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Résumé

La recherche en apprentissage automatique peut être vue comme une quête vers l’aboutisse-
ment d’algorithmes d’apprentissage de plus en plus généraux, applicable à des problèmes de
plus en plus réalistes. De cette perspective, le progrès dans ce domaine peut être réalisé de
deux façons: par l’amélioration des méthodes algorithmiques associées aux problèmes exis-
tants, et par l’introduction de nouveaux types de problèmes. Avec le progrès marqué du côté
des méthodes d’apprentissage machine, une panoplie de nouveaux types de problèmes d’ap-
prentissage ont aussi été proposés, où les hypothèses de problèmes existants sont assouplies
ou généralisées afin de mieux refléter les conditions du monde réel. Le domaine de l’appren-
tissage en continu (Continual Learning) est un exemple d’un tel domaine, où l’hypothèse de
la stationarité des distributions encourues lors de l’entrainement d’un modèles est assouplie,
et où les algorithmes d’apprentissages doivent donc s’adapter à des changements soudains ou
progressifs dans leur environnement. Dans cet ouvrage, nous introduisons les hiérarchiées de
problèmes, une application du concept de hiérarchie des types provenant des sciences infor-
matiques, au domaine des problèmes de recherche en apprentissage machine. Les hierarchies
de problèmes organisent et structurent les problèmes d’apprentissage en fonction de leurs
hypothéses. Les méthodes peuvent donc définir explicitement leur domaine d’application,
leur permettant donc d’être partagées et réutilisées à travers différent types de problèmes de
manière polymorphique: Une méthode conçue pour un domaine donné peut aussi être appli-
quée à un domaine plus précis que celui-ci, tel qu’indiqué par leur relation dans la hierarchie
de problèmes. Nous démontrons que ce système, lorsque mis en oeuvre, comporte divers
bienfaits qui addressent directement plusieurs des problèmes encourus par les chercheurs
en apprentissage machine. Nous démontrons la viabilité de ce principe avec Sequoia, une
infrastructure logicielle libre qui implémente une hierarchie des problèmes en apprentissage
continu. Nous espérons que ce nouveau paradigme, ainsi que sa première implémentation,
pourra servir à unifier et accélérer les divers efforts de recherche en apprentissage continu,
ainsi qu’à encourager des efforts similaires dans d’autres domaines de recherche. Vous pouvez
nous aider à faire grandir l’arbre en visitant github.com/lebrice/Sequoia.

Mots clés: apprentissage en continu, conception de logiciels de recherche, apprentissage
profond, apprentissage automatique
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Abstract

Research in Machine Learning (ML) can be viewed as a quest to develop increasingly general
algorithmic solutions (methods) for increasingly challenging research problems (settings).
From this perspective, progress can be realized in two ways: by introducing better methods
for current settings, or by proposing interesting new settings for the research community to
solve. Alongside recent progress in methods, a wide variety of research settings have also been
introduced, often as variants of existing settings where underlying assumptions are removed
to make the problem more realistic or general. The field of Continual Learning (CL), for
example, consists of a family of settings where the stationarity assumption is removed, and
where methods as a result have to learn from environments or data distributions that can
change over time. In this work, we introduce the concept of problem hierarchies: hierarchical
structures in which research settings are systematically organized based on their assumptions.
Methods can then explicitly state their assumptions by selecting a target setting from this
hierarchy. Most importantly, these structures make it possible to easily share and reuse
research methods across different settings using inheritance, since a method developed for a
given setting is also directly applicable onto any of its children in the hierarchy. We argue
that this simple mechanism can have great implications for ML research in practice. As a
proof-of-concept of this approach, we introduce Sequoia, an open-source research framework
in which we construct a hierarchy of the settings and methods in CL. We hope that this
new paradigm and its first implementation can help unify and accelerate research in CL and
serve as inspiration for future work in other fields. You can help us grow the tree by visiting
github.com/lebrice/Sequoia.

Keywords: continual learning, research software design, deep learning, machine learning
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Intended audience

This document is meant to serve both as a introduction to problem hierarchies as well as to
Sequoia, a software framework for the field of Continual Learning.

Python pseudocode is used throughout this document to illustrate ideas and concepts.
These bits of code should hopefully help illustrate more clearly and explicitly the ideas
described in the surrounding text.

The first portions of this document will describe how to construct such hierarchies, and
are intended for readers with a minimal background in ML.

As a forewarning, I would like to declare explicitly here that I do not possess the necessary
theoretical tools or knowledge that would be required in order to describe problem hierarchies
in a thoroughly rigorous manner. Abuses of notation might be present, and I sincerely hope
that they are not too severe or irritating to theory-oriented readers.

The later sections will then delve more deeply into the practical aspects of Sequoia:
the core design decisions that were made, its features, components, etc. These later sec-
tions assume that readers have a minimal background in programming and applied machine
learning.

My personal aim in writing this document is to make the best case I can for adopting
problem hierarchies in the design of future research projects and frameworks, and to have a
positive impact on how ML research is performed.

Additionally, if the Sequoia project survives, then this documents can hopefully be useful
to people who want to get a better understanding of it, and 2) If Sequoia dies (as all things
eventually do), then others are able to learn from my process and build upon this idea in
the future.



Chapter 1

Introduction

The goal of ML research is to create algorithmic solutions to solve real-world problems. In
practice, these real-world problems need to be slightly refined and simplified before they
can be instantiated as research problems (settings) for the research community to try and
solve. This is achieved through various assumptions, approximations, and design decisions
that make it easier to study specific aspects of the problem, as well as to create algorithmic
solutions (methods) for them.

Alongside recent progress in methods, a wide variety of research settings have also been
recently introduced which relax these simplifying assumptions in order to better reflect the
imperfections and messy nature of the real world.

The field of CL, for example, consists of a family of setting where the stationarity as-
sumption is removed, and where methods as a result have to learn from environments or
data distributions that can change over time. Methods for CL thus have to be able to adapt
and learn from new data while also preserving knowledge acquired in previous tasks.

“Traditional”
assumptions

“Real world” conditions Associated field

Samples are IID. Samples are often time-correlated and the envi-
ronment changes over time

Continual Learning

Train / Test data
come from the
same distribution

The environment where agents are deployed often
differ from the one they were trained in

Domain Generalization

Labels are available
for each sample

Labelling is costly, unlabelled data is often abun-
dant and cheap

[Un/Semi]-Supervised
Learning

Training phase, fol-
lowed by test phase

Agents often need to adapt and continue learning
on-the-fly, and don’t necessarily have access to the
full training data

Online Learning

Table 1.1. Differences between “traditional” research conditions and those present in the
real world, along with the field of research aimed at bridging that gap.
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Domain Generalization (DG), also known as out-of-distribution generalization, is another
example of such a field where the focus is on creating methods that are robust to spurious
changes in their environments, and are therefore able to generalize to samples outside their
original training distribution. Table 1.1 shows more examples of such fields, along with the
aspect of the real world which they are concerned with.

From this description, one might naturally ask: What do these different fields have in
common? Can ideas from one field be reused in another? Reality is, most research code is
not written with such considerations in mind: each field has a dedicated set of tools and
frameworks that are well suited to their particular needs. Interplay and code reuse across
fields is difficult.

There is often no clear separation between settings and methods in research code: the
implementation for the method might depend on characteristics of the setting or vice-versa.
When attempting to build upon previous work, it is therefore often necessary to completely
re-implement the method and/or setting of the prior work, assuming that the code is even
available. This places the additional burden of verifying the correctness of the implementa-
tion on the researcher, which does not help reproducibility.

In this work, we introduce problem hierarchies: hierarchical structures in which various
settings within a field are organized based on their assumptions. Problem hierarchies apply
the concept of type hierarchies from computer science to the realm of ML research settings, in
order to alleviate many of the issues associated with ML research today. Crucially, problem
hierarchies allow methods to explicitly define their region of applicability and to be applied
to different settings polymorphically. Figure 1.1 shows an example of a problem hierarchy.

Fig. 1.1. Example of a simple problem hierarchy. Research settings can be organized into
a hierarchy based on their assumptions. Methods have a target setting (dashed arrows), and
can be applied onto any of their descendants. In this trivial example, both MLP and ConvNet
classifiers can be compared in the image classification setting, even though one makes more
assumptions than the other. Sequoia applies this principle to the field of continual learning.
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A group of settings can be organized into a tree-shaped hierarchy (a Directed Acyclic
Graph (DAG), to be precise) where the arrows between settings correspond to adding an
assumption. The settings therefore become increasingly specific when moving down the
hierarchy and conversely, travelling upward yields progressively more general settings. When
a new method is created, it explicitly states its assumptions by selecting a target setting from
the hierarchy. Methods become directly applicable on any setting at or below their target
setting in the hierarchy.

In this simple example, a Multi-Layer Perceptron (MLP) classifier can be used in any
classification setting, while a Convolutional Neural Network (CNN) classifier is applicable
in classification settings where the inputs are images. The performance of both methods on
the MNIST classification dataset can still be compared, even though they were created for
slightly different settings. The hierarchy can be expanded upward from the root (top shaded
box) to reach more and more general settings, or downward by adding more specific settings.

In this work, we argue that putting this simple idea into practice could have a great
positive impact on how ML research is conducted today by alleviating many of the difficulties
associated with reusing or extending prior work. The two main contributions of this work
are the following:

(1) Problem hierarchies, an application of type hierarchies to the realm of ML research,
as a mechanism for the systematic organization of research settings, and

(2) Sequoia, a software framework that serves as a proof-of-concept implementation of
problem hierarchies for the field of Continual Learning, both in Continual Supervised
Learning and Continual Reinforcement Learning.

This thesis is structured as follows. Chapter 2 begins by giving a high-level introduction
to the terms and settings from the most relevant fields of research (Supervised Learning
(SL), Reinforcement Learning (RL) and CL), as well as describe some of the common issues
faced by researchers in these fields.

Problem hierarchies and their properties are then described in Chapter 3, along with a
discussion of prior related works that propose a taxonomy or hierarchical organizations of
research settings. Considerations for the implementation of problem hierarchies are given in
Section 3.3, based on the lessons learned during the development of Sequoia.

Chapter 4 describes Sequoia, an implementation of problem hierarchies for the field of
Continual Learning. Related work on the software side will be discussed in Section 4.1,
which describes how existing frameworks and libraries tackle the common issues described
in Chapter 2. A set of experiments are described in Section 4.7 as a demonstration of the
Sequoia’s effectiveness. We end with a discussion of future work in Chapter 5.
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Chapter 2

Background

There are many different fields to choose from in machine learning. The focus of this work
revolves around the settings in Supervised Learning (SL), Reinforcement Learning (RL),
and Continual Learning (CL). This chapter will provide a brief introduction to some of the
important concepts from each of these fields. An overview of the relevant software tools and
libraries within each field will also be provided later in Section 4.1.

2.1. Prerequisites
Before we proceed further, it might be helpful to first provide an initial definition for the

concepts of setting and method, which are central to this work. This will make it possible
for the various fields of ML to be introduced using the same notation and perspective, which
should hopefully prove to be natural and helpful. More formal definitions for each concept
will be provided later in Section 3.1.

2.1.1. Setting: Type of Learning Problem

A setting describes a group of learning problems that share common characteristics. A
setting can be thought of as a protocol for evaluating the performance of a learning algorithm
(a method) on some type of data distribution(s). In short, settings:

• specify when, and on what data methods are trained;
• specify when, on what data, and exactly how method are evaluated;
• return an objective: a scalar or comparable value that denotes the performance of
the method on that particular setting.

Settings do not specify how methods are trained: that is the responsibility of the method.
This is in contrast with testing, which is fully specified by the setting. Applying a method
onto a setting should return an objective, a scalar or comparable value that encodes the
performance of that method on that particular setting.
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class Setting: # setting := class of learning problems.
def apply(self, method: Method) -> float:

""" Training and evaluation procedure for a method.
This can basically be anything.
Should return an "objective": a scalar or comparable value that
represents how "good" a method is in this particular setting.
"""

# Create a setting
imagenet_classification: Setting = ImageClassificationSetting(dataset="imagenet")
# Create a method
some_learning_algorithm: Method = SomeImageClassificationMethod()
# Apply the method to the setting, get a performance.
performance = imagenet_classification.apply(some_learning_algorithm)

Listing 1. Pseudocode illustrating the concept of a setting. A method can be applied to
a setting, and an objective/performance metric is returned, which describes how well the
method performed in that setting.

Note that settings don’t necessarily need to have to separate training and evaluation
phases. Online Learning, for instance, is a setting where examples are observed only once,
and where the metric of interest is the performance of the learning algorithm while it is
training.

According to this formulation, the metric used as the objective is an important part of
a setting’s description. Changing the evaluation metric of a setting (e.g. from average test
classification accuracy to test F1 score) yields a different setting. This seems reasonable, as
methods might want to alter their behaviour based on what the objective of interest is in a
particular setting.

2.1.2. Method - Solution to a problem

A method is a recipe to train a learning algorithm using data from a setting. Methods
also provide a mechanism to perform inference, which can be used by the setting to query
the method during evaluation.

The particular objective or loss function that a method uses to train is not prescribed by
the setting. However, the reward or task is. To clarify, consider the example of a classification
setting where the task consists of classifying images of cats and dogs. The setting describes
the correct predictions for each image, and makes that information available to the method
through the labels of the dataset. The method could choose to maximize the cross-entropy
between its predictions and the correct class labels as its loss function.

The various settings described in this chapter will be illustrated in python pseudocode
using this convention.
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class Method:
def train(self, data: Any):

""" Called by the setting to let the method train using some data. """
def predict(self, input: Any, output_space: Space[Output]) -> Output:

""" Used by the setting for inference: Returns an output for the given input. """

Listing 2. Pseudocode illustration for the idea of a Method.

2.2. Research Settings
This section provides a brief introduction to the three fields most relevant to this work,

namely Supervised Learning, Reinforcement Learning, and Continual Learning.

2.2.1. Supervised Learning

In Supervised Learning (SL) settings, the goal of a method is to learn p(y|x), the mapping
from inputs x to outputs y given a dataset D of examples consisting of inputs x ∼ p(X)
and their associated outputs y. Methods for supervised learning are evaluated based on
their generalization error, measured by their performance on a dataset Dtest consisting of
previously-unseen samples xtest, ytest, usually from the same distribution as the training data,
which that have not been observed by the method during training.

Methods for SL learn the mapping from inputs to outputs by training a model fθ (often a
neural network), that, for a new input x, returns a predicted output for that sample, denoted
ypred. The model’s parameters θ are optimized in order to reduce the error (or loss) on the
training dataset. When trained successfully, the model becomes able to accurately predict
the output for a new input from the same distribution.

There are many different frameworks and libraries designed to make it easier to create
and train neural networks, not just for supervised learning, but in any kind of ML setting.
These tools provide efficient implementations of the different matrix operations that form the
basic building blocks of neural networks. They also support auto-differentiation, where the
contribution of each model parameter on the training loss for a given example can be directly
determined. The model parameters can then be learned efficiently using a gradient-based
optimization algorithm such as Stochastic Gradient Descent (SGD), by repeatedly applying
the change to the model parameters that would minimize the training loss. PyTorch[63],
TensorFlow, and Jax are good examples of such frameworks.

2.2.2. Reinforcement Learning

Reinforcement Learning (RL) is a very large field of machine learning, which couldn’t
possibly be described in enough detail here. For a more detailed introduction to RL, we
direct the reader to [37]. In RL settings, the goal of a method is to train an agent, by
interacting with an environment in order to maximize the cumulative rewards provided by
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X, Y = TypeVar("X"), TypeVar("Y")
Example = Tuple[X, Y]
Dataset = Sequence[Example]
class SupervisedLearning(Setting):

dataset: Dataset
def apply(self, method: Method) -> float:

train_dataset, test_dataset = split(self.dataset)
method.train(train_dataset)
test_error = 0.
for x_test, y_test in test_dataset:

y_pred = method.predict(x_test)
test_error += loss_criterion(y_pred, y_test)

return test_error

Model = Callable[[X], Y] # f(X) -> Y

class SupervisedLearningMethod(Method):
model: Model
def train(self, dataset: Dataset): ...

for x, y in dataset:
y_pred = self.model(x)
train_loss = self.loss_function(y_pred, y)
optimizer.minimize(train_loss)

def predict(self, x_test: X) -> Y:
y_pred = self.model(x_test)
return y_pred

Listing 3. Pseudocode for a setting and method in Supervised Learning. The output space
is omitted in this example, but is simply the space of possible outputs Y.

the environment. At each step, the agent receives an observation from the environment,
then performs an action in the environment, and then gets back a reward, which essentially
represents how good the action was, given the current state of the environment and the
action that the agent performed in that state.

Fig. 2.1. The typical interaction loop in reinforcement learning. (Adapted from [75]).

RL methods learn a model (also called an actor, or policy) which outputs the action
to take given an observation of the environment’s state. How this model is trained varies
greatly from one method to another. Generally speaking, methods in RL train their model
by trying to increase the probability of selecting actions that lead to greater rewards, and,
conversely, by lowering the likelihood of selecting actions that lead to negative or inferior
rewards. RL methods can be categorized along many different axes: whether they consider
a finite or infinite number of possible actions (discrete vs continuous action spaces), whether
the policy is trained while interacting with the environment (on-policy) or trained using a
set of collected experiences in the environment (off-policy), and many more.

Environments in RL are usually mathematically represented using some variant of a
Markov Decision Process (MDP), where the environment has a set of possible states s ∈ S
(where S is called the state space), an action space A, a state transition function p(st+1|st, at),
and a reward function r(s, a)→ R.
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class Space(Generic[T]):
def sample(self) -> T: ...
def contains(self, value: Any) -> bool: ...

class Env(Generic[Observation, Action]):
observation_space: Space[Observation]
action_space: Space[Action]
def reset(self) -> Observation: ...
def step(self, action: Action) -> Tuple[Observation, float, bool, dict]: ...

env: Env = gym.make("CartPole-v0") # create the environment, e.g. CartPole
done = False # episode termination signal
observation = env.reset() # reset the environment, get the initial observation
while not done: # continue until the end of the episode

action = agent(observation) # Query an agent for the action to take at this step
# OR, alternatively:
action = env.action_space.sample() # Choose a random action from the action space
next_observation, reward, done, info = env.step(action) # Update the environment
...
observation = next_observation # Update the observation before going to the next step.

Listing 4. Pseudocode for the Env and Space components of OpenAI Gym, as well as the
python equivalent of the typical interaction loop from Figure 2.1.

In practice, the most popular library for reinforcement learning is OpenAI Gym[7]. Its
very simple and intuitive environment interface (shown in Listing 4) is versatile enough to
model all sorts of MDPs and real-world environments, ranging from simple classical control
environments such as CartPole, all the way to self-driving cars.

Observation = TypeVar("Observation")
Action = TypeVar("Action")

class ReinforcementLearning(Setting):
env: Env[Observation, Action]
def apply(self, method: Method) -> float:

method.train(self.env)
# Test env is usually same as train env,
# but seeded differently:
env.seed(test_seed)
total_reward = 0.
for episode in range(n_test_episodes):

obs = env.reset()
done = False
while not done:

action = method.predict(obs)
obs, reward, done, info = env.step(action)
total_reward += reward

return total_reward / n_test_episodes

# f(Observation) -> Action
Model = Callable[[Observation], Action]

class ReinforcementLearningMethod(Method):
actor: Model[Observation, Action]
def train(self, env: Env[Observation, Action]):

for episode in range(self.n_train_episodes):
observations, actions, rewards = [], [], []
observation = env.reset()
done = False
while not done: # gather one episode

action = self.actor(observation)
observation, reward, done, info = env.step(action)
observations.append(observation)
actions.append(action)
rewards.append(reward)

total_reward = sum(rewards)
loss = some_function_of(observations, actions, rewards)
# Minimize "loss" as a proxy for maximizing the rewards
optimizer.minimize(loss)

def predict(self, observation: Observation) -> Action:
return self.actor(observation)

Listing 5. Pseudocode for a setting and method in Reinforcement Learning.
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2.2.3. Continual Learning

Continual Learning (CL) is a field of ML, which can be roughly described as the study of
learning problems that change over time. The objective of a method in CL is to learn from
non-stationary distributions or environments, and to both adapt quickly to changes, as well
as accumulate and retain knowledge over time.

In order to instantiate a problem in CL, one must first make assumptions about the
data distribution, and set constraints to enforce non-stationary learning. 1 Assumptions
are for example often made about the type and number of tasks, or the task boundaries, or
the availability of task labels, while constraints often relate to memory, compute, or time
allowed to learn a task. Combinations of assumptions, rules, and datasets have resulted in a
multitude of settings [38], each of which often uses slightly different terminology, baselines,
and evaluation procedures, making CL generally difficult for newcomers.

There are many different types of settings in CL, in large part due to this definition
being very broad. A non-exhaustive list of such settings: Task-Incremental Learning, Incre-
mental Learning, Multi-Task Learning, Continual Learning, Lifelong Learning. These are
often very similar problem formulations, apart from slight modifications. For some of these
terms, multiple different interpretations coexist in the literature. Figure 2.2 shows an exam-
ple organization of some of the settings in CL based on their assumptions. This is further
complicated by the fact that such problems are instantiated in the context of both Rein-
forcement Learning as well as Supervised Learning! Indeed, the continual learning aspect of
these settings is usually independent from the particular type of task (whether supervised,
unsupervised, reinforcement learning, or otherwise).

Incremental learning and its variants (class-incremental, task-incremental, domain-
incremental learning, and others) are settings where an model or agent learns from a
sequence of tasks (usually datasets in SL, and environments in RL). The goal of a method
is to be able to learn each task separately, in sequence, and to then still perform adequately
(i.e. generalize well) on held-out test data from all tasks seen so far.

In some incremental settings, the task identity is given to the method at test time,
while in others it is not, and the agent has to determine which task a sample belongs to
(also refered to as task inference). In some settings, the model/agent has to learn new
classes/outputs/actions over time when encountering new tasks, while in others settings the
output space remains the same across tasks.

While Incremental Learning learns multiple tasks in sequence (incrementally), Multi-
Task Learning generally refers to a learning problem with more than one task, and where
these tasks are learned at the same time, or sampled from a stationary distribution.

1It is often necessary to prevent methods from just gathering all previous data into a buffer and shuffling it,
for example, since this would yield optimal performance, while totally bypassing the entire CL problem.
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Fig. 2.2. Classification of continual learning settings (reproduction of figure 1 from [89]).
This hints at a hierarchical organization of settings, which we formalize and introduce in
Section 3.5.

# A "task" is either a dataset (SL) or an env (RL)
Task = Env | Dataset
class IncrementalLearning(Setting):

tasks: List[Task]
def apply(self, method: Method) -> float:

# Create training and evaluation "tasks".
train_tasks, test_tasks = split(self.tasks)
# In this example, we train incrementally.
for task in train_tasks:

method.train(task)
# Test after learning all tasks:
performance_per_task = []
for test_task in self.tasks:

task_performance = self.evaluate(method, test_task)
performance_per_task.append(task_performance)

# Return average final performance.
return sum(performance_per_task) / n_tasks

# f(Input) -> Output
Model = Callable[[Input], Output]
class IncrementalLearningMethod(Method):

model: Model
def train(self, task: Task):

if not self.model:
# First task: create the model.
self.model = create_model(task)

else:
consolidate_previous_knowledge(self.model)
self.model.prepare_for_new_task(task)

# Train the model on this task.
self.model.learn(task)

def predict(self, input: Any) -> Any:
return self.model(input)

Listing 6. Pseudocode for a continual learning setting and method, in this case, Incremental
Learning (whether supervised or reinforcement learning).
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2.2.4. Methods for Continual Learning

The objectives of Continual Learning are difficult to achieve in practice, in part because
of the trade-off that exists between the two competing objectives of stability (the ability to
retain knowledge over time) and plasticity (the ability to quickly learn new things). This
problem is also referred to as the plasticity/stability dilemma.

One of the problems studied in CL is called catastrophic forgetting, and describes how
training a neural network on a new task leads to a rapid degradation of its performance on
previous tasks.[56, 23] The catastrophic forgetting problem can arguably be attributed to
neural networks and the optimization algorithms used to train them, such as stochastic gra-
dient descent (SGD) not having any inherent incentive or mechanism to preserve knowledge
from data outside their current training distribution.

An effective way to mitigate forgetting is to preserve data from previous tasks and in-
corporate them in the training of the model on new tasks, such that the performance of the
model on these tasks is preserved. Methods that employ some form of storage containing
data from previous tasks are referred to as rehearsal or replay-based methods for CL. Excit-
ing research avenues also explore the possibility of forgetting and re-learning previous tasks
quickly, rather than simply preserving the model’s performance on previous tasks[8].

Another approach towards reducing forgetting is to prevent the neural network from al-
tering its weights in a way that would lead to a degradation of the performance on previously-
learned tasks. These methods are referred to as regularization-based methods CL. Elastic
Weight Consolidation[40] is an example of such methods.

Another way to tackle the CL problem is to use neural network architectures that can
grow progressively over time, allocating new parameters when needed in order to learn new
tasks. Methods of this sort are called architecture-based.

2.3. Common Issues in Continual Learning
There are several recurring issues that ML researchers have to deal with over the course

of their work. The field of CL, with it’s multitude of settings, assumptions, and methods, can
be very difficult to study in practice. We will describe such difficulties here. It will hopefully
become clear why CL is a prime candidate for the hierarchies that will be described in
Chapter 3.

2.3.1. Reproducibility

The current incentive structure in ML is, roughly speaking, to publish as many papers
as possible. It is very common for papers to be an isolated, somewhat disposable amount of
coding work, involving a lot of redundant boilerplate logic to setup the setting, or the methods

[Version 1: mai 2023—18:47 ]



30

and the required baselines. Method implementations are often unnecessarily coupled to the
problems they are used to solve, making them difficult to reuse outside of their original
scope. Reproducing original results or reusing methods developed in that way as baselines is
prohibitively difficult. In order to analyze specific properties of novel methods, researchers
tend to re-implement baselines and adapt them to their particular needs [33]. These baselines
are often not described in enough detail to ensure reproducibility, e.g. a prescribed hyper-
parameter search strategy, computational requirements, open source libraries, etc.

2.3.2. Evaluation

Methods in CL are often studied under a small subset of the available settings, making
it difficult to evaluate them, as their problem domains do not always overlap. Consequently,
it is challenging to determine if a method will generalize beyond the setting it was designed
for. To add to this, Continual Reinforcement Learning (CRL) poses further challenges in
evaluation due to the lack of a clear distinction between training and testing phases [36].
Moreover, resource consumption is a critical factor for evaluation of CL methods which is
often overlooked due to the lack of standardized evaluation protocols. Thus, there is a need
for standardization of the infrastructure used to evaluate CL methods.

2.3.3. CSL and CRL evolve in silos

Continual supervised learning (CSL) and continual reinforcement learning (CRL) are
often considered to be independent settings in the literature and thus tend to evolve sep-
arately from one another. However, most methods in one field can be instantiated in the
other, resulting in duplicate efforts such as replay for CSL [67, 47, 74, 48, 65] and replay
for CRL [81, 70, 35]. To this end, we advocate that the unification of both fields would
greatly reduce these duplicate efforts and accelerate CL research.

In the following chapters, we present problem hierarchies as well as Sequoia, a unifying
software framework for CL research, as a solution for jointly addressing these issues. We
describe how settings differ from one another in terms of their assumptions. This perspective
gives rise to a hierarchical organization of CL settings, where methods become directly
applicable across different settings by polymorphism. This greatly reduces the amount of
work required to develop general methods for CL, as well as to compare the performance of
different methods.
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Chapter 3

Problem Hierarchies - a Type Hierarchy for
Learning Problems

In this chapter, we propose problem hierarchies as a solution to some of the issues described
in Section 2.3. Problem hierarchies are an application of the concepts of type hierarchies and
inheritance from computer science onto the field of ML. To be more precise, we claim that
the principles behind well-designed type hierarchies, such as low coupling, high cohesion,
separation of concerns, Liskov substitution and code reuse, can also be applied to the realm
of ML research. We also argue that the benefits of following such principles in software,
for instance, modularity, interchangeability, maintainability, expandability, and so-on, would
also transfer over into the domain of ML, in the form of methods that are easy to use, reuse,
maintain, expand, etc. We believe that adopting a hierarchical view of the research settings
and methods we create could be a direct means of alleviating the reproducibility and effort
duplication issues in ML.

This chapter begins with a definition of settings, methods, and assumptions in Section 3.1,
followed by hierarchies and their properties in Section 3.2. Some useful considerations are
provided in Section 3.3 for potential implementation of this idea in practice. Examples of
problem hierarchies in various research fields are then described in Section 3.4. In Subsec-
tion 3.4.3, we describe related works where a taxonomy or hierarchical organization of the
different settings is also created. We then conclude this chapter in Section 3.5 by applying
problem hierarchies to CL, resulting in the hierarchical structure which will serve as the basis
of Sequoia and Chapter 4.

3.1. Definitions
Let’s begin by considering a hypothetical space P that contains all research problems

imaginable. A point within that space is a concrete research problem or benchmark, and is
denoted as p, where p ∈ P .
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3.1.1. Assumption

An assumption A : P → {0, 1} is a predicate or indicator function that accepts any
problem and returns whether the problem respects the assumption. The most intuitive way
to describe an assumption is in natural language:

• «The learning problem has images as inputs. »
• «The problem’s data are i.i.d. samples from an unknown distribution. »

Informally, assumptions that relate to the same aspect of a learning problem can be
grouped into a family of assumptions. For instance, assumptions about the input space, or
the output space, or the stationarity of the distributions, the level of supervision, the available
computational resources, etc. could be viewed as belonging to different families. Assumption
families are used to aggregate the assumptions of a setting into different subgroups, making
comparisons between settings easier. Ideally, assumptions from different families should not
interfere with each other or be mutually exclusive.

3.1.2. Setting

A setting S ⊂ P is a set of research problems, characterized by a set of assumptions AS
that are common to every problem within that setting: S := {p ∈ P | a(p) = 1 ∀ a ∈ AS}
Settings are therefore a class of research problems. A setting can also be viewed as a
particular region within this hypothetical space of all research problems P .

Setting are described in the literature using a commonly-used name, whose components
usually map directly to the assumptions of that setting. For instance, “ImageNet classifica-
tion”, “Semi-Supervised Learning”, “Semi-Supervied ImageNet Classification”.

A group of settings is itself also a setting, and is sometimes referred to as a field. The
notion of field and setting are interchangeable. However, the term field is more often used
to describe a large body of work with multiple distinct sub-groups, while setting is more
commonly used to describe a more restricted set of problems. A setting S is considered a
subtype of another setting S ′ if S ⊆ S ′, that is, if all the assumptions of the parent (S ′)
are respected in all members of the child setting S. More formally, settings should obey the
Liskov Substitution Principle (LSP)[51]:

«Subtype requirement: Let φ(x) be a property provable about object x of type
T , then φ(y) should be true for objects y of type S where S is a subtype of
type T . »

Where the “provable properties” in this case correspond to the setting’s assumptions
about the learning problem.
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3.1.3. Method

Methods are solutions to research problems (settings). The domain of a method, called
a target setting, defines what problems they can and cannot be used to solve. A method MS

can therefore be thought of as a function that applies to any problem p from the setting S:
MS : (p ∈ S → Y )
Note, we do not explicitly define the image Y of a method, but one possibility could for
example be to have Y = R, where the output of a method is a score as a measure of how
well the method performed in that setting.

An important consequence of settings adhering to the LSP is that methods should be
covariant with respect to their input (setting) type. More precisely, given two types of
problems A,B ⊂ P such that B ⊂ A ⊂ P - in other words, setting B makes all the same
assumptions as setting A, but also makes additional assumptions - then any methodMA with
A as its domain (i.e. created to solve problems of type A) should also be directly applicable
to problems of type B: MA : (a ∈ A)→ Y,B ⊂ A ⊂ P ⇒M |B : (b ∈ B)→ Y

Methods may select one assumption from each family. If a method does not select an
assumption from a given family, then it is effectively stating that it is agnostic to that
particular characteristic of the learning problem.

For example, a general-purpose image classification method (MA), and another more
specialized method (MB), designed to detect lung cancer from images of chest x-rays, can
both be used to classify images of chest x-rays. However, MB shouldn’t be expected to work
or be applicable to other types of image classification problems.

3.2. Hierarchies
A collection of settings can always be organized into a hierarchy, where more general

settings, with fewer assumptions, are placed at the top, and more specific settings are placed
at the bottom. This is essentially an inheritance hierarchy of classes of learning problems.

More formally, a hierarchy can be defined as a partially ordered set of assumptions,
ordered by inclusion (⊆)1.

Any problem hierarchy can be visually represented as a Directed Acyclic Graph (DAG)2,
where the empty set of assumptions is the root and corresponds to P , and where arrows
represent adding one or more assumptions. Nodes in the graph represent the settings (as
sets of assumptions) obtained from making all assumptions encountered in the path from
the root to that node.

1This concept of hierarchy may or may not be equivalent to that of a lattice, as studied in order theory or
category theory.
2The DAG representation of a hierarchy may or may not correspond to the Hasse diagram (https://en.
wikipedia.org/wiki/Hasse_diagram).
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When an assumption is represented as an arrow from setting B to setting C in such a
diagram, this indicates that setting C makes an additional assumption compared to B, and
therefore that as in terms of settings, C ⊂ B, and in terms of assumptions, AC ⊃ AB.

There are four ways to grow hierarchies: specialization (creating a subtype), generaliza-
tion (creating a supertype), extension (introducing an intermediate type) and combination
(multiple inheritance).

3.2.1. Specialization - growing downward

Settings can always be subclassed, or further specified by adding additional assumptions,
which results in a more restricted setting or subtype.

From any given setting S ⊂ P , a new setting S+ can always be created by adding an
additional assumption to S. This creates a new hierarchy where S+ ⊂ S ⊂ P .

3.2.2. Generalization - growing upward

The base class of any hierarchy, also called the root setting, can always be de-throned
by extracting an underlying assumption present in that setting, and creating a more general
setting that does not make that assumption. In such a case, the previous root becomes a
child of the new root.

More formally, from any given setting S ⊂ P , a new setting S− can always be created
by extracting/removing an underlying (or unaccounted-for) assumption already present in
S. This process creates a new ordering or structure where S ⊂ S− ⊂ P .

Likewise, for two classes of learning problems (settings) A,B ⊂ P , if setting A can be
reformulated as a particular case of setting B with additional assumption - that is, if an
assumption f exists such that (f(a) = 1 ∀a ∈ A) (it applies to all problems in A), and that
(∃ b ∈ B | f(b) = 0) (it doesn’t apply to all problems in B) then A ⊂ B ⊂ P .

3.2.3. Extension - growing inward

We posit that assumptions are never fully-qualified, and that it is always possible to de-
compose a given assumption into at least two different assumptions, which can be recombined
to recover the initial assumption.

Therefore, given any hierarchy of settings B ⊂ A ⊂ P , one can always create a new
setting S such that ∃S ⊂ P such that B ⊂ S ⊂ A ⊂ P . This kind of expansion shouldn’t
affect the original settings and the methods that target them.

3.2.4. Composition - growing outward

So far, we’ve shown that we can take any hierarchy of settings, and grow it by either
adding assumptions, which adds new settings at the bottom-end of the hierarchy, or by
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removing an underlying assumptions from the most general setting in the hierarchy, thus
growing the hierarchy upward. However, there is also a third, very powerful way of growing
hierarchies: to combine them.

Assumptions from different families are independent, and can be combined to create new
settings where both assumptions are respected. This kind of combination of independent
assumptions can be generalised as the cartesian product of their hierarchies.

The order in which they are combined is not important (i.e. combinig assumptions is
commutative). This is often like adding a new prefix or suffix to the name of the setting, for
example, going from a given hierarchy: {mnist, cifar, imagenet} × {classification, regression}
to another: {Supervised, Semi-Supervised, Unsupervised} × {mnist, cifar, imagenet} ×
{classification, regression}

Summary

In summary, a setting S is defined by the set of assumptions that are respected by the
problems within that setting AS. A particular problem p is part of a given setting S if all
of the assumptions in S are respected in p. A method MA is a solution to a setting A, a
particular class of problems. A group of settings can be organized into a directed graph with
no cycles, where arrows add assumptions, and where nodes are settings.

3.3. Considerations
Creating abstractions for problems and solutions is an unavoidable step in the develop-

ment of a research project with more than one setting or method. Problem hierarchies, or
type hierarchies more generally, are a solution to this kind of problem. In this section, we
describe some practical considerations for any potential implementations of problem hier-
archies. In other words, we give a list of desired properties or objectives to consider when
designing any research project that involves studying more than a one setting, or more than
one method.

3.3.1. Avoiding Ambiguity

Creating a problem hierarchy for a given field begins by identifying the assumptions
present in all the settings of interest and to organize them hierarchically based on these
assumptions. Once the common assumptions are extracted, creating an ordering or hierarchy
of the remaining assumptions can be a bit more challenging. For instance, there can often
be some ambiguity in determining which setting is most general between two settings.

For example, consider a hypothetical research project in reinforcement learning, say, in
the Atari setting, where the algorithm learns to play a game. Call this initial setting A.
Suppose that we’d like to also develop an algorithm to learn to play multiple games, instead
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of a single game. For the purposes of this example, suppose that we’d want this new setting
to involve having to learn by playing an even mix of the different games (i.e., to learn from
a uniform, stationary distribution over all the games). Call this new setting B.

There are different ways to organize the two settings described here into a hierarchy:
A ⊂ B. : A is a single-task setting while B is a multi-task setting. A is a particular case of
B, where we assume that there is only one task to learn. Any algorithm for setting B should
be applicable to A, since to learn multiple games, you have to be able to learn a single game.
On the other hand, an algorithm that can learn a single game cannot necessarily be applied
to a setting where it is expected to learn multiple games at the same time.

However, could also make a case that:
B ⊂ A. : B is a multi-task setting, which is a particular case of A, a “traditional” setting,
where the presence of multiple tasks is assumed, and each task is identified. Setting B as-
sumes the presence of multiple sub-games or tasks, while setting A does not. Therefore, a
method for setting A is designed to learn a given game, and B can be viewed as a differ-
ent kind of game. Another equivalent perspective is to have the environment of setting A
itself contain multiple different levels, which could be treated as different individual games.
Therefore, setting B can be viewed as a subtype of A, where B makes additional assumptions
compared to A.

One way to help solve this conundrum is to try to order settings based on the amount
of information they could potentially make available to the method. In this case, setting B
could potentially give its methods some information about the different games, or information
about the transitions between tasks, which is not possible in setting A. Methods for B could
depend on some contextual information, or on being able to explicitly model a distribution
over tasks, in order to learn effectively, all of which would be impossible in setting A.

Therefore, this points in the direction of setting A being more general than B, since A
cannot provide more information to methods than B. Methods for A that are applied to B
could also potentially leverage the additional information to get better performance.

A useful consideration in such scenarios is that to assume that something might be true
is always available as a more general assumption, than either choosing that it is or isn’t true.
For instance, it might not necessarily make sense for a method that assumes that there are
multiple tasks to be applied to a setting where there is only one task, and vice-versa. The
dichotomy between settings A and and B that is created from the two previous solutions
could benefit from more specification. In order to account for this, we arrive at a third and
final solution:
A ⊂ C,B ⊂ C. : Both settings A and B are distinct subtypes of a broader setting (setting
C), where setting C simply assumes that there are n ≥ 1 game(s) to learn. Setting A then
restricts that assumption to n = 1, while setting B restricts that assumption to n > 1.
Methods that can only learn through playing multiple different games simultaneously can
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target setting B. Methods that are designed to learn, given a game with potentially many
sub-games or tasks, can target setting C, and be applicable to both A and B. Lastly,
methods that depend on only one game being present, without any sub-tasks, can target A.

An important advantage of this solution compared to the previous is that the definition of
setting A does not need to change, or be denatured in any way. This ensures that algorithms
specifically designed to learn a single game (A) are not considered applicable to setting
C, where the complexity of the problem increases drastically compared to A: for example,
learning to play multiple games simultaneously, without any explicit information about the
different tasks.

3.3.2. Forward/Backward Compatibility

When growing a hierarchy downward following Subsection 3.2.1 - that is, when creating
a new setting S+ from an existing setting S such that S+ ⊂ S - The properties described
Subsection 3.1.3 should be respected: all methods that were applicable to setting S should
still be directly applicable to both setting S as well as the new setting S+.

Concretely, this kind of expansion can be made easier by first identifying the difference
in implementations between the two settings, and extracting the difference into a method or
component that can be inherited and overridden in a new subclass.

Another practical way to enable this kind of forward-compatibility, in particular in the
case where the new setting provides more information than its parent, is to design the major
components (e.g. the model, training code, dataset, etc.) to accept / return structured
(typed) objects that hold data, rather than the data itself. This makes it possible for the
setting with the most information to create subclasses of such data types, adding new fields
or properties. Designing the components, methods and functions to accept or return such
objects makes it possible for these new fields or properties to be safely ignored by existing
methods. This is an easy way of guaranteeing forward-compatibility when a new setting adds
additional information. A simple illustration of such an approach can be seen in Listing 7.

3.3.3. Modularity

The software implementations of the learning problem(s) and their proposed solution(s)
are often intertwined, such that using the method implementation outside of its original
domain can be very difficult. We believe this is due to the absence of any real incentive for
considering other problems than the one at hand when implementing a new method.

As a response, we suggest that research projects with more than one setting or method
be designed in such a way that:

(1) new settings can be added in a way that doesn’t break existing methods
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# Model that accepts tensors as inputs
Classifier: Callable[[Tensor], int]

@dataclass
class Inputs:

x: Tensor

# Can accept any input that *contains* a tensor
StructuredClassifier: Callable[[Inputs], int]

# Can also accept:
@dataclass
class MultiTaskInputs(Inputs):

x: Tensor
t: int

Listing 7. Illustration of how using structured data types (e.g. python dataclasses) make it
easier to create models and methods that are forward-compatible. In this example, a model
with structured inputs can also be passed observations with additional information, which is
safely ignored. On the other hand, other data elements would have to be discarded and some
type of adapter be implemented in order for the model with tensor inputs to be applicable
on observations containing additional information.

(2) new methods can be added in a way that doesn’t interfere with other methods or
require changes in the settings

Concretely, this involves creating a clear separation of concerns between settings and
methods, as well as designing the settings and methods in a modular fashion, such that
specific components can be replaced or extended by potential new subclasses.

3.3.4. Adaptability

In the worst case, a method for problems of type A, applied to a problem b ∈ B where
B ⊂ A, might not be an effective or efficient solution for problem b or other problems of type
B, but should always work. In the best case, a method should be able to adapt itself to the
particular problem they are being applied to by making use of the additional assumptions
present in order to solve the problem more effectively and achieve better performance.

For example, it should be possible to use an algorithm designed for bandit settings (where
the feedback only includes whether the prediction was correct or not, and doesn’t contain
the correct prediction) on a typical classification setting.

3.4. Hierarchies in the wild
This section shows examples of problem hierarchies from different fields of ML, as well

as describe related works that introduce taxonomies or hierarchical organizations of research
settings.
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3.4.1. MDP variants

MDPs and POMDPs are some of the most widely-used theoretical frameworks in Rein-
forcement Learning. The relation between these abstractions - in other words, the differences
in assumptions between these settings - are very clearly defined, and often already repre-
sented hierarchically (Figure 3.1 from [14] shows an example of such an organization).

A Markov Decision Process (MDP) is defined as a tuple M = 〈S,A, r, p, γ〉, where S is
the state space, A is the action space, r : S ×A→ R is the reward function, p : S ×A→ S

the state transition function, and γ ∈ [0, 1) is the discount factor. The goal of an agent is
to maximize the average sum of discounted future rewards at a given step, also called the
return.

POMDPs are an extension of MDPs, where the tuple also includes O, the observation
space, and x : S → O, the observation function. At each step, rather than return the
next state st+1, POMDPs return an observation of the current state: ot = x(st). POMDPs
therefore generalize MDPs by removing the assumption that the environment’s state can be
directly observed by the agent. Instead, the agent obtains observations, which are a function
of the environment’s hidden state: o = x(s). Setting x to the identity function therefore
simplifies a POMDP back to an MDP.

Hidden-Mode Markov Decision Processes (HM-MDPs) are introduced in [14] as a gen-
eralization of MDPs where the environment dynamics (i.e. the state transition function)
can be non-stationary. The environment can be in a finite number of modes z ∈ Z, which
affect the transition function p : S × A×Z → S. Hidden-Mode Markov Decision Processes
(HM-MDPs) are a subclass of POMDPs, where any pair of mode and observable state in a
HM-MDP can be considered as the hidden state of a POMDP, and any observable state of a
HM-MDP can be viewed as the observation of a POMDP[14]. HM-MDPs will be described
in a bit more detail in Subsection 3.5.1.

Many other variants of MDPs and POMDPs exist, such as Hidden Semi-Markov-Mode
Markov Decision Processes (HS3MDPs)[30], Continuous-Time MDPs, and many more.3

3.4.2. Discrete and Continuous action spaces

RL algorithms are typically designed to handle either discrete or continuous action spaces,
with some algorithms implementations supporting both (for example, most of the algorithms
provided in the Stable-Baselines3[66] library support both types of action spaces). Here, we
make the claim that discrete and continuous settings can be organized into a hierarchy rather
than considered separately. In other words, we claim that the “discrete-actions” setting can
be viewed as a subtype of the “continuous-actions” setting.

3We direct readers to [84, 34, 14, 37] for a more thorough description of MDPs and their variants.
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Fig. 3.1. Reproduction of Figure 1 and its caption from [14]: “Categorization into four
related problems with different conditions. Note that the degreee of difficulty increases from
left to right and from upper to lower”[14]

A counter-intuitive claim can be made as a consequence of this organization: methods
for continuous-action settings, by construction, can always be applied to discrete-action set-
tings. 4 Note that, following the principle of adaptability from Subsection 3.3.4, an algorithm
designed for continuous action spaces shouldn’t necessarily be expected to perform well in
an environment with discrete actions, but it should nonetheless be at least applicable to such
an environment.

We provide an informal proof of this claim here. Given any environment or MDP with a
discrete action space, it is always possible to add an adapter or wrapper around the environ-
ment, such that it is presented as having a continuous action space. Such a transformation
doesn’t need to be entirely theoretically sound in order to prove this point. For instance,
given an environment with a discrete action space with N possible values, we can apply a
wrapper around the environment, that presents itself as having a continuous action space of
N real values. When these values are provided to the adapter by the agent, they could for
instance be used as the logits of a categorical distribution, passed through a softmax, and
sampled from, resulting in a discrete value between 0 and N − 1, which is then used as the
discrete action that is passed to the original environment.

This particular transformation serves as a simple, generic, and universally applicable
example, but there are much more efficient ways of adapting specific continuous action
algorithms for the discrete action case. One such example is the discrete variant of the Soft
Actor Critic algorithm[16], where the soft state-value calculation, temperature and policy
objectives can be simplified in the case of discrete actions, leading to performance comparable
to the state-of-the-art algorithms for discrete actions in terms of sample-efficiency.

4Note: We’re not claiming that they should, only that they could!
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3.4.3. Problem Hierarchies in Continual Learning

Here we describe problem hierarchies in CL, which were already hinted at by Figure 2.2.
We begin by describing related works in ML/CL theory that classify and organize different
research settings from the literature. We then propose our own hierarchical organization of
the settings in CL in Section 3.5. This hierarchy is then implemented concretely in Sequoia,
which is described in Chapter 4.

3.4.4. Related work: Towards a theory of out-of-distribution learn-
ing

Having a solid theoretical foundation can be very helpful to more applied research in
ML, as it informs future research, and deepens our understanding of the problems and
solutions within that field. However, in many newer fields of ML, theory often lags far behind
practical research. This is particularly the case in research fields such as continual/lifelong,
meta, and multi-task learning, where the problem involves out-of-distribution and/or non-
stationary learning, which makes it difficult to provide theoretical guarantees using the tools
and frameworks from more conventional fields of ML.

In [26], the authors propose a new unified theoretical formalism for out-of-distribution
learning problems. Their formalism is very flexible, and is able to describe virtually all forms
of out-of-distribution learning, including continual, life-long, meta, multi-task, and transfer
learning. The authors also suggest a hierarchical organization of all the settings covered by
their formalism, as displayed in Figure 3.2, which is a replica of Figure 1 from [26].

The authors construct their framework through an iterative, bottom-up approach. Start-
ing from an initial definition for an in-distribution learning problem, the authors iteratively
expand this definition by introducing a new term or component to their definition, relaxing
one assumption at a time. Each step along the way corresponds to a new, slightly more
general setting, which can be simplified into the previous by specifying the added term to a
particular value. Once the most general, all-encompassing definition of a learning problem
is established, each setting can be recovered by specifying one or more components of the
definition.

The authors of [26] do not claim that methods defined for one setting should be applicable
to their children in their hierarchy. If there were to be a software implementation of the
hierarchy of settings illustrated in Figure 3.2, having the learning problem broken down into
its individual components could be of great benefit, from a software design perspective. For
instance, introducing a new group of assumptions, all related to the same component (e.g.
the statistical model or dataset) wouldn’t have any effect on the structure of the overall
hierarchy. Plans for future work related to implementations of problem hierarchies may
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Fig. 3.2. Figure 1 from [26]: (Left) Decision tasks (top) are composed of five components,
and the goal is to choose a hypothesis based on the known distribution that minimizes risk.
In an in-distribution learning task (middle), the distribution is not available, so a feasible
in-distribution learner must leverage a data set, to find a hypothesis that minimizes error
under an assumed statistical model. In out-of-distribution learning tasks (bottom), the
distribution over queries need not be about the assumed distribution of the data, and there
may be multiple data sets, risks, and errors. Each component is provided by one of three
different actors: nature, the boss, or the machine learning practitioner. (Right) Schematic
illustrating the nested nature of learning problems. PE = point estimation; HT = hypothesis
testing; SL = supervised learning; UL = unsupervised learning; CL = causal learning; StL
= streaming learning; OL = online learning; RL = reinforcement learning.[26]

include establishing a fully-qualified definition for a learning problem similarly as in [26],
and are described further in Chapter 5.

3.4.5. Related work: Towards Continual Reinforcement Learning:
A Review and Perspectives

In [37], the authors introduce a taxonomy of the different continual learning settings in
RL, while also drawing parallels with equivalent settings in SL.

Recall, a MDP is defined as a tupleM = 〈S,A, r, p, γ〉, where S is the state space, A is the
action space, r : S×A→ R the reward function, p : S×A→ S the state transition function,
and γ ∈ [0, 1) the discounting factor. In a POMDP, the tuple expands to also include O,
the observation space, and x : S → O, the observation function. At each step, rather than
return the next state st+1, POMDPs return an observation of the state: ot+1 = x(st+1). The
authors of [37] first create the most general form of non-stationary RL problem imaginable,
by assuming that any of the components of the POMDP could be time-dependent. This is
illustrated in Figure 3.3.

The most general hypothetical setting considered by the authors is one where each one of
four selected components of the POMDP, namely the state transition function, the reward

[Version 1: mai 2023—18:47 ]



43

function, the action space, and the observation function, might be non-stationary (and thus
depend on time). For each component, the authors consider four possible levels of non-
stationarity:

• Stationary: The outputs of the function are independent of time, or depend on a
stationary task distribution with a fixed distribution over tasks.[37]:
• passive non-stationarity: The outputs of the function depend on time, independently
of the other inputs. In other words, in a given context or task, the function can be
considered stationary. In other words, situations where the evolution of the tasks
does not depend on the agent’s behaviour.[37]:
• active non-stationarity: The outputs of the function depend on time, and the non-
stationarity of the function is depends on the agent’s behaviour.
• Hybrid non-stationarity: There is both passive and active non-stationarity.

The Continual Reinforcement Learning (CRL) classification from [37] can be also de-
scribed using a hierarchy of assumptions. More precisely, as the authors point out, the
classification is the combination of a choice of the degree of non-stationarity, along with
the kind of non-stationarity for each term. With four terms considered, and four types
of non-stationarity, the total number of distinct hypothetical settings considered would be
44 = 256, however the authors consider the number of non-stationarity terms, without de-
scribing each combination of non-stationary and stationary terms, limiting the number of
potential settings to 16.

The authors do not appear to make any claims with regard to the applicability of algo-
rithmic solutions across different types or degrees of non-stationarity. However, intuitively,
one might imagine that, for instance, an algorithm that is able to solve CRL problems with
hybrid non-stationarity of degree four, i.e. the most challenging type of CRL problem imag-
inable, would probably also be applicable to more restricted problems, where only some
terms are non-stationary, or where the non-stationarity is of a simpler type.

One question that arises from this idea is whether passive non-stationarity is a necessary
precondition for active non-stationarity. In other words, whether it is impossible for one
term of the POMDP to be truly only actively non-stationarity, without any form of passive
non-stationarity whatsoever.

We suggest that that this is the case, given that passive non-stationarity can be defined
in terms of the function depending on time (or some context variable), while active non-
stationarity is defined as the function depending on both time (or the context variable) as
well as the agent’s actions in the environment. Assuming this to be correct, we suggest
that these assumptions can be organized into a problem hierarchy, and that an algorithm or
method able to handle active non-stationarity in a given term, should also be able to handle
passive non-stationarity.
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Fig. 3.3. Agent-Environment Interaction with Potentially Time Dependant Environment
Components (Figure 1 from [37]). The environment here is a POMDP where each component
may be time-dependant and non-stationary.

3.5. A Hierarchical Organization of Continual Learning
Settings

In this section, we construct a problem hierarchy of CL settings. We begin by identifying
the most widely used types of assumptions present in CL settings. We then introduce
another two other families of assumptions, which are orthogonal to the CL problem and
allow us to recover both CRL or Continual Supervised Learning (CSL). Combining these
two major families of assumptions produces our hierarchy of CL settings, which can be seen
in Figure 3.4. We present our CL hierarchy using a top-down approach, where assumptions
are added progressively to recover more familiar, traditional settings.

We formalize the framework using a generalization of the Hidden-Mode Markov Decision
Process (HM-MDP) [14], which, as described in Subsection 3.4.1, is itself a special case of a
POMDP [34].

Recall from Subsection 3.4.1 that an MDP is defined as a tuple M = 〈S,A, r, p, γ〉, and
that POMDPs add an observation space O and an observation function x : S 7→ O.

A HM-MDP consists of the same components as a POMDP, with the addition of a
context variable z and context space Z where z ∈ Z. We also refer to contexts as tasks.
The hidden context variable z ∈ Z also has an effect on the dynamics of the environment
or state transition function p(s′|s,a,z) for states s′,s ∈ S and action a ∈ A. The feedback
function r(s,a,z) provides an agent π(a|o) (e.g. a supervised model) with a reward, which
indicates the value of performing particular actions a after observing o in that environment.
Subsection 3.5.2 explains how the output of this function corresponds to targets in SL and
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Fig. 3.4. Hierarchy of Continual Learning Research Settings. (Figure 2 from our
own previous work) Continual learning research settings can be organized into a tree, in
which more general settings (parents) are linked with more restricted settings (children) by
the differences in assumptions between them. Settings generally become more challenging
the higher they are in this hierarchy, as less information becomes available to the method.
The central portion of the tree shows the assumptions specific to CL, while the highest
lateral branches indicate the choice of either supervised or reinforcement learning, which we
consider to be orthogonal to CL. By combining either with the central assumptions, settings
from Continual SL and Continual RL can be recovered to the left and right, respectively.

rewards in RL. The context variable follows a Markov chain p(z′|z), and therefore does not
depend on the agent’s performance (as in the passive non-stationarity case described by
[37].) The non-stationarity of the context enables modelling the task/context-changes of CL
settings. A change in the context variable is called a task boundary.

In the next section (Subsection 3.5.1) we show that by restricting the different elements
of the HM-MDP we recover different CL settings. Then in Subsection 3.5.2 we discuss
differences between continual supervised (CSL) and continual reinforcement learning (CRL).
We end in Subsection 3.5.3, by presenting additional assumptions that are relevant to CL
problems.

[Version 1: mai 2023—18:47 ]



46

3.5.1. Continual Learning Assumptions

Assumptions related to CL can be arranged into a hierarchy, as illustrated in the the cen-
tral portion of Figure 3.4. These settings cover most, if not all the current CL literature. We
start from the most general setting: continuous task-agnostic CL [89] and add assumptions
one by one.

3.5.1.1. Continuous Task-Agnostic CL. is our most general setting. The context variable
is continuous Z ∈ R. This setting allows for different kinds of drifts in the environment,
including smooth task boundaries, i.e. slow drift [89]. This setting is task-agnostic, meaning
that the context variable z is unobserved. Because the context is allowed to drift slowly,
it can be more challenging for the methods to infer when a task has changed enough to
compartmentalize the recently acquired knowledge before adapting to the new task. In RL,
this setting is analogous to the DP-MDP [86, 11]. In SL, it has also been studied in e.g.
[89, 2, 3].

3.5.1.2. Discrete Task-Agnostic CL. assumes clear (or well-defined) task boundaries and
so a discrete context variable Z ∈ N. In this setting the context can shift in a drastic way,
still without the method or agent being explicitly informed. Some cases where this setting
has been studied are [15, 68] for RL and [8, 32, 31] for SL.

3.5.1.3. Incremental Learning. (IL) relaxes the task-agnostic assumption: the task bound-
aries are observable. This is akin to augmenting the observation with a binary variable that
is set to 1 when z′ 6= z and 0 otherwise. In doing so, the algorithm does not need to perform
task-boundary detection. In SL, some well-known IL settings include class-IL and domain-IL
distinguished by their disjoint action space and shared action space, respectively. This is
discussed in Subsection 3.5.3.

At this point in the CL hierarchy, the tree branches in two directions, depending on the
order of remaining assumptions (see Figure 3.4). We will first explain the right sub-tree.

3.5.1.4. Task-Incremental Learning. (task-IL) assumes a fully-observable context variable
available to the agent π(a|x,z). In the literature, observing z is analogous to knowing the
task ID or task label. In this simpler CL setting, forgetting can be prevented by freezing a
model at the completion of each task and using the task-ID to retrieve it for evaluation.

The following settings remove the non-stationarity assumption in the contexts/tasks and
are often used to set an upper-bound performance for CL methods.

3.5.1.5. Multi-task Learning. removes the non-stationarity in the environment dynamics
and the feedback function as it assumes a stationary context variable p(z′|z) = p(z′). When
the contexts are stationary, there is no catastrophic forgetting (CF) [24] problem to solve.
Multi-task learning assumes a fully-observable task variable.
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3.5.1.6. Traditional Learning. branches off incremental CL and assumes a stationary en-
vironment. It is the vanilla setting machine learning defaults to. In our framework, it can
be seen as a multi-task learning problem where the task variable isn’t observable. However,
a more natural view of this setting is to simply assume a single task/context.

3.5.2. Supervised Learning and Reinforcement Learning Assump-
tions

So far we have introduced settings and assumptions that revolve mainly around the type
and presence of non-stationarity in the environment and the information observed by the
agent. These have allowed us to define the CL problem. To bring all of CL research under
one umbrella, we introduce two assumptions, orthogonal to the previous group, to recover
RL and SL settings. Methods for a given CL setting that do not make these additional
assumptions are therefore applicable to both its CSL and CRL versions, as in [41, 22].
Below we use the term observation as a state in RL parlance and the actions as predictions
in SL parlance. We also assume a single context or task.

3.5.2.1. Level of feedback. In RL, the feedback function r(s,a,z) returns a reward that
informs the agent about the value of performing action a when in state s and context z.
In SL however, the feedback function is generally both directly known by the agent and
differentiable, which allows the agent to simultaneously consider the value of all actions for
a particular observation. This feedback is computed based on a label when the action space
is discrete (classification) or a target when it is continuous (regression). The feedback level
is a key differentiating feature between RL and SL.

3.5.2.2. Active vs passive environments. In RL, it is generally assumed that the agent’s
action has an effect on the next observation or state.5 In other words, the dynamics of the
environment p(s′|s,a,z) are action-dependant and we call this an active environment. In
SL the agent is generally assumed to not influence the next state through its actions, i.e.
p(s′|s,a,z) = p(s′|s,z). The environment is thus referred to as being passive in these cases.

As seen in Figure 3.4, the two aforementioned assumptions are combined into a single
assumption for SL (blue, left) and for RL (red, right). By combining either the RL or SL
assumption along with those from the the central CL “trunk”, settings from CSL and CRL
are recovered. Future versions of Sequoia will decouple these assumptions to enable settings
such as bandits and imitation learning, as exemplified in Table 3.1.

5The bandit setting is one notable exception to this rule.
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low supervision: ft := {rt}
reward only (or reward only for ac-
tion performed).

complete supervision: ft :=
{rt,a∗t }
Reward + “optimal” action
(or reward for all possible actions)

Active environment:
p(st+1|st,at) 6= p(st+1|st)
Actions affect the environ-
ment’s state

Reinforcement Learning Imitation Learning

Passive environment:
p(st+1|st,at) = p(st+1|st)
Actions don’t affect environ-
ment state

Bandits / Multi-Arm Bandits Supervised Learning

Table 3.1. Assumptions related to the level of supervision and type of agent-environment
interaction.

3.5.3. Additional Assumptions

Additional assumptions can be added on top of the ones described above to recover
additional research settings. For example, a useful assumption in CL experiments is the one of
disjoint versus joint action space, i.e. whether the contexts/tasks share a same action space,
or whether that space is different for each task. In CSL, this assumption differentiates class-
incremental learning from domain-incremental learning [82]. In [21], where it is referred as
the shared output space assumption, a disjoint action space greatly increases the difficulty of
a setting in terms of forgetting. In CRL however, the studied settings mostly have a joint
action space, with the notable exception in the work of [10].

Other assumptions could also be relevant in defining a continual learning problem. For
instance, the action space being either discrete or continuous, resulting in classification and
regression CSL problems, respectively; a particular structure being required of the method’s
actions, as in image segmentation problems; an episodic vs non-episodic setting in RL;
context-dependant [8] versus context-independent feedback functions; and many more.

3.6. Extensions to other fields: Dealing with ill-defined
settings

Settings are usually loosely defined. Problem hierarchies, and categories more generally,
require unambiguous mathematical definitions. At first glance, these two realities seem hard
to reconcile. How can problem hierarchies provide a formal, rigorous definition for the messy
and ambiguous types of research problems that are studied in practice? Additionally, there
could be some concern that problem hierarchies, as a type system, might not be applicable
or self-consistent when applied to more general research settings, with somewhat ill-defined
tasks or evaluation procedures.

[Version 1: mai 2023—18:47 ]



49

This section provides a partial answer to these concerns. Here, we extend problem
hierarchies to the realm of unsupervised learning and some of its variants. We refer the
reader to Chapter 5 for a more in-depth discussion of the practical challenges and lessons
learned through implementing problem hierarchies in practice.

3.6.1. Unsupervised Learning

One way to define unsupervised learning is as a parent class of reinforcement learning,
(and therefore also supervised learning, by extension), where we remove the assumption
that the environment provides a reward signal to the method. This claim that RL and
SL are both subtypes of the unsupervised learning setting has counter-intuitive implications.
Notably, this implies that any method for unsupervised learning should be directly applicable
to a supervised or reinforcement learning setting. This is made possible by the fact that
under this definition of the unsupervised learning setting, it is still necessary for an agent
to interact with its environment, i.e., to provide an action for each observation. Therefore,
when applying an unsupervised learning method to a supervised or reinforcement learning
setting, that method will, in the worst case - that is, ignoring the adaptability property of
Subsection 3.3.4 - simply ignore the rewards or supervised labels.

There is no clear notion of task in the unsupervised learning setting. How best to com-
pare the performance of two unsupervised learning algorithms remains unclear. Recall, we
defined a setting as an evaluation procedure for a method or learning algorithm. We also
suggested that the output of applying a method to a learning problem from a setting is
a scalar result that represents the performance of that method on that particular learning
problem. Unsupervised Learning can therefore initially be viewed as a counter-example to
this definition of a setting, since it does not contain an explicit task. Assuming the above
definition for the unsupervised learning setting, this ambiguity with respect to the evaluation
of unsupervised learning methods can be addressed in different ways. For instance, we might
assume that the environment in the unsupervised setting has no explicit task, and that the
setting simply returns the same result for all methods that are applied onto it. This would
be a sufficient, albeit uninformative way to define unsupervised learning while remaining
consistent with the definition of the setting and method from Section 3.2. Another equiva-
lent option would be to assume that there is a task in the environment, but that it is never
observed by the method. This would mean that unsupervised learning methods would be
evaluated according to a criteria they are not made aware of.

Alternatively, one could assume that there is a task, but that it is only observed at
evaluation time. In other words, the environment only provides feedback during evaluation.
In this scenario, the agent might then make use of the understanding of its environment
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acquired during unsupervised training in order to succeed better at a supervised evaluation
task. This also assumes that methods are allowed to train/adapt themselves at test-time.

This option, while quite different to the other “purely unsupervised” variants, has the
benefit of more accurately reflecting how many unsupervised learning methods are evaluated
today. For instance, in the unsupervised representation learning setting, where we assume
that the method has to learn a model or encoder, one such evaluation procedures is referred
to as linear probing. In this procedure, after a method finishes training in an unsupervised
environment, the model’s representations of the dataset are extracted, and are fed to some
simple output network (e.g. a single-layer classifier), as part of some supervised evaluation
task, also referred to as a downstream task. The performance of the output network on
this downstream task (e.g. classification) is used as a measure of the performance of the
unsupervised method that learned the representations.

3.6.2. Semi-Supervised Learning

The Semi-Supervised Learning setting can be defined as a subclass of unsupervised learn-
ing, which adds the assumption that a supervised task is defined in the environment, and
that feedback is sparsely available to the method. In other words, Semi-Supervised Learn-
ing can be viewed as an unsupervised learning setting where the environment sometimes
provides feedback (as in Table 3.1).

3.6.3. Self-Supervised Learning

Self-Supervised Learning (SSL) can be defined as a subclass of unsupervised learning,
where additional assumptions are made about the environment and its properties, allowing
methods to create their own supervised tasks based on these assumptions. Methods (and
their agents) use these innate properties or assumptions about their environment to construct
additional self-supervised rewards, which can, for example, be used to learn representations
or to learn a model of the environment.

Self-supervised learning methods can be very general and widely applicable. For instance,
self-supervised learning objectives can be easily combined with supervised / reinforcement
learning objectives as well other self-supervised objectives. (See Appendix A for an illustra-
tive example of how self-supervised learning objectives can be used in the continual learn-
ing setting.) Model-based reinforcement learning is also arguably related to self-supervised
learning, in that model-based reinforcement learning agents often learn a model of their
environment through some form of self-supervision, for example by learning the dynamics
of the environment, the effect of actions on future observations, etc. For example, some
self-supervised reinforcement learning methods use self-supervised rewards in order to en-
courage the agent to visit unexplored regions of the state-space[64]. Other methods use
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self-supervision to learn the reversibility of potential actions[28] and use it as an auxiliary
self-supervised reward signal, leading to better policies in certain environments where there
is a potentially high risk associated with some actions, or where rewards are not available.

Summary
In this chapter, we described problem hierarchies, a system to create taxonomies of

learning problems. Problem hierarchies, as type hierarchies, benefit from the same properties
(e.g. polymorphism), which greatly facilitates the development of widely-applicable methods,
the reuse of prior work, and the comparison of new methods with existing baselines. We
first defined the main concepts of assumption, method, and setting, and provided a set of
considerations for building problem hierarchies from any field of research. We then provided
examples of existing problem hierarchies and showed how this system can be used to describe
various fields of research. We then introduced our own hierarchical organization of the
settings in the field of CL.

The following chapter will describe Sequoia, our implementation of this problem hierarchy
for CL. Chapter 5 will then provide a discussion of the practical challenges involved with
implementing problem hierarchies, as well as discuss future work related to Sequoia.
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Chapter 4

Sequoia

Note to reader:
Portions of this chapter were adapted from a submission to the CoLLAs conference.

In this chapter, we introduce Sequoia, an open-source Python library based on problem
hierarchies. Sequoia instantiates the hierarchy of CL settings described above in code, where
each setting corresponds to a class in a tree-shape inheritance hierarchy. Sequoia is explic-
itly designed to address the issues associated with Continual Learning research previously
described in Section 2.3 of Chapter 1.

To address these issues, we begin by establishing a clear, simple interface for both the
Setting and Method classes. This interface is flexible enough to allow for different types of
methods to be implemented, yet still rigid and clear enough that both settings and methods
are safely and easily interchangeable. The design of the Setting and Methods of Sequoia are
described in Section 4.1, Section 4.2 and Section 4.4.

Second, to help bridge the gap between the CRL and CSL domains, Sequoia uses the
Environment as the interface between methods and settings. This class extends the familiar
Env abstraction from OpenAI gym to also include supervised learning datasets. This makes it
possible to develop methods that are applicable in both the CRL and CSL domains. This will
be further discussed in Section 4.3, and a comprehensive list of the environments explicitly
supported by Sequoia is given in Section 4.5.

Finally, Sequoia uses inheritance to make methods directly reusable across settings. By
organizing research settings into an inheritance hierarchy, along with their environments,
observations, actions, and rewards, Sequoia enables methods developed for any particular
setting to be applicable onto any of their descendants through polymorphism. This mecha-
nism has the potential to greatly improve code reuse and reproducibility in CL research. We
illustrate this in Section 4.6, where we describe the methods available in Sequoia.

Section 4.7 will then provide a demonstration of the kind of large-scale empirical studies
which are made possible through the use of this new framework.
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Aside - Relation with other frameworks
We wish to emphasize that Sequoia is not competing with existing tools and libraries that

provide standardized benchmarks, models, or algorithm implementations. On the contrary,
Sequoia benefits from the development of such frameworks, since its primary function is to
serve as an organized catalog of the algorithms (methods) and benchmarks (settings) that
already exist in the research software ecosystem.

In the case of libraries that introduce standardized benchmarks, they can be used to
enrich existing settings with additional datasets or environments, or even to create entirely
new settings. This is for instance what is done in Sequoia with Continuum[17] and CTrL[83],
which are used to create the datasets of their equivalent CSL settings in Sequoia.

Likewise, libraries or frameworks that introduce new models or algorithms can also be
used to create new methods or to add new backbones to existing methods within Sequoia.
This is the case for Avalanche [52], whose algorithms are directly reused and made available
as methods targetting the CSL settings of Sequoia. In RL, the Stable-Baselines3[66] and
Continual World [85] libraries also have their algorithms made available as methods in
Sequoia.

External repositories can also register their own methods through a simple plugin system.
The end goal for Sequoia is to provide the research community with a centralized catalog of
the different research frameworks and their associated methods, settings, environments, etc.
The following sections will show examples of such extensions.

4.1. Designing a Setting / Method API
Establishing a distinction between research settings and methods makes a lot of sense,

in principle. To implement this idea in practice, however, requires making a number of
important design decisions. There already exists a number of design approaches and soft-
ware frameworks that create such a separation between learning algorithms and the data
they are trained or evaluated on. This section will provide an overview of some of these
approaches, describing their main abstractions and components of interest, as well as discuss
their strengths. We then describe how we reuse and extend these ideas in order to design
the Setting and Method classes of Sequoia in Section 4.2 and Section 4.4, respectively.

4.1.1. Related work: OpenAI Gym

OpenAI’s Gym library was previously mentioned in Subsection 2.2.2. Sequoia’s design is
heavily inspired by OpenAI Gym. In this section, we describe the main abstractions of the
gym library, as well as some of the design decisions that we believe have lead to its success.

The OpenAI Gym library [7] is ubiquitous in RL research. We argue that its wide adop-
tion can be attributed to its simple yet flexible environment, space, and wrapper abstractions.
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Fig. 4.1. UML diagram of the main components of the Gym API.

These abstractions enable the creation of general agents that can be easily applied on dif-
ferent types of environments. We refer readers to Listing 4, which showed type-annotated
pseudocode for the environment and space abstractions of OpenAI gym. Figure 4.1 shows a
diagram of the main components of Gym.

4.1.1.1. Environment. Gym environments have two main methods: step and reset.
step receives actions from an agent, and performs a single step in the environment, re-
turning the next observation, the rewards at that step, an episode termination signal (a.k.a.
done) as well as a dictionary containing information useful for debugging (info). reset is
used to start a new episode, and returns the initial observations.

By establishing an interface for the environment, rather than for the actor (as is/was
done in other RL frameworks), Gym places effectively no constraints on the kind of methods
that can be used on a particular environment.

4.1.1.2. Space. Environments use spaces to describe the domain, shape and type of the
observations they produce as well as the actions that expect to receive from an agent. Gym
includes simple spaces such as Discrete for integers and Box for arrays of floating-point values,
as as well as the Tuple and Dict spaces, which can be used to construct arbitrarily nested
structured spaces. These spaces can be used to describe the observations or actions of
virtually any environment imaginable.

Models can be created based on the properties of the observation and action spaces,
rather than for a specific environment. This has the great benefit of making these models
agnostic to the particular choice of environment, as long as they have the right type of
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# Specific to CartPole:
env = gym.make("CartPole-v0")
actor_network = nn.Sequential(

nn.Linear(4, 32),
nn.ReLU(),
nn.Linear(32, 2),

)

# Works on all envs with Box observation and Discrete action spaces:
def make_actor_network(env: Env[np.ndarray, int]):

return nn.Sequential(
nn.Flatten(),
nn.Linear(np.prod(env.observation_space.shape), 32),
nn.ReLU(),
nn.Linear(32, env.action_space.n),

)
env = gym.make("CartPole-v0")
actor_network = make_actor_network(env)

Listing 8. Example of how Spaces of Gym enable the creation of more general RL methods.
The type annotations in this example indicate the assumptions made by the actor about the
kinds of environments it can interact with, namely, environments whose observations are
arrays, and whose actions are integers.

observation or action space. For example, consider Listing 8, where an actor network for the
CartPole environment is created.

An alternative and perhaps interesting view of Listing 8 is that the actor is actually
describing a space of environments in which it is applicable, which itself is a subset of
the space of all environments. Such abstractions can even be very easily and succinctly
implemented as gym spaces, and are likely to play a critical role in future work related to
Sequoia. This idea will be expanded upon in Chapter 5.

4.1.1.3. Wrapper. The Wrapper class from gym is also a great contributing factor to
its success. Wrappers are objects that have an environment as an attribute, and delegate
all method calls and attribute accesses to it by default, but can also modify the actions,
observations, and rewards before they are passed to the wrapped environment. Wrappers
are used to create reusable transformations or operations that can be applied on different
environments. Wrappers can also modify the observation or action spaces to reflect their
corresponding new outputs / inputs. They prevent boilerplate logic, for example, flattening
or resizing observations, from having to be added to the agent or environment directly.
The Wrapper class is a very elegant way to add transformations or adapters between the
environment and the agent. The Gym library comes with a variety of wrappers that can be
useful for transforming images, tracking episode statistics, recording videos, and much more.

4.1.2. Related work: PyTorch-Lightning

PyTorch-Lightning (PL)[18] is a framework used to structure and organize PyTorch[63]
research code. It is rapidly gaining popularity, particularly in the SL and SSL research
communities. When using PL, research code is split up into different simple components,
each with its own distinct responsibilities:

(1) the LightningModule: contains the research logic (optimizer and loss calculation);
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class Wrapper(Env[Observation, Action]):
def __init__(self, env: Env):

self.env = env
self.observation_space = env.observation_space
self.action_space = env.action_space

def reset(self) -> Observation:
return self.env.reset()

def step(self, action: Action) -> Tuple[Observation, float, bool, dict]:
return self.env.step(action)

Listing 9. Minimal reimplementation of the Wrapper class from Gym.

(2) the Trainer: performs training and evaluation. Contains all the engineering code
required for high-performance training.

(3) the LightningDataModule (also refered to as DataModule): creates the training, valida-
tion, and testing dataloaders;

The LightningDataModule class is of particular interest to this work, since we build upon
it to create the Setting class of Sequoia, as will be described later in Section 4.2. PyTorch-
Lightning comes with a ton of features, but its arguably biggest selling-point is how well it
enables scaling up research code to use multiple GPUs, mixed precision, model parallelism,
and other high-performance features that would otherwise require significant changes to the
model.

4.1.2.1. LightningDataModule. The LightningDataModule is an abstraction for an object
that contains all the data-related logic. It’s responsibilities are simple: to create the training,
evaluation and testing data that is used by the Trainer to train the model. The minimal
interface of this class is shown in Listing 10.

class LightningDataModule(Generic[T]):
def prepare_data(self): ...
def setup(self, phase: str): ...
def train_dataloader(self) -> DataLoader[T]: ...
def val_dataloader(self) -> DataLoader[T]: ...
def test_dataloader(self) -> DataLoader[T]: ...

Listing 10. Interface of the LightningDataModule class from PyTorch-Lightning.

4.1.2.2. LightningModule and Trainer. The LightningModule class inherits from the fa-
miliar nn.Module class of PyTorch and adds methods and callbacks that make it simpler
to scale up and distribute the training of the module. LightningModules are required to
implement a forward pass (just like regular nn.Modules), as well as a training step, which
should either produce a loss tensor for a given batch of inputs, or perform the optimization
manually. Pseudocode for the LightningModule class is shown in Listing 11.
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class LightningModule(nn.Module, Generic[T]):
@abstractmethod
def forward(self, input) -> Any:
@abstractmethod
def train_step(self, batch: T) -> Tensor: ...
@abstractmethod
def configure_optimizers(self) -> torch.optim.Optimizer: ...
def val_step(self, batch: T) -> Tensor: ...
def test_step(self, batch: T) -> Tensor: ...

Listing 11. Pseudo-interface for the LightningModule class.

datamodule: LightningDataModule = SomeDataModule()
model: LightningModule = SomeLightningModule()
# Create a Trainer that will train with 4 gpus:
trainer = Trainer(max_epochs=100, gpus=4, strategy="dp")
trainer.fit(model, datamodule)
# Evaluate the model
eval_results = trainer.validate(model, datamodule.val_dataloader())
print("Val Results: ", eval_results)
# Test the model
test_results = trainer.test(model, datamodule.test_dataloader())
print("Test Results: ", test_results)

Listing 12. Example usage of the LightningDataModule, LightningModule, and Trainer
components of PL.

The Trainer contains all the engineering logic, as well as the training, evaluation, and test
procedures. A pseudocode representation of the Trainer is available in Listing 26. Listing 12
contains a simple example of how these abstractions can be used.

These two classes are not exactly comparable with the Setting and Method of Sequoia, as
it is entirely up to the Method to specify the training procedure, and as such, they are free
to choose to use or not use PyTorch-Lightning. Sequoia does come with a “Base” method
that uses PyTorch-Lightning that is easy to extend and makes use of the features of PL.
This method is the subject of Subsection 4.6.1.

Summary

In summary, the Env from gym is a very flexible and generic abstraction for a source of
data, and LightningDataModules have great cohesion, are self-contained, and make it easy
to create data-agnostic models. We take advantage of both to create the Setting class, which
is described next.

4.2. Setting
We implement the Setting as a configurable evaluation procedure for a Method. The re-

sponsibilities of a Setting are to 1) specify when, and on what kind of environments/datasets
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the method is to be trained and evaluated, and 2) to actually perform the training and eval-
uation procedure on a given method and to return results. Results should contain a single
scalar, called the objective, which is to be a measure of how well the Method performed
in that particular setting. This objective should be comparable between methods. Results
could also contain other metrics relevant to the setting.

Sequoia defines a very simple interface for settings, the AbstractSetting, which is then
implemented by the Setting class, the most general (a.k.a. root) setting in our hierarchy. The
AbstractSetting, shown in Listing 13, has only one required method: apply, which should
contain all the training and evaluation logic. The AbstractSetting doesn’t impose any kind of
form or restriction on the training/evaluation structure, and is provided as a simple starting
point to create new settings or hierarchies for other fields of ML.

class Setting:
class Results:

objective: float

def apply(self, method: Method) -> Results:
...

Listing 13. The minimal interface for a Setting in Sequoia.

The Setting class of Sequoia is the root node of our hierarchy of Continual Learning
settings. The Setting class reuses and builds upon good ideas from both Gym and PyTorch-
Lightning, and is shown in Listing 14.

Concretely, settings in Sequoia create training, validation, and testing environments that
a method interacts with, and coordinate the training/testing of the method following the
protocol of the corresponding setting in the literature. The main abstractions of Sequoia, as
well as the relationship between them are illustrated in the diagram of Figure 4.2.

Settings provide information about the data that Methods will encounter in these environ-
ments in advance using Gym spaces. The observation_space, action_space and reward_space

properties of the settings reflect the corresponding spaces of their environments. These
properties are implemented using a subclass of gym.spaces.Dict that produces dict-like ob-
jects of the corresponding type defined on the Setting (i.e., <Setting>.Observations for
<Setting>.observation_space, etc). For settings where the environments and their spaces
vary between tasks, for instance class-incremental learning where the number of potential
actions (class predictions) grows over time, these properties on the Setting correspond to
the union of the spaces from each environment. All of this makes it so Methods can create
their models ahead of time, and these models will be compatible with all environments that
will be encountered in that setting.

The Setting class also inherits from the LightningDataModule class, and implements the
required methods (train_dataloader, val_dataloader and test_dataloader). These methods
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# Environment := Union[gym.Env, DataLoader]
class Setting(AbstractSetting, LightiningDataModule):

class Observations:
...

class Actions:
...

class Rewards:
...

class Results:
objective: float

observation_space: Space[Observations]
action_space: Space[Actions]
reward_space: Space[Rewards]

# Inherited from LightningDataModule:
def prepare_data(self) -> None: ...
def setup(self, phase: str) -> None: ...
def train_dataloader(self) -> Environment[Observations, Actions, Rewards]: ...
def val_dataloader(self) -> Environment[Observations, Actions, Rewards]: ...
def test_dataloader(self) -> Environment[Observations, Actions, Rewards]: ...

@abstractmethod
def apply(self, method: Method) -> Results:

...

Listing 14. The Setting class: the root of Sequoia’s hierarchy of CL settings.

create Environments which are both DataLoaders and gym Envs and will be desribed next in
Section 4.3. This interface also makes it easier for methods to use PyTorch-Lightning [19]
to perform high-performance training of their models.1

Each setting is created by extending a more general setting and adding additional assump-
tions. This inheritance relationship from one setting to the next also extends to the objects
produced / accepted by the setting’s environments (Observations, Actions, and Rewards) they
create. Listing 15 illustrates how this subtyping relation between settings and their objects
is implemented in Sequoia.

Settings are available for each combination of the CL assumptions, along with the choice
of one of RL / SL (as illustrated in Figure 3.4), for a total of 12 settings2. These two
“branches” (one for CRL and the other CSL) form the basis of Sequoia’s eponymous tree
of settings. Each setting inherits from one or more parent settings, following the above-
mentioned organization. A diagram showing the hierarchy of CL setting classes can be seen
in Figure 4.3.

1It is important to note that methods are in no way required to use PyTorch-Lightning.
2Other common SL settings, such as Domain-Incremental and Class-Incremental learning are also available
in Sequoia, but they rely on an additional family of assumption (fixed action space), and are thus omitted
from the main portion of this paper.
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Fig. 4.2. UML Diagram showing the main abstractions of Sequoia.

4.3. Environment
Settings in Sequoia create Environments, which adhere to both the gym.Env and the

torch.DataLoader APIs. This makes it easy for SL researchers to transition to RL and vice-
versa. These environments receive Actions and return Observations and Rewards. Observations
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Fig. 4.3. UML Diagram of the CL assumptions hierarchy, as implemented in Sequoia. The
CRL and CSL branches are not shown, but follow an identical structure. Observations, Ac-
tions and Rewards for each setting are also omitted here, but also follow the same structure.
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class Incremental(Setting):
class Observations(Setting.Observations):

x: Tensor
t: Optional[Tensor]

class Actions(Setting.Actions):
action: Tensor

class Rewards(Setting.Rewards):
y: Tensor

class Results:
...

nb_tasks: int
dataset: str
# Fixed to True:
task_labels_at_train_time: Final[bool] = True
# Either True or False:
task_labels_at_test_time: bool = False

class TaskIncremental(Incremental):
class Observations(Incremental.Observations):

x: Tensor
t: Tensor

class Actions(Incremental.Actions):
...

class Rewards(Incremental.Rewards):
...

class Results:
...

# inherited members (nb_tasks, etc) not shown
...
# Now fixed to True:
task_labels_at_test_time: Final[bool] = True

Listing 15. Illustration of the subtyping relation between Settings in Sequoia. In this
example, the Incremental Learning setting has task labels available at training time, but not
at test time (hence the Optional[Tensor] annotation in the observations for that Setting).
Task-Incremental then adds the assumption that task labels are also available at test-time,
and narrows the type of the t. Note that this inheritance relationship does not extend to the
type of Results produced by the settings, as settings are allowed to use different objectives
or metrics than their parents.

contain the input samples x, and may also contain task labels for each sample, depending on
the setting. These objects have the same structure in both RL and SL settings. However, as
described in Subsection 3.5.2, in SL, Actions contain the predictions, while Rewards addition-
ally contain targets or labels. These objects are defined on the Setting and follow the same
pattern of inheritance as the settings themselves.

4.4. Method
The Method class of Sequoia has a simple interface. Methods are required to implement fit,

which is used for training and validation, as well as get_actions, which is used for inference
at test-time. Both configure and on_task_switch are optional hooks: configure is called
before training so that the method can adapt itself to the Setting, and on_task_switch
may be called when a task boundary is reached, and may be passed the id of the new task,
depending on the chosen setting.
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class Method(ABC):
target_setting: Type[Setting]
def configure(self, setting: Setting):

...
@abstractmethod
def fit(self, train_env: Environment, valid_env: Environment):

...
@abstractmethod
def get_actions(self, observations: Observations, action_space: Space[Actions]) -> Actions:

...
def on_task_switch(self, task_id: Optional[int]):

...

Listing 16. Basic interface for a CL Method in Sequoia.

4.5. Available Environments
One of the main objectives of Sequoia’s design is to leverage existing frameworks as much

as possible, such that its primary contribution remains to provide a useful organization of
their settings and methods within a problem hierarchy.

In order to maximize the reuse of existing frameworks and libraries, Sequoia uses the
Environment as its most general abstraction for a learning problem, in both RL as well as
SL. The process of adding new environments to Sequoia settings is also designed to be as
simple as possible.

Settings are designed in such a way that the environments they use for training, valida-
tion, or testing can be swapped out easily. Customized environments can be passed directly
as arguments to the Settings, which will then use them as part of their training/evaluation
protocol.

This section describes the environments available in Sequoia, both in SL as well as RL.
A list of all the supported environments is shown in Table 4.1.

4.5.1. Supervised learning environments

SL settings can be passed one or more datasets, which they wrap and expose to methods
as passive environments, which are both DataLoaders as well as gym environments. Sequoia
uses two open-source packages to create supervised learning datasets: continuum and CTrL,
which will be briefly described here.

4.5.1.1. Continuum. Sequoia uses the Continuum package [17], to create most of its su-
pervised learning datasets. Continuum is a library used to create the datasets and scenarios
commonly used in continual supervised learning. It can be configured to create many differ-
ent types of incremental learning scenarios, including domain-incremental, class-incremental
and many more.
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4.5.1.2. Continual Transfer Learning benchmark. The Continual Transfer Learning
benchmarks (CTrL)[83] package is a tool used to generate streams of SL tasks. It can be
used to create various different types of CL scenarios, and is easy to configure. The CTrL
package comes with a set of 6 benchmarks: S+, S−, Sin, Sout, Spl, and Slong, each of which
is meant to access a different kind of transfer in a lifelong learning setting. Each of these
benchmarks can be used as the source of the datasets used by CSL settings in Sequoia.

4.5.2. Reinforcement Learning environments

Through its close integration with gym, Sequoia is able to use any gym-compatible en-
vironment as the “dataset” used by its RL settings. Setting create continuous or discrete
tasks, depending on the choice of setting and environment.

For settings with continuous tasks, Sequoia samples a sequence of different environment
configurations, and the environment is modified over time at each step or episode boundary,
using a configuration that is the linear interpolation of the two nearest configurations in the
schedule. Tasks can either be constructed automatically, given an environment and desired
number of tasks, or passed manually as done in Listing 17. Adding support for generating
tasks in other environments is easily done by registering a function to use to sample the
tasks in that environment. Examples of how to add new continuous and discrete tasks in an
environment are included in Appendix B.1.

from sequoia.methods.stable_baselines3_methods import A2CMethod
from sequoia.settings.rl import ContinuousTaskAgnosticRLSetting

# Note: other types of settings could also be used here:
setting = ContinuousTaskAgnosticRLSetting(

dataset="CartPole-v1",
train_max_steps=20000,
train_task_schedule={

0: {"gravity": 10, "length": 0.2},
10000: {"gravity": 100, "length": 1.2},
20000: {"gravity": 10, "length": 0.2},

}
)
# Create the method to use here:
method = A2CMethod()
results = setting.apply(method)
print(results.summary())

Listing 17. Example of creating a CRL setting by passing a task schedule. For settings
with continuous tasks (i.e. the Continuous, Task-Agnostic Continual Learning (CTaCL)
setting), the environment is updated continuously using an interpolation of the two nearest
configurations. In settings with discrete tasks, the keys represent the task boundaries, as a
number of environment steps.
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Settings with discrete tasks - in other words, all settings except CTaCL - can use any
gym environment whatsoever. This is thanks to the above-mentioned fact that a list of gym
environments to use for each task can be passed as an argument to the setting constructor,
and are then used as part of the training and evaluation procedure. This was also very useful
while developing Sequoia, as it made it much easier to reformulate existing CRL benchmarks
as settings.

The benchmarks and environments that are explicitly supported by Sequoia are described
below and are also listed in Table 4.1.

4.5.2.1. Classic control environments. The classic control environment of Gym[7] are eas-
ily configurable, and are thus a great starting point for CRL experiments. Sequoia supports
sampling both continuous and discrete tasks in these environments namely the CartPole,
MountainCar, Pendulum, MountainCarContinuous, and more. The tasks in these simple
environments correspond to different environment configurations, i.e. different dictionaries
mapping from environment attributes to the values to set for these attribute. When Se-
quoia generates the tasks, they are created by sampling from a normal random variable with
configurable standard deviation, centered at the default value of that attribute.

For example, when using one of the classic-control environments from gym such as
CartPole, tasks are created by sampling a new set of values for the environment constants
such as the gravity, the length of the pole, the mass of the cart, friction coefficients, etc.

4.5.2.2. MuJoCO environments. Inspired by [57], Sequoia has explicit support for cre-
ating CRL settings using the widely-used MuJoCo[80]-based gym environments such as
HalfCheetah, Walker2d, and Hopper. Similarly to the classic control environments, contin-
uous tasks in these environments are created by introducing changes in the environmental
constants such as gravity. Continuous tasks can thus easily be created in this case, as the
environment is able to respond dynamically to changes in these values at every step, and the
task can evolve smoothly by interpolating between different target values.

Discrete tasks in these environments can also include changes to the mass and scale of the
different body parts of the model, in addition to changing the environmental constants such
as gravity. These modifications only become available with discrete tasks, as they cannot be
performed in real-time on a MuJoCo environment instance, and thus require instantiating
one environment per task, each with different masses or limb sizes.

4.5.2.3. MonsterKong. Sequoia also introduces a non-stationary version of the Mon-
sterKong Arcade learning environment[6], which can be used to create discrete tasks in-
volving changing map configurations. The motivation and reasoning behind the creation of
this environment is described in detail in Appendix D.1.
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Fig. 4.4. Replication of Figure 1 from the original Gym paper[7]: “Images of some environ-
ments that are currently part of OpenAI Gym.” Since then, Gym environments have become
ubiquitous in RL research.

Methods SL BaseMethod.{base, EWC, PackNet }, PNN, replay, HAT, CN-DPM
Avalanche.{naive, AGEM, CWR∗, EWC, GDumb, GEM, LWF, replay, SI}

RL BaseMethod.{base, EWC, PackNet }, PNN
stable_baselines3.{A2C, DDPG, DQN, PPO, SAC, TD3}
continual_world.{SAC, AGEM, EWC, VCL, PackNet, L2 reg., MAS, replay}

Environments SL continuum.{{K,E,Q,Fashion}MNIST, Cifar10(0), ImageNet100(0), Core50, Syn-
bols}
CTrL.{STL10, STL50}

RL gym.envs.classic_control.{CartPole, Pendulum, MontainCar{Continuous}}
gym.envs.mujoco.{Hopper, Half-Chettah, Walker2d}
gym.envs.atari.{Monsterkong}
metaworld.{MT10, MT50}
continual_world.{CW10, CW20}

Metrics {Transfer Matrix, forward transfer, backward transfer,
Average final performance, Online Training Performance} ×

SL {loss, accuracy}
RL {loss, total reward, average reward, episode length}

Table 4.1. Sequoia’s methods, environments and metrics. Incremental settings in
Sequoia can be passed custom environments to use for each task. This makes it possible to
use virtually any gym environment to create custom incremental RL settings. Likewise, a
custom dataset can be passed for each task to create arbitrary incremental SL settings. The
environments listed here are those explicitly supported in Sequoia. Note that references for
each supported method are omitted here, but included in Table 4.2.

4.5.2.4. Meta-World. Meta-World[87] is a library of Gym environments for robotic ma-
nipulation tasks, based on the MuJoCo physics engine[80]. It includes a wide variety of
environments and tasks as well as a set of standardized benchmarks. These benchmarks,
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namely ML10, MT10, ML45, or MT50, consist in a pre-defined sequence of training environ-
ments and tasks, along with an associated testing environment, with the test environment
or test tasks being different than those at train time. The difference between the training
and testing conditions varies between benchmarks, which makes it possible to study the
generalization ability of RL algorithms under different conditions.

Meta-World has become one of the most widely used benchmarks in continual and multi-
task RL. The computational requirements of running continual or multi-task RL on the
Meta-World benchmarks are quite substantial, however. The MT10, MT50 benchmarks
from Meta-World [87] can be used in the Discrete CRL settings.

4.5.2.5. Continual World. Continual World[85] creates a set of CRL benchmarks based
on Meta-World[87], by selecting a subset of the tasks, ordering them, and assigning a com-
putational limit for each task. The CW10 and CW20 benchmarks introduced in [85] can be
used with RL settings of Sequoia. The package also includes with a set of CRL methods,
based on a Soft Actor-Critic backbone, which are also made available in Sequoia.

Fig. 4.5. Illustration of the CW10 and CW20 benchmarks of [85]. Image Source: https:
//github.com/awarelab/continual_world/blob/main/assets/images/cw20.png

4.6. Available Methods
One of Sequoia’s biggest strength is how easy it is to extend. As mentioned earlier in Sec-

tion 4, most methods in Sequoia are the result directly reusing existing implementations from
other frameworks and repositories. This is the case for Avalanche [52], Stable-Baselines3 [66]
and Continual World [85]. Table 4.2 shows all the methods currently available in Sequoia,
along with their target setting.

4.6.1. The Base Method

As a proof of concept for the development of general methods, Sequoia features a highly
customizable BaseMethod, which has the root Setting as its target setting, and is thus appli-
cable onto any Setting in the tree, both in RL and in SL.
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Method Target setting
BaseMethod Setting (all)
BaseMethod.EWC [41] Incremental Learning (RL + SL)
BaseMethod.PackNet [54] Incremental Learning (RL + SL)
replay Incremental SL
CN-DPM [46] CTaCL (all CSL)
HAT [73] Task-Incremental SL
PNN [71] Incremental SL
Avalanche.naive [52] Incremental SL
Avalanche.AGEM [12] Incremental SL
Avalanche.cwr_star [52] Incremental SL
Avalanche.EWC [41] Incremental SL
Avalanche.Gdumb [65] Incremental SL
Avalanche.GEM [53] Incremental SL
Avalanche.LWF [49] Incremental SL
Avalanche.replay Incremental SL
Avalanche.SI [88] Incremental SL
stable-baselines3.A2C [59] Incremental RL
stable-baselines3.DDPG [50] Continual RL
stable-baselines3.DQN [60] Continual RL
stable-baselines3.PPO [72] Continual RL
stable-baselines3.SAC [29] Continual RL
stable-baselines3.TD3 [25] Continual RL
continual_world.SAC [29] Incremental RL
continual_world.AGEM [12] Incremental RL
continual_world.EWC [41] Incremental RL
continual_world.VCL [61] Incremental RL
continual_world.MAS [1] Incremental RL
continual_world.L2 regularization Incremental RL
continual_world.PackNet [54] Incremental RL
continual_world.Replay Incremental RL

Table 4.2. Sequoia’s methods support. Each method specifies a target setting, listed
on the right. Most methods are applicable in either RL or SL, while some can be applied
to both. Methods also specify the “level of nonstationarity" they are prepared to handle, as
a choice of one of Continual (which is also referred to as Continuous Task-Agnostic CL in
Subsection 3.5.1), Discrete, Incremental, Task-Incremental, Traditional, and Multi-Task.

While developing a new Method in Sequoia, users are encouraged to separate the training
logic from the networks used, the former being contained in the Method, and the latter in a
model class, as advocated by PyTorch-Lightning [19] (PL), which we employ as part of this
BaseMethod.

The BaseMethod is accompanied by the BaseModel, which acts as a modular and ex-
tendable model for CL Methods to use. This BaseModel adheres to PyTorch-Lightning’s
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Fig. 4.6. Figure 1 from [40]: “Elastic weight consolidation (EWC) ensures task A is
remembered whilst training on task B. Training trajectories are illustrated in a schematic
parameter space, with parameter regions leading to good performance on task A (gray) and
on task B (cream). After learning the first task, the parameters are at θ∗A. If we take gradient
steps according to task B alone (blue arrow), we will minimize the loss of task B but destroy
what we have learnt for task A. On the other hand, if we constrain each weight with the same
coefficient (green arrow) the restriction imposed is too severe and we can only remember
task A at the expense of not learning task B. EWC, conversely, finds a solution for task
B without incurring a significant loss on task A (red arrow) by explicitly computing how
important weights are for task A.”[40]

LightningModule interface, making it easy to extend and customize with additional call-
backs and loggers. Likewise, the BaseMethod employs a pl.Trainer, which is able to train
the BaseModel using the environments produced by any setting. Sequoia’s Settings are also
closely related to PL’s DataModule abstraction.

Using this BaseModel when creating a new CL method can be particularly useful when
transitioning from a CL Setting to its parent, as it comes equipped with most of the compo-
nents required to handle such transitions (e.g. task inference, multi-head prediction, etc.).
These components, as well as the underlying encoder, output head, loss function, etc. can
easily be replaced or customized.

Additional losses can also easily be added to the BaseModel through a modular interface,
which was originally designed to facilitate exploration of self-supervised learning research.
Appendix A describes an experiment where the base method is used with combinations
of different self-supervised auxiliary tasks, in order to mitigate catastrophic forgetting in
different CSL settings.

4.6.1.1. EWC. Elastic Weight Consolidation (EWC)[40] is a regularization-based method
for CL. When training on a new task, it adds a loss term that prevents weights that are
judged to be important to the previous tasks from changing too much. The importance of
the weights for each task is determined based on the loss gradients and the Fisher Information
Matrix.

This regularization term is implemented in Sequoia as an auxiliary loss, which can be
easily added to the BaseModel. This is the approach taken by the EWC method of Sequoia,
which extends the BaseMethod and adds the EWC auxiliary loss to the BaseModel. The EWC
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Fig. 4.7. Figure 1 from [54], which shows how PackNet learns multiple tasks in the same
network.

method requires some access to the task boundaries, and therefore cannot be applied to the
CTaCL setting, where the environment changes smoothly over time and where there are no
discrete task boundaries. The EWC method therefore restricts the domain of application of
the BaseMethod slightly, by having the Incremental Learning setting as it’s target setting.

4.6.1.2. PackNet. The PackNet method [54] is a parameter isolation method for CL,
where multiple tasks can be learned within a single network by learning masks that prevent
changing the weights of the previous tasks. After learning each task, the weights of the net-
work are sorted based on their importance, as measured quite simply using their magnitude,
and a pre-determined fraction of these weights, e.g. 50%, are kept, and the other weights are
set to 0. The network is then retrained on the current task, using this sparse network, and
the value of these weights are then frozen and perserved for future tasks, where this cycle
starts over again. This process is illustrated in Figure 4.7, Figure 1 from [54]

The pruning mechanism of PackNet is very nicely decoupled from the actual training
objective or downstream task, which makes it a very modular and widely-applicable method
for CL in various domains. Following this idea, it is implemented in Sequoia as a PyTorch-
Lightning Callback, that can be added to any LightningModule (including the BaseModel).
Similarly as in EWC, we also make it available as a standalone method, which extends
the BaseMethod and adds the PackNet callback to the BaseModel. Also simiarly to EWC,
PackNet requires knowledge of the task boundaries. It therefore also has the Incremental
Setting as its target setting.

4.6.2. Supervised Learning Methods

There already exists different libraries or frameworks that provide algorithms for CSL.
As mentioned in Section 4, one of the main goals of Sequoia is to serve as a unified catalog of
the existing methods and settings in CL, and to allow these methods to be used on different
settings with as little overhead as possible.
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Fig. 4.8. Figure 1 from [52], showing the different components of Avalanche.

To that end, Sequoia benefits from recent developments in CL libraries such as
Avalanche [52]. This subsection describes the methods applicable exclusively to the CSL
settings of Sequoia.

4.6.2.1. Avalanche. Avalanche [52] is a feature-rich library for CL research that includes
many CL algorithm implementations from the literature as well as various evaluation
pipelines. Avalanche offers both standardized benchmarks as well as a growing set of CL
methods, which are referred to as strategies in Avalanche. See Figure 4.8 for an illustration of
the main components of Avalanche. There are interesting comparisons to be made between
the approach taken by Sequoia and Avalanche. A more detailed description of the similarities
and differences between them is included in Appendix C.

Many of the strategies of Avalanche [52] are available as Methods in Sequoia, and mostly
target the Incremental CL setting. See Table 4.1 for a complete list the Avalanche methods
in Sequoia.

4.6.2.2. CN-DPM. The Continual Neural Dirichlet Process introduced in [46] is a very
general method for task-free CL. It learns a model consisting of a mixture of experts, that
are spawned over the course of training. When the model encounters samples with a high
uncertainty (or high training loss), these samples are stored in a buffer, called the sort-term
memory buffer. Once filled, a new expert is spawned and trained on the contents of the short-
term memory buffer. Experts are able to share parameters without interfering with each
other using gradient-gated connections between their modules. Importantly, this method
does not necessitate any task boundary information, and creates experts autonomously over
time. This method is available as an optional add-on to Sequoia, and can be applied to any
CSL setting.
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4.6.3. Reinforcement Learning Methods

Libraries for RL can easily be used to create new methods, as we opted to uses the gym
environment as the general abstraction for a learning problem. Similarly as in supervised
learning, the goal here is to reuse existing libraries as much as possible, and make their
algorithms and models available as methods that target the appropriate RL setting from our
hierarchy.

4.6.3.1. Stable-Baselines3. The Stable-Baselines3 (SB3) library contains different RL al-
gorithm implementations. They are not specifically designed for CRL problems, but can still
be used as a foundation or backbone to create CRL methods.

4.6.3.2. Continual World. As mentioned previously, the Continual-World [85] package
defines two benchmarks based on Meta-World [87]. It also includes different CRL meth-
ods based on SAC. This library required quite a bit of work to be usable in Sequoia, as
the methods were all directly incorporated into the same model. These methods were dis-
entangled, and each of them now inherits from an SAC base method. They are made
available in Sequoia through a fork of the original work of [85], which is available at
https://www.github.com/lebrice/continual_world.

4.7. Experiments
Sequoia’s design makes it easy to conduct large-scale experiments to compare the per-

formance of different methods on a given setting, or to evaluate the performance of a given
method across multiple settings and datasets. We illustrate this by performing large-scale
empirical studies involving all the settings and methods available in Sequoia, both in CRL
and CSL. Each study involves up to 20 hyper-parameter configurations for each combination
of setting, method, and dataset, in both RL and SL, for a combined total of ≈ 8000 individ-
ual completed runs. This section provides an overview of these experiments, which are also
publicly available at https://wandb.ai/sequoia/.3

Sequoia also makes it possible to use methods originally designed for a general setting,
and evaluate their performance when applied to a different type of sub-problem. For instance,
representation learning methods are among the most general types of methods imaginable,
as they only assume that some type of data (e.g. images) be present in order to be usable.

In Appendix A, we use this fact to study the performance of self-supervised learning
methods in a continual learning setting.4 We examine the effects of different combinations of
self-supervised, supervised, and continual learning losses on the amount of forgetting incurred
by a neural network in a task-incremental setting.
3We will update these sample studies periodically to reflect all future improvements made to the framework.
4This experiment was excluded from the main portion of this work for the sake of brevity.
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4.7.1. Continual Supervised Learning

As part of our CSL study, we use some of the “standard” image classification datasets such
as MNIST [45], Cifar10, and Cifar100 [42]. Furthermore, we also include the Synbols [43]
dataset, a character dataset composed of two independent labels: the characters and the
fonts. (See Appendix D.1.1 for the motivation for this dataset). Exhaustive results can
be found online on the Weights and Biases platform at https://wandb.ai/sequoia/csl_
study.

A sample of these results is illustrated in Figure 4.9, which shows results of various
methods in the class-IL and task-IL settings in terms of their final performance and runtime.
We note that some Avalanche methods achieve lower than chance accuracy in task-IL because
they do not use the task label to mask out the classes that lie outside the tested task.

4.7.2. Continual Reinforcement Learning

We apply the RL methods from SB3 on multiple benchmarks built on HalfCheetah-
v2, Hopper-v2, MountainCar-v0, CartPole-v0, MetaWorld-v2. We also introduce a new
discrete domain benchmark, namely Continual-MonsterKong, that we developed to study
forward transfer in a more meaningful way (see Appendix D.1 for a detailed discussion of
this benchmark). Complete results are available at https://wandb.ai/sequoia/crl_study.

A sample of these results is in Figure 4.10. It presents various methods in the tradi-
tional and incremental learning settings with their final performance, online performance
and normalized runtime.

4.7.3. HalfCheetah-gravity and Hopper-Bodyparts

In Table 4.3, we apply the continual-world methods, built on top of SAC, on a incremental
RL benchmark inspired by [58]. Finally, Figure 4.11 shows the transfer matrix achieved by
one such algorithm, namely PPO [72].

HalfCheetah-gravity and Hopper-Bodyparts are two benchmarks introduced in [58]. In
the first, each task consist of a different gravity. In the latter, the agent’s body parts are
changing in size at each task. The gravity and body parts values are sampled as in [58].
The two benchmarks we study are each composed of 10 tasks. Figure 4.10 shows the results
of this study.
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Fig. 4.9. Incremental Supervised Learning results. Final performance (vertical axis)
is plotted against runtime (horizontal axis). The methods achieving the best trade-off lie
closer to the top-left of the figures. The dotted line shows chance accuracy for each setting-
dataset combination. For each methods, several trials are presented depending on metrics
composed of linear combination of final performance and (normalized) runtime. Intuitively,
better performance in CL normally comes at the cost of increased computation. This intu-
ition is reflected in the presented results, as highlighted by the observed correlation between
final performance and runtime. GEM and GDumb achieve the best tradoff, although the
latter cannot make predictions in an online manner and thus serves more as a reference point.
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Fig. 4.10. Impact of the RL backbone algorithm in Traditional and Incremental
RL. Final performance (vertical axis) is plotted against online performance (horizontal axis).
The bubbles’ size indicates the normalized runtime of the methods. Datasets are presented
in each row and settings are presented in each column. For each method, several trials are
presented depending on metrics composed of linear combination of final performance and
online performance. The methods achieving the best trade-off lie closer to the top-right of the
figures and have smaller bubble size. In general, we observe a trade-off between performance
and runtime, a tendency also observed in Figure 4.9. Another interesting trade-off can
be observed between final performance and online performance. E.g., in both MonsterKong
benchmarks, DQN achieves the best final performance whereas PPO achieves the best online
performance. Because the former is off-policy, it can re-use the previously acquired data to
retain its performance on past tasks, increasing final performance. Contrarily, the latter,
being on-policy, focuses on the current task and thus learns it faster, thereby increasing its
online performance.
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Method Final Perf. Online Perf. Runtime (h)
SAC (base) 194 ± 105 254 ± 9 19.0±0.3
AGEM 787 ± 268 283 ± 14 24.9±2.6
EWC 616 ± 257 232 ± 17 19.3±2.5
L2 840 ± 224 245 ± 22 18.7±2.5
MAS 607 ± 236 236 ± 13 20.3±1.7
PackNet 1153 ± 325 290 ± 41 25.2±6.3
Perfect Memory 1500 ± 399 255 ± 7 18.2±2.0

Table 4.3. Incremental RL results. Multiple CRL methods, all built on top of SAC,
are tested on the Hopper-Bodyparts benchmarks. All CRL methods outperformed the Fine-
tuning SAC baseline, validating their efficacy. Experience replay with a Perfect Memory
achieves the best retained performance on all tasks, followed closely by PackNet.

Fig. 4.11. PPO’s Transfer matrix in Continual-MonsterKong. Each cell at row i
and column j indicates the test performance on task j after having learned tasks 0 through
i. The contents of each cell correspond to the average reward per episode obtained in the
test environment for the corresponding task. Positive numbers above the diagonal indicate
generalization to unseen tasks, which is achievable by design in the Continual-Monsterkong
benchmark.
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Summary
In this chapter, a concrete implementation of problem hierarchies for the field of CL was

introduced. Related works, in the form of software libraries and frameworks were described,
and we showed how they contributed to Sequoia’s design. The Setting, Method, and Envi-
ronment abstractions of Sequoia were described and illustrated, followed by a list of their
concrete implementations currently available in Sequoia.

To demonstrate Sequoia’s effectiveness, a set of experiments were presented, where we
perform large-scale comparisons of the performance of methods on settings in both SL and
RL. In Appendix A we also describe an experiment where general self-supervised learning
methods are applied to a continual learning setting, resulting in reduced forgetting in the
model’s representations.

The considerations of Section 3.3 were directly informed by the challenges faced while
designing and implementing Sequoia. Next, in Chapter 5, some of the main limitations of
Sequoia are described, along with a discussion of the plans for future work in overcoming
these limitations.
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Chapter 5

Future Work

Sequoia, as it stands, is a useful proof-of-concept for the implementation of a problem hi-
erarchy for CL. This chapter provides a discussion of some of the issues and limitations of
Sequoia’s design and lays down potential avenues for future work.

The biggest limitation of Sequoia in its current form is its dependence on nominal subtyp-
ing, where settings explicitly list and inherit from all the assumptions they respect, resulting
in a deep, fully-qualified inheritance hierarchies of settings. While effective at reducing code
duplication, such pervasive use of inheritance often has the side-effect of reducing cohesion,
which can be detrimental to the user and developer experience. This issue is exemplified in
Listing 18.

Different potential solutions are described below. The first is composition, where the
components of the hierarchy are broken down and reorganized into many smaller hierarchies
for each component. Second, structural subtyping is briefly introduced, and discussed as an
alternative. Finally, we introduce a novel form of structural subtying based on a novel use of
Space abstractions, such as those introduced in Gym, which we refer to as spatial subtyping.

5.1. Composition
Another solution to this problem is to use a true composition of assumptions. This is

part of the approach taken in Sequoia, where the central “trunk” for CL assumptions is
implemented independently of whether the concrete setting is a supervised or reinforcement
learning setting. This is achieved by maintaining a loose coupling between these settings and
the environment they operate with: from the perspective of the CL setting, it doesn’t matter
if the environment is a supervised or reinforcement learning environment, the training and
evaluation loop remains the same.

In practice however, settings are defined concretely as classes that inherit from both a
CL setting of the central branch as well as either RL or SL. This was necessary for a variety
of reasons, one example of which is the need of settings to declare which environments are
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from sequoia.settings.sl import *
from sequoia.settings.rl import *
from sequoia.methods import BaseMethod

method = BaseMethod(learning_rate=1e-3)

for setting in [
ContinuousTaskAgnosticSLSetting("mnist"),
ContinuousTaskAgnosticRLSetting("cartpole"),
DiscreteTaskAgnosticSLSetting("mnist"),
DiscreteTaskAgnosticRLSetting("cartpole"),
IncrementalSLSetting("mnist"),
IncrementalRLSetting("cartpole"),
TaskIncrementalSLSetting("mnist"),
TaskIncrementalRLSetting("cartpole"),
MultiTaskSLSetting("mnist"),
MultiTaskRLSetting("cartpole"),
TraditionalSLSetting("mnist"),
TraditionalRLSetting("cartpole"),

]:
results = setting.apply(method)
results.summary()
results.make_plots()

Listing 18. The combinatorial explosion problem: As more assumptions families are added
to Sequoia, having fully-qualified inheritance hierarchies of settings becomes untenable.

available, combined with the fact that some environments do not support continuous tasks,
and thus only become usable after a given level has been reached when moving down the
hierarchy.

One way to create a compositional implementation of problem hierarchies would be to
use a fully-qualified specification of the components common to all learning problems, as
done on the theoretical front by [26] (described previously in Subsection 3.4.4). In this
solution, the deep hierarchy of settings would be replaced with multiple smaller hierarchies
for the different components of the learning problem. However, existing software libraries or
benchmarks, which might have a very simple structure, would have to be reorganized and
re-framed in terms of this potentially complex new abstraction for a learning problem.

5.2. Structural subtyping
Structural subtyping is another approach to solving this problem. In structural subtyp-

ing, a type A is considered a subtype of another type B if the structure, properties and
methods of B are implemented in A. A crucial difference with nominal subtyping is that A
does not need to declare that it inherits from B, or even be aware of B’s existence. Using
structural subtyping, the properties and methods common to different types can be described
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from itertools import product
import sequoia
from sequoia.methods import BaseMethod
from sequoia.assumptions import combine
from sequoia.assumptions.stationarity import NonStationary, Stationary
from sequoia.assumptions.task_type import Continuous, Discrete
from sequoia.assumptions.task_awareness import TaskAware, TaskAgnostic

stationarity = [Stationary, NonStationary]
task_type = [Continuous, Discrete]
task_awareness = [TaskAware, TaskAgnostic]
environment = ["mnist", "cartpole"]

for environment in environments:
for assumptions in product(stationarity,

task_type,
task_awareness):

setting = Setting(environment, assumptions=assumptions)
method = BaseMethod()
results = setting.apply(method)
print(results.summary())

Listing 19. Pseudocode for a compositional solution to the class explosion problem. As-
sumptions are independent components that are combined with a concrete environment,
resulting in a setting. Note, the combine function alluded to here does not correspond to
multiple inheritance.

using an interface, without the need to change any of their structure. Listing 20 illustrates
the differences between nominal and structural subtyping.

Protocols have been recently added to the Python language as a mechanism for structural
subtyping. Protocols make it possible to statically check that a class or module respects a
set of type constraints about its attributes or methods. This is in contrast with abstract
base classes and nominal subtyping, where base classes have to be explicitly inherited from.
There is also limited support for checking protocols at runtime: protocols, when used at
runtime, only verify that the attributes of the protocol are present on the given object,
without checking their types. This limitation greatly reduces the usefulness of protocols as
a means of enforcing structural subtyping at runtime.

In the case of our problem hierarchies, where we might want to represent, for instance,
different assumptions related to the type of non-stationarity present in an environment, it
becomes very unclear how this might be described using a structural subtyping mechanism.
This is one of the advantages of a nominal subtyping system: they are able to declare in
advance properties that would be very expensive or difficult to otherwise verify. Inheritance
is not the only means of declaring such properties in advance, however. For example, if
there were to be a simple assumptions attribute on the environment class, where assumptions
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from typing import TypeVar, Generic, Iterator
from abc import ABC, abstractmethod
T = TypeVar("T")

# Nominal subtyping:
from abc import ABC, abstractmethod

class Iterable(ABC, Generic[T]):
@abstractmethod
def __iter__(self) -> Iterator[T]:

...

class Bucket(Iterable[int]):
...
def __len__(self) -> int:

...
def __iter__(self) -> Iterator[int]:

...

def collect(items: Iterable[int]) -> None:
...

collect(Bucket()) # Passes type check
collect("bob") # fails type check
collect([1, 2, 3]) # Also fails type check!

# Structural subtyping:
from typing import Protocol

class Iterable(Protocol[T]):
def __iter__(self) -> Iterator[T]:

...

class Bucket:
...
def __len__(self) -> int:

...
def __iter__(self) -> Iterator[int]:

...

def collect(items: Iterable[int]) -> None:
...

collect(Bucket()) # Passes type check
collect("bob") # Fails type check
collect([1, 2, 3]) # Passes type check!

Listing 20. Comparison of Nominal and Structural subtyping in Python. Note that Python
does not enforce these type constraints at runtime: they are verified by third-party type-
checkers. In this example, the Bucket class needs to explicitly inherit from the Iterable class to
be an appropriate argument to the collect function in nominal subtyping. In the structural
subtyping alternative, the Bucket class does not need to explicitly inherit from Iterable: the
requirements are met, and Bucket is therefore considered a subtype of the Iterable protocol.

were listed as flags, enumeration types, or otherwise, then checking for the presence of an
assumption would be as simple as checking if the assumption is in the list. This shares the
same limitation as nominal subtyping, namely that the assumptions need to be explicitly
added in advance, to all environments (or learning problem components more generally),
although it would not in this case be necessary to modify the implementation of these
environments.

5.3. “Spatial” subtyping
So far, assumptions have either been represented as classes that are subclassed by settings

or environments (nominal subtyping), or as modular components of the learning problem
(composition). Structural subtyping is an interesting alternative, but it is yet unclear how
assumptions can be implemented in that paradigm.
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Classes were also always used as the intermediary model to describe problem hierarchies.
However, settings are, by definition, sets of learning problems, or regions in the space of
learning problems. In this section, we introduce and explore the very simple idea of im-
plementing settings directly as spaces of learning problems, and assumptions directly as
predicate functions that are used to constrain a space.

In this scenario, instead of having settings explicitly list their assumptions, the assump-
tions can instead be be implemented as predicate functions that are applied directly to a
setting, and return whether they are respected or not. This is directly aligned with the
definition of an Assumption from Subsection 3.1.1.

5.3.1. The Space / Class equivalence

An interesting fact to note is that spaces are conceptually equivalent to classes, and
can serve the same role in practice. Samples from a space are equivalent to instances of a
class. Sampling from a space is equivalent to creating an instance of a class. Checking for
membership in a space (e.g. through space.contains(v)) is equivalent to checking if an
object is an instance of a given type (e.g. using isinstance(v, V)). Multiple inheritance
can be replaced with taking the intersection between multiple spaces. A space class, e.g.
gym.spaces.Discrete can therefore be seen as a meta-class (a type of types) that, when
invoked e.g. in Discrete(10), gives back a space instance, which is equivalent to a class.
This is also in-line with the classical definition of classes as sets of all possible members, in
this case the digits from 0 to 9.

By pushing this idea one step further, we arrive at a very interesting realization. Problem
hierarchies describe a space of learning problems. Sequoia uses classes and polymorphism
to model the relationship between settings. However, why is there a need for this interme-
diate representation? Why not model the Space of learning problems using spaces
directly?

5.3.2. Higher-order spaces: Environments, Datasets

Spaces can be created for more than just arrays, integers, dicts, and tuples. For instance,
one can very easily create spaces of RL environments, or spaces of SL datasets. We refer
to these new kinds of spaces as higher-order spaces. An example of such a space is shown
in Listing 21. Higher-order spaces open the door to a more structural way of describing
interfaces, including the one between learning problems and learning algorithms.

For example, an RL algorithm that is only applicable to environments where actions are
discrete, could do so using a space, as shown in Listing 21. These spaces provide the same
functionality as the classes in Sequoia: any given environment or dataset can be checked for
membership by verifying if the assumptions hold in that environment.
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from gym import Env, Space
# Envs is a space of environments:
Envs: Space[Env]

all_envs: Space[Env] = Envs()

# Assumption:
def actions_are_discrete(env: Env) -> bool:

return isinstance(env.action_space, Discrete)

# The subspace where the assumption holds:
discrete_action_envs: Space[Env[Any, int]] = all_envs.where(actions_are_discrete)

gym.make("CartPole-v1") in discrete_action_envs # True
gym.make("Pendulum-v1") in discrete_action_envs # False

discrete_action_envs.sample() # Sample a compatible environment, e.g:
# <TimeLimit<OrderEnforcing<MountainCarEnv<MountainCar-v0>>>>

Listing 21. A Space of Environments. In this example, an assumption is used to restrict
the space to only the environments where the action space is discrete. Sampling from the
space produces an environment with discrete actions. These kinds of spaces could potentially
be used as a replacement for the nominal subtyping mechanism used to specify the target
setting of methods in Sequoia.

Currently, new method classes specify a target setting (i.e. a setting class Setting) as
an attribute. By default, we determine if a method is applicable in a given setting by
checking whether that setting is a subtype of the method’s target setting, using isinstance
or issubclass. Methods can customize this behaviour by overriding the is_applicable class
method. Spaces could potentially simplify this.

It is however still unclear how more complex assumptions would be expressed using
these semantics. For instance, how would the assumption that the environment dynamics
are stationary, or that the state is not affected by the actions of the agent be expressed?
One way to do this might be to devise a lightweight procedure to check these kinds of
properties functionally at runtime. For example, if we wanted to encode the assumption
that an environment is passive (i.e. actions don’t influence the state), then this could be
implemented as a test where different actions are executed in the same starting state in the
environment, and where we return whether the next state varies based on the action taken.

There could be some concern about the correctness or reliability of these checks. To use
the same example, if the state was to be always the same for all actions, but only when in
that initial state, e.g. an agent that is stuck in a corner of a room or fell down a hole, then
actions might appear to have no influence on future state, while that would be incorrect in
general. This approach would require that these assumptions be very lightweight, otherwise
it might become computationally intensive to perform the simple check of whether a method
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Settings: Space[Setting]

all_settings: Space[Setting] = Settings()

def only_one_task(setting: Setting) -> bool:
# assuming that all settings have a list of environments, for instance.
return len(setting.train_envs) == 1

single_task_settings = all_settings.where(only_one_task)
active_settings = all_settings.where(

# Still unclear how to encode these richer assumptions:
environment=lambda env: env.actions.have_an_effect_on(env.state)

)

single_task_active_settings = single_task_settings & active_settings
setting = single_task_active_settings.sample()

Listing 22. Pseudocode for a potential implementation for the space of settings.

is compatible with an environment. There would then necessarily be a trade-off to consider
between the robustness of these evaluations and their efficiency.

Another important unanswered question is how to represent settings using this new use of
spaces. One possibility might be to apply the same reasoning as was done for environments,
and simply construct a space of settings, where assumptions can be applied to the components
of the setting. For instance, if we assume that all settings have one or more environment(s),
then some assumptions could be directed towards the environments, as shown in Listing 22.
However, it’s unclear how assumptions about the setting itself or its training/evaluation
procedure should be represented.

In summary, the combinatorial explosion problem can be addressed in different ways. The
first and most principled is to use composition rather than inheritance, and to break down
the hierarchy of settings into smaller hierarchies of the setting’s components. Structural
subtyping is another alternative, where assumptions could be verified directly against a
setting, rather than settings declaring their assumptions in advance. Lastly, we describe
what we refer to as spatial subtyping, where higher-order spaces can be created to directly
describe the space of environments or learning problems. How to effectively and succinctly
express complex assumptions is an open question in both the structural and spatial subtyping
approaches.
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Conclusion

In this work, we propose to use type hierarchies from computer science and object-oriented
programming to structure the types of problems in machine learning. We argue that putting
these principles into practice constitutes an effective solution to some of the issues experi-
enced by ML researchers today.

Problem hierarchies describe and formalize the process of creating taxonomies of the
types of problems studied in any given field of research. These taxonomies and their visual
representations as DAGs could be used as maps, to give both new and experienced researchers
a lay-of-the-land, and help identify areas ripe for standardization.

Implementations of problem hierarchies also facilitate the reuse of prior work by estab-
lishing a clear separation between research problems and their solutions. This leads to the
development of learning algorithms that are easier to disentangle from the problems they
attempt to solve, and thus easier to extract and reuse in a different context or field. Further-
more, this hierarchical representation allows methods to declare their region of applicability,
making them reusable polymorphically across different types of problems.

Sequoia is introduced as a proof-of-concept implementation of a problem hierarchy for the
field of continual learning. Through it’s reuse of existing frameworks and libraries in contin-
ual, supervised, and reinforcement learning, Sequoia acts as a repository of the benchmarks
and algorithms offered by the existing libraries within this software ecosystem.

Finally, the assumptions that we make in ML research are often very different than
the conditions present in the real world. Applied researchers and professionals tasked with
solving real-world problems using ML greatly benefit from having good access to the solutions
introduced by the research community, so they can be adapted and reused for their particular
needs. Similarly, researchers also benefit from being informed of the types of problems that
remain unsolved in practice. Problem hierarchies grants ML practitioners the ability to
identify the research setting most closely related to the problem at hand, and to get access not
only to the solutions for that specific type of problem, but to all research solutions applicable
to more general problems. We believe that problem hierarchies and their implementations
therefore open the way for more collaboration and sharing of solutions between researchers
and ML practitioners.



References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Mem-
ory aware synapses: Learning what (not) to forget, 2018.

[2] Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11246–11255,
2019.

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for
online continual learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[4] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning for
policy gradient methods. In International conference on machine learning, pages 1206–1214, 2014.

[5] André Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Žídek, and Remi Munos. Transfer in deep reinforcement learning using successor features and
generalised policy improvement. arXiv preprint arXiv:1901.10964, 2019.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An evalua-
tion platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko, Fabrice Normandin, Min Lin, Lucas Page-Caccia,
Issam Hadj Laradji, Irina Rish, Alexandre Lacoste, David Vázquez, et al. Online fast adaptation and
knowledge accumulation (osaka): a new approach to continual learning. Advances in Neural Information
Processing Systems, 33, 2020.

[9] Daniele Calandriello, Alessandro Lazaric, and Marcello Restelli. Sparse multi-task reinforcement learn-
ing. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in neural information processing systems 27, pages 819–827. Curran Associates, Inc., 2014.

[10] Yash Chandak, Georgios Theocharous, Chris Nota, and Philip S. Thomas. Lifelong learning with a
changing action set, 2020.

[11] Yash Chandak, Georgios Theocharous, Shiv Shankar, Sridhar Mahadevan, Martha White, and Philip S
Thomas. Optimizing for the future in non-stationary mdps. arXiv preprint arXiv:2005.08158, 2020.

[12] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient lifelong
learning with A-GEM. In International Conference of Learning Representations (ICLR), 2019.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for con-
trastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[14] Samuel Choi, Dit-Yan Yeung, and Nevin Zhang. Hidden-mode markov decision processes. 12 1999.
[15] Samuel PM Choi, Dit-Yan Yeung, and Nevin L Zhang. Hidden-mode markov decision processes for

nonstationary sequential decision making. In Sequence Learning, pages 264–287. Springer, 2000.



87

[16] Petros Christodoulou. Soft actor-critic for discrete action settings, 2019.
[17] Arthur Douillard and Timothée Lesort. Continuum: Simple management of complex continual learning

scenarios, 2021.
[18] William Falcon et al. Pytorch lightning. InGitHub. Note: https://github.com/PyTorchLightning/pytorch-

lightning [19].
[19] William Falcon et al. Pytorch lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-

lightning, 3, 2019.
[20] Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in dqn.

arXiv preprint arXiv:1810.00123, 2018.
[21] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint

arXiv:1805.09733, 2018.
[22] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexan-

der Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734, 2017.

[23] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128 – 135, 1999.

[24] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences,
3(4):128–135, 1999.

[25] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International Conference on Machine Learning, pages 1587–1596. PMLR, 2018.

[26] Ali Geisa, Ronak Mehta, Hayden S. Helm, Jayanta Dey, Eric Eaton, Jeffery Dick, Carey E. Priebe, and
Joshua T. Vogelstein. Towards a theory of out-of-distribution learning, 2022.

[27] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predict-
ing image rotations. ArXiv, abs/1803.07728, 2018.

[28] Nathan Grinsztajn, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. There is no
turning back: A self-supervised approach for reversibility-aware reinforcement learning. 2021.

[29] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870. PMLR, 2018.

[30] Emmanuel Hadoux, Aurélie Beynier, and Paul Weng. Solving hidden-semi-markov-mode markov deci-
sion problems. In SUM, 2014.

[31] James Harrison, Apoorva Sharma, Chelsea Finn, and Marco Pavone. Continuous meta-learning without
tasks. ArXiv, abs/1912.08866, 2019.

[32] Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A. Rusu, Yee Whye Teh, and Razvan Pascanu.
Task agnostic continual learning via meta learning. ArXiv, abs/1906.05201, 2019.

[33] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters, 2019.

[34] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998.

[35] Christos Kaplanis, Claudia Clopath, and Murray Shanahan. Continual reinforcement learning with
multi-timescale replay. arXiv preprint arXiv:2004.07530, 2020.

[36] Khimya Khetarpal, Zafarali Ahmed, Andre Cianflone, Riashat Islam, and Joelle Pineau. Re-evaluate:
Reproducibility in evaluating reinforcement learning algorithms. 2018.

[Version 1: mai 2023—18:47 ]



88

[37] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. CoRR, abs/2012.13490, 2020.

[38] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual reinforcement
learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[40] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. In Proceedings of the national academy of sciences [41],
pages 3521–3526.

[41] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming cat-
astrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–
3526, 2017.

[42] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[43] Alexandre Lacoste, Pau Rodríguez López, Frederic Branchaud-Charron, Parmida Atighehchian, Mas-
simo Caccia, Issam Hadj Laradji, Alexandre Drouin, Matthew Craddock, Laurent Charlin, and David
Vázquez. Synbols: Probing learning algorithms with synthetic datasets. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 134–146. Curran Associates, Inc., 2020.

[44] Nicholas C. Landolfi, Garrett Thomas, and Tengyu Ma. A model-based approach for sample-efficient
multi-task reinforcement learning, 2019.

[45] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/,
2010.

[46] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture model
for task-free continual learning, 2020.

[47] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Jean-François Goudou, and David Filliat.
Generative Models from the perspective of Continual Learning. In International Joint Conference on
Neural Networks (IJCNN), 2019.

[48] Timothée Lesort, Alexander Gepperth, Andrei Stoian, and David Filliat. Marginal replay vs conditional
replay for continual learning. In International Conference on Artificial Neural Networks, pages 466–480.
Springer, 2019.

[49] HongLin Li, Payam Barnaghi, Shirin Enshaeifar, and Frieder Ganz. Continual learning using bayesian
neural networks, 2019.

[50] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[51] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst., 16(6):1811–1841, nov 1994.

[52] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L.
Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin Mundt, Qi She,
Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi, Fabio Cuzzolin,

[Version 1: mai 2023—18:47 ]



89

Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan,
Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni. Avalanche: an end-to-end
library for continual learning, 2021.

[53] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In Ad-
vances in Neural Information Processing Systems (NIPS), 2017.

[54] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning, 2018.

[55] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. The benefit of multitask rep-
resentation learning. J. Mach. Learn. Res., 17(1):2853–2884, January 2016.

[56] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The sequen-
tial learning problem. volume 24 of Psychology of Learning and Motivation, pages 109 – 165. Academic
Press, 1989.

[57] Jorge A. Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of factored policies for
faster training without forgetting, 2020.

[58] Jorge A. Mendez, Boyu Wang, and Eric Eaton. Lifelong policy gradient learning of factored policies for
faster training without forgetting, 2020.

[59] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[61] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations (ICLR), 2018.

[62] Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. In ICLR, 2016.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[64] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. CoRR, abs/1705.05363, 2017.

[65] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. Gdumb: A simple approach that questions our
progress in continual learning. 2020.

[66] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann.
Stable baselines3. https://github.com/DLR-RM/stable-baselines3, 2019.

[67] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incre-
mental classifier and representation learning. In Computer Vision and Pattern Recognition (CVPR),
2017.

[68] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint
arXiv:1810.11910, 2018.

[Version 1: mai 2023—18:47 ]

https://github.com/DLR-RM/stable-baselines3


90

[69] Mark B Ring. Child: A first step towards continual learning. Machine Learning, 28(1):77–104, 1997.
[70] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience

replay for continual learning. In Advances in Neural Information Processing Systems, 2019.
[71] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu,

and R. Hadsell. Progressive Neural Networks. ArXiv e-prints, 2016.
[72] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
[73] Joan Serrà, Dídac Surís, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic forget-

ting with hard attention to the task. CoRR, abs/1801.01423, 2018.
[74] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative

replay. In Advances in Neural Information Processing Systems (NIPS), 2017.
[75] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
[76] Norman Tasfi. Pygame learning environment. https://github.com/ntasfi/PyGame-Learning-Environment,

2016.
[77] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.

Journal of Machine Learning Research, 10(1):1633–1685, 2009.
[78] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems, 15(1-

2):25–46, 1995.
[79] Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. In Advances in

neural information processing systems, pages 385–392, 1995.
[80] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.
[81] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Díaz Ro-

dríguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation. CoRR,
abs/1907.05855, 2019.

[82] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[83] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors, 2020.

[84] Wikipedia contributors. Markov decision process — Wikipedia, the free encyclopedia, 2021. [Online;
accessed 15-November-2021].

[85] Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Milos. Continual world: A
robotic benchmark for continual reinforcement learning. CoRR, abs/2105.10919, 2021.

[86] Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020.

[87] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
CoRR, abs/1910.10897, 2019.

[88] Friedeman Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International Conference on Machine Learning (ICML), 2017.

[89] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task agnostic continual learning using online
variational bayes, 2019.

[Version 1: mai 2023—18:47 ]

https://github.com/ntasfi/PyGame-Learning-Environment


Appendix A

Self-Supervised Continual Learning
Experiments

Note to reader: This experiment was conducted and presented as a course project in the IFT-
6760B - Continual Learning course at Université de Montréal during the winter of 2020. The
other contributors to this project are Rey Reza Wiyatno and Jérôme Parent-Lévesque.

In this experiment, we apply different self-supervised representation learning methods to a
continual learning settings. We evaluate whether self-supervision can be an effective means of
reducing catastrophic forgetting in neural networks. Our experiments in a task-incremental
setting where different combinations of supervised, self-supervised, and CL regularization
objectives seems to indicate that self-supervision can be used as an effective mean of enriching
the representations of a neural network, by encouraging the network to learn features that
generalise well across tasks, and are thus less susceptible to catastrophic forgetting.

A.1. Self-Supervised Learning
Self-supervised learning, as a form of unsupervised learning, is an approach whose goal

is to learn rich representations from unlabeled data. It achieves this by learning one or
more auxiliary tasks, which use intrinsic properties of the data itself to create auxiliary
labels used to train the model’s representations in a supervised fashion. Many forms of
such auxiliary tasks exist. In the context of learning visual representations, most well-
known auxiliary tasks usually involve applying a transformation to the input samples and
then predicting the applied transformation given the representations of the transformed
inputs. For example, one can transform an image dataset by applying random rotation
to the images, and ask a model to predict the applied rotation [27]. Another popular
and effective form of auxiliary task involves contrastive learning, which seeks to maximize
the alignment between the representations of views of the same input example, while also
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Fig. A.1. Illustration of the self-supervised learning architecture used in these experiments.
Here, x denotes the original sample from, while Ti denotes the i-th input transformation
function needed for the i-th auxiliary task. A shared neural encoder h is used to encode each
input into its lower dimensional representation, which will then be passed to task specific
networks F and Ai. Here, F represents a network responsible to solve the current task at
hand, while Ai represents a network for the i-th auxiliary task. To train the networks, the
objective is to minimize the combination of the loss LCL with the auxiliary task losses Li for
all i.

minimizing alignment between representations of views of different examples. Regardless of
which particular auxiliary task is used, the common goal is to learn representations that
generalize well to other data and downstream tasks.

Our hypothesis is that forgetting in a model’s representations can be reduced by training
the model’s representations jointly on both the supervised and self-supervised objectives.
Our intuition is that self-supervised methods learn features that are independent from the
supervised objective, and thus may be able to generalize better between tasks in a CL
scenario. We believe that these methods and their losses can be used as regularization
signals to prevent the model’s representations from forgetting more general features learned
from previous tasks that are relevant to the current task. This approach could therefore be
classified under the regularization-based family of continual learning methods.

Furthermore, we predict that given sufficiently rich self-supervised tasks, it should be
possible for a model to learn and adapt its representations continually, without using the
supervised loss. We hypothesize that such a model would thereby learn features that are
both general and rich enough to effectively perform a variety of downstream tasks, while
also benefiting from considerably reduced forgetting. We attempt to produce such signals by
combining a variety of effective auxiliary tasks. Fig. A.1 illustrates the proposed architecture.
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Concretely, instead of updating the encoder model h using only the supervised loss sig-
nal, we either augment or entirely replace this loss signal with the losses from various self-
supervised learning methods. In the case where we allow the supervised loss signal to back-
propagate into the encoder, the self-supervised losses can be thought of as a regularization
mechanism, preserving some task-invariant information in the representations. Otherwise,
by detaching the hidden representations h(x) from the output layer, the supervised signal
is not backpropagated into the representation learner h, and thus the representations are
learned solely through self-supervision. Formally, the optimization objective is to minimize
the sum of the losses related to the continual learning problem and the auxiliary task losses:

L = LCL(·) +
N∑
i

λiLi(·), (A.1.1)

where LCL(·) denotes the continual learning task loss, Li(·) denotes the loss for the i-th
auxiliary task, and λi denotes the weighting parameters for the auxiliary task losses.

A.1.1. Self-Supervised Learning methods

There are various auxiliary tasks that can be used in self-supervised learning. In this
work, we use three different auxiliary tasks from different families: rotation prediction [27],
input reconstruction with autoencoders, and contrastive learning with SimCLR [13]. We
describe them below.

A.1.2. Rotation Prediction

We consider rotation prediction as an auxiliary task. Concretely, the original inputs
obtained from the data stream are rotated randomly. The model is then asked to predict
the angle of the applied rotation, given the rotated input. When the rotation angle is
discretized, this auxiliary task can be posed as a classification problem. This task has been
explored in [27], and has been shown to be beneficial in learning semantically meaningful
representations.

A.1.2.1. Input Reconstruction. We also use input reconstruction as one of the auxiliary
tasks. We believe the use of this task can positively impact the learned representations since
the concept of reconstruction is universal. That is, the representation needed to perform
reconstruction is likely to be reusable for image classification. Concretely, this corresponds
to an autoencoder objective where the penalty is the mean squared error between the input
and its reconstruction.

A.1.2.2. SimCLR. Contrastive learning is a self-supervised learning method that enforces
similarity between representations of similar input pairs. In other words, an encoder model
is trained to contrast between positive and negative pairs, where a positive pair is a pair of
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inputs that are deemed to be similar. SimCLR [13] is a contrastive learning framework for
visual representation that maximizes similarity of two inputs in the latent space that are
transformed differently. Learning representations with SimCLR has been shown to surpass
the performance pretrained ImageNet models.

Given an input x, a set of transformation functions T , and an encoder f , we sampled two
transformation functions, t1 and t2, from T , and apply them to the input x to obtain a pair
of transformed inputs x̃i = t1(x) and x̃j = t2(x). We refer x̃i and x̃j as a positive pair since
they come from the same input x. These inputs are then passed to the encoder to obtain
two representations hi = f(x̃i) and hj = f(x̃j). We then apply non-linear function g (i.e.,
a fully connected neural network) to obtain zi = g(hi) and zj = g(hj). Both f and g are
then updated by maximizing similarity between zi and zj. Nevertheless, we want the model
to not only maximizing similarity in representations of a positive pair, but also to contrast
the representations from different inputs (i.e., negative pairs). Concretely, when sampling
a minibatch to train the models, we only sample one positive pair x̃i and x̃j, and treat all
other transformed inputs as negative ones. The model is then trained to optimize:

Li,j = − log esim(zi,zj)/τ∑2N
k=1 1k 6=ie

sim(zi,zk)/τ
, (A.1.2)

where sim(·) is a function that measures similarity between two representations, N is the
number of input samples, 1k 6=i is an indicator function that returns 1 whenever k 6= i, and
τ is a temperature constant. Note that the minibatch size is 2N because we always apply
two different transformations sampled from T for each input sample. We then discard g and
only use the encoder f to get the input representation.

A.2. Experimental Setup
As previously discussed, there are different settings in continual learning that one may

consider. In this experiment, we choose the task incremental learning setting. In this setting,
we consider a stream of data from a sequence of tasks. The learner receives a batch of data
coming from a particular task at a time to train the model until convergence. Once done
with a task, the data from this task are discarded and will not appear again as the learner
is presented with new tasks.

We evaluate the models on Fashion MNIST (F-MNIST), CIFAR10, and CIFAR100
datasets. For F-MNIST and CIFAR10, a continual learning task is defined as a 2-way
classification task. Thus, we have in total 5 tasks for F-MNIST and CIFAR10, where each
task is a 2-way classification task. For CIFAR100, a task is defined as a 20-way classification
task, thus also resulting in 5 tasks in total. In all datasets, the classes in each task are chosen
randomly.
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We perform our experiments using models with multiple classification heads, where we
train a new classification head using the data from the new task as the task changes, while
the classification head from the previous tasks are frozen. For models trained using self-
supervision, we first warm up the encoder h by training it using only the self-supervised
signals until convergence before combining both training signals until they converge again.
We train our models using Adam [39] as the optimizer. We ran grid search to determine the
best coefficient λi for each of the auxiliary tasks. From this search, we use λreconstruction =
0.01, λrotation = 1.0, and λSimCLR = 1.0.

We run multiple experiments to study the contribution of each of the following factors
to the performance of the network in this continual learning setting: 1) he supervised (clas-
sification) loss 2) self-supervised losses, and 3) an EWC[40] regularization CL penalty.

A.3. Results
For each experiment, the left-most plot illustrates the cumulative accuracy of the model

during training on validation data from tasks the model have seen. For example, the data
point for each line when the number of tasks learned is 4 represents the accuracy of each
model on validation dataset from Task #1 to Task #4 (inclusive), after the model was trained
on data from Task #4. These plots thus reflects both the forgetting and generalization errors
of each model. The middle plot shows the final cumulative validation accuracy, where the
validation set is the combination of validation data from all the tasks, after the each model
has been trained on all tasks. Finally, the right-most plot reflects the accuracy distribution
of the model on each validation set from each task at the end of training process. This plot
allows us to see whether the model errors come from the tasks the model learned earlier or
later during training process. If a model suffers from catastrophic forgetting, we will see that
the model can only perform well on the last task, but not the earlier ones.

First, we evaluate the performance of the models when the encoder is trained using only
self-supervised signals. In this experiment, the baseline is a model where the encoder h is
fixed. Since we use multiple classification heads, the baseline is immune to forgetting by
design. Thus, the other models can be considered to perform well if they can approach or
even surpass the performance of the baseline. Similarly to other experiments, we perform
each run 5 times with different seeds. The of this experiment are shown in Figure A.2

For F-MNIST, we found that ae + simclr combination performs the best and even
surpasses the baseline. For CIFAR10, ae + simclr also performs the best and achieves
comparable performance with the baseline. Interestingly, none of the models trained with
self-supervision can approach the performance of the baseline model in CIFAR100. Perhaps
this is caused by the more complex nature of the dataset. Nevertheless, these results also
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show how self-supervision helps to alleviate forgetting. Further evaluations are needed,
especially on CIFAR100 dataset, which we leave as a future work.

We then train models using a mixture of supervised and self-supervised losses. The
results of this experiment are shown in Figure A.3. From the left-most plot of Fig-
ure A.3, we see that models trained using self-supervision consistently perform better than
the supervised baseline on all datasets. For F-MNIST, we found that the combination
of input reconstruction with autoencoders and SimCLR (i.e., ae + simclr) performs the
best, while rotation + ae + simclr performs the best for CIFAR10. The performance of
ae + simclr is also the highest for CIFAR100, albeit close with ae, rotation + ae, and
rotation + ae + simclr. At first glance, it seems that models trained with ae as one of
the auxiliary tasks gain the most benefits. Nevertheless, to get the best possible performance,
one should treat the choice of auxiliary tasks as another parameter to be “tuned”. Perhaps
one future research direction is to learn the best possible combination of auxiliary tasks.

Then, we combine self-supervised losses with the EWC[40] penalty. Comparing these
results, in Figure A.5, with those from using only self-supervision from Figure A.2, we can
observe that adding the EWC penalty increases the performance of these self-supervised
learning methods, by preventing forgetting in these representations.

In the final experiment, we combine self-supervised, supervised, and the EWC losses
when learning the representations.

Summary
In summary, these experiments show that self-supervised methods can indeed be used

to mitigate catastrophic forgetting. We also found that multiple auxiliary tasks can some-
times work better than any individual task. However, there is no clear pattern as to what
combination of auxiliary tasks performs consistently better than the others. Thus, one pos-
sible research direction is to develop a method that can learn the combination of auxiliary
tasks that produce the best performance on some particular problems. Additionally, we only
performed our experiments using three different auxiliary tasks. There exist many other
self-supervised tasks, some of which might prove to be better for continual learning applica-
tions. It would be interesting to evaluate more of these tasks to see whether they can further
increase the performance, and whether a pattern of good performing tasks emerges. Finally,
further evaluations on other continual learning settings such as online learning would also
be interesting. We believe this approach has the potential to be useful in continual learning
settings where a lot of unlabelled data is available compared to labelled data, for example
in the context of self-driving cars.
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Fig. A.2. Continual Learning of representations using only Self-Supervised losses: Per-
formance of all combinations of the selected auxiliary tasks on the Cifar100, Cifar10 and
Fashion-MNIST datasets. Important to note is that the baseline in this case corresponds to
a model where a classifier is trained for each task on the fixed outputs of the randomly ini-
tialized feature extractor, and as such the baseline incurs no forgetting, and is representative
of the scenario where no online adaptation of the model’s representations is performed.
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Fig. A.3. Continual Learning of representations using Self-Supervised and Supervised
losses: Performance of all combinations of the selected auxiliary tasks on the Cifar100,
Cifar10 and Fashion-MNIST datasets. The baseline here corresponds to a classifier without
any CL-specific enhancements.
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Fig. A.4. Continual Learning of representations using Self-Supervised and EWC losses:
Performance of all combinations of the selected auxiliary tasks on the Cifar100, Cifar10 and
Fashion-MNIST datasets, when the representations are learned using only self-supervision
and an EWC penalty is introduced. This penalty effectively alleviates the catastrophic
forgetting problem, at the expense of making the network less flexible.
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Fig. A.5. Continual Learning of representations using Self-Supervised, Supervised, and
EWC losses: Performance of all combinations of the selected auxiliary tasks on the Cifar100,
Cifar10 and Fashion-MNIST datasets, when an EWC penalty is introduced. This penalty
effectively alleviates the catastrophic forgetting problem.
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Appendix B

Extending Sequoia

B.1. Generating tasks in custom environments
As mentioned in Section 4.5, any gym-compatible environment can be used by the Set-

tings in Sequoia, by simply passing an environment per task to the constructor of the Setting.
Additionally, it is possible to add explicit support an environment, making it so Sequoia can
create tasks in the environment automatically. This is done by registering a new handler
to use to create tasks, as can be seen in Listing 23 for continuous tasks and Listing 24 for
discrete tasks.

B.2. Adding new Settings to Sequoia
There are three ways to easily create a new setting:
(1) By extracting an assumption present in the root setting, therefore creating a new

root or most general setting.
For example, the most general CL setting we consider in this work, Continuous,
Task-Agnostic Continual Learning (CTaCL) makes an implicit assumption that the
non-stationarity of the environment isn’t affected by the actions of the agent. In this
example, it could be argued that this kind of active non-stationarity is a more general
form of non-stationarity than the passive variant. Therefore, it would follow that a
method able to handle problems with active non-stationarity should also be applicable
to problems with passive non-stationarity. This assumption could be extracted, to
create a new (yet unamed) CL setting, with CTaCL as its child. Any Method that
was previously declared to work in CTaCL will not be affected, and new methods
aimed at this very challenging and general setting could be created to handle both
types of settings. This is one of the major benefits of using an inheritance hierarchy
to organize settings.
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from typing import List, Dict
from sequoia.settings.rl import make_continuous_task
from gym.envs.classic_control import CartPoleEnv
import numpy as np

# A Continuous task is a dict mapping from attributes to the values
# to be set on the environment:
ContinuousTask = Dict[str, float]

@make_continuous_task.register(CartPoleEnv)
def make_task_for_my_env(

env: CartPoleEnv, step: int, change_steps: List[int], seed: int = None, **kwargs,
) -> ContinuousTask:

# NOTE: task sampling should be reproducible given a `seed`.
step_seed = seed * step if seed is not None else None
rng = np.random.default_rng(step_seed)
return {

"gravity": 9.8 * rng.normal(1, 0.5),
"masscart": 1.0 * rng.normal(1, 0.5),
"masspole": 0.1 * rng.normal(1, 0.5),
"length": 0.5 * rng.normal(1, 0.5),
"force_mag": 10.0 * rng.normal(1, 0.5),
"tau": 0.02 * rng.normal(1, 0.5),

}

Listing 23. Example of how to add new RL environments to Sequoia. In this example,
we register a function which will be used to sample continuous tasks for this environment,
allowing it to become used as part of the Continuous Task-Agnostic Continual RL Setting
and all of its descendants.

(2) Creating new leaves in the tree, by adding an assumption or constraints to an existing
setting. One example of this could be settings where more information is available
in the observations/actions/rewards than their parents.

(3) Adding new intermediate nodes to the tree, by making the differences in assump-
tions between existing settings more fine-grained: for example, if a jump between
two settings is too large, a new intermediary node can be introduced, also without
impacting the methods that were created for the parent or the child setting.

Finally, there is another, albeit more involved way to create new settings: to introduce a new
class of assumptions. This separate assumption hierarchy is then composed with existing
settings, resulting in a large increase in the number of settings. For instance, if you consider
the level of supervision, as-in, the availability of the rewards signal from the environment, you
could recover unsupervised, semi-supervised, and “supervised”/traditional RL/SL settings.
Through multiple inheritance, one could then create a new Setting for each combination of
assumptions.
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import operator
from typing import List, Dict, Union, Callable
import numpy as np
import gym
from metaworld.envs.mujoco.sawyer_xyz.v2 import SawyerReachEnvV2
from metaworld import ML10
from sequoia.settings.rl.discrete import make_discrete_task

# In the case of Discrete RL settings, you can either return a
# 'continuous' task as before or a callable which will be
# applied onto the environment when a task boundary
# is reached:
ContinuousTask = Dict[str, float]
IncrementalTask = Union[ContinuousTask, Callable[[gym.Env], None]]

@make_discrete_task.register(SawyerReachEnvV2)
def make_discrete_task_for_metaworld_env(

env: SawyerReachEnvV2,
step: int,
change_steps: List[int],
seed: int = None,
**kwargs,

) -> IncrementalTask:
benchmark = ML10(seed=seed)
rng = np.random.default_rng(seed)
some_metaworld_task = rng.choice(benchmark.train_tasks)
# NOTE: Equivalent to the following, but has the benefit of
# being pickleable for vectorized envs:
# return lambda env: env.set_task(some_metaworld_task)
return operator.methodcaller("set_task", some_metaworld_task)

Listing 24. Example of how to add support for generating discrete tasks in new RL en-
vironments. These tasks are applied when a task boundary is reached. In this example,
we register a function which will be used to sample discrete tasks for a common type of
MuJoCO[80] environment, making it easier to use as part of the Discrete Task-Agnostic RL
setting and its descendants.

The need for each of these variations to be defined as classes is one shortcoming of
the Sequoia framework as it currently stands, and will be addressed in future work using
structural, rather than nominal subtyping, as described in Chapter 5.
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import gym
from sequoia.settings import Setting, Environment, Observations, Actions
from sequoia.methods import Method

class DemoModel:
def forward(self, observations: Observations) -> Actions:

...

class DemoMethod(Method, target_setting=Setting):
""" Pseudocode for a Method that targets a given Setting. """
def configure(self, setting: Setting):

# Called by the setting before training begins.
self.model = DemoModel(setting.observation_space, setting.action_space,

setting.reward_space, nb_tasks=setting.nb_tasks)
self.optimizer = Adam(...)

def fit(self, train_env: Environment, valid_env: Environment):
# Train a model using these environments from the setting.
# Note: all Environments are gym environments. More on this later.
for epoch in range(self.n_epochs):

self.model.train_epoch(train_env)
self.model.validation_epoch(valid_env)

def get_actions(self, observations: Observations) -> Actions:
# Called by the setting for inference (at test-time).
actions = self.model(observations)
return actions

def on_task_switch(self, task_id: Optional[int]):
# Gets called on task boundaries, depending on the setting.
self.model.prepare_for_new_task(new_task=task_id)

Listing 25. Pseudocode example of how a CL method might be created in Sequoia.
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Appendix C

Comparison with Avalanche

Avalanche is one of the most well-established software libraries for continual supervised
learning research. Sequoia and Avalanche have similar goals: To unify and stardardize the
research settings and methods in continual learning.

Before we discuss similarities and differences between the two frameworks in more de-
tail, we must first describe how methods are implemented in Avalanche. The equivalent
of methods in Avalanche are called strategies. All strategies in avalanche inherit from the
BaseStrategy, which includes all the base training and evaluation logic, as well as various
methods that serve as hooks so that subclasses can easily customize different parts of the
training loop.

This BaseStrategy can also be customized using a modular plugin interface, such that
multiple plugins can be added to the same strategy to combine different CL algorithms.
These strategies interact with a series of experiences from a stream.

Here are some of the similarities between Sequoia and Avalanche.
• streams in Avalanche are somewhat similar to Settings in Sequoia.
• Sequoia’s BaseMethod serves the same purpose as Avalanche’s BaseStrategy.
• Sequoia’s AuxiliaryTask serves the same purpose as Avalanche’s StrategyPlugin:

– Plugins in Avalanche are similar to callbacks in PyTorch Lightning.
– Sequoia’s AuxiliaryTask inherits from PL’s Callback class
– Plugins have but a few additional hooks compared to PL’s Callbacks, for instance,
they can modify the dataset before training.

• Adding plugins on top of the BaseStrategy is analogous to Adding auxiliary tasks on
top of the BaseMethod. For example:
– Avalanche’s EWC Strategy adds the EWCPlugin to the BaseStrategy
– Sequoia’s EWC Method adds the EWC Auxiliary task to the BaseMethod

However, there are notable differences between Avalanche and Sequoia, the first of which
lies is in their philosophy and design approaches:
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• Sequoia places no constraints on the design of a Method.
• Sequoia delegates the responsibility of creating methods to other, more specialized
libraries. It makes these methods applicable in a way that makes them reusable on
any current or future applicable setting via polymorphism.

To illustrate this point, Sequoia could eventually include Avalanche scenarios as settings for
CSL, if there were to be a clear hierarchical structure to their properties and assumptions.
We instead decided to make Avalanche’s methods applicable onto our own settings.

Along the same idea, Sequoia delegates the responsibility of doing high-performance
training to a specialized framework, in this case PyTorch-Lightning. As a result, Sequoia
is able to directly leverage all the nice features of PyTorch-Lightning such as training using
multiple-GPUs and TPUs. This also leads to less code duplication. All other features
of PL (mixed precision, DP, DDP, TPUs, logging, etc) are also already usable with the
BaseMethod.

When adapting the methods from Avalanche to be applicable on the CSL settings in
Sequoia, we also made some additions to them in order to widen their applicability. For
example, we added a simple form of task inference to some methods, so that they could be
applied to the CSL settings in Sequoia that do not provide task labels at test-time.

Another difference is the fact that Sequoia describes both SL and RL using the same
abstractions. Avalanche-rl recently became available as an RL-version of Avalanche. It is
however unclear how much overlap there is between the RL and SL versions of this library,
and if it is possible to create a CL strategy that is applicable in both types of scenarios. In
Sequoia, this kind of reuse is made possible in the BaseMethod by the BaseModel using a
different type of output head for each setting (PolicyHead vs ClassificationHead).

One other difference is that, to the best of our knowledge, there current is no way to
statically determine which scenarios a strategy can be applied to in Avalanche.

In summary, here is how to transform Avalanche’s BaseStrategy into Sequoia’s
BaseMethod:

(1) Create RL Scenarios that use gym environments as the “experience source”/dataset.
(2) Add a way to create non-stationarity in the RL environments.
(3) Create structured objects for the data types that environments/datasets yield and

accept. (E.g. Observation / Action / Reward dataclasses, for example)
(4) Refactor the BaseStrategy:

• Make it use a Trainer from PyTorch Lightning instead of doing the training itself.
• Make this BaseStrategy agnostic to RL or SL. A good way to go about this is to
use a different type of output head for each setting, for instance. Could also use
a completely different BaseModel, if that’s simpler.
• Refactor the BaseModel-equivalent in Avalanche to be a LightningModule.

(5) Refactor the “Plugin” interface:
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• make it extend the Callback interface from PL, adding necessary hooks and meth-
ods specific to CL.
• refactor the CL plugins in Avalanche so that they inherit from this new Plugin
interface. For the strategies that only apply in RL or only in SL, explicitly state
that assumption programmatically using a property or registry of some sort.
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Appendix D

Additional implementation details

D.1. Continual-MonsterKong environment
With rapid advancements in the field of deep RL, continual RL or never-ending-RL has

witnessed rekindled interest towards the goal for broad-AI in recent years. While significant
progress has been made in related domains such as transfer learning [77], multi-task learn-
ing [4, 62, 9, 55, 5, 44], and generalization in RL [20], an outstanding bottleneck is the
lack of standard tools to develop and evaluate CRL agents [38]. A standardized benchmark
will potentially enable rapid research and development of CRL agents. To this end, we
propose a new CRL benchmark within the unified framework of Sequoia. In particular, we
build the CRL benchmark leveraging the Pygame learning environment MonsterKong [76].
MonsterKong is pixel-based, lightweight and has an easily-customizable domain, making it
a good choice for evaluating continual learning agents.

Specifically, we design tasks through a variety of map configurations. These configura-
tions vary in terms of the location of the goal and the location of coins within each level. We
introduce randomness across runs of a task by varying the start locations of the agent. To
incorporate the ability to evaluate across specific CRL characteristics, we leverage tasks to
define CRL experiments. We design families of tasks leveraging the following abstract con-
cepts: jumping tasks which require the agent to perform jumps across platforms of different
lengths in order to collect coins and reach the goal, climbing tasks which require the agent
to competently navigate ladders in order to collect coins and reach the goal, and tasks that
combine both of these skills. The specific tasks leveraged as part of the CRL competition
are depicted in Figure D.1. The agent trains on each task for 200,000 steps.

Experiment Details: To evaluate the agents on the CRL benchmark, we follow the
standard evaluation introduced above. Final performance reports accumulated reward per
episode on all test environments, averaged over all tasks, after the end of training, whereas
online performance is measured as the accumulated reward per episode on the training
environment of the current task during training of all tasks. For the runtime score, we use
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Fig. D.1. Continual-MonsterKong. We display the 8 tasks that constitute the bench-
mark in chronological order. The first two tasks test the agent’s ability to jump between
platforms, the second two test its ability to climb ladders and the last four combine both
skills.

set max_runtime of 12 hours and min_runtime to 1.5 hours. Lastly, the agents are allowed
a maximum of 200,000 steps per task.

Customization: Ideally, CRL agents must be able to solve tasks by acquiring knowl-
edge in the form of skills, be able to use previously acquired behaviors, and build even more
complex behaviours over the course of its lifetime [69, 78, 79]. While leveraging the Mon-
sterKong environment, it is easy to introduce new environment layouts or modifications to
existing layouts. Configurations could be customized to include arbitrary configurations of
coins, ladders, platforms, walls, monsters, fire balls, and spikes. Making custom environment
elements is straightforward as well, so the environment can be modified to aligned with the
properties of the CRL agent that we would like to test.

While in our benchmark we mainly focused on three families of tasks within the Mon-
sterkong domain, it is fairly straightforward to introduce variations of map configurations to
the framework. Monsterkong provides two degrees of design choices 1. the task definitions
and 2. the evolution of tasks referred to as experiment definitions. Due to the nature of how
tasks are specified through simple matrices (map configurations), many layers of complexity
can be added through the task specification. For example, object addition and removal can
induce local variations in reward, nails can be penalizing, diamonds can be bonuses. Addi-
tionally, changes to the textures of the game like simple changes to the color of the walls,
the coins, and the background as well as changes in the lighting are easy to add for users
interested to test generalization of the policies learned.

D.1.1. Split-Synbols dataset

Currently employed datasets can’t be used sensibly to construct domain-incremental
learning problems. Some have used MNIST to construct Permuted-MNIST and Rotated-
MNIST, however, [21] have explained and demonstrated why such benchmarks are flawed
and bias their results unfairly towards some methods. Motivated by this, we introduce
Split-Synbols. Based on the Synbols dataset [43], a character classification dataset in which
examples have an extra label corresponding to their font, one can easily construct sensible
domain-incremental benchmarks where e.g., a font would consist of a domain.

[Version 1: mai 2023—18:47 ]
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Fig. D.2. Split-Synbols. Example of Synbols character to classify.

For the experiments, however, we opted for a class-incremental version to increase the
difficulty. We prescribe a segmentation into 12 tasks to be learned sequentially, each con-
sisting of a 4-way classification problem. Examples of samples from the Synbols dataset are
displayed in Figure D.2.
class Trainer:

""" Simplified Pseudocode for the Trainer class of Pytorch-Lightning. """
def __init__(self, max_epochs: int, **lots_of_other_options):

self.max_epochs = max_epochs
...

def fit(self, model: LightningModule[T], datamodule: DataModule[T]) -> None:
optimizer = model.configure_optimizers()
for epoch in range(self.max_epochs):

# training loop:
model.train()
for batch in datamodule.train_dataloader():

optimizer.zero_grad()
train_loss = model.train_step(batch)
train_loss.backward()
optimizer.step()

# validation loop:
model.eval()
for val_batch in datamodule.val_dataloader():

epoch_validation_loss += model.val_step(val_batch)
...

def test(self, model: LightningModule[T], datamodule: DataModule[T]) -> dict:
test_losses = []
for test_batch in datamodule.test_dataloader():

test_losses.append(model.test_step(test_batch))
return {"Test loss": sum(test_metrics)}

Listing 26. Pseudocode for the Trainer class from PyTorch-Lightning

[Version 1: mai 2023—18:47 ]
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