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Résumé

Le fer et les alliages à base de fer présentent un intérêt considérable pour la communauté de

la modélisation des matériaux en raison de l’immense importance technologique de l’acier.

Les alliages ferritiques à base de fer sont largement utilisés dans les industries aéronautique et

nucléaire en raison de leur résistance mécanique élevée, de leur faible dilatation à haute tem-

pérature et de leur résistance à la corrosion. Ces propriétés sont cependant affectées par des

défauts ponctuels intrinsèques et extrinsèques. Dans cette thèse, nous décrivons en détail la

cinétique des défauts ponctuels dans le fer α en utilisant la technique d’activation-relaxation

cinétique (ARTc), une méthode de Monte Carlo cinétique hors réseau avec construction de

catalogue à la volée. Plus précisément, nous nous intéressons aux mécanismes de diffusion

du carbone (C) et des amas de lacunes dans le fer α. Dans un premier temps, nous étudions

l’effet de la pression sur la diffusion du carbone dans le joint de grains de fer α. Nous consta-

tons que l’effet de la pression peut fortement modifier la stabilité et la diffusivité du carbon

dans le joint de grains d’une manière qui dépend étroitement de l’environnement local et de

la nature de la déformation. Ceci peut avoir un impact majeur sur l’évolution des matériaux

hétérogènes, avec des variations de pression locale qui altéreraient fortement la diffusion à

travers le matériau. Nous étudions également l’évolution structurale des amas de lacunes

contenant de deux à huit lacunes dans le fer α. Nous décrivons en détail le paysage énergé-

tique, la cinétique globale et les mécanismes de diffusion associés à ces défauts. Nos résultats

montrent des mécanismes de diffusion complexes même pour des défauts aussi simples que

de petits amas de lacunes. Enfin, dans le dernier chapitre, nous discutons une approche de

gestion de petites barrières par bassin local dans ARTc. Les simulations de Monte Carlo
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cinétiques deviennent inefficaces dans les systèmes où le paysage énergétique est constitué

de bassins avec de nombreux états reliés par des barrières énergétiques très faibles par rap-

port à celles nécessaires pour quitter ces bassins. Au fur et à mesure que le système évolue

état par état, il est beaucoup plus susceptible d’effectuer des événements répétés (appelés

oscillateurs) à l’intérieur du bassin d’énergie de piégeage que de s’échapper du bassin. De

tels osccilateurs ne font pas progresser la simulation et ne fournissent que peu d’informations

au-delà d’uen première évaluation de ces états. Notre algorithme de bassin local détecte, à

la volée, des groupes d’états oscillants et les consolide en bassins locaux, que nous traitons

avec la méthode de taux moyen d’auto-construction de bassin (bac-MRM), une approche de

type équation maîtresse selon la méthode du taux moyen.

Mots clés: Défauts ponctuels, Diffusion, Fer, Monte-Carlo cinetique, ARTc
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Abstract

Iron and iron-based alloys are of considerable interest to the materials modelling community

because of the immense technological importance of steel. Iron-based ferritic alloys are

widely used in aeronautic and nuclear industries due to their high mechanical strength, low

expansion at high temperatures, and corrosion resistance. These properties are affected by

intrinsic and extrinsic point defects, however. In this thesis, we describe in detail the kinetics

of point defects in α−iron using the kinetic activation-relaxation technique (kART), an off-

lattice kinetic Monte Carlo method with on-the-fly catalog building. More specifically, we

focus on the diffusion mechanisms of carbon and vacancy clusters in α−iron. First, we study

the pressure effect on carbon diffusion in the grain boundary (GB) of α−iron. We find that

the effect of pressure can strongly modify the C stability and diffusivity in the GB in ways that

depend closely on the local environment and the nature of the deformation. This can have a

major impact on the evolution of heterogeneous materials, with variations of local pressure

that would strongly alter diffusion across the material. We also study the structural evolution

of vacancy clusters containing two to eight vacancies in α−iron. We describe in detail the

energy landscape, overall kinetics, and diffusion mechanisms associated with these defects.

Our results show complex scattering mechanisms even for defects as simple as small vacancy

clusters. Finally, in the last chapter, we discuss a local basin approach to managing low-

barrier events in the kART. Kinetic Monte Carlo simulations become inefficient in systems

where the energy landscape consists of basins with numerous states connected by very low

energy barriers compared to those needed to leave these basins. As the system evolves state

by state, it is much more likely to perform repeated events (so-called flickers) inside the
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trapping energy basin than to escape the basin. Such flickers do not progress the simulation

and provide little insight beyond the first identification of those states. Our local basin

algorithm detects, on the fly, groups of flickering states and consolidates them into local

basins, which we treat with the basin-auto-constructing Mean Rate Method (bac-MRM), a

master equation-like approach based on the mean-rate method.

Keywords: Point defects, Diffusion, Iron, kinetic Monte Carlo, kART
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Introduction

Optimising material properties is a significant research challenge. In many industrial fields,

materials with strong mechanical properties, high plasticity and high corrosion resistance are

in demand. To improve these properties, it is essential to identify the factors that influence

them. Point defects in metals can affect their physical and mechanical properties [35]. For

example, point defects such as vacancies promote dislocation formation [58]. The subsequent

evolution of the latter causes extreme plastic deformation in metals [161]. In contrast to

vacancies, the presence of interstitial defects can increase the hardness of a material by

impeding the mobility of dislocations, and thereby decreasing plastic deformation [45, 153].

Another mechanical property of materials, creep under applied stress, is characterised by the

collective motion of individual vacancies or clusters [101, 161]. It is not just the mechanical

characteristics that are impacted by point defects diffusion processes; the electrical ones are

as well. For example, it has been demonstrated that the deformation of the Fermi surface

caused by defects such as vacancies and extrinsic interstitials leads to different electrical

resistivity in the two materials [47, 123].

Numerous studies have been carried out to describe the thermodynamic properties of

metals in the presence of defects, including the chemical equilibrium characterised by the

minimization of the Gibbs free energy (for the case when temperature and pressure remain

constant), as well as the enthalpy and entropy of the formation of point defects in crystals.

Due to the limitations of numerical and experimental approaches, many details of the kinetic

evolution of these defects as well as their aggregation remain unclear.



Despite the research conducted in the last fifty years, there are still many obstacles to

understanding and knowing the mechanisms that take place at the atomic level. The advent

of the digital age now justifies the use of numerical simulation approaches that accurately

and realistically represent the states and properties of matter. Numerical approaches would

ideally model system evolution up to experimental time scales and with atomic-level descrip-

tions. However, there is not yet a single method that fully covers atomic-level descriptions for

experimental times. For example, ab initio approaches based on the solution of the quantum

Schröedinger equation provide the best results in terms of electronic and atomic properties.

On the other hand, finite element methods provide a more accurate representation of ma-

croscopic and mesoscopic dynamics and properties, including mechanical, thermodynamic,

and acoustic quantities. Currently, the combined application of several numerical methods

provides a partial understanding of matter on long time scales and an atomistic description.

The study of diffusion, structure relaxation and defect aggregation processes in materials,

in this work specifically in iron, requires the use of powerful multiscale numerical methods.

Indeed, we will see that all these processes are distributed over several orders of magnitude,

both spatially and temporally. It is essential to have tools that accurately describe energy

levels and atomic configurations. At the same time, these tools must track the evolution of

the system on experimental time scales.

The dissertation is organised as follows: The first three chapters (1, 2, and 3) are bi-

bliographic chapters devoted to the description of the problem studied (the specific defects

in materials) and the numerical methods used for its study. In the following chapters (4, 5

and 6), which have the form of articles, our results are presented. In chapter 1, we describe

the different types of point defects that can occur in materials. The end of the chapter is

devoted to the kinetics of these defects. Then, in chapter 2, the problem of activated pro-

cesses (also called rare events) is put into context. The activated processes describe, among

other things, the nature of diffusion of atoms and possible structural defects in solids. For

this purpose, the theory of transition states is presented, which is currently one of the most

important methods to treat activated processes efficiently and rapidly. Among the so-called
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accelerated methods, the kinetic Monte Carlo method is described in detail in its original

form; then an overview of the developments of this method during the last twenty years

is given. In chapter 3 we will focus more on the method used in our studies, the kinetic

ART (k-ART) method, an off-lattice kinetic Monte Carlo algorithm with on-the-fly catalog

construction based on activation-relaxation technique nouveau (ARTn). ARTn is a powerful

open-ended saddle search method that fully accounts for the long-range elastic effect. In

chapter 4, which presents the results of the first article, we investigated the pressure effect

on carbon diffusion in the grain boundary of α−iron to understand the evolution of hete-

rogeneous materials in which variations in local pressure can alter carbon diffusion through

the material. In chapter 5, which contains the results of the second article, we studied the

diffusion mechanism of vacancy clusters (from one to eight vacancies) in crystalline α−iron.

Finally, in the last chapter (chapter 6), the application of the local basin approach to the

kinetic activation-relaxation technique is presented in detail. The thesis is concluded with a

conclusion summarising all the innovations as well as the perspectives of our research work.

3





Chapter 1

Point defects in materials

1.1. Introduction

Crystals are, in reality, never perfect and always contain defects. Defects in solids are

broadly divided into two categories: (i) point defects (zero-dimensional defects) such as

vacancies, interstitials, etc., and (ii) extended defects (ordered in one, two, and three di-

mensions) such as dislocations, grain boundaries, voids, etc. In this chapter, and in the

dissertation in general, we focus exclusively on the study of point defects. In particular, this

thesis focuses only on the study of point defects in α−iron. Point defects play an important

role in maintaining the macroscopic properties of materials, especially when they are sub-

jected to irradiation that multiplies the presence of vacancies and interstitials. This chapter

provides a concise overview of the different types of point defects and their kinetics, as well

as the experimental and numerical methods used to study defect evolution.

1.2. The different types of point defects

In the literature, point defects are classified according to their atomic nature, i.e., intrinsic

and extrinsic defects, or according to their configuration, i.e., when atoms are missing, one

more atom is present, or an atom of a different kind replaces another in the lattice. We

will use the second classification criterion, which divides the point defects into three types:

vacancies, interstitial atoms and substitution atoms.



(a) (b)

Fig. 1.1. Schematic illustration of (a) intrinsic and (b) extrinsic point defects. The intrinsic
defects are the vacancy and the self-interstitial, which are a crystalline site unoccupied and
one more atom in the lattice of the same type as those of the crystal, respectively. The
extrinsic point defects are the substitutional atoms (in green in figure b) and the interstitial
atoms (in orange in figure b), both different from those of the crystal [19].

1.2.1. Vacancies

The vacancy is simply an unoccupied crystalline space, as seen in Fig.1.1a. At absolute

zero temperature (0 K), all atoms forming the crystal of a metal are in their crystalline

sites. Vacancy defects can occur in any crystalline solid; in fact, they are inherent. Any

material whose temperature is above absolute zero can contain vacancies. As the tempera-

ture increases, the number of vacancies increases exponentially. Their concentration can be

expressed as NvNe
− Ef

kBT , where N is the number of atoms in the crystal, Ef is the formation

energy of a vacancy, T is the temperature of the solid, and kB is the Boltzmann constant.

The presence of a vacancy in a material does not cause much distortion of the crystal because

the neighboring atoms of the vacancy tend to leave their crystalline site slightly to approach

the vacancy, but they will not try to take the place of the vacancy.

1.2.2. Interstitial

The interstitial is an atom located in an irregular site of the crystal, also called intersti-

tial, hence the name of the defect. In metals in general, and in the most compact metals in

particular, the atoms are larger than the interstitials, which means that the presence of inter-

stitial sites is unlikely compared to vacancies. Indeed, for interstitial sites to be incorporated

into the network, large distortions must occur.
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Depending on the nature of the interstitial, two cases can occur: an intrinsic interstitial

(Fig.1.1a), when the atom belongs to the same species as the atoms forming the crystal (a

pure metal or a simple alloy), or an impurity (Fig.1.1b), when the interstitial atom belongs

to a different species than the atoms of the crystal. Logically, the atoms that remain in the

interstitial spaces are smaller than the atoms that form the metal lattice (such as hydrogen,

oxygen, or carbon).

1.2.3. Substitutional atom

Substitution atoms, as their name implies, are impurities that replace an atom of the

original network. Fig.1.1b illustrates the substitution defect. Unlike the interstitial atoms,

the substitution atoms are generally the same size or different (either larger or smaller) than

the atoms of the network. Depending on the size of the substituted impurity atom, the

neighboring atoms may remain either in tension or in compression. In ordered systems with

more than one atomic species, substitution leads to the appearance of antisites, atoms that

are different in nature than expected and dictated by the order of the structure.

1.3. Diffusion kinetics of defects

Understanding diffusion in any metal begins with identifying the mechanism by which

defects migrate through the host lattice. A diffusing species can only occupy certain equi-

librium lattice sites in an ordered crystal lattice. Microscopic diffusion occurs when a defect

completes numerous jumps between these sites. The elemental jumps in this series can be

diverse, but we limit ourselves here to the typical jumps in metals, especially in α−iron.

1.3.1. Diffusion by vacancy

An atom can diffuse by exchanging its position with the vacancy, resulting in self-diffusion

(see Fig.1.2a). On the other hand, an impurity occupying a substitution site can also use

this mechanism to diffuse. This is called vacancy-assisted diffusion. However, the mechanism

of vacancy diffusion is very subtle and depends strongly on the structural and electronic
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(a)

(b)

Fig. 1.2. Schematic representation of diffusion from (a) the vacancy and (b) the interstitial.
At the vacancy, an adjacent atom (in green) jumps to fill it, and thus the vacancy has
diffused into the original site of that atom. The interstitial atom (in orange) jumps from one
interstitial site to another neighbor [19].

environment of the vacancy. This mechanism may be more advantageous in exchanges

between the vacancy and its first or distant neighbor. For this to occur, the remote atom

must have sufficient energy to break its bonds with its neighbors and create the distortions

that allow it to migrate. When divergences are present, this mechanism becomes more

complicated, since a divergence has the possibility of dissolving into two vacancies, rotating

as a non-rigid dumbbell, or moving directly.

1.3.2. Diffusion by interstitials

Some atoms move through the interstitial region without interacting with regular sites

in the crystal structure (see Fig.1.2b). These may be self-interstitial atoms or impurities

occupying the various possible interstitial sites in the crystal. Since metals are generally

very compact, diffusion of an interstitial site leads to numerous distortions of the lattice.
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The high compactness of metals (atomic packing factor is 68 and 74% for BCC and FCC

crystal structure, respectively) also means that there is not enough interstitial space for the

extra atom, which is why interstitial site diffusion in metals often corresponds to dumbbell

motions, i.e., motions in which a pair of atoms share the same crystal site. In addition,

interstitial diffusion in most metals is generally much faster than vacancy diffusion because

there are more interstitial sites than crystal sites.

1.4. Determination of point defect properties

To study and describe the diffusion of point defects in crystals, some features are impor-

tant. First, one must know the defect formation energy and the defect migration energy.

The first quantity, i.e., the defect formation energy, is the energy required to create a de-

fect (a vacancy or interstitial) in a perfect crystalline structure. The formation energy is

important for determining the defect concentration in the solid. In some cases, the defects

could be sufficiently concentrated to have a non-negligible chance of interacting. Therefore,

the defects could diffuse into groups, and these diffusion mechanisms could become impor-

tant. The second quantity, i.e., the migration energy, is the difference in energy between the

equilibrium configuration and the saddle point along the migration path.

1.4.1. Experimental study of defects

The study of defects begins with the observation and characterization of defects. This

involves determining the nature of the defect, which is initially completely unknown. In-

formation about a point defect can be obtained by spectroscopic methods such as electron

paramagnetic resonance (EPR) [131], infrared spectroscopy (IR) [126], deep-level transient

spectroscopy (DLTS) [80], or photoluminescence [48]. For studies at high temperatures, other

methods are required, such as positron annihilation spectroscopy (PA) [52]. In positron an-

nihilation spectroscopy, the lifetime of the positron injected into the material is determined

by detecting gamma particles produced during electron-positron annihilation. The positron
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injected into the material is degraded to thermal energy within a time interval of a few pi-

coseconds by ionization and excitation of the material [113]. A longer lifetime of a positron

is an indication of the presence of a defect (vacancy or dislocation), since the position is

trapped there due to the lower electron density and thus the probability of annihilation of

an electron is lower. Fig.1.3 shows the difference between the densities of positrons in a

perfect crystal and a crystal with a vacancy in α−iron. However, the PA method is limited

to the detection of neutral or negatively charged vacancies. Extensive defects are detected

by structural analysis of the material by X-ray diffraction [151] or transmission electron

microscopy (TEM) [63]. On the other hand, it is more difficult to identify the true na-

ture of certain point defects using these methods alone. The most effective method remains

identification based on their optical or electrical signature.

(a) (b)

Fig. 1.3. Bloch state positron density in BCC Fe, and (b) Vacancy trapped positron density
in BCC Fe [113].

Identification of defects is most effective by combining several methods, including mag-

netic resonance spectroscopy [5] and the study of localized vibrational modes [71]. First-

principles calculations are a very efficient method for identifying defects [74]. Quantum

calculations yield results comparable to those obtained by spectroscopy in terms of the

structure and formation energy of defects.

Defect control first begins by studying the thermal stability of a complex defect in anneal-

ing experiments. A series of isothermal anneals are performed to cause either dissociation of
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the defect or its migration. This provides a better understanding of the defect so that it can

be controlled by generation or dissociation to improve the performance of the materials.

For diffusion measurements, a distinction is made between direct experiments with ra-

dioactive tracers [154] and indirect experiments such as induced magnetic anisotropy [34].

The migration energy can be determined by calculating the slope of the Arrhenius curve

[122] (diffusion as a function of the inverse of temperature), which requires measurements

at different temperatures. In the context of an Arrhenius curve, the diffusion coefficient is

the measure of the mobility of a diffusing species and is expressed as D = D0e
− Em

kBT ; where

D is the diffusion coefficient of the species, D0 is a pre-exponential factor, and Em is the

migration energy of the mechanism. Experimental measurements at different temperatures,

therefore, allow us to find Em.

Fig. 1.4. Schematic representation of the multi-scale simulation method [39].

1.4.2. Numerical study of defects

The most reliable numerical methods for calculating defect properties are based on first-

principle calculations, which are generally based on density functional theory (DFT) [59].
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The first-principle calculations provide a good estimate of the defect formation energy. These

methods are also used to study defect kinetics. However, due to their cost, these methods

are limited in their ability to map energy landscapes, and most work is limited to finding

a transition state between given initial and final states based on an initial guess for the

connection path. Only the path closest to the initial guess is explored, leaving other possible

paths unexplored. This can be problematic in complex energy landscapes where multiple

nontrivial but relevant paths may exist. In addition, the methods of DFT are too expensive

to apply to large systems or to enable extensive sampling.

To circumvent the constraint imposed by the limited size of the system and CPU time,

there are two approaches based on approximate methods: molecular dynamics (MD) [60]

and kinetic Monte Carlo methods (KMC) [146]. Standard molecular dynamics (MD) uses

the interaction potential to calculate forces on individual atoms or molecules and uses New-

ton’s equations to directly simulate motion. Despite its simple principle and efficiency in

accurately determining atomic trajectories, molecular dynamics is subject to certain limita-

tions. First, the quality of the atomic potential affects the quality of the results. It should

also be noted that some potentials are optimized for certain problems or for certain precise

atomic compositions. In addition, this type of simulation generally does not adequately

account for the influence of the electronic structure of the material. As soon as the coor-

dination of the diffusing atoms deviates too much from the crystalline state, the empirical

potentials cannot represent well the interaction between atoms. The classical MD cannot

predict atomic configurations or migration energies and barriers. However, some more com-

putationally intensive potentials can approximate these electronic correlations. Similarly,

molecular dynamics can be coupled with an ab initio algorithm [65, 110] to correctly calcu-

late the interactions between atoms. However, the increase in precision limits the number

of atoms to be used and increases the cost and the computation time. Second, in this type

of simulation, the time step must be small enough to ensure numerical stability, which is

of the order of one to two femtoseconds (1,2 × 10−15 s). To achieve simulation times on

the order of milliseconds, a sequence must be executed in billions (1012) of steps, which is
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Fig. 1.5. Coarse-grained representation of a MD trajectory in a Markov chain. (Left) Oscil-
latory motion is also included, and the MD trajectories spend most of their time around the
local minimum. (Middle) Coarse-grained representation of the minima of PES in positions
on a suitably defined lattice. Each grid position represents the local minima in PES. (Right)
Coarse structuring of the MD trajectory into a Markov chain of discrete jumps between the
local minima [4].

very computationally expensive and difficult to achieve even with supercomputers that have

large numbers of processors. Time limitation is a problem in describing the effects of dif-

fusion of point defects in materials, since several of the properties directly affected by the

motion of these defects can be observed on scales larger than a microsecond. The current

trend is to accelerate dynamic methods to quickly find activated events and improve phase

space sampling. Examples include molecular dynamics accelerated by the temperature of

the Voter [29, 144], hyperdynamic method [143], parallel replica dynamics [145], self-directed

dynamics [157], and finally thermodynamically biased dynamics [79]. So far, the application

of these accelerated dynamical methods has been limited to simple and well-known systems

with a limited number of transition states.

The kinetic Monte Carlo simulation method attempts to overcome the time constraints

by exploiting the fact that the long-term dynamics of this type of system typically consists of

a series of diffusion jumps from state to state (see Fig.1.5). Instead of following the trajectory

through each vibrational period, these state-to-state transitions are treated directly, as we

explain in detail in chapter 2. The result is that KMC can reach much longer time scales,

typically seconds and often well beyond. In a standard KMC implementation, a catalog of

all possible transitions and their rates is provided at the beginning. Then, in each KMC

step, a transition path is randomly selected from the catalog with a probability proportional
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to its rate, time is updated, the system is placed in the new state, and the rate list must be

updated. If the basic assumptions of KMC are satisfied, namely that the first escape time

from a state is exponentially distributed, the statistics obtained from KMC simulations can

be as accurate as those obtained from MD.

1.5. Conclusion

In this chapter, we have briefly introduced the different types of point defects in materials

and their diffusion mechanisms. We have also briefly discussed different types of experimen-

tal and multiscale numerical approaches to study the defect properties. In a multiscale

modeling approach, a chain of simulation techniques is formed, ranging from high-fidelity

DFT calculations for the smaller scales to KMC methods for approximated simulations at

higher-order scales. In the next chapter, we discuss the activated processes and the theory

of transition states and present the standard KMC algorithms in detail.
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Chapter 2

Theory and numerical approaches

2.1. Introduction

This chapter deals with the activated processes (also called rare events) that characterize

the kinetics of a system, i.e., the time scale on which these processes can be observed. These

include, for example, defect diffusion and impurities trapped in solids, atomic reorganization

in a material after damage, and the time scale associated with the relaxation mechanisms

of a material. To characterize these phenomena, it is necessary to have a theoretical model

which is provided by the transition state theory that we present. Transition state theory

conceptualizes the kinetics of a system by discretizing the temporal evolution into a series of

events. The kinetic Monte Carlo (KMC) method is a numerical method that uses transition

state theory to directly simulate the structural evolution of the system through a sequence of

activated transitions and estimate the elapsed time between each transition. In this chapter,

we present the original kinetic Monte Carlo method. However, we see that the first versions

of these KMC methods were limited. We conclude this chapter by reviewing the progress of

the KMC method to show how the initial limitations of this method have been overcome.

2.2. Activated processes

An activated process is a physical transformation (chemical reaction, diffusion of an atom

in a solid, etc.) that requires a certain amount of free energy. This process is also called



Fig. 2.1. Three-dimensional illustration of a potential energy surface represented in two
dimensions (dependent on 3N+1 variables) with first-order saddle points [105].

a rare event because the barrier associated with it is usually much larger than the thermal

energy available at a given temperature. In order to deal with the problem of activated

processes, one must first be able to evaluate the free energies of the various configurations

of a system. Let us dwell on the internal energy of the system. The potential energy of a

system is calculated from the interactions between the particles of the solid and depends only

on the position of these particles and the spatial dimension of the solid under consideration.

The potential energy surface (PES) is the set of possible configurations; therefore, at a given

time, the system is at a point of PES (see Fig.2.1). The potential energy is a function

with 3N variables, where N is the number of atoms in a 3-dimensional space. Each stable

configuration is represented there by a set of local minima connected by saddle points, called

saddle points. All elements in nature tend to minimize their Gibbs free energy, minimize

their energy, and maximize their entropy to achieve dynamic equilibrium. The same is true

for atoms and their rearrangements within structures, and PES describes the possible or

improbable configurations according to their energy levels. Most of the time, a system is

in a local minimum at PES. Atomic oscillations due to the contribution of thermal energy

allow the system to explore the surface around a given minimum until a series of fluctuations

allow the system to cross a saddle point and reach a nearby minimum.
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The amount of internal energy required during a transition is called the activation energy

(ΔE) and is defined by the difference between the potential energy at the initial minimum and

the saddle point. In addition, the entropy contribution (ΔS) can be calculated by evaluating

the integral of the path between these two points. These activation energies and the entropy

contribution, and more generally the notion of activated process, define the kinetics of a

system. Indeed, they characterize the time scales associated with each transition. In the

next section, we will see that a transition rate can be assigned to the different activated

processes based on the transition state theory (TST) and some basic assumptions. This

amount of free energy, ΔG = ΔH − TΔS ≈ ΔE − PΔV − TΔS, which is essential during a

transition, formally separates two states of matter so that a transition can be described: by

a stable initial state (minimum energy), an unstable saddle point (transition state), and a

stable final state. The notation ΔH is the activation enthalpy and is defined as the difference

between the enthalpy of the transition state and that of the initial minimum, and ΔV is the

activation volume, defined as the volume of a material involved in the process of overcoming

the energy barrier.

Fig. 2.2. A two-state system illustrating the definition of the transition state theory
rate [78].
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2.3. Transition State Theory (TST)

Transition state theory (TST) was developed by Henry Eyring [43] in 1935 to understand

and describe activated processes by calculating the rates associated with transitions on a

potential energy surface. The basic concept of TST divides the PES into two adjacent

regions, each associated with a local minimum and sharing at least one common saddle

point (see Fig.2.2). Assuming that this saddle point is first order, this separation is a (3N-1)

dimensional hyperplane. The last dimension, called the reaction coordinate, connects the

initial, saddle point, and final states. From a theoretical point of view, the transition rate is

defined by the flux crossing the hyperplane. The assumptions of TST are:

(1) a first-order saddle point exists.

(2) the different transitions available are uncorrelated.

(3) vibrational energies are negligible compared to activation energies.

With these assumptions, Vineyard [141] showed that the transition rate could take the

following form:

Γ = r̃ exp
[−ΔF

kBT

]
; (2.3.1)

where, ΔF is the amount of free energy that must be supplied to move from one local

minimum to another (called the activation free energy), T is the absolute temperature,

kB is the Boltzmann constant, and r̃ is an effective frequency that depends on the atomic

vibrations in the region of the initial minimum and the saddle point of PES. Based on the

thermodynamic identity F = E − TS, the equation can be reformulated as follows:

Γ = r̃ exp
[

ΔS

kB

]
exp

[−ΔE

kBT

]
; (2.3.2)

or, Γ = r∗ exp
[−ΔE

kBT

]
; (2.3.3)

where, r∗ = r̃ exp
[

ΔS
kB

]
is the test frequency corresponding to the atomic vibrations in the

regions of the initial minimum and the saddle point, but also to the entropic contributions,
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ΔE is the activation energy defined by the difference in potential energy between the initial

minimum and the saddle point, and ΔS is the entropy change between the initial minimum

and the saddle point. The equation 2.3.3 allows us to separate the entropic contributions from

the potential energy contribution. Recall that for a crystal with N atoms in a 3−dimensional

space, the number of degrees of freedom associated with the crystal is 3N and the potential

energy is a function with 3N variables. Despite this separation, the calculation of the test

frequency requires the evaluation of the path integral over the entire PES between the initial

minimum and the saddle point, which is numerically tedious. Nevertheless, based on the

assumption of weak oscillations, Vineyard was able to approximate the potential energy

near the initial minimum and the saddle point quadratically (by a series expansion) and

thus derive an expression for the test frequency r∗.

This test frequency is defined by the ratio of the products of the modal frequencies (νi)

of minimum vibration and the modal frequencies (ν ′) at the saddle point deprived of the

negative frequency such that:

r∗ =

3N∏
i=1

νi

3N−1∏
i=1

ν ′
i

; (2.3.4)

Using the underlying assumptions of TST and that of low vibration, the calculation of

the transition rate associated with an activated process becomes more affordable numerically,

and the Harmonic Transition State Theory (hTST) is expressed as that :

Γ =

⎛
⎜⎜⎜⎜⎜⎝

3N∏
i=1

νi

3N−1∏
i=1

ν ′
i

⎞
⎟⎟⎟⎟⎟⎠ exp

[−ΔE

kBT

]
. (2.3.5)

For crystalline solids, it is common to associate the test frequency (r∗) with a constant

of the order of the mean vibrational frequency (for crystalline iron, for example, the value

1013 s−1 is commonly used) to save further computational time. The calculation of the

activation energy for a given process depends on the energy levels of the initial minimum

and the saddle point. However, the calculation of these two energy levels is not always
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the main problem. Indeed, the identification of the configuration of the saddle point can

sometimes elude us. In the next section, we present the original kinetic Monte Carlo method,

which over the years, has become one of the most efficient, versatile, and important numerical

tools for studying the kinetic and thermodynamic evolution of a solid.

2.4. The kinetic Monte-Carlo method

The kinetic Monte Carlo method (KMC) is a numerical method that allows the structural

evolution of the system to be simulated directly by a sequence of activated transitions and

the elapsed time between each transition to be estimated. By focusing on rare events and

neglecting atomic oscillations, it is possible to simulate structural evolution on larger time

scales than with more traditional methods. The algorithm presented by Bortz et al [17]

in the 1970s, called the “n-fold way” is the basic algorithm of most kinetic Monte Carlo

methods developed to date, some of which are presented in the next section. This algorithm

allows to reproduce stochastically a sequence of activated events and to estimate a temporal

duration of Δt between each simulation step.

If we want to interpret the dynamics and kinetics of the Monte Carlo method, we need

to discretize time so that two processes cannot occur simultaneously, and then determine

a characteristic “time step”, the dwell time. To determine the dwell time, we define the

process of counting the number of events during a given time t by the random variable N(t),

which follows a Poisson distribution with parameter Ri↪→jt. It is assumed that each event

admits a unique transition rate defined by Ri↪→j to get from state i to state j, and that the

rate associated with each of the transitions does not depend on the transition performed to

get to the current state (no correlation between events). The kinetic Monte Carlo method is

used in the context of TST such that all of these assumptions are satisfied. The probability

of observing a transition between an initial state i and a state j n times during a time t is

then given by:

Pi↪→j(N(t) = n, t) = (Ri↪→jt)n

n! exp(−Ri↪→jt) (2.4.1)
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By definition, the exponential law describes the time interval between events in a Poisson

process. Let pi(t) be those independent and identical random variables corresponding to the

time interval between two transitions of the Poisson process. Then the probability density

of each pi is given by:

∀t ≥ 0; f(pi(t)) = Rtot
i exp(−Rtot

i t) (2.4.2)

with Rtot
i = ∑Ni

j=1 Ri↪→j and Ni corresponds to the number of accessible transitions in

state i.

Moreover, by definition, the dwell time in state i is given by the first moment of the

distribution of pi:

Δti =
∫ ∞

0
tf(pi(t))dt = 1

Rtot
i

(2.4.3)

To stochastically reproduce the expected value of the random variable pi at time ti in

the KMC algorithm, a random number μ uniformly distributed over [0; 1[ is declared, and

the KMC dwell time is thus defined as:

ΔtKMC
i = − ln μ

Rtot
i

(2.4.4)

The ratio between the rate of the chosen transition and the sum of the rates of the

accessible transitions is the relative probability associated with that transition and is defined

by:

Pi↪→j = Ri↪→j

Rtot
i

(2.4.5)

The transition performed by the KMC algorithm is determined by constructing the rate

of cumulative ascending (or descending) transition such that Ri;k = ∑k
j=1 Ri↪→j (Ri;0 = 0 by

definition) for k up to Ni, the number of transitions accessible from state i. Generating a

uniformly distributed random number ν on [0; 1[ such that νRtot
i determines transition k as

the one to be executed if the condition Ri;k−1 < νRtot
i ≤ Ri;k is satisfied.

In summary, the kinetic Monte Carlo algorithm involves the following steps:
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(1) Reading the initial state i of the system.

(2) Identify the list of Ni possible transitions of the system from the current state i to

reachable states j.

(3) Calculate the transition rates Ri↪→j for all Ni transitions of the system from state i

to state j.

(4) Construct the ascending cumulative transition rate, Ri;k = ∑k
j=1 Ri↪→j. We also derive

the total transition rate, Rtot = Ri;Ni
.

(5) Generate a random number ν1 uniformly distributed over the interval ]0, 1].

(6) Update the simulated time by adding Δt = − ln ν1
Rtot

, which should correspond to the

dwell time in state i, with stochastic effects mimicking a Poisson process.

(7) Generate a second random number ν2 uniformly distributed over the interval ]0, 1].

(8) Choose the transition k from the relation Ri;k−1 < ν2Rtot ≤ Ri;k and execute the

transition that leads to the new configuration.

(9) Update the current state k → i.

(10) Return to step 2.

On the other hand, the kinetic Monte Carlo method in its original form was limited by

three aspects:

(1) It was only able to deal with lattice problems.

(2) It required prior creation of a catalog of transitions.

(3) It did not consider the possible effects of elastic deformations.

2.5. Review of kinetic Monte-Carlo methods

In 1975, Bortz et al [17] were the first to apply the kinetic Monte Carlo method to charac-

terise the time evolution of Ising spin systems using the “n-fold way” algorithm. Motivated

by the work of Bortz, Voter et al. [142] developed an algorithm in 1986 to characterise the

diffusion of the rhodium cluster on the Rh(100) surface. Most of the KMC methods devel-

oped up to 2000 were direct applications or derivatives of Voter’s algorithm. For example,

Maksym et al. [91] proposed a KMC algorithm based on the use of conditional probabilities
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favouring certain transitions of interest, aiming to simulate the growth of gallium arsenide

GaAs by molecular beam epitaxy (MBE) with KMC, as did Barnett et al. [8] used KMC

to simulate the growth and reconstruction of the silicon (001) surface during MBE; Lu et

al. [87] simulated the kinetics and distribution of chain length during radial polymerization;

Wang et al. simulated the growth of the copper (100), (110), and (111) facets and introduced

the premises of possible correlation support by redefining specific probabilities [150].

In the 2000s, the first advances were made to remove one, two, or all of the limitations

of the original KMC method. For example, in 2001, Henkelman and Jónsson [57] developed

the first off-lattice KMC algorithm by combining an open saddle point search method (called

the dimer method [56]) with the standard KMC algorithm to simulate the diffusion of alu-

minum (Al) on the Al(100) surface. At each KMC step, 25 open-ended saddle searches were

initiated to generate an event list. Although the number of searches was too small to ensure

that all events were found, this work still identified new extended low barrier events that

significantly altered the growth kinetics. The drawback of this approach is that there is no

transition catalog. Indeed, at each KMC step, the information about the previous transitions

is lost, making the approach costly and numerically weak. In the following years, several

approaches were introduced to reduce the computational cost of off-lattice KMC simulations

by introducing a cataloging approach.

In 2005, Trushin et al [137] proposed the self-learning kinetic Monte Carlo method

(SLKMC), which is restricted to two dimensions and partially off the lattice. The posi-

tion of the atoms is not restricted to an arbitrary lattice, but the algorithm for finding the

saddle point is “closed” because they use a model to identify the different face-centered cubic

(fcc) sites of the potential final local minima. However, by identifying the different config-

urations with binary keys, they can create a catalog of reusable transitions. This method

allows the study of more complex environments and, more importantly, the inclusion of a

larger area in the barrier calculation beyond the standard first and second neighbor shells.

In 2008, El-Mellouhi et al. [40] developed the kinetic activation-relaxation technique

(kART), an off-lattice method with the ability to generate catalogs on-the-fly that overcomes
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all three limitations of the kinetic Monte Carlo algorithm. By coupling activation-relaxation

technique nouveau (ARTn) [7, 88, 92], an open search method, with NAUTY [97], a topologi-

cal classification tool, kART associates local graphs with a unique event list that is generated

when new topologies are identified. Rather than being limited to predefined lattice positions,

kART allows event catalogs to be generated for any environment, even completely unordered

ones. At each KMC step, all relevant generic events are fully reconstructed and converted

into specific events to account for all geometric rearrangements due to elastic short and long

range deformations.

In the last decade, several other off-lattice or near off-lattice approaches have been pro-

posed, with or without a catalog. Xu et al [158, 159] developed the Self-Evolving Atomistic

Kinetic Monte Carlo (SEAKMC) method based on an initial version called adaptive Kinetic

Monte Carlo (aKMC) [160]. The SEAKMC method performs saddle point searches only

in areas of particular interest, which it calls active volumes. Active volumes are essentially

defective environments within the simulation box. Compared to kART, both SEAKMC and

kART provide similar results; however, the SEAKMC method is faster in simpler environ-

ments such as recombination of a Frenkel pair [107], while the kART method is more flexible

in dealing with complex materials [9, 14].

2.6. Conclusions

We have presented the problem of activated processes, which is elegantly approached

and treated by the transition state theory (TST). Moreover, the original KMC method

is perfectly suited to determine the physical quantities within this theory by their form.

Most methods dealing with activated processes use sophisticated methods to characterize

saddle points, such as nudged elastic band method [124], the dimer method [56], the string

method [152], the eigenvector method [77], the inter minima jump method [51], and global

reaction mapping method [108]. Most saddle-point search methods that characterize rare

events using potential energy require prior knowledge of the start and end configurations. In

many cases, we do not have that knowledge. In other cases, we want to find out what the
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set of configurations adjacent to an initial configuration is, and characterize the transition

state that separates them. The activation-relaxation technique nouveau (ARTn) [7, 88, 92]

is an open-ended saddle method that allows us to describe the energy landscape near a local

minimum and to warp a configuration on a path near the lowest energy path to a saddle

point. It uses the Lanczos algorithm to find the eigendirection of the smallest eigenvalue

of the Hessian of potential energy and steer the configuration in that direction to reach the

saddle point. It is the first algorithm to find saddle points in complex, high-dimensional

systems. The historical review of the progress of KMC methods in the last 30 years serves

as an introduction and perspective for the next chapter, where the kinetic ART (or kART)

method is presented.
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Chapter 3

Kinetic activation and relaxation technique

3.1. Introduction

The kinetic activation-relaxation technique (kART) [13, 40, 67, 103, 104, 136] is an off-

lattice kinetic Monte Carlo (KMC) method with an open-ended search for saddle points

and on-the-fly cataloging. Following the standard KMC method, the kART method uses a

catalog of events to calculate the exit rate from a local minimum and drive the simulation

clock. However, there are three fundamental differences from the standard KMC method.

First, instead of geometry, a topological classification of the local environment is introduced

so that the algorithm is not bound to predefined lattice positions. Second, the catalog is not

fixed at the beginning of the simulation; enabled events are added to the catalog during the

simulation as new local environments are visited. Third, all relevant events, including the

initial minimum and saddle points, are fully relaxed at each step to ensure that short- and

long-range elastic and configurational effects are accurately accounted for. In this chapter,

we will discuss the algorithmic and implementation details of kART in detail.

3.2. Basic algorithm of kART

Before we go into detail, it is useful to show the most important steps of the algorithm

(see also Fig.3.1).



Initialize

Relax the system
and assign topology

Select a topology

Is local
topology
activate?

Generate events from
the selected topology
with ART nouveau

Randomly choose
one event and one
atom to execute it

Execute the selected
move and increment time

Total time
reached?

End

Art nouveau
search done

on all
topologies?

Refine all events within
99.99% of the total rate

yes

no

no

yes

yes

no

Fig. 3.1. Flowchart of the implementation of kART.

At each kART step, the local environment of each atom is characterised by its local

topology, which is evaluated using NAUTY [97, 99], a topological analysis library developed

by McKay. All atoms exhibiting a given topology are assumed to be associated with the

same list of generic events.

If the topology is known, the generic events associated with it are recovered from the

catalogue and inserted into a KMC tree; otherwise, event searches for all newly identified

topologies are started using ART nouveau [7, 88, 92], an efficient algorithm developed by

Normand Mousseau et al. to search for open-ended transition states. Each event is classi-

fied by initial minimum, saddle configuration, and final state topologies and stored in the

catalogue.
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Once the event catalog is updated, the generic events are ordered as a function of their

rate, which is defined using transition state theory as ri = ν0e
− Eb

kbT , where ν0 is a fixed

prefactor fixed at 1013 Hz, and Eb, the activation energy for event i, defined as the energy

difference between the transition state and the initial minimum.

Events within 99.99% of the total ascending cumulative rate are fully reconstructed and

converted to specific events to ensure that elastic and configurational effects are accurately

accounted for. At this point, following Bortz et al. [17], the elapsed time until the next event

is calculated as Δt = −ln μ/
∑

i ri, where μ is a random number in the interval [0,1[] and ri

is the rate associated with event i. The clock is advanced, an event with the correct weight

is selected, and the atoms are moved accordingly after a geometric reconstruction.

Each of these steps, of course, involves a number of elements, which we describe in the

following sections.

3.3. Topological classification

The topological classification of the local atomic environment is a crucial step in kART,

as it helps to (i) categorize complex and off-lattice atomic arrangements, taking into account

long- and short-range elastic interactions, and (ii) build a reusable event catalog.

Atomic topologies for a given local configuration are computed using NAUTY. This

program is able to quickly identify a graph by its automorphism group, give it a canonical

label (characteristic of the group), and recognize its symmetries. Fig.3.2 shows how NAUTY

can find the correspondence between two graphs belonging to the same automorphism group.

The nodes of these two graphs are ordered by NAUTY in the same way. Since in kART

each node of the graph corresponds to an atom, this ordered list allows us to apply the

displacements associated with each of the atoms during an activated event.

To identify the topology associated with an atom in the system, Kinetic ART proceeds

as follows (Fig.3.3):

(1) Starting from a so-called central atom, a sphere is constructed around this central

atom, with a parameter defining the radius of this sphere. The atoms which are in
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Fig. 3.2. Illustration of two graphs (left and center) by their automorphism group (right)
[22, 98].

this sphere form the nodes of the graph. This radius must be chosen so that central

atoms with the same initial topology have the same list of transitions. Thus, this

radius must minimize the number of inconsistencies that may occur in the lists of

transitions of each of these central atoms. For this purpose, one can choose four to

six times the average interatomic distance of the system or the typical size of the

transitions (the size of the region where the distance between two neighboring atoms

is significantly changed by the transition). In summary, this radius must include at

least the active local region of all accessible transitions. For example, for a radius

of 6 Å, one can obtain between 35 and 50 atoms per sphere for crystalline iron.

It depends, in fact, on the local configuration of the central atom considered (pure

crystalline region 47 atoms, configuration at the saddle point 37 atoms).

(2) All neighbouring atoms whose distance from each other is smaller than a predeter-

mined threshold are connected (they form the edges of the graph). For crystalline

iron, a threshold distance of 2.7 Å is chosen. This parameter lies between the first

two crystallographic peaks of crystalline iron (2.45 and 2.86 Å, at room temperature

and atmospheric pressure).

(3) Once the diagram is created, it is sent to NAUTY.
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Fig. 3.3. Schematic representation of the topological classification procedure, with the red
atom at the centre of the local graph. (a) We select an atom of the configuration and its
neighbourhood. (b) Bindings are drawn between these atoms, yielding (c) a connectivity
graph that is (d) sent through NAUTY, which returns (e) the automorphic class identifier of
the graph and the correspondence between its vertices and those of a reference graph [103].

(4) NAUTY identifies the automorphism group of this graph and provides a numeric key

characterizing this automorphism group.

This classification method is stable and allows the environment to be uniquely identified

atomically.

3.4. ART nouveau

The search for activated mechanisms is performed using ART nouveau [14, 15], an open

climbing method for finding first-order saddle points surrounding a local minimum (a work-

flow of ART nouveau is shown in Fig.3.4). From each individual topology in the system,

multiple independent searches for saddle points are initiated using a three-step procedure:

3.4.1. Activation

Starting from a local energy minimum qn, a random deformation (with a certain dis-

placement field δxAu, where u is an initial random unitary displacement and the used value
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Fig. 3.4. Flowchart of the implementation of ART nouveau [103].

of δxA is between 0.1 and 0.2 Å) is slowly applied to the central atom of a given topology

and its neighbours. To avoid collisions, a relaxation step in the perpendicular hyperplane is

performed after each displacement. At the end of each iteration, the lowest eigenvalue λi of

the hessian and the corresponding eigenvector are calculated using the Lanczos algorithm.

This continues until the lowest eigenvalue falls below a certain threshold for negative curva-

ture (δc) to ensure that the system is truly outside the harmonic well, or until the maximum

number of iterations (generally between 10 and 50 iterations) is reached, in which case a new

search is started. The value of δc is usually set less than or equal to -1.0 eV Å−1.
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3.4.2. Convergence at the saddle point

If the activation phase was successful, we still need to converge to the saddle point

associated with the negative eigenvalue found during activation. To do this, the system is

steered toward the saddle point that follows the direction of the eigenvector ν1 of the negative

eigenvalue λ1 i.e. q′ → q′′ = q′ − δxn
aν1, away from the initial minimum. According to the

method proposed by Cancès et al. the magnitude δxn
a must decrease as the saddle point is

approached, so it is set to min(2α,
|F||

max(λ1,0.5)), where α is fixed at a value generally between

0.2 Å and 0.5 Å. After each push along the direction of negative curvature, a relaxation step

is performed in the hyperplane orthogonal to ν1. This step is repeated until the total force

falls below a specified threshold δF to ensure that a first-order saddle has been achieved.

Convergence to the saddle point requires that the lowest eigenvalue remain negative over

the entire path, and activation is aborted when this is no longer the case. If this is the case,

the system is returned to the initial minimum and a new search is started with a different

random value.

3.4.3. Relaxation

Once the system has converged to the saddle point (if the imposed convergence condition

is verified), the system is moved away from the initial minimum along the lowest eigenvector

by 0.1 times the displacement between the initial and saddle points to prevent the system

from falling back to the initial state. The energy is minimized to reach a new minimum qn+1.

At each step, whether leaving the harmonic well, converging to the saddle, or relaxing to a

new minimum, all atoms are free to move. There is no restriction on event size or which atoms

move the most, allowing for an unbiased exploration of the energy landscape and the creation

of a complete catalog. Because of this diversity, and regardless of the topology associated

with the initial motion, the events are a posteriori inferred to the atom that moves the most

during the event and its topology. The set of initial, saddle, and final points represents an

event characterized by three topologies and an energy barrier. For completeness, the events

are generally checked for reversibility, ensuring that the saddle point properly connects the
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Fig. 3.5. Diagram illustrating the process of identifying an activated event [81].

initial state to the final state, and added to the catalog for both endpoints to ensure detailed

equilibrium.

3.5. The event catalog

Using NAUTY and ART nouveau, kART creates a catalog of events as the simulation

progresses. The atom to which an event is assigned is the one that undergoes the largest

displacement from the initial configuration to the saddle point. If this atom is not identical

to the atom where the search was started, the event is focused on this new atom. The

topologies of this atom for each of the three configurations (initial, saddle point, and final)

are determined using NAUTY. A hash function is used to convert these three topological

keys into a unique key to identify the event (see Fig.3.5). These events associated with an

initial topology are called generic events. All atoms with the same initial topology also have

this event. For each new generic event that is identified, kART automatically generates the

reverse event (from the final configuration to the initial configuration). This ensures that

kART respects the detailed equilibrium and that the simulation can, in principle, recover
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Fig. 3.6. Diagram illustrating the algorithm used for barrier refinement [13].

the previously studied configurations. The entire catalog (the list of known topologies and

associated generic events) is stored in a file on disk. This file can be used to restart other

simulations on the same system without having to recreate the catalog.

3.6. Long-range elastic deformations

To account for the short- and long-range elastic effects, kART reconverts the events with

the smallest activation barriers, whose sum of rates is 99.99% of the total rate. All these

barriers are adjusted individually for each atom involved in this event. This process is shown

in Fig. 3.6. A histogram of all activation barriers is created in ascending order. The events

are reconverged in ascending steps of 0.1 eV. This allows for elastic distortions that can affect

the exact value of the activation barrier. Two atoms that have the same topology will have

the same event, but they will have slightly different activation barriers, which will affect the

kinetics. These customized events are called specific events. These specific events are held

in memory during the simulation to speed up convergence, but they are not stored on disk.
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Fig. 3.7. Diagram illustrating an oscillation on the potential energy surface. It will be
necessary to observe a very large number of transitions between the states B and C before
observing a transition between B and A or C and D.

3.7. The basin method

Activated transitions with small, more or less symmetric activation barriers can com-

pletely dominate the kinetics of a system without leading to relaxation or diffusion. Fig.3.7

illustrates this phenomenon on the potential energy surface. The system begins to oscillate

between the two configurations very often before finally choosing a transition that allows the

system to evolve. The standard KMC algorithm constantly selects these transitions, and a

lot of time is wasted simulating these meaningless oscillations.

A basin is defined as a set of adjacent configurations connected by transitions with small,

more or less symmetrical activation barriers. It is important to be able to approximate the

transitions in these basins without having to explicitly simulate these oscillations.

kART uses the auto-constructing mean-rate method. It is an improvement of the Mean

Rate Method algorithm of Puchala et al [112]. This algorithm allows to solve the main

equation describing all transitions within the basin without the need to explicitly simulate

these oscillations. The rates associated with transitions leading to transitions outside the

basin are adjusted to account for the average time spent inside the basin in the initial state.
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A matrix T representing the probability of making a transition between two configura-

tions inside the basin is obtained as follows

Tij = rij∑
k rik

= τ 1
i rij (3.7.1)

where rij is the rate going from basin state i to basin state j, where k runs over all basin

and exit states and τ 1
i = 1∑

k
rik

, the reciprocal of the sum of all rates leaving state i, is the

mean residence time in state i each time it is visited. The occupation probability vector of

all basin states after in-basin jump m and before jump m+1, P (m) is thus given by repeated

application of T to the initial occupation probability Pi(0) = δis, where s is the starting

state, as:

P (m) = TmP (0) (3.7.2)

The sum of the occupation probabilities over all possible number of jumps gives the average

number each basin state is visited:

P tot =
∞∑

m=0
TmP (0) = (I − T)−1P (0) (3.7.3)

from which the mean residence time in basin state i before leaving the basin can be calculated:

τi = τ 1
i P tot

i (3.7.4)

These residence times are then used to accelerate the basin exit rates from basin state i to

exit state j according to

< rij >= τi∑
k τk

rij (3.7.5)

where k sums over all basin states. The next step KMC is then performed according to the

standard algorithm, but using only the accelerated rates of the transitions outside the basin.

The kART basin method also allows new states to be added to the basin while the

simulation is in progress. After each out-of-basin transition, the value of the activation

barrier and the value of the corresponding reverse barrier are compared to a threshold energy
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value. If both values are below this threshold, the new state is considered part of the basin.

kART then assumes that we have not actually left the basin, and the new state is added to

the T matrix. The rates for new out-of-basin transitions are updated. This energy threshold

is set during the simulation and must be chosen wisely to capture all transitions that result

in oscillatory motion. In practice, it can be seen that the selected threshold is too small if

the simulation starts to oscillate repeatedly. The simulation can then be restarted with a

larger threshold energy to capture these new transitions within the basin. In general, the

threshold value is adjusted several times during a simulation.

3.8. kART-LAMMPS coupling

The coupling between kART and LAMMPS [1, 111] (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator) is an encapsulation in the form of a library of LAMMPS within

kART. This allows kART to perform three tasks. The first task is to access a large set of

interatomic potentials that have been extensively tested by the LAMMPS community. This

saves users of kART (and ARTn, since the coupling between ARTn and LAMMPS has also

been done) from having to write a separate routine for each class of energy potentials. This

is a considerable time for users, but also for developers of kART. Second, the local force

calculation, which was already present in kART before the coupling, has been fundamen-

tally rewritten. This allows the forces to be computed locally, restricting the computation

of forces to a spherical subset centred on an atom affected by ARTn search or during event

refinement. It is even possible to perform only local force calculations, but it is preferable to

check beforehand that the effects of elastic deformations are correctly captured. The third

task is to be able to parallelize the synchronised computation of the forces in addition to the

asynchronous parallelization of the ARTn search. This will certainly be a great advantage

of the kART method if the calculation of the local forces is compatible with the parallelized

calculation of the forces.
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3.9. Interatomic potential

An empirical potential is an analytical function that represents the potential energy of

an atom of the material as a function of a certain number of adjustable parameters. The

advantage of using these functions is that they allow rapid evaluation of the forces between

individual atoms with little computational effort. Calculating the interactions between atoms

using an empirical potential is fast and allows simulation of systems with a large number of

atoms and over relatively long times. In this work, we use the embedded atom method em-

pirical potential (EAM) proposed by Foiles and Baskes [31], which represents an approximate

energy in terms of the sum of the separation functions between an atom and its neighbors.

The total energy within the EAM model is calculated as follows:

Etot = 1
2

∑
i,j

φij(rij) +
∑

i

Fi

⎛
⎝∑

i�=j

ρj(rij)
⎞
⎠ (3.9.1)

Where φij(rij) is the pair-interaction energy between atoms i and j separated by the

distance rij, Fi is the embedding energy of the atom i, ∑
i�=j ρj(rij) is the host electron

density induced by the surrounding atoms j at the location of the atom i. The electron-

density function assigned to atom j is ρj(rij). The pair interaction, electron density and

embedding functions depend on the type of the atom.

3.10. Applications and limitations of kART

In the last decade and more, kART has become one of the most effective methods for

simulating the structural evolution of various types of materials and structures, although it is

still under development, such as the characterization of the potential energy surface of point

defects in crystalline silicon (c-Si) [135], crystalline iron (c-Fe) [18, 116], and crystalline nickel

(c-Ni) [90]; relaxation kinetics after ion bombardment damage in c-Si [12, 66]; the relaxation

kinetics of amorphous silicon (a-Si) [68]; C diffusion mechanisms in Fe surfaces [115]; the

kinetics of point defects in the presence of extended defect kinetics in Fe [20, 117]; the effects

of point defect motion in ordered alloys and disordered alloy NiFe [89]; defect diffusion
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in alloy 55Fe-28Ni-17Cr [121]. About the work that is the subject of this dissertation, we

studied the effects of pressure C diffusion in grain boundaries in Fe, and the kinetic evolution

of vacancy clusters in c-Fe will be discussed in Chapters 4 and 5, respectively.

Despite the applicability and great success of kART to various problems related to de-

fects in materials, kART, like all numerical methods, has certain limitations. One of the

problems of kART is the occasional trapping of the system in nondiffusive barriers. Despite

the development of the bac-MRM method, it remains a major challenge to automate the

resolution. As described above, the bac-MRM method computes the average escape time

from a pool of flickering states. While this solution represents a huge efficiency gain over

simple KMC, the basin setup can be time-consuming. However, once the system leaves the

basin and transitions to a new state, the entire basin must be rebuilt, which can significantly

slow down the simulation. To address this issue, we newly proposed a local basin approach

to handling low-barrier events in the kART. This algorithm detects, on the fly, groups of

flickering states and consolidates them into local basins, which we treat with bac-MRM. In

this way, when an accepted event occurs in one part of the system, only the basins that are

physically close to the affected region are destroyed, while the others remain in the catalog.

We will discuss this in detail in Chapter 6.

3.11. Conclusion

The kinetic activation and relaxation technique (kART) is a kinetic Monte Carlo method

that successfully overcomes the limitations of the original KMC method. It has become one

of the most powerful methods for simulating the structural evolution of defects in materials.

In the next chapters, we will present the results we have obtained in the form of articles.

In the first and second articles, we have studied the effects of pressure on the C diffusion

mechanisms in the grain boundary of α-iron and the diffusion mechanisms of vacancy clusters.

In the third article, we will discuss in detail the application of the local basin approach to

the kART.
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Chapter 4

Pressure effect on diffusion of carbon at the

85.91◦ < 100 > symmetric tilt grain boundary

of α−iron

4.1. Objective

Diffusion of impurities in materials is both a fundamental and a technological problem.

However, because it is difficult to characterize atomic motion using experimental techniques,

there are still many unresolved questions about how impurities move, especially in the pres-

ence of extended defects. The objective of this paper is to study the effects of pressure on

the diffusion of C in an Fe box with a grain boundary. This is relevant to problems such as

carbon dusting, but also to understanding how local variations in pressure combined with

strain and defects can affect the behavior of impurities that are often characterized under

perfect conditions.

Authors in order: Md Mijanur Rahman, Fedwa El-Mellouhi, Othmane Bouhali, Charlotte

S. Becquart, and Normand Mousseau

Status : This article has been published in the “Physical Review Materials” journal. Ref-

erence: PhysRevMaterials.5.043605

Author contributions:

• Md Mijanur Rahman (MMR) performed all simulations and data analysis.



• MMR wrote the first version of the article.

• Normand Mousseau (NM), Fedwa El-Mellouhi (FEM), Othmane Bouhali (OB), and

Charlotte S. Becquart (CSB) contributed to the writing of the article.

• NM supervised all this work.

4.2. Résumé

Le mécanisme de diffusion du carbone dans le fer joue un rôle essentiel dans les processus

de carburation, la fabrication de l’acier et la corrosion par effritage des métaux. Dans ce

travail, en utilisant la technique d’activation-relaxation cinétique (ARTc), un algorithme de

Monte Carlo cinétique hors réseau avec construction de catalogue à la volée qui permet de

suivre la diffusion sur de grandes échelles de temps en tenant pleinement compte des effets

chimiques et élastiques couplé à un potentiel EAM, nous étudions l’effet de la pression sur

les propriétés de diffusion du carbone dans un joint de grains à inclinaison symétrique de fer,

α 85.91◦ < 100 >, jusqu’à une pression de 12 kbar à une seule température de 600K. Nous

trouvons que si l’effet de la pression peut fortement modifier la stabilité et la diffusivité du

carbone dans le joint de grains de manière qui dépend étroitement de l’environnement local

et de la nature de la déformation: la pression isotrope et uniaxiale peut conduire à des effets

opposés et non monotones concernant énergie de ségrégation et barrières d’activation. Ces

observations sont pertinentes pour comprendre l’évolution des matériaux hétérogènes, où les

variations de pression locale peuvent altérer la diffusion du carbone à travers le matériau.

4.3. Abstract

The diffusion mechanism of carbon in iron plays a vital role in carburization processes,

steel fabrication, and metal dusting corrosion. In this work, using the kinetic activation-

relaxation technique (kART), an off-lattice kinetic Monte Carlo algorithm with on-the-fly

catalog building that allows obtaining diffusion properties over large time scales taking full

account of chemical and elastic effects coupled with an EAM potential, we investigate the

effect of pressure on the diffusion properties of carbon in 85.91◦ < 100 > symmetric tilt
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grain boundaries (GB) of α-iron up to a pressure of 12 kbar at a single temperature of 600K.

We find that while the effect of pressure can strongly modify the C stability and diffusivity

in the GB in ways that depend closely on the local environment and the nature of the

deformation: isotropic and uniaxial pressure can lead to the opposite and non-monotonous

effects regarding segregation energy and activation barriers. These observations are relevant

to understanding the evolution of heterogeneous materials, where variations of local pressure

can alter the carbon diffusion across the material.

4.4. Introduction

Metal dusting is a severe form of corrosion causing a catastrophic degradation of metals

and alloys at high temperatures in carbon-supersaturated gaseous environments. Engineering

alloys such as low-alloy and stainless steels, as well as heat-resisting iron-, nickel-, and cobalt-

base alloys, catalyze gas processes that release carbon, leading to the formation of deposits

at the surface of the alloy and, over time, to failure. In petrochemical plants and gas-to-

liquid (GTL) production facilities, metal dusting has been observed in steel equipment. The

so-called Fischer-Tropsch synthesis deposits carbon not only on the catalysts but also on the

steel equipment, leading to dusting corrosion. The onset of metal dusting for iron-base alloys

is initiated with the saturation of the alloy matrix with carbon/carbides, usually in a localized

manner, a process called carburization. In our earlier works, we focused on carburization by

characterizing the reaction of iron with CO as well as the diffusion and segregation of carbon

within the grain boundaries of the metal. [2, 15, 23, 24, 25, 115, 116, 117, 119]

In this work we aim to turn our attention towards realistic scenarios that occur at var-

ious stages of dusting corrosion, drawing comparisons with experiments whenever possible,

focusing more particularly on the effect of pressure on C diffusion in Fe, particularly at grain

boundaries (GBs). The diffusion of carbon interstitial atoms around GBs in iron has long

been an area of interest for researchers due to its impact on various mechanical properties

of steel such as corrosion resistance, and embrittlement, but also at it serves as a rich sys-

tem for modelling and simulation [132, 133]. Over the years, these mechanisms have been
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computationally studied at ambient pressure, i.e. the lattice and atomic positions are both

relaxed to obtain the atomistic parameters at zero pressure [27, 64, 149, 155]. While limited

information is available regarding the effect of pressure on carbon diffusion in iron through

GBs, internal or external pressures can build up in the grains due to local deformation. These

may reach a magnitude of a few GPa [82, 162, 163], inducing problems such as structural

instability, stress corrosion cracking, distortion, etc. [83, 96, 118] It is thus necessary to have

a clear description of the effects of pressure on defect diffusion in order to understand the

behavior of heterogeneous materials such as carburized steels at the atomic scale.

Because of the microscopic nature of these processes, atomistic simulations are needed

to provide an understanding of the details controlling these segregation and diffusion mech-

anisms that are difficult to obtain from experiments. While standard simulation tools, such

as molecular dynamics, offer significant information on atomistic details of these diffusion

mechanisms, they are often unable to reach the extended time scale over which many of these

processes take place. Standard kinetic Monte Carlo (KMC) simulations provide a solution

to reaching long-time dynamics, but, they are constrained to lattice-based displacements

that fail to capture the full diversity of diffusion mechanisms as well as elastic deformations,

especially around extended defects such as GB [20]. Over the years, numerous improvements

have been proposed to standard KMC simulations, in order to overcome these limitations

leading to a new interest in the fundamental mechanisms associated with defect diffusion

in materials. The recent development of on-the-fly off-lattice kinetic Monte Carlo methods

such as the kinetic activation–relaxation technique (kART) [13, 40, 103] lifts those limita-

tions and allows us to map these processes in details. kART is an off-lattice kinetic Monte

Carlo method with on-the fly catalog building capabilities which enables to properly describe

diffusion mechanism over experimentally-relevant time scales. It enables to reach simulated

times many orders of magnitude longer those reachable by MD simulation while incorpo-

rating exact elastic effects and identifying the atomistic details of diffusion mechanisms at

every step.
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In this study, using kART we investigate the effect of pressure on the diffusion mecha-

nism C atom within a GB of α-iron. More precisely, we explore the energy landscape and

kinetic pathways. Then, diffusion coefficients are calculated to quantify the effect of stress on

diffusivity. The paper is organized as follows: the methodology, including a brief overview of

kART, the model employed and the computational details, is presented in section 5.5. Then,

simulation results are presented and discussed in section 4.6 and 4.7 respectively. Finally,

the conclusion is given in section 4.8.

4.5. Methodology

4.5.1. Kinetic-Activation Relaxation Technique (kART)

The kinetic activation relaxation technique (kART) [13, 40, 103] is an off-lattice kinetic

Monte Carlo (KMC) method with on-the-fly catalog building. kART is built around three

tools: (i) NAUTY [97], which allows a topological characterization of the local environ-

ment surrounding each active atom; (ii) the activation-relaxation technique (ART nouveau

or ARTn) [7, 88, 92], an open-ended saddle-search methods for exploring the local energy

landscape and (iii) a KMC algorithm,[146] that evaluates the time between two steps and

selects the event. The basic principles are briefly described below:

At the beginning of each KMC step, the local environment surrounding each atom is

characterized by their local topology evaluated with NAUTY, a topological analysis library

developed by McKay [97]. Graphs are generated by considering a sphere with a predefined

radius (6 Å for the current system) around each atom in the system that contains around 75

atoms and drawing edges between all atoms within a cut-off distance of 2.7 Å of each other,

a value that ensure that mostly only first-neighbor atoms are included. This connectivity

graph is sent to NAUTY which returns a unique identifier characteristic of its automorphic

group.

If the topology is known, events associated with it are recovered from the catalog and

placed in a KMC tree; otherwise, 100 ARTn searches are launched to identify the events

associated with this topology. The ARTn search takes place in three steps: (i) first, the
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system is pushed in an arbitrary direction until the lowest eigenvalue of the Hessian matrix,

determined using the Lanczos algorithm, becomes negative to confirm that the system is

out of the harmonic well; (ii) then the system is pushed along the direction of the negative

curvature and the force is minimized in the hyperplane perpendicular to this direction after

each push until the total force becomes lower then a predefined threshold value, indicate

that a first order saddle point is reached; and (iii) the system is then push over the saddle

point and relaxed into a new minimum.

Once the catalog is fully updated and the tree is completed for the current atomistic

configuration, generic events are ordered according to their rate, defined as:

Γi = ν0e
− Eb

kBT (4.5.1)

where ν0 is a fixed prefactor which is fixed at 1013 Hz and Eb, the activation energy for event

i defined as the energy difference between the transition state and the initial minimum [42,

43, 78]. Once the event tree is completed, the lowest-energy barrier events that make up to

99.99 % of the rate are fully reconstructed and reconverged into specific events to ensure that

elastic and configurational effects are exactly taken into consideration. When this is done,

specific rates and the overall KMC timestep are evaluated again, with the refined barriers,

and an event is chosen according to standard KMC algorithm [146]. The elapsed time t is

computed according to a Poisson distribution as:

t = − ln μ∑
i Γi

(4.5.2)

where μ is the random number uniformly distributed between 0 and 1.

To sum up, kART makes use of a unique topology classification coupled with an unbiased,

open-ended search for saddle points, while considering short- and long-range interactions due

to elastic effects. An extensive catalog of the events are created on-the-fly which speeds up

the simulation as the system evolves. In the past, kART has been used in various systems to

describe diffusion of point defects in metals and semiconductors and more complex systems

with grain boundaries and amorphous silicon [67, 89, 117].
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4.5.2. Handling flickering states

KMC simulations can become inefficient in the presence of low energy barriers that

dominate the kinetics, as each step is then associated with a very small clock increase.

In some cases, these events are flickers, a set of states, separated by low-energy barriers

deep in a energy basin and that do not contribute to the evolution of the system. To avoid

getting trapped by flickers, we use the basin auto constructing mean rate method (bac-MRM)

[13, 112] to solve analytically the average residence time for the in-basin states. This method

computes on-the-fly a statistically exact analytic solution of the connected flickering states

and their escape rate as the energy landscape is explored, at the cost of specific trajectories.

The bac-MRM is applied to all states connected by barriers and energy difference lower than

a predefined threshold (0.5 eV is used in this study).

4.5.3. Interatomic potential

In order to access relevant length and time scales, we employ an empirical force-field to

describe the system. The Fe-Fe interactions are handled by the Embedded Atom Method

(EAM) interatomic potential developed by Ackland and Mendelev [100] while the Fe-C inter-

action part was developed by Becquart and collaborators [10, 138]. The combined potential

provides a good agreement with DFT calculations in bulk system [116]. This potential has

been used with success to model the effect of the stress field of an edge dislocation on carbon

diffusion, the formation of carbon Cottrell atmospheres in bcc-iron as well as the elastic

constants of the martensite [28, 134, 139]. For all calculations, kART uses the LAMMPS

library to compute the forces and energies [1, 111].

4.5.4. Simulation details

Two simulation boxes are used in this work. The first one consists in a perfect cubic BCC

bulk crystal containing 2000 iron atoms. The second box is a BCC system containing 25537

atoms featuring a 85.91◦ < 100 > tilt GB with dimensions of 34.332 Å×113.090 Å×76.595 Å.

To allow periodic boundary conditions in all directions, the box contains two GBs separated
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Fig. 4.1. Atomic arrangement representation of the 85.91◦ < 100 > tilt GB in BCC Fe
after 1 ns of initial relaxation using molecular dynamics (MD) at zero pressure and temper-
ature 600 K prior to starting kART simulations. Black circles represent Fe atoms having
a crystalline BCC local environment, while green circles represnt atoms having a non-bcc
environment surrounding the GB. The GB rotation axes < 100 > are parallel to the x axis
out of planes, while GB planes are perpendicular to the z axis

by a distance equal to half the box size in the z direction. The 85.91◦ < 100 > structure is

a general GB with GB energy per unit area, EGB = 37.118 meV/Å2. This GB Fe system

was chosen because of its structural stability, and the presence of a number of sites where

C can be trapped, allowing us to focus on the effect of deformation impurity diffusion.

An atomistic representation of the GB is shown in Fig.4.1. To determine the appropriate

simulation volume, the system boxes, with a C interstitial, are equilibrated at the targeted

pressure at 600 K temperature by perfoming NPT ensemble with LAMMPS. The volume is

then fixed for kART simulations.

For each simulation, the ground state (GS) energy is defined as the lowest energy min-

imum identified during the run, EGS. The activation energy for an event is defined as the

energy difference between the initial minimum Emin and the saddle Esad (i.e., the barrier

crossed between two adjacent minima) or

Eb = Esad − Emin. (4.5.3)

The effective barrier is defined as the total barrier crossed when jumping from one GS to

another GS.
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The square displacement (SD) is computed as usual,

SD =
N∑
i

(ri(tn) − ri(0))2, (4.5.4)

where N is the number of particles and ri(tn), the position of atom i at KMC step n.

To ensure sufficient statistics, the diffusion coefficient of carbon interstitial atom calcu-

lated using the embedded discrete time Markov chain (EDTMC) described as follows:

(1) choose an initial state i;

(2) generate a uniform random number u ε (0,1];

(3) select the next event j probabilistically such that ∑j−1
k pik < u ≤ ∑j

k pik, where, pik

is the probability to jump from state i to state k ;

(4) update the total selection number of state j by adding 1;

(5) update the current state j → i;

(6) return to step ii.

EDTMC uses the transition matrix obtained from kART and that includes all the struc-

turally different sites in which C visited and the mapped connectivity between the sites and

their associated relative transition rates. For all coefficient diffusion results presented here,

we run 600 million EDMC steps to obtain the relative frequency distribution Π̄:

Π̄ =
[
π1 π2 . . . πm

]
(4.5.5)

where, πi represents the proportion of times that site i is selected and m is the total number

of structurally different sites in the system, for instance, in the case of perfect bulk crystal

there are structurally three different sites directed along x, y or z (shown in Appendix A

Fig. S1).

After obtaining the relative frequency distribution, we then calculate the average time

< t > and average square displacement < SD >:

< t >=
m∑

i=1
πiτi (4.5.6)
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< SDl >=
m∑

i=1

m∑
j=1

πipij(λl
ij)2 (4.5.7)

with l = x,y,z and,

< SD >=< SDx > + < SDy > + < SDz > (4.5.8)

where, τi is the mean residence time at site i, pij is the transition probability from site i to

site j and pij = 0; ∀ i=j. λl
ij correspond to the l = x,y,z components of the displacement

vectors for the jump form site i to site j respectively.

The total diffusion coefficient is calculated as:

D = < SD >

2nd < t >
(4.5.9)

where, nd is the dimensionality of the motion (1-3).

4.6. Results

4.6.1. Carbon in bulk iron

First we analyze the effect of pressure on the evolution of a single C atom in crystalline

α-Fe. In the ground state, the C atom occupies the octahedral interstitial position, located in

the middle of one of the three edges of the cubic unit cell ( shown in the Appendix A Fig.S1);

it migrates, following its dominant pathway, by going through an adjacent tetrahedral site

that represents the transition state. With respect to the orientation of the two closest Fe

atoms closest, three octahedral variants directed along x, y or z can be identified. These are

energetically equivalent in the perfect BCC lattice, but split into two non-equivalent types

under uniaxial deformation: a distortion along x axis divides the octahedral sites into Ox

and Oy ≡ Oz (shown in Appendix A Fig. S2).

Recently, Tchitchekova et al., using a method called Linear Combination of Stress States

(LinCoSS), evaluated the effects of simple-heterogeneous uniaxial and shear stresses on the

migration energies of C in bulk Fe [134]. In this section, we reproduce this result for a C in
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Fig. 4.2. (a) Enthalpy variation for a single carbon in 2000-atom Fe bulk crystal (blue
circles) and crystal lattice parameter (red circles) as a function of isotropic pressure. (b)
Variation of the activation energies (red circles) and diffusion coefficients (blue squares) as
a function of pressure for a single carbon atom in the same system. Diffusion coefficient is
calculated with EDTMC and Eq. 4.5.9.

bulk Fe with a thermally-adjusted density corresponding to 600 K, but also consider isotropic

deformations and extract the diffusion coefficient for each of these deformations.

The variation of the crystalline lattice parameter and of the system’s enthalpy as a

function of isotropic pressure are shown in Fig.4.2a while the evolution of the activation

energy for an interstitial C atom as it jumps from one octahedral site to a nearest octahedral

site and the diffusivity of C as a function of pressure are plotted in Fig.4.2b. Both the

51



Fig. 4.3. Variation of the activation energy for C diffusion in the bulk iron at 600 K as a
function of (a) uniaxial and (b) under biaxial stress. The red square, blue circle, and green
triangle represent the carbon diffusion between octahedral variants Ox → Oy, Oy → Ox and
Oy → Oz respectively.

diffusion activation energy and the total enthalpy show a positive correlation with isotropic

pressure over the full range considered here. The variation of activation energies Eb and that

of the total enthalphy follows a quadratic form with the values for the constant, linear and

quadratic parameters listed in the Appendix A Table S1.

The effects of uniaxial pressure (along x axis) and biaxial pressure (along y and z axes) are

shown in Fig.(3-4). Fig. 4.3a and Fig. 4.3b present the activation energy for an interstitial C

atom as it jumps from one octahedral site to a nearest octahedral site as a function of uniaxial

pressure and biaxial pressure respectively. Activation energies from Ox to Oy(≡ Oz), from
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Fig. 4.4. C diffusion coefficient in the bulk crystal at 600 K as a function of (a) uniaxial
stress, (b) under biaxial and (c) ratio Dx/Dy. All the values are calculated using EDTMC
and Eq. 4.5.9.
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Table 4.1. Values of the coordination number, shortest Fe-C bond length and segregation
energies of the four most stable sites at the GB region at different pressures.

Site
0 kbar Isotropic pressure Pressure applied along x-axis Pressure applied y and z axes

Coordi- 12 kbar -12 kbar 12 kbar -12 kbar 12 kbar -12 kbar
nation

dmin
F e−C Eseg dmin

F e−C Eseg dmin
F e−C Eseg dmin

F e−C Eseg dmin
F e−C Eseg dmin

F e−C Eseg dmin
F e−C Eseg

No. (Å) (eV) (Å) (eV) (Å) (eV) (Å) (eV) (Å) (eV) (Å) (eV) (Å) (eV)
S0 8 2.029 -0.745 2.028 -0.822 2.031 -0.660 2.023 -0.740 2.033 -0.735 2.032 -0.814 2.010 -0.673
S1 5 1.764 -0.20 1.763 -0.220 1.765 -0.174 1.768 -0.190 1.763 -0.206 1.763 -0.230 1.766 -0.164
S2 5 1.775 -0.164 1.774 -0.198 1.775 -0.123 1.776 -0.120 1.773 -0.178 1.772 -0.214 1.775 -0.080
S3 5 1.819 -0.057 1.818 -0.089 1.820 -0.017 1.813 0.013 1.823 -0.091 1.823 -0.126 1.812 0.028

Oy(≡ Oz) to Ox and from Oy to Oz follow a quadratic curve (values of the linear parameters

and quadratic parameter listed in the Appendix A Table S1 ). Fig. 4.4a and Fig. 4.4b show

the C diffusion coefficient at temperature 600K at each directions as a function of uniaxial

and biaxial pressure respectively. Calculated activation volume V act , activation barrier Eact

and diffusion prefactor D0 are listed in the Appendix A Table S2. We find that Dy(≡ Dz)

< Dx under uniaxial compression and Dy(≡ Dz) > Dx under uniaxial expansion with the

the ratio Dx/Dy is approximately inversed when the pressure changes sign (see Fig.4.4c).

Under uniaxial compression along the x-axis, the Oy and Oz octahedral sites are more

energetically stable sites than the Ox octahedral sites by as much as 0.132 eV at 24 kbar

(shown in Appendix A Fig. S2), with barriers going from Oy (Oz) to Oz (Oy) lower by

as much as 0.051 eV as compared with Oy (Oz) to Ox. Consequently the lowest-energy

diffusion pathway for C interstitial goes from Oy to Oz to Oy, channeling the C atom along

the contracted axis. Therefore, the axial compression promotes axial diffusion. On the

contrary, axial expansion promotes transverse in-plane diffusion along the chain (Oy or Oz)

→ Ox → (Oy or Oz) → Ox..... (detailed C diffusion trajectories obtained with kART under

uniaxial deformation are shown in Appendix A Fig.S3).

Since the contraction along x direction is equivalent to expansion along y and z direction,

biaxial deformation just reverse the tendancy : biaxial compression promotes C diffusion

along the y-z in plane while the biaxial expansion promotes x-channeling diffusion.

4.6.2. Carbon in the Grain boundary

To relieve the pressure created on the crystalline network, interstitial impurities such as

C tend to segregate towards defects, such as grain boundaries (GB), where there is more free
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(a) (b)

Fig. 4.5. (a) Atomistic representation of three most frequent diffusion mechanisms of carbon
atom at the dislocation core in GB at zero pressure. The orange, blue and black lines
indicate mechanisms M1, M2 and M3 respectively. M1 and M2 can move the C atom into
a new final configuration (S ′

0) (equivalent to the initial configuration (S0) with the impurity
jumping by one lattice spacing along the x direction); M3 brings the C atom back to its
initial configuration (S0). It does not contribute to the net diffusion. (b) The minimum
energy pathway for the different mechanisms is shown, where the circles and crosses represent
minimum and saddle points, respectively. Eseg is the relative energy with respect to the bulk
ground state for C.

volume than on the crystalline bulk side. This segregation propensity depends, of course,

on specific binding sites at the GB and is characterized by the segregation energy defined as

the difference between the energy of the system with C in a particular site and that in the

octahedral site in the crystal side. A negative value of segregation energy means that the

grain boundary site is energetically more favorable than the bulk site and signals a general

flux from the bulk to these sites at the GB.

As demonstrated in our previous work [117], the disorder associated with GB generates a

variety of atomic environments, facilitating the formation of sites more energetically favorable

to the presence of carbon than interstitial crystalline sites. Depending on the specific nature

of the interface between the grains, these favorable sites could be connected to accelerate

or to slow down carbon diffusion as compared to the bulk. In the specific case studied

here, we add that, segregation energies as well as related C migration barriers are reported
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Fig. 4.6. Segregation energy as a function of pressure for a C atom at the 85.91◦ GB:(a)
under isotropic pressure, (b) pressure along the x-direction and (c) pressure applied along
the plane perpendicular to the GB plane. Red square, blue circle, green triangle and violet
diamond are correspond to carbon at the site S0, S1, S2 and S3 respectively.
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Fig. 4.7. Variation of the effective barrier of the diffusion mechanism M1, M2 and M3 as a
function of pressure: (a) under isotropic pressure, (b) pressure along the x-direction and (c)
pressure applied along the plane perpendicular to the GB plane.
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Fig. 4.8. (a) Variation of the C diffusion coefficient at the GB as a function of pressure: red
circle, blue square, and green triangle represent the applied pressure isotropic, along x-axis,
and along y and z axes respectively. (b) Arrhenius plot of the diffusivity of C in GB: red,
blue and green line represent for the applied pressure isotropic, along x-axis, and along y and
z axes respectively. Black line refers to stress-free conditions. (c) Variation of the diffusion
coefficient of C as a function of isotropic pressure: red circle and blue square represent C
at the GB and crystalline bulk respectively. Results are presented here are calculated using
Eq. 4.5.9.
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in the current work differ from the value found in our previous work [117] as they are

identified differently: sites identified in the previous work were generated kinetically through

C migration from the bulk to the GB[117] while a direct extensive search for C sites, with

simulations launched from different GB sites, was performed for the current work to identify

the thermodynamically preferential sites. While this approach leads to different diffusion

pathways, it does not affect the validity of our previous analysis.

kART search for C diffusion pathways at the 85.91◦ GB finds 6 different connected sites,

with a segregation energy ranging from -0.745 eV to 0.180 eV at zero pressure. Fig.4.5

represents the four most energetically favorable sites for carbon segregation (S0 to S3), along

with their segregation energy, measured with respect to the bulk ground state for C at

zero pressure, and activation energies for diffusion between these sites. Further details,

including shortest Fe-C bond length, coordination number and segregated energies under

various static deformations, are listed in Table 4.1. The coordination number is defined as

the number of neighboring Fe atoms within a cut-off distance of 2.47 Å from the C atom. As

previously found for this specific grain boundary [117], even the highest energy states along

the dominant diffusion pathways at the GB are lower than the bulk ground state, which

indicates a strong segregation tendency of C atoms to the GB. At the GB, the lowest-energy

state at the GB is labeled S0 (situated at the center of the dislocation core of the GB), with

a segregation energy of -0.745 eV. Among the four lowest-energy states (S0 to S3), S0 shows

the highest coordination number, with the longest Fe-C nearest neighbor distance associated

with a low-stress environment as compared with the bulk site ( Table 4.1).

Fig.4.6(a-c) represents the variation of the segregation energies for these four lowest-

energy sites as a function of isotropic pressure as well as uniaxial (along x-axis: direction of

GB) and biaxial (along y and z axes: plane perpendicular to the GB direction) deformations.

Within a range of -12 to 12 kbar, the segregation energy of the C at each binding site tends

to evolve linearly, although the slope varies with specific sites. The displayed relative energy

shows that all C binding sites at the GB become more stable as compared to the interstitial

octahedral sites of the crystal side under isotropic compression. As the pressure is increased
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from 0 to 12 kbar, the segregation energy of C at the most stable site (S0) increases in

stability by 0.077 eV, whereas the segregation energy of C at sites S1, S2 and S3 increases

in stability by 0.02, 0.034, and 0.032 eV respectively. A similar behavior is observed under

biaxial pressure. However, sites S1, S2, and S3 are even more favored, as compared to the case

of isotropic pressure, with increasing the pressure (values listed in table 4.1). Under biaxial

compression, the two Fe nearest-neighbors are displaced along the x direction, leaving more

space for the C atom. Interestingly, the segregation energy of sites S0 remains unaffected by

uniaxial deformation, since the radius of the dislocation core is unaffected by the deformation.

Hence, the increment (or decrement) in the total energy of the C at site S0 and the octahedral

site in the crystal side are almost same under uniaxial pressure. By contrast to isotropic and

biaxial pressure the sites S1, S2 and S3 are destabilized under uniaxial compression.

After characterizing the change in stability of the dominant segregation sites under pres-

sure, we now turn to the effect of pressure on the C activation energies and diffusion pathways

at the 85.91◦ GB. C diffusion at the GB is complex as compared with that of the crystalline

bulk. As demonstrated in a previous work [117], at zero pressure, C diffusion occurs through

several pathways that move through the most favorable GB sites (the energy details of all

available events and the histogram of the activation energy barrier for selected events at 600

K for a single C at GB during the 12000 KMC steps are shown in the Appendix A Fig.S3 and

Fig.S4 respectively). Fig.4.5 provides an atomistic representation of the three most frequent

C diffusion local pathways at the GB that we label as M1, M2 and M3. Each pathways is

a two steps process: C diffuses from the ground state (site S0) to a metastable state (S1,S2

or S3), then from this metastable state to a new GS (site S ′
0 = S0). While, after these

two jumps, M1 and M2 can reach a new lower-energy state, dubbed S ′
0, M3 systematically

brings the C back to its initial position when following the lowest-energy pathways and, as

such, does not contribute to diffusion. M1 exhibits the lowest maximal energy barrier, which

makes mechanism M1 the most probable. At zero pressure, the first step of mechanism M1

requires crossing an energy barrier of 0.764 eV to reach S1. From there the C then crosses

a 0.216 eV barrier to complete the migration into a new S0 site. The second (M2) and
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third (M3) low-energy diffusion mechanism are associated with effective barriers of 0.840

and 0.877 eV respectively compared to 0.810 eV in the bulk.

The variation of the effective energy barriers for the three dominant pathways at the GB

along with their selection’s frequency as a function of pressure is shown in Fig.4.7. Within

a pressure range -12 to 12 kbar, the effective barrier associated with M1, M2 and M3 varies

linearly with pressure, but at different rate. In the case of isotropic deformation, as the

pressure is increased from 0 to 12 kbar, the effective barriers associated with the dominant

diffusion mechanism (M1) increase by 0.111 eV, whereas the effective barriers for mechanism

M2 and M3 increase by 0.055 and 0.045 eV respectively. Since, the energy gap between the

pathway’s effective barriers narrows as pressure is increased, the less probable mechanisms

(such as M3) become more frequent under isotropic compression at temperature 600 K.

In the case uniaxial deformation, on the contrary, the energy gap between the pathway’s

effective barriers widen and mechanism M1 become even more dominant under compression.

As the pressure is increased from 0 to 12 kbar the effective barriers associated with the

diffusion mechanism M1, M2 and M3 increase by 0.014, 0.028, and 0.053 eV respectively. By

contrast to the isotropic and uniaxial pressure, effective barriers associated with the diffusion

mechanism M3 decreases under biaxial compression. As the pressure is increased from 0 to

12 kbar, the effective barriers associated with the diffusion mechanism (M3) decrease by

0.003 eV, whereas the effective barriers for mechanism M1 and M2 increase by 0.078 and

0.017 eV respectively.

C diffusion at 85.91◦ < 100 > tilt GB is largely restricted to the interface and diffusion

take place mostly along the x-axis (diffusion trajectories obtained with kART at different

pressure are shown in Appendix A Fig.S6).

To extract a converged diffusion coefficient, we turn, as discussed in the method section,

to a Markov chain solution on a transition probability matrix (the size of which ranges

from 5 × 5-7 × 7 depending of the nature of the deformation) that incorporates the full

set of events identified with kART, irrespective of their energy barrier. Fig.4.8a shows the

variation of C diffusion coefficient at the GB under isotropic pressure along the x, y and
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z-axes at temperature 600 K. Fig.4.8b represents the Arrhenius plot for C diffusivity in GB.

The calculated activation volume V act , activation barrier Eact and diffusion prefactor D0

are listed in the Appendix A Table S2. We find that it decreases (increases) linearly under

lattice compression (expansion), but at different rates. Under lattice compression, as the

pressure is increased from 0 to 12 kbar the diffusion coefficient of C at the GB is decreased

by 1.39 × 10−13 m2s−1 (net effective barrier increase: 0.068 eV), 5.30 × 10−14 m2s−1 (net

effective barrier increase: 0.01 eV) and 1.03 × 10−13 m2s−1 (net effective barrier increase:

0.046 eV) for the isotropic, uniaxial and biaxial pressure respectively. On the other hand,

under lattice expansion as the negative value of pressure is increased from 0 to 12 kbar

the diffusion coefficient of C at the GB is increased by 4.95 × 10−13 m2s−1 (net effective

barrier decrease: 0.067 eV), 1.09×10−13 m2s−1 (net effective barrier decrease: 0.020 eV) and

2.15 × 10−13 m2s−1 (net effective barrier decrease: 0.047 eV) for the isotropic, uniaxial and

biaxial pressure respectively.

Fig.4.8c compares the results for a similar set of calculations for the C diffusion coefficient

at the GB and in the crystalline bulk under isotropic pressure at 600 K. We find that the

applied pressure strongly affects C diffusivity at the GB as compared to bulk. At zero

pressure, C diffusion at the GB is faster than in the crystalline bulk: the diffusion coefficient

of C at GB is 1.94 × 10−13 m2s−1 (corresponds to an effective barrier 0.772 eV), which is

order of magnitude higher as compared with 2.65 × 10−14 m2s−1 (corresponds to a barrier of

0.810 eV) in the crystalline bulk. The diffusivity of C at GB decreases rapidly as compared

in bulk when isotropic pressure increases: as the pressure is increased from 0 to 12 kbar

the diffusion coefficient of C at GB decreased by 1.39 × 10−14 m2s−1 (net effective barrier

increase: 0.068 eV) compared with 4.9 × 10−15 m2s−1 (net barrier increase: 0.01 eV) in the

crystalline bulk.

4.7. Discussion

To understand the impact of pressure on impurity diffusion at grain boundaries, we

first establish a reference case by considering impurity diffusion in the bulk crystal under
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isotropic, uniaxial and biaxial deformations. In agreement with simulations done on a system

equilibrated at T = 0 K, [134] we find that the activation energy barrier increases under

istropic pressure. We show that this leads to a non-linear reduction in the diffusion coefficient,

as should be expected. A similar observation was made in experiments of vacancy-mediated

In diffusion in Cu [84, 85], which suggest that this slowing down, in a dense metallic system is

associated with the reduced space available along the diffusion pathway between two stable

states.

Uniaxial and biaxial compressions, by breaking symmetry, introduce divergence in ac-

tivation energy as a function of jump directions for the interstitial C, with some barriers

decreasing while others increase under increasing pressure, leading to a non-monotonous ef-

fect of pressure on the diffusion coefficient, a phenomenon that does not seem to have been

reported previously. This non-monotonous effect can be explained by the fact that, in ad-

dition to making the lattice stiffer, increasing pressure raises the formation energy for an

interstitial. Along some diffusion directions, the enthalpy at the stable site increases faster

than that at the transition state, leading to an effective reduction in the diffusion barrier.

These effects are made more complex at the grain boundary due to an increased richness

in the energy landscape. This explains why results on various GBs differ. For example,

Lojkowski et al, looking at In diffusion at a Cu grain boundaries, find that diffusivity increases

with pressure [84, 85] while it decreases by an order of magnitude for Zn diffusing along tilt

GBs in Al as the pressure is raised to 12 kbar[73].

Recently, Karki et al. [70] performed first-principles simulations, based on density func-

tional theory, on the {310}/[001] tilt GB in MgO. They showed that native defects and

impurities (Ca, Al, and proton) favorably segregate to the GB with the segregation consid-

erably increasing with pressure. They also remarked that the impurity diffusion is faster at

the GB as compared to the bulk as the pressure is increased as they showed that migration

energies for host ions and impurities at the grain boundary are smaller than the bulk values,

more so at higher pressures with their values being as low as 1.5 eV at 100 GPa compared

to the bulk values of 4 eV.
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Using kART, we obtain a more complete picture of the energy landscape of our system, C

at the 85.91◦ < 100 > tilt GB. We find that, while segregation energy tends to become more

favorable to the GB with respect to the bulk for a C interstitial with increasing isotropic

pressure, the gain depends on specific sites, with some barely changing moving over a 24 kbar

pressure change. Moreover, we observe that the orientation of pressure with respect to the

GB changes the result : applying a pressure normal to the GB reduces the available free

volume at the GB and, therefore, reduces the segregation energy, while a pressure parallel

to the GB plane increases the formation enthalpy in the bulk while preserving a larger free

volume, and increasing the energy gain of moving to the GB.

Pressure will also affect the various transition states differently as is shown in our de-

tailed analysis of its effect for the three dominant transition states at the GB. While all

three barriers increase linearly under increasing isotropic and normal pressure, albeit with

a different slope, this is not the case for pressure applied parallel to the GB plane, which

could, at high enough pressure, lead to a change in the dominant diffusion mechanisms and

the overall diffusion. This suggests that inhomogeneities in materials, that can create large

local pressure fluctuations, will increase the complexity of impurity diffusion and could favor

mechanisms that are missed in analyses that do not explore the full landscape but could af-

fect the overall properties of the material. kART provides a complete picture about evolution

of C within a representative grain boundary under the influence of pressure, thus mimicking

realistic working conditions and providing unique long-time description of the evolution of

the system. The resulting full energy landscape on the impact of pressure on the C diffusion

in iron once combined with surface phenomena can be regarded as one of the key parameters

to determine the threshold and peak carburization rates of Fe surfaces.

4.8. Conclusions

Using the kinetic activation-relaxation technique, an off-lattice kinetic Monte Carlo

method with on-the-fly catalog generation, we study pressure effect on the C diffusion in

GB of α-iron providing detailed information regarding mechanisms and pathways that is
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difficult to obtain through standard simulation methods. Our results show a richness in the

diffusion mechanisms as well as a complex balance between elastic and chemical effects.

In particular, the effect of pressure can strongly modify the C stability and diffusivity in

GB. These effects vary between isotropic and uniaxial pressure, with segregation energies of

various metastable sites moving in opposite directions, in some cases. This can have a major

impact on the evolution of heterogeneous materials, with variations of local pressure that

would strongly alter diffusion across the material.

More work is required to better characterize this behavior and extract general rules.

Clearly, additional simulations are needed to assess how multiple C interstial atoms or other

defects such as vacancies and substitutional atoms diffuse at GBs under pressure; simulations

are underway. The detailed analysis of the energy landscape provided by kART, however,

shows that it is necessary to take specific mechanisms into account, with the possibility of

developing precise control on the evolution of impurities in complex materials under local

and global deformations.
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see appendix A
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Chapter 5

Structural evolution of vacancy clusters in

α−iron: A kinetic activation-relaxation

technique study

5.1. Objective

In this article, the stability of vacancy clusters in crystalline α−iron and the processes

associated with their aggregation and diffusion mechanisms are investigated. By using the

power of the k- ART method, we have been able to study in detail all the activated events that

determine the kinetics of such a system, and this for a very large number of configurations.
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5.2. Résumé

L’évolution des lacunes dans les matériaux est un facteur essentiel dans la détermination

de leurs résistances physique et mécanique. Dans ce travail, nous étudions la diffusion des

lacunes dans le fer α en utilisant la technique d’activation-relaxation cinétique (ARTc), une

méthode de Monte Carlo cinétique hors réseau avec construction de catalogue à la volée basée

sur l’activation-relaxation technique nouvelle (ARTn), couplée à un potentiel de méthode

d’atomes embarqués (EAM). Nous nous concentrons sur l’évolution d’une à huit lacunes et

fournissons, pour ces systèmes, une image détaillée du paysage énergétique, de la cinétique

globale et des mécanismes de diffusion associés à ces défauts. Nous montrons les énergies

de formation, les barrières d’activation pour l’état fondamental des huit systèmes et les

barrières de migration pour la diffusion de ces systèmes. Cette étude dévoile une richesse

dynamique insoupçonnée, même pour ce système simple, qui ne peut être découverte que

par des approches globales et systématiques telles que la technique d’activation-relaxation

cinétique. L’environnement énergétique complexe contrôlant la cinétique des petits amas de

lacunes, que nous trouvons ici, démontre que des règles simples ne suffisent pas à développer

une approche robuste de contrôle prédictif et de prévention des processus d’endommagement

associés aux grappes de lacunes dans les métaux de structure.

5.3. Abstract

The evolution of vacancies in materials is a principal factor in the determination of their

physical and mechanical strengths. In this work, we investigate vacancy diffusion in α-

iron using the kinetic activation-relaxation technique (kART), an off-lattice kinetic Monte

Carlo method with on-the-fly catalog building based on the activation-relaxation technique

nouveau (ARTn), coupled with an embedded atom method (EAM) potential. We focus on

the evolution of one to eight vacancies to provide a detailed picture of the energy landscape,

overall kinetics, and diffusion mechanisms associated with these defects. We show formation

energies, activation barriers for the ground state of all eight systems, and migration barriers

for those diffuse systems. This study points to an unsuspected dynamic richness, even for this
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simple system, which can only be discovered by comprehensive and systematic approaches

such as the kinetic activation-relaxation technique. The complex energetic environment

controlling the kinetics of small vacancy clusters, we find here, demonstrates that simple

rules are not sufficient to develop a robust approach to predictive control and prevention of

damage processes associated with vacancy clusters in structural metals.

5.4. Introduction

Vacancies, isolated and in clusters, are key defect structures for determining a material’s

physical and mechanical properties. Vacancies are created inside materials under deforma-

tion [106, 130], irradiation [16, 44, 55], or after quenching [109, 114]. Once formed, they

can further aggregate and form nano-scale defects, such as stacking faults, cracks, voids, gas

bubbles, dislocation loops, etc. [41, 127, 128, 129] The subsequent evolution of these defect

structures strongly affects the material’s properties, producing effects such as embrittlement,

strengthening, crack resistance, ductility or creep behaviors [26, 30, 54, 156], which can lead

to property degradation and possibly component failure. Thus, understanding the forma-

tion and evolution of vacancy clusters is an interesting topic for materials used in extreme

environments.

Despite decades of extensive research, understanding the formation and evolution of va-

cancy clusters remains a formidable challenge. The atomic-scale details of vacancy cluster

diffusion are generally difficult to observe experimentally. Thus, atomistic simulations are

needed to understand the interaction and migration of vacancy clusters at this scale. For

this, however, we need a proper description, using either ab initio approaches or accurate

empirical potentials, as well as comprehensive sampling methods. Ab initio calculations

based on density functional theory (DFT) [75] provide an accurate approach to investi-

gating atomic details and therefore have been used in numerous studies on vacancy clus-

ters [32, 37, 46, 61, 69, 140, 148]. However, due to their costs, these methods offer a limited

capacity to sample energy landscape and most work limit themselves to finding a transi-

tion state between given initial and final states based on an initial guess for the connecting
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trajectory. Only the pathway closest to the initial guess is explored, leaving other possi-

ble pathways unexplored. This can be problematic with complex energy landscapes, where

multiple nontrivial but relevant pathways may be present. Moreover, DFT methods are too

expensive to apply to large systems or to allow extensive sampling. While standard simu-

lation tools such as molecular dynamics [3] coupled with empirical potentials could provide

useful information on atomistic details of these diffusion mechanisms, they often cannot

reach the extended time scale over which many of these processes occur. Kinetic Monte

Carlo approaches [142, 146] provide a solution to reaching longtime dynamics; however, the

standard implementation requires an upfront knowledge of the relevant barriers and cannot

consider crucial elastic deformations. While results from such simulations are enlightening,

their quantitative validity is limited since the full details of local atomic configurations can

significantly affect diffusion kinetics. This is why we need a method such as the kinetic

Activation Relaxation Technique (kART) [40, 103], a unique off-lattice kinetic Monte Carlo

algorithm with on-the-fly catalog-building capabilities, which lifts those limitations and al-

lows us to map these processes in detail. kART ensures an efficient and extensive sampling

of energy landscapes as it incorporates exact elastic effects at both minima and saddle points

for a precise kinetic description of complex materials ranging from defects in metals to the

long-time evolution of amorphous materials.

In this study, we focus on vacancy cluster diffusion in α-Fe, a central component of the

ferritic steels widely used in aeronautic and nuclear industries. This system has received

considerable attention over the years [11, 18, 21, 36, 38, 46, 49, 50, 62, 69, 76, 94, 95, 120,

125, 147], with main efforts going towards elucidating the structure of the vacancy clusters

formed during deformation or irradiation. It is well-known, for example, that the most

common vacancy clusters in α-Fe are cavities [62, 94]. However, their formation mechanism

and kinetic evolution are less well understood. An extensive characterization of vacancy

cluster formation and possible diffusion pathways is still missing. Such a work would provide

a complete picture of the various diffusion mechanisms and evaluate the possible richness of

the energy landscape associated with this phenomenon.
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For this purpose, we employ k−ART, coupled with a reliable and well−tested embedded

atom method (EAM) potential, to achieve this goal. Using this approach, we characterize the

associated energy landscape and clustering mechanisms of vacancy clusters. We focus, more

specifically, on the diffusion and clustering of one to eight vacancies in crystalline α−iron.

We show that even these simple assemblies, from one to eight vacancies, can present complex

reorganizations that considerably affect their diffusion properties. The paper is organized as

follows: the methodology, including a brief overview of k−ART, the model employed, and

the computational details, are presented in Sec. II. Then, simulation results are presented

and discussed in Secs. III and IV, respectively. Finally, the conclusion is given in Sec. V.

5.5. Methodology

5.5.1. Kinetic-Activation Relaxation Technique (kART)

kART is a kinetic Monte Carlo algorithm with on-the-fly event catalog building capacity

and exact elasticity treatment. While details of kART implementation can be found else-

where [13, 40, 102], here we provide a brief overview of the basic algorithm and the specific

parameters used in this study.

At the beginning of each KMC step, the local environment surrounding each atom is

characterized by its local topology. kART generates a local connectivity graph involving

each atom and its surroundings. Here, we use a cutoff of 2.7 Å for drawing a link between

two atoms and a radius of 6.0 Å around the central atom for the maximum graph size.

Graphs are then analyzed using the NAUTY[97] package, a topological analysis package

that it used to provide a unique identifier associated with the graph’s automorphic group

and the permutations allowing to restore of the reference graph. If the topology is known,

events related to it are recovered from the catalog and placed in a KMC tree; otherwise, the

catalog is updated by launching a series of activation-relaxation technique nouveau (ART

nouveau or ARTn) [7, 88, 93] searches to identify the diffusion mechanisms associated with

this topology. Once the catalog is fully updated and the tree is completed for the current
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atomistic configuration, generic events are ordered according to their rate, defined as

Γi = ν0e
− Eb

kBT (5.5.1)

where ν0 is a fixed prefactor which is fixed at 1013 Hz and Eb, the activation energy for

the event i defined as the energy difference between the transition state and the initial

minimum[42, 43, 78]. Once the event tree is completed, the lowest-energy barrier events

that make up to 99.99 % of the rate are fully reconstructed and reconverged into specific

events. In this manner, low barriers are fully relaxed according to actual geometry and,

therefore, exactly include short and long-range elastic effects. Then the specific rates and

overall KMC time step are estimated again with the refine barriers. Finally, the event is

selected according to the standard KMC algorithm[146]. The elapsed time t is computed

according to a Poisson distribution as

t = − ln μ∑
i Γi

(5.5.2)

where μ is a random number uniformly distributed between 0 and 1. To avoid being trapped

by low barrier events associated with non-diffusive mechanisms, we use the basin accelerated

mean-rate method (bacMRM) [13, 112], which solves them analytically. To fully characterize

the kinetics on all relevant time scales, we start all simulations with a basin threshold of 0.1 eV

and increase it as flickering occurs.

5.5.2. Force fields

Force fields are calculated with the Large-Scale Atomic/Molecular Massively Parallel

Simulator (LAMMPS) [1, 111] by linking its library to kART. To speed up the computation,

we use double parallelization to generate events and force calculations on multiple processors.

In the present study, we use the Fe-C EAM potential developed by Becquart et al. [10, 138]

for Fe-C and Ackland and Mendelev [100] for Fe-Fe interactions. Both potentials provide an

excellent agreement with DFT calculations in bulk Fe.
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5.5.3. Simulation details

We characterize the diffusion pathways of vacancy clusters in a perfect cubic bcc bulk

crystal containing 2000 Fe atoms with periodic boundary conditions. The supercell is ori-

ented in the cubic directions, i.e. x in [100], y in [010], and z in [001]. For each system

containing one to five and eight vacancies, we perform runs at 600K, as defined in the cal-

culation of the rate. The variation in the total energy of the system containing the largest

cluster as a function of the box size was checked to ensure the size was sufficiently large.

In all cases, the simulation box is a cubic box with a length of 28.553 Å, corresponding to

a lattice parameter of 2.8553 Å in agreement with the literature for the BCC Fe structure.

The system’s energy is first minimized at T = 0 K using LAMMPS before kART simulations

are launched.

The ground state (GS) energy is defined for each simulation as the lowest energy minimum

identified during the run, EGS. The activation energy for an event is defined as the energy

difference between the initial minimum Emin and the adjacent saddle Esad (i.e., the barrier

crossed between two adjacent minima) or

Eb = Esad − Emin. (5.5.3)

The migration energy is defined as the difference between the energy of the highest saddle

point crossed along a path connecting one local minimum to another and Emin.

The square displacement (SD) is computed as usual:

SD =
N∑
i

(ri(tn) − ri(0))2, (5.5.4)

where N is the number of vacancies and ri(tn), the position of vacancy i at KMC step n.

To describe the energy cost for the formation of a vacancy cluster with respect to the

perfect lattice, the formation energy per vacancy for the n-vacancy cluster is defined as

Ef
nv = EF

nv

n
= 1

n
(Etot

N−n − N − n

N
Etot

N ), (5.5.5)
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where EF
nv is the formation energy for an n-vacancy cluster, Etot

N−n is the total energy of the

supercell with (N–n) atoms and an n-vacancy cluster, and Etot
N = −8025.965 eV is the total

energy of the corresponding defect-free supercell containing N atoms (2000 atoms in our

case).

To compare the thermodynamic stability of line dislocation, the binding energy per va-

cancy for the n-vacancy cluster is given by

Eb
nv = 1

n
(
∑

n

Ef
1v − EF

nv) = Ef
1v − Ef

nv (5.5.6)

where Ef
1v = 1.722 eV is the formation energy of an isolated vacancy. Positive binding energy

indicates a preference for the n-isolated vacancies to form an n-vacancy cluster, and higher

binding energy denotes greater stability.

5.5.4. Vacancy structure notation

The complex vacancy configurations are described in terms of the vacancy-pair separation

distances. The number of vacancy pairs in a m-vacancy structure is P (m) = m!/ (2!(m − 2)!).

For example, the bound structure of the tri-vacancy complex has P (3) = 3!/(2! × 1!) = 3 va-

cancy pairs. Using di to represent the separation distance between two vacancies that are i-th

neighbors, the bound structure of the m-vacancy complex can be described by these distances:

mV (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6), where Ndi
is the total number of i-th nearest-neighbor (NN)

distances between pairs of vacancies in the structure. For instance, 3V(2,1,0,0,0,0) illus-

trates the bound cluster configuration with two 1NN and one 2NN vacancy-pair separation

distances.

As discussed below, the binding energy for divacancies in the fifth and sixth neighbor-

ing configurations is below room temperature (at -0.021 and -0.011 eV, respectively). The

inclusion of positions in the fifth and sixth neighbors is therefore sufficient to describe the

aggregation kinetics.
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5.5.5. Calculation of lifetimes

To study the vacancy cluster lifetime and diffusivity, we construct a complete transition

matrix that allows recovering the associated rate of all the possible states where the system

can move from the ground state until the system reaches a state where one of the vacancies

in it moved further away than the fourth nearest-neighbour (4NN) distance from any of the

remaining cluster vacancies.

The diffusion coefficient and thermal lifetime are calculated using the Markov chain

solution described as follows:

(1) choose the ground state for a vacancy cluster of that size as initial state i;

(2) generate a uniform random number u ε (0,1];

(3) select the next event j probabilistically such that ∑j−1
k pik < u ≤ ∑j

k pik, where, pik

is the probability to jump from state i to state k ;

(4) update the current state j → i;

(5) generate a second uniform random number μ ε (0,1];

(6) update times as, τ = τ − ln μ∑
k

Γk
, where, Γk is the transition rate from state i to state

k;

(7) return to step 2.

The lifetime of the cluster is defined as the time at which one of the vacancies in it moves

further away than the 4NN distance from any of the remaining cluster vacancies. Cluster

mobility is studied by tracing the diffusion of the cluster. The same simulation is repeated

Nsim = 5 million times in order to obtain sufficient statistics. The diffusion coefficient is

calculated as

D = 1
Nsim

Nsim∑
i

R2
i

6τi

, (5.5.7)

where R2
i is the squared displacement during the lifetime τi, of the cluster, in simulation i.
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5.6. Results

5.6.1. Validation

As a validation test, we analyze the diffusion of a single Fe vacancy. The formation energy

of monovacancy calculated using EAM potential is 1.722 eV, consistent with previous sim-

ulations and experimental results (see Table.2 in Ref.[95]). The vacancy self-diffusion takes

place through a first nearest-neighbor (1NN) jump with 100% probability. This 1NN jump

occurs either through a direct transition, from the ground state, GS (at EGS = −8020.231

eV) to a new GS by crossing an energy barrier of 0.64 eV, or in two steps, from the GS to a

metastable state at Emin = 0.549 eV above the GS by crossing an energy barrier of 0.64 eV,

from this state a second barrier with a 0.091 eV energy brings the system back into a new

GS. The barrier heights agree with literature values [69, 95].

For further validation, the interactions between two vacancies are analyzed, as they are

position in the first, second, third, fourth, fifth, and sixth nearest neighbor sites of each other

(denoted as 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN sites). The interaction for the 2NN state

is strongly attractive (with a binding energy of approximately 0.240 eV), as seen in previous

studies [18, 37, 69], while it is only slightly attractive for the 1NN and 4NN states (with

a binding energy of 0.141 eV and 0.029 eV, respectively). For their part, 3NN, 5NN, and

6NN sites show a negative binding energy of -0.022 eV, -0.021 eV, and -0.011, respectively,

indicating a repulsive interaction. For larger clusters, the most stable configurations tend to

maximize the number of 2NN and 1NN vacancy pair-separation distances.

5.6.2. Structure and stability

To proceed further, we analyze the thermal stability of the clusters, which are classified

into three groups according to the shape characteristics of the initial clusters: linear, planar,

and body clusters. Vacancies in the linear clusters are positioned along either [100], [110], or

[111] directions, respectively. The planar clusters lie on the [110] plane. The body clusters

are separated into two groups: tetrahedral type, with tetrahedral features or s combination
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Fig. 5.1. Schematic representation of the configurations for planar and body clusters with
one to six vacancies. Blue and red circles represent crystalline Fe atoms and vacancies,
respectively.

Table 5.1. Formation energies (EF
nv), binding energies (Eb

nv), and migration energies (in
eV) for pathways between the six dominant bound states for the di-vacancy complex.

.

To
From 1NN 2NN 3NN 4NN 5NN 6NN

EF
nv 3.303 3.204 3.466 3.415 3.465 3.455

EB
nv 0.141 0.240 -0.022 0.029 -0.021 -0.011

1NN - 0.716 0.694 - 0.577 -
2NN 0.617 - - 0.429 - -
3NN 0.857 - - 0.676 - -
4NN - 0.641 0.626 - 0.589 0.630
5NN 0.738 - - 0.638 - -
6NN - - - 0.670 - -

of the tetrahedron; and octahedral type, which tends to form octahedral structure based on

the relevance of cluster structures. The configurations for the planar and body clusters with

2–6 vacancies are shown in Fig. 5.1.

Fig. 5.2 presents the formation and binding energies per vacancy for different cluster types

as functions of vacancy number. The binding energy generally increases with the vacancy

number for each cluster type, indicating the preference for further cluster growth. Moreover,

the binding energies for the tetrahedral- and octahedral-type clusters are higher and have

larger energy gradients. In contrast, the binding energies of the linear and planar clusters are

lower and have smaller gradients. This is expected as the tetrahedral- and octahedral-type

clusters, with lower surface to volume ratio, should be more stable and have higher growth

tendencies.
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(a)

(b)

Fig. 5.2. (a) Binding energies and (b) formation energies for different vacancy cluster types
in α-iron.

5.6.3. Small vacancy clusters (2-4 vacancies)

We now turn to vacancy aggregation and diffusion mechanisms of small vacancy clusters

containing two to four vacancies. Simulations start with the defects placed at a large enough

distance (around 10.2 Å) from each other to ensure minimal interaction. The detailed acti-

vation energy, binding energy at the local minima, and squared displacement as a function of

time for two to four Fe vacancies in a bcc crystal at 600K are shown in Fig. 5.3. The selected

and sampled activation energies as a function of the KMC step, as well as the number of
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(a) (b)

(c) (d)

Fig. 5.3. Activation-energy (left, blue symbols), binding energy at the local minima (left,
green line) and squared displacement (right, red line) as a function of time for one to four
Fe vacancies in a bcc crystal at 600K: (a) one, (b) two, (c) three, and (d) four vacancies.

Table 5.2. Formation energy (EF
nv) and migration energies (in eV) for pathways between

the eight dominant bound states for the tri-vacancy complex. The bound structures of the
tri-vacancy complex are defined as 3V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6), where Nd1 , Nd2 , Nd3 ,
Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN
vacancy-pair separation distances, respectively.

To
From

3V(2,1,0,0,0,0) 3V(0,2,0,0,0,1) 3V(0,2,1,0,0,0) 3V(1,1,0,1,0,0) 3V(0,1,0,2,0,0) 3V(1,0,0,1,1,0) 3V(0,0,0,2,1,0) 3V(0,0,1,2,0,0)

EF
nv 4.625 4.685 4.709 4.780 4.867 5.031 5.127 5.128

3V(2,1,0,0,0,0) 0.653 - 0.605 0.475 - 0.364 - -

3V(0,2,0,0,0,1) - - - - - - - -

3V(0,2,1,0,0,0) 0.691 - - 0.60 0.461 - - 0.233

3V(1,1,0,1,0,0) 0.631 - 0.671 - 0.521 - - -

3V(0,1,0,2,0,0) - - 0.619 0.608 - - 0.380 0.415

3V(1,0,0,1,1,0) 0.773 - - - - - - -

3V(0,0,0,2,1,0) - - - - 0.640 - - -

3V(0,0,1,2,0,0) - - 0.653 - 0.676 - - -

events in the catalog per step for events involving vacancy movement, are shown in Appen-

dix B, Fig.B.1. The schematic representation and energetic descriptions of the dominant

diffusion mechanisms are shown in Fig. 5.4.
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(a) (b)

(c) (d)

Fig. 5.4. Schematic representation and energetic descriptions of the dominant diffusion
path for (a) one, (b) two, (c) three, and (d) four vacancies in bcc Fe at 600K. In the
schematic diagrams, the blue and red spheres represent crystalline Fe atoms and vacancies,
respectively. In the energetic description, the cross and filled circle represent the saddle points
and minima, respectively. The indices (I, II, and III) are used to identify states and explain
the diffusion mechanism. The bound structures of three and four vacancies are indicated
as 3V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6) and 4V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6), respectively. Where
Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN,
and 6NN vacancy-pair separation distances, respectively.

Due to elastic interactions, the two vacancies aggregate rapidly, in less than 1.2 μs and

2173 KMC steps, into a dimer with two-point defects at a 2NN distance from each other,
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Fig. 5.5. Energetic descriptions of the migration between 2NN to 1NN(green) and 2NN
to 4NN (blue) for di-vacancy. The Cross and filled circle represent the saddle points and
minima, respectively.

Table 5.3. Formation energy (EF
nv) and migration energies (in eV) for pathways between

the ten dominant bound states for the tetra-vacancy complex. The bound structures of the
tetra-vacancy complex are defined as 4V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6), where Nd1 , Nd2 , Nd3 ,
Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN
vacancy-pair separation distances, respectively.

To

From
4V(4,2,0,0,0,0) 4V(3,2,1,0,0,0) 4V(3,2,0,1,0,0) 4V(4,1,1,0,0,0) 4V(2,2,0,2,0,0) 4V(2,2,1,1,0,0) 4V(3,1,0,1,1,0) 4V(3,1,1,1,0,0) 4V(1,2,1,2,0,0) 4V(2,1,1,1,1,0)

EF
nv 5.763 5.942 5.945 6.014 6.093 6.127 6.195 6.196 6.262 6.376

4V(4,2,0,0,0,0) - 0.524 - 0.555 - 0.410 - - - 0.376

4V(3,2,1,0,0,0) 0.703 - 0.483 0.407 0.498 - - 0.272 - -

4V(3,2,0,1,0,0) - 0.485 - - - 0.478 - - 0.373 -

4V(4,1,1,0,0,0) 0.804 0.479 - - - - - - - 0.284

4V(2,2,0,2,0,0) - 0.648 - - - - - - 0.432 -

4V(2,2,1,1,0,0) 0.773 - 0.660 - - 0.511 0.595 - - -

4V(3,1,0,1,1,0) - - - - - 0.664 - - - 0.389

4V(3,1,1,1,0,0) - 0.525 - - - - - - - 0.318

4V(1,2,1,2,0,0) - - 0.690 - 0.619 - - - 0.377 -

4V(2,1,1,1,1,0) 0.988 - - 0.654 - - 0.570 0.499 - 0.318

representing the ground state. Table 5.1 summarizes the energy landscape for the di-vacancy

complex, providing information regarding formation, binding, and migration energies for

states with vacancies in the 1st to 6th nearest neighbor positions. The di-vacancy migrates

through two dominant processes, where the configuration changes from the second nearest

neighbor (GS) to the first nearest neighbor and back to the second nearest neighbor and

from the second nearest neighbor to the fourth nearest neighbor and back to the second

nearest neighbor. The energy barrier for each of these migration paths is shown in Fig. 5.5,
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where the green line represents the energy barrier for migration via the first nearest-neighbor

configuration, and the blue line represents the energy barrier for migration via the fourth

nearest-neighbor configuration. Mostly, the di-vacancy migrates by oscillating between the

2NN and 4NN states, with an energy barrier of 0.641 eV. The 1NN pathway may be expected

to be the dominant mechanism, as one may predict the transition to the lower-energy 1NN

state to have a lower energy barrier. However, the 2NN to 1NN transition has an energy

barrier of 0.716 eV, making it kinetically less favorable. The diffusion mechanisms and barrier

heights match previous studies using either ab initio approaches or empirical potentials[37].

The three isolated vacancies aggregate to form the ground state in 0.71 μs and 1583

KMC steps, with two 1NN and one 2NN vacancy pair-separation distances, forming an

isosceles triangle. This cluster is characterized by a binding energy of 0.68 eV (0.23 eV per

vacancy) as measured from the three isolated vacancies. Once vacancies reach the ground

state, eight configurations dominate the dynamics of the system, representing more than

95 % of all accepted configurations. Table 5.2 summarizes the energy landscape for the eight

most stable tri-vacancies bound compounds, providing information regarding formation, and

migration energies for states. For simplicity, These bound structures of the tri-vacancy

complex are defined as 3V(a,b,c,d,e,f), where a, b, c, d, e, and f represent the total number

of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN vacancy pair-separation distances, respectively.

For instance, 3V(2,1,0,0,0,0) illustrates the bound cluster configuration with two 1NN and

one 2NN vacancy pair-separation distances. The dominant diffusion mechanism for the tri-

vacancy bound compound is a one-step process associated with a rotation that involves

migrating one vacancy from the ground state to a first neighbor site without breaking the

triangle, crossing a barrier of 0.653 eV shown in Fig. 5.4. The barrier height is in good

agreement with previous literature results [11, 69]. The cluster is stable and can be broken

only by crossing a 0.691 eV barrier, which involves migrating a vacancy to a nearest-neighbor

site forming a complex of two 2NN and one 3NN vacancy pair-separation distance, 0.084 eV

above the GS. Then from this state, the system is back into a new GS by crossing a second

barrier with an energy of 0.605 eV.
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Fig. 5.6. Energy evolution of five vacancies as a function of time at 600K: red, blue, and
green lines for initial line dislocation structures along [100], [110], and [111], respectively.

Starting from four isolated vacancies, the ground state for the tetra-vacancy is reached

in about 0.51 μs and 1482 KMC steps. The ground state is characterized by four vacancies

forming a complex of four 4NN and two 2NN vacancy pair-separation distances. As measured

from four isolated vacancies, the binding energy for the ground state is 1.36 eV or 0.34 eV

per vacancy. Table 5.3 summarizes the energy landscape for most ten stable tetra-vacancies

bound compounds, providing information regarding formation, and migration energies for

states. The dominant diffusion mechanism for the tetra-vacancy complex is described in

Fig. 5.4. Diffusion takes place in two steps by the migration of one vacancy that jumps to

1NN position at each step. From the ground state, the system reaches a higher energy state

at 0.179 eV above the GS by crossing an energy barrier of 0.703 eV; from this state, a second

barrier with an energy of 0.524 eV brings the system back into a new GS. The barrier height

we find here agrees with the previous literature values using different empirical potentials [36].

5.6.4. 5-vacancy cluster

Having characterized the vacancies aggregation and diffusion mechanism of small vacancy

clusters containing two to four vacancies, we now look at the energy landscape and diffusion
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Fig. 5.7. Evolution of the number of topologies as a function of KMC steps for initial line
dislocation contains five vacancies along [100] (top), [110] (middle), and [111] (bottom).

Table 5.4. Formation energy (EF
nv) and migration energies (in eV) for pathways between

the ten dominant bound states for the Penta-vacancy complex. The bound structures of
the penta-vacancy complex are defined as 5V (Nd1 , Nd2 , Nd3 , Nd4 , Nd5 , Nd6), where Nd1 , Nd2 ,
Nd3 , Nd4 , Nd5 , and Nd6 represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN
vacancy-pair separation distances, respectively.

To

From
5V(6,3,1,0,0,0) 5V(4,4,2,0,0,0) 5V(5,3,1,1,0,0) 5V(4,3,0,2,0,1) 5V(4,3,2,0,1,0) 5V(4,3,1,2,0,0) 5V(5,2,2,1,0,0) 5V(3,3,3,1,0,0) 5V(4,2,2,2,0,0) 5V(0,5,4,0,1,0)

EF
nv 6.873 7.002 7.084 7.234 7.257 7.258 7.333 7.468 7.497 7.509

5V(6,3,1,0,0,0) - 0.509 0.528 - - - 0.348 0.429 -

5V(4,4,2,0,0,0) 0.638 0.803 - - - 0.293 - - 0.412 0.480

5V(5,3,1,1,0,0) 0.740 - 0.513 0.501 - 0.621 0.477 0.363 0.381 -

5V(4,3,0,2,0,1) - - 0.651 - - - 0.623 - - -

5V(4,3,2,0,1,0) - - - - - - 0.477 - - 0.574

5V(4,3,1,2,0,0) - 0.548 0.795 - - - 0.429 - 0.362 -

5V(5,2,2,1,0,0) 0.808 - 0.726 0.723 0.552 0.504 - 0.590 0.268 -

5V(3,3,3,1,0,0) 1.024 - 0.748 - - - 0.725 - - -

5V(4,2,2,2,0,0) - 0.906 0.794 - - 0.601 0.432 - - -

5V(0,5,4,0,1,0) - 0.987 - - 0.826 - - - - -

mechanisms for five-vacancy clusters. kART simulations are launched from line dislocation

oriented in three crystallographic orientations constructed by removing five atoms at [100],

[110], and [111] directions, respectively, from the 2000-atom box. Each system is run for

5000 KMC steps, representing 21.8 μs, 25.9 μs and 17.7 μs of simulation time at 600 K for
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Fig. 5.8. Activation-energy (left, blue symbols), binding energy at the local minima (left,
green line) and squared displacement (right, red line) as a function of time for the line
dislocation of five vacancies along [100] (top left), [110] (top right), and [111] (bottom center)
direction in a bcc Fe at 600K.

LD5
[100], LD5

[110] and LDS5
[111], respectively, which allows the complete characterization of the

dynamic evolution of these defects.

Fig.5.7 represents the cumulative topologies as a function of KMC step. At the end of the

simulations for LD5
[100], LD5

[110], and LD5
[111] systems, 5122, 12296 and 2923 topologies in total

are analyzed for new events over 5000 KMC steps, respectively. Among these topologies,

the number of unique topologies visited for LD5
[100], LD5

[110] and LD5
[111], are 219, 550, and

139, respectively. There are two main features of the cumulative topology plot, which can be

described as the exploration of new topologies or oscillations between already encountered

topologies. The exploration of new topologies is illustrated by the increase in cumulative

topologies, where the simulation visits unexplored configurations. Plateaus on the topology

curve indicate the recycling of topologies already encountered.

Figs. 5.6 and 5.8 present the energy evolution and the detailed activation energy, bind-

ing energy at the local minima, and squared displacement as a function of time at 600 K,
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(b)

(c)

(d)

(e)

(f)

Fig. 5.9. Schematic representations of diffusion pathways — a, b, and c — and correspond-
ing energetic evolution — d, e, and f — for the three most dominant diffusion mechanisms
M1, M2, and M3, respectively associated with the five-vacancy cluster in bcc Fe at 600K. In
the schematic diagrams, the blue and red spheres represent crystalline Fe atoms and vacan-
cies, respectively. The cross and filled circles on the energetic graphs represent the saddle
points and minima, respectively. Indices (I, II, III, etc.) are used to identify states and
explain the diffusion mechanism. The bound structures are defined as 5V(a,b,c,d,e,f), where
a, b, c, d, e, and f represent the total number of 1NN, 2NN, 3NN, 4NN, 5NN, and 6NN
vacancy pair-separation distances, respectively.

respectively. The selected and sampled activation energies as a function of KMC step, as

well as the number of events in the catalog per step for events involving vacancy move-

ment, are shown in Fig. B.2. As expected, the LD structure for the five vacancies is quite
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unstable and rapidly collapses into a five-vacancy bound complex irrespective of the initial

orientation. The ground state (GS), composed of six 1NN, three 2NN, and one 3NN va-

cancy pair-separation distance, is reached in about 2.3 μs (1519 KMC steps), 1.8 μs (1935

KMC steps), and 3.1 μs (1789 KMC steps) for LD[100], LD[110], and LD[111], respectively.

Therefore, the initial LD[100], LD[110], and LD[111] structures are 0.78, 1.83, and 1.16 eV,

respectively, above the GS. Going back to the initial LD structure, the system would need

to cross significant effective barriers of 2.13, 2.44, and 1.75 eV, respectively, as measured

from the ground state. The collapse of all three LD structures occurs in the same manner,

triggered by one atom entering at the corner of the LD structure, requiring an activation

barrier of 0.630, 0.607, and 0.595 eV for LD5
100, LD5

110, and LD5
111 respectively. The first few

steps of the collapse for each of the three LD structures are shown in Appendix B Fig.B.3.

Once vacancies reach the ground state, ten configurations dominate the dynamics of the

system, representing more than 90 % of all accepted configurations. Table 5.4 summarizes

the energy landscape for the ten most stable penta-vacancy bound compounds, providing

information regarding formation and transition energies for these states. Fig.5.9 represents

the three most dominant diffusion mechanisms denoted as M1, M2, and M3 for this complex.

Mechanism M1 is completed going through one intermediate state. From the ground state,

the system moves to a bound state (0.129 eV above the GS), with a composition of four

1NN, four 2NN, and two 3NN vacancy pair-separation distances by crossing an activation

barrier of 0.638 eV, followed up with a transition of 0.509 eV system move to the new GS to

complete the migration. Mechanism M2 is symmetrical and visits two intermediate bound

configurations. From the ground state, the system moves to the bound state (0.211 eV above

the GS), which has a composition of five 1NN, three 2NN, one 3NN, and one 4NN vacancy

pair-separation distances, crossing a 0.740-eV, then a 0.513 eV barrier, to bring the system

into a new intermediate bound state with the same structure. Finally, the system reaches a

translated GS by crossing a 0.528 eV barrier. Like M2, mechanism M3 is also symmetrical

and is completed through four intermediate bound states having an overall migration barrier

of 0.937 eV.
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Fig. 5.10. Energy evolution of eight vacancies as a function of time at 600K: red, blue, and
green lines for the initial line dislocation structures along [100], [110], and [111], respectively.

Fig. 5.11. Activation-energy (left, blue symbols), binding energy at the local minima (left,
green line) and squared displacement (right, redline) as a function of time for the line dislo-
cation of eight vacancies along [100] (top left), [110] (top right), and [111] (bottom center)
direction in a bcc Fe at 600K.
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Fig. 5.12. Energy barriers and square displacement for the diffusion mechanism (ground
state to ground state) of 8-vacancy cluster. Numeric numbers (i to x) represent the
bound states, where (i) 8V(12,8,4,4,0,0), (ii) 8V(12,7,5,3,1,0), (iii) 8V(12,7,5,4,0,0), (iv)
8V(12,7,4,4,1,0), (v) 8V(12,7,4,4,0,1), (vi) 8V(10,8,6,2,2,0), (vii) 8V(11,7,5,4,1,0), (viii)
8V(10,7,4,6,0,1), (ix) 8V(11,6,4,5,1,1), and (x) 8V(10,6,4,5,2,1).

5.6.5. 8-vacancy cluster

To see how the collapse of the line dislocation (LD) structure occurs as the LD size

increases, we analyze the LD structure containing eight vacancies along [100], [110], and

[111] directions. These systems are run for 7000 KMC steps representing 280 μs, 250 μs, and

122 μs of simulation time for LD[100], LD[110], and LD[1111], respectively at 600K. At the end

of the simulations, around 6202, 7331, and 6347 topologies have been analyzed for new events

for LD[100], LD[110], and LD[1111], respectively. Among these, the number of unique topologies

visited, i.e., selected during the kinetics, for LD5
[100], LD5

[110] and LD5
[111], are 298, 332, and

253, respectively. Fig.5.10 plots the energy evolution and Fig.5.11 the detailed activation

energy, binding energy at the local minima, and squared displacement as a function of time
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at 600 K. The selected and sampled activation energies as a function of the KMC step, as

well as the number of events in the catalog per step for events involving vacancy movement,

are shown in appendix B, Fig.B.4. As for the 5-vacancy LDs, the structures collapse into

an eight-vacancy bound compact complex, but over a time scale 2 to 10 times longer: the

ground state (GS) is reached in about 53.9 μs (2566 KMC steps), 112.8 μs (5132 KMC

steps), and 0.2 μs (663 KMC steps) for LD[100], LD[110], and LD[111], respectively. This is

accompanied by a relaxation of 2.45, 4.25, and 3.12 eV, respectively, from the initial LD[100],

LD[110], and LD[1111] structures. Going back to the initial LD structure, the system must

cross significant effective barriers of 3.69, 5.02, and 3.85 eV, respectively, as measured from

the ground state.

The ground state of the eight vacancy cluster has a combination of twelve 1NN, eight 2NN,

four 3NN, and four 4NN vacancy pair-separation distances. This cluster is characterized by

a binding energy of 4.139 eV (0.517 eV per vacancy). While a large number of states are

accessed during the simulation, three actual diffusion events take place after the bound

complex is formed. Including various oscillations, mechanism M1 takes place over 74 KMC

steps over 1 μs, mechanism M2 takes place over 376 KMC steps over 4.9 μs, and mechanism

M3 takes place over 423 KMC steps over 21.5 μs. Reducing the process to its essential steps,

the diffusion mechanisms M1, M2, and M3 for the eight-vacancy cluster can be reduced to

6, 13, and 25 jumps, respectively, as shown in Fig.5.12. For the mechanisms, M1, M2, and

M3, the migration energy over pathways connecting ground states, is 1.093, 1.271, and 1.30

eV, respectively, with M1 being the most probable diffusion mechanism at 600 K.

5.6.6. Lifetime and diffusion coefficients of vacancy-cluster

The average thermal lifetime and diffusion coefficient for the various clusters are listed in

Table 5.5. Both the two- and three-vacancy clusters show a diffusion coefficient of the same

order of magnitude as a single vacancy at 4.7 × 108 Å2s−1, and 4.7 × 108 Å2s−1 respectively.

The average thermal lifetime for the two- and three-vacancy clusters is 0.036 μs and 0.2 μs

respectively. The bound two- and three-vacancy cluster compounds diffuse for 24 and 224
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Table 5.5. Average cluster lifetimes and diffusion coefficients for different vacancies at 600
K

.

Cluster Average thermal lifetime Diffusion coefficient
(s) (Å2 s−1)

1V - 7.17 × 108

2V (3.6 ± 0.01) × 10−8 (4.7 ± 0.01) × 108

3V (2.0 ± 0.01) × 10−7 (2.2 ± 0.01) × 108

4V (3.0 ± 0.01) × 10−6 (1.1 ± 0.02) × 107

5V (1.3 ± 0.01) × 10−5 (9.0 ± 0.04) × 105

8V - 1.8 × 104

steps on average before dissociating. By further increasing the number of vacancies in the

cluster (four and five vacancy clusters), the diffusion coefficient is considerably decreased.

The diffusion coefficient of four- and five-vacancy clusters are one and three orders of mag-

nitude lower than that of a single vacancy: 1.1 × 107 Å2s−1 and 9 × 105 Å2s−1 respectively.

Their lifetime at 600 K is 3 μs and 13 μs. In terms of steps, the bound four and five vacancy

cluster compound diffuse for 122 and 145 steps on average before dissociating. Even a cluster

of eight vacancies can be mobile with a diffusion coefficient of 1.8 × 104 Å2s−1 associated

with a relatively high migration energy (> 1 eV).

5.7. Discussion

The kinetics of vacancies play an essential role in determining the properties of a mate-

rial. Understanding the aggregation and diffusion mechanisms of vacancies is, therefore, a

crucial step in further exploring the mechanical/electrical properties of structural materials

associated with the formation of vacancies by deformation or radiation [6, 33, 53, 72, 86].

However, experimental approaches are generally unable to provide the required detailed mi-

croscopic information that would allow us to fully understand this role. Direct calculations

can compensate for experimental limitations in the case of simple point defects, but the

rapidly increasing complexity of the energy landscape of even small clusters requires auto-

mated search tools such as the kinetic activation-relaxation technique (kART).
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Accessing large time scale and system sizes, kART simulations presented here provide a

detailed characterization of vacancy aggregation and clustering diffusion processes and the

associated energy landscapes, showing a relatively complex picture even for the simplest

systems. This picture is well characterized with kART, since the catalog is updated and

expanded at every step as new topologies are explored.

We analyze the energy landscape associated with bcc crystalline Fe containing one to

eight vacancies. The more complete energy landscape generated here and obtained with

simulations that reached several hundred microseconds allows us to identify new mechanisms.

Comparison with previously published works [46, 95] for the monovacancy diffusion, using

EAM force fields, confirms that the correct basic diffusion mechanisms are recovered for

this system. For small vacancy cluster diffusion with two to four defects, the mechanisms

predicted and diffusivity trends match those seen in the literature [36, 37, 46, 69]. For di-

vacancy, a global minimum energy with a V–V distance separation of the second nearest

neighbor (2NN) is found, in agreement with previous MD and DFT studies. The mechanism

of migration of the di-vacancy in iron consists of an oscillation not only between 2NN and 1NN

states but also, largely, between 2NN and 4NN states, even though the 1NN state is strongly

bound compared to the 4NN state. These thermodynamically counter-intuitive diffusion

mechanisms of di-vacancy could easily be misidentified when using simpler approaches, e.g.,

the nudged elastic band method (NEBM). Although these mechanisms have been captured

with traditional KMC and careful analysis of DFT results [37], here they arise naturally

without any special consideration or bias. For tri-vacancy cluster, the migration energy of

the dominant diffusion mechanism is 0.64 eV, very close to the diffusion barrier for mono-

vacancy. Previously, using DFT-NEBM, Fu et al. [46] obtained an activation energy of

0.35 eV lower than the value that we find here; however, the general mechanism matches

the one presented here. However, D. Kandaskalov et al. [69] repeated the DFT study and

reported results of two types of numerical simulations: in the first simulation, the Fe atom

is fixed between the two nearest vacancies, and in the second simulation, it is placed in the

center of a four-vacancy. In the first case, the mechanism obtained, with a 0.64-eV barrier,
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matches the mechanism found here while the second simulation leads to a 0.36-eV barrier

that has not been generated here, even with additional ARTn searches.

Looking at the tetra-vacancy, we find that the dominant mechanism has a 0.703-eV

barrier, a little higher than the values found in previous DFT calculations [46, 69]. This

could be due to image interactions introduced by the small unit-cell supercell used or to

accuracy issues with the EAM potential. A recent DFT work, however, indicates significant

finite size effects affecting the height of the calculated energy barriers[25]. Nevertheless,

the match in the mechanism pathway is reassuring and indicates the key physics is being

captured by the potential. The barrier height we find here agrees with the previous literature

value using different empirical potentials[36]. Furthermore, during simulation, we find that

degenerate or quasi-degenerate saddle points are not so rare. These states play an important

role in cluster diffusion. Even though larger vacancy clusters are less mobile, they can still

move, and we identified diffusion mechanisms for 5- and 8-vacancy clusters. A number of

diffusion mechanisms for vacancy clusters with barriers higher than 1 eV are also identified

with kART. Since these are much rarer, however, we did not discuss them here in detail, but

the presence of strain, defects, or other impurities could lower the barrier and make them

relevant.

Methods such as kART, which includes both elastic and kinetic effects, greatly facilitate

this characterization as compared to standard approaches where these pathways must be

deduced one by one, an approach that rapidly becomes impossible when dealing with long-

range elastic effects or complex systems.

5.8. Conclusion

Using the kinetic activation-relaxation technique (kART) coupled with an embedded-

atom method (EAM) potential, we study the vacancy aggregation and clustering diffusion

processes in α-Fe. Our results show a richness in the diffusion mechanisms as well as a com-

plex balance between elastic and chemical effects. By reaching physically-relevant timescales

without presuppositions regarding mechanisms and elastic effects, this approach provides a
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detailed and reliable representation of the migration pathways of vacancy clusters, including

rare pathways that are orders of magnitude less likely to occur in pure Fe than the dominant

ones.

We find that the diffusion barriers of vacancies do not change monotonically with cluster

size. Moreover, the number of possible barriers is much larger than previously identified.

Even focusing on the barriers relevant at 600 K, we find considerable complexity that prevents

the use of simplistic diffusion models. Degenerate or quasi-degenerate saddle points, for

example, are much more common than generally thought. As discussed, these states play a

significant role in cluster diffusion. As for the diffusion coefficient, we find that divacancies

and trivacancies diffuse on the same order of magnitude as monovacancies. The stabilization

of vacancy clusters is achieved both by energetics, with larger vacancy clusters having lower

energy, and by kinetics: the thermal lifetime of vacancy clusters increases with cluster size.

Yes, these larger clusters are less likely to interact with each other, as their diffusion coefficient

decreases significantly with size.

Overall, these results provide a much deeper understanding of the microscopic and kinetic

picture of vacancy clusters in α−Fe; a qualitative understanding that should be valid for all

bcc metals. The complex energetic environment controlling the kinetics of small vacancy

clusters presented here demonstrates that simple rules are not sufficient to develop a robust

approach to predictive control and prevention of damage processes associated with vacancy

clusters in structural metals. More work is needed to better characterize this behavior and

derive general rules. It is clear that additional simulations are needed to capture the energy

landscape of vacancy cluster diffusion in other materials or the presence of strains, defects,

or impurities; simulations to this end are underway.

In summary, if the use of empirical potential limits the general application to defect kinet-

ics, the agreement with DFT calculations for some of the simpler mechanisms suggests that

the main results presented here are physically relevant. On a qualitative level, these show

that even in systems as simple as the one presented here, complex diffusion mechanisms can

be important. Recovering dominant diffusion, but also trapping mechanisms (for instance,
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the transition between 2NN state to 1NN state for di-vacancy cluster), requires much more

than the simple identification of a few configurations by symmetry analysis or through molec-

ular dynamics, as the latter cannot deliver a detailed characterization for temperatures well

below melting mainly because some of the transformations require dwelling metastable states

that cannot endure in these high temperatures and can only play a dynamical and structural

role at a lower temperature.

Accelerated methods such as the kinetic ART provides detailed and rich information

regarding mechanisms that we did not know existed until now. The systematic use of such

methods will continue to enrich significantly our understanding of diffusion at the atomistic

level in materials.

5.9. Supplementary materials

see appendix B

5.10. Access to codes

The most recent packages for kART and ARTn are available freely upon request. Please

contact Normand Mousseau (normand.mousseau@umontreal.ca).
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Chapter 6

A local basin approach to the kinetic

activation-relaxation technique

6.1. Objective

The goal of this article is to find a way to deal more efficiently with systems in which

multiple independent oscillators dominate the kinetics of the system. We propose a local

basin approach for dealing with these oscillating basins in kART, which is discussed in detail

in this article.
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6.2. Résumé

Les simulations cinétiques de Monte Carlo peuvent devenir inefficaces en présence de

barrières à faible énergie qui dominent la cinétique, car chaque étape est associée à une très

petite augmentation du temps de la simulation. Dans certains cas, ces événements sont des

oscillateurs, un ensemble d’états séparés par des barrières de basse énergie au fond d’un

bassin énergétique et qui ne contribuent pas à l’évolution du système. Nous proposons un

algorithme pour détecter, à la volée, des groupes d’états oscillants et les consolider en bassins

locaux, que nous traitons avec la méthode d’auto-construction de bassins (bac-MRM), une

approche de type équation-maître basée sur la méthode du taux moyen. Le bac-MRM calcule

une solution analytique statistiquement exacte des oscillateurs reliés en bassin local (définit

par proximité spatiale) et de leur taux d’échappement au fur et à mesure que le paysage

énergétique est exploré le long de trajectoires spécifiques. Dans cet article, nous discutons

en détail de la mise en œuvre des simulations de la technique de relaxation de l’activation

cinétique du bassin local qui contiennent simultanément des bassins locaux et des événements

hors bassin.

6.3. Abstract

KMC simulations can become inefficient in the presence of low-energy barriers that dom-

inate the kinetics, as each step is associated with a very small clock increase. In some cases,

these events are flickers, a set of states separated by low-energy barriers deep in an energy

basin that does not contribute to the evolution of the system. We propose an algorithm

to detect, on-the-fly, groups of flickering states and to consolidate them into local basins

which we treat with the basin-auto-constructing Mean Rate Method (bac-MRM), a master

equation-like approach based on the mean-rate method. The bac-MRM computes a statis-

tically exact analytic solution of the locally connected flickering states (as defined by their

spatial proximity) and their escape rate as the energy landscape is explored, at the cost of

specific trajectories. In this article, we discuss in detail the implementation of the local basin
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kinetic activation relaxation technique simulations that contain local basins and non-basin

events simultaneously.

6.4. Introduction

The microstructural evolution of metals and alloys is still a major challenge. In many

systems, microstructural evolution is governed by a series of rare events that often have large

activation barriers and occur on time scales that are simply beyond the reach of standard

atomistic simulation techniques such as the molecular dynamics (MD) method [3] . There-

fore, the kinetic Monte Carlo (KMC) method [142, 146] is often the method of choice when

time scales of milliseconds to hours need to be reached. Rather than studying the vibrational

motion of atoms, as is done in MD, the KMC method can achieve long time scales by de-

termining a sequence of state-to-state jumps. These state-to-state jumps of the system form

what is called a Markov chain. In a standard KMC implementation, a catalog of process

rates with their rates is provided at the beginning. Then, in each KMC step, an atomic

process with probability proportional to its rate is randomly selected from the catalog, time

is updated, the system transitions to a new state, and the list of possible transitions for

the system’s new state is updated. If the basic assumptions of KMC are satisfied, namely

that the first exit time is exponentially distributed, the statistics obtained from the KMC

simulation of rare events can be as accurate as the statistics from MD.

Despite the higher computational efficiency of KMC, challenges remain in dealing with

the small barrier problem. In KMC, the dynamics is dominated by the lowest barrier energy

of a system. When the energy landscape consists of basins with numerous states connected

by very low energy barriers compared to the barriers required to leave those basins, the

algorithm is trapped into computing non-diffusive events, which significantly reduces its

efficiency in two ways. First, it limits the achievable simulation time, since the low energy

internal barriers produce a high total sum of rates and thus a short average KMC time

increment. Second, computational resources are bound to exploring the states within a
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basin without providing much information since effective diffusion usually occurs outside the

energy basins.

With respect to the low barrier problem, we implement a local basin approach for kART,

an off-grid kinetic Monte Carlo algorithm with flying catalog structure. Flickering basins are

widely spaced and spatially and geometrically protected, they are treated as single events

and limit the information loss between events. The internal kinetics of the basin are solved

analytically using the Accelerated Basin Method (bacMRM) [13, 112]. The transition rates

that allow the basin to exit are corrected by considering the correlations between the states

of the basin. In this way, when an accepted event occurs in a part of the system, only the

basins that are physically close to the affected region are destroyed, while the others remain

in the catalog. Since relevant barriers are reconstructed at each KMC step, the introduction

of local basins will not change the overall kinetics of the simulation as long as the interaction

between these basins is small enough not to change the basin states and their event list. This

article is organized as follows: After a brief overview of kART in section 6.5, the local basin

algorithm is presented in section 6.6. Finally, a conclusion is drawn in section 6.7.

6.5. Standard kART algorithm

The standard kART [13, 40, 103] algorithm starts from an initial configuration relaxed

into a local energy minimum. The local environment of each atom is characterised by its local

topology, which is evaluated using NAUTY [97], a topological analysis library developed by

McKay. To do this, all atoms within a sphere of predefined radius (which depends on the

system under study but is typically chosen to be between 5 and 7 Å, a region encompassing

between 40 and 80 atoms) surrounding an atom are selected as vertices of a graph. Edges are

drawn between atoms that have fewer than one first neighbour. The automorphic group of

the resulting graph is then computed, providing a unique identifier and sufficient information

to recover permutations and symmetry operations between two automorphic configurations.

All atoms sharing a given topology are assumed to be associated with the same list of events.
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This hypothesis can be tested in the event reconstruction phase. If it fails, new cut-offs are

introduced to ensure a clear correspondence between topology and geometry.

For each topology, a search for activated pathways is started using ART nouveau [7, 88,

92], an efficient algorithm for finding open-ended transition states. Each event is classified by

initial minimum, saddle configuration, and final state topologies and stored in the catalogue.

Once the event catalogue is updated, the generic events are ordered depending on their

rate, which is calculated as follows:

ri = ν0e
− Eb

kBT (6.5.1)

where ν0, a prefactor that determines the attempt frequency, and Eb is the activation energy

for the event i defined as the energy difference between the transition state and the initial

minimum [42, 43, 78]. In the kinetic ART code, ν0 can be computed for each event within

the harmonic approximation or given a constant value (generally 1013 Hz).

Events within a given fraction (we generally use 99.99%) of the total ascending cumulative

rate are fully reconstructed and reconverged into specific events to ensure that elastic and

configurational effects are exactly taken into consideration. At this point, following Bortz et

al. [17], the elapsed time to the next event is computed as:

Δt = − lnμ∑
i ri

(6.5.2)

where μ is a random number in the [0,1[ interval and ri is the rate associated with event i.

The clock is pushed forward, an event is selected with the proper weight, and the atoms are

moved accordingly after a geometrical reconstruction.

Once in this new configuration, the process starts again: the topology of all atoms

belonging to the local environment of the new state is constructed; if an unknown topology

is found, a series of ART nouveau searches is started; otherwise, the process proceeds to

the next step. After all events have been updated, the low-lying barriers are relaxed again

before the KMC algorithm is applied. These steps are repeated many times to simulate the

evolution of the system.
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(a) (b)

(c) (d)

Fig. 6.1. Schematic representation of the local basin approach for two vacancies evolving
on a square lattice: vacancies V1 and V2, represented by the two labelled squares, are initially
trapped. The basin events are represented by the black dotted arrows. The blue and grey
circles represent the locations within the basin and the exit locations, respectively. The green
dashed line represents the active zone of the basin. The sequence of events is as follows: (a)
the two vacancies are spatially protected, the mean residence time t1 and t2 are plotted
(here t2 < t1 ), (b) V2 exits the basin, diffuses and collides with the spatial protection of
V1, non-basin events are indicated by a violet dotted arrow, (c) V2 attaches to V1, and (d) a
diffusing entity of two vacancies.

6.6. Local basin algorithm

The schematic representation of the approach of the local basin for two vacancies evolving

on a square lattice is shown in Fig.6.1. Let us consider that the vacancies V1 and V2 are

initially trapped in flickering basins that are geometrically far apart. These flickering basins

are treated as single events and limit the information loss between events. kART uses the

basin-auto constructing mean rate method (bacMRM) to determine the mean dwell time

for the states within the basin. A basin with such states is constructed on-the-fly using a
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Fig. 6.2. Flowchart of local basin algorithm.

predetermined barrier cutoff value. Intra-basin states within the basin are visited only once,

and the exit time associated with the exit-basin transitions is adjusted using the bacMRM

procedure. In this way, when an exit-basin event takes place in one part of the system, only

the basins that are physically close to the affected region are destroyed, while the others

remain in the catalog. A workflow of the local basin algorithm is illustrated in ??. The basic

algorithm of the local basin approach is defined as follows:

(1) Perform a standard kART move by executing an event and advance time;

(2) Check the execute event:

(i) if the selected event is an intra-basin event: (a) if it leads to a new basin site (state)

of an active local basin, then it is added to the intra-basin event connectivity network

of that particular local basin and removed from the KMC tree of available events;

or (b) if it leads to an already explored basin site (state) of an active local basin,
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it is rejected, removed from the tree, and added to intra-basin event connectivity

network, adjusting the rates as needed; or (c) if it leads the system into a local basin

that is already store in memory, in that case, we use basin reconstruction algorithm

(see below) to rebuild the complete basin; otherwise, (d) it will be considered as the

first basin event, removed from the tree, and added to the network of a new local

basin. Events associated with all atoms within the topo cut-off radius around the

previous intra-basin site are considered exit-basin events and kept in the tree and

could be picked as KMC move. Events associated with all atoms within the topo

cut-off radius around the current intra-basin site will be marked as exit-basin events

after the current configuration has been searched. Finally, The list of atoms in the

basin-active-zone of that particular local basin is updated as St=S1 ∪ S2 ∪ ... ∪ Sn

where St is the list of atoms in the basin-active-zone, n is the total number of intra-

basin sites present in that local basin, and S1, S2, and Sn are the set of atoms within

the topo cut-off radius around the first, second, and nth intra-basin site, respectively

(see Fig. 6.2 );

(ii) if the selected event is an exit-basin event of a local basin, we inactivate that

local basin and all exit-basin events related to that local basin are removed from the

KMC tree;

(iii) if the selected event is a non-basin event, in which case a standard kART move

is applied;

(3) Check if this move affects the basin-active-zone (i.e., changes the topology/local en-

vironment of any atom inside the basin-active-zone) of any active local basin; we

destroy that particular local basin.

(4) Generate all possible events for the current configuration.

(5) Apply the bac-MRM to all individual active local basins to modify the rate of the

exit-basin transitions following Eq.6.6.5, and the total rate is adjusted accordingly.

(6) Return to step (1).
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(a) (b)

(c) (d)

Fig. 6.3. Diagram illustrating the making of the basin-active-zone of a local basin containing
four intra-basin states. Where St is the list of atoms in the basin-active-zone; S1, S2, S3,
and S4 are the set of atoms within the topo cut-off radius around the first, second, third,
and fourth intra-basin site respectively. blue and gray circles represent the intra-basin sites
and basin-exit sites, respectively.

6.6.1. Basin reconstruction algorithm

The basin reconstruction algorithm allows us to recover all the intra-basin and exit-basin

states and their connectivity. For example, suppose an executed event is a low-energy barrier

event that leads the system to fall again into a visited local basin. Then, the executed event

is added to the intra-basin event connectivity network (i.e., for the first intra-basin event,

this is, at that time, the only event) and removed from the KMC tree. Currently, there are

two intra-basin sites in the list of intra-basin sites. Our basin reconstruction algorithm starts

from here. A workflow of the basin reconstruction algorithm is shown in ??. The algorithm

is as follows:

(1) Pick the first intra-basin site i=1 from the list of intra-basin sites;
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Fig. 6.4. Flowchart of the basin reconstruction algorithm.

(2) Generate the topology of all atoms within the topo cut-off radius around the site i;

(3) Check all the topologies: if all the topologies are known, recover associated events

from the catalog and go to step 4. Otherwise, pick the next intra-basin site j → i

from the list of intra-basin sites and return to step 2;

(4) Check all events:

(i) if an event is an intra-basin event (both forward and reverse barriers are lower

than a predefined threshold value), it is added to the intra-basin event connectivity

network, and if it leads to a new intra-basin site, the new site is added to the list of

intra-basin sites; otherwise, (ii) it will be considered an exit-basin event and will be

added to the KMC tree.

(5) Update the list of atoms in the basin-active-zone;
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(6) Pick the next intra-basin site j → i from the list of intra-basin sites and return to

step 2;

(7) Repeat step 2 to 6 until the list of intra-basin sites is exhausted.

6.6.2. The Mean Rate Method

Following Puchala et al. [112], a local basin is separated into intra-basin and exit-basin

states. To determine the mean time per escape spent in each intra-basin state i, we need to

create the transition probability matrix T with components,

Tij = rij∑
k rik

= τ 1
i rij (6.6.1)

where rij is the rate going from intra-basin state i to intra-basin state j, where k runs over

all intra-basin and exit-basin states and τ 1
i = 1∑

k
rik

, the reciprocal of the sum of all rates

leaving state i, is the mean residence time in state i each time it is visited.

As the system moves between states within the basin, the occupation probability for

intra-basin states changes. The occupation probability vector of all intra-basin states after

in-basin jump m and before jump m+1, P (m) is thus given by repeated application of T to

the initial occupation probability Pi(0) = δis, where s is the starting state, as:

P (m) = Tmp(0) (6.6.2)

Then, all possible jumps (m) from zero to infinity are considered. This is equivalent to

the assumption that the system is in equilibrium. The sum of the occupation probabilities

over all possible number of jumps gives the average number of times each intra-basin state

is visited:

P tot =
∞∑

m=0
TmP (0) = (I − T)−1P (0) (6.6.3)

from which the mean residence time in intra-basin state i before leaving the basin can be

calculated:

τi = τ 1
i P tot

i (6.6.4)
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These residence times are then used to accelerate the basin exit rates from intra-basin state

i to exit-basin state j according to

< rij >= τi∑
k τk

rij (6.6.5)

with k summing over all intra-basin states.

6.7. Conclusion

In this work, we have presented a local basin method for solving the small-barrier problem

arising from groups of recurrent local minima connected by low energy barriers and separated

from the overall phase space of the system by high barriers. We have proposed an algorithm to

detect, on the fly, groups of recurrent local minima connected by low barriers and consolidate

them in a local basin, which we treat with the Markov state model. Finally, we have

addressed the integration of this algorithm into standard kART simulations that include

local basins and non-basin events. The algorithm presented here provides a general and

robust formalism for identifying local basins and dealing with the low-barrier problem that

is common in conventional KMC simulations. Implementation of this proposed local basin

approach in kART is still in progress. Therefore, there are no supporting results regarding

its applications. Once implemented, the algorithm of the approach can be used to study

the anisotropic migration of interstitial clusters whose diffusion mechanism is a mixture

of fast translations and slow rotations. It could be extended to simulate the dynamics of

large objects, such as dislocation loops in solids. The short-time dynamics of these objects

consists of transitions confined to a particular energy basin that does not lead to their average

motion; only rare transitions corresponding to an exit from the original basin into a similar

basin, such as concerted displacements of atoms in a particular direction, contribute to their

evolution. Thus, if one were able to solve the dynamics of such objects for a single basin,

since this basin simply repeats as the object moves, it could be possible to focus only on the

basin-exit transitions that lead to the evolution of the system. In addition, the proposed
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approach could also allow efficient calculation of sink strengths relative to defect clusters

with mixed mobilities. This is an open- end to this thesis work; we outline other future

avenues in perspectives.
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Conclusion

Point defects play an important role in materials science. The evolution of materials is go-

verned by the migration of point defects, which affect the physical and mechanical properties

of the materials. During the last five years of this thesis, using kART we investigate certain

phenomena related to the kinetics of point defects, in particular, the diffusion mechanisms

of carbon impurities and vacancy clusters in α−iron.

We recall the structure of the thesis and summarize the most relevant results obtained

in this work:

Chapters 1-3 are bibliographical chapters devoted to the description of the problem stu-

died (the point defects in materials) as well as the numerical methods to study it. In chapter

1, we briefly described the classification of point defects and their kinetics, as well as reviewed

the different experimental and numerical methods to study defect evolution. In chapter 2, we

recall the activated processes and transition state theory. We detail the kinetic Monte-Carlo

method in its original form; then, we review the developments of this method over the past

twenty years. In chapter 3, we described in detail the kinetic ART (kART) method, which

is used in our studies.

In chapter 4, we studied the pressure effect on C diffusion in GB of α− iron. We succee-

ded in drawing a complete picture of the energy landscape, allowing us to provide detailed

information on mechanisms and pathways. The effect of pressure can strongly alter the sta-

bility and diffusivity of C in GB in a way that depends strongly on the local environment

and the nature of the deformation. We find that the segregation energy for a C interstitial

tends to become more favorable for GB relative to bulk with increasing isotropic pressure,



with the gain depending on specific sites and changing little for a pressure change of 24 kbar.

In addition, we note that the orientation of the pressure with respect to the GB changes

the result. If pressure is applied perpendicular to the GB, the available free volume at the

GB decreases, and so does the segregation energy, while pressure parallel to the GB plane

increases the enthalpy of formation in the bulk, while maintaining a larger free volume and

increasing the energy gain due to movement toward the GB. Pressure can also affect the

different transition states differently, as shown by our detailed analysis of its effects on the

three dominant transition states at the GB. While all three barriers increase linearly with

increasing isotropic and normal pressure, albeit with different slopes, this is not the case for

pressure applied parallel to the GB plane, which could lead to a change in the dominant

diffusion mechanisms and overall diffusion if the pressure is high enough. These observa-

tions are important for understanding the evolution of heterogeneous materials, where local

variations in pressure can alter carbon diffusion in the material.

In chapter 5, we investigated the stability and diffusion mechanism of vacancy clusters

with one to eight vacancies in α−iron. The binding energy of vacancy clusters generally

increases with vacancy size, indicating a preference for further cluster growth. Moreover,

the binding energies for the tetrahedral and octahedral clusters are higher and exhibit larger

energy gradients. In contrast, the binding energies of the linear and planar clusters are lower

and exhibit smaller gradients. This is expected since the tetrahedral and octahedral clus-

ters with a lower surface-to-volume ratio should be more stable and exhibit a higher growth

tendency. The diffusion of vacancies in α−iron is a much broader and more complex pheno-

menon than originally thought. Using the kART method, we identified subtle mechanisms

as well as rare and unexpected mechanisms, such as counterintuitive diffusion mechanisms of

the di-vacancy cluster, which could easily be misidentified using simpler methods. We also

found that vacancy clusters have longer lifetimes and lower diffusivity the larger the clusters

are.

In chapter 6, we illustrate a local basin approach for kART, to deal more efficiently with

systems in which multiple independent oscillators dominate the system kinetics. Flickering
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basins (groups of oscillating minima) are far apart and spatially protected, geometrically,

treated as single events, and limit information loss between events. The internal kinetics

of each local basin is solved analytically using the accelerated basin method (bacMRM);

the transition rates that allow the basin to exit are corrected by taking into account the

correlations between states within the basin. In addition, the basin reconstruction algorithm

will allow us to recover all the intra-basin and exit basin states as well as their connectivity

graph when the system falls again into a previously visited local basin. This work is still

being prepared for submission to a journal, but there is still some implementation to be

done.

The work presented in this thesis is subject to further improvement and investigation.

The following are the points that represent open questions of this work:

(1) As we saw in chapter 4, pressure can change C stability and diffusivity in GB in ways

that depend strongly on the local environment and the nature of the deformation. It

will be interesting to see how a multi-atom profile affects these results. Additional

C atoms may block possible diffusion paths and elastically deform the system. In

addition, the segregation profile depends on stress, as it can cause a rearrangement

of the segregated atoms. In addition, it will be interesting to see how other defects,

such as vacancies and substitution atoms, diffuse into GBs under pressure.

(2) In the standard KMC method, the master equation provides jump probabilities of the

transitioning defects. Irradiation leads to long-term phenomena such as dislocations

and dislocation loops, where a plane is normally missing. Standard KMC simulations

are not efficient enough to study the evolution law over a long period of time. Using

the local basin approach developed (as discussed in chapter 6), we can characterize

the long-term evolution of defects. This can be achieved by relying on the local basin

approach to the kART method. The law of evolution, from one state to another,

leads to a macro jump.

(3) The local basin algorithm using the kART method discussed in Chapter 6 is under

development. Therefore, there are no supporting results regarding its applications.
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However, the algorithm could be more efficient and accurate in studying recombina-

tion kinetics for point defects.

(4) We note that the proposed local basin approach is based on the actual transition

rate matrix in the crystal lattice. Therefore, it can be used to study the anisotropic

migration of interstitial clusters whose diffusion mechanism mixes fast translations

and slow rotations. In addition, the local basin approach can efficiently allow the

calculation of sink strengths relative to defect clusters that exhibit mixed mobilities.

We believe that atomic numerical approaches to materials simulation have a promising

future. Several options should be considered soon. Although kART is able to achieve time

scales that cannot be reached by MD, such approaches are still more computationally in-

tensive than lattice-based atomistic KMC. Moreover, kART is typically limited to a couple

of tens of thousands of KMC steps, excluding analytically treated flickers. Consequently,

these techniques are only applicable to systems where local mechanisms clearly dominate

the physically relevant mechanisms. For example, simulating vacancy-induced solute dif-

fusion in metals, where the proximity of a vacancy to a solute is required to observe an

atomic jump, is considered too costly. To circumvent these limitations, one can calculate the

equilibrium distribution of vacancies in the system during the time interval between confi-

gurations in which vacancies are near a solute. Alternatively, one could integrate off-lattice

KMC with lattice-based KMC to provide efficient resolution of vacancy diffusion away from

the solute while accurately accounting for elastic effects and interactions between solute and

point defects through an off-lattice representation. Alternative options undoubtedly exist,

and further research in this area is needed to determine the optimal approach to integra-

ting these scales. Moreover, the ability of the kART method to manage defects is usually

limited to a small number of defects, typically a few hundred. Increasing the number of

defects leads to an increase in computational effort in two distinct ways. (1) It is necessary

to assign events to each additional defect. Although optimising the reuse of events can lead

to a reduction in computational effort, this is not always a feasible approach. For concen-

trated alloys, the number of local configurations increases exponentially with the number of
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constituents, limiting the effectiveness of event reuse. As the number of defects increases,

so do the overall rates, reducing the waiting time for each KMC step. To achieve identical

time scales, additional computational resources in the form of KMC steps are required. Al-

though synchronous and asynchronous parallelization techniques for the kinetic Monte Carlo

(KMC) method provide a potential solution to this problem, it remains an unsolved obstacle

for off-lattice KMC. Another major limitation of the on-the-fly kinetic Monte Carlo (KMC)

such as the kART method concerns the study of the potential energy surface. In cases where

the free energy is significantly affected by entropic factors, relying solely on the analysis of

the surface of the potential energy can lead to erroneous predictions. To function optimally,

these accelerated methods must use an appropriate and comparatively limited collection of

response coordinates. It is conceivable that KMC could be used in the future in real-time to

identify favourable reaction coordinates that can be used as input to accelerated free-energy

techniques.

In summary, this type of research project combining theory and numerics is becoming a

new norm. Moreover, the collaboration between numerical theorists and experimentalists is

becoming more and more important, as experiments are more precise than ever, and at the

same time, numerical simulations are more realistic and can handle more complex systems.
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Appendix A

Supplementary material: Pressure effect on

diffusion of carbon at the 85.91◦ < 100 >

symmetric tilt grain boundary of α−iron.

Fig. A.1. Schematic representation of atomic positions showing the three different octa-
hedral interstitial sites (variants) within the bcc Fe unit cell. Iron atoms are represented
by black circles, while the three structurally equivalent variants of octahedral interstitial
directed along x, y, or z crystallographic axis are labeled and represented by blue, red and
green circles respectively.



Fig. A.2. Octahedral to octahedral carbon diffusion pathways in a perfect BCC bulk iron
at zero pressure and upon the application of with compressive and tensile strains along the x
axis. Pressure leads to lifting the degeneracy in the energetics of the octohedral sites Ox, Oy,
Oz. For each case, E is measured with respect to the energy of the pure Fe system under the
same deformation. The circles and crosses represent the energy minima and saddle points,
respectively.

Table A.1. Parameters of the functions fitting the data points of activation energies for a
single carbon in the bulk under uniaxial and biaxial pressure which is shown in Fig.2 and
Fig.3 .

Constant Linear Quadratic
term parameter parameter
(eV) (eV/kbar) (eV/kbar2)

Enthalpy Isotropic pressure −8033.830 ± 0.003 14.495 ± 0.001 −0.004 ± 8.61 × 10−6

Isotropic pressure O → O 0.001 ± 9.32 × 10−5 8.570 × 10−6 ± 6.07 × 10−6

Ox → Oy −0.003 ± 1.89 × 10−5 −3.96 × 10−7 ± 9.68 × 10−7

Oy → Ox 0.003 ± 6.27 × 10−6 −2.52 × 10−6 ± 3.21 × 10−7
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Oy → Oz 0.001 ± 7.37 × 10−6 −1.44 × 10−5 ± 3.78 × 10−7

Ox → Oy 0.004 ± 6.98 × 10−6 −8.47 × 10−6 ± 4.55 × 10−7

Oy → Ox −0.002 ± 3.10 × 10−6 −6.35 × 10−6 ± 2.02 × 10−7
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0.797 ±0.002

1.30 × 10−5 ± ×3.24 × 10−6 −6.05 × 10−6 ± 2.11 × 10−7
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Fig. A.3. Activation-energy (left axis: black symbols) and squared displacement diffusion
for a single C interstitial in a perfect crystall (right axis: red, blue and green line indicate
the x, y and z direction respectively) as a function of time for 200 000 KMC steps run at
600 K for five different deformations: (a) stress free cell (0 kbar), (b) isotropic compression
(24 kbar), (c) isotropic expansion (-24 kbar), (d) uniaxial compression (24 kbar) and (e)
uniaxial expansion (-24 kbar).
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Fig. A.4. Representation of all available events for a single C at GB. The x and y axes
represent the initial and final energy for each event, the color defines the saddle energy. All
initial and final energies are measured with respect to the bulk ground state for C: (a) stress
free cell (0 kbar), (b) isotropic compression (12 kbar), (c) isotropic expansion (-12 kbar), (d)
uniaxial compression (12 kbar), (e) uniaxial expansion (-12 kbar), (f) biaxial compression
(12 kbar) and (g) biaxial expansion (-12 kbar).
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Fig. A.5. Histogram of the activation energy barriers of the available events during the
12000 KMC steps a single carbon at GB at 600 K: (a) stress free cell (0 kbar), (b) isotropic
compression (12 kbar), (c) isotropic expansion (-12 kbar), (d) uniaxial compression (12 kbar),
(e) uniaxial expansion (-12 kbar), (f) biaxial compression (12 kbar) and (g) biaxial expansion
(-12 kbar)
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Fig. A.6. Activation energy (left, black symbols) and squared displacement diffusion (right,
red, blue and green line represented x, y and z direction respectively) as a function of time
for 12 000 KMC steps a single carbon at GB at 600 K: (a) stress free cell (0 kbar), (b)
isotropic compression (12 kbar), (c) isotropic expansion (-12 kbar), (d) uniaxial compression
(12 kbar), (e) uniaxial expansion (-12 kbar), (f) biaxial compression (12 kbar) and (g) biaxial
expansion (-12 kbar)
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Table A.2. The calculated activation volume V act , activation barrier Eact and diffusion
prefactor D0 at zero pressure and temperature 600K. Activation volume and activation en-
ergy is calculated from the relationships, V act = −kBT (∂lnD

∂P
)T and Eact = −kB(∂lnD

∂ 1
T

)P

respectively. Where, kB, T and P are Boltzmann constant, temperature and pressure re-
spectively.

Applied pressure Activation volume
V act

(× 10−30 m3)

Activation energy
Eact

(eV )

Diffusion prefactor
D0

(× 10−7 m2s−1)
Isotropic 8.702 ±0.002

along x axis 2.664 ±0.012 0.772 ±0.001 6.020 ±0.02GB

along y and z axes 5.364 ±0.013

Isotropic 1.493 ±0.002
Bulk along x axis 1.628 ± 0.009a

−1.782 ± 0.03b
0.799 ±0.001 1.37 ±0.001

along y and z axis 3.012 ± 0.025a

−0.5 ± 0.005b

_ a under compression, b under expansion.
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Appendix B

Supplementary material: Structural evolution

of vacancy clusters in α−iron: A kinetic

activation-relaxation technique study



(a) (b)

(c) (d)

Fig. B.1. Evolution of the energy landscape as a function of KMC steps for (a) one, (b)
two, (c) three, and (d) four vacancies in bcc Fe. Left axis: energy barrier for the sampled
(blue symbols) and selected (red symbols) events. Right axis: number of available activation
energies per KMC steps (green symbols).
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(a) (b)

(c)

Fig. B.2. Evolution of the energy landscape as a function of KMC steps for initial line
dislocation contains five vacancies along (a) [100], (b) [110], and (c) [111] in bcc Fe. Left
axis: energy barrier for the sampled (blue symbols) and selected (red symbols) events. Right
axis: number of available activation energies per KMC steps (green symbols).
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(a)

(b)

(c)

Fig. B.3. First few steps of the collapsing of the line dislocation of 5 vacancies along (a)
[100], (b) [110], and (c) [111] direction.

146



(a) (b)

(c)

Fig. B.4. Evolution of the energy landscape as a function of KMC steps for initial line
dislocation contains eight vacancies along (a) [100], (b) [110], and (c) [111] in bcc Fe. Left
axis: energy barrier for the sampled (blue symbols) and selected (red symbols) events. Right
axis: number of available activation energies per KMC steps (green symbols).
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