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Résumé

L’idée centrale de cette thèse est de comprendre la notion d’accélération dans les algorithmes
d’approximation stochastique. Plus précisément, nous tentons de répondre à la question sui-
vante : Comment l’accélération apparaît-elle naturellement dans les algorithmes d’approxi-
mation stochastique ? Nous adoptons une approche de systèmes dynamiques et proposons
de nouvelles méthodes accélérées pour l’apprentissage par différence temporelle (TD) avec
approximation de fonction linéaire : Polyak TD(0) et Nesterov TD(0). Contrairement aux
travaux antérieurs, nos méthodes ne reposent pas sur une conception des méthodes de TD
comme des méthodes de descente de gradient. Nous étudions l’interaction entre l’accélé-
ration, la stabilité et la convergence des méthodes accélérées proposées en temps continu.
Pour établir la convergence du système dynamique sous-jacent, nous analysons les modèles en
temps continu des méthodes d’approximation stochastique accélérées proposées en dérivant
la loi de conservation dans un système de coordonnées dilaté. Nous montrons que le système
dynamique sous-jacent des algorithmes proposés converge à un taux accéléré de O(1/t2). Ce
cadre nous fournit également des recommandations pour le choix des paramètres d’amor-
tissement afin d’obtenir ce comportement convergent. Enfin, nous discrétisons ces ODE
convergentes en utilisant deux schémas de discrétisation différents, Euler explicite et Eu-
ler symplectique, et nous analysons leurs performances sur de petites tâches de prédiction
linéaire.

Mots-clés Méthodes des différences temporelles, approximation stochastique, méthodes
accélérées, méthodes de quantité de mouvement, apprentissage par renforcement, program-
mation dynamique approchée, lois de conservation, taux de convergence, apprentissage au-
tomatique
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Abstract

The central idea of this thesis is to understand the notion of acceleration in stochastic approx-
imation algorithms. Specifically, we attempt to answer the question: How does acceleration
naturally show up in SA algorithms? We adopt a dynamical systems approach and propose
new accelerated methods for temporal difference (TD) learning with linear function approx-
imation: Polyak TD(0) and Nesterov TD(0). In contrast to earlier works, our methods
do not rely on viewing TD methods as gradient descent methods. We study the interplay
between acceleration, stability, and convergence of the proposed accelerated methods in con-
tinuous time. To establish the convergence of the underlying dynamical system, we analyze
continuous-time models of the proposed accelerated stochastic approximation methods by
deriving the conservation law in a dilated coordinate system. We show that the underlying
dynamical system of our proposed algorithms converges at an accelerated rate of O(1/t2).
This framework also provides us recommendations for the choice of the damping parame-
ters to obtain this convergent behavior. Finally, we discretize these convergent ODEs using
two different discretization schemes, explicit Euler, and symplectic Euler, and analyze their
performance on small, linear prediction tasks.

Keywords Temporal difference learning, stochastic approximation, accelerated methods,
momentum methods, reinforcement learning, approximate dynamic programming, function
approximation, conservation laws, convergence rates, machine learning
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Chapter 1

Introduction

Temporal Difference (TD) methods (Sutton [1988]) lie at the heart of Reinforcement Learning
(RL) (Sutton and Barto [2018]), which has seen a recent resurgence with the advent and
success of Deep RL (Mnih et al. [2015]). However, TD methods are known to be slow to
converge (Szepesvári [1997]). This has led to a rise in new TD methods proposed to counter
this issue by accelerating the dynamics. Developing accelerated methods has a long history
of work in the field of gradient-based optimization for stochastic gradient descent (SGD)
(Polyak [1964], Nesterov, Amari [1998]). Inspired by the success of accelerated methods in
SGD, a significant effort in accelerating TD methods comes from a subset of algorithms called
Gradient TD methods (Sutton et al. [2009], Liu et al. [2016]. This can be attributed to the
fact that it is easier to adapt accelerated methods, originally developed in optimization, in
the GTD setting instead of the usual ‘semi-gradient‘ TD setting. However, it is well-known
that TD is not a gradient descent method (Barnard [1993]) and treating them as one could
worsen their performance if acceleration is added naively (Bengio et al. [2021]).

This begs the question: What does it mean to have acceleration in the RL setting?
Throughout this work, we attempt to answer this question by proposing new accelerated
algorithms for temporal difference methods. In this work, instead of the usual approach
taken in the RL community, we go back to the roots of how accelerated methods were first
introduced using the dynamical systems approach in optimization (Polyak [1964]). We view
TD as belonging to a general class of algorithms called Stochastic Approximation (SA) meth-
ods and take the Ordinary Differential Equation (ODE) approach for the design and analysis
of accelerated methods. This approach also has a long history of usage in the SA community
for establishing the stability and convergence of SA methods (Kushner and Yin [2003], Borkar
[2009], Benveniste et al. [2012]). The fundamental idea behind the ODE approach used in
SA for analysis is that the stability and convergence of the underlying ODEs guarantee the
stability and convergence of the associated SA iterates (Borkar and Meyn [2000]). Specif-
ically, under certain assumptions, we can approximate the behaviour of the discrete-time



stochastic systems by that of the underlying continuous-time deterministic systems (Borkar
and Meyn [2000]). Also, taking the ODE perspective on accelerated methods in optimiza-
tion has shown us that these methods are derived from second-order ODEs of a particular
form. Most notably, these ODEs are known to belong to the class of mass-spring-damper
systems or damped harmonic oscillators (Muehlebach and Jordan [2021], Wibisono et al.
[2016]). We take these existing concepts and build upon them to introduce physics-inspired
momentum-based TD methods. We also establish an intuitive way of analyzing these SA
methods and deriving the convergence rates, drawing from the recent advancements of the
ODE perspective in optimization (Wibisono et al. [2016], Diakonikolas and Jordan [2021],
Suh et al. [2022]). We design the Polyak and Nesterov’s momentum counterparts for acceler-
ation in TD methods. Specifically, we start in the continuous-time domain, designing these
ODEs with fast convergent behaviour before discretizing them to give us new algorithms.

A natural question that might arise next is: How could the dynamical systems approach
ultimately help design accelerated methods in the discrete-time domain? While working in
continuous-time introduces the problem of discretizing the continuous-time dynamical sys-
tem, there are several advantages of adopting this approach to acceleration. Apart from be-
ing the original intuition and approach for introducing momentum in optimization (Polyak
[1964]), acceleration holds a mathematical meaning as a differential concept in continuous-
time. Acceleration also holds a distinctively physical meaning as the rate of change of speed
across a curve and poses the problem of finding the optimal way to optimize as a physically
meaningful question: what is the fastest rate? (Jordan [2018]).

Another advantage of choosing the dynamical systems approach is the ability to design
convergent ODEs, followed by choosing appropriate discretization schemes to convert this
ODE to an implementable discrete-time system. An important question in the field of
numerical integration is to understand the quality of the said discrete approximation. In
addition to this, discretization schemes for numerical integration have certain approximation
guarantees. Various bounds exist for different integration schemes adapted to the structure
of the underlying ODE (Wanner and Hairer [1996]). This allows for more control over the
algorithm design and the ability to choose a discretization scheme that better suits the
structure of our given ODE.

Preserving the convergent nature, stability and accelerated rates of these ODEs in the
discrete-time system is a non-trivial task. Certain integrators are better suited to preserve
the structure of a particular ODE than others (Shi et al. [2019]). Although the primary
focus of our work is on building theoretical foundations for accelerated temporal difference
methods, we also study the impact of different discretization schemes on translating the
accelerated rates obtained from the ODEs to the discrete-time system. We perform explicit
Euler and symplectic Euler discretization on our proposed ODEs and study their behaviour
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on small, linear prediction tasks. Initial results for these accelerated methods have been
reported and they show comparable performance to the existing TD methods.

A significant contribution of our work is that we extend the energy conservation frame-
work of Suh et al. [2022] defined for accelerated gradient descent methods (AGM) to the
semi-gradient TD setting. An advantage of using this approach is that instead of guess-
ing the Lyapunov function needed to perform the analysis of such methods (Wilson et al.
[2021]), which is cumbersome and often requires intensive trial-and-error, we obtain one di-
rectly through the energy conservation law associated with our accelerated TD method. We
theoretically show accelerated rates for the ODE associated with TD(0) with linear func-
tion approximation. Rate derivations for algorithms are known to be very complex; this
methodology, on the other hand, is much more intuitive.

The energy conservation methodology relies on a so-called dilated coordinate system to
derive an energy term and arrive at the convergence rate of the continuous-time system.
However, we can also choose a different dilated coordinate system and derive an energy term
that can help us relate it to energy conservation of physical systems and understand what
constitutes kinetic and potential energy for our accelerated temporal difference methods. We
can therefore discover conserved properties of the underlying dynamical system along with
meaningful interpretations and use them to understand our discrete algorithm using physics
analogies.

1.1. Thesis Statement
This work aims to give a framework to intuitively arrive at the ‘right’ momentum counter-

parts for Polyak’s Heavy Ball and Nesterov’s acceleration in TD methods. We also introduce
the energy conservation law-based methodology in SA methods for establishing convergence.
To the best of our knowledge, this is the first work that extends and develops such energy
conservation law-based framework for analysis in RL. We use this framework to derive an
accelerated rate of O(1/t2) for the underlying dynamical system of the proposed accelerated
methods and analytically obtain the parameters needed to get this rate. To this end, we cast
the TD learning problem as an SA method and derive the convergence rates of these accel-
erated methods in the continuous-time system. This is done by viewing the TD update as a
discretization of the underlying ODE. Lastly, we study the impact of discretization schemes
on how well these rates are preserved after discretization using empirical performance of our
proposed methods on small, linear prediction tasks. We hope this work sheds some light on
acceleration in TD methods and reduces the gap between analysis frameworks in RL and
those in gradient-based optimization.
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Chapter 2

Background and Related Works

In this chapter, we give the technical background and introduce key concepts, like dynamic
programming, approximate dynamic programming and stochastic approximation. We ex-
plain the ODE approach used in SA for analysis. We also touch up on some concepts about
discretization schemes and the performance metrics which will be used for evaluation of our
proposed accelerated methods. Lastly, we give an in-depth discussion of accelerated meth-
ods in the optimization community as well as the RL community. A broad understanding of
these concepts is essential to dive deeper into the world of accelerated temporal difference
learning methods that are the focus of our study.

2.1. Dynamic Programming and Reinforcement Learn-
ing

In mathematical optimization, Dynamic Programming (DP) techniques often come into
play in the setting where decisions can be made in stages, or to put it simply, a decision can be
broken down into a series of steps taken over. Typically, the objective is to minimize a given
cost, or equivalently, maximize some reward. Unlike supervised learning where the training
targets are provided, we are working in the setting where optimal (long-term) actions need
to be inferred from a weaker form of supervisatory signal: the immediate reward function.
While the outcome of the decision cannot be accurately stated, we can estimate the impact
of the decision to a certain extent before the next decision is made. With discrete time steps,
for every time step, we can take a discrete decision with a reward assigned for every step of
the process. Our goal in this scenario is to maximize the total reward accumulated at the
end: a quantity called the ‘return‘.

Reinforcement learning methods (especially model-free ones) come to the rescue for sce-
narios where a model of the system is infeasible to be obtained, possibly because the system
is not fully known beforehand, not well understood or costly to construct.



As we can see, DP and RL primarily work under the discrete-time assumption. Note
that our use of the ODE approach doesn’t mean that we consider a continuous-time model
of interaction; instead we consider a continuous-time evolution of the parameters of our
model, not the actions.

In essence, dynamic programming (DP) is about leveraging the structure under the MDP
assumption to derive efficient algorithms for finding optimal policies. It provides a solution
for the curse of dimensionality that we encounter frequently in the RL community. Without
it, the space of all possible policies becomes too large to search directly.

2.1.1. Elements of the learning problem

A controller (agent) interacts with the process (environment) using three signals: a state
signal, which describes the state of the process, an action signal, which describes the action
to be taken by the agent in a given state and a scalar reward signal, which gives the controller
feedback to measure immediate performance. At each discrete time step, the controller gets
a state signal which it uses to perform an action to transition into another state. A reward
signal is given to the controller which allows it to evaluate the quality of performance.

The behaviour of this controller is dictated by its policy. A deterministic stationary policy
is a mapping from states into actions outlining what action should be taken for every state
the controller could exist in. The behaviour of the process is determined by the underlying
dynamics, which describes how the state changes based on the controller’s actions. Note that
we obtain an MDP only when the underlying dynamics, specified by the transition matrix,
are Markovian. The process dynamics and reward function, along with the state space and
action space (set of all possible states and actions, respectively) constitute a Markov Decision
Process (MDP). Note that we work under the assumption of a finite state space, allowing us
to circumvent the need to work with Harris Chains.

Till now, we have used terms like process, state, action and reward without formally
defining them. We will now formally define these terms and a Markov Decision Process.

2.1.2. Markov Decision Process

A finite discounted MDP is characterized by the following tuple: (S,A, P,R, γ) where
S ∈ R|S| is the set of all possible states (state space), A ∈ R|A| is the set of all possible
actions (action space), T ∈ R|S|×|A|×|S| is the transition probability, R : S × A → R is the
reward function and γ ∈ [0,1] is the discount factor. We assume the actions and states to
be continuous, which allows us to write the transition dynamics as the following probability
distribution: P (St+1|St, At).

A Markovian stationary randomized policy π(at|st) is a distribution over actions condi-
tioned the states and determines the action to be taken in a given state.
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In an MDP, at every time step t ∈ 1,2, · · · , T , the controller takes an action and transi-
tions from state st to state St+1 determined by the transition probability p(St+1|St, At). Upon
this transition, the controller receives a reward Rt from the process. The expected reward
can be defined as R(St,At) = E[Rt|St, At] = ∑

r∈R r
∑
s′ P (s′, r|St, At) where R : S ×A→ R.

2.1.3. Value Functions and Bellman Equations

The goal of the controller is to maximize the expected cumulative reward received in
the long run. We define this cumulative reward over all time steps to be maximized as
the expected return. If the sequence of rewards received after time step t is denoted as
Rt, Rt+1, · · · , we define the discounted return Gt as

Gt = Rt + γRt+1 + γ2Rt+2 + · · · =
T∑
k=0

γkRt+k ,

where the discounted factor γ helps determine how to assign importance to the immediate
reward and future rewards to avoid getting an infinite reward in continuous tasks.

Policies are often characterized using their value functions. A value function is tasked
with estimating how good it is for an agent to be in any given state. We have two types
of value functions: the state-value function, V-function, and the state-action value function,
Q-function.

For a policy π, the value of a state s is given by vπ(s) : S → R which is the expected
return from a state s following policy π. For MDPs, we can formally define vπ(s) as

vπ(s) = Eπ[Gt | St = s] = Eπ
[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s

]
, (2.1.1)

where Eπ[.] denotes the expected value of a random variable given policy π. This function
vπ is called the state-value function for policy π.

Similarly, we denote the state-action value function as the value of taking action a when
in the state s under policy π as qπ(s,a) : S ×A→ R. It is defined as the expected return of
the agent in state s, taking action a and following policy π thereafter.

qπ(s,a) = Eπ[Gt | St = s, At = a] = Eπ
[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s, At = a

]
(2.1.2)

For a given policy π and state s, the following recursive relationship holds between the
value of the current state s and the value of its successor states:

vπ(s) = Eπ
[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s

]

= Eπ
[
Rt + γ

∞∑
k=0

γk−1Rt+k−1

∣∣∣∣∣St = s

]
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vπ(s) = Eπ[Rt + γvπ(St+1)|St = s] . (2.1.3)

Similarly, for a given policy π, state s, and action a, we can define the recursive relation-
ship between the value of the current state s and the value of its possible successor states
for the state-action value function as:

qπ(s,a) = Eπ[Rt + γqπ(St+1,At+1)|St = s, At = a] . (2.1.4)

The recursive expressions in (2.1.3) and (2.1.4) are called "Bellman equations" in the
reinforcement learning community. They provide a relationship between the value of a state
and the values of its successor states.

The Bellman equations provide a representation of vπ as a fixed point equation for solving
vπ. For the case of a deterministic policy, π ∈ Π and any given state s ∈ S, we can also
express the Bellman equation as:

vπ(s) = Eπ
[ ∞∑
k=0

γkRt+k

∣∣∣∣∣St = s

]
= Rt + Eπ

[
+γ

∞∑
k=0

γk−1Rt+k−1

∣∣∣∣∣St = s

]

= Rt + ETπ

[
Eπ
[
γ

∞∑
k=0

γk−1Rt+k−1

∣∣∣∣∣St = s, St+1 = s′
]∣∣∣∣∣St = s

]

= Rt + γ
∫

S
T π(s′|s)E

[ ∞∑
t=0

γk−1Rt+k−1

∣∣∣∣∣St+1 = s′
]
ds

= Rt + γ
∫

S
T π(s′|s)vπ(s′)ds′ . (2.1.5)

Let us define the Bellman operator as T π : RS → ES . For all s ∈ S, we can write:

(T vπ)(s) = Rt + γ
∫

S
T π(s′|s)v(s′)ds′ .

Therefore, we can now rewrite (2.1.5) in a compact from as the following fixed point equation:

vπ = T πvπ , (2.1.6)

where T π is a linear affine operator.

2.1.4. Bellman Optimality Equation

The goal of any reinforcement learning task is to find an optimal policy from data.
Policies are assigned orderings using the aforementioned value functions. A policy π is said
to be better than or equal to a policy π

′ if its expected return is greater than or equal to
that of π′ for all states. Mathematically, we can say π ≥ π

′ if and only if vπ(s) ≥ vπ′ (s) for
all s ∈ S. An optimal policy π⋆ is defined as the policy which is better than or equal to all
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other policies. Optimal policies share the same state-value function, v⋆ defined as:

v⋆(s) = max
π

vπ(s) ∀ s ∈ S . (2.1.7)

Optimal policies also share the same optimal state-action value function, q⋆ defined as:

q⋆(s,a) = max
π

qπ(s,a) ∀ s ∈ S ; a ∈ A . (2.1.8)

We can therefore write q⋆ in terms of v⋆ as follows:

q⋆(s,a) = E[Rt + γv⋆(St+1) | St = s, At = a] . (2.1.9)

Since v⋆ is a value function for a given policy, we can write the Bellman equation for state
values given in (2.1.3) to get the Bellman optimality equation.

v⋆(s) = max
a∈A(s)

qπ⋆(s,a)

= max
a

Eπ⋆

[
Rt + γ

∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]

= max
a

E [Rt + γv⋆(St+1) | St = s, At = a] (2.1.10)

This equation states that the value of a state under an optimal policy equals the expected
return for the best action from the state. The Bellman optimality equation for q⋆ is

q⋆(s,a) = E[Rt+1 + γmax
a′

q⋆(St+1, a
′) | St = s, At = a] . (2.1.11)

Note that the optimal value function is the unique fixed point of the following fixed point
equation:

v⋆(s) = max
a∈A

[
Rt + γ

∫
S
T (s′|s, a)v⋆(s′)ds′

]
. (2.1.12)

Let T ⋆ : RS → RS be the Bellman optimality operator given by:

(T ⋆v)(s) = max
a∈A

[
Rt + γ

∫
S
T (s′|s, a)v(s′)ds′

]
.

The Bellman optimality equation can also be succinctly expressed as the following fixed point
equation:

T ⋆v⋆ = v⋆ . (2.1.13)

Note that given an optimal value function, v⋆ or q⋆, we can derive an optimal policy
through the greedy (also called v-improving) policy (Puterman [2014]).

2.1.5. Approximate Dynamic Programming (ADP)

The classical dynamic programming (DP) algorithm requires exact representations of
the value functions and the policies. An exact value function representation can only be
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achieved by storing distinct estimates of the expected return for every state (for state-
value function) or for every state-action pair (for state-action value functions). Similarly, to
represent the policies exactly, distinct actions for every state have to be stored. However,
such exact representations are infeasible for very large or continuous spaces. Therefore, the
representations of these value functions and policies need to be approximated.

We will now formally define the problem of dynamic programming. Consider the Bellman
equation given by

vt(s) = max
a

E[Rt + γv̄(s)|s,a] . (2.1.14)

where the expectation is taken over the stationary distribution induced by running the given
policy π, denoted by Xd ∈ R|S|. Note that since the computation of vt(s) requires v̄(s) for
each s ∈ S which can be described as stepping backward through time, this is known as
backward dynamic programming.

If St is a discrete, scalar variable, enumerating the states may be feasible for small state
spaces; but if it is a vector, then the number of states grows exponentially with the number of
dimensions. In the case of continuous s, even if it is scalar, enumerating the states is simply
not possible. ADP addresses this issue by replacing the true value function v(s) with an
approximation which we will denote as v̄(s). This is known as value function approximation,
allowing methods to search for policies in a restricted space of value functions. We can deal
with multidimensional variables by simply treating the vector s to be a continuous function
of some feature vector denoted by ϕ. Note that ϕ is a mapping of the states. A simple
approximation is to assume the value function to have a linear relationship with respect to
the feature vector ϕ:

v̄(S;w) = ϕ(s)Tw , (2.1.15)

where w ∈ is the weight vector to be learned. Choosing an appropriate value function
approximation scheme is central to the idea of ADP. The task of designing a good approx-
imate value function consists in choosing a sufficiently rich parametrization while keeping
the computational resources under control.

In this setting, the policy is determined by the value function approximation v̄t+1(St+1)
where the policy space Π is the set of all possible value function approximations.

2.2. Policy Evaluation
The goal of policy evaluation algorithms is to accurately estimate the value functions,

vπ(s) and qπ(s,a) for a given policy π. We consider the case of on-policy algorithms where
the policy is stationary.

26



2.2.1. Monte Carlo Methods

The simplest way to learn the value function is using Monte Carlo (MC) methods to
estimate the value from experience, specifically averaging the returns observed by the agent
after visits to the state. As we observe more returns, we expect the average to converge to
the expected value.

We formally define a visit to state s as every occurrence of state s in a given episode.
We have two ways of estimating the value function: the every-visit MC method and the
first-visit MC method. While the every-visit MC method estimates vπ(s) as the average of
returns after all the visits to state s in a given set of experiments, the first-visit MC method
averages the returns following first visits to state s. We can state the every-visit Monte Carlo
method as:

v(St) = v(St) + α[Gt − v(St)] , (2.2.1)

where Gt is the return following time t and α is a step-size parameter. Note that this
expression is simply an online average. It is useful as it provides an intuition for SA methods.
Rather than averaging a bunch of samples at every step, we can ‘average through time‘.

Monte Carlo methods are only defined for episodic tasks since the value estimates are only
updated once an entire episode is run. Though it might seem that Monte Carlo methods are
a good way to estimate the value function, they have a lot of drawbacks. While the updates
generated by the Monte Carlo algorithm in the tabular setting are not biased since we are
approximating an average value of the value function by averaging all the observed values,
however, since we wait until the entire episode is completed to update our estimate, a high
amount of variance is introduced in the update owing to the existing randomness present
in the environment explored during one run of the episode. In addition to this, we cannot
change the estimate of our value function while we are interacting with our environment.

2.2.2. Temporal Difference Methods

Temporal Difference learning methods differ from Monte Carlo methods in that they learn
from the difference between temporally successive estimates of the same quantity. Temporal
Difference (TD) learning is a central idea of reinforcement learning which can be intuitively
explained with a combination of ideas from Monte Carlo (MC) and Dynamic Programming
(DP). TD methods can learn directly from experience without needing a model of the envi-
ronment like Monte Carlo methods and it can update estimates using the previously learned
estimates without waiting for the full episode to run (i.e., bootstrapping). This allows for
learning in an online fashion.

Specifically, TD methods adjust the current value of the earlier state to be closer to the
observed value of the later state. We do this by moving the estimate of the earlier state’s
value function a fraction of the way closer to the value of the later state in accordance with
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the established recursive relationship. Let St = s denote the state before the greedy move
and St+1 = s

′ denote the state after the move. We can then describe the update to V (s) as:

V (s)← V (s) + α[V (s′)− V (s)] ,

where α is the fraction that determines the influence of the update on the existing value of
V (s) This update rule is an example of a temporal difference learning method, defined as
because the changes are based on a difference, V (s′)−V (s), between estimates taken at two
different time steps.

• The TD(0) algorithm
Consider the total-return problem given by Equation (2.1.3). We also call this the
fixed-policy Value Iteration Algorithm which can be written as:

vt+1(s) = Eπ[Rt + γvt(St+1 = s
′)|St = s]

= Rt(st) + γ
∑
s′
Pπ(St+1 = s′|St = s)vt(St+1 = s

′), s ∈ S , (2.2.2)

or simply vt+1 = Rπ + γPπvt. Here, we assume that we do not have the exact values
of Rπ and Pπ and are learning these quantities with each iteration.
Let v̂ be our estimate of vπ. We can say that [Rt + γv̂(st+1)] where st, st+1 and Rt

are observed at time t, is an unbiased estimate of the right-hand side of (2.2.2) such
that:

Eπ[Rt + γv̂t(st+1)|st] = Rt(st) + γ
∑
s′
Pπ(s′|s)vt(s

′) .

However, since there is an introduction of noise in this estimate owing to the ran-
domness in Rπ and Pπ, we decide to modify v̂ by a small fraction in the direction of
this quantity, given by:

v̂(t)(st) := (1− αt)v̂(t)(st) + αt[Rt + γv̂(t)(st+1)]

= v̂(t)(st) + αt[Rt + γv̂(t)(st+1)− v̂(t)(st)] , (2.2.3)

where α is the gain of the algorithm. This is called the TD(0) algorithm.
• SARSA: On-Policy TD Control

Here, we are interested in using TD methods for the on-policy control problem. We
start with learning a state-action value function rather than the TD(0) algorithm
where we focused on learning the state value function. Specifically, we estimate
qπ(s,a) for the given policy π and for all given states s ∈ A and actions a ∈ A. In
each episode, we are in state s, having taken an action a given by the ϵ-greedy policy
π to get to another state s′ , while observing reward r.
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Here, we learn a value function estimating the value of state-action pairs by consid-
ering the transitions from state-action pair to state-action pair. The update rule for
the state-action value function follows (2.2.2) and is done by choosing another action
a′ following the same current policy.

qπ(s,a) = qπ(s,a) + α[r + γqπ(s′
,a

′)− qπ(s, a)] (2.2.4)

Since the update rule relies on the values of the quintuple (St, At, Rt, St+1, At+1),
it is called the SARSA algorithm for TD control. We call this algorithm on-policy
learning as the new action a′ is chosen using the same ϵ-greedy policy as the one used
for taking action a.
• Q-Learning: Off-Policy TD Control

While SARSA is an on-policy algorithm and hence follows the given policy π through-
out, Q-learning attempts to directly approximate the optimal action function, q⋆
independent of the ϵ-greedy policy π being followed when learning the state-action
value function (or Q-value function). However, the policy comes into play by gov-
erning which state-action pairs are visited and updated. In both cases, the policy
followed by the agent is taken to be ϵ greedy.
Q-learning uses different policies for choosing the next action ag in a greedy fashion,
i.e., choosing the action that maximizes the Q-value function at the new state value,
q(s′

, a). This can be written as:

q(t)(s,a) = q(t)(s,a) + α[r + γq(t)(s′
, ag)− q(t)(s,a)]

= q(t)(s,a) + α[r + γmax
u

q(t)(s′
, u)− q(t)(s,a)] .

As we can see, Q-learning is an off-policy algorithm because the new action ag is
chosen greedily and not using the current policy π.
Following this update, we go back to starting from the new state s′ till we finally
reach the end state. Note that the next actions in SARSA and Q-learning, a′ and
ag are not actually taken by the agent but are only chosen to update the Q-value
function. The actual action taken by the agent a for both SARSA and Q-Learning
is taken using the given ϵ-greedy policy.
Q-Learning algorithms are known to converge to the optimal policy q∗.
• n-step TD methods

The success of TD methods can be attributed to the idea of bootstrapping; where we
update the estimate of the value function in one state using the estimate of the value
function in the next state. In other terms, v(St) is updated using vt(St+1). These
methods often perform more efficiently than averaged sample returns.
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However, there could be instances where vt(St+1) may not be accurate. This could
be the case when the rewards are sparse or when our initial estimates of v(St+1) are
poor. In such situations, relying solely on this value for updating vt+1(St) would not
be the best possible learning strategy. Such cases might benefit from using Monte
Carlo methods to add robustness to the value function updates.
Since we would still like to leverage the advantages that come with TD methods in the
ability to make updates before the end of episodes, this requires the need for methods
that lie at the intersection of Monte Carlo methods and one-step TD methods.
While one-step TD methods allow for quicker updates to the value function estimate,
bootstrapping works best when done over a length of time where a significant change
in the state has occurred. We, therefore, extend the existing definition of temporal
methods to allow for multi-step methods enabling us to bootstrap over multiple time
steps.
TD(n) algorithms combine both methods by performing an update using an inter-
mediate number of rewards that is more than 1 (one-step TD methods) but less than
all the rewards until the termination of the episode (MC methods). Specifically, we
modify the TD target to slightly resemble the Monte Carlo target. Since these al-
gorithms still rely on later estimates to update the current estimate, they fall under
the category of temporal difference methods.
Consider our problem of estimating the value function vπ from episodes generated by
policy π. For the TD(0) update given by (2.2.2), we used a 1-step return, denoted
by G(1)

t = Rt +γvt(St+1) where vt(St+1) acts as a stand-in for the rest of terms of the
total return: γRt+1 + γ2Rt+2 + · · · .
Instead of using this 1-step return, we now define an n-step return as:

G
(n)
t = Rt + γRt+1 + γ2Rt+2 + · · ·+ γn−1Rt+n−1 + γnvt+n−1(St+n) .

Similar to the TD(0) update equation, we can now define the TD(n) update to be:

vt+n(s) := vt+n−1(s) + αt[G(n)
t − vt+n−1(s)] (2.2.5)

= vt+n−1(s) + αt[Rt + · · ·+ γn−1Rt+n−1 + γnvt+n−1(St+n)− vt+n−1(s)] .

We know that temporal difference methods use rewards obtained in the future. Recall
that in the TD(0) algorithm, we are required to wait for one step, and observe the
reward and next state before we can make an update to the previous state’s value
function. As n-step methods use rewards obtained from the upcoming n steps, we
have to wait for n steps before we can make any updates to the value function vπ(s).
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2.3. Stochastic Approximation
Stochastic Approximation was first introduced by Robbins and Monro [1951] for solv-

ing stochastic root-finding problems from noisy observations. Stochastic approximation al-
gorithms are iterative procedures that make small changes in order to improve a certain
performance criterion based on the feedback received from the environment. They are used
to solve optimization problems and fixed point equations where the direct observations are
corrupted by noise.

Consider the nonlinear equation h(x) = 0 given noisy measurements of the function h.
To put it simply, we do not have access to the mathematical model h, instead, we are given a
black box such that given an input x, it returns a value y = h(x) + ξ where ξ is a zero mean
noise random variable. Let x∗ be the solution to this equation such that h(x∗) = 0. The
stochastic approximation scheme given by Robbins and Monro Robbins and Monro [1951] is
given by:

xn+1 = xn + a(n)[h(xn) +Mn+1] . (2.3.1)

Here, {Mn} is the noise sequence and {a(n)} are positive scalars such that:∑
n

a(n) =∞ and
∑
n

a(n)2 <∞ . (2.3.2)

The conditions on the discrete-time steps {a(n)} given by (2.3.2) ensure that the noisy
time-discretization covers the entire time axis (retaining a(n) → 0) while also having the
error due to the noise to be asymptotically negligible, suppressing the noise variance. Note
that h(n) and Mn+1 are only available as a sum. It is also assumed that {Mn} is a martingale
difference sequence (Borkar and Meyn [2000]), i.e., a sequence of integrable random variables
satisfying

E[Mn+1|xm,Mm,m ≤ n] = 0 . (2.3.3)

Note that if h(x) is continuously differentiable in x and ∇xh(x) denotes its gradient w.r.t.
x, we end up with the stochastic gradient method:

xn+1 = xn + a(n)[−∇xh(xn) +Mn+1] . (2.3.4)

2.3.1. ODE approach to the analysis of SA algorithms

A popular approach for the theoretical analysis of these SA algorithms is using the
so-called ODE method where we view the SA scheme given by (2.3.1) as a noisy time-
discretization of a limiting ODE. We will now formally analyze the stochastic approximation
method in Rd given by

xn+1 = xn + a(n)[h(x(n)) +Mn+1], n ≥ 0 (2.3.5)
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with a given initial x0. The following assumptions are made to perform basic convergence
analysis(Borkar and Meyn [2000]):

(1) The map h : Rd → Rd is Lipschitz, i.e., there exists L > 0 such that:

||h(x)− h(y)|| ≤ L||x− y||, ∀x,y ∈ Rd .

(2) Stepsizes a(n) are positive scalars satisfying∑
n

a(n) =∞,
∑
n

a(n)2 <∞ .

(3) {Mn} is a martingale difference sequence with respect to increasing family of σ-fields

F = σ(xm,Mm,m ≤ n) = σ(x0,M1, · · · ,Mn), n ≥ 0

This gives us E[Mn+1|Fn] = 0 a.s., n ≥ 0.
We also have {Mn} to be square-integrable with

E[||Mn+1||2|Fn] ≤ K(1 + ||xn||2) a.s., n ≥ 0

for some constant K > 0.
(4) The iterates of (2.3.5) remain bounded a.s., i.e.,

sup
n
||xn|| <∞, a.s. . (2.3.6)

Assumption 4 is not a given for the iterates and is usually known to be hard to establish.
For general unbounded spaces, this is a stability assumption that must be proved separately
using other methods, like stochastic Lyapunov functions (Kushner and Yin [2003]). Under
the given stability assumption, the SA iterates given by (2.3.5) are said to asymptotically
track the ODE:

ẋ(t) = h(x(t)), t ≥ 0 . (2.3.7)

We will now discuss how the given assumptions help us arrive at the given limiting ODE.
Assumption 1 ensures that the ODE is well-posed, i.e., it has a unique solution for any
x(0) that depends continuously on x(0). To formally describe the idea that stochastic ap-
proximation asymptotically tracks the trajectories of the ODE, we first define time instants
t(0) = 0, t(n) = ∑n−1

m=0 a(m), n ≥ 1. The approach taken to show this requires us to construct
a continuous interpolated trajectory x̄(t), t ≥ 0, i.e., a continuous trajectory x̄(t) interpolat-
ing the iterates {xn} at times {tn}, and show that this trajectory almost surely approaches
the solution set of the ODE (2.3.7) asymptotically. In other words, x̄(tn) = xn, n ≥ 0 and x̄

is piecewise linear, defined on the intervals [tn, tn+1]. Note that the assumption ∑∞
m=0 γm is

required to cover the whole time-axis and in turn, track the ODE asymptotically. We define
xs(t), t ≥ s to denote the unique solution to ODE (2.3.7) with xs(s) = x̄(s). We will now
state the general results that follow from the above defined setting, proofs of which can be
found in Borkar [2009].
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Lemma 2.3.1. For any T > 0,

lim
s→∞

sup
t∈[s,s+T ]

||x̄(t)− xs(t)|| = 0, a.s. .

This lemma states that as s→∞, the interpolated trajectory x̄ starting from s remains
close to a trajectory of the ODE. In other words, we can say that the noise becomes asymp-
totically too weak to push the iterates away from the trajectories of the ODE which describe
the typical behavior of the system.

For a formal discussion of the convergence of stochastic approximation, we first need to
define the concept of chain transitivity. A closed set A ⊂ Rd is said to be an invariant set for
the given ODE (2.3.7) if any trajectory x(t),−∞ < t < +∞ with x(0) ∈ A satisfies x(t) ∈ A
for all t ∈ R. A close set A ⊂ Rd is an internal chain transitive set for the ODE if for any
x,y ∈ A and any ϵ > 0, T > 0, there exists points x0 = x, x1, · · · , xn−1, xn = y in A, for some
n ≥ 1, such that the trajectory of ODE (2.3.7), starting at xi, for any 0 ≤ i < n meets with
the ϵ-neighbourhood of xi+1 after a time greater than or equal to T . These small jumps at
the points of the chain are a natural assumption for stochastic approximations, where the
noise pushes the iterates away from the trajectories of the ODE.

We can now state the convergence theorem for stochastic approximation as
Theorem 2.3.2 (Benaïm [1999]). Let us assume that assumptions (1)-(4) are satisfied.
Then, almost surely, the sequence {xn} generated by (2.3.5) converges to a (possibly time-
dependent) compact connected internally chain transitive invariant set of (2.3.7).

This ODE approach is widely employed for establishing the convergence of stochastic
approximation methods. In addition to this, the ODE approach allows us to understand the
average or typical behavior of the algorithm. However, the biggest advantage of taking this
approach is that it is often used to create new discrete stochastic approximation algorithms
from convergent ODEs (Devraj and Meyn [2017], Meyn [2022]).

2.3.2. ADP and connection with Stochastic Approximation

Approximate dynamic programming is a powerful strategy to address the curse of dimen-
sionality in dynamic programming, with TD being one of the most popular ADP methods.
TD was first studied under the lens of SA by Tsitsiklis and Van Roy [1996] who established
convergence using an operator-theoretic variant of the ODE method. We know that stochas-
tic approximation is an algorithm to find the roots of a function with noisy observations. If
TD can be cast as an SA algorithm, the question that arises is: What is the function we are
trying to find the roots of? Why is this function noisy?

The root finding problem for the TD method happens to be the fixed point problem
associated with the projected Bellman equation. The projected Bellman equation is a variant
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of the Bellman equation given by:
v̂ = ΠT v̂ , (2.3.8)

where v̂ ∈ span(Φ) and Π is a projection operator with im(Π) = span(Φ). Here, im(Π) is the
image of Π or more specifically the set im(Π) := {Πx : x ∈ H}. We would now show how
this projected Bellman operator can be expressed as a stochastic approximation method,
which plays a fundamental role in all of our derivations ahead. Note that much of the proof
sketch below follows Yang-Zhao et al. [2018]’s discussion of the projected Bellman equations.
As a recap, for any v ∈ RS , the Bellman operator is given by:

(T v)(s) = Rt + γ
∫

S
T (s′|s)v(s′)ds′ .

Let PT be an operator defined as

PTf(s) =
∫

S
T (s′|s)f(s′)ds′ .

We can therefore rewrite the Bellman operator in terms of PT as

T v(s) := Rt + γPTv(s) .

Note that we would consider the scenario where we have applied linear funtion approximation
to our TD method. We can therefore write v̂ ∈ im(Φ) as v̂(.) = ϕT (.)w. We can therefore
define PT as:

PTϕ
T (s) := [PTϕ1(s) · · ·PTϕk(s)] ∈ Rk .

Let Πψ be a natural projection operator characterized by (ϕ, ψ). Let v̂ ∈ im(Πψ) be given
as v̂ = ∑k

i=1 ϕiwi. Note that since Πψ projects orthogonally to im(Π⋆
ψ) and onto im(Πψ), we

have T v̂ − ΠψT v̂ ⊥ ker(Πψ). We can therefore say that:

⟨ψi, T v̂ − ΠψT v̂⟩ = 0 .

Substituting the projected Bellman equation, we get:

0 = ⟨ψi, T v̂ − v̂⟩

= ⟨ψi,
[
R + γPTϕ

T (.)w − ϕT (.)w
]
⟩

= ⟨ψi, R⟩+
〈
ψi, γ

k∑
j=0

PTϕjwj

〉
−
〈
ψi,

k∑
j=0

ϕjwj

〉

= ⟨ψi, R⟩ −
k∑
j=0

〈
ψi, (ϕi − γPTϕj)wj

〉

= ⟨ψi, R⟩ −
k∑
j=0

〈
ψi, (I − γPT )ϕjwj

〉
.
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We can rearrange the terms to write them as:

⟨ψi, R⟩ −
k∑
j=0

〈
ψi, (I − γPT )ϕjwj

〉
= 0 . (2.3.9)

Let us define A ∈ Rk×k and b ∈ Rk as:

Aij =
〈
ψi, (I − γPT )ϕj

〉
and bi = ⟨ψi, R⟩ where i,j = 1,2, · · · k .

We can rewrite this equation as:

h(w) = b− Aw = 0 . (2.3.10)

This is the exact form of a stochastic approximation algorithm. Hence, the fixed point
equation of the projected Bellman equation can therefore be expressed as a stochastic ap-
proximation algorithm, prompting us to say that TD is indeed an SA algorithm.

2.4. Momentum and Acceleration in Optimization
Momentum is a powerful technique for accelerating the convergence of optimization meth-

ods. Momentum-based methods have been known to achieve optimal iteration complexity
for the task of minimization of smooth convex functions over convex sets. One intuitive way
of adding momentum is to add the weighted average of previous steps to the current step,
thereby moving in directions favored by previous steps. In the deterministic setting, lever-
aging information from two successive gradients for making a step has been shown to yield
better convergence rates (Nesterov). Many empirical studies also showed that momentum
methods are capable of exploring multiple local minima (Attouch et al. [2000]) which can
help us explore and achieve a better local minima. Momentum has often also proven to
be useful in non-convex settings where they have theoretically been shown to escape saddle
points faster than non-accelerated versions (Jin et al. [2018]).

The introduction of momentum in optimization is largely attributed to Polyak [1964].
Motivated by the analogy of a heavy ball in a potential well defined by the objective func-
tion, Polyak [1964] introduced accelerated methods for smooth and strongly non-convex
minimization. The Heavy Ball Method, which can be seen as a two-step discretization of
the following second-order ODE with a constant damping term:

ẍ(t) = α1ẋ(t) + α2∇f(x(t)) . (2.4.1)

In relation to mechanical systems, this second-order ODE defines the dynamics of a
continuous-time harmonic oscillator. Therefore, momentum-based methods in optimization
can be seen as particular time-discretization of the above continuous-time harmonic oscil-
lators. Despite the physical intuition, providing mathematical guarantees for momentum
algorithms in optimization can be difficult. In the case of a quadratic objective function,
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Polyak gave a spectral argument stating that his method requires no more iterations than
the conjugate gradients method (Polyak [1964]). However, this eigenvalue analysis lacked
rigorousness as it did not apply globally for general convex cost functions.

Another seminal work in the realm of accelerated algorithms for optimization was of
Nesterov where they relied on algebraic arguments and later devised a general scheme to
accelerate convex optimization methods. Instead of relying on the physical intuition of
momentum and the subsequent eigenvalue arguments, Nesterov [2005] devised the method
of estimate sequences to establish convergence rates of these accelerated methods. However,
the motivations and the foundations of the estimate sequence methodology can be challenging
to fully grasp.

There have been many attempts to propose alternate schemes for achieving acceleration
(Drusvyatskiy et al. [2018], Bubeck et al. [2015], Lessard et al. [2016], Drori and Teboulle
[2014], Tseng [2008]). A notable line of work in the analysis of acceleration revolves around
taking the dynamical systems approach. Indeed, it can be argued that the concept of ac-
celeration better translates into the continuous-time framework where acceleration can be
viewed as a differential concept, specifically the change of speed along a curve. In the same
spirit as Polyak [1964], there has been a recent surge in the dynamical system perspective for
optimization. The works of Su et al. [2014] and Krichene et al. [2015] analyzed the acceler-
ated gradient method and accelerated mirror descent with vanishing damping terms. These
accelerated methods were seen as continuous time limits of second-order ODEs and showed
that the trajectories of these methods approach the solutions of a given second-order ODE.
The corresponding differential equations were further analyzed by Attouch et al. [2018b].

The connections between dynamical systems and optimization for the analysis of opti-
mization algorithms have also given rise to the development of new frameworks to understand
the behaviour of these accelerated methods better. A recent flurry of works has adopted a
variational perspective and looked into the Lagrangian frameworks to study acceleration
in continuous time (Wibisono et al. [2016], Jordan [2018], Wilson et al. [2021]). Specifi-
cally, Wibisono et al. [2016] shows that the continuous-time limits of all accelerated methods
correspond to travelling the same curve in space-time generated by a specific Lagrangian
functional, called the Bregman Lagrangian, at different speeds. There are other such frame-
works developed, such as Hamiltonian mechanics (Diakonikolas and Jordan [2021]), control
theory (Hu and Lessard [2017]), and high-resolution ODEs (Shi et al. [2022]).

Though this approach has helped in improving the underlying mechanisms behind the
acceleration in optimization methods and developed crucial links between dynamical systems
and optimization, the analysis relies heavily on the hand-engineering Lyapunov functions
(Wilson et al. [2021]) or estimate sequences . Oftentimes, these functions are developed using
the trial-and-error method while making educated guesses. These Lyapunov functions, which
can be seen as non-increasing energy functions, are essential for the exact characterization
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of the convergence rates of our algorithm. While the Lyapunov function approach allows
us to move beyond estimate sequences, the lack of a systematic methodology for arriving at
these functions is undesirable. Muehlebach and Jordan [2021] forgoes the Lyapunov function
approach in favour of exploiting the topological properties of the dynamical system to give
an explicit characterization of the convergence rates up to a constant, which holds true for
both the continuous and discrete settings.

In addition to the analysis of existing algorithms, the continuous-time framework has also
facilitated the development of new accelerated algorithms. A challenge in the application
of the dynamical systems perspective (Betancourt et al. [2018], França et al. [2020], Mad-
dison et al. [2018]) is that rate-matching discrete-time counterparts depend on the chosen
discretization scheme: finding the right scheme is a challenge on its own. Previous works
have shown that naive discretizations of the continuous-time dynamical system can fail to
replicate the fast oracle rates seen in the underlying system or lead to unstable discrete-time
systems (Wibisono et al. [2016]). Subsequently, there has been a lot of work on discretizing
these ODEs with vanishing damping terms (Wibisono et al. [2016], Attouch et al. [2018a],
Attouch and Cabot [2018], Adly and Attouch [2022], Diakonikolas and Jordan [2021]) and
discretizing alternate ODEs (Wilson et al. [2019], Muehlebach and Jordan [2019], Zhang
et al. [2019]).

Motivated by the Lagrangian and Hamiltonian mechanics, a body of work has explored
physical interpretations of Polyak’s (Attouch and Alvarez [2000], Attouch et al. [2000], França
et al. [2020]) and Nesterov’s (Wibisono and Wilson [2015], Wibisono et al. [2016], Betancourt
et al. [2018]) methods in the Lagrangian and Hamiltonian formulation. An added benefit of
working with the Lagrangian or Hamiltonian formulations of the continuous-time dynamical
systems is the existence of certain conserved quantities of the Hamiltonian which can be
analyzed to characterize the convergence rate (Diakonikolas and Jordan [2021]). Since these
conserved quantities can be viewed as Lyapunov functions, this provides a more intuitive
way of arriving at these functions whose origins have often been unclear (Suh et al. [2022],
Diakonikolas and Jordan [2021]). Specifically, instead of guessing these Lyapunov functions,
they are derived from the same Hamiltonian whose equations of motion are the momentum
dynamics.

Another notable work that explores a similar line of thought is that of Suh et al. [2022]
where they develop a methodology for analyzing these accelerated methods by deriving con-
servation laws, which can be seen to be analogous to the conservation of energy in physics,
in a dilated coordinate system. Along with providing a unified framework for the analy-
sis of accelerated methods in the continuous time realm, they also provide a streamlined
methodology for deriving Lyapunov functions from first principles. This work offers a more
intuitive way of starting from the given ODE and arriving at the conservation law, whereas
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Diakonikolas and Jordan [2021] start from a Hamiltonian with given kinetic energy and
potential energy terms which are then used to derive the ODE.

Working with Lagrangian or Hamiltonian formulations also allows for using symplectic
integration (Wanner and Hairer [1996])for the discretization of ODEs while preserving the
continuous symmetries of the underlying system (Haier et al. [2006]). These conserved
symmetries could also include meaningful terms such as energy or momentum which can
be conserved exactly by these symplectic integrators even if the dynamical flow is only
approximated. This idea was initiated in the field of accelerated optimization methods by
Betancourt et al. [2018] for their ability to be more stable than other integration schemes,
allowing us to use larger step sizes in the discrete-time systems without off-shooting. This
approach has been further explored in works like (Maddison et al. [2018], França et al.
[2020], Muehlebach and Jordan [2021], França et al. [2021], Shi et al. [2019]), with Shi et al.
[2019] achieving an O(1/k2) by combining symplectic integration with a high-resolution ODE
framework.

2.5. Acceleration of Temporal Difference Methods
While RL has made big strides with the introduction of deep-learning techniques with the

advent of Deep RL, the fundamental ideas underlying these new algorithms remain the same.
Q-Learning algorithm proposed by Watkins and Dayan (Watkins [1989], Watkins and Dayan
[1992]) forms the backbone of deep Q-Learning. In addition to it, actor-critic methods or
policy gradient algorithms have adapted notions from the monumental works of Sutton et al.
[1999], and Konda and Tsitsiklis [1999]. However, at the heart of these advancements lies
the most fundamental RL algorithm: Temporal Difference Learning (Sutton [1988], Tsitsiklis
and Van Roy [1996]).

It is widely known that RL algorithms like TD-learning and Q-learning are slow to
converge and sample inefficient (Szepesvári [1997], Azar et al. [2011]). This necessitates
the development of accelerated algorithms for TD learning. With the development of new
algorithms, mathematical analysis of these algorithms is important for building interpretable,
stable, and convergent algorithms. For the purpose of this thesis, we focus on developing
convergent algorithms along with an asymptotic analysis for the fundamental building block
of RL: TD(0) with linear function approximation. Since this work aims to develop a new
approach to algorithm analysis, it is prudent to start the development of these methods on
algorithms that have known convergent guarantees with existing analysis methodologies.

Bounds for convergence rate can often be obtained either in high-probability or in expec-
tation. There are two main styles of analysis in the literature for TD: asymptotic analysis,
and finite-time analysis. Recent works have focused on obtaining finite time bounds for TD
methods (Dalal et al. [2018b], Dalal et al. [2018a], Lakshminarayanan and Szepesvari [2018]).
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Bounds for two-time scale SA algorithms were developed in Dalal et al. [2018b]. Finite-time
bounds for TD(0) with i.i.d observation noise assumption were derived in Dalal et al. [2018a]
and Lakshminarayanan and Szepesvari [2018]. However, research on finite time bounds in
realistic settings with Markovian noise have been fairly recent. Bhandari et al. [2018] pro-
vides an explicit finite-time analysis similar to the ones seen in stochastic gradient descent
by providing bounds for vanishing and finite step-sizes for projected TD-learning. Another
work obtaining finite-time bounds on mean square error for constant step-size is Srikant and
Ying [2019] where they do this by considering the drift of an appropriately chosen Lyapunov
function. While establishing finite-time bounds are desirable and often more realistic, we
note that these methods do not provide for a unified theory to design new algorithms but
serve as a way to analyze the existing ones.

Since the introduction of stochastic approximation methods in the early 1950s with the
seminal work of Robbins and Monro [1951], the ODE method has been a staple of algo-
rithm design and analysis (Borkar and Meyn [2000]). The ODE approach relies on the idea
that, under certain conditions, the noise seen in these SA iterates averages out and they
closely track the trajectory of a limiting ODE. The asymptotic analysis theory for stochas-
tic approximation methods has been well-developed and is often a convenient way to show
asymptotic convergence of these SA algorithms (Kushner and Yin [2003], Borkar [2009],
Benveniste et al. [2012]). While this approach is often convenient as it allows to circumvent
issues pertaining to noise, it fails to provide insights into the effect of noise, choice of step-
size, or ill-conditioning on the algorithm. To counter this, an approach based on the central
limit theorem for the SA algorithm was developed by Konda and Tsitsiklis [1999], Devraj
and Meyn [2017] and, Devraj [2019].

A prominent class of new TD algorithms is that of gradient TD-learning methods (GTD,
GTD2, and TDC) which were first introduced by Sutton et al. [2008, 2009] to address the
divergence of TD in the off-policy regime. For RL, off-policy translates to learning the value
function for the target policy, using data obtained while following a different behavior policy.
These methods were designed to replicate gradient descent over the mean squared projected
Bellman error loss function (MSPBE).

Given the close relation between gradient-based TD methods and gradient descent,
adding a momentum term to accelerate the convergence of the iterates, similar to what
is often seen in stochastic gradient methods, is a fairly straightforward extension. Hence,
a lot of work on developing accelerated algorithms has been done with the gradient TD
or fitted value methods (Meyer et al. [2014], Pan et al. [2017], Deb and Bhatnagar [2022],
Ghiassian et al. [2020]).

One of the first significant attempts at incorporating momentum seen in gradient descent
to TD methods is that of Meyer et al. [2014] who extended Nesterov’s momentum seen in
gradient descent algorithms to Gradient TD methods to the setting of policy evaluation
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with linear function approximation for on-policy learning. Pan et al. [2017] introduced an
accelerated gradient TD (ATD) method that performed quasi-second-order gradient descent
on the MSPBE that provided similar data efficiency benefits as least-squares methods at
a fraction of the computation and storage cost. Ghiassian et al. [2020] introduced another
Gradient TD method called TD with regularized corrections (TDRC) which makes slight
modifications to the TDC methods while achieving performance seen in TD methods.

Farahmand and Ghavamzadeh [2021] view the Value Iteration (VI) algorithm as a dy-
namical system and propose modifications to using tools from control theory to accelerate
their dynamics. The modifications are based on simply controllers that show accelerated
behaviour in these modified VI algorithms empirically.

Momentum counterparts were also introduced to the general SA algorithm with appli-
cations to TD and Q-learning (Devraj et al. [2019], Mou et al. [2020], Avrachenkov et al.
[2022], Deb and Bhatnagar [2022]). Devraj et al. [2019] introduce matrix momentum to SA
with applications to Q-learning while providing a unified perspective on Polyak’s heavy ball
method as the linearization of a particular Nesterov’s method. However, it can be argued
that matrix momentum is not equivalent to the heavy ball momentum. Mou et al. [2020]
briefly discuss SA with momentum and show an improvement in the mixing rate for linear SA
where the matrix A is Hurwitz with a broader discussion on asymptotic and non-asymptotic
properties of linear SA algorithms with Polyak-Ruppert averaging. Avrachenkov et al. [2022]
studied one time-scale (TS) SA with a heavy ball momentum term in the univariate case in
the context of web-page crawling. Deb and Bhatnagar [2022] consider One-TS and Three-TS
decomposition of Gradient TD with heavy ball momentum iterates and provide asymptotic
convergence guarantees.

Recent works have also attempted to accelerate Watkins’ Q-learning algorithm which is
known to be slow to converge and have poor performance (Azar et al. [2011], Devraj and
Meyn [2017], Chen et al. [2020], Chen et al. [2021]). Szepesvári [1997] first quantified the
slow convergence rates of the original Watkins’algorithm and obtained explicit finite-time
PAC (probably almost correct) bounds and Azar et al. [2011] provide such bounds for their
proposed Q-learning algorithm with faster convergence guarantees. Devraj and Meyn [2017]
introduced the Zap Q-learning with a two time-scale update for a matrix gain sequence such
that the asymptotic variance is optimal and faster convergence is obtained. This framework
was then extended by Chen et al. [2020] to ensure stability of the algorithm. Most of the
above works show convergence in the linear setting, however Chen et al. [2020] designed a new
class of Q-learning algorithms that are convergent even for non-linear function approximation
architectures, like neural networks.
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2.6. Performance Metrics
While off-policy TD is known to diverge with function approximation, several TD-based

algorithms, especially in the on-policy setting, are proven to be convergent. Also, when
TD learning converges, it converges to the TD fixed point. Note that the TD fixed point
corresponds to the weight vector w⋆ when h(w⋆) = 0.

A natural question that might arise is: Which choice of performance metric would best
help encapsulate the advantages of a given TD method over others while showing the method
to be convergent in nature? Previous works on accelerated gradient temporal difference
methods (Sutton et al. [2009]) that looked into choosing a different objective (such as GTD
methods) chose the Mean Square Projected Bellman Error (MSPBE). Following this, most
works measured the performance of their methods by reporting the Root Mean Square Pro-
jected Bellman Error (RMSPBE).

We start with describing the possible choices of functions that could be used to evaluate
the performance of our methods and show why RMSPBE is the preferred choice. This
explanation heavily relies on the detailed discussion given in Sutton et al. [2009].

Consider the approximated value function to be vw and the true value function to be v⋆.
An obvious choice to evaluate the methods is the mean squared error (MSE) between vw and
v⋆, averaged over the state space depending on how often each state occurs. We can write
this as:

MSE(w) =
∑
s

xd(vw − v⋆)2 = ||vw − v⋆||2X . (2.6.1)

Note that, in the second equation vw and v⋆ are vectors and the norm ||v||2X = vTXv where
X is a diagonal matrix with the limiting distribution xd on its diagonal.

While this function might seem like a good choice on first glance, the idea behind temporal
difference methods is for the approximated value function to closely satisfy the Bellman
equation. The true value function v⋆ satisfies the Bellman function exactly to give:

v⋆ = r + γPv⋆ = Tv⋆ ,

where T is the Bellman operator. Another measure of how closely the approximate value
function satisfies the Bellman equation could therefore be the mean squared Bellman error
given by:

MSBE = ||vw − Tvw||2X . (2.6.2)

However, it was observed that most temporal difference methods, like TD, LSTD, and GTD,
do not converge to the minimum of MSBE. This happens due to the presence of function
approximators in the value function. The Bellman operator follows the dynamics of the
underlying Markov Chain, irrespective of the function approximator used. This results in
Tvw not being representable by vw for any w. We therefore require a projection operator,
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which takes a value function v and projects it to the nearest possible value function that is
representable by a function approximator. We call this projection operator Π which can be
written as:

Πv = vw where w = arg min
w
||vw − v||2X .

For our case with linear function approximator (vw = ϕT (sk)w), the projection operator
turns out to be linear and independent of w and can be written as:

Π = ϕ(ϕTXϕ)−1ϕTX .

All the temporal difference methods mentioned above are seen to converge to a fixed point
of the composed projected Bellman operator, converging to a value w such that:

vw = ΠTvw .

Hence, we can now empirically track the convergence properties of our method by using the
quantity mean square projected Bellman error (MSPBE), which can be defined as:

MSPBE(w) = ||v− ΠTvw||2X . (2.6.3)

For our specific case, we can further expand on this definition of MSPBE to better understand
this quantity. To do so, we would first rewrite our TD update in terms of the TD Error as:

δk = rk + γϕT (sk+1)w(sk)− ϕT (sk)wk

w(sk+1) = w(sk) + αδkw(sk)
(2.6.4)

for the stepsizes αt > 0. MSPBE (Sutton et al. [2009]) is then defined as:

MSPBE(w(sk)) = E[δkϕ(sk)]TE[ϕ(sk)ϕ(sk)]−1E[δkϕ(sk)]

= (b− Aw)TC−1(b− Aw) ,

where E[δkϕ(sk)] = b− Awk, C = E[ϕ(sk)ϕT (sk)],

A = E[ϕ(sk)(ϕ(sk)− γϕ
′T (sk))], and b = E[rkϕ(sk)] .

Note that the TD fixed point corresponds to E[δkwk] = 0 which happens to be the solution
of the system Awk = b. This is the underlying limiting ODE for our system defined as
h(w) = b − Aw(t). Hence, this shows that our method also optimizes for the MSPBE
without explicitly taking the gradient of it. It also shows that RMSPBE therefore serves as
an apt metric to check for convergence of our accelerated TD methods.
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2.7. Discretization schemes
This section explores the use of numerical methods for transitioning from differential

equations to implementable difference equations. Note that this transition from continuous-
time ODEs to the discrete-time algorithm is a non-trivial step. There are numerous dis-
cretization schemes that attempt to come up with a discrete-time algorithm that preserves
the properties of the continuous-time system (Wanner and Hairer [1996]). Note that we are
only concerned with time-discretization here. The idea is to choose a consistent discretiza-
tion scheme for a given differential equation. A discretization scheme is said to be consistent
if the discretized equations converge to the given ODE as the time step tends to zero (Blazek
[2015]).

Consider a function w(t) that is infinitely differentiable with respect to t. We can therefore
use the Taylor series method to approximate the value of the function w at t+ ∆t using the
function value at t with derivatives as:

w(t+ ∆t) = w(t) + ∆t · ẇ(t) + ∆2t

2 ẅ(t) + · · ·+ ∆nt

n! w
(n)(t) ,

where w(n)(t) denotes the nth derivative of the function w with respect to t. First order
discretization schemes, like Euler’s method, correspond to using the first derivative ẇ(t) to
approximate the function value. Second order discretization schemes, like Verlet integration
and leapfrog integrator, also include the second derivative, ẅ(t) to compute the function
value whereas higher order symplectic schemes, like Runge-Kutta method, include more
derivative terms in the Taylor series expansion to approximate the function value. Second
or higher order discretization schemes are more computationally intensive than first order
schemes but provide more stability. Note that in most settings, it is not practical to use
higher order discretization schemes as we do not have more than two derivatives. For this
work, we focus on using first-order schemes for the sake of simplicity.

Consider a first-order ODE given by:

ẇ(t) = h(w(t)) , where w(t0) = w0 . (2.7.1)

Our goal is to derive a difference equation which is an approximation of ODE (2.7.1) that
involves difference in only function values without the presence of any derivatives.

2.7.1. Euler Methods

The simplest method to discretize this ODE is the Euler method. The basic idea here
is to obtain a difference equation which involves differences in function value w at different
time steps ti.

43



From calculus, we can write the derivative of a function w(t) at a given point t = a as:

ẇ(a) = lim
i→0

w(a+ i)− w(a)
i

. (2.7.2)

Physically, this just means taking the slope of the secant line joining (a, w(a)) and (a +
i, w(a+ i)). Note that as a+ i gets closer to a, the slope of this secant line gets closer to the
slope of the tangent line at a, given by ẇ(a). For a small fixed i, we have the approximation
of ẇ(a) to be equal to . Now, for a limit to exist, both the limit as i → 0 approached from
i+ and i− should be equal. Different forms of the Euler method correspond to approaching
this limit from either the right (i+) or the left (i−).

Explicit Euler Methods: Explicit Euler Methods correspond to taking this limit in the
definition of the derivative from the right (i+). From the fundamental theorem of calculus,
we can write:

ẇ(t0)) ≈
w(t1)− w(t0)

∆t
as an approximation to ẇ(t0)). Let w1 = w(t1) and w0 = w(t0). We can use (2.7.1) to give
us our Euler method. Note that to obtain the Euler method at t1, we use our ODE (2.7.1)
evaluated at t0 along with our approximation to ẇ(t0) to get:

w1 − w0

∆t = h(w0,t0)

w1 = w0 + ∆t · h(w0, t0) .

We can now write the Explicit Euler update in general as:

wk+1 = wk + ∆t · h(wk, k) . (2.7.3)

We call this method an explicit scheme because we can write the unknown quantity in terms
of known quantities making the computations of the unknown quantities easy. This method
is also called the forward Euler method because we write the equation at the point k and
the difference forward in time to k+ 1. It essentially translates to making an update at time
step k + 1 using function values obtained at time step k.

Implicit Euler Methods: Note that the explicit Euler scheme was derived by eval-
uating the approximation of ẇ(t0) using the definition of the derivative at a given point a
using i → 0+. Implicit Euler obtains a difference equation by taking the limit from the
left (i → 0−). Hence, the secant line is now between (a, w(a)) and a point to its left for
approximating ẇ(a). In (2.7.2), we can therefore set a+ h = t0 and a = t1. This gives us:

ẇ(t1) ≈
w(t0)− w(t1)

t0 − t1
.

Note that since t0 − t1 < 0, this gives us the approximation at time t1 to be:

w1 = w0 + ∆t · h(w1, t1) .
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We can now write the implicit Euler update in general as:

wk+1 = wk + ∆t · h(wk+1, k + 1) . (2.7.4)

This method is also called the backward Euler method as we are writing the equation at
k + 1 and differencing backward in time. Note that (2.7.4) differs from (2.7.3) since we
must evaluate the function value h(w,t) at the unknown point (wk+1, k + 1) which leads
to a non-linear equation to solve for each wk+1. Therefore, while the implicit method can
be more stable in nature than the explicit Euler method, it can also be computationally
more intensive. Also, note that these implicit methods are not more accurate than explicit
methods, but more stable in nature.

Symplectic Euler Methods: A natural question that arises is: How do we leverage
the stability of implicit Euler methods while reducing the computational cost as seen in the
explicit Euler methods? Symplectic Euler methods are an answer to this. These methods
are often used to discretize Hamiltonian equations and almost conserve the energy (when
the Hamiltonian is time-independent).

Consider the system of differential equations of the form:

ẇ(t) = h(y,t)

ẏ(t) = g(w,t)
(2.7.5)

We use the explicit Euler method on (2.7.5) (a) and the implicit Euler method to perform
the discretization on (2.7.5) (b). Therefore, we can write the symplectic Euler update for
the system of equations given in (2.7.5) as:

wk+1 = wk + ∆t · h(yk, k)

yk+1 = yk + ∆t · g(wk+1, k + 1)
(2.7.6)

2.8. Concluding Remarks
In this chapter, we start off with a discussion of basic concepts from Dynamic Program-

ming and RL, like value functions, Bellman equations, and approximate dynamic program-
ming techniques in Section 2.1. We then move on to describing policy evaluation methods
and our specific setting of TD methods in Section 2.2. We follow this by describing the
generic stochastic approximation problem, describing the ODE approach to analyzing such
algorithms, and establishing a link between ADP and SA algorithms in Section 2.3. Specifi-
cally, this section helps us see that TD is an SA method which is an instrumental fact in the
derivation of our proposed methods. We then switch to talk about accelerated methods in
optimization, focusing especially on the dynamical systems viewpoint taken to understand
the behaviour of these methods and analyze them in Section 2.4. Following this, we discuss
the directions of work addressing acceleration in TD methods or RL, in general, in Section
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2.5. Finally, we describe the performance metrics used for evaluating our methods in Sec-
tion 2.6. Lastly, we describe the first-order Euler discretization schemes in Section 2.7. We
would now use the notions described in this Chapter to design accelerated algorithms for
TD methods.
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Chapter 3

Accelerated Algorithms for TD Learning

In this Chapter, we build upon ideas previously discussed in Section 2.4 for designing ac-
celerated TD methods. Note that throughout this thesis, we work on the on-policy setting
for TD(0) with linear function approximation. While we focus on devising accelerated algo-
rithms in this setting, these proofs serve as a recipe that can be used to easily derive such
accelerated algorithms in other settings.

We start this chapter by showing how we can express the TD(0) algorithm as a limiting
ODE. Note that this particular limiting ODE is not new to SA and is used to establish
stability and convergence of the SA iterates (see Section 2.3.1). Taking inspiration from the
optimization literature establishing acceleration to be a second-order ODE with interpreta-
tions as a mass-spring damper system (Su et al. [2014], Muehlebach and Jordan [2019]), we
modify the first-order limiting ODE of TD to two second-order ODEs: one corresponding to
Polyak’s Heavy Ball method and the other corresponding to Nesterov’s acceleration. Lastly,
we perform two different discretization schemes: explicit Euler and symplectic Euler on both
these ODEs to obtain four implementable discrete-time accelerated TD algorithms.

3.1. ODE for TD(0)
We know that the TD(0) update rule can be given by:

v(t+1)(st) = v(t)(st) + ηt[rt + γv(t)(st+1)− v(t)(st)]] .

Consider the on-policy setting for our TD(0) algorithm where the state transitions come
directly from the evolution of a Markov Chain. For the sake of simplicity, we consider the
case of the TD(0) algorithm with linear function approximation, where we approximate the
value function across state space as v = ϕT (s)w. Here, Φ ∈ R|S|×k is the concatenation of
all feature vectors as rows. Note that |S| is the number of states and k is the dimension of
the features. Hence, ϕ(s) ∈ Rk×1 corresponds to the sth feature vector. w ∈ Rk×1 is the
weight vector to be learned. Note that Φ is assumed to be full rank for w to be unique. η



is the learning rate of this algorithm. We can therefore rewrite the TD(0) update rule as:

w(t+1) = w(t) + ηt[rt + γϕT (st+1)w(t) − ϕT (st)w(t)]ϕ(st) . (3.1.1)

To study the average behavior or for analyzing the corresponding deterministic system of
this stochastic process, we need to average out the noise and look at the ODE for the given
deterministic system. To average out the noise, we take the expectation of the SA iterates
under the stationary distribution induced by running a given policy inside our MDP. Note
that a Markov Chain that is irreducible and aperiodic has a unique stationary distribution
xd ∈ R|S|×1. Since xd is a stationary distribution, we also have xTd = xTdPd where Pd ∈
R|S|×|S|.

Taking expectation of (3.1.1) where st and st+1 come from stationary distribution xd
gives us:

Exd
[
(
rt + γϕT (st+1)w− ϕT (st)w

)
ϕ(st)]

= E[r(st, at)ϕ(st) + γϕT (st+1)wϕ(st)− ϕT (st)wϕ(st)]

=
∑

i,j∈S,a∈A
[xd(i)ϕ(i)r(i,a) + γxd(i)[Pd]ijϕ(i)Tϕ(j)w(i)− xd(i)ϕ(i)ϕ(i)Tw(i)]

= ΦTXdrd + γΦTXdPdΦw− ΦTXdΦw

= ΦTXd(rd − (I − γPd)Φw) ,

where rd ∈ R|S|×1 and Xd ∈ R|S|×|S|.
Hence, averaging the iterates out under the stationary distribution gives us the underlying

limiting ODE for TD(0):

ẇ(t) = ΦTXdrd − ΦTXd(I − γPd)Φw . (3.1.2)

Note that this equation now defines a system that is entirely deterministic. We can also
rephrase this equation to mimic the form for SA algorithms for the ease of analysis. Recall
that stochastic approximation aims to solve non-linear problems of the type h(w) = 0 where
w⋆ is the solution to this equation such that h(w⋆) = 0. For the specific case of TD(0) with
linear function approximation, we can write (3.1.1) in terms of SA iterates as:

wt+1 = wt + αt[h(wt) +Mt+1] , (3.1.3)

where Mt+1 is the Martingale difference taken to be zero (i.e., Mt+1 = 0) and h(w) = b−Aw
with

A = Exd
[ϕ(st)(ϕ(st)− γϕ(st+1))T ] and b = Exd

[rtϕ(st)] . (3.1.4)

Note that matrix A is assumed to be positive definite and (3.1.3) converges to w⋆ := A−1b.
We can therefore write the limiting ODE as

ẇ(t) = h(w(t)) = b− Aw(t) . (3.1.5)
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3.2. Polyak’s momentum for TD(0)
Interpretations of accelerated ODEs in optimization as mass-spring damper systems have

been long established (Su et al. [2014]). Instead of starting with the difference equation and
deriving the corresponding ODE, we approach this in the converse way. We start from a
particular second-order ODE with interpretations as a mass-spring damper system and show
that Polyak’s momentum version of TD(0) can be derived from the discretizations of these
continuous-time systems.

We can also draw parallels between accelerated methods and damped harmonic oscillators
in physics with second-order ODEs (Su et al. [2014], Wibisono et al. [2016]). Consider the
ODE form for forced mass-spring damper systems which is given by

M
d2y

dt2
+R

dy

dt
+ ky = f(t) .

Extending this idea to TD(0) and modifying the limiting ODE obtained in (3.1.5), we get a
second-order ODE for the form:

ẅ(t) + β(t)ẇ(t) = h(w(t)) = b− Aw(t) , (3.2.1)

where A = Exd
[ϕ(st)(ϕ(st)− γϕ(st+1))T ] and b = Exd

[rtϕ(st)] . (3.2.2)

This is our proposed limiting ODE for Polyak’s momentum in TD(0).
We will now perform two different kinds of discretizations (1) Explicit Euler discretization

and (2) Symplectic Euler discretization to get the modified update equations. Note that
choosing different discretization schemes could yield us different discrete time algorithms
from the same ODE. Different discretization schemes correspond to different approximations.
Taking inspiration from ideas developed in Section 2.7, we will discretize our second-order
ODE given by (3.2.1). Since we are working with a second-order ODE, we perform these
discretizations by converting the second-order ODE into two first-order ODEs. Let ẇ(t) =
z(t). We can therefore express (3.2.1) as a system of two first-order ODEs as:

ẇ(t) = z(t)

ż(t) = ẅ(t) = h(w(t))− β(t)z(t) .
(3.2.3)

3.2.1. Explicit Euler discretization

We will now discretize (3.2.3) using the explicit Euler scheme discussed in 2.7.1. By doing
so, we get the following equations:

wk+1 = wk + ηzk
zk+1 = zk − ηβkzk + ηh(wk) .

(3.2.4)

Here, ∆t = η is the step size or the learning rate.
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We will now substitute the h(wk) in the equation with values of A and b from (3.2.2).
We have v(t)(st) = ϕT (st)wt and u(t)(st) = ϕT (st)zt. This gives us the following update
equations for TD(0) with momentum:

v(t+1)(st) = v(t)(st) + ηu(t)(st)

u(t+1)(st) = u(t)(st)− ηβtu(t)(st) + η(rt + γv(t)(st+1)− v(t)(st)) .
(3.2.5)

Note that βt is the damping parameter and is a function of time. The analytical form of
βt will be given using the conservation law that will be derived in the next chapter.

Similar to the algorithm seen in Sutton and Barto [2018], we can now define our algorithm
for TD(0) with Polyak’s Heavy Ball momentum using explicit Euler discretization as shown in
Algorithm 1. Note that the update terms defined in Algorithm 1 differ from the analytical

Algorithm 1: Polyak TD(0) Algorithm with Explicit Euler discretization
Input: Policy π to be evaluated, Set η, βk, γ

1 Initialize V (s) arbitrarily (e.g., V (s) = 0 ∀ s ∈ S+)
2 Repeat (for each episode):
3 Initialize S; Set V (s) = 0 , k = 1
4 Repeat (for each step of the episode):
5 A← action given by π for S
6 Take action A, observe R, S ′ (new state)
7 Vprev(S)← V (S)
8 Vprev(S ′)← V (S ′)
9 V (S)← V (S) + ηU(S)

10 U(S)← ηU(S)− ηβkU(S) + η[R + γVprev(S
′)− Vprev(S)]

11 k ← k + 1
12 S ← S

′

13 until S is terminal

updates given in (3.3.5) by the additional scaling factor of η in u(t)(st) term. Note that
this phenomenon has also been observed in Shi et al. [2019] where there was an additional
scaling factor introduced in the update equations of the infamous Nesterov’s Accelerated
Gradient (NAG) method when compared with the discrete-time counterparts obtained by
simply discretizing the ODE. We will discuss this in more detail in Chapter 5.

3.2.2. Symplectic Euler discretization

We will now discretize (3.2.1) using the symplectic Euler scheme discussed in 2.7.1. Re-
call that in this scheme, we use explicit Euler to advance one component and implicit Euler
to advance another. Note that since we simply combine explicit and implicit steps, this does
not strictly correspond to a symplectic discretization as we are not preserving the symplec-
tic structure. Using this discretization, we get the following discrete-time counterparts for
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(3.2.1):
wk+1 = wk + ηzk
zk+1 = zk − ηβk+1zk+1 + ηh(wk+1) ,

(3.2.6)

where η is the associated learning rate for the update equation.
Note that we can further simplify this equation by clubbing terms with zk+1 as:

wk+1 = wk + ηzk

zk+1 = 1
(1 + ηβk+1)

[zk + ηh(wk+1)] ,

We will now substitute the h(wk+1) in (3.3.4) with values of A and b from (3.1.4). Also,
note that v(t)(st) = ϕT (st)wt and u(t)(st) = ϕT (st)zt. This gives us the following update
equations for Polyak TD(0) with symplectic euler discretization:

v(t+1)(st) = v(t)(st) + ηu(t)(st)

u(t+1)(st) =
(

1
1 + ηβt+1

) [
u(t)(st) + η

(
rt + γv(t+1)(st+1)− v(t+1)(st)

)]
.

(3.2.7)

We can now define our algorithm for TD(0) with Polyak’s Heavy ball momentum dis-
cretized using symplectic Euler method as follows:

Algorithm 2: Polyak TD(0) Algorithm with Symplectic Euler discretization
Input: Policy π to be evaluated, Set η, βk, γ

1 Initialize V (s) arbitrarily (e.g., V (s) = 0 ∀ s ∈ S+)
2 Repeat (for each episode):
3 Initialize S; Set V (s) = 0 , k = 1
4 Repeat (for each step of the episode):
5 A← action given by π for S
6 Take action A, observe R, S ′ (new state)
7 V (S)← V (S) + ηU(S)
8 U(S)←

(
1

1+ηβk+1

) [
ηU(S) + η

(
R + γV (S ′)− V (S)

)]
9 k ← k + 1

10 S ← S
′

11 until S is terminal

Similar to the additional scaling factor introduced in Algorithm 1, we see that the ana-
lytical discrete-time updates given in (3.2.7) differ from the updates in Algorithm 2 with the
introduction of an additional scaling factor η in u(t)(st) term.

3.3. Nesterov’s momentum for TD(0)
We use the second-order ODE stated in Muehlebach and Jordan [2019] as our starting

point for obtaining the Nesterov TD(0) counterpart. Muehlebach and Jordan [2019] provide
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Nesterov’s accelerated method for SGD without relying on a vanishing step size argument
while showing that the curvature-dependent damping term is responsible for acceleration.
From Muehlebach and Jordan [2019], we know that the Nesterov accelerated gradient descent
method results from a semi-implicit (symplectic) Euler discretization of the following ODE:

ẍ(t) + 2dẋ(t) + 1
Lγ2∇f(x(t) + βẋ(t)) = 0 , (3.3.1)

where γ is constant and d := 1√
κ+1

1
γ

and β =
√
κ−1√
κ+1

1
γ
. Specifically, 2d + β = 1. Note that

changing the value of γ amounts to rescaling the solutions to the ODE (3.3.1) in time.
Following a similar trajectory, we augment the TD(0) equation to give us an ODE which

is the SA counterpart to (3.3.1). We define the ODE as:

ẅ(t) + 2d(t)ẇ(t) = h(w(t) + β(t)ẇ(t)) = b− A[w(t) + β(t)ẇ(t)] , (3.3.2)

where d(t) and β(t) are akin to damping parameters, and 2d + β = 1. Note that in our
case, d(t) and β(t) are dependent on time. This is our proposed limiting ODE for Nesterov’s
acceleration in TD(0).

We will now perform: (1) Explicit Euler, and (2) Symplectic Euler discretization for ODE
(3.3.2) to get the modified update equations and the corresponding algorithms for TD(0)
with Nesterov’s acceleration. Similar to how we obtained the algorithms for Polyak TD(0)
ODE, we will discretize our second-order ODE (3.3.2) by translating our second-order ODE
into a system of two first-order ODEs. Let ẇ(t) = z(t). We can therefore express (3.3.2) as
a system of two first-order ODEs as:

ẇ(t) = z(t)

ż(t) = ẅ(t) = h[w(t) + β(t)z(t)]− 2d(t)z(t) .

We will now write the function h in terms of A and b from (3.1.4). We can therefore rewrite
the above equations as:

ẇ(t) = z(t)

ż(t) = ẅ(t) = b− Aw(t)− [2d(t)I + β(t)A]z(t) .
(3.3.3)

3.3.1. Explicit Euler discretization

We will now discretize (3.3.3) using the explicit Euler scheme discussed in 2.7.1. Doing
so, we get the following equations:

wk+1 = wk + ηzk
zk+1 = zk − η[2dkI + βkA]zk + ηh(wk) .

(3.3.4)

Here, η is the learning rate. Note that since we are working on TD(0) with linear function
approximation, we have v(t)(st) = ϕT (st)wt and u(t)(st) = ϕT (st)zt. This gives us the
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following update equations for Nesterov TD(0) with explicit Euler discretization:

v(t+1)(st) = v(t)(st) + ηu(t)(st)

u(t+1)(st) = u(t)(st)− η2dtu(t)(st)

+ η
[(
rt + γv(t)(st+1)− v(t)(st) + βt

(
γu(t)(st+1)− u(t)(st)

))]
.

We can also rearrange the terms to write the update equation as:

v(t+1)(st) = v(t)(st) + ηu(t)(st)

u(t+1)(st) = u(t)(st)− η2dtu(t)(st) + ηβt
(
γu(t)(st+1)− u(t)(st)

)
+ η

(
rt + γv(t)(st+1)− v(t)(st)

)
.

(3.3.5)

Using the update equations given by (3.3.5), we get the Algorithm (3) for Nesterov TD(0)
with explicit Euler discretization.

Algorithm 3: Nesterov TD(0) with Explicit Euler discretization
Input: Policy π to be evaluated, Set η, βk, dk, γ

1 Initialize V (s) arbitrarily (e.g., V (s) = 0 ∀ s ∈ S+)
2 Repeat (for each episode):
3 Initialize S; Set V (s) = 0 , k = 1
4 Repeat (for each step of the episode):
5 A← action given by π for S
6 Take action A, observe R, S ′ (new state)
7 Vprev(S)← V (S)
8 Vprev(S ′)← V (S ′)
9 V (S)← V (S) + ηU(S)

10 U(S)← U(S)− η2dkU(S) + ηβk
(
γU(S ′)− U(S)

)
11 +η

[
R + γVprev(S

′)− Vprev(S)
]

12 k ← k + 1
13 S ← S

′

14 until S is terminal

Note that we did not require an additional scaling term here as seen in Polyak TD(0).
Hence, the update equations in Algorithm 3 directly follow the discrete-time counterpart
seen in (3.3.5).

3.3.2. Symplectic Euler Discretization

Lastly, we will discretize (3.3.3) using the symplectic Euler scheme as discussed in 2.7.1.
Again, note that we use the phrase symplectic to mean taking one explicit step and one
implicit step for our system of continuous-time equations. Using this discretization, we get
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the following discrete-time counterparts for (3.3.3)

wk+1 = wk + ηzk
zk+1 = zk − η [2dk+1I + βk+1A] zk+1 + ηh(wk+1) .

(3.3.6)

Note we can further simplify this equation by clubbing terms with zk+1 as:

wk+1 = wk + ηzk

zk+1 = [(1 + 2ηdk+1)I + ηβk+1A]−1 [zk + ηh(wk+1)] .
(3.3.7)

We will now substitute the h(wk+1) in the equation with values of A and b from (3.1.4).
Also, note that v(t)(st) = ϕT (st)wt and u(t)(st) = ϕT (st)zt. This gives us the following
update equations for Nesterov TD(0) with Symplectic Euler discretization:

v(t+1)(st) = v(t)(st) + ηu(t)(st)

u(t+1)(st) = u(t)(st)− η[2dt+1u
(t+1)(st)] + ηβt+1

[
γu(t+1)(st+1)− u(t+1)(st)

]
+ η

[
rt + γv(t+1)(st+1)− v(t+1)(st)

]
.

(3.3.8)

The algorithm for Nesterov TD(0) with symplectic Euler discretization is given in
Algorithm (4) as:

Algorithm 4: Nesterov TD(0) with Symplectic Euler discretization
Input: Policy π to be evaluated, Set η, βk, γ

1 Initialize w0 = 0, z0 = 0
2 Repeat (for each episode):
3 Initialize S; Compute ϕ(S) ; Set w0 = 0, z0 = 0, k = 1
4 Repeat (for each step of the episode):
5 A← action given by π for S
6 Take action A, observe R, S ′ (new state)
7 wk+1 = wk + ηzk
8 M =

(
(1 + 2ηdk+1)I + βk+1η(ϕ(S)− γϕ(S ′)ϕ(S)T

)−1

9 zk+1 = M [zk + ηh(wk+1)]
10 V (S)← ϕT (S)wk+1
11 k ← k + 1
12 S ← S

′

13 until S is terminal

Note that we chose to keep the update equations in the form of wk+1 as it is easier to per-
form computations of the inverse required for the symplectic Euler discretization in this form.
Also, another important point to note is that the inverse of matrix [(1 + 2ηdk+1)I + ηβk+1A]
always exists since A is assumed to be a positive-definite matrix.
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This concludes the introduction of our discrete-time algorithms for the proposed Polyak
and Nesterov TD(0) methods. Performing explicit Euler and symplectic Euler discretizations
on both accelerated methods has given us four different discrete-time algorithms. In the next
section, we will discuss and compare how the four discrete-time algorithms differ from each
other.

3.4. Comparison between discrete-time algorithms of
Polyak and Nesterov TD(0)

We start with summarizing the update equations of our Polyak and Nesterov TD(0)
methods with explicit Euler and symplectic Euler discretizations respectively.

TDPE =

wk+1 = wk + ηzk
zk+1 = zk − ηβkzk + ηh(wk) .

(3.4.1)

TDPS =

wk+1 = wk + ηzk
zk+1 = 1

(1+ηβk+1) [zk + ηh(wk+1)] .
(3.4.2)

TDNE =

wk+1 = wk + ηzk
zk+1 = zk − η[2dkI + βkA]zk + ηh(wk) .

(3.4.3)

TDNS =

wk+1 = wk + ηzk
zk+1 = [(1 + 2ηdk+1)I + ηβk+1A]−1 [zk + ηh(wk+1)] .

(3.4.4)

To be concise, we use the following acronyms for our proposed algorithms:
• TDPE: TD(0) Polyak with Explicit Euler discretization
• TDPS: TD(0) Polyak with Symplectic Euler discretization
• TDNE: TD(0) Nesterov with Explicit Euler discretization
• TDNS: TD(0) Nesterov with Symplectic Euler discretization

3.4.1. Polyak v/s Nesterov

From the above update equations, we can clearly see that the Nesterov versions are
computationally more expensive than the Polyak versions of TD(0). TDNE has an additional
matrix-vector (ηβkAzk) to perform when compared to the TDPE. On the other hand, TDNE
has an entire matrix inverse to compute ([(1 + 2ηdk+1)I + ηβk+1A]−1)).

Also, note that the TDNS is computationally more expensive than the TDPS because of
the presence of a matrix inverse term in the update equation.
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3.4.2. Explicit Euler v/s Symplectic Euler

Looking at the above update equations, we see that the symplectic Euler versions of both
Polyak and Nesterov TD(0) use h evaluated at the updated value of w at time step k + 1,
i.e., h(wk+1). This corresponds to performing the explicit Euler method on one equation
and the implicit Euler method for discretization on the other equation as discussed in 2.7.1.

In general, symplectic Euler based discretizations are computationally intensive. This is
more evident when looking at Nesterov TD(0). TDNS requires the computation of a matrix
inverse.

Hence, we can see that the most computationally intensive methods out of all the four
discrete-time algorithm is TDNS with the addition of the computational complexity of both
Nesterov’s momentum and the symplectic Euler discretization.

Concluding Remarks: In this chapter, we designed the counterparts to Polyak’s Heavy
Ball and Nesterov’s acceleration in TD(0) which were discretized using two first-order Euler
methods, explicit and symplectic, to give us four discrete-time accelerated TD(0) algorithms.

In the next chapter, we will give the convergence rates of the underlying dynamical system
behind both Polyak and Nesterov TD(0). With the convergence analysis, we would also get
the analytical values of the hyperparameters corresponding to the damping parameters, β(t)
and d(t) to obtain the said accelerated convergence rate.
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Chapter 4

Conservation Laws and Convergence Rates
for Accelerated Temporal Difference Methods

This section aims to provide a framework to easily calculate convergence rates for accelerated
methods in SA. Our work hinges upon Suh et al. [2022] and we now discuss their work in
detail. Furthermore, we provide a proof sketch for calculating rates for TD methods.

The main goal of Suh et al. [2022] is to develop a unifying framework to recover ex-
isting continuous-time analysis for AGD. While acceleration has significantly sped-up first-
order optimization methods, understanding the principles behind their success has remained
shrouded in mystery. Ideas from various disciplines, like control theory and mathematical
physics, were used to explain the phenomenon by looking at the physical interpretations
of the underlying continuous-time system dynamics. However, these analyses often rely on
establishing non-increasing energy functions (Lyapunov function) with unclear origins, often
arrived at through a tedious trial-and-error process. Suh et al. [2022] provides a way for us
to derive these energy functions naturally from the dynamics of the system in the form of
conservation laws, which are analogous to the conservation of energy in physics.

We will now give the general proof sketch for finding conservation laws for accelerated
TD methods which will then be employed to find conservation laws and corresponding con-
vergence rates for Polyak TD(0) and Nesterov TD(0).

4.1. General Proof Sketch
We start by discussing the basics of deriving conserved quantities from a given ODE.

Consider an ODE of the form:

ṁ(t) + n(t) = 0 which holds for all t > 0 , (4.1.1)

where m : (0,∞) → R is differentiable and n : (0,∞) → R is integrable. Since the
expression ṁ(t) + n(t) equates to 0, integrating this expression over time would give us a



constant quantity. Formally,
d

dt

(
m(t) +

∫ t

t0
n(s)ds

)
= ṁ(t) + n(t) = 0 ,

which implies that m(t) +
∫ t
t0

n(s)ds is constant with respect to time. This is therefore a
conserved quantity. We can then get our conservation law to be:

E = m(t0) = m(t) +
∫ t

t0
n(s)ds

E = lim
t0→0

m(t0) = m(t) +
∫ t

0
n(s)ds , if lim

t0→0
m(t0) exists .

E here is independent of time. Note that a given ODE can exhibit several different con-
servation laws based on the coordinate system used. Here, since our focus is to derive the
associated convergence rates for the system, the dilated coordinate system is chosen to ob-
tain a particular conservation law from which extracting the rates for our dynamical system
is pretty straightforward.

Consider the general form of SA ODE (or the ODE of TD(0) with linear function ap-
proximation):

ẅ + cẇ = h(w) = b− Aw . (4.1.2)

Note that our goal here is to convert (4.1.2) into the form given by (4.1.1) to derive conser-
vation law for ODE of our interest. Consider a dilated coordinate system y = eψ(t)(w−w⋆).
We can then write (4.1.2) in the dilated system as:

e−ψ(t)ÿ + (c− 2ψ̇(t))e−µ(t)ẏ− (ψ̈(t)− ψ̇2(t) + cψ̇(t))e−ψ(t)y = h(e−ψ(t)y + w⋆) .

Let g(y,t) = −(ψ̈(t)− ψ̇2(t) + cψ̇(t))e−ψ(t)y− h(e−ψ(t)y + w⋆)).
We can therefore rewrite the equation in terms of g(y,t) as:

e−ψ(t)ÿ + (c− 2ψ̇(t))e−ψ(t)ẏ + g(y,t) = 0 . (4.1.3)

To write this equation as Ȧ(t) + B(t) = 0, an integral step to perform is to take the inner
product of (4.1.3) with ẏ:

< e−ψ(t)ÿ + (c− 2ψ̇(t))e−ψ(t)ẏ + g(y,t), ẏ >= 0

e−ψ(t) < ÿ, ẏ > +(c− 2ψ̇(t))e−ψ(t) < ẏ, ẏ > + < g(y,t), ẏ >= 0 . (4.1.4)

We can combine and simplify the first two terms of this expression using the following
relation:

d

dt

[
e−ψ(t)

2 ||ẏ||2
]

= e−ψ(t) < ẏ, ÿ > − ψ̇(t)e−ψ(t)

2 ||ẏ||2 .

Substituting this in (4.1.4), we get:

d

dt

[
e−ψ(t)

2 ||ẏ||2
]

+
(
c− 3ψ̇(t)

2

)
e−ψ(t) < ẏ, ẏ > + < g(y,t), ẏ >= 0 . (4.1.5)
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Let us define U(y,t) =
∫

y g(y,t)dy. We will discuss the validity of taking this integral in the
section following this proof sketch. Note that giving the curve y(t) as the first input to U
gives us U(y(t), t), which is a function solely dependent on t. Taking the total derivative of
U(y(t),t) with respect to t and applying the chain rule of vector calculus, we get:

d

dt
U(y(t),t) =< g(y(t),t), ẏ > + ∂

∂t
U(y(t),t) .

Here, ∂
∂t
U(y(t),t) means taking the partial derivative of U(y,t) with respect to t and then

plugging in y = y(t).
The subterm < g(y,t), ẏ > can now be simplified with this relation as:

< g(y(t),t), ẏ >= d

dt
U(y(t),t)− ∂

∂t
U(y(t),t) . (4.1.6)

Substituting (4.1.6) in (4.1.5), we get:

d

dt

[
e−ψ(t)

2 ||ẏ||2
]

+
(
c− 3ψ̇(t)

2

)
e−ψ(t) < ẏ, ẏ > + d

dt
U(y(t),t)− ∂

∂t
U(y(t),t) = 0

d

dt

[
e−ψ(t)

2 ||ẏ||2 + U(y(t), t)
]

+
(
c− 3ψ̇(t)

2

)
e−ψ(t)||ẏ||2 − ∂

∂t
U(y(t),t) = 0 . (4.1.7)

Note we can now see (4.1.7) as our desired ODE Ȧ(t) +B(t) = 0, where

A(t) = e−ψ(t)

2 ||ẏ||2 + U(y(t), t) and B(t) =
(
c− 3ψ̇(t)

2

)
e−ψ(t)||ẏ||2 − ∂

∂t
U(y(t),t) .

For 0 < t < t0 <∞, integrating (4.1.7) from t0 to t, we get:

E = e−ψ(t0)

2 ||ẏ(t0)||2 + U(y(t0), t0)

= e−ψ(t)

2 ||ẏ(t)||2 + U(y(t), t) +
∫ t

t0

(
c− 3ψ̇(s)

2

)
e−ψ(s)||ẏ(s)||2ds−

∫ t

t0

∂

∂s
U(y(s),s)ds .

(4.1.8)
This is our general form of the conservation law. Note that if µ(t) = 1 and U(y,t) =
U(y), then this conservation law transforms into the usual conservation of energy in physics.
Analogous to the conservation of energy in physics, we can say that the E comprises of the
following terms: (1/2)||ẏ||2 which corresponds to the kinetic energy; U(y,t) is the potential
energy;

∫ t
t0
c||ẏ||2 corresponds to the energy dissipated as heat due to friction, and the fourth

term vanishes as potential U is independent of time (Suh et al. [2022]).
Validity of the operation U(y,t) =

∫
Y g(y,t)dy It has been long established that TD

is not a Gradient Descent (GD) method. Simply put, the TD updates cannot be written
as the gradient of some function. Since g(y,t) includes h(W,t) which is the TD objective, a
common critique of performing the operation U(y,t) =

∫
y g(y,t)dy can be that taking this

step could mean assuming that there exists a function U(y,t) taking the gradient of which
can give us the TD objective. The purpose of this section is to explain that performing this
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operation is valid and does not go against the fact that TD is not gradient descent. Consider
the TD objective given by

h(w(t),t) = Exd
[rtϕt(st)]− Exd

[ϕt(st)(ϕt(st)− γϕt(st+1))T ]w(t)

= ΦTXRd − ΦTX(I − γPd)Φw .

Taking derivative of h(w(t),t) with respect to wi and wj, we get:
∂h(w,t)
∂wi

= ϕTi XRd − ϕTi X(I − γPd)Φw ,

∂h(w,t)
∂wj

= ϕTj XRd − ϕTj X(I − γPd)Φw .

Taking the cross derivative of h(w,t), we get:

∂2h(w,t)
∂wi∂wj

= ϕTi X(I − γPd)ϕj ,

∂2h(w,t)
∂wj∂wi

= ϕTj X(I − γPd)ϕi .

Since the second partial derivatives are not symmetric, according to Schwarz theorem, the
second partial derivative is not continuous. Hence, this shows that TD method is not a
gradient descent algorithm. However, this does not dispute the existence of the terms ∂h(w,t)

∂wi

and ∂h(w,t)
∂wj

. While these first partial derivatives exist, they do not give a descent direction
as the second partial derivatives are not symmetric in nature. Hence, U(y,t) =

∫
y g(y,t)dy

is a valid operation to perform and does not imply that TD is a gradient descent method.

4.2. Preliminaries
Before starting our formal proof, we will define the general notation and definitions that

will be revisited throughout the proof. For the sake of simplicity, we will focus our attention
on finite-dimensional real-valued vector spaces. Consider an n-dimensional real vector space
that is endowed with a norm ||.||. We stick with the standard notation for Euclidean spaces,
where ⟨.⟩ denotes the inner product, and ||.|| = ||.||2 is the Euclidean norm.

We consider the problem of policy evaluation for TD(0) with linear function approxima-
tion such that v = ϕTw where Φ ∈ R|S|×k is the concatentation of all feature vectors as rows
and ϕ(s) corresponds to the sth feature vector. The update rule is therefore given as:

w(t+1) = w(t) + ηt[rt + γϕT (st+1)w(t) − ϕT (st)w(t)]ϕt .

We will be viewing this equation as a stochastic approximation algorithm used for finding
the fixed points of the equation h(w) = 0 where w⋆ is the solution to this equation such that
h(w⋆) = 0. For this proof, we will solely be working with the underlying limiting ODE that
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tracks the average of these iterates, which can be written as:

ẇ(t) = h(w(t)) = b− Aw(t) , (4.2.1)

where A = Exd
[ϕt(st)

(
ϕt(st)− γϕt(st+1

)T
] and b = Exd

[rtϕt(st)] .

We assume matrix A to be positive definite. Equation (4.2.1) is also known to converge
to w⋆ := A−1b.

We will now outline some useful facts and definitions that would be used for both con-
servation law proofs.
Definition 4.2.1. An operator H : Rn → Rn is said to be a monotone operator if:

⟨Hx−Hy,x− y⟩ > 0 ∀ x ̸= y .

Definition 4.2.2 (Suh et al. [2022]). Let A : (0,∞)→ R be differentiable and B : (0,∞)→
R be integrable. Suppose

Ȧ(t) +B(t) = 0

holds for all t > 0. Then, for 0 < t0 < t < ∞, integrating from t0 to t gives us the
conservation law:

E ≡ A(t0) = A(t) +
∫ t

t0
B(s)ds .

Also, if the limt0→0 A(t0) exists, then we have

E ≡ lim
t0→0

A(t0) = A(t) +
∫ t

0
B(s)ds .

Note that this is a general definition and methodology for finding conservation laws for
any dynamical system that does not apply any restricting conditions.
Definition 4.2.3 (Suh et al. [2022]). Consider a function U(y, t) with variables y =
(y1, · · · yn) ∈ Rn and t ∈ R defined as

U(y, t) :=
∫

y
g(Y,t)dy ∈ Rn ,

where g(y, t) : Rn → Rn When y(t) is differentiable, the chain rule gives us
d

dt
U(y,t) = ⟨g(y, t), ẏ⟩ − ∂

∂t
U(y(t), t) .

Note that taking the total derivative d
dt

corresponds to viewing w(t) as a curve dependent
on t whereas taking the partial derivative ∂

∂t
corresponds to viewing w as an input to U that

is independent of t.
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4.3. Conservation law for Polyak TD(0)
Consider the following ODE for accelerated TD(0) with Polyak’s momentum:

ẅ(t) + β

t
ẇ(t) = h(w(t)) = b− Aw(t) , (4.3.1)

where A = Ex[ϕt(st)(ϕt(st)− γϕt(st))] and b = Ex[rtϕt(st)] .

Note that we are trying to solve to find the fixed-point for the function h(w) where
w = w⋆ is the solution to this equation such that h(w⋆) = 0.

Consider the dilated coordinate system y = tα(y − y⋆) for some α ∈ R to be defined
later. We now express the ODE (4.3.1) in the y- coordinate system as:

y = tα(w−w⋆) ,

ẏ = αtα−1(w−w⋆) + tαẇ ,

ÿ = α(α− 1)tα−2(w−w⋆) + 2αtα−1ẇ + tαẅ .

Rewriting w, ẇ, ẅ in terms of y, ẏ, ÿ, we get:

w = t−αy + w⋆ ,

ẇ = t−αẏ− αt−(α+1)y ,

ẅ = t−αÿ− 2αt−(α+1)ẏ + α(α + 1)t−(α+2)y .

Plugging w, ẇ, ẅ in ODE (4.3.1), we get:

t−αÿ− 2αt−(α+1)ẏ + β

t

[
t−αẏ− αt−(α+1)y

]
− h(t−αy + w⋆) = 0 .

t−αÿ + (β − 2α)t−(α+1)ẏ + α(α− β + 1)t−(α+2)y− h(t−αy + w⋆) = 0 .

Let us define g(y,t) = α(α− β + 1)t−(α+2)y− h(t−αy + w⋆). We can write the ODE as:

t−αÿ + (β − 2α)t−(α+1)ẏ + g(y,t) = 0 . (4.3.2)

Lemma 4.3.1. Let y evolve according to (4.3.2). Denote U(y,t) =
∫

y g(y,t)dy where g(y,t) =
α(α− β + 1)t−(α+2)y− h(t−αy + w⋆). Then, ∀t ≥ 0, we have

U(y,t) = α(α− β + 1)t−(α+2) yTy
2 − bTy + t−αyTAy + wT

⋆A
Ty .

Proof. U(y,t) is defined as
∫

y g(y,t)dy. Performing this operation gives us:

U(y,t) =
∫

y
g(y,t)dy

=
∫

y
[α(α− β + 1)t−(α+2)y− h(t−αy + w⋆)]dy

= α(α− β + 1)t−(α+2) yTy
2 − bTy + t−αyTAy + wT

⋆A
Ty .
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□

Note that as we have discussed before in Section (4.1), performing the operation U(y,t) =∫
y g(y,t)dy does not imply that we are assuming that TD is a gradient descent method. We

will now use Lemma (4.3.1) to obtain a conservation law for Polyak TD(0).
Proposition 4.3.2. Let w evolve according to (4.3.1), for an arbitrary but fixed w0 ∈ Rn

such that w(0) = w0 and ẇ(0) = 0. Then, ∀t ≥ 0, the conservation law can be given as:

E = ||α(w−w⋆ + tẇ||2)
2tα−2 +

(
αβ − 2α2 + α

2tα−2

)
||w−w⋆||2 − tα⟨h(w),w−w⋆⟩

+
∫ t

0

(
β − 3α

2

)
sα−1||ẇ||2ds+

∫ t

0

[(
α3 − 3α2 − α2β + 2αβ + 2α

2

)
sα−3||w−w⋆||2

]
ds

+
∫ t

0
αsα−1(w−w⋆)TA(w−w⋆)ds .

Proof. Taking the inner product of (4.3.2) with ẏ gives:

⟨t−αÿ + (β − 2α)t−(α+1)ẏ + g(y,t), ẏ⟩ = 0 .

⟨t−αÿ, ẏ⟩+ ⟨(β − 2α)t−(α+1)ẏ, ẏ⟩+ ⟨g(y,t), ẏ⟩ = 0 . (4.3.3)

Now, we have,
d

dt

(
||ẏ||2

2tα

)
=< ÿ

tα
, ẏ > −α||ẏ||

2

2tα+1 .

From Definition (4.2.3), we can say that:

< g(y,t), ẏ >= d

dt
U(y,t)− ∂

∂t
U(y(t),t) .

Substituting these in (4.3.3), we get:

d

dt

(
||ẏ||2

2tα + U(y,t)
)

+
(
β − 3α

2

)
t−(α+1)||ẏ||2 − ∂

∂t
U(y,t) = 0 ,

where A(t) = ||ẏ||
2

2tα + U(y,t) and B(t) =
(
β − 3α

2

)
t−(α+1)||ẏ||2 − ∂

∂t
U(y,t) .

Substituting U(y,t) from Lemma (4.3.1), we will now find the partial derivative of U(y,t)
with respect to t:

∂

∂t
U(y,t) = ∂

∂t

[
α(α− β + 1)t−(α+2) yTy

2 − bTy + t−αyTAy + wT
⋆A

Ty
]

= −α(α− β + 1)(α + 2)t−(α+3) yTy
2 − αt−(α+1)yTAy .

We will now substitute y(t) = tα(w−w⋆), we get:

∂

∂t
U(y,t) = −α(α− β + 1)(α + 2)tα−3 ||w−w⋆||2

2 − αtα−1(w−w⋆)TA(w−w⋆) .
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Note that using Definition (4.2.2), we can write our conservation law as:

E = A(t) +
∫ t

t0
B(s)ds

= ||ẏ||
2

2tα + α(α− β + 1)t−(α+2) yTy
2 − bTy + t−αyTAy + wT

⋆A
Ty

+
∫ t

0

(
β − 3α

2

)
s−(α+1)||ẏ||2ds

+
∫ t

0

(
α(α− β + 1)(α + 2)sα−3 ||w−w⋆||2

2 + αsα−1(w−w⋆)TA(w−w⋆)
)

.

Substituting y = tα(w−w⋆), we get:

E =t
α||αt−1(w−w⋆) + tαẇ||2

2tα + α(α− β + 1)tα−2 ||w−w⋆||2

2
− tαbT (w−w⋆) + tα(w−w⋆)TA(w−w⋆) + tαwT

⋆A
T (w−w⋆)

+
∫ t

0

((
β − 3α

2

)
sα−1||αs−1(w−w⋆) + ẇ||2

)
ds

+
∫ t

0

(
α(α− β + 1)(α + 2)sα−3 ||w−w⋆||2

2 + αsα−1(w−w⋆)TA(w−w⋆)
)
ds .

Let I =
∫ t

0

((
β − 3α

2

)
sα−1||αs−1(w−w⋆) + ẇ||2

)
ds

+
∫ t

0

(
α(α− β + 1)(α + 2)sα−3 ||w−w⋆||2

2 + αsα−1(w−w⋆)TA(w−w⋆)
)
ds .

Solving for the integral, we get:

I =
(

2αβ − 3α2

2

)
tα−2||w−w⋆||2 +

∫ t

0

(
β − 3α

2

)
sα−1||ẇ||2ds

+
∫ t

0

[(
α3 − 3α2 − α2β + 2αβ + 2α

2

)
sα−3||w−w⋆||2 + αsα−1(w−w⋆)TA(w−w⋆)

]
ds .

We can now simplify and write our conservation law as:

E =t
α||αt−1(w−w⋆) + ẇ||2

2 +
(
αβ − 2α2 + α

2

)
tα−2||w−w⋆||2 − tαbT (w−w⋆)

+ tα(w−w⋆)TA(w−w⋆) + tαwT
⋆A

T (w−w⋆) +
∫ t

0

(
β − 3α

2

)
sα−1||Ẇ ||2

+
∫ t

0

[(
α3 − 3α2 − α2β + 2αβ + 2α

2

)
sα−3||w−w⋆||2 + αsα−1(w−w⋆)TA(w−w⋆)

]
ds .
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Expressing quantities in terms of h(w), we get:

E = ||α(w−w⋆ + tẇ||2)
2tα−2 +

(
αβ − 2α2 + α

2tα−2

)
||w−w⋆||2 − tα⟨h(w),w−w⋆⟩

+
∫ t

0

(
β − 3α

2

)
sα−1||ẇ||2ds+

∫ t

0

[(
α3 − 3α2 − α2β + 2αβ + 2α

2

)
sα−3||w−w⋆||2

]
ds

+
∫ t

0
αsα−1(w−w⋆)TA(w−w⋆)ds .

(4.3.4)
□

Lemma 4.3.3. Let E0 = limt→t0 E denote the conservation law at the starting point t0.
Then,

E0 = α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 − tα0 ⟨h(w0),w0 −w⋆⟩ .

Proof. Using Defintion (4.2.2), E can be expressed at the initial start point t0 as:

E0 = lim
t→t0

A(t)

= lim
t→t0

(
||ẏ||2

2tα + U(y,t)
)

= tα−2
0 ||α(w−w⋆) + t0ẇ||2)

2 + α(α− β + 1)
2 tα−2

0 ||w−w⋆||2 − tα0 bT (w−w⋆)

+ tα0 (w−w⋆)TA(w−w⋆) + tα0 wT
⋆A

T (w−w⋆) .

Simplifying the terms, we get

E0 = α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 − tα0 [bT (w0 −w⋆) + (w0 −w⋆)TA(w0 −w⋆)

+ wT
⋆A

T (w0 −w⋆)]

E0 = α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 − tα0 [bT (w0 −w⋆)+(w0 −w⋆)TA(w0 −w⋆)

+ wT
⋆A

T (w0 −w⋆)]

E0 = α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 + tα0 [bT (w0 −w⋆) + wT
0A(w0 −w⋆)]

= α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 + tα0 ⟨b− ATw0,w0 −w⋆⟩ .

We can therefore write the conservation law as:

E0 = α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 − tα0 ⟨h(w0),w0 −w⋆⟩ . (4.3.5)

□

Since E remains conserved, we can therefore equate (4.3.4) and (4.3.5). Also, since
h(w⋆) = 0, we can modify the equations and write them as:
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α(2α− β + 1)
2 tα−2

0 ||w0 −w⋆||2 − tα0 ⟨h(w0)− h(w⋆),w0 −w⋆⟩

=
(
αβ − 2α2 + α

2tα−2

)
||w−w⋆||2 − tα < h(w)− h(w⋆),w−w⋆ >

+
∫ t

0

(
β − 3α

2

)
sα−2||ẇ||2ds+ ||α(w−w⋆) + tẇ||2

2tα−2

+
∫ t

0

[
α3 − 3α2 − α2β + 2αβ + 2α

2sα−3 ||w−w⋆||2
]
ds

+
∫ t

0
αsα−1(w−w⋆)TA(w−w⋆)ds .

(4.3.6)

Lemma 4.3.4. Let h(w) = b− Aw where A is positive definite. We can therefore say that:

⟨h(w)− h(w⋆),w−w⋆⟩ < 0

holds true for all w ̸= w⋆ ∈ Rn.

Proof. Note that for a general affine function f(x) = Ax + b, we can call it monotone iff
A+ AT ⪰ 0.. For monotone functions, we know from Definition (4.2.1) that ⟨x− y, f(x)−
f(y)⟩ > 0 ∀x ̸= y.

Here we have the affine function h(w) = b− Aw where A is positive definite and hence
symmetric i.e., A + AT ⪰ 0. This makes −A negative definite and hence, we can say that
−h(w) is a monotone function. Since −h(w) is monotone, we can say that:

⟨h(w)− h(w⋆),w−w⋆⟩ < 0 .

□

Using Lemma (4.3.4), we can show that the following terms are always positive:

⟨h(w0)− h(w⋆),w0 −w⋆⟩ < 0 =⇒ −tα0 ⟨h(w0)− h(w⋆),w0 −w⋆⟩ > 0 .

⟨h(w)− h(w⋆),w−w⋆⟩ < 0 =⇒ −tα⟨h(w)− h(w⋆),w−w⋆⟩ > 0 .

We will now use this conservation law relation to derive the convergence rate for our
accelerated TD methods. We can simplify and remove positive terms from the equation
if the coefficients of those terms remain positive. This gives us the conditions needed for
the ODE to be accelerated. The convergence rate depends on the choice of α. Since we
observe tα multiplied with the term ⟨h(w)− h(w⋆),w−w⋆⟩, the choice of α determines our
convergence rate. In anticipation for an accelerated rate of O(1/t2), we take α = 2.
Theorem 4.3.5. Let w evolve according to (4.3.1) which solves for h(w) = b−Aw where A is
positive definite. Let w⋆ be the minimizer for h(w) such that h(w⋆) = 0. Let w(0) = w0 ∈ Rn

be an arbitrary but fixed initial point, and ẇ0 = 0 denote the initial conditions. For the
conservation law E and E0 given by Proposition (4.3.2) and Lemma (4.3.3) respectively,
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setting α = 2, we get the convergence rate expression for (4.3.1) as:

||w−w⋆||2 ≤
2

t2λAmin
||w0 −w⋆||2 .

Proof. We can simplify (4.3.6) to be:

E = ||2(w−w⋆) + tẇ||2

2 +(β − 3)||w−w⋆||2 − t2⟨h(w− h(w⋆),w−w⋆)⟩

+
∫ t

0

(
β − 3
s

)
||ẇ||2 + 2

s
(w−w⋆)TA(w−w⋆) .

(4.3.7)

We can further simplify E0 as t0 → 0 which would be applied to E after substituting α = 2.
We can therefore write E0 as:

E0 = (5− β)||w0 −w⋆||2 . (4.3.8)

Equating (4.3.7) and (4.3.8), we get:

(5− β)||w0 −w⋆||2 = ||2(w−w⋆) + tẇ||2

2 + (β − 3)||w−w⋆||2 − t2⟨h(w− h(w⋆),w−w⋆)⟩

+
∫ t

0

(
β − 3
s

)
||ẇ||2 + 2

s
(w−w⋆)TA(w−w⋆) .

(4.3.9)
Since we are calculating the rate, we can neglect positive terms that do not contribute to
the rate and transform (4.3.9) from an equality to the following inequality:

(β − 3)||w−w⋆||2 − t2⟨h(w)− h(w⋆),w−w⋆⟩ ≤ (5− β)||w0 −w⋆||2 . (4.3.10)

Any β ∈ [3,5] ensures that all the terms remain positive. We choose β = 3 to get:

− t2⟨h(w)− h(w⋆),w−w⋆⟩ ≤ 2||w0 −w⋆||2 . (4.3.11)

Expanding on the term ⟨h(w)− h(w⋆),w−w⋆⟩ in (4.3.11), we get:

−t2⟨��b− Aw− ��b + Aw⋆,w−w⋆⟩ ≤ 2||w0 −w⋆||2

t2⟨A(w−w⋆),w−w⋆⟩ ≤ 2||w0 −w⋆||2

t2(w−w⋆)TA(w−w⋆) ≤ 2||w0 −w⋆||2 .

(4.3.12)

Now, we know that for a positive definite matrix A ∈ Rn×n and x ∈ Rn, we can write

λAmin||x||2 ≤ xTAx ≤ λAmax||x||2 ,

where λAmin is the minimum eigenvalue of the matrix A and λAmax is the maximum eigenvalue
of A. Applying this for (4.3.12), we get:

t2λAmin||w−w⋆||2 ≤ 2||w0 −w⋆||2 .
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Finally, rearranging the terms of the above expression, we get:

||w−w⋆||2 ≤
2

t2λAmin
||w0 −w⋆||2 . (4.3.13)

□

Note that since A is a positive definite matrix, λAmin > 0. Hence, the coefficient of ||w0−w⋆||2

is always positive. Using the expression given by (4.3.13) and the whole conservation law
analysis in general, we can make the following conclusions:

(1) Choice of Damping Parameter. For the case of Polyak TD(0), we have one
damping parameter, β. One major advantage of performing this conservation law
analysis is that we get the exact value to choose for β, i.e, β = 3. Hence, the only
hyperparameter we need to optimize for is the learning rate.

(2) Boundedness of the term ||w − w⋆||2: Using this expression, we can say that
||w−w⋆||2 is always bounded by ||w0 −w⋆||2.

(3) Convergence Rate for Polyak’s momentum. Since the coefficient 2
t2λA

min
is pos-

itive, (4.3.13) serves as the convergence rate equation for Polyak TD(0) with linear
function approximation. Hence, we recover a convergence rate of O(1/(t2λAmin)) for
the underlying dynamical system from our analysis.

4.4. Conservation law for Nesterov TD(0)
Consider the underlying ODE for Nesterov TD(0) given by:

ẅ(t) + 2d(t)ẇ(t) = h(w(t) + β(t)ẇ(t)) = b− A(w(t) + β(t)ẇ(t)) , (4.4.1)

where A = Ex[ϕt(st)(ϕt(st)− γϕt(st))], b = Ex[rtϕt(st)], and 2d(t) + β(t) = 1 .

Note that parameters d(t), β(t) are dependent on t. Simplifying (4.4.1), we get:

ẅ(t) + (2d(t)I + β(t)A)ẇ(t) = b− Aw(t) . (4.4.2)

Let w⋆ denote the minimizer for h(w(t)). Consider the dilated coordinate system y =
(t + c)α(w − w⋆) with yet undetermined α, c ∈ R. We can therefore express (4.4.2) in the
y-coordinate system.

y = (t+ c)α(w−w⋆) ,

ẏ = α(t+ c)α−1(w−w⋆) + (t+ c)αẇ ,

ÿ = α(α− 1)(t+ c)α−2(w−w⋆) + 2α(t+ c)α−1ẇ + (t+ c)αẅ .
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Rewriting y, ẏ, ÿ in terms of w, ẇ, ẅ, we get:

w = (t+ c)−αy + w⋆ ,

ẇ = (t+ c)−αẏ− α(t+ c)−(α+1)y ,

ẅ = (t+ c)−αÿ− 2α(t+ c)−(α+1)ẏ + (α2 + α)(t+ c)−(α+2)y .

Substituting w, ẇ, ẅ in (4.4.2), we get:

(t+ c)αÿ− 2α(t+ c)−(α+1)ẏ + (α2 + α)(t+ c)−(α+2)y

+ (2d(t)T + β(t)A)
[
(t+ c)−αẏ− α(t+ c)−(α+1)y

]
= b− A

[
(t+ c)−αy + w⋆

]
.

Let us define

g(y(t)) = (α2+α)(t+c)−(α+2)y−α(t+c)−(α+1) [2d(t)I + β(t)A] y−b+A
[
(t+ c)−αy + w⋆

]
.

We can therefore rewrite the ODE in terms of g(y(t)) as:

(t+ c)αÿ− 2α(t+ c)−(α+1)ẏ + (t+ c)−α [2d(t)I + β(t)A] ẏ + g(y,t) = 0 . (4.4.3)

Lemma 4.4.1. Let y evolve according to (4.4.3). Denote U(y,t) =
∫

y g(y,t)dy where we can
express g(y, t) as: g(y(t)) = (α2 + α)(t+ c)−(α+2)y− α(t+ c)−(α+1) [2d(t)I + β(t)A] y− b +
A [(t+ c)−αy + w⋆]. Then ∀t ≥ 0, we have:

U(y, t) =
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+c)−(α+1)||y||2+(t+c)−α
[
1− αβ(t)

t+ c

]
yTAy−⟨b−Aw⋆,y⟩ .

Proof. Let us define U(y,t) =
∫

y g(y,t)dy. Performing this operation, we get:

U(y, t) =
∫

y
g(y, t)dy

=
∫

y

[
(α2 + α)(t+ c)−(α+2)y− α(t+ c)−(α+1) [2d(t)I + β(t)A] y

− b + A
[
(t+ c)−αy + w⋆

]
dy

= (α2 + α)(t+ c)−(α+2)||y||2 − 2αd(t)(t+ c)−(α+1)||y||2 − αβ(t)(t+ c)−(α+1)yTAy

− bTy + (t+ c)−αyTAy + wT
⋆Ay

=
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)−(α+1)||y||2 + (t+ c)−α
[
1− αβ(t)

t+ c

]
yTAy− ⟨b− Aw⋆,y⟩ .

□

Note that we have described the validity of performing the operation U(y,t) =
∫

y g(y,t)dy
in 4.1. We will now use Lemma (4.4.1) to obtain a conservation law for Nesterov TD(0).
Proposition 4.4.2. Let w and y evolve according to (4.4.2) and (4.4.3) respectively. Con-
sider an arbitrary but fixed w0 ∈ Rn such that w(0) = w0 and ẇ(0) = 0. Then ∀t ≥ 0, the
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conservation law can be given as:

E = (t+ c)α−2||α(w−w⋆) + (t+ c)ẇ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)α−1||w−w⋆||2

+
[
1− αβ(t)

t+ c

]
(t+ c)α(w−w⋆)TA(w−w⋆)

+
∫ t

0

[
2d(s)− 3α

2(s+ c)

]
(s+ c)α−2||α(w−w⋆) + (s+ c)ẇ||2ds

+
∫ t

0
β(s)(s+ c)α−2 [α(w−w⋆) + (s+ c)ẇ]T A [α(w−w⋆) + (s+ c)ẇ] ds

+
∫ t

0

[
−2α(α + 1)d(s)

s+ c
+ α(α + 1)(α + 2)

(s+ c)2 + 2αḋ(s)
]

(s+ c)α−1||w−w⋆||2ds

+
∫ t

0

[
−α(α + 1)β(s)

s+ c
+ αβ̇(s) + α

]
(s+ c)α−1(w−w⋆)TA(w−w⋆)ds .

Proof. Taking the inner product of (4.4.3) with ẏ, we get:

(t+ c)−α⟨ ¨y, ẏ⟩+ 2d(t)(t+ c)−α||ẏ||2 + β(t)(t+ c)−α⟨ẏ, Aẏ⟩ − 2α(t+ c)−(α+1)||ẏ||2

+ (α2 + α)(t+ c)−(α+2)⟨ẏ,y⟩ − 2αd(t)(t+ c)−(α+1)⟨ẏ,y⟩

− αβ(t)(t+ c)−(α+1)⟨ẏ, Ay⟩ − ⟨b− A
[
(t+ c)−αy + w⋆

]
, ẏ⟩ = 0 .

Now, we have

d

dt

(
(t+ c)−α

2 ||ẏ||2
)

= (t+ c)−α⟨ÿ, ẏ⟩ − α(t+ c)−(α+1)

2 ||ẏ||2 .

From Definition (4.2.3), we can say that:

< g(y,t), ẏ >= d

dt
U(y,t)− ∂

∂t
U(y(t),t) .

Substituting these in the above equation, we get:
d

dt

(
(t+ c)−α

2 ||ẏ||2 + U(y, t)
)
− 3α

2 (t+ c)−(α+1)||ẏ||2 + 2d(t)(t+ c)−α||ẏ||2

+ β(t)(t+ c)−α⟨ẏ, Aẏ⟩ − ∂

∂t
U(y, t) = 0 .

(4.4.4)
We can therefore see that this equation is of the form Ȧ(t) + B(t) = 0 as described in
Definition (4.2.2), where we have:

A(t) = (t+ c)−α

2 ||ẏ||2 + U(y, t), and

B(t) = −3α
2 (t+ c)−(α+1)||ẏ||2 + 2d(t)(t+ c)−α||ẏ||2 + β(t)(t+ c)−α⟨ẏ, Aẏ⟩ − ∂

∂t
U(y, t) .
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Substituting U(y,t) from Lemma (4.4.1), we will now find the partial derivative of U(y, t)
with respect to t:

∂U(y, t)
∂t

= −(α + 2)(α2 + α)(t+ c)−(α+3)||y||2 + 2α(α + 1)d(t)(t+ c)−(α+2)||y||2

− 2αḋ(t)(t+ c)−(α+1)||y||2 + α(α + 1)β(t)(t+ c)−(α+2)yTAy

− αβ̇(t)(t+ c)−(α+1)yTAy− α(t+ c)−(α+1)yTAy

=
[

2α(α + 1)d(t)
t+ c

− (α + 2)(α + 1)α
(t+ c)2 − 2αḋ(t)

]
(t+ c)−(α+1)||y2||

+
[
α(α + 1)β(t)

t+ c
− αβ̇(t)− α

]
(t+ c)−(α+1)yTAy

Substituting these terms in (4.4.4), we get:

d

dt

[
(t+ c)−α

2 ||ẏ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)−(α+1)||y||2
]

+ d

dt

[(
1− αβ(t)

t+ c

)
(t+ c)−αyTAy− ⟨b− Aw⋆,y⟩

]

− 3α
2 (t+ c)−(α+1)||ẏ||2 + 2d(t)(t+ c)−α||ẏ||2 + β(t)(t+ c)−α⟨ẏ, Aẏ⟩

−
[

2α(α + 1)d(t)
t+ c

− (α + 2)(α + 1)α
(t+ c)2 − 2αḋ(t)

]
(t+ c)−(α+1)||y2||

−
[
α(α + 1)β(t)

t+ c
− αβ̇(t)− α

]
(t+ c)−(α+1)yTAy = 0 .

Note that using Definition (4.2.2), we can write our conservation law as:

E = A(t) +
∫ t

t0
B(s)ds

= (t+ c)−α

2 ||ẏ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)−(α+1)||y||2 +
[
1− αβ(t)

t

]
(t+ c)−αyTAy

− ⟨b− Aw⋆,y⟩+
∫ t

0

[
2d(s)− 3α

2(s+ c)

]
(s+ c)−α||ẏ||2 + β(s)(s+ c)−α⟨ẏ, Aẏ⟩ds

−
∫ t

0

[
2α(α + 1)d(s)

s+ c
− α(α + 1)(α + 2)

(s+ c)2 − 2αḋ(s)
]

(s+ c)−(α+1)||y||2ds

−
∫ t

0

[
α(α + 1)β(s)

s+ c
− αβ̇(s)− α

]
(s+ c)−(α+1)yTAyds .

71



Substituting y, ẏ, we get:

E = (t+ c)α−2||α(w−w⋆) + (t+ c)ẇ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)α−1||w−w⋆||2

+
[
1− αβ(t)

t+ c

]
(t+ c)α(w−w⋆)TA(w−w⋆)

+
∫ t

0

[
2d(s)− 3α

2(s+ c)

]
(s+ c)α−2||α(w−w⋆) + (s+ c)ẇ||2ds

+
∫ t

0
β(s)(s+ c)α−2 [α(w−w⋆) + (s+ c)ẇ]T A [α(w−w⋆) + (s+ c)ẇ] ds

+
∫ t

0

[
−2α(α + 1)d(s)

s+ c
+ α(α + 1)(α + 2)

(s+ c)2 + 2αḋ(s)
]

(s+ c)α−1||w−w⋆||2ds

+
∫ t

0

[
−α(α + 1)β(s)

s+ c
+ αβ̇(s) + α

]
(s+ c)α−1(w−w⋆)TA(w−w⋆)ds .

(4.4.5)
□

Lemma 4.4.3. Let E0 = limt→t0 E denote the conservation law at the starting point t0.
Then,

E0 = (t+ c)α−2

2 ||α(w0 −w⋆)||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)α−1||w0 −w⋆||2

+ (t+ c)α
[
1− αβ(t)

t+ c

]
(w0 −w⋆)TA(w0 −w⋆)− (t+ c)α⟨b− Aw⋆,w0 −w⋆⟩ .

Proof. Using Definition (4.2.2), E can be expressed at the initial start point t0 as:

E0 = lim
t→t0

A(t)

= lim
t→t0

[
(t+ c)−α

2 ||ẏ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)−(α+1)||y||2 +
[
1− αβ(t)

t+ c

]
(t+ c)−αyTAy

]
− lim

t→t0
[⟨b− Aw⋆,y⟩] .

Substituting for ẏ, we get:

E0 = (t+ c)α−2

2 ||α(w0 −w⋆) + (t+ c)ẇ||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)α−1||w0 −w⋆||2

+ (t+ c)α
[
1− αβ(t)

t+ c

]
(w0 −w⋆)TA(w0 −w⋆)− (t+ c)α⟨b− Aw⋆,w0 −w⋆⟩ .
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For E0, we have ẇ0 = 0. Hence, we can simplify it further as

E0 = (t+ c)α−2

2 ||α(w0 −w⋆)||2 +
[
α(α + 1)
t+ c

− 2αd(t)
]

(t+ c)α−1||w0 −w⋆||2

+ (t+ c)α
[
1− αβ(t)

t+ c

]
(w0 −w⋆)TA(w0 −w⋆)− (t+ c)α⟨b− Aw⋆,w0 −w⋆⟩ .

(4.4.6)
□

We would now like to use this conservation law relation to derive the convergence rate for
our NesterovTD(0) method. In anticipation for a O(1/t2), we choose α = 2. Note that to
calculate the rate, we would like other non-contributing terms to be positive. To this end, we
get certain inequalities determining the possible values of d(t). We choose the corresponding
β(t) using the relation 2d(t) + β(t) = 0. We also choose a = 4 to ensure that the derived
expression would hold ∀t ≥ 0. Hence, we have

β(t) = t+ 1
t+ 4 and d(t) = 3

2(t+ 4) .

Note that these expressions for β(t) and d(t) provide the exact values that we need to set
our damping parameters to for obtaining the required convergent and accelerated dynamics.
This is an added advantage of doing these conservation law-based analyses for our accelerated
methods.
Theorem 4.4.4. Let w evolve according to (4.4.2) which solves for h(w) = b−Aw where A is
positive definite. Let w⋆ be the minimizer for h(w) such that h(w⋆) = 0. Let w(0) = w0 ∈ Rn

be an arbitrary but fixed initial point, and ẇ0 = 0 denote the initial conditions. For the
conservation law E and E0 given by Proposition (4.4.2) and Lemma (4.4.3) respectively,
setting α = 2, we get the convergence rate expression for (4.4.2) as:

||w−w⋆||2 ≤
6

t2λAmin
||w0 −w⋆||2 ,

where λAmin is the minimum eigenvalue of matrix A.

Proof. Putting these values in (4.4.5), we get:

E =||2(w−w⋆) + (t+ 4)ẇ||2 +
(
t2 + 6t+ 14

)
(w−w⋆)TA(w−w⋆)

+
∫ t

0

[
s+ 1
s+ 4

]
[2(w−w⋆) + (s+ 4)ẇ]T A [2(w−w⋆) + (s+ 4)ẇ] ds

+
∫ t

0

[
2s2 + 10s+ 29

s+ 4

]
(w−w⋆)TA(w−w⋆)ds .

(4.4.7)

Substituting the values of α = 2, β(t), d(t) in (4.4.6) and applying t→ 0 to the expression,
E0 simplifies to:

E0 = 2||w0 −w⋆||2 + 14(w0 −w⋆)TA(w0 −w⋆) . (4.4.8)
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For a positive definite matrix A ∈ Rn×n and x ∈ Rn, we can write

λAmin||x||2 ≤ xTAx ≤ λAmax||x||2 , (4.4.9)

where λAmin is the minimum eigenvalue of matrix A and λAmax is the maximum eigenvalue of
A.

We can therefore simplify E0 from (4.4.8) to get:

E0 = 2||w0 −w⋆||2 + 14(w0 −w⋆)TA(w0 −w⋆)

≤ 2||w0 −w⋆||2 + 14λAmax||w0 −w⋆||2

=
(
2 + 14λAmax

)
||w0 −w⋆||2 .

(4.4.10)

Since energy remains conserved throughout, we can write E = E0. Equating (4.4.7) and
(4.4.10), we get:(
2 + 14λAmax

)
||w0 −w⋆||2 ≥||2(w−w⋆) + (t+ 4)ẇ||2 +

(
t2 + 6t+ 14

)
(w−w⋆)TA(w−w⋆)

+
∫ t

0

[
s+ 1
s+ 4

]
[2(w−w⋆) + (s+ 4)ẇ]T A [2(w−w⋆) + (s+ 4)ẇ] ds

+
∫ t

0

[
2s2 + 10s+ 29

s+ 4

]
(w−w⋆)TA(w−w⋆)ds .

(4.4.11)
Since we are calculating the rate, we can neglect positive terms that do not contribute to
the rate and transform (4.4.11) into the following inequality:(

t2 + 6t+ 14
)

(w−w⋆)TA(w−w⋆) ≤
(
2 + 14λAmax

)
||w0 −w⋆||2 . (4.4.12)

Applying (4.4.9) for the LHS of (4.4.12), we get:(
t2 + 6t+ 14

)
λAmin||w−w⋆||2 ≤

(
2 + 14λAmax

)
||w0 −w⋆||2 .

Note that t2+6t+14 is a positive and monotonically increasing polynomial ∀t ≥ 0. Therefore,
we get:

||w−w⋆||2 ≤

(
2 + 14λAmax

)
(t2 + 6t+ 14)λAmin

||w0 −w⋆||2 . (4.4.13)

□

Again, since A is positive definite, we know that λAmin > 0 and λAmax > 0. Hence, the
coefficient of ||w0 −w⋆||2 is always positive. Similar to the case of Polyak TD(0), using the
expression given by (4.4.13) and the conservation law based analysis in general, we can make
the following conclusions:

(1) Choice of the damping parameters. For our Nesterov TD(0), we have two damp-
ing parameters, β(t) and d(t). One major advantage of performing this conservation
law analysis is that we get exact expressions for the choice of these hyperparameters.
Hence, the only HP we need to optimize for is the learning rate.
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(2) Boundedness of the term ||w−w⋆||2. ||w−w⋆||2 is shown to be always bounded
by ||w0 −w⋆||2.

(3) Convergence Rate of Nesterov TD(0). Since the coefficient (2+14λA
max)

(t2+6t+14)λA
min

is
always positive ∀t ≥ 0, (4.4.13) serves as the convergence rate equation for Nesterov
TD(0) with linear function approximation. Hence, we recover a convergence rate of
O(1/(t2λAmin)) for the underlying dynamical system from our analysis.

This concludes our conservation-law based analyses for the proposed accelerated methods.
Concluding Remarks: In this chapter, we took the proposed accelerated methods and

performed a conservation-law based analyses to get the convergence rates of the underly-
ing dynamical system behind Polyak TD(0) and NesterovTD(0) introduced in the previous
chapter. We also get the analytical expressions for the hyperparameters corresponding to
the damping parameters, β(t), and d(t) needed to obtain the derived convergence rate.

In the next chapter, we will take the proposed accelerated methods stated in Chapter 3
along with the analytical expressions for hyperparameters derived in this chapter to state the
discrete-time implementable accelerated algorithms. We would then report and analyse the
empirical performance of our proposed algorithms as compared to other baselines on small
linear prediction tasks.
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Chapter 5

Experiments

We will now illustrate the performance of the accelerated versions of TD(0) algorithm pro-
posed in this work compared to other variants. While these experiments do not provide an
exhaustive characterization of the empirical performance, they nevertheless serve as proof-
of-concept results and highlight the convergent behaviour of our method.

We start by stating our final ODEs and the corresponding discrete-time update equations
after incorporating the analytical values of the damping parameters obtained through our
convergence analysis in Chapter 4. For a complete review of the experiments, we then give a
detailed description of our problem setting and the experimental setup before we show how
our proposed accelerated TD(0) algorithms perform when compared with existing TD(0)
algorithms designed for linear problem settings.

5.1. Choice of the damping parameter
In this section, we use the analytical damping parameters obtained during the conser-

vation law-based convergence analysis to state the final form of our Polyak and Nesterov
TD(0) ODE and the corresponding discrete-time algorithms.

Recall from Chapter 3, our proposed Polyak TD(0) ODE is given as:

ẅ(t) + β(t)ẇ(t) = h(w(t)) = b− Aw(t) ,

where β(t) = β/t. From Section 4.3, we know that we can choose β ∈ [3,5]. To obtain an
accelerated rate of O(1/t2), we choose β = 3. Hence, we can write our Polyak TD(0) ODE
as:

ẅ(t) + 3
t
ẇ(t) = h(w(t)) = b− Aw(t) .

We can therefore modify the update equations stated in Chapter 3 for the discrete-time
Polyak TD(0) method to be:



TDPE =

wk+1 = wk + ηzk
zk+1 =

(
k−3
k

)
zk + ηh(wk)

, where βk = 3
ηk

. (5.1.1)

TDPS =

wk+1 = wk + ηzk
zk+1 =

(
k+1
k+4

)
[zk + ηh(wk+1)]

, where βk = 3
η(k + 1) . (5.1.2)

Similarly, our proposed ODE for Nesterov is given as:

ẅ(t) + 2d(t)ẇ(t) = h(w(t) + β(t)ẇ(t)) = b− A[w(t) + β(t)ẇ(t)] ,

where d(t) and β(t) are akin to damping parameters that are dependent on time. From
Section 4.4, we get the parameters to be:

d(t) = 3
2t , and β(t) = t− 3

t
.

This gives us the Nesterov TD(0) to take the following specific form:

ẅ(t) +
(3
t

)
ẇ(t) = h(w(t) +

(
t− 3
t

)
ẇ(t)) = b− A

[
w(t) +

(
t− 3
t

)
ẇ(t)

]
.

We can therefore modify the update equation stated in Chapter 3 for the discrete-time
Nesterov methods as:

TDNE =


wk+1 = wk + ηzk
zk+1 = η

(
kη+4−3η
kη+4

)
zk − η

(
kη+1
kη+4

)
Azk

+ηh(wk) + ηh(wk +
(
kη+1
kη+4

)
)

,where βk = ηk + 1
ηk + 4 , dk = 3

2(ηk + 4) .

(5.1.3)

TDNS =


wk+1 = wk + ηzk
zk+1 =

[(
η(k+1)+4+3η
η(k+1)+4

)
I + η

(
η(k+1)+1
η(k+1)+4

)
A
]−1

[ηzk + ηh(wk+1)]

, βk = η(k + 1) + 1
η(k + 1) + 4 , dk = 3

2(η(k + 1) + 4) .

(5.1.4)

These specific update equations will be used in our experiments. Note that in our discrete-
time Nesterov methods, for the update equations of zk+1, we had to multiply the previous
iterate, zk with an additional learning rate. This facilitated the ability to use a wider range
of step sizes. We will explain this choice further when discussing the results seen in our
experimental set-up. We will now describe our experimental set-up.

5.2. Prediction Problems
We report the performance of Polyak TD(0) and Nesterov TD(0) across small linear

prediction tasks. We use the exact experimental setup used in prior works of Sutton et al.
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[2009] and Ghiassian et al. [2020]. For the sake of completeness, we describe the setup here
in detail.

We work on four small linear problems: three random-walk problems and a Boyan-chain
problem (Boyan [2002]). All of these problems are episodic, undiscounted, and have only
on-policy training with a fixed policy.

The three random walk problems are essentially a five-state random walk MDP with
three different feature representations: tabular, inverted, and dependent features. These
problems are based on the standard Markov Chain proposed in Sutton [1988] where we have
a linear arrangement with five states and two absorbing terminal states. All episodes start
with the same initial state, the center state of the five, and then transition randomly with
equal probability to a neighboring state until a terminal state is reached. The rewards are
zero everywhere except on transition into the right terminal state, upon which the reward
assigned is +1.

We will now describe the three feature representations that are often taken in these
experiments. The first feature representation is tabular features. These characterize the
lookup-table setting which we are all familiar with. The second representation is called
inverted features which have classically been chosen to cause extensive inappropriate gen-
eralization between states. The third representation called dependent features uses fewer
features than are sufficient to solve the problem exactly. For more details on each individual
experiment, check out Sutton et al. [2009].

The fourth problem we work on is the classic Boyan-chain problem (Boyan [2002]) which
is a standard episodic task often used in existing literature for comparing different TD
algorithms with linear function approximation. Here, we have a 13-states Markov chain
where each state is represented by a compact feature representation. While this encoding
causes inappropriate generalization during learning, vπ can be represented perfectly with the
given features (Ghiassian et al. [2020]).

5.3. Results
In this section, we report the empirical performance of our proposed algorithms and

compare them with some existing TD algorithms. To benchmark the performance of our
methods, we use the following algorithms as baselines:

• TD: (Sutton [1988])
• GTD2: (Sutton et al. [2009])
• HTD: (Hackman [2013])
• VTrace: (Espeholt et al. [2018])
• TDRC: (Ghiassian et al. [2020])
• TDC: (Sutton et al. [2009])
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Note that we use the acronyms introduced in Chapter 3 for the four proposed algorithms:
TDPE, TDPS, TDNE, and TDNS.

We run the baselines along with our proposed algorithms on four different problems
which were described in Section (2.6). We first provide plots that show the sensitivity of the
RMSPBE reported by different methods to the step size parameter. Note that the choice of
the step size parameter critically influences the performances of all the methods. We vary the
step size parameter η in powers of 2, i.e., η = 2−x where the choice of x ∈ {8,7,6,5,4,3,2,1}
varies depending on the problem setting. All the baselines that we compare with have some
tunable parameters. We use the best-reported parameters from the work of Ghiassian et al.
[2020]. For the proposed algorithms, we just have one hyperparameter, i.e., the step size
η. While our accelerated methods do include other damping parameters, they have been
derived analytically using the conservation law analysis, and hence, do not need any tuning.
Note that for Nesterov’s accelerated version, we rely on a heuristic way of discretization
proposed by Muehlebach and Jordan [2019] that allows us to define a relationship between
damping parameters. This constrains the hyperparameter search space, making it easier to
arrive at stable solutions by simply tuning the step size. Hence, the step size is an important
parameter to tune and determines how slow or fast we traverse down the loss landscape. We
observe that the proposed accelerated methods perform best for higher values of the step size
parameter, while other methods typically require smaller step sizes to achieve comparable
performances. This demonstrates the advantages of accelerated methods as these methods
can take bigger steps and converge faster towards the optimal value.

Following this, we note the best step size choices for each method from the above param-
eter sensitivity plot and use them to report the averaged RMSPBE over 100 independent
runs. For each run, all the methods complete 5,000 steps. We sample RMSPBE every 50
steps and observe the convergence curves of each method (as given in (c) of every figure).

One of the most important observations here is the tradeoff between speed of convergence
and accuracy. This tradeoff often appears in the setting of stochastic optimization as well.
Generally, we observe that our methods enjoy a noticeably faster decrease in the RMSPBE
value, however, it does end up converging to a slightly larger neighborhood than is otherwise
possible with the other methods. This indicates the existence of a tradeoff: Are we okay
with tolerating a slightly higher error range to get a much faster method? This tradeoff is
captured in the Relative RMSPBE plot (as given in part (b) of every figure). In this plot,
we report the normalized average area under the RMSPBE learning curve relative to TDNS
for each method. If the tradeoff between the speed of convergence or the RMSPBE value is
not well-balanced, we would see the relative RMSPBE bar shoot up in comparison to the
other methods. This helps us to effectively compare the relative performance of baselines as
well as our proposed methods compared to TDNS.
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Across the various problem settings, we observe that the gain in speed attained due to a
faster method is usually worth the slight increase in the size of the neighborhood of values
we converge to. This is especially true in all of the Random Walk environments where the
proposed methods are the best possible methods to go with for a well-balanced tradeoff
between speed of convergence and accuracy. The one environment where our methods seem
to struggle with this tradeoff is the Boyan chain problem.

The methods that seem to perform the best in the Boyan chain problem are GTD2 and
TDC, where we observe a fast reduction in the RMSPBE values as shown in Figure 5.1.
This could be attributed to the fact that our proposed methods and other baselines suffer
from the variance in h. The features in this environment cause bigger changes in h than
in the other environments. Since we use the concept of momentum to bias our methods to
past iterations, this causes our methods to suffer greatly from the variance observed in h.
However, we see that our proposed methods perform better than TD and TDRC. Hence,
our methods still manage to fall in the middle of the two extreme groups, proving that we
are still relatively performing better than the worst methods. Note that all the methods do
eventually converge to a similar neighborhood of the RMSPBE value.

For the Random Walk environment with Tabular feature representations shown in Figure
5.2 (c), we again notice that there isn’t a considerable difference in the optimal value achieved
by most methods. We do observe, however, that our methods reached these values faster
than other methods. While TDNS and TDPS went fast, they managed to stay at that value
for the rest of the runs. TDNE on the other hand, initially showed the fastest descent down
the curve, but then ended up converging to an RMSPBE value slightly higher than the
optimal value achieved by the other methods. However, this increase in the error is almost
negligible in this case, as is also visible in the Relative RMSPBE curve.

This effect is more pronounced in the random walk environments with Inverted and
Dependent feature representations. In the case of both these representations as seen in
Figure 5.3 (c) and Figure 5.4 (c), we see a similar trend for our proposed methods. TDPE,
TDPS, and TDNE go down the fastest but converge to a bigger neighborhood, i.e., they do
not arrive at the most optimal value of RMSPBE possible. TDNS converges a bit slower
but also ends up arriving and converging to the same bigger neighborhood as other proposed
methods.

However, in the case of inverted feature representations, many methods converge to better
values of RMSPBE, especially TDRC, albeit taking a lot more steps than our proposed
accelerated methods. In Figure 5.3 (b), we can see that the proposed methods are able to
converge a lot faster than other methods if we are willing to tolerate the associated increase
in the neighborhood of RMSPBE values that we end up in.

In the case of Dependent feature representations as seen in Figure 5.4 (c), we observe
that other baselines, like TD, TDRC, and HTD are better in terms of the RMSPBE value
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achieved than our methods. But the speed of reduction in the RMSPBE value observed in
the case of TDPE, TDPS, and TDNE is drastic and there is indeed not much difference in
the neighborhood of RMSPBE value it ends up converging to at the end of 100 steps. This
can be seen by looking at the Relative RMSPBE bars in Figure 5.4 (b).

We will now discuss the computational complexity of our proposed methods. We observe
that TDNE performs the best compared to all other algorithms in terms of relative RMSPBE
in all four problems. However, in terms of convergence, it is slightly slower as compared
to other algorithms. However, this negligibly slow convergence is balanced by the gains in
computational complexity. In terms of computational time, it is slightly more expensive than
TDPS and TDPE as the Nesterov-based method requires an extra matrix-vector product
computation as compared to Polyak. However, compared to TDNS, it is less expensive
because TDNS requires the computation of matrix inverse (see Section 3.4). In most cases,
it would be advisable to go with TDNE method if the user has decided to tolerate a slightly
slower method.

Note that while TDNS shows comparable performance to other baselines for the Relative
RMSPBE, its performance compared to our other proposed algorithms is not good. In
terms of convergence, it seems to be slower than the other methods and similar to TDNE.
Computationally, it seems to be the most expensive method as it involves the computation
of an inverse. So, it would generally not be advisable to go for this approach when we have
other accelerated methods which are computationally better.

TDPE and TDPS are very similar to each other in terms of Relative RMSPBE as well as
convergence. They perform better in terms of Relative RMSPBE and are on par in terms of
convergence compared to most of the baselines. They are faster in convergence compared to
TDNE and TDNS and on par with TDNE in terms of Relative RMSPBE. Therefore, out of
all the four proposed algorithms, TDPE and TDPS perform the best (i.e. both in terms of
Relative RMSPBE as well as faster convergence). We can therefore say that these algorithms
handle the tradeoff between speed of convergence and accuracy the best.

These observations fall in line with the general fact that Nesterov is often known to not
perform well with stochastic objectives. Note that we had to introduce an additional learning
rate in the update equations to stabilize the dynamics and allow for the exploration of a wider
range of step size values. Specifically, the behavior observed with symplectic discretization is
not surprising. While our symplectic discretization doesn’t exactly preserve the symplectic
structure, we see a similar trend to the one observed by Betancourt [2015]. This could be
attributed to the fact that stochastic variations in the objective incur a bias in the symplectic
integrator which reduces their accuracy by deviating the numerical approximations away
from the true dynamics Betancourt et al. [2018]. Intuitively, we can say that the dynamical
evolution moves so quickly that the variations in stochastic objective doesn’t have sufficient
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time to average out. This explains the relative success of slower methods, like Robbins-Monro
in the case of stochastic objectives.

In the hyperparameter study for the step sizes, we observed that increasing the step
sizes for our proposed accelerated methods resulted in a steep increase in the RMSPBE
value that we end up converging to. Hence, the performance and stability of the proposed
methods depend critically on the choice of the step size parameter. In other words, we can
go faster (up to a limit in the discrete setting), but doing so adversely affects the stability
of these systems. In such cases, the solution seemed to be diverging, suggesting that we
achieved acceleration at the cost of stability. This indicates that although we can go faster,
we might end up in a situation where we do not arrive at a solution or converge to a larger
neighborhood than would otherwise be possible.

Note that we do not observe the O(1/t2) rate observed in the convergence rate anal-
ysis done in Chapter 4. This is because the accelerated rates obtained correspond to the
continuous-time system where we can traverse the curve at any speed. However, the discrete-
time system has a bottleneck in how fast we can go down the curve stably. To translate
these rates to the discrete-time system, we would have to construct symplectic integration
schemes that preserve the underlying symplectic structure of our dynamical system, thereby
preserving our rates. However, our accelerated algorithms do see an increase in the speed of
convergence.

In future work, we would like to investigate other discretization schemes that would pre-
serve the accelerated rates obtained in the continuous-time systems. One interesting line of
work would be to explore symplectic integration that considers the geometry of the underly-
ing dissipative system by taking a Hamiltonian perspective on discretization (Diakonikolas
and Jordan [2021], França et al. [2021]). These discretization schemes would allow our meth-
ods to be more robust to step size schedules and therefore, allow for a higher range of step
size parameters.
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(a) (b)

(c)

Fig. 5.1. (a): Step-size sensitivity of RMSPBE for each method on the Boyan-chain
problem. Here, η is the step size that varies in powers of 2, i.e., η = 2−x. (b): The
normalized average area under the RMSPBE learning curve. The step sizes for each
method are set such that each method achieves the best possible RMSPBE. Each bar
is normalized by TDNS’s performance so that each problem can be shown in the same
range. All results are averaged over 100 independent runs with standard error bars shown
at the top of each rectangle. The black horizontal line demonstrates the performance of
TDNS for easier comparison between other methods. (c): RMSPBE vs steps for each
method. Note that the step-size parameters are tuned according to the recommendations
made by the step-size sensitivity curve shown in (a).
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(a) (b)

(c)

Fig. 5.2. (a): Step-size sensitivity of RMSPBE for each method on Random Walk with
Tabular feature representation. Here, η is the step size that varies in powers of 2, i.e.,
η = 2−x. (b): The normalized average area under the RMSPBE learning curve. The step
sizes for each method are set such that each method achieves the best possible RMSPBE.
Each bar is normalized by TDNS’s performance so that each problem can be shown in
the same range. All results are averaged over 100 independent runs with standard error
bars shown at the top of each rectangle. The black horizontal line demonstrates the
performance of TDNS for easier comparison between other methods. (c): RMSPBE vs
steps for each method. Note that the step-size parameters are tuned according to the
recommendations made by the step-size sensitivity curve shown in (a).
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(a) (b)

(c)

Fig. 5.3. (a): Step-size sensitivity of RMSPBE for each method on Random Walk with
Inverted feature representation. Here, η is the step size that varies in powers of 2, i.e.,
η = 2−x. (b): The normalized average area under the RMSPBE learning curve. The step
sizes for each method are set such that each method achieves the best possible RMSPBE.
Each bar is normalized by TDNS’s performance so that each problem can be shown in
the same range. All results are averaged over 100 independent runs with standard error
bars shown at the top of each rectangle. The black horizontal line demonstrates the
performance of TDNS for easier comparison between other methods. (c): RMSPBE vs
steps for each method. Note that the step-size parameters are tuned according to the
recommendations made by the step-size sensitivity curve shown in (a).
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(a) (b)

(c)

Fig. 5.4. (a): Step-size sensitivity of RMSPBE for each method on Random Walk with
Dependent feature representation. Here, η is the step size that varies in powers of 2, i.e.,
η = 2−x. (b): The normalized average area under the RMSPBE learning curve. The step
sizes for each method are set such that each method achieves the best possible RMSPBE.
Each bar is normalized by TDNS’s performance so that each problem can be shown in
the same range. All results are averaged over 100 independent runs with standard error
bars shown at the top of each rectangle. The black horizontal line demonstrates the
performance of TDNS for easier comparison between other methods. (c): RMSPBE vs
steps for each method. Note that the step-size parameters are tuned according to the
recommendations made by the step-size sensitivity curve shown in (a).

87





Chapter 6

Conclusions and Future Work

This thesis is centered around exploring the concept of acceleration and momentum in the
setting of temporal difference methods. Accelerated methods are known to play a central
role in optimization, achieving the optimal rate in many settings. Although momentum is a
heavily studied and well-understood concept in optimization, it doesn’t directly translate to
semi-gradient TD methods because TD methods do not minimize an objective by performing
gradient descent (Barnard [1993]). Hence, this concept is often under appreciated in the RL
setting. Few works exploring acceleration in TD methods have done this in the setting of
gradient TD methods (Sutton et al. [2009], Meyer et al. [2014], Pan et al. [2017], Ghiassian
et al. [2020], Deb and Bhatnagar [2022]). The introduction of gradient descent in the TD
objective makes the process of adding momentum similar to the one seen in optimization
which is easier to work with, however, it happens to be a very limiting viewpoint of TD
methods. Hence, there is a need to come up with the right counterpart to momentum in the
RL setting.

We take another approach and attempt to introduce acceleration in temporal difference
methods from first principles. We hypothesize that this could serve as the true counter-
part to acceleration in the SA setting. Specifically, inspired by the inception of accelerated
algorithms in optimization using the dynamical systems approach (Polyak [1964]), we ex-
tend this recipe to intuitively derive accelerated algorithms in SA. Note that the dynamical
systems is one of the primary method for analysis in SA (Borkar and Meyn [2000]) and
has been used for designing new algorithms (Meyn [2022]). This thesis aims to understand
the acceleration phenomenon for TD while advocating for the dynamical systems approach
for designing new algorithms. We introduce two second-order ODEs for TD(0) with linear
function approximation: Polyak TD(0) and Nesterov TD(0), which are the ‘correct’ momen-
tum counterparts. We also discretize these ODEs using two discretization schemes: explicit
Euler, and symplectic Euler to give us four different accelerated algorithms for TD(0). We



show that these accelerated algorithms have comparable results to existing TD algorithms
in linear prediction tasks.

Inspired by Suh et al. [2022]’s methodology for analyzing continuous-time versions of
accelerated gradient methods in dilated coordinates, we extend this framework to temporal
difference methods. This is the main contribution of this thesis: it allows us to establish the
convergence of our methods along with providing their continuous-time rates.

We obtain novel continuous-time rates for the proposed accelerated methods. Note that
deriving convergence rates in any setting are known to be complex, often requiring the need
to come up with particular Lyapunov functions. We provide an intuitive and fundamental
way of deriving rates for SA methods. Another major advantage of this methodology is that
it also provides a recommendation for the choice of the damping/momentum parameter to get
an accelerated rate. Note that without these conservation laws to guide the choice of these
damping hyperparameters, we would have to manually control and optimize them. This, in
turn, would make the process of obtaining better convergent results more cumbersome. In
addition to that, the introduction of a general dilated coordinate framework can further be
used to derive different conservation laws to better understand the behavior and properties
of TD methods.

6.1. Limitations and Future Work
The rates derived from the continuous-time analysis framework might not always trans-

late to the discrete-time system as is seen in the experiments we conducted. Working with
the continuous-time dynamical system allows us to traverse the curve at any speed, whereas
this breaks when we move into the discrete-time system. A major line of future work is
to explore more discretization schemes that would preserve the convergence rates obtained
in the continuous-time dynamical system. Specifically, we would like to explore symplec-
tic integration schemes that consider the geometry of the underlying dissipative system. A
Hamiltonian perspective on discretization would focus on the conserved quantities of the
dissipative system and allow us to think about how to use these quantities to design more
robust and stable discrete accelerated methods (Diakonikolas and Jordan [2021], França et al.
[2021]).

We would also need to perform detailed experiments for more complex problems, settings,
and environments. We would specifically like to explore control problems and extend the
concept of acceleration to the non-linear setting of Q-Learning. This would allow us to
investigate how accelerated algorithms fare in non-linear settings and if acceleration proves
to be beneficial in such settings. Another line of work could be to extend this concept
of acceleration to TD(λ). Note that momentum also has an update that is similar to the
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eligibility trace update and hence it would be interesting to understand its interplay with
classical accumulating traces.

Note that accelerated methods in gradient-based optimization can be seen as instances
of a single underlying framework, called the Bregman Lagrangian (Wibisono et al. [2016]).
The ability to do so has allowed for the development of a unifying framework to analyze
and characterize their physical behavior. An interesting line of work would be to develop
accelerated methods in TD learning with the viewpoint of them being instances of a single
underlying concept.

While the ODE approach has long been used in RL for performing stability and con-
vergence analysis, the field is yet to embrace its full potential. With this thesis, we hope
to motivate the understanding of acceleration from first principles in the RL setting. To
this end, we design a framework to create such accelerated methods and further study their
properties.
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