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Abstract

Motivated by a real-world application, we present a multi-container loading problem with 3-open
dimensions. We formulate it as a biobjective mixed-integer nonlinear program with lexicographic
objectives in order to reflect the decision maker’s optimization priorities. The first objective is to
minimize the number of containers, while the second objective is to minimize the volume of those
containers. Besides showing the NP-hardness of this sequential optimization problem, we provide
bounds for it which are used in the three proposed algorithms, as well as, on their evaluation when a
certificate of optimality is not available. The first is an exact parametric-based approach to tackle the
lexicographic optimization through the second objective of the problem. Nevertheless, given that the
parametric programs correspond to large nonlinear mixed-integer optimizations, we present a heuristic
that is entirely mathematical-programming based. The third algorithm enhances the solution quality of
the heuristic. These algorithms are specifically tailored for the real-world application. The effectiveness
and efficiency of the devised heuristics is demonstrated with numerical experiments.

1 Introduction
Problem statement Packing problems play an important role in the practical industrial processes. Typ-
ically, the goal of these problems is to find an optimized packing of a given set of items into a set of
containers. Although packing problems have been widely studied in the literature, many questions remain
open and unsolved. In this paper, we present a container loading problem which besides encompassing
various of the typical challenges faced by packing problems, it requires a lexicographical optimization,
i.e., a hierarchical ordering of two natural objective functions. Briefly, we aim to pack several small items
amongst containers whose dimensions are open. This packing is guided by the minimization in the first
objective of the number of used containers and then, in the second objective, by the minimization of their
total volume subject to the number of containers decided in the first optimization.

Application The problem described is motivated by a real-world application suggested by a shoe man-
ufacturer. The shoe manufacturer is specialized in children’s footwear production. The children’s shoe
sizes range from 18 to 40. Each model size is packed in a shoe box. There is a limited number of available
shoe boxes sizes, which are listed in Table 1. The footwear ordered by each customer is packed into one
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or several large cardboard boxes and these cardboard boxes are size customized for each set of shoe boxes
to pack. The cardboard boxes will henceforth be referred to as containers. Each container can pack dif-
ferent shoe sizes and models, and it is to be delivered to one single customer. The goal is to pack the full
order with the least number of containers and, as the containers are not fixed size, also minimizing their
total volume. Each shoe box is packed with the label facing up for easy inspection and it can be rotated
according with Figure 1. More details about this application can be read at the nontechnical magazine
Impact, see Vieira and Flora (2020). Therefore, contrary to other industries, the customization of con-
tainers occurs and the consequent sequential optimization of two objective functions, results in a novel
problem. We stress that the open-dimensions element is not an isolated case of this specific manufacturer
as others have been described by Tsai and Li (2006), Tsai et al. (2015), and Junqueira and Morabito
(2017).

Contributions and paper structure The paper is organized as follows. Section 2 reviews the related
literature on both topics, lexicographic optimization and the container loading problem. Throughout Sec-
tion 3, we introduce the lexicographic mixed-integer nonlinear mathematical formulation of the container
loading problem with 3-open dimensions and we show that it is NP-hard. In Section 4, we reduce our
problem to a series of parametric nonlinear mixed integer mathematical programs. Section 5 provides
bounds to our problem which in Section 6 are used (i) to reduce the number of parametric problems to
be solved by our exact approach and (ii) to simplify the nonlinearities of the model, leading to a non-
exact algorithm. A variant of the non-exact method is proposed with the goal of improving the solution
quality. Section 7 presents the computational results in three types of instances: the ones provided by
the manufacturer, randomly generated instances, and a set of controlled instances for which we know the
optimal value. These experiments allow us to validate the applicability of our methodologies, evaluate
their scalability, as well as to analyze the quality of our heuristics. We remark that our methodology is
described in terms of the case with 3-open dimensions. However, since the particular case of the shoe
manufacturer does not allow to stack containers, our experiments only consider 2-open dimensions.

Since our work is based on a real-world application, it further justifies the practical interest on pack-
ing problems with open dimensions, expanding the literature in this direction. Moreover, it contributes
with new algorithmic ideas to scale methodologies considering a multi-container setting. Finally, it com-
bines in a new model, a sequential optimization problem which not only enlarges the applicability of
lexicographic optimization formulations but also motivates the development of parametric frameworks.

2 Literature review
In many real-world applications the assumption that decisions are made by a single decision maker or
guided by a single objective might be a relevant limitation. Next, we review the relevant works on
multiobjective in the context of packing problems and we refer the reader to Ehrgott (2005) for a wide
view on such problems.

Multiobjective optimization in packing problems Most work in packing problems consider either to
minimize the number of containers or to minimize the volume of the container (or somehow equivalent,
to maximize the volume utilization). Up to now, multiobjective research works combine just one of the
previous objectives with other objectives, but not both. Minimizing the number of boxes and minimizing
the total volume coincide in the continuous case, whereas they do not usually coincide when the items
cannot be split.

Minimizing the number of containers is combined with the objective of minimizing the number of
packing patterns in Liu et al. (2012). In the work of Liu et al. (2014), the number of packing patterns
is also minimized but this time conflicting with the minimization of wasted space. The recent work of
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Araya et al. (2020) and the previous work of Zheng et al. (2015) present a biobjective variant of the
single container loading problem combining the objectives of maximizing the volume utilization and the
total profit of the loaded items.

Dahmani et al. (2013) describe a bin-packing problem which minimizes the number of bins subject
to the usual constraints and with a constraint fixing the height of the bins. Then, the height of the bins
became a variable and that constraint is replaced by a second objective minimizing the height of the bins.
Their problem does not decide the position of the items to be packed, instead, it just decides the number
of bins, the assignment of items to bins, and the height of the bins, while seeking Pareto solutions. They
also describe an application of assignment of jobs to machines. From the literature, this work is the most
related with ours: on the one hand, our problem generalizes it by accounting in the decision variables for
the items’ positions and all 3 dimensions of the bins; on the other hand, we seek a specific Pareto solution
satisfying the lexicographic order of two objectives.

In addition to the minimization of the number of bins, the works of Fernández et al. (2013) and Liu
et al. (2008) also minimize the load imbalance. Khanafer et al. (2012) consider a biobjective problem
where the second objective minimizes the number of conflicts. This assumes the existence of pairs of
items to pack that we should avoid to place together in the same bin. Spencer et al. (2019) present
a multiobjective bin packing problem with three competing goals for storing cooling objects. Besides
minimizing the number of boxes, it minimizes the average initial heat of each box and the time until the
boxes can be moved to the storefront.

Concerning lexicographic optimization, the work of Coniglio et al (2019) proposes an exact lex-
icographic dynamic pricing algorithm for solving the fractional bin-packing problem. There is also a
discussion paper (Hessler et al. (2020)) which optimizes in a strictly lexicographic sense several objec-
tive functions: the total number of trucks, the number of refrigerated trucks, the number of refrigerated
trucks which contain frozen products, the number of refrigerated trucks which also transport standard
products, and then minimize the product splitting.

Related packing problems The multi-container loading problem with three open dimensions was first
approached by Vieira et al. (2021). This paper describes an approach which performs three independent
decision steps: 1) the number of containers that are previously fixed for each order; 2) the shoe boxes
are sorted by size and they are assigned up to 20 boxes to each container, according to their position
and, finally, 3) the volume of each container, the position, and the orientation of the boxes are decided
using a mixed-integer linear program (MILP). On the contrary, in this paper, we introduce for the first
time a global approach where the sequential optimization encloses in full these three steps. In other
words, each decision will anticipate the ones that follow. Such anticipation allows for better integration
of decisions and, in particular, it avoids infeasible solutions. For example, if the number of containers
disregards limitations on their sizes, it can happen that the boxes do not fit in the limited amount of
available containers.

Besides the previously mentioned paper, to the best of our knowledge, the multi-container loading
problem where the containers have the 3 open dimensions was never studied before. Few works consider-
ing a single container with three open dimensions have been published. Tsai and Li (2006) and Tsai et al.
(2015) propose a mixed-integer linear program where the objective function was the container’s volume
which was approximated by a piecewise linear function. Junqueira and Morabito (2017) also use the
piecewise linearization technique and present grid-based position formulations to obtain an alternative
MILP formulation.

Concerning the problem of loading several containers, Silva et al. (2019) present a comparative study
of exact methods for the three-dimensional cutting and packing problems. Alonso et al. (2017) describe
the multi-container loading problem where axle-weight constraints are also included. They minimize the
number of trucks while balancing the mass center with the truck axles. Toffolo et al. (2017) also explore
the three-dimensional multi-container loading problem. In all these papers, the container dimensions are
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fixed.
For a wide view of the packing problems, please refer to the review papers of Bortfeldt and Wäscher

(2013), Zhao et al. (2016), and Delorme et al. (2016). While Bortfeldt and Wäscher (2013) review
constraints for the loading problem, Zhao et al. (2016) compare algorithms for the 3D container loading
problem, and Delorme et al. (2016) surveys bin-packing and related problems.

In summary, the research work presented in this work gains relevance (i) by expanding the literature
on 3 open dimensional loading problems and (ii) by integrating two objective functions of interest within
a lexicographic optimization.

3 The lexicographic container loading problem
The goal of the model is to minimize the total number of used containers and pack each container effec-
tively. As their dimensions are decision variables, here effectiveness means to minimize the volume of
each container. In other words, among all feasible box loads minimizing the number of containers, our
goal is to select the one minimizing their total volume.

To motivate the objective described above, three observations are in order. First, solely minimizing the
number of containers can lead to undesirable solutions where, for example, boxes of various dimensions
are allocated to the same container, resulting in a highly ineffective packing in terms of volume. Note that
such an objective is “blind” to the boxes distribution among containers which again can result in a large
wasted volume. Second, only considering to minimize the total volume of all containers is inappropriate.
Such an objective could lead to the extreme situation where each container would be of the size of each
box and it would only pack one box. Third, it is not of practical interest to model a biojective problem
given by the two objectives just described: the shoe manufacturer’s primary aim is to use the minimal
number of containers, while minimizing the associated volume. To illustrate the type of solutions we are
looking for, we present the following example:

Example 1. Consider 2 boxes of size 1× 1 and 2 boxes of size 1× 2 to be packed into containers with
length (L) and width (W) less or equal than 2. One possible solution minimizing the number of containers
uses two of them and packs in each container 1 box of size 1×1 and 1 box of size 2×1. This distribution
of boxes amongst two containers is illustrated below.

However, using two containers, it is possible to decrease the total volume of the containers, loading in one
container 2 boxes of size 1×1 and the other container packs two boxes of size 2×1. This is illustrated
below.

The two packings above minimize the number of containers. However, our goal is to be able to choose
the second solution which has less total volume.

On the other hand, the following drawing illustrates the case in which we focus only on obtaining a
solution with minimum volume. Such a solution uses 4 containers, one box per container.
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In this context, as we will see, a lexicographic mathematical program gives a natural formulation for
our multi-container loading problem with 3-open dimensions.

In lexicographic optimization, a set of objective functions is ranked, reflecting the order by which they
must be optimized. In other words, if multiple optimal solutions exist for the objective ranked as first,
then the selection among those solutions is done by following the order of the remaining optimization
criteria. Therefore, this paradigm provides a direct way to formulate the loading problem at hand.

In our context, there are two objective functions that we wish to minimize by deciding the size of
the containers, the distribution of boxes amongst the containers and the position/orientation of each box
inside of each container. The objective ranked as first is the total number of containers, whereas the second
is the total volume of the containers. We remark that the formulation proposed will be a mixed-integer
nonlinear program for the second objective. The nonlinear part follows from the algebraic expression of
the containers’ volume. Next, we formalize our optimization model.

The parameters n and m designate the number of boxes to pack and the total number of available
containers, respectively. We can set m = n since, in the worst case, there is one box in each container.
The decision variables are the following:

• βk taking value 1 if container k is used, 0 otherwise;

• αik taking value 1 if box i is packed into container k, 0 otherwise;

• Lk, Wk, and Hk are the length, width, and height of container k, respectively;

• xi, yi, and zi are the centroid’s position of box i;

• pi is the orientation of box i.

Our problem constraints include the fundamental restrictions of a container loading problem (cf. Chen
et al. (1995) and Zhao et al. (2016)). The lexicographic container loading problem LCLP is given by
the following mathematical program where the optimization must follow the lexicographic order of the
objectives:

(LCLP) min
β ,α,L,W,H,x,y,z,p

( f1(β ), f2(H,L,W ))

s.t. βk ∈ {0,1}, k = 1, . . . ,m (1a)
αik ≤ βk, i = 1, . . . ,n, k = 1, . . . ,m, (1b)

m

∑
k=1

αik = 1, i = 1, . . . ,n, (1c)

all boxes must be placed within the assigned container, (1d)
boxes assigned to same container cannot overlap, (1e)
client constraints, (1f)
variables domain, (1g)

where
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f1(β ) =
m

∑
k=1

βk (2)
f2(H,L,W ) =

m

∑
k=1

HkLkWk. (3)

The objective function (2) corresponds to the number of containers used, while the second objec-
tive (3) is equal to the total volume of the containers. Constraints (1b) ensure that each box can only
be assigned to a used container. The loading of each box to a container is enforced by constraints (1c).
Constraints (1d)-(1g) will be explicitly described later. Remark that, with our lexicographic formulation,
for the instance of Example 1, we would obtain the desired solution.

Equivalently, we can write LCLP as two optimization problems to be solved sequentially:

(CLP1) f ∗1 = min
β ,α,L,W,H,x,y,z,p

m

∑
k=1

βk

s.t. (1a)− (1g).

(CLP2) min
β ,α,L,W,H,x,y,z,p

m

∑
k=1

HkLkWk

s.t.
m

∑
k=1

βk = f ∗1 (5a)

(1a)− (1g).

As expected and detailed below, the variables β dictate the feasibility of constraints (1d)-(1g) and thus,
they cannot be discarded from CLP1. The CLP2 minimizes the volume of each container (3) such that no
more containers than the ones decided in CLP1 are used (constraint (5a)).

Next, we detail constraints (1d)-(1g). To this end, let us start by defining the parameters used by
them as well as additional decision variables. Let li,wi,hi designate the length, width, and height of
box i, respectively. Since our ultimate goal is to provide decision-aid to the shoe manufacturer, in what
follows, certain parameters are speficied for the application at hand. Constraints (1d) and (1e) contain a
big-M parameter. We set it to M = 80, the value of the longest edge of a container as stated in our client
constraints. Note however, that such edge upper bounds are expected for other potential client constraints,
simplifying the big-M value determination. The binary variables Xi j, Yi j, and Zi j, omitted in the LCLP,
will be auxiliary variables establishing the relative position between boxes i and j, and preventing their
overlap.

• All boxes must be placed within the assigned container:

xi +
1
2
(piwi +(1− pi)li)≤Wk +M(1−αik), (6)

xi−
1
2
(αiwi +(1− pi)li)≥ 0−M(1−αik), i = 1, . . . ,n, (7)

yi +
1
2
(pili +(1− pi)wi)≤ Lk +M(1−αik), (8)

yi−
1
2
(pili +(1− pi)wi)≥ 0−M(1−αik), i = 1, . . . ,n, (9)

zi +
1
2

hi ≤ Hk +M(1−αik), zi−
1
2

hi ≥ 0, i = 1, . . . ,n. (10)

This set of constraints determine the absolute position of the boxes inside each container, given by
variables xi,yi,zi and orientation pi (see Figure 1). At the same time, they ensure that boxes may
only be placed with their edges parallel to the edges of the container.
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• Boxes assigned to the same container cannot overlap:

x j− xi ≥
1
2
(wi pi +w j p j + li(1− pi)+ l j(1− p j))−M(3−Xi j−αik−α jk), 1≤ i < j ≤ n, (11)

xi− x j ≥
1
2
(wi pi +w j p j + li(1− pi)+ l j(1− p j))−M(3−X ji−αik−α jk), 1≤ i < j ≤ n, (12)

y j− yi ≥
1
2
(li pi + l j p j +wi(1− pi)+w j(1− p j))−M(3−Yi j−αik−α jk), 1≤ i < j ≤ n, (13)

yi− y j ≥
1
2
(li pi + l j p j +wi(1− pi)+w j(1− p j))−M(3−Yji−αik−α jk), 1≤ i < j ≤ n, (14)

z j− zi ≥
1
2
(hi +h j)−M(3−Zi j−αik−α jk), 1≤ i < j ≤ n, (15)

zi− z j ≥
1
2
(hi +h j)−M(3−Z ji−αik−α jk), 1≤ i < j ≤ n, (16)

Xi j +X ji +Yi j +Yji +Zi j +Z ji ≥ αik +α jk−1, 1≤ i < j ≤ n. (17)

These constraints guarantee that boxes assigned to same container do not overlap and for that,
constraints (17) say that it is enough to enforce separation in one direction: the right-hand-side is
equal to 1 if αik = α jk = 1.

• Client constraints:

Lk ≤ 80, k = 1 . . . ,m, (18)
Wk, Hk ≤ 60, k = 1 . . . ,m, (19)
2(Hk +Wk)+Lk ≤ 300, k = 1 . . . ,m, (20)
Wk,Hk ≤ Lk, k = 1 . . . ,m. (21)

• Variables domain:

Wk,Lk,Hk ≥ 0, xi,yi,zi ≥ 0, k = 1 . . . ,m, i = 1, . . . ,n, (22)
Xi j,Yi j,Zi j,αik, pi ∈ {0,1}, i, j = 1, . . . ,n, i 6= j, k = 1, . . . ,m. (23)

Constraints (6)-(17) are taken from Vieira et al. (2021). We give a short note on the constraints imposed
by clients, (18)-(20). The manufacturer clients require shoe boxes to be facing up for label inspection
and allow them to rotate. Figure 1 shows the only possible rotations of the shoe boxes. These are also
preferably packed in one level for easy inspection. As a result of the client’s requirements, the size of the
containers should satisfy the following constraints:

1. length (Lk), considered as the longest edge of the container does not exceed 80 cm;

2. width (Wk) and height (Hk) of the container cannot exceed 60 cm;

3. 2(Hk +Wk)+Lk does not exceed 300 cm.

The constraint (21) is not really a client constraint. It just imposes Lk as the longest side of the container,
which removes some symmetry from the problem. It must be noted that the methodologies we will
propose can be adapted to handle other client constraints. However, for the sake of simplicity, we develop
the presentation of this paper with the shoe manufacturer’s specific constraints.

To conclude the discussion on the model, we provide the following trivial observation, allowing for
eliminating the variables β from CLP2 and motivate our methodology:
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Figure 1: Allowed rotation.

Observation 1. Let m? be the optimal value of CLP1. Then, solving the CLP2 with β1, . . . ,βm? equal 1
and the remaining equal to zero provides an optimal solution to the LCLP.

The result above gives intuition on the theoretical intractability of LCLP, formalized below.

Proposition 1. Consider LCLP with the client constraints replaced by generic bounds on the length,
width, and height of the containers. This problem is NP-hard.

Proof. The 3D Bin Packing is a NP-hard since it generalizes the classical Bin Packing problem which
is NP-hard (Garey and Johnson , 1990). In the 3D Bin Packing problem, one seeks to pack 3D boxes
in the minimum number of containers. It is easy to see that 3D Bin Packing is a special case of LCLP
implying that the latter is NP-hard. Indeed, we can transform an instance of the 3D Bin Packing into an
instance of the LCLP. Start by setting the lower and upper bounds of the variables Hk, Lk, and Wk equal to
container k’s size in the 3D Bin Packing. In this way, the second objective can be dropped since its values
is constant. Then, LCLP becomes a 3D Bin Packing.

4 A parametric mathematical program
In this section, the lexicographic container loading problem is reduced to non-linear mixed-integer para-
metric programs. Here, the parametrization is done by considering the β variables as parameters of CLP2.

Thus, given K, the number of containers, we have the following parametric program:

min
m

∑
k=1

HkLkWk

s.t. (CLP2-r)
βi = 1, i = 1, . . . ,K
βi = 0, i = K +1, . . . ,m
αik ≤ βk, i = 1, . . . ,n, k = 1, . . . ,m

m

∑
k=1

αik = 1, i = 1, . . . ,n.

all boxes must be placed within the assigned container;
boxes assigned to the same container cannot overlap;
client constraints;
variables domain.
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Note the difference between CLP2-r with CLP2: in CLP2-r, the β variables are fixed such that ∑
m
k=1 βk =K

and it is not necessary that K = f ∗1 . Indeed, if K is the smallest value such that CLP2-r is still feasible,
then by Observation 1 an optimal solution of CLP2-r is also an optimal solution for the LCLP. In this
way, both problems, LCLP and CLP2-r, would provide a solution with minimum volume, between all the
possibilities of using the least number of containers.

In other words, let K be the smallest value such that CLP2-r is still feasible. Then an optimal solution
of CLP2-r is also an optimal solution of LCLP. We conclude that finding the optimal solution to LCLP
can be done by solving at most m mixed-integer nonlinear programming problems, i.e., solving CLP2-r
for K = 1, . . . ,m. This will be algorithmically formalized in Section 6.

5 Bounds for the lexicographic container loading problem
In this section, we present lower bounds for the CLP1 and the CLP2. We also present an upper bound for
the CLP2.

We observe that the largest container is obtained by maximizing its volume subject to the client’s
constraints:

max H ·L ·W
s.t.

L≤ 80
W, H ≤ 60
2(H +W )+L≤ 300,
W,H ≤ L

W,L,H ≥ 0.

An optimal solution is H∗ = 55,L∗ = 80,W ∗ = 55 and the optimal volume is V ∗ = 242,000 cm3. Remark
that the problem above can be directly adapted for different client constraints.

Using the volume of the largest container, we consider the classical bin-packing problem,

min
m

∑
k=1

βk (BPP)

s.t.
n

∑
i=1

viαik ≤ 242000βk, k = 1, . . . ,m, (24)

m

∑
k=1

αik = 1, i = 1, . . . ,n,

αik,βk ∈ {0,1}, i, j = 1, . . . ,n, i 6= j, k = 1, . . . ,m,

where the volume of a box is vi = hi · li ·wi. This classical bin-packing problem decides the distribution
of items between a minimum number of bins. The following result gives a lower bound for the CLP1.

Observation 2. The optimal value of BPP is a lower bound for the least number of containers given by
the optimal solution of the CLP1.

The following proposition gives a trivial lower bound for the CLP2 which we will use in the evaluation
of the computational experiments.
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Proposition 2. For any choice K of the number of containers such that there is a feasible arrangement
of the boxes, the following inequality holds

n

∑
i=1

vi ≤
m

∑
k=1

H∗k L∗kW ∗k ,

where H∗k , L∗k , and W ∗k solve the CLP2 with the right-hand-side of constraint (5a) equal to K.
Furthermore, this lower bound is tight even if K < n.

Proof. The inequality follows from the fact that ∑
n
i=1 vi is the total volume of the boxes to be packed.

It is easy to see that the lower bound is attained if, for instance, K is set to n, i.e., K is equal to the
number of boxes. However, the bound can also be tight when the number of containers is less than n, as
the following example illustrates. Let us consider 2 boxes of size 1× 1 and 2 boxes of size 1× 2 to be
pack in a container satisfying L,W ≤ 2. An optimal solution for the LCLP is given by

where the total volume of the containers equals the total volume of the boxes.

A solution of BPP gives a distribution α of the boxes amongst the containers. If this α is fixed in the
CLP2, we can disaggregate it in K independent problems where K is the number of containers to which
at least one box was assigned:

min HkLkWk

s.t. (k-fCLP2)
all boxes must be placed within the container k;
boxes assigned to the container k cannot overlap;
client constraints for container k;
variables domain.

Each independent problem has a non-linearity, which we remove by replacing the volume objective
function with the linear objective Hk +Lk +Wk. Although this is not the volume of the container, Vieira
et al. (2021) showed that this is an appropriate strategy when compared with a piecewise linear approxi-
mation of the volume, from Tsai et al. (2015) and Junqueira and Morabito (2017). Indeed, the piecewise
linear approximation of the volume adds new binary variables to the problem, while simply using the
linear objective, Hk +Lk +Wk, allows to obtain good solutions faster. Nevertheless, if given enough time,
the linear approximation can obtain the optimal solution of k-fCLP2. It is worth noting that the linear ob-
jective is a translation of one of the lower envelopes of the trilinear volume function presented by Meyer
and Floudas (2004).

6 Algorithms for the lexicographic container loading problem
We start this section by describing an exact algorithm for the LCLP. The algorithm we present finds the
optimal solution by solving a sequence of mathematical programs. First, the bin-packing problem BPP
is solved. As we saw before, this gives a lower-bound on the number of containers needed to pack the
boxes. Next, we solve CLP2-r using the number of containers decided with BPP as K. If CLP2-r is

10



feasible, we found an optimal solution for the LCLP, if not we increase K by one and repeat the process.
This is Algorithm 1.

Algorithm 1: Lexicographic container loading algorithm
input : a set of boxes to pack amongst several containers
output: minimum number of containers, the minimum volume of each container, and the

position of each box within the assigned container

Solve (BPP) and save as K the obtained optimal objective value;
repeat

solve the parametric problem CLP2-r, with K;
let K:=K+1;

until (CLP2-r) has solution;
Return solution;

By sequentially solving the parameterized problem (CLP2-r) we obtain an optimal solution, as we
see below. We further note that this nonlinear mixed-integer problem can for instance be solved through
the linearization of the volume given by Junqueira and Morabito (2017). However, in practice, such
linearization is heavy given that multiple containers are simultaneously considered.

As the number of the boxes to be packed is finite and we do not need more containers than boxes
(K ≤ n), the algorithm terminates in a finite number of steps.

This algorithm is too expensive to be implemented, therefore we present an alternative, which finds
high quality solutions. For our real-world instances, the mathematical program CLP2-r is too heavy
to be solved in any given computational time. Note that besides requiring to solve multiple nonlinear
programs, those problems also encompass the assignment of boxes to containers which may suffer from
high symmetry issues. Instead, Algorithm 2 will solve BPP and sequentially solve k-fCLP2 where the
nonlinear and non-convex function HkLkWk is replaced by Hk +Lk +Wk. The cost of this simplification
is on the fact that the obtained solution for the objective (3) is an upper bound, while the obtained value
for the objective (2) is optimal. Note that k-fCLP2 with the modification on the objective function is still
a mixed-integer linear program and, for certain instances’ size, it is hard to obtain a guaranteed optimal
solution. Nevertheless, for our instances’ size, 600 seconds of running time showed to be enough to
obtain good solutions. Thus, we limited the running time to solve each k-fCLP2 up to 600 seconds.

Since, we are not solving the parameterized program, we must figure out a way to increase the number
of containers and, at the same time, to distribute the boxes between the containers. Thus, whenever
constraints (24) allow more boxes for some container than we can pack, i.e., we could not find a solution
for some of the k-fCLP2, we replace it by constraints

n

∑
i=1

viαik ≤
K∗

K
242000βk, k = 1, . . . ,m, (25)

where K∗ is optimum value of BPP and K is the current number of containers. In this way, in every loop
of the cycle, by diminishing the volume of each container by the proportion K∗/K, we force the increase
of the number of containers.

For the size of instances used, CPLEX returns an optimal solution for BPP in at most 90 seconds.
While it is not possible to obtain a guaranteed optimal solution for each k-fCLP2, CPLEX can obtain
good solutions for these mixed-integer linear programs. This is showed in Section 7.

Although Algorithm 2 gives good solutions for the LCLP, it fixes the boxes assignment when mini-
mizing the number of containers. This reduces the flexibility for minimizing the volumes, resulting in a
potential decrease of the quality of the solutions for the second objective (3). In fact, Algorithm 2 tends
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Algorithm 2: Short lexicographic container loading algorithm
input : a set of boxes to pack amongst several containers
output: the number of containers, the volume of each container, and the position of each box

within the assigned container

solve the bin-packing problem BPP, save the obtained α , set K = K∗ containers;
for k = 1 to K do

solve the problem k-fCLP2 with α fixed above, within 600 seconds of running time;
while at least one of the k-fCLP2 has no solution do

K:=K+1;
solve the bin-packing problem BPP replacing constraints (24) by (25) and save the obtained

α;
for k = 1 to K do

solve the problem k-fCLP2 with α , within 600 seconds of running time;

Return solution;

to find solutions where different boxes are allocated to the same container, while a container might be
better loaded if the boxes are all equal, as illustrated in Example 1. Thus, to make an effort to improve the
objective for the CLP2, we consider the following constraints to be added to BPP, where r is the number
of containers packing different boxes.

m−r

∑
k=1

hiαik +h jα jk ≤ 2min{hi,h j}, i, j = 1, . . . ,n, i < j, (26)

m−r

∑
k=1

liαik + l jα jk ≤ 2min{li, l j}, i, j = 1, . . . ,n, i < j. (27)

Most of the boxes can be distinguished by their heights and thus, constraints (26) will force m− r con-
tainers to be loaded with boxes of the same height. In case there are different boxes of the same height,
constraints (27) will then force equal boxes into m−r containers, as boxes’ height and length are sufficient
to distinguish different boxes. Thus, these constraints allow to have at most r containers with different
boxes. This is more restrictive for the CLP1 objective. Nevertheless, in practice, it turns out that it did
not decrease the quality of the solutions of the CLP1 and it decreased the total volume of the containers,
i.e., the CLP2 objective was improved. For small values of r, BPP can be infeasible which requires the
modification of the initialization step of Algorithm 2. The value of the parameter r is chosen to be the
number of different type of box and we increase it, until BPP is feasible. Thus, we obtain Algorithm 3.

7 Computational results
In this section, we report the computational experiments of Algorithms 2 and 3 with three sets of in-
stances. The first set of instances are real orders provided by the manufacturer, named mo1, mo2, mo3,
and mo4. For these ones we know the solution implemented by the manufacturer in terms of number of
containers. The second set is composed with randomly generated instances for the purpose of this work
(instances ro1, ro2, ro3, and ro4) and the third set contains instances co1, co2, co3 and co4. These are
“controlled” instances in the sense that we know the optimal solution. For each controlled instance only
one type of box is chosen and the number boxes is such that we can obtain the optimal solution packing
by rows. This is related with the pallet loading problem, see Silva et al. (2016).
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Algorithm 3: Lexicographic homogeneous-container loading algorithm
input : a set of boxes to pack amongst several containers
output: the number of containers, the volume of each container, and the position of each box

within the assigned container

r :=number of different types of boxes;
repeat

solve the bin-packing problem BPP in addition with constraints (26)-(27), set K = K∗

containers;
r := r+1;

until (BPP) is feasible;
for k = 1 to K do

solve the k problem k-fCLP2, within 600 seconds of running time;
while at least one of the k-fCLP2 has no solution do

K:=K+1;
solve BPP replacing constraints 24 by (25) and adding constraints (26)-(27);
for k = 1 to K do

solve the k problem k-fCLP2, within 600 seconds of running time;

Return solution;

Despite the LCLP refers to a 3-dimensional packing, the implementation of the algorithm is done in
2-open dimensions. In Vieira et al. (2021) a mixed-integer linear program, which is equal to k-fCLP2,
was tested with up to 20 boxes and it was showed that for most of the instances the containers were loaded
with one level, i.e., boxes were not placed on the top of each other. Thus, for computational purposes,
we set the height of each container as height of tallest box in it. As consequence, instead of using the
volume to evaluate the solutions, we use the bottom area. Even if we have some free space at the top of
the container (caused by boxes with different heights), if the used area is close to the bottom area of the
container, then the cargo can remain stable. As also argued in Vieira et al. (2021), the used bottom area
is a better performance measure than the used volume.

The algorithms are implemented using the Java language and the mathematical programs are solved
with CPLEX (version 12.8.0.0) accessed via the modelling language AMPL. The computations were
performed on a dual core Intel(R) Xeon(R) X5675 @ 3.07 GHz with 12 Gb of memory.

We finish this introduction to the experiments by anticipating the elements impacting the efficiency
of our approaches. In fact, the overall computation time does not vary much with the size of the instance.
This is because solving BPP is very fast (in general less than 90 seconds), and, although solving k−
fCLP2 can be increasingly slower with the increasing number of small boxes for the same container, our
implementation limits it to 600 seconds. Remark that in Algorithms 2 and 3, the number of iterations
of the while loop is given by the optimal value of CLP1 minus its lower bound plus one. By consulting
Table 5, we see that the while loop in the Algorithms 2 and 3 took, in the worst case, 3 iterations.
Therefore, the aspects that most impact the running time are: (1) how long it takes to find a k− fCLP2
with no solution within 600 seconds, remarking that this time limit is independent of the size of the
instance; (2) the total number of containers which, in this case, is dependent of the instant size. The latter
aspect is however bounded by 600 seconds times the number of containers.

7.1 Instances description
The possible choices of shoe boxes to pack are taken from the list in Table 1.
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Table 1: Available shoe boxes.
Boxes sizes (h× l×w)

18×12×8 27.5×17.5×10.5 30×30×11
19×13×8.5 19×20×11 32×25×11
23×12×9 23×23×11 36×25×11
21×14×9 27×23×11 34×30×11
23.5×16.5×9.2 29×23×11 40×30×11
28×13×9 29×27×11 43×30×10
25×15×9.5 29.5×13×10 45×32×11
25×17×9.5 30×18×10.5

The first set of instances is named moi, with i = 1,2,3,4. They were provided by the manufacturer
and the first objective solutions can be compared against the manufacturer decision. This instances are
described in Table 2. Instance mo1 is an order of 256 pairs of shoes, which corresponds to 14 boxes of
the type 21× 14× 9, 140 of 23.5× 16.5× 9.2, and 102 of 27.5× 17.5× 10.5. The remaining instances
read in the same way.

Table 2: Instances provided by the manufacturer

Instance Size Content

mo1 256
14× (21×14×9)
140× (23.5×16.5×9.2)
102× (27.5×17.5×10.5)

mo2 268
17× (21×14×9)
146× (23.5×16.5×9.2)
105× (27.5×17.5×10.5)

mo3 100
11× (36×25×11)
52× (40×30×11)
37× (43×30×11)

mo4 252

6× (32×25×11)
101× (36×25×11)
105× (40×30×11)
40× (43×30×10)

The second set, the random instances, named roi, are randomly generated in the following way: the
size of the order is uniformly generated between 150 and 300, and the number of different boxes is a
uniformly generated number between 2 and 4. These are listed in Table 3.

The previous called controlled instances were created in such way that we know the optimal values
for both the CLP1 and the CLP2, and consequently for the lexicographic container loading problem (1).
Just one type of box is chosen for each order and the type of box is chosen such that packing by rows, we
obtain the maximum number of boxes that we can pack into the largest container. For example, order co1
contains 252 boxes of size 29.5×13×10. The largest container can at most pack 36 boxes of this type
in one level. Therefore, the minimum number of containers to pack this order is 252/36 = 7. Instance
co2 differs from instance co3 because the former needs 300/50 = 6, while the latter needs 265/50 = 5.3
containers. This means that the sixth container could possibly pack more boxes. These instances are
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Table 3: Random instances
Instance Size Content

ro1 186
63× (36×25×11)
78× (28×13×9)
45× (27×23×11)

ro2 269 72× (23.5×16.5×9.2)
197× (29×27×11)

ro3 163
110× (29.5×13×10)
32× (19×20×11)
21× (45×32×11)

ro4 245

79× (19×13×8.5)
13× (32×25×11)
126× (27.5×17.5×10.5)
27× (40×30×11)

listed in Table 4.

Table 4: Controlled instances
Instance Content

co1 252× (29.5×13×10)
co2 300× (18×12×8)
co3 265× (18×12×8)
co4 210× (40×30×11)

7.2 Results for Algorithm 2
Table 5 presents the results obtained using Algorithm 2. The number of containers is given by the CLP1
objective function and is close to the lower bound. It is one or two units above the lower bound and we
remind that the lower bound is obtained using a classical bin-packing problem, which only affirms that
the bins are enough to fit all the boxes, but this does not mean that one can really pack all the boxes
with that number of bins. The total volume of the containers is in general less than 10% above the lower
bound. The algorithm obtains the worst results for the controlled instances (coi) and, in this case, we are
comparing the algorithm solutions with the optimal values of the CLP1 and of the CLP2.

The worst results were obtained with the controlled instance co2. The reason is not the size of the
order, but the number of boxes loaded into each container. Most of the containers were loaded with 39 or
40 boxes. As the CLP2 used in the algorithm is an MILP, at a certain size it is no longer possible to obtain
good solutions within 600 seconds of running time. In the opposite direction is instance co4, for which
we obtained the optimal solution. In this case, each container loads 14 boxes and, for this size instance,
it is possible to obtain an optimal solution.

For the instances mo1, mo2, mo3, and mo4, we have some comparable results provided by the man-
ufacturer. We compare them in Table 6 against our solutions for the lexicographic container loading
problem. It can be observed that the improvement on the number of containers is significant.
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Table 5: Results for Algorithm 2

Instance CLP1 CLP2 Time (h)Lower bound Solution Lower bound Total used area Gap

mo1 9 11 41758.5 44294.4 6.1% 3.0
mo2 10 11 43598.6 46401.0 6.4% 2.5
mo3 7 8 32395 33790 4.3% 1.5
mo4 16 18 76075 79090 4.0% 5.0
co1 7 8 32760 35040 7.0% 2.0
co2 6 8 28800 32400 12.5% 2.2
co3 6 7 25440 27328 7.4% 1.5
co4 15 15 69300 69300 0.0% 1.5
ro1 8 10 37836 39747 5.1% 3.5
ro2 15 17 69438.6 72945.2 5.0% 3.0
ro3 6 7 28732 30550 6.3% 1.4
ro4 10 12 44367 48012.5 8.2% 2.5

Table 6: Algorithm 2 versus manufacturer packing

Number of containers
Instance lexicographic solution manufacturer solution

mo1 11 13
mo2 11 14
mo3 8 10
mo4 18 26

7.3 Comparison between Algorithms 2 and 3
The relevance of comparing both algorithms and not just testing Algorithm 3, is to observe if the number
of containers can be increased by this algorithm. Thus, Table 7 compares the results of both algorithms,
2 and 3. We then observe that while the introduction of constraints (26) and (27) does not worsen, in
general, the first objective (2), it improves the second objective (3), by decreasing the total volume of the
containers. The best results are emphasized in bold. The gap with Algorithm 3 is generally improved and
it is around 5% or below.

Table 7: Comparison between Algorithms 2 and 3

Instance CLP1 CLP2
Algorithm 2 Algorithm 3 Algorithm 2 Algorithm 3 New gap

mo1 11 11 44294.4 43556.35 4.3%
mo2 11 12 46401.0 45810.9 5.1%
mo3 8 8 33790 33900 4.6%
mo4 18 18 79090 78800 3.6%
ro1 10 9 39747 39564 4.6%
ro2 17 17 72945.2 70345.9 1.3%
ro3 7 7 30550 30279 5.4%
ro4 12 12 48012.5 46847 5.6%
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Figure 2: Layout of one container from instance mo4

As the controlled instances have only one type of boxes, the mentioned constraints do not change
anything and thus they are not tested.

We finish this section with an illustration in Figure 2 of one container of a solution to instance mo4,
with fifteen shoe boxes.

8 Conclusion
In this paper, it was dealt for the first time a container loading problem with a hierarchy for the objectives
to be optimized. Although the theoretically intractability of the problem, we explored its specific features
to design a specialized algorithm where a solution from the CLP1 feeds the CLP2. We also introduced
a restrictive variant of the algorithm, which improves the quality of the second optimization criterion,
without losing the quality of the first objective. This is relevant because we increased the stability of
the cargo. More importantly, from a practical point of view, if containers are not tight to the cargo they
contain shoe boxes might open and shoes can spread all over the container. The latter scenario is not
appreciated by the manufacturer clients. Computational results showed that the algorithms are efficient
to obtain good results when compared with the given lower bounds.

As future work, there are natural extensions that can directly benefit from the formulation presented
in this paper. For example, it would be of interest to seek ways of homogenizing the containers, by
introducing a classification of boxes according with their size. Further improvements of our solution
technique are of interest too. A critical issue is the symmetry of solutions when assigning boxes to
containers and when loading boxes in each container. While our heuristics avoid symmetry issues at the
boxes’ assignment level, we did not tackle the loading symmetries for each container.
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