Microprocessor. This enzymatic
complex acts as a molecular ruler and measures the length of the stem-loop
structure as one of the conditions for processing, with the cleavage happening
around the 11th base pair from the single-stranded basal part [15]. Since the
Microprocessor is located in the nucleus, the mechanism for miR recognition
needs to be very stringent to avoid the cleavage of other functional ncRNAs,
such as ribosomal RNAs which dominate the transcriptional landscape. Beyond
structural geometry, several features are important for pri-miR recognition by the
Microprocessor, some of which have already been identified as dynamical in nature
[13, 43].

The cleavage of the pri-miR by the Microprocessor generates a miR precursor
(pre-miR), which has a shorter stem-loop structure and is characterized by a 2

nucleotide overhang at its 3’-end. The pre-miR is exported out of the nucleus to the
cytoplasm, where the 3’-end overhang is recognized by the Dicer enzyme, which
cleaves the stem-loop approximately 22 nucleotides from this overhang to generate
a duplex of mature miR strands [15].

The precise mechanism through which one of the two mature miR strands is
loaded in the RNA-Induced Silencing Complex (RISC) remains debated but there
is compelling evidence to believe the intact duplex is loaded in the Argonaute
protein, which then rejects one of the two based on physicochemical properties [44].
In any case, one of the strands from the duplex ends up loaded in the RISC and
then serves as the template for recognizing mRNA transcripts to regulate while
the other strand is degraded.
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Figure 1.7: microRNA biogenesis. The production of microRNAs (miRs) starts in the
nucleus with a miR DNA gene. That gene is transcribed to a primary microRNA
transcript (pri-miR) forming a stem-loop structure of approximately 35 base
pairs. The Microprocessor complex, formed of Drosha and DGCR8, cleaves
the pri-miR to form a precursor microRNA (pre-miR). The pre-miR is then
exported out of the nucleus to the cytoplasm, where it is cleaved by the Dicer
enzyme, generating a duplex of mature miR strands. One of them is loaded in
the RISC complex, which can then interact with complementary sites within
mRNA transcripts to regulate their expression.

miR-125a is a human miR in which a single nucleotide polymorphism (SNP)
predisposes to aggressive types of breast cancer. The SNP (G22U) is located in the
sequence of the mature miR-125a and it was initially hypothesized that loss of
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complementarity of miR-125a to its target genes could explain the predisposition
to breast cancer. However, the main effect of G22U is to prevent cleavage by the
Microprocessor, leading to the almost complete loss of mature miR-125a from the
minor allele [45]. The SNP does not affect the global 2D structure of the minimum
free energy (MFE) state and simply introduces a noncanonical base pair in the
stem. The lost signal for Microprocessor cleavage seems to be dynamical in nature,
as it was shown that changes in 2D structural dynamics of the 16 possible base
pairs at the SNP position correlate well with their maturation efficiency measured
from cellular luciferase assays [14].

David Bartel’s group has generated high-throughput data about the maturation
efficiency of upwards of 50 000 pri-miR-125a sequence variants using an enzymatic
assay with purified Microprocessor [13]. In Chapter 6, miR-125a dynamics-function
relationships will be investigated by applying ENCoM-DynaSig-ML on this muta-
genesis dataset.

1.3.2 µ-opioid receptor activation

G protein-coupled receptors (GPCRs) represent the largest family of human re-
ceptors. GPCRs are of tremendous pharmacological importance, with over 450

FDA-approved drugs targeting a total of 108 different GPCRs as of 2017 [46].
GPCRs are membrane-bound proteins and can recognize a plethora of extracellular
signals, from small molecules to mechanical forces [47, 48]. These extracellular
signals are transmitted inside the cell via interaction between the receptor and G
proteins. GPCRs are divided in 6 classes, of which class A is the most studied, the
most pharmacologically targeted and the one for which the activation mechanism
is understood the best. The case study presented in Chapter 7 focuses on the
activation of the µ-opioid receptor, which is part of class A. Thus, other classes of
GPCRs will not be further discussed.

Class A GPCRs have seven transmembrane helices, an extracellular binding pocket
and intracellular loops which can interact with G proteins. The activation of class A
GPCRs is perhaps one of the better known examples of dynamics-function relation-
ships. Two distinct states of the receptor can be indentified from its conformational
landscape, called the active and inactive states. Figure 1.8 shows these two states
for the µ-opioid receptor, as captured by X-ray crystallography [49, 50]. In the
active state, the receptor can interact with the intracellular G protein and activate
it as the first step in signal transduction. In the inactive state, this interaction is
highly unprobable and no signal is transduced. It is thought that both states exist
in the absence of a ligand and that class A GPCR activation is thus a case of
conformational selection [51].
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Figure 1.8: Active and inactive states of the mu-opioid receptor. The active state (PDB
ID 5C1M) is shown in salmon and the inactive state (PDB ID 4DKL) in slate.
Transmembrane helix 6 (TM6), which undergoes the largest conformational
change between the two states, is shown in bold. All other parts of the receptor
are dashed.

The largest structural change observed between the inactive and active states of
class A GPCRs is the outward position of transmembrane helix 6 (TM6) in the
active state (Figure 1.8). This change, along with other rearrangements, generally
favors the binding of different types of G proteins or other intracellular partners
such as arrestins [52, 53]. GPCR signal transduction can be biased towards the
activation of G proteins, arrestins, or balanced between the activation of both
[54]. Moreover, different types of G proteins exist, with the potential for different
cellular effects dependent on their type [55, 56]. To encompass all possibilities, let
us consider that the binding of an agonist to a GPCR increases the probability of
the receptor occupying an active conformation, in which it favorably interacts with
some intracellular partners in order to transduce the signal from the extracellular
ligand inside the cellular environment. This unified, simple model is illustrated in
Figure 1.9.

As its name suggests, the µ-opioid receptor (MOR) is the primary target of the
most effective class of analgesics, opioids. As such, it is a widely studied receptor:
over 5000 manually curated ligands of MOR with associated biological assays are
listed in the ChEMBL database as of June 2022 [57]. Like other class A GPCRs,
MOR can exhibit balanced G protein and arrestin signalling or bias towards either
G proteins or arrestins, depending on the agonist [58]. This ability of different
agonists to recruit divergent intracellular partners illustrates the receptor’s con-
formational flexibility and the coupling of ligand binding with the intracellular
receptor conformation through allosteric effects [59].
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Figure 1.9: Simplified GPCR signal transduction. The binding of an agonist favors the
active state, in which structural changes are apparent at the GPCR’s intracel-
lular moiety. The most prominent of these changes is the outward position of
transmembrane helix 6 (TM6). The active conformation allows the interaction
and activation of an intracellular partner, which further transduces the signal
once activated.

Beyond signalling bias, the cellular context plays a role in the effect of GPCR acti-
vation, as the concentration and idendity of downstream effectors affect how the
activation signal ultimately propagates. Indeed, a study from 2016 identified hun-
dreds of thousands distinct connections between human GPCRs and downstream
pathways, which are dependent on tissue type [60]. [35S]GTPγS binding assays
measure G protein activation after the binding of a ligand to a GPCR, offering
a way to assess GPCR activation almost directly, without the added noise of the
downstream effectors [61].

In pharmacology, the maximal biological response induced by a drug is termed the
maximal efficacy or Emax [62]. When a measurement of maximal efficacy relative
to a known full agonist is made, the term Emax is also frequently used, and in
that case represents a percentage of maximal efficacy. For our dataset of MOR
ligands with experimentally measured activation potential, we select ligands with
Emax relative to DAMGO, a strong and potent MOR agonist [63], measured by
[35S]GTPγS binding assays.

These criteria allow us to obtain 198 MOR ligands with uniform experimental
measures of MOR activation potential, which constitute the starting dataset for
the case study presented in Chapter 7. The change of ligand does not constitute a
variation of sequence per se, however it can be considered as such within ENCoM:
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a single bead is used in the model to represent every ligand, and the change in
all-atom surface complementarity leads to a change in dynamics in a manner
similar to an in silico generated sequence variant.

1.3.3 VIM-2 lactamase catalytic efficiency

β-lactamases are bacterial enzymes which degrade β-lactam antibiotics, thus pro-
viding the bacteria expressing them with antibiotic resistance. Since β-lactams
are the most important class of antibiotic by use, the evolution of more efficient
β-lactamases is a real threat to health care systems worldwide [64]. β-lactamases
can be divided in four classes: classes A, C and D share many similarities and
are thought to have evolved from a common ancestor, while class B, also called
metallo-β-lactamases (MBLs), depends on metal ions for its activity and has distinct
evolutionary origins [65]. The standard treatment for β-lactam resistant infection
is the co-administration of β-lactam antibiotics with β-lactamase inhibitors. Until
recently, no MBL inhibitors had made it to the clinic [66], however there is now a
standard combination of aztreonam with avibactam that is routinely used against
MBLs [67].

Verona integron-encoded metallo-β-lactamase 2 (VIM-2) is one of the most widespread
MBLs and thus represents a major source of antibiotic resistance [68]. Its 3D crystal
structure is shown in Figure 1.10 as solved by Brem and coworkers (PDB ID 4bz3)
[69].

A deep mutational scan (DMS) of VIM-2 lactamase was recently conducted, with
the experimental measurement being bacterial fitness under various concentrations
of β-lactam antibiotics [70]. The measurement thus encompasses the protein’s
expression, stability and catalytic efficiency at once. β-lactamases are considered
relatively static enzymes, however there is evidence for an important role of
dynamics in their ability to hydrolyze β-lactam antibiotics [71]. The application of
the ENCoM-DynaSig-ML pipeline to the VIM-2 evolutionary fitness DMS data can
thus help shed light on whether dynamics play a role in the enzyme’s activity. This
question will constitute the basis for the last of our dynamics-function case studies,
presented in Chapter 8.
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Figure 1.10: Crystal structure of VIM-2 lactamase. Cartoon and semi-transparent surface
representations of the VIM-2 lactamase are shown in orange, with the active
site zinc ions represented as purple spheres. The first of two biological units
submitted to the PDB by the authors was used (PDB ID 4bz3) [69].
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2
L I T E R AT U R E R E V I E W

The present thesis introduces the ENCoM-DynaSig-ML computational pipeline,
which enables the fast prediction of biomolecular function from perturbations to
simulated structural dynamics. The concept of studying dynamics to elucidate
function is well established, as well as the study of perturbations to structural
dynamics as a result of changes in biomolecular sequence (mutations) or ligand
binding. Two broad approaches to study relationships between perturbations to
structural dynamics and biomolecular function can be distinguished: experimental
techniques and computer simulations.

The focus of this thesis is on computer simulations, which need experimental
structural dynamics in order to exist; experiments are crucial in order to develop
and validate simulation methodologies. The main techniques for obtaining such
information, namely X-ray crystallography, nuclear magnetic resonance and cryo-
electron microscopy, will be discussed in the first section of the present literature
review.

The second section will present the main techniques used for computer simulations
of biomolecular structural dynamics. These fall in three broad categories: molecular
dynamics methods, sampling (or Monte Carlo) methods and normal mode analysis
methods.

All experimental and most computational techniques discussed in the first two
sections can in theory be used to study changes in structural dynamics as a result
of perturbations (the exception being sequence agnostic normal mode analysis
methods which do not capture, for example, the effect of point mutations that do
not change the backbone conformation). However, studying vast numbers (from
hundreds of thousands and upwards) of potential perturbations is out of reach
for all structure determination experimental methods at the moment, and has a
very high computational cost in the case of most computer simulation approaches.
For biomolecular engineering, such vast numbers of predictions are routinely
needed in order to aid in the design of optimized biomolecules. Two categories
of computational tools can be used to accomplish high-throughput predictions
in the context of biomolecular engineering: stability prediction tools and variant
effect predictors. We will review these tools in Section 2.3 and support our claim
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that ENCoM-DynaSig-ML is the first variant effect predictor based on detailed
computational structural dynamics.

2.1 experimental structural dynamics

Structural dynamics can be studied experimentally via two main approaches: the
direct measurement of dynamical properties, and the elucidation of static structures
of the same biomolecule occupying different conformations, either as a result of
varying experimental conditions or as the direct capture of distinct conformational
states (achievable with cryo-EM).

Table 2.1: Number of entries in the PDB by experimental method. The number of entries
in the Protein Data Bank (PDB) [72] when restricting the search to entries
resolved by X-ray diffraction, solution NMR, electron microscopy or none of
these ("other"), with the percentage of total shown in parentheses, is given for
all entries, for unique biomolecular entities (no sequence redundancy), and for
groups of biomolecular entities sharing at leat 95% sequence identity. The data
were retrieved as of July 7, 2022.

Method Number of entries Unique entities Unique groups
at 95% identity

X-ray
diffraction

257 294 (67.7%) 88 187 (76.2%) 59 362 (71.1%)

Solution
NMR

15 499 (4.1%) 9 958 (8.6%) 9 229 (11.1%)

Cryo-electron
microscopy

106 779 (28.1%) 17 373 (15.0%) 14 645 (17.5%)

Other 535 (0.1%) 236 (0.2%) 216 (0.3%)

Table 2.1 presents the number of entries in the protein data bank (PDB) [72], the
the hub of all publicly available experimentally resolved biomolecular structures,
per experimental technique used. As is evident, most of our structural knowledge
emerges from three experimental techniques: X-ray crystallography, solution NMR
and cryo-electron microscopy. The next subsections will present these experimental
techniques, focusing on how they can provide information about biomolecular
structural dynamics.

2.1.1 X-ray crystallography

X-ray crystallography is first and foremost a technique to determine biomolecular
structure, as it elucidates the atomic configuration of a biomolecule in crystal form,
permitting very little movement [73]. Fluctuations of atomic positions around the
equilibrium structure, commonly called temperature factors or B-factors, are also
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captured as part of the experiment. However, these do not necessarily represent
biologically relevant motions and have been shown to arise in part due to rotations
and translations of individual biomolecules in the crystal lattice, which are com-
pletely irrelevant to functional dynamics in a cellular context, and their relevance
as a benchmark for ENMs has been questioned [74]. Nonetheless, we will use
crystallographic B-factors for 2 of the 7 diverse benchmarks presented in Chapter 5

as they are a common standard in the field, and represent a readily accessible
source of experimental structural dynamics.

As X-ray crystallography is the experimental method behind the majority of known
biomolecular structures (see Table 2.1), indirect structural dynamics can be gathered
from these experiments. One example of curated indirect structural dynamics from
crystal structures is the PSCDB database of protein structural change upon ligand
binding [75]. The database contains 839 structural changes that were identified
from pairs of high resolution crystal structures, each pair representing the same
protein in bound and unbound conformations. In a similar fashion, it is possible to
search the PDB for pairs of entries representing the same biomolecule in different
conformations, as we will do for RNA structures in Chapter 5.

The principle behind X-ray crystallography is X-ray diffraction: a beam of coherent
light in the X-ray spectrum is shined on a crystal, and the photons are diffracted
by interacting with the electrons in the crystal. The periodic nature of the crystal
lattice gives rise to a diffraction pattern which is unique to the geometry of the
asymmetric unit in the lattice. The mathematical framework to deduce atomic
geometry from the diffraction patterns was first laid out by Max von Laue [76], for
which he won the Nobel Prize in physics in 1914.

The first protein structure to be solved by X-ray crystallography was that of
sperm whale myoglobin, a 152 amino acid protein, in 1958 by John Kendrew [77].
Kendrew later shared the 1962 Nobel Prize in Chemistry with Max Perutz for
this accomplishment. Since then, X-ray crystallography has grown to be the most
prolific experimental method for biomolecular structure elucidation. However,
significant limitations exist as to the interpretation of the structural information
obtained by this method. The most obvious is the fact that the conditions in
which the structure is elucidated are far from physiological conditions: most
biomolecules exist in solution or in membranes, and with the exception of very
rare instances (such as the crystalline δ-endotoxins from Bac. thurigiensis [78]), do
not form crystals under physiological conditions. This unphysiological nature of
crystallized biomolecules means that the elucidated conformation might be slightly
different from the equilibrium conformation in a living organism, especially at the
interfaces between two individual biomolecules in the crystal. These intermolecular
interactions, known as crystal contacts, happen as a result of the tight packing
of the crystal units, slightly influence the equilibrium conformation and have
different physicochemical properties than physiological biomolecular interfaces
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[79]. Nevertheless, the overall fold and intramolecular interaction details (such
as ligand-binding site interactions) determined by X-ray crystallography can be
considered correct. Notorious X-ray crystallography successes include the structure
of the whole ribosome [80] and the crystallization of GPCRs [81]. Crystallography
can be considered an essential step in most drug design campaigns [82].

Protein and RNA structures from X-ray crystallography experiments are used
extensively for the benchmarks in Chapter 5 and as the input structures in Chapter 7

and Chapter 8.

2.1.2 Solution NMR spectroscopy

When atomic-level information about a biomolecule’s structural dynamics is de-
sired, solution nuclear magnetic resonance spectroscopy (NMR) is widely regarded
as the go-to experimental method, with modern equipment allowing the study of
biomolecular motions happening on timescales from picoseconds to several sec-
onds and even days, depending on the specific technique employed [83]. Since the
experiments are performed in solution, physiologically relevant dynamic processes
can be captured, such as enzymatic catalysis [84], the effects of ligand binding on
the conformational landscape [85] or transient protein-protein interactions [86].
Beyond specific information about known or suspected dynamical processes, solu-
tion NMR allows the resolution of complete atomic-level structures. Moreover, the
distance restraints obtained from the experiments usually allow the generation of
an ensemble of structural models which collectively explain the observables [87].

As the name implies, nuclear magnetic resonance spectroscopy is based on the
fact that atomic nuclei will interact with magnetic fields at characteristic frequen-
cies which depend on their surroundings. This phenomenon relies on nuclear
magnetic spin, which in turn depends on the ratio of protons to neutrons [88].
This dependence of nuclear resonance on nucleon ratios allows the usage of iso-
topically labelled biomolecules or deuterated solvent in order to maximize the
signal-to-noise ratio in solution NMR experiments [89]. The theory behind NMR
spectroscopy is beyond the scope of the present thesis and has been extensively
reviewed elsewhere [88, 90].

Without isotope labelling, the size of the molecules which can be studied at atomic
resolution by solution NMR is severely limited [89]. Isotope labelling allows the
study of bigger biomolecules, however the production of the labelled biomolecule is
experimentally demanding. Another limitation of solution NMR is the high cost of
the necessary magnetic apparatus. The systems capable of producing the strongest
magnetic fields (higher frequency) and thus study the biggest biomolecules cost
millions of dollars. Thus, solution NMR can be seen as the gold standard for
the experimental study of biomolecular structural dynamics, however it is not
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applicable to all biomolecules and is relatively costly both in terms of experimental
time and actual equipment cost. This is reflected by the still relatively low amount
of solution NMR entries in the PDB, at 8.6% of unique entities (see Table 2.1).
Because of these high costs in time and equipment, it is not currently possible to
use solution NMR to study large quantities of sequence variants from the same
biomolecule.

Solution NMR ensembles of RNA molecules and RNA-protein ensembles will be
benchmarked against for the parameter search presented in Chapter 5.

2.1.3 Cryo-electron microscopy

Of the three experimental techniques presented here, cryo-electron microscopy is
the only one in which the experimenters directly "look" at the biomolecule: a frozen
sample containing the dissolved molecule of interest is imaged by an electron
microscope, and a density map is constructed algorithmically by processing vast
amounts of particles in different orientations [91]. Since the biomolecules are flash-
frozen, different conformational states are also sampled, and with high enough
resolution the density maps corresponding to each state can be obtained [92].

Since the advent of better electron detectors in the early 2010s, cryo-EM is leading
what has been termed a revolution in structural biology [93]. Combined with
advances in image processing, modern electron detectors allow the determination of
cryo-EM electron density maps which rival the resolution of X-ray crystallography
[94]. In 2020, the first atomic-level resolution protein structures solved by cryo-EM
were reported [95, 96], and there are now 139 distinct biomolecular entities in the
PDB that have been solve by cryo-EM at a resolution below 2 Å.

Since the advent of atomic-resolution cryo-EM structures is fairly recent and most
of them are of very big biomolecules/biomolecular complexes, we do not employ
cryo-EM structures in the present thesis. However, the field is developing at such a
high rate that we expect cryo-EM conformational ensembles to become a central
part of experimental structural dynamics in the coming years.

2.2 computational structural dynamics

The present section is dedicated to methods for the computational simulation of
biomolecular structural dynamics, which we split in three broad categories: time-
stepping, or molecular dynamics (MD) methods; sampling methods, such as Monte
Carlo techniques; and normal mode analysis methods, of which the present thesis
makes use. Since coarse-grained normal mode analysis is detailed in Chapter 3, we
will spend more time on the first two categories in what follows. Let us mention
that hybrid quantum mechanics/molecular mechanics (QM/MM) methods offer
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the greatest level of simulation detail, especially when chemical changes are to be
simulated. However, these methods are very costly to use and are thus beyond the
scope of our work [97].

2.2.1 Molecular dynamics methods

As all molecules, biomolecules are composed of a number of atoms linked together
by covalent bonds and interacting both within the molecule and with their environ-
ments through different forces. When the approximation is made that these forces
can be described using classical newtonian interactions, the problem of simulating
biomolecular dynamics is reduced to a variation of the n-body problem.

Molecular dynamics (MD) simulations of biomolecules were first reported in 1975

following the seminal work of Michael Levitt and Arieh Warshel, in which the
authors report the simulated folding of bovine pancreatic trypsin inhibitor, a 58

amino acid protein, from a completely denatured state to a near-native state [98].
To accomplish this, they used a simple interaction potential based on simulations
of all 400 possible dipeptides, which was then the basis of a coarse-graining
scheme leaving two interaction centers per amino acid: the Cα atom and the
centroid position of the side-chain. In the years following that work, which can
be considered the first coarse-grained MD protocol applied to biomolecules, there
was a great emergence of MD force fields, coarse-graining and enhanced sampling
methodologies [99]. Levitt, Warshel and Karplus share the 2013 Nobel Prize in
Chemistry for pioneering the field of biomolecular simulation. [100]. Today, MD
simulations are routinely employed for the study of biomolecular dynamics and
can be considered an indispensable tool of modern structural biology [18].

The next subsection will discuss all-atom MD methods, which provide the greatest
level of details and also exhibit the greatest uniformity in their mathematical
definitions. Then, coarse-grained MD methods will be reviewed.

2.2.1.1 All-atom MD methods

All-atom molecular dynamics methods, as their name implies, explicitly simulate
all atoms of the studied biomolecule and of its immediate environment, which
includes solvent molecules, ions, lipid molecules in the case of transmembrane or
membrane-bound biomolecules, along with small molecules of interest if they are
relevant for the studied system. In order to perform the simulation, every atom
has to have xyz coordinates assigned to it, a velocity and a force acting on it. To
compute the force acting on every atom, a force field (also called potential) is
needed. The force field describes the instantaneous force on all atoms in the system
from their cartesian coordinates. Most all-atom MD force fields have the following
form:
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U = ∑
bonds

Vbonds + ∑
angles

Vangles + ∑
dihedrals

Vdihedrals + ∑
improper

Vimproper

+ ∑
Lennard-Jones

VLennard-Jones + ∑
electrostatic

Velectrostatic
(2.1)

The first four terms represent intramolecular interactions: covalent bond stretching,
angle bending in trios of covalently connected atoms, torsional movements from
quartets of connected atoms, and so-called improper dihedrals which happen
between unconnected atoms but play a big role in fine-tuning the potentials in
order to match experiments and quantum mechanical theory [101]. The last two
terms describe long-range interactions, which can be both inter- and intra-molecular.
They represent the Lennard-Jones potential [102] and the electrostatic potential.

Once the size of the timestep is set, the simulation is carried on by the numerical
integration of the potential, starting from the initial positions and velocities for all
atoms in the system. The initial atomic coordinates for the studied biomolecule are
usually those of the experimentally resolved structure when the goal is to study
dynamics near the equilibrium, native state. However, it is possible in theory to
start from a completely denatured molecule, and long enough simulations should
allow it to fold into its native conformations if the potential is accurate enough.
Such complete folding simulations can now be carried for fast-folding proteins
[103]. The state-of-the-art machine for all-atom MD simulations is the Anton 3

supercomputer, a purpose-built machine with circuit architecture optimized for
MD simulations [104]. The 64-node version achieves 212.2 µs/day on the classic
24 000 atoms DHFR benchmark. For comparison, a performance of 160 ns/day
was reported of the same DHFR benchmark using one 8-core Intel Core i7 5960X
CPU @ 3.5GHz [105]. Anton 3 thus represents a speedup of over 1000 times on this
classic benchmark, but its advantage lies in its ability to carry that speedup over to
very large systems, such as the whole ribosome and even entire satellite viruses
[104].

Large biomolecular motions tend to happen on large timescales; for most proteins,
domain motions happen on the microsecond-to-millisecond timescale and large
collective motions happen on the millisecond-to-second timescale [106]. For RNA,
the presence of deeper kinetic traps due to the strength of the base pairs and the
limited number of nucleotides (which leads to many possible suboptimal pairings)
results in the equivalent collective motions happening on timescales that can reach
hours [107]. In the case of proteins, the recent advancements in hardware mean
that most biologically relevant motions are within the grasp of state-of-the-art
all-atom MD simulations. However, these require tremendous resources and it is
still beyond our grasp to use these techniques for the study of high-throughput
dynamics. For example, the DHFR enzyme used as a classical MD benchmark
comprises 159 amino acids [108]. A virtual deep mutational scan would thus
generate 159 ∗ 19 = 3021 point mutations. Large collective motions happen on
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the millisecond-to-second timescale [106], but let’s assume the goal would be to
accumulate just one millisecond of simulation time for every variant. Even using
the Anton 3 supercomputer, it takes aournd 5 days per DHFR variant to get to a
millisecond (212 µs/day) [104]. Thus, in order to finish this study within a year, one
would need more than 41 instances of Anton 3. By comparison, the simplifications
made by coarse-grained normal mode analysis mean that the same timescales can
be reached with ENCoM in less than an hour on a quad-core, modern laptop.

2.2.1.2 Coarse-grained MD methods

The same basic principle of time-stepping numerical integration used for all-atom
MD applies to coarse-grained MD methods. However, the available potentials
exhibit much more variation since they depend on the coarse-graining strategy
used. These strategies vary from potentials that make the solvent molecules implicit
but otherwise model all atoms [109] to simulations of huge biomolecular complexes
in which blocks of many amino acids are represented as single rigid elements
interacting between themselves [21]. On its own, removing the solvent allows for
considerable speedup, as the majority of atoms in an all-atom MD simulation are
solvent atoms. When representing groups of atoms by interacting beads, one can
define a coarse-graining factor as the average number of atoms represented by each
bead. For instance, since the average number of atoms in an amino acid is around
19, a CG MD model with one bead per amino acid would have a coarse-graining
factor of 19. The maximal theoretical speedup achievable by coarse-graining is
proportional to the inverse square of the coarse-graining factor [21], thus such
a model can hope to achieve a maximal speedup of 192 = 361 compared to
atomistic simulation. The significant speedups achievable make CG MD models
very attractive for the study of structural dynamics in large systems.

However, even the remarkable speedups achieved by the CG MD cannot compete
with the speed of coarse-grained normal mode analysis for the study of slow
timescales dynamics. For instance, let’s go back to the DHFR example used in the
last section. It was recently reported that a single CPU core from an Intel Gold 6148

@ 2.40GHz can achieve around 10 ns/day simulation time [110]. The DHFR protein
atoms constitute around 10% of the atoms in the system, thus a solvent-implicit
model could hope to achieve a maximal speedup of 100 times. Combined with
coarse-graining at the 1-bead per amino acid level, a total maximal speedup of
36 100 could be achieved, for a total of 361 µs/day. To get to 1 ms for the 3021 point
mutations in a virtual DMS, one would thus need approximately 23 core-years
even with this maximal-speedup, fictional CG MD model. Again, computing the
ENCoM Dynamical Signatures for 3021 variants of the DHFR enzyme takes less
than four core-hours. Thus, while coarse-grained molecular dynamics simulation
play vital roles in our understanding of dynamical biomolecular phenomenon
happening over long timescales or in very large systems, we do not believe that
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these techniques can be used to predict the dynamical effects of sequence variants
in an ultra-high-throughput fashion within reasonable computational cost.

2.2.2 Monte Carlo methods

Monte Carlo algorithms applied to the simulation of molecular systems were first
described in 1953 in Nicholas Metropolis’ seminal work [111]. The principle behind
MC sampling is to perturb a starting system with a slight random change, then
compute the energy associated with the deformed system, and accept the change
with a probability that depends on the difference in energy between the current
state and the deformed state, with lower energies being favored.

There is a long-standing debate about whether MD or MC methods are the most
efficient for conformational sampling, and the answer seems to depend on the
properties of the studied system and the strategies employed to accelerate sam-
pling [112, 113]. However, in the recent decades MD methods have gained more
widespread use after successes such as the reversible folding of fast-folding proteins
using purpose-built supercomputers [103]. For our purposes, we will consider the
computational cost of MC methods and MD methods to be roughly equivalent,
and as we have demonstrated in the last subsection, even the most optimistic
speedup achievable by coarse-graining is not comparable to the speedup afforded
by coarse-grained normal mode analysis in the study of collective, slow-timescales
dynamics.

2.2.3 Normal mode analysis methods

Coarse-grained normal mode analysis (NMA), as already stated, allows the fast and
analytical simulation of biomolecular dynamics around an equilibrium structure.
Because of the quadratic energy well assumed around the input structure, the
computational cost scales only with the size of the system, not with the desired
timescale of study [114].

ENCoM, the central part of the ENCoM-DynaSig-ML pipeline which is the subject
of the present thesis, is a sequence-sensitive coarse-grained normal mode analysis
model. Since most of Chapter 3 is dedicated to the presentation of the ENCoM
coarse-grained normal mode analysis (NMA) model, we will not further discuss
NMA in the present literature review.

2.3 biomolecular engineering

To the best of our knowledge, the ENCoM-DynaSig-ML pipeline is the first compu-
tational tool allowing the fast and systematic learning of biomolecular dynamics-
function relationships from experimental datasets followed by high-throughput pre-
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diction of new sequence variants, with obvious application potential for biomolec-
ular engineering. Let us clarify this claim: while numerous studies can be found
in which simulated or experimental structural dynamics of some sort guide the
design of sequence variants with engineered properties, these approaches are
often time-consuming, require expert knowledge and are not generalizable to any
biomolecule. In contrast, the ENCoM-DynaSig-ML pipeline is very fast and thus
has the potential to be used for high-throughput "virtual screening" of sequence
variants, based on their structural dynamical properties. This high-throughput
applicability in the context of biomolecular engineering is what constitutes, again
to the best of our knowledge, a novel contribution.

To support our claim, we conducted an extensive literature search in order to build
a repertoire of computational biomolecular engineering tools routinely used. The
next subsections will present the most widely used tools, divided in two categories:
stability change prediction tools and variant effect tools.

2.3.1 Stability prediction tools

In their recent work, Gerasimavicius et al. benchmarked the performance of several
computational tools designed for the prediction of ∆∆G upon mutation to see if they
could predict the observed pathogenicity of missense mutations observed in the
human population [115]. Interestingly, they included the ENCoM ∆Svib predictions
in their set of 13 tested stability prediction tools. They found that contrary to the
popular assumption that pathogenic mutations lead to a loss in stability, all the tools
tested performed better when the absolute value of the predicted ∆∆G was used.
This observation could mean two things: either the tools are good at predicting
the magnitude of change but bad at predicting the direction, or some pathogenic
mutations actually make the protein more stable, which disrupts its function
through other effects like the interaction with molecular partners. The authors
also compared the stability prediction tools with tools specifically developed for
the prediction of pathogenic missense mutations. Interestingly, while the best
predictors overall are from this category, some are outperformed by the stability
prediction tools. Out of the 12 tools specifically developed for pathogenic missense
mutation calling, the ENCoM ∆Svib outperformed 6 and was outperformed by the
6 others. FoldX, the best stability prediction tool according to their benchmark,
outperformed an additional 2.

Among the 13 stability prediction tools tested by Gerasimavicius and coworkers,
the ENCoM ∆Svib ranked 5

th overall. We think this study represents a good blind
test of the different methods, as the usual datasets of experimentally measured
∆∆G like ProTherm [116] are widely adopted, leading to the issue of the consensus
methods possibly being over-specialized for the represented protein families. Thus,
we will focus the discussion on the four stability prediction tools which outperform
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the ENCoM ∆Svib in the prediction of pathogenicity: FoldX [117], INPS3D [118],
Rosetta [119] and PoPMuSiC [120]. In addition, we will discuss DynaMut [121]
as it is a consensus predictor which includes the ENCoM ∆Svib predictions as a
component of the prediction. Each of these five stability-based predictors will be
dedicated a subsection in the text that follows.

2.3.1.1 DynaMut

From the list of stability prediction tools tested by Gerasimavicius et al., DynaMut
and ENCoM stand out as the only tools considering protein dynamics in their
predictions of stability change upon mutation [27, 115, 121]. The DynaMut approach
is based on the integration of different stability change prediction algorithms within
a random forest predictor. The integrated predictors include the authors’ graph-
based signatures as part of DUET [122], which is already a consensus of two other
methods, SDM [123] and mCSM [124]. In addition, the dynamics component of
DynaMut is the inclusion of the predicted change in vibrational entropy (∆Svib)
using ENCoM. It was already shown by Frappier & Najmanovich that ENCoM
exhibits good complementarity to enthalpy-based tools like FoldX and statistical
consensus tools like PoPMuSiC [27], so it is unsurprising that the authors of
DynaMut find good complementarity between their set of predictors. In addition to
predicting ∆∆G, their webserver also allows for NMA of the WT protein. However,
it is unclear how this can add information to the analysis, and it is not performed
by ENCoM but by one of the NMA models implemented by the Bio3D R package
according to the user’s choice [125]. It is slightly puzzling to us that they do not
use ENCoM for the NMA analysis, as it is the only NMA model used for their
∆∆G predictions.

Interestingly, Gerasimavicius et al. tested both ENCoM and DynaMut as part of
their set of stability prediction tools. Both tools have very similar performance
profiles and led to the same surprising behaviour of their ROC curves, which
have the false positive rate become higher than the true positive rate for higher
values. Surprisingly, ENCoM outperforms DynaMut according to this analysis,
which makes us question the soundness of the methodology used in the training
of DynaMut. Indeed, since DynaMut is a consensus method that includes ENCoM
predictions, it should not be outperformed by one of its singled-out components if
the training led to true generalizability.

Beyond these caveats for the DynaMut method, let us remind that their integration
of dynamics in the prediction of the effects of mutations is limited to changes in
vibrational entropy, which represent a global property of the studied biomolecule.
As the next chapters will outline, the ENCoM-DynaSig-ML pipeline considers a
complete vector of fluctuations, the Dynamical Signature, for the predictions. Both
approaches have merits and caveats; using the full DynaSig for prediction requires
the availability of an experimental dataset probing sequence-function relationships
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to train the ENCoM-DynaSig-ML pipeline but allows the learning of fine dynamical
patterns that do not necessarily depend upon global changes in entropy; the use
of changes in Svib alone has the advantage of being directly applicable to any
biomolecule of which the 3D structure is known, without the need for experimental
datasets on its function.

2.3.1.2 FoldX

FoldX is a popular tool for protein engineering that can both model mutated
protein structures and predict ∆∆G upon mutation, with the most recent version,
FoldX 5.0, now also including parameters for RNA and small molecules [117].
At its core, FoldX is an empirical potential that was developed with the specific
goal of predicting ∆G of folding from a high-resolution structure of a protein
[126]. It contains 10 terms covering van der Walls interactions, solvation, H bonds,
inter-molecular interactions, electrostatics and others. Beyond the specifics of the
empirical potential, let us note that FoldX is entirely structure-based, and was
developed as such: the potential evaluates a single minimum energy conformation
for both the WT and mutant sequences in the evaluation of ∆∆G. Among the
stability predictors tested by Gerasimavicius and colleagues, FoldX had the highest
performance when taking the absolute value of the prediction [115]. In the past,
the linear combination of FoldX with ENCoM ∆Svib has led to complementary
improvement over both methods alone for the prediction of experimental ∆∆G [27].

FoldX is routinely used in protein engineering and like all computational tools,
its accuracy is far from perfect. However, according to a recent meta-analysis, it
is able to reliably enrich for stabilizing mutations and thus reduce the amount of
experimental work needed for protein engineering campaigns [127].

Methods such as FoldX and Rosetta, which are based on empirical force fields
that recapitulate the enthalpy component of the Gibbs free energy, strike us as
potentially complementary to the ENCoM Dynamical Signatures, especially when
using the Entropic Signatures we introduce in Section 4.3.3. Indeed, these signatures
describe the vibrational entropy at every position in the studied biomolecule and
thus offer a way to capture both enthalpic and entropic properties in the same
machine learning model.

2.3.1.3 INPS3D

INPS3D is a tool integrating information derived from a protein’s 3D structure to
the sequence-based stability predictor INPS [128] in order to improve the predic-
tions [118]. The INPS predictor is a support vector machine integrating information
about amino acid substitution through the Blosum62 matrix [129], along with 6

other sequence-based features describing change in molecular weight, hydropho-
bicity, and alignment-based features [128]. The added 3D descriptors correspond
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to solvent accesibility of the native residue and a simple energy change computed
according to the neighbouring residues of the mutated residue and a pairwise
interaction potential [130].

INPS3D appears to be a simpler model than FoldX or Rosetta (described next),
yet performs in-between the two in the Gerasimavicius study. This highlights how
more detailed potential functions can sometimes hinder performance through the
introduction of artifacts, for instance by making the resulting tools highly sensitive
to slight incaccuracies in the input structures. INPS3D is also a purely static-based
predictor and does not explicitly consider dynamics for its predictions, though one
could argue that they are implicitly considered by the sequence-based features.

2.3.1.4 Rosetta

Rosetta is an all-atom empirical potential developed for both protein structure
prediction and de novo protein design. Its potential is a sum of empirical and
statistical energy terms, for a total of 19 specific terms of which the detailed
description is beyond the scope of the present literature review [119]. Rosetta is
routinely used to perform in silico mutagenesis and evaluate the impact of the
mutation on the folding free energy. However, as mentioned in the above subsection,
having such a detailed potential can lead to artifacts, which can explain the fact
that Rosetta was outperformed by FoldX and INPS3D in the Gerasimavicius study.

2.3.1.5 PoPMuSiC

PoPMuSiC is a statistical structure-based potential consisting of a total of 16 terms
[120]. Its only application is the prediction of ∆∆G upon mutation, and its set of
64 parameters was specifically fitted for that task. It has the advantage of being
very fast since the statistical potential is simply a sum of the terms and depends
on geometric properties such as distance and torsional angles between amino acids
and the solvent accessible area of the mutated residue. Indeed, it can process many
thousands mutations per minute. However, it seems that the webserver is no longer
accessible under the name PoPMuSiC and the URL links to the "Dezyme" company,
which appears to be selling protein design services.

As all other tools presented in this section except DynaMut, PoPMuSiC bases
its prediction on structure alone. In the original ENCoM work, the ENCoM +
PoPMuSiC combination demonstrated the highest overall performance on par with
the FoldX3 + ENCoM combination for experimental ∆∆G prediction [27].

2.3.2 Variant effect predictors

In recent years, deep learning tools such as AlphaFold [131] and protein language
models [132] have become much more prominent in the structural bioinformatics
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field. Unsurprisingly, we can observe an associated rise in the use of such models
to predict the effect of sequence variants on protein function. In a recent review,
published in April 2022, Horne & Shukla detail the progresses and challenges
associated with machine-learning based variant effect predictors (VEPs) [133]. They
divide these predictors in four categories: fixed feature, unsupervised, supervised
and metapredictors. The authors also state that despite great potential for the
systematic integration of dynamical information within VEPs, to the best of their
knowledge there exists no such tool, further reinforcing our previous statement
about the novelty of the ENCoM-DynaSig-ML pipeline. In their own words [133]:

One foreseeable path forward in expanding the types of data models used is to
include protein dynamics in predicting functional effects. [...] Mutations often
shift the relative populations in the conformational ensemble, and acquiring
and introducing this data into the ML pipeline would likely enhance VEP
accuracy.

Thus, we confirm the novelty of ENCoM-DynaSig-ML and we note that its inte-
gration within metapredictors will probably yield improvements for all existing
metapredictors, as it adds dynamical information no other VEP considers. This
high potential complementarity to all existing VEPs renders a detailed review
unnecessary for the present thesis, and we instead refer the interested reader to
the excellent review by Horne and Shukla [133].
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3
T H E O R E T I C A L F R A M E W O R K

3.1 coarse-grained nma with encom

The field of coarse-grained normal mode analysis emerged in 1996 with the seminal
work of Monique Tirion, which championed the perhaps counterintuitive idea that
global motions could be captured almost as well with a very simplified potential
as with all-atom normal mode analysis [24]. Follow-up studies on different levels
of coarse-graining for proteins found that a single bead per amino acid led to a
good tradeoff between accuracy and performance [26].

In parallel, studies using more realistic coarse-grained potentials started to emerge.
In fact, it is striking that the use of the Anisotropic Network Model (ANM) is
still as widespread in the field nowadays [134], considering that the single feature
the model takes into account is the cartesian coordinates of the coarse-grained
beads. More realistic schemes of coarse-graining that can capture the underlying
connectivity of the studied biomolecule have been developed. One of these models
is the generalized Spring Tensor Model (STeM), on which ENCoM is based [135].

Both the Elastic Network Contact Model (ENCoM) [27] and the generalized Spring
Tensor Model (STeM) [135] maintain the popular Cα coarse-graining, thus having
computational costs comparable with the much simpler ANM. Early studies on
coarse-grained normal mode analysis have put forward the hypothesis that the
suprisingly high performance of simple cutoff-based models is explained by the
fact that large-scale collective motions depend mostly on the geometry of the
biomolecule [136]. Thus, including more information about such geometry in the
model should lead to increased performance. In order to do so, STeM uses a
four-term Gō-like potential, akin to classical molecular dynamics potentials minus
the electrostatic term. However, let us remind the reader that this potential is at
the level of entire amino acids. For instance, "bonds" represent the connectivity
between consecutive residues, "angles" the angle between three sequential amino
acids, etc. Both STeM and ENCoM share this potential function containing four
terms: covalent bond stretching, angle bending, dihedral angle torsion and non-
bonded (or long-range) interactions [27, 135]. Equation 3.1 gives the four terms
of the ENCoM potential and Figure 3.1 illustrates them conceptually on the villin
headpiece protein (PDB code 2RJY). Here is the ENCoM potential function:
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Figure 3.1: The four terms of the ENCoM potential. The structure of the villin headpiece
(PDB code 2RJY) is used as an example. The beads are located on the Cα atom
for every amino acid. V1 restricts bond stretching, the elongation or contraction
of the distance between two connected residues. V2 restricts angle bending, the
change in the angle formed by the beads located on three consecutive residues.
V3 restricts dihedrals (torsion angles), rotations of residues 1 and 4 about the
axis passing through residues 2 and 3 from a quartet of connected residues.
V4 is the long-range interaction potential and restricts changes in distance
between pairs of residues not covered by the other V1-V3 potentials. In the case
of ENCoM, V4 depends on both distance between the residues and the atomic
surface area in contact complementarity term (details in Figure 3.2)
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+ ∑
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R⃗ and R⃗0 are vectors of length 3N for a system with N beads, corresponding
to the three-dimensional coordinates of every bead. R⃗0 represents the input, or
equilibrium, conformation, while R⃗ represents an arbitrary conformation. In the
ENCoM potential, the non-bonded interaction term is modulated according to the
surface area in contact between residues by the βij term:

βij =
Ni

∑
k

Nj

∑
l

ϵT(k)T(l)Skl (3.2)

ϵT(k)T(l) =

σ+ for favorable interactions

σ− for unfavorable interactions
(3.3)

ϵT(k)T(l) represents the interaction between atoms of types T(k) and T(l) while Skl
is the surface area in contact between the two atoms, calculated using a constrained
Voronoi procedure, as described by McConkey and co-workers [137]. This Voronoi
procedure is very fast, yet takes into account all neighbouring atoms when eval-
uating the surface area in contact between a given pair of atoms. Moreover, the
van der Waals radii are extended by the approximate radius of a water molecule
(1.4 Å) to form what is termed the extended contact radius. It allows the implicit
consideration of solvent-mediated contacts as two atoms can have a surface area in
contact up to a distance given by the sum of their extended radii. For example, an
oxygen atom forming a double bond (no hydrogen partner) has a van der Waals
radius of 1.42 Å and thus and extended contact radius of 2.82 Å. To be considered
in contact with another such atom, the pair could be as far apart as just under
two times that distance, or 5.6 Å. However, the surface area at such a distance
would be very small, or inexistent if there are neighbouring atoms blocking out
this possibility.

Figure 3.2 illustrates the Voronoi procedure applied to a subset of atoms from a
pair of interacting amino acids, at the 2D level for the sake of simplicity. In reality,
Voronoi polyhedra are constructed instead of Voronoi polygons and the radical
planes of intersection between spheres are used in place of lines of intersection.
The final surface area is given by the projection of the contact planes on the surface
of the sphere representing each atom. The interested reader can find algorithmic
details of the procedure in the work of McConkey el al. [137].

The surface area in contact between two atoms is modulated according the atoms’
types, for which the eight classes developed by Sobolev and co-workers [138] are
used. The eight atom types are: hydrophilic, acceptor, donor, hydrophobic, aromatic,
neutral, neutral-donor and neutral-acceptor. Only two types of interactions are
considered in the model: favorable and unfavorable, associated with the respective
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Figure 3.2: ENCoM’s surface complementarity term. The structure of the villin headpiece
(PDB code 2RJY) is used as an example. All heavy atoms are considered for the
computation of ENCoM’s surface complementarity (βij) term, but here we show
them only for threonine 15 (labelled R1) and histidine 41 (labelled R2), for the
sake of simplicity. For every heavy atom, the extended contact radius is the sum
of its van der Waals radius and the radius of a water molecule (1.4 Å). Again
for the sake of example, the radii for three atoms only are shown at the 2D level
(discs instead of sphere surfaces). The three atoms shown are the backbone
carbon and alpha carbon for R1 (C1 and Cα1) and the backbone oxygen for
R2 (O2). From the extended contact radii, radical contact planes are computed
at the intersection between each pair of spheres. From these contact planes,
Voronoi cells can be built aroud every atom. The polygon at the intersection
between two atoms (here line segment) represents the surface area in contact
between these two atoms. It is projected onto the sphere surface to compute the
surface in contact.

weight parameters σ+ and σ−. The interaction types for every pair of atom types
are listed in Table 3.1.

3.1.1 Solving the Hessian matrix

The quadratic approximation is used in normal mode analysis, in which we consider
only the quadratic terms of the Taylor expansion from the potential function. Thus,
the normal modes and their associated squared frequencies are obtained as the
eigenvectors and eigenvalues of the Hessian matrix of the potential function, as
described elsewhere [114].
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Table 3.1: Interaction between atom types in the ENCoM potential. The atom types are the
ones from Sobolev and coworkers, divided in eight classes. The model considers
an interaction to be either favorable (+) or unfavorable (-).

Atom type I. II. III. IV. V. VI. VII. VIII.

I. Hydrophilic + + + - + + + +

II. Acceptor + - + - + + + -

III. Donor + + - - + + - +

IV. Hydrophobic - - - + + + + +

V. Aromatic + + + + + + + +

VI. Neutral + + + + + + + +

VII. Neutral-donor + + - + + + - +

VIII. Neutral-acceptor + - + + + + + -

3.2 machine learning models

Since the ENCoM-DynaSig-ML occupies a novel niche as a variant effect predictor
considering the effect of dynamics, we chose to compare two simple machine
learning backends in the present thesis. The first is LASSO regression, arguably
the most widespread and easily interpretable form of regularized linear regression.
The second ML backend explored is multilayer perceptrons (MLPs), which can
capture complex relationships between the input variables.

3.2.1 LASSO regression

Multivariate linear regression models the relationship between a series of input
variables, or predictors Xi, and an outcome variable:

Y = β0 + β1 ∗ X1 + ... + βi ∗ Xn + ϵ (3.4)

where the model will learn the β coefficients that maximize the fit to the observed
values of the outcome variable Y, and ϵ is the error. The usual procedure for the
fit is to minimize the squared error of the prediction [139]. The problem with
linear regression is that it can lead to poor generalizability due to high prediction
variance, since the model can learn very high coefficients for input variables which
do not vary much in the training set.

One of the simplest ways to deal with this problem is to introduce regularization to
the model, which will minimize the sum of both squared error and a term depend-
ing on the size of the coefficients. The term LASSO was coined in 1996 by Robert
Tibshirani and stands for "least absolute shrinkage and selection operator" [140].
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Since LASSO is an acronym, we prefer to use of capital letters in the present work.
As the name indicates, the regularization term introduced by LASSO penalizes the
absolute sum of coefficients, so the objective function becomes:

Minimize : λ ∑ |βi|+ ∑ ϵ2 (3.5)

where λ is the regularization strength, and standard multivariate linear regression
is a special case at λ = 0.

Beyond its simplicity and elegance, LASSO regression has the property to drive
coefficients to zero at high regularization strengths. This is the reason for our
preference of LASSO over other types of regularized linear regression for the
present thesis, as this feature selection makes the biological interpretation of the
coefficients easier.

3.2.2 Multilayer perceptron

One caveat of linear regression models is in fact their linearity. Indeed, they assume
linear independence between input variables, and in many cases this assumption
is not true. This does not generate problems per se, but can lead to a loss in
performance if there are complex relationships between the input variables and the
outcome variable.

Artificial neural networks are machine learning models inspired by biological
neural networks which are capable of learning arbitrarily complex relationships
between input and outcome variables, provided they have sufficient numbers of
neurons and enough training iterations are performed [141].

For the present thesis, we will investigate the use of multilayer perceptons (MLPs),
a type of feedforward neural network with interconnected hidden layers of neurons
[142]. MLPs have been applied to a large variety of problems, from diagnosis using
genomic data [143] to weather forecast [144], demonstrating their ability to learn
intricate nonlinear relationships happening between the input variables themselves
and between these and the outcome variable(s).

Since the datasets studied in the present thesis are of relatively modest size, we will
restrict the MLP architectures tested to having hidden layers of homogeneous size.
The number of free parameters in an MLP with hidden layers of homogeneous size
is given by:

Fparams = 2 + S ∗ Pinput + 2 ∗ S +
Nhidden

∑
i=2

[
S2 + S

]
(3.6)
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where Pinput is the number of input predictor variables (the size of the input layer),
S is the size of every hidden layer and Nhidden is the number of hidden layers.
Where possible, we will try to limit the number of free parameters to below the
number of training set degrees of freedom, to prevent overfitting.
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4
M E T H O D O L O G Y

The ENCoM-DynaSig-ML computational pipeline is composed of three parts: the
ENCoM model, the generation of Dynamical Signatures, and the application of
machine learning algorithms to predict biological properties from the DynaSigs.
The ENCoM model was detailed in the last chapter (Section 3.1), while Section 4.1
will describe our adaptation of it for RNA molecules. The next sections of the
present chapter will roughly follow the computational steps of a typical application
of the pipeline: Section 4.2 details our approaches for modeling mutations to RNA
and protein molecules; Section 4.3 gives the definitions of the two different types of
Dynamical Signatures used in the present thesis, namely mean-square fluctuations
and Entropic Signatures, and defines vibrational entropy; Section 4.4 will outline
the general methodology for training ML algorithms on Dynamical Signatures and
the specifics of the two models used in the present thesis, LASSO regression and
multilayer perceptrons. These five sections present all methodology that is shared
among the three case studies of Chapters 7-9, while a section at the beginning of
each case study gives the specific methodology for that application.

As part of this thesis, we use a variety of elastic network model (ENM) performance
metrics for the parameter sweep presented in Chapter 5. These include metrics
widely used in the field and some original contributions, the most notable of
which is our non-rotational-translational principal component analysis (nrt-PCA)
correction (Section 4.5.3.1). Section 4.5 gives the definition of each metric. Since the
parameters resulting from the re-parameterization presented in Chapter 5 are used
throughout the remainder of the thesis, the methodology used is outlined in the
present chapter, in Section 4.6.

Finally, an important contribution of the present thesis is the high usability of
the complete ENCoM-DynaSig-ML pipeline, distributed as Python packages with
online documentation and tutorials. Section 4.7 will briefly present these pack-
ages, NRGTEN [31] and DynaSig-ML [32], which are used throughout the results
chapters that will follow.
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4.1 extension of encom to rna

ENCoM was originally developed for applications on proteins and notably the
prediction of changes in protein thermal stability as a result of mutations [27,
28]. For the present work, we were interested in extending the applicability of
ENCoM to study the dynamics of RNA molecules. In the case of proteins, it is
generally believed that ENMs using a single bead per residue, situated on the
Cα atom, still capture the essential low-frequency motions of the molecule [30].
This accepted property of coarse-grained ENMs is the reason why more beads
per amino acid were never tested in the context of ENCoM. However, since RNA
molecules are intrinsically more flexible per residue than proteins, using more
beads per residue leads to an increase in the predictive power of the model [145].
Pinamonti and colleagues thoroughly inverstigated the relationship between the
number of beads per nucleotide, the cutoff distance and the performance of an
ANM model applied to four different RNA structures with varied topologies [146].
The authors used agreement with all-atom MD trajectories performed on these
four molecules as a performance metric for the different models tested. In addition
to coarse-grained models with all combinations of one, two or three beads located
at the phosphate, sugar or base groups (seven total combinations), they tested
a model with one bead per heavy atom. They found that the model with three
beads per nucleotide, positioned at the C1’, C2 and P atoms for the sugar, base
and phosphate groups respectively, offered a good tradeoff between performance
and computational cost. Moreover, this coarse-graining scheme led to an optimal
interaction cutoff of 9 Å, which is in close proximity to the 8 Å optimal interaction
cutoff of found by Fuglebakk et al., who screened interaction cutoffs from 8 to
23 Å for their ability to reproduce covariance matrices from MD trajectories of
diverse proteins [147]. This proximity of the optimal ANM interaction cutoffs for
the three-beads-per-nucleotide model and the standard Cα protein model makes the
three-beads-per-nucleotide coarse-graining scheme attractive for the prospective
study of RNA-protein complexes.

We adapted ENCoM to work on RNA molecules with the three-beads-per-nucleotide
coarse-graining scheme of Pinamonti et al. [146]. We report similar findings with
increased performance of ENCoM across all RNA benchmarks when using three
beads per residue instead of one (data not shown). Since this was a pre-established
fact, we use three beads per nucleotide for all applications of ENCoM to RNA
tested thereafter in the present work. Figure 4.1 shows the positioning of the beads
in the four standard nucleotides. The atom type assignation for A, U, C and G
nucleotides is given in Table A.1.

The adaptation to RNA is fairly simple in the case of an ANM, as in the study by
Pinamonti et al.; an additional bead is positioned at the cartesian coordinates of the
selected atom, and the interaction cutoff can be varied to account for the changing
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Figure 4.1: Assignment of beads on the four standard nucleotides. The nucleotides are
arranged in two base pairs extracted A-form RNA helix generated using the
MC-Fold and MC-Sym pipeline [148]. Phosphate atoms are in gold, C1’ carbons
from the sugar group in light green and C2 carbons from the nucleobase in dark
green. All three beads are included in RNA adaptation of ENCoM introduced
in the present thesis.

density of beads [146]. However, the use of three beads per nucleotide in the context
of ENCoM introduces ramifications. Since the connectivity between the beads is
considered by ENCoM, these ramifications significantly change the implementation
logic. Indeed, proteins are linear when coarse-grained at the Cα level and thus the
V2 and V3 terms of the potential, representing angle bending and dihedral torsions,
can be computed by taking all groups of respectively three or four consecutive
beads that are part of the same protein chain. Figure 4.2 illustrates the ramifications
in the connectivity of the beads introduced by the RNA adaptation, along with
all types of angles and dihedrals introduced. As part of the present thesis, we
have extended ENCoM so that beyond the proper treatment of these RNA-induced
ramifications, the computation of the V2 and V3 terms is now generalized. As such,
any coarse-graining approach will be properly treated, and it is straightforward
to test novel coarse-graining approaches for any biomolecule, with the necessary
input files described in the online NRGTEN documentation (Section 4.7.1).

4.2 modeling mutations

In order to study dynamics-function relationships with the ENCoM-DynaSig-
ML pipeline, one needs a large enough dataset of experimental measures for
sequence variants of the studied biomolecule. The sequence variants then have to
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Figure 4.2: RNA beads connectivity, types of angles and types of dihedrals. In contrast to
proteins, which are completely linear when coarse-grained at the Cα level, the
use of three beads per nucleotide in the case of RNA introduces a ramification
at the sugar bead. This leads to four different types of both angles and dihedrals.
The phosphate, sugar and base beads are respectively represented by the letters
P, S and B. The angle and dihedral types are named with these letters and
relative numbering. The numbering corresponds to the position of a nucleotide
in the RNA chain.

be modeled on the experimentally resolved structure of the WT biomolecule, or on
a predicted 3D model if no experimental structure is available. Keeping in mind
that the ultimate application of ENCoM-DynaSig-ML is the prediction of functional
properties for theoretical variants, we prioritized fast modeling procedures in the
present work. Indeed, a single DynaSig computation on a sequence variant takes
between 3 to 5 seconds CPU time for all three case studies presented in Chapters
6-8. In order to take advantage of this speed, we restricted ourselves to modeling
procedures which are either faster or equivalent to that time.

The next two subsections will present our approaches for RNA mutation and for
protein mutation. These two approaches are used throughout the thesis to perform
all in silico mutagenesis.
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4.2.1 RNA mutations

ModeRNA is a tool developed for the template-based modeling of 3D RNA struc-
tures [149]. The problem of modeling a sequence variant on a given 3D structure is
a special case of template-based modeling where the alignment between target and
template has no gaps and no insertions, only mismatches. Thus, ModeRNA also
allows the easy and fast modeling of nucleotide substitutions in RNA structures.
We model all RNA sequence variants with ModeRNA by simply constructing a
one-to-one alignment of the variant sequence with the WT sequence and using
the WT 3D structure as template. Since there are no insertions or deletions in the
alignment, ModeRNA simply substitutes the bases in place by restricting the rings
to be in the same plane. We do not perform energy minimization for two reasons:

1. As mentioned, we want to optimize for speed in order to allow for ultra-high-
throughput predictions on theoretical sequence variants.

2. Keeping the backbone positions the same between all variants makes the
ENCoM DynaSigs the result of base substitution alone (V4 potential). Chang-
ing backbone positions would affect all terms of the potential and could thus
introduce some unwanted noise in the DynaSigs.

Moreover, our application to RNA in the present thesis is the study of pri-miR-125a
presented in Chapter 6. As outlined in that chapter, we restrict the analysis to
sequence variants having the same predicted 2D structure as the WT 2D structure,
which means all base pairing patterns are constant across all variants. Since the
ENCoM surface complementarity term does not depend on precise distances
between atoms (see Section 3.1), we make the hypothesis that it can recapitulate the
base pairing and stacking interactions well enough on the substituted nucleobases,
without the need for energy minimization.

4.2.2 Protein mutations

We use another template-based modeling tool, MODELLER, for the generation
of protein sequence variants [150]. However, the size of amino acid side chains
varies significantly across all 20 types, from 0 to 10 heavy atoms, which means
that steric clashes or unnatural interactions could be introduced by in-place sub-
stitutions. For this reason, we use the mutate_model.py script from MODELLER
(salilab.org/modeller/wiki/Mutate model), which optimizes the mutated residue’s
energy. The script mutates one position at a time, but the dataset of VIM-2 lactamase
sequence variants we present in Chapter 8 was generated using deep mutational
scanning so it does not contain variants with more than one mutated position. For
the search of high fitness VIM-2 variants containing numerous mutated positions,
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we proceed by sequential mutation in an evolution-mimicking search procedure,
so again the mutate_model.py MODELLER script can be used.

4.3 dynamical signatures

We have defined the complete structural dynamics of a biomolecule as the set
of all its possible conformations associated with their respective probabilities of
occuring. Exhaustively enumerating these complete dynamics, which include states
with very low probabilities, is currently beyond our computational reach for all
but the smallest biomolecules (very small peptides or ligands). However, normal
mode analysis (NMA) allows for the complete description of a subset of harmonic,
oscillatory dynamics (normal modes). For a biomolecule represented by N beads
(coarse-grained or all-atom), 3N normal modes exist, each of which is a vector of
length 3N with one associated eigenvalue. Thus, under the NMA approximation,
structural dynamics are fully captured by around 3N ∗ 3N = 9N2 values for a
biomolecule of length N (3N normal modes, each of length 3N). While these NMA
structural dynamics represent a tremendous gain in space and time compared
to those arising from techniques such as molecular dynamics, their size is still
very significant. For instance, a 250 amino acid protein gives rise to a linear space
characterized by 563 250 scalars.

Thankfully, these huge linear spaces can be reduced to more tractable size. Perhaps
the simplest way to do so is the computation of a Dynamical Signature: a vector of
fluctuation at every bead in the system. We prefer the term Dynamical Signature
for two reasons:

1. It encompasses the general concept of reducing structural dynamics to a
vector of the same length as the studied biomolecule, without emphasizing a
specific way of doing so. We use two different types of Dynamical Signatures
in the present thesis, but the concept extends beyond these two.

2. It also puts forward the notion that these vectors are characteristic of certain
molecules or certain functions.

Dynamical Signatures are the central part of the ENCoM-DynaSig-ML pipeline.
For the present thesis, we use the classical mean-square fluctuations (MSF) and
also introduce Entropic Signatures (EntroSigs). Since the EntroSig is based on
vibrational entropy, let us introduce it before defining both MSF and EntroSig in
the sections that will follow.
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4.3.1 Vibrational entropy

Under the harmonic oscillator approximation, the vibrational entropy of a biomolecule
can be computed from the eigenvalues associated with the nontrivial normal modes.
In the present thesis, we use the classical vibrational entropy formula, which arises
from the vibrational partition function of a harmonic oscillator [151]:

Svib =
3N

∑
n=7

Svibn (4.1)

Svibn =
βνn

eβνn − 1
− ln

(
1 − e−βνn

)
(4.2)

νn =
1

2π

√
λn (4.3)

β =
h

kT
(4.4)

where νn is vibrational frequency of the nth normal mode, computed from its
associated eigenvalue λn. β is a thermodynamic scaling factor, h is Planck’s constant,
T is the temperature and k is Boltzmann’s constant.

In the original ENCoM version, the hν ≪ kT approximation was made, which leads
to a simpler Svib formula that linearly depends on temperature. However, since we
are dealing with a pseudo-physical system the h, k and T quantities are hard to
estimate. This is the reason for our preference of the classical formula in the present
thesis. Furthermore, the β scaling factor is necessary to our Entropic Signature,
which we will define below, after the introduction of the classical mean-square
fluctuations.

4.3.2 Mean-square fluctuations

From the eigenvectors and eigenvalues of the nontrivial normal modes, the mean-
square fluctuations of individual residues can be computed [152]:

MSFi =
3N

∑
n=7

E2
n,i,x + E2

n,i,y + E2
n,i,z

λn
(4.5)

where En,i represents the xyz diplacement of bead i in the nth eigenvector and λn

the associated eigenvalue of that eigenvector. These mean-square fluctuations (MSF)
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of beads in the system have been widely used in the normal mode analysis field
as so-called "predicted B-factors", and correlated with experimentally measured
temperature factors (B-factors) from X-ray crystallography [25, 26, 153]. The MSF
directly arise from the energy potential of the system as formally proved in 1990

by Nobuhiro Gō [152], and temperature has no impact on these fluctuations except
to scale them linearly.

4.3.3 Entropic Signatures

Despite the invariance of relative MSF with regards to temperature, the contribution
of each normal mode to vibrational entropy does depend on temperature, with the
first nontrivial mode contributing most of the entropy at temperatures approaching
zero as is apparent from Equation 4.2. Indeed, β tends to infinity as the temperature
drops near zero and thus the contribution of the lowest frequency becomes the
dominant driver of vibrational entropy. For this reason, we hypothesized that
scaling the square fluctuations at every position by the entropic contribution of
that normal mode would give the model the power to better capture fluctuations
happening in biological contexts. Indeed, since ENCoM and other coarse-grained
ENMs have pseudo-physical potentials, they do not incorporate a temperature with
physical units and thus the possibility to scale the contribution of the normal modes
to the Dynamical Signature according to a Boltzmann distribution is attractive.
Moreover, from a functional point of view, the entropy at each residue can be of
great significance and exhibit high complementarity to enthalpy-based properties
computed by other models, such as the MC-Fold enthalpy of folding used in
Chapter 6 or the predicted ∆∆G of folding from Rosetta [154] used in Chapter 8.
In order to satisfy these desired properties, we introduce the Entropic Signature
(EntroSig), which scales the square displacements at every bead in the system by
the contribution of the corresponding nontrivial normal mode to the vibrational
entropy of the molecule (defined in Section 4.3.1):

EntroSigi =
3N

∑
n=7

Svibn

(
E2

n,i,x + E2
n,i,y + E2

n,i,z

)
(4.6)

where En,i represents the xyz diplacement of bead i in the nth eigenvector. Svibn
is defined in Equation 4.2 and importantly depends on a thermodynamic scaling
factor β.

This β scaling factor allows for varying the relative contributions of high- and low-
frequency normal modes to the fluctuations of the individual beads, with higher
values of β leading to contributions from the lowest-frequency modes dominating
and lower values leading to a more nuanced distribution across all modes. For
all molecules for which we have studied EntroSigs, we observe that it is always
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Figure 4.3: Comparison between MSF and EntroSigs. The Entropic Signatures were com-
puted for the predicted 3D structure of pri-miR-125a selected in Chapter 6

(MC-Sym model 61) and the crystal structure of VIM-2 lactamase (PDB code
4BZ3). The widest possible range of scaling factors was tested, in log increments
of 0.01. The incrementation was stopped in both directions when the output
became constant. A) The Pearson correlation between the Entropic Signature
and the mean-square fluctuations as a function of the β thermodynamic scal-
ing factor for the EntroSig. Almost perfect agreement is reached for VIM-2 at
β = e−0.71 and for pri-miR-125a at β = e2.39. B)-C) VIM-2 and pri-miR-125a En-
troSigs, respectively, as a function of β. The red dashed line shows the position
of almost-perfect agreement (Pearson’s R > 0.995) with MSF. C)-D) Same as
B)-C), zoomed in on β values at and lower than the almost-perfect agreement
with MSF.

possible to find a value of β which gives almost exactly the same relative coefficients
as the MSF.
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For example, Figure 4.3 shows the correlation between the MSF and the EntroSig
for different scaling factors, for two very different selected structures, the predicted
pri-miR-125a 3D model which we selected as the result of our analyses in Chapter 6

and VIM-2 beta-lactamase experimental structure which is the starting structure
in Chapter 8. pri-miR-125a is a rod-shaped RNA hairpin structure while VIM-2
is very globular. The β values at which their EntroSig perfectly agrees with their
MSF are far apart, with pri-miR-125a reaching agreement at β = e2.39 and VIM-2 at
β = e−0.71. Looking at Equation 4.2 it Equation 4.3, it is apparent that agreement
happens for the scaling factor which leads to:

Svibn =
1

λn
(4.7)

4.4 signatures inside machine learning algorithms

4.4.1 DynaSig standardization

The two machine learning models which we explore in the present thesis, LASSO
regression and multilayer perceptrons (MLPs), were detailed in Section 3.2.1 and
Section 3.2.2. When training these models on DynaSigs, we first standardize each
position in the DynaSig using all values encountered in the dataset. This is to
decouple both the average fluctuation value of the positions and their variance
across the tested sequences from their importance in the model. The coefficients
of the LASSO model are readily interpretable, as they now directly relate the
predicted outcome to the standard deviation of the fluctuation at each position. For
example, a coefficient of 1 at a specific position means that the predicted outcome
will be 1 more for every standard deviation in fluctuation at that position.

The usage of the whole dataset to standardize the DynaSigs does not introduce
information about the testing set to the model, since only average properties are
obtained from it. The reason for including both training and testing DynaSig values
in the standardization is that we often construct these sets so that specific positions
are only mutated in the testing set. Standardizing on training set alone would
introduce some very high standardized values for these positions in the testing set,
since the biggest effect a mutation has is most often local.

4.4.2 Binary classification performance

In all three case studies chapters, we analyze the performance of ENCoM-DynaSig-
ML both in terms of the goodness of fit of the predictions to the observed experi-
mental data, and by reducing the data to a binary classification problem. The two
performance metrics that we use, the area under the receiver operating charac-
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teristic curve, and the area under the precision-recall curve, will be introduced
here.

4.4.2.1 Receiver operating characteristic curves

The receiver operating characteristic (ROC) curve plots the relationship between
false positive rate and true positive rate for the classification of binary outcomes, at
varying decision thresholds. For a classification problem with equal proportions
of both classes, the expected area under the ROC curve (AU-ROC) for a random
classifier is 0.5; a perfect classifier has an AU-ROC of 1 [155]. However, when
class imbalance is present, AU-ROC can give the impression of good classification
when the underlying model has just learned the class proportion but is not making
meaningful predictions. Nonetheless, we include AU-ROC as it is a popular metric
in the machine learning field, and we take care in using statistical simulations to
sample the performance of random classifiers in order to assess the significance of
our predictors when there is class imbalance in our prediction problems.

4.4.2.2 Precision-recall curves

Another method for evaluating classification performance is the area under the
precision-recall curve (AU-PR). The precision-recall curve, as its name implies,
plots precision as a function of recall. Precision is the proportion of positive guesses
that are true, and recall is the proportion of relevant elements found. A random
classifier is expected to have an AU-PR equal to the proportion of positive elements
in the dataset [156].

4.4.3 Softening/rigidifying biases of LASSO models

When looking at the coefficients learned by LASSO models for the Entropic Signa-
ture input variables, we can readily interpret them in terms of structural dynamics:
negative coefficients mean that sequence variants in which these positions are
more rigid than the average lead to a higher predicted functional property, while
the reverse is true for positive coefficients: variants leading to these positions
being more flexible will have higher predicted functional properties. We define the
rigidifying/softening bias of the LASSO model as the sum of Entropic Signature
coefficients divided by the absolute sum of coefficients, expressed in percentage.
If the sum is negative, we reverse the sign and call it a rigidifying bias; if it is
positive, we call it a softening bias. These biases identify general trends for the
whole biomolecule in terms of the predicted property.
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4.5 enm performance metrics

In order to assess the performance of ENMs, various metrics have been developed
as the field matured. In the present thesis, four metrics will be used as part of the
parameter search presented in Chapter 5:

1. Pearson correlation between experimental B-factors and Dynamical Signa-
tures (MSF and EntroSig).

2. Cumulative overlap between a set of low-frequency normal modes and a
sampled conformational change.

3. Normalized cumulative overlap (NCO) between a set of low-frequency nor-
mal modes and motions apparent from solution NMR ensembles.

4. Root-mean-square error from a linear fit of predicted change in vibrational
entropy to experimental ∆∆G of folding as the result of mutation.

The next subsections will describe each metric and outline the contributions of
the present thesis, which are centered around the selection of the slow-frequency
normal modes, the use of a more accurate vibrational entropy computation, the in-
troduction of the Entropic Signature and the non-rotational-translational correction
to principal component analysis (nrt-PCA). nrt-PCA is a correction to standard
PCA that is needed in order to allow the relevant comparison of nontrivial normal
modes with motions from an NMR ensemble, especially in the case of NCO which
weights the cumulative overlaps by the percentage of variance explained by the
principal components. The nrt-PCA correction was first introduced in our work
presently published as a preprint; some parts of the following sections are taken
directly from that work [157].

4.5.1 Pearson correlation with experimental B-factors

Experimental B-factors capture fluctuations of atomic positions in the crystallized
biomolecule (Section 2.1.1). As outlined in Section 4.3.3, it is commonplace in the
coarse-grained normal mode analysis field to assess the models’ performance by
correlating the computed mean-square fluctuations (MSF) at every residue with
experimental B-factors from X-ray crystallography (Equation 4.5) [25]. We also
introduced the Entropic Signature (EntroSig), in which the square fluctuations at
every residue are scaled by the vibrational entropy of every nontrivial normal mode
(Section 4.3.3). The EntroSig thus allows to vary the relative contribution of the
slow-frequency normal modes compared with the high-frequency normal modes
with a Boltzmann scaling factor as part of the vibrational entropy computation
(Section 4.3.1).
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Whichever Dynamical Signature type is used, MSF or EntroSig, the Pearson cor-
relation is then calculated between the experimental B-factors and the computed
Dynamical Signature. Crystallographic B-factors are reported for every resolved
atom, whereas ENMs represent many atoms with a single bead (one bead per
amino acid or three beads per nucleotide in the case of ENCoM). Thus, a mapping
has to be made to reduce the experimental B-factors to the same lenght as the
Dynamical Signature’s length. In the present thesis, the chosen method is to average
the B-factors for all atoms considered as part of the same bead in the system. In
ENCoM, this is an unambiguous mapping as the potential already considers all
atoms in the computation of the surface area complementarity term.

4.5.2 Individual conformational changes: overlap and cumulative overlap

At it simplest expression, a biologically relevant conformational change can be
described using two conformations of a biomolecule, called the input and target
conformation. For instance, the activation of GPCRs can be described in such
a simplified way: the input conformation is the inactive state, and the target
conformation is the active state [51]. The overlap metric is a measure of the
similarity between an eigenvector E⃗n predicted using the start conformation and
the displacement vector R⃗ calculated between the coordinates of the target and
input conformations, after both have been superimposed [23, 158].

overlap(E⃗n, R⃗) =
|E⃗n · R⃗|
∥E⃗n∥∥R⃗∥

(4.8)

For each eigenvector, it has a value between 0 and 1, which describes how well we
can reproduce the target conformation by deforming the start conformation along
the eigenvector. A common practice is to measure the maximum overlap between
the experimental conformational change and the first N slowest normal modes.
However, this technique fails to capture a difference between a set of normal modes
which collectively capture the change very well and another set in which only one
mode has significant overlap with the observed change. For this reason, we prefer
to use of cumulative overlap (CO) in the present thesis as it corrects this artifact.
The CO is also a value between 0 and 1 and describes how well a set of orthogonal
motions (eigenvectors) can collectively reproduce the target conformation from the
start conformation.

CO =
√

∑
n

overlap(E⃗n, R⃗)2 (4.9)
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4.5.2.1 Linear proportion of normal modes

To the best of our knowledge, all articles investigating overlaps between normal
modes predicted by ENMs and experimentally sampled conformational changes
do so using a fixed number of the slowest normal modes [26, 146, 159]. This has the
clear advantage of representing a linear space of the same number of dimensions for
every tested biomolecule, and would give rise to the same number of conformations
is they were enumerated from the start conformation using a given RMSD step
for each normal mode (grows exponentially with the number of modes). However,
the number of normal modes grows linearly with the number of beads in the
system (3N − 6 nontrivial modes for N beads). This means that using a fixed
number, say 10 or 20 normal modes as is commonplace in the field [159], artificially
favors benchmarks with smaller structures as a bigger proportion of the orthogonal
space spanned by all normal modes gets used in the comparison of the predicted
motions with experimentally validated conformational changes. We first proposed
to circumvent this problem by using a linear proportion of nontrivial normal modes.
This correction does not favor the use of smaller biomolecules in benchmarking
ENM performance and does not come with significant added computational cost
for computing the cumulative overlap. Depending on the proportion chosen and
the size of the studied biomolecules however, it may give rise to a large number
of low-frequency normal modes being selected. In a typical use case, it may not
be feasible to exhaustively enumerate conformations from such a high number of
normal modes, however neither is it for even the 10 slowest modes at 5 deformation
steps per mode (which give rise to 5

10 exhaustively enumerated conformations,
or over 9 million). As such, we maintain that the use of a low linear proportion
of the total nontrivial normal modes, such as 5% as we use in the present thesis,
should be used for ENM benchmarking purposes. This practice should remove
the intrinsic bias towards smaller structures of the traditional fixed number of
slow-frequency modes.

4.5.3 Conformational ensembles: normalized cumulative overlap

Solution NMR experiments are perhaps the most reliable source of experimen-
tal biomolecular structural dynamics. For small enough molecules, the obtained
restraints allow the construction of an ensemble of conformations that represent
the motions of the studied biomolecule in solution. One way of describing the
motions apparent within the ensemble is to apply principal component analysis
(PCA) [160] to the cartesian coordinates of the structures in the ensemble. However,
as discussed earlier, PCA used in this way introduces rotational and translational
motions in the components obtained. In normal mode analysis, these types of
motions are captured by the first 6 trivial modes, which are discarded as they have
zero-valued eigenfrequencies. Furthermore, these motions are irrelevant in the
context of biomolecular structural dynamics happening in solution, where they
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happen randomly as a result of motion within the solvent. Therefore, we proposed
the non-rotational-translational PCA correction (nrt-PCA) as part of our recent
work adapting ENCoM for RNA. Let us introduce PCA along with the the nrt-PCA
correction before moving on to explain normalized cumulative overlap.

4.5.3.1 Non-rotational-translational principal component analysis

Principal component analysis (PCA) is a statistical technique that is used to trans-
form observations of variables that may be correlated into linearly uncorrelated
variables which are called principal components (PCs) [160]. PCA is commonly
used in the normal mode analysis field to extract dominant motions apparent
within the conformational ensembles obtained from solution NMR experiments
[159]. Each conformation is represented as a vector of length 3N where N is the
number of beads in the system. In the present work, PCA is computed on these
vectors using a singular value decomposition (SVD) algorithm [161]. The PCs
obtained are analogous to normal modes in that they are the eigenvectors of the
covariance matrix of the 3N coordinates from the ensemble of structures. The first
PC describes the largest proportion of the variance in the ensemble, and each
subsequent component captures the largest proportion of the remaining variance
and is orthogonal to the preceding components. However, when there are more
than two conformations in the ensemble, rotational and translational motions
can be present in the principal components. To our knowledge, the published
workarounds in the context of biomolecular 3D dynamics introduce a change of
coordinates, which is undesirable in the context of cartesian normal mode analysis
[162]. We thus introduce a correction to obtain cartesian principal components
without rotational and translational degrees of freedom. First, standard PCs are
computed from the ensemble, with all conformations superimposed to the first
model. Then, the first six rotational and translational normal modes from that first
model are used as the starting basis for Gram-Schmidt orthonormalization [163] of
the PCs. This transformation ensures all rotational-translational motions from the
PCs are removed and all relevant internal motions are maintained. However, the
proportion of variance explained needs to be corrected for each PC according to
the amount of rotational-translational variance initially present:

ci =
vi

(
1 −

√
∑6

j=1(P⃗Ci · R⃗Tj)2
)

∑n cn
(4.10)

where vi is the initial proportion of variance explained by P⃗Ci, ci is the corrected
proportion of variance explained, and R⃗Tj are the six rotational-translational normal
modes of the first model in the structural ensemble. The PCs are then reordered
in decreasing order of corrected proportion of variance explained. We call this
method nrt-PCA (non-rotational-translational PCA) and whenever we refer to PCA
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or PCs, it is implied that nrt-PCA is used. It ensures the accurate comparison of
non-trivial normal modes computed from a representative structure with strictly
internal motions apparent from the ensemble. In most cases, nrt-PCA will not lead
to drastically different PCs and will just remove a small proportion of rotational-
translational motions from each PC.

4.5.3.2 Normalized cumulative overlap

When an ensemble of experimentally validated conformations is available, such
as what typical NMR solution experiments provide, nrt-PCA is computed on the
cartesian coordinates of the ensemble as described in the last section. The same
atoms as the ones used in the coarse-grained ENM representation tested are used
in order to have the same dimensionality. The normal modes are computed on
the minimum energy conformation, which by convention is the first model in the
ensemble submitted by the NMR spectroscopists to the PDB [164]. The normalized
cumulative overlap (NCO) between the first N normal modes and the first M PCs
is given by:

NCO =
M

∑
j=1

vj

√√√√ N

∑
i=1

overlap(E⃗i, ⃗PCj)2

 (4.11)

where E⃗i is normal mode i, P⃗Cj is principal component component j and vj is the
proportion of variance explained by component j. NCO ensures a value between 0

and 1 as both the normal modes and the components are orthogonal with respect
to themselves, and vj sums to 1 over all the components.

4.5.4 Root-mean-square error from ∆∆G of folding predictions

ENCoM is unique among coarse-grained ENMs in its ability to predict the effect
of mutations, even when such mutations do not affect the backbone geometry of
the studied biomolecule. The first application of this sequence sensitivity was to
predict the effect of mutations on the vibrational entropy change, ∆Svib. It was
shown that ∆Svib can be used as a linear approximation of the experimentally
measured ∆∆G of folding induced by the mutation [27]. In order to use the most
stringent metric possible, the authors used a simple linear fit between ∆Svib and
experimental ∆∆G of folding, forcing the intercept to be zero. The root-mean-square
error (RMSE) between the linear fit and experimental values was then computed,
with lower values representing better performance.

We use the same approach in the present work, however since we changed the
formula for the computation of vibrational entropy for a more realistic one (Sec-
tion 4.3.1), it now includes a thermodynamic scaling factor. In a similar manner as
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for Pearson correlation of Entropic Signatures with B-factors (Section 4.5.1), this
thermodynamic scaling factor β is varied across a range of log spaced values, and
the mean RMSE across the whole dataset of mutations is computed once for every
β value, preventing the use of one overfitted β value for every example in the
dataset.

4.6 diverse benchmark : encom re-parameterization

ENCoM exhibits robust performance across a wide range of parameter combina-
tions [27]. However, in the present work we have extended its applicability beyond
proteins to nucleic acids, small molecules and all complexes of these biomolecules.
This prompted us to ask whether there exists a significant tradeoff in parameter
space between applications to different biomolecular types, in particular between
proteins and RNA. Conversely, it could also be that a single set of parameters can
reasonably cover most applications. Finally, as part of the initial development of
ENCoM, it was stated that ENCoM has 4 parameters, while in truth the model has
6 parameters. This fact alone is enough to prompt re-parameterization and ensure
good fit to experimental data.

To answer the question of whether a tradeoff exists between RNA and protein
applications, we decided to run three benchmarks on proteins, three benchmarks on
RNA and one on RNA-protein complexes, for a total of seven diverse benchmarks.
Each of these benchmarks contains between 38 and 313 structures, for a total of 940

structures, on which ENCoM was run for a total of 221 255 parameter combinations.
The three protein benchmarks come from the original ENCoM publication [27] and
measure correlation with experimental B-factors, conformational change prediction,
and the prediction of folding ∆∆G upon mutation. The three RNA benchmarks
come from our work extending ENCoM to RNA [157] and measure correlation
with experimental B-factors, conformational change prediction, and NMR ensemble
structural variance prediction. The RNA-protein benchmark was constructed as
part of the present re-parameterization and measures NMR ensemble structural
variance prediction. The next subsections will list the details of how each individual
benchmark was constructed and how the metrics were computed. The list of PDB
codes for the experimental structures and ensembles in each benchmark can be
found in the Appendix.

4.6.1 Protein experimental B-factors

For constructing the protein experimental dataset, we started from 113 non-
redundant, high-resolution protein structures selected by Kundu et al. [165], which
were used in the original ENCoM parameterization [27]. We downloaded each
structure directly from the PDB, and removed all non-protein residues (ions, water
molecules, ligands). Two PDB codes, 3B5C and 4PTP, were listed as obsolete by

60



the PDB and were replaced by their listed superseded entries, respectively 1CYO
and 5PTP. In order to reduce computational cost, the structures with more than
300 amino acids were removed, leaving us with 80 high-resolution protein struc-
tures. The PDB codes for these 80 structures are given in Table A.2. No sequence
clustering was performed as the entries are non-redundant.

The performance metric used is the Pearson correlation between the experimental
B-factors, averaged by amino acid, and the ENCoM Dynamical Signatures. As
outlined in Section 4.3.3, these can be of two types:

1. Mean-square fluctuations (MSF), which are temperature-independent when
normalized and arise as a unique vector for a given set of eigenvectors and
eigenvalues.

2. Entropic Signatures, which depend on as thermodynamic scaling factor and
are introduced as part of the present thesis (Section 4.3.3).

For each set of parameters, ENCoM is run on every of the 80 selected structures.
Then, the computed eigenvectors and eigenvalues are used to compute the MSF
and a set of Entropic Signatures, with scaling factors ranging from e−5 to e5 in log
increments of 0.25. For each scaling factor, the mean Pearson correlation across the
whole set of structures is the value we keep, because using the best correlation for
each structure could lead to overfitting specific features of individual structures.
The best of these mean correlations, whether from MSF or EntroSig, is the final
value representing the performance of a parameter set on this first benchmark.

4.6.2 Protein conformational change

Besides crystallographic B-factors, another source of information on biomolecular
structural dynamics is the crystallization of the same biomolecule under differ-
ent conditions, therefore changing its energy landscape and favoring a different
conformation as the minimum energy conformation. In the case of proteins, the
PSCDB (Protein Structural Change upon ligand binding DataBase) has reperto-
ried 714 pairs of X-ray crystallography experiments where the same protein was
crystallized both with and without a ligand [75]. Of these 714 pairs, 403 include
significant conformational changes between the ligand-bound (holo) and ligand-
unbound (apo) structures. These 403 pairs were used as part of the original ENCoM
parameterization.

Of the original 403 PSCDB apo-holo pairs exhibiting significant conformational
change, we keep the 37 pairs that are single-chain, complete from the crystallogra-
phers’ submission (no missing residues) and exactly the same length. We use these
stringent filters to minimize potential artifacts from missing residues or changes in
the geometry of the complex in the case of multi-chain structures. Moreover, since
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many of these proteins are quite large, we cannot afford the computational cost of
running the full 403 pairs with the 221 255 parameter combinations. The 37 kept
pairs (74 structures total) are listed in Table A.3. We computed the cumulative over-
lap at 5% normal modes both ways for every pair and report the mean cumulative
overlap for every parameter set.

4.6.3 Protein ∆∆G of folding

In the original ENCoM article, the effect of mutations was predicted for 303

mutations selected from the ProTherm database [116] as part of the validation for
the PoPMuSiC-2.0 software [166], a machine-learning based tool for predicting
protein stability changes upon mutation to which ENCoM was compared [27]. This
set of mutations contains 45 stabilizing mutations, 84 neutral mutations and 174

destabilizing mutations. The mutations come from 66 distinct wild-type proteins.
We use this exact set to measure the performance of the different parameter
sets in the prediction of folding ∆∆G, with the exception of four cases: first, the
single mutation reported on a structure with PDB code reported as 1AON in the
supplementary data from the ENCoM article. PDB code 1AON is a complex with
over 8000 residues, so this must be an error. The other three cases removed are the
mutations on yeast phosphoglycerate kinase (PDB code 3PGK). We modeled all
mutations with MODELLER [150] and this starting structure generated an error.
While investigating this, we noticed that the PDB quality metrics for this structure
are very poor, with more than 33% sidechain outliers and over 20% Ramachandran
outliers. This led us to simply exlude this case. The list of included mutations is
given in Table A.4.

As mentioned, the remaining 299 mutations were performed in silico with the
MODELLER software. We use the same protocol throughout the present thesis,
which is outlined in Section 4.2.2. For each of the mutants, we computed ∆Svib as
follows:

∆Svib = SvibWT − Svibmutant (4.12)

with the calculation for Svib given in Equation 4.1. According to this definition, a
positive ∆Svib means the mutation is rigidifying (loss of vibrational entropy), while
a negative ∆Svib corresponds to softening mutations (gain of vibrational entropy).
Since the metric used is RMSE after a linear fit without intercept (see Section 4.5.4),
the sign of the prediction does not matter for the measure of performance.
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4.6.4 Dataset of RNA structures

For the three RNA benchmarks, we start from the same sets of structures that
we used to benchmark our adaptation of ENCoM to RNA [157], which were
constructed as follows. Note that sections of the text for the description of these
three benchmarks come from that work. In the PDB as of 2022-01-08, there were
982 structures solved by X-ray crystallography and 417 NMR ensembles when
restricting the search to entries containing only RNA. We used these data in the
RNA-only benchmarks after applying appropriate filters, described at the end of
the current section. We kept all chains present in the biological assembly for X-ray
structures and all chains in the structural ensemble for NMR experiments.

ENCoM requires the manual assignment of atom types for every residue we want
to consider so that the surface in contact term can be adequately computed. It is
thus possible in theory to include every modified residue. In order to simplify
the conducted benchmarks, we chose to restrict the model to the four standard
ribonucleotides, replacing all modified ribonucleotides with their unmodified
analog using the ModeRNA software [149], which contains information about
the 170 modifications present in the MODOMICS database [167]. The atom type
assignations for these four standard ribonucleotides are given in Table A.1.

We also used ModeRNA to add missing atoms where it was the case, for example
terminal phosphate groups, so that each residue was complete. This addition en-
sured that the assignment of the beads to the residues was standard for all residues.
The structures for which ModeRNA produced an error or which produced an
error for any of the models tested subsequently were removed from the analysis.
Moreover, the size of the X-ray resolved RNA structures was restricted to below
300 nucleotides (900 beads) for the B-factors benchmark and below 100 nucleotides
(300 beads) for the conformational change benchmark, in order to minimize com-
putational cost. In the case of the solution NMR resolved RNAs, no size threshold
was applied as no molecules bigger than 155 residues have been elucidated this
way. Since we were interested in conformational ensembles solved by NMR, we
restricted our analysis to submissions containing at least two models. The lists of
PDB codes for the structures kept for the three benchmarks (38 structures for the
B-factors benchmark, 116 structures for the conformational change benchmark, 313

NMR ensembles for the structural variance benchmark) are given in Table A.5,
Table A.6 and Table A.7.

4.6.4.1 Sequence clustering

Since we assembled the RNA structures automatically from the PDB, some se-
quences are sampled more than once, or have very close homologs sampled. In fact,
we rely on this property for the RNA conformational change benchmark. How-
ever, we need to prevent RNA families which have more members present in our
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database from driving the performance metrics. We first compute a Needleman-
Wunsch global alignment [168] between all pairs of two sequences, with the
following scoring scheme: gap penalty: -1, mismatch penalty: -1, match score: 1.
We compute the alignment distance as follows:

distance(s, t) =
score(s, t)

min [length(s), length(t)]
(4.13)

We then perform complete linkage clustering [169] on the sequences from our
database of structures with a distance threshold of 0.1, ensuring that all pairs
of sequences within a given cluster are at least 90% similar in terms of their
Needleman-Wunsch global alignment. Because of the scoring scheme used, this
is equivalent to 90% sequence identity, with differences in length counting as
mismatches.

For all reported RNA-only benchmark metrics, we first normalize by sequence
cluster before reporting the mean metric. This ensures that molecules which have a
lot of conformations sampled in the PDB do not drive the score and instead each
RNA or family of RNAs has an equal weight.

4.6.5 RNA experimental B-factors

In addition to a resolution filter of 2.5 Å or better, we used only the structures for
which no modified nucleobases were initially present and in which all residues
were complete as the set of X-ray crystallography RNA structures from which to
predict experimental B-factors. These restrictions were applied to ensure that every
atom used in the prediction had a corresponding experimental B-factor, and not an
extrapolated value from the rebuilding of the modified nucleobases and missing
atoms by ModeRNA. The 38 remaining structures were clustered according to
their sequence as described, giving us 34 clusters. We computed the mean Pearson
correlation normalized by cluster.

4.6.6 RNA conformational change

We started by listing all pairs of X-ray structures from the same sequence cluster
as potential conformational changes. We then rejected pairs of conformations for
which the root mean squared deviation (RMSD) of the center atoms of each bead is
lower than 2 Å. Clustering was performed as described, leaving us with 116 unique
structures forming 227 pairs of conformations with RMSD greater than or equal to
2 Å, divided in 25 sequence clusters. We calculated the cumulative overlap for 5%
of normal modes both ways for every pair and report the mean cumulative overlap
normalized by cluster.
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4.6.7 RNA NMR ensemble variance

For the 313 RNA-only NMR ensembles, we compute the normalized cumulative
overlap (NCO) between the principal components (PCs) representing 99% of the
structural variance in the ensemble and the 5% slowest normal modes computed
from the minimum energy conformation. As already mentioned, we use the nrt-
PCA correction introduced in Section 4.5.3.1 to compute the PCs. We report the
mean NCO for every parameter set.

4.6.8 RNA-protein NMR ensemble variance

We assembled a set of solution NMR ensembles of RNA-protein complexes by
using the advanced search feature of the PDB (as of 2022-05-31), limiting results
to entries containing both protein and nucleic acids, rejecting entries with more
than 70% sequence identity. We then sorted the entries by date, with the newest
entries first, and manually selected the first 20 entries that contained only RNA
and protein residues (no DNA). The 20 PDB codes selected are listed in Table A.8.

4.6.9 Parameter search

As outlined in Section 4.1, ENCoM has been adapted to work on RNA molecules
as part of the present thesis and its performance has been extensively compared to
other coarse-grained elastic network models (ENMs) as part of our work currently
submitted for publication [157]. However, the ENCoM parameters were not ex-
plored as part of that work, as we found that the parameters already optimized for
proteins [27] were leading to good performance. The ENCoM potential, presented
in more details in Section 3.1, is the following:

VENCoM(R⃗, R⃗0) = ∑
bonds

V1(r, r0) + ∑
angles

V2(θ, θ0)

+ ∑
dihedrals

V3(ϕ, ϕ0) + ∑
i<j−3

V4(rij, rij0)

= ∑
bonds

α1(r − r0)
2 + ∑

angles
α2(θ − θ0)

2

+ ∑
dihedrals

[
α3(1 − cos(ϕ − ϕ0)) +

α3

2
(1 − cos 3(ϕ − ϕ0))

]
+ ∑

i<j−3
(βij + α4)

[
5
( rij0

rij

)12

− 6
( rij0

rij

)10
]

(4.14)

The four apparent parameters in the potential are the scaling weights for each term,
α1 to α4. However, the βij term is the surface area in contact between atoms of
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different residues, multiplied by their complementarity coefficient in the interaction
matrix (Section 3.1). The simplified atom typing system from Sobolev et al. [138]
has two interaction types: favorable and unfavorable. These constitute an additional
two parameters, which we call σ+ and σ− for favorable and unfavorable interactions
respectively. Surprisingly, these additional parameters were not explored as part of
the initial ENCoM parameter grid search, instead being set to 3 and 1 for favorable
and unfavorable interactions respectively. Another version of ENCoM, ENCoMns

(for ENCoM non-specific), was tested as part of the original benchmarking of
ENCoM, which had both σ parameters set to 1. It seems that the authors were
under the impression that the varying of α4 was enough to cover the different
possibilities. This is not the case however, as the long-range term in the potential is
modulated by the sum of α4 and βij. α4 is responsible for background, non-specific
long-range interactions which only depend on the xyz coordinates of the interacting
residues. βij is the term responsible for ENCoM’s sequence sensitivity (detailed in
Equation 3.1), and thus the σ parameters need to be optimized as well.

The introduction of these two additional parameters greatly expands the size of the
search space. For instance, the log10 parameter grid search performed by Frappier
and Najmanovich spanned 13 orders of magnitude per parameter and thus led
to 28 561 distinct parameter sets. Performing such a wide search on 6 parameters
would lead to over 4 million combinations, which is beyond the computational
resources we have access to. Nonetheless, the original parameter search led to the
following set of parameters:

α1 = 103, α2 = 104, α3 = 104, α4 = 10−2 (4.15)

As mentioned, the σ parameters were set to:

σ+ = 3, σ− = 1 (4.16)

4.6.9.1 First round of parameter search

Thus, all original published parameters are within 7 orders of log10 magnitude
despite a search space covering 13 orders of magnitude, suggesting that combi-
nations with differences of more than 7 orders of magnitude between pairs of
parameters led to suboptimal performance. Furthermore, since the normal modes
are obtained as the eigenvectors of the Hessian matrix (Section 3.1.1), two parame-
ter sets which have exactly the same ratios between them will lead to exactly the
same set of normal modes, and the eigenvalues will simply be rescaled linearly.
Since this rescaling does not affect any of the performance metrics investigated, it
is possible to speed up the computation of the benchmarks by considering only
one parameter set per given ratio, instead of performing a truly exhaustive search.
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We thus decided to perform the parameter search in successive rounds: in the first
round, all combinations of 7 orders of log10 magnitude were tested, with the added
possibility of a null value for α4 and σ−. In the case of α4, it was to test whether the
non-specific long range interaction is necessary for performance, since the surface
area in contact term βij might be sufficient on its own. σ− represents interactions
which are unfavorable and even repulsive in some cases. However, repulsive terms
cannot be part of a normal mode analysis potential since the input conformation is
assumed to represent the minimum energy of the system. The closest one can get
to repulsive behaviour is thus to assign a zero value to the unfavorable interaction
term, hence why we tested this possibility.

The main reason for the parameter search across seven diverse benchmarks is
to ask whether a single set of parameters can lead to good performance across
many scenarios. In order to answer this question, we standardized the performance
of every benchmark, taking the Z-score of the negative RMSE (NRMSE) in the
case of predicted ∆∆G of folding since a lower score is better on that metric. For
all other metrics, a higher score represents better performance. We consider the
seven benchmarks to be balanced between protein and RNA molecules: three for
RNA-only structures, three for protein-only structures, and one for RNA-protein
complexes. Since the performance metrics across parameter sets are not guaranteed
to be normally distributed, we rescaled the Z-scores linearly, dividing by the
maximal Z-score for each benchmark. This rescaling is necessary to ensure an equal
contribution of every benchmark to the Z-score sum across the seven benchmarks,
which is the combined performance metric we use in order to select the parameter
set with the best overall performance:

Pi = ∑
Benchmarks

Zi

max(Z)
(4.17)

where Pi denotes the global performance of the ith parameter set.

4.6.9.2 Second and last rounds of parameter search

The best parameter set from the first round according to the P metric defined in
Equation 4.17 was used as the seed for the second round, in which multipliers
spanning 7 log2 orders of magnitude were applied combinatorially to each parame-
ter from the seed set. The idea behind the reduction in logarithmic base from 10 to
2 was to search the vicinity of the best parameter set from round 1 for potential
improvements. The null values tested for the α4 and σ− parameters in round 1 did
not lead to good performance, hence we did not include these further.

Both the largest and smallest multipliers were applied to the seed parameter set
when examining the best parameter set from round 2, prompting us to perform
a last round of parameter search, again applying multipliers spanning 7 log2

67



orders of magnitude. As outlined in Section 5.3, this last round did not lead to
improved performance and the same set of parameters as in round 2 is found as the
optimal set. The absence of further performance gains is the reason for stopping
the parameter search after this final round.

4.6.10 Combined performance across benchmarks

The seven performance metrics evaluated are: protein B-factors prediction, protein
conformational change prediction, protein mutations ∆∆G prediction, RNA B-
factors prediction, RNA conformational change prediction, RNA ensemble variance
prediction, RNA-protein complexes ensemble variance prediction. Each perfor-
mance metric is standardized across the whole range of parameter sets and then
rescaled so that the maximum Z-score is always 1, in order to give equal weight to
every category. The average rescaled Z-score is then used to rank the parameter sets.
To investigate covariance between the performance across pairs of benchmarks,
the covariance matrix of the Z-score before rescaling is reported. This ensures a
possible range of values from -1 to 1 for covariance.

4.7 developed tools as python packages

Importantly, all parts of the EMCoM-DynaSig-ML pipeline are distributed as open-
source, extensively documented Python packages that were produced as part of
the present thesis. This availability and ease of use will help lower the barriers to
the usage of the pipeline and to its integration as part of consensus variant effect
predictors.

4.7.1 The NRGTEN Python package

The Najmanovich Research Group Toolkit for Elastic Networks (NRGTEN) con-
tains the implementation of ENCoM and was published recently [31]. Since it is
extensively documented online, we refer the interested reader to the online docu-
mentation: nrgten.readthedocs.io. Figure 4.4 shows the NRGTEN documentation
page for the computation of changes in ∆Svib upon mutation.

4.7.2 The DynaSig-ML Python package

The DynaSig-ML Python package implements the necessary tools for the stream-
lined execution of the ENCoM-DynaSig-ML pipeline, building upon the NRGTEN
package for the execution of ENCoM. It is currently submitted for publication
and is available as a preprint [32]. Online documentation is available at dy-
nasigml.readthedocs.io, along with a tutorial allowing the replication of our results
on VIM-2 lactamase catalytic efficiency presented in Chapter 8, albeit with the
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Figure 4.4: Web page from the NRGTEN online documentation.

original ENCoM parameters, coarser search of thermodynamic scaling factors and
simplified statistical analyses.
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Part II

R E S U LT S A N D D I S C U S S I O N



5
PA R A M E T E R S E A R C H : D I V E R S E B E N C H M A R K S

The ENCoM-DynaSig-ML pipeline is the present thesis’ central piece. ENCoM
is used as the pipeline’s first step to generate Dynamical Signatures, so its per-
formance should be maximized in order to maximize the pipeline’s performance.
Moreover, ENCoM was adapted to work on RNA molecules and the case studies
presented in Chapter 6, Chapter 7 and Chapter 8 respectively study RNA molecules,
protein-small molecule complexes and an enzyme (protein). The original ENCoM
parameters were not changed as part of our study assessing ENCoM’s performance
on RNA, as we wished to maintain optimal performance on protein as part of a
single parameter set and the performance on RNA from the original parameters
already outperformed two common ENMs [157]. However, the question remained
of whether a single set of parameters can attain high performance on both RNA and
protein molecules. In order to answer this question, the current chapter presents
the results of a wide parameter search across seven diverse benchmarks in which
RNA and protein molecules are equally represented.

The parameter search was performed in three distinct rounds, as outlined in
Section 4.6.9. Table 5.1 lists the performances of the best parameter sets found
in each round across the seven benchmarks, in addition to the performances of
the original parameter set. The best parameter set for each round was defined as
the one leading to the highest rescaled Z-score sum across the seven benchmarks.
Table 5.2 lists the individual rescaled Z-scores per benchmark, for the three rounds
of parameter search. Table 5.3 lists the different optimal parameter sets found after
each searching round. The same parameter set is listed for the combination of
rounds 2 and 3 because it was the optimal parameter set for both rounds. As the
next sections will outline, this optimal parameter set from rounds 2 and 3 was
chosen as the new set of ENCoM parameters.

5.1 round 1 parameter search

The set of values used for the first round parameter sweep was the following:
[0.01, 0.1, 1, 10, 100, 1000, 10 000]. As mentioned in Section 4.6.9, α4 and σ− were
also allowed to take null values. With the inclusion of these zero values, there are
153 664 exhaustively enumerated parameter sets for the first round of parameter
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Table 5.1: Results by round for the parameter search. For each benchmark, the best
performance attained is highlighted in bold.

Metric Original Round 1 Round 2 Round 3

Protein B-factors 0.572 0.583 0.585 0.585

Protein overlaps 0.791 0.798 0.805 0.805

Protein ∆∆G RMSE 1.549 1.542 1.539 1.539

RNA-protein NCO 0.752 0.759 0.762 0.762

RNA B-factors 0.446 0.458 0.456 0.455

RNA overlaps 0.690 0.718 0.715 0.715

RNA NCO 0.774 0.775 0.779 0.779

Table 5.2: Rescaled Z-scores by round for the parameter search. The rescaled Z-scores
(as defined in Equation 4.17) are given for the best parameter set found in each
round of parameter search. The best parameter set is defined as the one leading
to the highest rescaled Z-score sum across the seven benchmarks.

Metric Round 1 Round 2 Round 3

Protein B-factors 0.833 0.777 0.772

Protein overlaps 0.975 0.843 0.772

Protein ∆∆G RMSE 0.928 0.646 0.703

RNA-protein NCO 0.973 0.704 0.685

RNA B-factors 0.323 0.311 0.289

RNA overlaps 0.905 0.242 0.377

RNA NCO 0.947 0.745 0.711

Rescaled
Z-score sum

5.884 4.268 4.310

search. After removing sets with duplicate parameter ratios, we are left with 96 244

parameter sets to test. Running the seven benchmarks for one of these parameter
sets takes 67 minutes using one CPU from a 32-core AMD Rome 7532 @ 2.40

GHz, which represents a total cost of 107 472 core-hours, or 12.3 core-years for the
complete first round.

The parameters leading to the highest rescaled Z-score sum (RZSS) across all
seven benchmarks are given in Table 5.3, with an RZSS of 5.9. Figure 5.1 shows
the performances attained for the individual benchmarks as histograms, with the
performances of the optimal parameter set from round 1 indicated by dashed lines
and the performance of the original ENCoM parameters by a full line.
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Table 5.3: Parameter sets by round of parameter search. In addition to the best parameter
set found after each round of parameter search, the original ENCoM parameter
set is given. The optimal parameter set for round 2 is identical to the optimal
parameter set for round 3. This set represents the new ENCoM parameters and
is shown in bold.

Parameter Original Round 1 Round 2 Round 3

α1 1000 1000 4000 4000

α2 10 000 10 000 80 000 80 000

α3 10 000 10 000 20 000 20 000

α4 0.01 0.01 0.08 0.08

σ− 1 0.1 0.0125 0.0125

σ+ 3 10 80 80

Interestingly, the parameter set selected exhibits high performance across all bench-
marks, with the exception of the B-factors prediction benchmarks where it performs
well but other combinations perform better. This is in accordance with the tradeoff
already observed a part of ENCoM’s original parameterization between B-factors
prediction performance on the one hand and overlaps and effects of mutations on
the other hand [27].

Strikingly, the α1-α4 parameters are the same as in the original ENCoM parameter
set, while σ+ and σ− respectively get higher and lower values. This is in accordance
with the hypothesis that ENCoM’s performance edge over other models comes in
part from the surface complementarity term. Indeed, we expected the exploration of
the σ parameters to yield such a pattern of higher weight for favorable interactions
and lower weight for unfavorable interactions.

However, this set of parameters, as the original set, spans 7 orders of log10 magni-
tude, which is the exact breadth of the parameters explored (with the exception
of the null values for α4 and σ−). This points to a better combination potentially
existing outside of these bounds, and is the reason for performing another round
of optimization.

Figure 5.2 shows the covariance of the Z-scores between all possible combinations
of two benchmarks. A positive covariance means that performance on these two
benchmarks tends to go in the same direction across parameter sets, whereas
negative covariance means that performance from one benchmark is inversely
correlated to performance from the other benchmark across the whole set of tested
parameters. However, such negative covariance does not necessarily imply that a
tradeoff between the two benchmarks has to be made, as outlier parameter sets
could give rise to good performance for both benchmarks even if this is not the
general trend.
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Figure 5.1: Round 1 parameter sets performance on the diverse benchmark. The perfor-
mances on each individual benchmark are shown as histograms. In order from
left to right and top to bottom, the x axis represents the Pearson correlation
between protein experimental B-factors and ENCoM Entropic Signature, the
root-mean-square error (RMSE) on predicted ∆∆G of folding upon mutation,
cumulative overlap at 5% non-trivial normal modes for protein conformational
change prediction, Pearson correlation between RNA experimental B-factors
and ENCoM Entropic Signature, normalized cumulative overlap (NCO) at
5% non-trivial normal modes for RNA NMR ensemble structural variance
prediction, cumulative overlap at 5% non-trivial normal modes for RNA confor-
mational change, and NCO at 5% non-trivial normal modes for RNA-protein
complexes NMR ensemble structural variance prediction.

Figure 5.3 gives a more detailed view of how the performance varies across each
pair of benchmarks. This detailed view reveals that despite negative covariance
between some pairs of benchmarks, such as the protein B-factors and the three
RNA-only benchmarks, a combination of parameters leading to high performance
across both benchmarks can still be found in all cases. The performance of the
optimal parameter set is indicated by red dots, highlighting the fact that a rescaled
Z-score close to 1 is attained for all benchmarks with the exception of the RNA
B-factors prediction benchmark. For example, despite a general inverse correlation
between performance across the RNA-only and protein B-factors benchmarks,
parameter sets exist that give rise to rescaled Z-scores close to 1 for both metrics.
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Figure 5.2: Round 1 covariance between benchmarks. The Z-score covariance between
each pair of benchmarks is shown as a half-matrix. For the protein ∆∆G of
folding benchmark, the Z-score of the negative RMSE (NRMSE) is used in order
for positive Z-score to represent better performance. To avoid redundancy, the
bottom half and the diagonal of the matrix are colored in gray.

Again, the exception is the RNA B-factors benchmark which have a rescaled Z-score
of 0.32 using the best parameter set.

75



Figure 5.3: Round 1 detailed performance across benchmark pairs. For each pair of
benchmarks, the rescaled Z-scores across all parameter sets are plotted against
each other. In the case of the protein ∆∆G prediction benchmark, the rescaled
Z-score of the negative RMSE (NRMSE) is plotted, as a lower RMSE value
represents higher performance. The performance of the optimal parameter set
found is denoted with red dots and the performance of the original ENCoM
parameter set is denoted with red crosses.

5.2 round 2 parameter search

For the second round of parameter search, we started with the optimal set of
parameters from round 1, which is shown in Table 5.3. In order to both perform
a finer search in the vicinity of these parameters and allow for the potential
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widening of the gap between the smallest and largest values, the second ensemble
of parameter sets was generated by multiplying each parameter from the round
1 set by the following powers of 2: [0.125, 0.25, 0.5, 1, 2, 4, 8]. Since there are 7

combinations for every parameter, the exhaustive enumeration of the parameter
sets gives 117 649 sets. After removal of duplicate ratios, we are left with 70 992

parameter sets to test, for a total computational cost of 79 274 core-hours, or 9.1
core-years.

Figure 5.4: Round 2 parameter sets performance on the diverse benchmark. The per-
formances on each individual benchmark for the second round of parameter
search are shown as histograms, as in Figure 5.1 for the first round.

The optimal parameter set for round 2 is given in Table 5.3. Both the maximum
and minimum multipliers are part of the transformation from round 1 optimal
parameters to round 2 optimal parameters. Indeed, α2 went from 10 000 to 80 000

while σ− went from 0.1 to 0.0125. However, the smallest parameter from round
1 (α4) was multiplied by 8, meaning that the gap between smallest and biggest
parameter value was not maximally widened. These results prompted us to run a
last round of parameter search, again with multipliers spanning 7 log2 orders of
magnitude. We hypothesized that the parameter values should change less as part
of this last round and that the gap should not widen significantly between minimal
and maximal parameter.
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Figure 5.4 illustrates the performance across the seven benchmarks for all round 2

parameter sets, with lines indicating the performance from the original parameters,
the optimal round 1 parameters and the optimal round 2 parameters.

Figure 5.5: Round 2 covariance between benchmarks. The Z-score covariance between
each pair of benchmarks for the second round of parameter search is shown as
a half-matrix, as in Figure 5.2 for the first round.

Interestingly, σ+ and σ− got respectively multiplied by 8 and 0.125 compared to the
starting parameter set, which corresponds to the largest and smallest multipliers
tested. This reinforces the notion that the capturing of localized, all-atom interac-
tions between complementary atom types is part of what constitutes ENCoM’s
performance edge.

Figure 5.5 illustrates the covariance matrix for the seven benchmarks across the
round 2 parameter sets. A striking feature from this matrix is the disappearance
of strong negative covariance between the protein B-factors prediction benchmark
and the three RNA-only benchmarks. This might be explained by the overall higher
performance of the parameter sets tested in round 2, as they are generated across a
much smaller range of values around the optimal set from round 1.
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Figure 5.6: Round 2 detailed performance across benchmark pairs. As in Figure 5.3, the
rescaled Z-scores across all parameter sets are plotted against each other, the
performance of the optimal parameter set found is denoted with red dots and
the performance of the original ENCoM parameters with red crosses.

The detailed performance across benchmark pairs for round 2 is outlined in
Figure 5.6. As in round 1, the RNA B-factors benchmark suffers a big gap between
the maximal performance and the performance of the optimal parameter set, with a
rescaled Z-score of 0.311. In addition, the RNA overlaps benchmark has the lowest
rescaled Z-score at 0.242. However, this is probably due to the fact that almost all
parameter sets tested in round 2 have excellent performance on this benchmark,
with mean cumulative overlap of 0.71 at 5% nontrivial normal modes. For reference,
the cumulative overlap is a value between 0 and 1 which describes how well a
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set of normal modes can capture a conformational change (see Section 4.5 for
more details). A value of 0.71 means that the ensemble of normal modes can
deform the starting conformation towards the target conformation and reduce the
RMSD between the two by 71%. Almost all parameter sets tested in round 2 have
a cumulative overlap above 0.65 for the RNA overlaps benchmark, as is apparent
in Figure 5.4. Thus, the rescaled Z-score for this benchmark is to be taken with a
grain of salt, as the variation in performance is very slight. Moreover, the optimal
parameter set still performs better than the average set tested, despite a tiny loss in
performance compared to the optimal round 1 set (0.715 vs 0.718 for round 1).

5.3 round 3 parameter search

Figure 5.7: Round 3 parameter sets performance on the diverse benchmark. The perfor-
mances on each individual benchmark for the third round of parameter search
are shown as histograms, as in Figure 5.1 for the first round.

The third and final round of parameter search was performed in the same fashion
as the second round, starting from the optimal round 2 parameters and applying
the following multipliers: [0.125, 0.25, 0.5, 1, 2, 4, 8]. As for round 2, the exhaustive
enumeration gives 117 649 parameter sets. However, since both round 2 and round 3

parameter sets were generated with multipliers that are powers of 2, there are more
redundant parameter ratios in the round 3 ensemble of parameter sets because
some were already tested in round 2. After removal of all duplicate ratios, we are
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left with 54 019 parameter sets to test, for a total computational cost of 60 321

core-hours (6.9 core-years).

Figure 5.8: Round 3 covariance between benchmarks. The Z-score covariance between
each pair of benchmarks for the third round of parameter search is shown as a
half-matrix, as in Figure 5.2 for the first round.

Strikingly, the optimal parameter set emerging from round 3 is the same as the
optimal round 2 set, meaning that no other combination tested leads to a higher
rescaled Z-score sum than the 4.3 value it obtains. Figure 5.7 illustrates the per-
formance of the round 3 parameter sets across the benchmarks, Figure 5.8 shows
the Z-score covariance matrix for round 3 and Figure 5.9 gives the detailed perfor-
mances for benchmark pairs.

Since no change was observed in the optimal parameter set, we decided to stop the
parameter search with this third round and use the optimal parameter set from
rounds 2 and 3 as the new ENCoM parameters.
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Figure 5.9: Round 3 detailed performance across benchmark pairs. As in Figure 5.3, the
rescaled Z-scores across all parameter sets are plotted against each other, the
performance of the optimal parameter set found is denoted with red dots and
the performance of the original ENCoM parameters with red crosses.

5.4 performance across all search rounds

In order to further investigate our initial question of whether a single parameter
set can lead to good performance across all benchmarks, we decided to combine all
parameter sets tested across the three search rounds and analyze how performance
covaries between benchmark pairs. This combination of all results means that a
wider range of values is obtained for every benchmark, as the wide search of
the first round led to poorer performances on average. However, the presence of
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more parameter sets leading to good performance also prevents the driving of the
covariance by these poorer parameter sets from round 1.

Figure 5.10: Combined covariance between benchmarks. The Z-score covariance between
each pair of benchmarks across all rounds of parameter search is shown as a
half-matrix, as in Figure 5.2 for the first round.

Figure 5.10 gives the covariance matrix for the combined results from all search
rounds. Strikingly, almost all benchmark pairs exhibit high covariance, with the
exception of the RNA B-factors benchmark with all other benchmarks. Moreover,
the protein B-factors benchmark exhibits the second lowest set of covariances,
and the only negative covariance happens between RNA and protein B-factors
benchmarks. These observations further reinforce the notion that a tradeoff has to
be made in parameter space between the prediction of experimental B-factors and
the prediction of both large conformational changes and the effects of mutations.

Figure 5.11 illustrates the detailed performance across the benchmark pairs, com-
bining results from the three search rounds. Since round 1 led to the largest
performance variance, the shapes of the distributions are closely related to those
observed in Figure 5.3. However, the red dots now represent the performance of
the new ENCoM parameters (optimal from rounds 2 and 3) and more density is
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Figure 5.11: Combined detailed performance across benchmark pairs. As in Figure 5.3,
the rescaled Z-scores across all parameter sets are plotted against each other,
the performance of the optimal parameter set round rounds 2 and 3 is denoted
with red dots and the performance of the original ENCoM parameters with
red crosses.

observed in the higher range of performance, due to the addition of the higher
performance round 2 and round 3 results.
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5.5 discussion

The parameter search across the seven diverse benchmarks presented here has
allowed the identification of a parameter set leading to superior performance
across all benchmarks when compared to the original ENCoM parameters. We
have thus redefined the ENCoM parameters in light of this and will be using
these improved parameters for the rest of the present thesis. More importantly, the
present chapter highlights that a single set of parameters leads to high performance
for conformational change prediction of RNA, protein and RNA-protein complexes.
This was an important question we initially raised as part of the adaptation of
ENCoM for RNA [157], as we hypothesized that a tradeoff could exist between
performance on these two types of biomolecules. Indeed, the use of three masses
per nucleotide introduces ramifications in the connectivity of the masses in the
system, which do not exist in the case of proteins. However, it seems that such
a tradeoff is not necessary after all and that in the case of ENCoM parameter
optimization, one can have their cake and eat it too.

There are nonetheless some sacrifices to be made, particularly when it comes to the
prediction of experimental B-factors. This comes as no surprise and was reported
as part of the original ENCoM publication [27]. Moreover, the biggest tradeoff
comes from the RNA B-factors prediction benchmark. We already observed that
some very low, sometimes negative correlations were present in our dataset of
high-resolution RNA crystal structures used for this benchmark [157]. These were
present not only in the case of ENCoM, but also for the other two models tested in
that work, a power-dependent ANM and a cutoff-based ANM. This observation
could mean that some artifacts are present in the dataset used for this benchmark.
However, the chosen parameter set still achieves performance in the upper range
for the RNA B-factors benchmark. This reinforces the idea that ENCoM, like all
coarse-grained ENMs, is a very robust model. The artifacts are averaged out and
both the original parameters and the new optimal set perform strikingly well across
all pairs of benchmarks, as is apparent in Figure 5.11.

It would have been interesting to include a dataset of dynamics-function relation-
ships in the set of diverse benchmarks, for example a training and testing set pair
from one of the three chapters that will follow. However, the computational cost
of doing this across the more than 200 000 parameter sets test would have been
very high, at least doubling the amount of computation required just to compute
the Dynamical Signatures. For example, the miR-125a training set from the hard
benchmark presented in Chapter 6 contains 1849 sequence variants, and it takes
around 3 seconds CPU time to compute the Dynamical Signature from one variant.
The inclusion of this dataset as an additional benchmark would thus have more
than doubled the time needed to compute the benchmarks for one parameter set,
adding approximately 92 minutes to the 67 taken by the seven actual benchmarks.
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More importantly, the testing of so many parameter sets necesarily introduces
noise, and thus the machine learning algorithms trained on the Dynamical Signa-
tures could experience performance boosts when the noise patterns aligns with
the relevant data by chance. The benchmarks presented here are shielded from
this effect because of the large amount of diverse structures that constitute every
benchmark. Nonetheless, it will be very interesting to see how the new parameters
affect the performance of ENCoM-DynaSig-ML on the miR-125a hard benchmark,
as we already reported the performance of the original parameters on this exact
dataset [157].

The goal of the parameter search was mainly to investigate the performance
covariation across the different benchmarks, and the finding of significantly better
ENCoM parameters as a result comes as a welcome surprise. The assumption
for the whole parameter search was that the performance landscape is relatively
smooth, however this may not be the case. In the future, it would be interesting to
investigate this question by using more sophisticated optimization methods, such
as genetic algorithms [170] or Monte Carlo optimization [171].
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6
M I R - 1 2 5 A M AT U R AT I O N E F F I C I E N C Y

The present chapter is dedicated to our first dynamics-function case study, in
which we investigate dynamical features of microRNA (miR) biogenesis from a
dataset of experimental maturation efficiencies of over 26 000 sequence variants of
pri-miR-125a. As mentioned in Chapter 1, we refer the reader to Section 1.3.1 for
the detailed biological background concerning miR biogenesis.

It is also in the present chapter that we investigate the potential performance
increase that can be obtained by using multilayer perceptrons (MLPs) instead of
LASSO regression as the machine learning backend of the ENCoM-DynaSig-ML
pipeline. As detailed in Section 3.2, LASSO regression allows relatively agressive
feature selection and assumes linear independence between the predictor variables,
both desired properties for the biological interpretation of the trained model. On
the other hand, MLPs can model complex relationships between input variables,
hence if such relationships exist they should lead to a gain in performance over
LASSO.

As a result of our analyses, we end up selecting LASSO regression as the desired
ML backend for the ENCoM-DynaSig-ML pipeline for Chapter 7 and Chapter 8.
However, as will be discussed, we do not reject the possibility to use other ML
backends, including neural networks. We simply have higher confidence in the
generalizability of the pipeline with LASSO backend to sequence variants with
higher numbers of mutations than what was seen in training, and this high-
throughput prediction capability is one of the advantages of ENCoM-DynaSig-ML.

Ultra-high-throughput predictions of 30 million pri-miR-125a theoretical sequence
variants will be shown towards the end of the results section, along with sequence
variants specifically optimized to have given properties with the use of a simple
asexual genetic algorithm. The LASSO models resulting from our analyses of µ-
opioid receptor activation in Chapter 7 and VIM-2 lactamase catalytic efficiency in
Chapter 8 could be applied in the same way to virtual screening experiments and
the prediction of optimized enzyme variants, respectively. However, we only show
predictions in the present chapter for two reasons. First, since the validation of these
predictions is beyond the scope of the thesis, it would not add much to show more
unvalidated predictions. Second, we have special interest in miR biogenesis and
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Mélanie Lemaire, a fellow PhD student from the Major group, has developed an
experimental setup to measure the maturation efficiency of pri-miR-125a variants
from cellular assays. She is working on predictions shown in the current chapter
and we expect the results of these experiments to be submitted to publication
during 2023.

The chapter is divided in three sections: first the methodology pertaining to
the specific dataset, modeling of pri-miR-125a in 3D, exploration of different ML
backends and ultra-high-throughput will be outiled; then the results and discussion
specific to microRNA maturation will follow.

6.1 methodology

The next subsections will first outline the methodology associated with the ex-
perimental miR-125a maturation dataset: the selection of sequence variants, the
construction of the different benchmarks for evaluating the machine learning mod-
els’ performance and the reduction of maturation efficiency measurements to a class
prediction problem. We will then detail our approach to modeling pri-miR-125a in
3D, including the selection of the most relevant MC-Sym 3D model, followed by the
exploration of thermodynamic scaling factors for the Entropic Signatures and the
optimization of MLP architectures. Finally, the ultra-high-throughput prediction
methodology will be described and the results will follow.

6.1.1 Dataset of miR-125a mutations

The Fang et al. dataset of high-throughput miR-125a maturation efficiency contains
all possible mutations for thirteen 6-nucleotide boxes plus all fifteen possibilities at
the 2-nucleotide bulge, which in addition to the major allele sequence (WT) amount
to 53 251 sequence variants (Figure 6.1A). We submitted all sequence variants to 2D
structure prediction using the accelerated MC-Flashfold implementation [172] of the
MC-Fold software [148]. We found that 29 478 of them adopt WT 2D minimum free
energy (MFE) structure (Figure 6.1A). Because NMA assumes the input structure
is at equilibrium and thus all variants tested need to share a close 3D structure, we
restricted the analysis to these 29 478 sequence variants. Furthermore, we realized
that the first eight mutated boxes account for the vast majority (over 90%) of these
variants that adopt the WT MFE structure. The proportion of mutations at each
position leading to the WT MFE structure is plotted in Figure 6.1B, showing a very
clear drop in the proportion of sequence variants adopting the WT MFE structure
beyond box 8. We thus further restricted our analysis to the set of 26 960 variants
with WT MFE structure from boxes 1-8 to have higher confidence in a common 3D
structure for all variants.
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6.1.2 Sequence redundancy: hard benchmark

Since the mutations were performed exhaustively for each 6-nucleotide box, there is
a great deal of sequence redundancy in the dataset. For example, every of the three
possibilities of mutation at a given position appears in as much as 1024 sequence
variants in the full dataset. To prevent the learning of sequence features by the
ML models, which could be guessed as a result of ENCoM’s sequence-sensitive
potential function (Section 3.1), we contructed a hard benchmark which ensures
all mutated positions in the testing set were never mutated in the training set. In
that hard benchmark, the middle base pair of mutated boxes 1-8 was reserved for
the testing set while all sequence variants affecting only the bottom and/or top
base pairs of every box were selected for the training set (illustrated in Figure 6.1C).
This left us with 1849 sequence variants in the training set and 116 in the testing
set.
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Figure 6.1: miR-125a 2D MFE structure, mutation boxes, hard benchmark sets and 3D
structure. A) The 14 boxes that were each exhaustively mutated in the Bartel
study, shown on the MC-Fold predicted WT MFE structure. B) Proportions of
sequence variants containing each position which adopt the WT MFE structure.
C) Positions in the hard benchmark testing set shown in red, and positions
in the training set in blue. D) The medoid 3D miR-125a structure from the 67

structures predicted by MC-Sym. Taken from our own work [157].
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6.1.3 Class prediction problem

In some respects, the catalytic efficiency of pri-miR cleavage by the Microprocessor
can be seen as a binary classification problem. Indeed, the set of transcripts which
have the possibility of being cleaved to become mature miR is very well defined.
Thus, the Microprocessor has to somehow "decide" whether to cleave or not
when it encounters RNA hairpin structures in the nucleus, which are extremely
abundant and among which microRNAs are relatively rare [40]. Moreover, the
high-throughput sequencing approach used in the generation of the Fang & Bartel
dataset can lead to noise regarding the precise maturation efficiency recorded.
Reducing the problem to classification can help mitigate some of that noise.

We decided to reduce the data to binary classes using the following scheme:
variants with maturation efficiencies less than 0.5 (half the WT efficiency) were
deemed unproductive, and variants with maturation efficiencies higher than 0.8
were deemed productive. In the case of the hard benchmark, the testing set contains
47 productive and 29 unproductive variants.

Since we are interested in predicting theoretical variants with very high and
very low maturation efficiencies, we still train all the machine learning models
tested in this chapter to predict a scalar maturation efficiency. We then use these
predicted efficiencies to generate receiver operating characteristic (ROC) curves and
precision-recall (PR) curves for the binary class prediction problem and compute
the area under the curve as the performance metric in both cases (AU-ROC and
AU-PR, defined in Section 4.4.2). This reduction to classification is useful in the
case of the hard benchmark described above and the mutated boxes benchmarks
described below, because they represent hard tasks where the positions which are
mutated in the testing set are never mutated in the training set. For the benchmarks
which allow sequence redundancy, we prefer the classical predictive coefficient of
determination (predictive R2) as it is directly interpretable as the proportion of
variance explained by the model.

6.1.4 Mutated boxes benchmarks

Another possibility to remove sequence redundancy between training and testing
sets is to take all variants from a single mutated box as the testing set, and all
variants affecting the other 7 mutated boxes in our filtered dataset as the training
set. Not only does these 8 additional benchmarks contain no sequence redundancy,
they also test the models’ abilities to capture longer-range effects. Since the most
apparent effects of a mutation tend to be local, the most important features learned
by the model will tend to be located on the 7 boxes which are unaffected in
the testing set. Thus, these 8 benchmarks can be used to investigate the effect of
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different β values for the EntroSigs and regularization strengths on the models’
abilities to capture long-range effects.

Table 6.1: Mutated boxes, hard benchmark and whole dataset statistics. The number of
sequence variants in the training set, testing set, testing set restricted to binary
classification (test classes), processed variants (maturation efficiency above 0.8)
and unprocessed variants (maturation efficiency below 0.5) is given. The numbers
differ from exhaustive enumeration of sequence variants since the variants are
filtered to adopt the WT 2D MFE structure. For the two classes, the percentage
of the binary classification test set they represent is given in parentheses. For the
whole dataset, the testing set size column is used and the training set column is
left empty.

Dataset Train
size

Test size Classes
size

Processed
variants

Unprocessed
variants

Box 1 24 418 2543 2079 183 (9%) 1896 (91%)

Box 2 23 001 3960 3204 580 (18%) 2624 (82%)

Box 3 23 132 3829 3629 38 (1%) 3591 (99%)

Box 4 23 259 3702 3208 624 (19%) 2584 (81%)

Box 5 23 003 3958 2925 1311 (45%) 1614 (55%)

Box 6 23 825 3136 2803 66 (2%) 2737 (98%)

Box 7 24 261 2700 2396 294 (12%) 2102 (88%)

Box 8 23 829 3132 1885 1197 (64%) 688 (36%)

Whole dataset — 26 960 22 129 4293 (19%) 17 836 (81%)

Hard
benchmark

1849 116 76 47 (62%) 29 (38%)

Table 6.1 gives the number of productive and unproductive variants for each of the
8 boxes benchmarks, as well as for the hard benchmark and for the whole dataset
of 26 960 variants from the first 8 mutated boxes with WT 2D MFE. As was already
observed by Fang and Bartel [13], some boxes are much more tolerant of mutations
than others. For instance, box 3 corresponds to the mismatched GHG motif and is
very intolerant of mutations, hinting at the importance of that specific motif.

6.1.5 5-fold cross-validation

In order to explore the performance gains to be made when there is sequence
redundancy between training and testing sets, we performed 5-fold cross-validation
of the entire dataset of variants from the first 8 boxes with WT 2D MFE. To ensure
uniform sampling of the mutated boxes, all variants affecting every individual box
were split randomly in 5 sets, and the combination of the nth set from every box
constituted the nth testing set for this cross-validation.
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6.1.5.1 Sequence vectors

Since there is now sequence information shared between training and testing sets,
we test the performance of sequence vectors for this 5-fold cross-validation. We
simply construct the vectors as 1-hot encodings of the variant sequence: each
position is represented by four values, of which three are set to -1 and one is set to
1. The first is set to 1 if the nucleotide is A, the 2

nd if it is C, the 3
rd for a G and

the last for a U. We then standardize these sequence vectors in the same fashion as
we do for all predictors used to train ML models. Since the length of our modeled
pri-miR-125a is 86 nucleotides, the sequence vectors are of length 344.

6.1.5.2 Inverted dataset

Our observations of MLP performance patterns on the 5-fold cross-validation led
us to hypothesize that the models could somehow memorize some important
sequence patterns. In order to test this hypothesis, we constituted another training-
testing pair with sequence redundancy, which we call the inverted dataset because
the training set is much smaller than the testing set. This inversion was done
on purpose as we wanted to see whether the models could classify the variants
containing multiple mutations after being trained on variants containing few
mutations. Precisely, the training set contains all variants with at most 2 mutations,
while the testing set contains all variants with 3 or more mutations, again restricting
the analysis to the subset of variants already filtered for sharing the WT 2D MFE
and affecting only the first 8 boxes. This selection scheme leads to a training set of
size 1094 and a testing set of size 25 866.

6.1.6 MLP architectures optimization

When trained on P input predictors, a multilayer perceptron (MLP) with N hidden
layers all of size S will have a number of free parameters given by (already defined
in Equation 3.6):

Fparams = 2 + S ∗ Pinput + 2 ∗ S +
Nhidden

∑
i=2

[
S2 + S

]
(6.1)

For the 5-fold cross-validation, the training sets all contain 21 558 observations,
thus 21 557 degrees of freedom (DOFs). We restrict MLP architectures for this test
to architectures with a number of free parameters at most 75% of the training set
DOFs, in order to prevent the learning of noise patterns. An observation that many
studies have made is that provided a sufficient number of neurons in the hidden
layer(s), MLPs rarely perform better with more than one or two hidden layers [173].
Thus, we tested architectures with 1 or 2 hidden layers, with equal sizes of 2, 5, 10,
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20, 30, 40, 50 or 60 hidden neurons. We rejected the combinations which generated
more free parameters than our cutoff of 75% the number of training DOFs.

For the inverted dataset, the small training set size of 1094 restricts the number of
hidden neurons we can use in the first layer without the free parameters vastly
exceeding the training DOFs. We this reason, we made two modifications to the
architectures tested: we allowed the free parameters to go up to 200% the training
DOFs, and we tested the inclusion of more hidden layers since we had to restrict
the layer size to a maximum of 8 neurons. We thus tested all combinations of 1

to 5 hidden layers, each comprising 1 to 8 neurons. Again, we did not test the
combinations leading to more free parameters than our cutoff of 200% the training
DOFs.

6.1.7 pri-miR-125a structure prediction

Until recently, there were no solved 3D structures of pri-miRs despite great interest
from the community to understand how their structure varies across miR families
and what features are necessary for their cleavage by the Microprocessor [40, 43,
174]. The first glimpse into pri-miR structure came in 2020 when Jin et al. published
the cryo-EM structure of pri-miR-16-1 in complex with Drosha [175]. Their work
illustrates the detailed interaction of Drosha with the pri-miR, with the cleavage
site positioned close to the catalytic residues but the pri-miR still intact through the
use of an inactivated Drosha variant. However, a 26 nucleotide region comprising
the apical loop is missing from the structure. Nonetheless, this structure would
represent a great starting point for is silico mutagenesis in the same manner as
outlined in the present chapter in the case of pri-miR-125a. We decided to use
predicted 3D structures of pri-miR-125a for the following reasons:

1. We have special interest in miR-125a because of the population SNP in
its sequence leading to higher risks of breast cancer. Previous work from
our group uncovered the correlation between pri-miR-125a 2D structural
dynamics and the processing efficiency of 15 sequence variants at the SNP
position [14].

2. Because of this interest, we currently have the experimental setup to measure
maturation efficiency of miR-125a variants using northern blot [176]. The
predictions made at the end of the present chapter are currently being tested
in the lab and while outside the scope of the present thesis, we expect to have
the results in 2023.

3. pri-miRs adopt simple stem-loop structures, and in the case of pri-miR-
125a it is striking that over half sequence variants from the Fang and Bartel
experimental dataset have the same predicted 2D MFE structure. We thus
have confidence in 3D RNA structure prediction programs to generate models
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that are close to reality. Moreover, the most complex part of pri-miRs is the
apical loop, which would have to be modeled in any case as it is missing
from the cryo-EM structure.

4. Lastly, to the best of our knowledge, pri-miR-16-1 is the only pri-miR for
which a partial 3D structure is known. As part of future work, we are
interested in applying the methods developed in the present chapter to study
the structural dynamics across human miR families. In order to do so, their
3D structures will have to be modeled and thus the present chapter can be
seen as validation that our modeling protocol with the MC-Fold | MC-Sym
pipeline [148] is sufficient for such a study.

To generate a 3D model of pri-miR-125a, MC-Sym [148] was run using the WT
sequence and 2D MFE structure as input, with default parameters. This generated
67 predicted 3D structures, of which the medoid structure is shown in Figure 6.1D.
In the MC-Sym algorithm, the free energy of folding is set by the preliminary
prediction of nucleotide cyclic motifs, which happens at the 2D level in the MC-
Fold algorithm. The order of the 67 models thus does not reflect any predicted
biophysical property and simply corresponds to the order in which they are
generated by the search procedure [148].

6.1.8 MC-Sym model selection

Among the 67 pri-miR-125a models predicted with MC-Sym, some are almost
guaranteed to be closer to the physiological equilibrium structure than others.
Under the hypothesis that structural dynamics play a role in pri-miR cleavage
by the Microprocessor, the hard maturation benchmark can be used to select the
MC-Sym model which leads to the best predictive capabilities as the closest one
to a biologically relevant state. The training set size of the hard benchmark is
relatively modest at 1849 sequence variants, so we restrict the ML backend of the
ENCoM-DynaSig-ML pipeline to LASSO regression for this 3D model selection
step.

6.1.9 Entropic Signatures scaling factors

In order to identify an interesting range of values for the β thermodynamic scaling
factor of the Entropic Signatures, we computed them using the medoid MC-Sym
model (model 41) for the widest possible range of values, using a logarithmic
search in either direction until the output became constant.

Figure 6.2 illustrates the result of this search of scaling factors. As already discussed
in Section 4.3.3, lower scaling factor values correspond to higher temperatures and
thus more even distribution of vibrational entropy across all normal modes. We
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Figure 6.2: Entropic Signatures for the medoid pri-miR-125a 3D structure across a wide
range of scaling factors. The relative fluctuation is shown for every bead in the
system (y axis) across a logarithmic search of thermodynamic scaling factors.
The Entropic Signatures are linearly rescaled so that the average fluctuation is
always 1. The scaling factor leading to the highest correlation with the mean-
square fluctuations (e2.8) is shown with a red dashed line.

identify the range of scaling factors from e−10 to e5 as capturing all essential features,
from an almost constant entropic signature at the lower end to a dominance of the
first normal mode at the higher end.

Figure 6.3 shows the contributions to vibrational entropy for all normal modes,
across the selected range of scaling factors. Indeed, we can see that the highest
values lead to a dominant entropic contribution from the slowest mode, while the
lowest values lead to an almost constant contribution across the whole range of
normal modes.

96



Figure 6.3: Vibrational entropy proportions for pri-miR-125a across selected scaling
factors. A) The relative entropic contribution of each normal mode is given,
rescaled so that the first nontrivial mode has a contribution of 1. The mode
indices are also rescaled from 0 to 1 so that the proportion of total internal
space they represent is directly represented on the axis. B) Same as A), but
cumulative entropy is shown, rexcaled this time to sum to 1.

6.1.10 Ultra-high-throughput maturation efficiency prediction for pri-miR-125a variants

After the analysis across all benchmarks, we selected the LASSO model trained
on MC-Sym model 61, β = e−1.5, λ = 2−7 as the most promising and most
generalizable model. This model was used to generate ultra-high-throughput
predictions of maturation efficiency for pri-miR-125a sequence variants.
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6.1.10.1 Random sequence variants

We first interrogated the model on randomly generated pri-miR-125a sequence
variants spanning the whole sequence. These random variants were generated with
a uniform distribution of 3-12 affected base pairs. For each affected base pair, one of
the 15 mutated possibilities was randomly selected. In order to maintain the ability
to model the random variants as base substitutions on the MC-Sym 3D model,
we pre-filtered the random variants through MC-Flashfold and kept those which
adopted the WT 2D MFE structure. We binned the found sequences according to
their folding energy in three classes: low folding energy, medium folding energy
and high folding energy. We kept 10 million random sequences for each of these
bins, for which we ran the LASSO model outlined above on the combination of
ENCoM EntroSigs at β = e−1.5 and MC-Fold enthalpy of folding, for a total of 30

million evalutations of random sequence variants.

6.1.10.2 Asexual genetic algorithm

In order to find theoretical variants with either very high or very low maturation
efficiencies, we came up with a simple asexual genetic algorithm (GA) outlined in
Listing 6.1.

Listing 6.1: Single iteration of the asexual genetic algorithm for maturation efficiency
optimization

enthalpies = []

for variant in n_variants_folded:

n_mutations = uniform(min_mutations, max_mutations)

variant = mutate_random_positions(starting_sequence, n_mutations)

enthalpies.append(MC-Flashfold(variant))

keep Y variants with top/bottom/specific enthalpy

efficiencies = []

for variant in top_variants_enthalpy:

efficiencies.append(evaluate_efficiency(variant))

keep X variants with top/bottom efficiencies

The parameters of the GA are thus the range of random number of mutations
introduced, the number of random variants folded, the number of variants fully
evaluated by computing the ENCoM EntroSig and computing the predicted matu-
ration efficiency from the LASSO model selected, and the number of top or bottom
variants, according to maturation efficiency, to keep for the next generation. Note
that this simple algorithm will tend to continuously accumulate mutations along
a specific path, so we run it repeatedly in order to obtain diversified sequence
variants.
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6.2 results

The following subsections will first present the selection of the most relevant
MC-Sym pri-miR-125a 3D model using the hard benchmark, the performance
on the 8 boxes benchmarks and the features learned by the best LASSO models.
Then, the 5-fold cross-validation will be presented along with the different MLP
architectures tested and the preformance of the sequence vectors, followed by the
performance on the inverted dataset. Finally, ultra-high-throughput maturation
efficiency predictions of upwards of 30 million theoretical sequence variants will
be made using the most generalizable model found and will be followed by the
presentation of variants optimized through our simple asexual genetic algorithm.

6.2.1 MC-Sym model selection

While our computational pipeline is fast enough to be applied to tens of millions of
pri-miR-125a variants, as presented later in Section 6.2.4, we decided to first select
an MC-Sym model using performance on the hard benchmark as our criteria. The
reason for selecting a single 3D model is to prevent the finding of good statistical
models in the later analyses by chance, due to the high number of combinations
that would be tested if we kept all MC-Sym models. Moreover, it is expected
that a small subset of the predicted MC-Sym models better represent the real
equilibrium conformation of pri-miR-125a, and so we can take advantage of the
experimental data to look for the optimal 3D model. Finally, we want to find
parameter combinations that generalize beyond sequence, hence the use of the hard
benchmark for this selection step. Had we used a training/testing split containing
redundant sequence information, it could have led to good performance simply
due to the statistical models inferring sequence from the Dynamical Signatures (as
ENCoM is sensitive to sequence). However, the training set size is relatively modest
for this hard benchmark, so we restricted ourselves to LASSO regression for the
model selection step. At this size, an MLP with just one hidden layer of 8 neurons
would have around the same number of free parameters as the degrees of freedom
in the training set, so it could pick up noise patterns and overfit (the input layer
would be around 1/8 the training set size, with 257 Dynamical Signature positions
and the MC-Fold enthalpy).

On its own, the MC-Fold enthalpy of folding already gives statistically significant
classification of the variants in the hard benchmark. Figure 6.4 shows the classi-
fication performance when training a simple linear regression model to predict
maturation efficiency from the enthalpy of folding alone. Since there is class imbal-
ance in our classification problem and the testing set size is modest, we performed
random simulations to assess the significance of the MC-Fold-based classifier. MC-
Fold performs better than the best random classifier from 1000 iterations, thus its
performance is statistically significant at the p < 0.001 level.
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Figure 6.4: Classification performance using the MC-Fold enthalpy of folding alone.
A) The maturation efficiency for the 76 variants in the class prediction hard
benchmark is shown as a function of the enthalpy of folding predicted by
MC-Fold. There are 47 variants in the "processed" class (measured efficiency
above 0.8) and 29 variants in the "unprocessed" class (measured efficiency below
0.5). B) Simulated distributions showing area under the receiver operating
characteristic (ROC) and precision-recall (PR) curves. The distributions result
from 1000 replicates of fitting a linear regression model to the maturation
efficiency values in the training set using normally distributed noise as the
predictor variable. The AUCs are computed after predicting 76 values from
each random regression model and using these to predict the classes. The
MC-Fold performance is shown with lines. In both cases, MC-Fold outperforms
the best random model from the 1000 replicates, which means its performance
is statistically significant at the p < 0.001 level.

For every of the 67 MC-Sym pri-miR-125a structures, we generate Entropic Signa-
tures with 65 different values for the β thermodynamic scaling factor, from e−10

to e6 in log increments of 0.25. For each of these 4355 combinations, we test 16

values for the regularization strength of the LASSO model, from 2−15 to 1 in log2

increments. The predictor variables for every LASSO model are the 257 positions
of the Entropic Signatures plus the MC-Fold folding enthalpy. Since 4355 combi-
nations of 3D model and β scaling factor are tested, improvement in performance
relative to the MC-Fold enthalpy alone could due to chance. Thus, in order to
assess whether the addition of the Entropic Signatures leads to a significant gain in
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Figure 6.5: Best AU-ROC across 67 MC-Sym models for the hard benchmark. The area
under the receiver operating characteristic curve (AU-ROC) is shown for every
of the 67 models as a function of the β scaling factor. The red line denotes
the threshold for statistical significance at the p < 0.01 level, according to our
simulations. For every combination of MC-Sym model and β value, the best AU-
ROC from the 16 regularization strengths is shown. The detailed performances
are given in Figure 6.6. The best performance of 0.947 AU-ROC is achieved
by MC-Sym model 61 at β = e−2.5 and regularization strength of 2−10. This
performance is significant at the p < 0.001 level.
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performance when combined with MC-Fold, we simulated for 1000 replicates the
training of 4355 sets of 16 LASSO models (one for each regularization strength),
with 257 predictors taken from a random normal distribution and 1 predictor being
the true predicted MC-Fold energy. For every replicate, we select the best AUC-
ROC and AUC-PR obtained. The values obtained impose a stringent threshold for
significant improvement relative to MC-Fold alone, equivalent to the Bonferroni
correction [177]. In truth, this is probably a very conservative threshold, as the 65

scaling factors tested for every MC-Sym model give rise to related EntroSigs (see
Figure 6.2).

Figure 6.5 gives the AU-ROC obtained at the optimal regularization strength from
the range tested for every combination of MC-Sym model and β scaling factor. A
red line shows the stringent threshold for significant improvement over MC-Fold
enthalpy alone at the p < 0.01 level. Model 61 exhibits a striking performance peak
of 0.947 AU-ROC at β = e−2.5 and λ = 2−10. This 0.947 has a significance value of
p < 0.001 for improvement over MC-Fold enthalpy, which is the lowest value our
simulations can detect.

Figure 6.6 shows the detailed AU-ROC values obtained for every MC-Sym model
and every combination of λ regularization strength and β scaling factor. Values
under the stringent threshold for significant improvement at p < 0.01 relative
to the MC-Fold enthalpy alone are shown in gray. Let us remind that according
to the Bonferroni correction, even if a single combination of parameters led to
a value above this threshold, the improvement could be considered statistically
significant as we have corrected for the number of tests performed. We can observe
that numerous such combinations lead to significant improvement. Moreover, they
seem to cluster on specific MC-Sym models and specific ranges of β scaling factor.
The highest values are reached for model 61, as described above. Furthermore,
for model 61, the parameter combinations leading to significant improvement
cluster together across a range of 5 adjacent β values, from e−2.25 to e−3.25. Similar
clustering patterns of significant improvements can be observed for other MC-Sym
models, for instance models 5, 17, 26, 29 and 31. These clustering patterns of good
performance add to our confidence that the EntroSigs do contibute significant
information to the predictions, even in the case of this hard benchmark. Indeed, if
the improvements were due to chance alone, one would expect a random pattern
of improvement across the MC-Sym models and parameter combinations.

We also investigated the area under the precision-recall curve (AU-PR) as an
additional performance metric for the classification of the hard benchmark test set.
As defined in Section 4.4.2, ROC curves only depend on positive predictions, as
they plot the true positive rate against the false positive rate, and PR curves can
be seen as complementary to the analysis since they also consider false negatives
(part of the recall definition, see Section 4.4.2.2). Figure 6.7 presents the best AU-PR
obtained for every combination of MC-Sym model and β value, again with the
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Figure 6.6: Detailed AU-ROC across 67 MC-Sym models for the hard benchmark. The
area under the receiver operating characteristic curve (AU-ROC) is shown for
every of the 67 models as a function of the β scaling factor and λ regularization
strength, only when it reaches statistical significance compared to MC-Fold
alone at the p < 0.01 level (otherwise shown in gray). The best performance of
0.947 AU-ROC is reached for MC-Sym model 61, β = e−2.5 and λ = 2−10.

threshold for statistically significant improvement compared to MC-Fold enthalpy
alone at the p < 0.01 significance level shown as a red line.
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Figure 6.7: Best AU-PR across 67 MC-Sym models for the hard benchmark. The area
under the precision-recall curve (AU-PR) is shown for every of the 67 models
as a function of the β scaling factor, in a manner similar to Figure 6.5. The best
performance of 0.969 AU-PR is achieved by the same parameter combinations
as for AU-ROC: MC-Sym model 61, β = e−2.5, λ = 2−10.

The detailed AU-PR across all parameter combinations are shown in Figure 6.8,
similarly as for the AU-ROC in Figure 6.6. Again, clusters of significant performance
appear for specific MC-Sym models, and the highest AU-PR of 0.969 is obtained
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Figure 6.8: Detailed AU-PR across 67 MC-Sym models for the hard benchmark. The area
under the precision-recall curve (AU-PR) is shown for every of the 67 models
as a function of the β scaling factor and λ regularization strength, only when
it reaches statistical significance compared to MC-Fold alone at the p < 0.01
level (otherwise shown in gray). The best performance of 0.969 AU-ROC is
reached for MC-Sym model 61, β = e−2.5 and λ = 2−10 (same combinations of
parameters as the best AU-ROC).

with model 61, β = e−2.5 and λ = 2−10. These are the same parameters that
lead to the highest AU-ROC. Thus, we selected model 61 as the most biologically
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Figure 6.9: Classification performance using the MC-Fold + DynaSig combination with
model 61. A) The measured maturation efficiency for the 76 variants in the class
prediction hard benchmark is shown as a function of the predicted maturation
efficiency using the LASSO model trained on MC-Sym model 61 Entropic
Signatures with β = e−2.5, combined with the MC-Fold enthalpy, and with
regularization strength λ = 2−10. There are 47 variants in the "processed" class
(measured efficiency above 0.8) and 29 variants in the "unprocessed" class
(measured efficiency below 0.5). B) Simulated distributions showing area under
the receiver operating characteristic (ROC) and precision-recall (PR) curves.
The distributions result from 1000 replicates of fitting 4355 linear regression
models to the maturation efficiency values in the training set using normally
distributed noise as the predictor variable and keeping the best performance.
4355 is the number of combinations of MC-Sym models and scaling factors, so
these simulations are equivalent to the Bonferroni correction. The performance
of the combination is shown with lines, significant a the p < 0.001 level. C) ROC
curves for the best model and the best random simulation. D) PR curves for the
best model and the best random simulation.

significant model from the 67 MC-Sym models. Figure 6.9 shows the classification
performance of the LASSO model trained with these aforementioned parameters.
We observe a more striking improvement over random when comparing to the
MC-Fold enthalpy alone (Figure 6.4) despite correcting for the number of tests
performed, highlighting the high complementarity of the EntroSigs and MC-Fold
enthalpy.
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Figure 6.10: MC-Sym model 61 for pri-miR-125a. The model is presented in crosseye
setero 3D view. Model 61 led to the highest classification performance for the
hard benchmark according to both AU-PR and AU-ROC. We select this model
for pri-miR-125a for all further analyses presented in this chapter.

Figure 6.10 shows MC-Sym model 61, which we select as the most biologically
relevant model according to our results on the hard benchmark. Strikingly, the 5’
end of the Y-shaped loop is in close proximity with the 2-nt bulge, hinting at this
interaction potentially playing a role in the structural dynamics of pri-miR-125a.
While the backbone might be a bit too close in this region and lead to energetic
frustration, let us remind the reader that ENCoM’s all-atom sensitivity comes from
a constrained Voronoi procedure which is robust to slight inaccuracies in the input
structure. Indeed, the same procedure is used in the FlexAID docking software,
of which one advantage is robust performance in the case of non-native docking
[178]. Thus, while further relaxation of model 61 might prove interesting, it is not
required for our analyses performed with ENCoM.

We find striking that the optimal β value is relatively low, corresponding to a high
contribution from higher-frequency normal modes and thus greater importance of
local dynamics in the EntroSigs. Since the hard benchmark was built by withholding
the central base pair from every mutated box, it makes sense that local dynamics
are favored: the model can approximate the effect of central mutations by how they
affect the dynamics of the top and bottom base pair of the same box. Since we are
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also interested in capturing long-range effects of pri-miR-125a variants, we decided
to further explore how performance responds to varying β values for the mutated
boxes benchmarks presented next.

6.2.2 Mutated boxes benchmarks

As described in Section 6.1.4, we constituted 8 train-test sets pairs by withholding
all mutations performed on one of the first 8 boxes as the testing set and using the
rest as the training set.

Figure 6.11: Performance of LASSO models on the 8 boxes benchmarks. Three perfor-
mance metrics are detailed across all 8 boxes benchmarks: AU-PR, AU-ROC
and Pearson’s R linear correlation. The AU-PR and AU-ROC are computed on
the classification problem while Pearson’s R is computed on the full predic-
tions, amibuous variants (maturation efficiencies between 0.5 and 0.8) included.
The performances are shown for MC-Fold alone, for the DynaSigs alone and
for the combination of both. The best performance across all regularization
strengths tested is given.

Figure 6.11 gives three performance metrics, namely AU-PR, AU-ROC and the
Pearson correlation, for the 8 boxes benchmarks. The performance from the best λ

regularization strength is shown across the whole range of β values for MC-Fold
alone, the DynaSigs alone and the combination of the two. Strikingly, MC-Fold
alone performs better than or on par with the DynaSigs across the whole 8 boxes
and on the three metrics. However, the combination is also always at least as good as
MC-Fold, which is unsurprising since the LASSO model will drive the predictors
which are uncorrelated to the outcome to zero at high enough regularization
strenght. Nonetheless, significant improvements are made, especially for β values
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in the vicinity of 1. Moreover, the improvements seem more consistent across the 8

boxes in the case of the Pearson correlation.

Figure 6.12: Pearson correlation improvement by the MC-Fold + DynaSig combination
on the 8 boxes benchmarks. The percentage of improvement in Pearson’s R
correlation by adding the DynaSig to MC-Fold alone is shown for each box
and for every combination of λ regularization strength and β thermodynamic
scaling factor. Combinations of parameters leading to improvements under 0%
are shown in gray.

We were interested in finding β scaling factors which led to optimal performance
across the 8 boxes benchmarks since these benchmarks test the ability of the
DynaSigs to capture fluctuations happening away from the site of mutation. Indeed,
since the model is trained on mutations happening only in the 7 other boxes, it
will mostly evaluate the impact of a variant in the testing set through its effect
on distant positions. We restricted further analysis to the Pearson correlation
since it is computed on the whole set of predictions and leads to improvements
which are correlated with the AU-PR improvements, the more stringent of the two
classification metrics and also the least sensitive to class imbalances. Figure 6.12

shows the percentage of Pearson correlation improvement across the whole range
of λ regularization strengths and β scaling factors tested. The biggest improvement
happens for box 8, which also corresponds to the box on which MC-Fold enthalpy
alone performs the worse (see Figure 6.11) This finding further illustrates the
complementarity of the two methods, with the DynaSig rescuing performance
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in the cases where the enthalpy of folding alone cannot explain the difference in
maturation efficiency.

Figure 6.13: Average Z-score Pearson correlation improvement by the MC-Fold + Dy-
naSig combination on the 8 boxes benchmarks. The average Z-score of the
improvement in Pearson’s R correlation by adding the DynaSig to MC-Fold
alone is shown for every combination of λ regularization strength and β ther-
modynamic scaling factor. Combinations of parameters leading to average
Z-scores under 0 are shown in gray.

In order to investigate the trends across the 8 boxes benchmarks, we computed the
Pearson correlation improvement Z-score for the addition of the DynaSig to MC-
Fold alone, for each individual box. Figure 6.13 shows the average improvement
Z-score across all 8 boxes for all the combinations of β and λ. Three clusters of
good performance strike us as very interesting:

1. The two highest average Z-scores of 1.06, at β = e2.25 and λ = 2−9 or 2−8.

2. The cluster of good performance at high regularization strength, centered
on β = e1.25 and λ = 2−5. The best average improvement Z-score from this
cluster is 0.98.

3. The cluster of good performance at low scaling factor, centered of β = e−1.5

and λ = 2−8. The best average improvement Z-score from this cluster is 0.94.
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In order to investigate what features the LASSO models that lead to these good
performances, we trained a LASSO model on all pri-miR-125a variants from our
dataset for each of the three clusters. We took the parameters leading to the best
Z-score sum in the case of the last cluster, and the two best parameter sets for the
first and second clusters in order to investigate how the different regularization
strengths affect the LASSO coefficients. Table 6.2 lists these 5 parameter sets.

Table 6.2: Optimal parameters for the 8 boxes benchmark.

Cluster logβ log2λ Average improvement Z-score

1A 2.25 -9 1.061

1B 2.25 -8 1.056

2A 1.50 -4 0.978

2B 1.25 -5 0.972

3 -1.50 -8 0.939

Figure 6.14 illustrates the LASSO coefficients obtained for every DynaSig position
when training the model on the whole dataset of pri-miR125a sequence variants,
with every of the interesting β and λ parameter combinations outlined avobe.
The most prominent feature is the obvious shrinkage of the coefficients at higher
regularization strengths in the case of cluster 2, which corresponds to β values
around e1.5. Another striking feature is the learning of coefficients dominantly on
nucleobase beads in the case of cluster 1, corresponding to the highest scaling
factor of e2.25, while in the case of cluster 3, which corresponds to the lowest scaling
factor of e−1.5, the bead types selected are predominantly phosphate and sugar.
This observation might lead to the conclusion that the parameter combinations
from cluster 3 result in better generalization beyond sequence, since the mutations
happen at the nucleobase and thus the model trained with these parameters is
capturing fluctuation patterns further away from the mutations. Moreover, cluster
3 is also the only combination of parameters in which non-zero coefficients appear
far from the 8 mutated boxes, in the apical loop. So while the motions at this lower
scaling factor tend to be slightly more localized in nature, it seems that the model
is nonetheless learning the long-range impact of these motions. Looking back at
Figure 6.3B, this scaling factor of e−1.5 leads to around 25% of the slowest modes
contributing 90% of the entropy. Very local motions are thus not yet a significant
part of the Entropic Signatures, as they happen mostly in the last third of the
modes.

6.2.3 5-fold cross-validation

So far, we have focused on pairs of testing and training sets without sequence
redundance between them, and we have restricted our analysis to LASSO regression
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Figure 6.14: LASSO coefficients for models trained on the whole dataset. The LASSO
coefficients for the DynaSig are given for five parameter combinations corre-
ponding to the three highest improvement parameter clusters (see Table 6.2 for
the detailed values). Cluster 1 corresponds to high scaling factor, cluster 2 to
mid scaling factor and cluster 3 to low scaling factor. The models are trained
on the whole dataset of 26 960 pri-miR-125a sequence variants.

in the search of both the most biologically releval MC-Sym model and the optimal
values for the β scaling factor. However, an advantage of ENCoM is its sequence
sensitivity, which means it can capture both sequence and dynamical patterns at
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the same time. Indeed, the sequence variations that are captured by ENCoM lead
to DynaSig patterns, which the ML models can learn. In order to test the gain of
DynaSigs over sequence alone, and to explore if performance gains are achievable
with multilayer perceptrons (MLP), we perform a carefully constructed 5-fold
cross-validation across the whole dataset of 29 960 sequence variants. Each of the 5

test sets is constructed by sampling 20% of the variants present at each mutated
box, without sampling the same variant in two different test sets. Sampling by
mutated box ensures homogeneity in the proportion of processed and unprocessed
variants, as the different boxes have wildly different tolerances for mutations (see
Table 6.1).

To answer the question of whether the EntroSigs offer a gain of performance over
sequence alone when sequence information can be useful in the predictions, we
contruct sequence vectors as detailed in Section 6.1.5.1.

Figure 6.15: Predictive R2 for LASSO models on the 5-fold cross-validation. The average
predictive coefficient of determination (R2) is given for LASSO models trained
with the MC-Fold enthalpy alone, and its combination with either a sequence
vector or the EntroSigs at the three identified optimal scaling factors. The
models reach their highest performance at the lowest regularization strength
of 2−15: 0.42 for MC-Fold enthalpy, 0.71 for the combination with sequence
vector, 0.72 for the EntroSig combinations with β = e2.25 and beta = e1.5, and
0.75 for the EntroSig + MC-Fold combination with beta = e−1.5.
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Figure 6.15 illustrates the performance of the different LASSO models in terms of
average predictive coefficient of determination (R2) over the 5-fold cross-validation.
There is high complementarity between the MC-Fold enthalpy and either the
EntroSigs or sequence vectors. Strikingly, the MC-Fold + EntroSig combination
with the lowest thermodynamic scaling factor outperforms other models for five
lowest regularization strengths tested.

6.2.3.1 MLP architecture

Another question we want to investigate is whether the linear independence
between the EntroSig positions that the LASSO model assumes is hurting the
predictions. For instance, one could imagine that complex relationships exist
between the flexibility of different positions in the signal that the Microprocessor
recognizes to cleave pri-miRs. To investigate this, we trained multilayer perceptrons
(MLPs) on the same 5-fold cross-validation dataset. As outlined in Section 3.2.2,
MLPs can capture complex relationships between the input variables and are thus
a good choice to answer the question of how much interplay between flexibility at
different positions affects the maturation efficiency of pri-miR-125a variants.

As discussed in Section 6.1.6, we tested MLP architectures having one or two
hidden layers and up to 60 neurons per layer, resctricting the combinations which
led to a number of free parameters exceeding 75% of the training set degrees of
freedom.

Figure 6.16 gives the performance of MLPs trained with architectures of 1 or 2

hidden layers, with equal sizes of 2, 5, 10, 20, 30, 40, 50 or 60 hidden neurons.
Surprisingly, the best performance is attained with the combination of MC-Fold
and the sequence vector, for a big range of architectures. However, when looking at
the performance as a function of the number of free parameters in Figure 6.16B, we
notice that the EntroSig combination with the two lowest thermodynamic scaling
factors achieve good complementarity with the MC-Fold enthalpy even at the
lowest numbers of free parameters.

This fact led us to hypothesize that the extensive mutagenesis behind the pri-miR-
125a maturation dataset might generate enough sequence redundancy so that the
MLP can learn "by heart" some sequence features: for instance, all given quartet
of nucleotides occur 16 times in the full dataset, corresponding to the other 16

possibilities out of a given 6 nucleotide box. To assert this hypothesis and still keep
sequence redundancy between the testing and training sets in order to answer
our initial questions of whether the ENCoM EntroSigs capture something beyond
sequence, we constructed a final train-test pair by taking all variants affecting at
most 2 positions as the training set, and all other variants affecting 3 positions or
more as the testing set. This ensures that there can be no "memorizing" of specific
quartets and triads of mutations by the MLP with the sequence vectors as input. We
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Figure 6.16: Predictive R2 for MLP models on the 5-fold cross-validation. A) The average
predictive coefficient of determination (R2) is given for MLP models trained
with same combinations of input variables as in Figure 6.15. The highest
performances reached are: 0.87 for the MC-Fold + sequence combination, 0.84

for the MC-Fold + EntroSig at logβ -1.5, 0.81 at logβ 1.5 and 2.25 and 0.46 for
the MC-Fold enthalpy alone. B) The performance is given for each combination
as a function of the number of free parameters in the MLP.

call this final train-test pair the inverted dataset, because in contains 1094 variants
in the training set and 25 866 variants in the testing set.

Figure 6.17 illustrates the performance of the reduced MLP architectures tested
on the inverted dataset. These results seem to confirm our hypothesis as the

115



Figure 6.17: Predictive R2 for MLP models on the inverted dataset. A)-B) Same as in Fig-
ure 6.16, on the inverted dataset. Since the models experience high variability
on this dataset, we show the average performance from 5 reploicates. The high-
est performances reached are: 0.13 for the MC-Fold + sequence combination,
0.57 for the MC-Fold + EntroSig at logβ 1.5, 0.56 at logβ 2.25, 0.49 at logβ -1.5
and 0.42 for the MC-Fold enthalpy alone.

combination of MC-Fold enthalpy with the sequence vector performs very poorly,
leading to no improvement compared to MC-Fold alone. Interestingly, the best
scaling factor for this benchmark is β = e1.5 followed closely by β = e2.25, with
β = e−1.5 leading to poorer performance, which is contrary to what we observed
on the 5-fold cross-validation but is in line with our observations in the 8 boxes
benchmark.
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Finally, we wanted to come back to the question of whether the linear independence
assumption of LASSO regression is sufficient to capture dynamical patterns of pri-
miR-125a processing. We thus again trained LASSO models using either sequence
vectors + MC-Fold, MC-Fold enthalpy alone or each of the three retained scaling
factors for the EntroSigs + MC-Fold combinations.

Figure 6.18: Predictive R2 for LASSO models on the inverted dataset. The average predic-
tive coefficient of determination (R2) is given for LASSO models trained with
the MC-Fold enthalpy alone, and its combination with either a sequence vector
or the EntroSigs at the three identified optimal scaling factors. The MC-Fold +
EntroSigs models all reach their highest performance at regularization strength
2−7: 0.63 for logβ -1.5, 0.62 for logβ 1.5 and 0.61 for logβ 2.25. The combination
with the sequence vector reaches 0.57 at λ = 2−6 and MC-Fold enthalpy alone
reaches 0.40 at all regularization strengths lower than 2−5.

Figure 6.18 shows the LASSO performance on the inverted dataset. Very interest-
ingly, the performance exceeds that of MLPs in all cases except for the MC-Fold
enthalpy alone. Moreover, the best performance of all is attained by the EntroSigs +
MC-Fold combination at β = e−1.5, reversing the trend observed using MLPs with
this same dataset. Compared to the combination with sequence vector, this scaling
factor leads to a gain in performance of 0.06 R2. While seemingly modest, this 0.06

gain still represents an additional 6% of variance explained, which is significant in
the context of ultra-high-throughput in silico predictions. Moreover, the fact that the
EntroSig model is learning both sequence and structural dynamics features at once
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through the patterns apparent from the Entropic Signatures gives us confidence
in its ability to generalize better in the context of sequence variants combining
mutated positions across the whole structure.

Figure 6.19: Coefficients for the final LASSO model trained on all available data. The
model was trained on all 29 478 pri-miR-125a sequence variants adopting the
WT 2D MFE as predicted by MC-Fold. β = e−1.5 is the scaling factor used
for the EntroSigs and λ = 2−7 is the regularization strength used. A) The
coefficients are shown graphically, with a dashed line for the MC-Fold enthalpy
of folding coefficient, the highest in absolute value at -0.22. The EntroSig
coefficients have a sum of 0.30 and an absolute sum of 0.50, for a softening
bias of 60%. B) Same as A), mapped on the 2D MFE structure of pri0miR-125a.

For the reasons outlined above, we train a final LASSO model on the complete
dataset of pri-miR-125a sequence variants which adopt the WT 2D MFE, including
the ones with mutations beyond the 8

th box. We use parameters β = e−1.5 and
λ = 2−7, as this combination led to the highest performance on the inverted dataset.
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We view this dataset as the ultimate test of generalizability for the model, hence the
selection of these parameters. Figure 6.19 illustrates the coefficients learned by this
final model. As in all other models with sufficiently low regularization strength,
the MC-Fold enthalpy coefficient is -0.22. It represents the largest coefficient by
absolute value and thus, since all predictors are standardized, is the single most
explanatory variable in the model. However, the sum of all Entropic Signature
coefficients together is 0.30, and the sum of absolute EntroSig coefficients is 0.50.
The sum of all positive coefficients is 0.40 and the sum of negative coefficients is
-0.10. These values lead us to two interesting observations: first, the positive sum
and predominance of positive coefficients mean that higher vibrational entropy
is favored by the model. Moreover, vibrational entropy is slightly more favored
than low folding enthalpy: we can directly compare the coefficients since, again,
the predictors are standardized. However, there is an obvious tradeoff happening:
lower folding enthalpy is achieved by the introduction of more rigid base pairs by
either swapping a noncanonical base pair for a canonical, or an AU base pair for
a GC. This rigidification is captured by ENCoM’s all-atom sensitivity [157] and
leads to lower vibrational entropy, which on average is detrimental to predicted
maturation efficiency in the model.

On panel B, the coefficients are mapped on the pri-miR-125a MFE 2D structure, by
bead type. The mismatched GHG motif and the DROSH cut site are shown on the
structures. Interestingly, the highest LASSO coefficients happen on the phosphate
bead 79, part of the mismatched GHG. However, it seems that more flexibility at the
GC base pair is learned as favorable by the model, whereas the model proposed by
Fang & Bartel states that the two GC base pairs above and below the noncanonical
UC base pair are important for proper maturation [13].

6.2.4 Ultra-high-throughput maturation efficiency predictions

We submitted 540 million random pri-miR-125a sequence variants to 2D structure
prediction with MC-Flashfold, of which almost 70 million adopted the WT 2D MFE.
As described in Section 6.1.10.1, each random variant affected between 3 and 12

base pairs compared to the WT sequence, with an average of 7.5 affected base pairs.
Thus, these sequences are more mutated that the Fang & Bartel sequences, which
have at most 3 affected base pairs and at most 6 mutations. Figure 6.20 shows the
distribution of folding enthalpy for both sets of variants. The two distributions
are very similar, with the random variants shifted slightly towards higher folding
enthalpy but also spanning a wider range, thus sampling bigger proportions of
both high and low folding enthalpy variants. This was expected as the average
number of affected base pairs is high for the random variants. Since most base
pairs are already canonical base pairs in the WT sequence, changing more of them
on average leads to higher folding enthalpy. However, having more affected base
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Figure 6.20: MC-Fold enthalpy for experimental dataset and random variants with WT
2D MFE. The Fang & Bartel variants used are the 29 478 with WT 2D MFE.
A set of 540 million random variants was generated, with a uniform random
number of affected basepairs between 3 and 12. Of these, the folding enthalpy
is shown for the 69 817 456 which adopt the WT 2D MFE.

pairs also increases the potential to sample very low energies and very high folding
energies, thus the wider range.

Since the folding enthalpy coefficient is the largest by absolute value in the selected
LASSO model, we wanted to investigate the model’s predictive behavior across
three ranges of folding enthalpies: low, medium and high. The selected cutoffs
for the three categories are given in Table 6.3. They were selected so that all 10

million lowest folding energy random variants contitute the low category, the 10

million medium folding enthalpy are centered on the mean enthalpy from the
Fang & Bartel dataset (-89 kcal/mol) and also contain 10 million variants, and
the high folding enthalpy contains the 10 million variants with highest folding
enthalpy, while staying at or below -80kcal/mol. At higher energies, the amount
of noncanonical base pairs introduced mean that the probability of the variant
forming a defined structure becomes very low.

Figure 6.21 illustrates the distribution of predicted maturation efficiencies for the
30 million random sequence variants, along with the experimentally measured
maturation efficiencies from the same folding enthalpy categories. We can observe
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Table 6.3: Cutoffs for the three folding enthalpy categories.

Category Low cutoff
(kcal/mol)

High cutoff
(kcal/mol)

N random variants

Low ∆G −∞ -90.31 10 015 077

Mid ∆G -89.87 -88.16 10 002 397

High ∆G -83.08 -80.00 10 012 741

a clear linear trend between maturation efficiency and folding free energy in both
cases, which is expected in both cases. Interestingly, the random sequence variants
do not lead to much higher predicted maturation efficiencies than the highest
experimentally measured efficiencies, reinforcing the notion that our LASSO model
is capturing a specific dynamical pattern necessary for pri-miR maturation, which
random sequences have low probability of finding.

Figure 6.22 shows the superimposition of density distributions for the experimen-
tally measured and predicted random sequence variants, across the three folding
enthalpy categories. We can observe a very good fit of the predicted and mea-
sured values in the case of the two lowest folding enthalpy categories. For the
high folding enthalpies, the LASSO model predicts a lot of negative maturation
efficiencies, which cannot be observed experimentally. However, the experimental
data is very sparse in that region and most variants falling in that region had very
poor maturation efficiencies.

6.2.5 Optimized pri-miR-125a variants

Using the simple asexual genetic algorithm described in Section 6.1.10.2, we
searched for three types of pri-miR-125a variants:

1. Variants with the same folding enthalpy as the WT sequence (-92kcal/mol)
but high predicted maturation efficiency (> 1.5)

2. Variants with WT folding enthalpy but low predicted maturation efficiency
(< 0.5)

3. Variants with extremely high predicted maturation efficiency (> 2.0), restricted
to folding enthalpy higher no lower than -105 kcal/mol (minimum observed
from random variants).

Table 6.4 lists three variants obtained with our asexual GA, one for each of the
categories we listed. We find fascinating that the two first variants presented, which
have approximately the same folding enthalpy, have such divergent predicted
maturation efficiencies. Moreover, it seems that it is much easier to find mutations
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Figure 6.21: Relationship between maturation efficiency and folding enthalpy for mea-
sured and predicted sequence variants. A) The maturation efficiency mea-
sured for the Fang & Bartel variants, split in the three folding enthalpy cate-
gories defined in Table 6.3. B) Predicted maturation efficiencies for the same
folding enthalpy categories, each containing over 10 million random sequence
variants.

which kill maturation when starting from the WT sequence than to find ones that
favor it further, as illustrated by the much higher number of mutations the algorithm
has accumulated in the case of the positive example. This makes sense from an
evolutionary perspective as the WT pri-miR-125a is under selective pressure to
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Figure 6.22: Maturation efficiency distributions for measured and predicted sequence
variants. The distributions from measured maturation efficiencies and pre-
dicted efficiencies from random sequence variants are superimposed for the
three folding enthalpy categories defined in Table 6.3.

Table 6.4: Examples of optimized sequences for three categories.

Category Enthalpy
(kcal/mol)

Predicted
efficiency

Mutations

WT enthalpy,
positive

-91.9 1.56 C3A, C4G, A5U, G6C, C10U, A23U,
C24U, U28C, C42A, U44C, G48A,
A60C, G61C, U64A, U67C, G68A,
A71C, G72A, G76C, G77A, C81G,
G83C, G84U, C86G

WT enthalpy,
negative

-92.4 -0.13 C4G, U7A, C8G, U9G, U11A, U67G,
G68A, C74A, G83C

Low enthalpy,
positive

-104.9 2.56 C3G, C4G, A5U, G6C, C10U, U11C,
A12U, G59A, A60U, U63G, U67C,
G68A, A71G, U75A, G77A, C78U,
C81G, U82A, G83C, G84C, C86A

be processed by the Microprocessor, thus its maturation efficiency is presumably
already optimized to some extent.

6.3 discussion

Throughout this chapter, we have shown the ability of LASSO regression models
to capture patterns of structural dynamics necessary for pri-miR-125a maturation
as apparent from the high-throughput experimental dataset of Fang & Bartel [13].
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We have carefully assembled benchmarks without sequence redundancy between
the testing and training sets and shown that the ENCoM Entropic Signatures
are not only highly complementary to the MC-Fold enthalpy of folding for these
benchmarks, but are able to capture signal beyond sequence since the benchmarks
do not contain any signal from sequence.

The hard benchmark has allowed us to select the most relevant 3D model of pri-
miR-125a from the 67 generated by MC-Sym. When compared to the other models,
the selected model (#61) striked us by the higher quality of its stem and the close
proximity of the 2-nt bulge and the 5’ end of the Y-shaped loop. We hypothesized
that this proximity might play a role in miR biogenesis, and we note that the apical
loop structure is missing in the only experimental structure of a pri-miR that we
know of, the cryo-EM structure of miR-16-1 [175].

The MC-Sym model selection step highlighted the crucial importance of the En-
tropic Signature which we introduced as part of the present thesis. Indeed, sta-
tistically significant performance in terms of AU-ROC and AU-PR was found for
scaling factors far from the one leading to equivalent DynaSig as the MSF (e2.77).
Moreover, it seems that performance on the hard benchmark is often happening at
scaling factors lower than the MSF factor, hinting at an important role of normal
modes which are basically excluded from the MSF DynaSig. Specifically, model #61

would not have been selected if it was not for the range of values tested, however
it led to good performance on all subsequent tests performed.

We also explored the performance of both LASSO regression and multilayer per-
ceptrons on 5-fold cross-validation on the whole dataset, this time allowing the
models to learn both sequence and structural dynamics features by including
sequence redundancy between training and testing sets. To our surprise, MLP
models using sequence vectors combined with MC-Fold enthalpy outperformed
MLPs using EntroSigs + MC-Fold. However, further analysis with the inverted
dataset consisting of a minimal training set still covering all mutation possibilities
revealed that this high performance was due to the MLPs’ abilities to capture
sequence patterns which appear across many variants.

The question we wanted to answer by training MLPs was whether the ability
to model complex relationships between the EntroSigs positions would improve
performance. While performance did improve in the 5-fold cross-validation, LASSO
models outperformed MLPs in the inverted dataset. Perhaps after all, the number
of relationships between many DynaSig positions is so vast that an MLP with
sufficient power will mostly fail to generalize and overfit the relationships that are
apparent within the dataset. Thus, we conclude that LASSO regression models are
sufficient for our purposes as of now, and will not further explore MLPs in the
following chapters.
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The final LASSO model we trained, at β = e−1.5 and λ = 2−7 on the whole dataset of
29 960 pri-miR-125a sequence variants, captures flexibility at the mismatched GHG
motif as the most important feature from the Entropic Signature. However, instead
of being captured at the noncanonical UC base pair, the highest coefficient (favoring
flexibility) is captured at the phosphate bead of G79. This pattern confirms that
the model captures biologically relevant features, nevertheless it seems surprising
that the necessary flexibility is not learned at the UC noncanonical base pair. One
possible explanation is that the GC base pairs are needed for precise chemical
recognition by the Microprocessor, while the role of the noncanonical base pair is
to allow greater flexibility of these rigid base bairs in order for the recognition to
happen. Indeed, it has been proposed that the mismatched GHG is the defining
feature allowing the determination of the DROSHA cleavage site, with the two
guanines being recognized by key residues of DROSHA [179]. Since the canonical
base pairs are favored in our model by the MC-Fold enthalpy, perhaps it is enough
to capture the detrimental effects of losing them, and the flexibility patterns learned
reflect the effects of the noncanonical UC and longer-range effects making this
region more flexible. It would be interesting to further investigate the effects of
specific variants on the Entropic Signature to see whether such long-range effects
are indeed captured by the model.

Our selected LASSO model allowed the exploration of predicted maturation effi-
ciencies for over 30 million random pri-miR-125a sequence variants. The associated
computational cost of these predictions is fairly low at around 3 seconds CPU
per sequence, for a total cost of 2.85 core-years. This low computational cost is
one of the main advantages of the ENCoM-DynaSig-ML pipeline, opening the
door to ultra-high-throughput predictions of dynamics-function relationships in
biomolecules. At such speed, some inaccuracies in the model can be tolerated, as
the goal of such predictions is to enrich for some property before testing the top
variants experimentally. In fact, while beyond the scope of the present thesis which
focuses on the computational tools, we are currently testing some predictions of
pri-miR-125a variants in the lab and expect to have the results in 2023. We are
also interested in applying the same methodology outlined in this chapter to the
other pri-miRs extensively mutated as part of the Fang & Bartel study, miR-16 and
miR-30, to try and generalize our model further. Specifically, we are curious to see
how alike the LASSO coefficients would be if we were to compare between the
three pri-miRs.

Dallaire et al. had found that 2D structural dynamics play an important role in
the miR biogenesis pathway by correlating distance between 2D conformational
landscapes of 15 sequence variants and the WT sequence [14]. In this chapter,
we confirm the important of structural dynamics for miR biogenesis at the three-
dimensional level, on a dataset of over 26 thousand sequence variants. We have
also found that the linear independence of the input variables made by LASSO
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regression does not hurt the performance when it comes to models trained on the
Entropic Signatures. While counterintuitive, this finding leads us to conclude that
LASSO is enough for our purposes and is more generalizable to combinations of
more mutated positions than what the model has seen during training, which is
what we are most interested in predicting. Thus, subsequent chapters will focus on
LASSO regression.
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7
µ - O P I O I D R E C E P T O R A C T I VAT I O N

The present chapter is dedicated to our second dynamics-function case study, the
prediction of activation potential for µ-opioid receptor ligands. In this study, the
variation in "sequence" is actually the binding of different ligands. Since ENCoM
is sensitive to all-atom context, changes in the surface complementarity term βij
result from different ligands or different poses of the same ligand, which are then
captured by the Dynamical Signature. The main idea is then that agonists and
antagonists lead to different patterns that the LASSO model can learn, since G
protein-coupled receptors (GPCRs) occupy diverse conformational states which
dictate their activity. As for the previous chapter, we refer the reader to Section 1.3.2
for the biological background concerning GPCR activation.

The chapter’s organization will be the same as for the other two case studies
chapters: we will start with methodology and follow with results and discussion.
However, we will first outline the contributions made by Gabriel Tiago Galdino, as
the present chapter is the only one in the thesis for which some of the data shown
were not directly generated by the author.

7.1 contributions from gabriel tiago galdino

As mentioned, this chapter contains joint work between myself (Olivier) and my
colleague Gabriel Tiago Galdino, a fellow PhD student from the Najmanovich
Research Group. Gabriel’s PhD project is dedicated to the study of how ligand
binding affects GPCR dynamics. As I was developing the ENCoM-DynaSig-ML
pipeline, we collaborated closely on applying the pipeline to the µ-opioid receptor,
which is the subject of the present chapter. Gabriel graciously gave me permission
to use data he generated, and I am thankful for fruitful discussions with him. The
work presented here will soon be submitted to a scientific journal, in a slightly
different form, with Gabriel and me sharing first authorship since our contributions
are of roughly equal importance. Here are the specific contributions Gabriel made
to what will be presented next:

1. Selection of the ligands from the ChEMBL database.

2. FlexAID docking experiments for all selected ligands.
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3. Mapping of SYBYL atom types to ENCoM atom types and generation of the
ENCoM configuration files for the ligands.

Gabriel and myself designed the docking experiments together. I computed the
ENCoM DynaSigs, designed the validation experiments, trained all LASSO models,
performed analyses and statistical simulations, generated all figures and wrote the
text.

7.2 methodology

The next subsections will detail the dataset generation, the docking experiments,
the assignment of ligand atom types, the selection of thermodynamic scaling factors
and the leave-one-out and 5-fold cross-validations performed.

7.2.1 Selection of MOR ligands

In order to select ligands with high-confidence experimental measures of µ-opioid
receptor (MOR) activation, we first obtained the list of all compounds in ChEMBL
[57] with some experimental measure of Emax for MOR (target ID CHEMBL233).
This list contained 840 compounds with measures from 148 different ChEMBL
biological assay IDs. While no single assay ID covered more than 21 ligands, a large
portion of reported Emax were measured by [35S]GTPγS assays, a reliable and
almost direct measure of G protein activation [61], as discussed in Section 1.3.2. A
baseline of activation has to be established for Emax measurements, and the most
common baseline used was DAMGO, a very potent and selective MOR agonist [63,
180].

Thus, in order to maximize the number of ligands in our dataset while maintaining
uniformity in the experimental measures, we selected all listed MOR ligands
from ChEMBL which had a measurement of Emax relative to DAMGO from
experimental assays using [35S]GTPγS. This filtering yielded 198 unique ligands.
We rejected ligands which generated errors during FlexAID preprocessing and
ligands which did not lead to at least 10 poses with a negative docking energy,
as outlined in the next subsection. This left us with 89 MOR ligands with both
high-confidence experimental measurements and high-confidence docking results.
Each ligand’s interaction with MOR is captured by 10 unique docking poses, as
outlined below, for a total of 890 data points.

7.2.2 Docking experiments with FlexAID

The structure we used for the MOR is the cystal structure solved by Huang et al.
[50] (PDB code 5C1M), from which we removed all heteroatoms and kept only the
MOR chain, removing the G protein. The reason for the removal of the G protein
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is that we want to capture the process of receptor activation by the ligand, which
happens before interaction with the G protein [53]. We used the FlexAID molecular
docking software for the docking experiments, with published parameters [178].
For each ligand, 10 replicated docking experiments were conducted with 4000

generations of 4000 individuals for the genetic algorithm, keeping the top 50 poses
from every experiment. After discarding duplicate poses, we kept the 10 poses
with lowest docking energy for every ligand. As mentioned above, we discarded
ligands which either caused preprocessing errors or did not yield 10 docking poses
with negative energy. This restriction on negative docking energy was to ensure
reliability of the docking poses. In addition, energetically frustrated docking poses
could break the NMA assumption that the input structure is at equilibrium if they
do not represent a local minimum in the energy landscape of the ligand-receptor
interaction.

7.2.3 Assignation of ENCoM atom types

As outlined in Section 3.1, ENCoM uses a simplified atom typing system first
described by Sobolev et al. [138]. As part of the NRGTEN package [31], it is now
straightforward to extend ENCoM to include new residue types, including small
molecules, provided an atom type is assigned to every atom in the new residue.
The details of this procedure are part of the online NRGTEN guide and can be
found at: nrgten.readthedocs.io/en/latest/custom_atypes.html. FlexAID uses 40

atom types corresponding to a subset of Sybyl atom types [181], assigned with
the Open Babel software [182]. We thus started from the Sybyl atom types of the
ligands to assign one of the 8 Sobolev atom types used by ENCoM to every atom
automatically. There are ambiguities in the case of carbon, nitrogen and oxygen
atom Sybyl classes, but we were able to resolve these by looking at an atom’s
neighbours. The mapping between Sybyl and Sobolev atom types for all elements
observed in the 89 MOR ligands is given in the appendix, in Table A.9.

7.2.3.1 Position of the beads

We assigned a single bead for every ligand, regardless of its number of atoms, in
order to maintain the same number of beads in the system for all ligands. The bead
was located on the medoid atom of the ligand for each docking pose, which is the
atom closest to the centroid coordinates. Since FlexAID considers ligand flexibility
as part of the docking simulations, this center atom was not necessarily the same
between poses of the same ligand, but was always closest to the ligand’s center of
mass, thus making the interactions with receptor beads more physically realistic.
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7.2.4 EntroSigs scaling factors

Similarly as in Chapter 6, we wanted to identify an interesting range of thermo-
dynamic scaling factors for the Entropic Signatures. We computed the EntroSigs
on the complex of MOR with docked morphine, using the lowest energy docking
pose.

Figure 7.1: Entropic Signatures and entropy proportions for the MOR-morphine complex
across selected scaling factors. A) Entropic Signatures across scaling factors
ranging from e−10 to e6 in log increments of 0.25. B) The cumulative entropy
across all normal modes is given for scaling factors across the selected range,
rescaled to sum to 1.

Figure 7.1A illustrates the EntroSigs across a wide range of scaling factors, showing
a stabilization of contributions from the first mode past e2.5 and a dominance of
high-frequency modes below e−5. We thus chose to test values from e−6 to e3 in log
increments of 0.25 for the present investigation of µ-opioid ligand-induced dynam-
ics. Figure 7.1B shows the cumulative vibrational entropy proportions resulting
from scaling factors across the selected range.
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7.2.5 Classification problem

We classify ligands with measured Emax relative to DAMGO >= 50% as agonists,
and ligands with Emax < 50% as antagonists. While this binary classification can
appear too simple for capturing the intricacies of GPCR activation at different
levels, let us remind that we have a limited number of 89 ligands in our dataset.
Moreover, with these thresholds, there are 30 "antagonists" and 59 "agonists",
therefore lowering the threshold would further imbalance the classes. Making the
threshold higher does not make biological sense to us, as DAMGO illicits a strong
activation response at the MOR. In fact, many ligands we classify as "antagonists"
are actually partial agonists. However, we are satisfied with this classification as it
can be used to test for the model’s ability to enrich agonists which can generate
strong responses. This ability would be useful in a virtual screening context to
prioritize ligands with strong predicted Emax for experimental validation. In
addition, we also measure the Pearson correlation between the predictions and real
Emax values, so the simplified classification problem is not the only performance
metric used to assess the models.

7.2.6 Leave-one-out cross-validation

In order to assess the capacity of LASSO models trained on MOR-ligand complexes
to classify ligands never before seen by the model, we performed leave-one-out
cross-validation. For each combination of thermodynamic scaling factor and regu-
larization strength, we trained 89 LASSO models, removing the 10 docking poses
for each ligand and training on the remaining 880 complexes. We then predicted
the Emax for the 10 left out poses and combined predictions from 89 separate
models in order to assess performance. This represents a very stringent test as it
does not average out the predictions from every pose before assessing performance.

For the leave-one-out cross-validation, we test 16 regularization strengths across 37

scaling factors, for a total of 592 combinations. To assert the statistical significance
of our classification results, we compute AU-PR and AU-ROC for 592 predictions
from random noise, for 1000 replicates. Since the FlexAID docking score had no
classification ability, we only use the Dynamical Signatures as predictor variables
and thus do not test for improvement over a given baseline as we did in Chapter 6.

7.2.7 5-fold cross-validation

To assess the performance the model in a best-case scenario in which the training
set samples a diversity of chemotypes, we performed 5-fold cross-validation using
the scaling factor identified as leading to the best performance from the leave-on-
out cross-validation. We split the dataset in 5 by randomly sampling 2 poses from
each ligand for every testing set, without replacement. Sampling by ligand ensured
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that all ligands are seen in equal proportions for each of the 5 training-testing
set pairs. We train one LASSO model for each of the 16 regularization strengths,
for each of the 5 train-test pairs. We report both testing performance, and pooled
performance from combining the prediction of all models for a given regularization
strength.

7.3 results

7.3.1 Docking scores

In the past chapter, we observed high complementarity between the ENCoM
Entropic Signatures and the MC-Fold enthalpy of folding for the prediction of
pri-miR-125a maturation efficiency. For the present study, the FlexAID docking
score, which is outputted for every pose and corresponds to arbitrary energy units,
with lower values representing more favorable poses. We thus investigated the
prediction ability of the docking score for the class prediction problem across the
89 MOR ligands.

Figure 7.2 shows the docking score of the 10 poses for each of the 89 ligands, as
individual boxplots sorted by their mean value. No apparent enrichment of either
class at either exteme of the docking scores is apparent. In fact, the main apparent
feature is that antagonists tend to be enriched at both ends.

Figure 7.3 shows the detailed predictive ability of the docking score alone. Panel B
gives the classification in terms of AU-ROC and AU-PR compared to 1000 replicates
of random predictions, confirming that the classification is not statistically better
than random (p = 0.41 and p = 0.94 for AU-ROC and AU-PR, respectively). Thus,
we will not include docking score in the predictor variables for the following anal-
yses. We note that this absence of classification ability for the docking scores is not
necessarily related to a lack of accuracy in the scoring function. The docking score
can be interpreted as an approximation of the complex’s free energy, which dictates
the ligand’s affinity for the receptor. However, affinity is not what determines the
activation potential of a ligand, as an antagonist can have higher affinity for the
receptor than an agonist and vice versa.

7.3.2 Leave-one-out cross-validation

For the leave-one-out cross-validation, we pool the predictions from all 89 LASSO
models with the same β scaling factor for the EntroSigs and λ regularization
strengths. We predict separate Emax values for each of the 10 poses of the withheld
ligand.
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Figure 7.2: FlexAID docking scores for the 10 selected poses from each MOR ligand.
The FlexAID docking scores for each of the 89 MOR ligands in the dataset are
shown for the top 10 unique poses as boxplots, ordered by increasing mean
docking score. The middle line represents the mean. The boxplots are colored
blue for antagonists (Emax < 50%) and red for agonists (Emax >= 50%).

Figure 7.4 illustrates the pooled performances across three performance metrics:
AU-ROC, AU-PR and Pearson correlation. The p-value for the Pearson correlation
is also given, after correcting for the number of tests performed. For every scaling
factor tested, we report the best performance attained from the 16 regularization
strengths tested. All three metrics reach their highest values for β = e−0.5 or
β = e−0.75.
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Figure 7.3: Classification performance using the FlexAID docking score alone. A) The
Emax value for the 89 MOR ligands is shown as a function of the FlexAID
docking score. Agonists are defined as having Emax >= 50%, and antagonists
as having Emax < 50%. B) Simulated distributions showing area under the
receiver operating characteristic (ROC) and precision-recall (PR) curves. The
distributions result from 1000 replicates of using normally distributed noise
as the predictor variable. The FlexAID docking score performance is shown
with lines. In both cases, it does not lead to statistically significant classification
of the ligands over random classification, with p = 0.412 for AU-ROC and
p = 0.938 for AU-PR. C) ROC curve, with the best random curve in gray and
the curve from the docking score in black. D) Same as C) for PR curve.

For the AU-PR, we observe an interesting upward trend towards higher scaling
factors. In fact, one might be tempted to think that we should have tested higher
values as the trend might continue. However, at the highest value tested, the
proportion of total vibrational entropy contributed by the first normal mode is
0.9998, up from 0.9987 for the second highest value tested. Put another way, the
proportional contribution to EntroSigs from modes other than the first is 2 ∗ 10−4

for the highest β value tested, and 1.3 ∗ 10−3 for the second highest. Thus, we are
confident that the highest AU-PR obtained of 0.768 would not surpass the best
AU-PR obtained, 0.775 at β = e−0.5. Furthermore, the Pearson correlation suffers
an abrupt drop in performance for scaling factors higher than e1.5, confirming that
these values are not beneficial.
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Figure 7.4: Leave-one-out cross-validation performance metrics. The best performance
obtained across the 16 regularization strenghts tested for the LASSO regressions
is shown as a function of the thermodynamic scaling factor. A) Area under
the receiver operating characteristic curve (AU-ROC). The red line shows the
threshold for statistically significant predictions, at the p < 0.01 level after
correcting for the number of parameter combinations tested. B) Area under the
precision-recall curve (AU-PR). C) Pearson’s R linear correlation. D) Corrected
p-value for the Pearson correlation observed in C), log10 transformed.

Figure 7.5 gives the detailed Pearson’s R and AU-PR across all parameter combina-
tions. Interestingly, it is apparent from panel B that the performance rise in AU-PR
at higher scaling factors is happening at low regularization strengths. Since we are
interested in relatively aggressive feature selection in order to both lead to better
model generalizability and better biological interpretation of the coefficient, we
confirm that a performance optimum has been reached in case of both Pearson’s R
and AU-PR. We did not present the detailed AU-ROC performance as it is less reli-
able when class imbalance exists, as already discussed in Section 4.4.2.2. The best
parameters are very close for both Pearson’s correlation and AU-PR, with AU-PR
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Figure 7.5: Detailed Pearson’s R and AU-PR for the LOOCV. A) Pearson’s R correlation
for the pooled predictions from leave-one-out cross-validation (LOOCV) as
a function of thermodynamic scaling factor for the Entropic Signatures and
regularization strength for the LASSO regression. Values below zero are shown
in gray. The two highest correlation coefficients of 0.442 and 0.441 are reached
at λ = 2−2 for both, β = e−0.75 and β = e−0.5 respectively. B) Same as A), for
area under the precision-recall curve (AU-PR). This highest value of 0.775 is
reached at λ = 2−3 and β = e−0.5.

benefitting from slightly lower regularization strength. After confirming that the
λ = 2−3 regularization strength still drives over 80% of the LASSO coefficients to
zero, we selected its combination with β = e−0.5 as the optimal parameters for our
purposes.
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Figure 7.6: Classification performance on the leave-one-out cross-validation. The aggre-
gated predictions from the 89 LASSO regression models trained on all ligands
except one is shown. The parameters used are β = e−0.5 and λ = 2−3. A) The
Emax value for the 89 MOR ligands is shown as a function of the predicted
Emax. Agonists are defined as having Emax >= 50%, and antagonists as having
Emax < 50%. B) Simulated distributions showing area under the receiver oper-
ating characteristic (ROC) and precision-recall (PR) curves. The distributions
result from 1000 replicates of keeping the best performance from 592 samples of
normally distributed noise as the predictor variable. Both AU-PR and AU-ROC
are significantly better than random at p < 0.001. C) ROC curve, with the
best random curve in gray and the curve from aggregated predictions in black.
D) Same as C) for PR curve.

Figure 7.6 illustrates the classification performance from the pooled LOOCV predic-
tions with the selected parameter combination. Both AU-ROC and AU-PR metrics
are significantly better than random at p < 0.001, which is the lowest level our
simulations can detect. The ROC curve does not show early enrichment of true
positives, however the precision-recall curve shows an interesting maintenance of
precision greater than 0.8 from 0.25 to 0.9 recall. This behavior is desired in the
context of applying our method to enrich agonists from virtual screening cam-
paigns, as it reflects the model’s ability to maintain good precision across almost
all examples in our dataset.
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7.3.3 5-fold cross-validation

Figure 7.7: Performance metrics for the 5-fold cross-validation. Area under the precision-
recall curev (AU-PR), area under the receiver operating characteristic curve (AU-
ROC), Pearson’s R correlation and its associated p-value, log10 transformed, are
shown as boxplots across the 5 validation sets. For each metric, the performances
at the LASSO regularization strength leading to the best mean performance are
shown.

The 5-fold cross-validation performed represents a best-case scenario in which
the training set samples a wide diversity of ligand chemotypes. Two poses from
each ligand are randomly sampled to constitute every of the five test sets, without
resampling. We use the thermodynamic scaling factor identified as optimal by the
LOOCV, β = e−0.5, without exploring other values. Figure 7.7 illustrates AU-ROC,
AU-PR and Person’s R across the 5 validation rounds, along with the p-value from
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the Pearson correlation. A striking feature is that for this easier test, the LASSO
model generally benefits from slightly lower regularization strength. However, the
λ = 2−3 value we identified as optimal for our purposes occupies a threshold
position before significant drops in performance happen at higher values. As
expected, substantial increases in performance are observed compared to the
LOOCV, as the model now has examples of each ligand it can learn from. However,
we remind that the docking poses selected are all unique, as we discarded duplicate
poses.

Figure 7.8 shows the ranking of the 89 ligands obtained by pooling the predictions
from the LOOCV (panel A) or from the 5-fold cross-validation (panel B). We observe
a striking aggregation of ligands classified as antagonists (Emax < 50%) towards
the bottom in both cases. The 5-fold cross-validation leads to high enrichment of
agonists (Emax > 50%), with only one antagonist in the top 35 molecules.

7.3.4 LASSO coefficients

We trained a final LASSO model using all 890 docking poses at once and the
optimal parameters identified of β = e−0.5 and λ = 2−3. Figure 7.9 shows the
learned LASSO coefficients on the receptor’s complex with morphine, as it was in
our selected ligands and is arguably the most widely studied MOR ligand. In any
case, the coefficient at the ligand bead is zero in the model. The sum of positive
coefficients is slightly higher than the absolute sum of negative coefficients, so the
model slightly favors overall gains in vibrational entropy. However, this effect is
relatively small, with a softening bias (defined in Section 4.4.3) of 5.6%. Strikingly,
the largest coefficients in abolute value are located at the extracellular extremity
of TM6. Let us remind that TM6 is the structural element undergoing the largest
conformational change between active and inactive GPCR states.

7.4 discussion

In the present chapter, we have used the ENCoM-DynaSig-ML pipeline to capture
dynamical patterns which can classify µ-opioid receptor (MOR) ligands as agonists
or antagonists. Different ligands occupying the receptor’s binding site can effec-
tively be seen as sequence variants of some sort, since they change the nature of
atomic interactions happening inside the binding site.

The leave-one-out cross-validation we perform confirms that the LASSO models
trained on ENCoM Entropic Signatures are able to learn generalizable patterns
of MOR activation/antagonism. Most interestingly, Figure 7.8 shows that even in
this hard test, the LASSO model with selected parameters can significantly deplete
molecules classified as antagonists (Emax < 50%) from the top predictions. For
instance, only 3 antagonists are present in the top 25% ligands, while we would
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Figure 7.8: Measured Emax as a function of predicted Emax for the LOO and 5-fold
cross-validation. The predicted Emax is shown for each of the 89 MOR ligands
in the dataset for the 10 selected docking poses as a boxplot. The middle line
represents the mean. The boxplots are colored blue for antagonists (Emax <
50%) and red for agonists (Emax >= 50%), and the ligands are ordered according
to their mean predicted Emax. A) Aggregated prediction from the leave-on-out
cross-validation. B) Aggregated predictions from the 5-fold cross-validation.

expect 7.5 of them by chance. Moreover, for the 5-fold cross-validation, which
represents an ideal case where the model is presented a ligand which affects the
receptor in similar ways to what was seen in the training set, only 2 antagonists
are present in the top 50% ligands, while we would expect 15 by chance (half of
the 30 total antagonists).
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Figure 7.9: LASSO coefficients for the selected parameters. A) The LASSO coefficients
are plotted for every MOR residue. The ligand coefficient is not shown as it
is zero. The sum of coefficients is 16.1, and the absolute sum is 286.5, for a
softening bias of 5.6%. B) Stereo crosseye view of the coefficients on the 3D
MOR structure (PDB code 5CM1). The thickness of the backbone corresponds
to the absolute value of the coefficients, and the color to the value, with a
blue:white:red gradient corresponding to negative:zero:positive coefficients.
Transmembrane helices 5 and 6 (TM5, TM6) are labelled.

As mentioned throughout the present thesis, one of the main advantages of ENCoM-
DynaSig-ML is speed. For one ligand-MOR complex, it takes around 4 seconds CPU
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time to compute the Entropic Signature and LASSO predictions. State-of-the-art
virtual screening campaigns now routinely screen libraries of up to billions of make-
on-demand compounds [183]. Potent ligands with affinities in the nanomolar range
have been found through such ultra-large-scale library screens [184–186], however
the libraries are so large that many potential hits are never tested experimentally.
Thus, in a context where target dynamics are affected by ligand binding, such
as MOR activation, an approach like ours would be complementary to ultra-
high-throughput virtual screening in order to prioritize molecules with desired
properties. Even in the absence of experimental data which can be used to train the
model, the ENCoM Entropic Signatures could be used to cluster ligands according
to their effects on target dynamics and experimentally tested ligands could then be
selected to maximize the diversity of dynamical effects.

When looking at the LASSO coefficients mapped to the MOR 3D structure, the
first apparent pattern is the clustering of high absolute value coefficients to the
region at the extracellular extremity of TM6, from residue 294 to residue 319.
Interestingly, this region corresponds to one of the two key regions identified
as important for ligand binding and dynamical in nature from a study using
accelerated molecular dynamics [187]. The authors used Gaussian accelerated
molecular dynamics to study the active-inactive state transition in MOR, with the
presence of either an agonist or antagonist ligand. The fact that our coarse-grained,
fast approach identifies the same region as important further highlights that beyond
its predictive ability, the ENCoM-DynaSig-LASSO technique is able to pinpoint
regions of biological interest.

In conclusion, we presented in this chapter a study of the dynamical impacts
of ligand binding to the µ-opioid receptor and how these effects allow LASSO
regression models to predict ligand efficacy and classify ligands as agonists or
antagonists with high enough accuracy to open the door for applications to virtual
screening campaigns. In contrast with the models trained in the last chapter,
the ENCoM Entropic Signatures were the only input feature fed to the LASSO
models, as the docking score did not lead to significant ligand classification, as
expected since affinity does not correlate with activity. The thermodynamic scaling
factor leading to optimal performance was again lower than the one agreeing
with the MSF Dynamical Signature, pointing to an important contribution of
higher-frequency normal modes.
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8
V I M - 2 L A C TA M A S E E V O L U T I O N A RY F I T N E S S

This chapter presents the last of our three dynamics-function case studies, the
evolutionary fitness provided by sequence variants of VIM-2 lactamase under
antibiotic selection, which acts as a proxy for its catalytic efficiency. The biological
background, as for the other two case studies, was already given in Section 1.3.3.

In contrast to the previous two chapters, there is no generally accepted role for
collective, slow-timescale motions in the enzymatic activity of VIM-2 lactamase.
In a recent review, Gianquinto and coworkers argue for the targeting of active
site dynamics and allostery as tools against antibiotic resistance in β-lactamases
[71], however the knowledge on metallo-β-lactamases dynamics as a family, and
on VIM-2 lactamase dynamics specifically, is scarce. We thus view the present
case study as an answer to the question of whether structural dynamics play a
significant role in the function of VIM-2 lactamase.

The authors of the VIM-2 deep mutational scan dataset we study also provide a
number of predictor variables that they used to train a linear model in predict-
ing evolutionary fitness of VIM-2 sequence variants. These variables, which are
sequence-, structure- and stability-based, provide us with an opportunity to test
our hypothesis that ENCoM-DynaSig-ML, as the only variant effect predictor tool
capturing detailed dynamics, is complementary to such approaches.

Here again, the specific methodology will be detailed first, followed by the results
and discussion in the context of VIM-2 lactamase.

8.1 methodology

8.1.1 VIM-2 deep mutational scan dataset

The dataset from Chen et al. consists of experimental measures of evolutionary
fitness for a deep mutational scan of VIM-2 lactamase, at various antibiotic con-
centrations [70]. The authors calculate evolutionary fitness from deep sequencing,
as the log2 enrichment of the variant relative to WT VIM-2. They performed two
replicates for each antibiotic condition tested, and the highest agreement between
the replicates is reached for the highest concentration of ampicillin tested, 128

143



µg/mL, with an R2 value of 0.94. Thus, we chose the fitness score at 128 µg/mL
ampicillin as the experimental outcome to predict.

We kept only missense variants affecting the 231 positions present in the VIM-2
crystal structure. 4343 out of the 4389 possible missense variants were observed in
the deep mutational scan for the selected conditions, for a coverage of 99.0% of the
possibilities.

These 4343 variants were modeled on the WT VIM-2 crystal structure (PDB code
4bz3) solved by Brem el al. [69], with MODELLER as outlined in Section 4.2.2. We
used biological unit 1 since there were two units of the enzyme in the asymmetric
crystal unit.

8.1.1.1 Static predictor variables

Chen and coworkers fitted a linear model containing sequence, structural and
stability properties to predict the observed evolutionary fitness at 128 µg/mL
ampicillin and report a good fit with an adjusted R2 coefficient of 0.55. Their
linear model combines the ∆∆G of folding computed with Rosetta [119] (see
Section 2.3.1.4), the solvent acessible surface area of the mutated residue and a
vector of length 40 specifying the starting amino acid and the one it is mutated to.
The authors made the values of these predictors available and we will use them for
establishing a baseline performance of sequence- and structure-based models.

8.1.2 Zinc ions

The catalytic site of VIM-2 lactamase contains two coordinated zinc ions, which
play a central role both in the β-lactam hydrolyzation reaction [188] and in the
interaction with some inhibitors of VIM-2 [66]. For this reason, we decided to
investigate whether the inclusion of the zinc ions in the ENCoM representation of
VIM-2 would lead to increased performance. To do so, we defined a new residue
type, the zinc ion, with the obvious choice of a single bead representation at the
position of the atom. Of the 8 atom types, we selected type 3, h-bond donor, as the
closest match for the zinc cation. We added the two zinc ions after the modeling of
variants with MODELLER, in the same position as the crystal structure.

We computed all ENCoM Entropic Signatures for all VIM-2 variants both with
and without the zinc ions, with the same set of scaling factors and regularization
strengths.

8.1.3 EntroSigs scaling factors

As in the previous chapters, we investigated a wide range of scaling factors for
Entropic Signatures of WT VIM-2 lactamase to select the scaling factors to test.
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Figure 8.1: Entropic Signatures and entropy proportions for VIM-2 lactamase across
selected scaling factors. Input structures both with and without zinc ions led
to very similar patterns across the scaling factors, so only the results on the
structure without zinc are shown. A) Entropic Signatures across scaling factors
ranging from e−15 to e5 in log increments of 0.25. A red dashed line shows the
value leading to almost perfect agreement with MSF, e−0.75. B) The cumulative
entropy across all normal modes is given for scaling factors across the selected
range of e−10 to e3, rescaled to sum to 1.

Figure 8.1 illustrates the behavior of EntroSigs and cumulative entropy. We selected
scaling factors ranging from e−10 to e3, in log increments of 0.25.

8.1.4 Classification problem

The evolutionary fitness provided by a VIM-2 variant under antibiotic selection can
naturally be thought of as a binary classification problem: either the variant allows
roughly equal or better antibiotic degradation compared to WT, or it significantly
hinders it and thus survival. Moreover, Chen et al. specifically chose the maximal
antibiotic concentrations so that they allow bacteria expressing WT VIM-2 to grow,
further amplifying the binary phenomenon [70]. The authors defined three classes
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of variant effects: negative, neutral and positive. They imposed a fairly stringent
cutoff for the positive class of 0.7 fitness score, which corresponds to 62% better
evolutionary fitness than WT VIM-2.

Figure 8.2: Fitness score thresholds for positive and negative variants. The fitness score
distribution for all missense variants are shown as histograms, with the thresh-
olds for negative and positive variants in dashed vertical lines. A) The Chen et
al. thresholds of -0.7 for negative and 0.7 for positive variants. B) Our thresholds
of -1 for negative and log2 0.8 for positive (approx. -0.322).

To partition the variants in two classes instead of three, we chose the same cutoffs as
for the analysis of miR-125a maturation efficiency presented in Chapter 6, namely
under 50% of the WT VIM-2 evolutionary fitness for negative variants and over
80% of the WT VIM-2 evolutionary fitness for positive variants. These values
translate to fitness scores of log2 0.8 and log2 0.5 respectively, or -0.322 and -1. Our
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thresholds are shown in Figure 8.2, along with the ones from Chen and coworkers.
They partition the dataset in 1149 positive variants, 2837 negative variants and 358

neutral variants. The classification task thus has 28.8% positive observations.

8.1.5 5-fold cross-validation

Since only point mutations are part of this dataset, sequence redundancy is intrin-
sically absent. Thus, we split the dataset in 5 and perform 5-fold cross-validation to
test the models. The maximum number of variants for a given position is 19. Apart
from position 202 which has 13 sampled variants, all positions have at least 15.
Thus, we sampled 3 variants from every position except position 202 for every split
of the dataset, and 2 variants from position 202. The remaining 884 variants (includ-
ing the WT sequence) were split randomly between the 5 sets, leaving us with four
sets of 869 variants and one set of 868 variants. The splitting-by-position scheme
we used ensures that both mutation-tolerant and mutation-intolerant positions are
uniformly distributed between the testing sets.

8.2 results

8.2.1 5-fold cross-validation

We were first interested in answering two questions with the 5-fold cross-validation
performance: whether the presence of the zinc ions leads to more signal in the
Entropic Signatures, and whether there is complementarity between the static
predictors and the EntroSigs.

Figure 8.3 shows the performance attained by the EntroSigs alone, the static
predictors alone, and the combination of both. The performance metrics shown
are AU-ROC, AU-PR and the predictive coefficient of determination R2. Since we
are evaluating combinations of methods, R2 is preferable to Pearson’s R for its
interpretability in terms of proportion of variance explained. The EntroSigs with
and without the inclusion of the active site zinc ions were tested. While the static
predictors perform better than the EntroSigs by a sizeable margin across the three
metrics, the two show striking complementarity. Moreover, the performance gain
is the largest for predictive R2, which is the most stringent metric of the three
presented since it includes all data points (neutral variants included) and measures
the goodness of fit across the whole range.

The presence of the zinc ions introduces an interesting pattern: while the perfor-
mance with or without ions is closely matched for low scaling factors, the abrupt
drop in performance associated with higher scaling factors happens sooner with the
presence of ions. Since the performance does not seem improved by the presence
of the ions, we will restrict further analyses to models without them.
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Figure 8.3: Performance metrics for the 5-fold validation. Area under the precision-recall
curve (AU-PR), area under the receiver operating characteristic curve (AU-ROC)
and predictive R2 are given as a function of the thermodynamic scaling factor
for the EntroSigs. The performance shown is the highest one across the 16

regularization strengths tested. The presence or absence of ions is denoted by
the line color (NA for the static predictors).

Figure 8.4 gives the detailed R2 and AU-PR for all tested combinations of LASSO
regularization strength and thermodynamic scaling factor for the EntroSigs, aver-
aged over the 5 test sets, for the combination of EntroSigs and static predictors.
Values below the best performance from static predictors alone are shown in gray.
In terms of both metrics, the best performance is attained at β = e−0.75 and λ = 2−9.
The combination reaches predictive R2 of 0.60, a gain of 0.07 or 7% of variance ex-
plained over the static predictors alone. It terms of AU-PR, the combination attains
0.85, with the static predictors reaching 0.79. Interestingly, the best thermodynamic
scaling factor is the one equivalent to the MSF Dynamical Signature, in contrast to
the two previous case studies in which it was significantly below.

8.2.2 Generalizable static predictors

The combined static predictors perform very well on the VIM-2 DMS dataset.
The Rosetta predicted ∆∆G of folding is readily generalizable to variants with
multiple mutations, and one could argue that the average solvent accessible area of
all mutated residues could be used in replacement of the accessible solvent area
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Figure 8.4: Detailed AU-PR and R2 for the combination of EntroSigs and static predic-
tors. A) Predictive R2 as a function of both thermodynamic scaling factor and
regularization strength, averaged over the 5-fold cross-validation. Values are
shown for the combination of Entropic Signatures and static predictors when
they exceed the performance of static predictors alone (0.53), otherwise are
shown in gray. The best performance of R2 = 0.603 is reached for β = e−0.75

and λ = 2−9. B) Same as A) for area under the precision-recall curve, with the
performance of static predictors alone at 0.79. The best performance of 0.849

AU-PR is also attained at β = e−0.75 and λ = 2−9.

of the single mutated residue. However, it is unclear if the same can be said of
the mutations identification vector. For instance, only binary values are present
in this vector during training. Moreover, this vector would be unable to capture,
for example, a mutation pair reversing a salt bridge interaction, which in theory
should have minimal effect on fitness if it does not affect the binding site. Instead,
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the vector would either sum or average the effects of both single mutations. Thus,
we do not believe in the generalizability of the mutations identification vector.

Figure 8.5: Performance metrics for the generalizable static predictors. Area under the
precision-recall curve (AU-PR), area under the receiver operating characteristic
curve (AU-ROC) and predictive R2 are given as a function of the thermodynamic
scaling factor for the EntroSigs. The performance shown is the highest one across
the 16 regularization strengths tested.

Since the main application of our ENCoM-DynaSig-ML approach is the virtual
screening of variants, we investigated the performance of generalizable static
predictors, namely the solvent accessible area of the mutated residue and the
Rosetta ∆∆G, alone and in combination with the EntroSigs. Figure 8.5 illustrates
the performance of these predictors on the 5-fold cross-validation, again showing
AU-ROC, AU-PR and predictive R2 for the EntroSigs alone, the generalizable static
predictors alone and the combination of both. There is a significant drop in the
performance of the static predictors from the removal of the mutations identification
vector, as expected, however the combination of solvent accessible area and Rosetta
∆∆G still outperforms the Entropic Signatures by a sizeable margin. Nonetheless,
the combination of both stays beneficial, as was expected because of the linearity
of the LASSO regression.

Figure 8.6 gives the detailed performance of the EntroSigs + ASA + Rosetta
∆∆G, averaged over the 5-fold cross-validation, for each combination of β and
λ values. Here again, values of R2 or AU-PR below the performance of the ASA
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Figure 8.6: Detailed AU-PR and R2 for the combination of EntroSigs and generalizable
static predictors. The generalizable static predictors are the solvent accessible
surface area of the mutated residue and the Rosetta ∆∆G of folding. A) Predic-
tive R2 as a function of both thermodynamic scaling factor and regularization
strength, averaged over the 5-fold cross-validation. Values are shown for the
combination of Entropic Signatures and static predictors when they exceed the
performance of static predictors alone (0.44), otherwise are shown in gray. The
best performance of R2 = 0.534 is reached for β = e−0.75 and λ = 2−9. B) Same
as A) for area under the precision-recall curve, with the performance of static
predictors alone at 0.68. The best performance of 0.759 AU-PR is also attained
at β = e−0.75, but λ = 2−12. It drops slightly to 0.753 at λ = 2−9

+ ∆∆G predictors are shown in gray. Interestingly, the complementarity of these
generalizable static predictors with the EntroSigs increases slightly, as predictive
R2 registers a gain of 0.09 compared to 0.07 with all static predictors, and AU-PR a
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gain of 0.08 compared to 0.06. The best performances happen at β = e−0.75 for both
metrics, however AU-PR benefits from lower LASSO regularization strength.

Going from λ = 2−9 to λ = 2−7 leads to a drop of 0.01 in predictive R2, and going
from λ = 2−12 to λ = 2−7 to a drop of 0.02 in AU-PR. These drops in performance
are not very large, and thus we chose the combination of β = e−0.75 and λ = 2−7

as the parameter combinations we are the most confident would lead to good
generalizability of the model to multiple mutations. We thus train a final LASSO
model with these parameters on the combination of EntroSigs + ASA + Rosetta
∆∆G, using all sequence variants in the dataset.

Figure 8.7: LASSO coefficients for the selected parameters. A) The LASSO coefficients
are plotted for every VIM-2 residue. The sum of coefficients is -0.85, and the
absolute sum is 3.13, for a rigidifying bias of 27%. B) Stereo crosseye view of
the coefficients on the 3D structure of VIM-2 lactamase. While the active site
zinc ions are not part of the model we selected, they are shown to help in visual
identification of the binding site. C) Same as B), with surface view.

Figure 8.7 shows the EntroSig coefficients learned by the LASSO model, graphically
for the whole VIM-2 sequence and mapped back on the VIM-2 3D structure. A
striking feature is the negative sum of coefficients, leading to a rigidifying bias of
27%. Another apparent feature is the appearance of most highly positive coefficients
on the protein surface.
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8.3 discussion

For this last of the three dynamics-function case studies, we have investigated
the evolutionary fitness provided by VIM-2 lactamase sequence variants under
antibiotic selection, which acts as a proxy for both the catalytic efficiency of the
enzyme and its stability [70]. We wanted to answer two key questions in this
chapter: first, how complementary are the ENCoM Entropic Signatures to the static
predictors used by Chen et al. to predict evolutionary fitness; and second, can we
provide insights as to the role of structural dynamics in VIM-2 lactamase enzymatic
activity.

The answer to the first question is that the Entropic Signatures do exhibit good
complementarity to the sequence-, structure- and stability-based predictors tested
here. In the case of generalizable static predictors, namely the solvent accessible
area of the mutated residues and the Rosetta ∆∆G, 39% of the variance explained
by the Entropic Signatures is additive (0.09 out of the maximal 0.23 R2 from
the EntroSigs alone). This relatively high complementarity, combined with the
very low computational cost of ENCoM-DynaSig-ML, suggests that our method
could be integrated to most consensus variant effect predictors with expected
gains in performance. Moreover, the DynaSig-ML Python package allows for the
user-friendly integration of our tool, as outlined in Section 4.7.2.

As for the second question, we think that our results point to dynamical features
playing a role in the enzymatic activity of VIM-2 lactamase, however we also
think that some features learned by the LASSO model capture stabilization of
the enzyme. For instance, the positive coefficients learned by the model seem
to coalesce on the surface of the enzyme, in a region surrounding the binding
site. To us, these patterns point to an important role for mutations affecting the
opening/closing motion of the catalytic site. However, the negative coefficients
appearing throughout the protein structure point towards the model capturing
stabilizing effects, in a similar fashion as what has been observed for the ENCoM
vibrational entropy of the whole protein [28]. Interestingly, these two seemingly
opposite effects might be reconcilable: it has been suggested by Shoichet and
coworkers that most enzymes make tradeoffs between activity and stability [189].
Thus, the negative coefficients, mostly positioned in alpha helices distant from
the active site, favor thermal stability of the enzyme as captured by rigidification.
Meanwhile, positive coefficients, which coalesce on surface residues surrounding
the active site, capture the softening of the binding site, which generally leads to
higher activity. In fact, Beadle and Shoichet confirmed the existence of stability-
function tradeoffs in another, better characterized β-lactamase enzyme, the AmpC
β-lactamase [190].

We tested the inclusion of zinc ions in the ENCoM potential and found that it led
to performance on par with Entropic Signatures generated without them, and even
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worsened performance at high thermodynamic scaling factors. At these high scaling
factors, the Entropic Signature mostly reflects the fluctuations from the single
lowest-frequency normal mode. Thus, we hypothesize that the addition of zinc ions
changes this lowest-frequency mode, while the fluctuation space spanned by the
few percent slowest modes remains unchanged, hence the equivalent performance
at lower scaling factors. This finding illustrates one of the advantages of considering
more normal modes in the computation of the Dynamical Signatures, as the relative
ordering of the modes can be slightly disrupted by changes in the input structure.
Thus, considering a wider ensemble of normal modes makes the predictions
more robust to slight inaccuracies. However, there is a narrow range of beneficial
proportion of normal modes to include. Indeed, results from the present chapter
and from the other two case studies demonstrate a general drop in performance
for very low scaling factors, which correspond to almost uniform contributions
from all normal modes to the Entropic Signature.

In conclusion, we have investigated dynamics-function relationships in VIM-2
lactamase and have confirmed the good complementarity of ENCoM Entropic
Signatures with sequence-, stability- and structure-based predictors. Here again,
the mapping of the LASSO coefficients to the studied biomolecule allows interesting
biological insights, and seems to confirm an important role of structural dynamics
in the function of VIM-2 lactamase.
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9
G E N E R A L D I S C U S S I O N

In the present thesis, we have introduced the ENCoM-DynaSig-ML computational
pipeline and have applied it to study dynamics-function relationships apparent
in three distinct biomolecular phenomena: the first step of microRNA biogenesis
(Chapter 6), the activation of the µ-opioid receptor (Chapter 7) and the catalytic
efficiency and stability of the VIM-2 β-lactamase enzyme (Chapter 8). Moreover,
in order to study RNA molecules with ENCoM, we have adapted it by extending
its functionality to permit the streamlined inclusion of arbitrary numbers of beads
per residue. This adaptation to RNA prompted us to ask whether the current
parameters, optimized for proteins, are adequate for RNA molecules and whether
the model is applicable as is to RNA-protein complexes.

We answered this question with a wide parameter search across seven diverse
benchmarks, presented in Chapter 5. As a result of this, we confirmed that a single
set of parameters can lead to good performance on protein, RNA and RNA-protein
complexes. Moreover, the new set of parameters we found confirms that ENCoM’s
performance edge lies in its surface complementarity term. Indeed, Frappier and
Najmanovich did not explore values for the σ− and σ+ surface complementarity
parameters as part of the original ENCoM publication [27], and we saw a large
increase in the σ+ parameter as a result of our parameter search. Since σ+ is the
surface complementarity term for favorable atomic interactions in the ENCoM
model, and increasing its value led to better performance, we can thus confirm the
advantage provided by that term.

The aforementioned chapters each contain their own discussion, therefore, the
present discussion chapter will focus on general findings and future directions,
and will be relatively short.

9.1 general findings about encom-dynasig-ml

Across the three case study chapters presented, we have found that ENCoM-
DynaSig-ML led to significant gains in performance when combined to folding
enthalpy, sequence-based descriptors, and structural and stability properties. To the
best of our knowledge and with confirmation from a recent review of variant effect
predictors discussed in Section 2.3.2 [133], the pipeline represents the first and only
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computational tool in the category of dynamics-based variant effect predictors.
These findings of high complementarity to other biomolecular properties reinforce
the notion that as the unique member of its class, ENCoM-DynaSig-ML will lead
to complementarity when integrated with other variant effect predictors. Such
integration seems like a promising area for future work.

Another striking finding is that in all three case studies, the LASSO coefficients
mapped on the structures of the biomolecules pointed back to known biological
features. The highest coefficients in the case of pri-miR-125a happened on the
mismatched GHG motif, known to favor maturation when incorporating a flexible
noncanonical base pair [175]. In the case of µ-opioid receptor activation, the highest
absolute value coefficients coalesce to the upper part of transmembrane helix 6

(TM6). Not only does TM6 undergo the most substantial displacement between
the active and inactive conformations, the specific region with high absolute
coefficients was identified as a key factor of the differential effects of agonist and
antagonist binding [187]. Finally, the coefficients learned in the case of VIM-2
catalytic efficiency seem to highlight stability-function tradeoffs in the enzyme,
which are thought to be a general feature of most enzymes [189].

The computational cost associated with the prediction of the effect of a sequence
variant is less than 5 seconds CPU time for all three case studies, making ultra-high-
throughput predictions within reach as we have shown in the case of the 30 million
theoretical pri-miR-125a variants for which we have predicted maturation efficien-
cies in Chapter 6. Moreover, let us note that ENCoM is currently implemented in
Python, an interpreted language which is not optimized for speed. While we make
use of NumPy [191] for the heaviest linear algebra operations, we believe a speedup
of at least 5X would be achievable by either implementing another version in a fast
language, or making use of the Numba just-in-time compiler [192]. Furthermore,
the lowest useful thermodynamic scaling factor selected in the case of pri-miR-125a
maturation efficiency leads to around 30% of the normal modes making significant
contributions to the Entropic Signature. In the other two cases, the proportion is
lower than 10%. Thus, it could be possible to accelerate predictions even further
by making use of the block Lanczos algorithm to extract only the relevant nor-
mal modes [193]. We thus believe that a total speedup of 10X or more would be
achievable. The pursuit of such an acceleration of ENCoM-DynaSig-ML represents
another interesting avenue for future work, and would allow the tackling of larger
systems while maintaining ultra-high-throughput prediction ability.
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9.2 vibrational entropy

9.2.1 Untangling enthalpy-entropy compensation effects

Previous work from Frappier and Najmanovich has found that proteins from
thermophile bacteria, when compared to homologs from related mesophile or-
ganisms, exhibit reduced vibrational entropy [28]. Under the assumption that the
thermophile proteins are more stable, this finding leads to the contradictory notion,
from a Gibbs free energy point of view, that a loss in entropy is associated with
higher stability. Indeed, lower vibrational entropy is related to higher predicted
stability, whereas it should be leading to higher Gibbs free energy, thus lower
predicted stability. This so-called "sign error" in the predictions from Frappier
& Najmanovich’s works [27, 28] has always slightly bothered us. While it does
make sense from a functional perspective that thermophile proteins have evolved
to be more rigid at room temperature (leading to comparable rigidity at their
preferred temperature) than their mesophile homologs, it is against the laws of
thermodynamics to associate lower vibrational entropy with lower Gibbs free
energy. In that regard, an interesting finding from Gerasimavicius et al. in their
study of pathogenicity predictions for missense mutations is that while all tools
benefited from using the absolute value of the predicted change, ENCoM benefited
the most [115]. This points to the potential existence of two distinct effects on
stability captured by the ENCoM vibrational entropy:

1. The rigidification effect of mutations lowering vibrational entropy. While
contradicting Gibbs free energy on an entropic level, these predictions could
be partly correct due to the ENCoM potential function capturing the enthalpy-
entropy tradeoff, and said tradeoff sacrificing entropy for larger gains in
enthalpy.

2. "Pure" entropic effects where ENCoM predicts higher vibrational entropy,
which is related to higher thermodynamic stability, as should be the case.

Or course, these two effects each have a corresponding inverse effect, namely
softening mutations hurting stability through losses in enthalpy and rigidifying
mutations hurting stability through loss of entropy, as should be the case according
to Gibbs free energy. These reversals are probably part of what constitutes the
considerable gain that Gerasimavicius et al. observe when taking the absolute value
of the ENCoM ∆Svib predictions.

In fact, an unexpected advantage of the ENCoM-DynaSig-ML pipeline is its ability
to capture both types of effects at the same time. As discussed in Chapter 8,
we believe that the LASSO coefficients learned for the VIM-2 lactamase reflect a
tradeoff between stability and function, as was suggested as a general feature of
enzymes [189, 190]. The decomposition of entropic effects by residue thus seems to
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allow for the natural resolution of the "sign error" phenomenon, when experimental
mutagenesis data are available.

9.2.2 Entropic Signatures and the edge of chaos

We have introduced Entropic Signatures as novel measures of dynamical properties
at every bead in a coarse-grained normal mode analysis model, which scale the
mean square fluctuations of each normal mode by its vibrational entropy. In doing
so, a dependence on a thermodynamic scaling factor appears, which proves very
useful in adjusting the relative contribution of normal modes to the Dynamical
Signature. Indeed, we found a narrow range of scaling factors leading to improved
performance in all three case studies presented. Only in the last case study did the
optimal scaling factor match the widely-used, standard mean square fluctuations
(MSF). In the first two, the optimal scaling factors were lower that the one equivalent
to the MSF, corresponding to higher contributions from higher-frequency normal
modes.

We were initially surprised to see the best performance in the miR-125 hard
test emerge with β = e−2.5, a very low value leading to a dominance of local
effects from high-frequency normal modes. We hypothesized that the hard test
benefited from the low scaling factor due to the capture of localized perturbations.
Subsequent explorations of the 8 boxes benchmarks, which tested the ability of
the Entropic Signatures to capture delocalized motion, confirmed that the optimal
values for the scaling factor were higher for this type of motion. One value,
β = e2.25 was relatively close to the value leading to perfect agreement with the
MSF signature (e2.75), however the two other selected values were significantly
below at β = e1.5 and β = e−1.5. Moreover, our ultimate test of generalizability of
the LASSO models, the inverted benchmark in which the model has to predict the
maturation efficiency of variants containing 3 or more mutations from variants
containing only 2, has shown that the lowest of these scaling factors is the one
leading to the best performance. This value of β = e−1.5 corresponds to the slowest
25% of normal modes contributing 90% of the entropy, thus still exluding most
high-frequency, localized motions, while allowing contributions from a lot more
modes than the MSF, which have 90% of contributions coming from around 1% of
the normal modes.

A similar pattern was observed in Chapter 7, where the scaling factor leading
to both the best classification performance and the best Pearson correlation for
the leave-one-out cross-validation was β = e−0.5, lower than the MSF-agreement
value of β = e0.25. Interestingly, the peaking pattern of the AU-PR classification
performance around this value resembles the peaking pattern observed for the
selected MC-Sym 3D model of pri-miR-125a, model 61 in Figure 6.7. This optimal
scaling factor for the prediction of MOR ligand activity leads to around 8% of the
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normal modes contributing 90% of the entropy. Thus, it favors less higher-frequency
modes than the optimal scaling factor for miR-125a, but more than the MSF.

The normal modes correspond to uncoupled classical harmonic oscillators, which
do not exhibit chaotic behavior when considering the dynamics of the system.
However, what the ENCoM-DynaSig-ML pipeline models is the change in Dynam-
ical Signatures as a result of perturbations to the input structure, caused either
by mutations or the binding of different ligands. These changes in the Dynamical
Signatures generally fulfill the definition of chaos: slight changes in the starting
conditions leading to very different outcomes [194].

Moreover, when looked at with this perspective, the most chaotic behavior is
observed at very low scaling factors, for which the Entropic Signatures become
almost constant. Since the signatures are standardized, the effect of a mutation on
distant positions would be hard to predict based on just the observed changes in
the Hessian matrix as a result of change in the surface complementarity term. At
the opposite end, ordered behavior happens at very high scaling factors, which
essentially result in the Entropic Signature being reduced to the square fluctuations
from the single lowest-frequency normal mode. Since these low-frequency normal
modes are robust to slight changes in the input configuration, it is relatively
straightforward to predict the effect of a mutation on the Entropic Signature in that
context: if the mutation leads to lower surface complementarity terms, the whole
signature would increase in value, and vice versa.

Thus, we hypothesize that the performance peaks observed for miR-125a matu-
ration and MOR activation at scaling factors lower than the value recapitulating
MSF correspond to a goldilocks zone at the edge of chaos, providing a benefi-
cial balance between contributions from slow modes and contributions from fast
modes. Biological systems have been hypothesized to occupy the edge of chaos
zone, as it is a zone towards which most adaptive systems converge [195, 196].
According to our hypothesis, predicting pri-miR-125a maturation efficiency benefits
the most from chaos, followed by the prediction of µ-opioid receptor activation
and finally VIM-2 catalytic efficiency. Maybe the biomolecules themselves occupy
different zones in the chaos-order continuum. Indeed, RNAs have much more di-
verse conformational landscapes than proteins due to the presence of deep kinetic
traps in their folding landscapes [4], and the problem of miR biogenesis is highly
complex, with the Microprocessor having to recognize hundreds of substrates,
all with different sequences [43]. GPCR activation also exhibits some complex
behavior, with the possibility for signalling bias, receptor internalization, and the
recognition of ligands with effects ranging from inverse agonism to super-agonism
and allosteric modulation [197]. Finally, in many respects, VIM-2 lactamase is the
studied biomolecule with the least chaotic behavior of the three. It is expressed by
bacteria, and neither does it interact with partner biomolecules nor does it exhibit
pronounced conformational changes as part of its function, the degradation of
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β-lactam antibiotics. Therefore, it is evident that at the level of slow-timescales
dynamics, VIM-2 exhibits less chaotic behavior than pri-miR-125a and MOR. This
edge of chaos hypothesis for the success of our Entropic Signatures merits further
investigation, which we propose as a final avenue for future research.
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10
C O N C L U S I O N

In this work, we have introduced the ENCoM-DynaSig-ML computational pipeline,
the first variant effect predictor to consider biomolecular structural dynamics in
a systematic way. We have also extended ENCoM to RNA molecules and have
confirmed through parameter search that a single set of new optimized parameters
allows for good performance on RNA, proteins and RNA-protein complexes. We
have applied the ENCoM-DynaSig-ML pipeline to three diverse case studies of
dynamics-function relationships, starting with datasets of experimental measures
of function as a result of perturbations to the biomolecular systems (either through
sequence variation or ligand binding).

The three case studies demonstrate the straightforward applicability of the ENCoM-
DynaSig-ML pipeline, illustrate its ability to predict functional biomolecular prop-
erties of interest for biomolecular engineering and virtual screening, and showcase
the remarkable biological insights obtainable from the mapping of learned LASSO
coefficients to the structure of the studied biomolecule.

The good performance and interpretability of the pipeline is in part due to our
introduction of Entropic Signatures, which scale the square fluctuations at every
bead in the system by the vibrational entropy of the associated normal mode. In
closing, we leave the reader to ponder our questions regarding Entropic Signatures.

It was formally shown that temperature has no effect on the standard mean
square fluctuations arising from normal mode calculations, as we have discussed
in Section 4.3.2. However, the Entropic Signatures depend on a thermodynamic
scaling factor, which is inversely related to temperature. Moreover, specific ranges
of values for the scaling factor produce Entropic Signatures decoupled from MSF,
which lead to improved performance in two out of our three case studies. This
raises the question, what is the effect that the Entropic Signatures capture in these
cases? They could be truly capturing something akin to residue-level entropy, or
they could be correcting for inaccuracies in the underlying pseudo-physical model.
Maybe they are somehow correcting for the harmonic approximation of normal
mode analysis. Or perhaps the higher entropy associated with lower scaling factors
captures the effects of interaction with partner molecules: the Microprocessor
complex in the case of microRNAs and the G protein/other intracellular interaction
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partners in the case of GPCRs. Maybe none of these answers are close to the truth,
which is too complex and chaotic for us to fully grasp.
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Part III

A P P E N D I X



A
A P P E N D I X

Table A.1: Atom type assignations for the 4 standard ribonucleotides

Atom name Atom type

Nucleobase atoms

C2-C6, C8 Aromatic

N2, N4, N6 Donor

N3, N7 Acceptor

N9 Neutral

Sugar atoms

C1’, C3’-C5’ Neutral-acceptor

C2’ Neutral

O4’ Acceptor

O2’ Hydrophilic

Phosphate atoms

P Neutral-acceptor

OP1-OP3, O5’, O3’ Acceptor

Specific atom types

Adenine

N1 Acceptor

Guanine

N1 Donor

Cytidine

N1 Neutral

N5 Acceptor

O2 Acceptor

Uridine
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Table A.1 (continued)

Atom name Atom type

O2 Acceptor

O4 Acceptor

Table A.2: PDB codes for the protein B-factors benchmark

1LIT 1CNR 1GKY 2RHE

2CBA 5PTP 1AMM 1PTX

1EZM 4MT2 2END 2TGI

1ONC 1FUS 2HFT 1KNB

1PLC 1NAR 1LIS 3LZM

1MRJ 1AKY 2AYH 1BKF

4GCR 1NPK 1AHC 1RCF

1POC 1TML 5P21 1FXD

1CNV 4FGF 1PTF 1LST

1PDA 1FNC 1OSA 1NFP

1CYO 1AAC 1WHI 1HFC

2ERL 1FRD 1PPN 1JBC

1IAG 1REC 1CTJ 1RIE

1RIS 2IHL 1BPI 1CPN

1CUS 1IRO 2MHR 1POA

1GPR 1IAB 2CY3 1RRO

1AMP 1IFC 1DAD 7RSA

1ARB 1SNC 2CPL 3CHY

1RA9 2PHY 2RN2 1MJC

1UBI 3EBX 2MCM 1IGD

Table A.3: Pairs of conformations for the protein overlaps benchmark

PDB code A (chain) PDB code B (chain)

2ZCO (A) 2ZCQ (A)

1EYM (A) 1J4R (A)

2EBF (X) 2EC5 (A)

1LYY (A) 1RE2 (A)
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Table A.3 (continued)

PDB code A (chain) PDB code B (chain)

3D97 (A) 3D97 (B)

2DDS (A) 2UYR (X)

2PLF (A) 2PMD (B)

1SBQ (B) 1U3G (A)

2QFB (H) 2QFD (C)

2OUS (B) 2OUU (A)

2DE2 (A) 2DE3 (B)

2ECK (A) 4AKE (A)

2DDB (A) 2EPF (D)

1LFH (A) 1LFI (A)

1M0Z (B) 1QYY (G)

1JYR (A) 1JYU (A)

3C6Q (B) 3C6Q (D)

1R1C (A) 1R1C (C)

1EF3 (B) 1XGD (A)

1JEJ (A) 1QKJ (A)

1T2W (A) 1T2W (C)

1Z15 (A) 1Z17 (A)

1RIF (A) 1RIF (B)

3DEO (A) 3DEP (A)

1HKA (A) 1RAO (A)

1EUT (A) 1W8N (A)

1K4K (A) 1K4M (B)

1UFP (A) 2EB8 (A)

1EX6 (B) 1GKY (A)

1GQZ (A) 2GKE (A)

1O0R (A) 1PZT (A)

2P0M (A) 2P0M (B)

1PU5 (A) 2AG4 (B)

1UHA (A) 1ULN (A)

1EIN (B) 1TIB (A)

3B8S (B) 3B9D (A)

1F1S (A) 1I8Q (A)
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Table A.4: PDB codes and mutations for the protein ∆∆G benchmark

PDB code Mutation Experimental ∆∆G

1AJ3 D93A -0.7

1AJ3 D93G 0.3

1AJ3 E25A -0.1

1AJ3 H10A -0.5

1AJ3 I23A 3.6

1AJ3 I84A 2.0

1AJ3 K26A 0.0

1AJ3 K47A -0.4

1AJ3 K47G 0.5

1AJ3 K96A 0.4

1AJ3 K96G 1.3

1AJ3 L45A 0.2

1AJ3 L88A 2.8

1AJ3 L98A 3.8

1AJ3 N44G 0.4

1AJ3 Q86A 0.0

1AJ3 Q86G 1.3

1AJ3 T40A -0.3

1AJ3 V30A 0.2

1AJ3 V42A 0.4

1AKY Q48E 0.96

1APS I75V 1.41

1BNI I76T 2.64

1BNI K27A -0.44

1BNI R59A -0.64

1BTA K22Q 0.79

1BTA K60E 1.17

1BTA R75L -0.75

1BVC H119F 0.68

1BVC H24V 0.52

1BVC H48Q 0.62

1C9O E21A 0.29

1C9O E50K 0.58

167



Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1C9O F38W -0.24

1CEY A77G 0.31

1CEY A80G -0.43

1CEY A88G -0.04

1CEY A99G 0.48

1CEY D12A -2.5

1CEY D57A -3.3

1CEY F14N -2.64

1CSE V54A 1.58

1CUN A126G 1.65

1CUN A156G 1.45

1CUN A173G 1.95

1CUN A191G 1.35

1CUN A212G 1.45

1CUN F157L 1.85

1CUN I128A 1.65

1CUN I128V 2.85

1CUN K152A 0.15

1CUN K152G 1.45

1CUN L196A 4.55

1CUN L203A 4.05

1CUN L214A 3.65

1CUN M193A 2.65

1CUN Q115G 1.15

1CUN S201A -0.15

1CUN S201G 0.95

1DKT K11A -0.62

1DKT M58L 0.23

1DKT R71A 0.59

1DKT S39A 0.6

1DKT S9A 0.43

1DKT V55A 0.73

1E65 A82G 3.11
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1E65 H117G 2.18

1E65 I20T 2.39

1E65 I7S 3.44

1E65 L50V 0.36

1E65 V31T 1.08

1E65 V60G 3.11

1E65 V95T -0.96

1EY0 D19F 1.28

1EY0 D21K -1.1

1EY0 D77K 3.28

1EY0 G29V 3.11

1EY0 G55V 1.48

1EY0 G86F 1.99

1EY0 G96F 2.55

1EY0 G96V 3.74

1EY0 H124E -0.46

1EY0 I139L 0.09

1EY0 I15M 0.15

1EY0 I72L 0.23

1EY0 I92M 1.75

1EY0 K24F 0.4

1EY0 K63Q 0.89

1EY0 K70E 0.3

1EY0 K78Q 0.15

1EY0 K9F 1.03

1EY0 L108V 3.81

1EY0 L125I 0.96

1EY0 L137V 1.42

1EY0 L14V 1.63

1EY0 L36V 3.58

1EY0 L37I 1.82

1EY0 L7V 1.15

1EY0 L89I 1.04
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1EY0 M65F 1.62

1EY0 M65I 1.43

1EY0 R105C 2.55

1EY0 T13C 1.2

1EY0 T22I 0.61

1EY0 T33C 1.04

1EY0 T41I -0.86

1EY0 T44C 0.04

1EY0 T82C 0.19

1EY0 T82I -0.51

1EY0 V104I -0.27

1EY0 V111I 0.74

1EY0 V111L 0.88

1EY0 V114I 0.15

1EY0 V23I -0.03

1EY0 V23L 0.02

1EY0 V39I -0.11

1EY0 V39L 0.9

1EY0 V51L 0.1

1EY0 V66I 0.76

1EY0 V74L 1.12

1EY0 Y27C 2.72

1EY0 Y54F 0.38

1FNA I34V 0.11

1FNA V50A 2.85

1FTG A84G 1.9

1FTG D126K -0.81

1FTG D65K 0.1

1FTG D75K -1.03

1FTG E72K -1.41

1FTG I156V 3.16

1FTG L6A 3.11

1FTG N97A 0.58
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1FTG Q99A -1.59

1FTG S110A 0.73

1FTG V160A 2.07

1G4I F106A 1.23

1G4I F22I -1.43

1G4I F22Y -0.83

1G4I H48A 1.93

1G4I H48Q 0.49

1HME G35H 0.33

1HMK I55V 2.72

1HMK I89V 0.86

1HMK I95V 1.72

1HMK L110A 0.35

1HMK L12A 2.73

1HMK L96A 1.75

1HMK T29V -2.26

1HMK V27A 1.24

1HMK V8A 0.83

1HMK W60A 2.01

1HMK Y103F 2.13

1HMS F16S 3.98

1HMS F4S 3.67

1HMS F57S 2.43

1HMS L66G 3.67

1HMS R106T 2.84

1HMS T40E 2.4

1IET D60R -0.14

1IFC F68A 0.42

1IFC F93A 2.37

1IFC G65A 0.94

1IFC L64G 2.26

1IFC V60C 0.07

1IFC V60N 0.83
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1IFC W6Y 0.87

1IGV Y13F 1.08

1IHB F37H 0.66

1IHB F82Q 0.37

1IMQ E31L 0.67

1IMQ E41V -0.89

1IMQ V19L 1.82

1JIW D10A 0.7

1JIW W15F 2.3

1K9Q L30Y -0.27

1LNI D79F -2.73

1LNI D79I -2.85

1LNI D79K -2.35

1LNI D79L -2.65

1LNI D79N -1.46

1LNI D79Y -2.9

1LNI H85Q 0.0

1LNI Q94K -0.56

1LNI T16V -0.3

1LNI T56V 1.9

1LNI V43T 0.5

1LNI Y30F -0.4

1LNI Y55F 0.6

1LNI Y80F 1.5

1LZ1 G105A 0.62

1MGR Y54F 2.6

1MGR Y84F 1.0

1MJC F20L 0.31

1MJC F20S 1.16

1MJC F31S 1.03

1MJC S52W 0.2

1MSI D58N 0.2

1MSI E25A 0.09
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1MSI R47A 0.74

1OIA Y78F 0.0

1OIA Y86T 2.9

1P2P H48K 2.12

1QLP A183I -1.8

1QLP A183V -3.8

1QLP A248F -1.8

1QLP A248I -2.2

1QLP A248L -0.35

1QLP A248V -2.3

1QLP A284I 0.0

1QLP A284V -0.8

1QLP A31L -0.9

1QLP A70G -1.6

1QLP M374I -2.3

1QLP S330R 2.44

1QLP S381A -1.0

1QLP V321I -0.6

1QLP V364L 0.3

1QLP V55I 0.2

1QLP W238F -0.98

1QLP Y160W -1.18

1RG8 C16S 2.81

1RG8 L44F -0.59

1RG8 N106G -0.16

1RG8 V109I 0.05

1RIS F60A 0.81

1RIS I8A 3.56

1RIS L21A 0.16

1RIS L48A 0.21

1RIS L75A 1.35

1RIS L79A 3.91

1RIS Y33A -0.41
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1RN1 D49A -0.5

1RN1 G23A 1.2

1RN1 V16T 3.65

1RN1 V78S 4.73

1RN1 V78T 3.59

1RTB A5S 0.27

1RTB F46V 4.55

1RTB V57A 2.85

1RTB V57L 2.37

1RTB V63A 2.03

1SHF E107F 1.63

1SHF E107H 0.99

1SHF E107K 0.97

1SHF E107L 3.02

1SHF E107Y 2.4

1SHF G128A 1.78

1SHF I111A 2.84

1SHF I111L 0.71

1SHF S124D 2.02

1SHF S124F 1.9

1SHF S124G 1.68

1SHF S124H 1.25

1SHF S124L 0.37

1SHF S124N 0.73

1SHF V138M 0.52

1UZC A61G 2.07

1UZC E27A 0.62

1UZC I44V 0.3

1UZC Q38G 1.57

1YYJ A20G 1.97

1YYJ F61A 4.52

1YYJ F65A 1.92

1YYJ L3A 1.6
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

1ZNJ F25D -0.48

1ZNJ H10E -1.11

1ZNJ H10T -0.03

2A01 L141R 0.65

2A36 T22A -0.4

2A36 T22F -1.3

2A36 T22L -0.5

2A36 T22N -1.3

2DRI V50E 3.5

2LZM A146I 4.31

2LZM F153C 3.11

2LZM G51D 2.63

2LZM I58Y 3.11

2NVH C8S 3.74

2NVH N7D -0.09

2NVH R4Q 0.57

2RN2 H62A -0.44

2RN2 H83A -0.07

3MBP W10A 4.31

3SIL A53L -0.9

4LYZ E35A -1.24

5DFR G121C 0.22

5DFR G121H 0.56

5DFR G67S 0.27

5DFR G67T 0.62

5DFR G95A 0.9

5DFR I155T 2.53

5DFR I2V 0.55

5DFR N59T 0.05

5DFR N59W 0.79

5DFR V40H 2.76

5DFR W30M 1.94

5PTI A16T 1.7
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Table A.4 (continued)

PDB code Mutation Experimental ∆∆G

5PTI A16V 1.3

5PTI Y35D 3.8

Table A.5: PDB codes for the RNA B-factors benchmark

472D 4U37 433D 405D

1CSL 1Q9A 480D 483D

5C5W 2VUQ 1I9X 1RNA

413D 280D 157D 3SZX

353D 255D 1ZEV 3GM7

1KD5 5VGW 4C40 402D

1RXB 259D 2V6W 2XSL

1DQH 7EAG 438D 5NXT

1MSY 2V7R 4U38 2OE6

1OSU 4E59

Table A.6: Pairs of conformations for the RNA overlaps benchmark

PDB code A PDB code B Sequence cluster number

1J7T 1O9M 1

1J7T 2ET8 1

1J7T 3BNL 1

1J7T 4F8U 1

1LC4 3BNL 1

1LC4 4F8U 1

1MWL 1O9M 1

1MWL 2ET8 1

1MWL 3BNL 1

1MWL 4F8U 1

1O9M 1YRJ 1

1O9M 2BE0 1

1O9M 2BEE 1

1O9M 2ET3 1
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

1O9M 2F4S 1

1O9M 2F4T 1

1O9M 2F4U 1

1O9M 2O3X 1

1O9M 2PWT 1

1O9M 3BNL 1

1O9M 4F8U 1

1O9M 4F8V 1

1YRJ 2ET8 1

1YRJ 2F4S 1

1YRJ 2F4T 1

1YRJ 2F4U 1

1YRJ 2O3X 1

1YRJ 2PWT 1

1YRJ 3BNL 1

1YRJ 4F8U 1

1YRJ 4F8V 1

2BE0 2ET8 1

2BE0 2F4S 1

2BE0 2F4U 1

2BE0 2O3X 1

2BE0 3BNL 1

2BE0 4F8U 1

2BEE 2ET8 1

2BEE 2F4S 1

2BEE 2F4U 1

2BEE 2O3X 1

2BEE 3BNL 1

2BEE 4F8U 1

2ESJ 2F4S 1

2ESJ 3BNL 1

2ESJ 4F8U 1

2ET3 2ET8 1

177



Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

2ET3 2F4S 1

2ET3 2F4T 1

2ET3 3BNL 1

2ET3 4F8U 1

2ET4 3BNL 1

2ET4 4F8U 1

2ET5 2ET8 1

2ET5 3BNL 1

2ET5 4F8U 1

2ET8 2F4S 1

2ET8 2F4T 1

2ET8 2F4U 1

2ET8 2O3X 1

2ET8 2PWT 1

2ET8 3BNL 1

2ET8 4F8U 1

2ET8 4F8V 1

2F4S 2F4T 1

2F4S 2PWT 1

2F4S 3BNL 1

2F4S 4F8U 1

2F4T 2F4U 1

2F4T 2O3X 1

2F4T 3BNL 1

2F4T 4F8U 1

2F4T 4F8V 1

2F4U 2PWT 1

2F4U 3BNL 1

2F4U 4F8U 1

2O3X 2PWT 1

2O3X 3BNL 1

2O3X 4F8U 1

2PWT 3BNL 1
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

2PWT 4F8U 1

3BNL 4F8U 1

3BNL 4F8V 1

3BNL 4P20 1

4F8U 4F8V 1

4F8U 4P20 1

1NLC 1XP7 2

1NLC 1XPF 2

1NLC 1Y3S 2

1NLC 1YXP 2

1NLC 1ZCI 2

1NLC 2B8S 2

1NLC 2FCX 2

1NLC 2FCY 2

1NLC 2FCZ 2

1NLC 2FD0 2

1NLC 2QEK 2

1NLC 3C44 2

1NLC 3DVV 2

1O3Z 1XP7 2

1O3Z 1XPF 2

1O3Z 1Y3S 2

1O3Z 1YXP 2

1O3Z 1ZCI 2

1O3Z 2B8S 2

1O3Z 2FCX 2

1O3Z 2FCY 2

1O3Z 2FCZ 2

1O3Z 2FD0 2

1O3Z 2QEK 2

1O3Z 3C44 2

1O3Z 3DVV 2

1XP7 2QEK 2
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

1XP7 3C44 2

1XP7 3DVV 2

1XP7 462D 2

1XPF 2QEK 2

1XPF 3C44 2

1XPF 3DVV 2

1XPF 462D 2

1Y3S 2QEK 2

1Y3S 3C44 2

1Y3S 3DVV 2

1Y3S 462D 2

1YXP 2QEK 2

1YXP 3C44 2

1YXP 3DVV 2

1YXP 462D 2

1ZCI 2FCX 2

1ZCI 2QEK 2

1ZCI 3C44 2

1ZCI 3DVV 2

1ZCI 462D 2

2B8S 2QEK 2

2B8S 3C44 2

2B8S 3DVV 2

2B8S 462D 2

2FCX 2QEK 2

2FCX 3C44 2

2FCX 3DVV 2

2FCX 462D 2

2FCY 2QEK 2

2FCY 3C44 2

2FCY 3DVV 2

2FCY 462D 2

2FCZ 2QEK 2
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

2FCZ 3C44 2

2FCZ 3DVV 2

2FCZ 462D 2

2FD0 2QEK 2

2FD0 3C44 2

2FD0 3DVV 2

2FD0 462D 2

2QEK 3C44 2

2QEK 3DVV 2

2QEK 462D 2

3C44 462D 2

3DVV 462D 2

1XPE 2OIJ 3

1XPE 2OIY 3

1XPE 2OJ0 3

1XPE 3FAR 3

2B8R 2OIJ 3

2B8R 2OIY 3

2B8R 2OJ0 3

2B8R 3FAR 3

1ZX7 1ZZ5 4

1ZX7 2A04 4

2FQN 2G5K 5

2FQN 5XZ1 5

2G5K 2O3W 5

2G5K 5XZ1 5

2O3W 5XZ1 5

2GPM 439D 6

2NOK 2PN4 7

3BNQ 3BNR 8

3BNQ 3BNS 8

3CW5 5L4O 9

3CW6 5L4O 9
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

3GCA 6VUH 10

3L0U 6Y3G 11

3OWI 3OWZ 12

3OWW 3OWZ 12

3OWZ 3OX0 12

3OWZ 3OXB 12

3OWZ 3OXD 12

3OWZ 3OXE 12

3OWZ 3OXJ 12

3OWZ 3OXM 12

3TD0 3TD1 13

3WRU 4PDQ 14

3WRU 6JBG 14

4GPY 4PDQ 14

4GPY 6JBG 14

4PDQ 6JBG 14

4K31 4K32 15

4L81 4OQU 16

4MSB 6Z18 17

4MSR 6WY3 17

4MSR 6Z18 17

5TDK 6Z18 17

4P3S 4P3T 18

4P3U 4P43 19

4RZD 6XKN 20

6XKN 6XKO 20

4TZX 5E54 21

4TZX 5SWD 21

4TZY 5E54 21

4TZY 5SWD 21

4XNR 5E54 21

4XNR 5SWD 21

5E54 5SWE 21
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Table A.6 (continued)

PDB code A PDB code B Sequence cluster number

5E54 5UZA 21

5E54 6VWT 21

5E54 6VWV 21

5SWD 5SWE 21

5SWD 5UZA 21

5SWD 6VWT 21

5SWD 6VWV 21

5ZEG 5ZEI 22

5ZEG 5ZEJ 22

5ZEG 5ZEM 22

6C8D 6CAB 23

6E80 6E81 24

6E80 6E82 24

6E80 6E84 24

7EOI 7EOK 25

Table A.7: PDB codes for the RNA NCO benchmark

2LUB 1F5G 2KYD 1AFX

6U79 2M21 1QET 2N7M

5KQE 6VZC 2FDT 1JU1

6PK9 1K6G 1B36 1OW9

2JXS 6K84 2ADT 2RN1

1K4A 6XWJ 3PHP 2MI0

1TBK 6N8F 1GUC 1BN0

1LMV 1FHK 2NBZ 2GIP

2LX1 2KVN 6BG9 2Y95

2LP9 2JYH 1HLX 1E4P

2K3Z 2MXJ 1EBR 5V17

6XWW 1R2P 1N66 1ATW

2L5Z 2LPS 2JXQ 2M23

2L8F 1IDV 2LBL 2N3Q

2M24 2IXY 2N6X 2IRO
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Table A.7 (continued)

1Z31 2NC1 4A4T 2N4L

2F88 2LC8 2NCI 1YNC

1TJZ 1T4X 1MFJ 2D19

2RLU 2LUN 1F7F 2LPA

6HYK 2AHT 2M22 1RNG

1ATO 2KHY 1ZIF 1WKS

1XHP 2O33 1A60 2GM0

1Q75 2LV0 1F85 5LSN

2M4W 1ZIG 2N6S 6GE1

5A17 2KY1 1YNE 1IE1

2MXL 1F7G 2FEY 1F84

1QES 2G1W 1TXS 1MFY

5VH7 6BY4 5V2R 2EUY

1AQO 1VOP 1QWA 2HNS

1A3M 2NBX 5N5C 1R7W

2NC0 6N8I 2KPC 2JXV

2KRQ 2GRW 1M82 2MFD

1P5O 5KMZ 2M18 6AAS

2L1F 2RQJ 2PCV 2LK3

1LDZ 1YSV 2MXK 1MT4

1JU7 2LJJ 1P5M 2RVO

2IXZ 2KF0 1M5L 1YMO

7DD4 2MNC 2LQZ 1N8X

2KUW 2K5Z 2LPT 2OJ8

2LDL 2MTJ 5IEM 1P5N

5VH8 1NC0 1YNG 2D17

2JSE 2KZL 1CQL 6VAR

2PCW 2KUU 1R7Z 6W3M

1OSW 1SCL 1SY4 1NBR

2IRN 4A4S 2KE6 5A18

1Z2J 2GV4 1K4B 1BVJ

2KD8 2P89 1K6H 2KRP

6VA1 2JTP 2N8V 2MQT

1F5H 1QWB 5UZT 2L3E
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Table A.7 (continued)

1ATV 1IKD 1I3X 2GVO

2JR4 28SP 1FYO 1TLR

2QH4 6XXB 2JYF 2KOC

2LHP 2KEZ 1SLP 2K41

1YLG 1MFK 1KKA 1SYZ

2H49 7K4L 4A4U 2D18

2MEQ 1EBQ 2KPD 5KH8

1OQ0 1NA2 2KXZ 5WQ1

7JU1 2F87 2N6T 6BY5

2F4X 1ELH 2K96 1YN1

1JP0 2JWV 2L2J 1RRR

2K66 2M12 2N7X 1ESY

1KKS 2LU0 1A9L 2KPV

2K65 1QC8 5V16 2JYJ

2JYM 1K5I 2K95 2LAC

1S9S 6XXA 1BGZ 2XEB

2KBP 1ROQ 2N6W 2LBK

2GV3 1ZC5 1MNX 1JTJ

1JUR 1Z30 2M8K 2M57

17RA 1A51 2N2P 2GIO

1U3K 2B7G 1JOX 1HWQ

1ZIH 1UUU 1E95 2KRL

2HEM 2LDT 2QH3 2RPT

1S34 6MXQ 5UF3 2L6I

2HUA 2KUR 1D0U 2M5U

2EVY 2QH2 1JO7 2KY2

1IE2 2N2O 7LVA 1LC6

6NOA 2OJ7 1EBS 1ANR

2LBJ 1PJY 2ES5 2KY0

2NBY

Table A.8: PDB codes for the RNA-protein NCO benchmark

7Q4L 7ZEX 6WLH 6HPJ
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Table A.8 (continued)

7ACS 6SNJ 7ACT 6SDW

6SDY 6SO9 6G99 5N8M

5X3Z 5MPG 5MPL 2N8L

2N7C 2N30 2N82 2MQ0

Table A.9: Correspondence between Sybyl and Sobolev atom types

Sybyl
number

Sybyl
name

Condition Sobolev type

2 Br Any IV (Hydrophobic)

3 C.1 Bound to at least 2 atoms of
Sobolev type II or III

VI (Neutral)

Bound to only 1 atom of
Sobolev type II or III

VII (Neutral-donor)

Any other condition IV (Hydrophobic)

4 C.2 Bound to at least 2 atoms of
Sobolev type II or III

VI (Neutral)

Bound to only 1 atom of
Sobolev type II or III

VII (Neutral-donor)

Any other condition IV (Hydrophobic)

5 C.3 Bound to at least 2 atom of
Sobolev type II or III

VI (Neutral)

Bound to only 1 atom of
Sobolev type II or III

VII (Neutral-donor)

Any other condition IV (Hydrophobic)

6 C.ar Any V (Aromatic)

7 C.cat Any VI (Neutral)

9 Cl Any IV (Hydrophobic)

11 F Any VI (Neutral)

19 N.1 Any II (Acceptor)

20 N.2 Bound to only 1 hydrogen I (Hydrophillic)

Any other condition II (Acceptor)

21 N.3 Bound to only 1 hydrogen III (Donor)

Bound to 2 hydrogens I (Hydrophillic)

Any other condition VI (Neutral)
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Table A.9 (continued)

Sybyl
number

Sybyl
name

Condition Sobolev type

22 N.4 Any III (Donor)

23 N.ar Any V (Aromatic)

24 N.p13 Any III (Donor)

26 O.2 Any II (Acceptor)

27 O.3 Bound to at least 1 hydrogen I (Hydrophillic)

Any other condition II (Acceptor)

28 O.co2 Any I (Hydrophillic)

29 O.spc Any I (Hydrophillic)

30 O.t3p Any I (Hydrophillic)

32 S.2 Any VI (Neutral)

33 S.3 Any VI (Neutral)

34 S.o Any VI (Neutral)

35 S.o2 Any VI (Neutral)
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