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Moving horizon estimation of human kinematics

and muscle forces
Amedeo Ceglia1, Francois Bailly2, Mickael Begon3

AbstractÐHuman-robot interaction based on real-time kine-
matics or electromyography (EMG) feedback improves reha-
bilitation using assist-as-needed strategies. Muscle forces are
expected to provide even more comprehensive information than
EMG to control these assistive rehabilitation devices. Measuring
in vivo muscle force is challenging, leading to the development
of numerical methods to estimate them. Due to their high com-
putational cost, forward dynamics-based optimization algorithms
were not viable for real-time estimation until recently. To achieve
muscle forces estimation in real time, a moving horizon estimator
(MHE) algorithm was used to track experimental biosignals. Two
participants were equipped with EMG sensors and skin markers
that were streamed in real time and used as targets for the MHE.
The upper-limb musculoskeletal (MSK) model was composed of
10 degrees-of-freedom actuated by 31 muscles. The MHE relies
on a series of overlapping trajectory optimization subproblems
of which the following parameters have been adjusted: the fixed
duration and the frame to export. We based this adjustment on
the estimation delay, the muscle saturation, the joint kinematic
mean power frequency, and errors to experimental data. Our
algorithm provided consistent estimates of muscle forces and
kinematics with visual feedback at 30 Hz with a 110 ms delay. This
method is promising to guide rehabilitation and enrich assistive
device control laws with personalized force estimations.

Index TermsÐModeling and Simulating Humans, Physical
Human-Robot Interaction, Sensor-based Control.

I. INTRODUCTION

REAL-TIME biofeedback providing biomechanical met-

rics is highly relevant in rehabilitation [1] or to enhance

control strategies of assistive robots [2]. In particular, feedback

on electromyography (EMG), kinetics, and joint angles has

successfully improved post-stroke patient rehabilitation and

has proven to be useful in human-robot interaction [3]. This

feedback must be provided at least at 13 Hz [4] and with

a maximum delay of 125 ms to be relevant [5]. Inverse

kinematics algorithms, such as the extended Kalman filter

(EKF) [6], estimate joint angles from marker positions and

provide real-time kinematics feedback [7]. When it comes

to kinetic data, muscle forces provide more information than
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EMG as they depend on both muscle activations and force-

length-velocity relationships [8]. However, measuring muscle

forces in vivo can be challenging due to the invasive nature of

some measurement techniques and instrumentation limitations.

To address this issue, researchers have focused on developing

numerical models to estimate muscle forces.

Inverse methods, especially static optimization, are the most

used algorithms for real-time muscle force estimation, due to

their computational efficiency [9]. However, they rely on joint

torques calculated by inverse dynamics, which is affected by

the noise amplification due to the double differentiation of

kinematic data [10]. Moreover, static optimization is often

based on minimizing least-square muscle activations without

considering control time histories. It could likely lead to non-

physiological activations, especially for patients with MSK

disorder [11].

Forward methods, which require finding optimal trajectories

for the state and control variables satisfying the MSK dynam-

ics, could lead to more reliable estimation. Additionally, incor-

porating tracking terms on experimental data, such as EMG

and skin markers, has been shown to improve estimation accu-

racy [12], particularly for patients with pathological conditions

[13]. These methods address the noise introduced by double

differentiation and provide more physiological activations.

However, their computational cost and challenging conver-

gence may compromise their use in real time applications. To

address computational limitations, a combination of forward

and inverse methods can be employed. This approach takes

advantage of both methods to improve computation time and

increase dynamic consistency. However, some methods rely

on noisy data on joint moments, such as the CEINMS toolkit

[14], while others do not consider the control time history,

like the forward static optimization approach [15]. Receding

horizon methods have demonstrated promising outcomes when

leveraging forward dynamics [16], [17]. In [17], we proposed a

real-time muscle force estimation algorithm based on: optimal

control problem (OCP), forward dynamics, moving horizon

estimator (MHE), and simulated data. An originally intractable

OCP was split into a series of smaller subproblems solved at

high frequency (15-30 Hz). We showed that forward methods

are suitable for real-time applications, providing muscle forces

and joint kinematics satisfying motion dynamics. Unfortu-

nately, it was only tested on a simplified model (4 degrees-of-

freedom (DoFs), 10 muscles) using simulated data. This study

builds upon prior work and makes a three-fold contribution:

1) to stream experimental data to live feed our algorithm,

and to provide real-time feedback of estimated data

(joint kinematics and muscle forces) on two participants
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with distinct morphologies (e.g., male and female);

2) to show the applicability of real-time MHE using exper-

imental biosignals and a more refined MSK model;

3) to develop a method to determine the best receding

horizon parameters (problem duration, and at which time

frame to keep a sample of the optimal trajectory).

II. METHOD

A. Musculoskeletal model

The MSK model derives from the upper-limb model de-

veloped by Wu & al. [18]. It consists of five segments

(thorax, clavicle, scapula, arm, and lower arm) and 10 DoFs

(two sternoclavicular, three acromioclavicular, and three gleno-

humeral rotations, elbow flexion, and pronation/supination).

The model is actuated by 31 Hill-type muscles [19] around

the shoulder and the elbow. Biceps brachii and triceps brachii

muscle groups were added to the original model [18] based

on Holzbaur’s model [20]. Pure additional joint torques are

included in the optimization to assist muscle actions on the

sternoclavicular, acromioclavicular, and elbow (supination-

pronation) joints [21].

B. Muscle force estimation

The Hill model, which describes muscles by a contractile

element and a passive element in parallel, was used for each

muscle unit. To speed up computations, the tendons were

considered rigid [22]. As the movements of interest were

slow (around 70°/s), muscles were directly controlled by

their activation (neglecting neural excitation dynamics with

its electromechanical delay [23]) while trying to match online

recorded EMG signals. For a muscle m, the force ( f m) com-

puted from activation (a) and muscle kinematics (normalized

muscle fiber length l̃m and velocity ṽm) was expressed as:

f m = f m
o (a f act(l̃m) f v(ṽm)+ f pas(l̃m))cosα, (1)

where f m
o is the muscle isometric force, f act(l̃m), f v(ṽm)

and f pas(l̃m) are the active force-length relationship, force-

velocity relationship and the passive force-length relationship,

respectively; α is the muscle pennation angle [24].

C. Problem formulation

Our framework consists in solving a series of OCPs of fixed

duration and number of frames (tmhe and nmhe, respectively),

implemented as constrained nonlinear problems. Each sub-

problem aims to find estimates of the control and of the state

trajectories (respectively ûuu and x̂xx) that minimize the tracking

error of experimental data (denoted by .∗), while satisfying the

system dynamics and constraints according to the following

formulation:

(x̂xx, ûuu) = argmin J (xxx,uuu) (2a)

s.t. ∀t, ẋxx = f (xxx,uuu) Dynamics constraints (2b)

∀t, uuu ∈ U , xxx ∈ X Path constraints (2c)

Equation (2a) is the running cost to be minimized (developed

in (3a-3c)). This optimization problem is subject to multi-

body dynamics driven by muscles and joint torques (Eq. 2b),

as well as path constraints in the domains of uuu and xxx (U

and X , respectively) that include muscle activation ranging

from 0 to 1 and joint kinematics within their physiological

ranges of motion. A state constraint is enforced to dictate the

solver’s initial state J is the cost function to be minimized

and expressed as:

J =
nmhe

∑
n=1

(ωm∗∥mmmn(qqq)−mmm∗
n∥

2 +ωa∗∥aaan −aaa∗n∥
2) (3a)

+
∫ t+tmhe

t

(

ωτ∥τττ∥2 +ωa∥aaa∥2 +ωq∥qqq∥2 +ωq̇∥q̇qq∥2
)

dt (3b)

+
nmhe

∑
n=1

(ωqprev∥qqqn −qqqprev
n ∥2 +ωq̇prev∥q̇qqn − q̇qqprev

n ∥2) (3c)

here mmm is a vector of marker positions (obtained from qqq by

forward kinematics), q and q̇ are joint angles and velocities

respectively, with xxx = (qqq, q̇qq) and τττ is a vector of pure addi-

tional joint torques. Equation (3a) stands for the tracking of

marker positions and EMG signals, weighted by ωm∗ and ωa∗ ,

respectively. Experimental data are tracked forward in time

allowing a more physiological estimation [25]. Equation (3b)

represents controls minimization (additional joint torques and

muscle activations), weighted by ωτ and ωa, respectively, and

regularization terms on states qqq and q̇qq, weighted by ωq, and

ωq̇, respectively.

Equation (3c) is a correction-based term added for tracking

estimated states from the previously solved problem, weighted

by ωqprev and ωq̇prev , respectively. These terms act as a propor-

tional derivative controller, to reduce steady-state error and

noise [26]. The weights on these terms can be interpreted as

the gain of the controller.

Weights (ωm∗ , ωa∗ , ωτ , ωa, ωq, ωq̇, ωqprev , and ωq̇prev ) were

identified offline by finding the best trade-off between marker

tracking and the quality of the EMG using recorded data from

the first participant. Each time a sub-problem is solved, a new

one is set up with the most recent measurements used as

targets. In addition, as the sub-problems overlap, previously

estimated points are used to provide an initial guess close

to the optimal solution of the current problem. To build the

initial guess, the oldest estimated frame is removed from

the previous solution, and the most recent is repeated as

many times as needed to match the current problem size

(Fig. 1). This overlap requires selecting which sample to keep

as the optimal solution, expressed as a percentage of nmhe,

referred to as framex (x represents the percentage of nmhe).

The final delay is dependent on both the solving delay and

which framex is exported (Fig. 2). To catch up with upcoming

experimental data, the estimation horizon must move forward

in time, by a number of samples denoted s, named as shift

size, computed through the division between sampling and

solving frequencies (Fig. 1). Extensive tests were conducted

on the receding horizon parameters offline using the recorded

data for the first participant to determine the optimal trade-off

between performance and accuracy among:

• tmhe: large values lead to higher accuracy but lower

solving frequencies;

• framex: the closer the frame is to the end (100% of nmhe),

the less it is filtered by the algorithm.
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These receding horizon parameters were fine tuned while

varying tmhe from 4 ms to 120 ms and framex amongst 0%,

25%, 50%, 75%, and 100% of nmhe, for three movements

(shoulder abduction, flexion, and one that mimics hand cycling

(see video in supplementary material)). Six criteria (italicized

below) were used to determine the best parameters. As we

targeted a delay below 125 ms [5], the overall estimation

delay was computed as the sum of the solving duration and

the delay introduced by the chosen kept framex. In addition,

as the movements were not executed at a maximal contrac-

tion level, muscle activations should not reach saturation.

Therefore, we evaluated the total number of frames where

muscles were saturated (activation > 95% of the maximal

voluntary contraction (MVC)) for each set of receding horizon

parameters. To avoid non-physiologic results on the kine-

matics, the angular velocity’s mean power frequency was

computed for all joints, representing their inner variation [27].

Then, the root-mean-square errors (RMSE) were calculated

between estimated and experimental data (markers, EMG).

Finally, the inverse dynamics based on experimental markers

data was computed. The root-mean-square difference (RMSD)

was calculated between the computed inverse dynamics and

the estimated torques (sum of muscle-induced torques and

additional torques).

Results are shown in Section III-A. The problem was im-

plemented using Bioptim [28], a Python library dedicated

to solving biomechanical OCP, leveraging the MHE pre-

implemented class. Non-linear programs were solved using

Acados [29], with its real-time iteration scheme [30] to

improve the robustness and computational cost of the con-

vergence of the subproblems. In particular, the OSQP [31]

solver was used to solve the quadratic program. It allows for

stricter boundary constraints in contrast to HPIPM [32] used

in our previous study [17]. To avoid indefinite Hessian in the

OSQP, a regularization term was added through the Levenberg-

Marquardt coefficient [33]. Then, a damped Newton method

was used by adjusting the step length to 0.9 to improve

convergence rate [34]. Also, the Jacobian matrix was reused

within Newton iterations to reduce computational cost [35].

Since the acquisition rate was set to 100 Hz, the number of

available point frames for each sub-problem (e.g., 10 points

over 0.1 s) was insufficient to solve the problem accurately. To

address this, the experimental data were linearly interpolated,

resulting in twice the number of points (e.g., 20 points for

0.1 s). The code is available on GitHub.

D. Participants and instrumentation

Two healthy right-handed participants were involved after

signing an informed consent: one male (23 years old, 72 kg,

1.85 m) and one female (29 years old, 70 kg, 1.68 m). This

experiment was approved by the ethics committee of the

University of Montreal (#14-122-D). A 12-camera motion

capture system (Vicon, Oxford, UK) was used to record 16

skin marker trajectories at 100 Hz. Markers were placed on

the trunk and right upper limb at predefined locations to

reduce soft tissue artifacts [36] (Fig. 3). Muscle activities

were recorded at 2 kHz using 10 surface EMG sensors (Trigno

Subproblem iSubproblem i-1

Initial guess i

Solution i-1

Solution i

True trajectory

Shift

size

Initial state constraint

t

Figure 1. Series of two consecutive subproblems at time t-1 and t (grey and
black boxes, respectively), shifted by a shift size. The red curve represents
the ground-truth trajectory for one joint angle. The solid grey and black lines
correspond to the previous and current solutions, respectively, which aim to
estimate the true trajectory. The dashed black line represents the initial guess
of the subproblem at t, built from the solution at t-1. The grey circle denotes
the initial state constraint between the two consecutive subproblems.

Experimental data

Optimal trajectory

Subproblems

Overlapping: which framex to pick? 

Exported frame

t

t-1

t-4

Increased 

delay

Increased 

filtering

frame0%

frame25%

frame100%

Figure 2. Representation of a series of MHE subproblems (from t-4 to t) of
five frames size with a one frame shift size. Experimental data are used as
targets. The red pie charts represent the exported frame for each sub-problem
corresponding to the estimation for the current sample.

.

EMG Wireless System, Delsys, USA) put on the Pectoralis

(major), Biceps brachii (long head), Triceps brachii (long

heads), Trapezius (upper, medial, and lower heads), Deltoid

(anterior, medial, posterior heads), and Latissimus dorsi, after

shaving and cleaning the skin. Data were synchronized using

Nexus 2.8 (Vicon, Oxford, UK). Ten MVC were collected

following the recommendations of [37]. Offline EMG signals

were band-pass filtered (10-425 Hz), rectified, and lowpass

filtered (5 Hz) using a fourth-order Butterworth filter. Then,

maximal activations were obtained by computing the mean

of the 2000 highest values (corresponding to 1 s) for each

muscle during all 10 MVC trials [37]. A static pose was

used to scale the MSK model using OpenSim [38], which was

then converted into a Biorbd model format [39], as Bioptim

MSK dynamics relies on Biorbd [39]. Finally, the participants

were asked to perform two arm elevations in the frontal and

sagittal planes and movements mimicking hand cycling in

the sagittal plane. For further validation, their were asked to

perform motions while holding a 2 kg dumbbell which result

in different muscle activity levels.

E. Real-time software implementation

We developed a fast (C++ core) and open-source Python

library to achieve real time muscle force estimation and

biofeedback using live data. Two scripts were implemented:

(1) sensor data streaming and processing, and (2) muscle

force and kinematics estimation and visual biofeedback. To

enhance performance, the two scripts were executed on two

computers connected through TCP/IP connection, with the

Python multiprocessing package used for parallelization. The

software architecture is depicted in Fig. 4.

http://github.com/aceglia/code_paper_mhe
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Figure 3. First participant equipped with 10 EMG sensors and 16 skin markers
on the right upper limb.

1) Sensor data streaming and processing (1st computer;

three tasks): During Task #1a, skin markers and EMG

signals were streamed in real time from Nexus using the

Vicon DataStream SDK Python interface [40]. Concurrently,

joint kinematics were computed from the marker 3D positions

using EKF, and EMG envelopes were generated using a

sliding window (2000 frames, 1 s), band-pass filtering (10-

425 Hz), rectification, and moving average smoothing (200

frames) during Tasks #1b. In Task #1c, a TCP/IP server was

started to transmit EMG envelopes, joint angles, and marker

trajectories to the second computer on demand.

2) Muscle force and kinematics estimation and biofeedback

(2nd computer; two tasks in parallel): Task #2a involved

implementing the optimal estimator described in Section II-C

and updating tracked data at each iteration via the TCP/IP

server. EKF-based joint angles were used as an initial guess,

and estimated data were made available for transmission to a

visual application at the end of each iteration. In Task #2b,

real-time biofeedback on optimal joint kinematics and muscle

forces was provided through visualization (Fig.7).

F. Data analysis

Once the receding horizon parameters were tuned using

data from the first participant (Section II-C), the RMSE of

the marker trajectories and the EMG, and the RMSD of the

inverse dynamics were used to evaluate our results. To assess

the robustness of our method, we used the same parameters

without any changes to run the estimation on a second partici-

pant. As one of the objectives of this study was to demonstrate

the real-time capabilities of our method we evaluated the time

performance of our estimator. First, the solving frequency was

computed for each iteration. Second, the total process latency

between measured data and final biofeedback visualization

was expressed as the sum of the following delays: d1) Vicon

SDK latency using the Python interface; d2) data processing

duration (Section II-E); d3) latency of the TCP/IP connection;

d4) estimator solving duration (Section II-C); d5) visualization

refresh delay. Latency was computed for each solver iteration;

we reported the mean value with standard deviation (m ± sd)

to evaluate the program’s real-time capabilities.

III. RESULTS

A. Receding horizon parameters

The sum of non-compressible delays (d1,2,3,5) was

50.22±10.92 ms (Tab. I). For a total delay under 125 ms [5] d4

Table I
MEANS OF COMPUTATIONAL DELAY INTRODUCED BY EACH TASK.

Tasks Delay (ms)
name mean SD

Computer 1
Nexus d1 6.6 1
Processing d2 9.5 1.07
TCP/IP d3 6.12 1.25

Computer 2
Estimator d4 33.9 1.1
Frame shown d5 25.4 0.8
Visualization d6 28 7.6

Total 111000999...666 111222...222

must be under 60 ms (125− (50.22+10.92) = 63.86ms, with

one standard deviation conservatively included). Receding

horizon parameters inducing delays longer than 60 ms (con-

tained in the red shaded area, Fig. 5-a) were discarded. Fig. 5-

b shows that every frame100% and frame75% with tmhe = 40 ms

led to more than 4% of muscle activations saturation. As the

saturation needs to be as low as possible, receding horizon

parameters inducing saturation higher than 4% (contained in

the shaded red area, Fig. 5-b) were discarded. Parameters

discarded in Fig.5-a appear in grey in Fig. 5-b. Similarly,

parameters discarded in Fig.5-a and b appear in grey in Fig. 5-

c. Fig. 5-c shows that the shorter the horizon length, the higher

the mean power frequency of joint angular velocities. To

remain physiologic the mean power frequency must remain

as low as possible given the slow movements executed by

the participants. It was observed that choosing an 80-ms

window length resulted in kinematics as smooth as those

obtained with the Kalman filter. No significant difference

in errors with experimental data and difference in torques

with inverse dynamics are observed (Fig.,5-d-f). Therefore,

the set of parameters that introduced the smallest mean power

frequency among the ones not previously discarded (frame75%

and tmhe = 80 ms) was chosen, resulting in a delay under 60 ms,

error lies within the midpoint of the maximum and minimum

range, and good performance (30 Hz, which is twice the real-

time threshold of 13 Hz [4]).

B. Real-time performances

Data were streamed and processed (Nexus software

included) on a Windows 7 computer (Intel Xeon® X5680

@ 3.33 GHz 6-core processor). The MHE and biofeedback

were carried on eight cores of a second computer (AMD

Ryzen® 9 5950x 16-core processor) running Ubuntu 20.04

LTS. The program estimated and displayed the 31 muscle

forces, and the 10 DoFs 3D kinematics at 30 Hz with a total

delay of 110 ms (Section II-E). The delays introduced by each

step are summarized in Tab. I. Main delays come from the

second computer for the estimation and visualization tasks

(80%). Data streaming and processing on the first computer

correspond to 20% of the total latency.

C. Muscle force and kinematics estimation

As described in Section III-A, receding horizon parame-

ters have been adjusted (frame75% - tmhe = 80 ms). Although

the algorithm parameters were tuned on data from the first

participant, the algorithm converged for the second partic-

ipant without any change. Results for both participants are
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/Figure 4. Overview of the tasks performed on two computers. The first one (in blue) is for data streaming and processing, and the other one (in green) is
for muscle forces and joint kinematics optimal estimation and visualization.

Exported frame 

frame0% frame25% frame50% frame75% frame100%

tmhe (ms)

60 70 100 12040 50 80 90 110

frame75% / 80 msBest parameters: 

z

Figure 5. Average performances on all trials for the first participant (n=6) as a function of mean problem-solving duration for each set of receding horizon
parameters. Exported frames (framex) are represented by pie charts from 0% ( ) to 100% ( ) while colors represent length of subproblems (tmhe) from
40 ms to 120 ms. The figure shows: a) the delay introduced by the optimization; b) The per-trial average percentage of frames where muscle activations are
saturated; c) The mean power frequency on estimated joint angular velocities; d) and e) The RMSE between estimated and experimental data, marker positions
and EMG respectively; f) The RMSD between estimated torques and those computed from inverse dynamics; Discarded parameters during the parameters
selection process (inside red areas of a and b) appear in grey in the subsequent plots (respectively b and c). A red circle surrounds the selected best parameters
(frame75% - 80 ms).

presented separately to demonstrate the ability of the method

to generalize without any extra tuning. After applying for-

ward kinematics to estimate the marker positions from joint

angles, the mean error across all trials for all markers was

24.8 ± 6.7 mm and 20.3 ± 7.5 mm for the first and second

participant, respectively, when compared to the experimen-

tal positions. The RMSE between estimated activations and

recorded EMG was 7.39 ± 1.95% and 3.4 ± 5.4% for the

first and second participant, respectively. Estimated activations,

corresponding EMG (if applicable), and muscle forces are

shown in Fig. 6 for the first participant, for an abduction

movement, with and without a 2-kg dumbbell. As expected,

higher activations and forces were estimated when holding

the dumbbell, even for non-tracked muscles. This shows the

ability of the solver to consider experimental EMG but also

to generate a physiological prediction for untracked muscles.

Furthermore, the activation level of the infraspinatus and

supraspinatus were of the same order as in [41] (Fig. 6, data

were extracted from graphics using Engauge Digitalizer [42]).

The subscapularis shows the same activation pattern but with

an activation almost three times higher. A loss of activation is

observed (Fig. 6) for the supraspinatus around 90° of abduction

which differs from [41]. The same observations were made on

the seconds participant.

IV. DISCUSSION

We presented an end-to-end method to estimate and visu-

alize muscle forces and 3D kinematics applied to a 10-DoF

upper limb model actuated by 31 muscles in real time. To our

knowledge, this is the first time that a trajectory optimization

algorithm coupled with MHE has been used to achieve such

estimation in experimental conditions. We highlighted the

robustness of our method by successfully applying it to two

participants with different morphology’s, using parameters

based solely on the first participant. The results remained

consistent for both participants, and notably, improved even

further for the second participant. We developed a framework

to stream and process experimental data in real time (100 Hz)
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Estimated values

Inverse kinematics (EKF)

Wickham & al. (2010) [48]

EMG

With 2 kg dumbbell

Without dumbbell

Activation
 (% MVC)

Activation
 (% MVC)

Activation
 (% MVC)

Force
 (% BW)

Force
 (% BW)

Force
 (% BW)

Angle
 (°)

Figure 6. Muscle activations normalized by MVC (with corresponding recorded EMG, dashed lines) and forces normalized by body weight (BW) are shown
for an abduction motion for the first participant. EMG from infraspinatus, subscapularis, and supraspinatus were not recorded in this study, therefore data
from Wickham & al. [41] (red shaded areas and dashed lines) are used to represent the condition with 2 kg dumbbell. Data for abduction greater than 90°were
removed from [41] to match with our abduction range of motion. Both conditions are represented without weight (blue) and with 2 kg dumbbell (orange/red).
Only eight representative muscles are shown in the figure. The estimated arm elevation is duplicated under each column to facilitate the reading (with EKF
estimate for comparison, dash-dotted lines).

Figure 7. Experimental setup with real-time visual biofeedback. The screen
was put in front of the participant. An enlargement was made on the screen
(left) and on the display of one muscle force (bottom).

and used numerical optimization to fuse EMG and kinematics

data for predicting kinematics and muscle forces. Biofeedback

was provided at 30 Hz with an average delay of 110 ms. This

method might directly be applied to the control of a patient

force-informed assistive device, with lower delay, since the

visualizer (25% of the delay) might not be required in this

context.

Since our previous work, our method was adapted to a more

refined and complex model [17]. Our previous model was

insufficient in capturing the complexities of a patient’s reha-

bilitation task, such as hand cycling, where an accurate rep-

resentation of shoulder kinematics necessitates the inclusion

of clavicle and scapula movements. Additionally, the limited

number of muscles in the model hindered our understanding

of muscle actions in the task. Real-time performance was

maintained while transitioning from simulation-only to full ex-

perimental conditions. This was achieved through software de-

velopment and formulation improvements of the MHE. First,

we developed an open-source Python package (biosiglive [43])

designed for efficient (C++ based) real-time data streaming.

Second, a real-time iteration scheme was used inside Acados,

and algorithm adjustments were chosen to allow robust and

fast solving.

We have highlighted that receding horizon parameters influ-

ence the estimation results, leading to, for example, high-

frequency kinematics trajectories or activation saturation.

Fig. 5 shows that using frame100% led to inconsistent saturated

muscle activations (> 4%). This non-physiological result sug-

gests that, when keeping frame100% in the estimated trajectory

(subproblem(t-4) in Fig.2), the corresponding movement was

not sufficiently filtered, as it went only once through the MHE.

Fig. 5 also reveals that the saturation of muscle activations

stays around 1% when the exported framex (x < 100%) was

filtered more than once. The frame75% (at least two times fil-

tered) could therefore be chosen as a good compromise leading

to physiological estimates and low optimization delay (Fig. 5-

a). In addition, the mean power frequency of joint angular

velocities increased as the horizon length decreased. As high

mean power frequency could lead to non-physiological joint

acceleration, the parameters which introduced the smallest

mean power frequency were kept. Interestingly, the combined

analysis of optimization delay, muscle activation saturation and

mean joint velocity’s power frequency led to a unique choice

for receding horizon parameters: frame75% with tmhe = 80 ms.

Concerning experimental data tracking, receding horizon pa-

rameters did not seem to have a significant impact overall.

We have shown that, once the appropriate parameters were

found, the results were consistent with other studies [18], [41]

for the EMG and muscle forces patterns (Fig. 6), in addition

to being dynamically consistent. Our method can estimate the

movement kinematics with an average for both participants

around 22 mm error on the markers, which is below the

uncertainty due to soft tissue artifacts [36]. Despite the model’s

muscle parameters being uncalibrated and the absence of

passive joint torque, the estimator still managed to consistently
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estimate muscle contributions. First, as expected, the estima-

tion provided higher muscle activations with a 2-kg dumbbell

than without for both participants. Then, the RMSE for both

participants around 5% when compared to EMG signals was

low, particularly considering that a small change of the sensor

position can induce up to 35% variation in signal amplitude

[44]. The muscle activation and force level aligned with data

from Wickham & al. [41] for untracked muscles such as

the infraspinatus or supraspinatus. This consistency illustrates

the estimator’s capability to harness the system’s dynamics

and provide relevant estimates of concealed or unmeasured

quantities. Additionally, the levels and patterns of muscle

force were consistent with those found in [18];for instance,

for the deltoid (medial) (40% at 60°) or the infraspinatus

(25% at 60°). Finally, the discrepancy between the superior

trapezius’s activation level (50% for a 2-kg dumbbell) and

its force contribution, which is nearly 10 times lower (6%),

underscores the relevance of opting for muscle force feedback

over EMG. Our results must be put into perspective with

inverse methods that allowed resolution at 120 Hz with a 44-

DoF model actuated by 300 muscles [9]. The resolution is four

times faster but relies on inverse dynamics that could lead to

nonphysiological results. Previous study [45] that used hybrid

methods on a 23-DoF model actuated by 34 muscles was able

to estimate the joint contact force and display feedback in

a total delay of 115 ms which is similar to ours. However,

the estimation part, from inverse kinematics to muscle forces

estimation, took around 57 ms (around 34 ms in our method,

almost two times faster). We have shown that using forward

dynamics optimization based can challenge hybrid methods

while giving more reliable dynamics estimation. The visual-

ization delay is the second-most resource-demanding feature

in our study (28 ms - 25%) and could be improved for better

performances. That said, our total latency (≈110 ms) is low

enough for efficient visual biofeedback (≤125 ms).

In the continuity of this work, we will adapt our framework

to a patient-specific assistive control of a hand-bike device

dedicated to rehabilitation. The optimal control program im-

plementation can be customized to add other measurements

such as reaction forces. Moreover, as estimated values are

available for each subproblem (30 Hz), they could be used

to control any system requiring these values as input to

interact with a patient (functional electrical stimulation system,

for instance, [46]). In this study, we decided to present a

method that provides muscle forces while acknowledging that

additional parameters such as joint reaction force or moment

arm can be estimated based on the system’s requirements

during patient interaction.

This study has limitations that should be considered. First, to

improve convergence, the experimental data were interpolated

from 100 to 200 Hz. The size of the MHE windows being

small and the motion slow, interpolation effects should be low.

However, the data should be acquired at a higher frequency

in future work to avoid interpolation. The muscle parameters

were not calibrated based on the participants, due to the

yet unresolved challenge of calibrating muscles actuating

more than one joint [14]. So, the amplitude of the estimated

activation and force might lack accuracy. Nevertheless, we

evaluated the muscle force and activation time histories to

show the relevance of the estimated muscle contributions. Only

the subscapularis shows an activation almost three times higher

than measured activity [41], which could be explained by

the lack of scapulothoracic kinematics constraints or the non-

calibrated muscle parameters (e.g., isometric force or optimal

length). Also, we observed a loss of muscle contribution for

the supraspinatus around 90° of abduction, which could be

attributed to non physiological moment arm. Our model lacks

features like joint capsules and the scapulothoracic pseudo-

joint, which naturally enforce internal constraints. The addition

of pure joint torques prevents the drawback to induce mus-

cle contributions overestimation. However, additional gleno-

humeral torques were set to zero. As obtaining non-invasive

in vivo measurements of muscle forces presents challenges, we

were unable to directly validate our results. However, indirect

validation was provided by comparing muscle activations

and forces to literature data, even for non-tracked muscles

(Section III-C). To further validate our method, we aim to track

only 60-80% of recorded EMG and compare the estimated

muscle activation with the experimental non-tracked EMG.

Additionally, we tested our algorithm on only three motions

and two participants. While the results are encouraging, further

validation of our method’s generality is necessary by applying

it, in future work, to different contexts with more participants.

V. CONCLUSIONS

We showed that trajectory optimization coupled with a

MHE formulation can estimate muscle forces in real-time

from experimental EMG-marker data. Real-time capabilities

are good enough to be used in a clinical context. Biofeedback

of estimated value was provided at 30 Hz with a 110 ms delay,

on a complex model in experimental conditions. The estimated

joint kinematics and muscle forces were consistent with the

experimental motion and the literature. We are enthusiast that

our algorithm provide consistent estimation for two different

participants despite fine-tuning the parameters exclusively

based on the first participant. Such a method could be used

in clinical or industrial applications to give relevant real-time

input data to assistive devices, leading to biomechanically

informed interactions.
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